metadata
dict
text
stringlengths
60
3.49M
{ "source": "jdashg/dag-runner", "score": 3 }
#### File: jdashg/dag-runner/dagr.py ```python class DagrNode(object): nodes_by_name = dict() def __init__(self, name, parents=[], cmd=None): self.name = name self.parents = set(parents) assert name not in DagrNode.nodes_by_name DagrNode.nodes_by_name[name] = self self.cmds = [] if cmd: self.cmds.append(cmd) return #################### # Traverse! DAGR_FILENAME = '.dagr' with open(DAGR_FILENAME) as f: code = compile(f.read(), DAGR_FILENAME, 'exec') exec(code) #################### # Now include import multiprocessing import shlex import subprocess import sys import threading import time #################### # Privates class Task(object): def __init__(self, target, args=(), kwargs={}): self.target = target self.args = args self.kwargs = kwargs def run(self): self.target(*self.args, **self.kwargs) class ThreadPool(object): def __init__(self, name, num_threads): self.name = name self.cond = threading.Condition() self.is_alive = True self.task_queue = [] self.threads = set() for i in range(num_threads): t_name = '{}[{}]'.format(self.name, i) t = threading.Thread(name=t_name, target=self.thread, args=(i,)) self.threads.add(t) t.start() def enqueue(self, task): assert self.is_alive with self.cond: self.task_queue.append(task) self.cond.notify_all() def thread(self, thread_i): while self.is_alive: with self.cond: try: task = self.task_queue.pop(0) except IndexError: self.cond.wait() continue task.run() def kill(self): self.is_alive = False with self.cond: self.cond.notify_all() def join(self): for t in self.threads: t.join() #################### class ExDagHasCycle(Exception): def __init__(self, stack, cycle): self.stack = stack self.cycle = cycle def map_dag(roots, map_func): mapped_nodes = dict() stack = [] def recurse(node): if node in stack: cycle = stack[stack.index(cur):] + [cur] raise ExDagHasCycle(stack, cycle) try: mapped = mapped_nodes[node] return mapped except KeyError: pass # -- stack.append(node) parents = node.parents mapped_parents = set() for parent in parents: mapped_parent = recurse(parent) if mapped_parent: mapped_parents.add(mapped_parent) stack.pop() # -- mapped = map_func(node, mapped_parents, stack) mapped_nodes[node] = mapped return mapped mapped_roots = set() for x in roots: mapped = recurse(x) if mapped: mapped_roots.add(mapped) return mapped_roots #################### class PromiseGraphNode(object): def __init__(self, parents, info=''): self.info = str(info) #print 'PromiseGraphNode {}: '.format(self.info) + ', '.join(map(lambda x: x.info, parents)) self.lock = threading.Lock() self.pending_parents = set(parents) self.children = set() for parent in self.pending_parents: with parent.lock: parent.children.add(self) self.result = None def run(self): self.resolve(True) def on_resolve(self): pass def resolve(self, result): assert result in (True, False) with self.lock: if self.result != None: return self.result = result self.pending_parents.clear() self.on_resolve() assert self.result in (True, False) if not self.result: for child in self.children: child.resolve(False) else: for child in self.children: with child.lock: try: child.pending_parents.remove(self) except KeyError: continue if child.pending_parents: continue assert child.result == None child.run() #################### def quote_args(args): if os.name == 'nt': return subprocess.list2cmdline(args) return shlex.quote(args) class SubprocCallNode(PromiseGraphNode): ECHO = False def __init__(self, parents, info, pool, call): PromiseGraphNode.__init__(self, parents, info) self.pool = pool self.call = call def run(self): self.pool.enqueue(Task(self.task_run)) def task_run(self): shell = type(self.call) is str if SubprocCallNode.ECHO: call = self.call if not shell: call = quote_args(call) sys.stdout.write(call + '\n') self.resolve(True) return result = False try: p = subprocess.Popen(self.call, shell=shell, stdout=subprocess.PIPE, stderr=subprocess.PIPE) (stdout, stderr) = p.communicate() stdout = stdout.decode(errors='replace') stderr = stderr.decode(errors='replace') if p.returncode == 0: result = True except OSError: stdout = '' stderr = 'Binary not found: {}'.format(self.call[0]) if not result: stderr += '\n{} FAILED: {}\n'.format(self.info, self.call) sys.stdout.write(stdout) sys.stderr.write(stderr) self.resolve(result) #################### class EventNode(PromiseGraphNode): def __init__(self, parents, info=''): PromiseGraphNode.__init__(self, parents, info) self.event = threading.Event() def on_resolve(self): self.event.set() #################### NUM_THREADS = multiprocessing.cpu_count() #NUM_THREADS = 1 def run_dagr(roots, thread_count=NUM_THREADS): pool = ThreadPool('run_dagr pool', thread_count) mapped_leaves = set() def map_dagr_node(node, mapped_parents, stack): if not node.cmds: begin = PromiseGraphNode(mapped_parents, node.name) end = begin elif len(node.cmds) == 1: begin = SubprocCallNode(mapped_parents, node.name, pool, node.cmds[0]) end = begin else: begin = PromiseGraphNode(mapped_parents, node.name + '.begin') subs = set() for i, cmd in enumerate(node.cmds): info = node.name + '.{}'.format(i) sub = SubprocCallNode([begin], info, pool, cmd) subs.add(sub) end = PromiseGraphNode(subs, node.name + '.end') if not mapped_parents: mapped_leaves.add(begin) return end mapped_roots = map_dag(roots, map_dagr_node) # -- terminal_root = EventNode(mapped_roots, '<terminal_root>') for x in mapped_leaves: x.run() terminal_root.event.wait() pool.kill() pool.join() return terminal_root.result if __name__ == '__main__': start_time = time.time() args = sys.argv[1:] while True: try: cur = args.pop(0) except IndexError: break if cur == '--dump': SubprocCallNode.ECHO = True continue if cur == '--': break args.insert(0, cur) break root_names = args if not root_names: root_names = ['DEFAULT'] roots = [] for x in root_names: try: roots.append(DagrNode.nodes_by_name[x]) except KeyError: sys.stderr.write('No such DagrNode: {}\n'.format(x)) exit(1) success = run_dagr(roots) elapsed_time = time.time() - start_time if success: sys.stderr.write('BUILD SUCCEEDED (in {:.4}s)\n'.format(elapsed_time)) else: sys.stderr.write('BUILD FAILED\n\n\n') assert len(threading.enumerate()) == 1, str(threading.enumerate()) exit(int(not success)) ```
{ "source": "jdashg/misc", "score": 3 }
#### File: jdashg/misc/https_server.py ```python assert __name__ == '__main__' print(__file__) import http.server import pathlib import ssl import argparse parser = argparse.ArgumentParser() parser.add_argument('--bind', '-b', default='localhost', metavar='ADDRESS', help='Specify alternate bind address ' '[default: all interfaces]') parser.add_argument('--cache', '-c', action='store', default=0, type=int, help='Allow caching [default: 0]') parser.add_argument('port', action='store', default=4443, type=int, nargs='?', help='Specify alternate port [default: 4443]') args = parser.parse_args() class CustomRequestHandler(http.server.SimpleHTTPRequestHandler): def end_headers(self): if not args.cache: self.send_header("Cache-Control", "no-cache, no-store, must-revalidate") self.send_header("Pragma", "no-cache") self.send_header("Expires", "0") super().end_headers() CERT_FILE = str(pathlib.PurePath(__file__).with_name('server.pem')) httpd = http.server.ThreadingHTTPServer(('', 4443), CustomRequestHandler) try: httpd.socket = ssl.wrap_socket(httpd.socket, certfile=CERT_FILE, server_side=True) except FileNotFoundError: print(f'''{CERT_FILE} not found. Try `openssl req -new -x509 -keyout server.pem -out {CERT_FILE} -days 365 -nodes`''') exit(1) print(f'Serving at {httpd.socket.getsockname()}...') httpd.serve_forever() ```
{ "source": "jdashg/pydra", "score": 2 }
#### File: jdashg/pydra/worker.py ```python assert __name__ == '__main__' from common import * import itertools import job_client import psutil import threading # -------------------------------- LockingLogHandler.install() log_conn_counter = itertools.count(1) def th_on_accept_log(conn, addr): conn_id = next(log_conn_counter) conn_prefix = '' if CONFIG['LOG_LEVEL'] == logging.DEBUG: conn_prefix = '[log {}] '.format(conn_id) logging.debug(conn_prefix + '<connected>') pconn = nu.PacketConn(conn, CONFIG['KEEPALIVE_TIMEOUT'], True) try: while True: text = pconn.recv().decode() text = text.replace('\n', '\n' + ' '*len(conn_prefix)) locked_print(conn_prefix, text) except OSError: pass finally: logging.debug(conn_prefix + '<disconnected>') pconn.nuke() # -- log_server = nu.Server([CONFIG['LOG_ADDR']], target=th_on_accept_log) log_server.listen_until_shutdown() # --------------------------- MODS = LoadPydraModules() logging.info('MODS', MODS) def get_mods_by_key(): mods_by_key = {} for (mod_name,m) in MODS.items(): for sk in m.pydra_get_subkeys(): key = make_key(mod_name, sk) mods_by_key[key] = m return mods_by_key # -- worker_prefix = '' work_conn_counter = itertools.count(1) utilization_cv = threading.Condition() active_slots = 0 cpu_load = 0.0 # -- def th_on_accept_work(conn, addr): conn_id = next(work_conn_counter) conn_prefix = worker_prefix + '[worklet {}] '.format(conn_id) global active_slots try: active_slots += 1 if active_slots > CONFIG['WORKERS']: logging.info(conn_prefix + '<refused>') return logging.debug(conn_prefix + '<connected>') with utilization_cv: utilization_cv.notify_all() pconn = nu.PacketConn(conn, CONFIG['KEEPALIVE_TIMEOUT'], True) hostname = pconn.recv().decode() key = pconn.recv() logging.debug(conn_prefix + 'hostname: ' + hostname) (mod_name, subkey) = key.split(b'|', 1) m = MODS[mod_name.decode()] m.pydra_job_worker(pconn, hostname, subkey) except OSError: pass finally: active_slots -= 1 logging.debug(conn_prefix + '<disconnected>') with utilization_cv: utilization_cv.notify_all() work_server = nu.Server([CONFIG['WORKER_BASE_ADDR']], target=th_on_accept_work) work_server.listen_until_shutdown() # -- def th_cpu_percent(): try: import psutil except ImportError: logging.warning('cpu load tracking requires psutil, disabling...') return global cpu_load while True: cpu_load = psutil.cpu_percent(interval=None, percpu=True) # [0,100] with utilization_cv: utilization_cv.notify_all() time.sleep(3.0) threading.Thread(target=th_cpu_percent, daemon=True).start() # - def advert_to_server(): if not work_server: logging.error(worker_prefix + 'No work_server.') return mods_by_key = get_mods_by_key() keys = list(mods_by_key.keys()) logging.warning(worker_prefix + 'keys: {}'.format(keys)) gais = work_server.get_gais() addrs = [Address(x[4]) for x in gais] if not (keys and addrs): logging.warning(worker_prefix + str((keys, addrs))) return timeout = CONFIG['TIMEOUT_WORKER_TO_SERVER'] addr = job_server_addr(timeout) if not addr: logging.warning(worker_prefix + 'No mDNS response from job_server.') return conn = nu.connect_any([addr[:2]], timeout=timeout) if not conn: logging.error(worker_prefix + 'Failed to connect: {}'.format(addr)) return pconn = nu.PacketConn(conn, CONFIG['KEEPALIVE_TIMEOUT'], True) logging.warning(worker_prefix + 'Connected to job_server {} as {}'.format( addr, CONFIG['HOSTNAME'])) def th_nuke_on_recv(): pconn.wait_for_disconnect() def th_nuke_on_change(): while pconn.alive: new_mods_by_key = get_mods_by_key() new_gais = work_server.get_gais() if new_mods_by_key != mods_by_key: logging.info(worker_prefix + 'Keys changed: {}'.format(new_mods_by_key)) break if new_gais != gais: logging.info(worker_prefix + 'Gais changed.') break time.sleep(1.0) pconn.nuke() threading.Thread(target=th_nuke_on_recv, daemon=True).start() threading.Thread(target=th_nuke_on_change, daemon=True).start() try: pconn.send(b'worker') max_slots = CONFIG['WORKERS'] desc = WorkerDescriptor() desc.hostname = CONFIG['HOSTNAME'] desc.max_slots = max_slots desc.keys = keys desc.addrs = addrs pconn.send(desc.encode()) with utilization_cv: while pconn.alive: avail_slots = max_slots - active_slots cpu_idle = len(cpu_load) - (sum(cpu_load) / 100.0) avail_slots = min(avail_slots, cpu_idle) if avail_slots > max_slots - 1: avail_slots = max_slots pconn.send_t(F64_T, avail_slots) utilization_cv.wait(10.0) # Refresh, just slowly if not notified. time.sleep(0.1) # Minimum delay between updates except OSError: pass finally: logging.warning(worker_prefix + 'Socket disconnected.') pconn.nuke() # -- try: while True: advert_to_server() time.sleep(1.0) logging.warning(worker_prefix + 'Reconnecting to server...') except KeyboardInterrupt: exit(0) ```
{ "source": "jdashg/webgl-1on2", "score": 2 }
#### File: jdashg/webgl-1on2/build.py ```python import content_script_embed import os import pathlib import shutil DIR = pathlib.Path(__file__).parent WEB_EXT_OUT = DIR / 'web-ext/out' def write_to(dest, data): print(f' ({len(data)} bytes) => {dest}') dest.write_bytes(data) def clean(): print('[clean]') if WEB_EXT_OUT.exists(): shutil.rmtree(WEB_EXT_OUT) os.mkdir(WEB_EXT_OUT) def build_content_script(src, dest): print(f'[build_content_script {src}]') data = src.read_bytes() data = content_script_embed.from_script(data) write_to(dest, data) # - clean(); build_content_script(DIR / 'webgl-1on2.js', WEB_EXT_OUT / 'webgl-1on2.content.js') print('Build complete.') ```
{ "source": "JDASoftwareGroup/kartothek_hive_integration_test", "score": 2 }
#### File: docker/test_executor/test_hive_compatibility.py ```python import pytest import os import shutil from copy import deepcopy from functools import partial import storefact import pandas as pd from pyhive import hive import pandas.testing as pdt from kartothek.serialization.testing import get_dataframe_not_nested from kartothek.io.eager import store_dataframes_as_dataset, read_table #### Fixtures #### @pytest.fixture() def test_df(): df = _create_df() # Rename because `date` and `null` are reserved in Hive QL df = df.rename(columns={"date": "date_", "null": "null_"}) return df @pytest.fixture() def volume_location(request): volume_location = "/parquet_data" def cleanup_data(): for item in os.listdir(volume_location): itempath = os.path.join(volume_location, item) if os.path.isdir(itempath): shutil.rmtree(itempath) else: os.remove(itempath) yield volume_location request.addfinalizer(cleanup_data) @pytest.fixture() def store_factory(volume_location): store_factory = partial(storefact.get_store_from_url, f"hfs://{volume_location}") return store_factory @pytest.fixture(scope="session") def uuid(): return "test" @pytest.fixture(scope="session") def tested_columns_and_dtypes(): ## Non-nested columns not included: `np.uint64` (max value is too large for `BIGINT`) ## The `null` column can be specified as multiple types (at least `STRING` and `FLOAT`) # TODO: have a mapping from kartothek/arrow dtypes to Hive dtypes tested_columns_and_dtypes = { "bool": "BOOLEAN", "bytes": "BINARY", "date_": "DATE", "datetime64": "BIGINT", "float32": "FLOAT", "float64": "DOUBLE", "int8": "TINYINT", "int16": "SMALLINT", "int32": "INT", "int64": "BIGINT", "uint8": "SMALLINT", "uint16": "INT", "uint32": "BIGINT", "unicode": "STRING", "null_": "FLOAT", } return tested_columns_and_dtypes @pytest.fixture( params=[ None, {"date_": {"cast_as": str, "hive_type": "STRING"}}, {"date_": {"cast_as": str, "hive_type": "STRING"}, "int32": None}, ] ) def partition_on(request, tested_columns_and_dtypes): partition_on = request.param and { f"partition_{col_idx}": { "source_col": source_col, **( col_info or {"hive_type": tested_columns_and_dtypes[source_col], "cast_as": None} ), } for col_idx, (source_col, col_info) in enumerate(request.param.items()) } return partition_on #### Test function #### def test_hive_compat( test_df, volume_location, store_factory, uuid, tested_columns_and_dtypes, partition_on, ): df = _create_df(test_df, partition_on) hive_df, expected_df, expected_columns = _prep_data( df=df, volume_location=volume_location, store_factory=store_factory, uuid=uuid, tested_columns_and_dtypes=tested_columns_and_dtypes, partition_on=partition_on, ) _assert_hive_frame_equal(hive_df, expected_df, expected_columns) _print_success_msg(expected_columns, partition_on) #### Helper functions #### def _create_df(df=None, partition_cols=None): # Create dataset on local filesystem if df is None: df = get_dataframe_not_nested(100) if partition_cols: for partition_col, partition_from in partition_cols.items(): source_col = partition_from["source_col"] cast_as = partition_from["cast_as"] # create partitioning column and cast if require df[partition_col] = df[source_col].apply( lambda x: cast_as and cast_as(x) or x ) return df def _prep_data( df, volume_location, store_factory, uuid, tested_columns_and_dtypes, partition_on=None, ): dfs = [df, df] TABLE_NAME = uuid # Hive table name store_dataframes_as_dataset( store=store_factory, dataset_uuid=uuid, dfs=dfs, partition_on=partition_on and list(partition_on), ) expected_df = read_table( store=store_factory, dataset_uuid=uuid, dates_as_object=True ) print(f"Dataset location: {volume_location}") conn = hive.Connection(host="hive-server", port=10000) cursor = conn.cursor() parquet_file_parentdir = None for filepath in store_factory().iter_keys(): if filepath.endswith(".parquet"): parquet_file_parentdir = ( f"{volume_location}{os.path.sep}{os.path.dirname(filepath)}" ) break # Create Hive table selected_columns_and_dtypes = deepcopy(tested_columns_and_dtypes) print( _create_hive_table( cursor, TABLE_NAME, selected_columns_and_dtypes, partition_on, parquet_file_parentdir, ) ) if partition_on: # If on Hive >= 4.0, this code block should be removed and the following should be used: # https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-DiscoverPartitions cursor.execute(f"MSCK REPAIR TABLE {TABLE_NAME}") selected_columns_and_dtypes.update(partition_on) expected_columns = list(selected_columns_and_dtypes) # + partition_on # Read hive table into pandas hive_df = pd.read_sql( f"SELECT {', '.join(expected_columns)} FROM {TABLE_NAME}", conn ) return hive_df, expected_df, expected_columns def _create_hive_table( cursor, table_name, selected_columns_and_dtypes, partition_on, parquet_file_parentdir, ): cursor.execute(f"drop table if exists {table_name}") partitioned_by_arg = None if partition_on: partitioned_by_arg = f"""PARTITIONED BY ({ ", ".join([f"{col_name} {col_info['hive_type']}" for col_name, col_info in partition_on.items()]) })""" dataset_parentdir = _get_dataset_file_path(parquet_file_parentdir, list(partition_on)) else: dataset_parentdir = parquet_file_parentdir # Hive allows us to only select a subset of columns to be loaded from the Parquet file columns_arg = ",\n ".join( [ f"{col_name} {dtype}" for col_name, dtype in selected_columns_and_dtypes.items() ] ) hive_query = f""" CREATE external table {table_name} ( {columns_arg} ) {partitioned_by_arg or ""} STORED AS PARQUET LOCATION "{dataset_parentdir}" """ print(f"Hive query: {hive_query}") cursor.execute(hive_query) return "Table created" def _get_dataset_file_path(parquet_file_parentdir, partition_on): # Get the parent directory of the dataset # Note: Parquet filepath looks like: `/tmp/uuid/table/partition_col1=x/partition_col2=y` # from which we want : `/tmp/uuid/table` # we do this by finding the index of the column names in the path string # and returning the path upto the minimum index required_path = min( parquet_file_parentdir[: parquet_file_parentdir.index(col_name) - 1] for col_name in list(partition_on) ) return required_path def _assert_hive_frame_equal(hive_df, expected_df, expected_columns): # Pyarrow stores timestamp as microseconds from epoch, convert to date hive_df["datetime64"] = pd.to_datetime( hive_df.loc[:, "datetime64"] * 1000, unit="ns" ) # Output from hive is a string, parse this to date hive_df["date_"] = pd.to_datetime(hive_df.loc[:, "date_"], format="%Y-%m-%d").apply( lambda x: x.date() ) hive_df = hive_df.sort_values("bytes").reset_index(drop=True) expected_df = expected_df.sort_values("bytes").reset_index(drop=True)[ expected_columns ] # Ignore dtype for numeric comparisons (e.g. int32 with int64) pdt.assert_frame_equal(expected_df, hive_df, check_dtype=False) assert len(hive_df) > 0 def _print_success_msg(expected_columns, partition_on=None): msg_if_partitioned = ( "".join( ( " partitioned on ", " and ".join( f"{col_name} ({col_info['source_col'].rstrip('_')} as {col_info['hive_type']})" for col_name, col_info in partition_on.items() ), " ", ) ) if partition_on else " " ) cols_to_print = [ ec.rstrip("_") for ec in expected_columns if ec not in (partition_on and list(partition_on) or []) ] print( f"Test completed successfully on test dataset{msg_if_partitioned}for the following data types: {cols_to_print}" ) ```
{ "source": "JDASoftwareGroup/rle-array", "score": 2 }
#### File: rle-array/tests/test_operators.py ```python import operator from typing import Any, Callable, cast import numpy as np import pandas as pd import pytest from _pytest.fixtures import SubRequest from numpy import testing as npt from pandas.core import ops from rle_array import RLEArray, RLEDtype pytestmark = pytest.mark.filterwarnings("ignore:performance") FCompareOperator = Callable[[Any, Any], Any] FUnaryOperator = Callable[[Any], Any] FUnaryBoolOperator = Callable[[Any], Any] FBinaryOperator = Callable[[Any, Any], Any] FBinaryBoolOperator = Callable[[Any, Any], Any] @pytest.fixture def values() -> np.ndarray: return np.array([2.0, 2.0, 2.0, 3.0, 3.0, 2.0, np.nan, np.nan, 1.0, 1.0]) @pytest.fixture def scalar(values: np.ndarray) -> float: return float(values[0]) @pytest.fixture def uncompressed_series(values: np.ndarray) -> pd.Series: return pd.Series(values, index=np.arange(len(values)) + 1) @pytest.fixture def uncompressed_series2(values: np.ndarray) -> pd.Series: return pd.Series(values[::-1], index=np.arange(len(values)) + 1) @pytest.fixture def rle_series(values: np.ndarray) -> pd.Series: return pd.Series(RLEArray._from_sequence(values), index=np.arange(len(values)) + 1) @pytest.fixture def rle_series2(values: np.ndarray) -> pd.Series: return pd.Series( RLEArray._from_sequence(values[::-1]), index=np.arange(len(values)) + 1 ) @pytest.fixture def bool_values() -> np.ndarray: return np.array([False] * 4 + [True] * 5 + [False]) @pytest.fixture def bool_scalar(bool_values: np.ndarray) -> bool: return bool(bool_values[0]) @pytest.fixture def uncompressed_bool_series(bool_values: np.ndarray) -> pd.Series: return pd.Series(bool_values) @pytest.fixture def uncompressed_bool_series2(bool_values: np.ndarray) -> pd.Series: return pd.Series(bool_values[::-1]) @pytest.fixture def rle_bool_series(bool_values: np.ndarray) -> pd.Series: return pd.Series(RLEArray._from_sequence(bool_values)) @pytest.fixture def rle_bool_series2(bool_values: np.ndarray) -> pd.Series: # TODO: Use `index=np.arange(len(bool_values)) + 1`. # For some reason, pandas casts us back to dtype=bool in that case. return pd.Series(RLEArray._from_sequence(bool_values[::-1])) @pytest.fixture( params=[ operator.eq, operator.ne, operator.lt, operator.gt, operator.le, operator.ge, ], ids=lambda op: str(op.__name__), ) def compare_operator(request: SubRequest) -> FCompareOperator: return cast(FCompareOperator, request.param) @pytest.fixture( params=[operator.abs, operator.neg, operator.pos], ids=lambda op: str(op.__name__) ) def unary_operator(request: SubRequest) -> FUnaryOperator: return cast(FUnaryOperator, request.param) @pytest.fixture(params=[operator.inv], ids=lambda op: str(op.__name__)) def unary_bool_operator(request: SubRequest) -> FUnaryBoolOperator: return cast(FUnaryBoolOperator, request.param) @pytest.fixture( params=[ operator.add, operator.iadd, ops.radd, operator.sub, operator.isub, ops.rsub, operator.mul, operator.imul, ops.rmul, operator.truediv, operator.itruediv, ops.rtruediv, operator.floordiv, operator.ifloordiv, ops.rfloordiv, operator.mod, operator.imod, ops.rmod, operator.pow, operator.ipow, ops.rpow, ], ids=lambda op: str(op.__name__), ) def binary_operator(request: SubRequest) -> FBinaryOperator: return cast(FBinaryOperator, request.param) @pytest.fixture( params=[ operator.and_, operator.iand, ops.rand_, operator.or_, operator.ior, ops.ror_, operator.xor, operator.ixor, ops.rxor, ], ids=lambda op: str(op.__name__), ) def binary_bool_operator(request: SubRequest) -> FBinaryBoolOperator: return cast(FBinaryBoolOperator, request.param) def test_compare_scalar( rle_series: pd.Series, uncompressed_series: pd.Series, scalar: float, compare_operator: FCompareOperator, ) -> None: actual = compare_operator(rle_series, scalar) assert actual.dtype == RLEDtype(bool) expected = compare_operator(uncompressed_series, scalar).astype("RLEDtype[bool]") pd.testing.assert_series_equal(actual, expected) def test_compare_rle_series( rle_series: pd.Series, rle_series2: pd.Series, uncompressed_series: pd.Series, uncompressed_series2: pd.Series, compare_operator: FCompareOperator, ) -> None: actual = compare_operator(rle_series, rle_series2) assert actual.dtype == RLEDtype(bool) expected = compare_operator(uncompressed_series, uncompressed_series2).astype( "RLEDtype[bool]" ) pd.testing.assert_series_equal(actual, expected) def test_compare_uncompressed_series( rle_series: pd.Series, uncompressed_series: pd.Series, compare_operator: FCompareOperator, ) -> None: actual = compare_operator(rle_series, uncompressed_series) assert actual.dtype == bool expected = compare_operator(uncompressed_series, uncompressed_series) pd.testing.assert_series_equal(actual, expected) def test_binary_operator_scalar( rle_series: pd.Series, uncompressed_series: pd.Series, scalar: float, binary_operator: FBinaryOperator, ) -> None: actual = binary_operator(rle_series, scalar) assert actual.dtype == RLEDtype(float) expected = binary_operator(uncompressed_series, scalar).astype("RLEDtype[float]") pd.testing.assert_series_equal(actual, expected) def test_binary_operator_rle_series( rle_series: pd.Series, rle_series2: pd.Series, uncompressed_series: pd.Series, uncompressed_series2: pd.Series, binary_operator: FBinaryOperator, ) -> None: actual = binary_operator(rle_series, rle_series2) assert actual.dtype == RLEDtype(float) expected = binary_operator(uncompressed_series, uncompressed_series2).astype( "RLEDtype[float]" ) pd.testing.assert_series_equal(actual, expected) def test_binary_operator_uncompressed_series( rle_series: pd.Series, uncompressed_series: pd.Series, uncompressed_series2: pd.Series, binary_operator: FBinaryOperator, ) -> None: actual = binary_operator(rle_series, uncompressed_series2) assert actual.dtype == float expected = binary_operator(uncompressed_series, uncompressed_series2) pd.testing.assert_series_equal(actual, expected) def test_binary_bool_operator_scalar( rle_bool_series: pd.Series, uncompressed_bool_series: pd.Series, bool_scalar: bool, binary_bool_operator: FBinaryBoolOperator, ) -> None: actual = binary_bool_operator(rle_bool_series, bool_scalar) assert actual.dtype == RLEDtype(bool) expected = binary_bool_operator(uncompressed_bool_series, bool_scalar).astype( RLEDtype(bool) ) pd.testing.assert_series_equal(actual, expected) def test_binary_bool_operator_rle_series( rle_bool_series: pd.Series, rle_bool_series2: pd.Series, uncompressed_bool_series: pd.Series, uncompressed_bool_series2: pd.Series, binary_bool_operator: FBinaryBoolOperator, ) -> None: actual = binary_bool_operator(rle_bool_series, rle_bool_series2) assert actual.dtype == RLEDtype(bool) expected = binary_bool_operator( uncompressed_bool_series, uncompressed_bool_series2 ).astype(RLEDtype(bool)) pd.testing.assert_series_equal(actual, expected) def test_binary_bool_operator_uncompressed_series( rle_bool_series: pd.Series, uncompressed_bool_series: pd.Series, uncompressed_bool_series2: pd.Series, binary_bool_operator: FBinaryBoolOperator, ) -> None: actual = binary_bool_operator(rle_bool_series, uncompressed_bool_series2) assert actual.dtype == bool expected = binary_bool_operator(uncompressed_bool_series, uncompressed_bool_series2) pd.testing.assert_series_equal(actual, expected) def test_unary_operator( rle_series: pd.Series, uncompressed_series: pd.Series, unary_operator: FUnaryOperator, ) -> None: actual = unary_operator(rle_series) assert actual.dtype == RLEDtype(float) expected = unary_operator(uncompressed_series).astype(RLEDtype(float)) pd.testing.assert_series_equal(actual, expected) def test_unary_operator_array( rle_series: pd.Series, uncompressed_series: pd.Series, unary_operator: FUnaryOperator, ) -> None: actual = unary_operator(rle_series.array) assert actual.dtype == RLEDtype(float) expected = unary_operator(uncompressed_series.array) npt.assert_array_equal(actual, expected) def test_unary_bool_operator( rle_bool_series: pd.Series, uncompressed_bool_series: pd.Series, unary_bool_operator: FUnaryBoolOperator, ) -> None: actual = unary_bool_operator(rle_bool_series) assert actual.dtype == RLEDtype(bool) expected = unary_bool_operator(uncompressed_bool_series).astype(RLEDtype(bool)) pd.testing.assert_series_equal(actual, expected) def test_unary_bool_operator_array( rle_bool_series: pd.Series, uncompressed_bool_series: pd.Series, unary_bool_operator: FUnaryBoolOperator, ) -> None: actual = unary_bool_operator(rle_bool_series.array) assert actual.dtype == RLEDtype(bool) expected = unary_bool_operator(uncompressed_bool_series.array) npt.assert_array_equal(actual, expected) def test_different_length_raises(values: np.ndarray) -> None: array1 = RLEArray._from_sequence(values) array2 = RLEArray._from_sequence(values[:-1]) with pytest.raises(ValueError, match="arrays have different lengths"): array1 + array2 ```
{ "source": "JdataNich/reddit-project", "score": 3 }
#### File: JdataNich/reddit-project/reddit_get_data.py ```python import reddit_request import requests import os REDDIT_USERNAME = os.environ.get('REDDIT_USERNAME') REDDIT_PASS = os.environ.get('REDDIT_PASS') APP_ID = os.environ.get('APP_ID') APP_SECRET = os.environ.get('APP_SECRET') def get_subreddit_data(subreddit, auth): token = 'bearer ' + auth['access_token'] headers = {'Authorization': token, 'User-Agent': 'APP-NAME by REDDIT-USERNAME'} api_url = 'https://oauth.reddit.com' payload = {'q': subreddit, 'limit': 5, 'sort': 'relevance'} response = requests.get(api_url + '/subreddits/search', headers=headers, params=payload) return response # %% auth = reddit_request.reddit_auth(REDDIT_USERNAME, REDDIT_PASS, APP_ID, APP_SECRET) response = get_subreddit_data('gamestop', auth) data = response.json()['data'] print(data) ```
{ "source": "jdatascientist/Machine_Learning_4_MRI", "score": 3 }
#### File: Code/MATLAB/PLS.py ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.cross_decomposition import PLSRegression from sklearn.metrics import mean_squared_error from sklearn.model_selection import train_test_split from scipy.stats import randint as sp_randint from sklearn.model_selection import RandomizedSearchCV get_ipython().magic('matplotlib inline') # In[2]: zspectra = pd.read_csv('centered_cest.csv', header = None).values conc = pd.read_csv('concentration.csv', header = None).values pH = pd.read_csv('pH.csv', header = None).values # In[5]: def mymetric(yexp, ypred): d = np.sum((yexp - ypred)**2 ) d = d / ypred.shape[0] d = np.sqrt(d) d = d / np.mean(yexp) d = 100 * d return d # In[10]: X = zspectra[:, 0:101:2] Y = pH num_components = 20 Error = np.zeros((num_components -1,1)) for idx,K in enumerate(np.arange(1,num_components)): X_train, X_test, y_train, y_test = train_test_split( X, Y, test_size=0.05, random_state=42) pls = PLSRegression(n_components = K, scale = False) pls.fit(X_train, y_train) y_hat = pls.predict(X_test) Error[idx] = mymetric(y_test , y_hat) plt.plot( np.arange(1,num_components), Error ,'o-') # In[12]: steps = [1,4,8] labels = list() for step in steps: X = zspectra[:, 0:101:step] labels.append(int(X.shape[1])) Y = pH num_components = 10 Error = np.zeros((num_components -1,1)) for idx,K in enumerate(np.arange(1,num_components)): X_train, X_test, y_train, y_test = train_test_split( X, Y, test_size=0.50, random_state=42) pls = PLSRegression(n_components = K, scale = False) pls.fit(X_train, y_train) y_hat = pls.predict(X_test) Error[idx] = mymetric(y_test , y_hat) plt.plot( np.arange(1,num_components), Error ,'o-') plt.legend(labels) ``` #### File: Infection_vs_Inflammation/Code/Process_Data_V3.py ```python import numpy as np from mylocal_functions import * import matplotlib.pyplot as plt # ======== CEST============= # CEST_list=get_ipython().getoutput('ls ../Study_03_CBA/*CEST.txt') CEST_Int_matrix=np.zeros((len(CEST_list),4)) ppm=np.linspace(-8,8,101); for i in range( len(CEST_list) ): D=txt_2_array(CEST_list[i]); #Convert txt file to array Zn=normalize_data(D.T,8); Zn=Zn[:,9::] M=np.zeros([1,4]) for j in range(4): p=fit_L2_scale(ppm,Zn[j,:]) L=Lscale(ppm,p[0],p[1],p[2],p[3],p[4],p[5],p[6]); #CEST_centered[i,:]=L #CEST_integral[i,0]=np.sum(L) M[0,j]=np.sum(L) CEST_Int_matrix[i,:]=M # ======== T2 MSME============= #a # Make list of all T2.txt files T2_list = get_ipython().getoutput('ls ../Study_03_CBA/*T2.txt') T2_matrix=np.zeros( (len(T2_list),4) ) TR=np.linspace(.012,.012*12,12) # Fit T2 for i in range(len(T2_list)): YDataMatrix=txt_2_array(T2_list[i]) #Estimate T2 T2time=fitT2(TR,YDataMatrix) T2_matrix[i,:]=T2time.T # ======== T2ex DCE============= # # Make list of all T2.txt files T2ex_list = get_ipython().getoutput('ls ../Study_03_CBA/*T2exDCE.txt') T2ex_Int_matrix=np.zeros( (len(T2ex_list),4) ) # T2ex integral for i in range( len(T2ex_list) ): D=txt_2_array(T2ex_list[i]); #Convert txt file to array Zn=normalize_data(D.T,0); Zn=Zn[:,9::] T2ex_Int_matrix[i,:]=np.sum(Zn-1,axis=1) #======== create violing plots ============= # Tissues=["Infected","Healthy R","Sterile Infl.","Healthy K"] # Set dimensions of plot fig = plt.figure(1,figsize=(10,10)); # CEST ax = fig.add_subplot(3,1,1); ax.set_xticks([1, 2, 3, 4]); ax.set_xticklabels(Tissues) plt.violinplot(CEST_Int_matrix, showextrema=True,showmedians=True); plt.ylabel("CEST Integral") #T2 ax = fig.add_subplot(3,1,2); ax.set_xticks([1, 2, 3, 4]); ax.set_xticklabels(Tissues) plt.violinplot(T2_matrix,showextrema=True,showmedians=True); plt.violinplot(T2_matrix,showextrema=True,showmedians=True); plt.violinplot(T2_matrix,showextrema=True,showmedians=True); plt.ylabel("T2 time") #T2ex ax = fig.add_subplot(3,1,3); ax.set_xticks([1, 2, 3, 4]); ax.set_xticklabels(Tissues) plt.violinplot(T2ex_Int_matrix,showextrema=True,showmedians=True); plt.violinplot(T2ex_Int_matrix,showextrema=True,showmedians=True); plt.ylabel("T2ex Integral") # plot non_neg only # ======== T2ex DCE ALL============= # # Make list of all T2.txt files def plotvio(slice_num): p1='ls ../Study_03_CBA/*S' p2=str(slice_num) p3='*T2exDCE.txt' file_names=p1+p2+p3 T2ex_list = get_ipython().getoutput(file_names) T2ex_Int_matrix=np.zeros( (len(T2ex_list),4) ) # T2ex integral for i in range( len(T2ex_list) ): D=txt_2_array(T2ex_list[i]); #Convert txt file to array Zn=normalize_data(D.T,0); #Zn=Zn[:,9::] T2ex_Int_matrix[i,:]=np.sum(Zn-1,axis=1) plt.violinplot(T2ex_Int_matrix,showextrema=True,showmedians=True); for i in range(5): n=i+1 plt.figure(99,figsize=(15,15)); plt.subplot(5,1,n); plt.title("Slice_0"+str(n)) plotvio(n) ```
{ "source": "JDatPNW/faceTrack", "score": 3 }
#### File: faceTrack/src/clInitializer.py ```python import os from .Initializer import Initializer class clInitializer(Initializer): def getInput(self): self.visualize = input('Enable visualization? [1=Yes/0=No]: ') self.visualize = int(self.visualize) self.inputfile = input( 'Enter the name of the file(folder) containing the YouTube URLs/images/Video : ') self.inputfile = "/input/" + self.inputfile self.inputfile = os.path.dirname( os.path.abspath(__file__)) + "/.." + self.inputfile self.experiment = input( 'Enter the name of the directory in which the video folders should be saved in: ') self.experiment = self.experiment + "/" # Default would be 0 - Cuts off after lower certanties self.threshold = input('Enter treshhold: ') self.sampling = input('Enter sampling: ') # 1 works well self.logger = input( 'Choose between Command Line Logging[1 - faster] and GUI Logging[0]: ') # 1 works well self.loader = input( 'Do you want to load a YouTube video[0], a folder of images[1], or a video file [2]?: ') # 1 works well self.tracker = input( 'Choose between dlib[1 - Recommended] and cv2[0] tracking: ') # 1 works well self.visualizer = input( 'Choose between the cv2[1 - fatser] and GUI[0] Visualizer: ') # 1 works well self.archiver = input( 'Do you want to safe the results as a .npy[2], .jpg[1] or as a .csv[0]: ') # 1 works well if(int(self.visualize < 0)): self.visualize = 0 elif(int(self.visualize) > 0 and int(self.visualize) < 1): self.visualize = 1 elif(int(self.visualize) > 1): self.visualize = 1 if(int(self.threshold) < 0): self.threshold = 0 if(int(self.sampling) < 0): self.sampling = 0 if(int(self.loader) < 0): self.loader = 0 elif(int(self.loader) > 0 and int(self.loader) < 1): self.loader = 1 elif(int(self.loader) > 1 and int(self.loader) < 2): self.loader = 1 elif(int(self.loader) > 2): self.loader = 2 if(int(self.logger) < 0): self.logger = 0 elif(int(self.logger) > 0 and int(self.logger) < 1): self.logger = 1 elif(int(self.logger) > 1): self.logger = 1 if(int(self.tracker) < 0): self.tracker = 0 elif(int(self.tracker) > 0 and int(self.tracker) < 1): self.tracker = 1 elif(int(self.tracker) > 1): self.tracker = 1 if(int(self.visualizer) < 0): self.visualizer = 0 elif(int(self.visualizer) > 0 and int(self.visualizer) < 1): self.visualizer = 1 elif(int(self.visualizer) > 1): self.visualizer = 1 if(int(self.archiver) < 0): self.archiver = 0 elif(int(self.archiver) > 0 and int(self.archiver) < 1): self.archiver = 1 elif(int(self.archiver) > 1 and int(self.archiver) < 2): self.archiver = 2 return (self.visualize, self.inputfile, self.experiment, self.threshold, self.sampling, self.tracker, self.logger, self.visualizer, self.loader, self.archiver) ``` #### File: faceTrack/src/csvArchiver.py ```python import cv2 import re import PIL import csv import os from .Archiver import Archiver class csvArchiver(Archiver): def __init__(self): self.image_list = [] self.dir = "none" def saveImg(self, dir, num, scores, crop_img_re, d, i): if(d[0][0] >= 0 and d[0][1] >= 0 and d[1][0] >= 0 and d[1][1] >= 0): img = cv2.cvtColor(crop_img_re, cv2.COLOR_BGR2RGB) img = PIL.Image.fromarray(img) img = img.convert('RGB') pixels = list(img.getdata()) pixels = [item for t in pixels for item in t] self.image_list.append(pixels) if(self.dir == "none"): self.dir = dir def cropAndResize(self, frame, i, d): if(d[0][0] >= 0 and d[0][1] >= 0 and d[1][0] >= 0 and d[1][1] >= 0): self.crop_img = frame[d[0][1]:d[1][1], d[0][0]: d[1][0]] self.crop_img_re = cv2.resize(self.crop_img, (48, 48)) return self.crop_img_re def closeArchiver(self): loc = os.path.dirname(os.path.abspath( __file__)) + "/../" + self.dir + "/out.csv" with open(loc, 'w') as file: writer = csv.writer(file) writer.writerows(self.image_list) def getCurrentDir(self, line, experiment, loader): url = line if(int(loader) == 0): folder = re.findall("[^\=]*$", url) folder = folder[0] dir = "results/" + experiment + folder elif(int(loader) == 1): dir = "results/" + experiment + "imageStream" elif(int(loader) == 2): dir = "results/" + experiment + "videoStream" return dir, url ``` #### File: faceTrack/src/guiVisualizer.py ```python import cv2 import PIL from PIL import ImageTk import tkinter from .Visualizer import Visualizer class guiVisualizer(Visualizer): def __init__(self, vis, log): self.visualize = vis self.window = log self.first = True self.panel = tkinter.Label() self.basewidth = 400 self.skip = False def setupWindow(self): pass def displayVideo(self, frame): if(self.visualize == 1): tempimg = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) tempimg = PIL.Image.fromarray(tempimg) wpercent = (self.basewidth / float(tempimg.size[0])) hsize = int((float(tempimg.size[1]) * float(wpercent))) tempimg = tempimg.resize((self.basewidth, hsize)) img = ImageTk.PhotoImage(tempimg) if self.first: self.panel = tkinter.Label(self.window.mainLog, image=img) self.panel.grid(row=3, columnspan=3) self.first = False self.bFinish = tkinter.Button( self.window.mainLog, text="Skip Current Video", command=self.end) self.bFinish.grid(row=4, columnspan=3) self.panel.configure(image=img) self.panel.image = img self.window.mainLog.update_idletasks() self.window.mainLog.update() if self.skip: self.skip = False return 1 else: return 0 def end(self): self.skip = True def highlightFaces(self, frame, d): if(self.visualize == 1): cv2.rectangle(frame, (d[0][0], d[0][1]), (d[1][0], d[1][1]), (255, 0, 0), 2) def closeWindows(self): pass ``` #### File: faceTrack/src/Logger.py ```python class Logger: def __init(self): pass def logFaceCoordinates(self, i, d, scores, idx, visualize): pass def logNumFaces(self, dets, percentage, vidid, filelength): pass def end(self): pass ``` #### File: faceTrack/src/vidLoader.py ```python import cv2 from .Loader import Loader class vidLoader(Loader): def loadList(self, inputfile): list = [] list.append(inputfile) return list def loadStream(self, url): cap = cv2.VideoCapture(url) return cap, url def getFileLength(self, file): for i, l in enumerate(file): pass return i + 1 ``` #### File: faceTrack/src/ytLoader.py ```python import cv2 import pafy from .Loader import Loader class ytLoader(Loader): def loadList(self, inputfile): file = open(inputfile, "r") return file def loadStream(self, url): video = pafy.new(url) best = video.getbest(preftype="mp4") cap = cv2.VideoCapture() return cap, best.url def getFileLength(self, file): for i, l in enumerate(file): pass return i + 1 ```
{ "source": "jd-au/askap-bulk-cutouts", "score": 3 }
#### File: jd-au/askap-bulk-cutouts/prep_gaskap_abs.py ```python import argparse import csv import datetime import difflib import glob import math import os import shutil import subprocess import sys import time import warnings from astropy.coordinates import SkyCoord from astropy.io import ascii, votable from astropy.table import Table, Column from astropy import units as u from astropy.utils.exceptions import AstropyWarning import matplotlib.pyplot as plt from matplotlib.patches import Ellipse import numpy as np class CommandFailedError(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value) def parseargs(): """ Parse the command line arguments :return: An args map with the parsed arguments """ parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter, description="Script to prepare a GASKAP absorption cutout run for an ASKAP scheduing block") parser.add_argument("-s", "--sbid", help="The id of the ASKAP scheduling block to be processed", type=str, required=True) parser.add_argument("-m", "--ms", help="The path to the measurement sets to be used for the cutouts. If omitted the pre-exiting beam details will be used", type=str, required=False) parser.add_argument("-c", "--catalogue", help="The path to the Selevy compnent catalogue for the scheduling block", type=str, required=True) parser.add_argument("-p", "--ms_pat", help="The pattern to be used to match the folders of the measurement sets top be used.", type=str, default='*.ms') parser.add_argument("--output_folder", help="The output folder which will contain the job configuration files", default=None) parser.add_argument("--status_folder", help="The status folder which will contain the job completion or failed files", default='status') parser.add_argument("--pbs", help="Run the jobs via PBS qsub command", default=False, action='store_true') parser.add_argument("-l", "--log_folder", help="The folder which will contain the stdout and stderr files from the jobs", default='logs') args = parser.parse_args() return args def run_os_cmd(cmd, failOnErr=True): """ Run an operating system command ensuring that it finishes successfully. If the comand fails, the program will exit. :param cmd: The command to be run :return: None """ print(">", cmd) sys.stdout.flush() try: retcode = subprocess.call(cmd, shell=True) if retcode != 0: message = "Command '"+cmd+"' failed with code " + str(retcode) print(message, file=sys.stderr) if failOnErr: raise CommandFailedError(message) except OSError as e: message = "Command '" + cmd + "' failed " + e print(message, file=sys.stderr) if failOnErr: raise CommandFailedError(message) return None def rename_columns(table): names = np.asarray(table.colnames) for name in names: if name.startswith('col_'): table.rename_column(name, name[4:]) def slice_strings(a,start,end): if end is None: if start > 0: raise('end must be present when start is positive') b = a.view((str,1)).reshape(len(a),-1)[:,start:] return np.frombuffer(b.tostring(),dtype=(str,start*-1)) b = a.view((str,1)).reshape(len(a),-1)[:,start:end] return np.frombuffer(b.tostring(),dtype=(str,end-start)) def get_beams_near_src(target_loc, beam_locs, beams, max_sep = 0.8*(1*u.deg)): """ Find the beams within a certain angular distance of the target location. Parameters ---------- target_loc: SkyCoord The sky location of the target. beam_locs: SkyCoord[] The locations of each beam. beams: str[] Array of beam names max_sep: dimension Maximum distance a beam centre can be from the target to be included (optional). Returns ------- List of beam names within the requested distance and a list of their distances from the target. """ beam_sep = beam_locs.separation(target_loc) beams_covering_target = beam_sep < max_sep src_beams = beams[beams_covering_target] src_beam_sep = beam_sep[beams_covering_target] return src_beams, src_beam_sep def find_mismatches(file_list): mismatches=set() prev_value = None for file_path in file_list: if prev_value != None: s = difflib.SequenceMatcher(None, prev_value, file_path) for opcode in s.get_opcodes(): if opcode[0] != 'equal': mismatches.add((opcode[1], opcode[2])) prev_value = file_path #print (sorted(mismatches)) unique_mismatches = [] for i, region in enumerate(sorted(mismatches)): contained = False for j, other in enumerate(sorted(mismatches)): if i != j: if region[0] >= other[0] and region[1] <= other[1]: #print (region,"inside", other) contained = True if not contained: unique_mismatches.append(region) #print (sorted(unique_mismatches)) return unique_mismatches def build_ms_pattern(ms_loc, ms_pat): #file_list = glob.glob(ms_loc + '/**/*.ms', recursive=True) search_path = '{}/*/{}'.format(ms_loc, ms_pat) print ("Find measurement sets matching", search_path) file_list = glob.glob(search_path) #print (file_list) mismatches=find_mismatches(file_list) regions = [] prev_beam = None for i,j in sorted(mismatches): start = i end = j if start==end: continue if file_list[0][i:j].isnumeric(): #if not prev_beam is None and prev_beam[1] == i: # start = prev_beam[0] # regions.pop() #elif not prev_beam is None and prev_beam[0] <= i and prev_beam[1] >= j: # # This region is contained in the previous one - ignore # continue print("beam {} to {} is {}".format(start, end, file_list[0][i:j])) prev_beam = (i,j) regions.append(("{1}", start, end)) else: print("interleave {} to {} is {}".format(i, j, file_list[0][i:j])) regions.append(("{0}", i, j)) regions.reverse() pattern = str(file_list[0]) for region in regions: pattern = pattern[0:region[1]]+region[0]+pattern[region[2]:] return pattern def record_data_loc(sbid, ms_pat, data_loc_fname): index = None data_loc = ascii.read(data_loc_fname, guess=False, delimiter=',') for idx, row in enumerate(data_loc): if str(row['sbid']) == str(sbid): index = idx data_loc_new = Table(data_loc) all_pat = data_loc['pattern'].data.tolist() if index is None: data_loc_new.add_row([str(sbid), '']) all_pat.append(ms_pat) else: all_pat[index] = ms_pat data_loc_new['pattern'] = Column(data=all_pat, name='pattern') shutil.copyfile(data_loc_fname, data_loc_fname+'.bak') ascii.write(data_loc_new, output=data_loc_fname, format='csv', overwrite=True) print ("Recorded ms pattern of sbid {} as {}".format(sbid, ms_pat)) def get_target_list(catalogue, flux_peak_min=15): # Read and filter catalogue src_votable = votable.parse_single_table(catalogue, pedantic=False) table = src_votable.to_table() rename_columns(table) targets = table[table['flux_peak']>flux_peak_min] # Filter out non-unique component names names, counts = np.unique(targets['component_name'], return_counts=True) duplicates = names[counts > 1] for comp_name in duplicates: indexes = targets['component_name'] == comp_name max_peak_flux = np.max(targets['flux_peak'][indexes]) to_remove = (targets['component_name'] == comp_name) & (targets['flux_peak'] < max_peak_flux) idx_to_rem = np.arange(len(targets))[to_remove] print ('Ignoring weaker duplicate sources', targets['component_id'][idx_to_rem].data ) targets.remove_rows(idx_to_rem) print ("Found {} targets from {} sources".format(len(targets), len(table))) return targets def generate_beam_listing(sb_folder, sbid): run_os_cmd('./list_beams.sh {}'.format(sbid)) beam_listing = '{0}/beam_listing_SB{1}.csv'.format(sb_folder, sbid) return beam_listing def find_beam_locs(beam_listing): # Build the list of beam locations beams = ascii.read(beam_listing, format='no_header', guess=False, delimiter=',') names = ('col1','col2', 'col3', 'col4') new_names = ('filename','field', 'ra_rad', 'dec_rad') beams.rename_columns(names, new_names) mismatches=find_mismatches(beams['filename']) for region in mismatches: if region[1]-region[0] ==1: fn_il_loc = region else: fn_beam_loc = region beam_id = slice_strings(beams['filename'], fn_beam_loc[0], fn_beam_loc[1]) #print (beam_id) #interleave_id = slice_strings(beams['interleave'], -1, None)# beams['interleave'][:][-1:] mismatches=find_mismatches(beams['field']) il_loc = list(mismatches)[0] interleave_id = slice_strings(beams['field'], il_loc[0], il_loc[1])# beams['interleave'][:][-1:] file_interleave = slice_strings(beams['filename'], fn_il_loc[0], fn_il_loc[1]) ids = np.stack((beam_id, interleave_id), axis=-1) unique_ids, unique_idx = np.unique(ids, axis=0, return_index=True) beams['beam_id'] = beam_id beams['interleave'] = interleave_id beams['file_interleave'] = file_interleave unique_beams = beams[beams['interleave'] == beams['file_interleave']] u_beam_locs = SkyCoord(ra=unique_beams['ra_rad']*u.rad, dec=unique_beams['dec_rad']*u.rad, frame='icrs') return unique_beams, u_beam_locs def plot_beams_and_targets(sb_folder, targets, beams, beam_locs): fig = plt.figure() ax = fig.add_subplot(1, 1, 1) im = ax.scatter(targets['ra_deg_cont'], targets['dec_deg_cont'], c=targets['flux_peak'], cmap='RdBu_r', vmin=15, vmax=100) for il in 'ABC': filt = beams['interleave'] == il ax.scatter(beam_locs.ra.value[filt], beam_locs.dec.value[filt], marker='+') # Plot footprints for one interleave if il == 'A': for loc in beam_locs[filt]: c=Ellipse((loc.ra.value, loc.dec.value), width=0.8*2/math.cos(loc.dec.rad), height=0.8, fill=False, ls=':', zorder=-1) ax.add_artist(c) cb = fig.colorbar(im) cb.set_label('Peak flux (mJy/beam)') ax.grid() plt.gca().invert_xaxis() plt.xlabel('Right Ascension') plt.ylabel('Declination') plt.savefig(sb_folder+'/sources_beams.png', bbox_inches='tight') def get_image_params_table(dest_folder, sbid, targets, beams, beam_locs, max_sep_close=0.55*u.deg, max_sep_far=0.8*u.deg): comp_names = [] comp_ra = [] comp_dec = [] included_beam_nums = [] included_beam_interleaves = [] included_beam_ids = [] included_beam_sep = [] for tgt in targets: target_loc = SkyCoord(ra=tgt['ra_deg_cont']*u.degree, dec=tgt['dec_deg_cont']*u.degree, frame='icrs') src_beams, src_beam_sep = get_beams_near_src(target_loc, beam_locs, beams, max_sep=max_sep_close) if len(src_beams) == 0: #print ("No beams close to {}, checking out to {}".format(tgt['component_name'], max_sep_far)) src_beams, src_beam_sep = get_beams_near_src(target_loc, beam_locs, beams, max_sep=max_sep_far) for i in range(len(src_beams)): comp_names.append(tgt['component_name']) comp_ra.append(tgt['ra_deg_cont']) comp_dec.append(tgt['dec_deg_cont']) included_beam_nums.append(src_beams['beam_id'].data[i]) included_beam_interleaves.append(src_beams['interleave'].data[i]) included_beam_ids.append(src_beams['beam_id'].data[i]+src_beams['interleave'].data[i]) included_beam_sep.append(src_beam_sep.to(u.deg).value[i]) image_params = Table() image_params['component_name'] = comp_names image_params['comp_ra'] = comp_ra image_params['comp_dec'] = comp_dec image_params['beam_nums'] = included_beam_nums image_params['beam_interleaves'] = included_beam_interleaves image_params['beam_ids'] = included_beam_ids image_params['beam_sep'] = included_beam_sep image_params_vot = votable.from_table(image_params) filename = "{}/sb{}_srcs_image_params.vot".format(dest_folder, sbid) votable.writeto(image_params_vot, filename) print ("Produced VO table file {} with {} target beam combos.".format(filename, len(image_params))) return image_params def report_beam_usage(image_params): ar = np.array(image_params['beam_ids']) for i in range(36): for interleave in ('A', 'B', 'C'): key = '{:02d}{}'.format(i, interleave) count = len(ar[ar==key]) if count == 0: print ("Warning: Beam {} is unused!".format(key)) #print ("Total instances of beam usage {}".format(len(ar))) print ('Mean targets per beam {:.2f}'.format(len(ar)/(36*3))) mean_beams_per_source = len(ar) / len(np.unique(image_params['component_name'])) print ('Mean beams per target {:.2f}'.format(mean_beams_per_source)) def create_targets_csv(dest_folder, sbid, targets, image_params): # Create the csv file of targets and included beams csv_filename = '{}/targets_{}.csv'.format(dest_folder, sbid) with open(csv_filename, 'w') as csvfile: tgtwriter = csv.writer(csvfile, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) tgtwriter.writerow(['index', 'component_name', 'ra', 'dec', 'beams']) i = 1 for tgt in targets: comp_name = tgt['component_name'] row = [] row.append(str(i)) row.append(comp_name) row.append(tgt['ra_deg_cont']) row.append(tgt['dec_deg_cont']) for tgt_beam in image_params: if comp_name == tgt_beam['component_name']: row.append(tgt_beam['beam_ids']) tgtwriter.writerow(row) i+= 1 mean_beams_per_source = len(image_params) / len(np.unique(image_params['component_name'])) print ('Produced csv file {} with {} targets (mean {:.2f} beams/target).'.format(csv_filename, i-1, mean_beams_per_source)) def main(): # Parse command line options args = parseargs() start = time.time() print("#### Started preparing GASKAP absorption cutout run for sbid {} at {} ####".format (args.sbid, time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start)))) # Check locations if args.ms and not os.path.exists(args.ms): print("Could not find measurement sets at", args.ms) return 1 if not os.path.exists(args.catalogue): print("Could not find component catalogue at", args.catalogue) return 1 sb_folder = 'sb{}'.format(args.sbid) if not os.path.exists(sb_folder): os.makedirs(sb_folder) beam_listing = '{0}/beam_listing_SB{1}.csv'.format(sb_folder, args.sbid) if not args.ms: if not os.path.exists(beam_listing): print("No measurement sets supplied and beam listing {} does not existm", beam_listing) return 1 print ('Using pre-existing beam information at', beam_listing) # Setup the data_loc file warnings.simplefilter('ignore', category=AstropyWarning) if args.ms: ms_patterns = build_ms_pattern(args.ms, args.ms_pat) record_data_loc(args.sbid, ms_patterns, 'data_loc.csv') # Build the beam listing if args.ms: beam_listing = generate_beam_listing(sb_folder, args.sbid) beams, beam_locs = find_beam_locs(beam_listing) # Build the target list targets = get_target_list(args.catalogue) plot_beams_and_targets(sb_folder, targets, beams, beam_locs) num_targets = len(targets) image_params = get_image_params_table(sb_folder, args.sbid, targets, beams, beam_locs) report_beam_usage(image_params) create_targets_csv(sb_folder, args.sbid, targets, image_params) # Report end = time.time() print('#### Processing completed at {} ####'.format( time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end)))) print('Processed {0} targets in {1:.0f} sec'.format( num_targets, (end - start))) return 0 if __name__ == '__main__': exit(main()) ```
{ "source": "jd-au/GASKAP-HI-Absorption-Pipeline", "score": 3 }
#### File: jd-au/GASKAP-HI-Absorption-Pipeline/extract_emission.py ```python import argparse import csv import os import time import warnings import astropy.units as u from astropy.io import fits, votable from astropy.io.votable.tree import Param,Info from astropy.io.votable import from_table, parse_single_table, writeto from astropy.table import Table, Column from astropy.utils.exceptions import AstropyWarning import numpy as np from spectral_cube import SpectralCube def parseargs(): """ Parse the command line arguments :return: An args map with the parsed arguments """ parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter, description="Produce emission spectra for a set of sources") parser.add_argument("-s", "--sbid", help="The id of the ASKAP scheduling block to be processed", type=int, required=True) parser.add_argument("-c", "--catalogue", help="The catalgoue of source positions and characteristics", required=True) parser.add_argument("-e", "--emission", help="The HI emission cube to source emission data around each source.", required=True) parser.add_argument("-p", "--parent", help="The parent folder for the processing, will default to sbnnn/ where nnn is the sbid.", required=False) args = parser.parse_args() return args def read_targets(targets_file): ids=[] comp_names=[] ras=[] decs=[] beams=[] i=1 with open(targets_file, 'r') as csvfile: tgt_reader = csv.reader(csvfile, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) for row in tgt_reader: if (tgt_reader.line_num == 1): # skip header continue #print (row) ids.append(i) comp_names.append(row[1]) ras.append(float(row[2])) decs.append(float(row[3])) beams.append(row[4:]) i+=1 table = Table() table.add_column(Column(name='id', data=ids)) table.add_column(Column(name='comp_name', data=comp_names)) table.add_column(Column(name='ra', data=ras)) table.add_column(Column(name='dec', data=decs)) table.add_column(Column(name='beams', data=beams)) return table def rename_columns(table): names = np.asarray(table.colnames) for name in names: if name.startswith('col_'): table.rename_column(name, name[4:]) def prep_folders(folders): for folder in folders: if not os.path.exists(folder): os.mkdir(folder) print ("Created " + folder) def output_emission_spectrum(source, comp_name, velocity, em_mean, em_std, filename): title = 'Emission for source #{} {}'.format(source['id'], comp_name) em_out_tab = Table(meta={'name': title}) em_out_tab.add_column(Column(name='velocity', data=velocity, unit='m/s', description='LSRK velocity')) em_out_tab.add_column(Column(name='em_mean', data=em_mean, unit='K', description='Mean brightness temperature')) em_out_tab.add_column(Column(name='em_std', data=em_std, unit='K', description='Noise level in the brightness temperature')) votable = from_table(em_out_tab) votable.params.append(Param(votable, id='id', value=source['id'], datatype='int')) votable.params.append(Param(votable, id='comp_name', value=comp_name, datatype='char', arraysize='*')) votable.params.append(Param(votable, id='ra', value=source['ra'], unit='deg', datatype='double')) votable.params.append(Param(votable, id='dec', value=source['dec'], unit='deg', datatype='double')) writeto(votable, filename) def extract_channel_slab(filename, chan_start, chan_end): cube = SpectralCube.read(filename) vel_cube = cube.with_spectral_unit(u.m/u.s, velocity_convention='radio') slab = vel_cube[chan_start:chan_end,:, :].with_spectral_unit(u.km/u.s) return slab def extract_emission_around_source(slab, pos, radius_outer, radius_inner): xp = np.int(pos[0]) yp = np.int(pos[1]) # Only pull spectra whose positions fall on the footprint of the cube (this should be all, right?) if (xp < radius_outer) or (xp > slab.shape[2]-radius_outer) or (yp < radius_outer) or (yp > slab.shape[1]-radius_outer): print ("Skipping") empty_result = np.zeros(slab.shape[0]) return empty_result, empty_result # Define pixel coordinates of a grid surrounding each target center = (xp, yp) imin = center[0] - radius_outer imax = center[0] + radius_outer + 1 jmin = center[1] - radius_outer jmax = center[1] + radius_outer + 1 # loop through and pile in all spectra which fall in the annulus, based on their distance # from the central pixel print (imin, imax, jmin, jmax) sub_specx = [] for k in np.arange(imin, imax): for j in np.arange(jmin, jmax): kj = np.array([k, j]) dist = np.linalg.norm(kj - np.array(center)) if dist > radius_inner and dist <= radius_outer: spec = slab[:, kj[1], kj[0]] sub_specx = sub_specx + [spec] #print (sub_specx) # Compute the mean over all spectra tb_mean = np.nanmean(sub_specx, axis=0) # Estimate the uncertainty per channel via the standard deviation over all spectra tb_std = np.nanstd(sub_specx, axis=0) #print ('mean=',tb_mean) return tb_mean, tb_std def extract_emission_around_source_by_plane(slab, pos, radius_outer, radius_inner): xp = np.int(pos[0]) yp = np.int(pos[1]) # Only pull spectra whose positions fall on the footprint of the cube (this should be all, right?) if (xp < radius_outer) or (xp > slab.shape[2]-radius_outer) or (yp < radius_outer) or (yp > slab.shape[1]-radius_outer): print ("Skipping") empty_result = np.zeros(slab.shape[0]) return empty_result, empty_result # Define pixel coordinates of a grid surrounding each target center = (xp, yp) imin = center[0] - radius_outer imax = center[0] + radius_outer + 1 jmin = center[1] - radius_outer jmax = center[1] + radius_outer + 1 # loop through and pile in all spectra which fall in the annulus, based on their distance # from the central pixel print (imin, imax, jmin, jmax) sub_specx = [] num_channels = slab.shape[0] cutout_center = (radius_outer, radius_outer) for plane in range(num_channels): cutout = slab[plane, jmin:jmax, imin:imax] print (cutout) idx = 0 for k in np.arange(imin, imax): for j in np.arange(jmin, jmax): kj = np.array([k-imin, j-jmin]) dist = np.linalg.norm(kj - np.array(cutout_center)) if dist > radius_inner and dist <= radius_outer: value = slab[plane, kj[1], kj[0]] if plane == 0: spec = np.zeros((num_channels)) sub_specx = sub_specx + [spec] spec = sub_specx[idx] spec[plane] = value idx += 1 #print (sub_specx) # Compute the mean over all spectra tb_mean = np.nanmean(sub_specx, axis=0) # Estimate the uncertainty per channel via the standard deviation over all spectra tb_std = np.nanstd(sub_specx, axis=0) #print ('mean=',tb_mean) return tb_mean, tb_std def extract_emission_spectra(cube, spectra_table, slab_size=160): # Read the cube spec_cube = SpectralCube.read(cube, mode='readonly', memmap=False) vel_cube = spec_cube.with_spectral_unit(u.m/u.s, velocity_convention='radio') wcs = vel_cube.wcs.celestial spec_len =vel_cube.shape[0] header = fits.getheader(cube) velocities = vel_cube.spectral_axis # Identify the target pixels for each spectrum pixcoord = wcs.wcs_world2pix(spectra_table['ra'],spectra_table['dec'], 0) radius_outer = 8 radius_inner = 4 # Extract the spectra start = time.time() print(" ## Started emission spectra extract at {} ##".format( (time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start))))) prev = start tb_mean_all = [] tb_std_all = [] for s in spectra_table: tb_mean_all.append(np.zeros(spec_len)) tb_std_all.append(np.zeros(spec_len)) # Extract using slabs unit = None prev = time.time() for i in range(0,spec_len,slab_size): max_idx = min(i+slab_size, spec_len) #slab = extract_channel_slab(cube, i, max_idx) slab = vel_cube[i:max_idx,:, :].with_spectral_unit(u.km/u.s) print (slab) unit = slab.unit post_slab = time.time() for j in range(len(pixcoord[0])): pos = [pixcoord[0][j],pixcoord[1][j]] tb_mean, tb_std = extract_emission_around_source(slab, pos, radius_outer, radius_inner) tb_mean_all[j][i:max_idx] = tb_mean tb_std_all[j][i:max_idx] = tb_std checkpoint = time.time() print ("Reading slab of channels {} to {}, took {:.2f} s".format(i, max_idx-1, post_slab-prev)) print ("Scanning slab of channels {} to {} for {} sources, took {:.2f} s".format(i, max_idx-1, len(pixcoord[0]), checkpoint-post_slab)) prev = checkpoint end = time.time() print(" ## Finished emission spectra extract at {}, took {:.2f} s ##".format( time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end)), end-start)) return tb_mean_all, tb_std_all, velocities.value def output_emission_spectra(spectra_table, tb_mean_all, tb_std_all, velocities, spectra_folder): print (velocities) for idx, source in enumerate(spectra_table): tb_mean = tb_mean_all[idx] tb_std = tb_std_all[idx] comp_name = source['comp_name'] if np.sum(tb_mean) == 0: print ("Source {} has all no emission data".format(comp_name)) filename = '{}/{}_emission.vot'.format(spectra_folder, comp_name) output_emission_spectrum(source, comp_name, velocities, tb_mean, tb_std, filename) def main(): warnings.simplefilter('ignore', category=AstropyWarning) args = parseargs() start = time.time() print("#### Started ASKAP emission spectra extraction for sbid {} at {} ####".format(args.sbid, time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start)))) parent_folder = 'sb{}/'.format(args.sbid) if args.parent: parent_folder = args.parent + '/' if not os.path.exists(parent_folder): print("Error: Folder {} does not exist.".format(parent_folder)) return 1 if not os.path.exists(args.emission): print("Error: File {} does not exist.".format(args.emission)) return 1 figures_folder = parent_folder + 'figures/' spectra_folder = parent_folder + 'spectra/' prep_folders([spectra_folder]) targets = read_targets('targets_{}.csv'.format(args.sbid)) # Read and filter catalogue src_votable = votable.parse(args.catalogue, pedantic=False) selavy_table = src_votable.get_first_table().to_table() rename_columns(selavy_table) # Extract emission spectra tb_mean_all, tb_std_all, velocities = extract_emission_spectra(args.emission, targets) output_emission_spectra(targets, tb_mean_all, tb_std_all, velocities, spectra_folder) # Report end = time.time() print('#### Processing completed at %s ####' % time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end))) print('Extracted %d spectra in %.02f s' % (len(targets), end - start)) return 0 if __name__ == '__main__': exit(main()) ```
{ "source": "jd-au/gaskap-validation", "score": 2 }
#### File: jd-au/gaskap-validation/gaskap-hi-validation.py ```python from __future__ import print_function, division import argparse import csv import datetime import glob import math import os import re from string import Template import shutil import time import warnings import matplotlib matplotlib.use('agg') import aplpy from astropy.constants import k_B from astropy.coordinates import SkyCoord from astropy.io import ascii, fits from astropy.io.votable import parse, from_table, writeto from astropy.io.votable.tree import Info from astropy.table import Table, Column import astropy.units as u from astropy.utils.exceptions import AstropyWarning from astropy.wcs import WCS import matplotlib.pyplot as plt import numpy as np from radio_beam import Beam from spectral_cube import SpectralCube from statsmodels.tsa import stattools from statsmodels.graphics.tsaplots import plot_pacf import seaborn as sns from validation import Bandpass, Diagnostics, SelfCal, Spectra from validation_reporter import ValidationReport, ReportSection, ReportItem, ValidationMetric, output_html_report, output_metrics_xml vel_steps = [-324, -280, -234, -189, -143, -100, -60, -15, 30, 73, 119, 165, 200, 236, 273, 311, 357, 399] #emission_vel_range=[] # (165,200)*u.km/u.s emission_vel_range=(119,165)*u.km/u.s non_emission_val_range=(-100,-60)*u.km/u.s figures_folder = 'figures' METRIC_BAD = 3 METRIC_UNCERTAIN = 2 METRIC_GOOD = 1 def parseargs(): """ Parse the command line arguments :return: An args map with the parsed arguments """ parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter, description="Produce a validation report for GASKAP HI observations. Either a cube or an image (or both) must be supplied to be validated.") parser.add_argument("-c", "--cube", required=False, help="The HI spectral line cube to be checked.") parser.add_argument("-i", "--image", required=False, help="The continuum image to be checked.") parser.add_argument("-s", "--source_cat", required=False, help="The selavy source catalogue used for source identification.") parser.add_argument("-b", "--beam_list", required=False, help="The csv file describing the positions of each beam (in radians).") parser.add_argument("-d", "--duration", required=False, help="The duration of the observation in hours.", type=float, default=12.0) parser.add_argument("-o", "--output", help="The folder in which to save the validation report and associated figures.", default='report') parser.add_argument("-e", "--emvel", required=False, help="The low velocity bound of the velocity region where emission is expected.") parser.add_argument("-n", "--nonemvel", required=False, help="The low velocity bound of the velocity region where emission is not expected.", default='-100') parser.add_argument("-N", "--noise", required=False, help="Use this fits image of the local rms. Default is to run BANE", default=None) parser.add_argument("-r", "--redo", help="Rerun all steps, even if intermediate files are present.", default=False, action='store_true') parser.add_argument("--num_spectra", required=False, help="Number of sample spectra to create", type=int, default=15) args = parser.parse_args() return args def get_str(value): if isinstance(value, bytes): return value.decode() return value def plot_histogram(file_prefix, xlabel, title): data = fits.getdata(file_prefix+'.fits') flat = data.flatten() flat = flat[~np.isnan(flat)] v =plt.hist(flat, bins=200, bottom=1, log=True, histtype='step') plt.grid() plt.xlabel(xlabel) plt.ylabel('Count') plt.title(title) plt.savefig(file_prefix+'_hist.png', bbox_inches='tight') plt.savefig(file_prefix+'_hist_sml.png', dpi=16, bbox_inches='tight') plt.close() def plot_map(file_prefix, title, cmap='magma', stretch='linear', pmax=99.75, colorbar_label=None): fig = plt.figure(figsize=(5, 4.5)) gc = aplpy.FITSFigure(file_prefix+'.fits', figure=fig) gc.show_colorscale(cmap=cmap, stretch=stretch, pmax=pmax) gc.add_colorbar() if colorbar_label: gc.colorbar.set_axis_label_text(colorbar_label) gc.add_grid() gc.set_title(title) gc.savefig(filename=file_prefix+'.png', dpi=200) gc.savefig(filename=file_prefix+'.pdf', dpi=100) gc.savefig(filename=file_prefix+'_sml.png', dpi=16 ) gc.close() def plot_difference_map(hdu, file_prefix, title, vmin=None, vmax=None): # Initiate a figure and axis object with WCS projection information wcs = WCS(hdu.header) fig = plt.figure(figsize=(18, 12)) ax = fig.add_subplot(111, projection=wcs) no_nan_data = np.nan_to_num(hdu.data) if vmin is None and vmax is None: vmin=np.percentile(no_nan_data, 0.25) vmax=np.percentile(no_nan_data, 99.75) im = ax.imshow(hdu.data, cmap='RdBu_r',vmin=vmin,vmax=vmax, origin='lower') #ax.invert_yaxis() ax.set_xlabel("Right Ascension (degrees)", fontsize=16) ax.set_ylabel("Declination (degrees)", fontsize=16) ax.set_title(title, fontsize=16) ax.grid(color = 'gray', ls = 'dotted', lw = 2) cbar = plt.colorbar(im, pad=.07) plt.savefig(file_prefix+'.png', bbox_inches='tight') plt.savefig(file_prefix+'_sml.png', dpi=10, bbox_inches='tight') plt.close() def output_plot(mp, title, imagename): mp.write('\n<h2>{}</h2>\n<br/>'.format(title)) mp.write('\n<a href="{}"><img width="800px" src="{}"></a>'.format(imagename, imagename)) mp.write('\n<br/>\n') def output_map_page(filename, file_prefix, title): with open(filename, 'w') as mp: mp.write('<html>\n<head><title>{}</title>\n</head>'.format(title)) mp.write('\n<body>\n<h1>{}</h1>'.format(title)) output_plot(mp, 'Large Scale Emission Map', file_prefix + '_bkg.png') output_plot(mp, 'Noise Map', file_prefix + '_rms.png') output_plot(mp, 'Moment 0 Map', file_prefix + '.png') mp.write('\n</body>\n</html>\n') def convert_slab_to_jy(slab, header): my_beam = Beam.from_fits_header(header) restfreq = 1.420405752E+09*u.Hz if 'RESTFREQ' in header.keys(): restfreq = header['RESTFREQ']*u.Hz elif 'RESTFRQ' in header.keys(): restfreq = header['RESTFRQ']*u.Hz if slab.unmasked_data[0,0,0].unit != u.Jy: print ("Converting slab from {} to Jy".format(slab.unmasked_data[0,0,0].unit) ) print (slab) slab.allow_huge_operations=True slab = slab.to(u.Jy, equivalencies=u.brightness_temperature(my_beam, restfreq)) print (slab) return slab def convert_data_to_jy(data, header, verbose=False): my_beam = Beam.from_fits_header(header) restfreq = 1.420405752E+09*u.Hz if 'RESTFREQ' in header.keys(): restfreq = header['RESTFREQ']*u.Hz elif 'RESTFRQ' in header.keys(): restfreq = header['RESTFRQ']*u.Hz if data[0].unit != u.Jy: if verbose: print ("Converting data from {} to Jy".format(data[0].unit) ) data = data.to(u.Jy, equivalencies=u.brightness_temperature(my_beam, restfreq)) return data def get_vel_limit(vel_cube): velocities = np.sort(vel_cube.spectral_axis) return velocities[0], velocities[-1] def extract_slab(filename, vel_start, vel_end): cube = SpectralCube.read(filename) vel_cube = cube.with_spectral_unit(u.m/u.s, velocity_convention='radio') cube_vel_min, cube_vel_max = get_vel_limit(vel_cube) if vel_start > cube_vel_max or vel_end < cube_vel_min: return None slab = vel_cube.spectral_slab(vel_start, vel_end) header = fits.getheader(filename) slab = convert_slab_to_jy(slab, header) return slab def extract_channel_slab(filename, chan_start, chan_end): cube = SpectralCube.read(filename) vel_cube = cube.with_spectral_unit(u.m/u.s, velocity_convention='radio') slab = vel_cube[chan_start:chan_end,:, :].with_spectral_unit(u.km/u.s) header = fits.getheader(filename) return slab def build_fname(example_name, suffix): basename = os.path.basename(example_name) prefix = os.path.splitext(basename)[0] fname = prefix + suffix return fname def get_figures_folder(dest_folder): return dest_folder + '/' + figures_folder + '/' def get_bane_background(infile, outfile_prefix, plot_title_suffix, ncores=8, redo=False, plot=True): background_prefix = outfile_prefix+'_bkg' background_file = background_prefix + '.fits' if redo or not os.path.exists(background_file): cmd = "BANE --cores={0} --out={1} {2}".format(ncores, outfile_prefix, infile) print (cmd) os.system(cmd) if plot: plot_map(background_prefix, "Large scale emission in " + plot_title_suffix) plot_histogram(background_prefix, 'Emission (Jy beam^{-1} km s^{-1})', "Emission for " + plot_title_suffix) plot_map(outfile_prefix+'_rms', "Noise in "+ plot_title_suffix) return background_file def assess_metric(metric, threshold1, threshold2, low_good=False): if metric < threshold1: return METRIC_GOOD if low_good else METRIC_BAD elif metric < threshold2: return METRIC_UNCERTAIN else: return METRIC_BAD if low_good else METRIC_GOOD def get_spectral_units(ctype, cunit, hdr): spectral_conversion = 1 if not cunit in hdr: if ctype.startswith('VEL') or ctype.startswith('VRAD'): spectral_unit = 'm/s' else: spectral_unit = 'Hz' else: spectral_unit = hdr[cunit] if spectral_unit == 'Hz': spectral_conversion = 1e6 spectral_unit = 'MHz' elif spectral_unit == 'kHz': spectral_conversion = 1e3 spectral_unit = 'MHz' elif spectral_unit == 'm/s': spectral_conversion = 1e3 spectral_unit = 'km/s' return spectral_unit, spectral_conversion def calc_velocity_res(hdr): spec_sys = hdr['SPECSYS'] axis = '3' if hdr['CTYPE3'] != 'STOKES' else '4' spec_type = hdr['CTYPE'+axis] spectral_unit, spectral_conversion = get_spectral_units(spec_type, 'CUNIT'+axis, hdr) if 'CUNIT'+axis in hdr.keys(): spec_unit = hdr['CUNIT'+axis] #elif spec_type == 'VRAD' or spec_type == 'VEL': # spec_unit = 'm/s' else: spec_unit = None spec_delt = hdr['CDELT'+axis] print ('CDELT={}, CUNIT={}, spec_unit={}, conversion={}'.format(spec_delt, spec_unit, spectral_unit, spectral_conversion)) spec_res_km_s = np.abs(spec_delt) / spectral_conversion if spectral_unit == 'MHz': spec_res_km_s = spec_res_km_s/5e-4*0.1 # 0.5 kHz = 0.1 km/s #elif spec_unit == 'Hz': # spec_res_km_s = spec_res_km_s/500*0.1 # 0.5 kHz = 0.1 km/s #elif spec_unit == 'kHz': # spec_res_km_s = spec_res_km_s/0.5*0.1 # 0.5 kHz = 0.1 km/s return spec_res_km_s def report_observation(image, reporter, input_duration, sched_info, obs_metadata): print('\nReporting observation based on ' + image) hdr = fits.getheader(image) w = WCS(hdr).celestial sbid = hdr['SBID'] if 'SBID' in hdr else sched_info.sbid project = hdr['PROJECT'] if 'PROJECT' in hdr else '' proj_link = None if project.startswith('AS'): proj_link = "https://confluence.csiro.au/display/askapsst/{0}+Data".format(project) date = hdr['DATE-OBS'] duration = float(hdr['DURATION'])/3600 if 'DURATION' in hdr else input_duration naxis1 = int(hdr['NAXIS1']) naxis2 = int(hdr['NAXIS2']) pixcrd = np.array([[naxis1/2, naxis2/2]]) centre = w.all_pix2world(pixcrd,1) centre = SkyCoord(ra=centre[0][0], dec=centre[0][1], unit="deg,deg").to_string(style='hmsdms',sep=':') # spectral axis spectral_unit = 'None' spectral_range = '' for i in range(3,int(hdr['NAXIS'])+1): ctype = hdr['CTYPE'+str(i)] if (ctype.startswith('VEL') or ctype.startswith('VRAD') or ctype.startswith('FREQ')): key = 'CUNIT'+str(i) spectral_unit, spectral_conversion = get_spectral_units(ctype, key, hdr) step = float(hdr['CDELT'+str(i)]) #print ('step {} rval {} rpix {} naxis {}'.format(step, hdr['CRVAL'+str(i)], hdr['CRPIX'+str(i)], hdr['NAXIS'+str(i)])) spec_start = (float(hdr['CRVAL'+str(i)]) - (step*(float(hdr['CRPIX'+str(i)])-1)))/spectral_conversion if int(hdr['NAXIS'+str(i)]) > 1: spec_end = spec_start + (step * (int(hdr['NAXIS'+str(i)]-1)))/spectral_conversion if step > 0: spectral_range = '{:0.3f} - {:0.3f}'.format(spec_start, spec_end) else: spectral_range = '{:0.3f} - {:0.3f}'.format(spec_end, spec_start) spec_title = 'Spectral Range' else: centre_freq = (float(hdr['CRVAL'+str(i)]) - (step*(float(hdr['CRPIX'+str(i)])-1)))/spectral_conversion spectral_range = '{:0.3f}'.format(centre_freq) spec_title = 'Centre Freq' # Field info if obs_metadata: field_names = '' field_centres = '' for i,field in enumerate(obs_metadata.fields): if i > 0: field_names += '<br/>' field_centres += '<br/>' field_names += field.name field_centres += field.ra + ' ' + field.dec else: field_names = sched_info.field_name field_centres = centre footprint = sched_info.footprint if footprint and sched_info.pitch: footprint = "{}_{}".format(footprint, sched_info.pitch) section = ReportSection('Observation') section.add_item('SBID', value=sbid) section.add_item('Project', value=project, link=proj_link) section.add_item('Date', value=date) section.add_item('Duration<br/>(hours)', value='{:.2f}'.format(duration)) section.add_item('Field(s)', value=field_names) section.add_item('Field Centre(s)', value=field_centres) section.add_item('Correlator<br/>Mode', value=sched_info.corr_mode) section.add_item('Footprint', value=footprint) section.add_item('{}<br/>({})'.format(spec_title, spectral_unit), value=spectral_range) reporter.add_section(section) reporter.project = project return sbid def report_cube_stats(cube, reporter): print ('\nReporting cube stats') hdr = fits.getheader(cube) w = WCS(hdr).celestial # Cube information askapSoftVer = 'N/A' askapPipelineVer = 'N/A' history = hdr['history'] askapSoftVerPrefix = 'Produced with ASKAPsoft version ' askapPipelinePrefix = 'Processed with ASKAP pipeline version ' for row in history: if row.startswith(askapSoftVerPrefix): askapSoftVer = row[len(askapSoftVerPrefix):] elif row.startswith(askapPipelinePrefix): askapPipelineVer = row[len(askapPipelinePrefix):] beam = 'N/A' if 'BMAJ' in hdr: beam_maj = hdr['BMAJ'] * 60 * 60 beam_min = hdr['BMIN'] * 60 * 60 beam = '{:.1f} x {:.1f}'.format(beam_maj, beam_min) dims = [] for i in range(1,int(hdr['NAXIS'])+1): dims.append(str(hdr['NAXIS'+str(i)])) dimensions = ' x '.join(dims) # self.area,self.solid_ang = get_pixel_area(fits, nans=True, ra_axis=self.ra_axis, dec_axis=self.dec_axis, w=w) cube_name = os.path.basename(cube) section = ReportSection('Image Cube', cube_name) section.add_item('ASKAPsoft<br/>version', value=askapSoftVer) section.add_item('Pipeline<br/>version', value=askapPipelineVer) section.add_item('Synthesised Beam<br/>(arcsec)', value=beam) section.add_item('Sky Area<br/>(deg2)', value='') section.add_item('Dimensions', value=dimensions) reporter.add_section(section) return def check_for_emission(cube, vel_start, vel_end, reporter, dest_folder, ncores=8, redo=False): print ('\nChecking for presence of emission in {:.0f} < v < {:.0f}'.format(vel_start, vel_end)) # Extract a moment 0 map slab = extract_slab(cube, vel_start, vel_end) if slab is None: print ("** No data for the emission range - skipping check **") return num_channels = slab.shape[0] hdr = fits.getheader(cube) spec_res_km_s = calc_velocity_res(hdr) mom0 = slab.moment0() prefix = build_fname(cube, '_mom0') folder = get_figures_folder(dest_folder) mom0_fname = folder + prefix + '.fits' mom0.write(mom0_fname, overwrite=True) hi_data = fits.open(mom0_fname) plot_title_suffix = "emission region in " + os.path.basename(cube) plot_difference_map(hi_data[0], folder+prefix, "Moment 0 map of " + plot_title_suffix) # Produce the background plots bkg_data = get_bane_background(mom0_fname, folder+prefix, plot_title_suffix, ncores=ncores, redo=redo) map_page = folder + '/emission.html' rel_map_page = get_figures_folder('.') + '/emission.html' output_map_page(map_page, prefix, 'Emission Plots for ' + os.path.basename(cube)) hi_data = fits.open(folder + prefix+'_bkg.fits') max_em = np.nanmax(hi_data[0].data) max_em_per_kms = max_em / (spec_res_km_s * num_channels) # assess cube_name = os.path.basename(cube) section = ReportSection('Presence of Emission', cube_name) section.add_item('Velocity Range<br/>(km/s LSR)', value='{:.0f} to {:.0f}'.format(vel_start.value, vel_end.value)) section.add_item('Channels', value='{}'.format(num_channels)) section.add_item('Large Scale<br/>Emission Map', link=rel_map_page, image='figures/'+prefix+'_bkg_sml.png') section.add_item('Emission Histogram', link='figures/'+prefix+'_bkg_hist.png', image='figures/'+prefix+'_bkg_hist_sml.png') section.add_item('Max Emission<br/>(Jy beam<sup>-1</sup>)', value='{:.3f}'.format(max_em_per_kms)) reporter.add_section(section) metric = ValidationMetric('Presence of Emission', 'Maximum large scale emission intensity in the velocity range where emission is expected.', int(max_em_per_kms), assess_metric(max_em_per_kms, 12, 20)) reporter.add_metric(metric) return def check_for_non_emission(cube, vel_start, vel_end, reporter, dest_folder, ncores=8, redo=False): print ('\nChecking for absence of emission in {:.0f} < v < {:.0f}'.format(vel_start, vel_end)) # Extract a moment 0 map slab = extract_slab(cube, vel_start, vel_end) if slab is None: print ("** No data for the non-emission range - skipping check **") return None num_channels = slab.shape[0] hdr = fits.getheader(cube) spec_res_km_s = calc_velocity_res(hdr) mom0 = slab.moment0() prefix = build_fname(cube, '_mom0_off') folder = get_figures_folder(dest_folder) mom0_fname = folder + prefix + '.fits' mom0.write(mom0_fname, overwrite=True) hi_data = fits.open(mom0_fname) plot_title_suffix = "non-emission region in " + os.path.basename(cube) plot_difference_map(hi_data[0], folder+prefix, "Moment 0 map of " + plot_title_suffix) # Produce the background plots bkg_data = get_bane_background(mom0_fname, folder+prefix, plot_title_suffix, ncores=ncores, redo=redo) map_page = folder + '/off_emission.html' rel_map_page = get_figures_folder('.') + '/off_emission.html' output_map_page(map_page, prefix, 'Off-line Emission Plots for ' + os.path.basename(cube)) hi_data = fits.open(folder+prefix+'_bkg.fits') max_em = np.nanmax(hi_data[0].data) max_em_per_kms = max_em / (spec_res_km_s * num_channels) # assess cube_name = os.path.basename(cube) section = ReportSection('Absence of Off-line Emission', cube_name) section.add_item('Velocity Range<br/>(km/s LSR)', value='{:.0f} to {:.0f}'.format(vel_start.value, vel_end.value)) section.add_item('Channels', value='{}'.format(num_channels)) section.add_item('Large Scale<br/>Emission Map', link=rel_map_page, image='figures/'+prefix+'_bkg_sml.png') section.add_item('Emission Histogram', link='figures/'+prefix+'_bkg_hist.png', image='figures/'+prefix+'_bkg_hist_sml.png') section.add_item('Max Emission<br/>(Jy beam<sup>-1</sup>)', value='{:.3f}'.format(max_em_per_kms)) reporter.add_section(section) metric = ValidationMetric('Absence of Off-line Emission', 'Maximum large scale emission intensity in the velocity range where emission is not expected.', int(max_em_per_kms), assess_metric(max_em_per_kms, 5, 12, low_good=True)) reporter.add_metric(metric) return slab def calc_theoretical_rms(chan_width, t_obs= 12*60*60, n_ant=36): """ Calculating the theoretical rms noise for ASKAP. Assuming natural weighting and not taking into account fraction of flagged data. Based on ASKAP SEFD measurement in SB 9944. Parameters ---------- chan_width : int channel width in Hz t_obs : int duration of the observation in seconds n_ant : int Number of antennae Returns ------- rms : int Theoretical RMS in mJy """ #cor_eff = 0.8 # correlator efficiency - WALLABY cor_eff = 1.0 # correlator efficiency - assumed to be included in the SEFD n_pol = 2.0 # Number of polarisation, npol = 2 for images in Stokes I, Q, U, or V #sefd = 1700*u.Jy # As measured in SB 9944 sefd = 1800*u.Jy # Hotan et al 2021 rms_jy = sefd/(cor_eff*math.sqrt(n_pol*n_ant*(n_ant-1)*chan_width*t_obs)) return rms_jy.to(u.mJy).value def measure_spectral_line_noise(slab, cube, vel_start, vel_end, reporter, dest_folder, duration, redo=False): print ('\nMeasuring the spectral line noise levels across {:.0f} < v < {:.0f}'.format(vel_start, vel_end)) if slab is None: print ("** No data for the non-emission range - skipping check **") return # Extract header details hdr = fits.getheader(cube) spec_sys = hdr['SPECSYS'] axis_num = '3' if hdr['CTYPE3'] != 'STOKES' else '4' spec_type = hdr['CTYPE'+axis_num] axis = spec_sys + ' ' + spec_type spec_res_km_s = calc_velocity_res(hdr) # Scale the noise to mJy / 5 kHz channel std_data = np.nanstd(slab.unmasked_data[:], axis=0) noise_5kHz = std_data / np.sqrt(1 / spec_res_km_s) noise_5kHz = noise_5kHz.to(u.mJy) # Jy => mJy # Extract the spectral line noise map mom0_prefix = build_fname(cube, '_mom0_off') folder = get_figures_folder(dest_folder) mom0_fname = folder + mom0_prefix + '.fits' prefix = build_fname(cube, '_spectral_noise') noise_fname = folder + prefix + '.fits' fits.writeto(noise_fname, noise_5kHz.value, fits.getheader(mom0_fname), overwrite=True) # Produce the noise plots cube_name = os.path.basename(cube) plot_map(folder+prefix, "Spectral axis noise map for " + cube_name, cmap='mako_r', stretch='arcsinh', colorbar_label=r'Noise level per 5 kHz channel (mJy beam$^{-1}$)') plot_histogram(folder+prefix, r'Noise level per 5 kHz channel (mJy beam$^{-1}$)', 'Spectral axis noise for ' + cube_name) median_noise_5kHz = np.nanmedian(noise_5kHz.value[noise_5kHz.value!=0.0]) theoretical_gaskap_noise = calc_theoretical_rms(5000, t_obs=duration*60*60) # mJy per 5 kHz for the observation duration print ("Theoretical noise {:.3f} mJy/beam".format(theoretical_gaskap_noise)) median_ratio = median_noise_5kHz / theoretical_gaskap_noise # assess cube_name = os.path.basename(cube) section = ReportSection('Spectral Line Noise', cube_name) section.add_item('Velocity Range<br/>(km/s LSR)', value='{:.0f} to {:.0f}'.format(vel_start.value, vel_end.value)) section.add_item('Spectral Axis', value=axis) section.add_item('Spectral Resolution<br/>(kms)', value='{}'.format(round(spec_res_km_s,2))) section.add_item('Spectral Axis<br/>Noise Map', link='figures/'+prefix+'.png', image='figures/'+prefix+'_sml.png') section.add_item('Spectral Axis<br/>Noise Histogram', link='figures/'+prefix+'_hist.png', image='figures/'+prefix+'_hist_sml.png') section.add_item('Spectral Axis Noise<br/>(mJy per 5 kHz)', value='{:.3f}'.format(median_noise_5kHz)) section.add_item('Spectral Axis Noise<br/>(vs theoretical for {:.2f} hr)'.format(duration), value='{:.3f}'.format(median_ratio)) reporter.add_section(section) metric = ValidationMetric('Spectral Noise', '1-sigma spectral noise comparison to theoretical per 5 kHz channel for {:.2f} hr observation.'.format(duration), round(median_ratio,3), assess_metric(median_ratio, np.sqrt(2), np.sqrt(2)*2, low_good=True)) reporter.add_metric(metric) return def get_pixel_area(fits_file,flux=0,nans=False,ra_axis=0,dec_axis=1,w=None): """For a given image, get the area and solid angle of all non-nan pixels or all pixels below a certain flux (doesn't count pixels=0). The RA and DEC axes follow the WCS convention (i.e. starting from 0). Arguments: ---------- fits : astropy.io.fits The primary axis of a fits image. Keyword arguments: ------------------ flux : float The flux in Jy, below which pixels will be selected. nans : bool Derive the area and solid angle of all non-nan pixels. ra_axis : int The index of the RA axis (starting from 0). dec_axis : int The index of the DEC axis (starting from 0). w : astropy.wcs.WCS A wcs object to use for reading the pixel sizes. Returns: -------- area : float The area in square degrees. solid_ang : float The solid angle in steradians. See Also: --------- astropy.io.fits astropy.wcs.WCS""" if w is None: w = WCS(fits_file.header) #count the pixels and derive area and solid angle of all these pixels if nans: count = fits_file.data[(~np.isnan(fits_file.data)) & (fits_file.data != 0)].shape[0] else: count = fits_file.data[(fits_file.data < flux) & (fits_file.data != 0)].shape[0] area = (count*np.abs(w.wcs.cdelt[ra_axis])*np.abs(w.wcs.cdelt[dec_axis])) solid_ang = area*(np.pi/180)**2 return area,solid_ang def report_image_stats(image, noise_file, reporter, dest_folder, diagnostics_dir, ncores=8, redo=False): print ('\nReporting image stats') fits_file = fits.open(image) hdr = fits_file[0].header w = WCS(hdr).celestial fig_folder= get_figures_folder(dest_folder) # Image information askapSoftVer = 'N/A' askapPipelineVer = 'N/A' history = hdr['history'] askapSoftVerPrefix = 'Produced with ASKAPsoft version ' askapPipelinePrefix = 'Processed with ASKAP pipeline version ' for row in history: if row.startswith(askapSoftVerPrefix): askapSoftVer = row[len(askapSoftVerPrefix):] elif row.startswith(askapPipelinePrefix): askapPipelineVer = row[len(askapPipelinePrefix):] beam = 'N/A' if 'BMAJ' in hdr: beam_maj = hdr['BMAJ'] * 60 * 60 beam_min = hdr['BMIN'] * 60 * 60 beam = '{:.1f} x {:.1f}'.format(beam_maj, beam_min) # Analyse image data area,solid_ang = get_pixel_area(fits_file[0], nans=False) # if not noise_file: # prefix = build_fname(image, '') # folder = get_figures_folder(dest_folder) # noise_file = get_bane_background(image, folder+prefix, redo=redo, plot=False) # rms_map = fits.open(noise_file)[0] img_data = fits_file[0].data img_peak = np.max(img_data[~np.isnan(img_data)]) # rms_bounds = rms_map.data > 0 # img_rms = int(np.median(rms_map.data[rms_bounds])*1e6) #uJy # img_peak_bounds = np.max(img_data[rms_bounds]) # img_peak_pos = np.where(img_data == img_peak_bounds) # img_peak_rms = rms_map.data[img_peak_pos][0] # dynamic_range = img_peak_bounds/img_peak_rms #img_flux = np.sum(img_data[~np.isnan(img_data)]) / (1.133*((beam_maj * beam_min) / (img.raPS * img.decPS))) #divide by beam area # Copy pipleine plots field_src_plot = copy_existing_image(diagnostics_dir+'/image.i.SB*.cont.restored_sources.png', fig_folder) image_name = os.path.basename(image) section = ReportSection('Image', image_name) section.add_item('ASKAPsoft<br/>version', value=askapSoftVer) section.add_item('Pipeline<br/>version', value=askapPipelineVer) section.add_item('Synthesised Beam<br/>(arcsec)', value=beam) add_opt_image_section('Source Map', field_src_plot, fig_folder, dest_folder, section) # section.add_item('Median r.m.s.<br/>(uJy)', value='{:.2f}'.format(img_rms)) # section.add_item('Image peak<br/>(Jy)', value='{:.2f}'.format(img_peak_bounds)) # section.add_item('Dynamic Range', value='{:.2f}'.format(dynamic_range)) section.add_item('Sky Area<br/>(deg2)', value='{:.2f}'.format(area)) reporter.add_section(section) return def set_velocity_range(emvelstr, nonemvelstr): emvel = int(emvelstr) if not emvel in vel_steps: raise ValueError('Velocity {} is not one of the supported GASS velocity steps e.g. 165, 200.'.format(emvel)) nonemvel = int(nonemvelstr) if not nonemvel in vel_steps: raise ValueError('Velocity {} is not one of the supported GASS velocity steps e.g. 165, 200.'.format(emvel)) idx = vel_steps.index(emvel) if idx +1 >= len(vel_steps): raise ValueError('Velocity {} is not one of the supported GASS velocity steps e.g. 165, 200.'.format(emvel)) # emission_vel_range=(vel_steps[idx],vel_steps[idx+1])*u.km/u.s emission_vel_range[0]=vel_steps[idx]*u.km/u.s emission_vel_range[1]=vel_steps[idx+1]*u.km/u.s print ('\nSet emission velocity range to {:.0f} < v < {:.0f}'.format(emission_vel_range[0], emission_vel_range[1])) idx = vel_steps.index(nonemvel) if idx +1 >= len(vel_steps): raise ValueError('Velocity {} is not one of the supported GASS velocity steps e.g. 165, 200.'.format(emvel)) # emission_vel_range=(vel_steps[idx],vel_steps[idx+1])*u.km/u.s non_emission_val_range[0]=vel_steps[idx]*u.km/u.s non_emission_val_range[1]=vel_steps[idx+1]*u.km/u.s print ('\nSet non emission velocity range to {:.0f} < v < {:.0f}'.format(non_emission_val_range[0], non_emission_val_range[1])) def identify_periodicity(spectrum): """ Check if there are periodic features in a spectrum. This tests if there are patterns which are present in the spectrum seperated by a specific number of channels (or lag). i.e. if the same pattern repeats every so many channels. Only features with at least 3-sigma significance are returned. Arguments: ---------- spectrum : array-like The numerical spectrum. Returns: -------- repeats: array The lag intervals that have 3-sigma or greater periodic features sigma: array The significance of each repeat value, in sigma. """ # Use a partial auto-correlation function to identify repeated patterns pacf = stattools.pacf(spectrum, nlags=min(50, len(spectrum)//5)) sd = np.std(pacf[1:]) significance= pacf/sd indexes = (significance>3).nonzero()[0] repeats = indexes[indexes>3] return repeats, significance[repeats] def plot_all_spectra(spectra, names, velocities, em_unit, vel_unit, figures_folder, prefix): fig = None if len(spectra) > 20: fig = plt.figure(figsize=(18, 72)) else: fig = plt.figure(figsize=(18, 12)) num_rows = math.ceil(len(spectra)/3) for idx, spectrum in enumerate(spectra): label = get_str(names[idx]) ax = fig.add_subplot(num_rows, 3, idx+1) ax.plot(velocities, spectrum, linewidth=1) ax.set_title(label) ax.grid() if idx > 2*num_rows: ax.set_xlabel("$v_{LSRK}$ " + '({})'.format(vel_unit)) if idx % 3 == 0: ax.set_ylabel(em_unit) fig.tight_layout() fig.savefig(figures_folder+'/'+prefix+'-spectra-individual.pdf') def plot_overlaid_spectra(spectra, names, velocities, em_unit, vel_unit, figures_folder, cube_name, prefix): fig = plt.figure(figsize=(18, 12)) axes = [] if len(spectra) > 36: for i in range(1,4): ax = fig.add_subplot(3,1,i) axes.append(ax) else: ax = fig.add_subplot() axes.append(ax) for i, spec in enumerate(spectra): label = get_str(names[i]) idx = 0 if len(axes) > 1: interleave = label[-4] idx = ord(interleave) - ord('A') ax = axes[idx] ax.plot(velocities, spec, label=label) for idx, ax in enumerate(axes): ax.set_xlabel("$v_{LSRK}$ " + '({})'.format(vel_unit)) ax.set_ylabel(em_unit) ax.legend() ax.grid() if len(axes) > 1: ax.set_title('Spectra for all beams in interleave {}'.format(chr(ord('A')+idx))) else: ax.set_title('Spectra for {} brightest sources in {}'.format(len(spectra), cube_name)) plt.savefig(figures_folder+'/'+prefix+'-spectra.png') plt.savefig(figures_folder+'/'+prefix+'-spectra_sml.png', dpi=16) def output_spectra_page(filename, prefix, title): with open(filename, 'w') as mp: mp.write('<html>\n<head><title>{}</title>\n</head>'.format(title)) mp.write('\n<body>\n<h1>{}</h1>'.format(title)) output_plot(mp, 'All Spectra', prefix + '-spectra.png') output_plot(mp, 'Individual Spectra', prefix + '-spectra-individual.pdf') mp.write('\n</body>\n</html>\n') def plot_periodic_spectrum(spectrum, fig, name): ax = fig.add_subplot(211) ax.plot(spectrum) ax.set_title('Spectrum for ' + name) ax.grid() ax = fig.add_subplot(212) plot_pacf(spectrum, lags=50, ax=ax) fig.tight_layout() def output_periodic_spectra_page(filename, prefix, title, periodic, detections): with open(filename, 'w') as mp: mp.write('<html>\n<head><title>{}</title>\n</head>'.format(title)) mp.write('\n<body>\n<h1>{}</h1>'.format(title)) for idx, src_name in enumerate(periodic): output_plot(mp, src_name, prefix + '{}_periodicity.png'.format(src_name)) mp.write('<p>{}</p>'.format(detections[idx])) mp.write('\n</body>\n</html>\n') def save_spectum(name, velocities, fluxes, ra, dec, spectra_folder): spec_table = Table( [velocities, fluxes], names=['Velocity', 'Emission'], meta={'ID': name, 'RA' : ra, 'Dec': dec}) votable = from_table(spec_table) votable.infos.append(Info('RA', 'RA', ra)) votable.infos.append(Info('Dec', 'Dec', dec)) writeto(votable, '{}/{}.vot'.format(spectra_folder, name)) def extract_spectra(cube, source_cat, dest_folder, reporter, num_spectra, beam_list, slab_size=40): print('\nExtracting spectra for the {} brightest sources in {} and beams listed in {}'.format( num_spectra, source_cat, beam_list)) # Prepare the output folders spectra_folder = dest_folder + '/spectra' if not os.path.exists(spectra_folder): os.makedirs(spectra_folder) figures_folder = dest_folder + '/figures' # Read the source list and identify the brightest sources bright_srcs = [] bright_src_pos = [] if source_cat: votable = parse(source_cat, pedantic=False) sources = votable.get_first_table() srcs_tab = sources.to_table() for key in ('component_name', 'col_component_name'): if key in srcs_tab.keys(): comp_name_key = key break bright_idx = np.argsort(sources.array['flux_peak'])[-num_spectra:] bright_srcs = sources.array[bright_idx] bright_srcs.sort(order=comp_name_key) for idx, src in enumerate(bright_srcs): pos = SkyCoord(ra=src['ra_deg_cont']*u.deg, dec=src['dec_deg_cont']*u.deg) bright_src_pos.append(pos) # Read the beams beams = [] if beam_list: beams = ascii.read(beam_list) beams.add_column(Column(name='pos', data=np.empty((len(beams)), dtype=object))) beams.add_column(Column(name='name', data=np.empty((len(beams)), dtype=object))) for beam in beams: name = '{}-{:02d}'.format(beam['col1'], beam['col2']) pos = SkyCoord(ra=beam['col3']*u.rad, dec=beam['col4']*u.rad) beam['name'] = name beam['pos'] = pos # Read the cube spec_cube = SpectralCube.read(cube) vel_cube = spec_cube.with_spectral_unit(u.m/u.s, velocity_convention='radio') wcs = vel_cube.wcs.celestial spec_len =vel_cube.shape[0] header = fits.getheader(cube) # Identify the target pixels for each spectrum pix_pos_bright = [] pix_pos_beam = [] for idx, source in enumerate(bright_srcs): pos = pos = bright_src_pos[idx] pixel = pos.to_pixel(wcs=wcs) rnd = np.round(pixel) pix_pos_bright.append((int(rnd[0]), int(rnd[1]))) for source in beams: pos = source['pos'] pixel = pos.to_pixel(wcs=wcs) rnd = np.round(pixel) pix_pos_beam.append((int(rnd[0]), int(rnd[1]))) # Extract the spectra start = time.time() print(" ## Started spectra extract at {} ##".format( (time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start))))) prev = start spectra_bright = [] for p in pix_pos_bright: spectra_bright.append(np.zeros(spec_len)) spectra_beam = [] for p in pix_pos_beam: spectra_beam.append(np.zeros(spec_len)) # Extract using slabs unit = None prev = time.time() for i in range(0,spec_len,slab_size): max_idx = min(i+slab_size, spec_len) slab = extract_channel_slab(cube, i, max_idx) checkpoint = time.time() print (slab) unit = slab.unit for j, pos in enumerate(pix_pos_bright): data = slab[:,pos[1], pos[0]] #data = convert_data_to_jy(data, header) spectra_bright[j][i:max_idx] = data.value for j, pos in enumerate(pix_pos_beam): data = slab[:,pos[1], pos[0]] spectra_beam[j][i:max_idx] = data.value print ("Scanning slab of channels {} to {}, took {:.2f} s".format(i, max_idx-1, checkpoint-prev)) prev = checkpoint end = time.time() print(" ## Finished spectra extract at {}, took {:.2f} s ##".format( time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end)), end-start)) # Save the spectra names = bright_srcs['component_name'] for idx, spec in enumerate(spectra_bright): name = get_str(names[idx]) pos = bright_src_pos[idx] save_spectum(name, vel_cube.spectral_axis.to(u.km/u.s), spec*vel_cube.unit, pos.ra.deg, pos.dec.deg, spectra_folder) for idx, spec in enumerate(spectra_beam): name = beams[idx]['name'] pos = beams[idx]['pos'] save_spectum(name, vel_cube.spectral_axis.to(u.km/u.s), spec*vel_cube.unit, pos.ra.deg, pos.dec.deg, spectra_folder) # Plot the spectra em_unit = str(vel_cube.unit) velocities = vel_cube.spectral_axis.to(u.km/u.s) plot_overlaid_spectra(spectra_bright, names, velocities, em_unit, 'km/s', figures_folder, os.path.basename(cube), 'bright') plot_all_spectra(spectra_bright, names, velocities, em_unit, 'km/s', figures_folder, 'bright') bright_spectra_file = figures_folder+'/bright_spectra.html' output_spectra_page(bright_spectra_file, './bright', "Spectra for 15 Brightest Sources") if beam_list: beam_names = beams['name'] spec_res_hz = Spectra.get_spec_resolution(header) print ('Spec res (hz) {}'.format(spec_res_hz)) theoretical_noise = calc_theoretical_rms(spec_res_hz) print ('Theoretical noise (mJy) {}'.format(theoretical_noise)) plot_overlaid_spectra(spectra_beam, beam_names, velocities, em_unit, 'km/s', figures_folder, os.path.basename(cube), 'beam') Spectra.plot_beam_locs(cube, beams, theoretical_noise, figures_folder+'/beam_comparison', spectra_folder) plot_all_spectra(spectra_beam, beam_names, velocities, em_unit, 'km/s', figures_folder, 'beam') beam_spectra_file = figures_folder+'/beam_spectra.html' output_spectra_page(beam_spectra_file, './beam', "Spectra for centre of each beam") # Check for periodicity in the spectra num_bright_periodic = 0 bright_periodic = [] detections = [] for idx, spec in enumerate(spectra_bright): if spec.any(): repeats, sig = identify_periodicity(spec) if len(repeats)>0: num_bright_periodic += 1 name = get_str(names[idx]) bright_periodic.append(name) fig = plt.figure(figsize=(8, 6)) plot_periodic_spectrum(spec, fig, name) fig.savefig(figures_folder+'/{}_periodicity.png'.format(name)) detections.append("Detected periodicity with lag {} of significance {}".format(repeats, sig)) print ("Spectrum for {} has periodicity with lag {} of signficance {}".format(name, repeats, sig)) bright_periodic_str = 'None' if len(bright_periodic) == 0 else '<br/>'.join(bright_periodic) output_periodic_spectra_page(figures_folder+'/periodic_spectra.html', './', "Spectra with Periodic Features", bright_periodic, detections) # Output the report cube_name = os.path.basename(cube) section = ReportSection('Spectra', cube_name) section.add_item('Bright Source Spectra', link='figures/bright_spectra.html', image='figures/bright-spectra_sml.png') section.add_item('Spectra wth periodic features', link='figures/periodic_spectra.html', value=bright_periodic_str) if beam_list: section.add_item('Beam Centre Spectra', link='figures/beam_spectra.html', image='figures/beam-spectra_sml.png') section.add_item('Beam Noise Levels', link='figures/beam_comparison.png', image='figures/beam_comparison_sml.png') reporter.add_section(section) metric = ValidationMetric('Spectra periodicity', 'Number of spectra with repeated patterns with more than 3-sigma significance ', num_bright_periodic, assess_metric(num_bright_periodic, 1, 5, low_good=True)) reporter.add_metric(metric) def copy_existing_image(image_pattern, fig_folder): paths = glob.glob(image_pattern) if len(paths) == 0: return None # Copy the file with default permnisisons and metadata new_name = fig_folder + "/" + os.path.basename(paths[0]) shutil.copyfile(paths[0], new_name) return new_name def add_opt_image_section(title, image_path, fig_folder, dest_folder, section, thumb_size_x=140, thumb_size_y=140): if image_path == None: section.add_item(title, value='N/A') return img_thumb, img_thumb_rel = Diagnostics.make_thumbnail(image_path, fig_folder, dest_folder, size_x=thumb_size_y, size_y=thumb_size_y) image_path_rel = os.path.relpath(image_path, dest_folder) section.add_item(title, link=image_path_rel, image=img_thumb_rel) def add_opt_mult_image_section(title, image_paths, fig_folder, dest_folder, section, thumb_size_x=140, thumb_size_y=140): if image_paths is None: section.add_item(title, value='N/A') return rel_paths = [] rel_thumbs = [] found = False for image_path in image_paths: if image_path: found = True img_thumb, img_thumb_rel = Diagnostics.make_thumbnail(image_path, fig_folder, dest_folder, size_x=thumb_size_x, size_y=thumb_size_y) image_path_rel = os.path.relpath(image_path, dest_folder) rel_thumbs.append(img_thumb_rel) rel_paths.append(image_path_rel) if found: section.add_item(title, link=rel_paths, image=rel_thumbs) else: section.add_item(title, value='N/A') def report_calibration(diagnostics_dir, dest_folder, reporter): print('\nReporting calibration from ' + diagnostics_dir) fig_folder= get_figures_folder(dest_folder) bandpass, cal_sbid = Bandpass.get_cal_bandpass(diagnostics_dir) # Plot bandpasses bp_by_ant_fig = Bandpass.plot_bandpass_by_antenna(bandpass, cal_sbid, fig_folder, 'Calibration') #bp_by_ant_thumb, bp_by_ant_thumb_rel = Diagnostics.make_thumbnail(bp_by_ant_fig, fig_folder, dest_folder) #bp_by_ant_fig_rel = os.path.relpath(bp_by_ant_fig, dest_folder) bp_by_beam_fig = Bandpass.plot_bandpass_by_beam(bandpass, cal_sbid, fig_folder, 'Calibration') bp_by_beam_thumb, bp_by_beam_thumb_rel = Diagnostics.make_thumbnail(bp_by_beam_fig, fig_folder, dest_folder) bp_by_beam_fig_rel = os.path.relpath(bp_by_beam_fig, dest_folder) # Include the pipeline diagnostics amp_diag_img = copy_existing_image(diagnostics_dir+'/amplitudesDiagnostics_'+str(cal_sbid)+'.png', fig_folder) phase_diag_img = copy_existing_image(diagnostics_dir+'/phasesDiagnostics_'+str(cal_sbid)+'.png', fig_folder) cal_param_pdf = copy_existing_image(diagnostics_dir+'/calparameters_*_bp_SB'+str(cal_sbid)+'.smooth.pdf', fig_folder) cal_param_pdf_rel = os.path.relpath(cal_param_pdf, dest_folder) if cal_param_pdf else None # Output the report section = ReportSection('Calibration', '') section.add_item('Cal SBID', cal_sbid) add_opt_image_section('Bandpass by Antenna', bp_by_ant_fig, fig_folder, dest_folder, section) add_opt_image_section('Bandpass by Beam', bp_by_beam_fig, fig_folder, dest_folder, section) add_opt_image_section('Amplitude Diagnostics', amp_diag_img, fig_folder, dest_folder, section) add_opt_image_section('Phase Diagnostics', phase_diag_img, fig_folder, dest_folder, section) if cal_param_pdf_rel: section.add_item('Parameters', value="pdf", link=cal_param_pdf_rel) reporter.add_section(section) def report_diagnostics(diagnostics_dir, sbid, dest_folder, reporter, sched_info, obs_metadata, short_len=500, long_len=2000): print('\nReporting diagnostics') fig_folder= get_figures_folder(dest_folder) is_closepack = sched_info.footprint == None or sched_info.footprint.startswith('closepack') # Extract metadata chan_width, cfreq, nchan = Diagnostics.get_freq_details(diagnostics_dir) chan_width_kHz = round(chan_width/1000., 3) # convert Hz to kHz theoretical_rms_mjy = np.zeros(len(obs_metadata.fields)) total_rows = sum([field.num_rows for field in obs_metadata.fields]) for idx, field in enumerate(obs_metadata.fields): field_tobs = obs_metadata.tobs * field.num_rows / total_rows theoretical_rms_mjy[idx] = calc_theoretical_rms(chan_width, t_obs=field_tobs) # Extract flagging details flag_stat_beams, n_flag_ant_beams, ant_flagged_in_all, pct_integ_flagged, baseline_flag_pct, pct_each_integ_flagged, bad_chan_pct_count = Diagnostics.get_flagging_stats( diagnostics_dir, fig_folder) print("Antenna flagged in all:", ant_flagged_in_all) flagged_ant_desc = ", ".join(ant_flagged_in_all) if len(ant_flagged_in_all) > 0 else 'None' pct_short_base_flagged, pct_medium_base_flagged, pct_long_base_flagged = Diagnostics.calc_flag_percent( baseline_flag_pct, short_len=short_len, long_len=long_len) pct_chan_unflagged = Diagnostics.calc_pct_channels_unflagged(bad_chan_pct_count) # Extract beam RMS beam_exp_rms = Diagnostics.calc_beam_exp_rms(flag_stat_beams, theoretical_rms_mjy) rms_min = np.min(beam_exp_rms) rms_max = np.max(beam_exp_rms) rms_range_pct = round((rms_max-rms_min)/rms_min*100,1) # Plot beam stats beam_nums = Diagnostics.get_beam_numbers_closepack() flagged_vis_fig = Diagnostics.plot_flag_stat(flag_stat_beams, beam_nums, sbid, fig_folder, closepack=is_closepack) flagged_ant_fig = Diagnostics.plot_flag_ant(n_flag_ant_beams, beam_nums, sbid, fig_folder, closepack=is_closepack) beam_exp_rms_fig = Diagnostics.plot_beam_exp_rms(beam_exp_rms, beam_nums, sbid, fig_folder, closepack=is_closepack) baseline_fig = Diagnostics.plot_baselines(baseline_flag_pct, fig_folder, sbid, short_len=short_len, long_len=long_len) flag_ant_file_rel = os.path.relpath(fig_folder+'/flagged_antenna.txt', dest_folder) integ_flag_fig = Diagnostics.plot_integrations(pct_each_integ_flagged, sbid, fig_folder) flag_pct_dist_fig = Diagnostics.plot_flagging_distribution(bad_chan_pct_count, sbid, fig_folder) # Output the report section = ReportSection('Diagnostics', '') section.add_item('Completely Flagged Antennas', flagged_ant_desc, link=flag_ant_file_rel) section.add_item('Integrations Completely<br/>Flagged (%)', pct_integ_flagged) add_opt_image_section('Flagging over Time', integ_flag_fig, fig_folder, dest_folder, section) #, thumb_size_x=70, thumb_size_y=70) add_opt_image_section('Channel Flagging', flag_pct_dist_fig, fig_folder, dest_folder, section) #, thumb_size_x=70, thumb_size_y=70) section.add_item('Short Baselines<br/>Flagged (%)', pct_short_base_flagged) section.add_item('Medium Baselines<br/>Flagged (%)', pct_medium_base_flagged) section.add_item('Long Baselines<br/>Flagged (%)', pct_long_base_flagged) add_opt_image_section('Baselines', baseline_fig, fig_folder, dest_folder, section) #, thumb_size_x=70, thumb_size_y=70) section.start_new_row() section.add_item('Channel Width (kHz)', chan_width_kHz) add_opt_image_section('Flagged Visibilities', flagged_vis_fig, fig_folder, dest_folder, section) #, thumb_size_x=140, thumb_size_y=70) add_opt_image_section('Flagged Antennas', flagged_ant_fig, fig_folder, dest_folder, section) #, thumb_size_x=70, thumb_size_y=70) add_opt_image_section('Expected RMS per channel', beam_exp_rms_fig, fig_folder, dest_folder, section) #, thumb_size_x=70, thumb_size_y=70) reporter.add_section(section) metric = ValidationMetric('Flagged Short Baselines', 'Percent of short baselines ({}m or less) flagged across all integrations and all beams'.format(short_len), pct_short_base_flagged, assess_metric(pct_short_base_flagged, 20, 40, low_good=True)) reporter.add_metric(metric) metric = ValidationMetric('Flagged Long Baselines', 'Percent of long baselines ({}m or more) flagged across all integrations and all beams'.format(long_len), pct_long_base_flagged, assess_metric(pct_long_base_flagged, 30, 45, low_good=True)) reporter.add_metric(metric) metric = ValidationMetric('Unflagged Integrations', 'Percent of integrations with less than 5% of channels flagged', pct_chan_unflagged, assess_metric(pct_chan_unflagged, 70, 50)) reporter.add_metric(metric) metric = ValidationMetric('Expected RMS Difference', 'The percentage change of expected RMS across the field.', rms_range_pct, assess_metric(rms_range_pct, 10, 30, low_good=True)) reporter.add_metric(metric) def report_self_cal(cube, image, obs_metadata, dest_folder, reporter): print('\nReporting self calibration') fig_folder= get_figures_folder(dest_folder) field_plots = [] field_names = "" total_bad_beams = 0 max_bad_ant = 0 for i,field in enumerate(obs_metadata.fields): if i > 0: field_names += '<br/>' field_names += field.name folder = Diagnostics.find_subdir(cube, image, field.name) if folder: sc = SelfCal.prepare_self_cal_set(folder) plots = SelfCal.plot_self_cal_set(sc, fig_folder) field_plots.append(plots) num_bad_beams, num_bad_ant = SelfCal.calc_phase_stability(sc) print("In field {} found {} bad beams and {} bad antennas".format(field.name, num_bad_beams, num_bad_ant)) total_bad_beams += num_bad_beams max_bad_ant = max(max_bad_ant, num_bad_ant) else: field_plots.append([None, None, None]) plot_array = np.asarray(field_plots) print ("Overall found {} bad beams and {} bad antennas.".format(total_bad_beams, max_bad_ant)) # Output the report section = ReportSection('Self Calibration', '') section.add_item('Field(s)', value=field_names) add_opt_mult_image_section('Phase Stability', plot_array[:,0], fig_folder, dest_folder, section) add_opt_mult_image_section('Phase Summary', plot_array[:,1], fig_folder, dest_folder, section) add_opt_mult_image_section('All Phases', plot_array[:,2], fig_folder, dest_folder, section) reporter.add_section(section) metric = ValidationMetric('Bad Phase Antenna', 'Number of unflagged antenna with bad phase solutions', max_bad_ant, assess_metric(max_bad_ant, 1, 3, low_good=True)) reporter.add_metric(metric) def main(): start = time.time() print("#### Started validation at {} ####".format( (time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start))))) #ignore astropy warnings warnings.simplefilter('ignore', AstropyWarning) # Parse command line options args = parseargs() dest_folder = args.output if not os.path.exists(dest_folder): os.makedirs(dest_folder) figures_folder = dest_folder + '/figures' if not os.path.exists(figures_folder): os.makedirs(figures_folder) if args.cube and (not os.path.exists(args.cube) or not os.path.isfile(args.cube)): raise ValueError('Cube {} could not be found or is not a file.'.format(args.cube)) if args.image and (not os.path.exists(args.image) or not os.path.isfile(args.image)): raise ValueError('Image {} could not be found or is not a file.'.format(args.image)) if not args.cube and not args.image: raise ValueError('You must supply either an image or a cube to validate.') if args.source_cat and (not os.path.exists(args.source_cat) or not os.path.isfile(args.source_cat)): raise ValueError('Source catalogue {} could not be found or is not a file.'.format(args.source_cat)) if args.emvel: set_velocity_range(args.emvel, args.nonemvel) if args.cube: print ('\nChecking quality level of GASKAP HI cube:', args.cube) obs_img = args.cube metrics_subtitle = 'GASKAP HI Validation Metrics' else: print ('\nChecking quality level of ASKAP image:', args.image) obs_img = args.image metrics_subtitle = 'ASKAP Observation Diagnostics Metrics' cube_name = os.path.basename(obs_img) reporter = ValidationReport('GASKAP Validation Report: {}'.format(cube_name), metrics_subtitle=metrics_subtitle) sched_info = Diagnostics.get_sched_info(obs_img) diagnostics_dir = Diagnostics.find_diagnostics_dir(args.cube, args.image) obs_metadata = Diagnostics.get_metadata(diagnostics_dir) if diagnostics_dir else None sbid = report_observation(obs_img, reporter, args.duration, sched_info, obs_metadata) if args.cube: report_cube_stats(args.cube, reporter) check_for_emission(args.cube, emission_vel_range[0], emission_vel_range[1], reporter, dest_folder, redo=args.redo) slab = check_for_non_emission(args.cube, non_emission_val_range[0], non_emission_val_range[1], reporter, dest_folder, redo=args.redo) measure_spectral_line_noise(slab, args.cube, non_emission_val_range[0], non_emission_val_range[1], reporter, dest_folder, args.duration, redo=args.redo) if args.source_cat or args.beam_list: extract_spectra(args.cube, args.source_cat, dest_folder, reporter, args.num_spectra, args.beam_list) if args.image: report_image_stats(args.image, args.noise, reporter, dest_folder, diagnostics_dir, redo=args.redo) if diagnostics_dir: report_calibration(diagnostics_dir, dest_folder, reporter) report_diagnostics(diagnostics_dir, sbid, dest_folder, reporter, sched_info, obs_metadata) if obs_metadata: report_self_cal(args.cube, args.image, obs_metadata, dest_folder, reporter) print ('\nProducing report to', dest_folder) output_html_report(reporter, dest_folder) output_metrics_xml(reporter, dest_folder) end = time.time() print("#### Completed validation at {} ####".format( (time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end))))) print('\nChecks completed in {:.02f} s'.format((end - start))) return 0 if __name__ == '__main__': exit(main()) ``` #### File: gaskap-validation/validation/SelfCal.py ```python import glob import os import sys import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np from casacore.tables import * import seaborn as sns class SelfCalSolutions: # phase is [time, beam, ant, pol] def __init__(self): """Initialises parameters for reading a selfcal table """ self.nsol = None self.nant = None self.nbeam = 36 self.npol = None # selfcal is an array in order [time, beam, ant, pol] of phase angle and amplitude value self.selfcal = None self.selfcal_times = None self.selfcal_flags = None self.field = None def load(self, base_dir): flist = glob.glob(base_dir + "/cont_gains*tab") flist.sort() filename = flist[0] print (filename) pos = filename.find("beam") if pos == -1: raise Exception("Can't find beam information in " + filename) wildcard = filename[:pos+4] + "??" + filename[pos+6:] flist = glob.glob(wildcard) flist.sort() first_beam = flist[0] tb = table(first_beam, readonly=True, ack=False) t_vals = tb.getcol("TIME") sc_vals = tb.getcol("GAIN",1,1) self.selfcal_times = t_vals[1:] self.nsol = t_vals.shape[0] - 1 gain_shape = sc_vals.shape self.npol = gain_shape[3] self.nant = gain_shape[2] tb.close() self.selfcal = np.zeros((self.nsol, 36, self.nant, self.npol), dtype=np.complex) self.selfcal_flags = np.zeros((self.nsol, 36, self.nant, self.npol), dtype=np.bool) for beam in range(self.nbeam): fname = wildcard.replace("??", "%02d" %(beam)) if os.path.exists(fname) == False: continue tb = table(fname, readonly=True, ack=False) t_vals = tb.getcol("TIME", 1, self.nsol) sc_vals = tb.getcol("GAIN", 1, self.nsol) flag_vals = tb.getcol("GAIN_VALID", 1, self.nsol) for index in range(self.nsol): self.selfcal[index, beam] = sc_vals[index, 0, :, :] self.selfcal_flags[index, beam] = np.invert(flag_vals[index, 0, :, :]) self.selfcal[np.where(self.selfcal_flags)] = np.nan self.field = os.path.basename(base_dir) print("Read %d solutions, %d antennas, %d beams, %d polarisations" %(self.nsol, self.nant, self.nbeam, self.npol)) def plotGains(self, ant, outFile = None): fig = plt.figure(figsize=(14, 14)) amplitudes = np.abs(self.selfcal) phases = np.angle(self.selfcal, deg=True) times = np.array(range(self.nsol)) plt.subplot(1, 1, 1) if self.nant == 36: plt.title("ak%02d" %(ant+1), fontsize=8) else: plt.title("ant%02d" %(ant), fontsize=8) for beam in range(self.nbeam): plt.plot(times, phases[:,beam,ant,0], marker=None, label="beam %d" %(beam)) # plt.plot(times, phases[:,ant,beam,1], marker=None, color="red") plt.ylim(-200.0, 200.0) #rms = np.sqrt(np.mean(np.square(phases[:,beam,ant,0]))) #print ("ant ak{:02d} beam {:02d} rms={:.2f}".format(ant+1, beam, rms)) plt.legend() plt.tight_layout() if outFile == None: plt.show() else: plt.savefig(outFile) plt.close() def _plot_ant_phase(sc, ant, outFile = None): fig = plt.figure(figsize=(14, 14)) amplitudes = np.abs(sc.selfcal) phases = np.angle(sc.selfcal, deg=True) times = np.array(range(sc.nsol)) ax = plt.subplot(1, 1, 1) if sc.nant == 36: plt.title("ak%02d" %(ant+1), fontsize=8) else: plt.title("ant%02d" %(ant), fontsize=8) low = np.nanpercentile(phases[:,:,ant,0], 2.5, axis=(1)) high = np.nanpercentile(phases[:,:,ant,0], 97.5, axis=(1)) colours = sns.color_palette() ax.plot(np.nanmedian(phases[:,:,ant,0], axis=(1)), color=colours[0], label='median') ax.fill_between(range(phases.shape[0]), low, high, color=colours[0], alpha= .2, label=r'95\% range') ax.plot(np.nanmax(phases[:,:,ant,0], axis=(1)), color=colours[1], ls=':', label='maximum') ax.plot(np.nanmin(phases[:,:,ant,0], axis=(1)), color=colours[1], ls=':', label='minimum') plt.ylim(-200.0, 200.0) plt.legend() plt.tight_layout() if outFile == None: plt.show() else: plt.savefig(outFile) plt.close() def _plot_rms_map(sc, field, outFile = None): phases = np.angle(sc.selfcal, deg=True) times = np.array(range(sc.nsol)) #rms = np.sqrt(np.nanmean(np.square(phases[:,:,:,:]), axis=0)) rms = np.std(phases[:,:,:,:], axis=0) print (np.nanmin(rms), np.nanmedian(rms), np.nanmax(rms)) ant_list = ['ak{:02}'.format(i+1) for i in range(36)] beam_list = ['b{:02}'.format(i) for i in range(36)] sns.set() fig, axs = plt.subplots(1, 2, figsize=(20,8)) pol = ['XX', 'YY'] for i, ax in enumerate(axs): sns.heatmap(rms[:,:,i].transpose(), ax=ax, cmap='GnBu', square=True, xticklabels=beam_list, yticklabels=ant_list, vmin=0, vmax=40, linewidths=.5, cbar_kws={"shrink": .9, "label": 'Phase Standard Deviation (deg)'}) ax.set_title('Self-cal phase for %s pol %s' % (field, pol[i])) ax.set_xlabel(r'Beam') axs[0].set_ylabel(r'Antenna') if outFile == None: plt.show() else: plt.savefig(outFile, bbox_inches='tight') plt.close() def _plot_summary_phases(sc, field, outFile = None): phases = np.angle(sc.selfcal, deg=True) times = np.array(range(sc.nsol)) sns.set() fig, axs = plt.subplots(1, 2, figsize=(20,8)) pol = ['XX', 'YY'] colours = sns.color_palette() for i, ax in enumerate(axs): low = np.nanpercentile(phases[:,:,:,i], 2.5, axis=(1,2)) high = np.nanpercentile(phases[:,:,:,i], 97.5, axis=(1,2)) low_ant = np.nanmin(np.nanpercentile(phases[:,:,:,i], 2.5, axis=(1)), axis=1) high_ant = np.nanmax(np.nanpercentile(phases[:,:,:,i], 97.5, axis=(1)), axis=1) low_med = np.nanmin(np.nanmedian(phases[:,:,:,i], axis=(1)), axis=1) high_med = np.nanmax(np.nanmedian(phases[:,:,:,i], axis=(1)), axis=1) print (low.shape, low_ant.shape) ax.fill_between(range(phases.shape[0]), low_ant, high_ant, color=colours[2], alpha= .2, label="95 percentile range") ax.plot(np.nanmedian(phases[:,:,:,i], axis=(1,2)), color=colours[0], label="median") ax.fill_between(range(phases.shape[0]), low_med, high_med, color=colours[0], alpha= .4, label="median range") ax.plot(np.nanmax(phases[:,:,:,i], axis=(1,2)), color=colours[1], ls=':', alpha=.6, label="maximum") ax.plot(np.nanmin(phases[:,:,:,i], axis=(1,2)), color=colours[1], ls=':', alpha=.6, label="minimum") ax.set_title('Self-cal phase for %s pol %s' % (field, pol[i])) ax.set_xlabel(r'Time (Integration number)') ax.set_ylim(-200.0, 200.0) ax.legend() axs[0].set_ylabel(r'Phase (deg)') if outFile == None: plt.show() else: plt.savefig(outFile, bbox_inches='tight') plt.close() def _plot_median_phases(sc, field, outFile = None): phases = np.angle(sc.selfcal, deg=True) times = np.array(range(sc.nsol)) sns.set() fig, axs = plt.subplots(1, 2, figsize=(20,8)) pol = ['XX', 'YY'] colours = sns.color_palette() for i, ax in enumerate(axs): means = np.nanmedian(phases[:,:,:,i], axis=1) for ant in range(36): if ant > 30: ax.plot(means[:,ant], label="ak%02d" %(ant+1), lw=2, zorder=2) else: ax.plot(means[:,ant], color='grey', lw=1, zorder=1) ax.set_title('Median self-cal phase for %s pol %s' % (field, pol[i])) ax.set_xlabel(r'Time (Integration number)') axs[0].legend() axs[0].set_ylabel(r'Phase (deg)') if outFile == None: plt.show() else: plt.savefig(outFile, bbox_inches='tight') plt.close() def _plot_ant_phases(sc, field, outFile = None): phases = np.angle(sc.selfcal, deg=True) times = np.array(range(sc.nsol)) sns.set() fig, axs = plt.subplots(1, 2, figsize=(20,8)) pol = ['XX', 'YY'] colours = sns.color_palette() for i, ax in enumerate(axs): means = np.nanmedian(phases[:,:,:,i], axis=1) for ant in range(36): if ant > 30: ax.plot(means[:,ant], label="ak%02d" %(ant+1), lw=2, zorder=2) else: ax.plot(means[:,ant], color='grey', lw=1, zorder=1) ax.set_title('Median self-cal phase for %s pol %s' % (field, pol[i])) ax.set_xlabel(r'Time (Integration number)') axs[0].legend() axs[0].set_ylabel(r'Phase (deg)') if outFile == None: plt.show() else: plt.savefig(outFile, bbox_inches='tight') plt.close() def _plot_all_phases(sc, field, outFile = None): phases = np.angle(sc.selfcal, deg=True) times = np.array(range(sc.nsol)) sns.set() fig, axs = plt.subplots(6, 12, figsize=(40,16)) pols = ['XX', 'YY'] colours = sns.color_palette() for i, pol in enumerate(pols): for ant in range(36): ax = axs[ant // 6, i*6+ant%6] for beam in range(sc.nbeam): ax.plot(times, phases[:,beam,ant,i], marker=None, label="beam %d" %(beam)) ax.set_ylim(-200.0, 200.0) ax.set_title('Phases for ak%02d pol %s' % (ant+1, pol[i])) #ax.set_xlabel(r'Time (Integration number)') #axs[0].legend() axs[0,0].set_ylabel(r'Phase (deg)') if outFile == None: plt.show() else: plt.savefig(outFile, bbox_inches='tight', dpi=300) plt.close() def _plot_amp_rms_map(sc, field, outFile = None): amplitudes = np.absolute(sc.selfcal) times = np.array(range(sc.nsol)) rms = np.std(amplitudes[:,:,:,:], axis=0) print (np.nanmin(rms), np.nanmedian(rms), np.nanmax(rms)) ant_list = ['ak{:02}'.format(i+1) for i in range(36)] beam_list = ['b{:02}'.format(i) for i in range(36)] sns.set() fig, axs = plt.subplots(1, 2, figsize=(20,8)) pol = ['XX', 'YY'] for i, ax in enumerate(axs): sns.heatmap(rms[:,:,i].transpose(), ax=ax, cmap='GnBu', square=True, xticklabels=beam_list, yticklabels=ant_list, vmin=0, vmax=0.1, linewidths=.5, cbar_kws={"shrink": .9, "label": 'Bandpass Standard Deviation (Jy)'}) ax.set_title('Bandpass stability for %s pol %s' % (field, pol[i])) ax.set_xlabel(r'Beam') axs[0].set_ylabel(r'Antenna') #plt.tight_layout() if outFile == None: plt.show() else: plt.savefig(outFile, bbox_inches='tight') plt.close() def prepare_self_cal_set(folder): """ Prepare a set of self cal solutions for analysis. Parameters ---------- folder: path Path to the folder containing the self cal solution files. Normally named after the field/interleave. Returns ------- The SelfCalSolutions object for use by other calls. """ sc = SelfCalSolutions() sc.load(folder) return sc def plot_self_cal_set(sc, fig_folder): """ Produce plots for a set of self calibration solutions for a field. Parameters ---------- sc: SelfCalSolutions The loaded self cal solutions object for the field/interleave. fig_folder: string Path to the folder we should put any plots or reports in. Returns ------- The paths to the RMS map plot and the summary plot produced for this field. """ rms_map_plot = fig_folder + '/sc_heatmap_{}.png'.format(sc.field) summary_plot = fig_folder + '/sc_summary_{}.png'.format(sc.field) all_phases_plot = fig_folder + '/sc_phases_{}.png'.format(sc.field) _plot_rms_map(sc, sc.field, rms_map_plot) _plot_summary_phases(sc, sc.field, summary_plot) _plot_all_phases(sc, sc.field, all_phases_plot) return rms_map_plot, summary_plot, all_phases_plot def calc_phase_stability(sc, phase_rms_max=40): """ Calculate summary statistics of the phase stability as recorded in the self-cal solution. Parameters ---------- sc: SelfCalSolutions The loaded self cal solutions object for the field/interleave. phase_rms_max: double The maximum allowed median rms before a beam or antenna is classified as bad. Returns ------- The number of bad beams and bad antennas. """ phases = np.angle(sc.selfcal, deg=True) times = np.array(range(sc.nsol)) rms = np.std(phases[:,:,:,:], axis=0) # phase is [time, beam, ant, pol] bad_beams = [] bad_ant = [] for i in range(2): # polarisations XX and YY bad_ant.append(np.median(rms[:,:,i], axis=0) >= phase_rms_max) bad_beams.append(np.median(rms[:,:,i], axis=1) >= phase_rms_max) bad_ant_either = bad_ant[0] | bad_ant[1] bad_beam_either = bad_beams[0] | bad_beams[1] print('ants', bad_ant_either) print('beams', bad_beam_either) return np.sum(bad_beam_either), np.sum(bad_ant_either) def find_field_folder(cube, image, field_name): potential_parent_dirs = [] if cube: potential_parent_dirs.append(os.path.dirname(cube)) if image: potential_parent_dirs.append(os.path.dirname(image)) for parent in potential_parent_dirs: field_dir = parent + '/' + field_name if os.path.isdir(field_dir): return field_dir return None ```
{ "source": "jdauphar/ad5372_gui", "score": 3 }
#### File: jdauphar/ad5372_gui/ad5372.py ```python class ad5372: def __init__(current_register="X1A", reference_voltage=5): self.current_register = current_register self.reference_voltage = reference_voltage def set_reference_voltage(self, voltage): self.reference_voltage = voltage def get_reference_voltage(self): return self.reference_voltage def change_current_register(self): if self.current_register == "X1A": self.current_register = "X1B" else: self.current_register = "X1A" def get_current_register(self): return self.current_register def format_voltages(self, data_list): # need to convert strings to numbers between 0 and 65535 for channel in data_list: channel[1] def send_voltages(self, data_list): # data list should be list of [int , string] of length 32 voltage_list = self.format_voltages(data_list) # starting with group0, channel0. then group0, channel1, and so on mode_address_byte = np.uint8(200) # start on group 0 channel 0: 11001000 for value in voltage_list: self.spi.transfer2(mode_address_byte) # address self.spi.transfer2(np.uint8(value >> 8) ) # high data byte self.spi.transfer2(np.uint8(value)) # low data byte mode_address_byte+=1 ```
{ "source": "jd-au/RadioAbsTools", "score": 2 }
#### File: RadioAbsTools/RadioAbsTools/cube_tools.py ```python import math import os from astropy.coordinates import SkyCoord, Angle from astropy.io import fits, votable from astropy.wcs import WCS import matplotlib.pyplot as plt from matplotlib.patches import Ellipse, Rectangle import numpy as np import numpy.core.records as rec _allowed_weights = ['square', 'linear', 'none'] class IslandRange(object): def __init__(self, isle_id): self.isle_id = isle_id def read_sources(filename, min_sn=10, min_flux=0.02): print ("Extracting sources from " + filename) sources = [] if not os.path.exists(filename): print ("Warning: File %s does not exist, skipping source read." % \ filename) return sources src_votable = votable.parse(filename, pedantic=False) results = src_votable.get_first_table().array for row in results: id = str(row['island']) + "-" + str(row['source']) ra = row['ra'] dec = row['dec'] rms = row['local_rms'] flux = row['peak_flux'] sn = flux / rms print ("Found source %s at %.4f, %.4f with flux %.4f and rms of %.4f " "giving S/N of %.4f" % (id, ra, dec, flux, rms, sn)) if sn > min_sn and flux > min_flux: src = dict(zip(results.dtype.names,row)) src['id'] = id src['sn'] = sn #sources.append([ra, dec, id, flux, row['island']]) sources.append(src) else: print ("Ignoring source at %.4f, %.4f due to low S/N of %.4f or " "flux of %.4f" % (ra, dec, sn, flux)) return sources def read_islands(filename): print ("Extracting islands from " + filename) islands = {} if not os.path.exists(filename): print ("Warning: File %s does not exist, skipping island read." % \ filename) return {} isle_votable = votable.parse(filename, pedantic=False) results = isle_votable.get_first_table().array for row in results: islands[row['island']] = row return islands def calc_island_ranges(islands, pixel_size): island_ranges = [] for island in islands.values(): ir = IslandRange(island['island']) ra = island['ra'] dec = island['dec'] ra_width = abs(island['x_width'] * pixel_size[0]) dec_width = abs(island['y_width'] * pixel_size[1]) ir.min_ra = ra - (ra_width/2) ir.max_ra = ra + (ra_width/2) ir.min_dec = dec - (dec_width/2) ir.max_dec = dec + (dec_width/2) #print("Island %d goes from %f to %f (%d*%f)/ %f to %f (%d*%f)" % ( # island['island'], ir.min_ra, ir.max_ra, island['x_width'], pixel_size[0], ir.min_dec, ir.max_dec, # island['y_width'], pixel_size[1])) island_ranges.append(ir) return island_ranges def find_edges(fluxes, num_edge_chan): """ Seek from the edges to find where the data starts for this set of fluxes. This accounts for an optional number of channels in the data which have no data recorded. :param fluxes: The array of fluxes to be checked. :param num_edge_chan: The number of edge channels with data to be skipped :return: The index of the first and last cell to have data. """ l_edge = 0 r_edge = len(fluxes)-1 while l_edge < len(fluxes)-1 and fluxes[l_edge] == 0: l_edge += 1 while r_edge > 0 and fluxes[r_edge] == 0: r_edge -= 1 return l_edge + num_edge_chan, r_edge - num_edge_chan def get_weighting_array(data, velocities, continuum_start_vel, continuum_end_vel, weighting='square'): """ Calculate the mean of the continuum values. This is based on precalculated regions where there is no gas expected. :param data: A cubelet to be analysed, should be a 3D array of flux values. :param velocities: A numpy array of velocity values in m/s :param continuum_start_vel: The lower bound of the continuum velocity range (in m/s) :param continuum_end_vel: The upper bound of the continuum velocity range (in m/s) :param weighting: The weighting scheme to use, one of square, linear, none :return: A 2D array of weighting values for the """ if (continuum_start_vel > np.max(velocities)) or (continuum_end_vel < np.min(velocities)): raise Exception("Continuum range {} to {} is outside of the data velocity range {} to {}".format( continuum_start_vel, continuum_end_vel, np.min(velocities), np.max(velocities))) continuum_range = np.where(continuum_start_vel < velocities) if len(continuum_range) == 0: return np.zeros(data.shape[1:2]) if weighting not in _allowed_weights: raise Exception("Weighting must by one of ", ', '.join(_allowed_weights)) bin_start = continuum_range[0][0] continuum_range = np.where(velocities < continuum_end_vel) bin_end = continuum_range[0][-1] # print("Using bins %d to %d (velocity range %d to %d) out of %d" % ( # bin_start, bin_end, continuum_start_vel, continuum_end_vel, len(velocities))) # print(data.shape) continuum_sample = np.array(data[bin_start:bin_end, :, :]) continuum_sample[continuum_sample<0]=0 # print ("...gave sample of", continuum_sample) mean_cont = np.nanmean(continuum_sample, axis=0) mean_cont[mean_cont<0]=0 if weighting == 'square': mean_sq = mean_cont ** 2 sum_sq = np.nansum(mean_sq) weights = mean_sq / sum_sq elif weighting == 'linear': weights = mean_cont / np.nansum(mean_cont) else: # No weights, just trim to ellipse weights = mean_cont weights[weights>0]=1 weights = weights/np.sum(weights) # print("Got weighting of {} from {} and {}".format(weighting, mean_sq, sum_sq)) return weights def point_in_ellipse(origin, point, a, b, pa_rad, verbose=False): """ Identify if the point is inside the ellipse. :param origin A SkyCoord defining the centre of the ellipse. :param point A SkyCoord defining the point to be checked. :param a The semi-major axis in arcsec of the ellipse :param b The semi-minor axis in arcsec of the ellipse :param pa_rad The position angle of the ellipse. This is the angle of the major axis measured in radians East of North (or CCW from the y axis). """ # Convert point to be in plane of the ellipse, accounting for distortions at high declinations p_ra_dist = (point.icrs.ra.degree - origin.icrs.ra.degree)* math.cos(origin.icrs.dec.rad) p_dec_dist = point.icrs.dec.degree - origin.icrs.dec.degree # Calculate the angle and radius of the test opoint relative to the centre of the ellipse # Note that we reverse the ra direction to reflect the CCW direction radius = math.sqrt(p_ra_dist**2 + p_dec_dist**2) diff_angle = (math.pi/2 + pa_rad) if p_dec_dist == 0 else math.atan(p_ra_dist / p_dec_dist) - pa_rad # Obtain the point position in terms of the ellipse major and minor axes minor = radius * math.sin(diff_angle) major = radius * math.cos(diff_angle) if verbose: print ('point relative to ellipse centre angle:{} deg radius:{:.4f}" maj:{:.2f}" min:{:.2f}"'.format(math.degrees(diff_angle), radius*3600, major*3600, minor*3600)) a_deg = a / 3600.0 b_deg = b / 3600.0 # Calc distance from origin relative to a and b dist = math.sqrt((major / a_deg) ** 2 + (minor / b_deg) ** 2) if verbose: print("Point %s is %f from ellipse %f, %f, %f at %s." % (point, dist, a, b, math.degrees(pa_rad), origin)) return round(dist,3) <= 1.0 def get_integrated_spectrum(image, w, src, velocities, continuum_start_vel, continuum_end_vel, radius=None, plot_weight_path=None, weighting='square'): """ Calculate the integrated spectrum of the component. :param image: The image's data array :param w: The image's world coordinate system definition :param src: The details of the component being processed, must have ra, dec, a, b, pa and comp_name keys :param velocities: A numpy array of velocity values in m/s :param continuum_start_vel: The lower bound of the continuum velocity range (in m/s) :param continuum_end_vel: The upper bound of the continuum velocity range (in m/s) :param radius: The radius of the box around the source centre where data will be checked for membership of the source ellipse. Default is to use the semi-major axis of the source. :param plot_weight_path: The path to which diagnostic plots are output. Default is not to output plots. :param weighting: The weighting scheme to use, one of square, linear, none :return: An array of average flux/pixel across the component at each velocity step """ if weighting not in _allowed_weights: raise Exception("Weighting must by one of ", ', '.join(_allowed_weights)) if plot_weight_path: print ("getting spectrum for source " + str(src)) has_stokes = len(image.shape) > 3 pix = w.wcs_world2pix(src['ra'], src['dec'], 0, 0, 1) if has_stokes else w.wcs_world2pix(src['ra'], src['dec'], 0, 1) x_coord = int(np.round(pix[0])) - 1 # 266 y_coord = int(np.round(pix[1])) - 1 # 197 if not radius: radius = math.ceil(src['a']) #print("Translated %.4f, %.4f to %d, %d" % ( # src['ra'], src['dec'], x_coord, y_coord)) #print (w) y_min = max(0,y_coord - radius) y_max = min(image.shape[-2]-1, y_coord + radius) x_min = max(0,x_coord - radius) x_max = min(image.shape[-1]-1, x_coord + radius) data = np.copy(image[0, :, y_min:y_max+1, x_min:x_max+1]) if has_stokes else np.copy(image[:, y_min:y_max+1, x_min:x_max+1]) if plot_weight_path: # non wcs plot fig, ax = plt.subplots(1, 1, figsize=(9, 3)) ax.imshow(np.nansum(data, axis=0), origin='lower') plt.title(src['comp_name']) fname = plot_weight_path + '/'+ src['comp_name'] + '_data.png' print ('Plotting data to ' + fname) plt.savefig(fname, bbox_inches='tight') plt.close() # wcs plot plt.subplot(projection=w.celestial) if has_stokes: plt.imshow(image[0,10,:,:], origin='lower') else: plt.imshow(image[10,:,:], origin='lower') plt.grid(color='white', ls='solid') fname = plot_weight_path + '/'+ src['comp_name'] + '_image_wcs.png' print ('Plotting image wcs to ' + fname) plt.savefig(fname, bbox_inches='tight') plt.close() origin = SkyCoord(src['ra'], src['dec'], frame='icrs', unit="deg") pa_rad = math.radians(src['pa']) total_pixels = (y_max-y_min +1) * (x_max-x_min +1) outside_pixels = 0 for x in range(x_min, x_max+1): for y in range(y_min, y_max+1): eq_pos = w.wcs_pix2world(x, y, 0, 0, 0) if has_stokes else w.wcs_pix2world(x, y, 0, 0) point = SkyCoord(eq_pos[0], eq_pos[1], frame='icrs', unit="deg") in_ellipse = point_in_ellipse(origin, point, src['a'], src['b'], pa_rad) if not in_ellipse: data[:, y-y_min, x-x_min] = 0 outside_pixels += 1 #print (point.ra, point.dec, x, y, in_ellipse) # print("Found {} pixels out of {} inside the component {} at {} {}".format(total_pixels - outside_pixels, total_pixels, # src['comp_name'], # point.galactic.l.degree, # point.galactic.b.degree)) weights = get_weighting_array(data, velocities, continuum_start_vel, continuum_end_vel, weighting=weighting) integrated = np.nansum(data * weights, axis=(1, 2)) inside_pixels = total_pixels - outside_pixels if inside_pixels <= 0: print ("Error: No data for component!") else: integrated /= inside_pixels if plot_weight_path: fig, ax = plt.subplots(1, 1, figsize=(9, 3)) pos = ax.imshow(weights, origin='lower') fig.colorbar(pos, ax=ax) plt.title(src['comp_name']) fname = plot_weight_path + '/'+ src['comp_name'] + '_weights.png' print ('Plotting weights to ' + fname) print ('Ellipse ra={} dec={} pa={:.03f} deg {:.03f}pi rad'.format(src['ra'], src['dec'], src['pa'], pa_rad/math.pi)) plt.savefig(fname, bbox_inches='tight') plt.close() return integrated def extract_spectra(fits_filename, src_filename, isle_filename, continuum_start_vel, continuum_end_vel, num_edge_chan = 10): #num_edge_chan = 10 #fits_filename = "{0}/1420/magmo-{1}_1420_sl_restor.fits".format(daydirname, # field) #src_filename = "{0}/{1}_src_comp.vot".format(daydirname, field) #isle_filename = "{0}/{1}_src_isle.vot".format(daydirname, field) spectra = dict() source_ids = dict() if not os.path.exists(fits_filename): print ("Warning: File %s does not exist, skipping extraction." % \ fits_filename) return spectra, source_ids, [] sources = read_sources(src_filename) islands = read_islands(isle_filename) hdulist = fits.open(fits_filename) image = hdulist[0].data header = hdulist[0].header w = WCS(header) index = np.arange(header['NAXIS3']) beam_maj = header['BMAJ'] * 60 * 60 beam_min = header['BMIN'] * 60 * 60 beam_area = math.radians(header['BMAJ']) * math.radians(header['BMIN']) # print ("Beam was %f x %f arcsec giving area of %f radians^2." % (beam_maj, beam_min, beam_area)) ranges = calc_island_ranges(islands, (header['CDELT1'], header['CDELT2'])) velocities = w.wcs_pix2world(10,10,index[:],0,0)[2] for src in sources: c = SkyCoord(src['ra'], src['dec'], frame='icrs', unit="deg") img_slice = get_integrated_spectrum(image, w, src, velocities, continuum_start_vel, continuum_end_vel) l_edge, r_edge = find_edges(img_slice, num_edge_chan) # print("Using data range %d - %d out of %d channels." % ( # l_edge, r_edge, len(img_slice))) # plotSpectrum(np.arange(slice.size), slice) spectrum_array = rec.fromarrays( [np.arange(img_slice.size)[l_edge:r_edge], velocities[l_edge:r_edge], img_slice[l_edge:r_edge]], names='plane,velocity,flux') spectra[c.galactic.l] = spectrum_array # isle = islands.get(src['island'], None) src_map = {'id': src['id'], 'flux': src['peak_flux'], 'pos': c, 'beam_area': beam_area} src_map['a'] = src['a'] src_map['b'] = src['b'] src_map['pa'] = src['pa'] # print (src_map) source_ids[c.galactic.l] = src_map del image del header hdulist.close() return spectra, source_ids, ranges ``` #### File: RadioAbsTools/RadioAbsTools/spectrum_tools.py ```python import matplotlib.pyplot as plt import numpy as np def get_mean_continuum(velocity, flux, continuum_start_vel, continuum_end_vel, verbose=False): """ Calculate the mean of the continuum values. This is based on precalculated regions where there is no gas expected. :param velocity: The velocity values of the spectrum to be analysed (in m/s). :param flux: The flux values of the spectrum to be analysed. :param continuum_start_vel: The lower bound of the continuum velocity range (in m/s) :param continuum_end_vel: The upper bound of the continuum velocity range (in m/s) :param verbose: If True, log details of the calculation. :return: A pair of float which is the mean continuum flux and the standard deviation of the optical depth. """ vel_filt = (continuum_start_vel < velocity) & (continuum_end_vel > velocity) if np.sum(vel_filt) ==0: return None, None continuum_sample = flux[vel_filt] # print ("...gave sample of", continuum_sample) mean_cont = np.mean(continuum_sample) sd_cont = np.std(continuum_sample/mean_cont) return mean_cont, sd_cont def plot_absorption_spectrum(velocity, optical_depth, filename, title, con_start_vel, con_end_vel, sigma_tau, range=None, figure=None): """ Output a plot of opacity vs LSR velocity to a specified file. :param velocity: The velocity data (in m/s) :param optical_depth: The opacity values for each velocity step :param filename: The file the plot should be written to. Should be an .eps or .pdf file. :param title: The title for the plot :param con_start_vel: The minimum velocity that the continuum was measured at. :param con_end_vel: The maximum velocity that the continuum was measured at. :param sigma_tau: The absorption noise level for each channel - will be plotted as an envelope (optional) :param range: The velocity range to be plotted, or None to plot the whole velocity range (default) :param figure: Figure to be used for the plot, or None if a new figure is to be created (default) """ fig = figure if figure else plt.figure(figsize=(8, 4.8)) plt.plot(velocity/1000, optical_depth, lw=1) if range: plt.xlim(range) if len(sigma_tau) > 0: tau_max = 1 + sigma_tau tau_min = 1 - sigma_tau plt.fill_between(velocity/1000, tau_min, tau_max, facecolor='lightgray', color='lightgray') plt.axhline(1, color='r') plt.axvline(con_start_vel/1000, color='g', linestyle='dashed') plt.axvline(con_end_vel/1000, color='g', linestyle='dashed') plt.xlabel(r'Velocity relative to LSR (km/s)') plt.ylabel(r'$e^{(-\tau)}$') plt.title(title) plt.grid(True) plt.savefig(filename) #plt.show() plt.close() return def calc_rating(opacity_range, max_s_max_n, continuum_sd): """ Calculates the Brown et al 2014 (2014ApJS..211...29B) quality rating for a spectrum. Note that two tests, the absorption uncertainty envelope and number of channels of emission are not currently included. :param opacity_range: The range of exp(-tau) values. :param max_s_max_n: The ratio of maximum signal to maximum noise. :param continuum_sd: standard deviation of absorpton in off-line channels :return: A quality rating from A to D """ rating_codes = 'ABCDEF' rating = 0 if opacity_range > 1.5: rating += 1 if max_s_max_n < 3: rating += 1 if continuum_sd*3 > 1: rating += 1 return rating_codes[rating] def rate_spectrum(opacity, continuum_sd): min_opacity = np.min(opacity) max_opacity = np.max(opacity) opacity_range = max_opacity - min_opacity max_s_max_n = (1 - min_opacity) / (max_opacity - 1) rating = calc_rating(opacity_range, max_s_max_n, continuum_sd) return rating, opacity_range, max_s_max_n ``` #### File: RadioAbsTools/tests/test_cube_tools.py ```python from __future__ import print_function, division import math from astropy.coordinates import SkyCoord import astropy.units as u import numpy as np from RadioAbsTools import cube_tools def _pixel_in_ellipse(ellipse_centre, x, y, a, b, pa, dec_offset=0*u.deg, expected=True): point = SkyCoord((19-x)*u.arcsec, (19-y)*u.arcsec+dec_offset) result = cube_tools.point_in_ellipse(ellipse_centre, point, a, b, pa) if expected is not None: # and expected != result: print ("Details for point x:{} y:{} at point {} arcsec".format(x, y, point.to_string(style='decimal', unit=u.arcsec))) cube_tools.point_in_ellipse(ellipse_centre, point, a, b, pa, verbose=True) return result def _plot_grid(ellipse_centre, a, b, pa, dec_offset=0*u.deg): grid = np.zeros((20,20)) for x in range(grid.shape[0]): for y in range(grid.shape[1]): if _pixel_in_ellipse(ellipse_centre, x, y, a, b, pa, dec_offset=dec_offset, expected=None): grid[y,x] = 1 #grid[12,5] = 2 print (grid) def test_point_in_ellipse_vertical(): # Define an ellipse centred at cell 10,10 in a 20x20 arcsec grid at low declination ellipse_centre = SkyCoord(9*u.arcsec, 9*u.arcsec) a = 6 # arcsec b = 3 # arcsec pa = 0*u.deg.to(u.rad) # rad _plot_grid(ellipse_centre, a, b, pa) assert _pixel_in_ellipse(ellipse_centre, 10, 10, a, b, pa), "Centre should be in ellipse" assert _pixel_in_ellipse(ellipse_centre, 10, 4, a, b, pa), "Top of ellipse should be inside" assert _pixel_in_ellipse(ellipse_centre, 10, 16, a, b, pa), "Bottom of ellipse should be inside" assert _pixel_in_ellipse(ellipse_centre, 9, 10, a, b, pa), "Left of ellipse should be inside" assert _pixel_in_ellipse(ellipse_centre, 11, 10, a, b, pa), "Right of ellipse should be inside" assert _pixel_in_ellipse(ellipse_centre, 7, 10, a, b, pa), "Left of ellipse should be inside" assert _pixel_in_ellipse(ellipse_centre, 13, 10, a, b, pa), "Right of ellipse should be inside" assert not _pixel_in_ellipse(ellipse_centre, 6, 10, a, b, pa, expected=False), "Off left of ellipse should be outside" assert not _pixel_in_ellipse(ellipse_centre, 14, 10, a, b, pa, expected=False), "Off right of ellipse should be outside" def test_point_in_ellipse_horizontal(): # Define an ellipse centred at cell 10,10 in a 20x20 arcsec grid at low declination ellipse_centre = SkyCoord(9*u.arcsec, 9*u.arcsec) a = 6 # arcsec b = 3 # arcsec pa = 90*u.deg.to(u.rad) # rad _plot_grid(ellipse_centre, a, b, pa) assert _pixel_in_ellipse(ellipse_centre, 10, 10, a, b, pa), "Centre should be in ellipse" assert _pixel_in_ellipse(ellipse_centre, 10, 7, a, b, pa), "Top of ellipse should be inside" assert _pixel_in_ellipse(ellipse_centre, 10, 13, a, b, pa), "Bottom of ellipse should be inside" assert _pixel_in_ellipse(ellipse_centre, 5, 10, a, b, pa), "Left of ellipse should be inside" assert _pixel_in_ellipse(ellipse_centre, 15, 10, a, b, pa), "Right of ellipse should be inside" assert _pixel_in_ellipse(ellipse_centre, 4, 10, a, b, pa), "Left of ellipse should be inside" assert _pixel_in_ellipse(ellipse_centre, 16, 10, a, b, pa), "Right of ellipse should be inside" assert not _pixel_in_ellipse(ellipse_centre, 3, 10, a, b, pa, expected=False), "Off left of ellipse should be outside" assert not _pixel_in_ellipse(ellipse_centre, 17, 10, a, b, pa, expected=False), "Off right of ellipse should be outside" assert not _pixel_in_ellipse(ellipse_centre, 10, 6, a, b, pa, expected=False), "Above ellipse should be outside" assert not _pixel_in_ellipse(ellipse_centre, 10, 14, a, b, pa, expected=False), "Below ellipse should be outside" def test_point_in_ellipse_diagonal(): # Define an ellipse centred at cell 10,10 in a 20x20 arcsec grid at low declination ellipse_centre = SkyCoord(9*u.arcsec, 9*u.arcsec) a = 6 # arcsec b = 3 # arcsec pa = 45*u.deg.to(u.rad) # rad _plot_grid(ellipse_centre, a, b, pa) assert _pixel_in_ellipse(ellipse_centre, 10, 10, a, b, pa), "Centre should be in ellipse" assert _pixel_in_ellipse(ellipse_centre, 6, 6, a, b, pa), "Top-left of ellipse should be inside" assert _pixel_in_ellipse(ellipse_centre, 14, 14, a, b, pa), "Bottom-right of ellipse should be inside" assert _pixel_in_ellipse(ellipse_centre, 7, 10, a, b, pa), "Left of ellipse should be inside" assert _pixel_in_ellipse(ellipse_centre, 13, 10, a, b, pa), "Right of ellipse should be inside" assert not _pixel_in_ellipse(ellipse_centre, 3, 10, a, b, pa, expected=False), "Top-right mirror of ellipse should be outside" assert not _pixel_in_ellipse(ellipse_centre, 17, 10, a, b, pa, expected=False), "Bottom-left mirror of ellipse should be outside" assert not _pixel_in_ellipse(ellipse_centre, 10, 6, a, b, pa, expected=False), "Above ellipse should be outside" assert not _pixel_in_ellipse(ellipse_centre, 10, 14, a, b, pa, expected=False), "Above ellipse should be outside" assert not _pixel_in_ellipse(ellipse_centre, 9, 5, a, b, pa, expected=False), "Above ellipse should be outside" assert not _pixel_in_ellipse(ellipse_centre, 11, 15, a, b, pa, expected=False), "Below ellipse should be outside" def test_point_in_ellipse_acute(): # Define an ellipse centred at cell 10,10 in a 20x20 arcsec grid at low declination ellipse_centre = SkyCoord(9*u.arcsec, 9*u.arcsec) a = 6 # arcsec b = 3 # arcsec pa = 20*u.deg.to(u.rad) # rad _plot_grid(ellipse_centre, a, b, pa) assert _pixel_in_ellipse(ellipse_centre, 10, 10, a, b, pa), "Centre should be in ellipse" assert _pixel_in_ellipse(ellipse_centre, 8, 5, a, b, pa), "Top-left of ellipse should be inside" assert _pixel_in_ellipse(ellipse_centre, 13, 14, a, b, pa), "Bottom-right of ellipse should be inside" assert _pixel_in_ellipse(ellipse_centre, 7, 10, a, b, pa), "Left of ellipse should be inside" assert _pixel_in_ellipse(ellipse_centre, 13, 10, a, b, pa), "Right of ellipse should be inside" assert not _pixel_in_ellipse(ellipse_centre, 3, 10, a, b, pa, expected=False), "Top-right mirror of ellipse should be outside" assert not _pixel_in_ellipse(ellipse_centre, 17, 10, a, b, pa, expected=False), "Bottom-left mirror of ellipse should be outside" assert not _pixel_in_ellipse(ellipse_centre, 10, 4, a, b, pa, expected=False), "Above ellipse should be outside" assert not _pixel_in_ellipse(ellipse_centre, 10, 16, a, b, pa, expected=False), "Above ellipse should be outside" assert not _pixel_in_ellipse(ellipse_centre, 9, 4, a, b, pa, expected=False), "Above ellipse should be outside" assert not _pixel_in_ellipse(ellipse_centre, 11, 16, a, b, pa, expected=False), "Below ellipse should be outside" def test_point_in_ellipse_obtuse(): # Define an ellipse centred at cell 10,10 in a 20x20 arcsec grid at low declination ellipse_centre = SkyCoord(9*u.arcsec, 9*u.arcsec) a = 6 # arcsec b = 3 # arcsec pa = 160*u.deg.to(u.rad) # rad _plot_grid(ellipse_centre, a, b, pa) assert _pixel_in_ellipse(ellipse_centre, 10, 10, a, b, pa), "Centre should be in ellipse" assert _pixel_in_ellipse(ellipse_centre, 12, 5, a, b, pa), "Top-right of ellipse should be inside" assert _pixel_in_ellipse(ellipse_centre, 8, 14, a, b, pa), "Bottom-left of ellipse should be inside" assert _pixel_in_ellipse(ellipse_centre, 7, 10, a, b, pa), "Left of ellipse should be inside" assert _pixel_in_ellipse(ellipse_centre, 12, 10, a, b, pa), "Right of ellipse should be inside" assert not _pixel_in_ellipse(ellipse_centre, 3, 10, a, b, pa, expected=False), "Top-right mirror of ellipse should be outside" assert not _pixel_in_ellipse(ellipse_centre, 17, 10, a, b, pa, expected=False), "Bottom-left mirror of ellipse should be outside" assert not _pixel_in_ellipse(ellipse_centre, 10, 4, a, b, pa, expected=False), "Above ellipse should be outside" assert not _pixel_in_ellipse(ellipse_centre, 10, 16, a, b, pa, expected=False), "Above ellipse should be outside" assert not _pixel_in_ellipse(ellipse_centre, 9, 4, a, b, pa, expected=False), "Above ellipse should be outside" assert not _pixel_in_ellipse(ellipse_centre, 11, 16, a, b, pa, expected=False), "Below ellipse should be outside" def test_point_in_ellipse_vertical_high_dec(): # Define an ellipse centred at cell 10,10 in a 20x20 arcsec grid at low declination dec_offset = -70*u.deg ellipse_centre = SkyCoord(9*u.arcsec, 9*u.arcsec+dec_offset) a = 6 # arcsec b = 3 # arcsec pa = 0*u.deg.to(u.rad) # rad _plot_grid(ellipse_centre, a, b, pa, dec_offset=dec_offset) # Note our test grid doesn't include the distortion due to declination so we expect the ellipse to wider instead assert _pixel_in_ellipse(ellipse_centre, 10, 10, a, b, pa, dec_offset=dec_offset), "Centre should be in ellipse" assert _pixel_in_ellipse(ellipse_centre, 10, 4, a, b, pa, dec_offset=dec_offset), "Top of ellipse should be inside" assert _pixel_in_ellipse(ellipse_centre, 10, 16, a, b, pa, dec_offset=dec_offset), "Bottom of ellipse should be inside" assert _pixel_in_ellipse(ellipse_centre, 2, 10, a, b, pa, dec_offset=dec_offset), "Left of ellipse should be inside" assert _pixel_in_ellipse(ellipse_centre, 18, 10, a, b, pa, dec_offset=dec_offset), "Right of ellipse should be inside" assert not _pixel_in_ellipse(ellipse_centre, 1, 10, a, b, pa, dec_offset=dec_offset, expected=False), "Off left of ellipse should be outside" assert not _pixel_in_ellipse(ellipse_centre, 19, 10, a, b, pa, dec_offset=dec_offset, expected=False), "Off right of ellipse should be outside" def test_get_weighting_array(): # array is order z, y, x data = np.zeros((40,10,10)) # outer ring data[:,3:7,3:7] = 1 data[:,4:6,4:6] = 2 data_slice = data[0,:,:] print (data_slice) velocities = np.linspace(60, 99, num=40)*1000 weights = cube_tools.get_weighting_array(data, velocities, 60*(u.km/u.s).to(u.m/u.s), 70*(u.km/u.s).to(u.m/u.s)) print (weights) assert data_slice.shape == weights.shape assert round(np.sum(weights),3) == 1 assert np.allclose(weights[data_slice == 0], 0) assert np.allclose(weights[data_slice == 2], 0.142857) assert np.allclose(weights[data_slice == 1], 0.035714) # Check that data outside the continuum range are ignored data[10:,:,:] = 1000 weights = cube_tools.get_weighting_array(data, velocities, 60*(u.km/u.s).to(u.m/u.s), 70*(u.km/u.s).to(u.m/u.s)) assert data_slice.shape == weights.shape assert round(np.sum(weights),3) == 1 assert np.allclose(weights[data_slice == 0], 0) assert np.allclose(weights[data_slice == 2], 0.142857) assert np.allclose(weights[data_slice == 1], 0.035714) # Check that missing planes are ignored data[5,:,:] = 0 weights = cube_tools.get_weighting_array(data, velocities, 60*(u.km/u.s).to(u.m/u.s), 70*(u.km/u.s).to(u.m/u.s)) assert data_slice.shape == weights.shape assert round(np.sum(weights),3) == 1 assert np.allclose(weights[data_slice == 0], 0) assert np.allclose(weights[data_slice == 2], 0.142857) assert np.allclose(weights[data_slice == 1], 0.035714) data[6,:,:] = np.nan weights = cube_tools.get_weighting_array(data, velocities, 60*(u.km/u.s).to(u.m/u.s), 70*(u.km/u.s).to(u.m/u.s)) assert data_slice.shape == weights.shape assert round(np.sum(weights),3) == 1 assert np.allclose(weights[data_slice == 0], 0) assert np.allclose(weights[data_slice == 2], 0.142857) assert np.allclose(weights[data_slice == 1], 0.035714) # Check that all continuum planes are used data[7,3:7,3:7] = 3 weights = cube_tools.get_weighting_array(data, velocities, 60*(u.km/u.s).to(u.m/u.s), 70*(u.km/u.s).to(u.m/u.s)) assert data_slice.shape == weights.shape assert round(np.sum(weights),3) == 1 assert np.allclose(weights[data_slice == 0], 0) assert np.allclose(weights[data_slice == 2], 0.117036) assert np.allclose(weights[data_slice == 1], 0.044321) ```
{ "source": "jd-au/thor-hi", "score": 3 }
#### File: jd-au/thor-hi/filter_cube.py ```python from __future__ import print_function, division import argparse import sys import time from astropy.io import fits import numpy as np import pyfftw def parseargs(): """ Parse the command line arguments :return: An args map with the parsed arguments """ parser = argparse.ArgumentParser( description="Filter the large scale emission from an imag cube using Fourier transforms", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("input", help="The name of the file to be filtered.") parser.add_argument("output", help="The name of the filtered file to be produced.") parser.add_argument("-r", "--radius", help="The radius of the filter to apply to the centre of the Fourier image.", default=20, type=int) parser.add_argument("-t", "--threads", help="The number of threads to be used for the Fourier transform.", default=4, type=int) args = parser.parse_args() return args def do_fftw(image, threads=2): """ Calculate the Fourier transform of the input 2 dimensional image using the pyFFTW library. :param image: The square float64 image to be transformed. :param threads: The number of threads to be used by pyFFTW. :return: The fourier transform. """ image_in = pyfftw.empty_aligned(image.shape, dtype='float64') image_in[:] = image fft_object = pyfftw.builders.fft2(image_in, axes=(0, 1), threads=threads) image_out = fft_object() return image_out def do_ifftw(image, threads=2): """ Calculate the inverse Fourier transform of the input 2 dimensional Fourier image using the pyFFTW library. :param image: The square complex128 image to be transformed. :param threads: The number of threads to be used by pyFFTW. :return: The fourier transform. """ image_in = pyfftw.empty_aligned(image.shape, dtype='complex128') image_in[:] = image fft_object = pyfftw.builders.ifft2(image_in, axes=(0, 1), threads=threads) image_out = fft_object() return image_out def fft_image(image, threads=4): """ Produce a processed Fourier transform of the input image. The image must be square and of type float64 and real only. The Fourier transform will be shifted to have the zero-frequency component in the centre of the image. :param image: The square image to be transformed. :param threads: The number of threads to be used by pyFFTW. :return: The centred complex Fourier transform. """ #ft_img = np.fft.fft2(image) ft_img = do_fftw(image, threads) #print(ft_img.shape) ft_shift = np.fft.fftshift(ft_img) return ft_shift def ifft_image(ft_shift, threads=4): """ Invert a Fourier transform of an image. The resulting image will be square and of type complex128. The real aspect of this image will represent the image. The Fourier transform will be unshifted to move the zero-frequency component away from the centre of the image. :param ft_shift: The centred complex Fourier transform. :param threads: The number of threads to be used by pyFFTW. :return: The complex inverse Fourier transformed image. """ unshifted = np.fft.ifftshift(ft_shift) #inverted = np.fft.ifft2(unshifted) inverted = do_ifftw(unshifted, threads=threads) return inverted def filter_plane(plane, radius=20, threads=4): # Prepare the spatial slice for fft start = time.time() flipped = np.concatenate((plane, np.fliplr(plane)), axis=1) mirrored = np.concatenate((flipped, np.flipud(flipped)), axis=0) x_pad = (mirrored.shape[0] - mirrored.shape[1]) // 2 padded = np.lib.pad(mirrored, ((0, 0), (x_pad, x_pad)), 'constant') prep_end = time.time() print(' Prep for plane took %.02f s' % (prep_end - start)) sys.stdout.flush() # Do the fft ft_img = fft_image(padded, threads) ft_end = time.time() print(' FFT for plane took %.02f s' % (ft_end - prep_end)) sys.stdout.flush() # Filter out the large scsle emission centre_y = ft_img.shape[0] // 2 centre_x = ft_img.shape[1] // 2 ft_img[centre_y - radius:centre_y + radius, centre_x - radius:centre_x + radius] = 0 # Invert the fft to get back the image inverted = ifft_image(ft_img, threads) ift_end = time.time() print(' iFFT for plane took %.02f s' % (ift_end - ft_end)) sys.stdout.flush() post_psd_2d = inverted.real centre_y = post_psd_2d.shape[0] // 2 centre_x = post_psd_2d.shape[1] // 2 post_plane = post_psd_2d[:centre_y, x_pad:centre_x].astype(np.float32) return post_plane def filter_image(image, radius=40, threads=4): #pyfftw.interfaces.cache.enable() filtered = np.zeros(image.shape, dtype=np.float32) for idx in range(image.shape[0]): print("Processing plane", idx) sys.stdout.flush() plane = image[idx, :, :] post_plane = filter_plane(plane, radius, threads) filtered[idx, :, :] = post_plane return filtered def load_image(filename): hdulist = fits.open(filename, memmap=True) image = hdulist[0].data print("Image shape is", image.shape) header = hdulist[0].header return image, header def save_image(filename, image, header, radius): header['history'] = "Emission filtered with radius {} Fourier filter.".format(radius) hdu = fits.PrimaryHDU(image, header) hdu.writeto(filename, overwrite=True) def main(): """ Main script for filter_cube :return: The exit code """ args = parseargs() start = time.time() print("#### Started filtering of cube {} at {} ####".format(args.input, time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start)))) # Filter the image orig_image, header = load_image(args.input) filtered = filter_image(orig_image, radius=args.radius, threads=args.threads) save_image(args.output, filtered, header, args.radius) # Report end = time.time() print('#### Filtering completed at %s ####' % time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end))) print('Filtering took %.02f s' % (end - start)) return 0 # Run the script if it is called from the command line if __name__ == "__main__": exit(main()) ```
{ "source": "JDavid17/CoolCompiler", "score": 3 }
#### File: CoolCompiler/src/cool2cil.py ```python import src.ast as ast import src.cil_nodes as cil_node import src.visitor as visitor import src.scope as Scope from src.scope import Scope from src.type import ctype class vTable: """ {type:{f_name: int}} """ pass BACKUP_REGISTER = 't0' class CILScope: def __init__(self, classname, parentScope=None): self.classname = classname self.parentScope = parentScope self.vars = [] def add_var(self, var): self.vars.append(var) def get_real_name(self, var_name: str): for name in self.vars: if var_name == name.split('@')[0]: return name if self.parentScope: return self.parentScope.get_real_name(var_name) return '' class Unique_name_generator: def __init__(self): self.name_keys = {} def generate(self, var: str, just_int=False): value = 1 if var in self.name_keys: self.name_keys[var] += 1 value = self.name_keys[var] else: self.name_keys[var] = 1 if just_int: return value return f'{var}@{str(value)}' def reset(self): self.name_keys = {} class Cool2cil: def _build_tree(self, scope): t = scope.get_types().copy() t.pop('SELF_TYPE') tree = {i: [] for i in t} for i in t: if t[i].parent: tree[t[i].parent.name] += [t[i].name] return tree def dfs(self, ty): t = {x: [-1, -1] for x in ty} self._dfs('Object', ty, 0, t) return t def _dfs(self, node, dic_type, time, tree): tree[node][0] = time n_t = time + 1 for i in dic_type[node]: n_t = self._dfs(i, dic_type, n_t, tree) tree[node][1] = n_t return n_t + 1 def calc_static(self, type): for i in self.dtpe: if i.cType == type: return len(i.attributes) def sort_type(self, type_list: dict): type_list = list(type_list.values()) type_map = {} bit_mask = [False] * len(type_list) for i in range(len(type_list)): ctype = type_list[i] type_map[ctype.name] = i bit_mask[type_map['Object']] = True sorted = {} self_type = type_list[type_map['SELF_TYPE']] sorted[self_type.name] = self_type object_type = type_list[type_map['Object']] sorted[object_type.name] = object_type for i in range(len(type_list)): ctype = type_list[i] if ctype.name == 'Object' or ctype.name == 'SELF_TYPE': continue if not bit_mask[i]: self.sort_type_(ctype, type_list, type_map, bit_mask, sorted) return sorted def sort_type_(self, ctype, type_list, type_map, mask, sort_list): mask[type_map[ctype.name]] = True parent = ctype.parent iparent = type_map[parent.name] if not mask[iparent]: self.sort_type_(parent, type_list, type_map, mask, sort_list) sort_list[ctype.name] = ctype def get_node_by_type(self, t, classes): for i in classes: if t == i.name: return i def replace(self, method, tp): t = [] rep = False for i in range(len(tp.methods)): if (list(method.keys())[0]).split('.')[1] != (list(tp.methods[i].keys())[0]).split('.')[1]: t.append(tp.methods[i]) else: rep = True t.append(method) if not rep: t.append(method) tp.methods = t def __init__(self): self.tree = None self.constructors = {} self.data = [] self.dtpe = [] self.code = [] self.vtable = vTable() self.name_generator = Unique_name_generator() self.keys_generator = Unique_name_generator() def _dispatch(self, ctype, method): for i in self.dtpe: if i.cType == ctype: for j in range(len(i.methods)): if i.methods[j].split('.')[1] == method: return j def _att_offset(self, ct, att): for i in self.dtpe: if i.cType == ct: for j in range(len(i.attributes)): if i.attributes[j] == att: return j @visitor.on('node') def visit(self, node, scope): pass @visitor.when(ast.Program) def visit(self, node: ast.Program, _): scope_root = Scope(None, None) for classDef in node.classes: new_type = ctype(classDef.name) scope_root.createType(new_type) for classDef in node.classes: a = scope_root.getType(classDef.name) a.parent = scope_root.getType(classDef.parent) new_types = self.sort_type(scope_root.get_types()) node.classes = list(map(lambda x: self.get_node_by_type(x, node.classes), list(new_types.keys())[6:])) scope_root.set_types(new_types) t = scope_root.get_types() self.tree = self._build_tree(scope_root) self.tree = self.dfs(self.tree) for i in list(new_types.keys())[1:6]: new_types[i].fix_methods() tp = new_types[i].methods if i != 'Object': new_types[i].methods = [] new_types[i].add_method(*tuple(new_types['Object'].methods + tp)) for j in node.classes: scope = Scope(j.name, scope_root) methods = filter(lambda x: type(x) is ast.ClassMethod, j.features) methods = list(methods) attribs = filter(lambda x: type(x) is ast.ClassAttribute, j.features) attribs = list(attribs) p_type = scope.getType(j.parent) scope.getType(j.name).add_method(*tuple(scope.getType('Object').methods)) scope.getType(j.name).add_attrib(*tuple(p_type.attributes)) for i in p_type.methods: self.replace(i, scope.getType(j.name)) for i in attribs: scope.getType(j.name).add_attrib({i.name: scope.getType(i.attr_type)}) for i in methods: m = {f'{j.name}.{i.name}': { 'formal_params': { t.name: scope.getType(t.param_type) for t in i.formal_params }, 'return_type': scope.getType(i.return_type), 'body': i.body }} self.replace(m, scope.getType(j.name)) for i in list(t.keys())[1:]: meths = [] for m in t[i].methods: meths.append(list(m.keys())[0]) attrs = [] for a in t[i].attributes: attrs.append(list(a.keys())[0]) t1 = self.tree[t[i].name] self.dtpe.append(cil_node.DotType(t[i].name, attrs, meths, t1[0], t1[1])) self.dtpe[1].attributes.append('#') self.dtpe[2].attributes.append('#') self.dtpe[3].attributes.append('#') # m = None # classofp = [] # for i in node.classes: # if i.name != 'Main': # classofp.append(i) # else: # m = i # classofp.append(m) # node.classes = classofp for i in node.classes: self.visit(i, None) pass @visitor.when(ast.Class) def visit(self, node: ast.Class, scope: CILScope): self.constructors[node.name] = ast.ClassMethod(node.name,[],node.name,ast.Block([])) if node.parent not in ['IO', 'Object']: self.constructors[node.name].body.expr_list += self.constructors[node.parent].body.expr_list[:-1] attrs = filter(lambda x: type(x) is ast.ClassAttribute, node.features) attrs = list(attrs) for attr in attrs: self.visit(attr, CILScope(node.name)) methods = filter(lambda x: type(x) is ast.ClassMethod, node.features) methods = list(methods) self.constructors[node.name].body.expr_list.append(ast.Self()) methods.append(self.constructors[node.name]) for method in methods: self.visit(method, CILScope(node.name)) @visitor.when(ast.ClassAttribute) def visit(self, node: ast.ClassAttribute, scope): if node.init_expr: self.constructors[scope.classname].body.expr_list.append(ast.Assignment(ast.Object(node.name), node.init_expr)) elif node.static_type.name == 'Int': self.constructors[scope.classname].body.expr_list.append(ast.Assignment(ast.Object(node.name), ast.Integer(0))) elif node.static_type.name == 'Bool': self.constructors[scope.classname].body.expr_list.append(ast.Assignment(ast.Object(node.name), ast.Boolean(False))) elif node.static_type.name == 'String': self.constructors[scope.classname].body.expr_list.append(ast.Assignment(ast.Object(node.name), ast.String(""))) @visitor.when(ast.ClassMethod) def visit(self, node: ast.ClassMethod, scope: CILScope): self.name_generator.reset() params = ['self'] for p in node.formal_params: redefinition = self.name_generator.generate(p.name) params.append(redefinition) scope.add_var(redefinition) var, exprs = self.visit(node.body, scope) method = cil_node.CILMethod(node.name, scope.classname, params, var, exprs) self.code.append(method) @visitor.when(ast.Assignment) def visit(self, node: ast.Assignment, scope: CILScope): real_name = scope.get_real_name(node.instance.name) expr = self.visit(node.expr, scope) if real_name == '': assignment_node = cil_node.CILSetAttr(self._att_offset(scope.classname, node.instance.name)) else: assignment_node = cil_node.CILAssignment(real_name) return expr[0], expr[1] + [assignment_node] @visitor.when(ast.Block) def visit(self, node: ast.Block, scope: CILScope): var = [] codes = [] for expr in node.expr_list: tmp = self.visit(expr, scope) var += tmp[0] codes += tmp[1] codes.append(cil_node.CILBlock(len(node.expr_list))) return var, codes @visitor.when(ast.DynamicDispatch) def visit(self, node: ast.DynamicDispatch, scope: CILScope): args = [] var = [] codes = [] for item in node.arguments: tmp = self.visit(item, scope) codes += tmp[1] if item.static_type.name in ['Int', 'Bool']: codes += [cil_node.CILDynamicDispatch(0, self._dispatch(item.static_type.name, "copy"))] tmp = self.visit(node.instance, scope) codes += tmp[1] t = node.instance.static_type.name if t == 'SELF_TYPE': t = scope.classname codes.append(cil_node.CILDynamicDispatch(len(node.arguments), self._dispatch(t, node.method))) return var, codes @visitor.when(ast.StaticDispatch) def visit(self, node: ast.StaticDispatch, scope: CILScope): args = [] var = [] codes = [] for item in node.arguments: tmp = self.visit(item, scope) codes += tmp[1] if item.static_type.name in ['Int', 'Bool']: codes += [cil_node.CILDynamicDispatch(0, self._dispatch(item.static_type.name, "copy"))] tmp = self.visit(node.instance, scope) codes += tmp[1] codes.append(cil_node.CILStaticDispatch(len(node.arguments), node.dispatch_type, node.method)) return var, codes @visitor.when(ast.NewObject) def visit(self, node: ast.NewObject, scope): return [], [cil_node.CILNew(node.type, self.calc_static(node.static_type.name))] @visitor.when(ast.Integer) def visit(self, node: ast.Integer, scope): return [], [cil_node.CILInteger(node.content)] @visitor.when(ast.Boolean) def visit(self, node: ast.Boolean, scope): value = 1 if node.content else 0 return [], [cil_node.CILBoolean(value)] @visitor.when(ast.String) def visit(self, node: ast.String, scope): self.data.append(node.content) return [], [cil_node.CILString(len(self.data)-1)] @visitor.when(ast.Addition) def visit(self, node: ast.Addition, scope): fst = self.visit(node.first, scope) snd = self.visit(node.second, scope) return fst[0] + snd[0], [cil_node.CILArithm(fst[1], snd[1], '+')] @visitor.when(ast.Subtraction) def visit(self, node: ast.Subtraction, scope): fst = self.visit(node.first, scope) snd = self.visit(node.second, scope) return fst[0] + snd[0], [cil_node.CILArithm(fst[1], snd[1], '-')] @visitor.when(ast.Multiplication) def visit(self, node: ast.Multiplication, scope): fst = self.visit(node.first, scope) snd = self.visit(node.second, scope) return fst[0] + snd[0], [cil_node.CILArithm(fst[1], snd[1], '*')] @visitor.when(ast.Division) def visit(self, node: ast.Division, scope): fst = self.visit(node.first, scope) snd = self.visit(node.second, scope) return fst[0] + snd[0], [cil_node.CILArithm(fst[1], snd[1], '/')] @visitor.when(ast.Equal) def visit(self, node: ast.Equal, scope): fst = self.visit(node.first, scope) snd = self.visit(node.second, scope) if node.first.static_type.name in ['Int', 'Bool']: return fst[0] + snd[0], [cil_node.CILEq(fst[1], snd[1])] if node.first.static_type.name == 'String': return fst[0] + snd[0], [cil_node.CILEqString(fst[1], snd[1])] return fst[0] + snd[0], [cil_node.CILEqObject(fst[1], snd[1])] @visitor.when(ast.LessThan) def visit(self, node: ast.LessThan, scope): fst = self.visit(node.first, scope) snd = self.visit(node.second, scope) return fst[0] + snd[0], [cil_node.CILBoolOp(fst[1], snd[1], '<')] @visitor.when(ast.LessThanOrEqual) def visit(self, node: ast.LessThanOrEqual, scope): fst = self.visit(node.first, scope) snd = self.visit(node.second, scope) return fst[0] + snd[0], [cil_node.CILBoolOp(fst[1], snd[1], '<=')] @visitor.when(ast.IntegerComplement) def visit(self, node: ast.IntegerComplement, scope): t = self.visit(node.integer_expr, scope) return t[0], [cil_node.CILNArith(t[1])] @visitor.when(ast.BooleanComplement) def visit(self, node: ast.BooleanComplement, scope): t = self.visit(node.boolean_expr, scope) return t[0], [cil_node.CILNBool(t[1])] @visitor.when(ast.Let) def visit(self, node: ast.Let, scope: CILScope): new_scope = CILScope(scope.classname, scope) var = [] codes = [] for item in node.declarations: tmp = self.visit(item, new_scope) var += tmp[0] codes += tmp[1] tmp = self.visit(node.body, new_scope) var += tmp[0] codes += tmp[1] return var, codes @visitor.when(ast.Formal) def visit(self, node: ast.Formal, scope: CILScope): new_name = self.name_generator.generate(node.name) scope.add_var(new_name) var = [new_name] codes = [] if node.init_expr: tmp = self.visit(node.init_expr, scope) var += tmp[0] codes += tmp[1] codes.append(cil_node.CILFormal(new_name)) elif node.static_type.name in ['Bool', 'Int', 'String']: codes = [ cil_node.CILInteger(0), cil_node.CILFormal(new_name) ] if node.static_type.name != 'String' else [ cil_node.CILNewString(), cil_node.CILFormal(new_name) ] else: codes = [cil_node.CILFormal(new_name, False)] return var, codes @visitor.when(ast.If) def visit(self, node: ast.If, scope: CILScope): predicate_visit = self.visit(node.predicate, scope) if_visit = self.visit(node.then_body, scope) else_visit = self.visit(node.else_body, scope) int_key = self.keys_generator.generate('if', True) return predicate_visit[0] + if_visit[0] + else_visit[0], \ [cil_node.CILIf(predicate_visit[1], if_visit[1], else_visit[1], int_key)] @visitor.when(ast.WhileLoop) def visit(self, node: ast.WhileLoop, scope: CILScope): predicate_visit = self.visit(node.predicate, scope) body_visit = self.visit(node.body, scope) int_key = self.keys_generator.generate('while', True) return predicate_visit[0] + body_visit[0], \ [cil_node.CILWhile(predicate_visit[1],body_visit[1], int_key)] @visitor.when(ast.Object) def visit(self, node: ast.Object, scope: CILScope): real_name = scope.get_real_name(node.name) if real_name == '': return [], [cil_node.CILGetAttr(self._att_offset(scope.classname, node.name))] return [], [cil_node.CILGetLocal(real_name)] @visitor.when(ast.IsVoid) def visit(self, node: ast.IsVoid, scope): exp = self.visit(node.expr, scope) key = self.keys_generator.generate("isvoid@isvoid", True) return exp[0], exp[1] + [cil_node.CILIsVoid(key)] @visitor.when(ast.Case) def visit(self, node: ast.Case, scope): instance = self.visit(node.expr, scope) actions = [] local = instance[0] case_key = self.keys_generator.generate("case", True) for i in node.actions: t = self.visit(i, scope) local += t[0] action_key = self.keys_generator.generate("case.action", True) action = t[1] action[0].set_case_tag(case_key) action[0].set_action_tag(action_key) actions.append(action) return local, [cil_node.CILCase(instance[1], actions, case_key)] @visitor.when(ast.Action) def visit(self, node: ast.Action, scope): new_scope = CILScope(scope.classname, scope) new_name = self.name_generator.generate(node.name) new_scope.add_var(new_name) t = self.visit(node.body, new_scope) return [new_name] + t[0], [cil_node.CILAction(new_name, node.action_type, t[1])] @visitor.when(ast.Self) def visit(self, node: ast.Self, scope: CILScope): return [], [cil_node.CILSelf()] ``` #### File: CoolCompiler/src/lexer.py ```python import ply.lex as lex from ply.lex import TOKEN class CoolLexer(object): """ CoolLexer class. """ def __init__(self, build_lexer=True, debug=False, lextab="lextab", optimize=True, outputdir="", debuglog=None, errorlog=None): self.lexer = None # ply lexer instance self.tokens = () # ply tokens collection self.reserved = {} # ply reserved keywords map self.last_token = None # last returned token # Save Flags - PRIVATE PROPERTIES self._debug = debug self._lextab = lextab self._optimize = optimize self._outputdir = outputdir self._debuglog = debuglog self._errorlog = errorlog # Build lexer if build_lexer flag is set to True if build_lexer is True: self.build(debug=debug, lextab=lextab, optimize=optimize, outputdir=outputdir, debuglog=debuglog, errorlog=errorlog) # ################################# READONLY ##################################### @property def tokens_collection(self): """ Collection of COOL Syntax Tokens. :return: Tuple. """ return ( # Identifiers "ID", "TYPE", # Primitive Types "INTEGER", "STRING", "BOOLEAN", # Literals "LPAREN", "RPAREN", "LBRACE", "RBRACE", "COLON", "COMMA", "DOT", "SEMICOLON", "AT", # Operators "PLUS", "MINUS", "MULTIPLY", "DIVIDE", "EQ", "LT", "LTEQ", "ASSIGN", "INT_COMP", # Special Operators "ARROW" ) @property def basic_reserved(self): """ Map of Basic-COOL reserved keywords. :return: dict. """ return { "case": "CASE", "class": "CLASS", "else": "ELSE", "esac": "ESAC", "fi": "FI", "if": "IF", "in": "IN", "inherits": "INHERITS", "isvoid": "ISVOID", "let": "LET", "loop": "LOOP", "new": "NEW", "of": "OF", "not": "NOT", "pool": "POOL", "self": "SELF", "then": "THEN", "while": "WHILE" } @property def builtin_types(self): """ A map of the built-in types. :return dict """ return { "Bool": "BOOL_TYPE", "Int": "INT_TYPE", "IO": "IO_TYPE", "Main": "MAIN_TYPE", "Object": "OBJECT_TYPE", "String": "STRING_TYPE", "SELF_TYPE": "SELF_TYPE" } # ################################ PRIVATE ####################################### # ################# START OF LEXICAL ANALYSIS RULES DECLARATION #################### # Ignore rule for single line comments t_ignore_SINGLE_LINE_COMMENT = r"\-\-[^\n]*" ### # SIMPLE TOKENS t_LPAREN = r'\(' # ( t_RPAREN = r'\)' # ) t_LBRACE = r'\{' # { t_RBRACE = r'\}' # } t_COLON = r'\:' # : t_COMMA = r'\,' # , t_DOT = r'\.' # . t_SEMICOLON = r'\;' # ; t_AT = r'\@' # @ t_MULTIPLY = r'\*' # * t_DIVIDE = r'\/' # / t_PLUS = r'\+' # + t_MINUS = r'\-' # - t_INT_COMP = r'~' # ~ t_LT = r'\<' # < t_EQ = r'\=' # = t_LTEQ = r'\<\=' # <= t_ASSIGN = r'\<\-' # <- t_ARROW = r'\=\>' # => @TOKEN(r"(true|false)") def t_BOOLEAN(self, t): t.value = True if t.value == "true" else False return t @TOKEN(r"\d+") def t_INTEGER(self, t): t.value = int(t.value) return t @TOKEN(r"[A-Z][a-zA-Z_0-9]*") def t_TYPE(self, t): t.type = self.basic_reserved.get(t.value, 'TYPE') return t @TOKEN(r"[a-z_][a-zA-Z_0-9]*") def t_ID(self, t): # Check for reserved words t.type = self.basic_reserved.get(t.value, 'ID') return t @TOKEN(r"\n+") def t_newline(self, t): t.lexer.lineno += len(t.value) def t_error(self, t): """ Error Handling and Reporting Rule. """ # print("Illegal character! Line: {0}, character: {1}".format(t.lineno, t.value[0])) print("Illegal character! Line: {0}, character: {1}".format(t.lineno, t.value[0])) t.lexer.skip(1) # Ignore Whitespace Character Rule t_ignore = ' \t\r\f' # ################# LEXER STATES ###################################### @property def states(self): return ( ("STRING", "exclusive"), ("COMMENT", "exclusive") ) ### # THE STRING STATE @TOKEN(r"\"") def t_start_string(self, t): t.lexer.begin("STRING") t.lexer.string_backslashed = False t.lexer.stringbuf = "" @TOKEN(r"\n") def t_STRING_newline(self, t): t.lexer.lineno += 1 if not t.lexer.string_backslashed: print("String newline not escaped") t.lexer.skip(1) else: t.lexer.string_backslashed = False @TOKEN(r"\"") def t_STRING_end(self, t): if not t.lexer.string_backslashed: t.lexer.begin("INITIAL") t.value = t.lexer.stringbuf t.type = "STRING" return t else: t.lexer.stringbuf += '"' t.lexer.string_backslashed = False @TOKEN(r"[^\n]") def t_STRING_anything(self, t): if t.lexer.string_backslashed: if t.value == 'b': t.lexer.stringbuf += '\b' elif t.value == 't': t.lexer.stringbuf += '\t' elif t.value == 'n': t.lexer.stringbuf += '\n' elif t.value == 'f': t.lexer.stringbuf += '\f' elif t.value == '\\': t.lexer.stringbuf += '\\' else: t.lexer.stringbuf += t.value t.lexer.string_backslashed = False else: if t.value != '\\': t.lexer.stringbuf += t.value else: t.lexer.string_backslashed = True # STRING ignored characters t_STRING_ignore = '' # STRING error handler def t_STRING_error(self, t): print("Illegal character! Line: {0}, character: {1}".format(t.lineno, t.value[0])) t.lexer.skip(1) ### # THE COMMENT STATE @TOKEN(r"\(\*") def t_start_comment(self, t): t.lexer.begin("COMMENT") t.lexer.comment_count = 0 @TOKEN(r"\(\*") def t_COMMENT_startanother(self, t): t.lexer.comment_count += 1 @TOKEN(r"\*\)") def t_COMMENT_end(self, t): if t.lexer.comment_count == 0: t.lexer.begin("INITIAL") else: t.lexer.comment_count -= 1 # COMMENT ignored characters t_COMMENT_ignore = '' # COMMENT error handler def t_COMMENT_error(self, t): t.lexer.skip(1) # ################# END OF LEXICAL ANALYSIS RULES DECLARATION ###################### def build(self, **kwargs): """ Builds the CoolLexer instance :param: :return: None """ # Parse the parameters if kwargs is None or len(kwargs) == 0: debug, lextab, optimize, outputdir, debuglog, errorlog = \ self._debug, self._lextab, self._optimize, self._outputdir, self._debuglog, self._errorlog else: debug = kwargs.get("debug", self._debug) lextab = kwargs.get("lextab", self._lextab) optimize = kwargs.get("optimize", self._optimize) outputdir = kwargs.get("outputdir", self._outputdir) debuglog = kwargs.get("debuglog", self._debuglog) errorlog = kwargs.get("errorlog", self._errorlog) self.reserved = self.basic_reserved.keys() self.tokens = self.tokens_collection + tuple(self.basic_reserved.values()) # Build internal ply.lex instance self.lexer = lex.lex(module=self, lextab=lextab, debug=debug, optimize=optimize, outputdir=outputdir, debuglog=debuglog, errorlog=errorlog) def input(self, cool_program_source_code: str): if self.lexer is None: raise Exception("Lexer was not built. Try calling the build() method first, and then tokenize().") self.lexer.input(cool_program_source_code) def token(self): if self.lexer is None: raise Exception("Lexer was not built. Try building the lexer with the build() method.") self.last_token = self.lexer.token() return self.last_token def clone_ply_lexer(self): a_clone = self.lexer.clone() return a_clone @staticmethod def test(program_source_code: str): temp_lexer = CoolLexer() temp_lexer.input(program_source_code) iter_token_stream = iter([some_token for some_token in temp_lexer]) del temp_lexer return iter_token_stream # ################### ITERATOR PROTOCOL ############################################ def __iter__(self): return self def __next__(self): t = self.token() if t is None: raise StopIteration return t def next(self): return self.__next__() def make_lexer(**kwargs) -> CoolLexer: """ Utility function. :return: CoolLexer object. """ a_lexer = CoolLexer(**kwargs) a_lexer.build() return a_lexer if __name__ == "__main__": import sys if len(sys.argv) != 2: print("Usage: ./lexer.py program.cl") exit() elif not str(sys.argv[1]).endswith(".cl"): print("Cool program source code files must end with .cl extension.") print("Usage: ./lexer.py program.cl") exit() input_file = sys.argv[1] with open(input_file, encoding="utf-8") as file: cool_program_code = file.read() lexer = make_lexer() lexer.input(cool_program_code) for token in lexer: print(token) ```
{ "source": "jdavidagudelo/django-social-auth-corrected", "score": 2 }
