metadata
dict
text
stringlengths
60
3.49M
{ "source": "jdhuang-csm/perovskite-featurizer", "score": 3 }
#### File: perovskite-featurizer/perovskite_ml/feature_select.py ```python import numpy as np import pandas as pd # from dcor_jh import distcorr_array from sklearn.preprocessing import StandardScaler #------------ # functions for SIS # could be used to simplify rank_correlation func below #------------ def xy_correlation_mag(X,y,standardize=True): "get correlation magnitude of each column of X with y" if standardize==True: ss = StandardScaler() X = ss.fit_transform(X) return np.abs(np.dot(X.T,y)) def top_n_features(X,y,n,standardize=True): "get top n features by correlation magnitude" corr = xy_correlation_mag(X,y,standardize) return np.argsort(corr)[:-n:-1] ###### def remove_invariant_cols(df): std = df.std() zero_var = std.index[std==0] print('Removed invariant columns:',zero_var) return df.drop(zero_var,axis=1) def remove_invalid_cols(df): invalid = df.columns[df.isnull().max()] print('Removed columns with invalid values:',invalid) return df.drop(invalid,axis=1) def rank_correlation(df,response_col, return_coef=False,corr_type='pearson'): """ Rank features by correlation to response Args: df: DataFrame with features and response response_col: response column name return_coef: if True, return ranked coefficients in addition to ranked feature names corr_type: correlation coefficient calculation. Options: 'pearson','distance' Returns: feature_names: feature names sorted by descending correlation with response corr """ response_idx = list(df.columns).index(response_col) if corr_type=='pearson': corr = np.corrcoef(df,rowvar=False) #elif corr_type=='distance': # corr = distcorr_array(df.values) else: raise ValueError(f'Invalid correlation type {corr_type}') # get magnitude of each feature's correlation to the response response_corr = np.abs(np.nan_to_num(corr,0))[response_idx] sort_idx = np.argsort(response_corr)[::-1] # remove the response column sort_idx = sort_idx[sort_idx!=response_idx] if return_coef is True: return df.columns[sort_idx], response_corr[sort_idx] else: return df.columns[sort_idx] def get_linked_groups(X, thresh, return_names=True): """ Get groups of directly and indirectly correlated columns Args: X: matrix or DataFrame. Rows are observations, columns are features thresh: correlation coefficient threshold for linking return_names: if True and X is DataFrame, return column names. Else return indexes """ corrcoeff = np.corrcoef(X,rowvar=False) correlated_columns = np.where(np.abs(np.triu(np.nan_to_num(corrcoeff,0),1))>=thresh) # corr_nodiag = corrcoeff - np.diag(np.diag(corrcoeff)) # correlated_columns = np.where(np.abs(np.nan_to_num(corr_nodiag,0))>=thresh) groups = [] for num in np.unique(correlated_columns[0]): in_set = [num in numset for numset in groups] if max(in_set,default=False)==False: #if not already in a set, get correlated var nums and check if they belong to an existing set cnums = correlated_columns[1][np.where(correlated_columns[0]==num)] numset = set([num] + list(cnums)) #check if numset intersects an existing set intersect = [numset & group for group in groups] if len(intersect) > 0: intersect_group = intersect[np.argmax(intersect)] else: intersect_group = [] #if intersects existing set, add to set if len(intersect_group) > 0: intersect_group |= numset #print('case 1 existing group:', num, intersect_group) #otherwise, make new set else: groups.append(numset) #print('new group:', num, cnums) else: #if already in a set, get correlated var nums and add to set group = groups[in_set.index(True)] cnums = correlated_columns[1][np.where(correlated_columns[0]==num)] group |= set(cnums) #union #print('case 2 existing group:', num, group) #some links may not be captured. Ex: 1 -> {4,5}. 2 -> 3. 3 -> 4. Now groups are: {1,4,5}, {2,3,4} - need to combine #safety net - combine groups that share common elements for i,group1 in enumerate(groups): for group2 in groups[i+1:]: if len(group1 & group2) > 0: group1 |= group2 groups.remove(group2) if type(X)==pd.core.frame.DataFrame and return_names==True: # return column names instead of indexes groups = [set([X.columns[idx] for idx in g]) for g in groups] return groups def choose_independent_features(X,thresh,response_col=0,drop_invariant=True): """ Choose features that correlate best with the response and are not correlated with each other. Identify correlation groups and keep the single feature with the strongest correlation to the response from each group. Args: X: matrix or dataframe. Rows are observations, columns are features thresh: correlation coefficient threshold response_col: column index (or name, if X is a DataFrame) for response. Default 0 drop_invariant: if True, drop columns with zero variance """ groups = get_linked_groups(X,thresh=thresh,return_names=False) corrcoeff = np.corrcoef(X,rowvar=False) #get list of all columns in linked groups correlated = sum([list(group) for group in groups],[]) #get list of unlinked columns independent = set(np.arange(corrcoeff.shape[0])) - set(correlated) #for each linked group, keep the feature that correlates most strongly with the response if type(response_col)==str: # convert column name to index response_col = list(X.columns).index(response_col) keep = [] for group in groups: max_idx = np.argmax(np.abs(corrcoeff[response_col,list(group)])) keep.append(list(group)[max_idx]) #print(keep) keep += list(independent) #print(keep) #check check1 = (len(correlated) + len(independent) == corrcoeff.shape[0]) check2 = (len(correlated) + len(keep) - len(groups) == corrcoeff.shape[0]) if min(check1,check2)==False: raise Exception('Number of correlated and independent features do not match total number') if drop_invariant==True: invariant = list(np.where(np.nan_to_num(corrcoeff,0)[response_col]==0)[0]) keep = list(set(keep) - set(invariant)) #print(invariant) # don't keep the response if response_col in keep: keep.remove(response_col) if type(X)==pd.core.frame.DataFrame: # return column names instead of indexes keep = [X.columns[k] for k in keep] return keep ``` #### File: perovskite-featurizer/perovskite_ml/featurizers.py ```python import numpy as np import pandas as pd import pymatgen as mg import collections from pymatgen.core.composition import Composition from pymatgen.core.molecular_orbitals import MolecularOrbitals from calc_chemfeat import Perovskite from matminer.featurizers.conversions import StrToComposition from matminer.featurizers.composition import ElementProperty, ValenceOrbital, CohesiveEnergy from matminer.featurizers.base import BaseFeaturizer from warnings import warn print('loaded featurizers') class AtomicOrbitalsMod(BaseFeaturizer): """ *Modified from matminer class to handle cases where LUMO is None* Determine HOMO/LUMO features based on a composition. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) are estiated from the atomic orbital energies of the composition. The atomic orbital energies are from NIST: https://www.nist.gov/pml/data/atomic-reference-data-electronic-structure-calculations Warning: For compositions with inter-species fractions greater than 10,000 (e.g. dilute alloys such as FeC0.00001) the composition will be truncated (to Fe in this example). In such extreme cases, the truncation likely reflects the true physics of the situation (i.e. that the dilute element does not significantly contribute orbital character to the band structure), but the user should be aware of this behavior. """ def featurize(self, comp): """ Args: comp: (Composition) pymatgen Composition object Returns: HOMO_character: (str) orbital symbol ('s', 'p', 'd', or 'f') HOMO_element: (str) symbol of element for HOMO HOMO_energy: (float in eV) absolute energy of HOMO LUMO_character: (str) orbital symbol ('s', 'p', 'd', or 'f') LUMO_element: (str) symbol of element for LUMO LUMO_energy: (float in eV) absolute energy of LUMO gap_AO: (float in eV) the estimated bandgap from HOMO and LUMO energeis """ integer_comp, factor = comp.get_integer_formula_and_factor() # warning message if composition is dilute and truncated if not (len(Composition(comp).elements) == len(Composition(integer_comp).elements)): warn('AtomicOrbitals: {} truncated to {}'.format(comp, integer_comp)) homo_lumo = MolecularOrbitals(integer_comp).band_edges feat = collections.OrderedDict() for edge in ['HOMO', 'LUMO']: if homo_lumo[edge] is not None: feat['{}_character'.format(edge)] = homo_lumo[edge][1][-1] feat['{}_element'.format(edge)] = homo_lumo[edge][0] feat['{}_energy'.format(edge)] = homo_lumo[edge][2] else: #if LUMO is None feat['{}_character'.format(edge)] = 'na' feat['{}_element'.format(edge)] = 'na' #unclear what this value should be. Arbitrarily set to 0. Don't want NaN for modeling feat['{}_energy'.format(edge)] = 0 feat['gap_AO'] = feat['LUMO_energy'] - feat['HOMO_energy'] return list(feat.values()) def feature_labels(self): feat = [] for edge in ['HOMO', 'LUMO']: feat.extend(['{}_character'.format(edge), '{}_element'.format(edge), '{}_energy'.format(edge)]) feat.append("gap_AO") return feat def citations(self): return [ "@article{PhysRevA.55.191," "title = {Local-density-functional calculations of the energy of atoms}," "author = {Kotochigova, <NAME>, <NAME>. and Shirley, " "<NAME>. and Stiles, <NAME>. and Clark, <NAME>.}," "journal = {Phys. Rev. A}, volume = {55}, issue = {1}, pages = {191--199}," "year = {1997}, month = {Jan}, publisher = {American Physical Society}," "doi = {10.1103/PhysRevA.55.191}, " "url = {https://link.aps.org/doi/10.1103/PhysRevA.55.191}}"] def implementors(self): return ['<NAME>', '<NAME>'] class PerovskiteProperty(BaseFeaturizer): """ Class to calculate perovskite features. Includes custom features from the Perovskite class and generic features from ElementProperty, AtomicOrbitals, ValenceOrbital, and CohesiveEnergy matminer featurizers. Options for initializing: ordered_formula_featurizer(): for featurizing ordered formulas cation_site_featurizer(): for featurizing unordered formulas based on user-provided cation site assignments from_preset(): load a preset The class can also be called manually, but be aware that different parameter sets are required for an ordered formula featurizer instance than for a cation site featurizer instance. Parameters: ----------- cation_site: dict of site assignments for cations, i.e. {el:site}. Elements not in cation_site are assumed to be anions on X-site site_ox_lim: dict of oxidation state limits for each site, i.e. {site:[min,max]}. Elements on sites are limited to oxidation states within these limits site_base_ox: dict of base oxidation state for each site, i.e. {site:ox}. Used for determining aliovalent ions and acceptor/donor dopants ordered_formulas: if True, determine cation site assignments from order A_site_occupancy: Number of atoms on A site. Used when ordered_formulas is True anions: list of anions. Used when ordered_formulas is True Parameters for ordered formula featurizer: site_ox_lim, site_base_ox, A_site_occupancy, anions Parameters for cation site featurizer: cation_site, site_ox_lim, site_base_ox """ def __init__(self, cation_site=None, site_ox_lim={'A':[0,10],'B':[0,10],'X':[-10,0]}, site_base_ox={'A':2,'B':4,'X':-2}, ordered_formulas=False,A_site_occupancy=1,anions=None): if cation_site is None and ordered_formulas is False: raise ValueError('Either cation sites must be assigned, or formulas must be ordered. Otherwise site assignments can not be determined') self.cation_site = cation_site self.site_ox_lim = site_ox_lim self.site_base_ox = site_base_ox self.ordered_formulas = ordered_formulas self.A_site_occupancy = A_site_occupancy self.anions = anions #matminer featurizers self.ValenceOrbital = ValenceOrbital() self.AtomicOrbitals = AtomicOrbitalsMod() self.CohesiveEnergy = CohesiveEnergy() #custom ElementProperty featurizer elemental_properties = ['BoilingT', 'MeltingT', 'BulkModulus', 'ShearModulus', 'Row', 'Column', 'Number', 'MendeleevNumber', 'SpaceGroupNumber', 'Density','MolarVolume', 'FusionEnthalpy','HeatVaporization', 'NsUnfilled','NpUnfilled','NdUnfilled','NfUnfilled', 'Polarizability', 'ThermalConductivity'] self.ElementProperty = ElementProperty(data_source='magpie',features=elemental_properties, stats=["mean", "std_dev", "range"]) self.check_matminer_featurizers() self.featurize_options = {} @classmethod def from_preset(cls, preset_name): """ Initialize from preset Parameters: ----------- preset_name: name of preset to load. Currently accepts 'BCFZY' """ if preset_name=='BCFZY': #Ba(Co,Fe,Zr,Y)O_3-d system cation_site={'Ba':'A','Co':'B','Fe':'B','Zr':'B','Y':'B'} site_ox_lim={'A':[2,2],'B':[2,4],'X':[-2,-2]} site_base_ox={'A':2,'B':4,'X':-2} else: raise ValueError("Invalid preset_name specified!") return cls(cation_site,site_ox_lim, site_base_ox) @classmethod def ordered_formula_featurizer(cls,A_site_occupancy=1,anions=None,site_ox_lim={'A':[0,10],'B':[0,10],'X':[-10,0]}, site_base_ox={'A':2,'B':4,'X':-2}): """ Convenience method for instantiating a featurizer for ordered formulas """ return cls(cation_site=None,site_ox_lim=site_ox_lim,site_base_ox=site_base_ox,ordered_formulas=True,A_site_occupancy=A_site_occupancy,anions=anions) @classmethod def cation_site_featurizer(cls,cation_site, site_ox_lim={'A':[0,10],'B':[0,10],'X':[-10,0]}, site_base_ox={'A':2,'B':4,'X':-2}): """ Convenience method for instantiating a featurizer for unordered formulas, based on site assignments """ return cls(cation_site,site_ox_lim,site_base_ox) @property def ElementProperty_custom_labels(self): """ Generate custom labels for ElementProperty featurizer that follow same naming convention as Perovskite class """ elemental_property_label_map = {'BoilingT':'boil_temp','MeltingT':'melt_temp', 'BulkModulus':'bulk_mod','ShearModulus':'shear_mod', 'Row':'row','Column':'column','Number':'number','MendeleevNumber':'mendeleev','SpaceGroupNumber':'space_group', 'Density':'density','MolarVolume':'molar_vol', 'FusionEnthalpy':'H_fus','HeatVaporization':'H_vap', 'NsUnfilled':'valence_unfilled_s','NpUnfilled':'valence_unfilled_p','NdUnfilled':'valence_unfilled_d','NfUnfilled':'valence_unfilled_f', 'Polarizability':'polarizability', 'ThermalConductivity':'sigma_therm'} element_property_labels = list(map(elemental_property_label_map.get,self.ElementProperty.features)) labels = [] for attr in element_property_labels: for stat in self.ElementProperty.stats: if stat=='std_dev': stat = 'std' labels.append(f'{attr}_{stat}') return labels @property def ElementProperty_categories(self): """ Generate categories for ElementProperty featurizer """ elemental_property_category_map = {'BoilingT':'elemental','MeltingT':'elemental', 'BulkModulus':'elemental','ShearModulus':'elemental', 'Row':'periodic','Column':'periodic','Number':'periodic','MendeleevNumber':'periodic','SpaceGroupNumber':'periodic', 'Density':'elemental','MolarVolume':'elemental', 'FusionEnthalpy':'elemental','HeatVaporization':'elemental', 'NsUnfilled':'electronic','NpUnfilled':'electronic','NdUnfilled':'electronic','NfUnfilled':'electronic', 'Polarizability':'elemental', 'ThermalConductivity':'elemental'} element_property_categories = list(map(elemental_property_category_map.get,self.ElementProperty.features)) categories = [] for ep_cat in element_property_categories: for stat in self.ElementProperty.stats: categories.append(ep_cat) return categories @property def ElementProperty_units(self): """ Generate units for ElementProperty featurizer """ elemental_property_unit_map = {'BoilingT':'temp','MeltingT':'temp', 'BulkModulus':'pressure','ShearModulus':'pressure', 'Row':'none','Column':'none','Number':'none','MendeleevNumber':'none','SpaceGroupNumber':'none', 'Density':'density','MolarVolume':'volume', 'FusionEnthalpy':'energy','HeatVaporization':'energy', 'NsUnfilled':'none','NpUnfilled':'none','NdUnfilled':'none','NfUnfilled':'none', 'Polarizability':'polarizability', #complex units - doesn't matter 'ThermalConductivity':'therm'} #complex units - doesn't matter element_property_units = list(map(elemental_property_unit_map.get,self.ElementProperty.features)) units = [] for ep_unit in element_property_units: for stat in self.ElementProperty.stats: units.append(ep_unit) return units def ElementProperty_label_check(self): """ Check that ElementProperty feature labels are as expected If not, features may not align with feature labels """ #ElementProperty.feature_labels() code as of 2/17/19 labels = [] for attr in self.ElementProperty.features: src = self.ElementProperty.data_source.__class__.__name__ for stat in self.ElementProperty.stats: labels.append("{} {} {}".format(src, stat, attr)) if labels!=self.ElementProperty.feature_labels(): raise Exception('ElementProperty features or labels have changed') def set_featurize_options(self,sites,ox_stats=['min','max','mean','median','std','range'],ep_stats=["mean", "std_dev", "range"],radius_type='ionic_radius',normalize_formula=True,silent=True,categories=None): """ Set options for featurization. Since these options should be the same for all compositions in a batch, set for the featurizer instance rather than passing as args to featurize() so that they do not have to be duplicated in every row of a DataFrame when calling featurize_dataframe(). Since these options change the number and meaning of features returned, it's also safest to set for the whole instance for consistency. Parameters: ----------- sites: list or string of sites to featurize. Any combination of 'A', 'B', 'X', and/or 'comp' accepted. Composition-level, oxidation-state-dependent features are always calculated by the Perovskite class. Passing '' or [] will return only these features. Specifying 'A','B', and/or 'X' sites will calculate site-level features for these sites (oxidation-state independent and dependent features, and matminer features). Including 'comp' will calculate oxidation-state-independent features and matminer features for the full composition. ox_stats: list of aggregate functions to apply to oxidation state combinations for feature generation using Perovskite class. Options: 'min','max','mean','median','std','range' ep_stats: ElementProperty stats. Options: "minimum", "maximum", "range", "mean", "avg_dev", "mode" radius_type: Shannon radius type to use in features. Accepts 'crystal_radius' or 'ionic_radius' normalize_formula: if True, normalize formula such that higher occupancy cation site has one formula unit (applies to Perovskite class only) silent: if False, print informational messages from Perovksite class categories: list of feature categories to return. If None, return all. Options: 'bonding','structure','charge','composition','electronic','elemental','periodic' """ feat_options = dict(sites=sites,ox_stats=ox_stats,radius_type=radius_type,normalize_formula=normalize_formula,silent=silent) self.featurize_options.update(feat_options) self.ElementProperty.stats = ep_stats def featurize(self,formula): """ Calculate features Parameters: ----------- formula: chemical formula string Returns: list of feature values """ if self.featurize_options=={}: raise Exception('Featurize options have not been set. Use set_featurize_options before featurizing') if self.ordered_formulas is True: pvsk = Perovskite.from_ordered_formula(formula, self.A_site_occupancy, self.anions, site_ox_lim = self.site_ox_lim, site_base_ox = self.site_base_ox, radius_type=self.featurize_options['radius_type'],silent=self.featurize_options['silent']) elif self.ordered_formulas is False: pvsk = Perovskite(formula, self.cation_site, self.site_ox_lim, self.site_base_ox,self.featurize_options['radius_type'],self.featurize_options['normalize_formula'], self.featurize_options['silent']) pvsk_features = pvsk.featurize(self.featurize_options['sites'],self.featurize_options['ox_stats']) mm_features = [] for site in self.featurize_options['sites']: vo_features = self.ValenceOrbital.featurize(pvsk.site_composition[site]) #avg and frac s, p , d, f electrons vo_features += [sum(vo_features[0:3])] #avg total valence electrons ao_features = self.AtomicOrbitals.featurize(pvsk.site_composition[site]) #HOMO and LUMO character and energy levels (from atomic orbitals) ao_features = [ao_features[i] for i in range(len(ao_features)) if i not in (0,1,3,4)] #exclude HOMO_character,HOMO_element, LUMO_character, LUMO_element - categoricals ce_features = self.CohesiveEnergy.featurize(pvsk.site_composition[site],formation_energy_per_atom=1e-10) #avg elemental cohesive energy ep_features = self.ElementProperty.featurize(pvsk.site_composition[site]) #elemental property features mm_features += vo_features + ao_features + ce_features + ep_features features = list(pvsk_features) + mm_features return features @property def matminer_labels(self): """ Feature labels for matminer-derived features """ labels = [ #ValenceOrbital labels 'valence_elec_s_mean', 'valence_elec_p_mean', 'valence_elec_d_mean', 'valence_elec_f_mean', 'valence_elec_s_frac', 'valence_elec_p_frac', 'valence_elec_d_frac', 'valence_elec_f_frac', 'valence_elec_tot_mean', #AtomicOrbitals labels #'HOMO_character', 'HOMO_energy', #'LUMO_character', 'LUMO_energy', 'AO_gap', #CohesiveEnergy labels 'cohesive_energy_mean'] #ElementProperty labels labels += self.ElementProperty_custom_labels return labels @property def matminer_categories(self): """ Feature categories for matminer-derived features """ categories = [ #ValenceOrbital categories 'electronic', 'electronic', 'electronic', 'electronic', 'electronic', 'electronic', 'electronic', 'electronic', 'electronic', #AtomicOrbitals categories #'HOMO_character', 'electronic', #'LUMO_character', 'electronic', 'electronic', #CohesiveEnergy categories 'bonding'] #ElementProperty categories categories += self.ElementProperty_categories return categories @property def matminer_units(self): """ Feature units for matminer-derived features """ units = [ #ValenceOrbital units 'none', 'none', 'none', 'none', 'none', 'none', 'none', 'none', 'none', #AtomicOrbitals units #'HOMO_character', 'energy', #'LUMO_character', 'energy', 'energy', #CohesiveEnergy units 'energy'] #ElementProperty units units += self.ElementProperty_units return units def feature_labels(self): """ Get list of feature labels """ try: pvsk_labels = Perovskite.from_preset('BaCoO3','BCFZY',silent=True).feature_labels(self.featurize_options['sites'],self.featurize_options['ox_stats']) except KeyError: raise Exception('Featurize options have not been set. Use set_featurize_options before accessing feature labels') mm_labels = [] for site in self.featurize_options['sites']: if site=='comp': site_label = 'comp' else: site_label = f'{site}site' mm_labels += [f'{site_label}_{label}' for label in self.matminer_labels] return pvsk_labels + mm_labels def feature_categories(self): """ Get list of feature categories. For quick filtering """ try: pvsk_categories = Perovskite.from_preset('BaCoO3','BCFZY',silent=True).feature_categories(self.featurize_options['sites'],self.featurize_options['ox_stats']) except KeyError: raise Exception('Featurize options have not been set. Use set_featurize_options before accessing feature labels') mm_categories = [] for site in self.featurize_options['sites']: mm_categories += self.matminer_categories return pvsk_categories + mm_categories def feature_units(self): """ Get list of feature labels. For dimensional analysis """ try: pvsk_units = Perovskite.from_preset('BaCoO3','BCFZY',silent=True).feature_units(self.featurize_options['sites'],self.featurize_options['ox_stats']) except KeyError: raise Exception('Featurize options have not been set. Use set_featurize_options before accessing feature labels') mm_units = [] for site in self.featurize_options['sites']: mm_units += self.matminer_units return pvsk_units + mm_units def check_matminer_featurizers(self): """ Check that features and feature order for matminer featurizers are as expected If features or feature order have changed, featurize() may return unexpected features that do not align with feature_labels() """ #verify that matminer feature labels haven't changed if self.ValenceOrbital.feature_labels() != ['avg s valence electrons', 'avg p valence electrons', 'avg d valence electrons', 'avg f valence electrons', 'frac s valence electrons', 'frac p valence electrons', 'frac d valence electrons', 'frac f valence electrons']: raise Exception('ValenceOrbital features or labels have changed') if self.AtomicOrbitals.feature_labels() != ['HOMO_character', 'HOMO_element', 'HOMO_energy', 'LUMO_character', 'LUMO_element', 'LUMO_energy', 'gap_AO']: raise Exception('AtomicOrbitals features or labels have changed') if self.CohesiveEnergy.feature_labels() != ['cohesive energy']: raise Exception('CohesiveEnergy features or labels have changed') self.ElementProperty_label_check() ```
{ "source": "jdhuang-csm/Ru-BCA", "score": 2 }
#### File: Ru-BCA/modules/BCA_featurizer.py ```python import os import numpy as np import pymatgen as mg from pymatgen.ext.matproj import MPRester import collections from matminer.featurizers.base import BaseFeaturizer from matminer.featurizers.composition import ValenceOrbital, CohesiveEnergy, ElementProperty, BandCenter, MolecularOrbitals from matminer.utils.data import MagpieData import pandas as pd import warnings from bca_plotting import get_coords_from_comp """Lookups for Ba, Ca, and Al""" oxides = {'Ba':'BaO','Ca':'CaO','Al':'Al2O3','B':'B2O3','Mg':'MgO','Sr':'SrO'} nitrides = {'Ba':'Ba3N2','Ca':'Ca3N2','Al':'AlN','B':'BN','Mg':'Mg3N2','Sr':'Sr3N2'} hydrides = {'Ba':'BaH2','Ca':'CaH2','Al':'AlH3','B':'BH3','Mg':'MgH2','Sr':'SrH2'} # Elemental work function (eV) - from https://public.wsu.edu/~pchemlab/documents/Work-functionvalues.pdf # Al value is average of 100,110,111 planes; Ba, Ca, B, Mg, and Sr values are for polycrystalline work_function = {'Ba':2.52,'Ca':2.87,'Al':4.17,'B':4.45,'Mg':3.66,'Sr':2.59} """Load elemental electrical conductivity data""" elec_conductivity_df = pd.read_csv(os.path.join(os.path.dirname(os.path.realpath(__file__)),'../data/ElementalElectricalConductivity.txt'),sep='\t',skipfooter=1,engine='python') elec_conductivity = dict(zip(elec_conductivity_df['Symbol'],elec_conductivity_df['Electrical Conductivity (S/cm)'])) class MatProjCalc: def __init__(self,oxide_dict={}): #dict to store MX bond energies after calculation. Avoid repeated lookups in MP self.calc_MX_bond_energy = {} #dict to store formation enthalpies after looking up self.fH_dict = { ('Ce','gas','exp',''):(417.1,'Formation enthalpy for Ce in gas phase includes exp data from phases: gas') #correction to MP entry: fH for Ce gas is negative in MP } self.mp = MPRester(os.environ['MATPROJ_API_KEY']) print("Created MatProjCalc instance") @property def common_anions(self): """List of common anions""" return ['N','P','O','S','F','Cl','Br','I'] @property def dissocation_energy(self): """ Bond dissociation energies for gases at 298K in kJ/mol Source: https://labs.chem.ucsb.edu/zakarian/armen/11---bonddissociationenergy.pdf """ return dict(N=945.33,P=490,O=498.34,S=429,F=156.9,Cl=242.58,Br=193.87,I=152.549,H=436.002) @property def mn_combos(self): """ Possible m-n pairs (m,n up to 4) """ return [(1,1),(1,2),(1,3),(1,4),(2,1),(2,3),(3,1),(3,2),(3,4),(4,1)] def possible_ionic_formulas(self,metal,anion,metal_ox_lim=None,anion_ox_state=None): """ Get possible binary ionic compound formulas for metal-anion pair Parameters: ----------- metal: metal element symbol anion: anion element symbol metal_ox_lim: tuple of metal oxidation state limits (min, max) anion_ox_state: anion oxidation state. If None, will attempt to find the common oxidation state for the anion """ #get common oxidation state for anion if anion_ox_state is None: anion_ox_state = [ox for ox in mg.Element(anion).common_oxidation_states if ox < 0] if len(anion_ox_state) > 1: raise Exception(f"Multiple common oxidation states for {anion}. Please specify anion_ox_state") else: anion_ox_state = anion_ox_state[0] if metal_ox_lim is None: metal_ox_lim = [0,np.inf] return [f'{metal}{m}{anion}{n}' for m,n in self.mn_combos if m/n <= -anion_ox_state and metal_ox_lim[0] <= -anion_ox_state*n/m <= metal_ox_lim[1]] def get_fH(self,formula, phase='solid', data_type='exp',silent=True,exclude_phases=[]): """ Get average experimental formation enthalpy for formula and phase Parameters: ----------- formula: chemical formula string phase: phase string. Can be 'solid', 'liquid', 'gas', or a specific solid phase (e.g. 'monoclinic'). If 'solid', returns average across all solid phases """ #first check for corrected/saved data in fH_dict try: fH,msg = self.fH_dict[(formula,phase,data_type,','.join(exclude_phases))] if silent==False: #print('already calculated') print(msg) #if no entry exists, look up in MP except KeyError: results = self.mp.get_data(formula,data_type=data_type) if data_type=='exp': #results = self.mp.get_exp_thermo_data(formula) if phase=='solid': phase_results = [r for r in results if r.type=='fH' and r.phaseinfo not in ['liquid','gas']+exclude_phases] else: phase_results = [r for r in results if r.type=='fH' and r.phaseinfo==phase] phases = np.unique([r.phaseinfo for r in phase_results]) fH = [r.value for r in phase_results] elif data_type=='vasp': if phase in ('liquid','gas'): raise ValueError('VASP data only valid for solid phases') elif phase=='solid': #get entry with lowest energy above hull srt_results = sorted(results,key=lambda x: x['e_above_hull']) phase_results = srt_results[0:1] else: phase_results = [r for r in results if r['spacegroup']['crystal_system']==phase] phases = np.unique([r['spacegroup']['crystal_system'] for r in phase_results]) n_atoms = mg.Composition(formula).num_atoms #DFT formation energies given in eV per atom - need to convert to kJ/mol fH = [r['formation_energy_per_atom']*n_atoms*96.485 for r in phase_results] if len(fH)==0: raise LookupError('No {} data for {} in {} phase'.format(data_type,formula,phase)) maxdiff = np.max(fH) - np.min(fH) if maxdiff > 15: warnings.warn('Max discrepancy of {} in formation enthalpies for {} exceeds limit'.format(maxdiff,formula)) fH = np.mean(fH) msg = 'Formation enthalpy for {} in {} phase includes {} data from phases: {}'.format(formula,phase,data_type,', '.join(phases)) if silent==False: print(msg) #store value and info message for future lookup self.fH_dict[(formula,phase,data_type,','.join(exclude_phases))] = (fH,msg) return fH def ionic_formula_from_ox_state(self,metal,anion,metal_ox_state,anion_ox_state=None,return_mn=False): """ Get binary ionic compound formula with reduced integer units based on oxidation state Parameters: ----------- metal: metal element symbol anion: anion element symbol metal_ox_state: metal oxidation state anion_ox_state: anion oxidation state. If None, will attempt to find the common oxidation state for the anion return_mn: if True, return formula units for metal (m) and anion (n) Returns: chemical formula string MmXn, and m, n if return_mn=True """ #get common oxidation state for anion if anion_ox_state is None: anion_ox_state = [ox for ox in mg.Element(anion).common_oxidation_states if ox < 0] if len(anion_ox_state) > 1: raise Exception(f"Multiple common oxidation states for {anion}. Please specify anion_ox_state") else: anion_ox_state = anion_ox_state[0] #formula MmXn deno = gcd(metal_ox_state,-anion_ox_state) m = -anion_ox_state/deno n = metal_ox_state/deno formula = '{}{}{}{}'.format(metal,m,anion,n) if return_mn==False: return formula else: return formula, m, n def ox_states_from_binary_formula(self,formula,anion=None,anion_ox_state=None): """ Determine oxidation states from binary formula. Could also use mg.Composition.oxi_state_guesses(), but the logic used is more complex. Args: formula: chemical formula anion: Element symbol of anion. If None, search for common anion anion_ox_state: oxidation state of anion. If None, assume common oxidation state """ comp = mg.Composition(formula) if len(comp.elements) != 2: raise ValueError('Formula must be binary') # determine anion if anion is None: anion = np.intersect1d([e.name for e in comp.elements],self.common_anions) if len(anion) > 1: raise ValueError('Found multiple possible anions in formula. Please specify anion') elif len(anion)==0: raise ValueError('No common anions found in formula. Please specify anion') else: anion = anion[0] metal = np.setdiff1d(comp.elements,mg.Element(anion))[0].name #get common oxidation state for anion if anion_ox_state is None: anion_ox_state = [ox for ox in mg.Element(anion).common_oxidation_states if ox < 0] if len(anion_ox_state) > 1: raise Exception(f"Multiple common oxidation states for {anion}. Please specify anion_ox_state") else: anion_ox_state = anion_ox_state[0] metal_ox_state = -comp.get(anion)*anion_ox_state/comp.get(metal) return {metal:metal_ox_state,anion:anion_ox_state} def MX_bond_energy(self,formula,data_type='exp',ordered_formula=False,silent=True,exclude_phases=[]): """ Get metal-anion bond energy per mole of metal for binary ionic compound Parameters: ----------- formula: chemical formula string ordered_formula: if true, assume that first element in formula is metal, and second is anion (i.e. MmXn) exclude_phases: phases to exclude from aggregate over all solid phases """ comp = mg.Composition(formula) formula = comp.reduced_formula try: #look up compound if already calculated abe,msg = self.calc_MX_bond_energy[(formula,data_type,','.join(exclude_phases))] if silent==False: #print('already calculated') print(msg) except KeyError: if len(comp.elements) != 2: raise Exception("Formula is not a binary compound") if ordered_formula is False: anions = [el.name for el in comp.elements if el.name in self.common_anions] if len(anions) == 0: raise Exception('No common anions found in formula. Use ordered formula to indicate metal and anion') elif len(anions) > 1: raise Exception('Multiple anions found in formula. Use ordered formula to indicate metal and anion') else: anion = anions[0] metal = [el.name for el in comp.elements if el.name!=anion][0] elif ordered_formula is True: metal = comp.elements[0].name anion = comp.elements[1].name m = comp.get_el_amt_dict()[metal] n = comp.get_el_amt_dict()[anion] fH = self.get_fH(formula,data_type=data_type,silent=silent,exclude_phases=exclude_phases) #oxide formation enthalpy H_sub = self.get_fH(metal, phase='gas',silent=silent,exclude_phases=[]) #metal sublimation enthalpy - must be exp data (no vasp data for gas) #look up info messages from get_fH to store in dict msg = self.fH_dict[formula,'solid',data_type,','.join(exclude_phases)][1] + '\n' msg += self.fH_dict[metal,'gas','exp',''][1] DX2 = self.dissocation_energy[anion] #anion dissociation energy abe = (fH - m*H_sub - (n/2)*DX2)/m #M-O bond energy per mole of M self.calc_MX_bond_energy[(formula,data_type,','.join(exclude_phases))] = (abe,msg) return abe def citations(self): """Cite Materials Project, Materials API, and pymatgen""" return [ "@article{Jain2013," "author = {<NAME>, <NAME> and Hautier, Geoffroy and <NAME> and Richards, <NAME> and <NAME> and <NAME> and Gunter, Dan and Skinner, David and Ceder, Gerbrand and Persson, <NAME>.}," "doi = {10.1063/1.4812323}," "issn = {2166532X}," "journal = {APL Materials}," "number = {1}," "pages = {011002}," "title = {{The Materials Project: A materials genome approach to accelerating materials innovation}}," "url = {http://link.aip.org/link/AMPADS/v1/i1/p011002/s1\&Agg=doi}," "volume = {1}," "year = {2013}" "}", "@article{Ong_2015," "doi = {10.1016/j.commatsci.2014.10.037}," "url = {http://dx.doi.org/10.1016/j.commatsci.2014.10.037}," "year = 2015," "month = {feb}," "publisher = {Elsevier {BV}}," "volume = {97}," "pages = {209--215}," "author = {<NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME>}," "title = {The Materials Application Programming Interface ({API}): A simple, flexible and efficient {API} for materials data based on {REpresentational} State Transfer ({REST}) principles}," "journal = {Computational Materials Science}" "}", "@article{Ong2012b," "author = {Ong, <NAME> and Richards, <NAME> and <NAME> and Hautier, Geoffroy and Kocher, Michael and Cholia, Shreyas and Gunter, Dan and Chevrier, <NAME>. and Persson, <NAME>. and Ceder, Gerbrand}," "doi = {10.1016/j.commatsci.2012.10.028}," "file = {:Users/shyue/Mendeley Desktop/Ong et al/Computational Materials Science/2013 - Ong et al. - Python Materials Genomics (pymatgen) A robust, open-source python library for materials analysis.pdf:pdf;:Users/shyue/Mendeley Desktop/Ong et al/Computational Materials Science/2013 - Ong et al. - Python Materials Genomics (pymatgen) A robust, open-source python library for materials analysis(2).pdf:pdf}," "issn = {09270256}," "journal = {Computational Materials Science}," "month = feb," "pages = {314--319}," "title = {{Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis}}," "url = {http://linkinghub.elsevier.com/retrieve/pii/S0927025612006295}," "volume = {68}," "year = {2013}" "}" ] #create MatProjCalc instance to store fetched data/calculations mpcalc = MatProjCalc() # oxide formation enthalpies oxide_Hf = {M:mpcalc.get_fH(MO,exclude_phases=['amorph']) for M,MO in oxides.items()} #bond energies per mole of metal M MO_bond_energy = {M:mpcalc.MX_bond_energy(MO,exclude_phases=['amorph']) for M,MO in oxides.items()} # MN_bond_energy = {M:mpcalc.MX_bond_energy(MN,exclude_phases=['amorph']) for M,MN in nitrides.items()} # MH_bond_energy = {M:mpcalc.MX_bond_energy(MH,ordered_formula=True,exclude_phases=['amorph']) for M,MH in hydrides.items()} MN_bond_energy = {} MH_bond_energy = {} for M in oxides.keys(): # Use experimental data where possible, fill in with VASP data if needed MN = nitrides[M] try: MN_bond_energy[M] = mpcalc.MX_bond_energy(MN,exclude_phases=['amorph']) except LookupError: MN_bond_energy[M] = mpcalc.MX_bond_energy(MN,exclude_phases=['amorph'],data_type='vasp') warnings.warn(f'Using VASP data for formation enthalpy of {MN}') MH = hydrides[M] try: MH_bond_energy[M] = mpcalc.MX_bond_energy(MH,ordered_formula=True,exclude_phases=['amorph']) except LookupError: MH_bond_energy[M] = mpcalc.MX_bond_energy(MH,ordered_formula=True,exclude_phases=['amorph'],data_type='vasp') warnings.warn(f'Using VASP data for formation enthalpy of {MH}') #bond energy delta per mole of M ON_BondEnergyDelta = {M:MN_bond_energy[M] - MOBE for M, MOBE in MO_bond_energy.items()} OH_BondEnergyDelta = {M:MH_bond_energy[M] - MOBE for M, MOBE in MO_bond_energy.items()} NH_BondEnergyDelta = {M:MH_bond_energy[M] - MNBE for M, MNBE in MN_bond_energy.items()} oxidation_state = {'Ba':2,'Ca':2,'Al':3,'B':3,'Mg':2,'Sr':2} metal_lookups = {} for m in ['Ba','Ca','Al','B','Mg','Sr']: metal_lookups[m] = {'work_function':work_function[m], 'MO_BondEnergy':MO_bond_energy[m], 'MN_BondEnergy':MN_bond_energy[m], 'MH_BondEnergy':MH_bond_energy[m], 'oxidation_state':oxidation_state[m], 'ON_BondEnergyDelta':ON_BondEnergyDelta[m], 'OH_BondEnergyDelta':OH_BondEnergyDelta[m], 'NH_BondEnergyDelta':NH_BondEnergyDelta[m], 'oxide_Hf':oxide_Hf[m] } class AtomicOrbitalsMod(BaseFeaturizer): """ *Modified from matminer class to handle cases where LUMO is None* Determine HOMO/LUMO features based on a composition. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) are estiated from the atomic orbital energies of the composition. The atomic orbital energies are from NIST: https://www.nist.gov/pml/data/atomic-reference-data-electronic-structure-calculations Warning: For compositions with inter-species fractions greater than 10,000 (e.g. dilute alloys such as FeC0.00001) the composition will be truncated (to Fe in this example). In such extreme cases, the truncation likely reflects the true physics of the situation (i.e. that the dilute element does not significantly contribute orbital character to the band structure), but the user should be aware of this behavior. """ def featurize(self, comp): """ Args: comp: (Composition) pymatgen Composition object Returns: HOMO_character: (str) orbital symbol ('s', 'p', 'd', or 'f') HOMO_element: (str) symbol of element for HOMO HOMO_energy: (float in eV) absolute energy of HOMO LUMO_character: (str) orbital symbol ('s', 'p', 'd', or 'f') LUMO_element: (str) symbol of element for LUMO LUMO_energy: (float in eV) absolute energy of LUMO gap_AO: (float in eV) the estimated bandgap from HOMO and LUMO energeis """ integer_comp, factor = comp.get_integer_formula_and_factor() # warning message if composition is dilute and truncated if not (len(mg.Composition(comp).elements) == len(mg.Composition(integer_comp).elements)): warn('AtomicOrbitals: {} truncated to {}'.format(comp, integer_comp)) homo_lumo = MolecularOrbitals(integer_comp).band_edges feat = collections.OrderedDict() for edge in ['HOMO', 'LUMO']: if homo_lumo[edge] is not None: feat['{}_character'.format(edge)] = homo_lumo[edge][1][-1] feat['{}_element'.format(edge)] = homo_lumo[edge][0] feat['{}_energy'.format(edge)] = homo_lumo[edge][2] else: #if LUMO is None feat['{}_character'.format(edge)] = 'na' feat['{}_element'.format(edge)] = 'na' #unclear what this value should be. Arbitrarily set to 0. Don't want NaN for modeling feat['{}_energy'.format(edge)] = 0 feat['gap_AO'] = feat['LUMO_energy'] - feat['HOMO_energy'] return list(feat.values()) def feature_labels(self): feat = [] for edge in ['HOMO', 'LUMO']: feat.extend(['{}_character'.format(edge), '{}_element'.format(edge), '{}_energy'.format(edge)]) feat.append("gap_AO") return feat def citations(self): return [ "@article{PhysRevA.55.191," "title = {Local-density-functional calculations of the energy of atoms}," "author = {Kotochigova, <NAME> Levine, <NAME>. and Shirley, " "<NAME>. and <NAME>. and Clark, <NAME>.}," "journal = {Phys. Rev. A}, volume = {55}, issue = {1}, pages = {191--199}," "year = {1997}, month = {Jan}, publisher = {American Physical Society}," "doi = {10.1103/PhysRevA.55.191}, " "url = {https://link.aps.org/doi/10.1103/PhysRevA.55.191}}"] def implementors(self): return ['<NAME>', '<NAME>'] class ValenceOrbitalEnergy(BaseFeaturizer): def __init__(self): self.element_props = {} self.MagpieData = MagpieData() def get_element_props(self,el): try: props = self.element_props[el] except KeyError: subshells = 'spdf' n_elec = {sub:self.MagpieData.get_elemental_property(el,f'N{sub}Valence') for sub in subshells} orbitals = sorted(el.atomic_orbitals.keys())[::-1] #look up valence orbital for subshell orbital_func = lambda x: '{}{}'.format(max([orb[0] for orb in orbitals if orb[1]==x]),x) #get valence orbital energy for subshell energy_func = lambda x: el.atomic_orbitals[orbital_func(x)] props = {x:{'n_elec':n_elec[x],'energy':energy_func(x),'shell':orbital_func(x)[0]} for x in subshells if n_elec[x]>0} self.element_props[el] = props return props def featurize(self,comp): tot_energy = 0 tot_elec = 0 for el in comp.elements: props = self.get_element_props(el) tot_energy += comp[el]*sum([v['energy']*v['n_elec'] for v in props.values()]) tot_elec += comp[el]*sum([v['n_elec'] for v in props.values()]) return [tot_energy/tot_elec] def feature_labels(self): return ['MeanValenceEnergy'] def citations(self): return [ "@article{Ward2016," "archivePrefix = {arXiv}," "arxivId = {1606.09551}," "author = {<NAME> and <NAME> <NAME> and <NAME>}," "doi = {10.1038/npjcompumats.2016.28}," "eprint = {1606.09551}," "isbn = {2057-3960}," "issn = {20573960}," "journal = {npj Computational Materials}," "number = {June}," "pages = {1--7}," "title = {{A general-purpose machine learning framework for predicting properties of inorganic materials}}," "volume = {2}," "year = {2016}" "}"] class BCA(): def __init__(self,composition,radius_type='ionic_radius',normalize_formula=False): self.cations = [el.name for el in composition.elements if el.name!='O'] self.radius_type = radius_type if normalize_formula==True: #scale to single total unit of cations tot_cat_amt = sum([composition[c] for c in self.cations]) composition = mg.Composition({el:amt/tot_cat_amt for el,amt in composition.get_el_amt_dict().items()}) self.composition = composition self.metal_composition = mg.Composition({c:self.composition[c] for c in self.cations}) #checks if len(self.cations)==0: raise Exception('No cations in composition') # if self.composition['O']!=self.composition['Ba'] + self.composition['Ca'] + self.composition['Al']*3/2: # raise Exception('Oxygen amount does not match BaO, CaO, Al2O3 stoichiometry') if self.radius_type not in ('crystal_radius','ionic_radius'): raise Exception(f'Invalid radius type {self.radius_type}. Options are crystal_radius and ionic_radius') @property def tot_cat_amt(self): return sum([self.composition[c] for c in self.cations]) def metal_mean_func(self,func): """ Weighted average of function func across metals in composition """ weights=list(self.metal_composition.get_el_amt_dict().values()) return np.average([func(el) for el in self.metal_composition.elements],weights=weights) def metal_std_func(self,func,mean=None): """ Standard deviation of function func across metals in composition Args: func: function to average. Takes pymatgen Element as input mean: mean of function if already known. If None, calculated """ if mean is None: mean = self.metal_mean_func(func) return self.metal_mean_func(lambda el: (func(el) - mean)**2)**0.5 # def is_in_phase_triangle(self): # xc,xa,xb = get_coords_from_comp(self.composition) # # One boundary specified in each line of if conditions: 1: BA to BCA723; 2: BA to C; 3: BCA723 to C # if xb <= 0.5*(1+xc) and xa >= 0.5 - 1.5*xc \ # and xb >= 0.5*(1-xc) and xa <= 0.5*(1-xc) \ # and xb <= (7/12)*(1-(6/5)*(xc-1/6)) and xa >= 0.25*(1-(6/5)*(xc-1/6)): # in_triangle = 1 # else: # in_triangle = 0 # return in_triangle def featurize(self): features = {} features['MO_ratio'] = self.tot_cat_amt/self.composition['O'] #metal mean/std functions and names def radius(el): ox_state = metal_lookups.get(el.name)['oxidation_state'] return el.data['Shannon radii'][f'{ox_state}']['VI'][''][self.radius_type] def cation_X(el): ox_state = metal_lookups.get(el.name)['oxidation_state'] r = radius(el) return ox_state/r**2 metal_funcs = {'oxide_Hf': lambda el: metal_lookups.get(el.name)['oxide_Hf'], 'MO_BondEnergy':lambda el: metal_lookups.get(el.name)['MO_BondEnergy'], 'MN_BondEnergy':lambda el: metal_lookups.get(el.name)['MN_BondEnergy'], 'MH_BondEnergy':lambda el: metal_lookups.get(el.name)['MH_BondEnergy'], 'ON_BondEnergyDelta': lambda el: metal_lookups.get(el.name)['ON_BondEnergyDelta'], 'OH_BondEnergyDelta': lambda el: metal_lookups.get(el.name)['OH_BondEnergyDelta'], 'NH_BondEnergyDelta': lambda el: metal_lookups.get(el.name)['NH_BondEnergyDelta'], 'MO_BondIonicity': lambda el: 1 - np.exp(-0.25*(el.X - mg.Element('O').X)**2), 'M_X': lambda el: el.X, 'M_CationX': cation_X, 'M_radius': radius, 'M_WorkFunction': lambda el: metal_lookups.get(el.name)['work_function'], 'M_sigma_elec': lambda el: elec_conductivity.get(el.name) } for name,func in metal_funcs.items(): mean = self.metal_mean_func(func) std = self.metal_std_func(func,mean=mean) features[f'{name}_mean'] = mean features[f'{name}_std'] = std # phase diagram feature - in BA-CaO-B3A triangle? # features['in_phase_triangle'] = self.is_in_phase_triangle() return features def feature_units(self): units = ['none', 'energy', 'energy', 'energy', 'energy', 'energy', 'energy', 'energy', 'energy', 'energy', 'energy', 'energy', 'energy', 'none', 'none', 'none', 'none', 'none', 'none', 'length', 'length', 'energy', 'energy', 'S/cm', 'S/cm', 'energy', 'none'] return units def citations(self): cite = [ # work function citations "@Inbook{Holzl1979," "author={<NAME>. and <NAME>.}," "editor={<NAME> and Schulte, <NAME>. and <NAME>}," "title={Work function of metals}," "bookTitle={Solid Surface Physics}," "year={1979}," "publisher={Springer Berlin Heidelberg}," "address={Berlin, Heidelberg}," "pages={1--150}," "isbn={978-3-540-35253-2}," "doi={10.1007/BFb0048919}," "url={https://doi.org/10.1007/BFb0048919}" "}", "@Inbook{doi:10.1080/00222346908205102," "author={<NAME>.}," "editor = {<NAME>}," "title={Work Function: Measurement and Results}" "bookTitle = {Solid State Surface Science, Volume 1}," "year = {1969}," "publisher = {Marcel Dekker}," "address={New York, NY, USA}," "pages={179}," "}", "@article{doi:10.1063/1.323539," "author = {Michaelson,<NAME>. }," "title = {The work function of the elements and its periodicity}," "journal = {Journal of Applied Physics}," "volume = {48}," "number = {11}," "pages = {4729-4733}," "year = {1977}," "doi = {10.1063/1.323539}," "URL = {https://doi.org/10.1063/1.323539}" "}", # elec conductivity citation "@misc{AngstromSciences," "author={Angstrom Sciences}," "title = {Elements Electrical Conductivity Reference Table}," "URL= {https://www.angstromsciences.com/elements-electrical-conductivity}," "note = {Accessed: 2019-02-27}" "}", # cation electronegativity citation "@article{Zohourian2017," "author = {<NAME>. and <NAME>. and <NAME>.}," "doi = {10.1016/j.ssi.2016.09.012}," "issn = {01672738}," "journal = {Solid State Ionics}," "pages = {64--69}," "publisher = {Elsevier B.V.}," "title = {{Proton uptake into the protonic cathode material BaCo0.4Fe0.4Zr0.2O3-$\delta$and comparison to protonic electrolyte materials}}," "url = {http://dx.doi.org/10.1016/j.ssi.2016.09.012}," "volume = {299}," "year = {2017}" "}", # BCA phase diagram citation # "@article{Zhang2017," # "author = {<NAME> and <NAME> and <NAME>}," # "doi = {10.1111/jace.14793}," # "issn = {15512916}," # "journal = {Journal of the American Ceramic Society}," # "keywords = {glass-ceramics,phase equilibria,thermodynamics}," # "number = {6}," # "pages = {2722--2731}," # "title = {{Phase equilibria study and thermodynamic description of the BaO-CaO-Al2O3 system}}," # "volume = {100}," # "year = {2017}" # "}" # pymatgen citation "@article{Ong2012b," "author = {Ong, <NAME> and Richards, <NAME> and <NAME> and Hautier, Geoffroy and Kocher, Michael and Cholia, Shreyas and Gunter, Dan and Chevrier, <NAME>. and Persson, <NAME>. and Ceder, Gerbrand}," "doi = {10.1016/j.commatsci.2012.10.028}," "file = {:Users/shyue/Mendeley Desktop/Ong et al/Computational Materials Science/2013 - Ong et al. - Python Materials Genomics (pymatgen) A robust, open-source python library for materials analysis.pdf:pdf;:Users/shyue/Mendeley Desktop/Ong et al/Computational Materials Science/2013 - Ong et al. - Python Materials Genomics (pymatgen) A robust, open-source python library for materials analysis(2).pdf:pdf}," "issn = {09270256}," "journal = {Computational Materials Science}," "month = feb," "pages = {314--319}," "title = {{Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis}}," "url = {http://linkinghub.elsevier.com/retrieve/pii/S0927025612006295}," "volume = {68}," "year = {2013}" "}" ] return list(np.unique(cite + mpcalc.citations())) class BCA_Featurizer(BaseFeaturizer): def __init__(self,radius_type='ionic_radius',normalize_formula=False): self.radius_type = radius_type self.normalize_formula = normalize_formula self.ValenceOrbital = ValenceOrbital() self.AtomicOrbitals = AtomicOrbitalsMod() self.CohesiveEnergy = CohesiveEnergy() self.BandCenter = BandCenter() self.ValenceOrbitalEnergy = ValenceOrbitalEnergy() #custom ElementProperty featurizer elemental_properties = ['BoilingT', 'MeltingT', 'BulkModulus', 'ShearModulus', 'Row', 'Column', 'Number', 'MendeleevNumber', 'SpaceGroupNumber', 'Density','MolarVolume', 'FusionEnthalpy','HeatVaporization', 'Polarizability', 'ThermalConductivity'] self.ElementProperty = ElementProperty(data_source='magpie',features=elemental_properties, stats=["mean", "std_dev"]) #check matminer featurizers self.check_matminer_featurizers() def featurize(self,composition): bca = BCA(composition,self.radius_type,self.normalize_formula) bca_features = bca.featurize() vo_features = self.ValenceOrbital.featurize(bca.metal_composition) #avg and frac s, p , d, f electrons for metals vo_features += [sum(vo_features[0:3])] #avg total valence electrons for metals ao_features = self.AtomicOrbitals.featurize(bca.metal_composition) #HOMO and LUMO character and energy levels for metals from atomic orbitals) ao_features = [ao_features[i] for i in range(len(ao_features)) if i not in (0,1,3,4)]#exclude HOMO_character,HOMO_element, LUMO_character, LUMO_element - categoricals ce_features = self.CohesiveEnergy.featurize(bca.metal_composition,formation_energy_per_atom=1e-10) #avg metal elemental cohesive energy bc_features = self.BandCenter.featurize(bca.metal_composition) + self.BandCenter.featurize(bca.composition) ve_features = self.ValenceOrbitalEnergy.featurize(bca.metal_composition) + self.ValenceOrbitalEnergy.featurize(bca.composition) ep_features = self.ElementProperty.featurize(bca.metal_composition) + self.ElementProperty.featurize(bca.composition) mm_features = vo_features + ao_features + ce_features + bc_features + ve_features + ep_features return list(bca_features.values()) + mm_features @property def ElementProperty_custom_labels(self): """ Generate custom labels for ElementProperty featurizer that follow same naming convention as Perovskite class """ elemental_property_label_map = {'BoilingT':'boil_temp','MeltingT':'melt_temp', 'BulkModulus':'bulk_mod','ShearModulus':'shear_mod', 'Row':'row','Column':'column','Number':'number','MendeleevNumber':'mendeleev','SpaceGroupNumber':'space_group', 'Density':'density','MolarVolume':'molar_vol', 'FusionEnthalpy':'H_fus','HeatVaporization':'H_vap', 'Polarizability':'polarizability', 'ThermalConductivity':'sigma_therm'} element_property_labels = list(map(elemental_property_label_map.get,self.ElementProperty.features)) labels = [] for attr in element_property_labels: for stat in self.ElementProperty.stats: if stat=='std_dev': stat = 'std' labels.append(f'M_{attr}_{stat}') for attr in element_property_labels: for stat in self.ElementProperty.stats: if stat=='std_dev': stat = 'std' labels.append(f'BCA_{attr}_{stat}') return labels @property def ElementProperty_units(self): """ Generate units for ElementProperty featurizer that follow same naming convention as Perovskite class """ elemental_property_unit_map = {'BoilingT':'temperature','MeltingT':'temperature', 'BulkModulus':'pressure','ShearModulus':'pressure', 'Row':'none','Column':'none','Number':'none','MendeleevNumber':'none','SpaceGroupNumber':'none', 'Density':'density','MolarVolume':'volume', 'FusionEnthalpy':'energy','HeatVaporization':'energy', 'Polarizability':'polarizability', 'ThermalConductivity':'therm'} element_property_units = list(map(elemental_property_unit_map.get,self.ElementProperty.features)) units = [] for ep_unit in element_property_units: for stat in self.ElementProperty.stats: units.append(ep_unit) return units*2 def ElementProperty_label_check(self): """ Check that ElementProperty feature labels are as expected If not, features may not align with feature labels """ #ElementProperty.feature_labels() code as of 1/24/20 labels = [] for attr in self.ElementProperty.features: src = self.ElementProperty.data_source.__class__.__name__ for stat in self.ElementProperty.stats: labels.append("{} {} {}".format(src, stat, attr)) if labels!=self.ElementProperty.feature_labels(): raise Exception('ElementProperty features or labels have changed') @property def matminer_labels(self): """ Feature labels for matminer-derived features """ labels = [ #ValenceOrbital labels 'M_ValenceElec_s_mean', 'M_ValenceElec_p_mean', 'M_ValenceElec_d_mean', 'M_ValenceElec_f_mean', 'M_ValenceElec_s_frac', 'M_ValenceElec_p_frac', 'M_ValenceElec_d_frac', 'M_ValenceElec_f_frac', 'M_ValenceElec_tot_mean', #AtomicOrbitals labels #'M_HOMO_character', 'M_HOMO_energy', #'M_LUMO_character', 'M_LUMO_energy', 'M_AO_gap', #CohesiveEnergy labels 'M_cohesive_energy_mean', #BandCenter labels 'M_BandCenter', 'BCA_BandCenter', #ValenceOrbitalEnergy labels 'M_ValenceEnergy_mean', 'BCA_ValenceEnergy_mean' ] labels += self.ElementProperty_custom_labels return labels @property def matminer_units(self): """ Feature units for matminer-derived features """ units = [ #ValenceOrbital units 'none', 'none', 'none', 'none', 'none', 'none', 'none', 'none', 'none', #AtomicOrbitals units #'M_HOMO_character', 'energy', #'M_LUMO_character', 'energy', 'energy', #CohesiveEnergy units 'energy', #BandCenter units 'energy', 'energy', #ValenceOrbitalEnergy units 'energy', 'energy' ] units += self.ElementProperty_units return units def feature_labels(self): bca_feature_labels = list(BCA(mg.Composition('BaO'),self.radius_type,self.normalize_formula).featurize().keys()) return bca_feature_labels + self.matminer_labels def feature_units(self): bca_units = BCA(mg.Composition('BaO')).feature_units() return bca_units + self.matminer_units def check_matminer_featurizers(self): """ Check that features and feature order for matminer featurizers are as expected If features or feature order have changed, featurize() may return unexpected features that do not align with feature_labels() """ #verify that matminer feature labels haven't changed if self.ValenceOrbital.feature_labels() != ['avg s valence electrons', 'avg p valence electrons', 'avg d valence electrons', 'avg f valence electrons', 'frac s valence electrons', 'frac p valence electrons', 'frac d valence electrons', 'frac f valence electrons']: raise Exception('ValenceOrbital features or labels have changed') if self.AtomicOrbitals.feature_labels() != ['HOMO_character', 'HOMO_element', 'HOMO_energy', 'LUMO_character', 'LUMO_element', 'LUMO_energy', 'gap_AO']: raise Exception('AtomicOrbitals features or labels have changed') if self.CohesiveEnergy.feature_labels() != ['cohesive energy']: raise Exception('CohesiveEnergy features or labels have changed') if self.BandCenter.feature_labels() != ['band center']: raise Exception('BandCenter features or labels have changed') self.ElementProperty_label_check() def citations(self): featurizers = [self.ValenceOrbital, self.AtomicOrbitals, self.CohesiveEnergy, self.BandCenter, self.ValenceOrbitalEnergy, BCA(mg.Composition('BaO'))] return list(np.unique(sum([f.citations() for f in featurizers],[]))) class GenericFeaturizer(BaseFeaturizer): """ Featurizer to use generic properties available in matminer featurizers; no features from BCA class utilized """ def __init__(self,normalize_formula=False): self.normalize_formula = normalize_formula # don't need ValenceOrbital - valence counts etc. covered in ElementProperty.from_preset('magpie') # self.ValenceOrbital = ValenceOrbital() self.AtomicOrbitals = AtomicOrbitalsMod() self.CohesiveEnergy = CohesiveEnergy() self.BandCenter = BandCenter() self.ValenceOrbitalEnergy = ValenceOrbitalEnergy() # ElementProperty featurizer with magpie properties plus additional properties self.ElementProperty = ElementProperty.from_preset('magpie') self.ElementProperty.features += ['BoilingT', 'BulkModulus', 'ShearModulus', 'Density','MolarVolume', 'FusionEnthalpy','HeatVaporization', 'Polarizability', 'ThermalConductivity'] # range, min, max are irrelevant inside the ternary # self.ElementProperty.stats = ['mean', 'avg_dev','mode'] # check matminer featurizers self.check_matminer_featurizers() def featurize(self,composition): # use BCA just to get composition and metal_composition bca = BCA(composition,'ionic_radius',self.normalize_formula) ao_features = self.AtomicOrbitals.featurize(bca.metal_composition) # HOMO and LUMO character and energy levels for metals from atomic orbitals) ao_features = [ao_features[i] for i in range(len(ao_features)) if i not in (0,1,3,4)] # exclude HOMO_character,HOMO_element, LUMO_character, LUMO_element - categoricals ce_features = self.CohesiveEnergy.featurize(bca.metal_composition,formation_energy_per_atom=1e-10) # avg metal elemental cohesive energy bc_features = self.BandCenter.featurize(bca.metal_composition) + self.BandCenter.featurize(bca.composition) ve_features = self.ValenceOrbitalEnergy.featurize(bca.metal_composition) + self.ValenceOrbitalEnergy.featurize(bca.composition) ep_features = self.ElementProperty.featurize(bca.metal_composition) + self.ElementProperty.featurize(bca.composition) mm_features = ao_features + ce_features + bc_features + ve_features + ep_features return mm_features def feature_labels(self): """ Feature labels for matminer-derived features """ labels = [ #AtomicOrbitals labels #'M_HOMO_character', 'M_HOMO_energy', #'M_LUMO_character', 'M_LUMO_energy', 'M_AO_gap', #CohesiveEnergy labels 'M_cohesive_energy_mean', #BandCenter labels 'M_BandCenter', 'BCA_BandCenter', #ValenceOrbitalEnergy labels 'M_ValenceEnergy_mean', 'BCA_ValenceEnergy_mean' ] labels += [f'M {l}' for l in self.ElementProperty.feature_labels()] labels += [f'BCA {l}' for l in self.ElementProperty.feature_labels()] return labels @property def matminer_units(self): """ Feature units for matminer-derived features """ units = [ #ValenceOrbital units 'none', 'none', 'none', 'none', 'none', 'none', 'none', 'none', 'none', #AtomicOrbitals units #'M_HOMO_character', 'energy', #'M_LUMO_character', 'energy', 'energy', #CohesiveEnergy units 'energy', #BandCenter units 'energy', 'energy', #ValenceOrbitalEnergy units 'energy', 'energy' ] units += self.ElementProperty_units return units def feature_units(self): bca_units = BCA(mg.Composition('BaO')).feature_units() return bca_units + self.matminer_units def check_matminer_featurizers(self): """ Check that features and feature order for matminer featurizers are as expected If features or feature order have changed, featurize() may return unexpected features that do not align with feature_labels() """ #verify that matminer feature labels haven't changed if self.AtomicOrbitals.feature_labels() != ['HOMO_character', 'HOMO_element', 'HOMO_energy', 'LUMO_character', 'LUMO_element', 'LUMO_energy', 'gap_AO']: raise Exception('AtomicOrbitals features or labels have changed') if self.CohesiveEnergy.feature_labels() != ['cohesive energy']: raise Exception('CohesiveEnergy features or labels have changed') if self.BandCenter.feature_labels() != ['band center']: raise Exception('BandCenter features or labels have changed') def citations(self): featurizers = [self.AtomicOrbitals, self.CohesiveEnergy, self.BandCenter, self.ValenceOrbitalEnergy] citations = sum([f.citations() for f in featurizers],[]) # add pymatgen citation citations += [ "@article{Ong2012b," "author = {Ong, <NAME> and Richards, <NAME> <NAME> Hautier, <NAME>, <NAME> Cholia, <NAME> Gunter, <NAME>, <NAME>. and Persson, <NAME>. and Ceder, Gerbrand}," "doi = {10.1016/j.commatsci.2012.10.028}," "file = {:Users/shyue/Mendeley Desktop/Ong et al/Computational Materials Science/2013 - Ong et al. - Python Materials Genomics (pymatgen) A robust, open-source python library for materials analysis.pdf:pdf;:Users/shyue/Mendeley Desktop/Ong et al/Computational Materials Science/2013 - Ong et al. - Python Materials Genomics (pymatgen) A robust, open-source python library for materials analysis(2).pdf:pdf}," "issn = {09270256}," "journal = {Computational Materials Science}," "month = feb," "pages = {314--319}," "title = {{Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis}}," "url = {http://linkinghub.elsevier.com/retrieve/pii/S0927025612006295}," "volume = {68}," "year = {2013}" "}" ] return list(np.unique(citations)) ``` #### File: Ru-BCA/modules/bca_plotting.py ```python import numpy as np import ternary from ternary.helpers import simplex_iterator import matplotlib.pyplot as plt import pymatgen as mg import pandas as pd import re from model_eval import predict_interval def BCA_formula_from_str(BCA_str): """ Get chemical formula string from BCA string Args: BCA_str: BCA ratio string (e.g. 'B3C1A1') """ if len(BCA_str)==6 and BCA_str[:3]=='BCA': # format: BCAxyz. suitable for single-digit integer x,y,z funits = BCA_str[-3:] else: # format: BxCyAz. suitable for multi-digit or non-integer x,y,z funits = re.split('[BCA]',BCA_str) funits = [u for u in funits if len(u) > 0] funits components = ['BaO','CaO','Al2O3'] formula = ''.join([f'({c}){n}' for c,n in zip(components, funits)]) return formula def get_coords_from_comp(comp,tern_axes=['Ca','Al','Ba']): base_amt = {'Ba':1,'Ca':1,'Al':2} coords = np.array([comp[el]/base_amt[el] for el in tern_axes]) coords = coords/np.sum(coords) return coords def get_comp_from_coords(coords,tern_axes=['Ca','Al','Ba'],scale=1): if len(coords)==2: a,b = coords c = scale - a- b coords = (a,b,c) # else: # a,b,c = coords oxides = {'Ba':'BaO','Ca':'CaO','Al':'Al2O3','B':'B2O3','Mg':'MgO','Sr':'SrO'} formula = ''.join(['({}){}'.format(oxides[m],amt) for m,amt in zip(tern_axes,coords)]) return mg.Composition(formula) def add_colorbar(fig=None, cbrect=[0.9,0.15,0.02,0.75], label=None, tickformat=None, cmap = None, vlim=None, norm=None, tick_params={}, label_kwargs={},subplots_adjust={'left':0.05,'wspace':0.35, 'hspace':0.25, 'right':0.8}, **cb_kwargs): #add a single colorbar if fig is None: fig = plt.gcf() #make an axis for colorbar to control position/size cbaxes = fig.add_axes(cbrect) #[left, bottom, width, height] #code from ternary.colormapping.colorbar_hack if vlim is not None: vmin,vmax = vlim else: vmin = None vmax = None if norm==None: # if logscale==True: # norm = colors.LogNorm(vmin=vmin,vmax=vmax) norm = plt.Normalize(vmin=vmin,vmax=vmax) sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm) sm._A = [] cb = fig.colorbar(sm, cax=cbaxes, format=tickformat,**cb_kwargs) cb.ax.tick_params(**tick_params) if label is not None: cb.set_label(label, **label_kwargs) fig.subplots_adjust(**subplots_adjust) def plot_labeled_ternary(comps,values,ax=None,label_points=True,add_labeloffset=0,corner_labelsize=12,point_labelsize=11,point_labeloffset=[0,0.01,0],cmap=None,vlim=None,**scatter_kw): tern_axes = ['Ca','Al','Ba'] if ax is None: fig, ax = plt.subplots(figsize=(9,8)) else: fig = ax.get_figure() #tfig, tax = ternary.figure(scale=1,ax=ax) tax = ternary.TernaryAxesSubplot(scale=1,ax=ax) points = [get_coords_from_comp(c,tern_axes) for c in comps] if vlim is None: vmin=min(values) vmax=max(values) else: vmin, vmax = vlim tax.scatter(points,c=values,cmap=cmap,vmin=vmin,vmax=vmax,**scatter_kw) tern_labels = ['CaO','Al$_2$O$_3$','BaO'] tax.right_corner_label(tern_labels[0],fontsize=corner_labelsize,va='center',offset=0.08+add_labeloffset) tax.top_corner_label(tern_labels[1],fontsize=corner_labelsize,va='center',offset=0.05+add_labeloffset) tax.left_corner_label(tern_labels[2],fontsize=corner_labelsize,va='center',offset=0.08+add_labeloffset) tax.boundary(linewidth=1) #tax.clear_matplotlib_ticks() ax.axis('off') if label_points==True: for p,val in zip(points,values): if pd.isnull(val): disp = 'NA' else: disp = '{}'.format(int(round(val,0))) tax.annotate(disp,p+point_labeloffset,size=point_labelsize,ha='center',va='bottom') #add_colorbar(fig,label='NH3 Production Rate (mmol/g$\cdot$h)',vmin=min(values),vmax=max(values),cbrect=[0.9,0.2,0.03,0.67]) tax._redraw_labels() return tax def featurize_simplex(scale, featurizer, feature_cols=None, scaler=None,tern_axes=['Ca','Al','Ba']): """ Generate feature matrix for simplex (intended for making heatmaps) Args: scale: simplex scale. Determines point density featurizer: matminer-like featurizer instance feature_cols: subset of column names to use for features. If None, use all columns scaler: fitted scaler instance. If None, feature matrix will not be scaled tern_axes: ternary axes. Default ['Ca','Al','Ba'] Returns: coords: list of simplex coordinates X: feature matrix """ coords = [tup for tup in simplex_iterator(scale)] comps = [get_comp_from_coords(c,tern_axes=tern_axes) for c in coords] df = pd.DataFrame([[comp] for comp in comps],columns=['composition']) featurizer.featurize_dataframe(df,col_id='composition',inplace=True) if feature_cols is None: X = df else: X = df.loc[:,feature_cols] if scaler is not None: X = pd.DataFrame(scaler.transform(X),columns=X.columns) return coords, X def predict_simplex(estimator, scale, featurizer=None, feature_cols=None, scaler=None,use_X=None,tern_axes=['Ca','Al','Ba'],metric='median'): """ Generate predictions for simplex (intended for making heatmaps) Args: estimator: fitted estimator scale: simplex scale. Determines point density featurizer: matminer-like featurizer instance feature_cols: subset of column names to use for features. If None, use all columns scaler: fitted scaler instance. If None, feature matrix will not be scaled use_X: optional arg to provide feature matrix if already calculated. If provided, featurizer, feature_cols, and scaler will be ignored tern_axes: ternary axes. Default ['Ca','Al','Ba'] metric: if 'median', return point estimate. If 'iqr', return IQR of prediction Returns: coords: list of simplex coordinates y: estimator predictions """ if use_X is None: coords, X = featurize_simplex(scale,featurizer,feature_cols,scaler,tern_axes) else: coords = [tup for tup in simplex_iterator(scale)] X = use_X if type(X) == pd.core.frame.DataFrame: X = X.values # handle nans and infs # find rows with any nan or inf values bad_val_idx = np.max(np.array([np.max(np.isinf(X),axis=1),np.max(np.isnan(X),axis=1)]),axis=0) if np.sum(bad_val_idx) > 0: print('Warning: feature matrix contains nans or infs. Number of bad rows: {}'.format(np.sum(bad_val_idx))) # set all features in bad rows to zero so that they don't break estimator.predict() X[bad_val_idx] = 0 if metric=='median': y = estimator.predict(X) elif metric=='iqr': lb,ub = predict_interval(estimator,X,0.682) y = ub - lb # set predictions for bad feature values to nan y[bad_val_idx] = np.nan return coords, y def estimator_ternary_heatmap(scale, estimator, featurizer=None, feature_cols=None, scaler=None,use_X=None, style='triangular', labelsize=11, add_labeloffset=0, cmap=None, ax=None,figsize=None, vlim=None,metric='median', multiple=0.1, tick_kwargs={'tick_formats':'%.1f','offset':0.02}, tern_axes=['Ca','Al','Ba'],tern_labels = ['CaO','Al$_2$O$_3$','BaO']): """ Generate ternary heatmap of ML predictions Args: scale: simplex scale estimator: sklearn estimator instance featurizer: featurizer instance feature_cols: subset of feature names used in model_eval scaler: sklearn scaler instance use_X: pre-calculated feature matrix; if passed, featurizer, feature_cols, and scaler are ignored style: heatmap interpolation style tern_axes: ternary axes. Only used for generating simplex compositions; ignored if use_X is supplied. Defaults to ['Ca','Al','Ba'] metric: if 'median', return point estimate. If 'iqr', return IQR of prediction """ coords, y = predict_simplex(estimator, scale, featurizer, feature_cols, scaler,use_X,tern_axes,metric) if vlim is None: vmin = min(y) vmax = max(y) else: vmin,vmax = vlim points = dict(zip([c[0:2] for c in coords],y)) if ax==None: fig, ax = plt.subplots(figsize=figsize) tfig, tax = ternary.figure(scale=scale,ax=ax) else: tax = ternary.TernaryAxesSubplot(scale=scale,ax=ax) tax.heatmap(points,style=style,colorbar=False,cmap=cmap,vmin=vmin,vmax=vmax) #rescale_ticks(tax,new_scale=axis_scale,multiple = multiple, **tick_kwargs) tax.boundary() tax.ax.axis('off') tax.right_corner_label(tern_labels[0],fontsize=labelsize,va='center',offset=0.08+add_labeloffset) tax.top_corner_label(tern_labels[1],fontsize=labelsize,va='center',offset=0.05+add_labeloffset) tax.left_corner_label(tern_labels[2],fontsize=labelsize,va='center',offset=0.08+add_labeloffset) tax._redraw_labels() return tax def feature_ternary_heatmap(scale, feature_name, featurizer=None, use_X=None, style='triangular', labelsize=11, add_labeloffset=0, cmap=None, ax=None,figsize=None, vlim=None, multiple=0.1, tick_kwargs={'tick_formats':'%.1f','offset':0.02}, tern_axes=['Ca','Al','Ba'],tern_labels = ['CaO','Al$_2$O$_3$','BaO']): """ """ if use_X is None: coords, X = featurize_simplex(scale,featurizer,feature_cols=featurizer.feature_labels(),tern_axes=tern_axes) X = pd.DataFrame(X,columns=featurizer.feature_labels()) else: coords = [tup for tup in simplex_iterator(scale)] X = use_X y = X.loc[:,feature_name] if vlim is None: vmin = min(y) vmax = max(y) else: vmin,vmax = vlim points = dict(zip([c[0:2] for c in coords],y)) if ax==None: fig, ax = plt.subplots(figsize=figsize) tfig, tax = ternary.figure(scale=scale,ax=ax) else: tax = ternary.TernaryAxesSubplot(scale=scale,ax=ax) tax.heatmap(points,style=style,colorbar=False,cmap=cmap,vmin=vmin,vmax=vmax) #rescale_ticks(tax,new_scale=axis_scale,multiple = multiple, **tick_kwargs) tax.boundary() tax.ax.axis('off') tax.right_corner_label(tern_labels[0],fontsize=labelsize,va='center',offset=0.08+add_labeloffset) tax.top_corner_label(tern_labels[1],fontsize=labelsize,va='center',offset=0.05+add_labeloffset) tax.left_corner_label(tern_labels[2],fontsize=labelsize,va='center',offset=0.08+add_labeloffset) tax._redraw_labels() return tax def ternary_scatter_vs_heatmap(scatter_comps,scatter_values, hmap_scale,hmap_estimator,vlim,cmap=None, hmap_featurizer=None,hmap_feature_cols=None,hmap_scaler=None,hmap_use_X=None, corner_labelsize=11,add_labeloffset=0,label_points=False): fig, (ax1,ax2) = plt.subplots(1,2,figsize=(12,5)) tax1 = plot_labeled_ternary(scatter_comps, scatter_values,ax=ax1,label_points=label_points, corner_labelsize=corner_labelsize,add_labeloffset=add_labeloffset,vlim=vlim,cmap=cmap) tax2 = estimator_ternary_heatmap(hmap_scale,hmap_estimator,hmap_featurizer,hmap_feature_cols,scaler=hmap_scaler,use_X=hmap_use_X, ax=ax2,labelsize=corner_labelsize,add_labeloffset=add_labeloffset,vlim=vlim,cmap=cmap) add_colorbar(fig,vlim=vlim,label='Max NH$_3$ Production Rate',cbrect=[0.9,0.2,0.02,0.7]) return tax1,tax2 def scatter_over_heatmap(scatter_comps, scatter_values,hmap_scale,hmap_estimator,vlim, ax=None, cmap=None,metric='median', hmap_featurizer=None,hmap_feature_cols=None,hmap_scaler=None,hmap_use_X=None,point_labeloffset=[0,0.02,0], corner_labelsize=11,add_labeloffset=0,marker='o',markersize=12,scatter_labels=None,scatter_labelsize=12): """ """ if ax is None: fig, ax = plt.subplots(figsize=(8,8)) tax = estimator_ternary_heatmap(hmap_scale,hmap_estimator,hmap_featurizer,hmap_feature_cols,scaler=hmap_scaler,use_X=hmap_use_X, ax=ax,labelsize=corner_labelsize,add_labeloffset=add_labeloffset,vlim=vlim,metric=metric,cmap=cmap) if scatter_labels is None: # write blank labels scatter_labels = ['']*len(scatter_comps) points = [hmap_scale*get_coords_from_comp(c) for c in scatter_comps] for label, point, color_val in zip(scatter_labels,points,scatter_values): # must use tax.plot(); tax.scatter() does not work on top of heatmap if cmap is None: cmap = plt.get_cmap(plt.rcParams['image.cmap']) color = cmap((color_val-vlim[0])/(vlim[1]-vlim[0])) tax.plot([point],c=color,marker=marker,markersize=markersize,ls='',mec='white') tax.annotate('{}'.format(label),point+np.array(point_labeloffset)*hmap_scale,size=scatter_labelsize,ha='center',va='bottom',color='white') return tax def draw_guidelines(tax,**line_kw): """ Add phase boundary lines and/or guidelines to ternary Args: tax: ternary axes color: line color which: which lines to draw. Options: 'all','phase','guide' line_kw: kwargs for tax.line() """ ped_data = pd.read_csv('../data/BCA_PED_coords.csv',skipfooter=2,engine='python') for col in ['start','end']: ped_data[f'{col}_comp'] = ped_data[f'{col}'].map(lambda x: mg.Composition(BCA_formula_from_str(x))) ped_data[f'{col}_coords'] = ped_data[f'{col}_comp'].map(lambda x:get_coords_from_comp(x)*tax.get_scale()) for i, row in ped_data[ped_data['draw_on_prodplot']==1].iterrows(): tax.line(row['start_coords'],row['end_coords'],**line_kw) # ts = tax.get_scale() # #set up points # bca934 = np.array([0.19,0.25,0.56])*ts # b3a = np.array([0,.25,.75])*ts # c3a = np.array([.75,.25,0])*ts # ba = np.array([0,1/2,1/2])*ts # c = [ts,0,0] # b = [0,0,ts] # if which in ('all','guide'): # #guidelines # tax.line(b3a,c3a,ls=':',c=color,**line_kw) # tax.line(b,bca934,ls=':',c=color,**line_kw) # if which in ('all','phase'): # #phase boundaries # tax.line(c,ba,ls='--',c=color,**line_kw) # tax.line(ba,bca934,ls='--',c=color,**line_kw) # tax.line(bca934,c,ls='--',c=color,**line_kw) ``` #### File: Ru-BCA/modules/model_eval.py ```python import numpy as np import pandas as pd import matplotlib.pyplot as plt from copy import deepcopy from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.model_selection import KFold from sklearn.metrics import r2_score, mean_absolute_error def multi_min(arrays): """ Return the minimum scalar value of multiple arrays Args: arrays: list of numpy arrays """ mins = [] for arr in arrays: mins.append(np.min(arr)) return min(mins) def multi_max(arrays): """ Return the maximum scalar value of multiple arrays Args: arrays: list of numpy arrays """ maxs = [] for arr in arrays: maxs.append(np.max(arr)) return max(maxs) class repeating_KFold(): """ KFold splitter that performs multiple independent splits of the dataset. For use with sklearn and mlxtend functions/classes that take a splitter object Intended for use with shuffle=True to reduce bias for one particular train-test split Args: repeat: int, number of times to repeat n_splits: number of splits shuffle: if True, shuffle dataset before splitting random_state: specify a random state for shuffle """ def __init__(self,repeat,n_splits,shuffle=True,random_state=None): self.repeat = repeat self.n_splits = n_splits self.shuffle = shuffle self.random_state = random_state self.kf = KFold(n_splits,shuffle) # set seeds for consistency if random state specified if self.random_state is not None: r = np.random.RandomState(self.random_state) self.seeds = r.choice(np.arange(0,repeat*10,1),self.repeat,replace=False) else: self.seeds = [None]*self.repeat def split(self,X,y=None,groups=None): for n,seed in zip(range(self.repeat),self.seeds): self.kf.random_state = seed for train,test in self.kf.split(X,y,groups): yield train,test def get_n_splits(self,X=None,y=None,groups=None): return self.n_splits*self.repeat def KFold_cv(estimator,X,y,sample_weight=None,n_splits=5,pipeline_learner_step='auto',pred_int=0,random_state=None): """ Perform k-fold cross-validation Args: estimator: sklearn estimator instance X: data matrix (nxm) y: response (n-vector) sample_weight: weights for fitting data. If None, defaults to equal weights n_splits: number of folds. Default 5 pipeline_learner_step: if estimator is a Pipeline instance, index of the learner step pred_int: prediction interval to calculate (i.e., 0.5 indicates 50% interval). If 0, do not calculate prediction interval random_state: random state for KFold shuffle Returns: actual: acutal y values for test folds pred: predicted y values for test folds train_scores: list of training r2 scores test_scores: list of test r2 scores pred_lb: lower bound of prediction interval. Vector of zeros if pred_int==0 pred_ub: upper bound of prediction interval. Vector of zeros if pred_int==0 """ if random_state is not None: kf = KFold(n_splits,shuffle=True,random_state=random_state) else: kf = KFold(n_splits,shuffle=True) if len(X)!=len(y): raise ValueError('X and y must have same first dimension') # if y is pandas series, convert to array. No info required from Series object if type(y)==pd.core.series.Series: y = y.values train_scores = np.empty(n_splits) test_scores = np.empty(n_splits) actual = np.zeros_like(y) pred = np.zeros_like(y) pred_lb = np.zeros_like(y) pred_ub = np.zeros_like(y) for i, (train_index,test_index) in enumerate(kf.split(X)): if type(X)==pd.core.frame.DataFrame: X_train, X_test = X.iloc[train_index,:], X.iloc[test_index,:] else: X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] if sample_weight is not None: w_train = sample_weight[train_index] w_test = sample_weight[test_index] if sample_weight is not None: if type(estimator)==Pipeline: #if estimator is a Pipeline, need to specify name of learning step in fit_params for sample_weight if pipeline_learner_step=='auto': # determine which step is the learner based on existence of _estimator_type attribute step_objects = [step[1] for step in estimator.steps] objdirs = [dir(obj) for obj in step_objects] learner_idx = np.where(['_estimator_type' in d for d in objdirs])[0] if len(learner_idx)==1: pipeline_learner_step = learner_idx[0] else: raise Exception("Can''t determine pipeline_learner_step. Must specify manually") est_name = estimator.steps[pipeline_learner_step][0] estimator.fit(X_train,y_train,**{f'{est_name}__sample_weight':w_train}) else: estimator.fit(X_train,y_train,sample_weight=w_train) train_scores[i] = estimator.score(X_train,y_train,sample_weight=w_train) test_scores[i] = estimator.score(X_test,y_test,sample_weight=w_test) else: # not all estimators' fit() methods accept sample_weight arg - can't just pass None estimator.fit(X_train,y_train) train_scores[i] = estimator.score(X_train,y_train) test_scores[i] = estimator.score(X_test,y_test) actual[test_index] = y_test pred[test_index] = estimator.predict(X_test) if pred_int > 0: pred_lb[test_index],pred_ub[test_index] = predict_interval(estimator,X_test,pred_int) return actual, pred, train_scores, test_scores, pred_lb, pred_ub def repeated_KFold_cv(estimator,X,y,repeat,sample_weight=None,n_splits=5,pipeline_learner_step='auto',pred_int=0,random_state=None): """ Perform k-fold cross-validation with multiple random splits Args: estimator: sklearn estimator instance X: data matrix (nxm) y: response (n-vector) repeat: number of times to repeat KFold CV sample_weight: weights for fitting data. If None, defaults to equal weights n_splits: number of folds. Default 5 pipeline_learner_step: if estimator is a Pipeline instance, index of the learner step pred_int: prediction interval to calculate (i.e., 0.5 indicates 50% interval). If 0, do not calculate prediction interval random_state: random state for KFold shuffle Returns: actuals: list of actual y vectors for all CV repetitions preds: list of predicted y vectors for all CV repetitions agg_test_scores: list of r2 scores for all CV repetitions agg_test_maes: list of MAEs for all CV repetitions pred_lbs: list of prediction interval lower bounds for all CV repetitions. All zeros if pred_int==0 pred_ubs: list of prediction interval upper bounds for all CV repetitions. All zeros if pred_int==0 """ actuals = np.empty((repeat,len(y))) preds = np.empty_like(actuals) agg_test_scores = np.empty(repeat) agg_test_maes = np.empty(repeat) pred_lbs = np.empty_like(actuals) pred_ubs = np.empty_like(actuals) # set seeds for consistency if specified if random_state is not None: r = np.random.RandomState(random_state) seeds = r.choice(np.arange(0,repeat*10,1),repeat,replace=False) else: seeds = [None]*repeat for n in range(repeat): act,pred,train,test,lb,ub = KFold_cv(estimator,X,y,sample_weight,n_splits,pipeline_learner_step,pred_int,random_state=seeds[n]) agg_test_score = r2_score(act,pred,sample_weight=sample_weight) agg_mae = mean_absolute_error(act,pred,sample_weight=sample_weight) actuals[n] = act preds[n] = pred agg_test_scores[n] = agg_test_score agg_test_maes[n] = agg_mae pred_lbs[n] = lb pred_ubs[n] = ub return actuals, preds, agg_test_scores, agg_test_maes, pred_lbs, pred_ubs def KFold_pva(estimator,X,y,sample_weight=None,n_splits=5,pipeline_learner_step='auto',random_state=None,ax=None,xerr=None,pred_int=0,show_metrics=['r2','mae'],text_kw={},s=10,line_kw={'zorder':0,'c':'#1f77b4'},**scatter_kw): """ Perform k-fold cross-validation and plot predicted vs. actual for test set Args: estimator: sklearn estimator instance X: data matrix (nxm) y: response (n-vector) sample_weight: vector of sample weights. If None, equal weights assigned n_splits: number of folds. Default 5 random_state: random state for KFold shuffle ax: axis on which to plot show_metrics: list of metrics to calculate and annotate on plot. Options: 'r2', 'mae' text_kw: kwargs for metric text; passed to plt.text() s: marker size line_kw: kwargs for ideal x=y line scatter_kw: kwargs to pass to plt.scatter() Returns: train_scores: k-array of train scores test_scores: k-array of test scores agg_test_score: overall test score (r2) considering all test folds together """ y, y_pred, train_scores, test_scores, pred_lb, pred_ub = KFold_cv(estimator,X,y,sample_weight,n_splits,pipeline_learner_step,pred_int,random_state) agg_test_score = r2_score(y,y_pred,sample_weight=sample_weight) if pred_int > 0: yerr = np.array([y_pred-pred_lb,pred_ub-y_pred]) else: yerr = None ax = pred_v_act_plot(y,y_pred,sample_weight,ax,xerr,yerr,show_metrics,text_kw,s,line_kw,**scatter_kw) return train_scores, test_scores, agg_test_score def repeated_KFold_pva(estimator,X,y,repeat,plot_type='series',sample_weight=None,n_splits=5,pipeline_learner_step=1,random_state=None, ax=None,xerr=None,pred_int=0,show_metrics=['r2','mae'],text_kw={},s=10,line_kw={'zorder':0,'c':'#1f77b4'},**scatter_kw): """ Perform k-fold cross-validation and plot predicted vs. actual for test set Args: estimator: sklearn estimator instance X: data matrix (nxm) y: response (n-vector) repeat: number of times to repeat KFold CV sample_weight: weights for fitting data. If None, defaults to equal weights n_splits: number of folds. Default 5 pipeline_learner_step: if estimator is a Pipeline instance, index of the learner step random_state: random state to determine random seeds for KFold shuffles ax: axis on which to plot show_metrics: list of metrics to calculate and annotate on plot. Options: 'r2', 'mae' text_kw: kwargs for metric text; passed to plt.text() s: marker size scatter_kw: kwargs to pass to plt.scatter() Returns: train_scores: k-array of train scores test_scores: k-array of test scores tot_test_score: overall test score (r2) considering all test folds together """ actuals, preds, agg_test_scores, agg_test_maes, pred_lbs, pred_ubs = repeated_KFold_cv(estimator,X,y,repeat,sample_weight,n_splits,pipeline_learner_step,pred_int,random_state) if plot_type=='series': # plot each repetition as a separate series for y,y_pred,lb,ub in zip(actuals, preds,pred_lbs,pred_ubs): if pred_int > 0: yerr = np.array([y_pred-lb,ub-y_pred]) else: y_err = None ax = pred_v_act_plot(y,y_pred,sample_weight,ax,xerr,yerr,show_metrics=None,text_kw=text_kw,s=s,line_kw=line_kw,**scatter_kw) elif plot_type=='mean': # average predicted values for each point across repetitions y = np.mean(actuals,axis=0) y_pred = np.mean(preds,axis=0) if pred_int > 0: pred_std = np.std(preds,axis=0) lerr = np.mean(preds-pred_lbs,axis=0) uerr = np.mean(pred_ubs-preds,axis=0) # add the variance between CV repetitions to the prediction interval yerr = np.array([(pred_std**2 + lerr**2)**0.5,(pred_std**2 + uerr**2)**0.5]) else: yerr = None ax = pred_v_act_plot(y,y_pred,sample_weight,ax,xerr,yerr,show_metrics=None,text_kw=text_kw,s=s,line_kw=line_kw,**scatter_kw) # metrics need to be aggregated across repetitions metric_txt = '' for metric in show_metrics: if metric=='r2': metric_txt += '$r^2: \ {}$\n'.format(round(np.mean(agg_test_scores),3)) elif metric=='mae': mae_scale = int(np.ceil(np.log10(np.mean(agg_test_maes)))) if mae_scale < 3: mae_round = 3 - mae_scale else: mae_round = 0 metric_txt += 'MAE: {}\n'.format(round(np.mean(agg_test_maes),mae_round)) if len(metric_txt) > 0: x = text_kw.pop('x',0.05) y = text_kw.pop('y',0.95) ax.text(x,y,metric_txt,transform=ax.transAxes,va='top',**text_kw) return actuals, preds, agg_test_scores, agg_test_maes, pred_lbs, pred_ubs def plot_pva(estimator,X,y,sample_weight=None,ax=None,xerr=None,pred_int=0,show_metrics=['r2','mae'],text_kw={},s=10,line_kw={'zorder':0,'c':'#1f77b4'},**scatter_kw): """ Plot predicted vs. actual for fitted estimator Args: estimator: fitted sklearn estimator instance X: data matrix (nxm) y: response (n-vector) sample_weight: sample weights. Only used to calculate metrics (r2, mae) ax: axis on which to plot xerr: scalar or array of x (actual) errors/uncertainties pred_int: if True, estimate and plot prediction intervals show_metrics: list of metrics to calculate and annotate on plot. Options: 'r2', 'mae' text_kw: kwargs for metric text; passed to plt.text() s: marker size """ y_pred = estimator.predict(X) if pred_int > 0: lb,ub = predict_interval(estimator,X,pred_int) yerr = np.array([y_pred-lb,ub-y_pred]) else: yerr = None ax = pred_v_act_plot(y,y_pred,sample_weight,ax,xerr,yerr,show_metrics,text_kw,s,line_kw,**scatter_kw) def pred_v_act_plot(y,y_pred,sample_weight=None,ax=None,xerr=None,yerr=None,show_metrics=['r2','mae'],text_kw={},s=10,line_kw={'zorder':0,'c':'#1f77b4'},legend=True,**scatter_kw): """ Plot predicted vs. actual Args: y: actual values y_pred: predictions sample_weight: sample weights. Only used to calculate metrics (r2, mae) ax: axis on which to plot xerr: scalar or array of x (actual) errors/uncertainties yerr: scalar or array of y (prediction) uncertainties show_metrics: list of metrics to calculate and annotate on plot. Options: 'r2', 'mae' text_kw: kwargs for metric text; passed to plt.text() s: marker size """ if ax is None: fig, ax = plt.subplots() if xerr is None and yerr is None: ax.scatter(y,y_pred,s=s,**scatter_kw) else: ax.errorbar(y,y_pred,xerr=xerr,yerr=yerr,ms=s,**scatter_kw) axmin = multi_min([y,y_pred]) axmax = multi_max([y,y_pred]) ax.plot([axmin,axmax],[axmin,axmax],**line_kw,label='Ideal') metric_txt = '' if show_metrics is not None: for metric in show_metrics: if metric=='r2': r2 = r2_score(y,y_pred,sample_weight=sample_weight) metric_txt += '$r^2: \ {}$\n'.format(round(r2,3)) elif metric=='mae': test_mae = mean_absolute_error(y,y_pred,sample_weight=sample_weight) mae_scale = int(np.ceil(np.log10(test_mae))) if mae_scale < 3: mae_round = 3 - mae_scale else: mae_round = 0 metric_txt += 'MAE: {}\n'.format(round(test_mae,mae_round)) if len(metric_txt) > 0: x = text_kw.pop('x',0.05) y = text_kw.pop('y',0.95) ax.text(x,y,metric_txt,transform=ax.transAxes,va='top',**text_kw) ax.set_xlabel('Actual') ax.set_ylabel('Predicted') if legend: ax.legend(loc='lower right') return ax def predict_interval(model, X, percent=0.682): if type(X)==pd.core.frame.DataFrame: X = X.values y_pred = np.array([tree.predict(X) for tree in model.estimators_]) lper = 100*(0.5 - percent/2) uper = 100*(0.5 + percent/2) lb = np.percentile(y_pred,lper,axis=0) ub = np.percentile(y_pred,uper,axis=0) # y_pred = model.predict(X) # lb = y_pred - 10 # ub = y_pred + 10 return lb,ub class GridSearchRepeatedCV(): def __init__(self,estimator,param_grid): self.estimator = deepcopy(estimator) self.param_grid = param_grid def fit(self,X,y,repeat,sample_weight=None,n_splits=5,pipeline_learner_step='auto',random_state=None): meshgrid = np.meshgrid(*self.param_grid.values()) self.param_meshgrid_ = dict(zip(self.param_grid.keys(),meshgrid)) self.grid_scores_ = np.zeros_like(meshgrid[0],dtype='float') self.grid_params_ = np.empty_like(meshgrid[0],dtype='object') # iterate over parameter combinations for idx, tmpvalue in np.ndenumerate(meshgrid[0]): # get parameter values and set params = {} for param_name, param_array in zip(self.param_grid.keys(),meshgrid): params[param_name] = param_array[idx] self.estimator.set_params(**params) # perform cv y_act, y_pred, agg_scores, agg_maes,lbs,ubs = repeated_KFold_cv(self.estimator,X,y,repeat,sample_weight,n_splits,pipeline_learner_step,pred_int=0,random_state=random_state) self.grid_scores_[idx] = np.mean(agg_scores) self.grid_params_[idx] = params # get best index self.best_index_ = np.argmax(self.grid_scores_) self.best_params_ = self.grid_params_.ravel()[self.best_index_] self.best_score_ = np.max(self.grid_scores_) @property def grid_results_(self): scores = self.grid_scores_.ravel() params = self.grid_params_.ravel() results = [(p,s) for p,s in zip(params,scores)] return results @property def ranked_results(self): results = self.grid_results_ ranked_results = sorted(results,key=lambda x: x[1],reverse=True) ranked_results = [(i+1,p,s) for i,(p,s) in enumerate(ranked_results)] return ranked_results @property def result_df(self): scores = self.grid_scores_.ravel() params = self.grid_params_.ravel() df = pd.DataFrame(list(params)) df['score'] = scores return df def plot_grid_results(self,ax=None,fixed_params={},mark_best=True,colorbar=True,**scatter_kw): filter_meshgrid = self.param_meshgrid_.copy() filter_param = self.grid_params_.copy() filter_score = self.grid_scores_.copy() for param, value in fixed_params.items(): idx = np.where(filter_meshgrid[param]==value) for p in filter_meshgrid.keys(): filter_meshgrid[p] = filter_meshgrid[p][idx] filter_param = filter_param[idx] filter_score = filter_score[idx] plot_params = [p for p in self.param_grid.keys() if p not in fixed_params.keys()] if len(plot_params) > 3: raise Exception('Too many free parameters to plot') param_arrays = [] for param in plot_params: param_arrays.append([gp[param] for gp in filter_param.ravel()]) scores = filter_score.ravel() if ax is None and len(plot_params) < 3: fig, ax = plt.subplots() elif ax is None and len(plot_params)==3: fig = plt.figure() ax = fig.add_subplot(111,projection='3d') else: fig = ax.get_figure() if len(plot_params)==1: ax.scatter(param_arrays[0],scores,**scatter_kw) ax.set_xlabel(plot_params[0]) ax.set_ylabel('CV Score') if mark_best: # mark the best parameter value with a vertical line best_param = param_arrays[0][np.argmax(scores)] ax.axvline(best_param,c='k',lw=1) elif len(plot_params)==2: p = ax.scatter(param_arrays[0],param_arrays[1],c=scores,**scatter_kw) ax.set_xlabel(plot_params[0]) ax.set_ylabel(plot_params[1]) if colorbar: fig.colorbar(p,ax=ax,label='CV Score') if mark_best: # outline the best point in red best_idx = np.argmax(scores) ax.scatter(param_arrays[0][best_idx],param_arrays[1][best_idx],facecolors='none',edgecolors='k',**scatter_kw) elif len(plot_params)==3: p = ax.scatter(param_arrays[0],param_arrays[1],param_arrays[2],c=scores,**scatter_kw) ax.set_xlabel(plot_params[0]) ax.set_ylabel(plot_params[1]) ax.set_zlabel(plot_params[2]) if colorbar: fig.colorbar(p,ax=ax,label='CV Score') if mark_best: best_idx = np.argmax(scores) ax.scatter(param_arrays[0][best_idx],param_arrays[1][best_idx],param_arrays[2][best_idx],facecolors='none',edgecolors='k',**scatter_kw) return ax ```
{ "source": "jdhughes-usgs/mf6bmipaper-saghen", "score": 3 }
#### File: sagehen-mf6/common/figspecs.py ```python import sys import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt class USGSFigure: def __init__( self, figure_type="map", family="Arial Narrow", font_path=None, verbose=False ): """Create a USGSFigure object Parameters ---------- figure_type : str figure type ("map", "graph") family : str font family name (default is Arial Narrow) verbose : bool boolean that define if debug information should be written """ # initialize members self.family = None self.figure_type = None self.verbose = verbose self.set_font_family(family=family, font_path=font_path) self.set_specifications(figure_type=figure_type) def set_specifications(self, figure_type="map"): """Set matplotlib parameters Parameters ---------- figure_type : str figure type ("map", "graph") Returns ------- """ self.figure_type = self._validate_figure_type(figure_type) def set_font_family(self, family="Arial Narrow", font_path=None): """Set font family Parameters ---------- family : str font family (default is Arial Narrow) font_path : str path to fonts not available to matplotlib (not implemented) Returns ------- """ if font_path is not None: errmsg = "specification of font_path is not implemented" raise NotImplemented(errmsg) self.family = self._set_fontfamily(family) def graph_legend(self, ax=None, handles=None, labels=None, **kwargs): """Add a USGS-style legend to a matplotlib axis object Parameters ---------- ax : axis object matplotlib axis object (default is None) handles : list list of legend handles labels : list list of labels for legend handles kwargs : kwargs matplotlib legend kwargs Returns ------- leg : object matplotlib legend object """ if ax is None: ax = plt.gca() font = self._set_fontspec(bold=True, italic=False) if handles is None or labels is None: handles, labels = ax.get_legend_handles_labels() leg = ax.legend(handles, labels, prop=font, **kwargs) # add title to legend if "title" in kwargs: title = kwargs.pop("title") else: title = None leg = self.graph_legend_title(leg, title=title) return leg def graph_legend_title(self, leg, title=None): """Set the legend title for a matplotlib legend object Parameters ---------- leg : legend object matplotlib legend object title : str title for legend Returns ------- leg : object matplotlib legend object """ if title is None: title = "EXPLANATION" elif title.lower() == "none": title = None font = self._set_fontspec(bold=True, italic=False) leg.set_title(title, prop=font) return leg def heading(self, ax=None, letter=None, heading=None, x=0.00, y=1.01): """Add a USGS-style heading to a matplotlib axis object Parameters ---------- ax : axis object matplotlib axis object (default is None) letter : str string that defines the subplot (A, B, C, etc.) heading : str text string x : float location of the heading in the x-direction in normalized plot dimensions ranging from 0 to 1 (default is 0.00) y : float location of the heading in the y-direction in normalized plot dimensions ranging from 0 to 1 (default is 1.01) Returns ------- text : object matplotlib text object """ if ax is None: ax = plt.gca() text = None if letter is not None: font = self._set_fontspec(bold=True, italic=True) if heading is None: letter = letter.replace(".", "") else: letter = letter.rstrip() if letter[-1] != ".": letter += "." letter += " " ax.text( x, y, letter, va="bottom", ha="left", fontdict=font, transform=ax.transAxes, ) bbox = ax.get_window_extent().transformed( plt.gcf().dpi_scale_trans.inverted() ) width = bbox.width * 25.4 # inches to mm x += len(letter) * 1.0 / width if heading is not None: font = self._set_fontspec(bold=True, italic=False) text = ax.text( x, y, heading, va="bottom", ha="left", fontdict=font, transform=ax.transAxes, ) return text def add_text( self, ax=None, text="", x=0.0, y=0.0, transform=True, bold=True, italic=True, fontsize=9, ha="left", va="bottom", **kwargs ): """Add USGS-style text to a axis object Parameters ---------- ax : axis object matplotlib axis object (default is None) text : str text string x : float x-location of text string (default is 0.) y : float y-location of text string (default is 0.) transform : bool boolean that determines if a transformed (True) or data (False) coordinate system is used to define the (x, y) location of the text string (default is True) bold : bool boolean indicating if bold font (default is True) italic : bool boolean indicating if italic font (default is True) fontsize : int font size (default is 9 points) ha : str matplotlib horizontal alignment keyword (default is left) va : str matplotlib vertical alignment keyword (default is bottom) kwargs : dict dictionary with valid matplotlib text object keywords Returns ------- text_obj : object matplotlib text object """ if ax is None: ax = plt.gca() if transform: transform = ax.transAxes else: transform = ax.transData font = self._set_fontspec(bold=bold, italic=italic, fontsize=fontsize) text_obj = ax.text( x, y, text, va=va, ha=ha, fontdict=font, transform=transform, **kwargs ) return text_obj def add_annotation( self, ax=None, text="", xy=None, xytext=None, bold=True, italic=True, fontsize=9, ha="left", va="bottom", **kwargs ): """Add an annotation to a axis object Parameters ---------- ax : axis object matplotlib axis object (default is None) text : str text string xy : tuple tuple with the location of the annotation (default is None) xytext : tuple tuple with the location of the text bold : bool boolean indicating if bold font (default is True) italic : bool boolean indicating if italic font (default is True) fontsize : int font size (default is 9 points) ha : str matplotlib horizontal alignment keyword (default is left) va : str matplotlib vertical alignment keyword (default is bottom) kwargs : dict dictionary with valid matplotlib annotation object keywords Returns ------- ann_obj : object matplotlib annotation object """ if ax is None: ax = plt.gca() if xy is None: xy = (0.0, 0.0) if xytext is None: xytext = (0.0, 0.0) font = self._set_fontspec(bold=bold, italic=italic, fontsize=fontsize) # add font information to kwargs if kwargs is None: kwargs = font else: for key, value in font.items(): kwargs[key] = value # create annotation ann_obj = ax.annotate(text, xy, xytext, va=va, ha=ha, **kwargs) return ann_obj def remove_edge_ticks(self, ax=None): """Remove unnecessary ticks on the edges of the plot Parameters ---------- ax : axis object matplotlib axis object (default is None) Returns ------- ax : axis object matplotlib axis object """ if ax is None: ax = plt.gca() # update tick objects plt.draw() # get min and max value and ticks ymin, ymax = ax.get_ylim() # check for condition where y-axis values are reversed if ymax < ymin: y = ymin ymin = ymax ymax = y yticks = ax.get_yticks() if self.verbose: print("y-axis: ", ymin, ymax) print(yticks) # remove edge ticks on y-axis ticks = ax.yaxis.majorTicks for iloc in [0, -1]: if np.allclose(float(yticks[iloc]), ymin): ticks[iloc].tick1line.set_visible = False ticks[iloc].tick2line.set_visible = False if np.allclose(float(yticks[iloc]), ymax): ticks[iloc].tick1line.set_visible = False ticks[iloc].tick2line.set_visible = False # get min and max value and ticks xmin, xmax = ax.get_xlim() # check for condition where x-axis values are reversed if xmax < xmin: x = xmin xmin = xmax xmax = x xticks = ax.get_xticks() if self.verbose: print("x-axis: ", xmin, xmax) print(xticks) # remove edge ticks on y-axis ticks = ax.xaxis.majorTicks for iloc in [0, -1]: if np.allclose(float(xticks[iloc]), xmin): ticks[iloc].tick1line.set_visible = False ticks[iloc].tick2line.set_visible = False if np.allclose(float(xticks[iloc]), xmax): ticks[iloc].tick1line.set_visible = False ticks[iloc].tick2line.set_visible = False return ax # protected methods # protected method def _validate_figure_type(self, figure_type): """Set figure type after validation of specified figure type Parameters ---------- figure_type : str figure type ("map", "graph") Returns ------- figure_type : str validated figure_type """ # validate figure type valid_types = ("map", "graph") if figure_type not in valid_types: errmsg = "invalid figure_type specified ({}) ".format( figure_type ) + "valid types are '{}'.".format(", ".join(valid_types)) raise ValueError(errmsg) # set figure_type if figure_type == "map": self._set_map_specifications() elif figure_type == "graph": self._set_map_specifications() return figure_type # protected method def _set_graph_specifications(self): """Set matplotlib rcparams to USGS-style specifications for graphs Returns ------- """ rc_dict = { "font.family": self.family, "font.size": 7, "axes.labelsize": 9, "axes.titlesize": 9, "axes.linewidth": 0.5, "xtick.labelsize": 8, "xtick.top": True, "xtick.bottom": True, "xtick.major.size": 7.2, "xtick.minor.size": 3.6, "xtick.major.width": 0.5, "xtick.minor.width": 0.5, "xtick.direction": "in", "ytick.labelsize": 8, "ytick.left": True, "ytick.right": True, "ytick.major.size": 7.2, "ytick.minor.size": 3.6, "ytick.major.width": 0.5, "ytick.minor.width": 0.5, "ytick.direction": "in", "pdf.fonttype": 42, "savefig.dpi": 300, "savefig.transparent": True, "legend.fontsize": 9, "legend.frameon": False, "legend.markerscale": 1.0, } mpl.rcParams.update(rc_dict) # protected method def _set_map_specifications(self): """Set matplotlib rcparams to USGS-style specifications for maps Returns ------- """ rc_dict = { "font.family": self.family, "font.size": 7, "axes.labelsize": 9, "axes.titlesize": 9, "axes.linewidth": 0.5, "xtick.labelsize": 7, "xtick.top": True, "xtick.bottom": True, "xtick.major.size": 7.2, "xtick.minor.size": 3.6, "xtick.major.width": 0.5, "xtick.minor.width": 0.5, "xtick.direction": "in", "ytick.labelsize": 7, "ytick.left": True, "ytick.right": True, "ytick.major.size": 7.2, "ytick.minor.size": 3.6, "ytick.major.width": 0.5, "ytick.minor.width": 0.5, "ytick.direction": "in", "pdf.fonttype": 42, "savefig.dpi": 300, "savefig.transparent": True, "legend.fontsize": 9, "legend.frameon": False, "legend.markerscale": 1.0, } mpl.rcParams.update(rc_dict) # protected method def _set_fontspec(self, bold=True, italic=True, fontsize=9): """Create fontspec dictionary for matplotlib pyplot objects Parameters ---------- bold : bool boolean indicating if font is bold (default is True) italic : bool boolean indicating if font is italic (default is True) fontsize : int font size (default is 9 point) Returns ------- """ if "Univers" in self.family: reset_family = True else: reset_family = False family = self.family if bold: weight = "bold" if reset_family: family = "Univers 67" else: weight = "normal" if reset_family: family = "Univers 57" if italic: if reset_family: family += " Condensed Oblique" style = "oblique" else: style = "italic" else: if reset_family: family += " Condensed" style = "normal" # define fontspec dictionary fontspec = { "family": family, "size": fontsize, "weight": weight, "style": style, } if self.verbose: sys.stdout.write("font specifications:\n ") for key, value in fontspec.items(): sys.stdout.write("{}={} ".format(key, value)) sys.stdout.write("\n") return fontspec def _set_fontfamily(self, family): """Set font family to Liberation Sans Narrow on linux if default Arial Narrow is being used Parameters ---------- family : str font family name (default is Arial Narrow) Returns ------- family : str font family name """ if sys.platform.lower() in ("linux",): if family == "Arial Narrow": family = "Liberation Sans Narrow" return family ```
{ "source": "jdhughes-usgs/pymake", "score": 2 }
#### File: pymake/autotest/ci_setup.py ```python import os import shutil import pymake temp_pth = "temp" if not os.path.exists(temp_pth): os.makedirs(temp_pth) mf6_exdir = os.path.join(temp_pth, "mf6examples") def download_mf6_examples(verbose=False): """Download mf6 examples and return location of folder""" target = "mf6" pm = pymake.Pymake(verbose=True) pm.target = target # download the modflow 6 release pm.download_target(target, download_path=temp_pth) assert pm.download, "could not download {} distribution".format(target) # get program dictionary prog_dict = pymake.usgs_program_data.get_target(target) # set path to example temp_download_dir = os.path.join(temp_pth, prog_dict.dirname) temp_dir = os.path.join(temp_download_dir, "examples") print("copying files to...{}".format(mf6_exdir)) shutil.copytree(temp_dir, mf6_exdir) print("removing...{} directory".format(temp_download_dir)) shutil.rmtree(temp_download_dir) return os.path.abspath(mf6_exdir) def examples_list(verbose=False): """Build list of examples Returns ------- """ exclude_models = ("lnf",) exclude_examples = ( "sagehen", "ex-gwt-keating", ) src_folders = [] for dirName, subdirList, fileList in os.walk(mf6_exdir): useModel = True for exclude in exclude_models: if exclude in dirName: useModel = False break if useModel: for exclude in exclude_examples: if exclude in dirName: useModel = False break if useModel: for file_name in fileList: if file_name.lower() == "mfsim.nam": if verbose: print("Found directory: {}".format(dirName)) src_folders.append(dirName) src_folders = sorted(src_folders) fpth = os.path.join(mf6_exdir, "mf6examples.txt") f = open(fpth, "w") for idx, folder in enumerate(src_folders): if verbose: if idx == 0: print("\n\nMODFLOW 6 examples:\n{}".format(78 * "-")) print("{:>3d}: {}".format(idx + 1, folder)) f.write("{}\n".format(os.path.abspath(folder))) f.close() return if __name__ == "__main__": mf6pth = download_mf6_examples(verbose=True) examples_list(verbose=True) ``` #### File: pymake/autotest/t002_test.py ```python import os import sys import shutil import pymake import flopy import pytest # determine if running on a continuous integration server is_CI = "CI" in os.environ # define program data target = "swtv4" if sys.platform.lower() == "win32": target += ".exe" # get program dictionary prog_dict = pymake.usgs_program_data.get_target(target) # set up paths dstpth = os.path.join("temp") if not os.path.exists(dstpth): os.makedirs(dstpth) swtpth = os.path.join(dstpth, prog_dict.dirname) expth = os.path.join(swtpth, "examples") deppth = os.path.join(swtpth, "dependencies") srcpth = os.path.join(swtpth, prog_dict.srcdir) epth = os.path.abspath(os.path.join(dstpth, target)) name_files = sorted( [ "4_hydrocoin/seawat.nam", "5_saltlake/seawat.nam", "2_henry/1_classic_case1/seawat.nam", "2_henry/4_VDF_uncpl_Trans/seawat.nam", "2_henry/5_VDF_DualD_Trans/seawat.nam", "2_henry/6_age_simulation/henry_mod.nam", "2_henry/2_classic_case2/seawat.nam", "2_henry/3_VDF_no_Trans/seawat.nam", "1_box/case1/seawat.nam", "1_box/case2/seawat.nam", "3_elder/seawat.nam", ] ) # add path to name_files for idx, namefile in enumerate(name_files): name_files[idx] = os.path.join(expth, namefile) pm = pymake.Pymake(verbose=True) pm.target = target pm.appdir = dstpth pm.double = True def edit_namefile(namefile): # read existing namefile f = open(namefile, "r") lines = f.read().splitlines() f.close() # remove global line f = open(namefile, "w") for line in lines: if "global" in line.lower(): continue f.write("{}\n".format(line)) f.close() def clean_up(): print("Removing temporary build directories") dirs_temp = [os.path.join("obj_temp"), os.path.join("mod_temp")] for d in dirs_temp: if os.path.isdir(d): shutil.rmtree(d) # finalize pymake object pm.finalize() if os.path.isfile(epth): print("Removing " + target) os.remove(epth) return def run_seawat(fn): # edit the name files edit_namefile(fn) # run the models success, buff = flopy.run_model( epth, os.path.basename(fn), model_ws=os.path.dirname(fn), silent=False ) errmsg = "could not run...{}".format(os.path.basename(fn)) assert success, errmsg return def build_seawat_dependency_graphs(): success = True build_graphs = True if is_CI: if "linux" not in sys.platform.lower(): build_graphs = False if build_graphs: if os.path.exists(epth): # build dependencies output directory if not os.path.exists(deppth): os.makedirs(deppth) # build dependency graphs print("building dependency graphs") pymake.make_plots(srcpth, deppth, verbose=True) # test that the dependency figure for the SEAWAT main exists findf = os.path.join(deppth, "swt_v4.f.png") success = os.path.isfile(findf) assert success, "could not find {}".format(findf) assert success, "could not build dependency graphs" return @pytest.mark.base @pytest.mark.regression def test_download(): # Remove the existing seawat directory if it exists if os.path.isdir(swtpth): shutil.rmtree(swtpth) # download the target pm.download_target(target, download_path=dstpth) assert pm.download, "could not download {}".format(target) @pytest.mark.base @pytest.mark.regression def test_compile(): assert pm.build() == 0, "could not compile {}".format(target) @pytest.mark.regression @pytest.mark.parametrize("fn", name_files) def test_seawat(fn): run_seawat(fn) @pytest.mark.regression def test_dependency_graphs(): build_seawat_dependency_graphs() @pytest.mark.base @pytest.mark.regression def test_clean_up(): clean_up() if __name__ == "__main__": test_download() test_compile() for fn in name_files: run_seawat(fn) test_dependency_graphs() test_clean_up() ``` #### File: pymake/autotest/t010_test.py ```python import os import sys import shutil import subprocess import pymake import pytest # use the line below to set fortran compiler using environmental variables # if sys.platform.lower() == "win32": # os.environ["CC"] = "icl" # else: # os.environ["CC"] = "icc" # define program data target = "gridgen" if sys.platform.lower() == "win32": target += ".exe" # get program dictionary prog_dict = pymake.usgs_program_data.get_target(target) # set up paths dstpth = os.path.join("temp", "t010") if not os.path.exists(dstpth): os.makedirs(dstpth) ver = prog_dict.version pth = os.path.join(dstpth, prog_dict.dirname) expth = os.path.join(pth, "examples", "biscayne") exe_name = os.path.join(dstpth, target) pm = pymake.Pymake(verbose=True) pm.target = target pm.appdir = dstpth env_var = os.environ.get("CC") if env_var is not None: pm.cc = env_var else: pm.cc = "g++" pm.fc = None pm.inplace = True pm.makeclean = True biscayne_cmds = [ "buildqtg action01_buildqtg.dfn", "grid02qtg-to-usgdata action02_writeusgdata.dfn", "grid01mfg-to-polyshapefile action03_shapefile.dfn", "grid02qtg-to-polyshapefile action03_shapefile.dfn", "grid01mfg-to-pointshapefile action03_shapefile.dfn", "grid02qtg-to-pointshapefile action03_shapefile.dfn", "canal_grid02qtg_lay1_intersect action04_intersect.dfn", "chd_grid02qtg_lay1_intersect action04_intersect.dfn", "grid01mfg-to-vtkfile action05_vtkfile.dfn", "grid02qtg-to-vtkfile action05_vtkfile.dfn", "grid02qtg-to-vtkfilesv action05_vtkfile.dfn", ] def clean_up(): # clean up print("Removing folder " + pth) if os.path.isdir(pth): shutil.rmtree(pth) # finalize pymake object pm.finalize() if os.path.isfile(exe_name): print("Removing " + target) os.remove(exe_name) return def run_command(cmdlist, cwd): p = subprocess.Popen( cmdlist, shell=False, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, cwd=cwd, ) for line in p.stdout.readlines(): print(line.decode().strip()) retval = p.wait() return retval def run_gridgen(cmd): success = False prog = os.path.abspath(exe_name) if os.path.exists(prog): testpth = os.path.abspath(expth) cmdlist = [prog] + cmd.split() print("running {}".format(" ".join(cmdlist))) retcode = run_command(cmdlist, testpth) if retcode == 0: success = True return success @pytest.mark.base @pytest.mark.regression def test_download(): # Remove the existing target download directory if it exists if os.path.isdir(dstpth): shutil.rmtree(dstpth) # download the target pm.download_target(target, download_path=dstpth) assert pm.download, "could not download {} distribution".format(target) @pytest.mark.base @pytest.mark.regression def test_compile(): assert pm.build() == 0, "could not compile {}".format(target) @pytest.mark.regression @pytest.mark.parametrize("cmd", biscayne_cmds) def test_gridgen(cmd): assert run_gridgen(cmd), "could not run {}".format(cmd) @pytest.mark.base @pytest.mark.regression def test_clean_up(): clean_up() if __name__ == "__main__": test_download() test_compile() # for cmd in biscayne_cmds: # run_gridgen(cmd) test_clean_up() ``` #### File: pymake/examples/make_swtv4.py ```python import pymake def make_swtv4(): pymake.build_apps("swtv4") return if __name__ == "__main__": make_swtv4() ``` #### File: pymake/examples/make_triangle.py ```python import pymake def make_triangle(): pymake.build_apps("triangle") if __name__ == "__main__": make_triangle() ``` #### File: pymake/autotest/autotest.py ```python import os import shutil import textwrap import numpy as np ignore_ext = ( ".hds", ".hed", ".bud", ".cbb", ".cbc", ".ddn", ".ucn", ".glo", ".lst", ".list", ".gwv", ".mv", ".out", ) def setup(namefile, dst, remove_existing=True, extrafiles=None): """Setup MODFLOW-based model files for autotests. Parameters ---------- namefile : str MODFLOW-based model name file. dst : str destination path for comparison model or file(s) remove_existing : bool boolean indicating if an existing comparision model or file(s) should be replaced (default is True) extrafiles : str or list of str list of extra files to include in the comparision Returns ------- """ # Construct src pth from namefile or lgr file src = os.path.dirname(namefile) # Create the destination folder, if required create_dir = False if os.path.exists(dst): if remove_existing: print("Removing folder " + dst) shutil.rmtree(dst) create_dir = True else: create_dir = True if create_dir: os.mkdir(dst) # determine if a namefile is a lgr control file - get individual # name files out of the lgr control file namefiles = [namefile] ext = os.path.splitext(namefile)[1] if ".lgr" in ext.lower(): lines = [line.rstrip("\n") for line in open(namefile)] for line in lines: if len(line) < 1: continue if line[0] == "#": continue t = line.split() if ".nam" in t[0].lower(): fpth = os.path.join(src, t[0]) namefiles.append(fpth) # Make list of files to copy files2copy = [] for fpth in namefiles: files2copy.append(os.path.basename(fpth)) ext = os.path.splitext(fpth)[1] # copy additional files contained in the name file and # associated package files if ext.lower() == ".nam": fname = os.path.abspath(fpth) files2copy = files2copy + get_input_files(fname) if extrafiles is not None: if isinstance(extrafiles, str): extrafiles = [extrafiles] for fl in extrafiles: files2copy.append(os.path.basename(fl)) # Copy the files for f in files2copy: srcf = os.path.join(src, f) dstf = os.path.join(dst, f) # Check to see if dstf is going into a subfolder, and create that # subfolder if it doesn't exist sf = os.path.dirname(dstf) if not os.path.isdir(sf): os.makedirs(sf) # Now copy the file if os.path.exists(srcf): print("Copy file '" + srcf + "' -> '" + dstf + "'") shutil.copy(srcf, dstf) else: print(srcf + " does not exist") return def setup_comparison(namefile, dst, remove_existing=True): """Setup a comparison model or comparision file(s) for a MODFLOW-based model. Parameters ---------- namefile : str MODFLOW-based model name file. dst : str destination path for comparison model or file(s) remove_existing : bool boolean indicating if an existing comparision model or file(s) should be replaced (default is True) Returns ------- """ # Construct src pth from namefile src = os.path.dirname(namefile) action = None for root, dirs, files in os.walk(src): dl = [d.lower() for d in dirs] if any(".cmp" in s for s in dl): idx = None for jdx, d in enumerate(dl): if ".cmp" in d: idx = jdx break if idx is not None: if "mf2005.cmp" in dl[idx] or "mf2005" in dl[idx]: action = dirs[idx] elif "mfnwt.cmp" in dl[idx] or "mfnwt" in dl[idx]: action = dirs[idx] elif "mfusg.cmp" in dl[idx] or "mfusg" in dl[idx]: action = dirs[idx] elif "mf6.cmp" in dl[idx] or "mf6" in dl[idx]: action = dirs[idx] elif "libmf6.cmp" in dl[idx] or "libmf6" in dl[idx]: action = dirs[idx] else: action = dirs[idx] break if action is not None: dst = os.path.join(dst, "{}".format(action)) if not os.path.isdir(dst): try: os.mkdir(dst) except: print("Could not make " + dst) # clean directory else: print("cleaning...{}".format(dst)) for root, dirs, files in os.walk(dst): for f in files: tpth = os.path.join(root, f) print(" removing...{}".format(tpth)) os.remove(tpth) for d in dirs: tdir = os.path.join(root, d) print(" removing...{}".format(tdir)) shutil.rmtree(tdir) # copy files cmppth = os.path.join(src, action) files = os.listdir(cmppth) files2copy = [] if action.lower() == ".cmp": for file in files: if ".cmp" in os.path.splitext(file)[1].lower(): files2copy.append(os.path.join(cmppth, file)) for srcf in files2copy: f = os.path.basename(srcf) dstf = os.path.join(dst, f) # Now copy the file if os.path.exists(srcf): print("Copy file '" + srcf + "' -> '" + dstf + "'") shutil.copy(srcf, dstf) else: print(srcf + " does not exist") else: for file in files: if ".nam" in os.path.splitext(file)[1].lower(): files2copy.append( os.path.join(cmppth, os.path.basename(file)) ) nf = os.path.join(src, action, os.path.basename(file)) setup(nf, dst, remove_existing=remove_existing) break return action def teardown(src): """Teardown a autotest directory. Parameters ---------- src : str autotest directory to teardown Returns ------- """ if os.path.exists(src): print("Removing folder " + src) shutil.rmtree(src) return def get_input_files(namefile): """Return a list of all the input files in this model. Parameters ---------- namefile : str path to a MODFLOW-based model name file Returns ------- filelist : list list of MODFLOW-based model input files """ srcdir = os.path.dirname(namefile) filelist = [] fname = os.path.join(srcdir, namefile) with open(fname, "r") as f: lines = f.readlines() for line in lines: ll = line.strip().split() if len(ll) < 2: continue if line.strip()[0] in ["#", "!"]: continue ext = os.path.splitext(ll[2])[1] if ext.lower() not in ignore_ext: if len(ll) > 3: if "replace" in ll[3].lower(): continue filelist.append(ll[2]) # Now go through every file and look for other files to copy, # such as 'OPEN/CLOSE'. If found, then add that file to the # list of files to copy. otherfiles = [] for fname in filelist: fname = os.path.join(srcdir, fname) try: f = open(fname, "r") for line in f: # Skip invalid lines ll = line.strip().split() if len(ll) < 2: continue if line.strip()[0] in ["#", "!"]: continue if "OPEN/CLOSE" in line.upper(): for i, s in enumerate(ll): if "OPEN/CLOSE" in s.upper(): stmp = ll[i + 1] stmp = stmp.replace('"', "") stmp = stmp.replace("'", "") otherfiles.append(stmp) break except: print(fname + " does not exist") filelist = filelist + otherfiles return filelist def get_namefiles(pth, exclude=None): """Search through a path (pth) for all .nam files. Parameters ---------- pth : str path to model files exclude : str or lst File or list of files to exclude from the search (default is None) Returns ------- namefiles : lst List of namefiles with paths """ namefiles = [] for root, _, files in os.walk(pth): namefiles += [ os.path.join(root, file) for file in files if file.endswith(".nam") ] if exclude is not None: if isinstance(exclude, str): exclude = [exclude] exclude = [e.lower() for e in exclude] pop_list = [] for namefile in namefiles: for e in exclude: if e in namefile.lower(): pop_list.append(namefile) for e in pop_list: namefiles.remove(e) return namefiles def get_entries_from_namefile(namefile, ftype=None, unit=None, extension=None): """Get entries from a namefile. Can select using FTYPE, UNIT, or file extension. Parameters ---------- namefile : str path to a MODFLOW-based model name file ftype : str package type unit : int file unit number extension : str file extension Returns ------- entries : list of tuples list of tuples containing FTYPE, UNIT, FNAME, STATUS for each namefile entry that meets a user-specified value. """ entries = [] f = open(namefile, "r") for line in f: if line.strip() == "": continue if line[0] == "#": continue ll = line.strip().split() if len(ll) < 3: continue status = "UNKNOWN" if len(ll) > 3: status = ll[3].upper() if ftype is not None: if ftype.upper() == ll[0].upper(): filename = os.path.join(os.path.split(namefile)[0], ll[2]) entries.append((filename, ll[0], ll[1], status)) elif unit is not None: if int(unit) == int(ll[1]): filename = os.path.join(os.path.split(namefile)[0], ll[2]) entries.append((filename, ll[0], ll[1], status)) elif extension is not None: filename = os.path.join(os.path.split(namefile)[0], ll[2]) ext = os.path.splitext(filename)[1] if len(ext) > 0: if ext[0] == ".": ext = ext[1:] if extension.lower() == ext.lower(): entries.append((filename, ll[0], ll[1], status)) f.close() if len(entries) < 1: entries.append((None, None, None, None)) return entries def get_sim_name(namefiles, rootpth=None): """Get simulation name. Parameters ---------- namefiles : str or list of strings path(s) to MODFLOW-based model name files rootpth : str optional root directory path (default is None) Returns ------- simname : list list of namefiles without the file extension """ if isinstance(namefiles, str): namefiles = [namefiles] sim_name = [] for namefile in namefiles: t = namefile.split(os.sep) if rootpth is None: idx = -1 else: idx = t.index(os.path.split(rootpth)[1]) # build dst with everything after the rootpth and before # the namefile file name. dst = "" if idx < len(t): for d in t[idx + 1 : -1]: dst += "{}_".format(d) # add namefile basename without extension dst += t[-1].replace(".nam", "") sim_name.append(dst) return sim_name # modflow 6 readers and copiers def setup_mf6( src, dst, mfnamefile="mfsim.nam", extrafiles=None, remove_existing=True ): """Copy all of the MODFLOW 6 input files from the src directory to the dst directory. Parameters ---------- src : src directory path with original MODFLOW 6 input files dst : str directory path that original MODFLOW 6 input files will be copied to mfnamefile : str optional MODFLOW 6 simulation name file (default is mfsim.nam) extrafiles : bool boolean indicating if extra files should be included (default is None) remove_existing : bool boolean indicating if existing file in dst should be removed (default is True) Returns ------- mf6inp : list list of MODFLOW 6 input files mf6outp : list list of MODFLOW 6 output files """ # Create the destination folder create_dir = False if os.path.exists(dst): if remove_existing: print("Removing folder " + dst) shutil.rmtree(dst) create_dir = True else: create_dir = True if create_dir: os.makedirs(dst) # Make list of files to copy fname = os.path.join(src, mfnamefile) fname = os.path.abspath(fname) mf6inp, mf6outp = get_mf6_files(fname) files2copy = [mfnamefile] + mf6inp # determine if there are any .ex files exinp = [] for f in mf6outp: ext = os.path.splitext(f)[1] if ext.lower() == ".hds": pth = os.path.join(src, f + ".ex") if os.path.isfile(pth): exinp.append(f + ".ex") if len(exinp) > 0: files2copy += exinp if extrafiles is not None: files2copy += extrafiles # Copy the files for f in files2copy: srcf = os.path.join(src, f) dstf = os.path.join(dst, f) # Check to see if dstf is going into a subfolder, and create that # subfolder if it doesn't exist sf = os.path.dirname(dstf) if not os.path.isdir(sf): try: os.mkdir(sf) except: print("Could not make " + sf) # Now copy the file if os.path.exists(srcf): print("Copy file '" + srcf + "' -> '" + dstf + "'") shutil.copy(srcf, dstf) else: print(srcf + " does not exist") return mf6inp, mf6outp def get_mf6_comparison(src): """Determine comparison type for MODFLOW 6 simulation. Parameters ---------- src : str directory path to search for comparison types Returns ------- action : str comparison type """ action = None # Possible comparison - the order matters optcomp = ( "compare", ".cmp", "mf2005", "mf2005.cmp", "mfnwt", "mfnwt.cmp", "mfusg", "mfusg.cmp", "mflgr", "mflgr.cmp", "libmf6", "libmf6.cmp", "mf6", "mf6.cmp", ) # Construct src pth from namefile action = None for _, dirs, _ in os.walk(src): dl = [d.lower() for d in dirs] for oc in optcomp: if any(oc in s for s in dl): action = oc break return action def setup_mf6_comparison(src, dst, remove_existing=True): """Setup comparision for MODFLOW 6 simulation. Parameters ---------- src : src directory path with original MODFLOW 6 input files dst : str directory path that original MODFLOW 6 input files will be copied to remove_existing : bool boolean indicating if existing file in dst should be removed (default is True) Returns ------- action : str comparison type """ # get the type of comparison to use (compare, mf2005, etc.) action = get_mf6_comparison(src) if action is not None: dst = os.path.join(dst, "{}".format(action)) if not os.path.isdir(dst): try: os.mkdir(dst) except: print("Could not make " + dst) # clean directory else: print("cleaning...{}".format(dst)) for root, dirs, files in os.walk(dst): for f in files: tpth = os.path.join(root, f) print(" removing...{}".format(tpth)) os.remove(tpth) for d in dirs: tdir = os.path.join(root, d) print(" removing...