metadata
dict
text
stringlengths
60
3.49M
{ "source": "JDESLOIRES/eo-flow", "score": 2 }
#### File: eoflow/base/custom_training.py ```python import tensorflow as tf from sklearn.utils import shuffle import numpy as np import pickle import os import time from . import Configurable # class BaseCustomModel(tf.keras.Model, Configurable): @tf.function def train_step(model, optimizer, loss, metric, train_ds): # pb_i = Progbar(len(list(train_ds)), stateful_metrics='acc') for x_batch_train, y_batch_train in train_ds: # tqdm with tf.GradientTape() as tape: y_preds = model(x_batch_train, training=True) cost = loss(y_batch_train, y_preds) grads = tape.gradient(cost, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) metric.update_state(y_batch_train, y_preds) # pb_i.add(1, values=[metric.result().numpy()]) # Function to run the validation step. @tf.function def val_step(model, val_ds, val_acc_metric): for x, y in val_ds: y_preds = model.call(x, training=False) val_acc_metric.update_state(y, y_preds) def training_loop(model, x_train, y_train, x_val, y_val, batch_size, num_epochs, optimizer, path_directory, saving_step=10, loss=tf.keras.losses.Huber(), metric=tf.keras.metric.MeanSquaredError(), function=np.min): train_acc_results, val_acc_results = ([np.inf] for i in range(2)) val_ds = tf.data.Dataset.from_tensor_slices((x_val, y_val)).batch(8) for epoch in range(num_epochs + 1): x_train, y_train = shuffle(x_train, y_train) train_ds = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(batch_size) train_step(model, optimizer, loss, metric, train_ds) # End epoch metric_result = metric.result().numpy() train_acc_results.append(metric_result) metric.reset_states() if epoch % saving_step == 0: val_step(model, val_ds, metric) val_metric_result = metric.result().numpy() print( "Epoch {0}: Train metric {1}, Val metric {2}".format( str(epoch), str(metric_result), str(round(val_metric_result, 4)), )) if val_metric_result < function(val_acc_results): model.save_weights(os.path.join(path_directory, 'model')) val_acc_results.append(val_metric_result) metric.reset_states() # History of the training losses = dict(train_loss_results=metric, val_acc_results=val_metric_result ) with open(os.path.join(path_directory, 'history.pickle'), 'wb') as d: pickle.dump(losses, d, protocol=pickle.HIGHEST_PROTOCOL) ``` #### File: eoflow/models/layers.py ```python import tensorflow as tf from tensorflow.keras.layers import Activation, SpatialDropout1D, Lambda, UpSampling2D, AveragePooling2D from tensorflow.keras.layers import Conv1D, BatchNormalization, LayerNormalization class ResidualBlock(tf.keras.layers.Layer): """ Code taken from keras-tcn implementation on available on https://github.com/philipperemy/keras-tcn/blob/master/tcn/tcn.py#L140 """ def __init__(self, dilation_rate, nb_filters, kernel_size, padding, activation='relu', dropout_rate=0, kernel_initializer='he_normal', kernel_regularizer = 0, use_batch_norm=False, use_layer_norm=False, last_block=True, **kwargs): """ Defines the residual block for the WaveNet TCN :param dilation_rate: The dilation power of 2 we are using for this residual block :param nb_filters: The number of convolutional filters to use in this block :param kernel_size: The size of the convolutional kernel :param padding: The padding used in the convolutional layers, 'same' or 'causal'. :param activation: The final activation used in o = Activation(x + F(x)) :param dropout_rate: Float between 0 and 1. Fraction of the input units to drop. :param kernel_initializer: Initializer for the kernel weights matrix (Conv1D). :param use_batch_norm: Whether to use batch normalization in the residual layers or not. :param use_layer_norm: Whether to use layer normalization in the residual layers or not. :param last_block: Whether to add a residual connection to the convolution layer or not. :param kwargs: Any initializers for Layer class. """ self.dilation_rate = dilation_rate self.nb_filters = nb_filters self.kernel_size = kernel_size self.padding = padding self.activation = activation self.dropout_rate = dropout_rate self.use_batch_norm = use_batch_norm self.use_layer_norm = use_layer_norm self.kernel_initializer = kernel_initializer self.kernel_regularizer = kernel_regularizer self.last_block = last_block self.residual_layers = [] self.shape_match_conv = None self.res_output_shape = None self.final_activation = None super(ResidualBlock, self).__init__(**kwargs) def _add_and_activate_layer(self, layer): """Helper function for building layer Args: layer: Appends layer to internal layer list and builds it based on the current output shape of ResidualBlocK. Updates current output shape. """ self.residual_layers.append(layer) self.residual_layers[-1].build(self.res_output_shape) self.res_output_shape = self.residual_layers[-1].compute_output_shape(self.res_output_shape) def build(self, input_shape): with tf.keras.backend.name_scope(self.name): # name scope used to make sure weights get unique names self.res_output_shape = input_shape for k in range(2): name = f'conv1D_{k}' with tf.keras.backend.name_scope(name): # name scope used to make sure weights get unique names self._add_and_activate_layer(Conv1D(filters=self.nb_filters, kernel_size=self.kernel_size, dilation_rate=self.dilation_rate, padding=self.padding, name=name, kernel_regularizer = tf.keras.regularizers.l2(self.kernel_regularizer), kernel_initializer=self.kernel_initializer)) if self.use_batch_norm: self._add_and_activate_layer(BatchNormalization()) elif self.use_layer_norm: self._add_and_activate_layer(LayerNormalization()) self._add_and_activate_layer(SpatialDropout1D(rate=self.dropout_rate)) self._add_and_activate_layer(Activation('relu')) if not self.last_block: # 1x1 conv to match the shapes (channel dimension). name = f'conv1D_{k+1}' with tf.keras.backend.name_scope(name): # make and build this layer separately because it directly uses input_shape self.shape_match_conv = Conv1D(filters=self.nb_filters, kernel_size=1, padding='same', name=name, kernel_regularizer = tf.keras.regularizers.l2(self.kernel_regularizer), kernel_initializer=self.kernel_initializer) else: self.shape_match_conv = Lambda(lambda x: x, name='identity') self.shape_match_conv.build(input_shape) self.res_output_shape = self.shape_match_conv.compute_output_shape(input_shape) self.final_activation = Activation(self.activation) self.final_activation.build(self.res_output_shape) # probably isn't necessary # this is done to force keras to add the layers in the list to self._layers for layer in self.residual_layers: self.__setattr__(layer.name, layer) super(ResidualBlock, self).build(input_shape) # done to make sure self.built is set True def call(self, inputs, training=None): """ Returns: A tuple where the first element is the residual model tensor, and the second is the skip connection tensor. """ x = inputs for layer in self.residual_layers: if isinstance(layer, SpatialDropout1D): x = layer(x, training=training) else: x = layer(x) x2 = self.shape_match_conv(inputs) res_x = tf.keras.layers.add([x2, x]) return [self.final_activation(res_x), x] def compute_output_shape(self, input_shape): return [self.res_output_shape, self.res_output_shape] class Conv2D(tf.keras.layers.Layer): """ Multiple repetitions of 2d convolution, batch normalization and dropout layers. """ def __init__(self, filters, kernel_size=3, strides=1, dilation=1, padding='VALID', add_dropout=True, dropout_rate=0.2, activation='relu', batch_normalization=False, use_bias=True, num_repetitions=1): super().__init__() repetitions = [] for _ in range(num_repetitions): layer = [ tf.keras.layers.Conv2D( filters=filters, kernel_size=kernel_size, strides=strides, dilation_rate=dilation, padding=padding, use_bias=use_bias, activation=activation, ) ] if batch_normalization: layer.append(tf.keras.layers.BatchNormalization()) if add_dropout: layer.append(tf.keras.layers.Dropout(rate=dropout_rate)) layer = tf.keras.Sequential(layer) repetitions.append(layer) self.combined_layer = tf.keras.Sequential(repetitions) def call(self, inputs, training=False): return self.combined_layer(inputs, training=training) class ResConv2D(tf.keras.layers.Layer): """ Layer of N residual convolutional blocks stacked in parallel This layer stacks in parallel a sequence of 2 2D convolutional layers and returns the addition of their output feature tensors with the input tensor. N number of convolutional blocks can be added together with different kernel size and dilation rate, which are specified as a list. If the inputs are not a list, the same parameters are used for all convolutional blocks. """ def __init__(self, filters, kernel_size=3, strides=1, dilation=1, padding='VALID', add_dropout=True, dropout_rate=0.2, activation='relu', use_bias=True, batch_normalization=False, num_parallel=1): super().__init__() if isinstance(kernel_size, list) and len(kernel_size) != num_parallel: raise ValueError('Number of specified kernel sizes needs to match num_parallel') if isinstance(dilation, list) and len(dilation) != num_parallel: raise ValueError('Number of specified dilation rate sizes needs to match num_parallel') kernel_list = kernel_size if isinstance(kernel_size, list) else [kernel_size]*num_parallel dilation_list = dilation if isinstance(dilation, list) else [dilation]*num_parallel self.convs = [Conv2D(filters, kernel_size=k, strides=strides, dilation=d, padding=padding, activation=activation, add_dropout=add_dropout, dropout_rate=dropout_rate, use_bias=use_bias, batch_normalization=batch_normalization, num_repetitions=2) for k, d in zip(kernel_list, dilation_list)] self.add = tf.keras.layers.Add() def call(self, inputs, training=False): outputs = [conv_layer(inputs, training=training) for conv_layer in self.convs] return self.add(outputs + [inputs]) class Conv3D(tf.keras.layers.Layer): """ Multiple repetitions of 3d convolution, batch normalization and dropout layers. """ def __init__(self, filters, kernel_size=3, strides=1, padding='VALID', add_dropout=True, dropout_rate=0.2, batch_normalization=False, use_bias=True, num_repetitions=1, convolve_time=True): super().__init__() repetitions = [] t_size = kernel_size if convolve_time else 1 kernel_shape = (t_size, kernel_size, kernel_size) for _ in range(num_repetitions): layer = [ tf.keras.layers.Conv3D( filters=filters, kernel_size=kernel_shape, strides=strides, padding=padding, use_bias=use_bias, activation='relu', ) ] if batch_normalization: layer.append(tf.keras.layers.BatchNormalization()) if add_dropout: layer.append(tf.keras.layers.Dropout(rate=dropout_rate)) layer = tf.keras.Sequential(layer) repetitions.append(layer) self.combined_layer = tf.keras.Sequential(repetitions) def call(self, inputs, training=False): return self.combined_layer(inputs, training=training) class Deconv2D(tf.keras.layers.Layer): """ 2d transpose convolution with optional batch normalization. """ def __init__(self, filters, kernel_size=2, batch_normalization=False): super().__init__() layer = [tf.keras.layers.Conv2DTranspose( filters=filters, kernel_size=kernel_size, strides=kernel_size, padding='SAME', activation='relu' )] if batch_normalization: layer.append(tf.keras.layers.BatchNormalization()) self.layer = tf.keras.Sequential(layer) def call(self, inputs, training=None): return self.layer(inputs, training=training) class CropAndConcat(tf.keras.layers.Layer): """ Layer that crops the first tensor and concatenates it with the second. Used for skip connections. """ @staticmethod def call(x1, x2): # Crop x1 to shape of x2 x2_shape = tf.shape(x2) x1_crop = tf.image.resize_with_crop_or_pad(x1, x2_shape[1], x2_shape[2]) # Concatenate along last dimension and return return tf.concat([x1_crop, x2], axis=-1) class MaxPool3D(tf.keras.layers.Layer): def __init__(self, kernel_size=2, strides=2, pool_time=False): super().__init__() tsize = kernel_size if pool_time else 1 tstride = strides if pool_time else 1 kernel_shape = (tsize, kernel_size, kernel_size) strides = (tstride, strides, strides) self.layer = tf.keras.layers.MaxPool3D( pool_size=kernel_shape, strides=strides, padding='SAME' ) def call(self, inputs, training=None): return self.layer(inputs, training=training) class Reduce3DTo2D(tf.keras.layers.Layer): """ Reduces 3d representations into 2d using 3d convolution over the whole time dimension. """ def __init__(self, filters, kernel_size=3, stride=1, add_dropout=False, dropout_rate=0.2): super().__init__() self.filters = filters self.kernel_size = kernel_size self.stride = stride self.add_dropout = add_dropout self.dropout_rate = dropout_rate self.layer = None def build(self, input_size): t_size = input_size[1] layer = [tf.keras.layers.Conv3D( self.filters, kernel_size=(t_size, self.kernel_size, self.kernel_size), strides=(1, self.stride, self.stride), padding='VALID', activation='relu' )] if self.add_dropout: layer.append(tf.keras.layers.Dropout(rate=self.dropout_rate)) self.layer = tf.keras.Sequential(layer) def call(self, inputs, training=None): r = self.layer(inputs, training=training) # Squeeze along temporal dimension return tf.squeeze(r, axis=[1]) class PyramidPoolingModule(tf.keras.layers.Layer): """ Implementation of the Pyramid Pooling Module Implementation taken from the following paper Zhao et al. - Pyramid Scene Parsing Network - https://arxiv.org/pdf/1612.01105.pdf PyTorch implementation https://github.com/hszhao/semseg/blob/master/model/pspnet.py """ def __init__(self, filters, bins=(1, 2, 4, 8), interpolation='bilinear', batch_normalization=False): super().__init__() self.filters = filters self.bins = bins self.batch_normalization = batch_normalization self.interpolation = interpolation self.layers = None def build(self, input_size): _, height, width, n_features = input_size layers = [] for bin_size in self.bins: size_factors = height // bin_size, width // bin_size layer = tf.keras.Sequential() layer.add(AveragePooling2D(pool_size=size_factors, padding='same')) layer.add(tf.keras.layers.Conv2D(filters=self.filters//len(self.bins), kernel_size=1, padding='same', use_bias=False)) if self.batch_normalization: layer.add(BatchNormalization()) layer.add(Activation('relu')) layer.add(UpSampling2D(size=size_factors, interpolation=self.interpolation)) layers.append(layer) self.layers = layers def call(self, inputs, training=None): """ Concatenate the output of the pooling layers, resampled to original size """ _, height, width, _ = inputs.shape outputs = [inputs] outputs += [layer(inputs, training=training) for layer in self.layers] return tf.concat(outputs, axis=-1) ``` #### File: models/tempnets_task/cnn_tempnets.py ```python import logging import tensorflow as tf from marshmallow import fields from marshmallow.validate import OneOf from tensorflow.keras.layers import Dense from tensorflow.python.keras.utils.layer_utils import print_summary from eoflow.models.layers import ResidualBlock from eoflow.models.tempnets_task.tempnets_base import BaseTempnetsModel, BaseCustomTempnetsModel, BaseModelAdapt import tensorflow as tf import tensorflow_probability as tfp import numpy as np logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') class TCNModel(BaseCustomTempnetsModel): """ Implementation of the TCN network taken form the keras-TCN implementation https://github.com/philipperemy/keras-tcn """ class TCNModelSchema(BaseTempnetsModel._Schema): keep_prob = fields.Float(required=True, description='Keep probability used in dropout tf.keras.layers.', example=0.5) kernel_size = fields.Int(missing=2, description='Size of the convolution kernels.') nb_filters = fields.Int(missing=64, description='Number of convolutional filters.') nb_conv_stacks = fields.Int(missing=1) dilations = fields.List(fields.Int, missing=[1, 2, 4, 8, 16, 32], description='Size of dilations used in the ' 'covolutional tf.keras.layers') padding = fields.String(missing='CAUSAL', validate=OneOf(['CAUSAL', 'SAME']), description='Padding type used in convolutions.') use_skip_connections = fields.Bool(missing=True, description='Flag to whether to use skip connections.') return_sequences = fields.Bool(missing=False, description='Flag to whether return sequences or not.') activation = fields.Str(missing='linear', description='Activation function used in final filters.') kernel_initializer = fields.Str(missing='he_normal', description='method to initialise kernel parameters.') kernel_regularizer = fields.Float(missing=0, description='L2 regularization parameter.') batch_norm = fields.Bool(missing=False, description='Whether to use batch normalisation.') layer_norm = fields.Bool(missing=False, description='Whether to use layer normalisation.') def _cnn_layer(self, net): dropout_rate = 1 - self.config.keep_prob layer = tf.keras.layers.Conv1D(filters= self.config.nb_filters, kernel_size=self.config.kernel_size, padding=self.config.padding, kernel_initializer=self.config.kernel_initializer, kernel_regularizer=tf.keras.regularizers.l2(self.config.kernel_regularizer))(net) if self.config.batch_norm: layer = tf.keras.layers.BatchNormalization(axis=-1)(layer) layer = tf.keras.layers.Dropout(dropout_rate)(layer) layer = tf.keras.layers.Activation(self.config.activation)(layer) return layer def build(self, inputs_shape): """ Build TCN architecture The `inputs_shape` argument is a `(N, T, D)` tuple where `N` denotes the number of samples, `T` the number of time-frames, and `D` the number of channels """ x = tf.keras.layers.Input(inputs_shape[1:]) dropout_rate = 1 - self.config.keep_prob net = x net = self._cnn_layer(net) # list to hold all the member ResidualBlocks residual_blocks = [] skip_connections = [] total_num_blocks = self.config.nb_conv_stacks * len(self.config.dilations) if not self.config.use_skip_connections: total_num_blocks += 1 # cheap way to do a false case for below for _ in range(self.config.nb_conv_stacks): for d in self.config.dilations: net, skip_out = ResidualBlock(dilation_rate=d, nb_filters=self.config.nb_filters, kernel_size=self.config.kernel_size, padding=self.config.padding, activation=self.config.activation, dropout_rate=dropout_rate, use_batch_norm=self.config.batch_norm, use_layer_norm=self.config.layer_norm, kernel_initializer=self.config.kernel_initializer, last_block=len(residual_blocks) + 1 == total_num_blocks, name=f'residual_block_{len(residual_blocks)}')(net) residual_blocks.append(net) skip_connections.append(skip_out) # Author: @karolbadowski. output_slice_index = int(net.shape.as_list()[1] / 2) \ if self.config.padding.lower() == 'same' else -1 lambda_layer = tf.keras.layers.Lambda(lambda tt: tt[:, output_slice_index, :]) if self.config.use_skip_connections: net = tf.keras.layers.add(skip_connections) if not self.config.return_sequences: net = lambda_layer(net) net = tf.keras.layers.Dense(1, activation='linear')(net) self.net = tf.keras.Model(inputs=x, outputs=net) #print_summary(self.net) def call(self, inputs, training=None): return self.net(inputs, training) class TempCNNModel(BaseCustomTempnetsModel,BaseModelAdapt): """ Implementation of the TempCNN network taken from the temporalCNN implementation https://github.com/charlotte-pel/temporalCNN """ class TempCNNModelSchema(BaseCustomTempnetsModel._Schema): keep_prob = fields.Float(required=True, description='Keep probability used in dropout tf.keras.layers.', example=0.5) kernel_size = fields.Int(missing=5, description='Size of the convolution kernels.') nb_conv_filters = fields.Int(missing=16, description='Number of convolutional filters.') nb_conv_stacks = fields.Int(missing=3, description='Number of convolutional blocks.') n_strides = fields.Int(missing=1, description='Value of convolutional strides.') nb_fc_neurons = fields.Int(missing=256, description='Number of Fully Connect neurons.') nb_fc_stacks = fields.Int(missing=1, description='Number of fully connected tf.keras.layers.') fc_activation = fields.Str(missing='relu', description='Activation function used in final FC tf.keras.layers.') emb_layer = fields.String(missing='Flatten', validate=OneOf(['Flatten', 'GlobalAveragePooling1D', 'GlobalMaxPooling1D']), description='Final layer after the convolutions.') padding = fields.String(missing='SAME', validate=OneOf(['SAME','VALID', 'CAUSAL']), description='Padding type used in convolutions.') activation = fields.Str(missing='relu', description='Activation function used in final filters.') n_classes = fields.Int(missing=1, description='Number of classes') output_activation = fields.String(missing='linear', description='Output activation') residual_block = fields.Bool(missing=False, description= 'Add residual block') kernel_initializer = fields.Str(missing='he_normal', description='Method to initialise kernel parameters.') kernel_regularizer = fields.Float(missing=1e-6, description='L2 regularization parameter.') enumerate = fields.Bool(missing=False, description='Increase number of filters across convolution') str_inc = fields.Bool(missing=False, description='Increase strides') ker_inc = fields.Bool(missing=False, description='Increase kernels') ker_dec = fields.Bool(missing=False, description='Decrease kernels') fc_dec = fields.Bool(missing=False, description='Decrease dense neurons') multioutput = fields.Bool(missing=False, description='Decrease dense neurons') batch_norm = fields.Bool(missing=True, description='Whether to use batch normalisation.') def _cnn_layer(self, net, i = 0, first = False): dropout_rate = 1 - self.config.keep_prob filters = self.config.nb_conv_filters kernel_size = self.config.kernel_size n_strides = self.config.n_strides if self.config.enumerate: filters = filters * (2**i) if self.config.ker_inc: kernel_size = kernel_size * (i+1) if self.config.ker_dec: kernel_size = self.config.kernel_size // (i+1) if kernel_size ==0: kernel_size += 1 if self.config.str_inc: n_strides = 1 if first else 2 layer = tf.keras.layers.Conv1D(filters=filters, kernel_size=kernel_size, strides=n_strides, padding=self.config.padding, kernel_initializer=self.config.kernel_initializer, kernel_regularizer=tf.keras.regularizers.l2(self.config.kernel_regularizer))(net) if self.config.batch_norm: layer = tf.keras.layers.BatchNormalization(axis=-1)(layer) layer = tf.keras.layers.Dropout(dropout_rate)(layer) layer = tf.keras.layers.Activation(self.config.activation)(layer) return layer def _embeddings(self,net): name = "embedding" if self.config.emb_layer == 'Flatten': net = tf.keras.layers.Flatten(name=name)(net) elif self.config.emb_layer == 'GlobalAveragePooling1D': net = tf.keras.layers.GlobalAveragePooling1D(name=name)(net) elif self.config.emb_layer == 'GlobalMaxPooling1D': net = tf.keras.layers.GlobalMaxPooling1D(name=name)(net) return net def _fcn_layer(self, net, i=0): dropout_rate = 1 - self.config.keep_prob nb_neurons = self.config.nb_fc_neurons if self.config.fc_dec: nb_neurons /= 2**i layer_fcn = Dense(units=nb_neurons, kernel_initializer=self.config.kernel_initializer, kernel_regularizer=tf.keras.regularizers.l2(self.config.kernel_regularizer))(net) if self.config.batch_norm: layer_fcn = tf.keras.layers.BatchNormalization(axis=-1)(layer_fcn) layer_fcn = tf.keras.layers.Dropout(dropout_rate)(layer_fcn) if self.config.fc_activation: layer_fcn = tf.keras.layers.Activation(self.config.fc_activation)(layer_fcn) return layer_fcn def build(self, inputs_shape): """ Build TCN architecture The `inputs_shape` argument is a `(N, T, D)` tuple where `N` denotes the number of samples, `T` the number of time-frames, and `D` the number of channels """ x = tf.keras.layers.Input(inputs_shape[1:]) net = x net = self._cnn_layer(net, 0, first = True) for i, _ in enumerate(range(self.config.nb_conv_stacks-1)): net = self._cnn_layer(net, i+1) embedding = self._embeddings(net) net_mean = self._fcn_layer(embedding) for i in range(1, self.config.nb_fc_stacks): net_mean = self._fcn_layer(net_mean, i) output = Dense(units = self.config.n_classes, activation = self.config.output_activation, kernel_initializer=self.config.kernel_initializer, kernel_regularizer=tf.keras.regularizers.l2(self.config.kernel_regularizer))(net_mean) if self.config.multioutput or self.config.loss in ['gaussian', 'laplacian']: net_std = self._fcn_layer(embedding) for i in range(1, self.config.nb_fc_stacks): net_std = self._fcn_layer(net_std, i) output_sigma = Dense(units=self.config.n_classes, activation=self.config.output_activation, kernel_initializer=self.config.kernel_initializer, kernel_regularizer=tf.keras.regularizers.l2(self.config.kernel_regularizer))(net_std) self.net = tf.keras.Model(inputs=x, outputs=[output, output_sigma]) else: self.net = tf.keras.Model(inputs=x, outputs=output) print_summary(self.net) def call(self, inputs, training=None): return self.net(inputs, training) def get_feature_map(self): output_layer = self.net.tf.keras.layers[-(self.config.nb_fc_stacks * 4 + 2)] return tf.keras.Model( inputs=self.net.tf.keras.layers[0].input, outputs=output_layer.output ) class BayesTempCNNModel(BaseCustomTempnetsModel): """ Implementation of the TempCNN network taken from the temporalCNN implementation https://github.com/charlotte-pel/temporalCNN """ class BayesTempCNNModel(BaseCustomTempnetsModel._Schema): keep_prob = fields.Float(required=True, description='Keep probability used in dropout tf.keras.layers.', example=0.5) kernel_size = fields.Int(missing=5, description='Size of the convolution kernels.') nb_conv_filters = fields.Int(missing=16, description='Number of convolutional filters.') nb_conv_stacks = fields.Int(missing=3, description='Number of convolutional blocks.') n_strides = fields.Int(missing=1, description='Value of convolutional strides.') nb_fc_neurons = fields.Int(missing=256, description='Number of Fully Connect neurons.') nb_fc_stacks = fields.Int(missing=1, description='Number of fully connected tf.keras.layers.') fc_activation = fields.Str(missing='relu', description='Activation function used in final FC tf.keras.layers.') emb_layer = fields.String(missing='Flatten', validate=OneOf(['Flatten', 'GlobalAveragePooling1D', 'GlobalMaxPooling1D']), description='Final layer after the convolutions.') padding = fields.String(missing='SAME', validate=OneOf(['SAME','VALID', 'CAUSAL']), description='Padding type used in convolutions.') activation = fields.Str(missing='relu', description='Activation function used in final filters.') n_classes = fields.Int(missing=1, description='Number of classes') output_activation = fields.String(missing='linear', description='Output activation') residual_block = fields.Bool(missing=False, description= 'Add residual block') activity_regularizer = fields.Float(missing=1e-6, description='L2 regularization parameter.') enumerate = fields.Bool(missing=False, description='Increase number of filters across convolution') str_inc = fields.Bool(missing=False, description='Increase strides') batch_norm = fields.Bool(missing=False, description='Whether to use batch normalisation.') fc_dec = fields.Bool(missing=False, description='Decrease dense neurons') ker_inc = fields.Bool(missing=False, description='Increase kernels') ker_dec = fields.Bool(missing=False, description='Decreae kernels') def _cnn_layer(self, net, i = 0, first = False): dropout_rate = 1 - self.config.keep_prob filters = self.config.nb_conv_filters kernel_size = self.config.kernel_size n_strides = self.config.n_strides if self.config.enumerate: filters = filters * (2**i) if self.config.ker_inc: kernel_size = kernel_size * (i+1) if self.config.ker_dec: kernel_size = self.config.kernel_size // (i+1) if kernel_size ==0: kernel_size += 1 if self.config.str_inc: n_strides = 1 if first else 2 layer = tfp.layers.Convolution1DReparameterization(filters=filters, kernel_size=kernel_size, strides=n_strides, activation = self.config.activation, activity_regularizer=tf.keras.regularizers.l2(self.config.activity_regularizer), padding=self.config.padding)(net) if self.config.batch_norm: layer = tfp.bijectors.BatchNormalization()(layer) layer = tf.keras.layers.Dropout(dropout_rate)(layer) return layer def _embeddings(self,net): name = "embedding" if self.config.emb_layer == 'Flatten': net = tf.keras.layers.Flatten(name=name)(net) elif self.config.emb_layer == 'GlobalAveragePooling1D': net = tf.keras.layers.GlobalAveragePooling1D(name=name)(net) elif self.config.emb_layer == 'GlobalMaxPooling1D': net = tf.keras.layers.GlobalMaxPooling1D(name=name)(net) return net def _fcn_layer(self, net, i=0): dropout_rate = 1 - self.config.keep_prob nb_neurons = self.config.nb_fc_neurons if self.config.fc_dec: nb_neurons //= 2**i layer_fcn = tfp.layers.DenseReparameterization(units=nb_neurons, activation=self.config.activation, activity_regularizer=tf.keras.regularizers.l2(self.config.activity_regularizer))(net) if self.config.batch_norm: layer_fcn = tfp.bijectors.BatchNormalization()(layer_fcn) layer_fcn = tf.keras.layers.Dropout(dropout_rate)(layer_fcn) #if self.config.fc_activation: layer_fcn = tf.keras.layers.Activation(self.config.fc_activation)(layer_fcn) return layer_fcn def build(self, inputs_shape): """ Build TCN architecture The `inputs_shape` argument is a `(N, T, D)` tuple where `N` denotes the number of samples, `T` the number of time-frames, and `D` the number of channels """ x = tf.keras.layers.Input(inputs_shape[1:]) net = x net = self._cnn_layer(net, 0, first = True) for i, _ in enumerate(range(self.config.nb_conv_stacks-1)): net = self._cnn_layer(net, i+1) embedding = self._embeddings(net) net_mean = self._fcn_layer(embedding) net_std = self._fcn_layer(embedding) for i in range(1, self.config.nb_fc_stacks): net_mean = self._fcn_layer(net_mean, i) output = tfp.layers.DenseReparameterization(units = self.config.n_classes, activity_regularizer=tf.keras.regularizers.l2( self.config.activity_regularizer), activation = self.config.output_activation)(net_mean) if self.config.loss in ['gaussian', 'laplacian']: for i in range(1, self.config.nb_fc_stacks): net_std = self._fcn_layer(net_std, i) output_sigma = tfp.layers.DenseReparameterization(units=self.config.n_classes, activity_regularizer=tf.keras.regularizers.l2( self.config.activity_regularizer), activation=self.config.output_activation)(net_std) self.net = tf.keras.Model(inputs=x, outputs=[output, output_sigma]) else: self.net = tf.keras.Model(inputs=x, outputs=output) print_summary(self.net) def call(self, inputs, training=None): return self.net(inputs, training) class HistogramCNNModel(BaseCustomTempnetsModel): """ Implementation of the CNN2D with histogram time series https://cs.stanford.edu/~ermon/papers/cropyield_AAAI17.pdf https://github.com/JiaxuanYou/crop_yield_prediction/blob/master/3%20model/nnet_for_hist_dropout_stride.py """ class HistogramCNNModel(BaseCustomTempnetsModel._Schema): keep_prob = fields.Float(required=True, description='Keep probability used in dropout tf.keras.layers.', example=0.5) kernel_size = fields.List(fields.Int, missing=[3,3], description='Size of the convolution kernels.') nb_conv_filters = fields.Int(missing=16, description='Number of convolutional filters.') nb_conv_stacks = fields.Int(missing=3, description='Number of convolutional blocks.') n_strides = fields.List(fields.Int, missing=[1, 1], description='Value of convolutional strides.') nb_fc_neurons = fields.Int(missing=256, description='Number of Fully Connect neurons.') nb_fc_stacks = fields.Int(missing=1, description='Number of fully connected tf.keras.layers.') emb_layer = fields.String(missing='Flatten', validate=OneOf(['Flatten', 'GlobalAveragePooling2D', 'GlobalMaxPooling2D']), description='Final layer after the convolutions.') padding = fields.String(missing='SAME', validate=OneOf(['SAME','VALID', 'CAUSAL']), description='Padding type used in convolutions.') activation = fields.Str(missing='relu', description='Activation function used in final filters.') fc_activation = fields.Str(missing='relu', description='Activation function used in final FC tf.keras.layers.') kernel_initializer = fields.Str(missing='he_normal', description='Method to initialise kernel parameters.') kernel_regularizer = fields.Float(missing=1e-6, description='L2 regularization parameter.') enumerate = fields.Bool(missing=False, description='Increase number of filters across convolution') batch_norm = fields.Bool(missing=False, description='Whether to use batch normalisation.') fc_dec = fields.Bool(missing=False, description='Decrease dense neurons') ker_inc = fields.Bool(missing=False, description='Increase kernels') ker_dec = fields.Bool(missing=False, description='Decrease kernels') def _cnn_layer(self, net, i = 1, last = False): dropout_rate = 1 - self.config.keep_prob filters = self.config.nb_conv_filters kernel_size = np.array(self.config.kernel_size) n_strides = self.config.n_strides if self.config.enumerate: filters = filters * (2**i) n_strides = 1 if not last else 2 if self.config.ker_inc: kernel_size = kernel_size * (i+1) if self.config.ker_dec: kernel_size = kernel_size // (i+1) if kernel_size[0] == 0: kernel_size += 1 layer = tf.keras.layers.Conv2D(filters=filters, kernel_size=list(kernel_size), strides=n_strides, padding=self.config.padding, kernel_initializer=self.config.kernel_initializer, kernel_regularizer=tf.keras.regularizers.l2(self.config.kernel_regularizer))(net) if self.config.batch_norm: layer = tf.keras.layers.BatchNormalization(axis=-1)(layer) layer = tf.keras.layers.Dropout(dropout_rate)(layer) layer = tf.keras.layers.Activation(self.config.activation)(layer) return layer def _fcn_layer(self, net): dropout_rate = 1 - self.config.keep_prob layer_fcn = Dense(units=self.config.nb_fc_neurons, kernel_initializer=self.config.kernel_initializer, kernel_regularizer=tf.keras.regularizers.l2(self.config.kernel_regularizer))(net) if self.config.batch_norm: layer_fcn = tf.keras.layers.BatchNormalization(axis=-1)(layer_fcn) layer_fcn = tf.keras.layers.Dropout(dropout_rate)(layer_fcn) if self.config.fc_activation: layer_fcn = tf.keras.layers.Activation(self.config.fc_activation)(layer_fcn) return layer_fcn def _embeddings(self,net): name = "embedding" if self.config.emb_layer == 'Flatten': net = tf.keras.layers.Flatten(name=name)(net) elif self.config.emb_layer == 'GlobalAveragePooling2D': net = tf.keras.layers.GlobalAveragePooling2D(name=name)(net) elif self.config.emb_layer == 'GlobalMaxPooling2D': net = tf.keras.layers.GlobalMaxPooling2D(name=name)(net) return net def build(self, inputs_shape): """ Build TCN architecture The `inputs_shape` argument is a `(N, T, D)` tuple where `N` denotes the number of samples, `T` the number of time-frames, and `D` the number of channels """ x = tf.keras.layers.Input(inputs_shape[1:]) net = x for i, _ in enumerate(range(self.config.nb_conv_stacks-1)): net = self._cnn_layer(net, i) net = self._cnn_layer(net, i, True) #net = self._cnn_layer(net, self.config.nb_conv_stacks-1) #net = self._cnn_layer(net, self.config.nb_conv_stacks-1) net = self._cnn_layer(net, self.config.nb_conv_stacks-1, True) net = self._embeddings(net) for _ in range(self.config.nb_fc_stacks): net = self._fcn_layer(net) net = Dense(units = 1, activation = 'linear', kernel_initializer=self.config.kernel_initializer, kernel_regularizer=tf.keras.regularizers.l2(self.config.kernel_regularizer))(net) self.net = tf.keras.Model(inputs=x, outputs=net) print_summary(self.net) def call(self, inputs, training=None): return self.net(inputs, training) def get_feature_map(self, inputs, training=None): return self.backbone(inputs, training) class InceptionCNN(BaseCustomTempnetsModel): ''' https://github.com/hfawaz/InceptionTime ''' class InceptionCNN(BaseCustomTempnetsModel._Schema): keep_prob = fields.Float(required=True, description='Keep probability used in dropout tf.keras.layers.', example=0.5) kernel_size = fields.Int(missing=5, description='Size of the convolution kernels.') nb_conv_filters = fields.Int(missing=32, description='Number of convolutional filters.') nb_conv_stacks = fields.Int(missing=3, description='Number of convolutional blocks.') n_stride = fields.Int(missing=1, description='Value of convolutional strides.') bottleneck_size = fields.Int(missing=32, description='Bottleneck size.') use_residual = fields.Bool(missing=False,description='Use residuals.') nb_fc_neurons = fields.Int(missing=256, description='Number of Fully Connect neurons.') nb_fc_stacks = fields.Int(missing=1, description='Number of fully connected tf.keras.layers.') padding = fields.String(missing='SAME', validate=OneOf(['SAME','VALID', 'CAUSAL']), description='Padding type used in convolutions.') fc_activation = fields.Str(missing='relu', description='Activation function used in final FC tf.keras.layers.') kernel_initializer = fields.Str(missing='he_normal', description='Method to initialise kernel parameters.') kernel_regularizer = fields.Float(missing=1e-6, description='L2 regularization parameter.') use_bottleneck = fields.Bool(missing=True, description='use_bottleneck') batch_norm = fields.Bool(missing=False, description='Whether to use batch normalisation.') nb_class = fields.Int(missing=1, description='Number of class.') output_activation = fields.Str(missing='linear', description='Output activation.') n_stride = fields.Int(missing=1, description='Number of strides.') def _inception_module(self, input_tensor, stride=1, activation='linear'): if self.config.use_bottleneck and int(input_tensor.shape[-1]) > 1: input_inception = tf.keras.layers.Conv1D(filters=self.config.bottleneck_size, kernel_size=1, padding='SAME', activation=activation, use_bias=False)(input_tensor) else: input_inception = input_tensor kernel_size_s = [1,2,3] #kernel_size_s = [5 // (2 ** i) for i in range(3)] conv_list = [ tf.keras.layers.Conv1D( filters=self.config.nb_conv_filters, kernel_size=kernel_size_, strides=stride, padding='SAME', activation=activation, use_bias=False, )(input_inception) for kernel_size_ in kernel_size_s ] max_pool_1 = tf.keras.layers.MaxPool1D(pool_size=3, strides=self.config.n_strides, padding='SAME')(input_tensor) conv_6 = tf.keras.layers.Conv1D(filters=self.config.nb_conv_filters, kernel_size=1, padding='SAME', activation=activation, use_bias=False)(max_pool_1) conv_list.append(conv_6) x = tf.keras.layers.Concatenate(axis=2)(conv_list) x = tf.keras.layers.BatchNormalization()(x) x = tf.keras.layers.Dropout(1-self.config.keep_prob)(x) x = tf.keras.layers.Activation(activation='relu')(x) return x def _shortcut_layer(self, input_tensor, out_tensor): shortcut_y = tf.keras.layers.Conv1D(filters=int(out_tensor.shape[-1]), kernel_size=1, padding='SAME', use_bias=False)(input_tensor) shortcut_y = tf.keras.layers.BatchNormalization()(shortcut_y) shortcut_y = tf.keras.layers.Dropout(1 - self.config.keep_prob)(shortcut_y) x = tf.keras.layers.Add()([shortcut_y, out_tensor]) x = tf.keras.layers.Activation('relu')(x) return x def build(self, input_shape): input_layer = tf.keras.layers.Input(input_shape[1:]) input_res = input_layer x = input_layer for d in range(self.config.nb_conv_stacks): x = self._inception_module(x) if self.config.use_residual and d % 3 == 2: x = self._shortcut_layer(input_res, x) input_res = x gap_layer = tf.keras.layers.GlobalAveragePooling1D()(x) output_layer = tf.keras.layers.Dense(self.config.nb_class, activation=self.config.output_activation)(gap_layer) self.net = tf.keras.models.Model(inputs=input_layer, outputs=output_layer) print_summary(self.net) def call(self, inputs, training=None): return self.net(inputs, training) class TransformerCNN(BaseCustomTempnetsModel): """ Implementation of the Pixel-Set encoder + Temporal Attention Encoder sequence classifier Code is based on the Pytorch implementation of <NAME> et al. https://github.com/VSainteuf/pytorch-psetae """ class TransformerCNN(BaseCustomTempnetsModel._Schema): keep_prob = fields.Float(required=True, description='Keep probability used in dropout tf.keras.layers.', example=0.5) num_heads = fields.Int(missing=4, description='Number of Attention heads.') head_size = fields.Int(missing=64, description='Size Attention heads.') kernel_size = fields.Int(missing=5, description='Size of the convolution kernels.') num_transformer_blocks = fields.Int(missing=4, description='Number of transformer blocks.') ff_dim = fields.Int(missing=4, description='Number of feed-forward neurons in point-wise CNN.') batch_norm = fields.Bool(missing=False,description='Use batch normalisation.') n_conv = fields.Int(missing=3, description='Number of Attention heads.') d_model = fields.Int(missing=None, description='Depth of model.') mlp_units = fields.List(fields.Int, missing=[64], description='Number of units for each layer in mlp.') mlp_dropout = fields.Float(required=True, description='Keep probability used in dropout MLP layers.', example=0.5) emb_layer = fields.Str(missing='Flatten', description='Embedding layer.') output_activation = fields.Str(missing='linear', description='Output activation.') n_classes = fields.Int(missing=1, description='# Classes.') n_strides = fields.Int(missing=1, description='# strides.') def transformer_encoder(self, inputs): # Normalization and Attention x = tf.keras.layers.LayerNormalization(epsilon=1e-6)(inputs) x = tf.keras.layers.MultiHeadAttention( key_dim=self.config.head_size, num_heads=self.config.num_heads, dropout=1-self.config.keep_prob)(x, x) x = tf.keras.layers.Dropout(1-self.config.keep_prob)(x) res = x + inputs # Feed Forward Part x = tf.keras.layers.LayerNormalization(epsilon=1e-6)(res) for _ in range(self.config.n_conv): x = tf.keras.layers.Conv1D(filters=self.config.ff_dim, padding='SAME', strides=self.config.n_strides, kernel_size=self.config.kernel_size)(x) #if self.config.batch_norm: x = tf.keras.layers.BatchNormalization()(x) x = tf.keras.layers.Dropout(1 - self.config.keep_prob)(x) x = tf.keras.layers.Activation('relu')(x) x = tf.keras.layers.Conv1D(padding='SAME', filters=inputs.shape[-1], kernel_size=1)(x) return x, res def _embeddings(self,net): name = "embedding" if self.config.emb_layer == 'Flatten': net = tf.keras.layers.Flatten(name=name)(net) elif self.config.emb_layer == 'GlobalAveragePooling1D': net = tf.keras.layers.GlobalAveragePooling1D(name=name,data_format="channels_first")(net) elif self.config.emb_layer == 'GlobalMaxPooling1D': net = tf.keras.layers.GlobalMaxPooling1D(name=name,data_format="channels_first")(net) return net def build(self, inputs_shape): input_layer = tf.keras.layers.Input(inputs_shape[1:]) x = input_layer for _ in range(self.config.num_transformer_blocks): lay, res = self.transformer_encoder(x) x = tf.keras.layers.Add()([lay, res]) x = tf.keras.layers.Activation('relu')(x) x = self._embeddings(x) for dim in self.config.mlp_units: x = tf.keras.layers.Dense(dim, activation="relu")(x) if self.config.batch_norm: x = tf.keras.layers.BatchNormalization()(x) x = tf.keras.layers.Dropout(self.config.mlp_dropout)(x) x = tf.keras.layers.Activation('relu')(x) outputs = tf.keras.layers.Dense(self.config.n_classes, activation=self.config.output_activation)(x) self.net = tf.keras.models.Model(inputs=input_layer, outputs=outputs) print_summary(self.net) def call(self, inputs, training=None): return self.net(inputs, training) class CNNTaeSchema(BaseCustomTempnetsModel): """ Implementation of the Pixel-Set encoder + Temporal Attention Encoder sequence classifier Code is based on the Pytorch implementation of <NAME> et al. https://github.com/VSainteuf/pytorch-psetae """ class CNNTaeSchema(BaseCustomTempnetsModel._Schema): num_heads = fields.Int(missing=4, description='Number of Attention heads.') num_dff = fields.Int(missing=32, description='Number of feed-forward neurons in point-wise MLP.') d_model = fields.Int(missing=None, description='Depth of model.') mlp3 = fields.List(fields.Int, missing=[512, 128, 128], description='Number of units for each layer in mlp3.') dropout = fields.Float(missing=0.2, description='Dropout rate for attention encoder.') T = fields.Float(missing=1000, description='Number of features for attention.') len_max_seq = fields.Int(missing=24, description='Number of features for attention.') mlp4 = fields.List(fields.Int, missing=[128, 64, 32], description='Number of units for each layer in mlp4. ') def init_model(self): # TODO: missing features from original PseTae: # * spatial encoder extra features (hand-made) # * spatial encoder masking self.spatial_encoder = pse_tae_tf.keras.layers.PixelSetEncoder( mlp1=self.config.mlp1, mlp2=self.config.mlp2, pooling=self.config.pooling) self.temporal_encoder = pse_tae_tf.keras.layers.TemporalAttentionEncoder( n_head=self.config.num_heads, d_k=self.config.num_dff, d_model=self.config.d_model, n_neurons=self.config.mlp3, dropout=self.config.dropout, T=self.config.T, len_max_seq=self.config.len_max_seq) mlp4_tf.keras.layers = [pse_tae_tf.keras.layers.LinearLayer(out_dim) for out_dim in self.config.mlp4] # Final layer (logits) mlp4_tf.keras.layers.append(pse_tae_tf.keras.layers.LinearLayer(1, batch_norm=False, activation='linear')) self.mlp4 = tf.keras.Sequential(mlp4_tf.keras.layers) def call(self, inputs, training=None, mask=None): out = self.spatial_encoder(inputs, training=training, mask=mask) out = self.temporal_encoder(out, training=training, mask=mask) out = self.mlp4(out, training=training, mask=mask) return out ``` #### File: models/tempnets_task/mlp_tempnets.py ```python import logging import tensorflow as tf from marshmallow import fields from marshmallow.validate import OneOf from keras.layers import TimeDistributed from tensorflow.keras.layers import SimpleRNN, LSTM, GRU, Dense from tensorflow.python.keras.utils.layer_utils import print_summary from eoflow.models.layers import ResidualBlock from eoflow.models.tempnets_task.tempnets_base import BaseTempnetsModel, BaseCustomTempnetsModel from eoflow.models import transformer_encoder_layers from eoflow.models import pse_tae_layers logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') class MLP(BaseCustomTempnetsModel): """ Implementation of the mlp network """ class MLPSchema(BaseCustomTempnetsModel._Schema): keep_prob = fields.Float(required=True, description='Keep probability used in dropout layers.', example=0.5) nb_fc_neurons = fields.Int(missing=256, description='Number of Fully Connect neurons.') nb_fc_stacks = fields.Int(missing=1, description='Number of fully connected layers.') activation = fields.Str(missing='relu', description='Activation function used in final filters.') kernel_initializer = fields.Str(missing='he_normal', description='Method to initialise kernel parameters.') kernel_regularizer = fields.Float(missing=1e-6, description='L2 regularization parameter.') batch_norm = fields.Bool(missing=False, description='Whether to use batch normalisation.') def _fcn_layer(self, net): dropout_rate = 1 - self.config.keep_prob layer_fcn = Dense(units=self.config.nb_fc_neurons, kernel_initializer=self.config.kernel_initializer, kernel_regularizer=tf.keras.regularizers.l2(self.config.kernel_regularizer))(net) if self.config.batch_norm: layer_fcn = tf.keras.layers.BatchNormalization(axis=-1)(layer_fcn) layer_fcn = tf.keras.layers.Dropout(dropout_rate)(layer_fcn) layer_fcn = tf.keras.layers.Activation(self.config.activation)(layer_fcn) return layer_fcn def build(self, inputs_shape): """ Build TCN architecture The `inputs_shape` argument is a `(N, T*D)` tuple where `N` denotes the number of samples, `T` the number of time-frames, and `D` the number of channels """ x = tf.keras.layers.Input(inputs_shape[1:]) net = x for _ in range(self.config.nb_fc_stacks): net = self._fcn_layer(net) net = tf.keras.layers.Dense(units = 1, activation = 'linear', kernel_initializer=self.config.kernel_initializer, kernel_regularizer=tf.keras.regularizers.l2(self.config.kernel_regularizer))(net) self.net = tf.keras.Model(inputs=x, outputs=net) print_summary(self.net) def call(self, inputs, training=None): return self.net(inputs, training) class TransformerEncoder(BaseTempnetsModel): """ Implementation of a self-attention classifier Code is based on the Pytorch implementation of <NAME> https://github.com/MarcCoru/crop-type-mapping """ class TransformerEncoderSchema(BaseTempnetsModel._Schema): keep_prob = fields.Float(required=True, description='Keep probability used in dropout layers.', example=0.5) num_heads = fields.Int(missing=8, description='Number of Attention heads.') num_layers = fields.Int(missing=4, description='Number of encoder layers.') num_dff = fields.Int(missing=512, description='Number of feed-forward neurons in point-wise MLP.') d_model = fields.Int(missing=128, description='Depth of model.') max_pos_enc = fields.Int(missing=24, description='Maximum length of positional encoding.') layer_norm = fields.Bool(missing=True, description='Whether to apply layer normalization in the encoder.') activation = fields.Str(missing='linear', description='Activation function used in final dense filters.') def init_model(self): self.encoder = transformer_encoder_layers.Encoder( num_layers=self.config.num_layers, d_model=self.config.d_model, num_heads=self.config.num_heads, dff=self.config.num_dff, maximum_position_encoding=self.config.max_pos_enc, layer_norm=self.config.layer_norm) self.dense = tf.keras.layers.Dense(units=self.config.n_classes, activation=self.config.activation) def build(self, inputs_shape): """ Build Transformer encoder architecture The `inputs_shape` argument is a `(N, T, D)` tuple where `N` denotes the number of samples, `T` the number of time-frames, and `D` the number of channels """ seq_len = inputs_shape[1] self.net = tf.keras.Sequential([ self.encoder, self.dense, tf.keras.layers.MaxPool1D(pool_size=seq_len), tf.keras.layers.Lambda(lambda x: tf.keras.backend.squeeze(x, axis=-2), name='squeeze'), tf.keras.layers.Softmax() ]) # Build the model, so we can print the summary self.net.build(inputs_shape) print_summary(self.net) def call(self, inputs, training=None, mask=None): return self.net(inputs, training, mask) ######################################################################################################################################################## class PseTae(BaseTempnetsModel): """ Implementation of the Pixel-Set encoder + Temporal Attention Encoder sequence classifier Code is based on the Pytorch implementation of <NAME> et al. https://github.com/VSainteuf/pytorch-psetae """ class PseTaeSchema(BaseTempnetsModel._Schema): mlp1 = fields.List(fields.Int, missing=[10, 32, 64], description='Number of units for each layer in mlp1.') pooling = fields.Str(missing='mean_std', description='Methods used for pooling. Seperated by underscore. (mean, std, max, min)') mlp2 = fields.List(fields.Int, missing=[132, 128], description='Number of units for each layer in mlp2.') num_heads = fields.Int(missing=4, description='Number of Attention heads.') num_dff = fields.Int(missing=32, description='Number of feed-forward neurons in point-wise MLP.') d_model = fields.Int(missing=None, description='Depth of model.') mlp3 = fields.List(fields.Int, missing=[512, 128, 128], description='Number of units for each layer in mlp3.') dropout = fields.Float(missing=0.2, description='Dropout rate for attention encoder.') T = fields.Float(missing=1000, description='Number of features for attention.') len_max_seq = fields.Int(missing=24, description='Number of features for attention.') mlp4 = fields.List(fields.Int, missing=[128, 64, 32], description='Number of units for each layer in mlp4. ') def init_model(self): # TODO: missing features from original PseTae: # * spatial encoder extra features (hand-made) # * spatial encoder masking self.spatial_encoder = pse_tae_layers.PixelSetEncoder( mlp1=self.config.mlp1, mlp2=self.config.mlp2, pooling=self.config.pooling) self.temporal_encoder = pse_tae_layers.TemporalAttentionEncoder( n_head=self.config.num_heads, d_k=self.config.num_dff, d_model=self.config.d_model, n_neurons=self.config.mlp3, dropout=self.config.dropout, T=self.config.T, len_max_seq=self.config.len_max_seq) mlp4_layers = [pse_tae_layers.LinearLayer(out_dim) for out_dim in self.config.mlp4] # Final layer (logits) mlp4_layers.append(pse_tae_layers.LinearLayer(1, batch_norm=False, activation='linear')) self.mlp4 = tf.keras.Sequential(mlp4_layers) def call(self, inputs, training=None, mask=None): out = self.spatial_encoder(inputs, training=training, mask=mask) out = self.temporal_encoder(out, training=training, mask=mask) out = self.mlp4(out, training=training, mask=mask) return out ``` #### File: eoflow/tasks/evaluate.py ```python from marshmallow import Schema, fields from ..base import BaseTask from ..base.configuration import ObjectConfiguration class EvaluateTask(BaseTask): class EvaluateTaskConfig(Schema): model_directory = fields.String(required=True, description='Directory of the model', example='/tmp/model/') input_config = fields.Nested(nested=ObjectConfiguration, required=True, description="Input type and configuration.") def run(self): dataset = self.parse_input(self.config.input_config) self.model.prepare() self.model.load_latest(self.config.model_directory) values = self.model.evaluate(dataset) names = self.model.metrics_names metrics = {name:value for name,value in zip(names, values)} # Display metrics print("Evaluation results:") for metric_name in metrics: print("{}: {}".format(metric_name, metrics[metric_name])) ``` #### File: eo-flow/examples/test_inception.py ```python import eoflow.models.tempnets_task.cnn_tempnets as cnn_tempnets import tensorflow as tf # Model configuration CNNLSTM import numpy as np import os import tensorflow_addons as tfa import matplotlib.pyplot as plt from eoflow.models.data_augmentation import feature_noise, timeshift, noisy_label from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error import matplotlib.pyplot as plt from sklearn.ensemble import RandomForestRegressor ######################################################################################################################## ######################################################################################################################## def reshape_array(x, T=30): x = x.reshape(x.shape[0], x.shape[1] // T, T) x = np.moveaxis(x, 2, 1) return x def npy_concatenate(path, prefix='training_x', T=30): path_npy = os.path.join(path, prefix) ''' x_bands = np.load(path_npy + '_bands.npy') x_bands = reshape_array(x_bands, T) x_vis = np.load(path_npy + '_vis.npy') x_vis = reshape_array(x_vis, T) np.concatenate([x_bands, x_vis], axis = -1) ''' x = np.load(path_npy + '_S2.npy') x = reshape_array(x, T) return x path = '/home/johann/Documents/Syngenta/cleaned_V2/2021' x_train = npy_concatenate(path, 'training_x') y_train = np.load(os.path.join(path, 'training_y.npy')) x_val = npy_concatenate(path, 'val_x') y_val = np.load(os.path.join(path, 'val_y.npy')) x_test = npy_concatenate(path, 'test_x') y_test = np.load(os.path.join(path, 'test_y.npy')) # x_train = np.concatenate([x_train, x_val], axis = 0) # y_train = np.concatenate([y_train, y_val], axis = 0) model_cfg_cnn_stride = { "learning_rate": 10e-3, "keep_prob": 0.5, # should keep 0.8 "nb_conv_filters": 32, # wiorks great with 32 "nb_conv_stacks": 3, # Nb Conv layers "kernel_size": 3, "batch_norm": True, 'use_residual' : True, "kernel_regularizer": 1e-6, "loss": "mse", # huber was working great for 2020 and 2021 "metrics": "r_square", } #MODEL 64 128 with drop out 0.5 works great on 2019 model_cnn = cnn_tempnets.InceptionCNN(model_cfg_cnn_stride) # Prepare the model (must be run before training) model_cnn.prepare() ts=3 self = model_cnn x = x_train batch_size = 8 print(path) model_cnn.train_and_evaluate( train_dataset=(x_train, y_train), val_dataset=(x_val, y_val), test_dataset=(x_test, y_test), num_epochs=500, save_steps=5, batch_size = 32, function = np.min, shift_step = 1, #3 sdev_label =0.05, #0.1 feat_noise = 0, #0.2 patience = 100, forget = 1, reduce_lr = True, #finetuning = True, #pretraining_path ='/home/johann/Documents/model_64_Causal_Stride_shift_0', model_directory='/home/johann/Documents/model_16', ) t = model_cnn.predict(x_test) plt.scatter(t, y_test) plt.xlim((0.2,1)) plt.show() ``` #### File: eo-flow/tests/test_metrics.py ```python import unittest import numpy as np from eoflow.models.metrics import MeanIoU, MCCMetric from eoflow.models.metrics import GeometricMetrics from scipy import ndimage class TestMeanIoU(unittest.TestCase): def test_not_initialized(self): metric = MeanIoU() y_true = np.zeros((1, 32, 32, 3)) y_pred = np.zeros((1, 32, 32, 3)) # Errors should be raised (because not initialized) self.assertRaises(ValueError, metric.update_state, y_true, y_pred) self.assertRaises(ValueError, metric.result) self.assertRaises(ValueError, metric.reset_states) self.assertRaises(ValueError, metric.get_config) metric.init_from_config() # Test that errors are not raised metric.update_state(y_true, y_pred) metric.result() metric.reset_states() metric.get_config() def test_iou_results(self): metric = MeanIoU() metric.init_from_config({'n_classes': 3}) ones = np.ones((32, 32)) zeros = np.zeros((32, 32)) mixed = np.concatenate([ones[:16], zeros[:16]]) # Predict everything as class 1 y_pred = np.stack([zeros, ones], axis=-1) y_true1 = np.stack([ones, zeros], axis=-1) # All class 0 y_true2 = np.stack([zeros, ones], axis=-1) # All class 1 y_true3 = np.stack([mixed, 1 - mixed], axis=-1) # Half class 1, half class 0 # Check each one seperately metric.update_state(y_true1, y_pred) self.assertAlmostEqual(metric.result().numpy(), 0.0, 10) metric.reset_states() metric.update_state(y_true2, y_pred) self.assertAlmostEqual(metric.result().numpy(), 1.0, 10) metric.reset_states() metric.update_state(y_true3, y_pred) self.assertAlmostEqual(metric.result().numpy(), 0.25, 10) # Class 1 IoU: 0.5, Class 2 IoU: 0.0 # Check aggregation metric.reset_states() metric.update_state(y_true1, y_pred) metric.update_state(y_true2, y_pred) metric.update_state(y_true3, y_pred) self.assertAlmostEqual(metric.result().numpy(), 0.25, 10) # Class 1 IoU: 0.5, Class 2 IoU: 0.0 class TestMCC(unittest.TestCase): def test_not_initialized(self): metric = MCCMetric() y_true = np.zeros((1, 32, 32, 3)) y_pred = np.zeros((1, 32, 32, 3)) # Errors should be raised (because not initialized) self.assertRaises(ValueError, metric.update_state, y_true, y_pred) self.assertRaises(ValueError, metric.result) self.assertRaises(ValueError, metric.reset_states) self.assertRaises(ValueError, metric.get_config) metric.init_from_config({'n_classes': 3}) # Test that errors are not raised metric.update_state(y_true, y_pred) metric.result() metric.reset_states() metric.get_config() def test_wrong_n_classes(self): metric = MCCMetric() n_classes = 3 y_true = np.zeros((1, 32, 32, n_classes)) y_pred = np.zeros((1, 32, 32, n_classes)) metric.init_from_config({'n_classes': 1}) # Test that errors are raised with self.assertRaises(Exception) as context: metric.update_state(y_true, y_pred) self.assertTrue((f'Input to reshape is a tensor with {np.prod(y_true.shape)} values, ' f'but the requested shape has {np.prod(y_true.shape[:-1])}') in str(context.exception)) def test_mcc_results_binary_symmetry(self): metric = MCCMetric() metric.init_from_config({'n_classes': 2}) y_pred = np.random.randint(0, 2, (32, 32, 1)) y_pred = np.concatenate((y_pred, 1-y_pred), axis=-1) y_true = np.random.randint(0, 2, (32, 32, 1)) y_true = np.concatenate((y_true, 1 - y_true), axis=-1) metric.update_state(y_true, y_pred) results = metric.result().numpy() self.assertAlmostEqual(results[0], results[1], 7) def test_mcc_single_vs_binary(self): metric_single = MCCMetric() metric_single.init_from_config({'n_classes': 1}) y_pred = np.random.randint(0, 2, (32, 32, 1)) y_true = np.random.randint(0, 2, (32, 32, 1)) metric_single.update_state(y_true, y_pred) result_single = metric_single.result().numpy()[0] metric_binary = MCCMetric() metric_binary.init_from_config({'n_classes': 2}) y_pred = np.concatenate((y_pred, 1-y_pred), axis=-1) y_true = np.concatenate((y_true, 1 - y_true), axis=-1) metric_binary.update_state(y_true, y_pred) result_binary = metric_binary.result().numpy()[0] self.assertAlmostEqual(result_single, result_binary, 7) def test_mcc_results(self): # test is from an example of MCC in sklearn.metrics matthews_corrcoef y_true = np.array([1, 1, 1, 0])[..., np.newaxis] y_pred = np.array([1, 0, 1, 1])[..., np.newaxis] metric = MCCMetric() metric.init_from_config({'n_classes': 1}) metric.update_state(y_true, y_pred) self.assertAlmostEqual(metric.result().numpy()[0], -0.3333333, 7) def test_mcc_threshold(self): y_true = np.array([1, 1, 1, 0])[..., np.newaxis] y_pred = np.array([0.9, 0.6, 0.61, 0.7])[..., np.newaxis] metric = MCCMetric() metric.init_from_config({'n_classes': 1, 'mcc_threshold': 0.6}) metric.update_state(y_true, y_pred) self.assertAlmostEqual(metric.result().numpy()[0], -0.3333333, 7) class TestGeometricMetric(unittest.TestCase): def detect_edges(self, im, thr=0): sx = ndimage.sobel(im, axis=0, mode='constant') sy = ndimage.sobel(im, axis=1, mode='constant') sob = np.hypot(sx, sy) return sob > thr def test_equal_geometries(self): metric = GeometricMetrics(edge_func=self.detect_edges) y_true = np.zeros((2, 32, 32)) y_pred = np.zeros((2, 32, 32)) y_true[0, 10:20, 10:20] = 1 y_pred[0, 10:20, 10:20] = 1 y_true[1, 0:10, 0:10] = 1 y_pred[1, 0:10, 0:10] = 1 y_true[1, 15:20, 15:20] = 1 y_pred[1, 15:20, 15:20] = 1 metric.update_state(y_true, y_pred) overseg_err, underseg_err, border_err, fragmentation_err = metric.result() self.assertEqual(overseg_err, 0., "For equal geometries oversegmentation should be 0!") self.assertEqual(underseg_err, 0., "For equal geometries undersegmentation should be 0!") self.assertEqual(fragmentation_err, 0., "For equal geometries fragmentation error should be 0!") self.assertEqual(border_err, 0., "For equal geometries border error should be 0!") def test_empty_geometries(self): metric = GeometricMetrics(edge_func=self.detect_edges) y_true = np.ones((1, 32, 32)) y_pred = np.zeros((1, 32, 32)) metric.update_state(y_true, y_pred) overseg_err, underseg_err, border_err, fragmentation_err = metric.result() self.assertEqual(overseg_err, 1., "For empty geometries oversegmentation should be 1!") self.assertEqual(underseg_err, 1., "For empty geometries undersegmentation should be 1!") self.assertEqual(fragmentation_err, 0., "For empty geometries fragmentation error should be 0!") self.assertEqual(border_err, 1., "For empty geometries border error should be 1!") def test_quarter(self): metric = GeometricMetrics(edge_func=self.detect_edges) # A quarter of measurement covers a quarter of reference y_true = np.zeros((1, 200, 200)) y_pred = np.zeros((1, 200, 200)) y_true[0, :100, :100] = 1 y_pred[0, 50:150, 50:150] = 1 metric.update_state(y_true, y_pred) overseg_err, underseg_err, border_err, fragmentation_err = metric.result() self.assertEqual(overseg_err, 0.75) self.assertEqual(underseg_err, 0.75) self.assertEqual(fragmentation_err, 0.) self.assertAlmostEqual(border_err, 0.9949494949494949) def test_multiple(self): metric = GeometricMetrics(edge_func=self.detect_edges) # A quarter of measurement covers a quarter of reference y_true = np.zeros((1, 200, 200)) y_pred = np.zeros((1, 200, 200)) y_true[0, 10:20, 20:120] = 1 y_true[0, 30:40, 20:120] = 1 y_true[0, 50:60, 20:120] = 1 y_pred[0, 15:33, 20:120] = 1 y_pred[0, 36:65, 20:120] = 1 metric.update_state(y_true, y_pred) overseg_err, underseg_err, border_err, fragmentation_err = metric.result() self.assertEqual(overseg_err, 0.3666666666666667) self.assertEqual(underseg_err, 0.7464878671775222) self.assertEqual(fragmentation_err, 0.000333667000333667) self.assertAlmostEqual(border_err, 0.9413580246913581) if __name__ == '__main__': unittest.main() ```
{ "source": "j-desloires/eo-learn-examples", "score": 2 }
#### File: eocrops/tasks/cmd_otb.py ```python import numpy as np import eolearn from eolearn.core import FeatureType, EOTask from pathlib import Path from osgeo import gdal import os import shutil import subprocess import rasterio from eolearn.io.local_io import ExportToTiffTask, ImportFromTiffTask class MultitempSpeckleFiltering(EOTask): def __init__(self, otb_path, feature_name = "BANDS-S1-IW", path_in = './', window = 3): ''' Multitemporal filtering ONLY for Sentinel-1 data using OTB Parameters: otb_path (str) : Path where bin from Orfeo Toolbox package is installed path_in (str) : Path to write the temporary files (removed at the end of the process) window (int) : window to apply for Quegan filter for SAR data ''' self.feature_name = feature_name self.otb_path = otb_path self.path_in = path_in self.window = window @staticmethod def _refactor_dates(t): # Add dates as suffix year, d, m = str(t.year), str(t.day), str(t.month) if len(d)==1 : d = '0'+d if len(m)==1 : m = '0'+m return '{0}{1}{2}'.format(year, m, d) def _apply_OTB_cmd(self, pol, ram = 8): path_in = os.path.join(self.path_in, 'S1_'+pol) s1_images = os.listdir(path_in) infiles = [os.path.join(path_in, k) for k in s1_images] infiles.sort() cmd = [os.path.join(self.otb_path, "otbcli_MultitempFilteringOutcore"), "-inl"] cmd += infiles cmd += ['-wr', str(self.window), '-oc', os.path.join(path_in, 'outcore.tif'), '-ram', str(8)] outdir = Path(path_in+'_filtered') if not outdir.exists() : os.mkdir(outdir) subprocess.call(cmd, shell=False) cmd = [os.path.join(self.otb_path, "otbcli_MultitempFilteringFilter"), "-inl"] cmd += infiles cmd += ['-enl', os.path.join(outdir, 'enl.tif'), '-wr', str(self.window), '-filtpath', outdir, '-oc', os.path.join(path_in, 'outcore.tif'), '-ram', str(ram)] subprocess.call(cmd, shell=False) outfiles = [os.path.join(outdir, k.split('.')[0]+'_filtered.tif') for k in s1_images] outfiles.sort() return infiles, outdir, outfiles def _save_temporary_geotiff(self, i, date, eopatch): ## TODO : Find a way to write temporary file without writing on disk using ExportToTiffTask to make the process faster export = ExportToTiffTask(feature=self.feature_name, folder=os.path.join(self.path_in, 'S1_VV/S1_VV_' + date), band_indices=[0], date_indices=[i]) export.execute(eopatch) export = ExportToTiffTask(feature=self.feature_name, folder=os.path.join(self.path_in, 'S1_VH/S1_VH_' + date), band_indices=[1], date_indices=[i]) export.execute(eopatch) def execute(self, eopatch, ram = 8): if os.path.exists(os.path.join(self.path_in, 'S1_VV')): shutil.rmtree(os.path.join(self.path_in, 'S1_VV')) shutil.rmtree(os.path.join(self.path_in, 'S1_VH')) os.mkdir(os.path.join(self.path_in, 'S1_VV')) os.mkdir(os.path.join(self.path_in, 'S1_VH')) times = list(eopatch.timestamp) for i, t in enumerate(times): date = self._refactor_dates(t) self._save_temporary_geotiff(i,date,eopatch) ######################################################################################################## for pol in ['VV', 'VH']: infiles, outdir, outfiles = self._apply_OTB_cmd(pol,ram) ########################################################################## reference_file = infiles[0] with rasterio.open(reference_file) as src0: meta = src0.meta meta['nodata'] = 0.0 meta['dtype'] = 'float32' meta['count'] = len(times) path_tif = outfiles[0].split('_2017')[0] + '.tif' if 'outcore_filtered.tif' in os.listdir(outdir): outfiles.remove(os.path.join(outdir, 'outcore_filtered.tif')) outfiles.sort() with rasterio.open(path_tif, 'w', **meta) as dst: for i in range(1, len(times) + 1): img = gdal.Open(outfiles[i - 1]).ReadAsArray() dst.write_band(i, img) import_tif = ImportFromTiffTask((FeatureType.DATA, pol + '_filtered'), path_tif) eopatch = import_tif.execute(eopatch) shutil.rmtree(os.path.join(self.path_in, 'S1_VV_filtered')) shutil.rmtree(os.path.join(self.path_in, 'S1_VH_filtered')) shutil.rmtree(os.path.join(self.path_in, 'S1_VV')) shutil.rmtree(os.path.join(self.path_in, 'S1_VH')) return eopatch class PanSharpening(EOTask): def __init__(self, fname = 'BANDS', otb_path = '/home/s999379/git-repo/OTB-7.4.0-Linux64/bin', path_temporary_files = './tempo'): ''' Multitemporal filtering ONLY for Sentinel-1 data using OTB Parameters: fname (str) : Name of the feature stored in data that gathers the bands otb_path (str) : Path where bin from Orfeo Toolbox package is installed path_temporary_files (str) : path to save the temporary geotiff file to call OTB ''' self.fname = fname self.otb_path = otb_path self.path_temporary_files = path_temporary_files @staticmethod def _refactor_dates(t): # Add dates as suffix year, d, m = str(t.year), str(t.day), str(t.month) if len(d)==1 : d = '0'+d if len(m)==1 : m = '0'+m return '{0}{1}{2}'.format(year, m, d) def _extracted_from__save_temporary_geotiff(self, date, i, eopatch, band_indices=None): if band_indices is None : band_indices = list(range(4)) export = ExportToTiffTask(feature=self.fname, folder=os.path.join(self.path_temporary_files, 'PAN_' + date), band_indices=[-1], date_indices=[i]) export.execute(eopatch) export = ExportToTiffTask(feature=self.fname, folder=os.path.join(self.path_temporary_files, 'BANDS_' + date), band_indices=band_indices, date_indices=[i]) export.execute(eopatch) def _apply_OTB_cmd(self, date): cm = [os.path.join(self.otb_path, 'otbcli_Pansharpening'), '-inp',os.path.join(self.path_temporary_files,'PAN_' + date +'.tif'), '-inxs', os.path.join(self.path_temporary_files,'BANDS_' + date +'.tif'), '-method', 'lmvm', '-out', os.path.join(self.path_temporary_files, 'Pansharpened_' + date +'.tif'), 'float'] subprocess.call(cm, shell=False) def _clean_temporary_files(self): shutil.rmtree(self.path_temporary_files) def execute(self, eopatch, band_indices=None): times = list(eopatch.timestamp) pan_bands = [] for i, t in enumerate(times): date = self._refactor_dates(t) self._extracted_from__save_temporary_geotiff(date, i, eopatch, band_indices) self._apply_OTB_cmd(date) img = gdal.Open(os.path.join(self.path_temporary_files, 'Pansharpened_' + date +'.tif')).ReadAsArray() img = np.moveaxis(img, 0, -1) pan_bands.append(img) pan_bands = np.stack(pan_bands, axis =0) self._clean_temporary_files() eopatch.add_feature(eolearn.core.FeatureType.DATA, 'BANDS-PAN', pan_bands) return eopatch ```
{ "source": "JD-ETH/CompilerGym", "score": 3 }
#### File: tests/pytest_plugins/random_util.py ```python import random from typing import List, Tuple from compiler_gym.envs import CompilerEnv from compiler_gym.service import observation_t def apply_random_trajectory( env: CompilerEnv, random_trajectory_length_range=(1, 50) ) -> List[Tuple[int, observation_t, float, bool]]: """Evaluate and return a random trajectory.""" num_actions = random.randint(*random_trajectory_length_range) trajectory = [] for _ in range(num_actions): action = env.action_space.sample() observation, reward, done, _ = env.step(action) if done: break # Broken trajectory. trajectory.append((action, observation, reward, done)) return trajectory ``` #### File: CompilerGym/tests/test_main.py ```python import os import sys from typing import List, Optional import gym import pytest import compiler_gym # noqa Register environments. def main( extra_pytest_args: Optional[List[str]] = None, verbose_service_logging: bool = True ): """The main entry point for the pytest runner. An example file which uses this: from compiler_gym.util.test_main import main def test_foo(): assert 1 + 1 == 2 if __name__ == "__main__": main() In the above, the single test_foo test will be executed. :param extra_pytest_args: A list of additional command line options to pass to pytest. :param verbose_service_logging: Whether to enable verbose CompilerGym service logging, useful for debugging failing tests. """ # Use isolated data directories for running tests. os.environ["COMPILER_GYM_SITE_DATA"] = "/tmp/compiler_gym/tests/site_data" os.environ["COMPILER_GYM_CACHE"] = "/tmp/compiler_gym/tests/cache" # Install some benchmarks for the LLVM environment as otherwise # reset() will fail. env = gym.make("llvm-v0") try: env.require_dataset("cBench-v0") finally: env.close() # Use verbose backend debugging when running tests. If a test fails, the debugging # output will be included in the captured stderr. if verbose_service_logging: os.environ["COMPILER_GYM_SERVICE_DEBUG"] = "1" pytest_args = sys.argv + ["-vv"] # Support for sharding. If a py_test target has the shard_count attribute # set (in the range [1,50]), then the pytest-shard module is used to divide # the tests among the shards. See https://pypi.org/project/pytest-shard/ sharded_test = os.environ.get("TEST_TOTAL_SHARDS") if sharded_test: num_shards = int(os.environ["TEST_TOTAL_SHARDS"]) shard_index = int(os.environ["TEST_SHARD_INDEX"]) pytest_args += [f"--shard-id={shard_index}", f"--num-shards={num_shards}"] else: pytest_args += ["-p", "no:pytest-shard"] pytest_args += extra_pytest_args or [] sys.exit(pytest.main(pytest_args)) ```
{ "source": "JD-ETH/rlmeta", "score": 2 }
#### File: examples/tutorials/remote_example.py ```python import asyncio import torch import torch.multiprocessing as mp import rlmeta.core.remote as remote import rlmeta.utils.remote_utils as remote_utils from rlmeta.core.server import Server class Adder(remote.Remotable): @remote.remote_method() def add(self, a, b): print(f"[Adder.add] a = {a}") print(f"[Adder.add] b = {b}") return a + b @remote.remote_method(batch_size=10) def batch_add(self, a, b): print(f"[Adder.batch_add] a = {a}") print(f"[Adder.batch_add] b = {b}") if not isinstance(a, tuple) and not isinstance(b, tuple): return a + b else: return tuple(sum(x) for x in zip(a, b)) async def run_batch(adder_client, send_tensor=False): futs = [] for i in range(20): if send_tensor: a = torch.tensor([i]) b = torch.tensor([i + 1]) else: a = i b = i + 1 fut = adder_client.async_batch_add(a, b) futs.append(fut) await asyncio.sleep(1.0) for i, fut in enumerate(futs): if send_tensor: a = torch.tensor([i]) b = torch.tensor([i + 1]) else: a = i b = i + 1 c = await fut print(f"{a} + {b} = {c}") def main(): adder = Adder() adder_server = Server(name="adder_server", addr="127.0.0.1:4411") adder_server.add_service(adder) adder_client = remote_utils.make_remote(adder, adder_server) adder_server.start() adder_client.connect() a = 1 b = 2 c = adder_client.add(a, b) print(f"{a} + {b} = {c}") print("") asyncio.run(run_batch(adder_client, send_tensor=False)) print("") asyncio.run(run_batch(adder_client, send_tensor=True)) adder_server.terminate() if __name__ == "__main__": main() ```
{ "source": "jdetle/builderhub", "score": 2 }
#### File: builderhub/builderhub/redirect.py ```python from tornado import web, gen class RedirectHandler(web.RequestHandler): def get(self): image = self.get_argument('image') default_url = self.get_argument('default_url') url = self.settings['hub_redirect_url_template'].format( image=image, default_url=default_url ) self.redirect(url) ```
{ "source": "jdetrey/python-musicbrainzngs", "score": 3 }
#### File: python-musicbrainzngs/examples/collection.py ```python from __future__ import print_function from __future__ import unicode_literals import musicbrainzngs import getpass from optparse import OptionParser import sys try: user_input = raw_input except NameError: user_input = input musicbrainzngs.set_useragent( "python-musicbrainzngs-example", "0.1", "https://github.com/alastair/python-musicbrainzngs/", ) def show_collections(): """Fetch and display the current user's collections. """ result = musicbrainzngs.get_collections() print('All collections for this user:') for collection in result['collection-list']: # entity-type only available starting with musicbrainzngs 0.6 if "entity-type" in collection: print('"{name}" by {editor} ({cat}, {count} {entity}s)\n\t{mbid}' .format( name=collection['name'], editor=collection['editor'], cat=collection['type'], entity=collection['entity-type'], count=collection[collection['entity-type']+'-count'], mbid=collection['id'] )) else: print('"{name}" by {editor}\n\t{mbid}'.format( name=collection['name'], editor=collection['editor'], mbid=collection['id'] )) def show_collection(collection_id, ctype): """Show a given collection. """ if ctype == "release": result = musicbrainzngs.get_releases_in_collection( collection_id, limit=0) elif ctype == "artist": result = musicbrainzngs.get_artists_in_collection( collection_id, limit=0) elif ctype == "event": result = musicbrainzngs.get_events_in_collection( collection_id, limit=0) elif ctype == "place": result = musicbrainzngs.get_places_in_collection( collection_id, limit=0) elif ctype == "recording": result = musicbrainzngs.get_recordings_in_collection( collection_id, limit=0) elif ctype == "work": result = musicbrainzngs.get_works_in_collection( collection_id, limit=0) collection = result['collection'] # entity-type only available starting with musicbrainzngs 0.6 if "entity-type" in collection: print('{mbid}\n"{name}" by {editor} ({cat}, {entity})'.format( name=collection['name'], editor=collection['editor'], cat=collection['type'], entity=collection['entity-type'], mbid=collection['id'] )) else: print('{mbid}\n"{name}" by {editor}'.format( name=collection['name'], editor=collection['editor'], mbid=collection['id'] )) print('') # release count is only available starting with musicbrainzngs 0.5 if "release-count" in collection: print('{} releases'.format(collection['release-count'])) if "artist-count" in collection: print('{} artists'.format(collection['artist-count'])) if "event-count" in collection: print('{} events'.format(collection['release-count'])) if "place-count" in collection: print('{} places'.format(collection['place-count'])) if "recording-count" in collection: print('{} recordings'.format(collection['recording-count'])) if "work-count" in collection: print('{} works'.format(collection['work-count'])) print('') if "release-list" in collection: show_releases(collection) else: pass # TODO def show_releases(collection): result = musicbrainzngs.get_releases_in_collection(collection_id, limit=25) release_list = result['collection']['release-list'] print('Releases:') releases_fetched = 0 while len(release_list) > 0: print("") releases_fetched += len(release_list) for release in release_list: print('{title} ({mbid})'.format( title=release['title'], mbid=release['id'] )) if user_input("Would you like to display more releases? [y/N] ") != "y": break; # fetch next batch of releases result = musicbrainzngs.get_releases_in_collection(collection_id, limit=25, offset=releases_fetched) collection = result['collection'] release_list = collection['release-list'] print("") print("Number of fetched releases: %d" % releases_fetched) if __name__ == '__main__': parser = OptionParser(usage="%prog [options] USERNAME [COLLECTION-ID]") parser.add_option('-a', '--add', metavar="RELEASE-ID", help="add a release to the collection") parser.add_option('-r', '--remove', metavar="RELEASE-ID", help="remove a release from the collection") parser.add_option('-t', '--type', metavar="TYPE", default="release", help="type of the collection (default: release)") options, args = parser.parse_args() if not args: parser.error('no username specified') username = args.pop(0) # Input the password. password = getpass.getpass('Password for {}: '.format(username)) # Call musicbrainzngs.auth() before making any API calls that # require authentication. musicbrainzngs.auth(username, password) if args: # Actions for a specific collction. collection_id = args[0] if options.add: if option.type == "release": musicbrainzngs.add_releases_to_collection( collection_id, [options.add] ) else: sys.exit("only release collections can be modified ATM") elif options.remove: if option.type == "release": musicbrainzngs.remove_releases_from_collection( collection_id, [options.remove] ) else: sys.exit("only release collections can be modified ATM") else: # Print out the collection's contents. print("") show_collection(collection_id, options.type) else: # Show all collections. print("") show_collections() ```
{ "source": "JDeuce/puck-strats", "score": 3 }
#### File: JDeuce/puck-strats/graph.py ```python import matplotlib import matplotlib.pyplot as plt import numpy as np import struct import argparse import os from sys import exit def chunks(l, n): for i in xrange(0, len(l), n): yield l[i:i+n] def make_graph(source_path, dest_path): x_data = [] y_data = [] z_data = [] stat = os.stat(source_path) filesize = stat.st_size sample_count = filesize / 4 seconds = (sample_count / 3.0) / 100.0 with open(source_path, 'rb') as f: data = struct.unpack('f' * sample_count, f.read()) for chunk in chunks(data, 3): x_data.append(chunk[0]) y_data.append(chunk[1]) z_data.append(chunk[2]) t = np.arange(0.0, seconds, 0.01) plt.xlim(0, seconds) plt.plot(t, x_data, t, y_data, t, z_data) plt.xlabel("time (s)") plt.ylabel("stuff") plt.title("Getting Ripped") plt.grid(True) plt.savefig(dest_path) plt.clf() plt.close('all') def main(): args = parse_args() filepath = args.filepath make_graph(filepath, "test.png") exit(0) def parse_args(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter, description='graph accelerometer data' ) # Positional Arguments parser.add_argument( 'filepath', type=str.lower, help='filepath for binary data file' ) return parser.parse_args() if __name__ == '__main__': main() ```
{ "source": "JDeuce/pyramid_jinja2_webpack", "score": 2 }
#### File: src/pyramid_jinja2_webpack/__init__.py ```python from types import FunctionType from jinja2_webpack import DEFAULT_SETTINGS, Environment from jinja2_webpack.filter import WebpackFilter from pyramid.exceptions import ConfigurationError from pyramid.settings import asbool from zope.dottedname.resolve import resolve as resolve_dotted from zope.interface import Interface class IWebpackEnvironment(Interface): pass class Jinja2EnvironmentMissingException(Exception): """ Thrown when configuration fails because it can't find the jinija2 environment """ pass def get_webpack_environment(context): return context.registry.queryUtility(IWebpackEnvironment) def parse_multiline(val): result = {} for e in val.splitlines(): if not e.strip(): continue key, value = e.strip().split('=', 1) result[key] = value return result def parse_renderByExt(val): # resolves dotted names result = parse_multiline(val) resolved_result = {} for k, v in result.items(): resolved_result[k] = resolve_dotted(v) return resolved_result def webpack_settings_from_settings(registry_settings, prefixes=None): prefixes = prefixes or ['webpack.'] settings = {} for k, v in registry_settings.items(): for prefix in prefixes: slicelen = len(prefix) if k.startswith(prefix): setting_name = k[slicelen:] try: default = DEFAULT_SETTINGS[setting_name] except KeyError: toggle = prefix + 'errorOnInvalidSetting' if toggle in registry_settings: default = '' else: raise ConfigurationError( 'Invalid webpack setting %s' % setting_name) # jinja2_webpack exposes a DEFAULT_SETTINGS dict which # contains the default value for all the settings. # Use the type of the default to process the setting from ini. if type(default) == bool: v = asbool(v) elif type(default) == FunctionType: v = resolve_dotted(v) elif setting_name == 'renderByExt': v = parse_renderByExt(v) settings[setting_name] = v return settings def includeme(config): registry_settings = config.registry.settings settings = webpack_settings_from_settings(registry_settings) registry_settings['webpack'] = settings # Load the webpack environment environment = Environment(**settings) config.registry.registerUtility(environment, IWebpackEnvironment) # Add callbacks config.add_directive('get_webpack_environment', get_webpack_environment) config.add_request_method(get_webpack_environment, 'webpack_environment', reify=True) # Expose a webpack filter to jinja2 environment webpack_filter = WebpackFilter(environment) try: jinja2_env = config.get_jinja2_environment() except AttributeError: raise Jinja2EnvironmentMissingException( 'Unable to find jinja2 environment. ' 'Try config.commit() after including jinja2') jinja2_env.filters['webpack'] = webpack_filter __version__ = '0.1.1' ``` #### File: pyramid_jinja2_webpack/tests/test_settings.py ```python import pytest from jinja2_webpack import DEFAULT_SETTINGS from pyramid.exceptions import ConfigurationError from pyramid_jinja2_webpack import webpack_settings_from_settings def _(settings, **kw): return webpack_settings_from_settings(settings, **kw) def test_manifest(): settings = _({'webpack.manifest': 'manifest.json'}) assert settings['manifest'] == 'manifest.json' def test_useDefaultRenderByExt(): settings = _({'webpack.useDefaultRenderByExt': 'False'}) assert settings['useDefaultRenderByExt'] is False def test_alternate_prefix(): settings = _({'test_prefix_manifest': 'manifest.json'}, prefixes=['test_prefix_']) assert settings['manifest'] == 'manifest.json' def test_multiple_prefixes(): settings = _({'p1.manifest': 'a', 'p2.publicRoot': 'b'}, prefixes=['p1.', 'p2.']) assert settings['manifest'] assert settings['publicRoot'] def test_error_on_invalid_setting(): with pytest.raises(ConfigurationError): _({'webpack.fubar': True}) def test_error_on_invalid_setting_toggle(): _({'webpack.fubar': True, 'webpack.errorOnInvalidSetting': False}) FOO = object() BAR = object() @pytest.fixture() def no_imports(monkeypatch): import pyramid_jinja2_webpack mapping = {'foo.bar': FOO, 'bar.baz': BAR} monkeypatch.setattr(pyramid_jinja2_webpack, 'resolve_dotted', mapping.get) def test_setting_renderByext(no_imports): settings = _({'webpack.renderByExt': '.js=foo.bar\n.css=bar.baz'}) assert settings['renderByExt']['.js'] == FOO assert settings['renderByExt']['.css'] == BAR def test_defaultRenderer(no_imports): settings = _({'webpack.defaultRenderer': 'foo.bar'}) assert 'defaultRenderer' in DEFAULT_SETTINGS assert settings['defaultRenderer'] == FOO def test_badRendererRaisesException(): with pytest.raises(ImportError): _({'webpack.defaultRenderer': 'foo.bar'}) ```
{ "source": "JDeuce/python-jinja-webpack", "score": 3 }
#### File: src/jinja2_webpack/__init__.py ```python from os import path from . import renderer from .utils import load_json DEFAULT_SETTINGS = { 'errorOnInvalidReference': True, 'publicRoot': '/static/pack', 'manifest': 'webpack-manifest.json', 'defaultRenderer': renderer.url, 'useDefaultRenderByExt': False, # this setting is mostly experimental 'renderByExt': { '.js': renderer.script, '.png': renderer.image, '.jpeg': renderer.image, '.jpg': renderer.image, '.gif': renderer.image, '.css': renderer.stylesheet, } } class Asset(object): """ Asset class. Might someday expose file access here too so can render assets inline. For now the url is the interesting attribute """ def __init__(self, filename, url): self.filename = filename self.url = url class AssetNotFoundException(Exception): """ Thrown when an asset cannot be found, can be disabled by settings errorOnInvalidReference = False """ pass class EnvironmentSettings(object): def __init__(self, **kwargs): self.__dict__.update(DEFAULT_SETTINGS) if not kwargs.get('useDefaultRenderByExt', self.useDefaultRenderByExt): self.renderByExt = {} self.__dict__.update(kwargs) class Environment(object): """ The webpack environment class. Loads the manifest and allows it to be accessed. Settings: * **manifest** - default ``webpack-manifest.json``. Path to the WebpackManifest file. * **errorOnInvalidReference** - default ``True``. True if exception should be thrown when you try to resolve an invalid asset reference. * **publicRoot** - default ``/static/pack``. The public path to prepend to all asset URLs. """ def __init__(self, **kwargs): self.settings = EnvironmentSettings(**kwargs) if self.settings.manifest: self.load_manifest(self.settings.manifest) else: self._manifest = {} def _resolve_asset(self, asset): if not self.settings.publicRoot: url = asset elif self.settings.publicRoot.endswith('/'): url = self.settings.publicRoot + asset else: url = '%s/%s' % (self.settings.publicRoot, asset) return Asset(filename=asset, url=url) def _resolve_manifest(self, manifest): result = {} # Resolve URLs in original manifest items for name, asset in manifest.items(): result[name] = self._resolve_asset(asset) # Strip out the extension as well, so if the webpack output # file is "commons.js" we can use {{ "commons" | webpack }} for name, asset in manifest.items(): basename, ext = path.splitext(name) if basename not in result: result[basename] = result[name] return result def load_manifest(self, filename): manifest = load_json(filename) self._manifest = self._resolve_manifest(manifest) def identify_assetspec(self, spec): """ Lookup an asset from the webpack manifest. The asset spec is processed such that you might reference an entry with or without the extension. Will raise an AssetNotFoundException if the errorOnInvalidReference setting is enabled and the asset cannot be found. Note that all files must be have globally unique names, due to a limitation in the way that WebpackManifestPlugin writes the data. """ nodir = path.basename(spec) noextension = path.splitext(nodir)[0] result = self._manifest.get(spec) \ or self._manifest.get(nodir) \ or self._manifest.get(noextension) if result: return result if self.settings.errorOnInvalidReference: raise AssetNotFoundException(spec) def register_renderer(self, extension, renderer): """ Register a new renderer function to the environment """ self.settings.renderByExt[extension] = renderer def _select_renderer(self, asset): name, ext = path.splitext(asset.filename) return self.settings.renderByExt.get( ext, self.settings.defaultRenderer) def render_asset(self, asset): """ Render an asset to a URL or something more interesting, by looking up the extension in the registered renderers """ renderer = self._select_renderer(asset) return renderer(asset) __version__ = '0.2.0' ``` #### File: src/jinja2_webpack/renderer.py ```python def script(asset): return '<script src="%s"></script>' % asset.url def image(asset): return '<img src="%s">' % asset.url def stylesheet(asset): return '<link rel="stylesheet" href="%s">' % asset.url def url(asset): return asset.url ``` #### File: jinja2_webpack/utils/normalize_path.py ```python import os def normalize_path(path): """ normalizes a path to using /, even if you're on windows. jinja2 assumes all templates are referenced with / despite the underlying OS, see jinja2.loaders.split_template_path. """ return '/'.join(os.path.normpath(path).split(os.sep)) ``` #### File: tests/test_scan/test_scan.py ```python import logging import os import runpy import tempfile import pytest from jinja2.exceptions import TemplateError from jinja2_webpack.scan import build_output, main, scan HERE = os.path.dirname(os.path.abspath(__file__)) logging.basicConfig(level=logging.DEBUG) def _normpath(paths): # On Windows, convert forward slashes to backward slashes, # so we will reference the command line the proper way for the OS. return [os.path.normpath(path) for path in paths] def _scan(directories, templates): directories = _normpath(directories) templates = _normpath(templates) return scan( reference_root=HERE, root=HERE, directories=directories, templates=templates) def test_scan_single(): assets = _scan( directories=['templates1/'], templates=['templates1/*.jinja2']) assert assets == ['test1'] def test_scan_multiple(): assets = _scan( directories=['templates*'], templates=['template*/*.jinja2']) assert 'test1' in assets assert 'test2' in assets def test_scan_relative(): assets = _scan( directories=['templates*'], templates=['template*/*.jinja2']) assert os.path.join('templates2', 'test.png') in assets def test_scan_invalid_throws_exception(): with pytest.raises(TemplateError): _scan( directories=['invalid'], templates=['invalid/*.jinja2']) def test_variable_to_filter(): _scan( directories=['variable'], templates=['variable/*.jinja2']) def test_build_output(): assets = _scan( directories=['templates*'], templates=['template*/*.jinja2']) assert len(assets) >= 3 with tempfile.TemporaryFile('w+') as fp: build_output( reference_root=HERE, assets=assets, outfile=fp) fp.seek(0) content = fp.read() assert 'require("./templates2/test.png")' in content def test_main_file(): try: with tempfile.NamedTemporaryFile( delete=False, dir=HERE) as fp: name = fp.name main([ '--root', HERE, '--directories', os.path.join(HERE, 'templates*'), '--outfile', name, os.path.join('template*', '*.jinja2') ]) with open(name) as fp: data = fp.read() finally: os.unlink(name) assert 'require("./templates2/test.png")' in data def test_main_stdout(capsys): curdir = os.getcwd() try: os.chdir(HERE) main([ '--root', HERE, '--directories', os.path.join(HERE, 'templates*'), '--', os.path.join('template*', '*.jinja2') ]) data, _ = capsys.readouterr() finally: os.chdir(curdir) assert 'require("./templates2/test.png")' in data def test_main_reference(): try: with tempfile.NamedTemporaryFile(delete=False) as fp: name = fp.name main([ '--root', HERE, '--reference-root', os.path.join(HERE, '..'), '--directories', os.path.join(HERE, 'templates*'), '--outfile', name, os.path.join('template*', '*.jinja2') ]) with open(name) as fp: data = fp.read() finally: os.unlink(name) assert 'require("./test_scan/templates2/test.png")' in data def test_ifmain(): runpy.run_module('jinja2_webpack.scan') ```
{ "source": "jdeuschel/DistrShiftsOnFacialData", "score": 2 }
#### File: DistrShiftsOnFacialData/base/base_data_loader.py ```python import numpy as np import os import sys from torch.utils.data import DataLoader from torch.utils.data.dataloader import default_collate from torch.utils import data from torchvision import transforms import logging from copy import copy from parse_config import ConfigParser class BaseDataLoader: """ Base class for all data loaders """ def __init__( self, dataset_train, dataset_val=None, dataset_test=None, batch_size=None, shuffle=True, validation_split=0.0, num_workers=0, collate_fn=default_collate, ): self.dataset_train = dataset_train self.dataset_val = dataset_val self.dataset_test = dataset_test self.validation_split = validation_split self.batch_idx = 0 self.n_samples = len(dataset_train) self.config = ConfigParser() self.mode = os.environ["MODE"] self.drop_last = False self.shuffle = self.config["data_loader"]["args"]["shuffle"] if "drop_last" in self.config["data_loader"]["args"]: self.drop_last = self.config["data_loader"]["args"]["drop_last"] # Augmentations self.apply_augmentation = self.training and self.mode == "TRAINING" self.augmentation_applied = False self.input_size = self.config["input_size"] self.current_transform = self.dataset_train.transform # Transform before augmentation # Set num_classes for model generation if "num_classes" not in self.config["arch"]["args"]: self.config["arch"]["args"]["num_classes"] = self.num_classes # From sub class # Set num_channels for model generation if "num_channels" not in self.config["arch"]["args"]: self.config["arch"]["args"]["num_channels"] = self.num_channels # From sub class if self.dataset_val == None and self.validation_split != 0.0: self.dataset_train, self.dataset_val = self._split_sampler(self.validation_split) self.dataset_val.dataset = copy(self.dataset_val.dataset) # Training self.init_kwargs = { "dataset": self.dataset_train, "batch_size": batch_size, "shuffle": self.shuffle, "collate_fn": collate_fn, "num_workers": num_workers, "drop_last": self.drop_last, } self.training_loader = DataLoader(**self.init_kwargs) # Test if self.dataset_test != None: self.init_kwargs = { "dataset": self.dataset_test, "batch_size": batch_size, "shuffle": False, "collate_fn": collate_fn, "num_workers": num_workers, "drop_last": self.drop_last, } self.test_loader = DataLoader(**self.init_kwargs) # Validation if self.dataset_val != None: self.init_kwargs_val = { "dataset": self.dataset_val, "batch_size": batch_size, "shuffle": False, "collate_fn": collate_fn, "num_workers": num_workers, "drop_last": self.drop_last, } self.validation_loader = DataLoader(**self.init_kwargs_val) def get_training_loader(self): return self.training_loader def get_validation_loader(self): try: return self.validation_loader except Exception as e: print("Validation data is not defined:" + repr(e)) def get_test_loader(self): try: return self.test_loader except Exception as e: print("Test data is not defined:" + repr(e)) @staticmethod def _get_config(): config = ConfigParser() return config @staticmethod def _get_input_size(): config = ConfigParser() print("Using custom input size.") return config["input_size"] @staticmethod def _get_data_path(): cluster_used = True if "HOSTNAME" in os.environ else False DATA_PATH = os.environ["DATA_PATH_NETAPP"] # todo: specify path to data here, replace by "/folder/name/data/" return DATA_PATH, cluster_used @staticmethod def _get_imagenet_normalization(): normalze_imagenet = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) return normalze_imagenet def _split_sampler(self, split: float): if split == 0.0: return self.dataset_train, None if isinstance(split, int): assert split > 0 assert split < self.n_samples, "validation set size is configured to be larger than entire dataset." len_valid = split else: len_valid = int(self.n_samples * split) train_set, val_set = data.random_split(self.dataset_train, [(self.n_samples - len_valid), len_valid]) return train_set, val_set def split_validation(self): if self.val_set is None: return None else: if self.cutmix: self.val_set.dataset = copy(self.val_set.dataset.dataset) self.val_set.dataset = copy(self.val_set.dataset) if hasattr(self, "trsfm_test"): self.val_set.dataset.transform = self.trsfm_test else: self.val_set.dataset.transform = self.trsfm val_kwargs = self.init_kwargs val_kwargs["dataset"] = self.val_set val_kwargs[ "shuffle" ] = False # NOTE: For validation data no shuffling is used because of bayesian model averaging! return DataLoader(**val_kwargs) ``` #### File: datasets/affective_computing/fairface.py ```python from torch.utils.data import Dataset from torchvision import transforms import os from PIL import Image import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from training.data_shifts.rand_augment_fairface import RandAugment_Fairface from base import BaseDataLoader import os import scipy from random import randrange from scipy.stats import norm __all__ = ["FairFace"] class FairFace(BaseDataLoader): """ FairFace Data Loader ===================== Task: Age, Gender, Race Output: Image - [3, x, y] // Various input sizes Target - [3] (age, gender, race) """ def __init__( self, data_dir, batch_size, shuffle=True, validation_split=0.12, num_workers=1, training=True, target="age", **kwargs, ): self.training = training if target == "age": self.num_classes = 9 elif target == "gender": self.num_classes = 2 elif target == "race": self.num_classes = 7 else: raise ValueError(f"Target {target} is not defined") self.input_size = self._get_input_size() self.num_channels = 3 data_dir, cluster_used = self._get_data_path() print("data_dir: ", data_dir) rgb_mean = (0.4914, 0.4822, 0.4465) rgb_std = (0.2023, 0.1994, 0.2010) trsfm = transforms.Compose([ transforms.Resize((224, 224), interpolation=Image.BICUBIC), transforms.CenterCrop(224), transforms.RandomCrop(224, padding=4), RandAugment_Fairface(n=2,m=8), transforms.RandomHorizontalFlip(), transforms.RandomGrayscale(p=0.2), transforms.ToTensor(), transforms.Normalize(mean=rgb_mean, std=rgb_std) ]) trsfm_test = transforms.Compose( [ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # specify folder here PATH = "FairFace_v2" if cluster_used else "FairFace_v2" #todo: specify folder name depending on hardware. in this case they are called the same. seed = randrange(1000) experiment = kwargs['experiment'] # if training: print(os.path.join(data_dir, PATH)) self.dataset = FairFaceDataset( root_dir=os.path.join(data_dir, PATH), subset="train", transform=trsfm, experiment=experiment, num_classes=self.num_classes, validation_split=validation_split, seed=seed ) self.dataset_val = FairFaceDataset( root_dir=os.path.join(data_dir, PATH), subset="val", transform=trsfm_test, experiment=experiment, num_classes=self.num_classes, validation_split=validation_split, seed=seed ) self.dataset_test = FairFaceDataset( root_dir=os.path.join(data_dir, PATH), subset="test", transform=trsfm_test, experiment="", num_classes=self.num_classes, validation_split=validation_split, seed=seed ) super().__init__( dataset_train=self.dataset, dataset_val=self.dataset_val, # None dataset_test=self.dataset_test, batch_size=batch_size, shuffle=shuffle, validation_split=validation_split, num_workers=num_workers, ) class FairFaceDataset(Dataset): def __init__( self, root_dir, num_classes, transform=None, subset="train", experiment="", validation_split=0.12, seed=522 ): """ Parameters ---------- root_dir : str Location of FairFace num_classes: int number of classes depending on target Type: [9,2,7] transform : [type], optional [description], by default None subset: str Type: ["train", "val"] experiment : str, optional experiment name default: baseline experiment validation_split : float, optional split between training and validation seed: int, optional default 522 """ self.num_classes=num_classes self.root_dir = root_dir self.subset = subset if self.subset == "train" or self.subset == "val": self.data_list = pd.read_csv(os.path.join(self.root_dir, "fairface_label_train.csv")) elif self.subset == "test": self.data_list = pd.read_csv(os.path.join(self.root_dir, "fairface_label_val.csv")) else: raise Exception(f"Subset definition {self.subset} does not exist for FairFace") mapping_age = { "0-2": 0, "3-9": 1, "10-19": 2, "20-29": 3, "30-39": 4, "40-49": 5, "50-59": 6, "60-69": 7, "more than 70": 8, } mapping_gender = {"Female": 0, "Male": 1} mapping_race = { "Black": 0, "East Asian": 1, "Indian": 2, "Latino_Hispanic": 3, "Middle Eastern": 4, "Southeast Asian": 5, "White": 6, } self.data_list = self.data_list.replace({"race": mapping_race}) self.data_list = self.data_list.replace({"gender": mapping_gender}) self.data_list = self.data_list.replace({"age": mapping_age}) if self.subset == "train" or self.subset == "val": train, val = train_test_split(self.data_list, test_size=validation_split, random_state=573) if self.subset == "train": self.data_list = train elif self.subset == "val": self.data_list = val if experiment != "" and not self.subset == "val": #get all experiments on the same size train_with_val = True if train_with_val: self.sample_size_race = 61410 self.sample_size_age = 40758 self.sample_size_gender = 35703 self.sample_size_race_sp = 48006 else: self.sample_size_race = 70217 self.sample_size_age = 55592 self.sample_size_gender = 40758 self.sample_size_race_sp = 54482 # a baseline experiment without any modifications if experiment=="verification_baseline": self.data_list = self.data_list # baseline experiments with same number of samples as corresponding shifts, to exclude dependency elif experiment=="baseline_race": self.data_list = self.data_list.sample(n=self.sample_size_race, replace=False, random_state=seed) elif experiment=="baseline_age": self.data_list = self.data_list.sample(n=self.sample_size_age, replace=False, random_state=seed) elif experiment=="baseline_gender": self.data_list = self.data_list.sample(n=self.sample_size_gender, replace=False, random_state=seed) # spurious correlations with young and race. possible correlations: if young then race, iff young then race elif experiment == 'spurious_correlations_baseline_young': # here another baseline is necessary to exclude the sampling bias from the group old = 6 young = 2 train_data_young = self.data_list[self.data_list["age"]<=young].sample(n=2676, replace=False) self.data_list = self.data_list[self.data_list["age"]>young].append(train_data_young).sample(n=self.sample_size_race_sp, replace=False) elif experiment == 'spurious_correlations_baseline_old': # here another baseline is necessary to exclude the sampling bias from the group old = 6 young = 2 train_data_old = self.data_list[self.data_list["age"]>=old].sample(n=1243, replace=False) self.data_list = self.data_list[self.data_list["age"]<old].append(train_data_old).sample(n=self.sample_size_race_sp, replace=False) # gender shifts: 1: no women, 2: no men, 3: less women, 4: less men elif experiment in ["split_gen_1", "split_gen_2", "split_gen_3", "split_gen_4"]: hard_filter_gender1 = self.data_list[(self.data_list['gender']!=0)] hard_filter_gender2 = self.data_list[(self.data_list['gender']!=1)] part_soft_gender1, _ = train_test_split(hard_filter_gender1, test_size=round(len(hard_filter_gender2)/2), random_state=seed) part_soft_gender2, _ = train_test_split(hard_filter_gender2, test_size=round(len(hard_filter_gender1)/2), random_state=seed) soft_filter_gender1 = hard_filter_gender1.append(part_soft_gender2) soft_filter_gender2 = hard_filter_gender2.append(part_soft_gender1) if experiment=="split_gen_1": try: self.data_list = hard_filter_gender1.sample(n=self.sample_size_gender, replace=False, random_state=seed) except: raise Exception("SAMPLE SIZE TOO LARGE") elif experiment=="split_gen_2": try: self.data_list = hard_filter_gender2.sample(n=self.sample_size_gender, replace=False, random_state=seed) except: raise Exception("SAMPLE SIZE TOO LARGE") elif experiment=="split_gen_3": self.data_list = self.data_list = soft_filter_gender1.sample(n=self.sample_size_gender, replace=False, random_state=seed) elif experiment=="split_gen_4": self.data_list = self.data_list = soft_filter_gender2.sample(n=self.sample_size_gender, replace=False, random_state=seed) # sampling bias with one underrepresented (partly erased until erased) race group, p={1.0, 0.75, 0.5, 0.25, 0.0} elif experiment.startswith("data_shift"): # please write something like experiment="data_shift_Black_0.25" if "Black" in experiment: race = 0 elif "East_Asian" in experiment: race = 1 elif "Indian" in experiment: race = 2 elif "Latino_Hispanic" in experiment: race = 3 elif "Middle_Eastern" in experiment: race = 4 elif "Southeast_Asian" in experiment: race = 5 elif "White" in experiment: race = 6 if "0.0" in experiment: frac = 0.0 elif "0.25" in experiment: frac = 0.25 elif "0.5" in experiment: frac = 0.5 elif "0.75" in experiment: # pdb.set_trace() frac = 0.75 elif "1.0" in experiment: frac = 1.0 try: self.data_list = self.data_list_drop(data=self.data_list, race=race, frac=frac, seed=seed).sample(n=self.sample_size_race, replace=False, random_state=seed) except: print("sampling did not work for", race, frac) raise Exception("SAMPLE SIZE TOO LARGE") # left label bias: makes a specific race group younger. Uses Gauss distribution with sigma={0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0} elif experiment.startswith("left_label_shift"): # write something like: "left_label_shift_Black_1.5" if "Black" in experiment: race = [0] elif "East_Asian" in experiment: race = [1] elif "Indian" in experiment: race = [2] elif "Latino_Hispanic" in experiment: race = [3] elif "Middle_Eastern" in experiment: race = [4] elif "Southeast_Asian" in experiment: race = [5] elif "White" in experiment: race = [6] std = float(experiment[-3:]) self.data_list = self.left_racial_label_bias(self.data_list, race_li=race, std=std, seed=seed).sample(n=self.sample_size_race, replace=False, random_state=seed) elif experiment.startswith('spurious_correlations'): old = 6 young = 2 self.data_list = self.data_list.reset_index(drop=True) # 1a: first kind of spurious correlations: if old then race if experiment.startswith('spurious_correlations_old_0'): spur_old_0_all = self.data_list.drop(np.array( np.where( (self.data_list['age'] >= old) & (self.data_list['race'] != 0))).flatten()).reset_index( drop=True) self.data_list = spur_old_0_all.sample(n=self.sample_size_race_sp, replace=False) elif experiment.startswith('spurious_correlations_old_1'): spur_old_1_all = self.data_list.drop(np.array( np.where( (self.data_list['age'] >= old) & (self.data_list['race'] != 1))).flatten()).reset_index( drop=True) self.data_list = spur_old_1_all.sample(n=self.sample_size_race_sp, replace=False) elif experiment.startswith('spurious_correlations_old_2'): spur_old_2_all = self.data_list.drop(np.array( np.where( (self.data_list['age'] >= old) & (self.data_list['race'] != 2))).flatten()).reset_index( drop=True) self.data_list = spur_old_2_all.sample(n=self.sample_size_race_sp, replace=False) elif experiment.startswith('spurious_correlations_old_3'): spur_old_3_all = self.data_list.drop(np.array( np.where( (self.data_list['age'] >= old) & (self.data_list['race'] != 3))).flatten()).reset_index( drop=True) self.data_list = spur_old_3_all.sample(n=self.sample_size_race_sp, replace=False) elif experiment.startswith('spurious_correlations_old_4'): spur_old_4_all = self.data_list.drop(np.array( np.where( (self.data_list['age'] >= old) & (self.data_list['race'] != 4))).flatten()).reset_index( drop=True) self.data_list = spur_old_4_all.sample(n=self.sample_size_race_sp, replace=False) elif experiment.startswith('spurious_correlations_old_5'): spur_old_5_all = self.data_list.drop(np.array( np.where( (self.data_list['age'] >= old) & (self.data_list['race'] != 5))).flatten()).reset_index( drop=True) self.data_list = spur_old_5_all.sample(n=self.sample_size_race_sp, replace=False) elif experiment.startswith('spurious_correlations_old_6'): spur_old_6_all = self.data_list.drop(np.array( np.where( (self.data_list['age'] >= old) & (self.data_list['race'] != 6))).flatten()).reset_index( drop=True) self.data_list = spur_old_6_all.sample(n=self.sample_size_race_sp, replace=False) # 1b first kind of spurious correlations: if young then race elif experiment.startswith('spurious_correlations_young_0'): spur_young_0_all = self.data_list.drop(np.array( np.where( (self.data_list['age'] <= young) & (self.data_list['race'] != 0))).flatten()).reset_index( drop=True) self.data_list = spur_young_0_all.sample(n=self.sample_size_race_sp, replace=False) elif experiment.startswith('spurious_correlations_young_1'): spur_young_1_all = self.data_list.drop(np.array( np.where( (self.data_list['age'] <= young) & (self.data_list['race'] != 1))).flatten()).reset_index( drop=True) self.data_list = spur_young_1_all.sample(n=self.sample_size_race_sp, replace=False) elif experiment.startswith('spurious_correlations_young_2'): spur_young_2_all = self.data_list.drop(np.array( np.where( (self.data_list['age'] <= young) & (self.data_list['race'] != 2))).flatten()).reset_index( drop=True) self.data_list = spur_young_2_all.sample(n=self.sample_size_race_sp, replace=False) elif experiment.startswith('spurious_correlations_young_3'): spur_young_3_all = self.data_list.drop(np.array( np.where( (self.data_list['age'] <= young) & (self.data_list['race'] != 3))).flatten()).reset_index( drop=True) self.data_list = spur_young_3_all.sample(n=self.sample_size_race_sp, replace=False) elif experiment.startswith('spurious_correlations_young_4'): spur_young_4_all = self.data_list.drop(np.array( np.where( (self.data_list['age'] <= young) & (self.data_list['race'] != 4))).flatten()).reset_index( drop=True) self.data_list = spur_young_4_all.sample(n=self.sample_size_race_sp, replace=False) elif experiment.startswith('spurious_correlations_young_5'): spur_young_5_all = self.data_list.drop(np.array( np.where( (self.data_list['age'] <= young) & (self.data_list['race'] != 5))).flatten()).reset_index( drop=True) self.data_list = spur_young_5_all.sample(n=self.sample_size_race_sp, replace=False) elif experiment.startswith('spurious_correlations_young_6'): spur_young_6_all = self.data_list.drop(np.array( np.where( (self.data_list['age'] <= young) & (self.data_list['race'] != 6))).flatten()).reset_index( drop=True) self.data_list = spur_young_6_all.sample(n=self.sample_size_race_sp, replace=False) # 2a: second kind of spurious correlations: iff old then race elif experiment.startswith('spurious_correlations_iff_old_0'): spur_old_0_all = self.data_list.drop(np.array( np.where( (self.data_list['age'] >= old) & (self.data_list['race'] != 0))).flatten()).reset_index( drop=True) self.data_list = spur_old_0_all.drop(np.array( np.where((spur_old_0_all['age'] < old) & (spur_old_0_all['race'] == 0))).flatten()).reset_index( drop=True).sample(n=self.sample_size_race_sp, replace=False) elif experiment.startswith('spurious_correlations_iff_old_1'): spur_old_1_all = self.data_list.drop(np.array( np.where( (self.data_list['age'] >= old) & (self.data_list['race'] != 1))).flatten()).reset_index( drop=True) self.data_list = spur_old_1_all.drop(np.array( np.where((spur_old_1_all['age'] < old) & (spur_old_1_all['race'] == 1))).flatten()).reset_index( drop=True).sample(n=self.sample_size_race_sp, replace=False) elif experiment.startswith('spurious_correlations_iff_old_2'): spur_old_2_all = self.data_list.drop(np.array( np.where( (self.data_list['age'] >= old) & (self.data_list['race'] != 2))).flatten()).reset_index( drop=True) self.data_list = spur_old_2_all.drop(np.array( np.where((spur_old_2_all['age'] < old) & (spur_old_2_all['race'] == 2))).flatten()).reset_index( drop=True).sample(n=self.sample_size_race_sp, replace=False) elif experiment.startswith('spurious_correlations_iff_old_3'): spur_old_3_all = self.data_list.drop(np.array( np.where( (self.data_list['age'] >= old) & (self.data_list['race'] != 3))).flatten()).reset_index( drop=True) self.data_list = spur_old_3_all.drop(np.array( np.where((spur_old_3_all['age'] < old) & (spur_old_3_all['race'] == 3))).flatten()).reset_index( drop=True).sample(n=self.sample_size_race_sp, replace=False) elif experiment.startswith('spurious_correlations_iff_old_4'): spur_old_4_all = self.data_list.drop(np.array( np.where( (self.data_list['age'] >= old) & (self.data_list['race'] != 4))).flatten()).reset_index( drop=True) self.data_list = spur_old_4_all.drop(np.array( np.where((spur_old_4_all['age'] < old) & (spur_old_4_all['race'] == 4))).flatten()).reset_index( drop=True).sample(n=self.sample_size_race_sp, replace=False) elif experiment.startswith('spurious_correlations_iff_old_5'): spur_old_5_all = self.data_list.drop(np.array( np.where( (self.data_list['age'] >= old) & (self.data_list['race'] != 5))).flatten()).reset_index( drop=True) self.data_list = spur_old_5_all.drop(np.array( np.where((spur_old_5_all['age'] < old) & (spur_old_5_all['race'] == 5))).flatten()).reset_index( drop=True).sample(n=self.sample_size_race_sp, replace=False) elif experiment.startswith('spurious_correlations_iff_old_6'): spur_old_6_all = self.data_list.drop(np.array( np.where( (self.data_list['age'] >= old) & (self.data_list['race'] != 6))).flatten()).reset_index( drop=True) self.data_list = spur_old_6_all.drop(np.array( np.where((spur_old_6_all['age'] < old) & (spur_old_6_all['race'] == 6))).flatten()).reset_index( drop=True).sample(n=self.sample_size_race_sp, replace=False) # 2b: second kind of spurious correlations: iff young then race elif experiment.startswith('spurious_correlations_iff_young_0'): spur_young_0_all = self.data_list.drop(np.array( np.where( (self.data_list['age'] <= young) & (self.data_list['race'] != 0))).flatten()).reset_index( drop=True) self.data_list = spur_young_0_all.drop(np.array(np.where( (spur_young_0_all['age'] > young) & (spur_young_0_all['race'] == 0))).flatten()).reset_index( drop=True).sample(n=self.sample_size_race_sp, replace=False) elif experiment.startswith('spurious_correlations_iff_young_1'): spur_young_1_all = self.data_list.drop(np.array( np.where( (self.data_list['age'] <= young) & (self.data_list['race'] != 1))).flatten()).reset_index( drop=True) self.data_list = spur_young_1_all.drop(np.array(np.where( (spur_young_1_all['age'] > young) & (spur_young_1_all['race'] == 1))).flatten()).reset_index( drop=True).sample(n=self.sample_size_race_sp, replace=False) elif experiment.startswith('spurious_correlations_iff_young_2'): spur_young_2_all = self.data_list.drop(np.array( np.where( (self.data_list['age'] <= young) & (self.data_list['race'] != 2))).flatten()).reset_index( drop=True) self.data_list = spur_young_2_all.drop(np.array(np.where( (spur_young_2_all['age'] > young) & (spur_young_2_all['race'] == 2))).flatten()).reset_index( drop=True).sample(n=self.sample_size_race_sp, replace=False) elif experiment.startswith('spurious_correlations_iff_young_3'): spur_young_3_all = self.data_list.drop(np.array( np.where( (self.data_list['age'] <= young) & (self.data_list['race'] != 3))).flatten()).reset_index( drop=True) self.data_list = spur_young_3_all.drop(np.array(np.where( (spur_young_3_all['age'] > young) & (spur_young_3_all['race'] == 3))).flatten()).reset_index( drop=True).sample(n=self.sample_size_race_sp, replace=False) elif experiment.startswith('spurious_correlations_iff_young_4'): spur_young_4_all = self.data_list.drop(np.array( np.where( (self.data_list['age'] <= young) & (self.data_list['race'] != 4))).flatten()).reset_index( drop=True) self.data_list = spur_young_4_all.drop(np.array(np.where( (spur_young_4_all['age'] > young) & (spur_young_4_all['race'] == 4))).flatten()).reset_index( drop=True).sample(n=self.sample_size_race_sp, replace=False) elif experiment.startswith('spurious_correlations_iff_young_5'): spur_young_5_all = self.data_list.drop(np.array( np.where( (self.data_list['age'] <= young) & (self.data_list['race'] != 5))).flatten()).reset_index( drop=True) self.data_list = spur_young_5_all.drop(np.array(np.where( (spur_young_5_all['age'] > young) & (spur_young_5_all['race'] == 5))).flatten()).reset_index( drop=True).sample(n=self.sample_size_race_sp, replace=False) elif experiment.startswith('spurious_correlations_iff_young_6'): spur_young_6_all = self.data_list.drop(np.array( np.where( (self.data_list['age'] <= young) & (self.data_list['race'] != 6))).flatten()).reset_index( drop=True) self.data_list = spur_young_6_all.drop(np.array(np.where( (spur_young_6_all['age'] > young) & (spur_young_6_all['race'] == 6))).flatten()).reset_index( drop=True).sample(n=self.sample_size_race_sp, replace=False) else: print("NO SHIFT SELECTED") raise Exception("NO SHIFT SELECTED") self.path_list = np.array(self.data_list.iloc[:, 0].tolist()) self.age = np.array(self.data_list.iloc[:,]["age"].tolist()) self.gender = np.array(self.data_list.iloc[:,]["gender"].tolist()) self.race = np.array(self.data_list.iloc[:,]["race"].tolist()) self.transform = transform def __len__(self): return len(self.path_list) def get_vector(self, targets, nb_classes): return np.ones(nb_classes)*targets def data_list_drop(self, data, race, frac, seed=123): data_list = data.copy(deep=True) frac = 1-frac data_drop = data_list[data_list['race'] == race].sample(frac=frac, random_state=seed) data_ret = data_list.drop(data_drop.index) return data_ret def left_racial_label_bias(self, data_label, race_li, seed=123, std=1.5): def left_labels_normal(ages, std=1.5, seed=123): np.random.seed(seed) new_ages = np.zeros(ages.shape, dtype=np.int64) x = np.unique(ages) for num, mean in enumerate(ages): normal = norm(loc=mean, scale=std) prob = normal.pdf(x) prob[np.argwhere(x>mean)]=0 # set probabilitie greater than mean to zero prob = prob / prob.sum() # normalize the probabilities so their sum is 1 new_ages[num] = np.random.choice(x, p = prob) return new_ages data_my = data_label.copy(deep=True) for race_i in race_li: race = data_my[data_my.race.isin([race_i])].copy(deep=True) race["age"] = left_labels_normal(ages=race["age"], seed=seed, std=std) data_my.update(race) data_my["age"] = data_my["age"].astype(np.int64) data_my["gender"] = data_my["gender"].astype(np.int64) data_my["race"] = data_my["race"].astype(np.int64) return data_my def __getitem__(self, idx): img_file = self.path_list[idx] age, gender, race = self.age[idx], self.gender[idx], self.race[idx] image_path = os.path.join(self.root_dir, img_file) img = Image.open(image_path) if self.transform: img = self.transform(img) return img, age, self.get_vector(age, self.num_classes), gender, race ``` #### File: DistrShiftsOnFacialData/model/loss.py ```python import torch.nn.functional as F from torch import nn import torch def nll_loss(output, target): return F.nll_loss(output, target) def cross_entropy(output, target): return F.cross_entropy(output, target) def mixup(output, target, valid=False): if valid: return F.cross_entropy(output, target) else: targets1, targets2, lam = target criterion = nn.CrossEntropyLoss(reduction="mean") return lam * criterion(output, targets1) + (1 - lam) * criterion(output, targets2) ``` #### File: model/metrics/metric_uncertainty.py ```python import numpy as np from sklearn.metrics import roc_auc_score, average_precision_score import torch import torch.nn.functional as F from torchvision import transforms import os def get_entropy(prob, n_classes=None): if n_classes is None: max_entropy = 1 # no normalization made else: max_entropy = -np.log(1 / n_classes) entropy = torch.sum(-prob * torch.log(prob), 1) * 1 / max_entropy entropy[entropy != entropy] = 0 # nan to zero return entropy def softmax_uncertainty(outputs, labels, use_softmax=False): """ outputs : torch.Tensor, [n_samples, n_classes] Logit or softmax outputs of your model. (n_classes) torch.Tensor, [n_samples] Ground Truth Labels between (0 - (n_classes-1)) """ labels = labels.numpy() if use_softmax: softmaxes = F.softmax(outputs, 1) else: softmaxes = outputs confidences, predictions = softmaxes.max(1) confidences = confidences.numpy() predictions = predictions.numpy() accuracies = np.equal(predictions, labels).astype(float) return confidences, accuracies def ece(confidences, accuracies, n_bins=20): """ ECE Arguments: confidences {torch.Tensor} -- confidence for each prediction accuracies {torch.Tensor} -- corrects: vector of TRUE and FALSE indicating whether the prediction was correct for each prediction Keyword Arguments: n_bins {int} -- How many bins should be used for the plot (default: {20}) """ accuracies = accuracies.numpy().astype(float) confidences = confidences.numpy() # Calibration Curve Calculation bins = np.linspace(0, 1, n_bins + 1) bins[-1] = 1.0001 width = bins[1] - bins[0] bin_indices = [ np.greater_equal(confidences, bin_lower) * np.less(confidences, bin_upper) for bin_lower, bin_upper in zip(bins[:-1], bins[1:]) ] bin_corrects = np.array([np.mean(accuracies[bin_index]) for bin_index in bin_indices]) # Height of bars bin_scores = np.array([np.mean(confidences[bin_index]) for bin_index in bin_indices]) # confidence range # ECE Calculation B = np.sum(np.array(bin_indices), 1) n = np.sum(B) weights = B / n d_acc_conf = np.abs(bin_corrects - bin_scores) d_acc_conf = np.nan_to_num(d_acc_conf) ece = np.sum(d_acc_conf * weights) return ece*100, np.nan_to_num(bin_corrects), np.nan_to_num(bins) def calculate_auroc(preds_in, preds_out, use_softmax=False, n_classes=10, confidence_measure="max_softmax"): """ Calculate AUROC with confidences (max). Parameters ---------- preds_in : torch.Tensor, [n_samples, n_classes] Predictions of the in-distribution (with or without softmax ), [n_samples, n_classes] preds_out : torch.Tensor, [n_samples, n_classes] Predictions of the out-distribution (with or without softmax ) use_softmax : bool, optional Test , by default False Returns ------- float AUROC for confidences (max) in range 0-1 """ with torch.no_grad(): if use_softmax: preds_in_soft = F.softmax(preds_in, 1) preds_out_soft = F.softmax(preds_out, 1) else: preds_in_soft = preds_in preds_out_soft = preds_out if confidence_measure == "max_softmax": confidences_in, prediction_in = preds_in_soft.max(1) confidences_out, prediction_out = preds_out_soft.max(1) else: confidences_in = 1 - get_entropy(preds_in_soft, n_classes) confidences_out = 1 - get_entropy(preds_out_soft, n_classes) confidences_in = confidences_in.numpy() confidences_out = confidences_out.numpy() labels_in = np.ones(len(confidences_in)) labels_out = np.zeros(len(confidences_out)) confs = np.concatenate((confidences_in, confidences_out)) labels = np.concatenate((labels_in, labels_out)) auroc = roc_auc_score(y_true=labels, y_score=confs) return auroc ``` #### File: training/data_shifts/train.py ```python import os import argparse import collections import torch # Project Modules import data_loader.data_loaders as module_data import model.loss as module_loss import model.model as module_arch import model.optim as optim from parse_config import ConfigParser from trainer import TrainModel def main(config): print("Devices", torch.cuda.device_count()) print(config["lr_scheduler"]["args"]["milestones"]) # Data Loader experiment = config['group'] print("starting experiment ",experiment) data_loader_factory = config.init_obj("data_loader", module_data, experiment=experiment) data_loader = data_loader_factory.get_training_loader() valid_data_loader = data_loader_factory.get_validation_loader() num_classes = data_loader_factory.num_classes # Init Modules criterion = getattr(module_loss, config["loss"]) # Saving tests cluster_used = True if "HOSTNAME" in os.environ else False if cluster_used: path = "/output/data-shifts/" + config["data_loader"]["args"]["target"] else : path = "No output path set" print(cluster_used) print(path) print(os.path.exists("/output/data-shifts/")) ################################################################# # ENSEMBLE # ################################################################# # Init Ensemble num_ensemble = config["method"]["num_ensemble"] models = [] for idx in range(0, num_ensemble): model = config.init_obj("arch", module_arch) models.append(model) print("Devices", torch.cuda.device_count()) optimizers = [] lr_schedulers = [] for idx, model in enumerate(models): # build optimizer, learning rate scheduler. delete every lines containing lr_scheduler for disabling scheduler trainable_params = filter(lambda p: p.requires_grad, model.parameters()) optimizer = config.init_obj("optimizer", optim, trainable_params) lr_scheduler = config.init_obj("lr_scheduler", torch.optim.lr_scheduler, optimizer) optimizers.append(optimizer) lr_schedulers.append(lr_scheduler) # # # # # # # # # # # # # # # # # # # # # # # # Training # # # # # # # # # # # # # # # # # # # # # # # # sequential_training = config['method']['sequential'] print("SEQUENTIAL: ", sequential_training) new_models = [] for idx, _ in enumerate(models): train_model = TrainModel(config, [models[idx]], [optimizers[idx]], criterion, num_classes, [lr_schedulers[idx]], model_idx=idx) trainer = train_model.prepare_trainer() trainer.fit(train_model, data_loader, valid_data_loader) new_models.append(train_model.model[0]) # # # # # # # # # # # # # # # # # # # # # # # # Testing # # # # # # # # # # # # # # # # # # # # # # # # print(sequential_training) print(config["trainer"]["csv"]) print("Starting Testing") path = "/output/data-shifts/" + config["data_loader"]["args"]["target"] print(os.path.exists(path)) if sequential_training: if config["trainer"]["csv"] == True: path = "/output/data-shifts/" + config["data_loader"]["args"]["target"] print(os.path.exists(path)) print(os.path.join(path, config.method + config.comment + config.temp + ".csv")) test_model = TrainModel(config, new_models, optimizers, criterion, num_classes, lr_schedulers) trainer_test = test_model.prepare_trainer() test_data_loader = data_loader_factory.get_test_loader() trainer_test.test( model=test_model, test_dataloaders=test_data_loader, ckpt_path=None) else: test_data_loader = data_loader_factory.get_test_loader() trainer.test(test_dataloaders=test_data_loader, ckpt_path=None) if __name__ == "__main__": args = argparse.ArgumentParser(description="Experiments") args.add_argument("-c", "--config", default="configs/config.yml", type=str, help="config file path (default: None)") args.add_argument("-r", "--resume", default=None, type=str, help="path to latest checkpoint (default: None)") args.add_argument("-d", "--device", default=None, type=str, help="indices of GPUs to enable (default: all)") # custom cli options to modify configuration from default values given in json file. CustomArgs = collections.namedtuple("CustomArgs", "flags type target") options = [ CustomArgs(["-pretrained", "--pretrained"], type=bool, target="method;pretrained"), CustomArgs(["-finetuning", "--finetuning"], type=str, target="method;finetuning"), CustomArgs(["-target", "--target"], type=str, target="data_loader;args;target"),# CustomArgs(["-temp_scale", "--temperature"], type=str, target="calibration;temp_scaling"), CustomArgs(["-num_ensemble", "--num_ensemble"], type=int, target="method;num_ensemble"), CustomArgs(["-n_bins", "--n_bins"], type=int, target="trainer;n_bins"), CustomArgs(["-lr_milestones", "--lr_milestones"], type=list, target="lr_scheduler;args;milestones"), CustomArgs(["-comment", "--comment"], type=str, target="comment"), ] config = ConfigParser.from_args(args, options) main(config) ``` #### File: data_shifts/utils/metrics.py ```python import math import torch import numpy as np from torch import nn from torch.nn import functional as F from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix # Some keys used for the following dictionaries COUNT = "count" CONF = "conf" ACC = "acc" BIN_ACC = "bin_acc" BIN_CONF = "bin_conf" # Calibration error scores in the form of loss metrics class ECELoss(nn.Module): """ Compute ECE (Expected Calibration Error) """ def __init__(self, n_bins=15): super(ECELoss, self).__init__() bin_boundaries = torch.linspace(0, 1, n_bins + 1) self.bin_lowers = bin_boundaries[:-1] self.bin_uppers = bin_boundaries[1:] def forward(self, softmax_in, labels): confidences, predictions = torch.max(softmax_in, 1) accuracies = predictions.eq(labels) ece = torch.zeros(1, device=softmax_in.device) for bin_lower, bin_upper in zip(self.bin_lowers, self.bin_uppers): # Calculated |confidence - accuracy| in each bin in_bin = confidences.gt(bin_lower.item()) * confidences.le(bin_upper.item()) prop_in_bin = in_bin.float().mean() if prop_in_bin.item() > 0: accuracy_in_bin = accuracies[in_bin].float().mean() avg_confidence_in_bin = confidences[in_bin].mean() ece += torch.abs(avg_confidence_in_bin - accuracy_in_bin) * prop_in_bin return ece class AdaptiveECELoss(nn.Module): """ Compute Adaptive ECE """ def __init__(self, n_bins=15): super(AdaptiveECELoss, self).__init__() self.nbins = n_bins def histedges_equalN(self, x): npt = len(x) return np.interp( np.linspace(0, npt, self.nbins + 1), np.arange(npt), np.sort(x) ) def forward(self, softmax_in, labels): confidences, predictions = torch.max(softmax_in, 1) accuracies = predictions.eq(labels) n, bin_boundaries = np.histogram( confidences.cpu().detach(), self.histedges_equalN(confidences.cpu().detach()), ) # print(n,confidences,bin_boundaries) self.bin_lowers = bin_boundaries[:-1] self.bin_uppers = bin_boundaries[1:] ece = torch.zeros(1, device=softmax_in.device) for bin_lower, bin_upper in zip(self.bin_lowers, self.bin_uppers): # Calculated |confidence - accuracy| in each bin in_bin = confidences.gt(bin_lower.item()) * confidences.le(bin_upper.item()) prop_in_bin = in_bin.float().mean() if prop_in_bin.item() > 0: accuracy_in_bin = accuracies[in_bin].float().mean() avg_confidence_in_bin = confidences[in_bin].mean() ece += torch.abs(avg_confidence_in_bin - accuracy_in_bin) * prop_in_bin return ece class ClasswiseECELoss(nn.Module): """ Compute Classwise ECE """ def __init__(self, n_bins=15): super(ClasswiseECELoss, self).__init__() bin_boundaries = torch.linspace(0, 1, n_bins + 1) self.bin_lowers = bin_boundaries[:-1] self.bin_uppers = bin_boundaries[1:] def forward(self, softmax_in, labels): num_classes = int((torch.max(labels) + 1).item()) per_class_sce = None for i in range(num_classes): class_confidences = softmax_in[:, i] class_sce = torch.zeros(1, device=softmax_in.device) labels_in_class = labels.eq( i ) # one-hot vector of all positions where the label belongs to the class i for bin_lower, bin_upper in zip(self.bin_lowers, self.bin_uppers): in_bin = class_confidences.gt(bin_lower.item()) * class_confidences.le( bin_upper.item() ) prop_in_bin = in_bin.float().mean() if prop_in_bin.item() > 0: accuracy_in_bin = labels_in_class[in_bin].float().mean() avg_confidence_in_bin = class_confidences[in_bin].mean() class_sce += ( torch.abs(avg_confidence_in_bin - accuracy_in_bin) * prop_in_bin ) if i == 0: per_class_sce = class_sce else: per_class_sce = torch.cat((per_class_sce, class_sce), dim=0) sce = torch.mean(per_class_sce) return sce ```
{ "source": "j-devel/django-slack-events-api", "score": 2 }