#### File: backends/pipeline/user.py ```python from uuid import uuid4 from social_auth.utils import setting, module_member from social_auth.models import UserSocialAuth slugify = module_member(setting('SOCIAL_AUTH_SLUGIFY_FUNCTION', 'django.template.defaultfilters.slugify')) def get_username(details, user=None, user_exists=UserSocialAuth.simple_user_exists, *args, **kwargs): """Return an username for new user. Return current user username if user was given. """ if user: return {'username': UserSocialAuth.user_username(user)} email_as_username = setting('SOCIAL_AUTH_USERNAME_IS_FULL_EMAIL', False) uuid_length = setting('SOCIAL_AUTH_UUID_LENGTH', 16) do_slugify = setting('SOCIAL_AUTH_SLUGIFY_USERNAMES', False) if email_as_username and details.get('email'): username = details['email'] elif details.get('username'): username = unicode(details['username']) else: username = uuid4().get_hex() max_length = UserSocialAuth.username_max_length() short_username = username[:max_length - uuid_length] final_username = UserSocialAuth.clean_username(username[:max_length]) if do_slugify: final_username = slugify(final_username) # Generate a unique username for current user using username # as base but adding a unique hash at the end. Original # username is cut to avoid any field max_length. while user_exists(username=final_username): username = short_username + uuid4().get_hex()[:uuid_length] username = username[:max_length] final_username = UserSocialAuth.clean_username(username) if do_slugify: final_username = slugify(final_username) return {'username': final_username} def create_user(backend, details, response, uid, username, user=None, *args, **kwargs): """Create user. Depends on get_username pipeline.""" if user: return {'user': user} if not username: return None # Avoid hitting field max length email = details.get('email') original_email = None if email and UserSocialAuth.email_max_length() < len(email): original_email = email email = '' return { 'user': UserSocialAuth.create_user(username=username, email=email), 'original_email': original_email, 'is_new': True } def _ignore_field(name, is_new=False): return name in ('username', 'id', 'pk') or \ (not is_new and name in setting('SOCIAL_AUTH_PROTECTED_USER_FIELDS', [])) def mongoengine_orm_maxlength_truncate(backend, details, user=None, is_new=False, *args, **kwargs): """Truncate any value in details that corresponds with a field in the user model. Add this entry to the pipeline before update_user_details""" if user is None: return out = {} names = list(user._fields.keys()) for name, value in details.iteritems(): if name in names and not _ignore_field(name, is_new): max_length = user._fields[name].max_length try: if max_length and len(value) > max_length: value = value[:max_length] except TypeError: pass out[name] = value return {'details': out} def django_orm_maxlength_truncate(backend, details, user=None, is_new=False, *args, **kwargs): """Truncate any value in details that corresponds with a field in the user model. Add this entry to the pipeline before update_user_details""" if user is None: return out = {} names = user._meta.get_all_field_names() for name, value in details.iteritems(): if name in names and not _ignore_field(name, is_new): max_length = user._meta.get_field(name).max_length try: if max_length and len(value) > max_length: value = value[:max_length] except TypeError: pass out[name] = value return {'details': out} def update_user_details(backend, details, response, user=None, is_new=False, *args, **kwargs): """Update user details using data from provider.""" if user is None: return changed = False # flag to track change email = details.get('email', None) if isinstance(email, dict): email = email.get('email', '') details['email'] = email for name, value in details.iteritems(): # do not update username, it was already generated, do not update # configured fields if user already existed if not _ignore_field(name, is_new): if value and value != getattr(user, name, None): setattr(user, name, value) changed = True if changed: user.save() ```
{ "source": "jdavidagudelo/django-social-auth-fix", "score": 3 }
#### File: backends/contrib/jawbone.py ```python from urllib2 import Request, urlopen try: import json as simplejson except ImportError: try: import simplejson except ImportError: from django.utils import simplejson from social_auth.backends import BaseOAuth2, OAuthBackend from social_auth.exceptions import AuthCanceled, AuthUnknownError # Jawbone configuration JAWBONE_SERVER = 'https://jawbone.com/' JAWBONE_AUTHORIZATION_URL = '%s/auth/oauth2/auth' % JAWBONE_SERVER JAWBONE_ACCESS_TOKEN_URL = '%s/auth/oauth2/token' % JAWBONE_SERVER JAWBONE_CHECK_AUTH = '%s/nudge/api/users/@me' % JAWBONE_SERVER class JawboneBackend(OAuthBackend): name = 'jawbone' def get_user_id(self, details, response): return response['data']['xid'] def get_user_details(self, response): """Return user details from Jawbone account""" firstName = response['data'].get('first', '') lastName = response['data'].get('last', '') dob = response['data'].get('dob', '') gender = response['data'].get('gender', '') height = response['data'].get('height', '') weight = response['data'].get('weight', '') return {'username': firstName + ' ' + lastName, 'first_name': firstName, 'last_name': lastName, 'dob': dob, 'gender': gender, 'height': height, 'weight': weight} class JawboneAuth(BaseOAuth2): """Jawbone OAuth mechanism""" AUTHORIZATION_URL = JAWBONE_AUTHORIZATION_URL ACCESS_TOKEN_URL = JAWBONE_ACCESS_TOKEN_URL SERVER_URL = JAWBONE_SERVER AUTH_BACKEND = JawboneBackend SETTINGS_KEY_NAME = 'JAWBONE_CONSUMER_KEY' SETTINGS_SECRET_NAME = 'JAWBONE_CONSUMER_SECRET' SCOPE_SEPARATOR = ' ' # Look at http://developer.github.com/v3/oauth/ SCOPE_VAR_NAME = 'JAWBONE_EXTENDED_PERMISSIONS' REDIRECT_STATE = False def user_data(self, access_token, *args, **kwargs): """Loads user data from service""" url = JAWBONE_CHECK_AUTH headers = {'Authorization': 'Bearer ' + access_token} request = Request(url, headers=headers) try: return simplejson.load(urlopen(request)) except ValueError: return None def process_error(self, data): error = self.request.GET.get('error', '') if error: if error == 'access_denied': raise AuthCanceled(self) else: raise AuthUnknownError(self, 'Jawbone error was %s' % error) return super(JawboneAuth, self).process_error(data) # Backend definition BACKENDS = { 'jawbone': JawboneAuth, } ``` #### File: backends/contrib/rdio.py ```python import urllib from oauth2 import Request as OAuthRequest, SignatureMethod_HMAC_SHA1 try: import json as simplejson except ImportError: try: import simplejson except ImportError: from django.utils import simplejson from social_auth.backends import ConsumerBasedOAuth, OAuthBackend, BaseOAuth2 from social_auth.utils import dsa_urlopen class RdioBaseBackend(OAuthBackend): def get_user_id(self, details, response): return response['key'] def get_user_details(self, response): return { 'username': response['username'], 'first_name': response['firstName'], 'last_name': response['lastName'], 'fullname': response['displayName'], } class RdioOAuth1Backend(RdioBaseBackend): """Rdio OAuth authentication backend""" name = 'rdio-oauth1' EXTRA_DATA = [ ('key', 'rdio_id'), ('icon', 'rdio_icon_url'), ('url', 'rdio_profile_url'), ('username', 'rdio_username'), ('streamRegion', 'rdio_stream_region'), ] @classmethod def tokens(cls, instance): token = super(RdioOAuth1Backend, cls).tokens(instance) if token and 'access_token' in token: token = dict(tok.split('=') for tok in token['access_token'].split('&')) return token class RdioOAuth2Backend(RdioBaseBackend): name = 'rdio-oauth2' EXTRA_DATA = [ ('key', 'rdio_id'), ('icon', 'rdio_icon_url'), ('url', 'rdio_profile_url'), ('username', 'rdio_username'), ('streamRegion', 'rdio_stream_region'), ('refresh_token', 'refresh_token', True), ('token_type', 'token_type', True), ] class RdioOAuth1(ConsumerBasedOAuth): AUTH_BACKEND = RdioOAuth1Backend REQUEST_TOKEN_URL = 'http://api.rdio.com/oauth/request_token' AUTHORIZATION_URL = 'https://www.rdio.com/oauth/authorize' ACCESS_TOKEN_URL = 'http://api.rdio.com/oauth/access_token' RDIO_API_BASE = 'http://api.rdio.com/1/' SETTINGS_KEY_NAME = 'RDIO_OAUTH1_KEY' SETTINGS_SECRET_NAME = 'RDIO_OAUTH1_SECRET' def user_data(self, access_token, *args, **kwargs): """Return user data provided""" params = { 'method': 'currentUser', 'extras': 'username,displayName,streamRegion', } request = self.oauth_post_request(access_token, self.RDIO_API_BASE, params=params) response = dsa_urlopen(request.url, request.to_postdata()) json = '\n'.join(response.readlines()) try: return simplejson.loads(json)['result'] except ValueError: return None def oauth_post_request(self, token, url, params): """Generate OAuth request, setups callback url""" if 'oauth_verifier' in self.data: params['oauth_verifier'] = self.data['oauth_verifier'] request = OAuthRequest.from_consumer_and_token(self.consumer, token=token, http_url=url, parameters=params, http_method='POST') request.sign_request(SignatureMethod_HMAC_SHA1(), self.consumer, token) return request class RdioOAuth2(BaseOAuth2): AUTH_BACKEND = RdioOAuth2Backend AUTHORIZATION_URL = 'https://www.rdio.com/oauth2/authorize' ACCESS_TOKEN_URL = 'https://www.rdio.com/oauth2/token' RDIO_API_BASE = 'https://www.rdio.com/api/1/' SETTINGS_KEY_NAME = 'RDIO_OAUTH2_KEY' SETTINGS_SECRET_NAME = 'RDIO_OAUTH2_SECRET' SCOPE_VAR_NAME = 'RDIO2_PERMISSIONS' EXTRA_PARAMS_VAR_NAME = 'RDIO2_EXTRA_PARAMS' def user_data(self, access_token, *args, **kwargs): params = { 'method': 'currentUser', 'extras': 'username,displayName,streamRegion', 'access_token': access_token, } response = dsa_urlopen(self.RDIO_API_BASE, urllib.urlencode(params)) try: return simplejson.load(response)['result'] except ValueError: return None # Backend definition BACKENDS = { 'rdio-oauth1': RdioOAuth1, 'rdio-oauth2': RdioOAuth2 } ``` #### File: backends/contrib/yahoo.py ```python try: import json as simplejson except ImportError: try: import simplejson except ImportError: from django.utils import simplejson from social_auth.backends import ConsumerBasedOAuth, OAuthBackend from social_auth.exceptions import AuthUnknownError # Google OAuth base configuration YAHOO_OAUTH_SERVER = 'api.login.yahoo.com' REQUEST_TOKEN_URL = 'https://api.login.yahoo.com/oauth/v2/get_request_token' AUTHORIZATION_URL = 'https://api.login.yahoo.com/oauth/v2/request_auth' ACCESS_TOKEN_URL = 'https://api.login.yahoo.com/oauth/v2/get_token' class YahooOAuthBackend(OAuthBackend): """Yahoo OAuth authentication backend""" name = 'yahoo-oauth' EXTRA_DATA = [ ('guid', 'id'), ('access_token', 'access_token'), ('expires', 'expires') ] def get_user_id(self, details, response): return response['guid'] def get_user_details(self, response): """Return user details from Yahoo Profile""" fname = response.get('givenName') lname = response.get('familyName') if 'emails' in response: email = response.get('emails')[0]['handle'] else: email = '' return {'username': response.get('nickname'), 'email': email, 'fullname': '%s %s' % (fname, lname), 'first_name': fname, 'last_name': lname} class YahooOAuth(ConsumerBasedOAuth): AUTHORIZATION_URL = AUTHORIZATION_URL REQUEST_TOKEN_URL = REQUEST_TOKEN_URL ACCESS_TOKEN_URL = ACCESS_TOKEN_URL AUTH_BACKEND = YahooOAuthBackend SETTINGS_KEY_NAME = 'YAHOO_CONSUMER_KEY' SETTINGS_SECRET_NAME = 'YAHOO_CONSUMER_SECRET' def user_data(self, access_token, *args, **kwargs): """Loads user data from service""" guid = self._get_guid(access_token) url = 'http://social.yahooapis.com/v1/user/%s/profile?format=json' \ % guid request = self.oauth_request(access_token, url) response = self.fetch_response(request) try: return simplejson.loads(response)['profile'] except ValueError: raise AuthUnknownError('Error during profile retrieval, ' 'please, try again later') def _get_guid(self, access_token): """ Beause you have to provide GUID for every API request it's also returned during one of OAuth calls """ url = 'http://social.yahooapis.com/v1/me/guid?format=json' request = self.oauth_request(access_token, url) response = self.fetch_response(request) try: json = simplejson.loads(response) return json['guid']['value'] except ValueError: raise AuthUnknownError('Error during user id retrieval, ' 'please, try again later') # Backend definition BACKENDS = { 'yahoo-oauth': YahooOAuth } ```
{ "source": "jdavidagudelo/django-userena-ce", "score": 3 }
#### File: umessages/tests/test_forms.py ```python from django.contrib.auth import get_user_model from django.test import TestCase from userena.contrib.umessages.forms import ComposeForm class ComposeFormTests(TestCase): """ Test the compose form. """ fixtures = ["users"] def test_invalid_data(self): """ Test the save method of :class:`ComposeForm` We don't need to make the ``to`` field sweat because we have done that in the ``fields`` test. """ invalid_data_dicts = [ # No body { "data": {"to": "john", "body": ""}, "error": ("body", ["This field is required."]), } ] for invalid_dict in invalid_data_dicts: form = ComposeForm(data=invalid_dict["data"]) self.assertFalse(form.is_valid()) self.assertEqual( form.errors[invalid_dict["error"][0]], invalid_dict["error"][1] ) def test_save_msg(self): """ Test valid data """ valid_data = {"to": "<NAME>", "body": "Body"} form = ComposeForm(data=valid_data) self.assertTrue(form.is_valid()) # Save the form. sender = get_user_model().objects.get(username="jane") msg = form.save(sender) # Check if the values are set correctly self.assertEqual(msg.body, valid_data["body"]) self.assertEqual(msg.sender, sender) self.assertTrue(msg.sent_at) # Check recipients self.assertEqual(msg.recipients.all()[0].username, "jane") self.assertEqual(msg.recipients.all()[1].username, "john") ``` #### File: django-userena-ce/userena/forms.py ```python import random from collections import OrderedDict from hashlib import sha1 from django import forms from django.contrib.auth import authenticate from django.contrib.auth import get_user_model from django.utils.translation import gettext_lazy as _ from userena import settings as userena_settings from userena.models import UserenaSignup from userena.utils import get_profile_model attrs_dict = {"class": "required"} USERNAME_RE = r"^[\.\w]+$" class SignupForm(forms.Form): """ Form for creating a new user account. Validates that the requested username and e-mail is not already in use. Also requires the password to be entered twice. """ username = forms.RegexField( regex=USERNAME_RE, max_length=30, widget=forms.TextInput(attrs=attrs_dict), label=_("Username"), error_messages={ "invalid": _( "Username must contain only letters, numbers, dots and underscores." ) }, ) email = forms.EmailField( widget=forms.TextInput(attrs=dict(attrs_dict, maxlength=75)), label=_("Email") ) password1 = forms.CharField( widget=forms.PasswordInput(attrs=attrs_dict, render_value=False), label=_("Create password"), ) password2 = forms.CharField( widget=forms.PasswordInput(attrs=attrs_dict, render_value=False), label=_("Repeat password"), ) def clean_username(self): """ Validate that the username is alphanumeric and is not already in use. Also validates that the username is not listed in ``USERENA_FORBIDDEN_USERNAMES`` list. """ try: user = get_user_model().objects.get( username__iexact=self.cleaned_data["username"] ) except get_user_model().DoesNotExist: pass else: if userena_settings.USERENA_ACTIVATION_REQUIRED and UserenaSignup.objects.filter( user__username__iexact=self.cleaned_data["username"] ).exclude( activation_key=userena_settings.USERENA_ACTIVATED ): raise forms.ValidationError( _( "This username is already taken but not confirmed. Please check your email for verification steps." ) ) raise forms.ValidationError(_("This username is already taken.")) if ( self.cleaned_data["username"].lower() in userena_settings.USERENA_FORBIDDEN_USERNAMES ): raise forms.ValidationError(_("This username is not allowed.")) return self.cleaned_data["username"] def clean_email(self): """ Validate that the e-mail address is unique. """ if get_user_model().objects.filter(email__iexact=self.cleaned_data["email"]): if userena_settings.USERENA_ACTIVATION_REQUIRED and UserenaSignup.objects.filter( user__email__iexact=self.cleaned_data["email"] ).exclude( activation_key=userena_settings.USERENA_ACTIVATED ): raise forms.ValidationError( _( "This email is already in use but not confirmed. Please check your email for verification steps." ) ) raise forms.ValidationError( _("This email is already in use. Please supply a different email.") ) return self.cleaned_data["email"] def clean(self): """ Validates that the values entered into the two password fields match. Note that an error here will end up in ``non_field_errors()`` because it doesn't apply to a single field. """ if "password1" in self.cleaned_data and "password2" in self.cleaned_data: if self.cleaned_data["password1"] != self.cleaned_data["password2"]: raise forms.ValidationError(_("The two password fields didn't match.")) return self.cleaned_data def save(self): """ Creates a new user and account. Returns the newly created user. """ username, email, password = ( self.cleaned_data["username"], self.cleaned_data["email"], self.cleaned_data["password1"], ) new_user = UserenaSignup.objects.create_user( username, email, password, not userena_settings.USERENA_ACTIVATION_REQUIRED, userena_settings.USERENA_ACTIVATION_REQUIRED, ) return new_user class SignupFormOnlyEmail(SignupForm): """ Form for creating a new user account but not needing a username. This form is an adaptation of :class:`SignupForm`. It's used when ``USERENA_WITHOUT_USERNAME`` setting is set to ``True``. And thus the user is not asked to supply an username, but one is generated for them. The user can than keep sign in by using their email. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) del self.fields["username"] def save(self): """ Generate a random username before falling back to parent signup form """ while True: username = sha1(str(random.random()).encode("utf-8")).hexdigest()[:5] try: get_user_model().objects.get(username__iexact=username) except get_user_model().DoesNotExist: break self.cleaned_data["username"] = username return super().save() class SignupFormTos(SignupForm): """ Add a Terms of Service button to the ``SignupForm``. """ tos = forms.BooleanField( widget=forms.CheckboxInput(attrs=attrs_dict), label=_("I have read and agree to the Terms of Service"), error_messages={"required": _("You must agree to the terms to register.")}, ) def identification_field_factory(label, error_required): """ A simple identification field factory which enable you to set the label. :param label: String containing the label for this field. :param error_required: String containing the error message if the field is left empty. """ return forms.CharField( label=label, widget=forms.TextInput(attrs=attrs_dict), max_length=75, error_messages={"required": error_required}, ) class AuthenticationForm(forms.Form): """ A custom form where the identification can be a e-mail address or username. """ identification = identification_field_factory( _("Email or username"), _("Either supply us with your email or username.") ) password = forms.CharField( label=_("Password"), widget=forms.PasswordInput(attrs=attrs_dict, render_value=False), ) remember_me = forms.BooleanField( widget=forms.CheckboxInput(), required=False, label=_("Remember me for %(days)s") % {"days": _(userena_settings.USERENA_REMEMBER_ME_DAYS[0])}, ) def __init__(self, *args, **kwargs): """ A custom init because we need to change the label if no usernames is used """ super().__init__(*args, **kwargs) # Dirty hack, somehow the label doesn't get translated without declaring # it again here. self.fields["remember_me"].label = _("Remember me for %(days)s") % { "days": _(userena_settings.USERENA_REMEMBER_ME_DAYS[0]) } if userena_settings.USERENA_WITHOUT_USERNAMES: self.fields["identification"] = identification_field_factory( _("Email"), _("Please supply your email.") ) def clean(self): """ Checks for the identification and password. If the combination can't be found will raise an invalid sign in error. """ identification = self.cleaned_data.get("identification") password = self.cleaned_data.get("password") if identification and password: user = authenticate(identification=identification, password=password) if user is None: raise forms.ValidationError( _( "Please enter a correct username or email and password. Note that both fields are case-sensitive." ) ) return self.cleaned_data class ChangeEmailForm(forms.Form): email = forms.EmailField( widget=forms.TextInput(attrs=dict(attrs_dict, maxlength=75)), label=_("New email"), ) def __init__(self, user, *args, **kwargs): """ The current ``user`` is needed for initialisation of this form so that we can check if the email address is still free and not always returning ``True`` for this query because it's the users own e-mail address. """ super().__init__(*args, **kwargs) if not isinstance(user, get_user_model()): raise TypeError( "user must be an instance of %s" % get_user_model().__name__ ) else: self.user = user def clean_email(self): """ Validate that the email is not already registered with another user """ if self.cleaned_data["email"].lower() == self.user.email: raise forms.ValidationError(_("You're already known under this email.")) if ( get_user_model() .objects.filter(email__iexact=self.cleaned_data["email"]) .exclude(email__iexact=self.user.email) ): raise forms.ValidationError( _("This email is already in use. Please supply a different email.") ) return self.cleaned_data["email"] def save(self): """ Save method calls :func:`user.change_email()` method which sends out an email with an verification key to verify and with it enable this new email address. """ return self.user.userena_signup.change_email(self.cleaned_data["email"]) class EditProfileForm(forms.ModelForm): """ Base form used for fields that are always required """ first_name = forms.CharField(label=_("First name"), max_length=30, required=False) last_name = forms.CharField(label=_("Last name"), max_length=30, required=False) def __init__(self, *args, **kw): super().__init__(*args, **kw) # Put the first and last name at the top new_order = [ ("first_name", self.fields["first_name"]), ("last_name", self.fields["last_name"]), ] new_order.extend(list(self.fields.items())[:-2]) self.fields = OrderedDict(new_order) class Meta: model = get_profile_model() exclude = ["user"] def save(self, force_insert=False, force_update=False, commit=True): profile = super().save(commit=commit) # Save first and last name user = profile.user user.first_name = self.cleaned_data["first_name"] user.last_name = self.cleaned_data["last_name"] user.save() return profile class ActivationForm(forms.Form): """Form for activating an account.""" pass ``` #### File: django-userena-ce/userena/mail.py ```python import re from django.conf import settings from django.template.loader import render_to_string from django.utils.translation import gettext as _ from django.core.mail import EmailMultiAlternatives from userena import settings as userena_settings from html2text import html2text def send_mail( subject, message_plain, message_html, email_from, email_to, custom_headers={}, attachments=(), ): """ Build the email as a multipart message containing a multipart alternative for text (plain, HTML) plus all the attached files. """ if not message_plain and not message_html: raise ValueError(_("Either message_plain or message_html should be not None")) if not message_plain: message_plain = html2text(message_html) message = {} message["subject"] = subject message["body"] = message_plain message["from_email"] = email_from message["to"] = email_to if attachments: message["attachments"] = attachments if custom_headers: message["headers"] = custom_headers msg = EmailMultiAlternatives(**message) if message_html: msg.attach_alternative(message_html, "text/html") msg.send() def wrap_attachment(): pass class UserenaConfirmationMail(object): _message_txt = "userena/emails/{0}_email_message{1}.txt" _message_html = "userena/emails/{0}_email_message{1}.html" _subject_txt = "userena/emails/{0}_email_subject{1}.txt" def __init__(self, context): self.context = context def generate_mail(self, type_mail, version=""): self.type_mail = type_mail self.message_txt = self._message_txt.format(type_mail, version) self.message_html = self._message_html.format(type_mail, version) self.subject_txt = self._subject_txt.format(type_mail, version) self.subject = self._subject() self.message_html = self._message_in_html() self.message = self._message_in_txt() def send_mail(self, email): send_mail( self.subject, self.message, self.message_html, settings.DEFAULT_FROM_EMAIL, [email], ) def _message_in_html(self): if userena_settings.USERENA_HTML_EMAIL: return render_to_string(self.message_html, self.context) return None def _message_in_txt(self): if ( not userena_settings.USERENA_HTML_EMAIL or not self.message_html or userena_settings.USERENA_USE_PLAIN_TEMPLATE ): return render_to_string(self.message_txt, self.context) return None def _subject(self): subject = render_to_string(self.subject_txt, self.context) subject = "".join(subject.splitlines()) return subject ``` #### File: userena/tests/test_migrations.py ```python import pytest from django.core.management import call_command @pytest.mark.django_db def test_make_migration(capsys): """ Ensure that migrations do not need to be made """ call_command("makemigrations") out, err = capsys.readouterr() assert out == "No changes detected\n" assert err == "" ``` #### File: userena/tests/tests_middleware.py ```python from django.contrib.auth import get_user_model from django.http import HttpRequest from django.test import TestCase from userena.tests.profiles.models import Profile from userena.middleware import UserenaLocaleMiddleware from userena import settings as userena_settings from userena.utils import get_user_profile, get_profile_model User = get_user_model() def has_profile(user): """Test utility function to check if user has profile""" profile_model = get_profile_model() try: profile = user.get_profile() except AttributeError: related_name = profile_model._meta.get_field("user").related_query_name() profile = getattr(user, related_name, None) except profile_model.DoesNotExist: profile = None return bool(profile) class UserenaLocaleMiddlewareTests(TestCase): """ Test the ``UserenaLocaleMiddleware`` """ fixtures = ["users", "profiles"] def _get_request_with_user(self, user): """ Fake a request with an user """ request = HttpRequest() request.META = {"SERVER_NAME": "testserver", "SERVER_PORT": 80} request.method = "GET" request.session = {} # Add user request.user = user return request def test_preference_user(self): """ Test the language preference of two users """ users = ((1, "nl"), (2, "en")) for pk, lang in users: user = User.objects.get(pk=pk) profile = get_user_profile(user=user) req = self._get_request_with_user(user) # Check that the user has this preference self.assertEqual(profile.language, lang) # Request should have a ``LANGUAGE_CODE`` with dutch UserenaLocaleMiddleware().process_request(req) self.assertEqual(req.LANGUAGE_CODE, lang) def test_without_profile(self): """ Middleware should do nothing when a user has no profile """ # Delete the profile Profile.objects.get(pk=1).delete() user = User.objects.get(pk=1) # User shouldn't have a profile self.assertFalse(has_profile(user)) req = self._get_request_with_user(user) UserenaLocaleMiddleware().process_request(req) self.assertFalse(hasattr(req, "LANGUAGE_CODE")) def test_without_language_field(self): """ Middleware should do nothing if the profile has no language field """ userena_settings.USERENA_LANGUAGE_FIELD = "non_existant_language_field" user = User.objects.get(pk=1) req = self._get_request_with_user(user) # Middleware should do nothing UserenaLocaleMiddleware().process_request(req) self.assertFalse(hasattr(req, "LANGUAGE_CODE")) ```
{ "source": "jdavidagudelo/tensorflow-models", "score": 2 }
#### File: official/benchmark/benchmark_uploader.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import json from google.cloud import bigquery from google.cloud import exceptions import tensorflow as tf class BigQueryUploader(object): """Upload the benchmark and metric info from JSON input to BigQuery. """ def __init__(self, gcp_project=None, credentials=None): """Initialized BigQueryUploader with proper setting. Args: gcp_project: string, the name of the GCP project that the log will be uploaded to. The default project name will be detected from local environment if no value is provided. credentials: google.auth.credentials. The credential to access the BigQuery service. The default service account credential will be detected from local environment if no value is provided. Please use google.oauth2.service_account.Credentials to load credential from local file for the case that the test is run out side of GCP. """ self._bq_client = bigquery.Client( project=gcp_project, credentials=credentials) def upload_benchmark_run_json( self, dataset_name, table_name, run_id, run_json): """Upload benchmark run information to Bigquery. Args: dataset_name: string, the name of bigquery dataset where the data will be uploaded. table_name: string, the name of bigquery table under the dataset where the data will be uploaded. run_id: string, a unique ID that will be attached to the data, usually this is a UUID4 format. run_json: dict, the JSON data that contains the benchmark run info. """ run_json["model_id"] = run_id self._upload_json(dataset_name, table_name, [run_json]) def upload_benchmark_metric_json( self, dataset_name, table_name, run_id, metric_json_list): """Upload metric information to Bigquery. Args: dataset_name: string, the name of bigquery dataset where the data will be uploaded. table_name: string, the name of bigquery table under the dataset where the metric data will be uploaded. This is different from the benchmark_run table. run_id: string, a unique ID that will be attached to the data, usually this is a UUID4 format. This should be the same as the benchmark run_id. metric_json_list: list, a list of JSON object that record the metric info. """ for m in metric_json_list: m["run_id"] = run_id self._upload_json(dataset_name, table_name, metric_json_list) def upload_benchmark_run_file( self, dataset_name, table_name, run_id, run_json_file): """Upload benchmark run information to Bigquery from input json file. Args: dataset_name: string, the name of bigquery dataset where the data will be uploaded. table_name: string, the name of bigquery table under the dataset where the data will be uploaded. run_id: string, a unique ID that will be attached to the data, usually this is a UUID4 format. run_json_file: string, the file path that contains the run JSON data. """ with tf.gfile.GFile(run_json_file) as f: benchmark_json = json.load(f) self.upload_benchmark_run_json( dataset_name, table_name, run_id, benchmark_json) def upload_metric_file( self, dataset_name, table_name, run_id, metric_json_file): """Upload metric information to Bigquery from input json file. Args: dataset_name: string, the name of bigquery dataset where the data will be uploaded. table_name: string, the name of bigquery table under the dataset where the metric data will be uploaded. This is different from the benchmark_run table. run_id: string, a unique ID that will be attached to the data, usually this is a UUID4 format. This should be the same as the benchmark run_id. metric_json_file: string, the file path that contains the metric JSON data. """ with tf.gfile.GFile(metric_json_file) as f: metrics = [] for line in f: metrics.append(json.loads(line.strip())) self.upload_benchmark_metric_json( dataset_name, table_name, run_id, metrics) def _upload_json(self, dataset_name, table_name, json_list): # Find the unique table reference based on dataset and table name, so that # the data can be inserted to it. table_ref = self._bq_client.dataset(dataset_name).table(table_name) errors = self._bq_client.insert_rows_json(table_ref, json_list) if errors: tf.logging.error( "Failed to upload benchmark info to bigquery: {}".format(errors)) def insert_run_status(self, dataset_name, table_name, run_id, run_status): """Insert the run status in to Bigquery run status table.""" query = ("INSERT {ds}.{tb} " "(run_id, status) " "VALUES('{rid}', '{status}')").format( ds=dataset_name, tb=table_name, rid=run_id, status=run_status) try: self._bq_client.query(query=query).result() except exceptions.GoogleCloudError as e: tf.logging.error("Failed to insert run status: %s", e) def update_run_status(self, dataset_name, table_name, run_id, run_status): """Update the run status in in Bigquery run status table.""" query = ("UPDATE {ds}.{tb} " "SET status = '{status}' " "WHERE run_id = '{rid}'").format( ds=dataset_name, tb=table_name, status=run_status, rid=run_id) try: self._bq_client.query(query=query).result() except exceptions.GoogleCloudError as e: tf.logging.error("Failed to update run status: %s", e) ``` #### File: adversarial_logit_pairing/datasets/dataset_factory.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from . import imagenet_input from . import tiny_imagenet_input def get_dataset(dataset_name, split, batch_size, image_size, is_training): """Returns dataset. Args: dataset_name: name of the dataset, "imagenet" or "tiny_imagenet". split: name of the split, "train" or "validation". batch_size: size of the minibatch. image_size: size of the one side of the image. Output images will be resized to square shape image_size*image_size. is_training: if True then training preprocessing is done, otherwise eval preprocessing is done. Raises: ValueError: if dataset_name is invalid. Returns: dataset: instance of tf.data.Dataset with the dataset. num_examples: number of examples in given split of the dataset. num_classes: number of classes in the dataset. bounds: tuple with bounds of image values. All returned image pixels are between bounds[0] and bounds[1]. """ if dataset_name == 'tiny_imagenet': dataset = tiny_imagenet_input.tiny_imagenet_input( split, batch_size, image_size, is_training) num_examples = tiny_imagenet_input.num_examples_per_epoch(split) num_classes = 200 bounds = (-1, 1) elif dataset_name == 'imagenet': dataset = imagenet_input.imagenet_input( split, batch_size, image_size, is_training) num_examples = imagenet_input.num_examples_per_epoch(split) num_classes = 1001 bounds = (-1, 1) else: raise ValueError('Invalid dataset %s' % dataset_name) return dataset, num_examples, num_classes, bounds ``` #### File: astronet/util/configdict_test.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import absltest from research.astronet.astronet.util import configdict class ConfigDictTest(absltest.TestCase): def setUp(self): super(ConfigDictTest, self).setUp() self._config = configdict.ConfigDict({ "int": 1, "float": 2.0, "bool": True, "str": "hello", "nested": { "int": 3, }, "double_nested": { "a": { "int": 3, }, "b": { "float": 4.0, } } }) def testAccess(self): # Simple types. self.assertEqual(1, self._config.int) self.assertEqual(1, self._config["int"]) self.assertEqual(2.0, self._config.float) self.assertEqual(2.0, self._config["float"]) self.assertTrue(self._config.bool) self.assertTrue(self._config["bool"]) self.assertEqual("hello", self._config.str) self.assertEqual("hello", self._config["str"]) # Single nested config. self.assertEqual(3, self._config.nested.int) self.assertEqual(3, self._config["nested"].int) self.assertEqual(3, self._config.nested["int"]) self.assertEqual(3, self._config["nested"]["int"]) # Double nested config. self.assertEqual(3, self._config["double_nested"].a.int) self.assertEqual(3, self._config["double_nested"]["a"].int) self.assertEqual(3, self._config["double_nested"].a["int"]) self.assertEqual(3, self._config["double_nested"]["a"]["int"]) self.assertEqual(4.0, self._config.double_nested.b.float) self.assertEqual(4.0, self._config.double_nested["b"].float) self.assertEqual(4.0, self._config.double_nested.b["float"]) self.assertEqual(4.0, self._config.double_nested["b"]["float"]) # Nonexistent parameters. with self.assertRaises(AttributeError): _ = self._config.nonexistent with self.assertRaises(KeyError): _ = self._config["nonexistent"] def testSetAttribut(self): # Overwrite existing simple type. self._config.int = 40 self.assertEqual(40, self._config.int) # Overwrite existing nested simple type. self._config.nested.int = 40 self.assertEqual(40, self._config.nested.int) # Overwrite existing nested config. self._config.double_nested.a = {"float": 50.0} self.assertIsInstance(self._config.double_nested.a, configdict.ConfigDict) self.assertEqual(50.0, self._config.double_nested.a.float) self.assertNotIn("int", self._config.double_nested.a) # Set new simple type. self._config.int_2 = 10 self.assertEqual(10, self._config.int_2) # Set new nested simple type. self._config.nested.int_2 = 20 self.assertEqual(20, self._config.nested.int_2) # Set new nested config. self._config.double_nested.c = {"int": 30} self.assertIsInstance(self._config.double_nested.c, configdict.ConfigDict) self.assertEqual(30, self._config.double_nested.c.int) def testSetItem(self): # Overwrite existing simple type. self._config["int"] = 40 self.assertEqual(40, self._config.int) # Overwrite existing nested simple type. self._config["nested"].int = 40 self.assertEqual(40, self._config.nested.int) self._config.nested["int"] = 50 self.assertEqual(50, self._config.nested.int) # Overwrite existing nested config. self._config.double_nested["a"] = {"float": 50.0} self.assertIsInstance(self._config.double_nested.a, configdict.ConfigDict) self.assertEqual(50.0, self._config.double_nested.a.float) self.assertNotIn("int", self._config.double_nested.a) # Set new simple type. self._config["int_2"] = 10 self.assertEqual(10, self._config.int_2) # Set new nested simple type. self._config.nested["int_2"] = 20 self.assertEqual(20, self._config.nested.int_2) self._config.nested["int_3"] = 30 self.assertEqual(30, self._config.nested.int_3) # Set new nested config. self._config.double_nested["c"] = {"int": 30} self.assertIsInstance(self._config.double_nested.c, configdict.ConfigDict) self.assertEqual(30, self._config.double_nested.c.int) def testDelete(self): # Simple types. self.assertEqual(1, self._config.int) del self._config.int with self.assertRaises(AttributeError): _ = self._config.int with self.assertRaises(KeyError): _ = self._config["int"] self.assertEqual(2.0, self._config["float"]) del self._config["float"] with self.assertRaises(AttributeError): _ = self._config.float with self.assertRaises(KeyError): _ = self._config["float"] # Nested config. self.assertEqual(3, self._config.nested.int) del self._config.nested with self.assertRaises(AttributeError): _ = self._config.nested with self.assertRaises(KeyError): _ = self._config["nested"] if __name__ == "__main__": absltest.main() ``` #### File: astronet/util/config_util_test.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from research.astronet.astronet.util import config_util class ConfigUtilTest(tf.test.TestCase): def testUnflatten(self): # Empty dict. self.assertDictEqual(config_util.unflatten({}), {}) # Already flat dict. self.assertDictEqual( config_util.unflatten({ "a": 1, "b": 2 }), { "a": 1, "b": 2 }) # Nested dict. self.assertDictEqual( config_util.unflatten({ "a": 1, "b.c": 2, "b.d.e": 3, "b.d.f": 4, }), { "a": 1, "b": { "c": 2, "d": { "e": 3, "f": 4, } } }) if __name__ == "__main__": tf.test.main() ``` #### File: brain_coder/common/schedules.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function """Schedule functions for controlling hparams over time.""" from abc import ABCMeta from abc import abstractmethod import math from research.brain_coder.common import config_lib # brain coder class Schedule(object): """Schedule is a function which sets a hyperparameter's value over time. For example, a schedule can be used to decay an hparams, or oscillate it over time. This object is constructed with an instance of config_lib.Config (will be specific to each class implementation). For example if this is a decay schedule, the config may specify the rate of decay and decay start time. Then the object instance is called like a function, mapping global step (an integer counting how many calls to the train op have been made) to the hparam value. Properties of a schedule function f(t): 0) Domain of t is the non-negative integers (t may be 0). 1) Range of f is the reals. 2) Schedule functions can assume that they will be called in time order. This allows schedules to be stateful. 3) Schedule functions should be deterministic. Two schedule instances with the same config must always give the same value for each t, and regardless of what t's it was previously called on. Users may call f(t) on arbitrary (positive) time jumps. Essentially, multiple schedule instances used in replica training will behave the same. 4) Duplicate successive calls on the same time are allowed. """ __metaclass__ = ABCMeta @abstractmethod def __init__(self, config): """Construct this schedule with a config specific to each class impl. Args: config: An instance of config_lib.Config. """ pass @abstractmethod def __call__(self, global_step): """Map `global_step` to a value. `global_step` is an integer counting how many calls to the train op have been made across all replicas (hence why it is global). Implementations may assume calls to be made in time order, i.e. `global_step` now >= previous `global_step` values. Args: global_step: Non-negative integer. Returns: Hparam value at this step. A number. """ pass class ConstSchedule(Schedule): """Constant function. config: const: Constant value at every step. f(t) = const. """ def __init__(self, config): super(ConstSchedule, self).__init__(config) self.const = config.const def __call__(self, global_step): return self.const class LinearDecaySchedule(Schedule): """Linear decay function. config: initial: Decay starts from this value. final: Decay ends at this value. start_time: Step when decay starts. Constant before it. end_time: When decay ends. Constant after it. f(t) is a linear function when start_time <= t <= end_time, with slope of (final - initial) / (end_time - start_time). f(t) = initial when t <= start_time. f(t) = final when t >= end_time. If start_time == end_time, this becomes a step function. """ def __init__(self, config): super(LinearDecaySchedule, self).__init__(config) self.initial = config.initial self.final = config.final self.start_time = config.start_time self.end_time = config.end_time if self.end_time < self.start_time: raise ValueError('start_time must be before end_time.') # Linear interpolation. self._time_diff = float(self.end_time - self.start_time) self._diff = float(self.final - self.initial) self._slope = ( self._diff / self._time_diff if self._time_diff > 0 else float('inf')) def __call__(self, global_step): if global_step <= self.start_time: return self.initial if global_step > self.end_time: return self.final return self.initial + (global_step - self.start_time) * self._slope class ExponentialDecaySchedule(Schedule): """Exponential decay function. See https://en.wikipedia.org/wiki/Exponential_decay. Use this decay function to decay over orders of magnitude. For example, to decay learning rate from 1e-2 to 1e-6. Exponential decay will decay the exponent linearly. config: initial: Decay starts from this value. final: Decay ends at this value. start_time: Step when decay starts. Constant before it. end_time: When decay ends. Constant after it. f(t) is an exponential decay function when start_time <= t <= end_time. The decay rate and amplitude are chosen so that f(t) = initial when t = start_time, and f(t) = final when t = end_time. f(t) is constant for t < start_time or t > end_time. initial and final must be positive values. If start_time == end_time, this becomes a step function. """ def __init__(self, config): super(ExponentialDecaySchedule, self).__init__(config) self.initial = config.initial self.final = config.final self.start_time = config.start_time self.end_time = config.end_time if self.initial <= 0 or self.final <= 0: raise ValueError('initial and final must be positive numbers.') # Linear interpolation in log space. self._linear_fn = LinearDecaySchedule( config_lib.Config( initial=math.log(self.initial), final=math.log(self.final), start_time=self.start_time, end_time=self.end_time)) def __call__(self, global_step): return math.exp(self._linear_fn(global_step)) class SmootherstepDecaySchedule(Schedule): """Smootherstep decay function. A sigmoidal like transition from initial to final values. A smoother transition than linear and exponential decays, hence the name. See https://en.wikipedia.org/wiki/Smoothstep. config: initial: Decay starts from this value. final: Decay ends at this value. start_time: Step when decay starts. Constant before it. end_time: When decay ends. Constant after it. f(t) is fully defined here: https://en.wikipedia.org/wiki/Smoothstep#Variations. f(t) is smooth, as in its first-derivative exists everywhere. """ def __init__(self, config): super(SmootherstepDecaySchedule, self).__init__(config) self.initial = config.initial self.final = config.final self.start_time = config.start_time self.end_time = config.end_time if self.end_time < self.start_time: raise ValueError('start_time must be before end_time.') self._time_diff = float(self.end_time - self.start_time) self._diff = float(self.final - self.initial) def __call__(self, global_step): if global_step <= self.start_time: return self.initial if global_step > self.end_time: return self.final x = (global_step - self.start_time) / self._time_diff # Smootherstep return self.initial + x * x * x * (x * (x * 6 - 15) + 10) * self._diff class HardOscillatorSchedule(Schedule): """Hard oscillator function. config: high: Max value of the oscillator. Value at constant plateaus. low: Min value of the oscillator. Value at constant valleys. start_time: Global step when oscillation starts. Constant before this. period: Width of one oscillation, i.e. number of steps over which the oscillation takes place. transition_fraction: Fraction of the period spent transitioning between high and low values. 50% of this time is spent rising, and 50% of this time is spent falling. 50% of the remaining time is spent constant at the high value, and 50% of the remaining time is spent constant at the low value. transition_fraction = 1.0 means the entire period is spent rising and falling. transition_fraction = 0.0 means no time is spent rising and falling, i.e. the function jumps instantaneously between high and low. f(t) = high when t < start_time. f(t) is periodic when t >= start_time, with f(t + period) = f(t). f(t) is linear with positive slope when rising, and negative slope when falling. At the start of the period t0, f(t0) = high and begins to descend. At the middle of the period f is low and is constant until the ascension begins. f then rises from low to high and is constant again until the period repeats. Note: when transition_fraction is 0, f starts the period low and ends high. """ def __init__(self, config): super(HardOscillatorSchedule, self).__init__(config) self.high = config.high self.low = config.low self.start_time = config.start_time self.period = float(config.period) self.transition_fraction = config.transition_fraction self.half_transition_fraction = config.transition_fraction / 2.0 if self.transition_fraction < 0 or self.transition_fraction > 1.0: raise ValueError('transition_fraction must be between 0 and 1.0') if self.period <= 0: raise ValueError('period must be positive') self._slope = ( float(self.high - self.low) / self.half_transition_fraction if self.half_transition_fraction > 0 else float('inf')) def __call__(self, global_step): if global_step < self.start_time: return self.high period_pos = ((global_step - self.start_time) / self.period) % 1.0 if period_pos >= 0.5: # ascending period_pos -= 0.5 if period_pos < self.half_transition_fraction: return self.low + period_pos * self._slope else: return self.high else: # descending if period_pos < self.half_transition_fraction: return self.high - period_pos * self._slope else: return self.low _NAME_TO_CONFIG = { 'const': ConstSchedule, 'linear_decay': LinearDecaySchedule, 'exp_decay': ExponentialDecaySchedule, 'smooth_decay': SmootherstepDecaySchedule, 'hard_osc': HardOscillatorSchedule, } def make_schedule(config): """Schedule factory. Given `config` containing a `fn` property, a Schedule implementation is instantiated with `config`. See `_NAME_TO_CONFIG` for `fn` options. Args: config: Config with a `fn` option that specifies which Schedule implementation to use. `config` is passed into the constructor. Returns: A Schedule impl instance. """ schedule_class = _NAME_TO_CONFIG[config.fn] return schedule_class(config) ``` #### File: brain_coder/single_task/run.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function r"""Run training. Choose training algorithm and task(s) and follow these examples. Run synchronous policy gradient training locally: CONFIG="agent=c(algorithm='pg'),env=c(task='reverse')" OUT_DIR="/tmp/bf_pg_local" rm -rf $OUT_DIR bazel run -c opt single_task:run -- \ --alsologtostderr \ --config="$CONFIG" \ --max_npe=0 \ --logdir="$OUT_DIR" \ --summary_interval=1 \ --model_v=0 learning/brain/tensorboard/tensorboard.sh --port 12345 --logdir "$OUT_DIR" Run genetic algorithm locally: CONFIG="agent=c(algorithm='ga'),env=c(task='reverse')" OUT_DIR="/tmp/bf_ga_local" rm -rf $OUT_DIR bazel run -c opt single_task:run -- \ --alsologtostderr \ --config="$CONFIG" \ --max_npe=0 \ --logdir="$OUT_DIR" Run uniform random search locally: CONFIG="agent=c(algorithm='rand'),env=c(task='reverse')" OUT_DIR="/tmp/bf_rand_local" rm -rf $OUT_DIR bazel run -c opt single_task:run -- \ --alsologtostderr \ --config="$CONFIG" \ --max_npe=0 \ --logdir="$OUT_DIR" """ from absl import app from absl import flags from absl import logging from ..single_task import defaults # brain coder from ..single_task import ga_train # brain coder from ..single_task import pg_train # brain coder FLAGS = flags.FLAGS flags.DEFINE_string('config', '', 'Configuration.') flags.DEFINE_string( 'logdir', None, 'Absolute path where to write results.') flags.DEFINE_integer('task_id', 0, 'ID for this worker.') flags.DEFINE_integer('num_workers', 1, 'How many workers there are.') flags.DEFINE_integer( 'max_npe', 0, 'NPE = number of programs executed. Maximum number of programs to execute ' 'in each run. Training will complete when this threshold is reached. Set ' 'to 0 for unlimited training.') flags.DEFINE_integer( 'num_repetitions', 1, 'Number of times the same experiment will be run (globally across all ' 'workers). Each run is independent.') flags.DEFINE_string( 'log_level', 'INFO', 'The threshold for what messages will be logged. One of DEBUG, INFO, WARN, ' 'ERROR, or FATAL.') # To register an algorithm: # 1) Add dependency in the BUILD file to this build rule. # 2) Import the algorithm's module at the top of this file. # 3) Add a new entry in the following dict. The key is the algorithm name # (used to select the algorithm in the config). The value is the module # defining the expected functions for training and tuning. See the docstring # for `get_namespace` for further details. ALGORITHM_REGISTRATION = { 'pg': pg_train, 'ga': ga_train, 'rand': ga_train, } def get_namespace(config_string): """Get namespace for the selected algorithm. Users who want to add additional algorithm types should modify this function. The algorithm's namespace should contain the following functions: run_training: Run the main training loop. define_tuner_hparam_space: Return the hparam tuning space for the algo. write_hparams_to_config: Helper for tuning. Write hparams chosen for tuning to the Config object. Look at pg_train.py and ga_train.py for function signatures and implementations. Args: config_string: String representation of a Config object. This will get parsed into a Config in order to determine what algorithm to use. Returns: algorithm_namespace: The module corresponding to the algorithm given in the config. config: The Config object resulting from parsing `config_string`. Raises: ValueError: If config.agent.algorithm is not one of the registered algorithms. """ config = defaults.default_config_with_updates(config_string) if config.agent.algorithm not in ALGORITHM_REGISTRATION: raise ValueError('Unknown algorithm type "%s"' % (config.agent.algorithm,)) else: return ALGORITHM_REGISTRATION[config.agent.algorithm], config def main(argv): del argv # Unused. logging.set_verbosity('error') flags.mark_flag_as_required('logdir') if __name__ == '__main__': app.run(main) ``` #### File: cognitive_mapping_and_planning/datasets/factory.py ```python r"""Wrapper for selecting the navigation environment that we want to train and test on. """ import os import glob import logging from research.cognitive_mapping_and_planning.render import swiftshader_renderer as renderer from research.cognitive_mapping_and_planning.src import file_utils as fu from research.cognitive_mapping_and_planning.src import utils as utils def get_dataset(dataset_name): dataset = None if dataset_name == 'sbpd': dataset = StanfordBuildingParserDataset(dataset_name) else: logging.fatal('Not one of sbpd') return dataset class Loader(): def get_data_dir(self): pass def get_meta_data(self, file_name, data_dir=None): if data_dir is None: data_dir = self.get_data_dir() full_file_name = os.path.join(data_dir, 'meta', file_name) assert (fu.exists(full_file_name)), \ '{:s} does not exist'.format(full_file_name) ext = os.path.splitext(full_file_name)[1] ls = None if ext == '.txt': ls = [] with fu.fopen(full_file_name, 'r') as f: for l in f: ls.append(l.rstrip()) elif ext == '.pkl': ls = utils.load_variables(full_file_name) return ls def load_building(self, name, data_dir=None): if data_dir is None: data_dir = self.get_data_dir() out = {'name': name, 'data_dir': data_dir, 'room_dimension_file': os.path.join(data_dir, 'room-dimension', name + '.pkl'), 'class_map_folder': os.path.join(data_dir, 'class-maps')} return out def load_building_meshes(self, building): dir_name = os.path.join(building['data_dir'], 'mesh', building['name']) mesh_file_name = glob.glob1(dir_name, '*.obj')[0] mesh_file_name_full = os.path.join(dir_name, mesh_file_name) logging.error('Loading building from obj file: %s', mesh_file_name_full) shape = renderer.Shape(mesh_file_name_full, load_materials=True, name_prefix=building['name'] + '_') return [shape] class StanfordBuildingParserDataset(Loader): def __init__(self, ver): self.ver = ver self.data_dir = None def get_data_dir(self): if self.data_dir is None: self.data_dir = 'data/stanford_building_parser_dataset/' return self.data_dir def get_benchmark_sets(self): return self._get_benchmark_sets() def get_split(self, split_name): if self.ver == 'sbpd': return self._get_split(split_name) else: logging.fatal('Unknown version.') @staticmethod def _get_benchmark_sets(): sets = ['train1', 'val', 'test'] return sets @staticmethod def _get_split(split_name): train = ['area1', 'area5a', 'area5b', 'area6'] train1 = ['area1'] val = ['area3'] test = ['area4'] sets = {'train': train, 'train1': train1, 'val': val, 'test': test, 'all': sorted(list(set(train + val + test)))} return sets[split_name] ``` #### File: entropy_coder/lib/blocks_masked_conv2d.py ```python import numpy as np from six.moves import xrange import tensorflow as tf from research.compression.entropy_coder.lib import block_util from research.compression.entropy_coder.lib import blocks_std # pylint does not recognize block_base.BlockBase.__call__(). # pylint: disable=not-callable class RasterScanConv2D(blocks_std.Conv2DBase): """Conv2D with no dependency on future pixels (in raster scan order). For example, assuming a 5 x 5 kernel, the kernel is applied a spatial mask: T T T T T T T T T T T T x F F F F F F F F F F F F where 'T' are pixels which are available when computing the convolution for pixel 'x'. All the pixels marked with 'F' are not available. 'x' itself is not available if strict_order is True, otherwise, it is available. """ def __init__(self, depth, filter_size, strides, padding, strict_order=True, bias=None, act=None, initializer=None, name=None): super(RasterScanConv2D, self).__init__( depth, filter_size, strides, padding, bias, act, name=name) if (filter_size[0] % 2) != 1 or (filter_size[1] % 2) != 1: raise ValueError('Kernel size should be odd.') with self._BlockScope(): if initializer is None: initializer = block_util.RsqrtInitializer(dims=(0, 1, 2)) self._initializer = initializer self._strict_order = strict_order def _CreateKernel(self, shape, dtype): init = self._initializer(shape, dtype) kernel = self.NewVar(init) mask = np.ones(shape[:2], dtype=dtype.as_numpy_dtype) center = shape[:2] // 2 mask[center[0] + 1:, :] = 0 if not self._strict_order: mask[center[0], center[1] + 1:] = 0 else: mask[center[0], center[1]:] = 0 mask = mask.reshape(mask.shape + (1, 1)) return tf.convert_to_tensor(mask, dtype) * kernel class DepthOrderConv2D(blocks_std.Conv2DBase): """Conv2D with no dependency on higher depth dimensions. More precisely, the output depth #n has only dependencies on input depths #k for k < n (if strict_order is True) or for k <= n (if strict_order is False). """ def __init__(self, depth, filter_size, strides, padding, strict_order=True, bias=None, act=None, initializer=None, name=None): super(DepthOrderConv2D, self).__init__( depth, filter_size, strides, padding, bias, act, name=name) with self._BlockScope(): if initializer is None: initializer = block_util.RsqrtInitializer(dims=(0, 1, 2)) self._initializer = initializer self._strict_order = strict_order def _CreateKernel(self, shape, dtype): init = self._initializer(shape, dtype) kernel = self.NewVar(init) mask = np.ones(shape[2:], dtype=dtype.as_numpy_dtype) depth_output = shape[3] for d in xrange(depth_output): if self._strict_order: mask[d:, d] = 0 else: mask[d + 1:, d] = 0 mask = mask.reshape((1, 1) + mask.shape) return tf.convert_to_tensor(mask, dtype) * kernel class GroupRasterScanConv2D(blocks_std.Conv2DBase): """Conv2D with no dependency on future pixels (in raster scan order). This version only introduces dependencies on previous pixels in raster scan order. It can also introduce some dependencies on previous depth positions of the current pixel (current pixel = center pixel of the kernel) in the following way: the depth dimension of the input is split into Ki groups of size |input_group_size|, the output dimension is split into Ko groups of size |output_group_size| (usually Ki == Ko). Each output group ko of the current pixel position can only depend on previous input groups ki (i.e. ki < ko if strict_order is True or ki <= ko if strict_order is False). Notes: - Block RasterScanConv2D is a special case of GroupRasterScanConv2D where Ki == Ko == 1 (i.e. input_group_size == input_depth and output_group_size == output_depth). - For 1x1 convolution, block DepthOrderConv2D is a special case of GroupRasterScanConv2D where input_group_size == 1 and output_group_size == 1. """ def __init__(self, depth, filter_size, strides, padding, strict_order=True, input_group_size=1, output_group_size=1, bias=None, act=None, initializer=None, name=None): super(GroupRasterScanConv2D, self).__init__( depth, filter_size, strides, padding, bias, act, name=name) if (filter_size[0] % 2) != 1 or (filter_size[1] % 2) != 1: raise ValueError('Kernel size should be odd.') with self._BlockScope(): if initializer is None: initializer = block_util.RsqrtInitializer(dims=(0, 1, 2)) self._initializer = initializer self._input_group_size = input_group_size self._output_group_size = output_group_size self._strict_order = strict_order if depth % self._output_group_size != 0: raise ValueError( 'Invalid depth group size: {} for depth {}'.format( self._output_group_size, depth)) self._output_group_count = depth // self._output_group_size def _CreateKernel(self, shape, dtype): init = self._initializer(shape, dtype) kernel = self.NewVar(init) depth_input = shape[2] if depth_input % self._input_group_size != 0: raise ValueError( 'Invalid depth group size: {} for depth {}'.format( self._input_group_size, depth_input)) input_group_count = depth_input // self._input_group_size output_group_count = self._output_group_count # Set the mask to 0 for future pixels in raster scan order. center = shape[:2] // 2 mask = np.ones([shape[0], shape[1], input_group_count, self._input_group_size, output_group_count, self._output_group_size], dtype=dtype.as_numpy_dtype) mask[center[0] + 1:, :, :, :, :, :] = 0 mask[center[0], center[1] + 1:, :, :, :, :] = 0 # Adjust the mask for the current position (the center position). depth_output = shape[3] for d in xrange(output_group_count): mask[center[0], center[1], d + 1:, :, d:d + 1, :] = 0 if self._strict_order: mask[center[0], center[1], d, :, d:d + 1, :] = 0 mask = mask.reshape([shape[0], shape[1], depth_input, depth_output]) return tf.convert_to_tensor(mask, dtype) * kernel class InFillingConv2D(blocks_std.Conv2DBase): """Conv2D with kernel having no dependency on the current pixel. For example, assuming a 5 x 5 kernel, the kernel is applied a spatial mask: T T T T T T T T T T T T x T T T T T T T T T T T T where 'T' marks a pixel which is available when computing the convolution for pixel 'x'. 'x' itself is not available. """ def __init__(self, depth, filter_size, strides, padding, bias=None, act=None, initializer=None, name=None): super(InFillingConv2D, self).__init__( depth, filter_size, strides, padding, bias, act, name=name) if (filter_size[0] % 2) != 1 or (filter_size[1] % 2) != 1: raise ValueError('Kernel size should be odd.') if filter_size[0] == 1 and filter_size[1] == 1: raise ValueError('Kernel size should be larger than 1x1.') with self._BlockScope(): if initializer is None: initializer = block_util.RsqrtInitializer(dims=(0, 1, 2)) self._initializer = initializer def _CreateKernel(self, shape, dtype): init = self._initializer(shape, dtype) kernel = self.NewVar(init) mask = np.ones(shape[:2], dtype=dtype.as_numpy_dtype) center = shape[:2] // 2 mask[center[0], center[1]] = 0 mask = mask.reshape(mask.shape + (1, 1)) return tf.convert_to_tensor(mask, dtype) * kernel ``` #### File: entropy_coder/lib/blocks_std_test.py ```python from __future__ import division from __future__ import unicode_literals import math import numpy as np from six.moves import xrange import tensorflow as tf from research.compression.entropy_coder.lib import blocks_std def _NumpyConv2D(x, f, strides, padding, rate=1): assert strides[0] == 1 and strides[3] == 1, strides if rate > 1: f_shape = f.shape expand_f = np.zeros([f_shape[0], ((f_shape[1] - 1) * rate + 1), f_shape[2], f_shape[3]]) expand_f[:, [y * rate for y in range(f_shape[1])], :, :] = f f = np.zeros([((f_shape[0] - 1) * rate + 1), expand_f.shape[1], f_shape[2], f_shape[3]]) f[[y * rate for y in range(f_shape[0])], :, :, :] = expand_f if padding != 'VALID': assert x.shape[1] > 0 and x.shape[2] > 0, x.shape # Compute the number of padded rows and cols. # See Conv2D block comments for a math explanation. remainder = ((x.shape[1] - 1) % strides[1], (x.shape[2] - 1) % strides[2]) pad_rows = f.shape[0] - remainder[0] - 1 pad_cols = f.shape[1] - remainder[1] - 1 pad = ((0, 0), (pad_rows // 2, (pad_rows + 1) // 2), (pad_cols // 2, (pad_cols + 1) // 2), (0, 0)) # Pad the input using numpy.pad(). mode = None if padding == 'SAME': mode = str('constant') if padding == 'REFLECT': mode = str('reflect') if padding == 'SYMMETRIC': mode = str('symmetric') x = np.pad(x, pad, mode=mode) # Since x is now properly padded, proceed as if padding mode is VALID. x_window = np.empty( (x.shape[0], int(math.ceil((x.shape[1] - f.shape[0] + 1) / strides[1])), int(math.ceil((x.shape[2] - f.shape[1] + 1) / strides[2])), np.prod(f.shape[:3]))) # The output at pixel location (i, j) is the result of linear transformation # applied to the window whose top-left corner is at # (i * row_stride, j * col_stride). for i in xrange(x_window.shape[1]): k = i * strides[1] for j in xrange(x_window.shape[2]): l = j * strides[2] x_window[:, i, j, :] = x[:, k:(k + f.shape[0]), l:(l + f.shape[1]), :].reshape((x_window.shape[0], -1)) y = np.tensordot(x_window, f.reshape((-1, f.shape[3])), axes=1) return y class BlocksStdTest(tf.test.TestCase): def CheckUnary(self, y, op_type): self.assertEqual(op_type, y.op.type) self.assertEqual(1, len(y.op.inputs)) return y.op.inputs[0] def CheckBinary(self, y, op_type): self.assertEqual(op_type, y.op.type) self.assertEqual(2, len(y.op.inputs)) return y.op.inputs def testPassThrough(self): p = blocks_std.PassThrough() x = tf.placeholder(dtype=tf.float32, shape=[1]) self.assertIs(p(x), x) def CheckBiasAdd(self, y, b): x, u = self.CheckBinary(y, 'BiasAdd') self.assertIs(u, b._bias.value()) self.assertEqual(x.dtype, u.dtype.base_dtype) return x def testBiasAdd(self): b = blocks_std.BiasAdd() x = tf.placeholder(dtype=tf.float32, shape=[4, 8]) y = b(x) self.assertEqual(b._bias.get_shape(), x.get_shape()[-1:]) self.assertIs(x, self.CheckBiasAdd(y, b)) def testBiasRankTest(self): b = blocks_std.BiasAdd() x = tf.placeholder(dtype=tf.float32, shape=[10]) with self.assertRaises(ValueError): b(x) def CheckLinear(self, y, m): x, w = self.CheckBinary(y, 'MatMul') self.assertIs(w, m._matrix.value()) self.assertEqual(x.dtype, w.dtype.base_dtype) return x def testLinear(self): m = blocks_std.Linear(10) x = tf.placeholder(dtype=tf.float32, shape=[8, 9]) y = m(x) self.assertEqual(m._matrix.get_shape(), [9, 10]) self.assertIs(x, self.CheckLinear(y, m)) def testLinearShared(self): # Create a linear map which is applied twice on different inputs # (i.e. the weights of the map are shared). linear_map = blocks_std.Linear(6) x1 = tf.random_normal(shape=[1, 5]) x2 = tf.random_normal(shape=[1, 5]) xs = x1 + x2 # Apply the transform with the same weights. y1 = linear_map(x1) y2 = linear_map(x2) ys = linear_map(xs) with self.test_session() as sess: # Initialize all the variables of the graph. tf.global_variables_initializer().run() y1_res, y2_res, ys_res = sess.run([y1, y2, ys]) self.assertAllClose(y1_res + y2_res, ys_res) def CheckNN(self, y, nn, act=None): if act: pre_act = self.CheckUnary(y, act) else: pre_act = y if not isinstance(nn._bias, blocks_std.PassThrough): pre_bias = self.CheckBiasAdd(pre_act, nn._bias) else: pre_bias = pre_act if len(nn._matrices) > 1: self.assertEqual('AddN', pre_bias.op.type) pre_bias = pre_bias.op.inputs else: pre_bias = [pre_bias] self.assertEqual(len(pre_bias), len(nn._matrices)) return [self.CheckLinear(u, m) for u, m in zip(pre_bias, nn._matrices)] def testNNWithoutActWithoutBias(self): nn = blocks_std.NN(10, act=None, bias=None) x = tf.placeholder(dtype=tf.float32, shape=[5, 7]) y = nn(x) self.assertIs(x, self.CheckNN(y, nn)[0]) def testNNWithoutBiasWithAct(self): nn = blocks_std.NN(10, act=tf.nn.relu, bias=None) x = tf.placeholder(dtype=tf.float32, shape=[5, 7]) y = nn(x) self.assertIs(x, self.CheckNN(y, nn, 'Relu')[0]) def testNNWithBiasWithoutAct(self): nn = blocks_std.NN(10, bias=blocks_std.Bias(0), act=None) x = tf.placeholder(dtype=tf.float32, shape=[5, 7]) y = nn(x) self.assertIs(x, self.CheckNN(y, nn)[0]) def testNNWithBiasWithAct(self): nn = blocks_std.NN(10, bias=blocks_std.Bias(0), act=tf.square) x = tf.placeholder(dtype=tf.float32, shape=[5, 7]) y = nn(x) self.assertIs(x, self.CheckNN(y, nn, 'Square')[0]) def testNNMultipleInputs(self): nn = blocks_std.NN(10, bias=blocks_std.Bias(0), act=tf.tanh) x = [tf.placeholder(dtype=tf.float32, shape=[5, 7]), tf.placeholder(dtype=tf.float32, shape=[5, 3]), tf.placeholder(dtype=tf.float32, shape=[5, 5])] y = nn(*x) xs = self.CheckNN(y, nn, 'Tanh') self.assertEqual(len(x), len(xs)) for u, v in zip(x, xs): self.assertIs(u, v) def testConv2DSAME(self): np.random.seed(142536) x_shape = [4, 16, 11, 5] f_shape = [4, 3, 5, 6] strides = [1, 2, 2, 1] padding = 'SAME' conv = blocks_std.Conv2D(depth=f_shape[-1], filter_size=f_shape[0:2], strides=strides[1:3], padding=padding, act=None, bias=None) x_value = np.random.normal(size=x_shape) x = tf.convert_to_tensor(x_value, dtype=tf.float32) y = conv(x) with self.test_session(): tf.global_variables_initializer().run() f_value = conv._kernel.eval() y_value = y.eval() y_expected = _NumpyConv2D(x_value, f_value, strides=strides, padding=padding) self.assertAllClose(y_expected, y_value) def testConv2DValid(self): np.random.seed(253647) x_shape = [4, 11, 12, 5] f_shape = [5, 2, 5, 5] strides = [1, 2, 2, 1] padding = 'VALID' conv = blocks_std.Conv2D(depth=f_shape[-1], filter_size=f_shape[0:2], strides=strides[1:3], padding=padding, act=None, bias=None) x_value = np.random.normal(size=x_shape) x = tf.convert_to_tensor(x_value, dtype=tf.float32) y = conv(x) with self.test_session(): tf.global_variables_initializer().run() f_value = conv._kernel.eval() y_value = y.eval() y_expected = _NumpyConv2D(x_value, f_value, strides=strides, padding=padding) self.assertAllClose(y_expected, y_value) def testConv2DSymmetric(self): np.random.seed(364758) x_shape = [4, 10, 12, 6] f_shape = [3, 4, 6, 5] strides = [1, 1, 1, 1] padding = 'SYMMETRIC' conv = blocks_std.Conv2D(depth=f_shape[-1], filter_size=f_shape[0:2], strides=strides[1:3], padding=padding, act=None, bias=None) x_value = np.random.normal(size=x_shape) x = tf.convert_to_tensor(x_value, dtype=tf.float32) y = conv(x) with self.test_session(): tf.global_variables_initializer().run() f_value = conv._kernel.eval() y_value = y.eval() y_expected = _NumpyConv2D(x_value, f_value, strides=strides, padding=padding) self.assertAllClose(y_expected, y_value) def testConv2DReflect(self): np.random.seed(768798) x_shape = [4, 10, 12, 6] f_shape = [3, 4, 6, 5] strides = [1, 2, 2, 1] padding = 'REFLECT' conv = blocks_std.Conv2D(depth=f_shape[-1], filter_size=f_shape[0:2], strides=strides[1:3], padding=padding, act=None, bias=None) x_value = np.random.normal(size=x_shape) x = tf.convert_to_tensor(x_value, dtype=tf.float32) y = conv(x) with self.test_session(): tf.global_variables_initializer().run() f_value = conv._kernel.eval() y_value = y.eval() y_expected = _NumpyConv2D(x_value, f_value, strides=strides, padding=padding) self.assertAllClose(y_expected, y_value) def testConv2DBias(self): input_shape = [19, 14, 14, 64] filter_shape = [3, 7, 64, 128] strides = [1, 2, 2, 1] output_shape = [19, 6, 4, 128] conv = blocks_std.Conv2D(depth=filter_shape[-1], filter_size=filter_shape[0:2], strides=strides[1:3], padding='VALID', act=None, bias=blocks_std.Bias(1)) x = tf.placeholder(dtype=tf.float32, shape=input_shape) y = conv(x) self.CheckBiasAdd(y, conv._bias) self.assertEqual(output_shape, y.get_shape().as_list()) if __name__ == '__main__': tf.test.main() ``` #### File: cvt_text/model/shared_inputs.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf class Inputs(object): def __init__(self, config): self._config = config self.keep_prob = tf.placeholder(tf.float32, name='keep_prob') self.label_smoothing = tf.placeholder(tf.float32, name='label_smoothing') self.lengths = tf.placeholder(tf.int32, shape=[None], name='lengths') self.mask = tf.placeholder(tf.float32, [None, None], name='mask') self.words = tf.placeholder(tf.int32, shape=[None, None], name='words') self.chars = tf.placeholder(tf.int32, shape=[None, None, None], name='chars') def create_feed_dict(self, mb, is_training): cvt = mb.task_name == 'unlabeled' return { self.keep_prob: 1.0 if not is_training else (self._config.unlabeled_keep_prob if cvt else self._config.labeled_keep_prob), self.label_smoothing: self._config.label_smoothing if (is_training and not cvt) else 0.0, self.lengths: mb.lengths, self.words: mb.words, self.chars: mb.chars, self.mask: mb.mask.astype('float32') } ``` #### File: cvt_text/training/trainer.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import bisect import time import numpy as np import tensorflow as tf from research.cvt_text.base import utils from research.cvt_text.model import multitask_model from research.cvt_text.task_specific import task_definitions class Trainer(object): def __init__(self, config): self._config = config self.tasks = [task_definitions.get_task(self._config, task_name) for task_name in self._config.task_names] utils.log('Loading Pretrained Embeddings') pretrained_embeddings = utils.load_cpickle(self._config.word_embeddings) utils.log('Building Model') self._model = multitask_model.Model( self._config, pretrained_embeddings, self.tasks) utils.log() def train(self, sess, progress, summary_writer): heading = lambda s: utils.heading(s, '(' + self._config.model_name + ')') trained_on_sentences = 0 start_time = time.time() unsupervised_loss_total, unsupervised_loss_count = 0, 0 supervised_loss_total, supervised_loss_count = 0, 0 for mb in self._get_training_mbs(progress.unlabeled_data_reader): if mb.task_name != 'unlabeled': loss = self._model.train_labeled(sess, mb) supervised_loss_total += loss supervised_loss_count += 1 if mb.task_name == 'unlabeled': self._model.run_teacher(sess, mb) loss = self._model.train_unlabeled(sess, mb) unsupervised_loss_total += loss unsupervised_loss_count += 1 mb.teacher_predictions.clear() trained_on_sentences += mb.size global_step = self._model.get_global_step(sess) if global_step % self._config.print_every == 0: utils.log('step {:} - ' 'supervised loss: {:.2f} - ' 'unsupervised loss: {:.2f} - ' '{:.1f} sentences per second'.format( global_step, supervised_loss_total / max(1, supervised_loss_count), unsupervised_loss_total / max(1, unsupervised_loss_count), trained_on_sentences / (time.time() - start_time))) unsupervised_loss_total, unsupervised_loss_count = 0, 0 supervised_loss_total, supervised_loss_count = 0, 0 if global_step % self._config.eval_dev_every == 0: heading('EVAL ON DEV') self.evaluate_all_tasks(sess, summary_writer, progress.history) progress.save_if_best_dev_model(sess, global_step) utils.log() if global_step % self._config.eval_train_every == 0: heading('EVAL ON TRAIN') self.evaluate_all_tasks(sess, summary_writer, progress.history, True) utils.log() if global_step % self._config.save_model_every == 0: heading('CHECKPOINTING MODEL') progress.write(sess, global_step) utils.log() def evaluate_all_tasks(self, sess, summary_writer, history, train_set=False): for task in self.tasks: results = self._evaluate_task(sess, task, summary_writer, train_set) if history is not None: results.append(('step', self._model.get_global_step(sess))) history.append(results) if history is not None: utils.write_cpickle(history, self._config.history_file) def _evaluate_task(self, sess, task, summary_writer, train_set): scorer = task.get_scorer() data = task.train_set if train_set else task.val_set for i, mb in enumerate(data.get_minibatches(self._config.test_batch_size)): loss, batch_preds = self._model.test(sess, mb) scorer.update(mb.examples, batch_preds, loss) results = scorer.get_results(task.name + ('_train_' if train_set else '_dev_')) utils.log(task.name.upper() + ': ' + scorer.results_str()) write_summary(summary_writer, results, global_step=self._model.get_global_step(sess)) return results def _get_training_mbs(self, unlabeled_data_reader): datasets = [task.train_set for task in self.tasks] weights = [np.sqrt(dataset.size) for dataset in datasets] thresholds = np.cumsum([w / np.sum(weights) for w in weights]) labeled_mbs = [dataset.endless_minibatches(self._config.train_batch_size) for dataset in datasets] unlabeled_mbs = unlabeled_data_reader.endless_minibatches() while True: dataset_ind = bisect.bisect(thresholds, np.random.random()) yield next(labeled_mbs[dataset_ind]) if self._config.is_semisup: yield next(unlabeled_mbs) def write_summary(writer, results, global_step): for k, v in results: if 'f1' in k or 'acc' in k or 'loss' in k: writer.add_summary(tf.Summary( value=[tf.Summary.Value(tag=k, simple_value=v)]), global_step) writer.flush() ``` #### File: fivo/models/vrnn_test.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from research.fivo.fivo.models import base from research.fivo.fivo.test_utils import create_vrnn class VrnnTest(tf.test.TestCase): def test_vrnn_normal_emission(self): self.run_vrnn(base.ConditionalNormalDistribution, [-4.509767, -3.242221]) def test_vrnn_bernoulli_emission(self): self.run_vrnn(base.ConditionalBernoulliDistribution, [-2.63812733, -2.02216434]), def run_vrnn(self, generative_class, gt_log_p_x_given_z): """Tests the VRNN. All test values are 'golden values' derived by running the code and copying the output. Args: generative_class: The class of the generative distribution to use. gt_log_p_x_given_z: The ground-truth value of log p(x|z). """ tf.set_random_seed(1234) with self.test_session() as sess: batch_size = 2 model, inputs, targets, _ = create_vrnn(generative_class=generative_class, batch_size=batch_size, data_lengths=(1, 1), random_seed=1234) zero_state = model.zero_state(batch_size=batch_size, dtype=tf.float32) model.set_observations([inputs, targets], tf.convert_to_tensor([1, 1])) model_out = model.propose_and_weight(zero_state, 0) sess.run(tf.global_variables_initializer()) log_alpha, state = sess.run(model_out) rnn_state, latent_state, rnn_out = state self.assertAllClose( rnn_state.c, [[-0.15014534, 0.0143046, 0.00160489, -0.12899463], [-0.25015137, 0.09377634, -0.05000039, -0.17123522]]) self.assertAllClose( rnn_state.h, [[-0.06842659, 0.00760155, 0.00096106, -0.05434214], [-0.1109542, 0.0441804, -0.03121299, -0.07882939]] ) self.assertAllClose( latent_state, [[0.025241, 0.122011, 1.066661, 0.316209, -0.25369, 0.108215, -1.501128, -0.440111, -0.40447, -0.156649, 1.206028], [0.066824, 0.519937, 0.610973, 0.977739, -0.121889, -0.223429, -0.32687, -0.578763, -0.56965, 0.751886, 0.681606]] ) self.assertAllClose(rnn_out, [[-0.068427, 0.007602, 0.000961, -0.054342], [-0.110954, 0.04418, -0.031213, -0.078829]]) gt_log_q_z = [-8.0895052, -6.75819111] gt_log_p_z = [-7.246827, -6.512877] gt_log_alpha = (np.array(gt_log_p_z) + np.array(gt_log_p_x_given_z) - np.array(gt_log_q_z)) self.assertAllClose(log_alpha, gt_log_alpha) def test_vrnn_with_tilt_normal_emission(self): self.run_vrnn_with_tilt(base.ConditionalNormalDistribution, [-5.198263, -6.31686]) def test_vrnn_with_tilt_bernoulli_emission(self): self.run_vrnn_with_tilt(base.ConditionalBernoulliDistribution, [-4.66985, -3.802245]) def run_vrnn_with_tilt(self, generative_class, gt_log_alpha): """Tests the VRNN with a tilting function. All test values are 'golden values' derived by running the code and copying the output. Args: generative_class: The class of the generative distribution to use. gt_log_alpha: The ground-truth value of log alpha. """ tf.set_random_seed(1234) with self.test_session() as sess: batch_size = 2 model, inputs, targets, _ = create_vrnn(generative_class=generative_class, batch_size=batch_size, data_lengths=(3, 2), random_seed=1234, use_tilt=True) zero_state = model.zero_state(batch_size=batch_size, dtype=tf.float32) model.set_observations([inputs, targets], tf.convert_to_tensor([3, 2])) model_out = model.propose_and_weight(zero_state, 0) sess.run(tf.global_variables_initializer()) log_alpha, state = sess.run(model_out) rnn_state, latent_state, rnn_out = state self.assertAllClose( rnn_state.c, [[-0.15014534, 0.0143046, 0.00160489, -0.12899463], [-0.25015137, 0.09377634, -0.05000039, -0.17123522]]) self.assertAllClose( rnn_state.h, [[-0.06842659, 0.00760155, 0.00096106, -0.05434214], [-0.1109542, 0.0441804, -0.03121299, -0.07882939]] ) self.assertAllClose( latent_state, [[0.025241, 0.122011, 1.066661, 0.316209, -0.25369, 0.108215, -1.501128, -0.440111, -0.40447, -0.156649, 1.206028], [0.066824, 0.519937, 0.610973, 0.977739, -0.121889, -0.223429, -0.32687, -0.578763, -0.56965, 0.751886, 0.681606]] ) self.assertAllClose(rnn_out, [[-0.068427, 0.007602, 0.000961, -0.054342], [-0.110954, 0.04418, -0.031213, -0.078829]]) self.assertAllClose(log_alpha, gt_log_alpha) if __name__ == "__main__": tf.test.main() ``` #### File: fivo/fivo/nested_utils.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools import tensorflow as tf from tensorflow.python.util import nest def map_nested(map_fn, nested): """Executes map_fn on every element in a (potentially) nested structure. Args: map_fn: A callable to execute on each element in 'nested'. nested: A potentially nested combination of sequence objects. Sequence objects include tuples, lists, namedtuples, and all subclasses of collections.Sequence except strings. See nest.is_sequence for details. For example [1, ('hello', 4.3)] is a nested structure containing elements 1, 'hello', and 4.3. Returns: out_structure: A potentially nested combination of sequence objects with the same structure as the 'nested' input argument. out_structure contains the result of applying map_fn to each element in 'nested'. For example map_nested(lambda x: x+1, [1, (3, 4.3)]) returns [2, (4, 5.3)]. """ out = map(map_fn, nest.flatten(nested)) return nest.pack_sequence_as(nested, out) def tile_tensors(tensors, multiples): """Tiles a set of Tensors. Args: tensors: A potentially nested tuple or list of Tensors with rank greater than or equal to the length of 'multiples'. The Tensors do not need to have the same rank, but their rank must not be dynamic. multiples: A python list of ints indicating how to tile each Tensor in 'tensors'. Similar to the 'multiples' argument to tf.tile. Returns: tiled_tensors: A potentially nested tuple or list of Tensors with the same structure as the 'tensors' input argument. Contains the result of applying tf.tile to each Tensor in 'tensors'. When the rank of a Tensor in 'tensors' is greater than the length of multiples, multiples is padded at the end with 1s. For example when tiling a 4-dimensional Tensor with multiples [3, 4], multiples would be padded to [3, 4, 1, 1] before tiling. """ def tile_fn(x): return tf.tile(x, multiples + [1] * (x.shape.ndims - len(multiples))) return map_nested(tile_fn, tensors) def where_tensors(condition, x_tensors, y_tensors): """Performs a tf.where operation on a two sets of Tensors. Args: condition: The condition tensor to use for the where operation. x_tensors: A potentially nested tuple or list of Tensors. y_tensors: A potentially nested tuple or list of Tensors. Must have the same structure as x_tensors. Returns: whered_tensors: A potentially nested tuple or list of Tensors with the same structure as the 'tensors' input argument. Contains the result of applying tf.where(condition, x, y) on each pair of elements in x_tensors and y_tensors. """ flat_x = nest.flatten(x_tensors) flat_y = nest.flatten(y_tensors) result = [tf.where(condition, x, y) for x, y in itertools.izip(flat_x, flat_y)] return nest.pack_sequence_as(x_tensors, result) def gather_tensors(tensors, indices): """Performs a tf.gather operation on a set of Tensors. Args: tensors: A potentially nested tuple or list of Tensors. indices: The indices to use for the gather operation. Returns: gathered_tensors: A potentially nested tuple or list of Tensors with the same structure as the 'tensors' input argument. Contains the result of applying tf.gather(x, indices) on each element x in 'tensors'. """ return map_nested(lambda x: tf.gather(x, indices), tensors) def tas_for_tensors(tensors, length, **kwargs): """Unstacks a set of Tensors into TensorArrays. Args: tensors: A potentially nested tuple or list of Tensors with length in the first dimension greater than or equal to the 'length' input argument. length: The desired length of the TensorArrays. **kwargs: Keyword args for TensorArray constructor. Returns: tensorarrays: A potentially nested tuple or list of TensorArrays with the same structure as 'tensors'. Contains the result of unstacking each Tensor in 'tensors'. """ def map_fn(x): ta = tf.TensorArray(x.dtype, length, name=x.name.split(':')[0] + '_ta', **kwargs) return ta.unstack(x[:length, :]) return map_nested(map_fn, tensors) def read_tas(tas, index): """Performs a read operation on a set of TensorArrays. Args: tas: A potentially nested tuple or list of TensorArrays with length greater than 'index'. index: The location to read from. Returns: read_tensors: A potentially nested tuple or list of Tensors with the same structure as the 'tas' input argument. Contains the result of performing a read operation at 'index' on each TensorArray in 'tas'. """ return map_nested(lambda ta: ta.read(index), tas) ``` #### File: fivo/fivo/smc.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import research.fivo.fivo.nested_utils as nested def ess_criterion(log_weights, unused_t): """A criterion that resamples based on effective sample size.""" num_particles = tf.shape(log_weights)[0] # Calculate the effective sample size. ess_num = 2 * tf.reduce_logsumexp(log_weights, axis=0) ess_denom = tf.reduce_logsumexp(2 * log_weights, axis=0) log_ess = ess_num - ess_denom return log_ess <= tf.log(tf.to_float(num_particles) / 2.0) def never_resample_criterion(log_weights, unused_t): """A criterion that never resamples.""" batch_size = tf.shape(log_weights)[1] return tf.cast(tf.zeros([batch_size]), tf.bool) def always_resample_criterion(log_weights, unused_t): """A criterion resamples at every timestep.""" batch_size = tf.shape(log_weights)[1] return tf.cast(tf.ones([batch_size]), tf.bool) def multinomial_resampling(log_weights, states, num_particles, batch_size, random_seed=None): """Resample states with multinomial resampling. Args: log_weights: A [num_particles, batch_size] Tensor representing a batch of batch_size logits for num_particles-ary Categorical distribution. states: A nested list of [batch_size*num_particles, data_size] Tensors that will be resampled from the groups of every num_particles-th row. num_particles: The number of particles/samples. batch_size: The batch size. random_seed: The random seed to pass to the resampling operations in the particle filter. Mainly useful for testing. Returns: resampled_states: A nested list of [batch_size*num_particles, data_size] Tensors resampled via multinomial sampling. """ # Calculate the ancestor indices via resampling. Because we maintain the # log unnormalized weights, we pass the weights in as logits, allowing # the distribution object to apply a softmax and normalize them. resampling_parameters = tf.transpose(log_weights, perm=[1, 0]) resampling_dist = tf.contrib.distributions.Categorical( logits=resampling_parameters) ancestors = tf.stop_gradient( resampling_dist.sample(sample_shape=num_particles, seed=random_seed)) # Because the batch is flattened, we must modify ancestor_inds to index the # proper samples. The particles in the ith filter are distributed every # batch_size rows in the batch, and offset i rows from the top. So, to # correct the indices we multiply by the batch_size and add the proper offset. # Crucially, when ancestor_inds is flattened the layout of the batch is # maintained. offset = tf.expand_dims(tf.range(batch_size), 0) ancestor_inds = tf.reshape(ancestors * batch_size + offset, [-1]) resampled_states = nested.gather_tensors(states, ancestor_inds) return resampled_states def _blend_tensor(blending_weights, tensor, num_particles, batch_size): """Blend tensor according to the weights. The first dimension of tensor is actually a 2d index compacted to a 1d index and similarly for blended_tensor. So if we index these Tensors by [(i, j), k], then blended_tensor[(i, j), k] = sum_l tensor[(l, j), :] * blending_weights[i, j, l]. Args: blending_weights: [num_particles, batch_size, num_particles] weights where the indices represent [sample index, batch index, blending weight index]. tensor: [num_particles * batch_size, state_dim] Tensor to be blended. num_particles: The number of particles/samples. batch_size: The batch size. Returns: blended_tensor: [num_particles*batch_size, state_dim] blended Tensor. """ # tensor is currently [num_particles * batch_size, state_dim], so we reshape # it to [num_particles, batch_size, state_dim]. Then, transpose it to # [batch_size, state_size, num_particles]. tensor = tf.transpose( tf.reshape(tensor, [num_particles, batch_size, -1]), perm=[1, 2, 0]) blending_weights = tf.transpose(blending_weights, perm=[1, 2, 0]) # blendeding_weights is [batch index, blending weight index, sample index]. # Multiplying these gives a matrix of size [batch_size, state_size, # num_particles]. tensor = tf.matmul(tensor, blending_weights) # transpose the tensor to be [num_particles, batch_size, state_size] # and then reshape it to match the original format. tensor = tf.reshape(tf.transpose(tensor, perm=[2, 0, 1]), [num_particles * batch_size, -1]) return tensor def relaxed_resampling(log_weights, states, num_particles, batch_size, temperature=0.5, random_seed=None): """Resample states with relaxed resampling. Draw soft "ancestors" using the Gumbel-Softmax distribution. Args: log_weights: A [num_particles, batch_size] Tensor representing a batch of batch_size logits for num_particles-ary Categorical distribution. states: A nested list of [batch_size * num_particles, d] Tensors that will be resampled from the groups of every num_particles-th row. num_particles: The number of particles/samples. batch_size: The batch size. temperature: The temperature used for the relaxed one hot distribution. random_seed: The random seed to pass to the resampling operations in the particle filter. Mainly useful for testing. Returns: resampled_states: A nested list of [batch_size * num_particles, d] Tensors resampled via multinomial sampling. """ # log_weights are [num_particles, batch_size], so we transpose to get a # set of batch_size distributions over [0, num_particles). resampling_parameters = tf.transpose(log_weights, perm=[1, 0]) resampling_dist = tf.contrib.distributions.RelaxedOneHotCategorical( temperature, logits=resampling_parameters) # Sample num_particles samples from the distribution, resulting in a # [num_particles, batch_size, num_particles] Tensor that represents a set of # [num_particles, batch_size] blending weights. The dimensions represent # [particle index, batch index, blending weight index]. ancestors = resampling_dist.sample(sample_shape=num_particles, seed=random_seed) def map_fn(tensor): return _blend_tensor(ancestors, tensor, num_particles, batch_size) resampled_states = nested.map_nested(map_fn, states) return resampled_states def smc( transition_fn, num_steps, num_particles=1, resampling_criterion=ess_criterion, resampling_fn=multinomial_resampling, loop_fn=None, parallel_iterations=30, swap_memory=True): """Run a sequential Monte Carlo (SMC) algorithm. This method runs an SMC algorithm that evolves systems of particles using the supplied transition function for the specified number of steps. The particles are optionally resampled using resampling_fn when indicated by resampling_criterion. Args: transition_fn: A callable that propogates a batch of particles one step. Must accept as arguments a batch of particle states and the current timestep. Must return the particle states one timestep in the future, the incremental weights of each particle as a [num_samples*batch_size] float Tensor, and optionally a set of arguments to pass to the loop_fn. If the loop args are not provided, they will be set to None. Before the first timestep transition_fn will be called with the arguments None, -1 and should return the initial particle states. num_steps: A [batch_size] Tensor of ints representing the number of steps to run each filter for. num_particles: A scalar int, the number of particles to use in each filter. resampling_criterion: The resampling criterion to use for this particle filter. Must accept the current log weights and timestep and return a boolean Tensor of shape [batch_size] indicating whether each particle filter should resample. See ess_criterion and related functions for examples. When resampling_criterion is never_resample_criterion, resampling_fn is ignored and never called. resampling_fn: A callable that performs the resampling operation. Must accept as arguments the log weights, particle states, num_particles, and batch_size and return the resampled particle states. See multinomial_resampling and relaxed_resampling for examples. loop_fn: A callable that performs operations on the weights and particle states, useful for accumulating and processing state that shouldn't be resampled. At each timestep after (possibly) resampling loop_fn will be called with the previous loop_state, a set of arguments produced by transition_fn called loop_args, the resampled particle states, the current log weights as [num_particles, batch_size] float Tensor, a [batch_size] float Tensor representing whether or not each filter resampled, the current mask indicating which filters are active, and the current timestep. It must return the next loop state. Before the first timestep loop_fn will be called with the arguments None, None, None, None, -1 and must return the initial loop state. The loop state can be a possibly nested structure of Tensors and TensorArrays. parallel_iterations: The number of parallel iterations to use for the internal while loop. Note that values greater than 1 can introduce non-determinism even when resampling is deterministic. swap_memory: Whether GPU-CPU memory swapping should be enabled for the internal while loop. Returns: log_z_hat: A Tensor of shape [batch_size] containing an estimate of the log normalizing constant that converts between the unormalized target distribution (as defined by the weights) and the true target distribution. log_weights: A Tensor of shape [max_num_steps, batch_size, num_particles] containing the log weights at each timestep of the particle filter. Will not be valid for timesteps past the supplied num_steps. resampled: A float Tensor of shape [max_num_steps, batch_size] indicating when the particle filters resampled. Will be 1.0 on timesteps when resampling occurred and 0.0 on timesteps when it did not. final_loop_state: The final state returned by loop_fn. If loop_fn is None then 0 will be returned. """ # batch_size represents the number of particle filters running in parallel. batch_size = tf.shape(num_steps)[0] # Create a TensorArray where element t is the [num_particles*batch_size] # sequence mask for timestep t. max_num_steps = tf.reduce_max(num_steps) seq_mask = tf.transpose( tf.sequence_mask(num_steps, maxlen=max_num_steps, dtype=tf.float32), perm=[1, 0]) seq_mask = tf.tile(seq_mask, [1, num_particles]) mask_ta = tf.TensorArray(seq_mask.dtype, max_num_steps, name='mask_ta') mask_ta = mask_ta.unstack(seq_mask) # Initialize the state. t0 = tf.constant(0, tf.int32) init_particle_state = transition_fn(None, -1) def transition(*args): transition_outs = transition_fn(*args) if len(transition_outs) == 2: return transition_outs + (None,) else: return transition_outs if loop_fn is None: loop_fn = lambda *args: 0 init_loop_state = loop_fn(None, None, None, None, None, None, -1) init_states = (init_particle_state, init_loop_state) ta_names = ['log_weights', 'resampled'] tas = [tf.TensorArray(tf.float32, max_num_steps, name='%s_ta' % n) for n in ta_names] log_weights_acc = tf.zeros([num_particles, batch_size], dtype=tf.float32) log_z_hat_acc = tf.zeros([batch_size], dtype=tf.float32) def while_predicate(t, *unused_args): return t < max_num_steps def while_step(t, state, tas, log_weights_acc, log_z_hat_acc): """Implements one timestep of the particle filter.""" particle_state, loop_state = state cur_mask = nested.read_tas(mask_ta, t) # Propagate the particles one step. log_alpha, new_particle_state, loop_args = transition(particle_state, t) # Update the current weights with the incremental weights. log_alpha *= cur_mask log_alpha = tf.reshape(log_alpha, [num_particles, batch_size]) log_weights_acc += log_alpha should_resample = resampling_criterion(log_weights_acc, t) if resampling_criterion == never_resample_criterion: resampled = tf.to_float(should_resample) else: # Compute the states as if we did resample. resampled_states = resampling_fn( log_weights_acc, new_particle_state, num_particles, batch_size) # Decide whether or not we should resample; don't resample if we are past # the end of a sequence. should_resample = tf.logical_and(should_resample, cur_mask[:batch_size] > 0.) float_should_resample = tf.to_float(should_resample) new_particle_state = nested.where_tensors( tf.tile(should_resample, [num_particles]), resampled_states, new_particle_state) resampled = float_should_resample new_loop_state = loop_fn(loop_state, loop_args, new_particle_state, log_weights_acc, resampled, cur_mask, t) # Update log Z hat. log_z_hat_update = tf.reduce_logsumexp( log_weights_acc, axis=0) - tf.log(tf.to_float(num_particles)) # If it is the last timestep, always add the update. log_z_hat_acc += tf.cond(t < max_num_steps - 1, lambda: log_z_hat_update * resampled, lambda: log_z_hat_update) # Update the TensorArrays before we reset the weights so that we capture # the incremental weights and not zeros. ta_updates = [log_weights_acc, resampled] new_tas = [ta.write(t, x) for ta, x in zip(tas, ta_updates)] # For the particle filters that resampled, reset weights to zero. log_weights_acc *= (1. - tf.tile(resampled[tf.newaxis, :], [num_particles, 1])) new_state = (new_particle_state, new_loop_state) return t + 1, new_state, new_tas, log_weights_acc, log_z_hat_acc _, final_state, tas, _, log_z_hat = tf.while_loop( while_predicate, while_step, loop_vars=(t0, init_states, tas, log_weights_acc, log_z_hat_acc), parallel_iterations=parallel_iterations, swap_memory=swap_memory) log_weights, resampled = [x.stack() for x in tas] log_weights = tf.transpose(log_weights, perm=[0, 2, 1]) final_particle_state, final_loop_state = final_state return (log_z_hat, log_weights, resampled, final_particle_state, final_loop_state) ``` #### File: gan/cyclegan/data_provider.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf def normalize_image(image): """Rescale from range [0, 255] to [-1, 1].""" return (tf.to_float(image) - 127.5) / 127.5 def undo_normalize_image(normalized_image): """Convert to a numpy array that can be read by PIL.""" # Convert from NHWC to HWC. normalized_image = np.squeeze(normalized_image, axis=0) return np.uint8(normalized_image * 127.5 + 127.5) def _sample_patch(image, patch_size): """Crop image to square shape and resize it to `patch_size`. Args: image: A 3D `Tensor` of HWC format. patch_size: A Python scalar. The output image size. Returns: A 3D `Tensor` of HWC format which has the shape of [patch_size, patch_size, 3]. """ image_shape = tf.shape(image) height, width = image_shape[0], image_shape[1] target_size = tf.minimum(height, width) image = tf.image.resize_image_with_crop_or_pad(image, target_size, target_size) # tf.image.resize_area only accepts 4D tensor, so expand dims first. image = tf.expand_dims(image, axis=0) image = tf.image.resize_images(image, [patch_size, patch_size]) image = tf.squeeze(image, axis=0) # Force image num_channels = 3 image = tf.tile(image, [1, 1, tf.maximum(1, 4 - tf.shape(image)[2])]) image = tf.slice(image, [0, 0, 0], [patch_size, patch_size, 3]) return image def full_image_to_patch(image, patch_size): image = normalize_image(image) # Sample a patch of fixed size. image_patch = _sample_patch(image, patch_size) image_patch.shape.assert_is_compatible_with([patch_size, patch_size, 3]) return image_patch def _provide_custom_dataset(image_file_pattern, batch_size, shuffle=True, num_threads=1, patch_size=128): """Provides batches of custom image data. Args: image_file_pattern: A string of glob pattern of image files. batch_size: The number of images in each batch. shuffle: Whether to shuffle the read images. Defaults to True. num_threads: Number of prefetching threads. Defaults to 1. patch_size: Size of the path to extract from the image. Defaults to 128. Returns: A float `Tensor` of shape [batch_size, patch_size, patch_size, 3] representing a batch of images. """ filename_queue = tf.train.string_input_producer( tf.train.match_filenames_once(image_file_pattern), shuffle=shuffle, capacity=5 * batch_size) image_reader = tf.WholeFileReader() _, image_bytes = image_reader.read(filename_queue) image = tf.image.decode_image(image_bytes) image_patch = full_image_to_patch(image, patch_size) if shuffle: return tf.train.shuffle_batch( [image_patch], batch_size=batch_size, num_threads=num_threads, capacity=5 * batch_size, min_after_dequeue=batch_size) else: return tf.train.batch( [image_patch], batch_size=batch_size, num_threads=1, # no threads so it's deterministic capacity=5 * batch_size) def provide_custom_datasets(image_file_patterns, batch_size, shuffle=True, num_threads=1, patch_size=128): """Provides multiple batches of custom image data. Args: image_file_patterns: A list of glob patterns of image files. batch_size: The number of images in each batch. shuffle: Whether to shuffle the read images. Defaults to True. num_threads: Number of prefetching threads. Defaults to 1. patch_size: Size of the patch to extract from the image. Defaults to 128. Returns: A list of float `Tensor`s with the same size of `image_file_patterns`. Each of the `Tensor` in the list has a shape of [batch_size, patch_size, patch_size, 3] representing a batch of images. Raises: ValueError: If image_file_patterns is not a list or tuple. """ if not isinstance(image_file_patterns, (list, tuple)): raise ValueError( '`image_file_patterns` should be either list or tuple, but was {}.'. format(type(image_file_patterns))) custom_datasets = [] for pattern in image_file_patterns: custom_datasets.append( _provide_custom_dataset( pattern, batch_size=batch_size, shuffle=shuffle, num_threads=num_threads, patch_size=patch_size)) return custom_datasets ``` #### File: gan/image_compression/eval.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import app import tensorflow as tf from research.gan.image_compression import data_provider from research.gan.image_compression import networks from research.gan.image_compression import summaries FLAGS = tf.app.flags.FLAGS flags = tf.app.flags flags.DEFINE_string('master', '', 'Name of the TensorFlow master to use.') flags.DEFINE_string('checkpoint_dir', '/tmp/compression/', 'Directory where the model was written to.') flags.DEFINE_string('eval_dir', '/tmp/compression/', 'Directory where the results are saved to.') flags.DEFINE_integer('max_number_of_evaluations', None, 'Number of times to run evaluation. If `None`, run ' 'forever.') flags.DEFINE_string('dataset_dir', 'testdata', 'Location of data.') # Compression-specific flags. flags.DEFINE_integer('batch_size', 32, 'The number of images in each batch.') flags.DEFINE_integer('patch_size', 32, 'The size of the patches to train on.') flags.DEFINE_integer('bits_per_patch', 1230, 'The number of bits to produce per patch.') flags.DEFINE_integer('model_depth', 64, 'Number of filters for compression model') def main(_, run_eval_loop=True): with tf.name_scope('inputs'): images = data_provider.provide_data( 'validation', FLAGS.batch_size, dataset_dir=FLAGS.dataset_dir, patch_size=FLAGS.patch_size) # In order for variables to load, use the same variable scope as in the # train job. with tf.variable_scope('generator'): reconstructions, _, prebinary = networks.compression_model( images, num_bits=FLAGS.bits_per_patch, depth=FLAGS.model_depth, is_training=False) summaries.add_reconstruction_summaries(images, reconstructions, prebinary) # Visualize losses. pixel_loss_per_example = tf.reduce_mean( tf.abs(images - reconstructions), axis=[1, 2, 3]) pixel_loss = tf.reduce_mean(pixel_loss_per_example) tf.summary.histogram('pixel_l1_loss_hist', pixel_loss_per_example) tf.summary.scalar('pixel_l1_loss', pixel_loss) # Create ops to write images to disk. uint8_images = data_provider.float_image_to_uint8(images) uint8_reconstructions = data_provider.float_image_to_uint8(reconstructions) uint8_reshaped = summaries.stack_images(uint8_images, uint8_reconstructions) image_write_ops = tf.write_file( '%s/%s' % (FLAGS.eval_dir, 'compression.png'), tf.image.encode_png(uint8_reshaped[0])) # For unit testing, use `run_eval_loop=False`. if not run_eval_loop: return tf.contrib.training.evaluate_repeatedly( FLAGS.checkpoint_dir, master=FLAGS.master, hooks=[tf.contrib.training.SummaryAtEndHook(FLAGS.eval_dir), tf.contrib.training.StopAfterNEvalsHook(1)], eval_ops=image_write_ops, max_number_of_evaluations=FLAGS.max_number_of_evaluations) if __name__ == '__main__': app.run(_) ``` #### File: gan/mnist/train.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools from absl import flags from absl import logging import tensorflow as tf from research.gan.mnist import data_provider from research.gan.mnist import networks from research.gan.mnist import util tfgan = tf.contrib.gan flags.DEFINE_integer('batch_size', 32, 'The number of images in each batch.') flags.DEFINE_string('train_log_dir', '/tmp/mnist/', 'Directory where to write event logs.') flags.DEFINE_string('dataset_dir', None, 'Location of data.') flags.DEFINE_integer('max_number_of_steps', 20000, 'The maximum number of gradient steps.') flags.DEFINE_string( 'gan_type', 'unconditional', 'Either `unconditional`, `conditional`, or `infogan`.') flags.DEFINE_integer( 'grid_size', 5, 'Grid size for image visualization.') flags.DEFINE_integer( 'noise_dims', 64, 'Dimensions of the generator noise vector.') FLAGS = flags.FLAGS def _learning_rate(gan_type): # First is generator learning rate, second is discriminator learning rate. return { 'unconditional': (1e-3, 1e-4), 'conditional': (1e-5, 1e-4), 'infogan': (0.001, 9e-5), }[gan_type] def main(_): if not tf.gfile.Exists(FLAGS.train_log_dir): tf.gfile.MakeDirs(FLAGS.train_log_dir) # Force all input processing onto CPU in order to reserve the GPU for # the forward inference and back-propagation. with tf.name_scope('inputs'): with tf.device('/cpu:0'): images, one_hot_labels, _ = data_provider.provide_data( 'train', FLAGS.batch_size, FLAGS.dataset_dir, num_threads=4) # Define the GANModel tuple. Optionally, condition the GAN on the label or # use an InfoGAN to learn a latent representation. if FLAGS.gan_type == 'unconditional': gan_model = tfgan.gan_model( generator_fn=networks.unconditional_generator, discriminator_fn=networks.unconditional_discriminator, real_data=images, generator_inputs=tf.random_normal( [FLAGS.batch_size, FLAGS.noise_dims])) elif FLAGS.gan_type == 'conditional': noise = tf.random_normal([FLAGS.batch_size, FLAGS.noise_dims]) gan_model = tfgan.gan_model( generator_fn=networks.conditional_generator, discriminator_fn=networks.conditional_discriminator, real_data=images, generator_inputs=(noise, one_hot_labels)) elif FLAGS.gan_type == 'infogan': cat_dim, cont_dim = 10, 2 generator_fn = functools.partial( networks.infogan_generator, categorical_dim=cat_dim) discriminator_fn = functools.partial( networks.infogan_discriminator, categorical_dim=cat_dim, continuous_dim=cont_dim) unstructured_inputs, structured_inputs = util.get_infogan_noise( FLAGS.batch_size, cat_dim, cont_dim, FLAGS.noise_dims) gan_model = tfgan.infogan_model( generator_fn=generator_fn, discriminator_fn=discriminator_fn, real_data=images, unstructured_generator_inputs=unstructured_inputs, structured_generator_inputs=structured_inputs) tfgan.eval.add_gan_model_image_summaries(gan_model, FLAGS.grid_size) # Get the GANLoss tuple. You can pass a custom function, use one of the # already-implemented losses from the losses library, or use the defaults. with tf.name_scope('loss'): mutual_information_penalty_weight = (1.0 if FLAGS.gan_type == 'infogan' else 0.0) gan_loss = tfgan.gan_loss( gan_model, gradient_penalty_weight=1.0, mutual_information_penalty_weight=mutual_information_penalty_weight, add_summaries=True) tfgan.eval.add_regularization_loss_summaries(gan_model) # Get the GANTrain ops using custom optimizers. with tf.name_scope('train'): gen_lr, dis_lr = _learning_rate(FLAGS.gan_type) train_ops = tfgan.gan_train_ops( gan_model, gan_loss, generator_optimizer=tf.train.AdamOptimizer(gen_lr, 0.5), discriminator_optimizer=tf.train.AdamOptimizer(dis_lr, 0.5), summarize_gradients=True, aggregation_method=tf.AggregationMethod.EXPERIMENTAL_ACCUMULATE_N) # Run the alternating training loop. Skip it if no steps should be taken # (used for graph construction tests). status_message = tf.string_join( ['Starting train step: ', tf.as_string(tf.train.get_or_create_global_step())], name='status_message') if FLAGS.max_number_of_steps == 0: return tfgan.gan_train( train_ops, hooks=[tf.train.StopAtStepHook(num_steps=FLAGS.max_number_of_steps), tf.train.LoggingTensorHook([status_message], every_n_iter=10)], logdir=FLAGS.train_log_dir, get_hooks_fn=tfgan.get_joint_train_hooks()) if __name__ == '__main__': logging.set_verbosity(logging.INFO) tf.app.run() ``` #### File: learned_optimizer/optimizer/coordinatewise_rnn.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numpy as np import tensorflow as tf from research.learned_optimizer.optimizer import utils from research.learned_optimizer.optimizer import trainable_optimizer as opt # Default was 1e-3 tf.app.flags.DEFINE_float("crnn_rnn_readout_scale", 0.5, """The initialization scale for the RNN readouts.""") tf.app.flags.DEFINE_float("crnn_default_decay_var_init", 2.2, """The default initializer value for any decay/ momentum style variables and constants. sigmoid(2.2) ~ 0.9, sigmoid(-2.2) ~ 0.01.""") FLAGS = tf.flags.FLAGS class CoordinatewiseRNN(opt.TrainableOptimizer): """RNN that operates on each coordinate of the problem independently.""" def __init__(self, cell_sizes, cell_cls, init_lr_range=(1., 1.), dynamic_output_scale=True, learnable_decay=True, zero_init_lr_weights=False, **kwargs): """Initializes the RNN per-parameter optimizer. Args: cell_sizes: List of hidden state sizes for each RNN cell in the network cell_cls: tf.contrib.rnn class for specifying the RNN cell type init_lr_range: the range in which to initialize the learning rates. dynamic_output_scale: whether to learn weights that dynamically modulate the output scale (default: True) learnable_decay: whether to learn weights that dynamically modulate the input scale via RMS style decay (default: True) zero_init_lr_weights: whether to initialize the lr weights to zero **kwargs: args passed to TrainableOptimizer's constructor Raises: ValueError: If the init lr range is not of length 2. ValueError: If the init lr range is not a valid range (min > max). """ if len(init_lr_range) != 2: raise ValueError( "Initial LR range must be len 2, was {}".format(len(init_lr_range))) if init_lr_range[0] > init_lr_range[1]: raise ValueError("Initial LR range min is greater than max.") self.init_lr_range = init_lr_range self.zero_init_lr_weights = zero_init_lr_weights self.reuse_vars = False # create the RNN cell with tf.variable_scope(opt.OPTIMIZER_SCOPE): self.component_cells = [cell_cls(sz) for sz in cell_sizes] self.cell = tf.contrib.rnn.MultiRNNCell(self.component_cells) # random normal initialization scaled by the output size scale_factor = FLAGS.crnn_rnn_readout_scale / math.sqrt(cell_sizes[-1]) scaled_init = tf.random_normal_initializer(0., scale_factor) # weights for projecting the hidden state to a parameter update self.update_weights = tf.get_variable("update_weights", shape=(cell_sizes[-1], 1), initializer=scaled_init) self._initialize_decay(learnable_decay, (cell_sizes[-1], 1), scaled_init) self._initialize_lr(dynamic_output_scale, (cell_sizes[-1], 1), scaled_init) state_size = sum([sum(state_size) for state_size in self.cell.state_size]) self._init_vector = tf.get_variable( "init_vector", shape=[1, state_size], initializer=tf.random_uniform_initializer(-1., 1.)) state_keys = ["rms", "rnn", "learning_rate", "decay"] super(CoordinatewiseRNN, self).__init__("cRNN", state_keys, **kwargs) def _initialize_decay( self, learnable_decay, weights_tensor_shape, scaled_init): """Initializes the decay weights and bias variables or tensors. Args: learnable_decay: Whether to use learnable decay. weights_tensor_shape: The shape the weight tensor should take. scaled_init: The scaled initialization for the weights tensor. """ if learnable_decay: # weights for projecting the hidden state to the RMS decay term self.decay_weights = tf.get_variable("decay_weights", shape=weights_tensor_shape, initializer=scaled_init) self.decay_bias = tf.get_variable( "decay_bias", shape=(1,), initializer=tf.constant_initializer( FLAGS.crnn_default_decay_var_init)) else: self.decay_weights = tf.zeros_like(self.update_weights) self.decay_bias = tf.constant(FLAGS.crnn_default_decay_var_init) def _initialize_lr( self, dynamic_output_scale, weights_tensor_shape, scaled_init): """Initializes the learning rate weights and bias variables or tensors. Args: dynamic_output_scale: Whether to use a dynamic output scale. weights_tensor_shape: The shape the weight tensor should take. scaled_init: The scaled initialization for the weights tensor. """ if dynamic_output_scale: zero_init = tf.constant_initializer(0.) wt_init = zero_init if self.zero_init_lr_weights else scaled_init self.lr_weights = tf.get_variable("learning_rate_weights", shape=weights_tensor_shape, initializer=wt_init) self.lr_bias = tf.get_variable("learning_rate_bias", shape=(1,), initializer=zero_init) else: self.lr_weights = tf.zeros_like(self.update_weights) self.lr_bias = tf.zeros([1, 1]) def _initialize_state(self, var): """Return a dictionary mapping names of state variables to their values.""" vectorized_shape = [var.get_shape().num_elements(), 1] min_lr = self.init_lr_range[0] max_lr = self.init_lr_range[1] if min_lr == max_lr: init_lr = tf.constant(min_lr, shape=vectorized_shape) else: actual_vals = tf.random_uniform(vectorized_shape, np.log(min_lr), np.log(max_lr)) init_lr = tf.exp(actual_vals) ones = tf.ones(vectorized_shape) rnn_init = ones * self._init_vector return { "rms": tf.ones(vectorized_shape), "learning_rate": init_lr, "rnn": rnn_init, "decay": tf.ones(vectorized_shape), } def _compute_update(self, param, grad, state): """Update parameters given the gradient and state. Args: param: tensor of parameters grad: tensor of gradients with the same shape as param state: a dictionary containing any state for the optimizer Returns: updated_param: updated parameters updated_state: updated state variables in a dictionary """ with tf.variable_scope(opt.OPTIMIZER_SCOPE) as scope: if self.reuse_vars: scope.reuse_variables() else: self.reuse_vars = True param_shape = tf.shape(param) (grad_values, decay_state, rms_state, rnn_state, learning_rate_state, grad_indices) = self._extract_gradients_and_internal_state( grad, state, param_shape) # Vectorize and scale the gradients. grad_scaled, rms = utils.rms_scaling(grad_values, decay_state, rms_state) # Apply the RNN update. rnn_state_tuples = self._unpack_rnn_state_into_tuples(rnn_state) rnn_output, rnn_state_tuples = self.cell(grad_scaled, rnn_state_tuples) rnn_state = self._pack_tuples_into_rnn_state(rnn_state_tuples) # Compute the update direction (a linear projection of the RNN output). delta = utils.project(rnn_output, self.update_weights) # The updated decay is an affine projection of the hidden state decay = utils.project(rnn_output, self.decay_weights, bias=self.decay_bias, activation=tf.nn.sigmoid) # Compute the change in learning rate (an affine projection of the RNN # state, passed through a 2x sigmoid, so the change is bounded). learning_rate_change = 2. * utils.project(rnn_output, self.lr_weights, bias=self.lr_bias, activation=tf.nn.sigmoid) # Update the learning rate. new_learning_rate = learning_rate_change * learning_rate_state # Apply the update to the parameters. update = tf.reshape(new_learning_rate * delta, tf.shape(grad_values)) if isinstance(grad, tf.IndexedSlices): update = utils.stack_tensor(update, grad_indices, param, param_shape[:1]) rms = utils.update_slices(rms, grad_indices, state["rms"], param_shape) new_learning_rate = utils.update_slices(new_learning_rate, grad_indices, state["learning_rate"], param_shape) rnn_state = utils.update_slices(rnn_state, grad_indices, state["rnn"], param_shape) decay = utils.update_slices(decay, grad_indices, state["decay"], param_shape) new_param = param - update # Collect the update and new state. new_state = { "rms": rms, "learning_rate": new_learning_rate, "rnn": rnn_state, "decay": decay, } return new_param, new_state def _extract_gradients_and_internal_state(self, grad, state, param_shape): """Extracts the gradients and relevant internal state. If the gradient is sparse, extracts the appropriate slices from the state. Args: grad: The current gradient. state: The current state. param_shape: The shape of the parameter (used if gradient is sparse). Returns: grad_values: The gradient value tensor. decay_state: The current decay state. rms_state: The current rms state. rnn_state: The current state of the internal rnns. learning_rate_state: The current learning rate state. grad_indices: The indices for the gradient tensor, if sparse. None otherwise. """ if isinstance(grad, tf.IndexedSlices): grad_indices, grad_values = utils.accumulate_sparse_gradients(grad) decay_state = utils.slice_tensor(state["decay"], grad_indices, param_shape) rms_state = utils.slice_tensor(state["rms"], grad_indices, param_shape) rnn_state = utils.slice_tensor(state["rnn"], grad_indices, param_shape) learning_rate_state = utils.slice_tensor(state["learning_rate"], grad_indices, param_shape) decay_state.set_shape([None, 1]) rms_state.set_shape([None, 1]) else: grad_values = grad grad_indices = None decay_state = state["decay"] rms_state = state["rms"] rnn_state = state["rnn"] learning_rate_state = state["learning_rate"] return (grad_values, decay_state, rms_state, rnn_state, learning_rate_state, grad_indices) def _unpack_rnn_state_into_tuples(self, rnn_state): """Creates state tuples from the rnn state vector.""" rnn_state_tuples = [] cur_state_pos = 0 for cell in self.component_cells: total_state_size = sum(cell.state_size) cur_state = tf.slice(rnn_state, [0, cur_state_pos], [-1, total_state_size]) cur_state_tuple = tf.split(value=cur_state, num_or_size_splits=2, axis=1) rnn_state_tuples.append(cur_state_tuple) cur_state_pos += total_state_size return rnn_state_tuples def _pack_tuples_into_rnn_state(self, rnn_state_tuples): """Creates a single state vector concatenated along column axis.""" rnn_state = None for new_state_tuple in rnn_state_tuples: new_c, new_h = new_state_tuple if rnn_state is None: rnn_state = tf.concat([new_c, new_h], axis=1) else: rnn_state = tf.concat([rnn_state, tf.concat([new_c, new_h], 1)], axis=1) return rnn_state ``` #### File: learning_unsupervised_learning/architectures/more_local_weight_update.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import numpy as np import sonnet as snt import tensorflow as tf from research.learning_unsupervised_learning.architectures import common from research.learning_unsupervised_learning import optimizers from research.learning_unsupervised_learning import utils from research.learning_unsupervised_learning import summary_utils OptState = collections.namedtuple('OptState', ['variables', 'opt_state', 'index']) BaseModelOutputs = collections.namedtuple( 'BaseModelOutputs', ['xs', 'zs', 'mods', 'batch', 'backward_mods']) class GradChannelReadout(snt.AbstractModule): """Perform a linear readout and reshape from input 3 tensor.""" def __init__(self, num_grad_channels, device, perm=(2, 0, 1), name='GradChannelReadout'): """Args: num_grad_channels: int number of channels to readout to. device: str or callable devicwe to place weights. perm: list or tuple transpose applied. """ self.num_grad_channels = num_grad_channels self.device = device self.perm = perm super(GradChannelReadout, self).__init__(name=name) def _build(self, h): with tf.device(self.device): mod = snt.Linear(self.num_grad_channels) ret = snt.BatchApply(mod)(h) # return as [num_grad_channels] x [bs] x [num units] return tf.transpose(ret, perm=self.perm) def get_weight_stats(x, axis): """ Compute weight statistics over the given axis. Args: x: tf.Tensor a batch of activations. axis: int axis to perform statistics over. Returns: tf.Tensor a 3-D tensor with statistics. """ if x is None: return [] stats = [] l1 = tf.reduce_mean(tf.abs(x), axis=axis) l2 = tf.sqrt(tf.reduce_mean(x ** 2, axis=axis) + 1e-6) mean, var = tf.nn.moments(x, [axis]) stats.extend([l1, l2, mean, tf.sqrt(var + 1e-8)]) stats = [tf.reshape(s, [-1, 1, 1]) for s in stats] return stats class AddUnitBatchStatistics(snt.AbstractModule): """Compute some number of statistics over units and concat them on.""" def __init__(self, name='AddUnitBatchStatistics'): super(AddUnitBatchStatistics, self).__init__(name=name) def _build(self, x): # [channel, bs, 1] output = x for d in [0, 1]: stats = [] l1 = tf.reduce_mean(tf.abs(x), axis=d, keepdims=True) l2 = tf.sqrt(tf.reduce_mean(x ** 2, axis=d, keepdims=True) + 1e-6) mean, var = tf.nn.moments(x, [d], keepdims=True) stats.extend([l1, l2, mean, tf.sqrt(var + 1e-8)]) to_add = tf.concat(stats, axis=2) # [channels/1, units/1, stats] output += snt.BatchApply(snt.Linear(x.shape.as_list()[2]))(to_add) return output class ConcatUnitConv(snt.AbstractModule): """Do a small number of convolutions over units and concat / add them on.""" def __init__(self, add=True): self.add = add super(ConcatUnitConv, self).__init__(name='ConcatUnitConv') def _build(self, x): # x is [units, bs, 1] net = tf.transpose(x, [1, 0, 2]) # now [bs x units x 1] channels = x.shape.as_list()[2] mod = snt.Conv1D(output_channels=channels, kernel_shape=[3]) net = mod(net) net = snt.BatchNorm(axis=[0, 1])(net, is_training=False) net = tf.nn.relu(net) mod = snt.Conv1D(output_channels=channels, kernel_shape=[3]) net = mod(net) net = snt.BatchNorm(axis=[0, 1])(net, is_training=False) net = tf.nn.relu(net) to_concat = tf.transpose(net, [1, 0, 2]) if self.add: return x + to_concat else: return tf.concat([x, to_concat], 2) class MoreLocalWeightUpdateProcess(snt.AbstractModule): def __init__( self, remote_device, local_device, top_delta_size=64, top_delta_layers=2, compute_h_size=64, compute_h_layers=1, delta_dim=32, num_grad_channels=4, normalize_epsilon=1., ): self.local_device = local_device self.remote_device = remote_device self.top_delta_size = top_delta_size self.top_delta_layers = top_delta_layers self.compute_h_size = compute_h_size self.compute_h_layers = compute_h_layers self.delta_dim = delta_dim self.num_grad_channels = num_grad_channels self.normalize_epsilon = normalize_epsilon, with tf.device(local_device): self.opt = optimizers.UnrollableGradientDescentRollingOptimizer( learning_rate=1e-4) # lazily initialized for readouts self.readout_mods = {} super(MoreLocalWeightUpdateProcess, self).__init__(name='MoreLocalWeightUpdateProcess') with tf.device(remote_device): self() def normalize(self, change_w, normalize_epsilon=None): if normalize_epsilon is None: normalize_epsilon = self.normalize_epsilon # normalize the weights per receptive-field, rather than per-matrix var = tf.reduce_mean(tf.square(change_w), axis=0, keepdims=True) change_w = (change_w) / tf.sqrt(normalize_epsilon + var) return change_w def _build(self): pass @snt.reuse_variables def compute_top_delta(self, z): """ parameterization of topD. This converts the top level activation to an error signal. Args: z: tf.Tensor batch of final layer post activations Returns delta: tf.Tensor the error signal """ s_idx = 0 with tf.variable_scope('compute_top_delta'), tf.device(self.remote_device): # typically this takes [BS, length, input_channels], # We are applying this such that we convolve over the batch dimension. act = tf.expand_dims(tf.transpose(z, [1, 0]), 2) # [channels, BS, 1] mod = snt.Conv1D(output_channels=self.top_delta_size, kernel_shape=[5]) act = mod(act) act = snt.BatchNorm(axis=[0, 1])(act, is_training=False) act = tf.nn.relu(act) bs = act.shape.as_list()[0] act = tf.transpose(act, [2, 1, 0]) act = snt.Conv1D(output_channels=bs, kernel_shape=[3])(act) act = snt.BatchNorm(axis=[0, 1])(act, is_training=False) act = tf.nn.relu(act) act = snt.Conv1D(output_channels=bs, kernel_shape=[3])(act) act = snt.BatchNorm(axis=[0, 1])(act, is_training=False) act = tf.nn.relu(act) act = tf.transpose(act, [2, 1, 0]) prev_act = act for i in range(self.top_delta_layers): mod = snt.Conv1D(output_channels=self.top_delta_size, kernel_shape=[3]) act = mod(act) act = snt.BatchNorm(axis=[0, 1])(act, is_training=False) act = tf.nn.relu(act) prev_act = act mod = snt.Conv1D(output_channels=self.delta_dim, kernel_shape=[3]) act = mod(act) # [bs, feature_channels, delta_channels] act = tf.transpose(act, [1, 0, 2]) return act @snt.reuse_variables def compute_h(self, x, z, d, bias, W_bot, W_top, compute_perc=1.0, compute_units=None): """z = [BS, n_units] a = [BS, n_units] b = [BS, n_units] d = [BS, n_units, delta_channels] """ s_idx = 0 if compute_perc != 1.0: assert compute_units is None with tf.device(self.remote_device): inp_feat = [x, z] inp_feat = [tf.transpose(f, [1, 0]) for f in inp_feat] units = x.shape.as_list()[1] bs = x.shape.as_list()[0] # add unit ID, to help the network differentiate units id_theta = tf.linspace(0., (4) * np.pi, units) assert bs is not None id_theta_bs = tf.reshape(id_theta, [-1, 1]) * tf.ones([1, bs]) inp_feat += [tf.sin(id_theta_bs), tf.cos(id_theta_bs)] # list of [units, BS, 1] inp_feat = [tf.expand_dims(f, 2) for f in inp_feat] d_trans = tf.transpose(d, [1, 0, 2]) if compute_perc != 1.0: compute_units = int(compute_perc * inp_feat.shape.as_list()[0]) # add weight matrix statistics, both from above and below w_stats_bot = get_weight_stats(W_bot, 0) w_stats_top = get_weight_stats(W_top, 1) w_stats = w_stats_bot + w_stats_top if W_bot is None or W_top is None: # if it's an edge layer (top or bottom), just duplicate the stats for # the weight matrix that does exist w_stats = w_stats + w_stats w_stats = [tf.ones([1, x.shape[0], 1]) * ww for ww in w_stats] # w_stats is a list, with entries with shape UNITS x 1 x channels if compute_units is None: inp_feat_in = inp_feat d_trans_in = d_trans w_stats_in = w_stats bias_in = tf.transpose(bias) else: # only run on a subset of the activations. mask = tf.random_uniform( minval=0, maxval=1, dtype=tf.float32, shape=inp_feat[0].shape.as_list()[0:1]) _, ind = tf.nn.top_k(mask, k=compute_units) ind = tf.reshape(ind, [-1, 1]) inp_feat_in = [tf.gather_nd(xx, ind) for xx in inp_feat] w_stats_in = [tf.gather_nd(xx, ind) for xx in w_stats] d_trans_in = tf.gather_nd(d_trans, ind) bias_in = tf.gather_nd(tf.transpose(bias), ind) w_stats_in = tf.concat(w_stats_in, 2) w_stats_in_norm = w_stats_in * tf.rsqrt( tf.reduce_mean(w_stats_in ** 2) + 1e-6) act = tf.concat(inp_feat_in + [d_trans_in], 2) act = snt.BatchNorm(axis=[0, 1])(act, is_training=True) bias_dense = tf.reshape(bias_in, [-1, 1, 1]) * tf.ones([1, bs, 1]) act = tf.concat([w_stats_in_norm, bias_dense, act], 2) mod = snt.Conv1D(output_channels=self.compute_h_size, kernel_shape=[3]) act = mod(act) act = snt.BatchNorm(axis=[0, 1])(act, is_training=True) act = tf.nn.relu(act) act2 = ConcatUnitConv()(act) act = act2 prev_act = act for i in range(self.compute_h_layers): mod = snt.Conv1D(output_channels=self.compute_h_size, kernel_shape=[3]) act = mod(act) act = snt.BatchNorm(axis=[0, 1])(act, is_training=True) act = tf.nn.relu(act) act = ConcatUnitConv()(act) prev_act = act h = act if compute_units is not None: shape = inp_feat[0].shape.as_list()[:1] + h.shape.as_list()[1:] h = tf.scatter_nd(ind, h, shape=shape) h = tf.transpose(h, [1, 0, 2]) # [bs, units, channels] return h ## wrappers to allow forward and backward to have different variables @snt.reuse_variables def merge_change_w_forward(self, change_w_terms, global_prefix='', prefix=''): return self.merge_change_w( change_w_terms, global_prefix=global_prefix, prefix=prefix) @snt.reuse_variables def merge_change_w_backward(self, change_w_terms, global_prefix='', prefix=''): return self.merge_change_w( change_w_terms, global_prefix=global_prefix, prefix=prefix) def merge_change_w(self, change_w_terms, global_prefix='', prefix=''): with tf.device( self.remote_device), tf.name_scope(global_prefix + '_merge_change_w'): w_base = change_w_terms['w_base'] for kk in sorted(change_w_terms.keys()): name = global_prefix + 'change_w_plane_%s' % kk delta_w = change_w_terms[kk] mean, var = tf.nn.moments(delta_w, [0, 1]) root_mean_square = tf.sqrt(tf.reduce_mean(delta_w ** 2) + 1e-6) for kk in sorted(change_w_terms.keys()): change_w_terms[kk] = self.normalize(change_w_terms[kk]) initializers = { 'w': tf.constant_initializer(0.1), 'b': tf.zeros_initializer() } mod = snt.Linear( 1, name=global_prefix + '_weight_readout_coeffs', initializers=initializers) change_w_terms_list = [ change_w_terms[kk] for kk in sorted(change_w_terms.keys()) ] stack_terms = tf.stack(change_w_terms_list, axis=-1) change_w = tf.squeeze( snt.BatchApply(mod)(stack_terms), axis=-1) / len(change_w_terms) # only allow perpendicular updates, or updates which grow length. don't # allow length to decay towards zero. ip = tf.reduce_mean(change_w * w_base) # zero out any updates that shrink length ip = tf.nn.relu(ip) change_w -= w_base * ip change_w /= tf.sqrt(len(change_w_terms) * 1.) change_w = self.normalize(change_w) # encourage the receptive field to not collapse to 0 change_w -= w_base / 7. # This is an arbitrary scale choice return tf.identity(change_w) @snt.reuse_variables def bias_readout(self, h): with tf.device(self.remote_device): mod = snt.Linear(1, name='bias_readout') ret = snt.BatchApply(mod)(h) return tf.squeeze(ret, 2) @snt.reuse_variables def next_delta(self, z, h, d): with tf.device(self.remote_device): return d * tf.expand_dims(tf.nn.sigmoid(z), 2) + self.to_delta_size(h) @utils.create_variables_in_class_scope def get_readout_mod(self, name): if name not in self.readout_mods: self.readout_mods[name] = GradChannelReadout( self.num_grad_channels, device=self.remote_device, name=name) return self.readout_mods[name] @utils.create_variables_in_class_scope def low_rank_readout(self, name, h1, h2, psd=False): BS = h1.shape.as_list()[0] r_t = self.get_readout_mod(name + '_top')(h1) if psd: r_b = r_t else: r_b = self.get_readout_mod(name + '_bottom')(h2) return tf.reduce_mean(tf.matmul(r_b, r_t, transpose_a=True), axis=0) / BS @snt.reuse_variables def to_delta_size(self, h): with tf.device(self.remote_device): mod = snt.Linear(self.delta_dim) return snt.BatchApply(mod)(h) @snt.reuse_variables def initial_state(self, variables): """The inner optimization state. Args: variables: list of tf.Variable list of variables to get the initial state of. Returns: opt_state: OptState """ with tf.device(self.local_device): initial_opt_state = self.opt.get_state(variables) return OptState( variables=variables, opt_state=initial_opt_state, index=tf.constant(0)) @snt.reuse_variables def compute_next_state(self, grads, learning_rate, cur_state, cur_transformer): summaries = [] with tf.device(self.local_device): with tf.control_dependencies(summaries): new_vars, new_state = self.opt.compute_updates( cur_state.variables, grads, learning_rate, cur_state.opt_state) pass return OptState( variables=tuple(new_vars), opt_state=new_state, index=cur_state.index + 1) def assign_state(self, base_model, next_state): var_ups = [ v.assign(nv) for v, nv in utils.eqzip(base_model.get_variables(), next_state.variables) ] opt_ups = self.opt.assign_state(next_state.opt_state) return tf.group(opt_ups, *var_ups) def local_variables(self): return list(self.opt.get_variables()) def remote_variables(self): train = list( snt.get_variables_in_module(self, tf.GraphKeys.TRAINABLE_VARIABLES)) train += list( snt.get_variables_in_module(self, tf.GraphKeys.MOVING_AVERAGE_VARIABLES)) return train class MoreLocalWeightUpdateWLearner(snt.AbstractModule): """The BaseModel that the UnsupervisedUpdateRule acts on. """ def __init__(self, remote_device, local_device, inner_size=128, output_size=32, n_layers=4, shuffle_input=True, activation_fn=tf.nn.relu, identical_updates=True, **kwargs): self.local_device = local_device self.remote_device = remote_device self.inner_size = inner_size self.n_layers = n_layers self.shuffle_input = shuffle_input self.activation_fn = activation_fn self.identical_updates = identical_updates self.output_size = output_size if output_size == None: self.output_size = inner_size self.shuffle_ind = None super(MoreLocalWeightUpdateWLearner, self).__init__( name='LocalWeightUpdateWLearner', **kwargs) @snt.reuse_variables def get_shuffle_ind(self, size): if self.shuffle_ind is None: # put the shuffle in tf memory to make the eval jobs # re-entrant. shuffle_ind_val = np.random.permutation(size) shuffle_ind = tf.get_variable( name='shuffle_ind', dtype=tf.int64, initializer=shuffle_ind_val) unshuffle_ind = tf.scatter_nd( tf.reshape(shuffle_ind, [-1, 1]), tf.range(size), [size]) return shuffle_ind, unshuffle_ind def _build(self, batch): image = batch.image x0 = snt.BatchFlatten()(image) if self.shuffle_input: size = x0.shape.as_list()[1] shuffle_ind, unshuffle_ind = self.get_shuffle_ind(size) x0 = tf.gather(x0, shuffle_ind, axis=1) xs = [x0] mods = [] zs = [] init = {} for i in range(self.n_layers): mod = common.LinearBatchNorm( self.inner_size, activation_fn=self.activation_fn) z, x = mod(xs[i]) xs.append(x) zs.append(z) mods.append(mod) mod = common.LinearBatchNorm( self.output_size, activation_fn=self.activation_fn) z, x = mod(xs[-1]) mods.append(mod) xs.append(x) zs.append(z) embedding_x = xs[-1] # make a random set of backward mods backward_mods = [] for i, (x, x_p1) in enumerate(zip(xs[0:-1], xs[1:])): m = common.LinearBatchNorm( x_p1.shape.as_list()[1], activation_fn=tf.identity) _ = m(x) backward_mods.append(m) shape = image.shape.as_list()[1:4] for mods_p, prefix in [(mods, 'forward'), (backward_mods, 'backward')]: if self.shuffle_input: unshuf_w = tf.gather(mods_p[0].w, unshuffle_ind, axis=0) else: unshuf_w = mods_p[0].w img = summary_utils.first_layer_weight_image(unshuf_w, shape) tf.summary.image(prefix + '_w0_receptive_field', img) for i, m in enumerate(mods_p[0:]): img = summary_utils.inner_layer_weight_image(m.w) tf.summary.image(prefix + '_w%d' % (i + 1), img) img = summary_utils.sorted_images(image, batch.label_onehot) tf.summary.image('inputs', img) # log out pre-activations and activations for all_vis, base_name in [(xs, 'x'), (zs, 'z')]: for i, x_vis in enumerate(all_vis): img = summary_utils.activation_image(x_vis, batch.label_onehot) tf.summary.image('%s%d' % (base_name, i), img) embedding_x = tf.identity(embedding_x) outputs = BaseModelOutputs( xs=xs, zs=zs, mods=mods, batch=batch, backward_mods=backward_mods) return embedding_x, outputs def compute_next_h_d(self, meta_opt, w_bot, w_top, bias, x, z, d, backward_w): """ Propogate error back down the network while computing hidden state. """ if z is None: z = x h = meta_opt.compute_h(x, z, d, bias, w_bot, w_top) # [bs x 60 x h_channels] # compute the next d delta = meta_opt.next_delta(z, h, d) if backward_w is not None: def delta_matmul(w, delta): d = tf.transpose(delta, [0, 2, 1]) # [bs x delta_channels x n_units) d = snt.BatchApply(lambda x: tf.matmul(x, w, transpose_b=True))(d) d = tf.transpose(d, [0, 2, 1]) return d # replace the "backward pass" with a random matrix. d = delta_matmul(backward_w, delta) # [bs x 60 x delta_channels] var = tf.reduce_mean(tf.square(d), [2], keepdims=True) d = d * tf.rsqrt(1e-6 + var) return h, d def weight_change_for_layer(self, meta_opt, l_idx, w_base, b_base, upper_h, lower_h, upper_x, lower_x, prefix, include_bias): """Compute the change in weights for each layer. This computes something roughly analagous to a gradient. """ reduce_upper_h = upper_h reduce_lower_h = lower_h BS = lower_x.shape.as_list()[0] change_w_terms = dict() # initial weight value normalized # normalize the weights per receptive-field, rather than per-matrix weight_scale = tf.rsqrt( tf.reduce_mean(w_base ** 2, axis=0, keepdims=True) + 1e-6) w_base *= weight_scale change_w_terms['w_base'] = w_base # this will act to decay larger weights towards zero change_w_terms['large_decay'] = w_base ** 2 * tf.sign(w_base) # term based on activations ux0 = upper_x - tf.reduce_mean(upper_x, axis=0, keepdims=True) uxs0 = ux0 * tf.rsqrt(tf.reduce_mean(ux0 ** 2, axis=0, keepdims=True) + 1e-6) change_U = tf.matmul(uxs0, uxs0, transpose_a=True) / BS change_U /= tf.sqrt(float(change_U.shape.as_list()[0])) cw = tf.matmul(w_base, change_U) cw_scale = tf.rsqrt(tf.reduce_mean(cw ** 2 + 1e-8)) cw *= cw_scale change_w_terms['decorr_x'] = cw # hebbian term lx0 = lower_x - tf.reduce_mean(lower_x, axis=0, keepdims=True) lxs0 = lx0 * tf.rsqrt(tf.reduce_mean(lx0 ** 2, axis=0, keepdims=True) + 1e-6) cw = tf.matmul(lxs0, uxs0, transpose_a=True) / BS change_w_terms['hebb'] = -cw # 0th order term w_term = meta_opt.low_rank_readout(prefix + 'weight_readout_0', upper_h, lower_h) change_w_terms['0_order'] = w_term # # rbf term (weight update scaled by distance from 0) w_term = meta_opt.low_rank_readout(prefix + 'weight_readout_rbf', reduce_upper_h, reduce_lower_h) change_w_terms['rbf'] = tf.exp(-w_base ** 2) * w_term # 1st order term (weight dependent update to weights) w_term = meta_opt.low_rank_readout(prefix + 'weight_readout_1', reduce_upper_h, reduce_lower_h) change_w_terms['1_order'] = w_base * w_term # more terms based on single layer readouts. for update_type in ['lin', 'sqr']: for h_source, h_source_name in [(reduce_upper_h, 'upper'), (reduce_lower_h, 'lower')]: structures = ['symm'] if update_type == 'lin' and h_source_name == 'upper': structures += ['psd'] for structure in structures: name = update_type + '_' + h_source_name + '_' + structure if structure == 'symm': change_U = meta_opt.low_rank_readout(prefix + name, h_source, h_source) change_U = (change_U + tf.transpose(change_U)) / tf.sqrt(2.) change_U = tf.matrix_set_diag(change_U, tf.zeros( [change_U.shape.as_list()[0]])) elif structure == 'psd': change_U = meta_opt.low_rank_readout( prefix + name, h_source, None, psd=True) else: assert False change_U /= tf.sqrt(float(change_U.shape.as_list()[0])) if update_type == 'lin': sign_multiplier = tf.ones_like(w_base) w_base_l = w_base elif update_type == 'sqr': sign_multiplier = tf.sign(w_base) w_base_l = tf.sqrt(1. + w_base ** 2) - 1. if h_source_name == 'upper': cw = tf.matmul(w_base_l, change_U) # [N^l-1 x N^l] elif h_source_name == 'lower': cw = tf.matmul(change_U, w_base_l) change_w_terms[name] = cw * sign_multiplier if prefix == 'forward': change_w = meta_opt.merge_change_w_forward( change_w_terms, global_prefix=prefix, prefix='l%d' % l_idx) elif prefix == 'backward': change_w = meta_opt.merge_change_w_backward( change_w_terms, global_prefix=prefix, prefix='l%d' % l_idx) else: assert (False) if not include_bias: return change_w change_b = tf.reduce_mean(meta_opt.bias_readout(upper_h), [0]) # force nonlinearities to be exercised -- biases can't all be increased without bound change_b_mean = tf.reduce_mean(change_b) offset = -tf.nn.relu(-change_b_mean) change_b -= offset var = tf.reduce_mean(tf.square(change_b), [0], keepdims=True) change_b = (change_b) / tf.sqrt(0.5 + var) return change_w, change_b def compute_next_state(self, outputs, meta_opt, previous_state): zs = outputs.zs xs = outputs.xs batch = outputs.batch mods = outputs.mods backward_mods = outputs.backward_mods variables = self.get_variables() rev_mods = mods[::-1] rev_backward_mods = backward_mods[::-1] rev_xs = xs[::-1] rev_zs = zs[::-1] + [None] to_top = xs[-1] # variables that change in the loop hs = [] d = meta_opt.compute_top_delta(to_top) # [bs x 32 x delta_channels] iterator = utils.eqzip(rev_backward_mods + [None], rev_mods + [None], [None] + rev_mods, rev_xs, rev_zs) for (backward_mod, lower_mod, upper_mod, x, z) in iterator: w_bot = None if not lower_mod is None: w_bot = previous_state.variables[variables.index(lower_mod.w)] w_top = None if not upper_mod is None: w_top = previous_state.variables[variables.index(upper_mod.w)] backward_w = None if backward_mod is not None: backward_w = previous_state.variables[variables.index(backward_mod.w)] if lower_mod is not None: bias = previous_state.variables[variables.index(lower_mod.b)] else: bias = tf.zeros([x.shape[1]]) h, d = self.compute_next_h_d( meta_opt=meta_opt, w_bot=w_bot, w_top=w_top, bias=bias, backward_w=backward_w, x=x, z=z, d=d) hs.append(h) w_forward_var_idx = [variables.index(mod.w) for mod in rev_mods] w_backward_var_idx = [variables.index(mod.w) for mod in rev_backward_mods] b_var_idx = [variables.index(mod.b) for mod in rev_mods] # storage location for outputs of below loop grads = [None for _ in previous_state.variables] # over-ride learning rate for perturbation variables learning_rate = [None for _ in previous_state.variables] # This is a map -- no state is shared cross loop for l_idx, w_forward_idx, w_backward_idx, b_idx, upper_h, lower_h, lower_x, upper_x in utils.eqzip( range(len(w_forward_var_idx)), w_forward_var_idx, w_backward_var_idx, b_var_idx, hs[:-1], hs[1:], xs[::-1][1:], xs[::-1][:-1]): b_base = previous_state.variables[b_idx] change_w_forward, change_b = self.weight_change_for_layer( meta_opt=meta_opt, l_idx=l_idx, w_base=previous_state.variables[w_forward_idx], b_base=b_base, upper_h=upper_h, lower_h=lower_h, upper_x=upper_x, lower_x=lower_x, prefix='forward', include_bias=True) if self.identical_updates: change_w_backward = change_w_forward else: change_w_backward = self.weight_change_for_layer( meta_opt=meta_opt, l_idx=l_idx, w_base=previous_state.variables[w_backward_idx], b_base=b_base, upper_h=upper_h, lower_h=lower_h, upper_x=upper_x, lower_x=lower_x, prefix='backward', include_bias=False) grads[w_forward_idx] = change_w_forward grads[w_backward_idx] = change_w_backward grads[b_idx] = change_b cur_transformer = common.transformer_at_state(self, previous_state.variables) next_state = meta_opt.compute_next_state( grads, learning_rate=learning_rate, cur_state=previous_state, cur_transformer=lambda x: cur_transformer(x)[0]) return next_state def initial_state(self, meta_opt): return meta_opt.initial_state(self.get_variables()) ``` #### File: maskgan/losses/losses.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf def discriminator_loss(predictions, labels, missing_tokens): """Discriminator loss based on predictions and labels. Args: predictions: Discriminator linear predictions Tensor of shape [batch_size, sequence_length] labels: Labels for predictions, Tensor of shape [batch_size, sequence_length] missing_tokens: Indicator for the missing tokens. Evaluate the loss only on the tokens that were missing. Returns: loss: Scalar tf.float32 loss. """ loss = tf.losses.sigmoid_cross_entropy(labels, predictions, weights=missing_tokens) loss = tf.Print( loss, [loss, labels, missing_tokens], message='loss, labels, missing_tokens', summarize=25, first_n=25) return loss def cross_entropy_loss_matrix(gen_labels, gen_logits): """Computes the cross entropy loss for G. Args: gen_labels: Labels for the correct token. gen_logits: Generator logits. Returns: loss_matrix: Loss matrix of shape [batch_size, sequence_length]. """ cross_entropy_loss = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=gen_labels, logits=gen_logits) return cross_entropy_loss def GAN_loss_matrix(dis_predictions): """Computes the cross entropy loss for G. Args: dis_predictions: Discriminator predictions. Returns: loss_matrix: Loss matrix of shape [batch_size, sequence_length]. """ eps = tf.constant(1e-7, tf.float32) gan_loss_matrix = -tf.log(dis_predictions + eps) return gan_loss_matrix def generator_GAN_loss(predictions): """Generator GAN loss based on Discriminator predictions.""" return -tf.log(tf.reduce_mean(predictions)) def generator_blended_forward_loss(gen_logits, gen_labels, dis_predictions, is_real_input): """Computes the masked-loss for G. This will be a blend of cross-entropy loss where the true label is known and GAN loss where the true label has been masked. Args: gen_logits: Generator logits. gen_labels: Labels for the correct token. dis_predictions: Discriminator predictions. is_real_input: Tensor indicating whether the label is present. Returns: loss: Scalar tf.float32 total loss. """ cross_entropy_loss = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=gen_labels, logits=gen_logits) gan_loss = -tf.log(dis_predictions) loss_matrix = tf.where(is_real_input, cross_entropy_loss, gan_loss) return tf.reduce_mean(loss_matrix) def wasserstein_generator_loss(gen_logits, gen_labels, dis_values, is_real_input): """Computes the masked-loss for G. This will be a blend of cross-entropy loss where the true label is known and GAN loss where the true label is missing. Args: gen_logits: Generator logits. gen_labels: Labels for the correct token. dis_values: Discriminator values Tensor of shape [batch_size, sequence_length]. is_real_input: Tensor indicating whether the label is present. Returns: loss: Scalar tf.float32 total loss. """ cross_entropy_loss = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=gen_labels, logits=gen_logits) # Maximize the dis_values (minimize the negative) gan_loss = -dis_values loss_matrix = tf.where(is_real_input, cross_entropy_loss, gan_loss) loss = tf.reduce_mean(loss_matrix) return loss def wasserstein_discriminator_loss(real_values, fake_values): """Wasserstein discriminator loss. Args: real_values: Value given by the Wasserstein Discriminator to real data. fake_values: Value given by the Wasserstein Discriminator to fake data. Returns: loss: Scalar tf.float32 loss. """ real_avg = tf.reduce_mean(real_values) fake_avg = tf.reduce_mean(fake_values) wasserstein_loss = real_avg - fake_avg return wasserstein_loss def wasserstein_discriminator_loss_intrabatch(values, is_real_input): """Wasserstein discriminator loss. This is an odd variant where the value difference is between the real tokens and the fake tokens within a single batch. Args: values: Value given by the Wasserstein Discriminator of shape [batch_size, sequence_length] to an imputed batch (real and fake). is_real_input: tf.bool Tensor of shape [batch_size, sequence_length]. If true, it indicates that the label is known. Returns: wasserstein_loss: Scalar tf.float32 loss. """ zero_tensor = tf.constant(0., dtype=tf.float32, shape=[]) present = tf.cast(is_real_input, tf.float32) missing = tf.cast(1 - present, tf.float32) # Counts for real and fake tokens. real_count = tf.reduce_sum(present) fake_count = tf.reduce_sum(missing) # Averages for real and fake token values. real = tf.mul(values, present) fake = tf.mul(values, missing) real_avg = tf.reduce_sum(real) / real_count fake_avg = tf.reduce_sum(fake) / fake_count # If there are no real or fake entries in the batch, we assign an average # value of zero. real_avg = tf.where(tf.equal(real_count, 0), zero_tensor, real_avg) fake_avg = tf.where(tf.equal(fake_count, 0), zero_tensor, fake_avg) wasserstein_loss = real_avg - fake_avg return wasserstein_loss ``` #### File: maskgan/models/attention_utils.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow.python.framework import function __all__ = [ "prepare_attention", "attention_decoder_fn_train", "attention_decoder_fn_inference" ] def attention_decoder_fn_train(encoder_state, attention_keys, attention_values, attention_score_fn, attention_construct_fn, name=None): """Attentional decoder function for `dynamic_rnn_decoder` during training. The `attention_decoder_fn_train` is a training function for an attention-based sequence-to-sequence model. It should be used when `dynamic_rnn_decoder` is in the training mode. The `attention_decoder_fn_train` is called with a set of the user arguments and returns the `decoder_fn`, which can be passed to the `dynamic_rnn_decoder`, such that ``` dynamic_fn_train = attention_decoder_fn_train(encoder_state) outputs_train, state_train = dynamic_rnn_decoder( decoder_fn=dynamic_fn_train, ...) ``` Further usage can be found in the `kernel_tests/seq2seq_test.py`. Args: encoder_state: The encoded state to initialize the `dynamic_rnn_decoder`. attention_keys: to be compared with target states. attention_values: to be used to construct context vectors. attention_score_fn: to compute similarity between key and target states. attention_construct_fn: to build attention states. name: (default: `None`) NameScope for the decoder function; defaults to "simple_decoder_fn_train" Returns: A decoder function with the required interface of `dynamic_rnn_decoder` intended for training. """ with tf.name_scope(name, "attention_decoder_fn_train", [ encoder_state, attention_keys, attention_values, attention_score_fn, attention_construct_fn ]): pass def decoder_fn(time, cell_state, cell_input, cell_output, context_state): """Decoder function used in the `dynamic_rnn_decoder` for training. Args: time: positive integer constant reflecting the current timestep. cell_state: state of RNNCell. cell_input: input provided by `dynamic_rnn_decoder`. cell_output: output of RNNCell. context_state: context state provided by `dynamic_rnn_decoder`. Returns: A tuple (done, next state, next input, emit output, next context state) where: done: `None`, which is used by the `dynamic_rnn_decoder` to indicate that `sequence_lengths` in `dynamic_rnn_decoder` should be used. next state: `cell_state`, this decoder function does not modify the given state. next input: `cell_input`, this decoder function does not modify the given input. The input could be modified when applying e.g. attention. emit output: `cell_output`, this decoder function does not modify the given output. next context state: `context_state`, this decoder function does not modify the given context state. The context state could be modified when applying e.g. beam search. """ with tf.name_scope( name, "attention_decoder_fn_train", [time, cell_state, cell_input, cell_output, context_state]): if cell_state is None: # first call, return encoder_state cell_state = encoder_state # init attention attention = _init_attention(encoder_state) else: # construct attention attention = attention_construct_fn(cell_output, attention_keys, attention_values) cell_output = attention # combine cell_input and attention next_input = tf.concat([cell_input, attention], 1) return (None, cell_state, next_input, cell_output, context_state) return decoder_fn def attention_decoder_fn_inference(output_fn, encoder_state, attention_keys, attention_values, attention_score_fn, attention_construct_fn, embeddings, start_of_sequence_id, end_of_sequence_id, maximum_length, num_decoder_symbols, dtype=tf.int32, name=None): """Attentional decoder function for `dynamic_rnn_decoder` during inference. The `attention_decoder_fn_inference` is a simple inference function for a sequence-to-sequence model. It should be used when `dynamic_rnn_decoder` is in the inference mode. The `attention_decoder_fn_inference` is called with user arguments and returns the `decoder_fn`, which can be passed to the `dynamic_rnn_decoder`, such that ``` dynamic_fn_inference = attention_decoder_fn_inference(...) outputs_inference, state_inference = dynamic_rnn_decoder( decoder_fn=dynamic_fn_inference, ...) ``` Further usage can be found in the `kernel_tests/seq2seq_test.py`. Args: output_fn: An output function to project your `cell_output` onto class logits. An example of an output function; ``` tf.variable_scope("decoder") as varscope output_fn = lambda x: tf.contrib.layers.linear(x, num_decoder_symbols, scope=varscope) outputs_train, state_train = seq2seq.dynamic_rnn_decoder(...) logits_train = output_fn(outputs_train) varscope.reuse_variables() logits_inference, state_inference = seq2seq.dynamic_rnn_decoder( output_fn=output_fn, ...) ``` If `None` is supplied it will act as an identity function, which might be wanted when using the RNNCell `OutputProjectionWrapper`. encoder_state: The encoded state to initialize the `dynamic_rnn_decoder`. attention_keys: to be compared with target states. attention_values: to be used to construct context vectors. attention_score_fn: to compute similarity between key and target states. attention_construct_fn: to build attention states. embeddings: The embeddings matrix used for the decoder sized `[num_decoder_symbols, embedding_size]`. start_of_sequence_id: The start of sequence ID in the decoder embeddings. end_of_sequence_id: The end of sequence ID in the decoder embeddings. maximum_length: The maximum allowed of time steps to decode. num_decoder_symbols: The number of classes to decode at each time step. dtype: (default: `tf.int32`) The default data type to use when handling integer objects. name: (default: `None`) NameScope for the decoder function; defaults to "attention_decoder_fn_inference" Returns: A decoder function with the required interface of `dynamic_rnn_decoder` intended for inference. """ with tf.name_scope(name, "attention_decoder_fn_inference", [ output_fn, encoder_state, attention_keys, attention_values, attention_score_fn, attention_construct_fn, embeddings, start_of_sequence_id, end_of_sequence_id, maximum_length, num_decoder_symbols, dtype ]): start_of_sequence_id = tf.convert_to_tensor(start_of_sequence_id, dtype) end_of_sequence_id = tf.convert_to_tensor(end_of_sequence_id, dtype) maximum_length = tf.convert_to_tensor(maximum_length, dtype) num_decoder_symbols = tf.convert_to_tensor(num_decoder_symbols, dtype) encoder_info = tf.contrib.framework.nest.flatten(encoder_state)[0] batch_size = encoder_info.get_shape()[0].value if output_fn is None: output_fn = lambda x: x if batch_size is None: batch_size = tf.shape(encoder_info)[0] def decoder_fn(time, cell_state, cell_input, cell_output, context_state): """Decoder function used in the `dynamic_rnn_decoder` for inference. The main difference between this decoder function and the `decoder_fn` in `attention_decoder_fn_train` is how `next_cell_input` is calculated. In decoder function we calculate the next input by applying an argmax across the feature dimension of the output from the decoder. This is a greedy-search approach. (Bahdanau et al., 2014) & (Sutskever et al., 2014) use beam-search instead. Args: time: positive integer constant reflecting the current timestep. cell_state: state of RNNCell. cell_input: input provided by `dynamic_rnn_decoder`. cell_output: output of RNNCell. context_state: context state provided by `dynamic_rnn_decoder`. Returns: A tuple (done, next state, next input, emit output, next context state) where: done: A boolean vector to indicate which sentences has reached a `end_of_sequence_id`. This is used for early stopping by the `dynamic_rnn_decoder`. When `time>=maximum_length` a boolean vector with all elements as `true` is returned. next state: `cell_state`, this decoder function does not modify the given state. next input: The embedding from argmax of the `cell_output` is used as `next_input`. emit output: If `output_fn is None` the supplied `cell_output` is returned, else the `output_fn` is used to update the `cell_output` before calculating `next_input` and returning `cell_output`. next context state: `context_state`, this decoder function does not modify the given context state. The context state could be modified when applying e.g. beam search. Raises: ValueError: if cell_input is not None. """ with tf.name_scope( name, "attention_decoder_fn_inference", [time, cell_state, cell_input, cell_output, context_state]): if cell_input is not None: raise ValueError( "Expected cell_input to be None, but saw: %s" % cell_input) if cell_output is None: # invariant that this is time == 0 next_input_id = tf.ones( [ batch_size, ], dtype=dtype) * ( start_of_sequence_id) done = tf.zeros( [ batch_size, ], dtype=tf.bool) cell_state = encoder_state cell_output = tf.zeros([num_decoder_symbols], dtype=tf.float32) cell_input = tf.gather(embeddings, next_input_id) # init attention attention = _init_attention(encoder_state) else: # construct attention attention = attention_construct_fn(cell_output, attention_keys, attention_values) cell_output = attention # argmax decoder cell_output = output_fn(cell_output) # logits next_input_id = tf.cast(tf.argmax(cell_output, 1), dtype=dtype) done = tf.equal(next_input_id, end_of_sequence_id) cell_input = tf.gather(embeddings, next_input_id) # combine cell_input and attention next_input = tf.concat([cell_input, attention], 1) # if time > maxlen, return all true vector done = tf.cond( tf.greater(time, maximum_length), lambda: tf.ones([ batch_size, ], dtype=tf.bool), lambda: done) return (done, cell_state, next_input, cell_output, context_state) return decoder_fn ## Helper functions ## def prepare_attention(attention_states, attention_option, num_units, reuse=None): """Prepare keys/values/functions for attention. Args: attention_states: hidden states to attend over. attention_option: how to compute attention, either "luong" or "bahdanau". num_units: hidden state dimension. reuse: whether to reuse variable scope. Returns: attention_keys: to be compared with target states. attention_values: to be used to construct context vectors. attention_score_fn: to compute similarity between key and target states. attention_construct_fn: to build attention states. """ # Prepare attention keys / values from attention_states with tf.variable_scope("attention_keys", reuse=reuse) as scope: attention_keys = tf.contrib.layers.linear( attention_states, num_units, biases_initializer=None, scope=scope) attention_values = attention_states # Attention score function attention_score_fn = _create_attention_score_fn("attention_score", num_units, attention_option, reuse) # Attention construction function attention_construct_fn = _create_attention_construct_fn( "attention_construct", num_units, attention_score_fn, reuse) return (attention_keys, attention_values, attention_score_fn, attention_construct_fn) def _init_attention(encoder_state): """Initialize attention. Handling both LSTM and GRU. Args: encoder_state: The encoded state to initialize the `dynamic_rnn_decoder`. Returns: attn: initial zero attention vector. """ # Multi- vs single-layer # TODO(thangluong): is this the best way to check? if isinstance(encoder_state, tuple): top_state = encoder_state[-1] else: top_state = encoder_state # LSTM vs GRU if isinstance(top_state, tf.contrib.rnn.LSTMStateTuple): attn = tf.zeros_like(top_state.h) else: attn = tf.zeros_like(top_state) return attn def _create_attention_construct_fn(name, num_units, attention_score_fn, reuse): """Function to compute attention vectors. Args: name: to label variables. num_units: hidden state dimension. attention_score_fn: to compute similarity between key and target states. reuse: whether to reuse variable scope. Returns: attention_construct_fn: to build attention states. """ def construct_fn(attention_query, attention_keys, attention_values): with tf.variable_scope(name, reuse=reuse) as scope: context = attention_score_fn(attention_query, attention_keys, attention_values) concat_input = tf.concat([attention_query, context], 1) attention = tf.contrib.layers.linear( concat_input, num_units, biases_initializer=None, scope=scope) return attention return construct_fn # keys: [batch_size, attention_length, attn_size] # query: [batch_size, 1, attn_size] # return weights [batch_size, attention_length] @function.Defun(func_name="attn_add_fun", noinline=True) def _attn_add_fun(v, keys, query): return tf.reduce_sum(v * tf.tanh(keys + query), [2]) @function.Defun(func_name="attn_mul_fun", noinline=True) def _attn_mul_fun(keys, query): return tf.reduce_sum(keys * query, [2]) def _create_attention_score_fn(name, num_units, attention_option, reuse, dtype=tf.float32): """Different ways to compute attention scores. Args: name: to label variables. num_units: hidden state dimension. attention_option: how to compute attention, either "luong" or "bahdanau". "bahdanau": additive (Bahdanau et al., ICLR'2015) "luong": multiplicative (Luong et al., EMNLP'2015) reuse: whether to reuse variable scope. dtype: (default: `tf.float32`) data type to use. Returns: attention_score_fn: to compute similarity between key and target states. """ with tf.variable_scope(name, reuse=reuse): if attention_option == "bahdanau": query_w = tf.get_variable("attnW", [num_units, num_units], dtype=dtype) score_v = tf.get_variable("attnV", [num_units], dtype=dtype) def attention_score_fn(query, keys, values): """Put attention masks on attention_values using attention_keys and query. Args: query: A Tensor of shape [batch_size, num_units]. keys: A Tensor of shape [batch_size, attention_length, num_units]. values: A Tensor of shape [batch_size, attention_length, num_units]. Returns: context_vector: A Tensor of shape [batch_size, num_units]. Raises: ValueError: if attention_option is neither "luong" or "bahdanau". """ if attention_option == "bahdanau": # transform query query = tf.matmul(query, query_w) # reshape query: [batch_size, 1, num_units] query = tf.reshape(query, [-1, 1, num_units]) # attn_fun scores = _attn_add_fun(score_v, keys, query) elif attention_option == "luong": # reshape query: [batch_size, 1, num_units] query = tf.reshape(query, [-1, 1, num_units]) # attn_fun scores = _attn_mul_fun(keys, query) else: raise ValueError("Unknown attention option %s!" % attention_option) # Compute alignment weights # scores: [batch_size, length] # alignments: [batch_size, length] # TODO(thangluong): not normalize over padding positions. alignments = tf.nn.softmax(scores) # Now calculate the attention-weighted vector. alignments = tf.expand_dims(alignments, 2) context_vector = tf.reduce_sum(alignments * values, [1]) context_vector.set_shape([None, num_units]) return context_vector return attention_score_fn ``` #### File: research/minigo/dualnet_model.