{}".format(tdir)) shutil.rmtree(tdir) # copy files cmppth = os.path.join(src, action) files = os.listdir(cmppth) files2copy = [] if action.lower() == "compare" or action.lower() == ".cmp": for file in files: if ".cmp" in os.path.splitext(file)[1].lower(): files2copy.append(os.path.join(cmppth, file)) for srcf in files2copy: f = os.path.basename(srcf) dstf = os.path.join(dst, f) # Now copy the file if os.path.exists(srcf): print("Copy file '" + srcf + "' -> '" + dstf + "'") shutil.copy(srcf, dstf) else: print(srcf + " does not exist") else: if "mf6" in action.lower(): for file in files: if "mfsim.nam" in file.lower(): srcf = os.path.join(cmppth, os.path.basename(file)) files2copy.append(srcf) srcdir = os.path.join(src, action) setup_mf6(srcdir, dst, remove_existing=remove_existing) break else: for file in files: if ".nam" in os.path.splitext(file)[1].lower(): srcf = os.path.join(cmppth, os.path.basename(file)) files2copy.append(srcf) nf = os.path.join(src, action, os.path.basename(file)) setup(nf, dst, remove_existing=remove_existing) break return action def get_mf6_nper(tdisfile): """Return the number of stress periods in the MODFLOW 6 model. Parameters ---------- tdisfile : str path to the TDIS file Returns ------- nper : int number of stress periods in the simulation """ with open(tdisfile, "r") as f: lines = f.readlines() line = [line for line in lines if "NPER" in line.upper()][0] nper = line.strip().split()[1] return nper def get_mf6_mshape(disfile): """Return the shape of the MODFLOW 6 model. Parameters ---------- disfile : str path to a MODFLOW 6 discretization file Returns ------- mshape : tuple tuple with the shape of the MODFLOW 6 model. """ with open(disfile, "r") as f: lines = f.readlines() d = {} for line in lines: # Skip over blank and commented lines ll = line.strip().split() if len(ll) < 2: continue if line.strip()[0] in ["#", "!"]: continue for key in ["NODES", "NCPL", "NLAY", "NROW", "NCOL"]: if ll[0].upper() in key: d[key] = int(ll[1]) if "NODES" in d: mshape = (d["NODES"],) elif "NCPL" in d: mshape = (d["NLAY"], d["NCPL"]) elif "NLAY" in d: mshape = (d["NLAY"], d["NROW"], d["NCOL"]) else: print(d) raise Exception("Could not determine model shape") return mshape def get_mf6_files(mfnamefile): """Return a list of all the MODFLOW 6 input and output files in this model. Parameters ---------- mfnamefile : str path to the MODFLOW 6 simulation name file Returns ------- filelist : list list of MODFLOW 6 input files in a simulation outplist : list list of MODFLOW 6 output files in a simulation """ srcdir = os.path.dirname(mfnamefile) filelist = [] outplist = [] filekeys = ["TDIS6", "GWF6", "GWT", "<KEY>", "GWF-GWT", "IMS6"] namefilekeys = ["GWF6", "GWT"] namefiles = [] with open(mfnamefile) as f: # Read line and skip comments lines = f.readlines() for line in lines: # Skip over blank and commented lines ll = line.strip().split() if len(ll) < 2: continue if line.strip()[0] in ["#", "!"]: continue for key in filekeys: if key in ll[0].upper(): fname = ll[1] filelist.append(fname) for key in namefilekeys: if key in ll[0].upper(): fname = ll[1] namefiles.append(fname) # Go through name files and get files for namefile in namefiles: fname = os.path.join(srcdir, namefile) with open(fname, "r") as f: lines = f.readlines() insideblock = False for line in lines: ll = line.upper().strip().split() if len(ll) < 2: continue if ll[0] in "BEGIN" and ll[1] in "PACKAGES": insideblock = True continue if ll[0] in "END" and ll[1] in "PACKAGES": insideblock = False if insideblock: ll = line.strip().split() if len(ll) < 2: continue if line.strip()[0] in ["#", "!"]: continue filelist.append(ll[1]) # Recursively go through every file and look for other files to copy, # such as 'OPEN/CLOSE' and 'TIMESERIESFILE'. If found, then # add that file to the list of files to copy. flist = filelist # olist = outplist while True: olist = [] flist, olist = _get_mf6_external_files(srcdir, olist, flist) # add to filelist if len(flist) > 0: filelist = filelist + flist # add to outplist if len(olist) > 0: outplist = outplist + olist # terminate loop if no additional files # if len(flist) < 1 and len(olist) < 1: if len(flist) < 1: break return filelist, outplist def _get_mf6_external_files(srcdir, outplist, files): """Get list of external files in a MODFLOW 6 simulation. Parameters ---------- srcdir : str path to a directory containing a MODFLOW 6 simulation outplist : list list of output files in a MODFLOW 6 simulation files : list list of MODFLOW 6 name files Returns ------- """ extfiles = [] for fname in files: fname = os.path.join(srcdir, fname) try: f = open(fname, "r") for line in f: # Skip invalid lines ll = line.strip().split() if len(ll) < 2: continue if line.strip()[0] in ["#", "!"]: continue if "OPEN/CLOSE" in line.upper(): for i, s in enumerate(ll): if s.upper() == "OPEN/CLOSE": stmp = ll[i + 1] stmp = stmp.replace('"', "") stmp = stmp.replace("'", "") extfiles.append(stmp) break if "TS6" in line.upper(): for i, s in enumerate(ll): if s.upper() == "FILEIN": stmp = ll[i + 1] stmp = stmp.replace('"', "") stmp = stmp.replace("'", "") extfiles.append(stmp) break if "TAS6" in line.upper(): for i, s in enumerate(ll): if s.upper() == "FILEIN": stmp = ll[i + 1] stmp = stmp.replace('"', "") stmp = stmp.replace("'", "") extfiles.append(stmp) break if "OBS6" in line.upper(): for i, s in enumerate(ll): if s.upper() == "FILEIN": stmp = ll[i + 1] stmp = stmp.replace('"', "") stmp = stmp.replace("'", "") extfiles.append(stmp) break if "EXTERNAL" in line.upper(): for i, s in enumerate(ll): if s.upper() == "EXTERNAL": stmp = ll[i + 1] stmp = stmp.replace('"', "") stmp = stmp.replace("'", "") extfiles.append(stmp) break if "FILE" in line.upper(): for i, s in enumerate(ll): if s.upper() == "FILEIN": stmp = ll[i + 1] stmp = stmp.replace('"', "") stmp = stmp.replace("'", "") extfiles.append(stmp) break if "FILE" in line.upper(): for i, s in enumerate(ll): if s.upper() == "FILEOUT": stmp = ll[i + 1] stmp = stmp.replace('"', "") stmp = stmp.replace("'", "") outplist.append(stmp) break except: print("could not get a list of external mf6 files") return extfiles, outplist def get_mf6_ftypes(namefile, ftypekeys): """Return a list of FTYPES that are in the name file and in ftypekeys. Parameters ---------- namefile : str path to a MODFLOW 6 name file ftypekeys : list list of desired FTYPEs Returns ------- ftypes : list list of FTYPES that match ftypekeys in namefile """ with open(namefile, "r") as f: lines = f.readlines() ftypes = [] for line in lines: # Skip over blank and commented lines ll = line.strip().split() if len(ll) < 2: continue if line.strip()[0] in ["#", "!"]: continue for key in ftypekeys: if ll[0].upper() in key: ftypes.append(ll[0]) return ftypes def get_mf6_blockdata(f, blockstr): """Return list with all non comments between start and end of block specified by blockstr. Parameters ---------- f : file object open file object blockstr : str name of block to search Returns ------- data : list list of data in specified block """ data = [] # find beginning of block for line in f: if line[0] != "#": t = line.split() if t[0].lower() == "begin" and t[1].lower() == blockstr.lower(): break for line in f: if line[0] != "#": t = line.split() if t[0].lower() == "end" and t[1].lower() == blockstr.lower(): break else: data.append(line.rstrip()) return data # compare functions def compare_budget( namefile1, namefile2, max_cumpd=0.01, max_incpd=0.01, outfile=None, files1=None, files2=None, ): """Compare the budget results from two simulations. Parameters ---------- namefile1 : str namefile path for base model namefile2 : str namefile path for comparison model max_cumpd : float maximum percent discrepancy allowed for cumulative budget terms (default is 0.01) max_incpd : float maximum percent discrepancy allowed for incremental budget terms (default is 0.01) outfile : str budget comparison output file name. If outfile is None, no comparison output is saved. (default is None) files1 : str base model output file. If files1 is not None, results will be extracted from files1 and namefile1 will not be used. (default is None) files2 : str comparison model output file. If files2 is not None, results will be extracted from files2 and namefile2 will not be used. (default is None) Returns ------- success : bool boolean indicating if the difference between budgets are less than max_cumpd and max_incpd """ try: import flopy except: msg = "flopy not available - cannot use compare_budget" raise ValueError(msg) # headers headers = ("INCREMENTAL", "CUMULATIVE") direction = ("IN", "OUT") # Get name of list files lst_file1 = None if files1 is None: lst_file = get_entries_from_namefile(namefile1, "list") lst_file1 = lst_file[0][0] else: if isinstance(files1, str): files1 = [files1] for file in files1: if ( "list" in os.path.basename(file).lower() or "lst" in os.path.basename(file).lower() ): lst_file1 = file break lst_file2 = None if files2 is None: lst_file = get_entries_from_namefile(namefile2, "list") lst_file2 = lst_file[0][0] else: if isinstance(files2, str): files2 = [files2] for file in files2: if ( "list" in os.path.basename(file).lower() or "lst" in os.path.basename(file).lower() ): lst_file2 = file break # Determine if there are two files to compare if lst_file1 is None or lst_file2 is None: print("lst_file1 or lst_file2 is None") print("lst_file1: {}".format(lst_file1)) print("lst_file2: {}".format(lst_file2)) return True # Open output file if outfile is not None: f = open(outfile, "w") f.write("Created by pymake.autotest.compare\n") # Initialize SWR budget objects lst1obj = flopy.utils.MfusgListBudget(lst_file1) lst2obj = flopy.utils.MfusgListBudget(lst_file2) # Determine if there any SWR entries in the budget file if not lst1obj.isvalid() or not lst2obj.isvalid(): return True # Get numpy budget tables for lst_file1 lst1 = [] lst1.append(lst1obj.get_incremental()) lst1.append(lst1obj.get_cumulative()) # Get numpy budget tables for lst_file2 lst2 = [] lst2.append(lst2obj.get_incremental()) lst2.append(lst2obj.get_cumulative()) icnt = 0 v0 = np.zeros(2, dtype=float) v1 = np.zeros(2, dtype=float) err = np.zeros(2, dtype=float) # Process cumulative and incremental for idx in range(2): if idx > 0: max_pd = max_cumpd else: max_pd = max_incpd kper = lst1[idx]["stress_period"] kstp = lst1[idx]["time_step"] # Process each time step for jdx in range(kper.shape[0]): err[:] = 0.0 t0 = lst1[idx][jdx] t1 = lst2[idx][jdx] if outfile is not None: maxcolname = 0 for colname in t0.dtype.names: maxcolname = max(maxcolname, len(colname)) s = 2 * "\n" s += "STRESS PERIOD: {} TIME STEP: {}".format( kper[jdx] + 1, kstp[jdx] + 1 ) f.write(s) if idx == 0: f.write("\nINCREMENTAL BUDGET\n") else: f.write("\nCUMULATIVE BUDGET\n") for i, colname in enumerate(t0.dtype.names): if i == 0: s = "{:<21} {:>21} {:>21} {:>21}\n".format( "Budget Entry", "Model 1", "Model 2", "Difference" ) f.write(s) s = 87 * "-" + "\n" f.write(s) diff = t0[colname] - t1[colname] s = "{:<21} {:>21} {:>21} {:>21}\n".format( colname, t0[colname], t1[colname], diff ) f.write(s) v0[0] = t0["TOTAL_IN"] v1[0] = t1["TOTAL_IN"] if v0[0] > 0.0: err[0] = 100.0 * (v1[0] - v0[0]) / v0[0] v0[1] = t0["TOTAL_OUT"] v1[1] = t1["TOTAL_OUT"] if v0[1] > 0.0: err[1] = 100.0 * (v1[1] - v0[1]) / v0[1] for kdx, t in enumerate(err): if abs(t) > max_pd: icnt += 1 if outfile is not None: e = ( '"{} {}" percent difference ({})'.format( headers[idx], direction[kdx], t ) + " for stress period {} and time step {} > {}.".format( kper[jdx] + 1, kstp[jdx] + 1, max_pd ) + " Reference value = {}. Simulated value = {}.".format( v0[kdx], v1[kdx] ) ) e = textwrap.fill( e, width=70, initial_indent=" ", subsequent_indent=" ", ) f.write("{}\n".format(e)) f.write("\n") # Close output file if outfile is not None: f.close() # test for failure success = True if icnt > 0: success = False return success def compare_swrbudget( namefile1, namefile2, max_cumpd=0.01, max_incpd=0.01, outfile=None, files1=None, files2=None, ): """Compare the SWR budget results from two simulations. Parameters ---------- namefile1 : str namefile path for base model namefile2 : str namefile path for comparison model max_cumpd : float maximum percent discrepancy allowed for cumulative budget terms (default is 0.01) max_incpd : float maximum percent discrepancy allowed for incremental budget terms (default is 0.01) outfile : str budget comparison output file name. If outfile is None, no comparison output is saved. (default is None) files1 : str base model output file. If files1 is not None, results will be extracted from files1 and namefile1 will not be used. (default is None) files2 : str comparison model output file. If files2 is not None, results will be extracted from files2 and namefile2 will not be used. (default is None) Returns ------- success : bool boolean indicating if the difference between budgets are less than max_cumpd and max_incpd """ try: import flopy except: msg = "flopy not available - cannot use compare_swrbudget" raise ValueError(msg) # headers headers = ("INCREMENTAL", "CUMULATIVE") direction = ("IN", "OUT") # Get name of list files list1 = None if files1 is None: lst = get_entries_from_namefile(namefile1, "list") list1 = lst[0][0] else: for file in files1: if ( "list" in os.path.basename(file).lower() or "lst" in os.path.basename(file).lower() ): list1 = file break list2 = None if files2 is None: lst = get_entries_from_namefile(namefile2, "list") list2 = lst[0][0] else: for file in files2: if ( "list" in os.path.basename(file).lower() or "lst" in os.path.basename(file).lower() ): list2 = file break # Determine if there are two files to compare if list1 is None or list2 is None: return True # Initialize SWR budget objects lst1obj = flopy.utils.SwrListBudget(list1) lst2obj = flopy.utils.SwrListBudget(list2) # Determine if there any SWR entries in the budget file if not lst1obj.isvalid() or not lst2obj.isvalid(): return True # Get numpy budget tables for list1 lst1 = [] lst1.append(lst1obj.get_incremental()) lst1.append(lst1obj.get_cumulative()) # Get numpy budget tables for list2 lst2 = [] lst2.append(lst2obj.get_incremental()) lst2.append(lst2obj.get_cumulative()) icnt = 0 v0 = np.zeros(2, dtype=float) v1 = np.zeros(2, dtype=float) err = np.zeros(2, dtype=float) # Open output file if outfile is not None: f = open(outfile, "w") f.write("Created by pymake.autotest.compare\n") # Process cumulative and incremental for idx in range(2): if idx > 0: max_pd = max_cumpd else: max_pd = max_incpd kper = lst1[idx]["stress_period"] kstp = lst1[idx]["time_step"] # Process each time step for jdx in range(kper.shape[0]): err[:] = 0.0 t0 = lst1[idx][jdx] t1 = lst2[idx][jdx] if outfile is not None: maxcolname = 0 for colname in t0.dtype.names: maxcolname = max(maxcolname, len(colname)) s = 2 * "\n" s += "STRESS PERIOD: {} TIME STEP: {}".format( kper[jdx] + 1, kstp[jdx] + 1 ) f.write(s) if idx == 0: f.write("\nINCREMENTAL BUDGET\n") else: f.write("\nCUMULATIVE BUDGET\n") for i, colname in enumerate(t0.dtype.names): if i == 0: s = "{:<21} {:>21} {:>21} {:>21}\n".format( "Budget Entry", "Model 1", "Model 2", "Difference" ) f.write(s) s = 87 * "-" + "\n" f.write(s) diff = t0[colname] - t1[colname] s = "{:<21} {:>21} {:>21} {:>21}\n".format( colname, t0[colname], t1[colname], diff ) f.write(s) v0[0] = t0["TOTAL_IN"] v1[0] = t1["TOTAL_IN"] if v0[0] > 0.0: err[0] = 100.0 * (v1[0] - v0[0]) / v0[0] v0[1] = t0["TOTAL_OUT"] v1[1] = t1["TOTAL_OUT"] if v0[1] > 0.0: err[1] = 100.0 * (v1[1] - v0[1]) / v0[1] for kdx, t in enumerate(err): if abs(t) > max_pd: icnt += 1 e = ( '"{} {}" percent difference ({})'.format( headers[idx], direction[kdx], t ) + " for stress period {} and time step {} > {}.".format( kper[jdx] + 1, kstp[jdx] + 1, max_pd ) + " Reference value = {}. Simulated value = {}.".format( v0[kdx], v1[kdx] ) ) e = textwrap.fill( e, width=70, initial_indent=" ", subsequent_indent=" ", ) f.write("{}\n".format(e)) f.write("\n") # Close output file if outfile is not None: f.close() # test for failure success = True if icnt > 0: success = False return success def compare_heads( namefile1, namefile2, precision="auto", text="head", text2=None, htol=0.001, outfile=None, files1=None, files2=None, difftol=False, verbose=False, exfile=None, exarr=None, maxerr=None, ): """Compare the head results from two simulations. Parameters ---------- namefile1 : str namefile path for base model namefile2 : str namefile path for comparison model precision : str precision for binary head file ("auto", "single", or "double") default is "auto" htol : float maximum allowed head difference (default is 0.001) outfile : str head comparison output file name. If outfile is None, no comparison output is saved. (default is None) files1 : str base model output file. If files1 is not None, results will be extracted from files1 and namefile1 will not be used. (default is None) files2 : str comparison model output file. If files2 is not None, results will be extracted from files2 and namefile2 will not be used. (default is None) difftol : bool boolean determining if the absolute value of the head difference greater than htol should be evaluated (default is False) verbose : bool boolean indicating if verbose output should be written to the terminal (default is False) exfile : str path to a file with exclusion array data. Head differences will not be evaluated where exclusion array values are greater than zero. (default is None) exarr : numpy.ndarry exclusion array. Head differences will not be evaluated where exclusion array values are greater than zero. (default is None). maxerr : int maximum number of head difference greater than htol that should be reported. If maxerr is None, all head difference greater than htol will be reported. (default is None) Returns ------- success : bool boolean indicating if the head differences are less than htol. """ try: import flopy except: msg = "flopy not available - cannot use compare_heads" raise ValueError(msg) if text2 is None: text2 = text dbs = "DATA(BINARY)" # Get head info for namefile1 hfpth1 = None status1 = dbs if files1 is None: # Get oc info, and return if OC not included in models ocf1 = get_entries_from_namefile(namefile1, "OC") if ocf1[0][0] is None: return True hu1, hfpth1, du1, _ = flopy.modflow.ModflowOc.get_ocoutput_units( ocf1[0][0] ) if text.lower() == "head": iut = hu1 elif text.lower() == "drawdown": iut = du1 if iut != 0: entries = get_entries_from_namefile(namefile1, unit=abs(iut)) hfpth1, status1 = entries[0][0], entries[0][1] else: if isinstance(files1, str): files1 = [files1] for file in files1: if text.lower() == "head": if ( "hds" in os.path.basename(file).lower() or "hed" in os.path.basename(file).lower() ): hfpth1 = file break elif text.lower() == "drawdown": if "ddn" in os.path.basename(file).lower(): hfpth1 = file break elif text.lower() == "concentration": if "ucn" in os.path.basename(file).lower(): hfpth1 = file break else: hfpth1 = file break # Get head info for namefile2 hfpth2 = None status2 = dbs if files2 is None: # Get oc info, and return if OC not included in models ocf2 = get_entries_from_namefile(namefile2, "OC") if ocf2[0][0] is None: return True hu2, hfpth2, du2, dfpth2 = flopy.modflow.ModflowOc.get_ocoutput_units( ocf2[0][0] ) if text.lower() == "head": iut = hu2 elif text.lower() == "drawdown": iut = du2 if iut != 0: entries = get_entries_from_namefile(namefile2, unit=abs(iut)) hfpth2, status2 = entries[0][0], entries[0][1] else: if isinstance(files2, str): files2 = [files2] for file in files2: if text2.lower() == "head": if ( "hds" in os.path.basename(file).lower() or "hed" in os.path.basename(file).lower() ): hfpth2 = file break elif text2.lower() == "drawdown": if "ddn" in os.path.basename(file).lower(): hfpth2 = file break elif text2.lower() == "concentration": if "ucn" in os.path.basename(file).lower(): hfpth2 = file break else: hfpth2 = file break # confirm that there are two files to compare if hfpth1 is None or hfpth2 is None: print("hfpth1 or hfpth2 is None") print("hfpth1: {}".format(hfpth1)) print("hfpth2: {}".format(hfpth2)) return True # make sure the file paths exist if not os.path.isfile(hfpth1) or not os.path.isfile(hfpth2): print("hfpth1 or hfpth2 is not a file") print("hfpth1 isfile: {}".format(os.path.isfile(hfpth1))) print("hfpth2 isfile: {}".format(os.path.isfile(hfpth2))) return False # Open output file if outfile is not None: f = open(outfile, "w") f.write("Created by pymake.autotest.compare\n") f.write( "Performing {} to {} comparison\n".format( text.upper(), text2.upper() ) ) if exfile is not None: f.write("Using exclusion file {}\n".format(exfile)) if exarr is not None: f.write("Using exclusion array\n") msg = "{} is a ".format(hfpth1) if status1 == dbs: msg += "binary file." else: msg += "ascii file." f.write(msg + "\n") msg = "{} is a ".format(hfpth2) if status2 == dbs: msg += "binary file." else: msg += "ascii file." f.write(msg + "\n") # Process exclusion data exd = None # get data from exclusion file if exfile is not None: e = None if isinstance(exfile, str): try: exd = np.genfromtxt(exfile).flatten() except: e = "Could not read exclusion " + "file {}".format( os.path.basename(exfile) ) print(e) return False else: e = "exfile is not a valid file path" print(e) return False # process exclusion array if exarr is not None: e = None if isinstance(exarr, np.ndarray): if exd is None: exd = exarr.flatten() else: exd += exarr.flatten() else: e = "exarr is not a numpy array" print(e) return False # Get head objects status1 = status1.upper() unstructured1 = False if status1 == dbs: headobj1 = flopy.utils.HeadFile( hfpth1, precision=precision, verbose=verbose, text=text ) txt = headobj1.recordarray["text"][0] if isinstance(txt, bytes): txt = txt.decode("utf-8") if "HEADU" in txt: unstructured1 = True headobj1 = flopy.utils.HeadUFile( hfpth1, precision=precision, verbose=verbose ) else: headobj1 = flopy.utils.FormattedHeadFile( hfpth1, verbose=verbose, text=text ) status2 = status2.upper() unstructured2 = False if status2 == dbs: headobj2 = flopy.utils.HeadFile( hfpth2, precision=precision, verbose=verbose, text=text2 ) txt = headobj2.recordarray["text"][0] if isinstance(txt, bytes): txt = txt.decode("utf-8") if "HEADU" in txt: unstructured2 = True headobj2 = flopy.utils.HeadUFile( hfpth2, precision=precision, verbose=verbose ) else: headobj2 = flopy.utils.FormattedHeadFile( hfpth2, verbose=verbose, text=text2 ) # get times times1 = headobj1.get_times() times2 = headobj2.get_times() for (t1, t2) in zip(times1, times2): if not np.allclose([t1], [t2]): msg = "times in two head files are not " + "equal ({},{})".format( t1, t2 ) raise ValueError(msg) kstpkper = headobj1.get_kstpkper() header = ( "{:>15s} {:>15s} {:>15s} {:>15s}\n".format( " ", " ", "MAXIMUM", "EXCEEDS" ) + "{:>15s} {:>15s} {:>15s} {:>15s}\n".format( "STRESS PERIOD", "TIME STEP", "HEAD DIFFERENCE", "CRITERIA" ) + "{0:>15s} {0:>15s} {0:>15s} {0:>15s}\n".format(15 * "-") ) if verbose: print("Comparing results for {} times".format(len(times1))) icnt = 0 # Process cumulative and incremental for idx, (t1, t2) in enumerate(zip(times1, times2)): h1 = headobj1.get_data(totim=t1) if unstructured1: temp = np.array([]) for a in h1: temp = np.hstack((temp, a)) h1 = temp h2 = headobj2.get_data(totim=t2) if unstructured2: temp = np.array([]) for a in h2: temp = np.hstack((temp, a)) h2 = temp if exd is not None: # reshape exd to the shape of the head arrays if idx == 0: e = ( "shape of exclusion data ({})".format(exd.shape) + "can not be reshaped to the size of the " + "head arrays ({})".format(h1.shape) ) if h1.flatten().shape != exd.shape: raise ValueError(e) exd = exd.reshape(h1.shape) iexd = exd > 0 # reset h1 and h2 to the same value in the excluded area h1[iexd] = 0.0 h2[iexd] = 0.0 if difftol: diffmax, indices = _calculate_difftol(h1, h2, htol) else: diffmax, indices = _calculate_diffmax(h1, h2) if outfile is not None: if idx < 1: f.write(header) if diffmax > htol: sexceed = "*" else: sexceed = "" kk1 = kstpkper[idx][1] + 1 kk0 = kstpkper[idx][0] + 1 f.write( "{:15d} {:15d} {:15.6g} {:15s}\n".format( kk1, kk0, diffmax, sexceed ) ) if diffmax >= htol: icnt += 1 if outfile is not None: if difftol: ee = ( "Maximum absolute head difference " + "({}) -- ".format(diffmax) + "{} tolerance exceeded at ".format(htol) + "{} node location(s)".format(indices[0].shape[0]) ) else: ee = ( "Maximum absolute head difference " + "({}) exceeded ".format(diffmax) + "at {} node location(s)".format(indices[0].shape[0]) ) e = textwrap.fill( ee + ":", width=70, initial_indent=" ", subsequent_indent=" ", ) if verbose: f.write("{}\n".format(ee)) print(ee + " at time {}".format(t1)) e = "" ncells = h1.flatten().shape[0] fmtn = "{:" + "{}".format(len(str(ncells))) + "d}" for itupe in indices: for jdx, ind in enumerate(itupe): iv = np.unravel_index(ind, h1.shape) iv = tuple(i + 1 for i in iv) v1 = h1.flatten()[ind] v2 = h2.flatten()[ind] d12 = v1 - v2 # e += ' ' + fmtn.format(jdx + 1) + ' node: ' # e += fmtn.format(ind + 1) # convert to one-based e += " " + fmtn.format(jdx + 1) e += " {}".format(iv) e += " -- " e += "h1: {:20} ".format(v1) e += "h2: {:20} ".format(v2) e += "diff: {:20}\n".format(d12) if isinstance(maxerr, int): if jdx + 1 >= maxerr: break if verbose: f.write("{}\n".format(e)) # Write header again, unless it is the last record if verbose: if idx + 1 < len(times1): f.write("\n{}".format(header)) # Close output file if outfile is not None: f.close() # test for failure success = True if icnt > 0: success = False return success def compare_concs( namefile1, namefile2, precision="auto", ctol=0.001, outfile=None, files1=None, files2=None, difftol=False, verbose=False, ): """Compare the mt3dms and mt3dusgs concentration results from two simulations. Parameters ---------- namefile1 : str namefile path for base model namefile2 : str namefile path for comparison model precision : str precision for binary head file ("auto", "single", or "double") default is "auto" ctol : float maximum allowed concentration difference (default is 0.001) outfile : str concentration comparison output file name. If outfile is None, no comparison output is saved. (default is None) files1 : str base model output file. If files1 is not None, results will be extracted from files1 and namefile1 will not be used. (default is None) files2 : str comparison model output file. If files2 is not None, results will be extracted from files2 and namefile2 will not be used. (default is None) difftol : bool boolean determining if the absolute value of the concentration difference greater than ctol should be evaluated (default is False) verbose : bool boolean indicating if verbose output should be written to the terminal (default is False) Returns ------- success : bool boolean indicating if the concentration differences are less than ctol. Returns ------- """ try: import flopy except: msg = "flopy not available - cannot use compare_concs" raise ValueError(msg) # list of valid extensions valid_ext = ["ucn"] # Get info for first ucn file ufpth1 = None if files1 is None: for ext in valid_ext: ucn = get_entries_from_namefile(namefile1, extension=ext) ufpth = ucn[0][0] if ufpth is not None: ufpth1 = ufpth break if ufpth1 is None: ufpth1 = os.path.join(os.path.dirname(namefile1), "MT3D001.UCN") else: if isinstance(files1, str): files1 = [files1] for file in files1: for ext in valid_ext: if ext in os.path.basename(file).lower(): ufpth1 = file break # Get info for second ucn file ufpth2 = None if files2 is None: for ext in valid_ext: ucn = get_entries_from_namefile(namefile2, extension=ext) ufpth = ucn[0][0] if ufpth is not None: ufpth2 = ufpth break if ufpth2 is None: ufpth2 = os.path.join(os.path.dirname(namefile2), "MT3D001.UCN") else: if isinstance(files2, str): files2 = [files2] for file in files2: for ext in valid_ext: if ext in os.path.basename(file).lower(): ufpth2 = file break # confirm that there are two files to compare if ufpth1 is None or ufpth2 is None: if ufpth1 is None: print(" UCN file 1 not set") if ufpth2 is None: print(" UCN file 2 not set") return True if not os.path.isfile(ufpth1) or not os.path.isfile(ufpth2): if not os.path.isfile(ufpth1): print(" {} does not exist".format(ufpth1)) if not os.path.isfile(ufpth2): print(" {} does not exist".format(ufpth2)) return True # Open output file if outfile is not None: f = open(outfile, "w") f.write("Created by pymake.autotest.compare_concs\n") # Get stage objects uobj1 = flopy.utils.UcnFile(ufpth1, precision=precision, verbose=verbose) uobj2 = flopy.utils.UcnFile(ufpth2, precision=precision, verbose=verbose) # get times times1 = uobj1.get_times() times2 = uobj2.get_times() nt1 = len(times1) nt2 = len(times2) nt = min(nt1, nt2) for (t1, t2) in zip(times1, times2): assert np.allclose( [t1], [t2] ), "times in two ucn files are not " + "equal ({},{})".format(t1, t2) if nt == nt1: kstpkper = uobj1.get_kstpkper() else: kstpkper = uobj2.get_kstpkper() header = ( "{:>15s} {:>15s} {:>15s}\n".format(" ", " ", "MAXIMUM") + "{:>15s} {:>15s} {:>15s}\n".format( "STRESS PERIOD", "TIME STEP", "CONC DIFFERENCE" ) + "{0:>15s} {0:>15s} {0:>15s}\n".format(15 * "-") ) if verbose: print("Comparing results for {} times".format(len(times1))) icnt = 0 # Process cumulative and incremental for idx, time in enumerate(times1[0:nt]): try: u1 = uobj1.get_data(totim=time) u2 = uobj2.get_data(totim=time) if difftol: diffmax, indices = _calculate_difftol(u1, u2, ctol) else: diffmax, indices = _calculate_diffmax(u1, u2) if outfile is not None: if idx < 1: f.write(header) f.write( "{:15d} {:15d} {:15.6g}\n".format( kstpkper[idx][1] + 1, kstpkper[idx][0] + 1, diffmax ) ) if diffmax >= ctol: icnt += 1 if outfile is not None: if difftol: ee = ( "Maximum concentration difference ({})".format( diffmax ) + " -- {} tolerance exceeded at ".format(ctol) + "{} node location(s)".format(indices[0].shape[0]) ) else: ee = ( "Maximum concentration difference " + "({}) exceeded ".format(diffmax) + "at {} node location(s)".format( indices[0].shape[0] ) ) e = textwrap.fill( ee + ":", width=70, initial_indent=" ", subsequent_indent=" ", ) f.write("{}\n".format(e)) if verbose: print(ee + " at time {}".format(time)) e = "" for itupe in indices: for ind in itupe: e += "{} ".format(ind + 1) # convert to one-based e = textwrap.fill( e, width=70, initial_indent=" ", subsequent_indent=" ", ) f.write("{}\n".format(e)) # Write header again, unless it is the last record if idx + 1 < len(times1): f.write("\n{}".format(header)) except: print(" could not process time={}".format(time)) print(" terminating ucn processing...") break # Close output file if outfile is not None: f.close() # test for failure success = True if icnt > 0: success = False return success def compare_stages( namefile1=None, namefile2=None, files1=None, files2=None, htol=0.001, outfile=None, difftol=False, verbose=False, ): """Compare SWR process stage results from two simulations. Parameters ---------- namefile1 : str namefile path for base model namefile2 : str namefile path for comparison model precision : str precision for binary head file ("auto", "single", or "double") default is "auto" htol : float maximum allowed stage difference (default is 0.001) outfile : str head comparison output file name. If outfile is None, no comparison output is saved. (default is None) files1 : str base model output file. If files1 is not None, results will be extracted from files1 and namefile1 will not be used. (default is None) files2 : str comparison model output file. If files2 is not None, results will be extracted from files2 and namefile2 will not be used. (default is None) difftol : bool boolean determining if the absolute value of the stage difference greater than htol should be evaluated (default is False) verbose : bool boolean indicating if verbose output should be written to the terminal (default is False) Returns ------- success : bool boolean indicating if the stage differences are less than htol. """ try: import flopy except: msg = "flopy not available - cannot use compare_stages" raise ValueError(msg) # list of valid extensions valid_ext = ["stg"] # Get info for first stage file sfpth1 = None if namefile1 is not None: for ext in valid_ext: stg = get_entries_from_namefile(namefile1, extension=ext) sfpth = stg[0][0] if sfpth is not None: sfpth1 = sfpth break elif files1 is not None: if isinstance(files1, str): files1 = [files1] for file in files1: for ext in valid_ext: if ext in os.path.basename(file).lower(): sfpth1 = file break # Get info for second stage file sfpth2 = None if namefile2 is not None: for ext in valid_ext: stg = get_entries_from_namefile(namefile2, extension=ext) sfpth = stg[0][0] if sfpth is not None: sfpth2 = sfpth break elif files2 is not None: if isinstance(files2, str): files2 = [files2] for file in files2: for ext in valid_ext: if ext in os.path.basename(file).lower(): sfpth2 = file break # confirm that there are two files to compare if sfpth1 is None or sfpth2 is None: print("spth1 or spth2 is None") print("spth1: {}".format(sfpth1)) print("spth2: {}".format(sfpth2)) return False if not os.path.isfile(sfpth1) or not os.path.isfile(sfpth2): print("spth1 or spth2 is not a file") print("spth1 isfile: {}".format(os.path.isfile(sfpth1))) print("spth2 isfile: {}".format(os.path.isfile(sfpth2))) return False # Open output file if outfile is not None: f = open(outfile, "w") f.write("Created by pymake.autotest.compare_stages\n") # Get stage objects sobj1 = flopy.utils.SwrStage(sfpth1, verbose=verbose) sobj2 = flopy.utils.SwrStage(sfpth2, verbose=verbose) # get totim times1 = sobj1.get_times() # get kswr, kstp, and kper kk = sobj1.get_kswrkstpkper() header = ( "{:>15s} {:>15s} {:>15s} {:>15s}\n".format(" ", " ", " ", "MAXIMUM") + "{:>15s} {:>15s} {:>15s} {:>15s}\n".format( "STRESS PERIOD", "TIME STEP", "SWR TIME STEP", "STAGE DIFFERENCE" ) + "{0:>15s} {0:>15s} {0:>15s} {0:>15s}\n".format(15 * "-") ) if verbose: print("Comparing results for {} times".format(len(times1))) icnt = 0 # Process stage data for idx, (kon, time) in enumerate(zip(kk, times1)): s1 = sobj1.get_data(totim=time) s2 = sobj2.get_data(totim=time) if s1 is None or s2 is None: continue s1 = s1["stage"] s2 = s2["stage"] if difftol: diffmax, indices = _calculate_difftol(s1, s2, htol) else: diffmax, indices = _calculate_diffmax(s1, s2) if outfile is not None: if idx < 1: f.write(header) f.write( "{:15d} {:15d} {:15d} {:15.6g}\n".format( kon[2] + 1, kon[1] + 1, kon[0] + 1, diffmax ) ) if diffmax >= htol: icnt += 1 if outfile is not None: if difftol: ee = ( "Maximum head difference ({}) -- ".format(diffmax) + "{} tolerance exceeded at ".format(htol) + "{} node location(s)".format(indices[0].shape[0]) ) else: ee = ( "Maximum head difference " + "({}) exceeded ".format(diffmax) + "at {} node location(s):".format(indices[0].shape[0]) ) e = textwrap.fill( ee + ":", width=70, initial_indent=" ", subsequent_indent=" ", ) f.write("{}\n".format(e)) if verbose: print(ee + " at time {}".format(time)) e = "" for itupe in indices: for ind in itupe: e += "{} ".format(ind + 1) # convert to one-based e = textwrap.fill( e, width=70, initial_indent=" ", subsequent_indent=" ", ) f.write("{}\n".format(e)) # Write header again, unless it is the last record if idx + 1 < len(times1): f.write("\n{}".format(header)) # Close output file if outfile is not None: f.close() # test for failure success = True if icnt > 0: success = False return success def _calculate_diffmax(v1, v2): """Calculate the maximum difference between two vectors. Parameters ---------- v1 : numpy.ndarray array of base model results v2 : numpy.ndarray array of comparison model results Returns ------- diffmax : float absolute value of the maximum difference in v1 and v2 array values indices : numpy.ndarry indices where the absolute value of the difference is equal to the absolute value of the maximum difference. """ if v1.ndim > 1 or v2.ndim > 1: v1 = v1.flatten() v2 = v2.flatten() if v1.size != v2.size: err = "Error: calculate_difference v1 size ({}) ".format( v1.size ) + "is not equal to v2 size ({})".format(v2.size) raise Exception(err) diff = abs(v1 - v2) diffmax = diff.max() return diffmax, np.where(diff == diffmax) def _calculate_difftol(v1, v2, tol): """Calculate the difference between two arrays relative to a tolerance. Parameters ---------- v1 : numpy.ndarray array of base model results v2 : numpy.ndarray array of comparison model results tol : float tolerance used to evaluate base and comparison models Returns ------- diffmax : float absolute value of the maximum difference in v1 and v2 array values indices : numpy.ndarry indices where the absolute value of the difference exceed the specified tolerance. """ if v1.ndim > 1 or v2.ndim > 1: v1 = v1.flatten() v2 = v2.flatten() if v1.size != v2.size: err = "Error: calculate_difference v1 size ({}) ".format( v1.size ) + "is not equal to v2 size ({})".format(v2.size) raise Exception(err) diff = abs(v1 - v2) return diff.max(), np.where(diff > tol) def compare( namefile1, namefile2, precision="auto", max_cumpd=0.01, max_incpd=0.01, htol=0.001, outfile1=None, outfile2=None, files1=None, files2=None, ): """Compare the budget and head results for two MODFLOW-based model simulations. Parameters ---------- namefile1 : str namefile path for base model namefile2 : str namefile path for comparison model precision : str precision for binary head file ("auto", "single", or "double") default is "auto" max_cumpd : float maximum percent discrepancy allowed for cumulative budget terms (default is 0.01) max_incpd : float maximum percent discrepancy allowed for incremental budget terms (default is 0.01) htol : float maximum allowed head difference (default is 0.001) outfile1 : str budget comparison output file name. If outfile1 is None, no budget comparison output is saved. (default is None) outfile2 : str head comparison output file name. If outfile2 is None, no head comparison output is saved. (default is None) files1 : str base model output file. If files1 is not None, results will be extracted from files1 and namefile1 will not be used. (default is None) files2 : str comparison model output file. If files2 is not None, results will be extracted from files2 and namefile2 will not be used. (default is None) Returns ------- success : bool boolean indicating if the budget and head differences are less than max_cumpd, max_incpd, and htol. """ # Compare budgets from the list files in namefile1 and namefile2 success1 = compare_budget( namefile1, namefile2, max_cumpd=max_cumpd, max_incpd=max_incpd, outfile=outfile1, files1=files1, files2=files2, ) success2 = compare_heads( namefile1, namefile2, precision=precision, htol=htol, outfile=outfile2, files1=files1, files2=files2, ) success = False if success1 and success2: success = True return success ``` #### File: pymake/utils/_compiler_language_files.py ```python import os from ._dag import _order_f_source_files, _order_c_source_files def _get_fortran_files(srcfiles, extensions=False): """Return a list of fortran files or unique fortran file extensions. Parameters ------- srcfiles : list list of source file names extensions : bool flag controls return of either a list of fortran files or a list of unique fortran file extensions Returns ------- files_out : list list of fortran files or unique fortran file extensions """ files_out = [] for srcfile in srcfiles: ext = os.path.splitext(srcfile)[1] if ext.lower() in ( ".f", ".for", ".f90", ".fpp", ): if extensions: # save unique extension if ext not in files_out: files_out.append(ext) else: files_out.append(srcfile) if len(files_out) < 1: files_out = None return files_out def _get_c_files(srcfiles, extensions=False): """Return a list of c and cpp files or unique c and cpp file extensions. Parameters ------- srcfiles : list list of source file names extensions : bool flag controls return of either a list of c and cpp files or a list of unique c and cpp file extensions Returns ------- files_out : list list of c or cpp files or uniques c and cpp file extensions """ files_out = [] for srcfile in srcfiles: ext = os.path.splitext(srcfile)[1] if ext.lower() in ( ".c", ".cpp", ): if extensions: if ext not in files_out: files_out.append(ext) else: files_out.append(srcfile) if len(files_out) < 1: files_out = None return files_out def _get_iso_c(srcfiles): """Determine if iso_c_binding is used so that the correct c/c++ compiler flags can be set. All fortran files are scanned. Parameters ---------- srcfiles : list list of fortran source files Returns ------- iso_c : bool flag indicating if iso_c_binding is used in any fortran file """ iso_c = False for srcfile in srcfiles: if os.path.exists(srcfile): # open the file f = open(srcfile, "rb") # read the file lines = f.read() # decode the file lines = lines.decode("ascii", "replace").splitlines() # develop a list of modules in the file for line in lines: linelist = line.strip().split() if len(linelist) == 0: continue if linelist[0].upper() == "USE": modulename = linelist[1].split(",")[0].upper() if "ISO_C_BINDING" == modulename: iso_c = True break # terminate file content search if iso_c is True if iso_c: break else: msg = "get_iso_c: could not " + "open {}".format( os.path.basename(srcfile) ) raise FileNotFoundError(msg) return iso_c def _preprocess_file(srcfiles): """Determine if the file should be preprocessed. Parameters ---------- srcfiles : str or list source file path or list of source file paths Returns ------- preprocess : bool flag indicating if the file should be preprocessed """ if isinstance(srcfiles, str): srcfiles = [srcfiles] preprocess = False for srcfile in srcfiles: if os.path.exists(srcfile): # open the file f = open(srcfile, "rb") # read the file lines = f.read() # decode the file lines = lines.decode("ascii", "replace").splitlines() # develop a list of modules in the file for line in lines: linelist = line.strip().split() if len(linelist) == 0: continue if linelist[0].lower() in ( "#define", "#undef", "#ifdef", "#ifndef", "#if", "#error", ): preprocess = True break # terminate file content search if preprocess is True if preprocess: break else: msg = "_preprocess_file: could not " + "open {}".format( os.path.basename(srcfile) ) raise FileNotFoundError(msg) return preprocess def _get_srcfiles(srcdir, include_subdir): """Get a list of source files in source file directory srcdir Parameters ---------- srcdir : str path for directory containing source files include_subdirs : bool boolean indicating source files in srcdir subdirectories should be included in the build Returns ------- srcfiles : list list of fortran and c/c++ file in srcdir """ # create a list of all c(pp), f and f90 source files templist = [] for path, _, files in os.walk(srcdir): for file in files: if not include_subdir: if path != srcdir: continue file = os.path.join(os.path.join(path, file)) templist.append(file) srcfiles = [] for file in templist: if ( file.lower().endswith(".f") or file.lower().endswith(".f90") or file.lower().endswith(".for") or file.lower().endswith(".fpp") or file.lower().endswith(".c") or file.lower().endswith(".cpp") ): srcfiles.append(os.path.relpath(file, os.getcwd())) return sorted(srcfiles) def _get_ordered_srcfiles(all_srcfiles, networkx): """Create a list of ordered source files (both fortran and c). Ordering is build using a directed acyclic graph to determine module dependencies. Parameters ---------- all_srcfiles : list list of all fortran and c/c++ source files networkx : bool boolean indicating if the NetworkX python package should be used to determine the DAG. Returns ------- ordered_srcfiles : list list of ordered source files """ cfiles = [] ffiles = [] for file in all_srcfiles: if ( file.lower().endswith(".f") or file.lower().endswith(".f90") or file.lower().endswith(".for") or file.lower().endswith(".fpp") ): ffiles.append(file) elif file.lower().endswith(".c") or file.lower().endswith(".cpp"): cfiles.append(file) # order the source files using the directed acyclic graph in _dag.py ordered_srcfiles = [] if ffiles: ordered_srcfiles += _order_f_source_files(ffiles, networkx) if cfiles: ordered_srcfiles += _order_c_source_files(cfiles, networkx) return ordered_srcfiles ```
{ "source": "jdhunterae/sim-venture", "score": 3 }
#### File: sim-venture/py_v/effects.py ```python class Effect(object): def __init__(self, action): self.action = action def cause(self, targets): pass class NoEffect(Effect): def __init__(self, action): super(NoEffect, self).__init__(action) def cause(self, targets): print("[error] no effect declared for '%s'" % (type(self.action).__name__)) class DamageEffect(Effect): def __init__(self, action): super(DamageEffect, self).__init__(action) def cause(self, targets): if targets is not None: for target in targets: target.health = max(0, target.health - self.action.actor.attack_p) print("%s attacks %s for %d damage..." % (self.action.actor.name, target.name, self.action.actor.attack_p)) print(" %s: %d/%d" % (target.name, target.health, target.health_max)) else: print("[error]: %s can't find anything to attack..." % (self.action.actor.name)) class MissEffect(Effect): def __init__(self, action): super(MissEffect, self).__init__(action) def cause(self, targets): if targets is not None: for target in targets: print("%s swings at %s...and misses" % (self.action.actor.name, target.name)) else: print("[error]: %s can't find anyone to miss..." % (self.action.actor.name)) class RunAwayEffect(Effect): def __init__(self, action): super(RunAwayEffect, self).__init__(action) def cause(self, targets): if targets is not None and self.action.actor in targets: print("%s tries to run..." % (self.action.actor.name)) targets.remove(self.action.actor) print(" %s has escaped the battle." % (self.action.actor.name)) else: print("[error]: %s can't run away from nothing..." % (self.action.actor.name)) class BlockedEffect(Effect): def __init__(self, action): super(BlockedEffect, self).__init__(action) def cause(self, targets): if targets is not None and self.action.actor in targets: print("%s tries to run...but can't escape" % (self.action.actor.name)) else: print("[error]: %s can't run away from nothing..." % (self.action.actor.name)) class MagicDamageEffect(Effect): def __init__(self, action): super(MagicDamageEffect, self).__init__(action) def cause(self, targets): if targets is not None: for target in targets: target.health = max(0, target.health - self.action.actor.attack_m) print("%s launches a barrage of magical missles at %s for %d damage..." % (self.action.actor.name, target.name, self.action.actor.attack_m)) print(" %s: %d/%d" % (target.name, target.health, target.health_max)) else: print("[error]: %s can't find anyone to focus on..." % (self.action.actor.name)) class MagicMissEffect(Effect): def __init__(self, action): super(MagicMissEffect, self).__init__(action) def cause(self, targets): if targets is not None: for target in targets: print("%s summons up energies...and they fizzle" % (self.action.actor.name)) else: print("[error]: %s can't find anyone to focus on..." % (self.action.actor.name)) ```
{ "source": "jdhxyy/dcom-python", "score": 2 }
#### File: dcom-python/dcompy/block_tx.py ```python from dcompy.tx import * from dcompy.common import * from dcompy.config import * import asyncio import crcmodbus import threading class _Item: def __init__(self): self.protocol = 0 self.pipe = 0 self.dst_ia = 0 self.code = 0 self.rid = 0 self.token = 0 # 第一帧需要重发控制 self.is_first_frame = False self.first_frame_retry_time = 0 self.first_frame_retry_num = 0 self.last_rx_ack_time = 0 self.crc16 = 0 self.data = bytearray() _items = list() _lock = threading.Lock() async def block_tx_run(): """ 块传输发送模块运行 :return: """ while True: _lock.acquire() for item in _items: _check_timeout_and_retry_send_first_frame(item) _lock.release() await asyncio.sleep(INTERVAL) def _check_timeout_and_retry_send_first_frame(item: _Item): now = get_time() load_param = get_load_param() if not item.is_first_frame: if now - item.last_rx_ack_time > load_param.block_retry_interval * load_param.block_retry_max_num * 1000: log.warn('block tx timeout!remove task.token:%d', item.token) _items.remove(item) return # 首帧处理 if now - item.first_frame_retry_time < load_param.block_retry_interval * 1000: return if item.first_frame_retry_num >= load_param.block_retry_max_num: log.warn('block tx timeout!first frame send retry too many.token:%d', item.token) _items.remove(item) else: item.first_frame_retry_num += 1 item.first_frame_retry_time = now log.info("block tx send first frame.token:%d retry num:%d", item.token, item.first_frame_retry_num) _block_tx_send_frame(item, 0) def _block_tx_send_frame(item: _Item, offset: int): log.info('block tx send.token:%d offset:%d', item.token, offset) delta = len(item.data) - offset payload_len = SINGLE_FRAME_SIZE_MAX - BLOCK_HEADER_LEN if payload_len > delta: payload_len = delta frame = BlockFrame() frame.control_word.code = item.code frame.control_word.block_flag = 1 frame.control_word.rid = item.rid frame.control_word.token = item.token frame.control_word.payload_len = BLOCK_HEADER_LEN + payload_len frame.block_header.crc16 = item.crc16 frame.block_header.total = len(item.data) frame.block_header.offset = offset frame.payload.extend(item.data[offset:offset + payload_len]) block_send(item.protocol, item.pipe, item.dst_ia, frame) def block_tx(protocol: int, pipe: int, dst_ia: int, code: int, rid: int, token: int, data: bytearray): """ 块传输发送 """ if len(data) <= SINGLE_FRAME_SIZE_MAX: return _lock.acquire() if _is_item_exist(protocol, pipe, dst_ia, code, rid, token): _lock.release() return log.info('block tx new task.token:%d dst ia:0x%x code:%d rid:%d', token, dst_ia, code, rid) item = _create_item(protocol, pipe, dst_ia, code, rid, token, data) _block_tx_send_frame(item, 0) item.first_frame_retry_num += 1 item.first_frame_retry_time = get_time() _items.append(item) _lock.release() def _is_item_exist(protocol: int, pipe: int, dst_ia: int, code: int, rid: int, token: int) -> bool: for item in _items: if item.protocol == protocol and item.pipe == pipe and item.dst_ia == dst_ia and item.code == code \ and item.rid == rid and item.token == token: return True return False def _create_item(protocol: int, pipe: int, dst_ia: int, code: int, rid: int, token: int, data: bytearray) -> _Item: item = _Item() item.protocol = protocol item.pipe = pipe item.dst_ia = dst_ia item.code = code item.rid = rid item.token = token item.data.extend(data) item.crc16 = crcmodbus.checksum(data) item.is_first_frame = True item.first_frame_retry_num = 0 now = get_time() item.first_frame_retry_time = now item.last_rx_ack_time = now return item def block_rx_back_frame(protocol: int, pipe: int, src_ia: int, frame: Frame): """ 接收到BACK帧时处理函数 """ if frame.control_word.code != CODE_BACK: return _lock.acquire() for item in _items: if _check_item_and_deal_back_frame(protocol, pipe, src_ia, frame, item): break _lock.release() def _check_item_and_deal_back_frame(protocol: int, pipe: int, src_ia: int, frame: Frame, item: _Item) -> bool: """ checkNodeAndDealBackFrame 检查节点是否符合条件,符合则处理BACK帧 :return: 返回true表示节点符合条件 """ if item.protocol != protocol or item.pipe != pipe or item.dst_ia != src_ia or \ item.rid != frame.control_word.rid or item.token != frame.control_word.token: return False log.info('block tx receive back.token:%d', item.token) if frame.control_word.payload_len != 2: log.warn('block rx receive back deal failed!token:%d payload len is wrong:%d', item.token, frame.control_word.payload_len) return False start_offset = (frame.payload[0] << 8) + frame.payload[1] if start_offset >= len(item.data): # 发送完成 log.info('block tx end.receive back token:%d start offset:%d >= data len:%d"', item.token, start_offset, len(item.data)) _items.remove(item) return True if item.is_first_frame: item.is_first_frame = False item.last_rx_ack_time = get_time() _block_tx_send_frame(item, start_offset) return True def block_tx_deal_rst_frame(protocol: int, pipe: int, src_ia: int, frame: Frame): """ 块传输发送模块处理复位连接帧 """ _lock.acquire() for item in _items: if item.protocol == protocol and item.pipe == pipe and item.dst_ia == src_ia \ and item.rid == frame.control_word.rid and item.token == frame.control_word.token: log.warn('block tx receive rst.token:%d', item.token) _items.remove(item) break _lock.release() def block_remove(protocol: int, pipe: int, dst_ia: int, code: int, rid: int, token: int): """块传输发送移除任务""" _lock.acquire() for item in _items: if item.protocol == protocol and item.pipe == pipe and item.dst_ia == dst_ia and item.code == code and \ item.rid == rid and item.token == token: log.warn('block tx remove task.token:%d', item.token) _items.remove(item) break _lock.release() ``` #### File: dcom-python/dcompy/callback.py ```python import dcompy.log as log from dcompy.system_error import * _services = dict() def register(protocol: int, rid: int, callback): """ 注册DCOM服务回调函数 :param protocol: 协议号 :param rid: 服务号 :param callback: 回调函数.格式: func(pipe: int, src_ia: int, req: bytearray) (bytearray, int) :return: 返回值是应答和错误码.错误码为0表示回调成功,否则是错误码 """ log.info('register.protocol:%d rid:%d', protocol, rid) rid += protocol << 16 _services[rid] = callback def service_callback(protocol: int, pipe: int, src_ia: int, rid: int, req: bytearray) -> (bytearray, int): """ 回调资源号rid对应的函数 """ log.info('service callback.rid:%d', rid) rid += protocol << 16 if rid not in _services: log.warn('service callback failed!can not find new rid:%d', rid) return None, SYSTEM_ERROR_INVALID_RID return _services[rid](pipe, src_ia, req) ``` #### File: dcom-python/dcompy/rx_con.py ```python from dcompy.callback import * from dcompy.block_tx import * def rx_con(protocol: int, pipe: int, src_ia: int, frame: Frame): """ 接收到连接帧时处理函数 """ log.info('rx con.token:%d', frame.control_word.token) resp, err = service_callback(protocol, pipe, src_ia, frame.control_word.rid, frame.payload) # NON不需要应答 if frame.control_word.code == CODE_NON: return if err != SYSTEM_OK: log.info('service send err:0x%x token:%d', err, frame.control_word.token) send_rst_frame(protocol, pipe, src_ia, err, frame.control_word.rid, frame.control_word.token) return if resp and len(resp) > SINGLE_FRAME_SIZE_MAX: # 长度过长启动块传输 log.info('service send too long:%d.start block tx.token:%d', len(resp), frame.control_word.token) block_tx(protocol, pipe, src_ia, CODE_ACK, frame.control_word.rid, frame.control_word.token, resp) return ack_frame = Frame() ack_frame.control_word.code = CODE_ACK ack_frame.control_word.block_flag = 0 ack_frame.control_word.rid = frame.control_word.rid ack_frame.control_word.token = frame.control_word.token if resp: ack_frame.control_word.payload_len = len(resp) ack_frame.payload.extend(resp) else: ack_frame.control_word.payload_len = 0 send(protocol, pipe, src_ia, ack_frame) ``` #### File: dcom-python/dcompy/waitlist.py ```python import dcompy.log as log from dcompy.block_tx import * from dcompy.system_error import * from typing import Callable import threading class _Item: def __init__(self): self.protocol = 0 self.pipe = 0 self.timeout = 0 self.req = bytearray() self.resp = bytearray() # 启动时间.单位:us.用于判断是否超过总超时 self.start_time = 0 # 回调函数.存在则是异步调用 self.ack_callback = None self.dst_ia = 0 self.rid = 0 self.token = 0 self.is_rx_ack = False self.result = SYSTEM_OK # 上次发送时间戳.单位:us.用于重传 self.last_retry_timestamp = 0 self.retry_num = 0 self.code = 0 _items = list() _lock = threading.Lock() async def waitlist_run(): """ 模块运行.检查等待列表重发,超时等 """ while True: _check_wait_items() await asyncio.sleep(INTERVAL) def _check_wait_items(): _lock.acquire() for item in _items: _retry_send(item) _lock.release() def _retry_send(item: _Item): t = get_time() if t - item.start_time > item.timeout: log.warn('wait ack timeout!task failed!token:%d', item.token) _items.remove(item) if len(item.req) > SINGLE_FRAME_SIZE_MAX: block_remove(item.protocol, item.pipe, item.dst_ia, item.code, item.rid, item.token) if item.ack_callback: # 回调方式 item.ack_callback(bytearray(), SYSTEM_ERROR_RX_TIMEOUT) else: # 同步调用 item.is_rx_ack = True item.result = SYSTEM_ERROR_RX_TIMEOUT return # 块传输不用此处重传.块传输模块自己负责 if len(item.req) > SINGLE_FRAME_SIZE_MAX: return load_param = get_load_param() if t - item.last_retry_timestamp < load_param.block_retry_interval * 1000: return # 重传 item.retry_num += 1 if item.retry_num >= load_param.block_retry_max_num: log.warn('retry too many!task failed!token:%d', item.token) _items.remove(item) if item.ack_callback: # 回调方式 item.ack_callback(bytearray(), SYSTEM_ERROR_RX_TIMEOUT) else: # 同步调用 item.is_rx_ack = True item.result = SYSTEM_ERROR_RX_TIMEOUT return item.last_retry_timestamp = t log.warn('retry send.token:%d retry num:%d', item.token, item.retry_num) _send_frame(item.protocol, item.pipe, item.dst_ia, item.code, item.rid, item.token, item.req) def call(protocol: int, pipe: int, dst_ia: int, rid: int, timeout: int, req: bytearray) -> (bytearray, int): """ RPC同步调用 :param protocol: 协议号 :param pipe: 通信管道 :param dst_ia: 目标ia地址 :param rid: 服务号 :param timeout: 超时时间,单位:ms.为0表示不需要应答 :param req: 请求数据.无数据可填bytearray()或者None :return: 返回值是应答字节流和错误码.错误码非SYSTEM_OK表示调用失败 """ log.info('call.protocol:%d pipe:0x%x dst ia:0x%x rid:%d timeout:%d', protocol, pipe, dst_ia, rid, timeout) code = CODE_CON if timeout > 0 else CODE_NON if not req: req = bytearray() token = get_token() _send_frame(protocol, pipe, dst_ia, code, rid, token, req) if code == CODE_NON: return bytearray(), SYSTEM_OK item = _Item() item.protocol = protocol item.pipe = pipe item.timeout = timeout * 1000 item.req = req item.start_time = get_time() item.dst_ia = dst_ia item.rid = rid item.token = token item.code = code item.retry_num = 0 item.last_retry_timestamp = get_time() _lock.acquire() _items.append(item) _lock.release() while True: if item.is_rx_ack: break log.info('call resp.result:%d len:%d', item.result, len(item.resp)) return item.resp, item.result def call_async(protocol: int, pipe: int, dst_ia: int, rid: int, timeout: int, req: bytearray, ack_callback: Callable[[bytearray, int], None]): """ RPC异步调用 :param protocol: 协议号 :param pipe: 通信管道 :param dst_ia: 目标ia地址 :param rid: 服务号 :param timeout: 超时时间,单位:ms.为0表示不需要应答 :param req: 请求数据.无数据可填bytearray()或者None :param ack_callback: 回调函数.原型func(resp: bytearray, error: int).参数是应答字节流和错误码.错误码非SYSTEM_OK表示调用失败 """ code = CODE_CON if timeout == 0 or not callable(ack_callback): code = CODE_NON if not req: req = bytearray() token = get_token() log.info('call async.token:%d protocol:%d pipe:0x%x dst ia:0x%x rid:%d timeout:%d', token, protocol, pipe, dst_ia, rid, timeout) _send_frame(protocol, pipe, dst_ia, code, rid, token, req) if code == CODE_NON: return item = _Item() item.ack_callback = ack_callback item.protocol = protocol item.pipe = pipe item.timeout = timeout * 1000 item.req = req item.start_time = get_time() item.dst_ia = dst_ia item.rid = rid item.token = <PASSWORD> item.code = code item.retry_num = 0 item.last_retry_timestamp = get_time() _lock.acquire() _items.append(item) _lock.release() def _send_frame(protocol: int, pipe: int, dst_ia: int, code: int, rid: int, token: int, data: bytearray): if len(data) > SINGLE_FRAME_SIZE_MAX: block_tx(protocol, pipe, dst_ia, code, rid, token, data) return frame = Frame() frame.control_word.code = code frame.control_word.block_flag = 0 frame.control_word.rid = rid frame.control_word.token = token frame.control_word.payload_len = len(data) frame.payload.extend(data) log.info('send frame.token:%d', token) send(protocol, pipe, dst_ia, frame) def rx_ack_frame(protocol: int, pipe: int, src_ia: int, frame: Frame): """ 接收到ACK帧时处理函数 """ _lock.acquire() log.info('rx ack frame.src ia:0x%x', src_ia) for item in _items: if _check_item_and_deal_ack_frame(protocol, pipe, src_ia, frame, item): break _lock.release() def _check_item_and_deal_ack_frame(protocol: int, pipe: int, src_ia: int, frame: Frame, item: _Item) -> bool: if item.protocol != protocol or item.pipe != pipe or item.dst_ia != src_ia or item.rid != frame.control_word.rid \ or item.token != frame.control_word.token: return False log.info('deal ack frame.token:%d', item.token) _items.remove(item) if item.ack_callback: # 回调方式 item.ack_callback(frame.payload, SYSTEM_OK) else: # 同步调用 item.is_rx_ack = True item.result = SYSTEM_OK item.resp = frame.payload return True def rx_rst_frame(protocol: int, pipe: int, src_ia: int, frame: Frame): """ 接收到RST帧时处理函数 """ _lock.acquire() log.warn('rx rst frame.src ia:0x%x', src_ia) for item in _items: _deal_rst_frame(protocol, pipe, src_ia, frame, item) _lock.release() def _deal_rst_frame(protocol: int, pipe: int, src_ia: int, frame: Frame, item: _Item): if item.protocol != protocol or item.pipe != pipe or item.dst_ia != src_ia or item.rid != frame.control_word.rid \ or item.token != frame.control_word.token: return False result = frame.payload[0] log.warn('deal rst frame.token:%d result:0x%x', item.token, result) _items.remove(item) if item.ack_callback: # 回调方式 item.ack_callback(bytearray(), result) else: # 同步调用 item.is_rx_ack = True item.result = result return True ```
{ "source": "jdhxyy/ssd1306py-micropython", "score": 3 }
#### File: ssd1306py-micropython/ssd1306py/ascii32.py ```python import sys _file = None def _get_ch(ch): global _file if _file is None: _file = open(sys.path[1] + '/ssd1306py/ascii32.txt', 'r') _file.seek(ord(ch) * 329) get_line1 = _file.readline() get_line2 = _file.readline() data = [] n = 0 for v in get_line1.split(','): data.append(int(v)) n += 1 if n == 32: break n = 0 for v in get_line2.split(','): data.append(int(v)) n += 1 if n == 32: break return data def display(oled, string, x_axis, y_axis): offset = 0 for k in string: byte_data = _get_ch(k) for y in range(0, 32): a = bin(byte_data[y]).replace('0b', '') while len(a) < 8: a = '0' + a b = bin(byte_data[y + 32]).replace('0b', '') while len(b) < 8: b = '0' + b for x in range(0, 8): oled.pixel(x_axis + offset + x, y + y_axis, int(a[x])) oled.pixel(x_axis + offset + x + 8, y + y_axis, int(b[x])) offset += 16 ```
{ "source": "jdhxyy/tziot-micropython", "score": 2 }
#### File: tziot-micropython/tziot/parsecmp.py ```python import tziot.standardlayer as standardlayer import tziot.config as config import knocky as knock import utzpy as utz import lagan def init(): standardlayer.register_rx_observer(_deal_rx) def _deal_rx(data: bytearray, standard_header: utz.StandardHeader, pipe: int): if standard_header.dst_ia != config.local_ia or standard_header.next_head != utz.HEADER_CMP: return payload = utz.flp_frame_to_bytes(data) if payload is None: lagan.warn(config.TAG, "parse cmp failed.flp frame to bytes failed") return if len(payload) == 0: lagan.warn(config.TAG, "parse cmp failed.payload len is wrong:%d", len(payload)) return knock.call(utz.HEADER_CMP, payload[0], payload[1:]) ```
{ "source": "jdiasn/McRadar", "score": 2 }
#### File: McRadar/mcradar/fullRadarOperator.py ```python import xarray as xr from mcradar import * def fullRadar(dicSettings, mcTable): """ Calculates the radar variables over the entire range Parameters ---------- dicSettings: a dictionary with all settings output from loadSettings() mcTable: McSnow data output from getMcSnowTable() Returns ------- specXR: xarray dataset with the spectra(range, vel) and KDP(range) """ specXR = xr.Dataset() #specXR_turb = xr.Dataset() counts = np.ones_like(dicSettings['heightRange'])*np.nan vol = dicSettings['gridBaseArea'] * dicSettings['heightRes'] for i, heightEdge0 in enumerate(dicSettings['heightRange']): heightEdge1 = heightEdge0 + dicSettings['heightRes'] print('Range: from {0} to {1}'.format(heightEdge0, heightEdge1)) mcTableTmp = mcTable[(mcTable['sHeight']>heightEdge0) & (mcTable['sHeight']<=heightEdge1)].copy() #mcTableTmp = mcTableTmp[(mcTableTmp['sPhi']<=4)] if (dicSettings['scatSet']['mode'] == 'full') or (dicSettings['scatSet']['mode'] == 'table') or (dicSettings['scatSet']['mode'] == 'wisdom') : mcTableTmp = mcTableTmp[(mcTableTmp['sPhi']>=0.01)] mcTableTmp = calcParticleZe(dicSettings['wl'], dicSettings['elv'], mcTableTmp, ndgs=dicSettings['ndgsVal'], scatSet=dicSettings['scatSet']) tmpSpecXR = getMultFrecSpec(dicSettings['wl'], mcTableTmp, dicSettings['velBins'], dicSettings['velCenterBin'], heightEdge1,dicSettings['convolute'],dicSettings['nave'],dicSettings['noise_pow'], dicSettings['eps_diss'], dicSettings['uwind'], dicSettings['time_int'], dicSettings['theta']/2./180.*np.pi, scatSet=dicSettings['scatSet'] ) #volume normalization tmpSpecXR = tmpSpecXR/vol specXR = xr.merge([specXR, tmpSpecXR]) if (dicSettings['scatSet']['mode'] == 'full') or (dicSettings['scatSet']['mode'] == 'table') or (dicSettings['scatSet']['mode'] == 'wisdom') : #calculating the integrated kdp tmpKdpXR = getIntKdp(dicSettings['wl'], mcTableTmp, heightEdge1) #volume normalization tmpKdpXR = tmpKdpXR/vol specXR = xr.merge([specXR, tmpKdpXR]) counts[i] = len(mcTableTmp.vel.values) return specXR ``` #### File: mcradar/radarOperator/spectraOperator.py ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt def getVelIntSpec(mcTable, mcTable_binned, variable): """ Calculates the integrated reflectivity for each velocity bin Parameters ---------- mcTable: McSnow output returned from calcParticleZe() mcTable_binned: McSnow table output binned for a given velocity bin variable: name of column variable wich will be integrated over a velocity bin Returns ------- mcTableVelIntegrated: table with the integrated reflectivity for each velocity bin """ mcTableVelIntegrated = mcTable.groupby(mcTable_binned)[variable].agg(['sum']) return mcTableVelIntegrated def getMultFrecSpec(wls, mcTable, velBins, velCenterBins , centerHeight, convolute,nave,noise_pow,eps_diss,uwind,time_int,theta,scatSet={'mode':'full', 'safeTmatrix':False}): """ Calculation of the multi-frequency spectrograms Parameters ---------- wls: wavelenght (iterable) [mm] mcTable: McSnow output returned from calcParticleZe() velBins: velocity bins for the calculation of the spectrogram (array) [m/s] velCenterBins: center of the velocity bins (array) [m/s] centerHeight: center height of each range gate (array) [m] Returns ------- xarray dataset with the multi-frequency spectrograms xarray dims = (range, vel) """ mcTable_binned = pd.cut(mcTable['vel'], velBins) tmpDataDic = {} for wl in wls: wlStr = '{:.2e}'.format(wl) if (scatSet['mode'] == 'SSRGA') or (scatSet['mode'] == 'Rayleigh') or (scatSet['mode'] == 'SSRGA-Rayleigh'): mcTable['sZeMultH_{0}'.format(wlStr)] = mcTable['sZeH_{0}'.format(wlStr)] * mcTable['sMult'] #print(mcTable['sMult']) #plt.plot(mcTable['sZeMultH_{0}'.format(wlStr)],mcTable['radii_mm'],label='Mult') #plt.plot(mcTable['sZeH_{0}'.format(wlStr)],mcTable['radii_mm'],label='sZe') #plt.legend() #plt.show() intSpecH = getVelIntSpec(mcTable, mcTable_binned,'sZeMultH_{0}'.format(wlStr)) if convolute == True: intSpecH = convoluteSpec(intSpecH,wl,velCenterBins,eps_diss,noise_pow,nave,theta,uwind,time_int,centerHeight) tmpDataDic['spec_H_{0}'.format(wlStr)] = intSpecH.values[:,0] else: mcTable['sZeMultH_{0}'.format(wlStr)] = mcTable['sZeH_{0}'.format(wlStr)] * mcTable['sMult'] mcTable['sZeMultV_{0}'.format(wlStr)] = mcTable['sZeV_{0}'.format(wlStr)] * mcTable['sMult'] intSpecH = getVelIntSpec(mcTable, mcTable_binned,'sZeMultH_{0}'.format(wlStr)) intSpecV = getVelIntSpec(mcTable, mcTable_binned, 'sZeMultV_{0}'.format(wlStr)) if convolute == True: intSpecH = convoluteSpec(intSpecH,wl,velCenterBins,eps_diss,noise_pow,nave,theta,uwind,time_int,centerHeight) intSpecV = convoluteSpec(intSpecV,wl,velCenterBins,eps_diss,noise_pow,nave,theta,uwind,time_int,centerHeight) tmpDataDic['spec_H_{0}'.format(wlStr)] = intSpecH.values[:,0] tmpDataDic['spec_V_{0}'.format(wlStr)] = intSpecV.values[:,0] #converting to XR specTable = pd.DataFrame(data=tmpDataDic, index=velCenterBins) specTable = specTable.to_xarray() specTable = specTable.expand_dims(dim='range').assign_coords(range=[centerHeight]) specTable = specTable.rename_dims(dims_dict={'index':'vel'}).rename(name_dict={'index':'vel'}) return specTable def convoluteSpec(spec,wl,vel,eps,noise_pow,nave,theta,u_wind,time_avg,height): """ this function convolutes the spectrum with turbulence and adds random noise, optional! Parameters ---------- spec: spectral data (pd.dataframe) [mm^6/m^3] sigma_t: spectrum width due to turbulence np: radar noise power [mm^6/m^3] Returns ------- convoluted and noisy spectrum as pd.dataframe with the index of the input spec """ L_s = u_wind*time_avg + 2*height*np.sin(theta) L_lam = wl/2 sigma_t2 = 3/4*(eps/2*np.pi)^(2/3)*( L_s**(2/3) - L_lam**(2/3) ) spec_turb = np.zeros(len(vel))#spec.copy()*np.NaN dv = np.diff(vel)[0] prefactor_turb = 1.0 / (np.sqrt(2.0 * np.pi) * np.sqrt(sigma_t2)) #- turbulence convolution: for i in range(len(vel)): integral = 0 for ii in range(len(vel)): exp_arg = (-1.0*(vel[i]-vel[ii])**2)/(2.0*sigma_t2) if exp_arg >= -100: integral = integral + (spec.values[ii]*np.exp(exp_arg)*dv) spec_turb[i] = prefactor_turb * integral #- add random noise Ni = noise_pow / (len(vel) * dv) random_numbers = np.random.uniform(size=len(vel)*nave) S_bin_noise = np.zeros(len(vel)) for iave in range(nave): S_bin_noise = S_bin_noise + (-np.log(random_numbers[iave * (len(vel)) : ((iave+1) * len(vel))]) * (spec_turb + np.ones(len(vel))*Ni )) spectrum = S_bin_noise / nave return pd.DataFrame(data=spectrum,index=spec.index) ``` #### File: mcradar/radarOperator/zeOperator.py ```python import subprocess import numpy as np import xarray as xr from glob import glob from pytmatrix.tmatrix import Scatterer from pytmatrix import psd, orientation, radar from pytmatrix import refractive, tmatrix_aux from scipy import constants from mcradar.tableOperator import creatRadarCols import matplotlib.pyplot as plt # TODO: this function should deal with the LUTs def calcScatPropOneFreq(wl, radii, as_ratio, rho, elv, ndgs=30, canting=False, cantingStd=1, meanAngle=0, safeTmatrix=False): """ Calculates the Ze at H and V polarization, Kdp for one wavelength TODO: LDR??? Parameters ---------- wl: wavelength [mm] (single value) radii: radius [mm] of the particle (array[n]) as_ratio: aspect ratio of the super particle (array[n]) rho: density [g/mmˆ3] of the super particle (array[n]) elv: elevation angle [°] ndgs: division points used to integrate over the particle surface canting: boolean (default = False) cantingStd: standard deviation of the canting angle [°] (default = 1) meanAngle: mean value of the canting angle [°] (default = 0) Returns ------- reflect_h: super particle horizontal reflectivity[mm^6/m^3] (array[n]) reflect_v: super particle vertical reflectivity[mm^6/m^3] (array[n]) refIndex: refractive index from each super particle (array[n]) kdp: calculated kdp from each particle (array[n]) """ #---pyTmatrix setup # initialize a scatterer object scatterer = Scatterer(wavelength=wl) scatterer.radius_type = Scatterer.RADIUS_MAXIMUM scatterer.ndgs = ndgs scatterer.ddelta = 1e-6 if canting==True: scatterer.or_pdf = orientation.gaussian_pdf(std=cantingStd, mean=meanAngle) # scatterer.orient = orientation.orient_averaged_adaptive scatterer.orient = orientation.orient_averaged_fixed # geometric parameters - incident direction scatterer.thet0 = 90. - elv scatterer.phi0 = 0. # parameters for backscattering refIndex = np.ones_like(radii, np.complex128)*np.nan reflect_h = np.ones_like(radii)*np.nan reflect_v = np.ones_like(radii)*np.nan # S matrix for Kdp sMat = np.ones_like(radii)*np.nan for i, radius in enumerate(radii[::5]): #TODO remove [::5] # A quick function to save the distribution of values used in the test #with open('/home/dori/table_McRadar.txt', 'a') as f: # f.write('{0:f} {1:f} {2:f} {3:f} {4:f} {5:f} {6:f}\n'.format(wl, elv, # meanAngle, # cantingStd, # radius, # rho[i], # as_ratio[i])) # scattering geometry backward # radius = 100.0 # just a test to force nans scatterer.thet = 180. - scatterer.thet0 scatterer.phi = (180. + scatterer.phi0) % 360. scatterer.radius = radius scatterer.axis_ratio = 1./as_ratio[i] scatterer.m = refractive.mi(wl, rho[i]) refIndex[i] = refractive.mi(wl, rho[i]) if safeTmatrix: inputs = [str(scatterer.radius), str(scatterer.wavelength), str(scatterer.m), str(scatterer.axis_ratio), str(int(canting)), str(cantingStd), str(meanAngle), str(ndgs), str(scatterer.thet0), str(scatterer.phi0)] arguments = ' '.join(inputs) a = subprocess.run(['spheroidMcRadar'] + inputs, # this script should be installed by McRadar capture_output=True) # print(str(a)) try: back_hh, back_vv, sMatrix, _ = str(a.stdout).split('Results ')[-1].split() back_hh = float(back_hh) back_vv = float(back_vv) sMatrix = float(sMatrix) except: back_hh = np.nan back_vv = np.nan sMatrix = np.nan # print(back_hh, radar.radar_xsect(scatterer, True)) # print(back_vv, radar.radar_xsect(scatterer, False)) reflect_h[i] = scatterer.wavelength**4/(np.pi**5*scatterer.Kw_sqr) * back_hh # radar.radar_xsect(scatterer, True) # Kwsqrt is not correct by default at every frequency reflect_v[i] = scatterer.wavelength**4/(np.pi**5*scatterer.Kw_sqr) * back_vv # radar.radar_xsect(scatterer, False) # scattering geometry forward # scatterer.thet = scatterer.thet0 # scatterer.phi = (scatterer.phi0) % 360. #KDP geometry # S = scatterer.get_S() sMat[i] = sMatrix # (S[1,1]-S[0,0]).real # print(sMatrix, sMat[i]) # print(sMatrix) else: reflect_h[i] = scatterer.wavelength**4/(np.pi**5*scatterer.Kw_sqr) * radar.radar_xsect(scatterer, True) # Kwsqrt is not correct by default at every frequency reflect_v[i] = scatterer.wavelength**4/(np.pi**5*scatterer.Kw_sqr) * radar.radar_xsect(scatterer, False) # scattering geometry forward scatterer.thet = scatterer.thet0 scatterer.phi = (scatterer.phi0) % 360. #KDP geometry S = scatterer.get_S() sMat[i] = (S[1,1]-S[0,0]).real kdp = 1e-3* (180.0/np.pi)*scatterer.wavelength*sMat del scatterer # TODO: Evaluate the chance to have one Scatterer object already initiated instead of having it locally return reflect_h, reflect_v, refIndex, kdp def radarScat(sp, wl, K2=0.93): """ Calculates the single scattering radar quantities from the matrix values Parameters ---------- sp: dataArray [n] superparticles containing backscattering matrix and forward amplitude matrix information needed to compute spectral radar quantities wl: wavelength [mm] K2: Rayleigh dielectric factor |(m^2-1)/(m^2+2)|^2 Returns ------- reflect_h: super particle horizontal reflectivity[mm^6/m^3] (array[n]) reflect_v: super particle vertical reflectivity[mm^6/m^3] (array[n]) kdp: calculated kdp from each particle (array[n]) ldr_h: linear depolarization ratio horizontal (array[n]) rho_hv: correlation coefficient (array[n]) """ prefactor = 2*np.pi*wl**4/(np.pi**5*K2) #print(sp.Z11.values) #quit() reflect_hh = prefactor*(sp.Z11 - sp.Z12 - sp.Z21 + sp.Z22).values reflect_vv = prefactor*(sp.Z11 + sp.Z12 + sp.Z21 + sp.Z22).values kdp = 1e-3*(180.0/np.pi)*wl*sp.S22r_S11r.values reflect_hv = prefactor*(sp.Z11 - sp.Z12 + sp.Z21 - sp.Z22).values #reflect_vh = prefactor*(sp.Z11 + sp.Z12 - sp.Z21 - sp.Z22).values ldr_h = reflect_hv/reflect_hh # delta_hv np.arctan2(Z[2,3] - Z[3,2], -Z[2,2] - Z[3,3]) #a = (Z[2,2] + Z[3,3])**2 + (Z[3,2] - Z[2,3])**2 #b = (Z[0,0] - Z[0,1] - Z[1,0] + Z[1,1]) #c = (Z[0,0] + Z[0,1] + Z[1,0] + Z[1,1]) #rho_hv np.sqrt(a / (b*c)) rho_hv = np.nan*np.ones_like(reflect_hh) # disable rho_hv for now #Ah = 4.343e-3 * 2 * scatterer.wavelength * sp.S22i.values # attenuation horizontal polarization #Av = 4.343e-3 * 2 * scatterer.wavelength * sp.S11i.values # attenuation vertical polarization return reflect_hh, reflect_vv, kdp, ldr_h, rho_hv def calcParticleZe(wls, elv, mcTable, ndgs=30, scatSet={'mode':'full', 'safeTmatrix':False}, K2=0.93):#zeOperator """ Calculates the horizontal and vertical reflectivity of each superparticle from a given distribution of super particles,in this case I just quickly wanted to change the function to deal with Monomers with the DDA LUT and use Tmatrix for the aggregates Parameters ---------- wls: wavelength [mm] (iterable) elv: elevation angle [°] # TODO: maybe also this can become iterable mcTable: McSnow table returned from getMcSnowTable() ndgs: division points used to integrate over the particle surface scatSet: type of scattering calculations to use, choose between full, table, wisdom, SSRGA, Rayleigh or SSRGA-Rayleigh Returns ------- mcTable including the horizontal and vertical reflectivity of each super particle calculated for X, Ka and W band. The calculation is made separetely for aspect ratio < 1 and >=1. Kdp is also included. TODO spectral ldr and rho_hv """ #calling the function to create output columns mcTable = creatRadarCols(mcTable, wls) #print('mcTable has ', len(mcTable)) if scatSet['mode'] == 'full': print('Full mode Tmatrix calculation') ##calculation of the reflectivity for AR < 1 tmpTable = mcTable[mcTable['sPhi']<1].copy() #particle properties canting = True meanAngle=0 cantingStd=1 radii_M1 = tmpTable['radii_mm'].values #[mm] as_ratio_M1 = tmpTable['sPhi'].values rho_M1 = tmpTable['sRho'].values #[g/cm^3] for wl in wls: singleScat = calcScatPropOneFreq(wl, radii_M1, as_ratio_M1, rho_M1, elv, canting=canting, cantingStd=cantingStd, meanAngle=meanAngle, ndgs=ndgs, safeTmatrix=scatSet['safeTmatrix']) reflect_h, reflect_v, refInd, kdp_M1 = singleScat wlStr = '{:.2e}'.format(wl) mcTable['sZeH_{0}'.format(wlStr)].values[mcTable['sPhi']<1] = reflect_h mcTable['sZeV_{0}'.format(wlStr)].values[mcTable['sPhi']<1] = reflect_v mcTable['sKDP_{0}'.format(wlStr)].values[mcTable['sPhi']<1] = kdp_M1 ##calculation of the reflectivity for AR >= 1 tmpTable = mcTable[mcTable['sPhi']>=1].copy() #particle properties canting=True meanAngle=90 cantingStd=1 radii_M1 = (tmpTable['radii_mm']).values #[mm] as_ratio_M1 = tmpTable['sPhi'].values rho_M1 = tmpTable['sRho'].values #[g/cm^3] for wl in wls: singleScat = calcScatPropOneFreq(wl, radii_M1, as_ratio_M1, rho_M1, elv, canting=canting, cantingStd=cantingStd, meanAngle=meanAngle, ndgs=ndgs, safeTmatrix=scatSet['safeTmatrix']) reflect_h, reflect_v, refInd, kdp_M1 = singleScat wlStr = '{:.2e}'.format(wl) mcTable['sZeH_{0}'.format(wlStr)].values[mcTable['sPhi']>=1] = reflect_h mcTable['sZeV_{0}'.format(wlStr)].values[mcTable['sPhi']>=1] = reflect_v mcTable['sKDP_{0}'.format(wlStr)].values[mcTable['sPhi']>=1] = kdp_M1 elif scatSet['mode'] == 'SSRGA': print('using SSRGA scattering table for all particles, elevation is set to 90') lut = xr.open_dataset(scatSet['lutFile']) for wl in wls: freq = (constants.c / wl*1e3) #print(freq) #quit() mcTableAgg = mcTable[(mcTable['sNmono']>1)].copy() points = lut.sel(frequency=freq, temperature=270.0, #elevation=90.0, # sofar: elevation can only be 90, we need more SSRGA calculations for other elevation size = xr.DataArray(mcTableAgg['dia'].values, dims='points'), method='nearest') #points = lut.sel(wavelength=wl*1e-3, elevation=90.0, # sofar: elevation can only be 90, we need more SSRGA calculations for other elevation # size = xr.DataArray(mcTable['dia'].values, dims='points'), # method='nearest') ssCbck = points.Cbck.values*1e6 # Tmatrix output is in mm, so here we also have to use ssCbck in mm prefactor = wl**4/(np.pi**5*K2) # other prefactor: 2*pi*... wlStr = '{:.2e}'.format(wl) mcTable['sZeH_{0}'.format(wlStr)].values[mcTable['sNmono']>1] = prefactor*ssCbck mcTable['sZeH_{0}'.format(wlStr)].values[mcTable['sNmono']==1] = np.nan elif scatSet['mode'] == 'Rayleigh': print('using Rayleigh approximation for all particles, only elevation 90 so far') for wl in wls: ''' # rayleigh approximation taken from Stefans ssrg_general folder # calculate equivalent radius from equivalent mass re = ((3 * mcTable['mTot']) / (4 * mcTable['sRhoIce'] * np.pi)) ** (1/3) *1e3 X = 4*np.pi*re/wl # calculate size parameter qbck_h = 4*X**4*K2 # calculate backscattering efficiency cbck_h = qbck_h * re**2 * np.pi/((2*np.pi)**2) #need to divide by (2*pi)^2 to get same as ssrga ''' wlStr = '{:.2e}'.format(wl) prefactor = wl**4/(np.pi**5*K2) # rayleigh approximation according to Jussi Leinonens diss: k = 2 * np.pi / (wl*1e-3) sigma = 4*np.pi*np.abs(3*k**2/(4*np.pi)*np.sqrt(K2)*(mcTable['mTot']/mcTable['sRho_tot']))**2 *1e6 /np.pi #need to divide by pi to get same as ssrga, need to multiply by 1e6 to get mm^3 mcTable['sZeH_{0}'.format(wlStr)] = prefactor * sigma elif scatSet['mode'] == 'SSRGA-Rayleigh': print('using SSRGA for aggregates and Rayleigh approximation for crystals, only elevation 90') mcTableAgg = mcTable[(mcTable['sNmono']>1)].copy() # only aggregates mcTableCry = mcTable[(mcTable['sNmono']==1)].copy() # only monomers lut = xr.open_dataset(scatSet['lutFile']) # SSRGA LUT for wl in wls: wlStr = '{:.2e}'.format(wl) prefactor = wl**4/(np.pi**5*K2) # rayleigh approximation for crystal: k = 2 * np.pi / (wl*1e-3) if len(mcTableCry['mTot']) > 0: ssCbck = 4*np.pi*np.abs(3*k**2/(4*np.pi)*np.sqrt(K2)*(mcTableCry['mTot']/mcTableCry['sRho_tot']))**2 *1e6 /np.pi #need to divide by pi to get same as ssrga, need to multiply by 1e6 to get mm^3 mcTable['sZeH_{0}'.format(wlStr)].values[mcTable['sNmono']==1] = prefactor * ssCbck else: mcTable['sZeH_{0}'.format(wlStr)].values[mcTable['sNmono']==1] = np.nan # ssrga for aggregates: #points = lut.sel(wavelength=wl*1e-3, elevation=90.0, # sofar: elevation can only be 90, we need more SSRGA calculations for other elevation # size = xr.DataArray(mcTableAgg['radii_mm'].values, dims='points'), # method='nearest') freq = (constants.c / wl*1e3) points = lut.sel(frequency=freq, temperature=270.0, #elevation=90.0, # sofar: elevation can only be 90, we need more SSRGA calculations for other elevation size = xr.DataArray(mcTableAgg['dia'].values, dims='points'), method='nearest') if len(points.Cbck)>0: # only if we have aggregates this works. Otherwise we need to write nan here ssCbck = points.Cbck.values*1e6 # in mm^3 prefactor = wl**4/(np.pi**5*K2) wlStr = '{:.2e}'.format(wl) mcTable['sZeH_{0}'.format(wlStr)].values[mcTable['sNmono']>1] = prefactor*ssCbck else: mcTable['sZeH_{0}'.format(wlStr)].values[mcTable['sNmono']>1] = np.nan elif len(mcTable): # interpolation fails if no selection is possible elvSel = scatSet['lutElev'][np.argmin(np.abs(np.array(scatSet['lutElev'])-elv))] print('elevation ', elv,'lut elevation ', elvSel) for wl in wls: f = 299792458e3/wl freSel = scatSet['lutFreq'][np.argmin(np.abs(np.array(scatSet['lutFreq'])-f))] print('frequency ', f/1.e9, 'lut frequency ', freSel/1.e9) dataset_filename = scatSet['lutPath'] + 'testLUT_{:3.1f}e9Hz_{:d}.nc'.format(freSel/1e9, int(elvSel)) lut = xr.open_dataset(dataset_filename)#.sel(wavelength=wl, # elevation=elv, # canting=1.0, # method='nearest') points = lut.sel(wavelength=wl, elevation=elv, canting=1.0, size=xr.DataArray(mcTable['radii_mm'].values, dims='points'), aspect=xr.DataArray(mcTable['sPhi'].values, dims='points'), density=xr.DataArray(mcTable['sRho'].values, dims='points'), method='nearest') reflect_h, reflect_v, kdp_M1, ldr, rho_hv = radarScat(points, wl) wlStr = '{:.2e}'.format(wl) mcTable['sZeH_{0}'.format(wlStr)].values = reflect_h mcTable['sZeV_{0}'.format(wlStr)].values = reflect_v mcTable['sKDP_{0}'.format(wlStr)].values = kdp_M1 if scatSet['mode'] == 'table': print('fast LUT mode') elif scatSet['mode'] == 'wisdom': print('less fast cache adaptive mode') return mcTable ```
{ "source": "jdiasn/raincoat", "score": 2 }
#### File: raincoat/archive/parsivel_log_nc_convert.py ```python import numpy as np import datetime import calendar import matplotlib.mlab matplotlib.use('Agg') from netCDF4 import Dataset import io import collections def time2unix(datestring): try: f = datetime.datetime.strptime(datestring,"%Y%m%d%H%M%S.%f") unix = calendar.timegm(f.timetuple()) except ValueError: unix = np.nan return unix def count_file_lines(fname, site): if site == 'jue': f = open(fname, 'r') elif site == 'nya': f = io.open(fname, 'r', encoding='ISO-8859-1') line_total = sum(1 for line in f) f.close() return line_total def readASCII_old(logfile): #valid for reading in .logs from Aug.2013 until April 17th,2015 #read .log-file: dic = {} colnames = ['unixtime',\ 'rr','r_accum','wawa','z','vis','interval','amp','nmb','T_sensor',\ 'serial_no','version',\ 'curr_heating','volt_sensor',\ 'status_sensor','station_name',\ 'r_amount',\ 'error_code',\ 'n', 'v' ] #0: datetime string, 1-9:float, 10,11:string, 12,13: float, 14,15: string, 16:float, 17:string #check for bad lines to skip: iline = 0 filelen = count_file_lines(logfile) rowlen = 570. # default for files! #set keys where strings will be put in, to string arrays: for k,key in enumerate(colnames): if k == 10 or k == 11 or k == 14 or k == 15 or k == 17: dic[key] = np.empty(filelen,dtype = 'S20') elif k == 18 or k == 19: dic[key] = np.zeros([32,filelen]) else: dic[key] = np.nan * np.ones(filelen) #read file: f = open(logfile,'r') for line in f: # for each line split up string, put value into corresponding array if rowlen normal. line = line.strip() cols = line.split(';') #1/0 for i,cname in enumerate(colnames): if len(line) == rowlen: if i == 0: #datetime = cols[i] dic[cname][iline] = time2unix(cols[i]) elif i == 10 or i == 11 or i == 14 or i == 15 or i == 17: #all columns containing strings dic[cname][iline] = str(cols[i]) elif i == 18: for aa in range(32): dic[cname][aa,iline] = float(cols[i+aa]) if dic[cname][aa,iline] == -9.999 : dic[cname][aa,iline] = np.nan elif i == 19: for aa in range(32): dic[cname][aa,iline] = float(cols[50+aa]) if dic[cname][aa,iline] == -9.999 : dic[cname][aa,iline] = np.nan else: dic[cname][iline] = float(cols[i]) dic['rr'][:] = dic['rr'][:]*60. #convert from mm/min to mm/h iline += 1 f.close() return dic ################################################################################ ############################################################################## def readASCII(logfile, site): #valid for reading in .logs later than April 17th,2015 #read .log-file: dic = {} colnames = ['unixtime',\ 'rr','r_accum','wawa','z','vis','interval','amp','nmb','T_sensor',\ 'serial_no','version',\ 'curr_heating','volt_sensor',\ 'status_sensor','station_name',\ 'r_amount',\ 'error_code',\ 'n', 'v', 'M'] #0: datetime string, 1-9:float, 10,11:string, 12,13: float, 14,15: string, 16:float, 17:string, 18,19: array(32,filelen), 20: array(32,32,filelen) #check for bad lines to skip: iline = 0 filelen = count_file_lines(logfile, site) # if site == 'jue': # if int(logfile[-12:-4]) > 20160625 : # rowlen = 4662.0 # Station name JOYCE # elif 20151016 < int(logfile[-12:-4]) and int(logfile[-12:-4]) < 20151020 : # rowlen = 4665. # elif 20151001 < int(logfile[-12:-4]) and int(logfile[-12:-4]) < 20151015 : # rowlen = 4660. # else: # rowlen = 4666.0 # Station name Parsivel4 # # elif site == 'nya': # rowlen = 4660.0 #set keys where strings will be put in, to string arrays: for k,key in enumerate(colnames): if k == 10 or k == 11 or k == 14 or k == 15 or k == 17: dic[key] = np.empty(filelen,dtype = 'S20') elif k == 18 or k == 19: dic[key] = np.zeros([32,filelen]) elif k == 20: dic[key] = np.zeros([32,32,filelen]) else: dic[key] = np.nan * np.ones(filelen) #read file: if site == 'jue': f = open(logfile,'r') elif site == 'nya': f = io.open(logfile,'r', encoding='ISO-8859-1') for line in f.readlines(): # for each line split up string, put value into corresponding array if rowlen normal. line = line.strip() cols = line.split(';') if 20150917 < int(logfile[-12:-4]) and int(logfile[-12:-4]) < 20151017 : cols = [s.replace('<', '') for s in cols] cols = [s.replace('>', '') for s in cols] #1/0 #print 'len(line)', len(line), rowlen, len(line) == rowlen, 'len(cols)', len(cols), len(cols) == 1107 for i,cname in enumerate(colnames): # loop through columns #if len(line) == rowlen :# and cols[14] < 2: # check status of parsivel: if 0 or 1: sensor usable, if 2 or 3: not usable. if 1 == 1: try: test = float(cols[0][0:4]) except: continue if test < 2000: # time stamp missing or in the wrong place continue if len(cols) == 1106: tempcols = collections.deque(cols) tempcols.extendleft([cols[0][0:18]]) tempcols[1] = tempcols[1][18:-1] cols = list(tempcols) elif len(cols) != 1107: continue if i == 0: dic[cname][iline] = time2unix(cols[i]) elif i == 10 or i == 11 or i == 14 or i == 15 or i == 17: #all columns containing strings dic[cname][iline] = str(cols[i]) elif i == 18: for aa in range(32): try: dic[cname][aa,iline] = float(cols[i+aa]) #cols 18 upto 49 (32 values) except ValueError: dic[cname][aa,iline] = np.nan if dic[cname][aa,iline] == -9.999 : dic[cname][aa,iline] = np.nan elif i == 19: for aa in range(32): try: dic[cname][aa,iline] = float(cols[50+aa]) #cols 50 upto 81 (32 values) except ValueError: dic[cname][aa,iline] = np.nan if dic[cname][aa,iline] == -9.999 : dic[cname][aa,iline] = np.nan elif i == 20: for bb in range(32): #loop through falling velocities, ie rows in matrix for aa in range(32): #loop through sizes, ie columns try: dic[cname][aa,bb,iline] = float(cols[82+32*aa+bb]) if float(cols[82+32*aa+bb]) < 1000000: dic[cname][aa,bb,iline] = np.nan except ValueError: dic[cname][aa,bb,iline] = np.nan else: #if i == 1: 1/0 if len(cols) == 1107: # RG 5.8.2016: if some different lenght, something wrong with this line (e.g. time stamp missing) try: dic[cname][iline] = float(cols[i]) except ValueError: dic[cname][iline] = np.nan else : dic[cname][iline] = np.nan #if iline == 1: 1/0 iline += 1 f.close() return dic ################################################################################################ ################################################################################################ def writeNC_old(logfile,ncname): #valid for data Aug2013-Apr17,2015 #read .log-file into dictionnary: data = readASCII_old(logfile) #get number of lines in file ie length of data columns filelen = len(data['unixtime']) #open .nc outfile. ncout = Dataset(ncname,'w',format='NETCDF4') # define dimensions: dim = ncout.createDimension('dim', filelen) #filelen, set='none' if unlimited dimension ndim = ncout.createDimension('ndim',32) stri = ncout.createDimension('stri',None) #read variables: time = ncout.createVariable('time','i8',('dim',)) #time in double-precision... time.units = 'seconds since 1/1/1970 00:00:00' time[:] = data['unixtime'] rain_rate = ncout.createVariable('rain_rate','f',('dim',)) rain_rate.units = 'mm/h' rain_rate[:] = data['rr'] rain_accum = ncout.createVariable('rain_accum','f',('dim',)) rain_accum.units = 'mm' rain_accum[:] = data['r_accum'] wawa = ncout.createVariable('wawa','f',('dim',)) wawa.units = 'weather code' wawa[:] = data['wawa'] zeff = ncout.createVariable('Z','f',('dim',)) zeff.units = 'dB' zeff[:] = data['z'] vis = ncout.createVariable('MOR_visibility','f',('dim',)) vis.units = 'm' vis[:] = data['vis'] interval = ncout.createVariable('sample_interval','f',('dim',)) interval.units = 's' interval[:] = data['interval'] ampli = ncout.createVariable('signal_amplitude','f',('dim',)) ampli.units = '' ampli[:] = data['amp'] n_part = ncout.createVariable('n_particles','f',('dim',)) n_part.units = '#' n_part.description = 'number of detected particles' n_part[:] = data['nmb'] temp_sens = ncout.createVariable('T_sensor','f',('dim',)) temp_sens.units = 'deg C' temp_sens[:] = data['T_sensor'] serial_no = ncout.createVariable('serial_no','S',('stri',)) serial_no[:] = data['serial_no'] version = ncout.createVariable('version','S',('stri',)) version.description = 'IOP firmware version' version[:] = data['version'] curr_heating = ncout.createVariable('curr_heating','f',('dim',)) curr_heating.units = 'A' curr_heating.description = 'Current heating system' curr_heating[:] = data['curr_heating'] volt_sensor = ncout.createVariable('volt_sensor','f',('dim',)) volt_sensor.units = 'V' volt_sensor.description = 'Power supply voltage in the sensor' volt_sensor[:] = data['volt_sensor'] status_sensor = ncout.createVariable('status_sensor','S',('stri',)) status_sensor[:] = data['status_sensor'] station_name = ncout.createVariable('station_name','S',('stri',)) station_name[:] = data['station_name'] rain_am = ncout.createVariable('rain_am','f',('dim',)) rain_am.units = 'mm' rain_am.description = 'rain amount absolute' rain_am[:] = data['r_amount'] error_code = ncout.createVariable('error_code','S',('stri',)) error_code[:] = data['error_code'] N = ncout.createVariable('N','f',('ndim','dim')) N.units = '1/m3' N.description = 'mean volume equivalent diameter per preci class' N[:,:] = data['n'] v = ncout.createVariable('v','f',('ndim','dim')) v.units = 'm/s' v.description = 'mean falling speed per preci class' v[:,:] = data['v'] #close .nc-file: ncout.close() return ################################################################################################## ################################################################################################## def writeNC(logfile,ncname, site): #read .log-file into dictionnary: data = readASCII(logfile, site) #get number of lines in file ie length of data columns filelen = len(data['unixtime']) #open .nc outfile. ncout = Dataset(ncname,'w',format='NETCDF4') # define dimensions: dim = ncout.createDimension('dim', filelen) #filelen, set='none' if unlimited dimension ndim = ncout.createDimension('ndim',32) stri = ncout.createDimension('stri',None) #read variables: time = ncout.createVariable('time','i8',('dim',)) #time in double-precision... time.units = 'seconds since 1/1/1970 00:00:00' time[:] = data['unixtime'] rain_rate = ncout.createVariable('rain_rate','f',('dim',)) rain_rate.units = 'mm/h' rain_rate[:] = data['rr'] rain_accum = ncout.createVariable('rain_accum','f',('dim',)) rain_accum.units = 'mm' rain_accum[:] = data['r_accum'] wawa = ncout.createVariable('wawa','f',('dim',)) wawa.units = 'weather code' wawa[:] = data['wawa'] zeff = ncout.createVariable('Z','f',('dim',)) zeff.units = 'dB' zeff[:] = data['z'] vis = ncout.createVariable('MOR_visibility','f',('dim',)) vis.units = 'm' vis[:] = data['vis'] interval = ncout.createVariable('sample_interval','f',('dim',)) interval.units = 's' interval[:] = data['interval'] ampli = ncout.createVariable('signal_amplitude','f',('dim',)) ampli.units = '' ampli[:] = data['amp'] n_part = ncout.createVariable('n_particles','f',('dim',)) n_part.units = '#' n_part.description = 'number of detected particles' n_part[:] = data['nmb'] temp_sens = ncout.createVariable('T_sensor','f',('dim',)) temp_sens.units = 'deg C' temp_sens[:] = data['T_sensor'] serial_no = ncout.createVariable('serial_no','S6',('stri',)) serial_no[:] = data['serial_no'] version = ncout.createVariable('version','S5',('stri',)) version.description = 'IOP firmware version' version[:] = data['version'] curr_heating = ncout.createVariable('curr_heating','f',('dim',)) curr_heating.units = 'A' curr_heating.description = 'Current heating system' curr_heating[:] = data['curr_heating'] volt_sensor = ncout.createVariable('volt_sensor','f',('dim',)) volt_sensor.units = 'V' volt_sensor.description = 'Power supply voltage in the sensor' volt_sensor[:] = data['volt_sensor'] status_sensor = ncout.createVariable('status_sensor','S2',('stri',)) status_sensor[:] = data['status_sensor'] station_name = ncout.createVariable('station_name','S5',('stri',)) station_name[:] = data['station_name'] rain_am = ncout.createVariable('rain_am','f',('dim',)) rain_am.units = 'mm' rain_am.description = 'rain amount absolute' rain_am[:] = data['r_amount'] error_code = ncout.createVariable('error_code','S3',('stri',)) error_code[:] = data['error_code'] N = ncout.createVariable('N','f',('ndim','dim')) N.units = '1/m3' N.description = 'mean volume equivalent diameter per preci class' N[:,:] = data['n'] v = ncout.createVariable('v','f',('ndim','dim')) v.units = 'm/s' v.description = 'mean falling velocity per preci class' v[:,:] = data['v'] M = ncout.createVariable('M','f',('ndim','ndim','dim')) M.units = '' M.description = 'raw data matrix. number of particles per volume diameter and fall velocity' M[:,:,:] = data['M'] #close .nc-file: ncout.close() return ``` #### File: raincoat/disdrometer/pars_class.py ```python import numpy as np #****************************************************************************** # Creation of Parsivel class boundaries (class center and class width) and bin edges for PSD calculation #****************************************************************************** def pars_class(): """ This function generates the volume equivalent diameter class center and widths Arguments --------- Returns ------- pars_class : 2dim array, volume equivalent diameter class center & width bin_edges : valuese of volume equivalent diameter class edges """ pars_class = np.zeros(shape=(32,2)) bin_edges = np.zeros(shape=(33,1)) #pars_class[:,0] : Center of Class [mm] #pars_class[:,1] : Width of Class [mm] pars_class[0:10,1] = 0.125 pars_class[10:15,1] = 0.250 pars_class[15:20,1] = 0.500 pars_class[20:25,1] = 1. pars_class[25:30,1] = 2. pars_class[30:32,1] = 3. j = 0 pars_class[0,0] = 0.0625 # changed to avoid bin width mismatch, anyway better to have a mismatch in the lower part, first two classes should also be 0 because smaller than parsivel sensitivity for i in range(1,32): pars_class[i,0] = pars_class[i-1,0] + 0.5*(pars_class[i-1,1] + pars_class[i,1]) # if i < 10 or (i > 10 and i < 15) or (i > 15 and i < 20) or (i > 20 and i < 25) or (i > 25 and i < 30) or (i > 30): # pars_class[i,0] = pars_class[i-1,0] + pars_class[i,1] # const = [0.188, 0.375, 0.75, 1.5, 2.5] # if i == 10 or i == 15 or i == 20 or i == 25 or i == 30: # pars_class[i,0] = pars_class[i-1,0] + const[j] # j = j + 1 #print pars_class[i,0] #bin_edges[i+1,0] = pars_class[i,0] + pars_class[i,1]/2 bin_edges[0,0] = 0. bin_edges[1:,0] = pars_class[:,0] + pars_class[:,1]*0.5 return pars_class, bin_edges ```
{ "source": "JDiaz11/BlackBeanControl", "score": 2 }
#### File: JDiaz11/BlackBeanControl/samsung.py ```python import Settings import copy import string import sys, getopt import time, binascii import netaddr import broadlink, configparser from os import path from Crypto.Cipher import AES def eq(cnst, val): return ((cnst * 1.2 > val) and ((cnst * 0.8) < val)) def BinDecode(sbin): if len(sbin) <> 48: print('bin length error. len=' + str(len(sbin))) return False xbin = 'x' + sbin BinArray = [xbin[i * 8: (i - 1) * 8: -1] for i in xrange(1, 7)] # BinArray = [sbin[7: -49: -1], sbin[15: 7: -1], sbin[23: 15: -1], sbin[31: 23: -1], sbin[39: 31: -1], sbin[47: 39: -1]] !!! # BinArray = [sbin[7: : -1], sbin[15: 7: -1], sbin[23: 15: -1], sbin[31: 23: -1], sbin[39: 31: -1], sbin[47: 39: -1]] # BinArray = [sbin[: 7: 1], sbin[7: 15: 1], sbin[15: 23: 1], sbin[23: 31: 1], sbin[31: 39: 1], sbin[39: 47: 1]] HexArray = ['%02X' % int(x, 2) for x in BinArray] print('bin cmd' + "".join(' %s' % s for s in BinArray)) print('hex cmd' + "".join(' %s' % s for s in HexArray)) print('dec cmd' + ''.join(' %03d' % int(b, 2) for b in BinArray)) return True; SentCommand = '' SettingsFile = configparser.ConfigParser() SettingsFile.optionxform = str SettingsFile.read(Settings.BlackBeanControlSettings) try: Options, args = getopt.getopt(sys.argv[1:], 'd:e:p:n:h', ['command=', 'command=', 'command=', 'neccmd=', 'help']) except getopt.GetoptError: print('Options error. Try -d for decode or -h for help. ') sys.exit(2) MainCmd = ''; for Option, Argument in Options: if Option in ('-h', '--help'): print('Samsung48 IR protocol (NEC48-2) decoder/encoder.') print('Print command from ini file:') print(' samsung.py -p <Command name>') print('Decode:') print(' samsung.py -d <Command name>') print('Export as timing list:') print(' samsung.py -e <Command name>') print('Encode Samsung IR command:') print(' samsung.py -n <Samsung command in HEX>') sys.exit() elif Option in ('-p', '--print'): SentCommand = Argument MainCmd = 'p'; elif Option in ('-d', '--decode'): SentCommand = Argument MainCmd = 'd'; elif Option in ('-e', '--export'): SentCommand = Argument MainCmd = 'e'; elif Option in ('-n', '--encode'): SentCommand = Argument MainCmd = 'n'; if SentCommand.strip() == '': print('Command name parameter is mandatory') sys.exit(2) if SettingsFile.has_option('Commands', SentCommand): CommandFromSettings = SettingsFile.get('Commands', SentCommand) else: CommandFromSettings = '' if (MainCmd in ['d', 'e', 'p']) and (CommandFromSettings.strip() != ''): DecodedCommand = CommandFromSettings.decode('hex') # print command if MainCmd == 'p': print(CommandFromSettings) sys.exit(0) #'d','e' commands Intv = ''; LenArray = []; for s in DecodedCommand: Intv = Intv + s; # EOF if Intv == '\x00\x0d\x05': # print("eof") break; # 1-byte or 3-byte values. 3-byte values starts with 0x00 if (Intv[0] <> '\x00') or (Intv[0] == '\x00' and len(Intv) >= 3): IntI = int(Intv.encode('hex'), 16) * 1000 * 269 / 8192 LenArray.append(IntI) # print(IntI) Intv = '' print('Array length ' + str(len(LenArray))) if MainCmd == 'e': print(''.join((' +' if (ind % 2 == 0) else ' -') + '%d' % i for ind,i in enumerate(LenArray))) sys.exit(0); DecodeState = ['init', '1bwait', 'pulse', 'pause', 'stop'] decoding = DecodeState[0] BinStr = ''; for indx in range(0, len(LenArray) - 1): if ((indx < len(LenArray) - 3) and eq(4500, LenArray[indx]) and eq(4500, LenArray[indx + 1]) and (300 < LenArray[indx + 2] < 1000)): if BinStr <> '': BinDecode(BinStr) BinStr = '' decoding = '1bwait' print('--------------------------------------------') print('sequence started at indx:' + str(indx) + ' ' + str(LenArray[indx])) continue if decoding == '1bwait': decoding = 'pulse' continue # 550-550 = 0; 550-1450 = 1 in microseconds # decoder setiings - 0.3-1ms pulse and '0', 1-2ms - '1', else - error if decoding == 'pulse': if 300 < LenArray[indx] < 900: decoding = 'pause' continue else: print('error bit1 length=' + str(LenArray[indx]) + ' indx=' + str(indx)) decoding = 'init' continue if decoding == 'pause': if 300 < LenArray[indx] < 1000: BinStr = BinStr + '0' elif 1000 < LenArray[indx] < 2000: BinStr = BinStr + '1' else: print('error bit2 length=' + str(LenArray[indx]) + ' indx=' + str(indx)) decoding = 'init' continue decoding = 'pulse' if (decoding == 'init' and BinStr <> '') or (indx == len(LenArray) - 2 and BinStr <> ''): print('decoded ' + BinStr) BinDecode(BinStr) BinStr = '' if BinStr <> '': BinDecode(BinStr) sys.exit(0) if (MainCmd in ['n']) and (SentCommand.strip() != ''): if (len(SentCommand) <> 12) or (not all(c in string.hexdigits for c in SentCommand)): print('Command must be 6-byte hex number.') sys.exit(2) print('hex command=' + SentCommand) BinArray = [bin(int(SentCommand[i: i + 2], 16))[2:].zfill(8)[::-1] for i in xrange(0, 11, 2)]; BinStr = "".join('%s' % s for s in BinArray) print ('bin command=' + BinStr) # start sequence + Samsung start + data + end pulse + (here the copy)Samsung start + data + end pulse with long pause + end sequence EncodedBinStr = "".join(('1434' if (c == '1') else '1414') for c in BinStr) Cmd = '2600ca00' + '9494' + EncodedBinStr + '1494' + '9494' + EncodedBinStr + '1400072a' + '000d05' print(Cmd) sys.exit(0) ```
{ "source": "jdiaz4302/streamstats", "score": 3 }
#### File: streamstats/streamstats/watershed.py ```python from streamstats import utils class Watershed(): """Watershed covering a spatial region, with associated information. The USGS StreamStats API is built around watersheds as organizational units. Watersheds in the 50 U.S. states can be found using lat/lon lookups, along with information about the watershed including its HUC code and a GeoJSON representation of the polygon of a watershed. Basin characteristics and flow statistics can also be extracted from watersheds. """ base_url = "https://streamstats.usgs.gov/streamstatsservices/" def __init__(self, lat, lon): """Initialize a Watershed object :param lon: Longitude of point in decimal degrees. :type lon: float :param lat: Latitude of point in decimal degrees. :type lat: float :param simplify: Whether to simplify the polygon representation. :type simplify: bool """ self.lat, self.lon = lat, lon self.address = utils.find_address(lat=lat, lon=lon) self.state = utils.find_state(self.address) self.data = self._delineate() self.workspace = self.data['workspaceID'] self.flowstats = None def _delineate(self): """Find the watershed that contains a point. Implements a Delineate Watershed by Location query from https://streamstats.usgs.gov/docs/streamstatsservices/#/ :rtype dict containing watershed data """ payload = { 'rcode': self.state, 'xlocation': self.lon, 'ylocation': self.lat, 'crs': 4326, 'includeparameters': True, 'includeflowtypes': False, 'includefeatures': True, 'simplify': False } url = "".join((self.base_url, "watershed.geojson")) response = utils.requests_retry_session().get(url, params=payload) response.raise_for_status() # raises errors early return response.json() def __repr__(self): """Get the string representation of a watershed.""" huc = self.get_huc() huc_message = 'Watershed object with HUC%s: %s' % (len(huc), huc) coord_message = 'containing lat/lon: (%s, %s)' % (self.lat, self.lon) return ', '.join((huc_message, coord_message)) def get_huc(self): """Find the Hydrologic Unit Code (HUC) of the watershed.""" watershed_point = self.data['featurecollection'][0]['feature'] huc = watershed_point['features'][0]['properties']['HUCID'] return huc def get_boundary(self): """Return the full watershed GeoJSON as a dictionary. :rtype dict containing GeoJSON watershed boundary """ for dictionary in self.data['featurecollection']: if dictionary.get('name', '') == 'globalwatershed': return dictionary['feature'] raise LookupError('Could not find "globalwatershed" in the feature' 'collection.') def available_characteristics(self): """List the available watershed characteristics.""" raise NotImplementedError() def get_characteristics(self): """Get watershed characteristic data values.""" raise NotImplementedError() def available_flow_stats(self): """List the available flow statistics :rtype list of available flow statistics """ if not self.flowstats: self.get_flow_stats() avail_stats = [item['StatisticGroupName'] for item in self.flowstats] return avail_stats def get_flow_stats(self): """Get watershed flow statistics data values. :rtype dict containing flow statistics data for a watershed """ pars = { 'rcode': self.state, 'workspaceID': self.workspace, 'includeflowtypes': True } flow_url = "".join((self.base_url, 'flowstatistics.json')) response = utils.requests_retry_session().get(flow_url, params=pars) self.flowstats = response.json() return self.flowstats ```
{ "source": "jdiaz/gitpal", "score": 4 }
#### File: jdiaz/gitpal/gitpal.py ```python import github LICENSES = { 1: 'Apache 2.0', 2: 'BSD 3-Clause "New" pr "Revised" license', 3: 'GNU General Public License (GPL)', 4: 'GNU Library or "Lesser" General Public License (LGPL)', 5: 'MIT license', 6: 'Mozilla Public License 2.0', 7: 'Common Development and Distribution License', 8: 'Eclipse Public License' } def make_project(name, description, license): """Creates a new github project with the information provided Args: name: The name to use when creating the github Project description: A description of what the idea. The contents will be written to the NOTES files. license: The license to include in the new github project. Returns: If the new project was successfully created. """ # TODO: Implement def banner(): """Creates the banner for the CLI prompt. Returns: A string containing the anscii art to draw """ handle = open('resources/banner.txt', mode='rt', encoding='utf-8') return handle.read() def prompt(banner, options): """Displays a CLI prompt that asks the user for information on the side project idea. Args: banner: A string containing the anscii art banner to show at run time. options: A dict of license options to choose from indexed by number. Returns: Nothing """ print(banner) print('Booting...\n') git = github.Github() print("Let's make sure you don't forget that idea!\n") correct = False cli_prompt = '>> ' while not correct: print('Please enter project name:') name = input(cli_prompt) print('Project description:') description = input(cli_prompt) print('Choose a license (Enter the number):') print(options_menu(options)) license = input(cli_prompt) #TODO: Validate print('Lets review your input.\n') print(' Name: {}'.format(name)) print(' Description: {}'.format(description)) print(' License: {}'.format(options[int(license)])) print('Is everything correct? (yes, no)') ok = input(cli_prompt).lower() if ok == 'yes' or ok == 'y': correct = True git.make_project(name, description, license) print('Great, visit your github profile https://www.github.com/') else: print('Woops, lets go over the information again!') def options_menu(options): """Creates string representation of the licenses support by gitpal. Args: options: A dictionary of numbers to license name Returns: A string showing the options menu """ buf = [] for key, value in options.items(): buf.append(' {}. {}\n'.format(key, value)) return ''.join(buf) def main(): prompt(banner(), LICENSES) if __name__ == '__main__': main() ```
{ "source": "jdiaz/invst", "score": 4 }
#### File: jdiaz/invst/investment_analysis.py ```python import math class InvestmentCalculator: def set_stock_price(self, stock_price): self.stock_price = stock_price return self def set_payout_period(self, time_period = 4): self.payout_period = time_period return self def set_payout_ratio(self, payout_ratio): self.payout_ratio = payout_ratio return self def set_investment_per_payout_period(self, payment): self.investment_per_payout_period = payment return self def set_shares(self, shares): self.total_shares = shares return self def set_years(self, yrs): self.years = yrs return self def set_year_percentage_return(self, ret): self.year_return = ret return self def should_reinvest_dividends(self, reinvest): self.reinvest_dividends = reinvest return self def __format_money(self, money): return '${:,.2f}'.format(money) def __stock_value(self, stock_price, number_of_stocks): return self.__format_money(number_of_stocks * stock_price) def __dividend_payout(self, shares, payout_ratio): frac_shares, whole_shares = math.modf(shares) # separate decimal portion of shares you own return whole_shares * payout_ratio + frac_shares * payout_ratio def __purchasable_stock_amount(self, stock_price, money): if money == 0: return 0 return money / stock_price def compute(self): print('=======================================================================') print('Investment analysis:') print('\tFor ({}) years'.format(self.years)) print( '\tStarting shares: {}, {}'.format( self.total_shares, self.__format_money(self.total_shares * self.stock_price), ), ) print( '\tStarting stock price: {}'.format(self.__format_money(self.stock_price)), ) print( '\tInvesting {} per pay period ({}) times a year'.format( self.__format_money(self.investment_per_payout_period), self.payout_period ), ) total_money_from_divided_payout = 0 for _ in range(self.years): for _ in range(self.payout_period): money_made_from_dividend = self.__dividend_payout( self.total_shares, self.payout_ratio, ) total_money_from_divided_payout += money_made_from_dividend if self.reinvest_dividends: stock_purchased_from_dividends = self.__purchasable_stock_amount( self.stock_price, money_made_from_dividend, ) self.total_shares += stock_purchased_from_dividends self.total_shares += self.__purchasable_stock_amount( self.stock_price, self.investment_per_payout_period, ) # Increase stock price by Year Return %; once every year self.stock_price += (self.stock_price * self.year_return) print('\n\tResults:') print( '\tTotal stock: {}, {}'.format( self.total_shares, self.__stock_value(self.stock_price, self.total_shares), ), ) print('\tNew stock price: {}'.format(self.__format_money(self.stock_price))) print( '\tTotal made from dividends: {}, Was it reinvested? {}'.format( self.__format_money(total_money_from_divided_payout), self.reinvest_dividends ), ) print( '\tGoing forward per quarter you will make: {}'.format( self.__format_money(self.total_shares * self.payout_ratio), ), ) global_years = 5 global_investment_per_period = 3000 def calculateATTStock(): """ Calculates stock investment in At&t stock """ (InvestmentCalculator()) \ .set_stock_price(31.07) \ .set_shares(117) \ .set_payout_period(4) \ .set_investment_per_payout_period(3000) \ .set_years(3) \ .set_payout_ratio(0.51) \ .set_year_percentage_return(0.0) \ .should_reinvest_dividends(True) \ .compute() def calculateIVVFund(): """ Calculates stock investment in IVV ETF """ (InvestmentCalculator()) \ .set_stock_price(288.56) \ .set_shares(30) \ .set_payout_period(4) \ .set_investment_per_payout_period(500) \ .set_years(15) \ .set_payout_ratio(1.14) \ .set_year_percentage_return(.1012) \ .should_reinvest_dividends(True) \ .compute() if __name__ == '__main__': calculateATTStock() #calculateIVVFund() ```
{ "source": "jdiazmx/WBU", "score": 3 }
#### File: jdiazmx/WBU/Funtions.py ```python import socket import os import random def showBanner(): strBanner1=""" ____ _ _ _ _ | _ \ | | | | | | | | |_) | __ _ __| | | | |___| |__ | _ < / _` |/ _` | | | / __| '_ \ | |_) | (_| | (_| | |__| \__ \ |_) | |____/ \__,_|\__,_|\____/|___/_.__/ ____ _____ _ _ / __ \ |_ _| | | | | | | | |_ _____ _ __ | | _ __ | |_ ___ _ __ _ __ ___| |_ | | | \ \ / / _ \ '__| | | | '_ \| __/ _ \ '__| '_ \ / _ \ __| | |__| |\ V / __/ | _| |_| | | | || __/ | | | | | __/ |_ \____/ \_/ \___|_| |_____|_| |_|\__\___|_| |_| |_|\___|\__| v0.1 by <NAME> """ strBanner2=""" 888 888 888888b. 888 888 888 o 888 888 "88b 888 888 888 d8b 888 888 .88P 888 888 888 d888b 888 8888888K. 888 888 888d88888b888 888 "Y88b 888 888 88888P Y88888 888 888 888 888 8888P Y8888 888 d88P Y88b. .d88P 888P Y888 8888888P" AD "Y88888P" SB v0.1 by <NAME> """ strBanner3=""" 01010111 01000010 01010101 v0.1 by <NAME> """ num=random.randint(1, 2) if num==1: print(strBanner1) elif num ==2: print(strBanner2) else: print(strBanner3) return def showMenu(): strMenu=""" 1. Modificar Script 2. Ver Script 3. Enviar Script 4. Modo Interactivo 5. Salir """ print(strMenu) return def readScript(file): file = open("Script.txt", "r") print("--------------------------------------------") print(file.read()) print("--------------------------------------------") input("[?]Enter para continuar..") file.close() return def sendScript(clientsocket,file): file = open("Script.txt", "r") clientsocket.send(file.read().encode('ascii')) print("[+]Envianado...") """respuesta=clientsocket.recv(1024) if (respuesta=="O"): print("[+]Script recibido por el BadUsb") else: print("[!]Error al enviar el script") input("[?]Enter para continuar..") return input("[?]Enter para continuar..") """ return def moidifyScript(): print("/n"+"[+]Modifica el Script y Guardalo!...") os.system('gedit script.txt') input("[?]Enter para continuar..") return ```
{ "source": "jdiazrdgz/BabeNotifier-Backend", "score": 2 }
#### File: application/resources/Ping.py ```python from flask_restful import Resource class Ping(Resource): def get(self): return \ { "success": True, "message": "BabeNotifier - V0.0.1", "data": {} }, 200 ```
{ "source": "jdiazromeral/django-ddd-quizs-demo", "score": 2 }
#### File: service/application/quiz_creator.py ```python from service.domain.quiz import Quiz from service.domain.quiz_repository import QuizRepository class QuizCreator: def __init__(self, quiz_respository: QuizRepository) -> None: self.__quiz_respository = quiz_respository def create(self, quiz: Quiz) -> None: self.__quiz_respository.save(quiz) ``` #### File: infrastructure/repositories/mongo_quiz_repository.py ```python from typing import Optional, List from urllib.parse import quote_plus from uuid import UUID from pymongo import MongoClient from service.domain.quiz import Quiz from service.domain.quiz_repository import QuizRepository from service.infrastructure.builders.quiz_builder import QuizBuilder from service.infrastructure.serializers.quiz_serializer import QuizSerializer class MongoQuizRepository(QuizRepository): def __init__( self, quiz_serializer: QuizSerializer, quizs_builder: QuizBuilder, ): self.__quiz_serializer = quiz_serializer self.__quiz_builder = quizs_builder self.__client = MongoClient(f"mongodb://quiz:{quote_plus('quiz-secret')}@localhost:27017/quizdb") self.__quizdb = self.__client.quizdb self.__quiz_collection = self.__quizdb.quizs def save(self, quiz: Quiz) -> None: serialized_quiz = self.__quiz_serializer.serialize(quiz) self.__quiz_collection.insert_one(serialized_quiz) def find_all(self) -> List[Quiz]: quizs = [] mongo_quizs = self.__quiz_collection.find_all({}) for quiz in mongo_quizs: quizs.append(self.__quiz_builder.build(quiz)) return quizs def find_by_id(self, quiz_id: UUID) -> Optional[Quiz]: pass ```
{ "source": "jdiaz/snorkel", "score": 2 }
#### File: src/components/user_button.py ```python import flask_security from .components import UIComponent import pudgy class LoginButton(UIComponent, pudgy.MustacheComponent): pass class UserButton(UIComponent, pudgy.MustacheComponent): def __prepare__(self): self.context.user = flask_security.core.current_user class UserModal(UIComponent, pudgy.JinjaComponent, pudgy.ServerBridge, pudgy.SassComponent): def __prepare__(self): self.context.user = flask_security.core.current_user ``` #### File: snorkel/src/__init__.py ```python from __future__ import absolute_import from __future__ import print_function from . import main from . import cli import os import sys from subprocess import Popen, PIPE SNORKEL_DIR=os.path.expanduser("~/.local/share/snorkel") def shared_mode(): print("SWITCHING TO SHARED DIR", SNORKEL_DIR, file=sys.stderr) try: os.makedirs(SNORKEL_DIR) except: pass os.chdir(SNORKEL_DIR) DEBUG="DEBUG" in os.environ def run_command(cmd_args, stdin=b""): cmd_args = list(map(lambda w: w.decode("utf-8"), cmd_args)) print("RUNNING COMMAND", " ".join(cmd_args), file=sys.stderr) if isinstance(stdin, str): stdin = stdin.encode("utf-8") p = Popen(cmd_args, stdin=PIPE, stdout=PIPE, stderr=PIPE) stdout, stderr = p.communicate(stdin) print(stderr) return stdout.decode("utf-8") ``` #### File: snorkel/src/pages.py ```python from __future__ import print_function import pudgy import flask import time from .views import get_view_by_name from .components import QuerySidebar, UserButton, UserModal from .auth import rpc_login_required from . import backend, results, presenter, rbac from .components import UIComponent, Selector import werkzeug import os from collections import defaultdict import flask_security from .query_spec import QuerySpec from .util import time_to_seconds, string_dict try: from urllib import unquote_plus except: from urllib.parse import unquote_plus from . import fastjson as json class ViewArea(UIComponent, pudgy.JinjaComponent, pudgy.BackboneComponent, pudgy.ClientBridge): pass @pudgy.Virtual class Page(pudgy.FlaskPage): NAMESPACE = "pages" class HomePage(Page, pudgy.SassComponent): pass class UserPage(Page): pass class DatasetsPage(Page, pudgy.BackboneComponent, pudgy.SassComponent): def __prepare__(self): bs = backend.SybilBackend() self.context.tables = filter(lambda t: rbac.check("query", t), bs.list_tables()) self.context.tables = list(self.context.tables) self.context.tables.sort() groups = defaultdict(list) self.context.table_groups = groups groupings = [] visited = {} for t in self.context.tables: if t in visited: continue visited[t] = 1 tokens = t.split("@") if len(tokens) > 1: superset = tokens[0] dataset = " ".join(tokens[1:]) groups[superset].append(dataset) else: groups[t].append("") self.context.groups = list(sorted(groups.keys())) self.context.user_button = UserButton() self.context.user_modal = UserModal() def read_filters(query, i='query'): import ast filters = [] try: filters = query.get('filters') if type(filters) == str: filters = ast.literal_eval(filters) filters = filters[i] except Exception as e: print("FILTER ERR", e) return filters import datetime def epoch(d): return (d - datetime.datetime(1970, 1, 1)).total_seconds() class QueryPage(Page, pudgy.SassComponent, pudgy.BackboneComponent, pudgy.ServerBridge): def __prepare__(self): # locate the potential views query = QuerySpec(flask.request.args) self.context.error = None has_saved = False if "saved" in self.context and self.context.saved: query = QuerySpec(self.context.saved.parsed) has_saved = True table = self.context.table view = query.get('view', 'table') pr = presenter.GetPresenter(table) bs = backend.SybilBackend() bs.clear_cache(table=table) try: table_info = bs.get_table_info(table) tables = filter(lambda t: rbac.check("query", t), bs.list_tables()) except Exception as e: self.context.error = "Couldn't read table info for table %s" % (table) return table_selector = Selector(name="table", selected=table, options=tables) VwClass = get_view_by_name(view) view = VwClass() view.context.update(metadata=table_info, presenter=pr, query=query) # its up to a view to decide on marshalling its data to client, # but we auto marshal the table metadata and query for every view view.marshal(metadata=table_info, query=query) viewarea = ViewArea() if self.context.saved: sq = self.context.saved if not sq.results: viewarea.call("no_results", { "errmsg" : "No results found for this query" }); view.context.update(sq.parsed, results=sq.results, compare=sq.compare) view.marshal(query=sq.parsed, results=sq.results, compare=sq.compare, parsed=sq.parsed, created=epoch(sq.created)) viewarea.call("set_view", view) viewarea.context.update(view=view) filters = read_filters(query) compare_filters = read_filters(query, 'compare') qs = QuerySidebar(info=table_info, view=view, filters=filters or [], compare_filters=compare_filters, metadata=table_info) if compare_filters: qs.call('show_compare_filters') qs.call("supports_compare_filters", view.SUPPORT_COMPARE_QUERIES) if has_saved: qs.call("show_results") qs.set_ref("sidebar") qs.marshal(table=table, viewarea=viewarea, metadata=table_info) self.set_ref("querypage") user_button = UserButton() user_modal = UserModal(show_queries=True) self.marshal(sidebar=qs, table=table, user_modal=user_modal) self.context.update( table=table, sidebar=qs, user_button=user_button, user_modal=user_modal, viewarea=viewarea, table_selector=table_selector) # TODO: place these on QueryPage? @QuerySidebar.api @rpc_login_required def run_query(cls, table=None, query=None, viewarea=None, filters=[]): if not rbac.check("query", table): return { "error" : "You don't have access to this table" } user = flask_security.core.current_user.email # this is a name/value encoded array, unfortunately query = QuerySpec(query) query.add('table', table) query.add('filters', string_dict(filters)) d = query.__makedict__() bs = backend.SybilBackend() ti = bs.get_table_info(table) view = query.get('view') VwClass = get_view_by_name(view) # this lets a class modify the parameters to a query using # its own custom params VwClass.add_custom_params(query) query.set('viewbase', VwClass.BASE) res = bs.run_query(table, query, ti) bs.log_query(user, query) cmp = None against = query.get('against', '') filters = query.get('filters') compare_filters = filters['compare'] if against or len(compare_filters): compare_spec = QuerySpec(query.md) if against: now = time_to_seconds('now') compare_delta = time_to_seconds(against) - now # compare_delta is in ms query.set('compare_delta', compare_delta*1000) startms = query.get('start_ms') endms = query.get('end_ms') startms += compare_delta * 1000 endms += compare_delta * 1000 compare_spec.set('start_ms', startms) compare_spec.set('end_ms', endms) compare_spec.set('filters', { "query" : compare_filters }) cmp = bs.run_query(table, compare_spec, ti) query.set('compare_mode', 1) bs.log_query(user, compare_spec) sq = results.save_for_user(flask_security.core.current_user, query, res, cmp) d["h"] = sq.hashid v = VwClass() v.context.update(query=sq.parsed, results=sq.results, metadata=ti, compare=sq.compare) v.marshal(query=sq.parsed, results=sq.results, compare=sq.compare, metadata=ti, parsed=epoch(sq.created)) if viewarea: if not res: viewarea.call("no_results", { "errmsg" : "No results found for this query" }); viewarea.html(v.render()) viewarea.call("set_view", v) d['filters'] = json.dumps(d['filters']) queryUrl = unquote_plus(flask.url_for('get_view', **d)) return { "queryUrl": queryUrl, "res" : res, "cmp" : cmp, "query" : d } @QuerySidebar.api @rpc_login_required def update_controls(cls, table=None, view=None, query=None, viewarea=None, filters=[]): pr = presenter.GetPresenter(table) bs = backend.SybilBackend() ti = bs.get_table_info(table) query = QuerySpec(query) VwClass = get_view_by_name(view) v = VwClass() v.context.update(metadata=ti, presenter=pr, query=query) query_filters= filters['query'] qs = QuerySidebar(view=v, presenter=pr, query=query, filters=query_filters, metadata=ti) qs.__prepare__() qs.nomarshal() has_compare_filters = 'compare' in filters and len(filters['compare']) > 0 if v.SUPPORT_COMPARE_QUERIES and has_compare_filters: cls.call("show_compare_filters") else: cls.call("hide_compare_filters") cls.call("supports_compare_filters", v.SUPPORT_COMPARE_QUERIES) # we undelegate our events because we are about to replace ourself # with the same component cls.html(qs.context.querycontrols.render(), selector=".querycontrols") @QueryPage.api @rpc_login_required def get_saved_queries(cls, table=None): user = flask_security.core.current_user if table: recent_queries = results.get_for_user(user, table) return { "recent" : recent_queries, "table" : table } ``` #### File: plugins/snorkel_advanced_views/timeline.py ```python import pudgy import os from snorkel.components import Selector, ControlRow from snorkel.views import ViewBase def make_dict(arr): return dict([(w,w) for w in arr]) class TimelineView(ViewBase, pudgy.JSComponent, pudgy.SassComponent): NAME="timeline" BASE="samples" DISPLAY_NAME="Timeline View" BASE_DIR=os.path.dirname(__file__) def add_timeline_controls(self, controls): groups = make_dict(self.context.metadata["columns"]["strs"]) event_field = Selector( name="event_field", options=groups, selected=self.context.query.get("event_field")) controls.append(ControlRow("event_field", "Event Field", event_field)) def get_controls(self): controls = [] self.add_time_controls(controls) # self.add_time_comparison(controls) self.add_timeline_controls(controls) self.add_groupby_selector(controls) self.add_limit_selector(controls) self.add_go_button(controls) return controls ``` #### File: plugins/snorkel_basic_views/dist.py ```python import os import pudgy from snorkel.views import ViewBase class DistView(ViewBase, pudgy.JSComponent, pudgy.SassComponent): NAME="dist" BASE="dist" DISPLAY_NAME="Dist View" BASE_DIR=os.path.dirname(__file__) SUPPORT_COMPARE_QUERIES = True def get_controls(self): controls = [] self.add_time_controls(controls) self.add_field_selector(controls) self.add_go_button(controls) return controls ``` #### File: plugins/snorkel_basic_views/scatter.py ```python import pudgy import os from snorkel.components import Selector, ControlRow from snorkel.views import ViewBase def make_dict(arr): return dict([(w,w) for w in arr]) class ScatterView(ViewBase, pudgy.JSComponent): NAME="scatter" BASE="samples" DISPLAY_NAME="Scatter View" BASE_DIR=os.path.dirname(__file__) def add_scatter_controls(self, controls): fields = make_dict(self.context.metadata["columns"]["ints"]) field = Selector( name="field", options=fields, selected=self.context.query.get('field')) field2 = Selector( name="field_two", options=fields, selected=self.context.query.get('field_two')) reverse_axis = Selector( name="reverse_axis", options={ "Reverse Both " : "reverse_b", "Reverse Y Axis" : "reverse_y", "Reverse X Axis" : "reverse_x", "Normal" : "none", }, selected=self.context.query.get('reverse_axis', "none")) controls.append(ControlRow("field", "Field", field)) controls.append(ControlRow("field_two", "Field (2)", field2)) controls.append(ControlRow("reverse_axis", "Reverse Axis", reverse_axis)) def get_controls(self): controls = [] self.add_time_controls(controls) # self.add_time_comparison(controls) self.add_scatter_controls(controls) self.add_groupby_selector(controls) self.add_limit_selector(controls) self.add_go_button(controls) return controls ``` #### File: snorkel/src/query_spec.py ```python import werkzeug try: import dotmap except: dotmap = None try: import addict except: addict = None class QuerySpec(object): def __init__(self, query): # TODO: list all attributes of a query spec up front so others know what to expect md = werkzeug.MultiDict() for q in query: if type(q) == dict: md.add(q['name'], q['value'].strip()) elif type(q) == list or type(q) == tuple: md.add(q[0], q[1].strip()) else: md.add(q, query[q]) self.ismultidict = False self.isdotmap = False if isinstance(query, werkzeug.MultiDict): self.ismultidict = True elif addict and isinstance(query, addict.Dict): self.isdotmap = True elif dotmap and isinstance(query, dotmap.DotMap): self.isdotmap = True elif isinstance(query, list): self.ismultidict = True else: raise Exception("Unknown entry for query spec") self.md = md # we will need to put together an exported interface self.fields = self.get_fields() self.groupby = self.get_groupby() def __makedict__(self): ret = { } for f in self.md: if f.endswith("[]"): if self.ismultidict: ret[f] = self.md.getlist(f) else: ret[f] = self.md.get(f) else: ret[f] = self.md.get(f) return ret def __json__(self): return self.__makedict__() def setlist(self, k, v): self.md.setlist(k, v) def set(self, k, v): if k in self.md: self.md.pop(k) self.md.add(k,v) def add(self, k, v): self.md.add(k, v) def getlist(self, k, d=[]): if self.ismultidict: return self.md.getlist(k) return self.md.get(k) or [] def get(self, k, d=None): return self.md.get(k, d) def get_metric(self): op = self.md.get('metric') if not op: op = self.md.get('agg', '') op = op.lstrip("$") return op def get_groupby(self): g = self.getlist('groupby[]') if not g: g = self.getlist('group_by') return g def get_fields(self): g = self.getlist('fields[]') if not g: g = self.getlist('fieldset') return g def get_custom_fields(self): g = self.getlist('custom_fields[]') if not g: g = self.getlist('custom_fields') return g ``` #### File: snorkel/src/results.py ```python from .models import SavedQuery from pudgy.util import getrandhash from . import fastjson as json from . import presenter def save_for_user(user, params, results, compare={}): table = params.get('table') table = presenter.GetRealTable(table) params = params.__json__() hashid = getrandhash(json.dumps(params)) hashid = hashid[:10] sq = SavedQuery.create(results=results, user=user.id, parsed=params, hashid=hashid, table=table, compare=compare or {}) return sq def get_for_user(user, table, limit=30): table = presenter.GetRealTable(table) res = SavedQuery \ .select( SavedQuery.created, SavedQuery.parsed, SavedQuery.hashid, SavedQuery.user ).limit(limit) \ .order_by(-SavedQuery.created) \ .where(SavedQuery.user == user.id, SavedQuery.table == table) res = res.dicts() return list(reversed(res)) def zip_results(): while True: ret = list(SavedQuery.select().where(SavedQuery.zipped == False).limit(10)) if not ret: break for r in ret: r.zipped = True print "ZIPPING", r.id r.save() def get_by_hashid(hashid): return list(SavedQuery.select().where(SavedQuery.hashid == hashid).dicts()) if __name__ == "__main__": zip_results() ``` #### File: snorkel/src/util.py ```python import subprocess from . import fastjson as json # time translation command is: # `date -d "<str>" +%s` def time_to_seconds(timestr): cmd_args = ["date", "-d", timestr, "+%s"] try: output = subprocess.check_output(cmd_args) except: raise Exception("Unknown time string: ", timestr) return int(output) def time_delta_to_seconds(timedelta): now = time_to_seconds("now") then = time_to_seconds(timedelta) return now - then def return_json(d): return json.dumps(d), 200, {"ContentType" : "application/json"} def add_cache_headers(r): r.cache_control.max_age = 60 * 60 * 24 * 7 # one week cache return r # from https://stackoverflow.com/questions/1254454/fastest-way-to-convert-a-dicts-keys-values-from-unicode-to-str import collections try: basestring except NameError: basestring = str def convert(data): if isinstance(data, basestring): return str(data) elif isinstance(data, collections.Mapping): return dict(map(convert, data.items())) elif isinstance(data, collections.Iterable): return type(data)(map(convert, data)) else: return data string_dict = convert ```
{ "source": "jdibiccari/pomem-cli", "score": 3 }
#### File: jdibiccari/pomem-cli/add_poem.py ```python from slugify import slugify from multiline_input import multiline_input import yaml def add_new(): # Gather poem meta data prompts = [ "author", "title" ] poem_data = {} body = "" for prompt in prompts: response = raw_input(prompt + ': ') poem_data[prompt] = response # Gather poem body stopword = "@@" print "Copy and paste the body of the poem. Type '{}' and enter when you are finished.".format(stopword) body = multiline_input(stopword) poem_data['body'] = body slug = slugify(poem_data['title']) with open('data/' + slug + '.yml', 'w') as yaml_file: yaml_file.write(yaml.dump(poem_data, allow_unicode=True, default_flow_style=False)) ``` #### File: jdibiccari/pomem-cli/bleeping.py ```python import re import random from slugify import slugify from string import punctuation as PUNCTUATION import yaml import nltk from nltk.corpus import wordnet as wn POS = ['NN+', 'VB+', 'JJ+', 'RB+'] DIFFICULTY_LEVELS = [1, 2, 3, 4, 5] BLEEP_CHARACTER = "." POEM_DIR = 'data/' def load_yaml_from_file(input): file = 'data/{input}.yml'.format(input=input) with open (file, 'r') as f: doc = yaml.load(f) poem = doc['body'].splitlines(True) return poem def tokens(line): return nltk.word_tokenize(line) def tagged_tokens(tokens): return nltk.pos_tag(tokens) def pos_filter(tagged_tokens): pos_reg = '|'.join(POS) match_words = [] nonmatch_words = [] for token in tagged_tokens: if re.match(pos_reg, token[1]): match_words.append(token[0]) else: if not token[0] in PUNCTUATION: nonmatch_words.append(token[0]) return [match_words, nonmatch_words] def pos_tag_line(line): return pos_filter(tagged_tokens(tokens(line))) def select_random_from_list(removal_candidates, qty=1): import itertools for word_set in removal_candidates: random.shuffle(word_set) return list(itertools.chain.from_iterable(removal_candidates))[:qty] # def get_choices(words): # output = '' # for i, word in enumerate(words): # output += '{0}. {1} '.format(i + 1, word) # return output def get_similar_words(word): output = [word] for ss in wn.synsets(word): for lemma in ss.lemma_names(): output.append(lemma) return output def bleep_line(line, level=1, bleep_character=BLEEP_CHARACTER): pos_tokens = pos_tag_line(line) to_remove = select_random_from_list(pos_tokens, level) new_line = line for word in to_remove: replacement = bleep_character * len(word) new_line = new_line.replace(word, replacement, 1) return new_line, to_remove def bleep(lines, level=1, bleep_character=BLEEP_CHARACTER): # Per each line there is a set number of possibilites, could store eventually. return [bleep_line(line, level, bleep_character) for line in lines] ```
{ "source": "jdickins21/proj8-Gcal", "score": 4 }