#### File: django-slack-events-api/slack/adapter_slacker.py ```python from django.conf import settings SLACK_VERIFICATION_TOKEN = settings.SLACK_VERIFICATION_TOKEN SLACK_BOT_TOKEN = settings.SLACK_BOT_TOKEN import logging logging.getLogger().setLevel(logging.INFO) from pyee import EventEmitter from slacker import Slacker CLIENT = Slacker(SLACK_BOT_TOKEN) class SlackEventAdapter(EventEmitter): def __init__(self, verification_token): EventEmitter.__init__(self) self.verification_token = verification_token slack_events_adapter = SlackEventAdapter(SLACK_VERIFICATION_TOKEN) # Example responder to greetings @slack_events_adapter.on("message") def handle_message(event_data): message = event_data["event"] # If the incoming message contains "hi", then respond with a "Hello" message if message.get("subtype") is None and "hi" in message.get('text'): channel = message["channel"] message = "Hello <@%s>! :tada:" % message["user"] logging.info("chat.postMessage: channel: %s text: %s" % (channel, message)) CLIENT.chat.post_message(channel, message) # Example reaction emoji echo @slack_events_adapter.on("reaction_added") def reaction_added(event_data): event = event_data["event"] emoji = event["reaction"] channel = event["item"]["channel"] text = ":%s:" % emoji logging.info("chat.postMessage: channel: %s text: %s" % (channel, text)) CLIENT.chat.post_message(channel, text) ``` #### File: django-slack-events-api/slack/client_urllib2.py ```python import urllib import urllib2 import logging logging.getLogger().setLevel(logging.INFO) class Client(): def __init__(self, slack_bot_token): self.slack_bot_token = slack_bot_token def chat_post_message(self, channel, text): # https://api.slack.com/methods/chat.postMessage # Present these parameters as part of # an application/x-www-form-urlencoded querystring or POST body. # application/json is not currently accepted. data = { 'token': self.slack_bot_token, 'channel': channel, 'text': text } req = urllib2.Request('https://slack.com/api/chat.postMessage') req.add_header('Content-Type', 'application/x-www-form-urlencoded') req.add_data(urllib.urlencode(data)) response = urllib2.urlopen(req) logging.info("response: %s" % response.read()) ```
{ "source": "jdevera/ogma", "score": 2 }
#### File: ogma/ogma/codegen.py ```python import os from datetime import datetime, timezone # Third party imports from functools import lru_cache import pystache # Local imports from . import utils from . import version # --------------------------------------------------------------------------- def get_abs_path(relpath): return os.path.abspath(os.path.join(os.path.dirname(__file__), relpath)) class NumericEnumTemplateData: """ Hold all necessary data to render all Enum related templates """ CONVERTER_SUFFIX = "TypeConverter" def __init__(self, name): self.name = name self._num = 0 self._values = [] self._package = None self._conv_package = None self._datetime_cache = None def compiler_version(self): return version.VERSION @lru_cache() def datetime(self): return datetime.now(timezone.utc).isoformat() def code_file_name(self): return f"{self.name}.java" def converter_class_name(self): return f"{self.name}{self.CONVERTER_SUFFIX}" def converter_file_name(self): return f"{self.name}{self.CONVERTER_SUFFIX}.java" def enum_fqn(self): return f"{self._package}.{self.name}" def converter_fqn(self): return f"{self._conv_package}.{self.name}{self.CONVERTER_SUFFIX}" def _add_value(self, name): """ Add a value by its name and assign an increasing numeric value to it """ self._values.append(dict(valname=name, valnum=self._num)) self._num += 1 return self def with_values(self, names): for name in names: self._add_value(name) return self def with_enum_package(self, package): self._package = package return self def with_enum_converter_package(self, package): self._conv_package = package return self def values(self): """ Return all values as dictionaries of name and numeric value. Mark the last one with the 'last' key to help template rendering """ return self._values[:-1] + [dict(self._values[-1], last=True)] def __repr__(self): return f"{self.__class__.__name__}({self.name})" class EnumCodeGenerator: """ Code generation logic for Enums and Enum converters """ ENUM_CODE_TEMPLATE = "java_enum" ENUM_CONV_CODE_TEMPLATE = "java_enum_converter" JOOQ_GEN_CONFIG_TEMPLATE = "jooq_generator_config" TEMPLATE_DIR = get_abs_path("./templates") def __init__( self, enums, code_dir, config_dir, enum_package, converter_package, model_file ): self.renderer = pystache.Renderer(search_dirs=self.TEMPLATE_DIR) self.code_dir = os.path.abspath(code_dir) self.config_dir = os.path.abspath(config_dir) self.enum_package = enum_package self.enum_converter_package = converter_package self.database_model_file_name = model_file self.enums = self._adjust_enums_from_model(enums) self.enums_by_name = {enum.name: enum for enum in self.enums} def _adjust_enums_from_model(self, enums): """ Decorate the bare enum definitions from the model with additional attributes necessary for code generation """ return [ NumericEnumTemplateData(enum.name) .with_values(enum._values) .with_enum_package(self.enum_package) .with_enum_converter_package(self.enum_converter_package) for enum in enums.values() ] def _prepare_package_dir(self, package): elements = [self.code_dir] + package.split(".") directory = os.path.join(*elements) if not os.path.isdir(directory): os.makedirs(directory) return directory def _new_java_file(self, package, file_name): directory = self._prepare_package_dir(package) if not file_name.endswith(".java"): file_name += ".java" path = os.path.join(directory, file_name) return open(path, "w") def _new_config_file(self, name): if not os.path.isdir(self.config_dir): os.makedirs(self.config_dir) path = os.path.join(self.config_dir, name) return open(path, "w") def _render_enum_code(self, enum, package, file_name, template): data = { "package": package, "database_model_file": self.database_model_file_name.replace("\\", "/"), "file_name": file_name, } with self._new_java_file(package, file_name) as jout: path = jout.name jout.write(self.renderer.render_name(template, enum, data)) return path def render_enum(self, enum): return self._render_enum_code( enum=enum, package=self.enum_package, file_name=enum.code_file_name(), template=self.ENUM_CODE_TEMPLATE, ) def render_enum_converter(self, enum): return self._render_enum_code( enum=enum, package=self.enum_converter_package, file_name=enum.converter_file_name(), template=self.ENUM_CONV_CODE_TEMPLATE, ) def render_jooq_gen_config(self, template_data): return self.renderer.render_name(self.JOOQ_GEN_CONFIG_TEMPLATE, template_data) def _jooq_forced_type_data(self, table, field, type_name): return {"expression": f"{table}\\.{field}", "name": type_name} def generate_enum_java_code(self): utils.print_section_header("Java Enums And Converters") for enum in self.enums: utils.print_action(f"Generating files for enum: {enum.name}") utils.print_generated_file(self.render_enum(enum)) utils.print_generated_file(self.render_enum_converter(enum)) utils.print_end_action() def generate_jooq_config(self, type_mappings, dbsettings, schema_name, package): field_data = [] for table, columns in type_mappings.items(): for column, type_name in columns.items(): type_fqn = type_name # If the type is an Enum, fully qualify the name enum = self.enums_by_name.get(type_name, None) if enum is not None: type_fqn = enum.enum_fqn() field_data.append(self._jooq_forced_type_data(table, column, type_fqn)) template_data = { "dbhost": dbsettings.host, "dbname": dbsettings.name, "dbuser": dbsettings.user, "dbpassword": <PASSWORD>, "dbport": dbsettings.port, "schema_name": schema_name, "codedir": self.code_dir, "fields": field_data, "enums": self.enums, "package": package, } utils.print_section_header("jOOQ") utils.print_action("Generating jOOQ generator configuration file") config_file_name = "ogma_jooq_gen_config.{}.xml".format(schema_name.lower()) with self._new_config_file(config_file_name) as xout: xout.write(self.render_jooq_gen_config(template_data)) utils.print_generated_file(xout.name) utils.print_end_action() return xout.name ``` #### File: ogma/commands/__init__.py ```python from .. import modelutils from .. import utils from . import common # Command implementations from .generate import generate from .enumtables import enum_tables from .enumusage import enum_usage # --------------------------------------------------------------------------- __all__ = ["generate", "enum_usage", "enum_tables", "get_db_name"] def get_db_name(args): print(modelutils.get_new_database_name()) def drop_db(args): utils.print_action(f"Dropping database: {args.database}") error = None try: args.dbsettings.name = "mysql" engine = common.get_db_engine(args.dbsettings) engine.execute(f"DROP DATABASE {args.database}") except Exception as ex: error = str(ex) finally: utils.print_end_action(error=error) def create_db(args): utils.print_action(f"Creating database: {args.dbsettings.name}") error = None try: args.dbmodel.metadata.save(args.dbsettings) except Exception as ex: error = str(ex) finally: utils.print_end_action(error=error) ``` #### File: ogma/modelutils/stored_procedures.py ```python from . import ValueHolder from textwrap import dedent, indent class ProcParamDirection(ValueHolder): """ Hold the direction of a parameter in a stored procedure """ def __init__(self, value): assert value in ("IN", "OUT", "INOUT") super().__init__(value) # The available parameter directions: IN = ProcParamDirection("IN") OUT = ProcParamDirection("OUT") INOUT = ProcParamDirection("INOUT") class ProcSqlBody(ValueHolder): """ Hold the SQL code that makes up the body of a stored procedure """ pass class ProcComment(ValueHolder): """ Hold the comment test of a store procedure """ pass class ProcParam(object): """ A parameter in a stored procedure """ def __init__(self, name, the_type, direction): self._name = name self._type = the_type self._direction = None self.direction = direction @property def direction(self): return self._direction @direction.setter def direction(self, value): """ A custom setter to make sure the value is an instance of ProcParamDirection """ assert isinstance(value, ProcParamDirection) self._direction = value @property def sql(self): """ The representation of the parameter in SQL """ return "{0.direction.value} {0._name} {0._type}".format(self) class StoredProcedure(object): """ Models a SQL store procedure """ def __init__(self, name, *args): self.name = name self.comment = None self.params = [] self.sqlbody = None self.process_arguments(args) def process_arguments(self, args): """ Arguments to the constructor can come in any order and their semantics is determined through their type, following the way a Table in sqlalchemy is created. """ for arg in args: if isinstance(arg, ProcComment): self.comment = arg() elif isinstance(arg, ProcSqlBody): self.sqlbody = arg() elif isinstance(arg, ProcParam): self.params.append(arg) else: raise ValueError( "Unexpected argument type for StoredProcedure: {}".type(arg) ) @property def sql(self): """ MySQL statement of procedure creation based on the current procedure definition """ indented = lambda x: indent(x, 4 * " ") statement = [f"CREATE OR REPLACE PROCEDURE {self.name}("] if self.params: params_text = ",\n".join((param.sql for param in self.params)) statement += ["\n", indented(params_text), "\n"] statement.append(")\nLANGUAGE SQL") if self.comment: statement.append(f"\nCOMMENT '{self.comment}'") indented_sql = indented(dedent(self.sqlbody)) statement.append(f"\nBEGIN\n{indented_sql}\nEND\n") return "".join(statement) @property def creation_statement(self): return "\n".join(["DELIMITER //", self.sql + "\n//", "DELIMITER ;"]) def test(): """ Simple test for definition and text output """ proc = StoredProcedure( "topiccounter", ProcParam("count", "BIGINT", OUT), ProcParam("count2", "BIGINT", OUT), ProcComment("Count the topics"), ProcSqlBody( """ SELECT COUNT(*) INTO count FROM topic; """ ), ) print(proc.creation_statement) if __name__ == "__main__": test() ``` #### File: ogma/modelutils/value_holder.py ```python class ValueHolder(object): """ Hold one arbitrary value per instance. This exists so that a module level variable can be propagated down through imports while keeping value changes. Instances are callables that return the held value """ def __init__(self, value=None): self.value = value def __call__(self): return self.value ```
{ "source": "jdevera/pythoncanarias_web", "score": 2 }
#### File: pythoncanarias_web/about/views.py ```python import logging from django.conf import settings from django.shortcuts import render from organizations.models import Organization logger = logging.getLogger(__name__) def index(request): pythoncanarias = Organization.objects.get( name__istartswith=settings.ORGANIZATION_NAME) return render(request, 'about/index.html', {'pythoncanarias': pythoncanarias}) def history(request): return render(request, 'about/history.html', {}) ``` #### File: pythoncanarias_web/certificates/utils.py ```python import os import re import subprocess import sys import logging current_module = sys.modules[__name__] base_dir = os.path.dirname(current_module.__file__) FORMAT = '%(asctime)-15s %(levelname)s %(message)s' logging.basicConfig(format=FORMAT) logger = logging.getLogger(__name__) def get_template_full_name(filename, base=base_dir): return os.path.join(base, 'templates', filename) def get_output_full_name(filename, base=base_dir): output_dir = os.path.join(base, 'media') if not os.path.exists(output_dir): os.makedirs(output_dir) return os.path.join(output_dir, filename) def inkscape_export(source_filename, target_filename, tron=False): commands = [ "inkscape", "--export-pdf={}".format(target_filename), source_filename, ] if tron: logger.info(" ".join(commands)) subprocess.call(commands) def create_certificate(template, output_name, **kwargs): def extract_value(match): name = match.group(1)[2:-2].strip() return kwargs.get(name, 'Value {} not found'.format(name)) pat = re.compile(r'(\{\{.+\}\})') full_input_name = get_template_full_name('{}.svg'.format(template)) full_output_name = get_output_full_name('{}.svg'.format(output_name)) with open(full_input_name, 'r') as fin: with open(full_output_name, 'w') as fout: template = fin.read() output = pat.sub(extract_value, template) fout.write(output) pdf_filename = get_output_full_name('{}.pdf'.format(output_name)) inkscape_export(full_output_name, pdf_filename) return pdf_filename ``` #### File: events/migrations/0007_waitinglist_buy_code.py ```python from django.db import migrations, models import uuid def create_uuid(apps, schema_editor): WaitingList = apps.get_model('events', 'WaitingList') for wl in WaitingList.objects.all(): wl.buy_code = uuid.uuid4() wl.save() class Migration(migrations.Migration): dependencies = [ ('events', '0006_refund'), ] operations = [ migrations.AddField( model_name='waitinglist', name='buy_code', field=models.UUIDField(default=None, blank=True, null=True), ), migrations.RunPython(create_uuid), migrations.AlterField( model_name='waitinglist', name='buy_code', field=models.UUIDField(default=uuid.uuid4, unique=True), ), ] ``` #### File: pythoncanarias_web/events/test_tasks.py ```python import datetime import os from unittest.mock import Mock import pytest from django.core.mail import EmailMessage from . import tasks @pytest.fixture def test_ticket(): event = Mock( get_long_start_date=Mock(return_value='Aquí va la fecha'), ) event.name = 'Event name' category = Mock() category.name = 'Ticket type name' article = Mock( price=10.00, stock=20, ) article.category = category article.event = event ticket = Mock( number=9, customer_name="<NAME>", customer_surname='<NAME>', customer_email='<EMAIL>', sold_at=datetime.datetime(2018, 10, 11, 22, 44, 00), keycode='18b0b618-7b9e-4857-9f01-39999424ee3f', ) ticket.article = article return ticket def test_get_qrcode_as_svg(): svg_code = tasks.get_qrcode_as_svg('This is a test') assert svg_code.startswith('<?xml') assert svg_code.strip().endswith('</svg>') def test_get_tickets_dir(): path = tasks.get_tickets_dir() assert 'temporal' in path assert 'tickets' in path assert os.path.isdir(path) def test_create_ticket_pdf(test_ticket): path = tasks.create_ticket_pdf(test_ticket) assert test_ticket.keycode in path assert path.endswith('.pdf') assert os.path.exists(path) def test_create_ticket_message(test_ticket): msg = tasks.create_ticket_message(test_ticket) assert isinstance(msg, EmailMessage) def test_send_ticket(test_ticket): tasks.send_ticket(test_ticket) if __name__ == '__main__': pytest.main() ``` #### File: pythoncanarias_web/members/views.py ```python import logging from django.conf import settings from django.shortcuts import render from organizations.models import Organization logger = logging.getLogger(__name__) def join(request): pythoncanarias = Organization.objects.get( name__istartswith=settings.ORGANIZATION_NAME) return render(request, 'members/join.html', {'pythoncanarias': pythoncanarias}) ``` #### File: pythoncanarias_web/organizations/admin.py ```python from django.contrib import admin from django.http import HttpResponse from .models import (Membership, Organization, OrganizationCategory, OrganizationRole) class MembershipInline(admin.StackedInline): model = Membership extra = 0 autocomplete_fields = ['organization'] fk_name = 'organization' class OrganizationCategoryInline(admin.StackedInline): model = OrganizationCategory extra = 0 @admin.register(Organization) class OrganizationAdmin(admin.ModelAdmin): inlines = [MembershipInline] search_fields = ['name'] list_display = ('name', 'url', 'cif', 'email', 'address') list_filter = ('memberships__event', 'city') def memberships(self, obj): return (', '.join('[{}] {}'.format(x.event, x.category) for x in obj.memberships.all())) @admin.register(OrganizationRole) class OrganizationRoleAdmin(admin.ModelAdmin): inlines = [OrganizationCategoryInline] prepopulated_fields = {'code': ('name', ), } list_display = ('name', 'code', 'display_name') @admin.register(OrganizationCategory) class OrganizationCategoryAdmin(admin.ModelAdmin): prepopulated_fields = {'code': ('name', ), } list_display = ('name', 'role', 'code', 'display_name') @admin.register(Membership) class MembershipAdmin(admin.ModelAdmin): list_display = ('event', 'organization', 'category', 'amount', 'order') list_filter = ('category__name', 'event') search_fields = ['organization__name'] autocomplete_fields = ['organization', 'joint_organization'] def download_emails(self, request, queryset): content = ','.join([m.get_email() for m in queryset]) filename = 'emails.txt' response = HttpResponse(content, content_type='text/plain') response['Content-Disposition'] = 'attachment; filename={}'.format( filename) return response download_emails.short_description = 'Download management emails' actions = [download_emails, ] ``` #### File: pythoncanarias_web/schedule/admin.py ```python from django import forms from django.contrib import admin from django.http import HttpResponse from .models import Schedule, Slot, SlotCategory, SlotLevel, SlotTag, Track from locations.models import Location class ScheduleInline(admin.StackedInline): model = Schedule extra = 0 autocomplete_fields = ['speakers'] @admin.register(SlotCategory) class SlotCategoryAdmin(admin.ModelAdmin): prepopulated_fields = {'code': ('name', ), } list_display = ('name', 'code') @admin.register(SlotTag) class SlotTagAdmin(admin.ModelAdmin): prepopulated_fields = {'slug': ('name', ), } list_display = ('name', 'slug') @admin.register(SlotLevel) class SlotLevelAdmin(admin.ModelAdmin): list_display = ('name', 'order') @admin.register(Slot) class SlotAdmin(admin.ModelAdmin): def has_slides(self, obj): return obj.slides != '' has_slides.boolean = True inlines = [ScheduleInline] list_display = ('name', 'has_slides', 'level', '_tags') search_fields = ['name'] list_filter = ['level', 'tags'] def _tags(self, obj): return ', '.join(tag.name for tag in obj.tags.all()) @admin.register(Track) class TrackAdmin(admin.ModelAdmin): list_display = ('name', 'order') class LocationChoiceField(forms.ModelChoiceField): def label_from_instance(self, obj): return f'{obj.name} - {obj.venue}' @admin.register(Schedule) class ScheduleAdmin(admin.ModelAdmin): search_fields = ['event__name', 'location__name', 'slot__name', 'track__name', 'speakers__name', 'speakers__surname'] list_display = ('slot', 'event', 'location', 'start') autocomplete_fields = ['speakers', 'slot'] list_filter = ['event'] def download_speakers_emails(self, request, queryset): emails = set() for schedule in queryset: schedule_emails = schedule.speakers.all().values_list( 'email', flat=True) if schedule_emails: emails.add(*schedule_emails) content = ','.join(emails) filename = 'emails.txt' response = HttpResponse(content, content_type='text/plain') response['Content-Disposition'] = 'attachment; filename={}'.format( filename) return response download_speakers_emails.short_description = "Download speakers' emails" actions = [download_speakers_emails, ] def formfield_for_foreignkey(self, db_field, request, **kwargs): if db_field.name == 'location': return LocationChoiceField( queryset=Location.objects.all()) return super().formfield_for_foreignkey(db_field, request, **kwargs) ``` #### File: pythoncanarias_web/schedule/models.py ```python from django.db import models from commons.constants import PRIORITY class SlotCategory(models.Model): # Workshop, Talk, Organization, Coffee, Meal, ... name = models.CharField(max_length=256) code = models.CharField(max_length=32, unique=True) description = models.TextField(blank=True) def __str__(self): return self.name class Meta: verbose_name_plural = 'slot categories' class SlotTag(models.Model): # Machine Learning, Science, DevOps, ... name = models.CharField(max_length=256) slug = models.SlugField(unique=True) description = models.TextField(blank=True) def __str__(self): return self.name class Meta: ordering = ['name'] class SlotLevel(models.Model): # Basic, Intermediate, Advanced, ... name = models.CharField(max_length=256) order = models.PositiveIntegerField( choices=PRIORITY.CHOICES, default=PRIORITY.MEDIUM, ) description = models.TextField(blank=True) def __str__(self): return self.name class Slot(models.Model): name = models.CharField(max_length=256) description = models.TextField(blank=True) repo = models.URLField(blank=True) slides = models.URLField(blank=True) category = models.ForeignKey( SlotCategory, on_delete=models.PROTECT, related_name='slots', ) level = models.ForeignKey( SlotLevel, on_delete=models.PROTECT, related_name='slots', blank=True, null=True, ) tags = models.ManyToManyField(SlotTag, related_name='slots', blank=True) def __str__(self): return self.name def get_level(self): return self.level.name if self.level else 'N/A' def get_tags(self): return [t.slug for t in self.tags.all().order_by('slug')] def is_talk(self): return self.category_id in (1, 2) class Track(models.Model): name = models.CharField(max_length=256) order = models.PositiveIntegerField( choices=PRIORITY.CHOICES, default=PRIORITY.MEDIUM, ) description = models.TextField(blank=True) def __str__(self): return self.name def schedule_in_range(self, start=None, end=None, event=None): queryset = self.schedule.all().order_by('start') if start: queryset = queryset.filter(start__gte=start) if end: queryset = queryset.filter(end__lte=end) if event: queryset = queryset.filter(event=event) return queryset def get_talks(self, event=None): qs = self.schedule.select_related('slot') if event: qs = qs.filter(event=event) qs = qs.order_by('start') return [{ 'talk_id': t.slot.pk, 'name': t.slot.name, 'start': t.start.strftime('%H:%M'), 'end': t.end.strftime('%H:%M'), 'description': t.slot.description, 'tags': t.slot.get_tags(), 'language': t.language, 'speakers': t.get_speakers(), } for t in qs] class Schedule(models.Model): SPANISH = 'ES' ENGLISH = 'EN' LANGUAGE_CHOICES = ((SPANISH, 'Español'), (ENGLISH, 'Inglés')) event = models.ForeignKey( 'events.Event', on_delete=models.PROTECT, related_name='schedule', ) location = models.ForeignKey( 'locations.Location', on_delete=models.PROTECT, related_name='schedule', ) # if track is null the slot is plenary track = models.ForeignKey( Track, on_delete=models.PROTECT, related_name='schedule', null=True, blank=True, ) speakers = models.ManyToManyField( 'speakers.Speaker', related_name='schedule', blank=True, ) slot = models.ForeignKey( Slot, on_delete=models.PROTECT, related_name='schedule', ) start = models.DateTimeField() end = models.DateTimeField() language = models.CharField( max_length=2, choices=LANGUAGE_CHOICES, default=SPANISH, ) def __str__(self): return "{} {}-{}".format( self.start.date(), self.start.time(), self.end.time(), ) def get_speakers(self): qs = self.speakers.all().order_by('surname', 'name') result = [{ 'speaker_id': speaker.pk, 'name': speaker.name, 'surname': speaker.surname, 'bio': speaker.bio, 'photo': speaker.photo_url, 'social': speaker.socials(), } for speaker in qs] return result @property def size_for_display(self): t = round((self.end - self.start) / self.event.default_slot_duration) return t if t > 0 else 1 def track_name(self): if self.track: return self.track.name else: return 'No track' ``` #### File: pythoncanarias_web/speakers/models.py ```python from urllib.parse import urljoin from django.contrib.staticfiles.templatetags.staticfiles import static from django.db import models class Social(models.Model): class Meta: verbose_name = 'social network' verbose_name_plural = 'social networks' name = models.CharField(max_length=256) code = models.CharField(max_length=32, unique=True) base_url = models.CharField(max_length=128) def __str__(self): return self.name class Speaker(models.Model): name = models.CharField(max_length=256) surname = models.CharField(max_length=256) slug = models.SlugField(unique=True) bio = models.TextField() email = models.EmailField(blank=True) phone = models.CharField(max_length=32, blank=True) photo = models.ImageField( upload_to='speakers/speaker/', blank=True, ) def __str__(self): return '{} {}'.format(self.name, self.surname) def socials(self): return { c.social.code: c.href for c in self.contacts.order_by('social__name') } def socials_for_display(self): return [{'code': c.social.code, 'href': c.href} for c in self.contacts.order_by('social__name')] @property def photo_url(self): if self.photo: return self.photo.url else: return static('speakers/img/noavatar.png') def talks(self, event=None): """Returns a list with all the talks (schedule & slot) for a given speaker. If we pass an event as a parameter, it returns only a list of the speaker's talks given in this event. Params: - event (class Event) [optional]: if provided, if filter the talks to be from this event. Return: - A list of talks from this speaker (and event, if provided). Empty list if no talks from this speaker. """ qs = self.schedule.select_related('slot') if event: qs = qs.filter(event=event) qs = qs.order_by('slot__name') return list(qs) class Contact(models.Model): social = models.ForeignKey( Social, on_delete=models.PROTECT, related_name='contacts' ) speaker = models.ForeignKey( Speaker, on_delete=models.PROTECT, related_name='contacts' ) identifier = models.CharField(max_length=128) def __str__(self): return self.href @property def href(self): return urljoin(self.social.base_url, self.identifier) ``` #### File: tickets/services/ticket_maker.py ```python import os from django.utils import timezone from reportlab.graphics import renderPDF from reportlab.graphics.barcode import qr from reportlab.graphics.shapes import Drawing from reportlab.lib.pagesizes import A4 from reportlab.lib.styles import getSampleStyleSheet from reportlab.lib.units import cm, mm from reportlab.pdfbase import pdfmetrics from reportlab.pdfbase.ttfonts import TTFont from reportlab.platypus import Paragraph, SimpleDocTemplate, Spacer, Table class BaseReport: FONTS = { 'light': 'Existence-Light.ttf', 'bold': 'Amaranth-Bold.ttf', 'title': 'AirAmerica-Regular.ttf', 'far': 'Font Awesome-5-Free-Regular-400.ttf', 'fab': 'Font-Awesome-5-Brands-Regular-400.ttf', 'fas': 'Font-Awesome-5-Free-Solid-900.ttf', 'fira': 'FiraCode-Light.ttf' } def __init__(self, ticket, width, height): self.ticket = ticket self.width = width self.height = height self.styles = getSampleStyleSheet() self.configure_paths() self.configure_fonts() def configure_paths(self): self.resources_path = os.path.join( os.path.dirname(os.path.abspath(__file__)), 'resources') self.fonts_path = os.path.join(self.resources_path, 'fonts') self.images_path = os.path.join(self.resources_path, 'images') def configure_fonts(self): self.fonts = {} for font_alias, font_filename in BaseReport.FONTS.items(): font_path = os.path.join(self.fonts_path, font_filename) pdfmetrics.registerFont(TTFont(font_alias, font_path)) def coord(self, x, y, unit=mm): x, y = x * unit, self.height - y * unit return x, y def insert_image(self, image_path, x, y, width, anchor='sw'): self.canvas.drawImage( image_path, x, y, width=width, preserveAspectRatio=True, anchorAtXY=True, mask='auto', anchor=anchor) def paragraph(self, text): return Paragraph(text, self.styles['Normal']) class Header(BaseReport): def __init__(self, ticket, canvas, x, y, width=17 * cm, height=3 * cm): BaseReport.__init__(self, ticket, width, height) self.canvas = canvas self.x = x self.y = y def draw(self): self.canvas.saveState() logo_path = os.path.join(self.images_path, 'logo-python-canarias.png') self.insert_image( logo_path, self.x, self.y, 45 * mm, anchor='nw') self.canvas.setLineWidth(0.2 * mm) y = self.y - 18 * mm self.canvas.line(self.x, y, self.x + self.width, y) self.canvas.restoreState() class Footer(BaseReport): def __init__(self, ticket, canvas, x, y, width=17 * cm, height=3 * cm): BaseReport.__init__(self, ticket, width, height) self.canvas = canvas self.x = x self.y = y def draw(self): self.canvas.saveState() self.canvas.setLineWidth(0.2 * mm) self.canvas.line(self.x, self.y, self.x + self.width, self.y) # Left side of footer start_x = self.x start_y = self.y - 5 * mm # icon self.canvas.setFont('fab', 10) self.canvas.drawString(start_x, start_y, '\uf099') # message start_x += 5 * mm self.canvas.setFont('bold', 10) self.canvas.drawString(start_x, start_y, f'Comparte el evento con:') # hashtag start_x += 38 * mm self.canvas.setFont('fira', 9) self.canvas.drawString(start_x, start_y, self.ticket.event.qualified_hashtag) # Right side of footer start_x = self.x + self.width - 33 * mm start_y = self.y - 5 * mm # icon self.canvas.setFont('fas', 10) self.canvas.drawString(start_x, start_y, '\uf0c1') # url start_x += 5 * mm self.canvas.setFont('bold', 10) self.canvas.drawString(start_x, start_y, 'pythoncanarias.es') self.canvas.restoreState() class QRCode(BaseReport): def __init__(self, ticket, canvas, x, y, width=5 * cm, height=5 * cm): BaseReport.__init__(self, ticket, width, height) self.canvas = canvas self.x = x self.y = y def draw(self): self.canvas.saveState() # qrcode image qr_code = qr.QrCodeWidget(str(self.ticket.keycode)) qr_code.barWidth = self.width qr_code.barHeight = self.height qr_code.qrVersion = 1 d = Drawing() d.add(qr_code) renderPDF.draw(d, self.canvas, self.x, self.y) # qrcode text self.canvas.setFont('fira', 8) self.canvas.rotate(90) self.canvas.drawString(52 * mm, -18 * cm, str(self.ticket.keycode)) self.canvas.restoreState() class TicketMaker(BaseReport): def __init__(self, pdf_file, ticket, width=A4[0], height=A4[1]): super().__init__(ticket, width, height) self.doc = SimpleDocTemplate( pdf_file, pagesize=A4, rightMargin=3 * cm, leftMargin=2 * cm, topMargin=4 * cm, bottomMargin=3 * cm) self.elements = [] def create_title(self): p = self.paragraph(f''' <para leading=27><font size=25 name=title>{ self.ticket.event } </font></para>''') self.elements.append(p) s = Spacer(1, 1 * cm) self.elements.append(s) def create_features(self): start = timezone.localtime(self.ticket.event.start_datetime()) event_date = start.strftime('%d/%m/%Y') if start.hour == 0: event_hour = 'Aún sin definir' else: event_hour = start.strftime('%H:%Mh') data = ( ('\uf554', 'asistente', self.ticket.customer_full_name), ('\uf0e0', 'email', self.ticket.customer_email), ('\uf784', 'fecha del evento', event_date), ('\uf017', 'hora de comienzo', event_hour), ('\uf292', 'número de entrada', self.ticket.number), ('\uf810', 'tipo de entrada', self.ticket.article.category.name), ('\uf4c0', 'precio de la entrada', f'{self.ticket.article.price}€'), ('\uf788', 'método de pago', self.ticket.get_payment_method_display() or 'Free'), ('\uf07a', 'fecha de compra', self.ticket.sold_at.strftime('%d/%m/%y @ %H:%Mh')), ('\uf3c5', 'ubicación', self.paragraph(f''' <font name=bold>{ self.ticket.event.venue.name }</font>''')), ('\uf14e', 'dirección', self.paragraph(f''' <font name=bold>{ self.ticket.event.venue.address }</font> ''')) ) tblstyle = ([('FONT', (0, 0), (0, -1), 'fas'), ('FONT', (1, 0), (1, -1), 'light'), ('FONT', (2, 0), (2, -1), 'bold'), ('TEXTCOLOR', (0, 0), (0, -1), '#595959'), ('VALIGN', (0, 0), (-1, -1), 'MIDDLE'), ('ALIGN', (0, 0), (0, -1), 'CENTER')]) tbl = Table( data, colWidths=(6 * mm, 4 * cm, 10 * cm), rowHeights=(8 * mm)) tbl.setStyle(tblstyle) self.elements.append(tbl) def create_header(self): header = Header(self.ticket, self.canvas, *self.coord(2, 1, cm)) header.draw() def create_footer(self): footer = Footer(self.ticket, self.canvas, *self.coord(2, 27, cm)) footer.draw() def create_qr(self): qrcode = QRCode(self.ticket, self.canvas, *self.coord(13, 25, cm)) qrcode.draw() def draw_flowables(self): self.create_title() self.create_features() def draw_fixed(self, canvas, doc): self.canvas = canvas self.create_header() self.create_qr() self.create_footer() def save(self): self.doc.build(self.elements, onFirstPage=self.draw_fixed) def create(self): self.draw_flowables() self.save() ```
{ "source": "jdevera/splinter", "score": 2 }
#### File: splinter/tests/test_webdriver_chrome.py ```python import os import unittest import pytest from .fake_webapp import EXAMPLE_APP from .base import WebDriverTests, get_browser from selenium.common.exceptions import WebDriverException def chrome_installed(): try: Browser("chrome") except WebDriverException: return False return True class ChromeBase(object): @pytest.fixture(autouse=True, scope='class') def teardown(self, request): request.addfinalizer(self.browser.quit) class ChromeBrowserTest(WebDriverTests, ChromeBase, unittest.TestCase): @pytest.fixture(autouse=True, scope='class') def setup_browser(self, request): request.cls.browser = get_browser('chrome', fullscreen=False) @pytest.fixture(autouse=True) def visit_example_app(self, request): self.browser.driver.set_window_size(1024, 768) self.browser.visit(EXAMPLE_APP) def test_attach_file(self): "should provide a way to change file field value" file_path = os.path.join( os.path.abspath(os.path.dirname(__file__)), "mockfile.txt" ) self.browser.attach_file("file", file_path) self.browser.find_by_name("upload").click() html = self.browser.html self.assertIn("text/plain", html) with open(file_path) as f: expected = str(f.read().encode("utf-8")) self.assertIn(expected, html) def test_should_support_with_statement(self): with get_browser('chrome'): pass class ChromeBrowserFullscreenTest(WebDriverTests, ChromeBase, unittest.TestCase): @pytest.fixture(autouse=True, scope='class') def setup_browser(self, request): request.cls.browser = get_browser('chrome', fullscreen=True) @pytest.fixture(autouse=True) def visit_example_app(self): self.browser.visit(EXAMPLE_APP) def test_should_support_with_statement(self): with get_browser('chrome', fullscreen=True): pass ```
{ "source": "JDevlieghere/apple-llvm-infrastructure-tools", "score": 2 }
#### File: git_apple_llvm/am/core.py ```python from git_apple_llvm.git_tools import git, git_output, get_dev_null, GitError from typing import Dict, List, Optional import logging AM_PREFIX = 'refs/am/changes/' AM_STATUS_PREFIX = 'refs/am-status/changes/' log = logging.getLogger(__name__) class CommitStates: new = "NEW" conflict = "CONFLICT" pending = "PENDING" started = "STARTED" passed = "PASSED" failed = "FAILED" known_failed = "KNOWN_FAILED" # When Failed was already reported. all = [new, conflict, pending, started, passed, failed, known_failed] def has_merge_conflict(commit: str, target_branch: str, remote: str = 'origin') -> bool: """ Returns true if the given commit hash has a merge conflict with the given target branch. """ try: # Always remove the temporary worktree. It's possible that we got # interrupted and left it around. This will raise an exception if the # worktree doesn't exist, which can be safely ignored. git('worktree', 'remove', '--force', '.git/temp-worktree', stdout=get_dev_null(), stderr=get_dev_null()) except GitError: pass git('worktree', 'add', '.git/temp-worktree', f'{remote}/{target_branch}', '--detach', stdout=get_dev_null(), stderr=get_dev_null()) try: git('merge', '--no-commit', commit, git_dir='.git/temp-worktree', stdout=get_dev_null(), stderr=get_dev_null()) return False except GitError: return True finally: git('worktree', 'remove', '--force', '.git/temp-worktree', stdout=get_dev_null(), stderr=get_dev_null()) def compute_unmerged_commits(remote: str, target_branch: str, upstream_branch: str, format: str = '%H') -> Optional[List[str]]: """ Returns the list of commits that are not yet merged from upstream to the target branch. """ commit_log_output = git_output( 'log', '--first-parent', f'--pretty=format:{format}', '--no-patch', f'{remote}/{target_branch}..{remote}/{upstream_branch}', ) if not commit_log_output: return None return commit_log_output.split('\n') def find_inflight_merges(remote: str = 'origin') -> Dict[str, List[str]]: """ This function fetches the refs created by the automerger to find the inflight merges that are currently being processed. """ # Delete the previously fetched refs to avoid fetch failures # where there were force pushes. existing_refs = git_output('for-each-ref', AM_STATUS_PREFIX, '--format=%(refname)').split('\n') for ref in existing_refs: if not ref: continue log.debug(f'Deleting local ref "{ref}" before fetching') git('update-ref', '-d', ref) git('fetch', remote, f'{AM_PREFIX}*:{AM_STATUS_PREFIX}*') # FIXME: handle fetch failures. refs = git_output('for-each-ref', AM_STATUS_PREFIX, '--format=%(refname)').split('\n') inflight_merges: Dict[str, List[str]] = {} for ref in refs: if not ref: continue assert ref.startswith(AM_STATUS_PREFIX) merge_name = ref[len(AM_STATUS_PREFIX):] underscore_idx = merge_name.find('_') assert underscore_idx != -1 commit_hash = merge_name[:underscore_idx] dest_branch = merge_name[underscore_idx + 1:] if dest_branch in inflight_merges: inflight_merges[dest_branch].append(commit_hash) else: inflight_merges[dest_branch] = [commit_hash] for (m, k) in inflight_merges.items(): log.debug(f'in-flight {m}: {k}') return inflight_merges ``` #### File: git_apple_llvm/am/main.py ```python import click import logging from typing import Optional, List from git_apple_llvm.git_tools import git from git_apple_llvm.am.core import CommitStates from git_apple_llvm.am.am_graph import print_graph from git_apple_llvm.am.am_status import print_status from git_apple_llvm.am.oracle import set_state, get_state log = logging.getLogger(__name__) is_verbose = False @click.group() @click.option('-v', '--verbose', count=True) def am(verbose): global is_verbose # Setup logging. Use verbose flag to determine console output, and log to a file in at debug level. is_verbose = bool(verbose) level = logging.WARNING - (verbose * 10) if level < 1: raise ValueError("Too verbose.") logger = logging.getLogger() logger.setLevel(logging.DEBUG) # create file handler which logs even debug messages fh = logging.FileHandler('am.log') fh.setLevel(logging.DEBUG) # create console handler with a higher log level ch = logging.StreamHandler() ch.setLevel(level) # create formatter and add it to the handlers fh_formatter = logging.Formatter('%(asctime)s %(levelname)s: %(message)s [%(filename)s:%(lineno)d]') fh.setFormatter(fh_formatter) ch_fomatter = logging.Formatter('%(levelname)s: %(message)s [%(filename)s:%(lineno)d] ') ch.setFormatter(ch_fomatter) # add the handlers to the logger logger.addHandler(fh) logger.addHandler(ch) @am.command() @click.option('--target', metavar='<branch>', type=str, default=None, help='The target branch for which the status should be reported. All branches are shown by default.') @click.option('--all-commits', is_flag=True, default=False, help='List all outstanding commits in the merge backlog.') @click.option('--no-fetch', is_flag=True, default=False, help='Do not fetch remote (WARNING: status will be stale!).') @click.option('--ci-status', is_flag=True, default=False, help='Query additional CI status from Redis.') def status(target: Optional[str], all_commits: bool, no_fetch: bool, ci_status: bool): remote = 'origin' if not no_fetch: click.echo(f'❕ Fetching "{remote}" to provide the latest status...') git('fetch', remote, stderr=None) click.echo('✅ Fetch succeeded!\n') print_status(remote=remote, target_branch=target, list_commits=all_commits, query_ci_status=ci_status) @am.command() @click.option('--format', metavar='<format>', type=str, default=None, help='The file format for the generated graph.') @click.option('--remote', metavar='<remote>', multiple=True, help='The remote(s) to graph.') @click.option('--no-fetch', is_flag=True, default=False, help='Do not fetch remote (WARNING: status will be stale!).') @click.option('--ci-status', is_flag=True, default=False, help='Query additional CI [status from Redis.') def graph(format: str, remote: List[str], no_fetch: bool, ci_status: bool): remotes = remote if remote else ['origin'] if not no_fetch: for r in remotes: click.echo(f'❕ Fetching "{r}" to provide the latest status...') git('fetch', r, stderr=None) print_graph(remotes=remotes, query_ci_status=ci_status, fmt=format) @am.group() def result(): """ Set and Get merge results. """ pass @result.command() @click.argument('merge_id', envvar='MERGE_ID') @click.argument('status') def set(merge_id, status): """Set the merge status for a merge ID.""" if status not in CommitStates.all: all_status = ', '.join(CommitStates.all) raise click.BadArgumentUsage(f"Status must be one of {all_status}.") set_state(merge_id, status) click.echo(f"Set {merge_id} to {status}") @result.command() @click.argument('merge_id', envvar='MERGE_ID') def get(merge_id): """Get the merge status of a merge_id. """ click.echo(get_state(merge_id)) if __name__ == '__main__': am() ```
{ "source": "jdev-org/QgisCadastrePlugin", "score": 2 }
#### File: cadastre/dialogs/cadastre_load_dialog.py ```python __email__ = "<EMAIL>" import os.path from pathlib import Path from qgis.PyQt import uic from qgis.PyQt.QtWidgets import QDialog from cadastre.cadastre_loading import cadastreLoading from cadastre.tools import set_window_title LOAD_FORM_CLASS, _ = uic.loadUiType( os.path.join( str(Path(__file__).resolve().parent.parent), 'forms', 'cadastre_load_form.ui' ) ) class CadastreLoadDialog(QDialog, LOAD_FORM_CLASS): """ Load data from database. """ def __init__(self, iface, cadastre_search_dialog, parent=None): super(CadastreLoadDialog, self).__init__(parent) self.iface = iface self.setupUi(self) self.setWindowTitle('{} {}'.format(self.windowTitle(), set_window_title())) self.mc = self.iface.mapCanvas() self.cadastre_search_dialog = cadastre_search_dialog # common cadastre methods from cadastre.dialogs.dialog_common import CadastreCommon self.qc = CadastreCommon(self) self.ql = cadastreLoading(self) # spatialite support self.hasSpatialiteSupport = CadastreCommon.hasSpatialiteSupport() if not self.hasSpatialiteSupport: self.liDbType.removeItem(2) # Set initial values self.go = True self.step = 0 self.totalSteps = 0 self.dbType = None self.dbpluginclass = None self.connectionName = None self.connection = None self.db = None self.schema = None self.schemaList = None self.hasStructure = None # Get style list self.getStyleList() # Signals/Slot Connections self.liDbType.currentIndexChanged[str].connect(self.qc.updateConnectionList) self.liDbConnection.currentIndexChanged[str].connect(self.qc.updateSchemaList) self.btProcessLoading.clicked.connect(self.onProcessLoadingClicked) self.ql.cadastreLoadingFinished.connect(self.onLoadingEnd) self.btLoadSqlLayer.clicked.connect(self.onLoadSqlLayerClicked) self.rejected.connect(self.onClose) self.buttonBox.rejected.connect(self.onClose) self.qc.load_default_values() def onClose(self): """ Close dialog """ if self.db: self.db.connector.__del__() self.close() def getStyleList(self): """ Get the list of style directories inside the plugin dir and add combobox item """ spath = os.path.join(self.qc.plugin_dir, "styles/") dirs = os.listdir(spath) dirs = [a for a in dirs if os.path.isdir(os.path.join(spath, a))] dirs.sort() cb = self.liTheme cb.clear() for d in dirs: cb.addItem('%s' % d, d) def onProcessLoadingClicked(self): """ Activate the loading of layers from database tables when user clicked on button """ if self.connection: if self.db: self.ql.processLoading() def onLoadSqlLayerClicked(self): """ Loads a layer from given SQL when user clicked on button """ if self.connection: if self.db: self.ql.loadSqlLayer() def onLoadingEnd(self): """ Actions to trigger when all the layers have been loaded """ self.cadastre_search_dialog.checkMajicContent() self.cadastre_search_dialog.clearComboboxes() self.cadastre_search_dialog.setupSearchCombobox('commune', None, 'sql') self.cadastre_search_dialog.setupSearchCombobox('commune_proprietaire', None, 'sql') # self.cadastre_search_dialog.setupSearchCombobox('section', None, 'sql') ``` #### File: cadastre/dialogs/dialog_common.py ```python __email__ = "<EMAIL>" import os.path import re import unicodedata from collections import namedtuple from pathlib import Path from db_manager.db_plugins import createDbPlugin from db_manager.db_plugins.plugin import BaseError from db_manager.dlg_db_error import DlgDbError from qgis.core import QgsMapLayer, QgsProject, QgsSettings from qgis.PyQt.QtCore import QFileInfo, Qt from qgis.PyQt.QtGui import QTextCursor from qgis.PyQt.QtWidgets import QApplication, QFileDialog, qApp import cadastre.cadastre_common_base as common_utils class CadastreCommon: """ Import data from EDIGEO and MAJIC files. """ def __init__(self, dialog): self.dialog = dialog # plugin directory path self.plugin_dir = str(Path(__file__).resolve().parent.parent) # default auth id for layers self.defaultAuthId = '<PASSWORD>' # Bind as class properties for compatibility hasSpatialiteSupport = common_utils.hasSpatialiteSupport openFile = common_utils.openFile def updateLog(self, msg): """ Update the log """ t = self.dialog.txtLog t.ensureCursorVisible() prefix = '<span style="font-weight:normal;">' suffix = '</span>' t.append('%s %s %s' % (prefix, msg, suffix)) c = t.textCursor() c.movePosition(QTextCursor.End, QTextCursor.MoveAnchor) t.setTextCursor(c) qApp.processEvents() def updateProgressBar(self): """ Update the progress bar """ if self.dialog.go: self.dialog.step += 1 self.dialog.pbProcess.setValue(int(self.dialog.step * 100 / self.dialog.totalSteps)) qApp.processEvents() def load_default_values(self): """ Try to load values in the UI which are stored in QGIS settings. The function will return as soon as it is missing a value in the QGIS Settings. The order is DB Type, connection name and then the schema. """ settings = QgsSettings() WidgetSettings = namedtuple('WidgetSettings', ('ui', 'settings')) widgets = [ WidgetSettings('liDbType', 'databaseType'), WidgetSettings('liDbConnection', 'connection'), WidgetSettings('liDbSchema', 'schema'), ] # Default to PostGIS ticket #302 is_postgis = settings.value("cadastre/databaseType", type=str, defaultValue='postgis') == 'postgis' for widget in widgets: # Widgets are ordered by hierarchy, so we quit the loop as soon as a value is not correct if widget.settings == 'schema' and not is_postgis: return if not hasattr(self.dialog, widget.ui): return value = settings.value("cadastre/" + widget.settings, type=str, defaultValue='') if not value: return combo = getattr(self.dialog, widget.ui) index = combo.findText(value, Qt.MatchFixedString) if not index: return combo.setCurrentIndex(index) def updateConnectionList(self): """ Update the combo box containing the database connection list """ QApplication.setOverrideCursor(Qt.WaitCursor) dbType = str(self.dialog.liDbType.currentText()).lower() self.dialog.liDbConnection.clear() if self.dialog.liDbType.currentIndex() != 0: self.dialog.dbType = dbType # instance of db_manager plugin class dbpluginclass = createDbPlugin(dbType) self.dialog.dbpluginclass = dbpluginclass # fill the connections combobox self.dialog.connectionDbList = [] for c in dbpluginclass.connections(): self.dialog.liDbConnection.addItem(str(c.connectionName())) self.dialog.connectionDbList.append(str(c.connectionName())) # Show/Hide database specific pannel if hasattr(self.dialog, 'databaseSpecificOptions'): if dbType == 'postgis': self.dialog.databaseSpecificOptions.setCurrentIndex(0) else: self.dialog.databaseSpecificOptions.setCurrentIndex(1) self.toggleSchemaList(False) else: if hasattr(self.dialog, "inDbCreateSchema"): self.dialog.databaseSpecificOptions.setTabEnabled(0, False) self.dialog.databaseSpecificOptions.setTabEnabled(1, False) QApplication.restoreOverrideCursor() def toggleSchemaList(self, t): """ Toggle Schema list and inputs """ self.dialog.liDbSchema.setEnabled(t) if hasattr(self.dialog, "inDbCreateSchema"): self.dialog.inDbCreateSchema.setEnabled(t) self.dialog.btDbCreateSchema.setEnabled(t) self.dialog.databaseSpecificOptions.setTabEnabled(0, t) self.dialog.databaseSpecificOptions.setTabEnabled(1, not t) self.dialog.btCreateNewSpatialiteDb.setEnabled(not t) def updateSchemaList(self): """ Update the combo box containing the schema list if relevant """ self.dialog.liDbSchema.clear() QApplication.setOverrideCursor(Qt.WaitCursor) connectionName = str(self.dialog.liDbConnection.currentText()) self.dialog.connectionName = connectionName dbType = str(self.dialog.liDbType.currentText()).lower() # Deactivate schema fields self.toggleSchemaList(False) connection = None if connectionName: # Get schema list dbpluginclass = createDbPlugin(dbType, connectionName) self.dialog.dbpluginclass = dbpluginclass try: connection = dbpluginclass.connect() except BaseError as e: DlgDbError.showError(e, self.dialog) self.dialog.go = False self.updateLog(e.msg) QApplication.restoreOverrideCursor() return except: self.dialog.go = False msg = u"Impossible de récupérer les schémas de la base. Vérifier les informations de connexion." self.updateLog(msg) QApplication.restoreOverrideCursor() return finally: QApplication.restoreOverrideCursor() if connection: self.dialog.connection = connection db = dbpluginclass.database() if db: self.dialog.db = db self.dialog.schemaList = [] if dbType == 'postgis': # Activate schema fields self.toggleSchemaList(True) for s in db.schemas(): self.dialog.liDbSchema.addItem(str(s.name)) self.dialog.schemaList.append(str(s.name)) else: self.toggleSchemaList(False) else: self.toggleSchemaList(False) QApplication.restoreOverrideCursor() def checkDatabaseForExistingStructure(self): """ Search among a database / schema if there are already Cadastre structure tables in it """ hasStructure = False hasData = False hasMajicData = False hasMajicDataProp = False hasMajicDataParcelle = False hasMajicDataVoie = False searchTable = 'geo_commune' majicTableParcelle = 'parcelle' majicTableProp = 'proprietaire' majicTableVoie = 'voie' if self.dialog.db: if self.dialog.dbType == 'postgis': schemaSearch = [s for s in self.dialog.db.schemas() if s.name == self.dialog.schema] schemaInst = schemaSearch[0] getSearchTable = [a for a in self.dialog.db.tables(schemaInst) if a.name == searchTable] if self.dialog.dbType == 'spatialite': getSearchTable = [a for a in self.dialog.db.tables() if a.name == searchTable] if getSearchTable: hasStructure = True # Check for data in it sql = 'SELECT * FROM "%s" LIMIT 1' % searchTable if self.dialog.dbType == 'postgis': sql = 'SELECT * FROM "{}"."{}" LIMIT 1'.format(self.dialog.schema, searchTable) data, rowCount, ok = CadastreCommon.fetchDataFromSqlQuery(self.dialog.db.connector, sql) if ok and rowCount >= 1: hasData = True # Check for Majic data in it sql = 'SELECT * FROM "%s" LIMIT 1' % majicTableParcelle if self.dialog.dbType == 'postgis': sql = 'SELECT * FROM "{}"."{}" LIMIT 1'.format(self.dialog.schema, majicTableParcelle) data, rowCount, ok = CadastreCommon.fetchDataFromSqlQuery(self.dialog.db.connector, sql) if ok and rowCount >= 1: hasMajicData = True hasMajicDataParcelle = True # Check for Majic data in it sql = 'SELECT * FROM "%s" LIMIT 1' % majicTableProp if self.dialog.dbType == 'postgis': sql = 'SELECT * FROM "{}"."{}" LIMIT 1'.format(self.dialog.schema, majicTableProp) data, rowCount, ok = CadastreCommon.fetchDataFromSqlQuery(self.dialog.db.connector, sql) if ok and rowCount >= 1: hasMajicData = True hasMajicDataProp = True # Check for Majic data in it sql = 'SELECT * FROM "%s" LIMIT 1' % majicTableVoie if self.dialog.dbType == 'postgis': sql = 'SELECT * FROM "{}"."{}" LIMIT 1'.format(self.dialog.schema, majicTableVoie) data, rowCount, ok = CadastreCommon.fetchDataFromSqlQuery(self.dialog.db.connector, sql) if ok and rowCount >= 1: hasMajicData = True hasMajicDataVoie = True # Set global properties self.dialog.hasStructure = hasStructure self.dialog.hasData = hasData self.dialog.hasMajicData = hasMajicData self.dialog.hasMajicDataParcelle = hasMajicDataParcelle self.dialog.hasMajicDataProp = hasMajicDataProp self.dialog.hasMajicData = hasMajicDataVoie def checkDatabaseForExistingTable(self, tableName, schemaName=''): """ Check if the given table exists in the database """ tableExists = False if not self.dialog.db: return False if self.dialog.dbType == 'postgis': sql = "SELECT * FROM information_schema.tables WHERE table_schema = '%s' AND table_name = '%s'" % ( schemaName, tableName) if self.dialog.dbType == 'spatialite': sql = "SELECT name FROM sqlite_master WHERE type='table' AND name='%s'" % tableName data, rowCount, ok = CadastreCommon.fetchDataFromSqlQuery(self.dialog.db.connector, sql) if ok and rowCount >= 1: tableExists = True return tableExists # Bind as class properties for compatibility def getLayerFromLegendByTableProps(*args, **kwargs) -> QgsMapLayer: return common_utils.getLayerFromLegendByTableProps(QgsProject.instance(), *args, **kwargs) getConnectionParameterFromDbLayer = common_utils.getConnectionParameterFromDbLayer setSearchPath = common_utils.setSearchPath fetchDataFromSqlQuery = common_utils.fetchDataFromSqlQuery getConnectorFromUri = common_utils.getConnectorFromUri def normalizeString(self, s): """ Removes all accents from the given string and replace e dans l'o """ p = re.compile('(œ)') s = p.sub('oe', s) s = unicodedata.normalize('NFD', s) s = s.encode('ascii', 'ignore') s = s.upper() s = s.decode().strip(' \t\n') r = re.compile(r"[^ -~]") s = r.sub(' ', s) s = s.replace("'", " ") return s # Bind as class properties for compatibility postgisToSpatialite = common_utils.postgisToSpatialite postgisToSpatialiteLocal10 = common_utils.postgisToSpatialiteLocal10 def createNewSpatialiteDatabase(self): """ Choose a file path to save create the sqlite database with spatial tools and create QGIS connection """ # Let the user choose new file path ipath, __ = QFileDialog.getSaveFileName( None, u"Choisir l'emplacement du nouveau fichier", str(os.path.expanduser("~").encode('utf-8')).strip(' \t'), "Sqlite database (*.sqlite)" ) if not ipath: self.updateLog(u"Aucune base de données créée (annulation)") return None # Delete file if exists (question already asked above) if os.path.exists(str(ipath)): os.remove(str(ipath)) # Create the spatialite database try: # Create a connection (which will create the file automatically) from qgis.utils import spatialite_connect con = spatialite_connect(str(ipath), isolation_level=None) cur = con.cursor() sql = "SELECT InitSpatialMetadata(1)" cur.execute(sql) con.close() del con except: self.updateLog(u"Échec lors de la création du fichier Spatialite !") return None # Create QGIS connexion baseKey = "/SpatiaLite/connections/" settings = QgsSettings() myName = os.path.basename(ipath) baseKey += myName myFi = QFileInfo(ipath) settings.setValue(baseKey + "/sqlitepath", myFi.canonicalFilePath()) # Update connections combo box and set new db selected self.updateConnectionList() listDic = {self.dialog.connectionDbList[i]: i for i in range(0, len(self.dialog.connectionDbList))} self.dialog.liDbConnection.setCurrentIndex(listDic[myName]) # Bind as class properties for compatibility getCompteCommunalFromParcelleId = common_utils.getCompteCommunalFromParcelleId getProprietaireComptesCommunaux = common_utils.getProprietaireComptesCommunaux getItemHtml = common_utils.getItemHtml ``` #### File: cadastre/processing/provider.py ```python from os.path import join from pathlib import Path from qgis.core import QgsProcessingProvider from qgis.PyQt.QtGui import QIcon from cadastre.processing.algorithms.config import ConfigProjectAlgorithm from cadastre.processing.algorithms.edigeo_downloader import EdigeoDownloader class CadastreProvider(QgsProcessingProvider): def loadAlgorithms(self): self.addAlgorithm(ConfigProjectAlgorithm()) self.addAlgorithm(EdigeoDownloader()) def id(self): # NOQA return 'cadastre' def name(self): return 'Cadastre' def longName(self): return 'Outils d\'exploitation des données cadastrale français' def icon(self): plugin_dir = str(Path(__file__).resolve().parent.parent) return QIcon(join(plugin_dir, 'icon.png')) ```
{ "source": "jdevries3133/chaotic_christmas_present", "score": 3 }
#### File: custom_protocol_server/multiportserver/schema.py ```python from random import randint SCHEMA = { 'hello world / please kill me now': { 'host': '0.0.0.0', 'port': 1050, 'message': ( 'Dear god please help me world! These assholes have me replying to ' 'every request by hand. This is insanity. No person should have to ' 'suffer such a fate!!!' ), }, } fibbonaci_ports = [ 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, ] fibbonaci_message = 'GOTOJAIL' assert len(fibbonaci_ports) == len(fibbonaci_message) for port, message in zip(fibbonaci_ports, fibbonaci_message): SCHEMA[f'Fibbonaci, port {port}'] = { 'port': port, 'host': '0.0.0.0', 'message': message, } SCHEMA['JAIL'] = { 'port': 5245, # JAIL on a number pad 'host': '0.0.0.0', 'message': ( 'Nice job buddy ol boy. Go to this link: https://thomasdevri.es' '/staff/docs/you.might/' ), } class GenSchema: """ Generate part of schema for round 1 challenge. """ def __init__(self,secret, root_node_port, ports_used): self.secret = secret self.root_node = root_node_port self.ports_used = ports_used self.last_port = None self.schema = {} def gen_schema(self): """ Distribute a self.secret amongst a linked list of tcp ports. Output data in a schema which can be used to spin up actual servers. """ if self.schema: return self.schema port = None for letter in self.secret[:0:-1]: port = None while not port: tmp_port = randint(1025, 65534) if tmp_port in self.ports_used: continue port = tmp_port if not self.last_port: message = f'CHAR: {letter}; GOTO: NULL' else: message = f'CHAR: {letter}; GOTO: {self.last_port}' self.schema[f'__round_1_letter_{letter}_on_port{port}'] = { 'host': '0.0.0.0', 'port': port, 'message': message, } self.last_port = port self.ports_used.add(port) self.schema['__round_1_root_node'] = { 'host': '0.0.0.0', 'port': self.root_node, 'message': f'CHAR: self.secret[0]; GOTO: {port}' } return self.schema secret = ( '<KEY>' '<KEY>' '<KEY>' 'JJAKDtzhPiiFYcLJAtgsmPsXDlfgfyFhiKoBfSotnNPmdqLRYYurOEWpZoprSWXnHpKwtWzYbk' 'gnBr' ) root_node_port = 45320 ports_used = {i['port'] for i in SCHEMA.values()} SCHEMA = { **GenSchema(secret, root_node_port, ports_used).gen_schema(), **SCHEMA, } ``` #### File: custom_protocol_server/multiportserver/subprocess_server_manager.py ```python from time import sleep import signal import sys import socket import subprocess from pathlib import Path import logging from .exceptions import SubprocessServerNotResponding, ImproperlyConfigured logger = logging.getLogger(__name__) class SubprocessServer: """ Manage a single server running ./server.Server in a subprocess. """ def __init__(self, host: str, port: int, message: str): self.host = host self.port = port self.message = message self.is_healthy = False self.server = None def start(self): self.server = subprocess.Popen( [ 'python3.8', Path(Path(__file__).parent, 'server.py').resolve(), '--host', self.host, '--port', str(self.port), '--message', self.message, ], ) self._check_health() def restart(self): self.stop() self.start() def stop(self): if not self.server: self.is_healthy = False return self.server.terminate() self.server.wait() self.is_healthy = False def _check_health(self) -> bool: """ Return True when the server responds, or raise an exception if there is no response after 5 tries each five seconds apart. """ if self.is_healthy: return True for _ in range(5): try: with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock: sock.connect((self.host, self.port)) recieved = b'' while data := sock.recv(1024): recieved += data if str(recieved, 'utf-8') == self.message: self.is_healthy = True return True except (ConnectionRefusedError, OSError): sleep(1) raise SubprocessServerNotResponding class SubprocessServerManager: """ Manage many simple TCP servers (instances of SubprocessServer above). Each server will listen on a single port and echo a fixed message to any connection. """ def __init__(self, schema: dict): self.is_healthy = False # meaning that servers are up and running self.servers = {} signal.signal(signal.SIGINT, self.stop) self._validate_schema(schema) for server_name, server in schema.items(): self.servers[server_name] = SubprocessServer( server['host'], server['port'], server['message'], ) def start(self): print(f'Starting {len(self.servers)} servers.') for server_name, server in self.servers.items(): logger.info( f'Started server: {server_name} on port {server.host}:' f'{server.port} with message {server.message}' ) server.start() self._check_health() self._wait() def stop(self, *a, **kw): print(f'Stopping {len(self.servers)} servers.') for server_name, server in self.servers.items(): logger.info( f'Stopped server: {server_name} on port {server.host}:' f'{server.port} with message {server.message}' ) server.stop() def restart(self): self.stop() self.start() def _wait(self): """ While subprocesses are running, wait for an exit signal. """ try: while True: sleep(1) except KeyboardInterrupt: self.stop() sys.exit() def _check_health(self) -> bool: """ Wait until all subprocesses have started and connections are available with a timeout. """ self.is_healthy = True for server_name, server in self.servers.items(): if not server.is_healthy: logger.info( 'Health state set to false because of the server with a ' f'name of {server_name} on {server.host}:{server.port} ' ) self.is_healthy = False return self.is_healthy @ staticmethod def _validate_schema(schema): """ Should look like this: { "server_name": { "host": str "port": int, "message": str, "server" SubprocessServer instance }, ... } """ used_ports = set() for v in schema.values(): for item, type_ in { 'host': str, 'port': int, 'message': str }.items(): if item not in v: raise ImproperlyConfigured if not isinstance(v[item], type_): raise ImproperlyConfigured if v['port'] in used_ports: raise ImproperlyConfigured(f'Two servers want port {v["port"]}') used_ports.add(v['port']) ```
{ "source": "jdevries3133/ea_internal_tools", "score": 2 }
#### File: ea_internal_tools/authenticate_ea/middleware.py ```python import re from django.conf import settings from django.contrib import messages from django.contrib.auth import get_user_model from django.shortcuts import redirect User = get_user_model() class EaMiddlewareException(Exception): pass class EaAuthMiddleware: def __init__(self, get_response): self.get_response = get_response self.domain_name = settings.EA_AUTHENTICATION.get('domain_name') self.filter_mode = settings.EA_AUTHENTICATION.get('filter_mode') self.filter_routes = settings.EA_AUTHENTICATION.get('filter_routes') self.request = None self.user = None def __call__(self, request): self.request = request self.user = request.user if self.need_to_check(): return self.perform_teacher_check() response = self.get_response(request) return response def perform_teacher_check(self): """ Check if the user is a teacher. If they are not, redirect them to the not_validated_yet view. """ # just let superusers through if self.user.is_superuser: return self.get_response(self.request) if not self.user.is_authenticated: messages.add_message( self.request, messages.INFO, 'You need to make an account and verify your email before you ' 'can access this page.' ) return redirect('/register/') if self.user.role != User.TEACHER: messages.add_message( self.request, messages.INFO, 'You need to verify your email before you can access this ' 'page.' ) return redirect('not_verified_yet') # check has passed return self.get_response(self.request) def need_to_check(self) -> bool: """ Based on filter_routes and filter_mode, determine if this route needs to be protected. """ for route in self.filter_routes: if re.search(route, self.request.path): if self.filter_mode == 'whitelist': return False # don't need to check if we match on whitelist if self.filter_mode == 'blacklist': return True # need to check if we match on blacklist # there was no match. # no need to check if it's a blacklist # do need to check if it's a whitelist. return self.filter_mode == 'whitelist' ``` #### File: ea_internal_tools/zar/models.py ```python import logging from django.db import models from django.contrib.auth import get_user_model from django_mysql.models import JSONField logger = logging.getLogger(__name__) class UnknownZoomName(models.Model): zoom_name = models.CharField(max_length=50, null=False) real_name = models.CharField(max_length=50, null=False) def __str__(self): return f'{self.zoom_name} => {self.real_name}' class MeetingCompletedReport(models.Model): """ For updating the frontend of progress. As an alternative to web sockets, this will be created after each report is processed, and the frontend will just ping the server for progress every few seconds. """ topic = models.CharField(max_length=100) meeting_time = models.DateField(auto_now=False, auto_now_add=False) created = models.DateTimeField(auto_now=False, auto_now_add=True) meeting_set_model = models.ForeignKey( 'zar.MeetingSetModel', on_delete=models.CASCADE, related_name='completed_reports', ) def __str__(self): return self.topic + ' on ' + self.meeting_time.strftime('%m/%d/%y') class MeetingSetModel(models.Model): """ teacherHelper MeetingSet already has a serialize and deserialize method. Once I get the prod database going, we'll store it here. """ owner = models.ForeignKey(get_user_model(), on_delete=models.CASCADE) json = JSONField() is_processed = models.BooleanField(default=False) needs_name_matching = models.BooleanField(default=True) created = models.DateTimeField(auto_now=False, auto_now_add=True) class RawMeetingData(models.Model): """ Straight from the csv file. """ class Meta: verbose_name_plural = 'Raw meeting data' data = models.TextField() meeting_set_model = models.ForeignKey( 'zar.MeetingSetModel', on_delete=models.SET_NULL, null=True, related_name='data' ) def __str__(self): try: return ( self.data.split('\n')[1].split(',')[1] # topic + ' at ' + self.data.split('\n')[1].split(',')[2] # datetime ) except Exception as e: logger.error( 'RawMeetingData string method failed to do sloppy csv parsing. ' f'Exception {e} was thrown' ) return super().__str__() class Report(models.Model): owner = models.ForeignKey(get_user_model(), on_delete=models.CASCADE) meeting_set_model = models.ForeignKey( 'zar.MeetingSetModel', on_delete=models.CASCADE, ) report = models.FileField(upload_to='reports/') # excel workbook created = models.DateTimeField(auto_now=False, auto_now_add=True) ``` #### File: ea_internal_tools/zar/services.py ```python from uuid import uuid4 from pathlib import Path import string import logging from typing import List from django.db.models import Q from django.shortcuts import redirect from django.core.files import File from django.contrib import messages from django.core.files.storage import default_storage from django.core.files.storage import default_storage from django.core.files.base import ContentFile from teacherHelper.zoom_attendance_report import MeetingSet, WorkbookWriter from openpyxl.writer.excel import save_virtual_workbook from .models import ( MeetingCompletedReport, MeetingSetModel, RawMeetingData, UnknownZoomName, Report ) logger = logging.getLogger(__name__) def queue_meeting_set(*, data: List[bytes], user) -> None: """ Save raw data, and create an empty MeetingSetModel to signal to the worker that it has a MeetingSet to process. Filter all non-ascii characters. """ if MeetingSetModel.objects.filter(owner=user, is_processed=False): raise Exception( f'{user.email} is creating a new MeetingSet despite already having ' 'a MeetingSet in progress.' ) meeting_set_model = MeetingSetModel.objects.create(owner=user) data_models = [] for f in data: raw = str(f.read(), 'utf-8-sig') processed = ''.join(filter(lambda c: c in string.printable, raw)) data_models.append(RawMeetingData( meeting_set_model=meeting_set_model, data=processed, )) RawMeetingData.objects.bulk_create(data_models) def process_meeting_set(*, meeting_set_model: MeetingSetModel, data: List[str]) -> None: """ Take an unprocessed MeetingSet and process it! Will be run by a worker separate from the web application. """ # initialize MeetingSet with all previously provided user matches known_matches = { m.zoom_name : m.real_name for m in UnknownZoomName.objects.all() } meeting_set = MeetingSet(data, known_matches=known_matches) logger.debug( 'Initialized MeetingSet with the followign known matches: %(km)s', {'km': known_matches} ) # process all data, create progress reports during processing. for meeting in meeting_set.process(): report = MeetingCompletedReport.objects.create( topic=meeting.topic, meeting_time=meeting.datetime.date(), meeting_set_model=meeting_set_model, ) logger.debug(f'Processed {report}. MeetingCompletedReport created.') # update meeting_set_model now that processing is finished. meeting_set_model.json = meeting_set.get_serializable_data() meeting_set_model.is_processed = True meeting_set_model.save() # cleanup; delete reports now that processing is done MeetingCompletedReport.objects.filter( meeting_set_model=meeting_set_model ).delete() def repair_broken_state(*, request, user): # -> django.http.HttpResponseRedirect """ Call this when an attempt to select the single wip report fails. This means something went wrong and the state of the user's models is broken. We need to reset and try again. """ MeetingSetModel.objects.filter( Q(owner=user), Q(needs_name_matching=True) | Q(is_processed=False) ).update( needs_name_matching=False, is_processed=True, ) messages.add_message( request, messages.ERROR, 'Something went wrong, please try again.' ) logger.error('Report processing abandoned. Something went wrong') return redirect('file_upload') def generate_excel_report(report_pk: str) -> Report: """ Returns Path in the django default_storage where the excel report is. """ ms = MeetingSetModel.objects.get(pk=report_pk) meeting_set = MeetingSet.deserialize(ms.json) workbook_buf = save_virtual_workbook( WorkbookWriter(meeting_set).generate_report() ) cf = ContentFile(workbook_buf) path = f'{ms.owner.username}__{ms.created.isoformat()}.xlsx' default_storage.save(path, cf) report = Report( owner=ms.owner, meeting_set_model=ms, ) report.report.name = path report.save() return report ```
{ "source": "jdevries3133/python_scripts", "score": 4 }
#### File: jdevries3133/python_scripts/bingo.py ```python from random import shuffle from docx import Document # change me BINGO_GAME_NAME = 'Musical Instrument Bingo' # change me INSTRUMENTS = [ 'electric guitar', 'acoustic guitar', 'piano', 'electric bass', 'drum set', 'ukulele', 'piccolo', 'flute', 'clarinet', 'bass clarinet', 'soprano saxophone', 'alto saxophone', 'tenor saxophone', 'baritone saxophone', 'trumpet', 'slide trumpet', 'trombone', 'euphonium', 'tuba', 'violin', 'viola', 'cello', 'string bass', 'timpani', 'cowbell', 'congas', 'timbales', 'maracas', 'guiro', 'clave', 'triangle', 'tambourine', 'theremin', 'marimba', 'xylophone', 'vibraphone', ] # --- # script; only change the below if you dare! # --- def is_bingo(x, y): """Cells at the center of the board are "free" cells""" return x in range(2, 4) and y in range(2, 4) def add_bingo_board(doc): """Add a single bingo board table to the given document.""" table = doc.add_table(rows=6, cols=6) table.style = 'TableGrid' for i, instrument in enumerate(INSTRUMENTS): x = i % 6 y = i // 6 if is_bingo(x, y): table.rows[i % 6].cells[i // 6].text = 'FREE' else: table.rows[i % 6].cells[i // 6].text = instrument def main(): """Create a bingo printout for one class, with 25 unique boards.""" document = Document() for _ in range(26): shuffle(INSTRUMENTS) document.add_heading('Instrument Bingo') # add two boards to each page, to allow for a second round document.add_paragraph('Round One') add_bingo_board(document) document.add_paragraph('Round Two') add_bingo_board(document) document.add_page_break() document.save('bingo_board.docx') if __name__ == '__main__': main() ``` #### File: python_scripts/star360/data_entry.py ```python import csv import re import pyperclip as pc from teacherHelper import Helper helper = Helper.read_cache() def entry(): """ Take the data off each page from the clipboard and also do a first round of cleaning. """ with open('out.csv', 'w') as csvf: while True: appends = {'a': [], 'b': [], 'c': []} append_to = 'a' for d in pc.paste().split('\n'): if d == 'User Name': append_to = 'b' continue if d == 'Grade Password': append_to = 'c' continue appends[append_to].append(d) wr = csv.writer(csvf) data = [] for i in range(len(appends['a'])): last, first, *rest = appends['a'][i].split(',') row = [ f'{first} {last}', appends['b'][i], appends['c'][i], ] # clean names if not helper.find_nearest_match(row[0], auto_yes=True): inp = input(f'Fix name "{row[0]}... {rest if rest else ""}" or press enter to keep: ') row[0] = inp if inp else row[0] wr.writerow(row) inp = input('Enter to append again, or type "exit" to exit: ') if inp.lower() == 'exit': break def _clean_name(name: str) -> str: if ',' in name: last, first, *rest = name.split(',') name = f'{first} {last}' st = helper.find_nearest_match(name, auto_yes=True) if not st: print(f'Warning! {name} was not found!') return st.name if st else name def _clean_pwd(pwd: str) -> str: return re.search( r'Grade \d (.*)', pwd )[1] def _clean_row(row: list) -> list: """ Thoroughly clean each individual row. """ row = [i.strip() for i in row] row[0] = _clean_name(row[0]) row[2] = _clean_pwd(row[2]) return row def clean(): cleaned = [] with open('out.csv', 'r') as csvf: rd = csv.reader(csvf) for row in rd: cleaned.append(_clean_row(row)) with open('clean.csv', 'w') as csvf: wr = csv.writer(csvf) wr.writerows(cleaned) if __name__ == '__main__': clean() ``` #### File: python_scripts/star360/email.py ```python import csv from datetime import datetime import sys from pathlib import Path import logging from time import sleep from teacherHelper import Helper, Email logging.basicConfig( filename=Path(Path(__file__).parent, "star360_emailer.log"), level=logging.DEBUG ) logger = logging.getLogger(__name__) helper = Helper.read_cache() class StudentNotFound(Exception): pass class Star360MailMerge: def __init__(self, csv_path: Path, debug=True, skip=None): self.debug = debug # sends all emails to me self.DEBUG_EMAIL = '<EMAIL>' self.csv = csv_path # allow the ability to skip some students on a second run after smtp # kick. This should be a list of exact-match student names. self.skip = skip if skip else [] self.sent_to = [] # successfully sent; a list of names # saving myself from myself if not self.debug: i = input('WARNING: Really send emails to students?') if i != 'yes': print(f'input "{i}" != "yes". Exiting...') sys.exit() self.students = [] with open(csv_path, 'r') as csvf: rd = csv.reader(csvf) # check on headers assert next(rd) == ['name', 'username', 'password'] for name, username, password in rd: st = helper.find_nearest_match(name, auto_yes=True) if not st: raise StudentNotFound(f'{name} not found') st.username = username st.password = password # LIMIT RECIPIENTS TO THE FOURTH GRADE. if ( st.grade_level == 4 and not st.homeroom == ['<NAME>','<NAME>'] ): self.students.append(st) def send_emails(self): # TODO: break up this big function sent_to = [] with Email() as eml: for i, st in enumerate(self.students): if st.name in self.skip: continue if self.debug: recipient = self.DEBUG_EMAIL else: recipient = st.email message = [ f'Hi {st.first_name},', '', 'Today, you will be taking your Star360 Assessment. ' 'Please complete the steps below:', '', '1. Click on this link: <a href="https://global-zone08.renaiss' 'ance-go.com/welcomeportal/6234531">https://global-zone08.rena' 'issance-go.com/welcomeportal/6234531</a>', '2. Click "I\'m a Student"', f'3. Type your Username: <b>{st.username}</b>', f'4. Type your Password: <b>{<PASSWORD>>', '5. Click "Log In"', '6. Find the Star Math or Reading test (depending on teacher ' 'directions).', '7. Begin your test. If you need to enter a monitor password, ' 'type <b>Admin</b>', '8. When you finish, send a chat to your teacher.', '', '<span style="color: red;">STAY ON THE ZOOM UNTIL WE CONFIRM ' 'YOU SUBMITTED YOUR TEST</span>', '', 'Good luck!', ] eml.send( to=recipient, subject='Star360 Username and Password', message=message ) self.sent_to.append(st.name) logger.info(f'Email sent to {st.name} including username: {st.username}') logger.debug(f'{i}/{len(self.students)} emails sent') sent_to.append(st) ```
{ "source": "jdevries3133/teacher_helper", "score": 3 }
#### File: src/teacherhelper/entities.py ```python from datetime import datetime class EntityException(Exception): ... class ParentGuardianError(EntityException): ... class Group: """ Group class is used to manage groups for extracurricular activities, field trips, and other purposes. """ def __init__(self, name, grade_level, students): self.name = name self.grade_level = grade_level self.students = students class Homeroom: def __init__(self, teacher, grade_level, students): """ Ensure that string constants for csv headers of id, student names, and (if applicable) student emails are correct. """ self.teacher = teacher self.grade_level = grade_level self.students = students class Student: def __init__(self, context): context.setdefault('groups', []) context.setdefault('guardians', []) self.first_name = context.get('first_name') self.last_name = context.get('last_name') self.student_id = context.get('student_id') self.homeroom = context.get('homeroom') self.grade_level = context.get('grade_level') self.groups = context.get('groups') self.email = context.get('email') self.guardians = context.get('guardians') # TODO: birthdays self.name = self.first_name + ' ' + self.last_name """ primary_contact is an instance of ParentGuardian, which is assigned during the parsing of parent / guardian data in the new_school_year function within OnCourseMixin """ self.primary_contact = None def __str__(self, verbose=False): """ Assemble nice printout of student information, and student's guardian information. Also, offer verbose option, which ties into /shell.py """ data = [ '--', self.name, self.grade_level, self.homeroom, self.email, '--' '\nGuardians:' ] student_data = [str(i) for i in data if i] # filter out NoneTypes if not self.guardians: return '\n'.join(data) # indent gu_data = ['\n\t'.join(self.primary_contact.__str__().split('\n'))] cutoff = 3 if not verbose else len(self.guardians) - 1 for gu in self.guardians[1:cutoff]: gu_data.append('\n\t'.join(gu.__str__().split('\n'))) return '\n'.join(student_data + gu_data) class ParentGuardian: def __init__(self, context: dict, verbose=False): self.student = context.get('student') self.first_name = context.get('first_name') self.last_name = context.get('last_name') self.home_phone = context.get('home_phone') self.mobile_phone = context.get('mobile_phone') self.work_phone = context.get('work_phone') self.email = context.get('email') self.relationship_to_student = context.get('relationship_to_student') self.primary_contact = context.get('primary_contact') self.allow_contact = context.get('allow_contact') self.student_resides_with = context.get('student_resides_with') # full name if self.first_name and self.last_name: self.name = self.first_name + ' ' + self.last_name else: raise ParentGuardianError( 'First and last name were not provided as context to ' 'ParentGuardian class. This means that self.name cannot\n' 'be constructed. Please at least pass a first and last name ' 'for every guardian into this class.' ) # warn about missing attributes for k, v in self.__dict__.items(): if not v: if verbose: print( f'WARNING: Guardian\t{self.name}\thas no value for\t{k}' ) # type checking if not isinstance(self.student, Student): raise ParentGuardianError( 'Student was a string, not a Student object.' ) for k, v in self.__dict__.items(): if 'phone' in k and v and not isinstance(v, int): raise ParentGuardianError( 'Phone number should be of type int.' ) def __str__(self): outs = [ self.relationship_to_student, self.name, f'Contact allowed: {self.allow_contact}', f'Is primary contact: {self.primary_contact}', f'Mobile Phone: {self.mobile_phone}', f'Email Address: {self.email}', '\n', ] return '\n'.join([str(i) for i in outs if i]) ``` #### File: teacherhelper/tests/test_make_mocks.py ```python import csv import unittest from unittest.mock import patch from pathlib import Path from .make_mocks import ( make_students_csv, make_parents_csv, random_class ) with open( Path(Path(__file__).parent, 'random_names.csv'), 'r' ) as csvf: rd = csv.reader(csvf) names = [r for r in rd] # smaller sample for fast test @ patch('teacherhelper.tests.make_mocks.names', names[:100]) class TestMakeMocks(unittest.TestCase): def test_make_students_csv(self): data = make_students_csv() assert data # no empty list for row in data: # check that student names come from list of random names assert ' '.join(row[:2]) in [' '.join(i) for i in names] # check that none of the teachers are also students teacher_last, teacher_first = row[3].split(', ') assert ' '.join((teacher_first, teacher_last)) not in [ ' '.join(i) for i in names ] # check that homerooms are all in the same grade groups_by_teacher = {} for row in data: groups_by_teacher.setdefault(row[3], set()) groups_by_teacher[row[3]].add(row[2]) for set_ in groups_by_teacher.values(): assert len(set_) == 1 def test_make_parents_csv(self): students = make_students_csv() parents = make_parents_csv(students) assert parents # no empty list for row in parents: # every row has 13 items assert len(row) == 13 # row is all strings for i in row: assert isinstance(i, str) # unpack parent name variables parent_first_nm, parent_last_nm, *_ = row parent_name = ' '.join(( parent_first_nm, parent_last_nm )) # no parent shares a name with a student assert parent_name not in [' '.join(n) for n in names] # no parent shares a name with a teacher teachers = set([' '.join(r[3].split(', ')[::-1]) for r in students]) assert parent_name not in teachers # two parents for each student assert len(parents) / 2 == len(students) def test_random_class(self): """ Test that students from a random class are actually all in the same class and grade level. """ students = make_students_csv() class_ = random_class(students) for strow in class_: assert strow[2] == class_[0][2] assert strow[3] == class_[0][3] ``` #### File: teacherhelper/tools/csv_parser.py ```python from difflib import ndiff class IterCsvError(Exception): ... class IterCsv: def __init__(self, acceptable_headers, rows, strip_data=True): """ Generator returns context, and row. Context is a dict in which the key is one of the acceptable headers, and the value is the index at which that header field can be found in each row. """ self.current_row = 0 self.rows = rows self.context = {} self._acceptable_headers = acceptable_headers self._strip_data = strip_data self._assign_context() def _assign_context(self): """Context is a mapping of header labels to row indices, so that the row items can later be fetched by name.""" for i, raw_header in enumerate(self.rows[0]): raw_header = raw_header.lower() for clean_header in self._acceptable_headers: if clean_header == raw_header: # create mapping and check for duplicate match before = len(self.context) self.context[clean_header] = i after = len(self.context) if before == after: raise IterCsvError( 'There are two or more headers with the value ' f'{raw_header}. Edit the csv to differentiate ' 'between these columns to continue.' ) if not (a := list(self.context.keys())) == (b := self._acceptable_headers): diff = '\n\t'.join(ndiff(a, b)) msg = ('A match was not found for all headers:\n' f'DIFF:\n\t{diff}') raise IterCsvError(msg) self._validate_context(self.context) def fetch(self, name: str): """Fetch an item from a row by name during iteration.""" if (index := self.context.get(name)) is None: raise IterCsvError(f'{name} does not exist in csv context') value = self.rows[self.current_row][index] if self._strip_data: return value.strip() return value def __iter__(self): return self def __next__(self): self.current_row += 1 if self.current_row < len(self.rows) - 1: return self.fetch raise StopIteration @ staticmethod def _validate_context(context): """Because this field is misspelled in OnCourse.....""" is_parent_spreadsheet = 'guardian <NAME>' in context is_header_misspelled = context.get('student resides with') is None if is_parent_spreadsheet and is_header_misspelled: raise IterCsvError( 'Remember, "student resides with" is misspelled in ' 'OnCourse. Fix it in the CSV you downloaded.' ) ```
{ "source": "jdewald/lispy", "score": 3 }
#### File: jdewald/lispy/lispy.py ```python import sys import re from environment import standard_env, Env List = list Number = (int, float) class InPort(object): """An input port. Retains a line of chars.""" tokenizer = r'''\s*(,@|[('`,)]|"(?:[\\].|[^\\"])*"|;.*|[^\s('"`,;)]*)(.*)''' def __init__(self, file): self.file = file; self.line = '' def next_token(self): "Return the next token, reading new text into line buffer if needed." while True: if self.line == '': self.line = self.file.readline() if self.line == '': return eof_object token, self.line = re.match(InPort.tokenizer, self.line).groups() if token != '' and not token.startswith(';'): return token class Symbol(str): pass def Sym(s, symbol_table={}): """Find or create unique symbol entry for str s in symbol table.""" if s not in symbol_table: symbol_table[s] = Symbol(s) return symbol_table[s] _quote, _if, _set, _define, _lambda, _begin, _definemacro, = map(Sym, "quote if set! define lambda begin define-macro".split()) _quasiquote, _unquote, _unquotesplicing = map(Sym, "quasiquote unquote unquote-splicing".split()) _load = Sym("load") global_env = standard_env() eof_object = Symbol('#<eof-object>') # note that it's using Symbol, not Sym, so it's unreadable def schemestr(exp): """Convert a python Object back into a Scheme-readable string.""" if isinstance(exp, List): return '(%s)' % (' '.join(map(schemestr, exp))) else: return str(exp) def parse(program): """Read a scheme expression from a string.""" return read(program) def tokenize(chars): """Convert a string of characters into a list of tokens.""" return chars.replace('(', ' ( ').replace(')', ' ) ').split() def readchar(inport): """Read the next character from an input port.""" if inport.line != '': ch, inport.line = inport.line[0], inport.line[1:] return ch else: return inport.file.read(1) or eof_object def read(inport): """Read a Scheme expression from an input port.""" def read_ahead(token): if '(' == token: L = [] while True: token = inport.next_token() if token == ')': return L else: L.append(read_ahead(token)) elif ')' == token: raise SyntaxError('unexpected )') elif token in quotes: return [quotes[token], read(inport)] elif token is eof_object: raise SyntaxError("unexpected EOF in list") else: return atom(token) # body of read: token1 = inport.next_token() return eof_object if token1 is eof_object else read_ahead(token1) quotes = {"'": _quote, "`": _quasiquote, ",": _unquote, ",@": _unquotesplicing} def read_from_tokens(tokens): """Read an expression from a sequence of tokens.""" if len(tokens) == 0: raise SyntaxError("Unexpected EOF while reading") token = tokens.pop(0) if '(' == token: L = [] while tokens[0] != ')': L.append(read_from_tokens(tokens)) tokens.pop(0) # last thing we saw was ')', pop it return L elif ')' == token: raise SyntaxError('unexpected )') else: return atom(token) def atom(token): """Numbers become numbers; every other token is a symbol.""" if token == '#t': return True if token == '#f': return False elif token[0] == '"': return token[1:-1].decode('string_escape') try: return int(token) except ValueError: try: return float(token) except ValueError: try: return complex(token.replace('i', 'j', 1)) except ValueError: return Sym(token) def to_string(x): """Convert a Python object back into a Lisp-readable string.""" if x is True: return "#t" elif x is False: return "#f" elif isinstance(x, Symbol): return x elif isinstance(x, str): return '"%s"' % x.encode('string_escape').replace('"', r'\"') elif isinstance(x, list): return '('+' '.join(map(to_string, x))+')' elif isinstance(x, complex): return str(x).replace('j', 'i') else: return str(x) def load(filename): """Eval every expression from a file.""" repl(None, InPort(open(filename)), None) # This will likely get moved to it's own module def eval(x, env=global_env): """Evaluate an expression in an environment""" print "(DEBUG: %s )" % (x, ) if isinstance(x, Symbol): # variable reference: http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-7.html#%_sec_4.1.1 return env.find(x)[x] elif not isinstance(x, List): # constant literal: http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-7.html#%_sec_4.1.2 return x elif x[0] is _if: # conditional: http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-7.html#%_sec_4.1.5 # assumes (if test conseq alt) (_, test, conseq, alt) = x exp = (conseq if eval(test, env) else alt) return eval(exp, env) elif x[0] is _define: # definition: http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-8.html#%_sec_5.2 # this is assuming it's synactically valid: (define var expr) # if it's of the form (define (f params) expr) then we want to treat it as: # (define f (lambda (params) expr) _ = x[0] var = x[1] exp = x[2:] if len(x) > 3 else x[2] print "(DEBUG: \tvar is %s" % (type(var), ) if isinstance(var, List): print "(DEBUG: \tswitching to lambda)" return eval([_, var[0], [_lambda, var[1:], exp]], env) else: env[var] = eval(exp, env) return env[var] elif x[0] is _set: # assignemnt: http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-7.html#%_sec_4.1.6 (_, var, expression) = x env.find(var)[var] = eval(expression, env) return elif x[0] is _lambda: # lambda procedure: http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-7.html#%_sec_4.1.4 (_, params, body) = x return Procedure(params, body, env) elif x[0] is _load: # my own special form, though mit-scheme has it, so it probably is defined (_, filename) = x load(filename) else: # procedure call: http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-7.html#%_sec_4.1.3 proc = eval(x[0], env) args = [eval(arg, env) for arg in x[1:]] return proc(*args) def repl(prompt="lisp.py> ", inport=InPort(sys.stdin), out=sys.stdout): """A prompt-read-eval-print loop.""" sys.stderr.write("Lispy version 2.0 (jdewald)\n") while True: #try: if prompt: sys.stderr.write(prompt) x = parse(inport) if x is eof_object: return val = eval(x) if val is not None and out: print >> out, to_string(val) #except Exception as e: # print '%s: %s' % (type(e).__name__, e) def main(): repl() class Procedure(object): """A user-defined Scheme procedure http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-7.html#%_sec_4.1.4 """ def __init__(self, params, body, env): self.params, self.body, self.env = params, body, env # A procedure can actually be a set of Internal Definitions # followed by the actual body. Here we aren't actually validating # that but assuming that an array will be valid if not isinstance(self.body[0], List): self.body = [self.body] def __call__(self, *args): env = Env(self.params, args, self.env) ret = None for body in self.body: ret = eval(body, env) return ret if __name__ == "__main__": main() ```
{ "source": "jdewasseige/Crux", "score": 2 }
#### File: Crux/components/user.py ```python import socket import json import time from petlib.ec import * import binascii import sys import numpy import math from includes import config as conf from includes import utilities from includes import Classes from includes import SocketExtend as SockExt from includes import parser as p #Globals G = EcGroup(nid=conf.EC_GROUP) def remote_encrypt(ip, port, value): s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((ip, int(port))) data = {'request':'encrypt', 'contents': {'value':value}} SockExt.send_msg(s, json.dumps(data)) result = json.loads(SockExt.recv_msg(s)) data = json.loads(result['return']) cipher_obj = Classes.Ct(EcPt.from_binary(binascii.unhexlify(data['pub']),G), EcPt.from_binary(binascii.unhexlify(data['a']),G), EcPt.from_binary(binascii.unhexlify(data['b']),G), Bn.from_hex(data['k']), None) s.close() return cipher_obj def remote_decrypt(ip, port, cipher_obj): s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((ip, int(port))) json_obj_str = cipher_obj.to_JSON() data = {'request':'decrypt', 'contents': json_obj_str} SockExt.send_msg(s, json.dumps(data)) result = json.loads(SockExt.recv_msg(s)) s.close() return result['return'] def comp_median(fn, sheet, column_1, column_2, column_3): rows = p.get_rows(fn, sheet, 1, 0) #determine which rows correspond to relay values = p.read_xls_cell(fn, sheet, column_1, column_2, column_3, rows) #load values from xls median = numpy.median(values) return median def comp_mean(fn, sheet, column_1, column_2, column_3): rows = p.get_rows(fn, sheet, 1, 0) #determine which rows correspond to relay values = p.read_xls_cell(fn, sheet, column_1, column_2, column_3, rows) #load values from xls mean = numpy.mean(values) return mean def comp_variance(fn, sheet, column_1, column_2, column_3): rows = p.get_rows(fn, sheet, 1, 0) #determine which rows correspond to relay values = p.read_xls_cell(fn, sheet, column_1, column_2, column_3, rows) #load values from xls variance = numpy.var(values) return variance if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description='User interface for privacy preserving statistics queries to the ToR network') #ip/port parser.add_argument('-s', '--server', type=str, help='Server name', required=True) parser.add_argument('-p', '--port', type=str, help='Port number', required=True, default='8888') #action group = parser.add_mutually_exclusive_group(required=True) group.add_argument('--ping', action='store_true', help='Ping server') group.add_argument('--pub', action='store_true', help='Request the public key from authority') group.add_argument('--stat', help='Run size tests', nargs='+') #choices=['mean', 'median', 'variance'] group.add_argument('--test', action='store_true', help='Verifies that the remote encryption and decryption work properly') #Experiments/Unit Tests group.add_argument('--sketch_size', action='store_true', help='Sketch size vs quality vs time') group.add_argument('--DP', action='store_true', help='DP vs quality') group.add_argument('--mean_test', action='store_true', help='Unit test for mean computation') args = parser.parse_args() #print comp_median('data/data_large.xls', 'iadatasheet2', 'Lone Parents', 'Lone parents not in employment', '2011') #print comp_variance('data/data_large.xls', 'iadatasheet2', 'Lone Parents', 'Lone parents not in employment', '2011') ip = args.server port = args.port print ip if args.ping: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((ip, int(port))) print utilities.ping(s) s.close() elif args.pub: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((ip, int(port))) #pubkey data = {'request':'pubkey'} SockExt.send_msg(s, json.dumps(data)) result = json.loads(SockExt.recv_msg(s)) print EcPt.from_binary(binascii.unhexlify(result['return']), G) s.close() elif args.test: value = 12345 tmp_obj = remote_encrypt(ip, port, value) new_value = remote_decrypt(ip, port, tmp_obj) #print new_value if value==new_value: print "Test Successful!" else: print "Test failed." elif args.stat: if args.stat[0] == 'mean': tic = time.clock() s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((ip, int(port))) #data = {'request':'stat', 'contents': {'type':'mean', 'dp':'True', 'attributes':{'file':'data/data_large.xls', 'sheet':'iadatasheet2', 'column_1':'Adults in Employment', 'column_2':'No adults in employment in household: With dependent children', 'column_3':'2011'}}} data = {'request':'stat', 'contents': {'type':'mean', 'dp':'True', 'attributes':{'file':'data/data_large.xls', 'sheet':'iadatasheet2', 'column_1':args.stat[1], 'column_2':args.stat[2], 'column_3':args.stat[3]}}} SockExt.send_msg(s, json.dumps(data)) print "Request Sent" data['contents']['attributes']['epsilon'] = str(conf.EPSILON) data = json.loads(SockExt.recv_msg(s)) print "Response:" result = data['return'] if result['success']=='True': approx_res = result['value'] cor_res = comp_mean('data/data_large.xls', 'iadatasheet2', args.stat[1], args.stat[2], args.stat[3]) toc = time.clock() dt = (toc - tic) elif args.stat[0] == 'median': tic = time.clock() s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((ip, int(port))) #data = {'request':'stat', 'contents': {'type':'median', 'dp':'True', 'attributes':{'file':'data/data_large.xls', 'sheet':'iadatasheet2', 'column_1':'Adults in Employment', 'column_2':'No adults in employment in household: With dependent children', 'column_3':'2011'}}} data = {'request':'stat', 'contents': {'type':'median', 'dp':'True', 'attributes':{'file':'data/data_large.xls', 'sheet':'iadatasheet2', 'column_1':args.stat[1], 'column_2':args.stat[2], 'column_3':args.stat[3]}}} #Compute sketch parameters tmp_w = int(math.ceil(math.e / conf.EPSILON)) tmp_d = int(math.ceil(math.log(1.0 / conf.DELTA))) #print conf.EPSILON data['contents']['attributes']['epsilon'] = str(conf.EPSILON) data['contents']['attributes']['delta'] = str(conf.DELTA) data['contents']['attributes']['sk_w'] = tmp_w data['contents']['attributes']['sk_d'] = tmp_d SockExt.send_msg(s, json.dumps(data)) print "Request Sent" data = json.loads(SockExt.recv_msg(s)) print "Response:" result = data['return'] if result['success']=='True': approx_res = result['value'] cor_res = comp_median('data/data_large.xls', 'iadatasheet2', args.stat[1], args.stat[2], args.stat[3]) toc = time.clock() dt = (toc - tic) elif args.stat[0] == 'variance': tic = time.clock() s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((ip, int(port))) data = {'request':'stat', 'contents': {'type':'variance', 'dp':'True', 'attributes':{'file':'data/data_large.xls', 'sheet':'iadatasheet2', 'column_1':args.stat[1], 'column_2':args.stat[2], 'column_3':args.stat[3]}}} SockExt.send_msg(s, json.dumps(data)) print "Request Sent" data = json.loads(SockExt.recv_msg(s)) print "Response:" result = data['return'] if result['success']=='True': approx_res = result['value'] cor_res = comp_variance('data/data_large.xls', 'iadatasheet2', args.stat[1], args.stat[2], args.stat[3]) toc = time.clock() dt = (toc - tic) #Print stats results if result['success']=='True': print "The %s of %s is: %s" %(result['type'] , result['attribute'], approx_res) print "The correct result is: " + str(cor_res) print "The err is: " + str(abs(float(approx_res) - float(cor_res))) print "Total time: " + str(dt) else: print "Stat could not be computed." elif args.sketch_size: wd_time = {} wd_error = {} cor_res = comp_median('data/data_large.xls', 'iadatasheet2', 'Adults in Employment', 'No adults in employment in household: With dependent children', '2011') #[0.5, 0.35, 0.25, 0.15, 0.1, 0.05, 0.025, 0.01]: #, 0.005, 0.001]: for param_d in range(1,10): wd_time[str(param_d)] = {} wd_error[str(param_d)] = {} print "d: " + str(param_d) for param_w in range(3,70): tic = time.time() #print 'tic: ' + str(tic) print "w: " + str(param_w) s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((ip, int(port))) data = {'request':'stat', 'contents': {'type':'median', 'dp':'True', 'attributes':{'file':'data/data_large.xls', 'sheet':'iadatasheet2', 'column_1':'Adults in Employment', 'column_2':'No adults in employment in household: With dependent children', 'column_3':'2011'}}} #data = {'request':'stat', 'contents': {'type':'median', 'dp':'True', 'attributes':{'file':'data/data_large.xls', 'sheet':'iadatasheet2', 'column_1':args.stat[1], 'column_2':args.stat[2], 'column_3':args.stat[3]}}} #Compute sketch parameters #tmp_w = int(math.ceil(math.e / param_w)) #tmp_d = int(math.ceil(math.log(1.0 / param_d))) print "Sketch bins: tmp_w " + str(param_w) + " tmp_d " + str(param_d) data['contents']['attributes']['sk_w'] = param_w data['contents']['attributes']['sk_d'] = param_d data['contents']['attributes']['epsilon'] = 0 data['contents']['attributes']['delta'] = 0 SockExt.send_msg(s, json.dumps(data)) #print "Request Sent" data = json.loads(SockExt.recv_msg(s)) #print "Response:" result = data['return'] if result['success']=='True': approx_res = result['value'] #cor_res = comp_median('data/data_large.xls', 'iadatasheet2', 'Adults in Employment', 'No adults in employment in household: With dependent children', '2011') toc = time.time() #print 'toc: ' + str(toc) dt = (toc - tic) print "The %s of %s is: %s" %(result['type'] , result['attribute'], approx_res) #print "The correct result is: " + str(cor_res) print "The err is: " + str(abs(float(approx_res) - float(cor_res))) print "Total time: " + str(dt) print "-----------" wd_time[str(param_d)][str(param_w)] = str(dt) wd_error[str(param_d)][str(param_w)] = str(abs(float(approx_res) - float(cor_res))) utilities.dict_to_csv("time.csv", wd_time) utilities.dict_to_csv("errors.csv", wd_error) elif args.mean_test: tic = time.clock() s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((ip, int(port))) data = {'request':'stat', 'contents': {'type':'mean', 'dp':'False', 'attributes':{'file':'data/data_large.xls', 'sheet':'iadatasheet2', 'column_1':'Adults in Employment', 'column_2':'No adults in employment in household: With dependent children', 'column_3':'2011'}}} #data = {'request':'stat', 'contents': {'type':'mean', 'dp':'False', 'attributes':{'file':'data/data_large.xls', 'sheet':'iadatasheet2', 'column_1':args.stat[1], 'column_2':args.stat[2], 'column_3':args.stat[3]}}} SockExt.send_msg(s, json.dumps(data)) #print "Request Sent" data = json.loads(SockExt.recv_msg(s)) #print "Response:" result = data['return'] if result['success']=='True': approx_res = result['value'] cor_res = comp_mean('data/data_large.xls', 'iadatasheet2', 'Adults in Employment', 'No adults in employment in household: With dependent children', '2011') toc = time.clock() dt = (toc - tic) if abs(float(approx_res)-float(cor_res))<=0.1: print "Mean accuracy test passed!" else: print "Mean accuracy test failed." print cor_res print approx_res ```
{ "source": "jdeweese1/ksu_acacia_server", "score": 2 }
#### File: acacia_server/public/api.py ```python import httpx from flask_restful import Resource, reqparse from acacia_server import utils from slack import WebClient from acacia_server import settings import json from flask import request import threading user_ids_that_can_post_cleaning_duties = [] # TODO Add the Ids of the people that can post cleaning duties class InfoBot(Resource): def __init__(self): super().__init__() self.parser = reqparse.RequestParser() self.parser.add_argument('challenge') self.parser.add_argument('event') def post(self): args = self.parser.parse_args() event = json.loads(args['event'].replace("'", '"')) assert event['channel_type'] == 'im' if 'user' in event.keys(): client = WebClient(token=settings.SLACK_TOKEN) message_text = '''ADD IMPORTANT LINKS HERE FOR YOUR ORGANIZATION''' print(args) print(request.headers) def target(): return client.\ chat_postMessage(channel=event['channel'], text=message_text) t1 = threading.Thread(group=None, target=target) t1.start() return {'status': 'ok'}, 200, {'X-Slack-No-Retry': 1} class CleaningDuties(Resource): def __init__(self): super().__init__() self.parser = reqparse.RequestParser() self.parser.add_argument('user_id') self.parser.add_argument('command') self.parser.add_argument('response_url') def post(self): args = self.parser.parse_args() user_id = args['user_id'] response_url = args.get('response_url', None) resp_msg = '' rtn_val = () try: if user_id in user_ids_that_can_post_cleaning_duties: utils.post_duties() resp_msg = 'duties posted' rtn_val = {'status': 'ok'}, 200 else: rtn_val = {'status': 'bad', 'reason': 'you are not authorized to post cleaning duties'} resp_msg = 'you are not authorized' except: # noqa E722 rtn_val = {'status': 'bad', 'reason': 'could not post duties'}, 500 resp_msg = 'an error occurred when posting' finally: data = {'text': resp_msg} if response_url: httpx.post(response_url, data=data, headers={'Content-type': 'application/json'}) return rtn_val ```
{ "source": "jdewells/jschon", "score": 3 }
#### File: jschon/jschon/uri.py ```python import rfc3986 import rfc3986.exceptions import rfc3986.misc import rfc3986.validators from jschon.exceptions import URIError __all__ = [ 'URI', ] class URI: def __init__(self, value: str) -> None: self._uriref = rfc3986.uri_reference(value) def __str__(self) -> str: return self._uriref.unsplit() def __repr__(self) -> str: return f"URI({str(self)!r})" def __len__(self) -> int: return len(str(self)) def __hash__(self) -> int: return hash(self._uriref) def __eq__(self, other) -> bool: if isinstance(other, URI): return self._uriref == other._uriref if other is None: return False return self._uriref.__eq__(other) @property def scheme(self) -> str: return self._uriref.scheme @property def authority(self) -> str: return self._uriref.authority @property def path(self) -> str: return self._uriref.path @property def query(self) -> str: return self._uriref.query @property def fragment(self) -> str: return self._uriref.fragment def is_absolute(self) -> bool: return self._uriref.is_absolute() def has_absolute_base(self) -> bool: return self.copy(fragment=False).is_absolute() def resolve(self, base_uri: 'URI') -> 'URI': """Produce a new URI by resolving self against the given base URI.""" uri = object.__new__(URI) uri._uriref = self._uriref.resolve_with(base_uri._uriref) return uri def copy( self, scheme=True, authority=True, path=True, query=True, fragment=True, ) -> 'URI': """Produce a new URI composed of the specified components of self. - True => use existing - False/None => remove - Otherwise => replace """ uri = object.__new__(URI) uri._uriref = self._uriref.copy_with( scheme=rfc3986.misc.UseExisting if scheme is True else None if scheme is False else scheme, authority=rfc3986.misc.UseExisting if authority is True else None if authority is False else authority, path=rfc3986.misc.UseExisting if path is True else None if path is False else path, query=rfc3986.misc.UseExisting if query is True else None if query is False else query, fragment=rfc3986.misc.UseExisting if fragment is True else None if fragment is False else fragment, ) return uri def validate( self, require_scheme: bool = False, require_normalized: bool = False, allow_fragment: bool = True, allow_non_empty_fragment: bool = True, ) -> None: """Validate self. :raise URIError: if self fails validation """ validator = rfc3986.validators.Validator() if require_scheme: validator = validator.require_presence_of('scheme') try: validator.validate(self._uriref) except rfc3986.exceptions.ValidationError as e: msg = f"'{self}' is not a valid URI" if require_scheme: msg += " or does not contain a scheme" raise URIError(msg) from e if require_normalized and self._uriref != self._uriref.normalize(): raise URIError(f"'{self}' is not normalized") if not allow_fragment and self._uriref.fragment is not None: raise URIError(f"'{self}' has a fragment") if not allow_non_empty_fragment and self._uriref.fragment: raise URIError(f"'{self}' has a non-empty fragment") ```
{ "source": "JDewhirst/advent-of-code", "score": 4 }
#### File: 2020/day_12/day_12.py ```python import numpy as np from math import sin, cos, radians def ReadCommands(filename): with open(filename,"r") as file: data = [line.strip("\n") for line in file.readlines()] return data class Part1: def __init__(self): # Begins at (0,0) facing East self.position = ([0.0],[0.0]) self.vector = ([1.0],[0.0]) def __str__(self): return (f"position={self.position}, facing ={self.vector}") def rotate(self,direction,angle): # L turn right by given num of degrees # R turn right by given num of degress if direction == "R": angle = -1.0*angle elif direction == "L": angle = 1.0*angle else: print(f"Rotation {direction+angle} not recognised") rot = ([cos(radians(angle)), -sin(radians(angle))], [sin(radians(angle)),cos(radians(angle))]) self.vector = np.matmul(rot,self.vector) def command(self,command): order = command[0] value = float(command[1:]) # N move north (0,1) if order == "N": self.position = np.add( np.dot(value,([0.0],[1.0])),self.position) # S move south (0,-1) elif order == "S": self.position = np.add( np.dot(value,([0.0],[-1.0])),self.position) # E move east (1,0) elif order == "E": self.position = np.add( np.dot(value,([1.0],[0.0])),self.position) # W move west (-1,0) elif order == "W": self.position = np.add( np.dot(value,([-1.0],[0.0])),self.position) # F move forward in current facing by given value elif order == "F": self.position = np.add( np.dot(value,self.vector),self.position) elif order == "R" or order == "L": self.rotate(order,value) def manhattandist(self): return self.position class Part2: def __init__(self): # Begins at (0,0) with waypoint at (10,1) from the ship self.position = ([0.0],[0.0]) self.waypoint = ([10.0],[1.0]) def __str__(self): return (f"position={self.position}, waypoint ={self.waypoint}") def rotate(self,direction,angle): # L turn right by given num of degrees # R turn right by given num of degress if direction == "R": angle = -1.0*angle elif direction == "L": angle = 1.0*angle else: print(f"Rotation {direction+angle} not recognised") rot = ([cos(radians(angle)), -sin(radians(angle))], [sin(radians(angle)),cos(radians(angle))]) self.waypoint = np.matmul(rot,self.waypoint) def command(self,command): order = command[0] value = float(command[1:]) # N move north (0,1) if order == "N": self.waypoint = np.add( np.dot(value,([0.0],[1.0])),self.waypoint) # S move south (0,-1) elif order == "S": self.waypoint = np.add( np.dot(value,([0.0],[-1.0])),self.waypoint) # E move east (1,0) elif order == "E": self.waypoint = np.add( np.dot(value,([1.0],[0.0])),self.waypoint) # W move west (-1,0) elif order == "W": self.waypoint = np.add( np.dot(value,([-1.0],[0.0])),self.waypoint) # F move forward in current facing by given value elif order == "F": self.position = np.add( np.dot(value,self.waypoint),self.position) elif order == "R" or order == "L": self.rotate(order,value) def manhattandist(self): return self.position if __name__=="__main__": data = ReadCommands("input.txt") ferry = Part1() for item in data: #print(item) ferry.command(item) #print(ferry) print(f"Part 1 Manhattan Distance = {abs(ferry.position[0][0])+abs(ferry.position[1][0])}") ferry2 = Part2() for item in data: #print(item) ferry2.command(item) #print(ferry2) print(f"Part 2 Manhattan Distance = {abs(ferry2.position[0][0])+abs(ferry2.position[1][0])}") ``` #### File: 2020/day_1/solution.py ```python def findtwo2020(filename): f = open(filename) data = f.readlines() f.close() data = [int(item.strip("\n")) for item in data] for i in range(len(data)): for j in range(i+1,len(data)): #print(data[i],data[j],data[i]+data[j]) if data[i]+data[j] == 2020: return data[i]*data[j] return "Did not find it" def findthree2020(filename): f = open(filename) data = f.readlines() f.close() data = [int(item.strip("\n")) for item in data] for i in range(len(data)): for j in range(i+1,len(data)): for k in range(j+1,len(data)): #print(data[i]+data[j]+data[k]) if data[i]+data[j]+data[k] == 2020: return data[i]*data[j]*data[k] return "Did not find it" ``` #### File: 2021/day_1/solution.py ```python import re def ReadData(filename): with open(filename) as f: lines = f.readlines() lines = [int(item.strip("\n")) for item in lines] return lines def NumOfIncreases(data): count = 0 for i in range(1,len(data)): if data[i-1] < data[i]: count +=1 return count def NumOfIncreasesWindow(data, window): count = 0 for i in range(1,len(data)-window+1): #print(data[i:i+window]) #print(data[i+window:i+window]) if sum(data[i-1:i-1+window]) < sum(data[i:i+window]): count += 1 return count if __name__=="__main__": sonarReadings = ReadData("input.txt") print(f'Part 1: {NumOfIncreases(sonarReadings)}') print(f'Part 2: {NumOfIncreasesWindow(sonarReadings,3)}') ``` #### File: 2021/day_3/solution.py ```python def readData(filename): with open(filename) as f: data = f.readlines() data = [list(item.strip("\n")) for item in data] return data def CountBits(input): bits = len(input[0]) bitCount = [0 for i in range(bits)] for entry in input: for i in range(len(bitCount)): bitCount[i] += int(entry[i]) return bitCount def FindRates(bitCount, numEntries): gammaRate = [ '0' for i in range(len(bitCount)) ] for i in range(len(bitCount)): if bitCount[i] > numEntries/2: gammaRate[i] = '1' epsilonRate = ['0' if i == '1' else '1' for i in gammaRate] print(gammaRate, epsilonRate) return (''.join(gammaRate),''.join(epsilonRate)) def BinaryToDecimal(num, expo=1): if num== 0: return 0 else: digit= num % 10 num= int(num / 10) digit= digit * expo return digit + BinaryToDecimal(num, expo * 2) if __name__=="__main__": input = readData("input.txt") for item in input: print(item) numEntries = len(input) bitCount = CountBits(input) print(bitCount) rates = FindRates(bitCount, numEntries) print(f'Gamma Rate = {BinaryToDecimal(int(rates[0]))}, Epsilon Rate = {BinaryToDecimal(int(rates[1]))}; Solution {BinaryToDecimal(int(rates[0])) * BinaryToDecimal(int(rates[1]))}') ```
{ "source": "jdewinne/pyspinnaker", "score": 2 }
#### File: pyspinnaker/tests/test_client.py ```python from spinnaker import SpinnakerClient class TestClient(object): def test_init(self): x = SpinnakerClient("http://localhost") assert x is not None ```
{ "source": "jdewinne/xlr-sdelements-plugin", "score": 2 }
#### File: test/jython/test_get_task.py ```python import json import requests_mock from nose.tools import eq_, raises from responses import GET_TASK_RESPONSE from sdelements.SDEClient import SDEClient @requests_mock.Mocker() class TestGetTask(object): def test_get_task_basic_auth(self, m): sde_client = SDEClient("http://localhost/sde", "Basic", None, "admin", "admin", None) m.register_uri('GET', SDEClient.GET_TASK_URI % (sde_client.url, '1', '1-T2'), json=json.loads(GET_TASK_RESPONSE)) eq_(json.loads(GET_TASK_RESPONSE), sde_client.get_task('1', '1-T2')) def test_get_task_token_auth(self, m): sde_client = SDEClient("http://localhost/sde", "PAT", None, None, None, "1234abcd") m.register_uri('GET', SDEClient.GET_TASK_URI % (sde_client.url, '1', '1-T2'), json=json.loads(GET_TASK_RESPONSE)) eq_(json.loads(GET_TASK_RESPONSE), sde_client.get_task('1', '1-T2')) @raises(Exception) def test_get_unknown_task(self, m): sde_client = SDEClient("http://localhost/sde", "Basic", None, "admin", "admin", None) m.register_uri('GET', SDEClient.GET_TASK_URI % (sde_client.url, '1', 'FAILED'), status_Code=403) sde_client.get_task('1', 'FAILED') @raises(Exception) def test_get_unknown_authentication_method(self, m): sde_client = SDEClient("http://localhost/sde", "Unknown", None, None, None, None) m.register_uri('GET', SDEClient.GET_TASK_URI % (sde_client.url, '1', '1-T2'), json=json.loads(GET_TASK_RESPONSE)) sde_client.get_task('1', 'FAILED') ```
{ "source": "jdey4/DF-CNN", "score": 2 }