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf _BATCH_NORM_DECAY = 0.997 _BATCH_NORM_EPSILON = 1e-5 def _batch_norm(inputs, training, center=True, scale=True): """Performs a batch normalization using a standard set of parameters.""" return tf.layers.batch_normalization( inputs=inputs, momentum=_BATCH_NORM_DECAY, epsilon=_BATCH_NORM_EPSILON, center=center, scale=scale, fused=True, training=training) def _conv2d(inputs, filters, kernel_size): """Performs 2D convolution with a standard set of parameters.""" return tf.layers.conv2d( inputs=inputs, filters=filters, kernel_size=kernel_size, padding='same') def _conv_block(inputs, filters, kernel_size, training): """A convolutional block. Args: inputs: A tensor representing a batch of input features with shape [BATCH_SIZE, board_size, board_size, features.NEW_FEATURES_PLANES]. filters: The number of filters for network layers in residual tower. kernel_size: The kernel to be used in conv2d. training: Either True or False, whether we are currently training the model. Needed for batch norm. Returns: The output tensor of the convolutional block layer. """ conv = _conv2d(inputs, filters, kernel_size) batchn = _batch_norm(conv, training) output = tf.nn.relu(batchn) return output def _res_block(inputs, filters, kernel_size, training): """A residual block. Args: inputs: A tensor representing a batch of input features with shape [BATCH_SIZE, board_size, board_size, features.NEW_FEATURES_PLANES]. filters: The number of filters for network layers in residual tower. kernel_size: The kernel to be used in conv2d. training: Either True or False, whether we are currently training the model. Needed for batch norm. Returns: The output tensor of the residual block layer. """ initial_output = _conv_block(inputs, filters, kernel_size, training) int_layer2_conv = _conv2d(initial_output, filters, kernel_size) int_layer2_batchn = _batch_norm(int_layer2_conv, training) output = tf.nn.relu(inputs + int_layer2_batchn) return output class Model(object): """Base class for building the DualNet Model.""" def __init__(self, num_filters, num_shared_layers, fc_width, board_size): """Initialize a model for computing the policy and value in RL. Args: num_filters: Number of filters (AlphaGoZero used 256). We use 128 by default for a 19x19 go board, and 32 for 9x9 size. num_shared_layers: Number of shared residual blocks. AGZ used both 19 and 39. Here we use 19 for 19x19 size and 9 for 9x9 size because it's faster to train. fc_width: Dimensionality of the fully connected linear layer. board_size: A single integer for the board size. """ self.num_filters = num_filters self.num_shared_layers = num_shared_layers self.fc_width = fc_width self.board_size = board_size self.kernel_size = [3, 3] # kernel size is from AGZ paper def __call__(self, inputs, training): """Add operations to classify a batch of input Go features. Args: inputs: A Tensor representing a batch of input Go features with shape [BATCH_SIZE, board_size, board_size, features.NEW_FEATURES_PLANES] training: A boolean. Set to True to add operations required only when training the classifier. Returns: policy_logits: A vector of size self.board_size * self.board_size + 1 corresponding to the policy logit probabilities for all intersections and the pass move. value_logits: A scalar for the value logits output """ initial_output = _conv_block( inputs=inputs, filters=self.num_filters, kernel_size=self.kernel_size, training=training) # the shared stack shared_output = initial_output for _ in range(self.num_shared_layers): shared_output = _res_block( inputs=shared_output, filters=self.num_filters, kernel_size=self.kernel_size, training=training) # policy head policy_conv2d = _conv2d(inputs=shared_output, filters=2, kernel_size=[1, 1]) policy_batchn = _batch_norm(inputs=policy_conv2d, training=training, center=False, scale=False) policy_relu = tf.nn.relu(policy_batchn) policy_logits = tf.layers.dense( tf.reshape(policy_relu, [-1, self.board_size * self.board_size * 2]), self.board_size * self.board_size + 1) # value head value_conv2d = _conv2d(shared_output, filters=1, kernel_size=[1, 1]) value_batchn = _batch_norm(value_conv2d, training, center=False, scale=False) value_relu = tf.nn.relu(value_batchn) value_fc_hidden = tf.nn.relu(tf.layers.dense( tf.reshape(value_relu, [-1, self.board_size * self.board_size]), self.fc_width)) value_logits = tf.reshape(tf.layers.dense(value_fc_hidden, 1), [-1]) return policy_logits, value_logits def model_fn(features, labels, mode, params, config=None): # pylint: disable=unused-argument """DualNet model function. Args: features: tensor with shape [BATCH_SIZE, self.board_size, self.board_size, features.NEW_FEATURES_PLANES] labels: dict from string to tensor with shape 'pi_tensor': [BATCH_SIZE, self.board_size * self.board_size + 1] 'value_tensor': [BATCH_SIZE] mode: a tf.estimator.ModeKeys (batchnorm params update for TRAIN only) params: an object of hyperparams config: ignored; is required by Estimator API. Returns: EstimatorSpec parameterized according to the input params and the current mode. """ model = Model(params.num_filters, params.num_shared_layers, params.fc_width, params.board_size) policy_logits, value_logits = model( features, mode == tf.estimator.ModeKeys.TRAIN) policy_output = tf.nn.softmax(policy_logits, name='policy_output') value_output = tf.nn.tanh(value_logits, name='value_output') # Calculate model loss. The loss function sums over the mean-squared error, # the cross-entropy losses and the l2 regularization term. # Cross-entropy of policy policy_entropy = -tf.reduce_mean(tf.reduce_sum( policy_output * tf.log(policy_output), axis=1)) policy_cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits( logits=policy_logits, labels=labels['pi_tensor'])) # Mean squared error value_cost = tf.reduce_mean( tf.square(value_output - labels['value_tensor'])) # L2 term l2_cost = params.l2_strength * tf.add_n( [tf.nn.l2_loss(v) for v in tf.trainable_variables() if 'bias' not in v.name]) # The loss function combined_cost = policy_cost + value_cost + l2_cost # Get model train ops global_step = tf.train.get_or_create_global_step() boundaries = [int(1e6), int(2e6)] values = [1e-2, 1e-3, 1e-4] learning_rate = tf.train.piecewise_constant( global_step, boundaries, values) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): train_op = tf.train.MomentumOptimizer( learning_rate, params.momentum).minimize( combined_cost, global_step=global_step) # Create multiple tensors for logging purpose metric_ops = { 'accuracy': tf.metrics.accuracy(labels=labels['pi_tensor'], predictions=policy_output, name='accuracy_op'), 'policy_cost': tf.metrics.mean(policy_cost), 'value_cost': tf.metrics.mean(value_cost), 'l2_cost': tf.metrics.mean(l2_cost), 'policy_entropy': tf.metrics.mean(policy_entropy), 'combined_cost': tf.metrics.mean(combined_cost), } for metric_name, metric_op in metric_ops.items(): tf.summary.scalar(metric_name, metric_op[1]) # Return tf.estimator.EstimatorSpec return tf.estimator.EstimatorSpec( mode=mode, predictions={ 'policy_output': policy_output, 'value_output': value_output, }, loss=combined_cost, train_op=train_op, eval_metric_ops=metric_ops) ``` #### File: research/neural_programmer/parameters.py ```python import numpy as np import tensorflow as tf class Parameters: def __init__(self, u): self.utility = u self.init_seed_counter = 0 self.word_init = {} def parameters(self, utility): params = {} inits = [] embedding_dims = self.utility.FLAGS.embedding_dims params["unit"] = tf.Variable( self.RandomUniformInit([len(utility.operations_set), embedding_dims])) params["word"] = tf.Variable( self.RandomUniformInit([utility.FLAGS.vocab_size, embedding_dims])) params["word_match_feature_column_name"] = tf.Variable( self.RandomUniformInit([1])) params["controller"] = tf.Variable( self.RandomUniformInit([2 * embedding_dims, embedding_dims])) params["column_controller"] = tf.Variable( self.RandomUniformInit([2 * embedding_dims, embedding_dims])) params["column_controller_prev"] = tf.Variable( self.RandomUniformInit([embedding_dims, embedding_dims])) params["controller_prev"] = tf.Variable( self.RandomUniformInit([embedding_dims, embedding_dims])) global_step = tf.Variable(1, name="global_step") # weigths of question and history RNN (or LSTM) key_list = ["question_lstm"] for key in key_list: # Weights going from inputs to nodes. for wgts in ["ix", "fx", "cx", "ox"]: params[key + "_" + wgts] = tf.Variable( self.RandomUniformInit([embedding_dims, embedding_dims])) # Weights going from nodes to nodes. for wgts in ["im", "fm", "cm", "om"]: params[key + "_" + wgts] = tf.Variable( self.RandomUniformInit([embedding_dims, embedding_dims])) # Biases for the gates and cell for bias in ["i", "f", "c", "o"]: if (bias == "f"): print("forget gate bias") params[key + "_" + bias] = tf.Variable( tf.random_uniform([embedding_dims], 1.0, 1.1, self.utility. tf_data_type[self.utility.FLAGS.data_type])) else: params[key + "_" + bias] = tf.Variable( self.RandomUniformInit([embedding_dims])) params["history_recurrent"] = tf.Variable( self.RandomUniformInit([3 * embedding_dims, embedding_dims])) params["history_recurrent_bias"] = tf.Variable( self.RandomUniformInit([1, embedding_dims])) params["break_conditional"] = tf.Variable( self.RandomUniformInit([2 * embedding_dims, embedding_dims])) init = tf.global_variables_initializer() return params, global_step, init def RandomUniformInit(self, shape): """Returns a RandomUniform Tensor between -param_init and param_init.""" param_seed = self.utility.FLAGS.param_seed self.init_seed_counter += 1 return tf.random_uniform( shape, -1.0 * (np.float32(self.utility.FLAGS.param_init) ).astype(self.utility.np_data_type[self.utility.FLAGS.data_type]), (np.float32(self.utility.FLAGS.param_init) ).astype(self.utility.np_data_type[self.utility.FLAGS.data_type]), self.utility.tf_data_type[self.utility.FLAGS.data_type], param_seed + self.init_seed_counter) ``` #### File: object_detection/metrics/oid_od_challenge_evaluation_utils.py ```python r"""Converts data from CSV to the OpenImagesDetectionChallengeEvaluator format. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from research.object_detection.core import standard_fields def build_groundtruth_boxes_dictionary(data, class_label_map): """Builds a groundtruth dictionary from groundtruth data in CSV file. Args: data: Pandas DataFrame with the groundtruth data for a single image. class_label_map: Class labelmap from string label name to an integer. Returns: A dictionary with keys suitable for passing to OpenImagesDetectionChallengeEvaluator.add_single_ground_truth_image_info: standard_fields.InputDataFields.groundtruth_boxes: float32 numpy array of shape [num_boxes, 4] containing `num_boxes` groundtruth boxes of the format [ymin, xmin, ymax, xmax] in absolute image coordinates. standard_fields.InputDataFields.groundtruth_classes: integer numpy array of shape [num_boxes] containing 1-indexed groundtruth classes for the boxes. standard_fields.InputDataFields.verified_labels: integer 1D numpy array containing all classes for which labels are verified. standard_fields.InputDataFields.groundtruth_group_of: Optional length M numpy boolean array denoting whether a groundtruth box contains a group of instances. """ data_boxes = data[data.ConfidenceImageLabel.isnull()] data_labels = data[data.XMin.isnull()] return { standard_fields.InputDataFields.groundtruth_boxes: data_boxes[['YMin', 'XMin', 'YMax', 'XMax']].values, standard_fields.InputDataFields.groundtruth_classes: data_boxes['LabelName'].map(lambda x: class_label_map[x]).values, standard_fields.InputDataFields.groundtruth_group_of: data_boxes['IsGroupOf'].values.astype(int), standard_fields.InputDataFields.groundtruth_image_classes: data_labels['LabelName'].map(lambda x: class_label_map[x]).values, } def build_predictions_dictionary(data, class_label_map): """Builds a predictions dictionary from predictions data in CSV file. Args: data: Pandas DataFrame with the predictions data for a single image. class_label_map: Class labelmap from string label name to an integer. Returns: Dictionary with keys suitable for passing to OpenImagesDetectionChallengeEvaluator.add_single_detected_image_info: standard_fields.DetectionResultFields.detection_boxes: float32 numpy array of shape [num_boxes, 4] containing `num_boxes` detection boxes of the format [ymin, xmin, ymax, xmax] in absolute image coordinates. standard_fields.DetectionResultFields.detection_scores: float32 numpy array of shape [num_boxes] containing detection scores for the boxes. standard_fields.DetectionResultFields.detection_classes: integer numpy array of shape [num_boxes] containing 1-indexed detection classes for the boxes. """ return { standard_fields.DetectionResultFields.detection_boxes: data[['YMin', 'XMin', 'YMax', 'XMax']].values, standard_fields.DetectionResultFields.detection_classes: data['LabelName'].map(lambda x: class_label_map[x]).values, standard_fields.DetectionResultFields.detection_scores: data['Score'].values } ``` #### File: ptn/nets/ptn_vox_decoder.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf slim = tf.contrib.slim @tf.contrib.framework.add_arg_scope def conv3d_transpose(inputs, num_outputs, kernel_size, stride=1, padding='SAME', activation_fn=tf.nn.relu, weights_initializer=tf.contrib.layers.xavier_initializer(), biases_initializer=tf.zeros_initializer(), reuse=None, trainable=True, scope=None): """Wrapper for conv3d_transpose layer. This function wraps the tf.conv3d_transpose with basic non-linearity. Tt creates a variable called `weights`, representing the kernel, that is convoled with the input. A second varibale called `biases' is added to the result of operation. """ with tf.variable_scope( scope, 'Conv3d_transpose', [inputs], reuse=reuse): dtype = inputs.dtype.base_dtype kernel_d, kernel_h, kernel_w = kernel_size[0:3] num_filters_in = inputs.get_shape()[4] weights_shape = [kernel_d, kernel_h, kernel_w, num_outputs, num_filters_in] weights = tf.get_variable('weights', shape=weights_shape, dtype=dtype, initializer=weights_initializer, trainable=trainable) tf.contrib.framework.add_model_variable(weights) input_shape = inputs.get_shape().as_list() batch_size = input_shape[0] depth = input_shape[1] height = input_shape[2] width = input_shape[3] def get_deconv_dim(dim_size, stride_size): # Only support padding='SAME'. if isinstance(dim_size, tf.Tensor): dim_size = tf.multiply(dim_size, stride_size) elif dim_size is not None: dim_size *= stride_size return dim_size out_depth = get_deconv_dim(depth, stride) out_height = get_deconv_dim(height, stride) out_width = get_deconv_dim(width, stride) out_shape = [batch_size, out_depth, out_height, out_width, num_outputs] outputs = tf.nn.conv3d_transpose(inputs, weights, out_shape, [1, stride, stride, stride, 1], padding=padding) outputs.set_shape(out_shape) if biases_initializer is not None: biases = tf.get_variable('biases', shape=[num_outputs, ], dtype=dtype, initializer=biases_initializer, trainable=trainable) tf.contrib.framework.add_model_variable(biases) outputs = tf.nn.bias_add(outputs, biases) if activation_fn: outputs = activation_fn(outputs) return outputs def model(identities, params, is_training): """Model transforming embedding to voxels.""" del is_training # Unused f_dim = params.f_dim # Please refer to the original implementation: github.com/xcyan/nips16_PTN # In TF replication, we use a slightly different architecture. with slim.arg_scope( [slim.fully_connected, conv3d_transpose], weights_initializer=tf.truncated_normal_initializer(stddev=0.02, seed=1)): h0 = slim.fully_connected( identities, 4 * 4 * 4 * f_dim * 8, activation_fn=tf.nn.relu) h1 = tf.reshape(h0, [-1, 4, 4, 4, f_dim * 8]) h1 = conv3d_transpose( h1, f_dim * 4, [4, 4, 4], stride=2, activation_fn=tf.nn.relu) h2 = conv3d_transpose( h1, int(f_dim * 3 / 2), [5, 5, 5], stride=2, activation_fn=tf.nn.relu) h3 = conv3d_transpose( h2, 1, [6, 6, 6], stride=2, activation_fn=tf.nn.sigmoid) return h3 ``` #### File: research/ptn/train_ptn.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np import tensorflow as tf from tensorflow import app from research.ptn import model_ptn flags = tf.app.flags slim = tf.contrib.slim flags.DEFINE_string('inp_dir', '', 'Directory path containing the input data (tfrecords).') flags.DEFINE_string( 'dataset_name', 'shapenet_chair', 'Dataset name that is to be used for training and evaluation.') flags.DEFINE_integer('z_dim', 512, '') flags.DEFINE_integer('f_dim', 64, '') flags.DEFINE_integer('fc_dim', 1024, '') flags.DEFINE_integer('num_views', 24, 'Num of viewpoints in the input data.') flags.DEFINE_integer('image_size', 64, 'Input images dimension (pixels) - width & height.') flags.DEFINE_integer('vox_size', 32, 'Voxel prediction dimension.') flags.DEFINE_integer('step_size', 24, 'Steps to take in rotation to fetch viewpoints.') flags.DEFINE_integer('batch_size', 6, 'Batch size while training.') flags.DEFINE_float('focal_length', 0.866, 'Focal length parameter used in perspective projection.') flags.DEFINE_float('focal_range', 1.732, 'Focal length parameter used in perspective projection.') flags.DEFINE_string('encoder_name', 'ptn_encoder', 'Name of the encoder network being used.') flags.DEFINE_string('decoder_name', 'ptn_vox_decoder', 'Name of the decoder network being used.') flags.DEFINE_string('projector_name', 'perspective_projector', 'Name of the projector network being used.') # Save options flags.DEFINE_string('checkpoint_dir', '/tmp/ptn_train/', 'Directory path for saving trained models and other data.') flags.DEFINE_string('model_name', 'ptn_finetune', 'Name of the model used in naming the TF job. Must be different for each run.') flags.DEFINE_string('init_model', None, 'Checkpoint path of the model to initialize with.') flags.DEFINE_integer('save_every', 1000, 'Average period of steps after which we save a model.') # Optimization flags.DEFINE_float('proj_weight', 10, 'Weighting factor for projection loss.') flags.DEFINE_float('volume_weight', 0, 'Weighting factor for volume loss.') flags.DEFINE_float('viewpoint_weight', 1, 'Weighting factor for viewpoint loss.') flags.DEFINE_float('learning_rate', 0.0001, 'Learning rate.') flags.DEFINE_float('weight_decay', 0.001, 'Weight decay parameter while training.') flags.DEFINE_float('clip_gradient_norm', 0, 'Gradient clim norm, leave 0 if no gradient clipping.') flags.DEFINE_integer('max_number_of_steps', 10000, 'Maximum number of steps for training.') # Summary flags.DEFINE_integer('save_summaries_secs', 15, 'Seconds interval for dumping TF summaries.') flags.DEFINE_integer('save_interval_secs', 60 * 5, 'Seconds interval to save models.') # Scheduling flags.DEFINE_string('master', '', 'The address of the tensorflow master') flags.DEFINE_bool('sync_replicas', False, 'Whether to sync gradients between replicas for optimizer.') flags.DEFINE_integer('worker_replicas', 1, 'Number of worker replicas (train tasks).') flags.DEFINE_integer('backup_workers', 0, 'Number of backup workers.') flags.DEFINE_integer('ps_tasks', 0, 'Number of ps tasks.') flags.DEFINE_integer('task', 0, 'Task identifier flag to be set for each task running in distributed manner. Task number 0 ' 'will be chosen as the chief.') FLAGS = flags.FLAGS def main(_): train_dir = os.path.join(FLAGS.checkpoint_dir, FLAGS.model_name, 'train') save_image_dir = os.path.join(train_dir, 'images') if not os.path.exists(train_dir): os.makedirs(train_dir) if not os.path.exists(save_image_dir): os.makedirs(save_image_dir) g = tf.Graph() with g.as_default(): with tf.device(tf.train.replica_device_setter(FLAGS.ps_tasks)): global_step = slim.get_or_create_global_step() ########### ## model ## ########### model = model_ptn.model_PTN(FLAGS) ########## ## data ## ########## train_data = model.get_inputs( FLAGS.inp_dir, FLAGS.dataset_name, 'train', FLAGS.batch_size, FLAGS.image_size, FLAGS.vox_size, is_training=True) inputs = model.preprocess(train_data, FLAGS.step_size) ############## ## model_fn ## ############## model_fn = model.get_model_fn( is_training=True, reuse=False, run_projection=True) outputs = model_fn(inputs) ################## ## train_scopes ## ################## if FLAGS.init_model: train_scopes = ['decoder'] init_scopes = ['encoder'] else: train_scopes = ['encoder', 'decoder'] ########## ## loss ## ########## task_loss = model.get_loss(inputs, outputs) regularization_loss = model.get_regularization_loss(train_scopes) loss = task_loss + regularization_loss ############### ## optimizer ## ############### optimizer = tf.train.AdamOptimizer(FLAGS.learning_rate) if FLAGS.sync_replicas: optimizer = tf.train.SyncReplicasOptimizer( optimizer, replicas_to_aggregate=FLAGS.workers_replicas - FLAGS.backup_workers, total_num_replicas=FLAGS.worker_replicas) ############## ## train_op ## ############## train_op = model.get_train_op_for_scope(loss, optimizer, train_scopes) ########### ## saver ## ########### saver = tf.train.Saver(max_to_keep=np.minimum(5, FLAGS.worker_replicas + 1)) if FLAGS.task == 0: params = FLAGS params.batch_size = params.num_views params.step_size = 1 model.set_params(params) val_data = model.get_inputs( params.inp_dir, params.dataset_name, 'val', params.batch_size, params.image_size, params.vox_size, is_training=False) val_inputs = model.preprocess(val_data, params.step_size) # Note: don't compute loss here reused_model_fn = model.get_model_fn(is_training=False, reuse=True) val_outputs = reused_model_fn(val_inputs) with tf.device(tf.DeviceSpec(device_type='CPU')): vis_input_images = val_inputs['images_1'] * 255.0 vis_gt_projs = (val_outputs['masks_1'] * (-1) + 1) * 255.0 vis_pred_projs = (val_outputs['projs_1'] * (-1) + 1) * 255.0 vis_gt_projs = tf.concat([vis_gt_projs] * 3, axis=3) vis_pred_projs = tf.concat([vis_pred_projs] * 3, axis=3) # rescale new_size = [FLAGS.image_size] * 2 vis_gt_projs = tf.image.resize_nearest_neighbor( vis_gt_projs, new_size) vis_pred_projs = tf.image.resize_nearest_neighbor( vis_pred_projs, new_size) # flip # vis_gt_projs = utils.image_flipud(vis_gt_projs) # vis_pred_projs = utils.image_flipud(vis_pred_projs) # vis_gt_projs is of shape [batch, height, width, channels] write_disk_op = model.write_disk_grid( global_step=global_step, log_dir=save_image_dir, input_images=vis_input_images, gt_projs=vis_gt_projs, pred_projs=vis_pred_projs, input_voxels=val_inputs['voxels'], output_voxels=val_outputs['voxels_1']) with tf.control_dependencies([write_disk_op]): train_op = tf.identity(train_op) ############# ## init_fn ## ############# if FLAGS.init_model: init_fn = model.get_init_fn(init_scopes) else: init_fn = None ############## ## training ## ############## slim.learning.train( train_op=train_op, logdir=train_dir, init_fn=init_fn, master=FLAGS.master, is_chief=(FLAGS.task == 0), number_of_steps=FLAGS.max_number_of_steps, saver=saver, save_summaries_secs=FLAGS.save_summaries_secs, save_interval_secs=FLAGS.save_interval_secs) if __name__ == '__main__': app.run() ``` #### File: sentiment_analysis/data/dataset.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from research.sentiment_analysis.data import imdb as imdb DATASET_IMDB = "imdb" def load(dataset, vocabulary_size, sentence_length): """Returns training and evaluation input. Args: dataset: Dataset to be trained and evaluated. Currently only imdb is supported. vocabulary_size: The number of the most frequent tokens to be used from the corpus. sentence_length: The number of words in each sentence. Longer sentences get cut, shorter ones padded. Raises: ValueError: if the dataset value is not valid. Returns: A tuple of length 4, for training sentences, labels, evaluation sentences, and evaluation labels, each being an numpy array. """ if dataset == DATASET_IMDB: return imdb.load(vocabulary_size, sentence_length) else: raise ValueError("unsupported dataset: " + dataset) def get_num_class(dataset): """Returns an integer for the number of label classes. Args: dataset: Dataset to be trained and evaluated. Currently only imdb is supported. Raises: ValueError: if the dataset value is not valid. Returns: int: The number of label classes. """ if dataset == DATASET_IMDB: return imdb.NUM_CLASS else: raise ValueError("unsupported dataset: " + dataset) ``` #### File: sentiment_analysis/data/util.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np START_CHAR = 1 END_CHAR = 2 OOV_CHAR = 3 def pad_sentence(sentence, sentence_length): """Pad the given sentense at the end. If the input is longer than sentence_length, the remaining portion is dropped. END_CHAR is used for the padding. Args: sentence: A numpy array of integers. sentence_length: The length of the input after the padding. Returns: A numpy array of integers of the given length. """ sentence = sentence[:sentence_length] if len(sentence) < sentence_length: sentence = np.pad(sentence, (0, sentence_length - len(sentence)), "constant", constant_values=(START_CHAR, END_CHAR)) return sentence ``` #### File: research/seq2species/run_training.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import time from absl import flags import numpy as np import tensorflow as tf from google.protobuf import text_format from research.seq2species import build_model from research.seq2species import configuration from research.seq2species import input as seq2species_input from research.seq2species.protos import seq2label_pb2 from research.seq2species import seq2label_utils # Define non-tunable parameters. flags.DEFINE_integer('num_filters', 1, 'Number of filters for conv model') flags.DEFINE_string('hparams', '', 'Comma-separated list of name=value hyperparameter ' "pairs ('hp1=value1,hp2=value2'). Unspecified " 'hyperparameters will be filled with defaults.') flags.DEFINE_integer('batch_size', 512, 'Size of batches during training.') flags.DEFINE_integer('min_train_steps', 1000, 'Minimum number of training steps to run.') flags.DEFINE_float('max_task_loss', 10.0, "Terminate trial if task loss doesn't fall below this " 'within --min_train_steps.') flags.DEFINE_integer('n_print_progress_every', 1000, 'Print training progress every ' '--n_print_progress_every global steps.') flags.DEFINE_list('targets', ['species'], 'Names of taxonomic ranks to use as training targets.') flags.DEFINE_float( 'noise_rate', 0.0, 'Rate [0.0, 1.0] at which to inject ' 'base-flipping noise into input read sequences.') # Define paths to logs and data. flags.DEFINE_list( 'train_files', [], 'Full paths to the TFRecords containing the ' 'training examples.') flags.DEFINE_string( 'metadata_path', '', 'Full path of the text proto containing configuration ' 'information about the set of training examples.') flags.DEFINE_string('logdir', '/tmp/seq2species', 'Directory to which to write logs.') # Define supervisor/checkpointing options. flags.DEFINE_integer('task', 0, 'Task ID of the replica running the training.') flags.DEFINE_string('master', '', 'Name of the TF master to use.') flags.DEFINE_integer( 'save_model_secs', 900, 'Rate at which to save model parameters. ' 'Set to 0 to disable checkpointing.') flags.DEFINE_integer('recovery_wait_secs', 30, 'Wait to recover model from checkpoint ' 'before timing out.') flags.DEFINE_integer('save_summaries_secs', 900, 'Rate at which to save Tensorboard summaries.') flags.DEFINE_integer('ps_tasks', 0, 'Number of tasks in the ps job; 0 if no ps is used.') FLAGS = flags.FLAGS RANDOM_SEED = 42 def wait_until(time_sec): """Stalls execution until a given time. Args: time_sec: time, in seconds, until which to loop idly. """ while time.time() < time_sec: pass def update_measures(measures, new_measures, loss_val, max_loss=None): """Updates tracking of experimental measures and infeasibilty. Args: measures: dict; mapping from measure name to measure value. new_measures: dict; mapping from measure name to new measure values. loss_val: float; value of loss metric by which to determine fesibility. max_loss: float; maximum value at which to consider the loss feasible. Side Effects: Updates the given mapping of measures and values based on the current experimental metrics stored in new_measures, and determines current feasibility of the experiment based on the provided loss value. """ max_loss = max_loss if max_loss else np.finfo('f').max measures['is_infeasible'] = ( loss_val >= max_loss or not np.isfinite(loss_val)) measures.update(new_measures) def run_training(model, hparams, training_dataset, logdir, batch_size): """Trains the given model on random mini-batches of reads. Args: model: ConvolutionalNet instance containing the model graph and operations. hparams: tf.contrib.training.Hparams object containing the model's hyperparamters; see configuration.py for hyperparameter definitions. training_dataset: an `InputDataset` that can feed labelled examples. logdir: string; full path of directory to which to save checkpoints. batch_size: integer batch size. Yields: Tuple comprising a dictionary of experimental measures and the save path for train checkpoints and summaries. """ input_params = dict(batch_size=batch_size) features, labels = training_dataset.input_fn(input_params) model.build_graph(features, labels, tf.estimator.ModeKeys.TRAIN, batch_size) is_chief = FLAGS.task == 0 scaffold = tf.train.Scaffold( saver=tf.train.Saver( tf.global_variables(), max_to_keep=5, keep_checkpoint_every_n_hours=1.0), init_op=tf.global_variables_initializer(), summary_op=model.summary_op) with tf.train.MonitoredTrainingSession( master=FLAGS.master, checkpoint_dir=logdir, is_chief=is_chief, scaffold=scaffold, save_summaries_secs=FLAGS.save_summaries_secs, save_checkpoint_secs=FLAGS.save_model_secs, max_wait_secs=FLAGS.recovery_wait_secs) as sess: global_step = sess.run(model.global_step) print('Initialized model at global step ', global_step) init_time = time.time() measures = {'is_infeasible': False} if is_chief: model_info = seq2label_utils.construct_seq2label_model_info( hparams, 'conv', FLAGS.targets, FLAGS.metadata_path, FLAGS.batch_size, FLAGS.num_filters, FLAGS.noise_rate) write_message(model_info, os.path.join(logdir, 'model_info.pbtxt')) ops = [ model.accuracy, model.weighted_accuracy, model.total_loss, model.global_step, model.train_op ] while not sess.should_stop() and global_step < hparams.train_steps: accuracy, weighted_accuracy, loss, global_step, _ = sess.run(ops) def gather_measures(): """Updates the measures dictionary from this batch.""" new_measures = {'train_loss': loss, 'global_step': global_step} for target in FLAGS.targets: new_measures.update({ ('train_accuracy/%s' % target): accuracy[target], ('train_weighted_accuracy/%s' % target): weighted_accuracy[target] }) update_measures( measures, new_measures, loss, max_loss=FLAGS.max_task_loss) # Periodically track measures according to current mini-batch performance. # Log a message. if global_step % FLAGS.n_print_progress_every == 0: log_message = ('\tstep: %d (%d sec), loss: %f' % (global_step, time.time() - init_time, loss)) for target in FLAGS.targets: log_message += (', accuracy/%s: %f ' % (target, accuracy[target])) log_message += (', weighted_accuracy/%s: %f ' % (target, weighted_accuracy[target])) print(log_message) # Gather new measures and update the measures dictionary. gather_measures() yield measures, scaffold.saver.last_checkpoints[-1] # Check for additional stopping criteria. if not np.isfinite(loss) or (loss >= FLAGS.max_task_loss and global_step > FLAGS.min_train_steps): break # Always yield once at the end. gather_measures() yield measures, scaffold.saver.last_checkpoints[-1] def write_message(message, filename): """Writes contents of the given message to the given filename as a text proto. Args: message: the proto message to save. filename: full path of file to which to save the text proto. Side Effects: Outputs a text proto file to the given filename. """ message_string = text_format.MessageToString(message) with tf.gfile.GFile(filename, 'w') as f: f.write(message_string) def write_measures(measures, checkpoint_file, init_time): """Writes performance measures to file. Args: measures: dict; mapping from measure name to measure value. checkpoint_file: string; full save path for checkpoints and summaries. init_time: int; start time for work on the current experiment. Side Effects: Writes given dictionary of performance measures for the current experiment to a 'measures.pbtxt' file in the checkpoint directory. """ # Save experiment measures. print('global_step: ', measures['global_step']) experiment_measures = seq2label_pb2.Seq2LabelExperimentMeasures( checkpoint_path=checkpoint_file, steps=measures['global_step'], experiment_infeasible=measures['is_infeasible'], wall_time=time.time() - init_time) # Inaccurate for restarts. for name in measures: value = measures.get(name) if name not in ['is_infeasible', 'global_step']: experiment_measures.measures.add(name=name, value=value) measures_file = os.path.join( os.path.dirname(checkpoint_file), 'measures.pbtxt') write_message(experiment_measures, measures_file) print('Wrote ', measures_file, ' containing the following experiment measures:\n', experiment_measures) def main(unused_argv): dataset_info = seq2species_input.load_dataset_info('') init_time = time.time() # Determine model hyperparameters. hparams = configuration.parse_hparams(FLAGS.hparams, FLAGS.num_filters) print('Current Hyperparameters:') for hp_name, hp_val in hparams.values().items(): print('\t', hp_name, ': ', hp_val) # Initialize the model graph. print('Constructing TensorFlow Graph.') tf.reset_default_graph() input_dataset = seq2species_input.InputDataset.from_tfrecord_files( FLAGS.train_files, 'train', FLAGS.targets, dataset_info, noise_rate=FLAGS.noise_rate, random_seed=RANDOM_SEED) with tf.device(tf.train.replica_device_setter(FLAGS.ps_tasks)): model = build_model.ConvolutionalNet( hparams, dataset_info, targets=FLAGS.targets) # Run the experiment. measures, checkpoint_file = None, None print('Starting model training.') for cur_measures, cur_file in run_training( model, hparams, input_dataset, FLAGS.logdir, batch_size=FLAGS.batch_size): measures, checkpoint_file = cur_measures, cur_file # Save experiment results. write_measures(measures, checkpoint_file, init_time) if __name__ == '__main__': tf.app.run(main) ``` #### File: skip_thoughts/ops/input_ops.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import tensorflow as tf # A SentenceBatch is a pair of Tensors: # ids: Batch of input sentences represented as sequences of word ids: an int64 # Tensor with shape [batch_size, padded_length]. # mask: Boolean mask distinguishing real words (1) from padded words (0): an # int32 Tensor with shape [batch_size, padded_length]. SentenceBatch = collections.namedtuple("SentenceBatch", ("ids", "mask")) def parse_example_batch(serialized): """Parses a batch of tf.Example protos. Args: serialized: A 1-D string Tensor; a batch of serialized tf.Example protos. Returns: encode: A SentenceBatch of encode sentences. decode_pre: A SentenceBatch of "previous" sentences to decode. decode_post: A SentenceBatch of "post" sentences to decode. """ features = tf.parse_example( serialized, features={ "encode": tf.VarLenFeature(dtype=tf.int64), "decode_pre": tf.VarLenFeature(dtype=tf.int64), "decode_post": tf.VarLenFeature(dtype=tf.int64), }) def _sparse_to_batch(sparse): ids = tf.sparse_tensor_to_dense(sparse) # Padding with zeroes. mask = tf.sparse_to_dense(sparse.indices, sparse.dense_shape, tf.ones_like(sparse.values, dtype=tf.int32)) return SentenceBatch(ids=ids, mask=mask) output_names = ("encode", "decode_pre", "decode_post") return tuple(_sparse_to_batch(features[x]) for x in output_names) def prefetch_input_data(reader, file_pattern, shuffle, capacity, num_reader_threads=1): """Prefetches string values from disk into an input queue. Args: reader: Instance of tf.ReaderBase. file_pattern: Comma-separated list of file patterns (e.g. "/tmp/train_data-?????-of-00100", where '?' acts as a wildcard that matches any character). shuffle: Boolean; whether to randomly shuffle the input data. capacity: Queue capacity (number of records). num_reader_threads: Number of reader threads feeding into the queue. Returns: A Queue containing prefetched string values. """ data_files = [] for pattern in file_pattern.split(","): data_files.extend(tf.gfile.Glob(pattern)) if not data_files: tf.logging.fatal("Found no input files matching %s", file_pattern) else: tf.logging.info("Prefetching values from %d files matching %s", len(data_files), file_pattern) filename_queue = tf.train.string_input_producer( data_files, shuffle=shuffle, capacity=16, name="filename_queue") if shuffle: min_after_dequeue = int(0.6 * capacity) values_queue = tf.RandomShuffleQueue( capacity=capacity, min_after_dequeue=min_after_dequeue, dtypes=[tf.string], shapes=[[]], name="random_input_queue") else: values_queue = tf.FIFOQueue( capacity=capacity, dtypes=[tf.string], shapes=[[]], name="fifo_input_queue") enqueue_ops = [] for _ in range(num_reader_threads): _, value = reader.read(filename_queue) enqueue_ops.append(values_queue.enqueue([value])) tf.train.queue_runner.add_queue_runner( tf.train.queue_runner.QueueRunner(values_queue, enqueue_ops)) tf.summary.scalar("queue/%s/fraction_of_%d_full" % (values_queue.name, capacity), tf.cast(values_queue.size(), tf.float32) * (1.0 / capacity)) return values_queue ``` #### File: research/steve/nn.py ```python from builtins import range from builtins import object # Copyright 2018 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import tensorflow as tf import numpy as np class FeedForwardNet(object): """Custom feed-forward network layer.""" def __init__(self, name, in_size, out_shape, layers=1, hidden_dim=32, final_nonlinearity=None, get_uncertainty=False): self.name = name self.in_size = in_size self.out_shape = out_shape self.out_size = np.prod(out_shape) self.layers = layers self.hidden_dim = hidden_dim self.final_nonlinearity = (lambda x: x) if final_nonlinearity is None else final_nonlinearity self.get_uncertainty = get_uncertainty self.weights = [None] * layers self.biases = [None] * layers self.params_list = [] with tf.variable_scope(name): for layer_i in range(self.layers): in_size = self.hidden_dim out_size = self.hidden_dim if layer_i == 0: in_size = self.in_size if layer_i == self.layers - 1: out_size = self.out_size self.weights[layer_i] = tf.get_variable("weights%d" % layer_i, [in_size, out_size], initializer=tf.contrib.layers.xavier_initializer()) self.biases[layer_i] = tf.get_variable("bias%d" % layer_i, [1, out_size], initializer=tf.constant_initializer(0.0)) self.params_list += [self.weights[layer_i], self.biases[layer_i]] def __call__(self, x, stop_params_gradient=False, is_eval=True, ensemble_idxs=None, pre_expanded=None, reduce_mode="none"): original_shape = tf.shape(x) h = tf.reshape(x, [-1, self.in_size]) for layer_i in range(self.layers): nonlinearity = tf.nn.relu if layer_i + 1 < self.layers else self.final_nonlinearity if stop_params_gradient: h = nonlinearity( tf.matmul(h, tf.stop_gradient(self.weights[layer_i])) + tf.stop_gradient(self.biases[layer_i])) else: h = nonlinearity(tf.matmul(h, self.weights[layer_i]) + self.biases[layer_i]) if len(self.out_shape) > 0: h = tf.reshape(h, tf.concat([original_shape[:-1], tf.constant(self.out_shape)], -1)) else: h = tf.reshape(h, original_shape[:-1]) if pre_expanded is None: pre_expanded = ensemble_idxs is not None if reduce_mode == "none" and not pre_expanded and self.get_uncertainty: if len(self.out_shape) > 0: h = tf.expand_dims(h, -2) else: h = tf.expand_dims(h, -1) return h def l2_loss(self): return tf.add_n([tf.reduce_sum(.5 * tf.square(mu)) for mu in self.params_list]) class BayesianDropoutFeedForwardNet(FeedForwardNet): """Custom feed-forward network layer, with dropout as a Bayesian approximation.""" def __init__(self, name, in_size, out_shape, layers=1, hidden_dim=32, final_nonlinearity=None, get_uncertainty=False, keep_prob=.5, eval_sample_count=2, consistent_random_seed=False): super(BayesianDropoutFeedForwardNet, self).__init__(name, in_size, out_shape, layers=layers, hidden_dim=hidden_dim, final_nonlinearity=final_nonlinearity, get_uncertainty=get_uncertainty) self.keep_prob = keep_prob self.eval_sample_count = eval_sample_count if eval_sample_count < 2: raise Exception("eval_sample_count must be at least 2 to estimate uncertainty") self.dropout_seed = tf.random_uniform([layers], maxval=1e18, dtype=tf.int64) if consistent_random_seed else [ None] * layers def __call__(self, x, stop_params_gradient=False, is_eval=True, pre_expanded=False, ensemble_idxs=None, reduce_mode="none"): if is_eval: x = tf.tile(tf.expand_dims(x, 0), tf.concat([tf.constant([self.eval_sample_count]), tf.ones_like(tf.shape(x))], 0)) original_shape = tf.shape(x) h = tf.reshape(x, [-1, self.in_size]) for layer_i in range(self.layers): nonlinearity = tf.nn.relu if layer_i + 1 < self.layers else self.final_nonlinearity if layer_i > 0: h = tf.nn.dropout(h, keep_prob=self.keep_prob, seed=self.dropout_seed[layer_i]) if stop_params_gradient: h = nonlinearity( tf.matmul(h, tf.stop_gradient(self.weights[layer_i])) + tf.stop_gradient(self.biases[layer_i])) else: h = nonlinearity(tf.matmul(h, self.weights[layer_i]) + self.biases[layer_i]) if len(self.out_shape) > 0: h = tf.reshape(h, tf.concat([original_shape[:-1], tf.constant(self.out_shape)], -1)) else: h = tf.reshape(h, original_shape[:-1]) if is_eval: h, uncertainty = tf.nn.moments(h, 0) if self.get_uncertainty: return h, uncertainty else: return h else: return h class EnsembleFeedForwardNet(FeedForwardNet): """Custom feed-forward network layer with an ensemble.""" def __init__(self, name, in_size, out_shape, layers=1, hidden_dim=32, final_nonlinearity=None, get_uncertainty=False, ensemble_size=2, train_sample_count=2, eval_sample_count=2): super().__init__(name, in_size, out_shape, layers, hidden_dim, final_nonlinearity, get_uncertainty) if train_sample_count > ensemble_size: raise Exception("train_sample_count cannot be larger than ensemble size") if eval_sample_count > ensemble_size: raise Exception("eval_sample_count cannot be larger than ensemble size") self.name = name self.in_size = in_size self.out_shape = out_shape self.out_size = np.prod(out_shape) self.layers = layers self.hidden_dim = hidden_dim self.final_nonlinearity = (lambda x: x) if final_nonlinearity is None else final_nonlinearity self.get_uncertainty = get_uncertainty self.ensemble_size = ensemble_size self.train_sample_count = train_sample_count self.eval_sample_count = eval_sample_count self.weights = [None] * layers self.biases = [None] * layers self.params_list = [] with tf.variable_scope(name): for layer_i in range(self.layers): in_size = self.hidden_dim out_size = self.hidden_dim if layer_i == 0: in_size = self.in_size if layer_i == self.layers - 1: out_size = self.out_size self.weights[layer_i] = tf.get_variable("weights%d" % layer_i, [ensemble_size, in_size, out_size], initializer=tf.contrib.layers.xavier_initializer()) self.biases[layer_i] = tf.get_variable("bias%d" % layer_i, [ensemble_size, out_size], initializer=tf.constant_initializer(0.0)) self.params_list += [self.weights[layer_i], self.biases[layer_i]] def __call__(self, x, stop_params_gradient=False, is_eval=True, ensemble_idxs=None, pre_expanded=None, reduce_mode="none"): if pre_expanded is None: pre_expanded = ensemble_idxs is not None if ensemble_idxs is None: ensemble_idxs = tf.random_shuffle(tf.range(self.ensemble_size)) ensemble_sample_n = self.eval_sample_count if is_eval else self.train_sample_count ensemble_idxs = ensemble_idxs[:ensemble_sample_n] else: ensemble_sample_n = tf.shape(ensemble_idxs)[0] weights = [tf.gather(w, ensemble_idxs, axis=0) for w in self.weights] biases = [tf.expand_dims(tf.gather(b, ensemble_idxs, axis=0), 0) for b in self.biases] original_shape = tf.shape(x) if pre_expanded: h = tf.reshape(x, [-1, ensemble_sample_n, self.in_size]) else: h = tf.tile(tf.reshape(x, [-1, 1, self.in_size]), [1, ensemble_sample_n, 1]) for layer_i in range(self.layers): nonlinearity = tf.nn.relu if layer_i + 1 < self.layers else self.final_nonlinearity if stop_params_gradient: h = nonlinearity(tf.einsum('bri,rij->brj', h, tf.stop_gradient(weights[layer_i])) + tf.stop_gradient( biases[layer_i])) else: h = nonlinearity(tf.einsum('bri,rij->brj', h, weights[layer_i]) + biases[layer_i]) if pre_expanded: if len(self.out_shape) > 0: h = tf.reshape(h, tf.concat([original_shape[:-1], tf.constant(self.out_shape)], -1)) else: h = tf.reshape(h, original_shape[:-1]) else: if len(self.out_shape) > 0: h = tf.reshape(h, tf.concat( [original_shape[:-1], tf.constant([ensemble_sample_n]), tf.constant(self.out_shape)], -1)) else: h = tf.reshape(h, tf.concat([original_shape[:-1], tf.constant([ensemble_sample_n])], -1)) if reduce_mode == "none": pass elif reduce_mode == "random": if len(self.out_shape) > 0: h = tf.reduce_sum(h * tf.reshape( tf.one_hot(tf.random_uniform([tf.shape(h)[0]], 0, ensemble_sample_n, dtype=tf.int64), ensemble_sample_n), tf.concat( [tf.shape(h)[:1], tf.ones_like(tf.shape(h)[1:-2]), tf.constant([ensemble_sample_n]), tf.constant([1])], 0)), -2) else: h = tf.reduce_sum(h * tf.reshape( tf.one_hot(tf.random_uniform([tf.shape(h)[0]], 0, ensemble_sample_n, dtype=tf.int64), ensemble_sample_n), tf.concat([tf.shape(h)[:1], tf.ones_like(tf.shape(h)[1:-1]), tf.constant([ensemble_sample_n])], 0)), -1) elif reduce_mode == "mean": if len(self.out_shape) > 0: h = tf.reduce_mean(h, -2) else: h = tf.reduce_mean(h, -1) else: raise Exception("use a valid reduce mode: none, random, or mean") return h class ReparamNormal(object): """Wrapper to make a feedforward network that outputs both mu and logsigma, for use in the reparameterization trick.""" def __init__(self, base_net, name, in_size, out_shape, layers=2, hidden_dim=32, final_nonlinearity=None, ls_start_bias=0.0, final_net=FeedForwardNet, logsigma_min=-5., logsigma_max=2., **kwargs): assert layers > 1 self.main_encoder = base_net(name + "_base", in_size, [hidden_dim], layers, hidden_dim, final_nonlinearity=tf.nn.relu, **kwargs) self.mu = final_net(name + "_mu", hidden_dim, out_shape, layers=1, final_nonlinearity=final_nonlinearity, **kwargs) self.logsigma = final_net(name + "_logsigma", hidden_dim, out_shape, layers=1, final_nonlinearity=None, **kwargs) self.ls_start_bias = ls_start_bias self.params_list = self.main_encoder.params_list + self.mu.params_list + self.logsigma.params_list self.logsigma_min = logsigma_min self.logsigma_max = logsigma_max def __call__(self, x): encoded = self.main_encoder(x) mu = self.mu(encoded) logsigma = tf.clip_by_value(self.logsigma(encoded) + self.ls_start_bias, self.logsigma_min, self.logsigma_max) return mu, logsigma def l2_loss(self): return self.main_encoder.l2_loss() + self.mu.l2_loss() + self.logsigma.l2_loss() ``` #### File: research/steve/toy_demo.py ```python from __future__ import division from __future__ import print_function from builtins import range from past.utils import old_div # Copyright 2018 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import numpy as np import scipy import matplotlib.pyplot as plt import seaborn as sns ### Hyperparameters NONTERMINAL_STATE_COUNT = 100 NOISE_AMOUNT = 0.1 TRAIN_STEPS = 10000 Q_ENSEMBLE_SIZE = 8 MODEL_ENSEMBLE_SIZE = 8 HORIZON = 5 TRIAL_N = 10 ### Helper functions initial_state = 0 terminal_state = NONTERMINAL_STATE_COUNT + 1 nonterminal_state_count = NONTERMINAL_STATE_COUNT state_count = NONTERMINAL_STATE_COUNT + 1 final_reward = NONTERMINAL_STATE_COUNT colors = sns.color_palette('husl', 4) plt.rcParams["figure.figsize"] = (6, 5) def step(state): if state == terminal_state: next_state = terminal_state else: next_state = state + 1 if state == terminal_state: reward = 0 elif state + 1 == terminal_state: reward = final_reward else: reward = -1 return next_state, reward def noisy_step(state): if state == terminal_state: next_state = terminal_state elif np.random.random([]) < NOISE_AMOUNT: next_state = np.random.randint(0, state_count) else: next_state = state + 1 if state == terminal_state: reward = 0 elif state + 1 == terminal_state: reward = final_reward else: reward = -1 return next_state, reward def get_error(Q): losses = np.square(np.arange(state_count) - Q[:-1]) return np.mean(losses) def downsample(array, factor): pad_size = np.ceil(old_div(float(array.size), factor)) * factor - array.size array_padded = np.append(array, np.zeros([pad_size.astype(np.int64)]) * np.NaN) return scipy.nanmean(array_padded.reshape(-1, factor), axis=1) ###################### ### Main experiments ###################### # Basic Q if True: print("Running basic Q-learning.") trial_results = [] for run_i in range(TRIAL_N): print("Trial %d" % run_i) Q = np.random.randint(0, state_count, [state_count + 1]).astype(np.float64) Q[state_count] = 0 losses = [] for step_i in range(TRAIN_STEPS): state = np.random.randint(0, state_count) next_state, reward = step(state) Q[state] = reward + Q[next_state] losses.append(get_error(Q)) trial_results.append(losses) print("...complete.\n") result = np.stack(trial_results, axis=1) means = np.mean(result, axis=1) stdevs = np.std(result, axis=1) plt.plot(means, label="Basic Q-learning", color=colors[0]) plt.fill_between(np.arange(TRAIN_STEPS), means - stdevs, means + stdevs, alpha=.2, color=colors[0]) with open('Toy-v1/baseline.csv', 'w') as f: data = [] for frame_i in range(result.shape[0]): for loss in result[frame_i]: data.append("%f,%f,%f,%f" % (frame_i, frame_i, frame_i, loss)) f.write("\n".join(data)) # Ensemble Q if True: print("Running ensemble Q-learning.") trial_results = [] for run_i in range(TRIAL_N): print("Trial %d" % run_i) Q = np.random.randint(0, state_count, [Q_ENSEMBLE_SIZE, state_count + 1]).astype(np.float64) Q[:, state_count] = 0 losses = [] for step_i in range(TRAIN_STEPS): for q_ensemble_i in range(Q_ENSEMBLE_SIZE): state = np.random.randint(0, state_count) next_state, reward = step(state) Q[q_ensemble_i, state] = reward + np.mean(Q[:, next_state]) losses.append(get_error(np.mean(Q, axis=0))) trial_results.append(losses) print("...complete.\n") result = np.stack(trial_results, axis=1) means = np.mean(result, axis=1) stdevs = np.std(result, axis=1) plt.plot(means, label="Ensemble Q-learning", color=colors[1]) plt.fill_between(np.arange(TRAIN_STEPS), means - stdevs, means + stdevs, alpha=.2, color=colors[1]) # Ensemble MVE-Oracle if True: print("Running ensemble oracle MVE.") trial_results = [] for run_i in range(TRIAL_N): print("Trial %d" % run_i) Q = np.random.randint(0, state_count, [Q_ENSEMBLE_SIZE, state_count + 1]).astype(np.float64) Q[:, state_count] = 0 losses = [] for step_i in range(TRAIN_STEPS): for q_ensemble_i in range(Q_ENSEMBLE_SIZE): state = np.random.randint(0, state_count) next_state, reward = step(state) # MVE rollout target = reward for _ in range(HORIZON): next_state, reward = step(next_state) target += reward target += np.mean(Q[:, next_state]) Q[q_ensemble_i, state] = target losses.append(get_error(np.mean(Q, axis=0))) trial_results.append(losses) print("...complete.\n") result = np.stack(trial_results, axis=1) means = np.mean(result, axis=1) stdevs = np.std(result, axis=1) plt.plot(means, label="MVE-oracle", color=colors[2]) plt.fill_between(np.arange(TRAIN_STEPS), means - stdevs, means + stdevs, alpha=.2, color=colors[2]) with open('Toy-v1/mve_oracle.csv', 'w') as f: data = [] for frame_i in range(result.shape[0]): for loss in result[frame_i]: data.append("%f,%f,%f,%f" % (frame_i, frame_i, frame_i, loss)) f.write("\n".join(data)) # Ensemble MVE-Noisy if True: print("Running ensemble noisy MVE.") trial_results = [] for run_i in range(TRIAL_N): print("Trial %d" % run_i) Q = np.random.randint(0, state_count, [Q_ENSEMBLE_SIZE, state_count + 1]).astype(np.float64) Q[:, state_count] = 0 losses = [] for step_i in range(TRAIN_STEPS): for q_ensemble_i in range(Q_ENSEMBLE_SIZE): state = np.random.randint(0, state_count) next_state, reward = step(state) # MVE rollout targets = [] first_next_state, first_reward = next_state, reward for model_ensemble_i in range(MODEL_ENSEMBLE_SIZE): next_state, reward = first_next_state, first_reward target = reward for _ in range(HORIZON): next_state, reward = noisy_step(next_state) target += reward target += np.mean(Q[:, next_state]) targets.append(target) Q[q_ensemble_i, state] = np.mean(targets) losses.append(get_error(np.mean(Q, axis=0))) trial_results.append(losses) print("...complete.\n") result = np.stack(trial_results, axis=1) means = np.mean(result, axis=1) stdevs = np.std(result, axis=1) plt.plot(means, label="MVE-noisy", color=colors[2], linestyle='dotted') plt.fill_between(np.arange(TRAIN_STEPS), means - stdevs, means + stdevs, alpha=.2, color=colors[2]) with open('Toy-v1/mve_noisy.csv', 'w') as f: data = [] for frame_i in range(result.shape[0]): for loss in result[frame_i]: data.append("%f,%f,%f,%f" % (frame_i, frame_i, frame_i, loss)) f.write("\n".join(data)) # STEVE-Oracle if True: print("Running ensemble oracle STEVE.") trial_results = [] oracle_q_estimate_errors = [] oracle_mve_estimate_errors = [] oracle_steve_estimate_errors = [] oracle_opt_estimate_errors = [] for run_i in range(TRIAL_N): print("Trial %d" % run_i) Q = np.random.randint(0, state_count, [Q_ENSEMBLE_SIZE, state_count + 1]).astype(np.float64) Q[:, state_count] = 0 losses = [] q_estimate_errors = [] mve_estimate_errors = [] steve_estimate_errors = [] opt_estimate_errors = [] steve_beat_freq = [] for step_i in range(TRAIN_STEPS): _q_estimate_errors = [] _mve_estimate_errors = [] _steve_estimate_errors = [] _opt_estimate_errors = [] _steve_beat_freq = [] for q_ensemble_i in range(Q_ENSEMBLE_SIZE): state = np.random.randint(0, state_count) next_state, reward = step(state) # STEVE rollout Q_est_mat = np.zeros([HORIZON + 1, Q_ENSEMBLE_SIZE]) reward_est_mat = np.zeros([HORIZON + 1, 1]) first_next_state, first_reward = next_state, reward next_state, reward = first_next_state, first_reward Q_est_mat[0, :] = Q[:, next_state] reward_est_mat[0, 0] = reward for timestep_i in range(1, HORIZON + 1): next_state, reward = step(next_state) Q_est_mat[timestep_i, :] = Q[:, next_state] reward_est_mat[timestep_i, 0] = reward all_targets = Q_est_mat + np.cumsum(reward_est_mat, axis=0) # STEVE weight calculation estimates = np.mean(all_targets, axis=1) confidences = old_div(1., (np.var(all_targets, axis=1) + 1e-8)) coefficients = old_div(confidences, np.sum(confidences)) target = np.sum(estimates * coefficients) Q[q_ensemble_i, state] = target true_target = state + 1. if state != terminal_state else 0. _q_estimate_errors.append(np.square(estimates[0] - true_target)) _mve_estimate_errors.append(np.square(estimates[-1] - true_target)) _steve_estimate_errors.append(np.square(np.sum(estimates * coefficients) - true_target)) _opt_estimate_errors.append(np.min(np.square(estimates - true_target))) losses.append(get_error(np.mean(Q, axis=0))) q_estimate_errors.append(np.mean(_q_estimate_errors)) mve_estimate_errors.append(np.mean(_mve_estimate_errors)) steve_estimate_errors.append(np.mean(_steve_estimate_errors)) opt_estimate_errors.append(np.mean(_opt_estimate_errors)) trial_results.append(losses) oracle_q_estimate_errors.append(q_estimate_errors) oracle_mve_estimate_errors.append(mve_estimate_errors) oracle_steve_estimate_errors.append(steve_estimate_errors) oracle_opt_estimate_errors.append(opt_estimate_errors) print("...complete.\n") result = np.stack(trial_results, axis=1) means = np.mean(result, axis=1) stdevs = np.std(result, axis=1) plt.plot(means, label="STEVE-oracle", color=colors[3]) plt.fill_between(np.arange(TRAIN_STEPS), means - stdevs, means + stdevs, alpha=.2, color=colors[3]) with open('Toy-v1/steve_oracle.csv', 'w') as f: data = [] for frame_i in range(result.shape[0]): for loss in result[frame_i]: data.append("%f,%f,%f,%f" % (frame_i, frame_i, frame_i, loss)) f.write("\n".join(data)) # STEVE-Noisy if True: print("Running ensemble noisy STEVE.") trial_results = [] noisy_q_estimate_errors = [] noisy_mve_estimate_errors = [] noisy_steve_estimate_errors = [] noisy_opt_estimate_errors = [] noisy_steve_beat_freq = [] for run_i in range(TRIAL_N): print("Trial %d" % run_i) Q = np.random.randint(0, state_count, [Q_ENSEMBLE_SIZE, state_count + 1]).astype(np.float64) Q[:, state_count] = 0 losses = [] q_estimate_errors = [] mve_estimate_errors = [] steve_estimate_errors = [] opt_estimate_errors = [] steve_beat_freq = [] for step_i in range(TRAIN_STEPS): _q_estimate_errors = [] _mve_estimate_errors = [] _steve_estimate_errors = [] _opt_estimate_errors = [] _steve_beat_freq = [] for q_ensemble_i in range(Q_ENSEMBLE_SIZE): state = np.random.randint(0, state_count) next_state, reward = step(state) # STEVE rollout Q_est_mat = np.zeros([HORIZON + 1, MODEL_ENSEMBLE_SIZE, Q_ENSEMBLE_SIZE]) reward_est_mat = np.zeros([HORIZON + 1, MODEL_ENSEMBLE_SIZE, 1]) first_next_state, first_reward = next_state, reward for model_ensemble_i in range(MODEL_ENSEMBLE_SIZE): next_state, reward = first_next_state, first_reward Q_est_mat[0, model_ensemble_i, :] = Q[:, next_state] reward_est_mat[0, model_ensemble_i, 0] = reward for timestep_i in range(1, HORIZON + 1): next_state, reward = noisy_step(next_state) Q_est_mat[timestep_i, model_ensemble_i, :] = Q[:, next_state] reward_est_mat[timestep_i, model_ensemble_i, 0] = reward all_targets = Q_est_mat + np.cumsum(reward_est_mat, axis=0) # STEVE weight calculation all_targets = np.reshape(all_targets, [HORIZON + 1, MODEL_ENSEMBLE_SIZE * Q_ENSEMBLE_SIZE]) estimates = np.mean(all_targets, axis=1) confidences = old_div(1., (np.var(all_targets, axis=1) + 1e-8)) coefficients = old_div(confidences, np.sum(confidences)) target = np.sum(estimates * coefficients) # target = estimates[0] Q[q_ensemble_i, state] = target true_target = state + 1. if state != terminal_state else 0. _q_estimate_errors.append(np.square(estimates[0] - true_target)) _mve_estimate_errors.append(np.square(estimates[-1] - true_target)) _steve_estimate_errors.append(np.square(np.sum(estimates * coefficients) - true_target)) _opt_estimate_errors.append(np.min(np.square(estimates - true_target))) _steve_beat_freq.append(float(np.square(estimates[0] - true_target) > np.square(target - true_target))) losses.append(get_error(np.mean(Q, axis=0))) q_estimate_errors.append(np.mean(_q_estimate_errors)) mve_estimate_errors.append(np.mean(_mve_estimate_errors)) steve_estimate_errors.append(np.mean(_steve_estimate_errors)) opt_estimate_errors.append(np.mean(_opt_estimate_errors)) steve_beat_freq.append(np.mean(_steve_beat_freq)) trial_results.append(losses) noisy_q_estimate_errors.append(q_estimate_errors) noisy_mve_estimate_errors.append(mve_estimate_errors) noisy_steve_estimate_errors.append(steve_estimate_errors) noisy_opt_estimate_errors.append(opt_estimate_errors) noisy_steve_beat_freq.append(steve_beat_freq) print("...complete.\n") result = np.stack(trial_results, axis=1) means = np.mean(result, axis=1) stdevs = np.std(result, axis=1) plt.plot(means, label="STEVE-noisy", color=colors[3], linestyle='dotted') plt.fill_between(np.arange(TRAIN_STEPS), means - stdevs, means + stdevs, alpha=.2, color=colors[3]) with open('Toy-v1/steve_noisy.csv', 'w') as f: data = [] for frame_i in range(result.shape[0]): for loss in result[frame_i]: data.append("%f,%f,%f,%f" % (frame_i, frame_i, frame_i, loss)) f.write("\n".join(data)) # ### Display results # plt.title("Comparison of convergence rates") # plt.legend() # plt.savefig("comparison.pdf") # plt.show() # # ### Display secondary results - error comparison # DOWNSAMPLE = 50 # colors = sns.color_palette('husl', 8) # for i, (error_curve, label) in enumerate([ # (oracle_q_estimate_errors, "Oracle Q error"), # (oracle_mve_estimate_errors, "Oracle MVE error"), # (oracle_steve_estimate_errors, "Oracle STEVE error"), # # (oracle_opt_estimate_errors, "Oracle minimum single-estimate error"), # ]): # result = np.stack(error_curve, axis=1) # means = downsample(np.mean(result, axis=1), DOWNSAMPLE) # stdevs = downsample(np.std(result, axis=1), DOWNSAMPLE) # plt.plot(means, label=label, color=colors[i]) # plt.fill_between(np.arange(means.shape[0]), means - stdevs, means + stdevs, alpha=.2, color=colors[i]) # # plt.title("Comparison of errors for oracle dynamics") # plt.legend() # plt.show() # # for i, (error_curve, label) in enumerate([ # (noisy_q_estimate_errors, "Noisy Q error"), # (noisy_mve_estimate_errors, "Noisy MVE error"), # (noisy_steve_estimate_errors, "Noisy STEVE error"), # # (noisy_opt_estimate_errors, "Noisy minimum single-estimate error"), # # (trial_steve_beat_freq, "STEVE beat freq"), # ]): # result = np.stack(error_curve, axis=1) # means = downsample(np.mean(result, axis=1), DOWNSAMPLE) # stdevs = downsample(np.std(result, axis=1), DOWNSAMPLE) # plt.plot(means, label=label, color=colors[i]) # plt.fill_between(np.arange(means.shape[0]), means - stdevs, means + stdevs, alpha=.2, color=colors[i]) # # plt.title("Comparison of errors for noisy dynamics") # plt.legend() # plt.show() ``` #### File: research/steve/worldmodel.py ```python import tensorflow as tf import numpy as np from research.steve import nn from research.steve.learner import CoreModel class DeterministicWorldModel(CoreModel): """ A simple feed-forward neural network world model, with an option for an ensemble. """ @property def saveid(self): return "worldmodel" def create_params(self, env_config, learner_config): self.obs_dim = np.prod(env_config["obs_dims"]) self.action_dim = env_config["action_dim"] self.reward_scale = env_config["reward_scale"] self.discount = env_config["discount"] self.aux_hidden_dim = self.learner_config["aux_hidden_dim"] self.transition_hidden_dim = self.learner_config["transition_hidden_dim"] self.bayesian_config = self.learner_config["bayesian"] with tf.variable_scope(self.name): if self.bayesian_config: self.transition_predictor = nn.EnsembleFeedForwardNet('transition_predictor', self.obs_dim + self.action_dim, [self.obs_dim], layers=8, hidden_dim=self.transition_hidden_dim, get_uncertainty=True, ensemble_size=self.bayesian_config["transition"][ "ensemble_size"], train_sample_count= self.bayesian_config["transition"][ "train_sample_count"], eval_sample_count= self.bayesian_config["transition"][ "eval_sample_count"]) self.done_predictor = nn.EnsembleFeedForwardNet('done_predictor', self.obs_dim + self.obs_dim + self.action_dim, [], layers=4, hidden_dim=self.aux_hidden_dim, get_uncertainty=True, ensemble_size=self.bayesian_config["transition"][ "ensemble_size"], train_sample_count=self.bayesian_config["transition"][ "train_sample_count"], eval_sample_count=self.bayesian_config["transition"][ "eval_sample_count"]) self.reward_predictor = nn.EnsembleFeedForwardNet('reward_predictor', self.obs_dim + self.obs_dim + self.action_dim, [], layers=4, hidden_dim=self.aux_hidden_dim, get_uncertainty=True, ensemble_size=self.bayesian_config["reward"][ "ensemble_size"], train_sample_count=self.bayesian_config["reward"][ "train_sample_count"], eval_sample_count=self.bayesian_config["reward"][ "eval_sample_count"]) else: self.transition_predictor = nn.FeedForwardNet('transition_predictor', self.obs_dim + self.action_dim, [self.obs_dim], layers=8, hidden_dim=self.transition_hidden_dim, get_uncertainty=True) self.done_predictor = nn.FeedForwardNet('done_predictor', self.obs_dim + self.obs_dim + self.action_dim, [], layers=4, hidden_dim=self.aux_hidden_dim, get_uncertainty=True) self.reward_predictor = nn.FeedForwardNet('reward_predictor', self.obs_dim + self.obs_dim + self.action_dim, [], layers=4, hidden_dim=self.aux_hidden_dim, get_uncertainty=True) def get_ensemble_idx_info(self): if self.bayesian_config is not False: ensemble_idxs = tf.random_shuffle(tf.range(self.transition_predictor.ensemble_size)) transition_ensemble_sample_n = self.transition_predictor.eval_sample_count reward_ensemble_sample_n = self.reward_predictor.eval_sample_count ensemble_idxs = ensemble_idxs[:transition_ensemble_sample_n] return ensemble_idxs, transition_ensemble_sample_n, reward_ensemble_sample_n else: return None, 1, 1 def build_training_graph(self, obs, next_obs, actions, rewards, dones, data_size): info = tf.concat([obs, actions], -1) predicted_next_obs = self.transition_predictor(info, is_eval=False, reduce_mode="random") + obs next_info = tf.concat([next_obs, info], -1) predicted_dones = self.done_predictor(next_info, is_eval=False, reduce_mode="random") predicted_rewards = self.reward_predictor(next_info, is_eval=False, reduce_mode="random") done_losses = tf.nn.sigmoid_cross_entropy_with_logits(labels=dones, logits=predicted_dones) reward_losses = .5 * tf.square(rewards - predicted_rewards) next_obs_losses = .5 * tf.reduce_sum(tf.square(next_obs - predicted_next_obs), -1) done_loss = tf.reduce_mean(done_losses) reward_loss = tf.reduce_mean(reward_losses) next_obs_loss = tf.reduce_mean(next_obs_losses) reg_loss = .0001 * (self.done_predictor.l2_loss() + self.reward_predictor.l2_loss() + self.transition_predictor.l2_loss()) total_loss = done_loss + reward_loss + next_obs_loss + reg_loss inspect = (total_loss, done_loss, reward_loss, next_obs_loss, reg_loss) return total_loss, inspect def init_extra_info(self, obs): return tf.zeros_like(obs) def transition(self, obs, action, extra_info, ensemble_idxs=None, pre_expanded=None): info = tf.concat([obs, action], -1) next_obs_delta = self.transition_predictor(info, reduce_mode="none", ensemble_idxs=ensemble_idxs, pre_expanded=pre_expanded) if ensemble_idxs is None: next_obs = tf.expand_dims(obs, -2) + next_obs_delta next_info = tf.concat([next_obs, tf.expand_dims(info, -2)], -1) else: next_obs = obs + next_obs_delta next_info = tf.concat([next_obs, info], -1) done = tf.nn.sigmoid( self.done_predictor(next_info, reduce_mode="none", ensemble_idxs=ensemble_idxs, pre_expanded=True)) extra_info = tf.zeros_like(obs) return next_obs, done, extra_info def get_rewards(self, obs, action, next_obs): next_info = tf.concat([next_obs, obs, action], -1) reward = self.reward_predictor(next_info, reduce_mode="none") return reward ``` #### File: tcn/estimators/svtcn_estimator.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from research.tcn import data_providers from research.tcn import model as model_module from research.tcn.estimators import base_estimator from research.tcn.estimators import svtcn_loss import tensorflow as tf class SVTCNEstimator(base_estimator.BaseEstimator): """Single-view TCN Estimator base class.""" def __init__(self, config, logdir): super(SVTCNEstimator, self).__init__(config, logdir) def construct_input_fn(self, records, is_training): """See base class.""" config = self._config num_views = config.data.num_views num_parallel_calls = config.data.num_parallel_calls sequence_prefetch_size = config.data.sequence_prefetch_size batch_prefetch_size = config.data.batch_prefetch_size def input_fn(): """Provides input to SVTCN models.""" (images_preprocessed, images_raw, timesteps) = data_providers.singleview_tcn_provider( file_list=records, preprocess_fn=self.preprocess_data, num_views=num_views, is_training=is_training, batch_size=self._batch_size, num_parallel_calls=num_parallel_calls, sequence_prefetch_size=sequence_prefetch_size, batch_prefetch_size=batch_prefetch_size) if config.logging.summary.image_summaries and is_training: tf.summary.image('training/svtcn_images', images_raw) features = {'batch_preprocessed': images_preprocessed} return (features, timesteps) return input_fn def forward(self, images, is_training, reuse=False): """See base class.""" embedder_strategy = self._config.embedder_strategy embedder = model_module.get_embedder( embedder_strategy, self._config, images, is_training=is_training, reuse=reuse) embeddings = embedder.construct_embedding() if is_training: self.variables_to_train = embedder.get_trainable_variables() self.pretrained_init_fn = embedder.init_fn return embeddings class SVTCNTripletEstimator(SVTCNEstimator): """Single-View TCN with semihard triplet loss.""" def __init__(self, config, logdir): super(SVTCNTripletEstimator, self).__init__(config, logdir) def define_loss(self, embeddings, timesteps, is_training): """See base class.""" pos_radius = self._config.svtcn.pos_radius neg_radius = self._config.svtcn.neg_radius margin = self._config.triplet_semihard.margin loss = svtcn_loss.singleview_tcn_loss( embeddings, timesteps, pos_radius, neg_radius, margin=margin) self._loss = loss if is_training: tf.summary.scalar('training/svtcn_loss', loss) return loss def define_eval_metric_ops(self): """See base class.""" return {'validation/svtcn_loss': tf.metrics.mean(self._loss)} ``` #### File: tcn/utils/luatables.py ```python class T(object): """Class for emulating lua tables.""" def __init__(self, *args, **kwargs): if len(args) > 1 or (len(args) == 1 and len(kwargs) > 0): errmsg = '''constructor only allows a single dict as a positional argument or keyword arguments''' raise ValueError(errmsg) if len(args) == 1 and isinstance(args[0], dict): self.__dict__.update(args[0]) else: self.__dict__.update(kwargs) def __repr__(self): fmt = ', '.join('%s=%s' for i in range(len(self.__dict__))) kwargstr = fmt % tuple( x for tup in self.__dict__.items() for x in [str(tup[0]), repr(tup[1])]) return 'T(' + kwargstr + ')' def __getitem__(self, key): return self.__dict__[key] def __setitem__(self, key, val): self.__dict__[key] = val def __delitem__(self, key): del self.__dict__[key] def __iter__(self): return iter(self.__dict__) def __len__(self): return len(self.__dict__) def keys(self): # Needed for dict(T( ... )) to work. return self.__dict__.keys() def iteritems(self): return [(k, self.__dict__.get(k)) for k in self.__dict__] ``` #### File: research/vid2depth/train.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import os import random import time from absl import app from absl import flags from absl import logging from research.vid2depth import model import numpy as np import tensorflow as tf from research.vid2depth import util gfile = tf.gfile HOME_DIR = os.path.expanduser('~') DEFAULT_DATA_DIR = os.path.join(HOME_DIR, 'vid2depth/data/kitti_raw_eigen') DEFAULT_CHECKPOINT_DIR = os.path.join(HOME_DIR, 'vid2depth/checkpoints') flags.DEFINE_string('data_dir', DEFAULT_DATA_DIR, 'Preprocessed data.') flags.DEFINE_float('learning_rate', 0.0002, 'Adam learning rate.') flags.DEFINE_float('beta1', 0.9, 'Adam momentum.') flags.DEFINE_float('reconstr_weight', 0.85, 'Frame reconstruction loss weight.') flags.DEFINE_float('smooth_weight', 0.05, 'Smoothness loss weight.') flags.DEFINE_float('ssim_weight', 0.15, 'SSIM loss weight.') flags.DEFINE_float('icp_weight', 0.0, 'ICP loss weight.') flags.DEFINE_integer('batch_size', 4, 'The size of a sample batch') flags.DEFINE_integer('img_height', 128, 'Input frame height.') flags.DEFINE_integer('img_width', 416, 'Input frame width.') # Note: Training time grows linearly with sequence length. Use 2 or 3. flags.DEFINE_integer('seq_length', 3, 'Number of frames in sequence.') flags.DEFINE_string('pretrained_ckpt', None, 'Path to checkpoint with ' 'pretrained weights. Do not include .data* extension.') flags.DEFINE_string('checkpoint_dir', DEFAULT_CHECKPOINT_DIR, 'Directory to save model checkpoints.') flags.DEFINE_integer('train_steps', 200000, 'Number of training steps.') flags.DEFINE_integer('summary_freq', 100, 'Save summaries every N steps.') flags.DEFINE_bool('legacy_mode', False, 'Whether to limit losses to using only ' 'the middle frame in sequence as the target frame.') FLAGS = flags.FLAGS # Maximum number of checkpoints to keep. MAX_TO_KEEP = 100 def main(_): # Fixed seed for repeatability seed = 8964 tf.set_random_seed(seed) np.random.seed(seed) random.seed(seed) if FLAGS.legacy_mode and FLAGS.seq_length < 3: raise ValueError('Legacy mode supports sequence length > 2 only.') if not gfile.Exists(FLAGS.checkpoint_dir): gfile.MakeDirs(FLAGS.checkpoint_dir) train_model = model.Model(data_dir=FLAGS.data_dir, is_training=True, learning_rate=FLAGS.learning_rate, beta1=FLAGS.beta1, reconstr_weight=FLAGS.reconstr_weight, smooth_weight=FLAGS.smooth_weight, ssim_weight=FLAGS.ssim_weight, icp_weight=FLAGS.icp_weight, batch_size=FLAGS.batch_size, img_height=FLAGS.img_height, img_width=FLAGS.img_width, seq_length=FLAGS.seq_length, legacy_mode=FLAGS.legacy_mode) train(train_model, FLAGS.pretrained_ckpt, FLAGS.checkpoint_dir, FLAGS.train_steps, FLAGS.summary_freq) def train(train_model, pretrained_ckpt, checkpoint_dir, train_steps, summary_freq): """Train model.""" if pretrained_ckpt is not None: vars_to_restore = util.get_vars_to_restore(pretrained_ckpt) pretrain_restorer = tf.train.Saver(vars_to_restore) vars_to_save = util.get_vars_to_restore() saver = tf.train.Saver(vars_to_save + [train_model.global_step], max_to_keep=MAX_TO_KEEP) sv = tf.train.Supervisor(logdir=checkpoint_dir, save_summaries_secs=0, saver=None) config = tf.ConfigProto() config.gpu_options.allow_growth = True with sv.managed_session(config=config) as sess: if pretrained_ckpt is not None: logging.info('Restoring pretrained weights from %s', pretrained_ckpt) pretrain_restorer.restore(sess, pretrained_ckpt) logging.info('Attempting to resume training from %s...', checkpoint_dir) checkpoint = tf.train.latest_checkpoint(checkpoint_dir) logging.info('Last checkpoint found: %s', checkpoint) if checkpoint: saver.restore(sess, checkpoint) logging.info('Training...') start_time = time.time() last_summary_time = time.time() steps_per_epoch = train_model.reader.steps_per_epoch step = 1 while step <= train_steps: fetches = { 'train': train_model.train_op, 'global_step': train_model.global_step, 'incr_global_step': train_model.incr_global_step } if step % summary_freq == 0: fetches['loss'] = train_model.total_loss fetches['summary'] = sv.summary_op results = sess.run(fetches) global_step = results['global_step'] if step % summary_freq == 0: sv.summary_writer.add_summary(results['summary'], global_step) train_epoch = math.ceil(global_step / steps_per_epoch) train_step = global_step - (train_epoch - 1) * steps_per_epoch this_cycle = time.time() - last_summary_time last_summary_time += this_cycle logging.info( 'Epoch: [%2d] [%5d/%5d] time: %4.2fs (%ds total) loss: %.3f', train_epoch, train_step, steps_per_epoch, this_cycle, time.time() - start_time, results['loss']) if step % steps_per_epoch == 0: logging.info('[*] Saving checkpoint to %s...', checkpoint_dir) saver.save(sess, os.path.join(checkpoint_dir, 'model'), global_step=global_step) # Setting step to global_step allows for training for a total of # train_steps even if the program is restarted during training. step = global_step + 1 if __name__ == '__main__': app.run(main) ``` #### File: research/vid2depth/util.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import locale import os from absl import logging import numpy as np import tensorflow as tf def get_seq_middle(seq_length): """Returns relative index for the middle frame in sequence.""" half_offset = int((seq_length - 1) / 2) return seq_length - 1 - half_offset def info(obj): """Return info on shape and dtype of a numpy array or TensorFlow tensor.""" if obj is None: return 'None.' elif isinstance(obj, list): if obj: return 'List of %d... %s' % (len(obj), info(obj[0])) else: return 'Empty list.' elif isinstance(obj, tuple): if obj: return 'Tuple of %d... %s' % (len(obj), info(obj[0])) else: return 'Empty tuple.' else: if is_a_numpy_array(obj): return 'Array with shape: %s, dtype: %s' % (obj.shape, obj.dtype) else: return str(obj) def is_a_numpy_array(obj): """Returns true if obj is a numpy array.""" return type(obj).__module__ == np.__name__ def count_parameters(also_print=True): """Cound the number of parameters in the model. Args: also_print: Boolean. If True also print the numbers. Returns: The total number of parameters. """ total = 0 if also_print: logging.info('Model Parameters:') for v in get_vars_to_restore(): shape = v.get_shape() if also_print: logging.info('%s %s: %s', v.op.name, shape, format_number(shape.num_elements())) total += shape.num_elements() if also_print: logging.info('Total: %s', format_number(total)) return total def get_vars_to_restore(ckpt=None): """Returns list of variables that should be saved/restored. Args: ckpt: Path to existing checkpoint. If present, returns only the subset of variables that exist in given checkpoint. Returns: List of all variables that need to be saved/restored. """ model_vars = tf.trainable_variables() # Add batchnorm variables. bn_vars = [v for v in tf.global_variables() if 'moving_mean' in v.op.name or 'moving_variance' in v.op.name] model_vars.extend(bn_vars) model_vars = sorted(model_vars, key=lambda x: x.op.name) if ckpt is not None: ckpt_var_names = tf.contrib.framework.list_variables(ckpt) ckpt_var_names = [name for (name, unused_shape) in ckpt_var_names] for v in model_vars: if v.op.name not in ckpt_var_names: logging.warning('Missing var %s in checkpoint: %s', v.op.name, os.path.basename(ckpt)) model_vars = [v for v in model_vars if v.op.name in ckpt_var_names] return model_vars def format_number(n): """Formats number with thousands commas.""" locale.setlocale(locale.LC_ALL, 'en_US') return locale.format('%d', n, grouping=True) def read_text_lines(filepath): with open(filepath, 'r') as f: lines = f.readlines() lines = [l.rstrip() for l in lines] return lines ```
{ "source": "jdavidberger/myhdl_lib", "score": 3 }
#### File: myhdl_lib/examples/pipeline_control_simple.py ```python from myhdl import * from myhdl_lib.pipeline_control import pipeline_control import myhdl_lib.simulation as sim def twos_complement(rst, clk, rx_rdy, rx_vld, rx_dat, tx_rdy, tx_vld, tx_dat): ''' Two's complement conversion of a binary number Input handshake & data rx_rdy - (o) Ready rx_vld - (i) Valid rx_dat - (i) Data Output handshake & data tx_rdy - (i) Ready tx_vld - (o) Valid tx_dat - (o) Data Implementation: 3-stage pipeline stage 0: registers input data stage 1: inverts data coming from stage 0 and registers the inverted data stage 2: increments data coming from stage 1 and registers the incremented data Each stage is implemented as a separate process controlled by a central pipeline control unit via an enable signal The pipeline control unit manages the handshake and synchronizes the operation of the stages ''' DATA_WIDTH = len(rx_dat) NUM_STAGES = 3 stage_en = Signal(intbv(0)[NUM_STAGES:]) pipe_ctrl = pipeline_control( rst = rst, clk = clk, rx_vld = rx_vld, rx_rdy = rx_rdy, tx_vld = tx_vld, tx_rdy = tx_rdy, stage_enable = stage_en) s0_dat = Signal(intbv(0)[DATA_WIDTH:]) @always_seq(clk.posedge, reset=rst) def stage_0(): ''' Register input data''' if (stage_en[0]): s0_dat.next = rx_dat s1_dat = Signal(intbv(0)[DATA_WIDTH:]) @always_seq(clk.posedge, reset=rst) def stage_1(): ''' Invert data''' if (stage_en[1]): s1_dat.next = ~s0_dat s2_dat = Signal(intbv(0)[DATA_WIDTH:]) @always_seq(clk.posedge, reset=rst) def stage_2(): ''' Add one to data''' if (stage_en[2]): s2_dat.next = s1_dat + 1 @always_comb def comb(): tx_dat.next = s2_dat.signed() return instances() class Driver(): ''' Drives input handshake interface ''' def __init__(self, rst, clk, rdy, vld, dat): self.rst = rst self.clk = clk self.rdy = rdy self.vld = vld self.dat = dat def write(self, dat): while self.rst: yield self.clk.posedge self.vld.next = 1 self.dat.next = dat yield self.clk.posedge while not self.rdy: yield self.clk.posedge self.vld.next = 0 self.dat.next = 0 class Capture(): ''' Captures output handshake interface ''' def __init__(self, rst, clk, rdy, vld, dat): self.rst = rst self.clk = clk self.rdy = rdy self.vld = vld self.dat = dat self.d = None def read(self): while self.rst: yield self.clk.posedge self.rdy.next = 1 yield self.clk.posedge while not self.vld: yield self.clk.posedge self.rdy.next = 0 self.d = int(self.dat) def pipeline_control_simple(): clk = sim.Clock(val=0, period=10, units="ns") rst = sim.ResetSync(clk=clk, val=0, active=1) rx_rdy, rx_vld, tx_rdy, tx_vld = [Signal(bool(0)) for _ in range(4)] rx_dat = Signal(intbv(0)[7:0]) tx_dat = Signal(intbv(0, min=-128, max=1)) clkgen = clk.gen() dut = twos_complement(rst, clk, rx_rdy, rx_vld, rx_dat, tx_rdy, tx_vld, tx_dat) # dut = traceSignals(twos_complement, rst, clk, rx_rdy, rx_vld, rx_dat, tx_rdy, tx_vld, tx_dat) drv = Driver(rst, clk, rx_rdy, rx_vld, rx_dat) cap = Capture(rst, clk, tx_rdy, tx_vld, tx_dat) data_in = [] data_out = [] def stim(GAP=0): ''' Stimulates the pipeline input ''' @instance def _stim(): yield rst.pulse(10) yield clk.posedge for i in range(1, 10): yield drv.write(i) data_in.append(i) for _ in range(GAP): yield clk.posedge for _ in range(10): yield clk.posedge raise StopSimulation return _stim def drain(GAP=0): ''' Drains the pipeline output ''' @instance def _drain(): yield clk.posedge while True: yield cap.read() data_out.append(cap.d) for _ in range(GAP): yield clk.posedge return _drain # You can play with the gap size at the input and at the output to see how the pipeline responds (see time diagrams) Simulation(clkgen, dut, stim(GAP=0), drain(GAP=0)).run() print "data_in ({}): {}".format(len(data_in), data_in) print "data_out ({}): {}".format(len(data_out), data_out) data_out_expected = [-d for d in data_in] assert cmp(data_out_expected, data_out)==0, "expected: data_out ({}): {}".format(len(data_out_expected), data_out_expected) if __name__ == '__main__': pipeline_control_simple() ``` #### File: myhdl_lib/myhdl_lib/arbiter.py ```python from myhdl import * from myhdl_lib.utils import assign def arbiter(rst, clk, req_vec, gnt_vec=None, gnt_idx=None, gnt_vld=None, gnt_rdy=None, ARBITER_TYPE="priority"): ''' Wrapper that provides common interface to all arbiters ''' if ARBITER_TYPE == "priority": _arb = arbiter_priority(req_vec, gnt_vec, gnt_idx, gnt_vld) elif (ARBITER_TYPE == "roundrobin"): _arb = arbiter_roundrobin(rst, clk, req_vec, gnt_vec, gnt_idx, gnt_vld, gnt_rdy) else: assert "Arbiter: Unknown arbiter type: {}".format(ARBITER_TYPE) return _arb def arbiter_priority(req_vec, gnt_vec=None, gnt_idx=None, gnt_vld=None): """ Static priority arbiter: grants the request with highest priority, which is the lower index req_vec - (i) vector of request signals, req_vec[0] is with the highest priority gnt_vec - (o) optional, vector of grants, one grant per request, only one grant can be active at at time gnt_idx - (o) optional, grant index, index of the granted request gnt_vld - (o) optional, grant valid, indicate that there is a granted request """ REQ_NUM = len(req_vec) gnt_vec_s = Signal(intbv(0)[REQ_NUM:]) gnt_idx_s = Signal(intbv(0, min=0, max=REQ_NUM)) gnt_vld_s = Signal(bool(0)) @always_comb def prioroty_encoder(): gnt_vec_s.next = 0 gnt_idx_s.next = 0 gnt_vld_s.next = 0 for i in range(REQ_NUM): if ( req_vec[i]==1 ): gnt_vec_s.next[i] = 1 gnt_idx_s.next = i gnt_vld_s.next = 1 break if gnt_vec!=None: _vec = assign(gnt_vec, gnt_vec_s) if gnt_idx!=None: _idx = assign(gnt_idx, gnt_idx_s) if gnt_vld!=None: _vld = assign(gnt_vld, gnt_vld_s) return instances() def arbiter_roundrobin(rst, clk, req_vec, gnt_vec=None, gnt_idx=None, gnt_vld=None, gnt_rdy=None): """ Round Robin arbiter: finds the active request with highest priority and presents its index on the gnt_idx output. req_vec - (i) vector of request signals, priority changes dynamically gnt_vec - (o) optional, vector of grants, one grant per request, only one grant can be active at at time gnt_idx - (o) optional, grant index, index of the granted request gnt_vld - (o) optional, grant valid, indicate that there is a granted request gnt_rdy - (i) grant ready, indicates that the current grant is consumed and priority should be updated. The priority is updated only if there is a valid grant when gnt_rdy is activated. When priority is updated, the currently granted req_vec[gnt_idx] gets the lowest priority and req_vec[gnt_idx+1] gets the highest priority. gnt_rdy should be activated in the same clock cycle when output the grant is used """ REQ_NUM = len(req_vec) ptr = Signal(intbv(0, min=0, max=REQ_NUM)) gnt_vec_s = Signal(intbv(0)[REQ_NUM:]) gnt_idx_s = Signal(intbv(0, min=0, max=REQ_NUM)) gnt_vld_s = Signal(bool(0)) @always(clk.posedge) def ptr_proc(): if (rst): ptr.next = REQ_NUM-1 elif (gnt_rdy and gnt_vld_s): ptr.next = gnt_idx_s @always_comb def roundrobin_encoder(): gnt_vec_s.next = 0 gnt_idx_s.next = 0 gnt_vld_s.next = 0 for i in range(REQ_NUM): if (i>ptr): if ( req_vec[i]==1 ): gnt_vec_s.next[i] = 1 gnt_idx_s.next = i gnt_vld_s.next = 1 return for i in range(REQ_NUM): if ( req_vec[i]==1 ): gnt_vec_s.next[i] = 1 gnt_idx_s.next = i gnt_vld_s.next = 1 return if gnt_vec!=None: _vec = assign(gnt_vec, gnt_vec_s) if gnt_idx!=None: _idx = assign(gnt_idx, gnt_idx_s) if gnt_vld!=None: _vld = assign(gnt_vld, gnt_vld_s) return instances() if __name__ == '__main__': pass ``` #### File: myhdl_lib/myhdl_lib/sfifo_beh.py ```python class sfifo_beh: ''' Speculative FIFO: behavioral model ''' COMMIT = 0 DISCARD = 1 DISCARD_COMMIT = 2 def __init__(self, depth, afull_th=None, aempty_th=None): self.depth = depth self.data = [] # Data (written, committed, not read ) self.data_sw = [] # Speculatively written data self.data_sr = [] # Speculatively read data self.afull_th = afull_th if (afull_th != None) else depth//2 self.aempty_th = aempty_th if (aempty_th != None) else depth//2 self.ovf = False self.udf = False self.count_max = 0 def reset(self): self.__init__(self.depth, self.afull_th, self.aempty_th) def isFull(self): return self.getCount() == self.depth def isEmpty(self): return len(self.data) == 0 def isAFull(self): return (self.depth - self.getCount()) <= self.afull_th def isAEmpty(self): return len(self.data) <= self.aempty_th def isOvf(self): return self.ovf def isUdf(self): return self.udf def getCount(self): return len(self.data_sr) + len(self.data) + len(self.data_sw) def getCountMax(self): return self.count_max def getDout(self): return self.data[0] def _rcmd(self, cmd): if (cmd == self.DISCARD or cmd == self.DISCARD_COMMIT): self.data = self.data_sr + self.data self.data_sr = [] elif (cmd == self.COMMIT): self.data_sr = [] def _wcmd(self, cmd): if (cmd == self.DISCARD or cmd == self.DISCARD_COMMIT): self.data_sw = [] elif (cmd == self.COMMIT): self.data.extend(self.data_sw) self.data_sw = [] def command(self, wcmd=None, rcmd=None): self._wcmd(wcmd) self._rcmd(rcmd) def write(self, val, wcmd=None, rcmd=None): if (not self.isFull()): self.data_sw.append(val) else: self.ovf = True self._wcmd(wcmd) self._rcmd(rcmd) if (self.getCount() > self.count_max): self.count_max = self.getCount() def read(self, wcmd=None, rcmd=None): x = None if (not self.isEmpty()): x = self.data.pop(0) self.data_sr.append(x) else: self.udf = True self._wcmd(wcmd) self._rcmd(rcmd) return x def write_read(self, val, wcmd=None, rcmd=None): full = self.isFull() empty = self.isEmpty() if (not full): self.data_sw.append(val) else: self.ovf = True self._wcmd(wcmd) x = None if (not empty): x = self.data.pop(0) self.data_sr.append(x) else: self.udf = True self._rcmd(rcmd) if (self.getCount() > self.count_max): self.count_max = self.getCount() return x def status(self): return "FULL = {:}, EMPTY = {:}, COUNT = {:3}, AFULL = {:}, AEMPTY = {:}, OVF = {:}, UDF = {:}, COUNT_MAX = {:}, DOUT = {:}".format(int(self.isFull()), int(self.isEmpty()), int(self.getCount()), int(self.isAFull()), int(self.isAEmpty()), int(self.isOvf()), int(self.isUdf()), self.getCountMax(), self.data[0] if len(self.data)>0 else None) return "FULL = {:}, EMPTY = {:}, COUNT = {:3}, AFULL = {:}, AEMPTY = {:}, OVF = {:}, UDF = {:}, COUNT_MAX = {:}, DOUT = {:}".format(int(self.isFull()), int(self.isEmpty()), int(self.count()), int(self.isAFull()), int(self.isAEmpty()), int(self.isOvf()), int(self.isUdf()), self.maxCount(), self.data[0] if len(self.data)>0 else None) ``` #### File: myhdl_lib/simulation/clock.py ```python from myhdl import SignalType, instance, delay # This code is a shameless copy of <NAME>'s _clock class: https://github.com/cfelton/minnesota/blob/master/mn/system/_clock.py class Clock(SignalType): ''' Clock signal equipped with clock generator ''' _frequency_units = {"Hz":1, "kHz":1e3, "Mhz":1e6, "GHz":1e9} _periode_units = {"sec":1,"s":1, "ms":1e-3, "us":1e-6, "ns":1e-9} def __init__(self, val, frequency=None, period=10, units="ns", ratio_high_to_low=0.5): ''' Sets clock parameters val - initial clock value frequency - clock frequency period - clock period, used if clock frequency is not defined units - units in which frequency or period is defined allowed frequency units: "Hz", "kHz", "Mhz", "GHz" allowed period units: "sec","s", "ms":, "us", "ns" ratio_high_to_low - clock signal ration, 0 < ratio_high_to_low < 1 ''' if frequency is not None: assert Clock._frequency_units.has_key(units), "Unknown frequency units {}. Allowed values: {}".format(units, Clock._frequency_units.keys()) self._frequency_Hz = frequency*Clock._frequency_units[units] self._period_sec = 1.0/frequency else: assert Clock._periode_units.has_key(units), "Unknown time units {}. Allowed values: {}".format(units, Clock._periode_units.keys()) self._period_sec = period*Clock._periode_units[units] self._frequency_Hz = 1.0/period self._periode_ns = self._period_sec*1e9 assert (0 < ratio_high_to_low), "Expected 0 < ratio_high_to_low, got ratio_high_to_low={}".format(ratio_high_to_low) assert (ratio_high_to_low < 1), "Expected ratio_high_to_low < 1, got ratio_high_to_low={}".format(ratio_high_to_low) self._periode_high_ns = long(self._periode_ns * ratio_high_to_low) self._periode_low_ns = long(self._periode_ns - self._periode_high_ns) self._periode_ns = self._periode_high_ns + self._periode_low_ns self.periode_sec = self._periode_ns*1e-9 self._frequency_Hz = 1e9/self._periode_ns SignalType.__init__(self, bool(val)) @property def frequency(self): return self._frequency_Hz @property def period(self): return self._period_sec def gen(self): @instance def clkgen(): if self.val: self.next = True yield delay(self._periode_high_ns) while True: self.next = False yield delay(self._periode_low_ns) self.next = True yield delay(self._periode_high_ns) return clkgen if __name__ == '__main__': pass ``` #### File: myhdl_lib/myhdl_lib/utils.py ```python from myhdl import * def assign(a,b): ''' Combinatorial assignment: a = b ''' @always_comb def _assign(): a.next = b return _assign def byteorder(bv_di, bv_do, REVERSE=True): """ Reverses the byte order of an input bit-vector bv_di - (i) input bit-vector bv_do - (o) output bit-vector """ BITS = len(bv_di) assert (BITS % 8)==0, "byteorder: expects len(bv_in)=8*x, but len(bv_in)={}".format(BITS) if REVERSE: BYTES = BITS//8 y = ConcatSignal(*[bv_di(8*(b+1),8*b) for b in range(BYTES)]) @always_comb def _reverse(): bv_do.next = y else: @always_comb def _pass(): bv_do.next = bv_di return instances() if __name__ == '__main__': pass ``` #### File: myhdl_lib/test/test_demux.py ```python import unittest from myhdl import * from myhdl_lib.mux import demux import myhdl_lib.simulation as sim import random class TestDemux(unittest.TestCase): @classmethod def setUpClass(cls): cls.simulators = ["myhdl", "icarus"] def testDemux5(self): ''' DEMUX: 5 outputs ''' DMAX = 100 NUM_OUTPUTS = 5 def demux_top(sel, di, do_0, do_1, do_2, do_3, do_4): ''' Needed when demux is co-simulated as top level''' ls_do = [Signal(intbv(0,min=0,max=DMAX)) for _ in range(NUM_OUTPUTS)] @always_comb def _assign(): do_0.next = ls_do[0] do_1.next = ls_do[1] do_2.next = ls_do[2] do_3.next = ls_do[3] do_4.next = ls_do[4] inst = demux(sel=sel, di=di, ls_do=ls_do) return instances() sel = Signal(intbv(0,min=0,max=NUM_OUTPUTS)) di = Signal(intbv(0,min=0,max=DMAX)) ls_do = [Signal(intbv(0,min=0,max=DMAX)) for _ in range(NUM_OUTPUTS)] argl = {"sel":sel, "di":di, "do_0":ls_do[0], "do_1":ls_do[1], "do_2":ls_do[2], "do_3":ls_do[3], "do_4":ls_do[4]} def stim(): @instance def _inst(): sel.next = 0 for i in range(NUM_OUTPUTS): di.next = 0 sel.next = 0 yield delay(10) for _ in range(10): d = [random.randint(0,DMAX-1) for _ in range(NUM_OUTPUTS)] for s in range(NUM_OUTPUTS): di.next = d[s] sel.next = s yield delay(10) for i in range(NUM_OUTPUTS): if s == i: assert d[s] == ls_do[i], "Mux output {} (sel={}): expected {}, detected {}".format(i, sel, d[s], ls_do[i]) else: assert 0 == ls_do[i], "Mux output {} (sel={}): expected {}, detected {}".format(i, sel, d[s], ls_do[i]) yield delay(10) raise StopSimulation return _inst getDut = sim.DUTer() for s in self.simulators: getDut.selectSimulator(s) dut=getDut(demux_top, **argl) stm = stim() Simulation( dut, stm).run() del dut, stm def testDemux2(self): ''' DEMUX: 2 outputs, boolean Select ''' DMAX = 100 NUM_OUTPUTS = 2 def demux_top(sel, di, do_0, do_1): ''' Needed when demux is co-simulated as top level''' ls_do = [Signal(intbv(0,min=0,max=DMAX)) for _ in range(NUM_OUTPUTS)] @always_comb def _assign(): do_0.next = ls_do[0] do_1.next = ls_do[1] inst = demux(sel=sel, di=di, ls_do=ls_do) return instances() sel = Signal(bool(0)) di = Signal(intbv(0,min=0,max=DMAX)) ls_do = [Signal(intbv(0,min=0,max=DMAX)) for _ in range(NUM_OUTPUTS)] argl = {"sel":sel, "di":di, "do_0":ls_do[0], "do_1":ls_do[1]} def stim(): @instance def _inst(): sel.next = 0 for i in range(NUM_OUTPUTS): di.next = 0 sel.next = 0 yield delay(10) for _ in range(10): d = [random.randint(0,DMAX-1) for _ in range(NUM_OUTPUTS)] for s in range(NUM_OUTPUTS): di.next = d[s] sel.next = s yield delay(10) for i in range(NUM_OUTPUTS): if s == i: assert d[s] == ls_do[i], "Mux output {} (sel={}): expected {}, detected {}".format(i, sel, d[s], ls_do[i]) else: assert 0 == ls_do[i], "Mux output {} (sel={}): expected {}, detected {}".format(i, sel, 0, ls_do[i]) yield delay(10) raise StopSimulation return _inst getDut = sim.DUTer() for s in self.simulators: getDut.selectSimulator(s) dut=getDut(demux_top, **argl) stm = stim() Simulation( dut, stm).run() del dut, stm if __name__ == "__main__": #import sys;sys.argv = ['', 'Test.testName'] unittest.main() ``` #### File: myhdl_lib/test/test_fifo_speculative.py ```python import unittest import itertools from myhdl import * from myhdl_lib.fifo_speculative import fifo_speculative from myhdl_lib import sfifo_beh import myhdl_lib.simulation as sim class TestSFifo(unittest.TestCase): COMMIT = 0 DISCARD = 1 DISCARD_COMMIT = 2 @classmethod def setUpClass(cls): cls.simulators = ["myhdl", "icarus"] def setUp(self): DATA_RANGE_MIN = 0 DATA_RANGE_MAX = 128 DEPTH_MAX = 101 self.sfifo_model = None self.full = Signal(bool(0)) self.we = Signal(bool(0)) self.din = Signal(intbv(0, min=DATA_RANGE_MIN, max=DATA_RANGE_MAX)) self.empty = Signal(bool(0)) self.re = Signal(bool(0)) self.dout = Signal(intbv(0, min=DATA_RANGE_MIN, max=DATA_RANGE_MAX)) self.wr_commit = Signal(bool(0)) self.wr_discard = Signal(bool(0)) self.rd_commit = Signal(bool(0)) self.rd_discard = Signal(bool(0)) self.afull = Signal(bool(0)) self.aempty = Signal(bool(0)) self.afull_th = Signal(intbv(0, min=0, max=DEPTH_MAX)) self.aempty_th = Signal(intbv(0, min=0, max=DEPTH_MAX)) self.count = Signal(intbv(0, min=0, max=DEPTH_MAX)) self.count_max = Signal(intbv(0, min=0, max=DEPTH_MAX)) self.ovf = Signal(bool(0)) self.udf = Signal(bool(0)) self.clk = sim.Clock(val=0, period=10, units="ns") self.rst = sim.ResetSync(clk=self.clk, val=0, active=1) self.clkgen = self.clk.gen() def tearDown(self): pass def reset(self): yield self.rst.pulse(5) def fifo_command(self, wcmd=None, rcmd=None): self.sfifo_model.command(wcmd, rcmd) self.wr_commit.next = 1 if (wcmd == self.COMMIT or wcmd == self.DISCARD_COMMIT) else 0 self.wr_discard.next = 1 if (wcmd == self.DISCARD or wcmd == self.DISCARD_COMMIT) else 0 self.rd_commit.next = 1 if (rcmd == self.COMMIT or rcmd == self.DISCARD_COMMIT) else 0 self.rd_discard.next = 1 if (rcmd == self.DISCARD or rcmd == self.DISCARD_COMMIT) else 0 yield self.clk.posedge self.wr_commit.next = 0 self.wr_discard.next = 0 self.rd_commit.next = 0 self.rd_discard.next = 0 def fifo_write(self, val, wcmd=None, rcmd=None): self.sfifo_model.write(val, wcmd, rcmd) self.we.next = 1 self.din.next = val self.wr_commit.next = 1 if (wcmd == self.COMMIT or wcmd == self.DISCARD_COMMIT) else 0 self.wr_discard.next = 1 if (wcmd == self.DISCARD or wcmd == self.DISCARD_COMMIT) else 0 self.rd_commit.next = 1 if (rcmd == self.COMMIT or rcmd == self.DISCARD_COMMIT) else 0 self.rd_discard.next = 1 if (rcmd == self.DISCARD or rcmd == self.DISCARD_COMMIT) else 0 yield self.clk.posedge self.we.next = 0 self.din.next = 0 self.wr_commit.next = 0 self.wr_discard.next = 0 self.rd_commit.next = 0 self.rd_discard.next = 0 def fifo_read(self, wcmd=None, rcmd=None): self.sfifo_model.read(wcmd, rcmd) self.re.next = 1 self.wr_commit.next = 1 if (wcmd == self.COMMIT or wcmd == self.DISCARD_COMMIT) else 0 self.wr_discard.next = 1 if (wcmd == self.DISCARD or wcmd == self.DISCARD_COMMIT) else 0 self.rd_commit.next = 1 if (rcmd == self.COMMIT or rcmd == self.DISCARD_COMMIT) else 0 self.rd_discard.next = 1 if (rcmd == self.DISCARD or rcmd == self.DISCARD_COMMIT) else 0 yield self.clk.posedge self.re.next = 0 self.wr_commit.next = 0 self.wr_discard.next = 0 self.rd_commit.next = 0 self.rd_discard.next = 0 def fifo_write_read(self, val, wcmd=None, rcmd=None): self.sfifo_model.write_read(val, wcmd, rcmd) self.we.next = 1 self.din.next = val self.re.next = 1 self.wr_commit.next = 1 if (wcmd == self.COMMIT or wcmd == self.DISCARD_COMMIT) else 0 self.wr_discard.next = 1 if (wcmd == self.DISCARD or wcmd == self.DISCARD_COMMIT) else 0 self.rd_commit.next = 1 if (rcmd == self.COMMIT or rcmd == self.DISCARD_COMMIT) else 0 self.rd_discard.next = 1 if (rcmd == self.DISCARD or rcmd == self.DISCARD_COMMIT) else 0 yield self.clk.posedge self.re.next = 0 self.din.next = 0 self.we.next = 0 self.wr_commit.next = 0 self.wr_discard.next = 0 self.rd_commit.next = 0 self.rd_discard.next = 0 def fifo_state_check(self): yield delay(1) m = self.sfifo_model assert m.isFull()==self.full, "Full: expected={}, detected={}".format(m.isFull(), self.full) assert m.isEmpty()==self.empty, "Empty: expected={}, detected={}".format(m.isEmpty(), self.empty) assert m.isAFull()==self.afull, "AFull: expected={}, detected={}".format(m.isAFull(), self.afull) assert m.isAEmpty()==self.aempty, "AEmpty: expected={}, detected={}".format(m.isAEmpty(), self.aempty) assert m.getCount()==self.count, "Count: expected={}, detected={}".format(m.getCount(), self.count) assert m.getCountMax()==self.count_max, "CountMax: expected={}, detected={}".format(m.getCountMax(), self.count_max) assert m.isOvf()==self.ovf, "Overflow: expected={}, detected={}".format(m.isOvf(), self.ovf) assert m.isUdf()==self.udf, "Underflow: expected={}, detected={}".format(m.isUdf(), self.udf) if (not m.isEmpty() and not self.empty): assert m.getDout()==self.dout,"Dout: expected={}, detected={}".format(m.getDout(), self.dout) def testWriteThenReadCommitAtEveryOperation(self): ''' SFIFO: Write then Read, Commit at every operation ''' DEPTH = [2, 4, 7, 8, 9, 10] def stim(DEPTH): @instance def _inst(): data_in = itertools.cycle(xrange(128)) yield self.reset() yield self.fifo_state_check() for i in range(1,DEPTH+1): # Fill up to i for _ in range(1,i+1): yield self.fifo_write(data_in.next(), wcmd=self.COMMIT) yield self.fifo_state_check() # Drain down to 0 for _ in range(1,i+1): yield self.fifo_read(rcmd=self.COMMIT) yield self.fifo_state_check() yield self.clk.posedge raise StopSimulation return _inst getDut = sim.DUTer() for s in self.simulators: getDut.selectSimulator(s) for dpt in DEPTH: self.sfifo_model = sfifo_beh.sfifo_beh(dpt) dut = getDut( fifo_speculative, rst = self.rst, clk = self.clk, full = self.full, we = self.we, din = self.din, empty = self.empty, re = self.re, dout = self.dout, wr_commit = self.wr_commit, wr_discard = self.wr_discard, rd_commit = self.rd_commit, rd_discard = self.rd_discard, afull = self.afull, aempty = self.aempty, count = self.count, afull_th = None, aempty_th = None, ovf = self.ovf, udf = self.udf, count_max = self.count_max, depth = dpt, width = None) stm = stim(dpt) Simulation(self.clkgen, dut, stm).run() del dut, stm def testWriteThenReadCommitAtTheLastOperation(self): ''' SFIFO: Write then Read, Commit at the last operation ''' DEPTH = [2, 4, 7, 8, 9, 10] def stim(DEPTH): @instance def _inst(): data_in = itertools.cycle(xrange(128)) yield self.reset() yield self.fifo_state_check() for i in range(1,DEPTH+1): # Fill up to i for w in range(1,i+1): if (w != i): yield self.fifo_write(data_in.next()); yield self.fifo_state_check() else: yield self.fifo_write(data_in.next(), wcmd=self.COMMIT) yield self.fifo_state_check() # Drain down to 0 for r in range(1,i+1): if (r != i): yield self.fifo_read(); yield self.fifo_state_check() else: yield self.fifo_read(rcmd=self.COMMIT) yield self.fifo_state_check() yield self.clk.posedge raise StopSimulation return _inst getDut = sim.DUTer() for s in self.simulators: getDut.selectSimulator(s) for dpt in DEPTH: self.sfifo_model = sfifo_beh.sfifo_beh(dpt) dut = getDut( fifo_speculative, rst = self.rst, clk = self.clk, full = self.full, we = self.we, din = self.din, empty = self.empty, re = self.re, dout = self.dout, wr_commit = self.wr_commit, wr_discard = self.wr_discard, rd_commit = self.rd_commit, rd_discard = self.rd_discard, afull = self.afull, aempty = self.aempty, count = self.count, afull_th = None, aempty_th = None, ovf = self.ovf, udf = self.udf, count_max = self.count_max, depth = dpt, width = None) stm = stim(dpt) Simulation(self.clkgen, dut, stm).run() del dut, stm def testWriteThenReadCommitAfterTheLastOperation(self): ''' SFIFO: Write then Read, Commit after the last operation ''' DEPTH = [2, 4, 7, 8, 9, 10] def stim(DEPTH): @instance def _inst(): data_in = itertools.cycle(xrange(128)) yield self.reset() yield self.fifo_state_check() for i in range(1,DEPTH+1): # Fill up to i for _ in range(1,i+1): yield self.fifo_write(data_in.next()); yield self.fifo_state_check() self.fifo_command(wcmd=self.COMMIT) yield self.fifo_state_check() # Drain down to 0 for _ in range(1,i+1): yield self.fifo_read(); yield self.fifo_state_check() self.fifo_command(rcmd=self.COMMIT) yield self.fifo_state_check() yield self.clk.posedge raise StopSimulation return _inst getDut = sim.DUTer() for s in self.simulators: getDut.selectSimulator(s) for dpt in DEPTH: self.sfifo_model = sfifo_beh.sfifo_beh(dpt) dut = getDut( fifo_speculative, rst = self.rst, clk = self.clk, full = self.full, we = self.we, din = self.din, empty = self.empty, re = self.re, dout = self.dout, wr_commit = self.wr_commit, wr_discard = self.wr_discard, rd_commit = self.rd_commit, rd_discard = self.rd_discard, afull = self.afull, aempty = self.aempty, count = self.count, afull_th = None, aempty_th = None, ovf = self.ovf, udf = self.udf, count_max = self.count_max, depth = dpt, width = None) stm = stim(dpt) Simulation(self.clkgen, dut, stm).run() del dut, stm def testWriteAndReadCommitAtEveryOperation(self): ''' SFIFO: Write and Read simultaneously, Commit at every operation ''' DEPTH = [2, 4, 7, 8, 9, 10] def stim(DEPTH): @instance def _inst(): data_in = itertools.cycle(xrange(128)) yield self.reset() yield self.fifo_state_check() yield self.fifo_write(data_in.next(), wcmd=self.COMMIT) yield self.fifo_state_check() for i in range(2,DEPTH+1): for _ in range(1,i+1): yield self.fifo_write_read(data_in.next(), wcmd=self.COMMIT, rcmd=self.COMMIT) yield self.fifo_state_check() yield self.fifo_read(data_in.next(), rcmd=self.COMMIT) yield self.fifo_state_check() yield self.clk.posedge raise StopSimulation return _inst getDut = sim.DUTer() for s in self.simulators: getDut.selectSimulator(s) for dpt in DEPTH: self.sfifo_model = sfifo_beh.sfifo_beh(dpt) dut = getDut( fifo_speculative, rst = self.rst, clk = self.clk, full = self.full, we = self.we, din = self.din, empty = self.empty, re = self.re, dout = self.dout, wr_commit = self.wr_commit, wr_discard = self.wr_discard, rd_commit = self.rd_commit, rd_discard = self.rd_discard, afull = self.afull, aempty = self.aempty, count = self.count, afull_th = None, aempty_th = None, ovf = self.ovf, udf = self.udf, count_max = self.count_max, depth = dpt, width = None) stm = stim(dpt) Simulation(self.clkgen, dut, stm).run() del dut, stm def testWriteAndReadCommitAtTheLastOperation(self): ''' SFIFO: Write and Read simultaneously, Commit at the last operation ''' DEPTH = [2, 4, 7, 8, 9, 10] def stim(DEPTH): @instance def _inst(): data_in = itertools.cycle(xrange(128)) yield self.reset() yield self.fifo_state_check() yield self.fifo_write(data_in.next(), wcmd=self.COMMIT); yield self.fifo_state_check() for i in range(2,DEPTH+1): for w in range(1,i+1): if (w != i): yield self.fifo_write_read(data_in.next()); yield self.fifo_state_check() else: yield self.fifo_write_read(data_in.next(), wcmd=self.COMMIT, rcmd=self.COMMIT) yield self.fifo_state_check() yield self.fifo_read(data_in.next(), rcmd=self.COMMIT); yield self.fifo_state_check() yield self.clk.posedge raise StopSimulation return _inst getDut = sim.DUTer() for s in self.simulators: getDut.selectSimulator(s) for dpt in DEPTH: self.sfifo_model = sfifo_beh.sfifo_beh(dpt) dut = getDut( fifo_speculative, rst = self.rst, clk = self.clk, full = self.full, we = self.we, din = self.din, empty = self.empty, re = self.re, dout = self.dout, wr_commit = self.wr_commit, wr_discard = self.wr_discard, rd_commit = self.rd_commit, rd_discard = self.rd_discard, afull = self.afull, aempty = self.aempty, count = self.count, afull_th = None, aempty_th = None, ovf = self.ovf, udf = self.udf, count_max = self.count_max, depth = dpt, width = None) stm = stim(dpt) Simulation(self.clkgen, dut, stm).run() del dut, stm def testWriteAndReadCommitAfterTheLastOperation(self): ''' SFIFO: Write and Read simultaneously, Commit after the last operation ''' DEPTH = [2, 4, 7, 8, 9, 10] def stim(DEPTH): @instance def _inst(): data_in = itertools.cycle(xrange(128)) yield self.reset() yield self.fifo_state_check() yield self.fifo_write(data_in.next(), wcmd=self.COMMIT); yield self.fifo_state_check() for i in range(1,DEPTH+1): # Fill up to i for _ in range(1,i+1): yield self.fifo_write(data_in.next()); yield self.fifo_state_check() self.fifo_command(wcmd=self.COMMIT) yield self.fifo_state_check() # Drain down to 0 for _ in range(1,i+1): yield self.fifo_read(); yield self.fifo_state_check() self.fifo_command(rcmd=self.COMMIT) yield self.fifo_state_check() yield self.fifo_read(rcmd=self.COMMIT); yield self.fifo_state_check() yield self.clk.posedge raise StopSimulation return _inst getDut = sim.DUTer() for s in self.simulators: getDut.selectSimulator(s) for dpt in DEPTH: self.sfifo_model = sfifo_beh.sfifo_beh(dpt) dut = getDut( fifo_speculative, rst = self.rst, clk = self.clk, full = self.full, we = self.we, din = self.din, empty = self.empty, re = self.re, dout = self.dout, wr_commit = self.wr_commit, wr_discard = self.wr_discard, rd_commit = self.rd_commit, rd_discard = self.rd_discard, afull = self.afull, aempty = self.aempty, count = self.count, afull_th = None, aempty_th = None, ovf = self.ovf, udf = self.udf, count_max = self.count_max, depth = dpt, width = None) stm = stim(dpt) Simulation(self.clkgen, dut, stm).run() del dut, stm def testWriteThenReadDiscardAtEveryOperation(self): ''' SFIFO: Write then Read, Discard at every operation ''' DEPTH = [2, 4, 7, 8, 9, 10] def stim(DEPTH): @instance def _inst(): data_in = itertools.cycle(xrange(128)) yield self.reset() yield self.fifo_state_check() for i in range(1,DEPTH+1): # Fill up to i and Discard for _ in range(1,i+1): yield self.fifo_write(data_in.next(), wcmd=self.DISCARD) yield self.fifo_state_check() # Fill up to i and Commit for _ in range(1,i+1): yield self.fifo_write(data_in.next(), wcmd=self.COMMIT) yield self.fifo_state_check() # Drain down to 0 and Discard for _ in range(1,i+1): yield self.fifo_read(rcmd=self.DISCARD) yield self.fifo_state_check() # Drain down to 0 and Commit for _ in range(1,i+1): yield self.fifo_read(rcmd=self.COMMIT) yield self.fifo_state_check() yield self.clk.posedge raise StopSimulation return _inst getDut = sim.DUTer() for s in self.simulators: getDut.selectSimulator(s) for dpt in DEPTH: self.sfifo_model = sfifo_beh.sfifo_beh(dpt) dut = getDut( fifo_speculative, rst = self.rst, clk = self.clk, full = self.full, we = self.we, din = self.din, empty = self.empty, re = self.re, dout = self.dout, wr_commit = self.wr_commit, wr_discard = self.wr_discard, rd_commit = self.rd_commit, rd_discard = self.rd_discard, afull = self.afull, aempty = self.aempty, count = self.count, afull_th = None, aempty_th = None, ovf = self.ovf, udf = self.udf, count_max = self.count_max, depth = dpt, width = None) stm = stim(dpt) Simulation(self.clkgen, dut, stm).run() del dut, stm def testWriteThenReadDiscardAtTheLastOperation(self): ''' SFIFO: Write then Read, Discard at the last operation ''' DEPTH = [2, 4, 7, 8, 9, 10] def stim(DEPTH): @instance def _inst(): data_in = itertools.cycle(xrange(128)) yield self.reset() yield self.fifo_state_check() for i in range(1,DEPTH+1): # Fill up to i and Discard for w in range(1,i+1): if (w != i): yield self.fifo_write(data_in.next()); yield self.fifo_state_check() else: yield self.fifo_write(data_in.next(), wcmd=self.DISCARD) yield self.fifo_state_check() # Fill up to i and Commit for w in range(1,i+1): if (w != i): yield self.fifo_write(data_in.next()); yield self.fifo_state_check() else: yield self.fifo_write(data_in.next(), wcmd=self.COMMIT) yield self.fifo_state_check() # Drain down to 0 and Discard for r in range(1,i+1): if (r != i): yield self.fifo_read(); yield self.fifo_state_check() else: yield self.fifo_read(rcmd=self.DISCARD) yield self.fifo_state_check() # Drain down to 0 and Commit for r in range(1,i+1): if (r != i): yield self.fifo_read(); yield self.fifo_state_check() else: yield self.fifo_read(rcmd=self.COMMIT) yield self.fifo_state_check() yield self.clk.posedge raise StopSimulation return _inst getDut = sim.DUTer() for s in self.simulators: getDut.selectSimulator(s) for dpt in DEPTH: self.sfifo_model = sfifo_beh.sfifo_beh(dpt) dut = getDut( fifo_speculative, rst = self.rst, clk = self.clk, full = self.full, we = self.we, din = self.din, empty = self.empty, re = self.re, dout = self.dout, wr_commit = self.wr_commit, wr_discard = self.wr_discard, rd_commit = self.rd_commit, rd_discard = self.rd_discard, afull = self.afull, aempty = self.aempty, count = self.count, afull_th = None, aempty_th = None, ovf = self.ovf, udf = self.udf, count_max = self.count_max, depth = dpt, width = None) stm = stim(dpt) Simulation(self.clkgen, dut, stm).run() del dut, stm def testWriteThenReadDiscardAfterTheLastOperation(self): ''' SFIFO: Write then Read, Discard after the last operation ''' DEPTH = [2, 4, 7, 8, 9, 10] def stim(DEPTH): @instance def _inst(): data_in = itertools.cycle(xrange(128)) yield self.reset() yield self.fifo_state_check() for i in range(1,DEPTH+1): # Fill up to i and Discard for _ in range(1,i+1): yield self.fifo_write(data_in.next()); yield self.fifo_state_check() self.fifo_command(wcmd=self.DISCARD) yield self.fifo_state_check() # Fill up to i and Commit for _ in range(1,i+1): yield self.fifo_write(data_in.next()); yield self.fifo_state_check() self.fifo_command(wcmd=self.COMMIT) yield self.fifo_state_check() # Drain down to 0 and Discard for _ in range(1,i+1): yield self.fifo_read(); yield self.fifo_state_check() self.fifo_command(rcmd=self.DISCARD) yield self.fifo_state_check() # Drain down to 0 and Commit for _ in range(1,i+1): yield self.fifo_read(); yield self.fifo_state_check() self.fifo_command(rcmd=self.COMMIT) yield self.fifo_state_check() yield self.clk.posedge raise StopSimulation return _inst getDut = sim.DUTer() for s in self.simulators: getDut.selectSimulator(s) for dpt in DEPTH: self.sfifo_model = sfifo_beh.sfifo_beh(dpt) dut = getDut( fifo_speculative, rst = self.rst, clk = self.clk, full = self.full, we = self.we, din = self.din, empty = self.empty, re = self.re, dout = self.dout, wr_commit = self.wr_commit, wr_discard = self.wr_discard, rd_commit = self.rd_commit, rd_discard = self.rd_discard, afull = self.afull, aempty = self.aempty, count = self.count, afull_th = None, aempty_th = None, ovf = self.ovf, udf = self.udf, count_max = self.count_max, depth = dpt, width = None) stm = stim(dpt) Simulation(self.clkgen, dut, stm).run() del dut, stm if __name__ == "__main__": #import sys;sys.argv = ['', 'Test.testSFifo'] unittest.main() ``` #### File: myhdl_lib/test/test_ls_demux.py ```python import unittest from myhdl import * from myhdl_lib.mux import ls_demux import myhdl_lib.simulation as sim import random class TestLsDemux(unittest.TestCase): @classmethod def setUpClass(cls): cls.simulators = ["myhdl", "icarus"] def testLsDemux5(self): ''' LS_DEMUX: 5 outputs ''' DMAX = 100 NUM_OUTPUTS = 5 def ls_demux_top(sel, di_0, di_1, di_2, do_00, do_01, do_02, do_10, do_11, do_12, do_20, do_21, do_22, do_30, do_31, do_32, do_40, do_41, do_42): ''' Needed when ls_demux is co-simulated as top level''' ls_di_0 = Signal(bool(0)) ls_di_1 = Signal(intbv(0,min=0,max=DMAX)) ls_di_2 = Signal(intbv(0,min=-DMAX,max=DMAX)) lsls_do_00 = Signal(bool(0)) lsls_do_01 = Signal(intbv(0,min=0,max=DMAX)) lsls_do_02 = Signal(intbv(0,min=-DMAX,max=DMAX)) lsls_do_10 = Signal(bool(0)) lsls_do_11 = Signal(intbv(0,min=0,max=DMAX)) lsls_do_12 = Signal(intbv(0,min=-DMAX,max=DMAX)) lsls_do_20 = Signal(bool(0)) lsls_do_21 = Signal(intbv(0,min=0,max=DMAX)) lsls_do_22 = Signal(intbv(0,min=-DMAX,max=DMAX)) lsls_do_30 = Signal(bool(0)) lsls_do_31 = Signal(intbv(0,min=0,max=DMAX)) lsls_do_32 = Signal(intbv(0,min=-DMAX,max=DMAX)) lsls_do_40 = Signal(bool(0)) lsls_do_41 = Signal(intbv(0,min=0,max=DMAX)) lsls_do_42 = Signal(intbv(0,min=-DMAX,max=DMAX)) @always_comb def _assign(): ls_di_0.next = di_0 ls_di_1.next = di_1 ls_di_2.next = di_2 do_00.next = lsls_do_00 do_01.next = lsls_do_01 do_02.next = lsls_do_02 do_10.next = lsls_do_10 do_11.next = lsls_do_11 do_12.next = lsls_do_12 do_20.next = lsls_do_20 do_21.next = lsls_do_21 do_22.next = lsls_do_22 do_30.next = lsls_do_30 do_31.next = lsls_do_31 do_32.next = lsls_do_32 do_40.next = lsls_do_40 do_41.next = lsls_do_41 do_42.next = lsls_do_42 lsls_do = [[lsls_do_00, lsls_do_01, lsls_do_02], [lsls_do_10, lsls_do_11, lsls_do_12], [lsls_do_20, lsls_do_21, lsls_do_22], [lsls_do_30, lsls_do_31, lsls_do_32], [lsls_do_40, lsls_do_41, lsls_do_42]] ls_di = [ls_di_0, ls_di_1, ls_di_2] _ls_demux = ls_demux(sel=sel, ls_di=ls_di, lsls_do=lsls_do) return instances() sel = Signal(intbv(0,min=0,max=NUM_OUTPUTS)) ls_di = [Signal(bool(0)), Signal(intbv(0,min=0,max=DMAX)), Signal(intbv(0,min=-DMAX,max=DMAX))] lsls_do = [[Signal(bool(0)), Signal(intbv(0,min=0,max=DMAX)), Signal(intbv(0,min=-DMAX,max=DMAX))] for _ in range(NUM_OUTPUTS)] argl = {"sel":sel, "di_0":ls_di[0],"di_1":ls_di[1],"di_2":ls_di[2], "do_00":lsls_do[0][0], "do_01":lsls_do[0][1], "do_02":lsls_do[0][2], "do_10":lsls_do[1][0], "do_11":lsls_do[1][1], "do_12":lsls_do[1][2], "do_20":lsls_do[2][0], "do_21":lsls_do[2][1], "do_22":lsls_do[2][2], "do_30":lsls_do[3][0], "do_31":lsls_do[3][1], "do_32":lsls_do[3][2], "do_40":lsls_do[4][0], "do_41":lsls_do[4][1], "do_42":lsls_do[4][2]} def stim(): @instance def _inst(): sel.next = 0 for i in range(3): ls_di[i].next = 0 yield delay(10) for _ in range(2): d = [[random.randint(0,1), random.randint(0,DMAX-1), random.randint(-DMAX,DMAX-1)] for _ in range(NUM_OUTPUTS)] for s in range(NUM_OUTPUTS): for j in range(3): ls_di[j].next = d[s][j] sel.next = s yield delay(10) for o in range(NUM_OUTPUTS): if s == o: assert d[s][0] == lsls_do[o][0], "Mux output {} (sel={}): expected {}, detected {}".format(o, sel, d[s], [int(x) for x in lsls_do[o]]) assert d[s][1] == lsls_do[o][1], "Mux output {} (sel={}): expected {}, detected {}".format(o, sel, d[s], [int(x) for x in lsls_do[o]]) assert d[s][2] == lsls_do[o][2], "Mux output {} (sel={}): expected {}, detected {}".format(o, sel, d[s], [int(x) for x in lsls_do[o]]) else: assert 0 == lsls_do[o][0], "Mux output {} (sel={}): expected {}, detected {}".format(o, sel, 3*[0], [int(x) for x in lsls_do[o]]) assert 0 == lsls_do[o][1], "Mux output {} (sel={}): expected {}, detected {}".format(o, sel, 3*[0], [int(x) for x in lsls_do[o]]) assert 0 == lsls_do[o][2], "Mux output {} (sel={}): expected {}, detected {}".format(o, sel, 3*[0], [int(x) for x in lsls_do[o]]) yield delay(10) raise StopSimulation return _inst getDut = sim.DUTer() for s in self.simulators: getDut.selectSimulator(s) dut=getDut(ls_demux_top, **argl) stm = stim() Simulation( dut, stm).run() del dut, stm if __name__ == "__main__": #import sys;sys.argv = ['', 'Test.testName'] unittest.main() ```
{ "source": "jdavidberger/vive_poses_ros", "score": 2 }
#### File: jdavidberger/vive_poses_ros/VivePosesRos.py ```python import openvr import rospy import sys import tf from geometry_msgs.msg import PoseStamped class VivePosesRosPublisher: def __init__(self, topic_prefix): self.vr_system = openvr.init(openvr.VRApplication_Utility) self.topic_prefix = topic_prefix self.publishers = {}; def publisher(self, name): if name in self.publishers: return self.publishers[name] self.publishers.update({name: rospy.Publisher(self.topic_prefix + name, PoseStamped, queue_size=1000) }) return self.publishers[name] def idx_to_name(self, idx): if idx == 0: return "HMD" return "obj" + str(idx) def run(self): seq=0 device_poses = (openvr.TrackedDevicePose_t * openvr.k_unMaxTrackedDeviceCount)() rate = rospy.Rate(500) while not rospy.is_shutdown(): self.vr_system.getDeviceToAbsoluteTrackingPose(openvr.TrackingUniverseRawAndUncalibrated, 0, openvr.k_unMaxTrackedDeviceCount, device_poses) rate.sleep() for i in range(0, len(device_poses)): pose = device_poses[i] if pose.bPoseIsValid: pose_msg = PoseStamped() pose_msg.header.seq = seq pose_msg.header.stamp = rospy.Time.now() pose_msg.header.frame_id = "openvr_world" mat=pose.mDeviceToAbsoluteTracking mat44 = [ [ mat[0][0], mat[0][1], mat[0][2], mat[0][3] ], [ mat[1][0], mat[1][1], mat[1][2], mat[1][3] ], [ mat[2][0], mat[2][1], mat[2][2], mat[2][3] ], [ 0, 0, 0, 1 ] ] pose_msg.pose.position.x = mat[0][3] pose_msg.pose.position.y = mat[1][3] pose_msg.pose.position.z = mat[2][3] q=tf.transformations.quaternion_from_matrix(mat44) pose_msg.pose.orientation.w = q[3] pose_msg.pose.orientation.x = q[0] pose_msg.pose.orientation.y = q[1] pose_msg.pose.orientation.z = q[2] seq = seq + 1 self.publisher(self.idx_to_name(i)).publish(pose_msg) if __name__ == '__main__': rospy.init_node("VivePosesRos", anonymous=True) topic_prefix = '' if len(sys.argv) > 1: topic_prefix = sys.argv[1] publisher = VivePosesRosPublisher(topic_prefix); publisher.run() pass ```
{ "source": "JDavidGuzman/sam-python-rdsdata", "score": 2 }
#### File: sam-python-rdsdata/get_course/app.py ```python import json import os import boto3 # Connect to the database rdsData = boto3.client('rds-data') parameters = boto3.client('ssm') stage = os.environ['STAGE'] cluster_arn = os.environ['CLUSTERARN'] secret_arn = os.environ['SECRETARN'] dbname_param = parameters.get_parameter(Name='/school-vue-db-serverless/'+stage+'/database/name') def lambda_handler(event, context): school_id = event['pathParameters']['school_id'] course_id = event['pathParameters']['course_id'] sql1 = f'SELECT Teacher_ID, Firstname, Lastname, Email FROM teachers WHERE School_ID={school_id} AND Level="{course_id}"' sql2 = f'SELECT Student_ID, Firstname, Lastname, Email FROM students WHERE School_ID={school_id} AND Level="{course_id}"' teacher = rdsData.execute_statement( resourceArn = cluster_arn, secretArn = secret_arn, database = dbname_param['Parameter']['Value'], sql = sql1) students = rdsData.execute_statement( resourceArn = cluster_arn, secretArn = secret_arn, database = dbname_param['Parameter']['Value'], sql = sql2) return { "statusCode": 200, "headers": {"Access-Control-Allow-Origin": "*"}, "body": json.dumps({ "teacher": teacher['records'], "students": students['records'] }) } ```
{ "source": "jdavidheiser/amundsen", "score": 2 }
#### File: models/dashboard/dashboard_chart.py ```python import logging from typing import ( Any, Iterator, Optional, Union, ) from amundsen_rds.models import RDSModel from amundsen_rds.models.dashboard import DashboardChart as RDSDashboardChart from databuilder.models.dashboard.dashboard_query import DashboardQuery from databuilder.models.graph_node import GraphNode from databuilder.models.graph_relationship import GraphRelationship from databuilder.models.graph_serializable import GraphSerializable from databuilder.models.table_serializable import TableSerializable LOGGER = logging.getLogger(__name__) class DashboardChart(GraphSerializable, TableSerializable): """ A model that encapsulate Dashboard's charts """ DASHBOARD_CHART_LABEL = 'Chart' DASHBOARD_CHART_KEY_FORMAT = '{product}_dashboard://{cluster}.{dashboard_group_id}/' \ '{dashboard_id}/query/{query_id}/chart/{chart_id}' CHART_RELATION_TYPE = 'HAS_CHART' CHART_REVERSE_RELATION_TYPE = 'CHART_OF' def __init__(self, dashboard_group_id: Optional[str], dashboard_id: Optional[str], query_id: str, chart_id: str, chart_name: Optional[str] = None, chart_type: Optional[str] = None, chart_url: Optional[str] = None, product: Optional[str] = '', cluster: str = 'gold', **kwargs: Any ) -> None: self._dashboard_group_id = dashboard_group_id self._dashboard_id = dashboard_id self._query_id = query_id self._chart_id = chart_id if chart_id else chart_name self._chart_name = chart_name self._chart_type = chart_type self._chart_url = chart_url self._product = product self._cluster = cluster self._node_iterator = self._create_node_iterator() self._relation_iterator = self._create_relation_iterator() self._record_iterator = self._create_record_iterator() def create_next_node(self) -> Union[GraphNode, None]: try: return next(self._node_iterator) except StopIteration: return None def _create_node_iterator(self) -> Iterator[GraphNode]: node_attributes = { 'id': self._chart_id } if self._chart_name: node_attributes['name'] = self._chart_name if self._chart_type: node_attributes['type'] = self._chart_type if self._chart_url: node_attributes['url'] = self._chart_url node = GraphNode( key=self._get_chart_node_key(), label=DashboardChart.DASHBOARD_CHART_LABEL, attributes=node_attributes ) yield node def create_next_relation(self) -> Union[GraphRelationship, None]: try: return next(self._relation_iterator) except StopIteration: return None def _create_relation_iterator(self) -> Iterator[GraphRelationship]: relationship = GraphRelationship( start_label=DashboardQuery.DASHBOARD_QUERY_LABEL, start_key=DashboardQuery.DASHBOARD_QUERY_KEY_FORMAT.format( product=self._product, cluster=self._cluster, dashboard_group_id=self._dashboard_group_id, dashboard_id=self._dashboard_id, query_id=self._query_id ), end_label=DashboardChart.DASHBOARD_CHART_LABEL, end_key=self._get_chart_node_key(), type=DashboardChart.CHART_RELATION_TYPE, reverse_type=DashboardChart.CHART_REVERSE_RELATION_TYPE, attributes={} ) yield relationship def _get_chart_node_key(self) -> str: return DashboardChart.DASHBOARD_CHART_KEY_FORMAT.format( product=self._product, cluster=self._cluster, dashboard_group_id=self._dashboard_group_id, dashboard_id=self._dashboard_id, query_id=self._query_id, chart_id=self._chart_id ) def create_next_record(self) -> Union[RDSModel, None]: try: return next(self._record_iterator) except StopIteration: return None def _create_record_iterator(self) -> Iterator[RDSModel]: record = RDSDashboardChart( rk=self._get_chart_node_key(), id=self._chart_id, query_rk=DashboardQuery.DASHBOARD_QUERY_KEY_FORMAT.format( product=self._product, cluster=self._cluster, dashboard_group_id=self._dashboard_group_id, dashboard_id=self._dashboard_id, query_id=self._query_id ) ) if self._chart_name: record.name = self._chart_name if self._chart_type: record.type = self._chart_type if self._chart_url: record.url = self._chart_url yield record def __repr__(self) -> str: return f'DashboardChart({self._dashboard_group_id!r}, {self._dashboard_id!r}, ' \ f'{self._query_id!r}, {self._chart_id!r}, {self._chart_name!r}, {self._chart_type!r}, ' \ f'{self._chart_url!r}, {self._product!r}, {self._cluster!r})' ``` #### File: databuilder/transformer/base_transformer.py ```python import abc from typing import ( Any, Iterable, Iterator, List, Optional, ) from pyhocon import ConfigTree from databuilder import Scoped class Transformer(Scoped): """ A transformer transforms a record """ @abc.abstractmethod def init(self, conf: ConfigTree) -> None: pass @abc.abstractmethod def transform(self, record: Any) -> Any: pass class NoopTransformer(Transformer): """ A no-op transformer """ def init(self, conf: ConfigTree) -> None: pass def transform(self, record: Any) -> Any: return record def get_scope(self) -> str: pass class ChainedTransformer(Transformer): """ A chained transformer that iterates transformers and transforms a record. Transfomers implemented using generator functons can yield multiple records, which all get passed to the next transformer. Returning None from a transformer filters the record out. """ def __init__(self, transformers: Iterable[Transformer], is_init_transformers: Optional[bool] = False) -> None: self.transformers = transformers self.is_init_transformers = is_init_transformers def init(self, conf: ConfigTree) -> None: if self.is_init_transformers: for transformer in self.transformers: transformer.init(Scoped.get_scoped_conf(conf, transformer.get_scope())) def transform(self, record: Any) -> Any: records = [record] for t in self.transformers: new_records: List[Any] = [] for r in records: result = t.transform(r) # Get all records if the transformer returns an Iterator. if isinstance(result, Iterator): new_records += list(result) # Filter the record if it is None elif result is not None: new_records.append(result) records = new_records yield from records def get_scope(self) -> str: return 'transformer.chained' def close(self) -> None: for t in self.transformers: t.close() ``` #### File: unit/extractor/test_feast_extractor.py ```python import json import re import unittest from feast.entity import Entity from feast.feature_table import FeatureTable from mock import MagicMock, call from pyhocon import ConfigFactory from databuilder import Scoped from databuilder.extractor.feast_extractor import FeastExtractor from databuilder.models.table_metadata import ( ColumnMetadata, DescriptionMetadata, TableMetadata, ) class TestFeastExtractor(unittest.TestCase): def test_no_feature_tables_registered(self) -> None: self._init_extractor() self.extractor._client.list_projects.return_value = ["default"] self.assertIsNone(self.extractor.extract()) def test_every_project_is_scanned(self) -> None: self._init_extractor() self.extractor._client.list_projects.return_value = ["default", "dev", "prod"] list_feature_tables_mock = self.extractor._client.list_feature_tables list_feature_tables_mock.return_value = [] self.assertIsNone(self.extractor.extract()) list_feature_tables_mock.assert_has_calls( [ call(project="default"), call(project="dev"), call(project="prod"), ] ) def test_feature_table_extraction(self) -> None: self._init_extractor(programmatic_description_enabled=False) self.extractor._client.list_projects.return_value = ["default"] self._mock_feature_table() table = self.extractor.extract() self.extractor._client.get_entity.assert_called_with( "driver_id", project="default" ) expected = TableMetadata( database="feast", cluster="unittest-feast-instance", schema="default", name="driver_trips", description=None, columns=[ ColumnMetadata( "driver_id", "Internal identifier of the driver", "INT64", 0 ), ColumnMetadata("trips_today", None, "INT32", 1), ], ) self.assertEqual(expected.__repr__(), table.__repr__()) self.assertIsNone(self.extractor.extract()) def test_feature_table_extraction_with_description_batch(self) -> None: self._init_extractor(programmatic_description_enabled=True) self.extractor._client.list_projects.return_value = ["default"] self._mock_feature_table(labels={"label1": "value1"}) feature_table_definition = self.extractor.extract() assert isinstance(feature_table_definition, TableMetadata) description = self.extractor.extract() assert isinstance(description, TableMetadata) expected = DescriptionMetadata( TestFeastExtractor._strip_margin( """* Created at **2020-01-01 00:00:00** |* Labels: | * label1: **value1** |""" ), "feature_table_details", ) self.assertEqual(expected.__repr__(), description.description.__repr__()) batch_source = self.extractor.extract() assert isinstance(batch_source, TableMetadata) expected = DescriptionMetadata( TestFeastExtractor._strip_margin( """``` |fileOptions: | fileFormat: | parquetFormat: {} | fileUrl: file:///some/location |type: BATCH_FILE |```""" ), "batch_source", ) self.assertEqual(expected.__repr__(), batch_source.description.__repr__()) self.assertIsNone(self.extractor.extract()) def test_feature_table_extraction_with_description_stream(self) -> None: self._init_extractor(programmatic_description_enabled=True) self.extractor._client.list_projects.return_value = ["default"] self._mock_feature_table(add_stream_source=True) feature_table_definition = self.extractor.extract() assert isinstance(feature_table_definition, TableMetadata) description = self.extractor.extract() assert isinstance(description, TableMetadata) expected = DescriptionMetadata( TestFeastExtractor._strip_margin( """* Created at **2020-01-01 00:00:00** |""" ), "feature_table_details", ) self.assertEqual(expected.__repr__(), description.description.__repr__()) batch_source = self.extractor.extract() assert isinstance(batch_source, TableMetadata) expected = DescriptionMetadata( TestFeastExtractor._strip_margin( """``` |fileOptions: | fileFormat: | parquetFormat: {} | fileUrl: file:///some/location |type: BATCH_FILE |```""" ), "batch_source", ) self.assertEqual(expected.__repr__(), batch_source.description.__repr__()) stream_source = self.extractor.extract() assert isinstance(stream_source, TableMetadata) expected = DescriptionMetadata( TestFeastExtractor._strip_margin( """``` |createdTimestampColumn: datetime |eventTimestampColumn: datetime |kafkaOptions: | bootstrapServers: broker1 | messageFormat: | avroFormat: | schemaJson: '{"type": "record", "name": "DriverTrips", "fields": [{"name": "driver_id", | "type": "long"}, {"name": "trips_today", "type": "int"}, {"name": "datetime", | "type": {"type": "long", "logicalType": "timestamp-micros"}}]}' | topic: driver_trips |type: STREAM_KAFKA |```""" ), "stream_source", ) self.assertEqual(expected.__repr__(), stream_source.description.__repr__()) self.assertIsNone(self.extractor.extract()) def _init_extractor(self, programmatic_description_enabled: bool = True) -> None: conf = { f'extractor.feast.{FeastExtractor.FEAST_ENDPOINT_CONFIG_KEY}': 'feast-core.example.com:6565', f'extractor.feast.{FeastExtractor.FEAST_SERVICE_CONFIG_KEY}': 'unittest-feast-instance', f'extractor.feast.{FeastExtractor.DESCRIBE_FEATURE_TABLES}': programmatic_description_enabled, } self.extractor = FeastExtractor() self.extractor.init( Scoped.get_scoped_conf( conf=ConfigFactory.from_dict(conf), scope=self.extractor.get_scope() ) ) self.extractor._client = MagicMock(return_value=None) @staticmethod def _strip_margin(text: str) -> str: return re.sub("\n[ \t]*\\|", "\n", text) def _mock_feature_table( self, labels: dict = {}, add_stream_source: bool = False ) -> None: table_spec = { "name": "driver_trips", "entities": ["driver_id"], "features": [{"name": "trips_today", "valueType": "INT32"}], "labels": labels, "batchSource": { "type": "BATCH_FILE", "fileOptions": { "fileFormat": {"parquetFormat": {}}, "fileUrl": "file:///some/location", }, }, } if add_stream_source: avro_schema_json = json.dumps( { "type": "record", "name": "DriverTrips", "fields": [ {"name": "driver_id", "type": "long"}, {"name": "trips_today", "type": "int"}, { "name": "datetime", "type": {"type": "long", "logicalType": "timestamp-micros"}, }, ], } ) table_spec["streamSource"] = { "type": "STREAM_KAFKA", "eventTimestampColumn": "datetime", "createdTimestampColumn": "datetime", "kafkaOptions": { "bootstrapServers": "broker1", "topic": "driver_trips", "messageFormat": { "avroFormat": { "schemaJson": avro_schema_json, } }, }, } self.extractor._client.list_feature_tables.return_value = [ FeatureTable.from_dict( { "spec": table_spec, "meta": {"createdTimestamp": "2020-01-01T00:00:00Z"}, } ) ] self.extractor._client.get_entity.return_value = Entity.from_dict( { "spec": { "name": "driver_id", "valueType": "INT64", "description": "Internal identifier of the driver", } } ) if __name__ == "__main__": unittest.main() ``` #### File: unit/extractor/test_pandas_profiling_column_stats_extractor.py ```python import unittest from typing import Any from mock import MagicMock from pyhocon import ConfigFactory from databuilder import Scoped from databuilder.extractor.pandas_profiling_column_stats_extractor import PandasProfilingColumnStatsExtractor from databuilder.models.table_stats import TableColumnStats class TestPandasProfilingColumnStatsExtractor(unittest.TestCase): report_data = { 'analysis': { 'date_start': '2021-05-17 10:10:15.142044' }, 'variables': { 'column_1': { 'mean': 5.120, 'max': 15.23456 }, 'column_2': { 'mean': 10 } } } def setUp(self) -> None: config = {'extractor.pandas_profiling.file_path': None} config = ConfigFactory.from_dict({**config, **self._common_params()}) self.config = config @staticmethod def _common_params() -> Any: return {'extractor.pandas_profiling.table_name': 'table_name', 'extractor.pandas_profiling.schema_name': 'schema_name', 'extractor.pandas_profiling.database_name': 'database_name', 'extractor.pandas_profiling.cluster_name': 'cluster_name'} def _get_extractor(self) -> Any: extractor = PandasProfilingColumnStatsExtractor() extractor.init(Scoped.get_scoped_conf(conf=self.config, scope=extractor.get_scope())) return extractor def test_extractor(self) -> None: extractor = self._get_extractor() extractor._load_report = MagicMock(return_value=self.report_data) common = { 'db': self._common_params().get('extractor.pandas_profiling.database_name'), 'schema': self._common_params().get('extractor.pandas_profiling.schema_name'), 'table_name': self._common_params().get('extractor.pandas_profiling.table_name'), 'cluster': self._common_params().get('extractor.pandas_profiling.cluster_name'), 'start_epoch': '1621246215', 'end_epoch': '0' } compare_params = {'table', 'schema', 'db', 'col_name', 'start_epoch', 'end_epoch', 'cluster', 'stat_type', 'stat_val'} expected = [ {x: spec[x] for x in compare_params if x in spec} for spec in [ TableColumnStats(**{**dict(stat_name='Mean', stat_val='5.12', col_name='column_1'), **common}).__dict__, TableColumnStats( **{**dict(stat_name='Maximum', stat_val='15.235', col_name='column_1'), **common}).__dict__, TableColumnStats(**{**dict(stat_name='Mean', stat_val='10.0', col_name='column_2'), **common}).__dict__, ] ] result = [] while True: stat = extractor.extract() if stat: result.append(stat) else: break result_spec = [{x: spec.__dict__[x] for x in compare_params if x in spec.__dict__} for spec in result] for r in result: self.assertIsInstance(r, TableColumnStats) self.assertListEqual(expected, result_spec) ``` #### File: amundsen_application/models/issue_results.py ```python from amundsen_application.models.data_issue import DataIssue from typing import List, Dict class IssueResults: def __init__(self, issues: List[DataIssue], total: int, all_issues_url: str) -> None: """ Returns an object representing results from an issue tracker. :param issues: Issues in the issue tracker matching the requested table :param total: How many issues in all are associated with this table :param all_issues_url: url to the all issues in the issue tracker """ self.issues = issues self.total = total self.all_issues_url = all_issues_url def serialize(self) -> Dict: return {'issues': [issue.serialize() for issue in self.issues], 'total': self.total, 'all_issues_url': self.all_issues_url} ``` #### File: metadata_service/api/tag.py ```python from http import HTTPStatus from typing import Any, Iterable, Mapping, Tuple, Union from flasgger import swag_from from flask import current_app as app from flask_restful import Resource, fields, marshal from metadata_service.entity.resource_type import ResourceType from metadata_service.exception import NotFoundException from metadata_service.proxy import get_proxy_client from metadata_service.proxy.base_proxy import BaseProxy tag_fields = { 'tag_name': fields.String, 'tag_count': fields.Integer } tag_usage_fields = { 'tag_usages': fields.List(fields.Nested(tag_fields)) } BADGE_TYPE = 'badge' class TagAPI(Resource): def __init__(self) -> None: self.client = get_proxy_client() super(TagAPI, self).__init__() @swag_from('swagger_doc/tag/tag_get.yml') def get(self) -> Iterable[Union[Mapping, int, None]]: """ API to fetch all the existing tags with usage. """ tag_usages = self.client.get_tags() return marshal({'tag_usages': tag_usages}, tag_usage_fields), HTTPStatus.OK class TagCommon: def __init__(self, client: BaseProxy) -> None: self.client = client def put(self, id: str, resource_type: ResourceType, tag: str, tag_type: str = 'default') -> Tuple[Any, HTTPStatus]: """ Method to add a tag to existing resource. :param id: :param resource_type: :param tag: :param tag_type: :return: """ whitelist_badges = app.config.get('WHITELIST_BADGES', []) if tag_type == BADGE_TYPE: return \ {'message': 'Badges should be added using /badges/, tag_type=badge no longer valid'}, \ HTTPStatus.NOT_ACCEPTABLE else: for badge in whitelist_badges: if tag == badge.badge_name: return \ {'message': 'The tag {} for id {} with type {} and resource_type {} ' 'is not added successfully as tag ' 'for it is reserved for badge'.format(tag, id, tag_type, resource_type.name)}, \ HTTPStatus.CONFLICT try: self.client.add_tag(id=id, tag=tag, tag_type=tag_type, resource_type=resource_type) return {'message': 'The tag {} for id {} with type {} and resource_type {} ' 'is added successfully'.format(tag, id, tag_type, resource_type.name)}, HTTPStatus.OK except NotFoundException: return \ {'message': 'The tag {} for table_uri {} with type {} and resource_type {} ' 'is not added successfully'.format(tag, id, tag_type, resource_type.name)}, \ HTTPStatus.NOT_FOUND def delete(self, id: str, tag: str, resource_type: ResourceType, tag_type: str = 'default') -> Tuple[Any, HTTPStatus]: """ Method to remove a association between a given tag and a resource. :param id: :param resource_type: :param tag: :param tag_type: :return: """ try: self.client.delete_tag(id=id, tag=tag, tag_type=tag_type, resource_type=resource_type) return {'message': 'The tag {} for id {} with type {} and resource_type {} ' 'is deleted successfully'.format(tag, id, tag_type, resource_type.name)}, HTTPStatus.OK except NotFoundException: return \ {'message': 'The tag {} for id {} with type {} and resource_type {} ' 'is not deleted successfully'.format(tag, id, tag_type, resource_type.name)}, \ HTTPStatus.NOT_FOUND ``` #### File: api/feature/test_feature_tag_api.py ```python from http import HTTPStatus from metadata_service.entity.resource_type import ResourceType from metadata_service.exception import NotFoundException from tests.unit.api.feature.feature_test_case import FeatureTestCase FEATURE_URI = 'test_feature_uri' TAG = 'underage_wizards' class TestFeatureTagAPI(FeatureTestCase): def test_should_update_tag(self) -> None: response = self.app.test_client().put(f'/feature/{FEATURE_URI}/tag/{TAG}') self.assertEqual(response.status_code, HTTPStatus.OK) self.mock_proxy.add_tag.assert_called_with(id=FEATURE_URI, tag=TAG, tag_type='default', resource_type=ResourceType.Feature) def test_should_fail_to_update_tag_when_feature_not_found(self) -> None: self.mock_proxy.add_tag.side_effect = NotFoundException(message='cannot find feature') response = self.app.test_client().put(f'/feature/{FEATURE_URI}/tag/{TAG}') self.assertEqual(response.status_code, HTTPStatus.NOT_FOUND) def test_should_delete_tag(self) -> None: response = self.app.test_client().delete(f'/feature/{FEATURE_URI}/tag/{TAG}') self.assertEqual(response.status_code, HTTPStatus.OK) self.mock_proxy.delete_tag.assert_called_with(id=FEATURE_URI, tag=TAG, tag_type='default', resource_type=ResourceType.Feature) def test_should_fail_to_delete_tag_when_feature_not_found(self) -> None: self.mock_proxy.delete_tag.side_effect = NotFoundException(message='cannot find feature') response = self.app.test_client().delete(f'/feature/{FEATURE_URI}/tag/{TAG}') self.assertEqual(response.status_code, HTTPStatus.NOT_FOUND) ``` #### File: search_service/models/table.py ```python import time from typing import ( List, Optional, Set, ) import attr from marshmallow3_annotations.ext.attrs import AttrsSchema from search_service.models.tag import Tag from .base import Base @attr.s(auto_attribs=True, kw_only=True) class Table(Base): """ This represents the part of a table stored in the search proxy """ id: str database: str cluster: str schema: str name: str key: str display_name: Optional[str] = None tags: Optional[List[Tag]] = None badges: Optional[List[Tag]] = None description: Optional[str] = None last_updated_timestamp: int = int(time.time()) # The following properties are lightly-transformed properties from the normal table object: column_names: Optional[List[str]] = None column_descriptions: Optional[List[str]] = None programmatic_descriptions: Optional[List[str]] = None # The following are search-only properties: total_usage: int = 0 schema_description: Optional[str] = attr.ib(default=None) def get_id(self) -> str: return self.id def get_attrs_dict(self) -> dict: attrs_dict = self.__dict__.copy() if self.tags is not None: attrs_dict['tags'] = [str(tag) for tag in self.tags] else: attrs_dict['tags'] = None if self.badges is not None: attrs_dict['badges'] = [str(badge) for badge in self.badges] else: attrs_dict['badges'] = None return attrs_dict @classmethod def get_attrs(cls) -> Set: return { 'id', 'name', 'key', 'description', 'cluster', 'database', 'schema', 'column_names', 'tags', 'badges', 'last_updated_timestamp', 'display_name', 'programmatic_descriptions', 'total_usage', 'schema_description' } @staticmethod def get_type() -> str: return 'table' class TableSchema(AttrsSchema): class Meta: target = Table register_as_scheme = True @attr.s(auto_attribs=True, kw_only=True) class SearchTableResult: total_results: int = attr.ib() results: List[Table] = attr.ib(factory=list) class SearchTableResultSchema(AttrsSchema): class Meta: target = SearchTableResult register_as_scheme = True ``` #### File: unit/proxy/test_elasticsearch.py ```python import unittest from typing import ( # noqa: F401 Any, Iterable, List, ) from unittest.mock import MagicMock, patch from search_service import create_app from search_service.api.table import TABLE_INDEX from search_service.api.user import USER_INDEX from search_service.models.dashboard import Dashboard from search_service.models.search_result import SearchResult from search_service.models.table import Table from search_service.models.tag import Tag from search_service.models.user import User from search_service.proxy import get_proxy_client from search_service.proxy.elasticsearch import ElasticsearchProxy class MockSearchResult: def __init__(self, *, name: str, key: str, description: str, cluster: str, database: str, schema: str, column_names: Iterable[str], tags: Iterable[Tag], badges: Iterable[Tag], last_updated_timestamp: int, programmatic_descriptions: List[str] = None) -> None: self.name = name self.key = key self.description = description self.cluster = cluster self.database = database self.schema = schema self.column_names = column_names self.tags = tags self.badges = badges self.last_updated_timestamp = last_updated_timestamp self.programmatic_descriptions = programmatic_descriptions class MockUserSearchResult: def __init__(self, *, first_name: str, last_name: str, full_name: str, team_name: str, email: str, manager_email: str, github_username: str, is_active: bool, employee_type: str, role_name: str, new_attr: str) -> None: self.full_name = full_name self.first_name = first_name self.last_name = last_name self.team_name = team_name self.email = email self.manager_email = manager_email self.github_username = github_username self.is_active = is_active self.employee_type = employee_type self.new_attr = new_attr self.role_name = role_name class Response: def __init__(self, result: Any): self._d_ = result class TableResponse: def __init__(self, result: Any): self._d_ = result self.meta = {'id': result['key']} class UserResponse: def __init__(self, result: Any): self._d_ = result self.meta = {'id': result['email']} class TestElasticsearchProxy(unittest.TestCase): def setUp(self) -> None: self.app = create_app(config_module_class='search_service.config.LocalConfig') self.app_context = self.app.app_context() self.app_context.push() mock_elasticsearch_client = MagicMock() self.es_proxy = ElasticsearchProxy(client=mock_elasticsearch_client) self.mock_badge = Tag(tag_name='name') self.mock_tag = Tag(tag_name='match') self.mock_empty_badge = [] # type: List[Tag] self.mock_empty_tag = [] # type: List[Tag] self.mock_result1 = MockSearchResult(name='test_table', key='test_key', description='test_description', cluster='gold', database='test_db', schema='test_schema', column_names=['test_col1', 'test_col2'], tags=self.mock_empty_tag, badges=self.mock_empty_badge, last_updated_timestamp=1527283287, programmatic_descriptions=[]) self.mock_result2 = MockSearchResult(name='test_table2', key='test_key2', description='test_description2', cluster='gold', database='test_db2', schema='test_schema2', column_names=['test_col1', 'test_col2'], tags=self.mock_empty_tag, badges=self.mock_empty_badge, last_updated_timestamp=1527283287) self.mock_result3 = Table(id='test_key3', name='test_table3', key='test_key3', description='test_description3', cluster='gold', database='test_db3', schema='test_schema3', column_names=['test_col1', 'test_col2'], tags=[self.mock_tag], badges=[self.mock_badge], last_updated_timestamp=1527283287) self.mock_result4 = MockUserSearchResult(full_name='<NAME>', first_name='First', last_name='Last', team_name='Test team', email='<EMAIL>', github_username='ghub', manager_email='<EMAIL>', is_active=True, employee_type='FTE', role_name='swe', new_attr='aaa') self.mock_dashboard_result = Dashboard(id='mode_dashboard', uri='dashboard_uri', cluster='gold', group_name='mode_dashboard_group', group_url='mode_dashboard_group_url', product='mode', name='mode_dashboard', url='mode_dashboard_url', description='test_dashboard', last_successful_run_timestamp=1000) def test_setup_client(self) -> None: self.es_proxy = ElasticsearchProxy( host="http://0.0.0.0:9200", user="elastic", password="<PASSWORD>" ) a = self.es_proxy.elasticsearch for client in [a, a.cat, a.cluster, a.indices, a.ingest, a.nodes, a.snapshot, a.tasks]: self.assertEqual(client.transport.hosts[0]['host'], "0.0.0.0") self.assertEqual(client.transport.hosts[0]['port'], 9200) @patch('search_service.proxy.elasticsearch.Elasticsearch', autospec=True) def test_setup_client_with_username_and_password(self, elasticsearch_mock: MagicMock) -> None: self.es_proxy = ElasticsearchProxy( host='http://unit-test-host', user='unit-test-user', password='<PASSWORD>' ) elasticsearch_mock.assert_called_once() elasticsearch_mock.assert_called_once_with( 'http://unit-test-host', http_auth=('<PASSWORD>-user', '<PASSWORD>') ) @patch('search_service.proxy.elasticsearch.Elasticsearch', autospec=True) def test_setup_client_without_username(self, elasticsearch_mock: MagicMock) -> None: self.es_proxy = ElasticsearchProxy( host='http://unit-test-host', user='' ) elasticsearch_mock.assert_called_once() elasticsearch_mock.assert_called_once_with('http://unit-test-host', http_auth=None) @patch('search_service.proxy._proxy_client', None) def test_setup_config(self) -> None: es: Any = get_proxy_client() a = es.elasticsearch for client in [a, a.cat, a.cluster, a.indices, a.ingest, a.nodes, a.snapshot, a.tasks]: self.assertEqual(client.transport.hosts[0]['host'], "0.0.0.0") self.assertEqual(client.transport.hosts[0]['port'], 9200) @patch('elasticsearch_dsl.Search.execute') def test_search_with_empty_query_string(self, mock_search: MagicMock) -> None: expected = SearchResult(total_results=0, results=[]) result = self.es_proxy.fetch_table_search_results(query_term='') # check the output was empty list self.assertDictEqual(vars(result), vars(expected), "Received non-empty search results!") # ensure elasticsearch_dsl Search endpoint was not called # assert_not_called doesn't work. See here: http://engineroom.trackmaven.com/blog/mocking-mistakes/ self.assertTrue(mock_search.call_count == 0) @patch('elasticsearch_dsl.Search.execute') def test_search_with_empty_result(self, mock_search: MagicMock) -> None: mock_results = MagicMock() mock_results.hits.total = 0 mock_search.return_value = mock_results expected = SearchResult(total_results=0, results=[]) result = self.es_proxy.fetch_table_search_results(query_term='test_query_term') self.assertDictEqual(vars(result), vars(expected), "Received non-empty search results!") @patch('elasticsearch_dsl.Search.execute') def test_search_with_one_table_result(self, mock_search: MagicMock) -> None: mock_results = MagicMock() mock_results.hits.total = 1 mock_results.__iter__.return_value = [TableResponse(result=vars(self.mock_result1))] mock_search.return_value = mock_results expected = SearchResult(total_results=1, results=[Table(id='test_key', name='test_table', key='test_key', description='test_description', cluster='gold', database='test_db', schema='test_schema', column_names=['test_col1', 'test_col2'], tags=[], badges=self.mock_empty_badge, last_updated_timestamp=1527283287, programmatic_descriptions=[])]) resp = self.es_proxy.fetch_table_search_results(query_term='test_query_term') self.assertEqual(resp.total_results, expected.total_results, "search result is not of length 1") self.assertIsInstance(resp.results[0], Table, "Search result received is not of 'Table' type!") self.assertDictEqual(vars(resp.results[0]), vars(expected.results[0]), "Search Result doesn't match with expected result!") @patch('elasticsearch_dsl.Search.execute') def test_search_with_multiple_result(self, mock_search: MagicMock) -> None: mock_results = MagicMock() mock_results.hits.total = 2 mock_results.__iter__.return_value = [TableResponse(result=vars(self.mock_result1)), TableResponse(result=vars(self.mock_result2))] mock_search.return_value = mock_results expected = SearchResult(total_results=2, results=[Table(id='test_key', name='test_table', key='test_key', description='test_description', cluster='gold', database='test_db', schema='test_schema', column_names=['test_col1', 'test_col2'], tags=[], badges=self.mock_empty_badge, last_updated_timestamp=1527283287, programmatic_descriptions=[]), Table(id='test_key2', name='test_table2', key='test_key2', description='test_description2', cluster='gold', database='test_db2', schema='test_schema2', column_names=['test_col1', 'test_col2'], tags=[], badges=self.mock_empty_badge, last_updated_timestamp=1527283287)]) resp = self.es_proxy.fetch_table_search_results(query_term='test_query_term') self.assertEqual(resp.total_results, expected.total_results, "search result is not of length 2") for i in range(2): self.assertIsInstance(resp.results[i], Table, "Search result received is not of 'Table' type!") self.assertDictEqual(vars(resp.results[i]), vars(expected.results[i]), "Search result doesn't match with expected result!") @patch('elasticsearch_dsl.Search.execute') def test_search_table_filter(self, mock_search: MagicMock) -> None: mock_results = MagicMock() mock_results.hits.total = 1 mock_results.__iter__.return_value = [TableResponse(result=vars(self.mock_result1))] mock_search.return_value = mock_results expected = SearchResult(total_results=1, results=[Table(id='test_key', name='test_table', key='test_key', description='test_description', cluster='gold', database='test_db', schema='test_schema', column_names=['test_col1', 'test_col2'], tags=self.mock_empty_tag, badges=self.mock_empty_badge, last_updated_timestamp=1527283287, programmatic_descriptions=[])]) search_request = { 'type': 'AND', 'filters': { 'database': ['hive', 'bigquery'], 'schema': ['test-schema1', 'test-schema2'], 'table': ['*amundsen*'], 'column': ['*ds*'], 'tag': ['test-tag'], } } resp = self.es_proxy.fetch_search_results_with_filter(search_request=search_request, query_term='test') self.assertEqual(resp.total_results, expected.total_results) self.assertIsInstance(resp.results[0], Table) self.assertDictEqual(vars(resp.results[0]), vars(expected.results[0])) def test_search_table_filter_return_no_results_if_no_search_request(self) -> None: resp = self.es_proxy.fetch_search_results_with_filter(search_request=None, query_term='test') self.assertEqual(resp.total_results, 0) self.assertEqual(resp.results, []) def test_search_table_filter_return_no_results_if_dsl_conversion_error(self) -> None: search_request = { 'type': 'AND', 'filters': {} } with patch.object(self.es_proxy, 'convert_query_json_to_query_dsl') as mock: mock.side_effect = MagicMock(side_effect=Exception('Test')) resp = self.es_proxy.fetch_search_results_with_filter(search_request=search_request, query_term='test') self.assertEqual(resp.total_results, 0) self.assertEqual(resp.results, []) def test_get_model_by_index_table(self) -> None: self.assertEqual(self.es_proxy.get_model_by_index(TABLE_INDEX), Table) def test_get_model_by_index_user(self) -> None: self.assertEqual(self.es_proxy.get_model_by_index(USER_INDEX), User) def test_get_model_by_index_raise_exception(self) -> None: self.assertRaises(Exception, self.es_proxy.convert_query_json_to_query_dsl, 'some_fake_index') def test_parse_filters_return_results(self) -> None: filter_list = { 'database': ['hive', 'bigquery'], 'schema': ['test-schema1', 'test-schema2'], 'table': ['*amundsen*'], 'column': ['*ds*'], 'tag': ['test-tag'], } expected_result = "database.raw:(hive OR bigquery) " \ "AND schema.raw:(test-schema1 OR test-schema2) " \ "AND name.raw:(*amundsen*) " \ "AND column_names.raw:(*ds*) " \ "AND tags:(test-tag)" self.assertEqual(self.es_proxy.parse_filters(filter_list, index=TABLE_INDEX), expected_result) def test_parse_filters_return_no_results(self) -> None: filter_list = { 'unsupported_category': ['fake'] } self.assertEqual(self.es_proxy.parse_filters(filter_list, index=TABLE_INDEX), '') def test_validate_wrong_filters_values(self) -> None: search_request = { "type": "AND", "filters": { "schema": ["test_schema:test_schema"], "table": ["test/table"] }, "query_term": "", "page_index": 0 } self.assertEqual(self.es_proxy.validate_filter_values(search_request), False) def test_validate_accepted_filters_values(self) -> None: search_request = { "type": "AND", "filters": { "schema": ["test_schema"], "table": ["test_table"] }, "query_term": "a", "page_index": 0 } self.assertEqual(self.es_proxy.validate_filter_values(search_request), True) def test_parse_query_term(self) -> None: term = 'test' expected_result = "(name:(*test*) OR name:(test) OR schema:(*test*) OR " \ "schema:(test) OR description:(*test*) OR description:(test) OR " \ "column_names:(*test*) OR column_names:(test) OR " \ "column_descriptions:(*test*) OR column_descriptions:(test))" self.assertEqual(self.es_proxy.parse_query_term(term, index=TABLE_INDEX), expected_result) def test_convert_query_json_to_query_dsl_term_and_filters(self) -> None: term = 'test' test_filters = { 'database': ['hive', 'bigquery'], 'schema': ['test-schema1', 'test-schema2'], 'table': ['*amundsen*'], 'column': ['*ds*'], 'tag': ['test-tag'], } search_request = { 'type': 'AND', 'filters': test_filters } expected_result = self.es_proxy.parse_filters(test_filters, index=TABLE_INDEX) + " AND " + \ self.es_proxy.parse_query_term(term, index=TABLE_INDEX) ret_result = self.es_proxy.convert_query_json_to_query_dsl(search_request=search_request, query_term=term, index=TABLE_INDEX) self.assertEqual(ret_result, expected_result) def test_convert_query_json_to_query_dsl_no_term(self) -> None: term = '' test_filters = { 'database': ['hive', 'bigquery'], } search_request = { 'type': 'AND', 'filters': test_filters } expected_result = self.es_proxy.parse_filters(test_filters, index=TABLE_INDEX) ret_result = self.es_proxy.convert_query_json_to_query_dsl(search_request=search_request, query_term=term, index=TABLE_INDEX) self.assertEqual(ret_result, expected_result) def test_convert_query_json_to_query_dsl_no_filters(self) -> None: term = 'test' search_request = { 'type': 'AND', 'filters': {} } expected_result = self.es_proxy.parse_query_term(term, index=TABLE_INDEX) ret_result = self.es_proxy.convert_query_json_to_query_dsl(search_request=search_request, query_term=term, index=TABLE_INDEX) self.assertEqual(ret_result, expected_result) def test_convert_query_json_to_query_dsl_raise_exception_no_term_or_filters(self) -> None: term = '' search_request = { 'type': 'AND', 'filters': {} } self.assertRaises(Exception, self.es_proxy.convert_query_json_to_query_dsl, search_request, term) @patch('elasticsearch_dsl.Search.execute') def test_search_with_one_user_result(self, mock_search: MagicMock) -> None: mock_results = MagicMock() mock_results.hits.total = 1 mock_results.__iter__.return_value = [UserResponse(result=vars(self.mock_result4))] mock_search.return_value = mock_results expected = SearchResult(total_results=1, results=[User(id='<EMAIL>', full_name='First Last', first_name='First', last_name='Last', team_name='Test team', email='<EMAIL>', github_username='ghub', manager_email='<EMAIL>', is_active=True, role_name='swe', employee_type='FTE')]) resp = self.es_proxy.fetch_user_search_results(query_term='test_query_term', index='user_search_index') self.assertEqual(resp.total_results, expected.total_results, "search result is not of length 1") self.assertIsInstance(resp.results[0], User, "Search result received is not of 'Table' type!") self.assertDictEqual(vars(resp.results[0]), vars(expected.results[0]), "Search Result doesn't match with expected result!") def test_create_document_with_no_data(self) -> None: expected = '' result = self.es_proxy.create_document(data=None, index='table_search_index') print('result: {}'.format(result)) self.assertEqual(expected, result) @patch('uuid.uuid4') def test_create_document(self, mock_uuid: MagicMock) -> None: mock_elasticsearch = self.es_proxy.elasticsearch new_index_name = 'tester_index_name' mock_uuid.return_value = new_index_name mock_elasticsearch.indices.get_alias.return_value = dict([(new_index_name, {})]) start_data = [ Table(id='snowflake://blue.test_schema/bank_accounts', cluster='blue', column_names=['1', '2'], database='snowflake', schema='test_schema', description='A table for something', key='snowflake://blue.test_schema/bank_accounts', last_updated_timestamp=0, name='bank_accounts', tags=[], badges=self.mock_empty_badge, column_descriptions=['desc'], schema_description='schema description 1'), Table(id='snowflake://blue.test_schema/bitcoin_wallets', cluster='blue', column_names=['5', '6'], database='snowflake', schema='test_schema', description='A table for lots of things!', key='snowflake://blue.test_schema/bitcoin_wallets', last_updated_timestamp=0, name='bitcoin_wallets', tags=[], badges=self.mock_empty_badge, schema_description='schema description 2', programmatic_descriptions=["test"]) ] expected_data = [ { 'index': { '_index': new_index_name, '_type': 'table', '_id': 'snowflake://blue.test_schema/bank_accounts' } }, { 'id': 'snowflake://blue.test_schema/bank_accounts', 'cluster': 'blue', 'column_names': ['1', '2'], 'column_descriptions': ['desc'], 'database': 'snowflake', 'schema': 'test_schema', 'description': 'A table for something', 'display_name': None, 'key': 'snowflake://blue.test_schema/bank_accounts', 'last_updated_timestamp': 0, 'name': 'bank_accounts', 'tags': [], 'badges': [], 'total_usage': 0, 'programmatic_descriptions': None, 'schema_description': 'schema description 1', }, { 'index': { '_index': new_index_name, '_type': 'table', '_id': 'snowflake://blue.test_schema/bitcoin_wallets' } }, { 'id': 'snowflake://blue.test_schema/bitcoin_wallets', 'cluster': 'blue', 'column_names': ['5', '6'], 'column_descriptions': None, 'database': 'snowflake', 'schema': 'test_schema', 'description': 'A table for lots of things!', 'display_name': None, 'key': 'snowflake://blue.test_schema/bitcoin_wallets', 'last_updated_timestamp': 0, 'name': 'bitcoin_wallets', 'tags': [], 'badges': [], 'total_usage': 0, 'schema_description': 'schema description 2', 'programmatic_descriptions': ["test"] } ] mock_elasticsearch.bulk.return_value = {'errors': False} expected_alias = 'table_search_index' result = self.es_proxy.create_document(data=start_data, index=expected_alias) self.assertEqual(expected_alias, result) mock_elasticsearch.bulk.assert_called_with(expected_data) def test_update_document_with_no_data(self) -> None: expected = '' result = self.es_proxy.update_document(data=None, index='table_search_index') self.assertEqual(expected, result) @patch('uuid.uuid4') def test_update_document(self, mock_uuid: MagicMock) -> None: mock_elasticsearch = self.es_proxy.elasticsearch new_index_name = 'tester_index_name' mock_elasticsearch.indices.get_alias.return_value = dict([(new_index_name, {})]) mock_uuid.return_value = new_index_name table_key = 'snowflake://blue.test_schema/bitcoin_wallets' expected_alias = 'table_search_index' data = [ Table(id=table_key, cluster='blue', column_names=['5', '6'], database='snowflake', schema='test_schema', description='A table for lots of things!', key=table_key, last_updated_timestamp=0, name='bitcoin_wallets', tags=[], column_descriptions=['hello'], badges=self.mock_empty_badge, schema_description='schema description 1') ] expected_data = [ { 'update': { '_index': new_index_name, '_type': 'table', '_id': table_key } }, { 'doc': { 'id': table_key, 'cluster': 'blue', 'column_names': ['5', '6'], 'column_descriptions': ['hello'], 'database': 'snowflake', 'schema': 'test_schema', 'description': 'A table for lots of things!', 'display_name': None, 'key': table_key, 'last_updated_timestamp': 0, 'name': 'bitcoin_wallets', 'tags': [], 'badges': [], 'total_usage': 0, 'programmatic_descriptions': None, 'schema_description': 'schema description 1', } } ] result = self.es_proxy.update_document(data=data, index=expected_alias) self.assertEqual(expected_alias, result) mock_elasticsearch.bulk.assert_called_with(expected_data) @patch('uuid.uuid4') def test_delete_table_document(self, mock_uuid: MagicMock) -> None: mock_elasticsearch = self.es_proxy.elasticsearch new_index_name = 'tester_index_name' mock_uuid.return_value = new_index_name mock_elasticsearch.indices.get_alias.return_value = dict([(new_index_name, {})]) expected_alias = 'table_search_index' data = ['id1', 'id2'] expected_data = [ {'delete': {'_index': new_index_name, '_id': 'id1', '_type': 'table'}}, {'delete': {'_index': new_index_name, '_id': 'id2', '_type': 'table'}} ] result = self.es_proxy.delete_document(data=data, index=expected_alias) self.assertEqual(expected_alias, result) mock_elasticsearch.bulk.assert_called_with(expected_data) @patch('uuid.uuid4') def test_delete_user_document(self, mock_uuid: MagicMock) -> None: mock_elasticsearch = self.es_proxy.elasticsearch new_index_name = 'tester_index_name' mock_uuid.return_value = new_index_name mock_elasticsearch.indices.get_alias.return_value = dict([(new_index_name, {})]) expected_alias = 'user_search_index' data = ['id1', 'id2'] expected_data = [ {'delete': {'_index': new_index_name, '_id': 'id1', '_type': 'user'}}, {'delete': {'_index': new_index_name, '_id': 'id2', '_type': 'user'}} ] result = self.es_proxy.delete_document(data=data, index=expected_alias) self.assertEqual(expected_alias, result) mock_elasticsearch.bulk.assert_called_with(expected_data) def test_get_instance_string(self) -> None: result = self.es_proxy._get_instance('column', 'value') self.assertEqual('value', result) def test_get_instance_tag(self) -> None: result = self.es_proxy._get_instance('tags', ['value']) tags = [Tag(tag_name='value')] self.assertEqual(tags, result) def test_get_instance_badge(self) -> None: result = self.es_proxy._get_instance('badges', ['badge1']) badges = [Tag(tag_name='badge1')] self.assertEqual(badges, result) @patch('search_service.proxy.elasticsearch.ElasticsearchProxy._search_helper') def test_fetch_dashboard_search_results(self, mock_search: MagicMock) -> None: self.mock_dashboard_result = Dashboard(id='mode_dashboard', uri='dashboard_uri', cluster='gold', group_name='mode_dashboard_group', group_url='mode_dashboard_group_url', product='mode', name='mode_dashboard', url='mode_dashboard_url', description='test_dashboard', last_successful_run_timestamp=1000) mock_search.return_value = SearchResult(total_results=1, results=[self.mock_dashboard_result]) expected = SearchResult(total_results=1, results=[Dashboard(id='mode_dashboard', uri='dashboard_uri', cluster='gold', group_name='mode_dashboard_group', group_url='mode_dashboard_group_url', product='mode', name='mode_dashboard', url='mode_dashboard_url', description='test_dashboard', last_successful_run_timestamp=1000)]) resp = self.es_proxy.fetch_dashboard_search_results(query_term='test_query_term', page_index=0, index='dashboard_search_index') self.assertEqual(resp.total_results, expected.total_results) self.assertDictEqual(vars(resp.results[0]), vars(expected.results[0]), "Search result doesn't match with expected result!") ```
{ "source": "jdavidls/aiomongodb", "score": 3 }
#### File: aiomongodb/testsuite/basictest.py ```python import asyncio, bson, collections, aiomongodb async def main(): c = aiomongodb.Client() await c.connect() db = c.database('test') query = db._cmd.find_one({'listCommands': 1}) async for item in query: for command, info in item.commands.items(): print(command) print(' ', info) #doc = {'listCommandss':1} #response = await c.OP_QUERY(b'test.$cmd', bson.BSON.encode(doc), 1) #response = bson.BSON.decode(response.payload, as_class=collections.OrderedDict) #print(response) loop = asyncio.get_event_loop() loop.run_until_complete(main()) ```
{ "source": "jdavidls/scrap", "score": 3 }
#### File: scrap/scrap/__main__.py ```python import sys, asyncio, aiohttp, async_timeout, collections, csv from lxml import html, etree from tld import get_tld from urllib.parse import urlparse USER_AGENT = 'Mozilla/5.0 (iPad; CPU OS 9_1 like Mac OS X) AppleWebKit/601.1.46 (KHTML, like Gecko) Version/9.0 Mobile/13B143 Safari/601.1' ''' analizar doctype html5 soltar tabs ''' columns =['url', 'origin', 'doctype', 'tableCount', 'error'] Row = collections.namedtuple('Row', columns) headRow = Row(*columns) def readFileSet(filename): with open(filename, 'r') as f: return set([x.strip() for x in f.readlines()]) blacklist = readFileSet('./data/blacklist.txt') class Scrapper: def __init__(self, loop, timeout=10): self.loop = loop self.timeout = timeout self.headers = { 'User-Agent': USER_AGENT } async def get(self, url): with async_timeout.timeout(self.timeout): async with aiohttp.ClientSession(loop=self.loop, headers=self.headers) as session: try: async with session.get(url) as response: ## check status code if response.status != 200: print(url, 'response', response.status, ':', response.reason) return else: try: text = await response.text() except Exception as e: print(url, 'has an unicode error') return e try: return html.fromstring(text) except Exception as e: print(url, 'has a XML/HTML parsing error') return e except Exception as e: print(url, 'has a HTTP/SSL errors') return e async def google(scrapper, keywords, pages=50): url = '/search?filter=0&query='+keywords for n in range(pages): print('GOOGLE SEARCH FOR', keywords, 'PAGE', n) html = await scrapper.get('https://www.google.com'+url) if isinstance(html, Exception) or html is None: print('Error loading google page', url) break organicLinks = html.xpath('//h3[@class="r"]//a/@href') for link in organicLinks: yield link, 'organic' # next page url = html.xpath('//a[@id="pnnext"]/@href') if not url: break url = url[0] #sleep await asyncio.sleep(10) # IDEANTION FIX async def bing(scrapper, keywords, pages=50): url = '/search?q='+keywords for n in range(pages): html = await scrapper.get('https://www.bing.com'+url) if isinstance(html, Exception): print('Error loading google page', url) continue; organicLinks = html.xpath('//h3[@class="r"]//a/@href') for link in organicLinks: yield link, 'organic' # next page url = html.xpath('//a[@id="pnnext"]/@href') if not url: break url = url[0] async def searchLoop(loop, searchEngine, keywords): scrapper = Scrapper(loop) pages = set() async for link, origin in searchEngine(scrapper, keywords): urlparts = urlparse(link) link = '{url.scheme}://{url.netloc}'.format(url=urlparts) tld = get_tld(link) if tld in pages or tld in blacklist: continue pages.add(tld) print('Scanning', tld) #print('scanning', link) page = await scrapper.get(link) if isinstance(page, Exception): yield Row(url=link, origin=origin, doctype=None, tableCount=None, error=str(page)) else: # cuenta el numero de tablas doctType=page.getroottree().docinfo.doctype; tableCount = len(page.xpath('//table')) yield Row(url=link, origin=origin, doctype=doctType, tableCount=tableCount, error=None) async def search(loop, keywords): outputFilename = './data/' + keywords + '.csv' with open(outputFilename, 'w', newline='') as csvFile: csvWriter = csv.writer(csvFile) csvWriter.writerow(headRow) async for row in searchLoop(loop, google, keywords): csvWriter.writerow(row) loop = asyncio.get_event_loop() loop.run_until_complete(search(loop, '+'.join(sys.argv[1:]))) loop.close() ```
{ "source": "jdavidrcamacho/artgpn", "score": 3 }