#### File: jdickins21/proj8-Gcal/agenda.py ```python import datetime import arrow import datetime class Appt: """ A single appointment, starting on a particular date and time, and ending at a later time the same day. """ def __init__(self, begin, end, desc): """Create an appointment. Arguments: begin: An arrow date and time object. When the appointment starts. end: An arrow date and time object, after begin. When the appointments ends. desc: A string describing the appointment Raises: ValueError if appointment ends before it begins """ self.begin = begin self.end = end if begin >= end : raise ValueError("Appointment end must be after begin") self.desc = desc return @classmethod def from_dict(cls, event_dict): #from an apt in the form of an item in busy_list or free_list; both lists are same form """ This function takes in a dictionary representation of an Appt and returns an Appt object for it. The dictionary representation has a "desc", "begin" and "end" term. """ desc = event_dict["desc"] begin = arrow.get(event_dict["begin"]) end = arrow.get(event_dict["end"]) return Appt(begin, end, desc) def to_dict(self): """ This function takes in an Appt object and returns a dictionary representation of it where the begin and end times of the appointment are stored in isoformat. Returns a dictionary in the form {"desc": description_of_apt, "begin": isoformat_begin_date_time_of_apt, "end": isoformat_end_date_time_of_apt} """ dict_rep = {} dict_rep["desc"] = self.desc dict_rep["begin"] = self.begin.isoformat() dict_rep["end"] = self.end.isoformat() return dict_rep @classmethod def from_string(cls, txt): """ This function takes in a string representation of an Appt and returns an Appt object. """ fields = txt.split("|") if len(fields) != 2: raise ValueError("Appt literal requires exactly one '|' before description") timespec = fields[0].strip() desc = fields[1].strip() fields = timespec.split("-") if len(fields) != 2: raise ValueError("Appt literal must start with date and date seperated by blanks") appt_begin_text = fields[0] appt_end_text = fields[1] begin = arrow.get(appt_begin_text, "MM/DD/YYYY h:mm A") end = arrow.get(appt_end_text, "MM/DD/YYYY h:mm A") result = Appt(begin, end, desc) return result def __lt__(self, other): """Does this appointment finish before other begins? Arguments: other: another Appt Returns: True iff this Appt is done by the time other begins. """ return self.end <= other.begin def __gt__(self, other): """Does other appointment finish before this begins? Arguments: other: another Appt Returns: True iff other is done by the time this Appt begins """ return other < self def overlaps(self, other): """Is there a non-zero overlap between this appointment and the other appointment? Arguments: other is an Appt Returns: True iff there exists some duration (greater than zero) between this Appt and other. """ return not (self < other or other < self) def intersect(self, other, desc=""): """Return an appointment representing the period in common between this appointment and another. Requires self.overlaps(other). Arguments: other: Another Appt desc: (optional) description text for this appointment. Returns: An appointment representing the time period in common between self and other. Description of returned Appt is copied from this (self), unless a non-null string is provided as desc. """ if desc=="": desc = self.desc assert(self.overlaps(other)) # We know the day must be the same. # Find overlap of times: # Later of two begin times, earlier of two end times new_begin = max(self.begin, other.begin) new_end = min(self.end, other.end) return Appt(new_begin, new_end, desc) def union(self, other, desc=""): """Return an appointment representing the combined period in common between this appointment and another. Requires self.overlaps(other). Arguments: other: Another Appt desc: (optional) description text for this appointment. Returns: An appointment representing the time period spanning both self and other. Description of returned Appt is concatenation of two unless a non-null string is provided as desc. """ if desc=="": desc = self.desc + " " + other.desc assert(self.overlaps(other)) # We know the day must be the same. # Find overlap of times: # Earlier of two begin times, later of two end times begin = min(self.begin, other.begin) end = max(self.end, other.end) return Appt(begin, end, desc) def __str__(self): """Returns a string representation of appointment object. Example: "10/31/2012 4:00 PM-10/31/2012 9:00 PM|Long dinner" """ begstr = self.begin.format("MM/DD/YYYY h:mm A") endstr = self.end.format("MM/DD/YYYY h:mm A") return begstr + "-" + endstr + "|" + self.desc class Agenda: """An Agenda is essentially a list of appointments, with some agenda-specific methods. """ def __init__(self): """An empty agenda.""" self.appts = [ ] @classmethod def from_list(cls, apt_list): #list of lists """ Converts a list of dictionaries representing an agenda of appts into an agenda object holding Appt objects. """ total_agenda = Agenda() for apt in apt_list: apt_obj = Appt.from_dict(apt) total_agenda.append(apt_obj) return total_agenda def to_list(self): """ Takes an agenda object and converts to a list of dictionaries. """ apt_list = [] for apt in self: dict_rep = apt.to_dict() apt_list.append(dict_rep) return apt_list @classmethod def from_file(cls, f): """Factory: Read an agenda from a file Arguments: f: A file object (as returned by io.open) or an object that emulates a file (like stringio). returns: An Agenda object """ agenda = cls() for line in f: line = line.strip() if line == "" or line.startswith("#"): # Skip blank lines and comments pass else: try: agenda.append(Appt.from_string(line)) except ValueError as err: print("Failed on line: ", line) print(err) return agenda def append(self,appt): """Add an Appt to the agenda.""" self.appts.append(appt) def intersect(self,other,desc=""): """Return a new agenda containing appointments that are overlaps between appointments in this agenda and appointments in the other agenda. Titles of appointments in the resulting agenda are taken from this agenda, unless they are overridden with the "desc" argument. Arguments: other: Another Agenda, to be intersected with this one desc: If provided, this string becomes the title of all the appointments in the result. """ default_desc = (desc == "") result = Agenda() for thisappt in self.appts: if default_desc: desc = thisappt.desc for otherappt in other.appts: if thisappt.overlaps(otherappt): result.append(thisappt.intersect(otherappt,desc)) return result def normalize(self): """Merge overlapping events in an agenda. For example, if the first appointment is from 1pm to 3pm, and the second is from 2pm to 4pm, these two are merged into an appt from 1pm to 4pm, with a combination description. After normalize, the agenda is in order by date and time, with no overlapping appointments. """ if len(self.appts) == 0: return ordering = lambda ap: ap.begin #sort by begin date self.appts.sort(key=ordering) normalized = [ ] # print("Starting normalization") cur = self.appts[0] for appt in self.appts[1:]: if appt > cur: # Not overlapping # print("Gap - emitting ", cur) normalized.append(cur) cur = appt else: # Overlapping # print("Merging ", cur, "\n"+ # "with ", appt) cur = cur.union(appt) # print("New cur: ", cur) # print("Last appt: ", cur) normalized.append(cur) self.appts = normalized def normalized(self): """ A non-destructive normalize (like "sorted(l)" vs "l.sort()"). Returns a normalized copy of this agenda. """ copy = Agenda() copy.appts = self.appts copy.normalize() return copy def complement(self, freeblock): """Produce the complement of an agenda within the span of a timeblock represented by an appointment. For example, if this agenda is a set of appointments, produce a new agenda of the times *not* in appointments in a given time period. Args: freeblock: Looking for time blocks in this period that are not conflicting with appointments in this agenda. Returns: A new agenda containing exactly the times that are within the period of freeblock and not within appointments in this agenda. The description of the resulting appointments comes from freeblock.desc. """ copy = self.normalized() comp = Agenda() desc = freeblock.desc cur_time = freeblock.begin #arrow date and time for appt in copy.appts: if appt < freeblock: continue if appt > freeblock: if cur_time < freeblock.end: comp.append(Appt(cur_time,freeblock.end, desc)) cur_time = freeblock.end break if cur_time < appt.begin: # print("Creating free time from", cur_time, "to", appt.begin) comp.append(Appt(cur_time, appt.begin, desc)) cur_time = max(appt.end,cur_time) if cur_time < freeblock.end: # print("Creating final free time from", cur_time, "to", freeblock.end) comp.append(Appt(cur_time, freeblock.end, desc)) return comp def complementTimeSpan(self, begin_date, end_date, begin_time, end_time): """ Calculate the complement of an agenda within a date and time span. This method calls the complement method per day in the date span. """ total_free = Agenda() date = begin_date.date() end_date = end_date.date() while(date <= end_date): fb_year = date.year fb_month = date.month fb_day = date.day fb_begin = begin_time.replace(year=fb_year, month=fb_month, day=fb_day) fb_end = end_time.replace(year=fb_year, month=fb_month, day=fb_day) freeblock = Appt(fb_begin, fb_end, "Available") free_agenda = self.complement(freeblock) for apt in free_agenda: total_free.append(apt) begin_date = begin_date.replace(days=+1) date = begin_date.date() return total_free def __len__(self): """Number of appointments, callable as built-in len() function""" return len(self.appts) def __iter__(self): """An iterator through the appointments in this agenda.""" return self.appts.__iter__() def __str__(self): """String representation of a whole agenda""" rep = "" for appt in self.appts: rep += str(appt) + "\n" return rep[:-1] def __eq__(self,other): """Equality, ignoring descriptions --- just equal blocks of time""" if len(self.appts) != len(other.appts): return False for i in range(len(self.appts)): mine = self.appts[i] theirs = other.appts[i] if not (mine.begin == theirs.begin and mine.end == theirs.end): return False return True ```
{ "source": "jdidion/docparse", "score": 2 }
#### File: docparse/docparse/google.py ```python from functools import partial import re from typing import Tuple, Dict, Sequence, Optional, cast from docparse import DocString, DocStyle, Paragraphs, Typed, Field, parser SECTION_RE = re.compile(r"^(\w[\w ]+):$") DIRECTIVE_RE = re.compile(r"^.. ([\w ]+):$") XREF_RE = re.compile(r"(:(?:[a-zA-Z0-9]+[\-_+:.])*[a-zA-Z0-9]+:`.+?`)") SINGLE_COLON_RE = re.compile(r"(?<!:):(?!:)") INDENT_RE = re.compile(r"^(\s*)(.*)$") TYPED_PARAM_RE = re.compile(r"\s*(.+?)\s*\(\s*(.*[^\s]+)\s*\)") KEYWORD_RE = re.compile(r"[^\w]") NAME_RE = re.compile( r"^\s*(:(?P<role>\w+):`(?P<name>[a-zA-Z0-9_.-]+)`| (?P<name2>[a-zA-Z0-9_.-]+))\s*", re.X ) SECTION_PARSERS = {} ALIASES = {} @parser(DocStyle.GOOGLE) def parse_google_docstring(docstring, allow_directives=True) -> DocString: lines = docstring.splitlines() num_lines = len(lines) if num_lines == 0: return DocString() def check_section_header(_line) -> Tuple[Optional[str], bool]: match = SECTION_RE.match(_line) if match: name = match.group(1) if name in ALIASES: name = ALIASES[name] if name in SECTION_PARSERS: return name, False if allow_directives: match = DIRECTIVE_RE.match(_line) if match: return match.group(1), True return None, False def add_section(_name, _is_directive, _lines, _sections, _directives): if _is_directive: _directives[_name] = _parse_generic_section(_lines) else: parser_func = SECTION_PARSERS.get(_name, _parse_generic_section) _sections[KEYWORD_RE.sub("_", _name.lower())] = parser_func(_lines) sections = {} directives = {} cur_section = "Description" cur_directive = False cur_lines = [] for line in lines: section, is_directive = check_section_header(line) if section: add_section(cur_section, cur_directive, cur_lines, sections, directives) cur_section = section cur_directive = is_directive cur_lines = [] else: cur_lines.append(line) if cur_lines: add_section(cur_section, cur_directive, cur_lines, sections, directives) return DocString(directives=directives, **sections) def add_aliases(name: str, *aliases: str): for alias in aliases: ALIASES[alias] = name add_aliases("Examples", "Example") add_aliases("Keyword Arguments", "Keyword Args") add_aliases("Notes", "Note") add_aliases("Parameters", "Args", "Arguments") add_aliases("Returns", "Return") add_aliases("Warning", "Warnings") add_aliases("Yields", "Yield") def section_parser(*sections: str): """Decorator that registers a function as a section paraser. """ def decorator(f): for section in sections: if isinstance(section, str): SECTION_PARSERS[section] = f else: name, kwargs = cast(Tuple[str, dict], section) SECTION_PARSERS[name] = partial(f, **kwargs) return f return decorator @section_parser( "Attention", "Caution", "Danger", "Error", "Hint", "Important", "Note", "References", "See also", "Tip", "Todo", "Warning" ) def _parse_generic_section(lines: Sequence[str]) -> Paragraphs: """Combine lines and remove indents. Lines separated by blank lines are grouped into paragraphs. Args: lines: A sequence of line strings. Returns: A tuple of paragraph strings. """ return Paragraphs.from_lines(tuple(line.strip() for line in lines)) @section_parser("Examples") def _parse_verbatim_section(lines: Sequence[str]) -> Sequence[str]: return _dedent(lines) @section_parser( ("Parameters", dict(parse_type=True)), ("Keyword Arguments", dict(parse_type=True)), ("Other Parameters", dict(parse_type=True)), "Methods", "Warns" ) def _parse_fields_section( lines: Sequence[str], parse_type: bool = False, prefer_type=False ) -> Dict[str, Field]: cur_indent = None fields = [] for line in lines: indent, line = INDENT_RE.match(line).groups() indent_size = len(indent) if line and (cur_indent is None or indent_size <= cur_indent): # New parameter cur_indent = indent_size before, colon, after = _partition_field_on_colon(line) field_type = None if parse_type: field_name, field_type = _parse_parameter_type(before) else: field_name = before if prefer_type and not field_type: field_type, field_name = field_name, field_type fields.append(( _escape_args_and_kwargs(field_name), field_type, [after.lstrip()] )) elif fields: # Add additional lines to current parameter fields[-1][2].append(line.lstrip()) else: raise ValueError(f"Unexpected line in Args block: {line}") return dict( (field[0], Field(field[0], field[1], Paragraphs.from_lines(field[2]))) for field in fields ) @section_parser( "Returns", "Yields" ) def _parse_returns_section(lines: Sequence[str]) -> Typed: before, colon, after = _partition_field_on_colon(lines[0]) return_type = None if colon: if after: return_desc = [after] + list(lines[1:]) else: return_desc = lines[1:] return_type = before else: return_desc = lines return Typed(return_type, Paragraphs.from_lines(return_desc)) @section_parser("Raises") def _parse_raises_section(lines: Sequence[str]) -> Dict[str, Field]: fields = _parse_fields_section(lines, prefer_type=True) for field in fields.values(): match = NAME_RE.match(field.datatype).groupdict() if match["role"]: field.datatype = match["name"] return fields def _partition_field_on_colon(line: str) -> Tuple[str, str, str]: before_colon = [] after_colon = [] colon = "" found_colon = False for i, source in enumerate(XREF_RE.split(line)): if found_colon: after_colon.append(source) else: m = SINGLE_COLON_RE.search(source) if (i % 2) == 0 and m: found_colon = True colon = source[m.start(): m.end()] before_colon.append(source[:m.start()]) after_colon.append(source[m.end():]) else: before_colon.append(source) return ( "".join(before_colon).strip(), colon, "".join(after_colon).strip() ) def _parse_parameter_type(name_type_str: str) -> Tuple[str, Optional[str]]: match = TYPED_PARAM_RE.match(name_type_str) # type: ignore if match: return match.group(1), match.group(2) else: return name_type_str, None def _escape_args_and_kwargs(name: str) -> str: if name.startswith("**"): return r"\*\*" + name[2:] elif name.startswith("*"): return r"\*" + name[1:] else: return name def _dedent(lines: Sequence[str]) -> Sequence[str]: lens = [ len(INDENT_RE.match(line).group(1)) for line in lines if line ] min_indent = min(lens) if lens else 0 return [line[min_indent:] for line in lines] ``` #### File: docparse/tests/test_google.py ```python from docparse import Paragraphs, get_docstring from docparse.google import parse_google_docstring from . import google_style def test_functions(): docs = parse_google_docstring( get_docstring(google_style.function_with_types_in_docstring) ) assert docs.summary == "Example function with types documented in the docstring." assert tuple(docs.description.paragraphs) == ( "Example function with types documented in the docstring.", "`PEP 484`_ type annotations are supported. If attribute, parameter, and " "return types are annotated according to `PEP 484`_, they do not need to be " "included in the docstring:" ) assert len(docs.parameters) == 2 assert "param1" in docs.parameters param1 = docs.parameters["param1"] assert param1.name == "param1" assert param1.datatype == "int" assert str(param1.description) == "The first parameter." assert "param2" in docs.parameters param2 = docs.parameters["param2"] assert param2.datatype == "str" assert str(param2.description) == "The second parameter." returns = docs.returns assert returns.datatype == "bool" assert str(returns.description) == \ "The return value. True for success, False otherwise." assert docs.directives == { "_PEP 484": Paragraphs(["https://www.python.org/dev/peps/pep-0484/"]) } ```
{ "source": "jdidion/hon", "score": 3 }
#### File: hon/hon/utils.py ```python from contextlib import contextmanager import os from pathlib import Path from shlex import quote import subprocess import sys from typing import IO, List, Union import toml def read_toml(path: Path): with open(path, "rt") as inp: toml.load(inp) @contextmanager def chdir(target: Path): curwd = Path.cwd() try: os.chdir(target) yield finally: os.chdir(curwd) def run_cmd( cmd: List[str], stdout: Union[bool, IO, None] = None, stderr: Union[bool, IO, None] = None, shell: bool = False, **kwargs ): """ Execute a command in a subprocess. Args: cmd: List of command arguments. stdout: If True, capture stdout and return it. If None, forward stdout to sys.stdout. If a file-like object, write stdout to the file. stderr: If True, capture stderr and return it. If None, forward stderr to sys.stdout. If a file-like object, write stderr to the file. shell: Whether to execute the command using a shell. **kwargs: Additional kwargs to `subprocess.check_output`. Returns: A tuple (stdout, stderr). Each will be None unless their respective parameters were set to True. """ if stdout is None: kwargs["stdout"] = sys.stdout proc_fn = subprocess.check_call else: proc_fn = subprocess.check_output if stdout is True: kwargs["stdout"] = subprocess.PIPE if stderr is None: kwargs["stderr"] = sys.stderr elif stderr is True: kwargs["stderr"] = subprocess.PIPE if shell: cmd_str = " ".join(quote(arg) for arg in cmd) if "executable" not in kwargs: kwargs["executable"] = "/bin/bash" return proc_fn(cmd_str, shell=True, **kwargs) else: return proc_fn(cmd, shell=False, **kwargs) ```
{ "source": "jdidion/htsget-server", "score": 2 }
#### File: htsget-server/htsgetserver/__init__.py ```python from abc import ABCMeta, abstractmethod from http import HTTPStatus import json from threading import Lock from typing import Sequence from urllib.parse import ParseResult, parse_qs from htsgetserver.server import ( Router, RoutingServer, RoutingHttpRequestHandler, HttpError, NotFoundHttpError, ) from htsgetserver.store import DataStore, DefaultDataStore from htsgetserver.utils import Runnable, run_interruptible HTSGET_VERSION = (1, 1, 0) OK_RESPONSE_CONTENT_TYPE = \ "application/vnd.ga4gh.htsget.v{'.'.join(HTSGET_VERSION)}+json; charset=utf-8" ERROR_RESPONSE_CONTENT_TYPE = "application/json" DEFAULT_BLOCK_SIZE = 2 ** 30 # 1 GB DEFAULT_PORT = 80 # TODO: # TLS 1.2 # CORS # urllib.urlencode data block URLs # Content-Length header # chunked transfer encoding class UnsupportedMediaTypeHttpError(HttpError): def __init__(self, media_type): super().__init__( HTTPStatus.UNSUPPORTED_MEDIA_TYPE, f"The requested media type is unsupported: {media_type}" ) class RouteHandler(metaclass=ABCMeta): @abstractmethod def __call__( self, sub_route: Sequence[str], parsed_url: ParseResult, http_request_handler: "HtsgetHttpRequestHandler" ): pass class ApiRouteHandler(RouteHandler, metaclass=ABCMeta): def __init__(self, data_store: DataStore, block_size: int): self.data_store = data_store self.block_size = block_size self._cache = {} self._cache_lock = Lock() def __call__( self, sub_route: Sequence[str], parsed_url: ParseResult, http_request_handler: "HtsgetHttpRequestHandler" ): if len(sub_route) != 0: raise NotFoundHttpError(parsed_url.path) query = parse_qs(parsed_url.query, True, True) self.handle(sub_route, query, http_request_handler) @property @abstractmethod def default_format(self) -> str: pass @property @abstractmethod def index_format(self) -> str: pass def handle( self, record_id: Sequence[str], query: dict, http_request_handler: "HtsgetHttpRequestHandler" ): """Handle a query. By default: * Assumes route_id as a relative path to a file in the data store. * Uses the format specified in the query to determine the file extension. * Attempts to resolve the associated index, and, if it doesn't exist, requests that it be built. * Generates the ticket response. Args: record_id: ID of the record for which to generate a ticket. query: Dict of query parameters. http_request_handler: The HTTPRequestHandler that called this ApiRouteHandler. """ data_format = query.get('format', self.default_format) data_resource, index_resource = self.data_store.resolve( record_id, data_format, self.index_format ) if data_resource in self._cache: ticket_str = self._cache[data_resource] else: if not index_resource.exists: self.create_index(data_resource, index_resource) self.data_store.add_resource(index_resource) ticket_urls = self.create_ticket_urls( data_format, query, data_resource, index_resource ) ticket = dict( htsget=dict( format=data_format.upper(), urls=ticket_urls ) ) ticket_str = json.dumps(ticket) try: self._cache_lock.acquire() if data_resource not in self._cache: self._cache[data_resource] = ticket_str finally: self._cache_lock.release() http_request_handler.send_response(HTTPStatus.OK) http_request_handler.send_header("Content-Type", OK_RESPONSE_CONTENT_TYPE) http_request_handler.end_headers() http_request_handler.wfile.write(ticket_str) @abstractmethod def create_index(self, data_resource, index_resource) -> None: pass def create_ticket_urls( self, data_format, query: dict, data_resource, index_resource ) -> Sequence[dict]: pass class ReadsApiRouteHandler(ApiRouteHandler): @property def default_format(self) -> str: return "BAM" @property def index_format(self) -> str: return "BAI" def create_index(self, data_resource, index_resource) -> None: pass def handle(self, record_id, query, http_request_handler): pass class VariantsApiRouteHandler(ApiRouteHandler): @property def default_format(self) -> str: return "VCF" @property def index_format(self) -> str: return "TBI" def create_index(self, data_resource, index_resource) -> None: pass def handle(self, record_id, query, http_request_handler): pass class BlockRouteHandler(RouteHandler): def __call__( self, sub_route: Sequence[str], parsed_url: ParseResult, http_request_handler: "HtsgetHttpRequestHandler" ): pass class HtsgetHttpRequestHandler(RoutingHttpRequestHandler): def check_headers(self): if "Accept" in self.headers: accept = self.headers["Accept"] if not accept.startswith("application/"): raise UnsupportedMediaTypeHttpError(accept) accept_app = accept[12:].lower() if accept_app == "json": pass elif ( accept_app.startswith("vnd.ga4gh.htsget.v") and accept_app.endswith("+json") ): try: version = tuple(int(v) for v in accept[18:-5].split(".")) except: raise UnsupportedMediaTypeHttpError(accept) if ( # TODO: support backwards compatibility version < HTSGET_VERSION or # Assume forward compatibility if the major version is the same version[0] > HTSGET_VERSION[0] ): raise UnsupportedMediaTypeHttpError(accept) else: raise UnsupportedMediaTypeHttpError(accept) def handle_error(self, err: HttpError): self.send_error(err.status) self.send_header("Content-type", ERROR_RESPONSE_CONTENT_TYPE) self.end_headers() error_dict = dict( htsget=dict( error=err.error_type, message=err.message ) ) self.wfile.write(json.dumps(error_dict)) class HtsgetHttpServer(RoutingServer): def __init__(self, **kwargs): super().__init__(request_handler_class=HtsgetHttpRequestHandler, **kwargs) class HtsgetServerRunner(Runnable): def __init__(self): self.server = None def run(self, **kwargs): self.server = HtsgetHttpServer(**kwargs) def stop(self): self.server.server_close() def create_default_router(data_store, block_size=DEFAULT_BLOCK_SIZE): router = Router() router.add_route(['reads'], ReadsApiRouteHandler(data_store, block_size)) router.add_route(['variants'], VariantsApiRouteHandler(data_store, block_size)) router.add_route(['block'], BlockRouteHandler()) return router def run(server_address=('localhost', DEFAULT_PORT), router=None): if router is None: router = create_default_router(DefaultDataStore()) run_interruptible( HtsgetServerRunner(), server_address=server_address, router=router ) ```
{ "source": "jdidion/pytest-wdl", "score": 2 }
#### File: pytest-wdl/tests/test_core.py ```python import gzip import json from typing import cast from unittest.mock import Mock import pytest from pytest_wdl.config import UserConfiguration from pytest_wdl.core import ( DefaultDataFile, DataDirs, DataManager, DataResolver, create_data_file ) from pytest_wdl.localizers import LinkLocalizer, UrlLocalizer from pytest_wdl.utils import tempdir from . import GOOD_URL, setenv def test_data_file(): with tempdir() as d: foo = d / "foo.txt" with pytest.raises(ValueError): DefaultDataFile(foo, None) bar = d / "bar.txt" with open(foo, "wt") as out: out.write("foo\nbar") df = DefaultDataFile(bar, LinkLocalizer(foo)) assert str(df) == str(bar) baz = d / "baz.txt" with open(baz, "wt") as out: out.write("foo\nbar") df.assert_contents_equal(baz) df.assert_contents_equal(str(baz)) df.assert_contents_equal(DefaultDataFile(baz)) blorf = d / "blorf.txt" with open(blorf, "wt") as out: out.write("foo\nblorf\nbork") with pytest.raises(AssertionError): df.assert_contents_equal(blorf) df.compare_opts["allowed_diff_lines"] = 1 with pytest.raises(AssertionError): df.assert_contents_equal(blorf) df.compare_opts["allowed_diff_lines"] = 2 df.assert_contents_equal(blorf) def test_data_file_gz(): with tempdir() as d: foo = d / "foo.txt.gz" with gzip.open(foo, "wt") as out: out.write("foo\nbar") df = DefaultDataFile(foo, allowed_diff_lines=0) # Compare identical files bar = d / "bar.txt.gz" with gzip.open(bar, "wt") as out: out.write("foo\nbar") df.assert_contents_equal(bar) df.assert_contents_equal(str(bar)) df.assert_contents_equal(DefaultDataFile(bar)) # Compare differing files df.set_compare_opts(allowed_diff_lines=1) baz = d / "baz.txt.gz" with gzip.open(baz, "wt") as out: out.write("foo\nbaz") df.assert_contents_equal(bar) df.assert_contents_equal(str(bar)) df.assert_contents_equal(DefaultDataFile(bar)) def test_data_file_dict_type(): with tempdir() as d: foo = d / "foo.txt.gz" with gzip.open(foo, "wt") as out: out.write("foo\nbar") df = create_data_file( user_config=UserConfiguration(), path=foo, type={ "name": "default", "allowed_diff_lines": 1 } ) bar = d / "bar.txt.gz" with gzip.open(bar, "wt") as out: out.write("foo\nbaz") df.assert_contents_equal(bar) df.assert_contents_equal(str(bar)) df.assert_contents_equal(DefaultDataFile(bar)) def test_data_file_class(): dd = DataResolver(data_descriptors={ "foo": { "class": "bar", "value": 1 } }, user_config=UserConfiguration()) assert dd.resolve("foo") == 1 def test_data_file_json_contents(): with tempdir() as d: foo = d / "foo.json" df = create_data_file( user_config=UserConfiguration(), path=foo, contents={ "a": 1, "b": "foo" } ) with open(df.path, "rt") as inp: assert json.load(inp) == { "a": 1, "b": "foo" } def test_data_dirs(): with tempdir() as d: mod = Mock() mod.__name__ = "foo.bar" cls = Mock() cls.__name__ = "baz" fun = Mock() fun.__name__ = "blorf" mod_cls_fun = d / "foo" / "bar" / "baz" / "blorf" mod_cls_fun.mkdir(parents=True) data_mod_cls_fun = d / "data" / "foo" / "bar" / "baz" / "blorf" data_mod_cls_fun.mkdir(parents=True) with pytest.raises(RuntimeError): DataDirs(d, mod, fun, cls) dd = DataDirs(d / "foo", mod, fun, cls) assert dd.paths == [ mod_cls_fun, d / "foo" / "bar" / "baz", d / "foo" / "bar", data_mod_cls_fun, d / "data" / "foo" / "bar" / "baz", d / "data" / "foo" / "bar", d / "data" ] mod_cls_fun = d / "foo" / "bar" / "blorf" mod_cls_fun.mkdir(parents=True) data_mod_cls_fun = d / "data" / "foo" / "bar" / "blorf" data_mod_cls_fun.mkdir(parents=True) dd = DataDirs(d / "foo", mod, fun) assert dd.paths == [ mod_cls_fun, d / "foo" / "bar", data_mod_cls_fun, d / "data" / "foo" / "bar", d / "data" ] def test_data_resolver(): with tempdir() as d: test_data = { "foo": { "name": "foo.txt" }, "bar": 1 } foo_txt = d / "data" / "foo.txt" foo_txt.parent.mkdir() with open(foo_txt, "wt") as out: out.write("bar") mod = Mock() mod.__name__ = "" fun = Mock() fun.__name__ = "test_foo" dd = DataDirs(d, mod, fun) resolver = DataResolver(test_data, UserConfiguration(None, cache_dir=d)) with pytest.raises(FileNotFoundError): resolver.resolve("bork", dd) assert resolver.resolve("foo", dd).path == foo_txt assert resolver.resolve("bar", dd) == 1 def test_data_resolver_env(): with tempdir() as d: path = d / "foo.txt" with open(path, "wt") as out: out.write("foo") with setenv({"FOO": str(path)}): resolver = DataResolver({ "foo": { "env": "FOO" } }, UserConfiguration(None, cache_dir=d)) assert resolver.resolve("foo").path == path bar = d / "bar.txt" resolver = DataResolver({ "foo": { "env": "FOO", "path": bar } }, UserConfiguration(None, cache_dir=d)) assert resolver.resolve("foo").path == bar def test_data_resolver_local_path(): with tempdir() as d: path = d / "foo.txt" with open(path, "wt") as out: out.write("foo") resolver = DataResolver({ "foo": { "path": "foo.txt" } }, UserConfiguration(None, cache_dir=d)) assert resolver.resolve("foo").path == path with setenv({"MYPATH": str(d)}): resolver = DataResolver({ "foo": { "path": "${MYPATH}/foo.txt" } }, UserConfiguration(None, cache_dir=d)) assert resolver.resolve("foo").path == path def test_data_resolver_create_from_contents(): with tempdir() as d: resolver = DataResolver({ "foo": { "path": "dir1/dir2/foo.txt", "contents": "foo" } }, UserConfiguration(None, cache_dir=d)) parent = d / "dir1" / "dir2" foo = resolver.resolve("foo") assert foo.path == parent / "foo.txt" with open(foo.path, "rt") as inp: assert inp.read() == "foo" with tempdir() as d: resolver = DataResolver({ "foo": { "name": "foo.txt", "contents": "foo" } }, UserConfiguration(None, cache_dir=d)) foo = resolver.resolve("foo") assert foo.path == d / "foo.txt" with open(foo.path, "rt") as inp: assert inp.read() == "foo" with tempdir() as d: resolver = DataResolver({ "foo": { "contents": "foo" } }, UserConfiguration(None, cache_dir=d)) foo = resolver.resolve("foo") assert foo.path.parent == d assert foo.path.exists() with open(foo.path, "rt") as inp: assert inp.read() == "foo" def test_data_resolver_create_from_url(): with tempdir() as d: resolver = DataResolver({ "foo": { "url": GOOD_URL, "path": "dir1/dir2/sample.vcf" } }, UserConfiguration(None, cache_dir=d)) foo = resolver.resolve("foo") assert foo.path == d / "dir1" / "dir2" / "sample.vcf" with open(foo.path, "rt") as inp: assert inp.read() == "foo" with tempdir() as d: resolver = DataResolver({ "foo": { "url": GOOD_URL, "name": "sample.vcf" } }, UserConfiguration(None, cache_dir=d)) foo = resolver.resolve("foo") assert foo.path == d / "sample.vcf" with open(foo.path, "rt") as inp: assert inp.read() == "foo" with tempdir() as d: resolver = DataResolver({ "foo": { "url": GOOD_URL } }, UserConfiguration(None, cache_dir=d)) foo = resolver.resolve("foo") assert foo.path == d / "test_file" with open(foo.path, "rt") as inp: assert inp.read() == "foo" def test_data_resolver_create_from_datadir(): with tempdir() as d, tempdir() as d1: mod = Mock() mod.__name__ = "foo.bar" cls = Mock() cls.__name__ = "baz" fun = Mock() fun.__name__ = "blorf" mod_cls_fun = d / "foo" / "bar" / "baz" / "blorf" mod_cls_fun.mkdir(parents=True) data_mod_cls_fun = d / "data" / "foo" / "bar" / "baz" / "blorf" data_mod_cls_fun.mkdir(parents=True) dd = DataDirs(d / "foo", mod, fun, cls) resolver = DataResolver({ "boink": { "name": "boink.txt", }, "bobble": { "name": "bobble.txt" }, "burp": { "name": "burp.txt", "path": "burp.txt" } }, UserConfiguration(None, cache_dir=d1)) boink = d / "foo" / "bar" / "boink.txt" with open(boink, "wt") as out: out.write("boink") assert boink == resolver.resolve("boink", dd).path with pytest.raises(FileNotFoundError): resolver.resolve("bobble", dd) burp = d / "foo" / "bar" / "burp.txt" with open(burp, "wt") as out: out.write("burp") burp_resolved = resolver.resolve("burp", dd).path assert burp_resolved == d1 / "burp.txt" assert burp_resolved.is_symlink() with pytest.raises(FileNotFoundError): resolver.resolve("bobble") def test_data_manager(): dm = DataManager( data_resolver=DataResolver( { "foo": { "class": "x", "value": 1 }, "bar": { "class": "x", "value": 2 } }, UserConfiguration() ), datadirs=None ) assert [1, 2] == dm.get_list("foo", "bar") assert {"foo": 1, "bork": 2} == dm.get_dict("foo", bork="bar") def test_http_header_set_in_workflow_data(): """ Test that workflow data file can define the HTTP Headers. This is important because the URLs referenced can be from different hosts and require different headers, so setting them at this level allows that fine-grained control. """ with tempdir() as d: config = UserConfiguration(cache_dir=d) assert not config.default_http_headers resolver = DataResolver({ "foo": { "url": GOOD_URL, "path": "sample.vcf", "http_headers": { "Auth-Header-Token": "TOKEN" } } }, config) foo = resolver.resolve("foo") assert foo.path == d / "sample.vcf" with open(foo.path, "rt") as inp: assert inp.read() == "foo" with setenv({"TOKEN": "this_is_the_token"}), tempdir() as d: config = UserConfiguration(cache_dir=d) assert not config.default_http_headers resolver = DataResolver({ "foo": { "url": GOOD_URL, "path": "sample.vcf", "http_headers": { "Auth-Header-Token": "TOKEN" } } }, config) foo = resolver.resolve("foo") assert foo.path == d / "sample.vcf" assert isinstance(foo.localizer, UrlLocalizer) assert cast(UrlLocalizer, foo.localizer).http_headers == { "Auth-Header-Token": "<PASSWORD>" } with open(foo.path, "rt") as inp: assert inp.read() == "foo" ``` #### File: pytest-wdl/tests/test_executors.py ```python import json from typing import cast import pytest from pytest_wdl.core import EXECUTORS, DefaultDataFile, create_executor from pytest_wdl.executors import ( ExecutionFailedError, get_workflow_inputs, make_serializable, validate_outputs ) from pytest_wdl.utils import tempdir @pytest.mark.integration @pytest.mark.parametrize("executor", EXECUTORS.keys()) def test_executors(workflow_data, workflow_runner, executor): inputs = { "in_txt": workflow_data["in_txt"], "in_int": 1 } outputs = { "out_txt": workflow_data["out_txt"], "out_int": 1 } workflow_runner( "test.wdl", inputs, outputs, executors=[executor] ) # Test with the old workflow_runner signature workflow_runner( "test.wdl", "cat_file", inputs, outputs, executors=[executor] ) @pytest.mark.integration def test_multiple_executors(workflow_data, workflow_runner): inputs = { "in_txt": workflow_data["in_txt"], "in_int": 1 } outputs = { "out_txt": workflow_data["out_txt"], "out_int": 1 } workflow_runner( "test.wdl", inputs, outputs, executors=EXECUTORS.keys() ) # TODO: figure out how to override default_executors # def test_workflow_runner_error(workflow_data, workflow_runner): # inputs = { # "in_txt": workflow_data["in_txt"], # "in_int": 1 # } # outputs = { # "out_txt": workflow_data["out_txt"], # "out_int": 1 # } # # with pytest.raises(RuntimeError): # workflow_runner( # "test.wdl", # inputs, # outputs, # executors=[] # ) @pytest.mark.integration @pytest.mark.parametrize("executor", ["miniwdl"]) def test_task(workflow_data, workflow_runner, executor): inputs = { "in_txt": workflow_data["in_txt"], } outputs = { "out_txt": workflow_data["out_txt"], } workflow_runner( "test.wdl", inputs, outputs, executors=[executor], task_name="cat" ) @pytest.mark.integration @pytest.mark.parametrize("executor", EXECUTORS.keys()) def test_execution_failure(workflow_data, workflow_runner, executor): inputs = { "in_txt": workflow_data["in_txt"], "in_int": 1, "fail": True } outputs = { "out_txt": workflow_data["out_txt"], "out_int": 1 } with pytest.raises(ExecutionFailedError) as exc_info: workflow_runner( "test.wdl", inputs, outputs, executors=[executor] ) err = cast(ExecutionFailedError, exc_info.value) assert "foo_fail" in err.failed_task assert err.failed_task_exit_status == 1 def test_get_workflow_inputs(): actual_inputs_dict, inputs_path = get_workflow_inputs( {"bar": 1}, namespace="foo" ) assert inputs_path.exists() with open(inputs_path, "rt") as inp: assert json.load(inp) == actual_inputs_dict assert actual_inputs_dict == { "foo.bar": 1 } with tempdir() as d: inputs_file = d / "inputs.json" actual_inputs_dict, inputs_path = get_workflow_inputs( {"bar": 1}, inputs_file, "foo" ) assert inputs_file == inputs_path assert inputs_path.exists() with open(inputs_path, "rt") as inp: assert json.load(inp) == actual_inputs_dict assert actual_inputs_dict == { "foo.bar": 1 } with tempdir() as d: inputs_file = d / "inputs.json" inputs_dict = {"foo.bar": 1} with open(inputs_file, "wt") as out: json.dump(inputs_dict, out) actual_inputs_dict, inputs_path = get_workflow_inputs( inputs_file=inputs_file, namespace="foo" ) assert inputs_file == inputs_path assert inputs_path.exists() with open(inputs_path, "rt") as inp: assert json.load(inp) == actual_inputs_dict assert actual_inputs_dict == inputs_dict def test_make_serializable(): assert make_serializable(1) == 1 assert make_serializable("foo") == "foo" assert make_serializable((1.1, 2.2)) == [1.1, 2.2] with tempdir() as d: foo = d / "foo" with open(foo, "wt") as out: out.write("foo") df = DefaultDataFile(foo) assert make_serializable(df) == foo assert make_serializable([df]) == [foo] assert make_serializable({"a": df}) == {"a": foo} class Obj: def __init__(self, a: str, b: int): self.a = a self.b = b def as_dict(self): return { "a": self.a, "b": self.b } assert make_serializable(Obj("hi", 1)) == {"a": "hi", "b": 1} def test_create_executor(): with pytest.raises(RuntimeError): create_executor("foo", [], None) def test_validate_outputs(): with pytest.raises(AssertionError): validate_outputs( {"foo.bar": 1}, {"bar": 1}, "" ) with pytest.raises(AssertionError): validate_outputs( {"foo.bar": 1}, {"baz": 1}, "foo" ) validate_outputs( {"foo.bar": None}, {"bar": None}, "foo" ) with pytest.raises(AssertionError): validate_outputs( {"foo.bar": None}, {"bar": 1}, "foo" ) with pytest.raises(AssertionError): validate_outputs( {"foo.bar": 1}, {"bar": None}, "foo" ) validate_outputs( {"foo.bar": [1, 2, 3]}, {"bar": [1, 2, 3]}, "foo" ) with pytest.raises(AssertionError): validate_outputs( {"foo.bar": [1, 2, 3]}, {"bar": [1, 2]}, "foo" ) with pytest.raises(AssertionError): validate_outputs( {"foo.bar": [1, 2, 3]}, {"bar": [3, 2, 1]}, "foo" ) validate_outputs( {"foo.bar": {"a": 1}}, {"bar": {"a": 1}}, "foo" ) with pytest.raises(AssertionError): validate_outputs( {"foo.bar": {"a": 1}}, {"bar": {"b": 1}}, "foo" ) with pytest.raises(AssertionError): validate_outputs( {"foo.bar": {"a": 1}}, {"bar": {"a": 1, "b": 2}}, "foo" ) with pytest.raises(AssertionError): validate_outputs( {"foo.bar": {"a": 1}}, {"bar": {"a": 2}}, "foo" ) with pytest.raises(AssertionError): validate_outputs( {"foo.bar": 1}, {"bar": 2}, "foo" ) ```
{ "source": "jdie00/COTest", "score": 3 }
#### File: tool/tools/file_tools.py ```python import os import tools.command_tools as ct def delete_if_exists(path): if path == '' or path == '/' or path == '/*': return if os.path.exists(path): ct.execmd('rm -rf ' + path) def create_dir_if_not_exist(path): if not os.path.exists(path): ct.execmd('mkdir ' + path) def get_file_content(path): f = open(path, 'r') content = f.read() f.close() return content def get_file_lines(path): c = get_file_content(path) if c == '': return '' if c[-1] == '\n': return c[:-1].split('\n') else: return c.split('\n') def put_file_content(path, content): f = open(path, 'a+') f.write(content) f.close() ``` #### File: tool/tools/list_tools.py ```python def extract(l, s): res = [] for elem in l: if s in elem: res.append(elem) return res def strip(l): res = [] for elem in l: res.append(elem.strip()) return res def get_first_word(l): res = [] for elem in l: res.append(elem[:elem.find(' ')]) return res def get_diff(l1, l2): diff1 = [] diff2 = [] common = [] for s1 in l1: if s1 not in l2: diff1.append(s1) for s2 in l2: if s2 not in l1: diff2.append(s2) for s1 in l1: if s1 in l2: common.append(s1) return [diff1, common, diff2] def trim_empty_strings(l): res = [] for string in l: if string != '': res.append(string) return res def shuffle(l): import random res = l[:] for i in range(len(res)): inx = random.randint(0, len(res) - 1) tmp = res[i] res[i] = res[inx] res[inx] = tmp return res ```
{ "source": "jdiego/coveragepy", "score": 2 }
#### File: coveragepy/coverage/xmlreport.py ```python import os import sys import time import xml.dom.minidom from coverage import env from coverage import __url__, __version__, files from coverage.backward import iitems from coverage.misc import isolate_module from coverage.report import get_analysis_to_report from coverage.backward import SimpleNamespace os = isolate_module(os) DTD_URL = 'https://raw.githubusercontent.com/cobertura/web/master/htdocs/xml/coverage-04.dtd' def rate(hit, num): """Return the fraction of `hit`/`num`, as a string.""" if num == 0: return "1" else: return "%.4g" % (float(hit) / num) def convert_to_dict(tup): di = {} for a, b in tup: di.setdefault(a, []).append(b) return di class XmlReporter(object): """ A reporter for writing Cobertura-style XML coverage results. """ EMPTY = "(empty)" def __init__(self, coverage, report_name=None): self.coverage = coverage self.config = self.coverage.config # self.report_name = report_name # self.source_paths = set() if self.config.source: for src in self.config.source: if os.path.exists(src): if not self.config.relative_files: src = files.canonical_filename(src) self.source_paths.add(src) self.packages = {} self.xml_out = None self.is_class_level = False def report(self, morfs=None, outfile=None): """ Generate a Cobertura-compatible XML report for `morfs`. `morfs` is a list of modules or file names. `outfile` is a file object to write the XML to. """ # Initial setup. outfile = outfile or sys.stdout has_arcs = self.coverage.get_data().has_arcs() # Create the DOM that will store the data. impl = xml.dom.minidom.getDOMImplementation() self.xml_out = impl.createDocument(None, "coverage", None) # Write header stuff. xcoverage = self.xml_out.documentElement xcoverage.setAttribute("version", __version__) xcoverage.setAttribute("timestamp", str(int(time.time()*1000))) xcoverage.appendChild(self.xml_out.createComment(" Generated by coverage.py: %s " % __url__)) xcoverage.appendChild(self.xml_out.createComment(" Based on %s " % DTD_URL)) # Call xml_file for each file in the data. for fr, analysis in get_analysis_to_report(self.coverage, morfs): self.xml_file(fr, analysis, has_arcs) xsources = self.xml_out.createElement("sources") xcoverage.appendChild(xsources) # Populate the XML DOM with the source info. for path in sorted(self.source_paths): xsource = self.xml_out.createElement("source") xsources.appendChild(xsource) txt = self.xml_out.createTextNode(path) xsource.appendChild(txt) lnum_tot, lhits_tot = 0, 0 bnum_tot, bhits_tot = 0, 0 xpackages = self.xml_out.createElement("packages") xcoverage.appendChild(xpackages) # Populate the XML DOM with the package info. for pkg_name, pkg_data in sorted(iitems(self.packages)): modules_elts, lhits, lnum, bhits, bnum = pkg_data xpackage = self.xml_out.createElement("package") xpackages.appendChild(xpackage) xclasses = self.xml_out.createElement("classes") xpackage.appendChild(xclasses) # for _, (class_elts, fn_elts) in sorted(iitems(modules_elts)): for class_elt in class_elts: xclasses.appendChild(class_elt) # for fn in fn_elts: xpackage.appendChild(fn) xpackage.setAttribute("name", pkg_name.replace(os.sep, '.')) xpackage.setAttribute("line-rate", rate(lhits, lnum)) xpackage.setAttribute("hits", str(lhits)) xpackage.setAttribute("lines", str(lnum)) branch_rate = rate(bhits, bnum) if has_arcs else "0" xpackage.setAttribute("branch-rate", branch_rate) xpackage.setAttribute("complexity", "0") lnum_tot += lnum lhits_tot += lhits bnum_tot += bnum bhits_tot += bhits xcoverage.setAttribute("lines-valid", str(lnum_tot)) xcoverage.setAttribute("lines-covered", str(lhits_tot)) xcoverage.setAttribute("line-rate", rate(lhits_tot, lnum_tot)) if has_arcs: xcoverage.setAttribute("branches-valid", str(bnum_tot)) xcoverage.setAttribute("branches-covered", str(bhits_tot)) xcoverage.setAttribute("branch-rate", rate(bhits_tot, bnum_tot)) else: xcoverage.setAttribute("branches-covered", "0") xcoverage.setAttribute("branches-valid", "0") xcoverage.setAttribute("branch-rate", "0") xcoverage.setAttribute("complexity", "0") # if self.report_name: xcoverage.setAttribute("name", self.report_name) # Write the output file. outfile.write(serialize_xml(self.xml_out)) # Return the total percentage. denom = lnum_tot + bnum_tot pct = 0.0 if denom == 0 else 100.0 * (lhits_tot + bhits_tot) / denom return pct def is_property_tag(self, tokens_list): tokens = convert_to_dict(tokens_list) key = tokens.get('op', [''])[0] nam = tokens.get('nam', [''])[0] # is_tag = key == '@' if is_tag: if nam in ['staticmethod', 'classmethod']: self.is_class_level = True # return is_tag def is_member_fn(self, tokens): for token, value in tokens: if token == 'nam' and (value in ['self', 'cls']): return True return False def process_tokens(self, tokens_list, tag): tokens = convert_to_dict(tokens_list) key = tokens.get('key', [''])[0] name = tokens.get('nam', [''])[0] if key == tag: return True, name return False, None def extract_names(self, fr): filename = fr.filename.replace("\\", "/") for source_path in self.source_paths: source_path = files.canonical_filename(source_path) if filename.startswith(source_path.replace("\\", "/") + "/"): rel_name = filename[len(source_path)+1:] break else: rel_name = fr.relative_filename() self.source_paths.add(fr.filename[:-len(rel_name)].rstrip(r"\/")) dirname = os.path.dirname(rel_name) or u"." dirname = "/".join(dirname.split("/")[:self.config.xml_package_depth]) return dirname, rel_name def create_class(self, name, rel_name, lineno): xclass = self.xml_out.createElement("class") xclass.setAttribute("name", name) xclass.setAttribute("filename", rel_name.replace("\\", "/")) xclass.setAttribute("complexity", "0") xclass.first_line = lineno return xclass def set_class_stats(self, xclass, end_line, analysis): first_line = xclass.first_line filtered = [smt for smt in analysis.statements if smt >=first_line and smt <=end_line] class_lines = len(filtered) xclass.setAttribute("lines", str(class_lines)) class_hits = 0 filtered_missing = [smt for smt in analysis.missing if smt >=first_line and smt <=end_line] # class_hits = class_lines - len(filtered_missing) xclass.setAttribute("hits", str(class_hits)) # Finalize the statistics that are collected in the XML DOM. xclass.setAttribute("line-rate", rate(class_hits, class_lines)) def set_method_stats(self, xmethod): method_hits = 0 method_misses = 0 for child in xmethod.childNodes: if child.getAttribute('hits') == "1": method_hits += 1 else: method_misses += 1 # method_lines = len(xmethod.childNodes) xmethod.setAttribute("lines", str(method_lines)) xmethod.setAttribute("hits", str(method_hits)) xmethod.setAttribute("misses", str(method_misses)) def process_class(self, rel_name, lineno, tokens, xclass, xmethod, analysis): found, name = self.process_tokens(tokens, "class") if found: # if xclass: if xmethod: xclass.appendChild(xmethod) # last_line = lineno for smt in analysis.statements: if smt < lineno: last_line = smt # self.set_class_stats(xclass, last_line, analysis) # xclass = self.create_class(name, rel_name, lineno) return True, xclass # return False, xclass def process_method(self, xmethod, tokens, xclass, free_fn, rel_name): found, method_name = self.process_tokens(tokens, "def") if found: # if xmethod: self.set_method_stats(xmethod) # xmethod = self.xml_out.createElement("method") xmethod.setAttribute("name", method_name) if xclass and (self.is_member_fn(tokens) or self.is_class_level): xclass.appendChild(xmethod) self.is_class_level = False else: filename = rel_name.replace("\\", "/") xmethod.setAttribute("filename", filename) free_fn.append(xmethod) return True, xmethod return False, xmethod def mount_package(self, dirname): package_name = dirname.replace("/", ".") package = self.packages.setdefault(package_name, [{}, 0, 0, 0, 0]) return package def process_line(self, line, has_arcs, branch_stats, missing_branch_arcs, analysis): # Processing Line xline = self.xml_out.createElement("line") xline.setAttribute("number", str(line)) # Q: can we get info about the number of times a statement is # executed? If so, that should be recorded here. is_hit = (line not in analysis.missing) xline.setAttribute("hits", str(int(is_hit))) if has_arcs: if line in branch_stats: total, taken = branch_stats[line] xline.setAttribute("branch", "true") xline.setAttribute( "condition-coverage", "%d%% (%d/%d)" % (100*taken//total, taken, total) ) if line in missing_branch_arcs: annlines = ["exit" if b < 0 else str(b) for b in missing_branch_arcs[line]] xline.setAttribute("missing-branches", ",".join(annlines)) return xline def xml_file(self, fr, analysis, has_arcs): """Add to the XML report for a single file.""" if self.config.skip_empty and analysis.numbers.n_statements == 0: return # dirname, rel_name = self.extract_names(fr) package = self.mount_package(dirname) # Free functions free_fn = [] # xclasses = [] xclass, xmethod = None, None branch_stats = analysis.branch_stats() missing_branch_arcs = analysis.missing_branch_arcs() line = 1 self.is_class_level = False for line, tokens in enumerate(fr.source_token_lines(), start=1): if line not in analysis.statements: continue if tokens: is_tag = self.is_property_tag(tokens) if is_tag: continue # We found a new class definition? created, xclass = self.process_class(rel_name, line, tokens, xclass, xmethod, analysis) if created: xclasses.append(xclass) continue # created, xmethod = self.process_method(xmethod, tokens, xclass, free_fn, rel_name) if created: if not self.is_class_level and xclass: self.set_class_stats(xclass, line, analysis) continue # # Processing a line xline = self.process_line(line, has_arcs, branch_stats, missing_branch_arcs, analysis) if xmethod: xmethod.appendChild(xline) elif xclass: xclass.appendChild(xline) # if xclass and self.is_class_level: self.set_class_stats(xclass, line, analysis) if xmethod: self.set_method_stats(xmethod) # Rename package[0][rel_name] = (xclasses, free_fn) if has_arcs: classes_branches = sum(t for t, k in branch_stats.values()) missing_branches = sum(t - k for t, k in branch_stats.values()) classes_br_hits = classes_branches - missing_branches else: classes_branches = 0.0 classes_br_hits = 0.0 # classes_lines = len(analysis.statements) classes_hits = classes_lines - len(analysis.missing) # package[1] += classes_hits package[2] += classes_lines package[3] += classes_br_hits package[4] += classes_branches def serialize_xml(dom): """Serialize a minidom node to XML.""" out = dom.toprettyxml() if env.PY2: out = out.encode("utf8") return out ```
{ "source": "jdiegoh3/distributed_computing", "score": 3 }
#### File: distributed_computing/exercise11/server_interm_layer.py ```python from xmlrpc.server import SimpleXMLRPCRequestHandler import lib.ProtocolUtils as protocolUtils # Restrict to a particular path. class RequestHandler(SimpleXMLRPCRequestHandler): rpc_paths = ('/RPC2',) class RegisteredFunctions: @staticmethod def add(num1, num2): result = add_server.call_function(num1, num2) return result @staticmethod def mult(num1, num2): result = mul_server.call_function(num1, num2) return result @staticmethod def div(num1, num2): result = div_server.call_function(num1, num2) return result @staticmethod def root(num1, num2): result = root_server.call_function(num1, num2) return result @staticmethod def pow(num1, num2): result = pow_server.call_function(num1, num2) return result @staticmethod def sub(num1, num2): result = sub_server.call_function(num1, num2) return result @staticmethod def log(num1, num2): result = log_server.call_function(num1, num2) return result def main(): # Create server server = protocolUtils.ServerThread("localhost", 8060) server.register_class_functions(RegisteredFunctions()) server.start() if __name__ == "__main__": # Create the rpc to the specifics servers add_server = protocolUtils.ClientThread('http://localhost:9001') add_server.start() sub_server = protocolUtils.ClientThread('http://localhost:9002') sub_server.start() div_server = protocolUtils.ClientThread('http://localhost:9003') div_server.start() mul_server = protocolUtils.ClientThread('http://localhost:9004') mul_server.start() pow_server = protocolUtils.ClientThread('http://localhost:9005') pow_server.start() root_server = protocolUtils.ClientThread('http://localhost:9006') root_server.start() log_server = protocolUtils.ClientThread('http://localhost:9007') log_server.start() main() ``` #### File: distributed_computing/exercise12/pow_server.py ```python import math import lib.ProtocolUtils as protocolUtils class RegisteredFunctions: @staticmethod def function(num1, num2): result = math.pow(float(num1), float(num2)) return result def main(): # Create server server = protocolUtils.ServerThread("localhost", 9005) server.register_class_functions(RegisteredFunctions()) server.start() print("Running pow server...") if __name__ == '__main__': main() ``` #### File: distributed_computing/exercise13/server.py ```python import socket import sys import threading as thread import lib.ProtocolUtils as protocolUtils def message_handler(conn, address): while True: raw_data = conn.recv(1024) received_data = protocolUtils.MessageHandler(raw_data).message_loads() if received_data[0] == "list_groups": print("New list_groups operation from ", address) conn.send(process_group_instance.get_all_groups()) elif received_data[0] == "create_group": print("New group created by ", address) process_group_instance.add_process(address) conn.send("Group already created.".encode()) elif received_data[0] == "join_group": error = False try: group_id = int(received_data[2]) except ValueError as e: error = True conn.send("Incorrect group id.".encode()) print("New request to join into a group from ", address, " to the group ", group_id) result = process_group_instance.add_process(address, group_id) if result: conn.send("You're now into the group".encode()) else: conn.send("Incorrect group id.".encode()) elif received_data[0] == "send_message": error = False try: group_id = int(received_data[2]) except ValueError as e: error = True conn.send("Incorrect group id.".encode()) list_members = process_group_instance.get_group(group_id) print("New message from ", address, " to the group ", group_id) if list_members: send_messages = thread.Thread(target=thread_broadcast_group, args=(list_members, received_data[1],)) send_messages.start() else: error = True conn.send("Incorrect group id or the group doesn't have members.".encode()) if not error: conn.send("Message sent.".encode()) else: conn.send("yesss".encode()) # Close the thread to save hardware. # sys.exit() def thread_broadcast_group(list_of_members, message): for member in list_of_members: try: socket_temp = socket.socket(socket.AF_INET, socket.SOCK_STREAM) socket_temp.connect((member[0], member[1])) socket_temp.send(message.encode()) except Exception as e: print("Disconnected client.") # while True: # socketInsa = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # socketInsa.connect((address[0], address[1])) # socketInsa.send("Yupale".encode()) if __name__ == "__main__": process_group_instance = protocolUtils.ProcessGroup() socket_instance = socket.socket(socket.AF_INET, socket.SOCK_STREAM) socket_instance.bind(('', 9999)) socket_instance.listen(10) threads_list = [] print("Server running ...") while True: conn, address = socket_instance.accept() print("New connection entry from ", address) temp_thread = thread.Thread(target=message_handler, args=(conn, address,)) threads_list.append(temp_thread) temp_thread.start() ``` #### File: distributed_computing/exercise3/sub_server.py ```python import socketserver import lib.ProtocolUtils as protocolUtils class MessageHandler(socketserver.BaseRequestHandler): @staticmethod def operation(a, b): print("New operation in queue ", a, " ", b) try: return float(a)-float(b) except ValueError: return "The operands requires be numbers" def handle(self): protocol_instance = protocolUtils.MessageHandler(self.request.recv(1024)) array_operands = protocol_instance.message_loads() if array_operands[1] == "-": result = self.operation(array_operands[0], array_operands[2]) self.request.send(str(result).encode()) else: self.request.send("Bad Request") def main(): server = socketserver.TCPServer(("localhost", 9992), MessageHandler) print("Server sub running ...") server.serve_forever() if __name__ == "__main__": main() ``` #### File: distributed_computing/exercise9/server_of_names.py ```python import socket import sys import lib.ProtocolUtils as protocolUtils import threading as thread def switch_operations(operation): switcher = { "+": ["localhost", 9991], "-": ["localhost", 9992], "*": ["localhost", 9993], "/": ["localhost", 9994], "^": ["localhost", 9995], "log": ["localhost", 9996], "root": ["localhost", 9997], } return switcher.get(operation, None) def message_handler(conn, addr): raw_data = conn.recv(1024) data = protocolUtils.MessageHandler(raw_data).message_loads() server_interface = switch_operations(data[1]) result = protocolUtils.MessageBuilder(server_interface[0], server_interface[1], False).message_builder() conn.send(result.encode()) # Close the thread to save hardware. # sys.exit() if __name__ == "__main__": socket_instance = socket.socket(socket.AF_INET, socket.SOCK_STREAM) socket_instance.bind(('', 9999)) socket_instance.listen(10) threads_list = [] print("Server running ...") while True: conn, addr = socket_instance.accept() temp_thread = thread.Thread(target=message_handler, args=(conn, addr,)) threads_list.append(temp_thread) temp_thread.start() ``` #### File: distributed_computing/exercise9/sub_server.py ```python import socket import sys import lib.ProtocolUtils as protocolUtils import threading as thread def message_handler(conn, addr): data = protocolUtils.MessageHandler(conn.recv(1024)).message_loads() print("New operation in queue ", data[0], " ", data[2]) try: result = str(float(data[0]) - float(data[2])) except ValueError: result = "The operands requires be numbers" conn.send(result.encode()) # Close the thread to save hardware. # sys.exit() if __name__ == "__main__": socket_instance = socket.socket(socket.AF_INET, socket.SOCK_STREAM) socket_instance.bind(('', 9992)) socket_instance.listen(10) threads_list = [] print("Add Server running ...") while True: conn, addr = socket_instance.accept() temp_thread = thread.Thread(target=message_handler, args=(conn, addr,)) threads_list.append(temp_thread) temp_thread.start() ``` #### File: Projects/project1/server.py ```python import lib.MyUtils as MyUtils import socket import random import threading def client_handler(conn, address): while True: try: raw_data = conn.recv(1024) split_data = MyUtils.MessageHandler(raw_data).message_loads() print(split_data) operation = split_data[0] if operation == "not_working": try: processor = split_data[1] ram = split_data[2] except Exception as e: # Return message = MyUtils.MessageBuilder([0], "400") conn.send(message.get_message()) identifier = str(address[0]) + str(address[1]) body = { "ip": address[0], "port": address[1], "cpu": processor, "ram": ram } unclassified_clients.remove_element(identifier) occupied_devices.remove_element(identifier) free_devices.add_element(identifier, body) print(free_devices.list_elements()) message = MyUtils.MessageBuilder([0], "received") conn.send(message.get_message()) elif operation == "occupied": try: processor = split_data[1] ram = split_data[2] except Exception as e: # Return message = MyUtils.MessageBuilder([0], "400") conn.send(message.get_message()) identifier = str(address[0]) + str(address[1]) body = { "ip": address[0], "port": address[1], "cpu": processor, "ram": ram } unclassified_clients.remove_element(identifier) free_devices.remove_element(identifier) occupied_devices.add_element(identifier, body) print(occupied_devices.list_elements()) message = MyUtils.MessageBuilder([0], "received") conn.send(message.get_message()) elif operation == "get_resources": try: processor = split_data[1] ram = split_data[2] except Exception as e: # Return message = MyUtils.MessageBuilder([0], "400") conn.send(message.get_message()) message = MyUtils.MessageBuilder([0], "400") if processor and ram: device_list = free_devices.list_elements() for device in device_list: if device_list[device].get("cpu", None) >= processor and device_list[device].get("ram") >= ram: message = MyUtils.MessageBuilder([device_list[device].get("ip"), device_list[device].get("port")], "not_working") else: device_list = free_devices.list_elements() rand = random.randint(0, len(device_list)-1) device = free_devices.list_elements()[list(free_devices.list_elements())[rand]] message = MyUtils.MessageBuilder([device.get("ip"), device.get("port")], "not_working") conn.send(message.get_message()) except ConnectionResetError as e: identifier = str(address[0]) + str(address[1]) unclassified_clients.remove_element(identifier) free_devices.remove_element(identifier) occupied_devices.remove_element(identifier) except Exception as e: print("Error:", e) if __name__ == '__main__': free_devices = MyUtils.FreeDevices() occupied_devices = MyUtils.OccupiedDevices() unclassified_clients = MyUtils.UnClassifiedClients() socket_instance = socket.socket(socket.AF_INET, socket.SOCK_STREAM) socket_instance.bind(('192.168.0.19', 9999)) socket_instance.listen(10) threads_list = [] print("Server running ...") while True: conn, address = socket_instance.accept() print("New connection entry from ", address) identifier = str(address[0]) + str(address[1]) body = { "ip": address[0], "port": address[1], "cpu": None, "ram": None } unclassified_clients.add_element(identifier, body) temp_thread = threading.Thread(target=client_handler, args=(conn, address,)) threads_list.append(temp_thread) temp_thread.start() ``` #### File: project2/lib/MyUtilsClient.py ```python import threading import socket import MyUtils as MyUtils class Client(object): identifier = "" server_host = "LocalHost" server_port = 9999 my_host = "" my_port_to_listen = 0 socket_to_server = None listener_socket = None my_pages_numbers = [] def __init__(self, server_host, server_port, identifier=""): print("Client it's running ...") self.identifier = identifier # Server variable instances self.server_host = server_host self.server_port = server_port self.socket_to_server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.socket_to_server.connect((self.server_host, self.server_port)) # Listener variable self.listener_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.my_host = self.listener_socket.getsockname()[0] self.my_port_to_listen = self.listener_socket.getsockname()[1] print("my_host: "+self.my_host+", my_port_to_listen: "+str(self.my_port_to_listen)) # Notify state to server self.notify_status_to_server() listen_thread = threading.Thread(target=self.start_listening) listen_thread.start() def start_listening(self): self.listener_socket.listen(10) while 1: sc, addr = self.listener_socket.accept() print("connection IP: " + str(addr[0]) + " port: " + str(addr[1])) instance = threading.Thread(target=self.read_message, args=(sc, addr)) instance.start() def read_message(self, sc, addr): message = sc.recv(1024) split_message = MyUtils.MessageHandler(message).message_loads() if split_message[0] == 'need_page': pass elif split_message[0] == 'change_page': pass else: sc.send(MyUtils.MessageBuilder(['No exist function: '+split_message[0]], 'error').get_message()) sc.close() def notify_status_to_server(self): if self.identifier == "": message = MyUtils.MessageBuilder([self.my_port_to_listen], 'new_client').get_message() else: message = MyUtils.MessageBuilder([self.my_port_to_listen, self.identifier], 'new_client').get_message() print("Sending state to server: " + message.decode()) self.socket_to_server.send(message) result = self.socket_to_server.recv(1024) split_message = MyUtils.MessageHandler(result).message_loads() print(result.decode()) if split_message[0] != 'error': self.identifier = split_message[0] i = 1 while i < len(split_message): self.add_page_number(split_message[i]) i=i+1 else: print("error: "+split_message[1]) exit() def add_page_number(self, number): self.my_pages_numbers.append(number) def have_page_number(self, number): i = 1 while i < len(self.my_pages_numbers): if self.my_pages_numbers[i] == number: return True i = i + 1 return False def send_page(socket_to_send, page_number): file = open("page"+page_number+".txt", "r") send_file(socket_to_send, file) def send_file(socket_to_send, file): while (True): print "Sending..." data = file.read(1024) socket_to_send.send(data) if len(data) < 1024: break file.close() return True def receive_page(socket_to_receive, page_number): file = open("page"+page_number+".txt", "w+") receive_file(socket_to_receive, file) def receive_file(socket_to_receive, file): while (True): print "Receiving..." info = socket_to_receive.recv(1024) file.write(info) if len(info) < 1024: break file.close() return True ``` #### File: project2/lib/MyUtils.py ```python import socket class Elements(object): def __init__(self, elements): self.elements = elements def add_element(self, id, process_info): self.elements[id] = process_info def remove_element(self, id): try: del self.elements[id] except KeyError as error: pass def list_elements(self): return self.elements class FreeDevices(Elements): elements = {} def __init__(self): super().__init__(self.elements) pass class OccupiedDevices(Elements): elements = {} def __init__(self): super().__init__(self.elements) pass class UnClassifiedClients(Elements): elements = {} def __init__(self): super().__init__(self.elements) pass class MessageHandler(object): body = None def __init__(self, message): if not isinstance(message, str): message = message.decode("utf-8") self.body = message def message_loads(self): if self.body: result = self.body.split("|") return result def send_message(host, port, message): temporal_socket_instance = socket.socket(socket.AF_INET, socket.SOCK_STREAM) temporal_socket_instance.connect((host, port)) temporal_socket_instance.send(message) result = temporal_socket_instance.recv(1024) return result class MessageBuilder(object): message = "" operation = None def __init__(self, message_elements, op=None): self.message += op + "|" for string in message_elements: self.message += str(string) + "|" def get_message(self): return self.message.encode() ``` #### File: Projects/project2/server.py ```python import utils.server_lib as library from utils.general_utils import PPrint, MessageHandler, MessageBuilder import socket import sys import random import threading server_address = "192.168.0.5" server_port = 9999 connected_clients = library.ConnectedClients() queued_clients = library.QueuedClients() def client_handler(connection, address): while True: try: raw_data = connection.recv(1024) handler = MessageHandler(raw_data).message_loads() if handler[0] == "valid_client": PPrint.show("{}{}".format("New valid client connected ", address), "green") client_info = { "address": handler[1], "port": int(handler[2]), "page_space": library.page_space, "busy": False, } connected_clients.add_element("{}/{}".format(address[0], address[1]), client_info) library.page_space += 1 connection.send(MessageBuilder((str(client_info.get("page_space", ""))) , "assigned_space").get_message()) elif handler[0] == "request_pages": clients_list = connected_clients.list_elements() result = None client_instance = None for client in clients_list: client_info = clients_list.get(client) if client_info.get("page_space", None) == int(handler[1]): client_instance = client_info result = (client_info.get("address", None), client_info.get("port")) if result: if client_instance.get("busy", None): message = MessageBuilder((), "queued") listener_info = clients_list.get("{}/{}".format(address[0], address[1])) listener_bone = (listener_info.get("address", None), listener_info.get("port", None)) list_wait = queued_clients.list_elements() element = list_wait.get(int(handler[1]), None) if element: element.append(listener_bone) else: queued_clients.add_element(int(handler[1]), [listener_bone]) print(list_wait) else: client_instance["busy"] = True message = MessageBuilder(result, "call_him") else: message = MessageBuilder((), "no_exist") connection.send(message.get_message()) elif handler[0] == "request_list_pages": PPrint.show("{}{}".format("New request to list space of pages from: ", address), "green") clients_list = connected_clients.list_elements() result = [] for client in clients_list: client_info = clients_list.get(client, None) result.append(client_info.get("page_space", None)) message = MessageBuilder(result, "list_pages") connection.send(message.get_message()) elif handler[0] == "free_resource": PPrint.show("{}{}".format("New request to free a resource from: ", address), "green") clients_list = connected_clients.list_elements() client_owner = None for client in clients_list: client_info = clients_list.get(client, None) if client_info.get("page_space", None) == int(handler[1]): client_owner = client_info client_info["busy"] = False message = MessageBuilder((), "request_ok") list_wait = queued_clients.list_elements() element = list_wait.get(int(handler[1]), None) client_to_call = None if element: client_to_call = element.pop() if client_to_call and client_owner: request_file = socket.socket(socket.AF_INET, socket.SOCK_STREAM) request_file.connect(client_to_call) message_use_res = MessageBuilder((client_owner.get("address", None), client_owner.get("port", None), client_owner.get("page_space", None)), "call_resource") request_file.send(message_use_res.get_message()) connection.send(message.get_message()) else: connection.send("Roger".encode()) except Exception as e: if isinstance(e, ConnectionAbortedError): PPrint.show("{}{}".format("Connection lost or aborted with the client ", address), "yellow") else: PPrint.show("{}{}".format("Connection lost or aborted with the client ", address), "red") sys.exit(0) if __name__ == '__main__': socket_instance = socket.socket(socket.AF_INET, socket.SOCK_STREAM) socket_instance.bind((server_address, server_port)) socket_instance.listen(10) PPrint.show("{}{}".format("Server running on ", socket.gethostbyname(socket.gethostname())), "green") while True: connection, address = socket_instance.accept() PPrint.show("{}{}".format("New connection entry from ", address), "green") temp_thread = threading.Thread(target=client_handler, args=(connection, address,)) temp_thread.start() ```
{ "source": "jdieguezbean/kickstarterScraping", "score": 3 }
#### File: core/singlenton/app_path.py ```python import os from selenium import webdriver class AppPath: class __AppPath: def __init__(self): self.path = os.path.abspath(os.getcwd()) path = None def __new__(cls): if not AppPath.path: AppPath.path = AppPath.__AppPath().path return AppPath.path ``` #### File: core/singlenton/logger.py ```python import logging try: from cStringIO import StringIO # Python 2 except ImportError: from io import StringIO class Logger: class __Logger: def __init__(self): logging.basicConfig(filename='downloader.log', level=logging.DEBUG, format='%(asctime)s %(message)s', datefmt='%d/%m/%Y %H:%M:%S') logging.info(msg='Opening downloader') def critical(self, msg): logging.critical(msg) def error(self, msg): logging.error(msg) def warn(self, msg): logging.warning(msg) def info(self, msg): logging.info(msg) def debug(self, msg): logging.debug(msg) instance = None def __new__(cls): if not Logger.instance: Logger.instance = Logger.__Logger() return Logger.instance def __getattr__(self, name): return getattr(self.instance, name) def __setattr__(self, instance, name): return setattr(self, instance, name) ```
{ "source": "jdieter31/pytorch-maml", "score": 2 }
#### File: pytorch-maml/maml/expm.py ```python import torch #%% def torch_expm(A): """ """ n_A = A.shape[0] A_fro = torch.sqrt(A.abs().pow(2).sum(dim=(1,2), keepdim=True)) # Scaling step maxnorm = torch.Tensor([5.371920351148152]).type(A.dtype).to(A.device) zero = torch.Tensor([0.0]).type(A.dtype).to(A.device) n_squarings = torch.max(zero, torch.ceil(torch_log2(A_fro / maxnorm))) Ascaled = A / 2.0**n_squarings n_squarings = n_squarings.flatten().type(torch.int32) # Pade 13 approximation U, V = torch_pade13(Ascaled) P = U + V Q = -U + V R, _ = torch.solve(P, Q) # solve P = Q*R # Unsquaring step expmA = [ ] for i in range(n_A): l = [R[i]] for _ in range(n_squarings[i]): l.append(l[-1].mm(l[-1])) expmA.append(l[-1]) return torch.stack(expmA) #%% def torch_log2(x): return torch.log(x) / torch.log(torch.Tensor([2.0])).type(x.dtype).to(x.device) #%% def torch_pade13(A): b = torch.Tensor([64764752532480000., 32382376266240000., 7771770303897600., 1187353796428800., 129060195264000., 10559470521600., 670442572800., 33522128640., 1323241920., 40840800., 960960., 16380., 182., 1.]).type(A.dtype).to(A.device) ident = torch.eye(A.shape[1], dtype=A.dtype).to(A.device) A2 = torch.matmul(A,A) A4 = torch.matmul(A2,A2) A6 = torch.matmul(A4,A2) U = torch.matmul(A, torch.matmul(A6, b[13]*A6 + b[11]*A4 + b[9]*A2) + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*ident) V = torch.matmul(A6, b[12]*A6 + b[10]*A4 + b[8]*A2) + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*ident return U, V #%% if __name__ == '__main__': from scipy.linalg import expm import numpy as np n = 10 A = torch.randn(n,3,3) A[:,2,:] = 0 expm_scipy = np.zeros_like(A) for i in range(n): expm_scipy[i] = expm(A[i].numpy()) expm_torch = torch_expm(A) print('Difference: ', np.linalg.norm(expm_scipy - expm_torch)) ``` #### File: pytorch-maml/maml/utils.py ```python import torch from collections import OrderedDict from torchmeta.modules import MetaModule from .model import BatchParameter from .transformer_metric import TransformerMetric from .constant_metric import ConstantMetric from .expm import torch_expm as expm def compute_accuracy(logits, targets): """Compute the accuracy""" with torch.no_grad(): if logits.dim() == 2: _, predictions = torch.max(logits, dim=1) accuracy = torch.mean(predictions.eq(targets).float()) else: _, predictions = torch.max(logits, dim=2) accuracy = torch.mean(predictions.eq(targets).float(), dim=-1) return accuracy.detach().cpu().numpy() def tensors_to_device(tensors, device=torch.device('cpu')): """Place a collection of tensors in a specific device""" if isinstance(tensors, torch.Tensor): return tensors.to(device=device) elif isinstance(tensors, (list, tuple)): return type(tensors)(tensors_to_device(tensor, device=device) for tensor in tensors) elif isinstance(tensors, (dict, OrderedDict)): return type(tensors)([(name, tensors_to_device(tensor, device=device)) for (name, tensor) in tensors.items()]) else: raise NotImplementedError() class ToTensor1D(object): """Convert a `numpy.ndarray` to tensor. Unlike `ToTensor` from torchvision, this converts numpy arrays regardless of the number of dimensions. Converts automatically the array to `float32`. """ def __call__(self, array): return torch.from_numpy(array.astype('float32')) def __repr__(self): return self.__class__.__name__ + '()' def make_warp_model(model, constant=False): metric_params = [] for parameter in model.parameters(): if isinstance(parameter, BatchParameter): metric_params.append(parameter) """ for layer in model.modules(): if isinstance(layer, BatchLinear): metric_params.append(layer.weight) """ if constant: return ConstantMetric(metric_params) else: return TransformerMetric(metric_params) def kronecker_warp(grad, kronecker_matrices) -> torch.Tensor: """ Function for doing Kronecker based warping of gradient batches of an m x n matrix parameter Params: grad (torch.Tensor): gradient batch of shape [meta_batch_size, batch_size m, n] kronecker_matrices (Tuple[torch.Tensor, torch.Tensor]): kronecker matrices to do the warping. First element of tuple is of shape [meta_batch_size, batch_size n, n] second is of shape [meta_batch_size, batch_size, m, m] """ input_matrices = kronecker_matrices[0] output_matrices = kronecker_matrices[1] all_matrices = input_matrices + output_matrices grad = grad.sum(dim=-3) grad_size = grad.size() first_matrix = all_matrices[0] first_matrix = first_matrix.view(-1, first_matrix.size(-2), first_matrix.size(-1)) temp = grad.view(-1, all_matrices[1].size(-1), first_matrix.size(-1)) first_matrix = first_matrix.unsqueeze(1).expand( first_matrix.size(0), temp.size(0) // first_matrix.size(0), *first_matrix.size()[1:] ).reshape(-1, first_matrix.size(-2), first_matrix.size(-1)) temp = torch.bmm(temp, first_matrix) right_size = first_matrix.size(-1) for i, matrix in enumerate(all_matrices[1:]): matrix = matrix.view(-1, matrix.size(-2), matrix.size(-1)) matrix = matrix.unsqueeze(1).expand( matrix.size(0), temp.size(0) // matrix.size(0), *matrix.size()[1:] ).reshape(-1, matrix.size(-2), matrix.size(-1)) temp = torch.bmm(matrix, temp) if i < len(all_matrices) - 2: right_size *= matrix.size(-1) temp = temp.view(-1, all_matrices[i + 2].size(-1), right_size) return temp.view(grad_size) def gradient_update_parameters_warp(model, loss, params=None, warp_model=None, step_size=0.5, first_order=False, state=None): """Update of the meta-parameters with one step of gradient descent on the loss function. Parameters ---------- model : `torchmeta.modules.MetaModule` instance The model. loss : `torch.Tensor` instance The value of the inner-loss. This is the result of the training dataset through the loss function. params : `collections.OrderedDict` instance, optional Dictionary containing the meta-parameters of the model. If `None`, then the values stored in `model.meta_named_parameters()` are used. This is useful for running multiple steps of gradient descent as the inner-loop. step_size : int, `torch.Tensor`, or `collections.OrderedDict` instance (default: 0.5) The step size in the gradient update. If an `OrderedDict`, then the keys must match the keys in `params`. first_order : bool (default: `False`) If `True`, then the first order approximation of MAML is used. Returns ------- updated_params : `collections.OrderedDict` instance Dictionary containing the updated meta-parameters of the model, with one gradient update wrt. the inner-loss. """ if not isinstance(model, MetaModule): raise ValueError('The model must be an instance of `torchmeta.modules.' 'MetaModule`, got `{0}`'.format(type(model))) if params is None: params = OrderedDict(model.meta_named_parameters()) param_jacobs_lst = [[] for _ in range(len(params))] for i in range(loss.size(0)): grads = torch.autograd.grad(loss[i], params.values(), retain_graph=True, create_graph=not first_order) for j, grad in enumerate(grads): param_jacobs_lst[j].append(grad) param_jacobs = [torch.stack(param_jacob, dim=1) for param_jacob in param_jacobs_lst] if warp_model is not None: warp_model_input = [] for param in warp_model.warp_parameters: if param.collect_input: warp_model_input.append([param.input_data, param.grad_data]) kronecker_matrix_logs = warp_model(warp_model_input) kronecker_matrices = [] for kronecker_matrix_list in kronecker_matrix_logs: input_matrices = kronecker_matrix_list[0] output_matrices = kronecker_matrix_list[1] exp_input_matrices = [] for matrix in input_matrices: #exp_matrix = torch.matrix_exp(matrix.reshape((-1, matrix.size(-2), matrix.size(-1)))) #exp_matrix = exp_matrix.reshape(matrix.size()) #exp_matrix = matrix.reshape((-1, matrix.size(-2), matrix.size(-1))) #exp_matrix = torch.bmm(exp_matrix, exp_matrix) #exp_matrix = exp_matrix.reshape(matrix.size()) exp_input_matrices.append(matrix) exp_output_matrices = [] for matrix in output_matrices: #exp_matrix = torch.matrix_exp(matrix.reshape((-1, matrix.size(-2), matrix.size(-1)))) #exp_matrix = exp_matrix.reshape(matrix.size()) #exp_matrix = matrix.reshape((-1, matrix.size(-2), matrix.size(-1))) #exp_matrix = torch.bmm(exp_matrix, exp_matrix) #exp_matrix = exp_matrix.reshape(matrix.size()) exp_output_matrices.append(matrix) kronecker_matrices.append([exp_input_matrices, exp_output_matrices]) updated_params = OrderedDict() if isinstance(step_size, (dict, OrderedDict)): for i, ((name, param), grad) in enumerate(zip(params.items(), param_jacobs)): if warp_model is not None: grad = kronecker_warp(grad, kronecker_matrices[i]) updated_params[name] = param - step_size[name] * grad else: for i, ((name, param), grad) in enumerate(zip(params.items(), param_jacobs)): if warp_model is not None: grad = kronecker_warp(grad, kronecker_matrices[i]) updated_params[name] = param - step_size * grad return updated_params ```
{ "source": "jdieter31/riemannian-nlp", "score": 3 }
#### File: riemann/config/manifold_config.py ```python import re from typing import Dict from .config import ConfigDict from ..manifolds.manifold import RiemannianManifold class ManifoldConfig(ConfigDict): """ ConfigDict to specify a manifold and its properties """ name: str = "EuclideanManifold" dimension: int = 0 params: dict = {} def get_manifold_instance(self) -> RiemannianManifold: """ Gets an instance of the manifold specified in this config """ return RiemannianManifold.from_name_params(self.name, self.params) @classmethod def from_string(cls, spec) -> 'ManifoldConfig': pattern = re.compile(r"([ESH])([0-9]+)") short_forms = { "E": "EuclideanManifold", "S": "SphericalManifold", "H": "PoincareBall", } if "x" in spec: submanifolds, total_dim = [], 0 for subspec in spec.split("x"): match = pattern.match(subspec) assert match is not None, f"Invalid spec {spec}" typ, dim = match.groups() submanifolds.append({ "name": short_forms[typ], "dimension": int(dim) }) total_dim += int(dim) return cls(name="ProductManifold", dimension=total_dim, params={"submanifolds": submanifolds}) else: match = pattern.match(spec) assert match is not None, f"Invalid spec {spec}" typ, dim = match.groups() return cls(name=short_forms[typ], dimension=int(dim), params={}) ``` #### File: riemann/data/data_loader.py ```python from .graph_dataset import GraphDataset from .graph_loader_utils import load_csv_edge_list, load_adjacency_matrix from ..config.config_loader import get_config training_data: GraphDataset = None eval_data: GraphDataset = None def get_training_data() -> GraphDataset: """ Loads the training data or fetches it if already loaded """ _load_data_if_needed() return training_data def get_eval_data() -> GraphDataset: """ Loads the eval data or fetches it if already loaded. Will return None if no train eval split is configured """ _load_data_if_needed() return eval_data def _load_data_if_needed(): global training_data global eval_data if training_data is None: data_config = get_config().data if data_config.graph_data_type == "edge": if data_config.generate_eval_split: path = data_config.full_path else: path = data_config.train_path idx, objects, weights = load_csv_edge_list(path, data_config.symmetrize, delimiter=data_config.delimiter) else: # TODO This needs to be updated for handling train eval splits idx, objects, weights \ = load_adjacency_matrix(data_config.train_path, data_config.graph_data_format, data_config.symmetrize) if data_config.generate_eval_split: training_data, eval_data = \ GraphDataset.make_train_eval_split(data_config.dataset_name, idx, objects, weights) else: if data_config.eval_path is not None: eval_idx, eval_objects, eval_weights = \ load_csv_edge_list(data_config.eval_path, data_config.symmetrize, delimiter=data_config.delimiter) # Correct indexing of objects in eval_idx for edge in eval_idx: for i in range(2): if eval_objects[edge[i]] not in objects: objects.append(eval_objects[edge[i]]) edge[i] = len(objects) - 1 else: edge[i] = objects.index(eval_objects[edge[i]]) training_data = GraphDataset(f"{data_config.dataset_name}_train", idx, objects, weights) eval_data = GraphDataset(f"{data_config.dataset_name}_eval", eval_idx, objects, eval_weights) else: training_data = GraphDataset(data_config.dataset_name, idx, objects, weights) ``` #### File: riemannian-nlp/riemann/device_manager.py ```python import torch from .config.config_loader import get_config def get_device(): """ Returns the main device that experiments are to be ran on. Note that some components can and should still run on cpu for memory reasons so this should only be used to retrieve devices for things that would potentially run on the gpu. """ general_config = get_config().general gpu = general_config.gpu device = torch.device(f'cuda:{gpu}' if gpu >= 0 else 'cpu') return device ``` #### File: embedding/conceptnet/__init__.py ```python import re import numpy as np import pandas as pd from sklearn.preprocessing import normalize from .nodes import standardized_concept_uri from .uri import uri_to_label DOUBLE_DIGIT_RE = re.compile(r'[0-9][0-9]') DIGIT_RE = re.compile(r'[0-9]') CONCEPT_RE = re.compile(r'/c/[a-z]{2,3}/.+') def replace_numbers(s): """ Replace digits with # in any term where a sequence of two digits appears. This operation is applied to text that passes through word2vec, so we should match it. """ if DOUBLE_DIGIT_RE.search(s): return DIGIT_RE.sub('#', s) else: return s def standardized_uri(language, term): """ Get a URI that is suitable to label a row of a vector space, by making sure that both ConceptNet's and word2vec's normalizations are applied to it. If the term already looks like a ConceptNet URI, it will only have its sequences of digits replaced by #. Otherwise, it will be turned into a ConceptNet URI in the given language, and then have its sequences of digits replaced. """ if not CONCEPT_RE.match(term): term = standardized_concept_uri(language, term) return replace_numbers(term) def get_vector(frame, label, language=None): """ Returns the row of a vector-space DataFrame `frame` corresponding to the text `text`. If `language` is set, this can take in plain text and normalize it to ConceptNet form. Either way, it can also take in a label that is already in ConceptNet form. """ if frame.index[1].startswith('/c/'): # This frame has URIs in its index if not label.startswith('/'): label = standardized_uri(language, label) try: return frame.loc[label] except KeyError: return pd.Series(index=frame.columns) else: if label.startswith('/'): label = uri_to_label(label) try: return frame.loc[replace_numbers(label)] except KeyError: # Return a vector of all NaNs return pd.Series(index=frame.columns) def normalize_vec(vec): """ L2-normalize a single vector, as a 1-D ndarray or a Series. """ if isinstance(vec, pd.Series): return normalize(vec.fillna(0).values.reshape(1, -1))[0] elif isinstance(vec, np.ndarray): return normalize(vec.reshape(1, -1))[0] else: raise TypeError(vec) def cosine_similarity(vec1, vec2): """ Get the cosine similarity between two vectors -- the cosine of the angle between them, ranging from -1 for anti-parallel vectors to 1 for parallel vectors. """ return normalize_vec(vec1).dot(normalize_vec(vec2)) def similar_to_vec(frame, vec, limit=50): # TODO: document the assumptions here # - frame and vec should be normalized # - frame should not be made of 8-bit ints if vec.dot(vec) == 0.: return pd.Series(data=[], index=[], dtype='f') similarity = frame.dot(vec) return similarity.dropna().nlargest(limit) def weighted_average(frame, weight_series): if isinstance(weight_series, list): weight_dict = dict(weight_series) weight_series = pd.Series(weight_dict) vec = np.zeros(frame.shape[1], dtype='f') for i, label in enumerate(weight_series.index): if label in frame.index: val = weight_series[i] vec += val * frame.loc[label].values return pd.Series(data=vec, index=frame.columns, dtype='f') ``` #### File: riemann/embedding/sentence_embedder.py ```python from abc import ABC, abstractmethod from typing import Set import numpy as np from .core_nlp import SimpleSentence from .term_frequencies import TermFrequencies from .word_embedding import Glove class SentenceEmbedder(ABC): @abstractmethod def embed(self, sentence: SimpleSentence, **kwargs) -> np.ndarray: pass @property @abstractmethod def dim(self) -> int: pass class GloveSentenceEmbedder(SentenceEmbedder): POS_WHITELIST = { "JJ", "JJR", "JJS", "NN", "NNS", "NNP", "NNPS", # "PRP", # "PRP$", # "RB", # "RBR", # "RBS", "VB", "VBD", "VBG", "VBN", "VBP", "VBZ", # "WDT", # "WP", # "WRB", } LEMMA_BLACKLIST = {"there", "do", "be", "have", "use", "need", "want", "like", "such"} def __init__( self, glove: Glove, pos_whitelist: Set[str] = None, lemma_blacklist: Set[str] = None, term_frequencies: TermFrequencies = None, lemmatize: bool = True, ): self.glove = glove self.pos_whitelist = pos_whitelist if pos_whitelist is not None else GloveSentenceEmbedder.POS_WHITELIST self.lemma_blacklist = lemma_blacklist if lemma_blacklist is not None else GloveSentenceEmbedder.LEMMA_BLACKLIST self.lemmatize = lemmatize self.term_frequencies = term_frequencies @classmethod def canonical(cls) -> 'GloveSentenceEmbedder': return cls( glove=Glove.canonical(), term_frequencies=TermFrequencies.canonical() ) @property def dim(self): return self.glove.embedding_dim def weight(self, token): """ SIF reweighting as described in A Simple But Tough-to-Beat Baseline for Sentence Embeddings (Arora 2017) :param token: :return: """ a = 0.001 if self.term_frequencies is not None and token in self.term_frequencies: return a / (a + self.term_frequencies[token] / float(self.term_frequencies.total_count)) else: return 1.0 pass def include_in_embedding(self, lemma: str = None, pos: str = None): should_include = True should_include &= ((self.lemma_blacklist is None) or (lemma not in self.lemma_blacklist)) should_include &= ((self.pos_whitelist is None) or (pos is None) or pos == '' or ( pos in self.pos_whitelist)) return should_include def embed( self, sentence: SimpleSentence, use_filter: bool = True, l2_normalize: bool = True, ignore_case: bool = True, verbose: bool = False, username: str = None, knol_id: str = None, **kwargs ) -> np.ndarray: """ Embeds a sentence using its tokens, lemmas, and parts of speech :param sentence: A sentence loaded from corenlp :param use_filter: If we should filter out certain parts of speech or lemmas :param l2_normalize: If true, we will return only unit vectors (unless it is all 0) :param ignore_case: If true, we will lower case every token and lemma before finding the embedding vector :param verbose: If verbose, log warnings. :param username: The username of the user adding the question. This is purely for debugging, and is safe to ignore. :param knol_id: The ID of the Knol we're adding. This is purely for debugging, and is safe to ignore. :return: A vector corresponding to the embedded question. """ vec = np.zeros(self.glove.embedding_dim, dtype=np.float32) valid_tokens = 0 for token, lemma, pos in zip(sentence.original_texts(), sentence.lemmas(), sentence.pos()): if ignore_case: lemma = lemma.lower() token = token.lower() if lemma == "" or pos == "": if verbose: print( "Got an empty POS tag and/or Lemma. Setting lemma to be token to compensate. username=" + str(username) + "; knol_id=" + str(knol_id)) lemma = token if not use_filter or self.include_in_embedding(lemma, pos): idx = self.glove.lookup_word(lemma if self.lemmatize else token) if idx >= self.glove.token_mapper.mapped_output_size(): valid_tokens += 1 weight = self.weight(lemma if self.lemmatize else token) vec += weight * self.glove.get_embedding_at_index(idx) if valid_tokens > 0: if l2_normalize: return self._normalize(vec) else: return vec / valid_tokens elif use_filter: # back off to a non filtered embedding if no valid tokens were used and we have a 0 vector return self.embed(sentence, use_filter=False, l2_normalize=l2_normalize, ignore_case=ignore_case, verbose=verbose, username=username, knol_id=knol_id) else: return vec @classmethod def _normalize(cls, vec: np.ndarray, epsilon=1e-12) -> np.ndarray: """ Normalize a vector :param vec: A one dimensional array :return: """ length = np.power(np.sum(np.power(vec, 2)), 0.5) return vec / (length + epsilon) @classmethod def mock(cls): return cls(glove=Glove.mock(), term_frequencies=TermFrequencies.mock()) __all__ = ['SentenceEmbedder', 'GloveSentenceEmbedder'] ``` #### File: riemann/embedding/word_piecer.py ```python import json import sys from typing import Tuple, Dict, List, Counter from zipfile import ZipFile class WordPiecer: EOW = "</w>" # How to pretty print EOWs UNK = "<?>" # How to pretty print unknown characters. UNK_EOW = "<?></w>" # How to pretty print unknown characters. def __init__(self, pieces: List[str], merges: List[Tuple[str, str]]): """ :param pieces: A sequence of word pieces. :param merges: Combinations of word pieces that can be merged with the compression algorithm. """ # We look up indices a lot, so interning strings is natural. self._pieces = [sys.intern(p) for p in pieces] self._indices = {p: i for i, p in enumerate(pieces)} self._merges = [(self._indices[x], self._indices[y], self._indices[x + y]) for x, y in merges] self._merge_indices = {(x, y): i for i, (x, y, _) in enumerate(self._merges)} if self.UNK not in self._pieces: self._indices[self.UNK] = len(self._pieces) self._pieces.append(self.UNK) if self.UNK_EOW not in self._pieces: self._indices[self.UNK_EOW] = len(self._pieces) self._pieces.append(self.UNK_EOW) def __len__(self): """ :return: Size of the vocabulary produced by WordPiecer. """ return len(self._pieces) def __repr__(self): return f"<WordPiecer: {len(self._pieces)} pieces and {len(self._merges)} merges>" def _compress(self, indices: List[int]) -> bool: """ Attempt to compress the given set of indices in place. :param indices: :return: true if we succeeded at compressing the indices """ # Find the top-ranked merge to complete: NONE = len(self._merges) + 1 merge_idx = min((self._merge_indices.get((indices[i], indices[i + 1]), NONE) for i in range(len(indices) - 1)), default=NONE) if merge_idx == NONE: return False (x, y, z) = self._merges[merge_idx] # Apply the chosen merge by deleting anything that matches its values for i, _ in enumerate(indices): if i == len(indices) - 1: break if indices[i] == x and indices[i + 1] == y: # pop i twice indices.pop(i) indices.pop(i) indices.insert(i, z) return True def encode_string(self, part: str, append_eow: bool = True) -> List[int]: """ Encodes a single part using the merge algorithm. :param part: An arbitrary string. :param append_eow: if true, append '</w>' to the last token. :return: A sequence of piece indices """ # 0. Handle empty string. if not part: return [] # 1. Map part into a sequence of primary pieces indices that will be compressed below. indices: List[int] = [] for char in part[:-1]: indices.append(self._indices.get(char, self._indices[self.UNK])) char = part[-1] if append_eow: indices.append(self._indices.get(char + self.EOW, self._indices[self.UNK_EOW])) else: unk_eow = self.UNK_EOW if char.endswith(self.EOW) else self.UNK indices.append(self._indices.get(char, self._indices[unk_eow])) # 2. Compress the indices in order of the merge indices while self._compress(indices): pass return indices def encode(self, tokens: List[str]) -> List[int]: ret = [] for token in tokens: ret.extend(self.encode_string(token)) return ret def decode(self, indices: List[int], strip_eow: bool = True) -> List[str]: """ Convert given word piece indices into a set of tokens :param indices: a list of word piece indices :param strip_eow: remove the </w> tags :return: a list of tokens that correspond to @indices """ ret = [] word = "" for idx in indices: piece = self._pieces[idx] if piece.endswith(self.EOW): word += piece[:-len(self.EOW)] if strip_eow else piece ret.append(word) word = "" else: word += piece # NOTE: this is potentially incorrect because we might add a new word even without the </w> tag. if word: ret.append(word) return ret def to_string(self, indices: List[int]) -> str: """ Converts a sequence of indices in to a readable string. :param indices: :return: A string corresponding to @indices. Example: 1 2 3 -> the """ return " ".join(self.decode(indices, strip_eow=False)) @classmethod def learn(cls, tokens_: List[str], character_threshold: int = 5, max_vocab: int = 100) -> 'WordPiecer': """ Learns a word piecer from a sequence of tokens. :param tokens_: a sequence of strings to learn from. By default, all tokens are appended with EOW tags. :param character_threshold: the threshold on the number of times a character should have been seen to be added. a positive number has a regularizing effect. :param max_vocab: The maximum number of elements to add to the vocabulary before quitting. :return: A new word piecer that can be used for these purposes. """ pieces: List[str] = [cls.UNK, cls.UNK_EOW] indices: Dict[str, int] = {p: i for i, p in enumerate(pieces)} merges: List[Tuple[str, str]] = [] # 0. Minify the number of tokens actually considered by compressing this list of tokens by count. tokens = Counter[str](tokens_) # 1. Start by building a list of character to use. # 1.1 Compute character statistics to replace rare characters with UNK tokens. piece_stats = Counter[str]() # Start by adding characters as pieces. for token, freq in tokens.items(): for char in token[:-1]: piece_stats[char] += freq piece_stats[token[-1] + cls.EOW] += freq # 1.2 Add these characters to the pieces for char, freq in piece_stats.most_common(): if freq > character_threshold: indices[char] = len(pieces) pieces.append(char) assert len( pieces) < max_vocab, f"max_vocab ({max_vocab}) is too small to fit the {len(pieces)} characters" # 1.3 Replace sequences with integers indices. data: List[Tuple[List[int], int]] = [] UNK_IDX, UNK_EOW_IDX = indices[cls.UNK], indices[cls.UNK_EOW] for token, freq in tokens.items(): datum = [indices.get(char, UNK_IDX) for char in token[:-1]] datum.append(indices.get(token[-1] + cls.EOW, UNK_EOW_IDX)) data.append((datum, freq)) # 2. Merge bigrams to construct a vocabulary. merge_stats = Counter[Tuple[int, int]]() # 2.1 Build statistics for merges. for datum, freq in data: for i in range(len(datum) - 1): merge_stats[datum[i], datum[i + 1]] += freq # 2.2 While the vocabulary size can take it, keep merging tokens. while len(pieces) < max_vocab and merge_stats: # Get the most common merge ((x, y), _), = merge_stats.most_common(1) # Add this merge merges.append((pieces[x], pieces[y])) if pieces[x] + pieces[y] not in indices: indices[pieces[x] + pieces[y]] = len(indices) pieces.append(pieces[x] + pieces[y]) z = indices[pieces[x] + pieces[y]] # Apply this merge to all of the data and update its statistics. for datum, freq in data: for i, _ in enumerate(datum): # Handle corner case. if i == len(datum) - 1: break # Aha, this is a candidate merge if datum[i] == x and datum[i + 1] == y: datum.pop(i) datum.pop(i) datum.insert(i, z) # Update statistics if i < len(datum) - 1: merge_stats[y, datum[i + 1]] -= freq merge_stats[z, datum[i + 1]] += freq # We will never see x, y again so remove it. merge_stats.pop((x, y)) return cls(pieces, merges) def to_file(self, zf: ZipFile): zf.writestr("encoder/pieces.txt", "\n".join(self._pieces)) zf.writestr("encoder/merges.txt", "\n".join([ f"{self._pieces[x]}\t{self._pieces[y]}" for (x, y, _) in self._merges ])) __instance = None @classmethod def canonical(cls) -> 'WordPiecer': if cls.__instance is None: with ZipFile(props.auto.WORD_PIECER_PATH) as zf: cls.__instance = cls.from_file(zf) return cls.__instance @classmethod def from_file(cls, zf: ZipFile) -> 'WordPiecer': def as_tuple(ls: List[str]): return ls[0], ls[1] pieces = zf.read("encoder/pieces.txt").decode("utf-8").split("\n") merges = [as_tuple(line.split("\t")) for line in zf.read("encoder/merges.txt").decode("utf-8").split("\n")] return cls(pieces, merges) @classmethod def from_openai(cls, encoder_path: str, merges_path: str) -> 'WordPiecer': with open(encoder_path) as f: encoder = json.load(f) pieces, idxs = zip(*sorted(encoder.items(), key=lambda kv: kv[-1])) # Make sure they're in sorted order. assert idxs[0] == 0 and idxs[-1] == len(pieces) - 1 with open(merges_path) as f: merges = [(x, y) for line in f.readlines() for x, y in line.strip().split() if not line.startswith("#")] return cls(pieces, merges) __all__ = ['WordPiecer'] ``` #### File: riemann/featurizers/text_featurizer.py ```python from abc import ABC, abstractmethod from typing import List, Optional import torch from ..manifolds import RiemannianManifold class TextFeaturizer(ABC): """ Abstract class for any type of model that produces embeddings of text """ @abstractmethod def embed_text(self, data: List[str]) -> List[Optional[torch.Tensor]]: """ Produces embedding of text Args: data (List[str]): List of text objects Returns: embedding (List[Optional[tensor]]): embedding of text objects (if they can be embedded as represented by the optional) """ raise NotImplementedError def get_manifold(self) -> RiemannianManifold: """ Returns the manifold that this GraphEmbedder embeds nodes into. Defaults to Euclidean if this method is not overwritten """ return ManifoldConfig().get_manifold_instance() ``` #### File: riemann/featurizers/wordnet_featurizer.py ```python from ..embedding.sentence_embedder import GloveSentenceEmbedder from ..embedding.word_embedding import Glove from ..embedding.core_nlp import SimpleSentence from ..data.graph_dataset import GraphDataset from ..manifolds import SphericalManifold import torch import numpy as np from tqdm import tqdm def get_wordnet_featurizer(graph_dataset: GraphDataset, eval_dataset: GraphDataset=None): sentence_embedder = GloveSentenceEmbedder.canonical() embeddings = [] bad_nodes = [] for i, o_id in enumerate(graph_dataset.object_ids): sentence = ' '.join(o_id.split('.')[0].split('_')) ssentence = SimpleSentence.from_text(sentence) embedding = sentence_embedder.embed(ssentence) if np.any(embedding): embeddings.append(embedding) else: bad_nodes.append(i) graph_dataset.collapse_nodes(bad_nodes) if eval_dataset is not None: eval_dataset.collapse_nodes(bad_nodes) """ deleted = 0 for bad_node in tqdm(bad_nodes, desc="Collapsing nodes w/o features", dynamic_ncols=True): graph_dataset.collapse_node(i - deleted) if eval_dataset is not None: eval_dataset.collapse_node(i - deleted) deleted += 1 """ vectors = torch.tensor(np.array(embeddings), dtype=torch.float, device=torch.device('cpu')) def featurize(object_ids, node_ids): return vectors[node_ids] return featurize, sentence_embedder.dim, SphericalManifold() ``` #### File: riemannian-nlp/riemann/manifold_nns.py ```python from math import ceil, sqrt import faiss import numpy as np import torch from tqdm import tqdm from .config.config_loader import get_config from .manifolds import RiemannianManifold class ManifoldNNS: def __init__(self, data_points: torch.Tensor, manifold: RiemannianManifold, samples_for_pole: int = 10000): self.manifold = manifold self.compute_index(data_points, samples_for_pole) def compute_index(self, data_points: torch.Tensor, samples_for_pole: int = 10000): data_points = data_points.cpu() if samples_for_pole == 0: samples_for_pole = data_points.size(0) perm = torch.randperm(data_points.size(0)) idx = perm[:min(samples_for_pole, perm.size(0))] self.pole = compute_pole(data_points[idx], self.manifold) tqdm.write("Creating nns index") ivf_size = 2 ** (ceil(4 * sqrt(data_points.size(0)) - 1)).bit_length() index_flat = faiss.index_factory(data_points.size(-1), "Flat") #f"PCAR16,IVF{ivf_size},SQ4") general_config = get_config().general _use_gpu: bool = general_config.gpu >= 0 # make it into a gpu index if _use_gpu: res = faiss.StandardGpuResources() # make it into a gpu index self.index = faiss.index_cpu_to_gpu(res, 0, index_flat) params = faiss.GpuParameterSpace() else: self.index = index_flat params = faiss.ParameterSpace() # params.set_index_parameter(self.index, 'nprobe', 100) params.initialize(self.index) num_blocks = 200 block_size = ceil(data_points.size(0) / num_blocks) num_blocks = ceil(data_points.size(0) / block_size) self.data_embedding = data_points pole_batch = self.pole.unsqueeze(0).expand_as(data_points[:block_size]) for i in tqdm(range(num_blocks), desc="Euclidean Project", dynamic_ncols=True): start_index = i * block_size end_index = min((i + 1) * block_size, data_points.size(0)) self.data_embedding[start_index:end_index] = self.manifold.log( pole_batch[0: end_index - start_index], data_points[start_index:end_index]) tqdm.write("Training Index") train_size = int(20 * sqrt(data_points.size(0))) perm = torch.randperm(data_points.size(0)) train_points = \ self.data_embedding.cpu().detach()[perm[:train_size]].numpy() self.index.train(train_points) tqdm.write("Adding Vectors to Index") self.index.add(self.data_embedding.cpu().detach().numpy()) def knn_query_batch_vectors(self, data, k=10, log_space=False): pole_batch = self.pole.unsqueeze(0).expand_as(data) if log_space: data_embedding = data.cpu().detach().numpy() else: data_embedding = self.manifold.log(pole_batch, data).cpu().detach().numpy() return self.index.search(data_embedding, k) def add_vectors(self, data): pole_batch = self.pole.unsqueeze(0).expand_as(data) data_embedding = self.manifold.log(pole_batch, data).cpu().detach().numpy() self.index.add(data_embedding) def knn_query_batch_indices(self, indices, k=10): return self.knn_query_batch_vectors(self.data_embedding[indices], k, log_space=True) def knn_query_all(self, k=10): block_size = self.data_embedding.size()[0] // 3 num_blocks = ceil(self.data_embedding.size()[0] / block_size) dists, nns = None, None for i in tqdm(range(num_blocks), desc="knn_query", dynamic_ncols=True): start_index = i * block_size end_index = min((i + 1) * block_size, self.data_embedding.size()[0]) block_dists, block_nns = self.knn_query_batch_indices( torch.arange(start_index, end_index, dtype=torch.long, device=self.data_embedding.device), k) if dists is None: dists, nns = block_dists, block_nns else: dists = np.concatenate((dists, block_dists)) nns = np.concatenate((nns, block_nns)) return dists, nns def compute_pole(data_samples: torch.Tensor, manifold: RiemannianManifold): running_pole = data_samples[0].clone() for i in range(data_samples.size()[0] - 1): log_mu_x = manifold.log(running_pole, data_samples[i + 1]) weighted = log_mu_x / (i + 2) running_pole = manifold.exp(running_pole, weighted) return running_pole def compute_pole_batch(data: torch.Tensor, manifold: RiemannianManifold, samples_per_pole=1000, num_poles=15): permuted_data = data.new_empty( [num_poles, min(samples_per_pole, data.size(0)), data.size()[-1]]) for i in range(num_poles): perm = torch.randperm(data.size(0)) idx = perm[:min(samples_per_pole, perm.size(0))] permuted_data[i] = data[idx] running_poles = permuted_data[:, 0, :].clone() for i in range(permuted_data.size()[1] - 1): log_mu_x = manifold.log(running_poles, permuted_data[:, i + 1, :]) weighted = log_mu_x / (i + 2) running_poles = manifold.exp(running_poles, weighted) return running_poles ``` #### File: riemannian-nlp/riemann/train_old.py ```python QUICK_EVAL_FREQUENCY = 0 QUICK_EVAL_PERCENT = 0.05 QUICK_EVAL_TRAIN_PERCENT = 0.025 def train( device, model, manifold, dimension, data, optimizer, loss_params, n_epochs, eval_every, sample_neighbors_every, lr_scheduler, shared_params, thread_number, feature_manifold, conformal_loss_params, tensorboard_watch={}, eval_data=None ): batch_num = 0 reporter = MemReporter() for epoch in range(1, n_epochs + 1): batch_losses = [] if conformal_loss_params is not None: batch_conf_losses = [] t_start = timeit.default_timer() if (epoch - 1) % sample_neighbors_every == 0 and thread_number == 0: optimizer.zero_grad() inputs = None graph_dists = None conf_loss = None loss = None # import gc; gc.collect() # torch.cuda.empty_cache() with torch.no_grad(): model.to(device) nns = data.refresh_manifold_nn(model.get_embedding_matrix(), manifold, return_nns=True) if eval_data is not None: eval_data.refresh_manifold_nn(model.get_embedding_matrix(), manifold, manifold_nns=nns) if epoch > 1: syn_acc, sem_acc = embed_eval.eval_analogy(model, manifold, nns) write_tensorboard('add_scalar', ['syn_acc', syn_acc, epoch - 1]) write_tensorboard('add_scalar', ['sem_acc', sem_acc, epoch - 1]) # import gc; gc.collect() # torch.cuda.empty_cache() data_iterator = tqdm(data) if thread_number == 0 else data for batch in data_iterator: if batch_num % eval_every == 0 and thread_number == 0: mean_loss = 0 # float(np.mean(batch_losses)) use to eval every batch setting this to zero as its only used for printing output savable_model = model.get_savable_model() save_data = { 'epoch': epoch } if data.features is not None: save_data["features"] = data.features if model.get_additional_embeddings() is not None: save_data[ "additional_embeddings_state_dict"] = model.get_additional_embeddings().state_dict() if hasattr(model, "main_deltas"): save_data["main_deltas_state_dict"] = model.main_deltas.state_dict() if hasattr(model, "additional_deltas"): save_data[ "additional_deltas_state_dict"] = model.additional_deltas.state_dict() save_data["deltas"] = model.deltas save_data.update(shared_params) path = save_model(savable_model, save_data) elapsed = 0 # Used to eval every batch setting this to zero as its only used for printing output # embed_eval.eval_wordsim_benchmarks(model, manifold, device=device, iteration=batch_num) if eval_data is not None: with torch.no_grad(): hitsat10 = 0 rank_sum = 0 rec_rank_sum = 0 num_ranks = 0 if QUICK_EVAL_FREQUENCY > 0 and batch_num % ( eval_every * QUICK_EVAL_FREQUENCY) == 0: eval_data.data_fraction = 1 total_eval = True else: eval_data.data_fraction = QUICK_EVAL_PERCENT total_eval = False eval_data.compute_train_ranks = False for eval_batch in tqdm(eval_data): inputs, graph_dists = eval_batch inputs = inputs.to(device) graph_dists = graph_dists.to(device) input_embeddings = model(inputs) sample_vertices = input_embeddings.narrow(1, 1, input_embeddings.size(1) - 1) main_vertices = input_embeddings.narrow(1, 0, 1).expand_as( sample_vertices) manifold_dists = manifold.dist(main_vertices, sample_vertices) sorted_indices = manifold_dists.argsort(dim=-1) manifold_dists_sorted = torch.gather(manifold_dists, -1, sorted_indices) n_neighbors = (graph_dists < 2).sum(dim=-1) batch_nums, neighbor_ranks = ( sorted_indices < n_neighbors.unsqueeze(1)).nonzero( as_tuple=True) neighbor_ranks += 1 adjust_indices = torch.arange(n_neighbors.max()) neighbor_adjustements = torch.cat( [adjust_indices[:n_neighbors[i]] for i in range(n_neighbors.size(0))]) neighbor_ranks -= neighbor_adjustements.to(device) neighbor_ranks = neighbor_ranks.float() rec_ranks = 1 / neighbor_ranks hitsat10 += (neighbor_ranks <= 10).sum().cpu().numpy() rank_sum += neighbor_ranks.sum().cpu().numpy() rec_rank_sum += rec_ranks.sum().cpu().numpy() num_ranks += neighbor_ranks.size(0) mean_rank = rank_sum / num_ranks mean_rec_rank = rec_rank_sum / num_ranks hitsat10 = hitsat10 / num_ranks postfix = "_approx" if total_eval: postfix = "" write_tensorboard('add_scalar', [f'mean_rank{postfix}', mean_rank, batch_num]) write_tensorboard('add_scalar', [f'mean_rec_rank{postfix}', mean_rec_rank, batch_num]) write_tensorboard('add_scalar', [f'hitsat10{postfix}', hitsat10, batch_num]) if eval_data.is_eval: hitsat10 = 0 rank_sum = 0 rec_rank_sum = 0 num_ranks = 0 eval_data.data_fraction = QUICK_EVAL_TRAIN_PERCENT eval_data.compute_train_ranks = True for eval_batch in tqdm(eval_data): inputs, graph_dists = eval_batch inputs = inputs.to(device) graph_dists = graph_dists.to(device) input_embeddings = model(inputs) sample_vertices = input_embeddings.narrow(1, 1, input_embeddings.size( 1) - 1) main_vertices = input_embeddings.narrow(1, 0, 1).expand_as( sample_vertices) manifold_dists = manifold.dist(main_vertices, sample_vertices) sorted_indices = manifold_dists.argsort(dim=-1) manifold_dists_sorted = torch.gather(manifold_dists, -1, sorted_indices) n_neighbors = (graph_dists < 2).sum(dim=-1) batch_nums, neighbor_ranks = ( sorted_indices < n_neighbors.unsqueeze(1)).nonzero( as_tuple=True) neighbor_ranks += 1 adjust_indices = torch.arange(n_neighbors.max()) neighbor_adjustements = torch.cat( [adjust_indices[:n_neighbors[i]] for i in range(n_neighbors.size(0))]) neighbor_ranks -= neighbor_adjustements.to(device) neighbor_ranks = neighbor_ranks.float() rec_ranks = 1 / neighbor_ranks hitsat10 += (neighbor_ranks <= 10).sum().cpu().numpy() rank_sum += neighbor_ranks.sum().cpu().numpy() rec_rank_sum += rec_ranks.sum().cpu().numpy() num_ranks += neighbor_ranks.size(0) mean_rank = rank_sum / num_ranks mean_rec_rank = rec_rank_sum / num_ranks hitsat10 = hitsat10 / num_ranks write_tensorboard('add_scalar', [f'mean_rank_train', mean_rank, batch_num]) write_tensorboard('add_scalar', [f'mean_rec_rank_train', mean_rec_rank, batch_num]) write_tensorboard('add_scalar', [f'hitsat10_train', hitsat10, batch_num]) del manifold_dists, manifold_dists_sorted, sample_vertices, main_vertices, input_embeddings # import gc;gc.collect() # torch.cuda.empty_cache() print(model) reporter.report() conf_loss = None delta_loss = None inputs, graph_dists = batch inputs = inputs.to(device) graph_dists = graph_dists.to(device) optimizer.zero_grad() rand_val = random.random() optimizing_model = False if hasattr(model, "get_additional_embeddings"): if rand_val > .6: optimizing_model = False optimizing_deltas = False # model.deltas = True for p in model.parameters(): p.requires_grad = False for p in model.get_additional_embeddings().parameters(): p.requires_grad = True if model.deltas: for p in model.main_deltas.parameters(): p.requires_grad = False if hasattr(model, "additional_deltas"): for p in model.additional_deltas.parameters(): p.requires_grad = False # elif rand_val > 0.3: elif rand_val > 0: optimizing_model = True optimizing_deltas = False # model.deltas = True for p in model.parameters(): p.requires_grad = True for p in model.get_additional_embeddings().parameters(): p.requires_grad = False if model.deltas: for p in model.main_deltas.parameters(): p.requires_grad = False if hasattr(model, "additional_deltas"): for p in model.additional_deltas.parameters(): p.requires_grad = False else: optimizing_model = False optimizing_deltas = True model.deltas = True for p in model.parameters(): p.requires_grad = False for p in model.get_additional_embeddings().parameters(): p.requires_grad = False if model.deltas: for p in model.main_deltas.parameters(): p.requires_grad = True if hasattr(model, "additional_deltas"): for p in model.additional_deltas.parameters(): p.requires_grad = True loss = 0.01 * manifold_dist_loss_relu_sum(model, inputs, graph_dists, manifold, **loss_params) loss.backward() loss_grad_norm = optimizer.step() batch_losses.append(loss.cpu().detach().numpy()) del loss # import gc;gc.collect() # torch.cuda.empty_cache() if optimizing_model and hasattr(model, 'embedding_model') and conformal_loss_params is not None and epoch % \ conformal_loss_params["update_every"] == 0: optimizer.zero_grad() main_inputs = inputs.narrow(1, 0, 1).squeeze(1).clone().detach() perm = torch.randperm(main_inputs.size(0)) idx = perm[:conformal_loss_params["num_samples"]] main_inputs = main_inputs[idx] # model.deltas = False conf_loss = 0.5 * metric_loss(model, main_inputs, feature_manifold, manifold, dimension, isometric=conformal_loss_params["isometric"], random_samples=conformal_loss_params[ "random_samples"], random_init=conformal_loss_params["random_init"]) conf_loss.backward() conf_loss_grad_norm = optimizer.step() batch_conf_losses.append(conf_loss.cpu().detach().numpy()) if thread_number == 0: write_tensorboard('add_scalar', ['minibatch_conf_loss', float(batch_conf_losses[-1]), batch_num]) write_tensorboard('add_scalar', ['conf_loss_gradient_norm', conf_loss_grad_norm, batch_num]) del conf_loss # import gc;gc.collect() # torch.cuda.empty_cache() # model.deltas = True if hasattr(model, 'main_deltas') and optimizing_deltas: main_inputs = inputs.view(inputs.shape[0], -1) vals = model.main_deltas( model.index_map[main_inputs][model.index_map[main_inputs] >= 0]) mean_deltas = torch.mean(torch.norm(vals, dim=-1)) delta_loss = 0.03 * torch.sum(torch.norm(vals, dim=-1) ** 2) ''' total_loss = None if conformal_loss_params is not None and conf_loss is not None: total_loss = (1 - conformal_loss_params["weight"]) * loss + conformal_loss_params["weight"] * conf_loss if delta_loss is not None: # total_loss += delta_loss pass total_loss.backward() else: if conformal_loss_params is not None: scaled_loss = (1 - conformal_loss_params["weight"]) * loss else: scaled_loss = loss if delta_loss is not None: scaled_loss += delta_loss scaled_loss.backward() ''' if thread_number == 0: write_tensorboard('add_scalar', ['minibatch_loss', float(batch_losses[-1]), batch_num]) write_tensorboard('add_scalar', ['gradient_norm', loss_grad_norm, batch_num]) ''' if total_loss is not None: write_tensorboard('add_scalar', ['minibatch_total_loss', total_loss.cpu().detach().numpy(), batch_num]) ''' if delta_loss is not None: write_tensorboard('add_scalar', ['minibatch_delta_loss', delta_loss.cpu().detach().numpy(), batch_num]) write_tensorboard('add_scalar', ['minibatch_delta_mean', mean_deltas.cpu().detach().numpy(), batch_num]) for name, value in tensorboard_watch.items(): write_tensorboard('add_scalar', [name, value.cpu().detach().numpy(), batch_num]) elapsed = timeit.default_timer() - t_start batch_num += 1 mean_loss = float(np.mean(batch_losses)) if thread_number == 0: if conformal_loss_params is not None and len(batch_conf_losses) > 0: mean_conf_loss = float(np.mean(batch_conf_losses)) metric_loss_type = "isometric" if conformal_loss_params[ "isometric"] else "conformal" write_tensorboard('add_scalar', [f'batch_{metric_loss_type}_loss', mean_conf_loss, epoch]) write_tensorboard('add_scalar', ['batch_loss', mean_loss, epoch]) write_tensorboard('add_scalar', ['learning_rate', lr_scheduler.get_lr()[0], epoch]) lr_scheduler.step() ``` #### File: riemann/utils/spell.py ```python import logging # Spell is only imported in the Spell python environment. We use it to log metrics to Spell. import os from datetime import datetime from typing import Union, Optional, Any, Dict from torch.utils.tensorboard import SummaryWriter logger = logging.getLogger(__name__) try: from spell.metrics import send_metric as send_spell_metric # type: ignore logger.info("Logging metrics with spell") except ImportError: def send_spell_metric(name: str, value: Union[str, int, float], index: Optional[int] = None): pass class ProxyWriter(SummaryWriter): """ Proxies `torch.utils.tensorboard.SummaryWriter` to also send metrics to Spell. See `torch.utils.tensorboard.SummaryWriter` for documentation. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) #: The last time we sent a log to Spell for a tag. Used to prevent it from throttling us self._last_logged: Dict[str, datetime] = {} def add_scalar(self, tag: Any, scalar_value: Any, global_step: Optional[Any] = None, walltime: Optional[Any] = None) -> None: # Inherits documentation from SummaryWriter super().add_scalar(tag, scalar_value, global_step, walltime) # Prepend tags with log_dir to differentiate train and eval metrics log_dir = os.path.basename(self.get_logdir()) tag_ = f"{log_dir}/{tag}" # Only send logs to Spell every second to prevent throttling if (datetime.now() - self._last_logged.get(tag_, datetime.now())).seconds > 1: send_spell_metric(tag_, scalar_value, global_step) self._last_logged[tag_] = datetime.now() ``` #### File: riemann/utils/visualization.py ```python from typing import List import numpy as np from numpy import sin, cos from . import svg3d # region: common parametric surfaces from .svg3d import parametric_surface from .. import RiemannianManifold, EuclideanManifold, ProductManifold from ..config.manifold_config import ManifoldConfig def sphere(u, v): x = sin(u) * cos(v) y = cos(u) z = -sin(u) * sin(v) return x, y, z def torus(u, v): x = 3 * (1.5 + cos(v)) * cos(2 * u) y = 3 * (1.5 + cos(v)) * sin(2 * u) z = 3 * sin(v) return x, y, z def plane(u, v): x = 3 * 2 * u - np.pi y = 3 * v - np.pi z = 3 * 0 return x, y, z def cylinder(u, v, r=1): x = 3 * r * sin(2 * u) y = 3 * r * cos(2 * u) z = 2 * v - np.pi return x, y, z def manifold_scatter(manifold: RiemannianManifold, x: np.ndarray, colors: List[str] = None, labels: List[str] = None) -> svg3d.Drawing: """ Draw a scatter plot of points `x` on the manifold `manifold`. :param manifold: :param x: :param colors: :param labels: :return: """ assert len(x.shape) == 2 and (x.shape[1] == 2 or x.shape[1] == 3) n, d = x.shape def face_shader(index, winding): ret = dict( fill="white", fill_opacity="0.50", stroke="black", stroke_linejoin="round", stroke_width="0.001", ) if winding < 0: ret["stroke_dasharray"] = "0.01" return ret def point_shader(index, winding): return { "fill": colors[index] if index < len(colors) else "black", "fill_opacity": "0.95", "stroke": "black", "stroke_linejoin": "round", "stroke_width": "0.002", "radius": "0.005", } def point_annotator(index): if index >= len(labels): return None return { "text": str(labels[index]), "style": "font: 0.05px bold serif", } if isinstance(manifold, EuclideanManifold): if d == 2: points = np.hstack((x, np.zeros((n, 1)))).reshape((n, 1, 3)) surface = svg3d.Mesh(3.0 * parametric_surface(8, 8, plane), face_shader) points = svg3d.Mesh(3.0 * points, point_shader, annotator=point_annotator) scene = svg3d.Scene([svg3d.Group([surface, points])]) camera = svg3d.Camera.create(eye=(10, 0, 40)) else: pass elif isinstance(manifold, ProductManifold): spec = str(manifold) if spec == "S1xS1": points = np.array([ torus((u + 1) * np.pi / 2, (v + 1) * np.pi) for u, v in x]).reshape(n, 1, 3) surface = svg3d.Mesh(3.0 * parametric_surface(44, 44, torus), face_shader) points = svg3d.Mesh(3.0 * points, point_shader, annotator=point_annotator) scene = svg3d.Scene([svg3d.Group([surface, points])]) camera = svg3d.Camera.create(eye=(50, 120, 80)) elif spec == "S1xE1": assert abs(x[:, 0]).max() <= 1.0 # Normalize the euclidean dimension by its largest value. x[:, 1] /= x[:, 1].max() # Project them into cylindrical coordinates points = np.array([ cylinder((u + 1) * np.pi / 2, (v + 1) * np.pi) for u, v in x]).reshape(n, 1, 3) surface = svg3d.Mesh(3.0 * parametric_surface(24, 24, cylinder), face_shader) points = svg3d.Mesh(3.0 * points, point_shader, annotator=point_annotator) scene = svg3d.Scene([svg3d.Group([surface, points])]) camera = svg3d.Camera.create(eye=(50, 120, 80)) elif spec == "S1xE2": assert abs(x[:, 0]).max() <= 1.0 # Normalize the euclidean dimensions by its largest value. x[:, 1] /= x[:, 1].max() x[:, 2] /= x[:, 2].max() # Project them into cylindrical coordinates points = np.array([ cylinder((u + 1) * np.pi / 2, (v + 1) * np.pi, r) for u, v, r in x]).reshape(n, 1, 3) surface = svg3d.Mesh(3.0 * parametric_surface(24, 24, cylinder), face_shader) points = svg3d.Mesh(3.0 * points, point_shader, annotator=point_annotator) scene = svg3d.Scene([svg3d.Group([surface, points])]) camera = svg3d.Camera.create(eye=(50, 120, 80)) else: raise NotImplemented else: raise NotImplemented view_box = "-0.5 -0.5 1.0 1.0" return svg3d.Engine([ svg3d.View(camera, scene, svg3d.Viewport.from_string(view_box)) ]).render(size=(512, 512), view_box=view_box) def test_manifold_scatter(): # S1 x E1 x H1 # S1 -> (x, y): |(x, y)| == 1 -> theta # S2 -> (x, y, z): |(x, y, z)| == 1 --> theta, phi # E1 -> (x in -inf, inf) # H2 -> (x, y) |x, y| < 1? # H3 -> (x, y, z) |x, y, z| < 1? # SxH2 -> (sin(θ), cos(θ), x, y) |x, y| < 3? drawing = manifold_scatter(ManifoldConfig.from_string("S1xE1").get_manifold_instance(), np.hstack( (2 * np.random.rand(100, 1) - 1, np.random.rand(100, 1) * 3)), sum(([color] * 20 for color in "red blue green black yellow".split()), []), list(range(5))) drawing.saveas("S1xE1.svg") drawing = manifold_scatter(ManifoldConfig.from_string("S1xE2").get_manifold_instance(), np.hstack(( 2 * np.random.rand(100, 1) - 1, np.random.rand(100, 1) * 3, np.random.rand(100, 1) * 3)), sum(([color] * 20 for color in "red blue green black yellow".split()), []), list(range(5))) drawing.saveas("S1xE2.svg") drawing = manifold_scatter(ManifoldConfig.from_string("S1xE1").get_manifold_instance(), 2 * np.random.rand(100, 2) - 1, sum(([color] * 20 for color in "red blue green black yellow".split()), []), list(range(5))) drawing.saveas("S1xS1.svg") drawing = manifold_scatter(ManifoldConfig.from_string("E2").get_manifold_instance(), np.random.randn(100, 2), sum(([color] * 20 for color in "red blue green black yellow".split()), []), list(range(5))) drawing.saveas("E2.svg") ```
{ "source": "jdietz02/PlexTracktSync", "score": 2 }
#### File: plextraktsync/commands/sync.py ```python from typing import List import click from tqdm import tqdm from plextraktsync.commands.login import ensure_login from plextraktsync.decorators.measure_time import measure_time from plextraktsync.factory import factory from plextraktsync.logging import logger from plextraktsync.version import version def sync( sync_option: str, library: str, show: str, movie: str, ids: List[str], batch_size: int, dry_run: bool, no_progress_bar: bool, ): """ Perform sync between Plex and Trakt """ logger.info(f"PlexTraktSync [{version()}]") ensure_login() movies = sync_option in ["all", "movies"] shows = sync_option in ["all", "tv", "shows"] config = factory.run_config().update( batch_size=batch_size, dry_run=dry_run, progressbar=not no_progress_bar ) wc = factory.walk_config().update(movies=movies, shows=shows) w = factory.walker() if ids: for id in ids: wc.add_id(id) if library: wc.add_library(library) if show: wc.add_show(show) if movie: wc.add_movie(movie) if not wc.is_valid(): click.echo("Nothing to sync, this is likely due conflicting options given.") return w.print_plan(print=tqdm.write) if dry_run: print("Enabled dry-run mode: not making actual changes") with measure_time("Completed full sync"): runner = factory.sync() runner.sync(walker=w, dry_run=config.dry_run) ``` #### File: PlexTracktSync/plextraktsync/plex_server.py ```python from functools import partial import plexapi.server from plextraktsync.config import PLEX_PLATFORM from plextraktsync.decorators.nocache import nocache from plextraktsync.factory import factory from plextraktsync.logging import logger class PlexServerConnection: @staticmethod @nocache def connect(): return _get_plex_server() def get_plex_server(): return PlexServerConnection().connect() def _get_plex_server(): CONFIG = factory.config() plex_token = CONFIG["PLEX_TOKEN"] plex_baseurl = CONFIG["PLEX_BASEURL"] plex_localurl = CONFIG["PLEX_LOCALURL"] if plex_token == "-": plex_token = "" server = None plexapi.X_PLEX_PLATFORM = PLEX_PLATFORM plexapi.BASE_HEADERS["X-Plex-Platform"] = plexapi.X_PLEX_PLATFORM session = factory.session() PlexServer = partial(plexapi.server.PlexServer, session=session) # if connection fails, it will try : # 1. url expected by new ssl certificate # 2. url without ssl # 3. local url (localhost) try: server = PlexServer(token=plex_token, baseurl=plex_baseurl) except plexapi.server.requests.exceptions.SSLError as e: m = "Plex connection error: {}, local url {} didn't respond either.".format( str(e), plex_localurl ) excep_msg = str(e.__context__) if "doesn't match '*." in excep_msg: hash_pos = excep_msg.find("*.") + 2 new_hash = excep_msg[hash_pos:hash_pos + 32] end_pos = plex_baseurl.find(".plex.direct") new_plex_baseurl = ( plex_baseurl[: end_pos - 32] + new_hash + plex_baseurl[end_pos:] ) try: # 1 server = PlexServer(token=plex_token, baseurl=new_plex_baseurl) # save new url to .env CONFIG["PLEX_TOKEN"] = plex_token CONFIG["PLEX_BASEURL"] = new_plex_baseurl CONFIG["PLEX_LOCALURL"] = plex_localurl CONFIG.save() logger.info("Plex server url changed to {}".format(new_plex_baseurl)) except Exception: pass if server is None and plex_baseurl[:5] == "https": new_plex_baseurl = plex_baseurl.replace("https", "http") try: # 2 server = PlexServer(token=<PASSWORD>, baseurl=new_plex_baseurl) logger.warning( "Switched to Plex unsecure connection because of SSLError." ) except Exception: pass except Exception as e: m = "Plex connection error: {}, local url {} didn't respond either. Check PLEX_LOCALURL in .env file.".format( str(e), plex_localurl ) if server is None: try: # 3 server = PlexServer(token=<PASSWORD>, baseurl=plex_localurl) logger.warning( "No response from {}, connection using local url {}".format( plex_baseurl, plex_localurl ) ) except Exception: logger.error(m) print(m) exit(1) return server ``` #### File: PlexTracktSync/tests/test_config.py ```python from os import environ from os.path import join from plextraktsync.config import Config from plextraktsync.factory import factory from plextraktsync.sync import SyncConfig def test_config_merge(): config = factory.config() override = {"root": {"key1": "value1"}} config.merge(override, config) override = {"root": {"key2": "value2"}} config.merge(override, config) assert config["root"]["key1"] == "value1" assert config["root"]["key2"] == "value2" def test_config_merge_real(): config = Config() from tests.conftest import MOCK_DATA_DIR config.config_file = join(MOCK_DATA_DIR, "673-config.json") assert config["sync"]["plex_to_trakt"]["collection"] is False def test_sync_config(): config = Config() from tests.conftest import MOCK_DATA_DIR config.config_file = join(MOCK_DATA_DIR, "673-config.json") sync_config = SyncConfig(config) assert sync_config.plex_to_trakt["collection"] is False def test_config(): config = factory.config() config.save() config.initialized = False assert config["PLEX_TOKEN"] is None config.save() assert config["PLEX_TOKEN"] is None environ["PLEX_TOKEN"] = "Foo" config.initialized = False assert config["PLEX_TOKEN"] == "Foo" try: del environ["PLEX_TOKEN"] except KeyError: pass config.initialized = False assert config["PLEX_TOKEN"] is None environ["PLEX_TOKEN"] = "-" config.initialized = False assert config["PLEX_TOKEN"] is None environ["PLEX_TOKEN"] = "None" config.initialized = False assert config["PLEX_TOKEN"] is None ``` #### File: PlexTracktSync/tests/test_new_agent.py ```python from plextraktsync.plex_api import PlexLibraryItem from tests.conftest import factory, make trakt = factory.trakt_api() def test_tv_lookup(): m = PlexLibraryItem( make( cls="plexapi.video.Show", guid="plex://show/5d9c085ae98e47001eb0d74f", guids=[ make(id="imdb://tt2661044"), make(id="tmdb://48866"), make(id="tvdb://268592"), ], type="show", ) ) guid = m.guids[0] assert guid.provider == "tmdb" assert guid.id == "48866" assert m.type == "show" def test_tv_lookup_none(): m = PlexLibraryItem( make( cls="plexapi.video.Show", guid="tv.plex.agents.none://68178", guids=[], type="show", ) ) guid = m.guids[0] assert guid.provider == "none" assert guid.id == "68178" assert m.type == "show" ```
{ "source": "jdilger/african-elephants", "score": 2 }