#### File: jdey4/DF-CNN/exp_5000.py ```python import pickle import numpy as np from itertools import product import os import tensorflow as tf import tensorflow.keras as keras import warnings warnings.filterwarnings("default", category=DeprecationWarning) # In[ ]: def unpickle(file): with open(file, 'rb') as fo: dict = pickle.load(fo) return dict def change_label(label, task): labels = label.copy() lbls_to_change = range(0,10,1) lbls_to_transform = range((task-1)*10,task*10,1) for count, i in enumerate(lbls_to_change): indx = np.where(labels == i) labels[indx] = -lbls_to_transform[count] for count, i in enumerate(lbls_to_transform): indx = np.where(labels == i) labels[indx] = lbls_to_change[count] indx = np.where(labels<0) labels[indx] = -labels[indx] return labels # In[ ]: def cross_val_data(data_x, data_y, num_points_per_task, slot_no, total_task=10, shift=1): x = data_x.copy() y = data_y.copy() idx = [np.where(data_y == u)[0] for u in np.unique(data_y)] sample_per_class = num_points_per_task//total_task for task in range(total_task): for class_no in range(task*10,(task+1)*10,1): indx = np.roll(idx[class_no],(shift-1)*100) if class_no==0 and task==0: train_x = x[indx[slot_no*sample_per_class:(slot_no+1)*sample_per_class],:] train_y = y[indx[slot_no*sample_per_class:(slot_no+1)*sample_per_class]] else: train_x = np.concatenate((train_x, x[indx[slot_no*sample_per_class:(slot_no+1)*sample_per_class],:]), axis=0) train_y = np.concatenate((train_y, y[indx[slot_no*sample_per_class:(slot_no+1)*sample_per_class]]), axis=0) if class_no==0: test_x = x[indx[500:600],:] test_y = y[indx[500:600]] else: test_x = np.concatenate((test_x, x[indx[500:600],:]), axis=0) test_y = np.concatenate((test_y, y[indx[500:600]]), axis=0) return train_x, train_y, test_x, test_y # In[ ]: def experiment(): get_ipython().system('python ./main_train_cl.py --gpu 0 --data_type CIFAR100_10 --data_percent 100 --model_type DFCNN --lifelong --save_mat_name CIFAR_res2.mat') #get_ipython().system('python ./main_train_cl.py --gpu 1 --data_type CIFAR100_10 --data_percent 100 --model_type PROG --lifelong --save_mat_name CIFAR_res2.mat') #!python ./main_train_cl.py --data_type CIFAR100_10 --data_percent 100 --model_type PROG --lifelong --save_mat_name CIFAR_res.mat # In[ ]: (X_train, y_train), (X_test, y_test) = keras.datasets.cifar100.load_data() data_x = np.concatenate([X_train, X_test]) data_y = np.concatenate([y_train, y_test]) data_y = data_y[:, 0] # In[ ]: #saving the file alg = ['Prog_NN', 'DF_CNN'] task_to_complete = 10 with open('./task_count.pickle','wb') as f: pickle.dump(task_to_complete, f) # In[ ]: filename = './slot_res' tmp_file = './tmp' data_folder = './Data/cifar-100-python' if not os.path.exists(filename): os.mkdir(filename) if not os.path.exists(tmp_file): os.mkdir(tmp_file) if not os.path.exists(data_folder): os.mkdir('Data') os.mkdir(data_folder) num_points_per_task = 500 slot_fold = [1] #range(10) shift_fold = range(1,2,1) algs = range(2) for shift in shift_fold: for slot in slot_fold: tmp_train = {} tmp_test = {} train_x, train_y, test_x, test_y = cross_val_data( data_x,data_y,num_points_per_task,slot,shift=shift ) tmp_train[b'data'] = train_x tmp_train[b'fine_labels'] = train_y tmp_test[b'data'] = test_x tmp_test[b'fine_labels'] = test_y with open('./Data/cifar-100-python/train.pickle', 'wb') as f: pickle.dump(tmp_train, f) with open('./Data/cifar-100-python/test.pickle', 'wb') as f: pickle.dump(tmp_test, f) get_ipython().system('rm ./Data/cifar100_mtl_data_group_410_80_1000_10.pkl') experiment() res = unpickle('./tmp/res.pickle') with open(filename+'/'+alg[1]+str(shift)+'_'+str(slot)+'.pickle','wb') as f: pickle.dump(res,f) #get_ipython().system('sudo shutdown now') ``` #### File: jdey4/DF-CNN/main_train_cl.py ```python from os import getcwd, listdir, mkdir from utils.utils_env_cl import num_data_points, model_setup from classification.gen_data import mnist_data, mnist_data_print_info, cifar10_data, cifar100_data, cifar_data_print_info, officehome_data, officehome_data_print_info from classification.train_wrapper import train_run_for_each_model def main(): import argparse parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--gpu', help='GPU device ID', type=int, default=-1) parser.add_argument('--data_type', help='Type of Data (MNIST5/MNIST10/CIFAR10_5/CIFAR10_10/CIFAR100_10/CIFAR100_20/OfficeHome)', type=str, default='MNIST5') parser.add_argument('--data_percent', help='Percentage of train data to be used', type=int, default=50) parser.add_argument('--model_type', help='Architecture of Model(STL/SNN/HPS/TF/PROG/DEN/DFCNN/DFCNN_direct/DFCNN_tc2)', type=str, default='STL') parser.add_argument('--save_mat_name', help='Name of file to save training results', type=str, default='delete_this.mat') parser.add_argument('--cnn_padtype_valid', help='Set CNN padding type VALID', action='store_false', default=True) parser.add_argument('--lifelong', help='Train in lifelong learning setting', action='store_true', default=False) parser.add_argument('--saveparam', help='Save parameter of NN', action='store_true', default=False) parser.add_argument('--savegraph', help='Save graph of NN', action='store_true', default=False) parser.add_argument('--tensorfactor_param_path', help='Path to parameters initializing tensor factorized model(below Result, above run0/run1/etc', type=str, default=None) args = parser.parse_args() gpu_device_num = args.gpu if gpu_device_num > -1: use_gpu = True else: use_gpu = False do_lifelong = args.lifelong if not 'Result' in listdir(getcwd()): mkdir('Result') ## Name of .mat file recording all information of training and evaluation mat_file_name = args.save_mat_name data_type, data_percent = args.data_type.lower(), args.data_percent data_hyperpara = {} data_hyperpara['num_train_group'] = 5 # the number of the set of pre-processed data (each set follows the same experimental setting, but has sets of different images randomly selected.) data_hyperpara['multi_class_label'] = False # Binary classification vs multi-class classification train_hyperpara = {} train_hyperpara['improvement_threshold'] = 1.002 # for accuracy (maximizing it) train_hyperpara['patience_multiplier'] = 1.5 # for early-stopping if 'mnist' in data_type: ## MNIST case data_hyperpara['image_dimension'] = [28, 28, 1] data_hyperpara['num_train_data'], data_hyperpara['num_valid_data'], data_hyperpara['num_test_data'] = num_data_points(data_type, data_percent) if '5' in data_type: ## Heterogeneous MTL/LL (each sub-task has distinct set of image classes) data_hyperpara['num_tasks'] = 5 elif '10' in data_type: ## Homogeneous MTL/LL (each sub-task has the same set of image classes, but image class set as True only differs) data_hyperpara['num_tasks'] = 10 data_file_name = 'mnist_mtl_data_group_' + str(data_hyperpara['num_train_data']) + '_' + str(data_hyperpara['num_valid_data']) + '_' + str(data_hyperpara['num_test_data']) + '_' + str(data_hyperpara['num_tasks']) + '.pkl' train_hyperpara['num_run_per_model'] = 5 train_hyperpara['train_valid_data_group'] = list(range(5)) + list(range(5)) train_hyperpara['lr'] = 0.001 train_hyperpara['lr_decay'] = 1.0/250.0 train_hyperpara['learning_step_max'] = 500 train_hyperpara['patience'] = 500 train_data, validation_data, test_data = mnist_data(data_file_name, data_hyperpara['num_train_data'], data_hyperpara['num_valid_data'], data_hyperpara['num_test_data'], data_hyperpara['num_train_group'], data_hyperpara['num_tasks'], data_percent) mnist_data_print_info(train_data, validation_data, test_data) elif ('cifar10' in data_type) and not ('cifar100' in data_type): ## CIFAR-10 case data_hyperpara['image_dimension'] = [32, 32, 3] data_hyperpara['num_train_data'], data_hyperpara['num_valid_data'], data_hyperpara['num_test_data'] = num_data_points(data_type, data_percent) if '_5' in data_type: ## Heterogeneous MTL/LL (each sub-task has distinct set of image classes) data_hyperpara['num_tasks'] = 5 elif '_10' in data_type: ## Homogeneous MTL/LL (each sub-task has the same set of image classes, but image class set as True only differs) data_hyperpara['num_tasks'] = 10 data_file_name = 'cifar10_mtl_data_group_' + str(data_hyperpara['num_train_data']) + '_' + str(data_hyperpara['num_valid_data']) + '_' + str(data_hyperpara['num_test_data']) + '_' + str(data_hyperpara['num_tasks']) + '.pkl' train_hyperpara['num_run_per_model'] = 5 train_hyperpara['train_valid_data_group'] = range(5) train_hyperpara['lr'] = 0.00025 train_hyperpara['lr_decay'] = 1.0/1000.0 train_hyperpara['learning_step_max'] = 2000 train_hyperpara['patience'] = 2000 train_data, validation_data, test_data = cifar10_data(data_file_name, data_hyperpara['num_train_data'], data_hyperpara['num_valid_data'], data_hyperpara['num_test_data'], data_hyperpara['num_train_group'], data_hyperpara['num_tasks'], multiclass=data_hyperpara['multi_class_label'], data_percent=data_percent) cifar_data_print_info(train_data, validation_data, test_data) elif 'cifar100' in data_type: ## CIFAR-100 case data_hyperpara['multi_class_label'] = True data_hyperpara['image_dimension'] = [32, 32, 3] data_hyperpara['num_train_data'], data_hyperpara['num_valid_data'], data_hyperpara['num_test_data'] = num_data_points(data_type, data_percent) if '_10' in data_type: ## Heterogeneous MTL/LL (each sub-task has distinct set of image classes) data_hyperpara['num_tasks'] = 10 elif '_20' in data_type: ## Half-homogeneous MTL/LL (there are pairs of sub-tasks which share 5 classes of images) data_hyperpara['num_tasks'] = 20 data_file_name = 'cifar100_mtl_data_group_' + str(data_hyperpara['num_train_data']) + '_' + str(data_hyperpara['num_valid_data']) + '_' + str(data_hyperpara['num_test_data']) + '_' + str(data_hyperpara['num_tasks']) + '.pkl' train_hyperpara['num_run_per_model'] = 5 train_hyperpara['train_valid_data_group'] = range(5) train_hyperpara['lr'] = 0.0001 train_hyperpara['lr_decay'] = 1.0/4000.0 train_hyperpara['patience'] = 200 train_hyperpara['learning_step_max'] = data_hyperpara['num_tasks'] * train_hyperpara['patience'] train_data, validation_data, test_data = cifar100_data(data_file_name, data_hyperpara['num_train_data'], data_hyperpara['num_valid_data'], data_hyperpara['num_test_data'], data_hyperpara['num_train_group'], data_hyperpara['num_tasks'], multiclass=data_hyperpara['multi_class_label']) cifar_data_print_info(train_data, validation_data, test_data) elif 'officehome' in data_type: ## Office-Home case data_hyperpara['multi_class_label'] = True data_hyperpara['image_dimension'] = [128, 128, 3] data_hyperpara['num_train_data'], data_hyperpara['num_valid_data'], data_hyperpara['num_test_data'] = 0.6, 0.1, 0.3 data_hyperpara['num_classes'] = 13 data_hyperpara['num_tasks'] = 10 data_file_name = 'officehome_mtl_data_group_' + str(data_hyperpara['num_train_data']) + '_' + str(data_hyperpara['num_valid_data']) + '_' + str(data_hyperpara['num_test_data']) + '_t' + str(data_hyperpara['num_tasks']) + '_c' + str(data_hyperpara['num_classes']) + '_i' + str(data_hyperpara['image_dimension'][0]) + '.pkl' train_hyperpara['num_run_per_model'] = 5 train_hyperpara['train_valid_data_group'] = list(range(5)) + list(range(5)) train_hyperpara['lr'] = 5e-6 train_hyperpara['lr_decay'] = 1.0/1000.0 train_hyperpara['patience'] = 1000 train_hyperpara['learning_step_max'] = data_hyperpara['num_tasks'] * train_hyperpara['patience'] train_data, validation_data, test_data = officehome_data(data_file_name, data_hyperpara['num_train_data'], data_hyperpara['num_valid_data'], data_hyperpara['num_test_data'], data_hyperpara['num_train_group'], data_hyperpara['image_dimension']) officehome_data_print_info(train_data, validation_data, test_data) ## Model Set-up model_architecture, model_hyperpara = model_setup(data_type, data_hyperpara['image_dimension'], args.model_type, args.cnn_padtype_valid) train_hyperpara['num_tasks'] = data_hyperpara['num_tasks'] save_param_path = None if args.saveparam: if not 'params' in listdir(getcwd()+'/Result'): mkdir('./Result/params') save_param_dir_name = data_type + '_' + str(data_percent) + 'p_' + args.model_type while save_param_dir_name in listdir(getcwd()+'/Result/params'): ## Add dummy characters to directory name to avoid overwriting existing parameter files save_param_dir_name += 'a' save_param_path = getcwd()+'/Result/params/'+save_param_dir_name mkdir(save_param_path) print(model_architecture) if ('tensorfactor' in model_architecture) and (args.tensorfactor_param_path is not None): tensorfactor_param_path = getcwd()+'/Result/'+args.tensorfactor_param_path else: tensorfactor_param_path = None ## Training the Model saved_result = train_run_for_each_model(model_architecture, model_hyperpara, train_hyperpara, [train_data, validation_data, test_data], data_type, mat_file_name, saved_result=None, useGPU=use_gpu, GPU_device=gpu_device_num, doLifelong=do_lifelong, saveParam=args.saveparam, saveParamDir=save_param_path, saveGraph=args.savegraph, tfInitParamPath=tensorfactor_param_path) if __name__ == '__main__': main() ```
{ "source": "jdey4/progressive-learning", "score": 2 }
#### File: experiments/random_class_exp/random_class_exp.py ```python import warnings warnings.simplefilter("ignore") import random import matplotlib.pyplot as plt import tensorflow as tf import tensorflow.keras as keras from itertools import product import pandas as pd import numpy as np import pickle from sklearn.model_selection import StratifiedKFold from math import log2, ceil import sys sys.path.append("../../src/") from lifelong_dnn import LifeLongDNN from joblib import Parallel, delayed from multiprocessing import Pool import tensorflow as tf from sklearn.model_selection import train_test_split #%% def unpickle(file): with open(file, 'rb') as fo: dict = pickle.load(fo, encoding='bytes') return dict #%% def LF_experiment(data_x, data_y, ntrees, shift, slot, model, num_points_per_task, acorn=None): df = pd.DataFrame() shifts = [] slots = [] accuracies_across_tasks = [] train_x_task0, train_y_task0, test_x_task0, test_y_task0 = cross_val_data(data_x, data_y, num_points_per_task, total_task=10, shift=shift, slot=slot) lifelong_forest = LifeLongDNN(model = model, parallel = True if model == "uf" else False) lifelong_forest.new_forest( train_x_task0, train_y_task0, max_depth=ceil(log2(num_points_per_task)), n_estimators=ntrees ) task_0_predictions=lifelong_forest.predict( test_x_task0, representation='all', decider=0 ) shifts.append(shift) slots.append(slot) accuracies_across_tasks.append(np.mean( task_0_predictions == test_y_task0 )) print(accuracies_across_tasks) for task_ii in range(29): train_x, train_y, _, _ = cross_val_data(data_x, data_y, num_points_per_task, total_task=10, shift=shift, slot=slot, task = task_ii) print("Starting Task {} For Fold {} For Slot {}".format(task_ii, shift, slot)) lifelong_forest.new_forest( train_x, train_y, max_depth=ceil(log2(num_points_per_task)), n_estimators=ntrees ) task_0_predictions=lifelong_forest.predict( test_x_task0, representation='all', decider=0 ) shifts.append(shift) slots.append(slot) accuracies_across_tasks.append(np.mean( task_0_predictions == test_y_task0 )) print(accuracies_across_tasks) df['data_fold'] = shifts df['slot'] = slots df['accuracy'] = accuracies_across_tasks file_to_save = 'result/'+model+str(ntrees)+'_'+str(shift)+'_'+str(slot)+'.pickle' with open(file_to_save, 'wb') as f: pickle.dump(df, f) #%% def cross_val_data(data_x, data_y, num_points_per_task, total_task=10, shift=1, slot=0, task=0): skf = StratifiedKFold(n_splits=6) for _ in range(shift + 1): train_idx, test_idx = next(skf.split(data_x, data_y)) data_x_train, data_y_train = data_x[train_idx], data_y[train_idx] data_x_test, data_y_test = data_x[test_idx], data_y[test_idx] selected_classes = np.random.choice(range(0, 100), 10) train_idxs_of_selected_class = np.array([np.where(data_y_train == y_val)[0] for y_val in selected_classes]) num_points_per_class_per_slot = [int(len(train_idxs_of_selected_class[class_idx]) // 10) for class_idx in range(len(selected_classes))] selected_idxs = np.concatenate([np.random.choice(train_idxs_of_selected_class[class_idx], num_points_per_class_per_slot[class_idx]) for class_idx in range(len(selected_classes))]) train_idxs = np.random.choice(selected_idxs, num_points_per_task) data_x_train = data_x_train[train_idxs] data_y_train = data_y_train[train_idxs] test_idxs_of_selected_class = np.concatenate([np.where(data_y_test == y_val)[0] for y_val in selected_classes]) data_x_test = data_x_test[test_idxs_of_selected_class] data_y_test = data_y_test[test_idxs_of_selected_class] return data_x_train, data_y_train, data_x_test, data_y_test #%% def run_parallel_exp(data_x, data_y, n_trees, model, num_points_per_task, slot=0, shift=1): if model == "dnn": with tf.device('/gpu:'+str(shift % 4)): LF_experiment(data_x, data_y, n_trees, shift, slot, model, num_points_per_task, acorn=12345) else: LF_experiment(data_x, data_y, n_trees, shift, slot, model, num_points_per_task, acorn=12345) #%% ### MAIN HYPERPARAMS ### model = "dnn" num_points_per_task = 500 ######################## (X_train, y_train), (X_test, y_test) = keras.datasets.cifar100.load_data() data_x = np.concatenate([X_train, X_test]) if model == "uf": data_x = data_x.reshape((data_x.shape[0], data_x.shape[1] * data_x.shape[2] * data_x.shape[3])) data_y = np.concatenate([y_train, y_test]) data_y = data_y[:, 0] #%% slot_fold = range(3, 10) if model == "uf": shift_fold = range(1,7,1) n_trees=[10] iterable = product(n_trees,shift_fold, slot_fold) Parallel(n_jobs=-2,verbose=1)( delayed(run_parallel_exp)( data_x, data_y, ntree, model, num_points_per_task, slot=slot, shift=shift ) for ntree,shift,slot in iterable ) elif model == "dnn": ''' print("Performing Stage 1 Shifts") for slot in slot_fold: def perform_shift(shift): return run_parallel_exp(data_x, data_y, 0, model, num_points_per_task, slot=slot, shift=shift) stage_1_shifts = range(1, 5) with Pool(4) as p: p.map(perform_shift, stage_1_shifts) ''' print("Performing Stage 2 Shifts") for slot in slot_fold: def perform_shift(shift): return run_parallel_exp(data_x, data_y, 0, model, num_points_per_task, slot=slot, shift=shift) stage_2_shifts = range(5, 7) with Pool(4) as p: p.map(perform_shift, stage_2_shifts) # %% ``` #### File: progressive-learning/replaying/jovo_exp.py ```python import random import matplotlib.pyplot as plt import seaborn as sns import tensorflow as tf import tensorflow.keras as keras from itertools import product import pandas as pd import numpy as np import pickle import matplotlib from sklearn.model_selection import StratifiedKFold from math import log2, ceil import sys sys.path.append("../src_sampling/") #sys.path.append("../src/") from lifelong_dnn import LifeLongDNN from joblib import Parallel, delayed from multiprocessing import Pool import tensorflow as tf # %% def unpickle(file): with open(file, 'rb') as fo: dict = pickle.load(fo, encoding='bytes') return dict def get_colors(colors, inds): c = [colors[i] for i in inds] return c def generate_2d_rotation(theta=0, acorn=None): if acorn is not None: np.random.seed(acorn) R = np.array([ [np.cos(theta), np.sin(theta)], [-np.sin(theta), np.cos(theta)] ]) return R def generate_gaussian_parity(n, mean=np.array([-1, -1]), cov_scale=1, angle_params=None, k=1, acorn=None): if acorn is not None: np.random.seed(acorn) d = len(mean) if mean[0] == -1 and mean[1] == -1: mean = mean + 1 / 2**k mnt = np.random.multinomial(n, 1/(4**k) * np.ones(4**k)) cumsum = np.cumsum(mnt) cumsum = np.concatenate(([0], cumsum)) Y = np.zeros(n) X = np.zeros((n, d)) for i in range(2**k): for j in range(2**k): temp = np.random.multivariate_normal(mean, cov_scale * np.eye(d), size=mnt[i*(2**k) + j]) temp[:, 0] += i*(1/2**(k-1)) temp[:, 1] += j*(1/2**(k-1)) X[cumsum[i*(2**k) + j]:cumsum[i*(2**k) + j + 1]] = temp if i % 2 == j % 2: Y[cumsum[i*(2**k) + j]:cumsum[i*(2**k) + j + 1]] = 0 else: Y[cumsum[i*(2**k) + j]:cumsum[i*(2**k) + j + 1]] = 1 if d == 2: if angle_params is None: angle_params = np.random.uniform(0, 2*np.pi) R = generate_2d_rotation(angle_params) X = X @ R else: raise ValueError('d=%i not implemented!'%(d)) return X, Y.astype(int) #%% def produce_heatmap_data(leaf_profile, posterior, delta=0.001): x = np.arange(leaf_profile[0][0],leaf_profile[0][1],step=delta) y = np.arange(leaf_profile[1][0],leaf_profile[1][1],step=delta) #print(leaf_profile[0][0],leaf_profile[0][1],leaf_profile[1][0],leaf_profile[1][1]) x,y = np.meshgrid(x,y) '''points = np.concatenate( ( x.reshape(-1,1), y.reshape(-1,1) ), axis=1 )''' if x.shape[0] == 1: x = np.concatenate( (x,x), axis=0 ) if x.shape[1] == 1: x = np.concatenate( (x,x), axis=1 ) if y.shape[0] == 1: y = np.concatenate( (y,y), axis=0 ) if y.shape[1] == 1: y = np.concatenate( (y,y), axis=1 ) prob = posterior*np.ones( x.shape, dtype=float ) #print(x.shape,prob.shape) return x, y, prob # %% reps = 100 max_depth = 200 sample_no = 750 err = np.zeros(reps,dtype=float) fte = np.zeros(reps,dtype=float) bte = np.zeros(reps,dtype=float) #np.random.seed(1) for i in range(reps): xor, label_xor = generate_gaussian_parity(sample_no,cov_scale=0.1,angle_params=0) test_xor, test_label_xor = generate_gaussian_parity(1000,cov_scale=0.1,angle_params=0) ''' min_xor = np.min(xor) xor = (xor - min_xor) max_xor = np.max(xor) xor = xor/max_xor test_xor = (test_xor-min_xor)/max_xor''' nxor, label_nxor = generate_gaussian_parity(150,cov_scale=0.1,angle_params=np.pi/2) test_nxor, test_label_nxor = generate_gaussian_parity(1000,cov_scale=0.1,angle_params=np.pi/2) '''min_nxor = np.min(nxor) nxor = (nxor - min_nxor) max_nxor = np.max(nxor) nxor = nxor/max_nxor test_nxor = (test_nxor-min_nxor)/max_nxor''' l2f = LifeLongDNN(parallel=False) #np.random.seed(2) l2f.new_forest(xor, label_xor, n_estimators=1, max_depth=max_depth) delta = .001 #sample the grid x = np.arange(-1,1,step=delta) y = np.arange(-1,1,step=delta) x,y = np.meshgrid(x,y) sample = np.concatenate( ( x.reshape(-1,1), y.reshape(-1,1) ), axis=1 ) sample_label = l2f._estimate_posteriors(sample, representation='all', decider=0) l2f.X_across_tasks[0] = sample l2f.y_across_tasks[0] = sample_label #np.random.seed(3) l2f.new_forest(nxor, label_nxor, n_estimators=1, max_depth=max_depth) l2f_task1 = l2f.predict(test_xor, representation='all', decider=0) uf_task1 = l2f.predict(test_xor, representation=0, decider=0) l2f_task2 = l2f.predict(test_nxor, representation='all', decider=1) uf_task2 = l2f.predict(test_nxor, representation=1, decider=1) fte = (1-np.mean(uf_task2 == test_label_nxor))/(1-np.mean(l2f_task2 == test_label_nxor)) bte = (1-np.mean(uf_task1 == test_label_xor))/(1-np.mean(l2f_task1 == test_label_xor)) print(np.mean(fte), np.mean(bte)) # %% #make the heatmap data matrix task_no = len(l2f.voters_across_tasks_matrix) sns.set_context("talk") fig, ax = plt.subplots(2,2, figsize=(16,16))#, sharex=True, sharey=True) for task_id in range(task_no): for voter_id in range(task_no): #print(task_id, voter_id) current_voter = l2f.voters_across_tasks_matrix[task_id][voter_id] posterior_map = current_voter.tree_idx_to_node_ids_to_posterior_map leaf_map = current_voter.tree_id_to_leaf_profile for tree_id in list(leaf_map.keys()): tree_leaf_map = leaf_map[tree_id] for no, leaf_id in enumerate(list(tree_leaf_map.keys())): x, y, prb = produce_heatmap_data( tree_leaf_map[leaf_id], posterior_map[tree_id][leaf_id][0] ) '''if no == 0: x = points y = prb else: x = np.concatenate((x,points),axis=0) y = np.concatenate((y,prb),axis=0)''' axs = ax[task_id][voter_id].contourf(x,y,prb,cmap='gray')#,alpha=prb[0][0]) ax[task_id][voter_id].set_xticks([0,.2,.4,.6,.8,1]) ax[task_id][voter_id].set_yticks([0,.2,.4,.6,.8,1]) #data = pd.DataFrame(data={'x':x[:,0], 'y':x[:,1], 'z':y}) #data = data.pivot(index='x', columns='y', values='z') #ax = sns.heatmap(data,ax=axes[task_id][voter_id], vmin=0, vmax=1,) #ax.set_xticklabels(['0','' , '', '', '', '', '','','','.5','','' , '', '', '', '', '','','1']) #ax.set_yticklabels(['0','' , '', '', '', '', '','','','','','.5','','' , '', '', '', '', '','','','','1']) #ax.set_xlabel('transformer task '+str(voter_id+1)+' decider task '+str(task_id+1),fontsize=20) #ax.set_ylabel('') #ax.set_xticks([0,.5,1]) fig.colorbar(matplotlib.cm.ScalarMappable(cmap='gray'),ax=ax[0][1]).set_ticklabels([0,.2,.4,.6,.8,1]) fig.colorbar(matplotlib.cm.ScalarMappable(cmap='gray'),ax=ax[1][1]).set_ticklabels([0,.2,.4,.6,.8,1]) #plt.savefig('result/figs/heatmap_mapping'+str(max_depth)+'_'+str(sample_no)+'.pdf') # %% ``` #### File: progressive-learning/replaying/parity_experiment.py ```python import random import matplotlib.pyplot as plt import tensorflow as tf import tensorflow.keras as keras import seaborn as sns import timeit import numpy as np import pickle from sklearn.model_selection import StratifiedKFold from math import log2, ceil import sys sys.path.append("../src_mapping_3/") from lifelong_dnn import LifeLongDNN from joblib import Parallel, delayed # %% def unpickle(file): with open(file, 'rb') as fo: dict = pickle.load(fo, encoding='bytes') return dict def generate_parity(low, high, n, d, type='xor',acorn=None): r''' A function that generates d dimensional parity data with n samples with each dimension sampled as iid , i.e., X1,......,X_p ~ U(low,high) ''' if acorn != None: np.random.seed(acorn) #loop through each dimension to make them iid x = np.random.uniform( low=low,high=high,size=(n,1) ) for d_ in range(d-1): x = np.concatenate( ( x, np.random.uniform( low=low,high=high,size=(n,1) ) ), axis=1 ) positive_value_per_sample = np.sum((x>0),axis=1) y = positive_value_per_sample%2 if type =='nxor': y = y - (y==1) + (y==0) return x, y # %% def experiment(n, d, n_test, n_trees, reps, acorn=None): if acorn != None: np.random.seed(acorn) depth = ceil(log2(n)) xor_err = np.zeros((reps,2),dtype=float) nxor_err = np.zeros((reps,2),dtype=float) time_elapsed = np.zeros(reps,dtype=float) for rep in range(reps): #train data xor, label_xor = generate_parity(-1,1,n,d) nxor, label_nxor = generate_parity(-1,1,n,d,type='nxor') #test data xor_test, label_xor_test = generate_parity( -1,1,n_test,d ) nxor_test, label_nxor_test = generate_parity( -1,1,n_test,d,type='nxor' ) start = timeit.timeit() l2f = LifeLongDNN(parallel=False) l2f.new_forest( xor, label_xor, n_estimators=n_trees, max_depth=depth ) end = timeit.timeit() time_train_first_task = end-start predict_xor = l2f.predict( xor_test, representation=0, decider=0 ) xor_err[rep,0] = np.mean(predict_xor!=label_xor_test) ################################ start = timeit.timeit() l2f.new_forest( nxor, label_nxor, n_estimators=n_trees, max_depth=depth ) end = timeit.timeit() time_elapsed[rep] = time_train_first_task + (end-start) predict_xor = l2f.predict( xor_test, representation='all', decider=0 ) nxor_err[rep,1] = np.mean(predict_xor!=label_xor_test) ################################ predict_nxor = l2f.predict( nxor_test, representation=1, decider=1 ) nxor_err[rep,0] = np.mean(predict_xor!=label_nxor_test) ################################ predict_nxor = l2f.predict( nxor_test, representation='all', decider=1 ) nxor_err[rep,1] = np.mean(predict_xor!=label_nxor_test) return np.mean(xor_err,axis=0), np.mean(nxor_err,axis=0), np.std(xor_err,ddof=1,axis=0), np.std(nxor_err,ddof=1,axis=0), np.mean(time_elapsed) # %% #main hyperparameters# ####################### n = 1000 n_test = 1000 n_trees = 10 reps = 100 max_dim = 1000 # %% result = Parallel(n_jobs=-1,verbose=1)( delayed(experiment)(n, d, n_test, n_trees, reps, acorn=d) for d in range(2,max_dim) ) with open('result/parity_without_replay.pickle', 'wb') as f: pickle.dump(result,f) ``` #### File: progressive-learning/replaying/xor_nxor_pdf.py ```python import random import matplotlib.pyplot as plt import tensorflow as tf import tensorflow.keras as keras import seaborn as sns import numpy as np import pickle import pandas as pd from sklearn.model_selection import StratifiedKFold from math import log2, ceil #%% def pdf(x): mu01 = np.array([-0.5,0.5]) mu02 = np.array([0.5,-0.5]) mu11 = np.array([0.5,0.5]) mu12 = np.array([-0.5,-0.5]) cov = 0.1 * np.eye(2) inv_cov = np.linalg.inv(cov) p0 = ( np.exp(-(x - mu01)@inv_cov@(x-mu01).T) + np.exp(-(x - mu02)@inv_cov@(x-mu02).T) )/(2*np.pi*np.sqrt(np.linalg.det(cov))) p1 = ( np.exp(-(x - mu11)@inv_cov@(x-mu11).T) + np.exp(-(x - mu12)@inv_cov@(x-mu12).T) )/(2*np.pi*np.sqrt(np.linalg.det(cov))) return p0/(p0+p1) # %% delta = 0.01 x = np.arange(-1,1,step=delta) y = np.arange(-1,1,step=delta) x,y = np.meshgrid(x,y) sample = np.concatenate( ( x.reshape(-1,1), y.reshape(-1,1) ), axis=1 ) z = np.zeros(len(sample),dtype=float) for ii,x in enumerate(sample): z[ii] = pdf(x) data = pd.DataFrame(data={'x':sample[:,0], 'y':sample[:,1], 'z':z}) data = data.pivot(index='x', columns='y', values='z') sns.set_context("talk") fig, ax = plt.subplots(1,1, figsize=(8,8)) cmap= sns.diverging_palette(240, 10, n=9) ax1 = sns.heatmap(data, ax=ax, vmin=0, vmax=1,cmap=cmap) ax1.set_xticklabels(['-1','' , '', '', '', '', '','','','','0','','','','','','','','','1']) ax1.set_yticklabels(['-1','' , '', '', '', '', '','','','','','','0','','','','','','','','','','','','1']) #ax1.set_yticklabels(['-1','' , '', '', '', '', '','','','' , '', '', '', '', '', '','','','','', '0','','' , '', '', '', '', '','','','','','','','','','','','','1']) ax.set_title('True PDF of xor-nxor simulation data',fontsize=24) ax.invert_yaxis() plt.savefig('result/figs/true_pdf.pdf') # %% def generate_2d_rotation(theta=0, acorn=None): if acorn is not None: np.random.seed(acorn) R = np.array([ [np.cos(theta), np.sin(theta)], [-np.sin(theta), np.cos(theta)] ]) return R # %% delta = 0.01 x = np.arange(-1,1,step=delta) y = np.arange(-1,1,step=delta) x,y = np.meshgrid(x,y) sample = np.concatenate( ( x.reshape(-1,1), y.reshape(-1,1) ), axis=1 ) z = np.zeros(len(sample),dtype=float) R = generate_2d_rotation(theta=np.pi*45/180) for ii,x in enumerate(sample): z[ii] = pdf(R@x) data = pd.DataFrame(data={'x':sample[:,0], 'y':sample[:,1], 'z':z}) data = data.pivot(index='x', columns='y', values='z') sns.set_context("talk") fig, ax = plt.subplots(1,1, figsize=(8,8)) cmap= sns.diverging_palette(240, 10, n=9) ax1 = sns.heatmap(data, ax=ax, vmin=0, vmax=1,cmap=cmap) ax1.set_xticklabels(['-1','' , '', '', '', '', '','','','','0','','','','','','','','','1']) ax1.set_yticklabels(['-1','' , '', '', '', '', '','','','','','','0','','','','','','','','','','','','1']) #ax1.set_yticklabels(['-1','' , '', '', '', '', '','','','' , '', '', '', '', '', '','','','','', '0','','' , '', '', '', '', '','','','','','','','','','','','','1']) ax.set_title('True PDF of xor-rxor simulation data',fontsize=24) ax.invert_yaxis() plt.savefig('result/figs/true_pdf_xor_rxor.pdf') # %% ``` #### File: progressive-learning/slides/NLP_plot.py ```python import pickle import matplotlib.pyplot as plt from matplotlib import rcParams rcParams.update({'figure.autolayout': True}) import numpy as np import pandas as pd from itertools import product import seaborn as sns import matplotlib.gridspec as gridspec import matplotlib #%% def unpickle(file): with open(file, 'rb') as fo: dict = pickle.load(fo, encoding='bytes') return dict def get_error_matrix(single_task_err,multitask_err,task_num): err = [[] for _ in range(task_num)] single_err = np.zeros(task_num,dtype=float) for ii in range(task_num): single_err[ii] = 1-single_task_err[ii] for jj in range(ii+1): #print(multitask_err[jj]) tmp = 1 - multitask_err[jj][ii-jj] if tmp==0: tmp = 1e-6 err[ii].append(tmp) return single_err, err def get_fte_bte(err, single_err, task_num): bte = [[] for i in range(task_num)] te = [[] for i in range(task_num)] fte = [] for i in range(task_num): for j in range(i,task_num): #print(err[j][i],j,i) bte[i].append(err[i][i]/err[j][i]) te[i].append(single_err[i]/err[j][i]) for i in range(task_num): fte.append(single_err[i]/err[i][i]) return fte,bte,te def calc_mean_bte(btes,task_num=10,reps=6): mean_bte = [[] for i in range(task_num)] for j in range(task_num): tmp = 0 for i in range(reps): tmp += np.array(btes[i][j]) tmp=tmp/reps mean_bte[j].extend(tmp) return mean_bte def calc_mean_te(tes,task_num=10,reps=6): mean_te = [[] for i in range(task_num)] for j in range(task_num): tmp = 0 for i in range(reps): tmp += np.array(tes[i][j]) tmp=tmp/reps mean_te[j].extend(tmp) return mean_te def calc_mean_fte(ftes,task_num=10,reps=6): fte = np.asarray(ftes) return list(np.mean(np.asarray(fte),axis=0)) #%% task_num1=15 task_num2=10 filename1 = '../experiments/NLP/result/PL_llf_language_random_overlap_batches.p' filename2 = '../experiments/NLP/result/satori_llf_overlap_random_batch.p' res1 = unpickle(filename1) res2 = unpickle(filename2) # %% reps = 15 count = 0 bte_tmp = [[] for _ in range(reps)] fte_tmp = [[] for _ in range(reps)] te_tmp = [[] for _ in range(reps)] for seed,single_task_err,multitask_err in res1: single_err, err = get_error_matrix(single_task_err,multitask_err,task_num=task_num1) fte, bte, te = get_fte_bte(err,single_err,task_num=task_num1) bte_tmp[count].extend(bte) fte_tmp[count].extend(fte) te_tmp[count].extend(te) count+=1 btes1 = calc_mean_bte(bte_tmp,task_num=task_num1,reps=reps) ftes1 = calc_mean_fte(fte_tmp,task_num=task_num1,reps=reps) tes1 = calc_mean_te(te_tmp,task_num=task_num1,reps=reps) # %% reps = 10 count = 0 bte_tmp = [[] for _ in range(reps)] fte_tmp = [[] for _ in range(reps)] te_tmp = [[] for _ in range(reps)] for seed,single_task_err,multitask_err in res2: single_err, err = get_error_matrix(single_task_err,multitask_err,task_num=task_num2) fte, bte, te = get_fte_bte(err,single_err,task_num=task_num2) bte_tmp[count].extend(bte) fte_tmp[count].extend(fte) te_tmp[count].extend(te) count+=1 btes2 = calc_mean_bte(bte_tmp,task_num=task_num2,reps=reps) ftes2 = calc_mean_fte(fte_tmp,task_num=task_num2,reps=reps) tes2 = calc_mean_te(te_tmp,task_num=task_num2,reps=reps) # %% fig = plt.figure(figsize=(8,8)) gs = fig.add_gridspec(6, 6) fontsize=30 ticksize=26 legendsize=14 ax = fig.add_subplot(gs[:6,:6]) for i in range(task_num1-1): et = np.zeros((1,task_num1-i)) ns = np.arange(i + 1, task_num1 + 1) ax.plot(ns, btes1[i], marker='.', markersize=8, color='r', linewidth = 3) ax.plot(task_num1, btes1[task_num1-1], marker='.', markersize=8, color='r', linewidth = 3) ax.set_xlabel('Number of tasks seen', fontsize=fontsize) ax.set_ylabel('Backward Transfer Efficiency', fontsize=fontsize) ax.tick_params(labelsize=ticksize) #ax.set_yticks([.4,.6,.8,.9,1, 1.1,1.2]) ax.set_xticks(np.arange(1,task_num1+1,2)) #ax.set_ylim(0.99, 1.2) ax.tick_params(labelsize=ticksize) #ax[0][1].grid(axis='x') ax.set_ylim([.5,1.5]) right_side = ax.spines["right"] right_side.set_visible(False) top_side = ax.spines["top"] top_side.set_visible(False) ax.hlines(1, 1,task_num1, colors='grey', linestyles='dashed',linewidth=1.5) plt.savefig('figs/language.svg') #%% fig = plt.figure(figsize=(8,8)) gs = fig.add_gridspec(7, 6) fontsize=30 ticksize=26 legendsize=14 ax = fig.add_subplot(gs[1:7,:6]) for i in range(task_num2-1): et = np.zeros((1,task_num2-i)) ns = np.arange(i + 1, task_num2 + 1) ax.plot(ns, btes2[i], marker='.', markersize=8, color='r', linewidth = 3) ax.plot(task_num2, btes2[task_num2-1], marker='.', markersize=8, color='r', linewidth = 3) ax.set_xlabel('Number of tasks seen', fontsize=fontsize) ax.set_ylabel('Backward Transfer Efficiency', fontsize=fontsize) ax.tick_params(labelsize=ticksize) ax.set_yticks([0.98,1,1.02,1.04,1.06]) ax.set_xticks(np.arange(1,task_num2+1,2)) #ax.set_ylim(0.99, 1.2) ax.tick_params(labelsize=ticksize) #ax[0][1].grid(axis='x') ax.set_ylim([.98,1.06]) right_side = ax.spines["right"] right_side.set_visible(False) top_side = ax.spines["top"] top_side.set_visible(False) ax.hlines(1, 1,task_num2, colors='grey', linestyles='dashed',linewidth=1.5) plt.savefig('figs/web.svg') # %% ``` #### File: progressive-learning/src_mapping_3/lifelong_dnn.py ```python from sklearn.base import clone import numpy as np from joblib import Parallel, delayed class LifeLongDNN(): def __init__(self, acorn = None, verbose = False, model = "uf", parallel = True, n_jobs = None): self.X_across_tasks = [] self.y_across_tasks = [] self.transformers_across_tasks = [] #element [i, j] votes on decider from task i under representation from task j self.voters_across_tasks_matrix = [] self.n_tasks = 0 self.classes_across_tasks = [] #self.estimators_across_tasks = [] self.tree_profile_across_transformers = [] if acorn is not None: np.random.seed(acorn) self.verbose = verbose self.model = model self.parallel = parallel self.n_jobs = n_jobs def check_task_idx_(self, task_idx): if task_idx >= self.n_tasks: raise Exception("Invalid Task IDX") def new_forest(self, X, y, epochs = 100, lr = 5e-4, n_estimators = 100, max_samples = .63, bootstrap = False, max_depth = 30, min_samples_leaf = 1, acorn = None, parallel = False, n_jobs = None): if self.model == "dnn": from honest_dnn import HonestDNN if self.model == "uf": from uncertainty_forest import UncertaintyForest self.X_across_tasks.append(X) self.y_across_tasks.append(y) if self.model == "dnn": new_honest_dnn = HonestDNN(verbose = self.verbose) new_honest_dnn.fit(X, y, epochs = epochs, lr = lr) if self.model == "uf": new_honest_dnn = UncertaintyForest(n_estimators = n_estimators, max_samples = max_samples, bootstrap = bootstrap, max_depth = max_depth, min_samples_leaf = min_samples_leaf, parallel = parallel, n_jobs = n_jobs) new_honest_dnn.fit(X, y) new_transformer = new_honest_dnn.get_transformer() new_voter = new_honest_dnn.get_voter() new_classes = new_honest_dnn.classes_ new_tree_profile = new_honest_dnn.tree_id_to_leaf_profile self.tree_profile_across_transformers.append(new_tree_profile) #self.estimators_across_tasks.append(new_honest_dnn.ensemble.estimators_) self.transformers_across_tasks.append(new_transformer) self.classes_across_tasks.append(new_classes) #add n_tasks voters to new task voter list under previous transformations new_voters_under_previous_task_transformation = [] for task_idx in range(self.n_tasks): transformer_of_task = self.transformers_across_tasks[task_idx] if self.model == "dnn": X_under_task_transformation = transformer_of_task.predict(X) if self.model == "uf": X_under_task_transformation = transformer_of_task(X) unfit_new_task_voter_under_task_transformation = clone(self.voters_across_tasks_matrix[task_idx][0]) if self.model == "uf": unfit_new_task_voter_under_task_transformation.classes_ = new_voter.classes_ new_task_voter_under_task_transformation = unfit_new_task_voter_under_task_transformation.fit( nodes_across_trees=X_under_task_transformation, y=y ) new_voters_under_previous_task_transformation.append(new_task_voter_under_task_transformation) #make sure to add the voter of the new task under its own transformation new_voters_under_previous_task_transformation.append(new_voter) self.voters_across_tasks_matrix.append(new_voters_under_previous_task_transformation) '''if self.n_tasks==1: print( self.voters_across_tasks_matrix[1][0].tree_idx_to_node_ids_to_sample_count_map )''' #add one voter to previous task voter lists under the new transformation for task_idx in range(self.n_tasks): X_of_task, y_of_task = self.X_across_tasks[task_idx], self.y_across_tasks[task_idx] if self.model == "dnn": X_of_task_under_new_transform = new_transformer.predict(X_of_task) #if self.model == "uf": #X_of_task_under_new_transform = new_transformer(X_of_task) # estimators_of_task = self.estimators_across_tasks[task_idx] unfit_task_voter_under_new_transformation = clone(new_voter) #posterior_map_to_be_mapped = self.voters_across_tasks_matrix[task_idx][task_idx].tree_idx_to_node_ids_to_posterior_map voters_to_be_mapped = [] for voter_id in range(task_idx+1): voters_to_be_mapped.append(self.voters_across_tasks_matrix[task_idx][voter_id]) sample_map_to_scale_current_task_data = [new_voter, self.voters_across_tasks_matrix[self.n_tasks][task_idx]] if self.model == "uf": unfit_task_voter_under_new_transformation.classes_ = self.voters_across_tasks_matrix[task_idx][0].classes_ task_voter_under_new_transformation = unfit_task_voter_under_new_transformation.fit( voters_to_be_mapped=voters_to_be_mapped, current_task_voters=new_voters_under_previous_task_transformation, map=True ) # print( # self.voters_across_tasks_matrix[task_idx][0].tree_idx_to_node_ids_to_posterior_map, 'hi' #) self.voters_across_tasks_matrix[task_idx].append(task_voter_under_new_transformation) '''print( self.voters_across_tasks_matrix[0][0].tree_idx_to_node_ids_to_sample_count_map )''' self.n_tasks += 1 def _estimate_posteriors(self, X, representation = 0, decider = 0): self.check_task_idx_(decider) if representation == "all": representation = range(self.n_tasks) elif isinstance(representation, int): representation = np.array([representation]) def worker(transformer_task_idx): transformer = self.transformers_across_tasks[transformer_task_idx] voter = self.voters_across_tasks_matrix[decider][transformer_task_idx] if self.model == "dnn": return voter.predict_proba(transformer.predict(X)) if self.model == "uf": return voter.predict_proba(transformer(X)) if self.parallel: posteriors_across_tasks = np.array( Parallel(n_jobs=self.n_jobs if self.n_jobs != None else len(representation))( delayed(worker)(transformer_task_idx) for transformer_task_idx in representation ) ) else: #print(worker(0).shape, representation) posteriors_across_tasks = np.array([worker(transformer_task_idx) for transformer_task_idx in representation]) return np.mean(posteriors_across_tasks, axis = 0) def predict(self, X, representation = 0, decider = 0): task_classes = self.classes_across_tasks[decider] return task_classes[np.argmax(self._estimate_posteriors(X, representation, decider), axis = -1)] ``` #### File: progressive-learning/src_mapping_3/uncertainty_forest.py ```python from sklearn.ensemble import BaggingClassifier from sklearn.tree import DecisionTreeClassifier #Infrastructure from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.utils.validation import NotFittedError #Data Handling from sklearn.utils.validation import ( check_X_y, check_array, NotFittedError, ) from sklearn.utils.multiclass import check_classification_targets #Utils from joblib import Parallel, delayed import numpy as np def _finite_sample_correction(posteriors, num_points_in_partition, num_classes): ''' encourage posteriors to approach uniform when there is low data ''' correction_constant = 1 / (num_classes * num_points_in_partition) zero_posterior_idxs = np.where(posteriors == 0)[0] posteriors[zero_posterior_idxs] = correction_constant posteriors /= sum(posteriors) return posteriors class UncertaintyForest(BaseEstimator, ClassifierMixin): ''' based off of https://arxiv.org/pdf/1907.00325.pdf ''' def __init__( self, max_depth=30, min_samples_leaf=1, max_samples = 0.63, max_features_tree = "auto", n_estimators=100, bootstrap=False, parallel=True, n_jobs = None): #Tree parameters. self.max_depth = max_depth self.min_samples_leaf = min_samples_leaf self.max_features_tree = max_features_tree #Bag parameters self.n_estimators = n_estimators self.bootstrap = bootstrap self.max_samples = max_samples #Model parameters. self.parallel = parallel if self.parallel and n_jobs == None: self.n_jobs = self.n_estimators else: self.n_jobs = n_jobs self.fitted = False def _check_fit(self): ''' raise a NotFittedError if the model isn't fit ''' if not self.fitted: msg = ( "This %(name)s instance is not fitted yet. Call 'fit' with " "appropriate arguments before using this estimator." ) raise NotFittedError(msg % {"name": type(self).__name__}) def transform(self, X): ''' get the estimated posteriors across trees ''' X = check_array(X) def worker(tree_idx, tree): #get the nodes of X # Drop each estimation example down the tree, and record its 'y' value. return tree.apply(X) if self.parallel: return np.array( Parallel(n_jobs=self.n_jobs)( delayed(worker)(tree_idx, tree) for tree_idx, tree in enumerate(self.ensemble.estimators_) ) ) else: return np.array( [worker(tree_idx, tree) for tree_idx, tree in enumerate(self.ensemble.estimators_)] ) # function added to do partition mapping def _profile_leaf(self): self.tree_id_to_leaf_profile = {} leaf_profile = {} #print('hi') def worker(node, children_left, children_right, feature, threshold, profile_mat): if children_left[node] == children_right[node]: profile_mat_ = profile_mat.copy() leaf_profile[node] = profile_mat_ #print(node,'nodes') else: feature_indx = feature[node] profile_mat_ = profile_mat.copy() profile_mat_[feature_indx,1] = threshold[node] worker( children_left[node], children_left, children_right, feature, threshold, profile_mat_ ) profile_mat_ = profile_mat.copy() profile_mat_[feature_indx,0] = threshold[node] worker( children_right[node], children_left, children_right, feature, threshold, profile_mat_ ) profile_mat = np.concatenate( ( np.zeros((self._feature_dimension,1),dtype=float), np.ones((self._feature_dimension,1),dtype=float) ), axis = 1 ) for tree_id, estimator in enumerate(self.ensemble.estimators_): leaf_profile = {} feature = estimator.tree_.feature children_left = estimator.tree_.children_left children_right = estimator.tree_.children_right threshold = estimator.tree_.threshold #print(children_left,children_right) worker( 0, children_left, children_right, feature, threshold, profile_mat.copy() ) self.tree_id_to_leaf_profile[tree_id] = leaf_profile #print(self.tree_id_to_leaf_profile,'gdgfg') def get_transformer(self): return lambda X : self.transform(X) def vote(self, nodes_across_trees): return self.voter.predict(nodes_across_trees) def get_voter(self): return self.voter def fit(self, X, y): #format X and y X, y = check_X_y(X, y) check_classification_targets(y) self.classes_, y = np.unique(y, return_inverse=True) #define the ensemble self.ensemble = BaggingClassifier( DecisionTreeClassifier( max_depth=self.max_depth, min_samples_leaf=self.min_samples_leaf, max_features=self.max_features_tree ), n_estimators=self.n_estimators, max_samples=self.max_samples, bootstrap=self.bootstrap, n_jobs = self.n_jobs ) #fit the ensemble self.ensemble.fit(X, y) self._feature_dimension = X.shape[1] #profile trees for partition mapping self._profile_leaf() class Voter(BaseEstimator): def __init__(self, estimators, estimators_samples_, classes, tree_id_to_leaf_profile, parallel, n_jobs): self.estimators = estimators self.n_estimators = len(estimators_samples_) self.classes_ = classes self.tree_id_to_leaf_profile = tree_id_to_leaf_profile self.parallel = parallel self.estimators_samples_ = estimators_samples_ self.n_jobs = n_jobs def fit(self, nodes_across_trees=None, y=None, voters_to_be_mapped=None, current_task_voters=None, fitting = False, map=False): self.tree_idx_to_node_ids_to_posterior_map = {} self.tree_idx_to_node_ids_to_sample_count_map = {} if map == False: def worker(tree_idx): nodes = nodes_across_trees[tree_idx] oob_samples = np.delete(range(len(nodes)), self.estimators_samples_[tree_idx]) cal_nodes = nodes[oob_samples] if fitting else nodes y_cal = y[oob_samples] if fitting else y #create a map from the unique node ids to their classwise posteriors node_ids_to_posterior_map = {} node_ids_to_sample_count_map = {} #fill in the posteriors for node_id in np.unique(nodes): cal_idxs_of_node_id = np.where(cal_nodes == node_id)[0] cal_ys_of_node = y_cal[cal_idxs_of_node_id] class_counts = [len(np.where(cal_ys_of_node == y)[0]) for y in np.unique(y) ] sample_no = np.sum(class_counts) if sample_no != 0: posteriors = np.nan_to_num(np.array(class_counts) / sample_no) else: posteriors = np.zeros(len(self.classes_),dtype=float) #finite sample correction total_samples = len(cal_idxs_of_node_id) if total_samples == 0: total_samples = 1 posteriors_corrected = _finite_sample_correction(posteriors, total_samples, len(self.classes_)) node_ids_to_posterior_map[node_id] = posteriors_corrected node_ids_to_sample_count_map[node_id] = sample_no #add the node_ids_to_posterior_map to the overall tree_idx map self.tree_idx_to_node_ids_to_posterior_map[tree_idx] = node_ids_to_posterior_map self.tree_idx_to_node_ids_to_sample_count_map[tree_idx] = node_ids_to_sample_count_map for tree_idx in range(self.n_estimators): worker(tree_idx) return self else: node_ids_to_posterior_map = {} _leaf_posteriors = [] _leaf_sample_covered = [] _leaf_current_task_data_correction = [] def worker( node, feature, children_left, children_right, threshold, mul, profile_mat, posterior_map, sample_map, profile_map, current_task_posterior_map, current_task_sample_map, current_task_mul ): if children_left[node] == children_right[node]: if node in list(posterior_map.keys()): k1 = np.prod( (profile_mat[:,1]-profile_mat[:,0])/(profile_map[node][:,1]- profile_map[node][:,0]) ) #print(profile_mat, profile_map[node], 'kukuta') #print(mul, 'kutta') #print(node, current_task_posterior_map,'osovyo') if node in list(current_task_posterior_map.keys()): current_task_cls_sample_count = current_task_posterior_map[node]*current_task_sample_map[node] total_current_task_cls = len(current_task_mul) individual_count = sample_map[node]*posterior_map[node] correction = np.zeros(len(individual_count), dtype=float) for idx, cls_count in enumerate(list(individual_count)): #print(np.sum(((cls_count*mul*current_task_mul)/current_task_cls_sample_count)/total_current_task_cls), correction.shape) correction[idx] = np.sum(((cls_count*mul*current_task_mul)/current_task_cls_sample_count)/total_current_task_cls) #print(correction) _leaf_posteriors.append( k1*sample_map[node]*posterior_map[node]*correction ) _leaf_sample_covered.append( k1*sample_map[node]*np.sum(correction) ) else: _leaf_posteriors.append( k1*sample_map[node]*posterior_map[node] ) _leaf_sample_covered.append( k1*sample_map[node] ) '''target_task = voter_sample_map[2].tree_dx current_task_data_correction = ''' else: profile_mat_left = profile_mat.copy() profile_mat_right = profile_mat.copy() current_feature = feature[node] current_threshold = threshold[node] feature_range = profile_mat[current_feature] if current_threshold>feature_range[0] and current_threshold<feature_range[1]: profile_mat_left[current_feature][1] = current_threshold profile_mat_right[current_feature][0] = current_threshold mul_left = mul*( current_threshold - feature_range[0] )/( feature_range[1] - feature_range[0] ) mul_right = mul*( feature_range[1] - current_threshold )/( feature_range[1] - feature_range[0] ) worker( children_left[node], feature, children_left, children_right, threshold, mul_left, profile_mat_left, posterior_map, sample_map, profile_map, current_task_posterior_map, current_task_sample_map, current_task_mul ) worker( children_right[node], feature, children_left, children_right, threshold, mul_right, profile_mat_right, posterior_map, sample_map, profile_map, current_task_posterior_map, current_task_sample_map, current_task_mul ) elif current_threshold <= feature_range[0]: return worker( children_right[node], feature, children_left, children_right, threshold, mul, profile_mat_right, posterior_map, sample_map, profile_map, current_task_posterior_map, current_task_sample_map, current_task_mul ) elif current_threshold >= feature_range[1]: return worker( children_left[node], feature, children_left, children_right, threshold, mul, profile_mat_left, posterior_map, sample_map, profile_map, current_task_posterior_map, current_task_sample_map, current_task_mul ) def map_leaf(voters_to_be_mapped,leaf,profile,current_task_mul): #print(leaf,'leaf id') #print(voters_to_be_mapped) for ids, current_voter in enumerate(voters_to_be_mapped): estimators = current_voter.estimators #print(estimators[0].tree_, 'eije ami asi') posteriors_to_be_mapped = current_voter.tree_idx_to_node_ids_to_posterior_map sample_count_map = current_voter.tree_idx_to_node_ids_to_sample_count_map profile_map = current_voter.tree_id_to_leaf_profile corresponding_current_task_voter = current_task_voters[ids] corresponding_current_task_voter_sample_map = corresponding_current_task_voter.tree_idx_to_node_ids_to_sample_count_map corresponding_current_task_voter_posterior_map = corresponding_current_task_voter.tree_idx_to_node_ids_to_posterior_map #print(posteriors_to_be_mapped,'modon',corresponding_current_task_voter_posterior_map,'hello') posterior = np.zeros( (len(estimators), len(current_voter.classes_)), dtype = float ) for tree_id,tree in enumerate(estimators): feature = tree.tree_.feature children_left = tree.tree_.children_left children_right = tree.tree_.children_right threshold = tree.tree_.threshold worker( 0, feature, children_left, children_right, threshold, 1, profile, posteriors_to_be_mapped[tree_id], sample_count_map[tree_id], profile_map[tree_id], corresponding_current_task_voter_posterior_map[tree_id], corresponding_current_task_voter_sample_map[tree_id], current_task_mul ) num = np.sum( np.array(_leaf_posteriors), axis = 0 ) den = np.sum( np.array(_leaf_sample_covered) ) if den == 0: '''print(np.ones( self.classes_)/self.classes_,self.classes_,'hlw')''' posterior[tree_id] = np.ones( len(self.classes_), dtype=float )/len(self.classes_) else: posterior[tree_id] = num/den _leaf_posteriors.clear() _leaf_sample_covered.clear() _leaf_current_task_data_correction.clear() #print(posterior[tree_id],'kukuta') if ids == 0: posterior_ = posterior else: posterior_ = np.concatenate( ( posterior_,posterior ), axis=0 ) node_ids_to_posterior_map[leaf] = np.mean( posterior_, axis=0 ) ################################################################################# tree_idx = list(self.tree_id_to_leaf_profile.keys()) node_ids_to_posterior_map = {} current_task_new_voter_sample_count = current_task_voters[-1].tree_idx_to_node_ids_to_sample_count_map current_task_new_voter_posterior_map = current_task_voters[-1].tree_idx_to_node_ids_to_posterior_map for idx in tree_idx: leaf_id = list(self.tree_id_to_leaf_profile[idx].keys()) for leaf in leaf_id: #print(leaf,'fervebgtr') current_task_mul = current_task_new_voter_sample_count[idx][leaf]*current_task_new_voter_posterior_map[idx][leaf] profile = self.tree_id_to_leaf_profile[idx][leaf] map_leaf( voters_to_be_mapped, leaf, profile, current_task_mul ) #print(profile,'profile',leaf, idx) #print(node_ids_to_posterior_map,'jerhubiruu') self.tree_idx_to_node_ids_to_posterior_map[idx] = node_ids_to_posterior_map #node_ids_to_posterior_map.clear() #print(self.tree_idx_to_node_ids_to_posterior_map,'hello') return self def predict_proba(self, nodes_across_trees): def worker(tree_idx): #get the node_ids_to_posterior_map for this tree node_ids_to_posterior_map = self.tree_idx_to_node_ids_to_posterior_map[tree_idx] #get the nodes of X nodes = nodes_across_trees[tree_idx] posteriors = [] node_ids = node_ids_to_posterior_map.keys() #loop over nodes of X for node in nodes: #if we've seen this node before, simply get the posterior if node in node_ids: posteriors.append(node_ids_to_posterior_map[node]) #if we haven't seen this node before, simply use the uniform posterior else: posteriors.append(np.ones((len(np.unique(self.classes_)))) / len(self.classes_)) return posteriors if self.parallel: return np.mean( Parallel(n_jobs=self.n_jobs)( delayed(worker)(tree_idx) for tree_idx in range(self.n_estimators) ), axis = 0 ) else: return np.mean( [worker(tree_idx) for tree_idx in range(self.n_estimators)], axis = 0) #get the nodes of the calibration set nodes_across_trees = self.transform(X) self.voter = Voter( estimators = self.ensemble.estimators_, estimators_samples_ = self.ensemble.estimators_samples_, classes = self.classes_, tree_id_to_leaf_profile = self.tree_id_to_leaf_profile, parallel = self.parallel, n_jobs = self.n_jobs ) self.voter.fit( nodes_across_trees = nodes_across_trees, y=y, fitting = True ) self.fitted = True def predict(self, X): return self.classes_[np.argmax(self.predict_proba(X), axis=-1)] def predict_proba(self, X): return self.voter.predict_proba(self.transform(X)) ```
{ "source": "jdeyton/forge-keeper", "score": 3 }
#### File: src/test/test_app_factory.py ```python import sys import unittest from unittest.mock import Mock, call import flask from digital.forge.app.abstract_decorator import Decorator from digital.forge.app.factory import Factory class TestFactory(unittest.TestCase): """ This class tests the app factory and its use of decorators. """ def test_add_valid_decorator(self): """ Valid decorators should be added to the internal list. """ factory = Factory() self.assertListEqual( factory._decorators, [] ) decorator = Decorator() decorator2 = Decorator() factory.add_decorator(decorator) self.assertListEqual( factory._decorators, [decorator] ) factory.add_decorator(decorator2) self.assertListEqual( factory._decorators, [decorator, decorator2] ) factory.add_decorator(decorator) self.assertListEqual( factory._decorators, [decorator, decorator2, decorator] ) def test_add_invalid_decorator(self): """ Invalid decorators should throw exceptions when added. """ factory = Factory() with self.assertRaises(ValueError): factory.add_decorator(None) with self.assertRaises(ValueError): factory.add_decorator('protomolecule') self.assertListEqual( factory._decorators, [] ) def test_create_app(self): """ Creating an app should return a Flask app with the input name. """ factory = Factory() app = factory.create_app('Detective Miller') self.assertIsInstance(app, flask.Flask) self.assertEqual('Detective Miller', app.name) def test_create_app_with_invalid_name(self): """ Creating an app with an invalid name should raise an exception. """ factory = Factory() with self.assertRaises(ValueError): factory.create_app(None) def test_create_decorated_app(self): """ Creating an app with decorators should call the decorator function on each added decorator (including duplicates) in the order they were added. """ factory = Factory() decorate1 = Mock(name='decorate') decorate2 = Mock(name='decorate') decorator1 = Decorator() decorator2 = Decorator() decorator1.decorate = decorate1 decorator2.decorate = decorate2 manager = Mock() manager.attach_mock(decorate1, 'alex_kamal') manager.attach_mock(decorate2, 'amos_burton') factory.add_decorator(decorator1) factory.add_decorator(decorator2) factory.add_decorator(decorator1) # duplicate is OK! app = factory.create_app('Rocinante') decorate1.assert_called_with(app) decorate2.assert_called_once_with(app) self.assertListEqual( manager.mock_calls, [call.alex_kamal(app), call.amos_burton(app), call.alex_kamal(app)] ) def test_start_app(self): """ Starting an app should start up a server using the app with the input (or default) host and port. """ factory = Factory() factory.add_decorator(Decorator()) app = factory.create_app('<NAME>') app.run = Mock(name='run') factory.start_app(app) app.run.assert_called_once() def test_start_app_with_host_and_port(self): """ Starting an app should start up a server using the app with the input (or default) host and port. """ factory = Factory() factory.add_decorator(Decorator()) app = factory.create_app('<NAME>') app.run = Mock(name='run') for host, port in [ (None, None), (None, 1337), ('127.0.0.1', None), ('localhost', 8080), ('0.0.0.0', 8081), ('192.168.0.1', 54321), ('outer.space', 65432), ]: msg = 'Valid host/port: ' msg += 'None' if host is None else host msg += ', ' msg += 'None' if port is None else str(port) print(msg, file=sys.stderr) factory.start_app(app) app.run.assert_called_once() # TODO - Check the host and port. app.run.reset_mock() def test_start_invalid_app(self): """ Starting an invalid app object should raise an exception. """ factory = Factory() with self.assertRaises(ValueError): factory.start_app(None) with self.assertRaises(ValueError): factory.start_app('Star Helix') def test_start_app_with_bad_host_or_port(self): """ Starting an app with an invalid host/port should raise an exception. """ factory = Factory() factory.add_decorator(Decorator()) app = factory.create_app('Naomi Nagata') app.run = Mock(name='run') for host, port in [ ('', None), ('.', None), ('256.0.0.0', None), ('192.168.0.-1', None), ('192.168.256.0', None), ('#$%!)(|2', None), (None, -1), (None, 0), (None, 65536), (None, 3.14), ]: msg = 'Invalid host/port: ' msg += 'None' if host is None else host msg += ', ' msg += 'None' if port is None else str(port) print(msg, file=sys.stderr) with self.assertRaises(ValueError): factory.start_app(app, host, port) ``` #### File: data/models/event.py ```python from __future__ import absolute_import from datetime import datetime from digital.forge.data.models.base_model_ import Model from digital.forge.data import util class Event(Model): """NOTE: This class is auto generated by OpenAPI Generator. (https://openapi-generator.tech) Do not edit the class manually. """ openapi_types = { 'archive_uuid': str, 'drone_uuid': str, 'event_time': datetime, 'event_value': str } attribute_map = { 'archive_uuid': 'archiveUUID', 'drone_uuid': 'droneUUID', 'event_time': 'eventTime', 'event_value': 'eventValue' } def __init__(self, archive_uuid=None, drone_uuid=None, event_time=None, event_value=None): # noqa: E501 """Event - a model defined in OpenAPI :param archive_uuid: The archive_uuid of this Event. # noqa: E501 :type archive_uuid: str :param drone_uuid: The drone_uuid of this Event. # noqa: E501 :type drone_uuid: str :param event_time: The event_time of this Event. # noqa: E501 :type event_time: datetime :param event_value: The event_value of this Event. # noqa: E501 :type event_value: str """ if archive_uuid is None: raise ValueError('`archive_uuid` is a required value') self._archive_uuid = archive_uuid if drone_uuid is None: raise ValueError('`drone_uuid` is a required value') self._drone_uuid = drone_uuid if event_time is None: raise ValueError('`event_time` is a required value') self._event_time = event_time if event_value is None: raise ValueError('`event_value` is a required value') self._event_value = event_value @classmethod def from_dict(cls, dikt) -> 'Event': """Returns the dict as a model :param dikt: A dict. :type: dict :return: The Event of this Event. # noqa: E501 :rtype: Event """ return util.deserialize_model(dikt, cls) @property def archive_uuid(self): """Gets the archive_uuid of this Event. A unique identifier for the archive in which this data is stored. # noqa: E501 :return: The archive_uuid of this Event. :rtype: str """ return self._archive_uuid @archive_uuid.setter def archive_uuid(self, archive_uuid): """Sets the archive_uuid of this Event. A unique identifier for the archive in which this data is stored. # noqa: E501 :param archive_uuid: The archive_uuid of this Event. :type archive_uuid: str """ if archive_uuid is None: raise ValueError("Invalid value for `archive_uuid`, must not be `None`") if archive_uuid is not None and not isinstance(archive_uuid, str): raise ValueError("Invalid value for `archive_uuid`, must be a `str`") self._archive_uuid = archive_uuid @property def drone_uuid(self): """Gets the drone_uuid of this Event. A unique identifier for the drone that observed this event. # noqa: E501 :return: The drone_uuid of this Event. :rtype: str """ return self._drone_uuid @drone_uuid.setter def drone_uuid(self, drone_uuid): """Sets the drone_uuid of this Event. A unique identifier for the drone that observed this event. # noqa: E501 :param drone_uuid: The drone_uuid of this Event. :type drone_uuid: str """ if drone_uuid is None: raise ValueError("Invalid value for `drone_uuid`, must not be `None`") if drone_uuid is not None and not isinstance(drone_uuid, str): raise ValueError("Invalid value for `drone_uuid`, must be a `str`") self._drone_uuid = drone_uuid @property def event_time(self): """Gets the event_time of this Event. The time of the data measurement/collection. # noqa: E501 :return: The event_time of this Event. :rtype: datetime """ return self._event_time @event_time.setter def event_time(self, event_time): """Sets the event_time of this Event. The time of the data measurement/collection. # noqa: E501 :param event_time: The event_time of this Event. :type event_time: datetime """ if event_time is None: raise ValueError("Invalid value for `event_time`, must not be `None`") if event_time is not None and not isinstance(event_time, datetime): raise ValueError("Invalid value for `event_time`, must be a `datetime`") self._event_time = event_time @property def event_value(self): """Gets the event_value of this Event. The archived data point collected by the drone at the event time. # noqa: E501 :return: The event_value of this Event. :rtype: str """ return self._event_value @event_value.setter def event_value(self, event_value): """Sets the event_value of this Event. The archived data point collected by the drone at the event time. # noqa: E501 :param event_value: The event_value of this Event. :type event_value: str """ if event_value is None: raise ValueError("Invalid value for `event_value`, must not be `None`") if event_value is not None and not isinstance(event_value, str): raise ValueError("Invalid value for `event_value`, must be a `str`") self._event_value = event_value ``` #### File: data/server/__main__.py ```python import argparse from pathlib import Path import sys import connexion import validators from digital.forge.app.factory import Factory as AppFactory from digital.forge.app.decorator.cors import CORSDecorator from digital.forge.app.decorator.sqlalchemy import SQLAlchemyDecorator from digital.forge.data.server import encoder def _get_secret(name): secret_file = Path('/run/secrets').joinpath(name) with open(secret_file) as file: return file.readline().strip() def main(argv=None): """ The standard main method. """ if argv is None: argv = sys.argv[1:] args = _parse_args(argv) factory = AppFactory() factory.add_decorator(CORSDecorator()) db_user = _get_secret('psql-conductor-user') db_pass = _get_secret('psql-conductor-pass') db_host = _get_secret('psql-host') db_port = _get_secret('psql-port') db_name = _get_secret('psql-name') factory.add_decorator(SQLAlchemyDecorator( 'postgresql://%s:%s@%s:%s/%s' % (db_user, db_pass, db_host, db_port, db_name) )) app = factory.create_app(name=__name__) app.json_encoder = encoder.JSONEncoder connexion_app = connexion.App(__name__, specification_dir='../openapi/') # Set these since we want to replace connexion's built-in flask app and run # method. connexion_app.app = app connexion_app.host = args.host connexion_app.port = args.port connexion_app.add_api( 'openapi.yaml', arguments={'title': 'Forge Keeper - Conductor'}, pythonic_params=True ) factory.start_app(app, host=args.host, port=args.port) def _parse_args(argv): main_parser = argparse.ArgumentParser(add_help=False) main_parser.add_argument( '-h', '--host', default='0.0.0.0', type=_parse_host, ) main_parser.add_argument( '-p', '--port', default=50080, type=_parse_port, ) return main_parser.parse_args(argv) def _parse_host(value): if not validators.domain(value) and not validators.ipv4(value): raise argparse.ArgumentTypeError( 'Host must be an FQDN or IPv4 address' ) return value def _parse_port(value): try: value = int(value) if not 1 <= value <= 65535: raise ValueError except ValueError: raise argparse.ArgumentTypeError( 'Port must be an integer between 1 and 65535' ) return int(value) if __name__ == '__main__': main() ``` #### File: src/test/__init__.py ```python import logging import connexion from flask_testing import TestCase from digital.forge.data.server.encoder import JSONEncoder class BaseTestCase(TestCase): """ The base class for unit tests (which in Python are classes, of course). """ def create_app(self): logging.getLogger('connexion.operation').setLevel('ERROR') openapi_dir = '/home/x88/data/git/forge-keeper/src/data-server/src/digital/forge/data/openapi' app = connexion.App(__name__, specification_dir=openapi_dir) app.app.json_encoder = JSONEncoder app.add_api('openapi.yaml', pythonic_params=True) return app.app ``` #### File: src/monitor/__main__.py ```python import argparse import contextlib from datetime import datetime, timedelta import getpass import sys import plotly.graph_objects as go from plotly.subplots import make_subplots from sqlalchemy import create_engine from sqlalchemy.exc import SQLAlchemyError from sqlalchemy.orm import sessionmaker from digital.forge.data.sql.model import Archive, Event from monitor import __version__ @contextlib.contextmanager def _connection(Session): """ A context manager for database connections. """ session = Session() try: yield session session.commit() except SQLAlchemyError: session.rollback() raise finally: session.close() def main(argv=None): """ The main function! """ if argv is None: argv = sys.argv[1:] args = _parse_args(argv) # Set up a way to connect to the database. db_pass = getpass.getpass(prompt='Password: ') uri = 'postgresql://%s:%s@%s:%s/%s' % \ (args.db_user, db_pass, args.db_host, args.db_port, args.db_name) engine = create_engine(uri) Session = sessionmaker(bind=engine) # Filter inputs: drone = 'd42cd874-d6a2-4b93-9398-7650a4f81170' data_start = datetime.now() + timedelta(days=-1) # Query the relevant Events. # This could be simpler if we establish the 'relationship' in the ORM pkg. humidity = {'times': [], 'values': []} temp = {'times': [], 'values': []} with _connection(Session) as db: for record in db.query(Event.event_time, Event.event_value, Archive.units, Archive.name).\ join(Archive, Event.archive_uuid == Archive.archive_uuid).\ filter(Event.drone_uuid == drone).\ filter(Event.event_time >= data_start).\ order_by(Event.event_time.asc()): # Store the data elsewhere for use. store = temp if record.name == 'humidity': store = humidity store['times'].append(record.event_time) store['values'].append(record.event_value) figure = make_subplots(specs=[[{"secondary_y": True}]]) figure.add_trace(go.Scatter(x=temp['times'], y=temp['values'], mode='lines', name='temperature'), secondary_y=False) figure.add_trace(go.Scatter(x=humidity['times'], y=humidity['values'], mode='lines', name='humdity'), secondary_y=True) figure.update_layout( showlegend=True, title_text='Temperature and Humidity', ) figure.update_xaxes(title_text='Time') figure.update_yaxes(title_text='Temperature', secondary_y=False) figure.update_yaxes(title_text='Humidity', secondary_y=True) figure.write_image("test.png") def _parse_args(argv): main_parser = argparse.ArgumentParser( description='This utility doe something neat.', ) main_parser.add_argument( '-v', '--version', action='version', help='Get the version', version='%(prog)s ' + __version__ ) main_parser.add_argument( '--db-host', default='db', help='The database host.', metavar='DB_HOST', type=str, ) main_parser.add_argument( '--db-port', default='5432', help='The database port.', metavar='DB_PORT', type=int, ) main_parser.add_argument( '--db-user', default='postgres', help='The database user.', metavar='DB_USER', type=str, ) main_parser.add_argument( '--db-name', default='postgres', help='The database name.', metavar='DB_NAME', type=str, ) return main_parser.parse_args(argv) if __name__ == '__main__': main() ``` #### File: forge/drone/reader.py ```python from datetime import datetime import re import sys from queue import Queue from threading import Thread import serial from serial.serialutil import SerialException class Reader(Thread): """ Instances of this class transfer sensor data to a queue for further processing by other classes. """ def __init__(self, data_queue=None, port=None, rate=9600, **kwargs): """ The default constructor. :param data_queue: The data_queue that will receive timestamped data. :type data_queue: queue.Queue :param port: The serial port to read. :type port: str :param rate: The symbol/modulation rate for the serial comms (in bauds) :type rate: int """ super().__init__(kwargs=kwargs) if data_queue is None: raise ValueError('`data_queue` is a required argument') if not isinstance(data_queue, Queue): raise ValueError('`data_queue` must be a queue.Queue') if port is None: raise ValueError('`port` is a required argument') if not re.match(r'\/dev\/tty(ACM|S|USB)[0-3]$', str(port)): raise ValueError('`port` must be a Linux port (/dev/ttyS0-3)') valid_rates = [ 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 115200, ] if rate not in valid_rates: message = '`rate` must be a valid rate in bauds: ' \ ', '.join(str(rate) for rate in valid_rates) raise ValueError(message) self._data_queue = data_queue self._port = port self._rate = rate self._run = False def run(self): """ Starts reading sensor data. """ try: with serial.Serial(self._port, self._rate, timeout=5) as conn: self._run = True while self._run: data = conn.readline() if data: time = datetime.now() self._data_queue.put((time, data), block=True) except SerialException as err: print( 'Error reading {}: {}'.format(self._port, str(err)), file=sys.stderr ) def stop(self, timeout=None): """ Stops the thread. timeout is the standard thread join timeout arg. In other words, set it to a floating point number in seconds after which the calling thread will unblock and continue. """ self._run = False self.join(timeout) ```
{ "source": "jdeyton/Sandbox", "score": 3 }
#### File: foo/pyground/LicenseFixer.py ```python import sys # Used to check path validity. import os.path # Import the logging utility. import logging as log # Import the regex library. import re # Used for running git commands and getting their output. import subprocess from argparse import ArgumentParser from argparse import RawDescriptionHelpFormatter from datetime import datetime __all__ = [] __version__ = 0.1 __date__ = '2015-05-28' __updated__ = '2015-05-28' DEBUG = 1 TESTRUN = 0 PROFILE = 0 class LicenseFixer(): ''' This class provides the functionality required to generate licenses for the specified source files. Callers should use the method fixLicense(path) to update the license for a particular file. ''' # ---- global configuration ---- # # These should only be set once. ''' The license format string read in from the file. It should include the date, copyright owner(s), initial author, and contributor tags for fast replacement when generating a license for a file. ''' _licenseFormat = None ''' The author dictionary maps names that commonly appear in the existing documentation or in the git history to preferred user names. ''' _authorDictionary = None ''' The employer dictionary maps author names to their employers. Employer names should be appended in parentheses after the author's name in the license text. ''' _employerDictionary = None ''' The default contributor set provides a list of contributors for a given employer. All contributors should be listed in cases where the history of the file pre-dates the git repo and has no history since the git repo's inception. ''' _defaultContributorSet = None ''' The string of copyright owners to apply to each license. ''' _defaultCopyrightOwners = None # TODO Add the cutoff date of Nov. 4, 2014. That's when most everything was # migrated over. # ------------------------------ # # ---- git metadata ---- # _dateList = None _authorSet = None _isOld = False # ---------------------- # # ---- existing documentation metadata ---- # _existingDateList = None _existingAuthorSet = None # ----------------------------------------- # _charLimit = 80 _commentBlocks = None def __init__(self, licenseFile, authorsFile, contributorsFile): ''' Constructs a new LicenseFixer instance. @param licenseFile: The path to a file containing a license format. This file should not include any comment characters, but may include the following format strings that will be replaced: {DATE} - The start/end years for the license. {COPYRIGHT_OWNERS} - All copyright owners, usually in a comma separated list. {AUTHOR} - The initial author that committed the work. {CONTRIBUTORS} - Any additional contributors go here. @param authorsFile: The path to a file containing a row of comma-separated values for common authors. The first value in a row should be the preferred name of an author in the documentation, while subsequent values in the row are common names used elsewhere in the documentation. @param contributorsFile: The path to a file containing all "default" contributors to add when the history of the file is unknown past a certain point. Each contributor name should be on a separate line. ''' # Log the specified input files. log.debug('license file: {0}'.format(licenseFile)) log.debug('authors file: {0}'.format(authorsFile)) log.debug('contributors file: {0}'.format(contributorsFile)) # Set up the defaults. These shouldn't change. self._createLicenseFormat(licenseFile) self._createAuthorDictionary(authorsFile) self._createContributorSet(contributorsFile) self._defaultCopyrightOwners = 'UT-Battelle, LLC.' return def _createLicenseFormat(self, licenseFile): ''' Reads in the content from the specified file into a string. @param licenseFile: The file from which to read. If not a file or cannot be opened, no license format is returned. @return: The license text format read from the file, or the empty string if the license text file could not be read. ''' licenseFormat = "" # If possible, read the license format from the file. if os.path.isfile(licenseFile): # The with here ensures the file is properly closed afterwards. with open(licenseFile, 'r') as lFile: for line in lFile: licenseFormat += line file.closed # Otherwise, post a warning message. else: log.warn('The specified file "{0}" is not a file or cannot be read.', licenseFile) # Post a debug message showing the license format read from the file. log.debug('License format: {0}{1}'.format(os.linesep, licenseFormat)) # Set the global value. self._licenseFormat = licenseFormat return licenseFormat def _createAuthorDictionary(self, authorsFile): ''' Reads in the content from the specified file into a dictionary of authors. Each name will be mapped to its preferred name. Alternate names are sepearated by commas after the first (preferred) name. Empty rows in the file are ignored. @param authorsFile: The file from which to read. If not a file or cannot be opened, no preferred names will be stored, and all committers listed in the git history will be listed as contributors. @return: A dictionary of author names. The keys will be names that appear in the metadata, while the values will be the preferred name. ''' authorDictionary = {} authorCount = 0; # If possible, read the author list from the file. if os.path.isfile(authorsFile): # The with here ensures the file is properly closed afterwards. with open(authorsFile, 'r') as aFile: # Each line should be a comma-separated list of names. The # preferred name is the first one. for line in aFile: names = line.split(',') # Get the preferred name. This is the first value in the row # that is a non-empty string after trimming spaces. for name in names: trimmedName = name.strip() if trimmedName: authorCount += 1 preferredName = trimmedName # Map each listed, non-empty name to the preferred # one in the dictionary. for name in names: trimmedName = name.strip(); if trimmedName: # Print out the read name to the debug log. log.debug('Common name "{0}" mapped to preferred name "{1}".'.format(trimmedName, preferredName)) authorDictionary[trimmedName] = preferredName break file.closed # Otherwise, post a warning message. else: log.warn('The specified file "{0}" is not a file or cannot be read.'.format(authorsFile)) # Post a debug message showing the number of authors and common names # read from the file. log.debug('Authors: {0} authors, {1} total names.'.format(authorCount, len(authorDictionary))) self._authorDictionary = authorDictionary self._employerDictionary = {} # TODO return authorDictionary def _createContributorSet(self, contributorsFile): ''' Reads in the list of default contributors from a file. This list will be placed after the author line in the license provided the git history is incomplete. @param contributorsFile: The file from which to read. If not a file or cannot be opened, no contributors will be listed when the git history is incomplete. @return: A set of contributor names. May be empty if the file was empty or could not be read. ''' contributorSet = set() contributorCount = 0; # If possible, read the contributor list from the file. if os.path.isfile(contributorsFile): # The with here ensures the file is properly closed afterwards. with open(contributorsFile, 'r') as aFile: # Each line can represent a list of contributors for a given # employer. Only add non-empty lines to the set. for line in aFile: trimmedLine = line.strip() if trimmedLine: contributorSet.add(trimmedLine) contributorCount += len(trimmedLine.split(',')) file.closed # Otherwise, post a warning message. else: log.warn('The specified file "{0}" is not a file or cannot be read.'.format(contributorsFile)) # Post a debug message showing the number of contributors read from the # file. log.debug('Contributors: {0} total representing {1} employers.'.format(contributorCount, len(contributorSet))) # Set the global value. self._defaultContributorSet = contributorSet return contributorSet def generateLicense(self, path): licenseText = "" # Check the input path before proceeding. if not os.path.isfile(path): log.warn('The specified file "{0}" is not a file or cannot be read.', path) log.warn('Generating an empty license.') return licenseText log.debug('Generating license for file:{0}'.format(path)) # The line separator. This is useful in various places in this method. sep = '\n' # os.linesep # Grab all of the comments from the file. self._findComments(path) # Gather all possible metadata from the file and its git history. self._findDocMetadata(path) self._findGitMetadata(path) # Determine the substitutions that need to go in the license text. dates = self._getDates() copyrightOwners = self._getCopyrightOwners() initialAuthor = self._getInitialAuthor() contributorList = self._getContributors() # Convert the contributors into a (perhaps multi-line) string. contributorsString = "" for contributor in contributorList: contributorsString += contributor contributorsString += sep # Replace the format keys in the license format with the determined # values for the file. licenseFormat = self._licenseFormat pattern = re.compile('{DATE}') licenseFormat = pattern.sub(dates, licenseFormat); pattern = re.compile('{COPYRIGHT_OWNERS}') licenseFormat = pattern.sub(copyrightOwners, licenseFormat); pattern = re.compile('{AUTHOR}') licenseFormat = pattern.sub(initialAuthor, licenseFormat); pattern = re.compile('{CONTRIBUTORS}') licenseFormat = pattern.sub(contributorsString, licenseFormat); # Build the license text using the appropriate multiline comment # characters for the source file. starter = self._getMultilineCommentLineStarter(path) licenseText = self._getMultilineCommentFirstLine(path) + sep for line in licenseFormat.splitlines(): # Get the next line of the output license text. outputLine = starter + line # If the line is longer than the character limit, split it over # multiple lines. There's also logic here to not break words. while len(outputLine) > self._charLimit: i = outputLine.rfind(' ', 0, self._charLimit) + 1 licenseText += outputLine[:i] + sep outputLine = starter + outputLine[i:] # Add the last (or only) output line. licenseText += outputLine + sep licenseText += self._getMultilineCommentLastLine() return licenseText def _findComments(self, path): ''' Finds all comment blocks and places them (excluding the comment opener, line openers (if present), and the comment ender) as separate strings, one for each block, in self._commentBlocks @param path: The path to the source file in question. @return: Nothing. _commentBlocks is modified. ''' # Opens the file and searches for all content in multiline comments. # Note: This is potentially dangerous as the files contents are read # into memory. Although this is (at least currently) highly unusual for # a source file to be beyond a few thousand lines. with open(path, 'r') as f: self._commentBlocks = re.findall('/\*+(.*?)\*+/', f.read(), re.DOTALL) file.closed # Replace all leading asterisks. We shouldn't destroy empty lines, hence # the \n is omitted from the second amount of whitespace characters. regex = re.compile('^\s*\*+[ \t\r\f\v]*', re.MULTILINE) for i in range(len(self._commentBlocks)): self._commentBlocks[i] = regex.sub('', self._commentBlocks[i]) return def _findDocMetadata(self, path): ''' Constructs all metadata that can be obtained from the specified file's existing documentation. This includes clearing and updating _existingDateList and _existingAuthorSet. @param path: The path to the file whose documentation will be scanned. @return: Nothing. _existingDateList and _existingAuthorSet are modified. ''' # Clear out the previous metadata. self._existingDateList = [] self._existingAuthorSet = set() # If the header comment contains the copyright date info, try to get the # first (and last year, if available) from it. if len(self._commentBlocks) > 0: headerComment = self._commentBlocks[0] result = re.match('^.*Copyright.*?\s+(\d{4})(,\s*(\d{4}))?.*$', headerComment, re.MULTILINE) if result: self._existingDateList.append(int(result.group(1))) if len(result.groups()) == 3: self._existingDateList.append(int(result.group(3))) # Print the found dates to the debug log. if len(self._existingDateList) == 0: log.debug('Found no existing copyright date.') else: log.debug('Found existing copyright dates: {0}'.format(self._existingDateList)) # Find the authors for the @author tags. regex = re.compile('^author') for commentBlock in self._commentBlocks: # Split the comment block into sections by @ tags. tagSplit = commentBlock.split('@') # Process each section after an @ sign where the first string is # 'author' (this is in the pre-compiled regex). for i in range(1, len(tagSplit)): tagBlock = tagSplit[i] result = regex.match(tagBlock) # An author tag was found! if result: # Ignore the 'author' part of the tag "block". authors = tagBlock.split() authors.pop(0) # Replaces all whitespace with a single space. authors = ' '.join(authors).split(',') # Loops over each found author and either adds their # preferred name or the trimmed name to the set of existing # authors. for author in authors: author = author.strip() if author in self._authorDictionary: self._existingAuthorSet.add(self._authorDictionary[author]) else: self._existingAuthorSet.add(author) # Print the found authors to the debug log. if len(self._existingAuthorSet) == 0: log.debug('Found no existing authors from author tags.') else: log.debug('Found existing authors from author tags: {0}'.format(self._existingAuthorSet)) return def _findGitMetadata(self, path): ''' Constructs all metadata that can be obtained from the specified file's git history. This includes clearing and updating _dateList, _authorSet, and _isOld. @param path: The path to the file whose git history will be queried. @return: Nothing. _dateList, _authorSet, and _isOld are modified. ''' # Clear out the previous metadata. self._dateList = [] self._authorSet = set() self._isOld = False # Call git log on the file. We need to pass --pretty=format:"%ci,%an" to # get the log output in a simple format: yyyy-mm-dd -gmtdiff,<author> directory = path[:path.rfind(os.sep)] result = subprocess.check_output(['git', '-C', directory, 'log', '--pretty=format:"%ci,%an"', path], stderr=subprocess.STDOUT) commits = result.replace('"', '').splitlines() # Determine the years for the first and last commits. commit = commits[0] lastYear = int(commit[:commit.find('-')]) commit = commits[len(commits) - 1] firstYear = int(commit[:commit.find('-')]) # Update self._dateList to hold the first (and last year if different). self._dateList.append(firstYear) if firstYear != lastYear: self._dateList.append(lastYear) # Print the found first/last date(s) to the log. log.debug('Found the dates from the git history: {0}'.format(self._dateList)) # Determine whether the file is old. firstDateString = commit.split()[0].split('-') firstMonth = int(firstDateString[1]) firstDay = int(firstDateString[2]) if datetime(firstYear, firstMonth, firstDay) < datetime(2014, 11, 4): self._isOld = True # Print out whether or not the file is old to the log. if self._isOld: log.debug('The file predates the repo relocation.') else: log.debug('The file is more recent than the repo relocation.') # Add all authors from the commit log to the set of authors. Use the # preferred name if available. authorSet = set() for commit in commits: authorSet.add(commit.split(',')[1]) for author in authorSet: if author in self._authorDictionary: self._authorSet.add(self._authorDictionary[author]) else: self._authorSet.add(author) # Print out the added authors to the log. log.debug('Found authors from the git history: {0}'.format(self._authorSet)) return def _getDates(self): ''' Uses the current metadata for the file to determine the proper date string to use for the file's license. If the dates span multiple years, the returned string will be of the format "first_year, last_year". Otherwise, the returned string will be of the format "first_year". This method should not return a null value. ''' dates = "" # TODO dates = "2001 a space odyssey" return dates def _getCopyrightOwners(self): ''' Determines the copyright owner string to use for the file's license. This method should not return a null value. ''' copyrightOwners = self._defaultCopyrightOwners return copyrightOwners def _getInitialAuthor(self): ''' Uses the current metadata for the file to determine the proper initial author string to use for the file's license. If the file pre-dates the move to the git repo, then the author provided by the class author tag will be used. If the file has no such author specified, the default author will be used. This method should not return a null value. ''' author = "" # TODO author = "PRIMECUTMIGGITYMOEMACKDADDYJIZZYBANGDOGGYDOGDAWG" return author def _getContributors(self): ''' Uses the current metadata for the file to determine the proper list of contributors to use for the file's license. If the file pre-dates the move to the git repo AND has no history after the move, then the default list of contributors will be used. This method returns a *list*. It method should not return a null value, but may return an empty list. ''' contributors = [] # TODO for contributor in self._defaultContributorSet: contributors.append(contributor) return contributors # TODO Make these better. def _getMultilineCommentFirstLine(self, path): return "/*******************************************************************************" def _getMultilineCommentLineStarter(self, path): return " * " def _getMultilineCommentLastLine(self): return " *******************************************************************************/" def fixLicense(self, path): log.info('Processing file: {0}'.format(path)) licenseText = self.generateLicense(path) log.info('License text:{0}{1}'.format(os.linesep, licenseText)) return #### Main #### def main(argv=None): # IGNORE:C0111 '''Command line options.''' if argv is None: argv = sys.argv else: sys.argv.extend(argv) program_name = os.path.basename(sys.argv[0]) program_version = "v%s" % __version__ program_build_date = str(__updated__) program_version_message = '%%(prog)s %s (%s)' % (program_version, program_build_date) program_shortdesc = __import__('__main__').__doc__.split("\n")[1] program_license = '''%s Created by user_name on %s. Copyright 2015 organization_name. All rights reserved. Licensed under the Apache License 2.0 http://www.apache.org/licenses/LICENSE-2.0 Distributed on an "AS IS" basis without warranties or conditions of any kind, either express or implied. USAGE ''' % (program_shortdesc, str(__date__)) try: # Setup argument parser parser = ArgumentParser(description=program_license, formatter_class=RawDescriptionHelpFormatter) parser.add_argument("-l", "--license", dest="licenseFile", default="defaultLicense.txt") parser.add_argument("-a", "--authors", dest="authorsFile", default="defaultAuthors.txt") parser.add_argument("-c", "--contributors", dest="contributorsFile", default="defaultContributors.txt") parser.add_argument("-v", "--verbose", dest="verbose", action="count", help="set verbosity level [default: %(default)s]") parser.add_argument(dest="paths", help="paths to folder(s) with source file(s) [default: %(default)s]", metavar="path", nargs='+') # Process arguments args = parser.parse_args() paths = args.paths verbose = args.verbose licenseFile = args.licenseFile authorsFile = args.authorsFile contributorsFile = args.contributorsFile # Set up the log level. logLevel = log.INFO if verbose > 0: logLevel = log.DEBUG log.basicConfig(format="%(levelname)s: %(message)s", level=logLevel) licenseFixer = LicenseFixer(licenseFile, authorsFile, contributorsFile) for inpath in paths: licenseFixer.fixLicense(inpath) return 0 except KeyboardInterrupt: ### handle keyboard interrupt ### return 0 except Exception, e: if DEBUG or TESTRUN: raise(e) indent = len(program_name) * " " sys.stderr.write(program_name + ": " + repr(e) + "\n") sys.stderr.write(indent + " for help use --help") return 2 if __name__ == "__main__": if DEBUG: sys.argv.append("-v") if TESTRUN: import doctest doctest.testmod() if PROFILE: import cProfile import pstats profile_filename = 'com.bar.foo.pyground.LicenseFixer_profile.txt' cProfile.run('main()', profile_filename) statsfile = open("profile_stats.txt", "wb") p = pstats.Stats(profile_filename, stream=statsfile) stats = p.strip_dirs().sort_stats('cumulative') stats.print_stats() statsfile.close() sys.exit(0) sys.exit(main()) ```
{ "source": "jdf18/PirateBot", "score": 3 }
#### File: jdf18/PirateBot/utils.py ```python from json import dumps, loads from textwrap import indent from typing_extensions import Self class EnvironmentContainer: def __init__(self, filename='.env', required=()): try: with open(filename) as file: variables = loads(file.read()) for key, value in variables.items(): self.__setattr__(key, value) except FileNotFoundError(): for key in required: value = input(f'Enter {key}: ') self.__setattr__(key, value) except Exception as e: raise e class LangContatiner: class SubContainer: def __init__(self, data): self.data = data def exists(self, name): return bool(name in self.data) def update(self, dictionary): self.data.update(dictionary) def __getattr__(self, name): return self.data[name] def __getitem__(self, name): return self.data[name] def __init__(self, locale='en_GB.lang'): if not locale: import locale, ctypes locale = locale.windows_locale[ctypes.windll.kernel32.GetUserDefaultUILanguage()] + '.lang' self.locale = locale self.data = {} try: with open(locale) as file: lines = file.readlines() except FileNotFoundError: pass except Exception as e: raise e for line in lines: if line.find('#') != -1: line = line[:line.index('#')] if line.strip() == '': continue key = line[:line.index('=')] value = line[line.index('=')+1:] parts = key.split('.') current = self.data for i in range(len(parts)): part = parts[i] if i+1 < len(parts): next_part = parts[i+1] try: current = current[part] except: needs_creating = parts[i:] needs_creating.reverse() curr = value for p in needs_creating[:-1]: curr = self.SubContainer({p:curr}) current.update({needs_creating[-1]: curr}) def __getattr__(self, name): return self.data[name] ```
{ "source": "jdf3/CtCI", "score": 4 }
#### File: python/10-sorting-and-searching/searchinrotatedarray.py ```python def find_in_rotated(n, a): def r(n, a, l, h): if l == h: if a[l] == n: return l return -1 m = (l + h) // 2 if n == a[m]: return m elif n < a[m]: if a[l] < n: return r(n, a, l, m - 1) elif a[l] == a[m]: return max(r(n, a, l, m-1), r(n, a, m+1, h)) else: return r(n, a, m + 1, h) else: if a[h] > n: return r(n, a, m + 1, h) elif a[h] == a[m]: return max(r(n, a, l, m-1), r(n, a, m+1, h)) else: return r(n, a, l, m - 1) return r(n, a, 0, len(a) - 1) print("Should be 8:", find_in_rotated(5, [15, 16, 19, 20, 25, 1, 3, 4, 5, 7, 10, 14])) ``` #### File: python/10-sorting-and-searching/sortedsearchnosize.py ```python class Listy(): def __init__(self, array): self.len = len(array) self.array = array def element_at(self, i): if i >= self.len: return -1 else: return self.array[i] def sorted_no_size(listy, n): def binary_search(a, n, l, r): if l > r: return -1 elif l == r: if a.element_at(l) == n: return l else: return -1 m = (l + r) // 2 if a.element_at(m) == n: return m elif a.element_at(m) > n or a.element_at(m) == -1: return binary_search(a, n, l, m - 1) else: return binary_search(a, n, m + 1, r) i = 1 while listy.element_at(i) != -1: i <<= 1 return binary_search(listy, n, 0, i - 1) print(sorted_no_size(Listy([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]), 13)) ``` #### File: python/8-recursion-and-dynamic-programming/eightqueens.py ```python def queens(): # Assuming that (x, y) positions given by columns[x] = y are valid, # determine whether placing a piece at (row, col) is valid # We don't need to be concerned about sentinel values, since this method only # looks to rows below "row". def isvalid(columns, row, col): for r in range(row): if col == columns[r]: return False if (row - r) == abs(col - columns[r]): return False return True def place(row, columns): if row == 8: return 1 else: ways = 0 for col in range(8): if isvalid(columns, row, col): columns[row] = col ways += place(row + 1, columns) return ways return place(0, [0]*8) def printboard(columns): for r in columns: col = columns[r] print(" "*col + "x" + " "*(8 - 1 - col)) print() print(queens()) ``` #### File: python/8-recursion-and-dynamic-programming/parens.py ```python def parens(n): def h(current_open, opens, closes): if opens == 0 and closes == 0: yield "" return if opens > 0: yield from map(lambda s: "(" + s, h(current_open + 1, opens - 1, closes)) if current_open > 0 and closes > 0: yield from map(lambda s: ")" + s, h(current_open - 1, opens, closes - 1)) return h(0, n, n) print(list(parens(2))) print(list(parens(3))) ``` #### File: python/8-recursion-and-dynamic-programming/powerset.py ```python def powersets(s): if len(s) == 0: yield [] return for ps in powersets(s[1:]): yield ps ps2 = ps[:] ps2.append(s[0]) yield ps2 print("HI") print(list(powersets([1, 2, 3]))) # does not assume such things! but also, does not return an iterator def powersets_iter(collection): lists = [[]] for item in collection: clone = [] for l in lists: clone.append(l[:]) for l in clone: l.append(item) lists.extend(clone) return lists print(list(powersets_iter([1, 2, 3]))) ``` #### File: python/8-recursion-and-dynamic-programming/recursivemultiply.py ```python def mult(a, b): small, big = sorted([a, b]) product = 0 pos = 0 while small > 0: if small & 1: product += (big << pos) small >>= 1 pos += 1 return product print("100 x 16 =", mult(100, 16), "\n(Should be", 100*16, ")") print("653 x 242 =", mult(653, 242), "\n(Should be", 653*242, ")") def multr(a, b): def h(l, g): if l == 0: return 0 result = 0 if l & 1: result += g return result + (h(l >> 1, g) << 1) small, big = sorted([a, b]) return h(small, big) print("100 x 16 =", multr(100, 16), "\n(Should be", 100*16, ")") print("653 x 242 =", multr(653, 242), "\n(Should be", 653*242, ")") # for improvement, think about how this performs for (e.g.) powers of 2, or # powers of 2 minus 1. Can I use subtraction somehow? ```
{ "source": "jdfalk/xlsx-converter", "score": 3 }
#### File: jdfalk/xlsx-converter/xlsx_converter.py ```python import argparse import logging import os import sys import pandas as PD def main(): parser = argparse.ArgumentParser() parser.add_argument( '-d', '--dir', help='Directory to start in', default=os.getcwd()) parser.add_argument('-o', '--output', help='File path and name for output') parser.add_argument('-e', '--header', help='Header row for file', default="foo,bar") parser.add_argument('-s', '--sheet', help='Identify Sheet in spreadsheet') parser.add_argument('-l', '--log-level', help='Logging level (default WARNING)', default='WARNING') args = parser.parse_args() if args.output is None: sys.exit("Need output file. See xlsx_converter.py --help") # assuming loglevel is bound to the string value obtained from the # command line argument. Convert to upper case to allow the user to # specify --log=DEBUG or --log=debug numeric_level = getattr(logging, args.log_level.upper(), None) if not isinstance(numeric_level, int): raise ValueError('Invalid log level: %s' % args.log_level) logging.basicConfig( level=numeric_level, format='%(asctime)s %(levelname)s:%(message)s', datefmt='%m/%d/%Y %I:%M:%S %p') # converting the path this program receives to # what python understands output_file = os.path.abspath(args.output) header = args.header + "\n" # sets the header row of the output file # added mode="a"because default mode is r # r = read only with open(output_file, mode="a") as f: f.write(header) # looks at a specific directory, and exports the files into a list with the full path # after the word "for" it declares for root, _, files in os.walk(args.dir): for file in files: if file.endswith((".xls", ".xlsx")): # declares the meaning of variable "full_path" used in this code full_path = os.path.join(root, file) # adding logging.debug allows the program to print the list if you want # to see it when you enable debug logging on # the program "full_path is: " # is a string that displays the variable "full_path" and # the added characters "is: " # logging.debug uses c style formatting, the %s defines # whatever goes there as a string. logging.debug("full_path is: %s", full_path) # read excel file into a dataframe, declare details about the dataframe. # We assumed all default values. try: # https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_excel.html data_xls = PD.read_excel( io=full_path, sheet_name=int(args.sheet), skiprows=0, header=1 ) # https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html data_xls.to_csv( output_file, mode='a', header=False, index=False ) except IndexError as err: logging.error("Error occured: %s", err) logging.error("Bad file %s. Skipping and continuing", full_path) continue if __name__ == '__main__': main() ```
{ "source": "jdfekete/progressivis", "score": 2 }
#### File: progressivis/benchmarks/benchmarkit.py ```python import numpy as np import pandas as pd import six from memory_profiler import memory_usage import sys, os, time from collections import OrderedDict, Iterable, namedtuple from sqlalchemy import (Table, Column, Integer, Float, String, Sequence, BLOB, MetaData, ForeignKey, create_engine, select, UniqueConstraint) #from multiprocessing import Process import matplotlib import matplotlib.pyplot as plt import numpy.distutils.cpuinfo as cpuinfo import platform import json import cProfile import subprocess, time LoopVarDesc = namedtuple("LoopVarDesc", "type, title, desc, func") # lvd = LoopVarDesc(type=str,title="X", desc="Blah, blah", func=lambda x: x.upper()) multi_processing = True # use False only for debug! if multi_processing: from multiprocessing import Process else: class Process(object): def __init__(self, target, args): target(*args) def start(self): pass def join(self): pass def get_cpu_info(): return json.dumps(cpuinfo.cpu.info) def table_exists(tbl, conn): cur = conn.cursor() return list(cur.execute( """SELECT name FROM sqlite_master WHERE type=? AND name=?""", ('table', tbl))) def describe_table(tbl, conn): cur = conn.cursor() return list(c.execute("PRAGMA table_info([{}])".format(tbl))) def dump_table(table, db_name): #lst_table=['bench_tbl', 'case_tbl','measurement_tbl'] engine = create_engine('sqlite:///' + db_name, echo=False) metadata = MetaData(bind=engine) tbl = Table(table, metadata, autoload=True) conn = engine.connect() #print(metadata.tables[tbl]) s = tbl.select() #select([[tbl]]) df = pd.read_sql_query(s, conn) print(df) class BenchEnv(object): def __init__(self, db_name, append_mode=True): self._db_name = db_name self._engine = create_engine('sqlite:///' + db_name, echo=False) self._metadata = MetaData(bind=self._engine) self._bench_tbl = None self._case_tbl = None self._measurement_tbl = None self._append_mode = append_mode self.create_tables_if() @property def engine(self): return self._engine @property def db_name(self): return self._db_name @property def bench_tbl(self): return self._bench_tbl @property def measurement_tbl(self): return self._measurement_tbl @property def bench_list(self): tbl = self._bench_tbl s = (select([tbl]).with_only_columns([tbl.c.name])) with self.engine.connect() as conn: rows = conn.execute(s).fetchall() return [e[0] for e in rows] def create_tables_if(self): if 'bench_tbl' in self.engine.table_names(): self._bench_tbl = Table('bench_tbl', self._metadata, autoload=True) self._case_tbl = Table('case_tbl', self._metadata, autoload=True) self._measurement_tbl = Table('measurement_tbl', self._metadata, autoload=True) return self._bench_tbl = Table('bench_tbl', self._metadata, Column('id', Integer, Sequence('user_id_seq'), primary_key=True), Column('name', String, unique=True), Column('description', String), Column('py_version', String), Column('py_compiler', String), Column('py_platform', String), Column('py_impl', String), Column('cpu_info', String), Column('repr_type', String), Column('user_col_label', String), autoload=False) self._case_tbl = Table('case_tbl', self._metadata, Column('id', Integer, Sequence('user_id_seq'), primary_key=True), Column('name', String, unique=True), Column('bench_id', Integer, ForeignKey('bench_tbl.id')), Column('corrected_by', Integer), # TODO: ref integrity Column('description', String), UniqueConstraint('name', 'bench_id', name='uc1'), autoload=False) self._measurement_tbl = Table('measurement_tbl', self._metadata, Column('id', Integer, Sequence('user_id_seq'), primary_key=True), Column('case_id', Integer), Column('i_th', Integer), Column('user_col_str', String), Column('user_col_int', Integer), Column('user_col_float', Float), Column('mem_usage', Float), Column('elapsed_time', Float), Column('sys_time', Float), Column('user_time', Float), Column('ld_avg_1', Float), Column('ld_avg_5', Float), Column('ld_avg_15', Float), Column('prof', BLOB), autoload=False) self._metadata.create_all(self._engine, checkfirst=self._append_mode) def default_loop_var_proc(loop_var): args = loop_var if isinstance(loop_var, tuple) else (loop_var,) cols = {} if isinstance(loop_var, (six.integer_types, np.integer)): cols['user_col_int'] = int(loop_var) elif isinstance(loop_var, float): cols['user_col_float'] = float(loop_var) else: cols['user_col_str'] = str(loop_var) return args, {}, cols # InputProc = namedtuple("InputProc", "input_type, label, desc, inp_to_args, inp_to_col") # lvd = LoopVarDesc(type=str,title="X", desc="Blah, blah", func=lambda x: x.upper()) class InputProc(object): def __init__(self, label, repr_type=str): if repr_type not in (int, float, str): raise ValueError("{} type not allowed".format(repr_type)) type_dict = {float: 'user_col_float', int: 'user_col_int', str: 'user_col_str'} self._repr_type = repr_type self._user_col = type_dict[repr_type] self._label = label def to_args(self, inp): return (self._repr_type(inp),), {} def to_value(self, inp): return self._repr_type(inp) def to_dict(self, inp): return {self.user_col: self.to_value(inp)} @property def user_col(self): return self._user_col @property def label(self): return self._label class BenchmarkIt(object): def __init__(self, env, name, loop, repeat=1, desc="", input_proc=InputProc(repr_type=str, label='UserCol'), time_bm=True, memory_bm=True, prof=True, after_loop_func=None): self._env = env self._name = name self._loop = loop self._repeat = repeat self._desc = desc self._input_proc = input_proc self._time_flag = time_bm self._mem_flag = memory_bm self._prof_flag = prof self._after_loop_func = after_loop_func self._sql_id = None self._cases = [] self._corrections = [] @staticmethod def load(env, name): bm = BenchmarkIt(env, name, -1) tbl = env._bench_tbl s = (select([tbl]). where(tbl.c.name==bm._name)) with env.engine.connect() as conn: row = conn.execute(s).fetchone() row = dict(row) repr_type = {'str':str, 'int':int, 'float':float}[row['repr_type']] label = row['user_col_label'] bm._input_proc = InputProc(repr_type=repr_type, label=label) return bm def __enter__(self): tbl = self._env._bench_tbl ins = tbl.insert().values(name=self._name, description=self._desc, py_version=platform.python_version(), py_compiler=platform.python_compiler(), py_platform=platform.platform(), py_impl=platform.python_implementation(), cpu_info=get_cpu_info(), repr_type=self._input_proc._repr_type.__name__, user_col_label=self._input_proc._label ) with self.env.engine.connect() as conn: conn.execute(ins) ## s = (select([tbl]).with_only_columns([tbl.c.id]). ## where(tbl.c.name==self._name)) ## #http://www.rmunn.com/sqlalchemy-tutorial/tutorial.html ## with self.env.engine.connect() as conn: ## row = conn.execute(s).fetchone() ## self._sql_id = row[0] return self @property def sql_id(self): if self._sql_id is not None: return self._sql_id tbl = self._env._bench_tbl s = (select([tbl]).with_only_columns([tbl.c.id, tbl.c.name]). where(tbl.c.name==self._name)) #http://www.rmunn.com/sqlalchemy-tutorial/tutorial.html with self.env.engine.connect() as conn: row = conn.execute(s).fetchone() self._sql_id = row[0] return self._sql_id def __call__(self, case, corrected_by=None): self._corrections.append((case, corrected_by)) tbl = self._env._case_tbl ins = tbl.insert().values(name=case, bench_id=self.sql_id) with self.env.engine.connect() as conn: conn.execute(ins) ## s = (select([tbl]).with_only_columns([tbl.c.id]). ## where(tbl.c.name==self._name)) ## with self.env.engine.connect() as conn: ## row = conn.execute(s).fetchone() ## case_id = row[0] case_id = self.get_case_id(case) def fun(func): runner = BenchRunner(func, case_id, corrected_by, self) self._cases.append(runner) return fun def _update_corrections(self): for case, corr_by in self._corrections: if corr_by is None: continue case_id = self.get_case_id(case) corr_id = self.get_case_id(corr_by) tbl = self._env._case_tbl stmt = (tbl.update().where(tbl.c.id==case_id). values(corrected_by=corr_id)) with self.env.engine.connect() as conn: conn.execute(stmt) def get_case_id(self, case): tbl = self._env._case_tbl s = (select([tbl]).with_only_columns([tbl.c.id]). where(tbl.c.name==case). where(tbl.c.bench_id==self.sql_id)) with self.env.engine.connect() as conn: row = conn.execute(s).fetchone() return row[0] def get_case_corrector(self, case): if isinstance(case, six.string_types): case_id = self.get_case_id(case) else: case_id = case tbl = self._env._case_tbl s = (select([tbl]).with_only_columns([tbl.c.corrected_by]). where(tbl.c.id==case_id)) with self.env.engine.connect() as conn: row = conn.execute(s).fetchone() return row[0] @property def correctors(self): tbl = self._env._case_tbl s = select([tbl]).with_only_columns([tbl.c.corrected_by]) with self.env.engine.connect() as conn: rows = conn.execute(s).fetchall() return [e[0] for e in rows if e[0] is not None] def __exit__(self, exc_type, exc_value, traceback): if exc_value: raise #self.create_tables_if() self._update_corrections() if isinstance(self._loop, Iterable): loop_ = self._loop if isinstance(self._loop, (six.integer_types, np.integer)): loop_ = range(self._loop) for elt in self._cases: for arg in loop_: elt.run(arg) if callable(self._after_loop_func): self._after_loop_func() @property def _col_dict(self): return {'case': 'Case', 'corrected_by':'Corrected by', 'i_th':'Measure', 'mem_usage': 'Memory usage', 'elapsed_time': 'Elapsed time', 'sys_time': 'System time', 'user_time': 'User time', 'ld_avg_1':'Load avg.(-1s)', 'ld_avg_5':'Load avg.(-5s)','ld_avg_15':'Load avg.(-15s)', self.input_proc.user_col: self.input_proc.label} @property def case_names(self): tbl = self._env._case_tbl s = (select([tbl]).with_only_columns([tbl.c.name]). where(tbl.c.bench_id==self.sql_id)) with self.env.engine.connect() as conn: rows = conn.execute(s).fetchall() return set([elt.name for elt in rows]) #df = pd.read_sql_query(s, conn) #return set(df['name'].values) def user_col_df(self, case_id): projection = [self.input_proc.user_col] tbl = self.env.measurement_tbl s = (select([tbl]).with_only_columns(projection). where(tbl.c.case_id==case_id). order_by(tbl.c.id)) conn = self.env.engine.connect() return pd.read_sql_query(s, conn) def df_subtract(self, this, other, sub_cols, raw_header): ret = [] for col in this.columns: if col in sub_cols: arr = this[col].values - other[col].values else: arr = this[col].values key = col if raw_header else self._col_dict.get(col,col) ret.append((key, arr)) return pd.DataFrame.from_items(ret) def pretty_header(self, df, raw_header): if raw_header: return df header = [self._col_dict.get(col,col) for col in df.columns] df.columns = header return df def to_df(self, case, with_mem=True, with_times=True, with_user_col=True, corrected=True, raw_header=False): if isinstance(case, six.string_types): case_id = self.get_case_id(case) else: case_id = case projection = ['i_th'] projection += [self.input_proc.user_col] if with_user_col==True else [] if with_mem: projection.append('mem_usage') if with_times: projection += ['elapsed_time', 'sys_time', 'user_time'] projection += ['ld_avg_1', 'ld_avg_5', 'ld_avg_15'] tbl = self.env.measurement_tbl only_columns = [col.name for col in tbl.columns if col.name in projection] s = (select([tbl]).with_only_columns(only_columns). where(tbl.c.case_id==case_id). order_by(tbl.c.id)) conn = self.env.engine.connect() df = pd.read_sql_query(s, conn)#, index_col=index_col) if not corrected: return self.pretty_header(df, raw_header) corr = self.get_case_corrector(case_id) if corr is None: return self.pretty_header(df, raw_header) corr_df = self.to_df(corr, corrected=False, raw_header=True) return self.df_subtract(df, corr_df, ['mem_usage','elapsed_time', 'sys_time', 'user_time'], raw_header) def plot(self, cases=None, x=None, y=None, corrected=True, plot_opt='all'): if cases is None: cases = self.case_names elif isinstance(cases, six.string_types): cases = set([cases]) else: cases = set(cases) if not cases.issubset(self.case_names): raise ValueError("Unknown case(s): {}".format(case)) #df = self.to_df(raw_header=True) from matplotlib.lines import Line2D favorite_colors = ['red', 'blue', 'magenta', 'orange', 'grey', 'yellow', 'black'] colors = list(matplotlib.colors.cnames.keys()) customized_colors = (favorite_colors + [c for c in colors if c not in favorite_colors]) Bplot = namedtuple('Bplot','key, title, ylabel') mode = "corrected mode, show " if corrected else "raw mode, show " mode += plot_opt plots = [Bplot('mem_usage', 'Memory usage ({})'.format(mode), 'Used memory (Mb)'), Bplot('elapsed_time', 'Elapsed time ({})'.format(mode), 'Time (ms)'), Bplot('sys_time', 'System time ({})'.format(mode), 'Time (ms)'), Bplot('user_time', 'User time ({})'.format(mode), 'Time (ms)'),] correctors_ = self.correctors for bp in plots: for i, case in enumerate(cases): if corrected and self.get_case_id(case) in correctors_: continue df = self.to_df(case=case, raw_header=True, corrected=corrected) repeat = df['i_th'].values.max() + 1 if x is None: #x = df[self.input_proc.user_col] x = range(1, len(self.user_col_df(self.get_case_id(case)))//repeat+1) kw = {'label': case} if plot_opt == 'all': for r in range(repeat): dfq = df.query('i_th=={}'.format(r)) y = dfq[bp.key].values plt.plot(x, y, customized_colors[i], **kw) kw = {} elif plot_opt == 'mean': y = df.groupby([self.input_proc.user_col])[bp.key].mean().values plt.plot(x, y, customized_colors[i], **kw) elif plot_opt == 'min': y = df.groupby([self.input_proc.user_col])[bp.key].min().values plt.plot(x, y, customized_colors[i], **kw) elif plot_opt == 'max': y = df.groupby([self.input_proc.user_col])[bp.key].max().values plt.plot(x, y, customized_colors[i], **kw) plt.title(bp.title) plt.ylabel(bp.ylabel) plt.xlabel(self.input_proc.label) plt.legend() plt.show() def prof_stats(self, case, step='first', measurement=0): tbl = self.env.measurement_tbl df = self.to_df(case, with_mem=False, with_times=False, with_user_col=True, corrected=False, raw_header=True) if step=='last' or step==-1: step_ = df[self.input_proc.user_col].iloc[-1] elif step=='first' or step==0: step_ = df[self.input_proc.user_col].iloc[0] else: step_ = step case_id = self.get_case_id(case) stmt = (tbl.select().with_only_columns([tbl.c.prof]). where(tbl.c.case_id==case_id). where(tbl.c.i_th==measurement). where(tbl.c[self.input_proc.user_col]==step_) ) with self.env.engine.connect() as conn: row = conn.execute(stmt).fetchone() # TODO: use a REAL tmp file tmp_file_name = '/tmp/benchmarkit_out.prof' with open(tmp_file_name, 'wb') as tmp_file: tmp_file.write(row[0]) # snakeviz is launched this way for virtualenv/anaconda compatibility c_opt = 'import sys, snakeviz.cli;sys.exit(snakeviz.cli.main())' cmd_ = [sys.executable, '-c', c_opt, tmp_file_name] p = subprocess.Popen(cmd_) time.sleep(3) p.terminate() @property def name(self): return self._name @property def env(self): return self._env @property def loop_var_proc(self): return self._loop_var_proc @property def time_flag(self): return self._time_flag @property def mem_flag(self): return self._mem_flag @property def prof_flag(self): return self._prof_flag @property def repeat(self): return self._repeat @property def input_proc(self): return self._input_proc class BenchRunner(): def __init__(self, func, case_id, corrected_by, bench): self._func = func self._case_id = case_id self._corrected_by = corrected_by self._bench = bench self._args = None self._kwargs = None @property def bench(self): return self._bench @property def env(self): return self._bench.env def run_times(self, args, kwargs, v, i_th): ut, st, cut, cst, et = os.times() self._func(*args, **kwargs) ut_, st_, cut_, cst_, et_ = os.times() elapsed_time = et_ - et sys_time = st_ -st user_time = ut_ - ut ld_avg_1, ld_avg_5, ld_avg_15 = os.getloadavg() ## engine = create_engine('sqlite:///' + self.env.db_name, echo=True) ## metadata = MetaData() ## metadata.reflect(bind=engine) ## measurement_tbl = metadata.tables['measurement_tbl'] ##if self.bench.input_proc.user_col == 'user_col_str' stmt = (self.env.measurement_tbl.update(). where(self.env.measurement_tbl.c.case_id==self._case_id). where(self.env.measurement_tbl.c.i_th==i_th). where(self.env.measurement_tbl.c[self.bench.input_proc.user_col]==v). values( elapsed_time=elapsed_time, sys_time=sys_time, user_time=user_time, ld_avg_1=ld_avg_1, ld_avg_5=ld_avg_5, ld_avg_15=ld_avg_15, ) ) with self.env.engine.connect() as conn: conn.execute(stmt) def run_mem(self, args, kwargs, v, i_th): mem = memory_usage((self._func, args, kwargs), max_usage=True)[0] stmt = (self.env.measurement_tbl.update(). where(self.env.measurement_tbl.c.case_id==self._case_id). where(self.env.measurement_tbl.c.i_th==i_th). where(self.env.measurement_tbl.c[self.bench.input_proc.user_col]==v). values( mem_usage=mem, ) ) with self.env.engine.connect() as conn: conn.execute(stmt) def run_prof(self, args, kwargs, v, i_th): def to_profile(): self._func(*args, **kwargs) # TODO: use a REAL tmp file tmp_file_name = '/tmp/benchmarkit.prof' cProfile.runctx('to_profile()', globals(), locals(), tmp_file_name) with open(tmp_file_name, 'rb') as tmp_file: prof_blob = tmp_file.read() stmt = (self.env.measurement_tbl.update(). where(self.env.measurement_tbl.c.case_id==self._case_id). where(self.env.measurement_tbl.c.i_th==i_th). where(self.env.measurement_tbl.c[self.bench.input_proc.user_col]==v). values( prof=prof_blob, ) ) with self.env.engine.connect() as conn: conn.execute(stmt) def run(self, t): args, kwargs = self.bench.input_proc.to_args(t) values_ = self.bench.input_proc.to_dict(t) v = self.bench.input_proc.to_value(t) values_.update(dict(case_id=self._case_id)) l_val = [dict(i_th=i) for i in six.moves.range(self.bench.repeat)] #map(lambda d: d.update(values_), l_val) for d in l_val: d.update(values_) ins = self.env.measurement_tbl.insert() #.values(**values_) with self.env.engine.connect() as conn: conn.execute(ins, l_val) for i_th in six.moves.range(self.bench.repeat): if self.bench.time_flag: p = Process(target=BenchRunner.run_times, args=(self, args, kwargs, v, i_th)) p.start() p.join() #self.run_times(args, kwargs, v) if self.bench.mem_flag: p = Process(target=BenchRunner.run_mem, args=(self, args, kwargs, v, i_th)) p.start() p.join() if self.bench.prof_flag: p = Process(target=BenchRunner.run_prof, args=(self, args, kwargs, v, i_th)) p.start() p.join() def banner(s, c='='): hr = c*(len(s) + 2) + '\n' s2 = ' ' + s + ' \n' return hr + s2 + hr def print_banner(s, c='='): print(banner(s, c)) if __name__ == '__main__': import argparse import sys from tabulate import tabulate parser = argparse.ArgumentParser() parser.add_argument("--db", help="measurements database", nargs=1, required=True) ## parser.add_argument("--bench", help="bench to visualize", nargs=1, ## required=False) parser.add_argument("--cases", help="case(s) to visualize", nargs='+', required=False) parser.add_argument("--summary", help="List of cases in the DB", action='store_const', const=42, required=False) parser.add_argument("--plot", help="Plot measurements", #action='store_const', nargs=1, required=False, choices=['min', 'max', 'mean', 'all']) parser.add_argument("--pstats", help="Profile stats for: case[:first] | case:last | case:step", #action='store_const', nargs=1, required=False) parser.add_argument("--no-corr", help="No correction", action='store_const', const=1, required=False) args = parser.parse_args() db_name = args.db[0] if args.plot: plot_opt = args.plot[0] benv = BenchEnv(db_name=db_name) bench_name = benv.bench_list[0] if args.summary: bench = BenchmarkIt.load(env=benv, name=bench_name) print("List of cases: {}".format(", ".join(bench.case_names))) sys.exit(0) corr = True if args.no_corr: corr = False bench = BenchmarkIt.load(env=benv, name=bench_name) if args.cases: cases = args.cases else: cases = bench.case_names print_banner("Cases: {}".format(" ".join(cases))) for case in cases: print_banner("Case: {}".format(case)) df = bench.to_df(case=case, corrected=corr) print(tabulate(df, headers='keys', tablefmt='psql')) if args.plot: bench.plot(cases=cases, corrected=corr, plot_opt=plot_opt) #bench.prof_stats("P10sH5MinMax") #dump_table('measurement_tbl', 'prof.db') if args.pstats: case_step = args.pstats[0] if ':' not in case_step: case = case_step step = 'first' else: case, step = case_step.split(':', 1) bench.prof_stats(case, step) ``` #### File: progressivis/examples/test_multiclass_k_clusters.py ```python from progressivis import Scheduler, Every#, log_level from progressivis.cluster import MBKMeans, MBKMeansFilter from progressivis.io import CSVLoader from progressivis.vis import MCScatterPlot from progressivis.datasets import get_dataset from progressivis.stats import RandomTable from progressivis.utils.psdict import PsDict import pandas as pd import numpy as np import os.path import tempfile from progressivis.datasets.random import generate_random_multivariate_normal_csv as gen_csv try: s = scheduler except NameError: s = Scheduler() #log_level(package="progressivis.cluster") #dir_name = tempfile.mkdtemp(prefix='progressivis_tmp_') dir_name = os.path.join(tempfile.gettempdir(), 'progressivis_tmp_') os.makedirs(dir_name, exist_ok=True) file_name = os.path.join(dir_name, "foobar.csv") gen_csv(file_name, rows=99999, reset=True) #, header='_0,_1', reset=False) data = CSVLoader(file_name, skipinitialspace=True, header=None, index_col=False,scheduler=s) n_clusters = 3 mbkmeans = MBKMeans(columns=['_0', '_1'], n_clusters=n_clusters, batch_size=100, tol=0.01, is_input=False, scheduler=s) classes = [] for i in range(n_clusters): cname = f"k{i}" filt = MBKMeansFilter(i) filt.create_dependent_modules(mbkmeans, data, 'table') classes.append({'name': cname, 'x_column': '_0', 'y_column': '_1', 'sample': mbkmeans if i==0 else None, 'input_module': filt, 'input_slot': 'table'}) sp = MCScatterPlot(scheduler=s, classes=classes) sp.create_dependent_modules() for i in range(n_clusters): cname = f"k{i}" sp[cname].min_value._table = PsDict({'_0': -np.inf, '_1': -np.inf}) sp[cname].max_value._table = PsDict({'_0': np.inf, '_1': np.inf}) mbkmeans.input.table = data.output.table mbkmeans.create_dependent_modules() sp.move_point = mbkmeans.moved_center # for input management def myprint(d): if d['convergence']!