#### File: artgpn/artgpn/node.py ```python import numpy as np #because it makes my life easier down the line pi, exp, sine, cosine, sqrt = np.pi, np.exp, np.sin, np.cos, np.sqrt class nodeFunction(object): """ Definition the node functions kernels of our network, by default and because it simplifies my life, all kernels include a white noise term """ def __init__(self, *args): """ Puts all kernel arguments in an array pars """ self.pars = np.array(args, dtype=float) def __call__(self, r, t1 = None, t2=None): """ r = t - t' Not sure if this is a good approach since will make our life harder when defining certain non-stationary kernels, e.g linear kernel. """ print('call r', r.shape) raise NotImplementedError def __repr__(self): """ Representation of each kernel instance """ return "{0}({1})".format(self.__class__.__name__, ", ".join(map(str, self.pars))) ##### Constant ################################################################# class Constant(nodeFunction): """ This kernel returns its constant argument c with white noise Parameters: c = constant wn = white noise amplitude """ def __init__(self, c): super(Constant, self).__init__(c) self.c = c self.type = 'non-stationary and anisotropic' self.derivatives = 1 #number of derivatives in this kernel self.params_size = 1 #number of hyperparameters def __call__(self, r): return self.c * np.ones_like(r) ##### White Noise ############################################################## class WhiteNoise(nodeFunction): """ Definition of the white noise kernel. Parameters wn = white noise amplitude """ def __init__(self, wn): super(WhiteNoise, self).__init__(wn) self.wn = wn self.type = 'stationary' self.derivatives = 1 #number of derivatives in this kernel self.params_size = 1 #number of hyperparameters def __call__(self, r): if r[0,:].shape == r[:,0].shape: return self.wn**2 * np.diag(np.diag(np.ones_like(r))) else: return np.zeros_like(r) ##### Squared exponential ###################################################### class SquaredExponential(nodeFunction): """ Squared Exponential kernel, also known as radial basis function or RBF kernel in other works. Parameters: ell = length-scale wn = white noise """ def __init__(self, ell): super(SquaredExponential, self).__init__(ell) self.ell = ell self.type = 'stationary and anisotropic' self.derivatives = 1 #number of derivatives in this kernel self.params_size = 1 #number of hyperparameters def __call__(self, r): return exp(-0.5 * r**2 / self.ell**2) ##### Periodic ################################################################# class Periodic(nodeFunction): """ Definition of the periodic kernel. Parameters: ell = lenght scale P = period wn = white noise """ def __init__(self, P, ell): super(Periodic, self).__init__(P, ell) self.P = P self.ell = ell self.type = 'non-stationary and isotropic' self.derivatives = 2 #number of derivatives in this kernel self.params_size = 2 #number of hyperparameters def __call__(self, r): return exp( -2 * sine(pi*np.abs(r)/self.P)**2 / self.ell**2) ##### Quasi Periodic ########################################################### class QuasiPeriodic(nodeFunction): """ This kernel is the product between the exponential sine squared kernel and the squared exponential kernel, commonly known as the quasi-periodic kernel. Parameters: ell_e = evolutionary time scale P = kernel periodicity ell_p = length scale of the periodic component wn = white noise """ def __init__(self, ell_e, P, ell_p): super(QuasiPeriodic, self).__init__(ell_e, P, ell_p) self.ell_e = ell_e self.P = P self.ell_p = ell_p self.type = 'non-stationary and anisotropic' self.derivatives = 3 #number of derivatives in this kernel self.params_size = 3 #number of hyperparameters def __call__(self, r): return exp(- 2*sine(pi*np.abs(r)/self.P)**2 \ /self.ell_p**2 - r**2/(2*self.ell_e**2)) ##### Rational Quadratic ####################################################### class RationalQuadratic(nodeFunction): """ Definition of the rational quadratic kernel. Parameters: alpha = weight of large and small scale variations ell = characteristic lenght scale to define the kernel "smoothness" wn = white noise amplitude """ def __init__(self, alpha, ell): super(RationalQuadratic, self).__init__(alpha, ell) self.alpha = alpha self.ell = ell self.type = 'stationary and anisotropic' self.derivatives = 2 #number of derivatives in this kernel self.params_size = 2 #number of hyperparameters def __call__(self, r): return 1 / (1+ r**2/ (2*self.alpha*self.ell**2))**self.alpha ##### RQP kernel ############################################################### class RQP(nodeFunction): """ Definition of the product between the exponential sine squared kernel and the rational quadratic kernel that we called RQP kernel. If I am thinking this correctly then this kernel should tend to the QuasiPeriodic kernel as alpha increases, although I am not sure if its true. Parameters: ell_e and ell_p = aperiodic and periodic lenght scales alpha = alpha of the rational quadratic kernel P = periodic repetitions of the kernel wn = white noise amplitude """ def __init__(self, alpha, ell_e, P, ell_p): super(RQP, self).__init__(alpha, ell_e, P, ell_p) self.alpha = alpha self.ell_e = ell_e self.P = P self.ell_p = ell_p self.type = 'non-stationary and anisotropic' self.derivatives = 4 #number of derivatives in this kernel self.params_size = 4 #number of hyperparameters def __call__(self, r): a = exp(- 2*sine(pi*np.abs(r)/self.P)**2 / self.ell_p**2) b = (1+ r**2/ (2*self.alpha*self.ell_e**2))#**self.alpha return a / (np.sign(b) * (np.abs(b)) ** self.alpha) ##### Cosine ################################################################### class Cosine(nodeFunction): """ Definition of the cosine kernel. Parameters: P = period wn = white noise amplitude """ def __init__(self, P): super(Cosine, self).__init__(P) self.P = P self.type = 'non-stationary and isotropic' self.derivatives = 1 #number of derivatives in this kernel self.params_size = 1 #number of hyperparameters def __call__(self, r): return cosine(2*pi*np.abs(r) / self.P) ##### Exponential ############################################################## class Exponential(nodeFunction): """ Definition of the exponential kernel. Parameters: ell = characteristic lenght scale wn = white noise amplitude """ def __init__(self, ell): super(Exponential, self).__init__(ell) self.ell = ell self.type = 'stationary and isotropic' self.derivatives = 1 #number of derivatives in this kernel self.params_size = 1 #number of hyperparameters def __call__(self, r): return exp(- np.abs(r)/self.ell) ##### Matern 3/2 ############################################################### class Matern32(nodeFunction): """ Definition of the Matern 3/2 kernel. This kernel arise when setting v=3/2 in the matern family of kernels Parameters: ell = characteristic lenght scale wn = white noise amplitude """ def __init__(self, ell): super(Matern32, self).__init__(ell) self.ell = ell self.type = 'stationary and isotropic' self.derivatives = 1 #number of derivatives in this kernel self.params_size = 1 #number of hyperparameters def __call__(self, r): return (1.0 + np.sqrt(3.0)*np.abs(r)/self.ell) \ *np.exp(-np.sqrt(3.0)*np.abs(r) / self.ell) #### Matern 5/2 ################################################################ class Matern52(nodeFunction): """ Definition of the Matern 5/2 kernel. This kernel arise when setting v=5/2 in the matern family of kernels Parameters: ell = characteristic lenght scale wn = white noise amplitude """ def __init__(self, ell): super(Matern52, self).__init__(ell) self.ell = ell self.type = 'stationary and isotropic' self.derivatives = 2 #number of derivatives in this kernel self.params_size = 2 #number of hyperparameters def __call__(self, r): return (1.0 + ( 3*np.sqrt(5)*self.ell*np.abs(r) \ +5*np.abs(r)**2)/(3*self.ell**2) ) \ *exp(-np.sqrt(5.0)*np.abs(r)/self.ell) #### Linear #################################################################### class Linear(nodeFunction): """ Definition of the Linear kernel. c = constant wn = white noise amplitude """ def __init__(self, c): super(Linear, self).__init__(c) self.c = c self.type = 'non-stationary and anisotropic' self.derivatives = 1 #number of derivatives in this kernel self.params_size = 1 #number of hyperparameters def __call__(self, r, t1, t2): return (t1 - self.c) * (t2 - self.c) ##### Gamma-exponential ######################################################## class GammaExp(nodeFunction): """ Definition of the gamma-exponential kernel gamma = shape parameter ( 0 < gamma <= 2) ell = lenght scale wn = white noise amplitude """ def __init__(self, gamma, ell): super(GammaExp, self).__init__(gamma, ell) self.gamma = gamma self.ell = ell self.type = 'non-stationary and anisotropic' self.derivatives = 2 #number of derivatives in this kernel self.params_size = 2 #number of hyperparameters def __call__(self, r): return exp( - (np.abs(r)/self.ell) ** self.gamma) ##### Polinomial ############################################################### class Polynomial(nodeFunction): """ Definition of the polinomial kernel a = real value > 0 b = real value >= 0 c = integer value wn = white noise amplitude """ def __init__(self, a, b, c): super(Polynomial, self).__init__(a, b, c) self.a = a self.b = b self.c = c def __call__(self, r, t1, t2): return (self.a * t1 * t2 + self.b)**self.c ##### END ``` #### File: artgpn/artgpn/weight.py ```python import numpy as np #because it makes my life easier down the line pi, exp, sine, cosine, sqrt = np.pi, np.exp, np.sin, np.cos, np.sqrt class weightFunction(object): """ Definition the weight functions kernels of our network. Kernels not fully implemented yet: Matern32, and Matern52 """ def __init__(self, *args): """ Puts all kernel arguments in an array pars """ self.pars = np.array(args, dtype=float) def __call__(self, r, t1 = None, t2=None): """ r = t - t' Not sure if this is a good approach since will make our life harder when defining certain non-stationary kernels, e.g linear kernel. """ raise NotImplementedError def __repr__(self): """ Representation of each kernel instance """ return "{0}({1})".format(self.__class__.__name__, ", ".join(map(str, self.pars))) #Not working yet! # def __minus__(self, b): # return Minus(self, b) # def __rminus__(self, b): # return self.__minus__(b) # # #class _operator(weightFunction): # """ # To allow operations between two kernels # """ # def __init__(self, k1): # self.k1 = k1 # # @property # def pars(self): # return np.append(self.k1.pars) # # #class Minus(_operator): # """ # To allow a "minus" linear kernel # """ # def __repr__(self): # return "-{0}".format(self.k1) # # def __call__(self, r): # return -self.k1(r) ##### Constant ################################################################# class Constant(weightFunction): """ This kernel returns its constant argument c Parameters: c = constant """ def __init__(self, c): super(Constant, self).__init__(c) self.c = c self.type = 'non-stationary and anisotropic' self.derivatives = 1 #number of derivatives in this kernel self.params_size = 1 #number of hyperparameters def __call__(self, r): return self.c**2 * np.ones_like(r) class dConstant_dc(Constant): """ Log-derivative in order to c """ def __init__(self, c): super(dConstant_dc, self).__init__(c) self.c = c def __call__(self, r): return 2*self.c * np.ones_like(r) ##### White Noise ############################################################## class WhiteNoise(weightFunction): """ Definition of the white noise kernel. Parameters wn = white noise amplitude """ def __init__(self, wn): super(WhiteNoise, self).__init__(wn) self.wn = wn self.type = 'stationary' self.derivatives = 1 #number of derivatives in this kernel self.params_size = 1 #number of hyperparameters def __call__(self, r): if r[0,:].shape == r[:,0].shape: return self.wn**2 * np.diag(np.diag(np.ones_like(r))) else: return np.zeros_like(r) class dWhiteNoise_dwn(WhiteNoise): """ Log-derivative in order to the amplitude """ def __init__(self, wn): super(dWhiteNoise_dwn, self).__init__(wn) self.wn = wn def __call__(self, r): return 2 * self.wn**2 * np.diag(np.diag(np.ones_like(r))) ##### Squared exponential ###################################################### class SquaredExponential(weightFunction): """ Squared Exponential kernel, also known as radial basis function or RBF kernel in other works. Parameters: weight = weight/amplitude of the kernel ell = length-scale """ def __init__(self, weight, ell): super(SquaredExponential, self).__init__(weight, ell) self.weight = weight self.ell = ell self.type = 'stationary and anisotropic' self.derivatives = 2 #number of derivatives in this kernel self.params_size = 2 #number of hyperparameters def __call__(self, r): return self.weight**2 * exp(-0.5 * r**2 / self.ell**2) class dSquaredExponential_dweight(SquaredExponential): """ Log-derivative in order to the weight """ def __init__(self, weight, ell): super(dSquaredExponential_dweight, self).__init__(weight, ell) self.weight = weight self.ell = ell def __call__(self, r): return 2 * self.weight**2 * exp(-0.5 * r**2 / self.ell**2) class dSquaredExponential_dell(SquaredExponential): """ Log-derivative in order to the ell """ def __init__(self, weight, ell): super(dSquaredExponential_dell, self).__init__(weight, ell) self.weight = weight self.ell = ell def __call__(self, r): return (r**2 * self.weight**2 / self.ell**2) \ * exp(-0.5 * r**2 / self.ell**2) ##### Periodic ################################################################# class Periodic(weightFunction): """ Definition of the periodic kernel. Parameters: weight = weight/amplitude of the kernel ell = lenght scale P = period """ def __init__(self, weight, P, ell): super(Periodic, self).__init__(weight, P, ell) self.weight = weight self.P = P self.ell = ell self.type = 'non-stationary and isotropic' self.derivatives = 3 #number of derivatives in this kernel self.params_size = 3 #number of hyperparameters def __call__(self, r): return self.weight**2 * exp( -2 * sine(pi*np.abs(r)/self.P)**2 /self.ell**2) class dPeriodic_dweight(Periodic): """ Log-derivative in order to the weight """ def __init__(self, weight, P, ell): super(dPeriodic_dweight, self).__init__(weight, P, ell) self.weight = weight self.P = P self.ell = ell def __call__(self, r): return 2 * self.weight**2 * exp(-2 * sine(pi * np.abs(r) / self.P)**2 \ / self.ell**2) class dPeriodic_dell(Periodic): """ Log-derivative in order to ell """ def __init__(self, weight, P, ell,): super(dPeriodic_dell, self).__init__(weight, P, ell) self.weight = weight self.P = P self.ell = ell def __call__(self, r): return (4* self.weight**2 * sine(pi * np.abs(r) / self.P)**2 \ *exp(-2 * sine(pi * np.abs(r) / self.P)**2 \ / self.ell**2)) / self.ell**2 class dPeriodic_dP(Periodic): """ Log-derivative in order to P """ def __init__(self, weight, ell, P): super(dPeriodic_dP, self).__init__(weight, P, ell) self.weight = weight self.P = P self.ell = ell def __call__(self, r): return (4 * pi * r * self.weight**2 \ * cosine(pi*np.abs(r) / self.P) *sine(pi*np.abs(r) / self.P) \ * exp(-2 * sine(pi*np.abs(r) / self.P)**2 / self.ell**2)) \ / (self.ell**2 * self.P) ##### Quasi Periodic ########################################################### class QuasiPeriodic(weightFunction): """ This kernel is the product between the exponential sine squared kernel and the squared exponential kernel, commonly known as the quasi-periodic kernel. Parameters: weight = weight/amplitude of the kernel ell_e = evolutionary time scale ell_p = length scale of the Periodic component P = kernel Periodicity """ def __init__(self, weight, ell_e, P, ell_p): super(QuasiPeriodic, self).__init__(weight, ell_e, P, ell_p) self.weight = weight self.ell_e = ell_e self.P = P self.ell_p = ell_p self.type = 'non-stationary and anisotropic' self.derivatives = 4 #number of derivatives in this kernel self.params_size = 4 #number of hyperparameters def __call__(self, r): return self.weight**2 *exp(- 2*sine(pi*np.abs(r)/self.P)**2 \ /self.ell_p**2 - r**2/(2*self.ell_e**2)) class dQuasiPeriodic_dweight(Periodic): """ Log-derivative in order to the weight """ def __init__(self, weight, ell_e, P, ell_p): super(dQuasiPeriodic_dweight, self).__init__(weight, ell_e, P, ell_p) self.weight = weight self.ell_e = ell_e self.P = P self.ell_p = ell_p def __call(self, r): return 2 * self.weight**2 *exp(-2 * sine(pi*np.abs(r)/self.P)**2 \ /self.ell_p**2 - r**2/(2*self.ell_e**2)) class dQuasiPeriodic_delle(QuasiPeriodic): """ Log-derivative in order to ell_e """ def __init__(self, weight, ell_e, P, ell_p): super(dQuasiPeriodic_delle, self).__init__(weight, ell_e, P, ell_p) self.weight = weight self.ell_e = ell_e self.P = P self.ell_p = ell_p def __call(self, r): return (r**2 * self.weight**2 / self.ell_e**2) \ *exp(-2 * sine(pi*np.abs(r)/self.P)**2 \ /self.ell_p**2 - r**2/(2*self.ell_e**2)) class dQuasiPeriodic_dP(QuasiPeriodic): """ Log-derivative in order to P """ def __init__(self, weight, ell_e, P, ell_p): super(dQuasiPeriodic_dP, self).__init__(weight, ell_e, P, ell_p) self.weight = weight self.ell_e = ell_e self.P = P self.ell_p = ell_p def __call(self, r): return 4 * pi * r * self.weight**2 \ * cosine(pi*np.abs(r)/self.P) * sine(pi*np.abs(r)/self.P) \ * exp(-2 * sine(pi * np.abs(r)/self.P)**2 \ /self.ell_p**2 - r**2/(2*self.ell_e**2)) \ / (self.ell_p**2 * self.P) class dQuasiPeriodic_dellp(QuasiPeriodic): """ Log-derivative in order to ell_p """ def __init__(self, weight, ell_e, P, ell_p): super(dQuasiPeriodic_dellp, self).__init__(weight, ell_e, P, ell_p) self.weight = weight self.ell_e = ell_e self.P = P self.ell_p = ell_p def __call(self, r): return 4 * self.weight**2 * sine(pi*r/self.P)**2 \ * exp(-2 * sine(pi*np.abs(r)/self.P)**2 \ /self.ell_p**2 - r**2/(2*self.ell_e**2)) / self.ell_p**2 ##### Rational Quadratic ####################################################### class RationalQuadratic(weightFunction): """ Definition of the rational quadratic kernel. Parameters: weight = weight/amplitude of the kernel alpha = weight of large and small scale variations ell = characteristic lenght scale to define the kernel "smoothness" """ def __init__(self, weight, alpha, ell): super(RationalQuadratic, self).__init__(weight, alpha, ell) self.weight = weight self.alpha = alpha self.ell = ell self.type = 'stationary and anisotropic' self.derivatives = 3 #number of derivatives in this kernel self.params_size = 3 #number of hyperparameters def __call__(self, r): return self.weight**2 / (1+ r**2/ (2*self.alpha*self.ell**2))**self.alpha class dRationalQuadratic_dweight(RationalQuadratic): """ Log-derivative in order to the weight """ def __init__(self, weight, alpha, ell): super(dRationalQuadratic_dweight, self).__init__(weight, alpha, ell) self.weight = weight self.alpha = alpha self.ell = ell def __call__(self, r): return 2 * self.weight**2 \ / (1+ r**2/ (2*self.alpha*self.ell**2))**self.alpha class dRationalQuadratic_dalpha(RationalQuadratic): """ Log-derivative in order to alpha """ def __init__(self, weight, alpha, ell): super(dRationalQuadratic_dalpha, self).__init__(weight, alpha, ell) self.weight = weight self.alpha = alpha self.ell = ell def __call(self, r): return ((r**2/(2*self.alpha*self.ell**2*(r**2/(2*self.alpha*self.ell**2)+1))\ - np.log(r**2/(2*self.alpha*self.ell**2)+1)) \ * self.weight**2 * self.alpha) \ / (1+r**2/(2*self.alpha*self.ell**2))**self.alpha class dRationalQuadratic_dell(RationalQuadratic): """ Log-derivative in order to ell """ def __init__(self, weight, alpha, ell): super(dRationalQuadratic_dell, self).__init__(weight, alpha, ell) self.weight = weight self.alpha = alpha self.ell = ell def __call(self, r): return r**2 * (1+r**2/(2*self.alpha*self.ell**2))**(-1-self.alpha) \ * self.weight**2 / self.ell**2 ##### RQP kernel ############################################################### class RQP(weightFunction): """ Definition of the product between the exponential sine squared kernel and the rational quadratic kernel that we called RQP kernel. If I am thinking this correctly then this kernel should tend to the QuasiPeriodic kernel as alpha increases, although I am not sure if we can say that it tends to the QuasiPeriodic kernel as alpha tends to infinity. Parameters: weight = weight/amplitude of the kernel ell_e and ell_p = aperiodic and periodic lenght scales alpha = alpha of the rational quadratic kernel P = periodic repetitions of the kernel """ def __init__(self, weight, alpha, ell_e, P, ell_p): super(RQP, self).__init__(weight, alpha, ell_e, P, ell_p) self.weight = weight self.alpha = alpha self.ell_e = ell_e self.P = P self.ell_p = ell_p self.type = 'non-stationary and anisotropic' self.derivatives = 5 #number of derivatives in this kernel self.params_size = 5 #number of hyperparameters def __call__(self, r): return self.weight**2 * exp(- 2*sine(pi*np.abs(r)/self.P)**2 \ / self.ell_p**2) \ /(1+ r**2/ (2*self.alpha*self.ell_e**2))**self.alpha class dRQP_dweight(RQP): """ Log-derivative in order to the weight """ def __init__(self, weight, alpha, ell_e, P, ell_p): super(dRQP_dweight, self).__init__(weight, alpha, ell_e, P, ell_p) self.weight = weight self.alpha = alpha self.ell_e = ell_e self.P = P self.ell_p = ell_p def __call(self, r): return 2 * self.weight**2 * exp(- 2*sine(pi*np.abs(r)/self.P)**2 \ / self.ell_p**2) \ /(1+ r**2/ (2*self.alpha*self.ell_e**2))**self.alpha class dRQP_dalpha(RQP): """ Log-derivative in order to alpha """ def __init__(self, weight, alpha, ell_e, P, ell_p): super(dRQP_dalpha, self).__init__(weight, alpha, ell_e, P, ell_p) self.weight = weight self.alpha = alpha self.ell_e = ell_e self.P = P self.ell_p = ell_p def __call__(self, r): return self.alpha * ((r**2 / (2*self.alpha \ *self.ell_e**2*(r**2/(2*self.alpha*self.ell_e**2)+1)) \ -np.log(r**2/(2*self.alpha*self.ell_e**2)+1)) \ *self.weight**2*exp(-2*sine(pi*np.abs(r)/self.P)**2/self.ell_p**2)) \ /(1+r**2/(2*self.alpha*self.ell_e**2))**self.alpha class dRQP_delle(RQP): """ Log-derivative in order to ell_e """ def __init__(self, weight, alpha, ell_e, P, ell_p): super(dRQP_delle, self).__init__(weight, alpha, ell_e, P, ell_p) self.weight = weight self.alpha = alpha self.ell_e = ell_e self.P = P self.ell_p = ell_p def __call__(self, r): return (r**2*(1+r**2/(2*self.alpha*self.ell_e**2))**(-1-self.alpha) \ *self.weight**2 \ *exp(-2*sine(pi*np.abs(r)/self.P)**2/self.ell_p**2))/self.ell_e**2 class dRQP_dP(RQP): """ Log-derivative in order to P """ def __init__(self, weight, alpha, ell_e, P, ell_p): super(dRQP_dP, self).__init__(weight, alpha, ell_e, P, ell_p) self.weight = weight self.alpha = alpha self.ell_e = ell_e self.P = P self.ell_p = ell_p def __call__(self, r): return (4*pi*r*self.weight**2*cosine(pi*np.abs(r)/self.P)*sine(pi*np.abs(r)/self.P) \ *exp(-2*sine(pi*np.abs(r)/self.P)**2/self.ell_p**2)) \ /(self.ell_p**2*(1+r**2/(2*self.alpha*self.ell_e**2))^self.alpha*self.P) class dRQP_dellp(RQP): """ Log-derivative in order to ell_p """ def __init__(self, weight, alpha, ell_e, P, ell_p): super(dRQP_dellp, self).__init__(weight, alpha, ell_e, P, ell_p) self.weight = weight self.alpha = alpha self.ell_e = ell_e self.P = P self.ell_p = ell_p def __call(self, r): return (4*self.weight**2*sine(pi*np.abs(r)/self.P)**2 \ *exp(-2*sine(pi*np.abs(r)/self.P)**2/self.ell_p**2)) \ /(self.ell_p**2*(1+r**2/(2*self.alpha*self.ell_e**2))**self.alpha) ##### Cosine ################################################################### class Cosine(weightFunction): """ Definition of the cosine kernel. Parameters: weight = weight/amplitude of the kernel P = period """ def __init__(self, weight, P): super(Cosine, self).__init__(weight, P) self.weight = weight self.P = P self.type = 'non-stationary and isotropic' self.derivatives = 2 #number of derivatives in this kernel self.params_size = 2 #number of hyperparameters def __call__(self, r): return self.weight**2 * cosine(2*pi*np.abs(r) / self.P) class dCosine_dweight(Cosine): """ Log-derivative in order to the weight """ def __init__(self, weight, P): super(dCosine_dweight, self).__init__(weight, P) self.weight = weight self.P = P def __call__(self, r): return 2 * self.weight**2 * cosine(2*pi*np.abs(r) / self.P) class dCosine_dP(Cosine): """ Log-derivative in order to P """ def __init__(self, weight, P): super(dCosine_dP, self).__init__(weight, P) self.weight = weight self.P = P def __call__(self, r): return self.weight**2 * r * pi * sine(2*pi*np.abs(r) / self.P) / self.P ##### Laplacian ############################################################## class Laplacian(weightFunction): """ Definition of the Laplacian kernel. Parameters: weight = weight/amplitude of the kernel ell = characteristic lenght scale """ def __init__(self, weight, ell): super(Laplacian, self).__init__(weight, ell) self.weight = weight self.ell = ell self.type = 'stationary and isotropic' self.derivatives = 2 #number of derivatives in this kernel self.params_size = 2 #number of hyperparameters def __call__(self, r): return self.weight**2 * exp(- np.abs(r)/self.ell) class dLaplacian_dweight(Laplacian): """ Log-derivative in order to the weight """ def __init__(self, weight, ell): super(dLaplacian_dweight, self).__init__(weight, ell) self.weight = weight self.ell = ell def __call__(self, r): return 2 * self.weight**2 * exp(- np.abs(r)/self.ell) class dLaplacian_dell(Laplacian): """ Log-derivative in order to ell """ def __init__(self, weight, ell): super(dLaplacian_dell, self).__init__(weight, ell) self.weight = weight self.ell = ell def __call__(self, r): return -0.5 * self.weight**2 * r * exp(- np.abs(r)/self.ell) / self.ell ##### Exponential ############################################################## class Exponential(weightFunction): """ Definition of the exponential kernel. This kernel arises when setting v=1/2 in the matern family of kernels Parameters: weight = weight/amplitude of the kernel ell = characteristic lenght scale """ def __init__(self, weight, ell): super(Exponential, self).__init__(weight, ell) self.weight = weight self.ell = ell self.type = 'stationary and isotropic' self.derivatives = 2 #number of derivatives in this kernel self.params_size = 2 #number of hyperparameters def __call__(self, r): return self.weight**2 * exp(- np.abs(r)/self.ell) class dExponential_dweight(Exponential): """ Log-derivative in order to the weight """ def __init__(self, weight, ell): super(dExponential_dweight, self).__init__(weight, ell) self.weight = weight self.ell = ell def __call__(self, r): raise NotImplementedError class dExpoential_dell(Exponential): """ Log-derivative in order to ell """ def __init__(self, weight, ell): super(dExpoential_dell, self).__init__(weight, ell) self.weight = weight self.ell = ell def __call__(self, r): raise NotImplementedError ##### Matern 3/2 ############################################################### class Matern32(weightFunction): """ Definition of the Matern 3/2 kernel. This kernel arise when setting v=3/2 in the matern family of kernels Parameters: weight = weight/amplitude of the kernel ell = characteristic lenght scale """ def __init__(self, weight, ell): super(Matern32, self).__init__(weight, ell) self.weight = weight self.ell = ell self.type = 'stationary and isotropic' self.derivatives = 2 #number of derivatives in this kernel self.params_size = 2 #number of hyperparameters def __call__(self, r): return self.weight**2 *(1.0 + np.sqrt(3.0)*np.abs(r)/self.ell) \ *np.exp(-np.sqrt(3.0)*np.abs(r) / self.ell) class dMatern32_dweight(Matern32): """ Log-derivative in order to the weight """ def __init__(self, weight, ell): super(dMatern32_dweight, self).__init__(weight, ell) self.weight = weight self.ell = ell def __call__(self, r): return 2 * self.weight**2 *(1.0 + np.sqrt(3.0)*np.abs(r)/self.ell) \ *np.exp(-np.sqrt(3.0)*np.abs(r) / self.ell) class dMatern32_dell(Matern32): """ Log-derivative in order to ell """ def __init__(self, weight, ell): super(dMatern32_dell, self).__init__(weight, ell) self.weight = weight self.ell = ell def __call__(self, r): return (sqrt(3) * r * (1+ (sqrt(3) * r) / self.ell) \ *exp(-(sqrt(3)*r) / self.ell) * self.weight**2) / self.ell \ -(sqrt(3) * r * exp(-(sqrt(3)*r) / self.ell)*self.weight**2)/self.ell #### Matern 5/2 ################################################################ class Matern52(weightFunction): """ Definition of the Matern 5/2 kernel. This kernel arise when setting v=5/2 in the matern family of kernels Parameters: weight = weight/amplitude of the kernel ell = characteristic lenght scale """ def __init__(self, weight, ell): super(Matern52, self).__init__(weight, ell) self.weight = weight self.ell = ell self.type = 'stationary and isotropic' self.derivatives = 2 #number of derivatives in this kernel self.params_size = 2 #number of hyperparameters def __call__(self, r): return self.weight**2 * (1.0 + ( 3*np.sqrt(5)*self.ell*np.abs(r) \ +5*np.abs(r)**2)/(3*self.ell**2) ) \ *exp(-np.sqrt(5.0)*np.abs(r)/self.ell) class dMatern52_dweight(Matern52): """ Log-derivative in order to the weight """ def __init__(self, weight, ell): super(dMatern52_dweight, self).__init__(weight, ell) self.weight = weight self.ell = ell def __call__(self, r): return 2 * self.weight**2 * (1.0 + ( 3*np.sqrt(5)*self.ell*np.abs(r) \ +5*np.abs(r)**2)/(3*self.ell**2) ) \ *exp(-np.sqrt(5.0)*np.abs(r)/self.ell) class dMatern52_dell(Matern52): """ Log-derivative in order to ell """ def __init__(self, weight, ell): super(dMatern52_dell, self).__init__(weight, ell) self.weight = weight self.ell = ell def __call__(self, r): return self.ell * ((sqrt(5)*r*(1+(sqrt(5)*r) \ /self.ell+(5*r**2)/(3*self.ell**2)) \ *exp(-(sqrt(5)*r)/self.ell)*self.weight**2) \ /self.ell**2 +(-(sqrt(5)*r)/self.ell**2-(10*r**2) \ /(3*self.ell**3)) \ *exp(-(sqrt(5)*r)/self.ell)*self.weight**2) #### Linear #################################################################### class Linear(weightFunction): """ Definition of the Linear kernel. weight = weight/amplitude of the kernel c = constant """ def __init__(self, weight, c): super(Linear, self).__init__(weight, c) self.weight = weight self.c = c self.type = 'non-stationary and anisotropic' self.derivatives = 2 #number of derivatives in this kernel self.params_size = 2 #number of hyperparameters def __call__(self, r, t1, t2): return self.weight**2 * (t1 - self.c) * (t2 - self.c) class dLinear_dweight(Linear): """ Log-derivative in order to the weight """ def __init__(self, weight, c): super(dLinear_dweight, self).__init__(weight, c) self.weight = weight self.c = c def __call__(self, r, t1, t2): return 2 * self.weight**2 * (t1 - self.c) * (t2 - self.c) class dLinear_dc(Linear): """ Log-derivative in order to c """ def __init__(self, weight, c): super(dLinear_dc, self).__init__(weight, c) self.weight = weight self.c = c def __call__(self, r, t1, t2): return self.c * (-t1 - t2 + 2*self.c) * self.weight**2 ##### Gamma-exponential ######################################################## class GammaExp(weightFunction): """ Definition of the gamma-exponential kernel weight = weight/amplitude gamma = shape parameter ( 0 < gamma <= 2) ell = lenght scale """ def __init__(self, weight, gamma, ell): super(GammaExp, self).__init__(weight, gamma, ell) self.weight = weight self.gamma = gamma self.ell = ell self.type = 'non-stationary and anisotropic' self.derivatives = 3 #number of derivatives in this kernel self.params_size = 3 #number of hyperparameters def __call__(self, r): return self.weight**2 * exp( -(np.abs(r)/self.ell)**self.gamma) class dGammaExp_dweight(Linear): """ Log-derivative in order to the weight """ def __init__(self, weight, gamma, ell): super(dGammaExp_dweight, self).__init__(weight, gamma, ell) self.weight = weight self.gamma = gamma self.ell = ell def __call__(self, r, t1, t2): return 2 * self.weight**2 * exp( -(np.abs(r)/self.ell)**self.gamma) class dGammaExp_dgamma(GammaExp): """ Log-derivative in order to ell """ def __init__(self, weight, gamma, ell): super(dGammaExp_dgamma, self).__init__(weight, gamma, ell) self.weight = weight self.gamma = gamma self.ell = ell def __call__(self, r): return -self.weight**2 * self.gamma * (np.abs(r)/self.ell)**self.gamma \ *np.log(np.abs(r)/self.ell) * exp(-(np.abs(r)/self.ell)**self.gamma) class dGammaExp_dell(GammaExp): """ Log-derivative in order to gamma """ def __init__(self, weight, gamma, ell): super(dGammaExp_dell, self).__init__(weight, gamma, ell) self.weight = weight self.gamma = gamma self.ell = ell def __call__(self, r): return self.weight**2 * (np.abs(r)/self.ell)**self.gamma \ * self.gamma*exp(-(np.abs(r)/self.ell)**self.gamma) ##### Polinomial ############################################################### class Polynomial(weightFunction): """ Definition of the polinomial kernel weight = weight/amplitude a = real value > 0 b = real value >= 0 c = integer value """ def __init__(self, weight, a, b, c): super(Polynomial, self).__init__(weight, a, b, c) self.weight = weight self.a = a self.b = b self.c = c def __call__(self, r, t1, t2): return self.weight**2 * (self.a * t1 * t2 + self.b)**self.c class dPolynomial_dweight(Polynomial): """ Log-derivative in order to the weight """ def __init__(self, weight, a, b, c): super(dPolynomial_dweight, self).__init__(weight, a, b, c) self.weight = weight self.a = a self.b = b self.c = c def __call__(self, r, t1, t2): return 2 * self.weight**2 * (self.a * t1 * t2 + self.b)**self.c class dPolynomial_da(Polynomial): """ Log-derivative in order to a """ def __init__(self, weight, a, b, c): super(dPolynomial_da, self).__init__(weight, a, b, c) self.weight = weight self.a = a self.b = b self.c = c def __call__(self, r, t1, t2): return self.weight**2 * self.a * self.c * t1 * t2 \ * (self.b + self.a * t1 * t2)**(self.c-1) class dPolynomial_db(Polynomial): """ Log-derivative in order to b """ def __init__(self, weight, a, b, c): super(dPolynomial_db, self).__init__(weight, a, b, c) self.weight = weight self.a = a self.b = b self.c = c def __call__(self, r, t1, t2): return self.weight**2 * self.c * self.b \ * (self.b +self.a * t1 * t2)**(self.c-1) class dPolynomial_dc(Polynomial): """ Log-derivative in order to c """ def __init__(self, weight, a, b, c): super(dPolynomial_dc, self).__init__(weight, a, b, c) self.weight = weight self.a = a self.b = b self.c = c def __call__(self, r, t1, t2): return self.weight**2 * self.c * (self.b + self.a * t1 * t2)**self.c \ * np.log(self.a * t1 * t2 + self.b) ##### END ``` #### File: examples/Sun/priors.py ```python import numpy as np time,rv,rverr,bis,biserr,fwhm,fwhmerr= np.loadtxt("sun50points.txt", skiprows = 1, unpack = True, usecols = (0,1,2,7,8,9,10)) val1, val1err, val2,val2err, val3, val3err = rv, rverr, bis, biserr, fwhm, fwhmerr ##### Setting priors ##### from scipy import stats from loguniform import ModifiedLogUniform stats.loguniform = stats.reciprocal #node function neta1 = stats.loguniform(0.1, 2*val1.ptp()) neta2 = stats.loguniform(np.ediff1d(time).mean(), time.ptp()) neta3 = stats.uniform(10, 50 -10) neta4 = stats.loguniform(0.1, 5) #weight function weta1_1 = stats.loguniform(0.1, 2*val1.ptp()) weta2_1 = stats.loguniform(np.ediff1d(time).mean(), 10*time.ptp()) weta1_2 = stats.loguniform(0.1, 2*val2.ptp()) weta2_2 = stats.loguniform(np.ediff1d(time).mean(), 10*time.ptp()) weta1_3 = stats.loguniform(0.1, 2*val3.ptp()) weta2_3 = stats.loguniform(np.ediff1d(time).mean(), 10*time.ptp()) #Mean function #(1/pi)*(1/(1+slope*slope)) slope1 = stats.norm(0, 1) offset1 = stats.uniform(val1.min(), val1.max() -val1.min()) slope2 = stats.norm(0, 1) offset2 = stats.uniform(val2.min(), val2.max() -val2.min()) slope3 = stats.norm(0, 1) offset3 = stats.uniform(val3.min(), val3.max() -val3.min()) #Jitter jitt1 = ModifiedLogUniform(0.1, 2*val1.ptp()) jitt2 = ModifiedLogUniform(0.1, 2*val2.ptp()) jitt3 = ModifiedLogUniform(0.1, 2*val3.ptp()) def priors(): return np.array([neta1, neta2, neta3, neta4, weta1_1, weta2_1, weta1_2, weta2_2, weta1_3, weta2_3, slope1, offset1, slope2, offset2, slope3, offset3, jitt1, jitt2, jitt3]) ```
{ "source": "jdavidrcamacho/gpyrn", "score": 3 }
#### File: gpyrn/gpyrn/covfunc.py ```python from gpyrn.meanfunc import array_input import numpy as np class covFunction(): """ A base class for covariance functions (kernels) used for nodes and weights in the GPRN. """ def __init__(self, *args): """ Puts all kernel arguments in an array pars """ self.pars = np.array(args, dtype=float) # self.pars[self.pars > 1e50] = 1e50 def __call__(self, r, t1=None, t2=None): """ r = t - t' Not sure if this is a good approach since will make our life harder when defining certain non-stationary kernels, e.g linear kernel. """ raise NotImplementedError def __repr__(self): """ Representation of each kernel instance """ if hasattr(self, '_param_names'): pars = ', '.join( [f'{p}={v}' for p, v in zip(self._param_names, self.pars)]) else: pars = ', '.join(map(str, self.pars)) return f"{self.__class__.__name__}({pars})" def get_parameters(self): return self.pars @array_input def set_parameters(self, p): msg = f'too few parameters for kernel {self.__class__.__name__}' assert len(p) >= self.pars.size, msg if len(p) > self.pars.size: p = list(p) self.pars = np.array(p[:self.pars.size], dtype=float) for _ in range(self.pars.size): p.pop(0) return np.array(p) else: self.pars = p def __add__(self, b): return Sum(self, b) def __radd__(self, b): return self.__add__(b) def __mul__(self, b): return Multiplication(self, b) def __rmul__(self, b): return self.__mul__(b) class _operator(covFunction): """ To allow operations between two kernels """ def __init__(self, k1, k2): self.k1 = k1 self.k2 = k2 self.kerneltype = 'complex' self.pars = np.r_[self.k1.pars, self.k2.pars] class Sum(_operator): """ To allow the sum of kernels """ def __call__(self, r): return self.k1(r) + self.k2(r) def __repr__(self): return "{0} + {1}".format(self.k1, self.k2) class Multiplication(_operator): """ To allow the multiplication of kernels """ def __call__(self, r): return self.k1(r) * self.k2(r) def __repr__(self): return "{0} * {1}".format(self.k1, self.k2) ##### Constant ################################################################# class Constant(covFunction): """ This kernel returns the square of its constant argument c Parameters ---------- c: float Constant """ _param_names = 'c', _tag = 'C' def __init__(self, c): super(Constant, self).__init__(c) def __call__(self, r): c = self.pars[0] return np.full_like(r, c**2) ##### White Noise ############################################################## class WhiteNoise(covFunction): """ Definition of the white noise kernel. Parameters ---------- wn: float White noise amplitude """ _param_names = 'wn', _tag = 'WN' def __init__(self, wn): super(WhiteNoise, self).__init__(wn) def __call__(self, r): wn = self.pars[0] if r.ndim == 2 and r[0, :].shape == r[:, 0].shape: return wn**2 * np.diag(np.diag(np.ones_like(r))) return np.full_like(r, wn**2) ##### Squared exponential ###################################################### class SquaredExponential(covFunction): """ Squared Exponential kernel, also known as radial basis function or RBF kernel in other works. Parameters ---------- theta: float Amplitude ell: float Length-scale """ _param_names = 'theta', 'ell' _tag = 'SE' def __init__(self, theta, ell): super(SquaredExponential, self).__init__(theta, ell) def __call__(self, r): return self.pars[0]**2 * np.exp(-0.5 * r**2 / self.pars[1]**2) ##### Periodic ################################################################# class Periodic(covFunction): """ Definition of the periodic kernel. Parameters ---------- theta: float Amplitude P: float Period lp: float Lenght scale """ _param_names = 'theta', 'P', 'lp' _tag = 'P' def __init__(self, theta, P, lp): super(Periodic, self).__init__(theta, P, lp) def __call__(self, r): θ, P, lp = self.pars return θ**2 * np.exp(-2 * np.sin(np.pi * np.abs(r) / P)**2 / lp**2) ##### Quasi Periodic ########################################################### class QuasiPeriodic(covFunction): """ This kernel is the product between the exponential sine squared kernel and the squared exponential kernel, commonly known as the quasi-periodic kernel Parameters ---------- theta: float Amplitude le: float Evolutionary time scale P: float Kernel periodicity lp: float Length scale of the periodic component """ _param_names = 'theta', 'le', 'P', 'lp' _tag = 'QP' def __init__(self, theta, le, P, lp): super(QuasiPeriodic, self).__init__(theta, le, P, lp) def __call__(self, r): θ, le, P, lp = self.pars return θ**2 * np.exp(-2 * np.sin(np.pi * np.abs(r) / P)**2 / lp**2 - \ r**2 / (2 * le**2)) ##### Rational Quadratic ####################################################### class RationalQuadratic(covFunction): """ Definition of the rational quadratic kernel. Parameters ---------- theta: float Amplitude of the kernel alpha: float Amplitude of large and small scale variations ell: float Characteristic lenght scale to define the kernel "smoothness" """ _param_names = 'theta', 'alpha', 'ell' _tag = 'RQ' def __init__(self, amplitude, alpha, ell): super(RationalQuadratic, self).__init__(theta, alpha, ell) def __call__(self, r): θ, α, ell = self.pars return θ**2 * (1 + 0.5 * r**2 / (α * ell**2))**(-α) ##### RQP kernel ############################################################### class RQP(covFunction): """ Definition of the product between the exponential sine squared kernel and the rational quadratic kernel that we called RQP kernel. If I am thinking this correctly then this kernel should tend to the QuasiPeriodic kernel as alpha increases, although I am not sure if we can say that it tends to the QuasiPeriodic kernel as alpha tends to infinity. Parameters ---------- theta: float Amplitude alpha: float Alpha of the rational quadratic kernel ell_e: float Aperiodic length scale P: float Periodic repetitions of the kernel ell_p: float Periodic length scale """ _param_names = 'theta', 'alpha', 'ell_e', 'ell_p', 'P' _tag = 'RQP' def __init__(self, theta, alpha, ell_e, P, ell_p): super(RQP, self).__init__(theta, alpha, ell_e, P, ell_p) def __call__(self, r): θ, α, ℓe, P, ℓp = self.pars return θ**2 * np.exp(-2 * np.sin(np.pi * np.abs(r) / P)**2 / ℓp**2) * (1 + r**2 / (2 * α * ℓe**2))**(-α) ##### Cosine ################################################################### class COSINE(covFunction): """ Definition of the cosine kernel Parameters ---------- theta: float Amplitude P: float Period """ _param_names = 'theta', 'P' _tag = 'COS' def __init__(self, theta, P): super(COSINE, self).__init__(theta, P) def __call__(self, r): return self.pars[0]**2 * np.cos(2 * np.pi * np.abs(r) / self.pars[1]) ##### Laplacian ############################################################## class Laplacian(covFunction): """ Definition of the Laplacian kernel Parameters ---------- theta: float Amplitude ell: float Characteristic lenght scale """ _param_names = 'theta', 'ell' _tag = 'LAP' def __init__(self, theta, ell): super(Laplacian, self).__init__(theta, ell) def __call__(self, r): return self.pars[0]**2 * np.exp(-np.abs(r) / self.pars[1]) ##### Exponential ############################################################## class Exponential(covFunction): """ Definition of the exponential kernel Parameters ---------- theta: float Amplitude ell: float Characteristic lenght scale """ _param_names = 'theta', 'ell' _tag = 'EXP' def __init__(self, theta, ell): super(Exponential, self).__init__(theta, ell) def __call__(self, r): return self.pars[0]**2 * np.exp(-np.abs(r) / self.pars[1]) ##### Matern 3/2 ############################################################### class Matern32(covFunction): """ Definition of the Matern 3/2 kernel. This kernel arise when setting v=3/2 in the matern family of kernels Parameters ---------- theta: float Amplitude ell: float Characteristic lenght scale """ _param_names = 'theta', 'ell' _tag = 'M32' def __init__(self, theta, ell): super(Matern32, self).__init__(theta, ell) def __call__(self, r): return self.pars[0]**2 * ( 1.0 + np.sqrt(3.0) * np.abs(r) / self.pars[1]) * np.exp( -np.sqrt(3.0) * np.abs(r) / self.pars[1]) #### Matern 5/2 ################################################################ class Matern52(covFunction): """ Definition of the Matern 5/2 kernel. This kernel arise when setting v=5/2 in the matern family of kernels Parameters ---------- theta: float Amplitude ell: float Characteristic lenght scale """ _param_names = 'theta', 'ell' _tag = 'M52' def __init__(self, theta, ell): super(Matern52, self).__init__(theta, ell) def __call__(self, r): return self.pars[0]**2 * ( 1.0 + (3 * np.sqrt(5) * self.pars[1] * np.abs(r) + 5 * np.abs(r)**2) / (3 * self.pars[1]**2)) * np.exp( -np.sqrt(5.0) * np.abs(r) / self.pars[1]) #### Linear #################################################################### class Linear(covFunction): """ Definition of the Linear kernel Parameters ---------- theta: float Amplitude (should we even have an amplitude???) c: float Constant """ def __init__(self, theta, c): super(Linear, self).__init__(theta, c) self.tag = 'LIN' self.theta = theta self.c = c def __call__(self, r, t1, t2): return (t1 - self.pars[1]) * (t2 - self.pars[1]) ##### Gamma-exponential ######################################################## class GammaExp(covFunction): """ Definition of the gamma-exponential kernel Parameters ---------- theta: float Amplitude gamma: float Shape parameter ( 0 < gamma <= 2) l: float Lenght scale Returns ------- """ def __init__(self, theta, gamma, l): super(GammaExp, self).__init__(theta, gamma, l) self.tag = 'GammaExp' self.theta = theta self.gamma = gamma self.l = l def __call__(self, r): return self.pars[0]**2 *np.exp(-(np.abs(r)/self.pars[2])**self.pars[1]) ##### Polynomial ############################################################### class Polynomial(covFunction): """ Definition of the polynomial kernel Parameters ---------- theta: float Amplitude ??? a: float Real value > 0 b: foat Real value >= 0 c: int Integer value wn: float White noise amplitude Returns ------- """ def __init__(self, theta, a, b, c): super(Polynomial, self).__init__(theta, a, b, c) self.tag = 'POLY' self.theta = theta self.a = a self.b = b self.c = c def __call__(self, r, t1, t2): return (self.pars[1] * t1 * t2 + self.pars[2])**self.pars[3] ##### Piecewise ################################################################ class Piecewise(covFunction): """ WARNING: EXPERIMENTAL KERNEL Parameters ---------- """ def __init__(self, eta): super(Piecewise, self).__init__(eta) self.eta = eta self.type = 'unknown' def __call__(self, r): r = r/(0.5*self.pars[0]) piecewise = (3*np.abs(r) +1) * (1 - np.abs(r))**3 piecewise = np.where(np.abs(r)>1, 0, piecewise) return piecewise ### END ```
{ "source": "jdavidrcamacho/mini-frame", "score": 3 }
#### File: mini-frame/miniframe/kernels_autograd.py ```python import autograd.numpy as np from autograd import elementwise_grad as egrad class kernel(object): """ Definition the base kernel class """ is_kernel = True def __init__(self, *args): """ Puts all kernel arguments in an array pars """ self.pars = np.array(args) def __call__(self, r): """ r = t - t' """ raise NotImplementedError def __add__(self, b): if not hasattr(b, "is_kernel"): return Sum(Constant(c=float(b)), self) return Sum(self, b) def __radd__(self, b): return self.__add__(b) def __mul__(self, b): if not hasattr(b, "is_kernel"): return Product(Constant(c=float(b)), self) return Product(self, b) def __rmul__(self, b): return self.__mul__(b) def __repr__(self): """ Representation of each kernel instance """ return "{0}({1})".format(self.__class__.__name__, ", ".join(map(str, self.pars))) class _operator(kernel): """ To allow operations between two kernels """ def __init__(self, k1, k2): self.k1 = k1 self.k2 = k2 @property def pars(self): return np.append(self.k1.pars, self.k2.pars) class Sum(_operator): """ Sum of two kernels """ def __repr__(self): return "{0} + {1}".format(self.k1, self.k2) def __call__(self, r): return self.k1(r) + self.k2(r) class Product(_operator): """ Product of two kernels """ def __repr__(self): return "{0} * {1}".format(self.k1, self.k2) def __call__(self, r): return self.k1(r) * self.k2(r) class Constant(kernel): """ This kernel returns its constant argument c """ def __init__(self, c): super(Constant, self).__init__(c) self.c = c def __call__(self, r): return self.c * np.ones_like(r) return0 = lambda self, r: np.zeros_like(r) d_t1 = return0 d_t2 = return0 dd_t = return0 ddd_t1 = return0 ddd_t2 = return0 dddd_t = return0 class SquaredExponential(kernel): """ Squared Exponential kernel, also known as radial basis function (RBF kernel) in other works. Parameters: ell = length-scale, lambda in the paper """ def __init__(self, ell): super(SquaredExponential, self).__init__(ell) self.ell = ell def __call__(self, r): return np.exp( -0.5 * (r**2)/(self.ell**2) ) def d_t1(self, r): """ derivative with respect to t1 (or t, or ti in the paper) """ return egrad(self.__call__)(r) def _d_t1_check(self, r): """ hand-coded derivative to check """ f1 = r f2 = self.ell**2 return -f1/f2 *np.exp(-0.5*f1*f1/f2) def d_t2(self, r): """ derivative with respect to t2 (or t', or tj in the paper) """ return -egrad(self.__call__)(r) def _d_t2_check(self, r): """ hand-coded derivative to check """ f1 = r f2 = self.ell**2 return f1/f2 *np.exp(-0.5*f1*f1/f2) # now comes the magic... def dd_t(self, r): """ second derivative with respect to t1 and t2 """ # same as ddSE_dt2dt1 return egrad(self.d_t2)(r) def ddd_t1(self, r): """ third derivative with respect to t1 """ # same as dddSE_dt2ddt1 return egrad(self.dd_t)(r) def ddd_t2(self, r): """ third derivative with respect to t2 """ # same as dddSE_ddt2dt1 return -egrad(self.dd_t)(r) def dddd_t(self, r): """ fourth derivative with respect to t1 and t2 """ # same as ddddSE_ddt2ddt1 return egrad(self.ddd_t2)(r) class QuasiPeriodic(kernel): """ This kernel is the product between the exponential sine squared kernel and the squared exponential kernel. It is known as the quasi-periodic kernel. Equation 27 in the paper. Parameters: ell_p = length scale of the periodic component ell_e = evolutionary time scale period """ def __init__(self, ell_p, ell_e, period): super(QuasiPeriodic, self).__init__(ell_p, ell_e, period) self.ell_p = ell_p self.ell_e = ell_e self.period = period def __call__(self, r): s = np.sin(np.pi*r/self.period)**2 return np.exp( - 2*s/(self.ell_p**2) - (r*r)/(2*self.ell_e**2)) def d_t1(self, r): """ derivative with respect to t1 (or t, or ti in the paper) """ # same as dQP_dt1 return egrad(self.__call__)(r) def d_t2(self, r): """ derivative with respect to t2 (or t', or tj in the paper) """ # same as dQP_dt2 return -egrad(self.__call__)(r) def dd_t(self, r): """ second derivative with respect to t1 and t2 """ # same as ddQP_dt2dt1 return egrad(self.d_t2)(r) def ddd_t1(self, r): """ third derivative with respect to t1 """ # same as dddQP_dt2ddt1 return egrad(self.dd_t)(r) def ddd_t2(self, r): """ third derivative with respect to t2 """ # same as dddQP_ddt2dt1 return -egrad(self.dd_t)(r) def dddd_t(self, r): """ fourth derivative with respect to t1 and t2 """ # same as ddddQP_ddt2ddt1 return egrad(self.ddd_t2)(r) ```
{ "source": "jdavidrcamacho/PyTank", "score": 3 }
#### File: PyTank/pytank/classes.py ```python import pygame import numpy as np class bgColor(object): def __init__(self, color): self.background = color class tank(object): def __init__(self, x, y, size, screen): self.xinit, self.yinit, self.screen = x, y, screen self.tankRADIUS = size self.tankGUN = 2*size self.tankTRACK = size self.tankCOLOR = pygame.Color('black') self.xfinit, self.yfinit = x+size, y+size def showTank(self, showCOLOR = False, angle=False): if showCOLOR: pass else: showCOLOR = self.tankCOLOR pygame.draw.circle(self.screen, showCOLOR, (self.xinit, self.yinit), self.tankRADIUS) pygame.draw.line(self.screen, showCOLOR, [self.xinit, self.yinit], [self.xinit+self.tankGUN, self.yinit], 5) pygame.draw.line(self.screen, showCOLOR, [self.xinit-self.tankRADIUS-1, self.yinit-self.tankRADIUS-1], [self.xinit+self.tankRADIUS-1, self.yinit-self.tankRADIUS-1], 10) pygame.draw.line(self.screen, showCOLOR, [self.xinit+self.tankRADIUS-1, self.yinit+self.tankRADIUS-1], [self.xinit-self.tankRADIUS-1, self.yinit+self.tankRADIUS-1], 10) if angle: pass # self.yinit = int(self.yinit+angle) # pygame.draw.line(self.screen, showCOLOR, # [self.xinit, self.yinit], # # [self.xinit+self.tankGUN, # self.yinit], 5) def updateTank(self, bgCOLOR, pressed = False, mouse = False): if pressed: self.showTank(bgCOLOR) if pressed == 100: self.xinit = self.xinit+5 if pressed == 97: self.xinit = self.xinit-5 self.showTank(self.tankCOLOR, self.xinit) if mouse: self.showTank(bgCOLOR) angle = np.tanh((self.yinit-mouse)/(self.xinit+self.tankRADIUS)) angle = angle*180/np.pi self.showTank(self.tankCOLOR, angle) else: self.showTank(bgCOLOR) self.showTank(self.tankCOLOR) ```
{ "source": "jdavidrcamacho/SWEET-Cat", "score": 4 }
#### File: jdavidrcamacho/SWEET-Cat/newline_clear.py ```python import argparse def _parse(): """ Calculate the surface gravity from M and R """ p = argparse.ArgumentParser(description = 'Remove new line from last line of file.') p.add_argument('filein', help = 'file to edit last line', type = str) return p.parse_args() def remove_newline_last_line(filein): """ Remove new line from last line of file """ f = open(filein, 'r') d = f.read() f.close() d = d[:-1] open(filein, 'w').write(d) return def main(): args = _parse() remove_newline_last_line(args.filein) if __name__ == '__main__': main() ``` #### File: jdavidrcamacho/SWEET-Cat/ParallaxSpec.py ```python import numpy as np def bolcor(teff): """ Calculate the bolometric correction, given the temperature """ lteff = np.log10(teff) bcflow=np.nan if lteff < 3.7: bcflow = -0.190537291496456e+05 + 0.155144866764412e+05 * lteff -\ 0.421278819301717e+04 * (lteff * lteff) +\ 0.381476328422343e+03 * (lteff*lteff*lteff) if lteff >= 3.7 and lteff < 3.9: bcflow = -0.370510203809015e+05 + 0.385672629965804e+05 * lteff -\ 0.150651486316025e+05 * (lteff * lteff) +\ 0.261724637119416e+04 * (lteff*lteff*lteff) -\ 0.170623810323864e+03 * (lteff * lteff * lteff * lteff) else: bcflow = -0.118115450538963e+06 + 0.137145973583929e+06 * lteff -\ 0.636233812100225e+05 * (lteff * lteff) +\ 0.147412923562646e+05 * (lteff * lteff * lteff) -\ 0.170587278406872e+04 * (lteff * lteff * lteff * lteff) +\ 0.788731721804990e+02 * (lteff * lteff * lteff * lteff * lteff) return bcflow def parallax(teff,eteff, logg,elogg,vmag,evmag, mass,emass, Av,eAv): """ Calculate the parallax, given the mass Santos 2004 """ if eteff=='NULL' or elogg=='NULL' or evmag=='NULL' or emass=='NULL' or eAv=='NULL': bcflow = bolcor(teff) return 10.**((logg - 4.44 - np.log(mass)/np.log(10.) - 4.*np.log(teff) / np.log(10.) + \ 4.*np.log(5777.)/np.log(10.) - 0.4*(vmag + bcflow-Av) - 0.11) * 0.5) * 1000, np.nan ntrials = 10000 randomteff = float(teff) + float(eteff)*np.random.randn(ntrials) randomlogg = float(logg) + float(elogg)*np.random.randn(ntrials) randommass = abs(mass + emass*np.random.randn(ntrials)) randomvmag = float(vmag) + float(evmag)*np.random.randn(ntrials) randomAv = Av + eAv*np.random.randn(ntrials) par=[] for i in range(ntrials): bcflow = bolcor(randomteff[i]) par.append(10.**((randomlogg[i] - 4.44 - np.log(randommass[i])/np.log(10.) \ - 4.*np.log(randomteff[i]) / np.log(10.) + 4.*np.log(5777.)/np.log(10.) - 0.4*\ (randomvmag[i] + bcflow-randomAv[i]) - 0.11) * 0.5) * 1000) sig=np.sqrt(np.sum((par - np.mean(par))**2) / (ntrials - 1)) return np.mean(par),sig ```
{ "source": "j-davies-astro/tangos", "score": 2 }
#### File: tangos/core/creator.py ```python from __future__ import absolute_import from __future__ import print_function from sqlalchemy import Column, Integer, DateTime, Text from sqlalchemy.orm import Session from sqlalchemy import event from . import Base, get_default_session _current_creator = None class Creator(Base): __tablename__ = 'creators' id = Column(Integer, primary_key=True) command_line = Column(Text) dtime = Column(DateTime) host = Column(Text) username = Column(Text) cwd = Column(Text) def __repr__(self): return "<Creator " + self.username + " on " + self.host + " @ " + self.dtime.strftime("%d/%m/%y %H:%M") + " via " + self.command_line.split(" ")[0].split("/")[-1] + ">" def __init__(self, argv=None): import socket import getpass import datetime import os if argv == None: import sys argv = sys.argv self.command_line = " ".join(argv) self.host = socket.gethostname() self.username = getpass.getuser() self.dtime = datetime.datetime.now() self.cwd = os.getcwd() def print_info(self): run = self print("*" * 60) print("Run ID = ", self.id) print("Command line = ", self.command_line) print("Host = ", self.host) print("Username = ", self.username) print("Time = ", self.dtime.strftime("%d/%m/%y %H:%M")) if len(run.simulations) > 0: print(">>> ", len(run.simulations), "simulations") if run.timesteps.count() > 0: print(">>> ", (run.timesteps).count(), "timesteps") if run.halos.count() > 0: print(">>> ", run.halos.count(), "halos") if run.halolinks.count() > 0: print(">>> ", run.halolinks.count(), "halolinks") if run.properties.count() > 0: print(">>> ", run.properties.count(), "halo properties") if run.simproperties.count() > 0: print(">>> ", run.simproperties.count(), "simulation properties") def get_creator(session=None): """Get a Creator object for this process, for the specified session. If session is None, return the object for the default session.""" global _current_creator _ensure_current_creator_is_valid() if session is None: session = get_default_session() if session is get_default_session(): return _current_creator else: return session.query(Creator).filter_by(id=_current_creator.id).first() def _ensure_current_creator_is_valid(): from sqlalchemy import inspect global _current_creator default_session = get_default_session() if _current_creator is None: _current_creator = Creator() default_session.add(_current_creator) default_session.commit() else: current_creator_session = Session.object_session(_current_creator) if current_creator_session is not default_session: if not inspect(_current_creator).persistent: current_creator_session.commit() with default_session.no_autoflush: _current_creator = default_session.query(Creator).filter_by(id=_current_creator.id).first() assert inspect(_current_creator).persistent def get_creator_id(): return get_creator().id def set_creator(creator): """Set the Creator object to be used in all writes during the lifetime of the current process. A Creator object is normally constructed automatically, but this function allows all future writes to be associated with a different Creator. This is mainly used by MPI runs to give the illusion that all data was written by one process.""" global _current_creator _current_creator = creator ``` #### File: tangos/core/dictionary.py ```python from __future__ import absolute_import import sqlalchemy, sqlalchemy.exc from sqlalchemy import Column, Integer, String from . import Base, get_default_session _dict_id = {} # maps dictionary text -> database ID _dict_obj = {} # maps session, dictionary text -> database object class DictionaryItem(Base): __tablename__ = 'dictionary' id = Column(Integer, primary_key=True) text = Column(String(128), unique=True) def __repr__(self): return "<DictionaryItem " + self.text + ">" def __init__(self, text): self.text = text def providing_class(self, handler): from .. import properties return properties.providing_class(self.text, handler) raise_exception = object() def get_dict_id(text, default=raise_exception, session=None, allow_query=True): """Get a DictionaryItem id for text (possibly cached). Raises KeyError if no dictionary object exists for the specified text, unless a default is provided in which case the default value is returned instead.""" from . import Session if session is None: session = Session() _dict_id = _get_dict_cache_for_session(get_default_session()) close_session=True else: _dict_id = _get_dict_cache_for_session(session) close_session=False try: return _dict_id[text] except KeyError: if allow_query: try: obj = session.query(DictionaryItem).filter_by(text=text).first() except: if default is raise_exception: raise else: return default finally: if close_session: session.close() else: obj = None if obj is None: if default is raise_exception: raise else: return default _dict_id[text] = obj.id return obj.id def get_or_create_dictionary_item(session, name): """This tries to get the DictionaryItem corresponding to name from the database. If it doesn't exist, it creates a pending object. Note that this must be called *while the database is locked under the specified session* to prevent duplicate items being created""" if session not in _dict_obj: _dict_obj[session] = {} # try to get it from the cache obj = _dict_obj[session].get(name, None) if obj is not None: return obj # try to get it from the db obj = session.query(DictionaryItem).filter_by(text=name).first() if obj is None: # try to create it try: obj = DictionaryItem(name) session.add(obj) #session.commit() except sqlalchemy.exc.IntegrityError: session.rollback() obj = session.query(DictionaryItem).filter_by(text=name).first() if obj is None: raise # can't get it from the DB, can't create it from the DB... who knows... _dict_obj[session][name] = obj return obj def _get_dict_cache_for_session(session): session_dict = _dict_id.get(session, None) if session_dict is None: session_dict = {} for dict_item in session.query(DictionaryItem): session_dict[dict_item.text] = dict_item.id _dict_id[session] = session_dict return session_dict def get_lexicon(session): """Get a list of all strings known in the dictionary table""" dict_cache = _get_dict_cache_for_session(session) return dict_cache.keys() ``` #### File: tangos/core/halo.py ```python from __future__ import absolute_import import weakref import numpy as np from sqlalchemy import Column, Integer, ForeignKey, orm, types from sqlalchemy.orm import relationship, backref, Session from sqlalchemy.ext.declarative import declared_attr from . import extraction_patterns from . import Base from . import creator from .dictionary import get_dict_id, get_or_create_dictionary_item from .timestep import TimeStep import six class UnsignedInteger(types.TypeDecorator): """Stores an unsigned int64 as a signed int64""" impl = types.Integer cache_ok = True def process_bind_param(self, value, dialect): return np.uint64(value).astype(np.int64) def process_result_value(self, value, dialect): if value is not None: if type(value) is bytes: return np.frombuffer(value, dtype=np.uint64)[0] else: return np.int64(value).astype(np.uint64) else: return None class SimulationObjectBase(Base): __tablename__= "halos" id = Column(Integer, primary_key=True) #the unique ID value of the database object created for this halo halo_number = Column(Integer) #by default this will be the halo's rank in terms of particle count finder_id = Column(UnsignedInteger) #raw halo ID from the halo catalog finder_offset = Column(Integer) #index of halo within halo catalog, primary identifier used when reading catalog/simulation data timestep_id = Column(Integer, ForeignKey('timesteps.id')) timestep = relationship(TimeStep, backref=backref( 'objects', order_by=halo_number, cascade_backrefs=False, lazy='dynamic'), cascade='') NDM = Column(Integer) NStar = Column(Integer) NGas = Column(Integer) creator = relationship(creator.Creator, backref=backref( 'halos', cascade_backrefs=False, lazy='dynamic'), cascade='save-update') creator_id = Column(Integer, ForeignKey('creators.id')) object_typecode = Column(Integer, nullable=False, name='halo_type') # name for backwards compatibility tag = "abstract_base_class_for_halos_etc" # tag will be halo, bh, tracker etc. Don't use the base class! __mapper_args__ = { 'polymorphic_identity':-1, 'polymorphic_on':object_typecode } @classmethod def _all_subclasses(cls): for c in cls.__subclasses__(): yield c for c_sub in c._all_subclasses(): yield c_sub @staticmethod def class_from_tag(match_tag): match_tag = match_tag.lower() for c in SimulationObjectBase._all_subclasses(): if match_tag == c.tag.lower(): return c raise ValueError("Unknown object type %r"%match_tag) @staticmethod def object_typecode_from_tag(match_tag): if isinstance(match_tag, six.string_types): return SimulationObjectBase.class_from_tag(match_tag).__mapper_args__['polymorphic_identity'] else: return match_tag @staticmethod def object_typetag_from_code(typecode): for c in SimulationObjectBase._all_subclasses(): if c.__mapper_args__['polymorphic_identity'] == typecode: return c.tag raise ValueError("Unknown object typecode %d",typecode) def __init__(self, timestep, halo_number, finder_id, finder_offset, NDM, NStar, NGas, object_typecode=None): self.timestep = timestep self.halo_number = int(halo_number) self.finder_id = int(finder_id) self.finder_offset = int(finder_offset) self.NDM = int(NDM) self.NStar = int(NStar) self.NGas = int(NGas) if object_typecode is not None: self.object_typecode = int(object_typecode) self.init_on_load() self.creator = creator.get_creator(Session.object_session(timestep)) @orm.reconstructor def init_on_load(self): self._dict_is_complete = False self._d = {} def __repr__(self): return "<%s %r | NDM=%d Nstar=%d Ngas=%d>"%(self.__class__.__name__, self.path, self.NDM, self. NStar, self.NGas) @property def basename(self): return self.tag+"_"+str(self.halo_number) @property def path(self): return self.timestep.path+"/"+self.basename @property def handler(self): if not hasattr(self, "_handler"): self._handler = self.timestep.simulation.get_output_handler() return self._handler @property def handler_class(self): if not hasattr(self, "_handler_class"): self._handler_class = self.timestep.simulation.output_handler_class return self._handler_class def load(self, mode=None): """Load the data for this halo, if it is present on this computer's filesystem. :param mode: the load mode to pass to the relevant input handler. For example with the pynbody input handler this can be None or 'partial' (in a normal session) and, when running inside an MPI session, 'server' or 'server-partial'. See https://pynbody.github.io/tangos/mpi.html. """ halo_number = self.halo_number if not hasattr(self, "finder_id"): finder_id = self.halo_number # backward compatibility else: finder_id = self.finder_id if not hasattr(self, "finder_offset"): finder_offset = finder_id else: finder_offset = self.finder_offset return self.handler.load_object(self.timestep.extension, finder_id, finder_offset, object_typetag=self.tag, mode=mode) def calculate(self, calculation, return_description=False): """Use the live-calculation system to calculate a user-specified function of the stored data. See the data exploration tutorials at https://pynbody.github.io/tangos/data_exploration.html for an introduction to the system. :param calculation: the calculation (or a string representation of it to be parsed) :param return_description: if True, return both the value and the PropertyCalculation class describing it. :returns: The result of the calculation, or a tuple containing the result and the description if return_description is True. """ from .. import live_calculation calculation = live_calculation.parser.parse_property_name_if_required(calculation) (value,), description = calculation.values_sanitized_and_description([self], Session.object_session(self)) if len(value)==1: retval = value[0] else: retval = value if return_description: return retval, description else: return retval def __getitem__(self, key): """Highest-level method for retrieving data or link""" return self.get_data(key) def get(self, key, default=None): """Highest-level method for retrieving data or link, with default return value if no data is found under the specified key""" try: return self.get_data(key) except KeyError: return default def get_data(self, key, raw=False, always_return_array=False): """High-level data access to the property or linked halo named by key. :param key: string with the name of the property or link :param raw: if True, get the raw data rather than attempt to reassemble the data into a science-ready form :param always_return_array: if True, always return the data as a list of values, even if there is only one stored property with the specified name """ if raw: getters=[extraction_patterns.HaloPropertyRawValueGetter()] else: getters=[extraction_patterns.HaloPropertyValueGetter()] getters+=[extraction_patterns.HaloLinkTargetGetter()] return_data = self.get_objects(key, getters) if (not always_return_array) and len(return_data) == 1: return_data = return_data[0] return return_data def get_objects(self, key, getters=None): """Get objects belonging to this halo named by the specified key. Compared to get_data, this allows access to the underlying HaloProperty or HaloLink objects, or to perform custom processing of the data by specifying particular extraction patterns to getters. For more information, see halo_data_extraction_patterns.""" if getters is None: getters = [extraction_patterns.HaloPropertyGetter(), extraction_patterns.HaloLinkGetter()] from . import Session session = Session.object_session(self) key_id = get_dict_id(key, session=session) ret_values = [] for g in getters: ret_values += g.get(self, key_id, session) if len(ret_values) == 0: raise KeyError("No such property %r" % key) return ret_values def get_description(self, key, getters=None): """Get a description of a named property or link, in the form of an object capable of calculating it. This can be helpful to extract meta-data such as the size of an image or steps of an array.""" if getters is None: getters = [extraction_patterns.HaloPropertyGetter(), extraction_patterns.HaloLinkGetter()] object = self.get_objects(key, getters)[0] return object.description def __setitem__(self, key, obj): if isinstance(obj, SimulationObjectBase): self._setitem_one_halo(key, obj) elif hasattr(obj, '__len__') and all([isinstance(x,SimulationObjectBase) for x in obj]): self._setitem_multiple_halos(key, obj) else: self._setitem_property(key, obj) def _setitem_property(self, key, obj): from . import Session from .halo_data import HaloProperty session = Session.object_session(self) key = get_or_create_dictionary_item(session, key) X = self.properties.filter_by(name_id=key.id).first() if X is not None: X.data = obj X.creator = creator.get_creator(session) else: X = HaloProperty(self, key, obj) X.creator = creator.get_creator(session) session.add(X) session.commit() def _setitem_one_halo(self, key, obj): from . import Session, HaloLink session = Session.object_session(self) key = get_or_create_dictionary_item(session, key) X = self.links.filter_by(halo_from_id=self.id, relation_id=key.id).first() if X is None: X = HaloLink(self, obj, key) X.creator = creator.get_creator(session) session.add(X) else: X.halo_to = obj X.creator = creator.get_creator(session) session.commit() def _setitem_multiple_halos(self, key, obj): from . import Session from .halo_data import HaloLink session = Session.object_session(self) key = get_or_create_dictionary_item(session, key) self.links.filter_by(halo_from_id=self.id, relation_id=key.id).delete() links = [HaloLink(self, halo_to, key) for halo_to in obj] session.add_all(links) session.commit() def keys(self, getters = None): if getters is None: getters = [extraction_patterns.HaloPropertyGetter(), extraction_patterns.HaloLinkGetter()] from . import Session names = [] session = Session.object_session(self) for g in getters: names+=g.keys(self, session) return names def __contains__(self, item): return item in list(self.keys()) @property def earliest(self): if not hasattr(self, '_earliest'): from .. import relation_finding strategy = relation_finding.MultiHopMajorProgenitorsStrategy(self,order_by=['time_asc'],include_startpoint=True) self._earliest=strategy.first() return self._earliest @property def latest(self): if not hasattr(self, '_latest'): from .. import relation_finding strategy = relation_finding.MultiHopMajorDescendantsStrategy(self,order_by=['time_desc'],include_startpoint=True) self._latest=strategy.first() return self._latest def plot(self, name, *args, **kwargs): from . import Session name_id = get_dict_id(name, Session.object_session(self)) data = self.properties.filter_by(name_id=name_id).first() return data.plot(*args, **kwargs) def calculate_for_descendants(self, *plist, **kwargs): """Run the specified calculations on this halo and its descendants Each argument is a string (or an instance of live_calculation.Calculation), following the syntax described in live_calculation.md. *kwargs*: :param nmax: The maximum number of descendants to consider (default 1000) :param strategy: The class to use to find the descendants (default relation_finding.MultiHopMajorDescendantsStrategy) """ from .. import live_calculation from .. import relation_finding from .. import temporary_halolist as thl from . import Session from .. import query as db_query nmax = kwargs.get('nmax',1000) strategy = kwargs.get('strategy', relation_finding.MultiHopMajorDescendantsStrategy) strategy_kwargs = kwargs.get('strategy_kwargs', {}) if isinstance(plist[0], live_calculation.Calculation): property_description = plist[0] else: property_description = live_calculation.parser.parse_property_names(*plist) # must be performed in its own session as we intentionally load in a lot of # objects with incomplete lazy-loaded properties session = Session() try: with strategy(db_query.get_halo(self.id, session), nhops_max=nmax, include_startpoint=True, **strategy_kwargs).temp_table() as tt: raw_query = thl.halo_query(tt) query = property_description.supplement_halo_query(raw_query) results = query.all() return property_description.values_sanitized(results, Session.object_session(self)) finally: session.close() def calculate_for_progenitors(self, *plist, **kwargs): """Run the specified calculations on the progenitors of this halo For more information see calculate_for_descendants. """ from .. import relation_finding kwargs['strategy'] = relation_finding.MultiHopMajorProgenitorsStrategy return self.calculate_for_descendants(*plist, **kwargs) def reverse_property_cascade(self, *args, **kwargs): """The old alias for calculate_for_progenitors, retained for compatibility""" return self.calculate_for_progenitors(*args, **kwargs) def property_cascade(self, *args, **kwargs): """The old alias for calculate_for_descendants, retained for compatibility""" return self.calculate_for_descendants(*args, **kwargs) @property def next(self): if not hasattr(self, '_next'): from .. import relation_finding strategy = relation_finding.HopMajorDescendantStrategy(self) self._next=strategy.first() return self._next @property def previous(self): if not hasattr(self, '_previous'): from .. import relation_finding strategy = relation_finding.HopMajorProgenitorStrategy(self) self._previous=strategy.first() return self._previous def short(self): return "<Halo " + str(self.halo_number) + " of ...>" class Halo(SimulationObjectBase): __mapper_args__ = { 'polymorphic_identity': 0 } tag = "halo" class Tracker(SimulationObjectBase): __mapper_args__ = { 'polymorphic_identity':3 } tag = "tracker" def __init__(self, timestep, halo_number): super(Tracker, self).__init__(timestep, halo_number, halo_number, halo_number, 0,0,0, self.__mapper_args__['polymorphic_identity']) @property def tracker(self): return self.timestep.simulation.trackers.filter_by(halo_number=self.halo_number).first() def load(self, mode=None): handler = self.timestep.simulation.get_output_handler() return handler.load_tracked_region(self.timestep.extension, self.tracker, mode=mode) class BH(Tracker): __mapper_args__ = { 'polymorphic_identity': 1 } tag = "BH" class Group(SimulationObjectBase): __mapper_args__ = { 'polymorphic_identity':2 } tag = "group" def __init__(self, *args): super(Group, self).__init__(*args) self.object_typecode = 2 class PhantomHalo(SimulationObjectBase): __mapper_args__ = { 'polymorphic_identity': 4 } tag = "phantom" def __init__(self, timestep, halo_number, finder_id): super(PhantomHalo, self).__init__(timestep, halo_number, finder_id, finder_id, 0,0,0, self.__mapper_args__['polymorphic_identity']) TimeStep.halos = orm.relationship(Halo, lazy='dynamic',viewonly=True, order_by=SimulationObjectBase.halo_number) TimeStep.trackers = orm.relationship(Tracker,lazy='dynamic',viewonly=True, order_by=Tracker.halo_number) TimeStep.bhs = orm.relationship(BH, lazy='dynamic',viewonly=True, order_by=BH.halo_number) TimeStep.groups = orm.relationship(Group, lazy='dynamic',viewonly=True, order_by=Group.halo_number) TimeStep.phantoms = orm.relationship(PhantomHalo, lazy='dynamic',viewonly=True, order_by=PhantomHalo.halo_number) ``` #### File: tangos/relation_finding/multi_source.py ```python from __future__ import absolute_import from .. import core from ..util import consistent_collection from .multi_hop import MultiHopStrategy from .one_hop import HopStrategy from six.moves import range from six.moves import zip import sqlalchemy from sqlalchemy import orm class MultiSourceMultiHopStrategy(MultiHopStrategy): """A variant of MultiHopStrategy that finds halos corresponding to multiple start points. Note that the behaviour is necessarily somewhat different to the other classes which start from a single halo. Specifically, a target *must* be specified, and the direction of the hops to follow is inferred from the nature of the target. Additionally, as soon as any halo is "matched" in the target, the entire query is stopped. In other words, this class assumes that the number of hops is the same to reach all target halos.""" def __init__(self, halos_from, target, **kwargs): """Construct a strategy for finding Halos via multiple "hops" along HaloLinks from multiple start-points :param halos_from: a list of all halos to start from. :param target: a TimeStep or Simulation object to target. :param one_match_per_input: if True (default), return one halo per starting point in order. The returned halo in each case should be the one with the highest weight link (i.e. the major progenitor or similar) if False, *all* linked halos are returned and the caller has to figure out which one belongs to which starting halo, e.g. by calling sources() Other parameters are passed onto an underlying MultiHopStrategy. However note that the order_by parameter has no effect unless one_match_per_input is False. """ directed = kwargs.get("directed", self._infer_direction(halos_from, target)) kwargs["directed"] = directed kwargs["target"] = target self._return_only_highest_weights = kwargs.pop('one_match_per_input', True) # For 'backwards' or 'forwards' searches (basically major progenitors or descendants), keep only the # strongest link at each _step_ rather than waiting to the end to select the highest weight. # This makes sure one never "hops" from one branch to another (see # test_hop_strategy.test_major_progenitor_from_minor_progenitor for an example that exposes # this former bug). The actual implementation of the per-step restriction is in the override to # _supplement_halolink_query_with_filter, below. self._keep_only_highest_weights_per_hop = (directed == "forwards" or directed == "backwards") self._keep_only_highest_weights_per_hop&=self._return_only_highest_weights | (target is None) super(MultiSourceMultiHopStrategy, self).__init__(halos_from[0], **kwargs) self._all_halo_from = halos_from def _infer_direction(self, halos_from, target): if isinstance(target, core.simulation.Simulation): return "across" elif isinstance(target, core.timestep.TimeStep): collected_halos = consistent_collection.ConsistentCollection(halos_from) if collected_halos.timestep.simulation_id!=target.simulation_id: return "across" elif collected_halos.timestep.time_gyr<target.time_gyr: return "forwards" else: return "backwards" def _seed_temp_table(self): insert_dictionaries = [] for i,halo_from in enumerate(self._all_halo_from): insert_dictionaries.append({'halo_from_id': halo_from.id, 'halo_to_id': halo_from.id, 'weight': 1.0, 'nhops': 0, 'source_id': i}) self._connection.execute(self._table.insert(), insert_dictionaries) def _generate_next_level_prelim_links(self, from_nhops=0): if self._should_halt(): return 0 else: return super(MultiSourceMultiHopStrategy, self)._generate_next_level_prelim_links(from_nhops) def _supplement_halolink_query_with_filter(self, query, table=None): query = super(MultiSourceMultiHopStrategy, self)._supplement_halolink_query_with_filter(query,table) if self._keep_only_highest_weights_per_hop: query = self._extract_max_weight_rows_from_query(query, table) return query def _extract_max_weight_rows_from_query(self, query, table): from ..util.sql_argmax import argmax return argmax(query, table.c.weight, [table.c.halo_from_id, table.c.source_id]) def _should_halt(self): # should halt if there are some results available. We can tell this with the parent classes's # _generate_query. (Our own _generate_query always returns one result per source_id.) return super()._generate_query(True).count()>0 def _order_by_clause(self, halo_alias, timestep_alias): if self._return_only_highest_weights: return [] # _return_only_highest weights is already ordered else: return [self._link_orm_class.source_id] \ + super()._order_by_clause(halo_alias, timestep_alias) def all(self): results = self._get_query_all() if self._return_only_highest_weights: # query results include a source_id column which we now wish to ignore (see # _query_ordered below for more information) return [x[1].halo_to if x[1] is not None else None for x in results] else: return [x.halo_to for x in results] def sources(self): """Returns the offset in the original list that generated each result returned by all(). For example, if the class is constructed for two halos, but the results have two results for the first halo, sources() will return [0,0,1].""" results = self._get_query_all() if self._return_only_highest_weights: return [x[0] for x in results] else: return [x.source_id for x in results] def _generate_query(self, halo_ids_only): if self._return_only_highest_weights: # need to find the highest weight result for each source_id subquery = self._extract_max_weight_rows_from_query(super()._generate_query(halo_ids_only=False), self._table).subquery() # we now need to restructure the results such that they appear in the same order as the input # halo list, and a NULL result is returned for 'missing' halos. This way, the result is # guaranteed to be in 1-1 correspondence with the input. # # We do this by joining to the initial seeds in the temp table subquery_orm_alias = orm.aliased(self._link_orm_class, subquery) source_ids = orm.aliased(self._link_orm_class) if halo_ids_only: # if going straight into a temptable, we only want to see the halo_to_id query = self.session.query(subquery_orm_alias.halo_to_id).select_from(source_ids) else: # if going back to SQLAlchemy ORM, we explicitly include the source_id, otherwise the sqlalchemy dedup # process removes duplicates rows (e.g. if there are several null results, only the # first will be returned!) resulting in a query result that is too short and unrecoverable # errors in functions that rely on getting back a 1-1 mapping query = self.session.query(source_ids.source_id,subquery_orm_alias).\ select_from(source_ids) query = query.filter(source_ids.nhops==0).order_by(source_ids.source_id) query = query.outerjoin(subquery_orm_alias, source_ids.source_id==subquery_orm_alias.source_id) if not halo_ids_only: query = query.options(orm.joinedload(subquery_orm_alias.halo_to)) else: query = super()._generate_query(halo_ids_only) return query class MultiSourceAllMajorProgenitorsStrategy(MultiSourceMultiHopStrategy): def __init__(self, halos_from, **kwargs): super().__init__(halos_from, None, one_match_per_input=False, directed='backwards', include_startpoint=True) def _should_halt(self): return False class MultiSourceAllMajorDescendantsStrategy(MultiSourceMultiHopStrategy): def __init__(self, halos_from, **kwargs): super().__init__(halos_from, None, one_match_per_input=False, directed='forwards', include_startpoint=True) def _should_halt(self): return False ``` #### File: tangos/relation_finding/one_hop.py ```python from __future__ import absolute_import import sqlalchemy import sqlalchemy.exc import sqlalchemy.orm import sqlalchemy.orm.dynamic import sqlalchemy.orm.query from sqlalchemy.orm import Session, contains_eager from .. import core, temporary_halolist class HopStrategy(object): """HopStrategy and its descendants define methods helpful for finding related halos, e.g. progenitors/descendants, or corresponding halos in other simulation runs""" def __init__(self, halo_from, target=None, order_by=None): """Construct a HopStrategy starting from the specified halo""" assert isinstance(halo_from, core.halo.SimulationObjectBase) self.session = Session.object_session(halo_from) self.halo_from = halo_from self._initialise_order_by(order_by) self._link_orm_class = core.halo_data.HaloLink self._target = target self._all = None def _target_timestep(self, query, ts): """Only return those hops which reach the specified timestep""" if ts is None: query = query.filter(0 == 1) else: query = query.join(self._link_orm_class.halo_to).filter(core.halo.SimulationObjectBase.timestep_id == ts.id) return query def _target_simulation(self, query, sim): """Only return those hops which reach the specified simulation""" query = query.join(self._link_orm_class.halo_to).join(core.SimulationObjectBase.timestep).filter( core.timestep.TimeStep.simulation_id == sim.id) return query def _filter_query_for_target(self, query, db_obj): """Only return those hops which reach the specifid simulation or timestep""" if db_obj is None: return query elif isinstance(db_obj, core.timestep.TimeStep): return self._target_timestep(query, db_obj) elif isinstance(db_obj, core.simulation.Simulation): return self._target_simulation(query, db_obj) else: raise ValueError("Unknown target type") def _initialise_order_by(self, names): """Specify an ordering for the output hop suggestions. Accepted names are: - 'weight' - the weight of the link, ascending (default). In the case of MultiHopStrategy, this is the product of the weights along the path found. - 'time_asc' - the time of the snapshot, ascending order - 'time_desc' - the time of the snapshot, descending order - 'halo_number_asc' - the halo number, ascending - 'halo_number_desc' - the halo number, descending - 'nhops' - the number of hops taken to reach the halo (MultiHopStrategy only) Multiple names can be given to order by more than one property. """ if names is None: names = ['weight'] elif isinstance(names, str): names = [names] self._order_by_names = [x.lower() for x in names] def count(self): """Return the number of hops matching the conditions""" return len(self._get_query_all()) def _execute_query(self): try: query = self._filter_query_for_target(self.halo_from.links, self._target) results = self._order_query(query).all() except sqlalchemy.exc.ResourceClosedError: results = [] results = [x for x in results if x is not None] self._all = results def _get_query_all(self): if self._all is None: self._execute_query() return self._all def temp_table(self): # N.B. this could be made more efficient ids_list = [x.id if hasattr(x,'id') else None for x in self.all() ] return temporary_halolist.temporary_halolist_table(self.session, ids_list) def all(self): """Return all possible hops matching the conditions""" return [x.halo_to for x in self._get_query_all()] def weights(self): """Return the weights for the possible hops""" return [x.weight for x in self._get_query_all()] def all_and_weights(self): """Return all possible hops matching the conditions, along with the weights""" all = self._get_query_all() weights = [x.weight for x in all] halos = [x.halo_to for x in all] return halos, weights def first(self): """Return the suggested hop.""" link = self._get_query_all() if len(link) == 0: return None else: return link[0].halo_to def _order_by_clause(self, halo_alias, timestep_alias): return [self._generate_order_arg_from_name(name, halo_alias, timestep_alias) for name in self._order_by_names] def _generate_order_arg_from_name(self, name, halo_alias, timestep_alias): if name == 'weight': return self._link_orm_class.weight.desc() elif name == 'time_asc': return timestep_alias.time_gyr elif name == 'time_desc': return timestep_alias.time_gyr.desc() elif name == 'halo_number_asc': return halo_alias.halo_number elif name == 'halo_number_desc': return halo_alias.halo_number.desc() else: raise ValueError("Unknown ordering method %r" % name) def _ordering_requires_join(self): return 'time_asc' in self._order_by_names \ or 'time_desc' in self._order_by_names \ or 'halo_number_asc' in self._order_by_names \ or 'halo_number_desc' in self._order_by_names def _order_query(self, query): assert isinstance(query, sqlalchemy.orm.query.Query) timestep_alias = None halo_alias = None if self._ordering_requires_join(): timestep_alias = sqlalchemy.orm.aliased(core.timestep.TimeStep) halo_alias = sqlalchemy.orm.aliased(core.halo.SimulationObjectBase) query = query.join(halo_alias, self._link_orm_class.halo_to_id == halo_alias.id)\ .join(timestep_alias)\ .options( contains_eager(self._link_orm_class.halo_to.of_type(halo_alias))\ .contains_eager(halo_alias.timestep.of_type(timestep_alias)) ) query = query.order_by(*self._order_by_clause(halo_alias, timestep_alias)) return query class HopMajorDescendantStrategy(HopStrategy): """A hop strategy that suggests the major descendant for a halo""" def __init__(self, halo_from): target_ts = halo_from.timestep.next if target_ts: super(HopMajorDescendantStrategy, self).__init__(halo_from, target=target_ts) else: self._all = [] class HopMajorProgenitorStrategy(HopStrategy): """A hop strategy that suggests the major progenitor for a halo""" def __init__(self, halo_from): target_ts = halo_from.timestep.previous if target_ts: super(HopMajorProgenitorStrategy, self).__init__(halo_from, target=target_ts) else: self._all = [] ``` #### File: tangos/scripts/__init__.py ```python from . import manager, writer, timelink, crosslink from .. import parallel_tasks import tangos.tools import sys import os def add_generic_tool(subparse, class_, command, help): this_subparser = subparse.add_parser(command, help=help) class_.add_parser_arguments(this_subparser) def run(options): obj = class_() obj.process_options(options) parallel_tasks.launch(obj.run_calculation_loop, 2, []) this_subparser.set_defaults(func=run) def add_serve_tool(subparse): def serve(options): from pkg_resources import load_entry_point ini_file = options.config if os.path.exists(ini_file): ini_path = ini_file else: ini_path = os.path.join(__path__[0],"web",ini_file) sys.argv = ["",ini_path] sys.exit( load_entry_point('pyramid','console_scripts','pserve')() ) web_subparser = subparse.add_parser("serve", help="Start a web server (shortcut to Pyramid's pserve)") web_subparser.add_argument('config', action='store', nargs="?", help="The name of the pserve configuration file; either a path or production.ini/development.ini to use tangos' suggested configurations", default="production.ini") web_subparser.set_defaults(func=serve) def add_commands(subparse): tangos.tools.GenericTangosTool.add_tools(subparse) add_serve_tool(subparse) def main(argv=None): parser, subparse = manager.get_argument_parser_and_subparsers() add_commands(subparse) args = parser.parse_args(argv) from .. import core core.process_options(args) args.func(args) ``` #### File: tangos/tests/test_blocking_session.py ```python from __future__ import absolute_import from __future__ import print_function from nose.tools import assert_raises import tangos as db import tangos.blocking import tangos.core.halo import tangos.core.simulation import tangos.core.timestep import tangos.parallel_tasks as pt from tangos import log, testing import time import os import sqlalchemy.exc import contextlib import tangos from tangos.config import testing_db_backend from nose.plugins.skip import SkipTest def setup(): pt.use("multiprocessing") testing.init_blank_db_for_testing(timeout=0.1, verbose=False) session = db.core.get_default_session() sim = tangos.core.simulation.Simulation("sim") session.add(sim) ts1 = tangos.core.timestep.TimeStep(sim, "ts1") session.add(ts1) halo_1 = tangos.core.halo.Halo(ts1, 1, 1, 1, 0, 0, 0, 0) session.add_all([halo_1]) session.commit() def teardown(): tangos.core.close_db() try: os.remove("test.db") except OSError: pass def _multiprocess_block(): session = db.core.get_default_session() ts = tangos.get_timestep("sim/ts1") tangos.core.creator.get_creator(session) # this stops a warning being issued if the creator object is created during creation of Halo new_halo = tangos.core.halo.Halo(ts, 5, 5, 5, 0, 0, 0, 0) session.add(new_halo) session.flush() time.sleep(1.0) session.commit() def _multiprocess_test(): session = db.core.get_default_session() time.sleep(0.5) ts = tangos.get_timestep("sim/ts1") tangos.core.creator.get_creator(session) # this stops a warning being issued if the creator object is created during creation of Halo new_halo = tangos.core.halo.Halo(ts, 6, 6, 6, 0, 0, 0, 0) session.add(new_halo) session.commit() def _perform_test(use_blocking=True): if pt.backend.rank()==1: db.init_db("sqlite:///test_dbs/test_blocking_session.db", timeout=0.1, verbose=False) pt.barrier() else: pt.barrier() db.init_db("sqlite:///test_dbs/test_blocking_session.db", timeout=0.1, verbose=False) if use_blocking: db.blocking.make_engine_blocking() if pt.backend.rank()==1: _multiprocess_block() elif pt.backend.rank()==2: _multiprocess_test() @contextlib.contextmanager def _suppress_exception_report(): import tangos.parallel_tasks.backends.multiprocessing as backend backend._print_exceptions = False # to prevent confusing error appearing in stdout yield backend._print_exceptions = True def test_non_blocking_exception(): if testing_db_backend != "sqlite": raise SkipTest("This test is only relevant for sqlite databases") with _suppress_exception_report(): with assert_raises(sqlalchemy.exc.OperationalError): with log.LogCapturer(): pt.launch(_perform_test,3, (False,)) db.core.get_default_session().rollback() def test_blocking_avoids_exception(): if testing_db_backend != "sqlite": raise SkipTest("This test is only relevant for sqlite databases") assert tangos.get_halo("sim/ts1/6") is None db.core.get_default_session().commit() with log.LogCapturer(): pt.launch(_perform_test,3, (True,)) assert tangos.get_halo("sim/ts1/6") is not None ``` #### File: tangos/tests/test_db_writer.py ```python from __future__ import absolute_import import tangos as db import tangos.config import os from tangos.tools import add_simulation from tangos.tools import property_writer from tangos.input_handlers import output_testing from tangos import parallel_tasks, log, testing from tangos import properties from tangos.util import proxy_object from numpy import testing as npt from nose import with_setup def setup_func(): parallel_tasks.use('null') testing.init_blank_db_for_testing() db.config.base = os.path.join(os.path.dirname(__file__), "test_simulations") manager = add_simulation.SimulationAdderUpdater(output_testing.TestInputHandler("dummy_sim_1")) with log.LogCapturer(): manager.scan_simulation_and_add_all_descendants() def teardown_func(): db.core.close_db() class DummyProperty(properties.PropertyCalculation): names = "dummy_property", requires_particle_data = True def requires_property(self): return [] def calculate(self, data, entry): return data.time*data.halo, class DummyProperty2(properties.PropertyCalculation): """Used by test_property_deleter""" names = "another_dummy_property", requires_particle_data = True def requires_property(self): return [] def calculate(self, data, entry): return data.time*data.halo+1, class DummyPropertyCausingException(properties.PropertyCalculation): names = "dummy_property_with_exception", requires_particle_data = True def calculate(self, data, entry): raise RuntimeError("Test of exception handling") class DummyPropertyWithReconstruction(properties.PropertyCalculation): names = "dummy_property_with_reconstruction", requries_particle_data = False callback = None def calculate(self, data, entry): return 1.0, def reassemble(self, property_name): if self.callback: self.callback() # hook to allow us to know reassemble has been called return 2.0 class DummyPropertyAccessingSimulationProperty(properties.PropertyCalculation): names = "dummy_property_accessing_simulation_property", requires_particle_data = False def preloop(self, sim_data, db_timestep): self._num_queries = 0 def calculate(self, data, entry): with tangos.testing.SqlExecutionTracker() as ctr: result = self.get_simulation_property("dummy_sim_property", None) assert result == '42' self._num_queries += ctr.count_statements_containing("simulationproperties") assert self._num_queries<=1 # don't want to see simulationproperties queried more than once check_null_result = object() result2 = self.get_simulation_property("nonexistent_sim_property",check_null_result) assert result2 is check_null_result # store the value 1 to indicate that everything above passed (assertion errors will be # caught by the db_writer so wouldn't directly result in a failure) return 1, def run_writer_with_args(*args): stored_log = log.LogCapturer() writer = property_writer.PropertyWriter() writer.parse_command_line(args) with stored_log: writer.run_calculation_loop() return stored_log.get_output() @with_setup(setup_func, teardown_func) def test_basic_writing(): run_writer_with_args("dummy_property") _assert_properties_as_expected() @with_setup(setup_func, teardown_func) def test_parallel_writing(): parallel_tasks.use('multiprocessing') try: parallel_tasks.launch(run_writer_with_args, 3, ["dummy_property"]) finally: parallel_tasks.use('null') _assert_properties_as_expected() def _assert_properties_as_expected(): assert db.get_halo("dummy_sim_1/step.1/1")['dummy_property'] == 1.0 assert db.get_halo("dummy_sim_1/step.1/2")['dummy_property'] == 2.0 assert db.get_halo("dummy_sim_1/step.2/1")['dummy_property'] == 2.0 @with_setup(setup_func, teardown_func) def test_error_ignoring(): log = run_writer_with_args("dummy_property", "dummy_property_with_exception") assert "Uncaught exception during property calculation" in log assert db.get_halo("dummy_sim_1/step.1/1")['dummy_property'] == 1.0 assert db.get_halo("dummy_sim_1/step.1/2")['dummy_property'] == 2.0 assert db.get_halo("dummy_sim_1/step.2/1")['dummy_property'] == 2.0 assert 'dummy_property' in list(db.get_halo("dummy_sim_1/step.1/1").keys()) assert 'dummy_property_with_exception' not in list(db.get_halo("dummy_sim_1/step.1/1").keys()) class DummyRegionProperty(properties.PropertyCalculation): names = "dummy_region_property", def requires_property(self): return "dummy_property", def region_specification(self, db_data): assert 'dummy_property' in db_data return slice(1,5) def calculate(self, data, entry): assert data.message=="Test string"[1:5] return 100.0, @with_setup(setup_func, teardown_func) def test_region_property(): run_writer_with_args("dummy_property","dummy_region_property") _assert_properties_as_expected() assert db.get_halo("dummy_sim_1/step.2/1")['dummy_region_property']==100.0 @with_setup(setup_func, teardown_func) def test_no_duplication(): run_writer_with_args("dummy_property") assert db.get_default_session().query(db.core.HaloProperty).count()==15 run_writer_with_args("dummy_property") # should not create duplicates assert db.get_default_session().query(db.core.HaloProperty).count() == 15 run_writer_with_args("dummy_property", "--force") # should create duplicates assert db.get_default_session().query(db.core.HaloProperty).count() == 30 class DummyLink(DummyProperty): names = "dummy_link" def calculate(self, data, entry): return proxy_object.IncompleteProxyObjectFromFinderId(1,'halo') class DummyPropertyRequiringLink(DummyProperty): names = "dummy_property_requiring_link", def requires_property(self): return ["dummy_link"] @with_setup(setup_func, teardown_func) def test_link_property(): run_writer_with_args("dummy_link") assert db.get_default_session().query(db.core.HaloLink).count() == 15 db.testing.assert_halolists_equal([db.get_halo(2)['dummy_link']], [db.get_halo(1)]) @with_setup(setup_func, teardown_func) def test_link_dependency(): run_writer_with_args("dummy_property_requiring_link") assert db.get_default_session().query(db.core.HaloProperty).count() == 0 run_writer_with_args("dummy_link") run_writer_with_args("dummy_property_requiring_link") assert db.get_default_session().query(db.core.HaloProperty).count() == 15 @with_setup(setup_func, teardown_func) def test_writer_sees_raw_properties(): # regression test for issue #121 run_writer_with_args("dummy_property_with_reconstruction") assert db.get_halo(2)['dummy_property_with_reconstruction']==2.0 assert db.get_halo(2).calculate('raw(dummy_property_with_reconstruction)')==1.0 def raise_exception(obj): raise RuntimeError("reconstruct has been called") DummyPropertyWithReconstruction.callback = raise_exception run_writer_with_args("dummy_property_with_reconstruction") # should not try to reconstruct the existing data stream @with_setup(setup_func, teardown_func) def test_writer_handles_sim_properties(): """Test for issue where simulation properties could be queried from within a calculation. This could lead to unexpected database locks. Tangos 1.3 provides a safe route to doing this. The test ensures that the results are cached to prevent hammering the database However it does not directly test that the parallel_tasks locking mechanism is called, which is hard. Ideally this test would therefore be completed at some point...""" parallel_tasks.use('multiprocessing') try: parallel_tasks.launch(run_writer_with_args, 3, ["dummy_property_accessing_simulation_property"]) finally: parallel_tasks.use('null') for i in range(1,3): ts = db.get_timestep("dummy_sim_1/step.%d"%i) x, = ts.calculate_all("dummy_property_accessing_simulation_property") npt.assert_equal(x,[1]*ts.halos.count()) ``` #### File: tangos/tests/test_halo_setitem.py ```python from __future__ import absolute_import import tangos as db import tangos.testing import tangos from six.moves import range import numpy as np import tangos.testing.simulation_generator def setup(): tangos.testing.init_blank_db_for_testing() generator = tangos.testing.simulation_generator.TestSimulationGenerator() for i in range(3): generator.add_timestep() generator.add_objects_to_timestep(3) def teardown(): tangos.core.close_db() def test_setitem(): tangos.get_halo("sim/ts1/1")['bla'] = 23 db.core.get_default_session().commit() assert tangos.get_halo("sim/ts1/1")['bla'] == 23 def test_set_another_item(): tangos.get_halo("sim/ts1/2")['bla'] = 42 db.core.get_default_session().commit() assert tangos.get_halo("sim/ts1/2")['bla'] == 42 def test_update_item(): assert tangos.get_halo("sim/ts1/1")['bla'] == 23 tangos.get_halo("sim/ts1/1")['bla'] = 96 db.core.get_default_session().commit() assert tangos.get_halo("sim/ts1/1")['bla'] == 96 def test_set_large_item(): "Test inserting arrays with size up to a few MiB" for length in [2**i for i in range(8, 20)]: value = np.random.rand(length) tangos.get_halo("sim/ts1/2")['this_is_large'] = value db.core.get_default_session().commit() np.testing.assert_array_equal( tangos.get_halo("sim/ts1/2")['this_is_large'], value ) ``` #### File: tangos/tests/test_yt.py ```python from __future__ import absolute_import import tangos as db import tangos.input_handlers.yt as yt_outputs import tangos.tools.add_simulation as add from tangos import config from tangos import log, testing import os import numpy.testing as npt import tangos def setup(): global output_manager testing.init_blank_db_for_testing() db.config.base = os.path.join(os.path.dirname(__file__), "test_simulations") output_manager = yt_outputs.YtChangaAHFInputHandler("test_tipsy_yt") add.SimulationAdderUpdater(output_manager).scan_simulation_and_add_all_descendants() def teardown(): tangos.core.close_db() def test_handler(): assert isinstance(db.get_simulation("test_tipsy_yt").get_output_handler(), yt_outputs.YtChangaAHFInputHandler) def test_timestep(): ts = db.get_timestep("test_tipsy_yt/tiny.000640") npt.assert_allclose(ts.time_gyr, 2.173594670375) npt.assert_allclose(ts.redshift, 2.96382819878) def test_halos(): ts = db.get_timestep("test_tipsy_yt/tiny.000640") assert ts.halos.count()==9 def test_load(): yt_obj = db.get_halo("test_tipsy_yt/tiny.000640/halo_2").load() import yt.data_objects.data_containers assert isinstance(yt_obj, yt.data_objects.data_containers.YTDataContainer) ```
{ "source": "jdavies-st/asdf-transform-schemas", "score": 2 }
#### File: asdf-transform-schemas/tests/test_extension.py ```python from asdf.extension import default_extensions, AsdfExtensionList from asdf import generic_io import yaml from asdf_transform_schemas.extension import AsdfTransformSchemasExtension def test_extension_registered(): assert any( isinstance(e, AsdfTransformSchemasExtension) for e in default_extensions.extensions ) def test_resolver(): extension_list = AsdfExtensionList([AsdfTransformSchemasExtension()]) schema_id = "http://asdf-format.org/schemas/transform/add-2.0.0" url = extension_list.resolver(schema_id) with generic_io.get_file(url) as f: schema = yaml.safe_load(f.read()) assert schema["id"] == schema_id ```
{ "source": "jdavies-st/glue-jupyter", "score": 2 }
#### File: bqplot/image/viewer.py ```python import bqplot from glue.viewers.image.state import ImageViewerState from glue.viewers.image.composite_array import CompositeArray from ...link import on_change from ..common.viewer import BqplotBaseView from ..scatter.layer_artist import BqplotScatterLayerArtist from .layer_artist import BqplotImageLayerArtist, BqplotImageSubsetLayerArtist from .frb_mark import FRBImage from glue_jupyter.common.state_widgets.layer_scatter import ScatterLayerStateWidget from glue_jupyter.common.state_widgets.layer_image import (ImageLayerStateWidget, ImageSubsetLayerStateWidget) from glue_jupyter.common.state_widgets.viewer_image import ImageViewerStateWidget __all__ = ['BqplotImageView'] class BqplotImageView(BqplotBaseView): allow_duplicate_data = False allow_duplicate_subset = False large_data_size = 2e7 _layer_style_widget_cls = {BqplotImageLayerArtist: ImageLayerStateWidget, BqplotImageSubsetLayerArtist: ImageSubsetLayerStateWidget, BqplotScatterLayerArtist: ScatterLayerStateWidget} _state_cls = ImageViewerState _options_cls = ImageViewerStateWidget tools = ['bqplot:panzoom', 'bqplot:rectangle', 'bqplot:circle'] def __init__(self, session): super(BqplotImageView, self).__init__(session) on_change([(self.state, 'aspect')])(self._sync_figure_aspect) self._sync_figure_aspect() self._composite = CompositeArray() self._composite_image = FRBImage(self, self._composite) self.figure.marks = list(self.figure.marks) + [self._composite_image] self.state.add_callback('reference_data', self._reset_limits) self.state.add_callback('x_att', self._reset_limits) self.state.add_callback('y_att', self._reset_limits) def _reset_limits(self, *args): self.state.reset_limits() def _sync_figure_aspect(self): with self.figure.hold_trait_notifications(): if self.state.aspect == 'equal': self.figure.max_aspect_ratio = 1 self.figure.min_aspect_ratio = 1 else: self.figure.min_aspect_ratio = bqplot.Figure.min_aspect_ratio.default_value self.figure.max_aspect_ratio = bqplot.Figure.max_aspect_ratio.default_value def get_data_layer_artist(self, layer=None, layer_state=None): if layer.ndim == 1: cls = BqplotScatterLayerArtist else: cls = BqplotImageLayerArtist return self.get_layer_artist(cls, layer=layer, layer_state=layer_state) def get_subset_layer_artist(self, layer=None, layer_state=None): if layer.ndim == 1: cls = BqplotScatterLayerArtist else: cls = BqplotImageSubsetLayerArtist return self.get_layer_artist(cls, layer=layer, layer_state=layer_state) ```
{ "source": "jdavies-st/gwcs", "score": 2 }
#### File: gwcs/gwcs/api.py ```python from astropy.wcs.wcsapi import BaseHighLevelWCS, BaseLowLevelWCS from astropy.modeling import separable import astropy.units as u from . import utils from . import coordinate_frames as cf __all__ = ["GWCSAPIMixin"] class GWCSAPIMixin(BaseHighLevelWCS, BaseLowLevelWCS): """ A mix-in class that is intended to be inherited by the :class:`~gwcs.wcs.WCS` class and provides the low- and high-level WCS API described in the astropy APE 14 (https://doi.org/10.5281/zenodo.1188875). """ # Low Level APE 14 API @property def pixel_n_dim(self): """ The number of axes in the pixel coordinate system. """ if self.input_frame is None: return self.forward_transform.n_inputs return self.input_frame.naxes @property def world_n_dim(self): """ The number of axes in the world coordinate system. """ if self.output_frame is None: return self.forward_transform.n_outputs return self.output_frame.naxes @property def world_axis_physical_types(self): """ An iterable of strings describing the physical type for each world axis. These should be names from the VO UCD1+ controlled Vocabulary (http://www.ivoa.net/documents/latest/UCDlist.html). If no matching UCD type exists, this can instead be ``"custom:xxx"``, where ``xxx`` is an arbitrary string. Alternatively, if the physical type is unknown/undefined, an element can be `None`. """ # A CompositeFrame orders the output correctly based on axes_order. if isinstance(self.output_frame, cf.CompositeFrame): return self.output_frame.axis_physical_types # If we don't have a CompositeFrame, where this is taken care of for us, # we need to make sure we re-order the output to match the transform. # The underlying frames don't reorder themselves because axes_order is global. return tuple(self.output_frame.axis_physical_types[i] for i in self.output_frame.axes_order) @property def world_axis_units(self): """ An iterable of strings given the units of the world coordinates for each axis. The strings should follow the `IVOA VOUnit standard <http://ivoa.net/documents/VOUnits/>`_ (though as noted in the VOUnit specification document, units that do not follow this standard are still allowed, but just not recommended). """ return tuple(unit.to_string(format='vounit') for unit in self.output_frame.unit) def _remove_quantity_output(self, result, frame): if self.forward_transform.uses_quantity: if self.output_frame.naxes == 1: result = [result] result = tuple(r.to_value(unit) for r, unit in zip(result, frame.unit)) # If we only have one output axes, we shouldn't return a tuple. if self.output_frame.naxes == 1 and isinstance(result, tuple): return result[0] return result def _add_units_input(self, arrays, transform, frame): if transform.uses_quantity: return tuple(u.Quantity(array, unit) for array, unit in zip(arrays, frame.unit)) return arrays def pixel_to_world_values(self, *pixel_arrays): """ Convert pixel coordinates to world coordinates. This method takes ``pixel_n_dim`` scalars or arrays as input, and pixel coordinates should be zero-based. Returns ``world_n_dim`` scalars or arrays in units given by ``world_axis_units``. Note that pixel coordinates are assumed to be 0 at the center of the first pixel in each dimension. If a pixel is in a region where the WCS is not defined, NaN can be returned. The coordinates should be specified in the ``(x, y)`` order, where for an image, ``x`` is the horizontal coordinate and ``y`` is the vertical coordinate. """ pixel_arrays = self._add_units_input(pixel_arrays, self.forward_transform, self.input_frame) result = self(*pixel_arrays, with_units=False) return self._remove_quantity_output(result, self.output_frame) def array_index_to_world_values(self, *index_arrays): """ Convert array indices to world coordinates. This is the same as `~BaseLowLevelWCS.pixel_to_world_values` except that the indices should be given in ``(i, j)`` order, where for an image ``i`` is the row and ``j`` is the column (i.e. the opposite order to `~BaseLowLevelWCS.pixel_to_world_values`). """ index_arrays = self._add_units_input(index_arrays[::-1], self.forward_transform, self.input_frame) result = self(*index_arrays, with_units=False) return self._remove_quantity_output(result, self.output_frame) def world_to_pixel_values(self, *world_arrays): """ Convert world coordinates to pixel coordinates. This method takes ``world_n_dim`` scalars or arrays as input in units given by ``world_axis_units``. Returns ``pixel_n_dim`` scalars or arrays. Note that pixel coordinates are assumed to be 0 at the center of the first pixel in each dimension. If a world coordinate does not have a matching pixel coordinate, NaN can be returned. The coordinates should be returned in the ``(x, y)`` order, where for an image, ``x`` is the horizontal coordinate and ``y`` is the vertical coordinate. """ world_arrays = self._add_units_input(world_arrays, self.backward_transform, self.output_frame) result = self.invert(*world_arrays, with_units=False) return self._remove_quantity_output(result, self.input_frame) def world_to_array_index_values(self, *world_arrays): """ Convert world coordinates to array indices. This is the same as `~BaseLowLevelWCS.world_to_pixel_values` except that the indices should be returned in ``(i, j)`` order, where for an image ``i`` is the row and ``j`` is the column (i.e. the opposite order to `~BaseLowLevelWCS.pixel_to_world_values`). The indices should be returned as rounded integers. """ world_arrays = self._add_units_input(world_arrays, self.backward_transform, self.output_frame) result = self.invert(*world_arrays, with_units=False) if self.pixel_n_dim != 1: result = result[::-1] return self._remove_quantity_output(result, self.input_frame) @property def array_shape(self): """ The shape of the data that the WCS applies to as a tuple of length `~BaseLowLevelWCS.pixel_n_dim`. If the WCS is valid in the context of a dataset with a particular shape, then this property can be used to store the shape of the data. This can be used for example if implementing slicing of WCS objects. This is an optional property, and it should return `None` if a shape is not known or relevant. The shape should be given in ``(row, column)`` order (the convention for arrays in Python). """ return self._array_shape @array_shape.setter def array_shape(self, value): self._array_shape = value @property def pixel_bounds(self): """ The bounds (in pixel coordinates) inside which the WCS is defined, as a list with `~BaseLowLevelWCS.pixel_n_dim` ``(min, max)`` tuples. The bounds should be given in ``[(xmin, xmax), (ymin, ymax)]`` order. WCS solutions are sometimes only guaranteed to be accurate within a certain range of pixel values, for example when defining a WCS that includes fitted distortions. This is an optional property, and it should return `None` if a shape is not known or relevant. """ bounding_box = self.bounding_box if bounding_box is None: return bounding_box if self.pixel_n_dim == 1 and len(bounding_box) == 2: bounding_box = (bounding_box,) # Iterate over the bounding box and convert from quantity if required. bounding_box = list(bounding_box) for i, bb_axes in enumerate(bounding_box): bb = [] for lim in bb_axes: if isinstance(lim, u.Quantity): lim = lim.value bb.append(lim) bounding_box[i] = tuple(bb) return tuple(bounding_box) @property def pixel_shape(self): """ The shape of the data that the WCS applies to as a tuple of length ``pixel_n_dim`` in ``(x, y)`` order (where for an image, ``x`` is the horizontal coordinate and ``y`` is the vertical coordinate) (optional). If the WCS is valid in the context of a dataset with a particular shape, then this property can be used to store the shape of the data. This can be used for example if implementing slicing of WCS objects. This is an optional property, and it should return `None` if a shape is neither known nor relevant. """ return self._pixel_shape @pixel_shape.setter def pixel_shape(self, value): if value is None: self._pixel_shape = None return wcs_naxes = self.input_frame.naxes if len(value) != wcs_naxes: raise ValueError("The number of data axes, " "{}, does not equal the " "shape {}.".format(wcs_naxes, len(value))) self._pixel_shape = tuple(value) @property def axis_correlation_matrix(self): """ Returns an (`~BaseLowLevelWCS.world_n_dim`, `~BaseLowLevelWCS.pixel_n_dim`) matrix that indicates using booleans whether a given world coordinate depends on a given pixel coordinate. This defaults to a matrix where all elements are `True` in the absence of any further information. For completely independent axes, the diagonal would be `True` and all other entries `False`. """ return separable.separability_matrix(self.forward_transform) @property def serialized_classes(self): """ Indicates whether Python objects are given in serialized form or as actual Python objects. """ return False @property def world_axis_object_classes(self): return self.output_frame._world_axis_object_classes @property def world_axis_object_components(self): return self.output_frame._world_axis_object_components # High level APE 14 API @property def low_level_wcs(self): """ Returns a reference to the underlying low-level WCS object. """ return self def _sanitize_pixel_inputs(self, *pixel_arrays): pixels = [] if self.forward_transform.uses_quantity: for i, pixel in enumerate(pixel_arrays): if not isinstance(pixel, u.Quantity): pixel = u.Quantity(value=pixel, unit=self.input_frame.unit[i]) pixels.append(pixel) else: for i, pixel in enumerate(pixel_arrays): if isinstance(pixel, u.Quantity): if pixel.unit != self.input_frame.unit[i]: raise ValueError('Quantity input does not match the ' 'input_frame unit.') pixel = pixel.value pixels.append(pixel) return pixels def pixel_to_world(self, *pixel_arrays): """ Convert pixel values to world coordinates. """ pixels = self._sanitize_pixel_inputs(*pixel_arrays) return self(*pixels, with_units=True) def array_index_to_world(self, *index_arrays): """ Convert array indices to world coordinates (represented by Astropy objects). """ pixel_arrays = index_arrays[::-1] pixels = self._sanitize_pixel_inputs(*pixel_arrays) return self(*pixels, with_units=True) def world_to_pixel(self, *world_objects): """ Convert world coordinates to pixel values. """ result = self.invert(*world_objects, with_units=True) if not utils.isnumerical(result[0]): result = [i.value for i in result] if self.input_frame.naxes == 1: return result[0] return result def world_to_array_index(self, *world_objects): """ Convert world coordinates (represented by Astropy objects) to array indices. """ result = self.invert(*world_objects, with_units=True)[::-1] return tuple([utils._toindex(r) for r in result]) @property def pixel_axis_names(self): """ An iterable of strings describing the name for each pixel axis. """ if self.input_frame is not None: return self.input_frame.axes_names return tuple([''] * self.pixel_n_dim) @property def world_axis_names(self): """ An iterable of strings describing the name for each world axis. """ if self.output_frame is not None: return self.output_frame.axes_names return tuple([''] * self.world_n_dim) ``` #### File: gwcs/tags/geometry_models.py ```python from asdf import yamlutil from ..gwcs_types import GWCSTransformType from .. geometry import (ToDirectionCosines, FromDirectionCosines, SphericalToCartesian, CartesianToSpherical) __all__ = ['DirectionCosinesType', 'SphericalCartesianType'] class DirectionCosinesType(GWCSTransformType): name = "direction_cosines" types = [ToDirectionCosines, FromDirectionCosines] version = "1.1.0" @classmethod def from_tree_transform(cls, node, ctx): transform_type = node['transform_type'] if transform_type == 'to_direction_cosines': return ToDirectionCosines() elif transform_type == 'from_direction_cosines': return FromDirectionCosines() else: raise TypeError(f"Unknown model_type {transform_type}") @classmethod def to_tree_transform(cls, model, ctx): if isinstance(model, FromDirectionCosines): transform_type = 'from_direction_cosines' elif isinstance(model, ToDirectionCosines): transform_type = 'to_direction_cosines' else: raise TypeError(f"Model of type {model.__class__} is not supported.") node = {'transform_type': transform_type} return yamlutil.custom_tree_to_tagged_tree(node, ctx) class SphericalCartesianType(GWCSTransformType): name = "spherical_cartesian" types = [SphericalToCartesian, CartesianToSpherical] version = "1.1.0" @classmethod def from_tree_transform(cls, node, ctx): transform_type = node['transform_type'] wrap_lon_at = node['wrap_lon_at'] if transform_type == 'spherical_to_cartesian': return SphericalToCartesian(wrap_lon_at=wrap_lon_at) elif transform_type == 'cartesian_to_spherical': return CartesianToSpherical(wrap_lon_at=wrap_lon_at) else: raise TypeError(f"Unknown model_type {transform_type}") @classmethod def to_tree_transform(cls, model, ctx): if isinstance(model, SphericalToCartesian): transform_type = 'spherical_to_cartesian' elif isinstance(model, CartesianToSpherical): transform_type = 'cartesian_to_spherical' else: raise TypeError(f"Model of type {model.__class__} is not supported.") node = { 'transform_type': transform_type, 'wrap_lon_at': model.wrap_lon_at } return yamlutil.custom_tree_to_tagged_tree(node, ctx) ``` #### File: tags/tests/test_selector.py ```python import numpy as np from astropy.modeling.models import Mapping, Shift, Scale, Polynomial2D from ... import selector from asdf.tests import helpers from ...tests.test_region import create_scalar_mapper from ...extension import GWCSExtension def test_regions_selector(tmpdir): m1 = Mapping([0, 1, 1]) | Shift(1) & Shift(2) & Shift(3) m2 = Mapping([0, 1, 1]) | Scale(2) & Scale(3) & Scale(3) sel = {1: m1, 2: m2} a = np.zeros((5, 6), dtype=np.int32) a[:, 1:3] = 1 a[:, 4:5] = 2 mask = selector.LabelMapperArray(a) rs = selector.RegionsSelector(inputs=('x', 'y'), outputs=('ra', 'dec', 'lam'), selector=sel, label_mapper=mask) tree = {'model': rs} helpers.assert_roundtrip_tree(tree, tmpdir, extensions=GWCSExtension()) def test_LabelMapperArray_str(tmpdir): a = np.array([["label1", "", "label2"], ["label1", "", ""], ["label1", "label2", "label2"]]) mask = selector.LabelMapperArray(a) tree = {'model': mask} helpers.assert_roundtrip_tree(tree, tmpdir, extensions=GWCSExtension()) def test_labelMapperArray_int(tmpdir): a = np.array([[1, 0, 2], [1, 0, 0], [1, 2, 2]]) mask = selector.LabelMapperArray(a) tree = {'model': mask} helpers.assert_roundtrip_tree(tree, tmpdir, extensions=GWCSExtension()) def test_LabelMapperDict(tmpdir): dmapper = create_scalar_mapper() sel = selector.LabelMapperDict(('x', 'y'), dmapper, inputs_mapping=Mapping((0,), n_inputs=2), atol=1e-3) tree = {'model': sel} helpers.assert_roundtrip_tree(tree, tmpdir, extensions=GWCSExtension()) def test_LabelMapperRange(tmpdir): m = [] for i in np.arange(9) * .1: c0_0, c1_0, c0_1, c1_1 = np.ones((4,)) * i m.append(Polynomial2D(2, c0_0=c0_0, c1_0=c1_0, c0_1=c0_1, c1_1=c1_1)) keys = np.array([[4.88, 5.64], [5.75, 6.5], [6.67, 7.47], [7.7, 8.63], [8.83, 9.96], [10.19, 11.49], [11.77, 13.28], [13.33, 15.34], [15.56, 18.09]]) rmapper = {} for k, v in zip(keys, m): rmapper[tuple(k)] = v sel = selector.LabelMapperRange(('x', 'y'), rmapper, inputs_mapping=Mapping((0,), n_inputs=2)) tree = {'model': sel} helpers.assert_roundtrip_tree(tree, tmpdir, extensions=GWCSExtension()) ``` #### File: gwcs/gwcs/wcs.py ```python import functools import itertools import warnings import numpy as np import numpy.linalg as npla from scipy import optimize from astropy.modeling.core import Model # , fix_inputs from astropy.modeling import utils as mutils from astropy.modeling.models import (Shift, Polynomial2D, Sky2Pix_TAN, RotateCelestial2Native, Mapping) from astropy.modeling.fitting import LinearLSQFitter import astropy.io.fits as fits from .api import GWCSAPIMixin from . import coordinate_frames as cf from .utils import CoordinateFrameError from . import utils from .wcstools import grid_from_bounding_box try: from astropy.modeling.core import fix_inputs HAS_FIX_INPUTS = True except ImportError: HAS_FIX_INPUTS = False __all__ = ['WCS', 'NoConvergence'] _ITER_INV_KWARGS = ['tolerance', 'maxiter', 'adaptive', 'detect_divergence', 'quiet'] class NoConvergence(Exception): """ An error class used to report non-convergence and/or divergence of numerical methods. It is used to report errors in the iterative solution used by the :py:meth:`~astropy.wcs.WCS.all_world2pix`. Attributes ---------- best_solution : `numpy.ndarray` Best solution achieved by the numerical method. accuracy : `numpy.ndarray` Estimate of the accuracy of the ``best_solution``. niter : `int` Number of iterations performed by the numerical method to compute ``best_solution``. divergent : None, `numpy.ndarray` Indices of the points in ``best_solution`` array for which the solution appears to be divergent. If the solution does not diverge, ``divergent`` will be set to `None`. slow_conv : None, `numpy.ndarray` Indices of the solutions in ``best_solution`` array for which the solution failed to converge within the specified maximum number of iterations. If there are no non-converging solutions (i.e., if the required accuracy has been achieved for all input data points) then ``slow_conv`` will be set to `None`. """ def __init__(self, *args, best_solution=None, accuracy=None, niter=None, divergent=None, slow_conv=None): super().__init__(*args) self.best_solution = best_solution self.accuracy = accuracy self.niter = niter self.divergent = divergent self.slow_conv = slow_conv class WCS(GWCSAPIMixin): """ Basic WCS class. Parameters ---------- forward_transform : `~astropy.modeling.Model` or a list The transform between ``input_frame`` and ``output_frame``. A list of (frame, transform) tuples where ``frame`` is the starting frame and ``transform`` is the transform from this frame to the next one or ``output_frame``. The last tuple is (transform, None), where None indicates the end of the pipeline. input_frame : str, `~gwcs.coordinate_frames.CoordinateFrame` A coordinates object or a string name. output_frame : str, `~gwcs.coordinate_frames.CoordinateFrame` A coordinates object or a string name. name : str a name for this WCS """ def __init__(self, forward_transform=None, input_frame='detector', output_frame=None, name=""): #self.low_level_wcs = self self._approx_inverse = None self._available_frames = [] self._pipeline = [] self._name = name self._array_shape = None self._initialize_wcs(forward_transform, input_frame, output_frame) self._pixel_shape = None self._pipeline = [Step(*step) for step in self._pipeline] def _initialize_wcs(self, forward_transform, input_frame, output_frame): if forward_transform is not None: if isinstance(forward_transform, Model): if output_frame is None: raise CoordinateFrameError("An output_frame must be specified" "if forward_transform is a model.") _input_frame, inp_frame_obj = self._get_frame_name(input_frame) _output_frame, outp_frame_obj = self._get_frame_name(output_frame) super(WCS, self).__setattr__(_input_frame, inp_frame_obj) super(WCS, self).__setattr__(_output_frame, outp_frame_obj) self._pipeline = [(input_frame, forward_transform.copy()), (output_frame, None)] elif isinstance(forward_transform, list): for item in forward_transform: name, frame_obj = self._get_frame_name(item[0]) super(WCS, self).__setattr__(name, frame_obj) #self._pipeline.append((name, item[1])) self._pipeline = forward_transform else: raise TypeError("Expected forward_transform to be a model or a " "(frame, transform) list, got {0}".format( type(forward_transform))) else: # Initialize a WCS without a forward_transform - allows building a WCS programmatically. if output_frame is None: raise CoordinateFrameError("An output_frame must be specified" "if forward_transform is None.") _input_frame, inp_frame_obj = self._get_frame_name(input_frame) _output_frame, outp_frame_obj = self._get_frame_name(output_frame) super(WCS, self).__setattr__(_input_frame, inp_frame_obj) super(WCS, self).__setattr__(_output_frame, outp_frame_obj) self._pipeline = [(_input_frame, None), (_output_frame, None)] def get_transform(self, from_frame, to_frame): """ Return a transform between two coordinate frames. Parameters ---------- from_frame : str or `~gwcs.coordinate_frame.CoordinateFrame` Initial coordinate frame name of object. to_frame : str, or instance of `~gwcs.cordinate_frames.CoordinateFrame` End coordinate frame name or object. Returns ------- transform : `~astropy.modeling.Model` Transform between two frames. """ if not self._pipeline: return None try: from_ind = self._get_frame_index(from_frame) except ValueError: raise CoordinateFrameError("Frame {0} is not in the available " "frames".format(from_frame)) try: to_ind = self._get_frame_index(to_frame) except ValueError: raise CoordinateFrameError("Frame {0} is not in the available frames".format(to_frame)) if to_ind < from_ind: #transforms = np.array(self._pipeline[to_ind: from_ind], dtype="object")[:, 1].tolist() transforms = [step.transform for step in self._pipeline[to_ind: from_ind]] transforms = [tr.inverse for tr in transforms[::-1]] elif to_ind == from_ind: return None else: #transforms = np.array(self._pipeline[from_ind: to_ind], dtype="object")[:, 1].copy() transforms = [step.transform for step in self._pipeline[from_ind: to_ind]] return functools.reduce(lambda x, y: x | y, transforms) def set_transform(self, from_frame, to_frame, transform): """ Set/replace the transform between two coordinate frames. Parameters ---------- from_frame : str or `~gwcs.coordinate_frame.CoordinateFrame` Initial coordinate frame. to_frame : str, or instance of `~gwcs.cordinate_frames.CoordinateFrame` End coordinate frame. transform : `~astropy.modeling.Model` Transform between ``from_frame`` and ``to_frame``. """ from_name, from_obj = self._get_frame_name(from_frame) to_name, to_obj = self._get_frame_name(to_frame) if not self._pipeline: if from_name != self._input_frame: raise CoordinateFrameError( "Expected 'from_frame' to be {0}".format(self._input_frame)) if to_frame != self._output_frame: raise CoordinateFrameError( "Expected 'to_frame' to be {0}".format(self._output_frame)) try: from_ind = self._get_frame_index(from_name) except ValueError: raise CoordinateFrameError("Frame {0} is not in the available frames".format(from_name)) try: to_ind = self._get_frame_index(to_name) except ValueError: raise CoordinateFrameError("Frame {0} is not in the available frames".format(to_name)) if from_ind + 1 != to_ind: raise ValueError("Frames {0} and {1} are not in sequence".format(from_name, to_name)) self._pipeline[from_ind].transform = transform @property def forward_transform(self): """ Return the total forward transform - from input to output coordinate frame. """ if self._pipeline: #return functools.reduce(lambda x, y: x | y, [step[1] for step in self._pipeline[: -1]]) return functools.reduce(lambda x, y: x | y, [step.transform for step in self._pipeline[:-1]]) else: return None @property def backward_transform(self): """ Return the total backward transform if available - from output to input coordinate system. Raises ------ NotImplementedError : An analytical inverse does not exist. """ try: backward = self.forward_transform.inverse except NotImplementedError as err: raise NotImplementedError("Could not construct backward transform. \n{0}".format(err)) return backward def _get_frame_index(self, frame): """ Return the index in the pipeline where this frame is locate. """ if isinstance(frame, cf.CoordinateFrame): frame = frame.name #frame_names = [getattr(item[0], "name", item[0]) for item in self._pipeline] frame_names = [step.frame if isinstance(step.frame, str) else step.frame.name for step in self._pipeline] return frame_names.index(frame) def _get_frame_name(self, frame): """ Return the name of the frame and a ``CoordinateFrame`` object. Parameters ---------- frame : str, `~gwcs.coordinate_frames.CoordinateFrame` Coordinate frame. Returns ------- name : str The name of the frame frame_obj : `~gwcs.coordinate_frames.CoordinateFrame` Frame instance or None (if `frame` is str) """ if isinstance(frame, str): name = frame frame_obj = None else: name = frame.name frame_obj = frame return name, frame_obj def __call__(self, *args, **kwargs): """ Executes the forward transform. args : float or array-like Inputs in the input coordinate system, separate inputs for each dimension. with_units : bool If ``True`` returns a `~astropy.coordinates.SkyCoord` or `~astropy.units.Quantity` object, by using the units of the output cooridnate frame. Optional, default=False. with_bounding_box : bool, optional If True(default) values in the result which correspond to any of the inputs being outside the bounding_box are set to ``fill_value``. fill_value : float, optional Output value for inputs outside the bounding_box (default is np.nan). """ transform = self.forward_transform if transform is None: raise NotImplementedError("WCS.forward_transform is not implemented.") with_units = kwargs.pop("with_units", False) if 'with_bounding_box' not in kwargs: kwargs['with_bounding_box'] = True if 'fill_value' not in kwargs: kwargs['fill_value'] = np.nan if self.bounding_box is not None: # Currently compound models do not attempt to combine individual model # bounding boxes. Get the forward transform and assign the bounding_box to it # before evaluating it. The order Model.bounding_box is reversed. axes_ind = self._get_axes_indices() if transform.n_inputs > 1: transform.bounding_box = [self.bounding_box[ind] for ind in axes_ind][::-1] else: transform.bounding_box = self.bounding_box result = transform(*args, **kwargs) if with_units: if self.output_frame.naxes == 1: result = self.output_frame.coordinates(result) else: result = self.output_frame.coordinates(*result) return result def in_image(self, *args, **kwargs): """ This method tests if one or more of the input world coordinates are contained within forward transformation's image and that it maps to the domain of definition of the forward transformation. In practical terms, this function tests that input world coordinate(s) can be converted to input frame and that it is within the forward transformation's ``bounding_box`` when defined. Parameters ---------- args : float, array like, `~astropy.coordinates.SkyCoord` or `~astropy.units.Unit` coordinates to be inverted kwargs : dict keyword arguments to be passed either to ``backward_transform`` (when defined) or to the iterative invert method. Returns ------- result : bool, numpy.ndarray A single boolean value or an array of boolean values with `True` indicating that the WCS footprint contains the coordinate and `False` if input is outside the footprint. """ kwargs['with_bounding_box'] = True kwargs['fill_value'] = np.nan coords = self.invert(*args, **kwargs) result = np.isfinite(coords) if self.input_frame.naxes > 1: result = np.all(result, axis=0) if self.bounding_box is None or not np.any(result): return result if self.input_frame.naxes == 1: x1, x2 = self.bounding_box if len(np.shape(args[0])) > 0: result[result] = (coords[result] >= x1) & (coords[result] <= x2) elif result: result = (coords >= x1) and (coords <= x2) else: if len(np.shape(args[0])) > 0: for c, (x1, x2) in zip(coords, self.bounding_box): result[result] = (c[result] >= x1) & (c[result] <= x2) elif result: result = all([(c >= x1) and (c <= x2) for c, (x1, x2) in zip(coords, self.bounding_box)]) return result def invert(self, *args, **kwargs): """ Invert coordinates from output frame to input frame using analytical or user-supplied inverse. When neither analytical nor user-supplied inverses are defined, a numerical solution will be attempted using :py:meth:`numerical_inverse`. .. note:: Currently numerical inverse is implemented only for 2D imaging WCS. Parameters ---------- args : float, array like, `~astropy.coordinates.SkyCoord` or `~astropy.units.Unit` Coordinates to be inverted. The number of arguments must be equal to the number of world coordinates given by ``world_n_dim``. with_bounding_box : bool, optional If `True` (default) values in the result which correspond to any of the inputs being outside the bounding_box are set to ``fill_value``. fill_value : float, optional Output value for inputs outside the bounding_box (default is ``np.nan``). with_units : bool, optional If ``True`` returns a `~astropy.coordinates.SkyCoord` or `~astropy.units.Quantity` object, by using the units of the output cooridnate frame. Default is `False`. Other Parameters ---------------- kwargs : dict Keyword arguments to be passed to :py:meth:`numerical_inverse` (when defined) or to the iterative invert method. Returns ------- result : tuple Returns a tuple of scalar or array values for each axis. """ with_units = kwargs.pop('with_units', False) if not utils.isnumerical(args[0]): args = self.output_frame.coordinate_to_quantity(*args) if self.output_frame.naxes == 1: args = [args] try: if not self.backward_transform.uses_quantity: args = utils.get_values(self.output_frame.unit, *args) except (NotImplementedError, KeyError): args = utils.get_values(self.output_frame.unit, *args) if 'with_bounding_box' not in kwargs: kwargs['with_bounding_box'] = True if 'fill_value' not in kwargs: kwargs['fill_value'] = np.nan try: # remove iterative inverse-specific keyword arguments: akwargs = {k: v for k, v in kwargs.items() if k not in _ITER_INV_KWARGS} result = self.backward_transform(*args, **akwargs) except (NotImplementedError, KeyError): result = self.numerical_inverse(*args, **kwargs, with_units=with_units) if with_units and self.input_frame: if self.input_frame.naxes == 1: return self.input_frame.coordinates(result) else: return self.input_frame.coordinates(*result) else: return result def numerical_inverse(self, *args, **kwargs): """ Invert coordinates from output frame to input frame using numerical inverse. .. note:: Currently numerical inverse is implemented only for 2D imaging WCS. .. note:: This method uses a combination of vectorized fixed-point iterations algorithm and `scipy.optimize.root`. The later is used for input coordinates for which vectorized algorithm diverges. Parameters ---------- args : float, array like, `~astropy.coordinates.SkyCoord` or `~astropy.units.Unit` Coordinates to be inverted. The number of arguments must be equal to the number of world coordinates given by ``world_n_dim``. with_bounding_box : bool, optional If `True` (default) values in the result which correspond to any of the inputs being outside the bounding_box are set to ``fill_value``. fill_value : float, optional Output value for inputs outside the bounding_box (default is ``np.nan``). with_units : bool, optional If ``True`` returns a `~astropy.coordinates.SkyCoord` or `~astropy.units.Quantity` object, by using the units of the output cooridnate frame. Default is `False`. tolerance : float, optional *Absolute tolerance* of solution. Iteration terminates when the iterative solver estimates that the "true solution" is within this many pixels current estimate, more specifically, when the correction to the solution found during the previous iteration is smaller (in the sense of the L2 norm) than ``tolerance``. Default ``tolerance`` is 1.0e-5. maxiter : int, optional Maximum number of iterations allowed to reach a solution. Default is 50. quiet : bool, optional Do not throw :py:class:`NoConvergence` exceptions when the method does not converge to a solution with the required accuracy within a specified number of maximum iterations set by ``maxiter`` parameter. Instead, simply return the found solution. Default is `True`. Other Parameters ---------------- adaptive : bool, optional Specifies whether to adaptively select only points that did not converge to a solution within the required accuracy for the next iteration. Default (`True`) is recommended. .. note:: The :py:meth:`numerical_inverse` uses a vectorized implementation of the method of consecutive approximations (see ``Notes`` section below) in which it iterates over *all* input points *regardless* until the required accuracy has been reached for *all* input points. In some cases it may be possible that *almost all* points have reached the required accuracy but there are only a few of input data points for which additional iterations may be needed (this depends mostly on the characteristics of the geometric distortions for a given instrument). In this situation it may be advantageous to set ``adaptive`` = `True` in which case :py:meth:`numerical_inverse` will continue iterating *only* over the points that have not yet converged to the required accuracy. .. note:: When ``detect_divergence`` is `True`, :py:meth:`numerical_inverse` will automatically switch to the adaptive algorithm once divergence has been detected. detect_divergence : bool, optional Specifies whether to perform a more detailed analysis of the convergence to a solution. Normally :py:meth:`numerical_inverse` may not achieve the required accuracy if either the ``tolerance`` or ``maxiter`` arguments are too low. However, it may happen that for some geometric distortions the conditions of convergence for the the method of consecutive approximations used by :py:meth:`numerical_inverse` may not be satisfied, in which case consecutive approximations to the solution will diverge regardless of the ``tolerance`` or ``maxiter`` settings. When ``detect_divergence`` is `False`, these divergent points will be detected as not having achieved the required accuracy (without further details). In addition, if ``adaptive`` is `False` then the algorithm will not know that the solution (for specific points) is diverging and will continue iterating and trying to "improve" diverging solutions. This may result in ``NaN`` or ``Inf`` values in the return results (in addition to a performance penalties). Even when ``detect_divergence`` is `False`, :py:meth:`numerical_inverse`, at the end of the iterative process, will identify invalid results (``NaN`` or ``Inf``) as "diverging" solutions and will raise :py:class:`NoConvergence` unless the ``quiet`` parameter is set to `True`. When ``detect_divergence`` is `True` (default), :py:meth:`numerical_inverse` will detect points for which current correction to the coordinates is larger than the correction applied during the previous iteration **if** the requested accuracy **has not yet been achieved**. In this case, if ``adaptive`` is `True`, these points will be excluded from further iterations and if ``adaptive`` is `False`, :py:meth:`numerical_inverse` will automatically switch to the adaptive algorithm. Thus, the reported divergent solution will be the latest converging solution computed immediately *before* divergence has been detected. .. note:: When accuracy has been achieved, small increases in current corrections may be possible due to rounding errors (when ``adaptive`` is `False`) and such increases will be ignored. .. note:: Based on our testing using JWST NIRCAM images, setting ``detect_divergence`` to `True` will incur about 5-10% performance penalty with the larger penalty corresponding to ``adaptive`` set to `True`. Because the benefits of enabling this feature outweigh the small performance penalty, especially when ``adaptive`` = `False`, it is recommended to set ``detect_divergence`` to `True`, unless extensive testing of the distortion models for images from specific instruments show a good stability of the numerical method for a wide range of coordinates (even outside the image itself). .. note:: Indices of the diverging inverse solutions will be reported in the ``divergent`` attribute of the raised :py:class:`NoConvergence` exception object. Returns ------- result : tuple Returns a tuple of scalar or array values for each axis. Raises ------ NoConvergence The iterative method did not converge to a solution to the required accuracy within a specified number of maximum iterations set by the ``maxiter`` parameter. To turn off this exception, set ``quiet`` to `True`. Indices of the points for which the requested accuracy was not achieved (if any) will be listed in the ``slow_conv`` attribute of the raised :py:class:`NoConvergence` exception object. See :py:class:`NoConvergence` documentation for more details. NotImplementedError Numerical inverse has not been implemented for this WCS. ValueError Invalid argument values. Examples -------- >>> from astropy.utils.data import get_pkg_data_filename >>> from gwcs import NoConvergence >>> import asdf >>> import numpy as np >>> filename = get_pkg_data_filename('data/nircamwcs.asdf', package='gwcs.tests') >>> w = asdf.open(filename).tree['wcs'] >>> ra, dec = w([1,2,3], [1,1,1]) >>> print(ra) # doctest: +FLOAT_CMP [5.927628 5.92757069 5.92751337] >>> print(dec) # doctest: +FLOAT_CMP [-72.01341247 -72.01341273 -72.013413 ] >>> x, y = w.numerical_inverse(ra, dec) >>> print(x) # doctest: +FLOAT_CMP [1.00000005 2.00000005 3.00000006] >>> print(y) # doctest: +FLOAT_CMP [1.00000004 0.99999979 1.00000015] >>> x, y = w.numerical_inverse(ra, dec, maxiter=3, tolerance=1.0e-10, quiet=False) Traceback (most recent call last): ... gwcs.wcs.NoConvergence: 'WCS.numerical_inverse' failed to converge to the requested accuracy after 3 iterations. >>> w.numerical_inverse( ... *w([1, 300000, 3], [2, 1000000, 5], with_bounding_box=False), ... adaptive=False, ... detect_divergence=True, ... quiet=False, ... with_bounding_box=False ... ) Traceback (most recent call last): ... gwcs.wcs.NoConvergence: 'WCS.numerical_inverse' failed to converge to the requested accuracy. After 4 iterations, the solution is diverging at least for one input point. >>> # Now try to use some diverging data: >>> divradec = w([1, 300000, 3], [2, 1000000, 5], with_bounding_box=False) >>> print(divradec) # doctest: +FLOAT_CMP (array([ 5.92762673, 148.21600848, 5.92750827]), array([-72.01339464, -7.80968079, -72.01334172])) >>> try: # doctest: +SKIP ... x, y = w.numerical_inverse(*divradec, maxiter=20, ... tolerance=1.0e-4, adaptive=True, ... detect_divergence=True, ... quiet=False) ... except NoConvergence as e: ... print(f"Indices of diverging points: {e.divergent}") ... print(f"Indices of poorly converging points: {e.slow_conv}") ... print(f"Best solution:\\n{e.best_solution}") ... print(f"Achieved accuracy:\\n{e.accuracy}") Indices of diverging points: None Indices of poorly converging points: [1] Best solution: [[1.00000040e+00 1.99999841e+00] [6.33507833e+17 3.40118820e+17] [3.00000038e+00 4.99999841e+00]] Achieved accuracy: [[2.75925982e-05 1.18471543e-05] [3.65405005e+04 1.31364188e+04] [2.76552923e-05 1.14789013e-05]] """ tolerance = kwargs.get('tolerance', 1e-5) maxiter = kwargs.get('maxiter', 50) adaptive = kwargs.get('adaptive', True) detect_divergence = kwargs.get('detect_divergence', True) quiet = kwargs.get('quiet', True) with_bounding_box = kwargs.get('with_bounding_box', True) fill_value = kwargs.get('fill_value', np.nan) with_units = kwargs.pop('with_units', False) if not utils.isnumerical(args[0]): args = self.output_frame.coordinate_to_quantity(*args) if self.output_frame.naxes == 1: args = [args] args = utils.get_values(self.output_frame.unit, *args) args_shape = np.shape(args) nargs = args_shape[0] arg_dim = len(args_shape) - 1 if nargs != self.world_n_dim: raise ValueError("Number of input coordinates is different from " "the number of defined world coordinates in the " f"WCS ({self.world_n_dim:d})") if self.world_n_dim != self.pixel_n_dim: raise NotImplementedError( "Support for iterative inverse for transformations with " "different number of inputs and outputs was not implemented." ) # initial guess: if nargs == 2 and self._approx_inverse is None: self._calc_approx_inv(max_inv_pix_error=5, inv_degree=None) if self._approx_inverse is None: if self.bounding_box is None: x0 = np.ones(self.pixel_n_dim) else: x0 = np.mean(self.bounding_box, axis=-1) if arg_dim == 0: argsi = args if nargs == 2 and self._approx_inverse is not None: x0 = self._approx_inverse(*argsi) if not np.all(np.isfinite(x0)): return [np.array(np.nan) for _ in range(nargs)] result = tuple(self._vectorized_fixed_point( x0, argsi, tolerance=tolerance, maxiter=maxiter, adaptive=adaptive, detect_divergence=detect_divergence, quiet=quiet, with_bounding_box=with_bounding_box, fill_value=fill_value ).T.ravel().tolist()) else: arg_shape = args_shape[1:] nelem = np.prod(arg_shape) args = np.reshape(args, (nargs, nelem)) if self._approx_inverse is None: x0 = np.full((nelem, nargs), x0) else: x0 = np.array(self._approx_inverse(*args)).T result = self._vectorized_fixed_point( x0, args.T, tolerance=tolerance, maxiter=maxiter, adaptive=adaptive, detect_divergence=detect_divergence, quiet=quiet, with_bounding_box=with_bounding_box, fill_value=fill_value ).T result = tuple(np.reshape(result, args_shape)) if with_units and self.input_frame: if self.input_frame.naxes == 1: return self.input_frame.coordinates(result) else: return self.input_frame.coordinates(*result) else: return result def _vectorized_fixed_point(self, pix0, world, tolerance, maxiter, adaptive, detect_divergence, quiet, with_bounding_box, fill_value): # ############################################################ # # INITIALIZE ITERATIVE PROCESS: ## # ############################################################ # make a copy of the initial approximation pix0 = np.atleast_2d(np.array(pix0)) # 0-order solution pix = np.array(pix0) world0 = np.atleast_2d(np.array(world)) world = np.array(world0) # estimate pixel scale using approximate algorithm # from https://trs.jpl.nasa.gov/handle/2014/40409 if self.bounding_box is None: crpix = np.ones(self.pixel_n_dim) else: crpix = np.mean(self.bounding_box, axis=-1) l1, phi1 = np.deg2rad(self.__call__(*(crpix - 0.5))) l2, phi2 = np.deg2rad(self.__call__(*(crpix + [-0.5, 0.5]))) l3, phi3 = np.deg2rad(self.__call__(*(crpix + 0.5))) l4, phi4 = np.deg2rad(self.__call__(*(crpix + [0.5, -0.5]))) area = np.abs(0.5 * ((l4 - l2) * np.sin(phi1) + (l1 - l3) * np.sin(phi2) + (l2 - l4) * np.sin(phi3) + (l3 - l2) * np.sin(phi4))) inv_pscale = 1 / np.rad2deg(np.sqrt(area)) # form equation: def f(x): w = np.array(self.__call__(*(x.T), with_bounding_box=False)).T dw = np.mod(np.subtract(w, world) - 180.0, 360.0) - 180.0 return np.add(inv_pscale * dw, x) def froot(x): return np.mod(np.subtract(self.__call__(*x, with_bounding_box=False), worldi) - 180.0, 360.0) - 180.0 # compute correction: def correction(pix): p1 = f(pix) p2 = f(p1) d = p2 - 2.0 * p1 + pix idx = np.where(d != 0) corr = pix - p2 corr[idx] = np.square(p1[idx] - pix[idx]) / d[idx] return corr # initial iteration: dpix = correction(pix) # Update initial solution: pix -= dpix # Norm (L2) squared of the correction: dn = np.sum(dpix * dpix, axis=1) dnprev = dn.copy() # if adaptive else dn tol2 = tolerance**2 # Prepare for iterative process k = 1 ind = None inddiv = None # Turn off numpy runtime warnings for 'invalid' and 'over': old_invalid = np.geterr()['invalid'] old_over = np.geterr()['over'] np.seterr(invalid='ignore', over='ignore') # ############################################################ # # NON-ADAPTIVE ITERATIONS: ## # ############################################################ if not adaptive: # Fixed-point iterations: while (np.nanmax(dn) >= tol2 and k < maxiter): # Find correction to the previous solution: dpix = correction(pix) # Compute norm (L2) squared of the correction: dn = np.sum(dpix * dpix, axis=1) # Check for divergence (we do this in two stages # to optimize performance for the most common # scenario when successive approximations converge): if detect_divergence: divergent = (dn >= dnprev) if np.any(divergent): # Find solutions that have not yet converged: slowconv = (dn >= tol2) inddiv, = np.where(divergent & slowconv) if inddiv.shape[0] > 0: # Update indices of elements that # still need correction: conv = (dn < dnprev) iconv = np.where(conv) # Apply correction: dpixgood = dpix[iconv] pix[iconv] -= dpixgood dpix[iconv] = dpixgood # For the next iteration choose # non-divergent points that have not yet # converged to the requested accuracy: ind, = np.where(slowconv & conv) world = world[ind] dnprev[ind] = dn[ind] k += 1 # Switch to adaptive iterations: adaptive = True break # Save current correction magnitudes for later: dnprev = dn # Apply correction: pix -= dpix k += 1 # ############################################################ # # ADAPTIVE ITERATIONS: ## # ############################################################ if adaptive: if ind is None: ind, = np.where(np.isfinite(pix).all(axis=1)) world = world[ind] # "Adaptive" fixed-point iterations: while (ind.shape[0] > 0 and k < maxiter): # Find correction to the previous solution: dpixnew = correction(pix[ind]) # Compute norm (L2) of the correction: dnnew = np.sum(np.square(dpixnew), axis=1) # Bookkeeping of corrections: dnprev[ind] = dn[ind].copy() dn[ind] = dnnew if detect_divergence: # Find indices of pixels that are converging: conv = np.logical_or(dnnew < dnprev[ind], dnnew < tol2) if not np.all(conv): conv = np.ones_like(dnnew, dtype=bool) iconv = np.where(conv) iiconv = ind[iconv] # Apply correction: dpixgood = dpixnew[iconv] pix[iiconv] -= dpixgood dpix[iiconv] = dpixgood # Find indices of solutions that have not yet # converged to the requested accuracy # AND that do not diverge: subind, = np.where((dnnew >= tol2) & conv) else: # Apply correction: pix[ind] -= dpixnew dpix[ind] = dpixnew # Find indices of solutions that have not yet # converged to the requested accuracy: subind, = np.where(dnnew >= tol2) # Choose solutions that need more iterations: ind = ind[subind] world = world[subind] k += 1 # ############################################################ # # FINAL DETECTION OF INVALID, DIVERGING, ## # # AND FAILED-TO-CONVERGE POINTS ## # ############################################################ # Identify diverging and/or invalid points: invalid = ((~np.all(np.isfinite(pix), axis=1)) & (np.all(np.isfinite(world0), axis=1))) # When detect_divergence is False, dnprev is outdated # (it is the norm of the very first correction). # Still better than nothing... inddiv, = np.where(((dn >= tol2) & (dn >= dnprev)) | invalid) if inddiv.shape[0] == 0: inddiv = None # If there are divergent points, attempt to find a solution using # scipy's 'hybr' method: if detect_divergence and inddiv is not None and inddiv.size: bad = [] for idx in inddiv: worldi = world0[idx] result = optimize.root( froot, pix0[idx], method='hybr', tol=tolerance / (np.linalg.norm(pix0[idx]) + 1), options={'maxfev': 2 * maxiter} ) if result['success']: pix[idx, :] = result['x'] invalid[idx] = False else: bad.append(idx) if bad: inddiv = np.array(bad, dtype=int) else: inddiv = None # Identify points that did not converge within 'maxiter' # iterations: if k >= maxiter: ind, = np.where((dn >= tol2) & (dn < dnprev) & (~invalid)) if ind.shape[0] == 0: ind = None else: ind = None # Restore previous numpy error settings: np.seterr(invalid=old_invalid, over=old_over) # ############################################################ # # RAISE EXCEPTION IF DIVERGING OR TOO SLOWLY CONVERGING ## # # DATA POINTS HAVE BEEN DETECTED: ## # ############################################################ if (ind is not None or inddiv is not None) and not quiet: if inddiv is None: raise NoConvergence( "'WCS.numerical_inverse' failed to " "converge to the requested accuracy after {:d} " "iterations.".format(k), best_solution=pix, accuracy=np.abs(dpix), niter=k, slow_conv=ind, divergent=None) else: raise NoConvergence( "'WCS.numerical_inverse' failed to " "converge to the requested accuracy.\n" "After {:d} iterations, the solution is diverging " "at least for one input point." .format(k), best_solution=pix, accuracy=np.abs(dpix), niter=k, slow_conv=ind, divergent=inddiv) if with_bounding_box and self.bounding_box is not None: # find points outside the bounding box and replace their values # with fill_value valid = np.logical_not(invalid) in_bb = np.ones_like(invalid, dtype=np.bool_) for c, (x1, x2) in zip(pix[valid].T, self.bounding_box): in_bb[valid] &= (c >= x1) & (c <= x2) pix[np.logical_not(in_bb)] = fill_value return pix def transform(self, from_frame, to_frame, *args, **kwargs): """ Transform positions between two frames. Parameters ---------- from_frame : str or `~gwcs.coordinate_frames.CoordinateFrame` Initial coordinate frame. to_frame : str, or instance of `~gwcs.cordinate_frames.CoordinateFrame` Coordinate frame into which to transform. args : float or array-like Inputs in ``from_frame``, separate inputs for each dimension. output_with_units : bool If ``True`` - returns a `~astropy.coordinates.SkyCoord` or `~astropy.units.Quantity` object. with_bounding_box : bool, optional If True(default) values in the result which correspond to any of the inputs being outside the bounding_box are set to ``fill_value``. fill_value : float, optional Output value for inputs outside the bounding_box (default is np.nan). """ transform = self.get_transform(from_frame, to_frame) if not utils.isnumerical(args[0]): inp_frame = getattr(self, from_frame) args = inp_frame.coordinate_to_quantity(*args) if not transform.uses_quantity: args = utils.get_values(inp_frame.unit, *args) with_units = kwargs.pop("with_units", False) if 'with_bounding_box' not in kwargs: kwargs['with_bounding_box'] = True if 'fill_value' not in kwargs: kwargs['fill_value'] = np.nan result = transform(*args, **kwargs) if with_units: to_frame_name, to_frame_obj = self._get_frame_name(to_frame) if to_frame_obj is not None: if to_frame_obj.naxes == 1: result = to_frame_obj.coordinates(result) else: result = to_frame_obj.coordinates(*result) else: raise TypeError("Coordinate objects could not be created because" "frame {0} is not defined.".format(to_frame_name)) return result @property def available_frames(self): """ List all frames in this WCS object. Returns ------- available_frames : dict {frame_name: frame_object or None} """ if self._pipeline: #return [getattr(frame[0], "name", frame[0]) for frame in self._pipeline] return [step.frame if isinstance(step.frame, str) else step.frame.name for step in self._pipeline ] else: return None def insert_transform(self, frame, transform, after=False): """ Insert a transform before (default) or after a coordinate frame. Append (or prepend) a transform to the transform connected to frame. Parameters ---------- frame : str or `~gwcs.coordinate_frame.CoordinateFrame` Coordinate frame which sets the point of insertion. transform : `~astropy.modeling.Model` New transform to be inserted in the pipeline after : bool If True, the new transform is inserted in the pipeline immediately after ``frame``. """ name, _ = self._get_frame_name(frame) frame_ind = self._get_frame_index(name) if not after: current_transform = self._pipeline[frame_ind - 1].transform self._pipeline[frame_ind - 1].transform = current_transform | transform else: current_transform = self._pipeline[frame_ind].transform self._pipeline[frame_ind].transform = transform | current_transform def insert_frame(self, input_frame, transform, output_frame): """ Insert a new frame into an existing pipeline. This frame must be anchored to a frame already in the pipeline by a transform. This existing frame is identified solely by its name, although an entire `~gwcs.coordinate_frame.CoordinateFrame` can be passed (e.g., the `input_frame` or `output_frame` attribute). This frame is never modified. Parameters ---------- input_frame : str or `~gwcs.coordinate_frame.CoordinateFrame` Coordinate frame at start of new transform transform : `~astropy.modeling.Model` New transform to be inserted in the pipeline output_frame: str or `~gwcs.coordinate_frame.CoordinateFrame` Coordinate frame at end of new transform """ input_name, input_frame_obj = self._get_frame_name(input_frame) output_name, output_frame_obj = self._get_frame_name(output_frame) try: input_index = self._get_frame_index(input_frame) except ValueError: input_index = None if input_frame_obj is None: raise ValueError(f"New coordinate frame {input_name} must " "be defined") try: output_index = self._get_frame_index(output_frame) except ValueError: output_index = None if output_frame_obj is None: raise ValueError(f"New coordinate frame {output_name} must " "be defined") new_frames = [input_index, output_index].count(None) if new_frames == 0: raise ValueError("Could not insert frame as both frames " f"{input_name} and {output_name} already exist") elif new_frames == 2: raise ValueError("Could not insert frame as neither frame " f"{input_name} nor {output_name} exists") if input_index is None: self._pipeline = (self._pipeline[:output_index] + [Step(input_frame_obj, transform)] + self._pipeline[output_index:]) super(WCS, self).__setattr__(input_name, input_frame_obj) else: split_step = self._pipeline[input_index] self._pipeline = (self._pipeline[:input_index] + [Step(split_step.frame, transform), Step(output_frame_obj, split_step.transform)] + self._pipeline[input_index + 1:]) super(WCS, self).__setattr__(output_name, output_frame_obj) @property def unit(self): """The unit of the coordinates in the output coordinate system.""" if self._pipeline: try: #return getattr(self, self._pipeline[-1][0].name).unit return self._pipeline[-1].frame.unit except AttributeError: return None else: return None @property def output_frame(self): """Return the output coordinate frame.""" if self._pipeline: frame = self._pipeline[-1].frame if not isinstance(frame, str): frame = frame.name return getattr(self, frame) else: return None @property def input_frame(self): """Return the input coordinate frame.""" if self._pipeline: frame = self._pipeline[0].frame if not isinstance(frame, str): frame = frame.name return getattr(self, frame) else: return None @property def name(self): """Return the name for this WCS.""" return self._name @name.setter def name(self, value): """Set the name for the WCS.""" self._name = value @property def pipeline(self): """Return the pipeline structure.""" return self._pipeline @property def bounding_box(self): """ Return the range of acceptable values for each input axis. The order of the axes is `~gwcs.coordinate_frames.CoordinateFrame.axes_order`. """ frames = self.available_frames transform_0 = self.get_transform(frames[0], frames[1]) try: bb = transform_0.bounding_box except NotImplementedError: return None if transform_0.n_inputs == 1: return bb try: axes_order = self.input_frame.axes_order except AttributeError: axes_order = np.arange(transform_0.n_inputs) # Model.bounding_box is in python order, need to reverse it first. return tuple(bb[::-1][i] for i in axes_order) @bounding_box.setter def bounding_box(self, value): """ Set the range of acceptable values for each input axis. The order of the axes is `~gwcs.coordinate_frames.CoordinateFrame.axes_order`. For two inputs and axes_order(0, 1) the bounding box is ((xlow, xhigh), (ylow, yhigh)). Parameters ---------- value : tuple or None Tuple of tuples with ("low", high") values for the range. """ frames = self.available_frames transform_0 = self.get_transform(frames[0], frames[1]) if value is None: transform_0.bounding_box = value else: try: # Make sure the dimensions of the new bbox are correct. mutils._BoundingBox.validate(transform_0, value) except Exception: raise # get the sorted order of axes' indices axes_ind = self._get_axes_indices() if transform_0.n_inputs == 1: transform_0.bounding_box = value else: # The axes in bounding_box in modeling follow python order #transform_0.bounding_box = np.array(value)[axes_ind][::-1] transform_0.bounding_box = [value[ind] for ind in axes_ind][::-1] self.set_transform(frames[0], frames[1], transform_0) def _get_axes_indices(self): try: axes_ind = np.argsort(self.input_frame.axes_order) except AttributeError: # the case of a frame being a string axes_ind = np.arange(self.forward_transform.n_inputs) return axes_ind def __str__(self): from astropy.table import Table #col1 = [item[0] for item in self._pipeline] col1 = [step.frame for step in self._pipeline] col2 = [] for item in self._pipeline[: -1]: #model = item[1] model = item.transform if model.name is not None: col2.append(model.name) else: col2.append(model.__class__.__name__) col2.append(None) t = Table([col1, col2], names=['From', 'Transform']) return str(t) def __repr__(self): fmt = "<WCS(output_frame={0}, input_frame={1}, forward_transform={2})>".format( self.output_frame, self.input_frame, self.forward_transform) return fmt def footprint(self, bounding_box=None, center=False, axis_type="all"): """ Return the footprint in world coordinates. Parameters ---------- bounding_box : tuple of floats: (start, stop) `prop: bounding_box` center : bool If `True` use the center of the pixel, otherwise use the corner. axis_type : str A supported ``output_frame.axes_type`` or "all" (default). One of ['spatial', 'spectral', 'temporal'] or a custom type. Returns ------- coord : ndarray Array of coordinates in the output_frame mapping corners to the output frame. For spatial coordinates the order is clockwise, starting from the bottom left corner. """ def _order_clockwise(v): return np.asarray([[v[0][0], v[1][0]], [v[0][0], v[1][1]], [v[0][1], v[1][1]], [v[0][1], v[1][0]]]).T if bounding_box is None: if self.bounding_box is None: raise TypeError("Need a valid bounding_box to compute the footprint.") bb = self.bounding_box else: bb = bounding_box all_spatial = all([t.lower() == "spatial" for t in self.output_frame.axes_type]) if all_spatial: vertices = _order_clockwise(bb) else: vertices = np.array(list(itertools.product(*bb))).T if center: vertices = utils._toindex(vertices) result = np.asarray(self.__call__(*vertices, **{'with_bounding_box': False})) axis_type = axis_type.lower() if axis_type == 'spatial' and all_spatial: return result.T if axis_type != "all": axtyp_ind = np.array([t.lower() for t in self.output_frame.axes_type]) == axis_type if not axtyp_ind.any(): raise ValueError('This WCS does not have axis of type "{}".'.format(axis_type)) result = np.asarray([(r.min(), r.max()) for r in result[axtyp_ind]]) if axis_type == "spatial": result = _order_clockwise(result) else: result.sort() result = np.squeeze(result) return result.T def fix_inputs(self, fixed): """ Return a new unique WCS by fixing inputs to constant values. Parameters ---------- fixed : dict Keyword arguments with fixed values corresponding to `self.selector`. Returns ------- new_wcs : `WCS` A new unique WCS corresponding to the values in `fixed`. Examples -------- >>> w = WCS(pipeline, selector={"spectral_order": [1, 2]}) # doctest: +SKIP >>> new_wcs = w.set_inputs(spectral_order=2) # doctest: +SKIP >>> new_wcs.inputs # doctest: +SKIP ("x", "y") """ if not HAS_FIX_INPUTS: raise ImportError('"fix_inputs" needs astropy version >= 4.0.') new_pipeline = [] step0 = self.pipeline[0] new_transform = fix_inputs(step0[1], fixed) new_pipeline.append((step0[0], new_transform)) new_pipeline.extend(self.pipeline[1:]) return self.__class__(new_pipeline) def to_fits_sip(self, bounding_box=None, max_pix_error=0.25, degree=None, max_inv_pix_error=0.25, inv_degree=None, npoints=32, crpix=None, verbose=False): """ Construct a SIP-based approximation to the WCS in the form of a FITS header This assumes a tangent projection. The default mode in using this attempts to achieve roughly 0.25 pixel accuracy over the whole image. Parameters ---------- bounding_box : tuple, optional A pair of tuples, each consisting of two numbers Represents the range of pixel values in both dimensions ((xmin, xmax), (ymin, ymax)) max_pix_error : float, optional Maximum allowed error over the domain of the pixel array. This error is the equivalent pixel error that corresponds to the maximum error in the output coordinate resulting from the fit based on a nominal plate scale. degree : int, iterable, None, optional Degree of the SIP polynomial. Default value `None` indicates that all allowed degree values (``[1...9]``) will be considered and the lowest degree that meets accuracy requerements set by ``max_pix_error`` will be returned. Alternatively, ``degree`` can be an iterable containing allowed values for the SIP polynomial degree. This option is similar to default `None` but it allows caller to restrict the range of allowed SIP degrees used for fitting. Finally, ``degree`` can be an integer indicating the exact SIP degree to be fit to the WCS transformation. In this case ``max_pixel_error`` is ignored. max_inv_error : float, optional Maximum allowed inverse error over the domain of the pixel array in pixel units. If None, no inverse is generated. inv_degree : int, iterable, None, optional Degree of the SIP polynomial. Default value `None` indicates that all allowed degree values (``[1...9]``) will be considered and the lowest degree that meets accuracy requerements set by ``max_pix_error`` will be returned. Alternatively, ``degree`` can be an iterable containing allowed values for the SIP polynomial degree. This option is similar to default `None` but it allows caller to restrict the range of allowed SIP degrees used for fitting. Finally, ``degree`` can be an integer indicating the exact SIP degree to be fit to the WCS transformation. In this case ``max_inv_pixel_error`` is ignored. npoints : int, optional The number of points in each dimension to sample the bounding box for use in the SIP fit. Minimum number of points is 3. crpix : list of float, None, optional Coordinates (1-based) of the reference point for the new FITS WCS. When not provided, i.e., when set to `None` (default) the reference pixel will be chosen near the center of the bounding box. verbose : bool, optional Print progress of fits. Returns ------- FITS header with all SIP WCS keywords Raises ------ ValueError If the WCS is not 2D, an exception will be raised. If the specified accuracy (both forward and inverse, both rms and maximum) is not achieved an exception will be raised. Notes ----- Use of this requires a judicious choice of required accuracies. Attempts to use higher degrees (~7 or higher) will typically fail due floating point problems that arise with high powers. """ if not isinstance(self.output_frame, cf.CelestialFrame): raise ValueError( "The to_fits_sip method only works with celestial frame transforms") if npoints < 8: raise ValueError("Number of sampling points is too small. 'npoints' must be >= 8.") transform = self.forward_transform # Determine reference points. if bounding_box is None and self.bounding_box is None: raise ValueError("A bounding_box is needed to proceed.") if bounding_box is None: bounding_box = self.bounding_box (xmin, xmax), (ymin, ymax) = bounding_box if crpix is None: crpix1 = round((xmax + xmin) / 2, 1) crpix2 = round((ymax + ymin) / 2, 1) else: crpix1 = crpix[0] - 1 crpix2 = crpix[1] - 1 # check that the bounding box has some reasonable size: if (xmax - xmin) < 1 or (ymax - ymin) < 1: raise ValueError("Bounding box is too small for fitting a SIP polynomial") crval1, crval2 = transform(crpix1, crpix2) hdr = fits.Header() hdr['naxis'] = 2 hdr['naxis1'] = int(xmax) + 1 hdr['naxis2'] = int(ymax) + 1 hdr['ctype1'] = 'RA---TAN-SIP' hdr['ctype2'] = 'DEC--TAN-SIP' hdr['CRPIX1'] = crpix1 + 1 hdr['CRPIX2'] = crpix2 + 1 hdr['CRVAL1'] = crval1 hdr['CRVAL2'] = crval2 hdr['cd1_1'] = 1 # Placeholders for FITS card order, all will change. hdr['cd1_2'] = 0 hdr['cd2_1'] = 0 hdr['cd2_2'] = 1 # Now rotate to native system and deproject. Recall that transform # expects pixels in the original coordinate system, but the SIP # transform is relative to crpix coordinates, thus the initial shift. ntransform = ((Shift(crpix1) & Shift(crpix2)) | transform | RotateCelestial2Native(crval1, crval2, 180) | Sky2Pix_TAN()) # standard sampling: u, v = _make_sampling_grid(npoints, bounding_box, crpix=[crpix1, crpix2]) undist_x, undist_y = ntransform(u, v) # Double sampling to check if sampling is sufficient. ud, vd = _make_sampling_grid(2 * npoints, bounding_box, crpix=[crpix1, crpix2]) undist_xd, undist_yd = ntransform(ud, vd) # Determine approximate pixel scale in order to compute error threshold # from the specified pixel error. Computed at the center of the array. x0, y0 = ntransform(0, 0) xx, xy = ntransform(1, 0) yx, yy = ntransform(0, 1) pixarea = np.abs((xx - x0) * (yy - y0) - (xy - y0) * (yx - x0)) plate_scale = np.sqrt(pixarea) max_error = max_pix_error * plate_scale # The fitting section. fit_poly_x, fit_poly_y, max_resid = _fit_2D_poly( ntransform, npoints, degree, max_error, u, v, undist_x, undist_y, ud, vd, undist_xd, undist_yd, verbose=verbose ) # The following is necessary to put the fit into the SIP formalism. cdmat, sip_poly_x, sip_poly_y = _reform_poly_coefficients(fit_poly_x, fit_poly_y) # cdmat = np.array([[fit_poly_x.c1_0.value, fit_poly_x.c0_1.value], # [fit_poly_y.c1_0.value, fit_poly_y.c0_1.value]]) det = cdmat[0][0] * cdmat[1][1] - cdmat[0][1] * cdmat[1][0] U = ( cdmat[1][1] * undist_x - cdmat[0][1] * undist_y) / det V = (-cdmat[1][0] * undist_x + cdmat[0][0] * undist_y) / det detd = cdmat[0][0] * cdmat[1][1] - cdmat[0][1] * cdmat[1][0] Ud = ( cdmat[1][1] * undist_xd - cdmat[0][1] * undist_yd) / detd Vd = (-cdmat[1][0] * undist_xd + cdmat[0][0] * undist_yd) / detd if max_inv_pix_error: fit_inv_poly_u, fit_inv_poly_v, max_inv_resid = _fit_2D_poly(ntransform, npoints, inv_degree, max_inv_pix_error, U, V, u-U, v-V, Ud, Vd, ud-Ud, vd-Vd, verbose=verbose) pdegree = fit_poly_x.degree if pdegree > 1: hdr['a_order'] = pdegree hdr['b_order'] = pdegree _store_2D_coefficients(hdr, sip_poly_x, 'A') _store_2D_coefficients(hdr, sip_poly_y, 'B') hdr['sipmxerr'] = (max_resid * plate_scale, 'Max diff from GWCS (equiv pix).') if max_inv_pix_error: hdr['sipiverr'] = (max_inv_resid, 'Max diff for inverse (pixels)') _store_2D_coefficients(hdr, fit_inv_poly_u, 'AP', keeplinear=True) _store_2D_coefficients(hdr, fit_inv_poly_v, 'BP', keeplinear=True) if max_inv_pix_error: ipdegree = fit_inv_poly_u.degree hdr['ap_order'] = ipdegree hdr['bp_order'] = ipdegree else: hdr['ctype1'] = 'RA---TAN' hdr['ctype2'] = 'DEC--TAN' hdr['cd1_1'] = cdmat[0][0] hdr['cd1_2'] = cdmat[0][1] hdr['cd2_1'] = cdmat[1][0] hdr['cd2_2'] = cdmat[1][1] return hdr def to_fits_tab(self, bounding_box=None, bin_ext_name='WCS-TABLE', coord_col_name='coordinates', sampling=1): """ Construct a FITS WCS ``-TAB``-based approximation to the WCS in the form of a FITS header and a binary table extension. For the description of the FITS WCS ``-TAB`` convention, see "Representations of spectral coordinates in FITS" in `<NAME>. et al. A&A 446 (2) 747-771 (2006) <https://doi.org/10.1051/0004-6361:20053818>`_ . Parameters ---------- bounding_box : tuple, optional Specifies the range of acceptable values for each input axis. The order of the axes is `~gwcs.coordinate_frames.CoordinateFrame.axes_order`. For two image axes ``bounding_box`` is of the form ``((xmin, xmax), (ymin, ymax))``. bin_ext_name : str, optional Extension name for the `~astropy.io.fits.BinTableHDU` extension. coord_col_name : str, optional Field name of the coordinate array in the structured array stored in `~astropy.io.fits.BinTableHDU` data. This corresponds to ``TTYPEi`` field in the FITS header of the binary table extension. sampling : float, tuple, optional The target "density" of grid nodes per pixel to be used when creating the coordinate array for the ``-TAB`` FITS WCS convention. It is equal to ``1/step`` where ``step`` is the distance between grid nodes in pixels. ``sampling`` can be specified as a single number to be used for all axes or as a `tuple` of numbers that specify the sampling for each image axis. Returns ------- hdr : `~astropy.io.fits.Header` Header with WCS-TAB information associated (to be used) with image data. bin_table : `~astropy.io.fits.BinTableHDU` Binary table extension containing the coordinate array. Raises ------ ValueError When ``bounding_box`` is not defined either through the input ``bounding_box`` parameter or this object's ``bounding_box`` property. ValueError When ``sampling`` is a `tuple` of length larger than 1 that does not match the number of image axes. RuntimeError If the number of image axes (`~gwcs.WCS.pixel_n_dim`) is larger than the number of world axes (`~gwcs.WCS.world_n_dim`). """ if bounding_box is None: if self.bounding_box is None: raise ValueError( "Need a valid bounding_box to compute the footprint." ) bounding_box = self.bounding_box else: # validate user-supplied bounding box: frames = self.available_frames transform_0 = self.get_transform(frames[0], frames[1]) mutils._BoundingBox.validate(transform_0, bounding_box) if self.pixel_n_dim > self.world_n_dim: raise RuntimeError( "The case when the number of input axes is larger than the " "number of output axes is not supported." ) try: sampling = np.broadcast_to(sampling, (self.pixel_n_dim, )) except ValueError: raise ValueError("Number of sampling values either must be 1 " "or it must match the number of pixel axes.") # 1D grid coordinates: gcrds = [] cdelt = [] for (xmin, xmax), s in zip(bounding_box, sampling): npix = max(2, 1 + int(np.ceil(abs((xmax - xmin) / s)))) gcrds.append(np.linspace(xmin, xmax, npix)) cdelt.append((npix - 1) / (xmax - xmin) if xmin != xmax else 1) # n-dim coordinate arrays: coord = np.stack( self(*np.meshgrid(*gcrds[::-1], indexing='ij')[::-1]), axis=-1 ) # create header with WCS info: hdr = fits.Header() for k in range(self.world_n_dim): k1 = k + 1 ct = cf.get_ctype_from_ucd(self.world_axis_physical_types[k]) if len(ct) > 4: raise ValueError("Axis type name too long.") hdr['CTYPE{:d}'.format(k1)] = ct + (4 - len(ct)) * '-' + '-TAB' hdr['CUNIT{:d}'.format(k1)] = self.world_axis_units[k] hdr['PS{:d}_0'.format(k1)] = bin_ext_name hdr['PS{:d}_1'.format(k1)] = coord_col_name hdr['PV{:d}_3'.format(k1)] = k1 hdr['CRVAL{:d}'.format(k1)] = 1 if k < self.pixel_n_dim: hdr['CRPIX{:d}'.format(k1)] = gcrds[k][0] + 1 hdr['PC{0:d}_{0:d}'.format(k1)] = 1.0 hdr['CDELT{:d}'.format(k1)] = cdelt[k] else: hdr['CRPIX{:d}'.format(k1)] = 1 coord = coord[None, :] # structured array (data) for binary table HDU: arr = np.array( [(coord, )], dtype=[ (coord_col_name, np.float64, coord.shape), ] ) # create binary table HDU: bin_tab = fits.BinTableHDU(arr) bin_tab.header['EXTNAME'] = bin_ext_name return hdr, bin_tab def _calc_approx_inv(self, max_inv_pix_error=5, inv_degree=None, npoints=16): """ Compute polynomial fit for the inverse transformation to be used as initial aproximation/guess for the iterative solution. """ self._approx_inverse = None try: # try to use analytic inverse if available: self._approx_inverse = functools.partial(self.backward_transform, with_bounding_box=False) return except (NotImplementedError, KeyError): pass if not isinstance(self.output_frame, cf.CelestialFrame): # The _calc_approx_inv method only works with celestial frame transforms return # Determine reference points. if self.bounding_box is None: # A bounding_box is needed to proceed. return crpix = np.mean(self.bounding_box, axis=1) crval1, crval2 = self.forward_transform(*crpix) # Rotate to native system and deproject. Set center of the projection # transformation to the middle of the bounding box ("image") in order # to minimize projection effects across the entire image, # thus the initial shift. ntransform = ((Shift(crpix[0]) & Shift(crpix[1])) | self.forward_transform | RotateCelestial2Native(crval1, crval2, 180) | Sky2Pix_TAN()) # standard sampling: u, v = _make_sampling_grid(npoints, self.bounding_box, crpix=crpix) undist_x, undist_y = ntransform(u, v) # Double sampling to check if sampling is sufficient. ud, vd = _make_sampling_grid(2 * npoints, self.bounding_box, crpix=crpix) undist_xd, undist_yd = ntransform(ud, vd) fit_inv_poly_u, fit_inv_poly_v, max_inv_resid = _fit_2D_poly( ntransform, npoints, None, max_inv_pix_error, undist_x, undist_y, u, v, undist_xd, undist_yd, ud, vd, verbose=True ) self._approx_inverse = (RotateCelestial2Native(crval1, crval2, 180) | Sky2Pix_TAN() | Mapping((0, 1, 0, 1)) | (fit_inv_poly_u & fit_inv_poly_v) | (Shift(crpix[0]) & Shift(crpix[1]))) def _fit_2D_poly(ntransform, npoints, degree, max_error, xin, yin, xout, yout, xind, yind, xoutd, youtd, verbose=False): """ Fit a pair of ordinary 2D polynomials to the supplied transform. """ llsqfitter = LinearLSQFitter() # The case of one pass with the specified polynomial degree if degree is None: deglist = range(1, 10) elif hasattr(degree, '__iter__'): deglist = sorted(map(int, degree)) if set(deglist).difference(range(1, 10)): raise ValueError("Allowed values for SIP degree are [1...9]") else: degree = int(degree) if degree < 1 or degree > 9: raise ValueError("Allowed values for SIP degree are [1...9]") deglist = [degree] prev_max_error = float(np.inf) if verbose: print(f'maximum_specified_error: {max_error}') for deg in deglist: poly_x = Polynomial2D(degree=deg) poly_y = Polynomial2D(degree=deg) fit_poly_x = llsqfitter(poly_x, xin, yin, xout) fit_poly_y = llsqfitter(poly_y, xin, yin, yout) max_resid = _compute_distance_residual(xout, yout, fit_poly_x(xin, yin), fit_poly_y(xin, yin)) if max_resid > prev_max_error: raise RuntimeError('Failed to achieve required error tolerance') if verbose: print(f'Degree = {deg}, max_resid = {max_resid}') if max_resid < max_error: # Check to see if double sampling meets error requirement. max_resid = _compute_distance_residual(xoutd, youtd, fit_poly_x(xind, yind), fit_poly_y(xind, yind)) if verbose: print(f'Double sampling check: maximum residual={max_resid}') if max_resid < max_error: if verbose: print('terminating condition met') break return fit_poly_x, fit_poly_y, max_resid def _make_sampling_grid(npoints, bounding_box, crpix): step = np.subtract.reduce(bounding_box, axis=1) / (1.0 - npoints) crpix = np.asanyarray(crpix)[:, None, None] return grid_from_bounding_box(bounding_box, step=step, center=False) - crpix def _compute_distance_residual(undist_x, undist_y, fit_poly_x, fit_poly_y): """ Compute the distance residuals and return the rms and maximum values. """ dist = np.sqrt((undist_x - fit_poly_x)**2 + (undist_y - fit_poly_y)**2) max_resid = dist.max() return max_resid def _reform_poly_coefficients(fit_poly_x, fit_poly_y): """ The fit polynomials must be recombined to align with the SIP decomposition The result is the f(u,v) and g(u,v) polynomials, and the CD matrix. """ # Extract values for CD matrix and recombining c11 = fit_poly_x.c1_0.value c12 = fit_poly_x.c0_1.value c21 = fit_poly_y.c1_0.value c22 = fit_poly_y.c0_1.value sip_poly_x = fit_poly_x.copy() sip_poly_y = fit_poly_y.copy() # Force low order coefficients to be 0 as defined in SIP sip_poly_x.c0_0 = 0 sip_poly_y.c0_0 = 0 sip_poly_x.c1_0 = 0 sip_poly_x.c0_1 = 0 sip_poly_y.c1_0 = 0 sip_poly_y.c0_1 = 0 cdmat = ((c11, c12), (c21, c22)) invcdmat = npla.inv(np.array(cdmat)) degree = fit_poly_x.degree # Now loop through all remaining coefficients for i in range(0, degree + 1): for j in range(0, degree + 1): if (i + j > 1) and (i + j < degree + 1): old_x = getattr(fit_poly_x, f'c{i}_{j}').value old_y = getattr(fit_poly_y, f'c{i}_{j}').value newcoeff = np.dot(invcdmat, np.array([[old_x], [old_y]])) setattr(sip_poly_x, f'c{i}_{j}', newcoeff[0, 0]) setattr(sip_poly_y, f'c{i}_{j}', newcoeff[1, 0]) return cdmat, sip_poly_x, sip_poly_y def _store_2D_coefficients(hdr, poly_model, coeff_prefix, keeplinear=False): """ Write the polynomial model coefficients to the header. """ mindeg = int(not keeplinear) degree = poly_model.degree for i in range(0, degree + 1): for j in range(0, degree + 1): if (i + j) > mindeg and (i + j < degree + 1): hdr[f'{coeff_prefix}_{i}_{j}'] = getattr(poly_model, f'c{i}_{j}').value class Step: """ Represents a ``step`` in the WCS pipeline. Parameters ---------- frame : `~gwcs.coordinate_frames.CoordinateFrame` A gwcs coordinate frame object. transform : `~astropy.modeling.core.Model` or None A transform from this step's frame to next step's frame. The transform of the last step should be ``None``. """ def __init__(self, frame, transform=None): self.frame = frame self.transform = transform @property def frame(self): return self._frame @frame.setter def frame(self, val): if not isinstance(val, (cf.CoordinateFrame, str)): raise TypeError('"frame" should be an instance of CoordinateFrame or a string.') self._frame = val @property def transform(self): return self._transform @transform.setter def transform(self, val): if val is not None and not isinstance(val, (Model)): raise TypeError('"transform" should be an instance of astropy.modeling.Model.') self._transform = val @property def frame_name(self): if isinstance(self.frame, str): return self.frame return self.frame.name def __getitem__(self, ind): warnings.warn("Indexing a WCS.pipeline step is deprecated. " "Use the `frame` and `transform` attributes instead.", DeprecationWarning) if ind not in (0, 1): raise IndexError("Allowed inices are 0 (frame) and 1 (transform).") if ind == 0: return self.frame return self.transform def __str__(self): return f"{self.frame_name}\t {getattr(self.transform, 'name', 'None') or self.transform.__class__.__name__}" def __repr__(self): return f"Step(frame={self.frame_name}, \ transform={getattr(self.transform, 'name', 'None') or self.transform.__class__.__name__})" ```
{ "source": "jdavies-st/jwst_reffiles", "score": 2 }