#### File: jdilger/african-elephants/main.py ```python import ee from utils import * import sun_angles import view_angles class base(object): def __init__(self): self.TEST = True # self.date = 123 # self.studyArea = ee.FeatureCollection('somehwrere').geometry() # Vegetation self.ecoregions = ee.FeatureCollection('RESOLVE/ECOREGIONS/2017') # Fire self.modisFireAqua = ee.ImageCollection('MODIS/006/MYD14A2').select([0]) self.modisFireTerra = ee.ImageCollection('MODIS/006/MOD14A2').select([0]) self.startDate = "" #ee.Date('2019-01-01') # self.startDate = ee.Date('2019-04-01') self.endDate = "" #ee.Date('2019-06-01') self.studyArea = ""#ee.Geometry.Polygon([[[22.58124445939474, -18.13023785466269], # [22.58124445939474, -18.203308698548458], # [22.68012141251974, -18.203308698548458], # [22.68012141251974, -18.13023785466269]]]) self.metadataCloudCoverMax = 80 self.maskSR = True self.cloudMask = True self.brdfCorrect = False self.shadowMasking = False self.cloudScoreThresh = 20 # toa = false sr = true self.toaOrSR = True def exportMapToAsset(self, img, desc, region, assetbase, **kwargs): scale = kwargs.get('scale', 20) task_ordered = ee.batch.Export.image.toAsset(image=img, description=desc, assetId='%s/%s' % (assetbase,desc), region=region.getInfo()['coordinates'], maxPixels=1e13, # crs=self.epsg, scale=scale) task_ordered.start() def exportMapToCloud(self, img, desc, region,bucket,**kwargs): scale = kwargs.get('scale', 20) prefix = kwargs.get('prefix',None) if prefix: fileNamePrefix = "%s/%s" % (prefix,desc) else: fileNamePrefix = desc task_ordered = ee.batch.Export.image.toCloudStorage(image=img, description=desc, bucket=bucket, fileNamePrefix=fileNamePrefix, region=region.getInfo()['coordinates'], maxPixels=1e13, # crs=self.epsg, scale=scale) task_ordered.start() class Fire(base): def __init__(self): super(Fire, self).__init__() def reclassify(self, img): """ reclassifies MODIS Thermal Anomalies & Fire 8-Day Global 1km FireMask band. 1: Not processed (obsolete; not used since Collection 1) ->0 2: Not processed (other reason) -> 0 3: Non-fire water pixel -> 0 4: Cloud (land or water) -> 1 5: Non-fire land pixel -> 1 6: Unknown (land or water) -> 1 7: Fire (low confidence, land or water) -> 2 8: Fire (nominal confidence, land or water) -> 3 9: Fire (high confidence, land or water) -> 4 creates binary image of fire for pixels rated low to high confidence. creates bands for year,day, and month for later use Args: img: The FireMask band of an MODIS Thermal Anomalies image Returns: image - original image, binary mask, day, year, month, and unix time """ remapped = img.remap([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [0, 0, 0, 1, 1, 1, 1, 2, 3, 4]).rename(['confidence']) d = ee.Date(img.get('system:time_start')) y = ee.Image(d.get('year')).int16().rename(['year']) m = ee.Image(d.get('month')).int16().rename(['month']) unix = ee.Image(d.millis()).long().rename('unix') day = ee.Image(d.get('day')).int16().rename(['day']); binary = remapped.select('confidence').gte(2).rename('binary') out = remapped.addBands(y).addBands(m).addBands(day).addBands(binary).addBands(unix) out = out.updateMask(remapped.gte(2)); return out def burnOut(self, sd, step, unit): """takes in a startdate as ee.Date() -maybe change to string later step as an interger unit of time as string (e.g. 'day','month','year') """ cM = sd.get('month') cY = sd.get('year') currentFires = self.getFire(cY, cM) pD = sd.advance(step, unit) pM = pD.get('month') pY = pD.get('year') pastFires = self.getFire(pY, pM) mask = pastFires.select('binary') newFires = currentFires.where(mask.eq(1), 0).selfMask() allCurrentFires = currentFires.select('binary').rename('allFires') kernel = ee.Kernel.euclidean(100000, 'meters') distance = allCurrentFires.select('allFires').distance(kernel, False).rename('distance10k') return newFires.addBands(allCurrentFires).addBands(pastFires.select(['binary'], ['past'])).addBands(distance) def historyFire(self,startDate,endDate): modisFire = self.modisFireTerra.merge(self.modisFireAqua) modisFire = modisFire.filterDate(startDate,endDate) fire = modisFire.map(self.reclassify).select('unix').reduce(ee.Reducer.max()) lastDate = endDate.millis() lastDateImg = ee.Image(lastDate).long().subtract(fire).divide(604800000).int16() return lastDateImg.set('system:time_start',endDate,'system:time_end',startDate).rename('historyFire') def getFire(self, targetYear, targetMonth): # Bring in MYD14/MOD14 modisFire = self.modisFireTerra.merge(self.modisFireAqua) singleMonth = modisFire.filter(ee.Filter.calendarRange(targetYear, targetYear, 'year')).filter( ee.Filter.calendarRange(targetMonth, targetMonth, 'month')) assert singleMonth.size().getInfo(), "No fires found. Try expanding date range." # Recode it, and find the year, month, and day- then add it to the map singleMonth = singleMonth.map(self.reclassify); sum_denisty = singleMonth.select('binary').sum().rename('denisty') return singleMonth.mosaic().addBands(sum_denisty) class Vegetation(base): def __init__(self): super(Vegetation, self).__init__() def monthlyNDVI(self, m, y, ic, geometry, dur): """ Monthly NDVI(NDVIi, m, y) for each Monitoring Unit (MU) i in month m and year y is obtained by averaging the 3 dekadal values in each month full text: https://www.frontiersin.org/articles/10.3389/fenvs.2019.00187/full Args: m: month as integer y: year as integer ic: NDVI image collection Returns: image - Four band image with 2 month NDVI mean, anomaly, standard anomaly, and Vegetative Control Index """ ic = ic.filter(ee.Filter.calendarRange(m, m, 'month')) month_i_ic = ic.filter(ee.Filter.calendarRange(y, y, 'year')) print('Veg ic month m size',month_i_ic.size().getInfo()) month_i_mean = month_i_ic.mean().rename('NDVI_mean') month_i_mean_std = month_i_mean.reduceRegion( **{'reducer': ee.Reducer.stdDev(), 'geometry': geometry, 'scale': 30, 'bestEffort': True, 'maxPixels': 1e13}).get('NDVI_mean') baseline_ic = ic.filter(ee.Filter.calendarRange(y-dur[0], y, dur[1])) baseline_mean = baseline_ic.mean() aandvi = month_i_mean.subtract(baseline_mean).float().rename('AANDVI') sandvi = aandvi.divide(ee.Image.constant(month_i_mean_std).float()).rename('SANDVI') vci_min = baseline_mean.reduceRegion( **{'reducer': ee.Reducer.min(), 'geometry': geometry, 'scale': 30, 'bestEffort': True, 'maxPixels': 1e13}) vci_max = baseline_mean.reduceRegion( **{'reducer': ee.Reducer.max(), 'geometry': geometry, 'scale': 30, 'bestEffort': True, 'maxPixels': 1e13}) vci_min = ee.Image.constant(vci_min.get('nd')).float() vci_max = ee.Image.constant(vci_max.get('nd')).float() vci = month_i_mean.subtract(vci_min).divide(vci_max.subtract(vci_min)).rename('VCI') return ee.Image.cat([month_i_mean, aandvi, sandvi, vci]) def byRegion(self, m, y, ic, region, dur): eco = self.ecoregions.filterBounds(region) biomes = ee.List(eco.aggregate_array('BIOME_NUM')).distinct() def monthByRegion(b): a = eco.filter(ee.Filter.eq('BIOME_NUM', ee.Number(b))) c = ee.Feature(region).difference(ee.Feature(a.union(1).first())) return self.monthlyNDVI(m, y, ic, c.geometry(), dur) ndviByBiome = biomes.map(monthByRegion) # mosaic together out = ee.ImageCollection(ndviByBiome).mosaic() return out class Water(base): def __init__(self): super(Water, self).__init__() def wlc(self, collection, studyArea, **kwargs): """ creates a the image used for the weighted linear combination (or weighted sum) of water stress indicators. Adds bands for NOAA/GFS0P25, NOAA/CFSV2/FOR6H, NASA_USDA/HSL/SMAP_soil_moisture, and JAXA/GPM_L3/GSMaP/v6/operational. Args: collection: A Sentinel-2 collection studyArea: A ee geometry startDate : Optional* defines start date for additional image collections. defaults to self endDate : Optional* defines end date for additional image collections. defaults to self Returns: image - Multiband image for wlcexpression """ valid_kwagrs = ['startDate', 'endDate'] if len(kwargs.keys()) > 0 and len([i for i in valid_kwagrs if i in kwargs]) != len(kwargs.keys()): return print('Only valid arguments are startDate and endDate check that all key word are correct:{}'.format( kwargs.keys())) sd = kwargs.get('startDate', self.startDate) ed = kwargs.get('endDate', self.endDate) def forecastscleaning(img): chour = ee.Date(img.get('creation_time')).get('hour') fhour = ee.Date(img.get('forecast_time')).get('hour') fday = ee.Date(img.get('forecast_time')).get('day') cday = ee.Date(img.get('creation_time')).get('day') eq = cday.eq(fday) return img.set('fhour', fhour, 'chour', chour, 'fday', fday, 'cday', cday, 'test', eq) gfs = ee.ImageCollection("NOAA/GFS0P25").select(['temperature_2m_above_ground']).filterDate(sd, ed) \ .filter(ee.Filter.calendarRange(12, 12, 'hour')).map(forecastscleaning) \ .filter(ee.Filter.eq('fhour', 12)) \ .filter(ee.Filter.eq('chour', 12)) \ .filter(ee.Filter.eq('test', 1)).median() cfs = ee.ImageCollection('NOAA/CFSV2/FOR6H').select(['Precipitation_rate_surface_6_Hour_Average'], ['precip']).filterDate(sd, ed).filterBounds( studyArea).sum() smap = ee.ImageCollection("NASA_USDA/HSL/SMAP_soil_moisture").select('ssm').filterDate(sd, ed).sum() gsmap = ee.ImageCollection("JAXA/GPM_L3/GSMaP/v6/operational").filter(ee.Filter.eq('status','permanent')).select('hourlyPrecipRateGC') chirps = gsmap.filterBounds(studyArea).filterDate(ee.Date(sd), ee.Date(ed)).sum().rename('percip') chirps_spi = self.spi(gsmap,sd,ed).rename('chirps_spi') img = collection.map(self.waterindicies).median() img = ee.Image.cat([img, gfs, chirps, cfs, smap, chirps_spi]).set('system:time_start', sd, 'sd', sd, 'ed', ed) return img def wlcexpression(self, img, region): """ The weighted linear combination expression computes the final output of water stress Args: img: image output from wlc region: A ee geometry Returns: image - single band image water stress""" img = img.select(['tcw', 'chirps_spi', 'ssm', 'mndwi', 'nwi', 'ndmi', 'temperature_2m_above_ground', 'ndwi']) img = self.normalizeBands(img, region) exout = img.expression("(b1*f1) +(b2 * f2) + (b3 *f3) + (b4 * f4)+ (b5 * f5)+ (b6 * f6)+ (b7 * f7)+ (b8 * f8)", {'b1': img.select(0), 'b2': img.select(1), 'b3': img.select(2), 'b4': img.select(3), 'b5': img.select(4), 'b6': img.select(5), 'b7': ee.Image(1).subtract(img.select(6)), # temp inverse relation with water avalibility 'b8': img.select(7), 'f1': 7, 'f2': 6, 'f3': 3, 'f4': 4, 'f5': 5, 'f6': 5, 'f7': 4, 'f8': 7}) return exout def waterindicies(self, image): ndwi = image.normalizedDifference(['green', 'nir']).rename('ndwi') ndmi = image.normalizedDifference(['nir', 'swir1']).rename('ndmi') mndwi = image.normalizedDifference(['green', 'swir1']).rename('mndwi') nwi = image.expression('((b-(n+s+w))/(b+(n+s+w))*100)', { 'b': image.select('blue'), 'n': image.select('nir'), 's': image.select('swir1'), 'w': image.select('swir2')}).rename('nwi') # add tesselcap wetness tcw = image.expression('0.1511*B1 + 0.1973*B2 + 0.3283*B3 + 0.3407*B4 + -0.7117*B5 + -0.4559*B7', { 'B1': image.select('blue'), 'B2': image.select('green'), 'B3': image.select('red'), 'B4': image.select('nir'), 'B5': image.select('swir1'), 'B7': image.select('swir2'), }).rename('tcw') # var factors = ee.ImageCollection.fromImages([waterlss2.select('mndwi'),chirps_spi,smap,mndwi,nwi,ndmi,gfs,ndwi]).map(function(f){ return n(f,aoi)}) imglist = [ndwi, ndmi, mndwi, nwi, tcw] return ee.Image.cat(imglist) def spi(self, col, sd, ed): nsd = sd.advance(-6, 'month') spi6 = col.filterDate(nsd, sd) mean = spi6.mean() std = spi6.reduce(ee.Reducer.stdDev()) img = col.filterDate(sd, ed).median() img = img.subtract(mean).divide(std).set('system:time_start', sd) return ee.Image(img) def normalizeBands(self, img,region): def mm(plist): plist = ee.List(plist) # // get bandname fbn = ee.String(plist.get(0)).slice(0, -4) imgMin = ee.Image.constant(mmvalues.get(plist.get(0))) imgMax = ee.Image.constant(mmvalues.get(plist.get(1))) normImg = img.select(fbn).subtract(imgMin).divide(imgMax.subtract(imgMin)); return normImg.toFloat() def rename(i): imin = ee.String(i).cat(preMin) imax = ee.String(i).cat(preMax) return ee.List([imin, imax]) mmvalues = img.reduceRegion(reducer=ee.Reducer.minMax(), scale=300, maxPixels=1e13, bestEffort=True, \ geometry=region, tileScale=6) bnog = img.bandNames() preMax = '_max' preMin = '_min' bn = bnog.map(rename) return ee.ImageCollection(bn.map(mm)).toBands().rename(bnog) class landsat(base): def __init__(self): super(landsat, self).__init__() self.divideBands = ee.List(['blue', 'green', 'red', 'nir', 'swir1', 'swir2']) self.bandNamesLandsat = ee.List( ['blue', 'green', 'red', 'nir', 'swir1', 'thermal', 'swir2', 'sr_atmos_opacity', 'pixel_qa']) self.sensorBandDictLandsatSR = ee.Dictionary({'L8': ee.List([1, 2, 3, 4, 5, 7, 6, 9, 10]), \ 'L7': ee.List([0, 1, 2, 3, 4, 5, 6, 7, 9]), \ 'L5': ee.List([0, 1, 2, 3, 4, 5, 6, 7, 9]), \ 'L4': ee.List([0, 1, 2, 3, 4, 5, 6, 7, 9])}) def loadls(self, startDate, endDate, studyArea): landsat8 = ee.ImageCollection('LANDSAT/LC08/C01/T1_SR').filterDate(startDate, endDate).filterBounds(studyArea) landsat8 = landsat8.filterMetadata('CLOUD_COVER', 'less_than', self.metadataCloudCoverMax) landsat8 = landsat8.select(self.sensorBandDictLandsatSR.get('L8'), self.bandNamesLandsat) landsat5 = ee.ImageCollection('LANDSAT/LT05/C01/T1_SR').filterDate(startDate, endDate).filterBounds(studyArea) landsat5 = landsat5.filterMetadata('CLOUD_COVER', 'less_than', self.metadataCloudCoverMax) landsat5 = landsat5.select(self.sensorBandDictLandsatSR.get('L5'), self.bandNamesLandsat).map( self.defringe) landsat7 = ee.ImageCollection('LANDSAT/LE07/C01/T1_SR').filterDate(startDate, endDate).filterBounds(studyArea) landsat7 = landsat7.filterMetadata('CLOUD_COVER', 'less_than', self.metadataCloudCoverMax) landsat7 = landsat7.select(self.sensorBandDictLandsatSR.get('L7'), self.bandNamesLandsat) return landsat5.merge(landsat7).merge(landsat8) def preprocess(self, **kwargs): valid_kwagrs = ['startDate', 'endDate','studyArea'] if len(kwargs.keys()) > 0 and len([i for i in valid_kwagrs if i in kwargs]) != len(kwargs.keys()): return print('Only valid arguments are startDate, studyArea, and endDate check that all key word are correct:{}'.format( kwargs.keys())) startDate = kwargs.get('startDate', self.startDate) endDate = kwargs.get('endDate', self.endDate) studyArea = kwargs.get('studyArea',self.studyArea) landsat = self.loadls(startDate=startDate, endDate=endDate, studyArea=studyArea) if landsat.size().getInfo() > 0: if self.maskSR == True: print("removing clouds") landsat = landsat.map(self.CloudMaskSRL8) landsat = landsat.map(self.scaleLandsat) if self.cloudMask == True: print("removing some more clouds") landsat = landsat.map(self.maskClouds) if self.brdfCorrect == True: landsat = landsat.map(self.brdf) return landsat def defringe(self, img): # threshold for defringing landsat5 and 7 fringeCountThreshold = 279 k = ee.Kernel.fixed(41, 41, [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]) m = ee.Image(img).mask().reduce(ee.Reducer.min()) sum = m.reduceNeighborhood(ee.Reducer.sum(), k, 'kernel') mask = sum.gte(fringeCountThreshold) return img.updateMask(mask) def CloudMaskSRL8(self, img): """apply cf-mask Landsat""" QA = img.select("pixel_qa") shadow = QA.bitwiseAnd(8).neq(0) cloud = QA.bitwiseAnd(32).neq(0) return img.updateMask(shadow.Not()).updateMask(cloud.Not()).copyProperties(img) def maskClouds(self, img): """ Computes spectral indices of cloudyness and take the minimum of them. Each spectral index is fairly lenient because the group minimum is a somewhat stringent comparison policy. side note -> this seems like a job for machine learning :) originally written by <NAME> for Landsat imageryadapted to Sentinel by <NAME> and <NAME> """ score = ee.Image(1.0); # Clouds are reasonably bright in the blue band. blue_rescale = img.select('blue').subtract(ee.Number(0.1)).divide(ee.Number(0.3).subtract(ee.Number(0.1))) score = score.min(blue_rescale); # Clouds are reasonably bright in all visible bands. visible = img.select('red').add(img.select('green')).add(img.select('blue')) visible_rescale = visible.subtract(ee.Number(0.2)).divide(ee.Number(0.8).subtract(ee.Number(0.2))) score = score.min(visible_rescale); # Clouds are reasonably bright in all infrared bands. infrared = img.select('nir').add(img.select('swir1')).add(img.select('swir2')) infrared_rescale = infrared.subtract(ee.Number(0.3)).divide(ee.Number(0.8).subtract(ee.Number(0.3))) score = score.min(infrared_rescale); # Clouds are reasonably cool in temperature. temp_rescale = img.select('thermal').subtract(ee.Number(300)).divide(ee.Number(290).subtract(ee.Number(300))) score = score.min(temp_rescale); # However, clouds are not snow. ndsi = img.normalizedDifference(['green', 'swir1']); ndsi_rescale = ndsi.subtract(ee.Number(0.8)).divide(ee.Number(0.6).subtract(ee.Number(0.8))) score = score.min(ndsi_rescale).multiply(100).byte().rename('cloudScore'); mask = score.lt(self.cloudScoreThresh).rename(['cloudMask']); img = img.updateMask(mask).addBands([mask]).addBands(score); return img; def brdf(self, img): # import sun_angles # import view_angles def _apply(image, kvol, kvol0): blue = _correct_band(image, 'blue', kvol, kvol0, f_iso=0.0774, f_geo=0.0079, f_vol=0.0372) green = _correct_band(image, 'green', kvol, kvol0, f_iso=0.1306, f_geo=0.0178, f_vol=0.0580) red = _correct_band(image, 'red', kvol, kvol0, f_iso=0.1690, f_geo=0.0227, f_vol=0.0574) nir = _correct_band(image, 'nir', kvol, kvol0, f_iso=0.3093, f_geo=0.0330, f_vol=0.1535) swir1 = _correct_band(image, 'swir1', kvol, kvol0, f_iso=0.3430, f_geo=0.0453, f_vol=0.1154) swir2 = _correct_band(image, 'swir2', kvol, kvol0, f_iso=0.2658, f_geo=0.0387, f_vol=0.0639) return replace_bands(image, [blue, green, red, nir, swir1, swir2]) def _correct_band(image, band_name, kvol, kvol0, f_iso, f_geo, f_vol): """fiso + fvol * kvol + fgeo * kgeo""" iso = ee.Image(f_iso) geo = ee.Image(f_geo) vol = ee.Image(f_vol) pred = vol.multiply(kvol).add(geo.multiply(kvol)).add(iso).rename(['pred']) pred0 = vol.multiply(kvol0).add(geo.multiply(kvol0)).add(iso).rename(['pred0']) cfac = pred0.divide(pred).rename(['cfac']) corr = image.select(band_name).multiply(cfac).rename([band_name]) return corr def _kvol(sunAz, sunZen, viewAz, viewZen): """Calculate kvol kernel. From Lucht et al. 2000 Phase angle = cos(solar zenith) cos(view zenith) + sin(solar zenith) sin(view zenith) cos(relative azimuth)""" relative_azimuth = sunAz.subtract(viewAz).rename(['relAz']) pa1 = viewZen.cos() \ .multiply(sunZen.cos()) pa2 = viewZen.sin() \ .multiply(sunZen.sin()) \ .multiply(relative_azimuth.cos()) phase_angle1 = pa1.add(pa2) phase_angle = phase_angle1.acos() p1 = ee.Image(PI().divide(2)).subtract(phase_angle) p2 = p1.multiply(phase_angle1) p3 = p2.add(phase_angle.sin()) p4 = sunZen.cos().add(viewZen.cos()) p5 = ee.Image(PI().divide(4)) kvol = p3.divide(p4).subtract(p5).rename(['kvol']) viewZen0 = ee.Image(0) pa10 = viewZen0.cos() \ .multiply(sunZen.cos()) pa20 = viewZen0.sin() \ .multiply(sunZen.sin()) \ .multiply(relative_azimuth.cos()) phase_angle10 = pa10.add(pa20) phase_angle0 = phase_angle10.acos() p10 = ee.Image(PI().divide(2)).subtract(phase_angle0) p20 = p10.multiply(phase_angle10) p30 = p20.add(phase_angle0.sin()) p40 = sunZen.cos().add(viewZen0.cos()) p50 = ee.Image(PI().divide(4)) kvol0 = p30.divide(p40).subtract(p50).rename(['kvol0']) return (kvol, kvol0) date = img.date() footprint = determine_footprint(img) print(footprint.getInfo()), 'footprint' (sunAz, sunZen) = sun_angles.create(date, footprint) (viewAz, viewZen) = view_angles.create(footprint) (kvol, kvol0) = _kvol(sunAz, sunZen, viewAz, viewZen) return _apply(img, kvol.multiply(PI()), kvol0.multiply(PI())) def scaleLandsat(self, img): """Landast is scaled by factor 0.0001 """ thermal = img.select(ee.List(['thermal'])).multiply(0.1) scaled = ee.Image(img).select(self.divideBands).multiply(ee.Number(0.0001)) return img.select(['pixel_qa']).addBands(scaled).addBands(thermal) class sentinel2(base): def __init__(self): super(sentinel2, self).__init__() self.s2BandsIn = ee.List( ['QA60', 'B1', 'B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8', 'B8A', 'B9', 'B10', 'B11', 'B12']) self.s2BandsOut = ee.List( ['QA60', 'cb', 'blue', 'green', 'red', 're1', 're2', 're3', 'nir', 're4', 'waterVapor', 'cirrus', 'swir1', 'swir2']) self.divideBands = ee.List( ['blue', 'green', 'red', 're1', 're2', 're3', 'nir', 're4', 'cb', 'cirrus', 'swir1', 'swir2', 'waterVapor']) # contractPixels: The radius of the number of pixels to contract (negative buffer) clouds and cloud shadows by. Intended to eliminate smaller cloud # patches that are likely errors (1.5 results in a -1 pixel buffer)(0.5 results in a -0 pixel buffer) # (1.5 or 2.5 generally is sufficient) self.contractPixels = 1.5 # dilatePixels: The radius of the number of pixels to dilate (buffer) clouds # and cloud shadows by. Intended to include edges of clouds/cloud shadows # that are often missed (1.5 results in a 1 pixel buffer)(0.5 results in a 0 pixel buffer) # (2.5 or 3.5 generally is sufficient) self.dilatePixels = 1.5 self.zScoreThresh = -0.8 self.shadowSumThresh = 30 def loads2(self, start, end, studyArea): collection = 'COPERNICUS/S2' if self.toaOrSR: collection = 'COPERNICUS/S2_SR' s2s = ee.ImageCollection(collection).filterDate(start, end) \ .filterBounds(studyArea) \ .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', self.metadataCloudCoverMax)) \ # .filter(ee.Filter.lt('CLOUD_COVERAGE_ASSESSMENT', self.metadataCloudCoverMax)) \ return s2s def preprocess(self, **kwargs): valid_kwagrs = ['startDate', 'endDate', 'studyArea'] if len(kwargs.keys()) > 0 and len([i for i in valid_kwagrs if i in kwargs]) != len(kwargs.keys()): return print('Only valid arguments are studyArea, startDate and endDate check that all key word are correct:{}'.format( kwargs.keys())) startDate = kwargs.get('startDate', self.startDate) endDate = kwargs.get('endDate', self.endDate) studyArea = kwargs.get('studyArea', self.studyArea) s2 = self.loads2(startDate, endDate, studyArea) if self.toaOrSR: self.s2BandsIn = self.s2BandsIn.remove('B10') self.s2BandsOut = self.s2BandsOut.remove('cirrus') self.divideBands = self.s2BandsOut.remove('cirrus') self.cloudMask = False if s2.size().getInfo() > 0: s2 = s2.map(self.scaleS2) if self.shadowMasking == True: s2 = self.maskShadows(s2, studyArea) s2 = s2.select(self.s2BandsIn, self.s2BandsOut) if self.maskSR == True: print("use QA band for cloud Masking") s2 = s2.map(self.QAMaskCloud) if self.cloudMask == True: print("sentinel cloud score...") s2 = s2.map(self.sentinelCloudScore) s2 = self.cloudMasking(s2) if self.brdfCorrect == True: print("apply brdf correction..") s2 = s2.map(self.brdf) return s2 def scaleS2(self, img): divideBands = ['B1', 'B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8', 'B8A', 'B9', 'B11', 'B12'] bandNames = img.bandNames() otherBands = bandNames.removeAll(divideBands) others = img.select(otherBands) out = img.select(divideBands).divide(10000) return out.addBands(others).copyProperties(img, ['system:time_start', 'system:footprint', 'MEAN_SOLAR_ZENITH_ANGLE', 'MEAN_SOLAR_AZIMUTH_ANGLE']).set("centroid", img.geometry().centroid()) def maskShadows(self, collection, studyArea): def TDOM(image): zScore = image.select(shadowSumBands).subtract(irMean).divide(irStdDev) irSum = image.select(shadowSumBands).reduce(ee.Reducer.sum()) TDOMMask = zScore.lt(self.zScoreThresh).reduce(ee.Reducer.sum()).eq(2) \ .And(irSum.lt(self.shadowSumThresh)).Not() TDOMMask = TDOMMask.focal_min(self.dilatePixels) return image.addBands(TDOMMask.rename(['TDOMMask'])) def mask(image): outimg = image.updateMask(image.select(['TDOMMask'])) return outimg shadowSumBands = ['B8', 'B11'] allCollection = ee.ImageCollection('COPERNICUS/S2').filterBounds(studyArea).filter( ee.Filter.lt("CLOUDY_PIXEL_PERCENTAGE", 30)) # Get some pixel-wise stats for the time series irStdDev = allCollection.select(shadowSumBands).reduce(ee.Reducer.stdDev()) irMean = allCollection.select(shadowSumBands).reduce(ee.Reducer.mean()) # Mask out dark dark outliers collection_tdom = collection.map(TDOM) return collection_tdom.map(mask) def sentinelCloudScore(self, img): """ Computes spectral indices of cloudyness and take the minimum of them. Each spectral index is fairly lenient because the group minimum is a somewhat stringent comparison policy. side note -> this seems like a job for machine learning :) originally written by <NAME> for Landsat imagery adapted to Sentinel by <NAME> and <NAME> """ def rescale(img, thresholds): """ Linear stretch of image between two threshold values. """ return img.subtract(thresholds[0]).divide(thresholds[1] - thresholds[0]) # cloud until proven otherwise score = ee.Image(1) blueCirrusScore = ee.Image(0) # clouds are reasonably bright blueCirrusScore = blueCirrusScore.max(rescale(img.select(['blue']), [0.1, 0.5])) blueCirrusScore = blueCirrusScore.max(rescale(img.select(['cb']), [0.1, 0.5])) blueCirrusScore = blueCirrusScore.max(rescale(img.select(['cirrus']), [0.1, 0.3])) score = score.min(blueCirrusScore) score = score.min(rescale(img.select(['red']).add(img.select(['green'])).add(img.select('blue')), [0.2, 0.8])) score = score.min(rescale(img.select(['nir']).add(img.select(['swir1'])).add(img.select('swir2')), [0.3, 0.8])) # clouds are moist ndsi = img.normalizedDifference(['green', 'swir1']) score = score.min(rescale(ndsi, [0.8, 0.6])) score = score.multiply(100).byte(); score = score.clamp(0, 100); return img.addBands(score.rename(['cloudScore'])) def QAMaskCloud(self, img): bandNames = img.bandNames() otherBands = bandNames.removeAll(self.divideBands) others = img.select(otherBands) qa = img.select('QA60').int16(); img = img.select(self.divideBands) # Bits 10 and 11 are clouds and cirrus, respectively. cloudBitMask = int(math.pow(2, 10)); cirrusBitMask = int(math.pow(2, 11)); # Both flags should be set to zero, indicating clear conditions. mask = qa.bitwiseAnd(cloudBitMask).eq(0).And(qa.bitwiseAnd(cirrusBitMask).eq(0)); img = img.updateMask(mask).addBands(others) # Return the masked and scaled data. return img def cloudMasking(self, collection): def maskClouds(img): cloudMask = img.select(['cloudScore']).lt(self.cloudScoreThresh) \ .focal_min(self.dilatePixels) \ .focal_max(self.contractPixels) \ .rename(['cloudMask']) bandNames = img.bandNames() otherBands = bandNames.removeAll(self.divideBands) others = img.select(otherBands) img = img.select(self.divideBands).updateMask(cloudMask) return img.addBands(cloudMask).addBands(others); # Find low cloud score pctl for each pixel to avoid comission errors # minCloudScore = collection.select(['cloudScore']).reduce(ee.Reducer.percentile([self.cloudScorePctl])); collection = collection.map(maskClouds) return collection def brdf(self, img): def _apply(image, kvol, kvol0): blue = _correct_band(image, 'blue', kvol, kvol0, f_iso=0.0774, f_geo=0.0079, f_vol=0.0372) green = _correct_band(image, 'green', kvol, kvol0, f_iso=0.1306, f_geo=0.0178, f_vol=0.0580) red = _correct_band(image, 'red', kvol, kvol0, f_iso=0.1690, f_geo=0.0227, f_vol=0.0574) re1 = _correct_band(image, 're1', kvol, kvol0, f_iso=0.2085, f_geo=0.0256, f_vol=0.0845) re2 = _correct_band(image, 're2', kvol, kvol0, f_iso=0.2316, f_geo=0.0273, f_vol=0.1003) re3 = _correct_band(image, 're3', kvol, kvol0, f_iso=0.2599, f_geo=0.0294, f_vol=0.1197) nir = _correct_band(image, 'nir', kvol, kvol0, f_iso=0.3093, f_geo=0.0330, f_vol=0.1535) re4 = _correct_band(image, 're4', kvol, kvol0, f_iso=0.2907, f_geo=0.0410, f_vol=0.1611) swir1 = _correct_band(image, 'swir1', kvol, kvol0, f_iso=0.3430, f_geo=0.0453, f_vol=0.1154) swir2 = _correct_band(image, 'swir2', kvol, kvol0, f_iso=0.2658, f_geo=0.0387, f_vol=0.0639) return replace_bands(image, [blue, green, red, re1, re2, re3, nir, re4, swir1, swir2]) def _correct_band(image, band_name, kvol, kvol0, f_iso, f_geo, f_vol): """fiso + fvol * kvol + fgeo * kgeo""" iso = ee.Image(f_iso) geo = ee.Image(f_geo) vol = ee.Image(f_vol) pred = vol.multiply(kvol).add(geo.multiply(kvol)).add(iso).rename(['pred']) pred0 = vol.multiply(kvol0).add(geo.multiply(kvol0)).add(iso).rename(['pred0']) cfac = pred0.divide(pred).rename(['cfac']) corr = image.select(band_name).multiply(cfac).rename([band_name]) return corr def _kvol(sunAz, sunZen, viewAz, viewZen): """Calculate kvol kernel. From Lucht et al. 2000 Phase angle = cos(solar zenith) cos(view zenith) + sin(solar zenith) sin(view zenith) cos(relative azimuth)""" relative_azimuth = sunAz.subtract(viewAz).rename(['relAz']) pa1 = viewZen.cos() \ .multiply(sunZen.cos()) pa2 = viewZen.sin() \ .multiply(sunZen.sin()) \ .multiply(relative_azimuth.cos()) phase_angle1 = pa1.add(pa2) phase_angle = phase_angle1.acos() p1 = ee.Image(PI().divide(2)).subtract(phase_angle) p2 = p1.multiply(phase_angle1) p3 = p2.add(phase_angle.sin()) p4 = sunZen.cos().add(viewZen.cos()) p5 = ee.Image(PI().divide(4)) kvol = p3.divide(p4).subtract(p5).rename(['kvol']) viewZen0 = ee.Image(0) pa10 = viewZen0.cos() \ .multiply(sunZen.cos()) pa20 = viewZen0.sin() \ .multiply(sunZen.sin()) \ .multiply(relative_azimuth.cos()) phase_angle10 = pa10.add(pa20) phase_angle0 = phase_angle10.acos() p10 = ee.Image(PI().divide(2)).subtract(phase_angle0) p20 = p10.multiply(phase_angle10) p30 = p20.add(phase_angle0.sin()) p40 = sunZen.cos().add(viewZen0.cos()) p50 = ee.Image(PI().divide(4)) kvol0 = p30.divide(p40).subtract(p50).rename(['kvol0']) return (kvol, kvol0) date = img.date() footprint = ee.List(img.geometry().bounds().bounds().coordinates().get(0)); (sunAz, sunZen) = sun_angles.create(date, footprint) (viewAz, viewZen) = view_angles.create(footprint) (kvol, kvol0) = _kvol(sunAz, sunZen, viewAz, viewZen) bandNames = img.bandNames() otherBands = bandNames.removeAll(self.divideBands) others = img.select(otherBands) img = ee.Image(_apply(img, kvol.multiply(PI()), kvol0.multiply(PI()))) return img def sentinelCloudScore(self, img): """ Computes spectral indices of cloudyness and take the minimum of them. Each spectral index is fairly lenient because the group minimum is a somewhat stringent comparison policy. side note -> this seems like a job for machine learning :) originally written by <NAME> for Landsat imagery adapted to Sentinel by <NAME> and <NAME> """ def rescale(img, thresholds): """ Linear stretch of image between two threshold values. """ return img.subtract(thresholds[0]).divide(thresholds[1] - thresholds[0]) # cloud until proven otherwise score = ee.Image(1) blueCirrusScore = ee.Image(0) # clouds are reasonably bright blueCirrusScore = blueCirrusScore.max(rescale(img.select(['blue']), [0.1, 0.5])) blueCirrusScore = blueCirrusScore.max(rescale(img.select(['cb']), [0.1, 0.5])) blueCirrusScore = blueCirrusScore.max(rescale(img.select(['cirrus']), [0.1, 0.3])) score = score.min(blueCirrusScore) score = score.min(rescale(img.select(['red']).add(img.select(['green'])).add(img.select('blue')), [0.2, 0.8])) score = score.min(rescale(img.select(['nir']).add(img.select(['swir1'])).add(img.select('swir2')), [0.3, 0.8])) # clouds are moist ndsi = img.normalizedDifference(['green', 'swir1']) score = score.min(rescale(ndsi, [0.8, 0.6])) score = score.multiply(100).byte(); score = score.clamp(0, 100); return img.addBands(score.rename(['cloudScore'])) if __name__ == "__main__": ee.Initialize() # tests ndvi_tests = False fire_test = 1 collection_test = False water_tests = True region = ee.Geometry.Polygon([[[22.37055462536107, -19.69234130304949], [23.161822166438526, -19.675148989974225], [23.519800725057106, -18.180985057390387], [21.87293615648901, -17.80809895124535], [21.43371056179063, -19.463056253246073]]]) if water_tests: t = sentinel2().preprocess().select(['blue', 'green', 'red', 'nir', 'swir1', 'swir2']) # g = Water().wlc(t) # wtf = Water().linearScale(g.select([0]), base().studyArea) # print('ok') # b = Water().wlcexpression(g, base().studyArea) try: img = Water().wlc(t) b = Water().wlcexpression(img, region) print(b.bandNames().getInfo()) except Exception as e: print(e.args) print('fml') try: str == Water().wlc(t, supDate=111) print('passes wrong kwargs') except: print('fails wrong kwargs') try: print(Water().wlc(t).bandNames().getInfo()) print('passes wlc with defaults') except: print('wlc fails with defaults') try: sd = ee.Date('2018-01-01') ed = ee.Date('2018-03-01') img = Water().wlc(t, startDate=sd, endDate=ed) sd.getInfo()['value'] == img.get('sd').getInfo()['value'] print('passes useing custom date') except: print('failed to use correct date') try: # test scaling bands b = t.first() scale = Water().normalizeBands(b,region) if isinstance(scale,ee.Image) == 0: raise BaseException() print('scaling all bands returns image') except Exception as e: print('failed scalling bands test') print(e.args,e.message) try: img = Water().wlc(t) b = Water().wlcexpression(img, region) base().exportMap(b,'wlctest20_20170401_20170601_toa',region) except Exception as e: print('failed exporting') print(e.args) if collection_test: startDate = ee.Date('2017-04-01') endDate = ee.Date('2017-05-01') t = sentinel2().loads2(start=startDate, end=endDate, studyArea=region).select( ['blue', 'green', 'red', 'nir', 'swir1', 'swir2']) # brdf = sentinel2().brdf(t.first()) # print(brdf) try: t = sentinel2().preprocess().select(['blue', 'green', 'red', 'nir', 'swir1', 'swir2']) t2 = landsat().preprocess().select(['blue', 'green', 'red', 'nir', 'swir1', 'swir2']) t2.first().bandNames().getInfo() == t.first().bandNames().getInfo() print('passed loading collections') except: print('failed loading collections') try: t = sentinel2().preprocess().select(['blue', 'green', 'red', 'nir', 'swir1', 'swir2']) t2 = landsat().preprocess().select(['blue', 'green', 'red', 'nir', 'swir1', 'swir2']) merged_img = t.merge(t2).min() print('passed merging collections') except: print('failed merging collections') try: sentinel2().maskShadows(t, region) print(t.size().getInfo()) print(t.first().bandNames().getInfo()) except: print('no') if fire_test: modisFire = Fire().modisFireTerra.merge(Fire().modisFireAqua) singleMonth = modisFire.filter(ee.Filter.calendarRange(2020, 2023, 'year')).filter( ee.Filter.calendarRange(3, 3, 'month')) print(singleMonth.size()) assert singleMonth.size().getInfo(), "No fires found. Try expanding date range." if ndvi_tests: ic = ee.ImageCollection("LANDSAT/LC08/C01/T1_SR") m = 2 y = 2019 def maskL8sr(image): cloudShadowBitMask = 1 << 3; cloudsBitMask = 1 << 5; qa = image.select('pixel_qa'); mask = qa.bitwiseAnd(cloudShadowBitMask).eq(0).And(qa.bitwiseAnd(cloudsBitMask).eq(0)) img = image.updateMask(mask).divide(10000).select("B[0-9]*") out = img.normalizedDifference(['B5', 'B4']).copyProperties(image, ["system:time_start"]) return out ic = ic.map(maskL8sr).filterBounds(region) print(ic.size().getInfo()) a = Vegetation().byRegion(m, y, ic, region) print(a.bandNames().getInfo()) try: t2 = landsat().preprocess().select(['blue', 'green', 'red', 'nir', 'swir1', 'swir2']) v = Vegetation().byRegion(m,y,t2,region) print(v.bandNames().getInfo()) except Exception as e: print('failed using ls collection') print(e.args) ```
{ "source": "jdilger/ASF_GEE", "score": 2 }
#### File: jdilger/ASF_GEE/createmanifestDEv.py ```python import time import calendar import glob, os import json import zipfile from string import Template # create base manifest baseFolder = r'C:\Users\johnj\Documents\SIG\15.goldmining\scripts\dummyData\S1B_IW_GRDH_1SDV_20200110T101421_20200110T101446_019753_025598_C902-PREDORB-10m-power-filt-rtc-gamma' bucket = 'goldminehack' def asfMetadata(baseFolder): """ Parses filename for generating metadata """ baseFile = baseFolder.split('/')[-1].split('_') baseMeta = ["mission","beanMode","productTypeRes","processingLvlClass","startDate","endDate","absOrbit","mdtID","uniqID"] a = dict(zip(baseMeta,baseFile)) startTime = parseTime(a['startDate']) return json.dumps(a), startTime def parseTime(dateStr): """ parses date string from ASF naming convetion: YYYMMDDTHHMMSS """ # Parse to time object d_str = time.strptime(dateStr,"%Y%m%dT%H%M%S") # Convert to seconds from epoch d_ep = calendar.timegm(d_str) return d_ep def prepTileSet(baseFolder): """ returns tifs in tileset template as list of stings """ bands = glob.glob(baseFolder+'/*.tif') tileSets = Template("""{"id": "$iD","sources":[{"uris": ["$img"]}]}""") bandsBase = Template(""" {"id":"$bandId", "tileset_id":"$tilesetId"} """) tList = [] bList = [] for i in bands: try: i = i.split('/')[-1] img = 'gs://{}/{}'.format(bucket,i) iD = i.split('_') if iD[-1].split('.')[0] == 'map': iD = iD[-2].split('-')[1] else: iD= iD[-1].split('.')[0] tileSetsObj = tileSets.substitute(iD=iD,img=img) bandsObj = bandsBase.substitute(bandId=iD,tilesetId=iD) tList.append(tileSetsObj) bList.append(bandsObj) except: print("Image format doesn't match expected pattern") return tList, bList def makeManifest(baseFolder): """ creates general manifest file for each ASF scene """ manifestBase = \ """ {"name": "projects/earthengine-legacy/assets/$assPath", "tilesets": [$tilesets], "bands": [$bands], "start_time": {"seconds": $startTime}, "properties": $properties }""" properties, startTime = asfMetadata(baseFolder) tiles, bands = prepTileSet(baseFolder) tiles = ','.join(tiles) bands = ','.join(bands) outname = baseFolder.split('/')[-1] print(outname) fullManifest = Template(manifestBase).substitute(assPath='projects/ACCA-SERVIR/Goldmining/ASF/'+outname,tilesets=tiles,bands=bands,startTime=startTime,properties=properties) with open('upload/'+outname+'.json','a') as something: something.write(fullManifest) # makeManifest(baseFolder) if __name__ == "__main__": zipList = glob.glob('*.zip') print(zipList) print(os.getcwd()) os.makedirs(os.path.dirname('upload/'), exist_ok=True) for i in zipList: with zipfile.ZipFile(i,"r") as zip_ref: zip_ref.extractall('tmp') targetdir = i[:-4] er = os.getcwd()+'/tmp/'+targetdir makeManifest(er) for j in glob.glob(er+"/*.tif"): os.rename(j,"{}{}{}".format(os.getcwd(),'/upload/',j.split('/')[-1])) ```
{ "source": "jdilger/dash-examples", "score": 3 }
#### File: jdilger/dash-examples/app_slider_map.py ```python import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output import pandas as pd from urllib.request import urlopen import json with urlopen('https://raw.githubusercontent.com/plotly/datasets/master/geojson-counties-fips.json') as response: counties = json.load(response) import plotly.graph_objects as go # df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/gapminderDataFiveYear.csv') df = pd.read_csv('https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-states.csv', dtype={"fips": str}).sort_values(by='date',ascending=True) external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash() # test add fig selected_datet = 74 datest = df['date'].unique() datest = datest[selected_datet] filtered_df = df[df.date == datest] figt = go.Figure(go.Choroplethmapbox(geojson=counties, locations=filtered_df.fips, z=filtered_df.cases, colorscale="Inferno", zmin=0, zmax=2000, marker_opacity=0.95, marker_line_width=0,))#colorbar={'dtick':'log_10(5)'} figt.update_layout(mapbox_style="carto-positron", mapbox_zoom=3, mapbox_center = {"lat": 37.0902, "lon": -95.7129}, margin={"r":0,"t":0,"l":0,"b":0}) # end test fig app.layout = html.Div([ dcc.Graph(id='graph-with-slider', figure=figt), dcc.Slider( id='year-slider', min=0, max=10, value=1, marks={0:{'label':'day 1'}, 5:{'label':'day 5'}, 7:{'label':'day7'}, 10:{'label':'day10'}},#{str(date): str(date) for date in df['date'].unique()}, step=None ), dcc.Graph(figure=figt) ]) @app.callback( Output('graph-with-slider', 'figure'), [Input('year-slider', 'value')]) def update_map(selected_date): dates = df['date'].unique() dates = dates[selected_date] filtered_df = df[df.date == dates] print(filtered_df) fig = go.Figure(go.Choroplethmapbox(geojson=counties, locations=filtered_df.fips, z=filtered_df.cases, colorscale="Inferno", zmin=0, zmax=2000, marker_opacity=0.95, marker_line_width=0,))#colorbar={'dtick':'log_10(5)'} fig.update_layout(mapbox_style="carto-positron", mapbox_zoom=3, mapbox_center = {"lat": 37.0902, "lon": -95.7129}) fig.update_layout(margin={"r":0,"t":0,"l":0,"b":0}) # print(fig) return fig if __name__ == '__main__': app.run_server(debug=True) ```
{ "source": "jdilger/restoration_planning_module", "score": 2 }
#### File: component/widget/constraint.py ```python from traitlets import HasTraits, Any, observe, dlink from sepal_ui import sepalwidgets as sw import ipyvuetify as v import ee from component.message import cm from component import parameter as cp ee.Initialize() class Constraint(sw.SepalWidget, v.Row): custom_v_model = Any(-1).tag(sync=True) def __init__(self, widget, name="name", header="header", id_="id", **kwargs): # default self.id = id_ self.header = header self.name = name self.class_ = "ma-5" self.widget = widget self.align_center = True # creat a pencil btn self.btn = v.Icon(children=["mdi-pencil"], _metadata={"layer": id_}) # create the row super().__init__(**kwargs) self.children = [ v.Flex(align_center=True, xs1=True, children=[self.btn]), v.Flex(align_center=True, xs11=True, children=[self.widget]), ] # js behaviour self.widget.observe(self._on_change, "v_model") def _on_change(self, change): # update the custom v_model # if the widget is displayed on the questionnaire if self.viz: self.custom_v_model = change["new"] return def disable(self): # update the custom v_model self.custom_v_model = -1 # hide the component self.hide() return self def unable(self): # update the custom v_model self.custom_v_model = self.widget.v_model # show the component self.show() return self class Binary(Constraint): def __init__(self, name, header, id_, **kwargs): widget = v.Switch( # readonly = True, persistent_hint=True, v_model=True, label=name, **kwargs ) super().__init__(widget, name=name, header=header, id_=id_) class Dropdown(Constraint): def __init__(self, name, items, header, **kwargs): widget = v.Select( label=name, persistent_hint=True, items=items, v_model=int(items[0]["value"]), **kwargs ) super().__init__(widget, name=name, header=header) class Range(Constraint): LABEL = ["low", "medium", "high"] def __init__(self, name, header, id_, **kwargs): widget = v.RangeSlider( label=name, max=1, step=0.1, v_model=[0, 1], thumb_label=True, **kwargs ) super().__init__(widget, name=name, header=header, id_=id_) def set_values(self, geometry, layer): # compute the min and the max for the specific geometry and layer ee_image = ee.Image(layer).select(0) # get min min_ = ee_image.reduceRegion( reducer=ee.Reducer.min(), geometry=geometry, scale=250, bestEffort=True ) min_ = list(min_.getInfo().values())[0] # get max max_ = ee_image.reduceRegion( reducer=ee.Reducer.max(), geometry=geometry, scale=250, bestEffort=True ) max_ = list(max_.getInfo().values())[0] # if noneType it means that my AOI is out of bounds with respect to my constraint # as it won't be usable I need to add a hint to the end user if min_ is None or max_ is None: self.widget.error_messages = "The aoi is out of the bounds of your constraint layer, use a custom one." self.widget.min = 0 self.widget.max = 1 self.widget.step = 0.1 self.widget.tick_labels = [] self.widget.v_model = [0, 1] else: # remove the error state self.widget.error_messages = [] # set the min max self.widget.min = round(min_, 2) self.widget.max = round(max_, 2) # set the number of steps by stting the step parameter (100) self.widget.step = round((self.widget.max - self.widget.min) / 100, 2) # display ticks label with low medium and high values self.widget.tick_labels = [ self.LABEL[i // 25 - 1] if i in [25, 50, 75] else "" for i in range(101) ] # set the v_model on the "min - max" value to select the whole image by default self.widget.v_model = [self.widget.min, self.widget.max] return self class CustomPanel(v.ExpansionPanel, sw.SepalWidget): def __init__(self, category, criterias): # save title name self.title = category # create a header, as nothing is selected by defaul it should only display the title self.header = v.ExpansionPanelHeader(children=[cp.criteria_types[category]]) # link the criterias to the select self.criterias = [c.disable() for c in criterias if c.header == category] self.select = v.Select( disabled=True, # disabled until the aoi is selected class_="mt-5", small_chips=True, v_model=None, items=[c.name for c in self.criterias], label=cm.constraints.criteria_lbl, multiple=True, deletable_chips=True, persistent_hint=True, hint="select an AOI first", ) # create the content, nothing is selected by default so Select should be empty and criterias hidden criteria_flex = [v.Flex(xs12=True, children=[c]) for c in self.criterias] self.content = v.ExpansionPanelContent( children=[v.Layout(row=True, children=[self.select] + criteria_flex)] ) # create the actual panel super().__init__(children=[self.header, self.content]) # link the js behaviour self.select.observe(self._show_crit, "v_model") def _show_crit(self, change): for c in self.criterias: if c.name in change["new"]: c.unable() else: c.disable() return self def expand(self): """when the custom panel expand I want to display only the title""" self.header.children = [cp.criteria_types[self.title]] return self def shrunk(self): """when shrunked I want to display the chips int the header along the title""" # get the title title = cp.criteria_types[self.title] # get the chips chips = v.Flex( children=[ v.Chip(class_="ml-1 mr-1", small=True, children=[c.name]) for c in self.criterias if c.viz ] ) # write the new header content self.header.children = [title, chips] return self ``` #### File: component/widget/edit_dialog.py ```python from traitlets import Unicode import json from pathlib import Path from traitlets import Int from sepal_ui import sepalwidgets as sw from sepal_ui import mapping as sm from sepal_ui import color import ipyvuetify as v import pandas as pd import ee from ipyleaflet import WidgetControl from component import parameter as cp from component.message import cm ee.Initialize() class EditDialog(sw.SepalWidget, v.Dialog): updated = Int(0).tag(sync=True) # the update traitlets def __init__(self, aoi_vew, model): # save the model self.model = model # listen to the aoi_vew to update the map self.view = aoi_vew self.init_layer = "" self.id = "" self.index = None # add all the standard placeholder, they will be replaced when a layer will be selected self.title = v.CardTitle(children=["Layer name"]) self.text = v.CardText(children=[""]) self.layer = v.TextField( class_="ma-5", v_model=None, color="warning", outlined=True, label="Layer" ) self.unit = v.TextField( class_="ma-5", v_model=None, color="warning", outlined=True, label="Unit" ) # add a map to display the layers self.m = sm.SepalMap() self.m.layout.height = "40vh" self.m.layout.margin = "2em" # two button will be placed at the bottom of the panel self.cancel = sw.Btn(cm.dial.cancel, color="primary", outlined=True) self.save = sw.Btn(cm.dial.save, color="primary") # create the init card self.card = v.Card( children=[ self.title, self.text, self.layer, self.unit, self.m, v.CardActions(class_="ma-5", children=[self.cancel, self.save]), ] ) # init the dialog super().__init__( persistent=True, value=False, max_width="50vw", children=[self.card] ) # js behaviours self.layer.on_event("blur", self._on_layer_change) self.cancel.on_event("click", self._cancel_click) self.save.on_event("click", self._save_click) self.view.observe(self._update_aoi, "updated") def _on_layer_change(self, widget, event, data): # do nothing if it's no_layer if widget.v_model == "no Layer": return self # replace the v_model by the init one if not widget.v_model: widget.v_model = self.init_layer # if the layer is different than the init one elif widget.v_model != self.init_layer: # display it on the map geometry = self.view.model.feature_collection image = Path(widget.v_model) # if the map cannot be displayed then return to init try: self.display_on_map(image, geometry) except Exception as e: widget.v_model = self.init_layer return self def _cancel_click(self, widget, data, event): # close without doing anything self.value = False return def _save_click(self, widget, data, event): # load the btn widget.toggle_loading() # change the model according to the selected informations self.model.layer_list[self.index].update( layer=self.layer.v_model, unit=self.unit.v_model ) # modify update to tell the rest of the app that value have been changed self.updated += 1 # close self.value = False # free the btn once the widget is closed widget.toggle_loading() return def _update_aoi(self, change): # get the aoi aoi_ee = self.view.model.feature_collection # draw an outline outline = ee.Image().byte().paint(featureCollection=aoi_ee, color=1, width=3) # update the map self.m.addLayer(outline, {"palette": color.accent}, "aoi") self.m.zoom_ee_object(aoi_ee.geometry()) return def set_dialog(self, layer_id=None): # remove the images for l in self.m.layers: if not (l.name in ["aoi", "CartoDB.DarkMatter"]): self.m.remove_layer(l) # if data are empty if not layer_id: # default variables self.id = "" self.index = None self.init_layer = "" # default title self.title.children = [cm.dial.no_layer] # default text self.text.children = [cm.dial.disc] # mute all the widgets self.layer.v_model = "no Layer" self.layer.disabled = True self.unit.v_model = "no unit" self.unit.disabled = True # disable save self.save.disabled = True else: # find the index of the item to modify in the model self.index = next( (i, l) for i, l in enumerate(self.model.layer_list) if l["id"] == layer_id )[0] self.id = layer_id # change title self.title.children = [self.model.layer_list[self.index]["name"]] # get the layer list pd dataframe layer_list = pd.read_csv(cp.layer_list).fillna("") # change text layer_df_line = layer_list[layer_list.layer_id == layer_id].iloc[0] self.text.children = [layer_df_line.layer_info] # enable textFields self.layer.disabled = False self.layer.v_model = self.model.layer_list[self.index]["layer"] self.unit.disabled = False self.unit.v_model = self.model.layer_list[self.index]["unit"] # change default layer name self.init_layer = layer_df_line.gee_asset # add the custom layer if existing geometry = self.view.model.feature_collection if self.layer.v_model != self.init_layer: custom_img = Path(self.layer.v_model) self.display_on_map(custom_img, geometry) else: default_img = Path(self.init_layer) self.display_on_map(default_img, geometry) # enable save self.save.disabled = False # show the dialog self.value = True return def display_on_map(self, image, geometry): # clip image ee_image = ee.Image(str(image)).clip(geometry) # get min min_ = ee_image.reduceRegion( reducer=ee.Reducer.min(), geometry=geometry, scale=250, bestEffort=True ) min_ = list(min_.getInfo().values())[0] # get max max_ = ee_image.reduceRegion( reducer=ee.Reducer.max(), geometry=geometry, scale=250, bestEffort=True ) max_ = list(max_.getInfo().values())[0] min_ = min_ if min_ else 0 max_ = max_ if max_ else 1 # update viz_params acordingly viz_params = cp.plt_viz["viridis"] viz_params.update(min=min_, max=max_) # create a colorbar for c in self.m.controls: if type(c) == WidgetControl: self.m.remove_control(c) self.m.add_colorbar( colors=cp.plt_viz["viridis"]["palette"], vmin=round(min_, 2), vmax=round(max_, 2), ) # dispaly on map self.m.addLayer(ee_image, viz_params, image.stem) return self ```
{ "source": "jdilger/useful_ee_scripts", "score": 2 }
#### File: useful_ee_scripts/batch_uploads/mosaic_manifest.py ```python import os import json import re import logging from datetime import datetime import subprocess logging.basicConfig(filename='info.log', filemode='a', format='%(asctime)s,%(msecs)d %(name)s %(levelname)s %(message)s', datefmt='%H:%M:%S', level=logging.INFO) logging.info("Running Batch Manifest Uploader") logger = logging.getLogger('mosaic_manifest') class mosaic_manifest(object): def __init__(self,bucket,ee_dest, sub_dir=None): self.bucket = bucket self.ee_dest = ee_dest self.sub_dir = sub_dir self.MANIFEST = None self.FULL_PATH = None self.check_bucket() def get_cloud_files(self): if self.sub_dir is None: cloud_files = os.popen(f"gsutil ls {self.bucket}/*.tif").read().split("\n")[:-1] else: cloud_files = os.popen(f"gsutil ls {self.bucket}/{self.sub_dir}/*.tif").read().split("\n")[:-1] return cloud_files def check_json_name(self,file_name): search = re.search('.json$', file_name) if search is None: return f"{file_name}.json" else: return file_name def save(self,location,file_name=None): assert self.MANIFEST is not None, "Manifest has not been created. Try running mosaic_manifest(bucket,ee_dest).make()" if file_name is None: file_name = "manifest.json" else: file_name = self.check_json_name(file_name) full_path = f'{location}/{file_name}' self.FULL_PATH = full_path with open(full_path, 'w') as f: json.dump(self.MANIFEST, f, indent=2) def check_bucket(self): bucket_check = self.bucket.split('/') if len(bucket_check) > 3: self.sub_dir = "/".join(bucket_check[3:]) self.bucket = "/".join(bucket_check[:3]) def parse_time_from_folder(self): # todo: make this optional and add in sd/ed as cli inputs date_dir = self.sub_dir.split("/")[-1] search = re.search('^(\d{4}-\d{2}-\d{2})-(\d{4}-\d{2}-\d{2})$', date_dir) groups = search.groups() start_time = f"{datetime.strptime(groups[0],'%Y-%m-%d').isoformat()}Z" end_time = f"{datetime.strptime(groups[1],'%Y-%m-%d').isoformat()}Z" return start_time, end_time def make(self): # Get the list of source URIs from the gsutil output. cloud_files = self.get_cloud_files() sources_uris = [{'uris': [f]} for f in cloud_files] asset_name = self.ee_dest start_time, end_time = self.parse_time_from_folder() logger.info(f"asset name: {asset_name}") logger.info(f"start date:{start_time} end date: {end_time}") # The enclosing object for the asset. asset = { 'name': asset_name, 'tilesets': [ { 'id': 'dunno', 'sources': sources_uris } ], 'bands': [ { 'id': 'blue', 'tileset_band_index':0, 'tileset_id': 'dunno' }, { 'id':'green', 'tileset_band_index':1, 'tileset_id':'dunno' }, { 'id':'red', 'tileset_band_index':2, 'tileset_id':'dunno' }, { 'id':'nir', 'tileset_band_index':3, 'tileset_id':'dunno' }, { 'id':'alpha', 'tileset_band_index':4, 'tileset_id':'dunno' }, ], 'start_time':start_time, 'end_time':end_time } self.MANIFEST = asset return asset def upload(self, manifest=None): if manifest is None: manifest = self.FULL_PATH logger.info(f"manifest saved to: {self.FULL_PATH}") result = subprocess.check_output(f"earthengine upload image --manifest {manifest}", shell=True) task_id = re.search(r"(b'Started upload task with ID:) ([\w{1:24}\d{1:24}]*)(\\r\\n')",str(result)) print(str(result)) logger.info(f"task id:{task_id.groups()[1]}") if __name__ == "__main__": import argparse import textwrap desc = """CLI for making and uploading Planet 4-Band quad imagery stored in a Google Storage Bucket e.x. making a mosaic and using the current path to save the manifest.json mosaic_manifest.py gs://bucket/subdir projects/ee/imagecollection/newImageName . """ parser = argparse.ArgumentParser(formatter_class=argparse.RawDescriptionHelpFormatter, description=textwrap.dedent(desc)) parser.add_argument("bucket",help='-The URI where images are stored (e.g. gs://myBucket or gs://myBucket/subDir )') parser.add_argument("ee_dst",help='-The earthengine location to save the mosaic') parser.add_argument("manifest_dst",help='-The location to locally save the manifest.json') args = parser.parse_args() m = mosaic_manifest(args.bucket, args.ee_dst) m.make() m.save(args.manifest_dst) m.upload() ```
{ "source": "jdillard/sphinxcontrib-drawio", "score": 2 }
#### File: sphinxcontrib-drawio/tests/test_update.py ```python import shutil from pathlib import Path import pytest from sphinx.application import Sphinx SIMPLE_EXPORTED_FNAME = "drawio-bf0f85b68784bab0e62bf5902f5a46b65d71ee70.png" # deprecated drawio directive test @pytest.mark.sphinx("html", testroot="simple", srcdir="notchanged") def test_notchanged(content: Sphinx, make_app_with_local_user_config): exported = content.outdir / "_images" / SIMPLE_EXPORTED_FNAME exported_timestamp = exported.stat().st_mtime app = make_app_with_local_user_config(srcdir=content.srcdir) app.build() assert exported.stat().st_mtime == exported_timestamp # deprecated drawio directive test @pytest.mark.sphinx("html", testroot="simple", srcdir="changed") def test_changed(content: Sphinx, make_app_with_local_user_config): source = Path(content.srcdir / "box.drawio") exported = content.outdir / "_images" / SIMPLE_EXPORTED_FNAME exported_timestamp = exported.stat().st_mtime source.touch() app = make_app_with_local_user_config(srcdir=content.srcdir) app.build() assert exported.stat().st_mtime > exported_timestamp @pytest.mark.sphinx("html", testroot="image", srcdir="image_notchanged") def test_image_notchanged(content: Sphinx, make_app_with_local_user_config): exported = content.outdir / "_images" / "box.svg" exported_timestamp = exported.stat().st_mtime app = make_app_with_local_user_config(srcdir=content.srcdir) app.build() assert exported.stat().st_mtime == exported_timestamp @pytest.mark.sphinx("html", testroot="image", srcdir="image_changed") def test_image_changed(content: Sphinx, make_app_with_local_user_config): box = Path(content.srcdir / "box.drawio") exported = content.outdir / "_images" / "box.svg" exported_timestamp = exported.stat().st_mtime circle = Path(content.srcdir / "circle.drawio") shutil.copy(circle, box) app = make_app_with_local_user_config(srcdir=content.srcdir) app.build() assert exported.stat().st_mtime > exported_timestamp ```
{ "source": "jdills26/cse6242-project-code", "score": 3 }
#### File: Scripts/schools/greatschoolsratings.py ```python import requests import pandas as pd from io import StringIO, BytesIO from lxml import etree as et API_KEY = '<GREATSCHOOLS.ORG API KEY GOES HERE>' def generate_file(name, response): d = {} df = pd.DataFrame() tree = et.fromstring(response.content) for child in tree: for children in child: d[str(children.tag)] = str(children.text) df = df.append(d, ignore_index=True) df.to_csv(name + '.csv', sep=',') if __name__ == "__main__": elem_url = 'http://api.greatschools.org/schools/DC/Washington/public/elementary-schools?limit=-1&key={}'.format(API_KEY) middle_url = 'http://api.greatschools.org/schools/DC/Washington/public/middle-schools?limit=-1&key={}'.format(API_KEY) high_url = 'http://api.greatschools.org/schools/DC/Washington/public/high-schools?limit=-1&key={}'.format(API_KEY) elem_schools = requests.get(elem_url) middle_schools = requests.get(middle_url) high_schools = requests.get(high_url) generate_file('elementary', elem_schools) generate_file('middle', middle_schools) generate_file('high', high_schools) ```
{ "source": "jdimaria3/HearthstoneCS", "score": 3 }
#### File: HearthstoneCS/server/controller.py ```python import cherrypy import re, json from flask_restful import reqparse, abort, Api, Resource class OptionsController(Resource): def __init__(self): print("starting Options Controller") def OPTIONS(self, *args, **kargs): return "" class CardsController(Resource): def __init__(self, cdb=None): self.cdb = cdb def get(self): output=dict() dbfIdList=self.cdb.get_cards() dictList=list() output["result"]= "success" for dbfId in dbfIdList: dictList.append(self.cdb.get_card(dbfId)) output["cards"]=dictList return output def post(self): # Get json text the_body= cherrypy.request.body.read().decode() the_body= json.loads(the_body) # Determine new dbfId newID=max(self.cdb.cards.keys()) newID=newID+1 # Create a new list of attributes myList=list() # Determine how what type of card is being added. myList.append(the_body["type"]) myList.append(the_body["name"]) myList.append(the_body["cost"]) myList.append(the_body["rarity"]) myList.append(the_body["class"]) if(the_body["type"]=="MINION"): myList.append(the_body["attack"]) myList.append(the_body["health"]) myList.append(the_body["url"]) # Set the card given dbfId and list self.cdb.set_card(newID, myList) output={'result':'success', "dbfId" : newID} return output def DELETE(self): self.cdb.movies=dict() output={'result': 'success'} return output class CardsKeyController(Resource): def __init__(self, cdb=None): self.cdb = cdb def get(self, dbfId): output=dict() output["card"]=self.cdb.get_card(int(dbfId)) output["result"]="success" return output def put(self, dbfId): # Get json text the_body= cherrypy.request.body.read().decode() the_body= json.loads(the_body) # Create a new list of attributes myList=list() # Determine how what type of card is being added. myList.append(the_body["type"]) myList.append(the_body["name"]) myList.append(the_body["cost"]) myList.append(the_body["rarity"]) myList.append(the_body["class"]) if(the_body["type"]=="MINION"): myList.append(the_body["attack"]) myList.append(the_body["health"]) myList.append(the_body["url"]) self.cdb.set_card(int(dbfId), myList) output={'result':'success'} return output def delete(self, dbfId): output=self.cdb.delete_card(int(dbfId)) return output class MinionsController(Resource): def __init__(self, cdb=None): self.cdb= cdb def get(self): output=dict() output["result"]= "success" output["minions"]=self.cdb.get_minions() return output class MinionsAttackController(Resource): def __init__(self, cdb=None): self.cdb= cdb def get(self,RANGE): output=dict() output["result"]= "success" low=str(RANGE[0]) + str(RANGE[1]) high=str(RANGE[2]) + str(RANGE[3]) output["minions"]=self.cdb.get_minions_attackRange(int(low),int(high)) return output class MinionsHealthController(Resource): def __init__(self, cdb=None): self.cdb= cdb def get(self,RANGE): output=dict() output["result"]= "success" low=str(RANGE[0]) + str(RANGE[1]) high=str(RANGE[2]) + str(RANGE[3]) output["minions"]=self.cdb.get_minions_healthRange(int(low),int(high)) return output class SpellsController(Resource): def __init__(self, cdb=None): self.cdb = cdb def get(self): output=dict() output["result"]= "success" output["spells"]=self.cdb.get_spells() return output class CostController(Resource): def __init__(self, cdb=None): self.cdb= cdb def get(self,RANGE): output=dict() output["result"]= "success" low=str(RANGE[0]) + str(RANGE[1]) high=str(RANGE[2]) + str(RANGE[3]) output["cards"]=self.cdb.get_cards_costRange(int(low),int(high)) return output class NameController(Resource): def __init__(self, cdb=None): self.cdb= cdb def get(self,NAME): output=dict() output["result"]= "success" output["cards"]=self.cdb.get_cards_name(NAME) return output class ClassController(Resource): def __init__(self, cdb=None): self.cdb= cdb def get(self,CLASS): output=dict() output["result"]= "success" output["cards"]=self.cdb.get_cards_class(CLASS) return output class RarityController(Resource): def __init__(self, cdb=None): self.cdb= cdb def get(self, RARITY): output=dict() output["result"]= "success" output["cards"]=self.cdb.get_cards_rarity(RARITY) return output ```
{ "source": "jdimatteo/pytype", "score": 2 }
#### File: pytype/pytype/context.py ```python import contextlib from typing import Dict, List, Tuple from pytype import annotation_utils from pytype import attribute from pytype import config from pytype import convert from pytype import errors from pytype import load_pytd from pytype import matcher from pytype import output from pytype import special_builtins from pytype import tracer_vm from pytype.abstract import abstract from pytype.typegraph import cfg from pytype.typegraph import cfg_utils class Context: """An abstract context.""" def __init__( self, errorlog: errors.ErrorLog, options: config.Options, loader: load_pytd.Loader, generate_unknowns=False, store_all_calls=False, ): # Inputs self.errorlog = errorlog self.options = options self.python_version: Tuple[int, int] = self.options.python_version self.loader = loader self.generate_unknowns = generate_unknowns self.store_all_calls = store_all_calls # Typegraph self.program = cfg.Program() self.root_node: cfg.CFGNode = self.program.NewCFGNode("root") self.program.entrypoint = self.root_node # Represents the program exit. Needs to be set before analyze_types. self.exitpoint: cfg.CFGNode = None # Helper classes/modules self.vm = tracer_vm.CallTracer(self) self.annotation_utils = annotation_utils.AnnotationUtils(self) self.attribute_handler = attribute.AbstractAttributeHandler(self) self.converter_minimally_initialized = False self.convert = convert.Converter(self) self.pytd_convert = output.Converter(self) self.program.default_data = self.convert.unsolvable # Other context self.callself_stack: List[cfg.Variable] = [] # Map from builtin names to canonical objects. self.special_builtins: Dict[str, abstract.BaseValue] = { # The super() function. "super": self.convert.super_type, # The object type. "object": self.convert.object_type, # for more pretty branching tests. "__random__": self.convert.primitive_class_instances[bool], # for debugging "reveal_type": special_builtins.RevealType(self), # boolean values. "True": self.convert.true, "False": self.convert.false, # builtin classes "property": special_builtins.Property(self), "staticmethod": special_builtins.StaticMethod(self), "classmethod": special_builtins.ClassMethod(self), } # builtin functions for cls in ( special_builtins.Abs, special_builtins.AssertType, special_builtins.HasAttr, special_builtins.IsCallable, special_builtins.IsInstance, special_builtins.IsSubclass, special_builtins.Next, ): self.special_builtins[cls.name] = cls.make(self) # If set, allow construction of recursive values, setting the # self-referential field to Any self.recursion_allowed = False def matcher(self, node): return matcher.AbstractMatcher(node, self) @contextlib.contextmanager def allow_recursive_convert(self): old = self.recursion_allowed self.recursion_allowed = True try: yield finally: self.recursion_allowed = old def new_unsolvable(self, node): """Create a new unsolvable variable at node.""" return self.convert.unsolvable.to_variable(node) def join_cfg_nodes(self, nodes): """Get a new node to which the given nodes have been joined.""" assert nodes if len(nodes) == 1: return nodes[0] else: ret = self.program.NewCFGNode(self.vm.frame and self.vm.frame.current_opcode and self.vm.frame.current_opcode.line) for node in nodes: node.ConnectTo(ret) return ret def join_variables(self, node, variables): return cfg_utils.merge_variables(self.program, node, variables) def join_bindings(self, node, bindings): return cfg_utils.merge_bindings(self.program, node, bindings) ```
{ "source": "jdimol/Rawfie-IoT2Edge-Integration", "score": 3 }
#### File: Rawfie-IoT2Edge-Integration/aeroloop_experiment/main.py ```python import requests, avro_consumer, ngsi_translator # The below fields have to be defined... # Bootstrap server and schema registry urls (Avro Producer) # urls = { # 'bootstrap.servers': 'url:port', # 'group.id': 'groupid', # 'schema.registry.url': 'url:port'} # Zookeaper topics # topics = [] # ['topic_1', 'topic_2', 'topic_3', ..., 'topic_n'] # uav_name = '' # The name of the UAV # POST NGSI data def posttoOrion(data): headers = {'Content-type': 'application/json', 'Accept': 'application/json'} url = 'url' # Url has to be defined. r = requests.post(url, json=data, headers=headers) print(r.status_code) return r # Main Section of the experiment ms = avro_consumer(urls, topics, uav_name) data = to_ngsi(ms) response = posttoOrion(data) ```
{ "source": "jdinh1/mbed-5570", "score": 3 }
#### File: tools/test_configs/__init__.py ```python from os.path import dirname, abspath, join from tools.utils import json_file_to_dict from tools.targets import TARGET_MAP CONFIG_DIR = dirname(abspath(__file__)) CONFIG_MAP = json_file_to_dict(join(CONFIG_DIR, "config_paths.json")) TARGET_CONFIGS = json_file_to_dict(join(CONFIG_DIR, "target_configs.json")) def get_valid_configs(target_name): if target_name in TARGET_CONFIGS: target_config = TARGET_CONFIGS[target_name] elif (target_name in TARGET_MAP and 'LWIP' in TARGET_MAP[target_name].features): target_config = { "default_test_configuration": "ETHERNET", "test_configurations": ["ETHERNET"] } else: return {} config_dict = {} for attr in CONFIG_MAP: if attr in target_config['test_configurations']: config_dict[attr] = CONFIG_MAP[attr] return config_dict def get_config_path(conf_name, target_name): configs = get_valid_configs(target_name) if configs and conf_name.upper() in configs: return join(CONFIG_DIR, configs[conf_name.upper()]) else: return None def get_default_config(target_name): if target_name in TARGET_CONFIGS: config_name = TARGET_CONFIGS[target_name]['default_test_configuration'] if config_name == "NONE": return None return join(CONFIG_DIR, CONFIG_MAP[config_name]) elif (target_name in TARGET_MAP and 'LWIP' in TARGET_MAP[target_name].features): return join(CONFIG_DIR, CONFIG_MAP["ETHERNET"]) else: return None ```
{ "source": "jdisanti/aws-sdk-rust", "score": 3 }
#### File: tools/ci/crate-range.py ```python import argparse import json import math import os import shlex import subprocess import sys import unittest COLOR_YELLOW = "\033[93m" COLOR_RESET = "\033[0m" class Crate: def __init__(self, path, loc=None): self.path = path self.loc = loc # Counts the lines of code on this crate and caches it def count_lines(self): if self.loc is None: self.loc = int(get_cmd_output( f"find {self.path} -name '*.rs' -exec wc -l {{}} \\; | \ cut -d' ' -f1 | \ paste -sd+ | \ bc", shell=True )) def __repr__(self): return "Crate" + str((self.loc, self.path)) def __eq__(self, other): return isinstance(other, Crate) and self.path == other.path # Given the total number of jobs and batch count, this calculates the actual batch ranges def calculate_batches(total_jobs, batch_count): batch_size = math.ceil(total_jobs / batch_count) return list(map(lambda i: (i, min(total_jobs, i + batch_size)), range(0, total_jobs, batch_size))) # Splits a list into N lists def split_list(list, n): result = [] for batch in calculate_batches(len(list), n): result.append(list[batch[0]:batch[1]]) return result # Optimistically sorts the crate list in such a way that the total work per batch is more balanced. # Accomplishes this by sorting by most lines of code to least lines of code, and then striping that # list across batches. Finally, it combines those batches back into one list. # # IMPORTANT: This must be deterministic and return the same list for the same files every time def organize_crate_list(batch_count, crates): crates = sorted(crates, key=lambda c: c.loc, reverse=True) batches = list(map(lambda _: [], [0] * batch_count)) # Can't do `[] * n` for some reason for index, crate in enumerate(crates): batches[index % len(batches)].append(crate) result = [] for batch in batches: result.extend(batch) return result # Lists all SDK crates including examples def list_crates(repository_root): to_examine = [] for path in ["sdk", "examples"]: to_examine.extend(list(map(lambda p: f"{repository_root}/{path}/{p}", os.listdir(f"{repository_root}/{path}")))) crates = [] for path in to_examine: if os.path.isfile(f"{path}/Cargo.toml"): crates.append(Crate(path)) return crates # Entry point for the `generate-matrix` sub-command def subcommand_generate_matrix(repository_root, batch_count, rust_versions): crates = list_crates(repository_root) batches = calculate_batches(len(crates), batch_count) output = { "crate_range": list(map(lambda b: f"-b {batch_count} -s {b[0]} -e {b[1]}", batches)), "rust_version": rust_versions } print(json.dumps(output)) return 0 # Entry point for the `run` sub-command def subcommand_run(repository_root, batch_count, start_inclusive, end_exclusive, command): print(f"{COLOR_YELLOW}Determining crate list...{COLOR_RESET}") crates = list_crates(repository_root) if end_exclusive <= start_inclusive or end_exclusive < 0 or start_inclusive < 0: print("Invalid range") return 1 if start_inclusive >= len(crates): print("Range start is invalid") return 1 if end_exclusive > len(crates): print("Range end is invalid") return 1 for crate in crates: crate.count_lines() crates = organize_crate_list(batch_count, crates) crates = crates[start_inclusive:end_exclusive] print(f"{COLOR_YELLOW}Crates to run against:{COLOR_RESET}") for crate in crates: print(f"{COLOR_YELLOW} {crate.loc}\t{crate.path}{COLOR_RESET}") completed = 0 for crate in crates: print(f"{COLOR_YELLOW}Current crate: {crate.path}, loc: {crate.loc}, completed: {completed}, " f"remaining: {len(crates) - completed}{COLOR_RESET}") os.chdir(crate.path) subprocess.run(command, check=True) completed += 1 return 0 def main(): parser = argparse.ArgumentParser() subparsers = parser.add_subparsers(required=True, dest="subcommand") subparsers.add_parser("self-test", help="Run unit tests for this script") subparser_generate_matrix = subparsers.add_parser("generate-matrix", help="Generate a test matrix") subparser_generate_matrix.add_argument("-b", type=int, dest="batches", required=True, help="Number of batches") subparser_generate_matrix.add_argument("rust_versions", type=str, nargs=argparse.ONE_OR_MORE) subparser_run = subparsers.add_parser("run", help="Run command on crate range") subparser_run.add_argument("-b", required=True, type=int, dest="batches", help="Number of batches") subparser_run.add_argument("-s", required=True, type=int, dest="start_inclusive", help="Range start inclusive") subparser_run.add_argument("-e", required=True, type=int, dest="end_exclusive", help="Range end exclusive") subparser_run.add_argument("cmd", type=str, nargs=argparse.ONE_OR_MORE) args = parser.parse_args() repository_root = get_cmd_output("git rev-parse --show-toplevel") if args.subcommand == "self-test": sys.argv.pop() unittest.main() return 0 elif args.subcommand == "generate-matrix": return subcommand_generate_matrix(repository_root, args.batches, args.rust_versions) elif args.subcommand == "run": return subcommand_run(repository_root, args.batches, args.start_inclusive, args.end_exclusive, args.cmd) def get_cmd_output(command, shell=False): if not shell: command = shlex.split(command) result = subprocess.run(command, shell=shell, capture_output=True, check=True) return result.stdout.decode("utf-8").strip() class SelfTest(unittest.TestCase): def test_split_list(self): self.assertEqual([[1, 2], [3, 4], [5, 6]], split_list([1, 2, 3, 4, 5, 6], 3)) self.assertEqual([[1, 2], [3, 4], [5]], split_list([1, 2, 3, 4, 5], 3)) def test_calculate_batches(self): self.assertEqual([(0, 2), (2, 4), (4, 5)], calculate_batches(5, 3)) self.assertEqual([(0, 2), (2, 4), (4, 6)], calculate_batches(6, 3)) self.assertEqual([(0, 56), (56, 111)], calculate_batches(111, 2)) self.assertEqual([(0, 111)], calculate_batches(111, 1)) self.assertEqual([(0, 1), (1, 2)], calculate_batches(2, 10)) def test_organize_crate_list(self): self.assertEqual( [ # batch 1 Crate("A", 3000), Crate("C", 1000), Crate("E", 500), Crate("G", 200), Crate("I", 50), # batch 2 Crate("B", 2000), Crate("D", 1000), Crate("F", 300), Crate("H", 100), ], organize_crate_list(2, [ Crate("A", 3000), Crate("B", 2000), Crate("C", 1000), Crate("D", 1000), Crate("E", 500), Crate("F", 300), Crate("G", 200), Crate("H", 100), Crate("I", 50), ]) ) self.assertEqual( [ # batch 1 Crate("A", 3000), Crate("D", 1000), Crate("G", 200), # batch 2 Crate("B", 2000), Crate("E", 500), Crate("H", 100), # batch 3 Crate("C", 1000), Crate("F", 300), Crate("I", 50), ], organize_crate_list(3, [ Crate("A", 3000), Crate("B", 2000), Crate("C", 1000), Crate("D", 1000), Crate("E", 500), Crate("F", 300), Crate("G", 200), Crate("H", 100), Crate("I", 50), ]) ) if __name__ == "__main__": sys.exit(main()) ```
{ "source": "jdi-testing/jdi-python", "score": 3 }
#### File: core/logger/jdi_logger.py ```python import json import logging import logging.config from JDI.core.settings.jdi_settings import PropertyPath class JDILogger: def __init__(self, filename="logging.json"): self.config_filename = PropertyPath(filename).get_property_file() with open(self.config_filename, "r") as fd: logging.config.dictConfig(json.load(fd)) self.logger = logging.getLogger(__name__) def __getattr__(self, name): return getattr(self.logger, name) ``` #### File: web/os_action/jdi_win32.py ```python import logging import time try: import win32com.client except ModuleNotFoundError as e: logging.exception(e) class jdi_win32: @staticmethod def paste_text(text): shell = win32com.client.Dispatch("WScript.Shell") time.sleep(3) shell.Sendkeys(text) shell.Sendkeys("~") ``` #### File: driver/utils/web_driver_by_utils.py ```python class WebDriverByUtils: @staticmethod def contains_root(by): return by is not None and str(by).__contains__(": *root*") @staticmethod def trim_root(by): by[1] = by[1].replace("*root*", "").strip() return by @staticmethod def fill_by_template(by, args): by_locator = WebDriverByUtils.get_by_locator(by) if "%" not in by_locator: raise RuntimeError(WebDriverByUtils.get_bad_locator_msg(by_locator, args)) try: by_locator = by_locator % args except Exception as ex: raise RuntimeError(ex, WebDriverByUtils.get_bad_locator_msg(by_locator, args)) return tuple([by[0], by_locator]) @staticmethod def get_by_locator(by): return by[1] @staticmethod def get_bad_locator_msg(by_locator, args): return "Bad locator template '" + by_locator + "'. Args: " + "; ".join(args) + "." ``` #### File: elements/base/base_element.py ```python from JDI.web.selenium.elements.api_interact.get_element_module import \ GetElementModule class BaseElement: name = None parent = None avatar = None def __init__(self, by_locator=None): self.avatar = GetElementModule(by_locator, self) def get_driver(self): return self.avatar.get_driver() def __str__(self): return self.__class__.__name__ def _get_type_name(self): return self.__class__.__name__ def get_name(self): return self.name if self.name is not None else self._get_type_name() def get_parent(self): return self.parent def init(self, parent, avatar): from JDI.web.selenium.elements.cascade_init import WebCascadeInit WebCascadeInit.init_elements(self) self.set_avatar(avatar) self.set_parent(parent) return self def set_avatar(self, avatar): self.avatar = avatar return self def set_parent(self, parent): self.parent = parent def get_locator(self): return self.avatar.by_locator def __str__(self): s = "Name " + self.__class__.__name__ if "by_locator" in dir(self.avatar): if self.avatar.by_locator is not None: s += "; Locator: %s:'%s'" % (self.avatar.by_locator[0], self.avatar.by_locator[1]) if self.parent is not None: if "avatar" in dir(self.parent): if self.parent.avatar.by_locator is not None: s += "; Parent: %s:'%s'" % (self.parent.avatar.by_locator[0], self.parent.avatar.by_locator[1]) return s def has_locator(self): return self.avatar.has_locator() ``` #### File: elements/base/clickable.py ```python from JDI.core.utils.decorators import scenario from JDI.web.selenium.elements.base.element import Element class Clickable(Element): def __init__(self, by_locator=None, web_element=None): if by_locator is not None: super(Clickable, self).__init__(by_locator=by_locator) elif web_element is not None: super(Clickable, self).__init__(web_element=web_element) else: super(Clickable, self).__init__() @scenario(action_name="Click on Element for") def click(self): self.click_action() def click_action(self): self.get_element().click() ``` #### File: elements/base/clickable_text.py ```python from JDI.web.selenium.elements.base.clickable import Clickable from JDI.web.selenium.elements.common.text import Text class ClickableText(Clickable, Text): def __init__(self, by_locator=None, web_element=None): if by_locator is not None: super(ClickableText, self).__init__(by_locator=by_locator) elif web_element is not None: super(ClickableText, self).__init__(web_element=web_element) else: super(ClickableText, self).__init__() ``` #### File: elements/common/check_box.py ```python from JDI.core.utils.decorators import scenario from JDI.web.selenium.elements.base.clickable import Clickable class CheckBox(Clickable): def __init__(self, by_locator=None): super(CheckBox, self).__init__(by_locator) @scenario("Check element") def check(self): self.check_action() def check_action(self): if not self.is_check_action(): self.click() @scenario("Uncheck element") def uncheck(self): self.uncheck_action() def uncheck_action(self): if self.is_check_action(): self.click() @scenario(action_name="Get is checked") def is_checked(self): return self.is_check_action() @scenario(action_name="Set value to the element") def set_value(self, value): self.set_value_action(value) def set_value_action(self, value): if str(value).lower() in ["true", "check", "1"]: self.check() elif str(value).lower() in ["false", "uncheck", "0"]: self.uncheck() def is_check_action(self): return self.get_element().is_selected() ``` #### File: elements/common/file_input.py ```python from JDI.web.selenium.elements.common.text_field import TextField class FileInput(TextField): def __init__(self, by_locator=None): super(FileInput, self).__init__(by_locator) def set_value_action(self, value): self.input(value) ``` #### File: elements/common/image.py ```python from JDI.core.utils.decorators import scenario from JDI.web.selenium.elements.base.clickable import Clickable class Image(Clickable): def __init__(self, by_locator=None): super(Image, self).__init__(by_locator) @scenario(action_name="Get image source for Element") def get_source(self): return self.get_web_element().get_attribute("src") @scenario(action_name="Get image title for Element") def get_alt(self): return self.get_web_element().get_attribute("alt") ``` #### File: elements/complex/menu.py ```python from enum import Enum from selenium.webdriver import ActionChains from JDI.core.settings.jdi_settings import JDISettings from JDI.core.utils.decorators import scenario from JDI.web.selenium.elements.complex.selector import Selector import logging logger = logging.getLogger(__name__) class Menu(Selector): menu_levels_locators = list() separator = "|" parametrized_class = None def __init__(self, by_options_name_locator_template=None, by_all_options_names_locator=None, by_menu_levels_locators=None, parametrized_class=None): super(Menu, self).__init__(by_option_locator_template=by_options_name_locator_template, by_option_locator_all=by_all_options_names_locator) if by_all_options_names_locator is not None: self.menu_levels_locators.append(by_all_options_names_locator) if by_menu_levels_locators is not None: if not isinstance(by_menu_levels_locators, list): raise TypeError("Please supply 'by_menu_levels_locators' param as list") self.menu_levels_locators = by_menu_levels_locators if parametrized_class is not None: self.parametrized_class = parametrized_class @scenario(action_name="Select elements '%s'", values_list={"value_from_function"}) def hover_and_click(self, names): self.hover_and_click_action(names) def hover_and_click_action(self, names): if names is None or len(names) == 0: return split = names.split("|") if len(split) > len(self.menu_levels_locators): msg = "Can't hover and click on element ({0}) by value: {1}. Amount of locators ({2}) " \ "less than select path length ({3})".format(str(self), names, len(self.menu_levels_locators), len(split)) logger.error(msg) raise Exception(msg) self.hover(split[0:-1]) selector = Selector(list(self.menu_levels_locators)[-1]) selector.set_parent(self.get_parent()) selector.select(split[-1]) @scenario(action_name="Hover '%s'", values_list={"name"}) def hover(self, names): if names is None or len(names) == 0: return self.hover_action(names) def hover_action(self, names): driver = JDISettings.get_driver_factory().get_driver() self._choose_item_action(names, lambda el: ActionChains(driver).move_to_element(el).click_and_hold().perform()) def _choose_item_action(self, names, action): if len(self.menu_levels_locators) == 0 and self.has_locator(): self.menu_levels_locators.append(self.get_locator()) if len(self.menu_levels_locators) < len(names): return for i in range(0, len(names)): els = Selector(list(self.menu_levels_locators)[i]).get_web_elements() el = list(filter(lambda x: x.text == names[i], els))[0] action(el) def select_action(self, name): if isinstance(name, Enum): self.hover_and_click(name.value) else: self.hover_and_click(name) ``` #### File: complex/table/cell.py ```python from JDI.web.selenium.driver.utils.web_driver_by_utils import WebDriverByUtils from JDI.web.selenium.elements.api_interact.find_element_by import By from JDI.web.selenium.elements.base.select_element import SelectElement class Cell(SelectElement): row_index = None column_index = None table = None column_num = None row_nom = None web_element = None column_name = None row_name = None cell_locator_template = By.xpath(".//tr[{1}]/td[{0}]") def __init__(self, column_num, row_num, col_name, row_name, table, cell_locator_template=None, web_element=None, column_index=None, row_index=None): if web_element is not None: self.web_element = web_element if cell_locator_template is not None: self.cell_locator_template = cell_locator_template if column_index is not None: self.column_index = column_index + 1 if table.rows.has_header and table.rows.by_line_template is None else column_index if row_index is not None: self.row_index = row_index self.column_num = column_num self.row_num = row_num self.col_name = col_name self.row_name = row_name self.table = table def set_web_element(self, web_element): self.web_element = web_element def update_data(self, col_name, row_name): if self.column_name is None or self.column_name == "" and not (col_name is None or col_name == ""): self.column_name = col_name if self.row_name is None and self.row_name == "" and not (row_name is None or row_name == ""): self.row_name = row_name return self def get_text_action(self): return self.get().get_text() def get(self): cell = SelectElement(web_element=self.web_element) if self.web_element is not None else \ SelectElement( WebDriverByUtils.fill_by_template(self.cell_locator_template, [self.column_index, self.row_index])) cell.init(parent=self.table, avatar=cell.avatar) return cell ``` #### File: complex/table/column.py ```python from JDI.web.selenium.elements.complex.table.row_column import RowColumn class Column(RowColumn): def __init__(self, val): RowColumn.__init__(self, val) @staticmethod def column(val): return Column(val) ``` #### File: selenium/preconditions/web_preconditions.py ```python from re import match from JDI.web.selenium.settings.web_settings import WebSettings class WebPreconditions: @staticmethod def check_url(url): return match(".*/" + str(url) + "(\\?.*)?", WebSettings.get_driver_factory().get_driver().current_url) != None @staticmethod def open_uri(uri): WebSettings.get_driver_factory().get_driver().get(uri) ``` #### File: selenium/settings/web_settings.py ```python from selenium.webdriver.remote.command import Command from JDI.core.logger.jdi_logger import JDILogger from JDI.core.settings.jdi_settings import JDISettings from JDI.web.selenium.driver.selenium_driver_factory import \ SeleniumDriverFactory class WebSettings(JDISettings): logger = JDILogger() domain = JDISettings.get_domain() @staticmethod def get_driver_factory(): return JDISettings.get_driver_factory() @staticmethod def set_driver_factory(driver_factory): JDISettings._driver_factory = driver_factory @staticmethod def use_driver(options=None, capabilities=None, executor=None): driver_name = JDISettings.get_setting_by_name("driver") JDISettings._driver_factory = SeleniumDriverFactory() WebSettings.set_driver_factory(JDISettings._driver_factory) return JDISettings._driver_factory.register_driver(driver_name, options, capabilities, executor) @staticmethod def quit_browser(): driver = WebSettings.get_driver_factory().get_driver() driver.quit() try: driver.execute(Command.CLOSE) except Exception: pass @staticmethod def get_driver(): return WebSettings.get_driver_factory().get_driver() ``` #### File: page_objects/pages/home_page.py ```python from JDI.web.selenium.elements.api_interact.find_element_by import By from JDI.web.selenium.elements.common.image import Image from JDI.web.selenium.elements.common.link import Link from JDI.web.selenium.elements.common.text import Text from JDI.web.selenium.elements.composite.web_page import WebPage class HomePage(WebPage): def __init__(self, url, title): super(HomePage, self).__init__(url=url, title=title) about = Link(By.link_text("About")) logo_image = Image(By.css(".epam-logo img")) text_item = Text(By.css(".main-txt")) ``` #### File: page_objects/sections/contact_form.py ```python from JDI.web.selenium.elements.api_interact.find_element_by import By from JDI.web.selenium.elements.common.button import Button from JDI.web.selenium.elements.common.text_area import TextArea from JDI.web.selenium.elements.common.text_field import TextField from JDI.web.selenium.elements.composite.form import Form class ContactForm(Form): def __init__(self, by_locator=None): super(ContactForm, self).__init__(by_locator) first_name = TextField(By.id("Name")) last_name = TextField(By.id("LastName")) description = TextArea(By.id("Description")) submit = Button(By.xpath("//*[text()='Submit']")) def get_form_value(self): return {self.first_name.get_text(), self.last_name.get_text(), self.description.get_text()} class ContactFormTwoButtons(Form): def __init__(self, by_locator=None): super(ContactFormTwoButtons, self).__init__(by_locator) first_name = TextField(By.id("Name")) last_name = TextField(By.id("LastName")) description = TextArea(By.id("Description")) submit = Button(By.xpath("//*[text()='Submit']")) calculate = Button(By.xpath("//*[text()='Calculate']")) def get_form_value(self): return {self.first_name.get_text(), self.last_name.get_text(), self.description.get_text()} ``` #### File: test/common/label_test.py ```python import pytest from JDI.jdi_assert.testing.assertion import Assert from tests.jdi_uitests_webtests.main.enums.preconditions import Preconditions from tests.jdi_uitests_webtests.main.page_objects.epam_jdi_site import EpamJDISite from tests.jdi_uitests_webtests.test.init_tests import InitTests @pytest.mark.web class LabelTests(InitTests): label = EpamJDISite.metals_colors_page.calculate_label def setUp(self): super(LabelTests, self).setUp(self.id().split(".")[-1]) Preconditions.METALS_AND_COLORS_PAGE.is_in_state() def test_click(self): self.label.click() Assert.assert_element_test(self.label, "CALCULATE") ``` #### File: test/common/link_test.py ```python import pytest from JDI.core.settings.jdi_settings import JDISettings from JDI.jdi_assert.testing.assertion import Assert from tests.jdi_uitests_webtests.main.enums.preconditions import Preconditions from tests.jdi_uitests_webtests.main.page_objects.epam_jdi_site import EpamJDISite from tests.jdi_uitests_webtests.test.init_tests import InitTests @pytest.mark.web class LinkTests(InitTests): link = EpamJDISite.footer.about_link def setUp(self): super(LinkTests, self).setUp(self.id().split(".")[-1]) Preconditions.HOME_PAGE.is_in_state() def test_click(self): self.link.click() EpamJDISite.support_page.check_opened() def test_get_reference(self): Assert.assert_equal(self.link.get_reference(), EpamJDISite.support_page.url) def test_wait_reference_test(self): Preconditions.SUPPORT_PAGE.is_in_state() EpamJDISite.home_page.open() Assert.wait_assert_equal(lambda: self.link.get_reference(), EpamJDISite.support_page.url) ``` #### File: complex/table/search_rows_columns_test.py ```python import pytest from JDI.jdi_assert.testing.assertion import Assert from JDI.web.selenium.elements.complex.table.column import Column from JDI.web.selenium.elements.complex.table.row import Row from tests.jdi_uitests_webtests.main.enums.preconditions import Preconditions from tests.jdi_uitests_webtests.main.page_objects.epam_jdi_site import EpamJDISite from tests.jdi_uitests_webtests.test.init_tests import InitTests @pytest.mark.web class SearchRowsColumnsTests(InitTests): expected_column = ( "1:Selenium, Custom " "2:TestNG, JUnit, Custom " "3:TestNG, JUnit, Custom " "4:Log4J, TestNG log, Custom " "5:Jenkins, Allure, Custom " "6:Custom " ) expected_row = "Type:Test Runner " + "Now:TestNG, JUnit, Custom " + "Plans:MSTest, NUnit, Epam " table = EpamJDISite.support_page.support_table def setUp(self): Preconditions.SUPPORT_PAGE.is_in_state() def test_column_by_num(self): actual_column = "".join( list(map(lambda x: "{0}:{1} ".format(str(x[0]), x[1].get_text()), self.table.column(2))) ) Assert.assert_equal(actual_column, self.expected_column) def test_column_by_name(self): actual_column = "".join( list(map(lambda x: "{0}:{1} ".format(str(x[0]), x[1].get_text()), self.table.column("Now"))) ) Assert.assert_equal(actual_column, self.expected_column) def test_row_by_num(self): actual_column = "".join(list(map(lambda x: "{0}:{1} ".format(str(x[0]), x[1].get_text()), self.table.row(2)))) Assert.assert_equal(actual_column, self.expected_row) def test_row_by_name(self): actual_column = "".join(list(map(lambda x: "{0}:{1} ".format(str(x[0]), x[1].get_text()), self.table.row("2")))) Assert.assert_equal(actual_column, self.expected_row) def test_column_by_criteria_int(self): actual_column = "".join( list( map( lambda x: "{0}:{1} ".format(str(x[0]), x[1].get_text()), self.table.column("TestNG, JUnit, Custom", Row.row(3)), ) ) ) Assert.assert_equal(actual_column, self.expected_column) def test_column_by_criteria_name(self): actual_column = "".join( list( map( lambda x: "{0}:{1} ".format(str(x[0]), x[1].get_text()), self.table.column("TestNG, JUnit, Custom", Row.row("3")), ) ) ) Assert.assert_equal(actual_column, self.expected_column) def test_row_by_criteria_int(self): actual_column = "".join( list( map( lambda x: "{0}:{1} ".format(str(x[0]), x[1].get_text()), self.table.row("MSTest, NUnit, Epam", Column.column(3)), ) ) ) Assert.assert_equal(actual_column, self.expected_row) def test_row_by_criteria_string(self): actual_column = "".join( list( map( lambda x: "{0}:{1} ".format(str(x[0]), x[1].get_text()), self.table.row("MSTest, NUnit, Epam", Column.column("Plans")), ) ) ) Assert.assert_equal(actual_column, self.expected_row) ``` #### File: test/composite/form_two_buttons_test.py ```python import pytest from JDI.jdi_assert.testing.assertion import Assert from tests.jdi_uitests_webtests.main.entities.contact import Contact from tests.jdi_uitests_webtests.main.enums.preconditions import Preconditions from tests.jdi_uitests_webtests.main.page_objects.epam_jdi_site import EpamJDISite from tests.jdi_uitests_webtests.test.init_tests import InitTests @pytest.mark.web class FormTwoButtonsTests(InitTests): form = EpamJDISite.contact_form_page.contact_form_two_buttons contact = Contact("Ivan", "Ivanov", "Smart Man") def setUp(self): super(FormTwoButtonsTests, self).setUp(self.id().split(".")[-1]) Preconditions.CONTACT_PAGE.is_in_state() def test_submit_spec_button_string(self): self.form.submit_form(self.contact, "calculate") Assert.wait_assert_equal(lambda: EpamJDISite.contact_form_page.result.get_text(), str(self.contact)) ``` #### File: test/composite/page_test.py ```python import pickle import unittest import pytest from JDI.core.settings.jdi_settings import JDISettings from JDI.jdi_assert.testing.assertion import Assert from JDI.web.selenium.elements.composite.web_site import WebSite from JDI.web.selenium.settings.web_settings import WebSettings from tests.jdi_uitests_webtests.main.entities.user import User from tests.jdi_uitests_webtests.main.enums.preconditions import Preconditions from tests.jdi_uitests_webtests.main.page_objects.epam_jdi_site import EpamJDISite import logging logger = logging.getLogger(__name__) @pytest.mark.web class PageTests(unittest.TestCase): def setUp(self): logger.info("Run Test %s" % self.id().split(".")[-1]) WebSite.init(EpamJDISite) logger.info("Run Tests") EpamJDISite.home_page.open() EpamJDISite.login_page.submit(User.default()) Preconditions.CONTACT_PAGE.is_in_state() def test_refresh(self): EpamJDISite.contact_form_page.contact_form.submit.click() Assert.assert_equal(EpamJDISite.contact_form_page.result.get_text(), "Summary: 3") EpamJDISite.contact_form_page.refresh() Assert.assert_equal(EpamJDISite.contact_form_page.result.get_text(), "") EpamJDISite.contact_form_page.check_opened() def test_back(self): EpamJDISite.home_page.open() EpamJDISite.home_page.check_opened() EpamJDISite.home_page.back() EpamJDISite.contact_form_page.check_opened() def test_forward(self): EpamJDISite.home_page.open() EpamJDISite.home_page.back() EpamJDISite.contact_form_page.check_opened() EpamJDISite.contact_form_page.forward() EpamJDISite.home_page.check_opened() def test_add_cookie(self): cookie = {"name": "key", "value": "value"} self.get_driver().delete_all_cookies() Assert.assert_true(not len(self.get_driver().get_cookies())) EpamJDISite.contact_form_page.add_cookie(cookie) Assert.assert_equal(self.get_driver().get_cookie(cookie["name"])["value"], cookie["value"]) def test_clear_cache(self): cookie = {"name": "key", "value": "value"} EpamJDISite.contact_form_page.add_cookie(cookie) Assert.assert_false(not len(self.get_driver().get_cookies())) EpamJDISite.contact_form_page.clear_cache() Assert.assert_true(not len(self.get_driver().get_cookies())) def tearDown(self): WebSettings.quit_browser() def get_driver(self): return JDISettings.get_driver_factory().get_driver() ``` #### File: test/composite/search_test.py ```python import pytest from tests.jdi_uitests_webtests.main.enums.preconditions import Preconditions from tests.jdi_uitests_webtests.main.page_objects.epam_jdi_site import EpamJDISite from tests.jdi_uitests_webtests.test.init_tests import InitTests @pytest.mark.web class SearchTests(InitTests): def setUp(self): super(SearchTests, self).setUp(self.id().split(".")[-1]) Preconditions.HOME_PAGE.is_in_state() def test_fill(self): EpamJDISite.header.search_section.find("something") EpamJDISite.support_page.check_opened() ``` #### File: main/entities/entities.py ```python from tests.jdi_uitest_web_examples.main.enums.enums import JobCategories, Locations class JobSearchFilter: def __init__(self): self.keyword = "QA" self.category = JobCategories.QA self.location = Locations.MOSCOW class Attendee: def __init__(self): self.filter = JobSearchFilter() self.first_name = "Roman" self.last_name = "Iovlev" self.email = "<EMAIL>" self.country = "Russian Federation" self.city = "Moscow" self.ca = "" self.comment = "I WANT TO WORK IN EPAM!!!" def __str__(self): return self.name + " " + self.last_name class Job: def __init__(self, name, category, location): self.name = name self.category = category self.location = location class User: DEFAULT = {"UserTest", "Test Password"} name = None password = None ``` #### File: epam/custom_elements/tree_dropdown.py ```python from enum import Enum from JDI.web.selenium.elements.complex.base_selector import BaseSelector from JDI.web.selenium.elements.complex.dropdown import Dropdown class TreeDropdown(Dropdown): tree_locators = list() def __init__(self, by_select_locator, by_tree_locators=None): super(TreeDropdown, self).__init__( by_select_locator=by_select_locator, by_option_locator_template=by_select_locator ) self.tree_locators = by_tree_locators def select_action(self, names): self.expand() if isinstance(names, Enum): split = list(map(lambda x: x.strip(), names.value.split(">"))) elif isinstance(names, str): split = list(map(lambda x: x.strip(), names.split(">"))) else: raise TypeError("incorrect incorrect format") for i in range(0, len(split)): el = BaseSelector(by_option_locator_all=self.tree_locators[i]) el.set_parent(self) web_el = el.get_element(split[i]) if "dropdown-invisible-group" not in web_el.find_element_by_xpath("..").get_attribute("class"): web_el.click() ```
{ "source": "jdix531/stelligent-nu", "score": 2 }
#### File: 04-vpcs/lab-4.1.8/cfn_generator.py ```python import os # prevents bools showing up as strings os.environ['TROPO_REAL_BOOL']='true' from troposphere import Export, GetAtt, Ref, Template, Tags, Sub, Select, GetAZs, Parameter, Output, ImportValue import troposphere.ec2 as ec2 resource_tags=Tags( Name=Sub("${AWS::StackName}"), user="josh.dix.labs", stelligent_u_lesson='lesson-4-1', stelligent_u_lab='lab-1' ) # "vpc stack" def dump_base_yaml(cfn_file): template=Template() vpc_cidr_param=template.add_parameter(Parameter( "vpcCidrParam", Description="string of vpc cidr block to use", Type="String", )) subnet_cidr_param=template.add_parameter(Parameter( "subnetCidrParam", Description="string of subnet cidr block to use", Type="String", )) igw=template.add_resource( ec2.InternetGateway( "Igw", Tags=resource_tags, ) ) vpc=template.add_resource( ec2.VPC( "Vpc", CidrBlock=Ref(vpc_cidr_param), EnableDnsSupport=True, EnableDnsHostnames=True, InstanceTenancy="default", Tags=resource_tags, ) ) igwa=template.add_resource( ec2.VPCGatewayAttachment( "IgwA", VpcId=Ref(vpc), InternetGatewayId=Ref(igw), ) ) route_tbl=template.add_resource( ec2.RouteTable( "RouteTable", VpcId=Ref(vpc), Tags=resource_tags, ) ) default_route=template.add_resource( ec2.Route( "defaultRoute", DestinationCidrBlock="0.0.0.0/0", GatewayId=Ref(igw), RouteTableId=Ref(route_tbl) ) ) subnet=template.add_resource( ec2.Subnet( "Subnet", VpcId=Ref(vpc), CidrBlock=Ref(subnet_cidr_param), MapPublicIpOnLaunch=True, AvailabilityZone=Select(0, GetAZs()), Tags=resource_tags, ) ) route_tbl_asoc=template.add_resource( ec2.SubnetRouteTableAssociation( "RouteTblSubnetAsoc", RouteTableId=Ref(route_tbl), SubnetId=Ref(subnet) ) ) priv_route_tbl=template.add_resource( ec2.RouteTable( "PrivRouteTable", VpcId=Ref(vpc), Tags=resource_tags, ) ) priv_subnet=template.add_resource( ec2.Subnet( "PrivSubnet", VpcId=Ref(vpc), CidrBlock="10.10.1.0/24", MapPublicIpOnLaunch=False, AvailabilityZone=Select(0, GetAZs()), Tags=resource_tags, ) ) route_tbl_asoc=template.add_resource( ec2.SubnetRouteTableAssociation( "RouteTblPrivSubnetAsoc", RouteTableId=Ref(priv_route_tbl), SubnetId=Ref(priv_subnet) ) ) ngw_elastic_ip = template.add_resource( ec2.EIP( "MyNgwEip", Tags=resource_tags, ) ) nat_gateway = template.add_resource( ec2.NatGateway( "MyNatGateway", AllocationId=GetAtt(ngw_elastic_ip, "AllocationId"), SubnetId=Ref(subnet), ) ) private_out_route=template.add_resource( ec2.Route( "privateOutRoute", DestinationCidrBlock="0.0.0.0/0", NatGatewayId=Ref(nat_gateway), RouteTableId=Ref(priv_route_tbl) ) ) first_network_acl = template.add_resource( ec2.NetworkAcl( "MyFirstNetAcl", Tags=resource_tags, VpcId=Ref(vpc), ) ) network_out_second_acl_entry = template.add_resource( ec2.NetworkAclEntry( "MyPrivOutNetAclEntry", NetworkAclId=Ref(first_network_acl), CidrBlock="0.0.0.0/0", Protocol=-1, Egress=True, RuleAction="allow", RuleNumber=100, ) ) network_inbound_acl_entry = template.add_resource( ec2.NetworkAclEntry( "MyInNetAclEntry", NetworkAclId=Ref(first_network_acl), CidrBlock="172.16.58.3/32", Protocol=6, RuleAction="allow", RuleNumber=100, PortRange=ec2.PortRange(From=22, To=22) ) ) private_to_public_client_ports_acl_entry = template.add_resource( ec2.NetworkAclEntry( "MyPriv2PubClientPortsNetAclEntry", NetworkAclId=Ref(first_network_acl), CidrBlock="10.10.1.0/24", Protocol=6, RuleAction="allow", RuleNumber=101, PortRange=ec2.PortRange(From=1024, To=65535) ) ) public_to_internet_client_ports_acl_entry = template.add_resource( ec2.NetworkAclEntry( "MyPub2DefaultClientPortsNetAclEntry", NetworkAclId=Ref(first_network_acl), CidrBlock="0.0.0.0/0", Protocol=6, RuleAction="allow", RuleNumber=102, PortRange=ec2.PortRange(From=1024, To=65535) ) ) public_to_private_icmpv4_acl_entry = template.add_resource( ec2.NetworkAclEntry( "MyPubIcmpv4NetAclEntry", NetworkAclId=Ref(first_network_acl), CidrBlock="10.10.1.0/24", Protocol=1, Icmp=ec2.ICMP(Code=-1, Type=-1), RuleAction="allow", RuleNumber=103 ) ) second_network_acl = template.add_resource( ec2.NetworkAcl( "MySecondNetAcl", Tags=resource_tags, VpcId=Ref(vpc), ) ) network_out_second_acl_entry = template.add_resource( ec2.NetworkAclEntry( "MyPriv2InternetClientPortsNetAclEntry", NetworkAclId=Ref(second_network_acl), CidrBlock="0.0.0.0/0", Protocol=6, RuleAction="allow", RuleNumber=100, PortRange=ec2.PortRange(From=1024, To=65535) ) ) public_to_private_ssh_acl_entry = template.add_resource( ec2.NetworkAclEntry( "MyPrivSshNetAclEntry", NetworkAclId=Ref(second_network_acl), CidrBlock="10.10.0.0/24", Protocol=6, RuleAction="allow", RuleNumber=101, PortRange=ec2.PortRange(From=22, To=22) ) ) public_to_private_http_acl_entry = template.add_resource( ec2.NetworkAclEntry( "MyPrivHttpNetAclEntry", NetworkAclId=Ref(second_network_acl), CidrBlock="10.10.0.0/24", Protocol=6, RuleAction="allow", RuleNumber=102, PortRange=ec2.PortRange(From=80, To=80) ) ) private_to_public_icmpv4_acl_entry = template.add_resource( ec2.NetworkAclEntry( "MyPrivIcmpv4NetAclEntry", NetworkAclId=Ref(second_network_acl), CidrBlock="10.10.0.0/24", Protocol=1, Icmp=ec2.ICMP(Code=-1, Type=-1), RuleAction="allow", RuleNumber=103 ) ) network_out_second_acl_entry = template.add_resource( ec2.NetworkAclEntry( "MyPubOutNetAclEntry", NetworkAclId=Ref(second_network_acl), CidrBlock="0.0.0.0/0", Protocol=-1, Egress=True, RuleAction="allow", RuleNumber=100, ) ) subnet_nacl_asociation = template.add_resource( ec2.SubnetNetworkAclAssociation( "subNaclAsoc", NetworkAclId=Ref(first_network_acl), SubnetId=Ref(subnet) ) ) priv_subnet_nacl_asociation = template.add_resource( ec2.SubnetNetworkAclAssociation( "privSubNaclAsoc", NetworkAclId=Ref(second_network_acl), SubnetId=Ref(priv_subnet) ) ) template.add_output([ Output( "VpcId", Description="InstanceId of the newly created EC2 instance", Value=Ref(vpc), Export=Export("VpcId-jdix"), ), Output( "SubnetId", Description="InstanceId of the newly created EC2 instance", Value=Ref(subnet), Export=Export("SubnetId-jdix"), ), Output( "PrivSubnetId", Description="InstanceId of the newly created EC2 instance", Value=Ref(priv_subnet), Export=Export("PrivSubnetId-jdix"), ), ]) template_out_yaml(cfn_file, template) # "instance stack" def dump_lab_yaml(cfn_file): template=Template() key_name_param=template.add_parameter(Parameter( "keyName", Description="string of vpc cidr block to use", Type="String", )) ami_id_param=template.add_parameter(Parameter( "AmiId", Description="string of vpc cidr block to use", Type="AWS::EC2::Image::Id" )) instance_type_param=template.add_parameter(Parameter( "InstanceType", Description="string of vpc cidr block to use", Type="String", )) sg = template.add_resource( ec2.SecurityGroup( "MySg", GroupDescription="who cares", VpcId=ImportValue("VpcId-jdix"), Tags=resource_tags, ) ) sshIn = template.add_resource( ec2.SecurityGroupIngress( "MySshIn", CidrIp="0.0.0.0/0", IpProtocol="tcp", FromPort=22, ToPort=22, GroupId=Ref(sg) ) ) pingIn = template.add_resource( ec2.SecurityGroupIngress( "MyPingIn", CidrIp="0.0.0.0/0", IpProtocol="icmp", FromPort=-1, ToPort=-1, GroupId=Ref(sg) ) ) instance = template.add_resource( ec2.Instance( "MyInstance", ImageId=Ref(ami_id_param), SubnetId=ImportValue("SubnetId-jdix"), InstanceType=Ref(instance_type_param), KeyName=Ref(key_name_param), Tags=resource_tags, SecurityGroupIds=[Ref(sg)], ) ) priv_instance = template.add_resource( ec2.Instance( "MyPrivInstance", ImageId=Ref(ami_id_param), SubnetId=ImportValue("PrivSubnetId-jdix"), InstanceType=Ref(instance_type_param), KeyName=Ref(key_name_param), Tags=resource_tags, SecurityGroupIds=[Ref(sg)], ) ) instance_elastic_ip = template.add_resource( ec2.EIP( "MyEip", InstanceId=Ref(instance), Tags=resource_tags, ) ) template.add_output([ Output( "InstanceId", Description="InstanceId of the newly created EC2 instance", Value=Ref(instance), Export=Export("InstanceId-jdix"), ), Output( "InstancePrivateIP", Description="InstanceId of the newly created EC2 instance", Value=GetAtt(instance, "PrivateIp"), Export=Export("InstancePrivateIP-jdix"), ) ]) template_out_yaml(cfn_file, template) def template_out_yaml(cfn_file, template): with open(cfn_file, 'w') as f: f.write(template.to_yaml()) ``` #### File: 09-lambda/lab-9.2.3/dynoquery.py ```python import boto3 import json from boto3.dynamodb.conditions import Key def handler(event, context): query = json.loads(event['body'])['query'] dynamo = boto3.client('dynamodb', region_name='us-east-2') table_scan = dynamo.scan(TableName='MyDynamoTableName') matched_results = [] for item in table_scan['Items']: for event in item['logEvents']['L']: if event['M']['message']['S'].find("\"bucketName\":\"" + query + "\"") != -1: matched_results.append(event['M']['message']['S']) return { 'statusCode': 200, 'body': json.dumps(matched_results) } ```
{ "source": "jdixosnd/jsonl-to-conll", "score": 3 }
#### File: jsonl-to-conll/jsonl_to_conll/io.py ```python import json def json_to_text(jsons, output_filename): with open(output_filename, "w") as f: for each_json in jsons: for line in each_json: f.writelines(" ".join(line) + "\n") def read_jsonl(filename): result = [] with open(filename, "r") as f: for line in f.readlines(): result.append(json.loads(line)) return result ```
{ "source": "jdj2261/joystick-test", "score": 3 }
#### File: src/ums_serial/ums_serial.py ```python import time import sys, os import serial, serial.tools.list_ports from serial.serialutil import SerialException dir_path = os.path.abspath(os.path.dirname(__file__)) sys.path.append(os.path.dirname(dir_path)) class UmsSerial: def __init__(self, port: str, baudrate: int, timeout: float): self.port = port self.device = None self._serial = serial.Serial(baudrate=baudrate, timeout=timeout) def __repr__(self) -> str: return "<{cls}>".format(cls=self.__class__.__name__) def __enter__(self): return self def __exit__(self, *args, **kwargs): self.disconnect() def connect(self, test_mode) -> bool: if test_mode: return True while not self._serial.isOpen(): ports = self.find_comports() for port in ports: if self.port == port.device: self._serial.port = self.port try: self._serial.open() except SerialException as e: print(e) time.sleep(1) if self._serial.isOpen(): return True return False def disconnect(self) -> bool: try: self._serial.close() except AttributeError: print("open_comport has not been called yet!") return False else: print("Closing...") return True @staticmethod def find_comports() -> list: # Make a list of all available ports on the system available_ports = list(serial.tools.list_ports.comports()) ports = [port for port in available_ports] return ports def isOpen(self): return self._serial.isOpen() def write(self, data): if not self.isOpen(): raise PortNotOpenError() self._serial.write(serial.to_bytes(data)) @property def read(self, length): return self._serial.read(length) @property def readline(self): return self._serial.readline() ``` #### File: src/ums_xbox/protocol.py ```python class Packet: ESTOP = {'ESTOP_OFF' : 0x00 , 'ESTOP_ON' : 0x01} GEAR = {'GEAR_D' : 0x00, 'GEAR_N' : 0x01, 'GEAR_R' : 0x02} WHEEL = {'WHEEL_FRONT' : 0x00, 'WHEEL_ALL' : 0x01, 'WHEEL_REAR' : 0x02} def __init__(self): self.packet = [0 for _ in range(18)] self.s = 0x53 self.t = 0x54 self.x = 0x58 self.accel_data = [0x00, 0x00] self.brake_data = [0x00, 0x00] self.steer_data = [0x00, 0x00, 0x00, 0x00] self.alive = 0x00 self.checksum = 0x00 self.etx0 = 0x0D self.etx1 = 0x0A def makepacket(self, estop='ESTOP_OFF', gear='GEAR_N', wheel='WHEEL_FRONT') -> list: self.packet[0] = self.s self.packet[1] = self.t self.packet[2] = self.x self.packet[3] = self.ESTOP.get(estop) self.packet[4] = self.GEAR.get(gear) self.packet[5] = self.WHEEL.get(wheel) self.packet[6] = self.accel_data[0] self.packet[7] = self.accel_data[1] self.packet[8] = self.brake_data[0] self.packet[9] = self.brake_data[1] self.packet[10] = self.steer_data[0] self.packet[11] = self.steer_data[1] self.packet[12] = self.steer_data[2] self.packet[13] = self.steer_data[3] self.packet[14] = self.alive self.packet[15] = self.calc_checksum(self.packet[3:14]) self.packet[16] = self.etx0 self.packet[17] = self.etx1 return self.packet @staticmethod def calc_checksum(datas: list) -> int: checksum = sum(datas) & 0xFF return checksum ```
{ "source": "jdj2261/lets-do-mujoco", "score": 3 }
#### File: models/grippers/panda_gripper.py ```python import numpy as np from utils.mjcf_utils import xml_path_completion from models.grippers.gripper import Gripper class PandaGripperBase(Gripper): """ Gripper for Franka's Panda (has two fingers). """ def __init__(self): super().__init__(xml_path_completion("grippers/panda_gripper.xml")) def format_action(self, action): return action @property def init_qpos(self): return np.array([0.020833, -0.020833]) @property def joints(self): return ["finger_joint1", "finger_joint2"] @property def actuators(self): return ["gripper_finger_joint1", "gripper_finger_joint2"] @property def dof(self): return 2 @property def visualization_sites(self): return ["grip_site", "grip_site_cylinder"] @property def contact_geoms(self): return ["hand_collision", "finger1_collision", "finger2_collision", "finger1_tip_collision", "finger2_tip_collision"] @property def left_finger_geoms(self): return ["finger1_tip_collision"] @property def right_finger_geoms(self): return ["finger2_tip_collision"] class PandaGripper(PandaGripperBase): """ Modifies PandaGripperBase to only take one action. """ def format_action(self, action): """ 1 => closed, -1 => open """ assert len(action) == 1 return np.array([-1 * action[0], 1 * action[0]]) @property def dof(self): return 1 ``` #### File: models/grippers/robotiq_85_gripper.py ```python import numpy as np from utils.mjcf_utils import xml_path_completion from models.grippers.gripper import Gripper class Robotiq85GripperBase(Gripper): """ 6-DoF Robotiq gripper. """ def __init__(self): super().__init__(xml_path_completion("grippers/robotiq_gripper_85.xml")) def format_action(self, action): return action @property def init_qpos(self): return [3.3161, 0., 0., 0., 0., 0.] @property def joints(self): return ["finger_joint", "left_inner_finger_joint", "left_inner_knuckle_joint", "right_outer_knuckle_joint", "right_inner_finger_joint", "right_inner_knuckle_joint"] @property def actuators(self): return ["finger_joint", "right_outer_knuckle_joint"] @property def dof(self): return 6 @property def visualization_sites(self): return ["grip_site", "grip_site_cylinder"] @property def contact_geoms(self): return [ "hand_collision", "left_outer_knuckle_collision", "left_outer_finger_collision", "left_inner_finger_collision", "left_fingertip_collision", "left_inner_knuckle_collision", "right_outer_knuckle_collision", "right_outer_finger_collision", "right_inner_finger_collision", "right_fingertip_collision", "right_inner_knuckle_collision", ] @property def left_finger_geoms(self): return [ "left_outer_finger_collision", "left_inner_finger_collision", "left_fingertip_collision" ] @property def right_finger_geoms(self): return [ "right_outer_finger_collision", "right_inner_finger_collision", "right_fingertip_collision" ] class Robotiq85Gripper(Robotiq85GripperBase): """ 1-DoF variant of RobotiqGripperBase. """ def format_action(self, action): """ Maps continuous action into binary output -1 => open, 1 => closed Args: action (np.array): gripper-specific action Raises: AssertionError: [Invalid action dimension size] """ assert len(action) == 1 self.current_action = np.clip(self.current_action + self.speed * np.sign(action), -1.0, 1.0) return self.current_action @property def speed(self): return 0.01 @property def dof(self): return 1 ```
{ "source": "jdj2261/pykin", "score": 2 }
#### File: pykin/models/urdf_link.py ```python from pykin.utils.kin_utils import convert_string_to_narray, LINK_TYPES class URDF_Link: """ Class of parsing link info described in URDF """ @staticmethod def set_visual(elem_link, link_frame): """ Set link visual """ for elem_visual in elem_link.findall('visual'): URDF_Link.set_visual_origin(elem_visual, link_frame) URDF_Link.set_visual_geometry(elem_visual, link_frame) URDF_Link.set_visual_color(elem_visual, link_frame) @staticmethod def set_collision(elem_link, link_frame): """ Set link collision """ for elem_collision in elem_link.findall('collision'): URDF_Link.set_collision_origin(elem_collision, link_frame) URDF_Link.set_collision_geometry(elem_collision, link_frame) URDF_Link.set_collision_color(elem_collision, link_frame) @staticmethod def set_visual_origin(elem_visual, frame): """ Set link visual's origin """ for elem_origin in elem_visual.findall('origin'): frame.link.visual.offset.pos = convert_string_to_narray(elem_origin.attrib.get('xyz')) frame.link.visual.offset.rot = convert_string_to_narray(elem_origin.attrib.get('rpy')) @staticmethod def set_visual_geometry(elem_visual, frame): """ Set link visual's geometry """ def _set_link_visual_geom(shapes, frame): """ Set link visual's geometry """ if shapes.tag == "box": frame.link.visual.gtype = shapes.tag frame.link.visual.gparam = {"size" : convert_string_to_narray(shapes.attrib.get('size', None))} elif shapes.tag == "cylinder": frame.link.visual.gtype = shapes.tag frame.link.visual.gparam = {"length" : shapes.attrib.get('length', 0), "radius" : shapes.attrib.get('radius', 0)} elif shapes.tag == "sphere": frame.link.visual.gtype = shapes.tag frame.link.visual.gparam = {"radius" : shapes.attrib.get('radius', 0)} elif shapes.tag == "mesh": frame.link.visual.gtype = shapes.tag frame.link.visual.gparam = {"filename" : shapes.attrib.get('filename', None)} else: frame.link.visual.gtype = None frame.link.visual.gparam = None for elem_geometry in elem_visual.findall('geometry'): for shape_type in LINK_TYPES: for shapes in elem_geometry.findall(shape_type): _set_link_visual_geom(shapes, frame) @staticmethod def set_visual_color(elem_visual, frame): """ Set link visual's color """ for elem_matrial in elem_visual.findall('material'): for elem_color in elem_matrial.findall('color'): rgba = convert_string_to_narray(elem_color.attrib.get('rgba')) frame.link.visual.gparam['color'] = {elem_matrial.get('name') : rgba} @staticmethod def set_collision_origin(elem_collision, frame): """ Set link collision's origin """ for elem_origin in elem_collision.findall('origin'): frame.link.collision.offset.pos = convert_string_to_narray(elem_origin.attrib.get('xyz')) frame.link.collision.offset.rot = convert_string_to_narray(elem_origin.attrib.get('rpy')) @staticmethod def set_collision_geometry(elem_collision, frame): """ Set link collision's geometry """ def _set_link_collision_geom(shapes, frame): if shapes.tag == "box": frame.link.collision.gtype = shapes.tag frame.link.collision.gparam = {"size" : convert_string_to_narray(shapes.attrib.get('size', None))} elif shapes.tag == "cylinder": frame.link.collision.gtype = shapes.tag frame.link.collision.gparam = {"length" : shapes.attrib.get('length', 0), "radius" : shapes.attrib.get('radius', 0)} elif shapes.tag == "sphere": frame.link.collision.gtype = shapes.tag frame.link.collision.gparam = {"radius" : shapes.attrib.get('radius', 0)} elif shapes.tag == "mesh": frame.link.collision.gtype = shapes.tag frame.link.collision.gparam = {"filename" : shapes.attrib.get('filename', None)} else: frame.link.collision.gtype = None frame.link.collision.gparam = None elem_geometry = elem_collision.find('geometry') for shape_type in LINK_TYPES: for shapes in elem_geometry.findall(shape_type): _set_link_collision_geom(shapes, frame) @staticmethod def set_collision_color(elem_collision, frame): """ Set link visual's color """ for elem_matrial in elem_collision.findall('material'): for elem_color in elem_matrial.findall('color'): rgba = convert_string_to_narray(elem_color.attrib.get('rgba')) frame.link.collision.gparam['color'] = {elem_matrial.get('name') : rgba} ``` #### File: pykin/planners/cartesian_planner.py ```python import numpy as np import pykin.utils.transform_utils as t_utils import pykin.utils.kin_utils as k_utils import pykin.kinematics.jacobian as jac from pykin.planners.planner import Planner from pykin.utils.error_utils import OriValueError, CollisionError from pykin.utils.kin_utils import ShellColors as sc, logging_time from pykin.utils.log_utils import create_logger from pykin.utils.transform_utils import get_linear_interpoation, get_quaternion_slerp logger = create_logger('Cartesian Planner', "debug",) class CartesianPlanner(Planner): """ path planner in Cartesian space Args: robot(SingleArm or Bimanual): The manipulator robot type is SingleArm or Bimanual self_collision_manager: CollisionManager for robot's self collision check object_collision_manager: CollisionManager for collision check between robot and object n_step(int): Number of waypoints dimension(int): robot arm's dof waypoint_type(str): Type of waypoint ex) "Linear", "Cubic", "Circular" """ def __init__( self, robot, self_collision_manager=None, object_collision_manager=None, n_step=500, dimension=7, waypoint_type="Linear" ): super(CartesianPlanner, self).__init__( robot, self_collision_manager, object_collision_manager, dimension) self.n_step = n_step self.waypoint_type = waypoint_type self.eef_name = self.robot.eef_name self.arm = None self._dimension = dimension super()._setup_q_limits() super()._setup_eef_name() def __repr__(self): return 'pykin.planners.cartesian_planner.{}()'.format(type(self).__name__) @logging_time def get_path_in_joinst_space( self, current_q=None, goal_pose=None, waypoints=None, resolution=1, damping=0.5, epsilon=1e-12, pos_sensitivity=0.03, is_slerp=False ): self._cur_qpos = super()._change_types(current_q) self._goal_pose = super()._change_types(goal_pose) init_fk = self.robot.kin.forward_kinematics(self.robot.desired_frames, self._cur_qpos) self._cur_pose = self.robot.get_eef_pose(init_fk) self._resolution = resolution self._damping = damping self._pos_sensitivity = pos_sensitivity self._is_slerp = is_slerp if waypoints is None: waypoints = self.generate_waypoints(is_slerp) paths, target_positions = self._compute_path_and_target_pose(waypoints, epsilon) return paths, target_positions def _compute_path_and_target_pose(self, waypoints, epsilon): cnt = 0 total_cnt = 10 while True: cnt += 1 collision_pose = {} cur_fk = self.robot.kin.forward_kinematics(self.robot.desired_frames, self._cur_qpos) current_transform = cur_fk[self.eef_name].h_mat eef_position = cur_fk[self.eef_name].pos paths = [self._cur_qpos] target_positions = [eef_position] for step, (pos, ori) in enumerate(waypoints): target_transform = t_utils.get_h_mat(pos, ori) err_pose = k_utils.calc_pose_error(target_transform, current_transform, epsilon) J = jac.calc_jacobian(self.robot.desired_frames, cur_fk, self._dimension) J_dls = np.dot(J.T, np.linalg.inv(np.dot(J, J.T) + self._damping**2 * np.identity(6))) dq = np.dot(J_dls, err_pose) self._cur_qpos = np.array([(self._cur_qpos[i] + dq[i]) for i in range(self._dimension)]).reshape(self._dimension,) is_collision_free = self._collision_free(self._cur_qpos) if not is_collision_free: _, name = self.self_c_manager.in_collision_other(other_manager=self.object_c_manager, return_names=True) collision_pose[step] = (name, np.round(target_transform[:3,3], 6)) continue if not self._check_q_in_limits(self._cur_qpos): continue cur_fk = self.robot.kin.forward_kinematics(self.robot.desired_frames, self._cur_qpos) current_transform = cur_fk[self.robot.eef_name].h_mat if step % (1/self._resolution) == 0 or step == len(waypoints)-1: paths.append(self._cur_qpos) target_positions.append(pos) err = t_utils.compute_pose_error(self._goal_pose[:3], cur_fk[self.eef_name].pos) if collision_pose.keys(): logger.error(f"Failed Generate Path.. Collision may occur.") for name, pose in collision_pose.values(): logger.warning(f"\n\tCollision Names : {name} \n\tCollision Position : {pose}") # logger.warning(f"Collision Position : {pose}") raise CollisionError("Conflict confirmed. Check the object position!") if err < self._pos_sensitivity: logger.info(f"Generate Path Successfully!! Error is {err:6f}") break if cnt > total_cnt: logger.error(f"Failed Generate Path.. The number of retries of {cnt} exceeded") paths, target_positions = None, None break logger.error(f"Failed Generate Path.. Position Error is {err:6f}") print(f"{sc.BOLD}Retry Generate Path, the number of retries is {cnt}/{total_cnt} {sc.ENDC}\n") return paths, target_positions # TODO # generate cubic, circular waypoints def generate_waypoints(self, is_slerp): if self.waypoint_type == "Linear": waypoints = [path for path in self._get_linear_path(self._cur_pose, self._goal_pose, is_slerp)] if self.waypoint_type == "Cubic": pass if self.waypoint_type == "Circular": pass return waypoints def get_waypoints(self): return self.waypoints def _change_pose_type(self, pose): ret = np.zeros(7) ret[:3] = pose[:3] if isinstance(pose, (list, tuple)): pose = np.asarray(pose) ori = pose[3:] if ori.shape == (3,): ori = t_utils.get_quaternion_from_rpy(ori) ret[3:] = ori elif ori.shape == (4,): ret[3:] = ori else: raise OriValueError(ori.shape) return ret def _get_linear_path(self, init_pose, goal_pose, is_slerp): for step in range(1, self.n_step + 1): delta_t = step / self.n_step pos = get_linear_interpoation(init_pose[:3], goal_pose[:3], delta_t) ori = init_pose[3:] if is_slerp: ori = get_quaternion_slerp(init_pose[3:], goal_pose[3:], delta_t) yield (pos, ori) def _get_cubic_path(self): pass def _get_cicular_path(self): pass @property def resolution(self): return self._resolution @resolution.setter def resolution(self, resolution): self._resolution = resolution @property def damping(self): return self._damping @damping.setter def damping(self, damping): self._damping = damping @property def pos_sensitivity(self): return self._pos_sensitivity @pos_sensitivity.setter def pos_sensitivity(self, pos_sensitivity): self._pos_sensitivity = pos_sensitivity @property def is_slerp(self): return self._is_slerp @is_slerp.setter def is_slerp(self, is_slerp): self._is_slerp = is_slerp ``` #### File: pykin/planners/planner.py ```python import numpy as np from abc import abstractclassmethod, ABCMeta from pykin.utils.log_utils import create_logger from pykin.utils.error_utils import CollisionError, NotFoundError logger = create_logger('Cartesian Planner', "debug",) class Planner(metaclass=ABCMeta): """ Base Planner class Args: robot (SingleArm or Bimanual): The manipulator robot type is SingleArm or Bimanual self_collision_manager: CollisionManager for robot's self collision check object_collision_manager: CollisionManager for collision check between robot and object dimension(int): robot arm's dof """ def __init__( self, robot, self_collision_manager, object_collision_manager, dimension ): self.robot = robot self._dimension = dimension if self_collision_manager is None: logger.warning(f"This Planner does not do collision checking") self.self_c_manager = None else: self.self_c_manager = self_collision_manager check_collision = self.self_c_manager.in_collision_internal() if check_collision: raise CollisionError("Conflict confirmed. Check the joint settings again") self.object_c_manager = object_collision_manager def __repr__(self) -> str: return 'pykin.planners.planner.{}()'.format(type(self).__name__) @staticmethod def _change_types(datas): """ """ if not isinstance(datas, (np.ndarray)): datas = np.array(datas) if datas.size == 0: raise NotFoundError("Make sure set current or goal joints..") return datas def _setup_q_limits(self): """ Setup joint limits (lower and upper) """ if self.arm is not None: self.q_limits_lower = self.robot.joint_limits_lower[self.arm] self.q_limits_upper = self.robot.joint_limits_upper[self.arm] else: self.q_limits_lower = self.robot.joint_limits_lower self.q_limits_upper = self.robot.joint_limits_upper def _check_q_in_limits(self, q_in): """ check q_in within joint limits If q_in is in joint limits, return True otherwise, return False Returns: bool(True or False) """ return np.all([q_in >= self.q_limits_lower, q_in <= self.q_limits_upper]) def _setup_eef_name(self): """ Setup end-effector name """ if self.arm is not None: self.eef_name = self.robot.eef_name[self.arm] def _collision_free(self, new_q, is_attached=False): """ Check collision free between robot and objects Args: new_q(np.array): new joint angles Returns: result(bool): If collision free, return True names(set of 2-tup): The set of pairwise collisions. """ if self.self_c_manager is None: return True transformations = self._get_transformations(new_q) if is_attached: grasp_pose = transformations[self.robot.eef_name].h_mat obj_pose = np.dot(grasp_pose, self.T_between_gripper_and_obj) self.self_c_manager.set_transform(self.obj_info["name"], obj_pose) for link, transformations in transformations.items(): if link in self.self_c_manager._objs: transform = transformations.h_mat A2B = np.dot(transform, self.robot.links[link].visual.offset.h_mat) self.self_c_manager.set_transform(name=link, transform=A2B) is_self_collision = self.self_c_manager.in_collision_internal(return_names=False, return_data=False) is_object_collision = self.self_c_manager.in_collision_other(other_manager=self.object_c_manager, return_names=False) if is_self_collision or is_object_collision: return False return True @abstractclassmethod def get_path_in_joinst_space(self): """ write planner algorithm you want """ raise NotImplementedError @abstractclassmethod def _get_linear_path(self, init_pose, goal_pose): raise NotImplementedError def _get_transformations(self, q_in): """ Get transformations corresponding to q_in Args: q_in(np.array): joint angles Returns: transformations(OrderedDict) """ if self.robot.robot_name == "sawyer": q_in = np.concatenate((np.zeros(1), q_in)) if self.arm is not None: transformations = self.robot.forward_kin(q_in, self.robot.desired_frames[self.arm]) else: transformations = self.robot.forward_kin(q_in) return transformations @property def dimension(self): return self._dimension @dimension.setter def dimension(self, dimesion): self._dimension = dimesion @property def cur_qpos(self): return self._cur_qpos @cur_qpos.setter def cur_qpos(self, cur_qpos): self._cur_qpos = cur_qpos @property def goal_pose(self): return self._goal_pose @goal_pose.setter def goal_pose(self, goal_pose): self._goal_pose = goal_pose ``` #### File: pykin/robots/bimanual.py ```python import numpy as np from pykin.robots.robot import Robot from pykin.utils.error_utils import NotFoundError class Bimanual(Robot): """ Initializes a bimanual robot simulation object. Args: fname (str): path to the urdf file. offset (Transform): robot init offset """ def __init__( self, fname: str, offset=None ): super(Bimanual, self).__init__(fname, offset) self._setup_input2dict() self._set_joint_limits_upper_and_lower() def _setup_input2dict(self): """ Setup dictionary name """ self._base_name = self._input2dict("") self._eef_name = {} self.desired_base_frame = self._input2dict(None) self.desired_frames = self._input2dict(None) self._frames = self._input2dict(None) self._revolute_joint_names = self._input2dict(None) self._target_pose = self._input2dict(None) self.joint_limits_lower = self._input2dict(None) self.joint_limits_upper = self._input2dict(None) def _input2dict(self, inp): """ Helper function that converts an input that is either a single value or a list into a dict with keys for each arm: "right", "left" Args: inp (str or list or None): Input value to be converted to dict :Note: If inp is a list, then assumes format is [right, left] Returns: dict: Inputs mapped for each robot arm """ # First, convert to list if necessary if not isinstance(inp, list): inp = [inp for _ in range(2)] # Now, convert list to dict and return return {key: value for key, value in zip(self._arms, inp)} def _set_joint_limits_upper_and_lower(self): """ Set joint limits upper and lower """ limits_lower = [] limits_upper = [] for joint, (limit_lower, limit_upper) in self.joint_limits.items(): limits_lower.append((joint, limit_lower)) limits_upper.append((joint, limit_upper)) for arm in self._arms: self.joint_limits_lower[arm] = [ limit_lower for joint, limit_lower in limits_lower if arm in joint] self.joint_limits_upper[arm] = [ limit_upper for joint, limit_upper in limits_upper if arm in joint] def setup_link_name(self, base_name="", eef_name=None): """ Sets robot's link name Args: base_name (str): reference link name eef_name (str): end effector name """ if "right" in eef_name: self._base_name["right"] = base_name self._eef_name["right"] = eef_name self._set_desired_base_frame("right") self._set_desired_frame("right") if "left" in eef_name: self._base_name["left"] = base_name self._eef_name["left"] = eef_name self._set_desired_base_frame("left") self._set_desired_frame("left") def _set_desired_base_frame(self, arm): """ Sets robot's desired base frame Args: arm (str): robot arm (right or left) """ if self.base_name[arm] == "": self.desired_base_frame[arm] = self.root else: self.desired_base_frame[arm] = super().find_frame(self.base_name[arm] + "_frame") def _set_desired_frame(self, arm): """ Sets robot's desired frame Args: arm (str): robot arm (right or left) """ self.desired_frames[arm] = super().generate_desired_frame_recursive( self.desired_base_frame[arm], self.eef_name[arm]) self._frames[arm] = self.desired_frames[arm] self._revolute_joint_names[arm] = super().get_revolute_joint_names(self._frames[arm]) self._target_pose[arm] = np.zeros(len(self._revolute_joint_names[arm])) def inverse_kin(self, current_joints, target_pose, method="LM", maxIter=1000): """ Returns joint angles obtained by computing IK Args: current_joints (sequence of float): input joint angles target_pose (np.array): goal pose to achieve method (str): two methods to calculate IK (LM: Levenberg-marquardt, NR: Newton-raphson) maxIter (int): Maximum number of calculation iterations Returns: joints (np.array): target joint angles """ if not isinstance(target_pose, dict): raise TypeError("Be sure to input the target pose in dictionary form.") joints = {} self._frames = self._input2dict(None) self._revolute_joint_names = self._input2dict(None) for arm in target_pose.keys(): if self.eef_name[arm]: self._set_desired_frame(arm) self._target_pose[arm] = self._convert_target_pose_type_to_npy(target_pose[arm]) joints[arm] = self.kin.inverse_kinematics( self._frames[arm], current_joints, self._target_pose[arm], method, maxIter) return joints def _convert_target_pose_type_to_npy(self, value): """ convert input type to numpy array Args: value(list or tupe) Returns: np.array """ if isinstance(value, (list, tuple)): value = np.array(value) return value.flatten() def get_eef_pose(self, transformations): """ Compute end effector's pose Args: transformations(OrderedDict) Returns: vals(dict) """ vals = {} for arm in self.arm_type: if self.eef_name[arm]: vals[arm] = np.concatenate((transformations[self.eef_name[arm]].pos, transformations[self.eef_name[arm]].rot)) return vals @property def _arms(self): """ Returns name of arms used as naming convention throughout this module Returns: 2-tuple: ('right', 'left') """ return ("right", "left") @property def arm_type(self): """ Return arm type If number of eef_name is two, return tuple type("right", "left) otherwise, return list type(["right] or ["left"]) Returns: arm types (tuple or list) """ if len(self._eef_name.keys()) == 2: return self._arms elif "right" in self.eef_name.keys(): return ["right"] elif "left" in self.eef_name.keys(): return ["left"] else: raise NotFoundError("Can not find robot's arm type") @property def base_name(self): return self._base_name @property def eef_name(self): return self._eef_name @property def active_joint_names(self): return self._revolute_joint_names ``` #### File: pykin/utils/error_utils.py ```python class NotFoundError(Exception): """ Class of custom Exception about Not Found Args: data (all types): input data """ def __init__(self, data): self.data = data def __str__(self): return f"Not Found {self.data}, please check the name again" class CollisionError(Exception): """ Class of custom Exception about Collision Args: data (all types): input data """ def __init__(self, data): self.data = data def __str__(self): return f"Check the collision.. {self.data}, please check settings again" class LimitJointError(Exception): """ Class of custom Exception about Collision Args: data (all types): input data """ def __init__(self, *data): self.data = data def __str__(self): return f"Check the joints.. {self.data}, please check current joints setting again" class OriValueError(Exception): """ Class of custom Exception about Orientation Value Args: data (all types): input data """ def __init__(self, data): self.data = data def __str__(self): return "Expecting the shape of the orientation to be (3,), (3,3), or (4,), instead got:""{}".format(self.data) ``` #### File: pykin/utils/kin_utils.py ```python import numpy as np import time from pykin.kinematics.transform import Transform JOINT_TYPE_MAP = {'revolute' : 'revolute', 'fixed' : 'fixed', 'prismatic' : 'prismatic'} LINK_TYPE_MAP = {'cylinder' : 'cylinder', 'sphere' : 'sphere', 'box' : 'box', 'mesh' : 'mesh'} LINK_TYPES = ['box', 'cylinder', 'sphere', 'capsule', 'mesh'] class ShellColors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKCYAN = '\033[96m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' class Baxter: left_e0_fixed_offset = Transform(rot=[0.5, 0.5, 0.5, 0.5], pos=[0.107, 0., 0. ]) left_w0_fixed_offset = Transform(rot=[0.5, 0.5, 0.5, 0.5], pos=[0.088, 0., 0. ]) right_e0_fixed_offset = Transform(rot=[0.5, 0.5, 0.5, 0.5], pos=[0.107, 0., 0. ]) right_w0_fixed_offset = Transform(rot=[0.5, 0.5, 0.5, 0.5], pos=[0.088, 0., 0. ]) @staticmethod def add_visual_link(link_transforms, f): if "left_lower_shoulder" in f.link.name: link_transforms["left_upper_elbow_visual"] = np.dot(link_transforms["left_lower_shoulder"], Baxter.left_e0_fixed_offset) if "left_lower_elbow" in f.link.name: link_transforms["left_upper_forearm_visual"] = np.dot(link_transforms["left_lower_elbow"], Baxter.left_w0_fixed_offset) if "right_lower_shoulder" in f.link.name: link_transforms["right_upper_elbow_visual"] = np.dot(link_transforms["right_lower_shoulder"], Baxter.right_e0_fixed_offset) if "right_lower_elbow" in f.link.name: link_transforms["right_upper_forearm_visual"] = np.dot(link_transforms["right_lower_elbow"], Baxter.right_w0_fixed_offset) def convert_thetas_to_dict(active_joint_names, thetas): """ Check if any pair of objects in the manager collide with one another. Args: active_joint_names (list): actuated joint names thetas (sequence of float): If not dict, convert to dict ex. {joint names : thetas} Returns: thetas (dict): Dictionary of actuated joint angles """ if not isinstance(thetas, dict): assert len(active_joint_names) == len(thetas ), f"""the number of robot joint's angle is {len(active_joint_names)}, but the number of input joint's angle is {len(thetas)}""" thetas = dict((j, thetas[i]) for i, j in enumerate(active_joint_names)) return thetas def logging_time(original_fn): """ Decorator to check time of function """ def wrapper_fn(*args, **kwargs): start_time = time.time() result = original_fn(*args, **kwargs) end_time = time.time() print(f"WorkingTime[{original_fn.__name__}]: {end_time-start_time:.4f} sec\n") return result return wrapper_fn def convert_transform(origin): """ Args: origin (None or Transform): offset of object Returns: Transform: Returns Transform if origin is None """ if origin is None: return Transform() else: return Transform(rot=origin.rot, pos=origin.pos) def convert_string_to_narray(str_input): """ Args: str_input (str): string Returns: np.array: Returns string to np.array """ if str_input is not None: return np.array([float(data) for data in str_input.split()]) def calc_pose_error(tar_pose, cur_pose, EPS): """ Args: tar_pos (np.array): target pose cur_pos (np.array): current pose EPS (float): epsilon Returns: np.array: Returns pose error """ pos_err = np.array([tar_pose[:3, -1] - cur_pose[:3, -1]]) rot_err = np.dot(cur_pose[:3, :3].T, tar_pose[:3, :3]) w_err = np.dot(cur_pose[:3, :3], rot_to_omega(rot_err, EPS)) return np.vstack((pos_err.T, w_err)) def rot_to_omega(R, EPS): # referred p36 el = np.array( [[R[2, 1] - R[1, 2]], [R[0, 2] - R[2, 0]], [R[1, 0] - R[0, 1]]] ) norm_el = np.linalg.norm(el) if norm_el > EPS: w = np.dot(np.arctan2(norm_el, np.trace(R) - 1) / norm_el, el) elif (R[0, 0] > 0 and R[1, 1] > 0 and R[2, 2] > 0): w = np.zeros((3, 1)) else: w = np.dot(np.pi/2, np.array([[R[0, 0] + 1], [R[1, 1] + 1], [R[2, 2] + 1]])) return w def limit_joints(joint_angles, lower, upper): """ Set joint angle limit Args: joint_angles (sequence of float): joint angles lower (sequence of float): lower limit upper (sequence of float): upper limit Returns: joint_angles (sequence of float): Returns limited joint angle """ if lower is not None and upper is not None: for i in range(len(joint_angles)): if joint_angles[i] < lower[i]: joint_angles[i] = lower[i] if joint_angles[i] > upper[i]: joint_angles[i] = upper[i] return joint_angles ```
{ "source": "jdj2261/robosuite", "score": 2 }