='unknown': print(d) else: print('.', end='') prn = Every(scheduler=s, proc=print) prn.input.df = mbkmeans.output.conv if __name__ == '__main__': #data.start() #s.join() aio.run(s.start()) ``` #### File: progressivis/examples/test_scatterplot.py ```python from progressivis import Scheduler, Every from progressivis.vis import ScatterPlot from progressivis.io import CSVLoader from progressivis.datasets import get_dataset def filter_(df): l = df['pickup_longitude'] return df[(l < -70) & (l > -80) ] def print_len(x): if x is not None: print(len(x)) #log_level() try: s = scheduler except: s = Scheduler() csv = CSVLoader(get_dataset('bigfile'),header=None,index_col=False,force_valid_ids=True,scheduler=s) pr = Every(scheduler=s) pr.input.df = csv.output.table scatterplot = ScatterPlot(x_column='_1', y_column='_2', scheduler=s) scatterplot.create_dependent_modules(csv,'table') if __name__=='__main__': csv.start() s.join() print(len(csv.df())) ``` #### File: progressivis/core/changemanager_dict.py ```python from .changemanager_base import BaseChangeManager from ..utils.psdict import PsDict from ..table.tablechanges import TableChanges from .slot import Slot import copy class DictChangeManager(BaseChangeManager): """ Manage changes that occured in a DataFrame between runs. """ def __init__(self, slot, buffer_created=True, buffer_updated=True, buffer_deleted=True, buffer_exposed=False, buffer_masked=False): super(DictChangeManager, self).__init__( slot, buffer_created, buffer_updated, buffer_deleted, buffer_exposed, buffer_masked) self._last_dict = None data = slot.data() if data.changes is None: data.changes = TableChanges() def reset(self, name=None): super(DictChangeManager, self).reset(name) self._last_dict = None def update(self, run_number, data, mid): # pylint: disable=unused-argument assert isinstance(data, PsDict) if data is None or (run_number != 0 and run_number <= self._last_update): return data.fix_indices() last_dict = self._last_dict if last_dict is None: data.changes.add_created(data.ids) else: data.changes.add_created(data.new_indices(last_dict)) data.changes.add_updated(data.updated_indices(last_dict)) data.changes.add_deleted(data.deleted_indices(last_dict)) changes = data.compute_updates(self._last_update, run_number, mid) self._last_dict = copy.copy(data) self._last_update = run_number self._row_changes.combine(changes, self.created.buffer, self.updated.buffer, self.deleted.buffer) Slot.add_changemanager_type(PsDict, DictChangeManager) ``` #### File: progressivis/core/config.py ```python import os from contextlib import contextmanager options = {} default_values = {} def get_default_val(pat): return default_values.get(pat) def _get_option(pat, default_val=None): return options[pat] if pat in options else default_val def _set_option(pat, val, default_val=None): options[pat] = val if default_val is not None: default_values[pat] = default_val def _register_option(pat, val, default_val=None): _set_option(pat, val, default_val) get_option = _get_option set_option = _set_option register_option = _register_option class option_context(object): def __init__(self, *args): if not (len(args) % 2 == 0 and len(args) >= 2): raise ValueError('Need to invoke as' 'option_context(pat, val, [(pat, val), ...)).') self.ops = list(zip(args[::2], args[1::2])) self.undo = None def __enter__(self): undo = [] for pat, val in self.ops: undo.append((pat, get_option(pat))) self.undo = undo for pat, val in self.ops: set_option(pat, val) def __exit__(self, *args): if self.undo: for pat, val in self.undo: set_option(pat, val) @contextmanager def config_prefix(prefix): global get_option, set_option, register_option def wrap(func): def inner(key, *args, **kwds): pkey = '%s.%s' % (prefix, key) return func(pkey, *args, **kwds) return inner __get_option = get_option __set_option = set_option __register_option = register_option set_option = wrap(set_option) get_option = wrap(get_option) register_option = wrap(register_option) yield None set_option = __set_option get_option = __get_option register_option = __register_option storage_ = os.getenv('PROGRESSIVIS_STORAGE') if storage_ is None: storage_ = 'mmap' if len(options) == 0: register_option('display.precision', 6) register_option('display.float_format', None) register_option('display.column_space', 12) register_option('display.max_rows', 12) register_option('display.max_columns', 20) register_option('storage.default', storage_) ``` #### File: progressivis/core/scheduler.py ```python import logging import functools from timeit import default_timer import time from .dataflow import Dataflow from . import aio from ..utils.errors import ProgressiveError logger = logging.getLogger(__name__) __all__ = ['Scheduler'] KEEP_RUNNING = 5 SHORTCUT_TIME = 1.5 class Scheduler(object): "Base Scheduler class, runs progressive modules" # pylint: disable=too-many-public-methods,too-many-instance-attributes default = None _last_id = 0 @classmethod def or_default(cls, scheduler): "Return the specified scheduler of, in None, the default one." return scheduler or cls.default def __init__(self, interaction_latency=1): if interaction_latency <= 0: raise ProgressiveError('Invalid interaction_latency, ' 'should be strictly positive: %s' % interaction_latency) # same as clear below Scheduler._last_id += 1 self._name = Scheduler._last_id self._modules = {} self._dependencies = None self._running = False self._stopped = True self._runorder = None self._new_modules = None self._new_dependencies = None self._new_runorder = None self._new_reachability = None self._start = None self._step_once = False self._run_number = 0 self._tick_procs = [] self._tick_once_procs = [] self._idle_procs = [] self.version = 0 self._run_list = [] self._run_index = 0 self._module_selection = None self._selection_target_time = -1 self.interaction_latency = interaction_latency self._reachability = {} self._start_inter = 0 self._hibernate_cond = None self._keep_running = KEEP_RUNNING self.dataflow = Dataflow(self) self.module_iterator = None self._enter_cnt = 1 self._lock = None self._task = None # self.runners = set() self.shortcut_evt = None self.coros = [] async def shortcut_manager(self): if self.shortcut_evt is None: self.shortcut_evt = aio.Event() while True: await self.shortcut_evt.wait() if self._stopped or not self._run_list: break await aio.sleep(SHORTCUT_TIME) self._module_selection = None self.shortcut_evt.clear() def new_run_number(self): self._run_number += 1 return self._run_number def __enter__(self): if self.dataflow is None: self.dataflow = Dataflow(self) self._enter_cnt = 1 else: self._enter_cnt += 1 return self.dataflow def __exit__(self, exc_type, exc_value, traceback): self._enter_cnt -= 1 if exc_type is None: if self._enter_cnt == 0: self._commit(self.dataflow) self.dataflow = None else: logger.info('Aborting Dataflow with exception %s', exc_type) if self._enter_cnt == 0: self.dataflow.aborted() self.dataflow = None @property def name(self): "Return the scheduler id" return str(self._name) def timer(self): "Return the scheduler timer." if self._start is None: self._start = default_timer() return 0 return default_timer()-self._start def run_queue_length(self): "Return the length of the run queue" return len(self._run_list) def to_json(self, short=True): "Return a dictionary describing the scheduler" msg = {} mods = {} for (name, module) in self.modules().items(): mods[name] = module.to_json(short=short) modules = sorted(mods.values(), key=functools.cmp_to_key(self._module_order)) msg['modules'] = modules msg['is_running'] = self.is_running() msg['is_terminated'] = self.is_terminated() msg['run_number'] = self.run_number() msg['status'] = 'success' return msg def _repr_html_(self): html_head = "<div type='schedule'>" html_head = """ <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style>""" html_end = "</div>" html_head += """ <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th>Id</th><th>Class</th><th>State</th><th>Last Update</th><th>Order</th> </tr> </thead> <tbody>""" columns = ['id', 'classname', 'state', 'last_update', 'order'] for mod in self._run_list: values = mod.to_json(short=True) html_head += "<tr>" html_head += "".join(["<td>%s</td>" % (values[column]) for column in columns]) html_end = "</tbody></table>" return html_head + html_end @staticmethod def set_default(): "Set the default scheduler." if not isinstance(Scheduler.default, Scheduler): Scheduler.default = Scheduler() def _before_run(self): logger.debug("Before run %d", self._run_number) def _after_run(self): pass async def start_impl(self, tick_proc=None, idle_proc=None, coros=()): if self._lock is None: self._lock = aio.Lock() async with self._lock: if self._task is not None: raise ProgressiveError('Trying to start scheduler task' ' inside scheduler task') self._task = True self.coros = list(coros) if tick_proc: assert callable(tick_proc) or aio.iscoroutinefunction(tick_proc) self._tick_procs = [tick_proc] else: self._tick_procs = [] if idle_proc: assert callable(idle_proc) self._idle_procs = [idle_proc] else: self._idle_procs = [] await self.run() async def start(self, tick_proc=None, idle_proc=None, coros=(), persist=False): if not persist: return await self.start_impl(tick_proc, idle_proc, coros) try: from ..storage import init_temp_dir_if, cleanup_temp_dir, temp_dir itd_flag = init_temp_dir_if() if itd_flag: print("Init TEMP_DIR in start()", temp_dir()) return await self.start_impl(tick_proc, idle_proc, coros) finally: if itd_flag: cleanup_temp_dir() def task_start(self, *args, **kwargs): return aio.create_task(self.start(*args, **kwargs)) def _step_proc(self, s, run_number): # pylint: disable=unused-argument self.task_stop() async def step(self): "Start the scheduler for on step." await self.start(tick_proc=self._step_proc) def on_tick(self, tick_proc): "Set a procedure to call at each tick." assert callable(tick_proc) self._tick_procs.append(tick_proc) def remove_tick(self, tick_proc): "Remove a tick callback" self._tick_procs.remove(tick_proc) def on_tick_once(self, tick_proc): """ Add a oneshot function that will be run at the next scheduler tick. This is especially useful for setting up module connections. """ assert callable(tick_proc) self._tick_once_procs.append(tick_proc) def remove_tick_once(self, tick_proc): "Remove a tick once callback" self._tick_once_procs.remove(tick_proc) def on_idle(self, idle_proc): "Set a procedure that will be called when there is nothing else to do." assert callable(idle_proc) self._idle_procs.append(idle_proc) def remove_idle(self, idle_proc): "Remove an idle callback." assert callable(idle_proc) self._idle_procs.remove(idle_proc) def idle_proc(self): pass async def run(self): "Run the modules, called by start()." global KEEP_RUNNING # from .sentinel import Sentinel # sl = Sentinel(scheduler=self) if self.dataflow: assert self._enter_cnt == 1 self._commit(self.dataflow) self.dataflow = None self._enter_cnt = 0 self._stopped = False self._running = True self._start = default_timer() self._before_run() # if self._new_modules: # self._update_modules() runners = [self._run_loop(), self.shortcut_manager()] runners.extend([aio.create_task(coro) for coro in self.coros]) # runners.append(aio.create_task(self.unlocker(), "unlocker")) # TODO: find the "right" initialisation value ... KEEP_RUNNING = min(50, len(self._run_list) * 3) self._keep_running = KEEP_RUNNING await aio.gather(*runners) modules = [self._modules[m] for m in self._runorder] for module in reversed(modules): module.ending() self._running = False self._stopped = True self._after_run() self.done() async def _run_loop(self): """Main scheduler loop.""" # pylint: disable=broad-except if self._hibernate_cond is None: self._hibernate_cond = aio.Condition() for module in self._next_module(): if self.no_more_data() and self.all_blocked() and \ self.is_waiting_for_input(): if not self._keep_running: async with self._hibernate_cond: await self._hibernate_cond.wait() if self._keep_running: self._keep_running -= 1 if not self._consider_module(module): logger.info("Module %s not scheduled" " because of interactive mode", module.name) continue # increment the run number, even if we don't call the module self._run_number += 1 # import pdb; pdb.set_trace() module.prepare_run(self._run_number) if not(module.is_ready() or self.has_input() or module.is_greedy()): logger.info("Module %s not scheduled" " because not ready and has no input", module.name) continue await self._run_tick_procs() module.run(self._run_number) await module.after_run(self._run_number) await aio.sleep(0) if self.shortcut_evt is not None: self.shortcut_evt.set() def _next_module(self): """ Generator the yields a possibly infinite sequence of modules. Handles order recomputation and starting logic if needed. """ self._run_index = 0 first_run = self._run_number input_mode = self.has_input() self._start_inter = 0 while not self._stopped: # Apply changes in the dataflow if self._new_modules: self._update_modules() self._run_index = 0 first_run = self._run_number # If run_list empty, we're done if not self._run_list: break # Check for interactive input mode if input_mode != self.has_input(): if input_mode: # end input mode logger.info('Ending interactive mode after %s s', default_timer()-self._start_inter) self._start_inter = 0 input_mode = False else: self._start_inter = default_timer() logger.info('Starting interactive mode at %s', self._start_inter) input_mode = True # Restart from beginning self._run_index = 0 first_run = self._run_number module = self._run_list[self._run_index] self._run_index += 1 # allow it to be reset yield module if self._run_index >= len(self._run_list): # end of modules self._end_of_modules(first_run) first_run = self._run_number def all_blocked(self): "Return True if all the modules are blocked, False otherwise" from .module import Module for module in self._run_list: if module.state != Module.state_blocked: return False return True def is_waiting_for_input(self): "Return True if there is at least one input module" for module in self._run_list: if module.is_input(): return True return False def no_more_data(self): "Return True if at least one module has data input." for module in self._run_list: if module.is_data_input(): return False return True def _commit(self, dataflow): assert dataflow.version == self.version self._new_runorder = dataflow.order_modules() # raises if invalid self._new_modules = dataflow.modules() self._new_dependencies = dataflow.inputs dataflow._compute_reachability(self._new_dependencies) self._new_reachability = dataflow.reachability self.dataflow.committed() self.version += 1 # only increment if valid # The slots in the module,_modules, and _runorder will be updated # in _update_modules when the scheduler decides it is time to do so. if not self._running: # no need to delay updating the scheduler self._update_modules() def _update_modules(self): if not self._new_modules: return prev_keys = set(self._modules.keys()) modules = {module.name: module for module in self._new_modules} keys = set(modules.keys()) added = keys - prev_keys deleted = prev_keys - keys if deleted: logger.info("Scheduler deleted modules %s", deleted) for mid in deleted: self._modules[mid].ending() self._modules = modules if not(deleted or added): logger.info("Scheduler updated with no new module(s)") self._dependencies = self._new_dependencies self._new_dependencies = None self._reachability = self._new_reachability self._new_reachability = None logger.info("New dependencies: %s", self._dependencies) for mid, slots in self._dependencies.items(): modules[mid].reconnect(slots) if added: logger.info("Scheduler adding modules %s", added) for mid in added: modules[mid].starting() self._new_modules = None self._run_list = [] self._runorder = self._new_runorder self._new_runorder = None logger.info("New modules order: %s", self._runorder) for i, mid in enumerate(self._runorder): module = self._modules[mid] self._run_list.append(module) module.order = i def _end_of_modules(self, first_run): # Reset interaction mode #self._proc_interaction_opts() self._selection_target_time = -1 new_list = [m for m in self._run_list if not m.is_terminated()] self._run_list = new_list if first_run == self._run_number: # no module ready has_run = False for proc in self._idle_procs: # pylint: disable=broad-except try: logger.debug('Running idle proc') proc(self, self._run_number) has_run = True except Exception as exc: logger.error(exc) if not has_run: logger.info('sleeping %f', 0.2) time.sleep(0.2) self._run_index = 0 async def idle_proc_runner(self): has_run = False for proc in self._idle_procs: # pylint: disable=broad-except try: logger.debug('Running idle proc') if aio.iscoroutinefunction(proc): await proc(self, self._run_number) else: proc(self, self._run_number) has_run = True except Exception as exc: logger.error(exc) if not has_run: logger.info('sleeping %f', 0.2) await aio.sleep(0.2) async def _run_tick_procs(self): # pylint: disable=broad-except for proc in self._tick_procs: logger.debug('Calling tick_proc') try: if aio.iscoroutinefunction(proc): await proc(self, self._run_number) else: proc(self, self._run_number) except Exception as exc: logger.warning(exc) for proc in self._tick_once_procs: try: if aio.iscoroutinefunction(proc): await proc() else: proc(self, self._run_number) except Exception as exc: logger.warning(exc) self._tick_once_procs = [] async def stop(self): "Stop the execution." if self.shortcut_evt is not None: self.shortcut_evt.set() async with self._hibernate_cond: self._keep_running = KEEP_RUNNING self._hibernate_cond.notify() self._stopped = True def task_stop(self): if self.is_running(): return aio.create_task(self.stop()) def is_running(self): "Return True if the scheduler is currently running." return self._running def is_stopped(self): "Return True if the scheduler is stopped." return self._stopped def is_terminated(self): "Return True if the scheduler is terminated." for module in self.modules().values(): if not module.is_terminated(): return False return True def done(self): self._task = None logger.info('Task finished') def __len__(self): return len(self._modules) def exists(self, moduleid): "Return True if the moduleid exists in this scheduler." return moduleid in self def modules(self): "Return the dictionary of modules." return self._modules def __getitem__(self, mid): if self.dataflow: return self.dataflow[mid] return self._modules.get(mid, None) def __delitem__(self, name): if self.dataflow: del self.dataflow[name] else: raise ProgressiveError('Cannot delete module %s' 'outside a context' % name) def __contains__(self, name): if self.dataflow: return name in self.dataflow return name in self._modules def run_number(self): "Return the last run number." return self._run_number async def for_input(self, module): """ Notify this scheduler that the module has received input that should be served fast. """ async with self._hibernate_cond: self._keep_running = KEEP_RUNNING self._hibernate_cond.notify() sel = self._reachability.get(module.name, False) if sel: if not self._module_selection: logger.info('Starting input management') self._module_selection = set(sel) self._selection_target_time = (self.timer() + self.interaction_latency) else: self._module_selection.update(sel) logger.debug('Input selection for module: %s', self._module_selection) self.shortcut_evt.set() return self.run_number()+1 def has_input(self): "Return True of the scheduler is in input mode" if self._module_selection is None: return False if not self._module_selection: # empty, cleanup logger.info('Finishing input management') self._module_selection = None self._selection_target_time = -1 return False return True def _consider_module(self, module): # FIxME For now, accept all modules in input management if not self.has_input(): return True if module.name in self._module_selection: # self._module_selection.remove(module.name) logger.debug('Module %s ready for scheduling', module.name) return True logger.debug('Module %s NOT ready for scheduling', module.name) return False def time_left(self): "Return the time left to run for this slot." if self._selection_target_time <= 0 and not self.has_input(): logger.error('time_left called with no target time') return 0 return max(0, self._selection_target_time - self.timer()) def fix_quantum(self, module, quantum): "Fix the quantum of the specified module" if self.has_input() and module.name in self._module_selection: quantum = self.time_left() / len(self._module_selection) if quantum == 0: quantum = 0.1 logger.info('Quantum is 0 in %s, setting it to' ' a reasonable value', module.name) return quantum def close_all(self): "Close all the resources associated with this scheduler." for mod in self.modules().values(): # pylint: disable=protected-access if (hasattr(mod, '_table') and mod._table is not None and mod._table.storagegroup is not None): mod._table.storagegroup.close_all() if (hasattr(mod, '_params') and mod._params is not None and mod._params.storagegroup is not None): mod._params.storagegroup.close_all() if (hasattr(mod, 'storagegroup') and mod.storagegroup is not None): mod.storagegroup.close_all() @staticmethod def _module_order(x, y): if 'order' in x: if 'order' in y: return x['order']-y['order'] return 1 if 'order' in y: return -1 return 0 if Scheduler.default is None: Scheduler.default = Scheduler() ``` #### File: progressivis/core/tracer_base.py ```python from abc import ABCMeta, abstractmethod class Tracer(metaclass=ABCMeta): default = None @abstractmethod def start_run(self, ts, run_number, **kwds): pass @abstractmethod def end_run(self, ts, run_number, **kwds): pass @abstractmethod def run_stopped(self, ts, run_number, **kwds): pass @abstractmethod def before_run_step(self, ts, run_number, **kwds): pass @abstractmethod def after_run_step(self, ts, run_number, **kwds): pass @abstractmethod def exception(self, ts, run_number, **kwds): pass @abstractmethod def terminated(self, ts, run_number, **kwds): pass @abstractmethod def trace_stats(self, max_runs=None): _ = max_runs # keeps pylint mute return [] ``` #### File: progressivis/datasets/random.py ```python import numpy as np import csv import os import os.path # filename='data/bigfile.csv' # rows = 1000000 # cols = 30 def generate_random_csv(filename, rows, cols, seed=1234): if os.path.exists(filename): return filename try: with open(filename, 'w') as csvfile: writer = csv.writer(csvfile) np.random.seed(seed=seed) for _ in range(0,rows): row=list(np.random.normal(loc=0.5, scale=0.8, size=cols)) writer.writerow(row) except (KeyboardInterrupt, SystemExit): os.remove(filename) raise return filename def generate_random_multivariate_normal_csv(filename, rows, seed=1234, header=None, reset=False): """ Adapted from: https://github.com/e-/PANENE/blob/master/examples/kernel_density/online.py Author: <NAME> Date: February 2019 """ if isinstance(filename, str) and os.path.exists(filename) and not reset: return filename def mv(n, mean, cov): return np.random.multivariate_normal(mean, cov, size=(n)).astype(np.float32) N = rows//3 X = np.concatenate(( mv(N, [0.1, 0.3], [[0.01, 0], [0, 0.09]]), mv(N, [0.7, 0.5], [[0.04, 0], [0, 0.01]]), mv(N, [-0.4, -0.3], [[0.09, 0.04], [0.04, 0.02]]) ), axis=0) np.random.shuffle(X) kw = {} if header is None else dict(header=header, comments='') np.savetxt(filename, X, delimiter=',', **kw) return filename ``` #### File: progressivis/io/vec_loader.py ```python import numpy as np import re import logging logger = logging.getLogger(__name__) from bz2 import BZ2File from gzip import GzipFile from progressivis.table.table import Table from progressivis.table.module import TableModule from sklearn.feature_extraction import DictVectorizer PATTERN = re.compile(r'\(([0-9]+),([-+.0-9]+)\)[ ]*') def vec_loader(filename, dtype=np.float64): """Loads a tf-idf file in .vec format (or .vec.bz2). Loads a file and returns a scipy sparse matrix of document features. >>> from progressivis.datasets import get_dataset >>> mat,features=vec_loader(get_dataset('warlogs')) >>> mat.shape (3077, 4337) """ openf=open if filename.endswith('.bz2'): openf=BZ2File elif filename.endswith('.gz') or filename.endswith('.Z'): openf=GzipFile with openf(filename) as f: dataset = [] for d in f: doc = {} for match in re.finditer(PATTERN, d.decode('ascii', errors='ignore')): termidx = int(match.group(1)) termfrx = dtype(match.group(2)) doc[termidx] = termfrx if len(doc)!=0: dataset.append(doc) dictionary = DictVectorizer(dtype=dtype,sparse=True) return (dictionary.fit_transform(dataset), dictionary.get_feature_names()) class VECLoader(TableModule): def __init__(self, filename, dtype=np.float64, **kwds): super(VECLoader, self).__init__(**kwds) self._dtype = dtype self.default_step_size = kwds.get('chunksize', 10) # initial guess openf=open if filename.endswith('.bz2'): openf=BZ2File elif filename.endswith('.gz') or filename.endswith('.Z'): openf=GzipFile self.f = openf(filename) # When created with a specified chunksize, it returns the parser self._rows_read = 0 self._csr_matrix = None self.result = Table(self.generate_table_name('documents'), dshape="{document: var * float32}", fillvalues={'document': 0}, storagegroup=self.storagegroup) def rows_read(self): return self._rows_read def toarray(self): if self._csr_matrix is None: docs = self.table()['document'] dv=DictVectorizer() #TODO: race condition when using threads, cleanup_run can reset between #setting the value here and returning it at the next instruction self._csr_matrix = dv.fit_transform(docs) return self._csr_matrix def cleanup_run(self, run_number): self._csr_matrix = None super(VECLoader, self).cleanup_run(run_number) def run_step(self,run_number,step_size, howlong): if step_size==0: # bug logger.error('Received a step_size of 0') #return self._return_run_step(self.state_ready, steps_run=0, creates=0) print('step_size %d'%step_size) if self.f is None: raise StopIteration() dataset = [] dims = 0 try: while len(dataset) < step_size: line = next(self.f) line=line.rstrip(b'\n\r') if len(line)==0: continue doc = {} for match in re.finditer(PATTERN, line): termidx = int(match.group(1)) termfrx = self._dtype(match.group(2)) doc[termidx] = termfrx dims = max(dims, termidx) if len(doc)!=0: dataset.append(doc) except StopIteration: self.f.close() self.f = None creates = len(dataset) if creates==0: raise StopIteration() dims += 1 documents = self.result['document'] if self._rows_read == 0: documents.set_shape((dims,)) else: current_dims = documents.shape[1] if current_dims < dims: documents.set_shape((dims,)) else: dims = current_dims self.result.resize(self._rows_read+creates) tmp = np.zeros(dims, dtype=np.float) i = self._rows_read #with self.lock: if True: for row in dataset: tmp[:] = 0 for (col, val) in row.items(): tmp[col] = val documents[i] = tmp i += 1 self._rows_read += creates return self._return_run_step(self.state_ready, steps_run=creates, creates=creates) if __name__ == "__main__": import doctest doctest.testmod() ``` #### File: progressivis/linalg/linear_map.py ```python import numpy as np from ..core.utils import indices_len, fix_loc, filter_cols from ..table.module import TableModule from ..table.table import Table from ..table.dshape import dshape_projection from ..core.decorators import process_slot, run_if_any from .. import SlotDescriptor class LinearMap(TableModule): inputs = [SlotDescriptor('vectors', type=Table, required=True), SlotDescriptor('transformation', type=Table, required=True)] def __init__(self, transf_columns=None, **kwds): super().__init__(**kwds) self._k_dim = len(self._columns) if self._columns else None self._transf_columns = transf_columns self._kwds = {} # self._filter_kwds(kwds, ufunc) self._transf_cache = None def reset(self): if self.result is not None: self.result.resize(0) self._transf_cache = None @process_slot("vectors", "transformation", reset_cb="reset") @run_if_any def run_step(self, run_number, step_size, howlong): """ vectors: (n, k) transf: (k, m) result: (n, m) """ with self.context as ctx: vectors = ctx.vectors.data() if not self._k_dim: self._k_dim = len(vectors.columns) trans = ctx.transformation transformation = trans.data() trans.clear_buffers() if len(transformation) < self._k_dim: if trans.output_module.state <= self.state_blocked: return self._return_run_step(self.state_blocked, steps_run=0) else: # transformation.output_module is zombie etc.=> no hope raise ValueError("vectors size don't match " "the transformation matrix shape") elif len(transformation) > self._k_dim: raise ValueError("vectors size don't match " " the transformation matrix shape (2)") # here len(transformation) == self._k_dim if self._transf_cache is None: tf = filter_cols(transformation, self._transf_columns) self._transf_cache = tf.to_array() indices = ctx.vectors.created.next(step_size) # returns a slice steps = indices_len(indices) if steps == 0: return self._return_run_step(self.state_blocked, steps_run=0) vs = self.filter_columns(vectors, fix_loc(indices)) vs = vs.to_array() res = np.matmul(vs, self._transf_cache) if self.result is None: dshape_ = dshape_projection(transformation, self._transf_columns) self.result = Table(self.generate_table_name('linear_map'), dshape=dshape_, create=True) self.result.append(res) return self._return_run_step(self.next_state(ctx.vectors), steps_run=steps) ``` #### File: progressivis/linalg/nexpr.py ```python import numpy as np from ..core.utils import indices_len, fix_loc, filter_cols from ..table.module import TableModule from ..table.table import Table import numexpr as ne def make_local(df, px): arr = df.to_array() result = {} class _Aux: pass aux = _Aux() for i, n in enumerate(df.columns): key = f'_{px}__{i}' result[key] = arr[:, i] setattr(aux, n, key) return aux, result class NumExprABC(TableModule): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.ref_expr = self.expr def reset(self): if self.result is not None: self.result.resize(0) def run_step(self, run_number, step_size, howlong): """ """ reset_all = False for slot in self._input_slots.values(): if slot is None: continue if slot.updated.any() or slot.deleted.any(): reset_all = True break if reset_all: for slot in self._input_slots.values(): slot.reset() slot.update(run_number) self.reset() for slot in self._input_slots.values(): if slot is None: continue if not slot.has_buffered(): return self._return_run_step(self.state_blocked, steps_run=0) if self.result is None: if self.has_output_datashape("result"): dshape_ = self.get_output_datashape("result") else: dshape_ = self.get_datashape_from_expr() self.ref_expr = {k.split(":")[0]:v for (k, v) in self.expr.items()} self.result = Table(self.generate_table_name(f'num_expr'), dshape=dshape_, create=True) local_env = {} vars_dict = {} for n, sl in self._input_slots.items(): if n == '_params': continue step_size = min(step_size, sl.created.length()) data_ = sl.data() if step_size == 0 or data_ is None: return self._return_run_step(self.state_blocked, steps_run=0) first_slot = None for n, sl in self._input_slots.items(): if n == '_params': continue if first_slot is None: first_slot = sl indices = sl.created.next(step_size) df = self.filter_columns(sl.data(), fix_loc(indices), n) fobj, dict_ = make_local(df, n) local_env.update(dict_) vars_dict[n] = fobj result = {} steps = None for c in self.result.columns: col_expr_ = self.ref_expr[c] col_expr_ = col_expr_.format(**vars_dict) result[c] = ne.evaluate(col_expr_, local_dict=local_env) if steps is None: steps = len(result[c]) self.result.append(result) return self._return_run_step(self.next_state(first_slot), steps_run=steps) ``` #### File: progressivis/stats/histogram1d.py ```python from ..core.utils import indices_len, fix_loc, integer_types from ..core.slot import SlotDescriptor from ..table.module import TableModule from ..table.table import Table from ..utils.psdict import PsDict from ..core.decorators import * import numpy as np import logging logger = logging.getLogger(__name__) class Histogram1D(TableModule): """ """ parameters = [('bins', np.dtype(int), 128), ('delta', np.dtype(float), -5)] # 5% inputs = [ SlotDescriptor('table', type=Table, required=True), SlotDescriptor('min', type=PsDict, required=True), SlotDescriptor('max', type=PsDict, required=True) ] schema = "{ array: var * int32, min: float64, max: float64, time: int64 }" def __init__(self, column, **kwds): super(Histogram1D, self).__init__(dataframe_slot='table', **kwds) self.column = column self.total_read = 0 self.default_step_size = 1000 self._histo = None self._edges = None self._bounds = None self._h_cnt = 0 self.result = Table(self.generate_table_name('Histogram1D'), dshape=Histogram1D.schema, chunks={'array': (16384, 128)}, create=True) def reset(self): self._histo = None self._edges = None self._bounds = None self.total_read = 0 self._h_cnt = 0 if self.result: self.result.resize(0) def is_ready(self): if self._bounds and self.get_input_slot('table').created.any(): return True return super(Histogram1D, self).is_ready() @process_slot("table", reset_cb="reset") @process_slot("min", "max", reset_if=False) @run_if_any def run_step(self, run_number, step_size, howlong): with self.context as ctx: dfslot = ctx.table min_slot = ctx.min max_slot = ctx.max if not (dfslot.created.any() or min_slot.has_buffered() or max_slot.has_buffered()): logger.info('Input buffers empty') return self._return_run_step(self.state_blocked, steps_run=0) min_slot.clear_buffers() max_slot.clear_buffers() bounds = self.get_bounds(min_slot, max_slot) if bounds is None: logger.debug('No bounds yet at run %d', run_number) return self._return_run_step(self.state_blocked, steps_run=0) bound_min, bound_max = bounds if self._bounds is None: delta = self.get_delta(*bounds) self._bounds = (bound_min - delta, bound_max + delta) logger.info("New bounds at run %d: %s", run_number, self._bounds) else: (old_min, old_max) = self._bounds delta = self.get_delta(*bounds) if(bound_min < old_min or bound_max > old_max) \ or bound_min > (old_min + delta) or bound_max < (old_max - delta): self._bounds = (bound_min - delta, bound_max + delta) logger.info('Updated bounds at run %d: %s', run_number, self._bounds) dfslot.reset() dfslot.update(run_number) min_slot.reset() min_slot.update(run_number) max_slot.reset() max_slot.update(run_number) self.reset() return self._return_run_step(self.state_blocked, steps_run=0) (curr_min, curr_max) = self._bounds if curr_min >= curr_max: logger.error('Invalid bounds: %s', self._bounds) return self._return_run_step(self.state_blocked, steps_run=0) input_df = dfslot.data() indices = dfslot.created.next(step_size) # returns a slice or ... ? steps = indices_len(indices) logger.info('Read %d rows', steps) self.total_read += steps column = input_df[self.column] column = column.loc[fix_loc(indices)] bins = self._edges if self._edges is not None else self.params.bins histo = None if len(column) > 0: histo, self._edges = np.histogram(column, bins=bins, range=[curr_min, curr_max], density=False) self._h_cnt += len(column) if self._histo is None: self._histo = histo elif histo is not None: self._histo += histo values = {'array': [self._histo], 'min': [curr_min], 'max': [curr_max], 'time': [run_number]} self.result['array'].set_shape((self.params.bins,)) self.result.append(values) return self._return_run_step(self.next_state(dfslot), steps_run=steps) def get_bounds(self, min_slot, max_slot): min_df = min_slot.data() if len(min_df) == 0 and self._bounds is None: return None min_ = min_df[self.column] max_df = max_slot.data() if len(max_df) == 0 and self._bounds is None: return None max_ = max_df[self.column] return (min_, max_) def get_delta(self, min_, max_): delta = self.params['delta'] extent = max_ - min_ if delta < 0: return extent*delta/-100.0 def get_histogram(self): min_ = self._bounds[0] if self._bounds else None max_ = self._bounds[1] if self._bounds else None edges = self._edges if edges is None: edges = [] elif isinstance(edges, integer_types): edges = [edges] else: edges = edges.tolist() return {"edges": edges, "values": self._histo.tolist() if self._histo else [], "min": min_, "max": max_} def is_visualization(self): return True def get_visualization(self): return "histogram1d" def to_json(self, short=False): json = super(Histogram1D, self).to_json(short) if short: return json return self._hist_to_json(json) def _hist_to_json(self, json): json['histogram'] = self.get_histogram() return json ``` #### File: progressivis/stats/random_table.py ```python from collections import OrderedDict import logging import numpy as np from ..utils.errors import ProgressiveError, ProgressiveStopIteration from ..table.module import TableModule from ..table.table import Table from ..table.constant import Constant from ..utils.psdict import PsDict from ..core.utils import integer_types logger = logging.getLogger(__name__) RAND = np.random.rand class RandomTable(TableModule): "Random table generator module" def __init__(self, columns, rows=-1, random=RAND, dtype='float64',throttle=False, **kwds): super(RandomTable, self).__init__(**kwds) self.default_step_size = 1000 if isinstance(columns, integer_types): self.columns = ["_%d"%i for i in range(1, columns+1)] elif isinstance(columns, (list, np.ndarray)): self.columns = columns else: raise ProgressiveError('Invalid type for columns') self.rows = rows self.random = random if throttle and isinstance(throttle, integer_types+(float,)): self.throttle = throttle else: self.throttle = False dshape = ", ".join([f"{col}: {dtype}" for col in self.columns]) dshape = "{" + dshape + "}" self.result = Table(self.generate_table_name('table'), dshape=dshape, create=True) self.columns = self.result.columns def is_source(self): return True def run_step(self, run_number, step_size, howlong): if step_size == 0: logger.error('Received a step_size of 0') return self._return_run_step(self.state_ready, steps_run=0) logger.info('generating %d lines', step_size) if self.throttle: step_size = np.min([self.throttle, step_size]) if self.rows >= 0 and (len(self.result)+step_size) > self.rows: step_size = self.rows - len(self.result) logger.info('truncating to %d lines', step_size) if step_size <= 0: raise ProgressiveStopIteration values = OrderedDict() for column in self.columns: s = self.random(step_size) values[column] = s self.result.append(values) if len(self.result) == self.rows: next_state = self.state_zombie elif self.throttle: next_state = self.state_blocked else: next_state = self.state_ready return self._return_run_step(next_state, steps_run=step_size) class RandomDict(Constant): def __init__(self, columns, **kwds): keys = [f'_{i}' for i in range(1, columns+1)] vals = np.random.rand(columns) super().__init__(PsDict(dict(zip(keys, vals))), **kwds) ``` #### File: progressivis/storage/base.py ```python from abc import ABCMeta, abstractmethod, abstractproperty from contextlib import contextmanager class StorageObject(metaclass=ABCMeta): @abstractproperty def name(self): pass @abstractproperty def attrs(self): pass @abstractproperty def __len__(self): pass class Attribute(metaclass=ABCMeta): @abstractmethod def __getitem__(self, name): pass @abstractmethod def __setitem__(self, name, value): pass @abstractmethod def __delitem__(self, name): pass @abstractmethod def __len__(self): pass @abstractmethod def __iter__(self): pass @abstractmethod def __contains__(self, name): pass class DatasetFactory(StorageObject): @abstractmethod def create_dataset(self, name, shape=None, dtype=None, data=None, **kwds): pass @abstractmethod def require_dataset(self, name, shape, dtype, exact=False, **kwds): pass @abstractmethod def __getitem__(self, name): pass @abstractmethod def __delitem__(self, name): pass @abstractmethod def __contains__(self, name): pass class Group(DatasetFactory): default = None default_internal = None @abstractmethod def create_dataset(self, name, shape=None, dtype=None, data=None, **kwds): pass @abstractmethod def require_dataset(self, name, shape, dtype, exact=False, **kwds): pass @abstractmethod def require_group(self, name): pass @abstractmethod def __getitem__(self, name): pass @abstractmethod def __delitem__(self, name): pass @abstractmethod def __contains__(self, name): pass def close_all(): pass class Dataset(StorageObject): @abstractproperty def shape(self): pass @abstractproperty def dtype(self): pass @abstractproperty def maxshape(self): pass @abstractproperty def fillvalue(self): pass @abstractproperty def chunks(self): pass @abstractmethod def resize(self, size, axis=None): pass @abstractproperty def size(self): pass @abstractmethod def __getitem__(self, args): pass @abstractmethod def __setitem__(self, args, val): pass def read_direct(self, dest, source_sel=None, dest_sel=None): dest[dest_sel] = self[source_sel] class StorageEngine(Group): _engines = dict() default = None def __init__(self, name, create_dataset_kwds=None): # print('# creating storage engine %s'% name) # import pdb; pdb.set_trace() assert name not in StorageEngine._engines self._name = name StorageEngine._engines[name] = self if StorageEngine.default is None: StorageEngine.default = self.name self._create_dataset_kwds = create_dataset_kwds or {} @staticmethod @contextmanager def default_engine(engine): if engine not in StorageEngine._engines: raise ValueError('Unknown storage engine %s', engine) saved = StorageEngine.default try: StorageEngine.default = engine yield saved finally: StorageEngine.default = saved @property def create_dataset_kwds(self): return self._create_dataset_kwds @property def name(self): return self._name def open(self, name, flags, **kwds): pass def close(self, name, flags, **kwds): pass def flush(self): pass @staticmethod def lookup(engine): default=StorageEngine._engines.get(StorageEngine.default) return StorageEngine._engines.get(engine, default) @staticmethod def engines(): return StorageEngine._engines ``` #### File: progressivis/table/hist_index.py ```python import operator import logging import numpy as np from progressivis.core.bitmap import bitmap from progressivis.core.slot import SlotDescriptor from progressivis.core.utils import (slice_to_arange, fix_loc) from .module import TableModule from . import Table from ..core.utils import indices_len from . import TableSelectedView APPROX = False logger = logging.getLogger(__name__) class _HistogramIndexImpl(object): "Implementation part of Histogram Index" # pylint: disable=too-many-instance-attributes def __init__(self, column, table, e_min, e_max, nb_bin): self.column = table[column] self.e_min = e_min self.e_max = e_max self.bitmaps = None self.bins = None self._sampling_size = 1000 self._perm_deviation = 0.1 # permitted deviation self._divide_threshold = 1000 # TODO: make it settable! self._divide_coef = 5 # TODO: make it settable! self._merge_threshold = 1000 # TODO: make it settable! self._merge_coef = 5 # TODO: make it settable! self._min_hist_size = 64 self._max_hist_size = 256 self._init_histogram(e_min, e_max, nb_bin) self.update_histogram(created=table.index) def _init_histogram(self, e_min, e_max, nb_bin): self.bins = np.linspace(e_min, e_max, nb_bin, endpoint=True) assert len(self.bins) == nb_bin self.bitmaps = [bitmap() for _ in range(nb_bin+1)] def _needs_division(self, size): len_c = len(self.column) len_b = len(self.bins) mean = float(len_c)/len_b if size < self._divide_threshold: return False return size > self._divide_coef*mean # def __reshape__still_inconclusive_variant(self, i): # "Change the bounds of the index if needed" # prev_ = sum([len(bm) for bm in self.bitmaps[:i]]) # p_ = (prev_ + len(self.bitmaps[i])/2.0)/len(self.column) * 100 # v = self._tdigest.percentile(p_) # try: # assert self.bins[i-1] < v < self.bins[i] # except: # import pdb;pdb.set_trace() # ids = np.array(self.bitmaps[i], np.int64) # values = self.column.loc[ids] # lower_bin = bitmap(ids[values < v]) # upper_bin = self.bitmaps[i] - lower_bin # np.insert(self.bins, i, v) # self.bitmaps.insert(i, lower_bin) # self.bitmaps[i] = upper_bin def show_histogram(self): "Print the histogram on the display" for i, bm in enumerate(self.bitmaps): print(i, len(bm), "="*len(bm)) def find_bin(self, elt): res = [] for i, bm in enumerate(self.bitmaps): if elt in bm: res.append(i) return res # if len(res)>1: BUG def _is_merging_required(self): return len(self.bitmaps) > self._max_hist_size def _is_mergeable_pair(self, bm1, bm2, merge_cnt): if len(self.bitmaps) - merge_cnt < self._min_hist_size: return False len_c = len(self.column) len_b = len(self.bins) mean = float(len_c)/len_b return len(bm1)+len(bm2) < max(self._merge_coef*mean, self._merge_threshold) def merge_once(self): assert len(self.bins)+1 == len(self.bitmaps), "unexpected # of bins" bins_1 = list(self.bins) bins_1.append(None) bin_tuples = list(zip(self.bitmaps, bins_1)) merge_cnt = 0 if len(bin_tuples) <= 2: return merge_cnt merged_tuples = [] prev_bm, prev_sep = bin_tuples[0] for bm, sep in bin_tuples[1:]: if self._is_mergeable_pair(prev_bm, bm, merge_cnt): prev_bm = prev_bm | bm prev_sep = sep merge_cnt += 1 else: merged_tuples.append((prev_bm, prev_sep)) prev_bm, prev_sep = bm, sep assert prev_sep is None merged_bitmaps, merged_bins = zip(*merged_tuples) merged_bitmaps = list(merged_bitmaps) + [prev_bm] self.bins = np.array(merged_bins) self.bitmaps = merged_bitmaps return merge_cnt def reshape(self): for i, bm in enumerate(self.bitmaps): if self._needs_division(len(bm)): self.divide_bin(i) if self._is_merging_required(): self.merge_once() def divide_bin(self, i): "Change the bounds of the index if needed" ids = np.array(self.bitmaps[i], np.int64) if self._sampling_size*1.2 < len(ids): samples = np.random.choice(ids, self._sampling_size, replace=False) else: samples = ids s_vals = self.column.loc[samples] v = np.median(s_vals) if i >= len(self.bins): assert self.bins[i-1] < v else: assert (self.bins[i-1] < v < self.bins[i] if i > 0 else v < self.bins[i]) values = self.column.loc[ids] lower_bin = bitmap(ids[values < v]) upper_bin = self.bitmaps[i] - lower_bin lower_len = len(lower_bin) upper_len = len(upper_bin) t = len(ids)*self._perm_deviation if abs(lower_len - upper_len) > t: print("DIFF: ", lower_len, upper_len, float(abs(lower_len - upper_len))/len(ids)) self.bins = np.insert(self.bins, i, v) if i+1 >= len(self.bins): assert self.bins[i-1] < self.bins[i] else: assert (self.bins[i-1] < self.bins[i] < self.bins[i+1] if i > 0 else self.bins[i] < self.bins[i+1]) self.bitmaps.insert(i, lower_bin) self.bitmaps[i+1] = upper_bin print('*', end='') def _get_bin(self, val): i = np.digitize(val, self.bins) return self.bitmaps[int(i)] def update_histogram(self, created, updated=(), deleted=()): "Update the histogram index" created = bitmap.asbitmap(created) updated = bitmap.asbitmap(updated) deleted = bitmap.asbitmap(deleted) # if deleted: # self._tdigest_is_valid = False if deleted or updated: to_remove = updated | deleted for i, bm in enumerate(self.bitmaps): self.bitmaps[i] = bm - to_remove if created or updated: to_add = created | updated ids = np.array(to_add, np.int64) values = self.column.loc[to_add] bins = np.digitize(values, self.bins) counts = np.bincount(bins) for i in np.nonzero(counts)[0]: bm = self.bitmaps[i] selection = (bins == i) # boolean mask of values in bin i bm.update(ids[selection]) # add them to the bitmap def query(self, operator_, limit, approximate=APPROX): # blocking... """ Return the list of rows matching the query. For example, returning all values less than 10 (< 10) would be `query(operator.__lt__, 10)` """ pos = np.digitize(limit, self.bins) detail = bitmap() if not approximate: ids = np.array(self.bitmaps[pos], np.int64) values = self.column.loc[ids] selected = ids[operator_(values, limit)] detail.update(selected) if operator_ in (operator.lt, operator.le): for bm in self.bitmaps[:pos]: detail.update(bm) else: for bm in self.bitmaps[pos + 1:]: detail.update(bm) return detail def restricted_query(self, operator_, limit, only_locs, approximate=APPROX): # blocking... """ Returns the subset of only_locs matching the query. """ only_locs = bitmap.asbitmap(only_locs) pos = np.digitize(limit, self.bins) detail = bitmap() if not approximate: ids = np.array(self.bitmaps[pos] & only_locs, np.int64) values = self.column.loc[ids] selected = ids[operator_(values, limit)] detail.update(selected) if operator_ in (operator.lt, operator.le): for bm in self.bitmaps[:pos]: detail.update(bm & only_locs) else: for bm in self.bitmaps[pos + 1:]: detail.update(bm & only_locs) return detail def range_query(self, lower, upper, approximate=APPROX): """ Return the bitmap of all rows with values in range [`lower`, `upper`[ """ if lower > upper: lower, upper = upper, lower pos = np.digitize([lower, upper], self.bins) detail = bitmap() if not approximate: ids = np.array(self.bitmaps[pos[0]], np.int64) values = self.column.loc[ids] if pos[0] == pos[1]: selected = ids[(lower <= values) & (values < upper)] else: selected = ids[lower <= values] detail.update(selected) ids = np.array(self.bitmaps[pos[1]], np.int64) values = self.column.loc[ids] selected = ids[values < upper] detail.update(selected) for bm in self.bitmaps[pos[0] + 1:pos[1]]: detail.update(bm) return detail def range_query_aslist(self, lower, upper, approximate=APPROX): """ Return the list of bitmaps with values in range [`lower`, `upper`[ """ if lower > upper: lower, upper = upper, lower pos = np.digitize([lower, upper], self.bins) detail = bitmap() res = self.bitmaps[pos[0] + 1:pos[1]] if not approximate: ids = np.array(self.bitmaps[pos[0]], np.int64) values = self.column.loc[ids] if pos[0] == pos[1]: selected = ids[(lower <= values) & (values < upper)] else: selected = ids[lower <= values] detail.update(selected) ids = np.array(self.bitmaps[pos[1]], np.int64) values = self.column.loc[ids] selected = ids[values < upper] detail.update(selected) res.append(detail) return res def restricted_range_query(self, lower, upper, only_locs, approximate=APPROX): """ Return the bitmap of only_locs rows in range [`lower`, `upper`[ """ if lower > upper: lower, upper = upper, lower only_locs = bitmap.asbitmap(only_locs) pos = np.digitize([lower, upper], self.bins) detail = bitmap() if not approximate: ids = np.array(self.bitmaps[pos[0]] & only_locs, np.int64) values = self.column.loc[ids] if pos[0] == pos[1]: selected = ids[(lower <= values) & (values < upper)] else: selected = ids[lower <= values] detail.update(selected) ids = np.array(self.bitmaps[pos[1]] & only_locs, np.int64) values = self.column.loc[ids] selected = ids[values < upper] detail.update(selected) for bm in self.bitmaps[pos[0] + 1:pos[1]]: detail.update(bm & only_locs) return detail def get_min_bin(self): if self.bitmaps is None: return None for bm in self.bitmaps: if bm: return bm return None def get_max_bin(self): if self.bitmaps is None: return None for bm in reversed(self.bitmaps): if bm: return bm return None class HistogramIndex(TableModule): """ Compute and maintain an histogram index """ parameters = [ ('bins', np.dtype(int), 126), # actually 128 with "-inf" and "inf" ('init_threshold', int, 1), ] inputs = [SlotDescriptor('table', type=Table, required=True)] outputs = [ SlotDescriptor('min_out', type=Table, required=False), SlotDescriptor('max_out', type=Table, required=False) ] def __init__(self, column, **kwds): super(HistogramIndex, self).__init__(**kwds) self.column = column self._impl = None # will be created when the init_threshold is reached self.selection = bitmap() # will be filled when the table is read # so realistic initial values for min and max were available self.input_module = None self.input_slot = None self._input_table = None self._min_table = None self._max_table = None def compute_bounds(self, input_table): values = input_table[self.column] return values.min(), values.max() def get_data(self, name): if name in ('min_out', 'max_out'): if self._impl is None: return None if self._input_table is None: return None if name == 'min_out': if self.get_min_bin() is None: return None if self._min_table is None: self._min_table = TableSelectedView(self._input_table, bitmap([])) self._min_table.selection = self.get_min_bin() return self._min_table if name == 'max_out': if self.get_max_bin() is None: return None if self._max_table is None: self._max_table = TableSelectedView(self._input_table,bitmap([])) self._max_table.selection = self.get_max_bin() return self._max_table return super(HistogramIndex, self).get_data(name) def get_min_bin(self): if self._impl is None: return None return self._impl.get_min_bin() def get_max_bin(self): if self._impl is None: return None return self._impl.get_max_bin() def run_step(self, run_number, step_size, howlong): input_slot = self.get_input_slot('table') # input_slot.update(run_number) steps = 0 input_table = input_slot.data() self._input_table = input_table if input_table is None \ or len(input_table) < self.params.init_threshold: # there are not enough rows. it's not worth building an index yet return self._return_run_step(self.state_blocked, steps_run=0) if self._impl is None: input_slot.reset() input_slot.update(run_number) input_slot.clear_buffers() bound_min, bound_max = self.compute_bounds(input_table) self._impl = _HistogramIndexImpl(self.column, input_table, bound_min, bound_max, self.params.bins) self.selection = bitmap(input_table.index) self.result = TableSelectedView(input_table, self.selection) return self._return_run_step(self.state_blocked, len(self.selection)) else: # Many not always, or should the implementation decide? self._impl.reshape() deleted = None if input_slot.deleted.any(): deleted = input_slot.deleted.next(as_slice=False) # steps += indices_len(deleted) # deleted are constant time steps = 1 deleted = fix_loc(deleted) self.selection -= deleted created = None if input_slot.created.any(): created = input_slot.created.next(step_size, as_slice=False) created = fix_loc(created) steps += indices_len(created) self.selection |= created updated = None if input_slot.updated.any(): updated = input_slot.updated.next(step_size, as_slice=False) updated = fix_loc(updated) steps += indices_len(updated) if steps == 0: return self._return_run_step(self.state_blocked, steps_run=0) input_table = input_slot.data() # self._table = input_table self._impl.update_histogram(created, updated, deleted) self.result.selection = self.selection return self._return_run_step( self.next_state(input_slot), steps_run=steps) def _eval_to_ids(self, operator_, limit, input_ids=None): input_slot = self.get_input_slot('table') table_ = input_slot.data() if input_ids is None: input_ids = table_.index else: input_ids = fix_loc(input_ids) x = table_[self.column].loc[input_ids] mask_ = operator_(x, limit) arr = slice_to_arange(input_ids) return bitmap(arr[np.nonzero(mask_)[0]]) def query(self, operator_, limit, approximate=APPROX): """ Return the list of rows matching the query. For example, returning all values less than 10 (< 10) would be `query(operator.__lt__, 10)` """ if self._impl: return self._impl.query(operator_, limit, approximate) # there are no histogram because init_threshold wasn't be reached yet # so we query the input table directly return self._eval_to_ids(operator_, limit) def restricted_query(self, operator_, limit, only_locs, approximate=APPROX): """ Return the list of rows matching the query. For example, returning all values less than 10 (< 10) would be `query(operator.__lt__, 10)` """ if self._impl: return self._impl.restricted_query(operator_, limit, only_locs, approximate) # there are no histogram because init_threshold wasn't be reached yet # so we query the input table directly return self._eval_to_ids(operator_, limit, only_locs) def range_query_aslist(self, lower, upper, approximate=APPROX): """ Return the list of rows with values in range [`lower`, `upper`[ """ if self._impl: return self._impl.range_query_aslist(lower, upper, approximate) return None def range_query(self, lower, upper, approximate=APPROX): """ Return the list of rows with values in range [`lower`, `upper`[ """ if self._impl: return self._impl.range_query(lower, upper, approximate) # there are no histogram because init_threshold wasn't be reached yet # so we query the input table directly return (self._eval_to_ids(operator.__lt__, upper) & # optimize later self._eval_to_ids(operator.__ge__, lower)) def restricted_range_query(self, lower, upper, only_locs, approximate=APPROX): """ Return the list of rows with values in range [`lower`, `upper`[ among only_locs """ if self._impl: return self._impl.restricted_range_query(lower, upper, only_locs, approximate) # there are no histogram because init_threshold wasn't be reached yet # so we query the input table directly return (self._eval_to_ids(operator.__lt__, upper, only_locs) & # optimize later self._eval_to_ids(operator.__ge__, lower, only_locs)) def create_dependent_modules(self, input_module, input_slot, **kwds): self.input_module = input_module self.input_slot = input_slot hist_index = self hist_index.input.table = input_module.output[input_slot] # hist_index.input.min = min_.output.result # hist_index.input.max = max_.output.result return hist_index ``` #### File: progressivis/table/liteselect.py ```python from ..core.utils import indices_len from ..core.slot import SlotDescriptor from .module import TableModule from .table import Table from ..core.bitmap import bitmap from . import TableSelectedView import logging logger = logging.getLogger(__name__) class LiteSelect(TableModule): inputs = [SlotDescriptor('table', type=Table, required=True), SlotDescriptor('select', type=bitmap, required=True)] def __init__(self, **kwds): super(LiteSelect, self).__init__(**kwds) self.default_step_size = 1000 def run_step(self, run_number, step_size, howlong): step_size = 1000 table_slot = self.get_input_slot('table') table = table_slot.data() # table_slot.update(run_number, # buffer_created=False, # buffer_updated=True, # buffer_deleted=False, # manage_columns=False) select_slot = self.get_input_slot('select') # select_slot.update(run_number, # buffer_created=True, # buffer_updated=False, # buffer_deleted=True) steps = 0 if self._table is None: self._table = TableSelectedView(table, bitmap([])) if select_slot.deleted.any(): indices = select_slot.deleted.next(step_size, as_slice=False) s = indices_len(indices) print("LITESELECT: -", s) logger.info("deleting %s", indices) self._table.selection -= bitmap.asbitmap(indices) # step_size -= s//2 if step_size > 0 and select_slot.created.any(): indices = select_slot.created.next(step_size, as_slice=False) s = indices_len(indices) logger.info("creating %s", indices) steps += s # step_size -= s self._table.selection |= bitmap.asbitmap(indices) return self._return_run_step(self.next_state(select_slot), steps_run=steps) ``` #### File: progressivis/table/merge_dict.py ```python from progressivis.core.utils import Dialog from progressivis.core.slot import SlotDescriptor from ..table.module import TableModule from ..utils.psdict import PsDict class MergeDict(TableModule): """ Binary join module to join two dict and return a third one. Slots: first : Table module producing the first dict to join second : Table module producing the second dict to join Args: kwds : argument to pass to the join function """ inputs = [SlotDescriptor('first', type=PsDict, required=True), SlotDescriptor('second', type=PsDict, required=True)] def __init__(self, **kwds): super().__init__(**kwds) # self.join_kwds = self._filter_kwds(kwds, join) self._dialog = Dialog(self) def run_step(self, run_number, step_size, howlong): first_slot = self.get_input_slot('first') # first_slot.update(run_number) second_slot = self.get_input_slot('second') first_dict = first_slot.data() second_dict = second_slot.data() if first_dict is None or second_dict is None: return self._return_run_step(self.state_blocked, steps_run=0) # second_slot.update(run_number) first_slot.created.next() second_slot.created.next() first_slot.updated.next() second_slot.updated.next() first_slot.deleted.next() second_slot.deleted.next() if self.result is None: self.result = PsDict(**first_dict, **second_dict) else: self.result.update(first_dict) self.result.update(second_dict) return self._return_run_step(self.next_state(first_slot), steps_run=1) ``` #### File: progressivis/table/paging_helper.py ```python from .table import Table import numpy as np from progressivis.core.utils import remove_nan class PagingHelper: def __init__(self, tbl): self._table = tbl self._index = tbl.index if not isinstance(tbl, Table): self._index = np.array(list(self._table.index)) elif not tbl.is_identity: self._index = self._table.index def get_page(self, start, end): ret = [] columns = self._table.columns for i in self._index[start:end]: row = [i] for name in columns: col = self._table[name] row.append(remove_nan(col.loc[i])) ret.append(row) return ret ``` #### File: progressivis/table/paste.py ```python "Binary Join module." from progressivis.core.slot import SlotDescriptor from .table import Table from .module import TableModule from .join import join from .dshape import dshape_join from collections import OrderedDict class Paste(TableModule): """ Binary join module to join two tables and return a third one. Slots: first : Table module producing the first table to join second : Table module producing the second table to join Args: kwds : argument to pass to the join function """ inputs = [SlotDescriptor('first', type=Table, required=True), SlotDescriptor('second', type=Table, required=True)] def __init__(self, **kwds): super(Paste, self).__init__(**kwds) self.join_kwds = self._filter_kwds(kwds, join) def run_step(self, run_number, step_size, howlong): first_slot = self.get_input_slot('first') # first_slot.update(run_number) second_slot = self.get_input_slot('second') first_table = first_slot.data() second_table = second_slot.data() if first_table is None or second_table is None: return self._return_run_step(self.state_blocked, steps_run=0) # second_slot.update(run_number) if first_slot.deleted.any() or second_slot.deleted.any(): first_slot.reset() second_slot.reset() if self.result is not None: self.result.resize(0) first_slot.update(run_number) second_slot.update(run_number) first_slot.created.next(step_size) second_slot.created.next(step_size) first_slot.updated.next(step_size) second_slot.updated.next(step_size) if self.result is None: dshape, rename = dshape_join(first_table.dshape, second_table.dshape) self.result = Table(name=None, dshape=dshape) if len(first_table) == 0 or len(second_table) == 0: return self._return_run_step(self.state_blocked, steps_run=0) col_0 = first_table.columns[0] col_1 = second_table.columns[0] if len(self.result) == 0: self.result.append(OrderedDict([(col_0, first_table.last(col_0)), (col_1, second_table.last(col_1))]), indices=[0]) else: assert len(self.result) == 1 if first_table.last(col_0) != self.result.last(col_0): self.result[col_0].loc[0] = first_table.last(col_0) if second_table.last(col_1) != self.result.last(col_1): self.result[col_1].loc[0] = second_table.last(col_1) return self._return_run_step(self.next_state(first_slot), steps_run=1) ``` #### File: progressivis/table/reduce.py ```python from .nary import NAry from progressivis import Scheduler class Reduce(NAry): "Reduce binary modules over multiple inputs" # def __init__(self, binary_module, left_in, right_in, outp, **kwds): # super(Reduce, self).__init__(**kwds) # self._binary_module = binary_module # self._left_in = left_in # self._right_in = right_in # self._outp = outp # self.binary_module_kwds = self._filter_kwds(kwds, # binary_module.__init__) # self.out_module = None # def _expand(self): # "Expand the Reduce module into several binary modules" # slots = self.get_input_slot_multiple() # if len(slots) < 2: # raise ValueError("Reduce needs at least two unputs") # prev_slot = slots[0] # with self.scheduler(): # for slot in slots[1:]: # bin_mod = self._binary_module(**self.binary_module_kwds) # bin_mod.input[self._left_in] = prev_slot # bin_mod.input[self._right_in] = slot # prev_slot = bin_mod.output[self._outp] # self.out_module = bin_mod # return bin_mod # def run_step(self, run_number, step_size, howlong): # if self.out_module is None: # self._expand() # if self._table is None: # self._table = self._out_module.table() # return self._return_run_step(self.state_blocked, steps_run=0) @staticmethod def expand(binary_module, left_in, right_in, outp, slots, **binary_module_kwds): if len(slots) < 2: raise ValueError("Reduce needs at least two unputs") scheduler = binary_module_kwds.get("scheduler") if scheduler is None: scheduler = Scheduler.default binary_module_kwds["scheduler"] = scheduler prev_slot = slots[0] with scheduler: for slot in slots[1:]: bin_mod = binary_module(**binary_module_kwds) bin_mod.input[left_in] = prev_slot bin_mod.input[right_in] = slot prev_slot = bin_mod.output[outp] return bin_mod ``` #### File: progressivis/table/tablechanges_base.py ```python from abc import ABCMeta, abstractmethod class BaseChanges(metaclass=ABCMeta): "Base class for object keeping track of changes in a Table" def __str__(self): return type(self) @abstractmethod def add_created(self, locs): "Add ids of items created in the Table" pass @abstractmethod def add_updated(self, locs): "Add ids of items updated in the Table" pass @abstractmethod def add_deleted(self, locs): "Add ids of items deleted from the Table" pass @abstractmethod def compute_updates(self, last, now, mid, cleanup=True): "Compute and return the list of changes as an IndexUpdate or None" return None ``` #### File: progressivis/utils/errors.py ```python class ProgressiveError(Exception): "Errors from ProgressiVis." def __init__(self, message=None, details=None): self.message = message self.details = details class ProgressiveStopIteration(Exception): "Stop Iteration for coroutines" def __init__(self, message=None, details=None): self.message = message self.details = details ``` #### File: progressivis/vis/histograms.py ```python import logging import numbers import numpy as np from progressivis.table.nary import NAry from progressivis.core.slot import SlotDescriptor from progressivis.stats import Histogram1D from progressivis.table.table import BaseTable logger = logging.getLogger(__name__) class Histograms(NAry): "Visualize a table with multiple histograms" parameters = [('bins', np.dtype(int), 128), ('delta', np.dtype(float), -5)] # 5% inputs = [SlotDescriptor('min', type=BaseTable, required=True), SlotDescriptor('max', type=BaseTable, required=True)] outputs = [SlotDescriptor('min', type=BaseTable, required=False), SlotDescriptor('max', type=BaseTable, required=False)] def __init__(self, columns=None, **kwds): super(Histograms, self).__init__(**kwds) self.default_step_size = 1 self._columns = columns self._histogram = {} def table(self): "Return the table" return self.get_input_slot('table').data() def get_data(self, name): if name == 'min': return self.get_input_slot('min').data() if name == 'max': return self.get_input_slot('max').data() return super(Histograms, self).get_data(name) def predict_step_size(self, duration): return 1 def run_step(self, run_number, step_size, howlong): dfslot = self.get_input_slot('table') input_df = dfslot.data() # dfslot.update(run_number) dfslot.clear_buffers() col_changes = dfslot.column_changes if col_changes is not None: self._create_columns(col_changes.created, input_df) self._delete_columns(col_changes.deleted) return self._return_run_step(self.state_blocked, steps_run=1) def _create_columns(self, columns, df): bins = self.params.bins delta = self.params.delta # crude inp = self.get_input_module('table') minmod = self.get_input_module('min') maxmod = self.get_input_module('max') for column in columns: logger.debug('Creating histogram1d %s', column) dtype = df[column].dtype if not np.issubdtype(dtype, numbers.Number): # only create histograms for number columns continue histo = Histogram1D(group=self.name, column=column, bins=bins, delta=delta, scheduler=self.scheduler) histo.input.table = inp.output.result histo.input.min = minmod.output.result histo.input.max = maxmod.output.result self.input.table = histo.output._trace # will become table.1 ... self._histogram[column] = histo def _delete_columns(self, columns): for column in columns: logger.debug('Deleting histogram1d %s', column) histo = self._histogram[column] del self._histogram[column] histo.destroy() def is_visualization(self): return True def get_visualization(self): return "histograms" def to_json(self, short=False): json = super(Histograms, self).to_json(short) if short: return json return self._histograms_to_json(json) def _histograms_to_json(self, json): histo_json = {} for (column, value) in self._histogram.items(): column = str(column) histo_json[column] = value.get_histogram() json['histograms'] = histo_json return json ``` #### File: progressivis/scripts/svmlight2csv.py ```python import click from sys import stdin @click.command() @click.option('--n_samples', default=10, help='number of samples') @click.option('--n_features', default=3, help='number of features') @click.option('--with_labels', default="class", help='if not empty=>label col') @click.option('--with_header', default="_", help='if not empty=>header pattern') def main(n_samples, n_features, with_labels, with_header): if with_header: patt = f"{with_header}{{}}" header = ','.join([patt.format(i) for i in range(n_features)]) if with_labels: header += f',{with_labels}' print(header) keys_ = [str(i) for i in range(n_features)] for i, line in zip(range(n_samples), stdin): lab, *kw = line.split(' ') pairs = [elt.strip().split(':') for elt in kw] dict_ = dict(pairs) s = ','.join([dict_.get(k, '0') for k in keys_]) print(s, end='') if with_labels: print(f',{lab}') else: print('') #print(lab) if __name__ == '__main__': main() ``` #### File: stool/examples/make_load_csv_reference.py ```python import pandas as pd import csv from progressivis import Scheduler from progressivis.io import CSVLoader import sys import subprocess import glob import dask.dataframe as dd from progressivis.core.utils import RandomBytesIO from stool import BenchmarkCase, bench import unittest GIGA = 1000000000 class BenchLoadCsv(BenchmarkCase): def __init__(self, testMethod='runTest'): super(BenchLoadCsv, self).__init__(testMethod) self.nb_step = 8 self.random_file = None def tearDown(self): for d in glob.glob('/tmp/progressivis_*'): subprocess.call(['/bin/rm','-rf', d]) def setUp(self): self.set_step_header("Gigabytes") def setUpStep(self, step): self.set_step_info("{} Gb".format(step)) def tearDownStep(self, step): pass @bench(name="Nop") def none_read_csv(self): for _ in RandomBytesIO(cols=30, size=self.current_step*GIGA): pass @bench(name="Progressivis", corrected_by="Nop") def p10s_read_csv(self): s=Scheduler() module=CSVLoader(RandomBytesIO(cols=30, size=self.current_step*GIGA), index_col=False, header=None, scheduler=s) module.start() @bench(name="Pandas", corrected_by="Nop") def pandas_read_csv(self): pd.read_csv(RandomBytesIO(cols=30, size=self.current_step*GIGA)) #@bench(name="Dask", corrected_by="Nop") #def dask_read_csv(self): # dd.read_csv(RandomBytesIO(cols=30, size=self.current_step*GIGA)).compute() @bench(name="Naive", corrected_by="Nop") def naive_read_csv(self): res = {} reader = RandomBytesIO(cols=30, size=self.current_step*GIGA) first = next(reader) for i, cell in enumerate(first.split(',')): res[i] = [float(cell)] for row in reader: for i, cell in enumerate(row.split(',')): res[i].append(float(cell)) return res def runTest(self): self.runBench() self.save(db_name='bench_refs.db', name='load_csv') if __name__ == '__main__': unittest.main() ``` #### File: progressivis/stool/main.py ```python from .case import BenchmarkCase from .utils import banner, print_banner, BenchEnv def main(): import argparse import sys from tabulate import tabulate parser = argparse.ArgumentParser() parser.add_argument("--db", help="measurements database", nargs=1, required=True) parser.add_argument("--bench", help="bench to visualize", nargs=1, required=False) parser.add_argument("--cases", help="case(s) to visualize", nargs='+', required=False) parser.add_argument("--summary", help="List of cases in the DB", action='store_const', const=42, required=False) parser.add_argument("--plot", help="Plot measurements", #action='store_const', nargs=1, required=False, choices=['min', 'max', 'mean', 'all']) parser.add_argument("--pstats", help="Profile stats for: case[:first] | case:last | case:step", #action='store_const', nargs=1, required=False) parser.add_argument("--no-corr", help="No correction", action='store_const', const=1, required=False) args = parser.parse_args() db_name = args.db[0] if args.plot: plot_opt = args.plot[0] if args.bench: bench_name = args.bench[0] else: benv = BenchEnv(db_name=db_name) bench_name = benv.bench_list[0] if args.summary: bench = BenchmarkCase.load(db_name=db_name, name=bench_name) print("List of cases: {}".format(", ".join(bench.case_names))) sys.exit(0) corr = True if args.no_corr: corr = False bench = BenchmarkCase.load(db_name=db_name, name=bench_name) if args.cases: cases = args.cases print(cases) else: cases = bench.case_names print_banner("Cases: {}".format(" ".join(cases))) for case in cases: print_banner("Case: {}".format(case)) df = bench.to_df(case=case, corrected=corr) print(tabulate(df, headers='keys', tablefmt='psql')) if args.plot: bench.plot(cases=cases, corrected=corr, plot_opt=plot_opt) #bench.prof_stats("P10sH5MinMax") #dump_table('measurement_tbl', 'prof.db') if args.pstats: case_step = args.pstats[0] if ':' not in case_step: case = case_step step = 'first' else: case, step = case_step.split(':', 1) bench.prof_stats(case, step) ``` #### File: progressivis/tests/test_00_storageengine.py ```python from . import ProgressiveTest, skip from progressivis.storage.base import StorageEngine, Group, Dataset #, Attribute from progressivis.table.table import Table import numpy as np @skip class TestStorageEngine(ProgressiveTest): def test_storage_engine(self): e = StorageEngine.default self.assertIsNotNone(e) se = StorageEngine.lookup(e) g = se['/'] self.assertIsNotNone(g) self.assertIsInstance(g, Group) g2 = g.create_group('g2') self.assertIsNotNone(g2) self.assertIsInstance(g2, Group) d1 = g.create_dataset('d1', shape=(10,), dtype=np.int32) self.assertIsNotNone(d1) self.assertIsInstance(d1, Dataset) def test_storage_engines(self): print('Engines detected: ', list(StorageEngine.engines().keys())) for e in StorageEngine.engines(): s = StorageEngine.lookup(e) self.assertIsNotNone(s) g = s['/'] self.assertIsNotNone(g) self.assertIsInstance(g, Group) g2 = g.create_group('g_'+e) self.assertIsNotNone(g2) self.assertIsInstance(g2, Group) d1 = g.create_dataset('d_'+e, shape=(10,), dtype=np.int32) self.assertIsNotNone(d1) self.assertIsInstance(d1, Dataset) arr = d1[:] self.assertIsInstance(arr, np.ndarray) self.assertEqual(len(arr), 10) self.assertEqual(arr.dtype, np.int32) s = StorageEngine.lookup(e) group = s.require_group('table') t = self._create_table(e, group) self.assertEqual(t.storagegroup, group) # for e in StorageEngine.engines(): # with StorageEngine.default_engine(e) as _: # t = self._create_table(None) # self.assertEqual(t.storagegroup, e) def _create_table(self, storageengine, group): if storageengine == "mmap": t = Table('table_'+str(storageengine), dshape='{a: int64, b: real}', data={'a': [1,2,3], 'b': [0.1, 0.2, 0.3]}, storagegroup=group) else: t = Table('table_'+str(storageengine), dshape='{a: int64, b: real, c: string}', data={'a': [1,2,3], 'b': [0.1, 0.2, 0.3], 'c': [u'one', u'two', u'three']}, storagegroup=group) self.assertEqual(len(t), 3) return t ``` #### File: progressivis/tests/test_01_dataflow.py ```python from progressivis import Print from progressivis.io import CSVLoader from progressivis.stats import Min, Max from progressivis.datasets import get_dataset from progressivis.core import aio from . import ProgressiveTest class TestDataflow(ProgressiveTest): def test_dataflow_0(self): scheduler = self.scheduler() saved_inputs = None saved_outputs = None with scheduler as dataflow: csv = CSVLoader(get_dataset('smallfile'), name='csv', index_col=False, header=None, scheduler=scheduler) self.assertIs(scheduler['csv'], csv) self.assertEqual(dataflow.validate_module(csv), []) m = Min(name="min", scheduler=scheduler) self.assertIs(dataflow[m.name], m) self.assertEqual(dataflow.validate_module(m), ['Input slot "table" missing in module "min"']) prt = Print(proc=self.terse, name='print', scheduler=scheduler) self.assertIs(dataflow[prt.name], prt) self.assertEqual(dataflow.validate_module(prt), ['Input slot "df" missing in module "print"']) m.input.table = csv.output.result prt.input.df = m.output.result self.assertEqual(len(dataflow), 3) self.assertEqual(dataflow.dir(), ['csv', 'min', 'print']) errors = dataflow.validate() self.assertEqual(errors, []) deps = dataflow.order_modules() self.assertEqual(deps, ['csv', m.name, prt.name]) saved_inputs = dataflow.inputs saved_outputs = dataflow.outputs # dataflow.__exit__() is called here # print('Old modules:', end=' ') # pprint(scheduler._modules) scheduler._update_modules() # force modules in the main loop # print('New modules:', end=' ') # pprint(scheduler.modules()) with scheduler as dataflow: # nothing should change when nothing is modified in dataflow self.assertEqual(len(dataflow), 3) deps = dataflow.order_modules() self.assertEqual(deps, ['csv', m.name, prt.name]) self.assertEqual(dataflow.inputs, saved_inputs) self.assertEqual(dataflow.outputs, saved_outputs) scheduler._update_modules() # force modules in the main loop with scheduler as dataflow: dataflow.remove_module(prt) self.assertEqual(len(dataflow), 2) deps = dataflow.order_modules() self.assertEqual(deps, ['csv', m.name]) # pprint(dataflow.inputs) # pprint(dataflow.outputs) # print('Old modules:') # pprint(scheduler._new_modules) scheduler._update_modules() # force modules in the main loop # print('New modules:') # pprint(scheduler.modules()) with scheduler as dataflow: self.assertEqual(len(dataflow), 2) deps = dataflow.order_modules() self.assertEqual(deps, ['csv', m.name]) prt = Print(proc=self.terse, name="print", scheduler=scheduler) self.assertIs(dataflow[prt.name], prt) self.assertEqual(dataflow.validate_module(prt), ['Input slot "df" missing in module "print"']) prt.input.df = m.output.result scheduler._update_modules() # force modules in the main loop def test_dataflow_1_dynamic(self): scheduler = self.scheduler(clean=True) csv = CSVLoader(get_dataset('bigfile'), name='csv', index_col=False, header=None, scheduler=scheduler) m = Min(name="min", scheduler=scheduler) prt = Print(proc=self.terse, name='print_min', scheduler=scheduler) m.input.table = csv.output.result prt.input.df = m.output.result started = False def proc(x): nonlocal started print("proc max called") started = True async def _add_max(csv, scheduler, proc): await aio.sleep(2) with scheduler: print('adding new modules') m = Max(name="max", scheduler=scheduler) prt = Print(name='print_max', proc=proc, scheduler=scheduler) m.input.table = csv.output.result prt.input.df = m.output.result t = _add_max(csv, scheduler, proc=proc) aio.run_gather(scheduler.start(), t) self.assertTrue(started) def test_dataflow_2_add_remove(self): scheduler = self.scheduler(clean=True) csv = CSVLoader(get_dataset('bigfile'), name='csv', index_col=False, header=None, scheduler=scheduler) m = Min(name="min", scheduler=scheduler) prt = Print(proc=self.terse, name='print_min', scheduler=scheduler) m.input.table = csv.output.result prt.input.df = m.output.result started = False def proc(x): nonlocal started print("proc max called") started = True async def _add_max_remove_min(csv, scheduler, proc): await aio.sleep(2) with scheduler: print('removing min module') del scheduler['min'] print('adding new modules') m = Max(name="max", scheduler=scheduler) prt = Print(name='print_max', proc=proc, scheduler=scheduler) m.input.table = csv.output.result prt.input.df = m.output.result t = _add_max_remove_min(csv, scheduler, proc=proc) aio.run_gather(scheduler.start(), t) self.assertTrue(started) if __name__ == '__main__': ProgressiveTest.main() ``` #### File: progressivis/tests/test_01_input.py ```python from . import ProgressiveTest from progressivis import Print from progressivis.io.input import Input import numpy as np from progressivis.core import aio async def _do_line(inp, s): await aio.sleep(2) for r in range(10): await inp.from_input('line#%d' % r) await aio.sleep(np.random.random()) await aio.sleep(1) await s.stop() class TestInput(ProgressiveTest): def test_input(self): s = self.scheduler() with s: inp = Input(scheduler=s) pr = Print(proc=self.terse, scheduler=s) pr.input.df = inp.output.result aio.run_gather(s.start(), _do_line(inp, s)) self.assertEqual(len(inp.result), 10) if __name__ == '__main__': ProgressiveTest.main() ``` #### File: progressivis/tests/test_02_changemanager_column.py ```python from . import ProgressiveTest from progressivis.table.column import Column from progressivis.table.changemanager_column import ColumnChangeManager from progressivis.table.tablechanges import TableChanges import numpy as np class FakeSlot(object): def __init__(self, table): self.table = table def data(self): return self.table class TestColumnChangeManager(ProgressiveTest): def setUp(self): super(TestColumnChangeManager, self).setUp() self.scheduler = self.scheduler() def test_columnchangemanager(self): #pylint: disable=protected-access column = Column('test_changemanager_column', None, data=np.array([ 1, 2, 3])) s = self.scheduler column.changes = TableChanges() s._run_number = 1 last = s._run_number slot = FakeSlot(column) mid1 = 1 cm = ColumnChangeManager(slot, buffer_updated=True,buffer_deleted=True) self.assertEqual(cm.last_update(), 0) self.assertEqual(cm.created.length(), 0) self.assertEqual(cm.updated.length(), 0) self.assertEqual(cm.deleted.length(), 0) mid2 = 2 cm2 = ColumnChangeManager(slot, buffer_updated=True,buffer_deleted=True) self.assertEqual(cm2.last_update(), 0) self.assertEqual(cm2.created.length(), 0) self.assertEqual(cm2.updated.length(), 0) self.assertEqual(cm2.deleted.length(), 0) mid3 = 3 cm3 = ColumnChangeManager(slot, buffer_updated=True,buffer_deleted=True) self.assertEqual(cm3.last_update(), 0) self.assertEqual(cm3.created.length(), 0) self.assertEqual(cm3.updated.length(), 0) self.assertEqual(cm3.deleted.length(), 0) cm.update(last, column, mid=mid1) self.assertEqual(cm.last_update(), last) self.assertEqual(cm.created.next(),slice(0, 3)) self.assertEqual(cm.updated.length(), 0) self.assertEqual(cm.deleted.length(), 0) s._run_number += 1 last = s._run_number column.append(np.array([4])) cm.update(last, column, mid=mid1) self.assertEqual(cm.last_update(), last) self.assertEqual(cm.created.next(), slice(3,4)) self.assertEqual(cm.updated.length(), 0) self.assertEqual(cm.deleted.length(), 0) s._run_number += 1 last = s._run_number column.append(np.array([5])) cm.update(last, column, mid=mid1) self.assertEqual(cm.last_update(), last) self.assertEqual(cm.created.next(),slice(4, 5)) self.assertEqual(cm.updated.length(), 0) self.assertEqual(cm.deleted.length(), 0) s._run_number += 1 column[3] = 42 column[4] = 52 last = s._run_number cm.update(last, column, mid=mid1) self.assertEqual(cm.last_update(), last) self.assertEqual(cm.created.length(), 0) self.assertEqual(cm.updated.next(), slice(3,5)) self.assertEqual(cm.deleted.length(), 0) s._run_number += 1 last = s._run_number cm.update(last, column, mid=mid1) self.assertEqual(cm.last_update(), last) self.assertEqual(cm.created.length(), 0) self.assertEqual(cm.updated.length(), 0) self.assertEqual(cm.deleted.length(), 0) s._run_number += 1 last2 = 0 column[2] = 22 column[1] = 0.12 last2 = s._run_number cm2.update(last2, column, mid=mid2) self.assertEqual(cm2.last_update(), last2) self.assertEqual(cm2.created.next(), slice(0, 5)) self.assertEqual(cm2.updated.length(), 0) self.assertEqual(cm2.deleted.length(), 0) s._run_number += 1 column[0] = 11 column[2] = 32 column.append(np.array([6])) # tv = column.loc[1:2] # last3 = s._run_number # cm3.update(last3, tv, mid=mid3) # self.assertEqual(cm3.created.next(), slice(1, 3)) # test ids, not indices # self.assertEqual(cm2.updated.length(), 0) # self.assertEqual(cm2.deleted.length(), 0) s._run_number += 1 last = s._run_number # with self.assertRaises(ValueError): # cm.update(last+1, column, mid=mid1) cm.update(last, column, mid=mid1) self.assertEqual(cm.last_update(), last) self.assertEqual(cm.created.next(), slice(5,6)) self.assertEqual(cm.updated.next(), slice(0,3)) self.assertEqual(cm.deleted.length(), 0) s._run_number += 1 last2 = s._run_number cm2.update(last2, column, mid=mid2) self.assertEqual(cm2.last_update(), last2) self.assertEqual(cm2.created.next(), slice(5,6)) self.assertEqual(list(cm2.updated.next()), [0,2]) self.assertEqual(cm2.deleted.length(), 0) # s._run_number += 1 # column[0] = 1 # column[2] = 22 # last3 = s._run_number # cm3.update(last3, tv, mid=mid3) # self.assertEqual(cm3.last_update(), last3) # self.assertEqual(cm3.created.length(), 0) # self.assertEqual(cm3.updated.next(), slice(2,3)) # self.assertEqual(cm3.deleted.length(), 0) # test deletes s._run_number += 1 del column.loc[2] last = s._run_number cm.update(last, column, mid=mid1) self.assertEqual(cm.last_update(), last) self.assertEqual(cm.created.length(), 0) self.assertEqual(cm.updated.length(), 0) self.assertEqual(cm.deleted.next(), slice(2,3)) # self.assertTrue(np.all(column[:]==np.array([1,2,a.fillvalue,42,5,6]))) # self.assertTrue(np.all(b[:]==np.array([0.11,0.12,a.fillvalue,0.42,.52,0.6]))) s._run_number += 1 del column.loc[4] column.append(np.array([7,8])) column[5] = 55 last2 = s._run_number cm2.update(last2, column, mid=mid2) self.assertEqual(cm2.last_update(), last2) self.assertEqual(cm2.created.next(), slice(6,8)) self.assertEqual(cm2.updated.next(), slice(5,6)) self.assertEqual(list(cm2.deleted.next()), [2,4]) #TODO test reset cm.reset() self.assertEqual(cm.last_update(), 0) if __name__ == '__main__': ProgressiveTest.main() ``` #### File: progressivis/tests/test_03_bisect.py ```python from progressivis.table.table import Table from progressivis.table.constant import Constant from progressivis import Print from progressivis.stats import RandomTable from progressivis.table.bisectmod import Bisect from progressivis.core.bitmap import bitmap from progressivis.table.hist_index import HistogramIndex from progressivis.core import aio from progressivis.table.stirrer import Stirrer from . import ProgressiveTest class TestBisect(ProgressiveTest): def test_bisect(self): s = self.scheduler() random = RandomTable(2, rows=1000_000, scheduler=s) t = Table(name=None, dshape='{value: string}', data={'value':[0.5]}) min_value = Constant(table=t, scheduler=s) hist_index = HistogramIndex(column='_1', scheduler=s) hist_index.create_dependent_modules(random, 'result') bisect_ = Bisect(column='_1', op='>', hist_index=hist_index, scheduler=s) bisect_.input[0] = hist_index.output.result #bisect_.input[0] = random.output.result bisect_.input.limit = min_value.output.result pr = Print(proc=self.terse, scheduler=s) pr.input[0] = bisect_.output.result aio.run(s.start()) #hist_index._impl.dump() idx = random.result.eval('_1>0.5', result_object='index') self.assertEqual(bisect_.result.index, bitmap(idx)) def test_bisect2(self): s = self.scheduler() random = RandomTable(2, rows=100_000, scheduler=s) stirrer = Stirrer(update_column='_1', delete_rows=100, #update_rows=5, #fixed_step_size=100, scheduler=s) stirrer.input[0] = random.output.result t = Table(name=None, dshape='{value: string}', data={'value':[0.5]}) min_value = Constant(table=t, scheduler=s) hist_index = HistogramIndex(column='_1', scheduler=s) hist_index.create_dependent_modules(stirrer, 'result') bisect_ = Bisect(column='_1', op='>', hist_index=hist_index, scheduler=s) bisect_.input[0] = hist_index.output.result #bisect_.input[0] = random.output.result bisect_.input.limit = min_value.output.result pr = Print(proc=self.terse, scheduler=s) pr.input[0] = bisect_.output.result aio.run(s.start()) idx = stirrer.result.eval('_1>0.5', result_object='index') self.assertEqual(bisect_.result.index, bitmap(idx)) def test_bisect3(self): s = self.scheduler() random = RandomTable(2, rows=100_000, scheduler=s) stirrer = Stirrer(update_column='_1', update_rows=100, fixed_step_size=100, scheduler=s) stirrer.input[0] = random.output.result t = Table(name=None, dshape='{value: string}', data={'value':[0.5]}) min_value = Constant(table=t, scheduler=s) hist_index = HistogramIndex(column='_1', scheduler=s) hist_index.create_dependent_modules(stirrer, 'result') bisect_ = Bisect(column='_1', op='>', hist_index=hist_index, scheduler=s) bisect_.input[0] = hist_index.output.result #bisect_.input[0] = random.output.result bisect_.input.limit = min_value.output.result pr = Print(proc=self.terse, scheduler=s) pr.input[0] = bisect_.output.result aio.run(s.start()) idx = stirrer.result.eval('_1>0.5', result_object='index') self.assertEqual(bisect_.result.index, bitmap(idx)) if __name__ == '__main__': ProgressiveTest.main() ``` #### File: progressivis/tests/test_03_blobs_table.py ```python from . import ProgressiveTest from progressivis.core import aio from progressivis import Every from progressivis.stats.blobs_table import BlobsTable, MVBlobsTable from progressivis.stats.random_table import RandomTable from progressivis.linalg import Add import numpy as np from progressivis.io import CSVLoader def print_len(x): if x is not None: print(len(x)) centers = [(0.1, 0.3), (0.7, 0.5), (-0.4, -0.3)] class TestBlobsTable(ProgressiveTest): def test_blobs_table(self): s = self.scheduler() module=BlobsTable(['a', 'b'], centers=centers, rows=10000, scheduler=s) self.assertEqual(module.result.columns[0],'a') self.assertEqual(module.result.columns[1],'b') self.assertEqual(len(module.result.columns), 2) prlen = Every(proc=self.terse, constant_time=True, scheduler=s) prlen.input[0] = module.output.result aio.run(s.start()) #s.join() self.assertEqual(len(module.result), 10000) def test_blobs_table2(self): s = self.scheduler() sz = 100000 centers = [(0.1, 0.3), (0.7, 0.5), (-0.4, -0.3)] blob1=BlobsTable(['a', 'b'], centers=centers, cluster_std=0.2, rows=sz, scheduler=s) blob1.default_step_size = 1500 blob2=BlobsTable(['a', 'b'], centers=centers, cluster_std=0.2, rows=sz, scheduler=s) blob2.default_step_size = 200 add = Add(scheduler=s) add.input.first = blob1.output.result add.input.second = blob2.output.result prlen = Every(proc=self.terse, constant_time=True, scheduler=s) prlen.input[0] = add.output.result aio.run(s.start()) #s.join() self.assertEqual(len(blob1.result), sz) self.assertEqual(len(blob2.result), sz) arr1 = blob1.result.to_array() arr2 = blob2.result.to_array() self.assertTrue(np.allclose(arr1, arr2)) means = [0.1, 0.3], [0.7, 0.5], [-0.4, -0.3] covs = [[0.01, 0], [0, 0.09]], [[0.04, 0], [0, 0.01]], [[0.09, 0.04], [0.04, 0.02]] class TestMVBlobsTable(ProgressiveTest): def test_mv_blobs_table(self): s = self.scheduler() module=MVBlobsTable(['a', 'b'], means=means, covs=covs, rows=10000, scheduler=s) self.assertEqual(module.result.columns[0],'a') self.assertEqual(module.result.columns[1],'b') self.assertEqual(len(module.result.columns), 2) prlen = Every(proc=self.terse, constant_time=True, scheduler=s) prlen.input[0] = module.output.result aio.run(s.start()) #s.join() self.assertEqual(len(module.result), 10000) def test_mv_blobs_table2(self): s = self.scheduler() sz = 100000 blob1=MVBlobsTable(['a', 'b'], means=means, covs=covs, rows=sz, scheduler=s) blob1.default_step_size = 1500 blob2=MVBlobsTable(['a', 'b'], means=means, covs=covs, rows=sz, scheduler=s) blob2.default_step_size = 200 add = Add(scheduler=s) add.input.first = blob1.output.result add.input.second = blob2.output.result prlen = Every(proc=self.terse, constant_time=True, scheduler=s) prlen.input[0] = add.output.result aio.run(s.start()) #s.join() self.assertEqual(len(blob1.result), sz) self.assertEqual(len(blob2.result), sz) arr1 = blob1.result.to_array() arr2 = blob2.result.to_array() self.assertTrue(np.allclose(arr1, arr2)) ``` #### File: progressivis/tests/test_03_csv.py ```python from . import ProgressiveTest from progressivis.core import aio from progressivis.io import CSVLoader from progressivis.table.constant import Constant from progressivis.table.table import Table from progressivis.datasets import get_dataset from progressivis.core.utils import RandomBytesIO class TestProgressiveLoadCSV(ProgressiveTest): # def setUpNO(self): # self.logger=logging.getLogger('progressivis.core') # self.saved=self.logger.getEffectiveLevel() # self.logger.setLevel(logging.DEBUG) # ch = logging.StreamHandler(stream=sys.stdout) # self.logger.addHandler(ch) # def tearDownNO(self): # self.logger.setLevel(self.saved) def runit(self, module): module.run(1) table = module.result self.assertFalse(table is None) l = len(table) cnt = 2 while not module.is_zombie(): module.run(cnt) cnt += 1 table = module.result ln = len(table) l = ln s = module.trace_stats(max_runs=1) return cnt def test_read_csv(self): s = self.scheduler() module = CSVLoader( get_dataset("bigfile"), index_col=False, header=None, scheduler=s ) self.assertTrue(module.result is None) aio.run(s.start()) self.assertEqual(len(module.result), 1000000) def test_read_fake_csv(self): s = self.scheduler() module = CSVLoader( RandomBytesIO(cols=30, rows=1000000), index_col=False, header=None, scheduler=s, ) self.assertTrue(module.result is None) aio.run(s.start()) self.assertEqual(len(module.result), 1000000) def test_read_multiple_csv(self): s = self.scheduler() filenames = Table( name="file_names", dshape="{filename: string}", data={ "filename": [ get_dataset("smallfile"), get_dataset("smallfile"), ] }, ) cst = Constant(table=filenames, scheduler=s) csv = CSVLoader(index_col=False, header=None, scheduler=s) csv.input.filenames = cst.output.result aio.run(csv.start()) self.assertEqual(len(csv.result), 60000) def test_read_multiple_fake_csv(self): s = self.scheduler() filenames = Table( name="file_names2", dshape="{filename: string}", data={ "filename": [ "buffer://fake1?cols=10&rows=30000", "buffer://fake2?cols=10&rows=30000", ] }, ) cst = Constant(table=filenames, scheduler=s) csv = CSVLoader(index_col=False, header=None, scheduler=s) csv.input.filenames = cst.output.result aio.run(csv.start()) self.assertEqual(len(csv.result), 60000) def test_as_array(self): s = self.scheduler() module = CSVLoader( get_dataset("bigfile"), index_col=False, as_array="array", header=None, scheduler=s, ) self.assertTrue(module.result is None) aio.run(s.start()) table = module.result self.assertEqual(len(table), 1000000) self.assertEqual(table.columns, ["array"]) self.assertEqual(table["array"].shape, (1000000, 30)) def test_as_array2(self): s = self.scheduler() module = CSVLoader( get_dataset("bigfile"), index_col=False, as_array={ "firsthalf": ["_" + str(r) for r in range(13)], "secondhalf": ["_" + str(r) for r in range(13, 30)], }, header=None, scheduler=s, ) self.assertTrue(module.result is None) aio.run(s.start()) table = module.result self.assertEqual(len(table), 1000000) self.assertEqual(table.columns, ["firsthalf", "secondhalf"]) self.assertEqual(table["firsthalf"].shape, (1000000, 13)) self.assertEqual(table["secondhalf"].shape, (1000000, 17)) def test_as_array3(self): s = self.scheduler() module = CSVLoader( get_dataset("mnist_784"), index_col=False, as_array=lambda cols: {"array": [c for c in cols if c != "class"]}, scheduler=s, ) self.assertTrue(module.result is None) aio.run(s.start()) table = module.result self.assertEqual(len(table), 70000) self.assertEqual(table.columns, ["array", "class"]) self.assertEqual(table["array"].shape, (70000, 784)) self.assertEqual(table["class"].shape, (70000,)) if __name__ == "__main__": ProgressiveTest.main() ``` #### File: progressivis/tests/test_03_cxxmax.py ```python from . import ProgressiveTest, skip, skipIf from progressivis.core import aio from progressivis import Print from progressivis.stats import RandomTable from progressivis.table.stirrer import Stirrer, StirrerView from progressivis.stats.cxxmax import Max, CxxMax import numpy as np class TestCxxMax(ProgressiveTest): def compare(self, res1, res2): v1 = np.array(list(res1.values())) v2 = np.array(list(res2.values())) #print('v1 = ', v1) #print('v2 = ', v2) self.assertTrue(np.allclose(v1, v2)) @skipIf(CxxMax is None, "C++ module is missing") def test_max(self): s = self.scheduler() random = RandomTable(10, rows=10_000, scheduler=s) max_=Max(name='max_'+str(hash(random)), scheduler=s) max_.input[0] = random.output.result pr=Print(proc=self.terse, scheduler=s) pr.input[0] = max_.output.result aio.run(s.start()) res1 = random.result.max() res2 = max_.cxx_module.get_output_table().last().to_dict(ordered=True) self.compare(res1, res2) @skipIf(CxxMax is None, "C++ module is missing") def test_stirrer(self): s = self.scheduler() random = RandomTable(2, rows=100_000, scheduler=s) stirrer = Stirrer(update_column='_1', delete_rows=5, update_rows=5, fixed_step_size=100, scheduler=s) stirrer.input[0] = random.output.result max_=Max(name='max_'+str(hash(random)), scheduler=s) max_.input[0] = stirrer.output.result pr=Print(proc=self.terse, scheduler=s) pr.input[0] = max_.output.result aio.run(s.start()) res1 = random.result.max() res2 = max_.cxx_module.get_output_table().last().to_dict(ordered=True) self.compare(res1, res2) @skipIf(CxxMax is None, "C++ module is missing") def test_stirrer_view(self): s = self.scheduler() random = RandomTable(2, rows=100_000, scheduler=s) stirrer = StirrerView(update_column='_1', delete_rows=5, update_rows=5, fixed_step_size=100, scheduler=s) stirrer.input[0] = random.output.result max_=Max(name='max_'+str(hash(random)), scheduler=s) max_.input[0] = stirrer.output.result pr=Print(proc=self.terse, scheduler=s) pr.input[0] = max_.output.result aio.run(s.start()) res1 = random.result.max() res2 = max_.cxx_module.get_output_table().last().to_dict(ordered=True) self.compare(res1, res2) if __name__ == '__main__': ProgressiveTest.main() ``` #### File: progressivis/tests/test_03_histogram1d.py ```python from . import ProgressiveTest from progressivis.core import aio from progressivis import Scheduler, Every from progressivis.io import CSVLoader from progressivis.stats import Histogram1D, Min, Max from progressivis.datasets import get_dataset from progressivis.table.stirrer import Stirrer import pandas as pd import numpy as np import logging logging.basicConfig(level=logging.WARNING) class TestHistogram1D(ProgressiveTest): #def tearDown(self): #StorageManager.default.end() def test_histogram1d(self): s=self.scheduler() csv = CSVLoader(get_dataset('bigfile'), index_col=False,header=None,scheduler=s) min_ = Min(scheduler=s) min_.input[0] = csv.output.result max_ = Max(scheduler=s) max_.input[0] = csv.output.result histogram1d=Histogram1D('_2', scheduler=s) # columns are called 1..30 histogram1d.input[0] = csv.output.result histogram1d.input.min = min_.output.result histogram1d.input.max = max_.output.result pr = Every(proc=self.terse, scheduler=s) pr.input[0] = csv.output.result aio.run(s.start()) s = histogram1d.trace_stats() def test_histogram1d1(self): s=self.scheduler() csv = CSVLoader(get_dataset('bigfile'), index_col=False,header=None,scheduler=s) min_ = Min(scheduler=s) min_.input[0] = csv.output.result max_ = Max(scheduler=s) max_.input[0] = csv.output.result histogram1d=Histogram1D('_2', scheduler=s) # columns are called 1..30 histogram1d.input[0] = csv.output.result histogram1d.input.min = min_.output.result histogram1d.input.max = max_.output.result pr = Every(proc=self.terse, scheduler=s) pr.input[0] = csv.output.result aio.run(s.start()) s = histogram1d.trace_stats() last = histogram1d.result.last().to_dict() h1 = last['array'] bounds = (last['min'], last['max']) df = pd.read_csv(get_dataset('bigfile'), header=None, usecols=[2]) v = df.to_numpy().reshape(-1) h2, _ = np.histogram(v, bins=histogram1d.params.bins, density=False, range=bounds) self.assertListEqual(h1.tolist(), h2.tolist()) def t_histogram1d_impl(self, **kw): s=self.scheduler() csv = CSVLoader(get_dataset('bigfile'), index_col=False,header=None,scheduler=s) stirrer = Stirrer(update_column='_2', fixed_step_size=1000, scheduler=s, **kw) stirrer.input[0] = csv.output.result min_ = Min(scheduler=s) min_.input[0] = stirrer.output.result max_ = Max(scheduler=s) max_.input[0] = stirrer.output.result histogram1d=Histogram1D('_2', scheduler=s) # columns are called 1..30 histogram1d.input[0] = stirrer.output.result histogram1d.input.min = min_.output.result histogram1d.input.max = max_.output.result #pr = Print(scheduler=s) pr = Every(proc=self.terse, scheduler=s) pr.input[0] = stirrer.output.result aio.run(s.start()) s = histogram1d.trace_stats() last = histogram1d.result.last().to_dict() h1 = last['array'] bounds = (last['min'], last['max']) v = stirrer.result.loc[:, ['_2']].to_array().reshape(-1) h2, _ = np.histogram(v, bins=histogram1d.params.bins, density=False, range=bounds) self.assertEqual(np.sum(h1), np.sum(h2)) self.assertListEqual(h1.tolist(), h2.tolist()) def test_histogram1d2(self): return self.t_histogram1d_impl(delete_rows=5) def test_histogram1d3(self): return self.t_histogram1d_impl(update_rows=5) if __name__ == '__main__': ProgressiveTest.main() ``` #### File: progressivis/tests/test_03_hist_percentiles.py ```python "Test for Range Query" from progressivis.core import aio from progressivis.table.constant import Constant from progressivis import Print from progressivis.stats import RandomTable from progressivis.table.hist_index import HistogramIndex from progressivis.table.percentiles import Percentiles import numpy as np from . import ProgressiveTest, main from progressivis.table.range_query import RangeQuery from progressivis.utils.psdict import PsDict from progressivis.table.stirrer import Stirrer, StirrerView class TestPercentiles(ProgressiveTest): """Tests for HistIndex based percentiles NB: another percentiles module exists in stats directory which is based on T-digest """ def tearDown(self): TestPercentiles.cleanup() def _impl_tst_percentiles(self, accuracy): """ """ s = self.scheduler() with s: random = RandomTable(2, rows=10000, scheduler=s) hist_index = HistogramIndex(column='_1', scheduler=s) hist_index.input[0] = random.output.result t_percentiles = PsDict({'_25': 25.0, '_50': 50.0, '_75': 75.0}) which_percentiles = Constant(table=t_percentiles, scheduler=s) percentiles = Percentiles(hist_index, accuracy=accuracy, scheduler=s) percentiles.input[0] = random.output.result percentiles.input.percentiles = which_percentiles.output.result prt = Print(proc=self.terse, scheduler=s) prt.input[0] = percentiles.output.result aio.run(s.start()) pdict = percentiles.result.last().to_dict() v = random.result['_1'].values p25 = np.percentile(v, 25.0) p50 = np.percentile(v, 50.0) p75 = np.percentile(v, 75.0) print("Table=> accuracy: ", accuracy, " 25:", p25, pdict['_25'], " 50:", p50, pdict['_50'], " 75:", p75, pdict['_75']) self.assertAlmostEqual(p25, pdict['_25'], delta=0.01) self.assertAlmostEqual(p50, pdict['_50'], delta=0.01) self.assertAlmostEqual(p75, pdict['_75'], delta=0.01) def _impl_stirred_tst_percentiles(self, accuracy, **kw): """ """ s = self.scheduler() with s: random = RandomTable(2, rows=10000, scheduler=s) stirrer = Stirrer(update_column='_2', fixed_step_size=1000, scheduler=s, **kw) stirrer.input[0] = random.output.result hist_index = HistogramIndex(column='_1', scheduler=s) hist_index.input[0] = stirrer.output.result t_percentiles = PsDict({'_25': 25.0, '_50': 50.0, '_75': 75.0}) which_percentiles = Constant(table=t_percentiles, scheduler=s) percentiles = Percentiles(hist_index, accuracy=accuracy, scheduler=s) percentiles.input[0] = stirrer.output.result percentiles.input.percentiles = which_percentiles.output.result prt = Print(proc=self.terse, scheduler=s) prt.input[0] = percentiles.output.result aio.run(s.start()) pdict = percentiles.result.last().to_dict() #v = random.table()['_1'].values #import pdb;pdb.set_trace() v = stirrer.result.to_array(columns=['_1']).reshape(-1) p25 = np.percentile(v, 25.0) p50 = np.percentile(v, 50.0) p75 = np.percentile(v, 75.0) print("Table=> accuracy: ", accuracy, " 25:", p25, pdict['_25'], " 50:", p50, pdict['_50'], " 75:", p75, pdict['_75']) self.assertAlmostEqual(p25, pdict['_25'], delta=0.01) self.assertAlmostEqual(p50, pdict['_50'], delta=0.01) self.assertAlmostEqual(p75, pdict['_75'], delta=0.01) def test_percentiles_fast(self): """test_percentiles: Simple test for HistIndex based percentiles low accurracy => faster mode """ return self._impl_tst_percentiles(2.0) def test_percentiles_fast2(self): """test_percentiles: Simple test for HistIndex based percentiles low accurracy => faster mode """ return self._impl_stirred_tst_percentiles(2.0, delete_rows=5) def test_percentiles_fast3(self): """test_percentiles: Simple test for HistIndex based percentiles low accurracy => faster mode """ return self._impl_stirred_tst_percentiles(2.0, update_rows=5) def test_percentiles_accurate(self): """test_percentiles: Simple test for HistIndex based percentiles higher accurracy => slower mode """ return self._impl_tst_percentiles(0.2) def test_percentiles_accurate2(self): """test_percentiles: Simple test for HistIndex based percentiles higher accurracy => slower mode """ return self._impl_stirred_tst_percentiles(0.2, delete_rows=5) def test_percentiles_accurate3(self): """test_percentiles: Simple test for HistIndex based percentiles higher accurracy => slower mode """ return self._impl_stirred_tst_percentiles(0.2, update_rows=5) def _impl_tst_percentiles_rq(self, accuracy): """ """ s = self.scheduler() with s: random = RandomTable(2, rows=10000, scheduler=s) t_min = PsDict({'_1': 0.3}) min_value = Constant(table=t_min, scheduler=s) t_max = PsDict({'_1': 0.8}) max_value = Constant(table=t_max, scheduler=s) range_qry = RangeQuery(column='_1', scheduler=s) range_qry.create_dependent_modules(random, 'result', min_value=min_value, max_value=max_value) hist_index = range_qry.hist_index t_percentiles = PsDict({'_25': 25.0, '_50': 50.0, '_75': 75.0}) which_percentiles = Constant(table=t_percentiles, scheduler=s) percentiles = Percentiles(hist_index, accuracy=accuracy, scheduler=s) percentiles.input[0] = range_qry.output.result percentiles.input.percentiles = which_percentiles.output.result prt = Print(proc=self.terse, scheduler=s) prt.input[0] = percentiles.output.result aio.run(s.start()) pdict = percentiles.result.last().to_dict() v = range_qry.result['_1'].values p25 = np.percentile(v, 25.0) p50 = np.percentile(v, 50.0) p75 = np.percentile(v, 75.0) print("TSV=> accuracy: ", accuracy, " 25:", p25, pdict['_25'], " 50:", p50, pdict['_50'], " 75:", p75, pdict['_75']) self.assertAlmostEqual(p25, pdict['_25'], delta=0.01) self.assertAlmostEqual(p50, pdict['_50'], delta=0.01) self.assertAlmostEqual(p75, pdict['_75'], delta=0.01) def _impl_stirred_tst_percentiles_rq(self, accuracy, **kw): """ """ s = self.scheduler() with s: random = RandomTable(2, rows=10000, scheduler=s) stirrer = Stirrer(update_column='_2', fixed_step_size=1000, scheduler=s, **kw) stirrer.input[0] = random.output.result t_min = PsDict({'_1': 0.3}) min_value = Constant(table=t_min, scheduler=s) t_max = PsDict({'_1': 0.8}) max_value = Constant(table=t_max, scheduler=s) range_qry = RangeQuery(column='_1', scheduler=s) range_qry.create_dependent_modules(stirrer, 'result', min_value=min_value, max_value=max_value) hist_index = range_qry.hist_index t_percentiles = PsDict({'_25': 25.0, '_50': 50.0, '_75': 75.0}) which_percentiles = Constant(table=t_percentiles, scheduler=s) percentiles = Percentiles(hist_index, accuracy=accuracy, scheduler=s) percentiles.input[0] = range_qry.output.result percentiles.input.percentiles = which_percentiles.output.result prt = Print(proc=self.terse, scheduler=s) prt.input[0] = percentiles.output.result aio.run(s.start()) pdict = percentiles.result.last().to_dict() v = range_qry.result['_1'].values p25 = np.percentile(v, 25.0) p50 = np.percentile(v, 50.0) p75 = np.percentile(v, 75.0) print("TSV=> accuracy: ", accuracy, " 25:", p25, pdict['_25'], " 50:", p50, pdict['_50'], " 75:", p75, pdict['_75']) self.assertAlmostEqual(p25, pdict['_25'], delta=0.01) self.assertAlmostEqual(p50, pdict['_50'], delta=0.01) self.assertAlmostEqual(p75, pdict['_75'], delta=0.01) def test_percentiles_fast_rq(self): """test_percentiles: Simple test for HistIndex based percentiles low accurracy => faster mode """ return self._impl_tst_percentiles_rq(2.0) def test_percentiles_fast_rq2(self): """test_percentiles: Simple test for HistIndex based percentiles low accurracy => faster mode """ return self._impl_stirred_tst_percentiles_rq(2.0, delete_rows=5) def test_percentiles_fast_rq3(self): """test_percentiles: Simple test for HistIndex based percentiles low accurracy => faster mode """ return self._impl_stirred_tst_percentiles_rq(2.0, update_rows=5) def test_percentiles_accurate_rq(self): """test_percentiles: Simple test for HistIndex based percentiles higher accurracy => slower mode """ return self._impl_tst_percentiles_rq(0.2) def test_percentiles_accurate_rq2(self): """test_percentiles: Simple test for HistIndex based percentiles higher accurracy => slower mode """ return self._impl_stirred_tst_percentiles_rq(0.2, delete_rows=5) def test_percentiles_accurate_rq3(self): """test_percentiles: Simple test for HistIndex based percentiles higher accurracy => slower mode """ return self._impl_stirred_tst_percentiles_rq(0.2, update_rows=5) if __name__ == '__main__': main() ``` #### File: progressivis/tests/test_03_join2.py ```python import pandas as pd from progressivis.core import aio from progressivis import Print, Every from progressivis.stats import Stats from progressivis.io import CSVLoader from progressivis.datasets import get_dataset from progressivis.table.bin_join import BinJoin from progressivis.table.constant import Constant from progressivis.table.table import Table from progressivis.table.reduce import Reduce from . import ProgressiveTest, skip def print_len(x): if x is not None: print(len(x)) class TestJoin2(ProgressiveTest): @skip("Need fixing") def test_join(self): s = self.scheduler() csv = CSVLoader(get_dataset('bigfile'), index_col=False, header=None, scheduler=s) stat1 = Stats(1, reset_index=True, scheduler=s) stat1.input[0] = csv.output.result stat2 = Stats(2, reset_index=True, scheduler=s) stat2.input[0] = csv.output.result # join=Join(scheduler=s) # reduce_ = Reduce(BinJoin, "first", "second", "table", scheduler=s) # reduce_.input[0] = stat1.output.stats # reduce_.input[0] = stat2.output.stats # join = reduce_.expand() join = Reduce.expand(BinJoin, "first", "second", "table", [stat1.output.stats, stat2.output.stats], scheduler=s) pr = Print(proc=self.terse, scheduler=s) pr.input[0] = join.output.result prlen = Every(proc=self.terse, constant_time=True, scheduler=s) prlen.input[0] = csv.output.result aio.run(s.start()) res = join.trace_stats(max_runs=1) print(res) def test_join_simple(self): s = self.scheduler() cst1 = Constant(Table(name='test_join_simple_cst1', data=pd.DataFrame({'xmin': [1], 'xmax': [2]}), create=True), scheduler=s) cst2 = Constant(Table(name='test_join_simple_cst2', data=pd.DataFrame({'ymin': [3], 'ymax': [4]}), create=True), scheduler=s) join = Reduce.expand(BinJoin, "first", "second", "table", [cst1.output.result, cst2.output.result], scheduler=s) # reduce_ = Reduce(BinJoin, "first", "second", "table", scheduler=s) # reduce_.input[0] = cst1.output.result # reduce_.input[0] = cst2.output.result # join = reduce_.expand() # join = BinJoin(scheduler=s) # join.input.first = cst1.output.result # join.input.second = cst2.output.result pr = Print(proc=self.terse, scheduler=s) pr.input[0] = join.output.result aio.run(s.start()) res = join.trace_stats(max_runs=1) print(res) df = join.result last = df.loc[df.index[-1]] self.assertTrue(last['xmin'] == 1 and last['xmax'] == 2 and last['ymin'] == 3 and last['ymax'] == 4) if __name__ == '__main__': ProgressiveTest.main() ``` #### File: progressivis/tests/test_03_last_row.py ```python from . import ProgressiveTest from progressivis import Print, Every from progressivis.table.last_row import LastRow from progressivis.table.constant import Constant from progressivis.io import CSVLoader from progressivis.datasets import get_dataset from progressivis.table.table import Table from progressivis.table.join import Join from progressivis.core.utils import get_random_name from progressivis.core import aio class TestLastRow(ProgressiveTest): def test_last_row(self): s = self.scheduler() csv = CSVLoader(get_dataset('smallfile'), index_col=False, header=None, scheduler=s) lr1 = LastRow(scheduler=s) lr1.input[0] = csv.output.result prlen = Every(proc=self.terse, constant_time=True, scheduler=s) prlen.input[0] = lr1.output.result aio.run(s.start()) df = csv.result last = df.last() res = lr1.result self.assertEqual(res.at[0, '_1'], last['_1']) def test_last_row_simple(self): s = self.scheduler() t1 = Table(name=get_random_name("cst1"), data={'xmin': [1], 'xmax': [2]}) t2 = Table(name=get_random_name("cst2"), data={'ymin': [3], 'ymax': [4]}) cst1 = Constant(t1, scheduler=s) cst2 = Constant(t2, scheduler=s) join = Join(scheduler=s) join.input[0] = cst1.output.result join.input[0] = cst2.output.result pr = Print(proc=self.terse, scheduler=s) pr.input[0] = join.output.result aio.run(s.start()) # res = join.trace_stats(max_runs=1) # pd.set_option('display.expand_frame_repr', False) # print(res) df = join.result last = df.last() self.assertTrue(last['xmin'] == 1 and last['xmax'] == 2 and last['ymin'] == 3 and last['ymax'] == 4) if __name__ == '__main__': ProgressiveTest.main() ``` #### File: progressivis/tests/test_03_linear_map.py ```python from . import ProgressiveTest from progressivis.core import aio from progressivis import Print from progressivis.linalg import LinearMap import numpy as np from progressivis.stats import RandomTable class TestLinearMap(ProgressiveTest): def test_linear_map(self): s = self.scheduler() vectors = RandomTable(3, rows=100000, scheduler=s) transf = RandomTable(10, rows=3, scheduler=s) module = LinearMap(scheduler=s) module.input.vectors = vectors.output.result module.input.transformation = transf.output.result pr = Print(proc=self.terse, scheduler=s) pr.input[0] = module.output.result aio.run(s.start()) res1 = np.matmul(vectors.result.to_array(), transf.result.to_array()) res2 = module.result.to_array() self.assertTrue(np.allclose(res1, res2, equal_nan=True)) def test_linear_map2(self): s = self.scheduler() vectors = RandomTable(20, rows=100000, scheduler=s) transf = RandomTable(20, rows=3, scheduler=s) module = LinearMap(columns=['_3', '_4', '_5'], scheduler=s) module.input.vectors = vectors.output.result module.input.transformation = transf.output.result pr = Print(proc=self.terse, scheduler=s) pr.input[0] = module.output.result aio.run(s.start()) res1 = np.matmul(vectors.result.to_array()[:, 2:5], transf.result.to_array()) res2 = module.result.to_array() self.assertTrue(np.allclose(res1, res2, equal_nan=True)) def test_linear_map3(self): s = self.scheduler() vectors = RandomTable(20, rows=100000, scheduler=s) transf = RandomTable(20, rows=3, scheduler=s) module = LinearMap(columns=['_3', '_4', '_5'], transf_columns=['_4', '_5', '_6', '_7'], scheduler=s) module.input.vectors = vectors.output.result module.input.transformation = transf.output.result pr = Print(proc=self.terse, scheduler=s) pr.input[0] = module.output.result aio.run(s.start()) res1 = np.matmul(vectors.result.to_array()[:, 2:5], transf.result.to_array()[:, 3:7]) res2 = module.result.to_array() self.assertTrue(np.allclose(res1, res2, equal_nan=True)) ``` #### File: progressivis/tests/test_03_pairwise.py ```python from . import ProgressiveTest from progressivis import Every from progressivis.io import VECLoader, CSVLoader #from progressivis.metrics import PairwiseDistances from progressivis.datasets import get_dataset from progressivis.core import aio import numpy as np from sklearn.metrics.pairwise import pairwise_distances def print_len(x): if x is not None: print(len(x)) times = 0 async def ten_times(scheduler, run_number): global times times += 1 #import pdb;pdb.set_trace() if times > 10: scheduler.exit() class TestPairwiseDistances(ProgressiveTest): def NOtest_vec_distances(self): s= self.scheduler() vec=VECLoader(get_dataset('warlogs'),scheduler=s) # dis=PairwiseDistances(metric='cosine',scheduler=s) # dis.input[0] = vec.output.df # dis.input.array = vec.output.array cnt = Every(proc=self.terse,constant_time=True,scheduler=s) # cnt.input[0] = dis.output.dist cnt.input[0] = vec.output.result global times times = 0 s.start() table = vec.result #print(table) # computed = dis.dist() # self.assertEquals(computed.shape[0], len(df)) # truth = pairwise_distances(vec.toarray(), metric=dis._metric) # self.assertTrue(np.allclose(truth, computed)) def test_csv_distances(self): s = self.scheduler() vec=CSVLoader(get_dataset('smallfile'),index_col=False,header=None,scheduler=s) # dis=PairwiseDistances(metric='euclidean',scheduler=s) # dis.input[0] = vec.output.df cnt = Every(proc=self.terse,constant_time=True,scheduler=s) # cnt.input[0] = dis.output.dist cnt.input[0] = vec.output.result global times times = 0 aio.run(s.start(ten_times)) table = vec.result #print(repr(table)) # computed = dis.dist() #self.assertEquals(computed.shape[0], len(df)) # offset=0 # size=offset+5000 # truth = pairwise_distances(df.iloc[offset:size], metric=dis._metric) # dist = computed[offset:size,offset:size] # self.assertTrue(np.allclose(truth, dist,atol=1e-7)) # reduce tolerance if __name__ == '__main__': ProgressiveTest.main() ``` #### File: progressivis/tests/test_03_ppca.py ```python from . import ProgressiveTest, skipIf from progressivis import Scheduler, Every from progressivis.core import aio from progressivis.io import CSVLoader from progressivis.stats.ppca import PPCA from progressivis.datasets import get_dataset from progressivis.table.module import TableModule from progressivis.table.table import Table from progressivis.utils.psdict import PsDict from progressivis.core.slot import SlotDescriptor from sklearn.neighbors import KNeighborsClassifier from sklearn.utils.random import sample_without_replacement import pandas as pd import os def _print(x): pass TRAIN_SAMPLE_SIZE = 10000 PREDICT_SAMPLE_SIZE = 1000 SAMPLE_SIZE = TRAIN_SAMPLE_SIZE + PREDICT_SAMPLE_SIZE RANDOM_STATE = 42 NNEIGHBOURS = 7 N_COMPONENTS = 154 TRACE = None # 'verbose' LABELS = INDICES = KNN = None def _array(tbl): return tbl['array'].values class MyResetter(TableModule): inputs = [SlotDescriptor('table', type=Table, required=True)] def __init__(self, threshold, **kwds): super().