#### File: jwst_reffiles/bad_pixel_mask/bad_pixel_mask.py ```python import copy import datetime import os from astropy.io import fits from jwst.datamodels import MaskModel, util import numpy as np from jwst_reffiles.bad_pixel_mask import badpix_from_flats from jwst_reffiles.dark_current import badpix_from_darks # Flat field-related header keywords dead_search_kw = 'BPFDEAD' low_qe_search_kw = 'BPFLOWQE' dead_search_type_kw = 'BPFSCHTP' mean_sig_threshold_kw = 'BPFSIGMA' norm_method_kw = 'BPFNORM' smooth_box_width_kw = 'BPFSMOTH' smoothing_type_kw = 'BPFSMTYP' dead_sig_thresh_kw = 'BPFDEDSG' dead_zero_sig_frac_kw = 'BPFZEROF' dead_flux_check_kw = 'BPFFXCHK' #dead_flux_file_kw = 'BPFFXFIL' max_dead_sig_kw = 'BPFMXDED' manual_flag_kw = 'BPFMANFL' flat_do_not_use_kw = 'BPFDONOT' max_low_qe_kw = 'BPFMXLQE' max_open_adj_kw = 'BPFMXOAD' # Dark current-related header keywords bad_from_dark_kw = 'BPDSERCH' dark_clip_sigma_kw = 'BPDCLPSG' dark_clip_iters_kw = 'BPDCLPIT' dark_noisy_thresh_kw = 'BPDNSETH' max_sat_frac_kw = 'BPDMXSAT' jump_limit_kw = 'BPDMXJMP' jump_ratio_thresh_kw = 'BPDJPRAT' cutoff_frac_kw = 'BPDCUTFC' pedestal_sig_thresh_kw = 'BPDPEDTH' rc_frac_thresh_kw = 'BPDRCTH' low_ped_frac_kw = 'BPDLOPFC' high_cr_frac_kw = 'BPDCRFC' dark_do_not_use_kw = 'BPDDONOT' flag_mapping_kw = 'BPDMAPS' def bad_pixels(flat_slope_files=None, dead_search=True, low_qe_and_open_search=True, dead_search_type='sigma_rate', flat_mean_sigma_threshold=3, flat_mean_normalization_method='smoothed', smoothing_box_width=15, smoothing_type='Box2D', dead_sigma_threshold=5., max_dead_norm_signal=None, run_dead_flux_check=False, dead_flux_check_files=None, flux_check=45000, max_low_qe_norm_signal=0.5, max_open_adj_norm_signal=1.05, manual_flag_file='default', flat_do_not_use=[], dark_slope_files=None, dark_uncal_files=None, dark_jump_files=None, dark_fitopt_files=None, dark_stdev_clipping_sigma=5., dark_max_clipping_iters=5, dark_noisy_threshold=5, max_saturated_fraction=0.5, max_jump_limit=10, jump_ratio_threshold=5, early_cutoff_fraction=0.25, pedestal_sigma_threshold=5, rc_fraction_threshold=0.8, low_pedestal_fraction=0.8, high_cr_fraction=0.8, flag_values={'hot': ['HOT'], 'rc': ['RC'], 'low_pedestal': ['OTHER_BAD_PIXEL'], 'high_cr': ["TELEGRAPH"]}, dark_do_not_use=['hot', 'rc', 'low_pedestal', 'high_cr'], plot=False, output_file=None, author='jwst_reffiles', description='A bad pix mask', pedigree='GROUND', useafter='2019-04-01 00:00:00', history='', quality_check=False): """ Wrapper that calls the two modules for finding bad pixels from input flat field files, and bad pixels from dark current files. Parameters ---------- flat_slope_files : list List of flat field slope files to be used for the dead pixel search. If None, the search is skipped. dead_search : bool Whether or not to search for DEAD pixels using the flat field files low_qe_and_open_search : bool Whether or not to search for LOW_QE, OPEN, and ADJ_OPEN pixels using the flat field files dead_search_type : str Type of search to use when looking for dead pixels. Options are: ``sigma_rate``: Using a normalized signal rate image, dead pixels are defined as those with a rate smaller than ``dead_sigma_threshold`` standard deviations below the mean. ``absolute_rate``: Using a normalized signal rate image, dead pixels are defined as those with a rate less than ``max_dead_norm_signal``. flat_mean_sigma_threshold : float Number of standard deviations to use when sigma-clipping to calculate the mean slope image or the mean across the detector flat_mean_normalization_method : str Specify how the mean image is normalized prior to searching for bad pixels. Options are: 'smoothed': Mean image will be smoothed using a ``smoothing_box_width`` x ``smoothing_box_width`` box kernel. The mean image is then normalized by this smoothed image. 'none': No normalization is done. Mean slope image is used as is 'mean': Mean image is normalized by its sigma-clipped mean 'fit2d': Mean image will be normalized by a fit of 2-D surface to mean image. The degree of the fit is controlled by the ``fit_degree`` parameters smoothing_box_width : float Width in pixels of the box kernel to use to compute the smoothed mean image smoothing_typ : string Type of smoothing to do ``Box2D `` or ``median`` filtering smoothing_sigma : float Number of standard deviations to use when smoothing in a box defined by smoothing_box_width. dead_sigma_threshold : float Number of standard deviations below the mean at which a pixel is considered dead. max_dead_norm_signal : float Maximum normalized signal rate of a pixel that is considered dead run_dead_flux_check : bool Whether or not to check for dead pixels using an absolute flux value dead_flux_check_files : list List of ramp (uncalibrated) files to use to check the flux of average of last 4 groups. If None then the uncalibration files are not read in and no flux_check is done. flux_check: float Tolerance on average signal in last 4 groups. If dead_flux_check_files is a list of uncalibrated files, then the average of the last four groups for all the integrations is determined. If this average > flux_check then this pixel is not a dead pixel. max_low_qe_norm_signal: float The maximum normalized signal a pixel can have and be considered low QE. max_open_adj_norm_signal : float The maximum normalized signal a pixel adjacent to a low QE pixel can have in order for the low QE pixel to be reclassified as OPEN manual_flag_file : str Name of the ascii file containing a list of pixels to be added manually to the output bad pixel mask file. Default is 'default', in which case the file contained in the ``bad_pixel_mask`` directory of the repo will be used. flat_do_not_use : list List of bad pixel types where the DO_NOT_USE flag should also be applied (e.g. ['DEAD', 'LOW_QE']) dark_slope_files : list List of dark current slope files to be used for the noisy pixel search. If None, the search is skipped. dark_uncal_files : list List of uncalibrated dark current ramp files. These should correspond 1-to-1 with the files listed in ``dark_slope_files``. If None, the code assumes the files are in the same location as the slope files and have names ending in uncal.fits dark_jump_files : list List of dark current ramp files output from the jump step of the pipeline. These should correspond 1-to-1 with the files listed in ``dark_slope_files``. If None, the code assumes the files are in the same location as the slope files and have names ending in jump.fits dark_fitopt_files : list List of optional output files produced by the ramp-fitting step of the pipeline. These should correspond 1-to-1 with the files listed in ``dark_slope_files``. If None, the code assumes the files are in the same location as the slope files and have names ending in fitopt.fits dark_stdev_clipping_sigma : int Number of sigma to use when sigma-clipping the 2D array of standard deviation values. The sigma-clipped mean and standard deviation are used to locate noisy pixels. dark_max_clipping_iters : int Maximum number of iterations to use when sigma clipping to find the mean and standard deviation values that are used when locating noisy pixels. dark_noisy_threshold : int Number of sigma above the mean noise (associated with the slope) to use as a threshold for identifying noisy pixels. max_saturated_fraction : float When identifying pixels that are fully saturated (in all groups of an integration), this is the fraction of integrations within which a pixel must be fully saturated before flagging it as HOT max_jump_limit : int The maximum number of jumps a pixel can have in an integration before it is flagged as a ``high jump`` pixel (which may be flagged as noisy later) jump_ratio_threshold : int Cutoff for the ratio of jumps early in the ramp to jumps later in the ramp. Pixels with a ratio greater than this value (and which also have a high total number of jumps) will be flagged as potential (I)RC pixels. early_cutoff_fraction : float Fraction of the integration to use when comparing the jump rate early in the integration to that across the entire integration. Must be <= 0.5 pedestal_sigma_threshold : int Used when searching for RC pixels via the pedestal image. Pixels with pedestal values more than ``pedestal_sigma_threshold`` above the mean are flagged as potential RC pixels rc_fraction_threshold : float Used when searching for RC pixels. This is the fraction of input files within which the pixel must be identified as an RC pixel before it will be flagged as a permanent RC pixel low_pedestal_fraction : float This is the fraction of input files within which a pixel must be identified as a low pedestal pixel before it will be flagged as a permanent low pedestal pixel high_cr_fraction : float This is the fraction of input files within which a pixel must be flagged as having a high number of jumps before it will be flagged as permanently noisy flag_values : dict This dictionary maps the types of bad pixels searched for to the flag mnemonics to use when creating the bad pixel file. Keys are the types of bad pixels searched for, and values are lists that include mnemonics recognized by the jwst calibration pipeline e.g. {'hot': ['HOT'], 'rc': ['RC'], 'low_pedestal': ['OTHER_BAD_PIXEL'], 'high_cr': ["TELEGRAPH"]} dark_do_not_use : list List of bad pixel types to be flagged as DO_NOT_USE e.g. ['hot', 'rc', 'low_pedestal', 'high_cr'] plot : bool If True, produce and save intermediate results from noisy pixel search output_file : str Name of the CRDS-formatted bad pixel reference file to save the final bad pixel map into author : str CRDS-required name of the reference file author, to be placed in the referece file header description : str CRDS-required description of the reference file, to be placed in the reference file header pedigree : str CRDS-required pedigree of the data used to create the reference file useafter : str CRDS-required date of earliest data with which this referece file should be used. (e.g. '2019-04-01 00:00:00') history : str Text to be added to the HISOTRY section of the output bad pixel file quality_check : bool If True, the pipeline is run using the output reference file to be sure the pipeline doens't crash """ instrument = None detector = None all_files = [] history = [history] hdu = fits.PrimaryHDU() if flat_slope_files is not None: all_files = copy.deepcopy(flat_slope_files) instrument, detector = instrument_info(flat_slope_files[0]) # Get output filenames if output_file is None: output_file = create_output_filename(instrument, detector) flat_output_file = output_file.replace('.fits', '_from_flats.fits') # Get bad pixels from the flats flatmask = badpix_from_flats.find_bad_pix(flat_slope_files, dead_search=dead_search, low_qe_and_open_search=low_qe_and_open_search, dead_search_type=dead_search_type, sigma_threshold=flat_mean_sigma_threshold, normalization_method=flat_mean_normalization_method, smoothing_type=smoothing_type, smoothing_box_width=smoothing_box_width, dead_sigma_threshold=dead_sigma_threshold, #dead_zero_signal_fraction=dead_zero_signal_fraction, run_dead_flux_check=run_dead_flux_check, dead_flux_check_files=dead_flux_check_files, max_dead_norm_signal=max_dead_norm_signal, manual_flag_file=manual_flag_file, max_low_qe_norm_signal=max_low_qe_norm_signal, max_open_adj_norm_signal=max_open_adj_norm_signal, do_not_use=flat_do_not_use, output_file=flat_output_file, author=author, description=description, pedigree=pedigree, useafter=useafter, history=history[0], quality_check=quality_check) # Convert the do not use list to a string to add to the header if len(flat_do_not_use) > 0: flat_do_not_use_string = ', '.join(flat_do_not_use) else: flat_do_not_use_string = 'None' flat_do_not_use_string = '{} {}'.format('Bad pixel types from flat to which DO_NOT_USE is applied: ', flat_do_not_use_string) # Add the do not use string to the list of history entries to add, # since it may end up being longer than 8 characters history.append(flat_do_not_use_string) # Define the non-standard fits header keywords by placing them in a # fits HDU List hdu.header[dead_search_kw] = dead_search hdu.header[low_qe_search_kw] = low_qe_and_open_search hdu.header[dead_search_type_kw] = dead_search_type hdu.header[mean_sig_threshold_kw] = flat_mean_sigma_threshold hdu.header[norm_method_kw] = flat_mean_normalization_method hdu.header[smooth_box_width_kw] = smoothing_box_width hdu.header[dead_sig_thresh_kw] = dead_sigma_threshold #hdu.header[dead_zero_sig_frac_kw] = dead_zero_signal_fraction hdu.header[dead_flux_check_kw] = run_dead_flux_check #hdu.header[dead_flux_file_kw] = dead_flux_check_files hdu.header[max_dead_sig_kw] = max_dead_norm_signal hdu.header[manual_flag_kw] = manual_flag_file hdu.header[max_low_qe_kw] = max_low_qe_norm_signal hdu.header[max_open_adj_kw] = max_open_adj_norm_signal else: flatmask = 0 hdu.header[dead_search_kw] = False hdu.header[low_qe_search_kw] = False if dark_slope_files is not None: if len(all_files) == 0: all_files = copy.deepcopy(dark_slope_files) instrument, detector = instrument_info(dark_slope_files[0]) else: all_files = all_files + dark_slope_files # Get output filenames if output_file is None: output_file = create_output_filename(instrument, detector) dark_output_file = output_file.replace('.fits', '_from_darks.fits') # Get bad pixels from the darks darkmask = badpix_from_darks.find_bad_pix(dark_slope_files, uncal_filenames=dark_uncal_files, jump_filenames=dark_jump_files, fitopt_filenames=dark_fitopt_files, clipping_sigma=dark_stdev_clipping_sigma, max_clipping_iters=dark_max_clipping_iters, noisy_threshold=dark_noisy_threshold, max_saturated_fraction=max_saturated_fraction, max_jump_limit=max_jump_limit, jump_ratio_threshold=jump_ratio_threshold, early_cutoff_fraction=early_cutoff_fraction, pedestal_sigma_threshold=pedestal_sigma_threshold, rc_fraction_threshold=rc_fraction_threshold, low_pedestal_fraction=low_pedestal_fraction, high_cr_fraction=high_cr_fraction, flag_values=flag_values, do_not_use=dark_do_not_use, outfile=dark_output_file, plot=False) # Convert the do not use list to a string to add to the header if len(dark_do_not_use) > 0: dark_do_not_use_string = ', '.join(dark_do_not_use) else: dark_do_not_use_string = 'None' dark_do_not_use_string = '{} {}'.format('Bad pixel types from dark to which DO_NOT_USE is applied: ', dark_do_not_use_string) # Add the do not use string to the list of history entries to add, # since it may end up being longer than 8 characters history.append(dark_do_not_use_string) # Convert the bad pixel type mapping into a string so it can be # added to the output header if len(flag_values) > 0: mapping_str = '' for key in flag_values: substr = '{}: {}, '.format(key, flag_values[key]) mapping_str = mapping_str + substr else: mapping_str = 'None' mapping_str = '{} {}'.format('Mapping of jwst_reffiles bad pixel types to jwst cal bad pixel flags: ', mapping_str) # Add the do not use string to the list of history entries to add, # since it may end up being longer than 8 characters history.append(mapping_str) # Define the non-standard fits header keywords by placing them in a # fits HDU List hdu.header[bad_from_dark_kw] = True hdu.header[dark_clip_sigma_kw] = dark_stdev_clipping_sigma hdu.header[dark_clip_iters_kw] = dark_max_clipping_iters hdu.header[dark_noisy_thresh_kw] = dark_noisy_threshold hdu.header[max_sat_frac_kw] = max_saturated_fraction hdu.header[jump_limit_kw] = max_jump_limit hdu.header[jump_ratio_thresh_kw] = jump_ratio_threshold hdu.header[cutoff_frac_kw] = early_cutoff_fraction hdu.header[pedestal_sig_thresh_kw ] = pedestal_sigma_threshold hdu.header[rc_frac_thresh_kw ] = rc_fraction_threshold hdu.header[low_ped_frac_kw] = low_pedestal_fraction hdu.header[high_cr_frac_kw] = high_cr_fraction else: darkmask = 0. hdu.header[bad_from_dark_kw] = False # Combine the two masks final_mask = flatmask + darkmask # Save mask in reference file hdu_list = fits.HDUList([hdu]) save_final_map(final_mask, instrument.upper(), detector.upper(), hdu_list, all_files, author, description, pedigree, useafter, history, output_file) def create_output_filename(inst_name, det_name): """Create a default output filename for the bad pixel mask given instrument and detector names Parameters ---------- inst_name : str Instrument name det_name : str Detector name Returns ------- outfile : str Default bad pixel mask filename """ # Add in timestamp as a way to prevent overwriting past runs current_time = datetime.datetime.now() # Use the current working directory outfile = '{}_{}_{}_badpix_mask.fits'.format(inst_name, det_name, current_time) outfile = os.path.join(os.getcwd(), outfile) return outfile def instrument_info(filename): """Get the instrument and detector name from the header of the input file Parameters ---------- filename : str Name of fits file Returns ------- inst : str Instrument name det : str Detector name """ with fits.open(filename) as hdulist: try: inst = hdulist[0].header['INSTRUME'].lower() except KeyError: raise KeyError("ERROR: expecting instrument name in main header of {}".format(filename)) try: det = hdulist[0].header['DETECTOR'].lower() except KeyError: raise KeyError("ERROR: expecting detector name in main header of {}".format(filename)) return inst, det def save_final_map(bad_pix_map, instrument, detector, hdulist, files, author, description, pedigree, useafter, history_text, outfile): """Save a bad pixel map into a CRDS-formatted reference file Parameters ---------- bad_pix_map : numpy.ndarray 2D bad pixel array instrument : str Name of instrument associated with the bad pixel array detector : str Name of detector associated with the bad pixel array hdulist : astropy.fits.HDUList HDUList containing "extra" fits keywords files : list List of files used to create ``bad_pix_map`` author : str Author of the bad pixel mask reference file description : str CRDS description to use in the final bad pixel file pedigree : str CRDS pedigree to use in the final bad pixel file useafter : str CRDS useafter string for the bad pixel file history_text : list List of strings to add as HISTORY entries to the bad pixel file outfile : str Name of the output bad pixel file """ yd, xd = bad_pix_map.shape # Initialize the MaskModel using the hdu_list, so the new keywords will # be populated model = MaskModel(hdulist) model.dq = bad_pix_map # Create dq_def data dq_def = badpix_from_flats.create_dqdef() model.dq_def = dq_def model.meta.reftype = 'MASK' model.meta.subarray.name = 'FULL' model.meta.subarray.xstart = 1 model.meta.subarray.xsize = xd model.meta.subarray.ystart = 1 model.meta.subarray.ysize = yd model.meta.instrument.name = instrument.upper() model.meta.instrument.detector = detector # Get the fast and slow axis directions from one of the input files fastaxis, slowaxis = badpix_from_flats.get_fastaxis(files[0]) model.meta.subarray.fastaxis = fastaxis model.meta.subarray.slowaxis = slowaxis model.meta.author = author model.meta.description = description model.meta.pedigree = pedigree model.meta.useafter = useafter # Add information about parameters used # Parameters from badpix_from_flats package_note = ('This file was created using the bad_pixel_mask.py module within the ' 'jwst_reffiles package.') software_dict = {'name': 'jwst_reffiles.bad_pixel_mask.bad_pixel_mask.py', 'author': 'STScI', 'homepage': 'https://github.com/spacetelescope/jwst_reffiles', 'version': '0.0.0'} entry = util.create_history_entry(package_note, software=software_dict) model.history.append(entry) model.history.append(util.create_history_entry('Parameter values and descriptions:')) dead_search_descrip = ('dead_search: Boolean, whether or not to run the dead pixel search ' 'using flat field files. The value is stored in the {} keyword.'.format(dead_search_kw)) model.history.append(util.create_history_entry(dead_search_descrip)) low_qe_search_descrip = ('low_qe_and_open_search: Boolean, whether or not to run the low QE ' 'and open pixel search using flat field files. The value is stored in the {} ' 'keyword.'.format(low_qe_search_kw)) model.history.append(util.create_history_entry(low_qe_search_descrip)) dead_type_descrip = ('dead_search_type: Method used to identify dead pixels. The value is stored in the ' '{} keyword.'.format(dead_search_type_kw)) model.history.append(util.create_history_entry(dead_type_descrip)) sigma_descrip = ('flat_mean_sigma_threshold: Number of standard deviations to use when sigma-clipping to ' 'calculate the mean slope image or the mean across the detector. The value ' 'used is stored in the {} keyword.'.format(mean_sig_threshold_kw)) model.history.append(util.create_history_entry(sigma_descrip)) norm_descrip = ('flat_mean_normalization_method: Specify how the mean image is normalized prior to searching ' 'for bad pixels. The value used is stored in the {} keyword.'.format(norm_method_kw)) model.history.append(util.create_history_entry(norm_descrip)) smooth_descrip = ('smoothing_box_width: Width in pixels of the box kernel to use to compute the ' 'smoothed mean image. The value used is stored in the {} keyword.'.format(smooth_box_width_kw)) model.history.append(util.create_history_entry(smooth_descrip)) smooth_type_descrip = ('smoothing_type: Type of smoothing to do: Box2D or median filtering. The value used ' 'is stored in the {} keyword.'.format(smoothing_type_kw)) model.history.append(util.create_history_entry(smooth_type_descrip)) dead_sig_descrip = ('Number of standard deviations below the mean at which a pixel is considered dead. ' 'The value used is stored in the {} keyword.'.format(dead_sig_thresh_kw)) model.history.append(util.create_history_entry(dead_sig_descrip)) max_dead_descrip = ('Maximum normalized signal rate of a pixel that is considered dead. The value ' 'used is stored in the {} keyword.'.format(max_dead_sig_kw)) model.history.append(util.create_history_entry(max_dead_descrip)) run_dead_flux_descrip = ('run_dead_flux_check: Boolean, if True, search for pixels erroneously flagged ' 'as dead because they are saturated in all groups. The value used is stored ' 'in the {} keyword.'.format(dead_flux_check_kw)) model.history.append(util.create_history_entry(run_dead_flux_descrip)) dead_flux_limit_descrip = ('Signal limit in raw data above which the pixel is considered not dead. The ' 'value used is stored in the {} keyword.'.format(max_dead_sig_kw)) model.history.append(util.create_history_entry(dead_flux_limit_descrip)) max_low_qe_descrip = ('The maximum normalized signal a pixel can have and be considered low QE. The ' 'value used is stored in the {} keyword.'.format(max_low_qe_kw)) model.history.append(util.create_history_entry(max_low_qe_descrip)) max_open_adj_descrip = ('The maximum normalized signal a pixel adjacent to a low QE pixel can have ' 'in order for the low QE pixel to be reclassified as OPEN. The value used ' 'is stored in the {} keyword.'.format(max_open_adj_kw)) model.history.append(util.create_history_entry(max_open_adj_descrip)) flat_do_not_use_descrip = ('List of bad pixel types (from flats) where the DO_NOT_USE flag is also applied. ' 'The values used are stored in the {} keyword.'.format(flat_do_not_use_kw)) model.history.append(util.create_history_entry(flat_do_not_use_descrip)) manual_file_descrip = ('Name of the ascii file containing a list of pixels to be added manually. The ' 'value used is stored in the {} keyword.'.format(manual_flag_kw)) model.history.append(util.create_history_entry(manual_file_descrip)) # Parameters from badpix_from_darks bad_from_dark_descrip = ('badpix_from_dark: Boolean, whether or not the bad pixel from dark search ' 'has been run. The value is stored in the {} keyword.'.format(bad_from_dark_kw)) model.history.append(util.create_history_entry(bad_from_dark_descrip)) dark_clip_sig_descrip = ('Number of sigma to use when sigma-clipping 2D stdev image. The value used ' 'is stored in the {} keyword.'.format(dark_clip_sigma_kw)) model.history.append(util.create_history_entry(dark_clip_sig_descrip)) dark_clip_iter_descrip = ('Max number of iterations to use when sigma clipping mean and stdev values. ' 'The value used is stored in the {} keyword.'.format(dark_clip_iters_kw)) model.history.append(util.create_history_entry(dark_clip_iter_descrip)) dark_noisy_thresh_descrip = ('Number of sigma above mean noise for noisy pix threshold. The value ' 'used is stored in the {} keyword.'.format(dark_noisy_thresh_kw)) model.history.append(util.create_history_entry(dark_noisy_thresh_descrip)) max_sat_frac_descrip = ('Fraction of integrations within which a pixel must be fully saturated before ' 'flagging it as HOT. The value used is stored in the {} keyword.'.format(max_sat_frac_kw)) model.history.append(util.create_history_entry(max_sat_frac_descrip)) jump_limit_descrip = ('Maximum number of jumps a pixel can have in an integration before it is flagged as a ' '"high jump" pixel. The value used is stored in the {} keyword.'.format(jump_limit_kw)) model.history.append(util.create_history_entry(jump_limit_descrip)) jump_ratio_descrip = ('Cutoff for the ratio of jumps early in the ramp to jumps later in the ramp when ' 'looking for RC pixels. The value used is stored in the {} keyword.'.format(jump_ratio_thresh_kw)) model.history.append(util.create_history_entry(jump_ratio_descrip)) cutoff_frac_descrip = ('Fraction of the integration to use when comparing the jump rate early in the integration to ' 'that across the entire integration. The value used is stored in the {} keyword.'.format(cutoff_frac_kw)) model.history.append(util.create_history_entry(cutoff_frac_descrip)) ped_sigma_descrip = ('Pixels with pedestal values more than this limit above the mean are flagged as RC. ' 'The value used is stored in the {} keyword.'.format(pedestal_sig_thresh_kw)) model.history.append(util.create_history_entry(ped_sigma_descrip)) rc_thresh_descrip = ('Fraction of input files within which a pixel must be identified as an RC pixel before ' 'it will be flagged as a permanent RC pixel. The value used is stored in the {} ' 'keyword.'.format(rc_frac_thresh_kw)) model.history.append(util.create_history_entry(rc_thresh_descrip)) low_ped_descrip = ('Fraction of input files within which a pixel must be identified as a low pedestal ' 'pixel before it will be flagged as a permanent low pedestal pixel. The value used ' 'is stored in the {} keyword.'.format(low_ped_frac_kw)) model.history.append(util.create_history_entry(low_ped_descrip)) high_cr_descrip = ('Fraction of input files within which a pixel must be flagged as having a high number ' 'of jumps before it will be flagged as permanently noisy. The value used ' 'is stored in the {} keyword.'.format(high_cr_frac_kw)) dark_do_not_use_descrip = ('List of bad pixel types (from darks) where the DO_NOT_USE flag is also applied. ' 'The values used are stored in the {} keyword.'.format(dark_do_not_use_kw)) model.history.append(util.create_history_entry(dark_do_not_use_descrip)) # Add the list of input files used to create the map model.history.append('DATA USED:') for file in files: totlen = len(file) div = np.arange(0, totlen, 60) for val in div: if totlen > (val+60): model.history.append(util.create_history_entry(file[val:val+60])) else: model.history.append(util.create_history_entry(file[val:])) # Add the do not use lists, pixel flag mappings, and user-provided # history text for history_entry in history_text: if history_entry != '': model.history.append(util.create_history_entry(history_entry)) model.save(outfile, overwrite=True) print('Final bad pixel mask reference file save to: {}'.format(outfile)) ```
{ "source": "jdavies-st/pytest-astropy-header", "score": 2 }
#### File: pytest-astropy-header/tests/test_display.py ```python import pytest import numpy NUMPY_VERSION = numpy.__version__ pytest_plugins = ['pytester'] def extract_package_version_lines(output): lines = [] in_section = False for line in output.splitlines(): if line.strip() == 'Package versions:': in_section = True elif in_section: if line.strip() == "": break else: lines.append(line) return lines def test_default(testdir, capsys): testdir.inline_run() out, err = capsys.readouterr() assert 'Package versions:' not in out @pytest.mark.parametrize('method', ['cli', 'ini', 'conftest']) def test_enabled(testdir, capsys, method): if method == 'cli': testdir.inline_run("--astropy-header") elif method == 'ini': testdir.makeini(""" [pytest] astropy_header = yes """) testdir.inline_run() elif method == 'conftest': testdir.makeconftest(""" def pytest_configure(config): config.option.astropy_header = True """) testdir.inline_run() out, err = capsys.readouterr() lines = extract_package_version_lines(out) assert len(lines) == 6 assert lines[0].startswith('Numpy: ') assert lines[1].startswith('Scipy: ') assert lines[2].startswith('Matplotlib: ') assert lines[3].startswith('h5py: ') assert lines[4].startswith('Pandas: ') assert lines[5].startswith('astropy-helpers: ') @pytest.mark.parametrize('method', ['ini', 'conftest']) def test_explicit_disable(testdir, capsys, method): if method == 'ini': testdir.makeini(""" [pytest] astropy_header = no """) testdir.inline_run() elif method == 'conftest': testdir.makeconftest(""" def pytest_configure(config): config.option.astropy_header = False """) testdir.inline_run() out, err = capsys.readouterr() assert 'Package versions:' not in out @pytest.mark.parametrize('method', ['cli', 'ini', 'ini_list', 'conftest']) def test_override_package_single(testdir, capsys, method): if method == 'cli': testdir.inline_run("--astropy-header", "--astropy-header-packages=numpy") elif method == 'ini': testdir.makeini(""" [pytest] astropy_header = yes astropy_header_packages = numpy """) testdir.inline_run() elif method == 'ini_list': testdir.makeini(""" [pytest] astropy_header = yes astropy_header_packages = numpy """) testdir.inline_run() elif method == 'conftest': testdir.makeconftest(""" def pytest_configure(config): config.option.astropy_header = True config.option.astropy_header_packages = ['numpy'] """) testdir.inline_run() out, err = capsys.readouterr() lines = extract_package_version_lines(out) assert len(lines) == 2 assert lines[0] == 'numpy: {NUMPY_VERSION}'.format(NUMPY_VERSION=NUMPY_VERSION) assert lines[1].startswith('astropy-helpers: ') @pytest.mark.parametrize('method', ['cli', 'ini', 'ini_list', 'conftest']) def test_override_package_multiple(testdir, capsys, method): if method == 'cli': testdir.inline_run("--astropy-header", "--astropy-header-packages=numpy,pandas") elif method == 'ini': testdir.makeini(""" [pytest] astropy_header = yes astropy_header_packages = numpy, pandas """) testdir.inline_run() elif method == 'ini_list': testdir.makeini(""" [pytest] astropy_header = yes astropy_header_packages = numpy pandas """) testdir.inline_run() elif method == 'conftest': testdir.makeconftest(""" def pytest_configure(config): config.option.astropy_header = True config.option.astropy_header_packages = ['numpy', 'pandas'] """) testdir.inline_run() out, err = capsys.readouterr() print(out) lines = extract_package_version_lines(out) assert len(lines) == 3 assert lines[0] == 'numpy: {NUMPY_VERSION}'.format(NUMPY_VERSION=NUMPY_VERSION) assert lines[1].startswith('pandas') assert lines[2].startswith('astropy-helpers: ') @pytest.mark.parametrize('method', ['cli', 'ini', 'ini_list', 'conftest']) def test_nonexistent(testdir, capsys, method): if method == 'cli': testdir.inline_run("--astropy-header", "--astropy-header-packages=apackagethatdoesnotexist") elif method == 'ini': testdir.makeini(""" [pytest] astropy_header = yes astropy_header_packages = apackagethatdoesnotexist """) testdir.inline_run() elif method == 'ini_list': testdir.makeini(""" [pytest] astropy_header = yes astropy_header_packages = apackagethatdoesnotexist """) testdir.inline_run() elif method == 'conftest': testdir.makeconftest(""" def pytest_configure(config): config.option.astropy_header = True config.option.astropy_header_packages = ['apackagethatdoesnotexist'] """) testdir.inline_run() out, err = capsys.readouterr() lines = extract_package_version_lines(out) assert len(lines) == 2 assert lines[0] == 'apackagethatdoesnotexist: not available' assert lines[1].startswith('astropy-helpers: ') def test_modify_in_conftest(testdir, capsys): testdir.makeconftest(""" from pytest_astropy.display import PYTEST_HEADER_MODULES, TESTED_VERSIONS def pytest_configure(config): config.option.astropy_header = True PYTEST_HEADER_MODULES.pop('Pandas') PYTEST_HEADER_MODULES['scikit-image'] = 'skimage' TESTED_VERSIONS['fakepackage'] = '1.0.2' """) testdir.inline_run() out, err = capsys.readouterr() lines = extract_package_version_lines(out) assert len(lines) == 6 assert lines[0].startswith('Numpy: ') assert lines[1].startswith('Scipy: ') assert lines[2].startswith('Matplotlib: ') assert lines[3].startswith('h5py: ') assert lines[4].startswith('scikit-image: ') assert lines[5].startswith('astropy-helpers: ') assert 'Running tests with fakepackage version 1.0.2' in out ```
{ "source": "jdaviscooke/goodtables-py", "score": 2 }
#### File: goodtables/checks/blank_row.py ```python from __future__ import division from __future__ import print_function from __future__ import absolute_import from __future__ import unicode_literals from ..registry import check from ..error import Error # Module API @check('blank-row') def blank_row(cells): errors = [] if not list(filter(lambda cell: cell.get('value'), cells)): # Add error error = Error('blank-row', row_number=cells[0].get('row-number')) errors.append(error) # Clear cells del cells[:] return errors ``` #### File: goodtables/checks/extra_header.py ```python from __future__ import division from __future__ import print_function from __future__ import absolute_import from __future__ import unicode_literals from copy import copy from tableschema import Schema from ..registry import check from ..error import Error # Module API @check('extra-header') class ExtraHeader(object): # Public def __init__(self, infer_fields=False, **options): self.__infer_fields = infer_fields def check_headers(self, cells, sample): errors = [] for cell in copy(cells): # Skip if cell has field if 'field' in cell: continue # Infer field if self.__infer_fields: column_sample = [] for row in sample: value = None if len(row) >= cell['column-number']: value = row[cell['column-number'] - 1] column_sample.append([value]) schema = Schema() schema.infer(column_sample, headers=[cell.get('header')]) cell['field'] = schema.fields[0] # Add error/remove column else: error = Error('extra-header', cell) errors.append(error) cells.remove(cell) return errors ``` #### File: goodtables/checks/minimum_length_constraint.py ```python from __future__ import division from __future__ import print_function from __future__ import absolute_import from __future__ import unicode_literals from ..registry import check from .constraints_checks import create_check_constraint # Module API @check('minimum-length-constraint') def minimum_length_constraint(cells): check_constraint = create_check_constraint('minimum-length-constraint', 'minLength') return check_constraint(cells) ``` #### File: tests/checks/test_duplicate_row.py ```python from __future__ import division from __future__ import print_function from __future__ import absolute_import from __future__ import unicode_literals from goodtables.checks.duplicate_row import DuplicateRow import goodtables.cells # Check def test_check_duplicate_row(log): row1 = [ goodtables.cells.create_cell('name', 'value1', row_number=1, column_number=1) ] row2 = [ goodtables.cells.create_cell('name', 'value2', row_number=2, column_number=1) ] duplicate_row = DuplicateRow() errors = duplicate_row.check_row(row1) errors += duplicate_row.check_row(row2) assert log(errors) == [] assert len(row1) == 1 assert len(row2) == 1 def test_check_duplicate_row_problem(log): row1 = [ goodtables.cells.create_cell('name', 'value', row_number=1, column_number=1) ] row2 = [ goodtables.cells.create_cell('name', 'value', row_number=2, column_number=1) ] duplicate_row = DuplicateRow() errors = duplicate_row.check_row(row1) errors += duplicate_row.check_row(row2) assert log(errors) == [ (2, None, 'duplicate-row'), ] assert len(row1) == 1 assert len(row2) == 0 ``` #### File: tests/checks/test_extra_header.py ```python from __future__ import division from __future__ import print_function from __future__ import absolute_import from __future__ import unicode_literals from tableschema import Field from goodtables.checks.extra_header import ExtraHeader import goodtables.cells # Check def test_check_extra_header(log): cells = [ goodtables.cells.create_cell('name1', field=Field({'name': 'name1'}), column_number=1), goodtables.cells.create_cell('name2', field=Field({'name': 'name2'}), column_number=2), ] sample = [] extra_header = ExtraHeader() errors = extra_header.check_headers(cells, sample=sample) assert log(errors) == [] assert len(cells) == 2 def test_check_extra_header_infer(log): cells = [ goodtables.cells.create_cell('name1', field=Field({'name': 'name1'}), column_number=1), goodtables.cells.create_cell('name2', column_number=2), ] sample = [] extra_header = ExtraHeader(infer_fields=True) errors = extra_header.check_headers(cells, sample=sample) assert log(errors) == [] assert len(cells) == 2 assert cells[1]['field'].name == 'name2' def test_check_extra_header_infer_with_data(log): cells = [ goodtables.cells.create_cell('name1', field=Field({'name': 'name1'}), column_number=1), goodtables.cells.create_cell('name2', column_number=2), ] sample = [ ['123', 'abc'], ['456', 'def'], ['789', 'ghi'], ] extra_header = ExtraHeader(infer_fields=True) errors = extra_header.check_headers(cells, sample=sample) assert log(errors) == [] assert len(cells) == 2 assert cells[1]['field'].name == 'name2' assert cells[1]['field'].type == 'string' def test_check_extra_header_infer_with_empty_data(log): cells = [ goodtables.cells.create_cell('name1', field=Field({'name': 'name1'}), column_number=1), goodtables.cells.create_cell('name2', column_number=2), ] sample = [ ['123', ''], ['456', ''], ['789', ''], ] extra_header = ExtraHeader(infer_fields=True) errors = extra_header.check_headers(cells, sample=sample) assert log(errors) == [] assert len(cells) == 2 assert cells[1]['field'].name == 'name2' assert cells[1]['field'].type == 'string' def test_check_extra_header_problem(log): cells = [ goodtables.cells.create_cell('name1', field=Field({'name': 'name1'}), column_number=1), goodtables.cells.create_cell('name2', column_number=2), ] sample = [] extra_header = ExtraHeader() errors = extra_header.check_headers(cells, sample=sample) assert log(errors) == [ (None, 2, 'extra-header'), ] assert len(cells) == 1 ``` #### File: tests/checks/test_pattern_constraint.py ```python from __future__ import division from __future__ import print_function from __future__ import absolute_import from __future__ import unicode_literals from goodtables.checks.pattern_constraint import pattern_constraint # Check def test_check_pattern_constraint(log): cells = [] errors = pattern_constraint(cells) assert log(errors) == [] assert len(cells) == 0 ``` #### File: contrib/checks/test_sequential_value.py ```python from __future__ import division from __future__ import print_function from __future__ import absolute_import from __future__ import unicode_literals from goodtables import validate # Validate def test_check_sequential_value(log): source = [ ['row', 'index2', 'index3'], [2, 1, 1], [3, 2, 3], [4, 3, 5], [5, 5, 6], [6], ] report = validate(source, checks=[ {'sequential-value': {'column': 2}}, {'sequential-value': {'column': 'index3'}}, ]) assert log(report) == [ (1, 3, 3, 'sequential-value'), (1, 4, 3, 'sequential-value'), (1, 5, 2, 'sequential-value'), (1, 6, 2, 'sequential-value'), (1, 6, 3, 'sequential-value'), ] def test_check_sequential_value_non_existent_column(log): source = [ ['row', 'name'], [2, 'Alex'], ] report = validate(source, checks=[ {'sequential-value': {'column': 3}}, {'sequential-value': {'column': 'non-existent'}}, ]) assert log(report) == [ (1, 2, None, 'sequential-value'), (1, 2, None, 'sequential-value'), ] ```
{ "source": "jdawgzim/hdl_build", "score": 3 }
#### File: hdl_build/build/find_dependencies.py ```python import os import sys import re import argparse # Package use pattern package_use_re = re.compile('(\w+)::([\*\w]+)') # Include use pattern include_use_re = re.compile('`include\s+["<]([\w/\.\d]+)[">]') # Module instance pattern, assuming parentheses contents removed module_instance_re = re.compile(r''' (\w+)\s+ # module_identifier (?:\#\s*\(\)\s*)? # optional parameters (\w+)\s* # instance name \(\)\s* # port connections (?=;) # statement end, don't consume ''', re.DOTALL | re.VERBOSE) # These can fail with weird comments (like nested), but should be good enough comment_line_re = re.compile(r'//.*') comment_block_re = re.compile(r'/\*.*?\*/', re.DOTALL) # Match literal quoted strings quote_re = re.compile(r'".*?"') # Enforce space before "#" in modules add_space_re = re.compile(r'#\s*\(') def de_parentheses(text): pstack = 0 bstack = 0 result = "" last_close = 0 for i, c in enumerate(text): if c == '(': if not pstack and not bstack: result += text[last_close:i+1] pstack += 1 elif c == '[': if not bstack and not pstack: result += text[last_close:i] bstack += 1 elif c == ')' and pstack: last_close = i pstack -= 1 elif c == ']' and bstack: last_close = i+1 bstack -= 1 result += text[last_close:] return result keywords = [ 'accept_on', 'alias', 'always', 'always_comb', 'always_ff', 'always_latch', 'and', 'assert', 'assign', 'assume', 'automatic', 'before', 'begin', 'bind', 'bins', 'binsof', 'bit', 'break', 'buf', 'bufif0', 'bufif1', 'byte', 'case', 'casex', 'casez', 'cell', 'chandle', 'checker', 'class', 'clocking', 'cmos', 'config', 'const', 'constraint', 'context', 'continue', 'cover', 'covergroup', 'coverpoint', 'cross', 'deassign', 'default', 'defparam', 'design', 'disable', 'dist', 'do', 'edge', 'else', 'end', 'endcase', 'endchecker', 'endclass', 'endclocking', 'endconfig', 'endfunction', 'endgenerate', 'endgroup', 'endinterface', 'endmodule', 'endpackage', 'endprimitive', 'endprogram', 'endproperty', 'endspecify', 'endsequence', 'endtable', 'endtask', 'enum', 'event', 'eventually', 'expect', 'export', 'extends', 'extern', 'final', 'first_match', 'for', 'force', 'foreach', 'forever', 'fork', 'forkjoin', 'function', 'generate', 'genvar', 'global', 'highz0', 'highz1', 'if', 'iff', 'ifnone', 'ignore_bins', 'illegal_bins', 'implements', 'implies', 'import', 'incdir', 'include', 'initial', 'inout', 'input', 'inside', 'instance', 'int', 'integer', 'interconnect', 'interface', 'intersect', 'join', 'join_any', 'join_none', 'large', 'let', 'liblist', 'library', 'local', 'localparam', 'logic', 'longint', 'macromodule', 'matches', 'medium', 'modport', 'module', 'nand', 'negedge', 'nettype', 'new', 'nexttime', 'nmos', 'nor', 'noshowcancelled', 'not', 'notif0', 'notif1', 'null', 'or', 'output', 'package', 'packed', 'parameter', 'pmos', 'posedge', 'primitive', 'priority', 'program', 'property', 'protected', 'pull0', 'pull1', 'pulldown', 'pullup', 'pulsestyle_ondetect', 'pulsestyle_onevent', 'pure', 'rand', 'randc', 'randcase', 'randsequence', 'rcmos', 'real', 'realtime', 'ref', 'reg', 'reject_on', 'release', 'repeat', 'restrict', 'return', 'rnmos', 'rpmos', 'rtran', 'rtranif0', 'rtranif1', 's_always', 's_eventually', 's_nexttime', 's_until', 's_until_with', 'scalared', 'sequence', 'shortint', 'shortreal', 'showcancelled', 'signed', 'small', 'soft', 'solve', 'specify', 'specparam', 'static', 'string', 'strong', 'strong0', 'strong1', 'struct', 'super', 'supply0', 'supply1', 'sync_accept_on', 'sync_reject_on', 'table', 'tagged', 'task', 'this', 'throughout', 'time', 'timeprecision', 'timeunit', 'tran', 'tranif0', 'tranif1', 'tri', 'tri0', 'tri1', 'triand', 'trior', 'trireg', 'type', 'typedef', 'union', 'unique', 'unique0', 'unsigned', 'until', 'until_with', 'untyped', 'use', 'uwire', 'var', 'vectored', 'virtual', 'void', 'wait', 'wait_order', 'wand', 'weak', 'weak0', 'weak1', 'while', 'wildcard', 'wire', 'with', 'within', 'wor', 'xnor', 'xor' ] def find_deps(path, name, text, args): ''' Process module contents to determine a list of dependencies path = repository relative path to file name = module name text = file contents args = arg parser object, looking for args.debug''' #print("Find deps args:", path, name, args) includes = [] packages = [] instances = [] # Remove characters or comments text = comment_line_re.sub('', text) text = comment_block_re.sub('', text) # Get includes include_search = include_use_re.findall(text) if include_search: for include_path in include_search: includes.append(os.path.basename(include_path)) # Remove quoted characters (must be preserved for includes) text = quote_re.sub('', text) # Get packages package_search = package_use_re.findall(text) if package_search: for (pkg_name, fname) in package_search: packages.append(pkg_name) # Get instances -- clean up code for instance search first clean_text = add_space_re.sub(' #(', text) clean_text = de_parentheses(clean_text) instance_search = module_instance_re.findall(clean_text) if instance_search: for (mod_name, inst_name) in instance_search: if mod_name not in keywords: instances.append(mod_name) dep_set = {obj for obj in includes + packages + instances if obj != name} return list(dep_set) def main(args): name = args.name path = args.path text = open(path, 'r').read() deps = find_deps(path, name, text, args) print(f"{name} dependencies:") deps.sort() for mod in deps: print(f"\t{mod}") if __name__ == '__main__': argp = argparse.ArgumentParser( description='Parse file and create list of dependencies') argp.add_argument('path', help="path of module to analyze") argp.add_argument('name', help="name of module to analyze") argp.add_argument('-d', '--debug', action='store_true', help='print debug') args = argp.parse_args() main(args) ```
{ "source": "jdawsonash/elasticsearch-py", "score": 2 }
#### File: elasticsearch-py/utils/generate-api.py ```python import contextlib import io import json import os import re import shutil import sys import tempfile import zipfile from functools import lru_cache from itertools import chain from pathlib import Path import black import unasync import urllib3 from click.testing import CliRunner from jinja2 import Environment, FileSystemLoader, TemplateNotFound http = urllib3.PoolManager() # line to look for in the original source file SEPARATOR = " # AUTO-GENERATED-API-DEFINITIONS #" # global substitutions for python keywords SUBSTITUTIONS = {"type": "doc_type", "from": "from_"} # api path(s) BRANCH_NAME = "master" CODE_ROOT = Path(__file__).absolute().parent.parent GLOBAL_QUERY_PARAMS = { "pretty": "Optional[bool]", "human": "Optional[bool]", "error_trace": "Optional[bool]", "format": "Optional[str]", "filter_path": "Optional[Union[str, Collection[str]]]", "request_timeout": "Optional[Union[int, float]]", "ignore": "Optional[Union[int, Collection[int]]]", "opaque_id": "Optional[str]", "http_auth": "Optional[Union[str, Tuple[str, str]]]", "api_key": "Optional[Union[str, Tuple[str, str]]]", } jinja_env = Environment( loader=FileSystemLoader([CODE_ROOT / "utils" / "templates"]), trim_blocks=True, lstrip_blocks=True, ) def blacken(filename): runner = CliRunner() result = runner.invoke(black.main, [str(filename)]) assert result.exit_code == 0, result.output @lru_cache() def is_valid_url(url): return 200 <= http.request("HEAD", url).status < 400 class Module: def __init__(self, namespace, is_pyi=False): self.namespace = namespace self.is_pyi = is_pyi self._apis = [] self.parse_orig() if not is_pyi: self.pyi = Module(namespace, is_pyi=True) self.pyi.orders = self.orders[:] def add(self, api): self._apis.append(api) def parse_orig(self): self.orders = [] self.header = "class C:" if os.path.exists(self.filepath): with open(self.filepath) as f: content = f.read() header_lines = [] for line in content.split("\n"): header_lines.append(line) if line == SEPARATOR: break # no separator found else: header_lines = [] for line in content.split("\n"): header_lines.append(line) if line.startswith("class"): break self.header = "\n".join(header_lines) self.orders = re.findall( r"\n (?:async )?def ([a-z_]+)\(", content, re.MULTILINE ) def _position(self, api): try: return self.orders.index(api.name) except ValueError: return len(self.orders) def sort(self): self._apis.sort(key=self._position) def dump(self): self.sort() with open(self.filepath, "w") as f: f.write(self.header) for api in self._apis: f.write(api.to_python()) if not self.is_pyi: self.pyi.dump() @property def filepath(self): return ( CODE_ROOT / f"elasticsearch/_async/client/{self.namespace}.py{'i' if self.is_pyi else ''}" ) class API: def __init__(self, namespace, name, definition, is_pyi=False): self.namespace = namespace self.name = name self.is_pyi = is_pyi # overwrite the dict to maintain key order definition["params"] = { SUBSTITUTIONS.get(p, p): v for p, v in definition.get("params", {}).items() } self._def = definition self.description = "" self.doc_url = "" self.stability = self._def.get("stability", "stable") if isinstance(definition["documentation"], str): self.doc_url = definition["documentation"] else: # set as attribute so it may be overridden by Module.add self.description = ( definition["documentation"].get("description", "").strip() ) self.doc_url = definition["documentation"].get("url", "") # Filter out bad URL refs like 'TODO' # and serve all docs over HTTPS. if self.doc_url: if not self.doc_url.startswith("http"): self.doc_url = "" if self.doc_url.startswith("http://"): self.doc_url = self.doc_url.replace("http://", "https://") # Try setting doc refs like 'current' and 'master' to our branches ref. if BRANCH_NAME is not None: revised_url = re.sub( "/elasticsearch/reference/[^/]+/", f"/elasticsearch/reference/{BRANCH_NAME}/", self.doc_url, ) if is_valid_url(revised_url): self.doc_url = revised_url else: print(f"URL {revised_url!r}, falling back on {self.doc_url!r}") @property def all_parts(self): parts = {} for url in self._def["url"]["paths"]: parts.update(url.get("parts", {})) for p in parts: parts[p]["required"] = all( p in url.get("parts", {}) for url in self._def["url"]["paths"] ) parts[p]["type"] = "Any" for k, sub in SUBSTITUTIONS.items(): if k in parts: parts[sub] = parts.pop(k) dynamic, components = self.url_parts def ind(item): try: return components.index(item[0]) except ValueError: return len(components) parts = dict(sorted(parts.items(), key=ind)) return parts @property def params(self): parts = self.all_parts params = self._def.get("params", {}) return chain( ((p, parts[p]) for p in parts if parts[p]["required"]), (("body", self.body),) if self.body else (), ( (p, parts[p]) for p in parts if not parts[p]["required"] and p not in params ), sorted(params.items(), key=lambda x: (x[0] not in parts, x[0])), ) @property def body(self): b = self._def.get("body", {}) if b: b.setdefault("required", False) return b @property def query_params(self): return ( k for k in sorted(self._def.get("params", {}).keys()) if k not in self.all_parts ) @property def all_func_params(self): """Parameters that will be in the '@query_params' decorator list and parameters that will be in the function signature. This doesn't include """ params = list(self._def.get("params", {}).keys()) for url in self._def["url"]["paths"]: params.extend(url.get("parts", {}).keys()) if self.body: params.append("body") return params @property def path(self): return max( (path for path in self._def["url"]["paths"]), key=lambda p: len(re.findall(r"\{([^}]+)\}", p["path"])), ) @property def method(self): # To adhere to the HTTP RFC we shouldn't send # bodies in GET requests. default_method = self.path["methods"][0] if self.body and default_method == "GET" and "POST" in self.path["methods"]: return "POST" return default_method @property def url_parts(self): path = self.path["path"] dynamic = "{" in path if not dynamic: return dynamic, path parts = [] for part in path.split("/"): if not part: continue if part[0] == "{": part = part[1:-1] parts.append(SUBSTITUTIONS.get(part, part)) else: parts.append(f"'{part}'") return dynamic, parts @property def required_parts(self): parts = self.all_parts required = [p for p in parts if parts[p]["required"]] if self.body.get("required"): required.append("body") return required def to_python(self): if self.is_pyi: t = jinja_env.get_template("base_pyi") else: try: t = jinja_env.get_template(f"overrides/{self.namespace}/{self.name}") except TemplateNotFound: t = jinja_env.get_template("base") return t.render( api=self, substitutions={v: k for k, v in SUBSTITUTIONS.items()}, global_query_params=GLOBAL_QUERY_PARAMS, ) @contextlib.contextmanager def download_artifact(version): # Download the list of all artifacts for a version # and find the latest build URL for 'rest-resources-zip-*.zip' resp = http.request( "GET", f"https://artifacts-api.elastic.co/v1/versions/{version}" ) packages = json.loads(resp.data)["version"]["builds"][0]["projects"][ "elasticsearch" ]["packages"] for package in packages: if re.match(r"^rest-resources-zip-.*\.zip$", package): zip_url = packages[package]["url"] break else: raise RuntimeError( "Could not find the package 'rest-resources-zip-*.zip' in build" ) # Download the .jar file and unzip only the API # .json files into a temporary directory resp = http.request("GET", zip_url) tmp = Path(tempfile.mkdtemp()) zip = zipfile.ZipFile(io.BytesIO(resp.data)) for name in zip.namelist(): if not name.endswith(".json") or name == "schema.json": continue # Compatibility APIs/tests should be skipped if "/compatApi" in name or "/compatTest" in name: continue with (tmp / name.replace("rest-api-spec/api/", "")).open("wb") as f: f.write(zip.read(name)) yield tmp shutil.rmtree(tmp) def read_modules(version): modules = {} with download_artifact(version) as path: for f in sorted(os.listdir(path)): name, ext = f.rsplit(".", 1) if ext != "json" or name == "_common": continue with open(path / f) as api_def: api = json.load(api_def)[name] namespace = "__init__" if "." in name: namespace, name = name.rsplit(".", 1) # The data_frame API has been changed to transform. if namespace == "data_frame_transform_deprecated": continue if namespace not in modules: modules[namespace] = Module(namespace) modules[namespace].add(API(namespace, name, api)) modules[namespace].pyi.add(API(namespace, name, api, is_pyi=True)) return modules def dump_modules(modules): for mod in modules.values(): mod.dump() # Unasync all the generated async code additional_replacements = { # We want to rewrite to 'Transport' instead of 'SyncTransport', etc "AsyncTransport": "Transport", "AsyncElasticsearch": "Elasticsearch", # We don't want to rewrite this class "AsyncSearchClient": "AsyncSearchClient", } rules = [ unasync.Rule( fromdir="/elasticsearch/_async/client/", todir="/elasticsearch/_sync/client/", additional_replacements=additional_replacements, ), ] filepaths = [] for root, _, filenames in os.walk(CODE_ROOT / "elasticsearch/_async"): for filename in filenames: if ( filename.rpartition(".")[-1] in ( "py", "pyi", ) and not filename.startswith("utils.py") ): filepaths.append(os.path.join(root, filename)) unasync.unasync_files(filepaths, rules) blacken(CODE_ROOT / "elasticsearch") if __name__ == "__main__": version = sys.argv[1] dump_modules(read_modules(version)) ```
{ "source": "jdayllon/leiserbik", "score": 2 }
#### File: leiserbik/twitter/capturer.py ```python import arrow from pypeln import asyncio_task as aio from pypeln import thread as th from leiserbik import * from leiserbik.async_http import fetch_all from leiserbik.twitter.core import __generate_search_url_by_range, \ _get_page_branches, list_no_dupes, not_in_list, \ _read_statuses, _get_branch_walk from leiserbik.twitter.query import TwitterQuery def query(tq: TwitterQuery): cur_query = tq.query(with_dates=False) logger.debug(f"Obtainer Twitter Query Object with query 🔎 {cur_query}") return rawquery(cur_query, tq.start_date, tq.end_date) def iter_query(tq: TwitterQuery): cur_query = tq.query(with_dates=False) logger.debug(f"Obtainer Twitter Query Object with query 🔎 {cur_query}") return iter_rawquery(cur_query, tq.end_date) def rawquery(query: str, start_date: str = arrow.get().format(SHORT_DATE_FORMAT), end_date: str = arrow.get().shift(days=-15).format(SHORT_DATE_FORMAT)): logger.debug("Converting dates from string") init_date = arrow.get(start_date) finish_date = arrow.get(end_date) logger.info("🐦 Scrapping with:[%s] From 🗓️:[%s] ➡️ To 🗓️:[%s]" % (query, init_date.format('YYYY-MM-DD'), finish_date.format('YYYY-MM-DD'))) # Create day urls urls = __generate_search_url_by_range(query, init_date, finish_date) stage_results = fetch_all(urls) stage_results = aio.flat_map(_get_page_branches, stage_results, workers=MAX_WORKERS) stage_results = th.flat_map(_get_branch_walk, stage_results, workers=MAX_WORKERS) stage_results = th.flat_map(_read_statuses, stage_results, workers=MAX_WORKERS) # results = list_no_dupes(stage_results) results = list(stage_results) logger.info(f"💬 Captured {len(results)}") return results def iter_rawquery(query: str, end_date: str = arrow.get().shift(days=-15).format(SHORT_DATE_FORMAT)): # if we are iterating, start_date is "now" start_date: str = arrow.get().format(SHORT_DATE_FORMAT) # First call get everything until now all_status_until_now = list_no_dupes(rawquery(query, start_date, end_date)) yield all_status_until_now while True: cur_date = arrow.get().format(SHORT_DATE_FORMAT) cur_statuses = rawquery(query, cur_date, cur_date) cur_new_statuses = not_in_list(all_status_until_now, cur_statuses) logger.info(f"Found: {len(cur_statuses)} 💬") all_status_until_now += cur_new_statuses yield cur_new_statuses ``` #### File: leiserbik/twitter/core.py ```python import copy import json import time import urllib import arrow from arrow import Arrow from bs4 import BeautifulSoup, Tag from ratelimit import limits, sleep_and_retry from requests import Session from scalpl import Cut from leiserbik import * from leiserbik.borg import Kakfa from leiserbik.twitter.query import TwitterQueryStatus def not_in_list(l1, l2): if l1 is None: l1 = [] if l2 is None: l2 = [] if l1 == [] and l2 != []: return list_no_dupes(l2) elif l1 != [] and l2 == []: return list_no_dupes(l1) elif l1 == [] and l2 == []: return [] else: # return list(set(l2) - set(l1)) return union_lists_no_dupes(l2, l1) def __generate_search_url_by_day(query: str, date: Arrow): """ Returns a string with a url to ask twitter for a query in a day :param query:str twitter advanced query string :param date: date to query :return: url for date """ search_url = '%s since:%s until:%s' % (query, date.format('YYYY-MM-DD'), date.shift(days=1).format('YYYY-MM-DD')) search_url = 'https://mobile.twitter.com/search?q=' + urllib.parse.quote_plus(search_url) logger.debug(f"Generated url: {search_url}") return search_url def _session_get_requests(url: str): return __session_get_request(requests.Session(), url) def __session_get_request(session: Session, url: str): # session.headers.update({'User-Agent': GENERATED_USER_AGENT}) if 'HTTPS_PROXY' in globals(): session.proxies = {"http": '127.0.0.1:5566', "https": '127.0.0.1:5566'} return session.get(url) else: session.proxies = {"http": None, "https": None} return __session_get_rated_requests(**locals()) @sleep_and_retry @limits(calls=50, period=60) def __session_get_rated_requests(session: Session, url: str): logger.trace(f"👮‍Rate limited GET request: {url}") try: response = session.get(url) return response except KeyboardInterrupt: raise except: logger.warning(f"🚨 Fail on GET request - Retry on 30s: {url}") time.sleep(10) return session.get(url) def __session_post_request(session: Session, url): session.headers.update({'User-Agent': GENERATED_USER_AGENT}) if 'HTTPS_PROXY' in globals(): session.proxies = {"http": ROTATE_HTTP_PROXY, "https": ROTATE_HTTPS_PROXY} return session.get(url) else: session.proxies = {"http": None, "https": None} return __session_get_rated_requests(**locals()) @sleep_and_retry @limits(calls=50, period=60) def __session_post_rated_requests(session: Session, url: str): logger.trace(f"👮‍Rate limited POST request: {url}") return session.post(url) def __get_statuses(decoded_content): # return [f"https://mobile.twitter.com{path}" for path in REGEX_STATUS_LINK.findall(decoded_content)] def _get_base_status(id: int): status = Cut() status['@data_source'] = 'https://mobile.twitter.com' status['id'] = id status['id_str'] = str(id) status['@updated_at'] = arrow.utcnow().format(LONG_DATETIME_PATTERN) + "Z" return status.data statuses = [] statuses_links = list_no_dupes(REGEX_STATUS_LINK_VALUES.findall(decoded_content)) for x in statuses_links: try: if type(x) is list: for y in x: statuses += [_get_base_status(int(y))] else: statuses += [_get_base_status(int(x))] except KeyboardInterrupt: raise except: logger.warning(f"⚠️ Converting to integer: {x}") return statuses def __get_next_page(decoded_content, session, REGEX_COMPILED_PATTERN): next_pages = [f"https://mobile.twitter.com{path}" for path in REGEX_COMPILED_PATTERN.findall(decoded_content)] if len(next_pages) == 1: logger.debug(f"Requesting: {next_pages[0]}") res = __session_get_request(session, next_pages[0]) logger.debug(f"Request: {next_pages[0]} |{res.status_code}|") if res.status_code == 200: return res.content.decode('utf-8') elif res.status_code == 429: logger.warning(f"Request Rate Limit Exception: {next_pages[0]}") time.sleep(30) return __get_next_page(decoded_content, session, REGEX_COMPILED_PATTERN) else: return None return None def __generate_search_url_by_range(query: str, init_date: Arrow, finish_date: str = Arrow): urls = [] cur_date = init_date while cur_date >= finish_date: cur_url = __generate_search_url_by_day(query, cur_date) urls += [cur_url] cur_date = cur_date.shift(days=-1) return urls def _get_page_branches(content): def get_query_from_content(decode_content): results = REGEX_GET_QUERY.findall(decode_content) if len(results) == 1: return results[0] else: return [] # twqstatus = TwitterQueryStatus() try: cur_decoded_content = content.decode('utf-8') session = requests.Session() except KeyboardInterrupt: raise except: return [] data = [] branches = 1 query_from_content = get_query_from_content(cur_decoded_content) while True: # cur_statuses = __get_statuses(cur_decoded_content) # new_statuses = not_in_list(twqstatus.get(query_from_content), cur_statuses) data += [(cur_decoded_content, copy.deepcopy(session), branches, query_from_content)] # cur_decoded_content = get_next_branch(cur_decoded_content , session) cur_decoded_content = __get_next_page(cur_decoded_content, session, REGEX_UPDATE_LINK) if cur_decoded_content is None: break else: branches += 1 logger.debug(f"New Branch |{query_from_content}|, total branches ⌥: {branches}") return data def _get_user_statuses(user, max_id=0): session = requests.Session() branch = 0 query_from_content = user if max_id > 0: res = __session_get_request(session, f"https://mobile.twitter.com/{user}?max_id={max_id}") else: res = __session_get_request(session, f"https://mobile.twitter.com/{user}") # res = session.get(f"https://mobile.twitter.com/{user}") statuses = [] logger.debug(f"Requests: {res.url} |{res.status_code}|") if res.status_code == 200: cur_content = res.content.decode('utf-8') # logger.info(cur_content) else: return statuses # Do while emulation while True: cur_statuses = __get_statuses(cur_content) if len(cur_statuses) == 0: logger.debug(f"Statuses 💬 not Found 😅 |{user}|") # nojs_post_url =REGEX_NOJS_ROUTER.findall(cur_content)[0].split('"')[0] # logger.debug(f"POST Requests detected: {nojs_post_url}") # cur_content = __session_post_request(session,nojs_post_url) # if cur_content is None and type(cur_content) is bytes: # cur_content = cur_content.decode('utf-8') # logger.info(cur_content) # cur_statuses_check = __get_statuses(cur_content) # if len(cur_statuses_check) == 0: # return statuses return statuses else: statuses = list(set(cur_statuses + statuses)) logger.debug(f"Current content statuses found: {len(statuses)} 💬 |{user}|") cur_content = __get_next_page(cur_content, session, REGEX_USER_NEXT_LINK) if cur_content is None: return statuses def _get_branch_walk(params): decoded_content = params[0] session = params[1] branch = params[2] query_from_content = params[3] contents = [] cur_content = decoded_content twqstatus = TwitterQueryStatus() # Do while emulation while True: contents += [cur_content] cur_statuses = __get_statuses(cur_content) try: new_statuses = not_in_list(twqstatus.get(query_from_content), cur_statuses) # except KeyboardInterrupt: # raise except: new_statuses = [] logger.exception("🚨Error on content parameters, probably partial page download") if len(cur_statuses) == 0: logger.debug(f"💬 No more statuses found 😅 |{query_from_content} -- Branch: {branch}|") return contents elif len(new_statuses) == 0: logger.debug(f"💬 No new statuses found 😅 |{query_from_content} -- Branch: {branch}|") return contents else: logger.info(f"💬 {len(new_statuses)} new statuses found 👍 |{query_from_content} -- Branch: {branch}|") twqstatus.append(query_from_content, cur_statuses) cur_content = __get_next_page(cur_content, session, REGEX_NEXT_LINK) if cur_content is None: return contents def _get_branch_statuses(params): decoded_content = params[0] session = params[1] branch = params[2] query_from_content = params[3] statuses = [] cur_content = decoded_content # Do while emulation while True: cur_statuses = __get_statuses(cur_content) if len(cur_statuses) == 0: logger.debug(f"Statuses 💬 not Found 😅 |{query_from_content} -- Branch: {branch}|") return statuses else: statuses = list(set(cur_statuses + statuses)) logger.debug( f"Current content statuses found: {len(statuses)} 💬 |{query_from_content} -- Branch: {branch}|") cur_content = __get_next_page(cur_content, session, REGEX_NEXT_LINK) if cur_content is None: return statuses def _get_status(id: int, session: Session = requests.Session()): res = __session_get_request(session, f"https://mobile.twitter.com/twitter/status/{id}") if res.status_code == 200: return _read_statuses(res.content.decode('utf-8')) elif res.status_code == 429: time.sleep(10) return _get_status(id, session) else: return None def _read_statuses(content: str): statuses_data = [] soup = BeautifulSoup(content, "html.parser") statuses = soup.find_all('table', {"class": "tweet"}) if len(statuses) == 0: statuses = soup.find_all('div', {"class": "js-tweet-text-container"}) for cur_tweet in statuses: cur_statuses_data = __read_status(cur_tweet) statuses_data += [cur_statuses_data] return statuses_data def _update_status_stats(status: dict): """Get from desktop web version stats about current status (RT and FAVs) Arguments: status {dict} -- Current status in scalpl object Returns: dict -- Updated stats status """ try: # ! TODO Implement a better version in parallalel or async cur_retweets, cur_favs = __update_status_stats(status['id']) status['retweet_count'] = cur_retweets status['favorite_count'] = cur_favs except KeyboardInterrupt: raise except: logger.warning(f"🚨 Fail getting RT and Favs from 🐦: {status['id']}") return status def __update_status_stats(id: int, session: Session = requests.Session()): res = __session_get_request(session, f"https://twitter.com/twitter/status/{id}") # Getting web standart version if res.status_code == 200: soup = BeautifulSoup(res.content.decode('utf-8'), "html.parser") retweet_ele = soup.find('li', {"class": "js-stat-retweets"}) fav_ele = soup.find('li', {"class": "js-stat-favorites"}) if retweet_ele is not None: cur_retweets = int(retweet_ele.find('a').find('strong').get_text()) else: cur_retweets = 0 if fav_ele is not None: cur_favorites = fav_ele.find('a').find('strong').get_text() else: cur_favorites = 0 logger.info(f"🔁 Retweets for {id} : {cur_retweets}") logger.info(f"❤️ Favs for {id} : {cur_favorites}") return cur_retweets, cur_favorites elif res.status_code == 429: time.sleep(10) return __update_status_stats(id, session) else: return None def __read_status(soup): status = Cut() if 'tombstone-tweet' in soup['class']: # Dead twitter account reference return status cur_tweet_data = soup.find('div', {"class": "tweet-text"}) status['@data_source'] = 'https://mobile.twitter.com' status['id'] = int(cur_tweet_data['data-id']) status['id_str'] = str(status['id']) status['@updated_at'] = arrow.utcnow().format(LONG_DATETIME_PATTERN) + "Z" status['user'] = {} try: status['user.screen_name'] = soup.find('div', {"class": "username"}).get_text().replace('\n', '').strip()[ 1:] # Omits @ except KeyboardInterrupt: raise except: logger.warning(f"🚨 Fail getting screen_name from 🐦: {status['id']}") status['user.screen_name'] = soup['href'].split('/')[1] try: status['user.name'] = soup.find('strong', {"class": "fullname"}).get_text() except KeyboardInterrupt: raise except: logger.warning(f"🚨 Fail getting fullname from 🐦: {status['id']}") try: cur_tweet_mentions = soup.find('a', {"class": "twitter-atreply"}) status['user_mentions'] = [] if cur_tweet_mentions is not None: if type(cur_tweet_mentions) is Tag: cur_tweet_mentions = [cur_tweet_mentions] for cur_mention in cur_tweet_mentions: # Example info # { # "id": 3001809246, # "id_str": "3001809246", # "name": "<NAME>", # "screen_name": "rafamorenorojas" # }, # status['user_mentions'] += [{ 'id': cur_mention['data-mentioned-user-id'], 'id_str': str(cur_mention['data-mentioned-user-id']), 'screen_name': cur_mention.get_text()[1:] # Omit @ }] except KeyboardInterrupt: raise except: logger.warning(f"🚨 Fail getting user_mentions from 🐦: {status['id']}") try: cur_tweet_text = cur_tweet_data.find('div', {"class": "dir-ltr"}) if cur_tweet_text is None: cur_tweet_text = cur_tweet_data.get_text().lstrip() else: cur_tweet_text = cur_tweet_text.get_text().lstrip() status['full_text'] = cur_tweet_text except KeyboardInterrupt: raise except: logger.warning(f"🚨 Fail getting full_text from 🐦: {status['id']}") try: cur_tweet_date = soup.find('td', {"class": "timestamp"}).find('a').get_text() if "h" in cur_tweet_date and len(cur_tweet_date) < 4: hours = int(re.findall("([0-9]{0,2})\s?h", cur_tweet_date)[0]) cur_tweet_date = arrow.get().shift(hours=-hours).format(LONG_DATETIME_PATTERN) elif "m" in cur_tweet_date and len(cur_tweet_date) < 4: minutes = int(re.findall("([0-9]{0,2})\s?m", cur_tweet_date)[0]) cur_tweet_date = arrow.get().shift(minutes=-minutes).format(LONG_DATETIME_PATTERN) elif "s" in cur_tweet_date and len(cur_tweet_date) < 4: hours = int(re.findall("([0-9]{0,2})\s?s", cur_tweet_date)[0]) cur_tweet_date = arrow.get().shift(hours=-hours).format(LONG_DATETIME_PATTERN) elif len(cur_tweet_date) < 9: # On current year tweets doesn't show a year in text cur_tweet_date += arrow.get().format(" YY") cur_tweet_date = arrow.get(cur_tweet_date, "MMM D YY").format(LONG_DATETIME_PATTERN) else: cur_tweet_date = arrow.get(cur_tweet_date, "D MMM YY").format(LONG_DATETIME_PATTERN) status['created_at'] = cur_tweet_date.format(LONG_DATETIME_PATTERN) + "Z" except KeyboardInterrupt: raise except: logger.warning(f"🚨 Fail getting created_at from 🐦: {status['id']}") try: cur_tweet_hashtags = soup.find('a', {"class": "twitter-hashtag"}) status['hashtags'] = [] if cur_tweet_hashtags is not None: if type(cur_tweet_hashtags) is Tag: cur_tweet_hashtags = [cur_tweet_hashtags] for cur_hashtag in cur_tweet_hashtags: # "hashtags": [ # { # "text": "Gastronom\u00eda" # }, # { # "text": "Andaluc\u00eda" # } # ], status['hashtags'] += [{ 'text': cur_hashtag.get_text()[1:] # Omits '#' }] except KeyboardInterrupt: raise except: logger.warning(f"🚨 Fail getting hashtags from 🐦: {status['id']}") try: cur_tweet_urls = soup.find('a', {"class": "twitter_external_link"}) status['urls'] = [] if cur_tweet_urls is not None: if type(cur_tweet_urls) is Tag: cur_tweet_urls = [cur_tweet_urls] for cur_url in cur_tweet_urls: # "urls": [ # { # "expanded_url": "https://sevilla.abc.es/gurme//reportajes-bares-y-restaurantes-cordoba/cordoba/rafael-moreno-rojas-director-la-catedra-gastronomia-andalucia-objetivo-darnos-conocer-cordoba/", # "url": "https://t.co/5Qiiv6KR9w" # } # ], status['urls'] += [{ 'url': cur_url['href'], 'expanded_url': cur_url['data-expanded-url'] if 'data-expanded-url' in cur_url else None, }] except KeyboardInterrupt: raise except: logger.warning(f"🚨 Fail getting external urls from 🐦: {status['id']}") # return status.data # return json.dumps(status.data, indent=4) return status.data def _send_kafka(cur_dict: dict, topic=None): logger.info("Going to send kafka") kafka = Kakfa() cur_json = json.dumps(cur_dict, indent=4) try: if topic is None: logger.debug(f"📧 Sending to Kafka [{kafka.topic}]: {cur_json} - {cur_dict['id_str']}") future_requests = kafka.producer.send(kafka.topic, f'{cur_json}'.encode(), key=cur_dict['id_str'].encode()) else: logger.debug(f"📧 Sending to Kafka [{topic}]: {cur_json} - {cur_dict['id_str']}") future_requests = kafka.producer.send(topic, f'{cur_json}'.encode(), key=cur_dict['id_str'].encode()) future_response = future_requests.get(timeout=10) except: logger.exception(f"🚨 Error sending to Kafka: {cur_dict['id_str']}") return cur_dict ``` #### File: leiserbik/tests/test_leiserbik.py ```python import pytest from click.testing import CliRunner from leiserbik import watcher from leiserbik import cli #<EMAIL> def test_user_by_id(): """Test of user status by id """ # import requests # return requests.get('https://github.com/audreyr/cookiecutter-pypackage') statuses = watcher.user_by_id('jday11on',14992604202) assert len(statuses) == 1 def test_command_line_interface(): """Test the CLI.""" runner = CliRunner() result = runner.invoke(cli.main) help_result = runner.invoke(cli.main, ['--help']) assert '--help' in help_result.output assert 'Show this message and exit.' in help_result.output ```
{ "source": "jdayllon/tile-changer", "score": 2 }
#### File: tile-changer/app/main.py ```python from flask import Flask, Response, request, send_file from werkzeug.wsgi import FileWrapper from flask_caching import Cache import requests from loguru import logger import os import PIL.Image from io import BytesIO import uuid import logging ####  def env_var_load(name, default_value): if name in os.environ: res = type(default_value) (os.environ[name]) logger.info(f"ENV '{name}' Found: {res}") return res else: logger.warning(f"ENV '{name}' NOT Found: {default_value}") return default_value # Initial env prepare DEBUG = env_var_load("DEBUG",True) CACHE_TYPE = env_var_load("CACHE_TYPE",'simple') CACHE_DEFAULT_TIMEOUT = env_var_load("CACHE_DEFAULT_TIMEOUT",300) TARGET_HOST = env_var_load('TARGET_HOST','') config = { "DEBUG": DEBUG, # some Flask specific configs "CACHE_TYPE": CACHE_TYPE, # Flask-Caching related configs "CACHE_DEFAULT_TIMEOUT": CACHE_DEFAULT_TIMEOUT } if CACHE_TYPE == 'redis': config['CACHE_REDIS_HOST'] = env_var_load("CACHE_REDIS_HOST", 'localhost') config['CACHE_REDIS_PORT'] = env_var_load("CACHE_REDIS_PORT", 6379) config['CACHE_REDIS_PASSWORD'] = env_var_load("CACHE_REDIS_PASSWORD",'') config['CACHE_REDIS_DB'] = env_var_load("CACHE_REDIS_DB",'') app = Flask(__name__) app.config.from_mapping(config) cache = Cache(app) #### # Partial disable Requests logging logging.getLogger("requests").setLevel(logging.WARNING) # Based on https://stackoverflow.com/a/10170635 # https://www.pythonanywhere.com/forums/topic/13570/ def serve_pil_image(pil_img, mimetype): img_io = BytesIO() pil_img.save(img_io, mimetype.split("/")[1].upper()) img_io.seek(0) # Original response from Github uses send_file method # but I have problems with pickle and uwsgi, changed send_file # for direct uwsgi filewraper and Response from Flask # --> return send_file(img_io, mimetype=mimetype) w = FileWrapper(img_io) return Response(w, mimetype=mimetype, direct_passthrough=True) @app.route('/', defaults={'path': ''}) @app.route('/<path:path>') @cache.cached(timeout=24*60*60, query_string=True) def proxy(path): current_process = uuid.uuid1() if isinstance(request.query_string, str): target_url = f"{TARGET_HOST}{path}?{request.query_string}" else: target_url = f"{TARGET_HOST}{path}?{request.query_string.decode()}" logger.info(f"|{current_process}| Requesting : {target_url}") res = requests.get(target_url) logger.info(f"|{current_process}| Requested: {res.status_code}") original_mimetype = res.headers['Content-type'].split(";")[0] original_type_of_res = original_mimetype.split("/")[0] logger.info(f"|{current_process}| Response mimetype: {original_mimetype}") if original_type_of_res != "image" or "VND.MICROSOFT.ICON" in original_mimetype.upper(): logger.warning(f"|{current_process}| Content non-supported") return (f'Non-Supported Content Type: {original_mimetype}', 204) image_stream = BytesIO(res.content) image = PIL.Image.open(image_stream) image_bw = image.convert('LA') logger.info(f"|{current_process}| Image transformed, sending...") return serve_pil_image(image_bw, original_mimetype) if __name__ == '__main__': app.run(host='0.0.0.0', port=8080) ```
{ "source": "jdaymude/AttractionRepulsionModel", "score": 3 }
#### File: jdaymude/AttractionRepulsionModel/arm.py ```python import math import numpy as np from tqdm import trange def arm(N=100, D=1, E=[0.1], T=0.25, R=0.25, K=math.inf, S=500000, P=0, \ shock=(None, None), init='norm', seed=None, silent=False): """ Execute a simulation of the Attraction-Repulsion Model. Inputs: N (int): number of agents D (int): number of ideological dimensions E ([float]): list of exposures T (float): tolerance R (float): responsiveness K (float): steepness of stochastic attraction-repulsion S (int): number of steps to simulate P (float): self-interest probability shock ((float, float)): external shock step and strength init (str): 'norm' for Gaussian normal initialization, 'emp' for empirical seed (int): random seed silent (bool): True if progress should be shown on command line Returns (init_config, config, history): init_config: N x D array of initial agent ideological positions config: N x D array of agent ideological positions after S steps history: S x (D + 2) array detailing interaction history """ # Initialize the random number generation. rng = np.random.default_rng(seed) # Initialize the agent population and their initial ideological positions. if init == 'norm': if D == 1: config = np.zeros(N) for i in np.arange(N): while True: config[i] = rng.normal(0.5, 0.2) if 0 <= config[i] and config[i] <= 1: break config = config.reshape(-1, 1) else: # Higher dimensions. means, covs = 0.5 + np.zeros(D), 0.04 * np.eye(D) config = np.zeros((N, D)) for i in np.arange(N): while True: config[i] = rng.multivariate_normal(means, covs) clip = np.maximum(np.zeros(D), np.minimum(np.ones(D), config[i])) if np.allclose(config[i], clip): break else: # Empirical initialization. assert D == 1, 'ERROR: CCES 2020 data is 1-dimensional' with open('CCES_2020_dist.npy', 'rb') as f: emp = np.load(f) vals, probs = emp[0], emp[1] config = rng.choice(vals, N, p=probs) + (0.005 * rng.random(N) - 0.0025) config = config.reshape(-1, 1) init_config = np.copy(config) # Create an S x (D + 2) array to store the interaction history. Each step i # records the active agent [i][0], the passive agent [i][1], and the active # agent's new position [i][2:]. history = np.zeros((S, D + 2)) # Simulate the desired number of pairwise interactions. for step in trange(S, desc='Simulating interactions', disable=silent): # Perform the external shock intervention, if specified. shock_step, shock_strength = shock if shock_step is not None: assert D == 1, 'ERROR: External shock requires 1D' if step >= shock_step and step < shock_step + N: i = step - shock_step config[i] = np.minimum(np.ones(D), config[i] + shock_strength) history[step] = np.concatenate(([i], [i], config[i])) continue # Choose the active agent u.a.r. i = rng.integers(N) # Perform self-interest intervention, if specified. if P > 0 and rng.random() < P: config[i] = config[i] + R * (init_config[i] - config[i]) history[step] = np.concatenate(([i], [i], config[i])) continue # Interaction Rule: interact with probability (1/2)^delta, where delta # is the decay based on the agents' distance, scaled by the exposures # for each dimension. j = rng.choice(np.delete(np.arange(N), i)) delta = math.sqrt(sum([(config[i][k] - config[j][k])**2 / \ E[k]**2 for k in range(D)])) if rng.random() <= math.pow(0.5, delta): dist = np.linalg.norm(config[i] - config[j]) if K == math.inf: # The Attraction-Repulsion rule of opinion change. if dist <= T: # Attraction: agent i moves toward agent j. config[i] = config[i] + R * (config[j] - config[i]) else: # Repulsion: agent i moves away from agent j. config[i] = config[i] - R * (config[j] - config[i]) elif dist > 0: # The Stochastic Attraction-Repulsion rule of opinion change. rep_prob = 1/(1 + np.power((D**0.5/dist - 1)/(D**0.5/T - 1), K)) if rng.random() >= rep_prob: # Attraction: agent i moves toward agent j. config[i] = config[i] + R * (config[j] - config[i]) else: # Repulsion: agent i moves away from agent j. config[i] = config[i] - R * (config[j] - config[i]) # Clip to the limits of ideological space. config[i] = np.maximum(np.zeros(D), np.minimum(D, config[i])) history[step] = np.concatenate(([i], [j], config[i])) else: # No interaction. history[step] = np.concatenate(([i], [i], config[i])) return init_config, config, history ```
{ "source": "jdayton3/ch-pipeline", "score": 2 }
#### File: jdayton3/ch-pipeline/remove_unplaced_multiallelic.py ```python import gzip import re import os import time from sys import argv import concurrent.futures startTime = time.time() char = '\n' + ('*' * 70) + '\n' #Input file or list of files inputFile = argv[1] #Create a list of file(s) that need to have unplaced and multiallelic sites removed fileSet = set() if inputFile.endswith(".gz"): fileSet.add(inputFile) elif inputFile.endswith(".txt"): with open(inputFile) as sampleFile: for sample in sampleFile: sample = sample.rstrip("\n") fileSet.add(sample) elif inputFile.endswith(".tsv"): with open(inputFile) as sampleFile: header = sampleFile.readline() headerList = header.rstrip().split("\t") fileNameIndex = headerList.index("file_name") familyIdIndex = headerList.index("family_id") for sample in sampleFile: sampleData = sample.rstrip("\n").split("\t") fileName = sampleData[fileNameIndex] sampleFamilyId = sampleData[familyIdIndex] shortName = re.findall(r"([\w\-/]+)\.?.*\.?.*\.gz", fileName)[0] individualFileName = "{}_test/{}_liftover.vcf.gz".format(sampleFamilyId, shortName) trioFileName = "{}_test/{}_liftover.vcf.gz".format(sampleFamilyId, sampleFamilyId) fileSet.add(individualFileName) fileSet.add(trioFileName) #Remove Unplaced sites and multiallelic sites chrToKeep = {"chr1", "chr2", "chr3", "chr4", "chr5", "chr6", "chr7", "chr8", "chr9", "chr10", "chr11", "chr12", "chr13",\ "chr14", "chr15", "chr16", "chr17", "chr18", "chr19", "chr20", "chr21", "chr22", "chrX", "chrY"} filesToRemoveDuplicates = [] def removeSites(file): fileName = re.findall(r"([\w\-/]+)_liftover\.?.*\.?.*\.gz", file)[0] outputName = "{}_no_ambiguous_sites.vcf".format(fileName) with gzip.open(file, "rt") as inputFile, open(outputName, "wt") as outFile: for line in inputFile: if line.startswith("#") and "##contig=<ID=" not in line: outFile.write(line) elif line.startswith("#") and "##contig=<ID=" in line: splitLine = line.split(",") chr = splitLine[0].replace("##contig=<ID=", "") if chr in chrToKeep: outFile.write(line) else: splitLine = line.split("\t") if splitLine[0] in chrToKeep and "," not in splitLine[4]: outFile.write(line) os.system("bgzip {}".format(outputName)) return("{}.gz".format(outputName)) with concurrent.futures.ProcessPoolExecutor(max_workers=24) as executor: fileName = executor.map(removeSites, fileSet) for file in fileName: filesToRemoveDuplicates.append(file) #Output message and time complete timeElapsedMinutes = round((time.time()-startTime) / 60, 2) timeElapsedHours = round(timeElapsedMinutes / 60, 2) print('{}Unplaced and multiallelic sites have been removed. Time elapsed: {} minutes ({} hours){}'.format(char, timeElapsedMinutes, timeElapsedHours, char)) #Remove all duplicate sites def removeDuplicates(file): fileName = re.findall(r"([\w\-/]+)_no_ambiguous_sites\.?.*\.?.*\.gz", file)[0] outputName = "{}_liftover_parsed.vcf".format(fileName) duplicateFile = "{}_removedDuplicates.vcf".format(fileName) lines = [["NA"], ["NA"], ["NA"], ["NA"], ["NA"], ["NA"], ["NA"], ["NA"], ["NA"], ["NA"]] dupList = [] with gzip.open(file, "rt") as inputFile: for line in inputFile: if not line.startswith("#"): line = line.split("\t") line = line[0:2] + line[3:5] if line not in lines: lines.append(line) lines = lines[-10:] else: dupList.append(line) with gzip.open(file, "rt") as inputFile, open(outputName, "wt") as outFile, open(duplicateFile, "w") as duplicates: for line in inputFile: if not line.startswith("#"): splitLine = line.split("\t") splitLine = splitLine[0:2] + splitLine[3:5] if splitLine not in dupList: outFile.write(line) else: duplicates.write(line) else: outFile.write(line) duplicates.write(line) os.system("bgzip {}".format(outputName)) with concurrent.futures.ProcessPoolExecutor(max_workers=24) as executor: executor.map(removeDuplicates, filesToRemoveDuplicates) timeElapsedMinutes = round((time.time()-startTime) / 60, 2) timeElapsedHours = round(timeElapsedMinutes / 60, 2) print('{}Duplicate sites removed. Time elapsed: {} minutes ({} hours){}'.format(char, timeElapsedMinutes, timeElapsedHours, char)) ```
{ "source": "jdayton3/dpu-utils", "score": 3 }
#### File: dpu_utils/mlutils/chartensorizer.py ```python import numpy as np from typing import Optional __all__ = ['CharTensorizer'] class CharTensorizer: """Tensorize strings into characters""" def __init__(self, max_num_chars: Optional[int], lower_case_all: bool, include_space: bool): self.__max_num_chars = max_num_chars self.__lower_case_all = lower_case_all self.__ALPHABET = "abcdefghijklmnopqrstuvwxyz0123456789,;.!?:'\"/\\|_@#$%^&*~`+-=<>()[]{}" if not self.__lower_case_all: self.__ALPHABET = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" + self.__ALPHABET if include_space: self.__ALPHABET += ' ' self.__ALPHABET_DICT = {char: idx + 2 for (idx, char) in enumerate(self.__ALPHABET)} # "0" is PAD, "1" is UNK self.__ALPHABET_DICT['PAD'] = 0 self.__ALPHABET_DICT['UNK'] = 1 @property def max_char_length(self)-> Optional[int]: return self.__max_num_chars def num_chars_in_vocabulary(self)-> int: return len(self.__ALPHABET) def __get_char_idx(self, character: str) -> int: idx = self.__ALPHABET_DICT.get(character) if idx is not None: return idx return self.__ALPHABET_DICT['UNK'] def get_word_from_ids(self, ids: np.ndarray)-> str: return ''.join(self.__ALPHABET[i] if i!=1 else '<UNK>' for i in ids) def tensorize_str(self, input: str)-> np.ndarray: if self.__lower_case_all: input = input.lower() def char_iterator(): for i, c in enumerate(input): if self.__max_num_chars is not None and i >= self.__max_num_chars: break yield self.__get_char_idx(c) if self.__max_num_chars is not None and len(input) < self.__max_num_chars: pad_id = self.__get_char_idx('PAD') yield from (pad_id for _ in range(self.__max_num_chars - len(input))) return np.fromiter(char_iterator(), dtype=np.uint8) ``` #### File: dpu_utils/tfutils/unsortedsegmentops.py ```python import tensorflow as tf def unsorted_segment_logsumexp(scores, segment_ids, num_segments): """Perform an unsorted segment safe logsumexp.""" # Note: if a segment is empty, the smallest value for the score will be returned, # which yields the correct behavior max_per_segment = tf.unsorted_segment_max(data=scores, segment_ids=segment_ids, num_segments=num_segments) scattered_log_maxes = tf.gather(params=max_per_segment, indices=segment_ids) recentered_scores = scores - scattered_log_maxes exped_recentered_scores = tf.exp(recentered_scores) per_segment_sums = tf.unsorted_segment_sum(exped_recentered_scores, segment_ids, num_segments) per_segment_logs = tf.log(per_segment_sums) return per_segment_logs + max_per_segment def unsorted_segment_log_softmax(logits, segment_ids, num_segments): """Perform an unsorted segment safe log_softmax.""" # Note: if a segment is empty, the smallest value for the score will be returned, # which yields the correct behavior max_per_segment = tf.unsorted_segment_max(data=logits, segment_ids=segment_ids, num_segments=num_segments) scattered_maxes = tf.gather(params=max_per_segment, indices=segment_ids) recentered_scores = logits - scattered_maxes exped_recentered_scores = tf.exp(recentered_scores) per_segment_sums = tf.unsorted_segment_sum(exped_recentered_scores, segment_ids, num_segments) per_segment_normalization_consts = tf.log(per_segment_sums) log_probs = recentered_scores - tf.gather(params=per_segment_normalization_consts, indices=segment_ids) return log_probs ``` #### File: dpu_utils/utils/debughelper.py ```python import sys import traceback import pdb from typing import Callable __all__= ['run_and_debug'] def run_and_debug(func: Callable[[], None], enable_debugging: bool)-> None: try: func() except: if enable_debugging: _, value, tb = sys.exc_info() traceback.print_exc() pdb.post_mortem(tb) else: raise ```
{ "source": "jdayton3/Geney", "score": 2 }
#### File: Geney/server/failsafe-app.py ```python from flask_failsafe import failsafe # this file is purely for development, so you can still reload the python server when it's running inside a docker container @failsafe def create_app(): from app import app return app if __name__ == '__main__': create_app().run(debug=True, host='0.0.0.0', port=8889) ```
{ "source": "Jdban/orchestra", "score": 2 }
#### File: orchestra/dags/dv360_create_sdf_advertisers_report_dag.py ```python import sys sys.path.append("..") from datetime import datetime from datetime import timedelta from airflow import DAG from airflow import models from operators.dv360 import dv360_create_query_by_json_operator import json def yesterday(): return datetime.today() - timedelta(days=1) default_args = { "owner": "airflow", "start_date": yesterday(), "email_on_failure": False, "email_on_retry": False, "retries": 1, "retry_delay": timedelta(seconds=10), } conn_id = "gmp_reporting" dag_name = "dv360_create_sdf_advertisers_report_dag" output_var = "dv360_sdf_advertisers_report_id" body = { "kind": "doubleclickbidmanager#query", "metadata": { "title": "Advertiser IDs", "dataRange": "LAST_30_DAYS", "format": "CSV", "running": False, "reportCount": 0, "googleCloudStoragePathForLatestReport": "", "latestReportRunTimeMs": "0", "googleDrivePathForLatestReport": "", "sendNotification": False }, "params": { "type": "TYPE_GENERAL", "groupBys": ["FILTER_ADVERTISER", "FILTER_PARTNER"], "filters": [], "metrics": ["METRIC_IMPRESSIONS"], "includeInviteData": True }, "schedule": { "frequency": "DAILY", "endTimeMs": "1861873200000", "nextRunMinuteOfDay": 0, "nextRunTimezoneCode": "Europe/London" }, "timezoneCode": "Europe/London" } partner_ids = models.Variable.get("partner_ids").split(",") # Add partner ID filters using partner_id variable for partner_id in partner_ids: body.get("params").get("filters").append({ "type": "FILTER_PARTNER", "value": partner_id }) body = json.dumps(body) dag = DAG( dag_name, catchup=False, default_args=default_args, schedule_interval=None) create_query_task = dv360_create_query_by_json_operator.DV360CreateQueryOperator( task_id="create_dv360_report", conn_id=conn_id, depends_on_past=False, body=body, output_var=output_var, dag=dag) ``` #### File: orchestra/utils/download_and_transform_erf.py ```python import json import os from random import randint import tempfile import time from hooks.gcs_hook import GoogleCloudStorageHook def json_to_jsonlines(json_file): """Naive Implentation for json to jsonlines. Args: json_file: A string, the file name of the json file. Returns: The input json file as new line delimited json. """ with open(json_file) as f: data = json.load(f) return '\n'.join([json.dumps(d) for d in data]) def download_and_transform_erf(self, partner_id=None): """Load and Transform ERF files to Newline Delimeted JSON. Then upload this file to the project GCS. Args: self: The operator this is being used in. partner_id: A string of the DCM id of the partner. Returns: entity_read_file_ndj: The filename for the converted entity read file. """ if partner_id: self.erf_bucket = 'gdbm-%s' % partner_id else: self.erf_bucket = 'gdbm-public' gcs_hook = GoogleCloudStorageHook(google_cloud_storage_conn_id=self.conn_id) entity_read_file = tempfile.NamedTemporaryFile(delete=False) gcs_hook.download(self.erf_bucket, self.erf_object, entity_read_file.name) temp_file = None # Creating temp file. Not using the delete-on-close functionality # as opening the file for reading while still open for writing # will not work on all platform # https://docs.python.org/2/library/tempfile.html#tempfile.NamedTemporaryFile try: temp_file = tempfile.NamedTemporaryFile(delete=False) temp_file.writelines(json_to_jsonlines(entity_read_file.name)) temp_file.close() # Random here used as a nonce for writing multiple files at once. filename = '%s_%s_%d.json' % (randint(1, 1000000), self.entity_type, time.time() * 1e+9) gcs_hook.upload(self.gcs_bucket, filename, temp_file.name) finally: if temp_file: temp_file.close() os.unlink(temp_file.name) return filename ```
{ "source": "jdbartee/crafting_interpreters", "score": 3 }
#### File: crafting_interpreters/src/ast_printer.py ```python from expressions import Binary, Unary, Literal, Grouping import tokens class AstPrinter: def to_string(self, expr): s = expr.accept(self) return s def sexp(self, car, *cdr): s = f"({car}" for expr in cdr: s += " " s += self.to_string(expr) s += ")" return s def visit_binary_expr(self, expr: Binary): return self.sexp(expr.operator.lexeme, expr.left, expr.right) def visit_grouping_expr(self, expr: Grouping): return self.sexp("group", expr.expression) def visit_literal_expr(self, expr: Literal): return str(expr.value) def visit_unary_expr(self, expr: Unary): return self.sexp(expr.operator.lexeme, expr.right) if __name__ == "__main__": expression = Binary( left=Unary( operator=tokens.Token(tokens.MINUS, "-", "-", 1), right=Literal(value="123")), operator=tokens.Token(tokens.STAR, "*", "*", 1), right=Grouping( expression=Literal("45.67"))) print(AstPrinter().to_string(expression)) ``` #### File: crafting_interpreters/src/environment.py ```python from errors import LoxRuntimeError class Environment: def __init__(self, parent=None): self.parent: Environment = parent self.values = {} def ancestor(self, distance): e = self for i in range(0, distance): e = e.parent return e def define(self, name, value): self.values[name.lexeme] = value def get(self, name, fallback=True): if name.lexeme in self.values: return self.values[name.lexeme] if fallback and self.parent is not None: return self.parent.get(name) raise LoxRuntimeError(name, f"Undefined Variable '{name.lexeme}'.") def get_at(self, distance, name): return self.ancestor(distance).get(name, fallback=False) def assign(self, name, value, fallback=True): if name.lexeme in self.values: self.values[name.lexeme] = value return value if fallback and self.parent is not None: return self.parent.assign(name, value) raise LoxRuntimeError(name, f"Undefined Variable '{name.lexeme}'.") def assign_at(self, distance, name, value): self.ancestor(distance).assign(name, value, fallback=False) ``` #### File: crafting_interpreters/src/interpreter.py ```python import tokens from environment import Environment from errors import LoxRuntimeError, Return import statements as Stmt import expressions as Expr from lox_function import LoxFunction from lox_class import LoxClass, LoxInstance class CLOCK: @staticmethod def arity(): return 0 @staticmethod def call(interpreter, arguments): import datetime return float(datetime.datetime.now().timestamp()) @staticmethod def to_string(): return "<native fn clock>" class PRINT: @staticmethod def arity(): return 1 @staticmethod def call(interpreter, arguments): value = arguments[0] if hasattr(value, "to_string") and callable(value.to_string): value = value.to_string() print(value) return None def to_string(self): return "<native fn print>" class Interpreter: def __init__(self, report): self.report = report self.global_env = Environment() self.environment = self.global_env self.locals = {} self.global_env.define(tokens.Token(tokens.IDENTIFIER, "clock", "clock", -1), CLOCK) self.global_env.define(tokens.Token(tokens.IDENTIFIER, "print", "print", -1), PRINT) def interpret(self, stmts: [Stmt.Stmt]): try: for stmt in stmts: self.execute(stmt) except LoxRuntimeError as ir: self.report(ir) def execute(self, stmt: Stmt.Stmt): return stmt.accept(self) def evaluate(self, expr: Expr.Expr): value = expr.accept(self) return value def lookup_variable(self, name: tokens.Token, expression: Expr): distance = self.locals.get(expression) value = None if distance is not None: value = self.environment.get_at(distance, name) else: value = self.global_env.get(name) return value def visit_block_stmt(self, stmt: Stmt.Block): return self.execute_block( stmt.statements, Environment(self.environment)) def execute_block(self, stmts: [Stmt], env: Environment): prev_environment = self.environment try: self.environment = env for stmt in stmts: self.execute(stmt) finally: self.environment = prev_environment return None def visit_class_stmt(self, stmt: Stmt.Class): superclass = None if stmt.superclass is not None: superclass = self.evaluate(stmt.superclass) if not isinstance(superclass, LoxClass): raise LoxRuntimeError(stmt.superclass.name, "Superclass must be a class.") self.environment.define(stmt.name, None) if stmt.superclass is not None: self.environment = Environment(self.environment) self.environment.define(tokens.Token(tokens.SUPER, 'super', 'super', -1), superclass) methods = {} for method in stmt.methods: function = LoxFunction(method, self.environment, is_initializer=method.name.lexeme == "init") methods[method.name.lexeme] = function klass = LoxClass(stmt.name, superclass, methods) if superclass is not None: self.environment = self.environment.parent self.environment.assign(stmt.name, klass) return None def resolve(self, expr: Expr, depth: int): self.locals[expr] = depth def visit_print_stmt(self, stmt: Stmt.Print): value = self.evaluate(stmt.expression) if hasattr(value, "to_string") and callable(value.to_string): value = value.to_string() print(value) return None def visit_expression_stmt(self, stmt: Stmt.Expression): self.evaluate(stmt.expression) return None def visit_if_stmt(self, stmt: Stmt.If): if self.is_truthy(self.evaluate(stmt.condition)): self.execute(stmt.then_branch) elif stmt.else_branch is not None: self.execute(stmt.else_branch) return None def visit_var_stmt(self, stmt: Stmt.Var): value = None if stmt.initializer is not None: value = self.evaluate(stmt.initializer) self.environment.define(stmt.name, value) def visit_while_stmt(self, stmt: Stmt.While): while self.is_truthy(self.evaluate(stmt.condition)): self.execute(stmt.body) return None def visit_function_stmt(self, stmt: Stmt.Function): function = LoxFunction(stmt, self.environment) self.environment.define(stmt.name, function) return None def visit_return_stmt(self, stmt: Stmt.Return): value = None if stmt.value is not None: value = self.evaluate(stmt.value) raise Return(value) def visit_binary_expr(self, expr: Expr.Binary): left = self.evaluate(expr.left) right = self.evaluate(expr.right) if expr.operator.token_type == tokens.MINUS: self.check_numeric_operands(expr.operator, left, right) return left - right if expr.operator.token_type == tokens.PLUS: if type(left) != type(right): raise LoxRuntimeError( expr.operator, "Operands must both be either strings or numbers") if type(left) is not str and type(left) is not float: raise LoxRuntimeError( expr.operator, "Operands must both be either strings or numbers") return left + right if expr.operator.token_type == tokens.STAR: self.check_numeric_operands(expr.operator, left, right) return left * right if expr.operator.token_type == tokens.SLASH: self.check_numeric_operands(expr.operator, left, right) return left / right if expr.operator.token_type == tokens.GREATER: self.check_numeric_operands(expr.operator, left, right) return left > right if expr.operator.token_type == tokens.GREATER_EQUAL: self.check_numeric_operands(expr.operator, left, right) return left >= right if expr.operator.token_type == tokens.LESS: self.check_numeric_operands(expr.operator, left, right) return left < right if expr.operator.token_type == tokens.LESS_EQUAL: self.check_numeric_operands(expr.operator, left, right) return left <= right if expr.operator.token_type == tokens.EQUAL_EQUAL: return self.is_equal(left, right) if expr.operator.token_type == tokens.BANG_EQUAL: return not self.is_equal(left, right) def visit_grouping_expr(self, expr: Expr.Grouping): return self.evaluate(expr.expression) def visit_literal_expr(self, expr: Expr.Literal): return expr.value def visit_unary_expr(self, expr: Expr.Unary): right = self.evaluate(expr.right) if expr.operator.token_type == tokens.MINUS: self.check_numeric_operands(expr.operator, right) return -right if expr.operator.token_type == tokens.BANG: return not self.is_truthy(right) return None def visit_assign_expr(self, expr: Expr.Assign): value = self.evaluate(expr.value) distance = self.locals.get(expr) if distance is not None: self.environment.assign_at(distance, expr, value) else: self.global_env.assign(expr, value) return value def visit_variable_expr(self, expr: Expr.Variable): value = self.lookup_variable(expr.name, expr) return value def visit_logical_expr(self, expr: Expr.Logical): left = self.evaluate(expr.left) if expr.operator.token_type == tokens.OR: if self.is_truthy(left): return left else: if not self.is_truthy(left): return left return self.evaluate(expr.right) def visit_call_expr(self, expr: Expr.Call): callee = self.evaluate(expr.callee) arguments = [] for arg in expr.arguments: arguments.append(self.evaluate(arg)) if not hasattr(callee, "call") or not callable(callee.call): raise LoxRuntimeError(expr.paren, "Can only call functions and classes.") if len(arguments) != callee.arity(): raise LoxRuntimeError(expr.paren, "Wrong number of arguments.") return callee.call(self, arguments) def visit_get_expr(self, expr: Expr.Get): obj = self.evaluate(expr.object) if isinstance(obj, LoxInstance): return obj.get(expr.name) raise LoxRuntimeError(expr.name, "Only instances have properties") def visit_set_expr(self, expr: Expr.Set): obj = self.evaluate(expr.object) if not isinstance(obj, LoxInstance): raise LoxRuntimeError(expr.name, "Only instances have properties") value = self.evaluate(expr.value) obj.set(expr.name, value) def visit_this_expr(self, expr: Expr.This): return self.lookup_variable(expr.keyword, expr) def visit_super_expr(self, expr: Expr.Super): distance = self.locals.get(expr) superclass = self.environment.get_at(distance, expr.keyword) obj = self.environment.get_at(distance - 1, tokens.Token(tokens.THIS, 'this', 'this', -1)) method = superclass.find_method(expr.method.lexeme) if method is None: raise LoxRuntimeError(expr.method, f"Undefined property {expr.method.lexeme}.") return method.bind(obj) def is_truthy(self, value): return value is not None and value is not False def is_equal(self, left, right): return left == right def check_numeric_operands(self, operator, *operands): for operand in operands: if type(operand) is not float: raise LoxRuntimeError(operator, "Operand must be a number.") ``` #### File: crafting_interpreters/src/lox_class.py ```python from errors import LoxRuntimeError from lox_function import LoxFunction from tokens import Token class LoxClass: def __init__(self, name: Token, superclass, methods): self.name = name self.superclass = superclass self.methods = methods def to_string(self): return self.name.lexeme def call(self, interpreter, arguments): instance = LoxInstance(self) initializer = self.find_method('init') if initializer is not None: initializer.bind(instance).call(interpreter, arguments) return instance def arity(self): initializer = self.find_method('init') if initializer is not None: return initializer.arity() return 0 def find_method(self, name): method = self.methods.get(name) if method is None and self.superclass is not None: return self.superclass.find_method(name) return method class LoxInstance: def __init__(self, klass: LoxClass): self.klass = klass self.fields = {} def to_string(self): return f"{self.klass.to_string()} instance" def get(self, name: Token): if name.lexeme in self.fields: return self.fields[name.lexeme] method = self.klass.find_method(name.lexeme) if method is not None: return method.bind(self) raise LoxRuntimeError(name, f"Undefined property {name.lexeme}.") def set(self, name, value): self.fields[name.lexeme] = value ``` #### File: crafting_interpreters/src/lox_function.py ```python import statements as Stmt from environment import Environment from errors import Return from tokens import Token, THIS this_token = Token(THIS, "this", "this", -1) class LoxFunction: def __init__(self, declaration: Stmt.Function, closure: Environment, is_initializer=False): self.closure = closure self.declaration = declaration self.is_initializer = is_initializer def call(self, interpreter, arguments): env = Environment(self.closure) for i, param in enumerate(self.declaration.params): arg = arguments[i] env.define(param, arg) try: interpreter.execute_block(self.declaration.body, env) except Return as return_value: if self.is_initializer: return self.closure.get_at(0, this_token) return return_value.value if self.is_initializer: return self.closure.get_at(0, this_token) return None def arity(self): return len(self.declaration.params) def to_string(self): return f"<fn {self.declaration.name.lexeme}>" def bind(self, instance): env = Environment(self.closure) env.define(this_token, instance) return LoxFunction(self.declaration, env, is_initializer=self.is_initializer) ```
{ "source": "jd-bartlett96/PeriPy", "score": 2 }
#### File: peripy/examples/run.py ```python import argparse import ast import os import sys import subprocess HERE = os.path.dirname(__file__) or '.' def _exec_file(filename): ns = {'__name__': '__main__', '__file__': filename} co = compile(open(filename, 'rb').read(), filename, 'exec') exec(co, ns) def _extract_full_doc(filename): p = ast.parse(open(filename, 'rb').read()) return ast.get_docstring(p) def _extract_short_doc(dirname, fname): return open(os.path.join(dirname, fname)).readline()[3:].strip() def _get_module(fname): start = fname parts = ['peripy.examples'] while os.path.dirname(start) != '': dirname, start = os.path.split(start) parts.append(dirname) return '.'.join(parts + [start[:-3]]) def example_info(module, filename): """Print example information.""" print("Information for example: %s" % module) print(_extract_full_doc(filename)) def get_all_examples(): """Get all of the examples.""" basedir = HERE examples = [] _ignore = [['run.py'], ['example3'], ['example3', 'profiling'], ['example3', 'damage models'], ['example3', 'SS'], ['example3', 'profiling', 'txt'], ['example4']] ignore = [os.path.abspath(os.path.join(basedir, *pth)) for pth in _ignore] for dirpath, dirs, files in os.walk(basedir): rel_dir = os.path.relpath(dirpath, basedir) if rel_dir == '.': rel_dir = '' py_files = [x for x in files if x.endswith('.py') and not x.startswith('_')] data = [] for f in py_files: path = os.path.join(rel_dir, f) full_path = os.path.join(basedir, path) dirname = os.path.dirname(full_path) full_dirname = os.path.join(basedir, dirname) if ((os.path.abspath(full_path) in ignore) or (os.path.abspath(full_dirname) in ignore)): continue module = _get_module(path) doc = _extract_short_doc(dirpath, f) data.append((module, doc)) examples.extend(data) return examples def get_input(prompt): """Get input (python 3 required).""" return input(prompt) def get_path(module): """Return the path to the module filename given the module.""" x = module[len('peripy.examples.'):].split('.') x[-1] = x[-1] + '.py' return os.path.join(HERE, *x) def guess_correct_module(example): """ Given some form of the example name guess and return a reasonable module. Examples -------- >>> guess_correct_module('example1') 'peripy.examples.example1.example' >>> guess_correct_module('peripy.examples.example1') 'peripy.examples.example1.example' >>> guess_correct_module('examples.example1') 'peripy.examples.example1.example' >>> guess_correct_module('example1/example.py') 'peripy.examples.example1.example' >>> guess_correct_module('example1/example') 'peripy.examples.example1.example' """ if example.endswith('.py'): example = example[:-3] if not example.endswith('example'): example = example + '.example' example = example.replace('/', '.') if example.startswith('examples.'): module = 'peripy.' + example print(module, '1') elif not example.startswith('peripy.examples.'): module = 'peripy.examples.' + example print(module, '2') else: module = example print(module, '3') return module def cat_example(module): """Cat example.""" filename = get_path(module) print("# File: %s" % filename) print(open(filename).read()) def list_examples(examples): """List example.""" for idx, (module, doc) in enumerate(examples): print("%d. %s" % (idx + 1, module[len('peripy.examples.'):])) print(" %s" % doc) def run_command(module, args): """Run command.""" print("Running example %s.\n" % module) filename = get_path(module) if '-h' not in args and '--help' not in args: example_info(module, filename) subprocess.call( ["python", filename] + args) def main(argv=None): """Run a PeriPy example.""" if argv is None: argv = sys.argv[1:] examples = get_all_examples() parser = argparse.ArgumentParser( prog="run", description=__doc__.split("\n\n")[0], add_help=False ) parser.add_argument( "-h", "--help", action="store_true", default=False, dest="help", help="show this help message and exit" ) parser.add_argument( "-l", "--list", action="store_true", default=False, dest="list", help="List examples" ) parser.add_argument( "--cat", action="store_true", default=False, dest="cat", help="Show/cat the example code on stdout" ) parser.add_argument( "args", type=str, nargs="?", help='''optional example name (for example both cavity or peripy.examples.cavity will work) and arguments to the example.''' ) if len(argv) > 0 and argv[0] in ['-h', '--help']: parser.print_help() sys.exit() options, extra = parser.parse_known_args(argv) if options.list: return list_examples(examples) if options.cat: module = guess_correct_module(options.args) return cat_example(module) if len(argv) > 0: module = guess_correct_module(argv[0]) run_command(module, argv[1:]) else: list_examples(examples) try: ans = int(get_input("Enter example number you wish to run: ")) except ValueError: ans = 0 if ans < 1 or ans > len(examples): print("Invalid example number, exiting!") sys.exit() args = str(get_input( "Enter additional arguments (leave blank to skip): " )) module, doc = examples[ans - 1] print("-" * 80) run_command(module, args.split()) if __name__ == '__main__': main() ``` #### File: peripy/test/test_cl_euler.py ```python from .conftest import context_available from ..cl import get_context import numpy as np import pyopencl as cl from pyopencl import mem_flags as mf import pathlib import pytest @pytest.fixture(scope="module") def context(): """Create a context using the default platform, prefer GPU.""" return get_context() @context_available @pytest.fixture(scope="module") def queue(context): """Create a CL command queue.""" return cl.CommandQueue(context) @context_available @pytest.fixture(scope="module") def program(context): """Create a program object for the Euler integrator.""" kernel_source = open( pathlib.Path(__file__).parent.absolute() / "../cl/euler.cl").read() return cl.Program(context, kernel_source).build() class TestUpdateDisplacement: """Test the displacement update.""" @context_available def test_update_displacement(self, context, queue, program): """Test basic displacement update.""" u = np.zeros(3) nnodes = 1 force = np.array([1.0, 2.0, 3.0], dtype=np.float64) bc_types = np.array([0, 0, 0], dtype=np.intc) bc_values = np.array([0, 0, 0], dtype=np.float64) displacement_bc_scale = 0 dt = 1 # Set buffers # Read only bc_types_d = cl.Buffer( context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=bc_types) bc_values_d = cl.Buffer( context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=bc_values) force_d = cl.Buffer( context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=force) # Read write u_d = cl.Buffer( context, mf.READ_WRITE | mf.COPY_HOST_PTR, hostbuf=u) # Build kernels update_displacement_kernel = program.update_displacement update_displacement_kernel( queue, (3 * nnodes,), None, force_d, u_d, bc_types_d, bc_values_d, np.float64(displacement_bc_scale), np.float64(dt)) cl.enqueue_copy(queue, u, u_d) assert np.all(u == force) @context_available def test_update_displacement2(self, context, queue, program): """Test displacement update.""" u = np.zeros(3) nnodes = 1 force = np.array([1.0, 2.0, 3.0], dtype=np.float64) bc_types = np.array([0, 0, 0], dtype=np.intc) bc_values = np.array([0, 0, 0], dtype=np.float64) displacement_bc_scale = 0 dt = 2.0 # Set buffers # Read only bc_types_d = cl.Buffer( context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=bc_types) bc_values_d = cl.Buffer( context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=bc_values) force_d = cl.Buffer( context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=force) # Read write u_d = cl.Buffer( context, mf.READ_WRITE | mf.COPY_HOST_PTR, hostbuf=u) # Build kernels update_displacement_kernel = program.update_displacement update_displacement_kernel( queue, (3 * nnodes,), None, force_d, u_d, bc_types_d, bc_values_d, np.float64(displacement_bc_scale), np.float64(dt)) cl.enqueue_copy(queue, u, u_d) assert np.all(u == 2.0*force) @context_available def test_update_displacement3(self, context, queue, program): """Test displacement update with displacement boundary conditions.""" u = np.zeros(3) nnodes = 1 force = np.array([1.0, 2.0, 3.0], dtype=np.float64) bc_types = np.array([1, 1, 0], dtype=np.intc) bc_values = np.array([0.0, 0.0, 0.0], dtype=np.float64) displacement_bc_scale = 1.0 dt = 2.0 # Set buffers # Read only bc_types_d = cl.Buffer( context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=bc_types) bc_values_d = cl.Buffer( context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=bc_values) force_d = cl.Buffer( context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=force) # Read write u_d = cl.Buffer( context, mf.READ_WRITE | mf.COPY_HOST_PTR, hostbuf=u) # Build kernels update_displacement_kernel = program.update_displacement update_displacement_kernel( queue, (3 * nnodes,), None, force_d, u_d, bc_types_d, bc_values_d, np.float64(displacement_bc_scale), np.float64(dt)) cl.enqueue_copy(queue, u, u_d) u_expected = np.array([0.0, 0.0, 6.0]) assert np.all(u == u_expected) @context_available def test_update_displacement4(self, context, queue, program): """Test displacement update with displacement B.C. scale.""" u = np.zeros(3) nnodes = 1 force = np.array([1.0, 2.0, 3.0], dtype=np.float64) bc_types = np.array([1, 1, 0], dtype=np.intc) bc_values = np.array([2.0, 2.0, 0.0], dtype=np.float64) displacement_bc_scale = 0.5 dt = 2.0 # Set buffers # Read only bc_types_d = cl.Buffer( context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=bc_types) bc_values_d = cl.Buffer( context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=bc_values) force_d = cl.Buffer( context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=force) # Read write u_d = cl.Buffer( context, mf.READ_WRITE | mf.COPY_HOST_PTR, hostbuf=u) # Build kernels update_displacement_kernel = program.update_displacement update_displacement_kernel( queue, (3 * nnodes,), None, force_d, u_d, bc_types_d, bc_values_d, np.float64(displacement_bc_scale), np.float64(dt)) cl.enqueue_copy(queue, u, u_d) u_expected = np.array([1.0, 1.0, 6.0]) assert np.all(u == u_expected) ``` #### File: peripy/test/test_neighbour_list.py ```python from .conftest import context_available from peripy.create_crack import (create_crack) from ..integrators import Euler, EulerCL from ..model import Model import numpy as np from scipy.spatial.distance import cdist import pytest @pytest.fixture() def basic_model_3d(data_path, simple_displacement_boundary): """Create a basic 3D model object.""" mesh_file = data_path / "example_mesh_3d.vtk" euler = Euler(dt=1e-3) model = Model(mesh_file, integrator=euler, horizon=0.1, critical_stretch=0.05, bond_stiffness=18.0 * 0.05 / (np.pi * 0.1**4), dimensions=3, is_displacement_boundary=simple_displacement_boundary) return model, euler @pytest.fixture() def basic_model_3d_cl(data_path, simple_displacement_boundary): """Create a basic 3D model object using an OpenCL integrator.""" mesh_file = data_path / "example_mesh_3d.vtk" euler = EulerCL(dt=1e-3) model = Model(mesh_file, integrator=euler, horizon=0.1, critical_stretch=0.05, bond_stiffness=18.0 * 0.05 / (np.pi * 0.1**4), dimensions=3, is_displacement_boundary=simple_displacement_boundary) return model, euler def test_family(basic_model_3d): """Test family function.""" model, integrator = basic_model_3d r = np.random.random((100, 3)) horizon = 0.2 (family_actual, *_) = model._set_neighbour_list( r, horizon, 100) family_expected = np.sum(cdist(r, r) < horizon, axis=0) - 1 assert np.all(family_actual == family_expected) class TestNeigbourList(): """Test neighbour list function.""" def test_neighbour_list_cython(self, basic_model_3d): """Test cython version of the neighbour list function.""" model, integrator = basic_model_3d r = np.array([ [0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [2.0, 0.0, 0.0] ]) (_, nlist_actual, n_neigh_actual, max_neighbours_actual) = model._set_neighbour_list(r, 1.1, 4) nl_expected = np.array([ [1, 2], [0, 3], [0, 0], [1, 0] ]) n_neigh_expected = np.array([2, 2, 1, 1]) assert np.all(nlist_actual == nl_expected) assert np.all(n_neigh_actual == n_neigh_expected) assert max_neighbours_actual == 2 @context_available def test_neighbour_list_cl1(self, basic_model_3d_cl): """Test OpenCL version of the neighbourlist function.""" model, integrator = basic_model_3d_cl r = np.array([ [0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [2.0, 0.0, 0.0] ]) (_, nlist_actual, n_neigh_actual, max_neighbours_actual) = model._set_neighbour_list( r, 1.1, 4, context=integrator.context) nl_expected = np.array([ [1, 2], [0, 3], [0, -1], [1, -1] ]) n_neigh_expected = np.array([2, 2, 1, 1]) assert np.all(nlist_actual == nl_expected) assert np.all(n_neigh_actual == n_neigh_expected) assert max_neighbours_actual == 2 @context_available def test_neighbour_list_cl2(self, basic_model_3d_cl): """Test OpenCL version of the neighbourlist function.""" model, integrator = basic_model_3d_cl r = np.array([ [0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [1.0, 0.0, 0.0] ]) (_, nlist_actual, n_neigh_actual, max_neighbours_actual) = model._set_neighbour_list( r, 1.1, 4, context=integrator.context) nl_expected = np.array([ [1, 2, 3, -1], [0, 3, -1, -1], [0, -1, -1, -1], [0, 1, -1, -1] ]) n_neigh_expected = np.array([3, 2, 1, 2]) assert np.all(nlist_actual == nl_expected) assert np.all(n_neigh_actual == n_neigh_expected) assert max_neighbours_actual == 4 def test_create_crack_cython(self, basic_model_3d): """Test crack creations function.""" model, integrator = basic_model_3d r = np.array([ [0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [2.0, 0.0, 0.0], [0.0, 0.0, 1.0], ]) horizon = 1.1 (_, nlist_actual, n_neigh_actual, max_neighbours_actual) = model._set_neighbour_list(r, horizon, 5) nl_expected = np.array([ [1, 2, 4], [0, 3, 0], [0, 0, 0], [1, 0, 0], [0, 0, 0] ]) n_neigh_expected = np.array([3, 2, 1, 1, 1]) assert np.all(nlist_actual == nl_expected) assert np.all(n_neigh_actual == n_neigh_expected) crack = np.array([(0, 2), (1, 3)], dtype=np.int32) create_crack(crack, nlist_actual, n_neigh_actual) nl_expected = np.array([ [1, 4, -1], [0, -1, 0], [-1, 0, 0], [-1, 0, 0], [0, 0, 0] ]) n_neigh_expected = np.array([2, 1, 0, 0, 1]) assert np.all(nlist_actual == nl_expected) assert np.all(n_neigh_actual == n_neigh_expected) (_, nlist_actual, n_neigh_actual, max_neighbours_actual) = model._set_neighbour_list( r, horizon, 5, initial_crack=crack) assert np.all(nlist_actual == nl_expected) assert np.all(n_neigh_actual == n_neigh_expected) @context_available def test_create_crack_cl(self, basic_model_3d_cl): """Test crack creations function.""" model, integrator = basic_model_3d_cl r = np.array([ [0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [2.0, 0.0, 0.0], [0.0, 0.0, 1.0], ]) horizon = 1.1 (_, nlist_actual, n_neigh_actual, max_neighbours_actual) = model._set_neighbour_list( r, horizon, 5, context=integrator.context) nl_expected = np.array([ [1, 2, 4, -1], [0, 3, -1, -1], [0, -1, -1, -1], [1, -1, -1, -1], [0, -1, -1, -1] ]) n_neigh_expected = np.array([3, 2, 1, 1, 1]) assert np.all(nlist_actual == nl_expected) assert np.all(n_neigh_actual == n_neigh_expected) crack = np.array([(0, 2), (1, 3)], dtype=np.int32) create_crack(crack, nlist_actual, n_neigh_actual) nl_expected = np.array([ [1, 4, -1, -1], [0, -1, -1, -1], [-1, -1, -1, -1], [-1, -1, -1, -1], [0, -1, -1, -1] ]) n_neigh_expected = np.array([2, 1, 0, 0, 1]) assert np.all(nlist_actual == nl_expected) assert np.all(n_neigh_actual == n_neigh_expected) (_, nlist_actual, n_neigh_actual, max_neighbours_actual) = model._set_neighbour_list( r, horizon, 5, initial_crack=crack, context=integrator.context) assert np.all(nlist_actual == nl_expected) assert np.all(n_neigh_actual == n_neigh_expected) ```
{ "source": "JDBetteridge/FiredrakeMLMC", "score": 2 }
#### File: examples/Old_Files/example-v5-2.py ```python from firedrake import * from randomgen import RandomGenerator, MT19937 import json import matplotlib.pyplot as plt import time from MLMCv5 import MLMC_Solver, MLMC_Problem rg = RandomGenerator(MT19937(12345)) def samp(lvl_f, lvl_c): start = time.time() rand = 20*rg.random_sample() samp_c = None #print(lvl_f.mesh()) x_f, y_f = SpatialCoordinate(lvl_f.mesh()) base_f = exp(-(((x_f-0.5)**2)/2) - (((y_f-0.5)**2)/2)) samp_f = Function(lvl_f) samp_f.interpolate(Constant(rand)*base_f) #print(type(samp_f)) if lvl_c != None: x_c, y_c = SpatialCoordinate(lvl_c.mesh()) base_c = exp(-(((x_c-0.5)**2)/2) - (((y_c-0.5)**2)/2)) samp_c = Function(lvl_c) samp_c.interpolate(Constant(rand)*base_c) print("samp time: {}".format(time.time() - start)) return samp_f, samp_c def lvl_maker(level_f, level_c): coarse_mesh = UnitSquareMesh(10, 10) hierarchy = MeshHierarchy(coarse_mesh, level_f, 1) if level_c < 0: return FunctionSpace(hierarchy[level_f], "Lagrange", 4), None else: return FunctionSpace(hierarchy[level_f], "Lagrange", 4), \ FunctionSpace(hierarchy[level_c], "Lagrange", 4) class problemClass: """ Needs to take an integer initialisation argument to define the level (0 - L) Needs to have a .solve() method which takes a sample as an argument and returns a scalar solution """ def __init__(self, level_obj): self._V = level_obj self._sample = Function(self._V) self._uh = Function(self._V) self._vs = self.initialise_problem() def solve(self, sample): #print(self._V.mesh()) self._sample.assign(sample) self._vs.solve() return assemble(Constant(0.5) * dot(self._uh, self._uh) * dx) # HELPER def initialise_problem(self): u = TrialFunction(self._V) v = TestFunction(self._V) a = (dot(grad(v), grad(u)) + v * u) * dx bcs = DirichletBC(self._V, 0, (1,2,3,4)) f = self._sample L = f * v * dx vp = LinearVariationalProblem(a, L, self._uh, bcs=bcs) return LinearVariationalSolver(vp, solver_parameters={'ksp_type': 'cg'}) def general_test(): # Levels and repetitions levels = 3 repetitions = [100, 50, 10] MLMCprob = MLMC_Problem(problemClass, samp, lvl_maker) MLMCsolv = MLMC_Solver(MLMCprob, levels, repetitions) estimate = MLMCsolv.solve() print(estimate) evaluate_result(estimate) def evaluate_result(result): with open("10_int.json") as handle: e_10 = json.load(handle) with open("100_int.json") as handle: e_100 = json.load(handle) with open("1000_int.json") as handle: e_1000 = json.load(handle) with open("10000_int.json") as handle: e_10000 = json.load(handle) with open("20000_int.json") as handle: e_20000 = json.load(handle) d_10 = result - e_10 d_100 = result - e_100 d_1000 = result - e_1000 d_10000 = result - e_10000 d_20000 = result - e_20000 print("% difference from 10 sample MC: ",(d_10*100)/result) print("% difference from 100 sample MC: ",(d_100*100)/result) print("% difference from 1000 sample MC: ",(d_1000*100)/result) print("% difference from 10000 sample MC: ",(d_10000*100)/result) print("% difference from 20000 sample MC: ",(d_20000*100)/result) convergence_tests(result) def convergence_tests(param = None): """ Function which compares result to 10,000 sample MC """ with open("20000_list.json") as handle: results = json.load(handle) res2 = [sum(results[:i+1])/(i+1) for i in range(len(results))] #print(res2[0], results[0]) fig, axes = plt.subplots() axes.plot([i for i in range(20000)], res2, 'r') if param != None: plt.axhline(y=param, color='b') #axes.hist(solutions, bins = 40, color = 'blue', edgecolor = 'black') plt.show() if __name__ == '__main__': general_test() ```
{ "source": "JDBetteridge/nbfancy", "score": 3 }
#### File: nbfancy/nbfancy/nbfancy_tools.py ```python import os import csv import pkg_resources import re import traceback import nbformat as nf import nbconvert as nc from urllib.parse import quote as urlquote def isdir(path): ''' Checks whether given path is a directory ''' if not os.path.isdir(path): raise OSError('"' + path + '"' + ' is not a direcotry') else: return path def try_config(configdir, filename): ''' Tries to read specified config, else uses global config returns file handle to requested file ''' resource_package = 'nbfancy' config_path = '/config' # Do not use os.path.join() if not os.path.isdir(configdir): configdir = pkg_resources.resource_filename(resource_package, config_path) try: filepath = os.path.join(configdir, filename) filehandle = open(filepath, 'r') except FileNotFoundError: configdir = pkg_resources.resource_filename(resource_package, config_path) filepath = os.path.join(configdir, filename) filehandle = open(filepath, 'r') return filehandle def read_header(configdir): ''' Reads header from config directory ''' # Open file and extract text in second cell with try_config(configdir, 'header.ipynb') as fh: notebook = nf.read(fh, nf.NO_CONVERT) template = notebook['cells'][1] return template def read_footer(configdir): ''' Reads footer from config directory ''' # Open file and extract text in second cell with try_config(configdir, 'footer.ipynb') as fh: notebook = nf.read(fh, nf.NO_CONVERT) template = notebook['cells'][1] return template def read_box_template(configdir): ''' Reads box template from given file handle ''' filehandle = try_config(configdir, 'box.ipynb') # File is already open # Open file and extract text in second cell notebook = nf.read(filehandle, nf.NO_CONVERT) box = notebook['cells'][1] template = box['source'] # Replace known values with placeholders template = template.replace('pale-green', '{bg-colour}') template = template.replace('green', '{fg-colour}') template = template.replace('fa-star', '{symbol}') template = template.replace('TITLE', '{title}') template = template.replace('BODY', '{body}') return template def colour2fgbg(colour): ''' Pairs foreground colour with background colour ''' colour = colour.lower() colour_list = ['red', 'orange', 'yellow', 'green', 'blue', 'purple'] colour_list += ['brown', 'black', 'grey', 'gray', 'white'] assert colour in colour_list fg = colour if fg == 'red': bg = 'pale-red' elif fg == 'orange': bg = 'sand' elif fg == 'yellow': bg = 'pale-yellow' elif fg == 'green': bg = 'pale-green' elif fg == 'blue': bg = 'pale-blue' elif fg == 'purple': bg = 'pale-red' elif fg == 'brown': bg = 'khaki' elif fg == 'black': bg = 'gray' elif (fg == 'gray') or (fg == 'grey'): fg = 'gray' bg = 'light-gray' elif fg == 'white': bg = 'white' return fg, bg def read_box_colour_config(configdir): ''' Create a dict of configurations for each keyword in filename Lines starting with # are ignored as are blank lines ''' config = dict() def isTF(val): ''' Return true or false if val is boolean ''' true_words = ['true', 't', '1'] false_words = ['false', 'f', '0'] test_val = val.strip().lower() if test_val in true_words: test_val = True elif test_val in false_words: test_val = False return test_val with try_config(configdir, 'keywords.cfg') as fh: no_comments = filter(lambda line: len(line)>3 and line.lstrip()[0]!='#' , fh) reader = csv.DictReader(no_comments) for row in reader: key = row.pop('Keyword') row_dict = {key.strip().lower() : isTF(row[key]) for key in row} row_dict['fg-colour'], row_dict['bg-colour'] = colour2fgbg(row_dict['colour']) config[key.strip().lower()] = row_dict return config def box_title(line, config): ''' Creates title for box. Returns html formattted title, index and which keyword was found ''' keywords = config.keys() # Search for keyword (lowercase) in first line and set that as the key for word in keywords: if word in line.lower().split(':')[0]: key = word # Recover paramters from keyword keep_keyword = config[key]['keep_keyword'] hidden = config[key]['hide'] # Whether to print keyword in title if keep_keyword: title = line.lstrip('#') else: subtitle = line.split(':') title = ':'.join(subtitle[1:]) # Safe version of title for links safetitle = title.replace(' ', '-') safetitle = safetitle.replace('`', '') index = urlquote(safetitle, safe='?!$\\') + '%0A' # Mark up title, incase markdown syntax is used htmltitle = nc.filters.markdown2html(title) htmltitle = htmltitle.replace('<p>', '') htmltitle = htmltitle.replace('</p>', '') #link = './' + solnfilename.split('/')[-1] + '#' + index return htmltitle, index, key def recursion_detector(f): ''' Detects whether a given function is calling itself ''' def decorated_f(*args, **kwargs): stack = traceback.extract_stack() if len([1 for line in stack if line[2] == f.__name__]) > 0: print('Warning: Nested environments detected, this is actively discouraged!') return f(*args, **kwargs) return decorated_f @recursion_detector def box_body(body, config, template, solnfilename, link=None, multicell=None): ''' Creates body of the box ''' # If an empty link to a solution is found, populate it with link # that was generated by the title (for single cell) if len(body) > 0 and '[solution]()' in body[-1].lower(): k = body[-1].lower().find('[solution]()') solution_phrase = body[-1][k:k+13] new_solution_phrase = '\n\n' + solution_phrase.replace('()','({link})') new_solution_phrase = new_solution_phrase.format(link=link) body[-1] = body[-1].replace(solution_phrase, new_solution_phrase) body = '\n'.join(body) # Apply markup htmlbody = nc.filters.markdown2html(body) if multicell is not None: # Bit of recursion #print('Warning nested cell environments') rendered, soln = notebook2rendered(multicell, config, template, solnfilename) # Export to html to include in cell html_exp = nc.HTMLExporter() html_exp.template_file = 'basic' temphtml, resources = html_exp.from_notebook_node(rendered) # Remove multiple newlines temphtml = re.sub(r'(\n\s*)+\n', '\n', temphtml) # Add boxy thing temphtml = temphtml.replace('class="input_area"', 'class="output_area" style="background-color:#F7F7F7;border:1px solid #CFCFCF"') # If an empty link to a solution is found, populate it with link # that was generated by the title (for multicell) if '<a href="">solution</a>' in temphtml.lower(): k = temphtml.lower().find('<a href="">solution</a>') solution_phrase = temphtml[k:k+24] new_solution_phrase = solution_phrase.replace('href=""','href="{link}"') new_solution_phrase = new_solution_phrase.format(link=link) temphtml = temphtml.replace(solution_phrase, new_solution_phrase) htmlbody += temphtml # Escape symbols htmlbody = htmlbody.replace('*', '&ast;') #htmlbody = htmlbody.replace('_', '&lowbar;') # Format tables htmlbody = htmlbody.replace('<table>', '<table class="w3-table w3-striped w3-hoverable">') htmlbody = htmlbody.replace('<thead>', '<thead class="w3-black">') # Be sure to remove final newline if len(htmlbody) > 0 and htmlbody[-1] == '\n': htmlbody = htmlbody[:-1] return htmlbody def notebook2rendered(plain, config, template, solnfilename): ''' Converts notebook JSON to rendered notebook JSON for output ''' # List all the markdown cells celllist = plain['cells'] markdownlist = [c for c in celllist if c['cell_type']=='markdown'] solnb = None # For each markdown cell check for keywords and format according to # the cell template and config files end = -1 for c in markdownlist: line = c['source'].split('\n') # Check for a colon in the first line if line[0].find(':') < 0: continue # Check for a keyword if a colon is found temp_line = line[0].split(':') if any(keyword in temp_line[0].lower().strip('# ') for keyword in config.keys()): htmltitle, index, key = box_title(line[0], config) # Recover paramters from keyword hidden = config[key]['hide'] # Multicell procedure if key + '+' in temp_line[0].lower().strip('# '): start = celllist.index(c) + 1 end = None # Find end cell for subcell in celllist[start:]: if subcell['cell_type'] == 'markdown': lastline = subcell['source'].split('\n') temp_lastline = lastline[-1].split(':') if key in temp_lastline[-1].lower().strip(): end = celllist.index(subcell) + 1 lastline[-1] = ':'.join(temp_lastline[:-1]).strip() subcell['source'] = '\n'.join(lastline) break else: # If no end cell found print warning try: print('Warning in file', infile, ':') print('\tNo end tag found for', key + '+', 'environment in cell', start) except NameError: print('Warning in temporary file:') print('\tNo end tag found for', key + '+', 'environment in cell', start) print('\tCheck you haven\'t nested environments') # Move multicells to new notebook for processing multicell = celllist[start:end] for subcell in multicell: celllist.remove(subcell) multicellnb = nf.v4.new_notebook() multicellnb['metadata'] = plain['metadata'] multicellnb['cells'] = multicell else: # If we aren't in a multicell environment # we don't need the additional notebook multicellnb = None # If hidden move cell to new notebook if hidden: # Make a new notebook if it doesn't exist already if solnb is None: solnb = nf.v4.new_notebook() solnb['metadata'] = plain['metadata'] solnb['cells'].append(nf.v4.new_markdown_cell(source='# Solutions')) solnb['cells'].append(nf.v4.new_markdown_cell(source='')) # REDEFINE c solnb['cells'][-1] = c.copy() plain['cells'].remove(c) c = solnb['cells'][-1] htmlbody = box_body(line[1:], config, template, solnfilename, multicell=multicellnb) else: link = './' + solnfilename.split('/')[-1] + '#' + index htmlbody = box_body(line[1:], config, template, solnfilename, link=link, multicell=multicellnb) values = config[key].copy() values['index'] = index values['title'] = htmltitle values['body'] = htmlbody c['source'] = template.format_map(values) return plain, solnb def notebook2HTML(filename): ''' Converts notebook file to a html string ''' html_exp = nc.HTMLExporter() html, resources = html_exp.from_filename(filename) # SED rules: # Replace '../folders' in links with './folders' # for folders images, data, code html = html.replace('../images', './images') html = html.replace('../data', './data') html = html.replace('../code', './code') # Replace '.ipynb' in links with '.html' # the '"' ensures this (hopefully) only happens in links html = html.replace('.ipynb"', '.html"') html = html.replace('.ipynb#', '.html#') # Horrible hack because <code> environment doesn't seem to work with CSS sheet # For plaintext blocks html = html.replace('<pre><code>', '<pre><code style="">') # For inline highlighting html = html.replace('<code>', '<code style="background-color:#F7F7F7;border:1px solid #CFCFCF">') # Another hack since \n is converted to [space] in links html = html.replace('%0A"','%20"') # Add the favicon html = html.replace('<head><meta charset="utf-8" />', '<head><meta charset="utf-8" />\n<link rel="icon" type="image/png" href="css/favicon.png"/>') return html def notebook2slides(filename): ''' Converts notebook file to a slide show ''' slides_exp = nc.SlidesExporter() slides_exp.reveal_scroll = True # Doesn't work? slides, resources = slides_exp.from_filename(filename) # Custom CSS is in the directory above slides slides = slides.replace('href="custom.css"', 'href="../custom.css"') # Replace '.ipynb' in links with '.html' # the '"' ensures this (hopefully) only happens in links slides = slides.replace('.ipynb"', '.html"') slides = slides.replace('.ipynb#', '.html#') # Horrible hack because <code> environment doesn't seem to work with CSS sheet # For plaintext blocks slides = slides.replace('<pre><code>', '<pre><code style="">') # For inline highlighting slides = slides.replace('<code>', '<code style="background-color:#F7F7F7;border:1px solid #CFCFCF">') # Another hack since \n is converted to [space] in links slides = slides.replace('%0A"','%20"') # Add the favicon slides = slides.replace('<head><meta charset="utf-8" />', '<head><meta charset="utf-8" />\n<link rel="icon" type="image/png" href="css/favicon.png"/>') return slides def directory_contents(directory): ''' Returns directory notebook contents split into lessons and solutions ''' # Store contents of directory as list contents = os.listdir(directory) contents.sort() try: # Remove checkpoints folder from list contents.remove('.ipynb_checkpoints') except ValueError: pass # Removes everything that isn't a notebook ending with .ipynb contents = [f for f in contents if '.ipynb' in f] # Remove solution files from contents and store in seperate list soln_contents = [f for f in contents if '-soln' in f] contents = [f for f in contents if '-soln' not in f] return contents, soln_contents def navigation_triple(directory, inputfile): ''' Given a directory and file determines which file is - previous lesson - schedule - next lesson and returns these files as a dict ''' contents, _ = directory_contents(directory) contents.append(contents[0]) current = inputfile.split('/')[-1] # Exceptional case if you're making a new solution document if '-soln' in current: current = current.replace('-soln','') index = contents.index(current) outdir = './' triple = { 'previous' : outdir+contents[index-1], 'index' : outdir+contents[0], 'next' : outdir+contents[index+1] } return triple ```
{ "source": "jdbit/django-community", "score": 2 }
#### File: django-community/bookmarks/models.py ```python from django.db import models from community.models import User, Post class Bookmark(models.Model): user = models.ForeignKey(User, verbose_name="User", on_delete=models.CASCADE) post = models.ForeignKey(Post, verbose_name="Post", on_delete=models.CASCADE, null=True) def __str__(self): return self.user.username ``` #### File: django-community/voting/views.py ```python import json from django.http import HttpResponse from django.views import View from django.contrib.contenttypes.models import ContentType from .models import LikeDislike class VotesView(View): model = None vote_type = None def post(self, request, id): if not request.user.is_authenticated: return HttpResponse( json.dumps({ "result": "access_denied" }), content_type="application/json" ) obj = self.model.objects.get(id=id) try: likedislike = LikeDislike.objects.get(content_type=ContentType.objects.get_for_model(obj), object_id=obj.id, user=request.user) if likedislike.vote is not self.vote_type: likedislike.vote = self.vote_type likedislike.save(update_fields=['vote']) result = True else: likedislike.delete() result = False except LikeDislike.DoesNotExist: obj.votes.create(user=request.user, vote=self.vote_type) result = True obj.upvotes = obj.votes.likes().count() obj.downvotes = obj.votes.dislikes().count() obj.save() return HttpResponse( json.dumps({ "result": result, "action": self.vote_type, "related_id": id, "like_count": obj.votes.likes().count(), "dislike_count": obj.votes.dislikes().count(), "sum_rating": obj.votes.sum_rating() }), content_type="application/json" ) ```
{ "source": "JDBLambert/Personal_Projects", "score": 3 }
#### File: Personal_Projects/Chat Room/client2.py ```python import socket from time import sleep import threading peer_address = "127.0.0.1" class Server(threading.Thread): def run(self): print("Starting server") ip = "127.0.0.1" listening_port = 10002 addr = (ip, listening_port) self.listening_server = socket.socket(socket.AF_INET,socket.SOCK_STREAM) self.listening_server.bind(addr) self.listening_server.listen(1) (listening_socket, sending_addr) = self.listening_server.accept() print("Server started") print(f"connection established with {sending_addr}") while(1): chunk = listening_socket.recv(4096).decode() print(f"{addr}>>{chunk}") class Client(threading.Thread): def run(self): print("Starting client") peer_address = "127.0.0.1" sending_port = 10001 self.sending_client = socket.socket(socket.AF_INET,socket.SOCK_STREAM) while(1): try: self.sending_client.connect((peer_address, sending_port)) print("Connection established") break except: print("Failed. Trying again soon...") sleep(1) print("Client Started") while(1): sending_data = input(">>").encode() self.sending_client.sendall(sending_data) if __name__ == "__main__": srv = Server() srv.daemon = True srv.start() sleep(1) cli = Client() cli.start() ```
{ "source": "jdblischak/boot-camps", "score": 4 }
#### File: 08-debugging/conways_game_of_life/2_conway_pre_formatted.py ```python def conway(population, generations = 100): for i in range(generations): population = evolve(population) return population def evolve(population): activeCells = population[:] for cell in population: for neighbor in neighbors(cell): if neighbor not in activeCells: activeCells.append(neighbor) newPopulation = [] for cell in activeCells: count = sum(neighbor in population for neighbor in neighbors(cell)) if count == 3 or (count == 2 and cell in population): if cell not in newPopulation: newPopulation.append(cell) return newPopulation def neighbors(cell): x, y = cell return [(x, y), (x+1, y), (x-1, y), (x, y+1), (x, y-1), (x+1, y+1), (x+1, y-1), (x-1, y+1), (x-1, y-1)] glider = [(30, 30), (31, 30), (32, 30), (30, 31), (31, 32)] print conway(glider) ``` #### File: 08-debugging/conways_game_of_life/5_conway_final.py ```python def conway(population, generations=100): """Runs Conway's game of life on an initial population.""" population = set(population) for i in range(generations): population = evolve(population) return list(population) def evolve(population): """Evolves the population by one generation.""" # Get a unique set of discrete cells that need to be checked active_cells = population | set([neighbor for p in population for neighbor in neighbors(p)]) # For each cell in the set, test if it lives or dies new_population = set() for cell in active_cells: count = sum([neighbor in population for neighbor in neighbors(cell)]) if count == 3 or (count == 2 and cell in population): new_population.add(cell) # Return the new surviving population return new_population def neighbors(cell): """Returns the neighbors of a given cell.""" x, y = cell return [(x + 1, y), (x - 1, y), (x, y + 1), (x, y - 1), (x + 1, y + 1), (x + 1, y - 1), (x - 1, y + 1), (x - 1, y - 1)] glider = [(30, 30), (31, 30), (32, 30), (30, 31), (31, 32)] print conway(glider) ```
{ "source": "jdblischak/dox", "score": 3 }
#### File: dox/code/check-download.py ```python def get_fn(fn): with open(fn) as f: a=[ g.strip().split()[1] for g in f.readlines() ] return a a=get_fn("../data/fastq-md5sum.txt") b=get_fn("../data/fastq-md5sum-dak.txt") missing=list(set(a)-set(b)) missing.sort() fn="../data/missing-fastq.txt" if len(missing)==0: print("No missing files") else: print("%i missing files, writing to %s" % (len(missing), fn)) with open(fn,"w") as f: f.writelines(missing) import os print("Problematic md5sums:") os.system("diff ../data/fastq-md5sum.txt ../data/fastq-md5sum-dak.txt") ```
{ "source": "jdblischak/singlecell-qtl", "score": 2 }
#### File: browser/replication/main.py ```python import bokeh.io import bokeh.layouts import bokeh.models import bokeh.plotting import os.path import numpy as np import pandas as pd import scipy.stats as st import scipy.special as sp import sqlite3 db = '/project2/mstephens/aksarkar/projects/singlecell-qtl/browser/browser.db' # This needs to be global to be visible to callbacks gene = None def update_gene(attr, old, new): selected = gene_data.selected['1d']['indices'] if not selected: return with sqlite3.connect(db) as conn: global gene gene = next(conn.execute('select gene from qtls where qtls.gene == ?;', (gene_data.data['gene'][selected[0]],)))[0] print('Selected {}'.format(gene)) ind_data.data = bokeh.models.ColumnDataSource.from_df(pd.read_sql( sql="""select genotype.ind, genotype.value as genotype, log_mu as mean, log_phi as disp, logodds, bulk.value as bulk from genotype, bulk, params where genotype.gene == ? and genotype.gene == bulk.gene and bulk.gene == params.gene and genotype.ind == bulk.ind and bulk.ind == params.ind;""", params=(gene,), con=conn)) def update_umi(attr, old, new): selected = ind_data.selected['1d']['indices'] with sqlite3.connect(db) as conn: if selected: ind = ind_data.data['ind'][selected[0]] print("Selected {}, {}".format(ind, gene)) umi = pd.read_sql( """select umi.value, annotation.size from annotation, umi where umi.gene == ? and annotation.chip_id == ? and umi.sample == annotation.sample""", con=conn, params=(gene, ind,)) keep = umi['value'] < 19 edges = np.arange(20) counts, _ = np.histogram(umi['value'].values, bins=edges) umi_data.data = bokeh.models.ColumnDataSource.from_df(pd.DataFrame({'left': edges[:-1], 'right': edges[1:], 'count': counts})) params = pd.read_sql('select log_mean, log_disp, logodds from params where gene == ? and ind == ?', con=conn, params=(gene, ind)) n = np.exp(params['log_disp']) p = 1 / (1 + np.outer(umi['size'], np.exp(params['log_mean'] - params['log_disp']))) assert (n > 0).all(), 'n must be non-negative' assert (p >= 0).all(), 'p must be non-negative' assert (p <= 1).all(), 'p must be <= 1' G = st.nbinom(n=n.values.ravel(), p=p.ravel()).pmf grid = np.arange(19) pmf = np.array([G(x).mean() for x in grid]) if params.iloc[0]['logodds'] is not None: pmf *= sp.expit(-params['logodds']).values pmf[0] += sp.expit(params['logodds']).values exp_count = umi.shape[0] * pmf dist_data.data = bokeh.models.ColumnDataSource.from_df(pd.DataFrame({'x': .5 + grid, 'y': exp_count})) else: umi_data.data = bokeh.models.ColumnDataSource.from_df(pd.DataFrame(columns=['left', 'right', 'count'])) dist_data.data = bokeh.models.ColumnDataSource.from_df(pd.DataFrame(columns=['x', 'y'])) def init(): with sqlite3.connect(db) as conn: gene_data.data = bokeh.models.ColumnDataSource.from_df(pd.read_sql( sql="""select qtls.gene, qtls.id, qtls.p_adjust, qtls.beta_bulk, qtls.p_sc, qtls.beta_sc from qtls order by p_bulk;""", con=conn)) # These need to be separate because they have different dimension ind_data = bokeh.models.ColumnDataSource(pd.DataFrame(columns=['ind', 'genotype', 'mean', 'disp', 'logodds', 'bulk'])) ind_data.on_change('selected', update_umi) gene_data = bokeh.models.ColumnDataSource(pd.DataFrame(columns=['gene', 'name', 'id', 'p_bulk', 'beta_bulk', 'p_sc', 'beta_sc'])) gene_data.on_change('selected', update_gene) umi_data = bokeh.models.ColumnDataSource(pd.DataFrame(columns=['left', 'right', 'count'])) dist_data = bokeh.models.ColumnDataSource(pd.DataFrame(columns=['x', 'y'])) # These need to be module scope because bokeh.server looks there qtls = bokeh.models.widgets.DataTable( source=gene_data, columns=[bokeh.models.widgets.TableColumn(field=x, title=x) for x in ['gene', 'id', 'p_bulk', 'beta_bulk', 'p_sc', 'beta_sc', 'replicated']], width=1200, height=200) hover = bokeh.models.HoverTool(tooltips=[('Individual', '@ind')]) bulk_mean_by_geno = bokeh.plotting.figure(width=300, height=300, tools=['tap', hover]) bulk_mean_by_geno.scatter(source=ind_data, x='genotype', y='bulk', color='black', size=8) bulk_mean_by_geno.xaxis.axis_label = 'Centered dosage' bulk_mean_by_geno.yaxis.axis_label = 'Bulk log TPM' sc_mean_by_geno = bokeh.plotting.figure(width=300, height=300, tools=['tap', hover]) sc_mean_by_geno.scatter(source=ind_data, x='genotype', y='mean', color='black', size=8) sc_mean_by_geno.xaxis.axis_label = 'Centered dosage' sc_mean_by_geno.yaxis.axis_label = 'Single cell log μ' umi = bokeh.plotting.figure(width=300, height=300, tools=[]) umi.quad(source=umi_data, bottom=0, top='count', left='left', right='right', color='black') umi.line(source=dist_data, x='x', y='y', color='red', line_width=2) umi.xaxis.axis_label = 'Observed UMI' umi.yaxis.axis_label = 'Number of cells' sc_disp_by_geno = bokeh.plotting.figure(width=300, height=300, tools=['tap', hover]) sc_disp_by_geno.scatter(source=ind_data, x='genotype', y='disp', color='black', size=8) sc_disp_by_geno.xaxis.axis_label = 'Centered genotype' sc_disp_by_geno.yaxis.axis_label = 'Single cell log φ' sc_logodds_by_geno = bokeh.plotting.figure(width=300, height=300, tools=['tap', hover]) sc_logodds_by_geno.scatter(source=ind_data, x='genotype', y='logodds', color='black', size=8) sc_logodds_by_geno.xaxis.axis_label = 'Centered genotype' sc_logodds_by_geno.yaxis.axis_label = 'Single cell logit π' layout = bokeh.layouts.layout([[qtls], [bulk_mean_by_geno, sc_mean_by_geno, umi], [sc_disp_by_geno, sc_logodds_by_geno]], sizing_mode='fixed') doc = bokeh.io.curdoc() doc.title = 'scQTL browser' doc.add_root(layout) init() ```
{ "source": "jdbocarsly/magnets", "score": 2 }
#### File: jdbocarsly/magnets/dosplot.py ```python from os.path import join as j import pandas as pd #from bokeh.charts import output_file, show, Line from bokeh.plotting import figure, output_file, show, ColumnDataSource from bokeh.models import HoverTool, CrosshairTool from bokeh.models import DataRange1d as bmdr from numpy import arange #todo: # custom HTML tooltips with title # fix axis labels (subscripts?) # add a vertical line through the fermi level - DONE # remove unused data from dataframes before making the column data sources # remove hovertool from horizontal/vertical liness - DONE # hover highlighting vertically TOOLS = "box_zoom, pan, crosshair,undo, redo, save, reset" def create_dosplot(compound, atoms_per_unit_cell): path = j("dos_data",compound) df1 = pd.read_csv(j(path,"nonsp_dost.dat"), names=["energy", "dos","idos"], sep="\s+") df1["type"] = "nonsp" df2 = pd.read_csv(j(path,"sp_dost.dat"), names=["energy", "udos","ddos"], sep="\s+") df2["type"] = "sp" df2["ddos"] = -df2["ddos"] # convert to DOS/atom df1["dos"] = df1["dos"]/atoms_per_unit_cell df2["udos"] = df2["udos"]/atoms_per_unit_cell df2["ddos"] = df2["ddos"]/atoms_per_unit_cell p = figure(x_axis_label=r"E - Ef (eV)", y_axis_label="density of states (states/eV atom)", responsive=True, tools=TOOLS,active_drag="box_zoom", x_range=bmdr(start=-5, end=5, bounds=(-10,10)), y_range=bmdr(start=-4, end=4, bounds=(-10,10)) ) p.toolbar.logo = "grey" line_width=2 cds1 = ColumnDataSource(df1) cds2 = ColumnDataSource(df2) p_nonsp = p.line("energy","dos", legend="No spin polarization", line_color="#606060", line_dash="solid", line_width=line_width, source=cds1) p_up = p.line("energy", "udos", legend="Spin-up", line_color="#28A0BA", line_dash="solid", line_alpha=0.8, line_width=line_width, source=cds2) p_down = p.line("energy", "ddos", legend="Spin-down", line_color="#DB7C06", line_dash="solid", line_alpha=0.8, line_width=line_width, source=cds2) hover_nonsp = HoverTool( tooltips=[ ('Energy','@energy'), ('DOS','@dos') ], renderers=[p_nonsp] ) hover_up = HoverTool( tooltips=[ # ('type','@type'), ('Energy','@energy'), ('Spin-up DOS','@udos') ], renderers=[p_up] ) hover_down = HoverTool( tooltips=[ ('Energy','@energy'), ('Spin-down DOS','@ddos') ], renderers=[p_down] ) p.add_tools(hover_nonsp, hover_up, hover_down) c = p.select(type=CrosshairTool) c.dimensions = "height" x_h = arange(-15, 15, 1) y_h = 0*x_h p.line(x_h, y_h, line_color="black", line_dash="solid", line_width=1) y_v = arange(-50, 50, 1) x_v = 0*y_v p.line(x_v, y_v, line_color="black", line_dash="solid", line_width=1) return p ``` #### File: jdbocarsly/magnets/magnet_main.py ```python from flask import Flask, render_template, request, url_for import numpy as np import pandas as pd from bokeh.layouts import row, widgetbox from bokeh.models import HoverTool, OpenURL, TapTool, CustomJS, LinearColorMapper,ColorBar from bokeh.palettes import Viridis256, Magma256, Plasma256, brewer from bokeh.plotting import curdoc, figure, ColumnDataSource from bokeh.embed import components from bokeh.io import curdoc from bokeh.themes import Theme import resources from ashby import main_plot from dosplot import create_dosplot from corr import plot_corr app = Flask(__name__) df = pd.read_pickle("clean_pickle2.df") df["formula_nosubs"] = df["formula"] df["formula_html"]=[resources.make_html_subscripts(f) for f in df["formula"]] df["formula"] = [resources.make_unicode_subscripts(name) for name in df["formula"]] df["class"] = df["class"].fillna("classless") #print(df["class"]) # cols = sorted(df.columns) @app.route('/') @app.route('/ashby') def ashby(): xprm = request.args.get("x_axis") if xprm == None: xprm = "Curie temperature (K)" yprm = request.args.get("y_axis") if yprm == None: yprm = "volumetric moment (emu/cm³)" cprm = request.args.get("color_axis") if cprm == None: cprm = "largest local moment (µB)" plot = main_plot(df, xprm, yprm,cprm) script, div = components(plot) return render_template("ashby.html", script=script, div=div, cols=resources.axis_columns, curr_x=xprm, curr_y=yprm, curr_c=cprm, col_groups=resources.axis_columns_groups, color_cols=resources.axis_columns_groups) @app.route('/c/<int:cid>') def single_compound_view(cid): if cid >= len(df): return index() c = df.iloc[cid] #c = c.dropna() # vals = ["{:.2f}".format(c[x]) if isinstance(c[x], (np.floating, float)) else c[x] for x in resources.dos_cols] groups_with_vals = [] for category_name, parameters in resources.dos_columns_groups: # sorry about this line. The end is to filter out delta Sm labels from showing up at NaN if the data is not available parameters = [x for x in parameters if not (isinstance(c[x], (np.floating, float)) and np.isnan(c[x]))] vals = ["{:.2f}".format(c[x]) if isinstance(c[x], (np.floating, float)) else c[x] for x in parameters] print('\n',category_name,'\n') [print(g,v) for g,v in zip(parameters,vals)] groups_with_vals.append( (category_name, list(zip(parameters, vals))) ) # [print(x) for x in groups_with_vals] plot = create_dosplot(df.iloc[cid]["material_name"], df.iloc[cid]["natoms"]) script, div = components(plot) return render_template("dos.html",script=script, div=div,formula=c["formula_html"],dos_columns_groups=groups_with_vals) @app.route('/correlations') def corr_page(): plot = plot_corr(df[resources.corr_cols]) script, div = components(plot) return render_template("corr.html",script=script, div=div) @app.route('/about') def about(): return render_template("about.html") @app.route('/datatable') def table_page(): df_rounded = df.round( {"Curie temperature (K)":0, "gravimetric moment (emu/g)":1, "largest local moment (µB)":2, }) df_rounded = df_rounded.fillna("") print(df_rounded.head()) return render_template("datatable.html", df=df_rounded.iterrows()) if __name__ == '__main__': app.run(debug=True) ```
{ "source": "jdbooth9516/sweepstakes", "score": 2 }
#### File: jdbooth9516/sweepstakes/manager.py ```python from user_interface import User_interface from queue_manager import * from stack_manager import * class Marketing_firm: def __init__(self,manager_type): self.ui = User_interface() self.manager_type = manager_type def add_sweepstake(self): sweepstake = self.ui.get_sweepstakes_info() #using depenancy injection to send sweepstake info to either data managers self.manager_type.insert_sweepstake(sweepstake) ``` #### File: jdbooth9516/sweepstakes/stack_manager.py ```python from stack import Stack class Stack_manager: def __init__(self): self.stack = Stack() def insert_sweepstake(self, sweepstake): self.stack.push(sweepstake) def get_sweepstake(self): return self.stack.pop() #create insert sweepstakes and get sweepstakes method. ``` #### File: jdbooth9516/sweepstakes/user_interface.py ```python class User_interface: def __init__(self): self.first = '' self.last = ' ' self.email = '' self.registration = '' def main_menu(self): print("""Welcome to the main menu \n\t press -1- to create a contest\n\t press -2- to add a contestant\n\t press -3- to pick a winner\n\t press -4- to quit program""") choice = int(input("select a option: ")) return choice def contestant_info(self, contest_name): print(f"Enter contestand for the {contest_name} sweepstake\n") self.first = input("Please enter contestant's first name: ") self.last = input("Please enter contestant's last name: ") self.email = input("Please enter contestant's email: ") self.registration = int(input("Please enter contestant's four digit registration number: ")) def get_manager_type(self): manager_type = input("Select a data type to order Sweepstakes (stack or queue): ") return manager_type def get_sweepstakes_info(self): prize = input("Please enter a prize: ") return prize def finished_entry(self): finished = input("Would anyone else like to join the sweepstake (y/n): ") if finished == 'y': return False else: return True def finished_sweepstakes(self): entry_finished = input("Would you like to add another sweepstake (y/n): ") if entry_finished == "n": return True def finished_contest(self): contest_finished = input('Would you like to run another sweepstake (y/n): ') if contest_finished == "n": return True def close(self): print("Registration has closed stand by for the winner.") def recieve_message(self, first_name): print(f"{first_name} has recieved the message") def recieve_winner(self, first_name): print(f"{first_name} has recieved prize information") ```
{ "source": "jdborowy/pluto", "score": 3 }
#### File: pluto/data/fetcher.py ```python from collections import namedtuple from concurrent.futures import ThreadPoolExecutor from .store import DataStore, StoreRequest from .connector import Connector FetcherRequest = namedtuple("DataRequest", ("source", "ticker", "freq", "start")) class DataFetcher: def __init__(self, store: DataStore, max_workers=16): self.store = store self.max_workers = max_workers def fetch_one(self, request: FetcherRequest): connector = Connector.from_name(request.source) df = connector.fetch(request.ticker, request.freq, request.start) self.store.save(request, df) def fetch(self, requests): def _fetch_one_noexcept(request): try: self.fetch_one(request) except Exception as e: return e with ThreadPoolExecutor(max_workers=self.max_workers) as executor: results = executor.map(_fetch_one_noexcept, requests) return {req: res for req, res in zip(requests, results) if res is not None} ```
{ "source": "jdbower/stoker", "score": 3 }
#### File: bin/pi/log_mon.py ```python import telnetlib import time import os import sys import threading import logging logging.basicConfig(filename='/tmp/log_mon.log', level=logging.INFO) # I should add a keyboard interrupt handler # The main datapoint array datapoints = {} # A datapoint consists of a sensor_id (redundant), timestamp, and state class datapoint: def __init__(self, sensor_id, timestamp, state): self.sensor_id = sensor_id self.timestamp = timestamp self.state = state # Updates the variables in /tmp/[id].fan def update_var(): # First, make a thread that runs once a second threading.Timer(1.0, update_var).start() # Grab the datapoint array global datapoints # Iterate over each sensor in the datapoints for id, datapoint_list in datapoints.iteritems(): total_points = 0 total_on = 0 total_off = 0 # For each datapoint for each sensor... for curr_datapoint in datapoint_list: # If the timestamp is more than a minute old, remove it. if int(time.time()) - curr_datapoint.timestamp > 60: datapoint_list.pop(0) else: # Technically we don't need total_points... total_points = total_points + 1 if curr_datapoint.state == 'on': total_on = total_on + 1 else: total_off = total_off + 1 # If there are datapoints calculate the duty cycle and cast as float. if total_points > 0: duty_cycle = total_on / float(total_points) else: duty_cycle = 0 # Clobber the old file and write a new one. outfile = open("/tmp/"+id+".fan", "w") outfile.write(str(duty_cycle)); outfile.close() # Add a new datapoint to the series def update_datapoint(id, state): # Grab the global variable global datapoints # Grab the time, note that this is the time of processing not the time # the message came in. This should be close enough. timestamp = int(time.time()) new_point = datapoint(id, timestamp, state) # Try adding the datapoint to the series try: datapoints[id].append(new_point) except KeyError: # This must be the first datapoint for the sensor, create an array first datapoints[id] = []; datapoints[id].append(new_point) def open_connect(): global session global host logging.info("Opening connection to "+host+"...") while (session is None) or (session.get_socket() is None): try: session = telnetlib.Telnet(host, 23, timeout) except socket.timeout: logging.error("socket timeout") else: logging.info("Connected...waiting for login") time.sleep(30) logging.info("Sending login.") session.write("root\r") time.sleep(1) logging.info("Sending password.") session.write("tini\r") time.sleep(10) logging.info("Sending bbq command.") session.write("bbq\r") time.sleep(10) session.write("bbq -temps \r\r") time.sleep(10) logging.info("Reading data.") if len(sys.argv) != 2: logging.error("Usage: "+sys.argv[0]+" [ip_address]") sys.exit() host = sys.argv[1] timeout = 10 session = None # Start the update thread. update_var() logging.info("Connecting...") open_connect() while True: if (session.get_socket() is None): open_connect() line = session.read_until("\n",timeout); if len(line.strip()) != 0: # Uncomment to debug logging.debug(str(len(line))+" "+str(int(time.time()))+" "+line) # I have no idea why these don't work when they work above... if line.endswith("login: "): logging.info("Sending login.") try: session.write("root\r") except: logging.error("Couldn't login") if line.endswith("password: "): logging.info("Sending password.") session.write("tini\r") if line.endswith("/> "): logging.info("Starting BBQ.") session.write("bbq -temps\r") line_arr = line.rsplit(' ', 1) last_word = line_arr[-1].strip() if (last_word.startswith("blwr:")): # The very first messaure starts with the prompt, so we need to grab # the last word after the split by colon sensorid = line_arr[0].split(':', 1)[0].rsplit(' ',1)[-1] status = last_word.split(':', 1)[1] if len(sensorid) == 16: update_datapoint(sensorid,status) ```
{ "source": "jd-boyd/corker", "score": 2 }
#### File: corker/corker/app.py ```python from __future__ import absolute_import import logging from routes.util import URLGenerator from webob import exc from webob.dec import wsgify from webob.response import Response from corker.controller import BaseController log = logging.getLogger(__name__) class Application(object): """Give it a mapper, and it will return a wsgi app that gets routes via the mapper and executes them.""" def __init__(self, mapper, **config): self.map = mapper self.config = config @wsgify def __call__(self, req): results = self.map.routematch(environ=req.environ) if not results: return exc.HTTPNotFound() match, route = results link = URLGenerator(self.map, req.environ) if route.redirect: # Taken from the routes middleware module route_name = '_redirect_%s' % id(route) location = link(route_name, **match) # Build the response manually so we don't have to try to map the # route status to a specific webob exception redirect_response = Response(status=route.redirect_status) redirect_response.location = location return redirect_response match_controller = match.get('controller', None) if not callable(match_controller): log.error('Unsupported route match: %s', match) return exc.HTTPNotFound() req.urlvars = ((), match) req.link = link controller = match_controller(req, **self.config) return controller() ``` #### File: corker/tests/test_controller.py ```python from __future__ import absolute_import, print_function from nose.tools import eq_ from corker.controller import BaseController, route def test_route(): @route('bob') def meth(): pass eq_(meth._route, [(('bob',), {})]) def test_double_route(): @route('bob') @route('fred') def meth(): pass eq_(meth._route, [(('fred',), {}), (('bob',), {})]) def test_config(): import webob class Index(BaseController): @route('') def index(self): return Response('Hi index!\n') i = Index({}, bdb={'a': 1}) print(i.bdb) eq_(i.bdb, {'a': 1}) ```
{ "source": "jd-boyd/typednamedtuple", "score": 3 }
#### File: typednamedtuple/tests/test_namedtuple.py ```python from __future__ import absolute_import, print_function, unicode_literals import copy import pickle from collections import OrderedDict from random import choice import string import six if six.PY2: import cPickle from nose.tools import eq_ from nose import SkipTest from typednamedtuple import TypedNamedTuple, TProp from tests.test_basic import assert_exception def test_tupleness(): class Point(TypedNamedTuple): """Point(x, y)""" x = TProp(int) y = TProp(int) p = Point(11, 22) assert isinstance(p, tuple) eq_(p, (11, 22)) # matches a real tuple eq_(tuple(p), (11, 22)) # coercable to a real tuple eq_(list(p), [11, 22]) # coercable to a list eq_(max(p), 22) # iterable eq_(max(*p), 22) # star-able x, y = p eq_(p, (x, y)) # unpacks like a tuple eq_((p[0], p[1]), (11, 22)) # indexable like a tuple with assert_exception(IndexError): p.__getitem__(3) eq_(p.x, x) eq_(p.y, y) with assert_exception(AttributeError): eval('p.z', locals()) def test_factory(): class Point(TypedNamedTuple): """Point(x, y)""" x = TProp(int) y = TProp(int) eq_(Point.__name__, 'Point') eq_(Point.__slots__, ()) eq_(Point.__module__, __name__) eq_(Point.__getitem__, tuple.__getitem__) eq_(Point._fields, ('x', 'y')) # Tests for: # type has non-alpha char # type has keyword # type starts with digit # field with non-alpha char # field has keyword # field starts with digit # don't make sense with class based definition of typednamedtuple # field with leading underscore is now allowed. # Duplicate field now is last copy wins, not an exception anymore. # Verify that numbers are allowed in names class Point0(TypedNamedTuple): x1 = TProp(int) y2 = TProp(int) eq_(Point0._fields, ("x1", "y2")) # Test leading underscores in a typename class _(TypedNamedTuple): a = TProp(int) b = TProp(int) c = TProp(int) # Previous unicode input tests don't make sense since strings are involved. with assert_exception(TypeError): Point._make([11]) # catch too few args with assert_exception(TypeError): Point._make([11, 22, 33]) # catch too many args def test_factory_doc_attr(): class Point(TypedNamedTuple): """Point(x, y)""" x = TProp(int) y = TProp(int) eq_(Point.__doc__, 'Point(x, y)') def test_instance(): class Point(TypedNamedTuple): """Point(x, y)""" x = TProp(int) y = TProp(int) p = Point(11, 22) eq_(p, Point(x=11, y=22)) eq_(p, Point(11, y=22)) eq_(p, Point(y=22, x=11)) eq_(p, Point(*(11, 22))) eq_(p, Point(**dict(x=11, y=22))) with assert_exception(TypeError): Point(1) # too few args with assert_exception(TypeError, args=("__new__() takes 2 positional arguments but 3 were given",)): Point(1, 2, 3) # too many args with assert_exception(TypeError): Point(XXX=1, y=2) # wrong keyword argument with assert_exception(TypeError): Point(x=1) # missing keyword argument eq_(repr(p), 'Point(x=11, y=22)') assert '__weakref__' not in dir(p) eq_(p, Point._make([11, 22])) # test _make classmethod eq_(p._fields, ('x', 'y')) # test _fields attribute eq_(p._replace(x=1), (1, 22)) # test _replace method eq_(p._asdict(), dict(x=11, y=22)) # test _asdict method eq_(vars(p), p._asdict()) # verify that vars() works try: p._replace(x=1, error=2) except ValueError: pass else: assert False, 'Did not detect an incorrect fieldname' def test_odd_sizes(): class Zero(TypedNamedTuple): pass eq_(Zero(), ()) eq_(Zero._make([]), ()) eq_(repr(Zero()), 'Zero()') eq_(Zero()._asdict(), {}) eq_(Zero()._fields, ()) class Dot(TypedNamedTuple): d = TProp(int) eq_(Dot(1), (1,)) eq_(Dot._make([1]), (1,)) eq_(Dot(1).d, 1) eq_(repr(Dot(1)), 'Dot(d=1)') eq_(Dot(1)._asdict(), {'d':1}) eq_(Dot(1)._replace(d=999), (999,)) eq_(Dot(1)._fields, ('d',)) n = 5000 names = list(set(''.join([choice(string.ascii_letters) for j in range(10)]) for i in range(n))) n = len(names) class_start = 'class Big(TypedNamedTuple):\n' class_def = class_start + "\n".join([" %s = TProp(int)" % name for name in names]) test_globals = { 'TypedNamedTuple': TypedNamedTuple, 'TProp': TProp } test_locals = {} six.exec_(class_def, test_globals, test_locals) Big = test_locals['Big'] b = Big(*range(n)) eq_(b, tuple(range(n))) eq_(Big._make(range(n)), tuple(range(n))) for pos, name in enumerate(names): eq_(getattr(b, name), pos) _ = repr(b) # make sure repr() doesn't blow-up d = b._asdict() d_expected = dict(zip(names, range(n))) eq_(d, d_expected) b2 = b._replace(**dict([(names[1], 999),(names[-5], 42)])) b2_expected = list(range(n)) b2_expected[1] = 999 b2_expected[-5] = 42 eq_(b2, tuple(b2_expected)) eq_(b._fields, tuple(names)) class TestTNT(TypedNamedTuple): x = TProp(int) y = TProp(int) z = TProp(int) def test_pickle(): p = TestTNT(x=10, y=20, z=30) if six.PY2: pickles = pickle, cPickle else: pickles = (pickle,) for module in pickles: loads = getattr(module, 'loads') dumps = getattr(module, 'dumps') for protocol in -1, 0, 1, 2: q = loads(dumps(p, protocol)) eq_(p, q) eq_(p._fields, q._fields) def test_copy(): p = TestTNT(10, 20, 30) for copier in copy.copy, copy.deepcopy: q = copier(p) eq_(p, q) eq_(p._fields, q._fields) ```
{ "source": "jdbranham/graphite-web", "score": 2 }