#### File: demo/99_etc/joint_control.py ```python import numpy as np import robosuite as suite def relative2absolute_joint_pos_commands(goal_joint_pos, robot, kp, kd): assert len(goal_joint_pos) == robot.dof action = [0 for _ in range(robot.dof)] curr_joint_pos = robot._joint_positions curr_joint_vel = robot._joint_velocities for i in range(robot.dof): action[i] = (goal_joint_pos[i] - curr_joint_pos[i]) * kp - curr_joint_vel[ i ] * kd return action result_qpos = np.array([np.pi / 2, 0, 0, 0, 0, 0]) def robosuite_simulation_controller_test(env, sim_time): # Reset the env env.reset() robot = env.robots[0] kp = 2 kd = 1.2 cnt = 0 is_reached = False while True: # if env.done: # break env.render() action = relative2absolute_joint_pos_commands( result_qpos, robot, kp, kd ) pose_error = np.array([abs(result_qpos[i] - robot._joint_positions[i]) for i in range(robot.dof)]) # print(pose_error) if np.all(pose_error< 1e-2): cnt += 1 print("is_reached") is_reached = True if is_reached: if cnt%2 == 1: result_qpos[0] = 0 elif cnt%2 == 0: result_qpos[0] = np.pi/2 observation, reward, done, info = env.step(action) # close window env.close() env = suite.make( "Lift", robots="UR5e", gripper_types=None, has_renderer=True, has_offscreen_renderer=False, use_camera_obs=False, use_object_obs=False, control_freq=50, render_camera=None, horizon=2000, ) robosuite_simulation_controller_test(env, env.horizon) ```
{ "source": "jdjame/pyspark-boilerplate-mehdio", "score": 2 }
#### File: jdjame/pyspark-boilerplate-mehdio/setup.py ```python import os import shutil import zipfile from setuptools import setup, find_packages from distutils.cmd import Command from distutils.command.install import install from pipenv.project import Project from pipenv.utils import convert_deps_to_pip import subprocess import os PACKAGE_NAME = 'pyspark_boilerplate_mehdio' SRC_FOLDER_NAME = 'src' VERSION = '0.2' ARTIFACTORY_USER = os.environ['ARTIFACTORY_USER'] ARTIFACTORY_API_KEY = os.environ['ARTIFACTORY_API_KEY'] ARTI_URI = "https://my.jfrog.artifactory/artifactory" REPOSITORY = "my-repo-name" pfile = Project(chdir=False).parsed_pipfile requirements = convert_deps_to_pip(pfile['packages'], r=False) test_requirements = convert_deps_to_pip(pfile['dev-packages'], r=False) def zip_dir(directory, zipname, delete_flag=False): """ Compress a directory (ZIP file). """ if os.path.exists(directory): outZipFile = zipfile.ZipFile(zipname, 'w', zipfile.ZIP_DEFLATED) # The root directory within the ZIP file. rootdir = os.path.basename(directory) for dirpath, dirnames, filenames in os.walk(directory): for filename in filenames: # Write the file named filename to the archive, # giving it the archive name 'arcname'. filepath = os.path.join(dirpath, filename) parentpath = os.path.relpath(filepath, directory) arcname = os.path.join(rootdir, parentpath) outZipFile.write(filepath, arcname) if delete_flag is True : print("deleting dir") print(directory) shutil.rmtree(directory) outZipFile.close() class BdistSpark(Command): description = "create deps and project distribution files for spark_submit" user_options = [ ('requirement=', 'r', 'Install from the given requirements file. [default: requirements.txt]'), ('wheel-dir=', 'w', 'Build deps into dir. [default: spark_dist]') ] def initialize_options(self): self.requirement = 'Pipfile' self.wheel_dir = PACKAGE_NAME+'-'+VERSION+'_spark_dist' def finalize_options(self): assert os.path.exists(self.requirement), ( "requirements file '{}' does not exist.".format(self.requirement)) def run(self): if os.path.exists(self.wheel_dir): shutil.rmtree(self.wheel_dir) temp_dir = os.path.join(self.wheel_dir, '.temp') os.makedirs(temp_dir) # Install deps from pipfile to spark dist folder print("Copying python deps as zip file") deps_name_folder = self.wheel_dir+"/"+PACKAGE_NAME+"-"+VERSION+"-deps" deps_install_cmd = "pipenv run pip install -r <(pipenv lock -r) --target "+deps_name_folder subprocess.call(deps_install_cmd, shell=True, executable='/bin/bash') zip_dir(deps_name_folder, deps_name_folder+".zip", True) # Copying Source files cmd = self.reinitialize_command('bdist_wheel') cmd.dist_dir = temp_dir self.run_command('bdist_wheel') # make final rearrangements for dirname, _, files in os.walk(self.wheel_dir): for fname in files: if not fname.startswith(PACKAGE_NAME): os.remove(os.path.join(self.wheel_dir, fname)) else: if fname.endswith('whl'): os.renames(os.path.join(temp_dir, fname), os.path.join(self.wheel_dir, '{}-{}.zip'.format(PACKAGE_NAME, VERSION))) # Copy the main.py file main_src_file = SRC_FOLDER_NAME+"/main.py" main_dest_file = self.wheel_dir+"/main.py" print("Copying main.py entry file in spark_dist from "+main_src_file+ " to "+main_dest_file) shutil.copyfile(main_src_file, main_dest_file) # Copy the jars jar_src = "jars" print("Copying jars... from /jars folder") subprocess.call("cp -r "+jar_src+" "+self.wheel_dir+"/", shell=True, executable='/bin/bash') zip_dir(self.wheel_dir, self.wheel_dir+".zip", False) # Removing cache and build folder print("Removing cache and build folders...") if os.path.exists("build"): shutil.rmtree("build") if os.path.exists(PACKAGE_NAME+".egg-info"): shutil.rmtree(PACKAGE_NAME+".egg-info") print("*** Spark build is available at : "+self.wheel_dir+ " and also as single zip file ! ***") class PublishArtifact(install): description = "Publish Artifact" user_options = install.user_options + [ ("foo=", None, "jfrog user token as <EMAIL>:mytoken"), ] def run(self): print("Publishing Artifact ...") wheel_dir_zip = PACKAGE_NAME+'-'+VERSION+'_spark_dist.zip' pre_path_build = PACKAGE_NAME+"/"+VERSION publish_cmd = ''' curl -u {artifactory_user}:{artifactory_api_key} \ -i -X PUT \ -T {wheel_dir_zip} \ {arti_uri}/{repository}/{pre_path_build}/{wheel_dir_zip}'''.format(artifactory_user=ARTIFACTORY_USER, artifactory_api_key=ARTIFACTORY_API_KEY, arti_uri=ARTI_URI, repository=REPOSITORY, pre_path_build=pre_path_build, wheel_dir_zip=wheel_dir_zip) subprocess.call(publish_cmd, shell=True, executable='/bin/bash') print("Publishing Artifact successful on {arti_uri}/{wheel_dir_zip}!".format(wheel_dir_zip=wheel_dir_zip, arti_uri=ARTI_URI)) setup( name=PACKAGE_NAME, version=VERSION, description='an example project that shows how to build spark_submit deps', classifiers=[ 'Development Status :: 4 - Beta', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.7', ], author='<NAME>', author_email='<EMAIL>', packages=find_packages(include=[SRC_FOLDER_NAME, SRC_FOLDER_NAME+'.*'], exclude=['*.test.*', '*.test']), install_requires=requirements, tests_require=test_requirements, package_data={ PACKAGE_NAME: ['../Pipfile'] }, cmdclass={ "bdist_spark": BdistSpark, "publish_artifact": PublishArtifact } ) ``` #### File: src/helpers/logging.py ```python import os import logging import sys class Log4j(object): """Wrapper class for Log4j JVM object. :param spark: SparkSession object. """ def __init__(self, spark): # get spark app details with which to prefix all messages app_id = spark.sparkContext.getConf().get('spark.app.id') app_name = spark.sparkContext.getConf().get('spark.app.name') log4j = spark._jvm.org.apache.log4j message_prefix = '<' + app_name + ' ' + app_id + '>' self.logger = log4j.LogManager.getLogger(message_prefix) def error(self, message): """Log an error. :param: Error message to write to log :return: None """ self.logger.error(message) return None def warn(self, message): """Log an warning. :param: Error message to write to log :return: None """ self.logger.warn(message) return None def info(self, message): """Log information. :param: Information message to write to log :return: None """ self.logger.info(message) return None class YarnLogger: @staticmethod def setup_logger(): if not 'LOG_DIRS' in os.environ: sys.stderr.write('Missing LOG_DIRS environment variable, pyspark logging disabled') return file = os.environ['LOG_DIRS'].split(',')[0] + '/pyspark.log' logging.basicConfig(filename=file, level=logging.INFO, format='%(asctime)s.%(msecs)03d %(levelname)s %(module)s - %(funcName)s: %(message)s') def __getattr__(self, key): return getattr(logging, key) ```
{ "source": "jdjebi/PassChecker", "score": 3 }
#### File: jdjebi/PassChecker/passchecker.py ```python import os import sys import re import subprocess from tkinter import * from tkinter import ttk from PIL import Image, ImageTk def run(cmd): return subprocess.Popen(cmd, universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT,shell=True) def get_profiles(): get_profiles_name = "netsh wlan show profiles" get_profile_pass = 'netsh wlan show profile name="{}" key=clear' output = run(get_profiles_name) # Exécute la commande get_profiles_name_cmd results = re.findall(r"(\?)?: (?P<name>.*)", output.stdout.read()) # Récupération du nom des profiles dans output.stdout Profiles = [] #Liste des profiles Nom + Mot de passe max_ = None for i, result in enumerate(results): profile_name = result[1] if profile_name != '': output = run(get_profile_pass.format(profile_name)) # Exécution de la commande get_profile_pass lines = output.stdout.readlines() key_line = lines[-11:-10][0] # Extraction de la ligne du mot de passe key = re.search(r": (?P<pass>.*)",key_line) # Extraction du mot de passe Profiles.append((profile_name,key.group('pass'))) # Ajout du couple (nom,mot de passe) à la liste des profiles if max_ and i >= max_: break return Profiles class Win(Tk): def __init__(self): super().__init__() self.title("Mointi PassChecker") self.container = Frame(self) self.table = ttk.Treeview(self.container, columns=('name','pass')) self.current_name = StringVar() self.current_pass = StringVar() self.initUI() self.update() self.bluild_content() def initUI(self): table = self.table container = self.container img_wifi = Image.open("icons/wifi.png") img_key = Image.open("icons/key.png") self.wifi = ImageTk.PhotoImage(img_wifi) self.key = ImageTk.PhotoImage(img_key) # Colonnes table.column("#0", width=60, stretch=NO) table.heading('#0', text='n°') table.heading('name', text='Nom du profil',image=self.wifi) table.heading('pass', text='Mot de passe', image=self.key) #TConfiguration des tags table.tag_configure("bg1", background="#E8E8E8") table.tag_configure("bg2", background="#fff") table.tag_bind('item', '<ButtonRelease-1>', self.selectItem) vsb = ttk.Scrollbar(container,orient="vertical",command=self.table.yview) self.table.configure(yscrollcommand=vsb.set) #Footer Footer = Frame(self, height=30, highlightbackground="gray", highlightthickness=1, padx=10, pady=10) profile_label = Label(Footer, text="Nom du profil:") pass_label = Label(Footer, text="Mot de passe:") profile_entry = ttk.Entry(Footer,textvariable=self.current_name) pass_entry = ttk.Entry(Footer,textvariable=self.current_pass) #Placement container.pack(side=TOP, fill=BOTH, expand=1) table.pack(side=LEFT, fill=BOTH, expand=1) vsb.pack(side=RIGHT, fill=Y) Footer.pack(side=BOTTOM, fill=X) profile_label.grid(row=0, column=0, sticky=W) profile_entry.grid(row=1, column=0, padx=5) pass_label.grid(row=0, column=1, sticky=W) pass_entry.grid(row=1, column=1) def selectItem(self,e): curItem = self.table.focus() val = self.table.item(curItem)['values'] self.current_name.set(val[0]) self.current_pass.set(val[1]) def bluild_content(self): for i, profile in enumerate(get_profiles()): tag = "bg1" name = profile[0] pass_ = profile[1] if i % 2 : tag = "bg2" if pass_ == '1': pass_ = "<PASSWORD>" self.table.insert('', 'end', text=str(i+1), values=(name,pass_), tags=('item',tag)) def main(): app = Win() app.mainloop() if __name__ == "__main__": main() ```
{ "source": "JDJGInc/Da-Discord-Bot", "score": 3 }
#### File: JDJGInc/Da-Discord-Bot/ClientConfig.py ```python import discord import re from discord.ext import commands async def get_prefix(client,message): extras = ["ddb*"] comp = re.compile("^(" + "|".join(map(re.escape, extras)) + ").*", flags=re.I) match = comp.match(message.content) if match is not None: extras.append(match.group(1)) return commands.when_mentioned_or(*extras)(client, message) client = commands.Bot(command_prefix=(get_prefix),intents = discord.Intents.all()) ```
{ "source": "JDJGInc/DeveloperGlobalChat", "score": 2 }
#### File: DeveloperGlobalChat/cogs/global.py ```python from discord.ext import commands import utils import cool_utils import discord, re, random, asyncio from better_profanity import profanity import traceback class GlobalChat(commands.Cog): def __init__(self, bot): self.bot = bot self._cd = commands.CooldownMapping.from_cooldown(3.0, 15.0, commands.BucketType.user) async def cog_command_error(self, ctx, error): if ctx.command and not ctx.command.has_error_handler(): await ctx.send(error) import traceback traceback.print_exc() #I need to fix all cog_command_error async def message_converter(self, message : discord.Message): args = message.content args = args or "Test Content" try: for x in re.findall(r'<@!?([0-9]{15,20})>', args): user = await self.bot.try_user(int(x)) print(f"{re.match(rf'<@!?({x})>', args).group()}") args = args.replace(f"{re.match(rf'<@!?({x})>', args).group()}", f"@{user}") #fix issue except Exception as e: traceback.print_exc() print(f"error occured as {e}.") ctx = await self.bot.get_context(message) args = await commands.clean_content().convert(ctx, args) args = profanity.censor(args, censor_char = "#") args = cool_utils.Links.censor(content=args, censor="#") return args @commands.Cog.listener() async def on_message(self, message): #find out how to edit edited messages or who deleted them to enable syncing. ctx = await self.bot.get_context(message) if message.channel.id in self.bot.linked_channels and not message.author.bot and not ctx.valid and not ctx.prefix: bucket = self._cd.get_bucket(message) retry_after = bucket.update_rate_limit() if retry_after: await asyncio.sleep(15.0) #slows down spam, now it just well wait 15 seconds if cooldown is triggered. args = await self.message_converter(message) if len(args) >= 6000: args = "Message Too Big, Author will be notifited" await ctx.send(f"{ctx.author.mention}, please use content less than 6000, either using a pastebin or something else, thanks") embed = discord.Embed(title = f"{message.guild}", description = f"{args}", color = 15428885, timestamp = message.created_at) embed.set_author(name=f"{message.author}", icon_url = message.author.display_avatar.url) if message.guild: embed.set_thumbnail(url = message.guild.icon.url if message.guild.icon else "https://i.imgur.com/3ZUrjUP.png") for c in self.bot.linked_channels: channel = self.bot.get_channel(c) if c == message.channel.id: continue await channel.send(embed = embed) @commands.has_permissions(manage_messages = True) @commands.command(brief = "Adds yourself to the global chat with other developers", aliases = ["addlink"]) async def add_link(self, ctx): if not ctx.guild: return await ctx.send("this is not a guild appreantly, if it is report the problem to the developer thanks :D at JDJG Inc. Official#3493") if not isinstance(ctx.channel, discord.TextChannel): return await ctx.send("you must use in a textchannel") view = utils.BasicButtons(ctx, timeout = 30.0) msg = await ctx.send("This adds a link to the current channel. Do you want to do this?", view = view) await view.wait() if view.value is None: return await msg.edit("you didn't respond quickly enough") if not view.value: return await msg.edit("Not linking your channel to the global chat.") await msg.edit("I can now link your channel. Linking....") row = await self.bot.db.fetchrow("SELECT * FROM linked_chat WHERE server_id = $1", ctx.guild.id) if row: await ctx.send("you already linked a channel, we'll update it right now.") await self.bot.db.execute("UPDATE linked_chat SET channel_id = $1 WHERE server_id = $2", ctx.channel.id, ctx.guild.id) self.bot.linked_channels.remove(row.get("channel_id")) if not row: await self.bot.db.execute("INSERT INTO linked_chat values ($1, $2)", ctx.guild.id, ctx.channel.id) self.bot.linked_channels.append(ctx.channel.id) await msg.edit("Linked channel :D") @commands.has_permissions(manage_messages = True) @commands.command(brief = "Adds yourself to the global chat with other developers", aliases = ["removelink"]) async def remove_link(self, ctx): if not isinstance(ctx.channel, discord.TextChannel): return await ctx.send("you must use in a text channel") view = utils.BasicButtons(ctx, timeout = 30.0) msg = await ctx.send("This remove a link to the current channel. Do you want to do this?", view = view) await view.wait() if view.value is None: return await msg.edit("you didn't respond quickly enough") if not view.value: return await msg.edit("Not unlinking your channel to the global chat.") await msg.edit("I can now unlink your channel, unlinking....") row = await self.bot.db.fetchrow("SELECT * FROM linked_chat WHERE server_id = $1", ctx.guild.id) if not row: await ctx.send("Can't unlink from a channel that doesn't exist.") self.bot.linked_channels.remove(row.get("channel_id")) await self.bot.db.execute("DELETE FROM linked_chat WHERE server_id = $1", ctx.guild.id) await msg.edit("Unlinked channel....") @commands.command(brief = "gives you an invite to invite the bot", aliases = ["inv"]) async def invite(self, ctx): minimial_invite = discord.utils.oauth_url(self.bot.user.id, permissions = discord.Permissions(permissions = 70635073)) embed = discord.Embed(title = "Invite link:", color = random.randint(0, 16777215)) embed.add_field(name = "Minimial permisions", value = f"{ minimial_invite}") embed.set_thumbnail(url = self.bot.user.display_avatar.url) embed.set_footer(text = f"not all features may work if you invite with minimal perms, if you invite with 0 make sure these permissions are in a Bots/Bot role.") view = discord.ui.View() view.add_item(discord.ui.Button(label = f"{self.bot.user.name}'s Minimial Permisions Invite", url = minimial_invite, style = discord.ButtonStyle.link)) await ctx.send(embed = embed, view = view) @commands.command(brief = "rules") async def rules(self, ctx): await ctx.send("Please ask JDJG what the rules are.") #move the rules into here. @commands.command() async def credits(self, ctx): await ctx.send("DB provided by and ran by FrostiiWeeb#0400 \nAJTHATKID#0001 for his PFP \nJDJG Inc. Official#3493 as the owner and manager and programmer of the bot as well as FrostiiWeeb#0400 for also programming the bot. \nEndlessVortex#4547 and BenitzCoding#1317 Thank You!") @commands.command(brief = "gives a link to the source") async def source(self, ctx): embed = discord.Embed(title = "Project at:\nhttps://github.com/GlobalChatDev/DeveloperGlobalChat !", description="you can also contact the owner if you want more info(by using the owner command) you can see who owns the bot. Please don't just copy the source code, cause this may cause issues with you or the user instead ask if you want to use my code or learn from my code and look to see if that's a valid command a.ka ask me first, then discord.py about the bot! Thanks :D", color = random.randint(0, 16777215)) embed.set_author(name = f"{self.bot.user}'s source code:", icon_url = self.bot.user.display_avatar.url) await ctx.send(embed = embed) def setup(bot): bot.add_cog(GlobalChat(bot)) ```
{ "source": "JDJGInc/JDBot", "score": 2 }
#### File: JDBot/cogs/global.py ```python from discord.ext import commands import discord, re from better_profanity import profanity class Global(commands.Cog): "Global Chat Commands" def __init__(self, bot): self.bot = bot @commands.command(brief = "wait for it to release") async def global_wip(self, ctx): await ctx.send("currently global chat is WIP for JDBot.") @commands.command(brief = "makes a global chat example message from your message", aliases = ["test_gc", "generate_message"]) async def test_globalchat(self, ctx, *, args = None): args = args or "Test Content" for x in re.findall(r'<@!?([0-9]{15,20})>', args): user = await self.bot.try_user(int(x)) args = args.replace(f"{re.match(rf'<@!?({x})>', args).group()}", f"@{user}") #fix this issue args = await commands.clean_content().convert(ctx, args) args = profanity.censor(args, censor_char = "#") embed = discord.Embed(title=f"{ctx.guild}", description = f"{args}", color = 15428885, timestamp = ctx.message.created_at) embed.set_author(name=f"{ctx.author}", icon_url = ctx.author.display_avatar.url) if ctx.guild: embed.set_thumbnail(url = ctx.guild.icon.url if ctx.guild.icon else "https://i.imgur.com/3ZUrjUP.png") if not ctx.guild: embed.set_thumbnail(url = "https://i.imgur.com/3ZUrjUP.png") await ctx.send(f"Here's what it would look like in Global Chat!", embed = embed) def setup(bot): bot.add_cog(Global(bot)) ``` #### File: JDBot/cogs/help.py ```python from discord.ext import commands import utils import itertools class JDBotHelp(commands.MinimalHelpCommand): async def send_pages(self): menu = utils.SendHelp(self.paginator.pages, ctx = self.context, delete_message_after = True) await menu.send(self.context.channel) async def send_bot_help(self, mapping): ctx = self.context bot = ctx.bot if bot.description: self.paginator.add_line(bot.description, empty = True) note = self.get_opening_note() if note: self.paginator.add_line(note, empty=True) no_category = f'\u200b{self.no_category}' def get_category(command, *, no_category=no_category): cog = command.cog return f"__**{cog.qualified_name}:**__ \n{cog.description}" if cog is not None else no_category filtered = await self.filter_commands(bot.commands, sort = True, key=get_category) to_iterate = itertools.groupby(filtered, key=get_category) for category, Commands in to_iterate: self.paginator.add_line(category) note = self.get_ending_note() if note: self.paginator.add_line() self.paginator.add_line(note) await self.send_pages() class Help(commands.Cog): "The Help Menu Cog" def __init__(self, bot): self.bot = bot self._original_help_command = bot.help_command self.bot.help_command = JDBotHelp() self.bot.help_command.cog = self def cog_unload(self): self.help_command = self._original_help_command def setup(bot): bot.add_cog(Help(bot)) ``` #### File: JDBot/cogs/jsk.py ```python from discord.ext import commands from jishaku.cog import STANDARD_FEATURES, OPTIONAL_FEATURES from jishaku.features.baseclass import Feature from jishaku.codeblocks import codeblock_converter from jishaku.exception_handling import ReplResponseReactor from jishaku.repl import AsyncCodeExecutor, get_var_dict_from_ctx from jishaku.functools import AsyncSender #look into making more jishaku commands: https://jishaku.readthedocs.io/en/latest/cog.html class Jishaku(*OPTIONAL_FEATURES, *STANDARD_FEATURES): @Feature.Command(parent="jsk", name="py", aliases=["python"]) async def jsk_python(self, ctx: commands.Context, *, argument: codeblock_converter): arg_dict = get_var_dict_from_ctx(ctx, '') arg_dict.update(get_var_dict_from_ctx(ctx, '_')) arg_dict["_"] = self.last_result scope = self.scope try: async with ReplResponseReactor(ctx.message): with self.submit(ctx): executor = AsyncCodeExecutor(argument.content, scope, arg_dict=arg_dict) async for send, result in AsyncSender(executor): if result is None: continue self.last_result = result send(await self.jsk_python_result_handling(ctx, result)) finally: scope.clear_intersection(arg_dict) def setup(bot: commands.Bot): bot.add_cog(Jishaku(bot = bot)) ``` #### File: JDBot/cogs/webhook.py ```python from discord.ext import commands import discord, re, random, aiohttp class Webhook(commands.Cog): "Commands dealing with webhooks" def __init__(self, bot): self.bot = bot @commands.command(brief="a way to send stuff to webhooks.",help = "this uses webhook urls, and sends stuff to them") async def webhook(self, ctx, *, args=None): if args is None: await ctx.send("You didn't send anything") if args: check=re.match(r"https://discord(?:app)?.com/api/webhooks/(?P<id>[0-9]{17,21})/(?P<token>[A-<KEY>]{60,68})",args) if check: args = args.replace(f"{check.group()} ","") if args == check.group(): args = "No Content" session = self.bot.session response=await session.get(check.group()) if response.status == 200: webhook=discord.Webhook.from_url(check.group(), session=session) embed = discord.Embed(title=f"Webhook {webhook.name}'s Message", color=random.randint(0, 16777215),timestamp=(ctx.message.created_at)) embed.add_field(name="Content:",value=args ) await webhook.send(embed=embed) await ctx.send(f"Message was sent to the desired webhook channel.") if response.status != 200: await ctx.send("Not a valid link or an error occured") if isinstance(ctx.channel, discord.TextChannel): try: await ctx.message.delete() except: await ctx.send("deleting the webhook failed, delete asap") if not check: await ctx.send("not a proper webhook url.") @commands.command(brief="a way to create webhooks",help="make commands with this.") async def webhook_create(self, ctx, arg = None, *, args = None): if isinstance(ctx.channel, discord.TextChannel): if ctx.author.guild_permissions.manage_webhooks: if arg: if args is None: try: webhook=await ctx.channel.create_webhook(name = arg) except Exception as e: return await ctx.send(f"give the bot manage webhook permissions for this to work and give the error to {e} if an issue.") embed = discord.Embed(title=f"{ctx.author}'s message:",color=random.randint(0, 16777215),timestamp=(ctx.message.created_at)) embed.add_field(name="Content:",value="Test") if args: try: webhook = await ctx.channel.create_webhook(name=arg,reason=args) except Exception as e: return await ctx.send(f"give the bot manage webhook permissions for this to work and give the error to {e} if an issue.") embed = discord.Embed(title=f"{ctx.author}'s message:",color=random.randint(0, 16777215),timestamp=(ctx.message.created_at)) embed.add_field(name="Content:",value=args) if ctx.message.attachments: image=await ctx.message.attachments[0].read() pass_test = True try: discord.utils._get_mime_type_for_image(image) except discord.errors.InvalidArgument: pass_test = False if pass_test: await webhook.edit(avatar=image) if pass_test is False: await ctx.send("not a valid image") await webhook.send(embed=embed) if (ctx.author.dm_channel is None): await ctx.author.create_dm() try: await ctx.author.send("Webhook url coming up") await ctx.author.send(webhook.url) except discord.Forbidden: await ctx.send(f"We couldn't DM you {ctx.author.mention}") if arg is None: await ctx.send("You need to use values for it to work") if ctx.author.guild_permissions.manage_webhooks is False: await ctx.send("you can't use that.") if isinstance(ctx.channel, discord.DMChannel): await ctx.send("You can't use that silly") @commands.command(brief = "tells you a webhook's avatar.") async def webhook_avatar(self, ctx, *, args = None): if not args: return await ctx.send("You didn't give me an arguments to go over.") check = re.match(r"https://discord(?:app)?.com/api/webhooks/(?P<id>[0-9]{17,21})/(?P<token>[A-Za-z0-9\.\-\_]{60,68})",args) if check: args = args.replace(f"{check.group()} ","") if args == check.group(): session = self.bot.session response=await session.get(check.group()) if not response.status != 200: webhook=discord.Webhook.from_url(check.group(), session=session) embed = discord.Embed(title = f"{webhook.name}"'s avatar:', color = random.randint(0, 16777215), timestamp = ctx.message.created_at) embed.set_image(url = webhook.avatar.url) await ctx.send(content = "Got the Webhook's avatar url",embed = embed) if response.status != 200: await ctx.send("Not a valid link or an error occured") if isinstance(ctx.channel, discord.TextChannel): try: await ctx.message.delete() except: await ctx.send("deleting the webhook failed, delete asap") @commands.command(brief = "deletes a webhook by url") async def webhook_delete(self, ctx, *, args = None): if not args: return await ctx.send("You didn't give me an arguments to go over.") check = re.match(r"https://discord(?:app)?.com/api/webhooks/(?P<id>[0-9]{17,21})/(?P<token>[A-Za-z0-9\.\-\_]{60,68})",args) if check: args = args.replace(f"{check.group()} ","") if args == check.group(): session = self.bot.session response=await session.get(check.group()) if not response.status != 200: webhook = discord.Webhook.from_url(check.group(), session = session) info = await response.json() if not info.get("guild_id") or not info.get("channel_id"): return await ctx.send(f"can't grab permissions from a {None} Guild or {None} Channel \nGuild ID: {webhook.guild_id}\nChannel ID: {webhook.channel_id}") channel = self.bot.get_channel(int(info.get("channel_id"))) guild = self.bot.get_guild(int(info.get("guild_id"))) if not guild or not channel: return await ctx.send("I can't check permissions of a guild that is none.") member = await guild.try_member(ctx.author.id) if member is None: return await ctx.send("You don't exist in the guild that you used the webhook of.") if channel.permissions_for(member).manage_webhooks: try: await webhook.delete() await ctx.send(f"succeeded in deleting webhook in {guild} in {channel.mention}!") except Exception as e: await ctx.send(f"An error occured with reason:\n{e}") if response.status != 200: await ctx.send("Not a valid link or an error occured") if isinstance(ctx.channel, discord.TextChannel): try: await ctx.message.delete() except: await ctx.send("deleting the webhook failed, delete asap unless it told you the link was deleted") def setup(bot): bot.add_cog(Webhook(bot)) ``` #### File: JDBot/utils/checks.py ```python import discord def check(ctx): def inner(m): return m.author == ctx.author return inner def Membercheck(ctx): def inner(m): return m.author == ctx.guild.me return inner def warn_permission(ctx, Member): if isinstance(ctx.channel, discord.TextChannel): return ctx.author.guild_permissions.manage_messages and ctx.author.top_role > Member.top_role and ctx.author.guild_permissions >= Member.guild_permissions #bug with user with same permissions maybe and other stuff(seems fixed for right now, leaving note just in case.) if isinstance(ctx.channel, discord.DMChannel): return True def cleanup_permission(ctx): if isinstance(ctx.channel, discord.TextChannel): return ctx.author.guild_permissions.manage_messages if isinstance(ctx.channel, discord.DMChannel): return True def mutual_guild_check(ctx, user): mutual_guilds = set(ctx.author.mutual_guilds) mutual_guilds2 = set(user.mutual_guilds) return bool(mutual_guilds.intersection(mutual_guilds2)) async def filter_commands(ctx, command_list): async def check(cmd, ctx): try: return await cmd.can_run(ctx) except: return False return [cmd for cmd in command_list if await check(cmd, ctx)] ``` #### File: JDBot/utils/embeds.py ```python import collections, random, discord, aioimgur, sr_api, asyncdagpi, jeyyapi import os async def guildinfo(ctx, guild): base_user = collections.Counter([u.bot for u in guild.members]) bots = base_user[True] users = base_user[False] base_animated = collections.Counter([e.animated for e in guild.emojis]) static_emojis = base_animated[False] animated_emojis = base_animated[True] base_available = collections.Counter([e.available for e in guild.emojis]) usable_emojis = base_available[True] base_status = collections.Counter([x.status for x in guild.members]) online_users = base_status[discord.Status.online] dnd_users = base_status[discord.Status.dnd] idle_users = base_status[discord.Status.idle] offline_users = base_status[discord.Status.offline] embed = discord.Embed(title="Guild Info:", color = random.randint(0, 16777215)) embed.add_field(name="Server Name:", value=guild.name) embed.add_field(name="Server ID:", value=guild.id) embed.add_field(name = "Server Creation:", value = f"{discord.utils.format_dt(guild.created_at, style = 'd')}\n{discord.utils.format_dt(guild.created_at, style = 'T')}") embed.add_field(name="Server Owner Info:", value = f"Owner : {guild.owner} \nOwner ID : {guild.owner_id}") embed.add_field(name = "Member info", value = f"Member Count : {guild.member_count}\nUsers : {users} \nBots : {bots} ") embed.add_field(name="Channel Count:", value = len(guild.channels)) embed.add_field(name="Role Count:", value = len(guild.roles)) embed.set_thumbnail(url = guild.icon.url if guild.icon else "https://i.imgur.com/3ZUrjUP.png") embed.add_field(name="Emojis Info:", value = f"Limit : {guild.emoji_limit}\nStatic : {static_emojis} \nAnimated : {animated_emojis} \nTotal : {len(guild.emojis)}/{guild.emoji_limit*2} \nUsable : {usable_emojis}") animated_value = guild.icon.is_animated() if guild.icon else False embed.add_field(name="Max File Size:",value=f"{guild.filesize_limit/1000000} MB") embed.add_field(name="Shard ID:",value=guild.shard_id) embed.add_field(name="Animated Icon", value = f"{animated_value}") embed.add_field(name="User Presences Info:", value = f"Online Users: {online_users} \nDND Users: {dnd_users} \nIdle Users : {idle_users} \nOffline Users : {offline_users}") await ctx.send(embed=embed) async def roleinfo(ctx, role): role_members = collections.Counter([u.bot for u in role.members]) role_bots = role_members[True] role_users = role_members[False] if role.tags: role_bot_id = role.tags.bot_id if not role.tags: role_bot_id = None role_time = f"{discord.utils.format_dt(role.created_at, style = 'd')}{discord.utils.format_dt(role.created_at, style = 'T')}" embed = discord.Embed(title = f"{role} Info:" ,color = random.randint(0, 16777215) ) embed.add_field(name = "Mention:", value = f"{role.mention}") embed.add_field(name = "ID:", value = f"{role.id}") embed.add_field(name = "Created at:", value = f"{role_time}") embed.add_field(name="Member Count:", value = f"Bot Count : {role_bots} \nUser Count : {role_users}" ) embed.add_field(name = "Position Info:", value = f"Position : {role.position} \nHoisted : {role.hoist}") embed.add_field(name = "Managed Info:", value = f"Managed : {role.managed} \nBot : {role.is_bot_managed()} \nBot ID : {role_bot_id} \nDefault : {role.is_default()} \nBooster Role : {role.is_premium_subscriber()} \nIntegrated : {role.is_integration()} \nMentionable : {role.mentionable} ") embed.add_field(name = "Permissions:", value = f"{role.permissions.value}") embed.add_field(name = "Color:", value = f"{role.colour}") embed.set_thumbnail(url = "https://i.imgur.com/liABFL4.png") embed.set_footer(text = f"Guild: {role.guild}") await ctx.send(embed = embed) async def triggered_converter(url, ctx): sr_client = sr_api.Client(session = ctx.bot.session) source_image=sr_client.filter(option="triggered", url = str(url)) imgur_client= aioimgur.ImgurClient(os.environ["imgur_id"],os.environ["imgur_secret"]) imgur_url= await imgur_client.upload_from_url(source_image.url) embed = discord.Embed(color=random.randint(0, 16777215)) embed.set_author(name=f"Triggered gif requested by {ctx.author}",icon_url=(ctx.author.display_avatar.url)) embed.set_image(url = imgur_url["link"]) embed.set_footer(text="powered by some random api") return embed async def headpat_converter(url, ctx): try: client = jeyyapi.JeyyAPIClient(session = ctx.bot.session) image = await client.patpat(url) except Exception as e: print(e) return await ctx.send("the api failed on us. Please contact the Bot owner if this is a perstient issue.") imgur_client = aioimgur.ImgurClient(os.environ["imgur_id"],os.environ["imgur_secret"]) imgur_url = await imgur_client.upload(image) embed=discord.Embed(color=random.randint(0, 16777215)) embed.set_author(name=f"Headpat gif requested by {ctx.author}",icon_url=(ctx.author.display_avatar.url)) embed.set_image(url=imgur_url["link"]) embed.set_footer(text = "powered by some jeyyapi") return embed def create_channel_permission(ctx): return ctx.author.guild_permissions.manage_channels def clear_permission(ctx): if isinstance(ctx.channel, discord.TextChannel): return ctx.author.guild_permissions.manage_messages if isinstance(ctx.channel,discord.DMChannel): return False async def invert_converter(url, ctx): try: sr_client = sr_api.Client(session = ctx.bot.session) source_image = sr_client.filter("invert", url = str(url)) image = await source_image.read() except: return await ctx.send("the api failed on us. Please contact the Bot owner if this is a perstient issue.") imgur_client = aioimgur.ImgurClient(os.environ["imgur_id"],os.environ["imgur_secret"]) imgur_url = await imgur_client.upload(image) embed=discord.Embed(color = random.randint(0, 16777215)) embed.set_author(name=f"Inverted Image requested by {ctx.author}",icon_url=(ctx.author.display_avatar.url)) embed.set_image(url=imgur_url["link"]) embed.set_footer(text="powered by some random api") return embed async def headpat_converter2(url, ctx): dagpi_client = asyncdagpi.Client(os.environ["dagpi_key"], session = ctx.bot.session) image=await dagpi_client.image_process(asyncdagpi.ImageFeatures.petpet(),str(url)) imgur_client = aioimgur.ImgurClient(os.environ["imgur_id"],os.environ["imgur_secret"]) imgur_url = await imgur_client.upload(image.image) embed=discord.Embed(color = random.randint(0, 16777215)) embed.set_author(name=f"Headpat gif requested by {ctx.author}",icon_url=(ctx.author.display_avatar.url)) embed.set_image(url = imgur_url["link"]) embed.set_footer(text = "powered by dagpi") return embed async def jail_converter(url, ctx): dagpi_client = asyncdagpi.Client(os.environ["dagpi_key"], session = ctx.bot.session) image=await dagpi_client.image_process(asyncdagpi.ImageFeatures.jail(),str(url)) imgur_client = aioimgur.ImgurClient(os.environ["imgur_id"],os.environ["imgur_secret"]) imgur_url = await imgur_client.upload(image.image) embed=discord.Embed(color = random.randint(0, 16777215)) embed.set_author(name=f"Jail Image requested by {ctx.author}",icon_url=(ctx.author.display_avatar.url)) embed.set_image(url = imgur_url["link"]) embed.set_footer(text="powered by dagpi") return embed async def invert_converter2(url, ctx): try: client = jeyyapi.JeyyAPIClient(session = ctx.bot.session) image = await client.half_invert(url) except: return await ctx.send("the api failed on us. Please contact the Bot owner if this is a perstient issue.") imgur_client = aioimgur.ImgurClient(os.environ["imgur_id"],os.environ["imgur_secret"]) imgur_url = await imgur_client.upload(image) embed=discord.Embed(color = random.randint(0, 16777215)) embed.set_author(name=f"Inverted Image requested by {ctx.author}",icon_url = (ctx.author.display_avatar.url)) embed.set_image(url = imgur_url["link"]) embed.set_footer(text="powered by some jeyyapi") return embed ```
{ "source": "JDJGInc/JDJGBotSupreme", "score": 3 }
#### File: JDJGInc/JDJGBotSupreme/DatabaseControl.py ```python from bson import ObjectId import DatabaseConfig def AddChannelLink(Channel_Source, Channel_destination,databaseDest=DatabaseConfig.db.ChannelLink): document = {"src":Channel_Source,"dest":Channel_destination} document_id = databaseDest.insert_one(document).inserted_id return document_id def DeleteChannelLink_ID(ID,databaseDest=DatabaseConfig.db.ChannelLink): DatabaseConfig.db.ChannelLink.delete_one({'_id': ObjectId(str(ID))}) return (str(ID)+" Deleted") def DeleteChannelLink_ChanNum(Channel_Source,Channel_destination): tmp_doc = {"src":Channel_Source,"dest":Channel_destination} DatabaseConfig.db.ChannelLink.delete_one(tmp_doc) return "Deleted Link" def GetLinkedChannels(client,Channel_Source): ret_str = "This Channel Is linked to " for doc in DatabaseConfig.db.ChannelLink.find(): if(doc['src']==int(Channel_Source)): ret_str = ret_str + str(client.get_channel(doc['dest']))+ ", " return ret_str def GetLinkedChannelsList(Channel_Source): ret=[] for doc in DatabaseConfig.db.ChannelLink.find(): if(doc['src']==int(Channel_Source)): ret.append(doc['dest']) return ret def to_ChannelId(channelName): channelName = channelName.replace("<#","") channelName = channelName.replace(">","") return int(channelName) #DISCORD.PY ``` #### File: JDJGInc/JDJGBotSupreme/swear_checker.py ```python bad_words= [ "nigg", "damn", "hell", "shit", "shithead", "ass hat", 'faggot', 'retard', 'bastard', 'nigga', "hitler", "RenDev" ] sexual_words =[ "fuck", "cunt", "pussy", "ass", "penis", "dick", "vagina", "sex", "masturbate", "cum", "jack off", "skin flute", "coochie", "condom", "peen", "ejaculate", "semen", "sperm", "wet dream", ] bad_word_list = sexual_words+bad_words import DatabaseConfig col = DatabaseConfig.db.server_settings cmp_list = bad_words.append(sexual_words) def filter_words(message, guild): doc = col.find_one({"ser_id":guild}) endings = ["ing","er","ist","ed","en","tion",""] message = message.lower() words_found =[] for obj in cmp_list: slur_pass = 0 if obj in doc["slur"]: slur_pass = 1 if(slur_pass==0): for ends in endings: word = obj.lower() + ends.lower() if word in message: words_found.append(obj.lower()) return words_found def censor_message(message,guild): message = message.split(" ") words_found = filter_words(message,guild) new_mess = "" begin_bool = 1 for word in message: for i in range(len(word)): censor = censor + "*" if(begin_bool): begin_bool = 0; if not (word.lower() in words_found): new_mess = new_mess + word else: new_mess = new_mess + censor else: if not (word.lower() in words_found): new_mess = new_mess + " " + word else: new_mess = new_mess + censor return new_mess ``` #### File: JDJGInc/JDJGBotSupreme/UpdateNotify.py ```python import discord import DatabaseConfig def defDoc(num, val,guildId): doc = [guildId,"NULL","NULL","NULL"] doc[num] = val return {"ser_id":doc[0],"title":doc[1],"body_head":doc[2],"body":doc[3]} def GetArgs(message): args = "" tmpmsg = message.content tmpmsg = tmpmsg.replace("JDBot*update ","") tmpmsg = tmpmsg.replace("[title] ","") tmpmsg = tmpmsg.replace("[body_head] ","") tmpmsg = tmpmsg.replace("[body] ","") return tmpmsg i = -1 for arg in message.content.split(" "): i=i+1 if i > 0: args = args + str(arg) if i+1 != len(message.content.split(" ")): args=args+" " return args async def UpdateNote(message,client): mode = "NULL" banana=0 args =[ "NULL","NULL"] try: mode = message.content.split(" ")[1] except: banana=0 try: args[0] = GetArgs(message) except: banana=0 if mode == "[title]": try: DatabaseConfig.db.update_note.insert_one({"ser_id":message.guild.id,"title":args[0],"body_head":"NULL","body":"NULL"}) except: doc = DatabaseConfig.db.update_note.find_one({'ser_id':message.guild.id}) DatabaseConfig.db.update_note.delete_one(doc) DatabaseConfig.db.update_note.insert_one({'ser_id':doc['ser_id'],'title':args[0],'body_head':doc['body_head'],'body':doc['body']}) if mode == "[body_head]": try: DatabaseConfig.db.update_note.insert_one({"ser_id":message.guild.id,"title":"NULL","body_head":args[0],"body":"NULL"}) except: doc = DatabaseConfig.db.update_note.find_one({'ser_id':message.guild.id}) DatabaseConfig.db.update_note.delete_one(doc) DatabaseConfig.db.update_note.insert_one({'ser_id':doc['ser_id'],'title':doc['title'],'body_head':args[0],'body':doc['body']}) if mode == "[body]": try: DatabaseConfig.db.update_note.insert_one({"ser_id":message.guild.id,"title":"NULL","body_head":"NULL","body":args[0]}) except: doc = DatabaseConfig.db.update_note.find_one({'ser_id':message.guild.id}) DatabaseConfig.db.update_note.delete_one(doc) DatabaseConfig.db.update_note.insert_one({'ser_id':doc['ser_id'],'title':doc['title'],'body_head':doc['body_head'],'body':args[0]}) if mode == '[preview]': try: doc = DatabaseConfig.db.update_note.find_one({'ser_id':message.guild.id}) except: banana=0 embedVar = discord.Embed(title=doc['title']) embedVar.add_field(name=doc['body_head'],value=doc['body'],inline =True) if (message.author.dm_channel is None): await message.author.create_dm() await message.author.dm_channel.send(embed=embedVar) if mode=='[set]': await message.channel.send(SetChannel(message)) if mode=='[send]': doc = DatabaseConfig.db.server_settings.find_one({"ser_id":message.guild.id}) try: doc1 = DatabaseConfig.db.update_note.find_one({'ser_id':message.guild.id}) embedVar = discord.Embed(title=doc1['title']) embedVar.add_field(name=doc1['body_head'],value=doc1['body'],inline =True) await client.get_channel(doc['up_chan']).send(embed=embedVar) except: if (message.author.dm_channel is None): await message.author.create_dm() await message.author.dm_channel.send("There is no channel specified to send this update message to! Please define what channel you would like to send updates to with 'JDBot*update set' in the channel that you would like to send messages to") def SetChannel(message): try: DatabaseConfig.db.server_settings.insert_one({"ser_id":message.guild.id,"st":0,"up_chan":message.channel.id}) return "Update Channel Linked" except: doc = DatabaseConfig.db.server_settings.find_one({"ser_id":message.guild.id}) DatabaseConfig.db.server_settings.delete_one(doc) DatabaseConfig.db.server_settings.insert_one({"ser_id":message.guild.id,"st":doc['st'],"up_chan":message.channel.id}) return "There was already a channel set to recive updates so it was deleted and this one was linked instead!" ```
{ "source": "JDJGInc/PythonOs", "score": 3 }
#### File: JDJGInc/PythonOs/clear_code.py ```python from os import system, name # import only system from os # define our clear function def clear(): # for windows if name == 'nt': _ = system('cls') # for mac and linux(here, os.name is 'posix') else: _ = system('clear') #Thank you https://www.geeksforgeeks.org/clear-screen-python/ ```
{ "source": "JDJGInc/SMG4_testing", "score": 3 }
#### File: SMG4_testing/cogs/listeners.py ```python from typing import TYPE_CHECKING from discord.ext import commands if TYPE_CHECKING: from main import RTFMBot else: RTFMBot = commands.Bot class Events(commands.Cog): def __init__(self, bot: RTFMBot) -> None: self.bot = bot @commands.Cog.listener() async def on_ready(self) -> None: print( "Bot is Ready", f"Logged in as {self.bot.user} (ID: {self.bot.user.id})", # type: ignore # .user isn't None. sep="\n", ) @commands.Cog.listener() async def on_guild_available(self, guild) -> None: print(f"Guild {guild.name} (ID: {guild.id}) is available") @commands.Cog.listener() async def on_guild_unavailable(self, guild) -> None: print(f"Guild {guild.name} (ID: {guild.id}) is unavailable") async def setup(bot: RTFMBot) -> None: await bot.add_cog(Events(bot)) ``` #### File: SMG4_testing/cogs/rtfm_slash.py ```python from __future__ import annotations from typing import TYPE_CHECKING from discord.ext import commands import typing from discord.app_commands import AppCommandError, command as app_command, Choice if TYPE_CHECKING: from main import RTFMBot from discord import Interaction else: RTFMBot = commands.Bot class RTFMSlash(commands.Cog): def __init__(self, bot: RTFMBot) -> None: self.bot = bot @app_command(description="looks up docs") async def rtfm(self, interaction: Interaction, library: str, query: typing.Optional[str] = None) -> None: """Looks up docs for a library with optionally a query.""" if query is None or query == "No Results Found": return await interaction.response.send_message(f"Alright Let's see {library}") await interaction.response.send_message(f"Alright Let's see {library}{query}") @rtfm.autocomplete("library") async def rtfm_library_autocomplete(self, interaction: Interaction, current: str) -> list[Choice]: libraries = self.bot.rtfm_libraries all_choices: list[Choice] = [Choice(name=name, value=link) for name, link in libraries.items()] startswith: list[Choice] = [choices for choices in all_choices if choices.name.startswith(current)] if not (current and startswith): return all_choices[0:25] return startswith @rtfm.autocomplete("query") async def rtfm_query_autocomplete(self, interaction: Interaction, current: str) -> list[Choice]: url = interaction.namespace.library or list(self.bot.rtfm_libraries.values())[0] assert self.bot.scraper is not None results = await self.bot.scraper.search(current, page=url) if not results: return [Choice(name="No results found", value="No Results Found")] to_slice_link = len(url) all_choices: list[Choice] = [Choice(name=name, value=link[to_slice_link:]) for name, link in results] startswith: list[Choice] = [choices for choices in all_choices if choices.name.startswith(current)] if not current: return all_choices[:25] return startswith[:25] @rtfm.error async def rtfm_error(self, interaction: Interaction, error: AppCommandError) -> None: await interaction.response.send_message(f"{error}! Please Send to this to my developer", ephemeral=True) print(error) print(interaction.command) async def setup(bot: RTFMBot) -> None: await bot.add_cog(RTFMSlash(bot)) ``` #### File: SMG4_testing/utils/simple_paginator.py ```python from __future__ import annotations from typing import TYPE_CHECKING, Any, Optional, Union from discord import ButtonStyle, Embed from discord.ui import View, button as button_decorator from discord.utils import maybe_coroutine if TYPE_CHECKING: from typing_extensions import Self from discord import Interaction, InteractionMessage, Message, WebhookMessage from discord.ui.button import Button from discord.ui.item import Item from discord.ext.commands.context import Context ValidPage = Union[str, Embed] PossibleMessage = Union[InteractionMessage, Message, WebhookMessage] else: Interaction = Any Button = Any Context = Any __all__: tuple[str, ...] = ("SimplePaginator",) class SimplePaginator(View): def __init__( self, pages: list[ValidPage], *, delete_message_after: bool = False, ): self.pages = pages super().__init__() self.delete_message_after = delete_message_after self.message: Optional[PossibleMessage] = None self.current_page: int = 0 def _init_children(self) -> list[Item[Self]]: org_children = super()._init_children() # only show stop button if there is only 1 page. if len(self.pages) <= 1: return [item for item in org_children if item.callback.callback.__name__ == "stop_button"] return org_children def format_page(self, page: ValidPage) -> ValidPage: return page async def get_page_kwargs(self, page_number: int) -> dict[str, Any]: page = await maybe_coroutine(self.format_page, self.pages[page_number]) base_kwargs: dict[str, Any] = {"content": None, "embeds": [], "view": self} if isinstance(page, Embed): base_kwargs["embeds"].append(page) elif isinstance(page, str): base_kwargs["content"] = page elif isinstance(page, dict): return page return base_kwargs async def update(self, interaction: Interaction) -> None: if hasattr(self, "right_button") and hasattr(self, "left_button"): if self.current_page >= len(self.pages) - 1: self.right_button.disabled = True self.left_button.disabled = False elif self.current_page == 0: self.right_button.disabled = False self.left_button.disabled = True if self.current_page > len(self.pages): self.current_page = 0 kwargs = await self.get_page_kwargs(self.current_page) if not interaction.response.is_done(): await interaction.response.edit_message(**kwargs) if not self.message: self.message = await interaction.original_message() else: if self.message: await self.message.edit(**kwargs) else: await interaction.message.edit(**kwargs) # type: ignore self.message = interaction.message async def start( self, ctx: Optional[Context] = None, interaction: Optional[Interaction] = None, **kwargs ) -> Optional[PossibleMessage]: kwargs = await self.get_page_kwargs(self.current_page) if self.message: await self.message.edit(**kwargs) return self.message if ctx: self.message = await ctx.send(**kwargs) elif interaction: if not interaction.response.is_done(): await interaction.response.send_message(**kwargs) self.message = await interaction.original_message() else: self.message = await interaction.followup.send(wait=True, **kwargs) return self.message @button_decorator(emoji="⬅️", style=ButtonStyle.secondary, custom_id="left") async def left_button(self, interaction: Interaction, button: Button) -> None: self.current_page -= 1 await self.update(interaction) @button_decorator(label="Stop", style=ButtonStyle.red, custom_id="stop") async def stop_button(self, interaction: Interaction, button: Button) -> None: self.stop() if self.delete_message_after: await self.message.delete() # type: ignore @button_decorator(emoji="➡️", style=ButtonStyle.secondary, custom_id="right") async def right_button(self, interaction: Interaction, button: Button) -> None: self.current_page += 1 await self.update(interaction) ```
{ "source": "jd-jones/kinemparse", "score": 2 }
#### File: airplane/scripts/baseline.py ```python import os import logging import csv import warnings import yaml import joblib from scipy import io import numpy as np from matplotlib import pyplot as plt # Stop numba from throwing a bunch of warnings when it compiles LCTM from numba import NumbaWarning; warnings.filterwarnings('ignore', category=NumbaWarning) import LCTM.metrics from mathtools import utils from kinemparse import airplanecorpus logger = logging.getLogger(__name__) def writeLabels(fn, label_seq, header=None): with open(fn, 'wt') as csvfile: writer = csv.writer(csvfile, delimiter=',') if header is not None: writer.writerow(header) for label in label_seq: writer.writerow(label) def toStringSeq(string_array): return [arr[0] for arr in string_array[0]] def plotDetections(fn, detection_seq, pred_seq, label_seq): num_samples, num_detections = detection_seq.shape f, axes = plt.subplots(num_detections + 1, sharex=True, sharey=True) for i in range(num_detections): detection_label = (label_seq == i).astype(int) axes[i].set_ylabel(f'bin {i}') axes[i].plot(detection_seq[:, i]) axes[i].twinx().plot(detection_label, color='tab:orange') axes[-1].plot(pred_seq, label='pred') axes[-1].plot(label_seq, label='true') axes[-1].legend() plt.tight_layout() plt.savefig(fn) plt.close() def main( out_dir=None, preds_dir=None, data_dir=None, metric_names=None, detection_threshold=None, plot_output=None, results_file=None, sweep_param_name=None): if metric_names is None: metric_names = ('accuracy', 'edit_score', 'overlap_score') preds_dir = os.path.expanduser(preds_dir) data_dir = os.path.expanduser(data_dir) out_dir = os.path.expanduser(out_dir) if not os.path.exists(out_dir): os.makedirs(out_dir) out_data_dir = os.path.join(out_dir, 'data') if not os.path.exists(out_data_dir): os.makedirs(out_data_dir) fig_dir = os.path.join(out_dir, 'figures') if not os.path.exists(fig_dir): os.makedirs(fig_dir) logger = utils.setupRootLogger(filename=os.path.join(out_dir, 'log.txt')) logger.info(f"Writing to: {out_dir}") if results_file is None: results_file = os.path.join(out_dir, 'results.csv') if os.path.exists(results_file): os.remove(results_file) else: results_file = os.path.expanduser(results_file) def saveVariable(var, var_name): joblib.dump(var, os.path.join(out_data_dir, f'{var_name}.pkl')) def loadAll(seq_ids, var_name, data_dir, convert=None): def loadOne(seq_id): fn = os.path.join(data_dir, f'trial={seq_id}_{var_name}') key = os.path.splitext(var_name)[0].replace('-', '_') if var_name.endswith('.mat'): data = io.loadmat(fn)[key] elif var_name.endswith('.pkl'): data = joblib.load(fn) if convert is not None: data = convert(data) return data return tuple(map(loadOne, seq_ids)) part_names, part_names_to_idxs, part_idxs_to_bins = airplanecorpus.loadParts() transition_vocabulary = joblib.load(os.path.join(data_dir, 'transition-vocabulary.pkl')) trial_ids = utils.getUniqueIds(preds_dir, prefix='trial=', suffix='.mat') pred_seqs = loadAll(trial_ids, 'pred-state-seq.mat', preds_dir, convert=toStringSeq) # true_seqs = loadAll(trial_ids, 'true-state-seq.mat', preds_dir, convert=toStringSeq) true_seqs = loadAll(trial_ids, 'label-seq.pkl', data_dir) detection_scores = loadAll(trial_ids, 'detection-scores.mat', preds_dir) for i, trial_id in enumerate(trial_ids): logger.info(f"VIDEO {trial_id}:") pred_action_seq = pred_seqs[i] true_seq = true_seqs[i] detection_score_seq = detection_scores[i] seq_len = min(len(pred_action_seq), true_seq.shape[0], detection_score_seq.shape[0]) pred_action_seq = pred_action_seq[:seq_len] true_seq = true_seq[:seq_len] detection_score_seq = detection_score_seq[:seq_len, :] true_transition_seq = tuple(transition_vocabulary[i] for i in true_seq) # true_assembly_seq = tuple(n for c, n in true_transition_seq) true_action_seq = tuple( airplanecorpus.actionFromTransition(c, n) for c, n in true_transition_seq ) true_action_index_seq = np.array([part_names_to_idxs[i] for i in true_action_seq]) true_bin_index_seq = np.array([part_idxs_to_bins[i] for i in true_action_index_seq]) pred_action_index_seq = np.array([part_names_to_idxs[i] for i in pred_action_seq]) pred_bin_index_seq = detection_score_seq.argmax(axis=1) if detection_threshold is not None: above_thresh = detection_score_seq.max(axis=1) > detection_threshold true_bin_index_seq = true_bin_index_seq[above_thresh] pred_bin_index_seq = pred_bin_index_seq[above_thresh] detection_score_seq = detection_score_seq[above_thresh, :] fn = os.path.join(fig_dir, f"trial={trial_id}_baseline-detections.png") plotDetections(fn, detection_score_seq, pred_bin_index_seq, true_bin_index_seq) writeLabels( os.path.join(fig_dir, f"trial={trial_id}_action-seqs"), zip(true_action_seq, pred_action_seq), header=('true', 'pred') ) writeLabels( os.path.join(fig_dir, f"trial={trial_id}_bin-seqs"), zip(true_bin_index_seq, pred_bin_index_seq), header=('true', 'pred') ) metric_dict = {} for name in metric_names: key = f"{name}_action" value = getattr(LCTM.metrics, name)(pred_action_index_seq, true_action_index_seq) / 100 metric_dict[key] = value logger.info(f" {key}: {value * 100:.1f}%") key = f"{name}_bin" value = getattr(LCTM.metrics, name)(pred_bin_index_seq, true_bin_index_seq) / 100 metric_dict[key] = value logger.info(f" {key}: {value * 100:.1f}%") utils.writeResults(results_file, metric_dict, sweep_param_name, {}) if __name__ == "__main__": # Parse command-line args and config file cl_args = utils.parse_args(main) config, config_fn = utils.parse_config(cl_args, script_name=__file__) # Create output directory, instantiate log file and write config options out_dir = os.path.expanduser(config['out_dir']) if not os.path.exists(out_dir): os.makedirs(out_dir) with open(os.path.join(out_dir, config_fn), 'w') as outfile: yaml.dump(config, outfile) utils.copyFile(__file__, out_dir) main(**config) ``` #### File: airplane/scripts/eval_output.py ```python import os import logging import csv import warnings import yaml import joblib import numpy as np # Stop numba from throwing a bunch of warnings when it compiles LCTM from numba import NumbaWarning; warnings.filterwarnings('ignore', category=NumbaWarning) import LCTM.metrics from mathtools import utils from kinemparse import airplanecorpus logger = logging.getLogger(__name__) def equivalent(pred_assembly, true_assembly): residual = pred_assembly ^ true_assembly residual = residual - frozenset(['wheel1', 'wheel2', 'wheel3', 'wheel4']) return len(residual) == 0 def writeLabels(fn, label_seq, header=None): with open(fn, 'wt') as csvfile: writer = csv.writer(csvfile, delimiter=',') if header is not None: writer.writerow(header) for label in label_seq: writer.writerow(label) def main( out_dir=None, preds_dir=None, data_dir=None, metric_names=None, plot_output=None, results_file=None, sweep_param_name=None): if metric_names is None: metric_names = ('accuracy', 'edit_score', 'overlap_score') preds_dir = os.path.expanduser(preds_dir) out_dir = os.path.expanduser(out_dir) if not os.path.exists(out_dir): os.makedirs(out_dir) out_data_dir = os.path.join(out_dir, 'data') if not os.path.exists(out_data_dir): os.makedirs(out_data_dir) fig_dir = os.path.join(out_dir, 'figures') if not os.path.exists(fig_dir): os.makedirs(fig_dir) logger = utils.setupRootLogger(filename=os.path.join(out_dir, 'log.txt')) logger.info(f"Writing to: {out_dir}") if results_file is None: results_file = os.path.join(out_dir, 'results.csv') if os.path.exists(results_file): os.remove(results_file) else: results_file = os.path.expanduser(results_file) def saveVariable(var, var_name): joblib.dump(var, os.path.join(out_data_dir, f'{var_name}.pkl')) def loadAll(seq_ids, var_name, data_dir): def loadOne(seq_id): fn = os.path.join(data_dir, f'trial={seq_id}_{var_name}') return joblib.load(fn) return tuple(map(loadOne, seq_ids)) part_names, part_names_to_idxs, part_idxs_to_bins = airplanecorpus.loadParts() transition_vocabulary = joblib.load(os.path.join(data_dir, 'transition-vocabulary.pkl')) trial_ids = utils.getUniqueIds(preds_dir, prefix='trial=') pred_seqs = loadAll(trial_ids, 'pred-label-seq.pkl', preds_dir) true_seqs = loadAll(trial_ids, 'true-label-seq.pkl', preds_dir) for i, trial_id in enumerate(trial_ids): logger.info(f"VIDEO {trial_id}:") pred_transition_index_seq = pred_seqs[i] pred_transition_seq = tuple(transition_vocabulary[i] for i in pred_transition_index_seq) pred_action_seq = tuple( airplanecorpus.actionFromTransition(c, n) for c, n in pred_transition_seq ) pred_action_index_seq = np.array([part_names_to_idxs[i] for i in pred_action_seq]) pred_bin_index_seq = np.array([part_idxs_to_bins[i] for i in pred_action_index_seq]) pred_assembly_seq = tuple(n for c, n in pred_transition_seq) saveVariable(pred_assembly_seq, f'trial={trial_id}_pred-assembly-seq') saveVariable(pred_action_seq, f'trial={trial_id}_pred-action-seq') true_transition_index_seq = true_seqs[i] true_transition_seq = tuple(transition_vocabulary[i] for i in true_transition_index_seq) true_assembly_seq = tuple(n for c, n in true_transition_seq) true_action_seq = tuple( airplanecorpus.actionFromTransition(c, n) for c, n in true_transition_seq ) true_action_index_seq = np.array([part_names_to_idxs[i] for i in true_action_seq]) true_bin_index_seq = np.array([part_idxs_to_bins[i] for i in true_action_index_seq]) saveVariable(true_assembly_seq, f'trial={trial_id}_true-assembly-seq') saveVariable(true_action_seq, f'trial={trial_id}_true-action-seq') writeLabels( os.path.join(fig_dir, f"trial={trial_id}_action-seqs"), zip(true_action_seq, pred_action_seq), header=('true', 'pred') ) writeLabels( os.path.join(fig_dir, f"trial={trial_id}_bin-seqs"), zip(true_bin_index_seq, pred_bin_index_seq), header=('true', 'pred') ) metric_dict = {} for name in metric_names: key = f"{name}_action" value = getattr(LCTM.metrics, name)(pred_action_index_seq, true_action_index_seq) / 100 metric_dict[key] = value logger.info(f" {key}: {value * 100:.1f}%") key = f"{name}_bin" value = getattr(LCTM.metrics, name)(pred_bin_index_seq, true_bin_index_seq) / 100 metric_dict[key] = value logger.info(f" {key}: {value * 100:.1f}%") final_pred = pred_assembly_seq[-1] final_true = true_assembly_seq[-1] final_equivalent = equivalent(final_pred, final_true) metric_dict['accuracy_model'] = float(final_equivalent) logger.info(f" FINAL (PRED): {final_pred}") logger.info(f" FINAL (TRUE): {final_true}") logger.info(f" RESIDUAL: {final_pred ^ final_true}") logger.info(f" EQUIVALENT: {final_equivalent}") utils.writeResults(results_file, metric_dict, sweep_param_name, {}) if __name__ == "__main__": # Parse command-line args and config file cl_args = utils.parse_args(main) config, config_fn = utils.parse_config(cl_args, script_name=__file__) # Create output directory, instantiate log file and write config options out_dir = os.path.expanduser(config['out_dir']) if not os.path.exists(out_dir): os.makedirs(out_dir) with open(os.path.join(out_dir, config_fn), 'w') as outfile: yaml.dump(config, outfile) utils.copyFile(__file__, out_dir) main(**config) ``` #### File: blocks-actions/scripts/event_assembly_decode.py ```python import os import logging import yaml import numpy as np from matplotlib import pyplot as plt # import pandas as pd # import scipy import LCTM.metrics from kinemparse import decode from mathtools import utils # , metrics # from blocks.core import blockassembly logger = logging.getLogger(__name__) def eval_metrics(pred_seq, true_seq, name_suffix='', append_to={}): state_acc = (pred_seq == true_seq).astype(float).mean() metric_dict = { 'State Accuracy' + name_suffix: state_acc, 'State Edit Score' + name_suffix: LCTM.metrics.edit_score(pred_seq, true_seq) / 100, 'State Overlap Score' + name_suffix: LCTM.metrics.overlap_score(pred_seq, true_seq) / 100 } append_to.update(metric_dict) return append_to def suppress_nonmax(scores): col_idxs = scores.argmax(axis=1) new_scores = np.zeros_like(scores) row_idxs = np.arange(scores.shape[0]) new_scores[row_idxs, col_idxs] = scores[row_idxs, col_idxs] return new_scores def make_event_assembly_transition_priors(event_vocab, assembly_vocab): def isValid(event, cur_assembly, next_assembly): is_valid = diff == event return is_valid num_events = len(event_vocab) num_assemblies = len(assembly_vocab) priors = np.zeros((num_events, num_assemblies, num_assemblies), dtype=bool) for j, cur_assembly in enumerate(assembly_vocab): for k, next_assembly in enumerate(assembly_vocab): try: diff = next_assembly - cur_assembly except ValueError: continue for i, event in enumerate(event_vocab): priors[i, j, k] = diff == event return priors def make_assembly_transition_priors(assembly_vocab): def isValid(diff): for i in range(diff.connections.shape[0]): c = diff.connections.copy() c[i, :] = 0 c[:, i] = 0 if not c.any(): return True return False num_assemblies = len(assembly_vocab) priors = np.zeros((num_assemblies, num_assemblies), dtype=bool) for j, cur_assembly in enumerate(assembly_vocab): for k, next_assembly in enumerate(assembly_vocab): if cur_assembly == next_assembly: continue try: diff = next_assembly - cur_assembly except ValueError: continue priors[j, k] = isValid(diff) return priors def count_transitions(label_seqs, num_classes, support_only=False): start_counts = np.zeros(num_classes, dtype=float) end_counts = np.zeros(num_classes, dtype=float) for label_seq in label_seqs: start_counts[label_seq[0]] += 1 end_counts[label_seq[-1]] += 1 start_probs = start_counts / start_counts.sum() end_probs = end_counts / end_counts.sum() if support_only: start_probs = (start_probs > 0).astype(float) end_probs = (end_probs > 0).astype(float) return start_probs, end_probs def count_priors(label_seqs, num_classes, stride=None, approx_upto=None, support_only=False): dur_counts = {} class_counts = {} for label_seq in label_seqs: for label, dur in zip(*utils.computeSegments(label_seq[::stride])): class_counts[label] = class_counts.get(label, 0) + 1 dur_counts[label, dur] = dur_counts.get((label, dur), 0) + 1 class_priors = np.zeros((num_classes)) for label, count in class_counts.items(): class_priors[label] = count class_priors /= class_priors.sum() max_dur = max(dur for label, dur in dur_counts.keys()) dur_priors = np.zeros((num_classes, max_dur)) for (label, dur), count in dur_counts.items(): assert dur dur_priors[label, dur - 1] = count dur_priors /= dur_priors.sum(axis=1, keepdims=True) if approx_upto is not None: cdf = dur_priors.cumsum(axis=1) approx_bounds = (cdf >= approx_upto).argmax(axis=1) dur_priors = dur_priors[:, :approx_bounds.max()] if support_only: dur_priors = (dur_priors > 0).astype(float) return class_priors, dur_priors def viz_priors(fn, class_priors, dur_priors): fig, axes = plt.subplots(3) axes[0].matshow(dur_priors) axes[1].stem(class_priors) plt.tight_layout() plt.savefig(fn) plt.close() def viz_transition_probs(fig_dir, transitions): if not os.path.exists(fig_dir): os.makedirs(fig_dir) for i, transition_arr in enumerate(transitions): plt.matshow(transition_arr) plt.savefig(os.path.join(fig_dir, f"action={i:03d}")) plt.close() def pack_scores(transitions, start, end): num_assemblies = transitions.shape[0] packed = np.zeros((num_assemblies + 1, num_assemblies + 1), dtype=float) packed[0, :-1] = start packed[1:, -1] = end packed[1:, :-1] = transitions return packed def computeMoments(feature_seqs): features = np.concatenate(feature_seqs, axis=0) mean = features.mean(axis=0) std = features.std(axis=0) return mean, std def main( out_dir=None, assembly_scores_dir=None, event_scores_dir=None, labels_from='assemblies', feature_fn_format='score-seq', label_fn_format='true-label-seq', only_fold=None, plot_io=None, prefix='seq=', stop_after=None, background_action='', stride=None, standardize_inputs=False, model_params={}, cv_params={}, results_file=None, sweep_param_name=None): event_scores_dir = os.path.expanduser(event_scores_dir) assembly_scores_dir = os.path.expanduser(assembly_scores_dir) out_dir = os.path.expanduser(out_dir) if not os.path.exists(out_dir): os.makedirs(out_dir) logger = utils.setupRootLogger(filename=os.path.join(out_dir, 'log.txt')) if results_file is None: results_file = os.path.join(out_dir, 'results.csv') else: results_file = os.path.expanduser(results_file) fig_dir = os.path.join(out_dir, 'figures') if not os.path.exists(fig_dir): os.makedirs(fig_dir) misc_dir = os.path.join(out_dir, 'misc') if not os.path.exists(misc_dir): os.makedirs(misc_dir) out_data_dir = os.path.join(out_dir, 'data') if not os.path.exists(out_data_dir): os.makedirs(out_data_dir) scores_dirs = { 'events': event_scores_dir, 'assemblies': assembly_scores_dir } data_dir = scores_dirs[labels_from] seq_ids = utils.getUniqueIds( data_dir, prefix=prefix, suffix=f'{label_fn_format}.*', to_array=True ) event_dataset = utils.FeaturelessCvDataset( seq_ids, event_scores_dir, prefix=prefix, label_fn_format=label_fn_format ) assembly_dataset = utils.FeaturelessCvDataset( seq_ids, assembly_scores_dir, prefix=prefix, label_fn_format=label_fn_format ) logger.info(f"Loaded scores for {len(seq_ids)} sequences from {data_dir}") # Define cross-validation folds cv_folds = utils.makeDataSplits(len(seq_ids), **cv_params) utils.saveVariable(cv_folds, 'cv-folds', out_data_dir) # Load vocabs; create priors event_vocab = utils.loadVariable('vocab', event_scores_dir) assembly_vocab = utils.loadVariable('vocab', assembly_scores_dir) vocabs = { 'event_vocab': tuple(range(len(event_vocab))), 'assembly_vocab': tuple(range(len(assembly_vocab))) } try: event_priors = utils.loadVariable('event-priors', out_data_dir) except AssertionError: event_priors = make_event_assembly_transition_priors(event_vocab, assembly_vocab) utils.saveVariable(event_priors, 'event-priors', out_data_dir) viz_transition_probs(os.path.join(fig_dir, 'event-priors'), event_priors) np.savetxt( os.path.join(misc_dir, "event-transitions.csv"), np.column_stack(event_priors.nonzero()), delimiter=",", fmt='%d' ) try: assembly_priors = utils.loadVariable('assembly-priors', out_data_dir) except AssertionError: assembly_priors = make_assembly_transition_priors(assembly_vocab) utils.saveVariable(assembly_priors, 'assembly-priors', out_data_dir) viz_transition_probs(os.path.join(fig_dir, 'assembly-priors'), assembly_priors[None, ...]) np.savetxt( os.path.join(misc_dir, "assembly-transitions.csv"), np.column_stack(assembly_priors.nonzero()), delimiter=",", fmt='%d' ) event_assembly_scores = np.log(event_priors) assembly_scores = np.log(assembly_priors) assembly_scores = np.zeros_like(assembly_scores) for cv_index, cv_fold in enumerate(cv_folds): if only_fold is not None and cv_index != only_fold: continue train_indices, val_indices, test_indices = cv_fold logger.info( f"CV FOLD {cv_index + 1} / {len(cv_folds)}: " f"{len(train_indices)} train, {len(val_indices)} val, {len(test_indices)} test" ) cv_str = f'cvfold={cv_index}' (train_event_labels, _), _, (_, test_seq_ids) = event_dataset.getFold(cv_fold) (train_assembly_labels, _), _, _ = assembly_dataset.getFold(cv_fold) assembly_start_probs, assembly_end_probs = count_transitions( train_assembly_labels, len(assembly_vocab), support_only=True ) assembly_start_scores = np.log(assembly_start_probs) assembly_end_scores = np.log(assembly_end_probs) assembly_transition_scores = pack_scores( assembly_scores, assembly_start_scores, assembly_end_scores ) class_priors, event_dur_probs = count_priors( train_event_labels, len(event_vocab), approx_upto=0.95, support_only=True ) event_dur_scores = np.log(event_dur_probs) event_dur_scores = np.zeros_like(event_dur_scores) scores = (event_dur_scores, event_assembly_scores, assembly_transition_scores) model = decode.AssemblyActionRecognizer(scores, vocabs, model_params) viz_priors( os.path.join(fig_dir, f'{cv_str}_priors'), class_priors, event_dur_probs ) model.write_fsts(os.path.join(misc_dir, f'{cv_str}_fsts')) model.save_vocabs(os.path.join(out_data_dir, f'{cv_str}_model-vocabs')) for i, seq_id in enumerate(test_seq_ids): if stop_after is not None and i >= stop_after: break trial_prefix = f"{prefix}{seq_id}" logger.info(f" Processing sequence {seq_id}...") true_label_seq = utils.loadVariable( f"{trial_prefix}_true-label-seq", data_dir ) event_score_seq = utils.loadVariable(f"{trial_prefix}_score-seq", event_scores_dir) score_seq = model.forward(event_score_seq) pred_label_seq = model.predict(score_seq) metric_dict = eval_metrics(pred_label_seq, true_label_seq) for name, value in metric_dict.items(): logger.info(f" {name}: {value * 100:.2f}%") utils.writeResults(results_file, metric_dict, sweep_param_name, model_params) utils.saveVariable(score_seq, f'{trial_prefix}_score-seq', out_data_dir) utils.saveVariable(pred_label_seq, f'{trial_prefix}_pred-label-seq', out_data_dir) utils.saveVariable(true_label_seq, f'{trial_prefix}_true-label-seq', out_data_dir) if plot_io: utils.plot_array( event_score_seq.T, (pred_label_seq.T, true_label_seq.T), ('pred', 'true'), fn=os.path.join(fig_dir, f"seq={seq_id:03d}.png") ) if __name__ == "__main__": # Parse command-line args and config file cl_args = utils.parse_args(main) config, config_fn = utils.parse_config(cl_args, script_name=__file__) # Create output directory, instantiate log file and write config options out_dir = os.path.expanduser(config['out_dir']) if not os.path.exists(out_dir): os.makedirs(out_dir) with open(os.path.join(out_dir, config_fn), 'w') as outfile: yaml.dump(config, outfile) utils.copyFile(__file__, out_dir) main(**config) ``` #### File: blocks-actions/scripts/make_decode_dataset.py ```python import os import logging import yaml import numpy as np import scipy from mathtools import utils logger = logging.getLogger(__name__) def drawVocab(fig_dir, vocab): if not os.path.exists(fig_dir): os.makedirs(fig_dir) for i, x in enumerate(vocab): x.draw(fig_dir, i) def main( out_dir=None, data_dirs=None, prefix='seq=', feature_fn_format='score-seq', label_fn_format='true-label-seq', stride=None, only_fold=None, stop_after=None, take_log=None, modalities=('assembly', 'event'), plot_io=None, draw_vocab=False, results_file=None, sweep_param_name=None): data_dirs = { name: os.path.expanduser(dir_) for name, dir_ in data_dirs.items() } out_dir = os.path.expanduser(out_dir) if not os.path.exists(out_dir): os.makedirs(out_dir) logger = utils.setupRootLogger(filename=os.path.join(out_dir, 'log.txt')) if results_file is None: results_file = os.path.join(out_dir, 'results.csv') else: results_file = os.path.expanduser(results_file) dir_seq_ids = { name: utils.getUniqueIds( data_dirs[name], prefix=prefix[name], suffix=f'{label_fn_format[name]}.*', to_array=True ) for name in modalities } ids_sets = [set(ids) for ids in dir_seq_ids.values()] seq_ids = np.array(sorted(ids_sets[0].intersection(*ids_sets[1:]))) substr = '; '.join([f'{len(ids)} seqs in {name}' for name, ids in dir_seq_ids.items()]) logger.info(f"Found {substr}; {len(seq_ids)} shared") for name in modalities: data_dir = data_dirs[name] out_data_dir = os.path.join(out_dir, f'{name}-data') if not os.path.exists(out_data_dir): os.makedirs(out_data_dir) fig_dir = os.path.join(out_dir, 'figures', name) if not os.path.exists(fig_dir): os.makedirs(fig_dir) misc_dir = os.path.join(out_dir, 'misc', name) if not os.path.exists(misc_dir): os.makedirs(misc_dir) vocab = utils.loadVariable('vocab', data_dir) metadata = utils.loadMetadata(data_dir, rows=seq_ids) if name == 'event': for i in range(len(vocab)): if isinstance(vocab[i].sign, np.ndarray): vocab[i].sign = np.sign(vocab[i].sign.sum()) all_labels = tuple( utils.loadVariable(f"{prefix[name]}{seq_id}_{label_fn_format[name]}", data_dir) for seq_id in seq_ids ) # Remove labels that don't occur in the dataset if name == 'assembly': unique_labels = np.sort(np.unique(np.hstack(all_labels))) OOV_INDEX = unique_labels.shape[0] old_idxs_to_new = np.full(len(vocab), OOV_INDEX, dtype=int) for new, old in enumerate(unique_labels): old_idxs_to_new[old] = new vocab = [vocab[i] for i in unique_labels] num_removed = np.sum(old_idxs_to_new == OOV_INDEX) logger.info(f'Removing {num_removed} labels that do not occur in dataset') utils.saveVariable(vocab, 'vocab', out_data_dir) utils.saveMetadata(metadata, out_data_dir) if draw_vocab: drawVocab(os.path.join(fig_dir, 'vocab'), vocab) for i, seq_id in enumerate(seq_ids): if stop_after is not None and i >= stop_after: break trial_prefix = f"{prefix[name]}{seq_id}" logger.info(f"Processing sequence {seq_id}...") true_label_seq = all_labels[i] score_seq = utils.loadVariable( f"{trial_prefix}_{feature_fn_format[name]}", data_dir ) true_label_seq = true_label_seq[::stride[name]] if name == 'assembly': true_label_seq = old_idxs_to_new[true_label_seq] if take_log[name]: score_seq = np.log(score_seq) score_seq = score_seq[::stride[name]] if name == 'assembly': score_seq = score_seq[:, unique_labels] score_seq = scipy.special.log_softmax(score_seq, axis=1) pred_label_seq = score_seq.argmax(axis=1) trial_prefix = f"seq={seq_id}" utils.saveVariable(score_seq, f'{trial_prefix}_score-seq', out_data_dir) utils.saveVariable(pred_label_seq, f'{trial_prefix}_pred-label-seq', out_data_dir) utils.saveVariable(true_label_seq, f'{trial_prefix}_true-label-seq', out_data_dir) if plot_io: utils.plot_array( score_seq.T, (true_label_seq.T,), ('gt',), fn=os.path.join(fig_dir, f"seq={seq_id:03d}.png") ) if __name__ == "__main__": # Parse command-line args and config file cl_args = utils.parse_args(main) config, config_fn = utils.parse_config(cl_args, script_name=__file__) # Create output directory, instantiate log file and write config options out_dir = os.path.expanduser(config['out_dir']) if not os.path.exists(out_dir): os.makedirs(out_dir) with open(os.path.join(out_dir, config_fn), 'w') as outfile: yaml.dump(config, outfile) utils.copyFile(__file__, out_dir) main(**config) ``` #### File: blocks-videos_child/scripts/make_fusion_dataset.py ```python import os import logging import yaml import numpy as np import torch from torch.nn import functional as F from mathtools import utils, torchutils logger = logging.getLogger(__name__) def make_attribute_features(score_seq): prob_seq = F.softmax(score_seq, dim=1) feat_seq = torch.reshape( prob_seq.transpose(-1, -2), (prob_seq.shape[0], -1) ) return 2 * feat_seq.float() - 1 def resample(rgb_attribute_seq, rgb_timestamp_seq, imu_attribute_seq, imu_timestamp_seq): imu_attribute_seq = utils.resampleSeq(imu_attribute_seq, imu_timestamp_seq, rgb_timestamp_seq) return rgb_attribute_seq, imu_attribute_seq class FusionDataset(object): def __init__( self, trial_ids, rgb_attributes_dir, rgb_data_dir, imu_attributes_dir, imu_data_dir, device=None, modalities=None): self.trial_ids = trial_ids self.metadata = utils.loadMetadata(rgb_data_dir, rows=trial_ids) self.vocab = utils.loadVariable('vocab', rgb_attributes_dir) self.rgb_attributes_dir = rgb_attributes_dir self.rgb_data_dir = rgb_data_dir self.imu_attributes_dir = imu_attributes_dir self.imu_data_dir = imu_data_dir self.device = device self.modalities = modalities def loadInputs(self, seq_id): if self.modalities == ['rgb']: return self.loadInputsRgb(seq_id) trial_prefix = f"trial={seq_id}" rgb_attribute_seq = torch.tensor( utils.loadVariable(f"{trial_prefix}_score-seq", self.rgb_attributes_dir), dtype=torch.float, device=self.device ) rgb_timestamp_seq = utils.loadVariable( f"{trial_prefix}_rgb-frame-timestamp-seq", from_dir=self.rgb_data_dir ) imu_attribute_seq = torch.tensor( utils.loadVariable(f"{trial_prefix}_score-seq", self.imu_attributes_dir), dtype=torch.float, device=self.device ) imu_timestamp_seq = utils.loadVariable(f"{trial_prefix}_timestamp-seq", self.imu_data_dir) rgb_attribute_seq, imu_attribute_seq = resample( rgb_attribute_seq, rgb_timestamp_seq, imu_attribute_seq, imu_timestamp_seq ) attribute_feats = { 'rgb': make_attribute_features(rgb_attribute_seq), 'imu': make_attribute_features(imu_attribute_seq) } attribute_feats = torch.cat( tuple(attribute_feats[name] for name in self.modalities), dim=1 ) return attribute_feats def loadInputsRgb(self, seq_id): trial_prefix = f"trial={seq_id}" rgb_attribute_seq = torch.tensor( utils.loadVariable(f"{trial_prefix}_score-seq", self.rgb_attributes_dir), dtype=torch.float, device=self.device ) attribute_feats = {'rgb': make_attribute_features(rgb_attribute_seq)} attribute_feats = torch.cat( tuple(attribute_feats[name] for name in self.modalities), dim=1 ) return attribute_feats def loadTargets(self, seq_id): trial_prefix = f"trial={seq_id}" true_label_seq = torch.tensor( utils.loadVariable(f'{trial_prefix}_true-label-seq', self.rgb_attributes_dir), dtype=torch.long, device=self.device ) return true_label_seq def main( out_dir=None, modalities=['rgb', 'imu'], gpu_dev_id=None, plot_io=None, rgb_data_dir=None, rgb_attributes_dir=None, imu_data_dir=None, imu_attributes_dir=None): out_dir = os.path.expanduser(out_dir) rgb_data_dir = os.path.expanduser(rgb_data_dir) rgb_attributes_dir = os.path.expanduser(rgb_attributes_dir) imu_data_dir = os.path.expanduser(imu_data_dir) imu_attributes_dir = os.path.expanduser(imu_attributes_dir) logger = utils.setupRootLogger(filename=os.path.join(out_dir, 'log.txt')) fig_dir = os.path.join(out_dir, 'figures') if not os.path.exists(fig_dir): os.makedirs(fig_dir) out_data_dir = os.path.join(out_dir, 'data') if not os.path.exists(out_data_dir): os.makedirs(out_data_dir) # Load data if modalities == ['rgb']: trial_ids = utils.getUniqueIds(rgb_data_dir, prefix='trial=', to_array=True) logger.info(f"Processing {len(trial_ids)} videos") else: rgb_trial_ids = utils.getUniqueIds(rgb_data_dir, prefix='trial=', to_array=True) imu_trial_ids = utils.getUniqueIds(imu_data_dir, prefix='trial=', to_array=True) trial_ids = np.array(sorted(set(rgb_trial_ids.tolist()) & set(imu_trial_ids.tolist()))) logger.info( f"Processing {len(trial_ids)} videos common to " f"RGB ({len(rgb_trial_ids)} total) and IMU ({len(imu_trial_ids)} total)" ) device = torchutils.selectDevice(gpu_dev_id) dataset = FusionDataset( trial_ids, rgb_attributes_dir, rgb_data_dir, imu_attributes_dir, imu_data_dir, device=device, modalities=modalities, ) utils.saveMetadata(dataset.metadata, out_data_dir) utils.saveVariable(dataset.vocab, 'vocab', out_data_dir) for i, trial_id in enumerate(trial_ids): logger.info(f"Processing sequence {trial_id}...") true_label_seq = dataset.loadTargets(trial_id) attribute_feats = dataset.loadInputs(trial_id) # (Process the samples here if we need to) attribute_feats = attribute_feats.cpu().numpy() true_label_seq = true_label_seq.cpu().numpy() trial_prefix = f"trial={trial_id}" utils.saveVariable(attribute_feats, f'{trial_prefix}_feature-seq', out_data_dir) utils.saveVariable(true_label_seq, f'{trial_prefix}_label-seq', out_data_dir) if plot_io: fn = os.path.join(fig_dir, f'{trial_prefix}.png') utils.plot_array( attribute_feats.T, (true_label_seq,), ('gt',), fn=fn ) if __name__ == "__main__": # Parse command-line args and config file cl_args = utils.parse_args(main) config, config_fn = utils.parse_config(cl_args, script_name=__file__) # Create output directory, instantiate log file and write config options out_dir = os.path.expanduser(config['out_dir']) if not os.path.exists(out_dir): os.makedirs(out_dir) with open(os.path.join(out_dir, config_fn), 'w') as outfile: yaml.dump(config, outfile) utils.copyFile(__file__, out_dir) main(**config) ``` #### File: blocks-videos_child/scripts/make_seg_labels.py ```python import os import warnings import joblib import yaml import numpy as np from matplotlib import pyplot as plt from skimage import morphology, segmentation, measure, color, img_as_float from mathtools import utils from visiontools import imageprocessing def removeTargetModel(seg_image, num): """ Find and remove the target model from a segment image. """ seg_centroids = np.row_stack(tuple( np.column_stack(np.nonzero(seg_image == i)).mean(axis=0) for i in range(1, num + 1) )) direction = np.array([3, 4]) seg_scores = seg_centroids @ direction # Segment labels are one-indexed best_idx = np.array(seg_scores).argmax() + 1 seg_image[seg_image == best_idx] = 0 seg_image = segmentation.relabel_sequential(seg_image)[0] return seg_image, num - 1 def makeCoarseSegmentLabels(mask, min_size=100): mask = morphology.remove_small_objects(mask, min_size=min_size, connectivity=1) labels, num = measure.label(mask.astype(int), return_num=True) if num < 2: return labels labels, num = removeTargetModel(labels, num) return labels def makeFineSegmentLabels(coarse_seg_labels, bg_mask_sat, min_size=100): labels, num = measure.label(coarse_seg_labels, return_num=True) for i in range(1, num + 1): in_seg = labels == i bg_vals = bg_mask_sat[in_seg] class_counts = np.hstack((np.sum(bg_vals == 0), np.sum(bg_vals == 1))) is_bg = class_counts.argmax().astype(bool) if is_bg: labels[in_seg] = 0 fg_mask = morphology.remove_small_objects(labels != 0, min_size=min_size, connectivity=1) labels, num = measure.label(fg_mask.astype(int), return_num=True) for i in range(1, num + 1): in_seg = labels == i labels[in_seg] = coarse_seg_labels[in_seg] labels = segmentation.relabel_sequential(labels)[0] return labels def makeHsvFrame(rgb_image): rgb_image = img_as_float(rgb_image) with warnings.catch_warnings(): warnings.filterwarnings("ignore", "divide by zero") hsv_image = color.rgb2hsv(rgb_image) return hsv_image def plotHsvHist(hsv_frame_seq, seg_labels_seq, file_path=None): fg = hsv_frame_seq[seg_labels_seq != 0] names = ('hue', 'sat', 'val') fig, axes = plt.subplots(3) for i in range(3): axes[i].hist(fg[:, i], bins=100) axes[i].set_ylabel(names[i]) plt.tight_layout() plt.savefig(file_path) plt.close() def main( out_dir=None, data_dir=None, person_masks_dir=None, bg_masks_dir=None, sat_thresh=1, start_from=None, stop_at=None, num_disp_imgs=None): out_dir = os.path.expanduser(out_dir) data_dir = os.path.expanduser(data_dir) person_masks_dir = os.path.expanduser(person_masks_dir) bg_masks_dir = os.path.expanduser(bg_masks_dir) logger = utils.setupRootLogger(filename=os.path.join(out_dir, 'log.txt')) fig_dir = os.path.join(out_dir, 'figures') if not os.path.exists(fig_dir): os.makedirs(fig_dir) out_data_dir = os.path.join(out_dir, 'data') if not os.path.exists(out_data_dir): os.makedirs(out_data_dir) def loadFromDir(var_name, dir_name): return joblib.load(os.path.join(dir_name, f"{var_name}.pkl")) def saveToWorkingDir(var, var_name): joblib.dump(var, os.path.join(out_data_dir, f"{var_name}.pkl")) trial_ids = utils.getUniqueIds(data_dir, prefix='trial=', to_array=True) for seq_idx, trial_id in enumerate(trial_ids): if start_from is not None and seq_idx < start_from: continue if stop_at is not None and seq_idx > stop_at: break trial_str = f"trial={trial_id}" logger.info(f"Processing video {seq_idx + 1} / {len(trial_ids)} (trial {trial_id})") logger.info(" Loading data...") rgb_frame_seq = loadFromDir(f'{trial_str}_rgb-frame-seq', data_dir) person_mask_seq = loadFromDir(f'{trial_str}_person-mask-seq', person_masks_dir) bg_mask_seq_depth = loadFromDir(f'{trial_str}_bg-mask-seq-depth', bg_masks_dir) # bg_mask_seq_rgb = loadFromDir(f'{trial_str}_bg-mask-seq-rgb', bg_masks_dir) logger.info(" Making segment labels...") fg_mask_seq = ~bg_mask_seq_depth seg_labels_seq = np.stack(tuple(map(makeCoarseSegmentLabels, fg_mask_seq)), axis=0) hsv_frame_seq = np.stack(tuple(map(makeHsvFrame, rgb_frame_seq)), axis=0) sat_frame_seq = hsv_frame_seq[..., 1] bg_mask_seq_sat = sat_frame_seq < sat_thresh seg_labels_seq[person_mask_seq] = 0 seg_labels_seq = np.stack( tuple( makeFineSegmentLabels(segs, sat) for segs, sat in zip(seg_labels_seq, bg_mask_seq_sat) ), axis=0 ) logger.info(" Saving output...") saveToWorkingDir(seg_labels_seq.astype(np.uint8), f'{trial_str}_seg-labels-seq') plotHsvHist( hsv_frame_seq, seg_labels_seq, file_path=os.path.join(fig_dir, f'{trial_str}_hsv-hists.png') ) if num_disp_imgs is not None: if rgb_frame_seq.shape[0] > num_disp_imgs: idxs = np.arange(rgb_frame_seq.shape[0]) np.random.shuffle(idxs) idxs = idxs[:num_disp_imgs] else: idxs = slice(None, None, None) imageprocessing.displayImages( *(rgb_frame_seq[idxs]), *(bg_mask_seq_sat[idxs]), *(bg_mask_seq_depth[idxs]), *(person_mask_seq[idxs]), *(seg_labels_seq[idxs]), num_rows=5, file_path=os.path.join(fig_dir, f'{trial_str}_best-frames.png') ) if __name__ == "__main__": # Parse command-line args and config file cl_args = utils.parse_args(main) config, config_fn = utils.parse_config(cl_args, script_name=__file__) # Create output directory, instantiate log file and write config options out_dir = os.path.expanduser(config['out_dir']) if not os.path.exists(out_dir): os.makedirs(out_dir) with open(os.path.join(out_dir, config_fn), 'w') as outfile: yaml.dump(config, outfile) utils.copyFile(__file__, out_dir) main(**config) ``` #### File: blocks-videos_child/scripts/train_assembly_detector.py ```python import os import collections import logging import yaml import torch import joblib import numpy as np from mathtools import utils, metrics, torchutils from kinemparse import sim2real from blocks.core.blockassembly import BlockAssembly from blocks.core import definitions as defn from blocks.core import labels as labels_lib logger = logging.getLogger(__name__) def make_single_block_state(block_index): state = BlockAssembly() state.addBlock(block_index) state.blocks[block_index].component_index = state._next_component_index state.blocks[block_index].theta_global = 0 state.blocks[block_index].t_global = np.zeros(3) state._addToConnectedComponent(block_index) return state def loadMasks(masks_dir=None, trial_ids=None, num_per_video=10): if masks_dir is None: return None def loadMasks(video_id): masks = joblib.load(os.path.join(masks_dir, f'trial={video_id}_person-mask-seq.pkl')) any_detections = masks.any(axis=-1).any(axis=-1) masks = masks[any_detections] masks = utils.sampleWithoutReplacement(masks, num_samples=num_per_video) return masks masks_dir = os.path.expanduser(masks_dir) if trial_ids is None: trial_ids = utils.getUniqueIds(masks_dir, prefix='trial=', to_array=True) masks = np.vstack(tuple(map(loadMasks, trial_ids))) return masks def main( out_dir=None, data_dir=None, model_name=None, gpu_dev_id=None, batch_size=None, learning_rate=None, model_params={}, cv_params={}, train_params={}, viz_params={}, load_masks_params={}, kornia_tfs={}, only_edge=None, num_disp_imgs=None, results_file=None, sweep_param_name=None): data_dir = os.path.expanduser(data_dir) out_dir = os.path.expanduser(out_dir) if not os.path.exists(out_dir): os.makedirs(out_dir) logger = utils.setupRootLogger(filename=os.path.join(out_dir, 'log.txt')) if results_file is None: results_file = os.path.join(out_dir, 'results.csv') else: results_file = os.path.expanduser(results_file) fig_dir = os.path.join(out_dir, 'figures') if not os.path.exists(fig_dir): os.makedirs(fig_dir) io_dir = os.path.join(fig_dir, 'model-io') if not os.path.exists(io_dir): os.makedirs(io_dir) out_data_dir = os.path.join(out_dir, 'data') if not os.path.exists(out_data_dir): os.makedirs(out_data_dir) def saveVariable(var, var_name, to_dir=out_data_dir): return utils.saveVariable(var, var_name, to_dir) trial_ids = utils.getUniqueIds(data_dir, prefix='trial=', to_array=True) vocab = [BlockAssembly()] + [make_single_block_state(i) for i in range(len(defn.blocks))] for seq_id in trial_ids: assembly_seq = utils.loadVariable(f"trial={seq_id}_assembly-seq", data_dir) for assembly in assembly_seq: utils.getIndex(assembly, vocab) parts_vocab, part_labels = labels_lib.make_parts_vocab( vocab, lower_tri_only=True, append_to_vocab=True ) if only_edge is not None: part_labels = part_labels[:, only_edge:only_edge + 1] logger.info(f"Loaded {len(trial_ids)} sequences; {len(vocab)} unique assemblies") saveVariable(vocab, 'vocab') saveVariable(parts_vocab, 'parts-vocab') saveVariable(part_labels, 'part-labels') device = torchutils.selectDevice(gpu_dev_id) if model_name == 'AAE': Dataset = sim2real.DenoisingDataset elif model_name == 'Resnet': Dataset = sim2real.RenderDataset elif model_name == 'Connections': Dataset = sim2real.ConnectionDataset elif model_name == 'Labeled Connections': Dataset = sim2real.LabeledConnectionDataset occlusion_masks = loadMasks(**load_masks_params) if occlusion_masks is not None: logger.info(f"Loaded {occlusion_masks.shape[0]} occlusion masks") def make_data(shuffle=True): dataset = Dataset( parts_vocab, part_labels, vocab, device=device, occlusion_masks=occlusion_masks, kornia_tfs=kornia_tfs, ) data_loader = torch.utils.data.DataLoader( dataset, batch_size=batch_size, shuffle=shuffle ) return dataset, data_loader for cv_index, cv_splits in enumerate(range(1)): cv_str = f"cvfold={cv_index}" train_set, train_loader = make_data(shuffle=True) test_set, test_loader = make_data(shuffle=False) val_set, val_loader = make_data(shuffle=True) if model_name == 'AAE': model = sim2real.AugmentedAutoEncoder(train_set.data_shape, train_set.num_classes) criterion = torchutils.BootstrappedCriterion( 0.25, base_criterion=torch.nn.functional.mse_loss, ) metric_names = ('Reciprocal Loss',) elif model_name == 'Resnet': model = sim2real.ImageClassifier(train_set.num_classes, **model_params) criterion = torch.nn.CrossEntropyLoss() metric_names = ('Loss', 'Accuracy') elif model_name == 'Connections': model = sim2real.ConnectionClassifier(train_set.label_shape[0], **model_params) criterion = torch.nn.BCEWithLogitsLoss() metric_names = ('Loss', 'Accuracy', 'Precision', 'Recall', 'F1') elif model_name == 'Labeled Connections': out_dim = int(part_labels.max()) + 1 num_vertices = len(defn.blocks) edges = np.column_stack(np.tril_indices(num_vertices, k=-1)) if only_edge is not None: edges = edges[only_edge:only_edge + 1] model = sim2real.LabeledConnectionClassifier( out_dim, num_vertices, edges, **model_params ) if only_edge is not None: logger.info(f"Class freqs: {train_set.class_freqs}") # criterion = torch.nn.CrossEntropyLoss(weight=1 / train_set.class_freqs[:, 0]) criterion = torch.nn.CrossEntropyLoss() else: criterion = torch.nn.CrossEntropyLoss() # criterion = torchutils.BootstrappedCriterion( # 0.25, base_criterion=torch.nn.functional.cross_entropy, # ) metric_names = ('Loss', 'Accuracy', 'Precision', 'Recall', 'F1') model = model.to(device=device) optimizer_ft = torch.optim.Adam( model.parameters(), lr=learning_rate, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False ) lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer_ft, step_size=1, gamma=1.00) train_epoch_log = collections.defaultdict(list) val_epoch_log = collections.defaultdict(list) metric_dict = {name: metrics.makeMetric(name) for name in metric_names} model, last_model_wts = torchutils.trainModel( model, criterion, optimizer_ft, lr_scheduler, train_loader, val_loader, device=device, metrics=metric_dict, train_epoch_log=train_epoch_log, val_epoch_log=val_epoch_log, **train_params ) # Test model metric_dict = {name: metrics.makeMetric(name) for name in metric_names} test_io_batches = torchutils.predictSamples( model.to(device=device), test_loader, criterion=criterion, device=device, metrics=metric_dict, data_labeled=True, update_model=False, seq_as_batch=train_params['seq_as_batch'], return_io_history=True ) metric_str = ' '.join(str(m) for m in metric_dict.values()) logger.info('[TST] ' + metric_str) utils.writeResults(results_file, metric_dict, sweep_param_name, model_params) for pred_seq, score_seq, feat_seq, label_seq, trial_id in test_io_batches: trial_str = f"trial={trial_id}" saveVariable(pred_seq.cpu().numpy(), f'{trial_str}_pred-label-seq') saveVariable(score_seq.cpu().numpy(), f'{trial_str}_score-seq') saveVariable(label_seq.cpu().numpy(), f'{trial_str}_true-label-seq') saveVariable(model, f'{cv_str}_model-best') if train_epoch_log: torchutils.plotEpochLog( train_epoch_log, subfig_size=(10, 2.5), title='Training performance', fn=os.path.join(fig_dir, f'{cv_str}_train-plot.png') ) if val_epoch_log: torchutils.plotEpochLog( val_epoch_log, subfig_size=(10, 2.5), title='Heldout performance', fn=os.path.join(fig_dir, f'{cv_str}_val-plot.png') ) if num_disp_imgs is not None: model.plotBatches(test_io_batches, io_dir, dataset=test_set) if __name__ == "__main__": # Parse command-line args and config file cl_args = utils.parse_args(main) config, config_fn = utils.parse_config(cl_args, script_name=__file__) # Create output directory, instantiate log file and write config options out_dir = os.path.expanduser(config['out_dir']) if not os.path.exists(out_dir): os.makedirs(out_dir) with open(os.path.join(out_dir, config_fn), 'w') as outfile: yaml.dump(config, outfile) utils.copyFile(__file__, out_dir) main(**config) ``` #### File: ikea_anu/scripts/make_assembly_data.py ```python import os import logging import glob import yaml import numpy as np import pandas as pd from matplotlib import pyplot as plt from mathtools import utils logger = logging.getLogger(__name__) def plotLabels(fn, label_seq): fig, axis = plt.subplots(1, figsize=(12, 9)) axis.plot(label_seq) plt.tight_layout() plt.savefig(fn) plt.close() def writeLabels(fn, label_seq, vocab): seg_label_idxs, seg_durs = utils.computeSegments(label_seq) seg_durs = np.array(seg_durs) seg_ends = np.cumsum(seg_durs) - 1 seg_starts = np.array([0] + (seg_ends + 1)[:-1].tolist()) seg_labels = tuple(str(vocab[i]) for i in seg_label_idxs) d = { 'start': seg_starts, 'end': seg_ends, 'label': seg_labels } pd.DataFrame(d).to_csv(fn, index=False) def parseActions(assembly_actions, num_frames, vocab): def makeJoint(part1, part2): return tuple(sorted([part1, part2])) def updateAssembly(assembly, joint): return tuple(sorted(cur_assembly + (joint,))) assembly_index_seq = np.zeros(num_frames, dtype=int) cur_assembly = tuple() prev_start = -1 prev_end = -1 for i, row in assembly_actions.iterrows(): if row.start != prev_start or row.end != prev_end: cur_assembly_index = utils.getIndex(cur_assembly, vocab) assembly_index_seq[prev_end:row.end + 1] = cur_assembly_index prev_start = row.start prev_end = row.end if row.action == 'connect': joint = makeJoint(row.part1, row.part2) cur_assembly = updateAssembly(cur_assembly, joint) elif row.action == 'pin': continue else: raise ValueError() cur_assembly_index = utils.getIndex(cur_assembly, vocab) assembly_index_seq[prev_end:] = cur_assembly_index return assembly_index_seq def main(out_dir=None, data_dir=None, labels_dir=None): out_dir = os.path.expanduser(out_dir) data_dir = os.path.expanduser(data_dir) labels_dir = os.path.expanduser(labels_dir) logger = utils.setupRootLogger(filename=os.path.join(out_dir, 'log.txt')) fig_dir = os.path.join(out_dir, 'figures') if not os.path.exists(fig_dir): os.makedirs(fig_dir) out_data_dir = os.path.join(out_dir, 'data') if not os.path.exists(out_data_dir): os.makedirs(out_data_dir) filenames = [ utils.stripExtension(fn) for fn in glob.glob(os.path.join(labels_dir, '*.csv')) ] metadata = utils.loadMetadata(data_dir) metadata['seq_id'] = metadata.index metadata = metadata.set_index('dir_name', drop=False).loc[filenames].set_index('seq_id') seq_ids = np.sort(metadata.index.to_numpy()) logger.info(f"Loaded {len(seq_ids)} sequences from {labels_dir}") vocab = [] for i, seq_id in enumerate(seq_ids): seq_id_str = f"seq={seq_id}" seq_dir_name = metadata['dir_name'].loc[seq_id] labels_fn = os.path.join(labels_dir, f'{seq_dir_name}.csv') event_labels = utils.loadVariable(f'{seq_id_str}_labels', data_dir) assembly_actions = pd.read_csv(labels_fn) label_seq = parseActions(assembly_actions, event_labels.shape[0], vocab) utils.saveVariable(label_seq, f'{seq_id_str}_label-seq', out_data_dir) plotLabels(os.path.join(fig_dir, f'{seq_id_str}_labels.png'), label_seq) writeLabels(os.path.join(fig_dir, f'{seq_id_str}_labels.csv'), label_seq, vocab) utils.saveMetadata(metadata, out_data_dir) utils.saveVariable(vocab, 'vocab', out_data_dir) if __name__ == "__main__": # Parse command-line args and config file cl_args = utils.parse_args(main) config, config_fn = utils.parse_config(cl_args, script_name=__file__) # Create output directory, instantiate log file and write config options out_dir = os.path.expanduser(config['out_dir']) if not os.path.exists(out_dir): os.makedirs(out_dir) with open(os.path.join(out_dir, config_fn), 'w') as outfile: yaml.dump(config, outfile) utils.copyFile(__file__, out_dir) main(**config) ``` #### File: kinemparse/scripts/decode_airplanes.py ```python import os import functools import time import argparse import pdb import yaml import joblib import scipy import torch from matplotlib import pyplot as plt from matplotlib.ticker import MaxNLocator import torch_struct import numpy as np from mathtools import utils, metrics, torchutils from kinemparse import models, airplanecorpus def assign_hands(hand_detections): new_detections = np.zeros_like(hand_detections) hand_a = hand_detections[0, :2] # hand_b = hand_detections[0, 2:] for t, detections in enumerate(hand_detections): if np.isnan(detections).any(): new_detections[t, :] = np.nan loc_a = detections[:2] loc_b = detections[2:] aa = np.linalg.norm(hand_a - loc_a) ba = np.linalg.norm(hand_a - loc_b) # ab = np.linalg.norm(hand_b - loc_a) # bb = np.linalg.norm(hand_b - loc_b) if aa < ba: hand_a = loc_a # hand_b = loc_b new_detections[t, :2] = loc_a new_detections[t, 2:] = loc_b else: # hand_b = loc_a hand_a = loc_b new_detections[t, :2] = loc_b new_detections[t, 2:] = loc_a return new_detections def main( config_path=None, out_dir=None, scores_dir=None, airplane_corpus_dir=None, subsample_period=None, window_size=None, corpus_name=None, debug=None, default_annotator=None, cv_scheme=None, model_config=None, overwrite=None, ignore_objects_in_comparisons=None, gpu_dev_id=None, start_from_fold=None, max_folds=None, presegment=False, min_dur=None): out_dir = os.path.expanduser(out_dir) airplane_corpus_dir = os.path.expanduser(airplane_corpus_dir) if scores_dir is not None: scores_dir = os.path.expanduser(scores_dir) model_name = model_config.pop('model_name') fig_dir = os.path.join(out_dir, 'figures') if not os.path.exists(fig_dir): os.makedirs(fig_dir) out_data_dir = os.path.join(out_dir, 'data') if not os.path.exists(out_data_dir): os.makedirs(out_data_dir) def saveToWorkingDir(var, var_name): joblib.dump(var, os.path.join(out_data_dir, f"{var_name}.pkl")) logger.info(f"Starting run") device = torchutils.selectDevice(gpu_dev_id) hand_detection_seqs, action_seqs, trial_ids, part_info = airplanecorpus.loadCorpus( airplane_corpus_dir, subsample_period=None, reaching_only=True, parse_actions=False, # airplane_corpus_dir, subsample_period=None, reaching_only=False, parse_actions=False, ignore_objects_in_comparisons=ignore_objects_in_comparisons, ) part_idxs_to_models, model_names, model_names_to_idxs = airplanecorpus.loadModelAssignments() part_idxs_to_models = torch.tensor(part_idxs_to_models).float() # Split into train and test sets if cv_scheme == 'leave one out': num_seqs = len(trial_ids) cv_folds = [] for i in range(num_seqs): test_fold = (i,) train_fold = tuple(range(0, i)) + tuple(range(i + 1, num_seqs)) cv_folds.append((train_fold, test_fold)) elif cv_scheme == 'test on train set': if not debug: err_str = "You can't test on the train set if you're not debugging!" raise ValueError(err_str) num_seqs = len(trial_ids) cv_folds = [] for i in range(num_seqs): test_fold = (i,) train_fold = tuple(range(0, num_seqs)) cv_folds.append((train_fold, test_fold)) logger.warning(f"TESTING ON THE TRAINING SET---DON'T BELIEVE THESE NUMBERS") saveToWorkingDir(cv_folds, f'cv-folds') if start_from_fold is not None: cv_folds = cv_folds[start_from_fold:] if max_folds is not None: cv_folds = cv_folds[:max_folds] num_cv_folds = len(cv_folds) num_equivalent = 0 for fold_index, (train_idxs, test_idxs) in enumerate(cv_folds): logger.info(f"CV FOLD {fold_index + 1} / {num_cv_folds}") if cv_scheme != 'test on train set': utils.validateCvFold(train_idxs, test_idxs) model = getattr(models, model_name)( *part_info, device=device, **model_config['init_kwargs'] ) selectTrain = functools.partial(utils.select, train_idxs) train_hand_detection_seqs = selectTrain(hand_detection_seqs) train_action_seqs = selectTrain(action_seqs) logger.info(f" Training model on {len(train_idxs)} sequences...") model.fit( train_action_seqs, train_hand_detection_seqs, **model_config['fit_kwargs'] ) logger.info(f' Model trained on {model.num_states} unique assembly states') logger.info(f" Testing model on {len(test_idxs)} sequences...") for i, test_idx in enumerate(test_idxs): trial_id = trial_ids[test_idx] hand_detection_seq = hand_detection_seqs[test_idx] true_action_seq = action_seqs[test_idx] true_action_names = tuple( model._obsv_model._part_names[i] for i in true_action_seq[:, 0] ) """ hand_detection_seq = assign_hands(hand_detection_seq) f, axes = plt.subplots(4) axes[0].plot(hand_detection_seq[:, 0]) axes[1].plot(hand_detection_seq[:, 1]) axes[2].plot(hand_detection_seq[:, 2]) axes[3].plot(hand_detection_seq[:, 3]) # axis.plot(hand_detection_seq[:, 2], hand_detection_seq[:, 3]) plt.savefig(os.path.join(fig_dir, f"hands-{trial_id}.png")) plt.close() continue """ fst = model.showFST(action_dict=model._obsv_model._part_names) fst.render(os.path.join(fig_dir, f"fst-{trial_id}"), cleanup=True) detection_scores = torch.tensor( scipy.io.loadmat( os.path.join(scores_dir, f'trial-{trial_id}-detection-scores.mat') )['detection_scores'] ).float() num_samples, num_bins = detection_scores.shape _, axis = plt.subplots(1, figsize=(12, 4)) for i in range(num_bins): axis.plot(detection_scores[:, i].numpy(), label=f"bin {i}") axis.set_title(f"Detections, {trial_id}") axis.legend() axis.grid() plt.savefig(os.path.join(fig_dir, f"detections-{trial_id}.png")) plt.close() def makeSegmentScores(sample_scores, min_dur=1): x = torch.any(sample_scores > 0, dim=1).int() changepoints = x[1:] - x[:-1] start_idxs = (torch.nonzero(changepoints == 1)[:, 0] + 1).tolist() end_idxs = (torch.nonzero(changepoints == -1)[:, 0] + 1).tolist() if x[0]: start_idxs = [0] + start_idxs assert(len(start_idxs) == len(end_idxs)) segment_scores = tuple( sample_scores[seg_start:seg_end].mean(dim=0) for seg_start, seg_end in zip(start_idxs, end_idxs) if seg_end - seg_start > min_dur ) return torch.stack(segment_scores) if presegment: try: detection_scores = makeSegmentScores(detection_scores, min_dur=min_dur) except AssertionError as e: logger.warning(e) continue row_is_inf = torch.isinf(detection_scores[:, :-1]).all(-1) detection_scores = detection_scores[~row_is_inf, :] # logger.info(f"{int(row_is_inf.sum())} inf-valued rows in detection array") # duration_scores = None duration_scores = torch.tensor( scipy.io.loadmat( os.path.join(scores_dir, f'trial-{trial_id}-duration-scores.mat') )['duration_scores'] ).float() _, axes = plt.subplots(1, 2, figsize=(12, 12)) axes[0].matshow(detection_scores) axes[0].set_ylabel('detection') axes[1].matshow(duration_scores) axes[0].set_ylabel('duration') plt.tight_layout() plt.savefig(os.path.join(fig_dir, f"scores-{trial_id}.png")) plt.close() logger.info(f' Decoding video {trial_id}...') # start_time = time.process_time() pred_action_idxs, pred_scores = model.predictSeq( hand_detection_seq, obsv_scores=detection_scores, dur_scores=duration_scores, **model_config['decode_kwargs'] ) # end_time = time.process_time() # logger.info(utils.makeProcessTimeStr(end_time - start_time)) semiring = torch_struct.LogSemiring() best_score = semiring.sum(pred_scores.max(dim=-1).values, dim=0) logger.info(f" Path score: {best_score}") _, axes = plt.subplots(2, figsize=(12, 12)) axes[0].matshow(pred_scores.numpy().T) axes[1].matshow(pred_scores.exp().numpy().T) plt.tight_layout() plt.savefig(os.path.join(fig_dir, f"marginals-{trial_id}.png")) plt.close() pdb.set_trace() pred_action_idx_segs, _ = utils.computeSegments(pred_action_idxs.tolist()) pred_action_names = tuple( model._obsv_model._part_names[i] for i in pred_action_idx_segs ) pred_action_names = tuple(a for a in pred_action_names if a != 'null') num_samples, num_bins = detection_scores.shape _, axes = plt.subplots(2, sharex=True, figsize=(10, 10)) for i in range(num_bins): axes[0].plot(detection_scores[:, i].numpy(), label=f"bin {i}") axes[0].scatter(range(num_samples), detection_scores[:, i].numpy()) axes[0].set_title(f"System I/O, {trial_id}") axes[0].legend() axes[0].grid() axes[-1].plot(pred_action_idxs.numpy()) axes[-1].scatter(range(num_samples), pred_action_idxs.numpy()) axes[-1].set_yticks(range(len(model._obsv_model._part_names))) axes[-1].set_yticklabels(model._obsv_model._part_names) axes[-1].grid() plt.tight_layout() plt.savefig(os.path.join(fig_dir, f"io-{trial_id}.png")) plt.close() raw_bin_idxs = detection_scores.argmax(-1).numpy() pred_bin_idxs = model._obsv_model._part_to_bin[pred_action_idxs].numpy() num_samples, num_bins = detection_scores.shape _, axis = plt.subplots(1, figsize=(10, 5)) axis.plot(raw_bin_idxs, label='raw') axis.scatter(range(num_samples), raw_bin_idxs) axis.set_title(f"Bin predictions, {trial_id}") axis.plot(pred_bin_idxs, label='decode') axis.scatter(range(num_samples), pred_bin_idxs) axis.yaxis.set_major_locator(MaxNLocator(integer=True)) axis.grid() axis.legend() plt.savefig(os.path.join(fig_dir, f"bins-{trial_id}.png")) plt.close() last_state_pred = frozenset(pred_action_names) last_state_true = frozenset(true_action_names) residual = last_state_pred ^ last_state_true logger.info(f' Actions, pred: {models.stateToString(pred_action_names)}') logger.info(f' Actions, true: {models.stateToString(true_action_names)}') logger.info(f' Errors: {models.stateToString(sorted(tuple(residual)))}') file_path = os.path.join(out_dir, f'{trial_id}-pred.txt') with open(file_path, "w") as text_file: for action in pred_action_names: print(action, file=text_file) file_path = os.path.join(out_dir, f'{trial_id}-true.txt') with open(file_path, "w") as text_file: for action in true_action_names: print(action, file=text_file) def getModel(action_names): model_names = ('a', 'b', 'c') model_names_to_idxs = {n: i for i, n in enumerate(model_names)} model_names_to_idxs['ab'] = [0, 1] model_counts = torch.zeros(3) for n in action_names: if n.startswith('nose') or n.startswith('wing') or n.startswith('tail'): model_name = n[:-1].split('_')[-1] model_idx = model_names_to_idxs[model_name] model_counts[model_idx] += 1 best_model_idx = model_counts.argmax() best_model_name = model_names[best_model_idx] return best_model_name def predictModel(): # model_scores = torch.einsum('tp,pm->tm', pred_scores, part_idxs_to_models) model_scores = semiring.matmul(pred_scores, part_idxs_to_models.log()) model_scores = semiring.sum(model_scores, dim=0) best_model_idx = model_scores.argmax(-1) best_model_name = model_names[best_model_idx] return best_model_name true_model = getModel(true_action_names) pred_model = predictModel() models_match = true_model == pred_model # equiv_upto_optional = residual <= frozenset(['wheel1', 'wheel2']) logger.info(f" MODEL CORRECT: {models_match} (p {pred_model} | t {true_model})") num_equivalent += int(models_match) edit_dist = metrics.levenshtein( true_action_names, pred_action_names, segment_level=False ) logger.info( f" EDIT DISTANCE: {edit_dist} " f"({len(true_action_names)} true, {len(pred_action_names)} pred)" ) # Save intermediate results logger.info(f"Saving output...") saveToWorkingDir(true_action_seq, f'true_action_seq-{trial_id}') saveToWorkingDir(true_action_names, f'true_action_names-{trial_id}') saveToWorkingDir(pred_action_names, f'pred_action_names-{trial_id}') saveToWorkingDir(pred_action_idxs, f'pred_action_idxs-{trial_id}') num_seqs = len(trial_ids) final_score = num_equivalent / num_seqs logger.info( f"TOTAL: {final_score * 100:.2f}% ({num_equivalent} / {num_seqs})" " of final states correct" ) if __name__ == '__main__': # Parse command line arguments parser = argparse.ArgumentParser() parser.add_argument('--config_file') parser.add_argument('--out_dir') args = vars(parser.parse_args()) args = {k: v for k, v in args.items() if v is not None} # Load config file and override with any provided command line args config_file_path = args.pop('config_file', None) if config_file_path is None: file_basename = utils.stripExtension(__file__) config_fn = f"{file_basename}.yaml" config_file_path = os.path.expanduser( os.path.join('~', 'repo', 'kinemparse', 'scripts', 'config', config_fn) ) with open(config_file_path, 'rt') as config_file: config = yaml.safe_load(config_file) config.update(args) # Create output directory, instantiate log file and write config options out_dir = os.path.expanduser(config['out_dir']) if not os.path.exists(out_dir): os.makedirs(out_dir) logger = utils.setupRootLogger(filename=os.path.join(out_dir, 'log.txt')) with open(os.path.join(out_dir, config_fn), 'w') as outfile: yaml.dump(config, outfile) utils.copyFile(__file__, out_dir) utils.autoreload_ipython() main(**config) ``` #### File: kinemparse/scripts/decode_keyframes.py ```python import os import functools import time import glob import argparse import numpy as np import joblib import yaml from blocks.core import utils, labels, duplocorpus from blocks.estimation import imageprocessing, models, render, metrics def removeBackground(image, foreground_mask, replace_with=None): if replace_with is None: replace_with = np.zeros_like(image) new_image = image.copy().astype(float) new_image[~foreground_mask] = replace_with[~foreground_mask] return new_image def getUniqueTrialIds(dir_path): trial_ids = set( int(os.path.basename(fn).split('-')[1].split('_')[0]) for fn in glob.glob(os.path.join(dir_path, f"trial-*.pkl")) ) return sorted(tuple(trial_ids)) def main( out_dir=None, data_dir=None, preprocess_dir=None, detections_dir=None, data_scores_dir=None, keyframes_dir=None, num_seqs=None, only_task_ids=None, resume=None, num_folds=None, scores_run_name=None, keyframe_model_name=None, reselect_keyframes=None, subsample_period=None, window_size=None, corpus_name=None, debug=None, remove_skin=None, remove_background=None, default_annotator=None, cv_scheme=None, model_config=None, overwrite=None, legacy_mode=None): out_dir = os.path.expanduser(out_dir) data_dir = os.path.expanduser(data_dir) preprocess_dir = os.path.expanduser(preprocess_dir) detections_dir = os.path.expanduser(detections_dir) if data_scores_dir is not None: data_scores_dir = os.path.expanduser(data_scores_dir) if keyframes_dir is not None: keyframes_dir = os.path.expanduser(keyframes_dir) fig_dir = os.path.join(out_dir, 'figures') if not os.path.exists(fig_dir): os.makedirs(fig_dir) out_data_dir = os.path.join(out_dir, 'data') if not os.path.exists(out_data_dir): os.makedirs(out_data_dir) if overwrite is None: overwrite = debug if legacy_mode: model_config['decode_kwargs']['legacy_mode'] = legacy_mode def loadFromDataDir(var_name): return joblib.load(os.path.join(data_dir, f"{var_name}.pkl")) def loadFromPreprocessDir(var_name): return joblib.load(os.path.join(preprocess_dir, f"{var_name}.pkl")) def loadFromDetectionsDir(var_name): return joblib.load(os.path.join(detections_dir, f"{var_name}.pkl")) def loadFromKeyframesDir(var_name): return joblib.load(os.path.join(keyframes_dir, f"{var_name}.pkl")) def saveToWorkingDir(var, var_name): joblib.dump(var, os.path.join(out_data_dir, f"{var_name}.pkl")) trial_ids = getUniqueTrialIds(detections_dir) corpus = duplocorpus.DuploCorpus(corpus_name) if num_seqs is not None and num_seqs > 0: logger.info(f"Ignoring all but the first {num_seqs} videos") trial_ids = trial_ids[:num_seqs] logger.info(f"Loading data...") kept_trial_ids = [] rgb_keyframe_seqs = [] depth_keyframe_seqs = [] seg_keyframe_seqs = [] background_keyframe_seqs = [] assembly_keyframe_seqs = [] assembly_seqs = [] label_keyframe_seqs = [] foreground_mask_seqs = [] for seq_idx, trial_id in enumerate(trial_ids): try: trial_str = f"trial={trial_id}" rgb_frame_seq = loadFromDataDir(f'{trial_str}_rgb-frame-seq') depth_frame_seq = loadFromDataDir(f'{trial_str}_depth-frame-seq') rgb_timestamp_seq = loadFromDataDir(f'{trial_str}_rgb-frame-timestamp-seq') action_seq = loadFromDataDir(f'{trial_str}_action-seq') trial_str = f"trial-{trial_id}" foreground_mask_seq = loadFromPreprocessDir( f'{trial_str}_foreground-mask-seq_no-ref-model' ) background_plane_seq = loadFromPreprocessDir(f'{trial_str}_background-plane-seq') # FIXME: I need a better way of handling this. For child data it's # better to get segments from block detections, but for the easy # dataset it's better to use the original foreground segments. if legacy_mode: segment_seq = loadFromDetectionsDir(f'{trial_str}_block-segment-frame-seq') else: segment_seq = loadFromPreprocessDir(f'{trial_str}_segment-frame-seq') label_frame_seq = loadFromDetectionsDir(f'{trial_str}_class-label-frame-seq') assembly_seq = labels.parseLabelSeq(action_seq, timestamps=rgb_timestamp_seq) if len(assembly_seq) < 2: logger.info(f"Skipping trial {trial_id} --- error parsing state seq") continue assembly_seq[-1].end_idx = len(rgb_frame_seq) - 1 except FileNotFoundError as e: logger.warning(e) logger.info(f"Skipping trial {trial_id} --- no data in {scores_run_name}") continue task_id = None # corpus.getTaskIndex(trial_id) (FIXME: getTaskIndex is broken) assembly_seqs.append(assembly_seq) if keyframes_dir is not None: keyframe_idxs = loadFromKeyframesDir(f'{trial_str}_keyframe-idxs') assembly_seq = labels.resampleStateSeq(keyframe_idxs, assembly_seq) rgb_frame_seq = rgb_frame_seq[keyframe_idxs] depth_frame_seq = depth_frame_seq[keyframe_idxs] segment_seq = segment_seq[keyframe_idxs] background_plane_seq = tuple( background_plane_seq[i] for i in keyframe_idxs ) label_frame_seq = label_frame_seq[keyframe_idxs] foreground_mask_seq = foreground_mask_seq[keyframe_idxs] if not only_task_ids or task_id in only_task_ids: rgb_keyframe_seqs.append(rgb_frame_seq) depth_keyframe_seqs.append(depth_frame_seq) seg_keyframe_seqs.append(segment_seq) background_keyframe_seqs.append(background_plane_seq) assembly_keyframe_seqs.append(assembly_seq) label_keyframe_seqs.append(label_frame_seq) foreground_mask_seqs.append(foreground_mask_seq) kept_trial_ids.append(trial_id) trial_ids = kept_trial_ids # Split into train and test sets if cv_scheme == 'leave one out': num_seqs = len(trial_ids) cv_folds = [] for i in range(num_seqs): test_fold = (i,) train_fold = tuple(range(0, i)) + tuple(range(i + 1, num_seqs)) cv_folds.append((train_fold, test_fold)) elif cv_scheme == 'train on child': child_corpus = duplocorpus.DuploCorpus('child') child_trial_ids = utils.loadVariable('trial_ids', 'preprocess-all-data', 'child') train_assembly_seqs = tuple( labels.parseLabelSeq(child_corpus.readLabels(trial_id, 'Cathryn')[0]) for trial_id in child_trial_ids ) hmm = models.EmpiricalImageHmm(**model_config['init_kwargs']) logger.info(f" Training model on {len(train_assembly_seqs)} sequences...") hmm.fit(train_assembly_seqs, **model_config['fit_kwargs']) logger.info(f' Model trained on {hmm.num_states} unique assembly states') saveToWorkingDir(hmm, f'hmm-fold0') cv_folds = [(tuple(range(len(child_trial_ids))), tuple(range(len(trial_ids))))] num_cv_folds = len(cv_folds) saveToWorkingDir(cv_folds, f'cv-folds') total_correct = 0 total_items = 0 for fold_index, (train_idxs, test_idxs) in enumerate(cv_folds): if num_folds is not None and fold_index >= num_folds: break logger.info(f"CV FOLD {fold_index + 1} / {num_cv_folds}") # Initialize and train model if cv_scheme == 'train on child': pass else: utils.validateCvFold(train_idxs, test_idxs) selectTrain = functools.partial(utils.select, train_idxs) # train_trial_ids = selectTrain(trial_ids) train_assembly_seqs = selectTrain(assembly_keyframe_seqs) hmm = models.EmpiricalImageHmm(**model_config['init_kwargs']) logger.info(f" Training model on {len(train_idxs)} sequences...") hmm.fit(train_assembly_seqs, **model_config['fit_kwargs']) logger.info(f' Model trained on {hmm.num_states} unique assembly states') saveToWorkingDir(hmm, f'hmm-fold{fold_index}') # Decode on the test set logger.info(f" Testing model on {len(test_idxs)} sequences...") for i, test_index in enumerate(test_idxs): trial_id = trial_ids[test_index] rgb_frame_seq = rgb_keyframe_seqs[test_index] depth_frame_seq = depth_keyframe_seqs[test_index] seg_frame_seq = seg_keyframe_seqs[test_index] background_plane_seq = background_keyframe_seqs[test_index] true_assembly_seq = assembly_keyframe_seqs[test_index] true_assembly_seq_orig = assembly_seqs[test_index] label_frame_seq = label_keyframe_seqs[test_index] foreground_mask_seq = foreground_mask_seqs[test_index] if data_scores_dir is not None: try: data_scores = joblib.load( os.path.join(data_scores_dir, f"trial={trial_id}_data-scores.pkl") ) except FileNotFoundError: logger.info(" Skipping trial {trial_id} --- scores file not found") continue else: data_scores = None rgb_frame_seq = tuple( imageprocessing.saturateImage( rgb_image, background_mask=~foreground_mask, remove_background=remove_background ) for rgb_image, foreground_mask in zip(rgb_frame_seq, foreground_mask_seq) ) depth_bkgrd_frame_seq = tuple( render.renderPlane( background_plane, camera_params=render.intrinsic_matrix, camera_pose=render.camera_pose, plane_appearance=render.object_colors[0] )[1] for background_plane in background_plane_seq ) depth_frame_seq = tuple( removeBackground(depth_image, foreground_mask, replace_with=depth_bkgrd) for depth_image, foreground_mask, depth_bkgrd in zip(depth_frame_seq, foreground_mask_seq, depth_bkgrd_frame_seq) ) # FIXME: This is a really hacky way of dealing with the fact that # fitScene takes a background plane but stateLogLikelihood takes # a background plane IMAGE if legacy_mode: background_seq = depth_bkgrd_frame_seq else: background_seq = background_plane_seq logger.info(f' Decoding video {trial_id}...') num_oov = sum(int(s not in hmm.states) for s in true_assembly_seq) logger.info(f" {num_oov} out-of-vocabulary states in ground-truth") start_time = time.process_time() ret = hmm.predictSeq( rgb_frame_seq, depth_frame_seq, seg_frame_seq, label_frame_seq, background_seq, log_likelihoods=data_scores, **model_config['decode_kwargs'] ) pred_assembly_seq, pred_idx_seq, max_log_probs, log_likelihoods, poses_seq = ret end_time = time.process_time() logger.info(utils.makeProcessTimeStr(end_time - start_time)) if data_scores_dir is not None: # FIXME: I only save the pose of the best sequence, but I should # save all of them # poses_seq = joblib.load( # os.path.join(data_scores_dir, f"trial-{trial_id}_poses-seq.pkl") # ) if legacy_mode: poses_seq = tuple( ((0, np.zeros(2)),) * len(s.connected_components) for s in pred_assembly_seq ) else: poses_seq = tuple( ((np.eye(3), np.zeros(3)),) * len(s.connected_components) for s in pred_assembly_seq ) if len(pred_assembly_seq) == len(true_assembly_seq): num_correct, num_total = metrics.numberCorrect(true_assembly_seq, pred_assembly_seq) logger.info(f' ACCURACY: {num_correct} / {num_total}') total_correct += num_correct total_items += num_total else: logger.info( f" Skipping accuracy computation: " f"{len(pred_assembly_seq)} pred states != " f"{len(true_assembly_seq)} gt states" ) # Save intermediate results logger.info(f"Saving output...") trial_str = f"trial-{trial_id}" saveToWorkingDir(true_assembly_seq_orig, f'{trial_str}_true-state-seq-orig') saveToWorkingDir(true_assembly_seq, f'{trial_str}_true-state-seq') saveToWorkingDir(pred_assembly_seq, f'{trial_str}_pred-state-seq') saveToWorkingDir(poses_seq, f'{trial_str}_poses-seq') saveToWorkingDir(max_log_probs, f'{trial_str}_viterbi-scores') saveToWorkingDir(log_likelihoods, f'{trial_str}_data-scores') # Save figures if legacy_mode: renders = tuple( render.makeFinalRender( p, assembly=a, rgb_background=np.zeros_like(rgb), depth_background=depth_bkgrd, camera_pose=render.camera_pose, camera_params=render.intrinsic_matrix, block_colors=render.object_colors ) for p, a, rgb, depth, depth_bkgrd in zip( poses_seq, pred_assembly_seq, rgb_frame_seq, depth_frame_seq, depth_bkgrd_frame_seq ) ) rgb_rendered_seq, depth_rendered_seq, label_rendered_seq = tuple( zip(*renders) ) gt_poses_seq = tuple( ((0, np.zeros(2)),) * len(s.connected_components) for s in true_assembly_seq ) renders = tuple( render.makeFinalRender( p, assembly=a, rgb_background=np.zeros_like(rgb), depth_background=depth_bkgrd, camera_pose=render.camera_pose, camera_params=render.intrinsic_matrix, block_colors=render.object_colors ) for p, a, rgb, depth, depth_bkgrd in zip( gt_poses_seq, true_assembly_seq, rgb_frame_seq, depth_frame_seq, depth_bkgrd_frame_seq ) ) rgb_rendered_seq_gt, depth_rendered_seq_gt, label_rendered_seq_gt = tuple( zip(*renders) ) else: rgb_rendered_seq, depth_rendered_seq, label_rendered_seq = utils.batchProcess( render.renderScene, background_plane_seq, pred_assembly_seq, poses_seq, static_kwargs={ 'camera_pose': render.camera_pose, 'camera_params': render.intrinsic_matrix, 'object_appearances': render.object_colors }, unzip=True ) gt_poses_seq = tuple( ((np.eye(3), np.zeros(3)),) * len(s.connected_components) for s in true_assembly_seq ) renders = utils.batchProcess( render.renderScene, background_plane_seq, true_assembly_seq, gt_poses_seq, static_kwargs={ 'camera_pose': render.camera_pose, 'camera_params': render.intrinsic_matrix, 'object_appearances': render.object_colors }, unzip=True ) rgb_rendered_seq_gt, depth_rendered_seq_gt, label_rendered_seq_gt = renders if utils.in_ipython_console(): file_path = None else: trial_str = f"trial-{trial_id}" file_path = os.path.join(fig_dir, f'{trial_str}_best-frames.png') diff_images = tuple(np.abs(f - r) for f, r in zip(rgb_frame_seq, rgb_rendered_seq)) imageprocessing.displayImages( *rgb_frame_seq, *diff_images, *rgb_rendered_seq, *rgb_rendered_seq_gt, *seg_frame_seq, *label_frame_seq, num_rows=6, file_path=file_path ) logger.info(f'AVG ACCURACY: {total_correct / total_items * 100: .1f}%') if __name__ == '__main__': # Parse command line arguments parser = argparse.ArgumentParser() parser.add_argument('--config_file') parser.add_argument('--out_dir') parser.add_argument('--data_dir') parser.add_argument('--preprocess_dir') parser.add_argument('--detections_dir') parser.add_argument('--keyframes_dir') parser.add_argument('--data_scores_dir') args = vars(parser.parse_args()) args = {k: v for k, v in args.items() if v is not None} # Load config file and override with any provided command line args config_file_path = args.pop('config_file', None) if config_file_path is None: file_basename = utils.stripExtension(__file__) config_fn = f"{file_basename}.yaml" config_file_path = os.path.expanduser( os.path.join( '~', 'repo', 'blocks', 'blocks', 'estimation', 'scripts', 'config', config_fn ) ) else: config_fn = os.path.basename(config_file_path) with open(config_file_path, 'rt') as config_file: config = yaml.safe_load(config_file) config.update(args) # Create output directory, instantiate log file and write config options out_dir = os.path.expanduser(config['out_dir']) if not os.path.exists(out_dir): os.makedirs(out_dir) logger = utils.setupRootLogger(filename=os.path.join(out_dir, 'log.txt')) with open(os.path.join(out_dir, config_fn), 'w') as outfile: yaml.dump(config, outfile) utils.copyFile(__file__, out_dir) utils.autoreload_ipython() main(**config) ``` #### File: kinemparse/scripts/detect_oov.py ```python import argparse import os import inspect import collections import yaml import numpy as np import joblib from matplotlib import pyplot as plt from mathtools import utils, metrics from blocks.core import labels def OOVrate(assembly_seqs, eq_class=None): all_assemblies = [] label_seqs = tuple( np.array(list(labels.gen_eq_classes(seq, all_assemblies, equivalent=None))) for seq in assembly_seqs ) num_oov = collections.defaultdict(int) num_counts = collections.defaultdict(int) for i, heldout_seq in enumerate(label_seqs): train_seqs = label_seqs[:i] + label_seqs[i + 1:] train_seqs = np.hstack(train_seqs) train_labels = np.unique(train_seqs) for label, prev_label in zip(heldout_seq[1:], heldout_seq[:-1]): if eq_class == 'state index': prev_eq_class = prev_label elif eq_class == 'is oov': prev_eq_class = int(prev_label not in train_labels) else: raise NotImplementedError() if label not in train_labels: num_oov[prev_eq_class] += 1 num_counts[prev_eq_class] += 1 num_labels = max(num_counts.keys()) + 1 oov_counts = np.zeros(num_labels) for label, count in num_oov.items(): oov_counts[label] = count total_counts = np.zeros(num_labels) for label, count in num_counts.items(): total_counts[label] = count contextual_oov_rate = oov_counts / total_counts oov_rate = oov_counts.sum() / total_counts.sum() return oov_rate, contextual_oov_rate, total_counts def plotOOV(oov_rates, state_counts, fn=None, eq_class=None, subplot_width=12, subplot_height=3): num_subplots = 2 figsize = (subplot_width, num_subplots * subplot_height) fig, axes = plt.subplots(num_subplots, figsize=figsize, sharex=True) axes[0].stem(oov_rates, use_line_collection=True) axes[0].set_ylabel("OOV rate") axes[0].set_xlabel(eq_class) axes[1].stem(state_counts, use_line_collection=True) axes[1].set_ylabel("count") axes[1].set_xlabel(eq_class) plt.tight_layout() if fn is None: plt.show() else: plt.savefig(fn) plt.close() def scatterOOV( oov_rates, state_counts, fn=None, eq_class=None, subplot_width=12, subplot_height=12): num_subplots = 1 figsize = (subplot_width, num_subplots * subplot_height) fig, axis = plt.subplots(num_subplots, figsize=figsize, sharex=True) axes = [axis] axes[0].plot(state_counts, oov_rates, 'o') axes[0].set_ylabel("OOV rate") axes[0].set_xlabel("state count") plt.tight_layout() if fn is None: plt.show() else: plt.savefig(fn) plt.close() def main( out_dir=None, data_dir=None, cv_data_dir=None, scores_dir=None, eq_class='state index', plot_predictions=None, results_file=None, sweep_param_name=None, model_params={}, cv_params={}, train_params={}, viz_params={}): data_dir = os.path.expanduser(data_dir) out_dir = os.path.expanduser(out_dir) scores_dir = os.path.expanduser(scores_dir) if cv_data_dir is not None: cv_data_dir = os.path.expanduser(cv_data_dir) if results_file is None: results_file = os.path.join(out_dir, f'results.csv') else: results_file = os.path.expanduser(results_file) fig_dir = os.path.join(out_dir, 'figures') if not os.path.exists(fig_dir): os.makedirs(fig_dir) out_data_dir = os.path.join(out_dir, 'data') if not os.path.exists(out_data_dir): os.makedirs(out_data_dir) def saveVariable(var, var_name): joblib.dump(var, os.path.join(out_data_dir, f'{var_name}.pkl')) def loadAll(seq_ids, var_name, data_dir): def loadOne(seq_id): fn = os.path.join(data_dir, f'trial={seq_id}_{var_name}') return joblib.load(fn) return tuple(map(loadOne, seq_ids)) # Load data trial_ids = utils.getUniqueIds(scores_dir, prefix='trial=') assembly_seqs = loadAll(trial_ids, 'assembly-seq.pkl', data_dir) score_seqs = loadAll(trial_ids, 'data-scores.pkl', scores_dir) oov_rate, contextual_oov_rate, state_counts = OOVrate(assembly_seqs, eq_class=eq_class) logger.info(f"OOV RATE: {oov_rate * 100:.1f}%") plotOOV( contextual_oov_rate, state_counts, fn=os.path.join(fig_dir, "oovs.png"), eq_class=eq_class ) scatterOOV( contextual_oov_rate, state_counts, fn=os.path.join(fig_dir, "oovs_scatter.png"), eq_class=eq_class ) import sys; sys.exit() # Define cross-validation folds if cv_data_dir is None: dataset_size = len(trial_ids) cv_folds = utils.makeDataSplits(dataset_size, **cv_params) cv_fold_trial_ids = tuple( tuple(map(lambda x: trial_ids[x], splits)) for splits in cv_folds ) else: fn = os.path.join(cv_data_dir, f'cv-fold-trial-ids.pkl') cv_fold_trial_ids = joblib.load(fn) def getSplit(split_idxs): split_data = tuple( tuple(s[i] for i in split_idxs) for s in (score_seqs, assembly_seqs, trial_ids) ) return split_data for cv_index, (train_ids, test_ids) in enumerate(cv_fold_trial_ids): logger.info( f'CV fold {cv_index + 1}: {len(trial_ids)} total ' f'({len(train_ids)} train, {len(test_ids)} test)' ) try: test_idxs = np.array([trial_ids.tolist().index(i) for i in test_ids]) except ValueError: logger.info(f" Skipping fold: missing test data") continue # TRAIN PHASE if cv_data_dir is None: train_idxs = np.array([trial_ids.index(i) for i in train_ids]) train_assembly_seqs = tuple(assembly_seqs[i] for i in train_idxs) train_assemblies = [] for seq in train_assembly_seqs: list(labels.gen_eq_classes(seq, train_assemblies, equivalent=None)) model = None else: fn = f'cvfold={cv_index}_train-assemblies.pkl' train_assemblies = joblib.load(os.path.join(cv_data_dir, fn)) train_idxs = [i for i in range(len(trial_ids)) if i not in test_idxs] fn = f'cvfold={cv_index}_model.pkl' # model = joblib.load(os.path.join(cv_data_dir, fn)) model = None train_features, train_assembly_seqs, train_ids = getSplit(train_idxs) test_assemblies = train_assemblies.copy() for score_seq, gt_assembly_seq, trial_id in zip(*getSplit(test_idxs)): gt_seq = np.array(list( labels.gen_eq_classes(gt_assembly_seq, test_assemblies, equivalent=None) )) # oov_rate = OOVrate(train_assembly_seqs) # logger.info(f" OOV RATE: {oov_rate * 100:.1f}%") if plot_predictions: assembly_fig_dir = os.path.join(fig_dir, 'assembly-imgs') if not os.path.exists(assembly_fig_dir): os.makedirs(assembly_fig_dir) for i, assembly in enumerate(test_assemblies): assembly.draw(assembly_fig_dir, i) # TEST PHASE accuracies = [] for score_seq, gt_assembly_seq, trial_id in zip(*getSplit(test_idxs)): gt_seq = np.array(list( labels.gen_eq_classes(gt_assembly_seq, test_assemblies, equivalent=None) )) num_labels = gt_seq.shape[0] num_scores = score_seq.shape[-1] if num_labels != num_scores: err_str = f"Skipping trial {trial_id}: {num_labels} labels != {num_scores} scores" logger.info(err_str) continue if model is None: pred_seq = score_seq.argmax(axis=0) else: raise AssertionError() pred_seq = score_seq.argmax(axis=0) pred_assemblies = [train_assemblies[i] for i in pred_seq] gt_assemblies = [test_assemblies[i] for i in gt_seq] acc = metrics.accuracy_upto(pred_assemblies, gt_assemblies, equivalence=None) accuracies.append(acc) # num_states = len(gt_seq) # logger.info(f" trial {trial_id}: {num_states} keyframes") # logger.info(f" accuracy (fused): {acc * 100:.1f}%") saveVariable(score_seq, f'trial={trial_id}_data-scores') saveVariable(pred_assemblies, f'trial={trial_id}_pred-assembly-seq') saveVariable(gt_assemblies, f'trial={trial_id}_gt-assembly-seq') if accuracies: fold_accuracy = float(np.array(accuracies).mean()) metric_dict = {'Accuracy': fold_accuracy} utils.writeResults(results_file, metric_dict, sweep_param_name, model_params) if __name__ == "__main__": # Parse command line arguments parser = argparse.ArgumentParser() parser.add_argument('--config_file') for arg_name in inspect.getfullargspec(main).args: parser.add_argument(f'--{arg_name}') args = vars(parser.parse_args()) args = {k: yaml.safe_load(v) for k, v in args.items() if v is not None} # Load config file and override with any provided command line args config_file_path = args.pop('config_file', None) if config_file_path is None: file_basename = utils.stripExtension(__file__) config_fn = f"{file_basename}.yaml" config_file_path = os.path.join( os.path.expanduser('~'), 'repo', 'kinemparse', 'scripts', config_fn ) else: config_fn = os.path.basename(config_file_path) with open(config_file_path, 'rt') as config_file: config = yaml.safe_load(config_file) for k, v in args.items(): if isinstance(v, dict) and k in config: config[k].update(v) else: config[k] = v # Create output directory, instantiate log file and write config options out_dir = os.path.expanduser(config['out_dir']) if not os.path.exists(out_dir): os.makedirs(out_dir) logger = utils.setupRootLogger(filename=os.path.join(out_dir, 'log.txt')) with open(os.path.join(out_dir, config_fn), 'w') as outfile: yaml.dump(config, outfile) utils.copyFile(__file__, out_dir) utils.autoreload_ipython() main(**config) ``` #### File: kinemparse/scripts/eval_preds.py ```python import argparse import os import inspect import functools import yaml import numpy as np import joblib from matplotlib import pyplot as plt import graphviz as gv import pandas as pd from mathtools import utils, metrics from blocks.core import labels def drawPaths(paths, fig_fn, base_path, state_img_dir, path_labels=None, img_ext='png'): """ Draw a sequence of `BlockAssembly` states using graphviz. Parameters ---------- path : iterable( int ) A path is a list of state indices. fig_fn : str Filename of the figure base_path : str Path to the directory where figure will be saved state_img_dir : str Path to the directory containing source images of the states that make up this path. State filenames are assumed to have the format `state<state_index>.