__init__(**kwds) self._threshold = threshold self.result = PsDict({'reset': True}) def run_step(self, run_number, step_size, howlong): input_slot = self.get_input_slot('table') input_slot.clear_buffers() data = input_slot.data() if data and len(data) >= self._threshold: self.result['reset'] = False return self._return_run_step( self.next_state(input_slot), steps_run=step_size ) @skipIf(os.getenv('TRAVIS'), 'skipped because too expensive for the CI') class TestPPCA(ProgressiveTest): def _common(self, rtol, threshold=None, resetter=None, resetter_func=None, scheduler=None): global KNN, LABELS, INDICES if scheduler is None: s = Scheduler() else: s = scheduler dataset = get_dataset('mnist_784') data = CSVLoader(dataset, index_col=False, as_array='array', usecols=lambda x: x != 'class', scheduler=s) ppca = PPCA(scheduler=s) ppca.input[0] = data.output.result ppca.params.n_components = N_COMPONENTS if resetter: assert callable(resetter_func) resetter.input[0] = ppca.output.result ppca.create_dependent_modules(rtol=rtol, trace=TRACE, threshold=threshold, resetter=resetter, resetter_func=resetter_func) prn = Every(scheduler=s, proc=_print) prn.input[0] = ppca.reduced.output.result aio.run(s.start()) pca_ = ppca._transformer['inc_pca'] recovered = pca_.inverse_transform(_array(ppca.reduced.result)) if KNN is None: print("Init KNN") KNN = KNeighborsClassifier(NNEIGHBOURS) arr = _array(data.result) LABELS = pd.read_csv(dataset, usecols=['class']).values.reshape((-1,)) indices_t = sample_without_replacement(n_population=len(data.result), n_samples=TRAIN_SAMPLE_SIZE, random_state=RANDOM_STATE) KNN.fit(arr[indices_t], LABELS[indices_t]) indices_p = sample_without_replacement(n_population=len(data.result), n_samples=PREDICT_SAMPLE_SIZE, random_state=RANDOM_STATE*2+1) return KNN.score(recovered[indices_p], LABELS[indices_p]) def test_always_reset(self): """ test_always_reset() """ score = self._common(0.1) print("always reset=>score", score) self.assertGreater(score, 0.93) # 0.94? def test_never_reset(self): """ test_never_reset() """ score = self._common(100.0) print("never reset=>score", score) self.assertGreater(score, 0.77) def test_reset_threshold_30k(self): """ test_reset_threshold_30k () """ score = self._common(0.1, threshold=30000) print("reset when threshold 30K=>score", score) self.assertGreater(score, 0.77) def test_reset_threshold_40k(self): """ test_reset_threshold_40k() """ score = self._common(0.1, threshold=40000) print("reset when threshold 40K=>score", score) self.assertGreater(score, 0.77) def test_reset_threshold_50k(self): """ test_reset_threshold_50k() """ score = self._common(0.1, threshold=50000) print("reset when threshold 50K=>score", score) self.assertGreater(score, 0.77) def test_reset_threshold_60k(self): """ test_reset_threshold_60k() """ score = self._common(0.1, threshold=60000) print("reset when threshold 60K=>score", score) self.assertGreater(score, 0.77) def test_resetter(self): """ test_resetter() """ s = Scheduler() resetter = MyResetter(threshold=30000, scheduler=s) def _func(slot): return slot.data().get('reset') score = self._common(0.1, resetter=resetter, resetter_func=_func, scheduler=s) print("resetter 30K=>score", score) self.assertGreater(score, 0.77) if __name__ == '__main__': unittest.main() ``` #### File: progressivis/tests/test_03_random_csv.py ```python from progressivis.core.utils import RandomBytesIO from . import ProgressiveTest import tempfile, os, os.path, shutil class TestRandomCsv(ProgressiveTest): def setUp(self): # fixed rows number self.dtemp = tempfile.mkdtemp(prefix='p10s_') fixed_rows_obj = RandomBytesIO(cols=10, rows=50) self.fixed_rows_file = os.path.join(self.dtemp, 'fixed_rows.csv') fixed_rows_obj.save(self.fixed_rows_file) # fixed size fixed_size_obj = RandomBytesIO(cols=10, size=7777) self.fixed_size_file = os.path.join(self.dtemp, 'fixed_size.csv') fixed_size_obj.save(self.fixed_size_file) def tearDown(self): shutil.rmtree(self.dtemp) def test_size(self): fixed_rows_obj = RandomBytesIO(cols=10, rows=50) self.assertEqual(os.stat(self.fixed_rows_file).st_size, fixed_rows_obj.size()) fixed_size_obj = RandomBytesIO(cols=10, size=7777) self.assertEqual(os.stat(self.fixed_size_file).st_size, fixed_size_obj.size()) def test_read(self): fixed_rows_obj = RandomBytesIO(cols=10, rows=50) with open(self.fixed_rows_file) as fd: for n in [7, 77, 777, 7007]: self.assertEqual(fixed_rows_obj.read(n), fd.read(n).encode('utf-8')) self.assertEqual(fixed_rows_obj.tell(), fd.tell()) fixed_size_obj = RandomBytesIO(cols=10, size=7777) with open(self.fixed_size_file) as fd: for n in [7, 77, 777, 7007]: self.assertEqual(fixed_size_obj.read(n), fd.read(n).encode('utf-8')) self.assertEqual(fixed_size_obj.tell(), fd.tell()) def test_read_all(self): fixed_rows_obj = RandomBytesIO(cols=10, rows=50) with open(self.fixed_rows_file) as fd: self.assertEqual(fixed_rows_obj.read(), fd.read().encode('utf-8')) self.assertEqual(fixed_rows_obj.tell(), fd.tell()) fixed_size_obj = RandomBytesIO(cols=10, size=7777) with open(self.fixed_size_file) as fd: self.assertEqual(fixed_size_obj.read(), fd.read().encode('utf-8')) self.assertEqual(fixed_size_obj.tell(), fd.tell()) def test_iter(self): fixed_rows_obj = RandomBytesIO(cols=10, rows=50) with open(self.fixed_rows_file) as fd: for row in fixed_rows_obj: self.assertEqual(row, fd.readline()) fixed_size_obj = RandomBytesIO(cols=10, size=7777) with open(self.fixed_size_file) as fd: for row in fixed_size_obj: self.assertEqual(row, fd.readline()) def test_readline(self): fixed_rows_obj = RandomBytesIO(cols=10, rows=50) with open(self.fixed_rows_file) as fd: for _ in range(50): self.assertEqual(fixed_rows_obj.readline(), fd.readline()) fixed_size_obj = RandomBytesIO(cols=10, size=7777) with open(self.fixed_size_file) as fd: for _ in range(50): self.assertEqual(fixed_size_obj.readline(), fd.readline()) def test_readlines(self): fixed_rows_obj = RandomBytesIO(cols=10, rows=50) with open(self.fixed_rows_file) as fd: self.assertEqual(fixed_rows_obj.readlines(), fd.readlines()) fixed_size_obj = RandomBytesIO(cols=10, size=7777) with open(self.fixed_size_file) as fd: self.assertEqual(fixed_size_obj.readlines(), fd.readlines()) if __name__ == '__main__': ProgressiveTest.main() ``` #### File: progressivis/tests/test_03_random_table.py ```python from . import ProgressiveTest from progressivis.core import aio from progressivis import Every from progressivis.stats.random_table import RandomTable def print_len(x): if x is not None: print(len(x)) class TestRandomTable(ProgressiveTest): def test_random_table(self): s = self.scheduler() module=RandomTable(['a', 'b'], rows=10000, scheduler=s) self.assertEqual(module.result.columns[0],'a') self.assertEqual(module.result.columns[1],'b') self.assertEqual(len(module.result.columns), 2) # add the UPDATE_COLUMN prlen = Every(proc=self.terse, constant_time=True, scheduler=s) prlen.input[0] = module.output.result aio.run(s.start()) #s.join() self.assertEqual(len(module.result), 10000) # self.assertFalse(module.result['a'].isnull().any()) # self.assertFalse(module.result['b'].isnull().any()) def test_random_table2(self): s = self.scheduler() # produces more than 4M rows per second on my laptop module=RandomTable(10, rows=1000000, force_valid_ids=True, scheduler=s) self.assertEqual(len(module.result.columns), 10) # add the UPDATE_COLUMN self.assertEqual(module.result.columns[0],'_1') self.assertEqual(module.result.columns[1],'_2') prlen = Every(proc=self.terse, constant_time=True, scheduler=s) prlen.input[0] = module.output.result aio.run(s.start()) #s.join() self.assertEqual(len(module.result), 1000000) # self.assertFalse(module.result['_1'].isnull().any()) # self.assertFalse(module.result['_2'].isnull().any()) ``` #### File: progressivis/tests/test_03_range_query.py ```python "Test for Range Query" from progressivis.table.constant import Constant from progressivis.table.table import Table from progressivis import Print from progressivis.stats import RandomTable, Min, Max from progressivis.core.bitmap import bitmap from progressivis.table.range_query import RangeQuery from progressivis.utils.psdict import PsDict from progressivis.core import aio from . import ProgressiveTest, main class TestRangeQuery(ProgressiveTest): "Test Suite for RangeQuery Module" def tearDown(self): TestRangeQuery.cleanup() def test_range_query(self): "Run tests of the RangeQuery module" s = self.scheduler() with s: random = RandomTable(2, rows=1000, scheduler=s) t_min = PsDict({'_1': 0.3}) min_value = Constant(table=t_min, scheduler=s) t_max = PsDict({'_1': 0.8}) max_value = Constant(table=t_max, scheduler=s) range_qry = RangeQuery(column='_1', scheduler=s) range_qry.create_dependent_modules(random, 'result', min_value=min_value, max_value=max_value) prt = Print(proc=self.terse, scheduler=s) prt.input[0] = range_qry.output.result aio.run(s.start()) idx = range_qry.input_module\ .output['result']\ .data().eval('(_1>0.3)&(_1<0.8)', result_object='index') self.assertEqual(range_qry.result.index, bitmap(idx)) def test_hist_index_min_max(self): "Test min_out and max_out on HistogramIndex" s = self.scheduler() with s: random = RandomTable(2, rows=100000, scheduler=s) t_min = PsDict({'_1': 0.3}) min_value = Constant(table=t_min, scheduler=s) t_max = PsDict({'_1': 0.8}) max_value = Constant(table=t_max, scheduler=s) range_qry = RangeQuery(column='_1', scheduler=s) range_qry.create_dependent_modules(random, 'result', min_value=min_value, max_value=max_value) prt = Print(proc=self.terse, scheduler=s) prt.input[0] = range_qry.output.result hist_index = range_qry.hist_index min_=Min(name='min_'+str(hash(hist_index)), scheduler=s) min_.input[0] = hist_index.output.min_out prt2 = Print(proc=self.terse, scheduler=s) prt2.input[0] = min_.output.result max_=Max(name='max_'+str(hash(hist_index)), scheduler=s) max_.input[0] = hist_index.output.max_out pr3=Print(proc=self.terse, scheduler=s) pr3.input[0] = max_.output.result aio.run(s.start()) res1 = random.result.min()['_1'] res2 = min_.result['_1'] self.assertAlmostEqual(res1, res2) res1 = random.result.max()['_1'] res2 = max_.result['_1'] self.assertAlmostEqual(res1, res2) def _query_min_max_impl(self, random, t_min, t_max, s): min_value = Constant(table=t_min, scheduler=s) max_value = Constant(table=t_max, scheduler=s) range_qry = RangeQuery(column='_1', scheduler=s) range_qry.create_dependent_modules(random, 'result', min_value=min_value, max_value=max_value) prt = Print(proc=self.terse, scheduler=s) prt.input[0] = range_qry.output.result prt2 = Print(proc=self.terse, scheduler=s) prt2.input[0] = range_qry.output.min pr3 = Print(proc=self.terse, scheduler=s) pr3.input[0] = range_qry.output.max return range_qry def test_range_query_min_max(self): "Test min and max on RangeQuery output" s = self.scheduler() with s: random = RandomTable(2, rows=100000, scheduler=s) t_min = PsDict({'_1': 0.3}) t_max = PsDict({'_1': 0.8}) range_qry = self._query_min_max_impl(random, t_min, t_max, s) aio.run(s.start()) min_data = range_qry.output.min.data() max_data = range_qry.output.max.data() self.assertAlmostEqual(min_data['_1'], 0.3) self.assertAlmostEqual(max_data['_1'], 0.8) def test_range_query_min_max2(self): "Test min and max on RangeQuery output" s = self.scheduler() with s: random = RandomTable(2, rows=100000, scheduler=s) t_min = PsDict({'_1': 0.0}) t_max = PsDict({'_1': float('nan')}) range_qry = self._query_min_max_impl(random, t_min, t_max, s) aio.run(s.start()) min_data = range_qry.output.min.data() max_data = range_qry.output.max.data() min_rand = random.result.min()['_1'] self.assertAlmostEqual(min_data['_1'], min_rand, delta=0.0001) self.assertAlmostEqual(max_data['_1'], 1.0, delta=0.0001) def test_range_query_min_max3(self): "Test min and max on RangeQuery output" s = self.scheduler() with s: random = RandomTable(2, rows=100000, scheduler=s) t_min = PsDict({'_1': 0.3}) t_max = PsDict({'_1': 15000.}) range_qry = self._query_min_max_impl(random, t_min, t_max, s) aio.run(s.start()) min_data = range_qry.output.min.data() max_data = range_qry.output.max.data() max_rand = random.result.max()['_1'] self.assertAlmostEqual(min_data['_1'], 0.3) self.assertAlmostEqual(max_data['_1'], max_rand) if __name__ == '__main__': main() ``` #### File: progressivis/tests/test_03_repair_min_max.py ```python from . import ProgressiveTest, skip, skipIf from progressivis import Print, Scheduler from progressivis.table.module import TableModule from progressivis.table.table import Table from progressivis.core.slot import SlotDescriptor from progressivis.stats import RandomTable, ScalarMax, ScalarMin from progressivis.table.stirrer import Stirrer from progressivis.core.bitmap import bitmap from progressivis.core import aio from progressivis.core.utils import indices_len, fix_loc import numpy as np ScalarMax._reset_calls_counter = 0 ScalarMax._orig_reset = ScalarMax.reset def _reset_func(self_): ScalarMax._reset_calls_counter += 1 return ScalarMax._orig_reset(self_) ScalarMax.reset = _reset_func ScalarMin._reset_calls_counter = 0 ScalarMin._orig_reset = ScalarMin.reset def _reset_func(self_): ScalarMin._reset_calls_counter += 1 return ScalarMin._orig_reset(self_) ScalarMin.reset = _reset_func class MyStirrer(TableModule): inputs = [SlotDescriptor('table', type=Table, required=True)] def __init__(self, watched, proc_sensitive=True, mode='delete', value=9999.0, **kwds): super().__init__(**kwds) self.watched = watched self.proc_sensitive = proc_sensitive self.mode = mode self.default_step_size = 100 self.value = value self.done = False def run_step(self, run_number, step_size, howlong): input_slot = self.get_input_slot('table') # input_slot.update(run_number) steps = 0 if not input_slot.created.any(): return self._return_run_step(self.state_blocked, steps_run=0) created = input_slot.created.next(step_size) steps = indices_len(created) input_table = input_slot.data() if self.result is None: self.result = Table(self.generate_table_name('stirrer'), dshape=input_table.dshape, ) v = input_table.loc[fix_loc(created), :] self.result.append(v) if not self.done: sensitive_ids = bitmap(self.scheduler().modules()[self.watched]._sensitive_ids.values()) if sensitive_ids: if self.proc_sensitive: if self.mode == 'delete': #print('delete sensitive', sensitive_ids) del self.result.loc[sensitive_ids] else: #print('update sensitive', sensitive_ids) self.result.loc[sensitive_ids, 0] = self.value self.done = True else: # non sensitive if len(self.result) > 10: for i in range(10): id_ = self.result.index[i] if id_ not in sensitive_ids: if self.mode == 'delete': del self.result.loc[id_] else: self.result.loc[id_, 0] = self.value self.done = True return self._return_run_step(self.next_state(input_slot), steps_run=steps) #@skip class TestRepairMax(ProgressiveTest): def test_repair_max(self): """ test_repair_max() max without deletes/updates """ s=Scheduler() random = RandomTable(2, rows=100000, scheduler=s) max_=ScalarMax(name='max_'+str(hash(random)), scheduler=s) max_.input[0] = random.output.result pr=Print(proc=self.terse, scheduler=s) pr.input[0] = max_.output.result aio.run(s.start()) res1 = random.result.max() res2 = max_.result self.compare(res1, res2) def test_repair_max2(self): """ test_repair_max2() runs with sensitive ids deletion """ s=Scheduler() ScalarMax._reset_calls_counter = 0 random = RandomTable(2, rows=100000, scheduler=s) max_=ScalarMax(name='max_repair_test2', scheduler=s) stirrer = MyStirrer(watched='max_repair_test2', scheduler=s) stirrer.input[0] = random.output.result max_.input[0] = stirrer.output.result pr=Print(proc=self.terse, scheduler=s) pr.input[0] = max_.output.result aio.run(s.start()) self.assertEqual(ScalarMax._reset_calls_counter, 1) res1 = stirrer.result.max() res2 = max_.result self.compare(res1, res2) def test_repair_max3(self): """ test_repair_max3() runs with NON-sensitive ids deletion """ s=Scheduler() ScalarMax._reset_calls_counter = 0 random = RandomTable(2, rows=100000, scheduler=s) max_=ScalarMax(name='max_repair_test3', scheduler=s) stirrer = MyStirrer(watched='max_repair_test3', proc_sensitive=False, scheduler=s) stirrer.input[0] = random.output.result max_.input[0] = stirrer.output.result pr=Print(proc=self.terse, scheduler=s) pr.input[0] = max_.output.result aio.run(s.start()) self.assertEqual(ScalarMax._reset_calls_counter, 0) res1 = stirrer.result.max() res2 = max_.result self.compare(res1, res2) def test_repair_max4(self): """ test_repair_max4() runs with sensitive ids update """ s=Scheduler() ScalarMax._reset_calls_counter = 0 random = RandomTable(2, rows=100000, scheduler=s) max_=ScalarMax(name='max_repair_test4', scheduler=s) stirrer = MyStirrer(watched='max_repair_test4', mode='update', value=9999.0, scheduler=s) stirrer.input[0] = random.output.result max_.input[0] = stirrer.output.result pr=Print(proc=self.terse, scheduler=s) pr.input[0] = max_.output.result aio.run(s.start()) self.assertEqual(ScalarMax._reset_calls_counter, 0) res1 = stirrer.result.max() res2 = max_.result self.compare(res1, res2) def test_repair_max5(self): """ test_repair_max5() runs with sensitive ids update (critical) """ s=Scheduler() ScalarMax._reset_calls_counter = 0 random = RandomTable(2, rows=100000, scheduler=s) max_=ScalarMax(name='max_repair_test4', scheduler=s) stirrer = MyStirrer(watched='max_repair_test4', mode='update', value=-9999.0, scheduler=s) stirrer.input[0] = random.output.result max_.input[0] = stirrer.output.result pr=Print(proc=self.terse, scheduler=s) pr.input[0] = max_.output.result aio.run(s.start()) self.assertEqual(ScalarMax._reset_calls_counter, 1) res1 = stirrer.result.max() res2 = max_.result self.compare(res1, res2) def test_repair_max6(self): """ test_repair_max6() runs with NON-sensitive ids updates """ s=Scheduler() ScalarMax._reset_calls_counter = 0 random = RandomTable(2, rows=100000, scheduler=s) max_=ScalarMax(name='max_repair_test5', scheduler=s) stirrer = MyStirrer(watched='max_repair_test5', proc_sensitive=False, mode='update', scheduler=s) stirrer.input[0] = random.output.result max_.input[0] = stirrer.output.result pr=Print(proc=self.terse, scheduler=s) pr.input[0] = max_.output.result aio.run(s.start()) self.assertEqual(ScalarMax._reset_calls_counter, 0) res1 = stirrer.result.max() res2 = max_.result self.compare(res1, res2) def compare(self, res1, res2): v1 = np.array(list(res1.values())) v2 = np.array(list(res2.values())) #print('v1 = ', v1, res1.keys()) #print('v2 = ', v2, res2.keys()) self.assertTrue(np.allclose(v1, v2)) class TestRepairMin(ProgressiveTest): def test_repair_min(self): """ test_repair_min() min without deletes/updates """ s=Scheduler() random = RandomTable(2, rows=100000, scheduler=s) min_=ScalarMin(name='min_'+str(hash(random)), scheduler=s) min_.input[0] = random.output.result pr=Print(proc=self.terse, scheduler=s) pr.input[0] = min_.output.result aio.run(s.start()) res1 = random.result.min() res2 = min_.result self.compare(res1, res2) def test_repair_min2(self): """ test_repair_min2() runs with sensitive ids deletion """ s=Scheduler() ScalarMin._reset_calls_counter = 0 random = RandomTable(2, rows=100000, scheduler=s) min_=ScalarMin(name='min_repair_test2', scheduler=s) stirrer = MyStirrer(watched='min_repair_test2', scheduler=s) stirrer.input[0] = random.output.result min_.input[0] = stirrer.output.result pr=Print(proc=self.terse, scheduler=s) pr.input[0] = min_.output.result aio.run(s.start()) self.assertEqual(ScalarMin._reset_calls_counter, 1) res1 = stirrer.result.min() res2 = min_.result self.compare(res1, res2) def test_repair_min3(self): """ test_repair_min3() runs with NON-sensitive ids deletion """ s=Scheduler() ScalarMin._reset_calls_counter = 0 random = RandomTable(2, rows=100000, scheduler=s) min_=ScalarMin(name='min_repair_test3', scheduler=s) stirrer = MyStirrer(watched='min_repair_test3', proc_sensitive=False, scheduler=s) stirrer.input[0] = random.output.result min_.input[0] = stirrer.output.result pr=Print(proc=self.terse, scheduler=s) pr.input[0] = min_.output.result aio.run(s.start()) self.assertEqual(ScalarMin._reset_calls_counter, 0) res1 = stirrer.result.min() res2 = min_.result self.compare(res1, res2) def test_repair_min4(self): """ test_repair_min4() runs with sensitive ids update """ s=Scheduler() ScalarMin._reset_calls_counter = 0 random = RandomTable(2, rows=100000, scheduler=s) min_=ScalarMin(name='min_repair_test4', scheduler=s) stirrer = MyStirrer(watched='min_repair_test4', mode='update', value=-9999.0, scheduler=s) stirrer.input[0] = random.output.result min_.input[0] = stirrer.output.result pr=Print(proc=self.terse, scheduler=s) pr.input[0] = min_.output.result aio.run(s.start()) self.assertEqual(ScalarMin._reset_calls_counter, 0) res1 = stirrer.result.min() res2 = min_.result self.compare(res1, res2) def test_repair_min5(self): """ test_repair_min5() runs with sensitive ids update (critical) """ s=Scheduler() ScalarMin._reset_calls_counter = 0 random = RandomTable(2, rows=100000, scheduler=s) min_=ScalarMin(name='min_repair_test4', scheduler=s) stirrer = MyStirrer(watched='min_repair_test4', mode='update', value=9999.0, scheduler=s) stirrer.input[0] = random.output.result min_.input[0] = stirrer.output.result pr=Print(proc=self.terse, scheduler=s) pr.input[0] = min_.output.result aio.run(s.start()) self.assertEqual(ScalarMin._reset_calls_counter, 1) res1 = stirrer.result.min() res2 = min_.result self.compare(res1, res2) def test_repair_min6(self): """ test_repair_min6() runs with NON-sensitive ids updates """ s=Scheduler() ScalarMin._reset_calls_counter = 0 random = RandomTable(2, rows=100000, scheduler=s) min_=ScalarMin(name='min_repair_test5', scheduler=s) stirrer = MyStirrer(watched='min_repair_test5', proc_sensitive=False, mode='update', scheduler=s) stirrer.input[0] = random.output.result min_.input[0] = stirrer.output.result pr=Print(proc=self.terse, scheduler=s) pr.input[0] = min_.output.result aio.run(s.start()) self.assertEqual(ScalarMin._reset_calls_counter, 0) res1 = stirrer.result.min() res2 = min_.result self.compare(res1, res2) def compare(self, res1, res2): v1 = np.array(list(res1.values())) v2 = np.array(list(res2.values())) #print('v1 = ', v1, res1.keys()) #print('v2 = ', v2, res2.keys()) self.assertTrue(np.allclose(v1, v2)) if __name__ == '__main__': unittest.main() ``` #### File: progressivis/tests/test_04_mb_k_means.py ```python from . import ProgressiveTest, skip from progressivis import Print, Every #, log_level from progressivis.cluster import MBKMeans from progressivis.io import CSVLoader from progressivis.datasets import get_dataset from progressivis.core import aio #from sklearn.cluster import MiniBatchKMeans #from sklearn.utils.extmath import squared_norm #import numpy as np #import pandas as pd # times = 0 # def stop_if_done(s, n): # global times # if s.run_queue_length()==3: # if times==2: # s.stop() # times += 1 @skip class TestMBKmeans(ProgressiveTest): def test_mb_k_means(self): #log_level() s = self.scheduler() n_clusters = 3 with s: csv = CSVLoader(get_dataset('cluster:s3'), sep=' ', skipinitialspace=True, header=None, index_col=False, scheduler=s) km = MBKMeans(n_clusters=n_clusters, random_state=42, is_input=False, is_greedy=False, scheduler=s) #km.input.table = csv.output.result km.create_dependent_modules(csv) pr = Print(proc=self.terse, scheduler=s) pr.input[0] = km.output.result e = Every(proc=self.terse, scheduler=s) e.input[0] = km.output.labels aio.run(s.start()) # s.join() self.assertEqual(len(csv.result), len(km.labels())) # mbk = MiniBatchKMeans(n_clusters=n_clusters, random_state=42, verbose=True) # X = csv.df()[km.columns] # mbk.partial_fit(X) # print mbk.cluster_centers_ # print km.mbk.cluster_centers_ # self.assertTrue(np.allclose(mbk.cluster_centers_, km.mbk.cluster_centers_)) if __name__ == '__main__': ProgressiveTest.main() ``` #### File: progressivis/tests/test_04_mds.py ```python from . import ProgressiveTest, skip from progressivis import Every from progressivis.io import CSVLoader from progressivis.metrics import PairwiseDistances from progressivis.datasets import get_dataset from progressivis.core import aio import logging def print_len(x): if x is not None: print(x.shape) times = 0 def ten_times(scheduler, run_number): global times times += 1 if times > 10: scheduler.stop() class TestMDS(ProgressiveTest): # def test_MDS_vec(self): # vec=VECLoader(get_dataset('warlogs')) # dis=PairwiseDistances(metric='cosine') # dis.input[0] = vec.output.df # dis.input.array = vec.output.array # cnt = Every(proc=print_len,constant_time=True) # cnt.input[0] = dis.output.df # vec.start() @skip("Need to implement MDS on tables") def test_MDS_csv(self): s= self.scheduler() vec=CSVLoader(get_dataset('smallfile'),index_col=False,header=None,scheduler=s) dis=PairwiseDistances(metric='euclidean',scheduler=s) dis.input[0] = vec.output.df cnt = Every(proc=self.terse, constant_time=True,scheduler=s) cnt.input[0] = dis.output.dist global times times = 0 aio.run(s.start(ten_times)) if __name__ == '__main__': ProgressiveTest.main() ``` #### File: progressivis_nb_widgets/nbwidgets/module_wg.py ```python import ipywidgets as ipw from .utils import update_widget from .slot_wg import SlotWg from .json_html import JsonHTML debug_console = None # ipw.Output() """ {"table": [{"output_name": "table", "output_module": "csv_loader_1", "input_name": "df", "input_module": "every_1"}, {"output_name": "table", "output_module": "csv_loader_1", "input_name": "table", "input_module": "histogram_index_1"}, {"output_name": "table", "output_module": "csv_loader_1", "input_name": "table", "input_module": "histogram_index_2"}, {"output_name": "table", "output_module": "csv_loader_1", "input_name": "table", "input_module": "histogram_index_3"}, {"output_name": "table", "output_module": "csv_loader_1", "input_name": "table", "input_module": "histogram_index_4"}], "_trace": null} ## range_query_2d {"min": [{"output_name": "min", "output_module": "range_query2d_2", "input_name": "table.00.03", "input_module": "mc_histogram2_d_1"}, {"output_name": "min", "output_module": "range_query2d_2", "input_name": "table.00.03", "input_module": "mc_histogram2_d_2"}], "max": [{"output_name": "max", "output_module": "range_query2d_2", "input_name": "table.00.04", "input_module": "mc_histogram2_d_1"}, {"output_name": "max", "output_module": "range_query2d_2", "input_name": "table.00.04", "input_module": "mc_histogram2_d_2"}], "table": [{"output_name": "table", "output_module": "range_query2d_2", "input_name": "data", "input_module": "mc_histogram2_d_2"}, {"output_name": "table", "output_module": "range_query2d_2", "input_name": "table", "input_module": "sample_2"}], "_trace": null} """ class ModuleWg(ipw.Tab): # pylint: disable=too-many-ancestors def __init__(self, board, dconsole=None): global debug_console # pylint: disable=global-statement debug_console = dconsole self._index = board self._main = JsonHTML() self.module_name = None self.selection_changed = False self._output_slots = ipw.Tab() super().__init__([self._main, self._output_slots]) self.set_title(0, 'Main') self.set_title(1, 'Output slots') async def refresh(self): _idx = self._index # pylint: disable=protected-access json_ = _idx._cache_js assert json_ is not None module_json = None m = None for i, m in enumerate(json_['modules']): if m['id'] == self.module_name: module_json = m break assert module_json is not None self.set_title(0, self.module_name) await update_widget(self._main, 'data', m) await update_widget(self._main, 'config', dict(order=["classname", "speed", "debug", "state", "last_update", "default_step_size", "start_time", "end_time", "parameters", "input_slots"], sparkline=["speed"])) _selected_index = 0 module = self._index.scheduler.modules()[self.module_name] if module is None: return if self.selection_changed or not self._output_slots.children: # first refresh self.selection_changed = False self.selected_index = 0 slots = [SlotWg(module, sl) for sl in m["output_slots"].keys()]+[SlotWg(module, '_params')] await update_widget(self._output_slots, 'children', slots) if module.name in self._index.vis_register: for wg, label in self._index.vis_register[module.name]: self.children = (wg,) + self.children self.set_title(0, label) self.set_title(1, 'Main') self.set_title(2, 'Output slots') elif len(self.children) > 2: self.children = self.children[1:] self.set_title(0, module.name) self.set_title(1, 'Output slots') else: _selected_index = self._output_slots.selected_index for i, k in enumerate(m["output_slots"].keys()): self._output_slots.set_title(i, k) await self._output_slots.children[i].refresh() i += 1 self._output_slots.set_title(i, '_params') await self._output_slots.children[i].refresh() self._output_slots.selected_index = _selected_index ```
{ "source": "jdfoote/mesa", "score": 2 }
#### File: virus_on_network/virus_on_network/server.py ```python import math from mesa.visualization.ModularVisualization import ModularServer from mesa.visualization.UserParam import UserSettableParameter from mesa.visualization.modules import ChartModule from mesa.visualization.modules import NetworkModule from mesa.visualization.modules import TextElement from .model import VirusOnNetwork, State, number_infected def network_portrayal(G): # The model ensures there is always 1 agent per node def node_color(agent): return {State.INFECTED: "#FF0000", State.SUSCEPTIBLE: "#008000"}.get( agent.state, "#808080" ) def edge_color(agent1, agent2): if State.RESISTANT in (agent1.state, agent2.state): return "#000000" return "#e8e8e8" def edge_width(agent1, agent2): if State.RESISTANT in (agent1.state, agent2.state): return 3 return 2 def get_agents(source, target): return G.nodes[source]["agent"][0], G.nodes[target]["agent"][0] portrayal = dict() portrayal["nodes"] = [ { "size": 6, "color": node_color(agents[0]), "tooltip": f"id: {agents[0].unique_id}<br>state: {agents[0].state.name}", } for (_, agents) in G.nodes.data("agent") ] portrayal["edges"] = [ { "source": source, "target": target, "color": edge_color(*get_agents(source, target)), "width": edge_width(*get_agents(source, target)), } for (source, target) in G.edges ] return portrayal network = NetworkModule(network_portrayal, 500, 500, library="d3") chart = ChartModule( [ {"Label": "Infected", "Color": "#FF0000"}, {"Label": "Susceptible", "Color": "#008000"}, {"Label": "Resistant", "Color": "#808080"}, ] ) class MyTextElement(TextElement): def render(self, model): ratio = model.resistant_susceptible_ratio() ratio_text = "&infin;" if ratio is math.inf else f"{ratio:.2f}" infected_text = str(number_infected(model)) return "Resistant/Susceptible Ratio: {}<br>Infected Remaining: {}".format( ratio_text, infected_text ) model_params = { "num_nodes": UserSettableParameter( "slider", "Number of agents", 10, 10, 100, 1, description="Choose how many agents to include in the model", ), "avg_node_degree": UserSettableParameter( "slider", "Avg Node Degree", 3, 3, 8, 1, description="Avg Node Degree" ), "initial_outbreak_size": UserSettableParameter( "slider", "Initial Outbreak Size", 1, 1, 10, 1, description="Initial Outbreak Size", ), "virus_spread_chance": UserSettableParameter( "slider", "Virus Spread Chance", 0.4, 0.0, 1.0, 0.1, description="Probability that susceptible neighbor will be infected", ), "virus_check_frequency": UserSettableParameter( "slider", "Virus Check Frequency", 0.4, 0.0, 1.0, 0.1, description="Frequency the nodes check whether they are infected by " "a virus", ), "recovery_chance": UserSettableParameter( "slider", "Recovery Chance", 0.3, 0.0, 1.0, 0.1, description="Probability that the virus will be removed", ), "gain_resistance_chance": UserSettableParameter( "slider", "Gain Resistance Chance", 0.5, 0.0, 1.0, 0.1, description="Probability that a recovered agent will become " "resistant to this virus in the future", ), } server = ModularServer( VirusOnNetwork, [network, MyTextElement(), chart], "Virus Model", model_params ) server.port = 8521 ```
{ "source": "jdfoster/boids", "score": 2 }
#### File: boids/boids/controller.py ```python from boids.builder import BuildBoids from boids.viewer import ViewBoids from boids.boid_exceptions import BoidExceptions from matplotlib import animation class ControlBoids(BoidExceptions): def __init__(self, settings): builder = BuildBoids() builder.set_location_ranges(**settings.pop('location_range')) builder.set_velocity_ranges(**settings.pop('velocity_range')) builder.set_flock_parameters(**settings.pop('flock_parameters')) builder.generate_boids() self.boids = builder.finish() self.view = ViewBoids(self.boids, **settings.pop('boundary_limits')) self._set_animation_settings(**settings.pop('animation_settings')) def animate_boid(frame_number): self.boids.update_boids() self.view.update_plt() self.animator = animate_boid @BoidExceptions._check_set_animation_settings def _set_animation_settings(self, frames, interval): self.anim_frames = frames self.anim_interval = interval def run_animation(self): anim = animation.FuncAnimation(self.view.figure, self.animator, frames=self.anim_frames, interval=self.anim_interval, repeat=0) return anim ``` #### File: boids/boids/model.py ```python import numpy as np from boids.boid_exceptions import BoidExceptions class Boid(BoidExceptions): @BoidExceptions._check_boid_init def __init__(self, x, y, xv, yv, host): self.location = np.array([x, y]) self.velocity = np.array([xv, yv]) self.host = host def shift_boid(self, other): location_delta = np.array([0., 0.]) location_separation = other.location - self.location sum_of_squares = np.sum(location_separation**2) # Fly towards the middle location_delta += (location_separation * self.host.flock_attraction) # Fly away from nearby boids if sum_of_squares < self.host.avoid_radius: location_delta -= location_separation # Try to match speed with nearby boids if sum_of_squares < self.host.flock_radius: location_delta += ((other.velocity - self.velocity) * self.host.velocity_matching) return location_delta class Boids(object): def update_boids(self): for protagonist in self.flock: location_delta = np.array([0., 0.]) for antagonist in self.flock: shift_values = protagonist.shift_boid(antagonist) location_delta += shift_values # Adjust velocities from interaction protagonist.velocity += location_delta # Move according to velocities protagonist.location += protagonist.velocity @property def current_locations(self): return np.vstack([boid.location for boid in self.flock]) @property def current_velocities(self): return np.vstack([boid.velocity for boid in self.flock]) ``` #### File: boids/tests/test_builder.py ```python from ..builder import BuildBoids from ..model import Boids from boids.tests.generate_fixtures import generate_broken_flock_param, \ generate_broken_limits, negative_fixture_check from nose.tools import assert_equal, raises from numpy import linspace from numpy.testing import assert_array_less def test_generate_boids(): builder = BuildBoids() builder.set_flock_parameters(50, 0.01, 100, 10000, 0.125) builder.set_velocity_ranges([0.0, 10.0], [-20.0, 20.0]) builder.set_location_ranges([-450.0, 50.0], [300.0, 600.0]) builder.generate_boids() boids = builder.finish() assert_equal(len(boids.flock), 50) for bd in boids.flock: assert_array_less(bd.location, [50, 600]) assert_array_less([-450, 300], bd.location) assert_array_less(bd.velocity, [10, 20]) assert_array_less([0, -20], bd.velocity) def test_generate_from_file(): test_data = [linspace(0, 3, 4)] * 4 builder = BuildBoids() builder.generate_from_file(test_data) assert(len(builder.model.flock) == 4) assert(builder.model.current_locations.cumsum()[-1] == 12) def test_validate(): builder = BuildBoids() @raises(Exception) def validate_fail(): builder.validate() validate_fail() builder.set_flock_parameters(50, 0.01, 100, 10000, 0.125) builder.set_velocity_ranges([0.0, 10.0], [-20.0, 20.0]) builder.set_location_ranges([-450.0, 50.0], [300.0, 600.0]) validate_fail() builder.generate_boids() builder.validate() def test_set_location(): builder = BuildBoids() builder.set_location_ranges([2.1, 2.2], [4.1, 4.2]) assert(builder.location_x_limits == [2.1, 2.2]) assert(builder.location_y_limits == [4.1, 4.2]) def test_set_location_fail(): fixtures = generate_broken_limits() builder = BuildBoids() negative_fixture_check(builder.set_location_ranges, fixtures, TypeError) def test_set_velocity(): builder = BuildBoids() builder.set_velocity_ranges([2.1, 2.2], [4.1, 4.2]) assert(builder.velocity_x_limits == [2.1, 2.2]) assert(builder.velocity_y_limits == [4.1, 4.2]) def test_set_velocity_fail(): fixtures = generate_broken_limits() builder = BuildBoids() negative_fixture_check(builder.set_velocity_ranges, fixtures, TypeError) def test_set_flock_parameters(): test_data = {'boid_count': 2, 'flock_attraction': 4.2, 'avoid_radius': 6, 'flock_radius': 8, 'velocity_matching': 10.2} builder = BuildBoids() builder.set_flock_parameters(**test_data) assert(builder.model.boid_count == 2) assert(builder.model.flock_attraction == 2.1) assert(builder.model.avoid_radius == 6) assert(builder.model.flock_radius == 8) assert(builder.model.velocity_matching == 5.1) def test_set_flock_parameters_fails(): fixtures = generate_broken_flock_param() builder = BuildBoids() negative_fixture_check(builder.set_flock_parameters, fixtures, TypeError) def test_finish(): builder = BuildBoids() builder.set_flock_parameters(50, 0.01, 100, 10000, 0.125) builder.set_velocity_ranges([0.0, 10.0], [-20.0, 20.0]) builder.set_location_ranges([-450.0, 50.0], [300.0, 600.0]) builder.generate_boids() returned_value = builder.finish() assert(isinstance(returned_value, Boids)) assert(hasattr(returned_value, 'boid_count')) assert(hasattr(returned_value, 'flock_attraction')) assert(hasattr(returned_value, 'avoid_radius')) assert(hasattr(returned_value, 'flock_radius')) assert(hasattr(returned_value, 'velocity_matching')) assert(hasattr(returned_value, 'flock')) ``` #### File: boids/boids/viewer.py ```python from boids.boid_exceptions import BoidExceptions from matplotlib import pyplot as plt class ViewBoids(BoidExceptions): @BoidExceptions._check_xy_limits def __init__(self, model, x_limits, y_limits): self.model = model self.figure = plt.figure() axes = plt.axes(xlim=(x_limits), ylim=(y_limits)) axes.tick_params(axis='both', top='off', bottom='off', left='off', right='off', labelbottom='off', labelleft='off') self.figure.tight_layout() self.scatter = axes.scatter(self.model.current_locations[:, 0], self.model.current_locations[:, 1]) def update_plt(self): self.scatter.set_offsets(self.model.current_locations) ```
{ "source": "jdfr228/PSNDiscord", "score": 2 }
#### File: jdfr228/PSNDiscord/PSNDiscord.py ```python import discord import asyncio import time import traceback from selenium import webdriver from selenium.webdriver.chrome.options import Options from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By from selenium.webdriver.common.keys import Keys from selenium.common.exceptions import TimeoutException, NoSuchElementException # Modify for your needs ------------------------------------------------------- url = "https://my.playstation.com/profile/YourName" dataDirectory = "C:/PSNDiscord" twitchUrl = "https://www.twitch.tv/YourName" userToken = "<PASSWORD>" hideChrome = False noGameRefreshTime = 60 # WARNING - Setting below 15 seconds could violate Discord API ToS inGameRefreshTime = 120 # WARNING # NOTE - Sony servers only allow ~1.3 requests per minute regardless, so setting these # lower than ~50 seconds will have limited practical effect loadTime = 5 # ----------------------------------------------------------------------------- alreadyFetched = False gameName = "" oldGameName = "" imageSrc = "" gameUrl = "" console = "" driver = None client = None clientReady = False refreshTime = 5 async def resetNowPlaying(): global gameName, oldGameName, imageSrc, gameUrl, console gameName = "" imageSrc = "" gameUrl = "" console = "" if (oldGameName != gameName): print("No longer playing a game") await updatePresence() oldGameName = "" def chromeSetup(): global driver, dataDirectory, hideChrome # Set up Chrome options chrome_opts = Options() chrome_opts.set_headless(headless=hideChrome) # Set up headless chrome_opts.add_argument('no-sandbox') # -- chrome_opts.add_argument("user-data-dir=" + dataDirectory) # Set up session saving (cookies) chrome_opts.add_argument("proxy-server=direct://") # Make headless not unbearably slow chrome_opts.add_argument("proxy-bypass-list=*") # -- chrome_opts.add_argument("disable-extensions") # -- chrome_opts.add_argument("hide-scrollbars") # -- chrome_opts.add_argument("user-agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.113 Safari/537.36") chrome_opts.add_argument("log-level=3") # Hide console messages print("Setting up web driver...") driver = webdriver.Chrome(chrome_options=chrome_opts) print("Web driver set up") driver.get("http://google.com/") async def refreshThread(): global refreshTime while True: await fetchPage() await asyncio.sleep(refreshTime) # Wait between page fetches async def fetchPage(): global gameName, oldGameName, imageSrc, gameUrl, console, alreadyFetched, refreshTime, noGameRefreshTime, inGameRefreshTime, loadTime # Fetch page, or if it has already been fetched before, simply refresh if (alreadyFetched): driver.find_element_by_tag_name('body').send_keys(Keys.F5) print("Page Refreshing " + time.strftime("%I:%M:%S", time.localtime())) refreshTime = noGameRefreshTime else: driver.get(url) print("Page Fetching " + time.strftime("%I:%M:%S", time.localtime())) # Wait for page to load and fetch game info try: gameNameElem = WebDriverWait(driver, loadTime).until(EC.presence_of_element_located((By.CLASS_NAME, 'now-playing__details__line1__name'))) # Name imageElem = WebDriverWait(driver, loadTime).until(EC.presence_of_element_located((By.CLASS_NAME, 'now-playing__thumbnail'))) # Image gameUrlElem = WebDriverWait(driver, loadTime).until(EC.presence_of_element_located((By.CLASS_NAME, 'now-playing__details__store-link'))) # Url consoleElem = WebDriverWait(driver, loadTime).until(EC.presence_of_element_located((By.CLASS_NAME, 'now-playing__details__line1'))) # Console #if (gameNameElem is not None): gameName = gameNameElem.text # DOM differs between PS3/No Game and PS4 games try: imageSrc = imageElem.find_element_by_tag_name('img').get_attribute('src') # PS4 except: try: imageSrc = imageElem.find_element_by_tag_name('span').text # PS3 or no game except: print("Cannot resolve image") gameUrl = gameUrlElem.find_element_by_tag_name('a').get_attribute('href') console = consoleElem.find_element_by_tag_name('div').get_attribute('aria-label') # If no game is being played reset now playing status if (gameName == ""): await resetNowPlaying() # If all the try statements have executed and the game name is new, update Discord's status elif (gameName != oldGameName): print("Now playing a game") if (alreadyFetched): refreshTime = inGameRefreshTime # Wait longer between page refreshes when in-game await updatePresence() oldGameName = gameName except TimeoutException: print("Profile page timeout") except AttributeError: traceback.print_exc() except NoSuchElementException: print("Elements not found, or page has not loaded properly") await resetNowPlaying() alreadyFetched = True # Ensure the page simply refreshes the second time this is run def runDiscord(client): global userToken @client.event async def on_ready(): global clientReady print('Logged into Discord as') print(client.user.name) print(client.user.id) print('-----') clientReady = True client.run(userToken, bot=False) # Called to update the "Now Playing" status in Discord async def updatePresence(): global gameName, gameUrl, imageSrc, console, client, clientReady, twitchUrl if (clientReady): timestampsDict = {"start": int(time.time()) * 1000} print("Updating Discord status...") await client.change_presence(activity=discord.Activity(name=gameName, url=twitchUrl, type=discord.ActivityType.playing, state="In-Game (" + console + ")", timestamps=timestampsDict)) else: print("Client not yet ready, cannot update status") await resetNowPlaying() def main(): global client chromeSetup() # Set up the thread for refreshing the webpage loop = asyncio.get_event_loop() loop.create_task(refreshThread()) # Set up Discord client = discord.Client() runDiscord(client) main() ```
{ "source": "jdfreder/ipython-bootstrapbox", "score": 3 }
#### File: ipython-bootstrapbox/bootstrapbox/bootstrapbox.py ```python from IPython.html.widgets import Box from IPython.utils.traitlets import Bool, Int, Unicode, CUnicode class ResponsiveBox(Box): _view_module = Unicode('nbextensions/bootstrapbox/bootstrapbox', sync=True) visible_xs_block = Bool(False, sync=True) visible_xs_inline = Bool(False, sync=True) visible_xs_inline_block = Bool(False, sync=True) visible_sm_block = Bool(False, sync=True) visible_sm_inline = Bool(False, sync=True) visible_sm_inline_block = Bool(False, sync=True) visible_md_block = Bool(False, sync=True) visible_md_inline = Bool(False, sync=True) visible_md_inline_block = Bool(False, sync=True) visible_lg_block = Bool(False, sync=True) visible_lg_inline = Bool(False, sync=True) visible_lg_inline_block = Bool(False, sync=True) hidden_xs = Bool(False, sync=True) hidden_sm = Bool(False, sync=True) hidden_md = Bool(False, sync=True) hidden_lg = Bool(False, sync=True) visible_print_block = Bool(False, sync=True) visible_print_inline = Bool(False, sync=True) visible_print_inline_block = Bool(False, sync=True) hidden_print = Bool(False, sync=True) class BootstrapContainer(ResponsiveBox): _view_name = Unicode('BootstrapContainerView', sync=True) fluid = Bool(True, sync=True, help="Uses percents instead of pixels for column widths. Ensures proper proportions for key screen resolutions and devices.") width = CUnicode('100%', sync=True) class BootstrapRow(ResponsiveBox): _view_name = Unicode('BootstrapRowView', sync=True) class BootstrapCol(ResponsiveBox): _view_name = Unicode('BootstrapColView', sync=True) def _validate_change(self, name, old, new): setattr(self, name, new if new is None else min(max(1, new), 12)) xs_width = Int(None, sync=True, allow_none=True) sm_width = Int(None, sync=True, allow_none=True) md_width = Int(None, sync=True, allow_none=True) lg_width = Int(None, sync=True, allow_none=True) _xs_width_changed = _validate_change _sm_width_changed = _validate_change _md_width_changed = _validate_change _lg_width_changed = _validate_change xs_offset = Int(None, sync=True, allow_none=True) sm_offset = Int(None, sync=True, allow_none=True) md_offset = Int(None, sync=True, allow_none=True) lg_offset = Int(None, sync=True, allow_none=True) _xs_offset_changed = _validate_change _sm_offset_changed = _validate_change _md_offset_changed = _validate_change _lg_offset_changed = _validate_change xs_push = Int(None, sync=True, allow_none=True) sm_push = Int(None, sync=True, allow_none=True) md_push = Int(None, sync=True, allow_none=True) lg_push = Int(None, sync=True, allow_none=True) _xs_push_changed = _validate_change _sm_push_changed = _validate_change _md_push_changed = _validate_change _lg_push_changed = _validate_change xs_pull = Int(None, sync=True, allow_none=True) sm_pull = Int(None, sync=True, allow_none=True) md_pull = Int(None, sync=True, allow_none=True) lg_pull = Int(None, sync=True, allow_none=True) _xs_pull_changed = _validate_change _sm_pull_changed = _validate_change _md_pull_changed = _validate_change _lg_pull_changed = _validate_change ```
{ "source": "jdfreder/ipython-crossnotebook", "score": 2 }
#### File: jdfreder/ipython-crossnotebook/setup.py ```python try: from setuptools import setup from setuptools.command.install import install except ImportError: from distutils.core import setup from distutils.core.command.install import install class InstallCommand(install): """Install as noteboook extension""" develop = False def install_extension(self): from os.path import dirname, abspath, join from IPython.html.nbextensions import install_nbextension from IPython.html.services.config import ConfigManager print("Installing nbextension ...") crossnotebook = join(dirname(abspath(__file__)), 'crossnotebook', 'js') install_nbextension(crossnotebook, destination='crossnotebook', symlink=self.develop, user=True) print("Enabling the extension ...") cm = ConfigManager() cm.update('notebook', {"load_extensions": {"crossnotebook/init": True}}) def run(self): print "Installing Python module..." install.run(self) # Install Notebook extension self.install_extension() class DevelopCommand(InstallCommand): """Install as noteboook extension""" develop = True from glob import glob setup( name='crossnotebook', version='0.1', description='Plugin that enables multicell selection and copying and pasting cells between notebooks.', author='<NAME>', author_email='<EMAIL>', license='New BSD License', url='https://github.com/jdfreder/ipython-crossnotebook', keywords='data visualization interactive interaction python ipython widgets widget', classifiers=['Development Status :: 4 - Beta', 'Programming Language :: Python', 'License :: OSI Approved :: MIT License'], cmdclass={ 'install': InstallCommand, 'develop': DevelopCommand, } ) ```
{ "source": "jdfreder/ipython-d3networkx", "score": 2 }
#### File: ipython-d3networkx/d3networkx/widget.py ```python from IPython.html import widgets # Widget definitions from IPython.utils.traitlets import Unicode, CInt, CFloat # Import the base Widget class and the traitlets Unicode class. # Define our ForceDirectedGraph and its target model and default view. class ForceDirectedGraph(widgets.DOMWidget): _view_module = Unicode('nbextensions/d3networkx/widget', sync=True) _view_name = Unicode('D3ForceDirectedGraphView', sync=True) width = CInt(400, sync=True) height = CInt(300, sync=True) charge = CFloat(270., sync=True) distance = CInt(30., sync=True) strength = CInt(0.3, sync=True) def __init__(self, eventful_graph, *pargs, **kwargs): widgets.DOMWidget.__init__(self, *pargs, **kwargs) self._eventful_graph = eventful_graph self._send_dict_changes(eventful_graph.graph, 'graph') self._send_dict_changes(eventful_graph.node, 'node') self._send_dict_changes(eventful_graph.adj, 'adj') def _ipython_display_(self, *pargs, **kwargs): # Show the widget, then send the current state widgets.DOMWidget._ipython_display_(self, *pargs, **kwargs) for (key, value) in self._eventful_graph.graph.items(): self.send({'dict': 'graph', 'action': 'add', 'key': key, 'value': value}) for (key, value) in self._eventful_graph.node.items(): self.send({'dict': 'node', 'action': 'add', 'key': key, 'value': value}) for (key, value) in self._eventful_graph.adj.items(): self.send({'dict': 'adj', 'action': 'add', 'key': key, 'value': value}) def _send_dict_changes(self, eventful_dict, dict_name): def key_add(key, value): self.send({'dict': dict_name, 'action': 'add', 'key': key, 'value': value}) def key_set(key, value): self.send({'dict': dict_name, 'action': 'set', 'key': key, 'value': value}) def key_del(key): self.send({'dict': dict_name, 'action': 'del', 'key': key}) eventful_dict.on_add(key_add) eventful_dict.on_set(key_set) eventful_dict.on_del(key_del) ```
{ "source": "jdfreder/notebook_cherry_picker", "score": 3 }
#### File: jdfreder/notebook_cherry_picker/cherry_picking_preprocessor.py ```python from copy import deepcopy from IPython.nbconvert.preprocessors import Preprocessor from IPython.utils.traitlets import Unicode class CherryPickingPreprocessor(Preprocessor): expression = Unicode('True', config=True, help="Cell tag expression.") def preprocess(self, nb, resources): # Loop through each cell, remove cells that dont match the query. for worksheet in nb.worksheets: remove_indicies = [] for index, cell in enumerate(worksheet.cells): if not self.validate_cell_tags(cell): remove_indicies.append(index) for index in remove_indicies[::-1]: del worksheet.cells[index] resources['notebook_copy'] = deepcopy(nb) return nb, resources def validate_cell_tags(self, cell): if 'cell_tags' in cell['metadata']: return self.eval_tag_expression(cell['metadata']['cell_tags'], self.expression) return False def eval_tag_expression(self, tags, expression): # Create the tags as True booleans. This allows us to use python # expressions. for tag in tags: exec tag + " = True" # Attempt to evaluate expression. If a variable is undefined, define # the variable as false. while True: try: return eval(expression) except NameError as Error: exec str(Error).split("'")[1] + " = False" ```
{ "source": "jdfr/SimpleRefactoring", "score": 2 }
#### File: jdfr/SimpleRefactoring/grokscrap.py ```python from lxml import etree import requests class GrokScraper: __slots__ = ['url', 'domain', 'proj', 'path', 'nresults', 'errors', 'getRevisionText'] def __init__(self, **kwargs): #different grok versions might place the revision data in a different part of the DOM relative to the line elements, so use this as a means to customize the extraction code self.getRevisionText = lambda occurrence: occurrence.getnext().iterchildren().__next__() for name, val in kwargs.iteritems(): if name in self.__slots__: setattr(self, name, val) else: raise RuntimeError('Invalid attribute <%s> for class GrokScraper!' % str(name)) def getOcurrences(self, term): table = dict() if self.domain != '': domain = '/' + self.domain else: domain = '' url = "%s%s/search?q=%s&project=%s&defs=&path=%s&hist=&n=%d" % (self.url, domain, term, self.proj, self.path, self.nresults) r = requests.get(url) if r.ok: root = etree.HTML(r.text.encode('ascii', errors='replace')) xp = ".//tt/a/b[text()='%s']/.." % term occs = root.xpath(xp) for occ in occs: encoded = occ.attrib['href'] split = encoded.split('#', 1) path = split[0] line = int(split[1]) if path in table: table[path].add(line) else: table[path] = set([line]) else: handleError(url, r, self.errors) return table def getRevisions(self, table): revisions = dict() for f, lines in table.iteritems(): #This assumes that grok is responsive serving annotated sources for all affected ones. Thia might not be the case for some files, and these should be filtered out here url = "%s%s?a=true" %(self.url, f) r = requests.get(url) if r.ok: root = etree.HTML(r.text.encode('ascii', errors='replace')) for line in lines: xp = ".//a[@class='l' and @name='%d']" % line occs = root.xpath(xp) if (len(occs)==0): #this is cheaper than using a more complex boolean condition like ".//a[(@class='l' or @class='hl') and @name='%d']" xp = ".//a[@class='hl' and @name='%d']" % line occs = root.xpath(xp) #I wouldn't need this contraption if I could express in xpath how to locate an element relative to an adjacent one, something like ".//a[@class='l' and @name='%d']/following::span/a" occ = self.getRevisionText(occs[0]) rev = occ.text comment = occ.attrib['title'] if not rev in revisions: revisions[rev] = comment.encode('utf-8').replace('\x0a', ' ').replace('<br/>', '\n') else: handleError(url, r, self.errors) return revisions def handleError(url, r, errors): if errors!='ignore': msg = "Error retrieving grok data for <%s>: %d %s" % (url, r.status_code, r.reason) if errors=='raise': raise RuntimeError() elif errors=='print': print msg def printOcurrences(table): print "NUMBER OF FILES: %d\n" % len(table) for f in sorted(table.keys()): lines = list(table[f]) lines.sort() print "occurences in file <%s> in lines:\n %s" % (f, str(lines)) def printRevisions(revisions): print "NUMBER OF REVISIONS: %d\n" % len(revisions) i = 0 for rev, comment in revisions.iteritems(): print "---------------------------" print "REVISION %d: %s" % (i, rev) print comment print "\n" i=i+1 print "---------------------------" ######################################################### if __name__=='__main__': def BXR_SU(): gs = GrokScraper(url='http://bxr.su', domain='', proj='FreeBSD', path='', nresults=100, errors='print') table = gs.getOcurrences('rt2561s') printOcurrences(table) def OPENGROK_LIBREOFFICE_ORG(): gs = GrokScraper(url='https://opengrok.libreoffice.org', domain='', proj='cppunit', path='', nresults=100, errors='print') table = gs.getOcurrences('write') printOcurrences(table) revisions = gs.getRevisions(table) printRevisions(revisions) grokExamples = [BXR_SU, OPENGROK_LIBREOFFICE_ORG] i = 0 for example in grokExamples: print "EXAMPLE NUMBER %d FOR GROK SCRAPER: %s" % (i, example.__name__) print "\n" example() i=i+1 ``` #### File: jdfr/SimpleRefactoring/refactor.py ```python from lxml import etree import grokscrap as gs import os import subprocess as subp import re #This class allows for (very handy) re-entrant lists of command-line calls. All you need is to call startStep() at the beginning and make sure to call endStep() at the end only if there was no problem and the list doesn't have to be replayed. And, of course, do not change the list across runs, at least in the parts already executed, or hard-to-debug problems will ensue class ExecuteContext: def __init__(self, execute=True, verbose=False, stampName=os.path.join(os.getcwd(), 'step.txt')): self.execute = execute self.verbose = verbose self.resumeFrom = None self.stampName = stampName self.step = 0 def writeStep(self, n): self.step = n with open(self.stampName, 'w') as f: f.write(str(n)) def startStep(self): if os.path.isfile(self.stampName): with open(self.stampName, 'r') as f: self.resumeFrom = int(f.read()) else: self.resumeFrom = None self.writeStep(0) def endStep(self): if os.path.isfile(self.stampName): os.remove(self.stampName) def checkStep(self): if (self.execute): if self.resumeFrom==self.step: self.resumeFrom=None return self.execute and self.resumeFrom is None def updateStep(self): self.writeStep(self.step+1) def actualDoCommand(self, command, **kwargs): #this is intended to actually do subprocess call, as some esoteric special-needs tools might be so picky about how exactly they are invoked that you can't yjust assume that a straight subptocess.Popen/call will work #default implementation just uses regular subprocess.call return subp.call(command, **kwargs) def doCommand(self, command, **kwargs): if self.verbose: print ' '.join(command) if self.checkStep(): ret = self.actualDoCommand(command, **kwargs) if ret!=0: raise RuntimeError("Error in command <%s>" % ' '.join(command)) self.updateStep() def doCd(self, dr): if self.checkStep() or True: #as chdirs have critically important side-effects, they have to be replayed no matter what os.chdir(dr) self.updateStep() if self.verbose: print "cd "+dr #simple but high-level driver for the refactor binary, it basically does housekeeping and high-level planning; the binary does the grunt work. class ExternalRefactor: def __init__(self, context, translatepath=lambda x: x, compiler_args_base=[], compiler_args=lambda x: ["-I."], command='./simpleRefactor', exedir=os.getcwd(), cppextensions=('.cpp',), hppextensions=('.hpp', '.h'), getCppForHpp=None, grokscraper=None, isxmlfile=lambda x: x.endswith(('.xml',)), xml_xpath=None, execute=True, verbose=True): self.context = context self.translatepath = translatepath self.compiler_args_base = compiler_args_base self.compiler_args = compiler_args self.command = command self.exedir = exedir self.cppextensions = cppextensions self.hppextensions = hppextensions self.getCppForHpp = getCppForHpp self.grokscraper = grokscraper self.xml_xpath = xml_xpath self.isxmlfile = isxmlfile self.execute = execute self.verbose = verbose self.template = lambda term, value, filepath: [self.command, '--term=%s' % term, '--value=%s' % value, '--overwrite=true', filepath, '--'] #do not forget to call this one if you want to make sure to also refactor instances that only apper in header files! def addCppFilesForHppFiles(self, table): for filename in table: if filename.endswith(self.hppextensions): cpp = None if self.getCppForHpp is not None: cpp = self.getCppForHpp(filename) #paths returned here should be consistent with grok, rather than with the codebase elif self.grokscraper is not None: cpp = self.getCppForHppWithGrok(filename, table) if cpp is None: raise RuntimeError("Could not find a C++ source file including the header %s!!!!!" % filename) if cpp in table: table[cpp].add(filename) else: table[cpp] = set([filename]) def getCppForHppWithGrok(self, hppfile, table): filename = hppfile.rsplit('/', 1)[1] hpptable = self.grokscraper.getOcurrences("include "+filename) #first check if the file is already in the table for grokfilepath in hpptable: if grokfilepath.endswith(self.cppextensions) and grokfilepath in table: return grokfilepath #this is a quite dumb brute-force approach, it might be far better to avoid greedy strategies and compute a minimal set of cpps for all hpps with ocurrences; however that might be inefficient for codebases with massively nested sets of header files for grokfilepath in hpptable: if grokfilepath.endswith(self.cppextensions): return grokfilepath for grokfilepath in hpptable: if grokfilepath.endswith(self.hppextensions): ret = self.getCppForHppWithGrok(grokfilepath) if ret is not None: return ret #there might be headers not included anywhere in the codebase (conceivably, they might be included by source files generated during the build process). If that's the case, here we should add some code to (a) use those generated sources (after compilation) or (b) generate some phony C++ source file that just includes the header and feed it to the binary tool return None def doCPPFile(self, term, value, filepath): commandline = self.template(term, value, filepath)+self.compiler_args_base+self.compiler_args(filepath) if self.verbose: print 'ON %s EXECUTE %s' % (self.exedir, ' '.join(commandline)) if self.execute: self.context.doCommand(commandline, cwd=self.exedir) def doXMLFile(self, term, filepath): if self.verbose: print 'ON %s REMOVE REFERNCES TO %s' % (filepath, term) if self.execute: if self.context.checkStep(): root = etree.parse(filepath) res = root.xpath(self.xml_xpath % term) if len(res)!=1: print "Error locating config value <%s> in XML file <%s>!!!!!" % (term, filepath) else: toremove = res[0] toremove.getparent().remove(toremove) with open(filepath, 'w') as svp: svp.write(etree.tostring(root)) self.context.updateStep() #main function, does the refactoring def doFilesFromTable(self, table, term, value): if self.verbose: print "PROCESSING FILES FROM TERMS FOUND WITH OPENGROK\n" for grokfilepath in sorted(table.keys()): lines = list(table[grokfilepath]) lines.sort() filepath = self.translatepath(grokfilepath) if grokfilepath.endswith(self.cppextensions): if self.verbose: print " TERM <%s> TO BE REFACTORED IN CPP FILE <%s> in line(s) %s" % (term, filepath, lines) self.doCPPFile(term, value, filepath) if grokfilepath.endswith(self.hppextensions): if self.verbose: print " TERM <%s> FOUND IN HEADER FILE <%s> in line(s) %s (refactored as part of a cpp file)" % (term, filepath, lines) elif self.isxmlfile(filepath): if self.verbose: print " TERM <%s> TO BE REFACTORED IN XML FILE <%s> in line(s) %s" % (term, filepath, lines) self.doXMLFile(term, filepath) #an example of how a high-level funtion to use GrokScraper and ExternalRefactor might look like def doFilesFromGrok(self, term, value, printRevs=True): table = grokscraper.getOcurrences(term) self.addCppFilesForHppFiles(table) self.context.startStep() self.doFilesFromTable(table, term, value) self.context.endStep() if printRevs: print "" revisions = self.grokscraper.getRevisions(table) self.grokscraper.printRevisions(revisions) #helper funtion to be used as part of function compiler_args (one of the members of ExternalRefactor): for a .d file (the one generated by the compiler detailing ALL files #included into the compilation unit), heuristically generate a list of directives to include the relevant directories def heuristicIncludeDirListFromDFile(dfilepath, rootDirKeyword=['include/'], hppextensions=(('.hpp', '.h')), toExclude=[], prefix=lambda x: ''): with open(dfilepath, 'r') as fd: text = fd.read() dirs_unfiltered = set() dirs_filtered = set() for m in re.finditer('[_\./a-zA-Z0-9-]+', text): path = m.group(0) if path.endswith(hppextensions): dr = path.rsplit('/', 1)[0] if not dr.endswith(hppextensions) and not dr in dirs_unfiltered: dirs_unfiltered.add(dr) toAdd = True for excl in toExclude: if dr.startswith(excl): toAdd = False break if toAdd: processed = False for key in rootDirKeyword: pos = dr.find(key) if pos!=-1: processed = True dr = dr[:pos+len(key)] break if dr[-1]=='/': dr = dr[:-1] dirs_filtered.add(dr) return ['-I'+prefix(dr)+dr for dr in dirs_filtered] ######################################################### if __name__=='__main__': translatepath = lambda x: os.path.join('examples', x) context = ExecuteContext(verbose=True) external = ExternalRefactor(context, translatepath=translatepath, compiler_args=lambda x: ["-I./examples/include"], #if we used a non-installed binary release of clang (i.e. a clang release we just unzipped somewhere where we happen to have write permissions) to compile the binary tool, we should put in this list an additionsl include pointing to the location where clang's stddef.h lives inside the clang directory tree xml_xpath="/config/value[@name='%s']", execute=True, verbose=True) table = {'test.cpp':[], 'config.xml':[]} external.doFilesFromTable(table, "UseSpanishLanguage", "true") ```
{ "source": "jdfr/TopoReg", "score": 2 }
#### File: jdfr/TopoReg/imreg.py ```python from __future__ import division, print_function import numpy from numpy.fft import fft2, ifft2 from numpy import log import scipy.ndimage.interpolation as ndii import scipy.ndimage.filters as scifil #__version__ = '2013.01.18' #__docformat__ = 'restructuredtext en' #__all__ = ['translationSimple', 'similarity'] import matplotlib.pyplot as plt def showTwoImages(img1, shift1, img2, shift2, txt): # fig = plt.figure(); plt.imshow(img1, origin='lower') # fig = plt.figure(); plt.imshow(img2, origin='lower') fig = plt.figure() fig.suptitle(txt) l1 = shift1[1] r1 = img1.shape[1]+shift1[1] b1 = shift1[0] t1 = img1.shape[0]+shift1[0] l2 = shift2[1] r2 = img2.shape[1]+shift2[1] b2 = shift2[0] t2 = img2.shape[0]+shift2[0] plt.imshow(img1, extent=(l1, r1, b1, t1), origin='lower') plt.imshow(img2, extent=(l2, r2, b2, t2), origin='lower', alpha=0.7) ax = fig.gca() ax.set_xlim([min(l1, l2), max(r1, r2)]) ax.set_ylim([min(b1, b2), max(t1, t2)]) def zeropad2(x, shap): m, n = x.shape p, q = shap assert p > m assert q > n tb = numpy.zeros(((p - m) / 2, n)) lr = numpy.zeros((p, (q - n) / 2)) x = numpy.append(tb, x, axis = 0) x = numpy.append(x, tb, axis = 0) x = numpy.append(lr, x, axis = 1) x = numpy.append(x, lr, axis = 1) return x #using a function to find peaks with the same parameters as in <NAME>'s #findPeaks() function in Stitching2D.java (stitiching plugin for imageJ/Fiji, # https://github.com/fiji/Stitching ) def findPeaks(matrix, numPeaks): #computer maxima over the 8-neighborhood, wraping for edges (our matrices are fourier transforms, so that's the thing to do) maxbool = matrix==scifil.maximum_filter(matrix, size=(3,3), mode='wrap') values = matrix[maxbool] rows, cols = numpy.nonzero(maxbool) #order the peaks indexes = numpy.argsort(values) # z=numpy.column_stack((rows[indexes], cols[indexes])) #get the $numPeaks highest peaks indexes = indexes[-min(numPeaks, values.size):] #put the highest peaks in decreasing order indexes = indexes[::-1] rows = rows[indexes] cols = cols[indexes] values = values[indexes] return rows, cols, values #shift is applied to img2 w.r.t. img1 def getAlignedSubmatrices(img1, img2, shft): if shft[0]>=0: selrowinit1 = shft[0] selrowinit2 = 0 selrowend1 = img1.shape[0] selrowend2 = img2.shape[0]-shft[0] else: selrowinit1 = 0 selrowinit2 = -shft[0] selrowend1 = img1.shape[0]+shft[0] selrowend2 = img2.shape[0] if shft[1]>=0: selcolinit1=shft[1] selcolinit2 = 0 selcolend1 = img1.shape[1] selcolend2 = img2.shape[1]-shft[1] else: selcolinit1 = 0 selcolinit2 = -shft[1] selcolend1 = img1.shape[1]+shft[1] selcolend2 = img2.shape[1] return img1[selrowinit1:selrowend1, selcolinit1:selcolend1], img2[selrowinit2:selrowend2, selcolinit2:selcolend2] #adapted from openPIV: https://github.com/OpenPIV/openpiv-python/blob/master/openpiv/pyprocess.py #but, instead of refining over the naive algorithm used in openPIV, use the position #we have computed previously def find_subpixel_peak_position( img, default_peak_position, subpixel_method = 'gaussian'): # the peak locations peak1_i, peak1_j = default_peak_position try: # the peak and its neighbours: left, right, down, up # c = img[peak1_i, peak1_j] # cl = img[peak1_i-1, peak1_j] # cr = img[peak1_i+1, peak1_j] # cd = img[peak1_i, peak1_j-1] # cu = img[peak1_i, peak1_j+1] c = img[peak1_i, peak1_j] cl = img[(peak1_i-1)%img.shape[0], peak1_j] cr = img[(peak1_i+1)%img.shape[0], peak1_j] cd = img[peak1_i, (peak1_j-1)%img.shape[1]] cu = img[peak1_i, (peak1_j+1)%img.shape[1]] # gaussian fit if numpy.any ( numpy.array([c,cl,cr,cd,cu]) < 0 ) and subpixel_method == 'gaussian': subpixel_method = 'centroid' try: if subpixel_method == 'centroid': subp_peak_position = (((peak1_i-1)*cl+peak1_i*c+(peak1_i+1)*cr)/(cl+c+cr), ((peak1_j-1)*cd+peak1_j*c+(peak1_j+1)*cu)/(cd+c+cu)) elif subpixel_method == 'gaussian': subp_peak_position = (peak1_i + ( (log(cl)-log(cr) )/( 2*log(cl) - 4*log(c) + 2*log(cr) )), peak1_j + ( (log(cd)-log(cu) )/( 2*log(cd) - 4*log(c) + 2*log(cu) ))) elif subpixel_method == 'parabolic': subp_peak_position = (peak1_i + (cl-cr)/(2*cl-4*c+2*cr), peak1_j + (cd-cu)/(2*cd-4*c+2*cu)) except: subp_peak_position = default_peak_position except IndexError: subp_peak_position = default_peak_position return subp_peak_position #test the cross-correlation (adapted from testCrossCorrelation() in #Stitching2D.java (stitiching plugin for imageJ/Fiji, https://github.com/fiji/Stitching ) def testCrossCorrelation(img1, img2, shft, minratio): sub1, sub2 = getAlignedSubmatrices(img1, img2, shft) if sub1.size==0: #non-overlapping return -numpy.inf if sub1.size/float(img1.size)<minratio: #not enough overlap return -numpy.inf # if shft[1]<-200: # showTwoImages(sub1, [0,0], sub2, [0,0], '') dist1 = sub1-sub1.mean() dist2 = sub2-sub2.mean() covar = (dist1*dist2).mean() std1 = numpy.sqrt((dist1**2).mean()) std2 = numpy.sqrt((dist2**2).mean()) if (std1 == 0) or (std2 == 0): corrcoef = 0 #sqdiff = n.inf else: corrcoef = covar / (std1*std2) # print ('testCrossCorrelation '+str(shft)+': '+str(corrcoef)) if numpy.isnan(corrcoef): covar=covar #sqdiff = ((sub1-sub2)**2).mean() return corrcoef#, sqdiff def bestShift(img1, img2, shifts, minratio): corrcoefs = [testCrossCorrelation(img1, img2, shft, minratio) for shft in shifts] # for s, c in zip(shifts, corrcoefs): # if (s[1]<-450) and (c>0):#if c>0.6: # showTwoImages(img1, [0,0], img2, s, str(s)+": "+str(c)) # x=numpy.column_stack((corrcoefs, numpy.array(shifts), shifts[:,1]<-2400)) # indexes = numpy.argsort(corrcoefs) # indexes = indexes[::-1] # xx=numpy.nonzero(numpy.logical_and(shifts[1]<-2500, shifts[1]>-2700)) if len(shifts)==0: raise ValueError('Very strange, no peaks detected!') if len(corrcoefs)==0: raise ValueError('Very strange, no peaks detected (bis)!') idx = numpy.argmax(corrcoefs) return idx, corrcoefs def translationSimple(im0, im1, subpixel=False): """Return translation vector to register images.""" shape = im0.shape f0 = fft2(im0) f1 = fft2(im1) #ir = abs(ifft2((f0 * f1.conjugate()) / (abs(f0) * abs(f1)))) lens0 = abs(f0) lens1 = abs(f0) ff0=f0/lens0 ff1=f1/lens1 ir = ifft2((ff0 * ff1.conjugate())) ir = abs(ifft2) zz= (abs(ff0) * abs(ff1)) ir = ir / zz t0, t1 = numpy.unravel_index(numpy.argmax(ir), shape) if t0 > shape[0] // 2: t0 -= shape[0] if t1 > shape[1] // 2: t1 -= shape[1] result = (t0, t1) if subpixel: result = find_subpixel_peak_position(ir, result) return numpy.array(result) import register_images as imr def translationTestPeaks(im0, im1, numPeaks=20, refinement=True,subpixel=False, scaleSubPixel=None, minratio=0.01): """Return translation vector to register images.""" # im0 = scifil.laplace(im0) # im1 = scifil.laplace(im1) shape = im0.shape f0 = fft2(im0) f1 = fft2(im1) ir = abs(ifft2((f0 * f1.conjugate()) / (abs(f0) * abs(f1)))) # lens0 = abs(f0) # lens1 = abs(f0) # ff0=f0/lens0 # ff1=f1/lens1 # ir = ifft2((ff0 * ff1.conjugate())) # ir = abs(ir) ## zz= (abs(ff0) * abs(ff1)) ## ir = ir / zz rows, cols, values = findPeaks(ir, numPeaks) rows[rows>(shape[0] // 2)] -= shape[0] cols[cols>(shape[1] // 2)] -= shape[1] #each peak in fact is four peaks: the following is adapted from the first for loop # of the function verifyWithCrossCorrelation() of PhaseCorrelation.java in # http://trac.imagej.net/browser/ImgLib/imglib1/algorithms/src/main/java/mpicbg/imglib/algorithm/fft/PhaseCorrelation.java?rev=e010ba0694e985c69a4ade7d846bef615e4e8043 rows2 = rows.copy() cols2 = cols.copy() below0 = rows2<0 rows2[below0] += shape[0] rows2[numpy.logical_not(below0)] -= shape[0] below0 = cols2<0 cols2[below0] += shape[1] cols2[numpy.logical_not(below0)] -= shape[1] allshifts = numpy.column_stack((numpy.concatenate((rows, rows, rows2, rows2)), numpy.concatenate((cols, cols2, cols, cols2)))) idx, corrcoefs = bestShift(im0, im1, allshifts, minratio) corrcoef = corrcoefs[idx] shft = numpy.array(allshifts[idx]) # print('raro: '+str(shft)+', '+str(corrcoef)) peak = values[idx % values.size] # refinement = True # # if refinement: # num=1 # dsp = numpy.arange(-num, num+1).reshape((1,-1)) # dspr = numpy.repeat(dsp, dsp.size, axis=1) # dspc = numpy.repeat(dsp, dsp.size, axis=0) # shifts = numpy.column_stack((dspr.ravel()+shft[0], dspc.ravel()+shft[1])) # print('before refinement: '+str(shft)+', '+str(corrcoef)) # idx, corrcoefs = bestShift(im0, im1, shifts, minratio) # corrcoef = corrcoefs[idx] # shft = numpy.array(shifts[idx]) # print('after refinement: '+str(shft)+', '+str(corrcoef)) # print('neighbourhood: ') # for k in xrange(shifts.shape[0]): # print(str(shifts[k])+': '+str(corrcoefs[k])) if subpixel: if (scaleSubPixel is not None) and (scaleSubPixel>=2): sub0, sub1 = getAlignedSubmatrices(im0, im1, shft) finer = numpy.array(imr.dftregistration(sub0,sub1,usfac=scaleSubPixel)) shft = shft+finer else: shft = numpy.array(find_subpixel_peak_position(ir, shft)) # finershft = numpy.array(find_subpixel_peak_position(ir, shft)) # if (scaleSubPixel is not None) and (scaleSubPixel>=2): # #work only with the matching submatrices, to remove spurious peaks # sub0, sub1 = getAlignedSubmatrices(im0, im1, shft) # finer = numpy.array(imr.dftregistration(sub0,sub1,usfac=scaleSubPixel)) # finershftIMR = shft+finer # discreps = finershft-finershftIMR ## print('DISCREPANCIES A: '+str(finershft)) ## print('DISCREPANCIES B: '+str(finershftIMR)) # if (numpy.abs(discreps)<0.5).all(): # #we only trust register_images if the expected shift is around the same # #as the one computed from fitting a gaussian to the peak # finershft = finershftIMR # shft=finershft return [shft, corrcoef, peak] def translationUpsamplingTestPeaks(im0, im1, scale, numPeaks, subpixel=False, minratio=0.01): #http://www.velocityreviews.com/threads/magic-kernel-for-image-zoom-resampling.426518/ #http://johncostella.webs.com/magic/ if scale>1: im0 = ndii.zoom(im0, scale, mode='wrap') im1 = ndii.zoom(im1, scale, mode='wrap') shft = translationTestPeaks(im0, im1, numPeaks, subpixel) if scale>1: shft[0] /= scale return shft #import sys #if sys.gettrace() is not None: # print('debugging') # import tifffile as tff # img0 = tff.imread('/home/josedavid/3dprint/software/pypcl/corrected.0.tif') # img1 = tff.imread('/home/josedavid/3dprint/software/pypcl/corrected.1.tif') ## import image_registration as ir ## result = ir.register_images(img0, img1, usfac=1) # imA = img0-img0.mean() # imB = img1-img1.mean() # res = translationTestPeaks(imA, imB, numPeaks=100, subpixel=True, scaleSubPixel=1000, minratio=0.01) # res=res ``` #### File: jdfr/TopoReg/rotations.py ```python import numpy as n import matplotlib.pyplot as plt #def fitPlaneLSQR(XYZ): # A = n.column_stack((XYZ[:,0:2], n.ones((XYZ.shape[0],)))) # coefs, residuals, rank, s = n.linalg.lstsq(A, XYZ[:,2]) # plane = n.array([coefs[1], coefs[2], -1, coefs[0]]) # return plane, coefs, residuals, rank, s, A, XYZ[:,2] #fit plane to points. Points are rows in the matrix data #taken from http://stackoverflow.com/questions/15959411/fit-points-to-a-plane-algorithms-how-to-iterpret-results def fitPlaneSVD(xyz): [rows,cols] = xyz.shape # Set up constraint equations of the form AB = 0, # where B is a column vector of the plane coefficients # in the form b(1)*X + b(2)*Y +b(3)*Z + b(4) = 0. p = (n.ones((rows,1))) AB = n.hstack([xyz,p]) [u, d, v] = n.linalg.svd(AB,0) B = v[3,:] # Solution is last column of v. #showPointsAndPlane(XYZ[::100,:], B) # nn = n.linalg.norm(B[0:3]) # B = B / nn # return B[0:3] #return just the normal vector return B #returns [A,B,C,D] where the plane is Ax+By+Cz+D=0 from pylab import cm import write3d as w #plane is plane[0]*X+plane[1]*Y+plane[2]*Z+plane[3]=0 def showPointsAndPlane(xyz, fac, plane, values=None, vmin=None, vmax=None): showF=True if showF: xx, yy = n.meshgrid([n.nanmin(xyz[:,0]),n.nanmax(xyz[:,0])], [n.nanmin(xyz[:,1]),n.nanmax(xyz[:,1])]) zz=-(xx*plane[0]+yy*plane[1]+plane[3])/plane[2] fig = plt.figure() ax = fig.add_subplot(111, projection='3d') if values is None: if showF: ax.scatter(xyz[:,0], xyz[:,1], xyz[:,2]) else: vals = values.copy() vals-=vmin#vals.min() vals/=vmax#vals.max() colors = cm.jet(values) if showF: ax.scatter(xyz[::fac,0], xyz[::fac,1], xyz[::fac,2], c=colors[::fac]) w.writePLYFileWithColor('/home/josedavid/3dprint/software/pypcl/strawlab/cent/cosa.ply', xyz, colors*255) if showF: ax.plot_surface(xx, yy, zz, alpha=0.7, color=[0,1,0]) ax.set_xlim(n.nanmin(xyz[:,0]),n.nanmax(xyz[:,0])) ax.set_ylim(n.nanmin(xyz[:,1]),n.nanmax(xyz[:,1])) ax.set_zlim(n.nanmin(xyz[:,2]),n.nanmax(xyz[:,2])) plt.show() #return colors, vals #points are rows in first matrix #plane is specified by [A,B,C,D] where the plane is Ax+By+Cz+D=0 #taken from http://stackoverflow.com/questions/12299540/plane-fitting-to-4-or-more-xyz-points def distancePointsToPlane(points, plane): return ((points*(plane[0:3].reshape(1,3))).sum(axis=1) + plane[3]) / n.linalg.norm(plane[0:3]) def errorPointsToPlane(points, plane): return n.abs(distancePointsToPlane(points, plane)) def planeEquationFrom3Points(points): det = n.linalg.det(points) ABCD = n.array([0.0,0.0,0.0,1.0]) #the following is parametric in D. we choose D=1.0 for k in xrange(3): mat = points.copy() mat[:,k] = 1 ABCD[k] = -n.linalg.det(mat)*ABCD[3]/det return ABCD #get rotation vector A onto onto vector B #from http://math.stackexchange.com/questions/180418/calculate-rotation-matrix-to-align-vector-a-to-vector-b-in-3d/476311#476311 def rotateVectorToVector(A,B): a = A.reshape((3,))/n.linalg.norm(A) b = B.reshape((3,))/n.linalg.norm(B) v = n.cross(a, b) s = n.linalg.norm(v) #sin of angle c = n.dot(a, b) #cos of angle V = n.array([[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]]) #skew-symmetric cross-product matrix of v R = n.identity(3)+V+n.dot(V, V)*((1-c)/(s*s)) return R #return rigid transformation between two sets of points #http://www.lfd.uci.edu/~gohlke/code/transformations.py.html #see also http://robokitchen.tumblr.com/post/67060392720/finding-a-rotation-quaternion-from-two-pairs-of #see also http://nghiaho.com/?page_id=671 #see also http://igl.ethz.ch/projects/ARAP/svd_rot.pdf #see also http://en.wikipedia.org/wiki/Kabsch_algorithm def findTransformation(v0, v1): """rigid transformation to convert v0 to v1. This allows any number of vectors higher than v0.shape[1], doing a best fit""" #local copy v0 = n.array(v0, dtype=n.float64, copy=True) v1 = n.array(v1, dtype=n.float64, copy=True) ndims = v0.shape[0] # move centroids to origin t0 = -n.mean(v0, axis=1) M0 = n.identity(ndims+1) M0[:ndims, ndims] = t0 v0 += t0.reshape(ndims, 1) t1 = -n.mean(v1, axis=1) M1 = n.identity(ndims+1) M1[:ndims, ndims] = t1 v1 += t1.reshape(ndims, 1) # Rigid transformation via SVD of covariance matrix u, s, vh = n.linalg.svd(n.dot(v1, v0.T)) # rotation matrix from SVD orthonormal bases R = n.dot(u, vh) if n.linalg.det(R) < 0.0: # R does not constitute right handed system R -= n.outer(u[:, ndims-1], vh[ndims-1, :]*2.0) s[-1] *= -1.0 # homogeneous transformation matrix M = n.identity(ndims+1) M[:ndims, :ndims] = R # move centroids back M = n.dot(n.linalg.inv(M1), n.dot(M, M0)) M /= M[ndims, ndims] return M def inverseTransform(M): P = M[0:3,0:3] T = M[0:3,3] P1 = n.linalg.inv(P) M1 = n.vstack((n.column_stack((P1, n.dot(-P1, T))), n.array([0.0, 0.0, 0.0, 1]))) return M1 def inverseTransformT(M): return inverseTransform(M.T).T def doTransform(M, xyz): """transform in the usual way as done in textbooks (coordinate vectors are vertical)""" xyz1 = n.vstack((xyz, n.ones((1, xyz.shape[1])))) return n.dot(M, xyz1)[0:-1,:] def doTransformT(xyzT, MT): """transform for coordinate vectors as used by here (coordinate vectors are rows)""" xyz1 = n.column_stack((xyzT, n.ones((xyzT.shape[0],)))) return n.dot(xyz1, MT)[:,0:-1] def findTransformation_RANSAC(data): """Calls findTransformation inside RANSAC (a transformation is a model)""" s = data.shape[1]/2 # if data.shape[0]!=3: # print 'Mira findTransformation_RANSAC: '+str(data.shape) # return findTransformation(data[:,:s].T, data[:,s:].T) return findTransformation(data[:,:s].T, data[:,s:].T).T def get_error_RANSAC(data, model): """Gets error of a model (a transformation) inside RANSAC""" s = data.shape[1]/2 # set1 = data[:,:s].T # set2 = data[:,s:].T # transf = doTransform(model, set1) # err = n.sum((transf-set2)**2, axis=0) set1 = data[:,:s] set2 = data[:,s:] transf = doTransformT(set1, model) err = n.sum((transf-set2)**2, axis=1) return err def findTranslation_RANSAC(data): """Calls findTransformation inside RANSAC (a transformation is a model)""" raise Exception("This is untested!!!") s = data.shape[1]/2 rot = n.identity(4) #rot[0:3,3] = -n.mean(data[:,s:]-data[:,:s], axis=0) rot[3,0:3] = -n.mean(data[:,s:]-data[:,:s], axis=0) return rot #def get_errordisp_RANSAC(data, model): # """Gets error of a model (a transformation) inside RANSAC""" # s = data.shape[1]/2 ## set1 = data[:,:s].T ## set2 = data[:,s:].T ## transf = doTransform(model, set1) ## err = n.sum((transf-set2)**2, axis=0) # set1 = data[:,:s] # set2 = data[:,s:] # err = n.sum(((set1+model)-set2)**2, axis=1) # return err def testPointsInsideBoundingBox(points, BB): """points: coordinates in row format BB: bounding box""" # # Both arguments have to be two dimensional matrices, vectors will break # the code. Returns a boolean matrix whose element [i,j] is the test of # the point points[j,:] inside the BB BBs[i,:]""" # if len(points.shape)==1: # points = n.reshape(points, (1, points.size)) # if len(BBs.shape)==1: # BBs = n.reshape(BBs, (1, BBs.size)) # return reduce(n.logical_and, [points[:,0:1]>=BBs[:,0:1].T, points[:,0:1]<=BBs[:,2:3].T, # points[:,1:2]>=BBs[:,1:2].T, points[:,1:2]<=BBs[:,3:4].T]) return reduce(n.logical_and, [points[:,0]>=BB[0], points[:,0]<=BB[2], points[:,1]>=BB[1], points[:,1]<=BB[3]]) def getOverlapingBoundingBoxes(BBs, A, Bs): """returns a bool array mask to cover only bounding boxes in Bs that overlap with bounding box A""" #bool DoBoxesIntersect(Box a, Box b) { # return (abs(a.x - b.x) * 2 < (a.width + b.width)) && # (abs(a.y - b.y) * 2 < (a.height + b.height)); #} minxA = BBs[A,0] minyA = BBs[A,1] widthA = BBs[A,2]-minxA heightA = BBs[A,3]-minyA minxBs = BBs[Bs,0] minyBs = BBs[Bs,1] widthBs = BBs[Bs,2]-minxBs heightBs = BBs[Bs,3]-minyBs overlaps = n.logical_and(((n.abs(minxA-minxBs)*2) < (widthA+widthBs)), ((n.abs(minyA-minyBs)*2) < (heightA+heightBs))) return overlaps def imageRectangle(img, imgstep): """Return the rectangle defining the bounding box of an (axis-aligned) heightmap""" minx,miny,maxx,maxy = imageBB(img, imgstep) rectangle = n.array([[minx,miny,0], [maxx,miny,0], [maxx,maxy,0], [minx,maxy,0]]) return rectangle def heightmapRectangle(heightmap): """Return the rectangle defining the bounding box of an (axis-aligned) heightmap""" minx,miny,maxx,maxy = heightmapBB(heightmap) rectangle = n.array([[minx,miny,0], [maxx,miny,0], [maxx,maxy,0], [minx,maxy,0]]) return rectangle def testPoinstInsidePolygon(points, pol):#, _PointInPolygon(pt, outPt): """adapted & vectorized from Clipper._PointInPolygon. It assumes that there are way more points to test than polygon vertices""" #def _PointInPolygon(pt, outPt): # outPt2 = outPt # result = False # while True: # if ((((outPt2.pt.y <= pt.y) and (pt.y < outPt2.prevOp.pt.y)) or \ # ((outPt2.prevOp.pt.y <= pt.y) and (pt.y < outPt2.pt.y))) and \ # (pt.x < (outPt2.prevOp.pt.x - outPt2.pt.x) * (pt.y - outPt2.pt.y) / \ # (outPt2.prevOp.pt.y - outPt2.pt.y) + outPt2.pt.x)): result = not result # outPt2 = outPt2.nextOp # if outPt2 == outPt: break count = n.zeros((points.shape[0],), dtype=int) #shape as a vector instead as a column vector to avoid broadcast errors for kthis in xrange(pol.shape[0]): kprev = (kthis-1)%pol.shape[0] count += n.logical_and( n.logical_or( n.logical_and( pol[kthis,1] <= points[:,1], points[:,1] < pol[kprev,1]), n.logical_and( pol[kprev,1] <= points[:,1], points[:,1] < pol[kthis,1]) ), points[:,0] < ((pol[kprev,0]-pol[kthis,0])*(points[:,1]-pol[kthis,1])/(pol[kprev,1]-pol[kthis,1])+pol[kthis,0]) ) inside = (count%2)==1 return inside def imageBB(img, imgstep): """Return the bounding box of an (axis-aligned) heightmap""" return n.array([[0.0,0.0], [img.shape[1]*imgstep[0], img.shape[0]*imgstep[1]]]).flatten() def heightmapBB(heightmap): """Return the bounding box of an (axis-aligned) heightmap""" return n.array([[0.0,0.0], [heightmap.size[0]*heightmap.step[0], heightmap.size[1]*heightmap.step[1]]]).flatten() def heightmap2XYZ(heightmap): """convert a heightmap to a point cloud, pcl-style (a npointsXndimensions matrix)""" # #rebase heightmap to cancel z_0 away # data -= axes_config['z_0'] #create XY grid xs = n.linspace(0, heightmap.size[0]*heightmap.step[0], heightmap.size[0]) ys = n.linspace(0, heightmap.size[1]*heightmap.step[1], heightmap.size[1]) grid = n.meshgrid(xs, ys) xyz = n.column_stack((grid[0].ravel(), grid[1].ravel(), heightmap.img.ravel())) return xyz def image2XYZ(img, step): """convert a heightmap to a point cloud, pcl-style (a npointsXndimensions matrix)""" # #rebase heightmap to cancel z_0 away # data -= axes_config['z_0'] #create XY grid xs = n.linspace(0, img.shape[1]*step[0], img.shape[1]) ys = n.linspace(0, img.shape[0]*step[1], img.shape[0]) grid = n.meshgrid(xs, ys) xyz = n.column_stack((grid[0].ravel(), grid[1].ravel(), img.ravel())) return xyz #from https://sites.google.com/site/dlampetest/python/calculating-normals-of-a-triangle-mesh-using-numpy #see also this for some subtle details out of this simple procedure: http://stackoverflow.com/questions/6656358/calculating-normals-in-a-triangle-mesh def normalsFromMesh(points, triangles): #Create a zeroed array with the same type and shape as our vertices i.e., per vertex normal norm = n.zeros( points.shape, dtype=points.dtype ) #Create an indexed view into the vertex array using the array of three indices for triangles tris = points[triangles] #Calculate the normal for all the triangles, by taking the cross product of the vectors v1-v0, and v2-v0 in each triangle nrm = n.cross( tris[::,1 ] - tris[::,0] , tris[::,2 ] - tris[::,0] ) # n is now an array of normals per triangle. The length of each normal is dependent the vertices, # we need to normalize these, so that our next step weights each normal equally. normalize_v3(nrm) # now we have a normalized array of normals, one per triangle, i.e., per triangle normals. # But instead of one per triangle (i.e., flat shading), we add to each vertex in that triangle, # the triangles' normal. Multiple triangles would then contribute to every vertex, so we need to normalize again afterwards. # The cool part, we can actually add the normals through an indexed view of our (zeroed) per vertex normal array norm[ triangles[:,0] ] += nrm norm[ triangles[:,1] ] += nrm norm[ triangles[:,2] ] += nrm normalize_v3(norm) return norm def normalize_v3(arr): ''' Normalize a numpy array of 3 component vectors shape=(n,3) ''' lens = n.sqrt( arr[:,0]**2 + arr[:,1]**2 + arr[:,2]**2 ) arr[:,0] /= lens arr[:,1] /= lens arr[:,2] /= lens return arr def meshForGrid(shape): """create a mesh for a grid in C-style matrix order""" idxs = n.arange(n.prod(shape)).reshape(shape) #v1, v2, v3, v4: vertices of each square in the grid, clockwise v1 = idxs[:-1,:-1] v2 = idxs[:-1,1:] v3 = idxs[1:,1:] v4 = idxs[1:,:-1] faces = n.vstack(( n.column_stack((v1.ravel(), v2.ravel(), v4.ravel())), #triangles type 1 n.column_stack((v2.ravel(), v3.ravel(), v4.ravel())) )) #triangles type 2 return faces def normalsForMatrixXYZ(xyz, shape): """assuming that xyz comes from a grid, compute the normals""" triangles = meshForGrid(shape) return normalsFromMesh(xyz, triangles) ############################################################################# #NOT USED #adapted from the python port of the clipper library def testPointInsidePolygon(point, polygonPoints):#, _PointInPolygon(pt, outPt): """adapted & vectorized from Clipper._PointInPolygon""" this = polygonPoints prev = n.roll(polygonPoints, 1, 0) inside = n.zeros((point.shape[0],1), dtype=bool) tests = n.logical_and( n.logical_or( n.logical_and( this[:,1] <= point[1], point[1] < prev[:,1]), n.logical_and( prev[:,1] <= point[1], point[1] < this[:,1]) ), point[0] < ((prev[:,0]-this[:,0])*(point[1]-this[:,1])/(prev[:,1]-this[:,1])+this[:,0])) inside = (n.sum(tests)%2)==1 return inside #def _PointInPolygon(pt, outPt): # outPt2 = outPt # result = False # while True: # if ((((outPt2.pt.y <= pt.y) and (pt.y < outPt2.prevOp.pt.y)) or \ # ((outPt2.prevOp.pt.y <= pt.y) and (pt.y < outPt2.pt.y))) and \ # (pt.x < (outPt2.prevOp.pt.x - outPt2.pt.x) * (pt.y - outPt2.pt.y) / \ # (outPt2.prevOp.pt.y - outPt2.pt.y) + outPt2.pt.x)): result = not result # outPt2 = outPt2.nextOp # if outPt2 == outPt: break ```
{ "source": "jdfurlan/nsc-cloudproject-s22016-master", "score": 3 }
#### File: api/verify_oauth & blob/blob.py ```python from azure.storage.blob import BlobService import datetime import string from verify_oauth import verify_oauth accountName = 'jesse15' accountKey = '' blob_service = BlobService(accountName, accountKey) uploaded = False def uploadBlob(username, file, filename, token, secret): global uploaded returnList = [] verify_oauth_code = verify_oauth(token, secret) if verify_oauth_code.status_code != 200: returnList = ["Could not verify oAuth credentials"] return returnList blob_service.create_container(username, x_ms_blob_public_access='container') #datetime gives the system's current datetime, I convert to string in order to .replace #characters that wouldn't work in a URL like ':','.', and ' ' time = str(datetime.datetime.now()) timeReplaced = time.replace(':','').replace('.','').replace(' ','') URLstring = "https://" + accountName + ".blob.core.windows.net/" + username + "/" + timeReplaced + "_" + filename uploaded = False blob_service.put_block_blob_from_path( username, timeReplaced, '\/Users\/rjhunter\/Desktop\/bridge.jpg', x_ms_blob_content_type='image/png', progress_callback=progress_callback ) #if upload is successful, return a list with the timestamp and the final URL #else return an empty list if uploaded: return returnList[time, URLstring] else: return returnList["Failure to upload to Azure Blob Storage"] def deleteBlob(username, blobURL): exploded = blobURL.split("/") blob_service.delete_blob(username, exploded[len(exploded)-1]) def listBlobs(username): blobs = [] marker = None while True: batch = blob_service.list_blobs(username, marker=marker) blobs.extend(batch) if not batch.next_marker: break marker = batch.next_marker for blob in blobs: print(blob.name) def progress_callback(current, total): global uploaded print ("Current bytes uploaded: ", current) print ("===============") print ("Total bytes of file: ", total) print () if(current==total): uploaded = True ```
{ "source": "jdg1837/Spotlight", "score": 2 }
#### File: Spotlight/src/main.py ```python import line_detection as ld import blob_detection as bd def main(): inputfile = ld.detect_lines('../images/parkinglot.png') bd.detect_blobs(inputfile) if __name__ == '__main__': main() ```
{ "source": "jdg2011/Roark-Creek", "score": 4 }
#### File: jdg2011/Roark-Creek/lib_auditor.py ```python import os def list_duplicates(seq): seen = set() seen_add = seen.add #adds all elements it doesn't know yet to seen and all other to seen_twice seen_twice = set( x for x in seq if x in seen or seen_add(x) ) #turn the set into a list return list( seen_twice ) Z=1 while Z==1: lib=str(input("Enter a library file name (no extension): ")) if bool(os.path.exists('libraries/'+lib+'.txt')) is False: print("Library \""+lib+".txt\" does not exist! Try again.") else: library=open('libraries/'+lib+'.txt','r',encoding='utf8') a = [] for x in library: a.append(x) print(list_duplicates(a)) library.close() continue ```
{ "source": "jdgalviss/jetbot-ros2", "score": 2 }
#### File: ws_server/ws_server/ws_server_node.py ```python import rclpy from rclpy.node import Node from geometry_msgs.msg import Twist import asyncio import websockets import json import os HOST_IP = os.getenv('HOST_IP', "0.0.0.0") # WS_SERVER_ADDRESS = "192.168.0.167" #WS_SERVER_ADDRESS = "localhost" class WSServerNode(Node): def __init__(self, port=8765): super().__init__('ws_server') # Speed commands publisher (commands are received by WS server) self.cmd_publisher_ = self.create_publisher(Twist, 'cmd_vel', 10) # Start WS Server and loop start_server = websockets.serve( self.run_server, HOST_IP, port) asyncio.get_event_loop().run_until_complete(start_server) asyncio.get_event_loop().run_forever() async def run_server(self, websocket, path): # callback when cmd msg is received through WS received_msg = await websocket.recv() # Unpack info from json received_msg_json = json.loads(received_msg) steering = received_msg_json["steering"] throttle = received_msg_json["throttle"] print(steering) # Cmd values into msg and publish cmd_msg = Twist() cmd_msg.linear.x = float(throttle) cmd_msg.angular.z = float(steering) self.cmd_publisher_.publish(cmd_msg) def main(args=None): print('Hi from ws_server.') rclpy.init(args=args) ws_server = WSServerNode() rclpy.spin(ws_server) ws_server.destroy_node() rclpy.shutdown() if __name__ == '__main__': main() ```
{ "source": "jdgaravito/portfolio-backend", "score": 2 }
#### File: app/api/portfolio_api.py ```python import fastapi from fastapi import Depends, status from fastapi.exceptions import HTTPException from sqlalchemy.future import select from sqlalchemy.ext.asyncio import AsyncSession from typing import Optional, List from app.db import get_session from app.models.portfolio_model import Project router = fastapi.APIRouter() @router.get('/portfolio', response_model=List[Project], status_code=status.HTTP_200_OK) async def get_all_projects(session: AsyncSession = Depends(get_session)): statement=select(Project) result= await session.execute(statement) projects = result.scalars().all() # return [Project(name=project.name, # summary=project.summary, # description=project.description, # category=project.category, # award=project.award, # url=project.url, # published=project.published, # image=project.image, # images=project.images, # learning=project.learning, # tech=project.tech, # tools=project.tools) # for project in projects] return projects @router.post('/portfolio', response_model=Project, status_code=status.HTTP_201_CREATED) async def add_project(project: Project, session: AsyncSession = Depends(get_session)): project = Project(name=project.name, summary=project.summary, description=project.description, category=project.category, award=project.award, url=project.url, published=project.published, image=project.image, images=project.images, learning=project.learning, tech=project.tech, tools=project.tools) session.add(project) await session.commit() await session.refresh(project) return project @router.get('/portfolio/{project_id}', response_model=Project) async def get_a_project(project_id: int, session: AsyncSession= Depends(get_session)): statement = select(Project).where(Project.id == project_id) result = await session.execute(statement) if None == result: raise HTTPException(status_code=status.HTTP_404_NOT_FOUND) return result ```
{ "source": "jdgarrett/geowave", "score": 2 }
#### File: store/redis/options.py ```python from pygw.config import geowave_pkg from pygw.store import DataStoreOptions class RedisOptions(DataStoreOptions): """ Redis data store options. """ def __init__(self): super().__init__(geowave_pkg.datastore.redis.config.RedisOptions()) def set_address(self, address): """ Sets the address of the Redis data store. Args: address (str): The address of the Redis data store. """ self._java_ref.setAddress(address) def get_address(self): """ Returns: The address of the Redis data store. """ return self._java_ref.getAddress() def set_compression(self, compression): """ Sets the compression to use for the Redis data store. Valid options are `SNAPPY`, `L4Z`, or `NONE`. Args: compression (str): The compressioin to use. """ converter = geowave_pkg.datastore.redis.config.RedisOptions.CompressionConverter() self._java_ref.setCompression(converter.convert(compression)) def get_compression(self): """ Returns: The compression used by the data store. """ return self._java_ref.getCompression().name() ```
{ "source": "jdgenes/client-data-check", "score": 3 }
#### File: jdgenes/client-data-check/get-client-data.py ```python from __future__ import print_function import pickle import os.path import sqlite3 import json import pprint import re import time from copy import deepcopy from googleapiclient.discovery import build from google_auth_oauthlib.flow import InstalledAppFlow from google.auth.transport.requests import Request # If modifying these scopes, delete the file token.pickle. SCOPES = ['https://www.googleapis.com/auth/spreadsheets.readonly'] spreadsheets = [ 'timesheet ID', # This is a timesheet other data is compared to 'google sheet IDs also go in this list' ] attendanceRanges = [ "name of attendance sheet and range" # for example: JAN'20_GR!A2:Y52 ] dataRanges = [ # below are the examples of sheet names and their ranges 'Jan!A1:AF5', 'Feb!A1:AF5', 'Mar!A1:AF5', 'Apr!A1:AF5', 'May!A1:AF5', 'June!A1:AF5', 'July!A1:AF5', 'Aug!A1:AF5', 'Sep!A1:AF5', 'Oct!A1:AF5', 'Nov!A1:AF5', 'Dec!A1:AF5' ] sheetObj = [] def main(sheetArr, rangeArr): creds = None if os.path.exists('token.pickle'): with open('token.pickle', 'rb') as token: creds = pickle.load(token) if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: creds.refresh(Request()) else: flow = InstalledAppFlow.from_client_secrets_file( 'credentials.json', SCOPES) creds = flow.run_local_server() with open('token.pickle', 'wb') as token: pickle.dump(creds, token) service = build('sheets', 'v4', credentials=creds) sheetData = service.spreadsheets().values().get(spreadsheetId=sheetArr, range=rangeArr).execute() rowData = sheetData.get('values', []) sheetObject = service.spreadsheets().get(spreadsheetId=sheetArr).execute() print('making a google sheets request') if not rowData: print('No data found.') else: return [sheetObject, rowData] if __name__ == '__main__': attenGreen = main(spreadsheets[0], attendanceRanges[0]) attenBlue = main(spreadsheets[0], attendanceRanges[1]) atten = deepcopy(attenBlue[1] + attenGreen[1]) weekdays = atten[0][2:] ispObj = { 'weekdays': weekdays } for i in range(1, len(spreadsheets)): j = 1 s = main(spreadsheets[i], dataRanges[0]) pattern = atten[j][0].lower() searchIn = re.compile(r"("+s[0]['properties']['title'].lower()[0:len(atten[j][0])]+")") # below, an excpetion is written if a client's name is used inconsistently in different sheets if s[0]['properties']['title'].lower()[0:len(atten[j][0])] in "<NAME>": searchIn = re.compile(r"smith, john") while atten[j][0] == "": j += 1 while not searchIn.search(pattern): j += 1 try: print("notmatched ", j-1, atten[j-1][0].lower(), " and ", i, s[0]['properties']['title'].lower()) pattern = atten[j][0].lower() searchIn = re.compile(r"("+s[0]['properties']['title'].lower()[0:len(atten[j][0])]+")") if s[0]['properties']['title'].lower()[0:len(atten[j][0])] in "<NAME>": searchIn = re.compile(r"smith, john") except IndexError: print(s[0]['properties']['title'], " not found in data set") break while atten[j][0] == "": j += 1 try: pattern = atten[j][0].lower() searchIn = re.compile(r"("+s[0]['properties']['title'].lower()[0:len(atten[j][0])]+")") if s[0]['properties']['title'].lower()[0:len(atten[j][0])] in "<NAME>": searchIn = re.compile(r"smith, john") except IndexError: print(s[0]['properties']['title'], " not found in data set") break if searchIn.search(pattern): try: print('item', "i", i, "j", j) print(s[0]['properties']['title'].lower()) ispObj.setdefault(s[0]['properties']['title'].lower(), { 'data-set': s[1], 'attendance': atten[j] }) print('----END MATCH----') for i in range(0, 2): time.sleep(7) print('pausing for Google API limit ', i+1, "of 2") except IndexError: print("Final check not found in data set") pprint.pprint(atten) cliJSON = open('client-data.json', 'w') cliJSON.write(json.dumps(ispObj)) ```
{ "source": "JDGiacomantonio-98/jobShop-scheduling-simulatedAnniealing", "score": 4 }
#### File: JDGiacomantonio-98/jobShop-scheduling-simulatedAnniealing/search.py ```python def basic_search(target, vector: list, use_sort=False, use_py_sort=False): i=0 while i < len(vector): if vector[i] == target: return True i += 1 return False def bin_search(target, vector: list, use_sort=False, use_py_sort=False): start = 0 end = len(vector)-1 i = (start+end)/2 if vector[i] == target: return True if vector[i] > target: bin_search(target, vector[:end]) bin_search(target, vector[start:]) ```
{ "source": "jdgillespie91/trackerSpend", "score": 4 }
#### File: trackerSpend/configs/config.py ```python import configparser import os class Config(object): """ When instantiated, the Config() class provides an object whose attributes are the properties defined in [section] of config.ini (where config.ini is a configuration file in the same directory as this module). """ def __init__(self, section): """ Sets the properties of the config file as attributes of the class. """ config = configparser.ConfigParser() config.read(os.path.join(os.path.dirname(__file__), 'config.ini')) for key, value in config.items(section): setattr(self, key, value) ``` #### File: data/expenditure/submit_automated_expenditure.py ```python import datetime import gspread import json import logging import os import requests import smtplib import sys from configs import config from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from oauth2client.client import SignedJwtAssertionCredentials class Script: def __init__(self): self.today = datetime.datetime.today() self.directory = os.path.dirname(__file__) self.filename = os.path.splitext(os.path.basename(__file__))[0] self.path = os.path.join(self.directory, self.filename) class Flag(Script): def __init__(self, entry): Script.__init__(self) # Change this to super if more pythonic. self.today = self.today.strftime('%Y-%m-%d') self.directory = os.path.join(self.directory, 'flags') self.filename = '{0}_{1}.flag'.format(entry.category, self.today) self.path = os.path.join(self.directory, self.filename) def exists(self): if os.path.isfile(self.path): return True else: return False def touch(self): open(self.path, 'w').close() def untouch(self): os.remove(self.path) class Entry: def __init__(self, amount, category, peer_pressure, notes, frequency, due_date, active): self.amount = amount self.category = category self.peer_pressure = peer_pressure self.notes = notes self.frequency = frequency self.due_date = due_date self.active = active class Form: def __init__(self, entry): self.amount = entry.amount self.category = entry.category self.peer_pressure = entry.peer_pressure self.notes = entry.notes self.conf = config.Config('expenditure_form') self.submission = {'entry.1788911046': self.amount, 'entry.22851461': '__other_option__', 'entry.22851461.other_option_response': self.category, 'entry.2106932303': self.peer_pressure, 'entry.1728679999': self.notes} self.response_code = None def submit(self): response = requests.post(self.conf.url, self.submission) self.response_code = response.status_code def email(self, success): # The following code is based on # http://stackoverflow.com/questions/778202/smtplib-and-gmail-python-script-problems # http://en.wikibooks.org/wiki/Python_Programming/Email # I need to troubleshoot and test for errors. message = MIMEMultipart() message['From'] = self.conf.sender message['To'] = self.conf.recipient message['Subject'] = 'Expenditure Submission Update (Automated Email)' if success: body = 'The following entry has been submitted.\n\nAmount: {0}\nCategory: {1}\nPeer pressure: {2}\n' \ 'Notes: {3}\n'.format(self.amount, self.category, self.peer_pressure, self.notes) else: body = 'The following entry failed submission.\n\nAmount: {0}\nCategory: {1}\nPeer pressure: {2}\n' \ 'Notes: {3}\n'.format(self.amount, self.category, self.peer_pressure, self.notes) message.attach(MIMEText(body, 'plain')) server = smtplib.SMTP('smtp.gmail.com', 587) server.starttls() server.login(self.conf.username, self.conf.password) server.sendmail(self.conf.sender, self.conf.recipient, message.as_string()) server.close() # Initialise the Entry class based on a list row. def create_entry(row): category = row[1] peer_pressure = row[2] notes = row[3] frequency = row[4] active = True if row[6] == 'Yes' else False # We assign zero to both amount and due_date if either are invalid types. We do this silently because the email # confirmation will contain the details of the submission and highlight any issues that need to be addressed. try: amount = float(row[0]) due_date = int(row[5]) except (TypeError, ValueError): amount = 0 due_date = 0 entry = Entry(amount, category, peer_pressure, notes, frequency, due_date, active) return entry def create_logger(script): today = script.today.strftime('%Y-%m-%d_%H:%M:%S') directory = os.path.join(script.directory, 'logs') filename = '{0}_{1}.log'.format(script.filename, today) path = os.path.join(directory, filename) logger = logging.getLogger('logger') logger.setLevel(logging.DEBUG) # Add file handler to logger. file_handler = logging.FileHandler(path) formatter = logging.Formatter('%(asctime)s %(levelname)s - %(message)s', '%Y-%m-%d %H:%M:%S') file_handler.setFormatter(formatter) logger.addHandler(file_handler) logger.debug('Log file created: {0}\n'.format(path)) # Add smtp handler to logger. # smtp_handler = logging.handlers.SMTPHandler(... # Complete this # logger.debug('SMTP functionality configured.') return logger def parse_entries_sheet(): conf = config.Config('expenditure_entries') json_key = json.load(open(conf.key)) scope = ['https://spreadsheets.google.com/feeds'] credentials = SignedJwtAssertionCredentials(json_key['client_email'], bytes(json_key['private_key'], 'UTF-8'), scope) session = gspread.authorize(credentials) workbook = session.open_by_key(conf.workbook) worksheet = workbook.worksheet(conf.worksheet) # Parse row-by-row until an empty row is encountered (data starts on second row). row_index = 2 entries = [] while worksheet.row_values(row_index) and row_index <= worksheet.row_count: row = worksheet.row_values(row_index) entry = create_entry(row) entries.append(entry) row_index += 1 return entries if __name__ == '__main__': script = Script() logger = create_logger(script) logger.info('Processing entries sheet.') entries = parse_entries_sheet() logger.info('Entries sheet processed.\n') for entry in entries: logger.info('Processing entry: {0}.'.format(entry.category)) if entry.active: logger.info('Entry is active. Continuing...') flag = Flag(entry) if not flag.exists(): logger.info('The flag file does not exist. Touching...') flag.touch() if entry.frequency == 'Monthly': if entry.due_date == script.today.day: # Think about introducing a "today" variable. I don't think it's logical to include "today" in the Script class. logger.info('An entry is required. Submitting...') form = Form(entry) form.submit() if form.response_code == requests.codes.ok: # Have this as try: form.submit() as opposed to if/else (will read better). logger.info('The submission was accepted. Moving to next entry.\n') form.email(success=True) else: logger.info('The submission was not accepted. ' 'Removing flag file and moving to next entry.\n') form.email(success=False) flag.untouch() else: logger.info('A submission is not required today. ' 'Removing flag file and moving to next entry.\n'.format(entry.frequency)) flag.untouch() else: logger.info('{0} spend is not yet implemented. ' 'Removing flag file and moving to next entry.\n'.format(entry.frequency)) flag.untouch() continue else: logger.info('The flag file exists. Moving to next entry.\n') else: logger.info('Entry is inactive. Moving to next entry.\n') logger.info('End of script.') sys.exit(0) ``` #### File: tests/utils/get_message_unit_tests.py ```python import unittest from utils import get_message class GetMessageUnitTests(unittest.TestCase): def test_get_message_is_callable(self): self.assertTrue(callable(get_message)) if __name__ == '__main__': suite = unittest.defaultTestLoader.loadTestsFromTestCase(GetMessageUnitTests) unittest.TextTestRunner(verbosity=2).run(suite) ``` #### File: tests/utils/publish_message_unit_tests.py ```python import unittest from utils import publish_message class PublishMessageUnitTests(unittest.TestCase): def test_publish_message_is_callable(self): self.assertTrue(callable(publish_message)) if __name__ == '__main__': suite = unittest.defaultTestLoader.loadTestsFromTestCase(PublishMessageUnitTests) unittest.TextTestRunner(verbosity=2).run(suite) ```
{ "source": "jdgillespie91/twitter-ads", "score": 2 }
#### File: twitter-ads/tests/test_main.py ```python from twads import Client import pytest import json import requests_mock @pytest.fixture() def client(): return Client( consumer_key='foo', consumer_secret='foo', access_key='foo', access_secret='foo' ) @pytest.fixture(params=['single', 'multiple', 'bad_auth']) def accounts(request): with open('tests/responses/accounts_{}.json'.format(request.param), 'r') as f: return json.load(f) class TestGetAccounts: def test_get_accounts(self, client, accounts): try: expected_response = accounts['data'] except KeyError: expected_response = accounts['errors'] with requests_mock.mock() as m: m.get('https://ads-api.twitter.com/0/accounts', json=accounts) actual_response = client.get_accounts() assert expected_response == actual_response ```
{ "source": "jdglaser/census-dw", "score": 3 }
#### File: census-dw/python/Generate_Employee_Codes_Data.py ```python __author__ = "<NAME>" __last_updated__ = "2019-11-08" import pandas as pd from sqlalchemy import create_engine values = { "001": "All establishments", "204": "Establishments with no paid employees", "205": "Establishments with paid employees", "207": "Establishments with less than 10 employees", "209": "Establishments with less than 20 employees", "210": "Establishments with less than 5 employees", "211": "Establishments with less than 4 employees", "212": "Establishments with 1 to 4 employees", "213": "Establishments with 1 employee", "214": "Establishments with 2 employees", "215": "Establishments with 3 or 4 employees", "219": "Establishments with 0 to 4 employees", "220": "Establishments with 5 to 9 employees", "221": "Establishments with 5 or 6 employees", "222": "Establishments with 7 to 9 employees", "223": "Establishments with 10 to 14 employees", "230": "Establishments with 10 to 19 employees", "231": "Establishments with 10 to 14 employees", "232": "Establishments with 15 to 19 employees", "235": "Establishments with 20 or more employees", "240": "Establishments with 20 to 99 employees", "241": "Establishments with 20 to 49 employees", "242": "Establishments with 50 to 99 employees", "243": "Establishments with 50 employees or more", "249": "Establishments with 100 to 499 employees", "250": "Establishments with 100 or more employees", "251": "Establishments with 100 to 249 employees", "252": "Establishments with 250 to 499 employees", "253": "Establishments with 500 employees or more", "254": "Establishments with 500 to 999 employees", "260": "Establishments with 1,000 employees or more", "261": "Establishments with 1,000 to 2,499 employees", "262": "Establishments with 1,000 to 1,499 employees", "263": "Establishments with 1,500 to 2,499 employees", "270": "Establishments with 2,500 employees or more", "271": "Establishments with 2,500 to 4,999 employees", "272": "Establishments with 5,000 to 9,999 employees", "273": "Establishments with 5,000 employees or more", "280": "Establishments with 10,000 employees or more", "281": "Establishments with 10,000 to 24,999 employees", "282": "Establishments with 25,000 to 49,999 employees", "283": "Establishments with 50,000 to 99,999 employees", "290": "Establishments with 100,000 employees or more", "298": "Covered by administrative records" } def load_employee_codes(engine): df = pd.DataFrame({"CBP_Employee_Size_Code":list(values.keys()),"Long_Description":list(values.values())}) df["Short_Description"] = df["Long_Description"].str.replace("Establishments with ","").str.replace(" to ","-").str.title() df.to_sql("DIM_CBP_Employee_Sizes",engine,if_exists="append",index=False) if __name__ == "__main__": engine = create_engine('INSERT CONNECTION STRING',fast_executemany=True) print("Done") ```
{ "source": "jdgoal512/Life", "score": 4 }
#### File: jdgoal512/Life/life.py ```python import time # Rules D = 0 # Die G = 1 # Grow S = 2 # Stay the same class Life: def __init__(self, width=10, height=10, rules=[D, D, S, G, D, D, D, D, D]): self.generation = 0 self.width = width self.height = height self.rules = rules self.grid = [[False for i in range(height)] for j in range(width)] def get(self, x, y): # No wrapping if 0 <= x < self.width and 0 <= y < self.height: return self.grid[x][y] return 0 def get_neighbors(self, x, y): neighbors = 0 for x_offset in [-1, 0, 1]: for y_offset in [-1, 0, 1]: # Don't count the offset 0, 0 if not x_offset == y_offset == 0: if self.get(x+x_offset, y+y_offset): neighbors += 1 return neighbors def print_grid(self): print(f'Generation {self.generation}') print('+{}+'.format('-'*self.width)) for row in self.grid: row_text = ''.join(['0' if x else ' ' for x in row]) print(f'|{row_text}|') print('+{}+'.format('-'*self.width)) def next_generation(self): next_grid = [y[:] for y in self.grid[:]] for x in range(self.width): for y in range(self.height): neighbors = self.get_neighbors(x, y) next_state = self.rules[neighbors] if next_state == G: next_grid[x][y] = True elif next_state == D: next_grid[x][y] = False self.grid = next_grid self.generation += 1 def add_figure(self, points, x=5, y=5): for a, b in points: self.grid[x+a][y+b] = True RPENTOMINO = [[1, 0], [2, 0], [0, 1], [1, 1], [1, 2]] BLOCK = [[0, 0], [1, 0], [0, 1], [1, 1]] BLINKER = [[1, 0], [1, 1], [1, 2]] BEACON = [[0, 0], [0, 1], [1, 0], [2, 3], [3, 2], [3, 3]] if __name__ == '__main__': game = Life() # game.add_figure(BEACON, x=2, y=1) game.add_figure(RPENTOMINO, x=4, y=4) while True: game.print_grid() game.next_generation() time.sleep(1) ```
{ "source": "jdgoal512/markov-passwords", "score": 3 }
#### File: jdgoal512/markov-passwords/markov.py ```python import argparse import numpy import random unique_words = set() #Read in the text def getWords(filename): global unique_words unique_words.add("$TOP") try: with open(filename) as f: content = f.readlines(); #Get list of words for text in content: words = text.split() for word in words: if (word != ""): unique_words.add(word) except FileNotFoundError as exception: print("Error: " + filename + " doesn't exist, aborting") exit() return unique_words def addProbability(filename): with open(filename) as f: content = f.readlines(); #Add probabilities global stats global all_words for text in content: if text != "": text = text[:-1] + " $TOP" words = text.split() last_word = words[0] for word in words[1:]: if (word != ""): stats[all_words.index(last_word )][all_words.index(word)] += 1 last_word = word return stats #Normalize the probabilities def normalizeStats(): global stats global all_words for i in range(len(all_words)): total = 0 for j in range(len(all_words)): total += stats[i][j] if total > 0: for j in range(len(all_words)): stats[i][j] = stats[i][j] / total return stats #Generate a phrase def babble(max_length = 3): global all_words current_word = all_words[random.randint(0, len(all_words) - 1)] text = current_word current_count = 1 while current_word != "$TOP" and current_count < max_length: pval = stats[all_words.index(current_word)] next_index = numpy.nonzero(numpy.random.multinomial(n=1, pvals=pval, size=1))[1][0] next_word = all_words[next_index] text = text + next_word current_word = next_word; current_count += 1 #Remove $TOP if text[-4:] == "$TOP": text = text[:-4] #Don't return blank lines if text == "": return babble(max_length) return text if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-i', '--input-file', dest='input_file', type=str, default="", help='Name of file to read') parser.add_argument('-o', '--output-file', dest='output_file', type=str, default="", help='File to write output to (defaults to stdout)') parser.add_argument('-n', '--number-of-times', dest='number_of_times', type=int, default=1, help='Number of phrases to generate') parser.add_argument('-l', '--max-length', dest='max_length', type=int, default=3, help='Max number of words to be in a phrase') args = parser.parse_args() #Get command line parameters input_file = args.input_file output_file = args.output_file number_of_phrases = args.number_of_times max_length = args.max_length if input_file == "": parser.print_help() exit() if output_file == "": write_output = False else: write_output = True #Get all the words from the input file getWords((input_file)) all_words = list(unique_words) #Create probability matrix stats = [[0 for x in range(len(all_words))] for y in range(len(all_words))] addProbability(input_file) normalizeStats() #Generate phrases if (write_output): output = open(output_file, 'w') for i in range(number_of_phrases): output.write(babble(max_length) + "\n") output.close() else: for i in range(number_of_phrases): print(babble(max_length)) ```
{ "source": "jdgoettsch/aldryn-search", "score": 2 }
#### File: aldryn-search/aldryn_search/receivers.py ```python from django.dispatch.dispatcher import receiver from cms.models.titlemodels import Title from cms.signals import post_publish, post_unpublish from .signals import add_to_index, remove_from_index @receiver(post_publish, dispatch_uid='publish_cms_page') def publish_cms_page(sender, instance, language, **kwargs): title = instance.publisher_public.get_title_obj(language) add_to_index.send(sender=Title, instance=title, object_action='publish') @receiver(post_unpublish, dispatch_uid='unpublish_cms_page') def unpublish_cms_page(sender, instance, language, **kwargs): title = instance.publisher_public.get_title_obj(language) remove_from_index.send(sender=Title, instance=title, object_action='unpublish') ```
{ "source": "jdgordon/includegrapher", "score": 3 }
#### File: jdgordon/includegrapher/checker.py ```python import os import sys import re import glob import pygraphviz as pgv class Include(object): def __init__(self, fullpath): self._filename = fullpath self._includes = [] @property def includes(self): return self._includes @property def filename(self): return self._filename def add_include(self, inc): if inc not in self.includes: self.includes.append(inc) def __repr__(self): return "Include(%s)" % (self.filename) def find_include(request, include_paths): print "Finding path for:", request, include_paths for root in include_paths: full = os.path.join(root, request) if os.path.exists(full): return full def parse_file(filename, include_paths, parsed_files): print "Parsing:", filename include = Include(filename) parsed_files[filename] = include with open(filename, 'r') as fh: for line in fh.readlines(): matches = re.match('#\s*include\s+["<](.*)[>"]', line) if matches: fname = find_include(matches.group(1), [os.path.dirname(filename)] + include_paths) if fname is None: fname = matches.group(1) if fname in parsed_files: inc = parsed_files[fname] else: inc = Include(fname) else: if fname not in parsed_files: inc = parse_file(fname, include_paths, parsed_files) else: inc = parsed_files[fname] include.add_include(inc) return include def safe_print(include): print "--> ", include visited = [] def recurse(child): print child.filename visited.append(child) for x in child.includes: if x not in visited: recurse(x) else: print "**", x recurse(include) def create_graph(include): visited = [] G = pgv.AGraph(strict=False, directed=True) def recurse(child): visited.append(child) for x in child.includes: if x not in visited: G.add_edge(child.filename, x.filename) recurse(x) recurse(include) return G if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description='Check #includes') parser.add_argument('include_dirs', metavar='INCLUDE_PATHS', type=str, nargs='+', help='List of include dirs to use for search paths') parser.add_argument('--source-dir', dest='sourcedir', action='store', required=True, help='Directory to start parsing from') parser.add_argument('-R', '--recursive', action='store_true', default=False, help='Recursivly scan the source directory') args = parser.parse_args() include_paths = args.include_dirs roots = [] includes = {} cpp_files = {} if args.recursive is True: for root, dirnames, filenames in os.walk(args.sourcedir): roots.append(root) else: roots = [args.sourcedir] for root in roots: for filename in glob.glob(os.path.join(root, '*.c')) + glob.glob(os.path.join(root, '*.cpp')): print filename cpp_files[filename] = parse_file(filename, include_paths, includes) for key, x in cpp_files.iteritems(): G = create_graph(x) G.layout('dot') G.draw('%s.png' %(key)) ```
{ "source": "jdgwartney/boundary-api-cli", "score": 2 }