#### File: graphite/render/evaluator.py ```python import re import six from graphite.errors import NormalizeEmptyResultError, InputParameterError from graphite.functions import SeriesFunction from graphite.logger import log from graphite.render.grammar import grammar from graphite.render.datalib import fetchData, TimeSeries, prefetchData from graphite.functions.params import validateParams from django.conf import settings def evaluateTarget(requestContext, targets): if not isinstance(targets, list): targets = [targets] pathExpressions = extractPathExpressions(requestContext, targets) prefetchData(requestContext, pathExpressions) seriesList = [] for target in targets: if not target: continue if isinstance(target, six.string_types): if not target.strip(): continue target = grammar.parseString(target) result = evaluateTokens(requestContext, target) # we have to return a list of TimeSeries objects if isinstance(result, TimeSeries): seriesList.append(result) elif result: seriesList.extend(result) return seriesList def evaluateTokens(requestContext, tokens, replacements=None, pipedArg=None): if tokens.template: arglist = dict() if tokens.template.kwargs: arglist.update(dict([(kwarg.argname, evaluateScalarTokens(kwarg.args[0])) for kwarg in tokens.template.kwargs])) if tokens.template.args: arglist.update(dict([(str(i+1), evaluateScalarTokens(arg)) for i, arg in enumerate(tokens.template.args)])) if 'template' in requestContext: arglist.update(requestContext['template']) return evaluateTokens(requestContext, tokens.template, arglist) if tokens.expression: if tokens.expression.pipedCalls: # when the expression has piped calls, we pop the right-most call and pass the remaining # expression into it via pipedArg, to get the same result as a nested call rightMost = tokens.expression.pipedCalls.pop() return evaluateTokens(requestContext, rightMost, replacements, tokens) return evaluateTokens(requestContext, tokens.expression, replacements) if tokens.pathExpression: expression = tokens.pathExpression if replacements: for name in replacements: if expression == '$'+name: val = replacements[name] if not isinstance(val, six.string_types): return val elif re.match(r'^-?[\d.]+$', val): return float(val) else: return val else: expression = expression.replace('$'+name, str(replacements[name])) return fetchData(requestContext, expression) if tokens.call: if tokens.call.funcname == 'template': # if template propagates down here, it means the grammar didn't match the invocation # as tokens.template. this generally happens if you try to pass non-numeric/string args raise InputParameterError("invalid template() syntax, only string/numeric arguments are allowed") if tokens.call.funcname == 'seriesByTag': return fetchData(requestContext, tokens.call.raw) try: func = SeriesFunction(tokens.call.funcname) except KeyError: msg = 'Received request for unknown function: {func}'.format(func=tokens.call.funcname) log.warning(msg) # even if input validation enforcement is disabled, there's nothing else we can do here raise InputParameterError(msg) rawArgs = tokens.call.args or [] if pipedArg is not None: rawArgs.insert(0, pipedArg) args = [evaluateTokens(requestContext, arg, replacements) for arg in rawArgs] requestContext['args'] = rawArgs kwargs = dict([(kwarg.argname, evaluateTokens(requestContext, kwarg.args[0], replacements)) for kwarg in tokens.call.kwargs]) def handleInvalidParameters(e): if not getattr(handleInvalidParameters, 'alreadyLogged', False): log.warning( 'Received invalid parameters ({msg}): {func} ({args})'.format( msg=str(e), func=tokens.call.funcname, args=', '.join( argList for argList in [ ', '.join(str(arg) for arg in args), ', '.join('{k}={v}'.format(k=str(k), v=str(v)) for k, v in kwargs.items()), ] if argList ) )) # only log invalid parameters once setattr(handleInvalidParameters, 'alreadyLogged', True) if settings.ENFORCE_INPUT_VALIDATION: raise if hasattr(func, 'params'): try: validateParams(tokens.call.funcname, func.params, args, kwargs) except InputParameterError as e: handleInvalidParameters(e) try: return func(requestContext, *args, **kwargs) except NormalizeEmptyResultError: return [] except InputParameterError as e: handleInvalidParameters(e) return evaluateScalarTokens(tokens) def evaluateScalarTokens(tokens): if tokens.number: if tokens.number.integer: return int(tokens.number.integer) if tokens.number.float: return float(tokens.number.float) if tokens.number.scientific: return float(tokens.number.scientific[0]) raise InputParameterError("unknown numeric type in target evaluator") if tokens.string: return tokens.string[1:-1] if tokens.boolean: return tokens.boolean[0] == 'true' if tokens.none: return None raise InputParameterError("unknown token in target evaluator") def extractPathExpressions(requestContext, targets): # Returns a list of unique pathExpressions found in the targets list pathExpressions = set() def extractPathExpression(requestContext, tokens, replacements=None): if tokens.template: arglist = dict() if tokens.template.kwargs: arglist.update(dict([(kwarg.argname, evaluateScalarTokens(kwarg.args[0])) for kwarg in tokens.template.kwargs])) if tokens.template.args: arglist.update(dict([(str(i+1), evaluateScalarTokens(arg)) for i, arg in enumerate(tokens.template.args)])) if 'template' in requestContext: arglist.update(requestContext['template']) extractPathExpression(requestContext, tokens.template, arglist) elif tokens.expression: extractPathExpression(requestContext, tokens.expression, replacements) if tokens.expression.pipedCalls: for token in tokens.expression.pipedCalls: extractPathExpression(requestContext, token, replacements) elif tokens.pathExpression: expression = tokens.pathExpression if replacements: for name in replacements: if expression != '$'+name: expression = expression.replace('$'+name, str(replacements[name])) pathExpressions.add(expression) elif tokens.call: # if we're prefetching seriesByTag, pass the entire call back as a path expression if tokens.call.funcname == 'seriesByTag': pathExpressions.add(tokens.call.raw) else: for a in tokens.call.args: extractPathExpression(requestContext, a, replacements) for target in targets: if not target: continue if isinstance(target, six.string_types): if not target.strip(): continue target = grammar.parseString(target) extractPathExpression(requestContext, target) return list(pathExpressions) ```
{ "source": "jdbrice/root-io", "score": 2 }
#### File: root-io/rootio/ROOT.py ```python import logging from . import UnZip import json from rootio.StreamerDict import Streamers from rootio.IOData import IOData def BIT( n ) : return (1 << n) class ROOT(object): logger = logging.getLogger( "ROOT" ) @staticmethod def AddClassMethods( classname, streamer ) : if None == streamer : return None ROOT.logger.debug( "AddClassMethods : Missing Impl" ) return streamer @staticmethod def GetArrayKind( type_name ) : ROOT.logger.debug( "GetArrayKind( %s )", type_name ) # HERE if "TString" == type_name or "string" == type_name : return 0 if type_name in Streamers.CustomStreamers and 'TString' == Streamers.CustomStreamers[ type_name ] : return 0 if len(type_name) < 7 or -1 == type_name.find('TArray') : return -1 # key is string type_name # value is the enum type id array_types = { "TArrayI" : IOData.kInt, "TArrayD" : IOData.kDouble, "TArrayF" : IOData.kFloat, "TArrayS" : IOData.kShort, "TArrayC" : IOData.kChar, "TArrayL" : IOData.kLong, "TArrayL64" : IOData.kLong64, } if type_name in array_types : return array_types[ type_name ] return -1 @staticmethod def CreateMemberSimpleStreamer( name, code ) : def streamer_func( buf, obj ) : obj[name] = buf.ntox( code ) return streamer_func @staticmethod def CreateMember (element, file) : # create member entry for streamer element, which is used for reading of such data ROOT.logger.debug( "CreateMember( element=%s, file=%s )", element, file ) found = False member = { "name": element['fName'], "type": element['fType'], "fArrayLength": element['fArrayLength'], "fArrayDim": element['fArrayDim'], "fMaxIndex": element['fMaxIndex'] } if "BASE" == element['fTypeName'] : if ROOT.GetArrayKind( member['name'] ) > 0 : # this is workaround for arrays as base class # we create 'fArray' member, which read as any other data member member['name'] = 'fArray' member['type'] = IOData.kAny else : # create streamer for base class member['type'] = IOData.kBase; # this.GetStreamer(element.fName); t = member['type'] simple = { IOData.kShort: "h", IOData.kInt: "i", IOData.kCounter: "i", IOData.kLong: "u", IOData.kLong64: "u", IOData.kDouble: "d", IOData.kFloat: "f", IOData.kLegacyChar: "B", IOData.kUChar: "B", IOData.kUShort: "H", IOData.kBits: "I", IOData.kUInt: "I", IOData.kULong64: "U", IOData.kULong: "U" } if t == IOData.kBase : found = True member['base'] = element['fBaseVersion'] # indicate base class member['basename'] = element['fName']; # keep class name def func(buf, obj) : buf.ClassStreamer( obj, member['basename'] ) member['func'] = func if member['type'] in simple : found = True member['func'] = ROOT.CreateMemberSimpleStreamer( member['name'], simple[ member['type'] ] ) return member if t == IOData.kBool : found = True def func( buf, obj ) : obj[member['name']] = True if buf.ntou1() != 0 else False member['func'] = func memberL = [ (IOData.kBool), (IOData.kInt), (IOData.kCounter), (IOData.kDouble), (IOData.kUChar), (IOData.kShort), (IOData.kUShort), (IOData.kBits), (IOData.kUInt), (IOData.kULong), (IOData.kULong64), (IOData.kLong), (IOData.kLong64), (IOData.kFloat) ] if (t - IOData.kOffsetL) in memberL : found = True if element['fArrayDim'] < 2 : member['arrlength'] = element['fArrayLength'] def func( buf, obj ) : ROOT.getLogger("memberL").info( "member %s", member ) obj[member['name']] = buf.ReadFastArray( member['arrlength'], member['type'] - IOData.kOffsetL ) member[ 'func' ] = func else : member['arrlength'] = element['fMaxIndex'][ element['fArrayDim'] - 1 ] member['minus1'] = True def rnda( buf, obj ) : def rfa( buf1, handle ) : ROOT.getLogger("memberL").info( "member %s", member ) return buf1.ReadFastArray( handle['arrlength'], handle['type'] - IOData.kOffsetL ) obj[member['name']] = buf.ReadNdimArray( member, rfa ) member['func'] = rnda if t == IOData.kOffsetL+IOData.kChar : found = True if element['fArrayDim'] < 2 : member['arrlength'] = element['fArrayLength']; def func( buf, obj ) : obj[member['name']] = buf.ReadFastString(member['arrlength']); member['func'] = func else : member['minus1'] = True # one dimension is used for char* member['arrlength'] = element['fMaxIndex'][ element['fArrayDim']-1 ] def rnda( buf, obj ) : def rfs( buf1, handle ) : return buf1.ReadFastString( handle['arrlength']) obj[ member['name'] ] = buf.ReadNdimArray( member, rfs ) if (t - IOData.kOffsetP) in memberL : found = True member['cntname'] = element['fCountName']; def func( buf, obj ) : v = buf.ntou1() if 1 == v : # ROOT.getLogger("memberL").info( "obj \n%s, member \n%s ", json.dumps( {k:v for k, v in obj.iteritems() if k is not "func"} , indent=4), json.dumps({k:v for k, v in member.iteritems() if k is not "func"}, indent=4) ) obj[ member['name'] ] = buf.ReadFastArray( obj[ member['cntname'] ], member['type'] - IOData.kOffsetP ) else : obj[ member['name'] ] = [] member['func'] = func if t == (IOData.kOffsetP+IOData.kChar) : found = True member['cntname'] = element['fCountName']; def func( buf, obj ) : v = buf.ntou1() if 1 == v : obj[member['name']] = buf.ReadFastString(obj[member['cntname']]); else : obj[member['name']] = None member['func'] = func if t == IOData.kDouble32 or t == (IOData.kOffsetL+IOData.kDouble32) or t == (IOData.kOffsetP+IOData.kDouble32): found = True member['double32'] = True; # SKIP - need to fill in if t == IOData.kAnyP or t == IOData.kObjectP : found = True def func( buf, obj ) : def roa( buf1, handle ) : return buf1.ReadObjectAny() obj[ member['name'] ] = buf.ReadNdimArray( member, roa ) member['func'] = func if t == IOData.kAny or t == IOData.kAnyp or t == IOData.kObjectp or t == IOData.kObject: found = True classname = element[ 'fName' ] if "BASE" == element['fTypeName'] else element['fTypeName'] if classname[-1] == "*" : classname = classname[ 0 : -1 ] arr_kind = ROOT.GetArrayKind( classname ) if arr_kind > 0 : member['arrkind'] = arr_kind def func( buf, obj ) : obj[ member['name']] = buf.ReadFastArray( buf.ntou4(), member['arrkind'] ) member['func'] = func elif arr_kind == 0 : def func( buf, obj ) : obj[ member['name'] ] = buf.ReadTString() member['func'] = func else : member['classname'] = classname if element['fArrayLength'] > 1 : def func( buf, obj ) : def rcs( buf1, handle ) : return buf1.ClassStreamer( {}, handle['classname'] ) obj[ member['name'] ] = buf.ReadNdimArray( member, rcs ) member['func'] = func else : def func( buf, obj ) : obj[ member['name'] ] = buf.ClassStreamer( {}, member['classname'] ) member['func'] = func # Skip - need to fill in if t == IOData.kTString: found = True def func( buf, obj ) : member['name'] = buf.ReadTString() member['func'] = func if not found : ROOT.logger.error( "Not FOUND : %d", t ) return member @staticmethod def GetTypeId( typename, recurse = True ) : # optimize by not doing this inside func type_ids = { "bool": IOData['kBool'], "Bool_t": IOData['kBool'], "char": IOData['kChar'], "signed char": IOData['kChar'], "Char_t": IOData['kChar'], "Color_t": IOData['kShort'], "Style_t": IOData['kShort'], "Width_t": IOData['kShort'], "short": IOData['kShort'], "Short_t": IOData['kShort'], "int": IOData['kInt'], "EErrorType": IOData['kInt'], "Int_t": IOData['kInt'], "long": IOData['kLong'], "Long_t": IOData['kLong'], "float": IOData['kFloat'], "Float_t": IOData['kFloat'], "double": IOData['kDouble'], "Double_t": IOData['kDouble'], "unsigned char": IOData['kUChar'], "UChar_t": IOData['kUChar'], "unsigned short": IOData['kUShort'], "UShort_t": IOData['kUShort'], "unsigned": IOData['kUInt'], "unsigned int": IOData['kUInt'], "UInt_t": IOData['kUInt'], "unsigned long": IOData['kULong'], "ULong_t": IOData['kULong'], "int64_t": IOData['kLong64'], "long long": IOData['kLong64'], "Long64_t": IOData['kLong64'], "uint64_t": IOData['kULong64'], "unsigned long long": IOData['kULong64'], "ULong64_t": IOData['kULong64'], "Double32_t": IOData['kDouble32'], "Float16_t": IOData['kFloat16'], "char*": IOData['kCharStar'], "const char*": IOData['kCharStar'], "const Char_t*": IOData['kCharStar'], } if typename in type_ids : return type_ids[ typename ] if not recurse : return -1 if typename in Streamers.CustomStreamers : replace = Streamers.CustomStreamers[ typename ]; if type( replace ) == str : return ROOT.GetTypeId(replace, true); return -1; ``` #### File: root-io/rootio/TDirectory.py ```python from rootio import TBuffer class TDirectory (object) : def __init__(self, file, dirname, cycle) : self.fFile = file self._typename = "TDirectory" self.dir_name = dirname self.dir_cycle = cycle self.fKeys = [] def to_json( self ) : obj = { 'fSeekKeys' : self['fSeekKeys'], 'dir_name' : self['dir_name'], 'dir_cycle' : self['dir_cycle'], 'fDatimeM' : self['fDatimeM'], 'fNbytesName' : self['fNbytesName'], 'fTitle' : self['fTitle'], 'fDatimeC' : self['fDatimeC'], 'fSeekParent' : self['fSeekParent'], 'fKeys' : self['fKeys'], 'fSeekDir' : self['fSeekDir'], 'fNbytesKeys' : self['fNbytesKeys'], # "_typename": self._typename, # "dir_name" : self.dir_name, # "dir_cycle" : self.dir_cycle, # "fKeys" : self.fKeys } return obj def __getitem__(self, key): return getattr(self, key) def __setitem__(self, key, value) : object.__setattr__( self, key, value ) def list_keys(self, prefix) : for k in self.fKeys : fqn=prefix + "/" + k['fName'] print( "[%s]: " %( k['fClassName'] ) + fqn ) if "TDirectory" == k['fClassName'] : tdir = self.fFile.ReadObject( fqn ) tdir.list_keys( prefix=fqn ) def GetKey(self, keyname, cycle ) : for i in range( 0, len(self.fKeys) ) : if self.fKeys[i]['fName'] == keyname and self.fKeys[i]['fCycle'] == cycle : return self.fKeys[i] pos = keyname.rfind( '/' ) while pos > 0 : dirname = keyname[0:pos] subname = keyname[pos+1:] dirkey = self.GetKey( dirname, 1 ) if None != dirkey and "fClassName" in dirkey and "TDirectory" in dirkey['fClassName'] : tdir = self.ReadObject( dirname ) if None != tdir : return tdir.GetKey( subname, cycle ) pos = keyname.rfind( '/', 0, pos-1 ) return None return None #TODO : add second part of impl def ReadKeys(self, objbuf ) : objbuf.ClassStreamer( self, 'TDirectory' ) if self.fSeekKeys <= 0 or self.fNbytesKeys <= 0 : return None file = self.fFile blob = file.ReadBuffer([ self.fSeekKeys, self.fNbytesKeys ] ) if None == blob : return None buf = TBuffer( blob, 0, file, None ) buf.ReadTKey() nkeys = buf.ntoi4() for i in range(0, nkeys) : self.fKeys.append( buf.ReadTKey() ) file.fDirectories.append( self ) ```
{ "source": "jdbrice/RootMD", "score": 2 }
#### File: RootMD/rootmd/__main__.py ```python import json import requests import os from xmlrpc.client import boolean import mistletoe as md from mistletoe.ast_renderer import ASTRenderer from rich import inspect from rich.console import Console from rich.markdown import Markdown from rich.logging import RichHandler import logging import argparse from rootmd import RootHtmlRenderer from rootmd import RootMdRenderer from rootmd import Md2MacroRenderer from watchdog.observers import Observer from watchdog.events import FileSystemEventHandler import time # watchdog observer observer = Observer() # setup our logger FORMAT = "%(message)s" logging.basicConfig( level="NOTSET", format=FORMAT, datefmt="[%X]", handlers=[RichHandler()] ) log = logging.getLogger("rich") """ Entry point for RootMd """ parser = argparse.ArgumentParser(description='Convert Markdown with inline c++ code to ROOT output.', prog="rootmd") parser.add_argument( 'input', nargs="?", help='input Markdown file to execute and convert', default="" ) parser.add_argument( '--output', help='output filename default <input>.<ext> where <ext> is determined by the chosen format, default html, output can include {input} to allow substitution of input filename, or {path} for full path, or {basepath} for path to input file, or {ext} for default output extension for format specified. TODO', default="" ) parser.add_argument( '--format', help='output format', default="html", choices=["html", "md", "obsidian", "json", "terminal", "macro"] ) parser.add_argument( '--embed', help='embed images as base 64', default=False, action="store_true" ) parser.add_argument( '--asset-dir', help='specify asset output directory, paths are NOTE re-written to support unless using obsidian format', default="" ) parser.add_argument( '--verbosity', help='specify log verbosity', default=0, type=int ) parser.add_argument( '--watch', help='watch a file or directory for changes') parser.add_argument( '--run', help='command to run after processing a file. The filename can be substituted into the command string with {{file}}. Example: --run="echo {{file}}"') parser.add_argument( '--clean', help='clean artifacts, caution - should only use with embed or asset copy to <asset-dir>', action='store_true', default=False) parser.add_argument( '--no-exec', help='Do not execute any code blocks, just process file (useful for viewing and testing conversion)', action='store_true', default=False) parser.add_argument( '--html-template', help='Template HTML file should include {js}, {css}, {content} ... TODO', default="") parser.add_argument( '--css', help='CSS used for the HTML output, overrides default ... TODO', default="") parser.add_argument( '--share', help='Upload to sharing server', default=False, action='store_true') args = parser.parse_args() if "input" not in args and "watch" not in args : log.error( "Must provide one of [\"[input]\" or \"--watch\" to specify input files ]" ) exit() EXTENSIONS = { "html" : ".html", "md" : ".md", "obsidian" : ".md", "json" : ".json", "terminal" : ".md", "macro" : ".C" } console = Console() log.setLevel( logging.INFO ) VERBOSITY = args.verbosity if VERBOSITY >= 10 : log.setLevel( logging.DEBUG ) if VERBOSITY >= 20 : log.setLevel( logging.INFO ) if VERBOSITY >= 30 : log.setLevel( logging.WARNING ) if VERBOSITY >= 40 : log.setLevel( logging.ERROR ) if VERBOSITY >= 50 : log.setLevel( logging.CRITICAL ) ASSET_PREFIX="" EMBED = args.embed ASSET_DIR = args.asset_dir if args.output == "" and args.input != "": args.output = args.input + EXTENSIONS[args.format] # ext will be added later # if VERBOSITY <= 1: # inspect( args ) basename = os.path.basename( args.output ) # handle obsidian's way of removing the attachment/ (or whatever dir) from paths if args.format == "obsidian": ASSET_PREFIX = os.path.splitext(basename)[0] ASSET_DIR = os.path.join( ASSET_DIR, ASSET_PREFIX ) if not os.path.isdir( ASSET_DIR ): log.info( "Making asset directory: %s" % ASSET_DIR ) os.mkdir( ASSET_DIR ) #input working dir log.info( "I am %s" % __file__ ) inwdir = os.path.dirname(os.path.abspath(args.input)) log.info( "input working directory: %s" % inwdir ) if ASSET_DIR == "" and input != "": ASSET_DIR = inwdir class RootMd : def __init__(self, *args, **kwargs) -> None: log.debug("args:") # inspect( args[0] ) self.args = args[0] log.debug( self.args.input ) self.title = "" self.last_run_input = "" self.last_run_time = 0 def run(self, input): delta_time = time.time() - self.last_run_time self.args.input = input # log.info( "delta_time = %d" % delta_time ) if self.args.input == self.last_run_input and delta_time < 1 : return self.last_run_input = self.args.input artifacts = [] if not os.path.exists(self.args.input) : log.error("File %s does not exist" % ( self.args.input ) ) return inwdir = os.path.dirname(os.path.abspath(self.args.input)) log.info( "input working directory: %s" % inwdir ) ASSET_DIR = self.args.asset_dir if ASSET_DIR == "": ASSET_DIR = inwdir log.info( "Processing %s to %s output format" % (self.args.input, self.args.format ) ) self.title = args.input theRenderer = RootHtmlRenderer() theRenderer.set( embed=EMBED, asset_dir=ASSET_DIR, asset_prefix=ASSET_PREFIX ) if args.format == "md" or args.format == "obsidian" or args.format == "terminal": theRenderer = RootMdRenderer() theRenderer.set( embed=EMBED, asset_dir=ASSET_DIR, asset_prefix=ASSET_PREFIX ) if args.format == "ast" : theRenderer = ASTRenderer() if args.format == "macro" : theRenderer = Md2MacroRenderer() with open( args.input , 'r') as fin: html = theRenderer.render(md.Document(fin)) artifacts = theRenderer.artifacts if args.format == "terminal" : console.print( Markdown(html) ) return output = args.output # if "" == output : # output = args.input + "." + args.format if output == "": output = input + EXTENSIONS[args.format] # ext will be added later log.info( "Writing output to %s" % output ) with open( output , "w", encoding="utf-8", errors="xmlcharrefreplace") as output_file: output_file.write(html) token = os.environ.get( "ROOTMD_TOKEN", "" ) if "share" in args and args.share and token != "": files = { output : html } for fn in artifacts: try : with open( fn, 'rb' ) as f: files[ fn ] = f.read() except Exception as e: log.error( e ) log.info( "SHARE:" ) for fi in files : log.info( "file_name: %s" % fi ) res = requests.post( "https://rootmd.jdbburg.com/upload", data={ "token": token}, files = files ) log.info( res.json() ) if res.status_code == 200 and res.json()["status"] == True and len(res.json()["data"]) >= 1: url = res.json()["data"][0]["link"] # "https://rootmd.jdbburg.com/bfbf11835023423dd316586acb9fbbb3/confidenceintervals.md.html" log.info( "Uploaded to:" ) print( url ) self.last_run_time = time.time() rootmd = RootMd(args) class Handler(FileSystemEventHandler): @staticmethod def on_any_event(event): if event.is_directory: return None elif event.event_type == 'modified' : # inspect( event ) # Event is modified, you can process it now log.info("Watchdog received modified event - % s" % event.src_path) rootmd.run(input=event.src_path) if args.watch : event_handler = Handler() observer.schedule(event_handler, args.watch, recursive = True) log.info( 'Watching "%s" for changes' % args.watch ) observer.start() try: while True: time.sleep(5) except: observer.stop() # print("Observer Stopped") observer.join() exit() rootmd.run(args.input) ``` #### File: RootMD/rootmd/Md2MacroRenderer.py ```python from mistletoe.base_renderer import BaseRenderer import hashlib import rich import logging from rich.logging import RichHandler from .YamlBlock import YamlFence, CodeFence FORMAT = "%(message)s" logging.basicConfig( level="NOTSET", format=FORMAT, datefmt="[%X]", handlers=[RichHandler()] ) log = logging.getLogger("rich") class Md2MacroRenderer(BaseRenderer): def __init__(self, *extras): super().__init__(YamlFence, CodeFence, *extras) self.blockid = 0 self.embed = False self.asset_prefix = "" self.asset_dir = "" self.artifacts = [] def set( self, **kwargs ) : if "embed" in kwargs : self.embed = kwargs.get( "embed" ) if "asset_dir" in kwargs : self.asset_dir = kwargs.get( "asset_dir" ) if "asset_prefix" in kwargs: self.asset_prefix = kwargs.get( "asset_prefix" ) # SHOULD CENTRALIZE WITH OTHER RENDERERS def optionAsBool( self, options, n, default = False ): # option is false by default if n not in options : log.info( "A" ) return default if type( options[n] ) == bool: log.info( "B" ) return options[n] log.info( "C" ) return not (options.get( n, "" ).lower() == 'false' or options.get( n, "" ) == '0') """ Code Fence is a custom Code Block token that accepts optional arguments after the language id example: ```cpp in:0 ... ``` the above turns off echoing the input to rendered document """ def render_code_fence( self, token ): log.info( "render_code_fence" ) # rich.inspect( token ) return self.render_block_code( token ) def render_block_code(self, token): log.info( "options:" ) log.info( token.options ) if token.language != "cpp" and token.options.get( "exec", "" ) != "cpp": return self.render_raw_text( token ) log.info( "exec : %s" % ( self.optionAsBool( token.options, "exec", True ) ) ) if self.optionAsBool( token.options, "exec", True ) == False: return "" # return self.render_raw_text( token ) # code =token.children[0].content hash = hashlib.md5( token.children[0].content.encode() ) output = "// %%>{id} ----------ROOTMD_START_BLOCK{hash}----------\n".format( id = self.blockid, hash = hash.hexdigest() ) output += 'printf( "START_BLOCK%%>{id}<%%{hash} {{\\n" );\n'.format( id = self.blockid, hash = hash.hexdigest() ) for l in token.children[0].content.splitlines(): output += " " + l + "\n" output += 'printf( "END_BLOCK%%<{id}>%%{hash} }}\\n" );\n'.format( id = self.blockid, hash = hash.hexdigest() ) output += "// %%<{id} ----------ROOTMD_END_BLOCK{hash}----------\n".format( id = self.blockid, hash = hash.hexdigest() ) self.blockid += 1 return output def render_inline_code(self, token): return "`" + self.render_raw_text(token) + "`" def render_thematic_break(self, token): # inspect( token ) return "---" @staticmethod def render_line_break(token): log.debug( 'line break' ) return '\n' if token.soft else '\n' def render_inner( self, token ): return ''.join(map(self.render_raw_text, token.children)) def render_raw_text(self, token): """ Default render method for RawText. Simply return token.content. """ if hasattr(token, 'content'): output = "" for l in token.content.splitlines(): output += "//" + l + "\n" return output return self.render_inner( token ) def render_to_plain(self, token): log.info( "render_to_plain" ) # if hasattr(token, 'children'): # inner = [self.render_to_plain(child) for child in token.children] # return ( '//' + ''.join(inner)) # return ("//" + token.content) return "" def render_heading(self, token): inner = self.render_inner(token) out = "#" * int(token.level) + " " + inner return out def render_document(self, token): # inner = '\n'.join([self.render(child) for child in token.children]) inner = "" parts = [] for child in token.children : log.info( child.__class__.__name__ ) if "CodeFence" == child.__class__.__name__ or "InlineCode" == child.__class__.__name__: parts.append( self.render( child ) ) else: parts.append( self.render_raw_text( child ) ) # rich.inspect( child ) inner = '\n'.join( parts ) return inner ``` #### File: RootMD/rootmd/RootBaseRenderer.py ```python from mistletoe.base_renderer import BaseRenderer from shutil import move import re import logging from .Executor import RootExecutor from .Executor import GnuPlotExecutor from .Executor import RnuPlotExecutor from .YamlBlock import YamlFence, CodeFence import yaml from rich.logging import RichHandler FORMAT = "%(message)s" logging.basicConfig( level="NOTSET", format=FORMAT, datefmt="[%X]", handlers=[RichHandler()] ) log = logging.getLogger("rich") """ Base renderer for mistletoe with ROOT code execution and asset injection. """ class RootBaseRenderer(BaseRenderer): def __init__(self, *extras): super().__init__(YamlFence, CodeFence, *extras) # externlal code executors self.gnuplot = GnuPlotExecutor() self.rnuplot = RnuPlotExecutor() self.root = RootExecutor() self.executors = { 'cpp' : self.root, 'gnuplot' : self.gnuplot, 'rnuplot' : self.rnuplot, } self.handlers = { 'cpp' : self.handle_root, 'gnuplot' : self.handle_gnuplot, 'rnuplot' : self.handle_rnuplot } def render_yaml_fence(self, token): log.info("YAML Fence") try: y = yaml.safe_load( token.children[0].content ) self.process_yaml( y ) # Do something here except yaml.YAMLError as e: log.error( e ) token.language = "yaml" if self.yaml.get( "hide", False ) == True or self.yaml.get( "hide", False ) == "1" or self.yaml.get( "hide", False ) == 1 : return "" return super().render_block_code(token) def render_inline_code( self, token): # rich.inspect( token ) code = token.children[0].content # evaluate code inside BASH style blocks m = re.search( "\${(.*?)}", code ) if m: # log.info( "--->CODE: %s" % ( m.groups()[0] ) ) evalcode = m.groups()[0] evalcode += ';printf("\\n");' log.info( 'eval: "%s"' % evalcode ) output, err, imgs = self.run_cmd( evalcode ) log.info( "stdout: %s" % ( output ) ) log.info( "stderr: %s" % ( err ) ) return output return super().render_inline_code( token ) def render_code_fence( self, token ): log.info( "render_code_fence" ) # rich.inspect( token ) return self.render_block_code( token ) def render_block_code( self, token ) : pass def process_yaml( self, yaml ): pass def addExecutor( self, name, exec, handler ): self.executors[ name ] = exec self.handler[ name ] = handler def handle_root( self ) : pass def handle_gnuplot( self ) : pass def handle_rnuplot( self ) : pass ```
{ "source": "jdbrice/star-sw", "score": 3 }
#### File: star-sw/scripts/gdrive.py ```python import requests def download_file_from_google_drive(id): def get_confirm_token(response): for key, value in response.cookies.items(): if key.startswith('download_warning'): return value return None URL = "https://docs.google.com/uc?export=download" session = requests.Session() response = session.get(URL, params = { 'id' : id }, stream = True) token = get_confirm_token(response) if token: params = { 'id' : id, 'confirm' : token } response = session.get(URL, params = params, stream = True) sys.stdout.buffer.write(response.content) if __name__ == "__main__": import sys if len(sys.argv) is not 2: print("Usage: python gdrive.py drive_file_id") else: # TAKE ID FROM SHAREABLE LINK file_id = sys.argv[1] download_file_from_google_drive(file_id) ```
{ "source": "JDBumgardner/stone_ground_hearth_battles", "score": 3 }
#### File: hearthstone/battlebots/bot_types.py ```python import random import typing from typing import List, Callable from hearthstone.simulator.agent.actions import StandardAction, DiscoverChoiceAction, RearrangeCardsAction from hearthstone.simulator.agent.agent import Agent if typing.TYPE_CHECKING: from hearthstone.simulator.core.cards import MonsterCard from hearthstone.simulator.core.player import Player class PriorityFunctionBot(Agent): def __init__(self, authors: List[str], priority: Callable[['Player', 'MonsterCard'], float], seed: int): if not authors: authors = ["JB", "AS", "ES", "JS", "DVP"] self.authors = authors self.priority = priority self.local_random = random.Random(seed) async def discover_choice_action(self, player: 'Player') -> DiscoverChoiceAction: discover_cards = player.discover_queue[0].items discover_cards = sorted(discover_cards, key=lambda card: self.priority(player, card), reverse=True) return DiscoverChoiceAction(player.discover_queue[0].items.index(discover_cards[0])) async def rearrange_cards(self, player: 'Player') -> RearrangeCardsAction: permutation = list(range(len(player.in_play))) self.local_random.shuffle(permutation) return RearrangeCardsAction(permutation) async def buy_phase_action(self, player: 'Player') -> StandardAction: pass ``` #### File: hearthstone/battlebots/no_action_bot.py ```python import typing from hearthstone.simulator.agent.actions import StandardAction, EndPhaseAction, DiscoverChoiceAction, \ RearrangeCardsAction, FreezeDecision from hearthstone.simulator.agent.agent import Agent if typing.TYPE_CHECKING: from hearthstone.simulator.core.player import Player from hearthstone.simulator.core.player import DiscoverIndex class NoActionBot(Agent): authors = ["<NAME>"] async def rearrange_cards(self, player: 'Player') -> RearrangeCardsAction: return RearrangeCardsAction([]) async def buy_phase_action(self, player: 'Player') -> StandardAction: return EndPhaseAction(FreezeDecision.NO_FREEZE) async def discover_choice_action(self, player: 'Player') -> DiscoverChoiceAction: return DiscoverChoiceAction(DiscoverIndex(0)) ``` #### File: hearthstone/battlebots/ordering.py ```python from hearthstone.simulator.agent import RearrangeCardsAction from hearthstone.simulator.core.card_pool import * from hearthstone.simulator.core.tavern import Player def rate_position(card: 'MonsterCard') -> float: if type(card) is MonstrousMacaw: return 0.0 if type(card) is UnstableGhoul or type(card) is SpawnOfNzoth: return 1.0 if type(card) is SelflessHero or type(card) is GlyphGuardian or type(card) is DeflectOBot: return 2.0 if type(card) is OldMurkeye: return 3.0 if type(card) is InfestedWolf or type(card) is SavannahHighmane or type(card) is SecurityRover: return 4.5 if type(card) is DragonspawnLieutenant or type(card) is Imprisoner or type(card) is ImpGangBoss or type( card) is TwilightEmissary: return 5.0 if type(card) is ScavengingHyena or type(card) is RatPack: return 6.0 if type(card) is PackLeader or type(card) is MurlocWarleader or type(card) is Khadgar or type( card) is SouthseaCaptain: return 6.5 if type(card) is MamaBear or type(card) is SoulJuggler or type(card) is RipsnarlCaptain: return 7.0 return 4.0 def naive_rearrange_cards(player: 'Player') -> RearrangeCardsAction: in_play = list(enumerate(player.in_play)) in_play.sort(key=lambda pair: rate_position(pair[1])) return RearrangeCardsAction([pair[0] for pair in in_play]) ``` #### File: hearthstone/ladder/ladder.py ```python import json import random from datetime import datetime from typing import List, Callable import trueskill from hearthstone.battlebots.cheapo_bot import CheapoBot from hearthstone.battlebots.get_bot_contestants import get_priority_bot_contestant_tuples, \ get_priority_heuristics_bot_contestant_tuples from hearthstone.battlebots.no_action_bot import NoActionBot from hearthstone.battlebots.random_bot import RandomBot from hearthstone.battlebots.saurolisk_bot import SauroliskBot from hearthstone.battlebots.supremacy_bot import SupremacyBot from hearthstone.simulator.agent.agent import AnnotatingAgent from hearthstone.simulator.core.monster_types import MONSTER_TYPES from hearthstone.simulator.host.round_robin_host import RoundRobinHost from hearthstone.training.pytorch.agents.pytorch_bot import PytorchBot from hearthstone.training.pytorch.encoding.default_encoder import DefaultEncoder from hearthstone.training.pytorch.networks.save_load import load_from_saved class ContestantAgentGenerator: def __init__(self, function, *args, **kwargs): self.function = function self.args = args self.kwargs = kwargs def __call__(self, *args, **kwargs): return self.function(*self.args, **self.kwargs) class Contestant: def __init__(self, name, agent_generator: Callable[[], AnnotatingAgent], initial_trueskill=None): self.name = name self.agent_generator = agent_generator self.elo = 1200 self.trueskill = initial_trueskill or trueskill.Rating() self.games_played = 0 def __repr__(self): return f'(Agent "{self.name}" Trueskill {self.trueskill.mu:.2f})' def probability_of_win(elo1: int, elo2: int) -> float: return 1.0 / (1.0 + 10 ** ((elo2 - elo1) / 400.0)) def update_ratings(outcome: List[Contestant]): coefficient: float = 30 num_contestants = len(outcome) elo_delta = [0 for _ in range(num_contestants)] for i in range(num_contestants): for j in range(i, num_contestants): win_prob = probability_of_win(outcome[i].elo, outcome[j].elo) elo_delta[i] += coefficient * (1 - win_prob) elo_delta[j] += coefficient * (win_prob - 1) for contestant, elo_diff in zip(outcome, elo_delta): contestant.elo += elo_diff new_trueskills = trueskill.rate([(contestant.trueskill,) for contestant in outcome], ranks=range(len(outcome))) for new_trueskill, contestant in zip(new_trueskills, outcome): contestant.trueskill = new_trueskill[0] def print_standings(contestants: List[Contestant]): contestants = sorted(contestants, key=lambda c: c.trueskill.mu, reverse=True) print(contestants) def run_tournament(contestants: List[Contestant], num_rounds=10, game_size=8): agents = {contestant.name: contestant.agent_generator() for contestant in contestants} for _ in range(num_rounds): round_contestants = random.sample(contestants, k=game_size) host = RoundRobinHost({c.name: agents[c.name] for c in round_contestants}) host.play_game() winner_names = list(reversed([name for name, player in host.tavern.losers])) print(host.tavern.losers[-1][1].in_play, "-", host.tavern.losers[-1][1].hero, host.tavern.losers[-1][1].name) ranked_contestants = sorted(round_contestants, key=lambda c: winner_names.index(c.name)) update_ratings(ranked_contestants) print_standings(contestants) for contestant in round_contestants: contestant.games_played += 1 def all_contestants(): all_bots = [Contestant(f"RandomBot", lambda: RandomBot(1))] all_bots += [Contestant(f"NoActionBot ", lambda: NoActionBot())] all_bots += [Contestant(f"CheapoBot", lambda: CheapoBot(3))] all_bots += [Contestant(f"SupremacyBot {t}", lambda: SupremacyBot(t, False, i)) for i, t in enumerate([MONSTER_TYPES.MURLOC, MONSTER_TYPES.BEAST, MONSTER_TYPES.MECH, MONSTER_TYPES.DRAGON, MONSTER_TYPES.DEMON, MONSTER_TYPES.PIRATE])] all_bots += [Contestant(f"SupremacyUpgradeBot {t}", lambda: SupremacyBot(t, True, i)) for i, t in enumerate([MONSTER_TYPES.MURLOC, MONSTER_TYPES.BEAST, MONSTER_TYPES.MECH, MONSTER_TYPES.DRAGON, MONSTER_TYPES.DEMON, MONSTER_TYPES.PIRATE])] all_bots += [Contestant("SauroliskBot", lambda: SauroliskBot(5))] all_bots += [Contestant(name, lambda: bot) for name, bot in get_priority_bot_contestant_tuples()] all_bots += [Contestant(name, lambda: bot) for name, bot in get_priority_heuristics_bot_contestant_tuples()] return all_bots def saved_learningbot_1v1_contestants() -> List[Contestant]: hparams = { "resume": False, 'resume.from': '2020-10-18T02:14:22.530381', 'export.enabled': True, 'export.period_epochs': 200, 'export.path': datetime.now().isoformat(), 'opponents.initial': 'easiest', 'opponents.self_play.enabled': True, 'opponents.self_play.only_champions': True, 'opponents.max_pool_size': 7, 'adam.lr': 0.0001, 'batch_size': 1024, 'minibatch_size': 1024, 'cuda': True, 'entropy_weight': 0.001, 'gae_gamma': 0.999, 'gae_lambda': 0.9, 'game_size': 2, 'gradient_clipping': 0.5, 'approx_kl_limit': 0.015, 'nn.architecture': 'transformer', 'nn.hidden_layers': 1, 'nn.hidden_size': 32, 'nn.activation': 'gelu', 'nn.shared': False, 'nn.encoding.redundant': True, 'normalize_advantage': True, 'normalize_observations': False, 'num_workers': 1, 'optimizer': 'adam', 'policy_weight': 0.581166675499831, 'ppo_epochs': 8, 'ppo_epsilon': 0.1} all_bots = [] # Jeremy has this bot, ask him for it! all_bots += [Contestant("LearningBot94200", lambda: PytorchBot( load_from_saved("../../data/learning/pytorch/ppo/2020-10-30T20:50:44.311231/saved_models/94200", hparams), DefaultEncoder(), annotate=False))] return all_bots def load_ratings(contestants: List[Contestant], path): with open(path) as f: standings = json.load(f) standings_dict = dict(standings) for contestant in contestants: if contestant.name in standings_dict: contestant.elo = standings_dict[contestant.name]["elo"] contestant.trueskill = trueskill.Rating(standings_dict[contestant.name]["trueskill.mu"], standings_dict[contestant.name]["trueskill.sigma"]) contestant.games_played = standings_dict[contestant.name]["games_played"] def save_ratings(contestants: List[Contestant], path): ranked_contestants = sorted(contestants, key=lambda c: c.trueskill, reverse=True) standings = [ (c.name, {"elo": c.elo, "trueskill.mu": c.trueskill.mu, "trueskill.sigma": c.trueskill.sigma, "games_played": c.games_played, "last_time_updated": datetime.now().isoformat(), "authors": c.agent_generator().authors}) for c in ranked_contestants] with open(path, "w") as f: json.dump(standings, f, indent=4) ``` #### File: simulator/agent/agent.py ```python from typing import Any from hearthstone.simulator.agent.actions import HeroChoiceAction, DiscoverChoiceAction, \ RearrangeCardsAction, StandardAction from hearthstone.simulator.core.player import HeroChoiceIndex from hearthstone.simulator.core.tavern import Player Annotation = Any class AnnotatingAgent: async def hero_choice_action(self, player: 'Player') -> HeroChoiceAction: return HeroChoiceAction(HeroChoiceIndex(0)) async def annotated_rearrange_cards(self, player: 'Player') -> (RearrangeCardsAction, Annotation): """ here the player selects a card arrangement one time per combat directly preceding combat Args: player: The player object controlled by this agent. This function should not modify it. Returns: A tuple containing an arrangement of the player's board, and the Agent Annotation to attach to the replay. """ pass async def annotated_buy_phase_action(self, player: 'Player') -> (StandardAction, Annotation): """ here the player chooses a buy phase action including: purchasing a card from the store summoning a card from hand to in_play selling a card from hand or from in_play and ending the buy phase Args: player: The player object controlled by this agent. This function should not modify it. Returns: A tuple containing the Action, and the Agent Annotation to attach to the replay. """ pass async def annotated_discover_choice_action(self, player: 'Player') -> (DiscoverChoiceAction, Annotation): """ Args: player: The player object controlled by this agent. This function should not modify it. Returns: Tuple of MonsterCard to discover, and Annotation to attach to the action. """ pass async def game_over(self, player: 'Player', ranking: int) -> Annotation: """ Notifies the agent that the game is over and the agent has achieved a given rank :param ranking: Integer index 0 to 7 of where the agent placed :return: """ pass class Agent(AnnotatingAgent): async def buy_phase_action(self, player: 'Player') -> StandardAction: pass async def annotated_buy_phase_action(self, player: 'Player') -> (StandardAction, Annotation): return await self.buy_phase_action(player), None async def rearrange_cards(self, player: 'Player') -> RearrangeCardsAction: pass async def annotated_rearrange_cards(self, player: 'Player') -> (RearrangeCardsAction, Annotation): return await self.rearrange_cards(player), None async def discover_choice_action(self, player: 'Player') -> DiscoverChoiceAction: pass async def annotated_discover_choice_action(self, player: 'Player') -> (DiscoverChoiceAction, Annotation): return await self.discover_choice_action(player), None ``` #### File: simulator/core/card_graveyard.py ```python import sys from inspect import getmembers, isclass from typing import Union from hearthstone.simulator.core.cards import MonsterCard from hearthstone.simulator.core.events import CardEvent, EVENTS, BuyPhaseContext, CombatPhaseContext from hearthstone.simulator.core.monster_types import MONSTER_TYPES class FloatingWatcher(MonsterCard): tier = 4 monster_type = MONSTER_TYPES.DEMON pool = MONSTER_TYPES.DEMON base_attack = 4 base_health = 4 mana_cost = 5 def handle_event_powers(self, event: 'CardEvent', context: Union['BuyPhaseContext', 'CombatPhaseContext']): if event.event is EVENTS.PLAYER_DAMAGED: bonus = 4 if self.golden else 2 self.attack += bonus self.health += bonus class ElistraTheImmortal(MonsterCard): tier = 6 monster_type = MONSTER_TYPES.NEUTRAL base_attack = 4 base_health = 4 base_divine_shield = True base_reborn = True divert_taunt_attack = True legendary = True class BarrensBlacksmith(MonsterCard): tier = 3 monster_type = None base_attack = 3 base_health = 5 def frenzy(self, context: CombatPhaseContext): bonus = 4 if self.golden else 2 for card in context.friendly_war_party.board: if card != self: card.attack += bonus card.health += bonus class Siegebreaker(MonsterCard): tier = 4 monster_type = MONSTER_TYPES.DEMON pool = MONSTER_TYPES.DEMON base_attack = 5 base_health = 8 base_taunt = True mana_cost = 7 def handle_event_powers(self, event: 'CardEvent', context: Union['BuyPhaseContext', 'CombatPhaseContext']): bonus = 2 if self.golden else 1 if event.event is EVENTS.COMBAT_PREPHASE or (event.event is EVENTS.SUMMON_COMBAT and event.card == self): demons = [card for card in context.friendly_war_party.board if card != self and card.check_type(MONSTER_TYPES.DEMON)] for demon in demons: demon.attack += bonus elif event.event is EVENTS.SUMMON_COMBAT and event.card in context.friendly_war_party.board \ and event.card != self and event.card.check_type(MONSTER_TYPES.DEMON): event.card.attack += bonus elif event.event is EVENTS.DIES and event.card == self: demons = [card for card in context.friendly_war_party.board if card != self and card.check_type(MONSTER_TYPES.DEMON)] for demon in demons: demon.attack -= bonus REMOVED_CARDS = [member[1] for member in getmembers(sys.modules[__name__], lambda member: isclass(member) and issubclass(member, MonsterCard) and member.__module__ == __name__)] ``` #### File: simulator/core/cards.py ```python import copy import enum import itertools import typing from collections import defaultdict from typing import List, Optional, Callable, Type, Union, Iterator from boltons.setutils import IndexedSet from hearthstone.simulator.core import events from hearthstone.simulator.core.events import BuyPhaseContext, CombatPhaseContext, EVENTS, CardEvent from hearthstone.simulator.core.monster_types import MONSTER_TYPES from hearthstone.simulator.core.randomizer import Randomizer if typing.TYPE_CHECKING: from hearthstone.simulator.core.adaptations import Adaptation from hearthstone.simulator.core.player import Player def one_minion_per_type(cards: List['MonsterCard'], randomizer: 'Randomizer', excluded_card: Optional['MonsterCard'] = None) -> List['MonsterCard']: minions = [] restricted_cards = [card for card in cards] if excluded_card in restricted_cards: restricted_cards.remove(excluded_card) filler_minions = [card for card in restricted_cards if card.monster_type == MONSTER_TYPES.ALL] for minion_type in MONSTER_TYPES.single_types(): minions_by_type = [card for card in restricted_cards if card.monster_type == minion_type] if minions_by_type: card = randomizer.select_friendly_minion(minions_by_type) minions.append(card) elif filler_minions: card = randomizer.select_friendly_minion(filler_minions) filler_minions.remove(card) minions.append(card) return minions def one_minion_per_tier(cards: List['MonsterCard'], randomizer: 'Randomizer') -> List['MonsterCard']: minions = [] for tavern_tier in range(1, 7): minions_by_tier = [card for card in cards if card.tier == tavern_tier] if minions_by_tier: card = randomizer.select_friendly_minion(minions_by_tier) minions.append(card) return minions BOOL_ATTRIBUTE_LIST = ["divine_shield", "magnetic", "poisonous", "taunt", "windfury", "cleave", "reborn", "mega_windfury", "gruul_rules"] class MonsterCard: coin_cost = 3 mana_cost: Optional[int] = None base_health: int base_attack: int monster_type: 'MONSTER_TYPES' = MONSTER_TYPES.NEUTRAL base_divine_shield = False base_magnetic = False base_poisonous = False base_taunt = False base_windfury = False base_cleave = False base_deathrattle = None base_battlecry = None num_battlecry_targets = [0] base_reborn = False redeem_rate = 1 tier: int not_in_pool = False cant_attack = False give_immunity = False legendary = False pool: 'MONSTER_TYPES' = MONSTER_TYPES.ALL divert_taunt_attack = False def __init__(self): self.health = self.base_health self.attack = self.base_attack self.divine_shield = self.base_divine_shield self.magnetic = self.base_magnetic self.poisonous = self.base_poisonous self.taunt = self.base_taunt self.windfury = self.base_windfury self.mega_windfury = False self.cleave = self.base_cleave self.deathrattles: List[Callable[[MonsterCard, CombatPhaseContext], None]] = [] if self.base_deathrattle is not None: self.deathrattles.append(self.base_deathrattle.__func__) self.reborn = self.base_reborn self.dead = False self.golden = False self.battlecry: Optional[Callable[[List[MonsterCard], CombatPhaseContext], None]] = self.base_battlecry self.attached_cards = [] self.frozen = False self.nomi_buff = 0 self.ticket = False self.token = self.not_in_pool self.link: Optional['MonsterCard'] = None # links a card during combat to itself in the buy phase board self.dealt_lethal_damage_by = None self.frenzy_triggered = False self.gruul_rules = False def __repr__(self): rep = f"{type(self).__name__} {self.attack}/{self.health} (t{self.tier})" # TODO: add a proper enum to the monster typing if self.dead: rep += ", [dead]" if self.battlecry: rep += ", [battlecry]" for attribute in BOOL_ATTRIBUTE_LIST: if getattr(self, attribute): rep += f", [{attribute}]" if self.deathrattles: rep += ", [%s]" % ",".join([f"deathrattle-{i}" for i in range(len(self.deathrattles))]) if self.golden: rep += ", [golden]" if self.frozen: rep += ", [frozen]" if self.ticket: rep += ", [ticket]" return "{" + rep + "}" def take_damage(self, damage: int, combat_phase_context: CombatPhaseContext, foe: Optional['MonsterCard'] = None, defending: Optional[bool] = True): if self.divine_shield and not damage <= 0: self.divine_shield = False combat_phase_context.broadcast_combat_event(events.DivineShieldLostEvent(self, foe=foe)) else: self.health -= damage if foe is not None and foe.poisonous and self.health > 0: self.health = 0 if defending and foe is not None and self.health < 0: foe.overkill(combat_phase_context.enemy_context()) combat_phase_context.damaged_minions.add(self) combat_phase_context.broadcast_combat_event(events.CardDamagedEvent(self, foe=foe)) if self.is_dying(): self.dealt_lethal_damage_by = foe elif self.health >= 0 and not self.dead and not self.frenzy_triggered: self.frenzy(combat_phase_context) self.frenzy_triggered = True def resolve_death(self, context: CombatPhaseContext, foe: Optional['MonsterCard'] = None): if self.is_dying(): self.dead = True context.friendly_war_party.dead_minions.append(self) context.event_queue.load_minion(EVENTS.DIES, context.friendly_war_party, self, foe) def trigger_reborn(self, context: CombatPhaseContext): index = context.friendly_war_party.get_index(self) for i in range(context.summon_minion_multiplier()): reborn_self = self.unbuffed_copy() reborn_self.health = 1 reborn_self.reborn = False context.friendly_war_party.summon_in_combat(reborn_self, context, index + i + 1) def handle_event(self, event: 'CardEvent', context: Union['BuyPhaseContext', 'CombatPhaseContext']): if self == event.card: if event.event is EVENTS.DIES: if self.deathrattles: context.event_queue.load_minion(EVENTS.DEATHRATTLE_TRIGGERED, context.friendly_war_party, self) if self.reborn: self.trigger_reborn(context) elif event.event is EVENTS.SUMMON_BUY: if self.magnetic: self.magnetize(event.targets, context) if self.battlecry: for _ in range(context.battlecry_multiplier()): self.battlecry(event.targets, context) if event.event is EVENTS.BUY_END: if self.gruul_rules: self.attack += 2 self.health += 2 if not self.dead or self == event.card: # minions will trigger their own death events self.handle_event_powers(event, context) def handle_event_in_hand(self, event: CardEvent, context: BuyPhaseContext): return def handle_event_powers(self, event: 'CardEvent', context: Union['BuyPhaseContext', 'CombatPhaseContext']): return def valid_battlecry_target(self, card: 'MonsterCard') -> bool: return True def golden_transformation(self, base_cards: List['MonsterCard']): self.attack += self.base_attack self.health += self.base_health self.golden = True for card in base_cards: self.health += card.health - card.base_health self.attack += card.attack - card.base_attack self.attached_cards.extend(card.attached_cards) if card.base_deathrattle: self.deathrattles.extend(card.deathrattles[1:]) else: self.deathrattles.extend(card.deathrattles) for attr in BOOL_ATTRIBUTE_LIST: if getattr(card, attr): if attr == "windfury" and card.base_windfury: setattr(self, "mega_windfury", True) setattr(self, attr, False) else: setattr(self, attr, True) def magnetize(self, targets: List['MonsterCard'], context: 'BuyPhaseContext'): if targets: targets[0].attack += self.attack targets[0].health += self.health if self.deathrattles: targets[0].deathrattles.extend(self.deathrattles) for attr in BOOL_ATTRIBUTE_LIST: if getattr(self, attr) and attr != 'magnetic': setattr(targets[0], attr, True) targets[0].attached_cards.append(self) context.owner.remove_board_card(self) def overkill(self, context: CombatPhaseContext): return def frenzy(self, context: CombatPhaseContext): return def dissolve(self) -> List['MonsterCard']: golden_modifier = 3 if self.golden else 1 attached_cards = [] for card in self.attached_cards: attached_cards.extend(card.dissolve()) if self.token: return attached_cards else: dissolving_cards = [type(self)() for _ in range(golden_modifier)] dissolving_cards.extend(attached_cards) return dissolving_cards def summon_minion_multiplier(self) -> int: return 1 def deathrattle_multiplier(self) -> int: return 1 def battlecry_multiplier(self) -> int: return 1 @classmethod def check_type(cls, desired_type: 'MONSTER_TYPES') -> bool: return cls.monster_type in (desired_type, MONSTER_TYPES.ALL) def is_targetable(self) -> bool: return not self.dead and self.health > 0 def is_dying(self) -> bool: return not self.dead and self.health <= 0 def adapt(self, adaptation: 'Adaptation'): assert adaptation.valid(self) adaptation.apply(self) def unbuffed_copy(self) -> 'MonsterCard': copy = type(self)() if self.golden: copy.golden_transformation([]) return copy def valid_attack_targets(self, live_enemies: List['MonsterCard']) -> List['MonsterCard']: if self.attack <= 0 or not live_enemies: return [] taunt_monsters = [card for card in live_enemies if card.taunt] if taunt_monsters: return taunt_monsters else: return live_enemies def num_attacks(self): if self.mega_windfury: return 4 elif self.windfury: return 2 else: return 1 def apply_nomi_buff(self, player: 'Player'): if self.check_type(MONSTER_TYPES.ELEMENTAL): self.attack += (player.nomi_bonus - self.nomi_buff) self.health += (player.nomi_bonus - self.nomi_buff) self.nomi_buff = player.nomi_bonus def copy(self) -> 'MonsterCard': """ For when gaining a "copy" of a card. :return: """ clone = copy.copy(self) clone.deathrattles = clone.deathrattles.copy() clone.attached_cards = [card.copy() for card in clone.attached_cards] return clone def adjacent_minions(self, context: 'BuyPhaseContext', predicate: Callable[['MonsterCard'], bool]) -> List[ 'MonsterCard']: return [card for card in context.owner.in_play if predicate(card) and abs(context.owner.in_play.index(card) - context.owner.in_play.index(self)) == 1] class CardList: def __init__(self, cards: List[MonsterCard]): # We use an IndexedSet instead of a set here for deterministic iteration order. self.cards_by_tier: typing.DefaultDict[int, IndexedSet] = defaultdict(lambda: IndexedSet()) for card in cards: self.cards_by_tier[card.tier].add(card) def draw(self, player: 'Player', num: int, predicate: Optional[Callable] = lambda card: True) -> List['MonsterCard']: valid_cards = [] for tier in range(player.tavern_tier + 1): valid_cards.extend(self.cards_by_tier[tier]) valid_cards = [card for card in valid_cards if predicate(card)] selected_cards = [] for i in range(num): assert valid_cards, "fnord" random_card = player.tavern.randomizer.select_draw_card(valid_cards, player.name, player.tavern.turn_count) self.cards_by_tier[random_card.tier].remove(random_card) valid_cards.remove(random_card) selected_cards.append(random_card) return selected_cards def return_cards(self, cards: Iterator[MonsterCard]): for card in cards: self.return_card(card) def return_card(self, card: MonsterCard): self.cards_by_tier[card.tier].add(card) def remove_card(self, card: MonsterCard): self.cards_by_tier[card.tier].remove(card) def remove_card_of_type(self, card_type: 'Type'): cards_of_type = [card for card in self.cards_by_tier[card_type.tier] if type(card) == card_type] self.cards_by_tier[card_type.tier].remove(cards_of_type[0]) def all_cards(self): return itertools.chain.from_iterable(self.cards_by_tier.values()) def __len__(self) -> int: return sum(len(value) for value in self.cards_by_tier.values()) def unique_cards(self) -> List['MonsterCard']: cards_by_type = {type(card): card for card in self.all_cards()} return list(cards_by_type.values()) def cards_of_monstertype(self, monster_type: 'MONSTER_TYPES'): return [card for card in self.all_cards() if card.check_type(monster_type)] def cards_with_battlecry(self): return [card for card in self.all_cards() if card.base_battlecry] class CardLocation(enum.Enum): STORE = 1 HAND = 2 BOARD = 3 DISCOVER = 4 SPELLS = 5 SECRETS = 6 ``` #### File: simulator/core/randomizer.py ```python import os import random import sys import typing from collections import deque from typing import List, Tuple, Type, Optional from hearthstone.simulator.core.monster_types import MONSTER_TYPES if typing.TYPE_CHECKING: from hearthstone.simulator.core.cards import MonsterCard from hearthstone.simulator.core.hero import Hero from hearthstone.simulator.core.player import Player from hearthstone.simulator.core.secrets import Secret from hearthstone.simulator.core.spell import Spell class Randomizer: def select_draw_card(self, cards: List['MonsterCard'], player_name: str, round_number: int) -> 'MonsterCard': raise NotImplementedError() def select_player_pairings(self, players: List['Player']) -> List[Tuple['Player', 'Player']]: raise NotImplementedError() def select_attack_target(self, defenders: List['MonsterCard']) -> 'MonsterCard': raise NotImplementedError() def select_friendly_minion(self, friendly_minions: List['MonsterCard']) -> 'MonsterCard': raise NotImplementedError() def select_enemy_minion(self, enemy_minions: List['MonsterCard']) -> 'MonsterCard': raise NotImplementedError() def select_discover_card(self, discoverables: List['MonsterCard']) -> 'MonsterCard': raise NotImplementedError() def select_from_store(self, store: List['MonsterCard']) -> 'MonsterCard': raise NotImplementedError() def select_gain_card(self, cards: List['MonsterCard']) -> 'MonsterCard': raise NotImplementedError() def select_hero(self, hero_pool: List['Hero']) -> 'Hero': raise NotImplementedError() def select_summon_minion(self, cards: List['Type']) -> 'Type': raise NotImplementedError() def select_add_to_store(self, cards: List['MonsterCard']) -> 'MonsterCard': raise NotImplementedError() def select_monster_type(self, monster_types: List['MONSTER_TYPES'], round_number: int) -> 'MONSTER_TYPES': raise NotImplementedError() def select_random_minion(self, cards: List['Type'], round_number: int) -> 'Type': raise NotImplementedError() def select_adaptation(self, adaptations: List['Type']) -> 'Type': raise NotImplementedError() def select_random_number(self, lo: int, hi: int) -> int: raise NotImplementedError() def select_secret(self, secrets: List[Type['Secret']]) -> Type['Secret']: raise NotImplementedError() def select_combat_matchup(self, pairings: List[Tuple['Player', 'Player']]) -> Tuple['Player', 'Player']: raise NotImplementedError() def select_event_queue(self, queues: List[deque]) -> deque: raise NotImplementedError() def select_spell(self, spell: List[Type['Spell']]) -> Type['Spell']: raise NotImplementedError() class DefaultRandomizer(Randomizer): def __init__(self, seed: Optional[int] = None): if seed is None: seed = random.getrandbits(32) self.seed = seed self.rand = random.Random(seed) def select_draw_card(self, cards: List['MonsterCard'], player_name: str, round_number: int) -> 'MonsterCard': return self.rand.choice(cards) def select_player_pairings(self, players: List['Player']) -> List[Tuple['Player', 'Player']]: self.rand.shuffle(players) number_of_battles = len(players) // 2 return list(zip(players[:number_of_battles], players[number_of_battles:])) def select_attack_target(self, defenders: List['MonsterCard']) -> 'MonsterCard': return self.rand.choice(defenders) def select_friendly_minion(self, friendly_minions: List['MonsterCard']) -> 'MonsterCard': return self.rand.choice(friendly_minions) def select_enemy_minion(self, enemy_minions: List['MonsterCard']) -> 'MonsterCard': return self.rand.choice(enemy_minions) def select_discover_card(self, discoverables: List['MonsterCard']) -> 'MonsterCard': return self.rand.choice(discoverables) def select_from_store(self, store: List['MonsterCard']) -> 'MonsterCard': return self.rand.choice(store) def select_gain_card(self, cards: List['MonsterCard']) -> 'MonsterCard': return self.rand.choice(cards) def select_hero(self, hero_pool: List['Hero']) -> 'Hero': return self.rand.choice(hero_pool) def select_summon_minion(self, cards: List['Type']) -> 'Type': return self.rand.choice(cards) def select_add_to_store(self, cards: List['MonsterCard']) -> 'MonsterCard': return self.rand.choice(cards) def select_monster_type(self, monster_types: List['MONSTER_TYPES'], round_number: int) -> 'MONSTER_TYPES': return self.rand.choice(monster_types) def select_random_minion(self, cards: List['Type'], round_number: int) -> 'Type': return self.rand.choice(cards) def select_adaptation(self, adaptations: List['Type']) -> 'Type': return self.rand.choice(adaptations) def select_random_number(self, lo: int, hi: int) -> int: return self.rand.randint(lo, hi) def select_secret(self, secrets: List[Type['Secret']]) -> Type['Secret']: return self.rand.choice(secrets) def select_combat_matchup(self, pairings: List[Tuple['Player', 'Player']]) -> Tuple['Player', 'Player']: return self.rand.choice(pairings) def select_event_queue(self, queues: List[deque]) -> deque: return self.rand.choice(queues) def select_spell(self, spells: List[Type['Spell']]) -> Type['Spell']: return self.rand.choice(spells) ``` #### File: simulator/host/cyborg_host.py ```python import asyncio import logging from hearthstone.asyncio import asyncio_utils from hearthstone.battlebots.early_game_bot import EarlyGameBot from hearthstone.battlebots.priority_functions import PriorityFunctions from hearthstone.simulator.agent import EndPhaseAction from hearthstone.simulator.host.async_host import AsyncHost logger = logging.getLogger(__name__) class CyborgArena(AsyncHost): async def async_play_round(self): self.tavern.buying_step() async def perform_player_actions(agent, player): for _ in range(40): if player.discover_queue: try: discovered_card = await agent.discover_choice_action(player) except ConnectionError: print("replace with a bot") # replace the agent and player agent = PriorityFunctions.battlerattler_priority_bot(3, EarlyGameBot) self.agents[player.name] = agent discovered_card = await agent.discover_choice_action(player) player.select_discover(discovered_card) else: try: action = await agent.buy_phase_action(player) except ConnectionError: print("replace with a bot") # replace the agent and player agent = PriorityFunctions.battlerattler_priority_bot(3, EarlyGameBot) self.agents[player.name] = agent action = await agent.buy_phase_action(player) action.apply(player) if type(action) is EndPhaseAction: break if len(player.in_play) > 1: try: arrangement = await agent.rearrange_cards(player) except ConnectionError: print("replace with a bot") # replace the agent and player agent = PriorityFunctions.battlerattler_priority_bot(3, EarlyGameBot) self.agents[player.name] = agent arrangement = await agent.rearrange_cards(player) player.rearrange_cards(arrangement.permutation) perform_player_action_tasks = [] for player_name, player in self.tavern.players.items(): if player.dead: continue perform_player_action_tasks.append( asyncio_utils.create_task(perform_player_actions(self.agents[player_name], player), logger=logger)) await asyncio.gather(*perform_player_action_tasks) self.tavern.combat_step() if self.tavern.game_over(): game_over_tasks = [] for position, (name, player) in enumerate(reversed(self.tavern.losers)): game_over_tasks.append(asyncio_utils.create_task(self.agents[name].game_over(player, position), logger=logger)) await asyncio.gather(*game_over_tasks) ``` #### File: simulator/host/host.py ```python import typing from typing import Dict, Optional, List from frozenlist.frozen_list import FrozenList from hearthstone.simulator import agent from hearthstone.simulator.core.tavern import Tavern from hearthstone.simulator.replay.replay import Replay, ReplayStep if typing.TYPE_CHECKING: from hearthstone.simulator.agent import agent from hearthstone.simulator.agent.agent import AnnotatingAgent from hearthstone.simulator.agent.actions import Action from hearthstone.simulator.core.randomizer import Randomizer from hearthstone.simulator.replay.observer import Observer class Host: tavern: Tavern agents: Dict[str, 'AnnotatingAgent'] replay: Replay observers: FrozenList # [Observer] def __init__(self, agents: Dict[str, 'AnnotatingAgent'], observers: Optional[List['Observer']] = None, randomizer: Optional['Randomizer'] = None): self.tavern = Tavern(randomizer=randomizer) self.agents = agents for player_name in sorted(agents.keys()): # Sorting is important for replays to be exact with RNG. self.tavern.add_player(player_name) self.replay = Replay(self.tavern.randomizer.seed, list(self.tavern.players.keys())) if not observers: observers = [] self.observers = FrozenList(observers) def _apply_and_record(self, player_name: str, action: 'Action', agent_annotation: 'agent.Annotation' = None): observer_annotations = {} for observer in self.observers: annotation = observer.on_action(self.tavern, player_name, action) if annotation is not None: observer_annotations[observer.name()] = annotation action.apply(self.tavern.players[player_name]) self.replay.append_action(ReplayStep(player_name, action, agent_annotation, observer_annotations)) def _on_game_over(self): for observer in self.observers: annotation = observer.on_game_over(self.tavern) if annotation is not None: self.replay.observer_annotate(observer.name(), annotation) def start_game(self): raise NotImplementedError() def play_round(self): raise NotImplementedError() def game_over(self): raise NotImplementedError() def play_game(self): raise NotImplementedError() def get_replay(self) -> Replay: raise NotImplementedError() ``` #### File: replay/annotators/final_board_annotator.py ```python from typing import Dict from hearthstone.simulator.agent.actions import Action from hearthstone.simulator.core.tavern import Tavern from hearthstone.simulator.replay.observer import Observer, Annotation class FinalBoardAnnotator(Observer): """ This annotator records the final boards for all players. """ def name(self) -> str: return "FinalBoardAnnotator" def on_action(self, tavern: 'Tavern', player: str, action: 'Action') -> Annotation: return None def on_game_over(self, tavern: 'Tavern') -> Dict[str, tuple]: return {name: [str(card) for card in player.in_play] for name, player in tavern.players.items()} ``` #### File: simulator/replay/observer.py ```python from typing import Any from hearthstone.simulator.agent.actions import Action from hearthstone.simulator.core.tavern import Tavern Annotation = Any class Observer: def name(self) -> str: pass def on_action(self, tavern: 'Tavern', player: str, action: 'Action') -> Annotation: pass def on_game_over(self, tavern: 'Tavern') -> Annotation: pass ``` #### File: simulator/replay/replay.py ```python from typing import List, Any, Dict, Optional import autoslot from hearthstone.simulator.agent.actions import EndPhaseAction, Action, HeroChoiceAction, RearrangeCardsAction from hearthstone.simulator.core.randomizer import DefaultRandomizer from hearthstone.simulator.core.tavern import Tavern class ReplayStep(autoslot.Slots): def __init__(self, player: str, action: 'Action', agent_annotation: Any = None, observer_annotations: Optional[Dict[str, Any]] = None): self.player = player self.action = action self.agent_annotation = agent_annotation self.observer_annotations = observer_annotations or {} def __repr__(self): return f"{self.player}: {self.action} ({self.agent_annotation}) ({self.observer_annotations})" class Replay: def __init__(self, seed: int, players: List[str]): self.seed = seed self.players = players self.steps: List[ReplayStep] = [] self.agent_annotations: Dict[str, Any] = {} # mapping player name to agent annotation self.observer_annotations: Dict[str, Any] = {} # Mapping observer to its annotation. def append_action(self, replay_step: ReplayStep): self.steps.append(replay_step) def agent_annotate(self, player: str, annotation: Any): self.agent_annotations[player] = annotation def observer_annotate(self, observer: str, annotation: Any): self.observer_annotations[observer] = annotation def run_replay(self) -> 'Tavern': tavern = Tavern(randomizer=DefaultRandomizer(self.seed)) for player in sorted(self.players): # Sorting is important for replays to be exact with RNG. tavern.add_player(player) hero_chosen_players = set() for replay_step in self.steps[:len(self.players)]: assert isinstance(replay_step.action, HeroChoiceAction) replay_step.action.apply(tavern.players[replay_step.player]) hero_chosen_players.add(replay_step.player) assert hero_chosen_players == set(self.players) tavern.buying_step() end_phase_actions = set() i = len(self.players) while i < len(self.steps): replay_step = self.steps[i] if type(replay_step.action) is EndPhaseAction: assert replay_step.player not in end_phase_actions end_phase_actions.add(replay_step.player) replay_step.action.apply(tavern.players[replay_step.player]) if len(end_phase_actions) + len(tavern.losers) == len(self.players): while i + 1 < len(self.steps) and type(self.steps[i + 1].action) is RearrangeCardsAction: self.steps[i + 1].action.apply(tavern.players[replay_step.player]) i += 1 tavern.combat_step() end_phase_actions = set() if not tavern.game_over(): tavern.buying_step() i += 1 return tavern ``` #### File: hearthstone/text_agent/stdio.py ```python from hearthstone.text_agent.text_agent import TextAgentProtocol class StdIOTransport(TextAgentProtocol): """ Note this agent is blocking, since it uses the same stdin/stdout for all agents. """ async def receive_line(self) -> str: return input() async def send(self, text: str): print(text, end='') ``` #### File: training/pettingzoo/pettingzoo_agent.py ```python import asyncio from hearthstone.simulator.agent.actions import StandardAction, RearrangeCardsAction, DiscoverChoiceAction from hearthstone.simulator.agent.agent import Agent class AgentRequestQueue: """ A class for passing data back and forth between the PettingZoo API and the PettingZooAgents. The `requests` queue contains tuples of (player_name, Future) """ def __init__(self, maxsize: int = 8): self.requests: asyncio.Queue = asyncio.Queue(maxsize=maxsize) async def request_agent_action(self, player_name: str): future = asyncio.Future() self.requests.put_nowait((player_name, future)) return await future class PettingZooAgent(Agent): def __init__(self, queue: AgentRequestQueue): self.queue = queue async def buy_phase_action(self, player: 'Player') -> StandardAction: queu async def rearrange_cards(self, player: 'Player') -> RearrangeCardsAction: pass async def discover_choice_action(self, player: 'Player') -> DiscoverChoiceAction: pass ``` #### File: training/pytorch/a2c.py ```python import logging import random from datetime import datetime from typing import List import torch from torch import optim, nn from torch.utils.tensorboard import SummaryWriter from hearthstone.ladder.ladder import Contestant, update_ratings, print_standings, save_ratings from hearthstone.simulator.host import RoundRobinHost from hearthstone.training.pytorch.encoding.default_encoder import get_indexed_action_component, \ DefaultEncoder from hearthstone.training.common.state_encoding import Transition from hearthstone.training.pytorch.networks.feedforward_net import HearthstoneFFNet from hearthstone.training.pytorch.policy_gradient import easier_contestants, tensorize_batch from hearthstone.training.pytorch.replay_buffer import ReplayBuffer from hearthstone.training.pytorch.surveillance import SurveiledPytorchBot, ReplayBufferSaver # TODO STOP THIS HACK global_step = 0 def learn(tensorboard: SummaryWriter, optimizer: optim.Adam, learning_net: nn.Module, replay_buffer: ReplayBuffer, batch_size, policy_weight): global global_step if len(replay_buffer) < batch_size: return transitions: List[Transition] = replay_buffer.sample(batch_size) replay_buffer.clear() transition_batch = tensorize_batch(transitions) # TODO turn off gradient here # Note transition_batch.valid_actions is not the set of valid actions from the next state, but we are ignoring the policy network here so it doesn't matter next_policy_, next_value = learning_net(transition_batch.next_state, transition_batch.valid_actions) next_value = next_value.detach() policy, value = learning_net(transition_batch.state, transition_batch.valid_actions) advantage = transition_batch.reward.unsqueeze(-1) + next_value.masked_fill( transition_batch.is_terminal.unsqueeze(-1), 0.0) - value tensorboard.add_histogram("policy/train", torch.exp(policy), global_step) masked_reward = transition_batch.reward.masked_select(transition_batch.is_terminal) if masked_reward.size()[0]: tensorboard.add_histogram("reward/train", transition_batch.reward.masked_select(transition_batch.is_terminal), global_step) tensorboard.add_histogram("value/train", value, global_step) tensorboard.add_histogram("next_value/train", next_value, global_step) tensorboard.add_histogram("advantage/train", advantage, global_step) tensorboard.add_text("action/train", str(get_indexed_action_component(int(transition_batch.action[0]))), global_step) tensorboard.add_scalar("avg_reward/train", transition_batch.reward.masked_select(transition_batch.is_terminal).float().mean(), global_step) tensorboard.add_scalar("avg_value/train", value.mean(), global_step) tensorboard.add_scalar("avg_advantage/train", advantage.mean(), global_step) policy_loss = -(policy.gather(1, transition_batch.action.unsqueeze(-1)) * advantage.detach()).mean() value_loss = advantage.pow(2).mean() tensorboard.add_scalar("policy_loss/train", policy_loss, global_step) tensorboard.add_scalar("value_loss/train", value_loss, global_step) entropy_loss = 0.000001 * torch.sum(policy * torch.exp(policy)) tensorboard.add_scalar("entropy_loss/train", entropy_loss, global_step) loss = policy_loss * policy_weight + value_loss + entropy_loss optimizer.zero_grad() loss.backward() optimizer.step() global_step += 1 def main(): batch_size = 1024 tensorboard = SummaryWriter(f"../../../data/learning/pytorch/tensorboard/{datetime.now().isoformat()}") logging.getLogger().setLevel(logging.INFO) other_contestants = easier_contestants() learning_net = HearthstoneFFNet(DefaultEncoder()) optimizer = optim.Adam(learning_net.parameters(), lr=0.0001) replay_buffer = ReplayBuffer(100000) learning_bot_contestant = Contestant("LearningBot", lambda: SurveiledPytorchBot(learning_net, [ReplayBufferSaver(replay_buffer)])) contestants = other_contestants + [learning_bot_contestant] standings_path = "../../../data/learning/pytorch/a2c/standings.json" # load_ratings(contestants, standings_path) # add_net_to_tensorboard(tensorboard, learning_net) for _ in range(10000): round_contestants = [learning_bot_contestant] + random.sample(other_contestants, k=7) host = RoundRobinHost({contestant.name: contestant.agent_generator() for contestant in round_contestants}) host.play_game() winner_names = list(reversed([name for name, player in host.tavern.losers])) print("---------------------------------------------------------------") print(winner_names) print(host.tavern.losers[-1][1].in_play) ranked_contestants = sorted(round_contestants, key=lambda c: winner_names.index(c.name)) update_ratings(ranked_contestants) print_standings(contestants) for contestant in round_contestants: contestant.games_played += 1 if learning_bot_contestant in round_contestants: learn(tensorboard, optimizer, learning_net, replay_buffer, batch_size, 2.0) save_ratings(contestants, standings_path) tensorboard.close() if __name__ == '__main__': main() ``` #### File: training/pytorch/optuner.py ```python import joblib import optuna from hearthstone.training.pytorch.ppo import PPOHyperparameters, PPOLearner def objective(trial: optuna.Trial): hparams = PPOHyperparameters({ "optimizer": trial.suggest_categorical("optimizer", ["adam", "sgd"]), "batch_size": trial.suggest_int("batch_size", 1, 4096, log=True), "ppo_epochs": trial.suggest_int("ppo_epochs", 1, 40), "ppo_epsilon": trial.suggest_float("ppo_epsilon", 0.01, 0.5, log=True), "policy_weight": trial.suggest_float("policy_weight", 0.3, 3, log=True), "entropy_weight": trial.suggest_float("entropy_weight", 1e-7, 1e-2, log=True), "nn.hidden_layers": trial.suggest_int("nn.hidden_layers", 0, 3), "normalize_observations": trial.suggest_categorical("normalize_observations", [True, False]), "gradient_clipping": trial.suggest_float("gradient_clipping", 0.5, 0.5), "normalize_advantage": trial.suggest_categorical("normalize_advantage", [True, False]), }) hparams["num_workers"] = trial.suggest_int("num_workers", 1, hparams["batch_size"], log=True) if hparams["optimizer"] == "adam": hparams["adam.lr"] = trial.suggest_float("adam.lr", 1e-6, 1e-3, log=True) elif hparams["optimizer"] == "sgd": hparams["sgd_lr"] = trial.suggest_float("sgd_lr", 1e-6, 1e-3, log=True) hparams["sgd_momentum"] = trial.suggest_float("sgd_momentum", 0.0, 1.0) if hparams["nn.hidden_layers"] > 0: hparams["nn.hidden_size"] = trial.suggest_int("nn.hidden_size", 32, 2048) hparams["nn.shared"] = trial.suggest_categorical("nn.shared", [True, False]) hparams["nn.activation"] = trial.suggest_categorical("nn.activation", ["relu", "gelu", "tanh"]) ppo_learner = PPOLearner(hparams, 600, trial) return ppo_learner.run() def main(): """ A wise man once said, "You can optuna neural net but you can't optuna fish." - <NAME>. Returns: No returns. No refunds. No shirt. No service. """ study = optuna.create_study( storage="postgres://localhost/optuna", study_name="ppo_study", direction="maximize", load_if_exists=True, pruner=optuna.pruners.NopPruner()) try: try: with joblib.parallel_backend("multiprocessing"): study.optimize(objective, n_jobs=10, catch=(RuntimeError,)) except KeyboardInterrupt: pass except Exception as e: print(e) print(study.best_params) if __name__ == '__main__': main() ``` #### File: training/pytorch/replay_buffer.py ```python import collections import random from queue import Queue from typing import List, Generator, Union from hearthstone.simulator.replay.replay import Replay from hearthstone.training.pytorch.replay import ActorCriticGameStepInfo class EpochBuffer: """ A replay buffer for a2c or ppo, containing an unordered list of transitions. """ def __init__(self, bot_name: str): """ :param bot_name: The name of the agent that this buffer is collecting samples for. Only this bots actions will be added to the replay buffer. :param observation_normalizer: Observation normalizer to use for computing rolling average observation normalization. """ self.bot_name = bot_name self.transitions: List[ActorCriticGameStepInfo] = [] def __len__(self): return len(self.transitions) def clear(self): self.transitions.clear() def recycle(self, queue: Union[Queue, collections.deque]): for transition in self.transitions: if isinstance(queue, collections.deque): queue.append((transition.state, transition.valid_actions)) else: queue.put_nowait((transition.state, transition.valid_actions)) self.clear() def add_replay(self, replay: Replay): for replay_step in replay.steps: if replay_step.player == self.bot_name and replay_step.agent_annotation: bot_info = replay_step.agent_annotation self.transitions.append(bot_info) def sample_minibatches(self, batch_size: int) -> Generator[List[ActorCriticGameStepInfo], None, None]: random.shuffle(self.transitions) i = 0 while True: batch = self.transitions[i:i + batch_size] if len(batch) < batch_size: break yield batch i += batch_size ``` #### File: worker/distributed/simulation_worker.py ```python import asyncio import random import time from typing import List import logging import torch from torch.distributed import rpc from hearthstone.asyncio import asyncio_utils from hearthstone.ladder.ladder import Contestant from hearthstone.simulator.host.async_host import AsyncHost from hearthstone.simulator.replay.annotators.final_board_annotator import FinalBoardAnnotator from hearthstone.simulator.replay.annotators.ranking_annotator import RankingAnnotator from hearthstone.simulator.replay.replay import Replay from hearthstone.training.pytorch.agents.pytorch_bot import PytorchBot from hearthstone.training.pytorch.tensorboard_altair import TensorboardAltairAnnotator from hearthstone.training.pytorch.worker.distributed.remote_net import RemoteNet, BatchedRemoteNet logger = logging.getLogger(__name__) class SimulationWorker: def __init__(self, inference_worker): self.id = rpc.get_worker_info().id self.inference_worker = inference_worker torch.set_num_threads(1) async def play_game(self, learning_bot_contestant, other_contestants, game_size): round_contestants = [learning_bot_contestant] + random.sample(other_contestants, k=game_size - 1) with torch.no_grad(): host = AsyncHost( {contestant.name: contestant.agent_generator() for contestant in round_contestants}, [RankingAnnotator(), FinalBoardAnnotator(), TensorboardAltairAnnotator([learning_bot_contestant.name])] ) await host.async_play_game() return host.get_replay() def play_interleaved_games(self, num_games: int, learning_bot_contestant: Contestant, other_contestants: List[Contestant], game_size: int) -> List[Replay]: start = time.time() async def run_games(): nets = {} for contestant in [learning_bot_contestant] + other_contestants: if contestant.agent_generator.function == PytorchBot: if type(contestant.agent_generator.kwargs['net']) is RemoteNet: if contestant.name not in nets: nets[contestant.name] = BatchedRemoteNet(contestant.name, self.inference_worker) contestant.agent_generator.kwargs['net'] = nets[contestant.name] for _, net in nets.items(): await net.start_worker() tasks = [asyncio_utils.create_task(self.play_game(learning_bot_contestant, other_contestants, game_size), logger=logger) for _ in range(num_games)] result = await asyncio.gather( *tasks) for _, net in nets.items(): await net.stop_worker() return result replays = asyncio_utils.get_or_create_event_loop().run_until_complete(run_games()) print(f"Worker played {num_games} game(s). Time taken: {time.time() - start} seconds.") return replays ``` #### File: worker/distributed/tensorize_batch.py ```python from typing import Tuple, List, Optional import torch from hearthstone.simulator.agent.actions import Action from hearthstone.training.common.state_encoding import EncodedActionSet, State from hearthstone.training.pytorch.replay import ActorCriticGameStepDebugInfo def _tensorize_batch(batch: List[Tuple[State, EncodedActionSet, Optional[List[Action]]]], device: torch.device) -> Tuple[ State, EncodedActionSet, Optional[List[Action]]]: player_tensor = torch.cat([b[0].player_tensor for b in batch], dim=0).detach() cards_tensor = torch.cat([b[0].cards_tensor for b in batch], dim=0).detach() spells_tensor = torch.cat([b[0].spells_tensor for b in batch], dim=0).detach() valid_player_actions_tensor = torch.cat( [b[1].player_action_tensor for b in batch], dim=0).detach() valid_card_actions_tensor = torch.cat( [b[1].card_action_tensor for b in batch], dim=0).detach() valid_no_target_battlecry_tensor = torch.cat([b[1].no_target_battlecry_tensor for b in batch], dim=0).detach() valid_battlecry_target_tensor = torch.cat( [b[1].battlecry_target_tensor for b in batch], dim=0).detach() valid_spell_action_tensor = torch.cat( [b[1].spell_action_tensor for b in batch], dim=0).detach() valid_no_target_spell_action_tensor = torch.cat( [b[1].no_target_spell_action_tensor for b in batch], dim=0).detach() valid_store_target_spell_action_tensor = torch.cat( [b[1].store_target_spell_action_tensor for b in batch], dim=0).detach() valid_board_target_spell_action_tensor = torch.cat( [b[1].board_target_spell_action_tensor for b in batch], dim=0).detach() rearrange_phase = torch.cat([b[1].rearrange_phase for b in batch], dim=0).detach() cards_to_rearrange = torch.cat( [b[1].cards_to_rearrange for b in batch], dim=0).detach() chosen_actions = None if batch[0][2] is None else [b[2] for b in batch] return (State(player_tensor=player_tensor.to(device), cards_tensor=cards_tensor.to(device), spells_tensor=spells_tensor.to(device)), EncodedActionSet(player_action_tensor=valid_player_actions_tensor, card_action_tensor=valid_card_actions_tensor, no_target_battlecry_tensor=valid_no_target_battlecry_tensor, battlecry_target_tensor=valid_battlecry_target_tensor, spell_action_tensor=valid_spell_action_tensor, no_target_spell_action_tensor=valid_no_target_spell_action_tensor, store_target_spell_action_tensor=valid_store_target_spell_action_tensor, board_target_spell_action_tensor=valid_board_target_spell_action_tensor, rearrange_phase=rearrange_phase, cards_to_rearrange=cards_to_rearrange, store_start=batch[0][1].store_start, hand_start=batch[0][1].hand_start, board_start=batch[0][1].board_start ).to(device), chosen_actions, ) def _untensorize_batch(batch_args: List[Tuple[State, EncodedActionSet, Optional[List[Action]]]], output_actions: List[Action], action_log_probs: torch.Tensor, value: torch.Tensor, debug_info: ActorCriticGameStepDebugInfo, device: torch.device) -> List[ Tuple[List[Action], torch.Tensor, torch.Tensor, ActorCriticGameStepDebugInfo]]: result = [] i = 0 for (player_state_tensor, _, _), _, _ in batch_args: batch_entry_size = player_state_tensor.shape[0] result.append((output_actions[i:i + batch_entry_size], action_log_probs[i:i + batch_entry_size].detach().to(device), value[i:i + batch_entry_size].detach().to(device), ActorCriticGameStepDebugInfo( component_policy=debug_info.component_policy[i:i + batch_entry_size].detach().to(device), permutation_logits=debug_info.permutation_logits[i:i + batch_entry_size].detach().to(device), ) )) i += batch_entry_size return result ``` #### File: pytorch/distributed/test_rpc_rref.py ```python import os import unittest from torch import multiprocessing from torch.distributed import rpc from torch.distributed.rpc import RRef def rpc_backed_options(): device_maps = { 'simulator': {0: 0}, 'inference': {0: 0} } return rpc.TensorPipeRpcBackendOptions(device_maps=device_maps) def run_worker(rank, num_workers: int): os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = '29500' rpc.init_rpc('simulator', rank=rank + 1, world_size=num_workers + 1, rpc_backend_options=rpc_backed_options()) rpc.shutdown() class ContainsRRef: def __init__(self, rref): self.rref = rref def foo(self): pass class PytorchDistributedTests(unittest.TestCase): def test_rpc_with_rref(self): os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = '29500' self.process_context = multiprocessing.start_processes( run_worker, args=(1,), nprocs=1, start_method="forkserver", join=False ) local_object = {} rpc.init_rpc('inference', rank=0, world_size=2, rpc_backend_options=rpc_backed_options()) sim_info = rpc.get_worker_info('simulator') remote_object = rpc.remote(sim_info, ContainsRRef, args=(RRef(local_object),)) remote_object.rpc_async().foo() if __name__ == '__main__': unittest.main() ``` #### File: tests/pytorch/test_pytorch.py ```python import unittest import torch from torch.distributions import Categorical from torch.profiler import profile, record_function, ProfilerActivity from hearthstone.simulator.core.tavern import Tavern from hearthstone.training.pytorch.encoding.default_encoder import DefaultEncoder from hearthstone.training.pytorch.networks.running_norm import WelfordAggregator class PytorchTests(unittest.TestCase): def test_encoding(self): tavern = Tavern() player_1 = tavern.add_player_with_hero("Dante_Kong") player_2 = tavern.add_player_with_hero("brian") tavern.buying_step() player_1_encoding = DefaultEncoder().encode_state(player_1) print(player_1_encoding) def test_valid_actions(self): tavern = Tavern() player_1 = tavern.add_player_with_hero("Dante_Kong") player_2 = tavern.add_player_with_hero("brian") tavern.buying_step() player_1_valid_actions = DefaultEncoder().encode_valid_actions(player_1, False) print(player_1_valid_actions) def test_get_stacked(self): tensor1 = torch.tensor([1, 2, 5, 6]) tensor2 = torch.tensor([5, 6, 83, 7]) print(tensor1.size()) print(tensor1.size() + tensor2.size()) torch.Size() # def test_gpu(self): # tensor1 = torch.tensor([1,2,5,6]) # if torch.cuda.is_available(): # for i in range(1000): # i_am_on_the_gpu = tensor1.cuda() # print("put some stuff on the GPU") def test_sample_distribution(self): tensor1 = torch.tensor([[1.5, 2.3, 3.8, 4.1], [0.1, 0.2, 0.3, 0.4]]) m = Categorical(tensor1) samp = m.sample() print(samp) prob = tensor1.gather(1, torch.tensor([[1, 3], [2, 3]])) print(prob) other = tensor1.gather(0, torch.tensor([[0, 1, 0, 0], [1, 0, 1, 1]])) print(other) def test_welford_aggregator(self): agg = WelfordAggregator(torch.Size()) data1 = torch.tensor([1., 2, 3, 4]) data2 = torch.tensor([5., 6, 7, 8]) data3 = torch.tensor([5., -1, -5, 8]) agg.update(data1) agg.update(data2) agg.update(data3) combined = torch.cat([data1, data2, data3]) self.assertAlmostEqual(agg.mean().item(), combined.mean().item()) self.assertAlmostEqual(agg.stdev().item(), torch.std(combined, unbiased=False).item(), 6) def test_cuda_memory_profiler(self): with profile(activities=[ProfilerActivity.CUDA], profile_memory=True, record_shapes=True) as prof: with record_function("model_inference"): pass if __name__ == '__main__': unittest.main() ```
{ "source": "jdburche/ecs", "score": 3 }
#### File: ecs/scripts/generator.py ```python import argparse import glob import os import schema_reader from generators import intermediate_files from generators import csv_generator from generators import es_template from generators import beats from generators import asciidoc_fields from generators import ecs_helpers def main(): args = argument_parser() ecs_version = read_version() print('Running generator. ECS version ' + ecs_version) # Load the default schemas print('Loading default schemas') (nested, flat) = schema_reader.load_schemas() # Maybe load user specified directory of schemas if args.include: include_glob = os.path.join(args.include, '*.yml') print('Loading user defined schemas: {0}'.format(include_glob)) (custom_nested, custom_flat) = schema_reader.load_schemas(sorted(glob.glob(include_glob))) # Merge without allowing user schemas to overwrite default schemas nested = ecs_helpers.safe_merge_dicts(nested, custom_nested) flat = ecs_helpers.safe_merge_dicts(flat, custom_flat) intermediate_files.generate(nested, flat) if args.intermediate_only: exit() csv_generator.generate(flat, ecs_version) es_template.generate(flat, ecs_version) beats.generate(nested, ecs_version) asciidoc_fields.generate(nested, flat, ecs_version) def argument_parser(): parser = argparse.ArgumentParser() parser.add_argument('--intermediate-only', action='store_true', help='generate intermediary files only') parser.add_argument('--include', action='store', help='include user specified directory of custom field definitions') return parser.parse_args() def read_version(file='version'): with open(file, 'r') as infile: return infile.read().rstrip() if __name__ == '__main__': main() ```
{ "source": "jdburnet/impref", "score": 3 }
#### File: python/tests/test_slinked_list.py ```python import pytest from .. import slinked_list as sll def test_node_str(): assert str(sll.Node(1, None)) == "1" @pytest.fixture def linkedlist(): """returns an empty linked list""" return sll.SLinkedList() def test_is_empty(linkedlist): assert linkedlist.is_empty() def test_insert(linkedlist): linkedlist.insert(1) assert linkedlist.head.value == 1 def test_inserts_to_front(linkedlist): linkedlist.insert(1) linkedlist.insert(2) assert linkedlist.head.value == 2 def test_remove_from_empty(linkedlist): assert not linkedlist.remove(1) def test_remove_head(linkedlist): linkedlist.insert(1) assert linkedlist.remove(1) def test_remove_from_body(linkedlist): linkedlist.insert(1) linkedlist.insert(2) linkedlist.insert(3) assert linkedlist.remove(1) def test_remove_removes(linkedlist): linkedlist.insert(1) linkedlist.insert(2) linkedlist.insert(3) linkedlist.remove(2) assert linkedlist.head.next.value == 1 def test_remove_key_does_not_exist(linkedlist): linkedlist.insert(1) linkedlist.insert(2) assert not linkedlist.remove(4) def test_linked_list_str(linkedlist): linkedlist.insert(1) linkedlist.insert(2) linkedlist.insert(3) assert str(linkedlist) == "[3, 2, 1]" def test_empty_linked_list_str(linkedlist): assert str(linkedlist) == "[]" ```
{ "source": "jdc91/competitive-programming", "score": 4 }
#### File: competitive-programming/grab/hours.py ```python def getMinuteEffect(leaveMM,entranceMM): minuteDiff = leaveMM - entranceMM if(minuteDiff > 0): return 1 else : return -1 def getCost(entranceHH, leaveHH,minuteEffect): cost = 2 hourDiff = leaveHH - entranceHH if(minuteEffect >0): hourDiff += 1 if (hourDiff == 0): return cost elif (hourDiff == 1): return cost + 3 else: return cost + 3 + 4 * (hourDiff - 1) def solution(E, L): entranceHH = int(E.split(":")[0]) entranceMM = int(E.split(":")[1]) leaveHH = int(L.split(":")[0]) leaveMM = int(L.split(":")[1]) minuteEffect = getMinuteEffect(leaveMM,entranceMM) return getCost(entranceHH, leaveHH, minuteEffect) E="09:45" L="11:00" print(solution(E,L)) ```
{ "source": "jdcanas/minesweeper", "score": 3 }
#### File: jdcanas/minesweeper/main.py ```python from game.Board import Board from game.Coordinate import Coordinate def main(): sizeCoord = Coordinate(width, height) board = Board(sizeCoord, mines) board.initBoard() board.printBoard() if __name__ == '__main__': main() ``` #### File: minesweeper/ui/colors.py ```python from game.Cell import Cell BLACK = (0, 0, 0) WHITE = (255, 255, 255) GREEN = (0, 255, 0) RED = (255, 0, 0) YELLOW = (255, 255, 0) GRAY = (211, 211, 211) def getCellColor(cell: Cell): if cell.isFlipped and not cell.isMine: color = GRAY elif cell.isFlipped and cell.isMine: color = RED elif cell.isFlagged: color = YELLOW else: color = WHITE return color ```
{ "source": "jdcaperon/AuthOut", "score": 3 }
#### File: server/tests/test_child.py ```python import requests def test_get_children(): r = requests.get('https://deco3801.wisebaldone.com/api/child') assert r.status_code == 200 data = r.json() assert len(data) != 0 for child in data: assert 'id' in child assert 'first_name' in child assert 'last_name' in child assert 'date_of_birth' in child assert 'status' in child # get this individual child through the specified endpoint w = requests.get('https://deco3801.wisebaldone.com/api/child/{}'.format(child['id'])) assert w.status_code == 200 assert w.json()['id'] == child['id'] def test_post_invalid_child(): # The data field does not contain all the information nesscary. data = {'first_name': 'hello'} r = requests.post('https://deco3801.wisebaldone.com/api/child/', json=data) assert r.status_code != 200 ``` #### File: server/tests/test_entry.py ```python import requests def test_get_entries(): r = requests.get('https://deco3801.wisebaldone.com/api/entry') assert r.status_code == 200 data = r.json() assert 'signed_in' in data assert 'signed_out' in data assert 'entries' in data def test_get_entry_query(): send = {'id': 0, 'lower': '1/1/2018', 'upper': '2/1/2018'} r = requests.post('https://deco3801.wisebaldone.com/api/entry/query', json=send) assert r.status_code == 200 data = r.json() assert 'entries' in data def test_get_entry_stats(): send = {'lower': '1/1/2018', 'upper': '2/1/2018'} r = requests.post('https://deco3801.wisebaldone.com/api/entry/stats', json=send) assert r.status_code == 200 data = r.json() assert 'days' in data assert len(data['days']) == 3 ``` #### File: server/tests/test_parent.py ```python import requests def test_get_parents(): r = requests.get('https://deco3801.wisebaldone.com/api/parent') assert r.status_code == 200 data = r.json() assert len(data) != 0 for parent in data: assert 'id' in parent assert 'email' in parent assert 'first_name' in parent assert 'last_name' in parent assert 'date_of_birth' in parent assert 'mobile_number' in parent assert 'children' in parent assert 'trusted_children' in parent # get this individual parent through the specified endpoint w = requests.get('https://deco3801.wisebaldone.com/api/parent/{}'.format(parent['id'])) assert w.status_code == 200 assert w.json()['id'] == parent['id'] x = requests.get('https://deco3801.wisebaldone.com/api/parent/{}/children'.format(parent['id'])) assert x.status_code == 200 print(x.json()['children']) assert len(x.json()['children']) == len(parent['children']) z = requests.get('https://deco3801.wisebaldone.com/api/parent/{}/children/trusted'.format(parent['id'])) assert z.status_code == 200 print(z.json()['children']) assert len(z.json()['children']) == len(parent['trusted_children']) def test_post_invalid_parent(): # The data field does not contain all the information nesscary. data = {'email': '<EMAIL>'} r = requests.post('https://deco3801.wisebaldone.com/api/parent/', json=data) assert r.status_code == 400 ```
{ "source": "jdcarpinelli/dungeons", "score": 3 }
#### File: dungeons/assistant/bot.py ```python import sys, os, time, random, datetime import discord from discord.ext import commands from dotenv import load_dotenv import dice # Imports from shadowedlucario/oghma:46128dc:bot.py from query import * import requests import json # Load token, server name from local file load_dotenv() TOKEN = os.getenv('DISCORD_TOKEN') GUILD = os.getenv('DISCORD_GUILD') TOP_LEVEL_PATH = os.getenv('TOP_LEVEL_PATH') AUTHOR = os.getenv('AUTHOR') # Bot invalid command messages INVALID_ROLL_CMD = \ 'Whoops! The roll command wasn\'t used correctly.\n' \ 'Try using the same format as the examples in "!help roll".' INVALID_TELL_CMD = \ 'Whoops! The tell command wasn\'t used correctly.\n' \ 'Try using the same format as the examples in "!help tell".' INVALID_TELL_MSG = \ 'This command requires a non-blank message.' INVALID_TELL_RECIPIENT = \ 'The user you requested was not found in the server.' INTERNAL_BUG = \ f'Congrats! That command you just sent resulted in an internal bug! ' \ f'Sorry about that, this was {AUTHOR}\'s first attempt at a Bot. ' \ f'Sending {AUTHOR} a DM with the command you sent would be really helpful!' ## Helper functions # Returns timestampt string for log messages def get_timestamp(): return str(int(time.time()*10e3)) # Create bot bot = commands.Bot(command_prefix='!', disable_everyone=False) # On startup @bot.event async def on_ready(): guild = discord.utils.get(bot.guilds, name=GUILD) if guild is not None: print('Connection with guild established!') print(f'Bot username: {bot.user}') print(f'Guild name: {guild.name}') # On event error @bot.event async def on_error(event, *args, **kwargs): with open( TOP_LEVEL_PATH + '/assistant/logs/errors/err' + get_timestamp() + '.log', 'a' ) as f: if event == 'on_message': f.write(f'Unhandled message: {args[0]}\n') else: raise # On command error @bot.event async def on_command_error(ctx, error): # Print to stderr print('\n\n' + INTERNAL_BUG + '\n\n') # Log real error with open( TOP_LEVEL_PATH + '/assistant/logs/command_errors/err' + \ get_timestamp() + '.log', 'a' ) as err_file: err_file.write( f'Author: {ctx.author}\n\n' f'Message Metadata: {ctx.message}\n\n' f'Error: {str(error)}' ) print('Error logged to ', err_file.name) await ctx.send(INTERNAL_BUG) # Print intro message @bot.command( name='intro', help='Responds with Dnd-Assistant Introduction.' ) async def intro(ctx, *args): # Ignore any arguments embed = discord.Embed( title='Hello, meet DnD-Assistant!', description= \ f'The primary feature is rolling dice, ' f'but more features will be added soon. ' f'Let {AUTHOR} know if you have any ' f'features you want added!\n\n' f'You can run DnD-Assistant\'s commands ' f'by typing "!" immediately followed by ' f'the command. For example, to list all ' f'possible commands, enter "!help". To ' f'get help with a particular command, like ' f'the "roll" command, enter "!help roll". ' f'Finally, to roll three 6-sided die, enter ' f'"!roll 3d6".\n\n' f'If you\'re interested, you can check out ' f'the source code at https://github.com/cadojo/dungeons.', color=0x000000) # Roll command embed.add_field( name='Command: roll', value= \ 'Rolls 4, 6, 8, 10, 12, or 20 sided die.\n' 'Usage: !roll 20, !roll 3d6, !r 2d20, etc.', inline=False ) # Help command embed.add_field( name='Command: help', value= \ 'List all possible DnD-Assistant commands, or ' 'get help with one specific command.\n' 'Usage: !help, or !help roll, !help r, !help intro, etc.', inline=False ) # Intro command embed.add_field( name='Command: intro', value= \ 'Print out this introduction!\n' 'Usage: !intro', inline=False ) await ctx.send(embed=embed) # Roll dice @bot.command( name='roll', aliases=['r'], help='Rolls 4, 6, 8, 10, 12, or 20 sided die.\n\n' 'Examples:\n' 'Roll a single 20-sided die:\t\t!roll 20\n' 'Roll three 6-sided die:\t\t\t!roll 3d6\n' '"!r" serves as a shortcut for "!roll:\t!r 20\n') async def roll(ctx, *args): success, msg = dice.roll_request(args) if success: await ctx.send('Roll returned: ' + str(msg)) else: await ctx.send(INVALID_ROLL_CMD + '\n' + str(msg)) # Relay a message @bot.command( name = 'tell', help = \ f'Relay a message to someone else on this server.\n\n' f'Examples:\n' f'Tell {AUTHOR} have a great day: !tell @jodoca have a great day!' ) async def tell(ctx, recipient: str, *message): ## Argument checking # Usage: # !tell @user message without any quotes guild = discord.utils.get(bot.guilds, name=GUILD) if guild is None: await ctx.send(INTERNAL_BUG) return ## Argument checking # Re-construct message msg = '' for m in message: msg += m + ' ' # Recipient and message should not be empty if '@' not in recipient \ or recipient == '' \ or msg == '': await ctx.send(INVALID_TELL_CMD + '\n' + INVALID_TELL_MSG) # Check if recipient is @everyone or a user all_recipients = [] if recipient == '@everyone': all_recipients = [user for user in guild.members if user != bot.user] else: # Remove special characters, left with id or name recipient_parsed = recipient\ .replace('@','')\ .replace('<','')\ .replace('>','')\ .replace('!','') for user in [user for user in guild.members if user != bot.user]: if (recipient_parsed == user.name) \ or (recipient_parsed == str(user.id)): all_recipients.append(user) if len(all_recipients) == 0: await ctx.send(INVALID_TELL_RECIPIENT) return ## Context checking # If command in DM, DM recipient if ctx.message.channel.type == discord.ChannelType.private: for user in all_recipients: await user.send('<@!' + str(ctx.author.id) + '> says: ' + msg) await ctx.send('Sent!') return # Otherwise, just post wherever this was posted else: recipient_str = '' for user in all_recipients: recipient_str += ('<@!' + str(user.id) + '> ') await ctx.send( f'Hey {recipient_str}, {ctx.author.name} says: {msg}' ) return ### Bot commands from shadowedlucario/oghma ### # FUNC NAME: ?search [ENTITY] # FUNC DESC: Queries the Open5e search API, basically searches the whole thing for the ENTITY. # ENTITY: The DND entity you wish to get infomation on. # FUNC TYPE: Command ### @bot.command( name='search', help='Queries the Open5e API to get the entities infomation.', usage='?search [ENTITY]', aliases=["sea", "s", "S"] ) async def search(ctx, *args): print(f"Executing: ?search {args}") # Import & reset globals global partialMatch partialMatch = False # Verify arg length isn't over limits if len(args) >= 201: argumentsEmbed = discord.Embed( color=discord.Colour.red(), title="Invalid argument length", description="This command does not support more than 200 words in a single message. Try splitting up your query." ) argumentsEmbed.set_thumbnail(url="https://i.imgur.com/j3OoT8F.png") return await ctx.send(embed=argumentsEmbed) # Send directory contents if no search term given if len(args) <= 0: await ctx.send(embed=discord.Embed( color=discord.Colour.blue(), title="Searching...", description="This might take a few seconds!" )) # Get objects from directory, store in txt file directoryRequest = requests.get("https://api.open5e.com/search/?format=json&limit=10000") if directoryRequest.status_code != 200: return await ctx.send(embed=codeError( directoryRequest.status_code, "https://api.open5e.com/search/?format=json&limit=10000" ) ) # Generate a unique filename and write to it entityFileName = generateFileName("entsearch") entityFile = open(entityFileName, "a+") for entity in directoryRequest.json()["results"]: if "title" in entity.keys(): entityFile.write(f"{ entity['title'] }\n") else: entityFile.write(f"{ entity['name'] }\n") entityFile.close() # Send embed notifying start of the spam stream detailsEmbed = discord.Embed( colour=discord.Colour.orange(), title=f"See `{ entityFileName }` for all searchable entities in this endpoint", description="Due to discord charecter limits regarding embeds, the results have to be sent in a file. Yes I know this is far from ideal but it's the best I can do!" ) detailsEmbed.set_thumbnail(url="https://i.imgur.com/obEXyeX.png") await ctx.send(embed=detailsEmbed) # Send entites file return await ctx.send(file=discord.File(entityFileName)) # Filter input to remove whitespaces and set lowercase filteredInput = "".join(args).lower() # Search API await ctx.send(embed=discord.Embed( color=discord.Colour.blue(), title=f"Searching for { filteredInput }...", description="This might take a few seconds!" )) # Use first word to narrow search results down for quicker response on some directories match = requestOpen5e(f"https://api.open5e.com/search/?format=json&limit=10000&text={ str(args[0]) }", filteredInput, True) # An API Request failed if isinstance(match, dict) and "code" in match.keys(): return await ctx.send(embed=codeError(match["code"], match["query"])) # Searching algorithm hit an invalid object elif match == "UNKNOWN": unknownMatchEmbed = discord.Embed( colour=discord.Colour.red(), title="ERROR", description="I found an entity in the API database that doesn't contain a `name` or `docuement` attribute. Please report this to https://github.com/shadowedlucario/oghma/issues" ) unknownMatchEmbed.set_thumbnail(url="https://i.imgur.com/j3OoT8F.png") return await ctx.send(embed=unknownMatchEmbed) # No entity was found elif match == None: noMatchEmbed = discord.Embed( colour=discord.Colour.orange(), title="ERROR", description=f"No matches found for **{ filteredInput }** in the search endpoint" ) noMatchEmbed.set_thumbnail(url="https://i.imgur.com/obEXyeX.png") return await ctx.send(embed=noMatchEmbed) # Otherwise, construct & send responses else: responses = constructResponse(args, match["route"], match["matchedObj"]) for response in responses: if isinstance(response, discord.Embed): # Set a thumbnail for relevent embeds and on successful Scyfall request, overwriting all other thumbnail setup image = requestScryfall(args, False) if (not isinstance(image, int)): response.set_thumbnail(url=image) # Note partial match in footer of embed if partialMatch: response.set_footer(text=f"NOTE: Your search term ({ filteredInput }) was a PARTIAL match to this entity.\nIf this isn't the entity you were expecting, try refining your search term or use ?searchdir instead") else: response.set_footer(text="NOTE: If this isn't the entity you were expecting, try refining your search term or use `?searchdir` instead") print(f"SENDING EMBED: { response.title }...") await ctx.send(embed=response) elif ".txt" in response: print(f"SENDING FILE: { response }...") await ctx.send(file=discord.File(response)) ### # FUNC NAME: ?searchdir [RESOURCE] [ENTITY] # FUNC DESC: Queries the Open5e RESOURCE API. # RESOURCE: Resource name (i.e. spells, monsters, etc.). # ENTITY: The DND entity you wish to get infomation on. # FUNC TYPE: Command ### @bot.command( name='searchdir', help='Queries the Open5e API to get the entities infomation from the specified resource.', usage='!search [RESOURCE] [ENTITY]', aliases=["dir", "d", "D"] ) async def searchdir(ctx, *args): print(f"EXECUTING: ?searchdir {args}") # Import & reset globals global partialMatch partialMatch = False # Get API Root rootRequest = requests.get("https://api.open5e.com?format=json") # Throw if Root request wasn't successfull if rootRequest.status_code != 200: return await ctx.send(embed=codeError(rootRequest.status_code, "https://api.open5e.com?format=json")) # Remove search endpoint from list (not used in this command) directories = list(rootRequest.json().keys()) directories.remove("search") # Verify we have arguments if len(args) <= 0: usageEmbed = discord.Embed( colour=discord.Colour.red(), title="No directory was requested.\nUSAGE: `?searchdir [DIRECTORY] [D&D OBJECT]`", description=f"**Available Directories**\n{ ', '.join(directories) }" ) usageEmbed.set_thumbnail(url="https://i.imgur.com/obEXyeX.png") return await ctx.send(embed=usageEmbed) # Filter the dictionary input filteredDictionary = f"{ args[0].lower() }/" # Filter input to remove whitespaces and set lowercase filteredInput = "".join(args[1:]).lower() # Verify arg length isn't over limits if len(args) >= 201: argumentsEmbed = discord.Embed( color=discord.Colour.red(), title="Invalid argument length", description="This command does not support more than 200 words in a single message. Try splitting up your query." ) argumentsEmbed.set_thumbnail(url="https://i.imgur.com/j3OoT8F.png") return await ctx.send(embed=argumentsEmbed) # Verify resource exists if directories.count(args[0]) <= 0: noResourceEmbed = discord.Embed( colour=discord.Colour.orange(), title=f"Requested Directory (`{ str(args[0]) }`) is not a valid directory name", description=f"**Available Directories**\n{ ', '.join(directories) }" ) noResourceEmbed.set_thumbnail(url="https://i.imgur.com/obEXyeX.png") return await ctx.send(embed=noResourceEmbed) # Send directory contents if no search term given if len(args) == 1: await ctx.send(embed=discord.Embed( color=discord.Colour.blue(), title=f"Searching for everything having to do this { filteredDictionary.upper() }!!", description="Sit back, this might take a minute." )) # Get objects from directory, store in txt file directoryRequest = requests.get(f"https://api.open5e.com/{ filteredDictionary }?format=json&limit=10000") if directoryRequest.status_code != 200: return await ctx.send(embed=codeError( directoryRequest.status_code, f"https://api.open5e.com/{ filteredDictionary }?format=json&limit=10000" ) ) entityNames = [] for entity in directoryRequest.json()["results"]: if "title" in entity.keys(): entityNames.append(entity['title']) else: entityNames.append(entity['name']) # Keep description word count low to account for names with lots of charecters if len(entityNames) <= 200: detailsEmbed = discord.Embed( colour=discord.Colour.orange(), title="All searchable entities in this endpoint", description="\n".join(entityNames) ) detailsEmbed.set_thumbnail(url="https://i.imgur.com/obEXyeX.png") if "search" in filteredDictionary: detailsEmbed.set_footer(text="NOTE: The `search` endpoint is not searchable with `?searchdir`. Use `?search` instead for this.") return await ctx.send(embed=detailsEmbed) # Generate a unique filename and write to it entityDirFileName = generateFileName("entsearchdir") entityFile = open(entityDirFileName, "a+") entityFile.write("\n".join(entityNames)) entityFile.close() # Send embed notifying start of the spam stream detailsEmbed = discord.Embed( colour=discord.Colour.orange(), title=f"See `{ entityDirFileName }` for all searchable entities in this endpoint", description="Due to discord charecter limits regarding embeds, the results have to be sent in a file. Yes I know this is far from ideal but it's the best I can do!" ) detailsEmbed.set_thumbnail(url="https://i.imgur.com/obEXyeX.png") if "search" in filteredDictionary: detailsEmbed.set_footer(text="NOTE: The `search` endpoint is not searchable with `?searchdir`. Use `?search` instead for this.") await ctx.send(embed=detailsEmbed) # Send entites file return await ctx.send(file=discord.File(entityDirFileName)) # search/ endpoint is best used with the dedicated ?search command if "search" in filteredDictionary: # Remove search endpoint from list directories = list(rootRequest.json().keys()) directories.remove("search") searchEmbed = discord.Embed( colour=discord.Colour.orange(), title=f"Requested Directory (`{ str(args[0]) }`) is not a valid directory name", description=f"**Available Directories**\n{ ', '.join(directories) }" ) searchEmbed.add_field(name="NOTE", value="Use `?search` for searching the `search/` directory. This has been done to cut down on parsing errors.") searchEmbed.set_thumbnail(url="https://i.imgur.com/obEXyeX.png") return await ctx.send(embed=searchEmbed) # Search API await ctx.send(embed=discord.Embed( color=discord.Colour.blue(), title=f"Searching all { filteredDictionary.upper() } for { filteredInput }...", description="This might take a few seconds!" )) # Determine filter type (search can only be used for some endpoints) filterType = "text" if args[0] in searchParamEndpoints: filterType = "search" # Use first word to narrow search results down for quicker response on some directories match = requestOpen5e( f"https://api.open5e.com/{ filteredDictionary }?format=json&limit=10000&{ filterType }={ str(args[1]) }", filteredInput, False ) # An API Request failed if isinstance(match, dict) and "code" in match.keys(): return await ctx.send(embed=codeError(match.code, match.query)) # Searching algorithm hit an invalid object elif match == "UNKNOWN": unknownMatchEmbed = discord.Embed( colour=discord.Colour.red(), title="ERROR", description="I found an entity in the API database that doesn't contain a `name` or `docuement` attribute. Please report this to https://github.com/shadowedlucario/oghma/issues" ) unknownMatchEmbed.set_thumbnail(url="https://i.imgur.com/j3OoT8F.png") return await ctx.send(embed=unknownMatchEmbed) # No entity was found elif match == None: noMatchEmbed = discord.Embed( colour=discord.Colour.orange(), title="ERROR", description=f"No matches found for **{ filteredInput.upper() }** in the { filteredDictionary } endpoint" ) noMatchEmbed.set_thumbnail(url="https://i.imgur.com/obEXyeX.png") return await ctx.send(embed=noMatchEmbed) # Otherwise, construct & send responses else: responses = constructResponse(args, filteredDictionary, match) for response in responses: if isinstance(response, discord.Embed): # Set a thumbnail for relevent embeds and on successful Scyfall request, overwrites other thumbnail setup image = requestScryfall(args, True) if (not isinstance(image, int)): response.set_thumbnail(url=image) # Note partial match in footer of embed if partialMatch: response.set_footer(text=f"NOTE: Your search term ({ filteredInput }) was a PARTIAL match to this entity.\nIf this isn't the entity you were expecting, try refining your search term") print(f"SENDING EMBED: { response.title }...") await ctx.send(embed=response) elif ".txt" in response: print(f"SENDING FILE: { response }...") await ctx.send(file=discord.File(response)) if __name__ == '__main__': bot.run(TOKEN) ``` #### File: dungeons/assistant/query.py ```python import requests import json import discord import random partialMatch = False searchParamEndpoints = ["spells", "monsters", "magicitems", "weapons"] ### # FUNC NAME: generateFileName # FUNC DESC: Generates a filename using type of file and random number # FUNC TYPE: Function ### def generateFileName(fileType): return f"{ fileType }-{ str(random.randrange(1,1000000)) }.txt" ### # FUNC NAME: codeError # FUNC DESC: Sends an embed informing the user that there has been an API request failure # FUNC TYPE: Error ### def codeError(statusCode, query): codeEmbed = discord.Embed( colour=discord.Colour.red(), title=f"ERROR - API Request FAILED. Status Code: **{ str(statusCode) }**", description=f"Query: { query }" ) codeEmbed.add_field( name="For more idea on what went wrong:", value="See status codes at https://www.django-rest-framework.org/api-guide/status-codes/", inline=False ) codeEmbed.set_thumbnail(url="https://i.imgur.com/j3OoT8F.png") return codeEmbed ### # FUNC NAME: searchResponse # FUNC DESC: Searches the API response for the user input. Returns None if nothing was found # FUNC TYPE: Function ### def searchResponse(responseResults, filteredInput): # Sets entity name/title to lowercase and removes spaces def parse(entityHeader): return entityHeader.replace(" ", "").lower() global partialMatch match = None # First, look for an exact match after parsing for entity in responseResults: # Documents don't have a name attribute if "title" in entity: # Has to be in it's own "if" to avoid KeyErrors if parse(entity["title"]) == filteredInput: match = entity break elif "name" in entity: if parse(entity["name"]) == filteredInput: match = entity break else: match = "UNKNOWN" # Now try partially matching the entity (i.e. bluedragon will match adultbluedragon here) if match == None or match == "UNKNOWN": for entity in responseResults: if "title" in entity: if filteredInput in parse(entity["title"]): partialMatch = True match = entity break elif "name" in entity: if filteredInput in parse(entity["name"]): partialMatch = True match = entity break else: match = "UNKNOWN" return match ### # FUNC NAME: requestScryfall # FUNC DESC: Queries the Scryfall API to obtain a thumbnail image. # FUNC TYPE: Function ### def requestScryfall(searchTerm, searchdir): scryfallRequest = requests.get(f"https://api.scryfall.com/cards/search?q={ ' '.join(searchTerm) }&include_extras=true&include_multilingual=true&include_variations=true") # Try again with the first arg if nothing was found if scryfallRequest.status_code == 404: searchWord = searchTerm[0] if searchdir: searchWord = searchTerm[1] scryfallWordRequest = requests.get(f"https://api.scryfall.com/cards/search?q={ searchWord }&include_extras=true&include_multilingual=true&include_variations=true") if scryfallWordRequest.status_code != 200: return scryfallWordRequest.status_code else: return scryfallWordRequest.json()["data"][0]["image_uris"]["art_crop"] # Return code if API request failed elif scryfallRequest.status_code != 200: return scryfallRequest.status_code # Otherwise, return the cropped image url else: return scryfallRequest.json()["data"][0]["image_uris"]["art_crop"] ### # FUNC NAME: requestOpen5e # FUNC DESC: Queries the Open5e API. # FUNC TYPE: Function ### def requestOpen5e(query, filteredInput, wideSearch): # API Request request = requests.get(query) # Return code if not successfull if request.status_code != 200: return {"code": request.status_code, "query": query} # Iterate through the results output = searchResponse(request.json()["results"], filteredInput) if output == None: return output elif output == "UNKNOWN": return "UNKNOWN" # Find resource object if coming from search endpoint elif wideSearch: # Request resource using the first word of the name to filter results route = output["route"] # Determine filter type (search can only be used for some endpoints) filterType = "text" if route in searchParamEndpoints: filterType = "search" if "title" in output: resourceRequest = requests.get( f"https://api.open5e.com/{ route }?format=json&limit=10000&{ filterType }={ output['title'].split()[0] }" ) else: resourceRequest = requests.get( f"https://api.open5e.com/{ route }?format=json&limit=10000&{ filterType }={ output['name'].split()[0] }" ) # Return code if not successfull if resourceRequest.status_code != 200: return { "code": resourceRequest.status_code, "query": f"https://api.open5e.com/{ route }?format=json&limit=10000&search={ output['name'].split()[0] }" } # Search response again for the actual object resourceOutput = searchResponse(resourceRequest.json()["results"], filteredInput) if resourceOutput == "UNKNOWN": return "UNKNOWN" return {"route": route, "matchedObj": resourceOutput} # If already got the resource object, just return it else: return output ### # FUNC NAME: constructResponse # FUNC DESC: Constructs embed responses from the API object. # FUNC TYPE: Function ### def constructResponse(args, route, matchedObj): responses = [] # Document if "document" in route: # Get document link docLink = matchedObj['url'] if "http" not in docLink: docLink = f"http://{ matchedObj['url'] }" if len(matchedObj["desc"]) >= 2048: documentEmbed = discord.Embed( colour=discord.Colour.green(), title=f"{ matchedObj['title'] } (DOCUMENT)", description=matchedObj["desc"][:2047], url=docLink ) documentEmbed.add_field(name="Description Continued...", value=matchedObj["desc"][2048:]) else: documentEmbed = discord.Embed( colour=discord.Colour.green(), title=f"{ matchedObj['title'] } (DOCUMENT)", description=matchedObj["desc"], url=docLink ) documentEmbed.add_field(name="Authors", value=matchedObj["author"], inline=False) documentEmbed.add_field(name="Link", value=matchedObj["url"], inline=True) documentEmbed.add_field(name="Version Number", value=matchedObj["version"], inline=True) documentEmbed.add_field(name="Copyright", value=matchedObj["copyright"], inline=False) documentEmbed.set_thumbnail(url="https://i.imgur.com/lnkhxCe.jpg") responses.append(documentEmbed) # Spell elif "spell" in route: spellLink = f"https://open5e.com/spells/{matchedObj['slug']}/" if len(matchedObj["desc"]) >= 2048: spellEmbed = discord.Embed( colour=discord.Colour.green(), title=f"{ matchedObj['name'] } (SPELL)", description=matchedObj["desc"][:2047], url=spellLink ) spellEmbed.add_field(name="Description Continued...", value=matchedObj["desc"][2048:], inline=False) else: spellEmbed = discord.Embed( colour=discord.Colour.green(), title=matchedObj["name"], description=f"{ matchedObj['desc'] } (SPELL)", url=spellLink ) if matchedObj["higher_level"] != "": spellEmbed.add_field(name="Higher Level", value=matchedObj["higher_level"], inline=False) spellEmbed.add_field(name="School", value=matchedObj["school"], inline=False) spellEmbed.add_field(name="Level", value=matchedObj["level"], inline=True) spellEmbed.add_field(name="Duration", value=matchedObj["duration"], inline=True) spellEmbed.add_field(name="Casting Time", value=matchedObj["casting_time"], inline=True) spellEmbed.add_field(name="Range", value=matchedObj["range"], inline=True) spellEmbed.add_field(name="Concentration?", value=matchedObj["concentration"], inline=True) spellEmbed.add_field(name="Ritual?", value=matchedObj["ritual"], inline=True) spellEmbed.add_field(name="Spell Components", value=matchedObj["components"], inline=True) if "M" in matchedObj["components"]: spellEmbed.add_field(name="Material", value=matchedObj["material"], inline=True) spellEmbed.add_field(name="Page Number", value=matchedObj["page"], inline=True) spellEmbed.set_thumbnail(url="https://i.imgur.com/W15EmNT.jpg") responses.append(spellEmbed) # Monster elif "monster" in route: ## 1ST EMBED ## monsterLink = f"https://open5e.com/monsters/{ matchedObj['slug'] }/" monsterEmbedBasics = discord.Embed( colour=discord.Colour.green(), title=f"{ matchedObj['name'] } (MONSTER) - STATS", description="**TYPE**: {}\n**SUBTYPE**: {}\n**ALIGNMENT**: {}\n**SIZE**: {}\n**CHALLENGE RATING**: {}".format( matchedObj["type"] if matchedObj["type"] != "" else "None", matchedObj["subtype"] if matchedObj["subtype"] != "" else "None", matchedObj["alignment"] if matchedObj["alignment"] != "" else "None", matchedObj["size"], matchedObj["challenge_rating"] ), url=monsterLink ) # Str if matchedObj["strength_save"] != None: monsterEmbedBasics.add_field( name="STRENGTH", value=f"{ matchedObj['strength'] } (SAVE: **{ matchedObj['strength_save'] }**)", inline=True ) else: monsterEmbedBasics.add_field( name="STRENGTH", value=f"{ matchedObj['strength'] }", inline=True ) # Dex if matchedObj["dexterity_save"] != None: monsterEmbedBasics.add_field( name="DEXTERITY", value=f"{matchedObj['dexterity']} (SAVE: **{ matchedObj['dexterity_save'] }**)", inline=True ) else: monsterEmbedBasics.add_field( name="DEXTERITY", value=f"{ matchedObj['dexterity'] }", inline=True ) # Con if matchedObj["constitution_save"] != None: monsterEmbedBasics.add_field( name="CONSTITUTION", value=f"{ matchedObj['constitution'] } (SAVE: **{ matchedObj['constitution_save'] }**)", inline=True ) else: monsterEmbedBasics.add_field( name="CONSTITUTION", value=f"{ matchedObj['constitution'] }", inline=True ) # Int if matchedObj["intelligence_save"] != None: monsterEmbedBasics.add_field( name="INTELLIGENCE", value=f"{ matchedObj['intelligence'] } (SAVE: **{ matchedObj['intelligence_save'] }**)", inline=True ) else: monsterEmbedBasics.add_field( name="INTELLIGENCE", value=f"{ matchedObj['intelligence'] }", inline=True ) # Wis if matchedObj["wisdom_save"] != None: monsterEmbedBasics.add_field( name="WISDOM", value=f"{ matchedObj['wisdom'] } (SAVE: **{ matchedObj['wisdom_save'] }**)", inline=True ) else: monsterEmbedBasics.add_field( name="WISDOM", value=f"{ matchedObj['wisdom'] }", inline=True ) # Cha if matchedObj["charisma_save"] != None: monsterEmbedBasics.add_field( name="CHARISMA", value=f"{ matchedObj['charisma'] } (SAVE: **{ matchedObj['charisma_save'] }**)", inline=True ) else: monsterEmbedBasics.add_field( name="CHARISMA", value=f"{ matchedObj['charisma'] }", inline=True ) # Hit points/dice monsterEmbedBasics.add_field( name=f"HIT POINTS (**{ str(matchedObj['hit_points']) }**)", value=matchedObj["hit_dice"], inline=True ) # Speeds monsterSpeeds = "" for speedType, speed in matchedObj["speed"].items(): monsterSpeeds += f"**{ speedType }**: { speed }\n" monsterEmbedBasics.add_field(name="SPEED", value=monsterSpeeds, inline=True) # Armour monsterEmbedBasics.add_field( name="ARMOUR CLASS", value=f"{ str(matchedObj['armor_class']) } ({ matchedObj['armor_desc'] })", inline=True ) responses.append(monsterEmbedBasics) ## 2ND EMBED ## monsterEmbedSkills = discord.Embed( colour=discord.Colour.green(), title=f"{ matchedObj['name'] } (MONSTER) - SKILLS & PROFICIENCIES", url=monsterLink ) # Skills & Perception if matchedObj["skills"] != {}: monsterSkills = "" for skillName, skillValue in matchedObj["skills"].items(): monsterSkills += f"**{ skillName }**: { skillValue }\n" monsterEmbedSkills.add_field(name="SKILLS", value=monsterSkills, inline=True) # Senses monsterEmbedSkills.add_field(name="SENSES", value=matchedObj["senses"], inline=True) # Languages if matchedObj["languages"] != "": monsterEmbedSkills.add_field(name="LANGUAGES", value=matchedObj["languages"], inline=True) # Damage conditionals monsterEmbedSkills.add_field( name="STRENGTHS & WEAKNESSES", value="**VULNERABLE TO:** {}\n**RESISTANT TO:** {}\n**IMMUNE TO:** {}".format( matchedObj["damage_vulnerabilities"] if matchedObj["damage_vulnerabilities"] != "" else "Nothing", matchedObj["damage_resistances"] if matchedObj["damage_resistances"] != "" else "Nothing", matchedObj["damage_immunities"] if matchedObj["damage_immunities"] != "" else "Nothing" + ", " + matchedObj["condition_immunities"] if matchedObj["condition_immunities"] != None else "Nothing", ), inline=False ) responses.append(monsterEmbedSkills) ## 3RD EMBED ## monsterEmbedActions = discord.Embed( colour=discord.Colour.green(), title=f"{ matchedObj['name'] } (MONSTER) - ACTIONS & ABILITIES", url=monsterLink ) # Actions for action in matchedObj["actions"]: monsterEmbedActions.add_field( name=f"{ action['name'] } (ACTION)", value=action["desc"], inline=False ) # Reactions if matchedObj["reactions"] != "": for reaction in matchedObj["reactions"]: monsterEmbedActions.add_field( name=f"{ reaction['name'] } (REACTION)", value=reaction["desc"], inline=False ) # Specials for special in matchedObj["special_abilities"]: if len(special["desc"]) >= 1024: monsterEmbedActions.add_field( name=f"{ special['name'] } (SPECIAL)", value=special["desc"][:1023], inline=False ) monsterEmbedActions.add_field( name=f"{ special['name'] } (SPECIAL) Continued...", value=special["desc"][1024:], inline=False ) else: monsterEmbedActions.add_field( name=f"{ special['name'] } (SPECIAL)", value=special["desc"], inline=False ) # Spells if matchedObj["spell_list"] != []: # Function to split the spell link down (e.g. https://api.open5e.com/spells/light/), [:-1] removes trailing whitespace def splitSpell(spellName): return spellName.replace("-", " ").split("/")[:-1] for spell in matchedObj["spell_list"]: spellSplit = splitSpell(spell) monsterEmbedActions.add_field( name=spellSplit[-1], value=f"To see spell info, `?searchdir spells { spellSplit[-1] }`", inline=False ) responses.append(monsterEmbedActions) ## 4TH EMBED (only used if it has legendary actions) ## if matchedObj["legendary_desc"] != "": monsterEmbedLegend = discord.Embed( colour=discord.Colour.green(), title=f"{ matchedObj['name'] } (MONSTER): LEGENDARY ACTIONS & ABILITIES", description=matchedObj["legendary_desc"], url=monsterLink ) for action in matchedObj["legendary_actions"]: monsterEmbedLegend.add_field( name=action["name"], value=action["desc"], inline=False ) responses.append(monsterEmbedLegend) # Author & Image for all embeds for embed in responses: if matchedObj["img_main"] != None: embed.set_thumbnail(url=matchedObj["img_main"]) else: embed.set_thumbnail(url="https://i.imgur.com/6HsoQ7H.jpg") # Background elif "background" in route: # 1st Embed (Basics) bckLink = "https://open5e.com/sections/backgrounds" backgroundEmbed = discord.Embed( colour=discord.Colour.green(), title=f"{ matchedObj['name'] } (BACKGROUND) - BASICS", description=matchedObj["desc"], url=bckLink ) # Profs if matchedObj["tool_proficiencies"] != None: backgroundEmbed.add_field( name="PROFICIENCIES", value=f"**SKILLS**: { matchedObj['skill_proficiencies'] }\n**TOOLS**: { matchedObj['tool_proficiencies'] }", inline=True ) else: backgroundEmbed.add_field( name="PROFICIENCIES", value=f"**SKILL**: { matchedObj['skill_proficiencies'] }", inline=True ) # Languages if matchedObj["languages"] != None: backgroundEmbed.add_field(name="LANGUAGES", value=matchedObj["languages"], inline=True) # Equipment backgroundEmbed.add_field(name="EQUIPMENT", value=matchedObj["equipment"], inline=False) # Feature backgroundEmbed.add_field(name=matchedObj["feature"], value=matchedObj["feature_desc"], inline=False) responses.append(backgroundEmbed) # 2nd Embed (feature) backgroundFeatureEmbed = discord.Embed( colour=discord.Colour.green(), title=f"{ matchedObj['name'] } (BACKGROUND)\nFEATURE ({ matchedObj['feature'] })", description=matchedObj["feature_desc"], url=bckLink ) responses.append(backgroundFeatureEmbed) # 3rd Embed & File (suggested characteristics) if matchedObj["suggested_characteristics"] != None: if len(matchedObj["suggested_characteristics"]) <= 2047: backgroundChars = discord.Embed( colour=discord.Colour.green(), title=f"{ matchedObj['name'] } (BACKGROUND): CHARECTERISTICS", description=matchedObj["suggested_characteristics"], url=bckLink ) responses.append(backgroundChars) else: backgroundChars = discord.Embed( colour=discord.Colour.green(), title=f"{ matchedObj['name'] } (BACKGROUND): CHARECTERISTICS", description=matchedObj["suggested_characteristics"][:2047], url=bckLink ) bckFileName = generateFileName("background") backgroundChars.add_field( name="LENGTH OF CHARECTERISTICS TOO LONG FOR DISCORD", value=f"See `{ bckFileName }` for full description", inline=False ) responses.append(backgroundChars) # Create characteristics.txt characteristicsFile = open(bckFileName, "a+") characteristicsFile.write(matchedObj["suggested_characteristics"]) characteristicsFile.close() responses.append(bckFileName) for response in responses: if isinstance(response, discord.Embed): response.set_thumbnail(url="https://i.imgur.com/GhGODan.jpg") # Plane elif "plane" in route: planeEmbed = discord.Embed( colour=discord.Colour.green(), title=f"{ matchedObj['name'] } (PLANE)", description=matchedObj["desc"], url="https://open5e.com/sections/planes" ) planeEmbed.set_thumbnail(url="https://i.imgur.com/GJk1HFh.jpg") responses.append(planeEmbed) # Section elif "section" in route: secLink = f"https://open5e.com/sections/{ matchedObj['slug'] }/" if len(matchedObj["desc"]) >= 2048: sectionEmbedDesc = discord.Embed( colour=discord.Colour.green(), title=f"{ matchedObj['name'] } (SECTION) - { matchedObj['parent'] }", description=matchedObj["desc"][:2047], url=secLink ) sectionFilename = generateFileName("section") sectionEmbedDesc.add_field( name="LENGTH OF DESCRIPTION TOO LONG FOR DISCORD", value=f"See `{ sectionFilename }` for full description", inline=False ) sectionEmbedDesc.set_thumbnail(url="https://i.imgur.com/J75S6bF.jpg") responses.append(sectionEmbedDesc) # Full description as a file secDescFile = open(sectionFilename, "a+") secDescFile.write(matchedObj["desc"]) secDescFile.close() responses.append(sectionFilename) else: sectionEmbedDesc = discord.Embed( colour=discord.Colour.green(), title=f"{ matchedObj['name'] } (SECTION) - { matchedObj['parent'] }", description=matchedObj["desc"], url=secLink ) sectionEmbedDesc.set_thumbnail(url="https://i.imgur.com/J75S6bF.jpg") responses.append(sectionEmbedDesc) # Feat elif "feat" in route: # Open5e website doesnt have a website entry for URL's yet featEmbed = discord.Embed( colour=discord.Colour.green(), title=f"{ matchedObj['name'] } (FEAT)", description=f"PREREQUISITES: **{ matchedObj['prerequisite'] }**" ) featEmbed.add_field(name="DESCRIPTION", value=matchedObj["desc"], inline=False) featEmbed.set_thumbnail(url="https://i.imgur.com/X1l7Aif.jpg") responses.append(featEmbed) # Condition elif "condition" in route: conLink = "https://open5e.com/gameplay-mechanics/conditions" if len(matchedObj["desc"]) >= 2048: conditionEmbed = discord.Embed( colour=discord.Colour.green(), title=f"{ matchedObj['name'] } (CONDITION)", description=matchedObj["desc"][:2047], url=conLink ) conditionEmbed.add_field(name="DESCRIPTION continued...", value=matchedObj["desc"][2048:], inline=False) else: conditionEmbed = discord.Embed( colour=discord.Colour.green(), title=f"{ matchedObj['name'] } (CONDITION)", description=matchedObj["desc"], url=conLink ) conditionEmbed.set_thumbnail(url="https://i.imgur.com/tOdL5n3.jpg") responses.append(conditionEmbed) # Race elif "race" in route: raceLink = f"https://open5e.com/races/{ matchedObj['slug'] }" raceEmbed = discord.Embed( colour=discord.Colour.green(), title=f"{ matchedObj['name'] } (RACE)", description=matchedObj["desc"], url=raceLink ) # Asi Description raceEmbed.add_field(name="BENEFITS", value=matchedObj["asi_desc"], inline=False) # Age, Alignment, Size raceEmbed.add_field(name="AGE", value=matchedObj["age"], inline=True) raceEmbed.add_field(name="ALIGNMENT", value=matchedObj["alignment"], inline=True) raceEmbed.add_field(name="SIZE", value=matchedObj["size"], inline=True) # Speeds raceEmbed.add_field(name="SPEEDS", value=matchedObj["speed_desc"], inline=False) # Languages raceEmbed.add_field(name="LANGUAGES", value=matchedObj["languages"], inline=True) # Vision buffs if matchedObj["vision"] != "": raceEmbed.add_field(name="VISION", value=matchedObj["vision"], inline=True) # Traits if matchedObj["traits"] != "": if len(matchedObj["traits"]) >= 1024: raceEmbed.add_field(name="TRAITS", value=matchedObj["traits"][:1023], inline=False) raceEmbed.add_field(name="TRAITS continued...", value=matchedObj["traits"][1024:], inline=False) else: raceEmbed.add_field(name="TRAITS", value=matchedObj["traits"], inline=False) raceEmbed.set_thumbnail(url="https://i.imgur.com/OUSzh8W.jpg") responses.append(raceEmbed) # Start new embed for any subraces if matchedObj["subraces"] != []: for subrace in matchedObj["subraces"]: subraceEmbed = discord.Embed( colour=discord.Colour.green(), title=f"{ subrace['name'] } (Subrace of **{ matchedObj['name'] })", description=subrace["desc"], url=raceLink ) # Subrace asi's subraceEmbed.add_field(name="SUBRACE BENEFITS", value=subrace["asi_desc"], inline=False) # Subrace traits if subrace["traits"] != "": if len(subrace["traits"]) >= 1024: subraceEmbed.add_field(name="TRAITS", value=subrace["traits"][:1023], inline=False) subraceEmbed.add_field(name="TRAITS continued...", value=subrace["traits"][1024:], inline=False) else: subraceEmbed.add_field(name="TRAITS", value=subrace["traits"], inline=False) subraceEmbed.set_thumbnail(url="https://i.imgur.com/OUSzh8W.jpg") responses.append(subraceEmbed) # Class elif "class" in route: # 1st Embed & File (BASIC) classLink = f"https://open5e.com/classes/{ matchedObj['slug'] }" classDescEmbed = discord.Embed( colour=discord.Colour.green(), title=f"{ matchedObj['name'] } (CLASS): Basics", description=matchedObj["desc"][:2047], url=classLink ) # Spell casting if matchedObj["spellcasting_ability"] != "": classDescEmbed.add_field(name="CASTING ABILITY", value=matchedObj["spellcasting_ability"], inline=False) clsDesFileName = generateFileName("clsdescription") clsTblFileName = generateFileName("clstable") classDescEmbed.add_field( name="LENGTH OF DESCRIPTION & TABLE TOO LONG FOR DISCORD", value=f"See `{ clsDesFileName }` for full description\nSee `{ clsTblFileName }` for class table", inline=False ) responses.append(classDescEmbed) # Full description as a file descFile = open(clsDesFileName, "a+") descFile.write(matchedObj["desc"]) descFile.close() responses.append(clsDesFileName) # Class table as a file tableFile = open(clsTblFileName, "a+") tableFile.write(matchedObj["table"]) tableFile.close() responses.append(clsTblFileName) # 2nd Embed (DETAILS) classDetailsEmbed = discord.Embed( colour=discord.Colour.green(), title=f"{ matchedObj['name'] } (CLASS): Profs & Details", description=f"**ARMOUR**: { matchedObj['prof_armor'] }\n**WEAPONS**: { matchedObj['prof_weapons'] }\n**TOOLS**: { matchedObj['prof_tools'] }\n**SAVE THROWS**: { matchedObj['prof_saving_throws'] }\n**SKILLS**: { matchedObj['prof_skills'] }", url=classLink ) classDetailsEmbed.add_field( name="Hit points", value=f"**Hit Dice**: { matchedObj['hit_dice'] }\n**HP at first level**: { matchedObj['hp_at_1st_level'] }\n**HP at other levels**: { matchedObj['hp_at_higher_levels'] }", inline=False ) # Equipment if len(matchedObj["equipment"]) >= 1024: classDetailsEmbed.add_field(name="EQUIPMENT", value=matchedObj["equipment"][:1023], inline=False) classDetailsEmbed.add_field(name="EQUIPMENT continued", value=matchedObj["equipment"][1024:], inline=False) else: classDetailsEmbed.add_field(name="EQUIPMENT", value=matchedObj["equipment"], inline=False) responses.append(classDetailsEmbed) # 3rd Embed (ARCHETYPES) if matchedObj["archetypes"] != []: for archtype in matchedObj["archetypes"]: archTypeEmbed = None if len(archtype["desc"]) <= 2047: archTypeEmbed = discord.Embed( colour=discord.Colour.green(), title=f"{ archtype['name'] } (ARCHETYPES)", description=archtype["desc"], url=classLink ) responses.append(archTypeEmbed) else: archTypeEmbed = discord.Embed( colour=discord.Colour.green(), title=f"{ archtype['name'] } (ARCHETYPES)\n{ matchedObj['subtypes_name'] if matchedObj['subtypes_name'] != '' else 'None' } (SUBTYPE)", description=archtype["desc"][:2047], url=classLink ) clsArchFileName = generateFileName("clsarchetype") archTypeEmbed.add_field( name="LENGTH OF DESCRIPTION TOO LONG FOR DISCORD", value=f"See `{ clsArchFileName }` for full description", inline=False ) responses.append(archTypeEmbed) archDesFile = open(clsArchFileName, "a+") archDesFile.write(archtype["desc"]) archDesFile.close() responses.append(clsArchFileName) # Finish up for response in responses: if isinstance(response, discord.Embed): response.set_thumbnail(url="https://i.imgur.com/Mjh6AAi.jpg") # Magic Item elif "magicitem" in route: itemLink = f"https://open5e.com/magicitems/{ matchedObj['slug'] }" if len(matchedObj["desc"]) >= 2048: magicItemEmbed = discord.Embed( colour=discord.Colour.green(), title=f"{ matchedObj['name'] } (MAGIC ITEM)", description=matchedObj["desc"][:2047], url=itemLink ) mIfileName = generateFileName("magicitem") magicItemEmbed.add_field( name="LENGTH OF DESCRIPTION TOO LONG FOR DISCORD", value=f"See `{ mIfileName }` for full description", inline=False ) responses.append(magicItemEmbed) itemFile = open(mIfileName, "a+") itemFile.write(matchedObj["desc"]) itemFile.close() responses.append(mIfileName) else: magicItemEmbed = discord.Embed( colour=discord.Colour.green(), title=f"{ matchedObj['name'] } (MAGIC ITEM)", description=matchedObj["desc"], url=itemLink ) responses.append(magicItemEmbed) for response in responses: if isinstance(response, discord.Embed): response.add_field(name="TYPE", value=matchedObj["type"], inline=True) response.add_field(name="RARITY", value=matchedObj["rarity"], inline=True) if matchedObj["requires_attunement"] == "requires_attunement": response.add_field(name="ATTUNEMENT REQUIRED?", value="YES", inline=True) else: response.add_field(name="ATTUNEMENT REQUIRED?", value="NO", inline=True) response.set_thumbnail(url="https://i.imgur.com/2wzBEjB.png") # Remove this break if magicitems produces more than 1 embed in the future break # Weapon elif "weapon" in route: weaponEmbed = discord.Embed( colour=discord.Colour.green(), title=f"{ matchedObj['name'] } (WEAPON)", description=f"**PROPERTIES**: { ' | '.join(matchedObj['properties']) if matchedObj['properties'] != [] else 'None' }", url="https://open5e.com/sections/weapons" ) weaponEmbed.add_field( name="DAMAGE", value=f"{ matchedObj['damage_dice'] } ({ matchedObj['damage_type'] })", inline=True ) weaponEmbed.add_field(name="WEIGHT", value=matchedObj["weight"], inline=True) weaponEmbed.add_field(name="COST", value=matchedObj["cost"], inline=True) weaponEmbed.add_field(name="CATEGORY", value=matchedObj["category"], inline=False) weaponEmbed.set_thumbnail(url="https://i.imgur.com/pXEe4L9.png") responses.append(weaponEmbed) else: global partialMatch partialMatch = False badObjectFilename = generateFileName("badobject") itemFile = open(badObjectFilename, "a+") itemFile.write(matchedObj) itemFile.close() noRouteEmbed = discord.Embed( colour=discord.Colour.red(), title="The matched item's type (i.e. spell, monster, etc) was not recognised", description=f"Please create an issue describing this failure and with the following values at https://github.com/shadowedlucario/oghma/issues\n**Input**: { args }\n**Route**: { route }\n**Troublesome Object**: SEE `{ badObjectFilename }`" ) noRouteEmbed.set_thumbnail(url="https://i.imgur.com/j3OoT8F.png") responses.append(noRouteEmbed) responses.append(badObjectFilename) return responses ```
{ "source": "jdcarvalho/python-focusnfe", "score": 2 }
#### File: focusnfe/core/exception.py ```python class FocusNFECoreException(Exception): EC_PROGRAMMING = 'programming_error' EC_BAD_REQUEST = 'bad_request' EC_FORBIDDEN = 'forbidden' EC_NOT_FOUND = 'not_found' EC_SERVER_ERROR = 'server_error' code = None def __init__(self, *args, **kwargs): self.code = kwargs.pop('code', '') super(FocusNFECoreException, self).__init__(*args) ```
{ "source": "jdcastanier/Chessboard-game", "score": 4 }
#### File: jdcastanier/Chessboard-game/main.py ```python import random from graphics import * #INICIA EL PROGRAMA PRINCIPAL def main(): #CREA UN MENÚ INICIAL PARA ELEGIR EL JUEGO (AUNQUE ES UNO SOLO) def menu(): print(f''' BIENVENIDO AL PROGRAMA DE JUEGOS PARA DESARROLLAR NUESTRAS HABILIDADES COGNITIVAS. POR FAVOR ESCOJA UNA DE LAS SIGUIENTES OPCIONES: 1. IMPOSSIBLE ESCAPE: TECLEE "1". EN CUALQUIER MOMENTO DURANTE EL JUEGO TECLEE "SALIR" PARA TERMINAR EL JUEGO Y REGRESAR AL MENÚ PRINCIPAL. ''') opcion = input() if opcion == "1": impossible_escape() else: opcion_1 = opcion.upper() if opcion_1 != "SALIR": print ('INPUT INCORRECTO') menu() #INICIA EL JUEGO def impossible_escape(): #CREA LAS MONEDAS EN LA VENTANA CUANDO SE JUEGA def monedas_real(ventana_tablero_expo, letras, numeros): matriz_circulos = [] for col in range(65, 416, 50): for ren in range(65, 416, 50): lista = [] circulo = Circle(Point(ren, col), 23) color_num = random.randint(0, 1) if color_num == 0: circulo.setFill(color_rgb(247, 198, 86)) color = "amarillo" lista.append(ren) lista.append(col) lista.append(color) else: circulo.setFill(color_rgb(129, 95, 18)) color = "cafe" lista.append(ren) lista.append(col) lista.append(color) circulo.draw(ventana_tablero_expo) matriz_circulos.append(lista) print(f''' - CARCELERO: Tienes derecho a cambiar la configuración de una sola moneda. INGRESA LA UBICACIÓN DE LA MONEDA QUE QUIERES CAMBIAR. HAZLO DE LA FORMA: A, 1 NOTARÁS QUE LA MONEDA EN LA POSICIÓN QUE ELEGISTE CAMBIA SU CONFIGURACIÓN. ''') # matriz = [[ren, col, color]] moneda = input() moneda_1 = moneda.upper() if moneda_1 == "SALIR": menu() lista_coord = moneda.split(", ") num_trad = [0,1,2,3,4,5,6,7] if (lista_coord[0] not in "ABCDEFGH") \ or (lista_coord[1] not in "12345678") : print ('INPUT INCORRECTO') menu() for ren in range(len(letras)): if lista_coord [0] == letras [ren]: for col in range(len(numeros)): if lista_coord [1] == numeros [col]: coord_trad_1 = [num_trad[ren], num_trad[col]] coord_trad_2 =(num_trad[ren]) +(num_trad[col]*8) break circulo_cambio = Circle(Point(matriz_circulos[coord_trad_2][0],\ matriz_circulos[coord_trad_2][1]), 23) if matriz_circulos [coord_trad_2][2] == "cafe": circulo_cambio.setFill(color_rgb(247, 198, 86)) matriz_circulos [coord_trad_2][2] = "amarillo" elif matriz_circulos [coord_trad_2][2] == "amarillo": circulo_cambio.setFill(color_rgb(129, 95, 18)) matriz_circulos [coord_trad_2][2] = "cafe" circulo_cambio.draw(ventana_tablero_expo) return(None) #TRADUCE LA POSICION DE FORMATO "A, 1" A PIXELES Y LLAMA A LA FUNCION QUE DIBUJA EL CUADRO ROJO def buscar_rojo_real(ventana_tablero_expo, posicion_rojo, letras, numeros, coordenadas_llaves): buscador_a = input() buscador_1 = buscador_a.upper() if buscador_1 == "SALIR": menu() buscador_list = buscador_a.split(", ") num_trad = [0,1,2,3,4,5,6,7] if (buscador_list[0] not in "ABCDEFGH") \ or (buscador_list[1] not in "12345678") : print ('INPUT INCORRECTO') menu() for ren in range(len(letras)): if buscador_list [0] == letras [ren]: for col in range(len(numeros)): if buscador_list [1] == numeros [col]: coord_trad_3 = [(num_trad[ren]*50 + 40),(num_trad[col]*50 + 40)] break cosa = rectangulo_rojo(ventana_tablero_expo, coordenadas_llaves, letras, numeros) if posicion_rojo[0] == coord_trad_3[0] \ and posicion_rojo[1] == coord_trad_3[1]: print(''' - CARCELERO: ¡Felicitaciones! Han logrado descifrar la posición de las llaves. Quedan libres. ''') else: print(''' - CARCELERO: JAJAJAJAJA no pudieron descifrar la ubicación de las llaves, serán ejecutados.''') #CREA LA VENTANA CUANDO SE JUEGA def crear_ventana_real(): ventana_tablero_real = GraphWin('Tablero', 450, 450) negro = Rectangle(Point(40, 40), Point(440, 440)) negro.setOutline(color_rgb(0, 50, 255)) negro.setWidth(3) negro.setFill(color_rgb(0, 0, 0)) negro.draw(ventana_tablero_real) for ren in range(40, 441, 50): for col in range(40, 441, 50): if ren == 40 or ren == 140 or ren == 240 or ren == 340: if col == 90 or col == 190 or col == 290 or col == 390: blancos(ren, col, ventana_tablero_real) elif ren == 90 or ren == 190 or ren == 290 or ren == 390: if col == 40 or col == 140 or col == 240 or col == 340: blancos(ren, col, ventana_tablero_real) letras = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H'] numeros = ['1', '2', '3', '4', '5', '6', '7', '8'] indices(letras, numeros, ventana_tablero_real) posicion_llaves_ren = random.randint(0, 7) posicion_llaves_col = random.randint(0, 7) coordenadas_llaves = [posicion_llaves_ren, posicion_llaves_col] posicion_rojo = rectangulo_rojo(ventana_tablero_real, coordenadas_llaves, letras, numeros) ventana_tablero_real.getMouse() regresa_rectangulo(ventana_tablero_real, posicion_rojo) monedas_real(ventana_tablero_real, letras, numeros) print(''' - CARCELERO: Ahora puede venir el segundo prisionero para intentar adivinar en dónde se encuentran las llaves. Los prisioneros deben recordar que no pueden comunicarse. EL SEGUNDO JUGADOR DEBE INGRESAR LA POSICIÓN EN LA QUE CREE QUE ESTÁN LAS LLAVES. LO DEBE HACER EN EL FORMATO A, 1''') buscar_rojo_real(ventana_tablero_real, posicion_rojo, letras, numeros, coordenadas_llaves) print (f''' GRACIAS POR JUGAR IMPOSSIBLE ESCAPE, SI QUIERES INTENTARLO DE NUEVO, VUELVE A CORRER EL PROGRAMA. LA SOLUCIÓN SE ENCUENTRA DISPONIBLE EN: http://datagenetics.com/blog/december12014/index.html PROGRAMA REALIZADO POR JUAN <NAME>. TEC DE MONTERREY.''') ventana_tablero_real.getMouse() ventana_tablero_real.close() return(None) #FUNCION QUE DIBUJA EL RECUADRO ROJO AL AZAR def rectangulo_rojo(ventana_tablero_expo, coordenadas_llaves, letras, numeros): rectangulo_rojo = Rectangle( Point(40 +(50 * coordenadas_llaves[0]),\ 40 +(50 * coordenadas_llaves[1])), \ Point(90 +(50 * coordenadas_llaves[0]), \ 90 +(50 * coordenadas_llaves[1]))) rectangulo_rojo.setFill(color_rgb(255, 0, 0)) rectangulo_rojo.draw(ventana_tablero_expo) posicion_rojo = [40 +(50 * coordenadas_llaves[0]), \ 40 +(50 * coordenadas_llaves[1]), \ 90 +(50 * coordenadas_llaves[0]), \ 90 +(50 * coordenadas_llaves[1])] letra = letras [coordenadas_llaves[0]] numero = numeros [coordenadas_llaves[1]] print(f''' Las llaves son asignadas a la posición {letra}, {numero}. DALE CLICK AL TABLERO PARA CONTINUAR''') return(posicion_rojo) #TRADUCE LA POSICION DE FORMATO "A, 1" A PIXELES Y LLAMA A LA FUNCION QUE DIBUJA EL CUADRO ROJO, A DIFERENCIA DE BUSCAR_ROJO_REAL TIENE EL PRINT DEL TUTORIAL. def buscar_rojo(ventana_tablero_expo, posicion_rojo, letras, numeros, coordenadas_llaves): buscador = input() buscador_2 = buscador.upper() if buscador_2 == "SALIR": menu() buscador_list = buscador.split(", ") num_trad = [0,1,2,3,4,5,6,7] if (buscador_list[0] not in "ABCDEFGH") \ or (buscador_list[1] not in "12345678") : print ('INPUT INCORRECTO') menu() for ren in range(len(letras)): if buscador_list [0] == letras [ren]: for col in range(len(numeros)): if buscador_list [1] == numeros [col]: coord_trad_3 = [(num_trad[ren]*50 + 40),(num_trad[col]*50 + 40)] break cosa = rectangulo_rojo(ventana_tablero_expo, \ coordenadas_llaves, letras, numeros) if posicion_rojo[0] == coord_trad_3[0] \ and posicion_rojo[1] == coord_trad_3[1]: print(''' - CARCELERO: Una vez el que el segundo prisionero haya escogido el casillero en donde cree que se asignaron las llaves, se le revelará la posición real de las llaves, y en caso de haberlo logrado los dos quedarán salvados, caso contrario, ambos serán ejecutados.''') else: print(''' - CARCELERO: Una vez el que el segundo prisionero haya escogido el casillero en donde cree que se asignaron las llaves, se le revelará la posición real y en caso de haberlo logrado los dos quedarán salvados, caso contrario, ambos serán ejecutados.''') #DEVUELVE EL COLOR ORIGINAL AL RECUADRO ROJO def regresa_rectangulo(ventana_tablero_expo, posicion_rojo): rentangulo_cambio = Rectangle(Point(posicion_rojo [0], posicion_rojo[1]), \ Point(posicion_rojo[2], posicion_rojo [3])) if posicion_rojo [0] == 40 \ or posicion_rojo [0] == 140 \ or posicion_rojo [0] == 240 \ or posicion_rojo [0] == 340: if posicion_rojo [1] == 90 \ or posicion_rojo [1] == 190 \ or posicion_rojo [1] == 290 \ or posicion_rojo [1] == 390: rentangulo_cambio.setFill(color_rgb(255,255,255)) else: rentangulo_cambio.setFill(color_rgb(0,0,0)) else: if posicion_rojo [1] == 40 \ or posicion_rojo [1] == 140 \ or posicion_rojo [1] == 240 \ or posicion_rojo [1] == 340: rentangulo_cambio.setFill(color_rgb(255,255,255)) else: rentangulo_cambio.setFill(color_rgb(0,0,0)) rentangulo_cambio.draw(ventana_tablero_expo) #COLOCA LAS MONEDAS EN LA VENTANA, A DIFERENCIA DE MONEDAS_REAL TIENE EL PRINT DEL TUTORIAL def monedas_expo(ventana_tablero_expo, letras, numeros): matriz_circulos = [] for col in range(65, 416, 50): for ren in range(65, 416, 50): lista = [] circulo = Circle(Point(ren, col), 23) color_num = random.randint(0, 1) if color_num == 0: circulo.setFill(color_rgb(247, 198, 86)) color = "amarillo" lista.append(ren) lista.append(col) lista.append(color) else: circulo.setFill(color_rgb(129, 95, 18)) color = "cafe" lista.append(ren) lista.append(col) lista.append(color) circulo.draw(ventana_tablero_expo) matriz_circulos.append(lista) print(f''' - CARCELERO: Luego de asignar la llave a un casillero, colocaré una moneda en cada casillero. La configuración de cada moneda(cara o cruz) será totalmente mi decisión. Puede ser al azar o puede ser un orden malvado apropósito con el fin de hacerlo más difícil, es mi problema. Entonces le dejaré a quien se quedó conmigo cambiar la configuración de una sola moneda. INGRESA LA UBICACIÓN DE LA MONEDA QUE QUIERES CAMBIAR. HAZLO DE LA FORMA: A, 1 NOTARÁS QUE LA MONEDA EN LA POSICIÓN QUE ELEGISTE CAMBIA SU CONFIGURACIÓN. ''') # matriz = [[ren, col, color]] moneda = input() moneda_2 = moneda.upper() if moneda_2 == "SALIR": menu() lista_coord = moneda.split(", ") num_trad = [0,1,2,3,4,5,6,7] if (lista_coord[0] not in "ABCDEFGH") \ or (lista_coord[1] not in "12345678") : print ('INPUT INCORRECTO') menu() for ren in range(len(letras)): if lista_coord [0] == letras [ren]: for col in range(len(numeros)): if lista_coord [1] == numeros [col]: coord_trad_1 = [num_trad[ren], num_trad[col]] coord_trad_2 =(num_trad[ren]) +(num_trad[col]*8) break circulo_cambio = Circle(Point(matriz_circulos[coord_trad_2][0],\ matriz_circulos[coord_trad_2][1]), 23) if matriz_circulos [coord_trad_2][2] == "cafe": circulo_cambio.setFill(color_rgb(247, 198, 86)) matriz_circulos [coord_trad_2][2] = "amarillo" elif matriz_circulos [coord_trad_2][2] == "amarillo": circulo_cambio.setFill(color_rgb(129, 95, 18)) matriz_circulos [coord_trad_2][2] = "cafe" circulo_cambio.draw(ventana_tablero_expo) return(None) #CREA LA VENTANA DEL TUTORIAL, A DIFERENCIA DE CREAR_VENTANA_REAL TIENE LOS PRINTS DEL TUTORIAL def crear_ventana_expo(): ventana_tablero_expo = GraphWin('Tablero', 450, 450) negro = Rectangle(Point(40, 40), Point(440, 440)) negro.setOutline(color_rgb(0, 50, 255)) negro.setWidth(3) negro.setFill(color_rgb(0, 0, 0)) negro.draw(ventana_tablero_expo) for ren in range(40, 441, 50): for col in range(40, 441, 50): if ren == 40 or ren == 140 or ren == 240 or ren == 340: if col == 90 or col == 190 or col == 290 or col == 390: blancos(ren, col, ventana_tablero_expo) elif ren == 90 or ren == 190 or ren == 290 or ren == 390: if col == 40 or col == 140 or col == 240 or col == 340: blancos(ren, col, ventana_tablero_expo) letras = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H'] numeros = ['1', '2', '3', '4', '5', '6', '7', '8'] indices(letras, numeros, ventana_tablero_expo) posicion_llaves_ren = random.randint(0, 7) posicion_llaves_col = random.randint(0, 7) coordenadas_llaves = [posicion_llaves_ren, posicion_llaves_col] posicion_rojo = rectangulo_rojo(ventana_tablero_expo, coordenadas_llaves, letras, numeros) ventana_tablero_expo.getMouse() regresa_rectangulo(ventana_tablero_expo, posicion_rojo) monedas_expo(ventana_tablero_expo, letras, numeros) print(''' - CARCELERO: Cuando intenten el reto de verdad, será en este momento en el que regresará el segundo prisionero; quien, sin comunicarse con el primer prisionero, sin saber cuál fue la configuración inicial del tablero, y sin saber cuál fue la moneda que modificó su compañero, deberá determinar a qué casillero se asignaron las llaves(cuadro rojo del comienzo). EL SEGUNDO JUGADOR DEBE INGRESAR LA POSICIÓN EN LA QUE CREE QUE ESTÁN LAS LLAVES. LO DEBE HACER EN EL FORMATO A, 1''') buscar_rojo(ventana_tablero_expo, posicion_rojo, letras, numeros, coordenadas_llaves) return(ventana_tablero_expo) #DIBUJA LOS RECUADROS BLANCOS EN EL TABLERO def blancos(ren, col, ventana_tablero): blanco = Rectangle(Point(col, ren), Point(col + 50, ren + 50)) blanco.setFill(color_rgb(255, 255, 255)) blanco.draw(ventana_tablero) return(None) #CREA LOS INDICES ALFANUMERICOS DEL TABLERO def indices(lista_letras, lista_num, ventana_tablero): i = 0 for lugar in range(65, 465, 50): text = Text(Point(lugar, 25), lista_letras[i]) text.setTextColor(color_rgb(0, 0, 0)) text.setSize(25) text.draw(ventana_tablero) i += 1 i = 0 for lugar_b in range(65, 465, 50): text_b = Text(Point(25, lugar_b), lista_num[i]) text_b.setTextColor(color_rgb(0, 0, 0)) text_b.setSize(25) text_b.draw(ventana_tablero) i += 1 return(None) #CREA LA PRIMERA VENTANA DEL JUEGO Y DEL TUTORIAL, SIN LLAMAR A LA FUNCION DL RECUADRO ROJO def crear_ventana(): ventana_tablero = GraphWin('Tablero', 450, 450) negro = Rectangle(Point(40, 40), Point(440, 440)) negro.setOutline(color_rgb(0, 50, 255)) negro.setWidth(3) negro.setFill(color_rgb(0, 0, 0)) negro.draw(ventana_tablero) for ren in range(40, 441, 50): for col in range(40, 441, 50): if ren == 40 or ren == 140 or ren == 240 or ren == 340: if col == 90 or col == 190 or col == 290 or col == 390: blancos(ren, col, ventana_tablero) elif ren == 90 or ren == 190 or ren == 290 or ren == 390: if col == 40 or col == 140 or col == 240 or col == 340: blancos(ren, col, ventana_tablero) letras = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H'] numeros = ['1', '2', '3', '4', '5', '6', '7', '8'] indices(letras, numeros, ventana_tablero) ventana_tablero.getMouse() ventana_tablero.close() return (None) ## print(f''' BIENVENIDOS A IMPOSSIBLE ESCAPE, EL RETO MATEMÁTICO. ESTE JUEGO ESTÁ DISEÑADO PARA DOS PERSONAS. ¡ASÍ QUE CONSIGUE UN COMPAÑERO! UNA VEZ LISTOS COMENCEMOS EL TUTORIAL...(ESCRIBE "LISTOS" PARA CONTINUAR) ''') salir = True while salir == True: respuesta = input() res_may = respuesta.upper() if res_may == 'LISTOS': print() print(''' -CARCELERO: Jejeje. Hola par de prisioneros, yo seré su carcelero. Ustedes dos han sido condenados a muerte; sin embargo, estoy dispuesto a darles una oportunidad de salir en libertad. La explicaré antes de ponerlos a prueba... DALE CLICK AL TABLERO PARA CONTINUAR''') salir = not(salir) crear_ventana() elif res_may == "SALIR": menu() else: print( '''PALABRA INCORRECTA. ESCRIBE "LISTOS" PARA CONTINUAR''') print(''' -CARCELERO: ¿Ven este tablero de ajedrez? Los separaré de modo que SÓLO UNO DE USTEDES PUEDA VER LA PANTALLA y asignaré la llave de las celdas a uno de los casilleros del tablero, mostrándole a quien se quedó conmigo la posición. ''') ventana_tablero_expo = crear_ventana_expo() print(''' ¿Están listos para intentarlo? A partir de este momento tienen todo el tiempo que deseen para desarrollar su estrategia. Una vez listos DENLE CLICK AL TABLERO PARA EMPEZAR.''') ventana_tablero_expo.getMouse() ventana_tablero_expo.close() print (''' -CARCELERO: Hola de nuevo prisioneros, en este momento uno de ustedes debe dejar la sala, de modo que no pueda ver la pantalla. CUANDO ESTÉS LISTO DALE CLICK AL TABLERO PARA CONTINUAR.''') crear_ventana() crear_ventana_real() menu() main() ```
{ "source": "jdclarke5/sylver", "score": 3 }
#### File: sylver/backend/postgres.py ```python from .backend import BaseBackend import psycopg2 from psycopg2 import sql class PostgresBackend(BaseBackend): def __init__(self, connection_string): """Initialise PostgreSQL connection with a valid libpq connection string. Create the `position`, `status`, and `reply` tables if they do not yet exist. """ self.conn = psycopg2.connect(connection_string) with self.conn: with self.conn.cursor() as c: c.execute(""" CREATE TABLE IF NOT EXISTS position ( name text PRIMARY KEY, generators integer[] NOT NULL, gcd integer NOT NULL, multiplicity integer NOT NULL, genus integer NOT NULL, frobenius integer NOT NULL, irreducible char (1) NULL );""") c.execute(""" CREATE TABLE IF NOT EXISTS status ( position text PRIMARY KEY, status varchar (2) NOT NULL );""") c.execute(""" CREATE TABLE IF NOT EXISTS reply ( position text NOT NULL, reply integer NOT NULL, CONSTRAINT uniquetuple UNIQUE (position, reply) );""") self.position_cols = ("name", "generators", "gcd", "multiplicity", "genus", "frobenius", "irreducible") def save(self, position, status, replies): """PostgreSQL implementation of BaseBackend method. """ position_dict = {"name": position.name, **position.to_dict()} # Position columns = sql.SQL(",").join(map(sql.Identifier, self.position_cols)) values = sql.SQL(",").join(map(sql.Placeholder, self.position_cols)) position_query = sql.SQL(""" INSERT INTO position ({columns}) VALUES ({values}) ON CONFLICT (name) DO NOTHING;""").format( columns=columns, values=values) # Status status_query = sql.SQL(""" INSERT INTO status (position, status) VALUES (%(name)s, {status}) ON CONFLICT (position) DO UPDATE SET status = EXCLUDED.status WHERE status.status != 'P' AND status.status != 'N'; """).format(status=sql.Literal(status)) # Reply reply_values = [sql.SQL("(%(name)s, {})").format(sql.Literal(r)) for r in replies] reply_query = sql.SQL(""" INSERT INTO reply (position, reply) VALUES {} ON CONFLICT ON CONSTRAINT uniquetuple DO NOTHING; """).format(sql.SQL(",").join(reply_values)) with self.conn: with self.conn.cursor() as c: c.execute(position_query, position_dict) c.execute(status_query, position_dict) if replies: c.execute(reply_query, position_dict) def get_status(self, position): """PostgreSQL implementation of BaseBackend method. """ query = "SELECT status FROM status WHERE position = %(name)s;" with self.conn: with self.conn.cursor() as c: c.execute(query, {"name": position.name}) result = c.fetchone() return result[0] if result else None ``` #### File: sylver/backend/redis.py ```python from .backend import BaseBackend import yaml import redis class RedisBackend(BaseBackend): def __init__(self, **kwargs): """Initialise Redis client by passing **kwargs to `redis.Redis`. """ self.redis = redis.Redis(**kwargs) def set(self, key, dictionary): """Set a python dictionary as a YAML string in Redis. Note that YAML is used because it supports sets. """ yaml_dictionary = yaml.dump(dictionary) self.redis.set(key, yaml_dictionary) def get(self, key): """Retrieve a python dictionary from a YAML string in Redis. Note that YAML is used because it supports sets. """ yaml_dictionary = self.redis.get(key) return yaml.safe_load(yaml_dictionary) if yaml_dictionary else None def save(self, position, status, replies): """Redis implementation of BaseBackend method. """ key = position.name existing = self.get(key) or {} entry = { **position.to_dict(), "status": status, "replies": existing.get("replies", set()).union(replies), } self.set(key, entry) def get_status(self, position): """Redis implementation of BaseBackend method. """ key = position.name existing = self.get(key) or {} return existing.get("status", None) ```
{ "source": "jdcla/transformer-xl", "score": 2 }
#### File: jdcla/transformer-xl/mem_transformer.py ```python import sys import math import functools import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from utils.proj_adaptive_softmax import ProjectedAdaptiveLogSoftmax from utils.log_uniform_sampler import LogUniformSampler, sample_logits class PositionalEmbedding(nn.Module): def __init__(self, demb): super(PositionalEmbedding, self).__init__() self.demb = demb inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb)) self.register_buffer('inv_freq', inv_freq) def forward(self, pos_seq, bsz=None): sinusoid_inp = torch.ger(pos_seq, self.inv_freq) pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1) if bsz is not None: return pos_emb[:, None, :].expand(-1, bsz, -1) else: return pos_emb[:, None, :] class RelMultiHeadAttn(nn.Module): def __init__(self, n_head, d_model, d_head, dropout, dropatt=0, conv_size=7, pre_conv=False, tgt_len=None, mem_len=None): super(RelMultiHeadAttn, self).__init__() self.n_head = n_head self.d_model = d_model self.d_head = d_head self.dropout = dropout self.pre_conv = pre_conv self.qkv_net = nn.Linear(d_model, 3 * n_head * d_head, bias=False) self.conv_size = conv_size if conv_size != 0: if self.pre_conv: self.pre_motif_net = nn.Conv1d(d_model, d_model, conv_size, padding=conv_size//2) else: self.motif_net_q = nn.Conv1d(d_head, d_head, conv_size, padding=conv_size//2) self.motif_net_k = nn.Conv1d(d_head, d_head, conv_size, padding=conv_size//2) self.motif_net_v = nn.Conv1d(d_head, d_head, conv_size, padding=conv_size//2) self.drop = nn.Dropout(dropout) self.dropatt = nn.Dropout(dropatt) self.o_net = nn.Linear(n_head * d_head, d_model, bias=False) self.layer_norm = nn.LayerNorm(d_model) self.scale = 1 / (d_head ** 0.5) def _parallelogram_mask(self, h, w, left=False): mask = torch.ones((h, w)).byte() m = min(h, w) mask[:m, :m] = torch.triu(mask[:m, :m]) mask[-m:, -m:] = torch.tril(mask[-m:, -m:]) if left: return mask else: return mask.flip(0) def _shift(self, x, qlen, klen, mask, left=False): if qlen > 1: zero_pad = torch.zeros((x.size(0), qlen - 1, x.size(2), x.size(3)), device=x.device, dtype=x.dtype) else: zero_pad = torch.zeros(0, device=x.device, dtype=x.dtype) if left: mask = mask.flip(1) x_padded = torch.cat([zero_pad, x], dim=1).expand(qlen, -1, -1, -1) else: x_padded = torch.cat([x, zero_pad], dim=1).expand(qlen, -1, -1, -1) x = x_padded.masked_select(mask[:, :, None, None]) \ .view(qlen, klen, x.size(2), x.size(3)) return x def _rel_shift(self, x, zero_triu=False): zero_pad = torch.zeros((x.size(0), 1, *x.size()[2:]), device=x.device, dtype=x.dtype) x_padded = torch.cat([zero_pad, x], dim=1) x_padded = x_padded.view(x.size(1) + 1, x.size(0), *x.size()[2:]) x = x_padded[1:].view_as(x) if zero_triu: ones = torch.ones((x.size(0), x.size(1))) x = x * torch.tril(ones, x.size(1) - x.size(0))[:, :, None, None] return x def forward(self, w, r, attn_mask=None, mems=None): raise NotImplementedError class RelPartialLearnableMultiHeadAttn(RelMultiHeadAttn): def __init__(self, *args, **kwargs): super(RelPartialLearnableMultiHeadAttn, self).__init__(*args, **kwargs) self.r_net = nn.Linear(self.d_model, self.n_head * self.d_head, bias=False) def forward(self, w, r, r_w_bias, r_r_bias, attn_mask=None, mems=None): qlen, rlen, bsz = w.size(0), r.size(0), w.size(1) if mems is not None: cat = torch.cat([mems, w], 0) if self.pre_conv and (self.conv_size > 0): cat = cat.permute(1,2,0).contiguous() cat = self.pre_motif_net(cat).permute(2,0,1) w_heads = self.qkv_net(cat) r_head_k = self.r_net(r) w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1) w_head_q = w_head_q[-qlen:] else: w_new = w if self.pre_conv and (self.conv_size > 0): w_new = w.permute(1,2,0).contiguous() w_new = self.pre_motif_net(w_new).permute(2,0,1) w_heads = self.qkv_net(w_new) r_head_k = self.r_net(r) w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1) klen = w_head_k.size(0) if (self.conv_size == 0) or self.pre_conv: w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head) # qlen x bsz x n_head x d_head w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head) # qlen x bsz x n_head x d_head w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head) # qlen x bsz x n_head x d_head else: w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head).permute(2,1,3,0) # qlen x bsz x n_head x d_head w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head).permute(2,1,3,0) # qlen x bsz x n_head x d_head w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head).permute(2,1,3,0) # qlen x bsz x n_head x d_head w_head_q = w_head_q.reshape(self.n_head * bsz, self.d_head, qlen) # qlen x bsz x n_head x d_head w_head_k = w_head_k.reshape(self.n_head * bsz, self.d_head, klen) # qlen x bsz x n_head x d_head w_head_v = w_head_v.reshape(self.n_head * bsz, self.d_head, klen) w_head_q = self.motif_net_q(w_head_q).view(self.n_head, bsz, self.d_head, qlen).permute(3,1,0,2) w_head_k = self.motif_net_k(w_head_k).view(self.n_head, bsz, self.d_head, klen).permute(3,1,0,2) w_head_v = self.motif_net_v(w_head_v).view(self.n_head, bsz, self.d_head, klen).permute(3,1,0,2) r_head_k = r_head_k.view(rlen, self.n_head, self.d_head) # qlen x n_head x d_head #### compute attention score # r_w_bias: n_head x d_head rw_head_q = w_head_q + r_w_bias # qlen x bsz x n_head x d_head AC = torch.einsum('ibnd,jbnd->ijbn', (rw_head_q, w_head_k)) # qlen x klen x bsz x n_head # r_r_bias: n_head x d_head rr_head_q = w_head_q + r_r_bias BD = torch.einsum('ibnd,jnd->ijbn', (rr_head_q, r_head_k)) # qlen x klen x bsz x n_head BD = self._rel_shift(BD) # [qlen x klen x bsz x n_head] attn_score = AC + BD attn_score.mul_(self.scale) #### compute attention probability if attn_mask is not None and attn_mask.any().item(): if attn_mask.dim() == 2: attn_score = attn_score.float().masked_fill( attn_mask[None, :, :, None], -float('inf')).type_as(attn_score) elif attn_mask.dim() == 3: attn_score = attn_score.float().masked_fill( attn_mask[:, :, :, None], -float('inf')).type_as(attn_score) # [qlen x klen x bsz x n_head] self.attn_prob = F.softmax(attn_score, dim=1) attn_prob = self.dropatt(self.attn_prob) #### compute attention vector attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, w_head_v)) # [qlen x bsz x n_head x d_head] attn_vec = attn_vec.contiguous().view( attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head) ##### linear projection attn_out = self.o_net(attn_vec) attn_out = self.drop(attn_out) ##### residual connection + layer normalization output = self.layer_norm(w + attn_out) return output class RelPartialLearnableDecoderLayer(nn.Module): def __init__(self, n_head, d_model, d_head, d_inner, dropout, **kwargs): super(RelPartialLearnableDecoderLayer, self).__init__() self.dec_attn = RelPartialLearnableMultiHeadAttn(n_head, d_model, d_head, dropout, **kwargs) def forward(self, dec_inp, r, r_w_bias, r_r_bias, dec_attn_mask=None, mems=None): output = self.dec_attn(dec_inp, r, r_w_bias, r_r_bias, attn_mask=dec_attn_mask, mems=mems) return output class AdaptiveEmbedding(nn.Module): def __init__(self, n_token, d_embed, d_proj, cutoffs): super().__init__() self.n_token = n_token self.d_embed = d_embed self.cutoffs = cutoffs + [n_token] self.d_proj = d_proj self.emb_scale = d_proj ** 0.5 self.cutoff_ends = [0] + self.cutoffs self.emb_layers = nn.ModuleList() self.emb_projs = nn.ParameterList() self.emb_layers.append( nn.Embedding(n_token, d_embed, sparse=False) ) if d_proj != d_embed: self.emb_projs.append(nn.Parameter(torch.Tensor(d_proj, d_embed))) def forward(self, inp): embed = self.emb_layers[0](inp) # inp: qlen x bs -> embed: qlen x bs x d_embed if self.d_proj != self.d_embed: embed = F.linear(embed, self.emb_projs[0]) embed.mul_(self.emb_scale) return embed class ConvEmbeddings(nn.Module): def __init__(self, n_token, d_embed, d_proj, conv_size, cutoffs): super().__init__() self.n_token = n_token self.d_embed = d_embed self.cutoffs = cutoffs + [n_token] self.d_proj = d_proj self.emb_scale = d_proj ** 0.5 self.cutoff_ends = [0] + self.cutoffs self.emb_layers = nn.ModuleList() self.emb_projs = nn.ParameterList() self.emb_layers.append( nn.Conv1d(4, d_embed, conv_size, padding=conv_size//2) ) if d_proj != d_embed: self.emb_projs.append(nn.Parameter(torch.Tensor(d_proj, d_embed))) def forward(self, inp): embed = self.emb_layers[0](inp.permute(1,2,0).contiguous()).permute(2,0,1).contiguous() if self.d_proj != self.d_embed: embed = F.linear(embed, self.emb_projs[0]) embed.mul_(self.emb_scale) return embed class MemTransformerLM(nn.Module): def __init__(self, n_token_in, n_token_out, n_layer, n_head, d_model, d_head, d_inner, dropout, dropatt, conv_size=7, conv_emb=False, pre_conv=False, tie_weight=True, d_embed=None, tie_projs=[False], tgt_len=None, mem_len=None, ext_ds=None, cutoffs=[], same_length=False, clamp_len=-1): super().__init__() self.n_token_in = n_token_in self.n_token_out = n_token_out d_embed = d_model if d_embed is None else d_embed self.d_embed = d_embed self.d_model = d_model self.n_head = n_head self.d_head = d_head self.conv_size = conv_size self.pre_conv = pre_conv self.conv_emb = conv_emb if conv_emb: self.word_emb = ConvEmbeddings(n_token_in, d_embed, d_model, conv_size, cutoffs,) else: self.word_emb = AdaptiveEmbedding(n_token_in, d_embed, d_model, cutoffs,) self.drop = nn.Dropout(dropout) self.n_layer = n_layer self.tgt_len = tgt_len self.mem_len = mem_len self.ext_ds = ext_ds self.max_klen = tgt_len + mem_len self.layers = nn.ModuleList() for i in range(n_layer): self.layers.append( RelPartialLearnableDecoderLayer( n_head, d_model, d_head, d_inner, dropout, conv_size=conv_size, pre_conv=pre_conv, tgt_len=tgt_len, mem_len=mem_len, dropatt=dropatt) ) self.out_layer = nn.Linear(d_model, n_token_out) # use adaptive softmax (including standard softmax) self.crit = ProjectedAdaptiveLogSoftmax(n_token_out, d_embed, d_model, cutoffs) if tie_weight: for i in range(len(self.crit.out_layers)): self.crit.out_layers[i].weight = self.word_emb.emb_layers[i].weight if tie_projs: for i, tie_proj in enumerate(tie_projs): if tie_proj and d_model != d_embed: self.crit.out_projs[i] = self.word_emb.emb_projs[0] elif tie_proj: self.crit.out_projs[i] = self.word_emb.emb_projs[i] self.same_length = same_length self.clamp_len = clamp_len self._create_params() def _create_params(self): self.pos_emb = PositionalEmbedding(self.d_model) self.r_w_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head)) self.r_r_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head)) def reset_length(self, tgt_len, mem_len, ext_ds): self.tgt_len = tgt_len self.mem_len = mem_len self.ext_ds = ext_ds def init_mems(self): if self.mem_len > 0: mems = [] param = next(self.parameters()) for i in range(self.n_layer + 1): empty = torch.empty(0, dtype=param.dtype, device=param.device) mems.append(empty) return mems else: return None def _update_mems(self, hids, mems, qlen, mlen): # does not deal with None if mems is None: return None # mems is not None assert len(hids) == len(mems), 'len(hids) != len(mems)' # There are `mlen + qlen` steps that can be cached into mems # For the next step, the last `ext_len` of the `qlen` tokens # will be used as the extended context. Hence, we only cache # the tokens from `mlen + qlen - self.ext_len - self.mem_len` # to `mlen + qlen - self.ext_len`. with torch.no_grad(): new_mems = [] end_idx = mlen + qlen beg_idx = max(0, end_idx - self.mem_len) for i in range(len(hids)): cat = torch.cat([mems[i], hids[i]], dim=0) new_mems.append(cat[beg_idx:end_idx].detach()) return new_mems def _forward(self, dec_inp, mems=None): if self.conv_emb: qlen, bsz, _ = dec_inp.size() else: qlen, bsz = dec_inp.size() word_emb = self.word_emb(dec_inp) mlen = mems[0].size(0) if mems is not None else 0 klen = mlen + qlen if self.same_length: all_ones = word_emb.new_ones(qlen, klen) mask_len = klen - self.mem_len if mask_len > 0: mask_shift_len = qlen - mask_len else: mask_shift_len = qlen dec_attn_mask = (torch.triu(all_ones, 1 + mlen) + torch.tril(all_ones, -mask_shift_len)).byte()[:, :, None].type(torch.bool) # -1 else: dec_attn_mask = torch.triu(word_emb.new_ones(qlen, klen), diagonal=1 + mlen + self.ext_ds).byte()[:, :, None].type(torch.bool) hids = [] ## attn pos_seq = torch.arange(klen - 1, -1, -1.0, device=word_emb.device, dtype=word_emb.dtype) if self.clamp_len > 0: pos_seq.clamp_(max=self.clamp_len) pos_emb = self.pos_emb(pos_seq) core_out = self.drop(word_emb) pos_emb = self.drop(pos_emb) hids.append(core_out) for i, layer in enumerate(self.layers): mems_i = None if mems is None else mems[i] core_out = layer(core_out, pos_emb, self.r_w_bias, self.r_r_bias, dec_attn_mask=dec_attn_mask, mems=mems_i) hids.append(core_out) ## core_out = self.drop(core_out) new_mems = self._update_mems(hids, mems, mlen, qlen) return core_out, new_mems def forward(self, data, target, *mems, criterion=None, last=False): # nn.DataParallel does not allow size(0) tensors to be broadcasted. # So, have to initialize size(0) mems inside the model forward. # Moreover, have to return new_mems to allow nn.DataParallel to piece # them together. tgt_len = target.size(0) if not mems: mems = self.init_mems() if self.same_length and not last: tgt_len_adj = tgt_len - (self.ext_ds) else: tgt_len_adj = tgt_len target = target[:tgt_len_adj] hidden, new_mems = self._forward(data, mems=mems) if new_mems is not None: new_mems = [mem[:tgt_len_adj] for mem in new_mems] pred_hid = hidden[:tgt_len_adj] # do not evaluate scores downstream """loss, logit = self.crit(pred_hid.view(-1, pred_hid.size(-1)), target.view(-1), criterion) loss = loss.view(tgt_len, -1)""" logit = self.out_layer(pred_hid.view(-1, pred_hid.size(-1))) if criterion is None: loss = -F.log_softmax(logit, dim=-1) \ .gather(1, target.view(-1).unsqueeze(1)).squeeze(1) # Problem with gather for merge else: loss = criterion(logit, target.view(-1)) logits = [logit] targets = [target] targets = [t.view(-1).cpu().data.numpy() for t in targets] preds = [F.softmax(lgt, dim=1).cpu().data.numpy() for lgt in logits] if new_mems is None: return [loss] + [preds] + [targets] else: return [loss] + [preds] + [targets] + new_mems ```
{ "source": "jdcloud-apigateway/jdcloud-sdk-python", "score": 2 }