<img_ext>` img_ext : str, optional Extension specifying the image file type. Can be 'svg', 'png', etc. """ path_graph = gv.Digraph(name=fig_fn, format=img_ext, directory=base_path) for j, path in enumerate(paths): for i, state_index in enumerate(path): image_fn = 'state{}.{}'.format(state_index, img_ext) image_path = os.path.join(state_img_dir, image_fn) if path_labels is not None: label = f"{path_labels[j, i]}" else: label = None path_graph.node( f"{j}, {i}", image=image_path, fixedsize='true', width='1', height='0.5', imagescale='true', pad='1', fontsize='12', label=label ) if i > 0: path_graph.edge(f"{j}, {i - 1}", f"{j}, {i}", fontsize='12') path_graph.render(filename=fig_fn, directory=base_path, cleanup=True) def plot_scores(score_seq, k=None, fn=None): subplot_width = 12 subplot_height = 3 num_axes = score_seq.shape[0] + 1 figsize = (subplot_width, num_axes * subplot_height) fig, axes = plt.subplots(num_axes, figsize=figsize) if num_axes == 1: axes = [axes] score_seq = score_seq.copy() for i, scores in enumerate(score_seq): if k is not None: bottom_k = (-scores).argsort(axis=0)[k:, :] for j in range(scores.shape[1]): scores[bottom_k[:, j], j] = -np.inf axes[i].imshow(scores, interpolation='none', aspect='auto') axes[-1].imshow(score_seq.sum(axis=0), interpolation='none', aspect='auto') plt.tight_layout() if fn is None: plt.show() else: plt.savefig(fn) plt.close() def plot_hists(scores, axis_labels=None, fn=None): subplot_width = 12 subplot_height = 3 num_axes = scores.shape[0] figsize = (subplot_width, num_axes * subplot_height) fig, axes = plt.subplots(num_axes, figsize=figsize) if num_axes == 1: axes = [axes] for i, s in enumerate(scores): s[np.isinf(s)] = s[~np.isinf(s)].min() - 1 axes[i].hist(s, bins=50, density=True) if axis_labels is not None: axes[i].set_ylabel(axis_labels[i]) plt.tight_layout() if fn is None: plt.show() else: plt.savefig(fn) plt.close() def is_goal_error(goal, pred, true): return (pred <= goal) == (true <= goal) def is_goal_layer(goal, assembly): def makeLayers(assembly): if not assembly.blocks: return {} def makeLayer(z, assembly): layer = assembly.copy() for b_id in tuple(layer.blocks.keys()): if b_id not in layer.blocks: continue block = layer.getBlock(b_id) block_height = block.metric_vertices[:, -1].max() if block_height > z: layer.connections[b_id, :] = False layer.connections[:, b_id] = False component = layer.connected_components[block.component_index] component.remove(b_id) if not component: del layer.connected_componets[block.component_index] del layer.blocks[b_id] return layer def max_z(block_vertices): return block_vertices[:, -1].max() block_heights = np.array(list(map(max_z, assembly.vertices))) layer_heights = np.unique(block_heights) layers = {z: makeLayer(z, assembly) for z in layer_heights} return layers for comp_idx in assembly.connected_components.keys(): assembly.centerComponent(comp_idx, zero_at='smallest_z') for comp_idx in goal.connected_components.keys(): goal.centerComponent(comp_idx, zero_at='smallest_z') assembly_layers = makeLayers(assembly) goal_layers = makeLayers(goal) prev_layer_heights = sorted(assembly_layers.keys())[:-1] prev_layers_complete = tuple( assembly_layers[z] == goal_layers[z] for z in prev_layer_heights ) is_goal_layer = all(prev_layers_complete) if len(goal.blocks) > 4: # import pdb; pdb.set_trace() pass # logger.info(f" z_max prev: {zmax_prev:.1f}") # logger.info(f" z_max cur: {zmax_cur:.1f}") # logger.info(f"cur is new layer: {cur_is_new_layer}") # logger.info(f" prev is correct: {prev_is_correct}") # logger.info(f" is goal layer: {is_goal_layer}") return is_goal_layer def main( out_dir=None, data_dir=None, metadata_file=None, plot_predictions=None, results_file=None, sweep_param_name=None): logger.info(f"Reading from: {data_dir}") logger.info(f"Writing to: {out_dir}") data_dir = os.path.expanduser(data_dir) out_dir = os.path.expanduser(out_dir) if metadata_file is not None: metadata_file = os.path.expanduser(metadata_file) metadata = pd.read_csv(metadata_file, index_col=0) if results_file is None: results_file = os.path.join(out_dir, 'results.csv') else: results_file = os.path.expanduser(results_file) fig_dir = os.path.join(out_dir, 'figures') if not os.path.exists(fig_dir): os.makedirs(fig_dir) out_data_dir = os.path.join(out_dir, 'data') if not os.path.exists(out_data_dir): os.makedirs(out_data_dir) def loadVariable(var_name): return joblib.load(os.path.join(data_dir, f'{var_name}.pkl')) def loadAll(seq_ids, var_name): def loadOne(seq_id): fn = os.path.join(data_dir, f'trial={seq_id}_{var_name}') return joblib.load(fn) return tuple(map(loadOne, seq_ids)) trial_ids = utils.getUniqueIds(data_dir, prefix='trial=', to_array=True) pred_assembly_seqs = loadAll(trial_ids, "pred-assembly-seq.pkl") gt_assembly_seqs = loadAll(trial_ids, "gt-assembly-seq.pkl") all_assemblies = [] gt_label_seqs = tuple( np.array(list(labels.gen_eq_classes(gt_assembly_seq, all_assemblies))) for gt_assembly_seq in gt_assembly_seqs ) pred_label_seqs = tuple( np.array(list(labels.gen_eq_classes(pred_assembly_seq, all_assemblies))) for pred_assembly_seq in pred_assembly_seqs ) if plot_predictions: assembly_fig_dir = os.path.join(fig_dir, 'assembly-imgs') if not os.path.exists(assembly_fig_dir): os.makedirs(assembly_fig_dir) for i, assembly in enumerate(all_assemblies): assembly.draw(assembly_fig_dir, i) logger.info(f"Evaluating {len(trial_ids)} sequence predictions") accuracies = { 'state': [], 'is_error': [], 'is_layer': [] } data = zip(trial_ids, pred_assembly_seqs, gt_assembly_seqs) for i, trial_id in enumerate(trial_ids): pred_assembly_seq = pred_assembly_seqs[i] gt_assembly_seq = gt_assembly_seqs[i] task = int(metadata.iloc[trial_id]['task id']) goal = labels.constructGoalState(task) is_error = functools.partial(is_goal_error, goal) is_layer = functools.partial(is_goal_layer, goal) state = None logger.info(f"SEQUENCE {trial_id}: {len(gt_assembly_seq)} items") for name in accuracies.keys(): if name == 'is_layer': pred_is_layer = np.array(list(map(is_layer, pred_assembly_seq))) gt_is_layer = np.array(list(map(is_layer, gt_assembly_seq))) matches = pred_is_layer == gt_is_layer acc = matches.sum() / len(matches) logger.info(f" {name}: {acc:.2}") logger.info(f" {gt_is_layer.sum():2} gt layers") logger.info(f" {pred_is_layer.sum():2} pred layers") else: acc = metrics.accuracy_upto( # pred_assembly_seq[1:], gt_assembly_seq[1:], pred_assembly_seq, gt_assembly_seq, equivalence=locals()[name] ) logger.info(f" {name}: {acc:.2}") accuracies[name].append(acc) if plot_predictions: paths_dir = os.path.join(fig_dir, 'path-imgs') if not os.path.exists(paths_dir): os.makedirs(paths_dir) fn = f"trial={trial_id}_paths" paths = np.row_stack((gt_label_seqs[i], pred_label_seqs[i])) path_labels = np.row_stack((gt_is_layer, pred_is_layer)) drawPaths(paths, fn, paths_dir, assembly_fig_dir, path_labels=path_labels) logger.info("EVALUATION RESULTS:") max_width = max(map(len, accuracies.keys())) for name, vals in accuracies.items(): vals = np.array(vals) * 100 mean = vals.mean() std = vals.std() logger.info(f" {name:{max_width}}: {mean:4.1f} +/- {std:4.1f}%") if __name__ == "__main__": # Parse command line arguments parser = argparse.ArgumentParser() parser.add_argument('--config_file') for arg_name in inspect.getfullargspec(main).args: parser.add_argument(f'--{arg_name}') args = vars(parser.parse_args()) args = {k: yaml.safe_load(v) for k, v in args.items() if v is not None} # Load config file and override with any provided command line args config_file_path = args.pop('config_file', None) if config_file_path is None: file_basename = utils.stripExtension(__file__) config_fn = f"{file_basename}.yaml" config_file_path = os.path.join( os.path.expanduser('~'), 'repo', 'kinemparse', 'scripts', config_fn ) else: config_fn = os.path.basename(config_file_path) if os.path.exists(config_file_path): with open(config_file_path, 'rt') as config_file: config = yaml.safe_load(config_file) else: config = {} for k, v in args.items(): if isinstance(v, dict) and k in config: config[k].update(v) else: config[k] = v # Create output directory, instantiate log file and write config options out_dir = os.path.expanduser(config['out_dir']) if not os.path.exists(out_dir): os.makedirs(out_dir) logger = utils.setupRootLogger(filename=os.path.join(out_dir, 'log.txt')) with open(os.path.join(out_dir, config_fn), 'w') as outfile: yaml.dump(config, outfile) utils.copyFile(__file__, out_dir) utils.autoreload_ipython() main(**config) ``` #### File: kinemparse/scripts/make_activity_dataset_video.py ```python import os import logging import numpy as np from matplotlib import pyplot as plt import joblib import yaml from mathtools import utils logger = logging.getLogger(__name__) def makeActivityLabels(action_seq, seq_len=None, use_end_label=False): """ 0: before main activity 1: main activity 2: after main activity """ if seq_len is None: seq_len = action_seq['end'].max() + 1 is_tag = action_seq['action'] > 7 action_seq = action_seq[~is_tag] # Say everything is the main activity at first labels = np.ones(seq_len, dtype=int) # Label everything before the start of the first (non-tag) action as "before" first_start = action_seq[0]['start'] labels[:first_start] = 0 if use_end_label: # Label everything after the end of the last (non-tag) action as "after" last_end = action_seq[-1]['end'] labels[last_end + 1:] = 2 return labels def plotScores( timestamp_seq, score_seq, imu_timestamp_seq=None, imu_score_seq=None, keyframe_idxs=None, action_labels=None, raw_labels=None, fn=None): score_seqs = [score_seq] timestamp_seqs = [timestamp_seq] if imu_score_seq is not None: score_seqs.append(imu_score_seq) timestamp_seqs.append(imu_timestamp_seq) num_subplots = len(score_seqs) _, axes = plt.subplots(num_subplots, figsize=(12, 5 * num_subplots), sharex=True) if num_subplots == 1: axes = [axes] for i, axis in enumerate(axes): score_seq = score_seqs[i] timestamp_seq = timestamp_seqs[i] axis.set_title('Video frame scores') axis.set_xlabel('Frame index') axis.set_ylabel('Frame score') axis.axhline(np.nanmean(score_seq), color='k') axis.plot(timestamp_seq, score_seq) score_seq[np.isnan(score_seq)] = np.nanmean(score_seq) if action_labels is not None: axis = axis.twinx() axis.plot(timestamp_seqs[0], action_labels, color='tab:green') if raw_labels is not None: is_first_touch_label = raw_labels['action'] == 7 first_touch_idxs = raw_labels['start'][is_first_touch_label] first_touch_times = timestamp_seqs[0][first_touch_idxs] first_touch_scores = score_seqs[0][first_touch_idxs] axes[0].scatter(first_touch_times, first_touch_scores, color='tab:red') if keyframe_idxs is not None: keyframe_times = timestamp_seqs[0][keyframe_idxs] keyframe_scores = score_seqs[0][keyframe_idxs] axes[0].scatter(keyframe_times, keyframe_scores, color='tab:orange') plt.tight_layout() if fn is None: pass else: plt.savefig(fn) plt.close() def plotScoreHists(scores, labels, fn=None): unique_labels = np.unique(labels) num_labels = len(unique_labels) f, axes = plt.subplots(num_labels, figsize=(12, 3 * num_labels)) for i, label in enumerate(unique_labels): matches_label = labels == label matching_scores = scores[matches_label] axes[i].hist(matching_scores[~np.isnan(matching_scores)], bins=50) axes[i].set_xlabel(f'scores, label={label}') axes[i].set_ylabel('counts') plt.tight_layout() if fn is None: pass else: plt.savefig(fn) plt.close() def make_imu_feats(imu_score_seq): return imu_score_seq[..., 2].swapaxes(0, 1).max(axis=1) def main( out_dir=None, video_data_dir=None, imu_data_dir=None, video_seg_scores_dir=None, imu_seg_scores_dir=None, gt_keyframes_dir=None, label_kwargs={}): out_dir = os.path.expanduser(out_dir) video_data_dir = os.path.expanduser(video_data_dir) imu_data_dir = os.path.expanduser(imu_data_dir) video_seg_scores_dir = os.path.expanduser(video_seg_scores_dir) if imu_seg_scores_dir is not None: imu_seg_scores_dir = os.path.expanduser(imu_seg_scores_dir) if gt_keyframes_dir is not None: gt_keyframes_dir = os.path.expanduser(gt_keyframes_dir) logger = utils.setupRootLogger(filename=os.path.join(out_dir, 'log.txt')) out_data_dir = os.path.join(out_dir, 'data') if not os.path.exists(out_data_dir): os.makedirs(out_data_dir) fig_dir = os.path.join(out_dir, 'figures') if not os.path.exists(fig_dir): os.makedirs(fig_dir) def loadFromDir(var_name, dir_name): return joblib.load(os.path.join(dir_name, f"{var_name}.pkl")) def saveToWorkingDir(var, var_name): joblib.dump(var, os.path.join(out_data_dir, f"{var_name}.pkl")) trial_ids = utils.getUniqueIds(video_seg_scores_dir, prefix='trial-', suffix='.pkl') all_score_seqs = [] all_action_labels = [] for seq_idx, trial_id in enumerate(trial_ids): logger.info(f"Processing video {seq_idx + 1} / {len(trial_ids)} (trial {trial_id})") logger.info(" Loading data...") score_seq = loadFromDir(f"trial-{trial_id}_frame-scores", video_seg_scores_dir) raw_labels = loadFromDir(f"trial-{trial_id}_action-seq", video_data_dir) action_labels = makeActivityLabels(raw_labels, seq_len=score_seq.shape[0], **label_kwargs) timestamp_seq = loadFromDir(f"trial-{trial_id}_rgb-frame-timestamp-seq", video_data_dir) if timestamp_seq.shape != score_seq.shape: logger.warning( f"Video dimensions don't match: " f"{score_seq.shape} scores, {timestamp_seq.shape} timestamps" ) continue if imu_seg_scores_dir is not None: try: imu_score_seq = loadFromDir( f'trial={trial_id}_score-seq', imu_seg_scores_dir ) imu_score_seq = make_imu_feats(imu_score_seq) except FileNotFoundError: logger.info(f" IMU scores not found: trial {trial_id}") continue imu_timestamp_seq = loadFromDir(f"trial={trial_id}_timestamp-seq", imu_data_dir) if imu_timestamp_seq.shape != imu_score_seq.shape: logger.warning( f"IMU dimensions don't match: " f"{imu_score_seq.shape} scores, {imu_timestamp_seq.shape} timestamps" ) continue # Downsample imu scores to match rgb scores imu_score_seq = utils.resampleSeq(imu_score_seq, imu_timestamp_seq, timestamp_seq) imu_timestamp_seq = timestamp_seq else: imu_score_seq = None imu_timestamp_seq = None logger.info(" Saving output...") gt_keyframe_fn = os.path.join(gt_keyframes_dir, f"trial-{trial_id}_gt-keyframe-seq.pkl") if os.path.exists(gt_keyframe_fn): gt_keyframes = joblib.load(gt_keyframe_fn) else: gt_keyframes = None trial_str = f"trial={trial_id}" fn = os.path.join(fig_dir, f'{trial_str}_scores-plot.png') plotScores( timestamp_seq, score_seq, action_labels=action_labels, raw_labels=raw_labels, imu_timestamp_seq=imu_timestamp_seq, imu_score_seq=imu_score_seq, keyframe_idxs=gt_keyframes, fn=fn ) all_score_seqs.append(score_seq) all_action_labels.append(action_labels) # Save intermediate results score_seq -= np.nanmean(score_seq) score_is_nan = np.isnan(score_seq) score_seq[score_is_nan] = 0 features = (score_seq, score_is_nan.astype(float)) if imu_score_seq is not None: features += (imu_score_seq,) feature_seq = np.column_stack(features) saveToWorkingDir(feature_seq, f'{trial_str}_feature-seq') saveToWorkingDir(action_labels, f'{trial_str}_label-seq') all_score_seqs = np.hstack(tuple(all_score_seqs)) all_action_labels = np.hstack(tuple(all_action_labels)) fn = os.path.join(fig_dir, 'score-hists.png') plotScoreHists(all_score_seqs, all_action_labels, fn=fn) if __name__ == '__main__': # Parse command-line args and config file cl_args = utils.parse_args(main) config, config_fn = utils.parse_config(cl_args, script_name=__file__) # Create output directory, instantiate log file and write config options out_dir = os.path.expanduser(config['out_dir']) if not os.path.exists(out_dir): os.makedirs(out_dir) with open(os.path.join(out_dir, config_fn), 'w') as outfile: yaml.dump(config, outfile) utils.copyFile(__file__, out_dir) main(**config) ``` #### File: kinemparse/scripts/make_attr_data_imu.py ```python import os import logging import yaml import numpy as np from mathtools import utils from blocks.core import labels from kinemparse import imu logger = logging.getLogger(__name__) def parseActions(action_seq, rgb_timestamp_seq, imu_timestamp_seq): assembly_seq, is_valid = labels.parseLabelSeq( # None, timestamps=rgb_timestamp_seq, action_seq=action_seq, action_seq, timestamps=rgb_timestamp_seq, structure_change_only=True ) assembly_seq[-1].end_idx = len(rgb_timestamp_seq) - 1 _ = imu.rgbIdxsToImuIdxs( assembly_seq, rgb_timestamp_seq, imu_timestamp_seq, action_idxs=False ) _ = imu.rgbIdxsToImuIdxs( assembly_seq, rgb_timestamp_seq, imu_timestamp_seq, action_idxs=True ) return assembly_seq def dictToArray(imu_seqs, transform=None): if transform is None: return np.hstack(tuple(imu_seqs[i] for i in range(len(imu_seqs)))) return np.hstack(tuple(transform(imu_seqs[i]) for i in range(len(imu_seqs)))) def makeTimestamps(*imu_dicts): def transform(x): return imu.getImuGlobalTimestamps(x)[:, None] imu_timestamps = tuple( dictToArray(imu_dict, transform=transform) for imu_dict in imu_dicts ) imu_timestamps = np.column_stack(imu_timestamps) return imu_timestamps.mean(axis=1) def beforeFirstTouch(action_seq, rgb_timestamp_seq, imu_timestamp_seq): first_touch_indices = np.nonzero(action_seq['action'] == 7)[0] if first_touch_indices.size: first_touch_idx = action_seq['start'][first_touch_indices[0]] else: logger.warning('No first touch annotation') return None before_first_touch = imu_timestamp_seq <= rgb_timestamp_seq[first_touch_idx] return before_first_touch def main( out_dir=None, data_dir=None, use_vid_ids_from=None, output_data=None, magnitude_centering=None, resting_from_gt=None, remove_before_first_touch=None, include_signals=None, fig_type=None): data_dir = os.path.expanduser(data_dir) out_dir = os.path.expanduser(out_dir) logger = utils.setupRootLogger(filename=os.path.join(out_dir, 'log.txt')) logger.info(f"Reading from: {data_dir}") logger.info(f"Writing to: {out_dir}") fig_dir = os.path.join(out_dir, 'figures') if not os.path.exists(fig_dir): os.makedirs(fig_dir) out_data_dir = os.path.join(out_dir, 'data') if not os.path.exists(out_data_dir): os.makedirs(out_data_dir) def loadAll(seq_ids, var_name, from_dir=data_dir, prefix='trial='): all_data = tuple( utils.loadVariable(f"{prefix}{seq_id}_{var_name}", from_dir) for seq_id in seq_ids ) return all_data def saveVariable(var, var_name, to_dir=out_data_dir): utils.saveVariable(var, var_name, to_dir) if fig_type is None: fig_type = 'multi' # Load data if use_vid_ids_from is None: trial_ids = utils.getUniqueIds(data_dir, prefix='trial=', to_array=True) else: use_vid_ids_from = os.path.expanduser(use_vid_ids_from) trial_ids = utils.getUniqueIds(use_vid_ids_from, prefix='trial-', to_array=True) accel_seqs = loadAll(trial_ids, 'accel-samples.pkl') gyro_seqs = loadAll(trial_ids, 'gyro-samples.pkl') action_seqs = loadAll(trial_ids, 'action-seq.pkl') rgb_timestamp_seqs = loadAll(trial_ids, 'rgb-frame-timestamp-seq.pkl') def validate_imu(seqs): def is_valid(d): return not any(np.isnan(x).any() for x in d.values()) return np.array([is_valid(d) for d in seqs]) imu_is_valid = validate_imu(accel_seqs) & validate_imu(gyro_seqs) logger.info( f"Ignoring {(~imu_is_valid).sum()} IMU sequences with NaN-valued samples " f"(of {len(imu_is_valid)} total)" ) def chooseValid(seq): return tuple(x for x, is_valid in zip(seq, imu_is_valid) if is_valid) trial_ids = np.array(list(chooseValid(trial_ids))) accel_seqs = chooseValid(accel_seqs) gyro_seqs = chooseValid(gyro_seqs) action_seqs = chooseValid(action_seqs) rgb_timestamp_seqs = chooseValid(rgb_timestamp_seqs) vocab = [] metadata = utils.loadMetadata(data_dir, rows=trial_ids) utils.saveMetadata(metadata, out_data_dir) utils.saveVariable(vocab, 'vocab', out_data_dir) def norm(x): norm = np.linalg.norm(imu.getImuSamples(x), axis=1)[:, None] return norm accel_mag_seqs = tuple(map(lambda x: dictToArray(x, transform=norm), accel_seqs)) gyro_mag_seqs = tuple(map(lambda x: dictToArray(x, transform=norm), gyro_seqs)) imu_timestamp_seqs = utils.batchProcess(makeTimestamps, accel_seqs, gyro_seqs) if remove_before_first_touch: before_first_touch_seqs = utils.batchProcess( beforeFirstTouch, action_seqs, rgb_timestamp_seqs, imu_timestamp_seqs ) num_ignored = sum(b is None for b in before_first_touch_seqs) logger.info( f"Ignoring {num_ignored} sequences without first-touch annotations " f"(of {len(before_first_touch_seqs)} total)" ) trials_missing_first_touch = [ i for b, i in zip(before_first_touch_seqs, trial_ids) if b is None ] logger.info(f"Trials without first touch: {trials_missing_first_touch}") def clip(signal, bool_array): return signal[~bool_array, ...] accel_mag_seqs = tuple( clip(signal, b) for signal, b in zip(accel_mag_seqs, before_first_touch_seqs) if b is not None ) gyro_mag_seqs = tuple( clip(signal, b) for signal, b in zip(gyro_mag_seqs, before_first_touch_seqs) if b is not None ) imu_timestamp_seqs = tuple( clip(signal, b) for signal, b in zip(imu_timestamp_seqs, before_first_touch_seqs) if b is not None ) trial_ids = tuple( x for x, b in zip(trial_ids, before_first_touch_seqs) if b is not None ) action_seqs = tuple( x for x, b in zip(action_seqs, before_first_touch_seqs) if b is not None ) rgb_timestamp_seqs = tuple( x for x, b in zip(rgb_timestamp_seqs, before_first_touch_seqs) if b is not None ) assembly_seqs = utils.batchProcess( parseActions, action_seqs, rgb_timestamp_seqs, imu_timestamp_seqs ) if output_data == 'components': accel_feat_seqs = accel_mag_seqs gyro_feat_seqs = gyro_mag_seqs unique_components = {frozenset(): 0} imu_label_seqs = zip( *tuple( labels.componentLabels(*args, unique_components) for args in zip(action_seqs, rgb_timestamp_seqs, imu_timestamp_seqs) ) ) saveVariable(unique_components, 'unique_components') elif output_data == 'pairwise components': imu_label_seqs = utils.batchProcess( labels.pairwiseComponentLabels, assembly_seqs, static_kwargs={'lower_tri_only': True, 'include_action_labels': False} ) accel_feat_seqs = tuple(map(imu.pairwiseFeats, accel_mag_seqs)) gyro_feat_seqs = tuple(map(imu.pairwiseFeats, gyro_mag_seqs)) else: raise AssertionError() signals = {'accel': accel_feat_seqs, 'gyro': gyro_feat_seqs} if include_signals is None: include_signals = tuple(signals.keys()) signals = tuple(signals[key] for key in include_signals) imu_feature_seqs = tuple(np.stack(x, axis=-1).squeeze(axis=-1) for x in zip(*signals)) video_seqs = tuple(zip(imu_feature_seqs, imu_label_seqs, trial_ids)) imu.plot_prediction_eg(video_seqs, fig_dir, fig_type=fig_type, output_data=output_data) video_seqs = tuple( zip(assembly_seqs, imu_feature_seqs, imu_timestamp_seqs, imu_label_seqs, trial_ids) ) for assembly_seq, feature_seq, timestamp_seq, label_seq, trial_id in video_seqs: id_string = f"trial={trial_id}" saveVariable(assembly_seq, f'{id_string}_assembly-seq') saveVariable(feature_seq, f'{id_string}_feature-seq') saveVariable(timestamp_seq, f'{id_string}_timestamp-seq') saveVariable(label_seq, f'{id_string}_label-seq') if __name__ == "__main__": # Parse command-line args and config file cl_args = utils.parse_args(main) config, config_fn = utils.parse_config(cl_args, script_name=__file__) # Create output directory, instantiate log file and write config options out_dir = os.path.expanduser(config['out_dir']) if not os.path.exists(out_dir): os.makedirs(out_dir) with open(os.path.join(out_dir, config_fn), 'w') as outfile: yaml.dump(config, outfile) utils.copyFile(__file__, out_dir) main(**config) ``` #### File: kinemparse/scripts/parse_assemblies_imu.py ```python import argparse import os import yaml import joblib import numpy as np from matplotlib import pyplot as plt from mathtools import utils from kinemparse import imu def makeErrorSignal(imu_sample_seq, assembly_seq): error_signal = np.ones_like(imu_sample_seq) * np.nan for assembly in assembly_seq: segment_slice = slice(*assembly.getStartEndFrames()) components = assembly.getComponents(include_singleton_blocks=True) error_signal[segment_slice] = imu.error(imu_sample_seq[segment_slice], components) return error_signal def makeLabelSignal(imu_sample_seq, assembly_seq, action=False): label_seq = np.zeros_like(imu_sample_seq, dtype=bool) for assembly in assembly_seq: if action: segment_slice = slice(*assembly.getActionStartEndFrames()) else: segment_slice = slice(*assembly.getStartEndFrames()) connected_indices = assembly.symmetrized_connections.any(axis=0).nonzero()[0] label_seq[segment_slice, connected_indices] = True return label_seq def plotError( trial_id, signal, error_signal, component_label_seq, block_label_seq, block_action_label_seq, fn=None): subplot_width = 12 subplot_height = 2 num_plots = error_signal.shape[1] + 1 figsize = (subplot_width, num_plots * subplot_height) f, axes = plt.subplots(num_plots, figsize=figsize, sharex=True) axes[0].set_title(f"Error signal, video {trial_id}") axes[0].plot(component_label_seq) for i, axis in enumerate(axes[1:]): axis.set_ylabel(f"IMU {i}") axis.plot(signal[:, i]) axis.plot(error_signal[:, i]) axis = axis.twinx() axis.plot(block_action_label_seq[:, i], c='tab:red') axis.plot(block_label_seq[:, i], c='tab:green') plt.tight_layout() if fn is None: plt.show() else: plt.savefig(fn) plt.close() def main( out_dir=None, data_dir=None, model_name=None, gpu_dev_id=None, batch_size=None, learning_rate=None, independent_signals=None, model_params={}, cv_params={}, train_params={}, viz_params={}): data_dir = os.path.expanduser(data_dir) out_dir = os.path.expanduser(out_dir) fig_dir = os.path.join(out_dir, 'figures') if not os.path.exists(fig_dir): os.makedirs(fig_dir) out_data_dir = os.path.join(out_dir, 'data') if not os.path.exists(out_data_dir): os.makedirs(out_data_dir) def loadVariable(var_name): return joblib.load(os.path.join(data_dir, f'{var_name}.pkl')) def saveVariable(var, var_name): joblib.dump(var, os.path.join(out_data_dir, f'{var_name}.pkl')) # Load data trial_ids = loadVariable('trial_ids') imu_sample_seqs = loadVariable('imu_sample_seqs') imu_label_seqs = loadVariable('imu_label_seqs') assembly_seqs = loadVariable('assembly_seqs') imu_sample_seqs = tuple(map(np.squeeze, imu_sample_seqs)) errors = utils.batchProcess(makeErrorSignal, imu_sample_seqs, assembly_seqs) state_labels = utils.batchProcess( makeLabelSignal, imu_sample_seqs, assembly_seqs, static_kwargs={'action': False} ) action_labels = utils.batchProcess( makeLabelSignal, imu_sample_seqs, assembly_seqs, static_kwargs={'action': True} ) plot_args = zip( trial_ids, imu_sample_seqs, errors, imu_label_seqs, state_labels, action_labels ) for args in plot_args: plotError(*args, fn=os.path.join(fig_dir, f"{args[0]}.png")) if __name__ == "__main__": # Parse command line arguments parser = argparse.ArgumentParser() parser.add_argument('--config_file') parser.add_argument('--out_dir') args = vars(parser.parse_args()) args = {k: v for k, v in args.items() if v is not None} # Load config file and override with any provided command line args config_file_path = args.pop('config_file', None) if config_file_path is None: file_basename = utils.stripExtension(__file__) config_fn = f"{file_basename}.yaml" config_file_path = os.path.join( os.path.expanduser('~'), 'repo', 'kinemparse', 'scripts', config_fn ) with open(config_file_path, 'rt') as config_file: config = yaml.safe_load(config_file) config.update(args) # Create output directory, instantiate log file and write config options out_dir = os.path.expanduser(config['out_dir']) if not os.path.exists(out_dir): os.makedirs(out_dir) logger = utils.setupRootLogger(filename=os.path.join(out_dir, 'log.txt')) with open(os.path.join(out_dir, config_fn), 'w') as outfile: yaml.dump(config, outfile) utils.copyFile(__file__, out_dir) utils.autoreload_ipython() main(**config) ``` #### File: kinemparse/scripts/precompute_signatures.py ```python import inspect import argparse import os import yaml import joblib import numpy as np # from matplotlib import pyplot as plt from mathtools import utils from blocks.core import labels def make_signatures(unique_assemblies): signatures = np.stack([ labels.inSameComponent(a, lower_tri_only=True) for a in unique_assemblies ]) signatures = 2 * signatures.astype(float) - 1 return signatures def main(out_dir=None, data_dir=None): data_dir = os.path.expanduser(data_dir) out_dir = os.path.expanduser(out_dir) out_data_dir = os.path.join(out_dir, 'data') if not os.path.exists(out_data_dir): os.makedirs(out_data_dir) def saveVariable(var, var_name): joblib.dump(var, os.path.join(out_data_dir, f'{var_name}.pkl')) def loadVariable(var_name): fn = os.path.join(data_dir, f'{var_name}.pkl') return joblib.load(fn) # Load data trial_ids = utils.getUniqueIds(data_dir, prefix='trial-') cv_folds = loadVariable(f'cv-folds') assembly_seqs = tuple( loadVariable(f"trial-{seq_id}_true-state-seq-orig") for seq_id in trial_ids ) unique_assemblies = [] label_seqs = tuple( np.array(list(labels.gen_eq_classes(seq, unique_assemblies, equivalent=None))) for seq in assembly_seqs ) saveVariable(unique_assemblies, f'unique-assemblies') for cv_index, (train_idxs, test_idxs) in enumerate(cv_folds): logger.info( f'CV fold {cv_index + 1}: {len(trial_ids)} total ' f'({len(train_idxs)} train, {len(test_idxs)} test)' ) # train_ids = trial_ids[np.array(train_idxs)] train_label_seqs = tuple(label_seqs[i] for i in train_idxs) unique_train_labels = np.unique(np.hstack(train_label_seqs)) unique_train_assemblies = tuple(unique_assemblies[i] for i in unique_train_labels) signatures = make_signatures(unique_train_assemblies) test_ids = trial_ids[np.array(test_idxs)] for trial_id in test_ids: saveVariable(signatures, f'trial={trial_id}_signatures') saveVariable(unique_train_labels, f'trial={trial_id}_unique-train-labels') if __name__ == "__main__": # Parse command line arguments parser = argparse.ArgumentParser() parser.add_argument('--config_file') for arg_name in inspect.getfullargspec(main).args: parser.add_argument(f'--{arg_name}') args = vars(parser.parse_args()) args = {k: yaml.safe_load(v) for k, v in args.items() if v is not None} # Load config file and override with any provided command line args config_file_path = args.pop('config_file', None) if config_file_path is None: file_basename = utils.stripExtension(__file__) config_fn = f"{file_basename}.yaml" config_file_path = os.path.join( os.path.expanduser('~'), 'repo', 'kinemparse', 'scripts', config_fn ) else: config_fn = os.path.basename(config_file_path) if not os.path.exists(config_file_path): config = {} else: with open(config_file_path, 'rt') as config_file: config = yaml.safe_load(config_file) for k, v in args.items(): if isinstance(v, dict) and k in config: config[k].update(v) else: config[k] = v # Create output directory, instantiate log file and write config options out_dir = os.path.expanduser(config['out_dir']) if not os.path.exists(out_dir): os.makedirs(out_dir) logger = utils.setupRootLogger(filename=os.path.join(out_dir, 'log.txt')) with open(os.path.join(out_dir, config_fn), 'w') as outfile: yaml.dump(config, outfile) utils.copyFile(__file__, out_dir) utils.autoreload_ipython() main(**config) ``` #### File: kinemparse/scripts/predict_seq_pytorch.py ```python import os import collections import logging import itertools import math import yaml import torch from mathtools import utils, torchutils, metrics logger = logging.getLogger(__name__) class DummyClassifier(torch.nn.Module): def __init__(self, input_dim, out_set_size, binary_multiclass=False): super().__init__() self.input_dim = input_dim self.out_set_size = out_set_size logger.info( f'Initialized dummy classifier. ' f'Input dim: {self.input_dim}, Output dim: {self.out_set_size}' ) def forward(self, input_seq): return input_seq.transpose(1, 2) def predict(self, outputs): __, preds = torch.max(outputs, -1) return preds class ConvClassifier(torch.nn.Module): def __init__(self, input_dim, out_set_size, kernel_size=3, binary_multiclass=False): super().__init__() if not (kernel_size % 2): raise NotImplementedError("Kernel size must be an odd number!") self.input_dim = input_dim self.out_set_size = out_set_size self.binary_labels = binary_multiclass self.conv1d = torch.nn.Conv1d( self.input_dim, self.out_set_size, kernel_size, padding=(kernel_size // 2) ) logger.info( f'Initialized 1D convolutional classifier. ' f'Input dim: {self.input_dim}, Output dim: {self.out_set_size}' ) def forward(self, input_seq): output_seq = self.conv1d(input_seq).transpose(1, 2) return output_seq def predict(self, outputs): if self.binary_labels: return (outputs > 0.5).float() __, preds = torch.max(outputs, -1) return preds class TcnClassifier(torch.nn.Module): def __init__( self, input_dim, out_set_size, num_multiclass=None, binary_multiclass=False, tcn_channels=None, **tcn_kwargs): super().__init__() self.input_dim = input_dim self.out_set_size = out_set_size self.binary_multiclass = binary_multiclass self.num_multiclass = num_multiclass self.TCN = torchutils.TemporalConvNet(input_dim, tcn_channels, **tcn_kwargs) if self.num_multiclass is None: self.linear = torch.nn.Linear(tcn_channels[-1], self.out_set_size) else: self.linear = torch.nn.Linear( tcn_channels[-1], self.out_set_size * self.num_multiclass ) logger.info( f'Initialized TCN classifier. ' f'Input dim: {self.input_dim}, Output dim: {self.out_set_size}' ) def forward(self, input_seq, return_feats=False): tcn_out = self.TCN(input_seq).transpose(1, 2) linear_out = self.linear(tcn_out) if self.num_multiclass is not None: linear_out = linear_out.view( *linear_out.shape[0:2], self.out_set_size, self.num_multiclass ) if return_feats: return linear_out, tcn_out return linear_out def predict(self, outputs, return_scores=False): """ outputs has shape (num_batch, num_samples, num_classes, ...) """ if self.binary_multiclass: return (outputs > 0.5).float() __, preds = torch.max(outputs, dim=2) if return_scores: scores = torch.nn.softmax(outputs, dim=1) return preds, scores return preds class LstmClassifier(torch.nn.Module): def __init__( self, input_dim, out_set_size, num_multiclass=None, binary_multiclass=False, hidden_dim=512, **lstm_kwargs): super().__init__() self.input_dim = input_dim self.out_set_size = out_set_size self.binary_multiclass = binary_multiclass self.num_multiclass = num_multiclass self.hidden_size = hidden_dim self.num_layers = lstm_kwargs.get('num_layers', 1) if lstm_kwargs.get('bidirectional', False): self.num_directions = 2 else: self.num_directions = 1 self.LSTM = torch.nn.LSTM(input_dim, self.hidden_size, **lstm_kwargs) if self.num_multiclass is None: self.linear = torch.nn.Linear( self.num_directions * self.hidden_size, self.out_set_size ) else: self.linear = torch.nn.Linear( self.num_directions * self.hidden_size, self.out_set_size * self.num_multiclass ) logger.info( f'Initialized LSTM classifier. ' f'Input dim: {self.input_dim}, Output dim: {self.out_set_size}' ) def forward(self, input_seq, return_feats=False): batch_size = input_seq.shape[0] h0 = torch.randn( self.num_layers * self.num_directions, batch_size, self.hidden_size, device=input_seq.device ) c0 = torch.randn( self.num_layers * self.num_directions, batch_size, self.hidden_size, device=input_seq.device ) lstm_out, (hn, cn) = self.LSTM(input_seq, (h0, c0)) linear_out = self.linear(lstm_out) if self.num_multiclass is not None: # BATCH x TIME x VOCAB * EDGE -> BATCH x TIME x VOCAB x EDGE linear_out = linear_out.view( *linear_out.shape[0:2], self.out_set_size, self.num_multiclass ) if return_feats: return linear_out, lstm_out return linear_out def predict(self, outputs, return_scores=False): """ outputs has shape (num_batch, num_samples, num_classes, ...) """ if self.binary_multiclass: return (outputs > 0.5).float() __, preds = torch.max(outputs, dim=2) if return_scores: scores = torch.nn.softmax(outputs, dim=1) return preds, scores return preds def splitSeqs(feature_seqs, label_seqs, trial_ids, active_only=False): num_signals = label_seqs[0].shape[1] if num_signals >= 100: raise ValueError("{num_signals} signals will cause overflow in sequence ID (max is 99)") def validate(seqs): return all(seq.shape[1] == num_signals for seq in seqs) all_valid = all(validate(x) for x in (feature_seqs, label_seqs)) if not all_valid: raise AssertionError("Features and labels don't all have the same number of sequences") trial_ids = tuple( itertools.chain( *( tuple(t_id + 0.01 * (i + 1) for i in range(num_signals)) for t_id in trial_ids ) ) ) def splitSeq(arrays): return tuple(row for array in arrays for row in array) feature_seqs = splitSeq(map(lambda x: x.swapaxes(0, 1), feature_seqs)) label_seqs = splitSeq(map(lambda x: x.T, label_seqs)) if active_only: is_active = tuple(map(lambda x: x.any(), label_seqs)) def filterInactive(arrays): return tuple(arr for arr, act in zip(arrays, is_active) if act) return tuple(map(filterInactive, (feature_seqs, label_seqs, trial_ids))) return feature_seqs, label_seqs, trial_ids def joinSeqs(batches): def stack(seq): stacked = torch.stack(seq, dim=-1) return stacked[None, ...] all_seqs = collections.defaultdict(dict) for batch in batches: for b in zip(*batch): i = b[-1] seqs = b[:-1] seq_id, trial_id = math.modf(i) seq_id = int(round(seq_id * 100)) trial_id = int(round(trial_id)) all_seqs[trial_id][seq_id] = seqs for trial_id, seq_dict in all_seqs.items(): seqs = (seq_dict[k] for k in sorted(seq_dict.keys())) seqs = map(stack, zip(*seqs)) yield tuple(seqs) + ((trial_id,),) def main( out_dir=None, data_dir=None, model_name=None, predict_mode='classify', gpu_dev_id=None, batch_size=None, learning_rate=None, independent_signals=None, active_only=None, output_dim_from_vocab=False, prefix='trial=', feature_fn_format='feature-seq.pkl', label_fn_format='label_seq.pkl', dataset_params={}, model_params={}, cv_params={}, train_params={}, viz_params={}, metric_names=['Loss', 'Accuracy', 'Precision', 'Recall', 'F1'], plot_predictions=None, results_file=None, sweep_param_name=None): data_dir = os.path.expanduser(data_dir) out_dir = os.path.expanduser(out_dir) if not os.path.exists(out_dir): os.makedirs(out_dir) logger = utils.setupRootLogger(filename=os.path.join(out_dir, 'log.txt')) if results_file is None: results_file = os.path.join(out_dir, 'results.csv') else: results_file = os.path.expanduser(results_file) fig_dir = os.path.join(out_dir, 'figures') if not os.path.exists(fig_dir): os.makedirs(fig_dir) out_data_dir = os.path.join(out_dir, 'data') if not os.path.exists(out_data_dir): os.makedirs(out_data_dir) def saveVariable(var, var_name, to_dir=out_data_dir): return utils.saveVariable(var, var_name, to_dir) # Load data device = torchutils.selectDevice(gpu_dev_id) trial_ids = utils.getUniqueIds( data_dir, prefix=prefix, suffix=feature_fn_format, to_array=True ) dataset = utils.CvDataset( trial_ids, data_dir, prefix=prefix, feature_fn_format=feature_fn_format, label_fn_format=label_fn_format, ) utils.saveMetadata(dataset.metadata, out_data_dir) utils.saveVariable(dataset.vocab, 'vocab', out_data_dir) # Define cross-validation folds cv_folds = utils.makeDataSplits(len(trial_ids), **cv_params) utils.saveVariable(cv_folds, 'cv-folds', out_data_dir) if predict_mode == 'binary multiclass': # criterion = torchutils.BootstrappedCriterion( # 0.25, base_criterion=torch.nn.functional.binary_cross_entropy_with_logits, # ) criterion = torch.nn.BCEWithLogitsLoss() labels_dtype = torch.float elif predict_mode == 'multiclass': criterion = torch.nn.CrossEntropyLoss() labels_dtype = torch.long elif predict_mode == 'classify': criterion = torch.nn.CrossEntropyLoss() labels_dtype = torch.long else: raise AssertionError() def make_dataset(feats, labels, ids, shuffle=True): dataset = torchutils.SequenceDataset( feats, labels, device=device, labels_dtype=labels_dtype, seq_ids=ids, **dataset_params ) loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True) return dataset, loader for cv_index, cv_fold in enumerate(cv_folds): train_data, val_data, test_data = dataset.getFold(cv_fold) if independent_signals: train_data = splitSeqs(*train_data, active_only=active_only) val_data = splitSeqs(*val_data, active_only=active_only) test_data = splitSeqs(*test_data, active_only=False) train_set, train_loader = make_dataset(*train_data, shuffle=True) test_set, test_loader = make_dataset(*test_data, shuffle=False) val_set, val_loader = make_dataset(*val_data, shuffle=True) logger.info( f'CV fold {cv_index + 1} / {len(cv_folds)}: {len(dataset.trial_ids)} total ' f'({len(train_set)} train, {len(val_set)} val, {len(test_set)} test)' ) logger.info( f'{train_set.num_label_types} unique labels in train set; ' f'vocab size is {len(dataset.vocab)}' ) input_dim = train_set.num_obsv_dims output_dim = train_set.num_label_types if output_dim_from_vocab: output_dim = len(dataset.vocab) if model_name == 'linear': model = torchutils.LinearClassifier( input_dim, output_dim, **model_params ).to(device=device) elif model_name == 'conv': model = ConvClassifier(input_dim, output_dim, **model_params).to(device=device) elif model_name == 'TCN': if predict_mode == 'multiclass': num_multiclass = train_set[0][1].shape[-1] output_dim = max([ train_set.num_label_types, test_set.num_label_types, val_set.num_label_types ]) else: num_multiclass = None model = TcnClassifier( input_dim, output_dim, num_multiclass=num_multiclass, **model_params ).to(device=device) elif model_name == 'LSTM': if predict_mode == 'multiclass': num_multiclass = train_set[0][1].shape[-1] output_dim = max([ train_set.num_label_types, test_set.num_label_types, val_set.num_label_types ]) else: num_multiclass = None model = LstmClassifier( input_dim, output_dim, num_multiclass=num_multiclass, **model_params ).to(device=device) else: raise AssertionError() optimizer_ft = torch.optim.Adam( model.parameters(), lr=learning_rate, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False ) lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer_ft, step_size=1, gamma=1.00) train_epoch_log = collections.defaultdict(list) val_epoch_log = collections.defaultdict(list) metric_dict = {name: metrics.makeMetric(name) for name in metric_names} model, last_model_wts = torchutils.trainModel( model, criterion, optimizer_ft, lr_scheduler, train_loader, val_loader, device=device, metrics=metric_dict, train_epoch_log=train_epoch_log, val_epoch_log=val_epoch_log, **train_params ) # Test model metric_dict = {name: metrics.makeMetric(name) for name in metric_names} test_io_history = torchutils.predictSamples( model.to(device=device), test_loader, criterion=criterion, device=device, metrics=metric_dict, data_labeled=True, update_model=False, seq_as_batch=train_params['seq_as_batch'], return_io_history=True ) if independent_signals: test_io_history = tuple(joinSeqs(test_io_history)) logger.info('[TST] ' + ' '.join(str(m) for m in metric_dict.values())) utils.writeResults( results_file, {k: v.value for k, v in metric_dict.items()}, sweep_param_name, model_params ) if plot_predictions: io_fig_dir = os.path.join(fig_dir, 'model-io') if not os.path.exists(io_fig_dir): os.makedirs(io_fig_dir) label_names = ('gt', 'pred') preds, scores, inputs, gt_labels, ids = zip(*test_io_history) for batch in test_io_history: batch = tuple( x.cpu().numpy() if isinstance(x, torch.Tensor) else x for x in batch ) for preds, _, inputs, gt_labels, seq_id in zip(*batch): fn = os.path.join(io_fig_dir, f"{prefix}{seq_id}_model-io.png") utils.plot_array(inputs, (gt_labels.T, preds.T), label_names, fn=fn) for batch in test_io_history: batch = tuple( x.cpu().numpy() if isinstance(x, torch.Tensor) else x for x in batch ) for pred_seq, score_seq, feat_seq, label_seq, trial_id in zip(*batch): saveVariable(pred_seq, f'{prefix}{trial_id}_pred-label-seq') saveVariable(score_seq, f'{prefix}{trial_id}_score-seq') saveVariable(label_seq, f'{prefix}{trial_id}_true-label-seq') saveVariable(model, f'cvfold={cv_index}_{model_name}-best') train_fig_dir = os.path.join(fig_dir, 'train-plots') if not os.path.exists(train_fig_dir): os.makedirs(train_fig_dir) if train_epoch_log: torchutils.plotEpochLog( train_epoch_log, subfig_size=(10, 2.5), title='Training performance', fn=os.path.join(train_fig_dir, f'cvfold={cv_index}_train-plot.png') ) if val_epoch_log: torchutils.plotEpochLog( val_epoch_log, subfig_size=(10, 2.5), title='Heldout performance', fn=os.path.join(train_fig_dir, f'cvfold={cv_index}_val-plot.png') ) if __name__ == "__main__": # Parse command-line args and config file cl_args = utils.parse_args(main) config, config_fn = utils.parse_config(cl_args, script_name=__file__) # Create output directory, instantiate log file and write config options out_dir = os.path.expanduser(config['out_dir']) if not os.path.exists(out_dir): os.makedirs(out_dir) with open(os.path.join(out_dir, config_fn), 'w') as outfile: yaml.dump(config, outfile) utils.copyFile(__file__, out_dir) main(**config) ``` #### File: kinemparse/scripts/restructure_output_decode_keyframes.py ```python import argparse import os import inspect import yaml import joblib import numpy as np import scipy from mathtools import utils def main(out_dir=None, data_dir=None, detections_dir=None, modality=None, normalization=None): data_dir = os.path.expanduser(data_dir) out_dir = os.path.expanduser(out_dir) if detections_dir is not None: detections_dir = os.path.expanduser(detections_dir) fig_dir = os.path.join(out_dir, 'figures') if not os.path.exists(fig_dir): os.makedirs(fig_dir) out_data_dir = os.path.join(out_dir, 'data') if not os.path.exists(out_data_dir): os.makedirs(out_data_dir) def saveVariable(var, var_name): joblib.dump(var, os.path.join(out_data_dir, f'{var_name}.pkl')) def loadVariable(var_name): return joblib.load(os.path.join(data_dir, f'{var_name}.pkl')) def loadAll(var_name, trial_ids): def loadOne(trial_id): return loadVariable(f"trial-{trial_id}_{var_name}") return tuple(map(loadOne, trial_ids)) # Load data trial_ids = utils.getUniqueIds(data_dir, prefix='trial-', to_array=True) # Define cross-validation folds dataset_size = len(trial_ids) cv_folds = utils.makeDataSplits( dataset_size, precomputed_fn=os.path.join(data_dir, 'cv-folds.pkl') ) cv_folds = tuple(tuple(map(np.array, splits)) for splits in cv_folds) # Validate CV folds by checking that each split covers all trial ids for train_idxs, test_idxs in cv_folds: num_train = len(train_idxs) num_test = len(test_idxs) num_total = len(trial_ids) if num_train + num_test != num_total: err_str = f"{num_train} train + {num_test} test != {num_total} total" raise AssertionError(err_str) cv_fold_trial_ids = tuple( tuple(map(lambda x: trial_ids[x], splits)) for splits in cv_folds ) saveVariable(cv_fold_trial_ids, "cv-fold-trial-ids") for cv_index, (train_idxs, test_idxs) in enumerate(cv_folds): logger.info( f'CV fold {cv_index + 1}: {len(trial_ids)} total ' f'({len(train_idxs)} train, {len(test_idxs)} test)' ) hmm = loadVariable(f"hmm-fold{cv_index}") train_assemblies = hmm.states saveVariable(train_assemblies, f"cvfold={cv_index}_train-assemblies") saveVariable(hmm, f"cvfold={cv_index}_model") for trial_id in trial_ids[test_idxs]: # true_state_seqs = loadVariable('trial-{trial_id}_true-state-seq-orig', trial_ids) saved_predictions = loadVariable(f'trial-{trial_id}_pred-state-seq') # shape: (num_states, num_samples) data_scores = loadVariable(f'trial-{trial_id}_data-scores') if data_scores.shape[0] != len(train_assemblies): warn_str = ( f"Trial {trial_id}: {data_scores.shape[0]} data scores " f"!= {len(train_assemblies)} assemblies in vocab" ) logger.warning(warn_str) continue if detections_dir is not None: fn = f'trial-{trial_id}_class-label-frame-seq.pkl' pixel_label_frame_seq = joblib.load(os.path.join(detections_dir, fn)) for i, label_frame in enumerate(pixel_label_frame_seq): # px_is_unoccluded = (label_frame == 0) + (label_frame == 3) if normalization == 'per-pixel': px_is_blocks = label_frame == 3 denominator = px_is_blocks.sum() if modality == 'RGB': denominator *= 3 else: raise NotImplementedError(f"Modality {modality} not recognized") data_scores[:, i] /= denominator elif normalization == 'marginal': # This scalar value is broadcast to a uniform (log) prior log_prior = -np.log(data_scores.shape[0]) joint_probs = data_scores + log_prior data_marginals = scipy.special.logsumexp(joint_probs, axis=0) data_scores = joint_probs - data_marginals elif normalization is not None: raise NotImplementedError() # Validate the loaded data pred_assembly_idxs = data_scores.argmax(axis=0) pred_assembly_seq = tuple(train_assemblies[i] for i in pred_assembly_idxs) preds_same = all(p1 == p1 for p1, p2 in zip(pred_assembly_seq, saved_predictions)) if not preds_same: raise AssertionError('Computed predictions differ from saved predictions') saveVariable(data_scores, f"trial={trial_id}_data-scores") if __name__ == "__main__": # Parse command line arguments parser = argparse.ArgumentParser() parser.add_argument('--config_file') for arg_name in inspect.getfullargspec(main).args: parser.add_argument(f'--{arg_name}') args = vars(parser.parse_args()) args = {k: yaml.safe_load(v) for k, v in args.items() if v is not None} # Load config file and override with any provided command line args config_file_path = args.pop('config_file', None) if config_file_path is None: file_basename = utils.stripExtension(__file__) config_fn = f"{file_basename}.yaml" config_file_path = os.path.join( os.path.expanduser('~'), 'repo', 'kinemparse', 'scripts', config_fn ) else: config_fn = os.path.basename(config_file_path) if not os.path.exists(config_file_path): config = {} else: with open(config_file_path, 'rt') as config_file: config = yaml.safe_load(config_file) for k, v in args.items(): if isinstance(v, dict) and k in config: config[k].update(v) else: config[k] = v # Create output directory, instantiate log file and write config options out_dir = os.path.expanduser(config['out_dir']) if not os.path.exists(out_dir): os.makedirs(out_dir) logger = utils.setupRootLogger(filename=os.path.join(out_dir, 'log.txt')) with open(os.path.join(out_dir, config_fn), 'w') as outfile: yaml.dump(config, outfile) utils.copyFile(__file__, out_dir) utils.autoreload_ipython() main(**config) ``` #### File: kinemparse/scripts/score_keyframes.py ```python import os from matplotlib import pyplot as plt import numpy as np import joblib import yaml from mathtools import utils # FIXME: remove dependency on blocks from blocks.estimation import models from kinemparse import videoprocessing from visiontools import imageprocessing def plotScores(frame_scores, keyframe_idxs, fn): _, axis = plt.subplots(1, figsize=(12, 8)) axis.plot(frame_scores) axis.set_xlabel('Frame index') axis.set_ylabel('Frame score') axis.scatter(keyframe_idxs, frame_scores[keyframe_idxs]) axis.set_title('Video frame scores') plt.tight_layout() plt.savefig(fn) plt.close() def main( out_dir=None, data_dir=None, preprocess_dir=None, segments_dir=None, keyframe_model_fn=None, max_seqs=None, subsample_period=None, frame_scoring_options={}, frame_selection_options={}): out_dir = os.path.expanduser(out_dir) data_dir = os.path.expanduser(data_dir) preprocess_dir = os.path.expanduser(preprocess_dir) keyframe_model_fn = os.path.expanduser(keyframe_model_fn) if segments_dir is not None: segments_dir = os.path.expanduser(segments_dir) logger = utils.setupRootLogger(filename=os.path.join(out_dir, 'log.txt')) out_data_dir = os.path.join(out_dir, 'data') if not os.path.exists(out_data_dir): os.makedirs(out_data_dir) fig_dir = os.path.join(out_dir, 'figures') if not os.path.exists(fig_dir): os.makedirs(fig_dir) def loadFromDir(var_name, dir_name): return joblib.load(os.path.join(dir_name, f"{var_name}.pkl")) def loadFromPreprocessDir(var_name): return joblib.load(os.path.join(preprocess_dir, f"{var_name}.pkl")) def saveToWorkingDir(var, var_name): joblib.dump(var, os.path.join(out_data_dir, f"{var_name}.pkl")) trial_ids = utils.getUniqueIds(preprocess_dir, prefix='trial-', suffix='.pkl') keyframe_model = joblib.load(keyframe_model_fn) models.visualizeKeyframeModel(keyframe_model, fn=os.path.join(fig_dir, 'keyframe-model.png')) if max_seqs is not None: trial_ids = trial_ids[:max_seqs] for seq_idx, trial_id in enumerate(trial_ids): logger.info(f"Processing video {seq_idx + 1} / {len(trial_ids)} (trial {trial_id})") logger.info(f" Loading data...") trial_str = f"trial-{trial_id}" rgb_frame_seq = loadFromDir(f'{trial_str}_rgb-frame-seq', data_dir) segment_frame_seq = loadFromDir(f'{trial_str}_segment-frame-seq', preprocess_dir) if segments_dir is not None: fn = f'trial={trial_id}_pred-segment-seq-rgb' try: segments_seq = loadFromDir(fn, segments_dir) except FileNotFoundError: logger.info(f" File not found: {fn}") continue else: segments_seq = None logger.info(f" Scoring frames...") frame_scores = videoprocessing.scoreFrames( keyframe_model, rgb_frame_seq, segment_frame_seq, score_kwargs=frame_scoring_options ) segment_keyframe_idxs = videoprocessing.selectSegmentKeyframes( frame_scores, segment_labels=segments_seq, **frame_selection_options ) logger.info(f" Saving output...") fn = os.path.join(fig_dir, f'{trial_str}_scores-plot.png') plotScores(frame_scores, segment_keyframe_idxs, fn) def saveFrames(indices, label): best_rgb = rgb_frame_seq[indices] best_seg = segment_frame_seq[indices] rgb_quantized = np.stack( tuple( videoprocessing.quantizeImage(keyframe_model, rgb_img, segment_img) for rgb_img, segment_img in zip(best_rgb, best_seg) ) ) imageprocessing.displayImages( *best_rgb, *best_seg, *rgb_quantized, num_rows=3, file_path=os.path.join(fig_dir, f'{trial_str}_best-frames-{label}.png') ) saveFrames(segment_keyframe_idxs, 'segment') # Save intermediate results saveToWorkingDir(frame_scores, f'{trial_str}_frame-scores') saveToWorkingDir(segment_keyframe_idxs, f'{trial_str}_keyframe-idxs') if __name__ == '__main__': cl_args = utils.parse_args(main) config, config_fn = utils.parse_config(cl_args, script_name=__file__) # Create output directory, instantiate log file and write config options out_dir = os.path.expanduser(config['out_dir']) if not os.path.exists(out_dir): os.makedirs(out_dir) with open(os.path.join(out_dir, config_fn), 'w') as outfile: yaml.dump(config, outfile) utils.copyFile(__file__, out_dir) main(**config) ``` #### File: kinemparse/scripts/segment_from_imu.py ```python import os import logging import yaml import joblib import numpy as np from sklearn import metrics from matplotlib import pyplot as plt from mathtools import utils logger = logging.getLogger(__name__) def removeSmallSegments(labels, min_seg_len=10): seg_labels, seg_lens = utils.computeSegments(labels) seg_label_seq = np.zeros_like(labels) prev_start_index = 0 prev_seg_len = 0 prev_seg_label = -1 for seg_label, seg_len in zip(seg_labels, seg_lens): if seg_len < min_seg_len: prev_seg_len += seg_len continue if seg_label == prev_seg_label: prev_seg_len += seg_len continue prev_end_index = prev_start_index + prev_seg_len seg_label_seq[prev_start_index:prev_end_index] = prev_seg_label prev_start_index = prev_end_index prev_seg_len = seg_len prev_seg_label = seg_label prev_end_index = prev_start_index + prev_seg_len seg_label_seq[prev_start_index:prev_end_index] = prev_seg_label return seg_label_seq def filterSegments(label_seq, **filter_args): label_seq = label_seq.copy() for i in range(label_seq.shape[0]): label_seq[i] = removeSmallSegments(label_seq[i], **filter_args) return label_seq def segmentFromLabels(label_seq, num_vals=2, min_seg_len=10): row_nums = num_vals ** np.arange(label_seq.shape[0]) reduced_label_seq = np.dot(row_nums, label_seq) if min_seg_len > 0: reduced_label_seq = removeSmallSegments(reduced_label_seq, min_seg_len=30) seg_label_seq = utils.makeSegmentLabels(reduced_label_seq) return seg_label_seq def plot_labels( gt_seg_label_seq, pred_seg_label_seq, imu_timestamp_seq, keyframe_timestamp_seq, fn=None): subplot_width = 12 subplot_height = 3 num_axes = 1 figsize = (subplot_width, num_axes * subplot_height) fig, axis = plt.subplots(num_axes, figsize=figsize, sharex=True) axis.plot(imu_timestamp_seq, gt_seg_label_seq) axis.plot(imu_timestamp_seq, pred_seg_label_seq) axis.scatter(keyframe_timestamp_seq, np.zeros_like(keyframe_timestamp_seq)) plt.tight_layout() if fn is None: plt.show() else: plt.savefig(fn) plt.close() def plot_arrays_simple(*arrays, labels=None, title=None, fn=None): subplot_width = 12 subplot_height = 3 num_axes = len(arrays) figsize = (subplot_width, num_axes * subplot_height) fig, axes = plt.subplots(num_axes, figsize=figsize, sharex=True) if num_axes == 1: axes = [axes] for i, (axis, array) in enumerate(zip(axes, arrays)): axis.imshow(array, interpolation='none', aspect='auto') if labels is not None: axis.set_ylabel(labels[i]) if title is not None: axes[0].set_title(title) plt.tight_layout() if fn is None: plt.show() else: plt.savefig(fn) plt.close() def retrievalMetrics(seg_keyframe_counts): centered_counts = seg_keyframe_counts - 1 num_true_positives = np.sum(centered_counts == 0) num_false_positives = np.sum(centered_counts < 0) num_false_negatives = np.sum(centered_counts > 0) precision = num_true_positives / (num_true_positives + num_false_positives) recall = num_true_positives / (num_true_positives + num_false_negatives) F1 = 2 * (precision * recall) / (precision + recall) return precision, recall, F1 def segments_from_gt(label_seq, seg_label_seq): def reduction(segment): reduced = utils.reduce_all_equal(segment) return reduced segment_gt, sample_gt = utils.reduce_over_segments( label_seq, seg_label_seq, reduction=reduction ) return segment_gt.T, sample_gt.T def segments_from_features(feature_seq, seg_label_seq): def reduction(segment): reduced = segment.mean(axis=0).argmax(axis=-1) reduced[reduced == 2] = 0 reduced[reduced == 3] = 0 return reduced segment_preds, sample_preds = utils.reduce_over_segments( feature_seq, seg_label_seq, reduction=reduction ) return segment_preds.T, sample_preds.T def remapLabels(labels, remap_dict): remapped = labels.copy() for k, v in remap_dict.items(): remapped[labels == k] = v return remapped def main( out_dir=None, predictions_dir=None, imu_data_dir=None, video_data_dir=None, use_gt_segments=None, model_name=None, model_params={}, results_file=None, sweep_param_name=None, cv_params={}, viz_params={}, plot_predictions=None): predictions_dir = os.path.expanduser(predictions_dir) out_dir = os.path.expanduser(out_dir) logger = utils.setupRootLogger(filename=os.path.join(out_dir, 'log.txt')) if results_file is None: results_file = os.path.join(out_dir, f'results.csv') else: results_file = os.path.expanduser(results_file) fig_dir = os.path.join(out_dir, 'figures') if not os.path.exists(fig_dir): os.makedirs(fig_dir) out_data_dir = os.path.join(out_dir, 'data') if not os.path.exists(out_data_dir): os.makedirs(out_data_dir) def saveVariable(var, var_name): joblib.dump(var, os.path.join(out_data_dir, f'{var_name}.pkl')) def loadAll(seq_ids, var_name, data_dir): def loadOne(seq_id): fn = os.path.join(data_dir, f'trial={seq_id}_{var_name}') return joblib.load(fn) return tuple(map(loadOne, seq_ids)) # Load data trial_ids = utils.getUniqueIds(predictions_dir, prefix='trial=') feature_seqs = loadAll(trial_ids, 'score-seq.pkl', predictions_dir) pred_label_seqs = loadAll(trial_ids, 'pred-label-seq.pkl', predictions_dir) label_seqs = loadAll(trial_ids, 'true-label-seq.pkl', predictions_dir) # Define cross-validation folds dataset_size = len(trial_ids) cv_folds = utils.makeDataSplits(dataset_size, **cv_params) def getSplit(split_idxs): split_data = tuple( tuple(s[i] for i in split_idxs) for s in (feature_seqs, pred_label_seqs, label_seqs, trial_ids) ) return split_data for cv_index, cv_splits in enumerate(cv_folds): train_data, val_data, test_data = tuple(map(getSplit, cv_splits)) train_ids = train_data[-1] test_ids = test_data[-1] val_ids = val_data[-1] logger.info( f'CV fold {cv_index + 1}: {len(trial_ids)} total ' f'({len(train_ids)} train, {len(val_ids)} val, {len(test_ids)} test)' ) metric_dict = { 'ARI': [], # 'kf_prec': [], # 'kf_rec': [], # 'kf_f1': [], 'prec': [], 'rec': [], 'f1': [] } for feature_seq, pred_label_seq, label_seq, trial_id in zip(*test_data): label_seq = remapLabels(label_seq, {2: 0, 3: 0}) pred_label_seq = remapLabels(pred_label_seq, {2: 0, 3: 0}) gt_seg_label_seq = segmentFromLabels(label_seq, num_vals=2, min_seg_len=0) segment_labels, sample_labels = segments_from_gt(label_seq.T, gt_seg_label_seq) pred_seg_label_seq = segmentFromLabels(filterSegments(pred_label_seq), num_vals=2) segment_preds, sample_preds = segments_from_features( np.moveaxis(feature_seq, [0, 1, 2], [1, 2, 0]), pred_seg_label_seq ) prec = metrics.precision_score(sample_labels.ravel(), sample_preds.ravel()) metric_dict['prec'].append(prec) rec = metrics.recall_score(sample_labels.ravel(), sample_preds.ravel()) metric_dict['rec'].append(rec) f1 = metrics.f1_score(sample_labels.ravel(), sample_preds.ravel()) metric_dict['f1'].append(f1) metric_dict['ARI'] = metrics.adjusted_rand_score(gt_seg_label_seq, pred_seg_label_seq) if use_gt_segments: saveVariable(gt_seg_label_seq, f'trial={trial_id}_segment-seq-imu') else: saveVariable(pred_seg_label_seq, f'trial={trial_id}_segment-seq-imu') if plot_predictions: fn = os.path.join(fig_dir, f'trial-{trial_id:03}_kf.png') labels = ('ground truth', 'pred, segmented', 'pred, raw') num_segs_pred = pred_seg_label_seq.max() + 1 num_segs_gt = gt_seg_label_seq.max() + 1 title = f"{num_segs_pred} pred segs, {num_segs_gt} gt segs" plot_arrays_simple( sample_labels, sample_preds, pred_label_seq, labels=labels, title=title, fn=fn ) if imu_data_dir is not None and video_data_dir is not None: imu_data_dir = os.path.expanduser(imu_data_dir) imu_timestamp_seq = joblib.load( os.path.join(imu_data_dir, f'trial={trial_id}_timestamp-seq.pkl') ) try: video_data_dir = os.path.expanduser(video_data_dir) rgb_timestamp_fn = f'trial-{trial_id}_rgb-frame-timestamp-seq.pkl' rgb_frame_timestamp_seq = joblib.load( os.path.join(video_data_dir, rgb_timestamp_fn) ) # keyframe_fn = f'trial={trial_id}_rgb-frame-seq.pkl' # keyframe_seq = joblib.load(os.path.join(video_data_dir, keyframe_fn)) # import pdb; pdb.set_trace() except FileNotFoundError: logger.info(f"File not found: {rgb_timestamp_fn}") continue # find imu indices closest to rgb frame timestamps imu_frame_idxs = utils.nearestIndices(imu_timestamp_seq, rgb_frame_timestamp_seq) if use_gt_segments: gt_seg_label_seq_rgb = gt_seg_label_seq[imu_frame_idxs] saveVariable(gt_seg_label_seq_rgb, f'trial={trial_id}_segment-seq-rgb') else: pred_seg_label_seq_rgb = pred_seg_label_seq[imu_frame_idxs] saveVariable(pred_seg_label_seq_rgb, f'trial={trial_id}_segment-seq-rgb') if False: num_segments = np.unique(pred_seg_label_seq).max() + 1 seg_keyframe_counts = utils.makeHistogram(num_segments, pred_seg_label_seq_rgb) prec, rec, f1 = retrievalMetrics(seg_keyframe_counts) metric_dict['kf_prec'].append(prec) metric_dict['kf_rec'].append(rec) metric_dict['kf_f1'].append(f1) if plot_predictions: fn = os.path.join(fig_dir, f'trial-{trial_id:03}_segs.png') plot_labels( gt_seg_label_seq, pred_seg_label_seq, imu_timestamp_seq, rgb_frame_timestamp_seq, fn=fn ) for name, value in metric_dict.items(): metric_dict[name] = np.array(value).mean() metric_str = ' '.join(f"{k}: {v * 100:.1f}%" for k, v in metric_dict.items()) logger.info('[TST] ' + metric_str) utils.writeResults(results_file, metric_dict, sweep_param_name, model_params) saveVariable(train_ids, f'cvfold={cv_index}_train-ids') saveVariable(test_ids, f'cvfold={cv_index}_test-ids') saveVariable(val_ids, f'cvfold={cv_index}_val-ids') # saveVariable(model, f'cvfold={cv_index}_{model_name}-best') if __name__ == "__main__": # Parse command-line args and config file cl_args = utils.parse_args(main) config, config_fn = utils.parse_config(cl_args, script_name=__file__) # Create output directory, instantiate log file and write config options out_dir = os.path.expanduser(config['out_dir']) if not os.path.exists(out_dir): os.makedirs(out_dir) with open(os.path.join(out_dir, config_fn), 'w') as outfile: yaml.dump(config, outfile) utils.copyFile(__file__, out_dir) main(**config) ```
{ "source": "jd-jones/mathtools", "score": 2 }
#### File: mathtools/mathtools/metrics.py ```python import logging try: import torch except ImportError: pass import numpy as np from matplotlib import pyplot as plt from sklearn import metrics from . import utils logger = logging.getLogger(__name__) def oov_rate(state_seq, state_vocab): state_is_oov = ~np.array([s in state_vocab for s in state_seq], dtype=bool) prop_state_oov = state_is_oov.sum() / state_is_oov.size return prop_state_oov def confusionMatrix(all_pred_seqs, all_true_seqs, vocab_size): """ Returns ------- confusions: np.ndarray of int, shape (vocab_size, vocab_size) Rows represent predicted labels; columns represent true labels. """ confusions = np.zeros((vocab_size, vocab_size), dtype=int) for pred_seq, true_seq in zip(all_pred_seqs, all_true_seqs): for i_pred, i_true in zip(pred_seq, true_seq): confusions[i_pred, i_true] += 1 return confusions def scoreConfusionMatrix(all_score_seqs, all_true_seqs, vocab_size): """ Returns ------- confusions: np.ndarray of int, shape (vocab_size, vocab_size) Rows represent predicted labels; columns represent true labels. """ confusions = np.full((vocab_size, vocab_size), -np.inf, dtype=float) for score_seq, true_seq in zip(all_score_seqs, all_true_seqs): for score_row, i_true in zip(score_seq, true_seq): for i_pred, score in enumerate(score_row): confusions[i_pred, i_true] = np.logaddexp(confusions[i_pred, i_true], score) return confusions def perClassAcc(confusions, return_counts=False): class_counts = confusions.sum(axis=0) per_class_acc = np.diag(confusions) / class_counts if return_counts: return per_class_acc, class_counts return per_class_acc def plotConfusions(fn, confusions, vocab, size=24, disp_counts=False): plt.figure(figsize=(size, size)) # vmax = np.abs(confusions).max() # plt.matshow(confusions, cmap='coolwarm', vmin=-vmax, vmax=vmax) plt.matshow(confusions) if disp_counts: for i_row, row in enumerate(confusions): for i_col, val in enumerate(row): if not val: continue plt.text( i_col, i_row, val, fontsize=8, color='black', ha='center', va='center' ) plt.xticks(ticks=range(len(vocab)), labels=vocab, rotation='vertical') plt.yticks(ticks=range(len(vocab)), labels=vocab) plt.colorbar() plt.savefig(fn, bbox_inches='tight') plt.close() def plotPerClassAcc(fn, vocab, per_class_acc, class_preds, class_counts): macro_acc = per_class_acc.mean() f, axes = plt.subplots(3, figsize=(12, 6), sharex=True) axes[0].set_title(f"Macro Accuracy: {macro_acc * 100:.2f}%") axes[0].bar(range(len(vocab)), per_class_acc) for index, val in enumerate(per_class_acc): eps = np.sign(val) * 0.01 axes[0].text( x=index, y=val + eps, s=f"{val * 100:.0f}", fontdict=dict(fontsize=8), va='center' ) axes[0].set_ylabel("Accuracy") axes[1].bar(range(len(vocab)), class_preds / class_counts.sum()) for index, val in enumerate(class_preds / class_counts.sum()): eps = np.sign(val) * 0.01 axes[1].text( x=index, y=val + eps, s=f"{val * 100:.0f}", fontdict=dict(fontsize=8), va='center' ) axes[1].set_ylabel("Pred Frequency") axes[2].bar(range(len(vocab)), class_counts / class_counts.sum()) for index, val in enumerate(class_counts / class_counts.sum()): eps = np.sign(val) * 0.01 axes[2].text( x=index, y=val + eps, s=f"{val * 100:.0f}", fontdict=dict(fontsize=8), va='center' ) axes[2].set_xticks(range(len(vocab))) axes[2].set_xticklabels(vocab, rotation='vertical') axes[2].set_ylabel("True Frequency") plt.savefig(fn, bbox_inches='tight') def makeMetric(name): if name == 'Reciprocal Loss': return ReciprocalAverageLoss() elif name == 'Loss': return AverageLoss() elif name == 'Accuracy': return Accuracy() elif name == 'Precision': return Precision() elif name == 'Recall': return Recall() elif name == 'F1': return Fmeasure(beta=1) else: raise AssertionError() def accuracy_upto(pred_seq, gt_seq, equivalence=None): if equivalence is None: def equivalence(x, y): return x == y is_eq = np.array( [equivalence(p, gt) for p, gt in zip(pred_seq, gt_seq)], dtype=bool ) accuracy = is_eq.sum() / len(is_eq) return accuracy class RationalPerformanceMetric(): """ Performance metric with a numerator and a denominator. """ def __init__(self): self.initializeCounts() def initializeCounts(self): self._numerator = 0 self._denominator = 0 def evaluate(self): return utils.safeDivide(self._numerator, self._denominator) @property def value(self): return float(self.evaluate()) def __str__(self): return f'{self.evaluate():.5f}' def accumulate(self, outputs=None, labels=None, loss=None): self._numerator += self._count_numerator(outputs, labels, loss) self._denominator += self._count_denominator(outputs, labels, loss) def _count_numerator(self, outputs=None, labels=None, loss=None): raise NotImplementedError() def _count_denominator(self, outputs=None, labels=None, loss=None): raise NotImplementedError() class AverageLoss(RationalPerformanceMetric): def _count_numerator(self, outputs=None, labels=None, loss=None): return loss def _count_denominator(self, outputs=None, labels=None, loss=None): return 1 @property def name(self): return 'loss' def __str__(self): return self.name + ': ' + super().__str__() class ReciprocalAverageLoss(AverageLoss): def evaluate(self): return 1 / super().evaluate() @property def name(self): return 'reciprocal loss' class ConfusionPerformanceMetric(RationalPerformanceMetric): def __init__(self): self.initializeCounts() def initializeCounts(self): self._true_positives = 0 self._true_negatives = 0 self._false_positives = 0 self._false_negatives = 0 def __str__(self): return f'{self.evaluate() * 100:5.2f}%' def accumulate(self, predicted=None, true=None, loss=None): self._accumulate_confusions(predicted, true) def _accumulate_confusions(self, predicted, true): self._true_positives += truePositives(predicted, true) self._true_negatives += trueNegatives(predicted, true) self._false_positives += falsePositives(predicted, true) self._false_negatives += falseNegatives(predicted, true) @property def _numerator(self): raise NotImplementedError() @property def _denominator(self): raise NotImplementedError() class Fmeasure(ConfusionPerformanceMetric): def __init__(self, beta=1): super().__init__() self._beta = beta @property def _numerator(self): return (1 + self._beta ** 2) * self._true_positives @property def _denominator(self): denom = ( self._false_positives + (self._beta ** 2) * self._false_negatives + (1 + self._beta ** 2) * self._true_positives ) return denom @property def name(self): return f'F_{self._beta}' def __str__(self): return self.name + ': ' + super().__str__() class Recall(ConfusionPerformanceMetric): @property def _numerator(self): return self._true_positives @property def _denominator(self): return self._true_positives + self._false_negatives @property def name(self): return 'rec' def __str__(self): return self.name + ': ' + super().__str__() class Precision(ConfusionPerformanceMetric): @property def _numerator(self): return self._true_positives @property def _denominator(self): return self._true_positives + self._false_positives @property def name(self): return 'prc' def __str__(self): return self.name + ': ' + super().__str__() class Accuracy(ConfusionPerformanceMetric): @property def _numerator(self): return self._true_positives + self._true_negatives @property def _denominator(self): data_positives = self._true_positives + self._false_negatives data_negatives = self._false_positives + self._true_negatives return data_positives + data_negatives @property def name(self): return 'acc' def __str__(self): return self.name + ': ' + super().__str__() def truePositives(predicted, true, background_index=0): if isinstance(predicted, torch.Tensor) and isinstance(true, torch.Tensor): pred_is_positive = predicted != background_index true_positives = predicted[pred_is_positive] == true[pred_is_positive] return true_positives.sum().float() if isinstance(predicted, np.ndarray) and isinstance(true, np.ndarray): pred_is_positive = predicted != background_index true_positives = predicted[pred_is_positive] == true[pred_is_positive] return true_positives.sum().astype(float) try: return sum(p == t for p, t in zip(predicted, true) if t != background_index) except TypeError: return int(predicted == true) if true != background_index else 0 def trueNegatives(predicted, true, background_index=0): if isinstance(predicted, torch.Tensor) and isinstance(true, torch.Tensor): pred_is_negative = predicted == background_index true_negatives = predicted[pred_is_negative] == true[pred_is_negative] return true_negatives.sum().float() if isinstance(predicted, np.ndarray) and isinstance(true, np.ndarray): pred_is_negative = predicted == background_index true_negatives = predicted[pred_is_negative] == true[pred_is_negative] return true_negatives.sum().astype(float) try: return sum(p == t for p, t in zip(predicted, true) if t == background_index) except TypeError: return int(predicted == true) if true == background_index else 0 def falsePositives(predicted, true, background_index=0): if isinstance(predicted, torch.Tensor) and isinstance(true, torch.Tensor): pred_is_positive = predicted != background_index false_positives = predicted[pred_is_positive] != true[pred_is_positive] return false_positives.sum().float() if isinstance(predicted, np.ndarray) and isinstance(true, np.ndarray): pred_is_positive = predicted != background_index false_positives = predicted[pred_is_positive] != true[pred_is_positive] return false_positives.sum().astype(float) try: return sum(p != t for p, t in zip(predicted, true) if t) except TypeError: return int(predicted != true) if true else 0 def falseNegatives(predicted, true, background_index=0): if isinstance(predicted, torch.Tensor) and isinstance(true, torch.Tensor): pred_is_negative = predicted == background_index false_negatives = predicted[pred_is_negative] != true[pred_is_negative] return false_negatives.sum().float() if isinstance(predicted, np.ndarray) and isinstance(true, np.ndarray): pred_is_negative = predicted == background_index false_negatives = predicted[pred_is_negative] != true[pred_is_negative] return false_negatives.sum().astype(float) try: return sum(p != t for p, t in zip(predicted, true) if t == background_index) except TypeError: return int(predicted != true) if true == background_index else 0 def classAccuracy(true_label_seqs, predicted_label_seqs): avg_accuracies = utils.iterate( seqClassAccuracy, true_label_seqs, predicted_label_seqs ) true_label_seq_lens = [len(s) for s in true_label_seqs] avg_accuracies = np.array(avg_accuracies) true_label_seq_lens = np.array(true_label_seq_lens) num_classes = utils.numClasses([label for ls in true_label_seqs for label in ls]) avg_accy = np.average(avg_accuracies, weights=true_label_seq_lens) chance = 1 / num_classes return avg_accy, chance def seqClassAccuracy(true_label_seq, predicted_label_seq): num_correct = 0 for true, predicted in zip(true_label_seq, predicted_label_seq): num_correct += int((true == predicted).all()) total = len(true_label_seq) return num_correct / total def avgAccuracy(true_label_seqs, predicted_label_seqs): true_labels = utils.toFlattenedArray(true_label_seqs) predicted_labels = utils.toFlattenedArray(predicted_label_seqs) metric = metrics.accuracy_score(true_labels.ravel(), predicted_labels.ravel()) chance = 0.5 return metric, chance def avgPrecision(true_label_seqs, predicted_label_seqs): true_labels = utils.toFlattenedArray(true_label_seqs) predicted_labels = utils.toFlattenedArray(predicted_label_seqs) metric = metrics.precision_score(true_labels.ravel(), predicted_labels.ravel()) chance = true_labels.ravel().sum() / true_labels.size return metric, chance def avgRecall(true_label_seqs, predicted_label_seqs): true_labels = utils.toFlattenedArray(true_label_seqs) predicted_labels = utils.toFlattenedArray(predicted_label_seqs) metric = metrics.recall_score(true_labels.ravel(), predicted_labels.ravel()) chance = 0.5 return metric, chance def edgeDistance(true_label_seqs, predicted_label_seqs): avg_distances = utils.iterate(seqEdgeDistance, true_label_seqs, predicted_label_seqs) true_label_seq_lens = [len(s) for s in true_label_seqs] avg_distances = np.array(avg_distances) true_label_seq_lens = np.array(true_label_seq_lens) metric = np.average(avg_distances, weights=true_label_seq_lens) chance = -1 return metric, chance def seqEdgeDistance(true_label_seq, predicted_label_seq): sum_dist = 0 for true, predicted in zip(true_label_seq, predicted_label_seq): sum_dist += (true != predicted).sum() total = len(true_label_seq) return sum_dist / total def nonempty(assembly_state): return assembly_state.any() def countTrue(true, pred, precision='state', denom_mode='accuracy'): if precision == 'block': p_blocks = set(pred.blocks.keys()) t_blocks = set(true.blocks.keys()) num_true = len(p_blocks & t_blocks) if denom_mode == 'accuracy': num_total = len(p_blocks | t_blocks) elif denom_mode == 'precision': num_total = len(p_blocks) elif denom_mode == 'recall': num_total = len(t_blocks) elif precision == 'edge': p_edges = pred.connections t_edges = true.connections num_true = np.sum(p_edges & t_edges) if denom_mode == 'accuracy': num_total = np.sum(p_edges | t_edges) elif denom_mode == 'precision': num_total = np.sum(p_edges) elif denom_mode == 'recall': num_total = np.sum(t_edges) elif precision == 'state': num_true = int(pred == true) if denom_mode == 'accuracy': num_total = 1 elif denom_mode == 'precision': num_total = int(nonempty(pred)) elif denom_mode == 'recall': num_total = int(nonempty(true)) # Don't count empty states in precision/recall mode num_true *= num_total elif precision == 'topology': num_true = int((pred.connections == true.connections).all()) if denom_mode == 'accuracy': num_total = 1 elif denom_mode == 'precision': num_total = int(nonempty(pred)) elif denom_mode == 'recall': num_total = int(nonempty(true)) # Don't count empty states in precision/recall mode num_true *= num_total elif precision == 'subset_topo': pred_minus_true = pred.connections * ~true.connections true_minus_pred = true.connections * ~pred.connections pred_subset_true = true_minus_pred.any() and not pred_minus_true.any() num_true = int(pred_subset_true) if not pred.any() and true.any(): num_true = 0 if (pred.connections == true.connections).all(): num_true = 1 if denom_mode == 'accuracy': num_total = 1 elif denom_mode == 'precision': num_total = int(nonempty(pred)) elif denom_mode == 'recall': num_total = int(nonempty(true)) # don't count empty states in precision/recall mode num_true *= num_total elif precision == 'subset_geom': num_true = int(pred <= true) if not pred.any() and true.any(): num_true = 0 if denom_mode == 'accuracy': num_total = 1 elif denom_mode == 'precision': num_total = int(nonempty(pred)) elif denom_mode == 'recall': num_total = int(nonempty(true)) # don't count empty states in precision/recall mode num_true *= num_total elif precision == 'off by one': differences = (pred.symmetrized_connections ^ true.symmetrized_connections).astype(int) # since arrays are symmetric, any difference results in at least two changed edges, # so divide by two. Comparison is <= 2 because we're allowing one EDIT # (i.e. change one edge into another) num_true = int(differences.sum() / 2 <= 2) if denom_mode == 'accuracy': num_total = 1 elif denom_mode == 'precision': num_total = int(nonempty(pred)) elif denom_mode == 'recall': num_total = int(nonempty(true)) # don't count empty states in precision/recall mode num_true *= num_total return num_true, num_total def countSeq(true_seq, pred_seq, precision='states', denom_mode='accuracy'): len_true = len(true_seq) len_pred = len(pred_seq) if len_true != len_pred: err_str = f'{len_true} samples in true_seq' err_str += f' != {len_pred} samples in pred_seq' raise ValueError(err_str) num_correct = 0 num_total = 0 for true, pred in zip(true_seq, pred_seq): cur_correct, cur_total = countTrue(true, pred, precision=precision, denom_mode=denom_mode) num_correct += cur_correct num_total += cur_total return num_correct, num_total def numberCorrect( true_seq, predicted_seq, ignore_empty_true=False, ignore_empty_pred=False, precision='states'): len_true = len(true_seq) len_pred = len(predicted_seq) if len_true != len_pred: err_str = f'{len_true} samples in true_seq != {len_pred} samples in predicted_seq' raise ValueError(err_str) if ignore_empty_true: indices = tuple(i for i, s in enumerate(true_seq) if nonempty(s)) predicted_seq = tuple(predicted_seq[i] for i in indices) true_seq = tuple(true_seq[i] for i in indices) if not len(true_seq): warn_str = 'All ground-truth sequences were empty!' logger.warning(warn_str) if ignore_empty_pred: indices = tuple(i for i, s in enumerate(predicted_seq) if nonempty(s)) predicted_seq = tuple(predicted_seq[i] for i in indices) true_seq = tuple(true_seq[i] for i in indices) num_correct = 0 num_total = 0 for p, t in zip(predicted_seq, true_seq): if precision == 'states': num_correct += int(p == t) num_total += 1 elif precision == 'edges': num_correct += int(np.all(p.connections == t.connections)) num_total += 1 elif precision == 'vertices': num_correct += int(p.blocks == t.blocks) num_total += 1 elif precision == 'structure': if not (nonempty(p) and nonempty(t)): num_correct += int(p == t) else: num_correct += int(p < t or p > t or p == t) num_total += 1 elif precision == 'blocks': p_blocks = set(p.blocks.keys()) t_blocks = set(t.blocks.keys()) num_correct += len(p_blocks & t_blocks) num_total += len(p_blocks | t_blocks) elif precision == 'blocks_recall': p_blocks = set(p.blocks.keys()) t_blocks = set(t.blocks.keys()) num_correct += len(p_blocks & t_blocks) num_total += len(t_blocks) elif precision == 'blocks_precision': p_blocks = set(p.blocks.keys()) t_blocks = set(t.blocks.keys()) num_correct += len(p_blocks & t_blocks) num_total += len(p_blocks) elif precision == 'avg_edge': p_edges = p.connections t_edges = t.connections num_correct += np.sum(p_edges & t_edges) num_total += np.sum(p_edges | t_edges) elif precision == 'avg_edge_precision': p_edges = p.connections t_edges = t.connections num_correct += np.sum(p_edges & t_edges) num_total += np.sum(p_edges) elif precision == 'avg_edge_recall': p_edges = p.connections t_edges = t.connections num_correct += np.sum(p_edges & t_edges) num_total += np.sum(t_edges) return num_correct, num_total def stateOverlap(true_seq, predicted_seq, ignore_empty=False): len_true = len(true_seq) len_pred = len(predicted_seq) if len_true != len_pred: err_str = f'{len_true} samples in true_seq != {len_pred} samples in predicted_seq' # raise ValueError(err_str) logger.warn(err_str) if ignore_empty: predicted_seq = tuple(filter(nonempty, predicted_seq)) true_seq = tuple(filter(nonempty, true_seq)) size_intersect = 0 size_union = 0 for p, t in zip(predicted_seq, true_seq): p_blocks = set(p.blocks.keys()) t_blocks = set(t.blocks.keys()) size_intersect += len(p_blocks & t_blocks) size_union += len(p_blocks | t_blocks) return size_intersect, size_union def vertexOverlap(state1, state2): pass def edgeOverlap(state1, state2): pass def levenshtein( reference, candidate, normalized=False, segment_level=False, # reduce_reference=True, reduce_candidate=False, deletion_cost=1, insertion_cost=1, substitution_cost=1, return_num_elems=False, corpus=None, resolution=None): """ Compute the Levenshtein (edit) distance between two sequences. Parameters ---------- reference : iterable(object) candidate : iterable(object) normalized : bool, optional reduce_true : bool, optional deletion_cost : int, optional Cost of deleting an element from the `candidate`. insertion_cost : int, optional Cost of inserting an element from the `reference`. substitution_cost : int, optional Cost of substituting an element in the `reference` for an element in the `candidate`. Returns ------- dist : int NOTE: `dist` has type `float` if `normalized == True` """ if corpus is None: def size(state, resolution): return 1 def difference(state, other, resolution): return int(state != other) elif corpus == 'airplane': def size(state, resolution): if resolution == 'state': return 1 elif resolution == 'block': return len(state.assembly_state) raise NotImplementedError def difference(state, other, resolution): if resolution == 'state': return int(state != other) elif resolution == 'block': return len(state.assembly_state ^ other.assembly_state) raise NotImplementedError elif corpus in ('easy', 'child'): def size(state, resolution): if resolution == 'state': return 1 elif resolution == 'edge': return state.connections.sum() elif resolution == 'block': state_blocks = set(state.blocks.keys()) return len(state_blocks) raise NotImplementedError def difference(state, other, resolution): if resolution == 'state': return int(state != other) elif resolution == 'edge': edge_diff = state.connections ^ other.connections return edge_diff.sum() elif resolution == 'block': state_blocks = set(state.blocks.keys()) other_blocks = set(other.blocks.keys()) return len(state_blocks ^ other_blocks) raise NotImplementedError if segment_level: reference, _ = utils.computeSegments(reference) candidate, _ = utils.computeSegments(candidate) num_true = 1 if not reference else len(reference) num_pred = 1 if not candidate else len(candidate) prefix_dists = np.zeros((num_pred, num_true), dtype=int) # Cost for deleting all elements of candidate for i in range(1, num_pred): candidate_size = size(candidate[i], resolution=resolution) prefix_dists[i, 0] = prefix_dists[i - 1, 0] + deletion_cost * candidate_size # Cost for inserting all elements of reference for j in range(1, num_true): reference_size = size(reference[j], resolution=resolution) prefix_dists[0, j] = prefix_dists[0, j - 1] + insertion_cost * reference_size for i in range(1, num_pred): for j in range(1, num_true): # needs_sub = int(reference[i] != candidate[j]) candidate_size = size(candidate[i], resolution=resolution) reference_size = size(reference[j], resolution=resolution) sub_size = difference(candidate[i], reference[j], resolution=resolution) prefix_dists[i, j] = min( prefix_dists[i - 1, j] + deletion_cost * candidate_size, prefix_dists[i, j - 1] + insertion_cost * reference_size, prefix_dists[i - 1, j - 1] + substitution_cost * sub_size, ) dist = prefix_dists[num_pred - 1, num_true - 1] if normalized: size_pred = sum(size(state, resolution) for state in candidate) size_true = sum(size(state, resolution) for state in reference) dist /= max(size_pred, size_true) if return_num_elems: return dist, (num_true, num_pred) return dist def avgLevenshtein(true_seqs, predicted_seqs, normalized=False): num_true_seqs = len(true_seqs) num_pred_seqs = len(predicted_seqs) if num_true_seqs != num_pred_seqs: err_str = f'{num_true_seqs} ground-truth sequences but {num_pred_seqs} prediction sequences' raise ValueError(err_str) dist = 0 for t, p in zip(true_seqs, predicted_seqs): dist += levenshtein(t, p, normalized=normalized) return dist / num_true_seqs def blockAccuracy(true_seqs, predicted_seqs, ignore_empty=False): total_intersect = 0 total_union = 0 for p_seq, t_seq in zip(predicted_seqs, true_seqs): size_intersect, size_union = stateOverlap(p_seq, t_seq, ignore_empty=ignore_empty) total_intersect += size_intersect total_union += size_union return total_intersect / total_union, -1 def stateAccuracy(true_seqs, predicted_seqs, precision='states'): total_states = 0 total_correct = 0 num_true_seqs = len(true_seqs) num_pred_seqs = len(predicted_seqs) if num_true_seqs != num_pred_seqs: err_str = f'{num_true_seqs} ground-truth sequences but {num_pred_seqs} prediction sequences' raise ValueError(err_str) for p_seq, t_seq in zip(predicted_seqs, true_seqs): num_correct, num_states = numberCorrect(p_seq, t_seq, precision=precision) total_correct += num_correct total_states += num_states return total_correct / total_states, -1 def statePrecision(true_seqs, predicted_seqs, precision='states'): total_states = 0 total_correct = 0 for p_seq, t_seq in zip(predicted_seqs, true_seqs): num_correct, num_states = numberCorrect( t_seq, p_seq, ignore_empty_pred=True, precision=precision ) total_correct += num_correct total_states += num_states if total_states: return total_correct / total_states, -1 if total_correct: return np.inf, -1 return np.nan, -1 def stateRecall(true_seqs, predicted_seqs, precision='states'): total_states = 0 total_correct = 0 for p_seq, t_seq in zip(predicted_seqs, true_seqs): num_correct, num_states = numberCorrect( t_seq, p_seq, ignore_empty_true=True, precision=precision ) total_correct += num_correct total_states += num_states if total_states: return total_correct / total_states, -1 if total_correct: return np.inf, -1 return np.nan, -1 ```
{ "source": "jd-jones/seqtools", "score": 2 }
#### File: seqtools/seqtools/fstutils_openfst.py ```python import logging import numpy as np import pywrapfst as openfst logger = logging.getLogger(__name__) EPSILON = 0 EPSILON_STRING = 'ε' def __test(num_samples=5): def sampleGT(transition_probs, initial_probs): cur_state = np.random.choice(initial_probs.shape[0], p=initial_probs) gt_seq = [cur_state] while True: transitions = transition_probs[cur_state, :] cur_state = np.random.choice(transitions.shape[0], p=transitions) if cur_state == transitions.shape[0] - 1: return gt_seq gt_seq.append(cur_state) def sampleScores(gt_seq, num_states): """ score[i, j, k] := weight(sample i | state j -> state k) """ num_samples = len(gt_seq) - 1 scores = np.random.random_sample(size=(num_samples, num_states, num_states)) return scores def samplePair(transition_probs, initial_probs): gt_seq = sampleGT(transition_probs, initial_probs) score_seq = sampleScores(gt_seq, initial_probs.shape[0]) return gt_seq, score_seq def simulate(num_samples, transition, initial, final): transition_probs = np.hstack((transition, final[:, None])) transition_probs /= transition_probs.sum(axis=1)[:, None] initial_probs = initial.copy() initial_probs /= initial_probs.sum() simulated_dataset = tuple( samplePair(transition_probs, initial_probs) for __ in range(num_samples) ) return simulated_dataset transition = np.array( [[0, 1, 0, 0, 0], [0, 0, 1, 1, 0], [0, 0, 0, 0, 1], [0, 1, 0, 0, 1], [0, 0, 0, 0, 0]], dtype=float ) initial = np.array([1, 0, 1, 0, 0], dtype=float) final = np.array([0, 1, 0, 0, 1], dtype=float) / 10 num_states = len(initial) transition_to_arc = {} for s_cur in range(num_states): for s_next in range(num_states): transition_to_arc[(s_cur, s_next)] = len(transition_to_arc) for s in range(num_states): transition_to_arc[(-1, s)] = len(transition_to_arc) arc_to_transition = {v: k for k, v in transition_to_arc.items()} seq_params = (transition, initial, final) simulated_dataset = simulate(num_samples, *seq_params) seq_params = tuple(map(lambda x: -np.log(x), seq_params)) return seq_params, simulated_dataset, arc_to_transition, transition_to_arc class LatticeCrf(object): def __init__( self, transition_weights=None, initial_weights=None, final_weights=None, update_method='simple'): self._params = { 'transition': transition_weights, 'initial': initial_weights, 'final': final_weights } num_states = self._params['initial'].shape[0] self._transition_to_arc = {} for s_cur in range(num_states): for s_next in range(num_states): self._transition_to_arc[(s_cur, s_next)] = len(self._transition_to_arc) for s in range(num_states): self._transition_to_arc[(-1, s)] = len(self._transition_to_arc) self._arc_to_transition = {v: k for k, v in self._transition_to_arc.items()} if update_method == 'simple': self._updateWeights = gradientStep else: raise NotImplementedError() def fit(self, train_samples, train_labels, observation_scores=None, num_epochs=1): if observation_scores is None: observation_scores = self.score(train_samples) obs_fsts = tuple( fromArray( scores.reshape(scores.shape[0], -1), output_labels=self._transition_to_arc ) for scores in observation_scores ) obs_batch_fst = easyUnion(*obs_fsts, disambiguate=True) train_labels = tuple( [self._transition_to_arc[t] for t in toTransitionSeq(label)] for label in train_labels ) gt_fsts = tuple( fromSequence(labels, symbol_table=obs_batch_fst.output_symbols()) for labels in train_labels ) gt_batch_fst = easyUnion(*gt_fsts, disambiguate=True) losses = [] params = [] for i in range(num_epochs): seq_fst = seqFstToBatch(self._makeSeqFst(), gt_batch_fst) denom_fst = openfst.compose(obs_batch_fst, seq_fst) num_fst = openfst.compose(denom_fst, gt_batch_fst) batch_loss, batch_arcgrad = fstProb(num_fst, denom_fst) param_gradient = self._backward(batch_arcgrad) self._params = self._update_params(self._params, param_gradient) params.append(self._params.copy()) losses.append(float(batch_loss)) return np.array(losses), params def _makeSeqFst(self): transition_fst = fromTransitions( self._params['transition'], self._params['initial'], self._params['final'], transition_ids=self._transition_to_arc ) return transition_fst def _backward(self, batch_arcgrad): param_gradient = seqGradient(batch_arcgrad, self._arc_to_transition) return param_gradient def _update_params(self, params, param_gradient, **update_kwargs): updated = params.copy() for name, gradient in param_gradient.items(): updated[name] = self._updateWeights(params[name], gradient, **update_kwargs) return updated def predict(self, test_samples, observation_scores=None): if observation_scores is None: observation_scores = self.score(test_samples) transition_fst = fromArray(self._transition_weights) observation_fsts = tuple( fromArray(scores.reshape(scores.shape[0], -1)) for scores in observation_scores ) all_preds = [] for observation_fst in observation_fsts: decode_graph = openfst.compose(observation_fst, transition_fst) pred_labels = viterbi(decode_graph) all_preds.append(pred_labels) return all_preds def score(self, train_samples): raise NotImplementedError() class DurationCrf(LatticeCrf): def __init__(self, labels, num_states=2, transition_weights=None, self_weights=None): super().__init__() if transition_weights is None: transition_weights = [0.6] * num_states if self_weights is None: self_weights = [0.4] * num_states self._transition_weights = transition_weights self._self_weights = self_weights self._num_states = num_states self._labels = labels def _makeSeqFst(self): dur_fsts = [ durationFst( label, self._num_states, transition_weights=self._transition_weights, self_weights=self._self_weights ) for label in self._labels ] dur_fst = dur_fsts[0].union(*dur_fsts[1:]).closure(closure_plus=True) return dur_fst def _backward(self, batch_arcgrad): raise NotImplementedError() # -=( MISC UTILS )==----------------------------------------------------------- def toTransitionSeq(state_seq): transition_seq = ((-1, state_seq[0]),) + tuple(zip(state_seq[:-1], state_seq[1:])) return transition_seq def toStateSeq(transition_seq): state_seq = tuple(transition[1] for transition in transition_seq) return state_seq def isLattice(fst): for state in fst.states(): input_labels = tuple(arc.ilabel for arc in fst.arcs(state)) input_label = input_labels[0] if not all(i == input_label for i in input_labels): return False # TODO return True def iteratePaths(fst): paths = [tuple(fst.arcs(fst.start()))] while paths: path = paths.pop() state = path[-1].nextstate if state == -1: yield path for arc in fst.arcs(state): new_path = path + (arc,) paths.append(new_path) def outputLabels(fst): for path in iteratePaths(fst): yield tuple(arc.olabel for arc in path) def getLabels(fst, label_type='output'): for path in iteratePaths(fst): if label_type == 'output': yield tuple(arc.olabel for arc in path) elif label_type == 'input': yield tuple(arc.ilabel for arc in path) else: raise AssertionError() def easyCompose(*fsts, determinize=True, minimize=True): composed = fsts[0] for fst in fsts[1:]: composed = openfst.compose(composed, fst) if determinize: composed = openfst.determinize(composed) if minimize: composed.minimize() return composed def easyUnion(*fsts, disambiguate=False): union_fst = openfst.VectorFst(arc_type=fsts[0].arc_type()) union_fst.set_start(union_fst.add_state()) merged_input_symbols = fsts[0].input_symbols() merged_output_symbols = fsts[0].output_symbols() for fst in fsts: merged_input_symbols = openfst.merge_symbol_table( merged_input_symbols, fst.input_symbols() ) merged_output_symbols = openfst.merge_symbol_table( merged_output_symbols, fst.output_symbols() ) union_fst.set_input_symbols(merged_input_symbols) union_fst.set_output_symbols(merged_output_symbols) for fst in fsts: fst.set_input_symbols(merged_input_symbols) fst.set_output_symbols(merged_output_symbols) union_fst.union(*fsts) if disambiguate: for seq_index, __ in enumerate(fsts): union_fst.mutable_input_symbols().add_symbol(f"seq{seq_index}") for seq_index, __ in enumerate(fsts): union_fst.mutable_output_symbols().add_symbol(f"seq{seq_index}") seq_index = 0 arc_iterator = union_fst.mutable_arcs(union_fst.start()) while not arc_iterator.done(): arc = arc_iterator.value() arc.ilabel = union_fst.input_symbols().find(f"seq{seq_index}") arc.olabel = union_fst.output_symbols().find(f"seq{seq_index}") arc_iterator.set_value(arc) arc_iterator.next() seq_index += 1 return union_fst # -=( CREATION AND CONVERSION )==---------------------------------------------- def makeSymbolTable(vocabulary, prepend_epsilon=True): symbol_table = openfst.SymbolTable() if prepend_epsilon: symbol_table.add_symbol(EPSILON_STRING, key=EPSILON) start = 1 else: start = 0 for index, symbol in enumerate(vocabulary, start=start): symbol_table.add_symbol(str(symbol), key=index) return symbol_table def fromArray( weights, final_weight=None, arc_type=None, # input_labels=None, output_labels=None input_symbols=None, output_symbols=None): """ Instantiate a state machine from an array of weights. Parameters ---------- weights : array_like, shape (num_inputs, num_outputs) Needs to implement `.shape`, so it should be a numpy array or a torch tensor. final_weight : arc_types.AbstractSemiringWeight, optional Should have the same type as `arc_type`. Default is `arc_type.zero` arc_type : {'standard', 'log'}, optional Default is 'standard' (ie the tropical arc_type) input_labels : output_labels : Returns ------- fst : fsm.FST The transducer's arcs have input labels corresponding to the state they left, and output labels corresponding to the state they entered. """ if weights.ndim == 3: is_lattice = False elif weights.ndim == 2: is_lattice = True else: raise AssertionError(f"weights have unrecognized shape {weights.shape}") if arc_type is None: arc_type = 'standard' """ if output_labels is None: output_labels = {str(i): i for i in range(weights.shape[1])} if input_labels is None: if is_lattice: input_labels = {str(i): i for i in range(weights.shape[0])} else: input_labels = {str(i): i for i in range(weights.shape[2])} input_table = openfst.SymbolTable() input_table.add_symbol(EPSILON_STRING, key=EPSILON) for in_symbol, index in input_labels.items(): input_table.add_symbol(str(in_symbol), key=index + 1) output_table = openfst.SymbolTable() output_table.add_symbol(EPSILON_STRING, key=EPSILON) for out_symbol, index in output_labels.items(): output_table.add_symbol(str(out_symbol), key=index + 1) """ fst = openfst.VectorFst(arc_type=arc_type) fst.set_input_symbols(input_symbols) fst.set_output_symbols(output_symbols) zero = openfst.Weight.zero(fst.weight_type()) one = openfst.Weight.one(fst.weight_type()) if final_weight is None: final_weight = one else: final_weight = openfst.Weight(fst.weight_type(), final_weight) init_state = fst.add_state() fst.set_start(init_state) if is_lattice: prev_state = init_state for sample_index, row in enumerate(weights): cur_state = fst.add_state() for i, weight in enumerate(row): input_label_index = sample_index + 1 output_label_index = i + 1 weight = openfst.Weight(fst.weight_type(), weight) if weight != zero: arc = openfst.Arc( input_label_index, output_label_index, weight, cur_state ) fst.add_arc(prev_state, arc) prev_state = cur_state fst.set_final(cur_state, final_weight) else: prev_state = init_state for sample_index, input_output in enumerate(weights): cur_state = fst.add_state() for i, outputs in enumerate(input_output): for j, weight in enumerate(outputs): input_label_index = i + 1 output_label_index = j + 1 weight = openfst.Weight(fst.weight_type(), weight) if weight != zero: arc = openfst.Arc( input_label_index, output_label_index, weight, cur_state ) fst.add_arc(prev_state, arc) prev_state = cur_state fst.set_final(cur_state, final_weight) if not fst.verify(): raise openfst.FstError("fst.verify() returned False") return fst def toArray(lattice): zero = openfst.Weight.zero(lattice.weight_type()) # one = openfst.Weight.one(lattice.weight_type()) num_states = lattice.num_states() num_outputs = lattice.output_symbols().num_symbols() weights = np.full((num_states, num_outputs), float(zero)) for state in lattice.states(): for arc in lattice.arcs(state): weights[state, arc.olabel] = float(arc.weight) return weights, lattice.weight_type() def fromSequence(seq, arc_type='standard', symbol_table=None): fst = openfst.VectorFst(arc_type=arc_type) one = openfst.Weight.one(fst.weight_type()) if symbol_table is not None: fst.set_input_symbols(symbol_table) fst.set_output_symbols(symbol_table) init_state = fst.add_state() fst.set_start(init_state) cur_state = init_state for i, label in enumerate(seq): next_state = fst.add_state() arc = openfst.Arc(label + 1, label + 1, one, next_state) fst.add_arc(cur_state, arc) cur_state = next_state fst.set_final(cur_state, one) if not fst.verify(): raise openfst.FstError("fst.verify() returned False") return fst def fromTransitions( transition_weights, init_weights=None, final_weights=None, arc_type='standard', transition_ids=None): """ Instantiate a state machine from state transitions. Parameters ---------- Returns ------- """ num_states = transition_weights.shape[0] if transition_ids is None: transition_ids = {} for s_cur in range(num_states): for s_next in range(num_states): transition_ids[(s_cur, s_next)] = len(transition_ids) for s in range(num_states): transition_ids[(-1, s)] = len(transition_ids) output_table = openfst.SymbolTable() output_table.add_symbol(EPSILON_STRING, key=EPSILON) for transition, index in transition_ids.items(): output_table.add_symbol(str(transition), key=index + 1) input_table = openfst.SymbolTable() input_table.add_symbol(EPSILON_STRING, key=EPSILON) for transition, index in transition_ids.items(): input_table.add_symbol(str(transition), key=index + 1) fst = openfst.VectorFst(arc_type=arc_type) fst.set_input_symbols(input_table) fst.set_output_symbols(output_table) zero = openfst.Weight.zero(fst.weight_type()) one = openfst.Weight.one(fst.weight_type()) if init_weights is None: init_weights = tuple(float(one) for __ in range(num_states)) if final_weights is None: final_weights = tuple(float(one) for __ in range(num_states)) fst.set_start(fst.add_state()) def makeState(i): state = fst.add_state() initial_weight = openfst.Weight(fst.weight_type(), init_weights[i]) if initial_weight != zero: transition = transition_ids[-1, i] + 1 arc = openfst.Arc(EPSILON, transition, initial_weight, state) fst.add_arc(fst.start(), arc) final_weight = openfst.Weight(fst.weight_type(), final_weights[i]) if final_weight != zero: fst.set_final(state, final_weight) return state states = tuple(makeState(i) for i in range(num_states)) for i_cur, row in enumerate(transition_weights): for i_next, tx_weight in enumerate(row): cur_state = states[i_cur] next_state = states[i_next] weight = openfst.Weight(fst.weight_type(), tx_weight) transition = transition_ids[i_cur, i_next] + 1 if weight != zero: arc = openfst.Arc(transition, transition, weight, next_state) fst.add_arc(cur_state, arc) if not fst.verify(): raise openfst.FstError("fst.verify() returned False") # print("fst.verify() returned False") return fst def durationFst( label, num_states, transition_weights=None, self_weights=None, arc_type='standard', symbol_table=None): """ Construct a left-to-right WFST from an input sequence. The input is usually a sequence of segment-level labels, and this machine is used to align labels with sample-level scores. Parameters ---------- input_seq : iterable(int or string) Returns ------- fst : openfst.Fst A linear-chain weighted finite-state transducer. Each state has one self-transition and one transition to its right neighbor. i.e. the topology looks like this: __ __ __ \/ \/ \/ [START] --> s1 --> s2 --> s3 --> [END] """ if num_states < 1: raise AssertionError(f"num_states = {num_states}, but should be >= 1)") fst = openfst.VectorFst(arc_type=arc_type) one = openfst.Weight.one(fst.weight_type()) zero = openfst.Weight.zero(fst.weight_type()) if transition_weights is None: transition_weights = [one for __ in range(num_states)] if self_weights is None: self_weights = [one for __ in range(num_states)] if symbol_table is not None: fst.set_input_symbols(symbol_table) fst.set_output_symbols(symbol_table) init_state = fst.add_state() fst.set_start(init_state) cur_state = fst.add_state() arc = openfst.Arc(EPSILON, label + 1, one, cur_state) fst.add_arc(init_state, arc) for i in range(num_states): next_state = fst.add_state() transition_weight = openfst.Weight(fst.weight_type(), transition_weights[i]) if transition_weight != zero: arc = openfst.Arc(label + 1, EPSILON, transition_weight, next_state) fst.add_arc(cur_state, arc) self_weight = openfst.Weight(fst.weight_type(), self_weights[i]) if self_weight != zero: arc = openfst.Arc(label + 1, EPSILON, self_weight, cur_state) fst.add_arc(cur_state, arc) cur_state = next_state fst.set_final(cur_state, one) if not fst.verify(): raise openfst.FstError("fst.verify() returned False") return fst def seqFstToBatch(seq_fst, gt_batch_fst): seq_prime = seq_fst.copy() one = openfst.Weight.one(seq_prime.weight_type()) seq_prime.set_input_symbols(gt_batch_fst.input_symbols()) seq_prime.set_output_symbols(gt_batch_fst.output_symbols()) old_start = seq_prime.start() new_start = seq_prime.add_state() for seq_index in range(gt_batch_fst.num_arcs(gt_batch_fst.start())): input_label = seq_prime.input_symbols().find(f"seq{seq_index}") output_label = seq_prime.output_symbols().find(f"seq{seq_index}") arc = openfst.Arc(input_label, output_label, one, old_start) seq_prime.add_arc(new_start, arc) seq_prime.set_start(new_start) return seq_prime # -=( TRAINING )==------------------------------------------------------------- def gradientStep(weights, gradient, step_size=1e-3): new_weights = weights - step_size * gradient return new_weights # -=( CRF/HMM ALGORITHMS )==--------------------------------------------------- def fstProb(numerator_graph, denominator_graph): denom_betas = backward(denominator_graph, neglog_to_log=True) num_betas = backward(numerator_graph, neglog_to_log=True) # LOSS FUNCTION denom_weight = denom_betas[denominator_graph.start()] num_weight = num_betas[numerator_graph.start()] # num_weight - denom_weight is the log-prob, so invert to get the prob in # openfst's log semiring neg_log_prob = openfst.divide(denom_weight, num_weight) # LOSS GRADIENT num_arcgrad = fstArcGradient(numerator_graph, betas=num_betas) denom_arcgrad = fstArcGradient(denominator_graph, betas=denom_betas) arc_gradient = subtractArcs(num_arcgrad, denom_arcgrad) return neg_log_prob, arc_gradient def subtractArcs(numerator, denominator): """ FIXME: This function should return an FST in the real semiring. But since openfst's python wrapper only exposes the log and tropical semirings, it returns a log-semiring FST whose weights are actually real-valued. """ def findArc(target, candidates): for candidate in candidates: if candidate.ilabel == target.ilabel and candidate.olabel == target.olabel: return candidate raise ValueError("No candidate matches target!") def subtractLogWeights(lhs, rhs): difference = np.exp(-float(lhs)) - np.exp(-float(rhs)) return openfst.Weight(lhs.type(), difference) difference = denominator.copy() zero = openfst.Weight.zero(numerator.weight_type()) states = [(numerator.start(), difference.start())] while states: num_state, difference_state = states.pop() num_weight = numerator.final(num_state) denom_weight = difference.final(difference_state) if denom_weight != zero or num_weight != zero: difference_weight = subtractLogWeights(num_weight, denom_weight) difference.set_final(difference_state, difference_weight) for num_arc in numerator.arcs(num_state): difference_arc_iterator = difference.mutable_arcs(difference_state) difference_arc = findArc(num_arc, difference_arc_iterator) difference_arc.weight = subtractLogWeights(num_arc.weight, difference_arc.weight) difference_arc_iterator.set_value(difference_arc) states.append((num_arc.nextstate, difference_arc.nextstate)) return difference def seqGradient(arc_gradient, arc_to_transition): """ TODO: Generalize this so it maps arcs to their partial gradients. FIXME: arc_gradient is a log-semiring WFST whose weights are actually real-valued. """ # NOTE: We assert that arc_gradient should be in the log semiring as a hack. # Actually it should be in the real semiring, but openfst's python wrapper # doesn't expose that one. arc_gradient's weights actually represent real # values. if arc_gradient.arc_type() != 'log': raise AssertionError() zero = openfst.Weight.zero(arc_gradient.weight_type()) num_states = max(v[1] for v in arc_to_transition.values()) + 1 transition_grad = np.zeros((num_states, num_states)) initial_grad = np.zeros(num_states) final_grad = np.zeros(num_states) if arc_gradient.final(arc_gradient.start()) != zero: raise AssertionError("Lattice start states should never be final states!") for state in arc_gradient.states(): for arc in arc_gradient.arcs(state): try: prev_out, cur_out = arc_to_transition[arc.olabel - 1] except KeyError: continue arc_prob = float(arc.weight) if state == arc_gradient.start(): initial_grad[cur_out] += arc_prob else: transition_grad[prev_out, cur_out] += arc_prob next_final_weight = arc_gradient.final(arc.nextstate) if next_final_weight != zero: final_prob = float(arc.weight) final_grad[cur_out] += final_prob param_gradient = { 'transition': transition_grad, 'initial': initial_grad, 'final': final_grad } return param_gradient def fstArcGradient(lattice, alphas=None, betas=None): if lattice.arc_type() != 'log': lattice = openfst.arcmap(lattice, map_type='to_log') if alphas is None: alphas = forward(lattice, neglog_to_log=True) if betas is None: betas = backward(lattice, neglog_to_log=True) total_weight = betas[lattice.start()] zero = openfst.Weight.zero(lattice.weight_type()) arc_gradient = lattice.copy() for state in arc_gradient.states(): w_incoming = alphas[state] arc_iterator = arc_gradient.mutable_arcs(state) while not arc_iterator.done(): arc = arc_iterator.value() w_outgoing = betas[arc.nextstate] weight_thru_arc = openfst.times(w_incoming, w_outgoing) arc_neglogprob = openfst.divide(total_weight, weight_thru_arc) arc.weight = arc_neglogprob arc_iterator.set_value(arc) arc_iterator.next() if lattice.final(state) != zero: # w_outgoing = one --> final weight = w_in \otimes one = w_in weight_thru_arc = alphas[state] arc_neglogprob = openfst.divide(total_weight, weight_thru_arc) arc_gradient.set_final(state, arc_neglogprob) return arc_gradient def forward(lattice, neglog_to_log=False): if lattice.arc_type() != 'log': lattice = openfst.arcmap(lattice, map_type='to_log') if neglog_to_log: inverted = openfst.arcmap(lattice, map_type='invert') one = openfst.Weight.one(lattice.weight_type()) alphas = [openfst.divide(one, a) for a in forward(inverted)] return alphas alphas = openfst.shortestdistance(lattice) return alphas def backward(lattice, neglog_to_log=False): if lattice.arc_type() != 'log': lattice = openfst.arcmap(lattice, map_type='to_log') if neglog_to_log: inverted = openfst.arcmap(lattice, map_type='invert') one = openfst.Weight.one(lattice.weight_type()) betas = [openfst.divide(one, a) for a in backward(inverted)] return betas betas = openfst.shortestdistance(lattice, reverse=True) return betas def viterbi(lattice): if lattice.arc_type() != 'standard': lattice = openfst.arcmap(lattice, map_type='to_std') shortest_paths = openfst.shortestpath(lattice).topsort().rmepsilon() return shortest_paths def align(scores, label_seq): """ Align (ie segment) a sequence of scores, given a known label sequence. NOTE: I don't know if this works with score tables that have more than 9 columns. Parameters ---------- scores : array_like of float, shape (num_samples, num_labels) Log probabilities (possibly un-normalized). label_seq : iterable(string or int) The segment-level label sequence. Returns ------- aligned_labels : tuple(int) alignment_score : semirings.TropicalSemiringWeight Score of the best path through the alignment graph (possible un-normalized) """ raise NotImplementedError() ``` #### File: seqtools/semirings/paramdict.py ```python import math class ParamDict(dict): # inherits from built-in dict """ A dictionary used to map parameter names to their numeric values. The names are arbitrary objects. The default value for a parameter that has never been updated is normally 0 and is given by the `None` key. These dictionaries may be treated like sparse numeric vectors -- they may be added, subtracted, multiplied by real scalars, etc. Also, adding a real number to a dictionary adds it to all values (including the default), by analogy with numpy vectors. """ def __init__(self, contents=(), default=None, **kwargs): super().__init__(contents, **kwargs) if default: # explicitly specified default: override anything copied from contents self[None] = default elif None not in self: # no explicitly specified default self[None] = 0 # set to 0 since contents didn't specify one either def __getitem__(self, key): # supports self[key] try: return super().__getitem__(key) except KeyError: return super().__getitem__(None) # default def copy(self): return self.__class__(self) def _clean(self): """ Put this ParamDict into canonical form by (destructively) removing any redundant entries that match the default. """ default = self[None] kk = [k for k,v in self.items() if v==default and k is not None] # keys of redundant entries for k in kk: del self[k] def __eq__(self, other): # supports self==other self._clean() if isinstance(other,ParamDict): other._clean() return super().__eq__(other) else: # for tests like self==0 return self[None]==other and len(self)==1 # only contains the default # See https://docs.python.org/3/reference/datamodel.html#emulating-numeric-types def __neg__(self): # supports -self result = self.__class__() for k,v in self.items(): result[k] = -v return result def __iadd__(self, other): # supports self += other (destructive) if isinstance(other,dict): for k,v in other.items(): if k not in self: self[k] = self[None] self[k] += v else: for k in self: self[k] += other return self def __isub__(self, other): # supports self -= other (destructive) if isinstance(other,dict): for k,v in other.items(): if k not in self: self[k] = self[None] self[k] -= v else: for k in self: self[k] -= other return self def __imul__(self, other): # supports self *= other (destructive) if isinstance(other,dict): for k,v in other.items(): if k not in self: self[k] = self[None] self[k] *= v else: for k in self: self[k] *= other return self def __itruediv__(self, other): # supports self /= other (destructive) if isinstance(other,dict): for k,v in other.items(): if k not in self: self[k] = self[None] self[k] /= v else: for k in self: self[k] /= other return self def __add__(self, other): # supports self+other result = self.copy() result += other return result def __sub__(self, other): # supports self-other result = self.copy() result -= other return result def __mul__(self, other): # supports self*other result = self.copy() result *= other return result def __truediv__(self, other): # supports self/other result = self.copy() result /= other return result def __radd__(self, other): # supports other+self (when other is a scalar) return self+other # warning: assumes that + is commutative def __rsub__(self, other): # supports other-self (when other is a scalar) return -self+other # warning: assumes that + is commutative def __rmul__(self, scalar): # supports scalar*self. Does not assume that * is commutative. result = self.__class__() for k,v in self.items(): result[k] = scalar*v return result def __rtruediv__(self, scalar): result = self.__class__() for k,v in self.items(): result[k] = scalar/v return result def __str__(self): self._clean() return super().__str__() def quantize(self, quantum): # round keys to multiples of quantum > 0 result = self.__class__() for k,v in self.items(): if math.isfinite(v): result[k] = (v // quantum) * quantum else: result[k] = v return result ``` #### File: seqtools/seqtools/torch_lctm.py ```python import torch from mathtools import utils def log_prob(data_scores, y, max_segs, pw=None): # Scores has shape (num_segs, num_samples, num_classes), # so marginalizing over number of segments and number of classes at the last # frame should give us the data likelihood... I think :/ scores = segmental_forward(data_scores, max_segs, pw=pw, semiring='log') log_Z = torch.logsumexp(scores[-1, :], -1) if torch.isnan(log_Z).any(): raise ValueError("log_Z contains NaN values") y_score = segmental_score(data_scores, y, pw=pw) if torch.isnan(y_score).any(): raise ValueError("y_score contains NaN values") return -y_score - log_Z def segmental_score(data_scores, y, pw=None): score = 0 start_index = 0 prev_label = None for seg_label, seg_len in utils.genSegments(y): next_start_index = start_index + seg_len + 1 score += data_scores[start_index:next_start_index, seg_label].sum() if start_index > 0: score += pw[prev_label, seg_label] start_index = next_start_index prev_label = seg_label return score def segmental_forward(x, max_dur, pw=None): # From S&C NIPS 2004 T, n_classes = x.shape scores = torch.full([T, n_classes], -float("Inf"), dtype=x.dtype, device=x.device) # classes_prev = torch.ones([T, n_classes], np.int) if pw is None: pw = torch.zeros([n_classes, n_classes], dtype=x.dtype) # initialize first segment scores integral_scores = torch.cumsum(x, 0) scores[0] = integral_scores[0] def dur_score(t_end, duration, c): t_start = t_end - duration current_segment = integral_scores[t_end, c] - integral_scores[t_start, c] # Elementwise semiring times dur_scores = scores[t_start, :] + current_segment + pw[:, c] # Reduction: semiring plus # FIXME: change max to logsumexp return dur_scores.max() # Compute scores per timestep for t_end in range(1, T): # Compute scores per class for c in range(n_classes): # Compute over all durations best_dur_scores = torch.tensor( [ dur_score(t_end, duration, c) for duration in range(1, min(t_end, max_dur) + 1) ] ) # FIXME: change max to logsumexp best_score = best_dur_scores.max() # Add cost of curent frame to best previous cost scores[t_end, c] = best_score return scores def segmental_viterbi(x, max_dur, pw=None): # From S&C NIPS 2004 T, n_classes = x.shape scores = torch.full([T, n_classes], -float("Inf"), dtype=x.dtype, device=x.device) lengths = torch.ones([T, n_classes], dtype=torch.long) # classes_prev = torch.ones([T, n_classes], np.int) if pw is None: pw = torch.zeros([n_classes, n_classes], dtype=x.dtype) # initialize first segment scores integral_scores = torch.cumsum(x, 0) scores[0] = integral_scores[0] # -------- Forward ----------- # Compute scores per timestep for t_end in range(1, T): # Compute scores per class for c in range(n_classes): # Compute over all durations best_dur = 0 best_score = -float("Inf") # best_class = -1 for duration in range(1, min(t_end, max_dur) + 1): t_start = t_end - duration current_segment = integral_scores[t_end, c] - integral_scores[t_start, c] if t_start == 0 and current_segment > best_score: best_dur = duration best_score = current_segment # best_class = -1 continue # Check if it is cheaper to create a new segment or stay in same class for c_prev in range(n_classes): if c_prev == c: continue # Previous segment, other class tmp = scores[t_start, c_prev] + current_segment + pw[c_prev, c] if tmp > best_score: best_dur = duration best_score = tmp # best_class = c_prev # Add cost of curent frame to best previous cost scores[t_end, c] = best_score lengths[t_end, c] = best_dur # classes_prev[t_end, c] = best_class # Set nonzero entries to 0 for visualization # scores[scores<0] = 0 scores[torch.isinf(scores)] = 0 # -------- Backward ----------- classes = [scores[-1].argmax()] times = [T] t = T - lengths[-1, classes[-1]] while t > 0: class_prev = scores[t].argmax() length = lengths[t, class_prev] classes.insert(0, class_prev) times.insert(0, t) t -= length y_out = torch.zeros(T, torch.long) t = 0 for c, l in zip(classes, times): y_out[t:t + l] = c t += l return scores def segmental_forward_normalized(x, max_segs, pw=None): """ This version maximizes!!! """ # Assumes segment function is normalized by duration: f(x)= 1/d sum_t'=t^t+d x_t' T, n_classes = x.shape scores = torch.full([max_segs, T, n_classes], -float("Inf"), dtype=x.dtype, device=x.device) if pw is None: pw = torch.zeros([n_classes, n_classes], dtype=x.dtype) integral_scores = torch.cumsum(x, 0) # Intial scores scores[0] = integral_scores.copy() starts = torch.zeros([max_segs, n_classes], torch.long) + 1 # Compute scores for each segment in sequence for m in range(1, max_segs): # Compute score for each class for c in range(n_classes): best_score = -float("Inf") for c_prev in range(n_classes): if c_prev == c: continue # Compute scores for each timestep for t in range(1, T): new_segment = integral_scores[t, c] - integral_scores[starts[m, c], c] # Previous segment, other class score_change = scores[m - 1, t, c_prev] + pw[c_prev, c] if score_change > best_score: best_score = score_change starts[m, c] = t # Add cost of curent frame to best previous cost scores[m, t, c] = best_score + new_segment # Set nonzero entries to 0 for visualization scores[torch.isinf(scores)] = 0 return scores def sparsify_incoming_pw(pw): # Output is INCOMING transitions n_classes = pw.shape[0] valid = torch.nonzero(~torch.isinf(pw.T), as_tuple=True) # requires pytorch 1.3 sparse_idx = [[] for i in range(n_classes)] for i, j in zip(valid[0], valid[1]): sparse_idx[i] += [j] return sparse_idx def log_prob_eccv(data_scores, y, max_segs, pw=None): # Scores has shape (num_segs, num_samples, num_classes), # so marginalizing over number of segments and number of classes at the last # frame should give us the data likelihood... I think :/ scores = segmental_forward_eccv(data_scores, max_segs, pw=pw, semiring='log') log_Z = torch.logsumexp(torch.logsumexp(scores[:, -1, :], 0), -1) if torch.isnan(log_Z).any(): raise ValueError("log_Z contains NaN values") y_score = segmental_score(data_scores, y, pw=pw) if torch.isnan(y_score).any(): raise ValueError("y_score contains NaN values") return -y_score - log_Z def segmental_forward_eccv(x, max_segs, pw=None, semiring='tropical'): if torch.isnan(x).any(): raise ValueError("x contains NaN values") if semiring == 'tropical': def sr_prod(x, y): return x + y def sr_sum(x): return x.max() elif semiring == 'log': def sr_prod(x, y): return x + y def sr_sum(x): return torch.logsumexp(x, 0) else: raise AssertionError() # Assumes segment function is additive: f(x)=sum_t'=t^t+d x_t' T, n_classes = x.shape scores = torch.full([max_segs, T, n_classes], -float("Inf"), dtype=x.dtype, device=x.device) if pw is None: pw = torch.log(1 - torch.eye(n_classes)) # print("pw is None: Using uniform transition weights (no self-loops)") # initialize first segment scores scores[0] = torch.cumsum(x, 0) # Compute scores per segment for m in range(1, max_segs): # Compute scores per timestep for t in range(1, T): # Compute scores per class for c in range(n_classes): # Elementwise semiring times new_scores = torch.cat( (scores[m, t - 1, c:c + 1], sr_prod(scores[m - 1, t - 1, :], pw[:, c])) ) # Reduction: semiring plus best_prev = sr_sum(new_scores) # Add cost of curent frame to best previous cost scores[m, t, c] = sr_prod(best_prev, x[t, c]) if torch.isnan(scores).any(): raise ValueError("scores contains NaN values") return scores def segmental_backward_eccv(scores, pw=None): n_segs, T, n_classes = scores.shape if pw is None: pw = torch.log(1 - torch.eye(n_classes)) # print("pw is None: Using uniform transition weights (no self-loops)") best_scores = scores[:, -1].max(1).values n_segs = torch.argmax(best_scores) # Start at end seq_c = [scores[n_segs, -1].argmax()] # Class seq_t = [T] # Time m = n_segs for t in range(T, -1, -1): if m == 0: break # Scores of previous timestep in current segment score_same = scores[m, t - 1, seq_c[0]] score_diff = scores[m - 1, t - 1] + pw[:, seq_c[0]] # Check if it's better to stay or switch segments if any(score_diff > score_same): next_class = score_diff.argmax() score_diff = score_diff[next_class] seq_c.insert(0, next_class) seq_t.insert(0, t) m -= 1 elif all(score_diff == score_same): m -= 1 seq_t.insert(0, 0) if m != 0: raise AssertionError("Found " + str(m) + " segments, but expected zero!") y_out = torch.full((T,), -1, dtype=torch.long, device=scores.device) for i in range(len(seq_c)): y_out[seq_t[i]:seq_t[i + 1]] = seq_c[i] return y_out def segmental_inference( x, max_segs=None, pw=None, normalized=False, verbose=False, return_scores=False): # Scores has shape (num_segs, num_samples, num_classes) scores = segmental_forward_eccv(x, max_segs, pw) y_out = segmental_backward_eccv(scores, pw) if return_scores: num_segs = len(utils.segment_labels(y_out)) y_idxs = torch.arange(y_out.numel) y_scores = scores[num_segs, y_idxs, y_out] return y_out, y_scores return y_out def segmental_forward_oracle(x, max_segs, pw, y_oracle, oracle_valid): # Assumes segment function is additive: f(x)=sum_t'=t^t+d x_t' T, n_classes = x.shape scores = torch.full([max_segs, T, n_classes], -float("Inf"), dtype=x.dtype, device=x.device) lengths = torch.zeros([max_segs, T, n_classes], torch.long) if pw is None: pw = torch.log(1 - torch.eye(n_classes)) # initialize first segment scores scores[0] = torch.cumsum(x, 0) # Compute scores per segment for m in range(1, max_segs): # scores[m, 0, c] = scores[m-1, 0, c] # Compute scores per timestep for t in range(1, T): # Compute scores per class for c in range(n_classes): # Score for staying in same segment best_prev = scores[m, t - 1, c] length = lengths[m, t - 1, c] + 1 # Check if it is cheaper to create a new segment or stay in same class for c_prev in range(n_classes): # Previous segment, other class tmp = scores[m - 1, t - 1, c_prev] + pw[c_prev, c] if tmp > best_prev: best_prev = tmp length = 1 if oracle_valid[y_oracle[t], c] == 0: best_prev = -float("Inf") # Add cost of curent frame to best previous cost scores[m, t, c] = best_prev + x[t, c] lengths[m, t, c] = length # Set nonzero entries to 0 for visualization scores[torch.isinf(scores)] = 0 return scores def segmental_inference_oracle(x, max_segs, pw, y_oracle, oracle_valid): scores = segmental_forward_oracle(x, max_segs, pw, y_oracle, oracle_valid) return segmental_backward_eccv(scores, pw) ``` #### File: seqtools/seqtools/utils.py ```python import warnings import collections import logging import numpy as np from matplotlib import pyplot as plt logger = logging.getLogger(__name__) def smoothCounts( edge_counts, state_counts, init_states, final_states, num_states=None, init_regularizer=0, final_regularizer=0, uniform_regularizer=0, diag_regularizer=0, override_transitions=False, structure_only=False, as_numpy=False, as_scores=False): if num_states is None: num_states = max(state_counts.keys()) + 1 bigram_counts = np.zeros((num_states, num_states)) for (i, j), count in edge_counts.items(): bigram_counts[i, j] = count unigram_counts = np.zeros(num_states) for i, count in state_counts.items(): unigram_counts[i] = count initial_counts = np.zeros(num_states) for i, count in init_states.items(): initial_counts[i] = count final_counts = np.zeros(num_states) for i, count in final_states.items(): final_counts[i] = count # Regularize the heck out of these counts initial_states = initial_counts.nonzero()[0] for i in initial_states: bigram_counts[i, i] += init_regularizer final_states = final_counts.nonzero()[0] for i in final_states: bigram_counts[i, i] += final_regularizer bigram_counts += uniform_regularizer diag_indices = np.diag_indices(bigram_counts.shape[0]) bigram_counts[diag_indices] += diag_regularizer if override_transitions: logger.info('Overriding bigram_counts with an array of all ones') bigram_counts = np.ones_like(bigram_counts) if structure_only: bigram_counts = (bigram_counts > 0).astype(float) initial_counts = (initial_counts > 0).astype(float) final_counts = (final_counts > 0).astype(float) denominator = bigram_counts.sum(1) transition_probs = np.divide( bigram_counts, denominator[:, None], out=np.zeros_like(bigram_counts), where=denominator[:, None] != 0 ) final_probs = np.divide( final_counts, denominator, out=np.zeros_like(final_counts), where=denominator != 0 ) initial_probs = initial_counts / initial_counts.sum() if as_numpy: def to_numpy(x): return x.numpy().astype(float) return tuple(map(to_numpy, (transition_probs, initial_probs, final_probs))) if as_scores: with warnings.catch_warnings(): warnings.filterwarnings('ignore', message='divide by zero') transition_probs = np.log(transition_probs) initial_probs = np.log(initial_probs) final_probs = np.log(final_probs) return transition_probs, initial_probs, final_probs def countSeqs(seqs): """ Count n-gram statistics on a collection of sequences. Parameters ---------- seqs : iterable( iterable(Hashable) ) Returns ------- bigram_counts : collections.defaultdict((Hashable, Hashable) -> int) unigram_counts : collections.defaultdict(Hashable -> int) initial_counts : collections.defaultdict(Hashable -> int) final_counts : collections.defaultdict(Hashable -> int) """ bigram_counts = collections.defaultdict(int) unigram_counts = collections.defaultdict(int) initial_counts = collections.defaultdict(int) final_counts = collections.defaultdict(int) for seq in seqs: initial_counts[seq[0]] += 1 final_counts[seq[-1]] += 1 for state in seq: unigram_counts[state] += 1 for prev, cur in zip(seq[:-1], seq[1:]): bigram_counts[prev, cur] += 1 return bigram_counts, unigram_counts, initial_counts, final_counts def plot_transitions(fn, transition_probs, initial_probs, final_probs): plt.figure() plt.matshow(transition_probs) plt.title('Transitions') plt.savefig(fn) plt.close() ``` #### File: seqtools/tests/fsm.py ```python import os import collections import argparse import yaml import numpy as np import torch from seqtools import fsm, torchutils, metrics, utils def sampleMarkov(start_probs, end_probs, transition_probs): samples = [] transition_dist = start_probs while True: new_sample = np.random.choice(len(transition_dist), p=transition_dist) samples.append(new_sample) transition_dist = transition_probs[new_sample] end_dist = [1 - end_probs[new_sample], end_probs[new_sample]] if np.random.choice(2, p=end_dist): return np.array(samples, dtype=int) def sampleGHMM(start_probs, end_probs, transition_probs, means, covs): label_seq = sampleMarkov(start_probs, end_probs, transition_probs) obsv_seq = np.array( np.row_stack(tuple(np.random.multivariate_normal(means[l], covs[l]) for l in label_seq)) ) return obsv_seq, label_seq def main( out_dir=None, gpu_dev_id=None, sample_size=10, random_seed=None, learning_rate=1e-3, num_epochs=500, dataset_kwargs={}, dataloader_kwargs={}, model_kwargs={}): out_dir = os.path.expanduser(out_dir) np.random.seed(random_seed) torch.manual_seed(random_seed) device = torchutils.selectDevice(gpu_dev_id) start_probs = np.array([0, 0.25, 0.75]) end_probs = np.array([0.05, 0, 0]) transition_probs = np.array([ [0.8, 0.2, 0.0], [0.1, 0.8, 0.1], [0.1, 0.1, 0.8], ]) means = np.array([ [0], [1], [2] ]) covs = np.array([ [[0.01]], [[0.01]], [[0.01]] ]) obsv_seqs, label_seqs = zip( *tuple( sampleGHMM(start_probs, end_probs, transition_probs, means, covs) for _ in range(sample_size) ) ) dataset = torchutils.SequenceDataset(obsv_seqs, label_seqs, **dataset_kwargs) data_loader = torch.utils.data.DataLoader(dataset, **dataloader_kwargs) # class CRF(fsm.FstScorer, torchutils.LinearClassifier): # pass class CRF(torchutils.LinearChainScorer, torchutils.LinearClassifier): pass train_loader = data_loader val_loader = data_loader input_dim = dataset.num_obsv_dims output_dim = transition_probs.shape[0] transition_weights = torch.randn(transition_probs.shape).to(device) # transition_weights = torch.tensor(transition_probs, device=device).float().log() model = CRF( transition_weights, input_dim, output_dim, initial_weights=None, final_weights=None, **model_kwargs ) # Train the model train_epoch_log = collections.defaultdict(list) val_epoch_log = collections.defaultdict(list) metric_dict = { 'Avg Loss': metrics.AverageLoss(), 'Accuracy': metrics.Accuracy() } # criterion = fsm.fstNLLLoss criterion = torchutils.StructuredNLLLoss optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=1.00) model, last_model_wts = torchutils.trainModel( model, criterion, optimizer, scheduler, train_loader, val_loader, metrics=metric_dict, test_metric='Avg Loss', train_epoch_log=train_epoch_log, val_epoch_log=val_epoch_log, num_epochs=num_epochs, device=device, ) torchutils.plotEpochLog( train_epoch_log, title="Train Epoch Log", fn=os.path.join(out_dir, "train-log.png") ) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--config_file') parser.add_argument('--out_dir') args = vars(parser.parse_args()) args = {k: v for k, v in args.items() if v is not None} # Load config file and override with any provided command line args config_file_path = args.pop('config_file', None) if config_file_path is None: file_basename = utils.stripExtension(__file__) config_fn = f"{file_basename}.yaml" config_file_path = os.path.expanduser( os.path.join('~', 'repo', 'seqtools', 'tests', config_fn) ) with open(config_file_path, 'rt') as config_file: config = yaml.safe_load(config_file) config.update(args) # Create output directory, instantiate log file and write config options out_dir = os.path.expanduser(config['out_dir']) if not os.path.exists(out_dir): os.makedirs(out_dir) logger = utils.setupRootLogger(filename=os.path.join(out_dir, 'log.txt')) with open(os.path.join(out_dir, config_fn), 'w') as outfile: yaml.dump(config, outfile) utils.copyFile(__file__, out_dir) utils.autoreload_ipython() main(**config) ```
{ "source": "jd-jones/visiontools", "score": 2 }