#### File: boundary-api-cli/boundary/alarm_list.py ```python from boundary import ApiCli from boundary.alarm_common import result_to_alarm import json import requests class AlarmList(ApiCli): def __init__(self): ApiCli.__init__(self) def get_description(self): return "List alarm definitions associated with the {0} account".format(self.product_name) def get_api_parameters(self): self.path = "v2/alarms" self.method = "GET" def handle_key_word_args(self): pass def _handle_api_results(self): # Only process if we get HTTP result of 200 if self._api_result.status_code == requests.codes.ok: alarm_result = json.loads(self._api_result.text) alarms = [] for alarm in alarm_result['result']: alarms.append(result_to_alarm(alarm)) return alarms else: return None ``` #### File: boundary-api-cli/boundary/alarm_modify.py ```python import json import requests from boundary import ApiCli from boundary.alarm_common import result_to_alarm class AlarmModify(ApiCli): def __init__(self, update): ApiCli.__init__(self) self._update = update # Mapping of alarm types to corresponding codes self._alarm_types = {"threshold": 3, "host": 4, "api": 5} self._aggregate = None self._actions = None self._alarm_name = None self._alarm_id = None self._host_group_id = None self._interval = None self._is_disabled = None self._metric = None self._note = None self._operation = None self._per_host_notify = None self._threshold = None self._type_id = None self._notify_clear = None self._notify_set = None self._payload = {} self._trigger_interval = None self._timeout_interval = None def add_arguments(self): ApiCli.add_arguments(self) self.parser.add_argument('-m', '--metric', dest='metric', action='store', required=True, metavar='metric_name', help='Name of the metric to alarm') self.parser.add_argument('-g', '--trigger-aggregate', dest='aggregate', action='store', required=(False if self._update else True), choices=['sum', 'avg', 'max', 'min'], help='Metric aggregate to alarm upon') self.parser.add_argument('-o', '--trigger-operation', dest='operation', action='store', required=(False if self._update else True), choices=['eq', 'gt', 'lt'], help='Trigger threshold comparison') self.parser.add_argument('-v', '--trigger-threshold', dest='threshold', action='store', required=(False if self._update else True), metavar='value', help='Trigger threshold value') self.parser.add_argument('-r', '--trigger-interval', dest='trigger_interval', action='store', metavar='trigger_interval', required=False, type=int, help='Interval of time in ms that the alarm state should be in fault ' + 'before triggering') self.parser.add_argument('-j', '--timeout-interval', dest='timeout_interval', action='store', metavar = 'timeout_interval', required=False, type=int, help='The interval after which an individual host state should resolve by timeout. ' + 'Default: 259200000 milli-seconds (3 days)') self.parser.add_argument('-u', '--host-group-id', dest='host_group_id', action='store', metavar='host_group_id', type=int, help='Host group the alarm applies to') self.parser.add_argument('-d', '--note', dest='note', action='store', metavar='note', help='A description or resolution of the alarm') self.parser.add_argument('-k', '--action', dest='actions', action='append', metavar='action-id', type=int, help='An action to be performed when an alarm is triggered') self.parser.add_argument('-c', '--notify-clear', dest='notify_clear', action='store', default=None, choices=['true', 'false'], help='Perform actions when all hosts') self.parser.add_argument('-s', '--notify-set', dest='notify_set', action='store', default=None, choices=['true', 'false'], help='Perform actions when an alarm threshold and interval is breached.') self.parser.add_argument('-p', '--per-host-notify', dest='per_host_notify', action='store', default=None, choices=['true', 'false'], help='An alarm by default will run the associated actions when \ any server in the host group violates the threshold, and then at the end when \ all servers are back within the threshold. If perHostNotify is set to true, \ the actions will run when ANY server in the group violates \ and falls back within the threshold.') self.parser.add_argument('-x', '--is-disabled', dest='is_disabled', action='store', default=None, choices=['true', 'false'], help='Enable or disable the alarm definition') def get_arguments(self): """ Extracts the specific arguments of this CLI """ ApiCli.get_arguments(self) self._actions = self.args.actions if self.args.actions is not None else None self._alarm_name = self.args.alarm_name if self.args.alarm_name is not None else None self._metric = self.args.metric if self.args.metric is not None else None self._aggregate = self.args.aggregate if self.args.aggregate is not None else None self._operation = self.args.operation if self.args.operation is not None else None self._threshold = self.args.threshold if self.args.threshold is not None else None self._trigger_interval = self.args.trigger_interval if self.args.trigger_interval is not None else None self._host_group_id = self.args.host_group_id if self.args.host_group_id is not None else None self._note = self.args.note if self.args.note is not None else None self._per_host_notify = self.args.per_host_notify if self.args.per_host_notify is not None else None self._is_disabled = self.args.is_disabled if self.args.is_disabled is not None else None self._notify_clear = self.args.notify_clear if self.args.notify_clear is not None else None self._notify_set = self.args.notify_set if self.args.notify_set is not None else None self._timeout_interval = self.args.timeout_interval if self.args.timeout_interval is not None else None def get_api_parameters(self): # Create trigger predicate dictionary predicate = {} if self._aggregate is not None: predicate['agg'] = self._aggregate if self._operation is not None: predicate['op'] = self._operation if self._threshold is not None: predicate['val'] = float(self._threshold) if 'agg' in predicate or 'op' in predicate or 'val' in predicate: self._payload['triggerPredicate'] = predicate # Create payload dictionary if self._alarm_name: self._payload['name'] = self._alarm_name if self._host_group_id is not None: self._payload['hostgroupId'] = self._host_group_id if self._interval is not None: self._payload['triggerInterval'] = self._interval if self._is_disabled is not None: self._payload['isDisabled'] = self._is_disabled if self._metric is not None: self._payload['metric'] = self._metric if self._note is not None: self._payload['note'] = self._note if self._actions is not None: self._payload['actions'] = self._actions if self._per_host_notify is not None: self._payload['perHostNotify'] = True if self._per_host_notify == 'yes' else False if self._is_disabled is not None: self._payload['isDisabled'] = True if self._is_disabled == 'yes' else False if self._notify_clear is not None: self._payload['notifyClear'] = self._notify_clear if self._notify_set is not None: self._payload['notifySet'] = self._notify_set if self._timeout_interval is not None: self._payload['timeoutInterval'] = self._timeout_interval if self._trigger_interval is not None: self._payload['triggerInterval'] = self._trigger_interval self.data = json.dumps(self._payload, sort_keys=True) self.headers = {'Content-Type': 'application/json'} self.path = 'v2/alarms' def handle_key_word_args(self): self._actions = self._kwargs['actions'] if 'actions' in self._kwargs else None self._aggregate = self._kwargs['aggregate'] if 'aggregate' in self._kwargs else None self._alarm_name = self._kwargs['name'] if 'name' in self._kwargs else None self._alarm_id = self._kwargs['id'] if 'id' in self._kwargs else None self._operation = self._kwargs['operation'] if 'operation' in self._kwargs else None self._threshold = self._kwargs['threshold'] if 'threshold' in self._kwargs else None self._host_group_id = self._kwargs['host_group_id'] if 'host_group_id' in self._kwargs else None self._trigger_interval = self._kwargs['trigger_interval'] if 'trigger_interval' in self._kwargs else None self._metric = self._kwargs['metric'] if 'metric' in self._kwargs else None self._note = self._kwargs['note'] if 'note' in self._kwargs else None self._actions = self._kwargs['actions'] if 'actions' in self._kwargs else None self._timeout_interval = self._kwargs['timeout_interval'] if 'timeout_interval' in self._kwargs else None self._notify_clear = self._kwargs['notifyClear'] if 'notifyClear' in self._kwargs else None self._notify_set = self._kwargs['notifySet'] if 'notifySet' in self._kwargs else None self.data = json.dumps(self._payload, sort_keys=True) self.headers = {'Content-Type': 'application/json'} self.path = 'v2/alarms' def _handle_api_results(self): # Only process if we get HTTP result of 201 if self._api_result.status_code == requests.codes.created: alarm_result = json.loads(self._api_result.text) return result_to_alarm(alarm_result) else: return None ``` #### File: boundary-api-cli/boundary/metric_modify.py ```python import json from boundary import MetricCommon """ Common Base class for defining and update metric definitions """ class MetricModify (MetricCommon): def __init__(self, update): """ """ MetricCommon.__init__(self) self.update = update self.metricName = None self.displayName = None self.displayNameShort = None self.description = None self.aggregate = None self.unit = None self.resolution = None self.isDisabled = None self.type = None def add_arguments(self): """ Add the specific arguments of this CLI """ MetricCommon.add_arguments(self) self.parser.add_argument('-n', '--metric-name', dest='metricName', action='store', required=True, metavar='metric_name', help='Metric identifier') self.parser.add_argument('-d', '--display-name', dest='displayName', action='store', required=True, metavar='display_name', help='Metric display name') self.parser.add_argument('-s', '--display-name-short', dest='displayNameShort', action='store', required=True, metavar='display_short_name', help='Metric short display name') self.parser.add_argument('-i', '--description', dest='description', action='store', required=not self.update, metavar='description', help='Metric description') self.parser.add_argument('-g', '--aggregate', dest='aggregate', action='store', required=True, choices=['avg', 'max', 'min', 'sum'], help='Metric default aggregate') self.parser.add_argument('-u', '--unit', dest='unit', action='store', required=False, choices=['percent', 'number', 'bytecount', 'duration'], help='Metric unit') self.parser.add_argument('-r', '--resolution', dest='resolution', action='store', metavar='resolution', required=False, help='Metric default resolution') self.parser.add_argument('-y', '--type', dest='type', action='store', default=None, required=False, metavar='type', help='Sets the type metadata field') self.parser.add_argument('-x', '--is-disabled', dest='isDisabled', action='store', default=None, required=False, choices=['true', 'false'], help='Enable or disable the metric definition') def get_arguments(self): """ Extracts the specific arguments of this CLI """ MetricCommon.get_arguments(self) if self.args.metricName is not None: self.metricName = self.args.metricName if self.args.displayName is not None: self.displayName = self.args.displayName if self.args.displayNameShort is not None: self.displayNameShort = self.args.displayNameShort if self.args.description is not None: self.description = self.args.description if self.args.aggregate is not None: self.aggregate = self.args.aggregate if self.args.unit is not None: self.unit = self.args.unit if self.args.resolution is not None: self.resolution = self.args.resolution if self.args.isDisabled is not None: self.isDisabled = self.args.isDisabled if self.args.type is not None: self.type = self.args.type data = {} if self.metricName is not None: data['name'] = self.metricName if self.displayName is not None: data['displayName'] = self.displayName if self.displayNameShort is not None: data['displayNameShort'] = self.displayNameShort if self.description is not None: data['description'] = self.description if self.aggregate is not None: data['defaultAggregate'] = self.aggregate if self.unit is not None: data['unit'] = self.unit if self.resolution is not None: data['defaultResolutionMS'] = self.resolution if self.isDisabled is not None: data['isDisabled'] = True if self.isDisabled == 'yes' else False if self.type is not None: data['type'] = self.type self.path = "v1/metrics/{0}".format(self.metricName) self.data = json.dumps(data, sort_keys=True) self.headers = {'Content-Type': 'application/json', "Accept": "application/json"} ``` #### File: boundary-api-cli/boundary/plugin_add.py ```python from boundary import PluginBase class PluginAdd (PluginBase): def __init__(self): PluginBase.__init__(self) self.method = "PUT" self.path = "v1/plugins/private" self.pluginName = None self.organizationName = None self.repositoryName = None def add_arguments(self): PluginBase.add_arguments(self) self.parser.add_argument('-o', '--organization-name', dest='organizationName', action='store', required=True, metavar="organization_name", help='Name of the GitHub user or organization') self.parser.add_argument('-r', '--repository-name', dest='repositoryName', action='store', required=True, metavar="repository_name", help='Name of the GitHub repository') def get_arguments(self): """ Extracts the specific arguments of this CLI """ PluginBase.get_arguments(self) if self.args.organizationName is not None: self.organizationName = self.args.organizationName if self.args.repositoryName is not None: self.repositoryName = self.args.repositoryName self.path = "v1/plugins/private/{0}/{1}/{2}".format(self.pluginName, self.organizationName, self.repositoryName) def get_description(self): return 'Imports a meter plugin from a GitHub repository into a {0} account'.format(self.product_name) ``` #### File: boundary-api-cli/boundary/property_handler.py ```python class PropertyHandler(object): def __init__(self): self._properties = None def _process_properties(self, properties): """ Transforms the command line properties into python dictionary :return: """ if properties is not None: self._properties = {} for p in properties: d = p.split('=') self._properties[d[0]] = d[1] def _add_property_argument(self, parser, help_text): parser.add_argument('-p', '--property', dest='properties', action='append', required=False, metavar='property=value', help=help_text) ``` #### File: boundary-api-cli/boundary/relay_get_config.py ```python from boundary import ApiCli class RelayGetConfig(ApiCli): def __init__(self): ApiCli.__init__(self) self.meter = None self.since = None def add_arguments(self): """ """ ApiCli.add_arguments(self) self.parser.add_argument('-n', '--name', metavar='meter_name', dest='meter', action='store', required=True, help='Name of the meter to set plugin configuration information') self.parser.add_argument('-s', '--since', metavar='timestamp', dest='since', action='store', required=False, help='Unix timestamp of when configuration was last checked. ' + 'If configuration has not changed, null is returned.') def get_arguments(self): """ """ ApiCli.get_arguments(self) if self.args.meter is not None: self.meter = self.args.meter if self.args.since is not None: self.since = self.args.since self.path = 'v1/relays/{0}/config'.format(self.meter) if self.since is not None: self.url_parameters = {"since": self.since} def get_description(self): return 'Returns relay configuration from a {0} account'.format(self.product_name) ``` #### File: unit/boundary/action_installed_test.py ```python import json from unittest import TestCase from boundary import ActionInstalled from cli_runner import CLIRunner from cli_test import CLITest class ActionInstalledTest(TestCase): def setUp(self): self.cli = ActionInstalled() def test_cli_description(self): CLITest.check_description(self, self.cli) def test_cli_curl(self): runner = CLIRunner(self.cli) curl = runner.get_output(['-z']) CLITest.check_curl(self, self.cli, curl) def test_cli_help(self): CLITest.check_cli_help(self, self.cli) def test_get_actions_installed(self): runner = CLIRunner(ActionInstalled()) result = runner.get_output([]) actions_result = json.loads(result) actions = actions_result['result'] self.assertGreaterEqual(len(actions), 1) ``` #### File: unit/boundary/alarm_common_test.py ```python from unittest import TestCase from boundary import Alarm class AlarmCommonTest(TestCase): def setUp(self): self.alarm = Alarm() def test_alarm_defaults(self): self.assertIsNone(self.alarm.actions) self.assertIsNone(self.alarm.aggregate) self.assertIsNone(self.alarm.host_group_id) self.assertIsNone(self.alarm.id) self.assertIsNone(self.alarm.is_disabled) self.assertIsNone(self.alarm.metric) self.assertIsNone(self.alarm.name) self.assertIsNone(self.alarm.note) self.assertIsNone(self.alarm.operation) self.assertIsNone(self.alarm.per_host_notify) self.assertIsNone(self.alarm.threshold) self.assertIsNone(self.alarm.notify_clear) self.assertIsNone(self.alarm.notify_set) self.assertIsNone(self.alarm.timeout_interval) self.assertIsNone(self.alarm.trigger_interval) def test_alarm_init(self): actions = [1, 2] aggregate = 'avg' host_group_id = 1000 alarm_id = 123456789 trigger_interval = 3600 is_disabled = True metric = "TEST_METRIC" name = 'My Alarm' note = 'just a note' operation = 'eq' per_host_notify = True threshold = 1000 alarm = Alarm( actions=actions, aggregate=aggregate, host_group_id=host_group_id, id=alarm_id, trigger_interval=trigger_interval, is_disabled=is_disabled, metric=metric, name=name, note=note, operation=operation, per_host_notify=per_host_notify, threshold=threshold ) self.assertEqual(actions, alarm.actions) self.assertEqual(aggregate, alarm.aggregate) self.assertEqual(host_group_id, alarm.host_group_id) self.assertEqual(alarm_id, alarm.id) self.assertEqual(trigger_interval, alarm.trigger_interval) self.assertEqual(is_disabled, alarm.is_disabled) self.assertEqual(metric, alarm.metric) self.assertEqual(name, alarm.name) self.assertEqual(note, alarm.note) self.assertEqual(operation, alarm.operation) self.assertEqual(per_host_notify, alarm.per_host_notify) self.assertEqual(threshold, alarm.threshold) def test_set_actions(self): self.alarm.actions = [1, 2, 3, 4] self.assertEqual([1, 2, 3, 4], self.alarm.actions) def test_set_aggregate(self): self.alarm.aggregate = 'sum' self.assertEqual('sum', self.alarm.aggregate) def test_set_id(self): self.alarm.id = 1076 self.assertEqual(1076, self.alarm.id) def test_set_interval(self): self.alarm.interval = 60 self.assertEqual(60, self.alarm.interval) def test_set_is_disabled(self): self.alarm.is_disabled = True self.assertEqual(True, self.alarm.is_disabled) def test_set_metric_name(self): self.alarm.metric_name = 'toad' self.assertEqual('toad', self.alarm.metric_name) def test_set_name(self): self.alarm.name = 'blue' self.assertEqual('blue', self.alarm.name) def test_set_note(self): self.alarm.note = 'This is a note' self.assertEqual('This is a note', self.alarm.note) def test_set_operation(self): self.alarm.operation = 'gt' self.assertEqual('gt', self.alarm.operation) def test_set_per_host_notify(self): self.alarm.per_host_notify = True self.assertEqual(True, self.alarm.per_host_notify) def test_set_threshold(self): self.alarm.threshold = 2000 self.assertEqual(2000, self.alarm.threshold) def test_set_bad_aggregate(self): with self.assertRaises(AttributeError, msg='Check bad aggregate'): alarm = Alarm() alarm.aggregate = 'foo' def test_repr(self): alarm = Alarm( actions=[1, 2], aggregate='avg', host_group_id=1000, alarm_id=123456789, trigger_interval=900, is_disabled=True, metric='TEST_METRIC', name='My Alarm', note='just a note', operation='eq', per_host_notify=True, threshold=1000 ) self.assertEqual('Alarm(aggregate="avg", actions=[1, 2], host_group_id=1000, id=None, interval=900, ' 'is_disabled=True, metric="TEST_METRIC", name="My Alarm", ' 'note="just a note", operation="eq", per_host_notify=True, threshold=1000', alarm.__repr__()) ``` #### File: unit/boundary/alarm_delete_test.py ```python from unittest import TestCase import json from boundary import API from boundary import AlarmCreate from boundary import AlarmDelete from cli_test import CLITest from cli_runner import CLIRunner class AlarmDeleteTest(TestCase): def setUp(self): self.cli = AlarmDelete() self.api = API() def test_cli_description(self): CLITest.check_description(self, self.cli) def test_cli_help(self): CLITest.check_cli_help(self, self.cli) def test_create_curl(self): runner = CLIRunner(self.cli) alarm_id = 1024 curl = runner.get_output(['-i', str(alarm_id), '-z']) CLITest.check_curl(self, self.cli, curl) def test_api_call(self): api = API() name = 'ALARM_DELETE_API_TEST' + CLITest.random_string(6) metric = 'CPU' trigger_interval = 60000 aggregate = 'sum' operation = 'gt' threshold = '0.80' note = CLITest.random_string(20) alarm = api.alarm_create(name=name, metric=metric, trigger_interval=trigger_interval, aggregate=aggregate, operation=operation, threshold=threshold, note=note) self.api.alarm_delete(id=alarm.id) def test_delete_alarm(self): name = 'ALARM_DELETE_TEST' + CLITest.random_string(6) metric = 'CPU' trigger_interval = 60000 aggregate = 'sum' operation = 'gt' threshold = '0.80' note = CLITest.random_string(20) runner_create = CLIRunner(AlarmCreate()) create = runner_create.get_output(['-n', name, '-m', metric, '-g', aggregate, '-o', operation, '-v', str(threshold), '-r', str(trigger_interval), '-d', note]) alarm = json.loads(create) runner_delete = CLIRunner(AlarmDelete()) delete = runner_delete.get_output(['-i', str(alarm['id'])]) ``` #### File: unit/boundary/cli_test.py ```python import random import string import subprocess import sys import re from cli_test_parameters import CLITestParameters class CLITest: def __init__(self): pass @staticmethod def check_description(test_case, cli): parameters = CLITestParameters() test_case.assertEqual(parameters.get_value(cli.__class__.__name__, 'description'), cli.get_description()) @staticmethod def check_curl(test_case, cli, output): parameters = CLITestParameters() p = re.compile(r'-u ".*?"\s') a = p.findall(output) output = output.replace(a[0], '') test_case.assertEqual(parameters.get_value(cli.__class__.__name__, 'curl').encode('utf-8'), output.encode('utf-8')) @staticmethod def get_cli_name_from_class(i): name = i.__class__.__name__ m = re.findall("([A-Z][a-z]+)", name) m = [a.lower() for a in m] cli_name = str.join('-', m) return cli_name @staticmethod def check_cli_help(test_case, cli): parameters = CLITestParameters() name = cli.__class__.__name__ expected_output = parameters.get_cli_help(name) m = re.findall("([A-Z][a-z]+)", name) m = [a.lower() for a in m] command = str.join('-', m) try: output = subprocess.check_output([command, '-h']) test_case.assertEqual(expected_output, output) except subprocess.CalledProcessError as e: sys.stderr.write("{0}: {1}\n".format(e.output, e.returncode)) @staticmethod def get_cli_output(cli, args): output = None try: command = CLITest.get_cli_name_from_class(cli) args.insert(0, command) output = subprocess.check_output(args=args) except subprocess.CalledProcessError as e: sys.stderr.write("{0}: {1}\n".format(e.output, e.returncode)) return output @staticmethod def random_string(n): return ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(n)) @staticmethod def is_int(s): try: int(s) return True except ValueError: return False ``` #### File: unit/boundary/plugin_manifest_test.py ```python from unittest import TestCase from boundary import PluginManifest import os.path class TestPluginManifest(TestCase): def setUp(self): self.filename = os.path.join(os.path.dirname(__file__), 'plugin.json') self.pm = PluginManifest(self.filename) self.pm.load() def test_load(self): pm = PluginManifest(self.filename) pm.load() def test_check_data_members(self): self.assertEqual('Boundary README Test', self.pm.name, 'Check for name') self.assertEqual('Example plugin.json for testing README.md generation', self.pm.description, 'Check for description') self.assertEqual('2.0', self.pm.version) self.assertEqual('meter', self.pm.tags) self.assertEqual('icon.png', self.pm.icon) self.assertEqual('node index.js', self.pm.command) self.assertEqual('boundary-meter init.lua', self.pm.command_lua) self.assertEqual('npm install', self.pm.post_extract) self.assertEqual('', self.pm.post_extract_lua) self.assertEqual('node_modules', self.pm.ignore) self.assertEqual(['BOUNDARY_README_METRIC'], self.pm.metrics) def test_check_for_param_array(self): a = self.pm.param_array self.assertTrue(a is not None) def test_check_param_array(self): pass ```
{ "source": "jdgwartney/boundary-plugin-rabbitmq", "score": 2 }
#### File: jdgwartney/boundary-plugin-rabbitmq/rabbitmq_monitoring.py ```python import json from time import sleep import collections import sys from os.path import basename import urllib2 from base64 import b64encode from string import replace # # Maps the API path names to Boundary Metric Identifiers # KEY_MAPPING = [ ("object_totals_queues", "RABBITMQ_OBJECT_TOTALS_QUEUES"), ("object_totals_channels", "RABBITMQ_OBJECT_TOTALS_CHANNELS"), ("object_totals_exchanges", "RABBITMQ_OBJECT_TOTALS_EXCHANGES"), ("object_totals_consumers", "RABBITMQ_OBJECT_TOTALS_CONSUMERS"), ("object_totals_connections", "RABBITMQ_OBJECT_TOTALS_CONNECTIONS"), ("message_stats_deliver", "RABBITMQ_MESSAGE_STATS_DELIVER"), ("message_stats_deliver_details_rate", "RABBITMQ_MESSAGE_STATS_DELIVER_DETAILS_RATE"), ("message_stats_deliver_no_ack", "RABBITMQ_MESSAGE_STATS_DELIVER_NO_ACK"), ("message_stats_deliver_no_ack_details_rate", "RABBITMQ_MESSAGE_STATS_DELIVER_NO_ACK_DETAILS_RATE"), ("message_stats_deliver_get", "RABBITMQ_MESSAGE_STATS_DELIVER_GET"), ("message_stats_deliver_get_details_rate", "RABBITMQ_MESSAGE_STATS_DELIVER_GET_DETAILS_RATE"), ("message_stats_redeliver", "RABBITMQ_MESSAGE_STATS_REDELIVER"), ("message_stats_redeliver_details_rate", "RABBITMQ_MESSAGE_STATS_REDELIVER_DETAILS_RATE"), ("message_stats_publish", "RABBITMQ_MESSAGE_STATS_PUBLISH"), ("message_stats_publish_details_rate", "RABBITMQ_MESSAGE_STATS_PUBLISH_DETAILS_RATE"), ("queue_totals_messages", "RABBITMQ_QUEUE_TOTALS_MESSAGES"), ("queue_totals_messages_details_rate", "RABBITMQ_QUEUE_TOTALS_MESSAGES_DETAILS_RATE"), ("queue_totals_messages_ready", "RABBITMQ_QUEUE_TOTALS_MESSAGES_READY"), ("queue_totals_messages_ready_details_rate", "RABBITMQ_QUEUE_TOTALS_MESSAGES_READY_DETAILS_RATE"), ("queue_totals_messages_unacknowledged", "RABBITMQ_QUEUE_TOTALS_MESSAGES_UNACKNOWLEDGED"), ("queue_totals_messages_unacknowledged_details_rate","RABBITMQ_QUEUE_TOTALS_MESSAGES_UNACKNOWLEDGED_DETAILS_RATE"), ("mem_used","RABBITMQ_MEM_USED"), ("disk_free","RABBITMQ_DISK_FREE") ] class RabitMQMonitoring(): def __init__(self): self.pollInterval = None self.hostname = None self.port = None self.user = None self.password = None self.url = None def send_get(self,url): response = requests.get(url, auth=(self.user, self.password)) return response.json() def call_api(self, endpoint): url = self.url + endpoint auth = b64encode(self.user + ":" + self.password) headers = { "Accept": "application/json", "Authorization": "Basic %s" % auth, } request = urllib2.Request(url,headers=headers) try: response = urllib2.urlopen(request) except urllib2.URLError as e: sys.stderr.write("Error connecting to host: {0} ({1}), Error: {2}".format(self.hostname,e.errno,e.message)) raise except urllib2.HTTPError as e: sys.stderr.write("Error getting data from AWS Cloud Watch API: %s (%d), Error: %s", getattr(h, "reason", "Unknown Reason"),h.code, h.read()) raise return json.load(response) def print_dict(self, dic): for (key, value) in KEY_MAPPING: if dic.get(key,"-") != "-": name = dic.get("name") print("%s %s %s" % (value.upper(), dic.get(key, "-"), name)) sys.stdout.flush() def get_details(self): overview = self.call_api("overview") nodes = self.call_api("nodes") if nodes: overview.update(nodes[0]) if overview: data = self.flatten_dict(overview) self.print_dict(data) def flatten_dict(self, dic, parent_key='', sep='_'): items = [] for k, v in dic.items(): new_key = parent_key + sep + k if parent_key else k if isinstance(v, collections.MutableMapping): items.extend(self.flatten_dict(v, new_key, sep).items()) else: items.append((new_key, v)) return dict(items) def extractMetrics(self): self.get_details() def get_configuration(self): ''' 1) Reads the param.json file that contains the configuration of the plugin. 2) Sets the values to member variables of the class instance. ''' with open('param.json') as f: parameters = json.loads(f.read()) self.hostname = parameters['hostname'] self.port = parameters['port'] self.pollInterval = float(parameters['pollInterval'])/1000.0 self.user = parameters['user'] self.password = parameters['password'] self.url = "http://" + self.hostname + ":" + self.port + "/api/" def continuous_monitoring(self): while True: self.get_details() sleep(float(self.pollInterval)) if __name__ == "__main__": monitor = RabitMQMonitoring() monitor.get_configuration() monitor.continuous_monitoring() ```
{ "source": "jdgwartney/esdvd", "score": 2 }
#### File: esdvd/esdvd/query.py ```python from esdvd import ESCommon from lru import lru_cache_function import json import random import time import os class QueryData(ESCommon): def __init__(self): ESCommon.__init__(self) @staticmethod @lru_cache_function(max_size=1024*8, expiration=60) def get_id(q, rindex): path = q.get_file_path(rindex) record_id = q.get_id_from_file(path) return record_id def get_description(self): return "Queries Elasticsearch for random DVD documents" def add_command_line_arguments(self): ESCommon.add_command_line_arguments(self) def get_command_line_arguments(self): ESCommon.get_command_line_arguments(self) def get_file_path(self, findex): """ Returns the full path to file using index into list of a directory :return: """ file_name = self.files[findex] file_path = os.path.join(self.extraction_directory,file_name) return file_path def get_id_from_file(self, path): contents = self.get_file_contents(path) doc = json.loads(contents) record_id = doc[self.id_field_name] return record_id def query_record(self, record_id): """ Look up record in elastic search :param record_id: :return: """ res = self.es.get(index=self.index, doc_type=self.doc_type, id=record_id) if not self.quiet: print(res['_source']) def increment_count(self): self.count += 1 def done(self): result = None if self.limit is not None and self.count > self.limit: result = True else: result = False return result def query_database(self): self.files = self.get_files() if not self.quiet: print("number of files: {0}".format(len(self.files))) while not self.done(): rindex = random.randrange(0, len(self.files) - 1) record_id = QueryData.get_id(self, rindex) if not self.quiet: print("+++++") self.query_record(record_id) if not self.quiet: print("-----") time.sleep(self.sleep) self.increment_count() def execute(self): self.handle_arguments() self.set_extraction_directory() self.query_database() def main(): l = QueryData() l.execute() if __name__ == '__main__': main() ``` #### File: esdvd/esdvd/update.py ```python from esdvd import Common class UpdateData(Common): def __init__(self): pass def execute(self): pass def main(): l = Update() l.execute() if __name__ == '__main__': main() ```
{ "source": "jdgwartney/flask-blueprint", "score": 2 }
#### File: application/users/views.py ```python from flask import Blueprint users = Blueprint('users', __name__) @users.route('/me') def me(): return "This is my page.", 200 ``` #### File: flask-blueprint/application/views.py ```python from application import app @app.route("/") def hello(): return "Hello World!" @app.route("/contact") def contact(): return "You can contact me at 555-5555, or " " email me at <EMAIL>" @app.route('/login', methods=['GET', 'POST']) def login(): if request.method == 'POST': # Logic for handling login return "login-post" else: # Display login form return "login-get" ```
{ "source": "jdgwartney/graph-scaler", "score": 3 }
#### File: jdgwartney/graph-scaler/scale.py ```python import math import logging logger = logging.getLogger(__name__) class ScaleAxis(object): def __init__(self): pass def scale_axis(data): up = max(data) lo = min(data) logger.debug("upper: {0}, lower: {1}".format(lo, up)) r = up - lo logger.debug("range: {0}".format(r)) tick_count = 8 unrounded_tick_size = r/(tick_count - 1) logger.debug("tick_count: {0}, unrounded_tick_size: {1}".format(tick_count, unrounded_tick_size)) x = math.ceil(math.log10(unrounded_tick_size) - 1) pow10x = math.pow(10, x) logger.debug("x: {0}, pow10x: {1}".format(x, pow10x)) rounded_tick_range = math.ceil(unrounded_tick_size / pow10x) * pow10x rounded_tick_range = math.ceil(unrounded_tick_size/pow10x) * pow10x logger.debug("rounded_tick_range: {0}".format(rounded_tick_range)) new_lower = rounded_tick_range * round(lo/rounded_tick_range) new_upper = rounded_tick_range * round((1+up)/rounded_tick_range) logger.debug("new_lower: {0}, new_upper: {1}".format(new_lower, new_upper)) return (new_lower, new_upper) def step_size(r, target_steps): # calculate an initial guess at step size temp_step = r/target_steps logger.debug("temp_step: {0}".format(temp_step)) # get the magnitude of the step size mag = float(math.floor(math.log(temp_step))) mag_pow = float(math.pow(10, mag)) # calculate most significant digit of the new step size mag_msd = int((temp_step/mag_pow + 0.5)) # promote the MSD to either 1, 2, or 5 if mag_msd > 5.0: mag_msd = 10.0 elif mag_msd > 2.0: mag_msd = 5.0 elif mag_msd > 1.0: mag_msd = 2.0; return mag_msd * mag_pow; if __name__ == '__main__': logging.basicConfig(level=logging.DEBUG) data = [15, 234, 140, 65, 90] lo, up = scale_axis(data) size = step_size(up-lo, 5) print("lower: {0}, upper: {1}, size: {2}".format(lo, up, size)) ```
{ "source": "jdgwartney/measurement-debugging", "score": 3 }
#### File: jdgwartney/measurement-debugging/send_measures.py ```python from tspapi import API from tspapi import Measurement from random import randint from datetime import datetime from time import sleep def create_batch(): delay = 30 api = API() measurements = [] timestamp = int(datetime.now().strftime('%s')) # skew timestamp by 5 seconds timestamp = timestamp - delay measurements.append(Measurement(metric='API_TEST_METRIC', value=randint(0, 99), source='red', timestamp=timestamp)) measurements.append(Measurement(metric='API_TEST_METRIC', value=randint(0, 99), source='green', timestamp=timestamp)) measurements.append(Measurement(metric='API_TEST_METRIC', value=randint(0, 99), source='blue', timestamp=timestamp)) # sleep(float(delay)) api.measurement_create_batch(measurements) def create(): api = API() metric_id = 'API_TEST_METRIC' value = ranint(0, 99) source = 'foo' timestamp = datetime.now().strftime('%s') api.measurement_create(metric_id, value, source, timestamp) if __name__ == "__main__": create_batch() ```
{ "source": "jdgwartney/mysql-to-pulse-api", "score": 2 }
#### File: mysql-to-pulse-api/tspmysql/cli.py ```python import argparse from etl import ETL class Cli(object): def __init__(self): pass def get_arguments(self): parser = argparse.parser(description="get args") def run(self): print("running") etl = ETL() etl.run() def main(): cli = Cli() cli.run() ```
{ "source": "jdgwartney/sdk", "score": 3 }
#### File: plugins/framework/exec_proc.py ```python from subprocess import Popen,PIPE import shlex import logging from string import replace class ExecProc: def __init__(self): self.command = None self.debug = False def setDebug(self,debug): self.debug = debug def setCommand(self,command): if type(command) != str: raise ValueError self.command = command def execute(self): if self.command == None: raise ValueError args = shlex.split(self.command) if self.debug == True: logging.info("command=\"%s\"",args) p = Popen(args,stdout=PIPE) o,e = p.communicate() if self.debug == True: logging.info("before: " + ':'.join(x.encode('hex') for x in o)) # Remove carriage returns from output o = replace(o,"\r","") if self.debug == True: logging.info("after: " + ':'.join(x.encode('hex') for x in o)) if self.debug == True: logging.info("output=\"%s\"",o) logging.info(':'.join(x.encode('hex') for x in o)) return o ```
{ "source": "jdgwartney/tsi", "score": 2 }
#### File: jdgwartney/tsi/cleanup.py ```python import json import pycurl from requests.auth import HTTPDigestAuth import os #------------------------------------------------------- # define function to subit requests #------------------------------------------------------- def submitRequest( url ): headers = ['Expect:', 'Content-Type: application/json' , 'X-API-KEY: ' + apikey] c = pycurl.Curl() c.setopt(pycurl.URL, url) c.setopt(pycurl.HTTPHEADER,headers ) c.setopt(pycurl.CUSTOMREQUEST, "DELETE") c.perform() print ("status code:=" + str(c.getinfo(pycurl.HTTP_CODE))) c.close() return #------------------------------------------------------- # setup api key #------------------------------------------------------- apikey = os.environ["TSI_API_KEY"] submitRequest("https://truesight.bmc.com/api/v1/entities/APPLICATION/online_auc") submitRequest("https://truesight.bmc.com/api/v1/entities/DEVICE/oa-appserver-1") submitRequest("https://truesight.bmc.com/api/v1/entities/TRANSACTION/oa-appserver-1.bid-tx") submitRequest("https://truesight.bmc.com/api/v1/entities/TRANSACTION/oa-appserver-1.browse-catalog") ```
{ "source": "jdgwartney/tsi-lab", "score": 3 }
#### File: labs/lab-5/log_utils.py ```python import apachelog import os import sys import time def monitor_file(f): """ Reads a line from a file when available :param f: open file :return: a line from the file """ # Go to the end of the file f.seek(0, 2) # Loop waiting for lines to be written while True: log_line = f.readline() # If there is nothing to read then wait a bit # and try again if not log_line: time.sleep(0.1) continue # We have a line return the line yield log_line def parse_apache_line(parser, line): """ Uses the apachelog package to parse a line of a Apache HTTP server log. :param parser: :param line: :return: """ s = None try: s = parser.parse(line) except apachelog.ApacheLogParserError: sys.stderr.write("Unable to parse %s" % line) return s class LogfileParser(object): def __init__(self, path=None): """ Constructs a Logfile parser instance given a path to a log file :param path: :return: None """ # Opened handle to our log file self.log_file = open(path, "r") # Contains the text from each line append to the file self.line = None # Set our application id from the environment variable self.app_id = os.environ['TSI_APP_ID'] def monitor_file(self): """ Monitors a file for lines append to it then calls a method to process the line :return: None """ lines = monitor_file(self.log_file) for line in lines: self.line = line.strip() self.parse_line() def parse_line(self): """ Default callback for processing a line which prints the line to standard out. :return: None """ print(self.line) if __name__ == '__main__': if len(sys.argv) == 2: parser = LogfileParser() parser.monitor_file() else: sys.stderr.write("usage: {0} <path>".format(os.path.baseline(sys.argv[0]))) ``` #### File: labs/lab-6/common.py ```python import time import sys import os from tspapi import API class Common(object): def __init__(self, ): self.api = API() self.usage_args = "" # Set our application id from the environment variable self.app_id = os.environ['TSI_APP_ID'] @staticmethod def usage(args): sys.stderr.write("usage: {0} {1}\n".format(os.path.basename(sys.argv[0]), args)) def send_measurements(self, measurements): """ Sends measurements using the Measurement API :param measurements: :return: None """ self.api.measurement_create_batch(measurements) def run(self): """ Main loop """ while True: print("Doing absolutely nothing") time.sleep(self.interval) ``` #### File: labs/lab-6/ex6-1.stocks.py ```python import ystockquote import os import sys import time from tspapi import API from tspapi import Measurement from common import Common class Ticker(Common): """ Collects the current stock price and volume from ticker """ def __init__(self, interval=10, tickers=None): """ Construct a Ticker instance :param interval: How often to collect stock price and volume :return: """ super(Ticker, self).__init__() self.interval = interval self.tickers = tickers def send_measurements(self, measurements): """ Sends measurements using the Measurement API :param measurements: :return: None """ self.api.measurement_create_batch(measurements) def run(self): """ Main loop """ properties = {"app_id": self.app_id} while True: # Loop over the tickers and lookup the stock price and volume for ticker in self.tickers: measurements = [] price = ystockquote.get_price(ticker) volume = ystockquote.get_volume(ticker) timestamp = int(time.time()) if volume == 'N/A' or price == 'N/A': sys.stderr.write('Could not find ticker \"{0}\", skipping'.format(ticker)) else: print("ticker: {0}, price: {1}, volume: {2}".format(ticker, price, volume)) measurements.append(Measurement(metric='STOCK_PRICE', value=price, source=ticker, properties=properties)) measurements.append(Measurement(metric='STOCK_VOLUME', value=volume, source=ticker, properties=properties)) self.send_measurements(measurements) time.sleep(self.interval) if __name__ == "__main__": if len(sys.argv) > 1: first = True tickers = [] for arg in sys.argv: # Skip the first arguments which is the program name if first: first = False continue tickers.append(arg) stocks = Ticker(interval=10, tickers=tickers) stocks.run() else: sys.stderr.write("usage: {0} ticker [ticker [ticker]...]\n".format(os.path.basename(sys.argv[0]))) ```
{ "source": "jdgwartney/tsi", "score": 2 }
#### File: tsi/api/event_api.py ```python from tsi.api_object import ApiObject class EventApi(ApiObject): def __init__(self, api_key=None): pass def create(self, **kwargs): o = {} return o def delete(self, **kwargs): o = {} return o def get(self, **kwargs): o = {} return o def update(self, **kwargs): o = {} return o ``` #### File: tsi/tsi/Entity.py ```python from tsi.api_object import ApiObject class Entity(ApiObject): def __init__(self, cfg_attr_values=None, entity_id=None, entity_type_id=None, name=None, parent_entity_type_id=None, parent_entity_id=None, source_id=None ): ApiObject.__init__(self) self._cfg_attr_values = cfg_attr_values self._entity_id = entity_id self._entity_type_id = entity_type_id self._name = name self._parent_entity_type_id=parent_entity_type_id self._parent_entity_id=parent_entity_id self._source_id = source_id self._tags = None @property def cfg_attr_values(self): return self._cfg_attr_values @property def entity_type_id(self): return self._entity_type_id @property def name(self): return self._name @property def source_id(self): return self._source_id @property def tags(self): return self._tags # newEntity = { # "entity_type_id": "APPLICATION", # "name": "Online Auction", # "tags": [ # "app_id:online_auc" # ], # "cfg_attr_values": {}, # "entity_id": "online_auc", # "source_id": "sample", # "cfg_attr_values": # { # "kpis":[ # {"entity_type_id":"TRANSACTION", # "entity_type_name":"Transaction", # "entity_id":"oa-appserver-1.bid_tx", # "title":"Number of Requests", # "application_id":"online_auc", # "application_name":"Online Auction", # "metric_name":"Number of Requests", # "metric_uom":"#", # "metric_id":"number_of_requests"}, # {"entity_type_id":"TRANSACTION", # "entity_type_name":"Transaction", # "entity_id":"oa-appserver-1.bid_tx", # "title":"Request Response Time", # "application_id":"online_auc", # "application_name":"Online Auction", # "metric_name":"Request Response Time", # "metric_uom":"Seconds", # "metric_id":"request_response_time"} # ] # } # } ```
{ "source": "jdgwartney/tsp-etl", "score": 2 }
#### File: tsp-etl/tspetl/db_tool.py ```python from tspetl import ETLTool class DBTool(ETLTool): def __init__(self): self._name = None self._password = None self._database = None self._query = None @property def name(self): return 'db' @property def help(self): return 'Import data from a relational database (Future Release)' def add_parser(self, parser): self._parser = parser.add_parser(self.name, help=self.help) self._parser.add_argument('-u', '--user', metavar='name', help="name of the user to connect to the database") self._parser.add_argument('-p', '--password', metavar='password', help="password of the user to connect to the database") self._parser.add_argument('-d', '--database', metavar='db_name', help="database to extract data from") self._parser.add_argument('-q', '--query', metavar='sql_query', help="SQL query to use to extract data") def handle_arguments(self, args): if args.name is not None: self._name = args.name pass def run(self, sink): print("Import CSV") ``` #### File: tsp-etl/tspetl/weather_tool.py ```python from time import sleep import string from tspetl import ETLCollector from tspetl import ETLTool import pyowm from tspapi import Measurement class WeatherCollector(ETLCollector): def __init__(self, sink, api_key=None, cities=None): super(WeatherCollector, self).__init__(sink) self._api_key = None self._cities = None if api_key is not None: self._api_key = api_key if cities is not None: self._cities = cities self._owm = pyowm.OWM(self._api_key) def collect(self): measurements = [] for city in self._cities: observation = self._owm.weather_at_place(city) weather = observation.get_weather() city = string.replace(city, ',', '_') city = string.replace(city, ' ', '_') temperature = weather.get_temperature('celsius')['temp'] measurement = Measurement(metric='OWM_TEMPERATURE', source=city, value=temperature) measurements.append(measurement) self._sink.send_measurements(measurements=measurements) class WeatherTool(ETLTool): def __init__(self): super(WeatherTool, self).__init__() self._city_names = None self._interval = 60 self._api_key = None @property def name(self): return 'weather' @property def help(self): return 'Collects weather measurements from a city and optional country code. (Future Release)' def add_parser(self, sub_parser): super(WeatherTool, self).add_parser(sub_parser) self._parser.add_argument('-c', '--city-name', dest='city_names', action='append', metavar="city_name", required=True, help="Name of a city with an optional country code") self._parser.add_argument('-i', '--interval', dest='interval', action='store', metavar="seconds", required=False, help="How often to collect in each API call in seconds. Defaults to 1 minute") self._parser.add_argument('-k', '--api-key', dest='api_key', action='store', metavar="key", required=True, help="Open Weather Map API Key") def handle_arguments(self, args): super(WeatherTool, self).handle_arguments(args) if args.city_names is not None: print(type(args.city_names)) self._city_names = args.city_names if args.interval is not None: self._interval = args.interval if args.api_key is not None: self._api_key = args.api_key def run(self, sink): collector = WeatherCollector(sink, cities=self._city_names, api_key=self._api_key) while True: collector.collect() sleep(float(self._interval)) ```
{ "source": "jdgwf/ISPWatcher", "score": 2 }
#### File: jdgwf/ISPWatcher/ispwatcher.py ```python VERSION = "3.0.1" import datetime import urllib import urllib.request import smtplib import sys, os import poplib import imaplib import getopt import json # Global Variables for command line option handling (see VERSION variable above) SENDEMAILS = 1 CHATTY = 1 MAILSERVER = "smtp.gmail.com" MAILSERVERPORT = 587 MAILSERVERUSERNAME = "" MAILSERVERPASSWORD = "" MAILSERVERSTARTTLS = 1 MAILFROM = "" MAILSUBJECT = "ISPWatcher2 Failure" EMAILS = {'':''} def printversion(): """Prints the version of ISPWatcher2 Returns nothing.""" print("* ISPWatcher Version " + VERSION) def printusage(): """Prints the usage of ISPWatcher2 Returns nothing.""" printversion() print("\tispwatcher.py -h - Prints help screen") print("\tispwatcher.ph -v - Prints Version information.") print("\tispwatcher.py -t - Outputs only to standard output, sends no emails") print("\tispwatcher.py -q - Checks servers quietly") try: opts, args = getopt.getopt(sys.argv[1:], "hvtq" ) except: print(str(err) ) printusage() sys.exit(2) for o, a in opts: if o == "-h": printusage() sys.exit() if o == "-t": SENDEMAILS = 0 if o == "-q": CHATTY = 0 if o == "-v": printversion() sys.exit() from xml.dom import minidom #reload(sys) #sys.setdefaultencoding("latin1") def CheckServerJSON(settings): # print settings for key, value in settings["options"].items(): if key.lower() == "mailserver": MAILSERVER = value; MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": Found JSON configuration mailserver: " + MAILSERVER) if key.lower() == "mailserverport": MAILSERVERPORT = value; MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": Found JSON configuration mailserverport: " + MAILSERVERPORT) if key.lower() == "mailserverusername": MAILSERVERUSERNAME = value; MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": Found JSON configuration mailserverusername: " + MAILSERVERUSERNAME) if key.lower() == "mailserverstarttls": MAILSERVERSTARTTLS = value; MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": Found JSON configuration mailserverstarttls: " + MAILSERVERSTARTTLS) if key.lower() == "mailserverpassword": MAILSERVERPASSWORD = value; MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": Found JSON configuration mailserverpassword: " + MAILSERVERPASSWORD) if key.lower() == "mailfrom": MAILFROM = value; MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": Found JSON configuration mailfrom: " + MAILFROM) if key.lower() == "mailsubject": MAILSUBJECT = value; MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": Found JSON configuration mailsubject: " + MAILSUBJECT) for server in settings["servers"]: sms = "0" host = "" recipients = [] watchfor = "" warnif = "" port = "0" type = "" active = "1" timeoutalert = "0" for key, value in server.items(): key = key.lower() if key == "type": type = value if key == "host": host = value if key == "recipients": recipients.append(value) if key == "watchfor": watchfor = value if key == "warnif": warnif = value if key == "port": port = value if key == "timeoutalert": timeoutalert = value if key == "active": active = value if type == "http": if port == "0": port = "80" if active == "1": CheckHTTPServer(host, port, recipients, watchfor, warnif, sms, timeoutalert) else: MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": Ignoring inactive server " + type + "://" + host + ":" + port + " - edit config to reenable") if type == "smtp": if port == "0": port = "25" if active == "1": CheckSMTPServer(host, port, recipients, watchfor, sms, timeoutalert) else: MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": Ignoring inactive server " + type + "://" + host + ":" + port + " - edit config to reenable") if type == "pop3": if port == "0": port = "110" if active == "1": CheckPOP3Server(host, port, recipients, watchfor, sms, timeoutalert) else: MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": Ignoring inactive server " + type + "://" + host + ":" + port + " - edit config to reenable") if type == "imap" or type == "imap4": if port == "0": port = "143" if active == "1": CheckIMAPServer(host, port, recipients, watchfor, sms, timeoutalert) else: MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": Ignoring inactive server " + type + "://" + host + ":" + port + " - edit config to reenable") if type == "pop3ssl" or type == "popssl": if port == "0": port = "995" if active == "1": CheckPOP3SSLServer(host, port, recipients, watchfor, sms, timeoutalert) else: MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": Ignoring inactive server " + type + "://" + host + ":" + port + " - edit config to reenable") if type == "imapssl" or type == "imap4ssl": if port == "0": port = "993" if active == "1": CheckIMAPSSLServer(host, port, recipients, watchfor, sms, timeoutalert) else: MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": Ignoring inactive server " + type + "://" + host + ":" + port + " - edit config to reenable") def CheckServerXML(oServer): """Parses through XML Object of Server and delegates oServer object to otehr functionstype in server type Returns nothing.""" global MAILSERVER global MAILSERVERPORT global MAILSERVERUSERNAME global MAILSERVERPASSWORD global MAILFROM global MAILSERVERSTARTTLS global MAILSUBJECT type = "" for oAttributes in oServer.childNodes: if oAttributes.nodeType != minidom.Node.TEXT_NODE: if oAttributes.nodeName.lower() == "type": type = oAttributes.childNodes[0].nodeValue if oAttributes.nodeName.lower() == "mailserver": MAILSERVER = oAttributes.childNodes[0].nodeValue MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": Found XML configuration MailServer: " + MAILSERVER) if oAttributes.nodeName.lower() == "mailserverport": MAILSERVERPORT = oAttributes.childNodes[0].nodeValue MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": Found XML configuration MailServerPort: " + MAILSERVERPORT) if oAttributes.nodeName.lower() == "mailserverusername": MAILSERVERUSERNAME = oAttributes.childNodes[0].nodeValue MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": Found XML configuration MailServerUserName: " + MAILSERVERUSERNAME) if oAttributes.nodeName.lower() == "mailserverstarttls": MAILSERVERSTARTTLS = oAttributes.childNodes[0].nodeValue MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": Found XML configuration MailServerStartTLS: " + MAILSERVERSTARTTLS) if oAttributes.nodeName.lower() == "mailserverpassword": MAILSERVERPASSWORD = oAttributes.childNodes[0].nodeValue MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": Found XML configuration MailServerPassword: " + MAILSERVERPASSWORD) if oAttributes.nodeName.lower() == "mailfrom": MAILFROM = oAttributes.childNodes[0].nodeValue MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": Found XML configuration MailFrom: " + MAILFROM) if oAttributes.nodeName.lower() == "mailsubject": MAILSUBJECT = oAttributes.childNodes[0].nodeValue MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": Found XML configuration MailSubject: " + MAILSUBJECT) sms = "0" host = "" recipients = [] watchfor = "" warnif = "" port = "0" active = "1" timeoutalert = "0" for oAttributes in oServer.childNodes: if oAttributes.nodeType != minidom.Node.TEXT_NODE: if oAttributes.nodeName.lower() == "host": host = oAttributes.childNodes[0].nodeValue if oAttributes.nodeName.lower() == "port": port = oAttributes.childNodes[0].nodeValue if oAttributes.nodeName.lower() == "recipients": recipients.append(oAttributes.childNodes[0].nodeValue) if oAttributes.nodeName.lower() == "warnif": warnif = oAttributes.childNodes[0].nodeValue if oAttributes.nodeName.lower() == "watchfor": watchfor = oAttributes.childNodes[0].nodeValue if oAttributes.nodeName.lower() == "sms": sms = oAttributes.childNodes[0].nodeValue if oAttributes.nodeName.lower() == "timeoutalert": timeoutalert = oAttributes.childNodes[0].nodeValue if oAttributes.nodeName.lower() == "active": active = oAttributes.childNodes[0].nodeValue if type == "http": if port == "0": port = "80" if active == "1": CheckHTTPServer(host, port, recipients, watchfor, warnif, sms, timeoutalert) else: MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": Ignoring inactive server " + type + "://" + host + ":" + port + " - edit config to reenable") if type == "smtp": if port == "0": port = "25" if active == "1": CheckSMTPServer(host, port, recipients, watchfor, sms, timeoutalert) else: MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": Ignoring inactive server " + type + "://" + host + ":" + port + " - edit config to reenable") if type == "pop3" or type == "pop": if port == "0": port = "110" if active == "1": CheckPOP3Server(host, port, recipients, watchfor, sms, timeoutalert) else: MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": Ignoring inactive server " + type + "://" + host + ":" + port + " - edit config to reenable") if type == "imap" or type == "imap4": if port == "0": port = "143" if active == "1": CheckIMAPServer(host, port, recipients, watchfor, sms, timeoutalert) else: MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": Ignoring inactive server " + type + "://" + host + ":" + port + " - edit config to reenable") if type == "pop3ssl" or type == "popssl": if port == "0": port = "995" if active == "1": CheckPOP3SSLServer(host, port, recipients, watchfor, sms, timeoutalert) else: MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": Ignoring inactive server " + type + "://" + host + ":" + port + " - edit config to reenable") if type == "imapssl" or type == "imap4ssl": if port == "0": port = "993" if active == "1": CheckIMAPSSLServer(host, port, recipients, watchfor, sms, timeoutalert) else: MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": Ignoring inactive server " + type + "://" + host + ":" + port + " - edit config to reenable") def CheckPOP3SSLServer(host, port, recipients, watchfor, sms, timeoutalert): """Parses through XML Object of Server and checks server as per type Returns nothing.""" try: a = poplib.POP3_SSL(host, int(port)) MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": Connected successfully to POP3 (SSL) host '" + host + "' on port " + port) except: MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": ERROR can't connect to POP3 (SSL) host '" + host + "' on port " + port + " Error- " + str(sys.exc_info()[0])) CreateEmailMessage(recipients, "POP3 (SSL) Error: Can't connect to '" + host + "' at " + now.strftime("%Y-%m-%d %H:%M") + " (" + str(sys.exc_info()[0]) + ")", "POP3", sms) def CheckPOP3Server(host, port, recipients, watchfor, sms, timeoutalert): """Parses through XML Object of Server and checks server as per type Returns nothing.""" try: a = poplib.POP3(host, int(port), 15) MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": Connected successfully to POP3 host '" + host + "' on port " + port) except: MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": ERROR can't connect to POP3 host '" + host + "' on port " + port + " Error- " + str(sys.exc_info()[0])) CreateEmailMessage(recipients, "POP3 Error: Can't connect to '" + host + "' at " + now.strftime("%Y-%m-%d %H:%M") + " (" + str(sys.exc_info()[0]) + ")", "POP3", sms) def CheckIMAPSSLServer(host, port, recipients, watchfor, sms, timeoutalert): """Parses through XML Object of Server and checks server as per type Returns nothing.""" try: a = imaplib.IMAP4_SSL(host, int(port)) MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": Connected successfully to IMAP4 (SSL) host '" + host + "' on port " + port) except: MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": ERROR can't connect to IMAP4 (SSL) host '" + host + "' on port " + port + " Error- " + str(sys.exc_info()[0])) CreateEmailMessage(recipients, "IMAP4 (SSL) Error: Can't connect to '" + host + "' at " + now.strftime("%Y-%m-%d %H:%M"), "IMAP4", sms) def CheckIMAPServer(host, port, recipients, watchfor, sms, timeoutalert): """Parses through XML Object of Server and checks server as per type Returns nothing.""" try: a = imaplib.IMAP4(host, int(port)) MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": Connected successfully to IMAP4 host '" + host + "' on port " + port) except: MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": ERROR can't connect to IMAP4 host '" + host + "' on port " + port + " Error- " + str(sys.exc_info()[0])) CreateEmailMessage(recipients, "IMAP4 Error: Can't connect to '" + host + "' at " + now.strftime("%Y-%m-%d %H:%M"), "IMAP4", sms) def CheckSMTPServer(host, port, recipients, watchfor, sms, timeoutalert): """Parses through XML Object of Server and checks server as per type Returns nothing.""" try: smtpserver = smtplib.SMTP(host, int(port), '', 30) smtpserver.ehlo() smtpserver.quit() MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": Connected successfully to SMTP host '" + host + "' on port " + port) except: MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": ERROR can't connect to SMTP host '" + host + "'") CreateEmailMessage(recipients, "SMTP Error: Can't connect to '" + host + "' at " + now.strftime("%Y-%m-%d %H:%M"), "SMTP", sms) def CheckHTTPServer(host, port, recipients, watchfor, warnif, sms, timeoutalert): """Parses through XML Object of Server and checks server as per type Returns nothing.""" try: page = urllib.request.urlopen(host) pagedata = str( page.read() ) pagedata = pagedata.lower() sms = sms.lower() watchfor = watchfor.lower() if sms != "true" or sms != "1" or sms != "yes": sms = "0" if warnif != "": if pagedata.find(watchfor) > 0: CreateEmailMessage(recipients, "HTTP Error: Found '" + warnif + "' in " + host + " at " + now.strftime("%Y-%m-%d %H:%M"), "HTTP", sms) MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": ERROR '" + warnif + "' was found in HTTP host " + host + "") MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": '" + warnif + "' was found in HTTP host " + host + "") else: MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": '" + warnif + "' was not found in HTTP host " + host + "") if watchfor != "": if pagedata.find( str(watchfor) ) == -1: CreateEmailMessage(recipients, "HTTP Error: Can't find '" + watchfor + "' in " + host + " at " + now.strftime("%Y-%m-%d %H:%M"), "HTTP", sms) MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": ERROR '" + watchfor + "' was NOT found in HTTP host " + host + "") else: MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": '" + watchfor + "' was found in HTTP host " + host + "") except error: print("error", error) CreateEmailMessage(recipients, "HTTP Error: Can't connect to " + host + " at " + now.strftime("%Y-%m-%d %H:%M"), "HTTP", sms) MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": Can't connect to HTTP host " + host + "") def CreateEmailMessage(recipients, message, type, sms): """Creates an email message and stacks them on the EMAILS global variable Returns nothing.""" for emails in recipients: for recipient in emails.split(","): if recipient in EMAILS: EMAILS[recipient] = EMAILS[recipient] + "\n" + message else: EMAILS[recipient] = message def SendEmails(): """Parses through EMAIL global variable and sends error emails via SMTP Returns nothing.""" global MAILSERVER global MAILSERVERPORT global MAILSERVERSTARTTLS global MAILSERVERUSERNAME global MAILSERVERPASSWORD global MAILFROM global MAILSUBJECT MAILSERVERPORT = int(MAILSERVERPORT) day = now.strftime('%a') date = now.strftime('%d %b %Y %X %z') for recipients in EMAILS.keys(): message = EMAILS[recipients] if message.lstrip().rstrip() != "" and recipients != "": email = """\ From: %s To: %s Subject: %s Date: %s %s """ % (MAILFROM, recipients, MAILSUBJECT, day + ', ' + date, message) server = smtplib.SMTP(MAILSERVER,MAILSERVERPORT) if int(MAILSERVERSTARTTLS) > 0: server.starttls() server.ehlo() server.login(MAILSERVERUSERNAME,MAILSERVERPASSWORD) MakeLog( now.strftime("%Y-%m-%d %H:%M") + ": Sending Email Message to '" + recipients + "'") server.sendmail(MAILFROM,recipients, email) server.quit() def MakeLog(logstring): if int(CHATTY) > 0: print(logstring) now = datetime.datetime.now() if int(CHATTY) > 0: print("Starting ISPWatcher2 at " + now.strftime("%Y-%m-%d %H:%M")) # Found a JSON File path = sys.path[0] + "/controlfile.json" if os.path.isfile(path): if int(CHATTY) > 0: print("* Using config file " + path) json_settings = open(path) settings = json.load(json_settings) json_settings.close() CheckServerJSON(settings) else: # Found an XML File path = sys.path[0] + "/ControlFile.xml" if os.path.isfile(path): if int(CHATTY) > 0: print("* Using config file " + path) dom = minidom.parse(path) for oDocument in dom.childNodes: for oServer in oDocument.childNodes: CheckServerXML(oServer) if SENDEMAILS > 0: SendEmails() else: if int(CHATTY) > 0: print("* TEST MODE ENABLED - not sending emails") else: path = sys.path[0] + "/controlfile.xml" if os.path.isfile(path): if int(CHATTY) > 0: print("* Using config file " + path) dom = minidom.parse(path) for oDocument in dom.childNodes: for oServer in oDocument.childNodes: CheckServerXML(oServer) if int(SENDEMAILS) > 0: SendEmails() else: if int(CHATTY) > 0: print("* TEST MODE ENABLED - not sending emails") else: print("* No controlfile.json or controlfile.xml was found") ```
{ "source": "jdh4/tigergpu_visualization", "score": 3 }
#### File: jdh4/tigergpu_visualization/alert_checkgpu.py ```python import subprocess def low_utilization(): cmd = "/home/jdh4/bin/checkgpu -d 2 -c 10 -g 24" output = subprocess.run(cmd, shell=True, capture_output=True) lines = output.stdout.decode("utf-8").split('\n') if "No results were found" in lines[5]: return [] else: cases = [] skip = ['mcmuniz', 'dongdong'] lines = lines[8:-3] for line in lines: parts = line.split() user = parts[0] util = parts[1] std = parts[2] hours = parts[3] if int(util) == 0 and int(std) == 0: cases.append([user, util, std, hours]) elif user not in skip: cases.append([user, util, std, hours]) else: pass return cases if __name__ == '__main__': cases = low_utilization() if cases: SERVER = "localhost" FROM = "<EMAIL>" TO = ["<EMAIL>"] SUBJECT = "Alert: checkgpu" TEXT = "\n".join([" ".join(case) for case in cases]) # prepare actual message message = """\ From: %s To: %s Subject: %s %s """ % (FROM, ", ".join(TO), SUBJECT, TEXT) import smtplib server = smtplib.SMTP(SERVER) server.sendmail(FROM, TO, message) server.quit() ```
{ "source": "jdha/cmip6-object-store", "score": 2 }
#### File: cmip6_object_store/cmip6_zarr/compare.py ```python import glob import random import traceback import warnings import xarray as xr from cmip6_object_store.cmip6_zarr.results_store import get_results_store, get_verification_store from cmip6_object_store.cmip6_zarr.utils import ( get_archive_path, get_var_id, read_zarr, ) def compare_zarrs_with_ncs(project, n_to_test=5, dataset_id=None): """ Randomly selects some datasets and checks that the contents of a NetCDF files in the archive matches that in a Zarr file in the Caringo object store. This logs its outputs for use elsewhere. If a dataset ID is passed in, this will check the specified single dataset ID instead of a random sample (and n_to_test is ignored) """ tested = [] successes, failures = 0, 0 verification_store = get_verification_store(project) if dataset_id == None: print(f"\nVerifying up to {n_to_test} datasets for: {project}...") results_store = get_results_store(project) dataset_ids = results_store.get_successful_runs() force = False else: print(f"\nComparing single dataset {dataset_id} for: {project}...") n_to_test = 1 dataset_ids = [dataset_id] force = True while len(tested) < n_to_test: dataset_id = random.choice(dataset_ids) if not force: if dataset_id in tested or verification_store.ran_successfully(dataset_id): continue print(f"==========================\nVerifying: {dataset_id}") try: _compare_dataset(dataset_id, project) verification_store.insert_success(dataset_id) successes += 1 print(f"Comparison succeeded for: {dataset_id}") except Exception as exc: verification_store.insert_failure(dataset_id, f'failed: {exc}') failures += 1 tb = traceback.format_exc() print(f"FAILED comparison for {dataset_id}: traceback was\n\n: {tb}") tested.append(dataset_id) total = successes + failures return (successes, total) def _get_nc_file(dataset_id, project): archive_dir = get_archive_path(dataset_id, project) nc_files = glob.glob(f"{archive_dir}/*.nc") if not nc_files: return None return nc_files[0] def _compare_dataset(dataset_id, project): nc_file = _get_nc_file(dataset_id, project) if not nc_file: return False print(f"\nWorking on: {dataset_id}") with warnings.catch_warnings(): warnings.simplefilter("ignore") nc_subset = xr.open_dataset(nc_file) zarr_ds = read_zarr(dataset_id, project) zarr_subset = zarr_ds.sel(time=slice(nc_subset.time[0], nc_subset.time[-1])) result = nc_subset.identical(zarr_subset) print(f"Testing: {dataset_id}") print(f"\tResult: {result}") for prop in ("data_vars", "coords"): a, b = [ sorted(list(_.keys())) for _ in (getattr(nc_subset, prop), getattr(zarr_subset, prop)) ] print(f'\nComparing "{prop}": {a} \n------------\n {b}') assert a == b a, b = nc_subset.time.values, zarr_subset.time.values assert list(a) == list(b) print("Times are identical") var_id = get_var_id(dataset_id, project=project) a_var, b_var = nc_subset[var_id], zarr_subset[var_id] a_min, a_max = float(a_var.min()), float(a_var.max()) b_min, b_max = float(b_var.min()), float(b_var.max()) assert a_min == b_min print("Minima are identical") assert a_max == b_max print("Maxima are identical") for attr in ("units", "long_name"): a, b = getattr(a_var, attr), getattr(b_var, attr) print(f"{attr}: {a} VS {b}") assert a == b return result ``` #### File: cmip6_object_store/cmip6_zarr/intake_cat.py ```python import os from functools import wraps from time import time import numpy as np import pandas as pd from cmip6_object_store import CONFIG, logging from cmip6_object_store.cmip6_zarr.utils import ( get_archive_path, get_zarr_url, read_zarr, ) from cmip6_object_store.cmip6_zarr.results_store import get_results_store LOGGER = logging.getLogger(__file__) def timer(f): @wraps(f) def wrap(*args, **kw): ts = time() result = f(*args, **kw) te = time() print(f"func: {f.__name__} args: [{args} {kw}] took: {(te-ts):2.4f} sec") return result return wrap class IntakeCatalogue: def __init__(self, project, limit=None): self._iconf = CONFIG["intake"] self._project = project self._results_store = get_results_store(self._project) self._limit = limit def create(self): self._create_json() self._create_csv() def _create_json(self): template_file = self._iconf["json_template"] with open(template_file) as reader: content = reader.read() description = self._iconf["description_template"].format(project=self._project) cat_id = self._iconf["id_template"].format(project=self._project) csv_catalog_url = self._iconf["csv_catalog_url"].format(project=self._project) json_catalog = self._iconf["json_catalog"].format(project=self._project) content = ( content.replace("__description__", description) .replace("__id__", cat_id) .replace("__cat_file__", csv_catalog_url) ) with open(json_catalog, "w") as writer: writer.write(content) LOGGER.info(f"Wrote intake JSON catalog: {json_catalog}") def _create_csv(self): csv_catalog = self._iconf["csv_catalog"].format(project=self._project) # if os.path.isfile(csv_catalog): # raise FileExistsError(f'File already exists: {csv_catalog}') # Read in Zarr catalogue zarr_cat_as_df = self._get_zarr_df() zarr_cat_as_df.to_csv(csv_catalog, index=False) LOGGER.info( f"Wrote {len(zarr_cat_as_df)} records to CSV catalog file:\n {csv_catalog}" ) @timer def _get_zarr_df(self): # Read in Zarr results store and convert to DataFrame, and return dataset_ids = self._results_store.get_successful_runs() print(f"{len(dataset_ids)} datasets") headers = [ "mip_era", "activity_id", "institution_id", "source_id", "experiment_id", "member_id", "table_id", "variable_id", "grid_label", "version", "dcpp_start_year", "time_range", "zarr_path", "nc_path", ] rows = [] for row, dataset_id in enumerate(dataset_ids): if self._limit is not None and row == self._limit: break items = dataset_id.split(".") dcpp_start_year = self._get_dcpp_start_year(dataset_id) temporal_range = self._get_temporal_range(dataset_id) zarr_url = get_zarr_url(dataset_id, self._project) nc_path = get_archive_path(dataset_id, self._project) + "/*.nc" items.extend([dcpp_start_year, temporal_range, zarr_url, nc_path]) rows.append(items[:]) return pd.DataFrame(rows, columns=headers) def _get_dcpp_start_year(self, dataset_id): member_id = dataset_id.split(".")[5] if not "-" in member_id or not member_id.startswith("s"): return np.nan return member_id.split("-")[0][1:] def _get_temporal_range(self, dataset_id): try: nc_files = os.listdir(get_archive_path(dataset_id, self._project)) nc_files = [ fn for fn in nc_files if not fn.startswith(".") and fn.endswith(".nc") ] time_ranges = [fn.split(".")[-2].split("_")[-1].split("-") for fn in nc_files] start = f"{min(int(tr[0]) for tr in time_ranges)}" if len(start) == 4: start += "01" end = f"{max(int(tr[1]) for tr in time_ranges)}" if len(end) == 4: end += "12" time_range = f"{start}-{end}" LOGGER.info(f"Found {time_range} for {dataset_id}") except Exception as exc: LOGGER.warning(f"FAILED TO GET TEMPORAL RANGE FOR: {dataset_id}: {exc}") time_range = "" # ds = read_zarr(dataset_id, self._project, use_cftime=True) # time_var = ds.time.values # time_range = "-".join( # [tm.strftime("%Y%m") for tm in (time_var[0], time_var[-1])] # ) # ds.close() return time_range def create_intake_catalogue(project, limit=None): cat = IntakeCatalogue(project, limit=limit) cat.create() if __name__ == '__main__': create_intake_catalogue(CONFIG["workflow"]["default_project"]) ``` #### File: cmip6_object_store/cmip6_zarr/utils.py ```python import json import os import uuid import s3fs import xarray as xr from ..config import CONFIG, get_from_proj_or_workflow def get_credentials(creds_file=None): if not creds_file: creds_file = CONFIG["store"]["credentials_file"] with open(creds_file) as f: creds = json.load(f) return creds def get_uuid(): _uuid = uuid.uuid4() return _uuid def get_var_id(dataset_id, project): var_index = CONFIG[f"project:{project}"]["var_index"] return dataset_id.split(".")[var_index] def create_dir(dr): if not os.path.isdir(dr): os.makedirs(dr) def split_string_at(s, sep, indx): items = s.split(sep) first, last = sep.join(items[:indx]), sep.join(items[indx:]) return first, last def to_dataset_id(path, project): if ("/") in path: path = path.replace("/", ".") prefix = get_from_proj_or_workflow("bucket_prefix", project) if not path.startswith(prefix): raise ValueError(f"path {path} does not start with expected prefix {prefix}") path = path[len(prefix):] items = path.split(".") if items[-1].endswith(".nc") or items[-1] == "zarr": items = items[:-1] n_facets = CONFIG[f"project:{project}"]["n_facets"] return ".".join(items[-n_facets:]) def get_zarr_url(dataset_id, project): prefix = CONFIG["store"]["endpoint_url"] zarr_path = get_zarr_path(dataset_id, project, join=True) return f"{prefix}{zarr_path}" def get_zarr_path(dataset_id, project, join=False): split_at = get_from_proj_or_workflow("split_level", project) prefix = get_from_proj_or_workflow("bucket_prefix", project) parts = dataset_id.split(".") bucket = prefix + ".".join(parts[:split_at]) zarr_file = ".".join(parts[split_at:]) + ".zarr" if join: return f"{bucket}/{zarr_file}" else: return (bucket, zarr_file) def read_zarr(path, project, **kwargs): dataset_id = to_dataset_id(path, project) zarr_path = get_zarr_path(dataset_id, project, join=True) endpoint_url = CONFIG["store"]["endpoint_url"] jasmin_s3 = s3fs.S3FileSystem( anon=True, client_kwargs={"endpoint_url": endpoint_url} ) s3_store = s3fs.S3Map(root=zarr_path, s3=jasmin_s3) ds = xr.open_zarr(store=s3_store, consolidated=True, **kwargs) return ds def get_archive_path(path, project): dataset_id = to_dataset_id(path, project) archive_dir = CONFIG[f"project:{project}"]["archive_dir"] return os.path.join(archive_dir, dataset_id.replace(".", "/")) ``` #### File: cmip6_object_store/misc/change_perms.py ```python import json import boto3 import botocore from cmip6_object_store.config import CONFIG from cmip6_object_store.cmip6_zarr.utils import get_zarr_path, get_credentials project = 'cmip6' """ Changes permissions on all buckets, and writes output files "successes" and "failures" with relevant lists. Note that (deliberately), "failures" only apply to "Access Denied" - a failure for any other reason will abort this script. """ class PolicyChanger: def __init__(self): creds = get_credentials() s3_uri = CONFIG["store"]["endpoint_url"] self._clnt = boto3.client('s3', endpoint_url=s3_uri, aws_access_key_id=creds['token'], aws_secret_access_key=creds['secret']) policy = { "Version": "2008-10-17", "Id": "Read All Policy", "Statement": [ { "Sid": "Read-only and list bucket access for Everyone", "Effect": "Allow", "Principal": { "anonymous": [ "*" ] }, "Action": [ "GetObject", "ListBucket" ], "Resource": "*" } ] } self._bucket_policy_s = json.dumps(policy) def change_bucket_policy(self, bucket): self._clnt.put_bucket_policy(Bucket=bucket, Policy=self._bucket_policy_s) def get_buckets(): datasets_file = CONFIG["datasets"]["datasets_file"] buckets = set() with open(datasets_file) as f: for line in f: dataset_id = line.strip().split(',')[0] bucket, obj_name = get_zarr_path(dataset_id, project) buckets.add(bucket) return sorted(buckets) def main(): changer = PolicyChanger() buckets = get_buckets() n = len(buckets) with open('successes', 'w') as succlog, open('failures', 'w') as faillog: for i, bucket in enumerate(buckets): print(f'{i}/{n} {bucket} ', end='') try: changer.change_bucket_policy(bucket) except botocore.exceptions.ClientError as exc: if 'Access Denied' in str(exc): print('Access denied') faillog.write(f'{bucket}\n') else: raise else: print('Success') succlog.write(f'{bucket}\n') main() ``` #### File: cmip6_object_store/test/writeit.py ```python import os import s3fs import xarray as xr import json import time import sys from memory_profiler import profile os.environ.update({ 'OMP_NUM_THREADS': '1', 'MKL_NUM_THREADS': '1', 'OPENBLAS_NUM_THREADS': '1', 'VECLIB_MAXIMUM_THREADS': '1', 'NUMEXPR_NUM_THREADS': '1'}) opts = { 'bucket': '00alantest', 'endpoint_url': 'http://cmip6-zarr-o.s3.jc.rl.ac.uk/', 'creds_file': f'{os.environ["HOME"]}/.credentials/caringo-credentials.json', # list of 2-tuples: (dataset-id, chunk length) None means don't chunk 'datasets': [('CMIP6.CMIP.MIROC.MIROC6.amip.r6i1p1f1.Amon.tasmin.gn.v20181214', None), ('CMIP6.ScenarioMIP.IPSL.IPSL-CM6A-LR.ssp126.r3i1p1f1.day.zg.gr.v20190410', 2)] } def get_input_files(ds_id): dirname = os.path.join('/badc/cmip6/data', ds_id.replace('.', '/')) return [os.path.join(dirname, file) for file in os.listdir(dirname) if file.endswith('.nc')] def make_bucket(fs, bucket, max_tries=3, sleep_time=3): tries = 0 while not fs.exists(bucket): try: print("try to make bucket") fs.mkdir(bucket) except KeyboardInterrupt: raise except Exception as exc: tries += 1 print(f"making bucket failed ({tries} tries): {exc}") if tries == max_tries: print("giving up") raise time.sleep(sleep_time) print(f"bucket {bucket} now exists") def get_store_map(zpath, fs): return s3fs.S3Map(root=zpath, s3=fs) def show_first_data_value(ds): "show first data value of any 3d fields" for name, var in ds.items(): if len(var.shape) == 3: print(f"{name} {float(var[0,0,0].values)}") def remove_path(zpath, fs): if fs.exists(zpath): print(f"removing existing {zpath}") fs.rm(zpath, True) tries = 0 while fs.exists(zpath): tries += 1 if tries == 5: raise Exception(f"could not remove {zpath}") time.sleep(1) # simplified version assuming CMIP6 def get_var_id(ds_id): return ds_id.split('.')[-3] # simplified version that takes chunk_length as input def get_chunked_ds(ds_id, ds, chunk_length): print(f'chunking with length={chunk_length}') var_id = get_var_id(ds_id) chunked_ds = ds.chunk({"time": chunk_length}) chunked_ds[var_id].unify_chunks() return chunked_ds @profile(precision=1) def main(opts): creds = json.load(open(opts['creds_file'])) endpoint_url = opts["endpoint_url"] fs = s3fs.S3FileSystem(anon=False, secret=creds['secret'], key=creds['token'], client_kwargs={'endpoint_url': endpoint_url}, config_kwargs={'max_pool_connections': 50}) make_bucket(fs, opts["bucket"]) for ds_id, chunk_length in opts["datasets"]: print(f"DATASET: {ds_id}") zarr_file = ds_id zpath = f'{opts["bucket"]}/{zarr_file}' zarr_url = f'{endpoint_url}{zpath}' store_map = get_store_map(zpath, fs) input_files = get_input_files(ds_id) print("opening xarray dataset") ds = xr.open_mfdataset(input_files, use_cftime=True, combine='by_coords') show_first_data_value(ds) remove_path(zpath, fs) ds_to_write = ds if chunk_length == None else get_chunked_ds(ds_id, ds, chunk_length) print("writing data") ds_to_write.to_zarr(store=store_map, mode='w', consolidated=True) if fs.exists(zpath): print(f"wrote: {zarr_url}") else: raise Exception(f"could not write {zarr_url}") print() main(opts) ```
{ "source": "jdhaines/MIT6.00", "score": 4 }
#### File: MIT6.00/PS1/ps1.py ```python import os, sys # Problem Set 1 # Name: <NAME> # Collaborators: None # Time Spent: ~7hrs # 3 Credit Card Debt Problems # Problem 1: Paying the minimum. Calculate the credit card balance after # one year if a person only pays the minimum monthly payment required by # the credit card company each month. # # Problem 2: Calculating the minimum payment you can make and still pay # off the loan in a year. Two loops will iterate through a year to see # final balance, and if it isn't big enough increase the guessed payment # amount and re-run the inner loop until you pay off the loan. # Problem 3: Very similar to problem 2, except use a bisection search # for the guessPayment to speed up the program. def minimumPayment(currentBalance, percent): """Take in a current balance and minimum payment percent, then return the minimum payment""" currentBalance = float(currentBalance) #convert argument to float percent = float(percent) #convert argument to float percent = percent / 100 if percent >= 100: sys.exit("Please provide a minimum payment percentage value less" + \ "than 100 (eg. 2.5, 13, etc.).") payment = currentBalance * percent return payment def interestPaidPerMonth(annualPercent,currentBalance): """Function that takes in the annual interest rate percentage and the current principle balance and calualates how much interest must be paid in that month. Returns that interest amount.""" annualPercent = float(annualPercent) #convert argument to float currentBalance = float(currentBalance) #convert argument to float annualPercent = annualPercent / 100 interestPaid = annualPercent / 12 * currentBalance return interestPaid def newBalance(oldBalance, monthlyRate, guessPayment): """Calculate the remaining balance at the end of 12 months""" newBalance = (oldBalance * (1 + monthlyRate)) - guessPayment return newBalance def balanceAfterYear(creditCardBalance,monthlyRate,guessPayment): """This will take in the balance, monthlyRate, and payment then calculate how much balance will be left after a year paying on the loan.""" remainingBalance = creditCardBalance #main problem loops. outer loop iterates if the guess isn't big enough #inner loop iterates to find the balance after a year of trial payments monthsNeeded = 0 while monthsNeeded < 12 and remainingBalance > 0: remainingBalance = newBalance(remainingBalance,monthlyRate,guessPayment) monthsNeeded += 1 return remainingBalance, monthsNeeded def problemThreeCalcs(annualPercent,creditCardBalance): """This is the entire calculations for the third problem. This is pulled into a function in order to use return to break a value out of multiple levels of loops.""" monthlyRate = (annualPercent / 100) / 12.0 paymentLowerBound = creditCardBalance / 12 paymentUpperBound = (creditCardBalance * ((1 + monthlyRate) ** 12)) / 12 #main problem loops. outer loop iterates if the guess isn't big enough #inner loop iterates to find the balance after a year of trial payments n = 1 #n is just a counter while n <= 1000: midPoint = (paymentLowerBound + paymentUpperBound) / 2 #new midpoint endingBalance, monthsNeeded = balanceAfterYear(creditCardBalance,monthlyRate,midPoint) endingBalance = round(float(endingBalance),2) if endingBalance == 0: return endingBalance,midPoint, n, monthsNeeded n += 1 if (endingBalance > 0 and paymentLowerBound > 0) or (endingBalance < 0 and paymentLowerBound < 0): #adjust the interval paymentLowerBound = midPoint else: paymentUpperBound = midPoint def problemOne(): """Call this function to kick off the problem 1 solution""" #get the account balance and validate print "Please enter the current account balance." currentBalance = raw_input(">> ") currentBalance = float(currentBalance) #get the annual interest rate print "Please enter the annual interest rate." annualPercent = raw_input(">> ") annualPercent = float(annualPercent) #get the min payment percent and validate print "Please enter the minimum payment percentage." minPercent = raw_input(">> ") minPercent = float(minPercent) #main problem loop remainingBalance = round(float(currentBalance),2) totalPaid = 0.0 for i in range(1,13): minimumMonthlyPayment = \ round(float(minimumPayment(remainingBalance,minPercent)),2) principlePaid = round(float(minimumMonthlyPayment - \ interestPaidPerMonth(annualPercent,remainingBalance)),2) interestPaid = \ round(float(interestPaidPerMonth(annualPercent,remainingBalance)),2) remainingBalance = round((remainingBalance - principlePaid),2) print remainingBalance print "Month: %d" % (i) print "Minimum Monthly Payment: $%.2f" % (minimumMonthlyPayment) print "Principle paid: $%.2f" % (principlePaid) print "Remaining Balance: $%.2f" % (remainingBalance) totalPaid = totalPaid + principlePaid + interestPaid print "RESULT" print "Total Amount Paid: $%.2f" % totalPaid print "Remaining Balance: $%.2f" % remainingBalance start() #recall the start function to start over def problemTwo(): """Call this function to kick off the problem 2 solution""" #get the credit card balance print "Please enter the outstanding credit card balance." creditCardBalance = raw_input(">> ") creditCardBalance = float(creditCardBalance) #get the annual interest rate print "Please enter the annual interest rate." annualPercent = raw_input(">> ") annualPercent = float(annualPercent) print "RESULT" guessPayment = 0.00 remainingBalance = creditCardBalance monthlyRate = (annualPercent / 100) / 12.0 #main problem loops. outer loop iterates if the guess isn't big enough #inner loop iterates to find the balance after a year of trial payments while remainingBalance > 0: remainingBalance = creditCardBalance monthsNeeded = 0 guessPayment = guessPayment + .01 #remainingBalance = balanceAfterYear(creditCardBalance,annualPercent,guessPayment,monthsNeeded) while monthsNeeded < 12 and remainingBalance > 0: remainingBalance = newBalance(remainingBalance,monthlyRate,guessPayment) monthsNeeded += 1 print "Monthly payment to pay off debt in 1 year: %d" % guessPayment print "Number of months needed: %d" % monthsNeeded print "Balance: %.2f" % remainingBalance start() #recall the start function to start over def problemThree(): """Call this function to kick off the problem 3 solution""" #get the credit card balance print "Please enter the outstanding credit card balance." creditCardBalance = raw_input(">> ") creditCardBalance = float(creditCardBalance) #get the annual interest rate print "Please enter the annual interest rate." annualPercent = raw_input(">> ") annualPercent = float(annualPercent) print "RESULT" endingBalance, midPoint, iterations, monthsNeeded = problemThreeCalcs(annualPercent,creditCardBalance,) print "Monthly payment to pay off debt in 1 year: %.2f" % midPoint print "Number of months needed: %d" % monthsNeeded ##fix this print "Balance: %.2f" % endingBalance print "It took %d iterations." % iterations start() #recall the start function to start over def start(): """Function to kick things off.""" print "Welcome to the credit card processing center." print "If you would like to calculate your credit card balance after" + \ " a year of only paying the minimum payment...please Press 1." print "If you would like to calculate your minimum payment to pay off" + \ " your balance in 12 months...please Press 2." print "If you would like to calculate your minimum payment to pay off" + \ " your balance in 12 months...please Press 3. (Bisection serach solution)" print "If you would like to exit...please press 4" choice = raw_input(">> ") choice = int(choice) if isinstance( choice, int ): if choice == 1: problemOne() elif choice == 2: problemTwo() elif choice == 3: problemThree() elif choice == 4: sys.exit("exiting...") else: sys.exit("You are dumb, exiting...") start(); #end ``` #### File: MIT6.00/PS3/ps3b.py ```python from ps3a import * # import time from perm import * # # Problem #6A: Computer chooses a word # def comp_choose_word(hand, word_list): """ Given a hand and a word_dict, find the word that gives the maximum value score, and return it. This word should be calculated by considering all possible permutations of lengths 1 to HAND_SIZE. hand: dictionary (string -> int) word_list: list (string) """ from random import randint n = 10 while n > 8: n = randint(0, calculate_handlen(hand)) perms = get_perms(hand, n) for i in perms: if i in word_list: return i # Rarely this returns None, make sure to check and # re-call this function in case that happens. It u # usually only happens when the random number is very small. # The timing also gets out of hand when the random # number goes much over 8. The upper while loop should # minimize these problems. # Turns out they want None to be the symbol that the computer # is done playing... # # Problem #6B: Computer plays a hand # def comp_play_hand(hand, word_list): """ Allows the computer to play the given hand, as follows: * The hand is displayed. * The computer chooses a word using comp_choose_words(hand, word_dict). * After every valid word: the score for that word is displayed, the remaining letters in the hand are displayed, and the computer chooses another word. * The sum of the word scores is displayed when the hand finishes. * The hand finishes when the computer has exhausted its possible choices (i.e. comp_play_hand returns None). hand: dictionary (string -> int) word_list: list (string) """ end_hand = 0 hand_total = 0 while calculate_handlen(hand) > 0 and end_hand == 0: print() print('Your Hand: {}'.format(display_hand(hand))) print() # loop until given a valid word valid_word = 0 word_total = 0 while valid_word == 0: print('Enter a valid word, or a "." to indicate you are finished.') word = comp_choose_word(hand, word_list) if word == '.': print('Total Score: {}'.format(hand_total)) return hand_total elif word is None: print('No more plays, hand is over.') return hand_total elif is_valid_word(word, hand, word_list) is False: print('That word is invalid.') valid_word = 0 else: word_total = get_word_score(word, calculate_handlen(hand)) hand_total += word_total print('"{}"" earned {} points. Hand total: {} points.'.format( word, word_total, hand_total)) valid_word = 1 hand = update_hand(hand, word) # # Problem #6C: Playing a game # def play_game(word_list): """Allow the user to play an arbitrary number of hands. 1) Asks the user to input 'n' or 'r' or 'e'. * If the user inputs 'n', play a new (random) hand. * If the user inputs 'r', play the last hand again. * If the user inputs 'e', exit the game. * If the user inputs anything else, ask them again. 2) Ask the user to input a 'u' or a 'c'. * If the user inputs 'u', let the user play the game as before using play_hand. * If the user inputs 'c', let the computer play the game using comp_play_hand (created above). * If the user inputs anything else, ask them again. 3) After the computer or user has played the hand, repeat from step 1 word_list: list (string) """ old_hand = deal_hand(HAND_SIZE) # Make sure old hand isn't empty # Opening Message human_score = 0 pc_score = 0 play = 1 while play == 1: new_hand = deal_hand(HAND_SIZE) print('Welcome to the word game.') print('Human score is: {}'.format(human_score)) print('PC Score is: {}'.format(pc_score)) print('If you would like to play a new (random) hand, press "n".') print('If you would like to play the last hand again, press "r".') print('If you would like to exit, press "e"') choice = input('>>> ') if choice == 'e': print('Thanks for playing!') exit() print('If you would like to play the next hand, press "u".') print('If you would like the computer to play the hand, press "c".') print('If you would like to exit, press "e"') who_plays = input('>>> ') if who_plays == 'u': # User plays if choice == 'n': human_score += play_hand(new_hand, word_list) old_hand = new_hand # Update the old hand with the new one elif choice == 'r': human_score += play_hand(old_hand, word_list) else: print('Your selection was not understood. Try again... ') elif who_plays == 'c': # Computer Plays if choice == 'n': pc_score += comp_play_hand(new_hand, word_list) old_hand = new_hand # Update the old hand with the new one elif choice == 'r': pc_score += comp_play_hand(old_hand, word_list) else: print('Your selection was not understood. Try again... ') elif who_plays == 'e': # exit print('Thanks for playing!') exit() else: print('Your selection was not understood.') print('Thanks for playing!') exit() # # Build data structures used for entire session and play game # if __name__ == '__main__': word_list = load_words() play_game(word_list) ```
{ "source": "jdhaisne/kaggle-house-price", "score": 3 }
#### File: jdhaisne/kaggle-house-price/main.py ```python import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.ensemble import IsolationForest from sklearn.model_selection import cross_val_score from sklearn.linear_model import LinearRegression def clean_data(data): cols_proto = ['GrLivArea', 'LotArea', '1stFlrSF', 'TotalBsmtSF', 'BsmtUnfSF', 'YearBuilt', 'GarageArea', 'MoSold', 'YearRemodAdd', 'OverallQual'] data = data.fillna(data.std()) return data[cols_proto] data_train = pd.read_csv('train.csv') data_Y = data_train[['SalePrice']] data_X = data_train.drop(['SalePrice'], axis=1) data_X = clean_data(data_X) rng = np.random.RandomState(42) forest = IsolationForest(max_samples=100, random_state=rng) line_reg = LinearRegression() scores = cross_val_score(line_reg, data_X, data_Y, cv=10) line_reg.fit(data_X, data_Y) print(scores.mean()) X_predict = pd.read_csv('test.csv') X_predict_clean = clean_data(X_predict) print(X_predict.describe()) Y_pred = line_reg.predict(X_predict_clean) data = pd.DataFrame({'Id':X_predict.Id, 'SalePrice': np.reshape(Y_pred, (-1))}) data.set_index('Id').to_csv('my_test.csv') ```
{ "source": "jdhalimi/awesomeness", "score": 3 }
#### File: awesomeness/awesomeness/__main__.py ```python from argparse import ArgumentParser from awesomeness import __version__ def main(): """ command line interface entry point """ parser = ArgumentParser('awesomeness', description=f'awesomeness version {__version__}') parser.add_argument('--version', action='version', version=__version__) parser.parse_args() if __name__ == '__main__': main() ```
{ "source": "jdhardy/dlr", "score": 3 }
#### File: tests/regressions/test_args.py ```python import unittest class ArgsRegression(unittest.TestCase): def test_exec_and_splat_args(self): exec 'def f(*args): return repr(args)' self.assertEqual('(1, 2, 3, 4)', f(1,2,3,4)) ``` #### File: tests/regressions/test_autoaddref.py ```python import unittest class AutoAddRefRegression(unittest.TestCase): def test_referencecount(self): import clr self.assert_(len(clr.References) >= 6) ``` #### File: tests/regressions/test_issubclass.py ```python import unittest import clr import System class IsSubClassRegression(unittest.TestCase): def x(self): return 2 def y(self): return 'abc' def test_same_class(self): self.assertFalse(self.x().GetType().IsSubclassOf(System.Int32)) self.assertFalse(self.y().GetType().IsSubclassOf(System.String)) def test_nonparent_class(self): self.assertFalse(self.y().GetType().IsSubclassOf(System.Array)) self.assertFalse(self.y().GetType().IsSubclassOf(System.Int32)) def test_ancestor(self): self.assert_(self.y().GetType().IsSubclassOf(System.Object)) self.assert_(self.y().GetType().IsSubclassOf(System.Object)) ``` #### File: tests/regressions/test_name.py ```python import unittest class NameRegression(unittest.TestCase): def test___name__(self): self.assertEqual(__name__, 'regressions.test_name') def test___name__inmodule(self): from fixtures.child1 import child1_name self.assertNotEqual(child1_name(), '__main__') ``` #### File: tests/regressions/test_thread.py ```python import sys import thread import unittest class ThreadRegression(unittest.TestCase): def runthread(self, function, *args): import time thread_info = [None, None] def testthread(*args2): thread_info[1] = function(*args2) thread_info[0] = thread.get_ident() thread.start_new_thread(testthread, args) start = time.time() end = start + 10 # seconds while not thread_info[0] and time.time() < end: pass threadid = thread_info[0] result = thread_info[1] if not result or not threadid: self.fail('thread timed out without returning a result') # verify that we didn't execute on the UI thread sl.verify_not_exact(thread.get_ident(), threadid) return result def raise_exception(self): raise StandardError("this is an exception that should be swallowed") def background_import(self): if 'System' in sys.modules: sys.modules.pop('System') from System import Math return Math.Floor(4.4) def test_backgroundthreadthrow(self): self.runthread(self.raise_exception) self.assert_(True) def test_import(self): self.assertEqual(4.0, runthread(self.background_import)) ```
{ "source": "jdhardy/moto", "score": 2 }
#### File: moto/ssm/models.py ```python from __future__ import unicode_literals from moto.core import BaseBackend, BaseModel from moto.ec2 import ec2_backends class Parameter(BaseModel): def __init__(self, name, value, type, description, keyid): self.name = name self.type = type self.description = description self.keyid = keyid if self.type == 'SecureString': self.value = self.encrypt(value) else: self.value = value def encrypt(self, value): return 'kms:{}:'.format(self.keyid or 'default') + value def decrypt(self, value): if self.type != 'SecureString': return value prefix = 'kms:{}:'.format(self.keyid or 'default') if value.startswith(prefix): return value[len(prefix):] def response_object(self, decrypt=False): return { 'Name': self.name, 'Type': self.type, 'Value': self.decrypt(self.value) if decrypt else self.value } class SimpleSystemManagerBackend(BaseBackend): def __init__(self): self._parameters = {} def delete_parameter(self, name): try: del self._parameters[name] except KeyError: pass def get_parameters(self, names, with_decryption): result = [] for name in names: if name in self._parameters: result.append(self._parameters[name]) return result def put_parameter(self, name, description, value, type, keyid, overwrite): if not overwrite and name in self._parameters: return self._parameters[name] = Parameter( name, value, type, description, keyid) ssm_backends = {} for region, ec2_backend in ec2_backends.items(): ssm_backends[region] = SimpleSystemManagerBackend() ``` #### File: tests/test_rds/test_rds.py ```python from __future__ import unicode_literals import boto3 import boto.rds import boto.vpc from boto.exception import BotoServerError import sure # noqa from moto import mock_ec2_deprecated, mock_rds_deprecated, mock_rds from tests.helpers import disable_on_py3 @disable_on_py3() @mock_rds_deprecated def test_create_database(): conn = boto.rds.connect_to_region("us-west-2") database = conn.create_dbinstance("db-master-1", 10, 'db.m1.small', 'root', 'hunter2', security_groups=["my_sg"]) database.status.should.equal('available') database.id.should.equal("db-master-1") database.allocated_storage.should.equal(10) database.instance_class.should.equal("db.m1.small") database.master_username.should.equal("root") database.endpoint.should.equal( ('db-master-1.aaaaaaaaaa.us-west-2.rds.amazonaws.com', 3306)) database.security_groups[0].name.should.equal('my_sg') @disable_on_py3() @mock_rds_deprecated def test_get_databases(): conn = boto.rds.connect_to_region("us-west-2") list(conn.get_all_dbinstances()).should.have.length_of(0) conn.create_dbinstance("db-master-1", 10, 'db.m1.small', 'root', 'hunter2') conn.create_dbinstance("db-master-2", 10, 'db.m1.small', 'root', 'hunter2') list(conn.get_all_dbinstances()).should.have.length_of(2) databases = conn.get_all_dbinstances("db-master-1") list(databases).should.have.length_of(1) databases[0].id.should.equal("db-master-1") @disable_on_py3() @mock_rds def test_get_databases_paginated(): conn = boto3.client('rds', region_name="us-west-2") for i in range(51): conn.create_db_instance(AllocatedStorage=5, Port=5432, DBInstanceIdentifier='rds%d' % i, DBInstanceClass='db.t1.micro', Engine='postgres') resp = conn.describe_db_instances() resp["DBInstances"].should.have.length_of(50) resp["Marker"].should.equal(resp["DBInstances"][-1]['DBInstanceIdentifier']) resp2 = conn.describe_db_instances(Marker=resp["Marker"]) resp2["DBInstances"].should.have.length_of(1) @mock_rds_deprecated def test_describe_non_existant_database(): conn = boto.rds.connect_to_region("us-west-2") conn.get_all_dbinstances.when.called_with( "not-a-db").should.throw(BotoServerError) @disable_on_py3() @mock_rds_deprecated def test_delete_database(): conn = boto.rds.connect_to_region("us-west-2") list(conn.get_all_dbinstances()).should.have.length_of(0) conn.create_dbinstance("db-master-1", 10, 'db.m1.small', 'root', 'hunter2') list(conn.get_all_dbinstances()).should.have.length_of(1) conn.delete_dbinstance("db-master-1") list(conn.get_all_dbinstances()).should.have.length_of(0) @mock_rds_deprecated def test_delete_non_existant_database(): conn = boto.rds.connect_to_region("us-west-2") conn.delete_dbinstance.when.called_with( "not-a-db").should.throw(BotoServerError) @mock_rds_deprecated def test_create_database_security_group(): conn = boto.rds.connect_to_region("us-west-2") security_group = conn.create_dbsecurity_group('db_sg', 'DB Security Group') security_group.name.should.equal('db_sg') security_group.description.should.equal("DB Security Group") list(security_group.ip_ranges).should.equal([]) @mock_rds_deprecated def test_get_security_groups(): conn = boto.rds.connect_to_region("us-west-2") list(conn.get_all_dbsecurity_groups()).should.have.length_of(0) conn.create_dbsecurity_group('db_sg1', 'DB Security Group') conn.create_dbsecurity_group('db_sg2', 'DB Security Group') list(conn.get_all_dbsecurity_groups()).should.have.length_of(2) databases = conn.get_all_dbsecurity_groups("db_sg1") list(databases).should.have.length_of(1) databases[0].name.should.equal("db_sg1") @mock_rds_deprecated def test_get_non_existant_security_group(): conn = boto.rds.connect_to_region("us-west-2") conn.get_all_dbsecurity_groups.when.called_with( "not-a-sg").should.throw(BotoServerError) @mock_rds_deprecated def test_delete_database_security_group(): conn = boto.rds.connect_to_region("us-west-2") conn.create_dbsecurity_group('db_sg', 'DB Security Group') list(conn.get_all_dbsecurity_groups()).should.have.length_of(1) conn.delete_dbsecurity_group("db_sg") list(conn.get_all_dbsecurity_groups()).should.have.length_of(0) @mock_rds_deprecated def test_delete_non_existant_security_group(): conn = boto.rds.connect_to_region("us-west-2") conn.delete_dbsecurity_group.when.called_with( "not-a-db").should.throw(BotoServerError) @disable_on_py3() @mock_rds_deprecated def test_security_group_authorize(): conn = boto.rds.connect_to_region("us-west-2") security_group = conn.create_dbsecurity_group('db_sg', 'DB Security Group') list(security_group.ip_ranges).should.equal([]) security_group.authorize(cidr_ip='10.3.2.45/32') security_group = conn.get_all_dbsecurity_groups()[0] list(security_group.ip_ranges).should.have.length_of(1) security_group.ip_ranges[0].cidr_ip.should.equal('10.3.2.45/32') @disable_on_py3() @mock_rds_deprecated def test_add_security_group_to_database(): conn = boto.rds.connect_to_region("us-west-2") database = conn.create_dbinstance( "db-master-1", 10, 'db.m1.small', 'root', 'hunter2') security_group = conn.create_dbsecurity_group('db_sg', 'DB Security Group') database.modify(security_groups=[security_group]) database = conn.get_all_dbinstances()[0] list(database.security_groups).should.have.length_of(1) database.security_groups[0].name.should.equal("db_sg") @mock_ec2_deprecated @mock_rds_deprecated def test_add_database_subnet_group(): vpc_conn = boto.vpc.connect_to_region("us-west-2") vpc = vpc_conn.create_vpc("10.0.0.0/16") subnet1 = vpc_conn.create_subnet(vpc.id, "10.1.0.0/24") subnet2 = vpc_conn.create_subnet(vpc.id, "10.2.0.0/24") subnet_ids = [subnet1.id, subnet2.id] conn = boto.rds.connect_to_region("us-west-2") subnet_group = conn.create_db_subnet_group( "db_subnet", "my db subnet", subnet_ids) subnet_group.name.should.equal('db_subnet') subnet_group.description.should.equal("my db subnet") list(subnet_group.subnet_ids).should.equal(subnet_ids) @mock_ec2_deprecated @mock_rds_deprecated def test_describe_database_subnet_group(): vpc_conn = boto.vpc.connect_to_region("us-west-2") vpc = vpc_conn.create_vpc("10.0.0.0/16") subnet = vpc_conn.create_subnet(vpc.id, "10.1.0.0/24") conn = boto.rds.connect_to_region("us-west-2") conn.create_db_subnet_group("db_subnet1", "my db subnet", [subnet.id]) conn.create_db_subnet_group("db_subnet2", "my db subnet", [subnet.id]) list(conn.get_all_db_subnet_groups()).should.have.length_of(2) list(conn.get_all_db_subnet_groups("db_subnet1")).should.have.length_of(1) conn.get_all_db_subnet_groups.when.called_with( "not-a-subnet").should.throw(BotoServerError) @mock_ec2_deprecated @mock_rds_deprecated def test_delete_database_subnet_group(): vpc_conn = boto.vpc.connect_to_region("us-west-2") vpc = vpc_conn.create_vpc("10.0.0.0/16") subnet = vpc_conn.create_subnet(vpc.id, "10.1.0.0/24") conn = boto.rds.connect_to_region("us-west-2") conn.create_db_subnet_group("db_subnet1", "my db subnet", [subnet.id]) list(conn.get_all_db_subnet_groups()).should.have.length_of(1) conn.delete_db_subnet_group("db_subnet1") list(conn.get_all_db_subnet_groups()).should.have.length_of(0) conn.delete_db_subnet_group.when.called_with( "db_subnet1").should.throw(BotoServerError) @disable_on_py3() @mock_ec2_deprecated @mock_rds_deprecated def test_create_database_in_subnet_group(): vpc_conn = boto.vpc.connect_to_region("us-west-2") vpc = vpc_conn.create_vpc("10.0.0.0/16") subnet = vpc_conn.create_subnet(vpc.id, "10.1.0.0/24") conn = boto.rds.connect_to_region("us-west-2") conn.create_db_subnet_group("db_subnet1", "my db subnet", [subnet.id]) database = conn.create_dbinstance("db-master-1", 10, 'db.m1.small', 'root', 'hunter2', db_subnet_group_name="db_subnet1") database = conn.get_all_dbinstances("db-master-1")[0] database.subnet_group.name.should.equal("db_subnet1") @disable_on_py3() @mock_rds_deprecated def test_create_database_replica(): conn = boto.rds.connect_to_region("us-west-2") primary = conn.create_dbinstance( "db-master-1", 10, 'db.m1.small', 'root', 'hunter2') replica = conn.create_dbinstance_read_replica( "replica", "db-master-1", "db.m1.small") replica.id.should.equal("replica") replica.instance_class.should.equal("db.m1.small") status_info = replica.status_infos[0] status_info.normal.should.equal(True) status_info.status_type.should.equal('read replication') status_info.status.should.equal('replicating') primary = conn.get_all_dbinstances("db-master-1")[0] primary.read_replica_dbinstance_identifiers[0].should.equal("replica") conn.delete_dbinstance("replica") primary = conn.get_all_dbinstances("db-master-1")[0] list(primary.read_replica_dbinstance_identifiers).should.have.length_of(0) @disable_on_py3() @mock_rds_deprecated def test_create_cross_region_database_replica(): west_1_conn = boto.rds.connect_to_region("us-west-1") west_2_conn = boto.rds.connect_to_region("us-west-2") primary = west_1_conn.create_dbinstance( "db-master-1", 10, 'db.m1.small', 'root', 'hunter2') primary_arn = "arn:aws:rds:us-west-1:1234567890:db:db-master-1" replica = west_2_conn.create_dbinstance_read_replica( "replica", primary_arn, "db.m1.small", ) primary = west_1_conn.get_all_dbinstances("db-master-1")[0] primary.read_replica_dbinstance_identifiers[0].should.equal("replica") replica = west_2_conn.get_all_dbinstances("replica")[0] replica.instance_class.should.equal("db.m1.small") west_2_conn.delete_dbinstance("replica") primary = west_1_conn.get_all_dbinstances("db-master-1")[0] list(primary.read_replica_dbinstance_identifiers).should.have.length_of(0) @disable_on_py3() @mock_rds_deprecated def test_connecting_to_us_east_1(): # boto does not use us-east-1 in the URL for RDS, # and that broke moto in the past: # https://github.com/boto/boto/blob/e271ff09364ea18d9d8b6f4d63d6b0ac6cbc9b75/boto/endpoints.json#L285 conn = boto.rds.connect_to_region("us-east-1") database = conn.create_dbinstance("db-master-1", 10, 'db.m1.small', 'root', 'hunter2', security_groups=["my_sg"]) database.status.should.equal('available') database.id.should.equal("db-master-1") database.allocated_storage.should.equal(10) database.instance_class.should.equal("db.m1.small") database.master_username.should.equal("root") database.endpoint.should.equal( ('db-master-1.aaaaaaaaaa.us-east-1.rds.amazonaws.com', 3306)) database.security_groups[0].name.should.equal('my_sg') @disable_on_py3() @mock_rds_deprecated def test_create_database_with_iops(): conn = boto.rds.connect_to_region("us-west-2") database = conn.create_dbinstance( "db-master-1", 10, 'db.m1.small', 'root', 'hunter2', iops=6000) database.status.should.equal('available') database.iops.should.equal(6000) # boto>2.36.0 may change the following property name to `storage_type` database.StorageType.should.equal('io1') ``` #### File: tests/test_sns/test_publishing.py ```python from __future__ import unicode_literals from six.moves.urllib.parse import parse_qs import boto from freezegun import freeze_time import sure # noqa from moto.packages.responses import responses from moto import mock_sns_deprecated, mock_sqs_deprecated @mock_sqs_deprecated @mock_sns_deprecated def test_publish_to_sqs(): conn = boto.connect_sns() conn.create_topic("some-topic") topics_json = conn.get_all_topics() topic_arn = topics_json["ListTopicsResponse"][ "ListTopicsResult"]["Topics"][0]['TopicArn'] sqs_conn = boto.connect_sqs() sqs_conn.create_queue("test-queue") conn.subscribe(topic_arn, "sqs", "arn:aws:sqs:us-east-1:123456789012:test-queue") conn.publish(topic=topic_arn, message="my message") queue = sqs_conn.get_queue("test-queue") message = queue.read(1) message.get_body().should.equal('my message') @mock_sqs_deprecated @mock_sns_deprecated def test_publish_to_sqs_in_different_region(): conn = boto.sns.connect_to_region("us-west-1") conn.create_topic("some-topic") topics_json = conn.get_all_topics() topic_arn = topics_json["ListTopicsResponse"][ "ListTopicsResult"]["Topics"][0]['TopicArn'] sqs_conn = boto.sqs.connect_to_region("us-west-2") sqs_conn.create_queue("test-queue") conn.subscribe(topic_arn, "sqs", "arn:aws:sqs:us-west-2:123456789012:test-queue") conn.publish(topic=topic_arn, message="my message") queue = sqs_conn.get_queue("test-queue") message = queue.read(1) message.get_body().should.equal('my message') ```
{ "source": "jdhare/turbulence_tracing", "score": 3 }
#### File: turbulence_tracing/gaussian_fields/mainGen.py ```python import numpy as np import turboGen as tg import time import matplotlib.pyplot as plt import cmpspec import matplotlib.cm from mpl_toolkits.mplot3d import Axes3D # ____ ____ ____ ___ ____ ____ _ _ _ _ # / ___)( _ \( __)/ __)(_ _)( _ \/ )( \( \/ ) # \___ \ ) __/ ) _)( (__ )( ) /) \/ (/ \/ \ # (____/(__) (____)\___) (__) (__\_)\____/\_)(_/ # this is the standard kolmogorov spectrum -5/3 # class k41: def evaluate(self, k): espec = pow(k,-5.0/3.0) return espec # __ ____ ____ __ ____ __ ____ # / \ ___( \ ( __)( )( __)( ) ( \ # (_/ /(___)) D ( ) _) )( ) _) / (_/\ ) D ( # (__) (____/ (__) (__)(____)\____/(____/ # First case. let's assume 1-D # GRID RESOLUTION nx nx = 64 # DOMAIN DEFINITION lx = 1 # NUMBER OF MODES nmodes = 100 # SPECIFY THE SPECTRUM THAT WE WANT # right now only kolmogorov -5/3 inputspec = 'k41' # PATH folder pathfolder = './Output' filename1 = inputspec + '_' + str(nx) + '_' + str(nmodes) + '_modes' # CALL CLASS SPECTRUM whichspect = k41().evaluate # Defining the smallest wavenumber represented by this spectrum wn1 = 2.0*np.pi/lx # Summary of the user input print("SUMMARY OF THE USER INPUTs:") print("---------------------------") print("Type of generator: 1D") print("Spectrum: ", inputspec) print("Domain size: ", lx) print("Grid Resolution", nx) print("Fourier accuracy (modes): ", nmodes) # # STARTING... # Smallest step size dx = lx/nx t0 = time.time() # initial time # -------------------------------------------------- # Run the function TurboGenerator # -------------------------------------------------- r_x = tg.gaussian1Dcos(lx, nx, nmodes, wn1, whichspect) # t1 = time.time() # final time computing_time = t1 - t0 # print("It took me ", computing_time, "to generate the 1D turbulence.") # COMPUTE THE POWER SPECTRUM OF THE 1-D FIELD # verify that the generated velocities fit the spectrum knyquist1D, wavenumbers1D, tkespec1D = cmpspec.compute1Dspectrum(r_x, lx, False) # save the generated spectrum to a text file for later post processing np.savetxt(pathfolder + '/1D_tkespec_' + filename1 + '.txt', np.transpose([wavenumbers1D, tkespec1D])) # ____ ____ ____ __ ____ __ ____ # (___ \ ___( \ ( __)( )( __)( ) ( \ # / __/(___)) D ( ) _) )( ) _) / (_/\ ) D ( # (____) (____/ (__) (__)(____)\____/(____/ # First case. let's assume 2-D # GRID RESOLUTION nx, ny nx = 64 ny = 64 # DOMAIN DEFINITION lx = 1 ly = 1 # NUMBER OF MODES nmodes = 100 # SPECIFY THE SPECTRUM THAT WE WANT # right now only kolmogorov -5/3 inputspec = 'k41' # PATH folder pathfolder = './Output' filename2 = inputspec + '_' + str(nx) + '_' + str(ny) + '_' + str(nmodes) + '_modes' # CALL CLASS SPECTRUM whichspect = k41().evaluate # Defining the smallest wavenumber represented by this spectrum wn1 = min(2.0*np.pi/lx, 2.0*np.pi/ly) # Summary of the user input print("SUMMARY OF THE USER INPUTs:") print("---------------------------") print("Type of generator: 2D") print("Spectrum: ", inputspec) print("Domain size: ", lx, ly) print("Grid Resolution", nx, ny) print("Fourier accuracy (modes): ", nmodes) # # STARTING... # Smallest step size dx = lx/nx dy = ly/ny t0 = time.time() # initial time # -------------------------------------------------- # Run the function TurboGenerator # -------------------------------------------------- r_xy = tg.gaussian2Dcos(lx, ly, nx, ny, nmodes, wn1, whichspect) t1 = time.time() # final time computing_time = t1 - t0 print("It took me ", computing_time, "to generate the 2D turbulence.") # COMPUTE THE POWER SPECTRUM OF THE 2-D FIELD # verify that the generated velocities fit the spectrum knyquist2D, wavenumbers2D, tkespec2D = cmpspec.compute2Dspectrum(r_xy, lx, ly, False) # save the generated spectrum to a text file for later post processing np.savetxt(pathfolder + '/2D_tkespec_' + filename2 + '.txt', np.transpose([wavenumbers2D, tkespec2D])) # ____ ____ ____ __ ____ __ ____ # ( __ \ ___( \ ( __)( )( __)( ) ( \ # (__ ((___)) D ( ) _) )( ) _) / (_/\ ) D ( # (____/ (____/ (__) (__)(____)\____/(____/ # First case. let's assume 3-D # GRID RESOLUTION nx, ny, nz nx = 64 ny = 64 nz = 64 # DOMAIN DEFINITION lx = 1 ly = 1 lz = 1 # NUMBER OF MODES nmodes = 100 # SPECIFY THE SPECTRUM THAT WE WANT # right now only kolmogorov -5/3 inputspec = 'k41' # PATH folder pathfolder = './Output' filename3 = inputspec + '_' + str(nx) + '_' + str(ny) + '_' + str(nz) + '_' + str(nmodes) + '_modes' # CALL CLASS SPECTRUM whichspect = k41().evaluate # Defining the smallest wavenumber represented by this spectrum wn1 = min(2.0*np.pi/lx, 2.0*np.pi/ly) # Summary of the user input print("SUMMARY OF THE USER INPUTs:") print("---------------------------") print("Type of generator: 3D") print("Spectrum: ", inputspec) print("Domain size: ", lx, ly, lz) print("Grid Resolution", nx, ny, nz) print("Fourier accuracy (modes): ", nmodes) # # STARTING... # Smallest step size dx = lx/nx dy = ly/ny dz = lz/nz t0 = time.time() # initial time # -------------------------------------------------- # Run the function TurboGenerator # -------------------------------------------------- r_xyz = tg.gaussian3Dcos(lx, ly, lz, nx, ny, nz, nmodes, wn1, whichspect) t1 = time.time() # final time computing_time = t1 - t0 print("It took me ", computing_time, "to generate the 3D turbulence.") # COMPUTE THE POWER SPECTRUM OF THE 2-D FIELD # verify that the generated velocities fit the spectrum knyquist3D, wavenumbers3D, tkespec3D = cmpspec.compute3Dspectrum(r_xyz, lx, ly, lz, False) # save the generated spectrum to a text file for later post processing np.savetxt(pathfolder + '/3D_tkespec_' + filename3 + '.txt', np.transpose([wavenumbers3D, tkespec3D])) # ____ __ __ ____ ____ ____ ____ _ _ __ ____ ____ # ( _ \( ) / \(_ _) ( _ \( __)/ ___)/ )( \( ) (_ _)/ ___) # ) __// (_/\( O ) )( ) / ) _) \___ \) \/ (/ (_/\ )( \___ \ # (__) \____/ \__/ (__) (__\_)(____)(____/\____/\____/(__) (____/ # PLOT THE 1D, 2D, 3D FIELD IN REAL DOMAIN AND RELATIVE POWER SPECTRUM # --------------------------------------------------------------------- # Plot 1D-FIELD plt.rc("font", size=10, family='serif') fig = plt.figure(figsize=(3.5, 2.8), dpi=200, constrained_layout=True) X = np.arange(0,lx,dx) plt.plot(X,r_x, 'k-', label='computed') plt.xticks(fontsize=12) plt.yticks(fontsize=12) plt.xlabel('Meter [m]') plt.ylabel(r'$ \rho(x) $') plt.legend() plt.grid() fig.savefig(pathfolder + '/1D_field_' + filename1 + '.pdf') # Plot 2D-FIELD plt.rc("font", size=10, family='serif') fig = plt.figure(figsize=(3.5, 2.8), dpi=200, constrained_layout=True) X, Y = np.meshgrid(np.arange(0,lx,dx),np.arange(0,ly,dy)) cp = plt.contourf(X, Y, r_xy, cmap = matplotlib.cm.get_cmap('plasma')) cb = plt.colorbar(cp) plt.xticks(fontsize=12) plt.yticks(fontsize=12) plt.xlabel('Meter [m]') plt.ylabel('Meter [m]') cb.set_label(r'$ \rho(x,y) $', rotation=270) plt.grid() fig.savefig(pathfolder + '/2D_field_' + filename2 + '.pdf') plt.show() # Plot 3D-FIELD plt.rc("font", size=10, family='serif') fig = plt.figure(figsize=(3.5, 2.8), dpi=200, constrained_layout=True) # X, Y, Z = np.meshgrid(np.arange(0,lx,dx),np.arange(0,ly,dy),np.arange(0,lz,dz)) X, Y = np.meshgrid(np.arange(0,lx,dx),np.arange(0,ly,dy)) cp = plt.contourf(X, Y, r_xyz[:,:,1], cmap = matplotlib.cm.get_cmap('plasma')) cb = plt.colorbar(cp) plt.xticks(fontsize=12) plt.yticks(fontsize=12) plt.xlabel('Meter [m]') plt.ylabel('Meter [m]') cb.set_label(r'$ \rho(x,y) $', rotation=270) plt.grid() fig.savefig(pathfolder + '/3D_field_slice_' + filename3 + '.pdf') plt.show() # -------------------------------------------------------------- # PLOT NUMERICAL AND THEORICAL POWER SPECTRUM # Plot in log-log # -------------------------------------------------------------- # PLOT 1-D FIELD SPECTRUM # Range of wavenumbers from minimum wavenumber wn1 up to 2000 plt.rc("font", size=10, family='serif') fig = plt.figure(figsize=(3.5, 2.8), dpi=200, constrained_layout=True) wnn = np.arange(wn1, 2000) l1, = plt.loglog(wnn, whichspect(wnn), 'k-', label='input') l2, = plt.loglog(wavenumbers1D[1:6], tkespec1D[1:6], 'bo--', markersize=3, markerfacecolor='w', markevery=1, label='computed') plt.loglog(wavenumbers1D[5:], tkespec1D[5:], 'bo--', markersize=3, markerfacecolor='w', markevery=4) plt.axis([3, 10000, 1e-7, 1e-1]) plt.xticks(fontsize=12) plt.yticks(fontsize=12) plt.axvline(x=knyquist1D, linestyle='--', color='black') plt.xlabel('$\kappa$ [1/m]') plt.ylabel('$E(\kappa)$ [m$^3$/s$^2$]') plt.grid() plt.legend() fig.savefig(pathfolder + '/1D_tkespec_' + filename1 + '.pdf') plt.show() # PLOT 2-D FIELD SPECTRUM # Range of wavenumbers from minimum wavenumber wn1 up to 2000 plt.rc("font", size=10, family='serif') fig = plt.figure(figsize=(3.5, 2.8), dpi=200, constrained_layout=True) wnn = np.arange(wn1, 2000) l1, = plt.loglog(wnn, whichspect(wnn), 'k-', label='input') l2, = plt.loglog(wavenumbers2D[1:6], tkespec2D[1:6], 'bo--', markersize=3, markerfacecolor='w', markevery=1, label='computed') plt.loglog(wavenumbers2D[5:], tkespec2D[5:], 'bo--', markersize=3, markerfacecolor='w', markevery=4) plt.axis([3, 10000, 1e-7, 1e-1]) plt.xticks(fontsize=12) plt.yticks(fontsize=12) plt.axvline(x=knyquist2D, linestyle='--', color='black') plt.xlabel('$\kappa$ [1/m]') plt.ylabel('$E(\kappa)$ [m$^3$/s$^2$]') plt.grid() plt.legend() fig.savefig(pathfolder + '/2D_tkespec_' + filename2 + '.pdf') plt.show() # PLOT 3-D FIELD SPECTRUM # Range of wavenumbers from minimum wavenumber wn1 up to 2000 plt.rc("font", size=10, family='serif') fig = plt.figure(figsize=(3.5, 2.8), dpi=200, constrained_layout=True) wnn = np.arange(wn1, 2000) l1, = plt.loglog(wnn, whichspect(wnn), 'k-', label='input') l2, = plt.loglog(wavenumbers3D[1:6], tkespec3D[1:6], 'bo--', markersize=3, markerfacecolor='w', markevery=1, label='computed') plt.loglog(wavenumbers3D[5:], tkespec3D[5:], 'bo--', markersize=3, markerfacecolor='w', markevery=4) plt.axis([3, 10000, 1e-7, 1e-1]) plt.xticks(fontsize=12) plt.yticks(fontsize=12) plt.axvline(x=knyquist3D, linestyle='--', color='black') plt.xlabel('$\kappa$ [1/m]') plt.ylabel('$E(\kappa)$ [m$^3$/s$^2$]') plt.grid() plt.legend() fig.savefig(pathfolder + '/3D_tkespec_' + filename3 + '.pdf') plt.show() # ____ ____ ____ __ __ ____ ____ __ ____ __ ____ # ( __ \ ___( \ ( _ \( ) / \(_ _) ( __)( )( __)( ) ( \ # (__ ((___)) D ( ) __// (_/\( O ) )( ) _) )( ) _) / (_/\ ) D ( # (____/ (____/ (__) \____/ \__/ (__) (__) (__)(____)\____/(____/ # plt.rc("font", size=10, family='serif') # fig = plt.figure(figsize=(3.5, 2.8), dpi=200, constrained_layout=True) # ax = fig.gca(projection='3d') # X, Y = np.meshgrid(np.arange(0,lx,dx),np.arange(0,ly,dy)) # cset = [[],[],[]] # # this is the example that worked for you: # Z = r_xyz[0,:,:] # cset[0] = ax.contourf(Z, X, Y, zdir = 'x', offset = , cmap = matplotlib.cm.get_cmap('plasma')) # # cset[0] = ax.contourf(X, Y, Z, zdir = 'y', offset = , levels=np.linspace(np.min(Z),np.max(Z),30), cmap = matplotlib.cm.get_cmap('plasma')) # # now, for the x-constant face, assign the contour to the x-plot-variable: # # cset[1] = ax.contourf(X, Y, r_xyz[:,:,31], levels=np.linspace(np.min(r_xyz[:,:,31]),np.max(r_xyz[:,:,31]),30), cmap = matplotlib.cm.get_cmap('plasma')) # # likewise, for the y-constant face, assign the contour to the y-plot-variable: # # cset[2] = ax.contourf(X, Y, r_xyz[:,:,63] , levels=np.linspace(np.min(r_xyz[:,:,63]),np.max(r_xyz[:,:,63]),30), cmap = matplotlib.cm.get_cmap('plasma')) # # # setting 3D-axis-limits: # # ax.set_xlim3d(0,nx) # # ax.set_ylim3d(0,ny) # # ax.set_zlim3d(0,nz) # ax.set_xlabel('X') # ax.set_ylabel('Y') # ax.set_zlabel('Z') # plt.grid() # fig.savefig(pathfolder + '/3D_field_' + filename3 + '.pdf') # plt.show() ``` #### File: turbulence_tracing/particle_tracking/example_kitchensink.py ```python import numpy as np import particle_tracker as pt import matplotlib.pyplot as plt import vtk from vtk.util import numpy_support as vtk_np def pvti_readin(filename): ''' Reads in data from pvti with filename, use this to read in electron number density data ''' reader = vtk.vtkXMLPImageDataReader() reader.SetFileName(filename) reader.Update() data = reader.GetOutput() dim = data.GetDimensions() spacing = np.array(data.GetSpacing()) v = vtk_np.vtk_to_numpy(data.GetCellData().GetArray(0)) n_comp = data.GetCellData().GetArray(0).GetNumberOfComponents() vec = [int(i-1) for i in dim] if(n_comp > 1): vec.append(n_comp) if(n_comp > 2): img = v.reshape(vec,order="F")[0:dim[0]-1,0:dim[1]-1,0:dim[2]-1,:] else: img = v.reshape(vec,order="F")[0:dim[0]-1,0:dim[1]-1,0:dim[2]-1] dim = img.shape return img,dim,spacing # Kitchen sink test Np = int(1e5) ## Load in data print("Loading data...") vti_file = "./data/x08_rnec-400.pvti" rnec,dim,spacing = pvti_readin(vti_file) #vti_file = "./data/x08_Te-300.pvti" #Te,dim,spacing = pvti_readin(vti_file) vti_file = "./data/x08_Bvec-400.pvti" Bvec,dim,spacing = pvti_readin(vti_file) # Probing direction is along y M_V2 = dim[2]//2 ne_extent2 = 2*spacing[2]*((M_V2-1)/2) ne_z = np.linspace(-ne_extent2,ne_extent2,M_V2) M_V1 = 80 ne_extent1 = 2*spacing[0]*((M_V1-1)/2) ne_x = np.linspace(-ne_extent1,ne_extent1,M_V1) M_V = dim[1]//2 ne_extent = 2*spacing[1]*((M_V-1)/2) ne_y = np.linspace(-ne_extent,ne_extent,M_V) rnec = rnec[-2*M_V1::2,::2,::2] #Te = Te[-2*M_V1::2,::2,::2] Bvec = Bvec[-2*M_V1::2,::2,::2,:] print("Data loaded...") fig = plt.figure(dpi=200) ax1 = fig.add_subplot(221) ax2 = fig.add_subplot(222) ax3 = fig.add_subplot(223) ax4 = fig.add_subplot(224) test = pt.ElectronCube(ne_x,ne_y,ne_z,ne_extent,B_on=True,inv_brems=False,phaseshift=True, probing_direction = 'y') test.external_ne(rnec) #test.external_Te(Te) #test.external_Z(1.0) test.external_B(Bvec) test.calc_dndr() test.set_up_interps() test.clear_memory() rnec = None Bvec = None ## Beam properties beam_size = 10e-3 # 10 mm divergence = 0.05e-3 #0.05 mrad, realistic ## Initialise laser beam ss = pt.init_beam(Np = Np, beam_size=beam_size, divergence = divergence, ne_extent = ne_extent, probing_direction = 'y') ## Propogate rays through ne_cube rf = test.solve(ss) # output of solve is the rays in (x, theta, y, phi) format Jf = test.Jf # Convert to mm, a nicer unit rf[0:4:2,:] *= 1e3 rx = rf[0,:] ry = rf[2,:] amp = np.sqrt(np.abs(Jf[0,:]**2+Jf[1,:]**2)) aEy = np.arctan(np.real(Jf[0,:]/Jf[1,:])) REy = np.cos(np.angle(Jf[1,:]))**2 fig = plt.figure(dpi=200) ax1 = fig.add_subplot(131) ax2 = fig.add_subplot(132) ax3 = fig.add_subplot(133) bin_edges = 1e3*beam_size*np.linspace(-1.0,1.0,100) amp_hist,xedges,yedges = np.histogram2d(rx,ry,bins=bin_edges,weights=amp) im1 = ax1.imshow(amp_hist,extent=[bin_edges[0],bin_edges[-1],bin_edges[0],bin_edges[-1]]) ax1.set_xlim([bin_edges[0],bin_edges[-1]]) ax1.set_ylim([bin_edges[0],bin_edges[-1]]) ax1.set_aspect('equal') ax1.set_title(r"$\sqrt{E_x^2+E_y^2}$") fig.colorbar(im1,ax=ax1,orientation='horizontal') aEy_hist,xedges,yedges = np.histogram2d(rx,ry,bins=bin_edges,weights=aEy) # Normalise aEy_hist /= amp_hist im2 = ax2.imshow(aEy_hist,cmap='coolwarm',extent=[bin_edges[0],bin_edges[-1],bin_edges[0],bin_edges[-1]]) ax2.set_aspect('equal') ax2.set_title(r"atan$\left(\frac{E_x}{E_y}\right)$") fig.colorbar(im2,ax=ax2,orientation='horizontal') REy_hist,xedges,yedges = np.histogram2d(rx,ry,bins=bin_edges,weights=REy) # Normalise REy_hist /= amp_hist im3 = ax3.imshow(REy_hist,cmap='Greys',extent=[bin_edges[0],bin_edges[-1],bin_edges[0],bin_edges[-1]]) ax3.set_aspect('equal') ax3.set_title(r"cos$^2$(arg$\left(E_y\right)$)") fig.colorbar(im3,ax=ax3,orientation='horizontal') fig.savefig("DannyExpRayTrace.png") plt.show() ``` #### File: turbulence_tracing/particle_tracking/paraxial_solver.py ```python import numpy as np import matplotlib.pyplot as plt import sympy as sym from scipy.interpolate import RectBivariateSpline from ipywidgets import FloatProgress from turboGen import gaussian3D_FFT, gaussian3Dcos, gaussian2D_FFT, gaussian1D_FFT def power_spectrum(k,a): """Simple function for power laws Args: k (float array): wave number a (float): power law Returns: float array: k^-a (note minus sign is assumed!) """ return k**-a def k41_3D(k): """Helper function to generate a kolmogorov spectrum in 3D Args: k (float array): wave number Returns: function: function of k """ return power_spectrum(k, 11/3) def generate_collimated_beam(N, X): """Simple helper function to generate a collimate beam Args: N (float): number of rays X (float): size of beam, will generate rays in -X/2 to X/2 in x and y. Returns: 4xN float array: N rays, represented by x, theta, y, phi """ rr0=np.random.rand(4,int(N)) rr0[0,:]-=0.5 rr0[2,:]-=0.5 #x, θ, y, ϕ scales=np.diag(np.array([X,0,X,0])) r0=np.matmul(scales, rr0) return r0 L = sym.symbols('L', real=True) # used for sympy def transform(matrix, rays): ''' Simple wrapper for matrix multiplication ''' return np.matmul(matrix,rays) def distance(d): '''4x4 symbolic matrix for travelling a distance d See: https://en.wikipedia.org/wiki/Ray_transfer_matrix_analysis ''' d = sym.Matrix([[1, d], [0, 1]]) L=sym.zeros(4,4) L[:2,:2]=d L[2:,2:]=d return L d1=distance(L) #symbolic matrix Z1=sym.lambdify([L], d1, "numpy") #a function to return a numpy matrix def gradient_interpolator(ne, x, y): """Deceptively simple. First we take the gradient of ne, use a second order centered differences approach Then we create a bivariate spline to handle interpolation of this gradient field Args: ne (NxM float array): electron density x (M float array): x coordinates y (N float array): y coordinates Returns: RectBivariateSpline tuple: Two functions which take coordinates and return values of the gradient. """ grad_ney, grad_nex=np.gradient(ne, y, x) gx=RectBivariateSpline(y,x,grad_nex) gy=RectBivariateSpline(y,x,grad_ney) return gx, gy def deflect_rays(rays, grad_nex,grad_ney, dz, n_cr=1.21e21): """Deflects rays at a slice based on the gradient of the electron density Args: rays (4xN float): array representing N rays grad_nex (RectBivariateSpline): function which take coordinates and return values of the gradient grad_ney ([type]): function which take coordinates and return values of the gradient dz (float): distance in z which each slice covers. Use a consistent system n_cr (float): critical density. Change this based on wavelength of laser and units system. Default is 1 um laser in cm^-3 Returns: 4xN float array: rays after deflection """ n_cr=1.21e21 #cm^-3, assumes ne has the same units xs=rays[0,:] ys=rays[2,:] dangle=np.zeros_like(rays) dangle[1,:]=grad_nex(ys, xs, grid=False)*dz/(2*n_cr) dangle[3,:]=grad_ney(ys, xs, grid=False)*dz/(2*n_cr) return rays+dangle def histogram(rays, bin_scale=10, pix_x=1000, pix_y=1000, Lx=10,Ly=10): """Bin data into a histogram. Defaults are for a KAF-8300. Outputs are H, the histogram, and xedges and yedges, the bin edges. Args: rays (4xN float): array representing N rays bin_scale (int, optional): bin size, same in x and y. Defaults to 10. pix_x (int, optional): number of x pixels in detector plane. Defaults to 3448. pix_y (int, optional): number of y pixels in detector plane. Defaults to 2574. Lx (int, optional): x detector size in consistent units. Defaults to 10. Ly (int, optional): y detector size in consistent units. Defaults to 10. Returns: MxN array, M array, N array: binned histogram and bin edges. """ x=rays[0,:] y=rays[2,:] x=x[~np.isnan(x)] y=y[~np.isnan(y)] H, xedges, yedges = np.histogram2d(x, y, bins=[pix_x//bin_scale, pix_y//bin_scale], range=[[-Lx/2, Lx/2],[-Ly/2,Ly/2]]) H=H.T return H, xedges, yedges