#### File: baseanti/models/InternalAttackLog.py ```python class InternalAttackLog(object): def __init__(self, ip=None, attackLogId=None, startTime=None, endTime=None, attackStatus=None): """ :param ip: (Optional) 公网 IP 地址 :param attackLogId: (Optional) 攻击记录 ID :param startTime: (Optional) 攻击开始时间, UTC 时间, 格式: yyyy-MM-dd'T'HH:mm:ssZ :param endTime: (Optional) 攻击结束时间, UTC 时间, 格式: yyyy-MM-dd'T'HH:mm:ssZ :param attackStatus: (Optional) normal: 正常, unregister: 未备案, illegalmail: 非法邮件, clean: 超阈值, blackhole: 黑洞 """ self.ip = ip self.attackLogId = attackLogId self.startTime = startTime self.endTime = endTime self.attackStatus = attackStatus ``` #### File: billing/apis/CalculateTotalPriceRequest.py ```python from jdcloud_sdk.core.jdcloudrequest import JDCloudRequest class CalculateTotalPriceRequest(JDCloudRequest): """ 查询计费价格信息 """ def __init__(self, parameters, header=None, version="v1"): super(CalculateTotalPriceRequest, self).__init__( '/regions/{regionId}/calculateTotalPrice', 'POST', header, version) self.parameters = parameters class CalculateTotalPriceParameters(object): def __init__(self, regionId, cmd, packageCount, ): """ :param regionId: :param cmd: 操作类型 1:创建 2:续费 3:升配 4:删除 :param packageCount: 批量购买时数量 """ self.regionId = regionId self.cmd = cmd self.orderList = None self.operateTime = None self.promotionInfo = None self.clientType = None self.packageCount = packageCount self.processType = None self.renewMode = None self.unifyExpireDay = None self.totalPriceRule = None def setOrderList(self, orderList): """ :param orderList: (Optional) 计算价格的订单 """ self.orderList = orderList def setOperateTime(self, operateTime): """ :param operateTime: (Optional) 操作时间(格式为:yyyy-MM-dd HH:mm:ss) """ self.operateTime = operateTime def setPromotionInfo(self, promotionInfo): """ :param promotionInfo: (Optional) 1:折扣(不需要传) 2:免费活动3:付费活动 4:推荐码 5:会员价 [{"promotionType":1,"activityCode":123},{"promotionType":2,"activityCode":}] """ self.promotionInfo = promotionInfo def setClientType(self, clientType): """ :param clientType: (Optional) 客户端:1.PC端;2.移动端; """ self.clientType = clientType def setProcessType(self, processType): """ :param processType: (Optional) 临时升配时必传,3-临时升配 """ self.processType = processType def setRenewMode(self, renewMode): """ :param renewMode: (Optional) 续费方式 0:正常续费 1:续费至统一到期日,续费时必传 """ self.renewMode = renewMode def setUnifyExpireDay(self, unifyExpireDay): """ :param unifyExpireDay: (Optional) 续费统一到期日(1-28),续费时必传 """ self.unifyExpireDay = unifyExpireDay def setTotalPriceRule(self, totalPriceRule): """ :param totalPriceRule: (Optional) 计算总价规则 1:计算预付费资源总价(计费类型为包年包月、按次) ;不传计算所有资源总价 """ self.totalPriceRule = totalPriceRule ``` #### File: billing/models/AccountingRuleVo.py ```python class AccountingRuleVo(object): def __init__(self, id=None, site=None, appCode=None, targetType=None, serviceCode=None, pin=None, outAccountType=None, outAccountDay=None, timeCron=None, targetTypeName=None, appCodeName=None, serviceCodeName=None, outAccountTypeName=None): """ :param id: (Optional) id :param site: (Optional) 站点 :param appCode: (Optional) 产品线 :param targetType: (Optional) 出账对象类型 1:通用 2:用户 :param serviceCode: (Optional) 产品 :param pin: (Optional) pin :param outAccountType: (Optional) 出账类型 1:实时出账 2:定期出账 :param outAccountDay: (Optional) 出账周期:限制范围 1-28 :param timeCron: (Optional) 定期出账 时间表达式 :param targetTypeName: (Optional) 出账对象类型名称 :param appCodeName: (Optional) 产品线名称 :param serviceCodeName: (Optional) 产品名称 :param outAccountTypeName: (Optional) 出账类型名称 """ self.id = id self.site = site self.appCode = appCode self.targetType = targetType self.serviceCode = serviceCode self.pin = pin self.outAccountType = outAccountType self.outAccountDay = outAccountDay self.timeCron = timeCron self.targetTypeName = targetTypeName self.appCodeName = appCodeName self.serviceCodeName = serviceCodeName self.outAccountTypeName = outAccountTypeName ``` #### File: billing/models/OrderPriceProtocol.py ```python class OrderPriceProtocol(object): def __init__(self, resourceId=None, appCode=None, serviceCode=None, site=None, region=None, billingType=None, timeSpan=None, timeUnit=None, networkOperator=None, formula=None, formulaStr=None, pin=None, count=None, startTime=None, endTime=None, taskId=None, sourceId=None): """ :param resourceId: (Optional) 资源id(新购时不传,升降配、续费必须传) :param appCode: (Optional) 业务线 :param serviceCode: (Optional) 产品线(必传) :param site: (Optional) 站点信息 0:主站 其他:专有云 :param region: (Optional) 地域(新购、升降配必传) :param billingType: (Optional) 计费类型 1:按配置 2:按用量 3:包年包月(必传) 4:按次计费 :param timeSpan: (Optional) 时长(包年包月新购、续费必传) :param timeUnit: (Optional) 时长类型 0:无(非包年包月) 1:小时 2:天 3:月 4:年(包年包月新购、续费必传) :param networkOperator: (Optional) 网络类型 0:non 1:非BGP 2:BGP :param formula: (Optional) 计算公式(配置细项)(新购、升降配必传) :param formulaStr: (Optional) 配置细项 :param pin: (Optional) 用户pin :param count: (Optional) 具体商品数量,默认为1 :param startTime: (Optional) 订单开始时间 :param endTime: (Optional) 临时升配结束时间,临时升配时必传 :param taskId: (Optional) 自然单列表 :param sourceId: (Optional) 交易单模块sourceId """ self.resourceId = resourceId self.appCode = appCode self.serviceCode = serviceCode self.site = site self.region = region self.billingType = billingType self.timeSpan = timeSpan self.timeUnit = timeUnit self.networkOperator = networkOperator self.formula = formula self.formulaStr = formulaStr self.pin = pin self.count = count self.startTime = startTime self.endTime = endTime self.taskId = taskId self.sourceId = sourceId ``` #### File: billing/models/ResourceStopDeleteRuleVo.py ```python class ResourceStopDeleteRuleVo(object): def __init__(self, id=None, site=None, appCode=None, appCodeName=None, serviceCode=None, serviceCodeName=None, ruleType=None, pin=None, arrearStop=None, arrearStopDelayHours=None, arrearDelete=None, arrearDeleteDelayHours=None, expireStop=None, expireStopDelayHours=None, expireDelete=None, expireDeleteDelayHours=None, createTime=None, arrearDeleteType=None, expireDeleteType=None, flowArrearStop=None, flowArrearStopDelayHours=None, flowArrearDelete=None, flowArrearDeleteDelayHours=None, flowArrearDeleteType=None, clientType=None): """ :param id: (Optional) 主键 :param site: (Optional) 站点 :param appCode: (Optional) 产品线编码 :param appCodeName: (Optional) 产品线名称 :param serviceCode: (Optional) 产品编码 :param serviceCodeName: (Optional) 产品名称 :param ruleType: (Optional) 规则类型 1:试用规则 2、用户产品规则 3:用户规则 4:产品规则 5:通用规则 6:用户等级产品规则 :param pin: (Optional) pin :param arrearStop: (Optional) 按配置欠费是否停服 1:欠费需要停服 0:欠费不需要停服 :param arrearStopDelayHours: (Optional) 按配置欠费停服延后时长 :param arrearDelete: (Optional) 按配置欠费停服是否释放资源 1:需要释放资源 0:不需要释放资源 :param arrearDeleteDelayHours: (Optional) 按配置欠费停服释放资源延后时长 :param expireStop: (Optional) 到期是否停服 1:到期需要停服 0:到期不需要停服 :param expireStopDelayHours: (Optional) 到期停服延后时长 :param expireDelete: (Optional) 到期停服是否释放资源 1:需要释放资源 0:不需要释放资源 :param expireDeleteDelayHours: (Optional) 到期停服释放资源延后时长 :param createTime: (Optional) 创建时间 :param arrearDeleteType: (Optional) 按配置欠费释放类型 1:释放资源 2:释放数据 :param expireDeleteType: (Optional) 到期释放类型 1:释放资源 2:释放数据 :param flowArrearStop: (Optional) 按用量欠费是否停服 1:欠费需要停服 0:欠费不需要停服 :param flowArrearStopDelayHours: (Optional) 按用量欠费停服延后时长 :param flowArrearDelete: (Optional) 按用量欠费停服是否释放资源 1:需要释放资源 0:不需要释放资源 :param flowArrearDeleteDelayHours: (Optional) 按用量欠费停服释放资源延后时长 :param flowArrearDeleteType: (Optional) 按用量欠费释放类型 1:释放资源 2:释放数据 :param clientType: (Optional) 客户级别 1-普通客户 2-VIP客户 """ self.id = id self.site = site self.appCode = appCode self.appCodeName = appCodeName self.serviceCode = serviceCode self.serviceCodeName = serviceCodeName self.ruleType = ruleType self.pin = pin self.arrearStop = arrearStop self.arrearStopDelayHours = arrearStopDelayHours self.arrearDelete = arrearDelete self.arrearDeleteDelayHours = arrearDeleteDelayHours self.expireStop = expireStop self.expireStopDelayHours = expireStopDelayHours self.expireDelete = expireDelete self.expireDeleteDelayHours = expireDeleteDelayHours self.createTime = createTime self.arrearDeleteType = arrearDeleteType self.expireDeleteType = expireDeleteType self.flowArrearStop = flowArrearStop self.flowArrearStopDelayHours = flowArrearStopDelayHours self.flowArrearDelete = flowArrearDelete self.flowArrearDeleteDelayHours = flowArrearDeleteDelayHours self.flowArrearDeleteType = flowArrearDeleteType self.clientType = clientType ``` #### File: captcha/models/Trial.py ```python class Trial(object): def __init__(self, appId=None, sceneId=None, secret=None, supports=None, captchaType=None, captchaName=None): """ :param appId: (Optional) 应用id :param sceneId: (Optional) 场景id :param secret: (Optional) 场景secret,前端调用时需要先解密再调用,解密请联系相关研发 :param supports: (Optional) 支持的APP类型,有的验证码类型不支持pc端体验,需要切换到移动端体验, eg["pc","m"] :param captchaType: (Optional) 验证码类型 :param captchaName: (Optional) 验证码名称 """ self.appId = appId self.sceneId = sceneId self.secret = secret self.supports = supports self.captchaType = captchaType self.captchaName = captchaName ``` #### File: censor/apis/AsyncVideoScanV2Request.py ```python from jdcloud_sdk.core.jdcloudrequest import JDCloudRequest class AsyncVideoScanV2Request(JDCloudRequest): """ 提交视频异步检测任务V2 """ def __init__(self, parameters, header=None, version="v1"): super(AsyncVideoScanV2Request, self).__init__( '/video:asyncscanv2', 'POST', header, version) self.parameters = parameters class AsyncVideoScanV2Parameters(object): def __init__(self, ): """ """ self.bizType = None self.url = None self.dataId = None self.version = None self.title = None self.callback = None self.callbackUrl = None self.uniqueKey = None self.scFrequency = None self.advancedFrequency = None def setBizType(self, bizType): """ :param bizType: (Optional) 业务bizType,请联系客户经理获取 """ self.bizType = bizType def setUrl(self, url): """ :param url: (Optional) 最大长度512, 点播视频地址 """ self.url = url def setDataId(self, dataId): """ :param dataId: (Optional) 最大长度128,点播视频唯一标识 """ self.dataId = dataId def setVersion(self, version): """ :param version: (Optional) 接口版本号,可选值 v3.2 """ self.version = version def setTitle(self, title): """ :param title: (Optional) 最大长度512,视频名称 """ self.title = title def setCallback(self, callback): """ :param callback: (Optional) 最大长度512,数据回调参数,产品根据业务情况自行设计,当获取离线检测结果时,内容安全服务会返回该字段 """ self.callback = callback def setCallbackUrl(self, callbackUrl): """ :param callbackUrl: (Optional) 最大长度256,离线结果回调通知到客户的URL。主动回调数据接口超时时间设置为2s,为了保证顺利接收数据,需保证接收接口性能稳定并且保证幂等性。 """ self.callbackUrl = callbackUrl def setUniqueKey(self, uniqueKey): """ :param uniqueKey: (Optional) 最大长度64,客户个性化视频唯一性标识,传入后,将以此值作为重复检测依据,若不传,默认以URL作为查重依据,如果重复提交会被拒绝,返回报错信息请求重复,以及原提交taskID值,具体返回请查看响应示例 """ self.uniqueKey = uniqueKey def setScFrequency(self, scFrequency): """ :param scFrequency: (Optional) 最大长度64,客户个性化视频唯一性标识,传入后,将以此值作为重复检测依据,若不传,默认以URL作为查重依据,如果重复提交会被拒绝,返回报错信息请求重复,以及原提交taskID值,具体返回请查看响应示例 """ self.scFrequency = scFrequency def setAdvancedFrequency(self, advancedFrequency): """ :param advancedFrequency: (Optional) 高级截帧设置,此项填写,默认截帧策略失效 """ self.advancedFrequency = advancedFrequency ``` #### File: censor/models/EvidenceItem.py ```python class EvidenceItem(object): def __init__(self, beginTime=None, endTime=None, type=None, url=None, censorSource=None, labels=None, frontPics=None, backPics=None): """ :param beginTime: (Optional) 证据开始相对时间,单位为毫秒,调用方获取后可自行格式化为可视化时间,如:149000 转换为"00:02:29" :param endTime: (Optional) 证据结束相对时间,单位为毫秒,调用方获取后可自行格式化为可视化时间,如:149000 转换为"00:02:29" :param type: (Optional) 1:图片,2:视频 :param url: (Optional) 证据信息 :param censorSource: (Optional) 审核来源,0:京东人审,1:客户人审,2:京东机审 :param labels: (Optional) 证据结果数组 :param frontPics: (Optional) 关联信息-命中前截图信息 :param backPics: (Optional) 关联信息-命中后截图信息 """ self.beginTime = beginTime self.endTime = endTime self.type = type self.url = url self.censorSource = censorSource self.labels = labels self.frontPics = frontPics self.backPics = backPics ``` #### File: censor/models/FaceContentItem.py ```python class FaceContentItem(object): def __init__(self, name=None, gender=None, age=None, type=None, category=None, x1=None, y1=None, x2=None, y2=None): """ :param name: (Optional) 人脸名字,不可识别则为空 :param gender: (Optional) 人脸性别,值为男(male)、女(female);不可识别则为空 :param age: (Optional) 人脸年龄,值为具体年龄(age);不可识别则为空 :param type: (Optional) 人脸类型,包含卡通脸(cartoon)、普通(normal) :param category: (Optional) 人物分类,包含名人(star)、普通(normal) :param x1: (Optional) 人脸位置信息,对应人脸矩形左上角横坐标相对坐标 :param y1: (Optional) 人脸位置信息,对应人脸矩形左上角纵坐标相对坐标 :param x2: (Optional) 人脸位置信息,对应人脸矩形右下角横坐标相对坐标 :param y2: (Optional) 人脸位置信息,对应人脸矩形右下角纵坐标相对坐标 """ self.name = name self.gender = gender self.age = age self.type = type self.category = category self.x1 = x1 self.y1 = y1 self.x2 = x2 self.y2 = y2 ``` #### File: live/apis/UpdateLiveForwardTaskRequest.py ```python from jdcloud_sdk.core.jdcloudrequest import JDCloudRequest class UpdateLiveForwardTaskRequest(JDCloudRequest): """ 更新直播拉流转推任务 """ def __init__(self, parameters, header=None, version="v1"): super(UpdateLiveForwardTaskRequest, self).__init__( '/LiveForwardTask:update', 'POST', header, version) self.parameters = parameters class UpdateLiveForwardTaskParameters(object): def __init__(self, taskId, ): """ :param taskId: 任务ID """ self.taskId = taskId self.sourceUrl = None self.pushUrl = None self.startTime = None self.endTime = None self.callbackEvents = None self.callbackUrl = None self.name = None def setSourceUrl(self, sourceUrl): """ :param sourceUrl: (Optional) 拉流地址 - 支持rtmp """ self.sourceUrl = sourceUrl def setPushUrl(self, pushUrl): """ :param pushUrl: (Optional) 转推地址 - 支持rtmp """ self.pushUrl = pushUrl def setStartTime(self, startTime): """ :param startTime: (Optional) 开始时间 - UTC时间, ISO8601示例:2021-07-26T08:08:08Z - 不填表示立即开始 """ self.startTime = startTime def setEndTime(self, endTime): """ :param endTime: (Optional) 结束时间 - UTC时间, ISO8601示例:2021-07-26T08:08:08Z - 最大支持365天,与开始时间间隔不超过7天。 - 不填拉不到流10分钟自动结束 """ self.endTime = endTime def setCallbackEvents(self, callbackEvents): """ :param callbackEvents: (Optional) 回调类型 - 不填发送全部回调 - TaskStart 任务开始 - TaskExit 任务结束 - callbackUrl非空的情况下,callbackEvents有效 """ self.callbackEvents = callbackEvents def setCallbackUrl(self, callbackUrl): """ :param callbackUrl: (Optional) 事件回调地址 """ self.callbackUrl = callbackUrl def setName(self, name): """ :param name: (Optional) 任务名称 - 最大255字符 """ self.name = name ``` #### File: privatezone/apis/CreateZoneRequest.py ```python from jdcloud_sdk.core.jdcloudrequest import JDCloudRequest class CreateZoneRequest(JDCloudRequest): """ - 添加一个私有解析的zone,可添加以下三种类型的zone - 云内全局zone:zone的后缀是指定的后缀,如:local。该域名在云内自动全局生效,不用关联vpc即可在vpc内解析,该类型全局唯一,不能重复添加 - 反向解析zone:zone的后缀是in-addr.arpa时,我们认为他是一个反向解析的zone,反向解析域名前缀目前支持10/172.16-31/192.168网段,如:10.in-addr.arpa、16.172.in-addr.arpa。反向解析的zone只能添加反向解析的记录 - 私有解析zone:该类型的zone可以时任意符合格式的域名,私有解析zone需要关联vpc后,在vpc内生效解析 """ def __init__(self, parameters, header=None, version="v1"): super(CreateZoneRequest, self).__init__( '/regions/{regionId}/zones', 'POST', header, version) self.parameters = parameters class CreateZoneParameters(object): def __init__(self, regionId, zone, instanceId, zoneType, ): """ :param regionId: 地域ID :param zone: zone :param instanceId: 购买的套餐实例ID :param zoneType: 域名类型 LOCAL->云内全局 PTR->反向解析zone PV->私有zone """ self.regionId = regionId self.zone = zone self.instanceId = instanceId self.zoneType = zoneType self.retryRecurse = None self.bindVpc = None def setRetryRecurse(self, retryRecurse): """ :param retryRecurse: (Optional) 解析失败后是否进行递归解析 """ self.retryRecurse = retryRecurse def setBindVpc(self, bindVpc): """ :param bindVpc: (Optional) 绑定的vpc信息 """ self.bindVpc = bindVpc ``` #### File: privatezone/models/DescribePacksRes.py ```python class DescribePacksRes(object): def __init__(self, packType=None, packName=None, price=None, sla=None, bindVpcNum=None, domainLevel=None, rrAuthorExport=None, rrNum=None, zoneLevel=None, zoneNumMin=None, zoneNumMax=None, durationMin=None, durationMax=None, durationUnit=None): """ :param packType: (Optional) 套餐类型 :param packName: (Optional) 套餐名称 :param price: (Optional) 价格 :param sla: (Optional) 服务级别协议 :param bindVpcNum: (Optional) 绑定vpc数量 :param domainLevel: (Optional) 域名等级 :param rrAuthorExport: (Optional) 导出解析记录权限 :param rrNum: (Optional) 解析记录数量 :param zoneLevel: (Optional) zone级别 :param zoneNumMin: (Optional) zone最小数量 :param zoneNumMax: (Optional) zone最大数量 :param durationMin: (Optional) 最小时长 :param durationMax: (Optional) 最大时长 :param durationUnit: (Optional) 时长单位 """ self.packType = packType self.packName = packName self.price = price self.sla = sla self.bindVpcNum = bindVpcNum self.domainLevel = domainLevel self.rrAuthorExport = rrAuthorExport self.rrNum = rrNum self.zoneLevel = zoneLevel self.zoneNumMin = zoneNumMin self.zoneNumMax = zoneNumMax self.durationMin = durationMin self.durationMax = durationMax self.durationUnit = durationUnit ``` #### File: privatezone/models/DescribeResourceRecordsRes.py ```python class DescribeResourceRecordsRes(object): def __init__(self, id=None, hostRecord=None, hostValue=None, recordType=None, ttl=None, priority=None, port=None, weight=None, createTime=None, updateTime=None, status=None): """ :param id: (Optional) 解析记录id :param hostRecord: (Optional) 主机记录 :param hostValue: (Optional) 主机记录值 :param recordType: (Optional) 解析类型,目前支持类型 A AAAA CNAME TXT CAA SRV MX PTR :param ttl: (Optional) TTL值 :param priority: (Optional) 优先级,只存在于MX, SRV解析记录类型 :param port: (Optional) 端口,只存在于SRV解析记录类型 :param weight: (Optional) 解析记录的权重 :param createTime: (Optional) 创建时间, UTC时间格式,例如2017-11-10T23:00:00Z :param updateTime: (Optional) :param status: (Optional) 解析状态 START->正在解析 STOP->停止解析 """ self.id = id self.hostRecord = hostRecord self.hostValue = hostValue self.recordType = recordType self.ttl = ttl self.priority = priority self.port = port self.weight = weight self.createTime = createTime self.updateTime = updateTime self.status = status ``` #### File: redis/models/SpecInfo.py ```python class SpecInfo(object): def __init__(self, memoryGB=None, instanceClass=None, cpu=None, diskGB=None, maxConnection=None, bandwidthMbps=None, ipNumber=None, shard=None, azs=None): """ :param memoryGB: (Optional) 内存大小(GB) :param instanceClass: (Optional) 实例规格,标准版不为空,4.0 自定义分片集群版规格为空,具体规格参考单分片规格 :param cpu: (Optional) 实例CPU核数,0表示自定义分片集群版规格,CPU核数由分片数变化 :param diskGB: (Optional) 实例磁盘大小(GB),0表示自定义分片集群版规格,磁盘大小由分片数变化 :param maxConnection: (Optional) 最大连接数,0表示自定义分片集群版规格,最大连接数由分片数变化 :param bandwidthMbps: (Optional) 带宽(Mbps),0表示自定义分片集群版规格,带宽由分片数变化 :param ipNumber: (Optional) 需要的IP数,0表示自定义分片集群版规格,IP数由分片数变化 :param shard: (Optional) 实例的分片列表信息,redis 2.8标准版、集群版以及redis 4.0标准版没有分片列表信息 :param azs: (Optional) az列表 """ self.memoryGB = memoryGB self.instanceClass = instanceClass self.cpu = cpu self.diskGB = diskGB self.maxConnection = maxConnection self.bandwidthMbps = bandwidthMbps self.ipNumber = ipNumber self.shard = shard self.azs = azs ``` #### File: starshield/apis/CreatePageRuleRequest.py ```python from jdcloud_sdk.core.jdcloudrequest import JDCloudRequest class CreatePageRuleRequest(JDCloudRequest): """ 创建页面规则 """ def __init__(self, parameters, header=None, version="v1"): super(CreatePageRuleRequest, self).__init__( '/zones/{zone_identifier}/pagerules', 'POST', header, version) self.parameters = parameters class CreatePageRuleParameters(object): def __init__(self, zone_identifier, ): """ :param zone_identifier: """ self.zone_identifier = zone_identifier self.targets = None self.actions = None self.priority = None self.status = None def setTargets(self, targets): """ :param targets: (Optional) 根据请求评估的目标 """ self.targets = targets def setActions(self, actions): """ :param actions: (Optional) 如果此规则的目标与请求匹配,则要执行的操作集。操作可以将url重定向到另一个url或覆盖设置(但不能同时覆盖两者) """ self.actions = actions def setPriority(self, priority): """ :param priority: (Optional) 一个数字,表示一个页面规则优先于另一个页面规则。 如果您可能有一个全面的页面规则(例如#1 “/images/”) 但是想要更具体的规则优先(例如#2 '/images/special/'), 您需要在后者(#2)上指定更高的优先级,以便它将覆盖第一个优先级。 """ self.priority = priority def setStatus(self, status): """ :param status: (Optional) 页面规则的状态 """ self.status = status ``` #### File: starshield/apis/ListZonesRequest.py ```python from jdcloud_sdk.core.jdcloudrequest import JDCloudRequest class ListZonesRequest(JDCloudRequest): """ 列出、搜索、排序和筛选您的域 """ def __init__(self, parameters, header=None, version="v1"): super(ListZonesRequest, self).__init__( '/zones', 'GET', header, version) self.parameters = parameters class ListZonesParameters(object): def __init__(self, ): """ """ self.match = None self.name = None self.__account__name = None self.order = None self.page = None self.per_page = None self.status = None self.__account__id = None self.direction = None def setMatch(self, match): """ :param match: (Optional) 是否匹配所有搜索要求或至少一个(任何) """ self.match = match def setName(self, name): """ :param name: (Optional) 域名 """ self.name = name def set__account__name(self, __account__name): """ :param __account__name: (Optional) 帐户名 """ self.__account__name = __account__name def setOrder(self, order): """ :param order: (Optional) 按字段对域进行排序 """ self.order = order def setPage(self, page): """ :param page: (Optional) 分页结果的页码 """ self.page = page def setPer_page(self, per_page): """ :param per_page: (Optional) 每页的域数 """ self.per_page = per_page def setStatus(self, status): """ :param status: (Optional) 域的状态 """ self.status = status def set__account__id(self, __account__id): """ :param __account__id: (Optional) 帐户标识符标签 """ self.__account__id = __account__id def setDirection(self, direction): """ :param direction: (Optional) asc - 升序;desc - 降序 """ self.direction = direction ``` #### File: starshield/apis/UpdateDNSRecordRequest.py ```python from jdcloud_sdk.core.jdcloudrequest import JDCloudRequest class UpdateDNSRecordRequest(JDCloudRequest): """ """ def __init__(self, parameters, header=None, version="v1"): super(UpdateDNSRecordRequest, self).__init__( '/zones/{zone_identifier}/dns_records/{identifier}', 'PUT', header, version) self.parameters = parameters class UpdateDNSRecordParameters(object): def __init__(self, zone_identifier, identifier, name, content, ttl, ): """ :param zone_identifier: :param identifier: :param name: DNS记录名称 :param content: DNS记录内容 :param ttl: DNS记录的生存时间。值为1是 "自动"。 """ self.zone_identifier = zone_identifier self.identifier = identifier self.ty_pe = None self.name = name self.content = content self.ttl = ttl self.proxied = None self.priority = None self.srvData = None self.caaData = None def setTy_pe(self, ty_pe): """ :param ty_pe: (Optional) DNS记录类型 """ self.ty_pe = ty_pe def setProxied(self, proxied): """ :param proxied: (Optional) 是否利用星盾的性能和安全优势 """ self.proxied = proxied def setPriority(self, priority): """ :param priority: (Optional) 如果是MX记录,该属性是必需的 """ self.priority = priority def setSrvData(self, srvData): """ :param srvData: (Optional) """ self.srvData = srvData def setCaaData(self, caaData): """ :param caaData: (Optional) """ self.caaData = caaData ``` #### File: starshield/models/Certificate.py ```python class Certificate(object): def __init__(self, priority=None, expires_on=None, hosts=None, zone_id=None, status=None, geo_restrictions=None, modified_on=None, signature=None, issuer=None, id=None, uploaded_on=None, bundle_method=None): """ :param priority: (Optional) 在请求中使用证书的顺序/优先级。 :param expires_on: (Optional) 来自授权机构的证书过期时间 :param hosts: (Optional) :param zone_id: (Optional) 域标识符标签 :param status: (Optional) 域的自定义SSL的状态 :param geo_restrictions: (Optional) :param modified_on: (Optional) 上次修改证书的时间 :param signature: (Optional) 用于证书的哈希类型 :param issuer: (Optional) 颁发证书的证书颁发机构 :param id: (Optional) 自定义证书标识符标签 :param uploaded_on: (Optional) 证书上载到星盾的时间 :param bundle_method: (Optional) SSL泛捆绑在各处有着最高的概率被验证,甚至能被使用过时的或不寻常的信任存储的客户端验证。 最佳捆绑使用最短的认证链和最新的中间证书。 而强制捆绑会验证证书链,但不以其他方式修改证书链。 """ self.priority = priority self.expires_on = expires_on self.hosts = hosts self.zone_id = zone_id self.status = status self.geo_restrictions = geo_restrictions self.modified_on = modified_on self.signature = signature self.issuer = issuer self.id = id self.uploaded_on = uploaded_on self.bundle_method = bundle_method ``` #### File: starshield/models/DescribePopIpRes.py ```python class DescribePopIpRes(object): def __init__(self, ip=None, coloId=None, domains=None, ipIsptype=None): """ :param ip: (Optional) ip :param coloId: (Optional) pop 节点id :param domains: (Optional) ip对应域名信息 :param ipIsptype: (Optional) ip对应运营商信息 """ self.ip = ip self.coloId = coloId self.domains = domains self.ipIsptype = ipIsptype ``` #### File: starshield/models/Plan.py ```python class Plan(object): def __init__(self, id=None, name=None, price=None, currency=None, frequency=None, legacy_id=None, is_subscribed=None, can_subscribe=None): """ :param id: (Optional) :param name: (Optional) :param price: (Optional) :param currency: (Optional) :param frequency: (Optional) :param legacy_id: (Optional) :param is_subscribed: (Optional) :param can_subscribe: (Optional) """ self.id = id self.name = name self.price = price self.currency = currency self.frequency = frequency self.legacy_id = legacy_id self.is_subscribed = is_subscribed self.can_subscribe = can_subscribe ``` #### File: starshield/models/Totals.py ```python class Totals(object): def __init__(self, since=None, until=None, requests=None, bandwidth=None): """ :param since: (Optional) :param until: (Optional) :param requests: (Optional) :param bandwidth: (Optional) """ self.since = since self.until = until self.requests = requests self.bandwidth = bandwidth ``` #### File: vm/apis/ModifyInstanceAttributeRequest.py ```python from jdcloud_sdk.core.jdcloudrequest import JDCloudRequest class ModifyInstanceAttributeRequest(JDCloudRequest): """ 修改一台云主机的属性。 详细操作说明请参考帮助文档: [修改实例名称](https://docs.jdcloud.com/cn/virtual-machines/modify-instance-name) [自定义数据](https://docs.jdcloud.com/cn/virtual-machines/userdata) [实例元数据](https://docs.jdcloud.com/cn/virtual-machines/instance-metadata) ## 接口说明 - 支持修改实例的名称、描述、hostname、自定义数据、实例元数据。 """ def __init__(self, parameters, header=None, version="v1"): super(ModifyInstanceAttributeRequest, self).__init__( '/regions/{regionId}/instances/{instanceId}:modifyInstanceAttribute', 'POST', header, version) self.parameters = parameters class ModifyInstanceAttributeParameters(object): def __init__(self, regionId, instanceId, ): """ :param regionId: 地域ID。 :param instanceId: 云主机ID。 """ self.regionId = regionId self.instanceId = instanceId self.name = None self.description = None self.hostname = None self.metadata = None self.userdata = None def setName(self, name): """ :param name: (Optional) 实例名称。长度为2\~128个字符,只允许中文、数字、大小写字母、英文下划线(\_)、连字符(-)及点(.),不能以(.)作为首尾。 """ self.name = name def setDescription(self, description): """ :param description: (Optional) 实例描述。256字符以内。 """ self.description = description def setHostname(self, hostname): """ :param hostname: (Optional) 实例hostname。 **Windows系统**:长度为2\~15个字符,允许大小写字母、数字或连字符(-),不能以连字符(-)开头或结尾,不能连续使用连字符(-),也不能全部使用数字。不支持点号(.)。 **Linux系统**:长度为2-64个字符,允许支持多个点号,点之间为一段,每段允许使用大小写字母、数字或连字符(-),但不能连续使用点号(.)或连字符(-),不能以点号(.)或连字符(-)开头或结尾。 """ self.hostname = hostname def setMetadata(self, metadata): """ :param metadata: (Optional) 用户自定义元数据。 以 `key-value` 键值对形式指定,可在实例系统内通过元数据服务查询获取。最多支持40对键值对,且 `key` 不超过256字符,`value` 不超过16KB,不区分大小写。 注意:`key` 不要以连字符(-)结尾,否则此 `key` 不生效。 """ self.metadata = metadata def setUserdata(self, userdata): """ :param userdata: (Optional) 自定义脚本。 目前仅支持启动脚本,即 `launch-script`,须Base64编码且编码前数据长度不能超过16KB。 **linux系统**:支持bash和python,编码前须分别以 `#!/bin/bash` 和 `#!/usr/bin/env python` 作为内容首行。 **Windows系统**:支持 `bat` 和 `powershell` ,编码前须分别以 `<cmd></cmd>和<powershell></powershell>` 作为内容首、尾行。 """ self.userdata = userdata ``` #### File: vm/models/UpdateInstanceTemplateSpec.py ```python class UpdateInstanceTemplateSpec(object): def __init__(self, instanceType=None, imageId=None, password=<PASSWORD>, keyNames=None, metadata=None, userdata=None, elasticIp=None, primaryNetworkInterface=None, systemDisk=None, dataDisks=None, chargeOnStopped=None, autoImagePolicyId=None, passWordAuth=None, imageInherit=None, noPassword=None, noElasticIp=None): """ :param instanceType: (Optional) 实例规格,可查询 [DescribeInstanceTypes](https://docs.jdcloud.com/virtual-machines/api/describeinstancetypes) 接口获得指定地域或可用区的规格信息。 :param imageId: (Optional) 镜像ID,可查询 [DescribeImages](https://docs.jdcloud.com/virtual-machines/api/describeimages) 接口获得指定地域的镜像信息。 :param password: (Optional) 实例密码。可用于SSH登录和VNC登录。长度为8\~30个字符,必须同时包含大、小写英文字母、数字和特殊符号中的三类字符。特殊符号包括:\(\)\`~!@#$%^&\*\_-+=\|{}\[ ]:";'<>,.?/,更多密码输入要求请参见 [公共参数规范](https://docs.jdcloud.com/virtual-machines/api/general_parameters)。 如指定密钥且 `passwordAuth` 设置为 `true`,则密码不会生成注入,否则即使不指定密码系统也将默认自动生成随机密码,并以短信和邮件通知。 :param keyNames: (Optional) 密钥对名称。仅Linux系统下该参数生效,当前仅支持输入单个密钥。如指定了该参数则覆盖原有参数。 :param metadata: (Optional) 用户自定义元数据。以key-value键值对形式指定,可在实例系统内通过元数据服务查询获取。最多支持20对键值对,且key不超过256字符,value不超过16KB,不区分大小写。 注意:key以连字符(-)结尾,表示要删除该key。 :param userdata: (Optional) 自定义脚本。目前仅支持启动脚本,即 `launch-script`,须 `base64` 编码且编码前数据长度不能超过16KB。 **linux系统**:支持 `bash` 和 `python`,编码前须分别以 `#!/bin/bash` 和 `#!/usr/bin/env python` 作为内容首行。 **Windows系统**:支持 `bat` 和 `powershell`,编码前须分别以 `<cmd></cmd>和<powershell></powershell>` 作为内容首、尾行。 :param elasticIp: (Optional) 主网卡主IP关联的弹性公网IP配置。如指定了该参数则覆盖原有参数。 :param primaryNetworkInterface: (Optional) 主网卡配置。如指定了该参数则覆盖原有参数。 :param systemDisk: (Optional) 系统盘配置。如指定了该参数则覆盖原有参数。 :param dataDisks: (Optional) 数据盘配置。单实例最多可挂载云硬盘(系统盘+数据盘)的数量受实例规格的限制。如指定了该参数则覆盖原有参数。 :param chargeOnStopped: (Optional) 停机不计费模式。该参数仅对按配置计费且系统盘为云硬盘的实例生效,并且不是专有宿主机中的实例。配置停机不计费且停机后,实例部分将停止计费,且释放实例自身包含的资源(CPU/内存/GPU/本地数据盘)。 可选值: `keepCharging`(默认值):停机后保持计费,不释放资源。 `stopCharging`:停机后停止计费,释放实例资源。 :param autoImagePolicyId: (Optional) 自动任务策略ID。 :param passWordAuth: (Optional) 是否允许SSH密码登录。 `yes`:允许SSH密码登录。 `no`:禁止SSH密码登录。 仅在指定密钥时此参数有效,指定此参数后密码即使输入也将被忽略,同时会在系统内禁用SSH密码登录。 :param imageInherit: (Optional) 是否使用镜像中的登录凭证,不再指定密码或密钥。 `yes`:使用镜像登录凭证。 `no`(默认值):不使用镜像登录凭证。 仅使用私有或共享镜像时此参数有效。若指定`imageInherit=yes`则指定的密码或密钥将无效。 :param noPassword: (Optional) 传 `true` 则会清空实例模板配置的密码。 :param noElasticIp: (Optional) 传 `true` 则会清空实例模板配置的公网IP。 """ self.instanceType = instanceType self.imageId = imageId self.password = password self.keyNames = keyNames self.metadata = metadata self.userdata = userdata self.elasticIp = elasticIp self.primaryNetworkInterface = primaryNetworkInterface self.systemDisk = systemDisk self.dataDisks = dataDisks self.chargeOnStopped = chargeOnStopped self.autoImagePolicyId = autoImagePolicyId self.passWordAuth = passWordAuth self.imageInherit = imageInherit self.noPassword = noPassword self.noElasticIp = noElasticIp ``` #### File: vod/models/MediaClip.py ```python class MediaClip(object): def __init__(self, mediaId=None, mediaIn=None, mediaOut=None, timelineIn=None, timelineOut=None, operations=None): """ :param mediaId: (Optional) 素材ID,此处,必须为视频点播媒资的视频ID :param mediaIn: (Optional) 素材片段在媒资中的入点 :param mediaOut: (Optional) 素材片段在媒资中的出点 :param timelineIn: (Optional) 素材片段在合成时间线中的入点 :param timelineOut: (Optional) 素材片段在合成时间线中的出点 :param operations: (Optional) """ self.mediaId = mediaId self.mediaIn = mediaIn self.mediaOut = mediaOut self.timelineIn = timelineIn self.timelineOut = timelineOut self.operations = operations ``` #### File: waf/models/AntiEvent.py ```python class AntiEvent(object): def __init__(self, remoteAddr=None, csaInfo=None, riskLevel=None, area=None, accessTime=None, method=None, attackType=None, url=None, payLoad=None, action=None, ruleName=None, logId=None, isReported=None, wafInstanceId=None, antiStatus=None, upstreamErr=None, skipExist=None, denyExist=None): """ :param remoteAddr: (Optional) 源ip :param csaInfo: (Optional) 情报标签 :param riskLevel: (Optional) 风险等级 :param area: (Optional) 来源地区 :param accessTime: (Optional) 产生时间 :param method: (Optional) 方法 :param attackType: (Optional) 攻击类型 :param url: (Optional) url :param payLoad: (Optional) 恶意负载 :param action: (Optional) 动作 :param ruleName: (Optional) 规则名称 :param logId: (Optional) 日志Id :param isReported: (Optional) 该信息是否已上报AI平台,0表示否 :param wafInstanceId: (Optional) 实例id :param antiStatus: (Optional) 状态码 :param upstreamErr: (Optional) 状态标识 :param skipExist: (Optional) 是否已加入白名单,0表示否 :param denyExist: (Optional) 是否已加入黑名单,0表示否 """ self.remoteAddr = remoteAddr self.csaInfo = csaInfo self.riskLevel = riskLevel self.area = area self.accessTime = accessTime self.method = method self.attackType = attackType self.url = url self.payLoad = payLoad self.action = action self.ruleName = ruleName self.logId = logId self.isReported = isReported self.wafInstanceId = wafInstanceId self.antiStatus = antiStatus self.upstreamErr = upstreamErr self.skipExist = skipExist self.denyExist = denyExist ``` #### File: waf/models/DomainMainConfig.py ```python class DomainMainConfig(object): def __init__(self, domain=None, cname=None, certName=None, protocols=None, sslProtocols=None, pureClient=None, httpStatus=None, httpsCertUpdateStatus=None, gmHttpsCertUpdateStatus=None, gmCertSupport=None, antiStatus=None, disableWaf=None, attackInfo=None, dnsStatus=None, enableCname2Rs=None, enableIpv6=None, region=None): """ :param domain: (Optional) 域名 :param cname: (Optional) cname域名 :param certName: (Optional) 绑定的证书名称 :param protocols: (Optional) 使用协议,["http","https"] :param sslProtocols: (Optional) ssl协议,["TLSv1","TLSv1.1","TLSv1.2","SSLv2","SSLv3"] :param pureClient: (Optional) 前置代理,1:使用 0:不使用 :param httpStatus: (Optional) 协议状态,0:正常 :param httpsCertUpdateStatus: (Optional) https证书绑定状态 :param gmHttpsCertUpdateStatus: (Optional) 国密https证书绑定状态 :param gmCertSupport: (Optional) 是否支持国密证书 :param antiStatus: (Optional) 防护状态,0:关闭 1:开启 :param disableWaf: (Optional) 1:bypass 0:防护模式 :param attackInfo: (Optional) 近七天攻击详情 :param dnsStatus: (Optional) 网站dns配置 :param enableCname2Rs: (Optional) cname解析状态。0为解析到VIP,1为解析到回源地址 :param enableIpv6: (Optional) cname解析状态。0为解析到VIP,1为解析到回源地址 :param region: (Optional) 域名的地域信息,类型是map[string]regionVipInfo """ self.domain = domain self.cname = cname self.certName = certName self.protocols = protocols self.sslProtocols = sslProtocols self.pureClient = pureClient self.httpStatus = httpStatus self.httpsCertUpdateStatus = httpsCertUpdateStatus self.gmHttpsCertUpdateStatus = gmHttpsCertUpdateStatus self.gmCertSupport = gmCertSupport self.antiStatus = antiStatus self.disableWaf = disableWaf self.attackInfo = attackInfo self.dnsStatus = dnsStatus self.enableCname2Rs = enableCname2Rs self.enableIpv6 = enableIpv6 self.region = region ``` #### File: waf/models/UserPolicyInfo.py ```python class UserPolicyInfo(object): def __init__(self, id=None, name=None, count=None, domainCnt=None, autoAdd=None, importLevel=None, ruleIds=None, updateTime=None, wafDomains=None): """ :param id: (Optional) 规则组id :param name: (Optional) 规则组名字 :param count: (Optional) 规则组里的规则个数 :param domainCnt: (Optional) 规则组应用的域名个数 :param autoAdd: (Optional) 规则是否自动更新, 0/1 :param importLevel: (Optional) 导入规则集的等级,0/1/2/-1 :param ruleIds: (Optional) 规则id :param updateTime: (Optional) 更新时间 :param wafDomains: (Optional) 自定义规则集应用的域名信息 """ self.id = id self.name = name self.count = count self.domainCnt = domainCnt self.autoAdd = autoAdd self.importLevel = importLevel self.ruleIds = ruleIds self.updateTime = updateTime self.wafDomains = wafDomains ``` #### File: waf/models/UsrBotRules.py ```python class UsrBotRules(object): def __init__(self, id=None, ruleName=None, detectThrsd=None, detectPeriod=None, matchItems=None, action=None, disable=None, updateTime=None, status=None, ststhrst=None, ststhrstRatio=None, statusDisable=None, dateDisable=None, unit=None, blockTime=None): """ :param id: (Optional) 规则id :param ruleName: (Optional) 规则名 :param detectThrsd: (Optional) 次数阈值 :param detectPeriod: (Optional) 检测时长,秒 :param matchItems: (Optional) 匹配条件集,总长度不能超过4096 :param action: (Optional) 动作配置,默认为告警 :param disable: (Optional) 0-使用中 1-禁用 :param updateTime: (Optional) 更新时间 :param status: (Optional) 响应状态码 :param ststhrst: (Optional) 状态码数量阀值 :param ststhrstRatio: (Optional) 状态码比例阀值 :param statusDisable: (Optional) 响应码功能是否启用 :param dateDisable: (Optional) 规则生效时间是否启用 :param unit: (Optional) 统计维度 :param blockTime: (Optional) 持续时间, 单位分钟,范围[1-24*60] """ self.id = id self.ruleName = ruleName self.detectThrsd = detectThrsd self.detectPeriod = detectPeriod self.matchItems = matchItems self.action = action self.disable = disable self.updateTime = updateTime self.status = status self.ststhrst = ststhrst self.ststhrstRatio = ststhrstRatio self.statusDisable = statusDisable self.dateDisable = dateDisable self.unit = unit self.blockTime = blockTime ```
{ "source": "jdcloud-cmw/jdsf-demo-python", "score": 2 }
#### File: demo_server/loadbalance/registryservice.py ```python import datetime import random import threading import consul from loadbalance.consulconfig import ConsulConfig, ConsulDiscoverConfig, AppConfig from tool.networktool import * service_cache = {} def reload_service_cache(): if service_cache is not None and len(service_cache)>0: for key in service_cache.keys(): RegistryService.load_remote_service_cache(key) class RegistryService(object): def __init__(self): consul_discover_config = ConsulDiscoverConfig.load_config() app_config = AppConfig.load_config() self.consul_discover_config = consul_discover_config self.app_config = app_config def registry_service(self, consul_schema=None, consul_address=None, consul_port=None): consul_client = RegistryService.get_consul_client(consul_schema, consul_address, consul_port) if self.consul_discover_config.prefer_ip_address: if self.app_config.service_ip_address is not None: service_ip_address = self.app_config.service_ip_address else: service_ip_address = get_host_ip() else: service_ip_address = get_host_name() service_port = self.app_config.service_port health_check_url = self.consul_discover_config.health_check_url service_name = self.consul_discover_config.service_name if service_name is None: service_name = self.app_config.service_name instance_id = self.consul_discover_config.instance_id if instance_id is None: instance_id = service_name + str(service_port) + random.uniform(1, 20) check_url = "http://" + service_ip_address + ":" + str(service_port) + health_check_url check = consul.Check.http(check_url, "10s") consul_client.agent.service.register(service_name, instance_id, address=service_ip_address, port=service_port, check=check) timer = threading.Timer(5, reload_service_cache) timer.start() @classmethod def get_consul_client(cls, consul_schema=None, consul_address=None, consul_port=None): consul_config = ConsulConfig.load_config() if consul_schema is not None: consul_config.schema = consul_schema if consul_address is not None: consul_config.address = consul_address if consul_port is not None: consul_config.port = consul_port host = consul_config.address scheme = consul_config.schema port = consul_config.port consul_client = consul.Consul(host, port, None, scheme) return consul_client @classmethod def load_remote_service_cache(cls, service_name): health_service = RegistryService.get_health_service(service_name) if health_service is not None and len(health_service[1])>0: cache_service_info = CacheServiceInfo(service_name=service_name) for service in health_service[1]: health_service_info = HealthServiceInfo(service_name=service['Service']['Service'], instance_id=service['Service']['ID'], service_host=service['Service']['Address'], service_port=service['Service']['Port']) cache_service_info.add_service(health_service_info) service_cache[service_name] = cache_service_info @classmethod def get_health_service(cls,service_name): consul_client = RegistryService.get_consul_client() health_service = consul_client.health.service(service_name, passing=True) if health_service is not None: return health_service class HealthServiceInfo(object): def __init__(self, service_name, instance_id, service_host, service_port): self.service_name = service_name self.instance_id = instance_id self.service_host = service_host self.service_port = service_port def __str__(self): return 'HealthServiceInfo({service_name},{instance_id},{service_host},{service_port})'.format( service_name=self.service_name, service_host=self.service_host, service_port=self.service_port, instance_id=self.instance_id ) class CacheServiceInfo(object): def __init__(self, service_name): self.update_time = datetime.datetime.now() self.service_name = service_name self.services = [] def add_service(self, health_service_info): self.services.append(health_service_info) def get_service(self): service_instance_count = len(self.services) if service_instance_count > 0: index = random.uniform(0, service_instance_count) service = self.services[int(index)] return service else: health_service = RegistryService.get_health_service(self.service_name) if health_service is not None: self.services = [] for service in health_service[1]: health_service_info = HealthServiceInfo(service_name=service['Service']['Service'], instance_id=service['Service']['ID'], service_host=service['Service']['Address'], service_port=service['Service']['Port']) self.update_time = datetime.datetime.now() self.services.append(health_service_info) index = random.uniform(0, len(self.services)) return self.services[int(index)] else: return None def __str__(self): return 'CacheServiceInfo({service_name},{update_time},{services})'.format( service_name=self.service_name, update_time=self.update_time, services=self.services ) ``` #### File: demo_server/opentracer/config.py ```python import logging import yaml from jaeger_client import Config from loadbalance.consulconfig import AppConfig class OpenTraceConfig(object): def __init__(self, simple_type, simple_rate, trace_udp_address, trace_udp_port, trace_http_address, trace_http_port): self.simple_type = simple_type self.simple_rate = simple_rate self.trace_udp_address = trace_udp_address self.trace_udp_port = trace_udp_port self.trace_http_address = trace_http_address self.trace_http_port = trace_http_port def __str__(self): return 'OpenTraceConfig({simple_type},{simple_rate},{trace_udp_address},{trace_udp_port},' \ '{trace_http_address},{trace_http_port})'.format(simple_type=self.simple_type, simple_rate=self.simple_rate, trace_udp_address=self.trace_udp_address, trace_udp_port=self.trace_udp_port, trace_http_address=self.trace_http_address, trace_http_port=self.trace_http_port) @classmethod def from_yaml_dic(cls, yaml_load_dic): trace_udp_address = "" trace_udp_port = 0 trace_http_address = "" trace_http_port = 0 simple_type = yaml_load_dic['trace']['config']['simpleType'] simple_rate = yaml_load_dic['trace']['config']['simpleRate'] if 'traceUDPAddress' in yaml_load_dic['trace']['config'].keys(): trace_udp_address = yaml_load_dic['trace']['config']['traceUDPAddress'] if 'traceUDPPort' in yaml_load_dic['trace']['config'].keys(): trace_udp_port = yaml_load_dic['trace']['config']['traceUDPPort'] if 'traceHttpAddress' in yaml_load_dic['trace']['config'].keys(): trace_http_address = yaml_load_dic['trace']['config']['traceHttpAddress'] if 'traceHttpPort' in yaml_load_dic['trace']['config'].keys(): trace_http_port = yaml_load_dic['trace']['config']['traceHttpPort'] return OpenTraceConfig(simple_type, simple_rate, trace_udp_address, trace_udp_port, trace_http_address, trace_http_port) @classmethod def load_config(cls, config_yaml_path='./config/appConfig.yaml'): f = open(config_yaml_path) y = yaml.load(f, Loader=yaml.SafeLoader) return OpenTraceConfig.from_yaml_dic(y) def initialize_tracer(config_file_path): app_config = AppConfig.load_config(config_file_path) if config_file_path is None: trace_config = OpenTraceConfig.load_config() else: trace_config = OpenTraceConfig.load_config(config_file_path) log_level = logging.DEBUG logging.getLogger('').handlers = [] logging.basicConfig(format='%(asctime)s %(message)s', level=log_level) # Create configuration object with enabled logging and sampling of all requests. config = Config(config={'sampler': {'type': trace_config.simple_type, 'param': trace_config.simple_rate}, 'logging': True, 'local_agent': # Also, provide a hostname of Jaeger instance to send traces to. {'reporting_host': trace_config.trace_udp_address}}, # Service name can be arbitrary string describing this particular web service. service_name=app_config.service_name) return config.initialize_tracer() ```
{ "source": "jdcloud-demo/jdcloud-sdk-python", "score": 2 }
#### File: cdn/models/SslCertModel.py ```python class SslCertModel(object): def __init__(self, certId=None, certName=None, commonName=None, certType=None, startTime=None, endTime=None, deletable=None, digest=None, aliasName=None, dnsNames=None, downloadable=None): """ :param certId: (Optional) 证书Id :param certName: (Optional) 证书名称 :param commonName: (Optional) 绑定域名 :param certType: (Optional) 证书类型 :param startTime: (Optional) 开始时间 :param endTime: (Optional) 结束时间 :param deletable: (Optional) 是否允许被删除,1允许,0不允许 :param digest: (Optional) 对私钥文件使用sha256算法计算的摘要信息 :param aliasName: (Optional) 证书别名 :param dnsNames: (Optional) 域名 :param downloadable: (Optional) 是否允许被下载,0->不允许,1->允许 """ self.certId = certId self.certName = certName self.commonName = commonName self.certType = certType self.startTime = startTime self.endTime = endTime self.deletable = deletable self.digest = digest self.aliasName = aliasName self.dnsNames = dnsNames self.downloadable = downloadable ``` #### File: iothub/models/InstanceDetailVO.py ```python class InstanceDetailVO(object): def __init__(self, id=None, name=None, subNetId=None, subNetName=None, vpcId=None, vpcName=None, azName=None, pubDomain=None, priDomain=None, status=None, createTime=None, description=None, region=None, rdsInstanceId=None, rdsDatabase=None, rdsHostName=None, rdsUserName=None, jcqId=None, jcqAccessPoint=None, jcqTopicName=None, jcqTopicType=None, jcqRegion=None, ak=None, sk=None): """ :param id: (Optional) :param name: (Optional) :param subNetId: (Optional) :param subNetName: (Optional) :param vpcId: (Optional) :param vpcName: (Optional) :param azName: (Optional) :param pubDomain: (Optional) :param priDomain: (Optional) :param status: (Optional) :param createTime: (Optional) :param description: (Optional) :param region: (Optional) :param rdsInstanceId: (Optional) :param rdsDatabase: (Optional) :param rdsHostName: (Optional) :param rdsUserName: (Optional) :param jcqId: (Optional) :param jcqAccessPoint: (Optional) :param jcqTopicName: (Optional) :param jcqTopicType: (Optional) :param jcqRegion: (Optional) :param ak: (Optional) ak :param sk: (Optional) sk """ self.id = id self.name = name self.subNetId = subNetId self.subNetName = subNetName self.vpcId = vpcId self.vpcName = vpcName self.azName = azName self.pubDomain = pubDomain self.priDomain = priDomain self.status = status self.createTime = createTime self.description = description self.region = region self.rdsInstanceId = rdsInstanceId self.rdsDatabase = rdsDatabase self.rdsHostName = rdsHostName self.rdsUserName = rdsUserName self.jcqId = jcqId self.jcqAccessPoint = jcqAccessPoint self.jcqTopicName = jcqTopicName self.jcqTopicType = jcqTopicType self.jcqRegion = jcqRegion self.ak = ak self.sk = sk ``` #### File: ipanti/models/CertInfoModifySpec.py ```python class CertInfoModifySpec(object): def __init__(self, certId=None, httpsCertContent=None, httpsRsaKey=None): """ :param certId: (Optional) 证书 Id - 如果传 certId, 请确认已经上传了相应的证书 - certId 缺省时网站规则将使用 httpsCertContent, httpsRsaKey 对应的证书 :param httpsCertContent: (Optional) 证书内容 :param httpsRsaKey: (Optional) 私钥 """ self.certId = certId self.httpsCertContent = httpsCertContent self.httpsRsaKey = httpsRsaKey ``` #### File: kubernetes/models/MasterVersion.py ```python class MasterVersion(object): def __init__(self, version=None, isDefault=None, defaultNodeVersion=None, versionStatus=None, nodeVersions=None): """ :param version: (Optional) 集群版本号 :param isDefault: (Optional) 是否默认版本 :param defaultNodeVersion: (Optional) 默认ndoe版本号 :param versionStatus: (Optional) 版本状态 :param nodeVersions: (Optional) node 节点的配置 """ self.version = version self.isDefault = isDefault self.defaultNodeVersion = defaultNodeVersion self.versionStatus = versionStatus self.nodeVersions = nodeVersions ``` #### File: monitor/apis/DescribeMetricDataRequest.py ```python from jdcloud_sdk.core.jdcloudrequest import JDCloudRequest class DescribeMetricDataRequest(JDCloudRequest): """ 查看某资源多个监控项数据,metric介绍1:<a href="https://docs.jdcloud.com/cn/monitoring/metrics">Metrics</a> """ def __init__(self, parameters, header=None, version="v1"): super(DescribeMetricDataRequest, self).__init__( '/regions/{regionId}/metrics/{metric}/metricData', 'GET', header, version) self.parameters = parameters class DescribeMetricDataParameters(object): def __init__(self, regionId, metric, serviceCode, resourceId): """ :param regionId: 地域 Id :param metric: 监控项英文标识(id) :param serviceCode: 资源的类型,取值vm, lb, ip, database 等 :param resourceId: 资源的uuid """ self.regionId = regionId self.metric = metric self.aggrType = None self.downSampleType = None self.startTime = None self.endTime = None self.timeInterval = None self.tags = None self.groupBy = None self.rate = None self.serviceCode = serviceCode self.resourceId = resourceId def setAggrType(self, aggrType): """ :param aggrType: (Optional) 聚合方式,默认等于downSampleType或avg,可选值参考:sum、avg、last、min、max """ self.aggrType = aggrType def setDownSampleType(self, downSampleType): """ :param downSampleType: (Optional) 采样方式,默认等于aggrType或avg,可选值参考:sum、avg、last、min、max """ self.downSampleType = downSampleType def setStartTime(self, startTime): """ :param startTime: (Optional) 查询时间范围的开始时间, UTC时间,格式:2016-12-11T00:00:00+0800(注意在url中+要转译为%2B故url中为2016-12-11T00:00:00%2B0800) """ self.startTime = startTime def setEndTime(self, endTime): """ :param endTime: (Optional) 查询时间范围的结束时间, UTC时间,格式:2016-12-11T00:00:00+0800(为空时,将由startTime与timeInterval计算得出)(注意在url中+要转译为%2B故url中为2016-12-11T00:00:00%2B0800) """ self.endTime = endTime def setTimeInterval(self, timeInterval): """ :param timeInterval: (Optional) 时间间隔:1h,6h,12h,1d,3d,7d,14d,固定时间间隔,timeInterval默认为1h,当前时间往 前1h """ self.timeInterval = timeInterval def setTags(self, tags): """ :param tags: (Optional) 监控指标数据的维度信息,根据tags来筛选指标数据不同的维度 """ self.tags = tags def setGroupBy(self, groupBy): """ :param groupBy: (Optional) 是否对查询的tags分组 """ self.groupBy = groupBy def setRate(self, rate): """ :param rate: (Optional) 是否求速率 """ self.rate = rate ``` #### File: monitor/models/SiteMonitorHttpOption.py ```python class SiteMonitorHttpOption(object): def __init__(self, cookie=None, header=None, method=None, reqContent=None, resCheck=None): """ :param cookie: (Optional) :param header: (Optional) :param method: (Optional) :param reqContent: (Optional) :param resCheck: (Optional) """ self.cookie = cookie self.header = header self.method = method self.reqContent = reqContent self.resCheck = resCheck ``` #### File: rds/apis/CreateROInstanceRequest.py ```python from jdcloud_sdk.core.jdcloudrequest import JDCloudRequest class CreateROInstanceRequest(JDCloudRequest): """ 创建MySQL的只读实例<br>- 仅支持MySQL """ def __init__(self, parameters, header=None, version="v1"): super(CreateROInstanceRequest, self).__init__( '/regions/{regionId}/instances/{instanceId}:createROInstance', 'POST', header, version) self.parameters = parameters class CreateROInstanceParameters(object): def __init__(self, regionId, instanceId, instanceName, instanceClass, instanceStorageGB, azId, ): """ :param regionId: 地域代码,取值范围参见[《各地域及可用区对照表》](../Enum-Definitions/Regions-AZ.md) :param instanceId: RDS 实例ID,唯一标识一个RDS实例 :param instanceName: 实例名称,具体规则可参见帮助中心文档:[名称及密码限制](../../../documentation/Database-and-Cache-Service/RDS/Introduction/Restrictions/SQLServer-Restrictions.md) :param instanceClass: 只读实例规格FlavorId :param instanceStorageGB: 磁盘空间 :param azId: 可用区ID """ self.regionId = regionId self.instanceId = instanceId self.instanceName = instanceName self.instanceClass = instanceClass self.instanceStorageType = None self.instanceStorageGB = instanceStorageGB self.azId = azId self.vpcId = None self.subnetId = None self.parameterGroup = None self.storageEncrypted = None self.count = None def setInstanceStorageType(self, instanceStorageType): """ :param instanceStorageType: (Optional) 存储类型,参见[枚举参数定义](../Enum-Definitions/Enum-Definitions.md),缺省值为:LOCAL_SSD """ self.instanceStorageType = instanceStorageType def setVpcId(self, vpcId): """ :param vpcId: (Optional) VPC的ID,如果没有填写就保持和常规实例一样的VPC """ self.vpcId = vpcId def setSubnetId(self, subnetId): """ :param subnetId: (Optional) 子网ID,如果没有填写就保持和常规实例一样的subnet """ self.subnetId = subnetId def setParameterGroup(self, parameterGroup): """ :param parameterGroup: (Optional) 参数组ID,缺省采用和常规实例一样的参数组 """ self.parameterGroup = parameterGroup def setStorageEncrypted(self, storageEncrypted): """ :param storageEncrypted: (Optional) 实例数据加密(存储类型为云硬盘才支持数据加密)。false:不加密;true:加密。缺省为false。 """ self.storageEncrypted = storageEncrypted def setCount(self, count): """ :param count: (Optional) 创建只读实例的数目,缺省为1 """ self.count = count ``` #### File: renewal/models/QueryInstanceParam.py ```python class QueryInstanceParam(object): def __init__(self, appCode, serviceCode, pageNumber=None, pageSize=None, renewStatus=None, expireTime=None, instanceName=None, instanceId=None, ipAddress=None, billingType=None): """ :param appCode: 业务线 :param serviceCode: 产品线 :param pageNumber: (Optional) 当前页码 :param pageSize: (Optional) 每页条数 :param renewStatus: (Optional) 资源续费状态 0:手动续费资源 1:全部资源 2:自动续费资源,默认全部 :param expireTime: (Optional) 到期时间 0:已过期,n:n天内到期,-1:全部,-2:未到期,默认全部 :param instanceName: (Optional) 资源名称 :param instanceId: (Optional) 资源ID :param ipAddress: (Optional) 主机绑定的内网ip地址 :param billingType: (Optional) 资源计费类型 1:按配置,3:包年包月,默认不筛选 """ self.appCode = appCode self.serviceCode = serviceCode self.pageNumber = pageNumber self.pageSize = pageSize self.renewStatus = renewStatus self.expireTime = expireTime self.instanceName = instanceName self.instanceId = instanceId self.ipAddress = ipAddress self.billingType = billingType ``` #### File: vm/models/InstanceSpec.py ```python class InstanceSpec(object): def __init__(self, name, agId=None, instanceTemplateId=None, az=None, instanceType=None, imageId=None, password=<PASSWORD>, keyNames=None, elasticIp=None, primaryNetworkInterface=None, systemDisk=None, dataDisks=None, charge=None, userdata=None, description=None, noPassword=<PASSWORD>, noKeyNames=None, noElasticIp=None): """ :param agId: (Optional) 高可用组Id。指定了此参数后,只能通过高可用组关联的实例模板创建虚机,并且实例模板中的参数不可覆盖替换。实例模板以外的参数还可以指定。 :param instanceTemplateId: (Optional) 实例模板id,如果没有使用高可用组,那么对于实例模板中没有的信息,需要使用创建虚机的参数进行补充,或者选择覆盖启动模板中的参数。 :param az: (Optional) 云主机所属的可用区。 :param instanceType: (Optional) 实例规格。可查询<a href="http://docs.jdcloud.com/virtual-machines/api/describeinstancetypes">DescribeInstanceTypes</a>接口获得指定地域或可用区的规格信息。 :param imageId: (Optional) 镜像ID。可查询<a href="http://docs.jdcloud.com/virtual-machines/api/describeimages">DescribeImages</a>接口获得指定地域的镜像信息。 :param name: 云主机名称,<a href="http://docs.jdcloud.com/virtual-machines/api/general_parameters">参考公共参数规范</a>。 :param password: (Optional) 密码,<a href="http://docs.jdcloud.com/virtual-machines/api/general_parameters">参考公共参数规范</a>。 :param keyNames: (Optional) 密钥对名称,当前只支持传入一个。 :param elasticIp: (Optional) 主网卡主IP关联的弹性IP规格 :param primaryNetworkInterface: (Optional) 主网卡配置信息 :param systemDisk: (Optional) 系统盘配置信息 :param dataDisks: (Optional) 数据盘配置信息,本地盘(local类型)做系统盘的云主机可挂载8块数据盘,云硬盘(cloud类型)做系统盘的云主机可挂载7块数据盘。 :param charge: (Optional) 计费配置 云主机不支持按用量方式计费,默认为按配置计费。 打包创建数据盘的情况下,数据盘的计费方式只能与云主机保持一致。 打包创建弹性公网IP的情况下,若公网IP的计费方式没有指定为按用量计费,那么公网IP计费方式只能与云主机保持一致。 :param userdata: (Optional) 元数据信息,目前只支持传入一个key为"launch-script",表示首次启动脚本。value为base64格式。 launch-script:linux系统支持bash和python,编码前须分别以 #!/bin/bash 和 #!/usr/bin/env python 作为内容首行; launch-script:windows系统支持bat和powershell,编码前须分别以 <cmd></cmd> 和 <powershell></powershell> 作为内容首、尾行。 :param description: (Optional) 主机描述,<a href="http://docs.jdcloud.com/virtual-machines/api/general_parameters">参考公共参数规范</a>。 :param noPassword: (Optional) 不使用模板中的密码。 仅当不使用Ag,并且使用了模板,并且password参数为空时,此参数(值为true)生效。 若使用模板创建虚机时,又指定了password参数时,此参数无效,以新指定的为准。 :param noKeyNames: (Optional) 不使用模板中的密钥。 仅当不使用Ag,并且使用了模板,并且keynames参数为空时,此参数(值为true)生效。 若使用模板创建虚机时,又指定了keynames参数时,此参数无效,以新指定的为准。 :param noElasticIp: (Optional) 不使用模板中的弹性公网IP。 仅当不使用Ag,并且使用了模板,并且elasticIp参数为空时,此参数(值为true)生效。 若使用模板创建虚机时,又指定了elasticIp参数时,此参数无效,以新指定的为准。 """ self.agId = agId self.instanceTemplateId = instanceTemplateId self.az = az self.instanceType = instanceType self.imageId = imageId self.name = name self.password = password self.keyNames = keyNames self.elasticIp = elasticIp self.primaryNetworkInterface = primaryNetworkInterface self.systemDisk = systemDisk self.dataDisks = dataDisks self.charge = charge self.userdata = userdata self.description = description self.noPassword = <PASSWORD> self.noKeyNames = noKeyNames self.noElasticIp = noElasticIp ``` #### File: vpc/models/NetworkAclRule.py ```python class NetworkAclRule(object): def __init__(self, ruleId=None, protocol=None, fromPort=None, toPort=None, direction=None, addressPrefix=None, ruleAction=None, priority=None, description=None, createdTime=None): """ :param ruleId: (Optional) networkAcl规则ID :param protocol: (Optional) 规则限定协议。取值范围:All,TCP,UDP,ICMP :param fromPort: (Optional) 规则限定起始传输层端口, 取值范围:1-65535, 若protocol为传输层协议,默认值为1,若protocol不是传输层协议,设置无效,恒为0。如果规则只限定一个端口号,fromPort和toPort填写同一个值 :param toPort: (Optional) 规则限定终止传输层端口, 取值范围:1-65535, 若protocol为传输层协议,默认值为65535,若protocol不是传输层协议,设置无效,恒为0。如果规则只限定一个端口号,fromPort和toPort填写同一个值 :param direction: (Optional) networkAcl规则方向。ingress:入规则; egress:出规则 :param addressPrefix: (Optional) 匹配地址前缀 :param ruleAction: (Optional) 访问控制策略:allow:允许,deny:拒绝 :param priority: (Optional) 规则匹配优先级,取值范围为[1,32768],优先级数字越小优先级越高 :param description: (Optional) 描述,允许输入UTF-8编码下的全部字符,不超过256字符 :param createdTime: (Optional) networkAclRule创建时间 """ self.ruleId = ruleId self.protocol = protocol self.fromPort = fromPort self.toPort = toPort self.direction = direction self.addressPrefix = addressPrefix self.ruleAction = ruleAction self.priority = priority self.description = description self.createdTime = createdTime ``` #### File: vpc/models/RouteTable.py ```python class RouteTable(object): def __init__(self, routeTableId=None, routeTableName=None, routeTableType=None, description=None, vpcId=None, routeTableRules=None, subnetIds=None, createdTime=None): """ :param routeTableId: (Optional) 路由表ID :param routeTableName: (Optional) 路由表名称,只允许输入中文、数字、大小写字母、英文下划线“_”及中划线“-”,不允许为空且不超过32字符。 :param routeTableType: (Optional) 路由表类型,default:默认路由表,custom:自定义路由表 :param description: (Optional) 路由表描述信息,允许输入UTF-8编码下的全部字符,不超过256字符。 :param vpcId: (Optional) 私有网络ID :param routeTableRules: (Optional) 路由表规则信息 :param subnetIds: (Optional) 路由表绑定的子网列表 :param createdTime: (Optional) 路由表创建时间 """ self.routeTableId = routeTableId self.routeTableName = routeTableName self.routeTableType = routeTableType self.description = description self.vpcId = vpcId self.routeTableRules = routeTableRules self.subnetIds = subnetIds self.createdTime = createdTime ```
{ "source": "jdcphysics/validation", "score": 3 }
#### File: codes/Bband/BOOTES_lf.py ```python __author__ = "<NAME>" __email__ = "<EMAIL>" __version__= "1.0" def overview(): """ plots a simulated data set B-band luminsoity function (histogram) along with that in Beare et al (points) FILES NEEDED (3 including this one): import this file to run commands have file "Beare_15.txt" (in same directory) have your simulation data file fname (explained below), e.g. 'galaxies.dat' USAGE: plot3sep(zcen,fname,hval,boxside,ramin,ramax,decmin,decmax,delz) OUTPUT: B-band Luminosity function plots for red, blue, all at redshift zcen colors separated by M_U - M_B > 1.074 - 0.18z -0.03 (M_B + 19.4) [red] ARGUMENTS of plot3sep(): zcen = central mass of simulation sample fname = filename of data, in ascii (e.g. 'galaxies.dat'), more below hval =hubble constant (e.g. 0.67) boxside: two choices depending upon data in fname periodic box, boxside = box side length in Mpc/h light cone, any number < 0, to flag that will use ra and dec and delta z other entries to plot3sep for periodic box: every entry after boxside (which is positive) is ignored can be left out for light cone: ramin, ramax, decmin, decmax : minimum and maximum ra and dec delz : galaxies are taken in a region zcen +/- delz for light cone sample omega_m is assumed to be 0.31, if you use a much different value you might need to change the lightcone volume. INPUT SIMULATION DATA FILE: (e.g. 'galaxies.dat') if have B band: for periodic box, this file is list of galaxies in ascii, one line per galaxy M_B M_U units: [AB], absolute magnitudes for light cone this file is list of galaxies in ascii, one line per galaxy M_B M_U ra dec redshift units: [AB], absolute magnitudes for M_B,M_U if don't have B band: just set M_U to something random and throw out color plots INPUT OBSERVATIONAL DATA FILE: source for data in file Beare_tab8910.txt http://arxiv.org/abs/1511.01580 R.A.Beare, M.J.I.Brown, K.A.Pimbblet, F.Bian, <NAME> The z<1.2 optical luminosity function from a sample of ~410000 galaxies in Bootes """ import numpy as N import os import time import sys import matplotlib import matplotlib.pyplot as plt def chiofz(zval=0.45,omm=0.31): """ comoving distance to redshift zval omega matter = omm use for volume if specify region with ra/dec """ Nint = 300000 zp1int = N.linspace(1,zval+1,Nint) ez = N.sqrt(omm*zp1int*zp1int*zp1int + (1-omm)) tmp = 2997.925* N.trapz(1/ez, dx = zp1int[1]-zp1int[0]) return(tmp) def phi_beare(zcen=0.45,addcolor=0): """ read data of Beare et al, 2015 take redshift range surrounding to zcen chosen tables 8,9,10 for all, red, blue addcolor=0 all addcolor = 1 red addcolor = 2 blue units: Magnitudes: MB - 5 log h70 Phi: 1.e-3 (h70/Mpc)^3 /dex """ # now need to find right redshift and type # first redshift zrange = N.array([0.2,0.4,0.6,0.8,1.0,1.2]) jjz = N.nonzero(zcen>=zrange)[0] if ((jjz.size ==0)|(zcen>=1.2)): print "z = %3.2f not in range"%(zcen) if (jjz.size > 1): jjz = jjz.max() print "using BOOTES range %3.2f < z < %3.2f "%(zrange[jjz],zrange[jjz+1]) ff = open("Beare_tab8910.txt") phi = N.loadtxt(ff, usecols=(0,2*(jjz+1),2*(jjz+1)+1)) ff.close() # Now color, just need to start at right place if (addcolor==0): jjkeep = N.arange(22) #all if (addcolor==1): jjkeep = N.arange(22,46) #red if (addcolor==2): jjkeep = N.arange(46,66) #blue Bmid = phi[jjkeep,0]+0.25/2. #Bmax = Bmin+0.25 phival = phi[jjkeep,1] *1.e-3 phierr = phi[jjkeep,2] *1.e-3 jj = N.nonzero(phival>0)[0] Bmid = Bmid[jj] phival = phival[jj] phierr = phierr[jj] return(Bmid,phival,phierr,jjz) def testlum(zcen=0.45,addcolor=0,fname="galshort.dat",hval=0.67,boxside=100,ramin=-2,ramax=-2,decmin=2,decmax=-2,delz=0.02): """ usage: testlum(zval,addcolor,inputfile,hval,boxside,ra_min,ra_max,dec_min,dec_max,delz) zcen: central redshift for simulation fname: galaxy data file, more below addcolor=0 all galaxies addcolor=1 red addcolor=2 blue boxside: positive for periodic box, negative for light cone boxside = side of box when periodic box **or** boxside<0 (e.g. -1) if light cone ra_min,ra_max,dec_min,dec_max :min/max ra and dec for light cone [ignored for per] delz = use z range zcen+delz > z < zcen-delz for light cone [ignored for per] BOOTES tables 8,9,10 colors separated by M_U - M_B > 1.074 - 0.18z -0.03 (M_B + 19.4) [red] input file either has entries galaxy data file fname entries on each line, one per galaxy [boxside > 0, i.e. fixed time, give boxside in units of Mpc/h] M_B M_U [ABS] [boxside < 0,use any boxside value < 0, lightcone] M_B M_U [ABS], ra, dec, redshift """ ff = open(fname) gals = N.loadtxt(ff) ff.close() magB = gals[:,0] magU = gals[:,1] if (boxside < 0): print "using light cone" ra = gals[:,2] dec = gals[:,3] redz = gals[:,4] #need ra, dec, redshift,delz chimax = chiofz(zcen+delz) #[Mpc/h] chimin = chiofz(zcen-delz) #[Mpc/h] print "ramin,ramax, decmin,decmax %5.4f %5.4f %5.4f %5.4f \n"%(ramin,ramax,decmin,decmax) angvol = -(N.cos((90-decmin)*N.pi/180) - N.cos((90-decmax)*N.pi/180))*(N.pi*(ramax-ramin)/180.) chivol =(chimax*chimax*chimax - chimin*chimin*chimin)/3. vol = chivol*angvol # in [Mpc/h]^3 # truncate galaxy sample to light cone jj = N.nonzero((ra>ramin)&(ra<ramax)&(dec>decmin)&(dec<decmax)& (redz<zcen+delz)&(redz>zcen-delz))[0] magU = magU[jj] magB = magB[jj] if (boxside>0): print "using periodic box, side %8.2f Mpc/h"%(boxside) vol = boxside*boxside*boxside #units: #volume for Phi is in units of [Mpc/h70]^3, we have [Mpc/h]^3, # so divide volume by (h/h70)^3 = (h/(h/0.7))^3 = 0.7^3 vol = vol/(0.7*0.7*0.7) # Magnitudes are in units of MB- 5 log h70 magB = magB - 5*N.log10(hval/0.70) #note color cut is assuming h70's in units, but for h = 0.65 change is -0.005 jj = N.arange(magB.size) if (addcolor==1): jj = N.nonzero(magU - magB > 1.074 - 0.18*zcen -0.03* (magB + 19.4) )[0] if (addcolor==2): jj = N.nonzero(magU - magB <= 1.074 - 0.18*zcen -0.03* (magB + 19.4) )[0] magB = magB[jj] nbin = 50 nhist,bins = N.histogram(magB,nbin,range=(-24.00,-17.75)) bins += (bins[1]-bins[0])/2. bins = N.delete(bins,nbin) ngalact = nhist*1./(vol*(bins[1]-bins[0])) galkind =("all","red","blue") Bmid,phi,phierr,jjz = phi_beare(zcen,addcolor) phi += 1.e-10 return(bins,ngalact,Bmid,phi,phierr,jjz) def plot3sep(zcen=0.45,fname="galshort.dat",hval=0.67,boxside=100,ramin=-2,ramax=-2,decmin=2,decmax=-2,delz=0.02): """ plots separately, see comments for testlum to get inputs. if running for periodic box, only need zcen (central sim redshift), fname(galaxy file), hval (hubble constant, i.e. 0.67 for planck cosmology), boxside (e.g. 100 if box is 100 Mpc/h on a side) galshort format is above, in testlum comments """ coltype=("all","red","blue") collfull=("all galaxies","red galaxies","blue galaxies") collist=('k','r','b') cshapelist=('ks','rs','bs') for i in range(3): f,ax = plt.subplots(1,1) ax.set_xlim(-17.75,-24.00) ax.set_ylim(1.e-6,0.01) ax.set_yscale("log") bin_centers,ngalact,Bmid,phi,phierr,jjz=testlum(zcen,i,fname,hval,boxside,ramin,ramax,decmin,decmax,delz) ax.step(bin_centers, ngalact,collist[i],label=r'simulation $z_{sim}$= %3.2f'%(zcen)) zrange = N.array([0.2,0.3,0.4,0.5,0.65,0.8,1.0]) ax.plot(Bmid,phi,cshapelist[i],label=r'BOOTES %3.2f<z<%3.2f'%(zrange[jjz],zrange[jjz+1])) ax.text(9.2,2.e-4,collfull[i],color=collist[i]) ax.legend(loc=3) ax.set_yscale("log") ax.set_xlabel("$M_B-5 log $h_{70}$") ax.set_ylabel("$\Phi$[$h_{70}^3$/Mpc${}^3$]") plt.tight_layout() plt.savefig("Bband_z%d_%s.pdf"%(zcen*101,coltype[i])) plt.close("all") ```
{ "source": "jdcplus/python-gui-openpyxl-tutorial", "score": 4 }
#### File: jdcplus/python-gui-openpyxl-tutorial/test-gui.py ```python from tkinter import * class GUI(Frame): def __init__(self,master=None): Frame.__init__(self, master) self.grid() self.fnameLabel = Label(master, text="First Name") self.fnameLabel.grid() self.fnameEntry = Entry(master) self.fnameEntry.grid() self.lnameLabel = Label(master, text="Last Name") self.lnameLabel.grid() self.lnameEntry = Entry(master) self.lnameEntry.grid() self.submitButton = Button(master, command=self.buttonClick, text="Submit") self.submitButton.grid() def buttonClick(self): """ handle button click event and output text from entry area""" print('hello') if __name__ == "__main__": guiFrame = GUI() guiFrame.mainloop() ```
{ "source": "JDCTeam/android_device_samsung_jf-common", "score": 2 }
#### File: android_device_samsung_jf-common/releasetools/releasetools.py ```python def FullOTA_CustomAsserts(info): info.script.AppendExtra('ifelse(is_substring("I337", getprop("ro.bootloader")), run_program("/sbin/sh", "-c", "busybox cp -R /system/rild/gsm/* /system/ && busybox rm /system/lib/libcnefeatureconfig.so"));') info.script.AppendExtra('ifelse(is_substring("I545", getprop("ro.bootloader")), run_program("/sbin/sh", "-c", "busybox cp -R /system/rild/vzw/* /system/"));') info.script.AppendExtra('ifelse(is_substring("I545", getprop("ro.bootloader")), run_program("/sbin/sh", "-c", "busybox sed -i \'s/ro.com.google.clientidbase=android-google/ro.com.google.clientidbase=android-verizon/g\' /system/build.prop"));') info.script.AppendExtra('ifelse(is_substring("L720", getprop("ro.bootloader")), run_program("/sbin/sh", "-c", "busybox cp -R /system/rild/cdma/* /system/ && busybox rm -rf /system/rild/cdma/lib/libril.so && busybox cp -R /system/rild/gsm/lib/libril.so /system/rild/cdma/lib/"));') info.script.AppendExtra('ifelse(is_substring("M919", getprop("ro.bootloader")), run_program("/sbin/sh", "-c", "busybox cp -R /system/rild/gsm/* /system/ && busybox rm /system/lib/libcnefeatureconfig.so"));') info.script.AppendExtra('ifelse(is_substring("R970", getprop("ro.bootloader")), run_program("/sbin/sh", "-c", "busybox cp -R /system/rild/usc/* /system/"));') info.script.AppendExtra('ifelse(is_substring("S970", getprop("ro.bootloader")), run_program("/sbin/sh", "-c", "busybox cp -R /system/rild/gsm/* /system/ && busybox rm /system/lib/libcnefeatureconfig.so"));') info.script.AppendExtra('ifelse(is_substring("S975", getprop("ro.bootloader")), run_program("/sbin/sh", "-c", "busybox cp -R /system/rild/gsm/* /system/ && busybox rm /system/lib/libcnefeatureconfig.so"));') info.script.AppendExtra('ifelse(is_substring("I9505", getprop("ro.bootloader")), run_program("/sbin/sh", "-c", "busybox cp -R /system/rild/gsm/* /system/ && busybox rm /system/lib/libcnefeatureconfig.so"));') info.script.AppendExtra('ifelse(is_substring("I9507", getprop("ro.bootloader")), run_program("/sbin/sh", "-c", "busybox cp -R /system/rild/gsm/* /system/ && busybox rm /system/lib/libcnefeatureconfig.so"));') info.script.AppendExtra('ifelse(is_substring("I9508", getprop("ro.bootloader")), run_program("/sbin/sh", "-c", "busybox cp -R /system/rild/gsm/* /system/ && busybox rm /system/lib/libcnefeatureconfig.so"));') info.script.AppendExtra('delete_recursive("/system/rild");') def FullOTA_InstallEnd(info): info.script.Mount("/system") info.script.AppendExtra('set_metadata("/system/bin/qcks", "uid", 0, "gid", 2000, "mode", 0755, "capabilities", 0x0, "selabel", "u:object_r:mdm_helper_exec:s0");') info.script.AppendExtra('set_metadata("/system/bin/ks", "uid", 0, "gid", 2000, "mode", 0755, "capabilities", 0x0, "selabel", "u:object_r:mdm_helper_exec:s0");') info.script.AppendExtra('set_metadata("/system/bin/netmgrd", "uid", 0, "gid", 2000, "mode", 0755, "capabilities", 0x0, "selabel", "u:object_r:netmgrd_exec:s0");') info.script.AppendExtra('set_metadata("/system/bin/qmuxd", "uid", 0, "gid", 2000, "mode", 0755, "capabilities", 0x0, "selabel", "u:object_r:qmuxd_exec:s0");') info.script.script = [cmd for cmd in info.script.script if not "boot.img" in cmd] info.script.script = [cmd for cmd in info.script.script if not "show_progress(0.100000, 0);" in cmd] info.script.AppendExtra('package_extract_file("boot.img", "/tmp/boot.img");') info.script.AppendExtra('assert(run_program("/sbin/sh", "/system/etc/loki.sh") == 0);') info.script.Unmount("/system") ```
{ "source": "jd/daiquiri", "score": 2 }
#### File: daiquiri/daiquiri/output.py ```python import datetime import inspect import logging import logging.handlers import numbers import os import sys try: import syslog except ImportError: syslog = None from daiquiri import formatter from daiquiri import handlers def get_program_name(): """Return the name of the running program.""" return os.path.basename(inspect.stack()[-1][1]) class Output(object): """Generic log output.""" def __init__(self, handler, formatter=formatter.TEXT_FORMATTER, level=None): self.handler = handler self.handler.setFormatter(formatter) if level is not None: self.handler.setLevel(level) def add_to_logger(self, logger): """Add this output to a logger.""" logger.addHandler(self.handler) def _get_log_file_path( logfile=None, logdir=None, program_name=None, logfile_suffix=".log" ): ret_path = None if not logdir: ret_path = logfile if not ret_path and logfile and logdir: ret_path = os.path.join(logdir, logfile) if not ret_path and logdir: program_name = program_name or get_program_name() ret_path = os.path.join(logdir, program_name) + logfile_suffix if not ret_path: raise ValueError("Unable to determine log file destination") return ret_path class File(Output): """Ouput to a file.""" def __init__( self, filename=None, directory=None, suffix=".log", program_name=None, formatter=formatter.TEXT_FORMATTER, level=None, ): """Log file output. :param filename: The log file path to write to. If directory is also specified, both will be combined. :param directory: The log directory to write to. If no filename is specified, the program name and suffix will be used to contruct the full path relative to the directory. :param suffix: The log file name suffix. This will be only used if no filename has been provided. :param program_name: Program name. Autodetected by default. """ logpath = _get_log_file_path(filename, directory, program_name, suffix) handler = logging.handlers.WatchedFileHandler(logpath) super(File, self).__init__(handler, formatter, level) class RotatingFile(Output): """Output to a file, rotating after a certain size.""" def __init__( self, filename=None, directory=None, suffix=".log", program_name=None, formatter=formatter.TEXT_FORMATTER, level=None, max_size_bytes=0, backup_count=0, ): """Rotating log file output. :param filename: The log file path to write to. If directory is also specified, both will be combined. :param directory: The log directory to write to. If no filename is specified, the program name and suffix will be used to contruct the full path relative to the directory. :param suffix: The log file name suffix. This will be only used if no filename has been provided. :param program_name: Program name. Autodetected by default. :param max_size_bytes: Allow the file to rollover at a predetermined size. :param backup_count: The maximum number of files to rotate logging output between. """ logpath = _get_log_file_path(filename, directory, program_name, suffix) handler = logging.handlers.RotatingFileHandler( logpath, maxBytes=max_size_bytes, backupCount=backup_count ) super(RotatingFile, self).__init__(handler, formatter, level) def do_rollover(self): """Manually forces a log file rotation.""" return self.handler.doRollover() class TimedRotatingFile(Output): """Rotating log file output, triggered by a fixed interval.""" def __init__( self, filename=None, directory=None, suffix=".log", program_name=None, formatter=formatter.TEXT_FORMATTER, level=None, interval=datetime.timedelta(hours=24), backup_count=0, ): """Rotating log file output, triggered by a fixed interval. :param filename: The log file path to write to. If directory is also specified, both will be combined. :param directory: The log directory to write to. If no filename is specified, the program name and suffix will be used to contruct the full path relative to the directory. :param suffix: The log file name suffix. This will be only used if no filename has been provided. :param program_name: Program name. Autodetected by default. :param interval: datetime.timedelta instance representing how often a new log file should be created. :param backup_count: The maximum number of files to rotate logging output between. """ logpath = _get_log_file_path(filename, directory, program_name, suffix) handler = logging.handlers.TimedRotatingFileHandler( logpath, when="S", interval=self._timedelta_to_seconds(interval), backupCount=backup_count, ) super(TimedRotatingFile, self).__init__(handler, formatter, level) def do_rollover(self): """Manually forces a log file rotation.""" return self.handler.doRollover() @staticmethod def _timedelta_to_seconds(td): """Convert a datetime.timedelta object into a seconds interval. :param td: datetime.timedelta :return: time in seconds :rtype: int """ if isinstance(td, numbers.Real): td = datetime.timedelta(seconds=td) return td.total_seconds() class Stream(Output): """Generic stream output.""" def __init__( self, stream=sys.stderr, formatter=formatter.TEXT_FORMATTER, level=None ): super(Stream, self).__init__( handlers.TTYDetectorStreamHandler(stream), formatter, level ) STDERR = Stream() STDOUT = Stream(sys.stdout) class Journal(Output): def __init__( self, program_name=None, formatter=formatter.TEXT_FORMATTER, level=None ): program_name = program_name or get_program_name super(Journal, self).__init__( handlers.JournalHandler(program_name), formatter, level ) class Syslog(Output): def __init__( self, program_name=None, facility="user", formatter=formatter.TEXT_FORMATTER, level=None, ): if syslog is None: # FIXME(jd) raise something more specific raise RuntimeError("syslog is not available on this platform") super(Syslog, self).__init__( handlers.SyslogHandler( program_name=program_name or get_program_name(), facility=self._find_facility(facility), ), formatter, level, ) @staticmethod def _find_facility(facility): # NOTE(jd): Check the validity of facilities at run time as they differ # depending on the OS and Python version being used. valid_facilities = [ f for f in [ "LOG_KERN", "LOG_USER", "LOG_MAIL", "LOG_DAEMON", "LOG_AUTH", "LOG_SYSLOG", "LOG_LPR", "LOG_NEWS", "LOG_UUCP", "LOG_CRON", "LOG_AUTHPRIV", "LOG_FTP", "LOG_LOCAL0", "LOG_LOCAL1", "LOG_LOCAL2", "LOG_LOCAL3", "LOG_LOCAL4", "LOG_LOCAL5", "LOG_LOCAL6", "LOG_LOCAL7", ] if getattr(syslog, f, None) ] facility = facility.upper() if not facility.startswith("LOG_"): facility = "LOG_" + facility if facility not in valid_facilities: raise TypeError( "syslog facility must be one of: %s" % ", ".join("'%s'" % fac for fac in valid_facilities) ) return getattr(syslog, facility) class Datadog(Output): def __init__( self, hostname="127.0.0.1", port=10518, formatter=formatter.DATADOG_FORMATTER, level=None, handler_class=handlers.PlainTextSocketHandler, ): super(Datadog, self).__init__( handler_class(hostname, port), formatter=formatter, level=level, ) preconfigured = { "stderr": STDERR, "stdout": STDOUT, } if syslog is not None: preconfigured["syslog"] = Syslog() if handlers.journal is not None: preconfigured["journal"] = Journal() ```
{ "source": "jd-daniels/homeassistant-subaru", "score": 2 }
#### File: custom_components/subarujd/const.py ```python from enum import Enum import subarulink.const as sc from homeassistant.const import Platform DOMAIN = "subarujd" FETCH_INTERVAL = 300 UPDATE_INTERVAL = 7200 CONF_UPDATE_ENABLED = "update_enabled" CONF_NOTIFICATION_OPTION = "notification_option" CONF_COUNTRY = "country" class NotificationOptions(Enum): """Lovelace levels of notification.""" FAILURE = "Failure — Only notify on failure" PENDING = "Pending — Temporary notification of remote command in progress" SUCCESS = "Success — Persistent notification of completed remote command" @classmethod def list(cls): """List values of NotificationOptions.""" return [item.value for item in NotificationOptions] @classmethod def get_by_value(cls, value): """Get enum instance by value.""" for item in cls: if item.value == value: return item # entry fields ENTRY_CONTROLLER = "controller" ENTRY_COORDINATOR = "coordinator" ENTRY_VEHICLES = "vehicles" ENTRY_LISTENER = "listener" # update coordinator name COORDINATOR_NAME = "subaru_data" # info fields VEHICLE_VIN = "vin" VEHICLE_NAME = "display_name" VEHICLE_HAS_EV = "is_ev" VEHICLE_API_GEN = "api_gen" VEHICLE_HAS_REMOTE_START = "has_res" VEHICLE_HAS_REMOTE_SERVICE = "has_remote" VEHICLE_HAS_SAFETY_SERVICE = "has_safety" VEHICLE_LAST_UPDATE = "last_update" VEHICLE_LAST_FETCH = "last_fetch" VEHICLE_STATUS = "status" VEHICLE_CLIMATE = "climate" VEHICLE_CLIMATE_SELECTED_PRESET = "preset_name" API_GEN_1 = "g1" API_GEN_2 = "g2" MANUFACTURER = "Subaru Corp." ATTR_DOOR = "door" REMOTE_SERVICE_FETCH = "fetch" REMOTE_SERVICE_UPDATE = "update" REMOTE_SERVICE_LOCK = "lock" REMOTE_SERVICE_UNLOCK = "unlock" REMOTE_SERVICE_LIGHTS = "lights" REMOTE_SERVICE_LIGHTS_STOP = "lights_stop" REMOTE_SERVICE_HORN = "horn" REMOTE_SERVICE_HORN_STOP = "horn_stop" REMOTE_SERVICE_REMOTE_START = "remote_start" REMOTE_SERVICE_REMOTE_STOP = "remote_stop" REMOTE_SERVICE_CHARGE_START = "charge_start" REMOTE_CLIMATE_PRESET_NAME = "preset_name" SERVICE_UNLOCK_SPECIFIC_DOOR = "unlock_specific_door" UNLOCK_DOOR_ALL = "all" UNLOCK_DOOR_DRIVERS = "driver" UNLOCK_DOOR_TAILGATE = "tailgate" UNLOCK_VALID_DOORS = { UNLOCK_DOOR_ALL: sc.ALL_DOORS, UNLOCK_DOOR_DRIVERS: sc.DRIVERS_DOOR, UNLOCK_DOOR_TAILGATE: sc.TAILGATE_DOOR, } SUPPORTED_PLATFORMS = [ Platform.BINARY_SENSOR, Platform.DEVICE_TRACKER, Platform.LOCK, Platform.SENSOR, Platform.BUTTON, Platform.SELECT, ] ICONS = { "Avg Fuel Consumption": "mdi:leaf", "EV Range": "mdi:ev-station", "Odometer": "mdi:road-variant", "Range": "mdi:gas-station", "Horn Start": "mdi:volume-high", "Horn Stop": "mdi:volume-off", "Lights Start": "mdi:lightbulb-on", "Lights Stop": "mdi:lightbulb-off", "Locate": "mdi:car-connected", "Refresh": "mdi:refresh", "Remote Start": "mdi:power", "Remote Stop": "mdi:stop-circle-outline", "Charge EV": "mdi:ev-station", "Climate Preset": "mdi:thermometer-lines", } ```
{ "source": "jdddog/dragnet", "score": 2 }
#### File: dragnet/dragnet/data_processing.py ```python from __future__ import division, print_function import io import itertools import multiprocessing import os import re from dataclasses import dataclass import ftfy import numpy as np from dragnet.blocks import Blockifier, simple_tokenizer, text_from_subtree from dragnet.lcs import check_inclusion from lxml import etree @dataclass class DatasetFormat: """ Class for storing the settings used by each file format """ raw_html_dirname: str = 'HTML' gold_standard_dirname: str = 'Corrected' gold_standard_blocks_dirname: str = 'block_corrected' raw_html_ext: str = '.html' gold_standard_ext: str = '.html.corrected.txt' gold_standard_blocks_ext: str = '.block_corrected.txt' FORMATS = { '1.0': DatasetFormat(), '2.0': DatasetFormat(raw_html_dirname='html', gold_standard_dirname='meta', gold_standard_blocks_dirname='block_corrected', raw_html_ext='.html', gold_standard_ext='.toml', gold_standard_blocks_ext='.block_corrected.txt') } RE_COMMENTS_DELIM = re.compile(r'\n*!@#\$%\^&\*\(\)\s+COMMENTS\n*') def extract_all_gold_standard_data(data_dir, nprocesses=1, overwrite=False, format='1.0', **kwargs): """ Extract the gold standard block-level content and comment percentages from a directory of labeled data (only those for which the gold standard blocks are not found), and save results to corresponding files in a block-level gold standard directory under ``data_dir``. Args: data_dir (str): Directory on disk containing subdirectories for all training data, including raw html files and gold standard content + comments text files nprocesses (int): If > 1, use a :class:`multiprocessing.Pool` to parallelize the extractions overwrite (bool): If True, overwrite existing gold-standard blocks files. format (str): The format of the dataset to load. Set to '1.0' by default. Set to '2.0' to load .toml based files. **kwargs: passed into :func:`extract_gold_standard_blocks` See Also: :func:`extract_gold_standard_blocks` """ ds_format: DatasetFormat = FORMATS[format] use_pool = nprocesses > 1 if use_pool: pool = multiprocessing.Pool(processes=nprocesses) # get the set of files that have already been block corrected # so that we don't block correct them again if overwrite is False: gs_blocks_dir = os.path.join(data_dir, ds_format.gold_standard_blocks_dirname) if not os.path.isdir(gs_blocks_dir): os.mkdir(gs_blocks_dir) gs_blocks_filenames = get_filenames( gs_blocks_dir, full_path=False, match_regex=re.escape(ds_format.gold_standard_blocks_ext)) gs_blocks_fileroots = { re.search(r'(.+)' + re.escape(ds_format.gold_standard_blocks_ext), gs_blocks_filename).group(1) for gs_blocks_filename in gs_blocks_filenames} else: gs_blocks_fileroots = set() # extract the block-level gold parse from # the set of files to be block corrected gs_dir = os.path.join(data_dir, ds_format.gold_standard_dirname) gs_filenames = get_filenames( gs_dir, full_path=False, match_regex=re.escape(ds_format.gold_standard_ext)) for i, gs_filename in enumerate(gs_filenames): gs_fileroot = re.search(r'(.+)' + re.escape(ds_format.gold_standard_ext), gs_filename).group(1) if gs_fileroot in gs_blocks_fileroots: continue if i % 100 == 0: print('Extracting gold standard blocks for file "{}"'.format(gs_filename)) if use_pool: kwargs['format'] = format pool.apply_async(extract_gold_standard_blocks, (data_dir, gs_fileroot), kwargs) else: kwargs['format'] = format extract_gold_standard_blocks(data_dir, gs_fileroot, **kwargs) # close out our pool if use_pool: pool.close() pool.join() def extract_gold_standard_blocks(data_dir, fileroot, encoding=None, tokenizer=simple_tokenizer, cetr=False, format='1.0'): """ Extract the gold standard block-level content and comments for a single observation identified by ``fileroot``, and write the results to file. Args: data_dir (str): The root directory containing sub-directories for raw HTML, gold standard extracted content, and gold standard blocks. fileroot (str): Unique identifier for a single observation of training data, corresponding to the start of its raw html and gold standard filenames under ``data_dir``. encoding (str) tokenizer (Callable): Object that takes a string and returns the tokens as a list of strings. cetr (bool): If True, parse the gold standard in clean eval format. format (str): The format of the dataset to load. Set to '1.0' by default. Set to '2.0' to load .toml based files. Notes: Results are written to a text file in the block-level gold standard dir :obj:`GOLD_STANDARD_BLOCKS_DIRNAME` below ``data_dir``. Each line corresponds to a single block in its order of appearance, and has the following format:: content_frac comments_frac all_tokens content_tokens comments_tokens where each item is separated by a tab. ``content_frac`` is equal to the fraction of ``all_tokens`` found in the corresponding gold parse content text; ``comments_frac`` is the same but for comments text. """ # read the raw html, split it into blocks, and tokenize each block raw_html = read_html_file(data_dir, fileroot, encoding=encoding, format=format) # text is unicode from dragnet.blocks import BlockifyError try: blocks = [b.text for b in Blockifier.blockify(raw_html)] # text is bytes except BlockifyError as e: print('BlockifyError for file "{}"'.format(fileroot)) return blocks_tokens = [tokenizer(block) for block in blocks] num_blocks_tokens = [len(block_tokens) for block_tokens in blocks_tokens] # solve the longest common subsequence problem to determine which blocks were kept # need a list of all the tokens in the blocks, plus a correspondence of which # block they belong to. # we will determine which of the tokens is in the extracted content, # then use the correspondence to block id to determine which blocks were kept # get a flattened sequence of all tokens in all blocks # and their corresponding block ids all_blocks_tokens = [] all_blocks_tokens_block_id = [] for i, block_tokens in enumerate(blocks_tokens): all_blocks_tokens.extend(block_tokens) all_blocks_tokens_block_id.extend([i] * len(block_tokens)) # TODO: do we really need `num_all_blocks_tokens`? # it was used to determine if there were more gold standard tokens than *all* # tokens, and if so, some info was written to disk # but it seems like an odd check, and it's probably better to take the # gold standard data at face value -- presumably, somebody checked it! # num_all_blocks_tokens = len(all_blocks_tokens) def get_frac_and_str_tokens_in_gs(gs_txt): """ For each block, determine which and what fraction of tokens are also in the gold standard text ``gs_txt`` for either content or comments. Returns: List[float] List[str] """ gs_tokens = tokenizer(gs_txt) tokens_in_gs = check_inclusion(all_blocks_tokens, gs_tokens) num_blocks_tokens_in_gs = [0 for _ in range(len(blocks))] blocks_tokens_in_gs_tokens = [[] for _ in range(len(blocks))] for token, token_in_gs, block_id in zip(all_blocks_tokens, tokens_in_gs, all_blocks_tokens_block_id): if token_in_gs is True: num_blocks_tokens_in_gs[block_id] += 1 blocks_tokens_in_gs_tokens[block_id].append(token) blocks_tokens_strs_in_gs = [ ' '.join(block_tokens_in_gs_tokens) for block_tokens_in_gs_tokens in blocks_tokens_in_gs_tokens] frac_blocks_tokens_in_gs = [ num_block_tokens_in_gs / num_block_tokens for num_block_tokens_in_gs, num_block_tokens in zip(num_blocks_tokens_in_gs, num_blocks_tokens)] return (frac_blocks_tokens_in_gs, blocks_tokens_strs_in_gs) gs_content, gs_comments = read_gold_standard_file(data_dir, fileroot, cetr=cetr, format=format) frac_blocks_tokens_in_gs_content, blocks_tokens_strs_in_gs_content = \ get_frac_and_str_tokens_in_gs(gs_content) frac_blocks_tokens_in_gs_comments, blocks_tokens_strs_in_gs_comments = \ get_frac_and_str_tokens_in_gs(gs_comments) ds_format = FORMATS[format] output_fname = os.path.join( data_dir, ds_format.gold_standard_blocks_dirname, fileroot + ds_format.gold_standard_blocks_ext) line_fmt = u'{frac_content}\t{frac_comments}\t{block_tokens}\t{content_tokens}\t{comment_tokens}\n' with io.open(output_fname, mode='w') as f: for block_id, block_tokens in enumerate(blocks_tokens): line = line_fmt.format( frac_content=frac_blocks_tokens_in_gs_content[block_id], frac_comments=frac_blocks_tokens_in_gs_comments[block_id], block_tokens=' '.join(block_tokens), content_tokens=blocks_tokens_strs_in_gs_content[block_id], comment_tokens=blocks_tokens_strs_in_gs_comments[block_id]) f.write(line) def get_filenames(dirname, full_path=False, match_regex=None, extension=None): """ Get all filenames under ``dirname`` that match ``match_regex`` or have file extension equal to ``extension``, optionally prepending the full path. Args: dirname (str): /path/to/dir on disk where files to read are saved full_path (bool): if False, return filenames without path; if True, return filenames with path, as ``os.path.join(dirname, fname)`` match_regex (str): include files whose names match this regex pattern extension (str): if files only of a certain type are wanted, specify the file extension (e.g. ".txt") Yields: str: next matching filename """ if not os.path.exists(dirname): raise OSError('directory "{}" does not exist'.format(dirname)) match_regex = re.compile(match_regex) if match_regex else None for filename in sorted(os.listdir(dirname)): if extension and not os.path.splitext(filename)[-1] == extension: continue if match_regex and not match_regex.search(filename): continue if full_path is True: yield os.path.join(dirname, filename) else: yield filename def read_html_file(data_dir, fileroot, encoding=None, format='1.0'): """ Read the HTML file corresponding to identifier ``fileroot`` in the raw HTML directory below the root ``data_dir``. Args: data_dir (str) fileroot (str) encoding (str) Returns: str """ ds_format: DatasetFormat = FORMATS[format] fname = os.path.join( data_dir, ds_format.raw_html_dirname, fileroot + ds_format.raw_html_ext) encodings = (encoding,) if encoding else ('utf-8', 'iso-8859-1') # 'utf-16' for encoding in encodings: try: with io.open(fname, mode='rt', encoding=encoding) as f: raw_html = f.read() break except (UnicodeDecodeError, UnicodeError): raw_html = None return ftfy.fix_encoding(raw_html).strip() def read_gold_standard_file(data_dir, fileroot, encoding=None, cetr=False, format='1.0'): """ Read the gold standard content file corresponding to identifier ``fileroot`` in the gold standard directory below the root ``data_dir``. Args: data_dir (str) fileroot (str) encoding (str) cetr (bool): if True, assume no comments and parse the gold standard to remove tags format (bool): if True, assume no comments and parse the gold standard to remove tags Returns: List[str, str]: contents string and comments string, respectively """ ds_format: DatasetFormat = FORMATS[format] fname = os.path.join( data_dir, ds_format.gold_standard_dirname, fileroot + ds_format.gold_standard_ext) encodings = (encoding,) if encoding else ('utf-8', 'utf-16', 'iso-8859-1') for encoding in encodings: try: with io.open(fname, mode='rt', encoding=encoding) as f: gold_standard = f.read() break except (UnicodeDecodeError, UnicodeError): gold_standard = None if not gold_standard: return [u'', u''] if format == '1.0': if not cetr: content_comments = RE_COMMENTS_DELIM.split(gold_standard, maxsplit=1) # if no comments delimiter found, append empty comments string if len(content_comments) == 1: content_comments = [content_comments[0], u''] else: tree = etree.fromstring(gold_standard, parser=etree.HTMLParser()) content_comments = [u' '.join(text_from_subtree(tree)), u''] elif format == '2.0': # Load toml data # toml parser has an issue with multiline text strings text = gold_standard.split("'''")[1] # data = toml.loads(gold_standard) # text = data['text'] tree = etree.fromstring(text, parser=etree.HTMLParser()) content_comments = [u' '.join(text_from_subtree(tree)), u''] else: raise NotImplementedError(f'Format version {format} is not implemented') # fix text in case of mangled encodings content_comments = [ftfy.fix_encoding(content_comments[0]).strip(), ftfy.fix_encoding(content_comments[1]).strip()] return content_comments def read_gold_standard_blocks_file(data_dir, fileroot, split_blocks=True, format='1.0'): """ Read the gold standard blocks file corresponding to identifier ``fileroot`` in the gold standard blocks directory below the root ``data_dir``. Args: data_dir (str) fileroot (str) split_blocks (bool): If True, split the file's content into blocks. Returns: str or List[str] """ ds_format: DatasetFormat = FORMATS[format] fname = os.path.join( data_dir, ds_format.gold_standard_blocks_dirname, fileroot + ds_format.gold_standard_blocks_ext) with io.open(fname, mode='r') as f: data = f.read() if split_blocks: return filter(None, data[:-1].split('\n')) return filter(None, data) def _parse_content_or_comments_blocks(blocks, block_pct_tokens_thresh): is_above_thresh = (np.array([ele[0] for ele in blocks]) > block_pct_tokens_thresh).astype(np.int) token_counts = np.array([ele[1] for ele in blocks]) all_tokens = list(itertools.chain.from_iterable( ele[2] for ele in blocks if ele[1] > 0)) return (is_above_thresh, token_counts, all_tokens) def prepare_data(data_dir, fileroot, block_pct_tokens_thresh=0.1, format='1.0'): """ Prepare data for a single HTML + gold standard blocks example, uniquely identified by ``fileroot``. Args: data_dir (str) fileroot (str) block_pct_tokens_thresh (float): must be in [0.0, 1.0] Returns: Tuple[str, Tuple[np.array[int], np.array[int], List[str]], Tuple[np.array[int], np.array[int], List[str]]]: The first element is simply the raw html as a string. The second and third elements are 3-tuples for content and comments, respectively, where the first element is a numpy array of 1s and 0s whose values correspond to whether or not a given block is considered non-content or not; the second element is a numpy integer array whose values are the total number of tokens in each block; and the third element is a flat list of content or comment tokens as strings, concatenated from all blocks. See Also: :func:`prepare_all_data` """ if not 0.0 <= block_pct_tokens_thresh <= 1.0: raise ValueError('block_pct_tokens_thresh must be in the range [0.0, 1.0]') html = read_html_file(data_dir, fileroot, format=format) blocks = read_gold_standard_blocks_file(data_dir, fileroot, split_blocks=True, format=format) content_blocks = [] comments_blocks = [] for block in blocks: block_split = block.split('\t') num_block_tokens = len(block_split[2].split()) # total number of tokens in block is used as weights content_blocks.append( (float(block_split[0]), num_block_tokens, block_split[3].split())) comments_blocks.append( (float(block_split[1]), num_block_tokens, block_split[4].split())) parsed_content_blocks = _parse_content_or_comments_blocks( content_blocks, block_pct_tokens_thresh) parsed_comments_blocks = _parse_content_or_comments_blocks( comments_blocks, block_pct_tokens_thresh) return (html, parsed_content_blocks, parsed_comments_blocks) def prepare_all_data(data_dir, block_pct_tokens_thresh=0.1, format='1.0'): """ Prepare data for all HTML + gold standard blocks examples in ``data_dir``. Args: data_dir (str) block_pct_tokens_thresh (float): must be in [0.0, 1.0] Returns: List[Tuple[str, List[float, int, List[str]], List[float, int, List[str]]]] See Also: :func:`prepare_data` """ ds_format: DatasetFormat = FORMATS[format] gs_blocks_dir = os.path.join(data_dir, ds_format.gold_standard_blocks_dirname) gs_blocks_filenames = get_filenames( gs_blocks_dir, full_path=False, match_regex=re.escape(ds_format.gold_standard_blocks_ext)) gs_blocks_fileroots = ( re.search(r'(.+)' + re.escape(ds_format.gold_standard_blocks_ext), gs_blocks_filename).group(1) for gs_blocks_filename in gs_blocks_filenames) return [prepare_data(data_dir, fileroot, block_pct_tokens_thresh, format=format) for fileroot in gs_blocks_fileroots] ``` #### File: dragnet/test/test_data_processing.py ```python import io import os from shutil import rmtree import tempfile import pytest from dragnet import data_processing FIXTURES = os.path.join('test', 'datafiles') @pytest.fixture(scope="module") def fileroots(): return ["bbc.co.story", "f1", "sad8-2sdkfj"] @pytest.fixture(scope="class") def datadir(fileroots): datadir = tempfile.mkdtemp() for froot in fileroots: fname = os.path.join(datadir, "{}.html.corrected.txt".format(froot)) with io.open(fname, mode="wt") as f: f.write(u".") yield datadir rmtree(datadir) @pytest.mark.usefixtures("datadir") class TestGetFilenames(object): def test_get_filenames(self, fileroots, datadir): filenames = list(data_processing.get_filenames(datadir)) assert ( filenames == ["{}.html.corrected.txt".format(froot) for froot in fileroots] ) def test_get_filenames_full_path(self, fileroots, datadir): filenames = list(data_processing.get_filenames(datadir, full_path=True)) assert ( filenames == [os.path.join(datadir, "{}.html.corrected.txt".format(froot)) for froot in fileroots] ) def test_get_filenames_match_regex(self, datadir): filenames = list(data_processing.get_filenames(datadir, match_regex='f1')) assert filenames == ['f1.html.corrected.txt'] filenames = list(data_processing.get_filenames(datadir, match_regex='foo')) assert filenames == [] def test_get_filenames_extension(self, fileroots, datadir): filenames = list(data_processing.get_filenames(datadir, extension='.txt')) assert ( filenames == ['{}.html.corrected.txt'.format(froot) for froot in fileroots] ) filenames = list(data_processing.get_filenames(datadir, extension='.foo')) assert filenames == [] class TestReadGoldStandard(object): def test_read_gold_standard(self): tests = { 'ascii': u'ascii yo!', 'iso-8859-1': u'\xd3', 'utf-8': u'\xae', 'utf-16': u'\xae', } for encoding, expected in tests.items(): content_comments = data_processing.read_gold_standard_file( FIXTURES, encoding) assert content_comments[0] == u"Content here\nmore content\n" + expected assert content_comments[1] == "some comments" def test_utf8_chinese(self): actual_chinese_content = u'<h>\u9ad8\u8003\u8bed\u6587\u5168\u7a0b\u68c0\u6d4b\u4e09\uff1a\u6b63\u786e\u4f7f\u7528\u8bcd\u8bed\uff08\u719f\u8bed\u4e00\uff09\n\n\n <h>LEARNING.SOHU.COM 2004\u5e745\u670822\u65e515:36 ' gs = " ".join(data_processing.read_gold_standard_file(FIXTURES, "utf-8_chinese")) assert gs == actual_chinese_content def make_filepath(s): return os.path.join(FIXTURES, "block_corrected", "{}.block_corrected.txt".format(s)) class TestExtractGoldStandard(object): def test_extract_gold_standard(self): fileroots = ["page_comments", "page_no_comments"] for fileroot in fileroots: actual_filepath = make_filepath(fileroot) expected_filepath = make_filepath(fileroot + "_expected") data_processing.extract_gold_standard_blocks(FIXTURES, fileroot) with io.open(actual_filepath, mode="rt") as f: actual_blocks = f.read() with io.open(expected_filepath, mode="rt") as f: expected_blocks = f.read() os.remove(actual_filepath) assert expected_blocks == actual_blocks def test_extract_blank_label(self): blank_label = data_processing.read_gold_standard_blocks_file(FIXTURES, "blank_label") assert len(list(blank_label)) == 0 blank_data = data_processing.prepare_data(FIXTURES, "blank_label") assert len(blank_data[0]) > 0 ``` #### File: dragnet/test/test_models.py ```python import io import json import os import pytest from dragnet import extract_content, extract_comments, extract_content_and_comments from dragnet.blocks import simple_tokenizer from dragnet.util import evaluation_metrics FIXTURES = os.path.join('test', 'datafiles') @pytest.fixture(scope="module") def html(): with io.open(os.path.join(FIXTURES, "models_testing.html"), mode="rt") as f: html_ = f.read() return html_ def test_models(html): models = [extract_content, extract_comments] # extract_content_and_comments] with io.open(os.path.join(FIXTURES, 'models_content_mod.json'), 'r') as f: actual_content = json.load(f) for i, model in enumerate(models): gold_standard = actual_content[i] passed = False for i in range(10): content = model(html) _, _, f1 = evaluation_metrics( simple_tokenizer(gold_standard), simple_tokenizer(content)) if f1 >= 0.8: passed = True break assert passed def test_content_and_content_comments_extractor(html): content = extract_content(html) content_comments = extract_comments(html) passed_content = False passed_content_comments = False for i in range(10): # actual_content, actual_content_comments = \ # extract_content_and_comments(html) actual_content = extract_content(html) actual_content_comments = extract_comments(html) passed_content = actual_content == content passed_content_comments = ( actual_content_comments == content_comments) if passed_content and passed_content_comments: break assert passed_content assert passed_content_comments def test_content_and_content_comments_extractor_blocks(html): """ The content and content/comments extractor should return proper blocks """ content = extract_content(html, as_blocks=True) content_comments = extract_comments(html, as_blocks=True) passed_content = False passed_content_comments = False for i in range(5): # actual_content, actual_content_comments = \ # content_and_content_comments_extractor.analyze( # html, blocks=True) actual_content = extract_content(html, as_blocks=True) actual_content_comments = extract_comments(html, as_blocks=True) passed_content = ( [blk.text for blk in actual_content] == [blk.text for blk in content] ) passed_content_comments = ( [blk.text for blk in actual_content_comments] == [blk.text for blk in content_comments] ) if passed_content and passed_content_comments: break assert passed_content assert passed_content_comments ```
{ "source": "jdddog/graynet_keras", "score": 3 }
#### File: jdddog/graynet_keras/__init__.py ```python from .models import * from .model_config import * name = "GrayNetKeras" def init_input_tensor(input_shape, input_tensor, weights='graynet', **kwargs): if input_tensor is None: input_tensor = Input(shape=input_shape) if input_tensor.shape[-1] == 1 and weights=='graynet': x = input_tensor elif input_tensor.shape[-1] == 1: x = Concatenate(axis=-1)([input_tensor, input_tensor, input_tensor]) elif input_tensor.shape[-1] == 3: x = input_tensor else: print("[ERROR] Wrong input tensor or shape") raise NotImplementedError return x def Densenet121_GrayNet(input_tensor=None, input_shape=None, weights='graynet', **kwargs): # Make input tensor input_tensor = init_input_tensor(input_shape, input_tensor, weights=weights) model_name = 'densenet121' # Build body if weights == 'graynet': print("Input tensor shape:", input_tensor.shape) weights = get_weight_path('densnet121', 'graynet', input_tensor.shape[-1]) print("weight:", weights) densnet_model = DenseNet121(include_top=False, weights=None, input_tensor=input_tensor, pooling='avg') gap = densnet_model(input_tensor) model = Model(inputs=input_tensor, outputs=gap, name=model_name) model.load_weights(weights, by_name=True, skip_mismatch=True) return model def UnetEncoder_GrayNet(input_tensor=None, input_shape=None, weights='graynet', **kwargs): # input_tensor = init_input_tensor(input_shape, input_tensor) model_name = 'unetenc' last_conv, bypass1, bypass2, bypass3, bypass4 = UNET.encoder(input_tensor, num_chs=64, **kwargs) gap = GlobalAveragePooling2D()(last_conv) model = Model(inputs=input_tensor, outputs=gap, name=model_name) # Load GrayNet weight if weights is not None: weights_path = get_weight_path(model_name, weights, input_tensor.shape[-1]) model.load_weights(weights_path, by_name=True, skip_mismatch=True) return model def ResNet50_GrayNet(input_tensor=None, input_shape=None, weights='graynet', **kwargs): # input_tensor = init_input_tensor(input_shape, input_tensor) model_name = 'resnet50' gap = RESNET50_LMIC(input_tensor, return_tensor=True, **kwargs) model = Model(inputs=input_tensor, outputs=gap, name=model_name) # Load GrayNet weight if weights is not None: weights_path = get_weight_path(model_name, weights, input_tensor.shape[-1]) model.load_weights(weights_path, by_name=True, skip_mismatch=True) return model def InceptionV3_GrayNet(input_tensor=None, input_shape=None, weights='graynet', **kwargs): # input_tensor = init_input_tensor(input_shape, input_tensor) model_name = 'inceptionv3' gap = INCEPTIONV3_LMIC(input_tensor, return_tensor=True, **kwargs) model = Model(inputs=input_tensor, outputs=gap, name=model_name) # Load GrayNet weight if weights is not None: weights_path = get_weight_path(model_name, weights, input_tensor.shape[-1]) model.load_weights(weights_path, by_name=True, skip_mismatch=True) return model ```
{ "source": "jdddog/mag-archiver", "score": 2 }
#### File: mag-archiver/tests/test_mag.py ```python import os import unittest from unittest.mock import patch import pendulum from azure.common import AzureMissingResourceHttpError from azure.cosmosdb.table.tableservice import TableService from azure.storage.blob import ContainerProperties from mag_archiver.azure import create_table from mag_archiver.mag import make_mag_query, MagState, MagDateType, MagRelease, MagTask, MagArchiverClient, \ hide_if_not_none class TestMag(unittest.TestCase): def test_hide_if_not_none(self): # Test that None is returned for None value = hide_if_not_none(None) self.assertEqual(value, None) # Test that 'hidden' is returned: string value = hide_if_not_none('hello world') self.assertEqual(value, 'hidden') # Test that 'hidden' is returned: integer value = hide_if_not_none(123) self.assertEqual(value, 'hidden') def test_make_mag_query(self): start_date = pendulum.datetime(year=2020, month=4, day=1) end_date = pendulum.datetime(year=2020, month=5, day=1) # No parameters query = make_mag_query() self.assertEqual(query, '') # State parameter query = make_mag_query(state=MagState.discovered) self.assertEqual(query, "State eq 'discovered'") query = make_mag_query(state=MagState.archived) self.assertEqual(query, "State eq 'archived'") query = make_mag_query(state=MagState.done) self.assertEqual(query, "State eq 'done'") # Start date parameter query = make_mag_query(start_date=start_date, date_type=MagDateType.release) self.assertEqual(query, "ReleaseDate ge datetime'2020-04-01T00:00Z'") query = make_mag_query(start_date=start_date, date_type=MagDateType.discovered) self.assertEqual(query, "DiscoveredDate ge datetime'2020-04-01T00:00Z'") query = make_mag_query(start_date=start_date, date_type=MagDateType.archived) self.assertEqual(query, "ArchivedDate ge datetime'2020-04-01T00:00Z'") query = make_mag_query(start_date=start_date, date_type=MagDateType.done) self.assertEqual(query, "DoneDate ge datetime'2020-04-01T00:00Z'") # End date parameter query = make_mag_query(end_date=end_date, date_type=MagDateType.release) self.assertEqual(query, "ReleaseDate lt datetime'2020-05-01T00:00Z'") query = make_mag_query(end_date=end_date, date_type=MagDateType.discovered) self.assertEqual(query, "DiscoveredDate lt datetime'2020-05-01T00:00Z'") query = make_mag_query(end_date=end_date, date_type=MagDateType.archived) self.assertEqual(query, "ArchivedDate lt datetime'2020-05-01T00:00Z'") query = make_mag_query(end_date=end_date, date_type=MagDateType.done) self.assertEqual(query, "DoneDate lt datetime'2020-05-01T00:00Z'") # Start date, end date and date type query = make_mag_query(start_date=start_date, end_date=end_date, date_type=MagDateType.release) self.assertEqual(query, "ReleaseDate ge datetime'2020-04-01T00:00Z' and ReleaseDate lt " "datetime'2020-05-01T00:00Z'") query = make_mag_query(start_date=start_date, end_date=end_date, date_type=MagDateType.discovered) self.assertEqual(query, "DiscoveredDate ge datetime'2020-04-01T00:00Z' and DiscoveredDate lt " "datetime'2020-05-01T00:00Z'") query = make_mag_query(start_date=start_date, end_date=end_date, date_type=MagDateType.archived) self.assertEqual(query, "ArchivedDate ge datetime'2020-04-01T00:00Z' and ArchivedDate lt " "datetime'2020-05-01T00:00Z'") query = make_mag_query(start_date=start_date, end_date=end_date, date_type=MagDateType.done) self.assertEqual(query, "DoneDate ge datetime'2020-04-01T00:00Z' and DoneDate lt " "datetime'2020-05-01T00:00Z'") # State, start date, end date and date type query = make_mag_query(state=MagState.discovered, start_date=start_date, end_date=end_date, date_type=MagDateType.discovered) self.assertEqual(query, "State eq 'discovered' and DiscoveredDate ge datetime'2020-04-01T00:00Z' " "and DiscoveredDate lt datetime'2020-05-01T00:00Z'") query = make_mag_query(state=MagState.archived, start_date=start_date, end_date=end_date, date_type=MagDateType.archived) self.assertEqual(query, "State eq 'archived' and ArchivedDate ge datetime'2020-04-01T00:00Z' " "and ArchivedDate lt datetime'2020-05-01T00:00Z'") query = make_mag_query(state=MagState.done, start_date=start_date, end_date=end_date, date_type=MagDateType.done) self.assertEqual(query, "State eq 'done' and DoneDate ge datetime'2020-04-01T00:00Z' " "and DoneDate lt datetime'2020-05-01T00:00Z'") def make_mag_release(account_name: str, account_key: str, year: int, month: int, day: int): min_date = pendulum.datetime(1601, 1, 1) partition_key_ = 'mag' row_key_ = f'mag-{year:0>4d}-{month:0>2d}-{day:0>2d}' state_ = MagState.discovered task_ = MagTask.not_started release_date_ = pendulum.datetime(year=year, month=month, day=day) source_container_ = row_key_ source_container_last_modified_ = pendulum.datetime(year=year, month=month, day=day, hour=1) release_container_ = '' release_path_ = '' discovered_date_ = pendulum.datetime(year=year, month=month, day=day, hour=2) archived_date_ = min_date done_date_ = min_date return MagRelease(partition_key_, row_key_, state_, task_, release_date_, source_container_, source_container_last_modified_, release_container_, release_path_, discovered_date_, archived_date_, done_date_, account_name=account_name, account_key=account_key) class TestMagRelease(unittest.TestCase): def __init__(self, *args, **kwargs): super(TestMagRelease, self).__init__(*args, **kwargs) self.account_name = os.getenv('STORAGE_ACCOUNT_NAME') self.account_key = os.getenv('STORAGE_ACCOUNT_KEY') create_table(self.account_name, self.account_key, MagRelease.TABLE_NAME) def test_secrets_hidden(self): # Check that account key is hidden account_name = 'myaccountname' secret = 'secret' # Check that account_key and sas_token are hidden release = make_mag_release(account_name, secret, 2020, 1, 1) self.assertIn('account_key=hidden', release.__repr__()) self.assertNotIn(secret, release.__str__()) self.assertNotIn(secret, release.__repr__()) # Check that account_key is None release = make_mag_release(account_name, None, 2020, 1, 1) self.assertIn('account_key=None', release.__repr__()) def test_create(self): release = make_mag_release(self.account_name, self.account_key, 2019, 6, 1) try: success = release.create() self.assertTrue(success) finally: release.delete() def test_delete(self): release = make_mag_release(self.account_name, self.account_key, 2019, 6, 1) # Check that we can create and then delete release.create() release.delete() # Check that second delete fails with self.assertRaises(AzureMissingResourceHttpError): release.delete() def test_update(self): release = make_mag_release(self.account_name, self.account_key, 2019, 6, 1) try: release.create() # Update release release.state = MagState.archived release.archived_date = pendulum.utcnow().microsecond_(0) release.update() # Verify that release is updated service = TableService(account_name=self.account_name, account_key=self.account_key) entity = service.get_entity(MagRelease.TABLE_NAME, release.partition_key, release.row_key) updated_release = MagRelease.from_entity(entity) self.assertEqual(release.state, updated_release.state) self.assertEqual(release.archived_date, updated_release.archived_date) finally: release.delete() def make_containers(): containers = [] cp1 = ContainerProperties() cp1.name = 'mag-2020-04-17' cp1.last_modified = pendulum.datetime(year=2020, month=4, day=18) containers.append(cp1) cp3 = ContainerProperties() cp3.name = 'mag-2020-05-01' cp3.last_modified = pendulum.datetime(year=2020, month=5, day=1) containers.append(cp3) cp2 = ContainerProperties() cp2.name = 'mag-2020-04-24' cp2.last_modified = pendulum.datetime(year=2020, month=4, day=25) containers.append(cp2) return containers class TestMagArchiverClient(unittest.TestCase): def __init__(self, *args, **kwargs): super(TestMagArchiverClient, self).__init__(*args, **kwargs) self.account_name = os.getenv('STORAGE_ACCOUNT_NAME') self.account_key = os.getenv('STORAGE_ACCOUNT_KEY') create_table(self.account_name, self.account_key, MagRelease.TABLE_NAME) def test_secrets_hidden(self): # Check that account key is hidden account_name = 'myaccountname' secret = 'secret' # Check that account_key and sas_token are hidden client = MagArchiverClient(account_name=account_name, account_key=secret, sas_token=secret) expected = f'MagArchiverClient(account_name={account_name}, account_key=hidden, sas_token=hidden)' self.assertEqual(client.__str__(), expected) self.assertEqual(client.__repr__(), expected) self.assertNotIn(secret, client.__str__()) self.assertNotIn(secret, client.__repr__()) # Check that account_key and sas_token are None client = MagArchiverClient(account_name=account_name) expected = f'MagArchiverClient(account_name={account_name}, account_key=None, sas_token=None)' self.assertEqual(client.__str__(), expected) self.assertEqual(client.__repr__(), expected) @patch('mag_archiver.mag.list_containers') @patch('pendulum.datetime.now') def test_list_containers(self, mock_now, mock_list_containers): # Mock time mock_now.return_value = pendulum.datetime(year=2020, month=5, day=1, minute=10) # Mock containers containers_in = make_containers() mock_list_containers.return_value = containers_in # Test that 2 containers are returned when last_modified_thresh=1 client = MagArchiverClient(account_name=self.account_name, account_key=self.account_key) containers_out = client.list_containers(last_modified_thresh=1) self.assertEqual(len(containers_out), 2) # Test that 3 containers are returned when last_modified_thresh=0 containers_out = client.list_containers(last_modified_thresh=0) self.assertEqual(len(containers_out), 3) # Test sort order reverse=False self.assertEqual(containers_in[0].name, containers_out[0].name) self.assertEqual(containers_in[2].name, containers_out[1].name) self.assertEqual(containers_in[1].name, containers_out[2].name) # Test sort order reverse=True containers_out = client.list_containers(last_modified_thresh=0, reverse=True) self.assertEqual(len(containers_out), 3) self.assertEqual(containers_in[1].name, containers_out[0].name) self.assertEqual(containers_in[2].name, containers_out[1].name) self.assertEqual(containers_in[0].name, containers_out[2].name) @patch('mag_archiver.mag.list_containers') @patch('pendulum.datetime.now') def test_update_releases(self, mock_now, mock_list_containers): # Mock time mock_now.return_value = pendulum.datetime(year=2020, month=5, day=1, minute=10) # Mock containers containers_in = make_containers() mock_list_containers.return_value = containers_in # Mock fetching of containers client = MagArchiverClient(account_name=self.account_name, account_key=self.account_key) containers = client.list_containers(last_modified_thresh=1) try: # Update releases based on containers num_updated, num_errors = client.update_releases(containers) self.assertEqual(num_updated, 2) self.assertEqual(num_errors, 0) finally: # Clean up service = TableService(account_name=self.account_name, account_key=self.account_key) for container in containers: service.delete_entity(MagRelease.TABLE_NAME, 'mag', container.name.replace("mag-", "")) @patch('mag_archiver.mag.list_containers') @patch('pendulum.datetime.now') def test_list_releases(self, mock_now, mock_list_containers): # Mock time mock_now.return_value = pendulum.datetime(year=2020, month=5, day=1, hour=1) # Mock containers containers_in = make_containers() mock_list_containers.return_value = containers_in # Mock fetching of containers client = MagArchiverClient(account_name=self.account_name, account_key=self.account_key) containers = client.list_containers(last_modified_thresh=1) try: # Update releases based on containers num_updated, num_errors = client.update_releases(containers) self.assertEqual(num_updated, 3) self.assertEqual(num_errors, 0) # Two releases start_date = pendulum.datetime(year=2020, month=4, day=17) end_date = pendulum.datetime(year=2020, month=5, day=1) releases = client.list_releases(start_date=start_date, end_date=end_date, state=MagState.discovered, date_type=MagDateType.release) self.assertEqual(len(releases), 2) # 1 release start_date = pendulum.datetime(year=2020, month=4, day=17, minute=1) end_date = pendulum.datetime(year=2020, month=5, day=1) releases = client.list_releases(start_date=start_date, end_date=end_date, state=MagState.discovered, date_type=MagDateType.release) self.assertEqual(len(releases), 1) # Three releases start_date = pendulum.datetime(year=2020, month=4, day=17) end_date = pendulum.datetime(year=2020, month=5, day=1, minute=1) releases = client.list_releases(start_date=start_date, end_date=end_date, state=MagState.discovered, date_type=MagDateType.release, reverse=False) self.assertEqual(len(releases), 3) # Sorting reverse=False self.assertEqual(releases[0].row_key, '2020-04-17') self.assertEqual(releases[1].row_key, '2020-04-24') self.assertEqual(releases[2].row_key, '2020-05-01') # Sorting reverse=True releases = client.list_releases(start_date=start_date, end_date=end_date, state=MagState.discovered, date_type=MagDateType.release, reverse=True) self.assertEqual(releases[0].row_key, '2020-05-01') self.assertEqual(releases[1].row_key, '2020-04-24') self.assertEqual(releases[2].row_key, '2020-04-17') finally: # Clean up service = TableService(account_name=self.account_name, account_key=self.account_key) for container in containers: service.delete_entity(MagRelease.TABLE_NAME, 'mag', container.name.replace("mag-", "")) ```
{ "source": "jdddog/nao_hri", "score": 2 }
#### File: nao_hri/scripts/nao_gesture_action_server_node.py ```python import rospy import actionlib from hri_framework import IGestureActionServer, GestureHandle from nao_hri import NaoNode, Gesture from hri_msgs.msg import TargetAction, TargetGoal from threading import Timer, RLock from nao_hri import AnimationType from threading import Thread class NaoGestureHandle(GestureHandle): def __init__(self, goal_handle, gesture, motion_id=None, client=None): GestureHandle.__init__(self, goal_handle, gesture) self.motion_id = motion_id self.client = client class NaoGestureActionServer(IGestureActionServer, NaoNode): def __init__(self): IGestureActionServer.__init__(self, Gesture) self.motion_proxy = None self.lock = RLock() self.larm_client = actionlib.SimpleActionClient('nao_point_left', TargetAction) self.larm_gh = None self.rarm_client = actionlib.SimpleActionClient('nao_point_right', TargetAction) self.rarm_gh = None def start(self): module_name = self.get_instance_name(globals()) NaoNode.__init__(self, module_name) self.motion_proxy = self.get_proxy('ALMotion') super(NaoGestureActionServer, self).start() @staticmethod def get_actual_duration(times): maxTime = 0.0 for time in times: tempMax = max(time) if tempMax > maxTime: maxTime = tempMax return maxTime def start_gesture(self, goal_handle): with self.lock: goal = goal_handle.get_goal() if self.is_valid_gesture(goal.gesture): gesture = Gesture[goal.gesture] if goal.duration == -1: duration = gesture.default_duration else: duration = goal.duration if gesture.animation_type is AnimationType.Keyframe: animations = gesture.keyframe_animations() names = [] times = [] keys = [] durations = [] for a in animations: durations.append(a.get_end_time()) (n_temp, t_temp, k_temp) = a.get_ntk(duration) names += n_temp times += t_temp keys += k_temp actual_duration = NaoGestureActionServer.get_actual_duration(times) motion_id = self.motion_proxy.post.angleInterpolationBezier(names, times, keys) gesture_handle = NaoGestureHandle(goal_handle, gesture, motion_id=motion_id) self.add_gesture_handle(gesture_handle) gesture_handle.start_timer(actual_duration, self.set_succeeded, [goal_handle]) else: target_goal = TargetGoal() target_goal.target = goal.target target_goal.speed = 0.5 target_goal.acceleration = 0.3 if gesture is Gesture.PointLarm: if self.larm_gh is None: self.larm_gh = goal_handle client = self.larm_client done_cb = self.larm_succeeded else: self.set_aborted(goal_handle) rospy.logwarn('Left arm is already busy performing a gesture, please cancel it first') return elif gesture is Gesture.PointRarm: if self.rarm_gh is None: self.rarm_gh = goal_handle client = self.rarm_client done_cb = self.rarm_succeeded else: self.set_aborted(goal_handle) rospy.logwarn('Right arm is already busy performing a gesture, please cancel it first') return gesture_handle = NaoGestureHandle(goal_handle, gesture, client=client) self.add_gesture_handle(gesture_handle) if goal.duration == -1: client.send_goal(target_goal, done_cb=done_cb) else: client.send_goal(target_goal) gesture_handle.start_timer(duration, self.set_succeeded, [goal_handle]) else: self.set_aborted(goal_handle) def larm_succeeded(self): with self.lock: self.set_succeeded(self.larm_gh) self.larm_gh = None def rarm_succeeded(self): with self.lock: self.set_succeeded(self.rarm_gh) self.rarm_gh = None def larm_cancelled(self): with self.lock: self.cancel_gesture(self.larm_gh) self.larm_gh = None def rarm_cancelled(self): with self.lock: self.cancel_gesture(self.rarm_gh) self.rarm_gh = None def cancel_gesture(self, goal_handle): with self.lock: gesture_handle = self.get_gesture_handle(goal_handle) gesture_handle.stop_timer() if gesture_handle.gesture.animation_type is AnimationType.Keyframe: self.motion_proxy.stop(gesture_handle.motion_id) else: gesture_handle.client.cancel_goal() if __name__ == "__main__": rospy.init_node('gesture_action_server') gesture_server = NaoGestureActionServer() gesture_server.start() rospy.spin() ``` #### File: src/nao_hri/joint.py ```python import rospy from ros_blender_bridge import Joint from naoqi_bridge_msgs.msg import JointAnglesWithSpeed class NaoJoint(Joint): def __init__(self, joint_name): Joint.__init__(self, joint_name) self.msg = JointAnglesWithSpeed() self.msg.joint_names.append(joint_name) self.joint_pub = rospy.Publisher('joint_angles', JointAnglesWithSpeed, queue_size=10) def reset_msg(self): self.msg.joint_angles = [] self.msg.header.stamp = rospy.Time().now() def set_position(self, position): if position not in self.msg.joint_angles: self.reset_msg() self.msg.joint_angles.append(position) self.msg.speed = self.speed self.joint_pub.publish(self.msg) def set_speed(self, speed): self.speed = speed def set_acceleration(self, acceleration): pass ```
{ "source": "jddeal/python-cmr", "score": 3 }
#### File: python-cmr/cmr/queries.py ```python try: from urllib.parse import quote except ImportError: from urllib import pathname2url as quote from datetime import datetime from inspect import getmembers, ismethod from re import search from requests import get, exceptions CMR_OPS = "https://cmr.earthdata.nasa.gov/search/" CMR_UAT = "https://cmr.uat.earthdata.nasa.gov/search/" CMR_SIT = "https://cmr.sit.earthdata.nasa.gov/search/" class Query(object): """ Base class for all CMR queries. """ _base_url = "" _route = "" _format = "json" _valid_formats_regex = [ "json", "xml", "echo10", "iso", "iso19115", "csv", "atom", "kml", "native" ] def __init__(self, route, mode=CMR_OPS): self.params = {} self.options = {} self._route = route self.mode(mode) def get(self, limit=2000): """ Get all results up to some limit, even if spanning multiple pages. :limit: The number of results to return :returns: query results as a list """ page_size = min(limit, 2000) url = self._build_url() results = [] page = 1 while len(results) < limit: response = get(url, params={'page_size': page_size, 'page_num': page}) try: response.raise_for_status() except exceptions.HTTPError as ex: raise RuntimeError(ex.response.text) if self._format == "json": latest = response.json()['feed']['entry'] else: latest = [response.text] if len(latest) == 0: break results.extend(latest) page += 1 return results def hits(self): """ Returns the number of hits the current query will return. This is done by making a lightweight query to CMR and inspecting the returned headers. :returns: number of results reproted by CMR """ url = self._build_url() response = get(url, params={'page_size': 0}) try: response.raise_for_status() except exceptions.HTTPError as ex: raise RuntimeError(ex.response.text) return int(response.headers["CMR-Hits"]) def get_all(self): """ Returns all of the results for the query. This will call hits() first to determine how many results their are, and then calls get() with that number. This method could take quite awhile if many requests have to be made. :returns: query results as a list """ return self.get(self.hits()) def parameters(self, **kwargs): """ Provide query parameters as keyword arguments. The keyword needs to match the name of the method, and the value should either be the value or a tuple of values. Example: parameters(short_name="AST_L1T", point=(42.5, -101.25)) :returns: Query instance """ # build a dictionary of method names and their reference methods = {} for name, func in getmembers(self, predicate=ismethod): methods[name] = func for key, val in kwargs.items(): # verify the key matches one of our methods if key not in methods: raise ValueError("Unknown key {}".format(key)) # call the method if isinstance(val, tuple): methods[key](*val) else: methods[key](val) return self def format(self, output_format="json"): """ Sets the format for the returned results. :param output_format: Preferred output format :returns: Query instance """ if not output_format: output_format = "json" # check requested format against the valid format regex's for _format in self._valid_formats_regex: if search(_format, output_format): self._format = output_format return self # if we got here, we didn't find a matching format raise ValueError("Unsupported format '{}'".format(output_format)) def online_only(self, online_only=True): """ Only match granules that are listed online and not available for download. The opposite of this method is downloadable(). :param online_only: True to require granules only be online :returns: Query instance """ if not isinstance(online_only, bool): raise TypeError("Online_only must be of type bool") # remove the inverse flag so CMR doesn't crash if "downloadable" in self.params: del self.params["downloadable"] self.params['online_only'] = online_only return self def temporal(self, date_from, date_to, exclude_boundary=False): """ Filter by an open or closed date range. Dates can be provided as a datetime objects or ISO 8601 formatted strings. Multiple ranges can be provided by successive calls to this method before calling execute(). :param date_from: earliest date of temporal range :param date_to: latest date of temporal range :param exclude_boundary: whether or not to exclude the date_from/to in the matched range :returns: GranueQuery instance """ iso_8601 = "%Y-%m-%dT%H:%M:%SZ" # process each date into a datetime object def convert_to_string(date): """ Returns the argument as an ISO 8601 or empty string. """ if not date: return "" try: # see if it's datetime-like return date.strftime(iso_8601) except AttributeError: try: # maybe it already is an ISO 8601 string datetime.strptime(date, iso_8601) return date except TypeError: raise ValueError( "Please provide None, datetime objects, or ISO 8601 formatted strings." ) date_from = convert_to_string(date_from) date_to = convert_to_string(date_to) # if we have both dates, make sure from isn't later than to if date_from and date_to: if date_from > date_to: raise ValueError("date_from must be earlier than date_to.") # good to go, make sure we have a param list if "temporal" not in self.params: self.params["temporal"] = [] self.params["temporal"].append("{},{}".format(date_from, date_to)) if exclude_boundary: self.options["temporal"] = { "exclude_boundary": True } return self def short_name(self, short_name): """ Filter by short name (aka product or collection name). :param short_name: name of collection :returns: Query instance """ if not short_name: return self self.params['short_name'] = short_name return self def version(self, version): """ Filter by version. Note that CMR defines this as a string. For example, MODIS version 6 products must be searched for with "006". :param version: version string :returns: Query instance """ if not version: return self self.params['version'] = version return self def point(self, lon, lat): """ Filter by granules that include a geographic point. :param lon: longitude of geographic point :param lat: latitude of geographic point :returns: Query instance """ if not lat or not lon: return self # coordinates must be a float lon = float(lon) lat = float(lat) self.params['point'] = "{},{}".format(lon, lat) return self def polygon(self, coordinates): """ Filter by granules that overlap a polygonal area. Must be used in combination with a collection filtering parameter such as short_name or entry_title. :param coordinates: list of (lon, lat) tuples :returns: Query instance """ if not coordinates: return self # make sure we were passed something iterable try: iter(coordinates) except TypeError: raise ValueError("A line must be an iterable of coordinate tuples. Ex: [(90,90), (91, 90), ...]") # polygon requires at least 4 pairs of coordinates if len(coordinates) < 4: raise ValueError("A polygon requires at least 4 pairs of coordinates.") # convert to floats as_floats = [] for lon, lat in coordinates: as_floats.extend([float(lon), float(lat)]) # last point must match first point to complete polygon if as_floats[0] != as_floats[-2] or as_floats[1] != as_floats[-1]: raise ValueError("Coordinates of the last pair must match the first pair.") # convert to strings as_strs = [str(val) for val in as_floats] self.params["polygon"] = ",".join(as_strs) return self def bounding_box(self, lower_left_lon, lower_left_lat, upper_right_lon, upper_right_lat): """ Filter by granules that overlap a bounding box. Must be used in combination with a collection filtering parameter such as short_name or entry_title. :param lower_left_lon: lower left longitude of the box :param lower_left_lat: lower left latitude of the box :param upper_right_lon: upper right longitude of the box :param upper_right_lat: upper right latitude of the box :returns: Query instance """ self.params["bounding_box"] = "{},{},{},{}".format( float(lower_left_lon), float(lower_left_lat), float(upper_right_lon), float(upper_right_lat) ) return self def line(self, coordinates): """ Filter by granules that overlap a series of connected points. Must be used in combination with a collection filtering parameter such as short_name or entry_title. :param coordinates: a list of (lon, lat) tuples :returns: Query instance """ if not coordinates: return self # make sure we were passed something iterable try: iter(coordinates) except TypeError: raise ValueError("A line must be an iterable of coordinate tuples. Ex: [(90,90), (91, 90), ...]") # need at least 2 pairs of coordinates if len(coordinates) < 2: raise ValueError("A line requires at least 2 pairs of coordinates.") # make sure they're all floats as_floats = [] for lon, lat in coordinates: as_floats.extend([float(lon), float(lat)]) # cast back to string for join as_strs = [str(val) for val in as_floats] self.params["line"] = ",".join(as_strs) return self def downloadable(self, downloadable=True): """ Only match granules that are available for download. The opposite of this method is online_only(). :param downloadable: True to require granules be downloadable :returns: Query instance """ if not isinstance(downloadable, bool): raise TypeError("Downloadable must be of type bool") # remove the inverse flag so CMR doesn't crash if "online_only" in self.params: del self.params["online_only"] self.params['downloadable'] = downloadable return self def entry_title(self, entry_title): """ Filter by the collection entry title. :param entry_title: Entry title of the collection :returns: Query instance """ entry_title = quote(entry_title) self.params['entry_title'] = entry_title return self def _build_url(self): """ Builds the URL that will be used to query CMR. :returns: the url as a string """ # last chance validation for parameters if not self._valid_state(): raise RuntimeError(("Spatial parameters must be accompanied by a collection " "filter (ex: short_name or entry_title).")) # encode params formatted_params = [] for key, val in self.params.items(): # list params require slightly different formatting if isinstance(val, list): for list_val in val: formatted_params.append("{}[]={}".format(key, list_val)) elif isinstance(val, bool): formatted_params.append("{}={}".format(key, str(val).lower())) else: formatted_params.append("{}={}".format(key, val)) params_as_string = "&".join(formatted_params) # encode options formatted_options = [] for param_key in self.options: for option_key, val in self.options[param_key].items(): # all CMR options must be booleans if not isinstance(val, bool): raise ValueError("parameter '{}' with option '{}' must be a boolean".format( param_key, option_key )) formatted_options.append("options[{}][{}]={}".format( param_key, option_key, val )) options_as_string = "&".join(formatted_options) res = "{}.{}?{}&{}".format( self._base_url, self._format, params_as_string, options_as_string ) res = res.rstrip('&') return res def _valid_state(self): """ Determines if the Query is in a valid state based on the parameters and options that have been set. This should be implemented by the subclasses. :returns: True if the state is valid, otherwise False """ raise NotImplementedError() def mode(self, mode=CMR_OPS): """ Sets the mode of the api target to the given URL CMR_OPS, CMR_UAT, CMR_SIT are provided as class variables :param mode: Mode to set the query to target :throws: Will throw if provided None """ if mode is None: raise ValueError("Please provide a valid mode (CMR_OPS, CMR_UAT, CMR_SIT)") self._base_url = str(mode) + self._route class GranuleQuery(Query): """ Class for querying granules from the CMR. """ def __init__(self, mode=CMR_OPS): Query.__init__(self, "granules", mode) def orbit_number(self, orbit1, orbit2=None): """" Filter by the orbit number the granule was acquired during. Either a single orbit can be targeted or a range of orbits. :param orbit1: orbit to target (lower limit of range when orbit2 is provided) :param orbit2: upper limit of range :returns: Query instance """ if orbit2: self.params['orbit_number'] = quote('{},{}'.format(str(orbit1), str(orbit2))) else: self.params['orbit_number'] = orbit1 return self def day_night_flag(self, day_night_flag): """ Filter by period of the day the granule was collected during. :param day_night_flag: "day", "night", or "unspecified" :returns: Query instance """ if not isinstance(day_night_flag, str): raise TypeError("day_night_flag must be of type str.") day_night_flag = day_night_flag.lower() if day_night_flag not in ['day', 'night', 'unspecified']: raise ValueError("day_night_flag must be day, night or unspecified.") self.params['day_night_flag'] = day_night_flag return self def cloud_cover(self, min_cover=0, max_cover=100): """ Filter by the percentage of cloud cover present in the granule. :param min_cover: minimum percentage of cloud cover :param max_cover: maximum percentage of cloud cover :returns: Query instance """ if not min_cover and not max_cover: raise ValueError("Please provide at least min_cover, max_cover or both") if min_cover and max_cover: try: minimum = float(min_cover) maxiumum = float(max_cover) if minimum > maxiumum: raise ValueError("Please ensure min_cloud_cover is lower than max cloud cover") except ValueError: raise ValueError("Please ensure min_cover and max_cover are both floats") self.params['cloud_cover'] = "{},{}".format(min_cover, max_cover) return self def instrument(self, instrument=""): """ Filter by the instrument associated with the granule. :param instrument: name of the instrument :returns: Query instance """ if not instrument: raise ValueError("Please provide a value for instrument") self.params['instrument'] = instrument return self def platform(self, platform=""): """ Filter by the satellite platform the granule came from. :param platform: name of the satellite :returns: Query instance """ if not platform: raise ValueError("Please provide a value for platform") self.params['platform'] = platform return self def granule_ur(self, granule_ur=""): """ Filter by the granules unique ID. Note this will result in at most one granule being returned. :param granule_ur: UUID of a granule :returns: Query instance """ if not granule_ur: raise ValueError("Please provide a value for platform") self.params['granule_ur'] = granule_ur return self def concept_id(self, IDs): """ Filter by concept ID (ex: C1299783579-LPDAAC_ECS or G1327299284-LPDAAC_ECS) Collections and granules are uniquely identified with this ID. If providing a collection's concept ID here, it will filter by granules associated with that collection. If providing a granule's concept ID here, it will uniquely identify those granules. :param IDs: concept ID(s) to search by. Can be provided as a string or list of strings. :returns: Query instance """ if isinstance(IDs, str): IDs = [IDs] self.params["concept_id"] = IDs return self def _valid_state(self): # spatial params must be paired with a collection limiting parameter spatial_keys = ["point", "polygon", "bounding_box", "line"] collection_keys = ["short_name", "entry_title"] if any(key in self.params for key in spatial_keys): if not any(key in self.params for key in collection_keys): return False # all good then return True class CollectionQuery(Query): """ Class for querying collections from the CMR. """ def __init__(self, mode=CMR_OPS): Query.__init__(self, "collections", mode) self._valid_formats_regex.extend([ "dif", "dif10", "opendata", "umm_json", "umm_json_v[0-9]_[0-9]" ]) def archive_center(self, center): """ Filter by the archive center that maintains the collection. :param archive_center: name of center as a string :returns: Query instance """ if center: self.params['archive_center'] = center return self def keyword(self, text): """ Case insentive and wildcard (*) search through over two dozen fields in a CMR collection record. This allows for searching against fields like summary and science keywords. :param text: text to search for :returns: Query instance """ if text: self.params['keyword'] = text return self def concept_id(self, IDs): """ Filter by concept ID (ex: C1299783579-LPDAAC_ECS) Collections are uniquely identified with this ID. :param IDs: concept ID(s) to search by. Can be provided as a string or list of strings. :returns: Query instance """ if isinstance(IDs, str): IDs = [IDs] # verify we weren't provided any granule concept IDs for ID in IDs: if ID.strip()[0] != "C": raise ValueError("Only collection concept ID's can be provided (begin with 'C'): {}".format(ID)) self.params["concept_id"] = IDs return self def _valid_state(self): return True ```
{ "source": "jddelalamo/Google-Drive-Sync", "score": 3 }
#### File: Google-Drive-Sync/testing/file_object.py ```python class File: def __init__(self, file_id, fileName, parentFolder, dateModified, mimeType, filePath): self.__file_id = file_id self.__fileName = fileName self.__parentFolder = parentFolder self.__dateModified = dateModified self.__mimeType = mimeType self.__filePath = filePath def get_file_id(self): return self.__file_id def get_fileName(self): return self.__fileName def get_parentFolder(self): return self.__parentFolder def get_dateModified(self): return self.__dateModified def get_mimeType(self): return self.__mimeType def get_filePath(self): return self.__filePath ```
{ "source": "jddes/Frequency-comb-DPLL", "score": 2 }
#### File: Frequency-comb-DPLL/digital_servo_python_gui/XEM_GUI_MainWindow.py ```python from __future__ import print_function import time from PyQt5 import QtGui, Qt #import PyQt5.Qwt5 as Qwt import numpy as np import math from scipy.signal import lfilter from scipy.signal import decimate from scipy.signal import detrend # For make_sure_path_exists() and os.rename() import os import errno #from SuperLaserLand_JD2 import SuperLaserLand_JD2 from LoopFiltersUI import LoopFiltersUI from DisplayVNAWindow import DisplayVNAWindow from LoopFiltersUI_DAC1_and_DAC2 import LoopFiltersUI_DAC1_and_DAC2 from DisplayDitherSettingsWindow import DisplayDitherSettingsWindow #from DisplayCrashMonitorWindow import DisplayCrashMonitorWindow #from ILX_laser_control import ILX_laser_control #from PyDAQmx_single_1 import NIDAQ_USB #from NIUSB_DAQ import Instrument from user_friendly_QLineEdit import user_friendly_QLineEdit import SpectrumWidget #import matplotlib.pyplot as plt import traceback # stuff for Python 3 port import pyqtgraph as pg import RP_PLL # for CommsError from SocketErrorLogger import logCommsErrorsAndBreakoutOfFunction import logging def round_to_N_sig_figs(x, Nsigfigs): leading_pos = np.floor(np.log10(np.abs(x))) factor = 10**((Nsigfigs-1)-leading_pos) return np.round(x * factor)/factor def smooth(x,window_len=11,window='hanning'): """smooth the data using a window with requested size. This method is based on the convolution of a scaled window with the signal. The signal is prepared by introducing reflected copies of the signal (with the window size) in both ends so that transient parts are minimized in the begining and end part of the output signal. input: x: the input signal window_len: the dimension of the smoothing window; should be an odd integer window: the type of window from 'flat', 'hanning', 'hamming', 'bartlett', 'blackman' flat window will produce a moving average smoothing. output: the smoothed signal example: t=linspace(-2,2,0.1) x=sin(t)+randn(len(t))*0.1 y=smooth(x) see also: numpy.hanning, numpy.hamming, numpy.bartlett, numpy.blackman, numpy.convolve scipy.signal.lfilter TODO: the window parameter could be the window itself if an array instead of a string NOTE: length(output) != length(input), to correct this: return y[(window_len/2-1):-(window_len/2)] instead of just y. """ if x.ndim != 1: raise ValueError("smooth only accepts 1 dimension arrays.") if x.size < window_len: raise ValueError("Input vector needs to be bigger than window size.") if window_len<3: return x if not window in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']: raise ValueError("Window is on of 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'") s=np.r_[x[window_len-1:0:-1],x,x[-1:-window_len:-1]] #print(len(s)) if window == 'flat': #moving average w=np.ones(window_len,'d') else: w=eval('np.'+window+'(window_len)') y=np.convolve(w/w.sum(),s,mode='valid') return y class XEM_GUI_MainWindow(QtGui.QWidget): display_phase = 0 # used to refresh the phase noise plot only once every N refresh cycles VCO_detected_gain_in_Hz_per_Volts = [1, 1, 1] bFirstTimeLockCheckBoxClicked = True # def __init__(self): # super(XEM_GUI_MainWindow, self).__init__() # # self.bDisplayTiming = False # Activate to turn a lot of timing print()s # self.output_controls = (True, True, True) # self.initUI() def __init__(self, sl, strTitle, selected_ADC, output_controls, sp, custom_style_sheet, strFGPASerialNumber): super(XEM_GUI_MainWindow, self).__init__() self.strTitle = strTitle self.sl = sl self.sp = sp # Holds the system parameters (configuration values) self.bDisplayTiming = False # Activate to turn a lot of timing print()s self.selected_ADC = selected_ADC self.output_controls = output_controls self.setObjectName('MainWindow') self.setStyleSheet(custom_style_sheet) self.strFGPASerialNumber = strFGPASerialNumber self.logger = logging.getLogger(__name__) self.logger_name = ':XEM_GUI_MainWindow' self.timerIDDither = None self.timerID = 0 # For the crash monitor self.crash_number = 0 self.crash_windows = [] self.crash_windows_opening_times = [] self.bAveragePhaseNoise = True self.bAveragePhaseNoiseLast = False self.N_spc_average = 10. # For the residuals streaming: # Only one window takes care of reading both the CEO and optical residuals if self.selected_ADC == 0: strFolder = 'c:\\SuperLaserLandLogs\\ResidualsStreaming' self.make_sure_path_exists(strFolder) self.word_counter = 0 self.foutput_residuals = open('%s\\residuals_ceo_%s.bin' % (strFolder, self.strFGPASerialNumber), 'wb') self.foutput_residuals2 = open('%s\\residuals_optical_%s.bin' % (strFolder, self.strFGPASerialNumber), 'wb') self.foutput_residuals_time = open('%s\\residuals_time_%s.bin' % (strFolder, self.strFGPASerialNumber), 'wb', 0) # the 0 means un-buffered writes self.initUI() def getValues(self): self.bFirstTimeLockCheckBoxClicked = False self.getVCOGain() self.spectrum.getDACoffset() self.getVCOFreq() self.qloop_filters[self.selected_ADC].getValues() # We should get qloop_filters.kc before (done in getVCOGain) self.setLock() self.timerIDDither = Qt.QTimer(self) self.timerIDDither.timeout.connect(self.timerDitherEvent) self.startTimers() self.displayDAC() # This populates the current DAC values with the actual value self.qchk_refresh.setChecked(False) self.refreshChk_event() def pushActualValues(self): print("Push actual values of MainWindow, TODO") def pushDefaultValues(self): # print("XEM_GUI_MainWindow::pushDefaultValues()") #For now, equivalent to calling initSL() self.loadParameters() # Send values to FPGA self.setVCOFreq_event() self.setVCOGain_event() self.chkLockClickedEvent() self.timerIDDither = Qt.QTimer(self) self.timerIDDither.timeout.connect(self.timerDitherEvent) self.startTimers() self.displayDAC() # This populates the current DAC values with the actual value # print("XEM_GUI_MainWindow::pushDefaultValues(): after displayDAC") if self.output_controls[0] == True: self.slowStart100VSwitchingSupply() @logCommsErrorsAndBreakoutOfFunction() def slowStart100VSwitchingSupply(self): # need to set the switching supply to its default values: # do a slow start over ~ 100 ms. f_switching = 200e3 Vtarget = 100. Vsupply = 30. T_slow_start = 100e-3 target_duty_cycle = (Vtarget-Vsupply)/Vtarget oscillator_modulus = int(round( self.sl.fs/f_switching )) print("slowStart100VSwitchingSupply(): starting") N_steps = 10 for k in range(int(N_steps)+1): # print("slowStart100VSwitchingSupply(): here") current_duty_cycle = float(k)/N_steps * target_duty_cycle # print("slowStart100VSwitchingSupply(): here2") oscillator_modulus_active = int(round( oscillator_modulus * current_duty_cycle )) # print("slowStart100VSwitchingSupply(): here3") self.sl.setTestOscillator(bEnable=1, bPolarity=1, oscillator_modulus=oscillator_modulus, oscillator_modulus_active=oscillator_modulus_active) # try: # self.sl.setTestOscillator(bEnable=1, bPolarity=1, oscillator_modulus=oscillator_modulus, oscillator_modulus_active=oscillator_modulus_active) # except RP_PLL.CommsError: # break time.sleep(T_slow_start/N_steps) print("slowStart100VSwitchingSupply(): finished") def killTimers(self): # print("XEM_GUI_MainWindow::killTimers(): %s" % self.strTitle) #traceback.print_stack() if self.timerIDDither is not None: self.timerIDDither.stop() if self.qchk_refresh.isChecked(): self.qchk_refresh.setChecked(False) self.refreshChk_event() def startTimers(self): # print("XEM_GUI_MainWindow::startTimers(): %s" % self.strTitle) # Need to init timerID self.timerID = 0 # Start the timer which reads the dither: if self.timerIDDither is not None: self.timerIDDither.start(100) # 100 ms readout delay, increased to 1000 ms for debugging def getVCOGainFromUI(self, output_number): try: VCO_gain_in_Hz_per_Volts = float(self.qedit_vco_gain[output_number].text()) except: VCO_gain_in_Hz_per_Volts = 1e9 return VCO_gain_in_Hz_per_Volts @logCommsErrorsAndBreakoutOfFunction() def setVCOGain_event(self): # Update the loop filters gain settings based on the new VCO gains: # Also set the scale on the manual output sliders (and the steps) # We want the user to be able to easily control the beat frequency with the mousewheel. # (mousewheel scroll: 3 small steps or arrow keys: 1 small step) # We want each mousewheel step to be about 0.5 MHz, # large steps (clicking in the open area of the scrollbar) to be about 5 MHz for k in range(3): if self.output_controls[k]: VCO_gain_in_Hz_per_Volts = self.getVCOGainFromUI(k) # getFreqDiscriminatorGain is in DDC Counts/Hz # getDACGainInVoltsPerCounts is in V/(DAC Counts) VCO_gain_in_counts_per_counts = VCO_gain_in_Hz_per_Volts * self.sl.getFreqDiscriminatorGain() * self.sl.getDACGainInVoltsPerCounts(k) #.sl.getFreqDiscriminatorGain() and self.sl.getDACGainInVoltsPerCounts(k) are constant (different for each k) if k == 0 or k == 1: self.qloop_filters[k].kc = VCO_gain_in_counts_per_counts self.qloop_filters[k].checkFirmwareLimits() self.qloop_filters[k].updateFilterSettings() self.qloop_filters[k].updateGraph() elif k == 2: # DAC 2 loop settings are controlled by the same widget as DAC1 self.qloop_filters[1].kc_dac2 = VCO_gain_in_counts_per_counts self.qloop_filters[1].checkFirmwareLimits() self.qloop_filters[1].updateFilterSettings() self.qloop_filters[1].updateGraph() self.sl.save_openLoop_gain(k, VCO_gain_in_counts_per_counts) #Save the value of the open-loop gain in the FPGA to allow reconnection (usefull to read Loop-Filter gain value) self.spectrum.setSliderStepSize(k, VCO_gain_in_Hz_per_Volts) # This function needs the VCO gain to compute the control effort so we have to update it if we have changed. self.spectrum.setDACOffset_event() @logCommsErrorsAndBreakoutOfFunction() def getVCOGain(self): if self.selected_ADC == 0: dac_list = [0] elif self.selected_ADC == 1: dac_list = [1, 2] for k in dac_list: # if self.output_controls[k]: VCO_gain_in_counts_per_counts = self.sl.get_openLoop_gain(k) # print("k = %d, VCO_gain_in_counts_per_counts=%f" % (k, VCO_gain_in_counts_per_counts)) VCO_gain_in_Hz_per_Volts = VCO_gain_in_counts_per_counts / (self.sl.getFreqDiscriminatorGain() * self.sl.getDACGainInVoltsPerCounts(k)) # print("k = %d, VCO_gain_in_Hz_per_Volts=%f" % (k, VCO_gain_in_Hz_per_Volts)) # prevent divide-by-0 bug: if VCO_gain_in_Hz_per_Volts == 0: VCO_gain_in_Hz_per_Volts = 1. self.qedit_vco_gain[k].blockSignals(True) self.qedit_vco_gain[k].setText('{:.1e}'.format(VCO_gain_in_Hz_per_Volts)) self.qedit_vco_gain[k].blockSignals(False) if k == 0 or k == 1: self.qloop_filters[k].kc = VCO_gain_in_counts_per_counts self.qloop_filters[k].checkFirmwareLimits() self.qloop_filters[k].updateGraph() elif k == 2: # DAC 2 loop settings are controlled by the same widget as DAC1 self.qloop_filters[1].kc_dac2 = VCO_gain_in_counts_per_counts self.qloop_filters[1].checkFirmwareLimits() self.qloop_filters[1].updateGraph() self.spectrum.setSliderStepSize(k, VCO_gain_in_Hz_per_Volts) @logCommsErrorsAndBreakoutOfFunction() def setVCOFreq_event(self, checked=False): # print("setVCOFreq_event: self.selected_ADC = %d" % self.selected_ADC) try: frequency_in_hz = float(self.qedit_ref_freq.text()) except: frequency_in_hz = 5e6 # If the VCO has positive sign, we need to put a negative reference frequency to make the # total loop sign be negative so that it's stable when we close the loop if self.qsign_positive.isChecked(): frequency_in_hz =-frequency_in_hz #print('frequency_in_hz = %e' % frequency_in_hz) if self.selected_ADC == 0: self.sl.set_ddc0_ref_freq(frequency_in_hz) elif self.selected_ADC == 1: self.sl.set_ddc1_ref_freq(frequency_in_hz) #print('frequency_in_hz = %e (after)' % frequency_in_hz) @logCommsErrorsAndBreakoutOfFunction() def getVCOFreq(self): if self.selected_ADC == 0: frequency_in_hz = self.sl.get_ddc0_ref_freq_from_RAM() elif self.selected_ADC == 1: frequency_in_hz = self.sl.get_ddc1_ref_freq_from_RAM() # If the VCO has positive sign, we need to put a negative reference frequency to make the # total loop sign be negative so that it's stable when we close the loop if frequency_in_hz < 0: self.qsign_positive.setChecked(True) else: self.qsign_negative.setChecked(True) self.qedit_ref_freq.blockSignals(True) self.qedit_ref_freq.setText('%.2e' % abs(frequency_in_hz)) self.qedit_ref_freq.blockSignals(False) def refreshChk_event(self): if self.qchk_refresh.isChecked(): # We are doing a not running->running transition try: # if True: # print('self.qedit_timerdelay.text() = %s' % self.qedit_timerdelay.text()) timer_delay = float(self.qedit_timerdelay.text()) except: # else: timer_delay = 1000 # print('Timer delay = %d ms' % timer_delay) if self.timerID != 0: self.killTimer(self.timerID) self.timerID = self.startTimer(int(round(timer_delay))) self.timerEvent(0) # run the event handler once right away, makes the checkbox feel more responsive # print('Starting timer') else: # We are doing a running->not running transition if self.timerID != 0: self.killTimer(self.timerID) self.timerID = 0 # print('Stopping timer') def exportData(self): # First need to create a unique file name template (with good probability) # We simply use the system date and time, and hope that this function doesn't get called twice in a second strNameTemplate = time.strftime("data_export\\%m_%d_%Y_%H_%M_%S_") # Data to write: # self.inst_freq # self.freq_noise_psd # self.freq_noise_axis # self.raw_adc_samples # Create the subdirectory if it doesn't exist: self.make_sure_path_exists('data_export') # Open files for output, write raw data # if True: try: strCurrentName = strNameTemplate + 'raw_adc_samples.bin' f = open(strCurrentName, 'wb') f.write(self.raw_adc_samples) f.close() except: pass try: strCurrentName = strNameTemplate + 'inst_freq.bin' f = open(strCurrentName, 'wb') f.write(self.inst_freq) f.close() except: pass try: strCurrentName = strNameTemplate + 'freq_noise_psd.bin' f = open(strCurrentName, 'wb') f.write(self.freq_noise_psd) f.close() except: pass try: strCurrentName = strNameTemplate + 'freq_noise_axis.bin' f = open(strCurrentName, 'wb') f.write(self.freq_noise_axis) f.close() except: pass def showVNA(self): self.vna = DisplayVNAWindow(self.sl) def grabAndExportData(self, bSyncReadOnNextTimeQuantization=True): start_time = time.perf_counter() print('Grabbing and exporting data') # Check if another function is currently using the DDR2 logger: if self.sl.bDDR2InUse: print('grabAndExportData(): DDR2 logger in use, cannot get data from adc') return # Ask which input to use: currentSelector, ok = QtGui.QInputDialog.getItem(self, 'Raw data export', 'Select the data source:', ('ADC0', 'ADC1', 'DAC0', 'DAC1', 'DAC2')) if not ok: return currentSelector = str(currentSelector) # Ask how many points: N_points_str, ok = QtGui.QInputDialog.getText(self, 'Raw data export', 'Enter the number of points desired [1, 32768]:', Qt.QLineEdit.Normal, '32768') if not ok: return # Block access to the DDR2 Logger to any other function until we are done: self.sl.bDDR2InUse = True try: N_points = int(float(N_points_str)) except: N_points = 4e3 if N_points < 64: N_points = 64 try: # Read from selected source print("currentSelector = %s" % currentSelector) self.sl.setup_write(self.sl.LOGGER_MUX[currentSelector], N_points) ################################################## # Synchronize trigger as best as possible to the next multiple of time_quantum seconds: if bSyncReadOnNextTimeQuantization: time_quantum = 0.01 time_now = time.time() time_target = np.ceil(time_now/time_quantum) * time_quantum print('time_now = %f, time_target = %f' % (time_now, time_target)) while time_target > time_now: time.sleep(1e-3) time_now = time.time() self.sl.trigger_write() if bSyncReadOnNextTimeQuantization: print('time_now = %f, time_target = %f' % (time_now, time_target)) self.sl.wait_for_write() (samples_out, ref_exp0) = self.sl.read_adc_samples_from_DDR2() samples_out = samples_out.astype(dtype=np.float)/2**15 except: # ADC read failed. print('Unhandled exception in ADC read') # del self.sl # raise # Signal to other functions that they can use the DDR2 logger self.sl.bDDR2InUse = False print('Elapsed time (Comm) = %f' % (time.perf_counter()-start_time)) start_time = time.perf_counter() # Write the data to disk: strNameTemplate = time.strftime("data_export\\%m_%d_%Y_%H_%M_%S_") self.make_sure_path_exists('data_export') # Open files for output, write raw data try: strCurrentName = strNameTemplate + self.strFGPASerialNumber + '_raw_adc_samples.bin' f = open(strCurrentName, 'wb') f.write(samples_out) f.close() except: pass print('Elapsed time (write to disk) = %f' % (time.perf_counter()-start_time)) start_time = time.perf_counter() def setLock(self): bLock = self.qloop_filters[self.selected_ADC].qchk_lock.isChecked() self.qchk_lock.setChecked(bLock) if bLock: #We are reconnecting to a RP which has a locked loop filter self.qchk_lock.setStyleSheet('font-size: 18pt; color: white; background-color: green') else: self.qchk_lock.setStyleSheet('font-size: 18pt; color: white; background-color: red') @logCommsErrorsAndBreakoutOfFunction() def chkLockClickedEvent(self, checked=False): bLock = self.qchk_lock.isChecked() if bLock: # we are doing an unlocked->locked transition. # We first check if the detected VCO gain seems right: if self.sl.dither_enable[self.selected_ADC]: # check if gain is OK try: VCO_gain_in_Hz_per_Volts = float(self.qedit_vco_gain[self.selected_ADC].text()) except: VCO_gain_in_Hz_per_Volts = 1e9 # First check if sign is right: if np.sign(self.VCO_detected_gain_in_Hz_per_Volts[self.selected_ADC]) != np.sign(VCO_gain_in_Hz_per_Volts): # Display warning message. reply = QtGui.QMessageBox.question(self, 'Warning', "The detected VCO gain is negative. This will most likely make the loop unstable. This is either caused by trying to lock to an incorrect sideband, or an incorrect setting of the VCO sign in the UI. Do you want to turn on the lock anyway?", QtGui.QMessageBox.Yes | QtGui.QMessageBox.No, QtGui.QMessageBox.No) if reply == QtGui.QMessageBox.No: # Exit early self.qchk_lock.setChecked(False) return print('Warning about the loop sign ignored.') else: print('Gain sign OK') # Now we check if the magnitude of the entered VCO gain and the detected gain agree within some tolerance: if self.VCO_detected_gain_in_Hz_per_Volts[self.selected_ADC]/VCO_gain_in_Hz_per_Volts > 1.5 or self.VCO_detected_gain_in_Hz_per_Volts[self.selected_ADC]/VCO_gain_in_Hz_per_Volts < 1/1.5: # Display warning message. reply = QtGui.QMessageBox.question(self, 'Warning', "The detected VCO gain (%.2e Hz/V) has a significantly different magnitude than the entered value used for designing the controller (%.2e Hz/V). This may make the loop unstable. Do you want to turn on the lock anyway?" % (self.VCO_detected_gain_in_Hz_per_Volts[self.selected_ADC], VCO_gain_in_Hz_per_Volts), QtGui.QMessageBox.Yes | QtGui.QMessageBox.No, QtGui.QMessageBox.No) if reply == QtGui.QMessageBox.No: # Exit early self.qchk_lock.setChecked(False) return print('Warning about the loop gain ignored.') else: print('Gain magnitude OK') # If we get here that means either that all the parameters have passed the checks, or the dither was off. # Turn the dither off if the dither mode is automatic: if self.selected_ADC == 0: if self.sl.dither_mode_auto[0] == 1: # automatic mode self.sl.setDitherLockInState(0, False) else: # Optical lock: we have two dithers to take care of: if self.sl.dither_mode_auto[1] == 1: # automatic mode self.sl.setDitherLockInState(1, False) # if self.sl.dither_mode_auto[2] == 1: # # automatic mode # self.sl.setDitherLockInState(2, False) self.logger.info('Red_Pitaya_GUI{}: Lock'.format(self.logger_name)) self.qchk_lock.setStyleSheet('font-size: 18pt; color: white; background-color: green') # Turn the lock on if self.selected_ADC == 0: self.qloop_filters[0].qchk_lock.setChecked(True) self.qloop_filters[0].updateFilterSettings() elif self.selected_ADC == 1: # Lock procedure if there is no 3rd DAC on the Red Pitaya: # self.qloop_filters[1].qchk_lock.setChecked(True) # self.qloop_filters[1].updateFilterSettings() # There is a different procedure for turning the lock on on the optical loop: # first we grab the beat using the DAC2 frequency-locked loop. then we set this integrator to hold # and switch to the DAC1 PLL + DAC2 second integrator. self.qloop_filters[1].qradio_mode_off.setChecked(False) self.qloop_filters[1].qradio_mode_slow.setChecked(True) self.qloop_filters[1].qradio_mode_fast.setChecked(False) self.qloop_filters[1].qradio_mode_both.setChecked(False) self.qloop_filters[1].updateSettings() # Wait for the integrator to grab on to the beat time.sleep(0.2) # Turn on the full-blown PLL self.qloop_filters[1].qradio_mode_off.setChecked(False) self.qloop_filters[1].qradio_mode_slow.setChecked(False) self.qloop_filters[1].qradio_mode_fast.setChecked(False) self.qloop_filters[1].qradio_mode_both.setChecked(True) self.qloop_filters[1].updateSettings() else: # bLock = False if not self.sl.output_vco[self.selected_ADC]: if not self.bFirstTimeLockCheckBoxClicked: # We are doing a locked->unlocked transition # 1. Smoothly ramp the manual dac offsets to where the lock has decided to sit: # This is to prevent any violent step on the actuator when we turn off the lock: # It also prevents mode changes (the laser should stay fairly close to when it was locked. if self.selected_ADC == 0: # Go and measure the current DAC DC value: N_points = 10e3 self.sl.setup_DAC0_write(N_points) self.sl.trigger_write() self.sl.wait_for_write() (samples_out, ref_exp0) = self.sl.read_adc_samples_from_DDR2() # print(np.mean(samples_out)) current_dac_offset_in_counts = np.mean(samples_out) kDAC = 0 elif self.selected_ADC == 1: N_points = 10e3 self.sl.setup_DAC1_write(N_points) self.sl.trigger_write() self.sl.wait_for_write() (samples_out, ref_exp0) = self.sl.read_adc_samples_from_DDR2() # print(np.mean(samples_out)) current_dac_offset_in_counts = np.mean(samples_out) kDAC = 1 # Read the current manual offset value: current_manual_offset_in_slider_units = float(self.spectrum.q_dac_offset[kDAC].value()) # Convert the DAC DC offset to the slider units: current_dac_offset_in_slider_units = float(current_dac_offset_in_counts - self.sl.DACs_limit_low[kDAC])/float(self.sl.DACs_limit_high[kDAC] - self.sl.DACs_limit_low[kDAC])*1e6 # Set up a ramp with 20 steps: desired_ramp = np.linspace(current_manual_offset_in_slider_units, current_dac_offset_in_slider_units, 20) # print('ramping from %d to %d in slider units' % (current_manual_offset_in_slider_units, current_dac_offset_in_slider_units)) Total_ramp_time = 0.1 for k2 in range(len(desired_ramp)): # print('set slider to %d' % desired_ramp[k2]) self.spectrum.q_dac_offset[kDAC].setValue(desired_ramp[k2]) self.spectrum.setDACOffset_event() time.sleep(float(Total_ramp_time)/len(desired_ramp)) # 2. turn the lock off if self.selected_ADC == 0: self.qloop_filters[0].qchk_lock.setChecked(False) self.qloop_filters[0].updateFilterSettings() elif self.selected_ADC == 1: # Unlock procedure for when there is no 3rd DAC on the Red Pitaya # self.qloop_filters[1].qchk_lock.setChecked(False) # self.qloop_filters[1].updateFilterSettings() # There is a different procedure for turning the lock on on the optical loop: # first we grab the beat using the DAC2 frequency-locked loop. then we set this integrator to hold # and switch to the DAC1 PLL + DAC2 second integrator. self.qloop_filters[1].qradio_mode_off.setChecked(True) self.qloop_filters[1].qradio_mode_slow.setChecked(False) self.qloop_filters[1].qradio_mode_fast.setChecked(False) self.qloop_filters[1].qradio_mode_both.setChecked(False) self.qloop_filters[1].updateSettings() else: # if the VCO is activated, we don't want to try to estimate the output offset, we just turn off the lock directly # 2. turn the lock off if self.selected_ADC == 0: self.qloop_filters[0].qchk_lock.setChecked(False) self.qloop_filters[0].updateFilterSettings() elif self.selected_ADC == 1: self.qloop_filters[1].qchk_lock.setChecked(False) self.qloop_filters[1].updateFilterSettings() # 3. Turn the dither on if the dither mode is automatic: if self.selected_ADC == 0: if self.sl.dither_mode_auto[0] == 1: # automatic mode self.sl.setDitherLockInState(0, True) else: # Optical lock: we have two dithers to take care of: if self.sl.dither_mode_auto[1] == 1: # automatic mode self.sl.setDitherLockInState(1, True) # if self.sl.dither_mode_auto[2] == 1: # # automatic mode # self.sl.setDitherLockInState(2, True) self.logger.info('Red_Pitaya_GUI{}: Unlock'.format(self.logger_name)) self.qchk_lock.setStyleSheet('font-size: 18pt; color: white; background-color: red') self.bFirstTimeLockCheckBoxClicked = False def initUI(self): # second_half_offset = 50 # Change the background color of the main form so that each controls group stand out better PalNormal = Qt.QPalette() # Assign the palette to the main form to read off the 'normal' background color: self.setPalette(PalNormal) normalBackgroundRGB = PalNormal.color(Qt.QPalette.Background).getRgb() # print(normalBackground.getRgb()) # Darken the background of the dialog slightly darker_factor = 0.5 PalDarkerBackground = Qt.QPalette() PalDarkerBackground.setColor(Qt.QPalette.Background, Qt.QColor(normalBackgroundRGB[0]*darker_factor, normalBackgroundRGB[1]*darker_factor, normalBackgroundRGB[2]*darker_factor)) # PalDarkerBackground.setColor(Qt.QPalette.Background, Qt.QColor(255, 255, 255)) self.setPalette(PalDarkerBackground) self.setAutoFillBackground(True) # PalNormal's color has been changed when we assigned PalDarkerBackground to self - this statement seems very circular but somehow it works PalNormal.setColor(Qt.QPalette.Background, PalNormal.color(Qt.QPalette.Background)) ###################################################################### # Settings ###################################################################### self.qgroupbox_settings = Qt.QGroupBox('Settings', self) # Button which exports the data to the disk self.qbtn = QtGui.QPushButton('Export PSD data') self.qbtn.clicked.connect(self.exportData) # Button which grabs a single acquisition from the DDR memory and exports the data to the disk self.qbtn_grab = QtGui.QPushButton('Export ADC data') self.qbtn_grab.clicked.connect(self.grabAndExportData) # Button which opens the VNA window: self.qbtn_VNA = QtGui.QPushButton('Transfer function') self.qbtn_VNA.clicked.connect(self.showVNA) # VCO modulation gain: self.qedit_vco_gain = {} self.qlabel_detected_vco_gain = {} if self.selected_ADC == 0: # CEO Lock: only one output (DAC0) self.qlabel_vco_gain = Qt.QLabel('VCO Gain (DAC0) [Hz/V]:') self.qlabel_detected_vco_gain_label = Qt.QLabel('Detected VCO Gain [Hz/V]:') self.qedit_vco_gain[0] = user_friendly_QLineEdit('1e6') self.qedit_vco_gain[0].returnPressed.connect(self.setVCOGain_event) self.qedit_vco_gain[0].setMaximumWidth(60) self.qlabel_detected_vco_gain[0] = Qt.QLabel('0 Hz/V') self.qlabel_detected_vco_gain[0].setAlignment(Qt.Qt.AlignHCenter) else: # Optical lock self.qlabel_vco_gain = Qt.QLabel('VCO Gains (DAC1, DAC2HV) [Hz/V]:') # self.qlabel_vco_gain = Qt.QLabel('VCO Gain (DAC1) [Hz/V]:') self.qlabel_detected_vco_gain_label = Qt.QLabel('Detected VCO Gain [Hz/V]:') self.qedit_vco_gain[1] = user_friendly_QLineEdit('1e6') self.qedit_vco_gain[1].returnPressed.connect(self.setVCOGain_event) self.qedit_vco_gain[1].setMaximumWidth(60) self.qedit_vco_gain[2] = user_friendly_QLineEdit('1e6') self.qedit_vco_gain[2].returnPressed.connect(self.setVCOGain_event) self.qedit_vco_gain[2].setMaximumWidth(60) self.qlabel_detected_vco_gain[1] = Qt.QLabel('0 Hz/V') self.qlabel_detected_vco_gain[1].setAlignment(Qt.Qt.AlignHCenter) self.qlabel_detected_vco_gain[2] = Qt.QLabel('0 Hz/V') self.qlabel_detected_vco_gain[2].setAlignment(Qt.Qt.AlignHCenter) # DDC reference frequency: self.qlabel_ref_freq = Qt.QLabel('Reference freq [Hz]:') self.qedit_ref_freq = user_friendly_QLineEdit('5e6') self.qedit_ref_freq.returnPressed.connect(self.setVCOFreq_event) self.qedit_ref_freq.setMaximumWidth(60) # Main button for turning the locks on/off: self.qchk_lock = Qt.QCheckBox('Lock') self.qchk_lock.setStyleSheet('') self.qchk_lock.setStyleSheet('font-size: 18pt; color: white; background-color: red') # self.qchk_lock.setStyleSheet('font-size: 18pt; color: white; background-color: green') self.qchk_lock.clicked.connect(self.chkLockClickedEvent) self.qchk_lock.setChecked(False) # VCO sign: self.qsign_positive = Qt.QRadioButton('VCO sign +') self.qsign_negative = Qt.QRadioButton('VCO sign -') self.qsign_group = Qt.QButtonGroup(self) self.qsign_group.addButton(self.qsign_positive) self.qsign_group.addButton(self.qsign_negative) self.qsign_positive.setChecked(True) self.qsign_negative.setChecked(False) self.qsign_positive.clicked.connect(self.setVCOFreq_event) self.qsign_negative.clicked.connect(self.setVCOFreq_event) # Create widgets to indicate performance self.last_refresh = time.perf_counter() self.qlabel_refreshrate_display = Qt.QLabel('Actual delay:') self.qlabel_refreshrate = Qt.QLabel('1000 ms') # self.qlabel_refreshrate.resize(self.qlabel_refreshrate.sizeHint()) self.qlabel_timerdelay = Qt.QLabel('Refresh delay [ms]:') self.qedit_timerdelay = user_friendly_QLineEdit('33') self.qedit_timerdelay.returnPressed.connect(self.refreshChk_event) self.qedit_timerdelay.setMaximumWidth(60) self.qchk_refresh = Qt.QCheckBox('Auto-refresh') self.qchk_refresh.clicked.connect(self.refreshChk_event) # Status reporting: if self.selected_ADC == 0: self.qlbl_status1 = Qt.QLabel('Status: Idle') elif self.selected_ADC == 1: self.qlbl_status1 = Qt.QLabel('Status: Idle') self.qlbl_status2 = Qt.QLabel('Status: Idle') # Put all the widgets into a grid layout grid = QtGui.QGridLayout() grid.setHorizontalSpacing(10) grid.setVerticalSpacing(1) # 3 rows, XX columns grid.addWidget(self.qbtn, 0, 0) grid.addWidget(self.qbtn_VNA, 1, 0) grid.addWidget(self.qbtn_grab, 2, 0) grid.addWidget(self.qchk_refresh, 0, 1) grid.addWidget(self.qlabel_timerdelay, 1, 1) grid.addWidget(self.qedit_timerdelay, 1, 2) grid.addWidget(self.qlabel_refreshrate_display, 2, 1) grid.addWidget(self.qlabel_refreshrate, 2, 2) # grid.addWidget(self.qlabel_bytes_skip, 0, 3) # grid.addWidget(self.qedit_bytes_skip, 0, 4) grid.addWidget(self.qchk_lock, 0, 3, 1, 2) grid.addWidget(self.qlabel_ref_freq, 1, 3) grid.addWidget(self.qedit_ref_freq, 1, 4) # # both PLLs need to receive a threshold for the residuals. # # See tooltip for info # grid.addWidget(self.qlabel_crash_threshold, 2, 3) # grid.addWidget(self.qedit_crash_threshold, 2, 4) # only the first PLL has a crash monitor module in the current firmware: if self.selected_ADC == 0: pass #FEATURE #grid.addWidget(self.qlabel_crash_threshold_freq, 2, 5) #grid.addWidget(self.qedit_crash_threshold_freq, 2, 6) #grid.addWidget(self.qchk_crash_monitor, 2, 7) # We put a sub-grid in the grid # we put the VCO controls in the sub-grid, this way the outer grid stays the same size regardless of the number of elements grid2 = Qt.QGridLayout() grid2.setHorizontalSpacing(10) grid2.setVerticalSpacing(10) if self.selected_ADC == 0: # CEO Lock: only one output (DAC0) grid2.addWidget(self.qlabel_vco_gain, 0, 0) grid2.addWidget(self.qlabel_detected_vco_gain_label, 1, 0) grid2.addWidget(self.qedit_vco_gain[0], 0, 1) grid2.addWidget(self.qlabel_detected_vco_gain[0], 1, 1) else: # Optical lock: two outputs (DAC1 and DAC2) grid2.addWidget(self.qlabel_vco_gain, 0, 0) grid2.addWidget(self.qlabel_detected_vco_gain_label, 1, 0) grid2.addWidget(self.qedit_vco_gain[1], 0, 1) grid2.addWidget(self.qlabel_detected_vco_gain[1], 1, 1) grid2.addWidget(self.qedit_vco_gain[2], 0, 2) # grid2.addWidget(self.qlabel_detected_vco_gain[2], 1, 2) grid.addLayout(grid2, 0, 5, 2, 2) grid.addWidget(self.qsign_positive, 0, 7) grid.addWidget(self.qsign_negative, 1, 7) grid.addWidget(Qt.QLabel(), 0, 9, 1, 1) grid.setColumnStretch(9, 1) self.qgroupbox_settings.setLayout(grid) self.qgroupbox_settings.setPalette(PalNormal) self.qgroupbox_settings.setAutoFillBackground(True) ###################################################################### # Spectrum analyzer/Diagnostics ###################################################################### self.spectrum = SpectrumWidget.SpectrumWidget(self, self.selected_ADC, self.output_controls, self.sl, PalNormal) ###################################################################### # Create the controls for the loop filters ###################################################################### self.qgroupbox_loop_filters = Qt.QGroupBox('Loop filters', self) hbox = Qt.QHBoxLayout() self.qloop_filters = {} for k in range(3): if self.output_controls[k] == True: if k == 0: # print('XEM_GUI_MainWindow(): About to call LoopFiltersUI()') self.qloop_filters[k] = LoopFiltersUI(self.sl, k, bDisplayLockChkBox=False) hbox.addWidget(self.qloop_filters[k]) #self.qloop_filters[k].show() elif k == 1: self.qloop_filters[k] = LoopFiltersUI_DAC1_and_DAC2(self.sl, k, self.sl.pll[k]) hbox.addWidget(self.qloop_filters[k]) self.qloop_filters[k].show() self.qgroupbox_loop_filters.setLayout(hbox) # self.qgroupbox_loop_filters.setLayout(grid) self.qgroupbox_loop_filters.setPalette(PalNormal) self.qgroupbox_loop_filters.setAutoFillBackground(True) ###################################################################### # Phase noise analysis ###################################################################### self.qgroupbox_phasenoise = Qt.QGroupBox('Phase noise (all computed from DDC output)', self) # Selector for the plot type (phase or freq noise) # self.qlabel_ddc_plot_select = Qt.QLabel('Plot type:') self.qcombo_ddc_plot = Qt.QComboBox() self.qcombo_ddc_plot.addItem('Freq') self.qcombo_ddc_plot.addItem('Phase') self.qcombo_ddc_plot.addItem('Freq: time domain') self.qcombo_ddc_plot.addItem('Phase: time domain') self.qcombo_ddc_plot.setCurrentIndex(1) # Create widgets to set the number of points for the DDC graphs: self.qlabel_ddc_rbw = Qt.QLabel('RBW: 100 kHz; Points:') self.qedit_ddc_length = Qt.QLineEdit('32.768e3') # this used to be 3e5 in the Dave Leibrant box version, but was changed to 16e3 due to RedPitaya memory limitations self.qedit_ddc_length.setMaximumWidth(60) # Create widgets to set the higher frequency of the integration: self.qlabel_cumul_integral = Qt.QLabel('Integration\nlimit [Hz]:') self.qedit_cumul_integral = Qt.QLineEdit('5e6') self.qedit_cumul_integral.setMaximumWidth(60) # Display mean frequency error: self.qlbl_mean_freq_error = Qt.QLabel('Mean freq error = 0 MHz') # Checkbox to enable faster updates of the phase noise plot: self.qchk_phase_noise_fast_updates = Qt.QCheckBox('Faster