#### File: visiontools/visiontools/render.py ```python import logging import json import os import numpy as np from scipy.spatial.qhull import QhullError import torch try: import neural_renderer as nr except ImportError: class DummyModule(object): Renderer = object nr = DummyModule() import mathtools as m from mathtools import utils from . import geometry logger = logging.getLogger(__name__) """ Functions and attributes for rendering images. Attributes ---------- intrinsic_matrix : numpy array of float, shape (3, 3) The intrinsic matrix estimated during camera calibration. This array is loaded from ``~/repo/blocks/blocks/assets/camera_params.json``. For more information about how these parameters were estimated, see ``README_camera_params.md`` in the same directory. Layout of the intrinsic matrix is as follows: ..math: K = \left[ \begin{matrix} \alpha_x & 0 & o_x \\ 0 & \alpha_y & o_y \\ 0 & 0 & 1 \\ \end{matrix} \right] where :math:`\alpha_x = f s_x` is the size of unit length in horizontal pixels and :math:`o_x` is the horizontal coordinate of the principal point, in pixels. :math:`\alpha_y` and :math:`o_y` are defined the same way, but are vertical measurements. camera_pose : numpy array of float, shape (4, 4) object_colors : numpy array of float, shape (num_blocks + 1, 3) """ IMAGE_HEIGHT = 240 IMAGE_WIDTH = 320 def loadCameraParams( assets_dir=None, camera_params_fn=None, camera_pose_fn=None, object_colors_fn=None, as_dict=False): """ Load camera parameters from external files. Parameters ---------- assets_dir : str, optional camera_params_fn : str, optional camera_pose_fn : str, optional object_colors_fn : str, optional as_dict : bool, optional If True, the parameters are returned as a dictionary instead of a tuple, with format { 'intrinsic_matrix': intrinsic_matrix, 'camera_pose': camera_pose, 'object_colors': object_colors } Returns ------- intrinsic_matrix : numpy array of float, shape (3, 3) The intrinsic matrix estimated during camera calibration. Layout is as follows: ..math: K = \left[ \begin{matrix} \alpha_x & 0 & o_x \\ 0 & \alpha_y & o_y \\ 0 & 0 & 1 \\ \end{matrix} \right] where :math:`\alpha_x = f s_x` is the size of unit length in horizontal pixels and :math:`o_x` is the horizontal coordinate of the principal point, in pixels. :math:`\alpha_y` and :math:`o_y` are defined the same way, but are vertical measurements. camera_pose : numpy array of float, shape (4, 4) object_colors : numpy array of float, shape (num_blocks + 1, 3) """ if assets_dir is None: assets_dir = os.path.expanduser(os.path.join('~', 'repo', 'blocks', 'blocks', 'assets')) if camera_params_fn is None: camera_params_fn = 'camera_params.json' if camera_pose_fn is None: camera_pose_fn = 'camera_pose.json' if object_colors_fn is None: object_colors_fn = 'object_colors.csv' # Load camera params with open(os.path.join(assets_dir, camera_params_fn), 'rt') as f: json_obj = json.load(f)['camera_intrinsics']['intrinsic_matrix'] intrinsic_matrix = m.np.transpose(m.np.array(json_obj)) # Load camera pose with open(os.path.join(assets_dir, camera_pose_fn), 'rt') as f: camera_pose_dict = json.load(f)['camera_pose'] R_camera = geometry.rotationMatrix(**camera_pose_dict['orientation']) t_camera = m.np.array(camera_pose_dict['position']) camera_pose = geometry.homogeneousMatrix(R_camera, t_camera, range_space_homogeneous=True) # Load object colors (ie rudimentary appearance model) object_colors = m.np.loadtxt( os.path.join(assets_dir, object_colors_fn), delimiter=',', skiprows=1 ) if as_dict: return { 'intrinsic_matrix': intrinsic_matrix, 'camera_pose': camera_pose, 'colors': object_colors } return intrinsic_matrix, camera_pose, object_colors intrinsic_matrix, camera_pose, object_colors = loadCameraParams() class TorchSceneRenderer(nr.Renderer): def __init__(self, intrinsic_matrix=None, camera_pose=None, colors=None, **super_kwargs): K = intrinsic_matrix K = K[None, :, :].cuda() R, t = geometry.fromHomogeneous(camera_pose) R = R[None, :, :].float().cuda() t = t[None, None, :].float().cuda() self.colors = colors super().__init__( camera_mode='projection', K=K, R=R, t=t, near=0, far=1000, **super_kwargs ) def render(self, vertices, faces, textures, intrinsic_matrix=None, camera_pose=None): """ Wrapper around a differentiable renderer implemented in pytorch. Parameters ---------- Returns ------- image """ if intrinsic_matrix is None: K = None else: K = intrinsic_matrix K = K[None, :, :].cuda() if camera_pose is None: R = None t = None else: R, t = geometry.fromHomogeneous(camera_pose) R = R[None, :, :].float().cuda() t = t[None, None, :].float().cuda() if len(vertices.shape) == 2: # [num_vertices, XYZ] -> [batch_size=1, num_vertices, XYZ] vertices = vertices[None, ...] if len(faces.shape) == 2: # [num_faces, 3] -> [batch_size=1, num_faces, 3] faces = faces[None, ...] if len(textures.shape) == 5: textures = textures[None, ...] images_rgb, images_depth, images_alpha = super().render(vertices, faces, textures) # [batch_size, RGB, image_size, image_size] -> [batch_size, image_size, image_size, RGB] images_rgb = images_rgb.permute(0, 2, 3, 1) return images_rgb, images_depth def renderScene( self, background_plane, assembly, component_poses, camera_pose=None, camera_params=None, render_background=True, as_numpy=False): """ Render a scene consisting of a spatial assembly and a background plane. Parameters ---------- Returns ------- """ if camera_pose is None: # FIXME R = self.R[0].cpu().numpy() t = self.t[0][0].cpu().numpy() camera_pose = torch.tensor(geometry.homogeneousMatrix(R, t)).float().cuda() if camera_params is None: camera_params = self.K[0] if render_background: rgb_bkgrnd, depth_bkgrnd = self.renderPlane( background_plane, camera_pose=camera_pose, camera_params=camera_params ) if not assembly.blocks: return rgb_bkgrnd, depth_bkgrnd assembly = assembly.setPose(component_poses, in_place=False) vertices = makeBatch(assembly.vertices, dtype=torch.float).cuda() faces = makeBatch(assembly.faces, dtype=torch.int).cuda() textures = makeBatch(assembly.textures, dtype=torch.float).cuda() rgb_images, depth_images = self.render(vertices, faces, textures) if render_background: rgb_images = torch.cat((rgb_bkgrnd, rgb_images), 0) depth_images = torch.cat((depth_bkgrnd, depth_images), 0) rgb_image, depth_image, label_image = reduceByDepth(rgb_images, depth_images) if as_numpy: rgb_image = rgb_image.detach().cpu().numpy() depth_image = depth_image.detach().cpu().numpy() return rgb_image, depth_image def renderPlane(self, plane, camera_pose=None, camera_params=None): if camera_pose is None: camera_pose = geometry.homogeneousMatrix(self.R[0], self.t[0][0]) if camera_params is None: camera_params = self.K[0] vertices, faces = planeVertices(plane, camera_pose, camera_params) textures = makeTextures(faces, uniform_color=self.colors['black']) rgb_image, depth_image = self.render(vertices, faces, textures) return rgb_image, depth_image def renderComponent(self, assembly, component_index, component_pose, background_images=None): """ Parameters ---------- background_images : tuple( array of float, shape (img_height, img_width, 3), array of shape (img_height, img_width) ) Elements should be as follows: 0 --- RGB image 1 --- Depth image Returns ------- """ assembly = assembly.recenter(component_index, in_place=False) vertices = makeBatch(assembly.componentVertices(component_index), dtype=torch.float).cuda() faces = makeBatch(assembly.componentFaces(component_index), dtype=torch.int).cuda() textures = makeBatch(assembly.componentTextures(component_index), dtype=torch.float).cuda() R, t = component_pose vertices = vertices @ R.T + t rgb_images, depth_images = self.render(vertices, faces, textures) if background_images is not None: rgb_images = torch.cat((background_images[0], rgb_images), 0) depth_images = torch.cat((background_images[1], depth_images), 0) rgb_image, depth_image, label_image = reduceByDepth(rgb_images, depth_images) return rgb_image, depth_image class LegacySceneRenderer(object): def __init__(self, intrinsic_matrix=None, camera_pose=None, colors=None, **super_kwargs): self.intrinsic_matrix = intrinsic_matrix self.camera_pose = camera_pose self.colors = colors def renderScene(self, background_plane, assembly, component_poses): out = renderScene( background_plane, assembly, component_poses, camera_pose=self.camera_pose, camera_params=self.intrinsic_matrix, object_appearances=self.colors ) return out def renderPlane(self, plane): out = renderPlane( plane, camera_pose=None, camera_params=None, plane_appearance=None, range_image=None, label_image=None, rgb_image=None ) return out def renderComponent(self, assembly, component_idx): out = renderComponent( assembly, component_idx, component_pose=None, img_type=None, camera_pose=None, camera_params=None, block_colors=None, range_image=None, label_image=None, rgb_image=None, crop_rendered=False, in_place=True ) return out # -=( HELPER FUNCTIONS FOR PYTORCH RENDERER )==-------------------------------- def makeBatch(arrays, **tensor_kwargs): batch = torch.stack(tuple(torch.tensor(a, **tensor_kwargs) for a in arrays)) return batch def reduceByDepth(rgb_images, depth_images, max_depth=None): """ For each pixel in a scene, select the object closest to the camera. Parameters ---------- rgb_images : torch.tensor of float, shape (batch_size, img_height, img_width) depth_images : torch.tensor of float, shape (batch_size, img_height, img_width) Returns ------- rgb_image : torch.tensor of float, shape (img_height, img_width) depth_image : torch.tensor of float, shape (img_height, img_width) label_image : torch.tensor of int, shape (img_height, img_width) """ label_image = depth_images.argmin(-3) new_shape = label_image.shape num_batch = new_shape[0] num_rows, num_cols = new_shape[-2:] b, r, c = torch.meshgrid( torch.arange(num_batch), torch.arange(num_rows), torch.arange(num_cols) ) i_min = label_image.contiguous().view(-1) b = b.contiguous().view(-1) r = r.contiguous().view(-1) c = c.contiguous().view(-1) depth_image = depth_images[b, i_min, r, c].view(*new_shape) rgb_image = rgb_images[b, i_min, r, c, :].view(*new_shape, 3) if max_depth is not None: label_image += 1 is_background = depth_image == max_depth label_image[is_background] = 0 return rgb_image, depth_image, label_image def planeVertices(plane, intrinsic_matrix, camera_pose, image_shape=None): if image_shape is None: image_shape = (IMAGE_HEIGHT, IMAGE_WIDTH) image_shape = tuple(float(x) for x in image_shape) face_coords = m.np.array([ [0, 0], [0, image_shape[0]], [image_shape[1], 0], [image_shape[1], image_shape[0]] ]) plane_faces = m.np.array([ [0, 1, 2], [3, 2, 1] ]) # Consruct face_coords_camera in a way that allows # geometry.slopeIntercept to compute the plane parameters it needs. face_coords_camera = m.np.zeros((3, 3)) face_coords_camera[0, :] = plane._t face_coords_camera[1, :] = plane._t + plane._U[:, 0] face_coords_camera[2, :] = plane._t + plane._U[:, 0] + plane._U[:, 1] # Backproject each pixel in the face to its location in camera coordinates n, b = geometry.slopeIntercept(face_coords_camera) metric_coords_camera = geometry.backprojectIntoPlane(face_coords, n, b, intrinsic_matrix) vertices = geometry.homogeneousVector(metric_coords_camera) @ m.np.transpose(camera_pose) return vertices, plane_faces def makeTextures(faces, texture_size=2, uniform_color=None): """ Parameters ---------- faces : array of int, shape (num_faces, 3) texture_size : int, optional uniform_color : [int, int, int], optional Returns ------- textures : array of float, shape (num_faces, texture_size, texture_size, texture_size, 3) """ # create texture [num_faces, texture_size, texture_size, texture_size, RGB] textures = m.np.zeros( faces.shape[0], texture_size, texture_size, texture_size, 3, dtype=torch.float32 ) if uniform_color is not None: textures[..., :] = torch.tensor(uniform_color) return textures # -=( HELPER FUNCTIONS FOR LEGACY RENDERER )==--------------------------------- def findCentroid(img): if not img.any(): raise ValueError if len(img.shape) > 2: img = img.sum(axis=2) rows, cols = np.nonzero(img) cent_r = np.rint(rows.mean()).astype(int) cent_c = np.rint(cols.mean()).astype(int) centroid = (cent_r, cent_c) len_r = rows.max() - rows.min() len_c = cols.max() - cols.min() nonzero_shape = (len_r, len_c) return centroid, nonzero_shape def centerBoundingBox(img_centroid, img_shape): r_centroid, c_centroid = img_centroid r_len, c_len = img_shape[0:2] r_max_centered = r_centroid + r_len // 2 if r_len % 2: r_max_centered += 1 r_min_centered = r_centroid - r_len // 2 r_extent = (r_min_centered, r_max_centered) c_max_centered = c_centroid + c_len // 2 if c_len % 2: c_max_centered += 1 c_min_centered = c_centroid - c_len // 2 c_extent = (c_min_centered, c_max_centered) return r_extent, c_extent def cropImage(img, shape=None): img_centroid, nonzero_shape = findCentroid(img) # By default, shape is a bounding square for the nonzero image elements if shape is None: r_len, c_len = nonzero_shape max_len = (r_len ** 2 + c_len ** 2) ** 0.5 max_len = np.ceil(max_len).astype(int) shape = (max_len, max_len) (r_min, r_max), (c_min, c_max) = centerBoundingBox(img_centroid, shape) cropped = img[r_min:r_max, c_min:c_max].copy() return cropped def renderScene( background_plane, assembly, component_poses, camera_pose=None, camera_params=None, object_appearances=None): """ Render a scene consisting of a spatial assembly and a background plane. Parameters ---------- Returns ------- """ # Start by rendering the background rgb_image, range_image, label_image = renderPlane( background_plane, camera_pose, camera_params, plane_appearance=object_appearances[0, :], ) # Then render each foreground object one-by-one for comp_idx, comp_key in enumerate(assembly.connected_components.keys()): comp_pose = component_poses[comp_idx] _ = renderComponent( assembly, comp_key, component_pose=comp_pose, camera_pose=camera_pose, camera_params=camera_params, block_colors=object_appearances, range_image=range_image, label_image=label_image, rgb_image=rgb_image, crop_rendered=False ) return rgb_image, range_image, label_image def renderPlane( plane, camera_pose=None, camera_params=None, plane_appearance=None, range_image=None, label_image=None, rgb_image=None): """ Render a component of the state. Parameters ---------- plane : geometry.Plane Plane that should be rendered. camera_pose : numpy array of float, shape (4, 4) The camera's pose with respect to the world coordinate frame. This is a rigid motion (R, t), represented as a homogeneous matrix. camera_params : numpy array of float, shape (3, 4) The camera's intrinsic parameters. plane_appearance : numpy array, shape (3,) The color of the plane. range_image : numpy array of float, shape (img_height, img_width), optional Pre-existing Z_buffer. Each pixel value is the distance from the camera in mm. label_image : numpy array of int, shape (img_height, img_width), optional Label image corresponding to the Z-buffer. Each pixel value is the label of the object that was projected onto the pixel. rgb_image : numpy array of float, shape (img_height, img_width, 3), optional Pre-existing RGB image. Returns ------- rgb_image : numpy array of float, shape (img_height, img_width, 3) Color image in RGB format. range_image : numpy array of float, shape (img_height, img_width) The Z-buffer. Each pixel value is the distance from the camera in mm. label_image : numpy array of int, shape (img_height, img_width) Label image corresponding to the Z-buffer. Each pixel value is the label of the object that was projected onto the pixel. """ if range_image is None: img_size = (IMAGE_HEIGHT, IMAGE_WIDTH) range_image = np.full(img_size, np.inf) if label_image is None: img_size = (IMAGE_HEIGHT, IMAGE_WIDTH) label_image = np.zeros(img_size, dtype=int) if plane_appearance is None: plane_appearance = np.zeros(3) face_coords = np.array([ [0, 0], [0, range_image.shape[0]], [range_image.shape[1], 0], [range_image.shape[1], range_image.shape[0]] ]) zBufferConvexPolygon( range_image, label_image, camera_pose, camera_params, face_coords_image=face_coords, plane=plane, face_label=0 ) # Render plane appearance if rgb_image is None: rgb_shape = label_image.shape + plane_appearance.shape rgb_image = np.zeros(rgb_shape) rgb_image[:,:] = plane_appearance return rgb_image, range_image, label_image def renderComponent( state, component_idx, component_pose=None, img_type=None, camera_pose=None, camera_params=None, block_colors=None, range_image=None, label_image=None, rgb_image=None, crop_rendered=False, in_place=True): """ Render a component of the state. Parameters ---------- state : blockassembly.BlockAssembly Spatial assembly that should be rendered. component_index : int Index of the sub-component of the spatial assembly that should be rendered. component_pose : tuple(numpy array of shape (3,3), numpy array of shape (3,)) This component's pose with respect to the canonical retinal coordinate frame, represented as a rotation matrix and translation vector :math:`(R, t)`. Units are expressed in millimeters. img_type : {'rgb', 'depth', 'label', None} If None, this function returns all three images. Otherwise it returns the specified image only. camera_pose : numpy array of float, shape (4, 4) The camera's pose with respect to the world coordinate frame. This is a rigid motion (R, t), represented as a homogeneous matrix. camera_params : numpy array of float, shape (3, 4) The camera's intrinsic parameters. block_colors : numpy array, shape (num_blocks + 1, 3) Each row is the color of a block. Note that the first row corresponds to the background. crop_rendered : bool, optional If True, the rendered image is cropped to a bounding box around the nonzero portion. Default is True. range_image : numpy array of float, shape (img_height, img_width), optional Pre-existing Z_buffer. Each pixel value is the distance from the camera in mm. label_image : numpy array of int, shape (img_height, img_width), optional Label image corresponding to the Z-buffer. Each pixel value is the label of the object that was projected onto the pixel. rgb_image : numpy array of float, shape (img_height, img_width, 3), optional Pre-existing RGB image. in_place : bool, optional If True, this function modifies the pre-existing images when rendering. Otherwise it makes a local copy. Returns ------- rgb_image : numpy array of float, shape (img_height, img_width, 3) Color image in RGB format. range_image : numpy array of float, shape (img_height, img_width) The Z_buffer. Each pixel value is the distance from the camera in mm. label_image : numpy array of int, shape (img_height, img_width) Label image corresponding to the Z-buffer. Each pixel value is the label of the object that was projected onto the pixel. """ if not in_place: if rgb_image is not None: rgb_image = rgb_image.copy() if range_image is not None: range_image = range_image.copy() if label_image is not None: label_image = label_image.copy() if component_pose is None: R = np.eye(3) t = np.zeros(3) else: R, t = component_pose if state.blocks: s = state.copy() s.centerComponent(component_idx, zero_at='centroid') s.centerComponent(component_idx, zero_at='smallest_z') s.setComponentPose(component_idx, R, t) range_image, label_image = zBufferComponent( s, component_idx, camera_pose, camera_params, range_image=range_image, label_image=label_image ) if crop_rendered: range_image = cropImage(range_image) label_image = cropImage(label_image) else: range_image = np.zeros((1, 1), dtype=float) label_image = np.zeros((1, 1), dtype=int) # Render block appearances using the label image and block colors if rgb_image is None: rgb_shape = label_image.shape + block_colors.shape[1:2] rgb_image = np.zeros(rgb_shape, dtype=block_colors.dtype) if label_image.any(): for i in range(1, label_image.max() + 1): obj_patch = label_image == i rgb_image[obj_patch, :] = block_colors[i, :] if img_type == 'rgb': return rgb_image elif img_type == 'depth': return range_image elif img_type == 'label': return label_image return rgb_image, range_image, label_image def zBufferComponent( state, component_index, camera_pose, camera_params, range_image=None, label_image=None): """ Render depth and label images of a component of a spatial assembly. Parameters ---------- state : blockassembly.BlockAssembly Spatial assembly that should be rendered. component_index : int Index of the sub-component of the spatial assembly that should be rendered. camera_pose : numpy array of float, shape (4, 4) The camera's pose with respect to the world coordinate frame. This is a rigid motion (R, t), represented as a homogeneous matrix. camera_params : numpy array of float, shape (3, 4) The camera's intrinsic parameters. range_image : numpy array of float, shape (img_height, img_width), optional Pre-existing Z_buffer. Each pixel value is the distance from the camera in mm. label_image : numpy array of int, shape (img_height, img_width), optional Label image corresponding to the Z-buffer. Each pixel value is the label of the object that was projected onto the pixel. Returns ------- range_image : numpy array of float, shape (img_height, img_width) The Z-buffer. Each pixel value is the distance from the camera in mm. label_image : numpy array of int, shape (img_height, img_width) Label image corresponding to the Z-buffer. Each pixel value is the label of the object that was projected onto the pixel. """ if range_image is None: img_size = (IMAGE_HEIGHT, IMAGE_WIDTH) range_image = np.full(img_size, np.inf) if label_image is None: img_size = (IMAGE_HEIGHT, IMAGE_WIDTH) label_image = np.zeros(img_size, dtype=int) component = state.connected_components[component_index] for index in component: block = state.getBlock(index) zBufferBlock(block, range_image, label_image, camera_pose, camera_params) range_image[np.isinf(range_image)] = 0 # np.nan return range_image, label_image def zBufferBlock(block, range_image, label_image, camera_pose, camera_params): """ Draw a block to the Z_buffer. Parameters ---------- block : blockassembly.Block The block to render. range_image : numpy array of float, shape (img_height, img_width) The Z_buffer. Each pixel value is the distance from the camera in mm. label_image : numpy array of int, shape (img_height, img_width) Label image corresponding to the Z-buffer. Each pixel value is the label of the object that was projected onto the pixel. camera_pose : numpy array of float, shape (4, 4) The camera's pose with respect to the world coordinate frame. This is a rigid motion (R, t), represented as a homogeneous matrix. camera_params : numpy array of float, shape (3, 4) The camera's intrinsic parameters. """ img_h, img_w = range_image.shape block_label = block.index + 1 vertex_coords = block.metric_vertices for i, face_coords in enumerate(makeFaces(vertex_coords)): zBufferConvexPolygon( range_image, label_image, camera_pose, camera_params, face_coords_world=face_coords, face_label=block_label ) def makeFaces(vertex_coords): """ Construct a cube's faces from its vertices. Parameters ---------- vertex_coords : numpy array of float, shape (num_vertices, 3) Vertex coordinates in the world frame. Returns ------- faces : generator(numpy array of float, shape (4, 3) Coordinates of each face. For each face, coordinates are arranged in conter-clockwise order. """ vertex_indices = ( [0, 1, 2, 3], [0, 1, 5, 4], [1, 2, 6, 5], [3, 2, 6, 7], [4, 5, 6, 7], [0, 3, 7, 4] ) faces = (vertex_coords[idxs, :] for idxs in vertex_indices) return faces def zBufferConvexPolygon( range_image, label_image, camera_pose, camera_params, face_coords_world=None, face_coords_image=None, plane=None, face_label=0): """ Draw a convex polygon to the Z-buffer. Parameters ---------- range_image : numpy array of float, shape (img_height, img_width) The Z_buffer. Each pixel value is the distance from the camera in mm. label_image : numpy array of int, shape (img_height, img_width) Label image corresponding to the Z-buffer. Each pixel value is the label of the object that was projected onto the pixel. camera_pose : numpy array of float, shape (4, 4) The camera's pose with respect to the world coordinate frame. This is a rigid motion (R, t), represented as a homogeneous matrix. camera_params : numpy array of float, shape (3, 4) The camera's intrinsic parameters. face_coords_world : numpy array of float, shape (num_face_points, 3), optional Coordinates of the vertices of this face, in the world reference frame. face_coords_image : numpy array of float, shape (num_face_points, 2), optional Coordinates of the vertices of this face, in the image reference frame. plane : geometry.Plane, optional A Plane object whose parameters are expressed in the camera reference frame. face_label : int, optional The integer label associated with this face. """ if face_coords_image is None: # Project face vertices from world coordinates to pixel coordinates proj = geometry.homogeneousMatrix(np.eye(3), np.zeros(3)) face_coords_camera, _ = geometry.projectHomogeneous( geometry.homogeneousVector(face_coords_world) @ m.np.transpose(camera_pose) ) face_coords_image, _ = geometry.projectHomogeneous( geometry.homogeneousVector(face_coords_camera) @ m.np.transpose(camera_params @ proj) ) face_coords_image = utils.roundToInt(face_coords_image) elif face_coords_world is None: # Consruct face_coords_camera in a way that allows # geometry.slopeIntercept to compute the plane parameters it needs. face_coords_camera = np.zeros((3, 3)) face_coords_camera[0, :] = plane._t face_coords_camera[1, :] = plane._t + plane._U[:, 0] face_coords_camera[2, :] = plane._t + plane._U[:, 0] + plane._U[:, 1] else: err_str = "This function requires either face_coords_image or face_coords_world" raise ValueError(err_str) bounding_box = geometry.boundingBox(face_coords_image, range_image.shape) try: pixel_in_hull = geometry.in_hull(bounding_box, face_coords_image) except QhullError: return image_pixels = bounding_box[pixel_in_hull,:] if image_pixels.shape[0] == 1: # msg_str = 'Only one pixel in object image: {}'.format(image_pixels) # logger.warn(msg_str) return # Backproject each pixel in the face to its location in camera coordinates n, b = geometry.slopeIntercept(face_coords_camera) metric_coords_camera = geometry.backprojectIntoPlane(image_pixels, n, b, camera_params) # Remove any points that are occluded by another face z_computed = metric_coords_camera[:,2] rows = image_pixels[:,1] cols = image_pixels[:,0] computed_is_nearer = z_computed < range_image[rows, cols] rows = rows[computed_is_nearer] cols = cols[computed_is_nearer] z_computed = z_computed[computed_is_nearer] # Write to the Z-buffer and label image range_image[rows, cols] = z_computed label_image[rows, cols] = face_label ```
{ "source": "jdjong/TicTacToePython", "score": 3 }
#### File: TicTacToePython/tests/test_game.py ```python import sys sys.path.append('src/') import pytest import classes @pytest.mark.parametrize( 'player1WinningInputSequence', [ ["1", "2", "3", "4", "5", "6", "7"], ["1", "2", "4", "3", "7"], ["1", "2", "3", "5", "9", "7", "8", "4", "6"], # board is full ] ) def test_player1_is_winner(player1WinningInputSequence): player1 = classes.Player("Henk", "X") player2 = classes.Player("Ali", "O") player1.otherPlayer = player2 player2.otherPlayer = player1 game = classes.Game(player1, player2) def mock_input(s): return player1WinningInputSequence.pop(0) classes.input = mock_input game.play() assert game.getWinner() == player1 @pytest.mark.parametrize( 'player2WinningInputSequence', [ ["2", "1", "3", "4", "5", "8", "9", "7"], ["1", "2", "4", "5", "9", "8"], ] ) def test_player2_is_winner(player2WinningInputSequence): player1 = classes.Player("Henk", "X") player2 = classes.Player("Ali", "O") player1.otherPlayer = player2 player2.otherPlayer = player1 game = classes.Game(player1, player2) def mock_input(s): return player2WinningInputSequence.pop(0) classes.input = mock_input game.play() assert game.getWinner() == player2 @pytest.mark.parametrize( 'noWinnerInputSequence', [ ["5", "1", "9", "6", "8", "7", "4", "2", "3"], ] ) def test_no_winner(noWinnerInputSequence): player1 = classes.Player("Henk", "X") player2 = classes.Player("Ali", "O") player1.otherPlayer = player2 player2.otherPlayer = player1 game = classes.Game(player1, player2) def mock_input(s): return noWinnerInputSequence.pop(0) classes.input = mock_input game.play() assert game.getWinner() == None def teardown_method(self, method): # This method is being called after each test case, and it will revert input back to original function classes.input = input ```
{ "source": "jdjuli/jdjuli.github.io", "score": 3 }
#### File: jdjuli/jdjuli.github.io/HTTPS_server.py ```python from http.server import HTTPServer, SimpleHTTPRequestHandler import ssl import os import re os.chdir("./docs") class MyRequestHandler(SimpleHTTPRequestHandler): def translate_path(self, path): regex = re.compile(r"\/vr-programming(\/?)$") if self.path.startswith('/vr-programming'): if regex.match(self.path): return SimpleHTTPRequestHandler.translate_path(self, '/index.html') else: return SimpleHTTPRequestHandler.translate_path(self, path[len('/vr-programming'):]) else: return SimpleHTTPRequestHandler.translate_path(self, path) httpd = HTTPServer(('0.0.0.0', 4443), MyRequestHandler) httpd.socket = ssl.wrap_socket (httpd.socket, keyfile="../key.pem", certfile='../cert.pem', server_side=True) httpd.serve_forever() ```
{ "source": "jdjustdata/jobs-by-neighborhood", "score": 2 }
#### File: apps/business/forms.py ```python from django.forms import ModelForm, EmailInput, URLInput, TextInput from django.utils.translation import ugettext_lazy as _ from datetime import date from models import Business, Location from ..app_form_templates import USPhoneNumberMultiWidget def today_as_string(): today = date.today().isoformat() return today class NewBusiness(ModelForm): def __init__(self, data=None, *args, **kwargs): super(NewBusiness, self).__init__(data, *args, **kwargs) class Meta: model = Business fields = [ 'name', 'industry', 'subindustry', 'website', 'email', 'phone', 'primary_poc', 'poc_role' ] widgets = { 'email': EmailInput(attrs={'placeholder': _('<EMAIL>')}), 'website': URLInput(attrs={'placeholder': _('http://www.webaddress.com')}), 'phone': USPhoneNumberMultiWidget(), 'poc_role': TextInput(attrs={'placeholder': _('E.g., Manager, Human Resources Manager')}) } class NewLocation(ModelForm): def __init__(self, data=None, *args, **kwargs): super(NewLocation, self).__init__(data, *args, **kwargs) class Meta: model = Location fields = [ 'name', 'is_primary', 'street', 'city', 'state', 'zipcode', 'phone' ] widgets = { 'phone': USPhoneNumberMultiWidget() } ```
{ "source": "jdjxjnsn/besso", "score": 2 }
#### File: besso/Db/welcome_sql.py ```python from sqlalchemy import ( BigInteger, Boolean, Column, LargeBinary, Numeric, String, UnicodeText, ) from Db import SESSION, Base import os class Welcome(Base): __tablename__ = "welcome" chat_id = Column(Numeric, primary_key=True) file_id = Column(String) msg_type = Column(String) msg_content = Column(String) def __init__(self, chat_id, msg_type, msg_content, file_id): self.chat_id = chat_id self.msg_type = msg_type self.file_id = file_id self.msg_content = msg_content Welcome.__table__.create(checkfirst=True) def getWelcomeSettings(chat_id): try: return SESSION.query(Welcome).filter(Welcome.chat_id == chat_id).one() except: return None finally: SESSION.close() def addWelcomeSetting(chat_id, msg_type, msg_content="", file_id=""): addwel = SESSION.query(Welcome).get(chat_id) if addwel: addwel.msg_type = msg_type addwel.msg_content = msg_content try: os.remove(addwel.file_id) except Exception as e: print("addWelcomeSetting : %s" % (e)) addwel.file_id = file_id else: addwel = Welcome(chat_id, msg_type, msg_content, file_id) SESSION.add(addwel) SESSION.commit() def remWelcomeSetting(chat_id): remwel = SESSION.query(Welcome).get(chat_id) if remwel: SESSION.delete(remwel) SESSION.commit() ``` #### File: jdjxjnsn/besso/main.py ```python import os os.system("sudo service redis-server start") from telethon import TelegramClient, events, Button, extensions, functions, types from os.path import dirname, realpath, join import re import asyncio import datetime from utilities import utilities import json loop = asyncio.get_event_loop() utilities.client = None def sort_key(p): return p["name"] def run_client(): utilities.config = utilities.get_config() config = utilities.config utilities.client = TelegramClient( "sessions_bot", config["api_id"], config["api_hash"], loop=loop ) utilities.client.start() utilities.load_plugins() utilities.plugins.sort(key=sort_key) utilities.public_plugins.sort(key=sort_key) run_client() from Db.mute_sql import getMutedUser, remMuteUser from Db.dev_sql import getDevsUsers for dev in getDevsUsers(): utilities.devs.append(int("%.0f" % dev.user_id)) async def saveBotId(): me = await utilities.client.get_me() utilities.prLightGray("name : " + me.first_name) if me.username: utilities.prYellow("username : https://t.me/" + me.username) if me.bot: utilities.prGreen("botType : API") else: utilities.prGreen("botType : CLI") utilities.prBlack("---------------------------") utilities.config["bot_id"] = (me).id utilities.config["isbot"] = (me).bot utilities.save_config() @utilities.client.on(events.ChatAction) async def my_event_handler(event): try: if event.user_joined or event.user_added: from_user = event.added_by target_user = event.user plugins = utilities.plugins for plugin in plugins: if "added" not in plugin: continue if "bot" in plugin and utilities.config["isbot"] != plugin["bot"]: if plugin["bot"]: await event.reply("for bot-api only") else: await event.reply("for bot-cli only") return # if plugin["sudo"]: # if check_sudo(event.sender_id): # return_values = await plugin["added"]( # event, # event.chat_id, # 0 # if (target_user.id in utilities.user_steps) # else utilities.user_steps[target_user.id]["step"], # crons=utilities.crons, # ) # for return_value in return_values: # if return_value: # await (return_value) # else: # await event.reply("for sudores") # else: return_values = await plugin["added"]( event, event.chat_id, 0 if (target_user.id not in utilities.user_steps) else utilities.user_steps[target_user.id]["step"], ) if return_values: for return_value in return_values: await (return_value) except Exception as e: print("chat_handler : %s" % (e)) @utilities.client.on(events.NewMessage) async def command_interface(event): try: message = event.message prefix = "send" if message.is_reply: prefix = "reply" if message.out: return from_id = message.from_id to_id = message.chat_id if event.is_private: pr = utilities.prGreen else: pr = utilities.prPurple if message.raw_text and not message.via_bot_id: stri = ( str(from_id) + ": " + prefix + " text message : " + message.raw_text + " to " + str(to_id) ) pr(stri) elif message.media and not message.via_bot_id: pr(str(from_id) + ": " + prefix + " media message to " + str(to_id)) elif message.via_bot_id: pr(str(from_id) + ": " + prefix + " inline message to " + str(to_id)) else: utilities.prRed( str(from_id) + ": " + prefix + " unknown message to " + str(to_id) ) except Exception as e: print(str(e)) @utilities.client.on(events.MessageEdited) @utilities.client.on(events.NewMessage) async def my_event_handler(event): try: message = event.message chat_id = event.chat_id from_id = event.sender_id plugins = utilities.plugins mutedUsers = getMutedUser(chat_id, from_id) if mutedUsers: remMuteUser(chat_id, from_id) if message.raw_text: matches = re.findall("^[#/!](cancel)$", event.raw_text, re.IGNORECASE) if len(matches) > 0 and matches[0] == "cancel": if from_id in utilities.user_steps: del utilities.user_steps[from_id] return await message.reply("Canceling successfully !") if from_id in utilities.user_steps: for plugin in plugins: if plugin["name"] == utilities.user_steps[from_id]["name"]: for pattern in plugin["patterns"]: if re.search( pattern, event.raw_text, re.IGNORECASE | re.MULTILINE ): matches = re.findall( pattern, event.raw_text, re.IGNORECASE | re.DOTALL ) break else: matches = ["xxxxxxxxxx"] if plugin["sudo"]: if utilities.check_sudo(from_id): return_values = await plugin["run"]( message, matches[0], chat_id, utilities.user_steps[from_id]["step"], ) for return_value in return_values: if return_value: try: await (return_value) except Exception as e: print("step :" + str(e)) else: return else: return_values = await plugin["run"]( message, matches[0], chat_id, utilities.user_steps[from_id]["step"], ) if return_values: for return_value in return_values: await (return_value) break return elif message.raw_text is not None and message.raw_text != "": if "flood" not in utilities.config: utilities.config["flood"] = True utilities.save_config() if utilities.config["flood"]: pv = utilities.red.get("flood-" + str(message.sender_id)) or 0 # print("flood-" + str(message.sender_id), pv) if pv == 0: utilities.flood[message.sender_id] = True utilities.red.set( "flood-" + str(message.sender_id), (int(pv) + 1), ex=1 ) if (int(pv) + 1) == 5 and utilities.flood[message.sender_id]: await message.reply("please do not flood...") utilities.prRed( str(message.sender_id) + " : is causing flood please stop..." ) utilities.flood[message.sender_id] = False return elif (int(pv) + 1) >= 5: return for plugin in plugins: for pattern in plugin["patterns"]: if re.search(pattern, event.raw_text, re.IGNORECASE | re.MULTILINE): if ( "bot" in plugin and utilities.config["isbot"] != plugin["bot"] ): if plugin["bot"]: await event.reply("for bot-api only") else: await event.reply("for bot-cli only") return matches = re.findall( pattern, event.raw_text, re.IGNORECASE | re.MULTILINE | re.DOTALL, ) if plugin["sudo"]: if utilities.check_sudo(event.sender_id): return_values = await plugin["run"]( event, matches[0], chat_id, 0, crons=utilities.crons ) for return_value in return_values: if return_value: try: await (return_value) except Exception as e: print("text main :" + str(e)) else: continue else: return_values = await plugin["run"]( event, matches[0], chat_id, 0, crons=utilities.crons ) if return_values: for return_value in return_values: await (return_value) elif message.media is not None or message.file is not None: match = "" if message.photo: match = "__photo__" if message.gif: match = "__gif__" for plugin in plugins: for pattern in plugin["patterns"]: if re.search(pattern, match, re.IGNORECASE | re.MULTILINE): matches = re.findall(pattern, match, re.IGNORECASE) if plugin["sudo"]: if utilities.check_sudo(event.sender_id): return_values = await plugin["run"]( event, matches[0], chat_id, 0 ) for return_value in return_values: try: await (return_value) except Exception as e: print("media :" + str(e)) else: return else: return_values = await plugin["run"]( event, matches[0], chat_id, 0 ) if return_values: for return_value in return_values: await (return_value) except Exception as e: print(str(e)) await event.reply("Error : " + str(e)) @utilities.client.on(events.InlineQuery) async def my_event_handler(event): builder = event.builder try: plugins = utilities.plugins for plugin in plugins: if "inlineQuery" not in plugin: continue for pattern in plugin["inlineData"]: if re.search(pattern, str(event.text), re.IGNORECASE | re.MULTILINE): matches = re.findall( pattern, str(event.text), re.IGNORECASE | re.MULTILINE | re.DOTALL, ) if plugin["sudo"]: if utilities.check_sudo(event.sender_id): return_values = await plugin["inlineQuery"]( event, matches[0], event.chat_id, 0 if (event.sender_id not in utilities.user_steps) else utilities.user_steps[event.sender_id]["step"], crons=utilities.crons, ) for return_value in return_values: if return_value: try: await (return_value) except Exception as e: print("inline :" + str(e)) else: await event.answer( [ builder.article( "for sudors only", text="for sudors only" ) ] ) else: return_values = await plugin["inlineQuery"]( event, matches[0], event.chat_id, 0 if (event.sender_id not in utilities.user_steps) else utilities.user_steps[event.sender_id]["step"], ) if return_values: for return_value in return_values: await (return_value) except Exception as e: print(str(e)) @utilities.client.on(events.CallbackQuery) async def handler(event): try: plugins = utilities.plugins for plugin in plugins: if "callbackQuery" not in plugin: continue for pattern in plugin["callbackData"]: if re.search( pattern, str(event.data.decode()), re.IGNORECASE | re.MULTILINE ): matches = re.findall( pattern, str(event.data.decode()), re.IGNORECASE | re.MULTILINE | re.DOTALL, ) if plugin["sudo"]: if utilities.check_sudo(event.sender_id): return_values = await plugin["callbackQuery"]( event, matches[0], event.chat_id, 0 if (event.sender_id not in utilities.user_steps) else utilities.user_steps[event.sender_id]["step"], crons=utilities.crons, ) for return_value in return_values: if return_value: try: await (return_value) except Exception as e: print("callback :" + str(e)) else: await event.answer("Sudors only!") else: return_values = await plugin["callbackQuery"]( event, matches[0], event.chat_id, 0 if (event.sender_id not in utilities.user_steps) else utilities.user_steps[event.sender_id]["step"], ) if return_values: for return_value in return_values: await (return_value) except Exception as e: print(str(e)) async def clock(): while True: for _data in utilities.red.lrange("crons", 0, -1): data = json.loads(_data) if datetime.datetime.fromisoformat(data["time"]) < datetime.datetime.now(): for plugin in utilities.plugins: if "cron" in plugin and plugin["name"] == data["name"]: return_values = await plugin["cron"](data) for return_value in return_values: if return_value: try: await (return_value) except Exception as e: print("clock :" + str(e)) utilities.red.lrem("crons", 0, _data) if len(utilities.crons) != 0: for data in utilities.crons: if data["time"] < datetime.datetime.now(): for plugin in utilities.plugins: if "cron" in plugin and plugin["name"] == data["name"]: return_values = await plugin["cron"](data) for return_value in return_values: if return_value: try: await (return_value) except Exception as e: print("clock local :" + str(e)) utilities.crons.remove(data) await asyncio.sleep(1) if "updateChat" in utilities.config: loop.create_task( utilities.client.send_message( utilities.config["updateChat"], "The bot restart successfully." ) ) del utilities.config["updateChat"] utilities.save_config() loop.create_task(clock()) loop.create_task(saveBotId()) utilities.prCyan("Started Receveving Messages ...") utilities.client.run_until_disconnected() ``` #### File: besso/nudity/__init__.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np import tensorflow as tf os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" class Nudity: def __init__(self): base_path = os.path.dirname(os.path.abspath(__file__)) model_file = os.path.abspath(base_path + "/files/retrained_graph.pb") input_name = "import/input" output_name = "import/final_result" self.input_height = 224 self.input_width = 224 self.input_mean = 128 self.input_std = 128 self.graph = self.load_graph(model_file) self.input_operation = self.graph.get_operation_by_name(input_name) self.output_operation = self.graph.get_operation_by_name(output_name) def read_tensor_from_image_file( self, file_name, input_height=299, input_width=299, input_mean=0, input_std=255 ): with tf.compat.v1.Session() as sess: tf.compat.v1.disable_eager_execution() input_name = "file_reader" output_name = "normalized" file_reader = tf.io.read_file(file_name, input_name) if file_name.endswith(".png"): image_reader = tf.image.decode_png( file_reader, channels=3, name="png_reader" ) elif file_name.endswith(".gif"): image_reader = tf.squeeze( tf.image.decode_gif(file_reader, name="gif_reader") ) elif file_name.endswith(".bmp"): image_reader = tf.image.decode_bmp(file_reader, name="bmp_reader") else: image_reader = tf.image.decode_jpeg( file_reader, channels=3, name="jpeg_reader" ) float_caster = tf.cast(image_reader, tf.float32) dims_expander = tf.expand_dims(float_caster, 0) resized = tf.compat.v1.image.resize_bilinear( dims_expander, [input_height, input_width] ) normalized = tf.divide(tf.subtract(resized, [input_mean]), [input_std]) result = sess.run(normalized) return result # def load_graph(self, model_file): # graph = tf.Graph() # graph_def = tf.GraphDef() # with open(model_file, "rb") as f: # graph_def.ParseFromString(f.read()) # with graph.as_default(): # tf.import_graph_def(graph_def) # return graph def load_graph(self, model_file): graph = tf.Graph() graph_def = tf.compat.v1.GraphDef() with tf.io.gfile.GFile(model_file, "rb") as f: graph_def.ParseFromString(f.read()) with graph.as_default(): tf.import_graph_def(graph_def) return graph def score(self, file_name): t = self.read_tensor_from_image_file( file_name, input_height=self.input_height, input_width=self.input_width, input_mean=self.input_mean, input_std=self.input_std, ) with tf.compat.v1.Session(graph=self.graph) as sess: results = sess.run( self.output_operation.outputs[0], {self.input_operation.outputs[0]: t} ) results = np.squeeze(results) return results[1].item() def has(self, file_name): return self.score(file_name) >= 0.8 def main(): import argparse parser = argparse.ArgumentParser() parser.add_argument("--image", help="image to be processed") args = parser.parse_args() if not args.image: print( "--image is missing. please set image to be processed with --image='path'" ) return nudity = Nudity() print(nudity.has(args.image)) if __name__ == "__main__": main() ``` #### File: besso/plugins/execTest.py ```python import asyncio import sys import io import traceback async def aexec(code, message, replied=None): exec( f"from utilities import utilities as u\nasync def __ex(message,replied):\n global u" + "".join(f"\n {l}" for l in code.split("\n")) ) return await locals()["__ex"](message, replied) async def run(msg, matches, chat_id, step, crons=None): if not (msg.out): message = await msg.reply("Please, wait...") else: message = msg old_stderr = sys.stderr old_stdout = sys.stdout redirected_output = sys.stdout = io.StringIO() redirected_error = sys.stderr = io.StringIO() stdout, stderr, exc = None, None, None if msg.is_reply and matches == "exec": msg = await msg.get_reply_message() if msg.raw_text: cmd = msg.raw_text else: cmd = "print('Please, reply to text message.')" elif matches[0] == "exec": cmd = matches[1] else: return [message.delete()] try: await aexec(cmd, message, msg) except Exception: exc = traceback.format_exc() stdout = redirected_output.getvalue() stderr = redirected_error.getvalue() sys.stdout = old_stdout sys.stderr = old_stderr evaluation = "" if exc: evaluation = exc elif stderr: evaluation = stderr elif stdout: evaluation = stdout else: evaluation = "Success" final_output = "**EVAL**: `{}` \n\n **OUTPUT**: \n`{}` \n".format(cmd, evaluation) if len(final_output) > 4000: with io.BytesIO(str.encode(final_output)) as out_file: out_file.name = "exec.text" await message.reply(file=out_file) await message.delete() else: await message.edit(final_output) return [] plugin = { "name": "", "desc": " — — — — — — — — —.", "usage": ["❏︙/exec <امر معرفه خطاء الملف + اسم الملف>"], "run": run, "sudo": True, "patterns": ["^[!/#](exec) (.+)$", "^[!/#](exec)$"], } ``` #### File: besso/plugins/externalYoutube.py ```python import asyncio from utilities import utilities from requests_futures.sessions import FuturesSession from telethon.tl.types import DocumentAttributeAudio import requests import urllib.parse import re import json import time import youtube_dl import io loop = asyncio.get_event_loop() session = FuturesSession() def youtube_url_validation(url): youtube_regex = ( r"(https?://)?(www\.)?" "(youtube|youtu|youtube-nocookie)\.(com|be)/" "(watch\?v=|embed/|v/|.+\?v=)?([^&=%\?]{11})" ) youtube_regex_match = re.match(youtube_regex, url) if youtube_regex_match: return youtube_regex_match return None def downloaded_file(*factory_args, **factory_kwargs): def last_response(resp, *args, **kwargs): try: async def sendMessage(msg, file): await msg.reply(file=file) await msg.delete() return msg = factory_kwargs["tp"] loop.create_task(sendMessage(msg, resp.content)) except Exception as e: print(str(e)) pass return last_response def download_big_data(*factory_args, **factory_kwargs): def download_fetch(resp, *args, **kwargs): try: msg = factory_kwargs["msg"] loop.create_task( msg.reply("Please wait, we are uploading music to our server.") ) f = io.BytesIO(resp.content) f.name = "music.mp3" loop.create_task( utilities.client.send_file( msg.chat_id, f, attributes=[DocumentAttributeAudio(120, performer="bot")], ) ) return None except Exception as e: print(str(e)) return None return download_fetch async def sendFileComplete(msg, m): try: await utilities.client.send_file(msg.chat_id, m[0]) except Exception as e: print(str(e)) if len(m) > 0: # await msg.reply("Please, download file from [Download](" + m[0] + ")") session.get( m[0], hooks={"response": download_big_data(msg=msg)}, ) else: await msg.reply("error please try again later !.") def hook_factory(*factory_args, **factory_kwargs): tmp_msg = [] async def callback(msg): tmp_msg.append(await msg.reply("take a while.")) def first_response(resp, *args, **kwargs): try: msg = factory_kwargs["msg"] message = factory_kwargs["message"] v_id = factory_kwargs["id"] url = factory_kwargs["url"] result = json.loads(resp.content) res = result["result"].replace("\r\n", "").replace("\\", " ") m = re.findall( 'var k__id = "(.+)"; var video_service = "youtube";', res, re.IGNORECASE ) if len(m) > 0: file_url = True cookies_temp = None while file_url: req = requests.post( "https://mate03.y2mate.com/mp3Convert", data={ "type": " youtube", "_id": m[0], "v_id": v_id, "mp3_type": " 128", }, cookies=cookies_temp, ) cookies_temp = req.cookies if req.text != None and req.text != "": req_res = json.loads(req.content) if "result" in req_res: if ( "running" not in req_res["result"] .replace("\r\n", "") .replace("\\", "") .lower() ): file_url = False m = re.findall( '<a href="(.*)" rel=', req_res["result"], re.IGNORECASE, ) loop.create_task(sendFileComplete(msg, m)) if len(tmp_msg) > 0: loop.create_task(tmp_msg[0].delete()) return if len(tmp_msg) == 0: loop.create_task(callback(msg)) time.sleep(3) elif len(tmp_msg) > 1: for i in range(0, len(tmp_msg) - 2): print(i) loop.create_task(tmp_msg[i].delete()) else: loop.create_task(message.edit("error while fetching id...")) return pass except Exception as e: print(str(e)) return None return first_response async def extract_info(url, msg): info = "" try: with youtube_dl.YoutubeDL() as ydl: info_dict = ydl.extract_info(url, download=False) info += "Title : " + info_dict["title"] + "\n" info += "Uploader : " + info_dict["uploader"] + "\n" except Exception as e: info = "error while fetching." await msg.edit(info) def downloadProcess(id, message, msg): loop.create_task(extract_info("https://www.youtube.com/watch?v=" + id, message)) url = "https://mate03.y2mate.com/mp3/ajax" data = { "url": "https://www.youtube.com/watch?v=" + id, "q_auto": 0, "ajax": 1, } session.post( url, data=data, hooks={"response": hook_factory(message=message, msg=msg, url=url, id=id)}, ) def get_id(*factory_args, **factory_kwargs): def first_response(html_content, *args, **kwargs): try: msg = factory_kwargs["msg"] message = factory_kwargs["message"] if html_content.text != "": search_results = re.findall( r"/watch\?v=(.{11})", html_content.content.decode() ) if len(search_results) > 0: downloadProcess(search_results[0], message, msg) else: loop.create_task(message.edit("not found.")) except Exception as e: print(str(e)) return None return first_response async def run(msg, matches, chat_id, step, crons=None): response = [] if matches[0] == "sfyt": if not (msg.out): message = await msg.reply("please wait..") else: message = msg query_string = urllib.parse.urlencode({"search_query": str(matches[1])}) session.get( "http://www.youtube.com/results?" + query_string, hooks={"response": get_id(message=message, msg=msg)}, ) elif msg.is_reply: if not (msg.out): message = await msg.reply("please wait..") else: message = msg msg = await msg.get_reply_message() if msg.text: valid = youtube_url_validation(msg.text) if valid is not None: id = valid.groups()[-1] downloadProcess(id, message, msg) return response plugin = { "name": "", "desc": " — — — — — — — — —", "usage": [ ], "run": run, "sudo": True, "patterns": ["^[!/#]fyt$", "^[!/#](sfyt) (.+)$"], } ``` #### File: besso/plugins/heartAnimation.py ```python import asyncio from utilities import utilities import random async def run(message, matches, chat_id, step, crons=None): key = ["❤️", "🧡", "💛", "💚", "💙", "💜", "🖤", "🤍", "🤎"] if not (message.out): message = await message.reply(str("please wait.")) if matches == "h": random.shuffle(key) for j in range(0, 10): for i in key: await message.edit(i) await asyncio.sleep(0.3) await message.edit("❤️") else: for j in range(0, 20): text = matches + "🧡." for i in key: text = text.replace(i, "%s") textsplit = text.split("%s") random.shuffle(key) await message.edit(text % tuple(key[: len(textsplit) - 1])) await asyncio.sleep(0.3) return [] plugin = { "name": "", "desc": " — — — — — — — — —", "usage": [ "❏︙/h <امر قلبي> ", ], "run": run, "sudo": True, "patterns": ["^[!/#]h (.*)$", "^[!/#](h)$"], } ``` #### File: besso/plugins/lyrics.py ```python import asyncio import json import _thread from utilities import utilities import requests import io import urllib.parse from bs4 import BeautifulSoup loop = asyncio.get_event_loop() def get_lyrics_result(query, msg, message): try: from_id = msg.sender_id headers = { "Connection": "keep-alive", "Pragma": "no-cache", "Cache-Control": "no-cache", "Accept": "application/json, text/javascript, */*; q=0.01", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.105 Safari/537.36", "Origin": "https://www.azlyrics.com", "Sec-Fetch-Site": "same-site", "Sec-Fetch-Mode": "cors", "Sec-Fetch-Dest": "empty", "Referer": "https://www.azlyrics.com/", "Accept-Language": "en,ar;q=0.9,en-GB;q=0.8", } params = {"q": query} response = requests.get( "https://search.azlyrics.com/suggest.php", headers=headers, params=params ) js = json.loads(response.content) if len(js["songs"]) == 0: loop.create_task(message.edit("there is no soung with this name.")) return None utilities.user_steps[from_id] = { "name": "lyrics", "step": 1, "data": js["songs"], } i = 1 res = "send a number of the below songs:\n" for song in js["songs"]: res += f"`{i}` - " + song["autocomplete"] + "\n" i = i + 1 loop.create_task(message.edit(res)) except Exception as e: print(str(e)) loop.create_task(message.edit("There was an error please use different name.")) return None def chunkstring(string, length): return (string[0 + i : length + i] for i in range(0, len(string), length)) # async def sendmsg(ch, msg): # for c in ch: # await msg.reply(c) def get_lyrics(index, msg): from_id = msg.sender_id try: if int(index) <= 0: raise Exception("list index out of range") url = utilities.user_steps[from_id]["data"][int(index) - 1]["url"] rie = requests.get("https:" + url) soup = BeautifulSoup(rie.content.decode(), "html.parser") f = soup.find( lambda tag: tag.name == "div" and "class" in tag.attrs and "col-xs-12 col-lg-8 text-center".split() == tag["class"] ) fc = f.find( lambda tag: tag.name == "div" and " Usage of azlyrics.com content by any third-party lyrics provider is prohibited by our licensing agreement. Sorry about that. " in tag.contents ) if len(fc.text) >= 4096: # ch = chunkstring(fc.text, 4096) f = io.BytesIO(fc.text.encode()) f.name = "lyrics.txt" loop.create_task( utilities.client.send_file(msg.chat_id, f, force_document=True) ) else: loop.create_task(msg.reply(fc.text)) del utilities.user_steps[from_id] except Exception as e: if str(e) == "list index out of range": loop.create_task( msg.reply( "please, stick with 1-" + str(len(utilities.user_steps[from_id]["data"])) ) ) else: loop.create_task( msg.reply( "please, send `/cancel` to cancel conversation of `lyrics plugin`" ) ) return None async def run(msg, matches, chat_id, step, crons=None): if matches[0] == "lyrics": if not (msg.out): message = await msg.reply("please wait..") else: message = msg _thread.start_new_thread(get_lyrics_result, (matches[1], msg, message)) elif step == 1: _thread.start_new_thread(get_lyrics, (msg.text, msg)) return [] plugin = { "name": "", "desc": " — — — — — — — — —.", "usage": ["❏︙/lyrics <امر عرض كلمات الغنيه >"], "run": run, "sudo": True, "patterns": ["^[!/#](lyrics) (.+)$"], } ```
{ "source": "jdk2588/microservices-in-action", "score": 2 }
#### File: chapter-7/chassis/http_demo.py ```python import json from nameko.web.handlers import http from werkzeug.wrappers import Response from nameko_sentry import SentryReporter class HttpDemoService: name = "http_demo_service" sentry = SentryReporter() @http("GET", "/broken") def broken(self, request): raise ConnectionRefusedError() @http('GET', '/books/<string:uuid>') def demo_get(self, request, uuid): data = {'id': uuid, 'title': 'The unbearable lightness of being', 'author': '<NAME>'} return Response(json.dumps({'book': data}), mimetype='application/json') @http('POST', '/books') def demo_post(self, request): return Response(json.dumps({'book': request.data.decode()}), mimetype='application/json') ``` #### File: feature/market/app.py ```python import json import datetime import requests from nameko.rpc import rpc from nameko.events import EventDispatcher, event_handler from statsd import StatsClient from circuitbreaker import circuit class MarketService: name = "market_service" statsd = StatsClient('statsd-agent', 8125, prefix='simplebank-demo.market') dispatch = EventDispatcher() @event_handler("orders_service", "order_created") @statsd.timer('request_reservation') def place_order(self, payload): print("service {} received: {} ... placing order to exchange".format( self.name, payload)) # place order in stock exchange exchange_resp = self.__place_order_exchange(payload) # event: emit order placed event self.__create_event("order_placed", payload) return json.dumps({'exchange_response': exchange_resp}) @rpc @statsd.timer('create_event') def __create_event(self, event, payload): print("[{}] {} emiting {} event".format( payload, self.name, event)) return self.dispatch(event, payload) @statsd.timer('place_order_stock_exchange') @circuit(failure_threshold=5, expected_exception=ConnectionError) def __place_order_exchange(self, request): print("[{}] {} placing order to stock exchange".format( request, self.name)) response = requests.get('https://jsonplaceholder.typicode.com/posts/1') return json.dumps({'code': response.status_code, 'body': response.text}) ```
{ "source": "jdk5115/Flask", "score": 3 }
#### File: Flask/hw2/model.py ```python import sqlite3 def show_color(username): connection = sqlite3.connect('flask_tut.db', check_same_thread=False) cursor = connection.cursor() cursor.execute(""" SELECT favorite_color FROM users WHERE Username='{username}' ORDER BY pk DESC;""".format(username = username)) color = cursor.fetchone()[0] connection.commit() cursor.close() connection.close() message = '{username}\'s favorite color is {color}.'.format(username=username, color=color) return color, message ``` #### File: jdk5115/Flask/model.py ```python import sqlite3 def my_name(username): connection = sqlite3.connect('todo.db', check_same_thread=False) cursor = connection.cursor() cursor.execute(""" SELECT password FROM users WHERE username='{username}' ORDER BY pk DESC;""".format(username = username)) password = cursor.fetchone()[0] connection.commit() cursor.close() connection.close() message = '{username}\'s password is {password}.'.format(username=username, password=password) return password, message def check_users(): connection = sqlite3.connect('todo.db', check_same_thread=False) cursor = connection.cursor() cursor.execute(""" SELECT username FROM users ORDER BY pk DESC;""") db_users = cursor.fetchall() users = [] for i in range(len(db_users)): person = db_users[i][0] users.append(person) connection.commit() cursor.close() connection.close() return users def check_pw(username): connection = sqlite3.connect('todo.db', check_same_thread=False) cursor = connection.cursor() cursor.execute(""" SELECT password FROM users WHERE username='{username}' ORDER BY pk DESC;""".format(username=username)) password = cursor.fetchone()[0] connection.commit() cursor.close() connection.close() return password def signup(username, password, favorite_color): connection = sqlite3.connect('todo.db', check_same_thread=False) cursor = connection.cursor() cursor.execute(""" SELECT password FROM users WHERE username='{username}';""".format(username=username)) exist = cursor.fetchone() if exist is None: cursor.execute(""" INSERT INTO users(username, password, favorite_color) VALUES('{username}','{password}','{favorite_color}');""".format(username=username, password=password, favorite_color=favorite_color)) else: return ('User already exists.') return ('You have successfully signed up!') connection.commit() cursor.close() connection.close() return favorite_color ```
{ "source": "jdk5115/pygubu", "score": 3 }
#### File: pygubu/widgets/pathchooserinput.py ```python from __future__ import unicode_literals try: import tkinter as tk import tkinter.ttk as ttk from tkinter import filedialog except: import Tkinter as tk import ttk import tkFileDialog as filedialog class PathChooserInput(ttk.Frame): """ Allows to choose a file or directory. Generates <<PathChooserPathChanged>> event when the path is changed. Dialog options: initialdir: str filetypes: iterable title: str mustexist: str Usage Example: # Choose File: pcifile = PathChooserInput(framex) pcifile.config(initialdir='/home', title='Choose a file:', type='file') pcifile.config(filetypes=[('text files-', '.txt'), ('uifiles', '.ui')]) pcifile.pack(fill='x', side='top') # Choose directory: pcidir = PathChooserInput(framex) pcidir.config(initialdir='/usr/local', mustexist='true', title='Choose a directory:', type='directory') pcidir.pack(fill='x', side='top') """ FILE = 'file' DIR = 'directory' def __init__(self, master=None, **kw): ttk.Frame.__init__(self, master, **kw) self._choose = self.FILE self._oldvalue = '' self._state = 'normal' self._fdoptions = { 'filetypes': tuple(), 'initialdir': None, 'mustexist': False, 'title': None, } # subwidgets self.entry = o = ttk.Entry(self, state=self._state) o.grid(row=0, column=0, sticky='ew') o.bind('<KeyPress>', self.__on_enter_key_pressed) o.bind('<FocusOut>', self.__on_focus_out) self.folder_button = o = ttk.Button( self, text='▶', command=self.__on_folder_btn_pressed, width=4, state=self._state) o.grid(row=0, column=1, padx=2) #self.rowconfigure(0, weight = 0) self.columnconfigure(0, weight = 1) def configure(self, cnf=None, **kw): args = tk._cnfmerge((cnf, kw)) key = 'type' if key in args: self._choose = args[key] del args[key] key = 'image' if key in args: self.folder_button.configure(image=args[key]) del args[key] key = 'path' if key in args: self.entry.delete(0, 'end') self.entry.insert(0, args[key]) self._generate_changed_event() del args[key] key = 'textvariable' if key in args: self.entry.configure(textvariable=args[key]) self._generate_changed_event() del args[key] key = 'state' if key in args: value = args[key] self.entry.config(state=value) if value in ('disabled', 'readonly'): self.folder_button.config(state='disabled') else: self.folder_button.config(state=value) del args[key] # dialog options for key in tuple(args.keys()): if key in self._fdoptions: self._fdoptions[key] = args[key] args.pop(key) ttk.Frame.configure(self, args) config = configure def cget(self, key): option = 'type' if key == option: return self._choose option = 'image' if key == option: return self.folder_button.cget(key) option = 'path' if key == option: return self.entry.get() option = 'textvariable' if key == option: return self.entry.cget(option) option = 'state' if key == option: return self.entry.cget(option) # dialog options if key in self._fdoptions: return self._fdoptions[key] return ttk.Frame.cget(self, key) __getitem__ = cget def _is_changed(self): # print(repr(self._oldvalue), ':', repr(self.entry.get())) if self._oldvalue != self.entry.get(): return True return False def _generate_changed_event(self): if self._is_changed(): self._oldvalue = self.entry.get() self.event_generate('<<PathChooserPathChanged>>') def __on_enter_key_pressed(self, event): key = event.keysym if key in ('Return','KP_Enter'): self._generate_changed_event() def __on_focus_out(self, event): self._generate_changed_event() def __on_folder_btn_pressed(self): fname = None fdoptions = self._fdoptions.copy() if fdoptions['initialdir'] is None: fdoptions['initialdir'] = self.cget('path') if self._choose == self.FILE: fdoptions.pop('mustexist') fname = filedialog.askopenfilename(**fdoptions) else: fdoptions.pop('filetypes') fname = filedialog.askdirectory(**fdoptions) if fname: self.configure(path=fname) ``` #### File: pygubu/widgets/simpletooltip.py ```python __all__ = ['ToolTip'] try: import tkinter as tk from tkinter import ttk except: import Tkinter as tk import ttk class ToolTip(object): def __init__(self, widget): self.widget = widget self.tipwindow = None self.id = None self.x = self.y = 0 def inside_wbbox(self, rx , ry): bbox = self._calc_bbox(self.widget, True) inside = False if (bbox[0] <= rx <= bbox[2]) and (bbox[1] <= ry <= bbox[3]): inside = True return inside def _calc_bbox(self, widget, screen=False): rx = widget.winfo_x() ry = widget.winfo_y() if screen: rx = widget.winfo_rootx() ry = widget.winfo_rooty() x2 = rx + widget.winfo_width() y2 = ry + widget.winfo_height() return (rx, ry, x2, y2) def _calc_final_pos(self): rx, ry, rcx, rcy = self._calc_bbox(self.widget, True) w = rcx-rx h = rcy-ry sh = self.widget.winfo_screenheight() - 10 sw = self.widget.winfo_screenwidth() - 10 x = y = 0 for region in ('bottom', 'right', 'top', 'left'): if region == 'bottom': x = rx + int(w//2 * 0.2) y = rcy + int(h//2 * 0.1) elif region == 'right': x = rcx + int(w//2 * 0.2) y = ry + int(h//2 * 0.1) elif region == 'top': x = rx - int(w//2 * 0.4) y = ry - int(h//2 * 0.4) elif region == 'left': x = rx y = ry - 20 if x < sw and y < sh: break return (x, y) def showtip(self, text): "Display text in tooltip window" self.text = text if self.tipwindow or not self.text: return x, y = self._calc_final_pos() self.tipwindow = tw = tk.Toplevel(self.widget) tw.wm_overrideredirect(1) tw.wm_geometry("+{0}+{1}".format(x, y)) try: # For Mac OS tw.tk.call("::tk::unsupported::MacWindowStyle", "style", tw._w, "help", "noActivates") except tk.TclError: pass label = tk.Label(tw, text=self.text, justify=tk.LEFT, background="#ffffe0", foreground="black", relief=tk.SOLID, borderwidth=1, font=("tahoma", "9", "normal")) label.pack(ipadx=2) def hidetip(self): tw = self.tipwindow self.tipwindow = None if tw: tw.destroy() def create(widget, text): toolTip = ToolTip(widget) def enter(event): toolTip.showtip(text) def leave(event): toolTip.hidetip() widget.bind('<Enter>', enter) widget.bind('<Leave>', leave) if __name__ == '__main__': root = tk.Tk() for idx in range(0, 2): b = tk.Button(root, text='A button') b.grid() create(b, 'A tooltip !!') root.mainloop() ``` #### File: pygubu/tests/test_frame.py ```python from __future__ import print_function import os import sys import unittest try: import tkinter as tk import tkinter.ttk as ttk except: import Tkinter as tk import ttk pygubu_basedir = os.path.abspath(os.path.dirname( os.path.dirname(os.path.realpath(sys.argv[0])))) if pygubu_basedir not in sys.path: sys.path.insert(0, pygubu_basedir) import pygubu import support class TestFrame(unittest.TestCase): def setUp(self): support.root_deiconify() xmldata = """<?xml version="1.0" ?> <interface> <object class="ttk.Frame" id="mainwindow"> <property name="height">250</property> <property name="padding">10</property> <property name="width">250</property> <property name="class_">MyCustomFrame</property> <property name="relief">sunken</property> <property name="style">MyFrameStyle.TFrame</property> <property name="takefocus">1</property> <property name="cursor">cross</property> <bind add="" handler="on_button_click" sequence="&lt;Button-1&gt;"/> <bind add="True" handler="on_button_click2" sequence="&lt;Button-1&gt;"/> <layout> <property name="row">0</property> <property name="column">0</property> <property name="sticky">nesw</property> <property name="pady">10</property> <property name="padx">5</property> <property name="propagate">False</property> <property name="ipady">4</property> <property name="ipadx">2</property> <property name="rowspan">1</property> <property name="columnspan">2</property> </layout> <child> <object class="ttk.Label" id="label"> <property name="text">label</property> <layout> <property name="column">0</property> <property name="propagate">True</property> <property name="row">1</property> </layout> </object> </child> </object> </interface> """ self.builder = builder = pygubu.Builder() builder.add_from_string(xmldata) self.widget = builder.get_object('mainwindow') def tearDown(self): support.root_withdraw() def test_class(self): self.assertIsInstance(self.widget, ttk.Frame) self.widget.destroy() def test_padding(self): tclobj = self.widget.cget('padding')[0] padding = str(tclobj) self.assertEqual('10', padding) self.widget.destroy() def test_width(self): tclobj = self.widget.cget('width') width = str(tclobj) self.assertEqual('250', width) self.widget.destroy() def test_class_(self): tclobj = self.widget.cget('class') class_ = str(tclobj) self.assertEqual('MyCustomFrame', class_) self.widget.destroy() def test_relief(self): tclobj = self.widget.cget('relief') relief = str(tclobj) self.assertEqual(tk.SUNKEN, relief) self.widget.destroy() def test_style(self): tclobj = self.widget.cget('style') style = str(tclobj) self.assertEqual('MyFrameStyle.TFrame', style) self.widget.destroy() def test_takefocus(self): tclobj = self.widget.cget('takefocus') takefocus = str(tclobj) self.assertEqual('1', takefocus) self.widget.destroy() def test_cursor(self): tclobj = self.widget.cget('cursor') cursor = str(tclobj) self.assertEqual('cross', cursor) self.widget.destroy() def test_layout(self): ginfo = self.widget.grid_info() expected = [ ('row', '0'), ('column', '0'), ('sticky', 'nesw'), ('pady', '10'), ('padx', '5'), ('ipadx', '2'), ('ipady', '4'), ('rowspan', '1'), ('columnspan', '2'), ] for k, ev in expected: value = str(ginfo[k]) self.assertEqual(value, ev) propagate = self.widget.grid_propagate() self.assertEqual(None, propagate) self.widget.destroy() def test_child_count(self): count = len(self.widget.children) self.assertEqual(1, count) self.widget.destroy() def test_binding_dict(self): success = [] def on_button_click(event): success.append(1) def on_button_click2(event): success.append(1) cbdic = { 'on_button_click': on_button_click, 'on_button_click2': on_button_click2 } self.builder.connect_callbacks(cbdic) support.simulate_mouse_click(self.widget, 5, 5) self.widget.update_idletasks() self.assertTrue(success) self.widget.destroy() def test_binding_object(self): success = [] class AnObject: def on_button_click(self, event): success.append(1) def on_button_click2(self, event): success.append(1) cbobj = AnObject() self.builder.connect_callbacks(cbobj) support.simulate_mouse_click(self.widget, 5, 5) self.widget.update_idletasks() self.assertTrue(success) self.widget.destroy() def test_binding_add(self): success = [] def on_button_click(event): success.append(1) def on_button_click2(event): success.append(1) cbdic = { 'on_button_click': on_button_click, 'on_button_click2': on_button_click2 } self.builder.connect_callbacks(cbdic) support.simulate_mouse_click(self.widget, 5, 5) self.widget.update_idletasks() self.assertTrue(len(success) == 2) self.widget.destroy() if __name__ == '__main__': unittest.main() ``` #### File: pygubu/tests/test_toplevelmenuhelper.py ```python import os import sys import unittest try: import tkinter as tk import tkinter.ttk as ttk except: import Tkinter as tk import ttk pygubu_basedir = os.path.abspath(os.path.dirname( os.path.dirname(os.path.realpath(sys.argv[0])))) if pygubu_basedir not in sys.path: sys.path.insert(0, pygubu_basedir) import pygubu import support class TestToplevelMenuHelper(unittest.TestCase): def setUp(self): support.root_deiconify() xmldata = 'test_toplevelmenuhelper.ui' self.builder = builder = pygubu.Builder() builder.add_from_file(xmldata) self.widget = builder.get_object('toplevel') self.menuhelper = builder.get_object('topmenuhelper') self.menu = builder.get_object('topmenu') def tearDown(self): support.root_withdraw() def test_class(self): self.assertIsInstance(self.menu, tk.Menu) self.widget.destroy() def test_class_topmenu(self): menu1 = self.widget.nametowidget(self.widget.cget('menu')) self.assertEqual(menu1, self.menu) self.widget.destroy() ```
{ "source": "jdk514/keras2vec", "score": 3 }
#### File: jdk514/keras2vec/demo.py ```python import numpy as np from keras2vec.keras2vec import Keras2Vec from keras2vec.document import Document from sklearn.metrics.pairwise import euclidean_distances, cosine_similarity def doc_similarity(embeddings, id_1, id_2): doc1 = embeddings[id_1].reshape(1, -1) doc2 = embeddings[id_2].reshape(1, -1) return cosine_similarity(doc1, doc2)[0][0] # , euclidean_distances(doc1, doc2) if __name__ == "__main__": color_docs = ["red yellow green blue orange violet green blue orange violet", "blue orange green gray black teal tan blue violet gray black teal", "blue violet gray black teal yellow orange tan white brown", "black blue yellow orange tan white brown white green teal pink blue", "orange pink blue white yellow black black teal tan", "white green teal gray black pink blue blue violet gray black teal yellow", ] animal_docs = ["cat dog rat gerbil hamster goat lamb goat cow rat dog pig", "lamb goat cow rat dog pig dog chicken goat cat cow pig", "pig lamb goat rat gerbil dog cat dog rat gerbil hamster goat", "dog chicken goat cat cow pig gerbil goat cow pig gerbil lamb", "rat hamster pig dog chicken cat lamb goat cow rat dog pig dog", "gerbil goat cow pig gerbil lamb rat hamster pig dog chicken cat" ] shape_docs = ["square triangle hexagon circle octagon cube", "pyramid circle cube pentagon cylinder trapezoid", "diamond octagon quadrilateral cylinder rectangle square", "trapezoid cube hexagon diamond triangle circle cylinder", "square rectangle quadrilateral octagon pentagon square"] animal_color_docs = ['goat green rat gerbil yellow dog cat blue white', 'gerbil black pink blue lamb rat hamster gray pig dog', 'orange pink cat cow pig black teal gerbil tan', 'hamster pig orange violet dog chicken orange tan'] inference_doc = "red yellow green blue orange violet green blue orange violet" doc_count = 0 keras_docs = [] keras_docs.extend([Document(doc_count+ix, text, ['color']) for ix, text in enumerate(color_docs)]) doc_count = len(keras_docs) keras_docs.extend([Document(doc_count+ix, text, ['animal']) for ix, text in enumerate(animal_docs)]) doc_count = len(keras_docs) keras_docs.extend([Document(doc_count + ix, text, ['shape']) for ix, text in enumerate(shape_docs)]) doc_count = len(keras_docs) keras_docs.extend([Document(doc_count + ix, text, ['animal', 'color']) for ix, text in enumerate(animal_color_docs)]) # TODO: Add ability to auto-select embedding and seq_size based on data doc2vec = Keras2Vec(keras_docs, embedding_size=24, seq_size=1) doc2vec.build_model() # If the number of epochs is to low, the check at the bottom may fail! print("Training Model:") history = doc2vec.fit(250, verbose=1) print("\ttraining complete!") embeddings = doc2vec.get_doc_embeddings() print("Beginning Evaluation:") """Docs 0-5 are colors while 6-11 are animals. The cosine distances for docs from the same topic (colors/animals) should approach 1, while disimilar docs, coming from different topics, should approach -1""" if doc_similarity(embeddings, 2, 4) > doc_similarity(embeddings, 1, 10): print("\t- Like topics are more similar!") else: print("\t- Something went wrong during training.") """Using the trained model we can now infer document vectors by training against a model where only the inference layer is trainable""" doc2vec.infer_vector(Document(0, inference_doc, ['color']), lr=.1, epochs=50) infer_vec = doc2vec.get_infer_embedding() infer_dist = cosine_similarity(infer_vec.reshape(1, -1), embeddings[0].reshape(1, -1))[0][0] infer_dist = "{0:0.2f}".format(infer_dist) print(f'\t- Document 0 has a cosine similarity of {infer_dist} between train and inferred vectors') """Label analysis: shape should be farther away than animal and color""" label_embeddings = doc2vec.get_label_embeddings() shape_vector = doc2vec.get_label_embedding('shape').reshape(1, -1) animal_vector = doc2vec.get_label_embedding('animal').reshape(1, -1) color_vector = doc2vec.get_label_embedding('color').reshape(1, -1) animal_color_dist = cosine_similarity(animal_vector, color_vector)[0][0] shape_color_dist = cosine_similarity(shape_vector, color_vector)[0][0] if animal_color_dist > shape_color_dist: print("\t- Label distances look good!") else: print("\t- Something went wrong with the labels.") ``` #### File: keras2vec/keras2vec/data_generator.py ```python import copy import random import keras import numpy as np from keras2vec.encoder import Encoder # TODO: Implement as a keras.utils.Sequence class class DataGenerator(keras.utils.Sequence): """The DataGenerator class is used to encode documents and generate training/testing data for a Keras2Vec instance. Currently this object is only used internally within the Keras2Vec class and not intended for direct use. Args: documents (:obj:`list` of :obj:`Document`): List of documents to vectorize """ def __init__(self, documents, seq_size, neg_samples, batch_size=100, shuffle=True, val_gen=False): self.doc_vocab = self.label_vocab = self.text_vocab = None self.doc_enc = self.label_enc = self.text_enc = None self.neg_samples = neg_samples self.seq_size = seq_size self.batch_size = batch_size self.shuffle = shuffle self.val_gen = val_gen # TODO: Change the documents attribute to encoded documents [doc.gen_windows(seq_size) for doc in documents] self.documents = documents self.build_vocabs() self.create_encodings() if val_gen: tmp_indexes = list(range(len(self.documents))) np.random.shuffle(tmp_indexes) self.indexes = tmp_indexes[:self.batch_size] else: self.indexes = list(range(len(self.documents))) def build_vocabs(self): """Build the vocabularies for the document ids, labels, and text of the provided documents""" doc_vocab = set() label_vocab = set() text_vocab = set(['']) for doc in self.documents: doc_vocab.add(doc.doc_id) label_vocab.update(doc.labels) text_vocab.update(doc.text) self.doc_vocab = doc_vocab self.label_vocab = label_vocab self.text_vocab = text_vocab def create_encodings(self): """Build the encodings for each of the provided data types""" self.doc_enc = Encoder(self.doc_vocab) self.label_enc = Encoder(self.label_vocab) self.text_enc = Encoder(self.text_vocab) def get_infer_generator(self, infer_doc): infer_gen = copy.deepcopy(self) infer_doc.gen_windows(self.seq_size) infer_gen.doc_vocab = set([0]) infer_gen.documents = [infer_doc] infer_gen.batch_size = 1 infer_gen.indexes = list(range(len(infer_gen.documents))) return infer_gen # TODO: Replace with generator def neg_sampling(self, window): neg_samples = [] win_ix = int((self.seq_size - 1) / 2) center_word = window[win_ix] word_dict = self.text_vocab.copy() word_dict.remove(center_word) dict_len = len(word_dict) for ix in range(self.neg_samples): if len(word_dict) < 1: break rep_word = random.sample(word_dict, 1)[0] word_dict.remove(rep_word) new_win = window.copy() new_win[win_ix] = rep_word neg_samples.append(new_win) return neg_samples def encode_doc(self, doc, neg_sampling=False, num_neg_samps=3): """Encodes a document for the keras model Args: doc(Document): The document to encode neg_sampling(Boolean): Whether or not to generate negative samples for the document **NOTE**: Currently not implemented""" docs = [] labels = [] words = [] outputs = [] enc_doc = self.doc_enc.transform(doc.doc_id) enc_labels = [self.label_enc.transform(lbl) for lbl in doc.labels] for window in doc.windows: for label in enc_labels: enc_words = [self.text_enc.transform(word) for word in window] docs.append(enc_doc) labels.append([label]) words.append(enc_words) outputs.append(1) if self.neg_samples > 0: for neg_samp in self.neg_sampling(window): for label in enc_labels: enc_words = [self.text_enc.transform(word) for word in neg_samp] docs.append(enc_doc) labels.append([label]) words.append(enc_words) outputs.append(0) ret = (np.vstack(docs), labels, words, np.vstack(outputs)) return ret def __len__(self): """Denotes the number of batches per epoch""" if self.val_gen: return 1 return int(len(self.documents)/self.batch_size) def __getitem__(self, index): indexes = self.indexes[index * self.batch_size:(index + 1) * self.batch_size] docs = [self.documents[ix] for ix in indexes] inputs, outputs = self.__data_generation(docs) return inputs, outputs def on_epoch_end(self): 'Updates indexes after each epoch' if self.val_gen: tmp_indexes = list(range(len(self.documents))) np.random.shuffle(tmp_indexes) self.indexes = tmp_indexes[:self.batch_size] elif self.shuffle == True: np.random.shuffle(self.indexes) def __data_generation(self, docs): """Generates a single epoch of encoded data for the keras model""" batch_docs = [] batch_labels = [] batch_words = [] batch_outputs = [] for doc in docs: enc_doc, enc_labels, enc_words, outputs = self.encode_doc(doc) batch_docs.append(enc_doc) batch_labels.append(np.array(enc_labels)) batch_words.extend(enc_words) batch_outputs.append(outputs) if len(self.label_vocab) > 0: inputs = [np.vstack(batch_docs), np.vstack(batch_labels), np.vstack(batch_words)] else: inputs = [np.vstack(batch_docs), np.vstack(batch_words)] outputs = np.vstack(batch_outputs) return inputs, outputs ```
{ "source": "JDK626/test", "score": 2 }
#### File: JDK626/test/example2.py ```python from PyQt5 import QtCore, QtWidgets from DBUtils.PooledDB import PooledDB from PyQt5.QtGui import QIcon import pymysql import sys import yaml class Ui_MainWindow(object): def getDbData(self): with open('./config/db.yaml', encoding='utf-8') as f: result = yaml.safe_load(f) return result def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(900, 900) MainWindow.setWindowIcon(QIcon("./cartoon1.ico")) MainWindow.setStyleSheet("#MainWindow{border-image:url(./3.png);}") self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.tableWidget = QtWidgets.QTableWidget(self.centralwidget) self.tableWidget.setGeometry(QtCore.QRect(200, 30, 500, 500)) self.tableWidget.setObjectName("tableWidget") self.tableWidget.setColumnCount(3) self.tableWidget.setRowCount(10) item = QtWidgets.QTableWidgetItem() self.tableWidget.setVerticalHeaderItem(0, item) item = QtWidgets.QTableWidgetItem() self.tableWidget.setVerticalHeaderItem(1, item) item = QtWidgets.QTableWidgetItem() self.tableWidget.setVerticalHeaderItem(2, item) item = QtWidgets.QTableWidgetItem() self.tableWidget.setVerticalHeaderItem(3, item) item = QtWidgets.QTableWidgetItem() self.tableWidget.setVerticalHeaderItem(4, item) item = QtWidgets.QTableWidgetItem() self.tableWidget.setVerticalHeaderItem(5, item) item = QtWidgets.QTableWidgetItem() self.tableWidget.setVerticalHeaderItem(6, item) item = QtWidgets.QTableWidgetItem() self.tableWidget.setVerticalHeaderItem(7, item) item = QtWidgets.QTableWidgetItem() self.tableWidget.setVerticalHeaderItem(8, item) item = QtWidgets.QTableWidgetItem() self.tableWidget.setHorizontalHeaderItem(0, item) item = QtWidgets.QTableWidgetItem() self.tableWidget.setHorizontalHeaderItem(1, item) item = QtWidgets.QTableWidgetItem() self.tableWidget.setHorizontalHeaderItem(2, item) self.pushButton = QtWidgets.QPushButton(self.centralwidget) self.pushButton.setGeometry(QtCore.QRect(160, 830, 100, 40)) self.pushButton.setObjectName("pushButton") self.pushButton_2 = QtWidgets.QPushButton(self.centralwidget) self.pushButton_2.setGeometry(QtCore.QRect(660, 830, 100, 40)) self.pushButton_2.setObjectName("pushButton_2") self.pushButton_3 = QtWidgets.QPushButton(self.centralwidget) self.pushButton_3.setGeometry(QtCore.QRect(320, 830, 100, 40)) self.pushButton_3.setObjectName("pushButton_3") self.pushButton_4 = QtWidgets.QPushButton(self.centralwidget) self.pushButton_4.setGeometry(QtCore.QRect(500, 830, 100, 40)) self.pushButton_4.setObjectName("pushButton_4") self.lineEdit = QtWidgets.QLineEdit(self.centralwidget) self.lineEdit.setGeometry(QtCore.QRect(160, 560, 440, 40)) self.lineEdit.setObjectName("lineEdit") self.lineEdit_2 = QtWidgets.QLineEdit(self.centralwidget) self.lineEdit_2.setGeometry(QtCore.QRect(160, 620, 190, 40)) self.lineEdit_2.setObjectName("lineEdit_2") self.lineEdit_3 = QtWidgets.QLineEdit(self.centralwidget) self.lineEdit_3.setGeometry(QtCore.QRect(360, 620, 190, 40)) self.lineEdit_3.setObjectName("lineEdit_3") self.lineEdit_4 = QtWidgets.QLineEdit(self.centralwidget) self.lineEdit_4.setGeometry(QtCore.QRect(560, 620, 190, 40)) self.lineEdit_4.setObjectName("lineEdit_4") self.lineEdit_5 = QtWidgets.QLineEdit(self.centralwidget) self.lineEdit_5.setGeometry(QtCore.QRect(160, 700, 240, 40)) self.lineEdit_5.setObjectName("lineEdit_5") self.lineEdit_6 = QtWidgets.QLineEdit(self.centralwidget) self.lineEdit_6.setGeometry(QtCore.QRect(400, 700, 240, 40)) self.lineEdit_6.setObjectName("lineEdit_6") self.lineEdit_7 = QtWidgets.QLineEdit(self.centralwidget) self.lineEdit_7.setGeometry(QtCore.QRect(160, 770, 220, 40)) self.lineEdit_7.setObjectName("lineEdit_7") self.lineEdit_8 = QtWidgets.QLineEdit(self.centralwidget) self.lineEdit_8.setGeometry(QtCore.QRect(390, 770, 220, 40)) self.lineEdit_8.setObjectName("lineEdit_7") self.comboBox = QtWidgets.QComboBox(self.centralwidget) self.comboBox.setGeometry(QtCore.QRect(650, 560, 110, 40)) self.comboBox.setObjectName("comboBox") self.comboBox.addItem("") self.comboBox.addItem("") self.comboBox.addItem("") self.comboBox.addItem("") self.comboBox.addItem("") self.comboBox_2 = QtWidgets.QComboBox(self.centralwidget) self.comboBox_2.setGeometry(QtCore.QRect(650, 700, 110, 40)) self.comboBox_2.setObjectName("comboBox_2") self.comboBox_2.addItem("") self.comboBox_2.addItem("") self.comboBox_3 = QtWidgets.QComboBox(self.centralwidget) self.comboBox_3.setGeometry(QtCore.QRect(650, 770, 110, 40)) self.comboBox_3.setObjectName("comboBox_3") self.comboBox_3.addItem("") self.comboBox_3.addItem("") self.comboBox_3.addItem("") self.comboBox_3.addItem("") MainWindow.setCentralWidget(self.centralwidget) self.menubar = QtWidgets.QMenuBar(MainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 800, 18)) self.menubar.setObjectName("menubar") MainWindow.setMenuBar(self.menubar) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) self.comboBox.activated[str].connect(self.comb_one) self.comboBox_2.activated[str].connect(self.comb_two) self.comboBox_3.activated[str].connect(self.comb_three) self.pushButton.clicked.connect(self.calculated_field) self.pushButton_2.clicked.connect(MainWindow.close) self.pushButton_3.clicked.connect(self.search) self.pushButton_4.clicked.connect(self.t_clear) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) self.tableWidget.setStyleSheet("background:rgb(0,0,0,0);border-style:outset") self.tableWidget.verticalHeader().setVisible(False) self.tableWidget.horizontalHeader().setVisible(False) self.tableWidget.setShowGrid(False) # Grid lines are not visible self.pushButton.setStyleSheet("QPushButton{background:transparent}QPushButton:hover{background:#6DDF6D}\ QPushButton{color:rgb(30,144,150)}") self.pushButton_2.setStyleSheet("QPushButton{background:transparent}QPushButton:hover{background:#6DDF6D}\ QPushButton{color:rgb(30,144,150)}") self.pushButton_3.setStyleSheet("QPushButton{background:transparent}QPushButton:hover{background:#6DDF6D}\ QPushButton{color:rgb(30,144,150)}") self.pushButton_4.setStyleSheet("QPushButton{background:transparent}QPushButton:hover{background:#6DDF6D}\ QPushButton{color:rgb(30,144,150)}") self.comboBox.setStyleSheet("QComboBox{background:transparent}QComboBox:hover{background:transparent}" "QComboBox{color:rgb(30,144,150)}") self.comboBox_2.setStyleSheet("QComboBox{background:transparent}QComboBox:hover{background:transparent}" "QComboBox{color:rgb(30,144,150)}") self.comboBox_3.setStyleSheet("QComboBox{background:transparent}QComboBox:hover{background:transparent}" "QComboBox{color:rgb(30,144,150)}") self.lineEdit.setStyleSheet("background:rgb(0,0,0,15);border-width:0;border-style:outset") self.lineEdit_2.setStyleSheet("background:rgb(0,0,0,15);border-width:0;border-style:outset") self.lineEdit_3.setStyleSheet("background:rgb(0,0,0,15);border-width:0;border-style:outset") self.lineEdit_4.setStyleSheet("background:rgb(0,0,0,15);border-width:0;border-style:outset") self.lineEdit_5.setStyleSheet("background:rgb(0,0,0,15);border-width:0;border-style:outset") self.lineEdit_6.setStyleSheet("background:rgb(0,0,0,15);border-width:0;border-style:outset") self.lineEdit_7.setStyleSheet("background:rgb(0,0,0,15);border-width:0;border-style:outset") self.lineEdit_8.setStyleSheet("background:rgb(0,0,0,15);border-width:0;border-style:outset") def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "Fuzihao-test2,源码已上传Github及个人网站")) item = self.tableWidget.verticalHeaderItem(0) item.setText(_translate("MainWindow", "1")) item = self.tableWidget.verticalHeaderItem(1) item.setText(_translate("MainWindow", "2")) item = self.tableWidget.verticalHeaderItem(2) item.setText(_translate("MainWindow", "3")) item = self.tableWidget.verticalHeaderItem(3) item.setText(_translate("MainWindow", "4")) item = self.tableWidget.verticalHeaderItem(4) item.setText(_translate("MainWindow", "5")) item = self.tableWidget.verticalHeaderItem(5) item.setText(_translate("MainWindow", "6")) item = self.tableWidget.verticalHeaderItem(6) item.setText(_translate("MainWindow", "7")) item = self.tableWidget.verticalHeaderItem(7) item.setText(_translate("MainWindow", "8")) item = self.tableWidget.verticalHeaderItem(8) item.setText(_translate("MainWindow", "9")) item = self.tableWidget.horizontalHeaderItem(0) item.setText(_translate("MainWindow", "")) item = self.tableWidget.horizontalHeaderItem(1) item.setText(_translate("MainWindow", "")) item = self.tableWidget.horizontalHeaderItem(2) item.setText(_translate("MainWindow", "")) self.comboBox.setItemText(0, _translate("MainWindow", "平均")) self.comboBox.setItemText(1, _translate("MainWindow", "总数")) self.comboBox.setItemText(2, _translate("MainWindow", "最大")) self.comboBox.setItemText(3, _translate("MainWindow", "最小")) self.comboBox.setItemText(4, _translate("MainWindow", "求和")) self.comboBox_2.setItemText(0, _translate("MainWindow", "升序")) self.comboBox_2.setItemText(1, _translate("MainWindow", "降序")) self.comboBox_3.setItemText(0, _translate("MainWindow", "全局")) self.comboBox_3.setItemText(1, _translate("MainWindow", "开头")) self.comboBox_3.setItemText(2, _translate("MainWindow", "结尾")) self.comboBox_3.setItemText(3, _translate("MainWindow", "特殊字符")) self.pushButton.setText(_translate("MainWindow", "确认")) self.pushButton_2.setText(_translate("MainWindow", "关闭")) self.pushButton_3.setText(_translate("MainWindow", "搜索")) self.pushButton_4.setText(_translate("MainWindow", "清屏")) def comb_one(self, o): text = self.lineEdit.text() if o == '平均': sql = 'SELECT AVG({text}) FROM t1;'.format(text=text) elif o == '总数': sql = 'SELECT COUNT({text}) FROM t1;'.format(text=text) elif o == '最大': sql = 'SELECT MAX({text}) FROM t1;'.format(text=text) elif o == '最小': sql = 'SELECT MIN({text}) FROM t1;'.format(text=text) elif o == '求和': sql = 'SELECT SUM({text}) FROM t1;'.format(text=text) self.tableWidget.clear() print(sql) self.show(sql) def comb_two(self, t): text_input = self.lineEdit_5.text() text_input2 = self.lineEdit_6.text() if t == '升序': sql = "SELECT id, species,price FROM t1 GROUP BY {name1} ORDER BY {name2} ASC".format(name1=text_input, name2=text_input2) elif t == '降序': sql = "SELECT id, species,price FROM t1 GROUP BY {name1} ORDER BY {name2} DESC".format(name1=text_input, name2=text_input2) print(sql) self.tableWidget.clear() self.show(sql) def comb_three(self, s): text1 = self.lineEdit_7.text() text2 = self.lineEdit_8.text() if s == '全局': sql = "SELECT id, species FROM t1 WHERE {text1} REGEXP '{text2}';".format(text1=text1, text2=text2) elif s == '开头': sql = "SELECT id, species FROM t1 WHERE {text1} REGEXP '^{text2}';".format(text1=text1, text2=text2) elif s == '结尾': sql = "SELECT id, species FROM t1 WHERE {text1} REGEXP '{text2}$';".format(text1=text1, text2=text2) elif s == '特殊字符': sql = r"SELECT id, species FROM t1 WHERE {text1} REGEXP '{text2}';".format(text1=text1, text2=r'\\' + text2) print(sql) self.tableWidget.clear() self.show(sql) def calculated_field(self): t1 = self.lineEdit_2.text() t2 = self.lineEdit_3.text() t3 = self.lineEdit_4.text() sql = 'SELECT {text1},{text3}, {text1}{text2}' \ '{text3} FROM t1'.format(text1=t1, text2=t2, text3=t3) print(sql) self.tableWidget.clear() self.show(sql) def search(self): t1 = self.lineEdit_2.text() t2 = self.lineEdit_3.text() t3 = self.lineEdit_4.text() sql = "SELECT id,species FROM t1 WHERE {text1} IN (SELECT {text1} FROM t2 WHERE {text2} = '{text3}')".format \ (text1=t1, text2=t2, text3=t3) print(sql) self.tableWidget.clear() self.show(sql) def show(self, sql): I = self.getDbData() pool = PooledDB(pymysql, 5, host=str(I['db1']['host']), port=int(I['db1']['port']), user=str(I['db1']['user']), password=str(I['db1']['password']), db=str(I['db1']['db']) , setsession=['SET AUTOCOMMIT = 1']) connection = pool.connection() cursor = connection.cursor() cursor.execute(sql) result = cursor.fetchall() print("result:", result) for i in range(len(result)): for j in range(len(result[i])): print(result[i][j]) self.tableWidget.setItem(i, j, QtWidgets.QTableWidgetItem(str(result[i][j]))) cursor.close() connection.close() def t_clear(self): self.tableWidget.clear() self.lineEdit.clear() self.lineEdit_2.clear() self.lineEdit_3.clear() self.lineEdit_4.clear() self.lineEdit_5.clear() self.lineEdit_6.clear() self.lineEdit_7.clear() self.lineEdit_8.clear() if __name__ == "__main__": app = QtWidgets.QApplication(sys.argv) MainWindow = QtWidgets.QMainWindow() ui = Ui_MainWindow() ui.setupUi(MainWindow) MainWindow.show() sys.exit(app.exec_()) ```
{ "source": "jdkandersson/algorithms-data-structures", "score": 4 }
#### File: library/stack/__init__.py ```python class _Node: """Node for the linked list.""" def __init__(self, value, next_=None): """ Construct. Args: value: The value for the node. next_: The next node in the linked list. """ self.value = value self.next_ = next_ class StackEmptyError(Exception): """Raised when pop is called on an empty stack.""" class _LinkedList: """Linked list for the stack.""" def __init__(self): """Construct.""" self.head = None def add_first(self, value): """ Add new value to front of the linked list. Args: value: The value to add to the linked list. """ self.head = _Node(value, self.head) def remove_first(self): """ Remove the first node from the list and return the value. Raises StackEmptyError if the list is empty. Returns: The value of the first node. """ self.raise_empty() node = self.head self.head = self.head.next_ return node.value def raise_empty(self): """Raise StackEmptyError if the stack is empty.""" if self.head is None: raise StackEmptyError class Stack: """Implementation of a stack.""" def __init__(self): """Construct.""" self._list = _LinkedList() def push(self, value): """ Add a new value to the stack. Args: value: The value to add to the stack. """ self._list.add_first(value) def pop(self): """ Remove the most recently added value from the list and return it. Raises StackEmptyError if the stack is empty. Returns: The most recently added value. """ return self._list.remove_first() def peek(self): """ Return the value at the top of the stack without popping it. Raises StackEmptyError if the stack is empty. Returns: The top value. """ self._list.raise_empty() return self._list.head.value def is_empty(self): """ Check whether the stack is empty. Returns: Whether the stack is empty. """ return self._list.head is None ``` #### File: tests/hash_map/test_.py ```python from unittest import mock import pytest from library import hash_map @pytest.mark.parametrize( "capacity, raises", [(0, True), (15, True), (16, False), (17, True), (32, False)], ids=["too small", "too small", "minimum size", "not multiple of 2", "larger size"], ) def test_construct_capacity(capacity, raises): """ GIVEN initial capacity and whether ValueError should be raised WHEN a HashMap is constructed with the capacity THEN ValueError is raised when expected raises is True. """ if raises: with pytest.raises(ValueError): hash_map.HashMap(capacity) else: hash_map.HashMap(capacity) @pytest.mark.parametrize( "key, capacity, expected_index", [ (1, 16, 11), (2, 16, 5), (4, 16, 10), (8, 16, 3), (16, 16, 9), (32, 16, 11), (64, 16, 11), (1, 32, 11), (0.1, 16, 0), (0.2, 16, 13), (0.4, 16, 1), (0.8, 16, 4), (1.6, 16, 13), (3.2, 16, 1), (6.4, 16, 6), (0.1, 32, 16), ("key 1", 16, 9), ("key 2", 16, 3), ("key 4", 16, 9), ("key 8", 16, 7), ("key 16", 16, 0), ("key 32", 16, 14), ("key 64", 16, 6), ("key 1", 32, 9), ], ids=[ "int-1-16", "int-2-16", "int-4-16", "int-8-16", "int-16-16", "int-32-16", "int-64-16", "int-1-32", "float-0.1-16", "float-0.2-16", "float-0.4-16", "float-0.8-16", "float-1.6-16", "float-3.2-16", "float-6.4-16", "float-0.1-32", "str-key 1-16", "str-key 2-16", "str-key 4-16", "str-key 8-16", "str-key 16-16", "str-key 32-16", "str-key 64-16", "str-key 1-32", ], ) def test_calculate_index(key, capacity, expected_index): """ GIVEN key, capacity of HashMap and expected index WHEN HashMap is constructed with the capacity and _calculate_index is called with the key THEN the expected index is returned. """ test_hash_map = hash_map.HashMap(capacity) index = test_hash_map._calculate_index(key) assert index == expected_index @pytest.fixture def mocked_buckets_hash_map(): """HashMap with mocked buckets and _calculate_index.""" capacity = 16 test_hash_map = hash_map.HashMap(capacity) for idx in range(capacity): test_hash_map._buckets[idx] = mock.MagicMock() test_hash_map._calculate_index = mock.MagicMock() return test_hash_map def test_set_calculate_index( mocked_buckets_hash_map, ): # pylint: disable=redefined-outer-name """ GIVEN hash map with mocked _calculate_index and key WHEN set_ is called with the key THEN _calculate_index is called with the key. """ mocked_buckets_hash_map._calculate_index.return_value = 0 key = "key 1" mocked_buckets_hash_map.set_(key, "value 1") mocked_buckets_hash_map._calculate_index.assert_called_with(key) def test_set_insert(mocked_buckets_hash_map): # pylint: disable=redefined-outer-name """ GIVEN hash map with mocked _calculate_index, mocked buckets and key and value WHEN set_ is called with the key and value THEN the bucket with the index returned by _calculate_index is called with the key and value. """ mocked_buckets_hash_map._calculate_index.return_value = 0 key = "key 1" value = "value 1" mocked_buckets_hash_map.set_(key, value) mocked_buckets_hash_map._buckets[0].insert.assert_called_once_with(key, value) def test_get_calculate_index( mocked_buckets_hash_map, ): # pylint: disable=redefined-outer-name """ GIVEN hash map with mocked _calculate_index and key WHEN get is called with the key THEN _calculate_index is called with the key. """ mocked_buckets_hash_map._calculate_index.return_value = 0 key = "key 1" mocked_buckets_hash_map.get(key) mocked_buckets_hash_map._calculate_index.assert_called_once_with(key) def test_get_get_call(mocked_buckets_hash_map): # pylint: disable=redefined-outer-name """ GIVEN hash map with mocked _calculate_index, mocked buckets and key WHEN get is called with the key THEN the bucket with the index returned by _calculate_index is called with the key. """ mocked_buckets_hash_map._calculate_index.return_value = 0 key = "key 1" mocked_buckets_hash_map.get(key) mocked_buckets_hash_map._buckets[0].get.assert_called_once_with(key) def test_get_get_return( mocked_buckets_hash_map, ): # pylint: disable=redefined-outer-name """ GIVEN hash map with mocked _calculate_index and mocked buckets WHEN get is called with the key THEN the get return value of the bucket with the index returned by _calculate_index is returned. """ mocked_buckets_hash_map._calculate_index.return_value = 0 key = "key 1" return_value = mocked_buckets_hash_map.get(key) assert return_value == mocked_buckets_hash_map._buckets[0].get.return_value def test_set_get_missing(): """ GIVEN empty hash map WHEN get is called with a key THEN KeyError is raised. """ test_hash_map = hash_map.HashMap() with pytest.raises(KeyError): test_hash_map.get("key 1") def test_set_get(): """ GIVEN empty hash map and key and value WHEN set is called with the key and value and get is called with the key THEN the value is returned. """ test_hash_map = hash_map.HashMap() key = "key 1" value = "value 1" test_hash_map.set_(key, value) return_value = test_hash_map.get(key) assert return_value == value def test_exists_calculate_index( mocked_buckets_hash_map, ): # pylint: disable=redefined-outer-name """ GIVEN hash map with mocked _calculate_index and key WHEN exists is called with the key THEN _calculate_index is called with the key. """ mocked_buckets_hash_map._calculate_index.return_value = 0 key = "key 1" mocked_buckets_hash_map.exists(key) mocked_buckets_hash_map._calculate_index.assert_called_once_with(key) def test_exists_exists_call( mocked_buckets_hash_map, ): # pylint: disable=redefined-outer-name """ GIVEN hash map with mocked _calculate_index, mocked buckets and key WHEN exists is called with the key THEN the bucket with the index returned by _calculate_index is called with the key. """ mocked_buckets_hash_map._calculate_index.return_value = 0 key = "key 1" mocked_buckets_hash_map.exists(key) mocked_buckets_hash_map._buckets[0].exists.assert_called_once_with(key) def test_exists_exists_return( mocked_buckets_hash_map, ): # pylint: disable=redefined-outer-name """ GIVEN hash map with mocked _calculate_index and mocked buckets WHEN exists is called with the key THEN the exists return value of the bucket with the index returned by _calculate_index is returned. """ mocked_buckets_hash_map._calculate_index.return_value = 0 key = "key 1" return_value = mocked_buckets_hash_map.exists(key) assert return_value == mocked_buckets_hash_map._buckets[0].exists.return_value def test_exists_missing(): """ GIVEN empty hash map WHEN exists is called with a key THEN False is returned. """ test_hash_map = hash_map.HashMap() exists = test_hash_map.exists("key 1") assert exists is False def test_exists_present(): """ GIVEN empty hash map and key and value WHEN set is called with the key and value and exists is called with the key THEN True is returned. """ test_hash_map = hash_map.HashMap() key = "key 1" test_hash_map.set_(key, "value 1") exists = test_hash_map.exists(key) assert exists is True def test_delete_calculate_index( mocked_buckets_hash_map, ): # pylint: disable=redefined-outer-name """ GIVEN hash map with mocked _calculate_index and key WHEN delete is called with the key THEN _calculate_index is called with the key. """ mocked_buckets_hash_map._calculate_index.return_value = 0 key = "key 1" mocked_buckets_hash_map.delete(key) mocked_buckets_hash_map._calculate_index.assert_called_once_with(key) def test_delete_delete_call( mocked_buckets_hash_map, ): # pylint: disable=redefined-outer-name """ GIVEN hash map with mocked _calculate_index, mocked buckets and key WHEN delete is called with the key THEN the bucket with the index returned by _calculate_index is called with the key. """ mocked_buckets_hash_map._calculate_index.return_value = 0 key = "key 1" mocked_buckets_hash_map.delete(key) mocked_buckets_hash_map._buckets[0].delete.assert_called_once_with(key) def test_delete_missing(): """ GIVEN empty hash map WHEN delete is called with a key THEN KeyError is raised. """ test_hash_map = hash_map.HashMap() with pytest.raises(KeyError): test_hash_map.delete("key 1") def test_delete_present(): """ GIVEN empty hash map and key and value WHEN set is called with the key and value and delete is called with the key THEN the key no longer exists in the hash map. """ test_hash_map = hash_map.HashMap() key = "key 1" test_hash_map.set_(key, "value 1") test_hash_map.delete(key) assert test_hash_map.exists(key) is False @pytest.mark.parametrize( "actions, expected_size", [ ([], 0), ([("set_", ("key 1", "value 1"))], 1), ([("set_", ("key 1", "value 1")), ("set_", ("key 1", "value 2"))], 1), ([("set_", ("key 1", "value 1")), ("delete", ("key 1",))], 0), ([("set_", ("key 1", "value 1")), ("set_", ("key 2", "value 2"))], 2), ( [ ("set_", ("key 1", "value 1")), ("set_", ("key 2", "value 2")), ("delete", ("key 2",)), ], 1, ), ], ids=[ "empty,0", "set,1", "set-update,1", "set-delete,0", "set-set,2", "set-set-delete,1", ], ) def test_size(actions, expected_size): """ GIVEN empty hash map, actions to modify the hash map and expected size WHEN the actions are performed on the map THEN the map has the expected size. """ test_hash_map = hash_map.HashMap() for operation, args in actions: getattr(test_hash_map, operation)(*args) assert test_hash_map.size == expected_size def test_size_delete_raises(): """ GIVEN hash map with a single element WHEN delete is called with a different key than the element THEN size is not decremented. """ test_hash_map = hash_map.HashMap() test_hash_map.set_("key 1", "value 1") with pytest.raises(KeyError): test_hash_map.delete("key 2") assert test_hash_map.size == 1 @pytest.mark.parametrize( "elements", [ [], [("key 1", "value 1")], [("key 1", "value 1"), ("key 2", "value 2")], [ ("key 1", "value 1"), ("key 2", "value 2"), ("key 4", "value 4"), ("key 8", "value 8"), ("key 16", "value 16"), ("key 32", "value 32"), ("key 64", "value 64"), ], ], ids=["empty", "single", "multiple", "many"], ) def test_iterate(elements): """ GIVEN empty hash map and elements to set WHEN elements are set and the map is iterated over THEN all elements are returned. """ test_hash_map = hash_map.HashMap() for element in elements: test_hash_map.set_(*element) element_set = set(iter(test_hash_map)) assert len(element_set) == len(elements) for element in elements: assert element in element_set @pytest.mark.parametrize( "elements", [ [], [("key 1", "value 1")], [("key 1", "value 1"), ("key 2", "value 2")], [ ("key 1", "value 1"), ("key 2", "value 2"), ("key 4", "value 4"), ("key 8", "value 8"), ("key 16", "value 16"), ("key 32", "value 32"), ("key 64", "value 64"), ], ], ids=["empty", "single", "multiple", "many"], ) def test_clear(elements): """ GIVEN empty hash map and elements to set WHEN elements are set and clear is called THEN the map has zero size and iterating over it returns an empty list. """ test_hash_map = hash_map.HashMap() for element in elements: test_hash_map.set_(*element) test_hash_map.clear() assert test_hash_map.size == 0 assert list(iter(test_hash_map)) == [] @pytest.mark.parametrize( "elements", [ [], [("key 1", "value 1")], [("key 1", "value 1"), ("key 2", "value 2")], [ ("key 1", "value 1"), ("key 2", "value 2"), ("key 4", "value 4"), ("key 8", "value 8"), ("key 16", "value 16"), ("key 32", "value 32"), ("key 64", "value 64"), ], ], ids=["empty", "single", "multiple", "many"], ) def test_construct_source(elements): """ GIVEN list of key value tuples WHEN hash map is constructed with list as source THEN map contains each element in the list. """ test_hash_map = hash_map.HashMap(source=elements) element_set = set(iter(test_hash_map)) assert len(element_set) == len(elements) for element in elements: assert element in element_set @pytest.mark.parametrize( "elements", [ [], [("key 1", "value 1")], [("key 1", "value 1"), ("key 2", "value 2")], [ ("key 1", "value 1"), ("key 2", "value 2"), ("key 4", "value 4"), ("key 8", "value 8"), ("key 16", "value 16"), ("key 32", "value 32"), ("key 64", "value 64"), ], ], ids=["empty", "single", "multiple", "many"], ) def test_clone_elements(elements): """ GIVEN empty hash map and elements to add to it WHEN hash map is constructed with list as source and cloned THEN cloned map contains each element in the list. """ test_hash_map = hash_map.HashMap(source=elements) cloned_hash_map = test_hash_map.clone() element_set = set(iter(cloned_hash_map)) assert len(element_set) == len(elements) for element in elements: assert element in element_set def test_clone_not_same(): """ GIVEN empty hash map WHEN hash map is cloned THEN the cloned map is not the same object and contains different buckets. """ test_hash_map = hash_map.HashMap() cloned_hash_map = test_hash_map.clone() assert id(cloned_hash_map) != id(test_hash_map) for original_bucket, cloned_bucket in zip( test_hash_map._buckets, cloned_hash_map._buckets ): assert id(original_bucket) != id(cloned_bucket) def test_clone_capacity_copied(): """ GIVEN empty hash map and capacity of the hash map WHEN hash map is cloned THEN the cloned map has the same capacity. """ capacity = 16 test_hash_map = hash_map.HashMap(capacity) cloned_hash_map = test_hash_map.clone() assert cloned_hash_map.capacity == capacity @pytest.mark.parametrize( "initial_capacity, initial_size, expected_capacity", [(16, 11, 16), (16, 12, 32), (32, 13, 32), (32, 24, 64)], ids=[ "16,11,no increase", "16,12,buckets double", "32,13,no increase", "32,24,buckets double", ], ) def test_resize_up(initial_capacity, initial_size, expected_capacity): """ GIVEN empty hash map, initial capacity, initial number of elements and expected capacity WHEN the initial size plus one key and value is added to the map THEN the capacity is the expected final capacity and all added key value pairs are still in the map. """ elements = [ (f"key {idx + 1}", f"value {idx + 1}") for idx in range(initial_size + 1) ] test_hash_map = hash_map.HashMap(initial_capacity, elements) assert test_hash_map.capacity == expected_capacity assert len(test_hash_map._buckets) == expected_capacity assert test_hash_map.size == initial_size + 1 element_set = set(iter(test_hash_map)) assert len(element_set) == len(elements) for element in elements: assert element in element_set @pytest.mark.parametrize( "initial_capacity, initial_size, expected_capacity", [(32, 13, 32), (32, 12, 16), (16, 11, 16), (16, 6, 16), (64, 24, 32)], ids=[ "32,13,no decrease", "32,12,buckets halve", "16,11,no decrease", "16,6,no decrease", "64,24,buckets halve", ], ) def test_resize_down(initial_capacity, initial_size, expected_capacity): """ GIVEN empty hash map, initial capacity, initial number of elements and expected capacity WHEN the initial size is added to the map and then one is removed THEN the capacity is the expected final capacity and all key value pairs except the removed pair are still in the map. """ elements = [(f"key {idx + 1}", f"value {idx + 1}") for idx in range(initial_size)] test_hash_map = hash_map.HashMap(initial_capacity, elements) test_hash_map.delete(elements[-1][0]) assert test_hash_map.capacity == expected_capacity assert len(test_hash_map._buckets) == expected_capacity assert test_hash_map.size == initial_size - 1 element_set = set(iter(test_hash_map)) assert len(element_set) == len(elements[:-1]) for element in elements[:-1]: assert element in element_set ``` #### File: algorithms-data-structures/tests/test_queue.py ```python import pytest from library import queue @pytest.mark.parametrize( "length, operations, exception", [ (0, ["deq"], queue.QueueEmptyError), (0, ["enq"], queue.QueueFullError), (1, ["enq", "enq"], queue.QueueFullError), (1, ["enq", "deq", "deq"], queue.QueueEmptyError), ], ids=["0,deq", "0,enq", "1,enq-enq", "1,enq-deq-deq"], ) def test_end_deq_raise(length, operations, exception): """ GIVEN length of queue, operations to perform and exception that should be raised WHEN queue with the length is constructed and the operations are performed THEN the exception is raised """ test_queue = queue.Queue(length) def perform_operation(operation): if operation == "enq": test_queue.enqueue("value") elif operation == "deq": test_queue.dequeue() else: raise Exception for idx, operation in enumerate(operations): if idx == len(operations) - 1: with pytest.raises(exception): perform_operation(operation) continue perform_operation(operation) @pytest.mark.parametrize( "length, actions", [ (1, [("enq", "value 1"), ("deq", "value 1")]), ( 1, [ ("enq", "value 1"), ("deq", "value 1"), ("enq", "value 1"), ("deq", "value 1"), ], ), ( 2, [ ("enq", "value 1"), ("enq", "value 2"), ("deq", "value 1"), ("enq", "value 3"), ("deq", "value 2"), ("deq", "value 3"), ], ), ], ids=["1,enq-deq", "1,enq-deq-enq-deq", "2,enq-enq-deq-enq-deq-deq"], ) def test_enqueue_dequeue(length, actions): """ GIVEN list of enqueue (with value to enqueue) and dequeue (with value expected to be dequeued) actions and the length of a queue WHEN actions are performed THE expected values are dequeued. """ test_queue = queue.Queue(length) for action in actions: operation, value = action if operation == "enq": test_queue.enqueue(value) elif operation == "deq": assert test_queue.dequeue() == value def test_get_front_empty(): """ GIVEN empty queue WHEN get_front is called THEN queueEmptyError is raised. """ test_queue = queue.Queue() with pytest.raises(queue.QueueEmptyError): test_queue.get_front() def test_get_front_single(): """ GIVEN queue with a single value WHEN get_front is called THEN the value is returned and can still be dequeued. """ test_queue = queue.Queue() value = "value 1" test_queue.enqueue(value) returned_value = test_queue.get_front() assert returned_value == value assert test_queue.dequeue() == value def test_get_front_multiple(): """ GIVEN queue with a multiple values WHEN get_front is called THEN the front value is returned. """ test_queue = queue.Queue() test_queue.enqueue("value 1") test_queue.enqueue("value 2") returned_value = test_queue.get_front() assert returned_value == "value 1" def test_is_empty_empty(): """ GIVEN empty queue WHEN is_empty is called THEN True is returned. """ test_queue = queue.Queue() result = test_queue.is_empty() assert result is True def test_is_empty_not_empty(): """ GIVEN queue that is not empty WHEN is_empty is called THEN False is returned. """ test_queue = queue.Queue() test_queue.enqueue("value 1") result = test_queue.is_empty() assert result is False def test_clear(): """ GIVEN queue with length 1 with an item WHEN clear is called THEN the queue is empty and can be filled up again. """ test_queue = queue.Queue(1) test_queue.enqueue("value 1") test_queue.clear() assert test_queue.is_empty() is True test_queue.enqueue("value 2") ```
{ "source": "jdkandersson/cloudformation-kubernetes", "score": 3 }
#### File: old_lambda/lambda_function/operations.py ```python import typing import kubernetes from . import exceptions from . import helpers class CreateReturn(typing.NamedTuple): """ Structure of the create return value. Attrs: status: The status of the operation. Is SUCCESS or FAILURE. reason: If the status is FAILURE, the reason for the failure. physical_name: If the status is success, the physical name of the created resource in the form [<namespace>/]<name> where the namespace is included if the operation is namespaced. """ status: str reason: typing.Optional[str] physical_name: typing.Optional[str] def create(*, body: typing.Dict[str, typing.Any]) -> CreateReturn: """ Execute create command. Assume body has at least metadata with a name. Args: body: The body to create. Returns: Information about the outcome of the operation. """ try: api_version = helpers.get_api_version(body=body) kind = helpers.get_kind(body=body) except exceptions.ParentError as exc: return CreateReturn("FAILURE", str(exc), None) client_function, namespaced = helpers.get_function( api_version=api_version, kind=kind, operation="create" ) # Handling non-namespaced cases if not namespaced: try: response = client_function(body=body) return CreateReturn("SUCCESS", None, response.metadata.name) except kubernetes.client.rest.ApiException as exc: return CreateReturn("FAILURE", str(exc), None) # Handling namespaced namespace = helpers.calculate_namespace(body=body) try: response = client_function(body=body, namespace=namespace) return CreateReturn( "SUCCESS", None, f"{response.metadata.namespace}/{response.metadata.name}" ) except kubernetes.client.rest.ApiException as exc: return CreateReturn("FAILURE", str(exc), None) class ExistsReturn(typing.NamedTuple): """ Structure of the update return value. Attrs: status: The status of the operation. Is SUCCESS or FAILURE. reason: If the status is FAILURE, the reason for the failure. """ status: str reason: typing.Optional[str] def update(*, body: typing.Dict[str, typing.Any], physical_name: str) -> ExistsReturn: """ Execute update command. Assume body has at least metadata with a name. Args: body: The body to update. physical_name: The namespace (if namespaced) and name of the resource. Returns: Information about the outcome of the operation. """ try: api_version = helpers.get_api_version(body=body) kind = helpers.get_kind(body=body) except exceptions.ParentError as exc: return ExistsReturn("FAILURE", str(exc)) client_function, namespaced = helpers.get_function( api_version=api_version, kind=kind, operation="update" ) # Handling non-namespaced cases if not namespaced: try: client_function(body=body, name=physical_name) return ExistsReturn("SUCCESS", None) except kubernetes.client.rest.ApiException as exc: return ExistsReturn("FAILURE", str(exc)) # Handling namespaced namespace, name = physical_name.split("/") try: client_function(body=body, namespace=namespace, name=name) return ExistsReturn("SUCCESS", None) except kubernetes.client.rest.ApiException as exc: return ExistsReturn("FAILURE", str(exc)) def delete(*, body: typing.Dict[str, typing.Any], physical_name: str) -> ExistsReturn: """ Execute delete command. Assume body has at least metadata with a name. Args: body: The body to delete. physical_name: The namespace (if namespaced) and name of the resource. Returns: Information about the outcome of the operation. """ try: api_version = helpers.get_api_version(body=body) kind = helpers.get_kind(body=body) except exceptions.ParentError as exc: return ExistsReturn("FAILURE", str(exc)) client_function, namespaced = helpers.get_function( api_version=api_version, kind=kind, operation="delete" ) # Handling non-namespaced cases if not namespaced: try: client_function(name=physical_name) return ExistsReturn("SUCCESS", None) except kubernetes.client.rest.ApiException as exc: return ExistsReturn("FAILURE", str(exc)) # Handling namespaced namespace, name = physical_name.split("/") try: client_function(namespace=namespace, name=name) return ExistsReturn("SUCCESS", None) except kubernetes.client.rest.ApiException as exc: return ExistsReturn("FAILURE", str(exc)) ``` #### File: tests/lambda_function/test_helpers.py ```python import pytest from kubernetes import client from lambda_function import exceptions from lambda_function import helpers from . import fixtures @pytest.mark.parametrize("group_version", fixtures.GROUP_VERSIONS) @pytest.mark.helper def test_calculate_client(group_version): """ GIVEN combination of group and version WHEN calculate_client is called with the group and version separated by / THEN the returned module is available as a client. """ if group_version["group"]: api_version = f"{group_version['group']}/{group_version['version']}" else: api_version = group_version["version"] module = helpers.calculate_client(api_version=api_version) assert hasattr(client, module) @pytest.mark.parametrize("group_version_kind", fixtures.GROUP_VERSION_KINDS) @pytest.mark.helper def test_calculate_client_kind(group_version_kind): """ GIVEN combination of group, version and kind WHEN calculate_client is called with the kind and module name THEN the returned function name is available on the module. """ for operation in ["create", "update", "delete"]: # Getting the expected client module name if group_version_kind["group"]: api_version = ( f"{group_version_kind['group']}/{group_version_kind['version']}" ) else: api_version = group_version_kind["version"] module_name = helpers.calculate_client(api_version=api_version) client_function = helpers.calculate_function_name( kind=group_version_kind["kind"], operation=operation, module_name=module_name, ) module = getattr(client, module_name) assert hasattr(module, client_function) @pytest.mark.parametrize( "body, expected_namespace", [ ({}, "default"), ({"metadata": {}}, "default"), ({"metadata": {"namespace": "namespace 1"}}, "namespace 1"), ], ids=["empty", "metadata empty", "namespace in metadata"], ) @pytest.mark.helper def test_calculate_namespace_empty(body, expected_namespace): """ GIVEN body and expected namespace WHEN calculate_namespace is called with the body THEN the expected namespace is returned. """ namespace = helpers.calculate_namespace(body=body) assert namespace == expected_namespace @pytest.mark.parametrize( "api_version, kind, expected_function, expected_namespaced", [ ( "apps/v1", "deployment", client.AppsV1Api().create_namespaced_deployment, True, ), ("v1", "namespace", client.CoreV1Api().create_namespace, False), ], ) @pytest.mark.helper def test_get_function(api_version, kind, expected_function, expected_namespaced): """ GIVEN api version, kind, expected function and expected namespaced WHEN get_function is called with the api version, kind and create operation THEN the expected function is returned with the expected namespaced value. """ client_function, namespaced = helpers.get_function( api_version=api_version, kind=kind, operation="create" ) assert str(client_function)[:-11] == str(expected_function)[:-11] assert namespaced == expected_namespaced @pytest.mark.helper def test_get_api_version_missing(): """ GIVEN empty dictionary WHEN get_api_version is called with the dictionary THEN ApiVersionMissingError is raised. """ with pytest.raises(exceptions.ApiVersionMissingError): helpers.get_api_version(body={}) @pytest.mark.helper def test_get_api_version(): """ GIVEN dictionary with apiVersion WHEN get_api_version is called with the dictionary THEN the value of apiVersion is returned. """ body = {"apiVersion": "version 1"} api_version = helpers.get_api_version(body=body) assert api_version == "version 1" @pytest.mark.helper def test_get_kind_missing(): """ GIVEN empty dictionary WHEN get_kind is called with the dictionary THEN KindMissingError is raised. """ with pytest.raises(exceptions.KindMissingError): helpers.get_kind(body={}) @pytest.mark.helper def test_get_kind(): """ GIVEN dictionary with kind WHEN get_kind is called with the dictionary THEN the value of kind is returned. """ body = {"kind": "kind 1"} kind = helpers.get_kind(body=body) assert kind == "kind 1" ```
{ "source": "jdkaplan/QQ", "score": 3 }
#### File: jdkaplan/QQ/command.py ```python class Command: def __eq__(self, other): return type(self) == type(other) def copy(self): return self def __repr__(self): return f"Command(name={repr(type(self).__name__)})" NO_TERMINATE=None FUNC_TERMINATE=0 LOOP_TERMINATE=1 ``` #### File: jdkaplan/QQ/evaluator.py ```python import sys from environment import Env import command import exceptions import parser def repl(): env = Env() while (inp := input("> ")) != "QUIT!": # or whatever inst = parser.parse(inp) # TODO inst.execute(env) def evaluate_file(fname): with open(fname) as f: env = Env() inst_q = parser.parse(f.read()) # TODO term = inst_q.execute(env) # assuming this will be a Queue for now # break on the top level will cause execution to stop, but should really be an error. ret # can be used to return early. if term == command.LOOP_TERMINATE: raise exceptions.QQError("Can't break out of the main program body.") if __name__ == '__main__': if len(sys.argv) > 1: evaluate_file(sys.argv[1]) else: repl() ``` #### File: jdkaplan/QQ/evaluator_test.py ```python from dataclasses import dataclass import os import subprocess import tempfile import unittest write_golden_files = False @dataclass class SampleFile: base: str input_path: str output_path: str class TestEvaluator(unittest.TestCase): excluded_programs = [ # This program takes a very long time to terminate. 'rule', ] def sample_programs(self): input_dir = os.path.join(os.path.dirname(__file__), 'test_programs') output_dir = os.path.join(os.path.dirname(__file__), 'test_evaluations') samples = [] for filename in os.listdir(input_dir): base, _ = os.path.splitext(filename) if base in self.excluded_programs: continue input_path = os.path.join(input_dir, filename) stdout_path = os.path.join(output_dir, base + '.output') samples.append(SampleFile(base, input_path, stdout_path)) return samples def evaluate(self, filename): eval_path = os.path.join(os.path.dirname(__file__), 'evaluator.py') with open(filename) as inp: text = inp.read() with tempfile.NamedTemporaryFile(mode='w+', delete=False) as src: src.write(text) # Crash the program to get queue state. src.write("\nQQ\n") # Since we're not closing the file, we need to seek back to the # start before we try reading it again. src.seek(0) capture = subprocess.run( ['python', eval_path, src.name], capture_output=True, text=True, ) return capture.stdout @unittest.skipIf(write_golden_files, 'writing golden files') def test_sample_programs(self): for program in self.sample_programs(): with self.subTest(program.base): actual = self.evaluate(program.input_path) with open(program.output_path) as out: expected = out.read() self.assertEqual(actual, expected) @unittest.skipIf(not write_golden_files, 'not writing golden files') def test_write_golden_files(self): for program in self.sample_programs(): with self.subTest(program.base): stdout = self.evaluate(program.input_path) with open(program.output_path, 'w') as out: out.write(stdout) if __name__ == "__main__": unittest.main() ```
{ "source": "jdkato/blocktest", "score": 3 }
#### File: examples/simple/my_component.py ```python import spacy def my_component(doc): # my_component begin print("After tokenization, this doc has %s tokens." % len(doc)) if len(doc) < 10: print("This is a pretty short document.") return doc nlp = spacy.load('en') nlp.add_pipe(my_component, name='print_info', first=True) print(nlp.pipe_names) # ['print_info', 'tagger', 'parser', 'ner'] doc = nlp(u"This is a sentence.") # my_component end assert nlp.pipe_names == ['print_info', 'tagger', 'parser', 'ner'] ```
{ "source": "jdkato/codetype", "score": 3 }