def plot_histogram(H, xedges, yedges, ax, clim=None, cmap=None): """[summary] Args: H (MxN float): histogram xedges (N float): x bin edges yedges (M float): y bin edges ax (matplotlib axis): axis to plot to clim (tuple, optional): Limits for imshow Defaults to None. cmap (str, optional): matplotlib colourmap. Defaults to None. """ ax.imshow(H, interpolation='nearest', origin='low', clim=clim, cmap=cmap, extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]], aspect=1) class GridTracer: """ Provides the functions for examining and tracing rays through a grid of electron density. Inherit from this and implement __init__ for different grid configurations. """ def plot_ne_slices(self): """Plot 9 slices from the density grid, for inspection Returns: fig, ax: matplotlib figure and axis. """ fig,ax=plt.subplots(3,3, figsize=(8,8), sharex=True, sharey=True) ax=ax.flatten() sc=self.scale/2 for i, a in enumerate(ax): r=(2*self.N+1)*i//9 d=self.ne_grid[r,:,:] a.imshow(d, cmap='bwr', extent=[-sc,sc,-sc, sc]) a.set_title("z="+str(round(self.z[r]))) return fig, ax def solve(self, r0): """Trace rays through the turbulent grid Args: r0 (4xN float): array of N rays, in their initial configuration """ f = FloatProgress(min=0, max=self.ne_grid.shape[0], description='Progress:') display(f) self.r0 = r0 # keep the original dz = self.z[1]-self.z[0] DZ = Z1(dz) # matrix to push rays by dz rt = r0.copy() # iterate to save memory, starting at r0 for i, ne_slice in enumerate(self.ne_grid): f.value = i gx, gy = gradient_interpolator(ne_slice, self.x, self.y) rr1 = deflect_rays(rt, gx, gy, dz=dz) rt = transform(DZ, rr1) self.rt = rt def plot_rays(self, clim=None): H0, xedges0, yedges0 = histogram(self.r0, bin_scale=10, pix_x=1000, pix_y=1000, Lx=10,Ly=10) Hf, xedgesf, yedgesf = histogram(self.rt, bin_scale=10, pix_x=1000, pix_y=1000, Lx=10,Ly=10) fig,(ax1,ax2)=plt.subplots(1,2,figsize=(8,4)) plot_histogram(H0, xedges0,yedges0, ax1, clim=clim) plot_histogram(Hf, xedgesf,yedgesf, ax2, clim=clim) class TurbulentGrid(GridTracer): """Trace rays through a turbulent electron density defined on a grid """ def __init__(self, N, spectrum, n_e0, dn_e, scale): """generate a turbulent grid. You can use cm^-3 for density and mm for scales. This code assumes x,y, and z have the same grid spacing. If this is so, the scale difference drops out because \nabla n_e/n_cr dz has units of [mm^-1] [cm^-3]/[cm^-3] [mm] = dimless (radians). If you are using this class as a guide on how to implement another GridTracer, be careful! Safest would be to use cm for everything, but they are a bit large for our porpoises. Args: N (int): half size of cube, will be 2*N+1 spectrum (function of k): a spectrum, such as k**-11/3 n_e0 (float): mean electron density dn_e (float): standard deviation of electron density scale (float): length of a box side. """ self.N=N self.scale=scale self.x = np.linspace(-scale,scale,2*N+1) self.y = self.x self.z = self.x s3 = gaussian3D_FFT(N, spectrum) self.ne_grid = n_e0 + dn_e*s3/s3.std() ``` #### File: turbulence_tracing/particle_tracking/particle_tracker.py ```python import numpy as np from scipy.integrate import odeint,solve_ivp from scipy.interpolate import RegularGridInterpolator from time import time import scipy.constants as sc c = sc.c # honestly, this could be 3e8 *shrugs* class ElectronCube: """A class to hold and generate electron density cubes """ def __init__(self, x, y, z, extent, B_on = False, inv_brems = False, phaseshift = False, probing_direction = 'z'): """ Example: N_V = 100 M_V = 2*N_V+1 ne_extent = 5.0e-3 ne_x = np.linspace(-ne_extent,ne_extent,M_V) ne_y = np.linspace(-ne_extent,ne_extent,M_V) ne_z = np.linspace(-ne_extent,ne_extent,M_V) Args: x (float array): x coordinates, m y (float array): y coordinates, m z (float array): z coordinates, m extent (float): physical size, m """ self.z,self.y,self.x = z, y, x self.dx = x[1]-x[0] self.XX, self.YY, self.ZZ = np.meshgrid(x,y,z, indexing='ij') self.extent = extent self.probing_direction = probing_direction # Logical switches self.B_on = B_on self.inv_brems = inv_brems self.phaseshift = phaseshift def test_null(self): """ Null test, an empty cube """ self.ne = np.zeros_like(self.XX) def test_slab(self, s=1, n_e0=2e23): """A slab with a linear gradient in x: n_e = n_e0 * (1 + s*x/extent) Will cause a ray deflection in x Args: s (int, optional): scale factor. Defaults to 1. n_e0 ([type], optional): mean density. Defaults to 2e23 m^-3. """ self.ne = n_e0*(1.0+s*self.XX/self.extent) def test_linear_cos(self,s1=0.1,s2=0.1,n_e0=2e23,Ly=1): """Linearly growing sinusoidal perturbation Args: s1 (float, optional): scale of linear growth. Defaults to 0.1. s2 (float, optional): amplitude of sinusoidal perturbation. Defaults to 0.1. n_e0 ([type], optional): mean electron density. Defaults to 2e23 m^-3. Ly (int, optional): spatial scale of sinusoidal perturbation. Defaults to 1. """ self.ne = n_e0*(1.0+s1*self.XX/self.extent)*(1+s2*np.cos(2*np.pi*self.YY/Ly)) def test_exponential_cos(self,n_e0=1e24,Ly=1e-3, s=2e-3): """Exponentially growing sinusoidal perturbation Args: n_e0 ([type], optional): mean electron density. Defaults to 2e23 m^-3. Ly (int, optional): spatial scale of sinusoidal perturbation. Defaults to 1e-3 m. s ([type], optional): scale of exponential growth. Defaults to 2e-3 m. """ self.ne = n_e0*10**(self.XX/s)*(1+np.cos(2*np.pi*self.YY/Ly)) def external_ne(self, ne): """Load externally generated grid Args: ne ([type]): MxMxM grid of density in m^-3 """ self.ne = ne def external_B(self, B): """Load externally generated grid Args: B ([type]): MxMxMx3 grid of B field in T """ self.B = B def external_Te(self, Te, Te_min = 1.0): """Load externally generated grid Args: Te ([type]): MxMxM grid of electron temperature in eV """ self.Te = np.maximum(Te_min,Te) def external_Z(self, Z): """Load externally generated grid Args: Z ([type]): MxMxM grid of ionisation """ self.Z = Z def test_B(self, Bmax=1.0): """A Bz field with a linear gradient in x: Bz = Bmax*x/extent Args: Bmax ([type], optional): maximum B field, default 1.0 T """ self.B = np.zeros(np.append(np.array(self.XX.shape),3)) self.B[:,:,:,2] = Bmax*self.XX/self.extent def calc_dndr(self, lwl=1053e-9): """Generate interpolators for derivatives. Args: lwl (float, optional): laser wavelength. Defaults to 1053e-9 m. """ self.omega = 2*np.pi*(c/lwl) nc = 3.14207787e-4*self.omega**2 # Find Faraday rotation constant http://farside.ph.utexas.edu/teaching/em/lectures/node101.html if (self.B_on): self.VerdetConst = 2.62e-13*lwl**2 # radians per Tesla per m^2 self.ne_nc = self.ne/nc #normalise to critical density #More compact notation is possible here, but we are explicit self.dndx = -0.5*c**2*np.gradient(self.ne_nc,self.x,axis=0) self.dndy = -0.5*c**2*np.gradient(self.ne_nc,self.y,axis=1) self.dndz = -0.5*c**2*np.gradient(self.ne_nc,self.z,axis=2) self.dndx_interp = RegularGridInterpolator((self.x, self.y, self.z), self.dndx, bounds_error = False, fill_value = 0.0) self.dndy_interp = RegularGridInterpolator((self.x, self.y, self.z), self.dndy, bounds_error = False, fill_value = 0.0) self.dndz_interp = RegularGridInterpolator((self.x, self.y, self.z), self.dndz, bounds_error = False, fill_value = 0.0) # NRL formulary inverse brems - cheers <NAME> for coding in Python # Converted to rate coefficient by multiplying by group velocity in plasma def kappa(self): # Useful subroutines def omega_pe(ne): '''Calculate electron plasma freq. Output units are rad/sec. From nrl pp 28''' return 5.64e4*np.sqrt(ne) def v_the(Te): '''Calculate electron thermal speed. Provide Te in eV. Retrurns result in m/s''' return 4.19e5*np.sqrt(Te) def V(ne, Te, Z, omega): o_pe = omega_pe(ne) o_max = np.copy(o_pe) o_max[o_pe < omega] = omega L_classical = Z*sc.e/Te L_quantum = 2.760428269727312e-10/np.sqrt(Te) # sc.hbar/np.sqrt(sc.m_e*sc.e*Te) L_max = np.maximum(L_classical, L_quantum) return o_max*L_max def coloumbLog(ne, Te, Z, omega): return np.maximum(2.0,np.log(v_the(Te)/V(ne, Te, Z, omega))) ne_cc = self.ne*1e-6 o_pe = omega_pe(ne_cc) CL = coloumbLog(ne_cc, self.Te, self.Z, self.omega) return 3.1e-5*self.Z*c*np.power(ne_cc/self.omega,2)*CL*np.power(self.Te, -1.5) # 1/s # Plasma refractive index def n_refrac(self): def omega_pe(ne): '''Calculate electron plasma freq. Output units are rad/sec. From nrl pp 28''' return 5.64e4*np.sqrt(ne) ne_cc = self.ne*1e-6 o_pe = omega_pe(ne_cc) o_pe[o_pe > self.omega] = self.omega return np.sqrt(1.0-(o_pe/self.omega)**2) def set_up_interps(self): # Electron density self.ne_interp = RegularGridInterpolator((self.x, self.y, self.z), self.ne, bounds_error = False, fill_value = 0.0) # Magnetic field if(self.B_on): self.Bx_interp = RegularGridInterpolator((self.x, self.y, self.z), self.B[:,:,:,0], bounds_error = False, fill_value = 0.0) self.By_interp = RegularGridInterpolator((self.x, self.y, self.z), self.B[:,:,:,1], bounds_error = False, fill_value = 0.0) self.Bz_interp = RegularGridInterpolator((self.x, self.y, self.z), self.B[:,:,:,2], bounds_error = False, fill_value = 0.0) # Inverse Bremsstrahlung if(self.inv_brems): self.kappa_interp = RegularGridInterpolator((self.x, self.y, self.z), self.kappa(), bounds_error = False, fill_value = 0.0) # Phase shift if(self.phaseshift): self.refractive_index_interp = RegularGridInterpolator((self.x, self.y, self.z), self.n_refrac(), bounds_error = False, fill_value = 1.0) def plot_midline_gradients(self,ax,probing_direction): """I actually don't know what this does. Presumably plots the gradients half way through the box? Cool. Args: ax ([type]): [description] probing_direction ([type]): [description] """ N_V = self.x.shape[0]//2 if(probing_direction == 'x'): ax.plot(self.y,self.dndx[:,N_V,N_V]) ax.plot(self.y,self.dndy[:,N_V,N_V]) ax.plot(self.y,self.dndz[:,N_V,N_V]) elif(probing_direction == 'y'): ax.plot(self.y,self.dndx[N_V,:,N_V]) ax.plot(self.y,self.dndy[N_V,:,N_V]) ax.plot(self.y,self.dndz[N_V,:,N_V]) elif(probing_direction == 'z'): ax.plot(self.y,self.dndx[N_V,N_V,:]) ax.plot(self.y,self.dndy[N_V,N_V,:]) ax.plot(self.y,self.dndz[N_V,N_V,:]) else: # Default to y ax.plot(self.y,self.dndx[N_V,:,N_V]) ax.plot(self.y,self.dndy[N_V,:,N_V]) ax.plot(self.y,self.dndz[N_V,:,N_V]) def dndr(self,x): """returns the gradient at the locations x Args: x (3xN float): N [x,y,z] locations Returns: 3 x N float: N [dx,dy,dz] electron density gradients """ grad = np.zeros_like(x) grad[0,:] = self.dndx_interp(x.T) grad[1,:] = self.dndy_interp(x.T) grad[2,:] = self.dndz_interp(x.T) return grad # Attenuation due to inverse bremsstrahlung def atten(self,x): if(self.inv_brems): return -self.kappa_interp(x.T) else: return 0.0 # Phase shift introduced by refractive index def phase(self,x): if(self.phaseshift): return self.omega*self.refractive_index_interp(x.T) else: return 0.0 def get_ne(self,x): return self.ne_interp(x.T) def get_B(self,x): B = np.array([self.Bx_interp(x.T),self.By_interp(x.T),self.Bz_interp(x.T)]) return B def neB(self,x,v): """returns the VerdetConst ne B.v Args: x (3xN float): N [x,y,z] locations v (3xN float): N [vx,vy,vz] velocities Returns: N float: N values of ne B.v """ if(self.B_on): ne_N = self.get_ne(x) Bv_N = np.sum(self.get_B(x)*v,axis=0) pol = self.VerdetConst*ne_N*Bv_N else: pol = 0.0 return pol def solve(self, s0, method = 'RK45'): # Need to make sure all rays have left volume # Conservative estimate of diagonal across volume # Then can backproject to surface of volume t = np.linspace(0.0,np.sqrt(8.0)*self.extent/c,2) s0 = s0.flatten() #odeint insists start = time() dsdt_ODE = lambda t, y: dsdt(t, y, self) sol = solve_ivp(dsdt_ODE, [0,t[-1]], s0, t_eval=t, method = method) finish = time() print("Ray trace completed in:\t",finish-start,"s") Np = s0.size//9 self.sf = sol.y[:,-1].reshape(9,Np) # Fix amplitudes self.sf[6,self.sf[6,:] < 0.0] = 0.0 self.rf,self.Jf = ray_to_Jonesvector(self.sf, self.extent, probing_direction = self.probing_direction) return self.rf def clear_memory(self): """ Clears variables not needed by solve method, saving memory Can also use after calling solve to clear ray positions - important when running large number of rays """ self.dndx = None self.dndx = None self.dndx = None self.ne = None self.ne_nc = None self.sf = None self.rf = None # ODEs of photon paths def dsdt(t, s, ElectronCube): """Returns an array with the gradients and velocity per ray for ode_int Args: t (float array): I think this is a dummy variable for ode_int - our problem is time invarient s (9N float array): flattened 9xN array of rays used by ode_int ElectronCube (ElectronCube): an ElectronCube object which can calculate gradients Returns: 9N float array: flattened array for ode_int """ Np = s.size//9 s = s.reshape(9,Np) sprime = np.zeros_like(s) # Velocity and position v = s[3:6,:] x = s[:3,:] # Amplitude, phase and polarisation a = s[6,:] p = s[7,:] r = s[8,:] sprime[3:6,:] = ElectronCube.dndr(x) sprime[:3,:] = v sprime[6,:] = ElectronCube.atten(x)*a sprime[6,a < 1e-5] = 0.0 sprime[7,:] = ElectronCube.phase(x) sprime[8,:] = ElectronCube.neB(x,v) return sprime.flatten() def init_beam(Np, beam_size, divergence, ne_extent, probing_direction = 'z', coherent = False): """[summary] Args: Np (int): Number of photons beam_size (float): beam radius, m divergence (float): beam divergence, radians ne_extent (float): size of electron density cube, m. Used to back propagate the rays to the start probing_direction (str): direction of probing. I suggest 'z', the best tested Returns: s0, 9 x N float: N rays with (x, y, z, vx, vy, vz) in m, m/s and amplitude, phase and polarisation (a, p, r) """ s0 = np.zeros((9,Np)) # position, uniformly within a circle t = 2*np.pi*np.random.rand(Np) #polar angle of position u = np.random.rand(Np)+np.random.rand(Np) # radial coordinate of position u[u > 1] = 2-u[u > 1] # angle ϕ = np.pi*np.random.rand(Np) #azimuthal angle of velocity χ = divergence*np.random.randn(Np) #polar angle of velocity if(probing_direction == 'x'): # Initial velocity s0[3,:] = c * np.cos(χ) s0[4,:] = c * np.sin(χ) * np.cos(ϕ) s0[5,:] = c * np.sin(χ) * np.sin(ϕ) # Initial position s0[0,:] = -ne_extent s0[1,:] = beam_size*u*np.cos(t) s0[2,:] = beam_size*u*np.sin(t) elif(probing_direction == 'y'): # Initial velocity s0[4,:] = c * np.cos(χ) s0[3,:] = c * np.sin(χ) * np.cos(ϕ) s0[5,:] = c * np.sin(χ) * np.sin(ϕ) # Initial position s0[0,:] = beam_size*u*np.cos(t) s0[1,:] = -ne_extent s0[2,:] = beam_size*u*np.sin(t) elif(probing_direction == 'z'): # Initial velocity s0[3,:] = c * np.sin(χ) * np.cos(ϕ) s0[4,:] = c * np.sin(χ) * np.sin(ϕ) s0[5,:] = c * np.cos(χ) # Initial position s0[0,:] = beam_size*u*np.cos(t) s0[1,:] = beam_size*u*np.sin(t) s0[2,:] = -ne_extent else: # Default to y print("Default to y") # Initial velocity s0[4,:] = c * np.cos(χ) s0[3,:] = c * np.sin(χ) * np.cos(ϕ) s0[5,:] = c * np.sin(χ) * np.sin(ϕ) # Initial position s0[0,:] = beam_size*u*np.cos(t) s0[1,:] = -ne_extent s0[2,:] = beam_size*u*np.sin(t) # Initialise amplitude, phase and polarisation if coherent is False: #then it's incoherent, random phase print('Incoherent') phase = 2*np.pi*np.random.rand(Np) if coherent is True: print('Coherent') phase = np.zeros(Np) s0[6,:] = 1.0 s0[7,:] = phase s0[8,:] = 0.0 return s0 # Need to backproject to ne volume, then find angles def ray_to_Jonesvector(ode_sol, ne_extent, probing_direction = 'z'): """Takes the output from the 9D solver and returns 6D rays for ray-transfer matrix techniques. Effectively finds how far the ray is from the end of the volume, returns it to the end of the volume. Args: ode_sol (6xN float): N rays in (x,y,z,vx,vy,vz) format, m and m/s and amplitude, phase and polarisation ne_extent (float): edge length of cube, m probing_direction (str): x, y or z. Returns: [type]: [description] """ Np = ode_sol.shape[1] # number of photons ray_p = np.zeros((4,Np)) ray_J = np.zeros((2,Np),dtype=np.complex) x, y, z, vx, vy, vz = ode_sol[0], ode_sol[1], ode_sol[2], ode_sol[3], ode_sol[4], ode_sol[5] # Resolve distances and angles # YZ plane if(probing_direction == 'x'): t_bp = (x-ne_extent)/vx # Positions on plane ray_p[0] = y-vy*t_bp ray_p[2] = z-vz*t_bp # Angles to plane ray_p[1] = np.arctan(vy/vx) ray_p[3] = np.arctan(vz/vx) # XZ plane elif(probing_direction == 'y'): t_bp = (y-ne_extent)/vy # Positions on plane ray_p[0] = x-vx*t_bp ray_p[2] = z-vz*t_bp # Angles to plane ray_p[1] = np.arctan(vx/vy) ray_p[3] = np.arctan(vz/vy) # XY plane elif(probing_direction == 'z'): t_bp = (z-ne_extent)/vz # Positions on plane ray_p[0] = x-vx*t_bp ray_p[2] = y-vy*t_bp # Angles to plane ray_p[1] = np.arctan(vx/vz) ray_p[3] = np.arctan(vy/vz) # Resolve Jones vectors amp,phase,pol = ode_sol[6], ode_sol[7], ode_sol[8] # Assume initially polarised along y E_x_init = np.zeros(Np) E_y_init = np.ones(Np) # Perform rotation for polarisation, multiplication for amplitude, and complex rotation for phase ray_J[0] = amp*(np.cos(phase)+1.0j*np.sin(phase))*(np.cos(pol)*E_x_init-np.sin(pol)*E_y_init) ray_J[1] = amp*(np.cos(phase)+1.0j*np.sin(phase))*(np.sin(pol)*E_x_init+np.cos(pol)*E_y_init) # ray_p [x,phi,y,theta], ray_J [E_x,E_y] return ray_p,ray_J ``` #### File: turbulence_tracing/particle_tracking/polarisation_ray_transfer_matrix.py ```python import numpy as np import matplotlib.pyplot as plt ''' Example: ###INITIALISE RAYS### #Rays are a 6 vector of x, theta, y, phi, E_x, E_y, where E_x and E_y can be complex, and the rest are scalars. #here we initialise 10*7 randomly distributed rays rr0=np.random.rand(6,int(1e7)) rr0[0,:]-=0.5 #rand generates [0,1], so we recentre [-0.5,0.5] rr0[2,:]-=0.5 rr0[4,:]-=0.5 #rand generates [0,1], so we recentre [-0.5,0.5] rr0[5,:]-=0.5 #x, θ, y, ϕ scales=np.diag(np.array([10,0,10,0,1,1j])) #set angles to 0, collimated beam. x, y in [-5,5]. Circularly polarised beam, E_x = iE_y rr0=np.matmul(scales, rr0) r0=circular_aperture(5, rr0) #cut out a circle ### Shadowgraphy, no polarisation ## object_length: determines where the focal plane is. If you object is 10 mm long, object length = 5 will ## make the focal plane in the middle of the object. Yes, it's a bad variable name. s = Shadowgraphy(rr0, L = 400, R = 25, object_length=5) s.solve() s.histogram(bin_scale = 25) fig, axs = plt.subplots(figsize=(6.67, 6)) cm='gray' clim=[0,100] s.plot(axs, clim=clim, cmap=cm) ### Faraday, with a polarisation β, in degrees, which puts the axis of extinction at beta degrees to the y direction. ### that is, beta = 0 extinguishes E_y, beta = 90 extinguishes E_x ### of course, in this example we have E_x = i E_y, so all the polariser will do is reduce the intensity. ## object_length: determines where the focal plane is. If you object is 10 mm long, object length = 5 will ## make the focal plane in the middle of the object. Yes, it's a bad variable name. f = Faraday(rr0, L = 400, R = 25, object_length=5) f.solve(β = 80) f.histogram(bin_scale = 25) fig, axs = plt.subplots(figsize=(6.67, 6)) cm='gray' clim=[0,100] f.plot(axs, clim=clim, cmap=cm) ''' I = np.array([[1, 0], [0, 1]]) def lens(f1,f2): '''6x6 matrix for a thin lens, focal lengths f1 and f2 in orthogonal axes See: https://en.wikipedia.org/wiki/Ray_transfer_matrix_analysis ''' l1= np.array([[1, 0], [-1/f1, 1]]) l2= np.array([[1, 0], [-1/f2, 1]]) L=np.zeros((6,6)) L[:2,:2]=l1 L[2:4,2:4]=l2 L[4:,4:]=I return L def sym_lens(f): ''' helper function to create an axisymmetryic lens ''' return lens(f,f) def distance(d): '''6x6 matrix matrix for travelling a distance d See: https://en.wikipedia.org/wiki/Ray_transfer_matrix_analysis ''' d = np.array([[1, d], [0, 1]]) L=np.zeros((6,6)) L[:2,:2]=d L[2:4,2:4]=d L[4:,4:]=I return L def polariser(β): '''6x6 matrix for a polariser with the axis of extinction at β radians to the vertical See: https://en.wikipedia.org/wiki/Ray_transfer_matrix_analysis and https://en.wikipedia.org/wiki/Jones_calculus ''' L=np.zeros((6,6)) L[:2,:2]=I L[2:4,2:4]=I L[4:,4:]=np.array([[np.cos(β)**2, np.cos(β)*np.sin(β)], [np.cos(β)*np.sin(β), np.sin(β)**2]]) return L def circular_aperture(R, rays): ''' Filters rays to find those inside a radius R ''' filt = rays[0,:]**2+rays[2,:]**2 > R**2 rays[:,filt]=None return rays def rect_aperture(Lx, Ly, rays): ''' Filters rays inside a rectangular aperture, total size 2*Lx x 2*Ly ''' filt1 = (rays[0,:]**2 > Lx**2) filt2 = (rays[2,:]**2 > Ly**2) filt=filt1*filt2 rays[:,filt]=None return rays def knife_edge(axis, rays, edge = 1e-1): ''' Filters rays using a knife edge. Default is a knife edge in y, can also do a knife edge in x. ''' if axis is 'y': a=2 else: a=0 filt = rays[a,:] < edge rays[:,filt]=None return rays class Rays: """ Inheritable class for ray diagnostics. """ def __init__(self, r0, L=400, R=25, Lx=18, Ly=13.5, focal_plane = 0): """Initialise ray diagnostic. Args: r0 (6xN float array): N rays, [x, theta, y, phi, Ex, Ey] L (int, optional): Length scale L. First lens is at L. Defaults to 400. R (int, optional): Radius of lenses. Defaults to 25. Lx (int, optional): Detector size in x. Defaults to 18. Ly (float, optional): Detector size in y. Defaults to 13.5. Object_length (float, optional): Where the focus of the first optic should lie - 0 means at the near side of the density cube """ self.r0, self.L, self.R, self.Lx, self.Ly, self.focal_plane = r0, L, R, Lx, Ly, focal_plane def histogram(self, bin_scale=10, pix_x=3448, pix_y=2574, clear_mem=False): """Bin data into a histogram. Defaults are for a KAF-8300. Outputs are H, the histogram, and xedges and yedges, the bin edges. Args: bin_scale (int, optional): bin size, same in x and y. Defaults to 10. pix_x (int, optional): number of x pixels in detector plane. Defaults to 3448. pix_y (int, optional): number of y pixels in detector plane. Defaults to 2574. """ x=self.rf[0,:] y=self.rf[2,:] nonans = ~np.isnan(x) x=x[nonans] y=y[nonans] #treat the imaginary and real parts of E_x and E_y all separately. E_x_real = np.real(self.rf[4,:]) E_x_imag = np.imag(self.rf[4,:]) E_y_real = np.real(self.rf[5,:]) E_y_imag = np.imag(self.rf[5,:]) E_x_real = E_x_real[nonans] E_x_imag = E_x_imag[nonans] E_y_real = E_y_real[nonans] E_y_imag = E_y_imag[nonans] ## create four separate histograms for the real and imaginary parts of E_x and E-y self.H_Ex_real, self.xedges, self.yedges = np.histogram2d(x, y, bins=[pix_x//bin_scale, pix_y//bin_scale], range=[[-self.Lx/2, self.Lx/2],[-self.Ly/2,self.Ly/2]], normed = False, weights = E_x_real) self.H_Ex_imag, self.xedges, self.yedges = np.histogram2d(x, y, bins=[pix_x//bin_scale, pix_y//bin_scale], range=[[-self.Lx/2, self.Lx/2],[-self.Ly/2,self.Ly/2]], normed = False, weights = E_x_imag) self.H_Ey_real, self.xedges, self.yedges = np.histogram2d(x, y, bins=[pix_x//bin_scale, pix_y//bin_scale], range=[[-self.Lx/2, self.Lx/2],[-self.Ly/2,self.Ly/2]], normed = False, weights = E_y_real) self.H_Ey_imag, self.xedges, self.yedges = np.histogram2d(x, y, bins=[pix_x//bin_scale, pix_y//bin_scale], range=[[-self.Lx/2, self.Lx/2],[-self.Ly/2,self.Ly/2]], normed = False, weights = E_y_imag) # Recontruct the complex valued E_x and E_y components self.H_Ex = self.H_Ex_real+1j*self.H_Ex_imag self.H_Ey = self.H_Ey_real+1j*self.H_Ey_imag # Find the intensity using complex conjugates. Take the real value to remove very small (numerical error) imaginary components self.H = np.real(self.H_Ex*np.conj(self.H_Ex) + self.H_Ey*np.conj(self.H_Ey)) self.H = self.H.T # Optional - clear ray attributes to save memory if(clear_mem): self.clear_rays() def plot(self, ax, clim=None, cmap=None): ax.imshow(self.H, interpolation='nearest', origin='low', clim=clim, cmap=cmap, extent=[self.xedges[0], self.xedges[-1], self.yedges[0], self.yedges[-1]]) def clear_rays(self): ''' Clears the r0 and rf variables to save memory ''' self.r0 = None self.rf = None class Shadowgraphy(Rays): def solve(self): rl1=np.matmul(distance(self.L - self.focal_plane), self.r0) #displace rays to lens. Accounts for object with depth rc1=circular_aperture(self.R, rl1) # cut off r2=np.matmul(sym_lens(self.L/2), rc1) #lens 1 rl2=np.matmul(distance(3*self.L/2), r2) #displace rays to lens 2. rc2=circular_aperture(self.R, rl2) # cut off r3=np.matmul(sym_lens(self.L/3), rc2) #lens 2 rd3=np.matmul(distance(self.L), r3) #displace rays to detector self.rf = rd3 class Faraday(Rays): def solve(self, β = 3.0): rl1=np.matmul(distance(self.L - self.focal_plane), self.r0) #displace rays to lens. Accounts for object with depth rc1=circular_aperture(self.R, rl1) # cut off r2=np.matmul(sym_lens(self.L/2), rc1) #lens 1 rl2=np.matmul(distance(3*self.L/2), r2) #displace rays to lens 2. rc2=circular_aperture(self.R, rl2) # cut off r3=np.matmul(sym_lens(self.L/3), rc2) #lens 2 rp3=np.matmul(distance(self.L), r3) #displace rays to polariser β = β * np.pi/180 rd3=np.matmul(polariser(β), rp3) #pass polariser rays to detector self.rf = rd3 ```
{ "source": "jdhask/gcpy_extended", "score": 3 }
#### File: jdhask/gcpy_extended/planeflight_io.py ```python import pandas as pd from astropy.io import ascii ass asc # For reading ascii tables (only need if reading in output files!) from datetime import datetime import utils as ut import numpy as np import sys import os def _get_optional_diags(print_diag_options: bool = False,) : """Function to list. get all optional Diagnostic Quantites you can get with Planeflight.""" # grabbed from: http://wiki.seas.harvard.edu/geos-chem/index.php/Planeflight_diagnostic # and from inside planeflight_mod.f90 diag_dict= dict({"RO2": "Concentration of RO2 family", "AN": "Concentration of AN family", "NOy": "Concentration of NOy family", "GMAO_TEMP":"Temperature", "GMAO_ABSH":"Absolute humidity", "GMAO_SURF":"Aerosol surface area", "GMAO_PSFC":"Surface pressure", "GMAO_UWND":"Zonal winds", "GMAO_VWND":"Meridional winds", "GMAO_IIEV":"GEOS-Chem grid box index, longitude", "GMAO_JJEV":"GEOS-Chem grid box index, latitude", "GMAO_LLEV":"GEOS-Chem grid box index, altitude", "GMAO_RELH":"Relative humidity", #"GMAO_PVRT":"Ertel's potential vorticity", # Currently disabled, State_Met%PV is not defined. "GMAO_PSLV":"Sea level pressure", "GMAO_AVGW":"Water vapor mixing ratio", "GMAO_THTA":"Potential temperature", "GMAO_PRES":"Pressure at center of grid box", "AODC_SULF":"Column aerosol optical depth for sulfate", "AODC_BLKC":"Column aerosol optical depth for black carbon", "AODC_ORGC":"Column aerosol optical depth for organic carbon", "AODC_SALA":"Column aerosol optical depth for accumulation mode sea salt", "AODC_SALC":"Column aerosol optical depth for coarse mode sea salt", "AODC_DUST":"Column aerosol optical depth for dust", "AODB_SULF":"Column aerosol optical depth for sulfate below the aircraft", "AODB_BLKC":"Column aerosol optical depth for black carbon below the aircraft", "AODB_ORGC":"Column aerosol optical depth for organic carbon below the aircraft", "AODB_SALA":"Column aerosol optical depth for accumulation mode sea salt below the aircraft", "AODB_SALC":"Column aerosol optical depth for coarse mode sea salt below the aircraft", "AODB_DUST":"Column aerosol optical depth for dust below the aircraft", "HG2_FRACG":"Fraction of Hg(II) in the gas phase", "HG2_FRACP":"Fraction of Hg(II) in the particle phase", "ISOR_HPLUS":"ISORROPIA H+", "ISOR_PH":"ISORROPIA pH (non-ideal system, so pH can be negative)", "ISOR_AH2O":"ISORROPIA aerosol water", "ISOR_HSO4":"ISORROPIA bifulfate", "TIME_LT":"Local time", "GMAO_ICE00": "the fraction of each grid box that has 0% to +10% of sea ice coverage", "GMAO_ICE10" :"the fraction of each grid box that has 10% to +20% of sea ice coverage", "GMAO_ICE20" : "the fraction of each grid box that has 20% to +30% of sea ice coverage", "GMAO_ICE30" : "the fraction of each grid box that has 30% to +40% of sea ice coverage", "GMAO_ICE40" : "the fraction of each grid box that has 40% to +50% of sea ice coverage", "GMAO_ICE50" : "the fraction of each grid box that has 50% to +60% of sea ice coverage", "GMAO_ICE60": "the fraction of each grid box that has 60% to +70% of sea ice coverage", "GMAO_ICE70" : "the fraction of each grid box that has 70% to +80% of sea ice coverage", "GMAO_ICE80": "the fraction of each grid box that has 80% to +90% of sea ice coverage", "GMAO_ICE90": "the fraction of each grid box that has 90% to +100% of sea ice coverage", #"GAMM_EPOX":"Uptake coefficient for EPOX", # don't currently work with flexchem #"GAMM_IMAE":"Uptake coefficient for IMAE", #"GAMM_ISOPN":"Uptake coefficient for ISOPN", #"GAMM_DHDN":"Uptake coefficient for DHDN", #"GAMM_GLYX":"Uptake coefficient for GLYX", "AQAER_RAD":"Aqueous aerosol radius", "AQAER_SURF":"Aqueous aerosol surface area"}) # Print off the optional diagnostics... if print_diag_options is True: k=[*diag_dict] print('Diagnositic options for planeflight.dat are as follows:') for i in range(0, len(k)): v=diag_dict.get(k[i]) print("{:<15} {:<100}".format(k[i], v)) return diag_dict def make_planeflightdat_files(outpath: str, datetimes, lat_arr, lon_arr, pres_arr= [], alt_arr = [], tracers: list = [], input_file: str ='', typestr: str= '', username: str = 'user', overwrite: bool = True, drop_dupes: bool = False, diags: list = ['all'], diags_minus: list =[], print_diag_options: bool = False): """Function to create planeflight.dat files in correct format for GEOS-Chem. Args: ---- outpath: string of path to save the output planeflight.dat files at. datetimes: Pandas series of datetimes where obs to be collected at. lat_arr: Array of latitudes where observations take at (degrees N) lon_arr: Array of longitudes where observations take at (degrees N) # Planeflight can take either alt or pressure. Must specify one. pres_arr: Array of pressures in hPa where observations take at alt_arr: Array of altitudes where observations take at (meters) # You can tell this function what tracers to sample with planeflight # by either passing them as a list or by passing your input file. # That option will use all advected species.Not passing either arg will # make a file without any tracers. input_file: String of path to your GEOS-Chem input file (to read in tracer names). tracers: List of tracers you want to sample using planeflight.dat Optional Arguements: ------------------- typestr: String of the "campaign" or the "type" of aircraft obs collected on. This is printed in the file. NOTE: TypeStr must NOT begin with "S" unless altitutes passed. Will cause GEOS-Chem erorrs. username: String of user who created files. Optional. Arg in header of file. overwrite: Boolean of whether to overwrite existing files at outpath with this name or not. drop_dupes: Boolean of whether to drop duplicate rows diags: List of additional diagnostics to include (beyond tracers). Default option is to include ALL available additional diagnositcs. diags_minus: List of diagnostics you don't want to include (e.g. if you use "all"). print_diag_options: Boolean of whether to print other available diagnostic options. Output: ------ Files named planeflight.dat.YYYYMMDD written to outpath. """ if (len(pres_arr)==0) and (len(alt_arr)==0): sys.exit('Please specify either an altitude or pressure array.') if (len(pres_arr)>0) and (len(alt_arr)>0): sys.exit('Please specify either an altitude or pressure array, not both.'+\ 'Planeflight.dat converts altitutdes to pressures. ') if len(typestr) > 7: sys.exit('Please change the campaign string used as a type to be'+\ 'less than 7 chars, which is the max allowed by GEOS-Chem.') if typestr[0]=='S': print('WARNING: GEOS-Chem will assume you are passing the model ' +\ 'altitude values if you pass a typestr value that beings with ' +\ 'the letter "S". If you are using pressures as input it is best '+\ 'to pass as typestr that does not begin with "S" to avoid '+\ 'the model errorniously converting interpreting your ' + \ 'pressures as altitudes.') input("Press Enter to continue or Cntrl+C to exit.") if len(diags)>0: # If the has user asked to include specific diagnostics... # Build the dictionary of optional diagnostics. Print if user asks. diag_dict= _get_optional_diags(print_diag_options) #If the user says to use all diagnostic quantities, then grab them from the dict. if diags[0].lower() =='all': optionals=[*diag_dict] else: # otherwise just use their inputted list! optionals=diags if len(diags_minus): optionals = [j for j in optionals if j not in diags_minus] # Make list of all tracers from input file plus the optional diagnostic quantites you want if input_file != '': #either by reading the input file tracer_list= optionals+ ut._build_species_list_from_input(input_file) else: # or by using the tracesr they gave you. tracer_list= optionals+ tracers ntracers=str(int(len(tracer_list))) # count the number of quantities. # Designate a few variables that we'll use to make the header lines of the files today= str(datetime.now().strftime('%m-%d-%Y %H:%M:%S')) # Time stamp when you made this file. spacer='-------------------------------------------------------------------------------' title = ' Now give the times and locations of the flight' # Parse the passed dates, get list of indivudal dates we have obs for: all_dates= datetimes.dt.date unq_dates=np.unique( datetimes.dt.date) # Loop over each unique day during campaign to make a planeflight.dat file for: for i in range(0, len(unq_dates)): # Create a filesname based on the date: YYMMDD=unq_dates[i].strftime('%Y%m%d') filename='Planeflight.dat.'+ YYMMDD #========================================================================== # Build arrays of all the data we need in Planeflight.dat for this date. # Rount to decmial places allowed in GEOS-Chem input for these vars. #========================================================================== # Get indexes in larger array of flight obs that took place on this date. inds = np.where(all_dates== unq_dates[i])[0] points= np.arange(1, len(inds)+1).astype(str)# Values for column "Points" obs= np.full(len(inds),9999.000) ## Observation value from the flight campaign typez= np.full(len(inds),'{typ: >6}'.format(typ=typestr)) #type is allowed 7 chars. day= datetimes.dt.strftime('%d-%m-%Y')[inds] # Day, month, and year (GMT date) for each flight track point tms= datetimes.dt.strftime('%H:%M')[inds] # Hour and minute (GMT time) for each flight track point lats=np.around( lat_arr[inds], decimals=2) # Latitude (-90 to 90 degrees) for each flight track point lons= np.around( lon_arr[inds], decimals=2) # Longitude (-180 to 180 degrees) for each flight track point # Decide what array to use as vertical coordinate if len(pres_arr)> 0: # Pressure in hPa for each flight track point. if i==0: print('Using PRESSURE, not altitude.') pres= np.around( pres_arr[inds], decimals=2) #GC doesn't allow more than 2 decimals vert_header='PRESS ' # String for header vert_arr=pres # Set the vertical array to pressure else: if len(alt_arr)> 0: # Altitude in m for each flight track point. if i==1: print('Using ALTITUDE, not pressure.') alt = np.around(alt_arr[inds], decimals=2) #GC doesn't allow more than 2 decimals vert_header='ALT ' # String for header vert_arr=alt # Set the vertical array to altitude # Pack all this into a dataframe, because pandas writes tab delimited files nicely! df= pd.DataFrame({'POINT': points, 'TYPE': typez, 'DD-MM-YYYY': day, 'HH:MM':tms, 'LAT':lats, 'LON':lons, vert_header.strip(): vert_arr, 'OBS':obs}) # Append a line at the bottom of the DF that says its the end! df= df.append({'POINT': 99999, 'TYPE':'{typ: >6}'.format(typ='END'), 'DD-MM-YYYY': '00-00-0000', 'HH:MM': '00:00', 'LAT':0.00, 'LON':0.00, vert_header.strip(): 0.00, 'OBS':0.000}, ignore_index=True) #========================================================================== # Preform Checks on Data used in this file. Check for out of bounds, dupes, Nans. #========================================================================== # Check to make sure passed values are valid/ in range of correct units. if any(abs(lats)> 90): sys.exit('| Latitudes| are > 90.') if any(abs(lons)> 180): sys.exit('|Longitudes| are > 180 ') if len(alt_arr)> 0: if (any(alt< 0)) or (all(alt< 15)): sys.exit('Altitudes are either < 0 or in Kilometers, not meters.') if len(pres_arr)> 0: if (any(pres< 0)) or (any(pres >1100)): # Check that sys.exit('|Pressures| are < 0 or > 1100 hPa. Check units.') # Check for & drop any rows that have NaNs/ Inf values/ tell people about them! pd.options.mode.use_inf_as_na = True # Look fro Inf values too. if df.isna().values.any() == True: print('WARNING: Found NaNs in data. Dropping the following rows from the data set:') print(df[df.isna().any(axis=1)]) df.dropna(axis=0, how='any', inplace=True) # Check for any duplicate rows that drop them/ tell people. if df.duplicated().values.any() == True: print('WARNING: Found duplicate rows in data.'+ 'If you wish to drop them please set keyword drop_dupes=True.') print(df[df.duplicated()]) if drop_dupes== True: df=df.drop_duplicates(ignore_index=True) #========================================================================== # Format the numerical strings so that they're in GEOS-Chem's expected format! #========================================================================== df.POINT=df.POINT.map('{: >5}'.format) # poitns are len 5 char strings only df.LAT=df.LAT.map('{:7.2f}'.format) # Got these vals used for each var from df.LON=df.LON.map('{:7.2f}'.format) # planeflight_mod.f90 i/o checks. df.OBS=df.OBS.map('{:10.3f}'.format) if len(pres_arr)> 0: df.PRESS=df.PRESS.map('{:7.2f}'.format) elif len(alt_arr)> 0: df.ALT=df.ALT.map('{:7.2f}'.format) if overwrite==True: #Delete existing file with this name. Otherwise it appends... if os.path.isfile(outpath+filename): os.remove(outpath+filename) # Write the header lines that GEOS Chem expects to the file, considering format. header= '{strr: >6}'.format(strr='POINT ')+ \ '{strr: >7}'.format(strr='TYPE ')+ \ '{strr: >11}'.format(strr='DD-MM-YYYY ')+ \ '{strr: >6}'.format(strr='HH:MM ')+\ '{strr: >8}'.format(strr='LAT ')+\ '{strr: >8}'.format(strr='LON ')+\ '{strr: >8}'.format(strr=vert_header) +\ '{strr: >10}'.format(strr='OBS') #====================================================================== # Begin writing the planeflight.dat text file #===================================================================== # This is just a list containing our header lines in the right order... textList = [filename, username, today, spacer, ntracers, spacer] + \ tracer_list + [spacer, title, spacer, header] # Open the output file and write headers line by line. outF = open(outpath+filename, "w") for line in textList: outF.write(line) outF.write("\n") # Write the lat/lon/time/ pres data a temp file, using ASCII encoding! # Pandas default in Python 3 uses UTF-8 encoding, which GEOS-Chem can't read. df.to_csv(outpath+filename+'_0', header=False, index=None, sep=' ', mode='a', encoding='ascii') # Annoyingly if we use a space as a delimiter, we get werid quotation m # marks around strings, soooo then we'll open the temp file, read line # by line, and take out the quotation marks, and write that to the # actual output file. fin = open(outpath+filename+'_0', 'r') Lines = fin.readlines() for line in Lines: outF.write(line.replace('"','' )) outF.close() # Close the output file. fin.close() # Close the tempororay file os.remove(outpath+filename+'_0') # And delete the temp file. print('Output saved at: '+ outpath + filename) # tell where output is saved. return def read_planelog(filename: str): """Function to read a single planelog ouput files into a pandas dataframe.""" try: # If the header isn't too long it can be read in like this # (e.g. if you're not saving too many things from GEOS-Chem!) df= asc.read(filename, delimiter="\s", guess=False).to_pandas() except: # Otherwise we need to read "every other line" because the header # is super weird and splits the data like this. We'll read line # by line, write the odd lines to a file, even lines to a file, # read those in, and then contantenate them, and delete temp files. out1 = open(filename+'_pt1', "w") # File that will jsut contan odd lines out2 = open(filename+'_pt2', "w") # File that will just contain even lines count=0 fin = open(filename, 'r') # open original file Lines = fin.readlines() for line in Lines: # read line by line if (count% 2) == 0: out1.write(line) # write evens else: out2.write(line) # write odds count=count+1 fin.close() # Close all files. out1.close() out2.close() # Read in columns from odd lines and columns from even liens df1 = asc.read(filename+'_pt1', delimiter="\s", guess=False).to_pandas() df2 = asc.read(filename+'_pt2', delimiter="\s", guess=False).to_pandas() # Concantenate into a single dataframe df = pd.concat([df1, df2], axis=1) # Replace NaNs df= df.replace(-1000, np.NaN) # Convert YMDHM to a pandas datetime object df['time']=pd.to_datetime(df.YYYYMMDD.astype(str) +df.HHMM.astype(str), format='%Y%m%d%H%M') # Delete the temp files with even/odd lines of dat os.remove(filename+'_pt1') os.remove(filename+'_pt2') return df def planelog_read_and_concat(path_to_dir: str, outdir: str = None, outfile: str = None): """ Concatonate output plane.log files into a single file from a directory. # If you only want to open a single file, try read_planelog(). Args ---- path_to_dir = String with filepath to folder containing GEOS Chem output plane.log files outdir(optional) = # String path to where concatonated file will be saved outfilename (optional) = string name of output file, no extension needed. """ # If outdir not set, then set it to the same as the input file path. outdir = path_to_dir if outdir is None else outdir # If outfilename not set, then set it to be concat_ObsPack.nc outfile = 'planelog_concat' if outfile is None else outfile # Look for all the planelog files in the directory given file_list = ut._find_files_in_dir(path_to_dir, ['plane.log']) for i in range(0, len(file_list)): # Loop over files, open each. df_i= read_planelog(file_list[i]) df_i['flight']= np.full(len(df_i['time']), i+1) # Label with flight #. if i==0 : # Begin concatonating all flights: df_all= df_i else: # For all subsequent loops append the new df UNDER the old df df_all = pd.concat([df_all, df_i], ignore_index=True) df_all.to_pickle(outdir+outfile) # Save the concatonated data print('Concatenated planelog data saved at: '+ outdir + outfile ) return df_all ```
{ "source": "jdhask/gcpy", "score": 3 }
#### File: gcpy/gcpy/regrid.py ```python import os import xesmf as xe from .grid import make_grid_LL, make_grid_CS, make_grid_SG, get_input_res, call_make_grid, \ get_grid_extents, get_vert_grid import hashlib import numpy as np import xarray as xr import pandas as pd import scipy.sparse import warnings def make_regridder_L2L( llres_in, llres_out, weightsdir='.', reuse_weights=False, in_extent=[-180, 180, -90, 90], out_extent=[-180, 180, -90, 90]): """ Create an xESMF regridder between two lat/lon grids Args: llres_in: str Resolution of input grid in format 'latxlon', e.g. '4x5' llres_out: str Resolution of output grid in format 'latxlon', e.g. '4x5' Keyword Args (optional): weightsdir: str Directory in which to create xESMF regridder NetCDF files Default value: '.' reuse_weights: bool Set this flag to True to reuse existing xESMF regridder NetCDF files Default value: False in_extent: list[float, float, float, float] Describes minimum and maximum latitude and longitude of input grid in the format [minlon, maxlon, minlat, maxlat] Default value: [-180, 180, -90, 90] out_extent: list[float, float, float, float] Desired minimum and maximum latitude and longitude of output grid in the format [minlon, maxlon, minlat, maxlat] Default value: [-180, 180, -90, 90] Returns: regridder: xESMF regridder regridder object between the two specified grids """ llgrid_in = make_grid_LL(llres_in, in_extent, out_extent) llgrid_out = make_grid_LL(llres_out, out_extent) if in_extent == [-180, 180, -90, 90] and out_extent == [-180, 180, -90, 90]: weightsfile = os.path.join( weightsdir, 'conservative_{}_{}.nc'.format( llres_in, llres_out)) else: in_extent_str = str(in_extent).replace( '[', '').replace( ']', '').replace( ', ', 'x') out_extent_str = str(out_extent).replace( '[', '').replace( ']', '').replace( ', ', 'x') weightsfile = os.path.join( weightsdir, 'conservative_{}_{}_{}_{}.nc'.format( llres_in, llres_out, in_extent_str, out_extent_str)) if not os.path.isfile(weightsfile) and reuse_weights: #prevent error with more recent versions of xesmf reuse_weights=False try: regridder = xe.Regridder( llgrid_in, llgrid_out, method='conservative', filename=weightsfile, reuse_weights=reuse_weights) except BaseException: regridder = xe.Regridder( llgrid_in, llgrid_out, method='conservative', filename=weightsfile, reuse_weights=reuse_weights) return regridder def make_regridder_C2L(csres_in, llres_out, weightsdir='.', reuse_weights=True, sg_params=[1, 170, -90]): """ Create an xESMF regridder from a cubed-sphere to lat/lon grid Args: csres_in: int Cubed-sphere resolution of input grid llres_out: str Resolution of output grid in format 'latxlon', e.g. '4x5' Keyword Args (optional): weightsdir: str Directory in which to create xESMF regridder NetCDF files Default value: '.' reuse_weights: bool Set this flag to True to reuse existing xESMF regridder NetCDF files Default value: False sg_params: list[float, float, float] (stretch_factor, target_longitude, target_latitude) Input grid stretched-grid parameters in the format [stretch_factor, target_longitude, target_latitude]. Will trigger stretched-grid creation if not default values. Default value: [1, 170, -90] (no stretching) Returns: regridder_list: list[6 xESMF regridders] list of regridder objects (one per cubed-sphere face) between the two specified grids """ [sf_in, tlon_in, tlat_in] = sg_params if sg_params == [1, 170, -90]: _, csgrid_list = make_grid_CS(csres_in) else: _, csgrid_list = make_grid_SG( csres_in, stretch_factor=sg_params[0], target_lon=sg_params[1], target_lat=sg_params[2]) llgrid = make_grid_LL(llres_out) regridder_list = [] for i in range(6): if sg_params == [1, 170, -90]: weightsfile = os.path.join( weightsdir, 'conservative_c{}_{}_{}.nc'.format( str(csres_in), llres_out, str(i))) else: weights_fname = f'conservative_sg{sg_hash(csres_in, sf_in, tlat_in, tlon_in)}_ll{llres_out}_F{i}.nc' weightsfile = os.path.join(weightsdir, weights_fname) if not os.path.isfile(weightsfile) and reuse_weights: #prevent error with more recent versions of xesmf reuse_weights=False try: regridder = xe.Regridder( csgrid_list[i], llgrid, method='conservative', filename=weightsfile, reuse_weights=reuse_weights) except BaseException: regridder = xe.Regridder( csgrid_list[i], llgrid, method='conservative', filename=weightsfile, reuse_weights=reuse_weights) regridder_list.append(regridder) return regridder_list def make_regridder_S2S( csres_in, csres_out, sf_in=1, tlon_in=170, tlat_in=-90, sf_out=1, tlon_out=170, tlat_out=-90, weightsdir='.', verbose=True): """ Create an xESMF regridder from a cubed-sphere / stretched-grid grid to another cubed-sphere / stretched-grid grid. Stretched-grid params of 1, 170, -90 indicate no stretching. Args: csres_in: int Cubed-sphere resolution of input grid csres_out: int Cubed-sphere resolution of output grid Keyword Args (optional): sf_in: float Stretched-grid factor of input grid Default value: 1 tlon_in: float Target longitude for stretching in input grid Default value: 170 tlat_in: float Target longitude for stretching in input grid Default value: -90 sf_out: float Stretched-grid factor of output grid Default value: 1 tlon_out: float Target longitude for stretchingg in output grid Default value: 170 tlat_out: float Target longitude for stretching in output grid Default value: -90 weightsdir: str Directory in which to create xESMF regridder NetCDF files Default value: '.' verbose: bool Set this flag to True to enable printing when output faces do not intersect input faces when regridding Default value: True Returns: regridder_list: list[6 xESMF regridders] list of regridder objects (one per cubed-sphere face) between the two specified grids """ _, igrid_list = make_grid_SG( csres_in, stretch_factor=sf_in, target_lat=tlat_in, target_lon=tlon_in) _, ogrid_list = make_grid_SG( csres_out, stretch_factor=sf_out, target_lat=tlat_out, target_lon=tlon_out) regridder_list = [] for o_face in range(6): regridder_list.append({}) for i_face in range(6): weights_fname = f'conservative_sg{sg_hash(csres_in, sf_in, tlat_in, tlon_in)}_F{i_face}_sg{sg_hash(csres_out, sf_out, tlat_out, tlon_out)}_F{o_face}.nc' weightsfile = os.path.join(weightsdir, weights_fname) reuse_weights = os.path.exists(weightsfile) if not os.path.isfile(weightsfile) and reuse_weights: #prevent error with more recent versions of xesmf reuse_weights=False try: regridder = xe.Regridder(igrid_list[i_face], ogrid_list[o_face], method='conservative', filename=weightsfile, reuse_weights=reuse_weights) regridder_list[-1][i_face] = regridder except ValueError: if verbose: print(f"iface {i_face} doesn't intersect oface {o_face}") return regridder_list def make_regridder_L2S(llres_in, csres_out, weightsdir='.', reuse_weights=True, sg_params=[1, 170, -90]): """ Create an xESMF regridder from a lat/lon to a cubed-sphere grid Args: llres_in: str Resolution of input grid in format 'latxlon', e.g. '4x5' csres_out: int Cubed-sphere resolution of output grid Keyword Args (optional): weightsdir: str Directory in which to create xESMF regridder NetCDF files Default value: '.' reuse_weights: bool Set this flag to True to reuse existing xESMF regridder NetCDF files Default value: False sg_params: list[float, float, float] (stretch_factor, target_longitude, target_latitude) Output grid stretched-grid parameters in the format [stretch_factor, target_longitude, target_latitude]. Will trigger stretched-grid creation if not default values. Default value: [1, 170, -90] (no stretching) Returns: regridder_list: list[6 xESMF regridders] list of regridder objects (one per cubed-sphere face) between the two specified grids """ llgrid = make_grid_LL(llres_in) if sg_params == [1, 170, -90]: _, csgrid_list = make_grid_CS(csres_out) else: _, csgrid_list = make_grid_SG( csres_out, stretch_factor=sg_params[0], target_lon=sg_params[1], target_lat=sg_params[2]) regridder_list = [] for i in range(6): if sg_params == [1, 170, -90]: weightsfile = os.path.join( weightsdir, 'conservative_{}_c{}_{}.nc'.format( llres_in, str(csres_out), str(i))) else: weights_fname = f'conservative_ll{llres_in}_sg{sg_hash(csres_out, *sg_params)}_F{i}.nc' weightsfile = os.path.join(weightsdir, weights_fname) if not os.path.isfile(weightsfile) and reuse_weights: #prevent error with more recent versions of xesmf reuse_weights=False try: regridder = xe.Regridder( llgrid, csgrid_list[i], method='conservative', filename=weightsfile, reuse_weights=reuse_weights) except BaseException: regridder = xe.Regridder( llgrid, csgrid_list[i], method='conservative', filename=weightsfile, reuse_weights=reuse_weights) regridder_list.append(regridder) return regridder_list def create_regridders( refds, devds, weightsdir='.', reuse_weights=True, cmpres=None, zm=False, sg_ref_params=[1, 170, -90], sg_dev_params=[1, 170, -90]): """ Internal function used for creating regridders between two datasets. Follows decision logic needed for plotting functions. Originally code from compare_single_level and compare_zonal_mean. Args: refds: xarray Dataset Input dataset devds: xarray Dataset Output dataset Keyword Args (optional): weightsdir: str Directory in which to create xESMF regridder NetCDF files Default value: '.' reuse_weights: bool Set this flag to True to reuse existing xESMF regridder NetCDF files Default value: False cmpres: int or str Specific target resolution for comparison grid used in difference and ratio plots Default value: None (will follow logic chain below) zm: bool Set this flag to True if regridders will be used in zonal mean plotting Default value: False sg_ref_params: list[float, float, float] (stretch_factor, target_longitude, target_latitude) Ref grid stretched-grid parameters in the format [stretch_factor, target_longitude, target_latitude]. Default value: [1, 170, -90] (no stretching) sg_dev_params: list[float, float, float] (stretch_factor, target_longitude, target_latitude) Dev grid stretched-grid parameters in the format [stretch_factor, target_longitude, target_latitude]. Default value: [1, 170, -90] (no stretching) Returns: list of many different quantities needed for regridding in plotting functions refres, devres, cmpres: bool Resolution of a dataset grid refgridtype, devgridtype, cmpgridtype: str Gridtype of a dataset ('ll' or 'cs') regridref, regriddev, regridany: bool Whether to regrid a dataset refgrid, devgrid, cmpgrid: dict Grid definition of a dataset refregridder, devregridder: xESMF regridder Regridder object between refgrid or devgrid and cmpgrid (will be None if input grid is not lat/lon) refregridder_list, devregridder_list: list[6 xESMF regridders] List of regridder objects for each face between refgrid or devgrid and cmpgrid (will be None if input grid is not cubed-sphere) """ # Take two lat/lon or cubed-sphere xarray datasets and regrid them if # needed refres, refgridtype = get_input_res(refds) devres, devgridtype = get_input_res(devds) refminlon, refmaxlon, refminlat, refmaxlat = get_grid_extents(refds) devminlon, devmaxlon, devminlat, devmaxlat = get_grid_extents(devds) # choose smallest overlapping area for comparison cmpminlon = max(x for x in [refminlon, devminlon] if x is not None) cmpmaxlon = min(x for x in [refmaxlon, devmaxlon] if x is not None) cmpminlat = max(x for x in [refminlat, devminlat] if x is not None) cmpmaxlat = min(x for x in [refmaxlat, devmaxlat] if x is not None) ref_extent = [refminlon, refmaxlon, refminlat, refmaxlat] cmp_extent = [cmpminlon, cmpmaxlon, cmpminlat, cmpmaxlat] dev_extent = [devminlon, devmaxlon, devminlat, devmaxlat] # ================================================================== # Determine comparison grid resolution and type (if not passed) # ================================================================== # If no cmpres is passed then choose highest resolution between ref and dev. # If one dataset is lat-lon and the other is cubed-sphere, and no comparison # grid resolution is passed, then default to 1x1.25. If both cubed-sphere and # plotting zonal mean, over-ride to be 1x1.25 lat-lon with a warning sg_cmp_params = [1, 170, -90] if cmpres is None: if refres == devres and refgridtype == "ll": cmpres = refres cmpgridtype = refgridtype elif refgridtype == "ll" and devgridtype == "ll": cmpres = min([refres, devres]) cmpgridtype = refgridtype elif refgridtype == "cs" and devgridtype == "cs": if zm: print( "Warning: zonal mean comparison must be lat-lon. Defaulting to 1x1.25") cmpres = '1x1.25' cmpgridtype = "ll" elif sg_ref_params != [] or sg_dev_params != []: # pick ref grid when a stretched-grid and non-stretched-grid # are passed cmpres = refres cmpgridtype = "cs" sg_cmp_params = sg_ref_params else: # pick higher resolution CS grid out of two standard # cubed-sphere grids cmpres = max([refres, devres]) cmpgridtype = "cs" elif refgridtype == "ll" and float(refres.split('x')[0]) < 1 and float(refres.split('x')[1]) < 1.25: cmpres = refres cmpgridtype = "ll" elif devgridtype == "ll" and float(devres.split('x')[0]) < 1 and float(devres.split('x')[1]) < 1.25: cmpres = devres cmpgridtype = "ll" else: # default to 1x1.25 lat/lon grid for mixed CS and LL grids cmpres = "1x1.25" cmpgridtype = "ll" elif "x" in cmpres: cmpgridtype = "ll" elif zm: print("Warning: zonal mean comparison must be lat-lon. Defaulting to 1x1.25") cmpres = '1x1.25' cmpgridtype = "ll" else: # cubed-sphere cmpres if isinstance(cmpres, list): # stretched-grid resolution # first element is cubed-sphere resolution, rest are sg params sg_cmp_params = cmpres[1:] cmpres = int(cmpres[0]) else: cmpres = int(cmpres) # must cast to integer for cubed-sphere cmpgridtype = "cs" # Determine what, if any, need regridding. regridref = refres != cmpres or sg_ref_params != sg_cmp_params regriddev = devres != cmpres or sg_dev_params != sg_cmp_params regridany = regridref or regriddev # ================================================================== # Make grids (ref, dev, and comparison) # ================================================================== [refgrid, _] = call_make_grid( refres, refgridtype, ref_extent, cmp_extent, sg_ref_params) [devgrid, _] = call_make_grid( devres, devgridtype, dev_extent, cmp_extent, sg_dev_params) [cmpgrid, _] = call_make_grid( cmpres, cmpgridtype, cmp_extent, cmp_extent, sg_cmp_params) # ================================================================= # Make regridders, if applicable # ================================================================= refregridder = None refregridder_list = None devregridder = None devregridder_list = None if regridref: if refgridtype == "ll": if cmpgridtype == "cs": refregridder_list = make_regridder_L2S( refres, cmpres, weightsdir=weightsdir, reuse_weights=reuse_weights, sg_params=sg_cmp_params) else: refregridder = make_regridder_L2L( refres, cmpres, weightsdir=weightsdir, reuse_weights=reuse_weights, in_extent=ref_extent, out_extent=cmp_extent) else: if cmpgridtype == "cs": refregridder_list = make_regridder_S2S( refres, cmpres, *sg_ref_params, *sg_cmp_params, weightsdir=weightsdir, verbose=False) else: refregridder_list = make_regridder_C2L( refres, cmpres, weightsdir=weightsdir, reuse_weights=reuse_weights, sg_params=sg_ref_params) if regriddev: if devgridtype == "ll": if cmpgridtype == "cs": devregridder_list = make_regridder_L2S( devres, cmpres, weightsdir=weightsdir, reuse_weights=reuse_weights, sg_params=sg_cmp_params) else: devregridder = make_regridder_L2L( devres, cmpres, weightsdir=weightsdir, reuse_weights=reuse_weights, in_extent=dev_extent, out_extent=cmp_extent) else: if cmpgridtype == "cs": devregridder_list = make_regridder_S2S( devres, cmpres, *sg_dev_params, *sg_cmp_params, weightsdir=weightsdir, verbose=False) else: devregridder_list = make_regridder_C2L( devres, cmpres, weightsdir=weightsdir, reuse_weights=reuse_weights, sg_params=sg_dev_params) return [ refres, refgridtype, devres, devgridtype, cmpres, cmpgridtype, regridref, regriddev, regridany, refgrid, devgrid, cmpgrid, refregridder, devregridder, refregridder_list, devregridder_list] def regrid_comparison_data( data, res, regrid, regridder, regridder_list, global_cmp_grid, gridtype, cmpgridtype, cmpminlat_ind=0, cmpmaxlat_ind=-2, cmpminlon_ind=0, cmpmaxlon_ind=-2, nlev=1): """ Regrid comparison datasets to cubed-sphere (including stretched-grid) or lat/lon format. Args: data: xarray DataArray DataArray containing a GEOS-Chem data variable res: int Cubed-sphere resolution for comparison grid regrid: bool Set to true to regrid dataset regridder: xESMF regridder Regridder between the original data grid and the comparison grid regridder_list: list(xESMF regridder) List of regridders for cubed-sphere data global_cmp_grid: xarray DataArray Comparison grid gridtype: str Type of input data grid (either 'll' or 'cs') cmpgridtype: str Type of input data grid (either 'll' or 'cs') Keyword Args (optional): cmpminlat_ind: int Index of minimum latitude extent for comparison grid Default value: 0 cmpmaxlat_ind: int Index (minus 1) of maximum latitude extent for comparison grid Default value: -2 cmpminlon_ind: int Index of minimum longitude extent for comparison grid Default value: 0 cmpmaxlon_ind: int Index (minus 1) of maximum longitude extent for comparison grid Default value: -2 nlev: int Number of levels of input grid and comparison grid Default value: 1 Returns: data: xarray DataArray Original DataArray regridded to comparison grid (including resolution and extent changes) """ if regrid: if gridtype == "ll": if cmpgridtype == "ll": # regrid ll to ll return regridder(data) elif cmpgridtype == "cs": # ll to CS new_data = np.zeros([nlev, 6, res, res]).squeeze() for j in range(6): new_data[j, ...] = regridder_list[j](data) return new_data elif cmpgridtype == "ll": # CS to ll if nlev == 1: new_data = np.zeros([global_cmp_grid['lat'].size, global_cmp_grid['lon'].size]) data_reshaped = data.data.reshape(6, res, res) else: new_data = np.zeros([nlev, global_cmp_grid['lat'].size, global_cmp_grid['lon'].size]) data_reshaped = data.data.reshape( nlev, 6, res, res).swapaxes(0, 1) for j in range(6): regridder = regridder_list[j] new_data += regridder(data_reshaped[j]) if nlev == 1: # limit to extent of cmpgrid return new_data[cmpminlat_ind:cmpmaxlat_ind + 1, cmpminlon_ind:cmpmaxlon_ind + 1].squeeze() else: return new_data elif cmpgridtype == "cs": # CS to CS # Reformat dimensions to T, Z, F, Y, X if 'Xdim' in data.dims: data_format = 'diagnostic' else: data_format = 'checkpoint' new_data = reformat_dims( data, format=data_format, towards_common=True) # Transpose to T, Z, F, Y, X if len(new_data.dims) == 5: new_data = new_data.transpose('T', 'Z', 'F', 'Y', 'X') elif len(new_data.dims) == 4: # no time new_data = new_data.transpose('Z', 'F', 'Y', 'X') elif len(new_data.dims) == 3: # no time or vertical new_data = new_data.transpose('F', 'Y', 'X') # For each output face, sum regridded input faces oface_datasets = [] for oface in range(6): oface_regridded = [] for iface, regridder in regridder_list[oface].items(): ds_iface = new_data.isel(F=iface) if 'F' in ds_iface.coords: ds_iface = ds_iface.drop('F') oface_regridded.append( regridder(ds_iface, keep_attrs=True)) oface_regridded = xr.concat( oface_regridded, dim='intersecting_ifaces').sum( 'intersecting_ifaces', keep_attrs=True) oface_datasets.append(oface_regridded) new_data = xr.concat(oface_datasets, dim='F') new_data = new_data.rename({ 'y': 'Y', 'x': 'X', }) # lat, lon are from xESMF which we don't want new_data = new_data.drop(['lat', 'lon']) # reformat dimensions to previous format new_data = reformat_dims( new_data, format=data_format, towards_common=False) return new_data else: return data def reformat_dims(ds, format, towards_common): """ Reformat dimensions of a cubed-sphere / stretched-grid grid between different GCHP formats Args: ds: xarray Dataset Dataset to be reformatted format: str Format from or to which to reformat ('checkpoint' or 'diagnostic') towards_common: bool Set this flag to True to move towards a common dimension format Returns: ds: xarray Dataset Original dataset with reformatted dimensions """ def unravel_checkpoint_lat(ds_in): if isinstance(ds_in, xr.Dataset): cs_res = ds_in.dims['lon'] assert cs_res == ds_in.dims['lat'] // 6 else: cs_res = ds_in['lon'].size assert cs_res == ds_in['lat'].size // 6 mi = pd.MultiIndex.from_product([ np.linspace(1, 6, 6), np.linspace(1, cs_res, cs_res) ]) ds_in = ds_in.assign_coords({'lat': mi}) ds_in = ds_in.unstack('lat') return ds_in def ravel_checkpoint_lat(ds_out): if isinstance(ds, xr.Dataset): cs_res = ds_out.dims['lon'] else: cs_res = ds_out['lon'].size ds_out = ds_out.stack(lat=['lat_level_0', 'lat_level_1']) ds_out = ds_out.assign_coords({ 'lat': np.linspace(1, 6 * cs_res, 6 * cs_res) }) return ds_out dim_formats = { 'checkpoint': { 'unravel': [unravel_checkpoint_lat], 'ravel': [ravel_checkpoint_lat], 'rename': { 'lon': 'X', 'lat_level_0': 'F', 'lat_level_1': 'Y', 'time': 'T', 'lev': 'Z', }, 'transpose': ('time', 'lev', 'lat', 'lon') }, 'diagnostic': { 'rename': { 'nf': 'F', 'lev': 'Z', 'Xdim': 'X', 'Ydim': 'Y', 'time': 'T', }, 'transpose': ('time', 'lev', 'nf', 'Ydim', 'Xdim') } } if towards_common: # Unravel dimensions for unravel_callback in dim_formats[format].get('unravel', []): ds = unravel_callback(ds) # Rename dimensions ds = ds.rename(dim_formats[format].get('rename', {})) return ds else: # Reverse rename ds = ds.rename( {v: k for k, v in dim_formats[format].get('rename', {}).items()}) # Ravel dimensions for ravel_callback in dim_formats[format].get('ravel', []): ds = ravel_callback(ds) # Transpose if len(ds.dims) == 5 or (len(ds.dims) == 4 and 'lev' in list( ds.dims) and 'time' in list(ds.dims)): # full dim dataset ds = ds.transpose(*dim_formats[format].get('transpose', [])) elif len(ds.dims) == 4: # single time ds = ds.transpose(*dim_formats[format].get('transpose', [])[1:]) elif len(ds.dims) == 3: # single level / time ds = ds.transpose(*dim_formats[format].get('transpose', [])[2:]) return ds def sg_hash( cs_res, stretch_factor: float, target_lat: float, target_lon: float): return hashlib.sha1( 'cs={cs_res},sf={stretch_factor:.5f},tx={target_lon:.5f},ty={target_lat:.5f}'.format( stretch_factor=stretch_factor, target_lat=target_lat, target_lon=target_lon, cs_res=cs_res).encode()).hexdigest()[ :7] def regrid_vertical_datasets(ref, dev, target_grid_choice='ref', ref_vert_params=[[],[]], dev_vert_params=[[],[]], target_vert_params=[[],[]]): """ Perform complete vertical regridding of GEOS-Chem datasets to the vertical grid of one of the datasets or an entirely different vertical grid. Args: ref: xarray.Dataset First dataset dev: xarray.Dataset Second dataset target_grid_choice (optional): str Will regrid to the chosen dataset among the two datasets unless target_vert_params is provided Default value: 'ref' ref_vert_params (optional): list(list, list) of list-like types Hybrid grid parameter A in hPa and B (unitless) in [AP, BP] format. Needed if ref grid is not 47 or 72 levels Default value: [[], []] dev_vert_params (optional): list(list, list) of list-like types Hybrid grid parameter A in hPa and B (unitless) in [AP, BP] format. Needed if dev grid is not 47 or 72 levels Default value: [[], []] target_vert_params (optional): list(list, list) of list-like types Hybrid grid parameter A in hPa and B (unitless) in [AP, BP] format. Will override target_grid_choice as target grid Default value: [[], []] Returns: new_ref: xarray.Dataset First dataset, possibly regridded to a new vertical grid new_dev: xarray.Dataset Second dataset, possibly regridded to a new vertical grid """ # Get mid-point pressure and edge pressures for this grid ref_pedge, ref_pmid, _ = get_vert_grid(ref, *ref_vert_params) dev_pedge, dev_pmid, _ = get_vert_grid(dev, *dev_vert_params) new_ref, new_dev = ref, dev if len(ref_pedge) != len(dev_pedge) or target_vert_params != [[],[]]: if target_vert_params != [[],[]]: #use a specific target grid for regridding if passed target_grid = vert_grid(*target_vert_params) target_pedge, target_pmid = target_grid.p_edge(), target_grid.p_mid() elif target_grid_choice == 'ref': target_pedge, target_pmid = ref_pedge, ref_pmid else: target_pedge, target_pmid = dev_pedge, dev_pmid def regrid_one_vertical_dataset(ds, ds_pedge, target_pedge, target_pmid): new_ds = ds if len(ds_pedge) != len(target_pedge): #regrid all 3D (plus possible time dimension) variables xmat_ds = gen_xmat(ds_pedge, target_pedge) regrid_variables = [v for v in ds.data_vars if (("lat" in ds[v].dims or "Xdim" in ds[v].dims) and ("lon" in ds[v].dims or "Ydim" in ds[v].dims) and ("lev" in ds[v].dims))] new_ds = xr.Dataset() #currently drop data vars that have lev but don't also have x and y coordinates for v in (set(ds.data_vars)-set(regrid_variables)): if 'lev' not in ds[v].dims: new_ds[v] = ds[v] new_ds.attrs = ds.attrs for v in regrid_variables: if "time" in ds[v].dims: new_ds_temp = [] for time in range(len(ds[v].time)): new_ds_v = regrid_vertical(ds[v].isel(time=time), xmat_ds, target_pmid) new_ds_temp.append(new_ds_v.expand_dims("time")) new_ds[v] = xr.concat(new_ds_temp, "time") else: new_ds[v] = regrid_vertical(ds[v], xmat, target_pmid) return new_ds new_ref = regrid_one_vertical_dataset(ref, ref_pedge, target_pedge, target_pmid) new_dev = regrid_one_vertical_dataset(dev, dev_pedge, target_pedge, target_pmid) return new_ref, new_dev def regrid_vertical(src_data_3D, xmat_regrid, target_levs=[]): """ Performs vertical regridding using a sparse regridding matrix This function was originally written by <NAME> and included in package gcgridobj: https://github.com/sdeastham/gcgridobj Args: src_data_3D: xarray DataArray or numpy array Data to be regridded xmat_regrid: sparse scipy coordinate matrix Regridding matrix from input data grid to target grid target_levs (optional): list Values for Z coordinate of returned data (if returned data is of type xr.DataArray) Default value: [] Returns: out_data: xarray DataArray or numpy array Data regridded to target grid """ # Assumes that the FIRST dimension of the input data is vertical nlev_in = src_data_3D.shape[0] if xmat_regrid.shape[1] == nlev_in: # Current regridding matrix is for the reverse regrid # Rescale matrix to get the contributions right # Warning: this assumes that the same vertical range is covered warnings.warn( 'Using inverted regridding matrix. This may cause incorrect extrapolation') xmat_renorm = xmat_regrid.transpose().toarray() for ilev in range(xmat_renorm.shape[1]): norm_fac = np.sum(xmat_renorm[:, ilev]) if np.abs(norm_fac) < 1.0e-20: norm_fac = 1.0 xmat_renorm[:, ilev] /= norm_fac xmat_renorm = scipy.sparse.coo_matrix(xmat_renorm) elif xmat_regrid.shape[0] == nlev_in: # Matrix correctly dimensioned xmat_renorm = xmat_regrid.copy() else: print(src_data_3D, xmat_regrid.shape) raise ValueError('Regridding matrix not correctly sized') nlev_out = xmat_renorm.shape[1] out_shape = [nlev_out] + list(src_data_3D.shape[1:]) n_other = np.product(src_data_3D.shape[1:]) temp_data = np.zeros((nlev_out, n_other)) in_data = np.reshape(np.array(src_data_3D), (nlev_in, n_other)) for ix in range(n_other): in_data_vec = np.matrix(in_data[:, ix]) temp_data[:, ix] = in_data_vec * xmat_renorm out_data = np.reshape(temp_data, out_shape) # Transfer over old / create new coordinates for xarray DataArrays if isinstance(src_data_3D, xr.DataArray): new_coords = { coord: src_data_3D.coords[coord].data for coord in src_data_3D.coords if coord != 'lev'} if target_levs == []: new_coords['lev'] = np.arange( 1, out_data.shape[0], out_data.shape[0]) else: new_coords['lev'] = target_levs # GCHP-specific if 'lats' in src_data_3D.coords: new_coords['lats'] = ( ('lat', 'lon'), src_data_3D.coords['lats'].data) if 'lons' in src_data_3D.coords: new_coords['lons'] = ( ('lat', 'lon'), src_data_3D.coords['lons'].data) out_data = xr.DataArray(out_data, dims=tuple([dim for dim in src_data_3D.dims]), coords=new_coords, attrs=src_data_3D.attrs) return out_data def gen_xmat(p_edge_from, p_edge_to): """ Generates regridding matrix from one vertical grid to another. This function was originally written by <NAME> and included in package gcgridobj: https://github.com/sdeastham/gcgridobj Args: p_edge_from: numpy array Edge pressures of the input grid p_edge_to: numpy array Edge pressures of the target grid Returns: xmat: sparse scipy coordinate matrix Regridding matrix from input grid to target grid """ n_from = len(p_edge_from) - 1 n_to = len(p_edge_to) - 1 # Guess - max number of entries? n_max = max(n_to, n_from) * 5 # Index being mapped from xmat_i = np.zeros(n_max) # Index being mapped to xmat_j = np.zeros(n_max) # Weights xmat_s = np.zeros(n_max) # Find the first output box which has any commonality with the input box first_from = 0 i_to = 0 if p_edge_from[0] > p_edge_to[0]: # "From" grid starts at lower altitude (higher pressure) while p_edge_to[0] < p_edge_from[first_from + 1]: first_from += 1 else: # "To" grid starts at lower altitude (higher pressure) while p_edge_to[i_to + 1] > p_edge_from[0]: i_to += 1 frac_to_total = 0.0 i_weight = 0 for i_from in range(first_from, n_from): p_base_from = p_edge_from[i_from] p_top_from = p_edge_from[i_from + 1] # Climb the "to" pressures until you intersect with this box while i_to < n_to and p_base_from <= p_edge_to[i_to + 1]: i_to += 1 frac_to_total = 0.0 # Now, loop over output layers as long as there is any overlap, # i.e. as long as the base of the "to" layer is below the # top of the "from" layer last_box = False while p_edge_to[i_to] >= p_top_from and not last_box and not i_to >= n_to: p_base_common = min(p_base_from, p_edge_to[i_to]) p_top_common = max(p_top_from, p_edge_to[i_to + 1]) # Fraction of target box frac_to = (p_base_common - p_top_common) / \ (p_edge_to[i_to] - p_edge_to[i_to + 1]) xmat_i[i_weight] = i_from xmat_j[i_weight] = i_to xmat_s[i_weight] = frac_to i_weight += 1 last_box = p_edge_to[i_to + 1] <= p_top_from if not last_box: i_to += 1 return scipy.sparse.coo_matrix( (xmat_s[: i_weight], (xmat_i[: i_weight], xmat_j[: i_weight])), shape=(n_from, n_to)) ```
{ "source": "jdhayhurst/sumstat_harmoniser", "score": 3 }
#### File: sumstat_harmoniser/lib/SumStatRecord.py ```python from lib.Seq import Seq import sys class SumStatRecord: """ Class to hold a summary statistic record. """ def __init__(self, chrom, pos, other_al, effect_al, beta, oddsr, oddsr_lower, oddsr_upper, eaf, data): # Set raw info self.chrom = chrom self.pos = pos self.other_al = other_al self.effect_al = effect_al self.data = data self.beta = float(beta) if beta else None self.oddsr = safe_float(oddsr) if oddsr else None self.oddsr_lower = safe_float(oddsr_lower) if oddsr_lower else None self.oddsr_upper = safe_float(oddsr_upper) if oddsr_upper else None # Effect allele frequency is not required if we assume +ve strand if eaf: self.eaf = float(eaf) assert 0<= self.eaf <= 1 else: self.eaf = None # Set harmonised values self.hm_rsid = None self.hm_chrom = None self.hm_pos = None self.hm_other_al = None self.hm_effect_al = None self.is_harmonised = False self.hm_code = None def validate_ssrec(self): ''' Ensures that chrom, pos, other_al, effect_al are of correct type Return code which will either be: - None if successful, - 14 if unsuccessful ''' # Coerce types self.chrom = str(self.chrom) self.other_al = Seq(self.other_al) self.effect_al = Seq(self.effect_al) try: self.pos = int(self.pos) except (ValueError, TypeError) as e: return 14 # Assert that other and effect alleles are different if self.other_al.str() == self.effect_al.str(): return 14 # Assert that unkown nucleotides don't exist if 'N' in self.other_al.str() or 'N' in self.effect_al.str(): return 14 return None def revcomp_alleles(self): """ Reverse complement both the other and effect alleles. """ self.effect_al = self.effect_al.revcomp() self.other_al = self.other_al.revcomp() def flip_beta(self): """ Flip the beta, alleles and eaf. Set flipped to True. Args: revcomp (Bool): If true, will take reverse complement in addition to flipping. """ # Flip beta if self.beta: self.beta = self.beta * -1 # Flip OR if self.oddsr: self.oddsr = self.oddsr ** -1 if self.oddsr_lower and self.oddsr_upper: unharmonised_lower = self.oddsr_lower unharmonised_upper = self.oddsr_upper self.oddsr_lower = unharmonised_upper ** -1 self.oddsr_upper = unharmonised_lower ** -1 # Switch alleles new_effect = self.other_al new_other = self.effect_al self.other_al = new_other self.effect_al = new_effect # Flip eaf if self.eaf: self.eaf = 1 - self.eaf def alleles(self): """ Returns: Tuple of (other, effect) alleles """ return (self.other_al, self.effect_al) def __repr__(self): return "\n".join(["Sum stat record", " chrom : " + self.chrom, " pos : " + str(self.pos), " other allele : " + str(self.other_al), " effect allele: " + str(self.effect_al), " beta : " + str(self.beta), " odds ratio : " + str(self.oddsr), " EAF : " + str(self.eaf) ]) def safe_float(value): ''' Convert to float, rounding to sys.float_info.max if reach 64bit precision limit. Only to be used on values > 0. Args: value (float) Returns: float ''' value = float(value) if value == 0.0: value = sys.float_info.min elif value == float('Inf'): value = sys.float_info.max return value ``` #### File: sumstat_harmoniser/sumstat_harmoniser/main.py ```python import os import sys import gzip import argparse from copy import deepcopy from subprocess import Popen, PIPE from collections import OrderedDict, Counter from lib.SumStatRecord import SumStatRecord from lib.VCFRecord import VCFRecord def main(): """ Implements main logic. """ # Get args global args args = parse_args() # Intitate handles and counters header_written = False strand_counter = Counter() code_counter = Counter() if args.hm_sumstats: out_handle = open_gzip(args.hm_sumstats, "wb") # Process each row in summary statistics for counter, ss_rec in enumerate(yield_sum_stat_records(args.sumstats, args.in_sep)): # If set to only process 1 chrom, skip none matching chroms if args.only_chrom and not args.only_chrom == ss_rec.chrom: continue # Validate summary stat record ret_code = ss_rec.validate_ssrec() if ret_code: ss_rec.hm_code = ret_code strand_counter['Invalid variant for harmonisation'] += 1 # # DEBUG print progress # if counter % 1000 == 0: # print(counter + 1) # # Load and filter VCF records ------------------------------------------ # # Skip rows that have code 14 (fail validation) if not ss_rec.hm_code: # Get VCF reference variants for this record vcf_recs = get_vcf_records( args.vcf.replace("#", ss_rec.chrom), ss_rec.chrom, ss_rec.pos) # Extract the VCF record that matches the summary stat record vcf_rec, ret_code = exract_matching_record_from_vcf_records( ss_rec, vcf_recs) # Set return code when vcf_rec was not found if ret_code: ss_rec.hm_code = ret_code # If vcf record was found, extract some required values if vcf_rec: # Get alt allele vcf_alt = vcf_rec.alt_als[0] # Set variant information from VCF file ss_rec.hm_rsid = vcf_rec.id ss_rec.hm_chrom = vcf_rec.chrom ss_rec.hm_pos = vcf_rec.pos ss_rec.hm_other_al = vcf_rec.ref_al ss_rec.hm_effect_al = vcf_alt else: vcf_rec = None # # Harmonise variants --------------------------------------------------- # # Skip if harmonisation code exists (no VCF record exists or code 14) if ss_rec.hm_code: strand_counter['No VCF record found'] += 1 # Harmonise palindromic alleles elif is_palindromic(ss_rec.other_al, ss_rec.effect_al): strand_counter['Palindormic variant'] += 1 if args.hm_sumstats: ss_rec = harmonise_palindromic(ss_rec, vcf_rec) # Harmonise opposite strand alleles elif compatible_alleles_reverse_strand(ss_rec.other_al, ss_rec.effect_al, vcf_rec.ref_al, vcf_alt): strand_counter['Reverse strand variant'] += 1 if args.hm_sumstats: ss_rec = harmonise_reverse_strand(ss_rec, vcf_rec) # Harmonise same forward alleles elif compatible_alleles_forward_strand(ss_rec.other_al, ss_rec.effect_al, vcf_rec.ref_al, vcf_alt): strand_counter['Forward strand variant'] += 1 if args.hm_sumstats: ss_rec = harmonise_forward_strand(ss_rec, vcf_rec) # Should never reach this 'else' statement else: sys.exit("Error: Alleles were not palindromic, opposite strand, or " "same strand!") # Add harmonisation code to counter code_counter[ss_rec.hm_code] += 1 # # Write ssrec to output ------------------------------------------------ # if args.hm_sumstats: # Add harmonised other allele, effect allele, eaf, beta, or to output out_row = OrderedDict() out_row["hm_varid"] = vcf_rec.hgvs()[0] if vcf_rec and ss_rec.is_harmonised else args.na_rep_out out_row["hm_rsid"] = ss_rec.hm_rsid if vcf_rec and ss_rec.is_harmonised else args.na_rep_out out_row["hm_chrom"] = ss_rec.hm_chrom if vcf_rec and ss_rec.is_harmonised else args.na_rep_out out_row["hm_pos"] = ss_rec.hm_pos if vcf_rec and ss_rec.is_harmonised else args.na_rep_out out_row["hm_other_allele"] = ss_rec.hm_other_al.str() if vcf_rec and ss_rec.is_harmonised else args.na_rep_out out_row["hm_effect_allele"] = ss_rec.hm_effect_al.str() if vcf_rec and ss_rec.is_harmonised else args.na_rep_out out_row["hm_beta"] = ss_rec.beta if ss_rec.beta and ss_rec.is_harmonised else args.na_rep_out out_row["hm_OR"] = ss_rec.oddsr if ss_rec.oddsr and ss_rec.is_harmonised else args.na_rep_out out_row["hm_OR_lowerCI"] = ss_rec.oddsr_lower if ss_rec.oddsr_lower and ss_rec.is_harmonised else args.na_rep_out out_row["hm_OR_upperCI"] = ss_rec.oddsr_upper if ss_rec.oddsr_upper and ss_rec.is_harmonised else args.na_rep_out out_row["hm_eaf"] = ss_rec.eaf if ss_rec.eaf and ss_rec.is_harmonised else args.na_rep_out out_row["hm_code"] = ss_rec.hm_code # Add other data from summary stat file for key in ss_rec.data: value = ss_rec.data[key] if ss_rec.data[key] else args.na_rep_out out_row[key] = str(value) # Write header if not header_written: outline = args.out_sep.join([str(x) for x in out_row.keys()]) + "\n" out_handle.write(outline.encode("utf-8")) header_written = True # Write row outline = args.out_sep.join([str(x) for x in out_row.values()]) + "\n" out_handle.write(outline.encode("utf-8")) # Close output handle if args.hm_sumstats: out_handle.close() # Write strand_count stats to file if args.strand_counts: with open_gzip(args.strand_counts, rw='wb') as out_h: for key in sorted(strand_counter.keys()): out_h.write('{0}\t{1}\n'.format(key, strand_counter[key]).encode('utf-8')) # Write outcome code stats to file code_table = { 1: 'Palindromic; Infer strand; Forward strand; Correct orientation; Already harmonised', 2: 'Palindromic; Infer strand; Forward strand; Flipped orientation; Requires harmonisation', 3: 'Palindromic; Infer strand; Reverse strand; Correct orientation; Already harmonised', 4: 'Palindromic; Infer strand; Reverse strand; Flipped orientation; Requires harmonisation', 5: 'Palindromic; Assume forward strand; Correct orientation; Already harmonised', 6: 'Palindromic; Assume forward strand; Flipped orientation; Requires harmonisation', 7: 'Palindromic; Assume reverse strand; Correct orientation; Already harmonised', 8: 'Palindromic; Assume reverse strand; Flipped orientation; Requires harmonisation', 9: 'Palindromic; Drop palindromic; Will not harmonise', 10: 'Forward strand; Correct orientation; Already harmonised', 11: 'Forward strand; Flipped orientation; Requires harmonisation', 12: 'Reverse strand; Correct orientation; Already harmonised', 13: 'Reverse strand; Flipped orientation; Requires harmonisation', 14: 'Required fields are not known; Cannot harmonise', 15: 'No matching variants in reference VCF; Cannot harmonise', 16: 'Multiple matching variants in reference VCF (ambiguous); Cannot harmonise', 17: 'Palindromic; Infer strand; EAF or reference VCF AF not known; Cannot harmonise', 18: 'Palindromic; Infer strand; EAF < --maf_palin_threshold; Will not harmonise' } if args.hm_statfile: with open_gzip(args.hm_statfile, 'wb') as out_h: out_h.write('hm_code\tcount\tdescription\n'.encode('utf-8')) for key in sorted(code_counter.keys()): out_h.write('{0}\t{1}\t{2}\n'.format(key, code_counter[key], code_table[key]).encode('utf-8') ) print("Done!") return 0 def parse_args(): """ Parse command line args using argparse. """ parser = argparse.ArgumentParser(description="Summary statistc harmoniser") # Input file args infile_group = parser.add_argument_group(title='Input files') infile_group.add_argument('--sumstats', metavar="<file>", help=('GWAS summary statistics file'), type=str, required=True) infile_group.add_argument('--vcf', metavar="<file>", help=('Reference VCF file. Use # as chromosome wildcard.'), type=str, required=True) # Output file args outfile_group = parser.add_argument_group(title='Output files') outfile_group.add_argument('--hm_sumstats', metavar="<file>", help=("Harmonised sumstat output file (use 'gz' extension to gzip)"), type=str) outfile_group.add_argument('--hm_statfile', metavar="<file>", help=("Statistics from harmonisation process output file. Should only be used in conjunction with --hm_sumstats."), type=str) outfile_group.add_argument('--strand_counts', metavar="<file>", help=("Output file showing number of variants that are forward/reverse/palindromic"), type=str) # Harmonisation mode mode_group = parser.add_argument_group(title='Harmonisation mode') mode_group.add_argument('--palin_mode', metavar="[infer|forward|reverse|drop]", help=('Mode to use for palindromic variants:\n' '(a) infer strand from effect-allele freq, ' '(b) assume forward strand, ' '(c) assume reverse strand, ' '(d) drop palindromic variants'), choices=['infer', 'forward', 'reverse', 'drop'], type=str) # Infer strand specific options infer_group = parser.add_argument_group(title='Strand inference options', description='Options that are specific to strand inference (--palin_mode infer)') infer_group.add_argument('--af_vcf_field', metavar="<str>", help=('VCF info field containing alt allele freq (default: AF_NFE)'), type=str, default="AF_NFE") infer_group.add_argument('--infer_maf_threshold', metavar="<float>", help=('Max MAF that will be used to infer palindrome strand (default: 0.42)'), type=float, default=0.42) # Global column args incols_group = parser.add_argument_group(title='Input column names') incols_group.add_argument('--chrom_col', metavar="<str>", help=('Chromosome column'), type=str, required=True) incols_group.add_argument('--pos_col', metavar="<str>", help=('Position column'), type=str, required=True) incols_group.add_argument('--effAl_col', metavar="<str>", help=('Effect allele column'), type=str, required=True) incols_group.add_argument('--otherAl_col', metavar="<str>", help=('Other allele column'), type=str, required=True) incols_group.add_argument('--beta_col', metavar="<str>", help=('beta column'), type=str) incols_group.add_argument('--or_col', metavar="<str>", help=('Odds ratio column'), type=str) incols_group.add_argument('--or_col_lower', metavar="<str>", help=('Odds ratio lower CI column'), type=str) incols_group.add_argument('--or_col_upper', metavar="<str>", help=('Odds ratio upper CI column'), type=str) incols_group.add_argument('--eaf_col', metavar="<str>", help=('Effect allele frequency column'), type=str) # Global other args other_group = parser.add_argument_group(title='Other args') other_group.add_argument('--only_chrom', metavar="<str>", help=('Only process this chromosome'), type=str) other_group.add_argument('--in_sep', metavar="<str>", help=('Input file column separator [tab|space|comma|other] (default: tab)'), type=str, default='tab') other_group.add_argument('--out_sep', metavar="<str>", help=('Output file column separator [tab|space|comma|other] (default: tab)'), type=str, default='tab') other_group.add_argument('--na_rep_in', metavar="<str>", help=('How NA are represented in the input file (default: "")'), type=str, default="") other_group.add_argument('--na_rep_out', metavar="<str>", help=('How to represent NA values in output (default: "")'), type=str, default="") other_group.add_argument('--chrom_map', metavar="<str>", help=('Map summary stat chromosome names, e.g. `--chrom_map 23=X 24=Y`'), type=str, nargs='+') # Parse arguments args = parser.parse_args() # Convert input/output separators args.in_sep = convert_arg_separator(args.in_sep) args.out_sep = convert_arg_separator(args.out_sep) # Assert that at least one of --hm_sumstats, --strand_counts is selected assert any([args.hm_sumstats, args.strand_counts]), \ "Error: at least 1 of --hm_sumstats, --strand_counts must be selected" # Assert that --hm_statfile is only ever used in conjunction with --hm_sumstats if args.hm_statfile: assert args.hm_sumstats, \ "Error: --hm_statfile must only be used in conjunction with --hm_sumstats" # Assert that mode is selected if doing harmonisation if args.hm_sumstats: assert args.palin_mode, \ "Error: '--palin_mode' must be used with '--hm_sumstats'" # Assert that inference specific options are supplied if args.palin_mode == 'infer': assert all([args.af_vcf_field, args.infer_maf_threshold, args.eaf_col]), \ "Error: '--af_vcf_field', '--infer_maf_threshold' and '--eaf_col' must be used with '--palin_mode infer'" # Assert that OR_lower and OR_upper are used both present if any if any([args.or_col_lower, args.or_col_upper]): assert all([args.or_col_lower, args.or_col_upper]), \ "Error: '--or_col_lower' and '--or_col_upper' must be used together" # Parse chrom_map if args.chrom_map: try: chrom_map_d = dict([pair.split('=') for pair in args.chrom_map]) args.chrom_map = chrom_map_d except ValueError: assert False, \ 'Error: --chrom_map must be in the format `--chrom_map 23=X 24=Y`' return args def convert_arg_separator(s): ''' Converts [tab|space|comma|other] to a variable ''' if s == 'tab': return '\t' elif s == 'space': return ' ' elif s == 'comma': return ',' else: return s def exract_matching_record_from_vcf_records(ss_rec, vcf_recs): ''' Extracts the vcf record that matches the summary stat record. Args: ss_rec (SumStatRecord): object containing summary statistic record vcf_recs (list of VCFRecords): list containing vcf records Returns: tuple( a single VCFRecord or None, output code ) ''' # Discard if there are no records if len(vcf_recs) == 0: return (None, 15) # Remove alt alleles that don't match sum stat alleles for i in range(len(vcf_recs)): non_matching_alts = find_non_matching_alleles(ss_rec, vcf_recs[i]) for alt in non_matching_alts: vcf_recs[i] = vcf_recs[i].remove_alt_al(alt) # Remove records that don't have any matching alt alleles vcf_recs = [vcf_rec for vcf_rec in vcf_recs if vcf_rec.n_alts() > 0] # Discard ss_rec if there are no valid vcf_recs if len(vcf_recs) == 0: return (None, 15) # Discard ss_rec if there are multiple records if len(vcf_recs) > 1: return (None, 16) # Given that there is now 1 record, use that vcf_rec = vcf_recs[0] # Discard ssrec if there are multiple matching alleles if vcf_rec.n_alts() > 1: return (None, 16) return (vcf_rec, None) def harmonise_palindromic(ss_rec, vcf_rec): ''' Harmonises palindromic variant Args: ss_rec (SumStatRecord): object containing summary statistic record vcf_rec (VCFRecord): matching vcf record Returns: harmonised ss_rec ''' # Mode: Infer strand mode if args.palin_mode == 'infer': # Extract allele frequency if argument is provided if args.af_vcf_field and args.af_vcf_field in vcf_rec.info: vcf_alt_af = float(vcf_rec.info[args.af_vcf_field][0]) else: ss_rec.hm_code = 17 return ss_rec # Discard if either MAF is greater than threshold if ss_rec.eaf: if ( af_to_maf(ss_rec.eaf) > args.infer_maf_threshold or af_to_maf(vcf_alt_af) > args.infer_maf_threshold ): ss_rec.hm_code = 18 return ss_rec else: ss_rec.hm_code = 17 return ss_rec # If EAF and alt AF are concordant, then alleles are on forward strand if afs_concordant(ss_rec.eaf, vcf_alt_af): # If alleles flipped orientation if ss_rec.effect_al.str() == vcf_rec.ref_al.str(): ss_rec.flip_beta() ss_rec.is_harmonised = True ss_rec.hm_code = 2 return ss_rec # If alleles in correct orientation else: ss_rec.is_harmonised = True ss_rec.hm_code = 1 return ss_rec # Else alleles are on the reverse strand else: # Take reverse complement of ssrec alleles ss_rec.revcomp_alleles() # If alleles flipped orientation if ss_rec.effect_al.str() == vcf_rec.ref_al.str(): ss_rec.flip_beta() ss_rec.is_harmonised = True ss_rec.hm_code = 4 return ss_rec # If alleles in correct orientation else: ss_rec.is_harmonised = True ss_rec.hm_code = 3 return ss_rec # Mode: Assume palindromic variants are on the forward strand elif args.palin_mode == 'forward': # If alleles flipped orientation if ss_rec.effect_al.str() == vcf_rec.ref_al.str(): ss_rec.flip_beta() ss_rec.is_harmonised = True ss_rec.hm_code = 6 return ss_rec # If alleles in correct orientation else: ss_rec.is_harmonised = True ss_rec.hm_code = 5 return ss_rec # Mode: Assume palindromic variants are on the reverse strand elif args.palin_mode == 'reverse': # Take reverse complement of ssrec alleles ss_rec.revcomp_alleles() # If alleles flipped orientation if ss_rec.effect_al.str() == vcf_rec.ref_al.str(): ss_rec.flip_beta() ss_rec.is_harmonised = True ss_rec.hm_code = 8 return ss_rec # If alleles in correct orientation else: ss_rec.is_harmonised = True ss_rec.hm_code = 7 return ss_rec # Mode: Drop palindromic variants elif args.palin_mode == 'drop': ss_rec.hm_code = 9 return ss_rec def harmonise_reverse_strand(ss_rec, vcf_rec): ''' Harmonises reverse strand variant Args: ss_rec (SumStatRecord): object containing summary statistic record vcf_rec (VCFRecord): matching vcf record Returns: harmonised ss_rec ''' # Take reverse complement of ssrec alleles ss_rec.revcomp_alleles() # If alleles flipped orientation if ss_rec.effect_al.str() == vcf_rec.ref_al.str(): ss_rec.flip_beta() ss_rec.is_harmonised = True ss_rec.hm_code = 13 return ss_rec # If alleles in correct orientation else: ss_rec.is_harmonised = True ss_rec.hm_code = 12 return ss_rec def harmonise_forward_strand(ss_rec, vcf_rec): ''' Harmonises forward strand variant Args: ss_rec (SumStatRecord): object containing summary statistic record vcf_rec (VCFRecord): matching vcf record Returns: harmonised ss_rec ''' # If alleles flipped orientation if ss_rec.effect_al.str() == vcf_rec.ref_al.str(): ss_rec.flip_beta() ss_rec.is_harmonised = True ss_rec.hm_code = 11 return ss_rec # If alleles in correct orientation else: ss_rec.is_harmonised = True ss_rec.hm_code = 10 return ss_rec def afs_concordant(af1, af2): """ Checks whether the allele frequencies of two palindromic variants are concordant. Concordant if both are either >0.5 or both are <0.5. Args: af1, af2 (float): Allele frequencies from two datasets Returns: Bool: True if concordant """ assert isinstance(af1, float) and isinstance(af2, float) if (af1 >= 0.5 and af2 >= 0.5) or (af1 < 0.5 and af2 < 0.5): return True else: return False def is_palindromic(A1, A2): """ Checks if two alleles are palindromic. Args: A1, A2 (Seq): Alleles (i.e. other and effect alleles) """ return A1.str() == A2.revcomp().str() def find_non_matching_alleles(sumstat_rec, vcf_rec): """ For each vcfrec ref-alt pair check whether it matches either the forward or reverse complement of the sumstat alleles. Args: sumstat_rec (SumStatRecord) vcf_rec (VCFRecord) Returns: list of alt alleles to remove """ alts_to_remove = [] for ref, alt in vcf_rec.yeild_alleles(): if not compatible_alleles_either_strand(sumstat_rec.other_al, sumstat_rec.effect_al, ref, alt): alts_to_remove.append(alt) return alts_to_remove def compatible_alleles_either_strand(A1, A2, B1, B2): """ Checks whether alleles are compatible, either on the forward or reverse strand Args: A1, A2 (Seq): Alleles from one source B1, B2 (Seq): Alleles from another source Returns: Boolean """ return (compatible_alleles_forward_strand(A1, A2, B1, B2) or compatible_alleles_reverse_strand(A1, A2, B1, B2)) def compatible_alleles_forward_strand(A1, A2, B1, B2): """ Checks whether alleles are compatible on the forward strand Args: A1, A2 (Seq): Alleles from one source B1, B2 (Seq): Alleles from another source Returns: Boolean """ return set([A1.str(), A2.str()]) == set([B1.str(), B2.str()]) def compatible_alleles_reverse_strand(A1, A2, B1, B2): """ Checks whether alleles are compatible on the forward strand Args: A1, A2 (Seq): Alleles from one source B1, B2 (Seq): Alleles from another source Returns: Boolean """ return set([A1.str(), A2.str()]) == set([B1.revcomp().str(), B2.revcomp().str()]) def af_to_maf(af): """ Converts an allele frequency to a minor allele frequency Args: af (float or str) Returns: float """ # Sometimes AF == ".", in these cases, set to 0 try: af = float(af) except ValueError: af = 0.0 if af <= 0.5: return af else: return 1 - af def get_vcf_records(in_vcf, chrom, pos): """ Uses tabix to query VCF file. Parses info from record. Args: in_vcf (str): vcf file chrom (str): chromosome pos (int): base pair position Returns: list of VCFRecords """ response = list(tabix_query(in_vcf, chrom, pos, pos)) return [VCFRecord(line) for line in response] def yield_sum_stat_records(inf, sep): """ Load lines from summary stat file and convert to SumStatRecord class. Args: inf (str): input file sep (str): column separator Returns: SumStatRecord """ for row in parse_sum_stats(inf, sep): # Replace chrom with --chrom_map value chrom = row[args.chrom_col] if args.chrom_map: chrom = args.chrom_map.get(chrom, chrom) # Make sumstat class instance ss_record = SumStatRecord(chrom, row[args.pos_col], row[args.otherAl_col], row[args.effAl_col], row.get(args.beta_col, None), row.get(args.or_col, None), row.get(args.or_col_lower, None), row.get(args.or_col_upper, None), row.get(args.eaf_col, None), row) yield ss_record def parse_sum_stats(inf, sep): """ Yields a line at a time from the summary statistics file. Args: inf (str): input file sep (str): column separator Returns: OrderedDict: {column: value} """ with open_gzip(inf, "rb") as in_handle: # Get header header = in_handle.readline().decode("utf-8").rstrip().split(sep) # Assert that all column arguments are contained in header for arg, value in args.__dict__.items(): if '_col' in arg and value: assert value in header, \ 'Error: --{0} {1} not found in input header'.format(arg, value) # Iterate over lines for line in in_handle: values = line.decode("utf-8").rstrip().split(sep) # Replace any na_rep_in values with None values = [value if value != args.na_rep_in else None for value in values] # Check we have the correct number of elements assert len(values) == len(header), 'Error: column length ({0}) does not match header length ({1})'.format(len(values), len(header)) yield OrderedDict(zip(header, values)) def open_gzip(inf, rw="rb"): """ Returns handle using gzip if gz file extension. """ if inf.split(".")[-1] == "gz": return gzip.open(inf, rw) else: return open(inf, rw) def tabix_query(filename, chrom, start, end): """Call tabix and generate an array of strings for each line it returns. Author: https://github.com/slowkow/pytabix """ query = '{}:{}-{}'.format(chrom, start, end) process = Popen(['tabix', '-f', filename, query], stdout=PIPE) for line in process.stdout: yield [s.decode("utf-8") for s in line.strip().split()] def str2bool(v): """ Parses argpare boolean input """ if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') if __name__ == '__main__': main() ```
{ "source": "JDHDEV/recipe-app-api", "score": 2 }
#### File: traveler/tests/test_graphql.py ```python from graphene_django.utils.testing import GraphQLTestCase from graphene.test import Client from app.schema import schema from django.contrib.auth import get_user_model from django.test import RequestFactory from rest_framework import status from core.models import Spot def sample_spot(user, **params): """Create and return a sample spot""" defaults = { 'name': 'Sample spot', 'time_minutes': 60, 'price': 20.00 } defaults.update(params) return Spot.objects.create(user=user, **defaults) class PublicGraphQLApiTests(GraphQLTestCase): """Test unauthenticated graphql API access""" GRAPHQL_SCHEMA = schema def test_auth_required(self): response = self.query( ''' query { } ''' ) self.assertEqual(response.status_code, status.HTTP_401_UNAUTHORIZED) class privateGraphQLApiTests(GraphQLTestCase): """Test authenticated graphql API access""" GRAPHQL_SCHEMA = schema def setUp(self): self.factory = RequestFactory() self.user = get_user_model().objects.create_user( '<EMAIL>', '<PASSWORD>' ) def test_allspots_graphql(self): """Test retrieving spots with graphql""" sample_spot(user=self.user) sample_spot(user=self.user) request = self.factory.get('graphql/') # Recall that middleware are not supported. You can simulate a # logged-in user by setting request.user manually. request.user = self.user client = Client(schema) executed = client.execute( '''{ allSpots { name } } ''', context=request ) self.assertIn('data', executed) data = executed.get('data') self.assertIn('allSpots', data) allSpots = data.get('allSpots') self.assertEqual(allSpots[0].get('name'), "Sample spot") self.assertEqual(allSpots[1].get('name'), "Sample spot") ```
{ "source": "jdheinz/project-ordo_ab_chao", "score": 2 }
#### File: django_website/blog/views.py ```python from django.contrib.auth.decorators import login_required from django.shortcuts import render, get_object_or_404 from .models import BlogPost from .forms import BlogPostModelForm # render intial html page of list of published blogs def blog_post_list_view(request): qs = BlogPost.objects.all().published() # queryset -> list of python objects if request.user.is_authenticated: my_qs = BlogPost.objects.filter(user=request.user) qs = (qs | my_qs).distinct() context = {'object_list':qs} return render(request, 'blog/list.html', context) # create new blog post @login_required def blog_post_create_view(request): form = BlogPostModelForm(request.POST or None, request.FILES or None) if form.is_valid(): obj = form.save(commit=False) obj.user = request.user obj.save() form = BlogPostModelForm() context = {'form':form} return render(request, 'blog/form.html', context) # click on blog 'view' on blog list page to see details of a single blog def blog_post_detail_view(request, slug): obj = get_object_or_404(BlogPost, slug=slug) context = {'object':obj} return render(request, 'blog/detail.html', context) # blog author can update/edit the blog post that user created @login_required def blog_post_update_view(request, slug): obj = get_object_or_404(BlogPost, slug=slug) form = BlogPostModelForm(request.POST or None, instance=obj) if form.is_valid(): form.save() context = { "form":form, "title":f"Update {obj.title}", } return render(request, 'blog/update.html', context) # blog author can delete the blog post that user created @login_required def blog_post_delete_view(request, slug): obj = get_object_or_404(BlogPost, slug=slug) if request.method == "POST": obj.delete() context = {'object':obj} return render(request, 'blog/delete.html', context) ``` #### File: django_website/contact_us/views.py ```python from django.shortcuts import render # render 'contact us' html page def contact_page(request): return render(request, 'contact_us/contact.html') ``` #### File: django_website/display_graphs/neuralNetwork.py ```python import pandas as pd import numpy as np from tensorflow import keras from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import train_test_split # instance of the neural network to predit future prices class Neural_Network: def neural_network(self, n_df): df = n_df.copy() df = df.replace('^\s*$', np.nan, regex=True) #df['itemId'] = df['itemId'].astype(int) df['listingType'] = pd.get_dummies(df['listingType']) df['endPrice'] = df['endPrice'].astype(np.float) df['shippingServiceCost'] = df['shippingServiceCost'].astype(np.float) #df['shippingServiceCost'] = df['shippingServiceCost'].interpolate() df['shippingServiceCost'] = df['shippingServiceCost'].fillna(df['shippingServiceCost'].mean()) df['bidCount'] = df['bidCount'].astype(np.float) #df['bidCount'] = df['bidCount'].interpolate() df['bidCount'] = df['bidCount'].fillna(df['bidCount'].mean()) df['watchCount'] = df['watchCount'].astype(np.float) #df['watchCount'] = df['watchCount'].interpolate() df['watchCount'] = df['watchCount'].fillna(df['watchCount'].mean()) df['returnsAccepted'] = pd.get_dummies(df['returnsAccepted']) df['handlingTime'] = df['handlingTime'].astype(np.float) df['sellerUserName'] = pd.get_dummies(df['sellerUserName']) df['feedbackScore'] = df['feedbackScore'].astype(np.float) df['positiveFeedbackPercent'] = df['positiveFeedbackPercent'].astype(np.float) df['topRatedSeller'] = pd.get_dummies(df['topRatedSeller']) df['endDate'] = pd.get_dummies(df['endDate']) #print('\nnull values in dataframe are:\n', df.isnull().any()) features_df = df.drop(['itemId','title','endPrice','location','endTime','startTime','endTimeOfDay'], axis=1) corr = features_df.corr() #print('\ncorr:\n', corr) num_of_cols = len(features_df.columns) #print('\nnumber of feature columns:\n', num_of_cols) features = features_df.values target = df.endPrice.values #print('\ntarget values:\n', target) #print('\nfeatures values:\n', features) #print('\ntarget shape:\n', target.shape) #print('\nfeatures shape:\n', features.shape) X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.3, random_state=124) #print('\nTRAIN TEST SPLIT EXECUTED\n') X_train = MinMaxScaler(feature_range=(-1,1)).fit_transform(X_train) X_test = MinMaxScaler(feature_range=(-1,1)).fit_transform(X_test) #print('\nX_train and X_test scaled\n') y_train = y_train.reshape(-1,1) y_test = y_test.reshape(-1,1) y_train = MinMaxScaler(feature_range=(-1,1)).fit_transform(y_train) y_test = MinMaxScaler(feature_range=(-1,1)).fit_transform(y_test) y_train = y_train.reshape(-1) y_test = y_test.reshape(-1) #print('\nshape of X_train:\n', X_train.shape) #print('\nshape of X_test:\n', X_test.shape) #print('\nshape of y_train:\n', y_train.shape) #print('\nshape of y_test:\n', y_test.shape) model = keras.Sequential() ''' input_layer = keras.layers.Dense(16, input_dim=num_of_cols, activation='sigmoid') model.add(input_layer) hidden_layer = keras.layers.Dense(num_of_cols, input_dim=16, activation='sigmoid') model.add(hidden_layer) output_layer = keras.layers.Dense(1, input_dim=num_of_cols, activation='softmax') model.add(output_layer) model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy']) history = model.fit(X_train, y_train, validation_split=0.2, batch_size=32, epochs=100, shuffle=True) ''' input_layer = keras.layers.Dense(units=16, kernel_initializer='uniform', input_dim=num_of_cols, activation='relu') model.add(input_layer) hidden_layer1 = keras.layers.Dense(units=18, kernel_initializer='uniform', activation='relu') model.add(hidden_layer1) model.add(keras.layers.Dropout(rate=0.25)) hidden_layer2 = keras.layers.Dense(20, kernel_initializer='uniform', activation='relu') model.add(hidden_layer2) hidden_layer3 = keras.layers.Dense(24, kernel_initializer='uniform', activation='relu') model.add(hidden_layer3) output_layer = keras.layers.Dense(1, kernel_initializer='uniform', activation='sigmoid') model.add(output_layer) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) history = model.fit(X_train, y_train, validation_split=0.2, batch_size=15, epochs=10, shuffle=2) predictions = model.predict(X_test, verbose=1, steps=1) #print('\npredictions shape:\n', predictions.shape) #print('\npredictions values:\n', predictions) pred_nn_df = pd.DataFrame({'predictions':pd.Series(predictions.reshape(-1)),'actual_sell_prices':pd.Series(y_test)}) return pred_nn_df, history ``` #### File: django_website/display_graphs/outOfSample.py ```python import pandas as pd # instance of 'out of sample'/step forward analysis model to predit future prices class Oos: def out_of_sample(self, c_df): df = c_df.copy() df['endPrice'] = df['endPrice'].astype(float) pivot_df = df.pivot_table(index='endDate', columns='listingType', values='endPrice') pivot_df = pivot_df.interpolate(method='linear', axis=0).ffill().bfill() #print('\npivot_df:\n', pivot_df) delta_values = [7,14,21,28] delta_dict = {} for offset in delta_values: delta_dict['delta_{}'.format(offset)] = pivot_df/pivot_df.shift(offset) - 1.0 #print('delta_7 \'date\' check for null dates:', delta_dict['delta_7'].index.isnull().sum()) #print('delta_14 \'date\' check for null dates:', delta_dict['delta_14'].index.isnull().sum()) #print('delta_21 \'date\' check for null dates:', delta_dict['delta_21'].index.isnull().sum()) #print('delta_28 \'date\' check for null dates:', delta_dict['delta_28'].index.isnull().sum()) melted_dfs = [] for key, delta_df in delta_dict.items(): melted_dfs.append(delta_df.reset_index().melt(id_vars=['endDate'], value_name=key)) ''' for i in melted_dfs: print(i,'melted_dfs:\n', i.tail()) ''' target_variable = pd.merge(melted_dfs[0], melted_dfs[1], on=['endDate','listingType']) target_variable = pd.merge(target_variable, melted_dfs[2], on=['endDate','listingType']) target_variable = pd.merge(target_variable, melted_dfs[3], on=['endDate', 'listingType']) #print('\ntarget_variable:\n', target_variable) return target_variable ``` #### File: django_website/display_graphs/views.py ```python from django.shortcuts import render from ebaysdk.finding import Connection as finding import xmltodict from json import loads, dumps import pandas as pd import numpy as np import datetime from . import outOfSample, neuralNetwork, mLinearRegression # create empty dataframe within scope of entire file content_df = pd.DataFrame() # do ebay search by keywords and pass to graphs.html, and get predictions def display_the_graphs(request): keywords = request.POST.get('search') api = finding(appid='JohnHein-homepage-PRD-392e94856-07aba7fe', config_file=None, siteid='EBAY-US') api_request = {'keywords':keywords, 'itemFilter':[{'name':'SoldItemsOnly', 'value':True},],'outputSelector':['SellerInfo']} response = api.execute('findCompletedItems', api_request) content = response.content xml_dict = xmltodict.parse(content) content_dict = to_dict(xml_dict) count = content_dict['findCompletedItemsResponse']['searchResult']['@count'] item_dict = content_dict['findCompletedItemsResponse']['searchResult']['item'] print('count:', count) #print('\nitem_dict:\n', item_dict) content_df = extract_values(item_dict) content_df_copy = content_df.copy() y_values = content_df_copy['endPrice'].tolist() y_values = [float(i) for i in y_values] x_values_b = content_df_copy['endTime'].tolist() x_values = convert_datetime(x_values_b) #print('\nx_values: ', x_values,'\n') #print('\ny_values: ', y_values,'\n') #print('\nx_values count:', len(x_values),'\n') #print('\ny_values count:', len(y_values),'\n') #print('\nx_values type:', type(x_values[-1]),'\n') #print('\ny_values type:', type(y_values[-1]),'\n') chart1_data = [list(i) for i in zip(x_values, y_values)] oos = outOfSample.Oos() df2 = oos.out_of_sample(content_df) nn = neuralNetwork.Neural_Network() df3, history = nn.neural_network(content_df) mlr = mLinearRegression.MultivariateLinearRegression() df4 = mlr.regression(content_df) nn_x_values = df3['predictions'].tolist() nn_y_values = df3['actual_sell_prices'].tolist() chart2_data = [list(i) for i in zip(nn_x_values, nn_y_values)] mlr_x_values = df4['predictions'].tolist() mlr_y_values = df4['actual_sell_prices'].tolist() chart4_data = [list(i) for i in zip(mlr_x_values, mlr_y_values)] #print('chart1 data:', chart1_data) context = { 'response': content_df.to_html(), 'chart1': chart1_data, 'chart4': chart4_data, 'chart2': chart2_data, 'oos_df': df2.to_html(), 'nn_df': df3.to_html(), 'mlr_df': df4.to_html() } return render(request, 'display_graphs/graphs.html', context) # convert ordered dictionary to regular dictionary def to_dict(input_ordered_dict): return loads(dumps(input_ordered_dict)) # take ebay response data and put into dataframe def extract_values(temp_dict): df = pd.DataFrame(columns=['itemId','title','listingType','endPrice','shippingServiceCost','bidCount','watchCount','returnsAccepted','location','endTime','startTime','handlingTime','sellerUserName','feedbackScore','positiveFeedbackPercent','topRatedSeller']) a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p = [],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[] #print('\ntype of data:\n', type(temp_dict)) length = len(temp_dict) #print('\nlength:\n', length) for index in range(length): for key, value in temp_dict[index].items(): #print('temp_dict[index][key]:', key) if key == 'itemId': a.append(value) if key == 'title': b.append(value) if key == 'sellingStatus': c.append(temp_dict[index]['sellingStatus']['convertedCurrentPrice']['#text']) try: d.append(temp_dict[index]['sellingStatus']['bidCount']) except KeyError: d.append(np.nan) if key == 'shippingInfo': e.append(temp_dict[index]['shippingInfo']['handlingTime']) try: m.append(temp_dict[index]['shippingInfo']['shippingServiceCost']['#text']) except KeyError: m.append(np.nan) if key == 'sellerInfo': f.append(temp_dict[index]['sellerInfo']['sellerUserName']) g.append(temp_dict[index]['sellerInfo']['feedbackScore']) h.append(temp_dict[index]['sellerInfo']['positiveFeedbackPercent']) n.append(temp_dict[index]['sellerInfo']['topRatedSeller']) if key == 'location': i.append(value) if key == 'listingInfo': j.append(temp_dict[index]['listingInfo']['endTime']) l.append(temp_dict[index]['listingInfo']['startTime']) p.append(temp_dict[index]['listingInfo']['listingType']) try: k.append(temp_dict[index]['listingInfo']['watchCount']) except KeyError: k.append(np.nan) if key == 'returnsAccepted': o.append(value) df = pd.DataFrame({'itemId':pd.Series(a),'title':pd.Series(b),'listingType':pd.Series(p),'endPrice':pd.Series(c),'shippingServiceCost':pd.Series(m), 'bidCount':pd.Series(d),'watchCount':pd.Series(k),'returnsAccepted':pd.Series(o), 'location':pd.Series(i),'endTime':pd.Series(j),'startTime':pd.Series(l),'handlingTime':pd.Series(e), 'sellerUserName':pd.Series(f),'feedbackScore':pd.Series(g),'positiveFeedbackPercent':pd.Series(h), 'topRatedSeller':pd.Series(n)}) #print('\ndf:\n', df) #print('\narray a:\n', a) #print('\narray b:\n', b) #print('\narray c:\n', c) #print('\narray d:\n', d) #print('\narray f:\n', f) df['endTime'] = pd.to_datetime(df['endTime']) # datetime ISO 8601 format ---> YYYY-MM-DD HH:MM:SS +HH:MM (NOTE: '+HH:MM' is UTC offset) df['endTimeOfDay'],df['endDate'] = df['endTime'].apply(lambda x:x.time()),df['endTime'].apply(lambda x:x.date()) return df # convert the datetime for that column in the dataframe def convert_datetime(arr): arr2 = [] for i in arr: dateobj = str(i) dateobj = dateobj[:19] arr2.append(int(datetime.datetime.strptime(dateobj, "%Y-%m-%d %H:%M:%S").timestamp())*1000) #print('convert_datetime ',arr2[-1]) #print('dateobj:', dateobj) return arr2 ``` #### File: django_website/tests/test_views.py ```python from django.test import TransactionTestCase from django.test import TestCase from django.urls import reverse from home_page.models import Search from ebaysdk.finding import Connection as finding class PageTest(TransactionTestCase): def test_home_page_status_code_1(self): response = self.client.get('/') self.assertEquals(response.status_code, 200) def test_home_page_status_code_2(self): response = self.client.get('/home/') self.assertEquals(response.status_code, 200) def test_home_page_view_url_by_name(self): response = self.client.get(reverse('home')) self.assertEquals(response.status_code, 200) def test_home_page_contains_correct_html(self): response = self.client.get('/') self.assertContains(response, 'Please enter key search words below:') def test_home_page_does_not_contain_incorrect_html(self): response = self.client.get('/') self.assertNotContains( response, 'Hi there! I should not be on the page.') def test_graphs_page_status_code(self): response = self.client.get('/graphs/') self.assertEquals(response.status_code, 200) def test_graphs_page_view_url_by_name(self): response = self.client.get(reverse('graphs')) self.assertEquals(response.status_code, 200) def test_contact_page_status_code(self): response = self.client.get('/contact/') self.assertEquals(response.status_code, 200) def test_contact_page_view_url_by_name(self): response = self.client.get(reverse('contact')) self.assertEquals(response.status_code, 200) def test_about_page_status_code(self): response = self.client.get('/about/') self.assertEquals(response.status_code, 200) def test_about_page_view_url_by_name(self): response = self.client.get(reverse('about')) self.assertEquals(response.status_code, 200) def test_about_page_contains_correct_html(self): response = self.client.get('/about/') self.assertContains(response, 'ordo_ab_chao team members:') def test_about_page_does_not_contain_incorrect_html(self): response = self.client.get('/about/') self.assertNotContains( response, 'Hi there! I should not be on the page.') def test_blog_page_status_code(self): response = self.client.get('/blog/') self.assertEquals(response.status_code, 200) def test_blog_page_view_url_by_name(self): response = self.client.get(reverse('blog')) self.assertEquals(response.status_code, 200) def test_aboutWebsite_page_status_code(self): response = self.client.get('/about website/') self.assertEquals(response.status_code, 200) def test_aboutWebsite_page_view_url_by_name(self): response = self.client.get(reverse('about website')) self.assertEquals(response.status_code, 200) def test_directions_page_status_code(self): response = self.client.get('/directions/') self.assertEquals(response.status_code, 200) def test_directions_page_view_url_by_name(self): response = self.client.get(reverse('directions')) self.assertEquals(response.status_code, 200) class SearchModelTest(TestCase): def test_keywords_respresentation(self): keywords1 = Search(search="1986 Fleer Jordan") keywords2 = Search(search=1986) self.assertEquals(str(keywords1), keywords1.search) self.assertNotEquals(keywords2, keywords2.search) class TestEbayAPI(TestCase): def test_ebay_api_request_status_code(self): api = finding(appid='JohnHein-homepage-PRD-392e94856-07aba7fe', config_file=None, siteid='EBAY-US') keywords = Search(search="1986 Fleer Jordan PSA 10") api_request = {'keywords':keywords, 'itemFilter':[{'name':'SoldItemsOnly', 'value':True},]} response = api.execute('findCompletedItems', api_request) self.assertEqual(response.status_code, 200) ``` #### File: django_website/home_page/views.py ```python from django.shortcuts import render # render 'home page' html def homepage(request): return render(request, 'home_page/homepage.html') ```
{ "source": "jdhenke/sovereignpy", "score": 3 }
#### File: jdhenke/sovereignpy/main.py ```python import os, sys, subprocess from http.server import HTTPServer, BaseHTTPRequestHandler class Server(BaseHTTPRequestHandler): # respond to all get requests with the content of this file def do_GET(self): self.send_response(200) self.send_header("Content-type", "text/plain") self.end_headers() self.wfile.write(open("main.py").read().encode("utf8")) # treat all post requests as an attempt to patch this server, # using the body of the request as the patch def do_POST(self): try: content_len = int(self.headers.get('Content-Length')) patch = self.rfile.read(content_len) self.try_patch(patch) except Exception as e: self.send_response(400) self.send_header("Content-type", "text/plain") self.end_headers() self.wfile.write((str(e)+"\n").encode("utf8")) return self.send_response(200) self.send_header("Content-type", "text/plain") self.end_headers() self.wfile.write("OK\n".encode("utf8")) # restart server in place after the response is written print("Restarting server...") os.execl(sys.executable, sys.executable, *sys.argv) # applies the patch if it passes verification def try_patch(self, patch): self.verify(patch) self.apply(patch) # raises an exception if the patch should not be applied def verify(self, patch): pass # always accept # applies the patch to the source code in this directory def apply(self, patch): process = subprocess.Popen(["git", "am"], stdin=subprocess.PIPE) process.communicate(patch) process.wait() if process.returncode != 0: raise Exception("git am: return code: %i" % (process.returncode, )) if __name__ == "__main__": print("Starting server...") HTTPServer(("localhost", 8080), Server).serve_forever() ```
{ "source": "jdhenke/uap", "score": 2 }
#### File: uap/src/parse.py ```python from transform import createSparseMatrix # modify me to return a list or be a generator of your assertions def getAssertions(): yield "joe", "in", "school" yield "school", "in", "ma" createSparseMatrix(getAssertions(), "kb.pickle") ``` #### File: uap/src/server.py ```python import os, sys, graph, cherrypy import simplejson as json '''USAGE: python src/server.py <kb-file> <num-axes> <concepts|assertions> <www-path> <port>''' class Server(object): def __init__(self, matrix_path, dim_list, node_type): self.graph = graph.create_graph(matrix_path, dim_list, node_type) @cherrypy.expose @cherrypy.tools.json_out() def get_nodes(self): return self.graph.get_nodes(); @cherrypy.expose @cherrypy.tools.json_out() def get_edges(self, node, otherNodes): return self.graph.get_edges(json.loads(node), json.loads(otherNodes)) @cherrypy.expose @cherrypy.tools.json_out() def get_related_nodes(self, nodes, numNodes): return self.graph.get_related_nodes(json.loads(nodes), int(numNodes)) @cherrypy.expose @cherrypy.tools.json_out() def get_dimensionality_bounds(self): return self.graph.get_dimensionality_bounds() @cherrypy.expose @cherrypy.tools.json_out() def get_truth(self, node): node = json.loads(node) return self.graph.get_truth(node["concept1"], node["concept2"], node["relation"]) @cherrypy.expose @cherrypy.tools.json_out() def get_concepts(self): return self.graph.get_concepts() @cherrypy.expose @cherrypy.tools.json_out() def get_relations(self): return self.graph.get_relations() if __name__ == '__main__': # parse command line arguments sm_path, dim_list_str, node_type, www_path, port_str = sys.argv[1:] dim_list = [int(dim_str) for dim_str in dim_list_str.split(",")] port = int(port_str) # configure cherrypy to properly accept requests cherrypy.config.update({'server.socket_host': '0.0.0.0', 'server.socket_port': port}) Server._cp_config = { 'tools.staticdir.on' : True, 'tools.staticdir.dir' : os.path.abspath(www_path), 'tools.staticdir.index' :\ 'index.html' if node_type == 'concepts' else 'index-assertions.html', } # start server cherrypy.quickstart(Server(sm_path, dim_list, node_type)) ```
{ "source": "jdhenshaw/casa_modules", "score": 2 }