updates') self.qchk_phase_noise_fast_updates.setChecked(False) # X and Y limits for the plot: self.qlbl_xlims = Qt.QLabel('Xmin, Xmax') self.qedit_xlims = Qt.QLineEdit('3e3, 5e6') self.qedit_xlims.setMaximumWidth(60) self.qlbl_ylims = Qt.QLabel('Ymin, Ymax') self.qedit_ylims = Qt.QLineEdit('-100, -30') self.qedit_ylims.setMaximumWidth(60) # Averaging controls: # Averages (1=off) self.qlbl_spc_averaging = Qt.QLabel('# Averages\n(1=off)') self.qedit_spc_averaging = Qt.QLineEdit('1') self.qedit_spc_averaging.setMaximumWidth(60) # Create the frequency domain plot for the DDC0 self.qplt_DDC0_spc = pg.PlotWidget() self.qplt_DDC0_spc.setTitle('Freq noise PSD') #self.qplt_DDC0_spc.setCanvasBackground(Qt.Qt.white) #self.qplt_DDC0_spc.setAxisScaleEngine(Qwt.QwtPlot.xBottom, Qwt.QwtLog10ScaleEngine()) self.qplt_DDC0_spc.getPlotItem().setLogMode(x=True) self.qplt_DDC0_spc.setYRange(-60, 60) #self.qplt_DDC0_spc.enableAxis(Qwt.QwtPlot.yRight) self.qplt_DDC0_spc.setLabel('bottom', 'Frequency [Hz]') self.qplt_DDC0_spc.setLabel('left', 'PSD [dB Hz^2/Hz]') #self.qplt_DDC0_spc.setLabel('right', 'Phase [rad]') # create the right-side axis: p1 = self.qplt_DDC0_spc.getPlotItem() self.qplt_DDC0_spc_right_viewbox = pg.ViewBox() #self.qplt_DDC0_spc_right_viewbox.setLogMode(x=True) p1.showAxis('right') p1.scene().addItem(self.qplt_DDC0_spc_right_viewbox) p1.getAxis('right').linkToView(self.qplt_DDC0_spc_right_viewbox) self.qplt_DDC0_spc_right_viewbox.setXLink(p1) p1.getAxis('right').setLabel('Phase [rad]') self.updatePhaseNoiseViews() p1.vb.sigResized.connect(self.updatePhaseNoiseViews) self.qplt_DDC0_spc.showGrid(x=True, y=True) #plot_grid = Qwt.QwtPlotGrid() #plot_grid.setMajPen(Qt.QPen(Qt.Qt.black, 0, Qt.Qt.DotLine)) #plot_grid.attach(self.qplt_DDC0_spc) # Create the curve in the plot self.curve_DDC0_spc = self.qplt_DDC0_spc.getPlotItem().plot(title='Phase noise PSD', pen='b') #self.curve_DDC0_spc.attach(self.qplt_DDC0_spc) #self.curve_DDC0_spc.setPen(Qt.QPen(Qt.Qt.blue)) #self.curve_DDC0_cumul_phase = pg.PlotCurveItem(pen='g') self.curve_DDC0_cumul_phase = pg.PlotDataItem(pen='k') self.curve_DDC0_cumul_phase.setLogMode(True, False) self.qplt_DDC0_spc_right_viewbox.addItem(self.curve_DDC0_cumul_phase) #self.curve_DDC0_cumul_phase = self.qplt_DDC0_spc_right_viewbox.getPlotItem().plot(pen='k') #self.curve_DDC0_cumul_phase.attach(self.qplt_DDC0_spc) #self.curve_DDC0_cumul_phase.setPen(Qt.QPen(Qt.Qt.black)) # self.curve_DDC0_cumul_phase.setYAxis(Qwt.QwtPlot.yRight) self.curve_DDC0_spc_avg = self.qplt_DDC0_spc.getPlotItem().plot(pen='g') #self.curve_DDC0_spc_avg.attach(self.qplt_DDC0_spc) #self.curve_DDC0_spc_avg.setPen(Qt.QPen(Qt.Qt.darkGreen)) # Put all the widgets into a grid layout grid = Qt.QGridLayout() # grid.addWidget(self.qlabel_ddc_plot_select, 0, 0) grid.addWidget(self.qcombo_ddc_plot, 0, 0, 1, 2) grid.addWidget(self.qlabel_ddc_rbw, 1, 0) grid.addWidget(self.qedit_ddc_length, 1, 1) grid.addWidget(self.qlabel_cumul_integral, 2, 0) grid.addWidget(self.qedit_cumul_integral, 2, 1) grid.addWidget(self.qlbl_xlims, 3, 0, 1, 1) grid.addWidget(self.qedit_xlims, 3, 1, 1, 1) grid.addWidget(self.qlbl_ylims, 4, 0, 1, 1) grid.addWidget(self.qedit_ylims, 4, 1, 1, 1) grid.addWidget(self.qlbl_spc_averaging, 5, 0, 1, 1) grid.addWidget(self.qedit_spc_averaging, 5, 1, 1, 1) grid.addWidget(self.qchk_phase_noise_fast_updates, 6, 0, 1, 2) grid.addWidget(self.qlbl_mean_freq_error, 7, 0, 1, 2) grid.addWidget(Qt.QLabel(''), 8, 0) grid.addWidget(self.qplt_DDC0_spc, 0, 2, 9, 1) grid.setRowStretch(7, 1) grid.setColumnStretch(2, 1) self.qgroupbox_phasenoise.setLayout(grid) self.qgroupbox_phasenoise.setPalette(PalNormal) self.qgroupbox_phasenoise.setAutoFillBackground(True) ###################################################################### # Layout for the whole form: ###################################################################### grid = Qt.QGridLayout() grid.setSpacing(10) grid.addWidget(self.qgroupbox_settings, 0, 0, 1, 0) grid.addWidget(self.spectrum, 1, 0, 1, 0) grid.addWidget(self.qgroupbox_phasenoise, 2, 0, 1, 1) grid.addWidget(self.qgroupbox_loop_filters, 3, 0, 1, 1) # grid.setRowStretch(2, 1) self.setLayout(grid) # Adjust the size and position of the window # self.resize(940, 1080-100+30) # self.center() #self.setGeometry(18, 40, 950, 1010) #self.setGeometry(0, 0, 750, 1000) self.setWindowTitle(self.strTitle) #self.show() # def resizeEvent(self, event): # print('resizeEvent') # print(self.geometry()) ## Handle view resizing for the phase noise plot (since we need to manual link the left and right side axes) def updatePhaseNoiseViews(self): ## view has resized; update auxiliary views to match p1 = self.qplt_DDC0_spc.getPlotItem() self.qplt_DDC0_spc_right_viewbox.setGeometry(p1.vb.sceneBoundingRect()) ## need to re-update linked axes since this was called ## incorrectly while views had different shapes. ## (probably this should be handled in ViewBox.resizeEvent) self.qplt_DDC0_spc_right_viewbox.linkedViewChanged(p1.vb, self.qplt_DDC0_spc_right_viewbox.XAxis) def loadParameters(self): # Update the values in the UI to reflect the internal values: # Get values from xml file for k in range(3): if self.output_controls[k] == True: # print('XEM_GUI_MainWindow(): About to call loadParameters()') if k < 2: # For qloop_filter 0 and 1 # print('before calling self.qloop_filters[k].loadParameters(self.sp)') self.qloop_filters[k].loadParameters(self.sp) # Get values from xml file for loop_filters # print('after calling self.qloop_filters[k].loadParameters(self.sp)') # self.qchk_lock.setChecked(self.qloop_filters[k].qchk_lock.isChecked()) # update the qchk_lock in this widget with the value loaded from sp # print('after calling setChecked') # Get dac gain from the system parameters object and set it in the UI: # print('before calling self.sp.getValue(''VCO_gain'', strDAC)') strDAC = 'DAC{:01d}'.format(k) str_VCO_gain = (self.sp.getValue('VCO_gain', strDAC)) # print('before calling self.qedit_vco_gain[k].setText(str_VCO_gain)') self.qedit_vco_gain[k].blockSignals(True) self.qedit_vco_gain[k].setText(str_VCO_gain) self.qedit_vco_gain[k].blockSignals(False) # print('after calling self.qedit_vco_gain[k].setText(str_VCO_gain)') # Output offsets values: output_offset_in_volts = float(self.sp.getValue('Output_offset_in_volts', strDAC)) # Scale this to the correct units for the output offset slider: min_output_in_volts = float(self.sp.getValue('Output_limits_low', strDAC)) max_output_in_volts = float(self.sp.getValue('Output_limits_high', strDAC)) slider_units = (output_offset_in_volts - min_output_in_volts)/(max_output_in_volts-min_output_in_volts) * 1e6 # print('calling dac offset slider setValue()') # self.q_dac_offset[k].blockSignals(True) # self.q_dac_offset[k].setValue(slider_units) # self.q_dac_offset[k].blockSignals(False) self.spectrum.setDacOffset(k, slider_units) # print('done calling dac offset slider setValue()') # Get ddc reference frequency from the system parameters object and set it in the UI: strDDC = 'DDC{:01d}'.format(self.selected_ADC) str_ref_freq = (self.sp.getValue('Reference_frequency', strDDC)) self.qedit_ref_freq.setText(str_ref_freq) self.qedit_ref_freq.reset_my_color() # print('done loadParameters()') return def center(self): qr = self.frameGeometry() cp = QtGui.QDesktopWidget().availableGeometry().center() qr.moveCenter(cp) # self.move(qr.topLeft()) self.move(QtGui.QDesktopWidget().availableGeometry().topLeft() + Qt.QPoint(10, 10)) def initSL(self): # Old function to start the GUI communication # self.sl = SuperLaserLand_JD2() # self.sl.open() print("initSL()") self.loadParameters() bUpdateFPGA = True # Send values to FPGA if bUpdateFPGA == True: self.setVCOFreq_event() self.setVCOGain_event() self.chkLockClickedEvent() if self.output_controls[0] == True: self.setPWM0_event() # self.setFLL0_event() # self.setPLL0_event() # self.timerID = self.startTimer(500 * 1/1) self.timerID = 0 self.qchk_refresh.setChecked(False) # Set this to True to have the auto-refresh active when running the GUI, or to False to wait for the user to check the box self.refreshChk_event() # Start the timer which reads the dither: # self.timerIDDither = Qt self.timerIDDither = Qt.QTimer(self) self.timerIDDither.timeout.connect(self.timerDitherEvent) self.timerIDDither.start(100) # 100 ms readout delay, increased to 1000 ms for debugging # print "Warning! Increased self.timerIDDither.start(100) to 3000 for debugging." # self.timerDitherEvent() # self.grabAndDisplayADC() # self.displayDDC() self.displayDAC() # This populates the current DAC values with the actual value # self.timerEvent(0) # run the event handler once right away, to populate the rest of the window print("initSL() done") def closeEvent(self, event): # from http://stackoverflow.com/questions/1414781/prompt-on-exit-in-pyqt-application # quit_msg = "Are you sure you want to exit the program?" # reply = QtGui.QMessageBox.question(self, 'Message', # quit_msg, QtGui.QMessageBox.Yes, QtGui.QMessageBox.No) # # print(event) # # if reply == QtGui.QMessageBox.Yes: # event.accept() # app = Qt.QApplication.instance() # app.closeAllWindows() ## app. # else: # event.ignore() return @logCommsErrorsAndBreakoutOfFunction() def timerDitherEvent(self): # print('timerDitherEvent') # Check if the sl object exists: otherwise this timer will keep throwing exceptions, filling up the console messages # and preventing us form seeing the real cause if not hasattr(self, 'sl'): print('SL object does not exist anymore. disabling timer in timerDitherEvent') self.timerIDDither.stop() return start_time = time.perf_counter() for k in range(2): #There is no dither for the 2nd DAC if self.output_controls[k]: if self.sl.dither_enable[k] == False: if k != 2: # DAC2 currently does not have dither self.qlabel_detected_vco_gain[k].setText('off') self.qlabel_detected_vco_gain[k].setStyleSheet("color: white; background-color: black") else: samples = self.sl.ditherRead(2, k) # There is an implicit (-) sign because the DDC has to shift the frequency to 0. # This means that the detected gain will be positive when the VCO sign checkbox is correctly tuned samples = -samples samples = np.mean(samples) # np.mean() returns a numpy.float, but the conversions functions expect an ndarray samples = np.ndarray((1,), dtype=np.float, buffer=samples) # TODO: fancier things with the real and imaginary part, to try to detect invalid readings? Is this necessary? # TODO: Compare many different readings to try to sort out any incorrect ones? VCO_detected_gain_in_Hz_per_Volts = self.sl.scaleDitherResultsToHzPerVolts(samples, k) self.VCO_detected_gain_in_Hz_per_Volts[k] = VCO_detected_gain_in_Hz_per_Volts self.qlabel_detected_vco_gain[k].setText('%.1e' % VCO_detected_gain_in_Hz_per_Volts) elapsed_time = time.perf_counter() - start_time # print('Elapsed time (timerDitherEvent) = %f ms' % (1000*elapsed_time)) # If the detected gain is negative, the loop will be unstable when closed, so we switch to a red background so that the user can flip the sign if VCO_detected_gain_in_Hz_per_Volts > 0: # self.qedit_fi.setStyleSheet("background-color: %s" % Qt.QColor(Qt.Qt.white).name()) self.qlabel_detected_vco_gain[k].setStyleSheet("color: white; background-color: green") else: # red background # self.qlabel_detected_vco_gain[k].setStyleSheet("color: white; background-color: %s" % Qt.QColor(Qt.Qt.red).name()) self.qlabel_detected_vco_gain[k].setStyleSheet("color: white; background-color: red") @logCommsErrorsAndBreakoutOfFunction() def timerEvent(self, e): # print 'timerEvent : %.3f sec' % (time.perf_counter()) # Check if the sl object exists: otherwise this timer will keep throwing exceptions, filling up the console messages # and preventing us form seeing the real cause. We let only one exception go through and then disable try: # Read out residuals and dump to disk: if self.selected_ADC == 0: pass # Handle the LEDs display ret = self.sl.readLEDs() if ret is not None: (LED_G0, LED_R0, LED_G1, LED_R1, LED_G2, LED_R2) = ret # print ('%d, %d, %d, %d, %d, %d' % (LED_G0, LED_R0, LED_G1, LED_R1, LED_G2, LED_R2)) # if self.selected_ADC == 0: # # if self.qchk_crash_monitor.isChecked(): # # self.checkCrash() # # LEDs for CEO lock: # if LED_G0 and (not LED_R0): # # status is locked # self.qlbl_status1.setText('Status: Locked') # self.qlbl_status1.setStyleSheet('color: white; background-color: green') # elif LED_G0 and LED_R0: # # Status is railed # self.qlbl_status1.setText('Status: Railed') # self.qlbl_status1.setStyleSheet('color: white; background-color: orange') # elif (not LED_G0) and LED_R0: # # Residuals above threshold # self.qlbl_status1.setText('Status: Residuals > threshold') # self.qlbl_status1.setStyleSheet('color: white; background-color: red') # elif (not LED_G0) and (not LED_R0): # # Idle # self.qlbl_status1.setText('Status: Idle') # self.qlbl_status1.setStyleSheet('') # elif self.selected_ADC == 1: # # LEDs for Optical lock # if LED_G1 and (not LED_R1): # # status is locked # self.qlbl_status1.setText('Status: Locked') # self.qlbl_status1.setStyleSheet('color: white; background-color: green') # elif LED_G1 and LED_R1: # # Status is railed # self.qlbl_status1.setText('Status: Railed') # self.qlbl_status1.setStyleSheet('color: white; background-color: orange') # elif (not LED_G1) and LED_R1: # # Residuals above threshold # self.qlbl_status1.setText('Status: Residuals above threshold') # self.qlbl_status1.setStyleSheet('color: white; background-color: red') # elif (not LED_G1) and (not LED_R1): # # Idle # self.qlbl_status1.setText('Status: Idle') # self.qlbl_status1.setStyleSheet('') # # LEDs for slow PZT output: # if LED_G2 and (not LED_R2): # # status is locked # self.qlbl_status2.setText('Status: Locked') # self.qlbl_status2.setStyleSheet('color: white; background-color: green') # elif LED_G2 and LED_R2: # # Status is railed # self.qlbl_status2.setText('Status: Railed') # self.qlbl_status2.setStyleSheet('color: white; background-color: orange') # elif (not LED_G2) and LED_R2: # # Residuals above threshold # self.qlbl_status2.setText('Status: Residuals above threshold') # self.qlbl_status2.setStyleSheet('color: white; background-color: red') # elif (not LED_G2) and (not LED_R2): # # Idle # self.qlbl_status2.setText('Status: Idle') # self.qlbl_status2.setStyleSheet('') if self.qchk_refresh.isChecked(): self.grabAndDisplayADC() self.displayDAC() if self.display_phase == 0 or self.qchk_phase_noise_fast_updates.isChecked(): self.displayDDC() self.display_phase = self.display_phase + 1 if self.display_phase > 5: self.display_phase = 0 except: print('SL object does not exist anymore. disabling timer in timerEvent') self.killTimer(self.timerID) self.timerID = 0 self.qchk_refresh.setChecked(False) raise self.qlabel_refreshrate.setText('%.0f ms' % (1000*(time.perf_counter() - self.last_refresh))) self.last_refresh = time.perf_counter() # timerEvent() def displayDAC(self): # Check if another function is currently using the DDR2 logger: if self.sl.bDDR2InUse: print('displayDAC(): DDR2 logger in use, cannot get data from dac') return # For now: we grab the smallest chunk of points from the output (so as to not use too much time to refresh) # and display the current average: for k in range(3): if self.output_controls[k]: # Read from DAC #k start_time = time.perf_counter() (samples_out, ref_exp0) = self.getADCdata(input_select="DAC%d" % k, N_samples=256) if samples_out is None: return elapsed_time = time.perf_counter() - start_time if self.bDisplayTiming == True: print('Elapsed time (read dac values) = %f ms' % (1000*elapsed_time)) samples_out = samples_out.astype(dtype=np.float) VCO_gain_in_Hz_per_Volts = self.getVCOGainFromUI(k) # Update the display: # For the USB bug, compute the mean from the last points current_output_in_volts = self.sl.convertDACCountsToVolts(k, np.mean(samples_out[128:256])) current_output_in_hz = current_output_in_volts * VCO_gain_in_Hz_per_Volts self.spectrum.qthermo_dac_current[k].setValue(current_output_in_volts) self.spectrum.qlabel_dac_current_value[k].setText('{:.4f} V\n{:.0f} MHz'.format(current_output_in_volts, current_output_in_hz/1e6)) elapsed_time = time.perf_counter() - start_time if self.bDisplayTiming == True: print('Elapsed time (displayDAC total) = %f ms' % (1000*elapsed_time)) def displayDDC(self): # self.bDisplayTiming = True # Read from DDC0 try: try: N_points = int(float(self.qedit_ddc_length.text())) except: N_points = 100e3 if N_points < 64: N_points = 64 start_time = time.perf_counter() # if self.selected_ADC == 0: # self.sl.setup_DDC0_write(N_points) # elif self.selected_ADC == 1: # self.sl.setup_DDC1_write(N_points) # self.sl.trigger_write() # self.sl.wait_for_write() # if self.bDisplayTiming == True: # print('Elapsed time (setup write) = %f' % (time.perf_counter()-start_time)) # start_time = time.perf_counter() # inst_freq = self.sl.read_ddc_samples_from_DDR2() inst_freq = self.getADCdata(input_select='DDC%d' % self.selected_ADC, N_samples=N_points, bReadAsDDC=True) if inst_freq is None: return self.inst_freq = inst_freq if self.bDisplayTiming == True: print('Elapsed time (communication) = %f' % (time.perf_counter()-start_time)) # print('mean freq error = %f MHz, raw code = %f' % (np.mean(inst_freq)/1e6, np.mean(inst_freq)*2**10 / self.sl.fs*4)) self.qlbl_mean_freq_error.setText('Freq error: %.2f MHz' % (np.mean(inst_freq)/1e6)) # Compute the spectrum: # We first perform decimation on the data since we don't have useful information above the cut-off frequency anyway: start_time = time.perf_counter() N_decimation = 10 fs_new = self.sl.fs/N_decimation #inst_freq_decimated = decimate(inst_freq, N_decimation, zero_phase=False) inst_freq_decimated = decimate(detrend(inst_freq), N_decimation, zero_phase=False) # inst_freq_decimated = inst_freq # fs_new = self.sl.fs # For debugging: we want to check # inst_freq_decimated = np.random.randn(100e3) # print('Data std dev = %f Hz' % np.std(inst_freq_decimated)) # print('Data variance = %f Hz^2' % np.var(inst_freq_decimated)) if self.bDisplayTiming == True: print('Elapsed time (decimation) = %f' % (time.perf_counter()-start_time)) start_time = time.perf_counter() # Compute the spectrum of the decimated signal: start_time = time.perf_counter() N_fft = 2**(int(np.ceil(np.log2(len(inst_freq_decimated))))) frequency_axis = np.linspace(0, (N_fft-1)/float(N_fft)*fs_new, N_fft) last_index_shown = int(np.round(len(frequency_axis)/2)) window_function = np.blackman(len(inst_freq_decimated)) window_NEB = np.sum((window_function/np.sum(window_function))**2) * fs_new; # print('window_NEB = %f Hz' % window_NEB) spc = np.fft.fft(inst_freq_decimated * window_function, N_fft) spc = np.real(spc*np.conj(spc))/(sum(window_function)**2) # Spectrum is now scaled in power (Hz^2 per bin) # Scale the spectrum to be a single-sided power spectral density in Hz^2/Hz: spc[1:last_index_shown] = 2*spc[1:last_index_shown] / window_NEB # # Compute the running average: # Compute spectrum averaging with exponential smoothing (simple first-order IIR filter) try: n_spc_avg = int(round(float(self.qedit_spc_averaging.text()))) if n_spc_avg > 1.: self.bAveragePhaseNoise = True self.N_spc_average = n_spc_avg else: self.bAveragePhaseNoise = False self.N_spc_average = 1. except: n_spc_avg = 1. self.bAveragePhaseNoise = False if self.bAveragePhaseNoise: # print('self.N_spc_average = %d' % self.N_spc_average) filter_alpha = np.exp(-1./self.N_spc_average) try: # if this is not the first time we are called with averaging enabled, we run the filter: if self.bAveragePhaseNoiseLast: self.spc_running_sum = filter_alpha * self.spc_running_sum + + (1-filter_alpha)*spc else: # this is the first time that we are called with averaging enabled, so we reset the current state self.spc_running_sum = spc except: # This is the first time that we are called: self.spc_running_sum = spc self.bAveragePhaseNoiseLast = self.bAveragePhaseNoise # print('Freq noise PSD: %e Hz^2/Hz' % (np.mean(spc[1:last_index_shown]))) self.freq_noise_psd = spc[1:last_index_shown] self.freq_noise_axis = frequency_axis[1:last_index_shown] # spc = np.abs(spc) if self.bDisplayTiming == True: print('Elapsed time (FFT) = %f' % (time.perf_counter()-start_time)) try: f_limits = self.qedit_xlims.text() f_limits = f_limits.split(',') f_limits = (float(f_limits[0]), float(f_limits[1])) except: f_limits = (frequency_axis[1], frequency_axis[last_index_shown]) try: y_limits = self.qedit_ylims.text() y_limits = y_limits.split(',') y_limits = (float(y_limits[0]), float(y_limits[1])) except: y_limits = (-140, 60) # Update the graph if self.qcombo_ddc_plot.currentIndex() == 0: # Display the frequency noise spc = 10*np.log10(spc + 1e-20) self.curve_DDC0_spc.setData(frequency_axis[1:last_index_shown], spc[1:last_index_shown]) if self.bAveragePhaseNoise: self.curve_DDC0_spc_avg.setData(frequency_axis[1:last_index_shown], 10*np.log10(self.spc_running_sum[1:last_index_shown] + 1e-20)) self.curve_DDC0_spc_avg.setVisible(True) else: self.curve_DDC0_spc_avg.setVisible(False) self.qplt_DDC0_spc.setTitle('Freq noise PSD') self.qplt_DDC0_spc.setLabel('left', 'PSD [dB Hz^2/Hz]') self.qplt_DDC0_spc.setYRange(y_limits[0], y_limits[1]) # self.qplt_DDC0_spc.setAxisScale(Qwt.QwtPlot.xBottom, frequency_axis[1], frequency_axis[last_index_shown]) self.qplt_DDC0_spc.getPlotItem().setLogMode(x=True) self.qplt_DDC0_spc.setXRange(np.log10(f_limits[0]), np.log10(f_limits[1])) # self.qplt_DDC0_spc.setAxisScaleEngine(Qwt.QwtPlot.xBottom, Qwt.QwtLog10ScaleEngine()) self.qplt_DDC0_spc.setLabel('bottom', 'Frequency [Hz]') self.curve_DDC0_cumul_phase.setVisible(False) elif self.qcombo_ddc_plot.currentIndex() == 1: # Compute the phase noise time-domain standard deviation: phasenoise_stddev = np.std(np.cumsum(inst_freq*2*np.pi/self.sl.fs)) # Display the phase noise (equal to 1/f^2 times the frequency noise PSD) self.curve_DDC0_spc.setData(frequency_axis[1:last_index_shown], 10*np.log10(spc[1:last_index_shown] + 1e-20) - 20*np.log10(frequency_axis[1:last_index_shown])) if self.bAveragePhaseNoise: self.curve_DDC0_spc_avg.setData(frequency_axis[1:last_index_shown], 10*np.log10(self.spc_running_sum[1:last_index_shown] + 1e-20) - 20*np.log10(frequency_axis[1:last_index_shown])) self.curve_DDC0_spc_avg.setVisible(True) else: self.curve_DDC0_spc_avg.setVisible(False) self.qplt_DDC0_spc.setXRange(f_limits[0], f_limits[1]) self.qplt_DDC0_spc.setTitle('Phase noise PSD, std dev = %.2f radrms' % phasenoise_stddev) self.qplt_DDC0_spc.setLabel('left', 'PSD [dBc/Hz]') self.qplt_DDC0_spc.setYRange(y_limits[0], y_limits[1]) #self.qplt_DDC0_spc.setAxisScaleEngine(Qwt.QwtPlot.xBottom, Qwt.QwtLog10ScaleEngine()) self.qplt_DDC0_spc.getPlotItem().setLogMode(x=True) self.qplt_DDC0_spc.setXRange(np.log10(f_limits[0]), np.log10(f_limits[1]*5./6.0)) # the scaling is because the widget doesn't seem to use the exact values that we pass... self.qplt_DDC0_spc.setLabel('bottom', 'Frequency [Hz]') # Display the cumulative integral of the phase noise: # Select desired frequency range: try: integration_higher_bound = float(self.qedit_cumul_integral.text()) except: integration_higher_bound = 1e6 if integration_higher_bound > fs_new/2: integration_higher_bound = fs_new/2 if integration_higher_bound <= 2/len(spc)*fs_new: integration_higher_bound = 2/len(spc)*fs_new integration_higher_index = int(round(integration_higher_bound/fs_new*len(spc))) # print('integration up to %d out of %d' % (integration_higher_index, len(spc))) frequency_axis_integral = frequency_axis[1:integration_higher_index] # Integrate the phase noise PSD, from the highest frequency to the lowest phase_psd = spc[1:integration_higher_index] / frequency_axis_integral**2 cumul_int = np.flipud(np.cumsum(np.flipud(phase_psd))) * np.mean(np.diff(frequency_axis_integral)) # print((cumul_int).shape) # cumul_int = 0*cumul_int + 10 # print((cumul_int).shape) # Show results self.curve_DDC0_cumul_phase.setData(frequency_axis_integral, np.sqrt(cumul_int)) self.curve_DDC0_cumul_phase.setVisible(True) #self.qplt_DDC0_spc_right_viewbox.setYRange(0, 2*2*np.pi) #self.qplt_DDC0_spc_right_viewbox.setXRange(0, 2*2*np.pi) # self.qplt_DDC0_spc.setAxisScale(Qwt.QwtPlot.xBottom, frequency_axis[1], frequency_axis[last_index_shown]) # self.qplt_DDC0_spc.setAxisScale(Qwt.QwtPlot.yRight, 0, 2*2*np.pi) elif self.qcombo_ddc_plot.currentIndex() == 2: # Display the raw, time-domain instantaneous frequency output by the DDC block, mostly for debugging: time_axis = np.arange(0, len(inst_freq))/self.sl.fs self.curve_DDC0_spc.setData(time_axis, inst_freq) self.curve_DDC0_spc_avg.setVisible(False) self.curve_DDC0_cumul_phase.setVisible(False) self.qplt_DDC0_spc.setTitle('Instantaneous frequency error, std dev = %.1f kHz' % (np.std(inst_freq_decimated)/1e3)) self.qplt_DDC0_spc.setLabel('left', 'Freq [Hz]') self.qplt_DDC0_spc.setLabel('bottom', 'Time [s]') # self.qplt_DDC0_spc.setAxisScale(Qwt.QwtPlot.yLeft, -self.sl.fs/2, self.sl.fs/2) self.qplt_DDC0_spc.setYRange(np.min(inst_freq), np.max(inst_freq)) #self.qplt_DDC0_spc.setAxisScaleEngine(Qwt.QwtPlot.xBottom, Qwt.QwtLinearScaleEngine()) self.qplt_DDC0_spc.getPlotItem().setLogMode(x=False) self.qplt_DDC0_spc.setXRange(time_axis[0], time_axis[-1]) elif self.qcombo_ddc_plot.currentIndex() == 3: # Display the time-domain instantaneous phase output by the DDC block (computed by integrating the frequency), mostly for debugging: time_axis = np.arange(0, len(inst_freq))/self.sl.fs inst_phase = np.cumsum(inst_freq*2*np.pi/self.sl.fs) # Compute the phase noise time-domain standard deviation: phasenoise_stddev = np.std(inst_phase) self.curve_DDC0_spc.setData(time_axis, inst_phase) self.curve_DDC0_spc_avg.setVisible(False) self.curve_DDC0_cumul_phase.setVisible(False) self.qplt_DDC0_spc.setTitle('Instantaneous phase error, std dev = %.2f radrms' % phasenoise_stddev) self.qplt_DDC0_spc.setLabel('left', 'Phase [rad]') self.qplt_DDC0_spc.setLabel('bottom', 'Time [s]') # self.qplt_DDC0_spc.setAxisScale(Qwt.QwtPlot.yLeft, -self.sl.fs/2, self.sl.fs/2) self.qplt_DDC0_spc.setYRange(np.min(inst_phase), np.max(inst_phase)) #self.qplt_DDC0_spc.setAxisScaleEngine(Qwt.QwtPlot.xBottom, Qwt.QwtLinearScaleEngine()) self.qplt_DDC0_spc.getPlotItem().setLogMode(x=False) self.qplt_DDC0_spc.setXRange(time_axis[0], time_axis[-1]) # self.qplt_DDC0_spc.setAxisScale(Qwt.QwtPlot.yLeft, -3.14, 3.14) # print "debug warning: phase noise plot scaled to +/- pi" # # Display the un-decimated spectrum: # frequency_axis = np.linspace(0, (len(inst_freq)-1)/float(len(inst_freq))*(self.sl.fs), len(inst_freq)) # last_index_shown = np.round(len(frequency_axis)/2) # window_function = np.blackman(len(inst_freq)) # spc = np.abs(np.fft.fft((inst_freq-np.mean(inst_freq)) * window_function))/(sum(window_function)/2) # spc = 20*np.log10(np.abs(spc) + 1e-7) # self.curve_DDC0_spc.setData(frequency_axis[1:last_index_shown], spc[1:last_index_shown]) # Refresh the display: self.qplt_DDC0_spc.replot() if window_NEB > 1e6: self.qlabel_ddc_rbw.setText('RBW: %.1f MHz; Points:' % (round(window_NEB*1e5)/1e5/1e6)) elif window_NEB > 1e3: self.qlabel_ddc_rbw.setText('RBW: %.1f kHz; Points:' % (round(window_NEB*1e2)/1e2/1e3)) else: self.qlabel_ddc_rbw.setText('RBW: %.0f Hz; Points:' % (round(window_NEB))) except: del self.sl print('Unhandled exception') raise # pause(1/10.) self.bDisplayTiming = False def grabAndDisplayADC(self): (input_select, plot_type, N_samples) = self.spectrum.getGUIsettingsForADCdata() # print("input_select = %s" % input_select) # Grab data from the FPGA: start_time = time.perf_counter() (samples_out, ref_exp0) = self.getADCdata(input_select, N_samples) if (samples_out is None) or (ref_exp0 is None): return self.raw_adc_samples = samples_out.astype(dtype=np.float) self.spectrum.plotADCdata(input_select, plot_type, samples_out, ref_exp0) # Update the scale which indicates the ADC fill ratio in numbers of bits: self.spectrum.updateScaleDisplays(samples_out) def getADCdata(self, input_select, N_samples, bReadAsDDC=False): if bReadAsDDC: empty_return_value = None else: empty_return_value = (None, None) start_time = time.perf_counter() # Check if another function is currently using the DDR2 logger: if self.sl.bDDR2InUse: print('grabAndDisplayADC(): DDR2 logger in use, cannot get data from adc') return empty_return_value # Block access to the DDR2 Logger to any other function until we are done: self.sl.bDDR2InUse = True time_start = time.perf_counter() try: # Read from selected source self.sl.setup_write(self.sl.LOGGER_MUX[input_select], N_samples) self.sl.trigger_write() self.sl.wait_for_write() if bReadAsDDC == False: # read from ADC: (samples_out, ref_exp0) = self.sl.read_adc_samples_from_DDR2() else: # read from DDC: samples_out = self.sl.read_ddc_samples_from_DDR2() return samples_out max_abs = np.max(np.abs(samples_out)) samples_out = samples_out.astype(dtype=np.float) self.raw_adc_samples = samples_out except RP_PLL.CommsLoggeableError as e: # log exception logging.error("Exception occurred", exc_info=True) return empty_return_value except RP_PLL.CommsError as e: # do not log exception (because it's simply an obvious follow-up to a previous one, and we don't want to fill up the log with repeated information) return empty_return_value finally: # Tear-down, whether or not an exception occured: Signal to other functions that they can use the DDR2 logger self.sl.bDDR2InUse = False if self.bDisplayTiming == True: print('Elapsed time (Comm) = %f' % (time.perf_counter()-start_time)) # A little bit of data validation: if input_select in ['ADC0', 'ADC1']: if np.real(ref_exp0) == 0 and np.imag(ref_exp0) == 0: print('getADCdata(): Invalid complex exponential. Probably because of a version mismatch between the RP firmware and Python GUI.') return empty_return_value else: ref_exp0 = 1.0 return (samples_out, ref_exp0) # From: http://stackoverflow.com/questions/273192/create-directory-if-it-doesnt-exist-for-file-write def make_sure_path_exists(self, path): try: os.makedirs(path) except OSError as exception: if exception.errno != errno.EEXIST: raise ```
{ "source": "jddixon/alertz", "score": 2 }
#### File: src/alertz/daemon.py ```python __all__ = ['clear_logs', 'run_the_daemon', ] import os import socket import sys import traceback # from io import StringIO # NOT YET USED from optionz import dump_options from xlattice.ftlog import LogMgr from xlattice.proc_lock import ProcLock from wireops.chan import Channel #import fieldz.msg_spec as M #import fieldz.typed as T # from fieldz.parser import StringProtoSpecParser # AS YET UNUSED from fieldz.msg_impl import MsgImpl # , make_msg_class, make_field_class from alertz import STR_OBJ_MODEL, BUFSIZE from alertz.chan_io import recv_from_cnx # from alertz_proto_spec import ALERTZ_PROTO_SPEC # NOT YET USED # DAEMON ------------------------------------------------------------ def clear_logs(options): log_dir = options.log_dir print("DEBUG: clearLogs, logDir = '%s'" % log_dir) if os.path.exists(log_dir): if log_dir.startswith('/') or log_dir.startswith('..'): raise RuntimeError("cannot delete %s/*" % log_dir) files = os.listdir(log_dir) if files: if options.verbose: print("found %u files" % len(files)) for file in files: os.unlink(os.path.join(log_dir, file)) def _actually_run_the_daemon(options): verbose = options.verbose chan = Channel(BUFSIZE) string = None (cnx, addr) = (None, None) string = socket.socket(socket.AF_INET, socket.SOCK_STREAM) string.bind(('', options.port)) string.listen(1) try: running = True while running: print("\nWAITING FOR CONNECTION") # DEBUG cnx, addr = string.accept() try: accept_msg = "CONNECTION FROM %s" % str(addr) if verbose: print(accept_msg) print("BRANCH TO options.accessLog.log()") sys.stdout.flush() options.access_log.log(accept_msg) print("BACK FROM options.access.log()") sys.stdout.flush() while 1: chan.clear() # print "BRANCH TO recvFromCnx" ; sys.stdout.flush() msg_ndx = recv_from_cnx(cnx, chan) # may raise exception (msg, _) = MsgImpl.read(chan, STR_OBJ_MODEL) # print " MSG_NDX: CALCULATED %s, REAL %s" % ( # msgNdx, realNdx) # switch on message type if msg_ndx == 0: print("GOT ZONE MISMATCH MSG") # pylint: disable=no-member print(" timestamp %s" % msg.timestamp) print(" seqNbr %s" % msg.seq_nbr) print(" zoneName %s" % msg.zone_name) print(" expectedSerial %s" % msg.expected_serial) print(" actualSerial %s" % msg.actual_serial) text =\ "mismatch, domain %s: expected serial %s, got %s" % ( msg.zone_name, msg.expected_serial, msg.actual_serial) options.alertz_log.log(text) elif msg_ndx == 1: # timestamp, seqNb print("GOT CORRUPT LIST MSG") # pylint: disable=no-member print(" timestamp %s" % msg.timestamp) print(" seqNbr %s" % msg.seq_nbr) text = "corrupt list: %s" % (msg.seq_nbr) options.alertz_log.log(text) elif msg_ndx == 2: # has one field, remarks print("GOT SHUTDOWN MSG") # pylint: disable=no-member print(" remarks %s" % msg.remarks) running = False string.close() # XXX STUB: log the message text = "shutdown: %s" % (msg.remarks) options.alertz_log.log(text) cnx.close() break # permit only one message/cnx except KeyboardInterrupt: print("<keyboard interrupt received while connection open>") if cnx: cnx.close() running = False except KeyboardInterrupt: print("<keyboard interrupt received while listening>") # listening socket will be closed finally: if cnx: cnx.close() if string: string.close() # COMMENTING THIS OUT PREVENTS SEGFAULT ON STOCKTON --------- # if options.logMgr is not None: # options.logMgr.close() # options.logMgr = None # END COMMENTING OUT ---------------------------------------- if options.lock_mgr is not None: options.lock_mgr.unlock() options.lock_mgr = None def run_the_daemon(options): """ Completes setting up the namespace; if this isn't a "just-show" run, creates lock and log managers, creates the logs, and actually runs the daemon. """ if options.verbose or options.showVersion or options.justShow: print(options.pgm_name_and_version, end=' ') if options.showTimestamp: print('run at %s GMT' % options.timestamp) # could be prettier else: print() # there's a comma up there if options.justShow or options.verbose: print(dump_options(options)) if not options.justShow: lock_mgr = None access_log = None error_log = None try: lock_mgr = ProcLock('alertzd') options.lock_mgr = lock_mgr log_mgr = LogMgr(options.log_dir) options.log_mgr = log_mgr access_log = log_mgr.open('access') options.access_log = access_log alertz_log = log_mgr.open('alertz') options.alertz_log = alertz_log error_log = log_mgr.open('error') options.error_log = error_log _actually_run_the_daemon(options) except BaseException: traceback.print_exc() sys.exit(1) finally: lock_mgr.unlock() ``` #### File: alertz/tests/test_alertz_proto.py ```python import unittest from io import StringIO # import fieldz # from fieldz import parser # UNUSED from wireops.enum import FieldTypes from fieldz import reg from fieldz.enum import Quants from fieldz.parser import StringProtoSpecParser import fieldz.msg_spec as M # PROTOCOLS --------------------------------------------------------- from alertz_proto_spec import ALERTZ_PROTO_SPEC # TESTS ------------------------------------------------------------- class TestAlertzProto(unittest.TestCase): def setUp(self): pass def tearDown(self): pass # actual unit tests ############################################# def test_alertz_proto(self): """ this is in fact the current spec for a log entry """ proto_name = 'org.xlattice.alertz' node_reg = reg.NodeReg() proto_reg = reg.ProtoReg(proto_name, node_reg) msg_reg = reg.MsgReg(proto_reg) proto_spec = M.ProtoSpec(proto_name, proto_reg) self.assertEqual(proto_name, proto_spec.name) msg_name = 'zoneMismatch' fields = [ # pylint: disable=no-member M.FieldSpec( msg_reg, 'timestamp', FieldTypes.F_UINT32, Quants.REQUIRED, 0), M.FieldSpec( msg_reg, 'seq_nbr', FieldTypes.V_UINT32, Quants.REQUIRED, 1), M.FieldSpec( msg_reg, 'zone_name', FieldTypes.L_STRING, Quants.REQUIRED, 2), M.FieldSpec( msg_reg, 'expected_serial', FieldTypes.V_UINT32, Quants.REQUIRED, 3), M.FieldSpec( msg_reg, 'actual_serial', FieldTypes.V_UINT32, Quants.REQUIRED, 4), ] msg_spec = M.MsgSpec(msg_name, proto_spec, msg_reg) self.assertEqual(msg_name, msg_spec.name) for file in fields: msg_spec.add_field(file) # This is supposedly already done in __init__() proto_spec.add_msg(msg_spec) self.round_trip_proto_spec_via_string(proto_spec) # GEEP def round_trip_proto_spec_via_string(self, match): """ Convert a MsgSpec object model to canonical string form, parse that to make a clone, and verify that the two are """ canonical_spec = str(match.__repr__()) # DEBUG print("### roundTrip: SPEC IN CANONICAL FORM:\n" + canonical_spec) print("### END SPEC IN CANONICAL FORM #######") # END str_ps_parser = StringProtoSpecParser(StringIO(canonical_spec)) cloned_spec = str_ps_parser.parse() self.assertIsNone(cloned_spec.parent) self.assertIsNotNone(cloned_spec.reg) # DEBUG clone_repr = cloned_spec.__repr__() print("### CLONED SPEC IN CANONICAL FORM:\n" + clone_repr) print("### END CLONED SPEC ##############") # END # crude tests of __eq__ AKA == self.assertFalse(match is None) self.assertTrue(match == match) # one way of saying it ------------------ # XXX NEXT LINE FAILS self.assertTrue(match.__eq__(cloned_spec)) self.assertTrue(cloned_spec.__eq__(match)) # this is the same test ----------------- self.assertTrue(match == cloned_spec) self.assertTrue(cloned_spec == match) def test_parse_and_write_proto_spec(self): data = StringIO(ALERTZ_PROTO_SPEC) str_ps_parser = StringProtoSpecParser( data) # data should be file-like # object model from string serialization str_obj_model = str_ps_parser.parse() self.assertIsNotNone(str_obj_model) self.assertTrue(isinstance(str_obj_model, M.ProtoSpec)) self.assertEqual('org.xlattice.alertz', str_obj_model.name) self.assertEqual(0, len(str_obj_model.enums)) self.assertEqual(16, len(str_obj_model.msgs)) self.assertEqual(0, len(str_obj_model.seqs)) msg_spec = str_obj_model.msgs[0] self.assertEqual(msg_spec.field_name(0), 'timestamp') self.assertEqual(msg_spec.field_type_name(0), 'fuint32') self.assertEqual(msg_spec.field_name(1), 'seq_nbr') self.assertEqual(msg_spec.field_type_name(1), 'vuint32') self.assertEqual(msg_spec.field_name(2), 'zone_name') self.assertEqual(msg_spec.field_type_name(2), 'lstring') self.assertEqual(msg_spec.field_name(3), 'expected_serial') self.assertEqual(msg_spec.field_type_name(3), 'vuint32') self.assertEqual(msg_spec.field_name(4), 'actual_serial') self.assertEqual(msg_spec.field_type_name(4), 'vuint32') if __name__ == '__main__': unittest.main() ``` #### File: alertz/tests/test_alertz_serialization.py ```python import time import unittest from io import StringIO # from importlib import reload # <--------------------- from rnglib import SimpleRNG from wireops.chan import Channel from fieldz.parser import StringProtoSpecParser import fieldz.msg_spec as M from fieldz.msg_impl import make_msg_class, MsgImpl #import alertz_proto_spec # reload(alertz_proto_spec) # <---------------------- from alertz_proto_spec import ALERTZ_PROTO_SPEC BUFSIZE = 16 * 1024 RNG = SimpleRNG(time.time()) class TestAlertzSerialization(unittest.TestCase): def setUp(self): # data = StringIO(ALERTZ_PROTO_SPEC) # str_ps_parser = StringProtoSpecParser(data) # data must be file-like # # object model from string serialization # self.str_obj_model = str_ps_parser.parse() # self.proto_name = self.str_obj_model.name # dotted name of protocol data = StringIO(ALERTZ_PROTO_SPEC) print("AAA") str_ps_parser = StringProtoSpecParser(data) # data must be file-like print("BBB") # object model from string serialization self.str_obj_model = str_ps_parser.parse() print("CCC") self.proto_name = self.str_obj_model.name # dotted name of protocol print("NNN") def tearDown(self): pass # utility functions ############################################# def zone_mismatch_fields(self): """ returns a list """ timestamp = RNG.next_int32() seq_nbr = RNG.next_int32() zone_name = RNG.next_file_name(8) expected_serial = RNG.next_int32() actual_serial = RNG.next_int32() while actual_serial == expected_serial: actual_serial = RNG.next_int32() # NOTE that this is a list return [timestamp, seq_nbr, zone_name, expected_serial, actual_serial] def corrupt_list_fields(self): timestamp = RNG.next_int32() seq_nbr = RNG.next_int32() remarks = RNG.next_file_name(16) # so 1 to 16 characters return [timestamp, seq_nbr, remarks] # actual unit tests ############################################# def test_zone_mismatch_msg(self): # DEBUG print("\nTEST_ZONE_MISMATCH_MSG") # END # from setUp(): ============================================= # end stuff from setup ====================================== # ----------------------------------------------------------- # XXX This code has been crudely hacked from another test # module, and so needs careful review # ----------------------------------------------------------- # verify that this adds 1 (msg) + 3 (field count) to the number # of entries in getters, putters, etc self.assertIsNotNone(self.str_obj_model) self.assertTrue(isinstance(self.str_obj_model, M.ProtoSpec)) self.assertEqual('org.xlattice.alertz', self.str_obj_model.name) self.assertEqual(0, len(self.str_obj_model.enums)) self.assertEqual(16, len(self.str_obj_model.msgs)) self.assertEqual(0, len(self.str_obj_model.seqs)) msg_spec = self.str_obj_model.msgs[0] msg_name = msg_spec.name self.assertEqual('zoneMismatch', msg_name) # Create a channel ------------------------------------------ # its buffer will be used for both serializing # the instance # data and, by deserializing it, for creating a second instance. chan = Channel(BUFSIZE) buf = chan.buffer self.assertEqual(BUFSIZE, len(buf)) # create the ZoneMismatchMsg class ------------------------------ zone_mismatch_msg_cls = make_msg_class(self.str_obj_model, msg_name) # create a message instance --------------------------------- values = self.zone_mismatch_fields() # list of quasi-random values zmm_msg = zone_mismatch_msg_cls(values) self.assertEqual(msg_spec.name, zmm_msg.name) # we don't have any nested enums or messages # pylint: disable=no-member self.assertEqual(0, len(zmm_msg.enums)) self.assertEqual(0, len(zmm_msg.msgs)) self.assertEqual(5, len(zmm_msg.field_classes)) self.assertEqual(5, len(zmm_msg)) # number of fields in instance self.assertEqual(values[0], zmm_msg.timestamp) self.assertEqual(values[1], zmm_msg.seq_nbr) self.assertEqual(values[2], zmm_msg.zone_name) self.assertEqual(values[3], zmm_msg.expected_serial) self.assertEqual(values[4], zmm_msg.actual_serial) # serialize the object to the channel ----------------------- # XXX WRITE HEADER FIRST! # DEBUG print("DIR (ZMM_MSG): ", end=' ') print(dir(zmm_msg)) # END zmm_msg.write_stand_alone(chan) chan.flip() # deserialize the channel, making a clone of the message ---- (read_back, _) = MsgImpl.read(chan, self.str_obj_model) self.assertIsNotNone(read_back) # DEBUG print("position after mis-match read back is %d" % chan.position) # END # verify that the messages are identical -------------------- self.assertTrue(zmm_msg.__eq__(read_back)) # produce another message from the same values -------------- zmm_msg2 = zone_mismatch_msg_cls(values) chan2 = Channel(BUFSIZE) zmm_msg2.write_stand_alone(chan2) chan2.flip() (copy2, _) = MsgImpl.read(chan2, self.str_obj_model) self.assertTrue(zmm_msg.__eq__(copy2)) self.assertTrue(zmm_msg2.__eq__(copy2)) # GEEP def test_corrupt_list_msg(self): # DEBUG print("\nTEST_CORRUPT_LIST_MSG") # END # ----------------------------------------------------------- # XXX This code has been crudely hacked from another test # module, and so needs careful review # ----------------------------------------------------------- # verify that this adds 1 (msg) + 3 (field count) to the number # of entries in getters, writeStandAlones, etc msg_spec = self.str_obj_model.msgs[1] # <------ msg_name = msg_spec.name self.assertEqual('corruptZoneList', msg_name) # Create a channel ------------------------------------------ # its buffer will be used for both serializing # the instance # data and, by deserializing it, for creating a second instance. chan = Channel(BUFSIZE) buf = chan.buffer self.assertEqual(BUFSIZE, len(buf)) # create the CorruptListMsg class ------------------------------ corrupt_list_msg_cls = make_msg_class(self.str_obj_model, msg_name) # create a message instance --------------------------------- values = self.corrupt_list_fields() # list of quasi-random values cl_msg = corrupt_list_msg_cls(values) self.assertEqual(msg_spec.name, cl_msg.name) # we don't have any nested enums or messages # pylint: disable=no-member self.assertEqual(0, len(cl_msg.enums)) self.assertEqual(0, len(cl_msg.msgs)) self.assertEqual(3, len(cl_msg.field_classes)) # <--- self.assertEqual(3, len(cl_msg)) # number of fields in instance self.assertEqual(values[0], cl_msg.timestamp) self.assertEqual(values[1], cl_msg.seq_nbr) self.assertEqual(values[2], cl_msg.remarks) # serialize the object to the channel ----------------------- cl_msg.write_stand_alone(chan) chan.flip() # deserialize the channel, making a clone of the message ---- (read_back, _) = MsgImpl.read(chan, self.str_obj_model) self.assertIsNotNone(read_back) # DEBUG print("position after corrupt list read back is %d" % chan.position) # END # verify that the messages are identical -------------------- self.assertTrue(cl_msg.__eq__(read_back)) # produce another message from the same values -------------- cl_msg2 = corrupt_list_msg_cls(values) chan2 = Channel(BUFSIZE) cl_msg2.write_stand_alone(chan2) chan2.flip() (copy2, _) = MsgImpl.read(chan2, self.str_obj_model) self.assertTrue(cl_msg.__eq__(copy2)) self.assertTrue(cl_msg2.__eq__(copy2)) # GEEP GEEP def test_shutdown_msg(self): # DEBUG print("\nTEST_SHUTDOWN_MSG") # END # ----------------------------------------------------------- # XXX This code has been crudely hacked from another test # module, and so needs careful review # ----------------------------------------------------------- # verify that this adds 1 (msg) + 3 (field count) to the number # of entries in getters, writeStandAlones, etc msg_spec = self.str_obj_model.msgs[2] # <------ msg_name = msg_spec.name self.assertEqual('shutdown', msg_name) # Create a channel ------------------------------------------ # its buffer will be used for both serializing # the instance # data and, by deserializing it, for creating a second instance. chan = Channel(BUFSIZE) buf = chan.buffer self.assertEqual(BUFSIZE, len(buf)) # create the CorruptListMsg class ------------------------------ shutdown_msg_cls = make_msg_class(self.str_obj_model, msg_name) # create a message instance --------------------------------- values = [RNG.next_file_name(8), ] # list of quasi-random values sd_msg = shutdown_msg_cls(values) self.assertEqual(msg_name, sd_msg.name) # we don't have any nested enums or messages # pylint: disable=no-member self.assertEqual(0, len(sd_msg.enums)) self.assertEqual(0, len(sd_msg.msgs)) self.assertEqual(1, len(sd_msg.field_classes)) # <--- self.assertEqual(1, len(sd_msg)) # number of fields in instance self.assertEqual(values[0], sd_msg.remarks) # serialize the object to the channel ----------------------- sd_msg.write_stand_alone(chan) chan.flip() # deserialize the channel, making a clone of the message ---- (read_back, _) = MsgImpl.read(chan, self.str_obj_model) self.assertIsNotNone(read_back) # DEBUG print("position after shutdown read back is %d" % chan.position) # END # verify that the messages are identical -------------------- self.assertTrue(sd_msg.__eq__(read_back)) # produce another message from the same values -------------- sd_msg2 = shutdown_msg_cls(values) chan2 = Channel(BUFSIZE) sd_msg2.write_stand_alone(chan2) chan2.flip() (copy2, _) = MsgImpl.read(chan2, self.str_obj_model) self.assertTrue(sd_msg.__eq__(copy2)) self.assertTrue(sd_msg2.__eq__(copy2)) # GEEP GEEP GEEP if __name__ == '__main__': unittest.main() ``` #### File: alertz/tests/test_with_dummy_client.py ```python import os import threading import time import unittest # from io import StringIO # UNUSED from rnglib import SimpleRNG from wireops.chan import Channel # import wireops.typed as T # AS YET UNUSED # import fieldz.msg_spec as M # AS YET UNUSED # from fieldz.parser import StringProtoSpecParser # AS YET UNUSED # from fieldz.msg_impl import make_msg_class, make_field_class # UNUSED from alertz import(CORRUPT_LIST_MSG, ZONE_MISMATCH_MSG, __version__, __version_date__, Namespace, BUFSIZE) from alertz.chan_io import send_to_end_point from alertz.daemon import run_the_daemon, clear_logs # from alertz_proto_spec import ALERTZ_PROTO_SPEC # AS YET UNUSED RNG = SimpleRNG(time.time()) class TestWithDummyClient(unittest.TestCase): next_seq_nbr = 0 # increment after each use def setUp(self): pass def tearDown(self): pass # utility functions --------------------------------------------- def do_clear_logs(self, options): self.assertIsNotNone(options) log_dir = options.log_dir self.assertIsNotNone(log_dir) if not os.path.exists(log_dir): os.mkdir(log_dir) self.assertTrue(os.path.exists(log_dir)) clear_logs(options) # excessive paranoia files = os.listdir(log_dir) if files: self.fail('logs/ has not been cleared') # ----------------------------------------------------- def zone_mismatch_fields(self): """ returns a list """ timestamp = int(time.time()) seq_nbr = TestWithDummyClient.next_seq_nbr TestWithDummyClient.next_seq_nbr += 1 # used, so increment it zone_name = RNG.next_file_name(8) expected_serial = RNG.next_int32() actual_serial = RNG.next_int32() while actual_serial == expected_serial: actual_serial = RNG.next_int32() # NOTE that this is a list return [timestamp, seq_nbr, zone_name, expected_serial, actual_serial] def next_zone_mismatch_msg(self): values = self.zone_mismatch_fields() return ZONE_MISMATCH_MSG(values) # ----------------------------------------------------- def corrupt_list_fields(self): timestamp = int(time.time()) seq_nbr = TestWithDummyClient.next_seq_nbr TestWithDummyClient.next_seq_nbr += 1 # used, so increment it remarks = RNG.next_file_name(16) return [timestamp, seq_nbr, remarks] def next_corrupt_list_msg(self): values = self.corrupt_list_fields() return CORRUPT_LIST_MSG(values) # GEEP # ----------------------------------------------------- def shutdown_fields(self): # global next_seq_nbr # timestamp = int(time.time()) # seqNbr = next_seq_nbr # next_seq_nbr += 1 # used, so increment it remarks = RNG.next_file_name(16) return [remarks, ] def next_shutdown_msg(self): values = self.shutdown_fields() return shutdown_msg_cls(values) # GEEP # actual unit test(s) ------------------------------------------- def test_the_daemon(self): chan = Channel(BUFSIZE) chan.clear() # XXX should be guaranteed on new channel msg_count = 8 + RNG.next_int16(25) # so 8..32 # DEBUG print("MSG_COUNT = %u" % msg_count) # END # set up options ---------------------------------- now = int(time.time()) pgm_name_and_version = "testWithDummyClient v%s %s" % ( __version__, __version_date__) with open('/etc/hostname', 'r') as file: this_host = file.read().strip() options = {} # a namespace, so to speak options['ec2Host'] = False options['justShow'] = False options['log_dir'] = 'logs' options['pgm_name_and_version'] = pgm_name_and_version options['port'] = 55555 options['showTimestamp'] = False options['showVersion'] = False options['testing'] = True options['this_host'] = this_host options['timestamp'] = now options['verbose'] = False ns_ = Namespace(options) # clear the log files (so delete any files under logs/) ----- self.do_clear_logs(ns_) # start the daemon -------------------------------- daemon_t = threading.Thread(target=run_the_daemon, args=(ns_,)) daemon_t.start() # give the daemon time to wake up -------------------------- time.sleep(0.15) # XXX without this we get an abort saying # that libev cannot allocate (2G - 16)B # start sending (some fixed number of ) messages ------------ msgs_sent = [] for nnn in range(msg_count): msg = self.next_zone_mismatch_msg() seq_nbr_field = msg[1] # XXX by name would be better! self.assertEqual(nnn, seq_nbr_field.value) # serialize msg into the channel chan.clear() msg.write_stand_alone(chan) chan.flip() # send the msg to the daemon ------------------ skt = send_to_end_point(chan, '127.0.0.1', 55555) time.sleep(0.05) skt.close() msgs_sent.append(msg) # DEBUG print("MSG %d HAS BEEN SENT" % nnn) # END self.assertEqual(msg_count, len(msgs_sent)) # delay a few ms -------------------------------------------- time.sleep(0.05) # build and send shutdown msg ------------------------------- msg = self.next_shutdown_msg() chan.clear() msg.write_stand_alone(chan) chan.flip() skt = send_to_end_point(chan, '127.0.0.1', 55555) # DEBUG print("SHUTDOWN MSG HAS BEEN SENT") # END # delay a few ms -------------------------------------------- time.sleep(0.05) skt.close() # join the daemon thread ------------------------------------ time.sleep(0.05) daemon_t.join() # verify that the daemon's logs have the expected contents -- # XXX STUB XXX if __name__ == '__main__': unittest.main() ```
{ "source": "jddixon/buildList", "score": 2 }
#### File: buildList/tests/test_listgen.py ```python import os import time import unittest # from argparse import ArgumentParser # from Crypto.PublicKey import RSA from rnglib import SimpleRNG from xlattice import HashTypes from xlu import DirStruc # , UDirf # NOT YET USED from buildlist import BuildList # We expect this script to be run in $DEV_BASE/py/buildlist PATH_TO_DATA = os.path.join( '..', '..', 'dat', 'xl_testData', 'treeData', 'binExample_1') DATA_DIR = os.path.join(PATH_TO_DATA, 'dataDir') RSA_FILE = os.path.join(PATH_TO_DATA, 'node', 'skPriv.pem') class TestBuildList(unittest.TestCase): """ Test BuildList.listgen functionality. """ def setUp(self): self.rng = SimpleRNG(time.time()) def tearDown(self): pass def do_listgen_test(self, title, hashtype, dirstruc): """ Test buildlist functionality for specific hash type and DirStruc. """ # MAJOR ERROR: This code logs to .dvcz/buildlist, the actual # project log! Fix is: dvcz_dir = os.path.join('tmp', self.rng.next_file_name(8)) while os.path.exists(dvcz_dir): dvcz_dir = os.path.join('tmp', self.rng.next_file_name(8)) os.mkdir(dvcz_dir, 0o744) # create the BuildList from what's in DATA_DIR # -- RESTRUCTURE and just do this once for each hashtype -- in # other words, this should be in a higher level function, one # which runs a test for each dirstruc BuildList.list_gen( title=title, data_dir=DATA_DIR, dvcz_dir=dvcz_dir, # THE FIX # list_file= # lastBuildList logging=True, u_path=os.path.join('tmp', str(hashtype.value), dirstruc.name), hashtype=hashtype, using_indir=True ) # THE SAME BUILDLIST IS USED FOR EACH OF THE THREE DIRSTRUCS # UNFINISHED # Compare the BuildList with # UNFINISHED def test_build_list(self): """ Test listgen functionality for suppored hash types. """ # DEBUG # print("DATA_DIR is '%s'" % DATA_DIR) # END self.assertTrue(os.path.exists(DATA_DIR)) self.assertTrue(os.path.exists(RSA_FILE)) for hashtype in HashTypes: for dirstruc in DirStruc: self.do_listgen_test('SHA test', hashtype, dirstruc) if __name__ == '__main__': unittest.main() ``` #### File: buildList/tests/test_random_dir.py ```python import os import sys import time import unittest import hashlib from buildlist import BuildList from rnglib import SimpleRNG from xlattice import HashTypes, check_hashtype from xlu import file_sha1hex, file_sha2hex, file_sha3hex, file_blake2b_hex if sys.version_info < (3, 6): # pylint:disable=unused-import import sha3 # monkey-patches hashlib assert sha3 # suppress warning class TestRandomDir(unittest.TestCase): """ Test building quasi-random data files and directory structures. """ def setUp(self): self.rng = SimpleRNG(time.time()) def tearDown(self): pass # utility functions ############################################# # actual unit tests ############################################# def do_test_random_dir(self, hashtype): """ Test building random directories with specific SHA hash type. """ check_hashtype(hashtype) depth = 1 + self.rng.next_int16(3) # so 1 to 3 width = 1 + self.rng.next_int16(16) # so 1 to 16 blk_count = 1 + self.rng.next_int16(3) # so 1 to 3 # last block will usually be only partically populated max_len = BuildList.BLOCK_SIZE * (blk_count - 1) +\ self.rng.next_int16(BuildList.BLOCK_SIZE) min_len = 1 # we want the directory name to be unique path_to_dir = os.path.join('tmp', self.rng.next_file_name(8)) while os.path.exists(path_to_dir): path_to_dir = os.path.join('tmp', self.rng.next_file_name(8)) self.rng.next_data_dir(path_to_dir, depth, width, max_len, min_len) data = bytearray(max_len) # that many null bytes self.rng.next_bytes(data) # fill with random data if hashtype == HashTypes.SHA1: sha = hashlib.sha1() elif hashtype == HashTypes.SHA2: sha = hashlib.sha256() elif hashtype == HashTypes.SHA3: # pylint:disable=no-member sha = hashlib.sha3_256() elif hashtype == HashTypes.BLAKE2B: sha = hashlib.blake2b(digest_size=32) else: raise NotImplementedError sha.update(data) hash_ = sha.hexdigest() file_name = self.rng.next_file_name(8) path_to_file = os.path.join('tmp', file_name) while os.path.exists(path_to_file): file_name = self.rng.next_file_name(8) path_to_file = os.path.join('tmp', file_name) with open(path_to_file, 'wb') as file: file.write(data) if hashtype == HashTypes.SHA1: file_hash = file_sha1hex(path_to_file) elif hashtype == HashTypes.SHA2: file_hash = file_sha2hex(path_to_file) elif hashtype == HashTypes.SHA3: file_hash = file_sha3hex(path_to_file) elif hashtype == HashTypes.BLAKE2B: file_hash = file_blake2b_hex(path_to_file) else: raise NotImplementedError self.assertEqual(hash_, file_hash) def test_random_dir(self): """ Test building random directories with supported SHA hash types. """ for hashtype in HashTypes: self.do_test_random_dir(hashtype) if __name__ == '__main__': unittest.main() ``` #### File: buildList/tests/test_timestamp.py ```python import hashlib import os import time import unittest from rnglib import SimpleRNG from xlu import file_sha1hex from buildlist import BuildList class TestTimestamp(unittest.TestCase): """ Ostensibly tests BuildList timestamp. (Why?) """ def setUp(self): self.rng = SimpleRNG(time.time()) def tearDown(self): pass def test_sha1_file(self): """ Verify functioning of xlu.file_sha1hex(). """ blk_count = 1 + self.rng.next_int16(3) # so 1 to 3 # last block will usually be only partically populated byte_count = BuildList.BLOCK_SIZE * (blk_count - 1) +\ self.rng.next_int16(BuildList.BLOCK_SIZE) data = bytearray(byte_count) # that many null bytes self.rng.next_bytes(data) # fill with random data d_val = hashlib.new('sha1') d_val.update(data) hash_ = d_val.hexdigest() # make a unique test file name file_name = self.rng.next_file_name(8) path_to_file = os.path.join('tmp', file_name) while os.path.exists(path_to_file): file_name = self.rng.next_file_name(8) path_to_file = os.path.join('tmp', file_name) with open(path_to_file, 'wb') as file: file.write(data) file_hash = file_sha1hex(path_to_file) self.assertEqual(hash_, file_hash) if __name__ == '__main__': unittest.main() ```
{ "source": "jddixon/clp", "score": 3 }
#### File: src/clp/__init__.py ```python __version__ = '0.1.14' __version_date__ = '2018-03-21' __all__ = ['CLPError', 'serialize_str_list'] class CLPError(RuntimeError): """ Errors encountered in processing computer language. """ pass def serialize_str_list(name, indent, elements, line_len=78): """ Given a list of strings, serialize it with the specified initial indent, with list members SQUOTEd and separated by COMMA SPACE. Return the serialized list as a list of one or more lines, each of length not exceeding line_len. Newlines are not appended to the output. """ output = [] name_len = len(name) out = ' ' * indent + name + '=[' out_len = len(out) if elements: for element in elements: elm_len = len(element) + 4 # tswo SQUOTEs, comma, space if out_len + elm_len > line_len: output.append(out[0:-1]) out = (' ' * (indent + name_len + 2)) + "'" + element + "', " out_len = len(out) else: out += "'" + element + "', " out_len += elm_len if out.endswith(', '): out = out[0:-2] out += ']' output.append(out) return output ```
{ "source": "jddixon/dvcz", "score": 2 }
#### File: dvcz/tests/test_dvc_setup.py ```python import os import unittest # from dvcz import DvczError from rnglib import SimpleRNG, valid_file_name class DvcTestSetup(object): """ Create a directory structure under ./tmp/ See https://jddixon.github.io/dvcz for an extended description of the subdirectory. """ def __init__(self): self._rng = SimpleRNG() self._run_id = self.rng.next_file_name(8) self._run_dir = os.path.join('tmp', self._run_id) while os.path.exists(self._run_dir): self._run_id = self.rng.next_file_name(8) self._run_dir = os.path.join('tmp', self._run_id) os.makedirs(self._run_dir, mode=0o755) # under this add home/LOGIN/dvcz/committers/ and stores/ self._login = os.environ['LOGNAME'] dvc_dir = os.path.join( self._run_dir, os.path.join( 'home', os.path.join(self._login, 'dvcz'))) self._committers_dir = os.path.join(dvc_dir, 'committers') self._home_stores_dir = os.path.join(dvc_dir, 'stores') os.makedirs(self._committers_dir, mode=0o755) os.makedirs(self._home_stores_dir, mode=0o755) # on the same level as home self._projects_dir = os.path.join(self._run_dir, 'projects') os.makedirs(self._projects_dir, mode=0o755) # on the same level as home self._stores_dir = os.path.join(self._run_dir, 'stores') os.makedirs(self._stores_dir, mode=0o755) # maps self._name2project = None self._name2store = None # lists self._projects = [] # a list of Project objects self._stores = [] # a list of UStore objects @property def rng(self): """ Return a simple random number generator. """ return self._rng @property def run_id(self): """ Return the quasi-random integer uniquely identifying this run directory. """ return self._run_id @property def run_dir(self): """ Return a path to this run directory, a path incorporating run_id.""" return self._run_dir @property def login(self): """ Return the host operating system login associated with this test run. """ return self._login @property def committers_dir(self): """ Return a path to the committers/ subdirectory containing serialized Committer objects. In general one login may have many such Committer objects. """ return self._committers_dir @property def home_stores_dir(self): """ Return a path to the stores/ subdirectory containing serialized Store objects, one for each content-keyed store that a Committer might have access to. """ return self._home_stores_dir @property def projects_dir(self): """ Return a path to the projects/ subdirectory. This will contain subdirectories by Committer name, and below each serialized Project objects . """ return self._projects_dir @property def stores_dir(self): """ Return a path to the stores/ subdirectory. """ return self._stores_dir class TestDvcSetup(unittest.TestCase): """ Test the setUp function for dvcz testing. """ def tearDown(self): pass def test_setup(self): """ We verify that setUp() has created the expected directory structure. """ cfg = DvcTestSetup() # DEBUG print('cfg.run_id = %s' % cfg.run_id) # END self.assertTrue(valid_file_name(cfg.run_id)) self.assertTrue(os.path.exists(cfg.run_dir)) self.assertEqual(cfg.run_dir, os.path.join('tmp', cfg.run_id)) # weird problem with python: os.getlogin() usually returns '' but # sometimes returns eg 'jdd' try: ret = os.getlogin() print("os.getlogin() unexpectedly worked, returning %s" % ret) except FileNotFoundError: pass self.assertEqual(cfg.login, os.environ['LOGNAME']) # pure lazinessM self.assertEqual(cfg.committers_dir, cfg.run_dir + '/home/' + cfg.login + '/dvcz/committers') self.assertTrue(os.path.exists(cfg.committers_dir)) self.assertTrue(os.path.exists(cfg.home_stores_dir)) self.assertTrue(os.path.exists(cfg.projects_dir)) self.assertTrue(os.path.exists(cfg.stores_dir)) if __name__ == '__main__': unittest.main() ``` #### File: dvcz/tests/test_store.py ```python import unittest from dvcz import DvczError from dvcz.store import Store from xlattice import HashTypes from xlu import DirStruc class TestStore(unittest.TestCase): """ Test the Store object and related functions. In testing we create under tmp/ a unique runID for each test run. Below this we create a dummy home directory: tmp/RUN_ID/home/LOGIN/ and below this an equivalent to what in production would be .dvcz: tmp/RUN_ID/home/LOGIN/dvcz/ USER_ID projects/[PROJECT_NAME]* stores/[STORE_NAME]* For each store we create a UDir: tmp/RUN_ID/STORE_NAME/ in/ tmp/ --hash-- --hash-- ... And for each project we create a dummy project: tmp/RUN_ID/PROJECT_NAME/ .dvczignore .dvcz/ builds lastBuildList ... version -- arbitrary directory structure -- The simplest way to create such a dummy project is to copy a real project directory there. """ def setUp(self): pass def tearDown(self): pass def do_test_good(self, name, u_path, dir_struc, hashtype): """ Verify that parameters that should succeed do so. """ store = Store(name, u_path, dir_struc, hashtype) self.assertEqual(store.name, name) self.assertEqual(store.u_path, u_path) self.assertEqual(store.dir_struc, dir_struc) self.assertEqual(store.hashtype, hashtype) # round-trip it ser = store.__str__() store_b = Store.create_from_string(ser) self.assertEqual(store_b, store) def test_good_stores(self): """ Test various combinations of parameters that should succeed. """ for dir_struc in DirStruc: for hashtype in HashTypes: self.do_test_good('grinch', 'tmp/pqr', dir_struc, hashtype) def do_test_bad_name(self, bad_name, u_path, dir_struc=DirStruc.DIR_FLAT, hashtype=HashTypes.SHA2): """ Verify that names that should be rejected are. """ try: Store(bad_name, u_path, dir_struc, hashtype) self.fail("Store didn't detect bad name '%s'" % bad_name) except DvczError: pass def test_bad_names(self): """ Test some instances of invalid names (ie, bad runIDs). """ self.do_test_bad_name('', 'tmp/frog') self.do_test_bad_name(' ', 'tmp/frog') # space self.do_test_bad_name('.', 'tmp/frog') # dot self.do_test_bad_name('$', 'tmp/frog') # dollar self.do_test_bad_name('a$b', 'tmp/frog') self.do_test_bad_name('.b', 'tmp/frog') self.do_test_bad_name('a b', 'tmp/frog') # space self.do_test_bad_name('a\tb', 'tmp/frog') # tab # --------------------------------------------------------------- def do_test_bad_path(self, name, bad_path, dir_struc=DirStruc.DIR16x16, hashtype=HashTypes.SHA2): """ Verify that a bad path to a store is rejected. """ try: Store(name, bad_path, dir_struc, hashtype) self.fail("Store didn't detect bad path '%s'" % name) except PermissionError: pass def test_bad_paths(self): """ Verify that various inacceptable store paths are rejected. """ self.do_test_bad_path('frog', '/frog') # no permission to write if __name__ == '__main__': unittest.main() ```
{ "source": "jddixon/fieldz", "score": 3 }
#### File: src/fieldz/enum_spec.py ```python import sys from fieldz.enum import SimpleEnum # pylint: disable=too-few-public-methods class QEnum(SimpleEnum): """ This is actually another intertwined pair of enums: we want these values to map to ['', '?', '*', '+']. """ def __init__(self): super(QEnum, self).__init__(['REQUIRED', 'OPTIONAL', 'STAR', 'PLUS']) # This allows us to import a reference to the class instance. sys.modules[__name__] = QEnum() ``` #### File: src/fieldz/msg_impl.py ```python from wireops.enum import FieldTypes, PrimTypes from wireops.raw import(length_as_varint, field_hdr_len, read_field_hdr, write_raw_varint, read_raw_varint, write_field_hdr) from wireops.typed import T_GET_FUNCS, T_LEN_FUNCS, T_PUT_FUNCS from fieldz import FieldzError from fieldz.enum import Quants from fieldz.field_impl import make_field_class __all__ = ['make_msg_class', 'make_field_class', 'write', 'impl_len', ] # SERIALIZATION METHODS --------------------------------------------- # This interface should be compatible with registry {put,get,len}Func but # is NOT. SHOULD REPLACE buf, pos WITH chan IN ALL PARAMETER LISTS def impl_len(msg, nnn): """ msg is a reference to an instance of the MsgImpl class, n is its field number. Returns the int length of the serialized object, including the lenght of the field header. """ return msg.wire_len(nnn) def _check_position(chan, end): if chan.position > end: err_msg = "read beyond end of buffer: position := %d, end is %d" % ( chan.position, end) raise RuntimeError(err_msg) # ------------------------------------------------------------------- # CODE FRAGMENTS: METHODS USED AS COMPONENTS IN BUILDING CLASSES # ------------------------------------------------------------------- # pylint: disable=unused-argument def write(self): raise NotImplementedError def my_getter(self): raise NotImplementedError def my_wire_len(self): print("DEBUG: myWireLen invoked") raise NotImplementedError def my_p_wire_len(self, nnn): # field number for nested msg, regID otherwise raise NotImplementedError # specific to messages ---------------------------------------------- def my_enums(self): #pylint: disable=protected-access return self._enums def my_msgs(self): #pylint: disable=protected-access return self._msgs def my_field_classes(self): #pylint: disable=protected-access return self._field_classes # specific to fields ------------------------------------------------ # FOR A GIVEN FIELD, THESE ARE CONSTANTS ASSIGNED BY make_field_class # # # def myFType(cls): return cls._fType # # # def myQuantifier(cls): return cls._quantifier # # # def myFieldNbr(cls): return cls._fieldNbr # # # def myDefault(cls): return cls._default # # these get and set the value attribute of the field instance; they # have nothing to do with de/serialization to and from the channel # # # def myValueGetter(self): return self._value # XXX TYPE-SPECIFIC VALIDATION, COERCION: # # # def myValueSetter(self, value): self._value = value # GEEP # ------------------------------------------------------------------- # MESSAGE CLASS # ------------------------------------------------------------------- # WAS OF TYPE 'type' 2016-08-02 class MsgImpl(object): """ An abstract class intended to serve as parent to automatically generated classes whose purpose will be to ease user handling of data being sent or received across the wire. """ # DISABLE __slots__ until better understood # __slots__ = ['_field_classes', # list of field instances # # '_fields_by_name', # '_enums', # nested enums # '_msgs', # nested messages # ] def __init__(self, mname, field_classes=None, enums=None, msgs=None): self._mname = mname self._field_classes = field_classes self._enums = enums self._msgs = msgs self._parent_spec = None # EXPERIMENT 2018-01-05 @property def mname(self): return self._mname # END EXPERIMENT def __eq__(self, other): if other is None: return False if self is other: return True if self._mname != other.mname: return False # print "MESSAGE NAMES THE SAME" # DEBUG # -- compare fields ------------------------------- if self._field_classes is None or other.field_classes is None: return False # print "SAME NUMBER OF FIELDS" # DEBUG if len(self._field_classes) != len(other.field_classes): return False for i in range(len(self._field_classes)): if self._field_classes[i] != other.field_classes[i]: # DEBUG print("MESSAGE FIELDS %d DIFFER" % i) # END return False # print "FIELDS ARE THE SAME" # DEBUG # -- compare nested enums ------------------------- if self._enums is None or other.enums is None: return False if len(self._enums) != len(other.enums): return False for i in range(len(self._enums)): if self._enums[i] != other.enums[i]: return False # -- compare nested msgs -------------------------- if self._msgs is None or other.msgs is None: return False if len(self._msgs) != len(other.msgs): return False for i in range(len(self._msgs)): if self._msgs[i] != other.msgs[i]: return False return True def __len__(self): return len(self._field_classes) def __getitem__(self, nnn): # 2016-08-02, same fix # return self._fields[n] return self._field_classes[nnn] # -- INSTANCE SERIALIZATION ------------------------------------- # INSTANCE PUT ---------------------------------------- def write_stand_alone(self, chan): """ Write the message stand-alone, as the topmost message on the channel. Returns the message index as a convenience in testing. """ mname = self._mname ndx = self._parent_spec.msg_name_index(mname) # DEBUG print("WRITE_STAND_ALONE: MSG %s INDEX IS %d" % (mname, ndx)) # END self.write(chan, ndx) return ndx def write(self, chan, nnn): """ n is the msg's field number OR regID """ write_field_hdr( chan, nnn, PrimTypes.LEN_PLUS) # write the field header msg_len = self._wire_len() # then the unprefixed length write_raw_varint(chan, msg_len) # XXX DEBUG print("ENTERING MsgImpl.write FIELD NBR " + "%u, MSG LEN IS %u; AFTER WRITING HDR OFFSET %u" % ( nnn, msg_len, chan.position)) # XXX This only makes sense for simple messages all of whose # fields are required and so have only a single instance for field in self._field_classes: # instances with a value attr # CLASS-LEVEL SLOTS are '_name', '_fType', '_quantifier', # '_fieldNbr', '_default',] # INSTANCE-LEVEL SLOT is '_value' #pylint: disable=protected-access f_name = field._name f_nbr = field.field_nbr f_quant = field.quantifier # NEXT HURDLE field_type = field.field_type value = field.value # default = field.default # pylint: disable=no-member if f_quant == Quants.REQUIRED or f_quant == Quants.OPTIONAL: if field_type > 23: # DEBUG reg = self.msg_spec.reg print("RECURSING TO WRITE FIELD %u TYPE %s" % ( f_nbr, reg.reg_id2name(field_type))) # END value.write(chan, f_nbr) else: # DEBUG display_val = value if field_type == FieldTypes.L_STRING and len( display_val) > 16: display_val = display_val[:16] + '...' print("WRITING FIELD %u TYPE %u VALUE %s" % ( f_nbr, field_type, display_val)) # END T_PUT_FUNCS[field_type](chan, value, f_nbr) elif f_quant == Quants.PLUS or f_quant == Quants.STAR: v_list = value for varint_ in v_list: # WORKING HERE if field_type > 23: # DEBUG reg = self.msg_spec.reg print("RECURSING TO WRITE FIELD %u TYPE %s" % ( f_nbr, reg.reg_id2name(field_type))) # END # this function recursing varint_.write(chan, f_nbr) else: T_PUT_FUNCS[field_type](chan, varint_, f_nbr) else: raise RuntimeError( "field '%s' has unknown quantifier '%s'" % ( f_name, f_quant)) # GEEP # # DEBUG # print "AFTER WRITING ENTIRE MESSAGE OFFSET IS %d" % chan.position # # END # -- INSTANCE GET ------------------------------------- @classmethod def read(cls, chan, parent_spec): """msg refers to the msg, n is field number; returns msg, n""" (p_type, nnn) = read_field_hdr(chan) if nnn < 0 or nnn >= len(parent_spec.msgs): raise RuntimeError("msg ID '%s' out of range" % nnn) msg_spec = parent_spec.msgs[nnn] msg_len = read_raw_varint(chan) # DEBUG print("IMPL_GETTER, P_TYPE %d, MSG/FIELD NBR %d, MSG_LEN %d" % ( p_type, nnn, msg_len)) # END end = chan.position + msg_len cls = _make_msg_class(parent_spec, msg_spec) # generated class field_classes = [] # ??? values = [] # ??? # XXX THIS IS NOT GOING TO WORK, BECAUSE WE NEED TO PEEK XXX # pylint: disable=no-member for f_class in cls._field_classes: #pylint: disable=protected-access f_quant = f_class._quantifier field_type = f_class._field_type # a number #pylint: disable=protected-access f_quant = f_class._quantifier field_nbr = f_class._field_nbr # read the field header (p_type, nbr) = read_field_hdr(chan) # DEBUG print( " GET_FROM_CHAN, FIELD %u, TYPE %u" % (field_nbr, field_type)) # END if field_nbr != nbr: raise RuntimeError(" EXPECTED FIELD_NBR %d, GOT %d" % ( field_nbr, nbr)) # pylint: disable=no-member if f_quant == Quants.REQUIRED or f_quant == Quants.OPTIONAL: if field_type > 23: reg = cls.msg_spec.reg # BEGIN JUNK ------------------------------------ # DEBUG print( "READING: FIELD TYPE IS %s" % reg.reg_id2name(field_type)) # END entry = reg.reg_id2entry(field_type) print("READING: FIELD TYPE bis IS %s" % entry.name) # END JUNK -------------------------------------- # child_spec = entry.msg_spec # child_class = _make_msg_class(msg_spec, child_spec) # RECURSE: read(childCls, chan, msgSpec) # msgSpec is parentSpec here value = T_GET_FUNCS[field_type](chan) # XXX WRONG else: value = T_GET_FUNCS[field_type](chan) _check_position(chan, end) values.append(value) elif f_quant == Quants.PLUS or f_quant == Quants.STAR: # v_list = [] # we are reading a list of values # WORKING HERE pass else: raise RuntimeError("unknown quantifier, index '%u'" % f_quant) # DEBUG print("AFTER COLLECTING %u FIELDS, OFFSET IS %u" % ( len(field_classes), chan.position)) # END # XXX BLOWS UP: can't handle Quants.PLUS or Quants.STAR (about line # 407) return (cls(values), nnn) # GEEP # -- INSTANCE SERIALIZED LENGTH ----------------------- def _wire_len(self): """ Returns the length of the body of a serialized message, excluding the header. """ msg_len = 0 nnn = 0 # DEBUG for field in self._field_classes: f_name = field.fname f_nbr = field.field_nbr f_quant = field.quantifier # NEXT HURDLE field_type = field.field_type value = field.value # XXX What follows doesn't quite make sense. If a REQUIRED # message is missing, we simply won't find it. Likewise # for Quants.STAR # pylint: disable=no-member if f_quant == Quants.REQUIRED or f_quant == Quants.OPTIONAL: contrib = T_LEN_FUNCS[field_type](value, f_nbr) # DEBUG if field_type > 23: reg = self.msg_spec.reg # or protocol reg? # XXX is the registry for the protocol? msgSpec? print(" F_TYPE %u IS MSG %s" % (field_type, reg.reg_id2name(field_type))) print(" LEN: FIELD %u (%s), TYPE %u, CONTRIBUTION %d" % (nnn, f_name, field_type, contrib)) nnn += 1 # END msg_len += contrib elif f_quant == Quants.PLUS or f_quant == Quants.STAR: # value will be a non-empty list; handle each individual # member like Quants.REQUIRED v_list = value for varint_ in v_list: # HACKING ABOUT if field_type > 23: # pylint: disable=no-member reg = self.msg_spec.reg # DEBUG print(" LEN: FIELD TYPE IS %s" % reg.reg_id2name(field_type)) # entry = reg.regID2Entry(fType) # print " LEN: FIELD TYPE bis IS %s" % entry.name # END contrib = varint_.wire_len(f_nbr) else: # END HACKING # ----------------------------------------------- # XXX FAILS with list index error, fType == 24 XXX # ----------------------------------------------- # DEBUG print("FIELD '%s' Quants.PLUS MEMBER TYPE IS %s" % ( f_name, field_type)) # END contrib = T_LEN_FUNCS[field_type](varint_, f_nbr) # DEBUG print(" LEN: FIELD %u (%s), TYPE %u, CONTRIB %d" % ( nnn, f_name, field_type, contrib)) # END nnn += 1 msg_len += contrib else: raise RuntimeError( "field '%s' has unknown quantifier '%s'" % ( f_name, f_quant)) return msg_len def wire_len(self, nnn): """ Return the length of a serialized message including the field header, where n is the field number of a nested message or the regID if the message is not nested. """ len_ = length_as_varint(field_hdr_len(nnn, PrimTypes.LEN_PLUS)) count = self._wire_len() return len_ + length_as_varint(count) + count # META_MSG ====================================================== class MetaMsg(type): def __new__(mcs, name, bases, namespace, **kwargs): # DEBUG print("MetaMsgNEW gets called once") # END return super().__new__(mcs, name, bases, namespace) def __init__(cls, name, bases, namespace, **kwargs): # definitely works: # setattr(cls, 'baz', '__init__ added to dictionary before super call') super().__init__(name, bases, namespace) print("MetaMsgINIT gets called once") return ############################################################# # BEING IGNORED - belongs in a maker class ############################################################# # cls._field_classes = [] # cls._field_classes_by_name = {} # values = args[0] # for idx, val in enumerate(values): # this_field = cls._field_classes[idx](val) # cls._field_classes.append(this_field) # cls._field_classes_by_name[thisField.fname] = thisField # setattr(cls, this_field.fname, val) # # DEBUG # print("META_MSG.__call__:") # print(" idx = %u" % idx) # print(" name = %s" % cls._field_classes[idx].fname) # print(" value = %s" % cls._field_classes[idx].value) # # END # print " THERE ARE %u FIELDS SET" % len(cls._field_classes) # DEBUG # return super().__init__(name, bases, namespace) ######################################################################### # DISABLE FOR NOW; XXX SHOULD BE ADDED WHEN THE INSTANCE HAS BEEN CREATED ######################################################################### # don't permit any new attributes to be added # XXX why do we need to do this given __slots__ list? def __setattr__(cls, attr, value): """ make the class more or less immutable """ ############################# # WHERE THE ERROR COMES FROM: ############################# if attr not in dir(cls): raise AttributeError('cannot create attribute by assignment!') return type.__setattr__(cls, attr, value) # =================================================================== # MAKERS # =================================================================== # EXPERIMENT: IMPLEMENTATION OF MESSAGE CLASS __init__ # DROPPING THIS FOR NOW # UN-DROPPED 2017-03-03 def msg_initter(cls, *args, **attrs): # We want to create instances of the respective fields and # assign 'arg' to field 'idx'. This means that field instances # need to have been created before we get here # DEBUG print('INITTER:') if args: for idx, arg in enumerate(args): print(" arg %u is '%s'" % (idx, str(arg))) if attrs: # XXX REVIEW ME: for key, val in iter(attrs.items): print(" kwarg attr is '%s', value is '%s'" % (key, str(val))) # END # XXX if msg_initter is dropped from the dictionary, I get an error at # line 249 in __call__, # return type.__call__(cls, *args, **kwargs) # TypeError: object.__new__() takes no parameters # # XXX A Strange Litle Device: MSG_CLS_BY_Q_NAME = {} # PROTO_NAME . MSG_NAME => class def make_msg_class(parent, name): """ construct a MsgClass given a msg name known to the parent """ # DEBUG print("\nMAKE_MSG_CLASS: parent '%s', name '%s'" % (parent, name)) # END msg_spec = parent.get_msg_spec(name) return _make_msg_class(parent, msg_spec) def _make_msg_class(parent, msg_spec): """ construct a MsgClass given a MsgSpec """ if parent is None: raise FieldzError('parent must be specified') proto_name = parent.name if msg_spec is None: raise FieldzError('msgSpec must be specified') # XXX single-dot name and so NO NESTED MSG_CLASSes qual_name = '%s.%s' % (proto_name, msg_spec.mname) # DEBUG print('_MAKE_MSG_CLASS for %s' % qual_name) # END if qual_name in MSG_CLS_BY_Q_NAME: # XXX BUT CACHING HAS BEEN DISABLED # DEBUG print(" USING CACHED CLASS for %s\n" % qual_name) # END return MSG_CLS_BY_Q_NAME[qual_name] # build list of field classes ----------------------------------- field_classes = [] field_classes_by_name = {} field_classes_by_nbr = {} # by field nbr, not index # XXX implicit assumption is that fields are ordered by ascending # XXX field number for field_spec in msg_spec: # XXX NO ALLOWANCE FOR NESTED MSG_SPEC cls = make_field_class(qual_name, field_spec) field_classes.append(cls) field_classes_by_name['%s.%s' % (qual_name, field_spec.fname)] = cls field_classes_by_nbr[field_spec.field_nbr] = cls # class is not in cache, so construct --------------------------- # _enums = [] # _msgs = [] # DEBUG print(" _MAKE_MSG_CLASS: _name is %s" % msg_spec.mname) # END DEBUG class Msg(MsgImpl, metaclass=MetaMsg, # uncommented the next line 2017-02-03 __init__=msg_initter, # 'name' already in use? mname=msg_spec.mname, enums=property(my_enums), msgs=property(my_msgs), field_classes=property(my_field_classes), # EXPERIMENT 2012-12-15 parent_spec=parent, msg_spec=msg_spec # END EXPERIMENT ): pass # DEBUG ===================================== print("MSG_IMPL DICTIONARY:") for key in Msg.__dict__: print(" %-16s => %s" % (key, Msg.__dict__[key])) # END ======================================= # DEBUG print("\n_make_msg_class returning something of type %s\n" % type(Msg)) # END # ---------------------------- # possibly some more fiddling ... # --------------------------- # XXX DISABLING CACHINE # MSG_CLS_BY_Q_NAME[qual_name] = Msg return Msg ``` #### File: fieldz/tests/test_little_big.py ```python import time import unittest from io import StringIO from rnglib import SimpleRNG # XXX DOES NOT import write if named 'putter': from fieldz.msg_impl import make_msg_class,\ make_field_class from fieldz.parser import StringProtoSpecParser import fieldz.msg_spec as M # import wireops.field_types as F # import wireops.typed as T from wireops.chan import Channel ################################################################# # THIS WAS HACKED FROM testProtoSpec.py; CAN HACK MORE FROM THERE ################################################################# # PROTOCOLS --------------------------------------------------------- from little_big_test import LITTLE_BIG_PROTO_SPEC BUFSIZE = 16 * 1024 # TESTS ------------------------------------------------------------- class TestLittleBig(unittest.TestCase): def setUp(self): self.rng = SimpleRNG(time.time()) data = StringIO(LITTLE_BIG_PROTO_SPEC) ppp = StringProtoSpecParser(data) # data should be file-like self.str_obj_model = ppp.parse() # object model from string serialization self.proto_name = self.str_obj_model.name # the dotted name of the protocol def tearDown(self): pass # utility functions ############################################# def lil_big_msg_values(self): values = [] # XXX these MUST be kept in sync with littleBigTest.py values.append(self.rng.next_boolean()) # vBoolReqField values.append(self.rng.next_int16()) # vEnumReqField values.append(self.rng.next_int32()) # vuInt32ReqField values.append(self.rng.next_int32()) # vuInt64ReqField values.append(self.rng.next_int64()) # vsInt32ReqField values.append(self.rng.next_int64()) # vsInt64ReqField # #vuInt32ReqField # #vuInt64ReqField values.append(self.rng.next_int32()) # fsInt32ReqField values.append(self.rng.next_int32()) # fuInt32ReqField values.append(self.rng.next_real()) # fFloatReqField values.append(self.rng.next_int64()) # fsInt64ReqField values.append(self.rng.next_int64()) # fuInt64ReqField values.append(self.rng.next_real()) # fDoubleReqField values.append(self.rng.next_file_name(16)) # lStringReqField rnd_len = 16 + self.rng.next_int16(49) byte_buf = bytearray(rnd_len) self.rng.next_bytes(byte_buf) values.append(bytes(byte_buf)) # lBytesReqField b128_buf = bytearray(16) self.rng.next_bytes(b128_buf) values.append(bytes(b128_buf)) # fBytes16ReqField b160_buf = bytearray(20) self.rng.next_bytes(b160_buf) values.append(bytes(b160_buf)) # fBytes20ReqField b256_buf = bytearray(32) self.rng.next_bytes(b256_buf) values.append(bytes(b256_buf)) # fBytes32ReqField return values # actual unit tests ############################################# def check_field_impl_against_spec( self, proto_name, msg_name, field_spec, value): self.assertIsNotNone(field_spec) dotted_name = "%s.%s" % (proto_name, msg_name) cls = make_field_class(dotted_name, field_spec) if '__dict__' in dir(cls): print('\nGENERATED FieldImpl CLASS DICTIONARY') for exc in list(cls.__dict__.keys()): print("%-20s %s" % (exc, cls.__dict__[exc])) self.assertIsNotNone(cls) datum = cls(value) self.assertIsNotNone(datum) # class attributes -------------------------------- # pylint:disable=no-member self.assertEqual(field_spec.fname, datum.fname) # L 106 # pylint:disable=no-member self.assertEqual(field_spec.field_type, datum.field_type) # pylint:disable=no-member self.assertEqual(field_spec.quantifier, datum.quantifier) # pylint:disable=no-member self.assertEqual(field_spec.field_nbr, datum.field_nbr) # pylint:disable=no-member self.assertIsNone(datum.default) # not an elegant test # instance attribute ------------------------------ # pylint:disable=no-member self.assertEqual(value, datum.value) # with slots enabled, this is never seen ---------- # because __dict__ is not in the list of valid # attributes for f if '__dict__' in dir(datum): print('\nGENERATED FieldImpl INSTANCE DICTIONARY') for item in list(datum.__dict__.keys()): print("%-20s %s" % (item, datum.__dict__[item])) # GEEP def test_field_impl(self): # DEBUG print("TEST_FIELD_IMPL") # END msg_spec = self.str_obj_model.msgs[0] # the fields in this imaginary logEntry values = self.lil_big_msg_values() for i in range(len(msg_spec)): print( "\nDEBUG: field %u ------------------------------------------------------" % i) field_spec = msg_spec[i] self.check_field_impl_against_spec( self.proto_name, msg_spec.name, field_spec, values[i]) def test_caching(self): # DEBUG print("TEST_CACHING") # END self.assertTrue(isinstance(self.str_obj_model, M.ProtoSpec)) # XXX A HACK WHILE WE CHANGE INTERFACE ------------ msg_spec = self.str_obj_model.msgs[0] mname = msg_spec.mname cls0 = make_msg_class(self.str_obj_model, mname) # DEBUG print("EXPECTING CLASS, FOUND: %s" % type(cls0)) # <<<< KUKEMAL ! # END inst0 = cls0(mname) # DEBUG # pylint:disable=no-member print("Constructed inst0 mname is '%s'" % inst0.mname) # END # pylint:disable=no-member self.assertEqual(mname, inst0.mname) # THIS IS A CLASS, NOT AN INSTANCE cls1 = make_msg_class(self.str_obj_model, mname) inst1 = cls1(mname) # pylint:disable=no-member self.assertEqual(mname, inst1.mname) # END HACK ---------------------------------------- # we cache classe, so the two should be the same ############################################################# # self.assertEqual(id(cls0), id(cls1)) # FAILS FAILS FAILS ############################################################# # chan = Channel(BUFSIZE) values = self.lil_big_msg_values() lil_big_msg0 = cls0(values) lil_big_msg1 = cls0(values) # we don't cache instances, so these will differ self.assertNotEqual(id(lil_big_msg0), id(lil_big_msg1)) field_spec = msg_spec[0] dotted_name = "%s.%s" % (self.proto_name, msg_spec.mname) f0cls = make_field_class(dotted_name, field_spec) f1cls = make_field_class(dotted_name, field_spec) self.assertEqual(id(f0cls), id(f1cls)) def test_little_big(self): self.assertIsNotNone(self.str_obj_model) self.assertTrue(isinstance(self.str_obj_model, M.ProtoSpec)) self.assertEqual('org.xlattice.fieldz.test.littleBigProto', self.str_obj_model.name) self.assertEqual(0, len(self.str_obj_model.enums)) self.assertEqual(1, len(self.str_obj_model.msgs)) self.assertEqual(0, len(self.str_obj_model.seqs)) msg_spec = self.str_obj_model.msgs[0] # Create a channel ------------------------------------------ # its buffer will be used for both serializing the instance # data and, by deserializing it, for creating a second instance. chan = Channel(BUFSIZE) buf = chan.buffer self.assertEqual(BUFSIZE, len(buf)) # create the LittleBigMsg class ------------------------------ little_big_msg_cls = make_msg_class(self.str_obj_model, msg_spec.mname) # ------------------------------------------------------------- # XXX the following fails because field 2 is seen as a property # instead of a list if False: # DEBUGGING print('\nLittleBigMsg CLASS DICTIONARY') for (ndx, key) in enumerate(little_big_msg_cls.__dict__.keys()): print( "%3u: %-20s %s" % (ndx, key, little_big_msg_cls.__dict__[key])) # ------------------------------------------------------------- # create a message instance --------------------------------- values = self.lil_big_msg_values() # quasi-random values lil_big_msg = little_big_msg_cls(values[0]) # [0] IS EXPERIMENT # __setattr__ in MetaMsg raises exception on any attempt # to add new attributes. This works at the class level but # NOT at the instance level # # XXX HACK print("*** SKIPPING ASSIGNENT-TO-CONSTANT TEST ***") # END if False: try: lil_big_msg.foo = 42 self.fail( "ERROR: attempt to assign new instance attribute succeeded") except AttributeError as a_exc: # DEBUG print( "ATTR ERROR ATTEMPTING TO SET lilBigMsg.foo: " + str(a_exc)) # END pass if '__dict__' in dir(lil_big_msg): print('\nlilBigMsg INSTANCE DICTIONARY') for exc in list(lil_big_msg.__dict__.keys()): print("%-20s %s" % (exc, lil_big_msg.__dict__[exc])) # lilBigMsg.name is a property # XXX HACK print("*** SKIPPING ASSIGNENT-TO-PROPERTY TEST ***") # END if False: try: lil_big_msg.mname = 'boo' self.fail("ERROR: attempt to change message name succeeded") except AttributeError: pass # DEBUG print("TYPE msg_spec.mname: %s" % type(msg_spec.mname)) print("TYPE lil_big_msg.mname: %s" % type(lil_big_msg.mname)) # END self.assertEqual(msg_spec.mname, lil_big_msg.mname) # we don't have any nested enums or messages # pylint:disable=no-member self.assertEqual(0, len(lil_big_msg.enums)) # pylint:disable=no-member self.assertEqual(0, len(lil_big_msg.msgs)) # pylint:disable=no-member self.assertEqual(17, len(lil_big_msg.field_classes)) # number of fields in instance self.assertEqual(17, len(lil_big_msg)) for i in range(len(lil_big_msg)): self.assertEqual(values[i], lil_big_msg[i].value) # serialize the object to the channel ----------------------- print("\nDEBUG: PHASE A ######################################") nnn = lil_big_msg.write_stand_alone(chan) old_position = chan.position chan.flip() self.assertEqual(old_position, chan.limit) self.assertEqual(0, chan.position) # deserialize the channel, making a clone of the message ---- (read_back, nn2) = little_big_msg_cls.read( chan, self.str_obj_model) # sOM is protoSpec self.assertIsNotNone(read_back) self.assertEqual(nnn, nn2) # verify that the messages are identical -------------------- self.assertTrue(lil_big_msg.__eq__(read_back)) print("\nDEBUG: PHASE B ######################################") # produce another message from the same values -------------- lil_big_msg2 = little_big_msg_cls(values) chan2 = Channel(BUFSIZE) nnn = lil_big_msg2.write_stand_alone(chan2) chan2.flip() (copy2, nn3) = little_big_msg_cls.read(chan2, self.str_obj_model) self.assertIsNotNone(copy2) self.assertEqual(nnn, nn3) self.assertTrue(lil_big_msg.__eq__(copy2)) self.assertTrue(lil_big_msg2.__eq__(copy2)) # test clear() chan2.position = 97 chan2.limit = 107 chan2.clear() self.assertEqual(0, chan2.limit) self.assertEqual(0, chan2.position) if __name__ == '__main__': unittest.main() ``` #### File: fieldz/tests/test_log_entry.py ```python import time import unittest from rnglib import SimpleRNG from wireops.enum import FieldTypes # import wireops.typed as T from fieldz.enum import Quants import fieldz.msg_spec as M import fieldz.reg as R from fieldz.tfbuffer import TFReader, TFWriter BUFSIZE = 16 * 1024 RNG = SimpleRNG(time.time()) # -- logEntry msgSpec --------------------------- PROTOCOL = 'org.xlattice.upax' NODE_REG = R.NodeReg() PROTO_REG = R.ProtoReg(PROTOCOL, NODE_REG) PARENT = M.ProtoSpec(PROTOCOL, PROTO_REG) MSG_REG = R.MsgReg(PROTO_REG) NAME = 'logEntry' ENUM = M.EnumSpec.create('foo', [('not', 0), ('being', 1), ('used', 2), ]) FIELDS = [ # pylint: disable=no-member M.FieldSpec(MSG_REG, 'timestamp', FieldTypes.F_UINT32, Quants.REQUIRED, 0), M.FieldSpec(MSG_REG, 'node_id', FieldTypes.F_BYTES20, Quants.REQUIRED, 1), M.FieldSpec(MSG_REG, 'key', FieldTypes.F_BYTES20, Quants.REQUIRED, 2), M.FieldSpec(MSG_REG, 'length', FieldTypes.V_UINT32, Quants.REQUIRED, 3), M.FieldSpec(MSG_REG, 'by_', FieldTypes.L_STRING, Quants.REQUIRED, 4), M.FieldSpec(MSG_REG, 'path', FieldTypes.L_STRING, Quants.REQUIRED, 5), ] LE_MSG_SPEC = M.MsgSpec(NAME, PROTO_REG, PARENT) for file in FIELDS: LE_MSG_SPEC.add_field(file) UPAX_PROTO_SPEC = M.ProtoSpec(PROTOCOL, PROTO_REG) UPAX_PROTO_SPEC.add_enum(ENUM) UPAX_PROTO_SPEC.add_msg(LE_MSG_SPEC) # -- end logEntry msgSpec ----------------------- class TestLogEntry(unittest.TestCase): def setUp(self): pass def tearDown(self): pass # utility functions ############################################# def dump_wire_buffer(self, wb_): for i in range(16): print("0x%02x " % wb_.buf[i], end=' ') print() # actual unit tests ############################################# def test_proto_spec(self): self.assertIsNotNone(NODE_REG) self.assertIsNotNone(PROTO_REG) def test_constructors(self): p_spec = UPAX_PROTO_SPEC self.assertEqual(PROTOCOL, p_spec.name) self.assertEqual(ENUM, p_spec.enums[0]) self.assertEqual(LE_MSG_SPEC, p_spec.msgs[0]) self.assertEqual(0, len(p_spec.seqs)) def test_writing_and_reading(self): writer = TFWriter.create(LE_MSG_SPEC, BUFSIZE) writer.clear() # should not be necessary buf = writer.buffer # reader and writer share same buffer reader = TFReader(LE_MSG_SPEC, BUFSIZE, buf) tstamp = int(time.time()) node_id = bytearray(20) # 160 bit RNG.next_bytes(node_id) # .... random value key = bytearray(20) # 160 bit RNG.next_bytes(key) # .... random value length = RNG.next_int32() by_ = RNG.next_file_name(16) path = 'path/to/' + RNG.next_file_name(16) nnn = 0 # 0-based field number # write a log entry into the buffer writer.put_next(nnn, tstamp) nnn = nnn + 1 writer.put_next(nnn, node_id) nnn = nnn + 1 writer.put_next(nnn, key) nnn = nnn + 1 writer.put_next(nnn, length) nnn = nnn + 1 writer.put_next(nnn, by_) nnn = nnn + 1 writer.put_next(nnn, path) # now read the buffer to see what actually was written self.assertEqual(0, reader.position) reader.get_next() self.assertEqual(0, reader.field_nbr) self.assertEqual('fuint32', reader.field_type.sym) self.assertEqual(tstamp, reader.value) self.assertEqual(5, reader.position) reader.get_next() self.assertEqual(1, reader.field_nbr) self.assertEqual('fbytes20', reader.field_type.sym) self.assertEqual(node_id, reader.value) self.assertEqual(26, reader.position) reader.get_next() self.assertEqual(2, reader.field_nbr) self.assertEqual('fbytes20', reader.field_type.sym) self.assertEqual(key, reader.value) self.assertEqual(47, reader.position) reader.get_next() self.assertEqual(3, reader.field_nbr) self.assertEqual('vuint32', reader.field_type.sym) self.assertEqual(length, reader.value) reader.get_next() self.assertEqual(4, reader.field_nbr) self.assertEqual('lstring', reader.field_type.sym) self.assertEqual(by_, reader.value) reader.get_next() self.assertEqual(5, reader.field_nbr) self.assertEqual('lstring', reader.field_type.sym) self.assertEqual(path, reader.value) if __name__ == '__main__': unittest.main() ``` #### File: fieldz/tests/test_roundtrip_big_test.py ```python import time import unittest from io import StringIO from rnglib import SimpleRNG # from fieldz import reg from fieldz.parser import StringProtoSpecParser from big_test import BIG_TEST class TestBigTest(unittest.TestCase): def setUp(self): self.rng = SimpleRNG(time.time()) def tearDown(self): pass # utility functions ############################################# # actual unit tests ############################################# def round_trip_poto_spec_via_string(self, match): """ Convert a ProtoSpec object model to canonical string form, parse that to make a clone, and verify that the two are equal. """ canonical_spec = match.__repr__() ppp = StringProtoSpecParser(StringIO(canonical_spec)) cloned_spec = ppp.parse() # crude tests of __eq__ AKA == self.assertFalse(match is None) self.assertTrue(match == match) # one way of saying it ------------------ self.assertTrue(match.__eq__(cloned_spec)) self.assertTrue(cloned_spec.__eq__(match)) # this is the same test ----------------- self.assertTrue(match == cloned_spec) self.assertTrue(cloned_spec == match) def test_compiler(self): # node_reg = reg.NodeReg() # NEVER USED # protocol = 'org.xlattice.fieldz.test.bigProto' # NEVER USED # proto_reg = reg.ProtoReg(protocol, node_reg) # never used data = StringIO(BIG_TEST) self.assertIsNotNone(data) ppp = StringProtoSpecParser(data) # DEBUG print("INVOKING PARSER") # END big_proto_spec = ppp.parse() # DEBUG print("BACK FROM PARSER") # END # confirm that field numbers are unique and increasing match = big_proto_spec.msgs[0] # DEBUG print("COUNT OF MATCHING FIELDS: %d" % len(match)) # END last_field_nbr = -1 for field in match: self.assertTrue(field.field_nbr > last_field_nbr) last_field_nbr = field.field_nbr # DEBUG print("ROUND-TRIPPING BIG PROTO SPEC") # END self.round_trip_poto_spec_via_string(big_proto_spec) # --------------------------------------------------------------- def round_trip_proto_instance_to_wire_format(self, match): # invoke WireMsgSpecWriter # XXX STUB # invoke WireMsgSpecParser # XXX STUB pass # XXX EFFECTIVELY COMMENTED OUT XXX def x_test_round_trip_big_test_instances_to_wire_format(self): # str_spec = StringIO(BIG_TEST) str_spec = StringIO(BIG_TEST) ppp = StringProtoSpecParser(str_spec) big_msg_spec = ppp.parse() self.round_trip_proto_instance_to_wire_format(big_msg_spec) if __name__ == '__main__': unittest.main() ``` #### File: fieldz/tests/test_roundtrip_core_types.py ```python import unittest from io import StringIO from wireops.chan import Channel from wireops.enum import FieldTypes, PrimTypes from wireops.raw import( field_hdr_len, read_field_hdr, ) import fieldz.msg_spec as M from fieldz.enum import CoreTypes, Quants from fieldz.reg import NodeReg, ProtoReg, MsgReg from fieldz.parser import StringMsgSpecParser LOG_ENTRY_MSG_SPEC = """ # protocol org.xlattice.zoggery message logEntry: timestamp fuint32 nodeID fbytes20 key fbytes20 length vuint32 by lstring path lstring """ class TestCoreTypes(unittest.TestCase): def setUp(self): pass def tearDown(self): pass def test_new_coretypes_enum(self): """ Test CoreTypes as redefined 2017-01-30. CoreTypes is now an IntEnum with sym() and from_sym() methods. """ for ndx, _ in enumerate(CoreTypes): self.assertEqual(_.value, ndx) self.assertEqual(CoreTypes.from_sym(_.sym), _) # pylint: disable=no-member self.assertEqual(len(CoreTypes), CoreTypes.PROTO_SPEC + 1) # utility functions ############################################# def make_registries(self, protocol): node_reg = NodeReg() proto_reg = ProtoReg(protocol, node_reg) msg_reg = MsgReg(proto_reg) return (node_reg, proto_reg, msg_reg) # actual unit tests ############################################# def test_the_enum(self): # pylint: disable=no-member self.assertEqual(CoreTypes.ENUM_PAIR_SPEC.sym, 'EnumPairSpec') self.assertEqual(CoreTypes.ENUM_SPEC.sym, 'EnumSpec') self.assertEqual(CoreTypes.FIELD_SPEC.sym, 'FieldSpec') self.assertEqual(CoreTypes.MSG_SPEC.sym, 'MsgSpec') self.assertEqual(CoreTypes.SEQ_SPEC.sym, 'SeqSpec') self.assertEqual(CoreTypes.PROTO_SPEC.sym, 'ProtoSpec') self.assertEqual(len(CoreTypes), 6) def round_trip_to_wire_format(self, chan, field_nbr, c_type, val): node_reg, proto_reg, msg_reg = self.make_registries( 'org.xlattice.fieldz.test.roundTrip') # DEBUG print("roundTripWireFormat: field_nbr = %d, c_type = %d (%s)" % ( field_nbr, c_type.value, c_type.sym)) print(" val is a ", type(val)) print(" symbol '%s' value '%s'" % (val.symbol, val.value)) # END ********************** <--- !!! chan.clear() # I guess :-) # buf = chan.buffer # NEVER USED putter = M.C_PUT_FUNCS[c_type.value] getter = M.C_GET_FUNCS[c_type.value] # len_func = M.C_LEN_FUNCS[c_type.value] # NEVER USED # p_len_func = M.C_P_LEN_FUNCS[c_type.value] # NEVER USED # comment of unknown value/validity: # BUT c_type.value must be >18! # XXX WRONG: need the msg spec instance, not the class # BLOWS UP XXX ############################################## len_ = field_hdr_len( field_nbr, M.MsgSpec.field_type_from_nbr(field_nbr)) # FAILS HERE # END BLOWS UP XXX ########################################## # r_pos = 0 # read # NEVER USED # expected_pos = p_len_func(val, field_nbr) # NEVER USED putter(chan, val, 0) # writing field 0 chan.flip() # w_pos = chan.limit # NEVER USED (p_type, field_nbr) = read_field_hdr(chan) actual_hdr_len = chan.position self.assertEqual(PrimTypes.LEN_PLUS, p_type) self.assertEqual(0, field_nbr) # field number self.assertEqual(len_, actual_hdr_len) # FAILS: # if chan is present # enumPairSpecGetter() takes 1 positional argument but 2 were given # ret_val = getter(msgReg, chan) # else # chan is absent # field_spec_getter() missing 1 req positional argument: 'chan' # 2016-10-30 GOT FIRST FAILURE MODE ret_val = getter(msg_reg, chan) # gets the same error:ret_val = M.cGetFuncs[c_type.value](chan) # r_pos = chan.position # NEVER USED # DEBUG print(" ROUND TRIP: val = %s" % val) print(" ret_val = %s" % ret_val) # END self.assertEqual(val, ret_val) def test_round_tripping_core_types(self): buf_size = 16 * 1024 chan = Channel(buf_size) # ----------------------------------------------------------- field_nbr = 0 # 0-based field number ser = M.EnumPairSpec('funnyFarm', 497) self.round_trip_to_wire_format( # pylint: disable=no-member chan, field_nbr, CoreTypes.ENUM_PAIR_SPEC, ser) # FAILS ??? # ----------------------------------------------------------- protocol = 'org.xlattice.upax' node_reg, proto_reg, msg_reg = self.make_registries(protocol) field_nbr = 0 # 0-based field number pairs = [('funnyFarm', 497), ('myOpia', 53), ('frogHeaven', 919), ] ser = M.EnumSpec.create('thisEnum', pairs) self.assertEqual(3, len(ser)) # self.round_trip_to_wire_format( # pylint: disable=no-member # chan, field_nbr, CoreTypes.ENUM_SPEC, ser) # ----------------------------------------------------------- protocol = 'org.xlattice.upax' node_reg, proto_reg, msg_reg = self.make_registries(protocol) field_nbr = 0 # 0-based field number ser = M.FieldSpec( msg_reg, 'jollyGood', # pylint: disable=no-member FieldTypes.V_SINT32, Quants.OPTIONAL, 37) self.round_trip_to_wire_format( # pylint: disable=no-member chan, field_nbr, CoreTypes.FIELD_SPEC, ser) # ----------------------------------------------------------- # MsgSpec without enum protocol = 'org.xlattice.upax' node_reg, proto_reg, msg_reg = self.make_registries(protocol) data = StringIO(LOG_ENTRY_MSG_SPEC) ppp = StringMsgSpecParser(data) str_obj_model = ppp.parse() # object model from string serialization self.assertIsNotNone(str_obj_model) self.assertTrue(isinstance(str_obj_model, M.MsgSpec)) field_nbr = 0 # XXX FAILS: self.round_trip_to_wire_format( # pylint: disable=no-member chan, field_nbr, CoreTypes.MSG_SPEC, str_obj_model) if __name__ == '__main__': unittest.main() ``` #### File: fieldz/tests/test_solo.py ```python import time import unittest from rnglib import SimpleRNG from fieldz.reg import NodeReg SOLO = """ protocol org.xlattice.fieldz.test message SoloMsg val vuint32 # a single unsigned value, a required field """ class TestSolo(unittest.TestCase): """ Send the definition of the msg_spec Solo down a channel followed by a single instance of the msg_spec. """ def setUp(self): self.rng = SimpleRNG(time.time()) def tearDown(self): pass # utility functions ############################################# def dump_buffer(self, buf): for i in range(16): print("0x%02x " % buf[i], end=' ') print() # actual unit tests ############################################# def test_solo(self): # Create a registry, write_reg. (Don't need persistence at this # stage.) write_reg = NodeReg() # 2012-11-11 was Registry() # Create writer, a TFWriter, and so wb, the buffer we are going to # write to. # Deserialize SOLO as soloSpec, confirming that it is an instance # of MsgSpec. # Register the soloSpec object with write_reg. # Verify that this has automatically created a ProtoSpec instance # for org.xlattice.fieldz.test # Write soloSpec, the SoloMsg msg_spec, to the buffer (this is a # class definition). # Create an instance of SoloMsg, set its val field to 97, # and write that instance to the data buffer # Create a TFReader using wb, the same buffer as writer. The buffer's # limit will be used to see how much we read from the buffer. # wb.position is reset to zero. # Create a separate read registry, read_reg. read_reg = NodeReg() # Read the first message from the TFReader, deserializing it # as a ProtoSpec (questionable) # Prove that this protoSpec is identical to the writer's protoSpec # Read the next message from the TFReader and deserialize it. # Verify that this was a msg_spec for SoloMsg # Add the msg_spec to the reader's registry. # Read the next message from the TFReader and deserialize it. # Verify that this is an instance of SoloMsg and that its val # field evaluates to 97. pass if __name__ == '__main__': unittest.main() ```
{ "source": "jddixon/magicsack", "score": 3 }
#### File: src/magicsack/__init__.py ```python import binascii import os # NEEDED NEXT: from Crypto.Cipher import AES from xlattice import HashTypes from nlhtree import NLHLeaf from buildlist import BuildList from xlcrypto import AES_BLOCK_BYTES from xlcrypto.padding import add_pkcs7_padding, strip_pkcs7_padding from xlcrypto.keyderiv import pbkdf2 __all__ = ['__version__', '__version_date__', 'check_puzzle', 'devise_puzzle', 'generate_key', 'make_named_value_leaf', 'name_from_title', 'write_build_list', ] __version__ = '0.4.13' __version_date__ = '2018-03-07' class Config(object): """ Configuration information. """ def __init__(self, salt, u_dir): self._salt = salt self._u_dir = u_dir @property def salt(self): """ Return the salt (some random bytes to confuse hackers). """ return self._salt @property def u_dir(self): """ Path to the store. """ return self._u_dir class MagicSackError(RuntimeError): """ Wrapper for errors associated with this package. """ pass def name_from_title(title): """ convert a title into an acceptable directory name """ txt = title.strip() # strip off lealding & trailing blanks chars = list(txt) # atomize the title for ndx, char in enumerate(chars): if char == ' ': chars[ndx] = '_' elif char == '(': chars[ndx] = '%28' elif char == ')': chars[ndx] = '%29' elif char == '/': chars[ndx] = '%2F' elif char == '\\': chars[ndx] = '%5C' return ''.join(chars) def generate_key(pass_phrase, salt, iterations=10000): """ pass_phrase is a string which may not be empty. salt is a byte array, conventionally either 8 or 16 bytes. The key returned is a 256-bit value. """ # THESE CHECKS SHOULD BE IN THE LIBRARY ##### if not pass_phrase or pass_phrase == '': raise RuntimeError("empty pass_phrase") if not salt: raise RuntimeError("you must supply a salt") # it is also possible to set the hash function used; it defaults # to HMAC-SHA1 # END LIBRARY CHECKS ######################## # return PBKDF2(pass_phrase, salt, iterations=iterations).read(32) return pbkdf2(pass_phrase, salt, hashtype=HashTypes.SHA2, iterations=iterations) def devise_puzzle(pass_phrase, salt, rng, iterations=1000): """ Create the puzzle that the user has to solve (provide a key for) in order to access the Magic Sack. """ key = generate_key(pass_phrase, salt, iterations) junk = rng.some_bytes(2 * AES_BLOCK_BYTES) iv_ = bytes(junk[:AES_BLOCK_BYTES]) junk0 = junk[AES_BLOCK_BYTES: AES_BLOCK_BYTES + 8] junk2 = junk[AES_BLOCK_BYTES + 8:] data = junk0 + salt + junk2 padded = bytes(add_pkcs7_padding(data, AES_BLOCK_BYTES)) # DEBUG # print("devise_puzzle:") # print(" key %s" % binascii.b2a_hex(key)) # print(" iv_ %s" % binascii.b2a_hex(iv_)) # print(" salt %s" % binascii.b2a_hex(salt)) # print(" padded %s" % binascii.b2a_hex(padded)) # END cipher = AES.new(key, AES.MODE_CBC, iv_) puzzle = bytes(iv_ + cipher.encrypt(padded)) return puzzle def check_puzzle(puzzle, pass_phrase, salt, iterations=10000): """ Determine the key then decipher the puzzle, verifying that the copy of the salt embedded in the puzzle is the same as the salt from the config file. Return whether verification succeeded. """ key = generate_key(pass_phrase, salt, iterations) iv_ = puzzle[:AES_BLOCK_BYTES] cipher = AES.new(key, AES.MODE_CBC, iv_) decrypted = cipher.decrypt(puzzle[AES_BLOCK_BYTES:]) # DEBUG # print("check_puzzle:") # print(" key %s" % binascii.b2a_hex(key)) # print(" iv_ %s" % binascii.b2a_hex(iv_)) # print(" salt %s" % binascii.b2a_hex(salt)) # print(" decrypted %s" % binascii.b2a_hex(decrypted)) # END data = strip_pkcs7_padding(decrypted, AES_BLOCK_BYTES) soln = bytes(data[8:8 + AES_BLOCK_BYTES]) return soln == salt, key # ACTIONS ----------------------------------------------------------- def insert_named_value(global_ns, name, data): """ Pad and encrypt the data, writing the encrypted value into u_dir. If successful, return an NLHLeaf. """ u_dir = global_ns.u_dir u_path = global_ns.u_path hashtype = global_ns.hashtype padded = add_pkcs7_padding(data, AES_BLOCK_BYTES) iv_ = bytes(global_ns.rng.some_bytes(AES_BLOCK_BYTES)) cipher = AES.new(global_ns.key, AES.MODE_CBC, iv_) encrypted = cipher.encrypt(padded) # hash and encrypt the data --------------------------- sha = XLSHA2() sha.update(encrypted) bin_hash = sha.digest() hex_hash = binascii.b2a_hex(bin_hash).decode('utf-8') # DEBUG print("len(encrypted) = %d" % len(encrypted)) print("len(hex_hash) = %d" % len(hex_hash)) print("u_path = %s" % u_path) # END # add the encrypted data to u_dir ----------------------- length, hash2 = u_dir.put_data(encrypted, hex_hash) if hex_hash != hash2: raise MagicSackError( "INTERNAL ERROR: content key was '%s' but u returned '%s'" % ( hex_hash, hash2)) if len(encrypted) != length: raise MagicSackError("length encrypted %d but %d bytes written" % ( len(encrypted), length)) return NLHLeaf(name, bin_hash, hashtype) def make_named_value_leaf(global_ns, name, data): """ Given its name and data, insert (name, hash) into the NLHTree. """ return insert_named_value(global_ns, name, data) def add_a_file(global_ns, path_to_file, list_path=None): """ Add the contents of a single file to the nlhTree and the content-keyed store. The file is located at 'path_to_file'. Its name in the NLHTree will be 'list_path'. If list_path is not set, it defaults to path_to_file. Return a possibly empty status string. """ key = global_ns.key rng = global_ns.rng tree = global_ns.tree u_dir = global_ns.u_dir hashtype = global_ns.hashtype status = '' # XXX AES KEY IS NOT KNOWN XXX if not os.path.exists(path_to_file): status = 'file not found: %s' % path_to_file if not status: # ----------------------------------------------------------- # NOTE CRITICALLY THIS ASSUMES that the file can be read into memory # as a single operation; chunking is not required. # ----------------------------------------------------------- # read, pad, and encrypt the file ----------------- with open(path_to_file, 'rb') as file: data = file.read() padded = add_pkcs7_padding(data, AES_BLOCK_BYTES) iv_ = rng.some_bytes(AES_BLOCK_BYTES) cipher = AES.new(key, AES.MODE_CBC, iv_) encrypted = cipher.encrypt(padded) # hash the file and add it to u_dir ---------------- sha = XLSHA2() sha.update(encrypted) hex_hash = sha.hexdigest() length, hash_back = u_dir.put_data(encrypted, hex_hash) if hash_back != key: status =\ "INTERNAL ERROR: content key was '%s' but u returned '%s'" % ( hex_hash, hash_back) if not status and len(encrypted) != length: status = "length encrypted %d but %d bytes written" % ( len(encrypted), length) if not status: # add the file to the NLHTree --------------------- if not list_path: list_path = path_to_file leaf = NLHLeaf(list_path, hex_hash, hashtype) tree.insert(leaf, hashtype) return status # BUILD LIST -------------------------------------------------------- def write_build_list(global_ns): """ Serialize the BuildList and write it to disk. """ key = global_ns.key magic_path = global_ns.magic_path rng = global_ns.rng title = global_ns.title tree = global_ns.tree build_list = BuildList(title, global_ns.sk_, tree) # sign build list, encrypt, write to disk ------------- build_list.sign(global_ns.sk_priv_) text = build_list.__str__() # DEBUG print("BUILD LIST:\n%s" % text) # END padded = add_pkcs7_padding(text.encode('utf-8'), AES_BLOCK_BYTES) iv_ = bytes(rng.some_bytes(AES_BLOCK_BYTES)) cipher = AES.new(key, AES.MODE_CBC, iv_) encrypted = cipher.encrypt(padded) path_to_build_list = os.path.join(magic_path, 'bVal') with open(path_to_build_list, 'wb') as file: file.write(encrypted) def read_build_list(global_ns): """ Read a serialized BuildList from the disk. """ key = global_ns.key magic_path = global_ns.magic_path # rng = global_ns.rng # u_path = global_ns.u_path hashtype = global_ns.hashtype path_to_build_list = os.path.join(magic_path, 'bVal') with open(path_to_build_list, 'rb') as file: data = file.read() iv_ = data[:AES_BLOCK_BYTES] ciphertext = data[AES_BLOCK_BYTES] cipher = AES.new(key, AES.MODE_CBC, iv_) plaintext = cipher.decrypt(ciphertext) text = strip_pkcs7_padding(plaintext, AES_BLOCK_BYTES).decode('utf-8') build_list = BuildList.parse(text, hashtype) if not build_list.verify(): raise MagicSackError("could not verify digital signature on BuildList") global_ns.timestamp = build_list.timestamp global_ns.title = build_list.title global_ns.tree = build_list.tree # retrieve __ckPriv__ and __sk_priv__ hashes from the BuildList, and # use these to extract their binary values from u_dir # Retrieve any top-level leaf nodes whose names begin with double # underscores ('__'). Regard these as reserved names. For any # such keys, add the key/value combination to global_ns, where the # value is a hex_hash. # NOTE STUB NOTE ```
{ "source": "jddixon/merkletree", "score": 3 }
#### File: src/merkletree/__init__.py ```python import binascii import os import re import sys from stat import S_ISDIR from xlattice import(SHA1_BIN_LEN, SHA1_BIN_NONE, SHA1_HEX_NONE, SHA2_BIN_LEN, SHA2_BIN_NONE, SHA2_HEX_NONE, SHA3_BIN_LEN, SHA3_BIN_NONE, SHA3_HEX_NONE, BLAKE2B_256_BIN_LEN, BLAKE2B_256_BIN_NONE, BLAKE2B_256_HEX_NONE, HashTypes, check_hashtype) from xlutil import make_ex_re, make_match_re from xlcrypto import SP # for getSpaces() from xlcrypto.hash import XLSHA1, XLSHA2, XLSHA3, XLBLAKE2B_256 from xlu import(file_sha1bin, file_sha2bin, file_sha3bin, file_blake2b_256_bin) __all__ = ['__version__', '__version_date__', # BELONGS IN xlattice_py: 'get_hash_func', # classes 'MerkleDoc', 'MerkleLeaf', 'MerkleTree', 'MerkleParseError', ] __version__ = '5.4.0' __version_date__ = '2018-07-26' # ------------------------------------------------------------------- def get_hash_func(hashtype): """ Given a HashType, return the appropriate library SHA hash function or None if there is no matching hash func. XXX THIS METHOD BELONGS IN xlcrypto_py """ sha = None if hashtype == HashTypes.SHA1: sha = XLSHA1() elif hashtype == HashTypes.SHA2: sha = XLSHA2() elif hashtype == HashTypes.SHA3: sha = XLSHA3() elif hashtype == HashTypes.BLAKE2B_256: sha = XLBLAKE2B_256() else: raise NotImplementedError return sha class MerkleParseError(RuntimeError): """ Class for MerkleTree/Doc parse errors. """ pass class MerkleNode(object): """ Abstract class to which all Nodes in a MerkleDoc or MerkleTree belong. """ # __slots__ = [ A PERFORMANCE ENHANCER ] def __init__(self, name, is_leaf=False, hashtype=HashTypes.SHA2): check_hashtype(hashtype) self._bin_hash = None if name is None: raise RuntimeError("MerkleNode: null MerkleNode name") self._name = name.strip() if not self._name: raise RuntimeError("MerkleNode: null or empty name") self._is_leaf = is_leaf self._hashtype = hashtype @property def hex_hash(self): """ Return the hash associated with the MerkleNode as a hex value. """ if self._bin_hash is None: if self._hashtype == HashTypes.SHA1: return SHA1_HEX_NONE elif self._hashtype == HashTypes.SHA2: return SHA2_HEX_NONE elif self._hashtype == HashTypes.SHA3: return SHA3_HEX_NONE elif self._hashtype == HashTypes.BLAKE2B_256: return BLAKE2B_256_HEX_NONE else: raise NotImplementedError else: return str(binascii.b2a_hex(self._bin_hash), 'ascii') @hex_hash.setter def hex_hash(self, value): """ Set the hash associated with the MerkleNode as a hex value. """ if self._bin_hash: raise RuntimeError('attempt to set non-null hash') self._bin_hash = bytes(binascii.a2b_hex(value)) # def bind(self): pass @property def bin_hash(self): """ Return the hash associated with the MerkleNode as a binary value. """ return self._bin_hash @bin_hash.setter def bin_hash(self, value): if self._bin_hash: raise RuntimeError('attempt to set non-null hash') self._bin_hash = value # def bound(self): # raise RuntimeError('not implemented') def __eq__(self, other): raise RuntimeError('subclass must implement') @property def is_leaf(self): """ Return whether this MerkleNode is a MerkleLeaf. """ return self._is_leaf @property def name(self): """ Return the name associated with the MerkleNode. """ return self._name # def path(self): # raise RuntimeError('not implemented') def __str__(self): raise RuntimeError('subclass must implement') def hashtype(self): """ Return the SHA hash type associated with the Node. """ return self._hashtype # ------------------------------------------------------------------- class MerkleDoc(MerkleNode): """ The path to a tree, and the SHA hash of the path and the treehash. """ __slots__ = ['_bound', '_ex_re', '_match_re', '_path', '_tree', '_hashtype', ] # notice the terminating forward slash and lack of newlines or CR-LF # THIS PATTERN WON"T CATCH SOME ERRORS; eg it permits '///' in paths FIRST_LINE_RE_1 = re.compile(r'^([0-9a-f]{40}) ([a-z0-9_\-\./!:]+/)$', re.IGNORECASE) FIRST_LINE_RE_2 = re.compile(r'^([0-9a-f]{64}) ([a-z0-9_\-\./!:]+/)$', re.IGNORECASE) # XXX MUST ADD matchRE and exRE and test on their values at this level def __init__(self, path, hashtype=HashTypes.SHA2, binding=False, tree=None, ex_re=None, # exclusions, which are Regular Expressions match_re=None): # matches, also Regular Expressions check_hashtype(hashtype) if path is None: raise RuntimeError("null MerkleDoc path") if tree: if not isinstance(tree, MerkleTree): raise RuntimeError('tree is not a MerkleTree') self._name = name = tree.name elif not binding: raise RuntimeError('null MerkleTree and not binding') else: raise RuntimeError("MerkleDoc binding not yet implemented") super().__init__(name, is_leaf=False, hashtype=hashtype) path = path.strip() if not path: raise RuntimeError("empty path") if not path.endswith('/'): path += '/' self._path = path self._tree = tree if tree: # DEBUG # print("MerkleDoc.__init__: usingSHA = %s" % str(usingSHA)) # END sha = get_hash_func(hashtype) sha.update(bytes(tree.bin_hash)) sha.update(path.encode('utf-8')) self._bin_hash = bytes(sha.digest()) # a binary value self._ex_re = ex_re self._match_re = match_re if binding: path_to_dir = os.path.join(path, tree.name) if not os.path.exists(path_to_dir): raise RuntimeError('no directory found at ' + path_to_dir) else: # XXX STUB: BIND THE TREE self._bound = True def __eq__(self, other): """ignore boundedness""" return isinstance(other, MerkleDoc) and \ self._path == other.path and \ self._bin_hash == other.bin_hash and \ self._tree == other.tree @property def path(self): """ Return the path (in the file system) associated with a MerkleDoc. """ return self._path @path.setter def path(self, value): # XXX CHECK value """ Set the path (in the file system) associated with a MerkleDoc. """ self._path = value @property def tree(self): """ Return the MerkleTree associated with a MerkleDoc. """ return self._tree @tree.setter def tree(self, value): # XXX CHECKS self._tree = value @property def bound(self): """ Whether a MerkleDoc is bound to a file. """ return self._bound @bound.setter def bound(self, value): """ Set whether a MerkleDoc is bound to a file. """ # XXX validate self._bound = value @property def hashtype(self): return self._hashtype # QUASI-CONSTRUCTORS ############################################ @staticmethod def create_from_file_system(path_to_dir, hashtype=HashTypes.SHA2, exclusions=None, matches=None): """ Create a MerkleDoc based on the information in the directory at pathToDir. The name of the directory will be the last component of pathToDir. Return the MerkleTree. """ check_hashtype(hashtype) if not path_to_dir: raise RuntimeError("cannot create a MerkleTree, no path set") if not os.path.exists(path_to_dir): raise RuntimeError( "MerkleTree: directory '%s' does not exist" % path_to_dir) path, _, _ = path_to_dir.rpartition('/') if path == '': raise RuntimeError("cannot parse inclusive path " + path_to_dir) path += '/' ex_re = None if exclusions: ex_re = make_ex_re(exclusions) match_re = None if matches: match_re = make_match_re(matches) tree = MerkleTree.create_from_file_system(path_to_dir, hashtype, ex_re, match_re) # creates the hash doc = MerkleDoc(path, hashtype, False, tree, ex_re, match_re) doc.bound = True return doc @staticmethod def create_from_serialization(string, hashtype=HashTypes.SHA2): """ Create a MerkleDoc from string serialization (such as a file). """ check_hashtype(hashtype) if string is None: raise RuntimeError("MerkleDoc.createFromSerialization: no input") s_array = string.split('\n') # note CR-LF return MerkleDoc.create_from_string_array(s_array, hashtype) @staticmethod def create_from_string_array(string, hashtype=HashTypes.SHA2): """ The string array is expected to follow conventional indentation rules, with zero indentation on the first line and some number of leading spaces on all successive lines. """ check_hashtype(hashtype) if string is None: raise RuntimeError('null argument') # XXX check TYPE - must be array of strings if not string: raise RuntimeError("empty string array") (doc_hash, doc_path) =\ MerkleDoc.parse_first_line(string[0].rstrip()) len_hash = len(doc_hash) if len_hash == SHA1_BIN_LEN: if hashtype != HashTypes.SHA1: raise RuntimeError("hash length %d inconsistent with %s" % ( len_hash, hashtype)) elif len_hash != SHA2_BIN_LEN: raise RuntimeError("hash length %d inconsistent with %s" % ( len_hash, hashtype)) # DEBUG # print("MerkleDoc.createFromStringArray:") # print(" docHash = %s" % str(binascii.b2a_hex(docHash),'ascii')) # print(" docPath = %s" % docPath) # print(" usingSHA=%s" % str(usingSHA)) # END tree = MerkleTree.create_from_string_array(string[1:], hashtype) # def __init__ (self, path, binding = False, tree = None, # exRE = None, # exclusions, which are Regular Expressions # matchRE = None): # matches, also Regular Expressions doc = MerkleDoc(doc_path, hashtype=hashtype, tree=tree) return doc # CLASS METHODS ################################################# @classmethod def first_line_re_1(cls): """ Returns a reference to the regexp for SHA1 first lines. A match finds (indent, treeHash, dirName), where indent is an integer, the treeHash is a hex string, and dirName may have a terminating slash. """ return MerkleDoc.FIRST_LINE_RE_1 @classmethod def first_line_re_2(cls): """ Returns a reference to the regexp for SHA256 first lines. A match finds (indent, treeHash, dirName), where indent is an integer, the treeHash is a hex string, and dirName may have a terminating slash. """ return MerkleDoc.FIRST_LINE_RE_2 @staticmethod def parse_first_line(line): """ returns binary docHash and string docPath""" line = line.rstrip() match_ = MerkleDoc.FIRST_LINE_RE_1.match(line) if match_ is None: match_ = MerkleDoc.FIRST_LINE_RE_2.match(line) if match_ is None: raise RuntimeError( "MerkleDoc first line <%s> does not match expected pattern" % line) doc_hash = bytes(binascii.a2b_hex(match_.group(1))) doc_path = match_.group(2) # includes terminating slash return (doc_hash, doc_path) @staticmethod def make_ex_re(exclusions): """ ############################################################# THIS FUNCTION IS OBSOLETE AND SHOULD BE REPLACED WHEREVER USED WITH xlutil::makeExRE(), WHICH USES GLOBS. This function uses regular expressions instead of globs. ############################################################# Compile a regular expression which ORs exclusion patterns. """ if exclusions is None: exclusions = [] exclusions.append(r'^\.$') exclusions.append(r'^\.\.$') exclusions.append(r'^\.merkle$') exclusions.append(r'^\.svn$') # subversion control data # some might disagree with these: exclusions.append(r'^junk') exclusions.append(r'^\..*\.swp$') # vi editor files ex_pat = '|'.join(exclusions) return re.compile(ex_pat) @staticmethod def make_match_re(match_list): """ ############################################################# THIS FUNCTION IS OBSOLETE AND SHOULD BE REPLACED WHEREVER USED WITH xlutil::makeMatchRE(), WHICH USES GLOBS. This function uses regular expressions instead of globs. ############################################################# Compile a regular expression which ORs match patterns. """ if match_list: match_pat = '|'.join(match_list) return re.compile(match_pat) return None # SERIALIZATION ################################################# def __str__(self): return self.to_string() # XXX indent is not used def to_string(self, indent=0): """ Convert MerkleDoc to string form. """ return ''.join([ "%s %s\n" % (self.hex_hash, self.path), self._tree.to_string(indent) ]) # ------------------------------------------------------------------- class MerkleLeaf(MerkleNode): """ Leaf form of MerkleNode. """ __slots__ = ['_name', '_hashtype', ] def __init__(self, name, hashtype=HashTypes.SHA1, hash_=None): super().__init__(name, is_leaf=True, hashtype=hashtype) # JUNK if name is None: raise RuntimeError("MerkleLeaf: null MerkleLeaf name") self._name = name.strip() if not self._name: raise RuntimeError("MerkleLeaf: null or empty name") # END JUNK # XXX VERIFY HASH IS WELL-FORMED if hash_: self._bin_hash = hash_ else: self._bin_hash = None # IMPLEMENTATIONS OF ABSTRACT METHODS ########################### def __eq__(self, other): return isinstance(other, MerkleLeaf) and \ self._name == other.name and \ self._bin_hash == other.bin_hash def __str__(self): return self.to_string(0) # that is, no indent # OTHER METHODS AND PROPERTIES ################################## @staticmethod def create_from_file_system(path_to_file, name, hashtype=HashTypes.SHA2): """ Returns a MerkleLeaf. The name is part of pathToFile, but is passed to simplify the code. """ def report_io_error(exc): """ Report an I/O error to stdout. """ print("error reading file %s: %s" % ( path_to_file, exc), file=sys.stderr) if not os.path.exists(path_to_file): print(("INTERNAL ERROR: file does not exist: " + path_to_file)) # XXX we convert from binary to hex and then right back to binary !! if hashtype == HashTypes.SHA1: try: hash_ = file_sha1bin(path_to_file) except OSError as exc: report_io_error(exc) hash_ = SHA1_BIN_NONE elif hashtype == HashTypes.SHA2: try: hash_ = file_sha2bin(path_to_file) except OSError as exc: report_io_error(exc) hash_ = SHA2_BIN_NONE elif hashtype == HashTypes.SHA3: try: hash_ = file_sha3bin(path_to_file) except OSError as exc: report_io_error(exc) hash_ = SHA3_BIN_NONE elif hashtype == HashTypes.BLAKE2B_256: try: hash_ = file_blake2b_256_bin(path_to_file) except OSError as exc: report_io_error(exc) hash_ = BLAKE2B_256_BIN_NONE else: raise NotImplementedError return MerkleLeaf(name, hashtype, hash_) def to_string(self, indent=0): """ Serialize MerkleLeaf as string . """ if self._bin_hash is None: if self._hashtype == HashTypes.SHA1: hash_ = SHA1_HEX_NONE elif self._hashtype == HashTypes.SHA2: hash_ = SHA2_HEX_NONE elif self._hashtype == HashTypes.SHA3: hash_ = SHA3_HEX_NONE elif self._hashtype == HashTypes.BLAKE2B_256: hash_ = BLAKE2B_256_HEX_NONE else: raise NotImplementedError else: hash_ = self.hex_hash string = "%s%s %s\n" % (SP.get_spaces(indent), hash_, self.name) return string # THIS GETS REPLACED BY NLHTree XXX # PAIRLIST FUNCTIONS ############################################ # def toPair(leaf): # """ # Given a MerkleLeaf, return its name and binary hash as a pair # """ # # DEBUG # print("MerkleLeaf.toPair: %s %s" % (leaf.name, leaf.binHash)) # # END # return (leaf.name, leaf.binHash) # @staticmethod # def createFromPair(p): # """ # Given p, a name/hash pair, return a MerkleLeaf. # """ # name = p[0]; hash = p[1] # if len(hash) == SHA1_BIN_LEN: # usingSHA = True # elif len(hash) == SHA2_BIN_LEN: # usingSHA = False # else: # raise RuntimeError('invalid SHA hash len') # return MerkleLeaf(name, hash, usingSHA) # ------------------------------------------------------------------- class MerkleTree(MerkleNode): """ Tree subclass of MerkleNode. """ __slots__ = ['_bound', '_name', '_ex_re', '_bin_hash', '_match_re', '_nodes', '_hashtype', ] # notice the terminating forward slash and lack of newlines or CR-LF FIRST_LINE_RE_1 = re.compile( r'^( *)([0-9a-f]{40}) ([a-z0-9_\-\.:]+/)$', re.IGNORECASE) OTHER_LINE_RE_1 = re.compile( r'^([ XYZ]*)([0-9a-f]{40}) ([a-z0-9_\$\+\-\.:~]+/?)$', re.IGNORECASE) FIRST_LINE_RE_2 = re.compile( r'^( *)([0-9a-f]{64}) ([a-z0-9_\-\.:]+/)$', re.IGNORECASE) OTHER_LINE_RE_2 = re.compile( r'^([ XYZ]*)([0-9a-f]{64}) ([a-z0-9_\$\+\-\.:_]+/?)$', re.IGNORECASE) ################################################################# # exRE and matchRE must have been validated by the calling code ################################################################# def __init__(self, name, hashtype=False, ex_re=None, # exclusions Regular Expression match_re=None): # matches Regular Expression super().__init__(name, is_leaf=False, hashtype=hashtype) self._ex_re = ex_re self._match_re = match_re self._nodes = [] # IMPLEMENTATIONS OF ABSTRACT METHODS ########################### def __eq__(self, other): """ This is quite wasteful. Given the nature of the merkletree, it should only be necessary to compare top-level hashes. """ if other is None: return False if (not isinstance(other, MerkleTree)) or \ (self._name != other.name) or \ self.hex_hash != other.hex_hash or \ self.hashtype != other.hashtype: return False my_nodes = self.nodes other_nodes = other.nodes if len(my_nodes) != len(other_nodes): return False for ndx, my_node in enumerate(my_nodes): other_node = other_nodes[ndx] if not my_node.__eq__(other_node): # RECURSES return False return True def __str__(self): return self.to_string(0) @property def hashtype(self): return self._hashtype ################################################################# # METHODS LIFTED FROM bindmgr/bindlib/MerkleTree.py ################################################################# @staticmethod def parse_first_line(line): """ returns indent, binary treeHash, and str dirName """ line = line.rstrip() match_ = MerkleTree.FIRST_LINE_RE_1.match(line) if match_ is None: match_ = MerkleTree.FIRST_LINE_RE_2.match(line) if match_ is None: raise RuntimeError( "MerkleTree first line \"%s\" doesn't match expected pattern" % line) indent = len(match_.group(1)) # count of leading spaces tree_hash = bytes(binascii.a2b_hex(match_.group(2))) dir_name = match_.group(3) # includes terminating slash dir_name = dir_name[0:len(dir_name) - 1] return (indent, tree_hash, dir_name) @staticmethod def parse_other_line(line): """ Parse a non-first line. """ match_ = re.match(MerkleTree.OTHER_LINE_RE_1, line) if match_ is None: match_ = re.match(MerkleTree.OTHER_LINE_RE_2, line) if match_ is None: raise RuntimeError( "MerkleTree other line <%s> does not match expected pattern" % line) node_depth = len(match_.group(1)) node_hash = bytes(binascii.a2b_hex(match_.group(2))) node_name = match_.group(3) if node_name.endswith('/'): node_name = node_name[0:len(node_name) - 1] is_dir = True else: is_dir = False return (node_depth, node_hash, node_name, is_dir) @staticmethod def create_from_string_array(strings, hashtype=HashTypes.SHA2): """ The strings array is expected to follow conventional indentation rules, with zero indentation on the first line and some number of leading spaces on all successive lines. """ # XXX should check TYPE - must be array of strings if not strings: raise RuntimeError("empty strings array") (indent, tree_hash, dir_name) =\ MerkleTree.parse_first_line(strings[0].rstrip()) len_hash = len(tree_hash) if len_hash == SHA1_BIN_LEN: if hashtype != HashTypes.SHA1: raise RuntimeError("hash length %d inconsistent with %s" % ( len_hash, hashtype)) elif len_hash != SHA2_BIN_LEN: raise RuntimeError("hash length %d inconsistent with %s" % ( len_hash, hashtype)) root_tree = MerkleTree(dir_name, hashtype) # an empty tree root_tree.bin_hash = tree_hash if indent != 0: print(("INTERNAL ERROR: initial line indent %d" % indent)) stack = [] stk_depth = 0 cur_tree = root_tree stack.append(cur_tree) # rootTree stk_depth += 1 # always step after pushing tree for ndx in range(1, len(strings)): line = strings[ndx].rstrip() if not line: continue # XXX SHOULD/COULD CHECK THAT HASHES ARE OF THE RIGHT TYPE line_indent, hash_, name, is_dir = MerkleTree.parse_other_line( line) if line_indent < stk_depth: while line_indent < stk_depth: stk_depth -= 1 stack.pop() cur_tree = stack[-1] if not stk_depth == line_indent: print("ERROR: stkDepth != lineIndent") if is_dir: # create and set attributes of new node new_tree = MerkleTree(name, hashtype) # , curTree) new_tree.bin_hash = hash_ # add the new node into the existing tree cur_tree.add_node(new_tree) stack.append(new_tree) stk_depth += 1 cur_tree = new_tree else: # create and set attributes of new node new_node = MerkleLeaf(name, hashtype, hash_) # add the new node into the existing tree cur_tree.add_node(new_node) return root_tree @staticmethod def create_from_serialization(string, hashtype=HashTypes.SHA2): """ Create a MerkleTree by parsing its serialization (a single string), given the SHA hash type used to create the MerkleTree. """ if string is None: raise RuntimeError("MerkleTree.createFromSerialization: no input") if not isinstance(string, str): string = str(string, 'utf-8') s_array = string.split('\n') # note CR-LF return MerkleTree.create_from_string_array(s_array, hashtype) @staticmethod def create_from_file(path_to_file, hashtype=HashTypes.SHA2): """ Create a MerkleTree by parsing its on-disk serialization, given the SHA hash type used to create the MerkleTree. """ if not os.path.exists(path_to_file): raise RuntimeError( "MerkleTree.createFromFile: file '%s' does not exist" % path_to_file) with open(path_to_file, 'r') as file: text = file.read() return MerkleTree.create_from_serialization(text, hashtype) @staticmethod def create_from_file_system(path_to_dir, hashtype=HashTypes.SHA2, ex_re=None, match_re=None): """ Create a MerkleTree based on the information in the directory at pathToDir. The name of the directory will be the last component of pathToDir. Return the MerkleTree. """ check_hashtype(hashtype) if not path_to_dir: raise RuntimeError("cannot create a MerkleTree, no path set") if not os.path.exists(path_to_dir): raise RuntimeError( "MerkleTree: directory '%s' does not exist" % path_to_dir) (path, _, name) = path_to_dir.rpartition('/') if not path: raise RuntimeError("can't parse inclusive path '%s'" % path_to_dir) tree = MerkleTree(name, hashtype, ex_re, match_re) tree.bin_hash = None sha = get_hash_func(hashtype) # Create data structures for constituent files and subdirectories # These MUST BE SORTED by the bare name to meet specs. files = sorted(os.listdir(path_to_dir)) if files: sha_count = 0 for file in files: # exclusions take priority over matches if ex_re and ex_re.search(file): continue if match_re and not match_re.search(file): continue node = None path_to_file = os.path.join(path_to_dir, file) string = os.lstat(path_to_file) # ignores symlinks # os.path.isdir(path) follows symbolic links if S_ISDIR(string.st_mode): node = MerkleTree.create_from_file_system( path_to_file, hashtype, ex_re, match_re) # S_ISLNK(mode) is true if symbolic link # isfile(path) follows symbolic links elif os.path.isfile(path_to_file): # S_ISREG(mode): node = MerkleLeaf.create_from_file_system( path_to_file, file, hashtype) # otherwise, just ignore it ;-) if node: # update tree-level hash if node.bin_hash: # note empty file has null hash XXX NOT TRUE sha_count += 1 sha.update(node.bin_hash) # SKIP NEXT TO EASE GARBAGE COLLECTION ??? XXX # but that won't be a good idea if we are # invoking toString() tree.nodes.append(node) if sha_count: tree.bin_hash = bytes(sha.digest()) return tree # OTHER METHODS AND PROPERTIES ################################## @classmethod def first_line_re_1(cls): """ Returns a reference to the regexp for SHA1 first lines. A match finds (indent, treeHash, dirName), where indent is an integer, the treeHash is a hex string, and dirName may have a terminating slash. """ return MerkleTree.FIRST_LINE_RE_1 @classmethod def first_line_re_2(cls): """ Returns a reference to the regexp for SHA3 first lines. A match finds (indent, treeHash, dirName), where indent is an integer, the treeHash is a hex string, and dirName may have a terminating slash. """ return MerkleTree.FIRST_LINE_RE_2 @property def nodes(self): """ DANGEROUS: returns a reference to the MerkleTree's node list. """ return self._nodes def add_node(self, node): """ Add a MerkleNode to a MerkleTree. """ if node is None: raise RuntimeError("attempt to add null node") if not isinstance(node, MerkleTree)\ and not isinstance(node, MerkleLeaf): raise RuntimeError("node being added not MerkleTree or MerkleLeaf") self._nodes.append(node) # SERIALIZATION ################################################# def to_string_not_top(self, indent=0): """ indent is the indentation to be used for the top node""" string = [] # a list of strings spaces = SP.get_spaces(indent) if self._bin_hash is None: if self._hashtype == HashTypes.SHA1: top = "%s%s %s/\n" % (spaces, SHA1_HEX_NONE, self.name) elif self._hashtype == HashTypes.SHA2: top = "%s%s %s/\n" % (spaces, SHA2_HEX_NONE, self.name) elif self._hashtype == HashTypes.SHA3: top = "%s%s %s/\n" % (spaces, SHA3_HEX_NONE, self.name) elif self._hashtype == HashTypes.BLAKE2B_256: top = "%s%s %s/\n" % (spaces, BLAKE2B_256_HEX_NONE, self.name) else: raise NotImplementedError else: top = "%s%s %s/\n" % (spaces, self.hex_hash, self.name) string.append(top) indent += 1 # <--- LEVEL 2+ NODE for node in self.nodes: if isinstance(node, MerkleLeaf): string.append(node.to_string(indent)) else: # recurse string.append(node.to_string_not_top(indent)) return ''.join(string) def to_string(self, indent=0): """ indent is the initial indentation of the serialized list, NOT the extra indentation added at each recursion. Using code should take into account that the last line is CR-LF terminated, and so a split on CRLF will generate an extra blank line """ string = [] # a list of strings spaces = SP.get_spaces(indent) if self._bin_hash is None: if self._hashtype == HashTypes.SHA1: top = "%s%s %s/\n" % (spaces, SHA1_HEX_NONE, self.name) elif self._hashtype == HashTypes.SHA2: top = "%s%s %s/\n" % (spaces, SHA2_HEX_NONE, self.name) elif self._hashtype == HashTypes.SHA3: top = "%s%s %s/\n" % (spaces, SHA3_HEX_NONE, self.name) elif self._hashtype == HashTypes.BLAKE2B_256: top = "%s%s %s/\n" % (spaces, BLAKE2B_256_HEX_NONE, self.name) else: raise NotImplementedError else: top = "%s%s %s/\n" % (spaces, self.hex_hash, self.name) string.append(top) # <--- LEVEL 0 NODE my_indent = indent + 1 # <--- LEVEL 1 NODE for node in self.nodes: if isinstance(node, MerkleLeaf): string.append(node.to_string(my_indent)) else: # recurse string.append(node.to_string_not_top(my_indent)) return ''.join(string) ``` #### File: merkletree/tests/test_merkle_tree.py ```python import os import shutil import sys import time import unittest from rnglib import SimpleRNG from xlattice import (HashTypes, check_hashtype, SHA1_HEX_NONE, SHA2_HEX_NONE, SHA3_HEX_NONE, BLAKE2B_256_HEX_NONE) from xlcrypto.hash import XLSHA1, XLSHA2, XLSHA3, XLBLAKE2B_256 from merkletree import MerkleTree, MerkleLeaf ONE = 1 FOUR = 4 MAX_NAME_LEN = 8 class TestMerkleTree(unittest.TestCase): """ Test package functionality at the Tree level. """ def setUp(self): self.rng = SimpleRNG(time.time()) def tearDown(self): pass # utility functions --------------------------------------------- def get_two_unique_directory_names(self): """ Make two different quasi-random directory names.""" dir_name1 = self.rng.next_file_name(MAX_NAME_LEN) dir_name2 = dir_name1 while dir_name2 == dir_name1: dir_name2 = self.rng.next_file_name(MAX_NAME_LEN) self.assertTrue(len(dir_name1) > 0) self.assertTrue(len(dir_name2) > 0) self.assertTrue(dir_name1 != dir_name2) return (dir_name1, dir_name2) def make_one_named_test_directory(self, name, depth, width): """ Make a directory tree with a specific name, depth and width.""" dir_path = "tmp/%s" % name if os.path.exists(dir_path): if os.path.isfile(dir_path): os.unlink(dir_path) elif os.path.isdir(dir_path): shutil.rmtree(dir_path) self.rng.next_data_dir(dir_path, depth, width, 32) return dir_path def make_two_test_directories(self, depth, width): """ Create two test directories with different names. """ dir_name1 = self.rng.next_file_name(MAX_NAME_LEN) dir_path1 = self.make_one_named_test_directory(dir_name1, depth, width) dir_name2 = dir_name1 while dir_name2 == dir_name1: dir_name2 = self.rng.next_file_name(MAX_NAME_LEN) dir_path2 = self.make_one_named_test_directory(dir_name2, depth, width) return (dir_name1, dir_path1, dir_name2, dir_path2) def verify_leaf_sha(self, node, path_to_file, hashtype): """ Verify a leaf node is hashed correctly, using a specific SHA hash type. """ self.assertTrue(os.path.exists(path_to_file)) with open(path_to_file, "rb") as file: data = file.read() self.assertFalse(data is None) if hashtype == HashTypes.SHA1: sha = XLSHA1() elif hashtype == HashTypes.SHA2: sha = XLSHA2() elif hashtype == HashTypes.SHA3: sha = XLSHA3() elif hashtype == HashTypes.BLAKE2B: sha = XLBLAKE2B_256() else: raise NotImplementedError sha.update(data) hash_ = sha.digest() self.assertEqual(hash_, node.bin_hash) def verify_tree_sha(self, node, path_to_node, hashtype): """ Verify tree elements are hashed correctly, assuming that the node is a MerkleTree, using a specific SHA hash type. """ if node.nodes is None: self.assertEqual(None, node.bin_hash) else: hash_count = 0 if hashtype == HashTypes.SHA1: sha = XLSHA1() elif hashtype == HashTypes.SHA2: sha = XLSHA2() elif hashtype == HashTypes.SHA3: sha = XLSHA3() elif hashtype == HashTypes.BLAKE2B: sha = XLBLAKE2B_256() else: raise NotImplementedError for node_ in node.nodes: path_to_file = os.path.join(path_to_node, node_.name) if isinstance(node_, MerkleLeaf): self.verify_leaf_sha(node_, path_to_file, hashtype) elif isinstance(node_, MerkleTree): self.verify_tree_sha(node_, path_to_file, hashtype) else: self.fail("unknown node type!") if node_.bin_hash is not None: hash_count += 1 sha.update(node_.bin_hash) # take care to compare values of the same type; # node.binHash is binary, node.hexHash is hex if hash_count == 0: self.assertEqual(None, node.bin_hash) else: self.assertEqual(sha.digest(), node.bin_hash) # unit tests ---------------------------------------------------- def test_pathless_unbound(self): """ Test basic characteristics of very simple MerkleTrees created using our standard SHA hash types. """ for using in [HashTypes.SHA1, HashTypes.SHA2, HashTypes.SHA3, HashTypes.BLAKE2B]: self.do_test_pathless_unbound(using) def do_test_pathless_unbound(self, hashtype): """ Test basic characteristics of very simple MerkleTrees created using a specific SHA hash type. """ (dir_name1, dir_name2) = self.get_two_unique_directory_names() check_hashtype(hashtype) tree1 = MerkleTree(dir_name1, hashtype) self.assertEqual(dir_name1, tree1.name) if hashtype == HashTypes.SHA1: self.assertEqual(SHA1_HEX_NONE, tree1.hex_hash) elif hashtype == HashTypes.SHA2: self.assertEqual(SHA2_HEX_NONE, tree1.hex_hash) elif hashtype == HashTypes.SHA3: self.assertEqual(SHA3_HEX_NONE, tree1.hex_hash) elif hashtype == HashTypes.BLAKE2B_256: self.assertEqual(BLAKE2B_256_HEX_NONE, tree1.hex_hash) else: raise NotImplementedError tree2 = MerkleTree(dir_name2, hashtype) self.assertEqual(dir_name2, tree2.name) # these tests remain skimpy self.assertFalse(tree1 is None) self.assertTrue(tree1 == tree1) self.assertFalse(tree1 == tree2) tree1_str = tree1.to_string(0) # there should be no indent on the first line self.assertFalse(tree1_str[0] == ' ') # no extra lines should be added lines = tree1_str.split('\n') # this split generates an extra blank line, because the serialization # ends with CR-LF if lines[-1] == '': lines = lines[:-1] self.assertEqual(1, len(lines)) tree1_rebuilt = MerkleTree.create_from_serialization( tree1_str, hashtype) self.assertTrue(tree1 == tree1_rebuilt) def test_bound_flat_dirs(self): """ Test handling of flat directories with a few data files using varioush SHA hash types. """ for using in [HashTypes.SHA1, HashTypes.SHA2, HashTypes.SHA3, ]: self.do_test_bound_flat_dirs(using) def do_test_bound_flat_dirs(self, hashtype): """test directory is single level, with four data files""" check_hashtype(hashtype) (dir_name1, dir_path1, dir_name2, dir_path2) =\ self.make_two_test_directories(ONE, FOUR) tree1 = MerkleTree.create_from_file_system(dir_path1, hashtype) self.assertEqual(dir_name1, tree1.name) nodes1 = tree1.nodes self.assertTrue(nodes1 is not None) self.assertEqual(FOUR, len(nodes1)) self.verify_tree_sha(tree1, dir_path1, hashtype) tree2 = MerkleTree.create_from_file_system(dir_path2, hashtype) self.assertEqual(dir_name2, tree2.name) nodes2 = tree2.nodes self.assertTrue(nodes2 is not None) self.assertEqual(FOUR, len(nodes2)) self.verify_tree_sha(tree2, dir_path2, hashtype) self.assertFalse(tree1 is None) self.assertTrue(tree1 == tree1) self.assertFalse(tree1 == tree2) tree1_str = tree1.to_string(0) tree1_rebuilt = MerkleTree.create_from_serialization( tree1_str, hashtype) self.assertTrue(tree1 == tree1_rebuilt) def test_bound_needle_dirs(self): """ Test directories four deep with various SHA hash types. """ for using in [HashTypes.SHA1, HashTypes.SHA2, HashTypes.SHA3, ]: self.do_test_bound_needle_dirs(using) def do_test_bound_needle_dirs(self, hashtype): """test directories four deep with one data file at the lowest level""" (dir_name1, dir_path1, dir_name2, dir_path2) =\ self.make_two_test_directories(FOUR, ONE) tree1 = MerkleTree.create_from_file_system(dir_path1, hashtype) self.assertEqual(dir_name1, tree1.name) nodes1 = tree1.nodes self.assertTrue(nodes1 is not None) self.assertEqual(ONE, len(nodes1)) self.verify_tree_sha(tree1, dir_path1, hashtype) tree2 = MerkleTree.create_from_file_system(dir_path2, hashtype) self.assertEqual(dir_name2, tree2.name) nodes2 = tree2.nodes self.assertTrue(nodes2 is not None) self.assertEqual(ONE, len(nodes2)) self.verify_tree_sha(tree2, dir_path2, hashtype) self.assertTrue(tree1 == tree1) self.assertFalse(tree1 == tree2) tree1_str = tree1.to_string(0) tree1_rebuilt = MerkleTree.create_from_serialization( tree1_str, hashtype) # # DEBUG # print "NEEDLEDIR TREE1:\n" + tree1Str # print "REBUILT TREE1:\n" + tree1Rebuilt.toString("") # # END self.assertTrue(tree1 == tree1_rebuilt) # tests of bugs previously found -------------------------------- def test_gray_boxes_bug1(self): """ Verify that bug #1 in handling serialization of grayboxes website has been corrected. """ serialization =\ '721a08022dd26e7be98b723f26131786fd2c0dc3 grayboxes.com/\n' +\ ' fcd3973c66230b9078a86a5642b4c359fe72d7da images/\n' +\ ' 15e47f4eb55197e1bfffae897e9d5ce4cba49623 grayboxes.gif\n' +\ ' 2477b9ea649f3f30c6ed0aebacfa32cb8250f3df index.html\n' # create from string array ---------------------------------- string = serialization.split('\n') string = string[:-1] self.assertEqual(4, len(string)) tree2 = MerkleTree.create_from_string_array(string, HashTypes.SHA1) ser2 = tree2.to_string(0) self.assertEqual(serialization, ser2) # create from serialization --------------------------------- tree1 = MerkleTree.create_from_serialization( serialization, HashTypes.SHA1) ser1 = tree1.to_string(0) self.assertEqual(serialization, ser1) self.assertTrue(tree1 == tree2) # 2014-06-26 tagged this on here to test firstLineRE_1() first_line = string[0] match_ = MerkleTree.first_line_re_1().match(first_line) self.assertTrue(match_ is not None) self.assertEqual(match_.group(1), '') # indent tree_hash = match_.group(2) dir_name = match_.group(3) self.assertEqual(tree_hash + ' ' + dir_name, first_line) def test_xlattice_bug1(self): """ this test relies on dat.xlattice.org being locally present and an internally consistent merkleization """ with open('tests/test_data/dat.xlattice.org', 'rb') as file: serialization = str(file.read(), 'utf-8') # create from serialization --------------------------------- tree1 = MerkleTree.create_from_serialization( serialization, HashTypes.SHA1) # # DEBUG # print "tree1 has %d nodes" % len(tree1.nodes) # with open('junk.tree1', 'w') as t: # t.write( tree1.toString(0) ) # # END ser1 = tree1.to_string(0) self.assertEqual(serialization, ser1) # create from string array ---------------------------------- string = serialization.split('\n') string = string[:-1] self.assertEqual(2511, len(string)) tree2 = MerkleTree.create_from_string_array(string, HashTypes.SHA1) ser2 = tree2.to_string(0) self.assertEqual(serialization, ser2) self.assertTrue(tree1 == tree2) def test_gray_boxes_bug3(self): """ Test solution to bug in handling grayboxes website. """ serialization =\ '088d0e391e1a4872329e0f7ac5d45b2025363e26c199a7' + \ '4ea39901d109afd6ba grayboxes.com/\n' +\ ' 24652ddc14687866e6b1251589aee7e1e3079a87f80cd' + \ '7775214f6d837612a90 images/\n' +\ ' 1eb774eef9be1e696f69a2f95711be37915aac283bb4' + \ 'b34dcbaf7d032233e090 grayboxes.gif\n' +\ ' 6eacebda9fd55b59c0d2e48e2ed59ce9fd683379592f8' + \ 'e662b1de88e041f53c9 index.html\n' # create from string array ---------------------------------- string = serialization.split('\n') string = string[:-1] self.assertEqual(4, len(string)) tree2 = MerkleTree.create_from_string_array(string, HashTypes.SHA2) ser2 = tree2.to_string(0) self.assertEqual(serialization, ser2) # create from serialization --------------------------------- tree1 = MerkleTree.create_from_serialization( serialization, HashTypes.SHA2) ser1 = tree1.to_string(0) self.assertEqual(serialization, ser1) self.assertTrue(tree1 == tree2) # 2014-06-26 tagged this on here to test firstLineRE_1() first_line = string[0] match_ = MerkleTree.first_line_re_2().match(first_line) self.assertTrue(match_ is not None) self.assertEqual(match_.group(1), '') # indent tree_hash = match_.group(2) dir_name = match_.group(3) self.assertEqual(tree_hash + ' ' + dir_name, first_line) def test_xlattice_bug3(self): """ this test relies on dat2.xlattice.org being locally present and an internally consistent merkleization """ with open('tests/test_data/dat2.xlattice.org', 'rb') as file: serialization = str(file.read(), 'utf-8') # create from serialization --------------------------------- tree1 = MerkleTree.create_from_serialization( serialization, HashTypes.SHA2) ser1 = tree1.to_string(0) self.assertEqual(serialization, ser1) # create from string array ---------------------------------- string = serialization.split('\n') string = string[:-1] self.assertEqual(2511, len(string)) tree2 = MerkleTree.create_from_string_array(string, HashTypes.SHA2) ser2 = tree2.to_string(0) self.assertEqual(serialization, ser2) self.assertTrue(tree1 == tree2) if __name__ == '__main__': unittest.main() ```
{ "source": "jddixon/nlhtree_py", "score": 3 }
#### File: nlhtree_py/tests/test_drop_from_u.py ```python import os import sys import time import unittest from binascii import hexlify import hashlib from rnglib import SimpleRNG from nlhtree import NLHTree, NLHLeaf from xlattice import HashTypes from xlu import UDir, DirStruc if sys.version_info < (3, 6): # pylint: disable=unused-import import sha3 # monkey-patches hashlib assert sha3 # prevent flakes warning class TestDropFromU(unittest.TestCase): """ Test the drop_from_u_dir functionality. """ def setUp(self): self.rng = SimpleRNG(time.time()) def tearDown(self): pass def populate_tree(self, tree, data_path, u_dir, hashtype): """ Generate nnn and nnn unique random values, where nnn is at least 16. """ nnn = 16 + self.rng.next_int16(16) # DEBUG # print("nnn = %d" % nnn) # EnnnD values = [] hashes = [] for count in range(nnn): # generate datum ------------------------------ datum = self.rng.some_bytes(32 + self.rng.next_int16(32)) values.append(datum) # generate hash = bin_key ---------------------- if hashtype == HashTypes.SHA1: sha = hashlib.sha1() elif hashtype == HashTypes.SHA2: sha = hashlib.sha256() elif hashtype == HashTypes.SHA3: sha = hashlib.sha3_256() elif hashtype == HashTypes.BLAKE2B: sha = hashlib.blake2b(digest_size=32) else: raise NotImplementedError sha.update(datum) bin_key = sha.digest() hex_key = sha.hexdigest() hashes.append(bin_key) # write data file ----------------------------- file_name = 'value%04d' % count path_to_file = os.path.join(data_path, file_name) with open(path_to_file, 'wb') as file: # DEBUG # print("writing %s to %s" % (hex_key, path_to_file)) # END file.write(datum) # insert leaf into tree ----------------------- # path_from_top = os.path.join(top_name, file_name) leaf = NLHLeaf(file_name, bin_key, hashtype) tree.insert(leaf) # DEBUG # print(" inserting <%s %s>" % (leaf.name, leaf.hex_hash)) # END # write data into uDir ------------------------ u_dir.put_data(datum, hex_key) return values, hashes def generate_udt(self, struc, hashtype): """ Generate under ./tmp a data directory with random content, a uDir containing the same data, and an NLHTree that matches. uDir has the directory structure (DIR_FLAT, DIR16x16, DIR256x256, etc requested. Hashes are SHA1 if using SHA1 is True, SHA256 otherwise. values is a list of binary values, each the content of a file under dataDir. Each value contains a non-zero number of bytes. hashes is a list of the SHA hashes of the values. Each hash is a binary value. If using SHA1 it consists of 20 bytes. return uPath, data_path, tree, hashes, values """ # make a unique U directory under ./tmp/ os.makedirs('tmp', mode=0o755, exist_ok=True) u_root_name = self.rng.next_file_name(8) u_path = os.path.join('tmp', u_root_name) while os.path.exists(u_path): u_root_name = self.rng.next_file_name(8) u_path = os.path.join('tmp', u_root_name) # DEBUG # print("u_root_name = %s" % u_root_name) # END # create uDir and the NLHTree u_dir = UDir(u_path, struc, hashtype) self.assertTrue(os.path.exists(u_path)) # make a unique data directory under tmp/ data_tmp = self.rng.next_file_name(8) tmp_path = os.path.join('tmp', data_tmp) while os.path.exists(tmp_path): data_tmp = self.rng.next_file_name(8) tmp_path = os.path.join('tmp', data_tmp) # dataDir must have same base name as NLHTree top_name = self.rng.next_file_name(8) data_path = os.path.join(tmp_path, top_name) os.makedirs(data_path, mode=0o755) # DEBUG # print("data_tmp = %s" % data_tmp) # print("top_name = %s" % top_name) # print('data_path = %s' % data_path) # END tree = NLHTree(top_name, hashtype) values, hashes = self.populate_tree(tree, data_path, u_dir, hashtype) return u_path, data_path, tree, hashes, values # --------------------------------------------------------------- def do_test_with_ephemeral_tree(self, struc, hashtype): """ Generate a tmp/ subdirectory containing a quasi-random data directory and corresponding uDir and NLHTree serialization. We use the directory strucure (struc) and hash type (hashtype) indicated, running various consistency tests on the three. """ u_path, data_path, tree, hashes, values = self.generate_udt( struc, hashtype) # DEBUG # print("TREE:\n%s" % tree) # END # verify that the dataDir matches the nlhTree tree2 = NLHTree.create_from_file_system(data_path, hashtype) # DEBUG # print("TREE2:\n%s" % tree2) # END self.assertEqual(tree2, tree) nnn = len(values) # number of values present hex_hashes = [] for count in range(nnn): hex_hashes.append(hexlify(hashes[count]).decode('ascii')) ndxes = [ndx for ndx in range(nnn)] # indexes into lists self.rng.shuffle(ndxes) # shuffled kkk = self.rng.next_int16(nnn) # we will drop this many indexes # DEBUG # print("dropping %d from %d elements" % (kkk, nnn)) # END drop_me = ndxes[0:kkk] # indexes of values to drop keep_me = ndxes[kkk:] # of those which should still be present # construct an NLHTree containing values to be dropped from uDir clone = tree.clone() for count in keep_me: name = 'value%04d' % count clone.delete(name) # the parameter is a glob ! # these values should be absent from q: they won't be dropped from uDir for count in keep_me: name = 'value%04d' % count xxx = clone.find(name) self.assertEqual(len(xxx), 0) # these values shd still be present in clone: they'll be dropped from # UDir for count in drop_me: name = 'value%04d' % count xxx = clone.find(name) self.assertEqual(len(xxx), 1) # the clone subtree contains those elements which will be dropped # from uDir unmatched = clone.drop_from_u_dir(u_path) # was unmatched # DEBUG # for x in unmatched: # (relPath, hash) # print("unmatched: %s %s" % (x[0], x[1])) # END self.assertEqual(len(unmatched), 0) u_dir = UDir(u_path, struc, hashtype) self.assertTrue(os.path.exists(u_path)) # these values should still be present in uDir for count in keep_me: hex_hash = hex_hashes[count] self.assertTrue(u_dir.exists(hex_hash)) # these values should NOT be present in UDir for count in drop_me: hex_hash = hex_hashes[count] self.assertFalse(u_dir.exists(hex_hash)) def test_with_ephemeral_tree(self): """ Generate tmp/ subdirectories containing a quasi-random data directory and corresponding uDir and NLHTree serialization, using various directory structures and hash types. """ for struc in DirStruc: for hashtype in HashTypes: self.do_test_with_ephemeral_tree(struc, hashtype) if __name__ == '__main__': unittest.main() ``` #### File: nlhtree_py/tests/test_nlh_base.py ```python import hashlib import sys import time import unittest from rnglib import SimpleRNG from nlhtree.base import NLHBase from xlattice import HashTypes # , check_hashtype if sys.version_info < (3, 6): # pylint: disable=unused-import import sha3 # monkey-patches hashlib assert sha3 # suppress warning class TestNLHBase(unittest.TestCase): """ Test basic NLHTree functions. """ def setUp(self): self.rng = SimpleRNG(time.time()) def tearDown(self): pass def do_test_constructor(self, hashtype): """ Check functionality of NLHBase constructor for specifc hash. """ name = self.rng.next_file_name(8) base = NLHBase(name, hashtype) self.assertEqual(base.name, name) self.assertEqual(base.hashtype, hashtype) root = base.root curt = base.cur_tree self.assertEqual(root.name, curt.name) def test_constructor(self): """ Check functionality of NLHBase constructor. """ for hashtype in HashTypes: self.do_test_constructor(hashtype) def do_test_with_simple_tree(self, hashtype): """ XXX STUB: test simple tree with specific hash. """ if hashtype == HashTypes.SHA1: sha = hashlib.sha1() elif hashtype == HashTypes.SHA2: sha = hashlib.sha256() elif hashtype == HashTypes.SHA3: # pylint:disable=no-member sha = hashlib.sha3_256() elif hashtype == HashTypes.BLAKE2B: sha = hashlib.blake2b(digest_size=32) else: raise NotImplementedError assert sha # suppress warning def test_simple_tree(self): """ XXX STUB: test building simple tree. """ for hashtype in HashTypes: self.do_test_with_simple_tree(hashtype) if __name__ == '__main__': unittest.main() ``` #### File: nlhtree_py/tests/test_nlh_tree2.py ```python import os import shutil # import sys import time import unittest # import hashlib # unused from rnglib import SimpleRNG from xlattice import (HashTypes, check_hashtype) from nlhtree import NLHTree # if sys.version_info < (3, 6): # # pylint: disable=unused-import # import sha3 # monkey-patches hashlib ONE = 1 FOUR = 4 MAX_NAME_LEN = 8 class TestNLHTree2(unittest.TestCase): """ Test trees derived from various quasi-random directory structures. """ def setUp(self): self.rng = SimpleRNG(time.time()) def tearDown(self): pass # utility functions --------------------------------------------- def get_two_unique_directory_names(self): """ Make two unique directory names. """ dir_name1 = self.rng.next_file_name(MAX_NAME_LEN) dir_name2 = dir_name1 while dir_name2 == dir_name1: dir_name2 = self.rng.next_file_name(MAX_NAME_LEN) self.assertTrue(len(dir_name1) > 0) self.assertTrue(len(dir_name2) > 0) self.assertTrue(dir_name1 != dir_name2) return (dir_name1, dir_name2) def make_one_named_test_directory(self, name, depth, width): """ Create a test directory below tmp/ with specified characteristics. """ dir_path = "tmp/%s" % name if os.path.exists(dir_path): shutil.rmtree(dir_path) self.rng.next_data_dir(dir_path, depth, width, 32) return dir_path def make_two_test_directories(self, depth, width): """ Make two distinct quasi-random test directories below tmp/. """ dir_name1 = self.rng.next_file_name(MAX_NAME_LEN) dir_path1 = self.make_one_named_test_directory(dir_name1, depth, width) dir_name2 = dir_name1 while dir_name2 == dir_name1: dir_name2 = self.rng.next_file_name(MAX_NAME_LEN) dir_path2 = self.make_one_named_test_directory(dir_name2, depth, width) return (dir_name1, dir_path1, dir_name2, dir_path2) # unit tests ---------------------------------------------------- def test_pathless_unbound(self): """ Test the constructor using various hash types. """ for hashtype in [HashTypes.SHA1, HashTypes.SHA2, HashTypes.SHA3, ]: self.do_test_pathless_unbound(hashtype) def do_test_pathless_unbound(self, hashtype): """ Test constructor using two directories and a specific hash type. """ (dir_name1, dir_name2) = self.get_two_unique_directory_names() check_hashtype(hashtype) tree1 = NLHTree(dir_name1, hashtype) self.assertEqual(dir_name1, tree1.name) self.assertEqual(tree1.hashtype, hashtype) tree2 = NLHTree(dir_name2, hashtype) self.assertEqual(dir_name2, tree2.name) self.assertEqual(tree2.hashtype, hashtype) self.assertTrue(tree1 == tree1) self.assertFalse(tree1 == tree2) self.assertFalse(tree1 is None) tree1c = tree1.clone() self.assertEqual(tree1c, tree1) def test_bound_flat_dirs(self): """ Test directory is single level, with four data files, using various hash types. """ for hashtype in HashTypes: self.do_test_bound_flat_dirs(hashtype) def do_test_bound_flat_dirs(self, hashtype): """ Test directory is single level, with four data files, using specific hash type. """ (dir_name1, dir_path1, dir_name2, dir_path2) =\ self.make_two_test_directories(ONE, FOUR) tree1 = NLHTree.create_from_file_system(dir_path1, hashtype) self.assertEqual(dir_name1, tree1.name, True) nodes1 = tree1.nodes self.assertTrue(nodes1 is not None) self.assertEqual(FOUR, len(nodes1)) tree2 = NLHTree.create_from_file_system(dir_path2, hashtype) self.assertEqual(dir_name2, tree2.name) nodes2 = tree2.nodes self.assertTrue(nodes2 is not None) self.assertEqual(FOUR, len(nodes2)) self.assertEqual(tree1, tree1) self.assertFalse(tree1 == tree2) self.assertFalse(tree1 is None) tree1c = tree1.clone() self.assertEqual(tree1c, tree1) def test_bound_needle_dirs1(self): """ Test directories four deep with one data file at the lowest level using various hash types. """ for hashtype in HashTypes: self.do_test_bound_needle_dirs(hashtype) def do_test_bound_needle_dirs(self, hashtype): """ Test directories four deep with one data file at the lowest level using specific hash type. """ (dir_name1, dir_path1, dir_name2, dir_path2) =\ self.make_two_test_directories(FOUR, ONE) tree1 = NLHTree.create_from_file_system(dir_path1, hashtype) self.assertEqual(dir_name1, tree1.name) nodes1 = tree1.nodes self.assertTrue(nodes1 is not None) self.assertEqual(ONE, len(nodes1)) tree2 = NLHTree.create_from_file_system(dir_path2, hashtype) self.assertEqual(dir_name2, tree2.name) nodes2 = tree2.nodes self.assertTrue(nodes2 is not None) self.assertEqual(ONE, len(nodes2)) self.assertTrue(tree1 == tree1) self.assertFalse(tree1 == tree2) tree1c = tree1.clone() self.assertEqual(tree1c, tree1) if __name__ == '__main__': unittest.main() ``` #### File: nlhtree_py/tests/test_walker.py ```python import unittest # import hashlib from xlattice import HashTypes, check_hashtype from nlhtree import NLHTree, NLHLeaf # if sys.version_info < (3, 6): # # pylint: disable=unused-import # import sha3 # monkey-patches hashlib EXAMPLE1 = """dataDir data1 34463aa26c4d7214a96e6e42c3a9e8f55727c695 data2 14193743b265973e5824ca5257eef488094e19e9 subDir1 data11 58089ce970b65940dd5bf07703cd81b4306cb8f0 data12 da39a3ee5e6b4b0d3255bfef95601890afd80709 subDir2 subDir3 data31 487607ec22ee1255cc31c35506c64b1819a48090 subDir4 subDir41 subDir411 data31 0b57d3ab229a69ce5f7fad62f9fe654fe96c51bb """ EXAMPLE2 = """dataDir data1 023d6598659f6a6b044ee909f3f3e6c4343850a1c5c71ef3f873c8e46b68e898 data2 29223e6e7c63529feaa441773097b68951fe8652830098b3c5c2df72fd5b7821 subDir1 data11 9394e20adb8adf9727ee6d12377aa57230eb548eb2c718d117c2e9c3aecf0e33 data12 e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855 subDir2 subDir3 data31 9adc17b1d861fae64ddbc792fafb097c55d316a585359b6356af8fa8992aefac subDir4 subDir41 subDir411 data31 4308da851a73798454e22ee6d71a4d0732b9fd1ab10e607da53bf8c88ad7d44b """ EXAMPLE3 = """dataDir data1 adf6c7f792e8198631aacbbc8cee51181176f4c157d578ee226040d70f552db1 data2 c6e5bfc9f7189ef6276d0bf25f05c12c0e1dcdf10e1ac69f62a0642e9d7dfcc5 subDir1 data11 03ef2f36e12e9afaaabb71fe84c6db3a225714bfa0bd58440727932e23174886 data12 a7ffc6f8bf1ed76651c14756a061d662f580ff4de43b49fa82d80a4b80f8434a subDir2 subDir3 data31 9400dfa37b52665f2056c93071a851a5e4c3c2c9245d39c640d9de796fa3d530 subDir4 subDir41 subDir411 data31 360ba73957c140fc28b8d6a8b7033cd2f896158fc8988fc68bb4877e4e13a048 """ EXAMPLE4 = """dataDir data1 ebd4b136a9332be9f67ac4e92e1f6113b97407ed585c39257fccb26789bf0274 data2 039e6f4892eed350302fea6a38ed549ca30978a99d2e13060a07a489c4e20173 subDir1 data11 1cf4912d2eb4b7dc34e1d61293c00bf33ad42c4cd6742249432ea042cf0a08d5 data12 0e5751c026e543b2e8ab2eb06099daa1d1e5df47778f7787faab45cdf12fe3a8 subDir2 subDir3 data31 00df8c11fde7c8e90b09bff1b1ae288dd83da2b272bf211b8d40a0bf7986e109 subDir4 subDir41 subDir411 data31 887aec1d8aebf76f56a3595cb33f25171e470584dbd7911d782da8744645889d """ class TestWalker(unittest.TestCase): """ Walk the example data structures (directory tree, content-keyed store, and serialized NLHTree) verifying consistency. """ def setUp(self): pass def tearDown(self): pass def test_spot_check_tree(self): """ Run spot checks on the example files for the supported range of hash types. """ for hashtype in HashTypes: self.do_test_spot_check_tree(hashtype) def do_test_spot_check_tree(self, hashtype): """ Run spot checks on the example files for the specified hash type. """ check_hashtype(hashtype) # DEBUG # print("\nSPOT CHECKS") # END if hashtype == HashTypes.SHA1: rel_path_to_data = 'example1/dataDir' else: rel_path_to_data = 'example2/dataDir' tree = NLHTree.create_from_file_system(rel_path_to_data, hashtype) self.assertIsNotNone(tree) self.assertEqual(len(tree.nodes), 6) self.assertEqual(tree.name, 'dataDir') node0 = tree.nodes[0] self.assertTrue(isinstance(node0, NLHLeaf)) self.assertEqual(node0.name, 'data1') node1 = tree.nodes[1] self.assertTrue(isinstance(node1, NLHLeaf)) self.assertEqual(node1.name, 'data2') node2 = tree.nodes[2] self.assertFalse(isinstance(node2, NLHLeaf)) self.assertEqual(node2.name, 'subDir1') self.assertEqual(len(node2.nodes), 2) node5 = tree.nodes[5] self.assertFalse(isinstance(node5, NLHLeaf)) self.assertEqual(node5.name, 'subDir4') self.assertEqual(len(node5.nodes), 1) node50 = node5.nodes[0] self.assertFalse(isinstance(node50, NLHLeaf)) self.assertEqual(node50.name, 'subDir41') self.assertEqual(len(node50.nodes), 1) node500 = node50.nodes[0] self.assertFalse(isinstance(node500, NLHLeaf)) self.assertEqual(node500.name, 'subDir411') self.assertEqual(len(node500.nodes), 1) node5000 = node500.nodes[0] self.assertTrue(isinstance(node5000, NLHLeaf)) self.assertEqual(node5000.name, 'data31') def test_walkers(self): """ Run the walker for a number of hash types. """ for hashtype in HashTypes: self.do_test_walkers(hashtype) def do_test_walkers(self, hashtype): """ Run the walker for a specific hash type. """ # DEBUG # print("\ndo_test_walkers, %s" % hashtype) # END check_hashtype(hashtype) if hashtype == HashTypes.SHA1: rel_path_to_data = 'example1/dataDir' rel_path_to_nlh = 'example1/example.nlh' example = EXAMPLE1 elif hashtype == HashTypes.SHA2: rel_path_to_data = 'example2/dataDir' rel_path_to_nlh = 'example2/example.nlh' example = EXAMPLE2 elif hashtype == HashTypes.SHA3: rel_path_to_data = 'example3/dataDir' rel_path_to_nlh = 'example3/example.nlh' example = EXAMPLE3 elif hashtype == HashTypes.BLAKE2B: rel_path_to_data = 'example4/dataDir' rel_path_to_nlh = 'example4/example.nlh' example = EXAMPLE4 else: raise NotImplementedError tree = NLHTree.create_from_file_system(rel_path_to_data, hashtype) self.assertIsNotNone(tree) string = tree.__str__() self.assertEqual(example, string) # the serialized NLHTree # The serialized NLHTree, the string s, is identical to the example1/2 # serialization above. So we should be able to walk example1/2, # walk the disk file, and walk the in-memory object tree and get # the same result. from_disk = [] from_strings = [] from_str = [] from_obj = [] # -- walk on-disk representation ---------------------------- # DEBUG # print("\nWALK FILE ON DISK") # sys.stdout.flush() # END # a couple is a 2-tuple for couple in NLHTree.walk_file(rel_path_to_nlh, hashtype): if len(couple) == 1: # print(" DIR: %s" % couple[0]) # DEBUG from_disk.append(couple) elif len(couple) == 2: # print(' FILE: %s %s' % (couple[0], couple[1])) # DEBUG from_disk.append(couple) else: print(' unexpected couple of length %d' % len(couple)) # -- walk list-of-strings representation ------------------- lines = example.split('\n') if lines[-1] == '': lines = lines[:-1] # drop last line if blank # DEBUG # print("\nWALK LIST OF STRINGS; %s; there are %d lines" % ( # hashtype, len(lines))) # sys.stdout.flush() # END for couple in NLHTree.walk_strings(lines, hashtype): if len(couple) == 1: # print(" DIR: %s" % couple[0]) # DEBUG from_strings.append(couple) elif len(couple) == 2: # print(' FILE: %s %s' % (couple[0], couple[1])) # DEBUG from_strings.append(couple) else: print(' unexpected couple of length %d' % len(couple)) # -- walk string representation ----------------------------- # DEBUG # print("\nWALK STRING") # sys.stdout.flush() # END for couple in NLHTree.walk_string(example, hashtype): if len(couple) == 1: # print(" DIR: %s" % couple[0]) # DEBUG from_str.append(couple) elif len(couple) == 2: # print(' FILE: %s %s' % (couple[0], couple[1])) # DEBUG from_str.append(couple) else: print(' unexpected couple of length %d' % len(couple)) # -- walk NLHTree object ------------------------------------ # DEBUG # print("\nWALK OBJECT") # sys.stdout.flush() # hasattr(tree, '__iter__') # hasattr(tree, '__next__') # END for couple in tree: if len(couple) == 1: # print(" DIR: %s" % couple[0]) # DEBUG from_obj.append(couple) elif len(couple) == 2: # print(' FILE: %s %s' % (couple[0], couple[1])) # DEBUG from_obj.append(couple) else: print(' unexpected couple of length %d' % len(couple)) # -- verify the lists are identical ------------------------- # DEBUG # print("\nIDENTITY CHECKS %s" % hashtype) # sys.stdout.flush() # END def compare_lists(a_list, b_list): """ Verify that two lists of tuples are the same. """ self.assertEqual(len(a_list), len(b_list)) for ndx, a_val in enumerate(a_list): self.assertEqual(a_val, b_list[ndx]) # DEBUG # # print("FROM_DISK:") # for i in from_disk: # if len(i) == 1: # print(" %s" % (i[0])) # else: # print(" %s %s" % (i[0], i[1])) # print("FROM_SS:") # for i in from_strings: # if len(i) == 1: # print(" %s" % (i[0])) # else: # print(" %s %s" % (i[0], i[1])) # END compare_lists(from_disk, from_strings) # DEBUG # print("\ncomparing from_disk, from_str") # END compare_lists(from_disk, from_str) # DEBUG # print("\ncomparing from_disk, from_obj") # END compare_lists(from_disk, from_obj) # -- verify that the operations are reversible, that you can # recover the dataDir from the listings --------------------- # XXX NOT YET IMPLEMENTED XXX if __name__ == '__main__': unittest.main() ```