#### File: jdhenshaw/casa_modules/cleaning.py ```python def run_makedirtycube(vis, imagename, imsize, pixelsize, phasecenter='', restfreq='', specmode = 'cube', nchan=-1, width='', start=0, datacolumn='data', outframe='LSRK', gridder='mosaic', deconvolver='multiscale', scales=[0,7,21,63], parallel=False): """ Creates a dirty cube Parameters ---------- vis : casa ms visibility file input visibilities imagename : string w/o extension output file name for the dirty cube. Will be appended with _dirty imsize : array array or x,y list for the size of the output image pixelsize : number size of the pixels. Hard coded for arcseconds remaining parameters are those sent to tclean """ import os import masking import numpy as np from tasks import tclean, imhead, imstat #Makes dirty image dirtyimage = '%s_dirty' %imagename print '[INFO] Making dirty image: %s' %dirtyimage tclean(vis = vis, datacolumn = datacolumn, imagename = dirtyimage, imsize = imsize, cell = str(pixelsize)+'arcsec', phasecenter = phasecenter, specmode = specmode, nchan = nchan, start = start, width = width, outframe = outframe, restfreq = restfreq, gridder = gridder, deconvolver = deconvolver, scales = scales, niter = 0, interactive = False, parallel = parallel) #Cleaning up the dir #print '[INFO] Cleaning output dir.' #os.system('rm -rf %s.weight' %dirtyimage) #os.system('rm -rf %s.model' %dirtyimage) #os.system('rm -rf %s.psf' %dirtyimage) #os.system('rm -rf %s.sumwt' %dirtyimage) def run_makecleancube(vis, imagename, imsize, pixelsize, phasecenter='', restfreq='', specmode = 'cube', nchan=-1, width='', start=0, datacolumn='data', outframe='LSRK', gridder='mosaic', deconvolver='multiscale', scales=[0,7,21,63], niter=100000, tp_model = '',usetpmodel=False, n_cycles=5, nsigma_max = 10, nsigma_min=1, parallel=False): """ Code for staggered non-interactive CLEANing in casa. This code employs an automasking technique to identify data above a given threshold. CLEANing commences and stops when this threshold is hit. In the next iteration the previous CLEAN is used as a model for the next cycle. The number of steps in the CLEANing process can be finetuned to avoid divergence. Note that this code requires a dirty cube to be located in the same directory as "imagename". This can be produced using run_makedirtycube. Parameters ---------- vis : casa ms visibility file input visibilities imagename : string w/o extension output file name for the dirty cube. Will be appended with _dirty imsize : array array or x,y list for the size of the output image pixelsize : number size of the pixels. Hard coded for arcseconds tp_model : CASA image single dish model to use for the CLEANing. Must already be tweaked into a useable format usetpmodel : bool Do you want to use this as a model for the CLEANing? default=no - Will use the previous CLEAN image as an input model n_cycles : number number of cycles for the CLEANing nsigma_max : number starting threshold for mask creation. Given as an integer multiple of the rms nsigma_min : number end threshold for mask creation. i.e. CLEAN down to nsigma_min * rms remaining parameters are those sent to tclean """ import os import masking import numpy as np from tasks import tclean, imhead, imstat # define thresholds, from 10 to 1 threshs = np.linspace(nsigma_max, nsigma_min, n_cycles) dirtyimage = '%s_dirty' %imagename #Makes mask and cleans for cycle in range(n_cycles): print '' if usetpmodel: previmage = '%s_cycle%i_tpmodel' %(imagename, cycle-1) outimage = '%s_cycle%i_tpmodel' %(imagename, cycle) else: previmage = '%s_cycle%i' %(imagename, cycle-1) outimage = '%s_cycle%i' %(imagename, cycle) print '[INFO] Cleaning cycle %i' %cycle print '[INFO] Making image: %s' %outimage print '' header = imhead(imagename=dirtyimage + '.image', mode='list') major = header['perplanebeams']['median area beam']['major']['value'] minor = header['perplanebeams']['median area beam']['minor']['value'] beam_area = major*minor pixel_area = pixelsize**2 beam_pixel_ratio = beam_area/pixel_area thresh = threshs[cycle] print '' print '[INFO] Cycle thresh: %0.2f rms' %thresh print '' if cycle == 0: dirtyimage_ = '%s.image' %dirtyimage stats = imstat(imagename = dirtyimage_ ) mad = stats['medabsdevmed'][0] print '' print '[INFO] Cycle rms: %g Jy/beam' %mad print '' mask = masking.make_mask_3d(imagename = dirtyimage, thresh = thresh*mad, fl = False, useimage = True, pixelmin = beam_pixel_ratio*3, major = major, minor = minor, pixelsize = pixelsize, line = True, overwrite_old = False) if usetpmodel: startmodel = [tp_model] else: startmodel = '' print '[INFO] No model - okay?' else: print '' previmage_ = '%s.image' %previmage stats = imstat(imagename=previmage_) mad = stats['medabsdevmed'][0] print '' print '[INFO] Cycle rms: %g Jy/beam' %mad print '' mask = masking.make_mask_3d(imagename = previmage, thresh = thresh*mad, fl = True, useimage = False, pixelmin = beam_pixel_ratio*3, major = major, minor = minor, pixelsize = pixelsize, line = True, overwrite_old = False) if usetpmodel: startmodel = [tp_model] else: startmodel = ['%s.model' %previmage] print '' print '[INFO] Using model: %s' %startmodel print '' tclean(vis = vis, datacolumn = datacolumn, imagename = outimage, imsize = imsize, cell = str(pixelsize)+'arcsec', phasecenter = phasecenter, specmode = specmode, nchan = nchan, start = start, width = width, outframe = outframe, restfreq = restfreq, gridder = gridder, deconvolver = deconvolver, scales = scales, niter = niter, threshold = thresh*mad, interactive = False, mask = mask, startmodel = startmodel, parallel = parallel) #os.system('rm -rf %s.weight' %outimage) #os.system('rm -rf %s.model' %outimage) #os.system('rm -rf %s.psf' %outimage) #os.system('rm -rf %s.sumwt' %outimage) #os.system('rm -rf %s.threshmask' %previmage) #os.system('rm -rf %s.fullmask' %previmage) #os.system('rm -rf %s.fullmask.nopb' %previmage) return ``` #### File: jdhenshaw/casa_modules/image_analysis.py ```python from tasks import imstat def computerms(imagename, lower=0, upper=-1): """ Computes the rms over a given range of channels """ return imstat(imagename,axes=[0,1])['rms'][lower:upper].mean() def calc_beam_area_sd(header): import numpy as np # beam major FWHM bmaj = header['beammajor']['value'] # beam minor FWHM bmin = header['beamminor']['value'] # beam pa pa = header['beampa']['value'] return (np.pi/(4.*np.log(2))) * bmaj * bmin def calc_beam_area_perplane(header): import numpy as np # beam major FWHM bmaj = header['perplanebeams']['median area beam']['major']['value'] # beam minor FWHM bmin = header['perplanebeams']['median area beam']['minor']['value'] return (np.pi/(4.*np.log(2))) * bmaj * bmin def sdtomodel(tp, dirtycube, convtojypix=True, pbcorr=True): """ prepares a single dish for conversion to a model for imaging. Assumes image is already a casa image file. Also requires a dirty cube of the data you intend to merge with. """ print '' print tp print dirtycube print '' # First convert to jy per pix if not already done so if convtojypix: jypiximage = imtojypix(tp) else: jypiximage = tp print jypiximage print '' print '' # regrid SD image to same axes as the dirty cube jypiximage_regrid = regridsd(jypiximage, dirtycube) if pbcorr: attenuate(jypiximage_regrid, dirtycube) def attenuate(jypiximage_regrid, dirtycube): """ Attenuate the tp image using the primary beam response of the 12m+7m mosaic. """ from tasks import immath _pbresponse = '%s.pb' %dirtycube jypiximage_regrid_pb = '%s.pb' %jypiximage_regrid immath(imagename=[jypiximage_regrid+'.image', _pbresponse], outfile=jypiximage_regrid_pb+'.image', expr='IM0*IM1') def regridsd(jypiximage, dirtycube): """ regrids sd to axes of dirty cube """ from tasks import imregrid _dirtycube = '%s.image' %dirtycube _jypiximage = '%s.image' %jypiximage jypiximage_regrid = '%s.regrid' %jypiximage imregrid(imagename=_jypiximage, template=_dirtycube, output=jypiximage_regrid+'.image') return jypiximage_regrid def imtojypix(tp): """ Converts a single dish image either in k or in jy/beam to jy/pix using header information """ from tasks import imhead, immath import numpy as np _tp = '%s.image' %tp # First check the units of the SD image header = imhead(_tp, mode='list') unit = header['bunit'] restfreq = header['restfreq'] restfreq_ghz = restfreq/1.e9 # to GHz # beam major FWHM bmaj = header['beammajor']['value'] # beam minor FWHM bmin = header['beamminor']['value'] # get pixel size and convert to arcseconds pixelsize = np.abs(header['cdelt1']) * (60.*60.*360.)/(2.*np.pi) beamarea = calc_beam_area_sd(header) pixelarea = pixelsize**2 pixperbeam = beamarea/pixelarea if (unit == 'K') or (unit=='kelvin') or (unit=='k'): # convert to jy/beam jybeamimage = '%s.jybeam' %tp immath( imagename=_tp, expr='8.18249739e-7*{0:.6f}*{0:.6f}*IM0*{1:.6f}*{2:.6f}'.format( restfreq_ghz, bmaj, bmin), outfile=jybeamimage+'.image', ) imhead(jybeamimage+'.image', mode='put', hdkey='bunit', hdvalue='Jy/beam') else: jybeamimage = tp jypiximage = '%s.jypix' %tp immath(imagename=jybeamimage+'.image',expr='IM0/{0:.6f}'.format(pixperbeam), outfile=jypiximage+'.image',) imhead(jypiximage+'.image', mode='put', hdkey='bunit', hdvalue='Jy/pixel') return jypiximage ```
{ "source": "jdhenshaw/leodis", "score": 3 }
#### File: leodis/acorns/tree_definition.py ```python import numpy as np class Tree(object): def __init__(self, _antecessor, idx=None, acorns=None): """ Description ----------- This is how individual trees are defined and characterised. Output can be plotted as a dendrogram Parameters ---------- Examples -------- Notes ----- """ self._acorns = acorns self._tree_idx = idx self._number_of_tree_members = None self._tree_members_idx = None self._tree_members = None self._trunk = None self._branches = None self._leaves = None self._sorted_leaves = None self._crown_width = None self._cluster_vertices = [[], []] self._horizontals = [[], []] self = _get_members(self, _antecessor) self = _sort_members(self) self = _dendrogram_positions(self) @property def tree_idx(self): """ Returns tree index """ return self._tree_idx @property def tree_members_idx(self): """ Returns the indices of the tree members """ return self._tree_members_idx @property def tree_members(self): """ Returns tree members """ return self._tree_members @property def number_of_tree_members(self): """ Returns the number of tree members """ return int(self._number_of_tree_members) @property def trunk(self): """ Returns trunk """ return self._trunk @property def branches(self): """ Returns branches """ return self._branches @property def leaves(self): """ Returns leaves """ return self._leaves @property def crown_width(self): """ Returns maximum width of dendrogram crown """ return len(self._leaves) @property def cluster_vertices(self): """ Returns cluster vertices for plotting """ return self._cluster_vertices @property def horizontals(self): """ Returns cluster vertices for plotting """ return self._horizontals def __repr__(self): """ Return a nice printable format for the object. This format will indicate if the current structure is a leaf_cluster or a branch_cluster, and give the cluster index. """ if self.trunk.leaf_cluster: return "<< acorns tree; type=leaf_cluster; tree_index={0}; number_of_tree_members={1} >>".format(self.tree_idx, self.number_of_tree_members) else: return "<< acorns tree; type=branch_cluster; tree_index={0}; number_of_tree_members={1} >>".format(self.tree_idx, self.number_of_tree_members) def _get_members(self, _antecessor): """ Returns information on the tree members """ self._trunk = _antecessor self._branches = [] self._leaves = [] # Create a temporary list of descendants that will be updated new_descendants = _antecessor.descendants self._number_of_tree_members = 1.0 self._number_of_leaves = 0.0 self._number_of_branches = 0.0 self._tree_members = [_antecessor] self._tree_members_idx = [_antecessor.cluster_idx] # Cycle through descendants looking for new descendants while (len(new_descendants) !=0 ): descendant_list = [] # Loop over descendants for _descendant in new_descendants: self._number_of_tree_members+=1.0 self._tree_members_idx.append(_descendant.cluster_idx) if _descendant.leaf_cluster: self._number_of_leaves += 1.0 self._tree_members.append(_descendant) self._leaves.append(_descendant) else: self._number_of_branches += 1.0 self._tree_members.append(_descendant) self._branches.append(_descendant) # Check to see if the current descendant has any descendants if (len(_descendant.descendants) !=0 ): # If there are, add these to the descendant_list descendant_list.extend(_descendant.descendants) # Once search for descendants has finished begin a new search based # on the descendant_list new_descendants = descendant_list if (_antecessor.leaf_cluster==True): self._number_of_leaves = 1.0 self._leaves.append(_antecessor) return self def _sort_members(self): """ Sorts the tree members. Notes ----- Here we want to sort the leaf clusters such that we can plot them as a dendrogram. The method starts with the brightest leaf in a tree and then descends the hierarchy checking for leaf siblings along the way. """ # Initial sorting leaf_flux = [leaf.statistics[0][1] for leaf in self.leaves] sort_idx = np.argsort(np.asarray(leaf_flux)) _leaves = np.array(self.leaves) _sorted_peak_leaves = list(_leaves[sort_idx]) number_of_leaves = len(self.leaves) self._sorted_leaves = [] while len(_sorted_peak_leaves) != 0.0: # Start with the brightest cluster = _sorted_peak_leaves.pop() self._sorted_leaves.append(cluster) # Now descend while cluster.antecedent is not None: siblings = cluster.siblings idx = [(sibling.leaf_cluster) for sibling in siblings] sortedidxs = np.argsort(idx)[::-1] siblings = list(np.array(siblings)[sortedidxs]) for sibling in siblings: # If the sibling is a leaf add it to the sorted list if sibling.leaf_cluster: found_sibling = (np.asarray(_sorted_peak_leaves) == sibling) if np.any(found_sibling): idx = np.squeeze(np.where(found_sibling == True)) if np.size(idx) == 1: self._sorted_leaves.append(_sorted_peak_leaves[idx]) _sorted_peak_leaves.pop(idx) else: for j in range(np.size(idx)): self._sorted_leaves.append(_sorted_peak_leaves[idx[j]]) _sorted_peak_leaves.pop(idx[j]) # If however, the sibling is a branch we need to ascend that # branch to get the order correct else: _branch_sibling = sibling _leaf_list = [] _search_list = _branch_sibling.descendants idx = [(_descendant.leaf_cluster) for _descendant in _search_list] sortedidxs = np.argsort(idx)[::-1] _search_list = [list(np.array(_search_list)[sortedidxs])] num_descendants = len(_search_list) branch_found = 1 while branch_found != 0: branch_found = 0 num_searches = np.shape(np.asarray(_search_list))[0] for i in range(num_searches): num_clusters = np.size(np.asarray(_search_list[i])) for j in range(num_clusters): if _search_list[i][j].branch_cluster == True: _branch_descendants = _search_list[i][j].descendants idx = [(_branch_descendant.leaf_cluster) for _branch_descendant in _branch_descendants] sortedidxs = np.argsort(idx)[::-1] _branch_descendants = list(np.array(_branch_descendants)[sortedidxs]) _search_list[i][j] = [descendant for descendant in _branch_descendants] branch_found += 1 else: _search_list[i][j] = [_search_list[i][j]] _search_list[i] = [item for sublist in _search_list[i] for item in sublist] _leaf_list = [item for sublist in _search_list for item in sublist] if len(_leaf_list) != 0: for _cluster in _leaf_list: found_leaf = (np.asarray(_sorted_peak_leaves) == _cluster) if np.any(found_leaf): idx = np.squeeze(np.where(found_leaf == True)) self._sorted_leaves.append(_sorted_peak_leaves[idx]) _sorted_peak_leaves.pop(idx) cluster = cluster.antecedent return self def _dendrogram_positions(self): # Make lines for plotting a dendrogram # x locations of the leaf clusters x_loc = -1.*np.ones(len(self.tree_members)) x_loc = list(x_loc) for j in range(len(self.tree_members)): idx = np.where(np.asarray(self._sorted_leaves) == self.tree_members[j]) if np.size(idx) != 0.0: x_loc[j] = idx[0][0]+1.0 # Find x_locations of clusters while np.any(np.asarray(x_loc) == -1.0): for i in range(len(x_loc)): if x_loc[i] != -1.0: _sibling_pos = [x_loc[i]] if self.tree_members[i].siblings is not None: for sibling in self.tree_members[i].siblings: found_sibling = (np.asarray(self.tree_members) == sibling) idx = np.where(found_sibling == True) for j in range(np.size(idx)): _sibling_pos.append(x_loc[idx[0][j]]) if not np.any(np.asarray(_sibling_pos) == -1.0): x_loc_add = np.mean(_sibling_pos) idx = np.squeeze(np.where(np.asarray(self.tree_members) == self.tree_members[i].antecedent)) x_loc[idx] = x_loc_add # Generate lines for dendrogram for i in range(len(self.tree_members)): self._cluster_vertices[0].append(np.array([x_loc[i], x_loc[i]])) if self.tree_members[i] == self.trunk: if len(self.trunk.descendants) != 0.0: self._cluster_vertices[1].append(np.array([self.trunk.statistics[0][0], self.trunk.descendants[0].merge_level])) # find the descendants positions in x_loc x_loc_descendants = [] for descendant in self.tree_members[i].descendants: found_descendant = (np.asarray(self.tree_members) == descendant) idx = np.where(found_descendant == True) for j in range(np.size(idx)): x_loc_descendants.append(x_loc[idx[0][j]]) range_x = np.ptp(x_loc_descendants) self._horizontals[0].append(np.array([np.min(np.asarray(x_loc_descendants)) ,np.min(np.asarray(x_loc_descendants))+range_x])) self._horizontals[1].append(np.array([self.trunk.descendants[0].merge_level, self.trunk.descendants[0].merge_level])) else: self._cluster_vertices[1].append(np.array([self.trunk.statistics[0][0], self.trunk.statistics[0][1]])) self._horizontals[0].append(np.array([0.0,0.0])) self._horizontals[1].append(np.array([0.0,0.0])) elif self.tree_members[i].leaf_cluster == True: self._cluster_vertices[1].append(np.array([self.tree_members[i].merge_level, self.tree_members[i].statistics[0][1]])) self._horizontals[0].append(np.array([0.0,0.0])) self._horizontals[1].append(np.array([0.0,0.0])) else: self._cluster_vertices[1].append(np.array([self.tree_members[i].merge_level, self.tree_members[i].descendants[0].merge_level])) # find the descendants positions in x_loc x_loc_descendants = [] for descendant in self.tree_members[i].descendants: found_descendant = (np.asarray(self.tree_members) == descendant) idx = np.where(found_descendant == True) for j in range(np.size(idx)): x_loc_descendants.append(x_loc[idx[0][j]]) range_x = np.ptp(x_loc_descendants) self._horizontals[0].append(np.array([np.min(np.asarray(x_loc_descendants)) ,np.min(np.asarray(x_loc_descendants))+range_x])) self._horizontals[1].append(np.array([self.tree_members[i].descendants[0].merge_level, self.tree_members[i].descendants[0].merge_level])) return self ```
{ "source": "jdhenshaw/SCOUSEpy", "score": 3 }
#### File: SCOUSEpy/scousepy/model_housing.py ```python import numpy as np class saa(object): """ Stores all the information regarding individual spectral averaging areas (SAA) Parameters ---------- coordinates : array The coordinates of the SAA in pixel units. In (x,y). spectrum : array The spectrum index : number The index of the spectral averaging area (used as a key for saa_dict) to_be_fit : bool Indicating whether or not the SAA is to be fit or not scouseobject : instance of the scouse class Attributes ---------- index : number The index of the SAA coordinates : array The coordinates of the SAA in pixel units spectrum : array The spectrum rms : number An estimate of the rms indices : array The indices of individual pixels located within the SAA indices_flat : array The same indices but flattened according to the shape of the cube to_be_fit : bool Indicating whether or not the SAA is to be fit or not individual_spectra : dictionary This is a dictionary which will contain a number of instances of the "individual_spectrum" class. individual spectra are initially housed in the saa object. After the fitting has completed these will be moved into a single dictionary and this dictionary will be removed """ def __init__(self, coordinates, spectrum, index=None, to_be_fit=False, scouseobject=None): self.index=index self.coordinates=coordinates self.spectrum=spectrum self.rms=get_rms(self,scouseobject) self.indices=None self.indices_flat=None self.to_be_fit=to_be_fit self.model=None self.individual_spectra=None def __repr__(self): """ Return a nice printable format for the object. """ return "< scousepy SAA; index={0} >".format(self.index) def add_indices(self, indices, shape): """ Adds indices contained within the SAA Parameters ---------- indices : ndarray An array containing the indices that are to be added to the SAA shape : ndarray X, Y shape of the data cube. Used to flatten the indices """ self.indices=np.array(indices, dtype='int') self.indices_flat=np.ravel_multi_index(indices.T, shape) def add_saamodel(self, model): """ Adds model solution as described by saa model to the SAA Parameters ---------- model : instance of the saamodel class """ self.model=model class individual_spectrum(object): """ Stores all the information regarding individual spectra Parameters ---------- coordinates : array The coordinates of the spectrum in pixel units. In (x,y). spectrum : array The spectrum index : number The flattened index of the spectrum scouseobject : instance of the scouse class saa_dict_index : number Index of the saa_dict. This will be used along with saaindex to find the parent model solution to provide initial guesses for the fitter saaindex : number Index of the SAA. Used to locate a given spectrum's parent SAA Attributes ---------- template : instance of pyspeckit's Spectrum class A template spectrum updated during fitting model : instance of the indivmodel class The final best-fitting model solution as determined in stage 4 model_from_parent : instance of the indivmodel class The best-fitting solution as determined from using the SAA model as input guesses model_from_dspec : instance of the indivmodel class The best-fitting model solution derived from derivative spectroscopy model_from_spatial : instance of the indivmodel class The best-fitting model solution derived from spatial fitting model_from_manual : instance of the indivmodel class The best-fitting model solution as fit manually during stage 6 of the process decision : string The decision made during stage 4 of the process, i.e. if the spectrum was refit, """ def __init__(self, coordinates, spectrum, index=None, scouseobject=None, saa_dict_index=None, saaindex=None): self.index=index self.coordinates=coordinates self.spectrum=spectrum self.rms=get_rms(self, scouseobject) self.saa_dict_index=saa_dict_index self.saaindex=saaindex self.template=None self.guesses_from_parent=None self.guesses_updated=None self.model=None self.model_from_parent=None self.model_from_dspec=None self.model_from_spatial=None self.model_from_manual=None self.decision=None def __repr__(self): """ Return a nice printable format for the object. """ return "<< scousepy individual spectrum; index={0} >>".format(self.index) def add_model(self, model): """ Adds model solution Parameters ---------- model : instance of the indivmodel class """ if model.method=='parent': self.model_from_parent=model elif model.method=='dspec': self.model_from_dspec=model elif model.method=='spatial': self.model_from_spatial=[model] elif model.method=='manual': self.model_from_manual=model else: pass # error here? def get_rms(self, scouseobject): """ Calculates rms value. Used by both saa and individual_spectrum classes Parameters ---------- scouseobject : instance of the scouse class """ from scousepy.noisy import getnoise noisy=getnoise(scouseobject.x, self.spectrum) if np.isfinite(noisy.rms): rms = noisy.rms else: # if the spectrum violates these conditions then simply set the rms to # the value measured over the entire cube rms = scouseobject.rms_approx return rms class basemodel(object): """ Base model for scouse. These properties are shared by both SAA model solutions and individual spectra solutions Attributes ---------- fittype : string Model used during fitting (e.g. Gaussian) parnames : list A list containing the parameter names in the model (corresponds to those used in pyspeckit) ncomps : Number Number of components in the model solution params : list The parameter estimates errors : list The uncertainties on each measured parameter rms : Number The measured rms value residstd : Number The standard deviation of the residuals chisq : Number The chi squared value dof : Number The number of degrees of freedom redchisq : Number The reduced chi squared value AIC : Number The akaike information criterion fitconverge : bool Indicates whether or not the fit has converged """ def __init__(self): self.fittype=None self.parnames=None self.ncomps=None self.params=None self.errors=None self.rms=None self.residstd=None self.chisq=None self.dof=None self.redchisq=None self.AIC=None self.fitconverge=None class saamodel(basemodel): """ This houses the model information for spectral averaging areas. It uses the base model but includes some parameters that are unique to SAAs. Parameters ---------- modeldict : dictionary This is a dictionary containing the model parameters that we want to add to the SAA. This is output from scousefitter. Attributes ---------- SNR : number This is the signal-to-noise ratio set during the fitting process in scousefitter kernelsize : number This is the size of the kernel used for the derivative spectroscopy method manual : bool This indicates whether a manual fit was performed """ def __init__(self, modeldict): super(basemodel, self).__init__() self.SNR=None self.alpha=None self.set_attributes(modeldict) def __repr__(self): """ Return a nice printable format for the object. """ return "< scousepy saamodel_solution; fittype={0}; ncomps={1} >".format(self.fittype, self.ncomps) def set_attributes(self, modeldict): """ Sets the attributes of the SAA model """ for parameter, value in modeldict.items(): setattr(self, parameter, value) class indivmodel(basemodel): """ This houses the model information for individual spectra. It uses the base model and includes some parameters that are unique to individual spectra. Parameters ---------- modeldict : dictionary This is a dictionary containing the model parameters that we want to add to the individual spectrum. """ def __init__(self, modeldict): super(basemodel, self).__init__() self.method=None self.set_attributes(modeldict) def __repr__(self): """ Return a nice printable format for the object. """ return "< scousepy model_solution; fittype={0}; ncomps={1} >".format(self.fittype, self.ncomps) def set_attributes(self, modeldict): """ Sets the attributes of the SAA model """ for parameter, value in modeldict.items(): setattr(self, parameter, value) ```
{ "source": "jdherg/emojificate", "score": 3 }
#### File: emojificate/emojificate/__main__.py ```python import sys from .filter import emojificate def display_help(): print("emojificate.py -- turns text with emoji into text with accessible emoji") if __name__ == "__main__": line = " ".join(sys.argv[1:]) if line: print(emojificate(line)) else: display_help() sys.exit(1) ``` #### File: emojificate/templatetags/emojificate.py ```python from django.template import Library, Node from django.utils.safestring import mark_safe from django.utils.html import conditional_escape from ..filter import emojificate register = Library() @register.filter("emojificate", needs_autoescape=True) def emojificate_filter(content, autoescape=True): "Convert any emoji in a string into accessible content." # return mark_safe(emojificate(content)) if autoescape: esc = conditional_escape else: esc = lambda x: x return mark_safe(emojificate(esc(content))) @register.tag("emojified") def do_emojified(parser, token): nodelist = parser.parse(("endemojified",)) parser.delete_first_token() return EmojifiedNode(nodelist) class EmojifiedNode(Node): def __init__(self, nodelist): self.nodelist = nodelist def render(self, context): output = self.nodelist.render(context) return emojificate(output) ```
{ "source": "jdherg/octopus-holdings", "score": 3 }
#### File: octopus-holdings/emoji/emoji_catalog.py ```python from collections import Counter, defaultdict, namedtuple import re from typing import Sequence, Union from emoji.config import EMOJI_CONFIG Emoji = namedtuple( "Emoji", ["literal", "name", "code_points", "status", "group", "subgroup", "version"], ) EMOJI_LINE = re.compile( r"^(?P<code_points>([0-9A-Fa-f]+ )+) *; (?P<status>\S+) +# (?P<emoji>\S+) E(?P<version>\d+\.\d+) (?P<name>.*)$", ) GROUP_LINE = re.compile( r"^# group: (?P<group_name>.+)$", ) GROUP_COUNT_LINE = re.compile( r"^# (?P<group_name>.+) subtotal:\s+(?P<group_count>\d+)$", ) STATUS_COUNT_LINE = re.compile( r"^# (?P<status_name>(fully-qualified|minimally-qualified|unqualified|component)) : (?P<status_count>\d+)$", ) SUBGROUP_LINE = re.compile( r"^# subgroup: (?P<subgroup_name>.+)$", ) def parse_unicode_test_file( lines: list[str], ) -> tuple[ dict[str, Emoji], dict[str, int], dict[str, int], dict[str, list[str]], dict[str, list[str]], ]: emoji: dict[str, Emoji] = {} group_counts: dict[str, int] = {} status_counts: dict[str, int] = {} group = "" subgroup = "" names: dict[str, list[str]] = defaultdict(list) variants: dict[str, list[str]] = defaultdict(list) for line in [line.strip() for line in lines if line.strip() != ""]: if line[0] == "#": if match := GROUP_LINE.match(line): group = match.group("group_name") elif match := GROUP_COUNT_LINE.match(line): assert group == match.group("group_name") group_counts[group] = int(match.group("group_count")) elif match := STATUS_COUNT_LINE.match(line): status_counts[match.group("status_name")] = int( match.group("status_count") ) elif match := SUBGROUP_LINE.match(line): subgroup = match.group("subgroup_name") elif match := EMOJI_LINE.match(line): literal = match.group("emoji") name = match.group("name") names[name].append(literal) if len(parts := name.split(":")) > 1: base, _ = parts if base in names: variants[names[base][0]].append(literal) emoji[literal] = Emoji( code_points=match.group("code_points").strip().split(), group=group, literal=literal, name=name, status=match.group("status"), subgroup=subgroup, version=match.group("version"), ) return (emoji, group_counts, status_counts, variants, names) UNICODE_TEST_FILE_PATH = EMOJI_CONFIG["unicode_test_file"] with open(UNICODE_TEST_FILE_PATH, "r") as unicode_emoji_test_file: PARSED_EMOJI_METADATA = parse_unicode_test_file(unicode_emoji_test_file.readlines()) EMOJI_CATALOG, _, _, EMOJI_VARIANTS, EMOJI_BY_NAME = PARSED_EMOJI_METADATA ``` #### File: octopus-holdings/emoji/image_catalog.py ```python import itertools import json import os import re from emoji.config import EMOJI_CONFIG from emoji.emoji_catalog import EMOJI_CATALOG def load_emoji_set_svgs(set_config): emoji_to_svgs = dict() set_emoji = set() external_prefix = "" if set_config["external_path"]: external_prefix = set_config["external_path"] + "/" svg_folder = set_config["internal_path"] svg_filename_regex = re.compile(set_config["svg_filename_regex"]) svg_folder_filenames = os.listdir(svg_folder) for filename in svg_folder_filenames: if svg_filename_regex.search(filename): svg_codepoint = svg_filename_regex.search(filename).group() if "alias_map" in set_config: emoji = svg_codepoint else: emoji = "".join( [chr(int(char, 16)) for char in re.split(r"[\-_]", svg_codepoint)] ) emoji_path = external_prefix + filename emoji_to_svgs[emoji] = emoji_path set_emoji.add(emoji) return emoji_to_svgs, set_emoji def load(): set_config = EMOJI_CONFIG["set_config"] result: dict[str, dict[str, str]] = {} for name, config in set_config.items(): if config.get("alias_map") is not None: continue emoji_to_svgs, _ = load_emoji_set_svgs(config) result[name] = emoji_to_svgs return result IMAGE_CATALOGS = load() def load_all_emoji_svgs(): all_resolved_emoji = set() emoji_to_svgs = dict() for emoji_set_name in EMOJI_CONFIG["priority"]: emoji_to_svgs[emoji_set_name], set_emoji = load_emoji_set_svgs( EMOJI_CONFIG["set_config"][emoji_set_name] ) all_resolved_emoji |= set_emoji return all_resolved_emoji, emoji_to_svgs ALL_RESOLVED_EMOJI, EMOJI_TO_SVGS = load_all_emoji_svgs() def main(): unicode_emoji: set[str] = set(EMOJI_CATALOG.keys()) svg_emoji: set[str] = set( itertools.chain(*[x.keys() for x in IMAGE_CATALOGS.values()]) ) svg_files: set[str] = set( itertools.chain( *[[(k, v) for k, v in c.items()] for c in IMAGE_CATALOGS.values()] ) ) # svg_emoji = svg_emoji | {e + "\uFE0F" for e in svg_emoji} present_emoji = [EMOJI_CATALOG[e] for e in unicode_emoji & svg_emoji] missing_emoji = [EMOJI_CATALOG[e] for e in unicode_emoji - svg_emoji] missing_svg = [v for k, v in svg_files if k not in EMOJI_CATALOG] print(f"present {len(present_emoji)}") print(f"missing {len(missing_emoji)}") print(f"missing svg {len(missing_svg)}") from collections import Counter c = Counter(map(lambda e: e.version, missing_emoji)) print(sorted(c.items(), key=lambda i: float(i[0]))) c = Counter(map(lambda e: e.status, missing_emoji)) print(sorted(c.items(), key=lambda i: i[0])) print(missing_svg[:10]) if __name__ == "__main__": main() ``` #### File: emoji/tests/test_alias_catalog.py ```python import unittest from emoji.alias_catalog import ( ALIASES_TO_EMOJI, derive_codepoint_aliases, derive_skin_tone_aliases, ) class TestCodepointDeriver(unittest.TestCase): def test_single_codepoint(self): octopus = "🐙" aliases = derive_codepoint_aliases(octopus) self.assertIn(octopus, aliases) self.assertIn("1f419", aliases) self.assertIn("u1f419", aliases) class TestSkinToneDeriver(unittest.TestCase): def test_single(self): aliases = derive_skin_tone_aliases("👋", "wave") self.assertIn("wave:skin-tone-medium", aliases) def test_double(self): aliases = derive_skin_tone_aliases("🧑‍🤝‍🧑", "couple") self.assertIn("couple:skin-tone-light:skin-tone-light", aliases) class TestAliasesToEmoji(unittest.TestCase): def test_octopus(self): self.assertEqual(ALIASES_TO_EMOJI["octopus"], "🐙") def test_wave(self): self.assertEqual(ALIASES_TO_EMOJI.get("wave"), "👋") self.assertEqual(ALIASES_TO_EMOJI.get("wave:skin-tone-medium"), "👋🏽") def test_chipmunk(self): # One with FE0F, one without self.assertIn(ALIASES_TO_EMOJI.get("chipmunk"), ("🐿️", "🐿")) ```
{ "source": "jdherman/eci273", "score": 2 }
#### File: jdherman/eci273/L14-hedging-contourplots.py ```python import numpy as np import matplotlib.pyplot as plt from scipy.optimize import minimize, differential_evolution import seaborn as sns sns.set_style('whitegrid') # Set some parameters K = 975 # capacity, TAF D = 150 # target yield, TAF a = 1 b = 2 # cost function parameters # data setup Q = np.loadtxt('data/FOL-monthly-inflow-TAF.csv', delimiter=',', skiprows=1, usecols=[1]) T = len(Q) def simulate(x): S = np.zeros(T) R = np.zeros(T) cost = np.zeros(T) h0 = x[0] hf = x[1] S[0] = K # start simulation full for t in range(1,T): # new storage: mass balance, max value is K S[t] = min(S[t-1] + Q[t-1] - R[t-1], K) # determine R from hedging policy W = S[t] + Q[t] if W > hf: R[t] = D elif W < h0: R[t] = W else: R[t] = (D-h0)/(hf-h0)*(W-h0)+h0 shortage = D-R[t] cost[t] = a*shortage**b return cost.mean() # to make a contour plot... h0s = np.arange(0,D,5) hfs = np.arange(D,K+D,5) # or, ranges for zoomed in contour plot # h0s = np.arange(60,90,0.5) # hfs = np.arange(800,855,0.5) data = np.zeros((len(h0s),len(hfs))) i,j = 0,0 for h0 in h0s: for hf in hfs: data[i,j] = simulate([h0,hf]) j += 1 j = 0 i += 1 X,Y = np.meshgrid(h0s, hfs) plt.contour(X,Y,data.T, 50, cmap=plt.cm.cool) plt.colorbar() plt.title('Average Shortage Cost ("$")') plt.xlabel(r'$h_0$') plt.ylabel(r'$h_f$') plt.show() ``` #### File: jdherman/eci273/L15-pareto-sort.py ```python import numpy as np import matplotlib.pyplot as plt import seaborn as sns sns.set_style('whitegrid') # assumes minimization # a dominates b if it is <= in all objectives and < in at least one def dominates(a, b): return (np.all(a <= b) and np.any(a < b)) # accepts a matrix of points, returns a matrix of only the nondominated ones # not the most efficient way to do this # 'keep' is an array of booleans used to index the matrix at the end def pareto_sort(P): N = len(P) keep = np.ones(N, dtype=bool) # all True to start for i in range(N): for j in range(i+1,N): if keep[j] and dominates(P[i,:], P[j,:]): keep[j] = False elif keep[i] and dominates(P[j,:], P[i,:]): keep[i] = False return P[keep,:] # a matrix of data points for a hypothetical 2-objective problem circle_points = np.loadtxt('data/circle-points.csv', delimiter=',') pareto = pareto_sort(circle_points) plt.scatter(circle_points[:,0],circle_points[:,1], c='0.7') plt.scatter(pareto[:,0], pareto[:,1], c='red') plt.legend(['Dominated Points', 'Non-dominated points']) plt.show() ``` #### File: jdherman/eci273/L3-sequentpeak.py ```python import numpy as np import matplotlib.pyplot as plt # sequent peak example from LVB Table 11.2 Q = np.tile([1, 3, 3, 5, 8, 6, 7, 2, 1], 2) T = len(Q) K = np.zeros(T+1) R = 3.5*np.ones(T) # for t in range(T): # K[t+1] = max(R[t] - Q[t] + K[t], 0) # print('Reservoir size needed: %f' % np.max(K)) # Or...let's do this as a function instead # def sequent_peak(R, Q): # # accepts inflow and outflow arrays # # returns sequent peak reservoir capacity # assert len(R) == len(Q), 'R and Q must be the same length' # T = len(Q) # K = np.zeros(T+1) # for t in range(T): # K[t+1] = max(R[t] - Q[t] + K[t], 0) # return np.max(K) # Kmax = sequent_peak(R,Q) # print(Kmax) ``` #### File: jdherman/eci273/L8-pandas-autocorr.py ```python import numpy as np import matplotlib.pyplot as plt import pandas as pd # read CSV data into a "dataframe" - pandas can parse dates # this will be familiar to R users (not so much matlab users) df = pd.read_csv('data/SHA.csv', index_col=0, parse_dates=True) Q = df.SHA_INFLOW_CFS # a pandas series (daily) # Q = Q.resample('AS-OCT').sum() # annual values print(Q.autocorr(lag=1)) # plot a correlogram with confidence bounds pd.plotting.autocorrelation_plot(Q) plt.xlim([0,365]) plt.show() from statsmodels.tsa import stattools pacf,ci = stattools.pacf(Q, nlags=7, alpha=0.05) plt.plot(pacf, linewidth=2) plt.plot(ci, linestyle='dashed', color='0.5') plt.show() # we did this with pandas to simplify the resampling operations # but we can also do it with numpy # (using annual flow values) Q = df.SHA_INFLOW_CFS.resample('AS-OCT').sum().values # now a numpy array def autocorr(x,k): return np.corrcoef(x[:len(x)-k], x[k:])[0,1] print(autocorr(Q,k=1)) ``` #### File: jdherman/eci273/L9-thomasfiering-monthly.py ```python import numpy as np import matplotlib.pyplot as plt import pandas as pd cfs_to_taf = 2.29568411*10**-5 * 86400 / 1000 def get_monthly_stats(x): '''calculate monthly mean, std. dev., and lag-1 autocorrelation from historical data x. Assumes each month is lognormally distributed.''' x = np.log(x) N = len(x) mu = np.zeros(12) sigma = np.zeros(12) rho = np.zeros(12) for m in range(12): mu[m] = x[m::12].mean() sigma[m] = x[m::12].std() x1 = x[m:N-1:12] x2 = x[m+1::12] rho[m] = np.corrcoef(x1,x2)[0,1] # index the matrix return mu,sigma,rho # log space def thomasfiering_monthly(mu, sigma, rho, N_years): '''Lag-1 model. use historical monthly statistics to generate a synthetic sequence of N years''' Q = np.zeros(N_years*12) # initialize Q[0] = np.random.normal(mu[0],sigma[0],1) for y in range(N_years): for m in range(12): i = 12*y + m # index if i > 0: Z = np.random.standard_normal() Q[i] = mu[m] + rho[m-1]*(Q[i-1] - mu[m-1]) + Z*sigma[m]*np.sqrt(1-rho[m-1]**2) return np.exp(Q) # real space # read in data and generate synthetic timeseries df = pd.read_csv('data/FOL.csv', index_col=0, parse_dates=True) Q = (cfs_to_taf * df.FOL_INFLOW_CFS).resample('M').sum().values mu,sigma,rho = get_monthly_stats(Q) Q_synthetic = thomasfiering_monthly(mu, sigma, rho, N_years=20) # compare synthetic stats to historical a,b,c = get_monthly_stats(Q_synthetic) for m in range(12): print('Month %d means: %f, %f' % (m,mu[m],a[m])) for m in range(12): print('Month %d stdev: %f, %f' % (m,sigma[m],b[m])) for m in range(12): print('Month %d rho: %f, %f' % (m,rho[m],c[m])) # plot timeseries plt.subplot(2,1,1) plt.plot(Q) plt.title('Historical') plt.subplot(2,1,2) plt.title('Synthetic') plt.plot(Q_synthetic) plt.ylim([0,2000]) plt.show() # compare ACF/PACF in historical and synthetic # from statsmodels.tsa import stattools # plt.subplot(2,2,1) # acf,ci = stattools.acf(Q, nlags = 12, alpha=0.05) # plt.plot(acf, linewidth=2) # plt.plot(ci, linestyle='dashed', color='0.5') # plt.title('ACF, Historical') # plt.subplot(2,2,2) # pacf,ci = stattools.pacf(Q, nlags = 12, alpha=0.05) # plt.plot(pacf, linewidth=2) # plt.plot(ci, linestyle='dashed', color='0.5') # plt.title('PACF, Historical') # plt.subplot(2,2,3) # acf,ci = stattools.acf(Q_synthetic, nlags = 12, alpha=0.05) # plt.plot(acf, linewidth=2) # plt.plot(ci, linestyle='dashed', color='0.5') # plt.title('ACF, Synthetic') # plt.subplot(2,2,4) # pacf,ci = stattools.pacf(Q_synthetic, nlags = 12, alpha=0.05) # plt.plot(pacf, linewidth=2) # plt.plot(ci, linestyle='dashed', color='0.5') # plt.title('PACF, Synthetic') # plt.show() ```
{ "source": "jdherman/evolutionary-algorithms-course", "score": 3 }
#### File: jdherman/evolutionary-algorithms-course/L7-GA-KP.py ```python import numpy as np import matplotlib.pyplot as plt # 0-1 knapsack def value(x, v, w, W): # if weight is exceeded, value=0 if np.sum(x*w) > W: return 0 else: return np.sum(v*x) d = 10 # dimension of decision variable space num_seeds = 20 popsize = 80 pc = 0.9 pm = 0.1 # recommended 1/D max_gen = 50 k = 2 # tournament size ft = np.zeros((num_seeds, max_gen)) # knapsack problem P01 # Optimal solution = [1, 1, 1, 1, 0, 1, 0, 0, 0, 0] # which has a weight of 165 and a value of 309 W = 165 w = np.array([23, 31, 29, 44, 53, 38, 63, 85, 89, 82]) v = np.array([92, 57, 49, 68, 60, 43, 67, 84, 87, 72]) # select 1 parent from population P # using tournaments of size k def tournament_selection(P,f,k): candidates = np.random.randint(0,popsize,k) best = f[candidates].argmax() index = candidates[best] return P[index,:] # one-point crossover plus mutation # input two parents and crossover probabilities def cx_and_mut(P1,P2,pc,pm): child1 = np.copy(P1) child2 = np.copy(P2) # one-point crossover if np.random.rand() < pc: x = np.random.randint(d) child1[x:] = P2[x:] child2[x:] = P1[x:] # bit-flip mutation for c in child1,child2: for i in range(d): if np.random.rand() < pm: c[i] = 1 - c[i] return child1,child2 # run the GA for seed in range(num_seeds): np.random.seed(seed) # initialize P = np.random.randint(0, 2, (popsize,d)) f = np.zeros(popsize) # we'll evaluate them later gen = 0 f_best, x_best = None, None while gen < max_gen: # evaluate for i,x in enumerate(P): f[i] = value(x, v, w, W) # keep track of best if f_best is None or f.max() > f_best: f_best = f.max() x_best = P[f.argmax(),:] # selection / crossover / mutation (following Luke Algorithm 20) Q = np.copy(P) for i in range(0, popsize, 2): parent1 = tournament_selection(P,f,k) parent2 = tournament_selection(P,f,k) child1,child2 = cx_and_mut(parent1,parent2,pc,pm) Q[i,:] = child1 Q[i+1,:] = child2 # new population of children P = np.copy(Q) ft[seed,gen] = f_best gen += 1 # for each trial print the result (but the traces are saved in ft) print(x_best) print(f_best) plt.plot(ft.T, color='steelblue', linewidth=1) plt.xlabel('Generations') plt.ylabel('Objective Value') plt.show() ``` #### File: jdherman/evolutionary-algorithms-course/L9-hymod.py ```python import numpy as np from matplotlib import pyplot as plt from scipy.optimize import differential_evolution # hymod as defined by Gharari et al. HESS 2013 # load daily data for 1 year (P,PET,Q) ndays = 365 data = np.loadtxt('data/leaf-river-data.txt', skiprows=1) data_P = data[0:ndays,3] data_PET = data[0:ndays,4] data_Q = data[0:ndays,5] def hymod(x, mode='optimize'): # assign parameters Sm_max,B,alpha,Kf,Ks = list(x) # initialize storage, all empty to start Sm,Sf1,Sf2,Sf3,Ss1 = [np.zeros(ndays) for _ in range(5)] Q = np.zeros(ndays) for t in range(1,ndays): # calculate all fluxes P = data_P[t] Peff = P*(1 - max(1-Sm[t-1]/Sm_max,0)**B) # PDM model Moore 1985 Evap = min(data_PET[t]*(Sm[t-1]/Sm_max), Sm[t-1]) Qf1 = Kf*Sf1[t-1] Qf2 = Kf*Sf2[t-1] Qf3 = Kf*Sf3[t-1] Qs1 = Ks*Ss1[t-1] # update state variables Sm[t] = Sm[t-1] + P - Peff - Evap Sf1[t] = Sf1[t-1] + alpha*Peff - Qf1 Sf2[t] = Sf2[t-1] + Qf1 - Qf2 Sf3[t] = Sf3[t-1] + Qf2 - Qf3 Ss1[t] = Ss1[t-1] + (1-alpha)*Peff - Qs1 Q[t] = Qs1 + Qf3 if mode=='simulate': return Q else: return np.sqrt(np.mean((Q-data_Q)**2)) # parameter bounds bounds = [(0,500), (0,2), (0,1), (0.1,1), (0,0.1)] # x =[80, 0.7, 0.9, 0.7, 0.05] result = differential_evolution(hymod, bounds=bounds, polish=False) print(result) # simulate with best to plot Q = hymod(result.x, mode='simulate') plt.plot(data_Q, color='k') plt.plot(Q, color='red') plt.xlabel('Days') plt.ylabel('Streamflow (mm)') plt.legend(['Simulated', 'Observed']) plt.show() ```
{ "source": "jdherman/ssjrb", "score": 3 }
#### File: jdherman/ssjrb/util.py ```python import numpy as np import pandas as pd import matplotlib.pyplot as plt from numba import jit cfs_to_afd = 2.29568411*10**-5 * 86400 def water_day(d): return d - 274 if d >= 274 else d + 91 def cdec_build_url(station=None, sensor=None, duration=None, sd=None, ed=None): url = 'http://cdec.water.ca.gov/dynamicapp/req/CSVDataServlet?' url += 'Stations=%s' % station url += '&SensorNums=%d' % sensor url += '&dur_code=%s' % duration url += '&Start=%s' % sd url += '&End=%s' % ed return url # takes df from one (station, sensor) request # converts to a series indexed by datetime def cdec_reformat_series(df): try: # reindex by datetime df['DATE TIME'] = pd.to_datetime(df['DATE TIME']) df.set_index('DATE TIME', inplace=True) df.index.rename('datetime', inplace=True) # keep just the "VALUE" column and rename it name = '%s_%s_%s' % (df['STATION_ID'][0], df['SENSOR_TYPE'][0], df['UNITS'][0]) df = df['VALUE'] df.rename(name, inplace=True) except IndexError: #empty data frame causes indexerror raise IndexError('Requested data does not exist') return df # gets data from a specific station and sensor type def cdec_sensor_data(station=None, sensor=None, duration=None, sd=None, ed=None): url = cdec_build_url(station, sensor, duration, sd, ed) df = pd.read_csv(url) series = cdec_reformat_series(df) return series # pull numpy arrays from dataframes def get_simulation_data(res_keys, df_hydrology, medians, df_demand=None): dowy = df_hydrology.dowy.values Q = df_hydrology[[k+'_inflow_cfs' for k in res_keys]].values * cfs_to_afd Q_avg = medians[[k+'_inflow_cfs' for k in res_keys]].values * cfs_to_afd R_avg = medians[[k+'_outflow_cfs' for k in res_keys]].values * cfs_to_afd S_avg = medians[[k+'_storage_af' for k in res_keys]].values Gains_avg = medians['delta_gains_cfs'].values Pump_pct_avg = medians['total_delta_pumping_pct'].values if df_demand is None: demand_multiplier = np.ones(dowy.size) else: demand_multiplier = df_demand.combined_demand.values return (dowy, Q, Q_avg, R_avg, S_avg, Gains_avg, Pump_pct_avg, demand_multiplier) # calculate annual objectives from simulation results def results_to_annual_objectives(df, medians, nodes, rk, df_demand=None): # 1. water supply reliability north of delta NOD_target = pd.Series([np.max((-1*medians.delta_gains_cfs[i], 0.0)) for i in df.dowy], index=df.index) NOD_delivery = (-1*df.delta_gains_cfs).clip(lower=0, upper=10**10) if df_demand is not None: # account for demand multipliers in future scenarios NOD_target *= df_demand.combined_demand rel_N = NOD_delivery.resample('AS-OCT').sum() / NOD_target.resample('AS-OCT').sum() # 2. water supply reliability south of delta SOD_target = pd.Series([medians.total_delta_pumping_cfs[i] for i in df.dowy], index=df.index) if df_demand is not None: SOD_target *= df_demand.combined_demand rel_S = df.total_delta_pumping_cfs.resample('AS-OCT').sum() / SOD_target.resample('AS-OCT').sum() rel_S[rel_S > 1] = 1 # 3. flood volume exceeding downstream levee capacity, sum over all reservoirs flood_vol_taf = pd.Series(0, index=df.index) for k in rk: flood_vol_taf += ((df[k+'_outflow_cfs'] - nodes[k]['safe_release_cfs']) .clip(lower=0) * cfs_to_afd / 1000) flood_vol_taf = flood_vol_taf.resample('AS-OCT').sum() # 4. peak flow into the delta delta_peak_cfs = df.delta_inflow_cfs.resample('AS-OCT').max() objs = pd.concat([rel_N, rel_S, flood_vol_taf, delta_peak_cfs], axis=1) objs.columns = ['Rel_NOD_%', 'Rel_SOD_%', 'Upstream_Flood_Volume_taf', 'Delta_Peak_Inflow_cfs'] return objs ```
{ "source": "jdheywood/sqlalchemy-orm-and-migrations-demo", "score": 2 }
#### File: alembic/versions/06afa7d32b1a_initial_database_create.py ```python from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '06afa7d32b1a' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('chumble', sa.Column('id', sa.String(), nullable=False), sa.Column('length', sa.Integer(), nullable=True), sa.Column('diameter', sa.Integer(), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_table('dinglepop', sa.Column('id', sa.String(), nullable=False), sa.Column('origin', sa.String(), nullable=True), sa.Column('weight', sa.Integer(), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_table('fleeb', sa.Column('id', sa.String(), nullable=False), sa.Column('organic', sa.Boolean(), nullable=True), sa.Column('picked_on', sa.TIMESTAMP(), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_table('schleem', sa.Column('id', sa.String(), nullable=False), sa.Column('height', sa.Integer(), nullable=True), sa.Column('width', sa.Integer(), nullable=True), sa.Column('harvested_at', sa.TIMESTAMP(), nullable=True), sa.Column('batch', sa.String(), nullable=True), sa.PrimaryKeyConstraint('id') ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('schleem') op.drop_table('fleeb') op.drop_table('dinglepop') op.drop_table('chumble') # ### end Alembic commands ### ``` #### File: code/models/materials.py ```python from sqlalchemy import ( Column, Boolean, Integer, String, TIMESTAMP, ) from .base import Base __all__ = ['Schleem', 'Dinglepop', 'Fleeb', 'Chumble'] class Schleem(Base): __tablename__ = 'schleem' id = Column(String, primary_key=True) height = Column(Integer) width = Column(Integer) harvested_at = Column(TIMESTAMP) batch = Column(String) def __repr__(self): return "<Schleem id='{}' harvested_at={}".format( self.id, self.harvested_at) class Dinglepop(Base): __tablename__ = 'dinglepop' id = Column(String, primary_key=True) origin = Column(String) weight = Column(Integer) def __repr__(self): return "<Dinglepop id='{}' origin={}".format( self.id, self.origin) class Fleeb(Base): __tablename__ = 'fleeb' id = Column(String, primary_key=True) organic = Column(Boolean, default=True) picked_on = Column(TIMESTAMP) def __repr__(self): return "<Fleeb id='{}' picked_on={}".format( self.id, self.picked_on) class Chumble(Base): __tablename__ = 'chumble' id = Column(String, primary_key=True) length = Column(Integer) diameter = Column(Integer) def __repr__(self): return "<Chumble id='{}' diameter={}".format( self.id, self.diameter) ```
{ "source": "jdhogan/gagrank", "score": 3 }
#### File: gagrank/gagrank/gagrank.py ```python print "Importing modules...", import time # for timing functions start_time = time.time() import re # for converting chemical formulae to dictionaries and vice versa import sys # for getting user inputs import argparse # for getting user inputs import sqlite3 as sq # for accessing the database import networkx as nx # for network analysis import numpy as np # for numeric arrays import scipy as sp # for handling degree matrices from scipy.stats import rankdata # for getting actual GAG ranking print "Done!" ## arrays for info about GAG parts # initialize dictionaries for weights and formulae wt = {} fm = {} # monoisotopic element weights wt['monoH'] = 1.00782504 wt['monoC'] = 12.0 wt['monoO'] = 15.99491461956 wt['monoN'] = 14.0030740048 wt['monoS'] = 31.97207100 # monoisotopic compound weights wt['monoHex'] = 6*wt['monoC'] + 12*wt['monoH'] + 6*wt['monoO'] wt['monoHexA'] = 6*wt['monoC'] + 10*wt['monoH'] + 7*wt['monoO'] wt['monoHexN'] = 6*wt['monoC'] + 13*wt['monoH'] + wt['monoN'] + 5*wt['monoO'] wt['monodHexA'] = 6*wt['monoC'] + 8*wt['monoH'] + 6*wt['monoO'] wt['monoH2O'] = 2*wt['monoH'] + wt['monoO'] wt['monoSO3'] = wt['monoS'] + 3*wt['monoO'] wt['monoAc'] = 2*wt['monoC'] + 2*wt['monoH'] + wt['monoO'] # formulae fm['Hex'] = {'C':6, 'H':12, 'O':6, 'N':0, 'S':0} fm['HexA'] = {'C':6, 'H':10, 'O':7, 'N':0, 'S':0} fm['HexN'] = {'C':6, 'H':13, 'O':5, 'N':1, 'S':0} fm['dHexA'] = {'C':6, 'H':8, 'O':6, 'N':0, 'S':0} fm['H2O'] = {'C':0, 'H':2, 'O':1, 'N':0, 'S':0} fm['SO3'] = {'C':0, 'H':0, 'O':3, 'N':0, 'S':1} fm['Ac'] = {'C':2, 'H':2, 'O':1, 'N':0, 'S':0} ### modification locations # initialize dictionary modlocs = {} modlocs['HS'] = {'D':{}, 'U':{}, 'N':{}} modlocs['CS'] = {'D':{}, 'U':{}, 'N':{}} modlocs['KS'] = {'X':{}, 'N':{}} # Acetyl modlocs['HS']['N'] = {'Ac': [2]} modlocs['CS']['N'] = {'Ac': [2]} modlocs['KS']['N'] = {'Ac': [2]} # Sulfate modlocs['HS']['D']['SO3'] = [2] modlocs['HS']['U']['SO3'] = [2] modlocs['HS']['N']['SO3'] = [2,3,6] modlocs['CS']['D']['SO3'] = [2] modlocs['CS']['U']['SO3'] = [2] modlocs['CS']['N']['SO3'] = [4,6] modlocs['KS']['X']['SO3'] = [6] modlocs['KS']['N']['SO3'] = [6] ### cross-ring fragments ### # initialize dictionaries for weights and formulae xwt = {} xfm = {} xmod = {} ### cross-ring formulae ### ## HexA xfm['HexA'] = {} # initialize dictionaries for non-reducing end and reducing end xfm['HexA']['NR'] = {} xfm['HexA']['RE'] = {} # add fragments xfm['HexA']['NR']['0,2'] = {'C':4, 'H':6, 'O':5, 'N':0, 'S':0} xfm['HexA']['NR']['1,3'] = {'C':2, 'H':4, 'O':2, 'N':0, 'S':0} xfm['HexA']['NR']['1,5'] = {'C':5, 'H':8, 'O':5, 'N':0, 'S':0} xfm['HexA']['NR']['2,4'] = {'C':2, 'H':4, 'O':2, 'N':0, 'S':0} xfm['HexA']['NR']['3,5'] = {'C':3, 'H':4, 'O':3, 'N':0, 'S':0} xfm['HexA']['NR']['0,3'] = {'C':3, 'H':4, 'O':4, 'N':0, 'S':0} xfm['HexA']['NR']['1,4'] = {'C':3, 'H':6, 'O':3, 'N':0, 'S':0} xfm['HexA']['NR']['2,5'] = {'C':4, 'H':6, 'O':4, 'N':0, 'S':0} xfm['HexA']['RE']['0,2'] = {'C':2, 'H':4, 'O':2, 'N':0, 'S':0} xfm['HexA']['RE']['1,3'] = {'C':4, 'H':6, 'O':5, 'N':0, 'S':0} xfm['HexA']['RE']['1,5'] = {'C':1, 'H':2, 'O':2, 'N':0, 'S':0} xfm['HexA']['RE']['2,4'] = {'C':4, 'H':6, 'O':5, 'N':0, 'S':0} xfm['HexA']['RE']['3,5'] = {'C':3, 'H':6, 'O':4, 'N':0, 'S':0} xfm['HexA']['RE']['0,3'] = {'C':3, 'H':6, 'O':3, 'N':0, 'S':0} xfm['HexA']['RE']['1,4'] = {'C':3, 'H':4, 'O':4, 'N':0, 'S':0} xfm['HexA']['RE']['2,5'] = {'C':2, 'H':4, 'O':3, 'N':0, 'S':0} ## HexA xfm['dHexA'] = {} # initialize dictionaries for non-reducing end and reducing end xfm['dHexA']['RE'] = {} # add fragments xfm['dHexA']['RE']['0,2'] = {'C':2, 'H':4, 'O':2, 'N':0, 'S':0} xfm['dHexA']['RE']['1,3'] = {'C':4, 'H':4, 'O':4, 'N':0, 'S':0} xfm['dHexA']['RE']['1,5'] = {'C':1, 'H':2, 'O':2, 'N':0, 'S':0} xfm['dHexA']['RE']['2,4'] = {'C':4, 'H':5, 'O':5, 'N':0, 'S':0} xfm['dHexA']['RE']['3,5'] = {'C':3, 'H':6, 'O':4, 'N':0, 'S':0} xfm['dHexA']['RE']['0,3'] = {'C':3, 'H':6, 'O':3, 'N':0, 'S':0} xfm['dHexA']['RE']['1,4'] = {'C':3, 'H':3, 'O':4, 'N':0, 'S':0} xfm['dHexA']['RE']['2,5'] = {'C':2, 'H':4, 'O':3, 'N':0, 'S':0} ## HexN xfm['HexN'] = {} # initialize dictionaries for non-reducing end and reducing end xfm['HexN']['NR'] = {} xfm['HexN']['RE'] = {} # add fragments xfm['HexN']['NR']['0,2'] = {'C':4, 'H':8, 'O':4, 'N':0, 'S':0} xfm['HexN']['NR']['1,3'] = {'C':2, 'H':5, 'O':1, 'N':1, 'S':0} xfm['HexN']['NR']['1,5'] = {'C':5, 'H':11, 'O':3, 'N':1, 'S':0} xfm['HexN']['NR']['2,4'] = {'C':2, 'H':4, 'O':2, 'N':0, 'S':0} xfm['HexN']['NR']['3,5'] = {'C':3, 'H':6, 'O':2, 'N':0, 'S':0} xfm['HexN']['NR']['0,3'] = {'C':3, 'H':7, 'O':2, 'N':1, 'S':0} xfm['HexN']['NR']['1,4'] = {'C':3, 'H':7, 'O':2, 'N':1, 'S':0} xfm['HexN']['NR']['2,5'] = {'C':4, 'H':5, 'O':3, 'N':0, 'S':0} xfm['HexN']['RE']['0,2'] = {'C':2, 'H':5, 'O':1, 'N':1, 'S':0} xfm['HexN']['RE']['1,3'] = {'C':4, 'H':8, 'O':4, 'N':0, 'S':0} xfm['HexN']['RE']['1,5'] = {'C':1, 'H':2, 'O':2, 'N':0, 'S':0} xfm['HexN']['RE']['2,4'] = {'C':4, 'H':9, 'O':3, 'N':1, 'S':0} xfm['HexN']['RE']['3,5'] = {'C':3, 'H':7, 'O':3, 'N':1, 'S':0} xfm['HexN']['RE']['0,3'] = {'C':3, 'H':6, 'O':3, 'N':0, 'S':0} xfm['HexN']['RE']['1,4'] = {'C':3, 'H':6, 'O':3, 'N':0, 'S':0} xfm['HexN']['RE']['2,5'] = {'C':2, 'H':5, 'O':2, 'N':1, 'S':0} ## Hex xfm['Hex'] = {} # initialize dictionaries for non-reducing end and reducing end xfm['Hex']['NR'] = {} xfm['Hex']['RE'] = {} # add fragments xfm['Hex']['NR']['0,2'] = {'C':4, 'H':8, 'O':4, 'N':0, 'S':0} xfm['Hex']['NR']['1,3'] = {'C':2, 'H':4, 'O':2, 'N':0, 'S':0} xfm['Hex']['NR']['1,5'] = {'C':5, 'H':10, 'O':4, 'N':0, 'S':0} xfm['Hex']['NR']['2,4'] = {'C':2, 'H':4, 'O':2, 'N':0, 'S':0} xfm['Hex']['NR']['1,4'] = {'C':3, 'H':6, 'O':3, 'N':0, 'S':0} xfm['Hex']['NR']['2,5'] = {'C':4, 'H':8, 'O':3, 'N':0, 'S':0} xfm['Hex']['RE']['0,2'] = {'C':2, 'H':4, 'O':2, 'N':0, 'S':0} xfm['Hex']['RE']['1,3'] = {'C':4, 'H':8, 'O':4, 'N':0, 'S':0} xfm['Hex']['RE']['1,5'] = {'C':1, 'H':2, 'O':2, 'N':0, 'S':0} xfm['Hex']['RE']['2,4'] = {'C':4, 'H':8, 'O':4, 'N':0, 'S':0} xfm['Hex']['RE']['1,4'] = {'C':3, 'H':6, 'O':3, 'N':0, 'S':0} xfm['Hex']['RE']['2,5'] = {'C':2, 'H':4, 'O':3, 'N':0, 'S':0} ### cross-ring weights ### ## HexA xwt['HexA'] = {} # initialize dictionaries for non-reducing end and reducing end xwt['HexA']['NR'] = {} xwt['HexA']['RE'] = {} # add weights xwt['HexA']['NR']['0,2'] = 4*wt['monoC'] + 6*wt['monoH'] + 5*wt['monoO'] xwt['HexA']['NR']['1,3'] = 2*wt['monoC'] + 4*wt['monoH'] + 2*wt['monoO'] xwt['HexA']['NR']['1,5'] = 5*wt['monoC'] + 8*wt['monoH'] + 5*wt['monoO'] xwt['HexA']['NR']['2,4'] = 2*wt['monoC'] + 4*wt['monoH'] + 2*wt['monoO'] xwt['HexA']['NR']['3,5'] = 3*wt['monoC'] + 4*wt['monoH'] + 3*wt['monoO'] xwt['HexA']['NR']['0,3'] = 3*wt['monoC'] + 4*wt['monoH'] + 4*wt['monoO'] xwt['HexA']['NR']['1,4'] = 3*wt['monoC'] + 6*wt['monoH'] + 3*wt['monoO'] xwt['HexA']['NR']['2,5'] = 4*wt['monoC'] + 6*wt['monoH'] + 4*wt['monoO'] xwt['HexA']['RE']['0,2'] = 2*wt['monoC'] + 4*wt['monoH'] + 2*wt['monoO'] xwt['HexA']['RE']['1,3'] = 4*wt['monoC'] + 6*wt['monoH'] + 5*wt['monoO'] xwt['HexA']['RE']['1,5'] = 1*wt['monoC'] + 2*wt['monoH'] + 2*wt['monoO'] xwt['HexA']['RE']['2,4'] = 4*wt['monoC'] + 6*wt['monoH'] + 5*wt['monoO'] xwt['HexA']['RE']['3,5'] = 3*wt['monoC'] + 6*wt['monoH'] + 4*wt['monoO'] xwt['HexA']['RE']['0,3'] = 3*wt['monoC'] + 6*wt['monoH'] + 3*wt['monoO'] xwt['HexA']['RE']['1,4'] = 3*wt['monoC'] + 4*wt['monoH'] + 4*wt['monoO'] xwt['HexA']['RE']['2,5'] = 2*wt['monoC'] + 4*wt['monoH'] + 3*wt['monoO'] ## dHexA xwt['dHexA'] = {} # initialize dictionary for non-reducing end and reducing end xwt['dHexA']['RE'] = {} # add weights xwt['dHexA']['RE']['0,2'] = 2*wt['monoC'] + 4*wt['monoH'] + 2*wt['monoO'] xwt['dHexA']['RE']['1,3'] = 4*wt['monoC'] + 4*wt['monoH'] + 4*wt['monoO'] xwt['dHexA']['RE']['1,5'] = wt['monoC'] + 2*wt['monoH'] + 2*wt['monoO'] xwt['dHexA']['RE']['2,4'] = 4*wt['monoC'] + 5*wt['monoH'] + 5*wt['monoO'] xwt['dHexA']['RE']['3,5'] = 3*wt['monoC'] + 6*wt['monoH'] + 4*wt['monoO'] xwt['dHexA']['RE']['0,3'] = 3*wt['monoC'] + 6*wt['monoH'] + 3*wt['monoO'] xwt['dHexA']['RE']['1,4'] = 3*wt['monoC'] + 3*wt['monoH'] + 4*wt['monoO'] xwt['dHexA']['RE']['2,5'] = 2*wt['monoC'] + 4*wt['monoH'] + 3*wt['monoO'] ## HexN xwt['HexN'] = {} # initialize dictionaries for non-reducing end and reducing end xwt['HexN']['NR'] = {} xwt['HexN']['RE'] = {} # add weights xwt['HexN']['NR']['0,2'] = 4*wt['monoC'] + 8*wt['monoH'] + 4*wt['monoO'] xwt['HexN']['NR']['1,3'] = 2*wt['monoC'] + 5*wt['monoH'] + wt['monoO'] + wt['monoN'] xwt['HexN']['NR']['1,5'] = 5*wt['monoC'] + 11*wt['monoH'] + 3*wt['monoO'] + wt['monoN'] xwt['HexN']['NR']['2,4'] = 2*wt['monoC'] + 4*wt['monoH'] + 2*wt['monoO'] xwt['HexN']['NR']['3,5'] = 3*wt['monoC'] + 6*wt['monoH'] + 2*wt['monoO'] xwt['HexN']['NR']['0,3'] = 3*wt['monoC'] + 7*wt['monoH'] + 2*wt['monoO'] + wt['monoN'] xwt['HexN']['NR']['1,4'] = 3*wt['monoC'] + 7*wt['monoH'] + 2*wt['monoO'] + wt['monoN'] xwt['HexN']['NR']['2,5'] = 4*wt['monoC'] + 5*wt['monoH'] + 3*wt['monoO'] xwt['HexN']['RE']['0,2'] = 2*wt['monoC'] + 5*wt['monoH'] + 1*wt['monoO'] + wt['monoN'] xwt['HexN']['RE']['1,3'] = 4*wt['monoC'] + 8*wt['monoH'] + 4*wt['monoO'] xwt['HexN']['RE']['1,5'] = 1*wt['monoC'] + 2*wt['monoH'] + 2*wt['monoO'] xwt['HexN']['RE']['2,4'] = 4*wt['monoC'] + 9*wt['monoH'] + 3*wt['monoO'] + wt['monoN'] xwt['HexN']['RE']['3,5'] = 3*wt['monoC'] + 7*wt['monoH'] + 3*wt['monoO'] + wt['monoN'] xwt['HexN']['RE']['0,3'] = 3*wt['monoC'] + 6*wt['monoH'] + 3*wt['monoO'] xwt['HexN']['RE']['1,4'] = 3*wt['monoC'] + 6*wt['monoH'] + 3*wt['monoO'] xwt['HexN']['RE']['2,5'] = 2*wt['monoC'] + 5*wt['monoH'] + 2*wt['monoO'] + wt['monoN'] ## Hex xwt['Hex'] = {} # initialize dictionaries for non-reducing end and reducing end xwt['Hex']['NR'] = {} xwt['Hex']['RE'] = {} # add fragments xwt['Hex']['NR']['0,2'] = 4*wt['monoC'] + 8*wt['monoH'] + 4*wt['monoO'] xwt['Hex']['NR']['1,3'] = 2*wt['monoC'] + 4*wt['monoH'] + 2*wt['monoO'] xwt['Hex']['NR']['1,5'] = 5*wt['monoC'] + 10*wt['monoH'] + 4*wt['monoO'] xwt['Hex']['NR']['2,4'] = 2*wt['monoC'] + 4*wt['monoH'] + 2*wt['monoO'] xwt['Hex']['NR']['1,4'] = 3*wt['monoC'] + 6*wt['monoH'] + 3*wt['monoO'] xwt['Hex']['NR']['2,5'] = 4*wt['monoC'] + 8*wt['monoH'] + 3*wt['monoO'] xwt['Hex']['RE']['0,2'] = 2*wt['monoC'] + 4*wt['monoH'] + 2*wt['monoO'] xwt['Hex']['RE']['1,3'] = 4*wt['monoC'] + 8*wt['monoH'] + 4*wt['monoO'] xwt['Hex']['RE']['1,5'] = wt['monoC'] + 2*wt['monoH'] + 2*wt['monoO'] xwt['Hex']['RE']['2,4'] = 4*wt['monoC'] + 8*wt['monoH'] + 4*wt['monoO'] xwt['Hex']['RE']['1,4'] = 3*wt['monoC'] + 6*wt['monoH'] + 3*wt['monoO'] xwt['Hex']['RE']['2,5'] = 2*wt['monoC'] + 4*wt['monoH'] + 3*wt['monoO'] ### cross-ring sulfation/acetylation/adduct possibilities, and COOH places ## HS/Heparin xmod['HS'] = {} # HexA xmod['HS']['HexA'] = {} # initialize dictionaries for non-reducing end and reducing end xmod['HS']['HexA']['NR'] = {} xmod['HS']['HexA']['RE'] = {} # add modification possibilities xmod['HS']['HexA']['NR']['0,2'] = {'SO3':0, 'Ac':0, 'COOH':1} xmod['HS']['HexA']['NR']['1,5'] = {'SO3':1, 'Ac':0, 'COOH':1} xmod['HS']['HexA']['NR']['2,4'] = {'SO3':0, 'Ac':0, 'COOH':0} xmod['HS']['HexA']['NR']['3,5'] = {'SO3':0, 'Ac':0, 'COOH':1} xmod['HS']['HexA']['NR']['0,3'] = {'SO3':0, 'Ac':0, 'COOH':1} xmod['HS']['HexA']['NR']['1,4'] = {'SO3':1, 'Ac':0, 'COOH':0} xmod['HS']['HexA']['NR']['2,5'] = {'SO3':0, 'Ac':0, 'COOH':1} xmod['HS']['HexA']['RE']['0,2'] = {'SO3':1, 'Ac':0, 'COOH':0} xmod['HS']['HexA']['RE']['1,5'] = {'SO3':0, 'Ac':0, 'COOH':0} xmod['HS']['HexA']['RE']['2,4'] = {'SO3':1, 'Ac':0, 'COOH':1} xmod['HS']['HexA']['RE']['3,5'] = {'SO3':1, 'Ac':0, 'COOH':0} xmod['HS']['HexA']['RE']['0,3'] = {'SO3':1, 'Ac':0, 'COOH':0} xmod['HS']['HexA']['RE']['1,4'] = {'SO3':0, 'Ac':0, 'COOH':1} xmod['HS']['HexA']['RE']['2,5'] = {'SO3':1, 'Ac':0, 'COOH':0} # dHexA xmod['HS']['dHexA'] = {} # initialize dictionary for non-reducing end and reducing end xmod['HS']['dHexA']['RE'] = {} # add weights xmod['HS']['dHexA']['RE']['0,2'] = {'SO3':1, 'Ac':0, 'COOH':0} xmod['HS']['dHexA']['RE']['1,5'] = {'SO3':0, 'Ac':0, 'COOH':0} xmod['HS']['dHexA']['RE']['2,4'] = {'SO3':1, 'Ac':0, 'COOH':1} xmod['HS']['dHexA']['RE']['3,5'] = {'SO3':1, 'Ac':0, 'COOH':0} xmod['HS']['dHexA']['RE']['0,3'] = {'SO3':1, 'Ac':0, 'COOH':0} xmod['HS']['dHexA']['RE']['1,4'] = {'SO3':0, 'Ac':0, 'COOH':1} xmod['HS']['dHexA']['RE']['2,5'] = {'SO3':1, 'Ac':0, 'COOH':0} # HexN xmod['HS']['HexN'] = {} # initialize dictionaries for non-reducing end and reducing end xmod['HS']['HexN']['NR'] = {} xmod['HS']['HexN']['RE'] = {} # add modification possibilities xmod['HS']['HexN']['NR']['0,2'] = {'SO3':2, 'Ac':0, 'COOH':0} xmod['HS']['HexN']['NR']['1,5'] = {'SO3':3, 'Ac':1, 'COOH':0} xmod['HS']['HexN']['NR']['2,4'] = {'SO3':1, 'Ac':0, 'COOH':0} xmod['HS']['HexN']['NR']['3,5'] = {'SO3':1, 'Ac':0, 'COOH':0} xmod['HS']['HexN']['NR']['0,3'] = {'SO3':1, 'Ac':0, 'COOH':0} xmod['HS']['HexN']['NR']['1,4'] = {'SO3':2, 'Ac':1, 'COOH':0} xmod['HS']['HexN']['NR']['2,5'] = {'SO3':2, 'Ac':0, 'COOH':0} xmod['HS']['HexN']['RE']['0,2'] = {'SO3':1, 'Ac':1, 'COOH':0} xmod['HS']['HexN']['RE']['1,5'] = {'SO3':0, 'Ac':0, 'COOH':0} xmod['HS']['HexN']['RE']['2,4'] = {'SO3':2, 'Ac':1, 'COOH':0} xmod['HS']['HexN']['RE']['3,5'] = {'SO3':2, 'Ac':1, 'COOH':0} xmod['HS']['HexN']['RE']['0,3'] = {'SO3':2, 'Ac':1, 'COOH':0} xmod['HS']['HexN']['RE']['1,4'] = {'SO3':1, 'Ac':0, 'COOH':0} xmod['HS']['HexN']['RE']['2,5'] = {'SO3':1, 'Ac':1, 'COOH':0} ## CS/DS xmod['CS'] = {} # HexA xmod['CS']['HexA'] = {} # initialize dictionaries for non-reducing end and reducing end xmod['CS']['HexA']['NR'] = {} xmod['CS']['HexA']['RE'] = {} # add modification possibilities xmod['CS']['HexA']['NR']['0,2'] = {'SO3':0, 'Ac':0, 'COOH':1} xmod['CS']['HexA']['NR']['1,5'] = {'SO3':1, 'Ac':0, 'COOH':1} xmod['CS']['HexA']['NR']['2,4'] = {'SO3':0, 'Ac':0, 'COOH':0} xmod['CS']['HexA']['NR']['3,5'] = {'SO3':0, 'Ac':0, 'COOH':1} xmod['CS']['HexA']['NR']['0,3'] = {'SO3':0, 'Ac':0, 'COOH':1} xmod['CS']['HexA']['NR']['1,4'] = {'SO3':1, 'Ac':0, 'COOH':0} xmod['CS']['HexA']['NR']['2,5'] = {'SO3':0, 'Ac':0, 'COOH':1} xmod['CS']['HexA']['RE']['0,2'] = {'SO3':1, 'Ac':0, 'COOH':0} xmod['CS']['HexA']['RE']['1,5'] = {'SO3':0, 'Ac':0, 'COOH':0} xmod['CS']['HexA']['RE']['2,4'] = {'SO3':1, 'Ac':0, 'COOH':1} xmod['CS']['HexA']['RE']['3,5'] = {'SO3':1, 'Ac':0, 'COOH':0} xmod['CS']['HexA']['RE']['0,3'] = {'SO3':1, 'Ac':0, 'COOH':0} xmod['CS']['HexA']['RE']['1,4'] = {'SO3':0, 'Ac':0, 'COOH':1} xmod['CS']['HexA']['RE']['2,5'] = {'SO3':1, 'Ac':0, 'COOH':0} # dHexA xmod['CS']['dHexA'] = {} # initialize dictionary for non-reducing end and reducing end xmod['CS']['dHexA']['RE'] = {} # add weights xmod['CS']['dHexA']['RE']['0,2'] = {'SO3':1, 'Ac':0, 'COOH':0} xmod['CS']['dHexA']['RE']['1,5'] = {'SO3':0, 'Ac':0, 'COOH':0} xmod['CS']['dHexA']['RE']['2,4'] = {'SO3':1, 'Ac':0, 'COOH':1} xmod['CS']['dHexA']['RE']['3,5'] = {'SO3':1, 'Ac':0, 'COOH':0} xmod['CS']['dHexA']['RE']['0,3'] = {'SO3':1, 'Ac':0, 'COOH':0} xmod['CS']['dHexA']['RE']['1,4'] = {'SO3':0, 'Ac':0, 'COOH':1} xmod['CS']['dHexA']['RE']['2,5'] = {'SO3':1, 'Ac':0, 'COOH':0} # HexN xmod['CS']['HexN'] = {} # initialize dictionaries for non-reducing end and reducing end xmod['CS']['HexN']['NR'] = {} xmod['CS']['HexN']['RE'] = {} # add modification possibilities xmod['CS']['HexN']['NR']['0,2'] = {'SO3':2, 'Ac':0, 'COOH':0} xmod['CS']['HexN']['NR']['1,3'] = {'SO3':2, 'Ac':0, 'COOH':0} xmod['CS']['HexN']['NR']['1,5'] = {'SO3':2, 'Ac':1, 'COOH':0} xmod['CS']['HexN']['NR']['2,4'] = {'SO3':1, 'Ac':0, 'COOH':0} xmod['CS']['HexN']['NR']['1,4'] = {'SO3':1, 'Ac':1, 'COOH':0} xmod['CS']['HexN']['NR']['2,5'] = {'SO3':2, 'Ac':0, 'COOH':0} xmod['CS']['HexN']['RE']['0,2'] = {'SO3':0, 'Ac':1, 'COOH':0} xmod['CS']['HexN']['RE']['1,3'] = {'SO3':0, 'Ac':1, 'COOH':0} xmod['CS']['HexN']['RE']['1,5'] = {'SO3':0, 'Ac':0, 'COOH':0} xmod['CS']['HexN']['RE']['2,4'] = {'SO3':1, 'Ac':1, 'COOH':0} xmod['CS']['HexN']['RE']['1,4'] = {'SO3':1, 'Ac':0, 'COOH':0} xmod['CS']['HexN']['RE']['2,5'] = {'SO3':0, 'Ac':1, 'COOH':0} ## HS xmod['KS'] = {} # Hex xmod['KS']['Hex'] = {} # initialize dictionaries for non-reducing end and reducing end xmod['KS']['Hex']['NR'] = {} xmod['KS']['Hex']['RE'] = {} # add modification possibilities xmod['KS']['Hex']['NR']['0,2'] = {'SO3':1, 'Ac':0, 'COOH':0} xmod['KS']['Hex']['NR']['1,3'] = {'SO3':0, 'Ac':0, 'COOH':0} xmod['KS']['Hex']['NR']['1,5'] = {'SO3':1, 'Ac':0, 'COOH':0} xmod['KS']['Hex']['NR']['2,4'] = {'SO3':0, 'Ac':0, 'COOH':0} xmod['KS']['Hex']['NR']['1,4'] = {'SO3':0, 'Ac':0, 'COOH':0} xmod['KS']['Hex']['NR']['2,5'] = {'SO3':1, 'Ac':0, 'COOH':0} xmod['KS']['Hex']['RE']['0,2'] = {'SO3':0, 'Ac':0, 'COOH':0} xmod['KS']['Hex']['RE']['1,3'] = {'SO3':1, 'Ac':0, 'COOH':0} xmod['KS']['Hex']['RE']['1,5'] = {'SO3':0, 'Ac':0, 'COOH':0} xmod['KS']['Hex']['RE']['2,4'] = {'SO3':1, 'Ac':0, 'COOH':0} xmod['KS']['Hex']['RE']['1,4'] = {'SO3':1, 'Ac':0, 'COOH':0} xmod['KS']['Hex']['RE']['2,5'] = {'SO3':0, 'Ac':0, 'COOH':0} # HexN xmod['KS']['HexN'] = {} # initialize dictionaries for non-reducing end and reducing end xmod['KS']['HexN']['NR'] = {} xmod['KS']['HexN']['RE'] = {} # add modification possibilities xmod['KS']['HexN']['NR']['0,2'] = {'SO3':1, 'Ac':0, 'COOH':0} xmod['KS']['HexN']['NR']['1,5'] = {'SO3':1, 'Ac':1, 'COOH':0} xmod['KS']['HexN']['NR']['2,4'] = {'SO3':0, 'Ac':0, 'COOH':0} xmod['KS']['HexN']['NR']['3,5'] = {'SO3':1, 'Ac':0, 'COOH':0} xmod['KS']['HexN']['NR']['0,3'] = {'SO3':1, 'Ac':0, 'COOH':0} xmod['KS']['HexN']['NR']['1,4'] = {'SO3':0, 'Ac':1, 'COOH':0} xmod['KS']['HexN']['NR']['2,5'] = {'SO3':1, 'Ac':0, 'COOH':0} xmod['KS']['HexN']['RE']['0,2'] = {'SO3':0, 'Ac':1, 'COOH':0} xmod['KS']['HexN']['RE']['1,5'] = {'SO3':0, 'Ac':0, 'COOH':0} xmod['KS']['HexN']['RE']['2,4'] = {'SO3':1, 'Ac':1, 'COOH':0} xmod['KS']['HexN']['RE']['3,5'] = {'SO3':0, 'Ac':1, 'COOH':0} xmod['KS']['HexN']['NR']['0,3'] = {'SO3':0, 'Ac':1, 'COOH':0} xmod['KS']['HexN']['NR']['1,4'] = {'SO3':1, 'Ac':0, 'COOH':0} xmod['KS']['HexN']['NR']['2,5'] = {'SO3':0, 'Ac':1, 'COOH':0} ### cross-ring modification locations # initialize dictionaries xmodlocs = {} xmodlocs['HS'] = {'D':{'NR':{}, 'RE':{}}, 'U':{'NR':{}, 'RE':{}}, 'N':{'NR':{}, 'RE':{}}} xmodlocs['CS'] = {'D':{'NR':{}, 'RE':{}}, 'U':{'NR':{}, 'RE':{}}, 'N':{'NR':{}, 'RE':{}}} xmodlocs['KS'] = {'X':{'NR':{}, 'RE':{}}, 'N':{'NR':{}, 'RE':{}}} ## HS # dHexA xmodlocs['HS']['D']['NR']['0,2'] = {'SO3':[], 'Ac':[]} xmodlocs['HS']['D']['NR']['1,5'] = {'SO3':[2], 'Ac':[]} xmodlocs['HS']['D']['NR']['2,4'] = {'SO3':[], 'Ac':[]} xmodlocs['HS']['D']['NR']['3,5'] = {'SO3':[], 'Ac':[]} xmodlocs['HS']['D']['NR']['0,3'] = {'SO3':[], 'Ac':[]} xmodlocs['HS']['D']['NR']['1,4'] = {'SO3':[2], 'Ac':[]} xmodlocs['HS']['D']['NR']['2,5'] = {'SO3':[], 'Ac':[]} xmodlocs['HS']['D']['RE']['0,2'] = {'SO3':[2], 'Ac':[]} xmodlocs['HS']['D']['RE']['1,5'] = {'SO3':[], 'Ac':[]} xmodlocs['HS']['D']['RE']['2,4'] = {'SO3':[2], 'Ac':[]} xmodlocs['HS']['D']['RE']['3,5'] = {'SO3':[2], 'Ac':[]} xmodlocs['HS']['D']['RE']['0,3'] = {'SO3':[2], 'Ac':[]} xmodlocs['HS']['D']['RE']['1,4'] = {'SO3':[], 'Ac':[]} xmodlocs['HS']['D']['RE']['2,5'] = {'SO3':[2], 'Ac':[]} # HexA xmodlocs['HS']['U']['NR']['0,2'] = {'SO3':[], 'Ac':[]} xmodlocs['HS']['U']['NR']['1,5'] = {'SO3':[2], 'Ac':[]} xmodlocs['HS']['U']['NR']['2,4'] = {'SO3':[], 'Ac':[]} xmodlocs['HS']['U']['NR']['3,5'] = {'SO3':[], 'Ac':[]} xmodlocs['HS']['U']['NR']['0,3'] = {'SO3':[], 'Ac':[]} xmodlocs['HS']['U']['NR']['1,4'] = {'SO3':[2], 'Ac':[]} xmodlocs['HS']['U']['NR']['2,5'] = {'SO3':[], 'Ac':[]} xmodlocs['HS']['U']['RE']['0,2'] = {'SO3':[2], 'Ac':[]} xmodlocs['HS']['U']['RE']['1,5'] = {'SO3':[], 'Ac':[]} xmodlocs['HS']['U']['RE']['2,4'] = {'SO3':[2], 'Ac':[]} xmodlocs['HS']['U']['RE']['3,5'] = {'SO3':[2], 'Ac':[]} xmodlocs['HS']['U']['RE']['0,3'] = {'SO3':[2], 'Ac':[]} xmodlocs['HS']['U']['RE']['1,4'] = {'SO3':[], 'Ac':[]} xmodlocs['HS']['U']['RE']['2,5'] = {'SO3':[2], 'Ac':[]} # HexN xmodlocs['HS']['N']['NR']['0,2'] = {'SO3':[3,6], 'Ac':[]} xmodlocs['HS']['N']['NR']['1,5'] = {'SO3':[2,3,6], 'Ac':[2]} xmodlocs['HS']['N']['NR']['2,4'] = {'SO3':[3], 'Ac':[]} xmodlocs['HS']['N']['NR']['3,5'] = {'SO3':[6], 'Ac':[]} xmodlocs['HS']['N']['NR']['0,3'] = {'SO3':[6], 'Ac':[]} xmodlocs['HS']['N']['NR']['1,4'] = {'SO3':[2,3], 'Ac':[2]} xmodlocs['HS']['N']['NR']['2,5'] = {'SO3':[3,6], 'Ac':[]} xmodlocs['HS']['N']['RE']['0,2'] = {'SO3':[2], 'Ac':[2]} xmodlocs['HS']['N']['RE']['1,5'] = {'SO3':[], 'Ac':[]} xmodlocs['HS']['N']['RE']['2,4'] = {'SO3':[2,6], 'Ac':[2]} xmodlocs['HS']['N']['RE']['3,5'] = {'SO3':[2,3], 'Ac':[2]} xmodlocs['HS']['N']['RE']['0,3'] = {'SO3':[2,3], 'Ac':[2]} xmodlocs['HS']['N']['RE']['1,4'] = {'SO3':[6], 'Ac':[]} xmodlocs['HS']['N']['RE']['2,5'] = {'SO3':[2], 'Ac':[2]} ## CS/DS # dHexA xmodlocs['CS']['D']['NR']['0,2'] = {'SO3':[], 'Ac':[]} xmodlocs['CS']['D']['NR']['1,5'] = {'SO3':[2], 'Ac':[]} xmodlocs['CS']['D']['NR']['2,4'] = {'SO3':[], 'Ac':[]} xmodlocs['CS']['D']['NR']['3,5'] = {'SO3':[], 'Ac':[]} xmodlocs['CS']['D']['NR']['0,3'] = {'SO3':[], 'Ac':[]} xmodlocs['CS']['D']['NR']['1,4'] = {'SO3':[2], 'Ac':[]} xmodlocs['CS']['D']['NR']['2,5'] = {'SO3':[], 'Ac':[]} xmodlocs['CS']['D']['RE']['0,2'] = {'SO3':[2], 'Ac':[]} xmodlocs['CS']['D']['RE']['1,5'] = {'SO3':[], 'Ac':[]} xmodlocs['CS']['D']['RE']['2,4'] = {'SO3':[2], 'Ac':[]} xmodlocs['CS']['D']['RE']['3,5'] = {'SO3':[2], 'Ac':[]} xmodlocs['CS']['D']['RE']['0,3'] = {'SO3':[2], 'Ac':[]} xmodlocs['CS']['D']['RE']['1,4'] = {'SO3':[], 'Ac':[]} xmodlocs['CS']['D']['RE']['2,5'] = {'SO3':[2], 'Ac':[]} # HexA xmodlocs['CS']['U']['NR']['0,2'] = {'SO3':[], 'Ac':[]} xmodlocs['CS']['U']['NR']['1,5'] = {'SO3':[2], 'Ac':[]} xmodlocs['CS']['U']['NR']['2,4'] = {'SO3':[], 'Ac':[]} xmodlocs['CS']['U']['NR']['3,5'] = {'SO3':[], 'Ac':[]} xmodlocs['CS']['U']['NR']['0,3'] = {'SO3':[], 'Ac':[]} xmodlocs['CS']['U']['NR']['1,4'] = {'SO3':[2], 'Ac':[]} xmodlocs['CS']['U']['NR']['2,5'] = {'SO3':[], 'Ac':[]} xmodlocs['CS']['U']['RE']['0,2'] = {'SO3':[2], 'Ac':[]} xmodlocs['CS']['U']['RE']['1,5'] = {'SO3':[], 'Ac':[]} xmodlocs['CS']['U']['RE']['2,4'] = {'SO3':[2], 'Ac':[]} xmodlocs['CS']['U']['RE']['3,5'] = {'SO3':[2], 'Ac':[]} xmodlocs['CS']['U']['RE']['0,3'] = {'SO3':[2], 'Ac':[]} xmodlocs['CS']['U']['RE']['1,4'] = {'SO3':[], 'Ac':[]} xmodlocs['CS']['U']['RE']['2,5'] = {'SO3':[2], 'Ac':[]} # HexN xmodlocs['CS']['N']['NR']['0,2'] = {'SO3':[4,6], 'Ac':[]} xmodlocs['CS']['N']['NR']['1,3'] = {'SO3':[], 'Ac':[2]} xmodlocs['CS']['N']['NR']['1,5'] = {'SO3':[4,6], 'Ac':[2]} xmodlocs['CS']['N']['NR']['2,4'] = {'SO3':[4], 'Ac':[]} xmodlocs['CS']['N']['NR']['1,4'] = {'SO3':[4], 'Ac':[2]} xmodlocs['CS']['N']['NR']['2,5'] = {'SO3':[4,6], 'Ac':[]} xmodlocs['CS']['N']['RE']['0,2'] = {'SO3':[], 'Ac':[2]} xmodlocs['CS']['N']['RE']['1,3'] = {'SO3':[4,6], 'Ac':[]} xmodlocs['CS']['N']['RE']['1,5'] = {'SO3':[], 'Ac':[]} xmodlocs['CS']['N']['RE']['2,4'] = {'SO3':[6], 'Ac':[2]} xmodlocs['CS']['N']['RE']['1,4'] = {'SO3':[6], 'Ac':[]} xmodlocs['CS']['N']['RE']['2,5'] = {'SO3':[], 'Ac':[2]} ## KS # HexA xmodlocs['KS']['X']['NR']['0,2'] = {'SO3':[6], 'Ac':[]} xmodlocs['KS']['X']['NR']['1,3'] = {'SO3':[], 'Ac':[]} xmodlocs['KS']['X']['NR']['1,5'] = {'SO3':[6], 'Ac':[]} xmodlocs['KS']['X']['NR']['2,4'] = {'SO3':[], 'Ac':[]} xmodlocs['KS']['X']['NR']['1,4'] = {'SO3':[], 'Ac':[]} xmodlocs['KS']['X']['NR']['2,5'] = {'SO3':[6], 'Ac':[]} xmodlocs['KS']['X']['RE']['0,2'] = {'SO3':[], 'Ac':[]} xmodlocs['KS']['X']['RE']['1,3'] = {'SO3':[6], 'Ac':[]} xmodlocs['KS']['X']['RE']['1,5'] = {'SO3':[], 'Ac':[]} xmodlocs['KS']['X']['RE']['2,4'] = {'SO3':[6], 'Ac':[]} xmodlocs['KS']['X']['RE']['1,4'] = {'SO3':[6], 'Ac':[]} xmodlocs['KS']['X']['RE']['2,5'] = {'SO3':[], 'Ac':[]} # HexN xmodlocs['KS']['N']['NR']['0,2'] = {'SO3':[6], 'Ac':[]} xmodlocs['KS']['N']['NR']['1,5'] = {'SO3':[6], 'Ac':[2]} xmodlocs['KS']['N']['NR']['2,4'] = {'SO3':[], 'Ac':[]} xmodlocs['KS']['N']['NR']['3,5'] = {'SO3':[6], 'Ac':[]} xmodlocs['KS']['N']['NR']['0,3'] = {'SO3':[6], 'Ac':[]} xmodlocs['KS']['N']['NR']['1,4'] = {'SO3':[], 'Ac':[2]} xmodlocs['KS']['N']['NR']['2,5'] = {'SO3':[6], 'Ac':[]} xmodlocs['KS']['N']['RE']['0,2'] = {'SO3':[], 'Ac':[2]} xmodlocs['KS']['N']['RE']['1,5'] = {'SO3':[], 'Ac':[]} xmodlocs['KS']['N']['RE']['2,4'] = {'SO3':[6], 'Ac':[2]} xmodlocs['KS']['N']['RE']['3,5'] = {'SO3':[], 'Ac':[2]} xmodlocs['KS']['N']['RE']['0,3'] = {'SO3':[], 'Ac':[2]} xmodlocs['KS']['N']['RE']['1,4'] = {'SO3':[6], 'Ac':[]} xmodlocs['KS']['N']['RE']['2,5'] = {'SO3':[], 'Ac':[2]} # scaling factors p1 = 5.4 # for scaling edge width p2 = 5.1 # for scaling fragments' prior probabilities p3 = 0.4 # for scaling sequences' prior probabilities # variable for debugging debug = False ### CLASSES AND FUNCTIONS ### # dict for going between monosaccharide abbreviations ms_hash = {'D': 'dHexA', 'U': 'HexA', 'X': 'Hex', 'N': 'HexN', 'dHexA': 'D', 'HexA': 'U', 'Hex': 'X', 'HexN': 'N'} # function for converting dictionary to chemical formula or composition def dict2fmla (dt, type): fs = '' # formula string # check whether chemical formula or composition if type == 'formula': symbols = elems elif type == 'composition': symbols = ['D', 'U', 'X', 'N', 'A', 'S'] else: print "Incorrect type entered. Please enter either 'formula' or 'composition'." sys.exit() for sym in symbols: if sym in dt: if dt[sym] > 0: if dt[sym] > 1: fs += sym + str(dt[sym]) else: fs += sym # return return fs # function for converting chemical formula or composition to dictionary def fmla2dict (fm, type): # check whether chemical formula or composition if type == 'formula': symbols = elems dt = {'C':0, 'H':0, 'O':0, 'N':0, 'S':0} #, 'Na':0, 'K':0, 'Li':0, 'Mg':0, 'Ca':0} elif type == 'composition': symbols = ['D', 'U', 'X', 'N', 'A', 'S'] dt = {'D':0, 'U':0, 'X':0, 'N':0, 'A':0, 'S':0} else: print "Incorrect type entered. Please enter either 'formula' or 'composition'." sys.exit() parts = re.findall(r'([A-Z][a-z]*)(\d*)', fm.upper()) # split formula by symbol for q in parts: if q[0] not in dt: # invalid symbol entered if q[0] not in symbols: print "Invalid chemical formula entered." sys.exit() else: dt[q[0]] = 0 if q[1] == '': # only one of this atom dt[q[0]] += 1 else: dt[q[0]] += int(q[1]) # return return dt # function for shuffling def choose_iter(elements, length): for i in xrange(len(elements)): if length == 1: yield (elements[i],) else: for next in choose_iter(elements[i+1:len(elements)], length-1): yield (elements[i],) + next # function for getting a shuffled list def choose(l, k): return list(choose_iter(l, k)) # function for getting the reducing and non-reducing end info def get_ends(pd, gag_class): n = pd['D'] + pd['U'] + pd['X'] + pd['N'] # length of GAG # check if dHexA exists (has to be NR end) if pd['D'] > 0: nonred = 'D' if pd['U'] == pd['N']: # we know that the reducing end is HexA because (HexA+dHexA > HexN) redend = 'U' else: # we know that the reducing end is HexN because (HexA+dHexA == HexN) redend = 'N' else: if gag_class == 4: # KS if pd['N'] > pd['X']: # we know that both ends are HexN nonred = 'N' redend = 'N' elif pd['N'] < pd['X']: # we know that both ends are Hex nonred = 'X' redend = 'X' else: # we cannot know which end is which just yet nonred = '?' redend = '?' else: # HS or CS if pd['N'] > pd['U']: # we know that both ends are HexN nonred = 'N' redend = 'N' elif pd['N'] < pd['U']: # we know that both ends are HexA nonred = 'U' redend = 'U' else: # we cannot know which end is which just yet nonred = '?' redend = '?' # return return [nonred, redend, n] # function for getting GAG chemical name from backbone, ac positions, and so3 positions def generateGAGstring(bbone, adict=None, sdict=None): monos = [] # list to store each mono # range through length for i in range(len(bbone)): j = str(i+1) # dictionary keys are strings tf = False # boolean for whether to add position on HexN or not if bbone[j] == 'D': # current mono is dHexA cur = 'dHexA' elif bbone[j] == 'U': # current mono is HexA cur = 'HexA' elif bbone[j] == 'X': # current mono is Hex cur = 'Hex' else: # current mono is HexN cur = 'HexN' tf = True # there is at least one acetyl group in this GAG and it is on this mono if adict and j in adict: cur += 'Ac' # there is at least one sulfate group in this GAG and it is on this mono if sdict and j in sdict: for p in sorted(sdict[j]): # if p == '2' and tf: cur += 'S' else: cur += p + 'S' monos.append(cur) gstring = '' for m in monos: gstring += m + '-' return gstring[0:len(gstring)-1] # function for making a GAG string a GAG dict def gstring2gdict(gcl, gstring): # split string into monos monos = gstring.split('-') # GAG dictionary gdict = {'backbone': {}, 'Ac':{}, 'SO3':{}} # go through each mono for m in range(len(monos)): j = str(m+1) # string manipulation if monos[m][:5] == 'dHexA': curm = 'dHexA' mods = monos[m][5:] elif monos[m][:4] == 'HexA' or monos[m][:4] == 'HexN': curm = monos[m][:4] mods = monos[m][4:] else: # Hexose curm = 'Hex' mods = monos[m][3:] # add to backbone gdict['backbone'][j] = ms_hash[curm] # temporary dicts if curm == 'HexN': tadict = {'2': 0} tsdict = {} # add positions to temporary SO3 dict for p in modlocs[gcl]['N']['SO3']: tsdict[str(p)] = 0 # actually add modifications if 'Ac' in mods: # acetyl present tadict['2'] = 1 if mods != '': start = 0 # to determine where to start if mods[0] == 'S': tsdict['2'] = 1 start = 1 # skip the first letter for x in [mods[i:i+2] for i in range(start, len(mods), 2)]: if x == 'Ac': tadict['2'] = 1 else: tsdict[x[0]] = 1 # add dicts to gdict gdict['Ac'][j] = tadict gdict['SO3'][j] = tsdict else: tsdict = {} # add positions to temporary SO3 dict for p in modlocs[gcl][ms_hash[curm]]['SO3']: tsdict[str(p)] = 0 # actually add modifications for x in [mods[i:i+2] for i in range(0, len(mods), 2)]: tsdict[x[0]] = 1 # add dicts to gdict gdict['SO3'][j] = tsdict return gdict # function for encoding BiRank algorithm def BiRank(G, alpha=0.85, beta=0.85, n_iter=1000, s_0=None, f_0=None): # check if G is a bipartite graph if not nx.is_bipartite(G): #print 'The graph for BiRank must be bipartite' return 0 # get the two sides of the bipartite graph grp1, grp2 = nx.bipartite.sets(G) grp1 = list(grp1) grp2 = list(grp2) # get list of sequences and fragments if 'frag' in grp1[0]: fragments = grp1 sequences = grp2 else: sequences = grp1 fragments = grp2 # add initial sequence info if s_0 is None: s_0 = [] for idx in sequences: s_0.append(1./len(sequences)) elif type(s_0) is dict: tmp = [] for idx in sequences: tmp.append(s_0[idx]) s_0 = np.array(tmp) seqs = [s_0] # add initial fragment info if f_0 is None: f_0 = [] for idx in fragments: f_0.append(1./len(fragments)) elif type(f_0) is dict: tmp = [] for idx in fragments: tmp.append(f_0[idx]) f_0 = np.array(tmp) frgs = [f_0] # get degree info a_deg = nx.degree(G, weight='weight') s_deg = [] f_deg = [] deg = a_deg # populate sequence degrees and fragment degrees for s in sequences: s_deg.append(a_deg[s] ** -0.5) for f in fragments: f_deg.append(a_deg[f] ** -0.5) # make degree matrices Df = sp.sparse.diags(f_deg) Ds = sp.sparse.diags(s_deg) # get weight matrix W = nx.bipartite.biadjacency_matrix(G, sequences, fragments) # get symmetrically normalized version of weight matrix S = Ds * W * Df # iterate go = True k = 1 # for index control while go: # update ranks cur_seq = (alpha * S * frgs[k-1]) + ((1 - alpha) * s_0) cur_frg = (beta * S.transpose() * seqs[k-1]) + ((1 - beta) * f_0) if np.array_equal(cur_seq, seqs[len(seqs)-1]) or np.sum(abs(cur_seq - seqs[len(seqs)-1])) < 1.e-10 or k == n_iter: go = False else: # add new rankings to the list of rankings seqs.append(cur_seq) frgs.append(cur_frg) k += 1 # add to iterator # get back into dictionary format s_dict, f_dict = ({}, {}) for idx in range(len(sequences)): s_dict[sequences[idx]] = seqs[len(seqs)-1][idx] for idx in range(len(fragments)): f_dict[fragments[idx]] = frgs[len(frgs)-1][idx] # return return s_dict, f_dict # return a sequence's likelihood score def scoreSeq(seq, scf): lik = 1 # likelihood score monos = seq.split('-') # get each individual monosaccharide for m in monos: # loop through monosaccharides val = 1 if 'N3' in m or 'N6' in m or m[len(m)-1] == 'N': # free amine val -= 0.6 if '3S' in m and '6S' not in m: # 3S is more rare than 6S val -= 0.3 lik *= val # return scaled likelihood score return lik ** scf # function for reading gagfinder output def read_gf_results(res_file): # load G scores try: res = open(res_file, 'r') except: print "\nIncorrect or missing file. Please try again." sys.exit() res.readline() # skip first line # dictionaries gd = {} # store G scores for each nonspecific fragment fm = {} # map nonspecific fragments to specific fragment/charge state pair mf = {} # map specific fragment/charge state pair to nonspecific fragments fc = {} # keys are unique fragments and values are each charge state af = [] # list of all fragments (similar to GAGs # go through lines line_ct = 0 for line in res.readlines(): if line_ct >= 68: break cells = line.strip('\n').split('\t') # split string to get values out if 'M' in cells[3]: # full molecule fragments are not helpful continue # get G score, fragments, and charge G = float(cells[1])/(float(cells[4]) ** p2) fgs = cells[3].split('; ') chg = int(cells[2]) # add G score to dictionary gd['frag'+str(line_ct)] = G # add fragment to allfrags list af.append('frag'+str(line_ct)) # go through each fragment for frg in fgs: # add to fragment map fm[(frg, chg)] = 'frag'+str(line_ct) # add to map fragment if 'frag'+str(line_ct) not in mf: mf['frag'+str(line_ct)] = [(frg, chg)] else: mf['frag'+str(line_ct)].append((frg, chg)) if frg in fc: # this fragment hasn't been added yet fc[frg].append(chg) else: # this fragment has been added fc[frg] = [chg] line_ct += 1 # convert to a numpy array gs = [] for key in gd: gs.append((key, gd[key])) dty = np.dtype([('frags', 'object'), ('G', 'float')]) gs = np.array(gs, dtype=dty) gs = np.sort(gs, order='G')[::-1] # return dicts etc. return [gd, fm, mf, fc, af, gs] # function for getting precursor composition def get_pre(cl, pm, pz, rw, crsr): # calculate precursor mass pre_mass = (pm*abs(pz)) - (pz*wt['monoH']) test_mass = pre_mass - rw # get precursor info crsr.execute('''SELECT p.value FROM Precursors p, ClassPrecursorMap cpm, Formulae f WHERE p.id = cpm.pId AND f.id = p.fmId AND cpm.cId = ? ORDER BY ABS(f.monoMass - ?) ASC LIMIT 1;''', (cl, test_mass)) row = crsr.fetchone() # return return row[0] # function for getting the reducing and non-reducing end info def get_ends(pd, gag_class): n = pd['D'] + pd['U'] + pd['X'] + pd['N'] # length of GAG # check if dHexA exists (has to be NR end) if pd['D'] > 0: nonred = 'D' if pd['U'] == pd['N']: # we know that the reducing end is HexA because (HexA+dHexA > HexN) redend = 'U' else: # we know that the reducing end is HexN because (HexA+dHexA == HexN) redend = 'N' else: if gag_class == 4: # KS if pd['N'] > pd['X']: nonred = 'N' redend = 'N' elif pd['N'] < pd['X']: nonred = 'X' redend = 'X' else: nonred = '?' redend = '?' else: # HS or CS if pd['N'] > pd['U']: # we know that both ends are HexN nonred = 'N' redend = 'N' elif pd['N'] < pd['U']: # we know that both ends are HexA nonred = 'U' redend = 'U' else: # we cannot know which end is which just yet nonred = '?' redend = '?' # return return [nonred, redend, n] # function for getting backbone and modification info def get_bb(cl, nonred, lng): # variables to keep possibilities bb = [] ac = [] so = [] # generate backbones and modification possibile locations if cl == 'KS': # working with KS poss = ['X','N'] # possible monosaccharides if nonred == '?': # unsure about end monosaccharides for i in poss: # we need two backbones cur_back = {} # current backbone cur_Ac = [] # current acetyl modification positions cur_SO3 = [] # current sulfate modification positions odd = i # odd-numbered monosaccharide even = list(set(poss) - set(odd))[0] # even-numbered monosaccharide # go through each position in backbone for j in range(lng): if (j+1) % 2 == 0: # even cur_back[str(j+1)] = even # add even-numbered monosaccharide to backbone if even == 'N': # HexN cur_Ac.append(str(j+1)+'-2') cur_SO3.append(str(j+1)+'-6') else: # odd cur_back[str(j+1)] = odd # add odd-numbered monosaccharide to backbone if odd == 'N': # HexN cur_Ac.append(str(j+1)+'-2') cur_SO3.append(str(j+1)+'-6') # add current backbone and modifications bb.append(cur_back) ac.append(cur_Ac) so.append(cur_SO3) else: # we know end monosaccharides cur_back = {} # current backbone cur_Ac = [] # current acetyl modification positions cur_SO3 = [] # current sulfate modification positions odd = nonred even = list(set(poss) - set(odd))[0] # even-numbered monosaccharide # go through each position in backbone for j in range(lng): if (j+1) % 2 == 0: # even cur_back[str(j+1)] = even # add even-numbered monosaccharide to backbone if even == 'N': cur_Ac.append(str(j+1)+'-2') cur_SO3.append(str(j+1)+'-6') else: # odd cur_back[str(j+1)] = odd # add odd-numbered monosaccharide to backbone if odd == 'N': cur_Ac.append(str(j+1)+'-2') cur_SO3.append(str(j+1)+'-6') # add current backbone and modifications bb.append(cur_back) ac.append(cur_Ac) so.append(cur_SO3) elif cl == 'CS': # working with CS poss = ['U','N'] # possible monosaccharides if nonred == '?': # unsure about end monosaccharides for i in poss: # we need two backbones cur_back = {} # current backbone cur_Ac = [] # current acetyl modification positions cur_SO3 = [] # current sulfate modification positions odd = i # odd-numbered monosaccharide even = list(set(poss) - set(odd))[0] # even-numbered monosaccharide # go through each position in backbone for j in range(lng): if (j+1) % 2 == 0: # even cur_back[str(j+1)] = even # add even-numbered monosaccharide to backbone if even == 'N': # HexN cur_Ac.append(str(j+1)+'-2') cur_SO3.append(str(j+1)+'-4') cur_SO3.append(str(j+1)+'-6') else: # HexA cur_SO3.append(str(j+1)+'-2') else: # odd cur_back[str(j+1)] = odd # add odd-numbered monosaccharide to backbone if odd == 'N': # HexN cur_Ac.append(str(j+1)+'-2') cur_SO3.append(str(j+1)+'-4') cur_SO3.append(str(j+1)+'-6') else: # HexA cur_SO3.append(str(j+1)+'-2') # add current backbone and modifications bb.append(cur_back) ac.append(cur_Ac) so.append(cur_SO3) else: # we know end monosaccharides cur_back = {} # current backbone cur_Ac = [] # current acetyl modification positions cur_SO3 = [] # current sulfate modification positions # do position 1 first cur_back['1'] = nonred # change odd to U if it's a dHexA if nonred == 'D': odd = 'U' else: odd = nonred even = list(set(poss) - set(odd))[0] # even-numbered monosaccharide if odd == 'N': # HexN cur_Ac.append('1-2') cur_SO3.append('1-4') cur_SO3.append('1-6') else: # HexA cur_SO3.append('1-2') # go through each position in backbone for j in range(1, lng): if (j+1) % 2 == 0: # even cur_back[str(j+1)] = even # add even-numbered monosaccharide to backbone if even == 'N': # HexN cur_Ac.append(str(j+1)+'-2') cur_SO3.append(str(j+1)+'-4') cur_SO3.append(str(j+1)+'-6') else: # HexA cur_SO3.append(str(j+1)+'-2') else: # odd cur_back[str(j+1)] = odd # add odd-numbered monosaccharide to backbone if odd == 'N': # HexN cur_Ac.append(str(j+1)+'-2') cur_SO3.append(str(j+1)+'-4') cur_SO3.append(str(j+1)+'-6') else: # HexA cur_SO3.append(str(j+1)+'-2') # add current backbone and modifications bb.append(cur_back) ac.append(cur_Ac) so.append(cur_SO3) else: # working with HS poss = ['U','N'] # possible monosaccharides if nonred == '?': # unsure about end monosaccharides for i in poss: # we need two backbones cur_back = {} # current backbone cur_Ac = [] # current acetyl modification positions cur_SO3 = [] # current sulfate modification positions odd = i # odd-numbered monosaccharide even = list(set(poss) - set(odd))[0] # even-numbered monosaccharide # go through each position in backbone for j in range(lng): if (j+1) % 2 == 0: # even cur_back[str(j+1)] = even # add even-numbered monosaccharide to backbone if even == 'N': # HexN cur_Ac.append(str(j+1)+'-2') cur_SO3.append(str(j+1)+'-2') cur_SO3.append(str(j+1)+'-3') cur_SO3.append(str(j+1)+'-6') else: # HexA cur_SO3.append(str(j+1)+'-2') else: # odd cur_back[str(j+1)] = odd # add odd-numbered monosaccharide to backbone if odd == 'N': # HexN cur_Ac.append(str(j+1)+'-2') cur_SO3.append(str(j+1)+'-2') cur_SO3.append(str(j+1)+'-3') cur_SO3.append(str(j+1)+'-6') else: # HexA cur_SO3.append(str(j+1)+'-2') # add current backbone and modifications bb.append(cur_back) ac.append(cur_Ac) so.append(cur_SO3) else: # we know end monosaccharides cur_back = {} # current backbone cur_Ac = [] # current acetyl modification positions cur_SO3 = [] # current sulfate modification positions # do position 1 first cur_back['1'] = nonred # change odd to U if it's a dHexA if nonred == 'D': odd = 'U' else: odd = nonred even = list(set(poss) - set(odd))[0] # even-numbered monosaccharide if odd == 'N': # HexN cur_Ac.append('1-2') cur_SO3.append('1-2') cur_SO3.append('1-3') cur_SO3.append('1-6') else: # HexA cur_SO3.append('1-2') # go through each position in backbone for j in range(1, lng): if (j+1) % 2 == 0: # even cur_back[str(j+1)] = even # add even-numbered monosaccharide to backbone if even == 'N': # HexN cur_Ac.append(str(j+1)+'-2') cur_SO3.append(str(j+1)+'-2') cur_SO3.append(str(j+1)+'-3') cur_SO3.append(str(j+1)+'-6') else: # HexA cur_SO3.append(str(j+1)+'-2') else: # odd cur_back[str(j+1)] = odd # add odd-numbered monosaccharide to backbone if odd == 'N': # HexN cur_Ac.append(str(j+1)+'-2') cur_SO3.append(str(j+1)+'-2') cur_SO3.append(str(j+1)+'-3') cur_SO3.append(str(j+1)+'-6') else: # HexA cur_SO3.append(str(j+1)+'-2') # add current backbone and modifications bb.append(cur_back) ac.append(cur_Ac) so.append(cur_SO3) # return return [bb, ac, so] # function for generating GAG strings def get_GAGs(bb, ac, so, pd): # lists for acetyl and sulfate permutations g = [] # loop through backbones (either one or two) for idx in range(len(bb)): these_Ac = choose(ac[idx], pd['A']) these_SO3 = [] if len(these_Ac) == 0: qqq = choose(so[idx], pd['S']) these_SO3.append(qqq) Ac_dict = None # check if there is at least one sulfate if len(qqq) > 0: # there is at least one sulfate # loop through sulfate mods for sfp in qqq: SO3_dict = {} # loop through sulfate mods for sspot in sfp: sunit, sloc = sspot.split('-') if sunit in SO3_dict: SO3_dict[sunit].append(sloc) else: SO3_dict[sunit] = [sloc] g.append(generateGAGstring(bb[idx], Ac_dict, SO3_dict)) else: # there are no sulfates g.append(generateGAGstring(bb[idx], Ac_dict, None)) else: for a in range(len(these_Ac)): qqq = choose(list(set(so[idx]) - set(these_Ac[a])), pd['S']) these_SO3.append(qqq) Ac_dict = {} # loop through Ac mods for aspot in these_Ac[a]: aunit, aloc = aspot.split('-') Ac_dict[aunit] = [aloc] # check if there is at least one sulfate if len(qqq) > 0: # there is at least one sulfate # loop through sulfate mods for sfp in qqq: SO3_dict = {} for sspot in sfp: sunit, sloc = sspot.split('-') if sunit in SO3_dict: SO3_dict[sunit].append(sloc) else: SO3_dict[sunit] = [sloc] g.append(generateGAGstring(bb[idx], Ac_dict, SO3_dict)) else: # there are no sulfates g.append(generateGAGstring(bb[idx], Ac_dict, None)) # return return g # function for building bipartite graph def get_graph(gg, cl, loss, ref, fc, fm): # initialize graph gph = nx.Graph() # edge weights glyco = 1. intrl = 0.2 xring = 1. # loop through all structures for g in gg: # set up variables cur_dict = gstring2gdict(cl, g) # convert GAG string to GAG dictionary monos = sorted(cur_dict['backbone'].keys(), key=lambda x: float(x)) # list of monosaccharides backbone = cur_dict['backbone'] actl = cur_dict['Ac'] slft = cur_dict['SO3'] # go through structure nn = 1 # variable for fragment length while nn < len(monos): # loop through fragments of length nn for i in range(len(monos)-nn+1): j = monos[i:i+nn] # monosaccharides in this fragment # get the complete monosaccharides fml = {'D':0, 'U':0, 'X':0, 'N':0, 'A':0, 'S':0} for k in j: fml[backbone[k]] += 1 # add current monosaccharide to formula # count the sulfates for p in slft[k]: fml['S'] += slft[k][p] # count the acetyls if k in actl: for p in actl[k]: fml['A'] += actl[k][p] ## glycosidic fragments first # loop through possible sulfate losses for s in range(loss+1): fml1 = dict(fml) # copy of original fml1['S'] = max(0, fml1['S']-s) # remove sulfate (if possible) # copy dictionary sf = dict2fmla(fml1, 'composition') if i == (len(monos)-nn) and ref is not None: sf += '+RE' # add RE to let user know it's reducing end fragment if sf in fc.keys(): # make sure this fragment has been found in the spectrum for cg in fc[sf]: if i == 0 or i == (len(monos)-nn): # terminal fragment if gph.has_edge(g, fm[(sf, cg)]): # edge exists gph[g][fm[(sf, cg)]]['weight'] = max(gph[g][fm[(sf,cg)]]['weight'], glyco ** p1) else: # edge does not exist gph.add_edge(g, fm[(sf, cg)], weight=glyco ** p1) else: # internal fragment if gph.has_edge(g, fm[(sf, cg)]): # edge exists gph[g][fm[(sf, cg)]]['weight'] = max(gph[g][fm[(sf,cg)]]['weight'], intrl ** p1) else: # edge does not exist gph.add_edge(g, fm[(sf, cg)], weight=intrl ** p1) # loop through neutral losses for k in range(2): # water loss for l in range(3): # H loss sf1 = sf # avoid repeating # water loss if k == 1: sf1 += '-H2O' # H loss(es) if l == 1: sf1 += '-H' elif l == 2: sf1 += '-2H' if sf1 in fc.keys(): # make sure this fragment has been found in the spectrum for cg in fc[sf1]: if i == 0 or i == (len(monos)-nn): # terminal fragment if gph.has_edge(g, fm[(sf1, cg)]): # edge exists gph[g][fm[(sf1, cg)]]['weight'] = max(gph[g][fm[(sf1,cg)]]['weight'], glyco ** p1) else: # edge does not exist gph.add_edge(g, fm[(sf1, cg)], weight=glyco ** p1) else: # internal fragment if gph.has_edge(g, fm[(sf1, cg)]): # edge exists gph[g][fm[(sf1, cg)]]['weight'] = max(gph[g][fm[(sf1,cg)]]['weight'], intrl ** p1) else: # edge does not exist gph.add_edge(g, fm[(sf1, cg)], weight=intrl ** p1) # check if we're done with sulfate losses if fml1['S'] == 0: break ## crossring fragments second if i == 0: # non-reducing end addto = monos[nn] # which index to add to msch = backbone[addto] # which monosaccharide to add to # loop through cross-ring cleavages for x in xmodlocs[cl][msch]['NR']: fml1 = dict(fml) # copy of original # count the sulfates for y in xmodlocs[cl][msch]['NR'][x]['SO3']: fml1['S'] += slft[addto][str(y)] # count the acetyls if len(xmodlocs[cl][msch]['NR'][x]['Ac']) > 0: # acetyl possible fml1['A'] += actl[addto]['2'] # sulfate losses for s in range(loss+1): fml2 = dict(fml1) # copy of altered copy fml2['S'] = max(0, fml2['S'] - s) # remove sulfate (if possible) # generate string sf = dict2fmla(fml2, 'composition') + '+' + msch + 'NR' + x if sf in fc.keys(): # make sure this fragment has been found in the spectrum for cg in fc[sf]: if gph.has_edge(g, fm[(sf, cg)]): # edge exists gph[g][fm[(sf, cg)]]['weight'] = max(gph[g][fm[(sf,cg)]]['weight'], xring ** p1) else: # edge does not exist gph.add_edge(g, fm[(sf, cg)], weight=xring ** p1) # loop through neutral losses for l in range(1): # H loss sf1 = sf # avoid repeating # H loss(es) if l == 1: sf1 += '-H' elif l == 2: sf1 += '-2H' if sf1 in fc.keys(): # make sure this fragment has been found in the spectrum for cg in fc[sf1]: if gph.has_edge(g, fm[(sf1, cg)]): # edge exists gph[g][fm[(sf1, cg)]]['weight'] = max(gph[g][fm[(sf1,cg)]]['weight'], xring ** p1) else: # edge does not exist gph.add_edge(g, fm[(sf1, cg)], weight=xring ** p1) # check if we're done with sulfate losses if fml2['S'] == 0: break elif i == (len(monos)-nn): # reducing end addto = monos[i-1] # which index to add to msch = backbone[addto] # which monosaccharide to add to # loop through cross-ring cleavages for x in xmodlocs[cl][msch]['RE']: fml1 = dict(fml) # copy of original # count the sulfates for y in xmodlocs[cl][msch]['RE'][x]['SO3']: fml1['S'] += slft[addto][str(y)] # count the acetyls if len(xmodlocs[cl][msch]['RE'][x]['Ac']) > 0: # acetyl possible fml1['A'] += actl[addto]['2'] # sulfate losses for s in range(loss+1): fml2 = dict(fml1) # copy of altered copy fml2['S'] = max(0, fml2['S'] - s) # remove sulfate (if possible) # generate string sf = dict2fmla(fml2, 'composition') + '+' + msch + 'RE' + x if ref is not None: sf += '+RE' if sf in fc.keys(): # make sure this fragment has been found in the spectrum for cg in fc[sf]: if gph.has_edge(g, fm[(sf, cg)]): # edge exists gph[g][fm[(sf, cg)]]['weight'] = max(gph[g][fm[(sf,cg)]]['weight'], xring ** p1) else: # edge does not exist gph.add_edge(g, fm[(sf, cg)], weight=xring ** p1) # loop through neutral losses for l in range(1): # H loss sf1 = sf # avoid repeating # H loss(es) if l == 1: sf1 += '-H' elif l == 2: sf1 += '-2H' if sf1 in fc.keys(): # make sure this fragment has been found in the spectrum for cg in fc[sf1]: if gph.has_edge(g, fm[(sf1, cg)]): # edge exists gph[g][fm[(sf1, cg)]]['weight'] = max(gph[g][fm[(sf1,cg)]]['weight'], xring ** p1) else: # edge does not exist gph.add_edge(g, fm[(sf1, cg)], weight=xring ** p1) # check if we're done with sulfate losses if fml2['S'] == 0: break # increment fragment length nn += 1 return gph # function for ranking the nodes in the graph def rank_nodes(gg, gph, g_scores, gd): # sequences that are in the network poss_seqs = [] for seq in gg: if seq in gph.nodes(): poss_seqs.append(seq) ### BiRank # get sum of g-scores g_sum = np.sum(g_scores['G']) # get prior for fragments prior_frg = {} for frag in g_scores['frags']: prior_frg[frag] = gd[frag] / g_sum # get prior for sequences prior_seq = {} seq_sum = 0. for key in poss_seqs: this = scoreSeq(key, p3) prior_seq[key] = this seq_sum += this for key in prior_seq: prior_seq[key] /= seq_sum # run BiRank br = BiRank(gph, alpha=.98, beta=.94, f_0=prior_frg, s_0=prior_seq)[0] # convert to a numpy array for downstream analysis b_score = [] for key in br: b_score.append((key, br[key])) dty = np.dtype([('seq', 'object'), ('br', 'float')]) b_score = np.array(b_score, dtype=dty) b_score = np.sort(b_score, order='br')[::-1] return b_score # function for running the guts of GAGrank def rank_gags(gf, gc, cn, rf, mz, z, sl, a=None, db_path='../lib/GAGfragDB.db'): # get values ready for reducing end derivatization and reagent df = {'C':0, 'H':0, 'O':0, 'N':0, 'S':0} atoms = ['C','H','O','N','S'] # parse the reducing end derivatization formula if rf: parts = re.findall(r'([A-Z][a-z]*)(\d*)', rf.upper()) # split formula by symbol for q in parts: if q[0] not in atoms: # invalid symbol entered print "Invalid chemical formula entered. Please enter only CHONS. Try 'python gagfinder.py --help'" sys.exit() else: if q[1] == '': # only one of this atom df[q[0]] += 1 else: df[q[0]] += int(q[1]) # get derivatization weight wt = {'C': 12.0, 'H': 1.0078250322, 'O': 15.994914620, 'N': 14.003074004, 'S': 31.972071174, 'Na': 22.98976928, 'K': 38.96370649, 'Li': 7.01600344, 'Ca': 39.9625909, 'Mg': 23.98504170} dw = 0 for q in df: dw += df[q] * wt[q] # print the reducing end derivatization back out to the user if debug: formula = '' for key in df: val = df[key] if val > 0: formula += key if val > 1: formula += str(val) print "atoms in reducing end derivatization: %s" % (formula) ########################################################### # Step 2: Load GAGfinder results and connect to GAGfragDB # ########################################################### print "Loading GAGfinder results file...", gdict, fragmap, mapfrag, f_chgs, allfrags, gsc = read_gf_results(gf) # connect to GAGfragDB conn = sq.connect(db_path) c = conn.cursor() print "Done!" ###################################### # Step 3: Find precursor composition # ###################################### print "Determining precursor composition...", pComp = get_pre(cn, mz, z, dw, c) print "Done!" ######################################################### # Step 4: Get reducing end/non-reducing end information # ######################################################### print "Determining reducing end/non-reducing end information...", # convert composition into a dictionary pDict = fmla2dict(pComp, 'composition') NR, RE, n_pre = get_ends(pDict, gc) print "Done!" ######################################### # Step 5: Set up possible GAG backbones # ######################################### print "Generating possible backbones and modification positions...", backbones, all_Ac, all_SO3 = get_bb(gc, NR, n_pre) print "Done!" ################################################ # Step 6: Generate all possible GAG structures # ################################################ print "Generating possible GAG structures...", GAGs = get_GAGs(backbones, all_Ac, all_SO3, pDict) print "Done!" ################################# # Step 7: Build bipartite graph # ################################# print "Building bipartite graph...", gr = get_graph(GAGs, gc, sl, rf, f_chgs, fragmap) print "Done!" ######################################################## # Step 8: Get the different rankings for each sequence # ######################################################## print "Calculating enrichment score for each GAG structure...", bsc = rank_nodes(GAGs, gr, gsc, gdict) print "Done!" # return return bsc # function for writing to file def write_result_to_file(input_path, scores): print "Printing output to file...", # write to file oFile = input_path[:-4] + '_GAGrank_results.tsv' f = open(oFile, 'w') f.write("Sequence\tGAGrank score\n") for q in scores: out = str(q[0]) + '\t' + str(q[1]) + '\n' f.write(out) f.close() print "Done!" # main function def main(): ################################ # Step 1: check user arguments # ################################ # initiate parser parser = argparse.ArgumentParser(description='Find isotopic clusters in GAG tandem mass spectra.') # add arguments parser.add_argument('-c', required=True, help='GAG class (required)') parser.add_argument('-i', required=True, help='Input GAGfinder results file (required)') parser.add_argument('-r', required=False, help='Reducing end derivatization (optional)') parser.add_argument('-m', type=float, required=True, help='Precursor m/z (required)') parser.add_argument('-z', type=int, required=True, help='Precursor charge (required)') parser.add_argument('-s', type=int, required=False, help='Number of sulfate losses to consider (optional, default 0)') parser.add_argument('-a', required=False, help='Actual sequence, for testing purposes (optional)') # parse arguments args = parser.parse_args() print "Checking user arguments...", # get arguments into proper variables gClass = args.c rFile = args.i fmla = args.r pre_mz = args.m pre_z = args.z s_loss = args.s actual = args.a # check to make sure a proper GAG class was added if gClass not in ['HS', 'CS', 'KS']: print "You must denote a GAG class, either HS, CS, or KS. Try 'python gagfinder.py --help'" sys.exit() # pick a proper class number if gClass == 'HS': cNum = 3 elif gClass == 'CS': cNum = 1 else: cNum = 4 # check to see if the user wants to consider sulfate loss if not s_loss: s_loss = 0 # print the system arguments back out to the user if debug: print "class: %s" % (gClass) print "GAGfinder results file: %s" % (rFile) print "Done!" # run the guts of GAGrank result = rank_gags(rFile, gClass, cNum, fmla, pre_mz, pre_z, s_loss, actual) # for debugging if actual: actual = actual.split(':') for sqn in actual: print '\tBiRank ranking #' + str(int(len(result['br']) - rankdata(result['br'], 'max')[np.where(result['seq'] == sqn)[0][0]] + 1)) + ' to #' + str(int(len(result['br']) - rankdata(result['br'], 'min')[np.where(result['seq'] == sqn)[0][0]] + 1)) + ' out of ' + str(len(result['seq'])) ######################### # Step 9: write to file # ######################### # write result to file write_result_to_file(rFile, result) print "Finished!" print time.time() - start_time # run main if __name__ == '__main__': main() ```
{ "source": "jdhorne/temperature-converter-indigo-plugin", "score": 3 }
#### File: Server Plugin/pyrescaler/length_scale.py ```python from pyrescaler import * SCALE_TYPE = "length" # Internal canonical representation is meters # class LengthScale(PredefinedScaledMeasurement): def __init__(self, input_scale=None, precision=1): PredefinedScaledMeasurement.__init__(self, input_scale, precision=precision) print "%s: %s" % (self.suffix(), self.__class__) class Inches(LengthScale): def __init__(self, input_scale=None, precision=1): LengthScale.__init__(self, input_scale, precision=precision) # in -> m def _to_canonical(self, x): return float(x) * 0.0254 # m -> in def _from_canonical(self, x): return float(x) / 0.0254 def suffix(self): return u"in" register_scale(SCALE_TYPE, "Inches", "in", Inches) class Feet(LengthScale): def __init__(self, input_scale=None, precision=1): LengthScale.__init__(self, input_scale, precision=precision) # ft -> m def _to_canonical(self, x): return float(x) * 0.3048 # m -> ft def _from_canonical(self, x): return float(x) * 3.2808 def suffix(self): return u"ft" register_scale(SCALE_TYPE, "Feet", "ft", Feet) class Yards(LengthScale): def __init__(self, input_scale=None, precision=1): LengthScale.__init__(self, input_scale, precision=precision) # yd -> m def _to_canonical(self, x): return float(x) / 1.0936 # m -> yd def _from_canonical(self, x): return float(x) * 1.0936 def suffix(self): return u"yd" register_scale(SCALE_TYPE, "Yards", "yd", Yards) # class Furlongs(LengthScale): # def __init__(self, input_scale=None): # LengthScale.__init__(self, input_scale) class Miles(LengthScale): def __init__(self, input_scale=None, precision=1): LengthScale.__init__(self, input_scale, precision=precision) # mi -> m def _to_canonical(self, x): return float(x) * 1609.34 # m -> mi def _from_canonical(self, x): return float(x) / 1609.34 def suffix(self): return u"mi" register_scale(SCALE_TYPE, "Miles", "mi", Miles) class Centimeters(LengthScale): def __init__(self, input_scale=None, precision=1): LengthScale.__init__(self, input_scale, precision=precision) # cm -> m def _to_canonical(self, x): return float(x) / 100 # m -> cm def _from_canonical(self, x): return float(x) * 100 def suffix(self): return u"cm" register_scale(SCALE_TYPE, "Centimeters", "cm", Centimeters) class Meters(LengthScale): def __init__(self, input_scale=None, precision=1): LengthScale.__init__(self, input_scale, precision=precision) # no change def _to_canonical(self, x): return float(x) # no change def _from_canonical(self, x): return float(x) def suffix(self): return u"m" register_scale(SCALE_TYPE, "Meters", "m", Meters) class Kilometers(LengthScale): def __init__(self, input_scale=None, precision=1): LengthScale.__init__(self, input_scale, precision=precision) # km -> m def _to_canonical(self, x): return float(x) * 1000 # m -> km def _from_canonical(self, x): return float(x) / 1000 def suffix(self): return u"km" register_scale(SCALE_TYPE, "Kilometers", "km", Kilometers) class NauticalMiles(LengthScale): def __init__(self, input_scale=None, precision=1): LengthScale.__init__(self, input_scale, precision=precision) # nmi -> m def _to_canonical(self, x): return float(x) * 1852 # m -> nmi def _from_canonical(self, x): return float(x) / 1852 def suffix(self): return u"nmi" register_scale(SCALE_TYPE, "Nautical Miles", "nmi", NauticalMiles) class Fathoms(LengthScale): def __init__(self, input_scale=None, precision=1): LengthScale.__init__(self, input_scale, precision=precision) # fm -> m def _to_canonical(self, x): return float(x) * 1.8288 # m -> fm def _from_canonical(self, x): return float(x) / 1.8288 def suffix(self): return u"fm" register_scale(SCALE_TYPE, "Fathoms", "fm", Fathoms) class Cubits(LengthScale): def __init__(self, input_scale=None, precision=1): LengthScale.__init__(self, input_scale, precision=precision) # cbt -> m def _to_canonical(self, x): return float(x) / 2.18723 # m -> cbt def _from_canonical(self, x): return float(x) * 2.18723 def suffix(self): return u"cbt" register_scale(SCALE_TYPE, "Cubits", "cbt", Cubits) class Hands(LengthScale): def __init__(self, input_scale=None, precision=1): LengthScale.__init__(self, input_scale, precision=precision) # h -> m def _to_canonical(self, x): return float(x) / 9.84252 # m -> h def _from_canonical(self, x): return float(x) * 9.84252 def suffix(self): return u"h" register_scale(SCALE_TYPE, "Hands", "h", Hands) # # class Parsecs(LengthScale): # def __init__(self, input_scale=None): # LengthScale.__init__(self, input_scale) # # class LightYears(LengthScale): # def __init__(self, input_scale=None): # LengthScale.__init__(self, input_scale) # # class Angstroms(LengthScale): # def __init__(self, input_scale=None): # LengthScale.__init__(self, input_scale) ``` #### File: Server Plugin/pyrescaler/power_scale.py ```python from pyrescaler import * SCALE_TYPE = "power" # Internal canonical representation is watts # class PowerScale(PredefinedScaledMeasurement): def __init__(self, input_scale=None, precision=1): PredefinedScaledMeasurement.__init__(self, input_scale, precision=precision) print "%s: %s" % (self.suffix(), self.__class__) class Watts(PowerScale): def __init__(self, input_scale=None, precision=1): PowerScale.__init__(self, input_scale, precision=precision) # nothing to do; canonical representation def _to_canonical(self, x): return float(x) # nothing to do; canonical representation def _from_canonical(self, x): return float(x) def suffix(self): return u"W" register_scale(SCALE_TYPE, "Watts", "W", Watts) class Kilowatts(PowerScale): def __init__(self, input_scale=None, precision=1): PowerScale.__init__(self, input_scale, precision=precision) # kW -> W def _to_canonical(self, x): return float(x) * 1000 # W -> kW def _from_canonical(self, x): return float(x) / 1000 def suffix(self): return u"kW" register_scale(SCALE_TYPE, "Kilowatts", "kW", Kilowatts) class Horsepower(PowerScale): def __init__(self, input_scale=None, precision=1): PowerScale.__init__(self, input_scale, precision=precision) # hp -> W def _to_canonical(self, x): return float(x) * 745.69987158227 # W -> hp def _from_canonical(self, x): return float(x) / 745.69987158227 def suffix(self): return u"hp" register_scale(SCALE_TYPE, "Horsepower", "hp", Horsepower) ``` #### File: Server Plugin/pyrescaler/temperature_scale.py ```python from pyrescaler import * SCALE_TYPE = "temperature" # Internal canonical representation is Kelvin # class TemperatureScale(PredefinedScaledMeasurement): def __init__(self, input_scale=None, precision=1): PredefinedScaledMeasurement.__init__(self, input_scale, precision=precision) class Fahrenheit(TemperatureScale): def __init__(self, input_scale=None, precision=1): TemperatureScale.__init__(self, input_scale, precision=precision) # F -> K def _to_canonical(self, f_temp): return (459.67 + float(f_temp)) * 5 / 9 # K -> F def _from_canonical(self, k_temp): return (1.8 * float(k_temp)) - 459.67 def suffix(self): return u"°F" register_scale(SCALE_TYPE, "Fahrenheit", "F", Fahrenheit) class Celsius(TemperatureScale): def __init__(self, input_scale=None, precision=1): TemperatureScale.__init__(self, input_scale, precision=precision) # C -> K def _to_canonical(self, c_temp): return float(c_temp) + 273.15 # K -> C def _from_canonical(self, k_temp): return float(k_temp) - 273.15 def suffix(self): return u"°C" register_scale(SCALE_TYPE, "Celsius", "C", Celsius) class Kelvin(TemperatureScale): def __init__(self, input_scale=None, precision=1): TemperatureScale.__init__(self, input_scale, precision=precision) def _to_canonical(self, k_temp): # Kelvin is the canonical representation, so nothing to do return float(k_temp) def _from_canonical(self, k_temp): # Kelvin is the canonical representation, so nothing to do return float(k_temp) def suffix(self): return u"K" register_scale(SCALE_TYPE, "Kelvin", "K", Kelvin) class Rankine(TemperatureScale): def __init__(self, input_scale=None, precision=1): TemperatureScale.__init__(self, input_scale, precision=precision) # R -> K def _to_canonical(self, r_temp): return float(r_temp) * 5 / 9 # K -> R def _from_canonical(self, k_temp): return 1.8 * float(k_temp) def suffix(self): return u"°Ra" register_scale(SCALE_TYPE, "Rankine", "R", Rankine) ```
{ "source": "jdhornsby/checkov", "score": 2 }
#### File: checks/utilities/base_check.py ```python import logging from abc import ABC, abstractmethod from checkov.terraform.models.enums import CheckResult class BaseCheck(ABC): id = "" name = "" categories = [] supported_entities = [] def __init__(self, name, id, categories, supported_entities, block_type): self.name = name self.id = id self.categories = categories self.block_type = block_type self.supported_entities = supported_entities self.logger = logging.getLogger("{}".format(self.__module__)) def run(self, scanned_file, entity_configuration, entity_name, entity_type, skip_info): check_result = {} if skip_info: check_result['result'] = CheckResult.SKIPPED check_result['suppress_comment'] = skip_info['suppress_comment'] message = "File {}, {} \"{}.{}\" check \"{}\" Result: {}, Suppression comment: {} ".format( scanned_file, self.block_type, entity_type, entity_name, self.name, check_result, check_result['suppress_comment']) else: try: check_result['result'] = self.scan_entity_conf(entity_configuration) message = "File {}, {} \"{}.{}\" check \"{}\" Result: {} ".format(scanned_file, self.block_type, entity_type, entity_name, self.name, check_result) self.logger.debug(message) except Exception as e: self.logger.error( "Failed to run check {} for configuration {} ".format(self.name, str(entity_configuration))) raise e return check_result @abstractmethod def scan_entity_conf(self, conf): raise NotImplementedError() ``` #### File: checks/utilities/base_registry.py ```python import logging import sys import os import importlib class Registry(object): checks = {} def __init__(self): self.logger = logging.getLogger(__name__) self.checks = {} def register(self, check): for entity in check.supported_entities: if entity not in self.checks.keys(): self.checks[entity] = [] self.checks[entity].append(check) def get_checks(self, entity): if entity in self.checks.keys(): return self.checks[entity] return [] def scan(self, block, scanned_file, skipped_checks): entity = list(block.keys())[0] entity_conf = block[entity] results = {} checks = self.get_checks(entity) for check in checks: skip_info = {} if skipped_checks: if check.id in [x['id'] for x in skipped_checks]: skip_info = [x for x in skipped_checks if x['id'] == check.id][0] entity_name = list(entity_conf.keys())[0] entity_conf_def = entity_conf[entity_name] self.logger.debug("Running check: {} on file {}".format(check.name, scanned_file)) result = check.run(scanned_file=scanned_file, entity_configuration=entity_conf_def, entity_name=entity_name, entity_type=entity, skip_info=skip_info) results[check] = result return results def _directory_has_init_py(self, directory): """ Check if a given directory contains a file named __init__.py. __init__.py is needed to ensure the directory is a Python module, thus can be imported. """ if os.path.exists("{}/__init__.py".format(directory)): return True return False def _file_can_be_imported(self, entry): """ Verify if a directory entry is a non-magic Python file.""" if entry.is_file() and not entry.name.startswith('__') and entry.name.endswith('.py'): return True return False def load_external_checks(self, directory): """ Browse a directory looking for .py files to import. Log an error when the directory does not contains an __init__.py or when a .py file has syntax error """ directory = os.path.expanduser(directory) self.logger.debug("Loading external checks from {}".format(directory)) sys.path.insert(1, directory) with os.scandir(directory) as directory_content: if not self._directory_has_init_py(directory): self.logger.info("No __init__.py found in {}. Cannot load any check here.".format(directory)) else: for entry in directory_content: if self._file_can_be_imported(entry): check_name = entry.name.replace('.py', '') try: self.logger.debug("Importing external check '{}'".format(check_name)) importlib.import_module(check_name) except SyntaxError as e: self.logger.error( "Cannot load external check '{check_name}' from {check_full_path} : {error_message} (" "{error_line}:{error_column}) " .format( check_name=check_name, check_full_path=e.args[1][0], error_message=e.args[0], error_line=e.args[1][1], error_column=e.args[1][2] ) ) ```
{ "source": "jdhp-sap/data-pipeline-standalone-scripts", "score": 2 }
#### File: datapipe/optimization/bruteforce.py ```python __all__ = [] import json from scipy import optimize from datapipe.optimization.objectivefunc.wavelets_mrfilter_delta_psi import ObjectiveFunction as WaveletObjectiveFunction from datapipe.optimization.objectivefunc.tailcut_delta_psi import ObjectiveFunction as TailcutObjectiveFunction # For wavelets import datapipe.denoising.cdf from datapipe.denoising.inverse_transform_sampling import EmpiricalDistribution def main(): algo = "wavelet_mrfilter" #algo = "tailcut" instrument = "astri" #instrument = "astri_konrad" #instrument = "digicam" #instrument = "flashcam" #instrument = "nectarcam" #instrument = "lstcam" print("algo:", algo) print("instrument:", instrument) if instrument == "astri": input_files = ["/dev/shm/.jd/astri/gamma/"] noise_distribution = EmpiricalDistribution(datapipe.denoising.cdf.ASTRI_CDF_FILE) elif instrument == "astri_konrad": input_files = ["/dev/shm/.jd/astri_konrad/gamma/"] noise_distribution = EmpiricalDistribution(datapipe.denoising.cdf.ASTRI_CDF_FILE) elif instrument == "digicam": input_files = ["/dev/shm/.jd/digicam/gamma/"] noise_distribution = EmpiricalDistribution(datapipe.denoising.cdf.DIGICAM_CDF_FILE) elif instrument == "flashcam": input_files = ["/dev/shm/.jd/flashcam/gamma/"] noise_distribution = EmpiricalDistribution(datapipe.denoising.cdf.FLASHCAM_CDF_FILE) elif instrument == "nectarcam": input_files = ["/dev/shm/.jd/nectarcam/gamma/"] noise_distribution = EmpiricalDistribution(datapipe.denoising.cdf.NECTARCAM_CDF_FILE) elif instrument == "lstcam": input_files = ["/dev/shm/.jd/lstcam/gamma/"] noise_distribution = EmpiricalDistribution(datapipe.denoising.cdf.LSTCAM_CDF_FILE) else: raise Exception("Unknown instrument", instrument) if algo == "wavelet_mrfilter": func = WaveletObjectiveFunction(input_files=input_files, noise_distribution=noise_distribution, max_num_img=None, aggregation_method="mean") # "mean" or "median" s1_slice = slice(1, 5, 1) s2_slice = slice(1, 5, 1) s3_slice = slice(1, 5, 1) s4_slice = slice(1, 5, 1) search_ranges = (s1_slice, s2_slice, s3_slice, s4_slice) elif algo == "tailcut": func = TailcutObjectiveFunction(input_files=input_files, max_num_img=None, aggregation_method="mean") # "mean" or "median" s1_slice = slice(-2., 10., 0.5) s2_slice = slice(-2., 10., 0.5) search_ranges = (s1_slice, s2_slice) else: raise ValueError("Unknown algorithm", algo) res = optimize.brute(func, search_ranges, full_output=True, finish=None) #optimize.fmin) print("x* =", res[0]) print("f(x*) =", res[1]) # SAVE RESULTS ############################################################ res_dict = { "best_solution": res[0].tolist(), "best_score": float(res[1]), "solutions": res[2].tolist(), "scores": res[3].tolist() } with open("optimize_sigma.json", "w") as fd: json.dump(res_dict, fd, sort_keys=True, indent=4) # pretty print format if __name__ == "__main__": main() ``` #### File: data-pipeline-standalone-scripts/tests/test_denoising_tailcut.py ```python from datapipe.denoising.tailcut import Tailcut import numpy as np import unittest class TestTailcut(unittest.TestCase): """ Contains unit tests for the "denoising.tailcut" module. """ # Test the "tailcut" function ############################################# def test_example1(self): """Check the output of the tailcut function.""" # Input image ################# # [[ 0 0 0 0 0 0] # [128 128 128 128 128 128] # [128 64 192 192 64 128] # [128 64 192 192 64 128] # [128 128 128 128 128 128] # [ 0 0 0 0 0 0]] input_img = np.zeros([6, 6], dtype=np.uint8) input_img[1:5, :] = 128 # 0.5 input_img[2:4, 1:5] = 64 # 0.25 input_img[2:4, 2:4] = 192 # 0.75 # Output image ################ tailcut = Tailcut() output_img = tailcut.clean_image(input_img, high_threshold=0.7, low_threshold=0.4) # Expected output image ####### # [[ 0 0 0 0 0 0] # [ 0 128 128 128 128 0] # [ 0 0 192 192 0 0] # [ 0 0 192 192 0 0] # [ 0 128 128 128 128 0] # [ 0 0 0 0 0 0]] expected_output_img = np.zeros([6, 6], dtype=np.uint8) expected_output_img[1:5, 1:5] = 128 # 0.5 expected_output_img[2:4, 1:5] = 0 expected_output_img[2:4, 2:4] = 192 # 0.75 np.testing.assert_array_equal(output_img, expected_output_img) def test_example2(self): """Check the output of the tailcut function.""" # Input image ################# # [[ 0 0 0 0 0 0 0] # [ 64 64 128 128 128 64 64] # [ 64 192 128 128 128 192 64] # [ 64 64 128 128 128 64 64] # [ 0 0 0 0 0 0 0]] input_img = np.zeros([5, 7], dtype=np.uint8) input_img[1:4, :] = 64 # 0.25 input_img[1:4, 2:5] = 128 # 0.5 input_img[2, 1] = 192 # 0.75 input_img[2, 5] = 192 # 0.75 # Output image ################ tailcut = Tailcut() output_img = tailcut.clean_image(input_img, high_threshold=0.7, low_threshold=0.4) # Expected output image ####### # [[ 0 0 0 0 0 0 0] # [ 0 0 128 0 128 0 0] # [ 0 192 128 0 128 192 0] # [ 0 0 128 0 128 0 0] # [ 0 0 0 0 0 0 0]] expected_output_img = np.zeros([5, 7], dtype=np.uint8) expected_output_img[1:4, 2] = 128 # 0.5 expected_output_img[1:4, 4] = 128 # 0.5 expected_output_img[2, 1] = 192 # 0.75 expected_output_img[2, 5] = 192 # 0.75 np.testing.assert_array_equal(output_img, expected_output_img) if __name__ == '__main__': unittest.main() ``` #### File: data-pipeline-standalone-scripts/utils/search_input_by_metadata_range.py ```python import common_functions as common import argparse import json import sys import numpy as np def extract_input_path_and_meta_list(json_dict, key): io_list = json_dict["io"] json_data = [(image_dict["input_file_path"], image_dict[key], image_dict["score"]) for image_dict in io_list if "score" in image_dict] return json_data if __name__ == '__main__': # PARSE OPTIONS ########################################################### parser = argparse.ArgumentParser(description="Make statistics on score files (JSON files).") parser.add_argument("--highest", "-H", type=int, default=None, metavar="INT", help="Select the N images having the highest metadata value") parser.add_argument("--lowest", "-l", type=int, default=None, metavar="INT", help="Select the N images having the lowest metadata value") parser.add_argument("--min", "-m", type=float, default=None, metavar="FLOAT", help="The lower bound of the selected range") parser.add_argument("--max", "-M", type=float, default=None, metavar="FLOAT", help="The upper bound of the selected range") parser.add_argument("--key", "-k", metavar="KEY", help="The name of the metadata to considere") parser.add_argument("fileargs", nargs=1, metavar="FILE", help="The JSON file to process") args = parser.parse_args() num_highest = args.highest num_lowest = args.lowest min_value = args.min max_value = args.max key = args.key json_file_path = args.fileargs[0] if (num_highest is not None) and (num_lowest is not None): raise Exception("--highest and --lowest options are not compatible") # FETCH SCORE ############################################################# json_dict = common.parse_json_file(json_file_path) data_list = extract_input_path_and_meta_list(json_dict, key) # SETUP RANGE ############################################################# value_list = [item[1] for item in data_list] if min_value is None: min_value = min(value_list) if max_value is None: max_value = max(value_list) # SEARCH INPUTS BY SCORE RANGE ############################################ filtered_data_list = [item for item in data_list if ((item[1] >= min_value) and (item[1] <= max_value))] filtered_data_list = sorted(filtered_data_list, key=lambda item: item[1]) if num_highest is not None: filtered_data_list = filtered_data_list[-num_highest:] if num_lowest is not None: filtered_data_list = filtered_data_list[:num_lowest] print("Min:", min_value, file=sys.stderr) print("Max:", max_value, file=sys.stderr) for file_path, value, score in filtered_data_list: #print(file_path) print(file_path, value, score) print(len(filtered_data_list), "inputs", file=sys.stderr) ```