#### File: codetype/test/test_first_lines.py ```python import os import sys import re import json import unittest from codecs import getdecoder sys.path.insert(0, os.path.abspath(".")) REGEXP_DIR = os.path.join("test", "lang", "regexp") class FirstLinesTestCase(unittest.TestCase): """Tests for codetype's utility functions. """ def test_identify(self): unicode_escape = getdecoder("unicode_escape") for test in os.listdir(REGEXP_DIR): if test.endswith(".json"): with open(os.path.join(REGEXP_DIR, test)) as data_file: data = json.load(data_file) for key in data: regexp = unicode_escape(key)[0] accepted = data[key]["accepted"] rejected = data[key]["rejected"] for s in accepted: self.assertTrue( re.search(regexp, s), msg="'{0}' does not match '{1}'".format(regexp, s) ) for s in rejected: self.assertFalse( re.search(regexp, s), msg="'{0}' matches '{1}'".format(regexp, s) ) if __name__ == "__main__": unittest.main() ```
{ "source": "jdkato/SubVale", "score": 3 }
#### File: jdkato/SubVale/Vale.py ```python import binascii import cgi import json import os import subprocess import urllib.parse import webbrowser import requests import sublime import sublime_plugin from Default.paragraph import expand_to_paragraph Settings = None class ValeFixCommand(sublime_plugin.TextCommand): """Applies a fix for an alert. """ def run(self, edit, **args): alert, suggestion = args["alert"], args["suggestion"] offset = self.view.text_point(alert["Line"] - 1, 0) coords = sublime.Region( offset + alert["Span"][0] - 1, offset + alert["Span"][1] ) if alert["Action"]["Name"] != "remove": self.view.replace(edit, coords, suggestion) else: coords.b = coords.b + 1 self.view.erase(edit, coords) self.view.window().status_message( "[Vale Server] Successfully applied fix!") def debug(message, prefix="Vale", level="debug"): """Print a formatted console entry to the Sublime Text console. Args: message (str): A message to print to the console prefix (str): An optional prefix level (str): One of debug, info, warning, error [Default: debug] Returns: str: Issue a standard console print command. """ if Settings.get("vale_debug"): print( "{prefix}: [{level}] {message}".format( message=message, prefix=prefix, level=level ) ) def show_suggestions(suggestions, payload): """Show a Quick Panel of possible solutions for the given alert. """ alert = json.loads(payload) options = [] for suggestion in suggestions: if alert["Action"]["Name"] == "remove": options.append("Remove '" + alert["Match"] + "'") else: options.append("Replace with '" + suggestion + "'") sublime.active_window().show_quick_panel( options, lambda idx: apply_suggestion(alert, suggestions, idx), sublime.MONOSPACE_FONT ) def apply_suggestion(alert, suggestions, idx): """Apply the given suggestion to the active buffer. """ if idx >= 0 and idx < len(suggestions): suggestion = suggestions[idx] view = sublime.active_window().active_view() view.run_command("vale_fix", { "alert": alert, "suggestion": suggestion }) def handle_navigation(path): """Handle navigation after a user clicks one of our links. """ if os.path.exists(path): # The path exists, open it in a new tab. sublime.active_window().open_file(path) elif path.startswith("http"): # The path doesn't exist, assume it's an URL. webbrowser.open(path) else: # It's an alert to process. server = urllib.parse.urljoin(Settings.get("vale_server"), "suggest") alert = binascii.unhexlify(path.encode()).decode() r = requests.post(server, data={ "alert": alert }) show_suggestions(r.json().get("suggestions", []), alert) def query(endpoint, payload={}): """Query the Vale Server API with the given `endpoint` and `payload`. """ try: server = urllib.parse.urljoin(Settings.get("vale_server"), endpoint) r = requests.get(server, params=payload) return r.json() if r.status_code == 200 else {} except requests.exceptions.RequestException as e: debug(str(e), level="error") return {} def make_link(url, linkText="{url}"): """Return a link HTML string. """ template = "<a href=\"{url}\">" + linkText + "</a>" return template.format(url=url) def post_file(path): """ """ try: server = urllib.parse.urljoin(Settings.get("vale_server"), "file") debug("running vale ({0}) on {1}".format(server, path)) r = requests.post(server, data={ "file": path, "path": os.path.dirname(path) }) if r.status_code != 200: return {} body = r.json()["path"] with open(body, "r+", encoding="utf-8") as f: return json.load(f) except requests.exceptions.RequestException as e: debug(e) return {} def post_str(buf, ext): """ """ try: server = urllib.parse.urljoin(Settings.get("vale_server"), "vale") debug("running vale ({0}) on {1}".format(server, buf)) r = requests.post(server, data={ "text": buf, "format": ext }) if r.status_code != 200: return {} return r.json() except requests.exceptions.RequestException as e: debug(e) return {} class ValeSettings(object): """Provide global access to and management of Vale's settings. """ settings_file = "Vale.sublime-settings" settings = sublime.load_settings(settings_file) def __init__(self): self.on_hover = [] self.error_template = None self.warning_template = None self.info_template = None self.css = None self.settings.add_on_change("reload", lambda: self.load()) self.load() def load(self): """Load Vale's settings. """ self.settings = sublime.load_settings(self.settings_file) self.__load_resources() def is_supported(self, syntax): """Determine if `syntax` has been specified in the settings. """ return True def get_styles(self): """Get Vale's base styles. """ config = self.get_config() return config["GBaseStyles"] def get_draw_style(self): """Get the region styling. """ underlined = sublime.DRAW_NO_FILL | sublime.DRAW_NO_OUTLINE style = self.get("vale_alert_style") if style == "solid_underline": return sublime.DRAW_SOLID_UNDERLINE | underlined elif style == "stippled_underline": return sublime.DRAW_STIPPLED_UNDERLINE | underlined elif style == "squiggly_underline": return sublime.DRAW_SQUIGGLY_UNDERLINE | underlined return sublime.DRAW_OUTLINED def get_config(self): """Create a list of settings from the vale binary. """ return query("config") def put(self, setting, value): """Store and save `setting` as `value`. Args: setting (str): The name of the setting to be accessed. value (str, int, bool): The value to be stored. """ self.settings.set(setting, value) sublime.save_settings(self.settings_file) def get(self, setting): """Return the value associated with `setting`. Args: setting (str): The name of the setting to be accessed. Returns: (str, int, bool): The value associated with `setting`. The default value is ''. """ return self.settings.get(setting, "") def clear_on_hover(self): """Clear Vale's regions and hover data. """ for alert in self.on_hover: for level in ["error", "warning", "suggestion"]: sublime.View(alert["view_id"]).erase_regions( "vale-server-" + level ) del self.on_hover[:] def __load_resources(self): """Load Vale's static resources. """ self.error_template = sublime.load_resource( self.settings.get("vale_error_template") ) self.warning_template = sublime.load_resource( self.settings.get("vale_warning_template") ) self.info_template = sublime.load_resource( self.settings.get("vale_info_template") ) self.css = sublime.load_resource(self.settings.get("vale_css")) class ValeDashboardCommand(sublime_plugin.WindowCommand): """Opens the Vale Server dashboard. """ def run(self): instance = Settings.get("vale_server") webbrowser.open(instance) class ValeReportCommand(sublime_plugin.WindowCommand): """Generates a report for the active folder. """ def run(self): instance = Settings.get("vale_server") wind = sublime.active_window() name = os.path.dirname(wind.active_view().file_name()) server = urllib.parse.urljoin( instance, "/summary.html?path={0}".format(name) ) webbrowser.open(server) class ValeVocabCommand(sublime_plugin.WindowCommand): """Opens the user-specified vocab file. """ def run(self, name): config = Settings.get_config() src = os.path.join( config["StylesPath"], "Vocab", config["Project"], name + ".txt") sublime.active_window().open_file(src) class ValeVocabEditCommand(sublime_plugin.WindowCommand): """Adds the user-selected term to the given file. """ def run(self, name): sel = self.window.active_view().sel() reg = sublime.Region(sel[0].a, sel[0].b) if reg.size() == 0: reg = self.window.active_view().word(reg) term = self.window.active_view().substr(reg) config = Settings.get_config() project = config["Project"] words = query("vocab", { "name": project, "file": name }) words.append(term) sorted_list = sorted(set(words), key=str.casefold) server = urllib.parse.urljoin(Settings.get("vale_server"), "update") r = requests.post(server, data={ "path": project + "." + name, "text": "\n".join(sorted_list) }) if r.status_code == 200: self.window.status_message( "Successfully added '{0}' to '{1}' vocab.".format(term, project) ) class ValeEditStylesCommand(sublime_plugin.WindowCommand): """Provides quick access to styles on a view-specific basis. """ styles = [] def run(self): """Show a list of all styles applied to the active view. """ styles_dir = os.path.dirname(self.window.active_view().file_name()) config = Settings.get_config() path = config["StylesPath"] if not path or not os.path.exists(path): debug("invalid path!") return styles = [] for s in os.listdir(path): style = os.path.join(path, s) if s == "Vocab" or not os.path.isdir(style): continue self.styles.append(style) styles.append(s) self.window.show_quick_panel(styles, self.choose_rule) def choose_rule(self, idx): """Show a list of all rules in the user-selected style. """ if idx == -1: return # The panel was cancelled. d = self.styles[idx] rules = [x for x in os.listdir(d) if x.endswith(".yml")] open_rule = ( lambda i: None if i == -1 else self.window.open_file(os.path.join(d, rules[i])) ) self.window.show_quick_panel(rules, open_rule) class ValeCommand(sublime_plugin.TextCommand): """Manages Vale's linting functionality. """ def is_enabled(self): syntax = self.view.settings().get("syntax") return Settings.is_supported(syntax) def run(self, edit, from_load): """Run vale on the user-indicated buffer. """ path = self.view.file_name() if not path or self.view.is_scratch(): debug("invalid path: {0}!".format(path)) return limit = Settings.get("vale_threshold") count = self.view.rowcol(self.view.size())[0] + 1 if limit < 0 or (limit > 0 and count >= limit): if from_load: return _, ext = os.path.splitext(path) reg = expand_to_paragraph(self.view, self.view.sel()[0].b) buf = self.view.substr(reg) row, _ = self.view.rowcol(reg.a) response = post_str(buf, ext) self.show_alerts(response, row) else: response = post_file(path) self.show_alerts(response, 0) def show_alerts(self, data, offset): """Add alert regions to the view. """ Settings.clear_on_hover() regions = {"suggestion": [], "warning": [], "error": []} level_to_scope = { "error": "region.redish", "warning": "region.orangish", "suggestion": "region.bluish" } if "Code" in data and "Text" in data: sublime.status_message( "Vale: runtime error (skipping lint)") debug(data["Text"]) debug(data.get("Path", "")) return for f, alerts in data.items(): for a in alerts: start = self.view.text_point((a["Line"] - 1) + offset, 0) loc = (start + a["Span"][0] - 1, start + a["Span"][1]) region = sublime.Region(*loc) regions[a["Severity"]].append(region) Settings.on_hover.append( { "region": region, "HTML": self._make_content(a), "view_id": self.view.id(), "level": a["Severity"], "msg": a["Message"], } ) for level in ["error", "warning", "suggestion"]: self.view.add_regions( "vale-server-" + level, regions[level], level_to_scope[level], "circle", Settings.get_draw_style(), ) def _make_content(self, alert): """Convert an alert into HTML suitable for a popup. """ actions = [] style, rule = alert["Check"].split(".") path = query("path")["path"] loc = os.path.join(path, style, rule) + ".yml" if os.path.exists(loc): actions.append(make_link(loc, "Edit rule")) if "Action" in alert and alert["Action"]["Name"] != "": stringify = json.dumps(alert, separators=(",", ":")).strip() stringify = binascii.hexlify(stringify.encode()).decode() actions.append(make_link(stringify, "Fix Alert")) level = alert["Severity"].capitalize() if level == "Error": template = Settings.error_template elif level == "Warning": template = Settings.warning_template else: template = Settings.info_template source = alert["Link"] if source != "": actions.append(make_link(source, "Read more")) message = cgi.escape(alert["Message"]) if alert["Description"] == "": title = "{} - {}".format(level, alert["Check"]) body = message else: title = "{}: {}".format(level, message) body = alert["Description"] return template.format( CSS=Settings.css, header=title, body=body, actions=" | ".join(actions)) class ValeEventListener(sublime_plugin.EventListener): """Monitors events related to Vale. """ def is_enabled(self): syntax = self.view.settings().get("syntax") return Settings.is_supported(syntax) def on_modified_async(self, view): Settings.clear_on_hover() if Settings.get("vale_mode") == "background": debug("running vale on modified") view.run_command("vale", {"from_load": False}) def on_load_async(self, view): if Settings.get("vale_mode") == "load_and_save": debug("running vale on activated") view.run_command("vale", {"from_load": True}) def on_pre_save_async(self, view): if Settings.get("vale_mode") in ("load_and_save", "save"): debug("running vale on pre save") view.run_command("vale", {"from_load": False}) def on_hover(self, view, point, hover_zone): loc = Settings.get("vale_alert_location") for alert in Settings.on_hover: region = alert["region"] if alert["view_id"] == view.id() and region.contains(point): if loc == "hover_popup": view.show_popup( alert["HTML"], flags=sublime.HIDE_ON_MOUSE_MOVE_AWAY, location=point, on_navigate=handle_navigation, max_width=Settings.get("vale_popup_width"), ) elif loc == "hover_status_bar": sublime.status_message( "vale:{0}:{1}".format(alert["level"], alert["msg"]) ) def plugin_loaded(): """Load plugin settings and resources. """ global Settings Settings = ValeSettings() ```
{ "source": "jdkato/TODOView", "score": 3 }
#### File: jdkato/TODOView/TODOView.py ```python import os import re import sublime import sublime_plugin TEMPLATE = r'\b({0})(?:\((.+)\))?: (.+)$' EXTRACT_PAT = None EXTRACT_RE = None PREFS = None def plugin_loaded(): """Initialize the extraction regexp. """ global EXTRACT_RE, EXTRACT_PAT, PREFS # TODO: respect updates to settings settings = sublime.load_settings('TODOView.sublime-settings') PREFS = sublime.load_settings('Preferences.sublime-settings') EXTRACT_PAT = TEMPLATE.format('|'.join(settings.get('targets', []))) EXTRACT_RE = re.compile(EXTRACT_PAT) def parse_query(query): """Parse a search query and return its individual parts. Args: query (str): A query in the form 'scope:TODO,...:assignee,...'. Returns: [str]: The parsed sections of the query. Examples: >>> parse_query('file:TODO:*') ['file', ['TODO'], ['*']] """ if query == '': return ['*', ['*'], ['*']] elif not query.count(':') == 2: return [] parts = query.split(':') categories = parts[1].split(',') assignees = parts[2].split(',') return [parts[0], categories, assignees] def format_message(msg): """Format the given message. """ if not any(msg.endswith(c) for c in ('.', '?', '!')) and len(msg) > 30: msg = msg + ' ...' return msg def ignore_path(path): """Determine if we should ignore the given path. """ binary = PREFS.get('binary_file_patterns', []) files = PREFS.get('file_exclude_patterns', []) folders = PREFS.get('folder_exclude_patterns', []) for pat in folders + binary + files: if '*' in path and re.search(pat, path): return True elif pat in path: return True return False def aggregate_views(scope): """Find all of the views we should search. Args: scope (str): The scope of our search. Accepted values are '(f)ile' (the view being edited), '(o)pen' (all open views), or '(a)ll' (all files in the current window). Returns: [sublime.View|str]: A list of View objects (when available) and file paths. """ views = [] if scope in ('file', 'f'): v = sublime.active_window().active_view().file_name() if not ignore_path(v): views.append(v) elif scope in ('open', 'o'): for v in sublime.active_window().views(): name = v.file_name() if not ignore_path(name): views.append(name) else: for f in sublime.active_window().folders(): for path, subdirs, files in os.walk(f): for name in files: p = os.path.join(path, name) if not ignore_path(p): views.append(p) return views def extract_comments_from_buffer(path, categories, assignees): """Extract all TODO-like comments from the given file. """ matches = [] try: with open(path) as buf: for i, line in enumerate(buf.readlines()): m = EXTRACT_RE.search(line) if m: c = '*' in categories or m.group(1) in categories a = '*' in assignees or m.group(2) in assignees if c and a: matches.append({ 'position': (i, m.start(0)), 'category': m.group(1), 'assignee': m.group(2), 'message': format_message(m.group(3)) }) except UnicodeDecodeError: pass return matches def extract_comments(query): """Extract all TODO-like comments from the given sources. """ comments = {} parsed = parse_query(query) if parsed == []: return comments scope, categories, assignees = parsed for v in aggregate_views(scope): found = extract_comments_from_buffer(v, categories, assignees) if found: comments[v] = found return comments class TodoSearchCommand(sublime_plugin.WindowCommand): """Search for TODOs using the user-provided query string. """ def run(self): """Prompt the user for a query. """ self.window.show_input_panel( 'Enter a query string: ', '', self.show_results, None, None) def show_results(self, query): """Show the results in either a Quick Panel. """ sublime.active_window().run_command( 'todo_quick_panel', {'found': extract_comments(query)}) class TodoQuickPanelCommand(sublime_plugin.WindowCommand): """Show relevant TODOs in a Quick Panel. """ positions = [] def run(self, found): """Extract the comments and populate and Quick Panel with the results. """ items = [] for path, comments in found.items(): for c in comments: self.positions.append((path, c['position'])) if c['assignee']: heading = '{0}({1})'.format(c['category'], c['assignee']) else: heading = c['category'] items.append([heading, c['message'], os.path.basename(path)]) if items: self.window.show_quick_panel(items, self.navigate) else: sublime.active_window().active_view().set_status( 'TODOView', 'TODOView: no matches found') def navigate(self, idx): """Navigate the TODO comment. """ if idx < 0: return f, p = self.positions[idx] self.window.open_file( '{0}:{1}:{2}'.format(f, p[0] + 1, p[1]), sublime.ENCODED_POSITION) ```
{ "source": "jdkato/txtlint", "score": 3 }
#### File: comments/in/1.py ```python def FIXME(): """ FIXME: """ print(""" FIXME: This should *not* be linted. """) # XXX: This should be flagged! NOTE = False # XXX: XXX = True # NOTE: r""" NOTE: XXX: """ def NOTE(): ''' NOTE: ''' XXX = ''' XXX: This should *not* be linted. ''' def foo(self): """NOTE This is the start of a block. TODO: Assume that a file is modified since an invalid timestamp as per RFC 2616, section 14.25. GMT """ invalid_date = 'FIXME: Mon, 28 May 999999999999 28:25:26 GMT' ```
{ "source": "JDKdevStudio/Taller30Abril", "score": 4 }
#### File: JDKdevStudio/Taller30Abril/12.CaidaLibre.py ```python from math import sqrt def get_Numero(prompt): while True: try: return float(input(prompt)) except ValueError: print("Debes escribir un número") Altura = get_Numero("Escríba la altura del objeto en metros") print("El tiempo de caída en segundos es de:", sqrt(2 * Altura / 9.81)) ``` #### File: JDKdevStudio/Taller30Abril/29.Numero2Decimal.py ```python def insert_dot(string, index): return string[:index] + '.' + string[index:] print(insert_dot(input("Ingrese un numero para convertirlo en decimal= "), int(input("Escriba en que posicion (izquierda a derecha) desa introducir la notación")))) ``` #### File: JDKdevStudio/Taller30Abril/2.NumeroalCuadrado.py ```python def get_Numero(prompt): while True: try: return float(input(prompt)) except ValueError: print("Debes escribir un número") Numero = get_Numero("Escriba un número para elevar al cuadrado") print("el número", Numero,"Elevado al cuadrado es", Numero**2) ``` #### File: JDKdevStudio/Taller30Abril/3.Suma2numeros.py ```python def get_Numero(prompt): while True: try: return int(input(prompt)) except ValueError: print("Debes escribir un número") n1, n2 = get_Numero("Escriba el primer número"), get_Numero("Ahora escriba el segundo número") print("La suma de", n1, "y", n2, "es", n1+n2) ``` #### File: JDKdevStudio/Taller30Abril/43.Print10NumberImpar.py ```python count = 0 def to_infinity(): index = 0 while True: yield index index += 1 for x in to_infinity(): if x % 2 != 0: print(x) count += 1 if count == 10: break ``` #### File: JDKdevStudio/Taller30Abril/50.NnumerosSuma&Promedio.py ```python def get_Numero(prompt): while True: try: return int(input(prompt)) except ValueError: print("Debes escribir un número") cantidad, sumatoria, conteo = 0, 0, get_Numero("Escriba la cantidad de veces a contar") print("Ingrese los valores numericos que desee:") while True: conteo -= 1 x = get_Numero(f"Escriba el número #:{conteo}") sumatoria += x cantidad += 1 if conteo == 0: promedio = sumatoria / cantidad print("la cantidad de valores que digito fue", cantidad) print("la sumatoria entre estos valores fue de", sumatoria, "y su promedio fue de", round(promedio)) break ``` #### File: JDKdevStudio/Taller30Abril/56.CustonFactorNum.py ```python def factor(n): cant = 0 for x in range(1, n + 1): if n % x == 0: cant += 1 return cant y = int(input("Ingrese un numero: ")) print(factor(y)) ``` #### File: JDKdevStudio/Taller30Abril/7.VentaConIVA.py ```python def get_Numero(prompt): while True: try: return int(input(prompt)) except ValueError: print("Debes escribir un el precio como número entero") PrecioItem = get_Numero("Escriba el valor del producto") PrecioIva = PrecioItem * 0.19 PrecioTotal = PrecioItem + PrecioIva print(f"El item a comprar vale {PrecioItem}, el valor del iva es de {PrecioIva}, por lo tanto el precio total es de: {PrecioTotal}") ```
{ "source": "jdkelly199/ros-sharp", "score": 2 }
#### File: obs_test/scripts/inputObsLocation.py ```python import rospy import numpy from geometry_msgs.msg import Point, Pose, Quaternion from std_msgs.msg import String from Xlib import display from Xlib.ext import randr def getViconData(): return([0]) def calculateTransform(ref, vic): print(ref) def inputObsLocation(): # initialize node rospy.init_node('calibrate', anonymous = True) #### Setup obsLocation Publisher rate = rospy.Rate(10) # 10hz #Transform Poses refTransforms = [] viconTransforms = [] nextRefPublisher = rospy.Publisher("/sendRef", String, queue_size = 5) endRefPublisher = rospy.Publisher("/endRef", String, queue_size = 5) while not rospy.is_shutdown(): print("waiting") rospy.wait_for_message("/startCal", String) print("started calibration") msg = String("next") print("on to next") nextRefPublisher.publish(msg) while(len(refTransforms) < 10): print("waiting for next") refTransforms.append(rospy.wait_for_message("nextTransform", Pose)) viconTransforms.append(getViconData()) print("recieved") endRefPublisher.publish(msg) calculateTransform(refTransforms, viconTransforms) #### Initialize point msg every loop #msg.x = 0.0 #msg.y = 0.0 #msg.z = 0.0 #### Prompt User for Obs Location #msg.x = float(input("Please Enter The X Position of the Obstacle: ")) #msg.y = float(input("Please Enter The Y Position of the Obstacle: ")) #msg.z = float(input("Please Enter The Z Position of the Obstacle: ")) #### Publish msg #rospy.loginfo([pos_x, pos_y]) #obsLocationPublisher.publish(msg) #rate.sleep() if __name__ == '__main__': inputObsLocation() ```
{ "source": "jdkennedy45/Discord-Bot", "score": 3 }
#### File: jdkennedy45/Discord-Bot/Games.py ```python import random import asyncio import re import discord from discord.ext import commands from Users import Users from random import choices def get_hangman_art(): # prepare array of hangman art art_array = [] with open("db_and_words\hangmen.txt") as my_file: for line in my_file: art_array.append(line) # convert respective list index-ranges to string with ''.join # the resulting art_array[0-6] will represent each stage of hangman art_array[0] = "".join(art_array[0:6]) art_array[1] = "".join(art_array[7:13]) art_array[2] = "".join(art_array[14:20]) art_array[3] = "".join(art_array[21:27]) art_array[4] = "".join(art_array[28:34]) art_array[5] = "".join(art_array[35:41]) art_array[6] = "".join(art_array[42:49]) return art_array def get_hangman_words(): # only read words file once so we won't have to re-open the file every game call words_file = open("db_and_words\words.txt", "r") words = words_file.readlines() words_file.close() return words def battle_decider(fighter1, fighter2, fighter1_weight, fighter2_weight): # choices function maps a selection to a probability, and selects one choice based off probability winner = choices([fighter1, fighter2], [fighter1_weight, fighter2_weight]) print(winner) # choices function returning [1] or [2] so use regex to pull the integers out return int(re.findall("\d+", str(winner))[0]) def pick_word(cat): if cat == 1: random_word = random.choice(all_words[0:180]) category = "Country name" elif cat == 2: random_word = random.choice(all_words[181:319]) category = "Farm" elif cat == 3: random_word = random.choice(all_words[320:389]) category = "Camping" elif cat == 4: random_word = random.choice(all_words[390:490]) category = "Household items/devices" elif cat == 5: random_word = random.choice(all_words[491:603]) category = "Beach" elif cat == 6: random_word = random.choice(all_words[604:648]) category = "Holidays" elif cat == 7: random_word = random.choice(all_words[649:699]) category = "US States" elif cat == 8: random_word = random.choice(all_words[700:998]) category = "Sports & Hobbies" else: random_word = random.choice(all_words[649:699]) category = "US States" # quick band-aid fix to truncate CR in text file, COMING BACK LATER TO FIX length = len(random_word) - 1 # to remove carriage return, I'm not using unix format to make the list random_word = random_word[:length] # truncate word with [:length] cause of carriage return in text file... underscore_sequence = list("") # this will be our list of underscores # it will be consistently replaced by guesses # fill the underscore_sequence list with underscore underscore_sequencelate of the correct word for x in random_word: if x == " ": underscore_sequence += " " # in the case of 2-word phrases, need to move everything over elif x == "'": underscore_sequence += " '" else: underscore_sequence += " \u2581" # if not a space, add: \u2581, a special underscore character. # using to replace by correctly guessed letters return random_word.upper(), category, underscore_sequence def add_guess_to_list(guess, guessed): # accepts guess and list of all guesses if len(guess.clean_content) > 1: # don't want to add whole word to guess list all_guessed = "".join(map(str, guessed)) return guessed, all_guessed guessed.extend(guess.clean_content.upper()) # add last guess to the list of guessed words guessed.extend(" ") # add space to guessed list all_guessed = "".join(map(str, guessed)) # messy syntax, convert the list into a string so bot can print it return guessed, all_guessed def find_matches(guess, correct_word, underscore_sequence): index = 0 num_matches = 0 for x in correct_word: index += 1 if x == " ": index += 2 # if any matches, we need to replace underscore(s) in the sequence # and increase the number of matches for the loop if guess.clean_content.upper() == x: # convulted index scheme due to underscore_sequence format underscore_sequence[index * 2 - 1] = guess.clean_content.upper() num_matches += 1 return num_matches, underscore_sequence def get_slots_emoji_list(): with open("db_and_words\\emoji_names.txt", "r") as lines: high_tier = [] mid_tier = [] low_tier = [] current_tier = "" for line in lines: line = line.rstrip("\n") if line == "HIGH-TIER-LIST": current_tier = "high" continue if line == "MEDIUM-TIER-LIST": current_tier = "med" continue if line == "LOW-TIER-LIST": current_tier = "low" continue if current_tier == "high": high_tier.append(line) elif current_tier == "med": mid_tier.append(line) elif current_tier == "low": low_tier.append(line) return high_tier, mid_tier, low_tier # short decorator function declaration, confirm that command user has an account in database def has_account(): def predicate(ctx): user = Users(ctx.message.author.id) if user.find_user() == 0: return False else: return True return commands.check(predicate) # store data from text files into memory (emoji lists, hangman words, hangman art) high_tier_emotes, mid_tier_emotes, low_tier_emotes = get_slots_emoji_list() all_words = get_hangman_words() hangmen = get_hangman_art() class Games: def __init__(self, client): self.client = client """ROB FUNCTION""" @has_account() @commands.cooldown(1, 3600, commands.BucketType.user) @commands.command( name="rob", description="Steal money from others", brief="can use =steal", aliases=["thief", "thieve", "ROB", "steal", "mug"], pass_context=True, ) async def rob(self, context, *args): # create instance of the user starting the robbery robber = Users(context.message.author.id) # declare 30% fail chance, used to calculate chance of failing rob fail_chance = 30 # pick a random user in the server to rob # target variable will function as the victim user's "english" name target = random.choice(list(context.message.server.members)) # make an instance of the target victim = Users(target.id) victim_id = target.id counter = 1 # if they specified a rob target, change the random target to their specified target if args: try: # use regex to extract only the user-id from the user targeted victim_id = re.findall("\d+", args[0])[0] victim = Users(victim_id) # get_member() returns the "member" object that matches an id provided target = context.message.server.get_member(victim_id) # higher fail chance, 35%, if they want to specify a rob target fail_chance = 35 # if the target doesn't have an account, change fail chance back to 30% and the target will reroll next loop if victim.find_user() == 0: fail_chance = 30 await self.client.say( context.message.author.mention + " Your rob target doesn't have an account." "\n**Rerolling** rob target now!" ) if robber.get_user_peace_status() == 1: fail_chance = 30 await self.client.say( context.message.author.mention + " You are in :dove: **peace mode** :dove: and cannot use =rob @user." "\n**Rerolling** rob target now!" ) # pick a random user in the server to rob # target variable will function as the victim user's "english" name target = random.choice(list(context.message.server.members)) # make an instance of the target victim = Users(target.id) victim_id = target.id elif victim.get_user_peace_status() == 1: fail_chance = 30 await self.client.say( context.message.author.mention + " That target is in :dove: **peace mode** :dove: and exempt to =rob @user." "\n**Rerolling** rob target now!" ) # pick a random user in the server to rob # target variable will function as the victim user's "english" name target = random.choice(list(context.message.server.members)) # make an instance of the target victim = Users(target.id) victim_id = target.id except: pass # while the user to rob is the robber, re-roll the target # while the user to rob does not have an account in the database, re-roll the target while victim_id == context.message.author.id or victim.find_user() == 0: # only try 120 members in the user's server # otherwise if the user was the sole player with an account in the discord server, infinite while loop # this part is inefficient, but only way I can think of right now with discord's functionality if counter == 120: # no users were found to rob if we hit 120 in the counter # calculate random integer 1-100 # if the result is within 1 through fail chance, they failed the rob, so take bail money and return if fail_chance >= random.randint(1, 100) >= 1: robber_level = robber.get_user_level(0) bail = int(robber_level * 8.4) robber.update_user_money(bail * -1) msg = ( "<a:policesiren2:490326123549556746> :oncoming_police_car: " "<a:policesiren2:490326123549556746>\n<a:monkacop:490323719063863306>" "\u200B \u200B \u200B \u200B \u200B \u200B \u200B \u200B \u200B \u200B" "<a:monkacop:490323719063863306>\n" + "Police shot you in the process.\n" "You spent **$" + str(bail) + "** to bail out of jail." ) # embed the rob failure message, set thumbnail to 80x80 of a "police siren" gif em = discord.Embed(description=msg, colour=0x607D4A) em.set_thumbnail(url="https://cdn.discordapp.com/emojis/490326123549556746.gif?size=80") await self.client.say(embed=em) return else: # if they passed the fail test, give the user a small prize and return bonus_prize = int(robber.get_user_level(0) * 29.3) robber.update_user_money(bonus_prize) msg = ( "**No users found to rob...** " "\nOn the way back to your basement, you found **$" + str(bonus_prize) + "** " + "<:poggers:490322361891946496>" ) # embed the rob confirmation message, set thumbnail to 40x40 of a "ninja" gif em = discord.Embed(description=msg, colour=0x607D4A) em.set_thumbnail(url="https://cdn.discordapp.com/emojis/419506568728543263.gif?size=40") await self.client.say(embed=em) return target = random.choice(list(context.message.server.members)) # create a new instance of victim each loop # in order to check if the reroll has an account in database victim = Users(target.id) victim_id = target.id counter += 1 # calculate random integer 1-100 # if the result is within 1 through fail chance, they failed the rob if fail_chance >= random.randint(1, 100) >= 1: robber_level = robber.get_user_level(0) bail = int(robber_level * 10.4) robber.update_user_money(bail * -1) msg = ( "<a:policesiren2:490326123549556746> :oncoming_police_car: " "<a:policesiren2:490326123549556746>\n<a:monkacop:490323719063863306>" "\u200B \u200B \u200B \u200B \u200B \u200B \u200B \u200B \u200B \u200B" "<a:monkacop:490323719063863306>\n**" + str(target.display_name) + "**" " dodged" " and the police shot you" " in the process.\nYou spent **$" + str(bail) + "** to bail out of jail." ) # embed the rob failure message, set thumbnail to 80x80 of a "police siren" gif em = discord.Embed(description=msg, colour=0x607D4A) em.set_thumbnail(url="https://cdn.discordapp.com/emojis/490326123549556746.gif?size=80") await self.client.say(embed=em) return # we passed the dodge check, so reward thief with prize and bonus prize victim_money = victim.get_user_money(0) victim_level = victim.get_user_level(0) robber_level = robber.get_user_level(0) # the victim will only lose the prize, not the bonus prize bonus_prize = int(robber_level * 29.3) # the prize will begin by scaling by victim's level prize = int(victim_level * 9.4) # if prize greater than the robber's maximum prize amount, decrease the standard prize to compensate if prize > int(robber_level * 9.4): prize = int(robber_level * 9.4) # if prize less than the robber's maximum prize amount, increase the bonus prize to compensate if prize < int(robber_level * 9.4): bonus_prize += int(robber_level * 9.4 - prize) # balancing mechanic, don't let victims lose any more money when they have less money than -50x their level if not victim_money < (victim_level * -50): # subtract prize from victim victim.update_user_money(prize * -1) # reward robber with prize and bonus prize robber.update_user_money(prize + bonus_prize) msg = ( "**Success!** <:poggers:490322361891946496> " "\nRobbed **$" + str(prize) + "** (+**$" + str(bonus_prize) + "**) from **" + str(target.display_name) + "**" ) # embed the rob confirmation message, set thumbnail to 40x40 of a "ninja" gif em = discord.Embed(description=msg, colour=0x607D4A) em.set_thumbnail(url="https://cdn.discordapp.com/emojis/419506568728543263.gif?size=40") await self.client.say(embed=em) """TOURNAMENT BATTLE FUNCTION""" @has_account() @commands.cooldown(1, 5, commands.BucketType.user) @commands.command( name="tournament", aliases=["TOURNAMENT", "tourney", "TOURNEY"], pass_context=True, ) async def enter_daily_tournament(self, context): # the bulk work of this feature is when the results are calculated from daily_maintenance.py # create instance of user who wants to enter the daily, server-specific colosseum tournament fighter = Users(context.message.author.id) # update their tourney_server_id entry to be the server they executed the command on msg = fighter.update_user_tourney_server_id(context.message.server.name, context.message.server.id) # embed the tourney registration confirmation message, set thumbnail to 40x40 of the respective server's icon em = discord.Embed(description=msg, colour=0x607D4A) thumb_url = "https://cdn.discordapp.com/icons/{0.id}/{0.icon}.webp?size=40".format(context.message.server) em.set_thumbnail(url=thumb_url) await self.client.say(embed=em) """1v1 BATTLE FUNCTION""" @has_account() @commands.cooldown(1, 30, commands.BucketType.user) @commands.command( name="fight", description="Battle another user in your server", brief='can use "fight @user X --X being amount to bet"', aliases=["battle", "BATTLE", "FIGHT", "duel", "DUEL"], pass_context=True, ) async def battle_user(self, context, *args): # try/except block to check argument syntax try: if not args: msg = await self.client.say( context.message.author.mention + '```ml\nuse =fight like so: "=fight @user X" -- X being integer amount to bet```' ) await asyncio.sleep(5) await self.client.delete_message(msg) return # retrieve how much the fighter is betting on the battle if len(args) == 2: # bet will always be second argument bet = int(args[1]) if bet < 1: await self.client.say("Bet can't be negative...") return else: await self.client.say("No bet specified, defaulting to **$10**\n ** **") bet = 10 # if the user still used syntax incorrectly except: await self.client.say( context.message.author.mention + '```ml\nuse =fight like so: "=fight @user X" -- X being integer amount to bet```' ) # make instance of user for user initiating fight fighter1 = Users(context.message.author.id) # retrieve battle target target = args[0] # use regex to extract only the user-id from the user targeted fighter2_id = int(re.findall("\d+", target)[0]) fighter2 = Users(fighter2_id) # check if targeted user has account if fighter2.find_user() == 0: await self.client.say( context.message.author.mention + " Your fighting target doesn't have an account." "\nTell them to use **=create** to make one." ) return # check if both users have enough money if fighter1.get_user_money(0) < bet or fighter2.get_user_money(0) < bet: await self.client.say( context.message.author.mention + " Either you or the target doesn't have enough money..." ) return # give target the prompt to ask if they will accept the challenge alert_msg = await self.client.say( target + ", you were challenged for **$" + str(bet) + "**\n:crossed_swords: Type **yes** to accept this battle. :crossed_swords: " ) # made this check function with the help of discord API documentation # it will be called below to check if the confirmation response to fight is from fighter2 def fighter2check(msg): return int(msg.author.id) == fighter2_id # (try to) wait for a battle acceptance from other user try: confirm = await self.client.wait_for_message(timeout=60, check=fighter2check) await self.client.delete_message(alert_msg) if confirm.clean_content.upper() == "YES": await self.client.delete_message(confirm) # have to use 2 messages to enlarge the emojis msg = ( context.message.author.mention + " vs " + args[0] + " for **$" + str(bet) + "**\nFight will conclude in 10 seconds..." ) # embed the duel alert message, set thumbnail to a "nunchuck frog" gif of size 64x64 em = discord.Embed(title="", colour=0x607D4A) em.add_field(name="DUEL ALERT", value=msg, inline=True) em.set_thumbnail(url="https://cdn.discordapp.com/emojis/493220414206509056.gif?size=64") await self.client.say(embed=em) await asyncio.sleep(10) # get the stats of each fighter # algorithm for calculating a fighter's stats in duels: (item score + user level*2 + 20) f1_stats = fighter1.get_user_item_score() + (fighter1.get_user_level(0) * 2) + 20 f2_stats = fighter2.get_user_item_score() + (fighter2.get_user_level(0) * 2) + 20 total = f1_stats + f2_stats f1_weight = f1_stats / total f2_weight = f2_stats / total # decide winner with custom function # if it returns 1, fighter 1 won # if it returns 2, fighter 2 won winner = battle_decider(1, 2, f1_weight, f2_weight) # check if they tried to exploit the code by spending all their money during the battle if fighter1.get_user_money(0) < bet or fighter2.get_user_money(0) < bet: await self.client.say( context.message.author.mention + " One of you spent money while battling..." ) return # check who the winner was returned as # update account balances respectively if winner == 1: msg = context.message.author.mention + " won **$" + str(bet) + "** by defeating " + target # embed the duel results message em = discord.Embed(description=msg, colour=0x607D4A) await self.client.say(embed=em) # distribute money properly fighter1.update_user_money(bet) fighter2.update_user_money(bet * -1) elif winner == 2: msg = target + " won **$" + str(bet) + "** by defeating " + context.message.author.mention # embed the duel results message em = discord.Embed(description=msg, colour=0x607D4A) await self.client.say(embed=em) # distribute money properly fighter1.update_user_money(bet * -1) fighter2.update_user_money(bet) else: await self.client.say("You rejected the battle! " + target) # if the target never responded except: await self.client.say("**Battle request ignored...** <a:pepehands:485869482602922021>") """FLIP COIN FUNCTION""" @commands.cooldown(1, 5, commands.BucketType.user) @commands.command( name="flip", description="Flip a coin to earn social status.", brief='can use "=flip" or "=flip X", with X being heads or tails', aliases=["f", "flpi", "FLIP", "F"], pass_context=True, ) async def flip_coin(self, context, *args): result = random.randint(0, 1) # flipping in "binary" win = 0 # first, check if they specified a bet and they have enough money for it # this try/catch block will simply pass if they did not specify a bet try: user = Users(context.message.author.id) # Convenient way to flip all if type(args[1]) == str and args[1] == "all": bet = user.get_user_money(0) else: bet = int(args[1]) # pass 0 to return integer version of money, see USERS.PY function if bet > user.get_user_money(0) or bet < 1: error_msg = await self.client.say( "You don't have enough money for that bet..." " <a:pepehands:485869482602922021> " + context.message.author.mention ) await asyncio.sleep(6) await self.client.delete_message(error_msg) return except: pass gif = await self.client.say( "https://media1.tenor.com/images/938e1fc4fcf2e136855fd0e83b1e8a5f/tenor.gif?itemid=5017733" ) await asyncio.sleep(3) await self.client.delete_message(gif) # check if they specified a guess of heads or tails # process if they won or not try: if args[0] in ["heads", "HEADS"]: if result == 1: msg = "<:heads:486705167643967508> Result is **Heads**! You win! <a:worryHype:487059927731273739>" win = 1 else: msg = "<:heads:486705184370589718> Result is **Tails**! You lost. <a:pepehands:485869482602922021>" elif args[0] in ["tails", "TAILS"]: if result == 1: msg = "<:heads:486705167643967508> Result is **Heads**! You lost. <a:pepehands:485869482602922021>" else: msg = "<:heads:486705184370589718> Result is **Tails**! You win! <a:worryHype:487059927731273739>" win = 1 else: error_msg = await self.client.say( "Did you mean heads or tails? Try **=flip heads** or **=flip tails**." ) await asyncio.sleep(6) await self.client.delete_message(error_msg) return except: # no arguments provided at all. so just give a result if result == 1: msg = "<:heads:486705167643967508> Result is **Heads**!" else: msg = "<:heads:486705184370589718> Result is **Tails**!" # if they specified a "guess" and "bet" that was valid, check if they won # note this will only pass through if "bet" was assigned through the earlier try/catch try: if win == 1: # triple user's bet if they win, add to account msg2 = "\n" + user.update_user_money(bet) else: # remove user's bet from their account if they lose msg2 = "\n" + user.update_user_money(bet * -1) # if they have $0 after that flip, give a donation dollar to discourage account re-creation # pass in 0 for get_user_money to return the money as integer, SEE USERS.PY if user.get_user_money(0) == 0: msg2 += "\n** **\n_Mission failed. We'll get 'em next time. Take this **$1**._" msg2 += "\n" + user.update_user_money(1) except: pass try: # embed the flip results message with money won and send em = discord.Embed(description=msg + msg2, colour=0x607D4A) await self.client.say(context.message.author.mention, embed=em) except: # embed the flip results message and send em = discord.Embed(description=msg, colour=0x607D4A) await self.client.say(context.message.author.mention, embed=em) """HANGMAN main function""" @commands.cooldown(1, 10, commands.BucketType.user) @commands.command( name="hangman", description="Guess the word in order to survive.", brief='can use "=hangman", type "stop" or "cancel" to end game', aliases=["hm", "hang", "HM", "HANGMAN"], pass_context=True, ) async def hangman(self, context, *args): # initialize message to be printed if user wants category list hm_help = ( "```fix\n1. Country name\n2. Farm\n3. Camping\n4. Household items/devices\n" "5. Beach\n6. Holidays\n7. US States\n8. Sports & Hobbies```" ) wrong_guesses = 0 # global running count of incorrect guesses guessed_letters = [""] # string of letters # pick starting word with a category, also make the string of underscores to replace later # check if they want to list the categories if args: if args[0] in ("help", "HELP", "categories", "cats", "h"): await self.client.say( context.message.author.mention + " Categories:\n" + "```fix\n1. Country name\n" "2. Farm\n3. Camping\n" "4. Household items/devices\n" "5. Beach\n6. Holidays\n" "7. US States\n" "8. Sports & Hobbies```" ) return try: correct_word, category, underscore_sequence = pick_word(int(args[0])) except: await self.client.say("Use a category number! (**Ex for Beach**: =hm 5)") return # if no category was specified in argument by user... else: # pick random category 1-8 rand_category = random.randint(1, 8) correct_word, category, underscore_sequence = pick_word(rand_category) # print the hangman starting interface and ascii setup # use ** ** for empty line, discord doesn't allow empty messages. # also, using "".join because discord api can't print lists. # we could cast, but the format would be unfriendly for the game. cat_msg = await self.client.say( context.message.author.mention + " Word category is: **```fix\n" + category + "\n```**" ) art_msg = await self.client.say("\n** **\n" + hangmen[0] + "\n** **\n" + "".join(underscore_sequence)) counter = 0 while True: # main game loop guess_prompt_msg = await self.client.say("*Guess a letter or the entire word now...*") guess_msg = await self.client.wait_for_message( author=context.message.author, timeout=60 ) # wait for user's guess_msg # make already_guessed boolean to facilitate a while loop that will loop if the user makes duplicate guess already_guessed = 1 while already_guessed == 1: # loop that will exit immediately if letter guess_msg isn't a repeat if guess_msg.clean_content.upper() in str("".join(guessed_letters)): await self.client.delete_message(guess_msg) already_guessed_msg = await self.client.say( "\n*You already tried that." " Guess a different letter now...*" ) # wait for user's guess_msg now guess_msg = await self.client.wait_for_message(author=context.message.author, timeout=30) await self.client.delete_message(already_guessed_msg) else: already_guessed = 0 """RUN WIN CHECKS AND CANCEL CHECKS NOW""" # run conditionals to check if they guessed entire word or they used a cancel keyword print(guess_msg.clean_content.upper() + " and correct word: " + correct_word) # console print if guess_msg.clean_content.upper() == correct_word: await self.client.delete_message(cat_msg) await self.client.delete_message(art_msg) await self.client.delete_message(guess_prompt_msg) await self.client.delete_message(guess_msg) # pick_result_msg, underscore_seq_msg, guessed_list_msg will only exist if the game has gone at least 1 loop if counter > 0: await self.client.delete_message(pick_result_msg) await self.client.delete_message(underscore_seq_msg) await self.client.delete_message(guessed_list_msg) await self.client.say(hangmen[wrong_guesses]) # prepare win message string & embed it win_msg = ( "**Correct word pick** <a:worryHype:487059927731273739> " + " Correct word was: " + "**" + correct_word.upper() + "**\n" ) # add WINNINGS to user's bank account now user = Users(context.message.author.id) prize = user.get_user_level(0) * 8 win_msg += "Won **$" + str(prize) + "**... " + user.update_user_money(prize) em = discord.Embed(description=win_msg, colour=0x607D4A) await self.client.say(context.message.author.mention, embed=em) return if guess_msg.clean_content.upper() in ["STOP", "CANCEL"]: await self.client.delete_message(cat_msg) await self.client.delete_message(art_msg) await self.client.delete_message(guess_prompt_msg) await self.client.delete_message(guess_msg) # pick_result_msg, underscore_seq_msg, guessed_list_msg will only exist if the game has gone at least 1 loop if counter > 0: await self.client.delete_message(pick_result_msg) await self.client.delete_message(underscore_seq_msg) await self.client.delete_message(guessed_list_msg) await self.client.say( "**Cancelled** the game!! <a:pepehands:485869482602922021> Correct word was: " "**" + correct_word.upper() + "** " + context.message.author.mention ) return # quick win check, check for any underscores left to fill. # if unknown_letters ends up as 0 for this iteration, then there are no letters left to guess. num_matches, underscore_sequence = find_matches(guess_msg, correct_word, underscore_sequence) unknown_letters = 0 for x in underscore_sequence: if x == "\u2581": # if there is a blank underscore , the letter is still unknown to the user unknown_letters += 1 if unknown_letters == 0: await self.client.delete_message(cat_msg) await self.client.delete_message(art_msg) await self.client.delete_message(guess_prompt_msg) await self.client.delete_message(guess_msg) # pick_result_msg, underscore_seq_msg, guessed_list_msg will only exist if the game has gone at least 1 loop if counter > 0: await self.client.delete_message(pick_result_msg) await self.client.delete_message(underscore_seq_msg) await self.client.delete_message(guessed_list_msg) await self.client.say(hangmen[wrong_guesses]) # prepare win message string & embed it win_msg = ( "You **won** the game!!" + " <a:worryHype:487059927731273739> Correct word was: " + "**" + correct_word.upper() + "**\n" ) # add WINNINGS to user's bank account now user = Users(context.message.author.id) prize = user.get_user_level(0) * 8 win_msg += "Won **$" + str(prize) + "**... " + user.update_user_money(prize) em = discord.Embed(description=win_msg, colour=0x607D4A) await self.client.say(context.message.author.mention, embed=em) return # now clear all messages besides category message (cat_msg variable) await self.client.delete_message(art_msg) await self.client.delete_message(guess_prompt_msg) await self.client.delete_message(guess_msg) # pick_result_msg, underscore_seq_msg, guessed_list_msg will only exist if the game has gone at least 1 loop if counter > 0: await self.client.delete_message(pick_result_msg) await self.client.delete_message(underscore_seq_msg) await self.client.delete_message(guessed_list_msg) # if user's guess has zero matches in the correct word if num_matches == 0: wrong_guesses += 1 # no letters matched, so they guessed a wrong letter if len(guess_msg.clean_content) == 1: pick_result_msg = await self.client.say("**Wrong letter pick** <a:pepehands:485869482602922021>") else: pick_result_msg = await self.client.say("**Wrong word pick** <a:pepehands:485869482602922021>") # if user's guess has any matches found in the correct word else: pick_result_msg = await self.client.say("**Correct letter pick** <a:worryHype:487059927731273739>") # don't need "correct word pick" next because that would trigger # in the conditional right after the guess is taken # print the ascii art corresponding to wrong guesses if wrong_guesses < 6: art_msg = await self.client.say(hangmen[wrong_guesses]) elif wrong_guesses == 6: await self.client.delete_message(cat_msg) await self.client.delete_message(pick_result_msg) await self.client.say(hangmen[6]) losing_msg = ( "\nYou were **hanged**! <a:pepehands:485869482602922021> " + "The word was: " + "**" + correct_word + "**\n" ) em = discord.Embed(description=losing_msg, colour=0x607D4A) await self.client.say(context.message.author.mention, embed=em) return # print underscores/letters, our main interface underscore_seq_msg = await self.client.say("** **\n**" + "".join(underscore_sequence) + "**") # add last guessed letter to our guessed-so-far list guessed_letters, all_guessed = add_guess_to_list(guess_msg, guessed_letters) # print all letters guessed so far guessed_list_msg = await self.client.say("** ```fix\nGuessed so far: " + all_guessed + "``` **") # add 1 to the main game loop's counter counter += 1 """ Slot Machine """ @has_account() @commands.cooldown(15, 86400, commands.BucketType.user) @commands.command( name="slot", description="Slot Machine game", aliases=["machine", "pachinko", "slots", "spin", "reel"], pass_context=True, ) async def slot_machine(self, context): # Create a user instance user = Users(context.message.author.id) # Check if user has enough money. Ticket costs $10 ticket_cost = 10 if user.get_user_money(0) < ticket_cost: msg = await self.client.say( context.message.author.mention + " You don't have enough money...\n" " ticket_cost costs ${}!".format(ticket_cost) ) await asyncio.sleep(5) await self.client.delete_message(msg) return # Deduct ticket cost from user user.update_user_money(ticket_cost * -1) # High tier should have the lowest chance possible def get_tier(): """ High tier => 7% Mid Tier => 28% Low Tier => 65% """ tier = "" # Scuffed way to get real value # Get a random real value 0.01...100.0 result = (random.randrange(1, 10001)) / 100 if result <= 7.0: # High Tier tier = "high" elif result > 7.0 and result <= 35.0: # Mid Tier tier = "mid" elif result > 35.0 and result <= 100.0: # Low Tier tier = "low" return tier # This function and get_tier() can probably be merged def get_emoji(result): """Pick a emote from emote tier lists determined by the result Return a random emote """ emote = "" if result == "high": emote = random.choice(high_tier_emotes) elif result == "mid": emote = random.choice(mid_tier_emotes) elif result == "low": emote = random.choice(low_tier_emotes) return emote def get_bonus(slot_machine): """Getting a jackpot gives user a reward = 500 + bonus Bonus is determined by the emote tier High tier = 2000.0 Mid tier = 1000.0 Low tier = 250.0 Getting 2 same emotes also gives user a reward = 120 + bonus High tier = 230.0 Mid tier = 130.0 Low tier = 0.0 If one emoji is high tier, user is given $50.0 return a list with msg type, reward, and tier result[0] -> 1 if jackpot, 2 if two equal elements, 0 otherwise result[1] -> reward result[2] -> tier """ # result list # default values incase of no bonus result = [0, 0, ""] # If all emojis are equal # Jackpot if len(set(slot_machine)) == 1: # Print Jackpot result[0] = 1 if slot_machine[0] in high_tier_emotes: result[1] = 500.0 + 2000.0 result[2] = "High" return result elif slot_machine[0] in mid_tier_emotes: result[1] = 500.0 + 1000.0 result[2] = "Mid" return result elif slot_machine[0] in low_tier_emotes: result[1] = 500.0 + 250.0 result[2] = "Low" return result # If two emojis inside slot_machine are equal if len(set(slot_machine)) == 2: result[0] = 2 temp = [i for i in slot_machine if slot_machine.count(i) > 1] if temp[0] in high_tier_emotes: result[1] = 120.0 + 230.0 result[2] = "High" return result elif temp[0] in mid_tier_emotes: result[1] = 120.0 + 130.0 result[2] = "Mid" return result elif temp[0] in low_tier_emotes: result[1] = 120.0 result[2] = "Low" return result # If one element is a High Tier emoji for i in slot_machine: if i in high_tier_emotes: result[1] = 50.0 result[2] = "High" return result return result # assign results to 3 different slots result_1 = get_tier() result_2 = get_tier() result_3 = get_tier() # Get emotes from the tier lists. slot_1 = get_emoji(result_1) slot_2 = get_emoji(result_2) slot_3 = get_emoji(result_3) # Check for bonus slot_machine = [slot_1, slot_2, slot_3] bonus = get_bonus(slot_machine) # Update users balance user.update_user_money(bonus[1]) result_msg = f"「 {slot_1} {slot_2} {slot_3} 」" # Jackpot worry image em1 = discord.Embed(title="", colour=0x801A06) em1.set_image(url="https://i.imgur.com/a9pARrC.gif") await self.client.say(embed=em1) await asyncio.sleep(1) # print result em2 = discord.Embed(title="", description=result_msg, colour=0x801A06) await self.client.say(embed=em2) # If bonus if bonus[1] != 0: # This assert only works in debug mode due to application error handling assert bonus[2] != "" # Make sure there is an actual tier if bonus[0] == 1: msg = f"**Jackpot**! <a:worrycash:525200274340577290>\n {bonus[2]} Tier! You won **${bonus[1]}**!" elif bonus[0] == 2: msg = f"You got **two** {bonus[2]} Tier! <a:worryHype:487059927731273739>\n You won **${bonus[1]}**!" elif bonus[1] == 50.0: msg = f"You got **one** {bonus[2]} Tier! <a:worryHype:487059927731273739>\n You won **${bonus[1]}**!" em3 = discord.Embed(title="", description=msg, colour=0xFFD700) await self.client.say(embed=em3) """ Slots tier list information """ @commands.cooldown(1, 3, commands.BucketType.user) @commands.command( name="tiers", description="Slot Machine help page", aliases=["slothelp", "slotshelp", "slottiers", "slotstiers"], pass_context=True, ) async def slot_tiers_help(self, context): msg = " ".join(high_tier_emotes) msg2 = " ".join(mid_tier_emotes) msg3 = " ".join(low_tier_emotes) msg4 = "\ **3** Identical High tier = **$2,500**\n\ **3** Identical Mid tier = **$1,500**\n\ **3** Identical Low tier = **$750**\n\n\ **2** Identical High tier = **$350**\n\ **2** Identical Mid tier = **$250**\n\ **2** Identical Low tier = **$120**\n\n\ **1** of __any__ High tier = **$50**\ " em = discord.Embed(title="**High-tier emotes**", description=msg, colour=0xFFD700) await self.client.send_message(context.message.author, embed=em) em = discord.Embed(title="**Mid-tier emotes**", description=msg2, colour=0xFFD700) await self.client.send_message(context.message.author, embed=em) em = discord.Embed(title="**Low-tier emotes**", description=msg3, colour=0xFFD700) await self.client.send_message(context.message.author, embed=em) em = discord.Embed(title="**Rewards Information**", description=msg4, colour=0xFFD700) em.set_thumbnail(url="https://i.imgur.com/a9pARrC.gif") await self.client.send_message(context.message.author, embed=em) """ High and Low game """ @has_account() @commands.cooldown(15, 86400, commands.BucketType.user) @commands.command( name="high_low", description="High and low game. Guess the sum of cards.", aliases=["hl", "guess", "cards", "card", "CARDS"], pass_context=True, ) async def high_and_low(self, context, *args): # try/except block to check argument syntax try: # there should be an argument if args: # retrieve bet as first argument bet = int(args[0]) # if bet is negative, return if bet < 1: await self.client.say("Bet can't be negative...") return # if no argument provided else: await self.client.say( context.message.author.mention + ", no bet specified, defaulting to **$10** ** **") bet = 10 except: await self.client.say( context.message.author.mention + '```ml\nuse =cards like so: "=cards X" -- X being integer amount to bet```' ) return # Create a user instance user = Users(context.message.author.id) # confirm the user has enough money for the bet if user.get_user_money(0) < bet: msg = f", you don't have enough money for that bet...\n" msg = await self.client.say(context.message.author.mention + msg) await asyncio.sleep(7) await self.client.delete_message(msg) return # take bet money away user.update_user_money(bet * -1) CARDS = { 0: "<:card_none:662372124748546058>", 1: "<:card_one:662081420474449930>", 2: "<:card_two:662373668214669313>", 3: "<:card_three:662084754086166528>", 4: "<:card_four:662085726493605918>", 5: "<:card_five:662086717750247444>", 6: "<:card_six:662088270993162253>", 7: "<:card_seven:662091815087898649>", 8: "<:card_eight:662455814543507456>", 9: "<:card_nine:662092003676389380>" } instruction = ( "Three cards for you, three cards for me.\nYou flip one of yours over, and I flip two of mine." ) initial_hand = f"\n{CARDS[0]} {CARDS[0]} {CARDS[0]}\n{CARDS[0]} {CARDS[0]} {CARDS[0]}" em1 = discord.Embed(description=instruction + initial_hand, colour=0x607D4A) em1.set_thumbnail(url="https://cdn.discordapp.com/emojis/618921143163682816.png?v=1") msg1 = await self.client.say(embed=em1) cpu_cards, user_cards = get_cards() await asyncio.sleep(3) assert len(cpu_cards) == 3 assert len(user_cards) == 3 cpu_hand = f"{CARDS[cpu_cards[0]]} {CARDS[cpu_cards[1]]} {CARDS[0]}" user_hand = f"{CARDS[user_cards[0]]} {CARDS[0]} {CARDS[0]}" hand1 = ( f"Dealer's hand is: \u200B \u200B {cpu_hand}\nAnd your hand is: {user_hand}" ) instruction = f"So, **{context.message.author.display_name}**, will your total be higher or lower than mine?" \ f"\n(*60 seconds to answer, else your money's gone*)\n\n{hand1}\n\nEnter **low** or **high**..." em2 = discord.Embed(description=instruction, colour=0x607D4A) em2.set_thumbnail(url="https://cdn.discordapp.com/emojis/618921143163682816.png?v=1") msg2 = await self.client.say(embed=em2) # confirm the user's guess confirm = await self.client.wait_for_message(author=context.message.author, timeout=60) counter = 3 if confirm: # while not a valid answer, keep prompting up to 3 times while confirm.clean_content.upper() != "HIGH" and confirm.clean_content.upper() != "LOW": if counter == 0: await self.client.say("Sorry, you've reached your attempt limit. Exiting game.") return if counter < 3: await self.client.delete_message(msg3) await self.client.delete_message(msg4) msg3 = await self.client.say("Wrong answer!") msg4 = await self.client.say( f"\nEnter **low** or **high**..." f" You have **{counter}** more attempts before your bet money is lost forever.") confirm = await self.client.wait_for_message(author=context.message.author, timeout=60) counter -= 1 cpu_hand = f"{CARDS[cpu_cards[0]]} {CARDS[cpu_cards[1]]} {CARDS[cpu_cards[2]]}" user_hand = f"{CARDS[user_cards[0]]} {CARDS[user_cards[1]]} {CARDS[user_cards[2]]}" hand2 = ( f"Dealer's hand is: \u200B \u200B {cpu_hand}\nAnd your hand is: {user_hand}" ) instruction2 = ( f"You're going with **'{confirm.clean_content}'**, then, {confirm.author.display_name}.\n" f" Right, let's see what we've got...\n\n{hand2}" ) # build embed of the hand results and send it em3 = discord.Embed(description=instruction2, colour=0x607D4A) em3.set_thumbnail(url="https://cdn.discordapp.com/emojis/618921143163682816.png?v=1") await self.client.say(embed=em3) # wait 2 seconds to build suspense await asyncio.sleep(2) won, sum_cpu, sum_user = win(cpu_cards, user_cards, confirm.clean_content.upper()) results1 = f"My cards add up to **{sum_cpu}**.\nAnd you have a total of **{sum_user}**.\n\n" if won: winnings = get_reward(sum_cpu, sum_user, bet) results2 = ( f"Congratulations, your guess was right!\nYou won **${winnings - bet}**. " f"{user.update_user_money(winnings)}." ) em4 = discord.Embed(description=results1 + results2, colour=0x607D4A) em4.set_thumbnail(url="https://cdn.discordapp.com/emojis/525200274340577290.gif?size=64") else: results2 = ( f"Aw... Sorry, but this match goes to me.\nYou lost **${bet}**. " f"{user.update_user_money(0)}" # bet was already taken at beginning of function ) em4 = discord.Embed(description=results1 + results2, colour=0x607D4A) em4.set_thumbnail(url="https://cdn.discordapp.com/emojis/525209793405648896.gif?size=64") await self.client.say(embed=em4) await self.client.delete_message(msg1) await self.client.delete_message(msg2) # if we timed out waiting for user to answer else: await self.client.delete_message(msg1) await self.client.delete_message(msg2) await self.client.say("You didn't answer...") return def handle_args(args): if args: # One arg: bet amount if len(args) == 1: return True, args[0] # We don't expect more than 2 args elif len(args) > 1: return False, None else: return False, None def get_cards(): cards = [1, 2, 3, 4, 5, 6, 7, 8, 9] random.shuffle(cards) cpu_cards = cards[0:3] user_cards = cards[6:] return cpu_cards, user_cards def win(cpu_hand, user_hand, user_guess): sum_cpu_hand = sum(cpu_hand) sum_user_hand = sum(user_hand) win = False if sum_user_hand > sum_cpu_hand and user_guess == "HIGH": win = True elif sum_user_hand < sum_cpu_hand and user_guess == "LOW": win = True return win, sum_cpu_hand, sum_user_hand def get_reward(sum_cpu, sum_user, bet): diff = abs(sum_cpu - sum_user) return int(bet * 1.5) + diff def setup(client): client.add_cog(Games(client)) ```
{ "source": "jdkent/brainiak", "score": 3 }
#### File: tests/eventseg/test_event.py ```python from brainiak.eventseg.event import EventSegment from scipy.special import comb import numpy as np import pytest from sklearn.exceptions import NotFittedError def test_create_event_segmentation(): es = EventSegment(5) assert es, "Invalid EventSegment instance" def test_fit_shapes(): K = 5 V = 3 T = 10 es = EventSegment(K, n_iter=2) sample_data = np.random.rand(V, T) es.fit(sample_data.T) assert es.segments_[0].shape == (T, K), "Segmentation from fit " \ "has incorrect shape" assert np.isclose(np.sum(es.segments_[0], axis=1), np.ones(T)).all(), \ "Segmentation from learn_events not correctly normalized" T2 = 15 sample_data2 = np.random.rand(V, T2) test_segments, test_ll = es.find_events(sample_data2.T) assert test_segments.shape == (T2, K), "Segmentation from find_events " \ "has incorrect shape" assert np.isclose(np.sum(test_segments, axis=1), np.ones(T2)).all(), \ "Segmentation from find_events not correctly normalized" es_invalid = EventSegment(K) with pytest.raises(ValueError): es_invalid.model_prior(K-1) # ``with`` block is about to end with no error. pytest.fail("T < K should cause error") with pytest.raises(ValueError): es_invalid.set_event_patterns(np.zeros((V, K-1))) pytest.fail("#Events < K should cause error") def test_simple_boundary(): es = EventSegment(2) random_state = np.random.RandomState(0) sample_data = np.array([[1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 1]]) + \ random_state.rand(2, 7) * 10 es.fit(sample_data.T) events = np.argmax(es.segments_[0], axis=1) assert np.array_equal(events, [0, 0, 0, 1, 1, 1, 1]),\ "Failed to correctly segment two events" events_predict = es.predict(sample_data.T) assert np.array_equal(events_predict, [0, 0, 0, 1, 1, 1, 1]), \ "Error in predict interface" def test_event_transfer(): es = EventSegment(2) sample_data = np.asarray([[1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 1]]) with pytest.raises(NotFittedError): seg = es.find_events(sample_data.T)[0] pytest.fail("Should need to set variance") with pytest.raises(NotFittedError): seg = es.find_events(sample_data.T, np.asarray([1, 1]))[0] pytest.fail("Should need to set patterns") es.set_event_patterns(np.asarray([[1, 0], [0, 1]])) seg = es.find_events(sample_data.T, np.asarray([1, 1]))[0] events = np.argmax(seg, axis=1) assert np.array_equal(events, [0, 0, 0, 1, 1, 1, 1]),\ "Failed to correctly transfer two events to new data" def test_weighted_var(): es = EventSegment(2) D = np.zeros((8, 4)) for t in range(4): D[t, :] = (1/np.sqrt(4/3)) * np.array([-1, -1, 1, 1]) for t in range(4, 8): D[t, :] = (1 / np.sqrt(4 / 3)) * np.array([1, 1, -1, -1]) mean_pat = D[[0, 4], :].T weights = np.zeros((8, 2)) weights[:, 0] = [1, 1, 1, 1, 0, 0, 0, 0] weights[:, 1] = [0, 0, 0, 0, 1, 1, 1, 1] assert np.array_equal( es.calc_weighted_event_var(D, weights, mean_pat), [0, 0]),\ "Failed to compute variance with 0/1 weights" weights[:, 0] = [1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5] weights[:, 1] = [0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1] true_var = (4 * 0.5 * 12)/(6 - 5/6) * np.ones(2) / 4 assert np.allclose( es.calc_weighted_event_var(D, weights, mean_pat), true_var),\ "Failed to compute variance with fractional weights" def test_sym(): es = EventSegment(4) evpat = np.repeat(np.arange(10).reshape(-1, 1), 4, axis=1) es.set_event_patterns(evpat) D = np.repeat(np.arange(10).reshape(1, -1), 20, axis=0) ev = es.find_events(D, var=1)[0] # Check that events 1-4 and 2-3 are symmetric assert np.all(np.isclose(ev[:, :2], np.fliplr(np.flipud(ev[:, 2:])))),\ "Fit with constant data is not symmetric" def test_chains(): es = EventSegment(5, event_chains=np.array(['A', 'A', 'B', 'B', 'B'])) es.set_event_patterns(np.array([[1, 1, 0, 0, 0], [0, 0, 1, 1, 1]])) sample_data = np.array([[0, 0, 0], [1, 1, 1]]) seg = es.find_events(sample_data.T, 0.1)[0] ev = np.nonzero(seg > 0.99)[1] assert np.array_equal(ev, [2, 3, 4]),\ "Failed to fit with multiple chains" def test_prior(): K = 10 T = 100 es = EventSegment(K) mp = es.model_prior(T)[0] p_bound = np.zeros((T, K-1)) norm = comb(T-1, K-1) for t in range(T-1): for k in range(K-1): # See supplementary material of Neuron paper # https://doi.org/10.1016/j.neuron.2017.06.041 p_bound[t+1, k] = comb(t, k) * comb(T-t-2, K-k-2) / norm p_bound = np.cumsum(p_bound, axis=0) mp_gt = np.zeros((T, K)) for k in range(K): if k == 0: mp_gt[:, k] = 1 - p_bound[:, 0] elif k == K - 1: mp_gt[:, k] = p_bound[:, k-1] else: mp_gt[:, k] = p_bound[:, k-1] - p_bound[:, k] assert np.all(np.isclose(mp, mp_gt)),\ "Prior does not match analytic solution" ``` #### File: tests/utils/test_fmrisim.py ```python import numpy as np import math from brainiak.utils import fmrisim as sim import pytest from itertools import product def test_generate_signal(): # Inputs for generate_signal dimensions = np.array([10, 10, 10]) # What is the size of the brain feature_size = [3] feature_type = ['cube'] feature_coordinates = np.array([[5, 5, 5]]) signal_magnitude = [30] # Generate a volume representing the location and quality of the signal volume = sim.generate_signal(dimensions=dimensions, feature_coordinates=feature_coordinates, feature_type=feature_type, feature_size=feature_size, signal_magnitude=signal_magnitude, ) assert np.all(volume.shape == dimensions), "Check signal shape" assert np.max(volume) == signal_magnitude, "Check signal magnitude" assert np.sum(volume > 0) == math.pow(feature_size[0], 3), ( "Check feature size") assert volume[5, 5, 5] == signal_magnitude, "Check signal location" assert volume[5, 5, 1] == 0, "Check noise location" feature_coordinates = np.array( [[5, 5, 5], [3, 3, 3], [7, 7, 7]]) # Check feature size is correct volume = sim.generate_signal(dimensions=dimensions, feature_coordinates=feature_coordinates, feature_type=['loop', 'cavity', 'sphere'], feature_size=[3], signal_magnitude=signal_magnitude) assert volume[5, 5, 5] == 0, "Loop is empty" assert volume[3, 3, 3] == 0, "Cavity is empty" assert volume[7, 7, 7] != 0, "Sphere is not empty" # Check feature size manipulation volume = sim.generate_signal(dimensions=dimensions, feature_coordinates=feature_coordinates, feature_type=['loop', 'cavity', 'sphere'], feature_size=[1], signal_magnitude=signal_magnitude) assert volume[5, 6, 6] == 0, "Loop is too big" assert volume[3, 5, 5] == 0, "Cavity is too big" assert volume[7, 9, 9] == 0, "Sphere is too big" # Check that out of bounds feature coordinates are corrected feature_coordinates = np.array([0, 2, dimensions[2]]) x, y, z = sim._insert_idxs(feature_coordinates, feature_size[0], dimensions) assert x[1] - x[0] == 2, "x min not corrected" assert y[1] - y[0] == 3, "y was corrected when it shouldn't be" assert z[1] - z[0] == 1, "z max not corrected" # Check that signal patterns are created feature_coordinates = np.array([[5, 5, 5]]) volume = sim.generate_signal(dimensions=dimensions, feature_coordinates=feature_coordinates, feature_type=feature_type, feature_size=feature_size, signal_magnitude=signal_magnitude, signal_constant=0, ) assert volume[4:7, 4:7, 4:7].std() > 0, "Signal is constant" def test_generate_stimfunction(): # Inputs for generate_stimfunction onsets = [10, 30, 50, 70, 90] event_durations = [6] tr_duration = 2 duration = 100 # Create the time course for the signal to be generated stimfunction = sim.generate_stimfunction(onsets=onsets, event_durations=event_durations, total_time=duration, ) assert stimfunction.shape[0] == duration * 100, "stimfunc incorrect length" eventNumber = np.sum(event_durations * len(onsets)) * 100 assert np.sum(stimfunction) == eventNumber, "Event number" # Create the signal function signal_function = sim.convolve_hrf(stimfunction=stimfunction, tr_duration=tr_duration, ) stim_dur = stimfunction.shape[0] / (tr_duration * 100) assert signal_function.shape[0] == stim_dur, "The length did not change" # Test onsets = [0] tr_duration = 1 event_durations = [1] stimfunction = sim.generate_stimfunction(onsets=onsets, event_durations=event_durations, total_time=duration, ) signal_function = sim.convolve_hrf(stimfunction=stimfunction, tr_duration=tr_duration, ) max_response = np.where(signal_function != 0)[0].max() assert 25 < max_response <= 30, "HRF has the incorrect length" assert np.sum(signal_function < 0) > 0, "No values below zero" # Export a stimfunction sim.export_3_column(stimfunction, 'temp.txt', ) # Load in the stimfunction stimfunc_new = sim.generate_stimfunction(onsets=None, event_durations=None, total_time=duration, timing_file='temp.txt', ) assert np.all(stimfunc_new == stimfunction), "Export/import failed" # Break the timing precision of the generation stimfunc_new = sim.generate_stimfunction(onsets=None, event_durations=None, total_time=duration, timing_file='temp.txt', temporal_resolution=0.5, ) assert stimfunc_new.sum() == 0, "Temporal resolution not working right" # Set the duration to be too short so you should get an error onsets = [10, 30, 50, 70, 90] event_durations = [5] with pytest.raises(ValueError): sim.generate_stimfunction(onsets=onsets, event_durations=event_durations, total_time=89, ) # Clip the event offset stimfunc_new = sim.generate_stimfunction(onsets=onsets, event_durations=event_durations, total_time=95, ) assert stimfunc_new[-1] == 1, 'Event offset was not clipped' # Test exporting a group of participants to an epoch file cond_a = sim.generate_stimfunction(onsets=onsets, event_durations=event_durations, total_time=110, ) cond_b = sim.generate_stimfunction(onsets=[x + 5 for x in onsets], event_durations=event_durations, total_time=110, ) stimfunction_group = [np.hstack((cond_a, cond_b))] * 2 sim.export_epoch_file(stimfunction_group, 'temp.txt', tr_duration, ) # Check that convolve throws a warning when the shape is wrong sim.convolve_hrf(stimfunction=np.hstack((cond_a, cond_b)).T, tr_duration=tr_duration, temporal_resolution=1, ) def test_apply_signal(): dimensions = np.array([10, 10, 10]) # What is the size of the brain feature_size = [2] feature_type = ['cube'] feature_coordinates = np.array( [[5, 5, 5]]) signal_magnitude = [30] # Generate a volume representing the location and quality of the signal volume = sim.generate_signal(dimensions=dimensions, feature_coordinates=feature_coordinates, feature_type=feature_type, feature_size=feature_size, signal_magnitude=signal_magnitude, ) # Inputs for generate_stimfunction onsets = [10, 30, 50, 70, 90] event_durations = [6] tr_duration = 2 duration = 100 # Create the time course for the signal to be generated stimfunction = sim.generate_stimfunction(onsets=onsets, event_durations=event_durations, total_time=duration, ) signal_function = sim.convolve_hrf(stimfunction=stimfunction, tr_duration=tr_duration, ) # Check that you can compute signal change appropriately # Preset a bunch of things stimfunction_tr = stimfunction[::int(tr_duration * 100)] mask, template = sim.mask_brain(dimensions, mask_self=False) noise_dict = sim._noise_dict_update({}) noise = sim.generate_noise(dimensions=dimensions, stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, template=template, mask=mask, noise_dict=noise_dict, iterations=[0, 0] ) coords = feature_coordinates[0] noise_function_a = noise[coords[0], coords[1], coords[2], :] noise_function_a = noise_function_a.reshape(duration // tr_duration, 1) noise_function_b = noise[coords[0] + 1, coords[1], coords[2], :] noise_function_b = noise_function_b.reshape(duration // tr_duration, 1) # Create the calibrated signal with PSC method = 'PSC' sig_a = sim.compute_signal_change(signal_function, noise_function_a, noise_dict, [0.5], method, ) sig_b = sim.compute_signal_change(signal_function, noise_function_a, noise_dict, [1.0], method, ) assert sig_b.max() / sig_a.max() == 2, 'PSC modulation failed' # Create the calibrated signal with SFNR method = 'SFNR' sig_a = sim.compute_signal_change(signal_function, noise_function_a, noise_dict, [0.5], method, ) scaled_a = sig_a / (noise_function_a.mean() / noise_dict['sfnr']) sig_b = sim.compute_signal_change(signal_function, noise_function_b, noise_dict, [1.0], method, ) scaled_b = sig_b / (noise_function_b.mean() / noise_dict['sfnr']) assert scaled_b.max() / scaled_a.max() == 2, 'SFNR modulation failed' # Create the calibrated signal with CNR_Amp/Noise-SD method = 'CNR_Amp/Noise-SD' sig_a = sim.compute_signal_change(signal_function, noise_function_a, noise_dict, [0.5], method, ) scaled_a = sig_a / noise_function_a.std() sig_b = sim.compute_signal_change(signal_function, noise_function_b, noise_dict, [1.0], method, ) scaled_b = sig_b / noise_function_b.std() assert scaled_b.max() / scaled_a.max() == 2, 'CNR_Amp modulation failed' # Create the calibrated signal with CNR_Amp/Noise-Var_dB method = 'CNR_Amp2/Noise-Var_dB' sig_a = sim.compute_signal_change(signal_function, noise_function_a, noise_dict, [0.5], method, ) scaled_a = np.log(sig_a.max() / noise_function_a.std()) sig_b = sim.compute_signal_change(signal_function, noise_function_b, noise_dict, [1.0], method, ) scaled_b = np.log(sig_b.max() / noise_function_b.std()) assert np.round(scaled_b / scaled_a) == 2, 'CNR_Amp dB modulation failed' # Create the calibrated signal with CNR_Signal-SD/Noise-SD method = 'CNR_Signal-SD/Noise-SD' sig_a = sim.compute_signal_change(signal_function, noise_function_a, noise_dict, [0.5], method, ) scaled_a = sig_a.std() / noise_function_a.std() sig_b = sim.compute_signal_change(signal_function, noise_function_a, noise_dict, [1.0], method, ) scaled_b = sig_b.std() / noise_function_a.std() assert (scaled_b / scaled_a) == 2, 'CNR signal modulation failed' # Create the calibrated signal with CNR_Amp/Noise-Var_dB method = 'CNR_Signal-Var/Noise-Var_dB' sig_a = sim.compute_signal_change(signal_function, noise_function_a, noise_dict, [0.5], method, ) scaled_a = np.log(sig_a.std() / noise_function_a.std()) sig_b = sim.compute_signal_change(signal_function, noise_function_b, noise_dict, [1.0], method, ) scaled_b = np.log(sig_b.std() / noise_function_b.std()) assert np.round(scaled_b / scaled_a) == 2, 'CNR signal dB modulation ' \ 'failed' # Convolve the HRF with the stimulus sequence signal = sim.apply_signal(signal_function=signal_function, volume_signal=volume, ) assert signal.shape == (dimensions[0], dimensions[1], dimensions[2], duration / tr_duration), "The output is the " \ "wrong size" signal = sim.apply_signal(signal_function=stimfunction, volume_signal=volume, ) assert np.any(signal == signal_magnitude), "The stimfunction is not binary" # Check that there is an error if the number of signal voxels doesn't # match the number of non zero brain voxels with pytest.raises(IndexError): sig_vox = (volume > 0).sum() vox_pattern = np.tile(stimfunction, (1, sig_vox - 1)) sim.apply_signal(signal_function=vox_pattern, volume_signal=volume, ) def test_generate_noise(): dimensions = np.array([10, 10, 10]) # What is the size of the brain feature_size = [2] feature_type = ['cube'] feature_coordinates = np.array( [[5, 5, 5]]) signal_magnitude = [1] # Generate a volume representing the location and quality of the signal volume = sim.generate_signal(dimensions=dimensions, feature_coordinates=feature_coordinates, feature_type=feature_type, feature_size=feature_size, signal_magnitude=signal_magnitude, ) # Inputs for generate_stimfunction onsets = [10, 30, 50, 70, 90] event_durations = [6] tr_duration = 2 duration = 200 # Create the time course for the signal to be generated stimfunction = sim.generate_stimfunction(onsets=onsets, event_durations=event_durations, total_time=duration, ) signal_function = sim.convolve_hrf(stimfunction=stimfunction, tr_duration=tr_duration, ) # Convolve the HRF with the stimulus sequence signal = sim.apply_signal(signal_function=signal_function, volume_signal=volume, ) # Generate the mask of the signal mask, template = sim.mask_brain(signal, mask_self=None) assert min(mask[mask > 0]) > 0.1, "Mask thresholding did not work" assert len(np.unique(template) > 2), "Template creation did not work" stimfunction_tr = stimfunction[::int(tr_duration * 100)] # Create the noise volumes (using the default parameters) noise = sim.generate_noise(dimensions=dimensions, stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, template=template, mask=mask, iterations=[1, 0], ) assert signal.shape == noise.shape, "The dimensions of signal and noise " \ "the same" noise_high = sim.generate_noise(dimensions=dimensions, stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, template=template, mask=mask, noise_dict={'sfnr': 50, 'snr': 25}, iterations=[1, 0], ) noise_low = sim.generate_noise(dimensions=dimensions, stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, template=template, mask=mask, noise_dict={'sfnr': 100, 'snr': 25}, iterations=[1, 0], ) system_high = np.std(noise_high[mask > 0], 1).mean() system_low = np.std(noise_low[mask > 0], 1).mean() assert system_low < system_high, "SFNR noise could not be manipulated" # Check that you check for the appropriate template values with pytest.raises(ValueError): sim.generate_noise(dimensions=dimensions, stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, template=template * 2, mask=mask, noise_dict={}, ) # Check that iterations does what it should sim.generate_noise(dimensions=dimensions, stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, template=template, mask=mask, noise_dict={}, iterations=[0, 0], ) sim.generate_noise(dimensions=dimensions, stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, template=template, mask=mask, noise_dict={}, iterations=None, ) # Test drift noise trs = 1000 period = 100 drift = sim._generate_noise_temporal_drift(trs, tr_duration, 'sine', period, ) # Check that the max frequency is the appropriate frequency power = abs(np.fft.fft(drift))[1:trs // 2] freq = np.linspace(1, trs // 2 - 1, trs // 2 - 1) / trs period_freq = np.where(freq == 1 / (period // tr_duration)) max_freq = np.argmax(power) assert period_freq == max_freq, 'Max frequency is not where it should be' # Do the same but now with cosine basis functions, answer should be close drift = sim._generate_noise_temporal_drift(trs, tr_duration, 'discrete_cos', period, ) # Check that the appropriate frequency is peaky (may not be the max) power = abs(np.fft.fft(drift))[1:trs // 2] freq = np.linspace(1, trs // 2 - 1, trs // 2 - 1) / trs period_freq = np.where(freq == 1 / (period // tr_duration))[0][0] assert power[period_freq] > power[period_freq + 1], 'Power is low' assert power[period_freq] > power[period_freq - 1], 'Power is low' # Check it gives a warning if the duration is too short drift = sim._generate_noise_temporal_drift(50, tr_duration, 'discrete_cos', period, ) # Test physiological noise (using unrealistic parameters so that it's easy) timepoints = list(np.linspace(0, (trs - 1) * tr_duration, trs)) resp_freq = 0.2 heart_freq = 1.17 phys = sim._generate_noise_temporal_phys(timepoints, resp_freq, heart_freq, ) # Check that the max frequency is the appropriate frequency power = abs(np.fft.fft(phys))[1:trs // 2] freq = np.linspace(1, trs // 2 - 1, trs // 2 - 1) / (trs * tr_duration) peaks = (power > (power.mean() + power.std())) # Where are the peaks peak_freqs = freq[peaks] assert np.any(resp_freq == peak_freqs), 'Resp frequency not found' assert len(peak_freqs) == 2, 'Two peaks not found' # Test task noise sim._generate_noise_temporal_task(stimfunction_tr, motion_noise='gaussian', ) sim._generate_noise_temporal_task(stimfunction_tr, motion_noise='rician', ) # Test ARMA noise with pytest.raises(ValueError): noise_dict = {'fwhm': 4, 'auto_reg_rho': [1], 'ma_rho': [1, 1]} sim._generate_noise_temporal_autoregression(stimfunction_tr, noise_dict, dimensions, mask, ) # Generate spatial noise vol = sim._generate_noise_spatial(np.array([10, 10, 10, trs])) assert len(vol.shape) == 3, 'Volume was not reshaped to ignore TRs' # Switch some of the noise types on noise_dict = dict(physiological_sigma=1, drift_sigma=1, task_sigma=1, auto_reg_sigma=0) sim.generate_noise(dimensions=dimensions, stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, template=template, mask=mask, noise_dict=noise_dict, iterations=[0, 0], ) def test_generate_noise_spatial(): # Set up the inputs dimensions = np.array([10, 5, 10]) mask = np.ones(dimensions) vol = sim._generate_noise_spatial(dimensions, mask) # Run the analysis from _calc_FHWM but for th elast step of aggregating # across dimensions v_count = 0 v_sum = 0 v_sq = 0 d_sum = [0.0, 0.0, 0.0] d_sq = [0.0, 0.0, 0.0] d_count = [0, 0, 0] # Pull out all the voxel coordinates coordinates = list(product(range(dimensions[0]), range(dimensions[1]), range(dimensions[2]))) # Find the sum of squared error for the non-masked voxels in the brain for i in list(range(len(coordinates))): # Pull out this coordinate x, y, z = coordinates[i] # Is this within the mask? if mask[x, y, z] > 0: # Find the the volume sum and squared values v_count += 1 v_sum += vol[x, y, z] v_sq += vol[x, y, z] ** 2 # Get the volume variance v_var = (v_sq - ((v_sum ** 2) / v_count)) / (v_count - 1) for i in list(range(len(coordinates))): # Pull out this coordinate x, y, z = coordinates[i] # Is this within the mask? if mask[x, y, z] > 0: # For each xyz dimension calculate the squared # difference of this voxel and the next in_range = (x < dimensions[0] - 1) in_mask = in_range and (mask[x + 1, y, z] > 0) included = in_mask and (~np.isnan(vol[x + 1, y, z])) if included: d_sum[0] += vol[x, y, z] - vol[x + 1, y, z] d_sq[0] += (vol[x, y, z] - vol[x + 1, y, z]) ** 2 d_count[0] += 1 in_range = (y < dimensions[1] - 1) in_mask = in_range and (mask[x, y + 1, z] > 0) included = in_mask and (~np.isnan(vol[x, y + 1, z])) if included: d_sum[1] += vol[x, y, z] - vol[x, y + 1, z] d_sq[1] += (vol[x, y, z] - vol[x, y + 1, z]) ** 2 d_count[1] += 1 in_range = (z < dimensions[2] - 1) in_mask = in_range and (mask[x, y, z + 1] > 0) included = in_mask and (~np.isnan(vol[x, y, z + 1])) if included: d_sum[2] += vol[x, y, z] - vol[x, y, z + 1] d_sq[2] += (vol[x, y, z] - vol[x, y, z + 1]) ** 2 d_count[2] += 1 # Find the variance d_var = np.divide((d_sq - np.divide(np.power(d_sum, 2), d_count)), (np.add(d_count, -1))) o_var = np.divide(-1, (4 * np.log(1 - (0.5 * d_var / v_var)))) fwhm3 = np.sqrt(o_var) * 2 * np.sqrt(2 * np.log(2)) # Calculate the proportion of std relative to the mean std_proportion = np.nanstd(fwhm3) / np.nanmean(fwhm3) print(fwhm3) assert std_proportion < 0.25, 'Variance is inconsistent across dim' def test_mask_brain(): # Inputs for generate_signal dimensions = np.array([10, 10, 10]) # What is the size of the brain feature_size = [2] feature_type = ['cube'] feature_coordinates = np.array( [[4, 4, 4]]) signal_magnitude = [30] # Generate a volume representing the location and quality of the signal volume = sim.generate_signal(dimensions=dimensions, feature_coordinates=feature_coordinates, feature_type=feature_type, feature_size=feature_size, signal_magnitude=signal_magnitude, ) # Mask the volume to be the same shape as a brain mask, _ = sim.mask_brain(dimensions, mask_self=None,) brain = volume * mask assert np.sum(brain != 0) == np.sum(volume != 0), "Masking did not work" assert brain[0, 0, 0] == 0, "Masking did not work" assert brain[4, 4, 4] != 0, "Masking did not work" feature_coordinates = np.array( [[1, 1, 1]]) volume = sim.generate_signal(dimensions=dimensions, feature_coordinates=feature_coordinates, feature_type=feature_type, feature_size=feature_size, signal_magnitude=signal_magnitude, ) # Mask the volume to be the same shape as a brain mask, _ = sim.mask_brain(dimensions, mask_self=None, ) brain = volume * mask assert np.sum(brain != 0) < np.sum(volume != 0), "Masking did not work" # Test that you can load the default dimensions = np.array([100, 100, 100]) mask, template = sim.mask_brain(dimensions, mask_self=False) assert mask[20, 80, 50] == 0, 'Masking didn''t work' assert mask[25, 80, 50] == 1, 'Masking didn''t work' assert int(template[25, 80, 50] * 100) == 57, 'Template not correct' # Check that you can mask self mask_self, template_self = sim.mask_brain(template, mask_self=True) assert (template_self - template).sum() < 1e2, 'Mask self error' assert (mask_self - mask).sum() == 0, 'Mask self error' def test_calc_noise(): # Inputs for functions onsets = [10, 30, 50, 70, 90] event_durations = [6] tr_duration = 2 duration = 200 temporal_res = 100 tr_number = int(np.floor(duration / tr_duration)) dimensions_tr = np.array([10, 10, 10, tr_number]) # Preset the noise dict nd_orig = sim._noise_dict_update({}) # Create the time course for the signal to be generated stimfunction = sim.generate_stimfunction(onsets=onsets, event_durations=event_durations, total_time=duration, temporal_resolution=temporal_res, ) # Mask the volume to be the same shape as a brain mask, template = sim.mask_brain(dimensions_tr, mask_self=None) stimfunction_tr = stimfunction[::int(tr_duration * temporal_res)] nd_orig['matched'] = 0 noise = sim.generate_noise(dimensions=dimensions_tr[0:3], stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, template=template, mask=mask, noise_dict=nd_orig, ) # Check the spatial noise match nd_orig['matched'] = 1 noise_matched = sim.generate_noise(dimensions=dimensions_tr[0:3], stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, template=template, mask=mask, noise_dict=nd_orig, iterations=[50, 0] ) # Calculate the noise parameters from this newly generated volume nd_new = sim.calc_noise(noise, mask, template) nd_matched = sim.calc_noise(noise_matched, mask, template) # Check the values are reasonable" assert nd_new['snr'] > 0, 'snr out of range' assert nd_new['sfnr'] > 0, 'sfnr out of range' assert nd_new['auto_reg_rho'][0] > 0, 'ar out of range' # Check that the dilation increases SNR no_dilation_snr = sim._calc_snr(noise_matched, mask, dilation=0, reference_tr=tr_duration, ) assert nd_new['snr'] > no_dilation_snr, "Dilation did not increase SNR" # Check that template size is in bounds with pytest.raises(ValueError): sim.calc_noise(noise, mask, template * 2) # Check that Mask is set is checked with pytest.raises(ValueError): sim.calc_noise(noise, None, template) # Check that it can deal with missing noise parameters temp_nd = sim.calc_noise(noise, mask, template, noise_dict={}) assert temp_nd['voxel_size'][0] == 1, 'Default voxel size not set' temp_nd = sim.calc_noise(noise, mask, template, noise_dict=None) assert temp_nd['voxel_size'][0] == 1, 'Default voxel size not set' # Check that the fitting worked snr_diff = abs(nd_orig['snr'] - nd_new['snr']) snr_diff_match = abs(nd_orig['snr'] - nd_matched['snr']) assert snr_diff > snr_diff_match, 'snr fit incorrectly' # Test that you can generate rician and exponential noise sim._generate_noise_system(dimensions_tr, 1, 1, spatial_noise_type='exponential', temporal_noise_type='rician', ) # Check the temporal noise match nd_orig['matched'] = 1 noise_matched = sim.generate_noise(dimensions=dimensions_tr[0:3], stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, template=template, mask=mask, noise_dict=nd_orig, iterations=[0, 50] ) nd_matched = sim.calc_noise(noise_matched, mask, template) sfnr_diff = abs(nd_orig['sfnr'] - nd_new['sfnr']) sfnr_diff_match = abs(nd_orig['sfnr'] - nd_matched['sfnr']) assert sfnr_diff > sfnr_diff_match, 'sfnr fit incorrectly' ar1_diff = abs(nd_orig['auto_reg_rho'][0] - nd_new['auto_reg_rho'][0]) ar1_diff_match = abs(nd_orig['auto_reg_rho'][0] - nd_matched[ 'auto_reg_rho'][0]) assert ar1_diff > ar1_diff_match, 'AR1 fit incorrectly' # Check that you can calculate ARMA for a single voxel vox = noise[5, 5, 5, :] arma = sim._calc_ARMA_noise(vox, None, sample_num=2, ) assert len(arma) == 2, "Two outputs not given by ARMA" ```
{ "source": "jdkent/fitlins", "score": 3 }
#### File: fitlins/utils/strings.py ```python def snake_to_camel(string): words = string.split('_') return words[0] + ''.join(word.title() for word in words[1:]) ``` #### File: fitlins/viz/__init__.py ```python from matplotlib import pyplot as plt from .corr import plot_corr_matrix from .contrasts import plot_contrast_matrix def plot_and_save(fname, plotter, *args, **kwargs): if (kwargs.get('axes'), kwargs.get('ax')) == (None, None): fig = plt.figure() axes = plt.gca() if 'axes' in kwargs: kwargs['axes'] = axes else: kwargs['ax'] = axes plotter(*args, **kwargs) fig.savefig(fname, bbox_inches='tight') plt.close(fig) ```
{ "source": "jdkent/hrfViz", "score": 3 }
#### File: hrfViz/bokeh-app/main.py ```python import numpy as np from bokeh.io import curdoc from bokeh.layouts import row, column from bokeh.models import ColumnDataSource from bokeh.models.widgets import Slider, TextInput from bokeh.plotting import figure from nistats import hemodynamic_models # Set up data model = hemodynamic_models._gamma_difference_hrf(tr=2) x = np.arange(0, len(model)) source = ColumnDataSource(data=dict(x=x, y=model)) # Set up plot thr = 0.01 plot = figure(plot_height=400, plot_width=400, title="my hrf wave", tools="crosshair,pan,reset,save,wheel_zoom", x_range=[0, np.max(x)], y_range=[np.min(model)-thr, np.max(model)+thr]) plot.line('x', 'y', source=source, line_width=3, line_alpha=0.6) # Set up widgets text = TextInput(title="title", value='my hrf') delay = Slider(title="delay", value=6.0, start=0, end=10, step=0.1) time_length = Slider(title="time_length", value=32.0, start=16, end=48, step=0.1) onset = Slider(title="onset", value=0.0, start=0.0, end=10, step=0.1) undershoot = Slider(title="undershoot", value=16.0, start=4, end=32, step=0.1) dispersion = Slider(title="dispersion", value=1.0, start=0.1, end=5.0, step=0.1) u_dispersion = Slider(title="u_dispersion", value=1.0, start=0.1, end=5.0, step=0.1) ratio = Slider(title="ratio", value=0.167, start=0.01, end=2.0, step=0.1) scale = Slider(title="amplitude", value=1, start=0, end=5, step=0.1) # Set up callbacks def update_title(attrname, old, new): plot.title.text = text.value text.on_change('value', update_title) def update_data(attrname, old, new): # Get the current slider values dy = delay.value tl = time_length.value on = onset.value un = undershoot.value di = dispersion.value ud = u_dispersion.value ra = ratio.value # Generate the new curve model = hemodynamic_models._gamma_difference_hrf( tr=2, time_length=tl, onset=on, delay=dy, undershoot=un, dispersion=di, u_dispersion=ud, ratio=ra ) * scale.value x = np.arange(0, len(model)) source.data = dict(x=x, y=model) for w in [delay, time_length, onset, delay, undershoot, dispersion, u_dispersion, ratio, scale]: w.on_change('value', update_data) # Set up layouts and add to document inputs = column(text, delay, time_length, onset, delay, undershoot, dispersion, u_dispersion, ratio, scale) curdoc().add_root(row(inputs, plot, width=800)) curdoc().title = "My HRF" ```
{ "source": "jdkent/neurodocker", "score": 2 }
#### File: neurodocker/neurodocker/neurodocker.py ```python from argparse import Action from argparse import ArgumentParser from argparse import RawDescriptionHelpFormatter import json import logging import sys import etelemetry from neurodocker import __version__ from neurodocker import utils from neurodocker.generators import Dockerfile from neurodocker.generators import SingularityRecipe from neurodocker.generators.common import _installation_implementations logger = logging.getLogger(__name__) # https://stackoverflow.com/a/9028031/5666087 class OrderedArgs(Action): """Object to preserve order in which command-line arguments are given.""" def __call__(self, parser, namespace, values, option_string=None): if 'ordered_args' not in namespace: setattr(namespace, 'ordered_args', []) previous = namespace.ordered_args previous.append((self.dest, values)) setattr(namespace, 'ordered_args', previous) def _list_of_kv(kv): """Split string `kv` at first equals sign.""" ll = kv.split("=") ll[1:] = ["=".join(ll[1:])] return ll def _add_generate_common_arguments(parser): p = parser p.add_argument( "-b", "--base", help="Base Docker image. E.g., debian:stretch") p.add_argument( "-p", "--pkg-manager", choices={'apt', 'yum'}, help="Linux package manager.") p.add_argument( '--add-to-entrypoint', action=OrderedArgs, help=("Add a command to the file /neurodocker/startup.sh, which is the" " container's default entrypoint.")) p.add_argument( '--copy', action=OrderedArgs, nargs="+", help="Copy files into container. Use format <src>... <dest>") p.add_argument( '--install', action=OrderedArgs, nargs="+", help=("Install system packages with apt-get or yum, depending on the" " package manager specified.")) p.add_argument( '--entrypoint', action=OrderedArgs, help="Set the container's entrypoint (Docker) / append to runscript" " (Singularity)") p.add_argument( '-e', '--env', action=OrderedArgs, nargs="+", type=_list_of_kv, help="Set environment variable(s). Use the format KEY=VALUE") p.add_argument( '-r', '--run', action=OrderedArgs, help="Run a command when building container") p.add_argument( '--run-bash', action=OrderedArgs, help="Run a command in bash") p.add_argument( '-u', '--user', action=OrderedArgs, help="Switch current user (creates user if necessary)") p.add_argument( '-w', '--workdir', action=OrderedArgs, help="Set working directory") # To generate from file. p.add_argument( 'file', nargs='?', help="Generate file from JSON. Overrides other `generate` arguments") p.add_argument( '--json', action="store_true", help="Print Neurodocker JSON spec") # Other arguments (no order). p.add_argument( '-o', '--output', dest="output", help="If specified, save Dockerfile to file with this name.") p.add_argument( '--no-print', dest='no_print', action="store_true", help="Do not print the generated file") _ndeb_servers = ", ".join( _installation_implementations['neurodebian']._servers.keys()) # Software package options. pkgs_help = { "all": "Install software packages. Each argument takes a list of" " key=value pairs. Where applicable, the default installation" " behavior is to install by downloading and uncompressing" " binaries. Some programs can be built from source.", "afni": "Install AFNI. Valid keys are version (required), method," " install_path, install_r, install_r_pkgs, install_python2," " and install_python3. Only the latest version and version" " 17.2.02 are supported at this time.", "ants": "Install ANTs. Valid keys are version (required), method" " install_path, cmake_opts, and make_opts. Version can be a " " git commit hash if building from source.", "convert3d": "Install Convert3D. Valid keys are version (required)," " method, and install_path.", "dcm2niix": "Install dcm2niix. Valid keys are version, method," " install_path, cmake_opts, and make_opts", "freesurfer": "Install FreeSurfer. Valid keys are version (required)," " method, install_path, and exclude_paths. A FreeSurfer" " license is required to run the software and is not" " provided by Neurodocker.", "fsl": "Install FSL. Valid keys are version (required), method," " install_path, and exclude_paths.", "matlabmcr": "Install Matlab Compiler Runtime. Valid keys are version," " method, and install_path", "miniconda": "Install Miniconda. Valid keys are install_path," " env_name, conda_install, pip_install, conda_opts," " pip_opts, activate (default false), and version" " (defaults to latest). The options conda_install and" " pip_install accept strings of packages: conda_install=" '"python=3.6 numpy traits".', "mricron": "Install MRIcron. valid keys are version (required), method, and" " install_path.", "mrtrix3": "Install MRtrix3. Valid keys are version (required)," " method, and install_path", "ndfreeze": "Use the NeuroDebian command `nd_freeze` to freeze the apt" " sources to a certain date. This will only have an effect" " on Debian and NeuroDebian APT sources.", "neurodebian": "Add NeuroDebian repository. Valid keys are " "os_codename (e.g., zesty), server (e.g., usa-nh), and" " full (if true, use non-free packages). Valid download" " servers are {}.".format(_ndeb_servers), "spm12": "Install SPM12 and its dependency, Matlab Compiler Runtime." " Valid keys are version and install_path.", "minc": "Install MINC. Valid keys is version (required), method, and" " install_path. Only version 1.9.15 is supported at this" " time.", "petpvc": "Install PETPVC. Valid keys are version (required), method," " and install_path.", "vnc": "Install a VNC server. Valid keys are passwd (required)," " start_at_runtime, and geometry." } pkgs = p.add_argument_group( title="software package arguments", description=pkgs_help['all']) for pkg in _installation_implementations.keys(): if pkg == '_header': continue flag = "--{}".format(pkg) # MRtrix3 does not need any arguments by default. nargs = "*" if pkg == "mrtrix3" else "+" pkgs.add_argument( flag, dest=pkg, nargs=nargs, action=OrderedArgs, metavar="", type=_list_of_kv, help=pkgs_help[pkg]) def _add_generate_docker_arguments(parser): """Add arguments to `parser` for sub-command `generate docker`.""" p = parser # Arguments that should be ordered. p.add_argument( '--add', action=OrderedArgs, nargs="+", help="Dockerfile ADD instruction. Use format <src>... <dest>") p.add_argument( '--arg', action=OrderedArgs, nargs="+", type=_list_of_kv, help="Dockerfile ARG instruction. Use format KEY[=DEFAULT_VALUE] ...") p.add_argument( '--cmd', action=OrderedArgs, nargs="+", help="Dockerfile CMD instruction.") p.add_argument( '--expose', nargs="+", action=OrderedArgs, help="Dockerfile EXPOSE instruction.") p.add_argument( '--label', action=OrderedArgs, nargs="+", type=_list_of_kv, help="Dockerfile LABEL instruction.") p.add_argument( '--volume', action=OrderedArgs, nargs="+", help="Dockerfile VOLUME instruction.") def _add_generate_singularity_arguments(parser): """Add arguments to `parser` for sub-command `generate singularity`.""" pass def _add_reprozip_trace_arguments(parser): """Add arguments to `parser` for sub-command `reprozip-trace`.""" p = parser p.add_argument( 'container', help="Running container in which to trace commands.") p.add_argument('commands', nargs='+', help="Command(s) to trace.") p.add_argument( '--dir', '-d', dest="packfile_save_dir", default=".", help=("Directory in which to save pack file. Default " "is current directory.")) def _add_reprozip_merge_arguments(parser): """Add arguments to `parser` for sub-command `reprozip-merge`.""" p = parser p.add_argument('outfile', help="Filepath to merged pack file.") p.add_argument('pack_files', nargs='+', help="Pack files to merge.") def create_parser(): """Return command-line argument parser.""" parser = ArgumentParser( description=__doc__, formatter_class=RawDescriptionHelpFormatter) verbosity_choices = ('debug', 'info', 'warning', 'error', 'critical') parser.add_argument("-v", "--verbosity", choices=verbosity_choices) parser.add_argument( "-V", "--version", action="version", version=('neurodocker version {}'.format(__version__))) subparsers = parser.add_subparsers( dest="subparser_name", title="subcommands", description="valid subcommands") # `neurodocker generate` parsers. generate_parser = subparsers.add_parser( 'generate', help="generate recipes") generate_subparsers = generate_parser.add_subparsers( dest="subsubparser_name", title="subcommands", description="valid subcommands") generate_docker_parser = generate_subparsers.add_parser( 'docker', help="generate Dockerfile") generate_singularity_parser = generate_subparsers.add_parser( 'singularity', help="generate Singularity recipe") _add_generate_common_arguments(generate_docker_parser) _add_generate_docker_arguments(generate_docker_parser) _add_generate_common_arguments(generate_singularity_parser) _add_generate_singularity_arguments(generate_singularity_parser) # `neurodocker reprozip` parsers. reprozip_parser = subparsers.add_parser('reprozip', help="") reprozip_subparsers = reprozip_parser.add_subparsers( dest="subsubparser_name", title="subcommands", description="valid subcommands") reprozip_trace_parser = reprozip_subparsers.add_parser( 'trace', help="minify container for traced command(s)") reprozip_merge_parser = reprozip_subparsers.add_parser( 'merge', help="merge reprozip pack files") _add_reprozip_trace_arguments(reprozip_trace_parser) _add_reprozip_merge_arguments(reprozip_merge_parser) # Add verbosity option to both parsers. How can this be done with parents? for p in (generate_parser, reprozip_trace_parser, reprozip_merge_parser): p.add_argument("-v", "--verbosity", choices=verbosity_choices) return parser def parse_args(args): """Return namespace of command-line arguments.""" parser = create_parser() namespace = parser.parse_args(args) if namespace.subparser_name is None: parser.print_help() parser.exit(1) elif (namespace.subparser_name == 'generate' and namespace.subsubparser_name is None): parser.print_help() parser.exit(1) elif (namespace.subparser_name == 'reprozip' and namespace.subsubparser_name is None): parser.print_help() parser.exit(1) elif (namespace.subparser_name == 'generate' and namespace.subsubparser_name in {'docker', 'singularity'}): _validate_generate_args(namespace) return namespace def generate(namespace): """Run `neurodocker generate`.""" if namespace.file is None: specs = utils._namespace_to_specs(namespace) else: specs = utils.load_json(namespace.file) recipe_objs = { 'docker': Dockerfile, 'singularity': SingularityRecipe, } recipe_obj = recipe_objs[namespace.subsubparser_name](specs) if namespace.json: print(json.dumps(specs)) elif not namespace.no_print: print(recipe_obj.render()) if namespace.output: recipe_obj.save(filepath=namespace.output) def reprozip_trace(namespace): """Run `neurodocker reprozip`.""" from neurodocker.reprozip import ReproZipMinimizer local_packfile_path = ReproZipMinimizer(**vars(namespace)).run() logger.info("Saved pack file on the local host:\n{}" "".format(local_packfile_path)) def reprozip_merge(namespace): """Run `neurodocker reprozip merge`.""" from neurodocker.reprozip import merge_pack_files merge_pack_files(namespace.outfile, namespace.pack_files) def _validate_generate_args(namespace): if (namespace.file is None and (namespace.base is None or namespace.pkg_manager is None)): raise ValueError("-b/--base and -p/--pkg-manager are required if not" " generating from JSON file.") def main(args=None): """Main program function.""" if args is None: namespace = parse_args(sys.argv[1:]) else: namespace = parse_args(args) if namespace.verbosity is not None: utils.set_log_level(namespace.verbosity) logger.debug(vars(namespace)) try: latest = etelemetry.get_project("kaczmarj/neurodocker") except RuntimeError as e: print("# Could not check for version updates: ", e) else: if latest and 'version' in latest: print("# Your version: {0} Latest version: {1}".format(__version__, latest["version"])) subparser_functions = { 'docker': generate, 'singularity': generate, 'trace': reprozip_trace, 'merge': reprozip_merge, } subparser_functions[namespace.subsubparser_name](namespace) if __name__ == "__main__": # pragma: no cover main() ```
{ "source": "jdkent/neuroscout", "score": 2 }
#### File: neuroscout/models/analysis.py ```python from sqlalchemy.dialects.postgresql import JSONB from sqlalchemy.ext.hybrid import hybrid_property from ..database import db from .utils import copy_row import datetime # Association table between analysis and predictor. analysis_predictor = db.Table( 'analysis_predictor', db.Column('analysis_id', db.Integer(), db.ForeignKey('analysis.id')), db.Column('predictor_id', db.Integer(), db.ForeignKey('predictor.id'))) class Analysis(db.Model): """" A single fMRI analysis. """ id = db.Column(db.Integer, primary_key=True) hash_id = db.Column(db.Text, unique=True) name = db.Column(db.Text) description = db.Column(db.Text) predictions = db.Column(db.Text, default='') private = db.Column(db.Boolean, default=True) model = db.Column(JSONB, default={}) # BIDS Model data = db.Column(JSONB, default={}) # Additional data (e.g. ) filters = db.Column(JSONB) # List of filters used to select runs created_at = db.Column(db.DateTime, default=datetime.datetime.utcnow) modified_at = db.Column(db.DateTime, default=datetime.datetime.utcnow) submitted_at = db.Column(db.DateTime) saved_count = db.Column(db.Integer, default=0) status = db.Column(db.Text, default='DRAFT') __table_args__ = ( db.CheckConstraint( status.in_( ['PASSED', 'FAILED', 'SUBMITTING', 'PENDING', 'DRAFT'])), ) locked = db.Column(db.Boolean, default=False) traceback = db.Column(db.Text, default='') compile_task_id = db.Column(db.Text) # Celery task id bundle_path = db.Column(db.Text) dataset_id = db.Column(db.Integer, db.ForeignKey('dataset.id'), nullable=False) user_id = db.Column(db.Integer, db.ForeignKey('user.id'), nullable=False) # If cloned, this is the parent analysis: parent_id = db.Column(db.Text, db.ForeignKey('analysis.hash_id')) predictors = db.relationship('Predictor', secondary=analysis_predictor, backref='analysis') runs = db.relationship('Run', secondary='analysis_run') neurovault_collections = db.relationship( 'NeurovaultCollection') def clone(self, user): """ Make copy of analysis, with new id, and linking to parent """ clone_row = copy_row(Analysis, self, ignored_columns=['id', 'hash_id']) clone_row.parent_id = self.hash_id clone_row.user_id = user.id clone_row.status = "DRAFT" # Copy relationships return clone_row def __repr__(self): return '<models.Analysis[hash_id =%s]>' % self.hash_id class Report(db.Model): """" Report generation table""" id = db.Column(db.Integer, primary_key=True) analysis_id = db.Column(db.Text, db.ForeignKey('analysis.hash_id')) runs = db.Column(JSONB, default=None) scale = db.Column(db.Boolean) sampling_rate = db.Column(db.Float) generated_at = db.Column(db.DateTime, default=datetime.datetime.utcnow) task_id = db.Column(db.Text) # Celery task id result = db.Column(JSONB) # JSON result from Celery (once finished) warnings = db.Column(JSONB, default=[]) traceback = db.Column(db.Text) status = db.Column(db.Text, default='PENDING') __table_args__ = ( db.CheckConstraint(status.in_(['OK', 'FAILED', 'PENDING'])), ) class NeurovaultCollection(db.Model): """ Neurovault collection and upload status """ id = db.Column(db.Integer, primary_key=True) analysis_id = db.Column(db.Text, db.ForeignKey('analysis.hash_id')) uploaded_at = db.Column(db.DateTime, default=datetime.datetime.utcnow) collection_id = db.Column(db.Integer, unique=True) files = db.relationship('NeurovaultFileUpload', backref='collection') cli_version = db.Column(db.Text) # neuroscout-cli version fmriprep_version = db.Column(db.Text) class NeurovaultFileUpload(db.Model): """ NV file upload """ id = db.Column(db.Integer, primary_key=True) nv_collection_id = db.Column( db.Integer, db.ForeignKey('neurovault_collection.id'), nullable=False) path = db.Column(db.Text, nullable=False) task_id = db.Column(db.Text) level = db.Column(db.Text, nullable=False) exception = db.Column(db.Text) traceback = db.Column(db.Text) status = db.Column(db.Text, default='PENDING') __table_args__ = ( db.CheckConstraint(status.in_(['OK', 'FAILED', 'PENDING'])), db.CheckConstraint(level.in_(['GROUP', 'SUBJECT'])), ) @hybrid_property def basename(self): return self.path.split('/')[-1] ``` #### File: neuroscout/models/task.py ```python from sqlalchemy.dialects.postgresql import JSONB from sqlalchemy.ext.hybrid import hybrid_property import statistics from sqlalchemy import func from .run import Run from ..database import db class Task(db.Model): """ A task in a dataset. Usually associated with various runs. """ __table_args__ = ( db.UniqueConstraint('dataset_id', 'name'), ) id = db.Column(db.Integer, primary_key=True) name = db.Column(db.Text, nullable=False) # Default: base path description = db.Column(JSONB) # BIDS task description dataset_id = db.Column(db.Integer, db.ForeignKey('dataset.id'), nullable=False) runs = db.relationship('Run', backref='task', cascade="delete") TR = db.Column(db.Float) summary = db.Column(db.Text) # Summary annotation @hybrid_property def n_subjects(self): """ Number of subjects in task """ return Run.query.filter_by( task_id=self.id).distinct('subject').count() @hybrid_property def n_runs_subject(self): """ Number of runs per subject """ return statistics.mean( [r[1] for r in db.session.query( Run.subject, func.count(Run.id)).filter_by( task_id=self.id).group_by(Run.subject)]) @hybrid_property def avg_run_duration(self): """ Average run duration (seconds) """ avg_run = db.session.query(func.avg(Run.duration)).filter_by( task_id=self.id).all()[0][0] if avg_run: avg_run = round(avg_run, 2) return avg_run def __repr__(self): return '<models.Task[name={}]>'.format(self.name) ``` #### File: neuroscout/resources/dataset.py ```python from flask_apispec import MethodResource, marshal_with, doc, use_kwargs from webargs import fields from ..models import Dataset from ..core import cache from .utils import first_or_404 from ..schemas.dataset import DatasetSchema class DatasetResource(MethodResource): @doc(tags=['dataset'], summary='Get dataset by id.') @cache.cached(60 * 60 * 24 * 300, query_string=True) @marshal_with(DatasetSchema) def get(self, dataset_id): return first_or_404(Dataset.query.filter_by(id=dataset_id)) class DatasetListResource(MethodResource): @doc(tags=['dataset'], summary='Returns list of datasets.') @use_kwargs({ 'active_only': fields.Boolean( missing=True, description="Return only active Datasets") }, location='query') @cache.cached(60 * 60 * 24 * 300, query_string=True) @marshal_with(DatasetSchema( many=True, exclude=['dataset_address', 'preproc_address', 'runs'])) def get(self, **kwargs): query = {} if kwargs.pop('active_only'): query['active'] = True return Dataset.query.filter_by(**query).all() ``` #### File: tasks/utils/warnings.py ```python from .io import update_record import pandas as pd def _flatten(li): return [item for sublist in li for item in sublist] def _check_scale_variance(pes_df, transformations): """ Warns if Scale transformation is applied to any variables with no variance in a given run. """ # To numeric and coerce pes_df['value'] = pd.to_numeric(pes_df.value, errors='coerce') # Check for inputs to Scale with no variance in_scale = [t['Input'] for t in transformations if t['Name'] == 'Scale'] in_scale = _flatten(in_scale) no_var = [] if in_scale: in_scale_df = pes_df[pes_df.predictor_name.isin(in_scale)] for (n, id), grp in in_scale_df.groupby(['predictor_name', 'run_id']): if grp.value.astype('float').var() == 0: no_var.append(n) messages = [] if no_var: messages.append([ f"The following variables have no variance in at least one run: " f"{', '.join(set(no_var))}. " "Scale transformation cannot be applied."]) return messages def _check_na(pes_df): messages = [] nas = pes_df[pes_df.value == 'n/a'] if not nas.empty: na_vars = nas.predictor_name.unique().tolist() messages.append([ f"The following variables at least one n/a value: " f"{', '.join(set(na_vars))}. " "You must remove n/as using the Scale transformation" "to apply the HRF convolution."] ) return messages def pre_warnings(analysis, pes, report_object): """ Generate warnings that are relevant prior to running pyBIDS. This includes warnings that might result in pyBIDS crashes, and make sense to catch early """ warnings = [] pes_df = pd.DataFrame(pes) transformations = analysis['model']['Steps'][0]['Transformations'] pred_map = {di['id']: di['name'] for di in analysis['predictors']} pes_df['predictor_name'] = pes_df.predictor_id.map(pred_map) warnings += _check_scale_variance(pes_df, transformations) if warnings: update_record( report_object, warnings=warnings, ) ``` #### File: tests/api/test_analyses.py ```python from ..request_utils import decode_json from ...models import Analysis, Run, Report from ...tasks import report from ...core import app import pytest def test_get(session, auth_client, add_analysis): # List of analyses resp = auth_client.get('/api/analyses') assert resp.status_code == 200 analysis_list = decode_json(resp) assert type(analysis_list) == list assert len(analysis_list) == 0 # Analysis is private by default # Make analysis public analysis = Analysis.query.filter_by(id=add_analysis).first() dataset_id = analysis.dataset_id name = analysis.name analysis.private = False analysis.status = "PASSED" session.commit() # List of analyses resp = auth_client.get('/api/analyses') assert resp.status_code == 200 analysis_list = decode_json(resp) assert type(analysis_list) == list assert len(analysis_list) == 1 # Filter by dataset_id and name resp = auth_client.get('/api/analyses', params=dict(dataset_id=dataset_id, name=name)) assert resp.status_code == 200 analysis_list = decode_json(resp) assert len(analysis_list) == 1 # Filter with wrong name resp = auth_client.get('/api/analyses', params=dict(dataset_id=100, name='sds')) assert resp.status_code == 200 analysis_list = decode_json(resp) assert len(analysis_list) == 0 # Get first analysis first_analysis_id = analysis.hash_id # Get first analysis by id resp = auth_client.get('/api/analyses/{}'.format(first_analysis_id)) assert resp.status_code == 200 analysis = decode_json(resp) for required_fields in ['name', 'description']: assert analysis[required_fields] != '' # Try getting nonexistent analysis resp = auth_client.get('/api/analyses/{}'.format(987654)) assert resp.status_code == 404 # assert 'requested URL was not found' in decode_json(resp)['message'] # Test getting resources resp = auth_client.get('/api/analyses/{}/resources'.format( first_analysis_id)) assert resp.status_code == 200 assert 'dataset_address' in decode_json(resp) assert 'preproc_address' in decode_json(resp) def test_post(auth_client, add_task, add_predictor): # Add analysis test_analysis = { "dataset_id": add_task, "name": "some analysis", "description": "pretty damn innovative", "model": { "Name": "test_model1", "Description": "this is a sample", "Input": { "task": "bidstest" }, "Steps": [ { "Level": "Run", "Transformations": [ { "Name": "Scale", "Input": [ "BrightnessExtractor.brightness" ] } ], "Model": { "X": [ "BrightnessExtractor.brightness", "VibranceExtractor.vibrance" ] }, "Contrasts": [ { "Mame": "BvsV", "ConditionList": [ "BrightnessExtractor.brightness", "VibranceExtractor.vibrance" ], "Weights": [ 1, -1 ], "Type": "T" } ] }, { "Level": "Session", }, { "Level": "Subject", "Model": { "X": [ "BvsV" ] }, }, { "Level": "Dataset", "Model": { "X": [ "session_diff" ] }, } ] } } resp = auth_client.post('/api/analyses', data=test_analysis) assert resp.status_code == 200 rv_json = decode_json(resp) assert type(rv_json) == dict for field in ['dataset_id', 'name', 'description', 'hash_id']: assert field in rv_json # Check db directly assert Analysis.query.filter_by(hash_id=rv_json['hash_id']).count() == 1 assert Analysis.query.filter_by( hash_id=rv_json['hash_id']).one().name == 'some analysis' # Re post analysis, check that id is diffeent rv_2 = auth_client.post('/api/analyses', data=test_analysis) assert rv_2.status_code == 200 assert decode_json(rv_2)['hash_id'] != decode_json(resp)['hash_id'] # Test incorrect post dataset_id = decode_json(auth_client.get('/api/datasets'))[0]['id'] bad_post = { "dataset_id": "234234", "name": "some analysis", "description": "pretty damn innovative" } resp = auth_client.post('/api/analyses', data=bad_post) assert resp.status_code == 422 assert decode_json(resp)['message']['json']['dataset_id'][0] == \ 'Invalid dataset id.' no_name_OK = { "dataset_id": dataset_id, "description": "pretty damn innovative" } resp = auth_client.post('/api/analyses', data=no_name_OK) assert resp.status_code == 200 def test_clone(session, auth_client, add_task, add_analysis, add_users): (id1, id2), _ = add_users analysis = Analysis.query.filter_by(id=add_analysis).first() # Try cloning DRAFT resp = auth_client.post('/api/analyses/{}/clone'.format(analysis.hash_id)) assert resp.status_code == 422 # Change status try again analysis.status = 'PASSED' session.commit() resp = auth_client.post('/api/analyses/{}/clone'.format(analysis.hash_id)) clone_json = decode_json(resp) assert clone_json['hash_id'] != analysis.hash_id # Check that runs and predictors have been copied assert len(clone_json['runs']) == len(analysis.runs) assert len(clone_json['predictors']) == len(analysis.predictors) def test_put(auth_client, add_analysis, add_task, session): # Get analysis to edit analysis = Analysis.query.filter_by(id=add_analysis).first() analysis_json = decode_json( auth_client.get('/api/analyses/{}'.format(analysis.hash_id))) analysis_json['name'] = 'NEW NAME' resp = auth_client.put('/api/analyses/{}'.format(analysis.hash_id), data=analysis_json) assert resp.status_code == 200 new_analysis = decode_json(resp) assert new_analysis['name'] == "NEW NAME" # Test adding a run_id analysis_json['runs'] = [Run.query.first().id] resp = auth_client.put('/api/analyses/{}'.format(analysis.hash_id), data=analysis_json) assert resp.status_code == 200 new_analysis = decode_json(resp) assert new_analysis['runs'] == [Run.query.first().id] # Test adding an invalid run id analysis_json['runs'] = [9999] resp = auth_client.put('/api/analyses/{}'.format(analysis.hash_id), data=analysis_json) assert resp.status_code == 422 assert 'runs' in decode_json(resp)['message']['json'] # Add and delete analysis # Add analysis test_analysis = { "dataset_id": add_task, "name": "some analysis", "description": "pretty damn innovative" } resp = auth_client.post('/api/analyses', data=test_analysis) analysis_json = decode_json(resp) # Test adding a run_id analysis_json['runs'] = [Run.query.first().id] resp = auth_client.put('/api/analyses/{}'.format(analysis_json['hash_id']), data=analysis_json) assert resp.status_code == 200 # Lock analysis analysis = Analysis.query.filter_by(hash_id=analysis_json['hash_id']).one() analysis.locked = True session.commit() # Try editing locked analysis analysis_json['description'] = "new!" resp = auth_client.put('/api/analyses/{}'.format( analysis_json['hash_id']), data=analysis_json) assert resp.status_code == 422 # Try deleting locked analysis delresp = auth_client.delete('/api/analyses/{}'.format( analysis_json['hash_id'])) assert delresp.status_code == 422 # Unlock and delete analysis.locked = False session.commit() # Try deleting anlaysis delresp = auth_client.delete('/api/analyses/{}'.format( analysis_json['hash_id'])) assert delresp.status_code == 200 assert Analysis.query.filter_by( hash_id=analysis_json['hash_id']).count() == 0 def test_autofill(auth_client, add_analysis, add_task, session): # Get analysis to edit analysis = Analysis.query.filter_by(id=add_analysis).first() analysis_json = decode_json( auth_client.get('/api/analyses/{}'.format(analysis.hash_id))) analysis_json['predictors'] = [] analysis_json['runs'] = [] resp = auth_client.put('/api/analyses/{}'.format(analysis.hash_id), data=analysis_json) assert resp.status_code == 200 assert len(decode_json(resp)['predictors']) == 0 assert len(decode_json(resp)['runs']) == 0 resp = auth_client.post('/api/analyses/{}/fill'.format(analysis.hash_id), data=analysis_json) assert resp.status_code == 200 analysis_json = decode_json(resp) assert len(analysis_json['predictors']) == 2 assert len(analysis_json['runs']) == 4 assert analysis_json['model']['Input'] == { 'Run': [1, 2], 'Subject': ['02', '01'], 'Task': ['bidstest']} # Try with names that don't exist analysis_json['model']['Steps'][0]["Model"]["X"] = \ ["Brightness", "nonexistent"] analysis_json['predictors'] = [] analysis_json['runs'] = [] resp = auth_client.put('/api/analyses/{}'.format(analysis.hash_id), data=analysis_json) assert resp.status_code == 200 # Partial fill should remove a predictor resp = auth_client.post('/api/analyses/{}/fill'.format(analysis.hash_id), data=analysis_json, params=dict(partial=True, dryrun=True)) assert resp.status_code == 200 analysis_json = decode_json(resp) assert len(analysis_json['predictors']) == 1 assert len(analysis_json['model']['Steps'][0]["Model"]["X"]) == 1 assert len(analysis_json['runs']) == 4 # No partial fill - extra predictor remains in model resp = auth_client.post('/api/analyses/{}/fill'.format(analysis.hash_id), data=analysis_json, params=dict(partial=False, dryrun=True)) assert resp.status_code == 200 analysis_json = decode_json(resp) assert len(analysis_json['predictors']) == 1 assert len(analysis_json['model']['Steps'][0]["Model"]["X"]) == 2 assert len(analysis_json['runs']) == 4 # # Try with names that don't exist analysis_json['model']['Steps'][0]["Model"]["X"] = \ ["Brightness", "nonexistent"] analysis_json['model']['Steps'][0]["Transformations"].append( { "Name": "Scale", "Input": [ "nonexistent" ] } ) analysis_json['predictors'] = [] analysis_json['runs'] = [] resp = auth_client.put('/api/analyses/{}'.format(analysis.hash_id), data=analysis_json) assert resp.status_code == 200 assert len(decode_json(resp)['model']['Steps'][0]["Transformations"]) == 2 # Partial fill should remove all transformations resp = auth_client.post('/api/analyses/{}/fill'.format(analysis.hash_id), data=analysis_json, params=dict(partial=True, dryrun=True)) assert len(decode_json(resp)['model']['Steps'][0]["Transformations"]) == 0 assert len(decode_json(resp)['model']['Steps'][0]["Contrasts"]) == 0 def test_reports(session, auth_client, add_analysis): analysis = Analysis.query.filter_by(id=add_analysis).first() # Create new Report r = Report( analysis_id=analysis.hash_id, runs=[analysis.runs[0].id] ) session.add(r) session.commit() # Trigger report _ = report.generate_report(app, analysis.hash_id, r.id) # Get report resp = auth_client.get('/api/analyses/{}/report'.format(analysis.hash_id)) assert resp.status_code == 200 if decode_json(resp)['status'] != 'OK': print(decode_json(resp)['status']) print(decode_json(resp)['traceback']) assert 0 result = decode_json(resp)['result'] for f in ['design_matrix', 'design_matrix_corrplot', 'design_matrix_plot']: assert f in result assert len(result['design_matrix']) == 1 def test_compile(auth_client, add_analysis, add_analysis_fail): analysis = Analysis.query.filter_by(id=add_analysis).first() analysis_bad = Analysis.query.filter_by(id=add_analysis_fail).first() with pytest.raises(Exception): _ = report.compile(app, analysis_bad.hash_id) # Test status resp = auth_client.get('/api/analyses/{}/compile'.format( analysis_bad.hash_id)) new_analysis = decode_json(resp) if new_analysis['status'] == 'PASSED': assert 0 # Test getting bundle prior to compiling resp = auth_client.get('/api/analyses/{}/bundle'.format(analysis.hash_id)) assert resp.status_code == 404 # Test compiling _ = report.compile(app, analysis.hash_id) # Get full resp = auth_client.get('/api/analyses/{}'.format(analysis.hash_id)) assert resp.status_code == 200 locked_analysis = decode_json(resp) # Test editing status locked_analysis['private'] = False locked_analysis['new_name'] = "Should not change to this" resp = auth_client.put('/api/analyses/{}'.format(analysis.hash_id), data=locked_analysis) assert resp.status_code == 200 assert decode_json(resp)['private'] is False assert decode_json(resp)['name'] != "Should not change to this" # Test status after some time resp = auth_client.get('/api/analyses/{}/compile'.format(analysis.hash_id)) if decode_json(resp)['status'] != 'PASSED': assert 0 # Try deleting locked analysis resp = auth_client.delete('/api/analyses/{}'.format(analysis.hash_id)) assert resp.status_code == 422 # Test bundle is tarfile resp = auth_client.get('/api/analyses/{}/bundle'.format(analysis.hash_id)) assert resp.status_code == 200 assert resp.mimetype == 'application/x-tar' def test_auth_id(auth_client, add_analysis_user2): # Try deleting analysis you are not owner of analysis = Analysis.query.filter_by(id=add_analysis_user2).first() resp = auth_client.delete('/api/analyses/{}'.format(analysis.hash_id)) assert resp.status_code == 404 def test_bibliography(auth_client, add_analysis, add_task, session): # Get analysis to edit analysis = Analysis.query.filter_by(id=add_analysis).first() bib_json = decode_json( auth_client.get('/api/analyses/{}/bibliography'.format( analysis.hash_id))) assert 'supporting' in bib_json assert "https://test.test.com/" in bib_json['data'][0] assert "Google Cloud Computing Services" in bib_json['extraction'][1] assert len([j['id'] for j in bib_json['csl_json']]) == 4 ```
{ "source": "jdkent/NiBetaSeries", "score": 2 }
#### File: interfaces/tests/test_nistats.py ```python import os import json from ..nistats import LSSBetaSeries, LSABetaSeries from ..nistats import _lss_events_iterator, _lsa_events_converter def test_lss_beta_series(sub_metadata, preproc_file, sub_events, confounds_file, brainmask_file): selected_confounds = ['WhiteMatter', 'CSF'] hrf_model = 'spm' with open(str(sub_metadata), 'r') as md: bold_metadata = json.load(md) beta_series = LSSBetaSeries(bold_file=str(preproc_file), bold_metadata=bold_metadata, mask_file=str(brainmask_file), events_file=str(sub_events), confounds_file=str(confounds_file), selected_confounds=selected_confounds, hrf_model=hrf_model, smoothing_kernel=None, high_pass=0.008) res = beta_series.run() for beta_map in res.outputs.beta_maps: assert os.path.isfile(beta_map) os.remove(beta_map) def test_lsa_beta_series(sub_metadata, preproc_file, sub_events, confounds_file, brainmask_file): selected_confounds = ['WhiteMatter', 'CSF'] hrf_model = 'spm' with open(str(sub_metadata), 'r') as md: bold_metadata = json.load(md) beta_series = LSABetaSeries(bold_file=str(preproc_file), bold_metadata=bold_metadata, mask_file=str(brainmask_file), events_file=str(sub_events), confounds_file=str(confounds_file), selected_confounds=selected_confounds, hrf_model=hrf_model, smoothing_kernel=None, high_pass=0.008) res = beta_series.run() for beta_map in res.outputs.beta_maps: assert os.path.isfile(beta_map) os.remove(beta_map) def test_lss_events_iterator(sub_events): # all but the first instance of waffle # should be changed to "other" t_lst = ['other', 'fry', 'milkshake'] * 5 t_lst[0] = 'waffle' res = _lss_events_iterator(sub_events) out_df = list(res)[0][0] out_lst = list(out_df['trial_type']) assert t_lst == out_lst def test_lsa_events_converter(sub_events): # each instance of waffle, fry, and milkshake # should have a different number trial_type_lst = ['waffle', 'fry', 'milkshake'] * 5 number_lst = ['000{}'.format(x) for x in range(1, 6) for y in range(0, 3)] t_lst = ['_'.join([trial, num]) for trial, num in zip(trial_type_lst, number_lst)] res = _lsa_events_converter(sub_events) out_lst = list(res['trial_type']) assert t_lst == out_lst ``` #### File: workflows/tests/test_base.py ```python import os.path as op from nipype import config as ncfg from ..base import init_nibetaseries_participant_wf def test_init_nibetaseries_participant_wf( bids_dir, deriv_dir, sub_fmriprep, sub_metadata, bold_file, preproc_file, sub_events, confounds_file, brainmask_file, atlas_file, atlas_lut, ): output_dir = op.join(str(bids_dir), 'derivatives', 'atlasCorr') work_dir = op.join(str(bids_dir), 'derivatives', 'work') deriv_dir = op.join(str(bids_dir), 'derivatives', 'fmriprep') ncfg.update_config({ 'logging': {'log_directory': work_dir, 'log_to_file': True}, 'execution': {'crashdump_dir': work_dir, 'crashfile_format': 'txt', 'parameterize_dirs': False}, }) test_np_wf = init_nibetaseries_participant_wf( estimator='lss', atlas_img=str(atlas_file), atlas_lut=str(atlas_lut), bids_dir=str(bids_dir), derivatives_pipeline_dir=deriv_dir, exclude_description_label=None, hrf_model='spm', high_pass=0.008, output_dir=output_dir, run_label=None, selected_confounds=['WhiteMatter', 'CSF'], session_label=None, smoothing_kernel=None, space_label=None, subject_list=["01"], task_label=None, description_label=None, work_dir=work_dir) assert test_np_wf.run() test_np_wf = init_nibetaseries_participant_wf( estimator='lsa', atlas_img=str(atlas_file), atlas_lut=str(atlas_lut), bids_dir=str(bids_dir), derivatives_pipeline_dir=deriv_dir, exclude_description_label=None, hrf_model='spm', high_pass=0.008, output_dir=output_dir, run_label=None, selected_confounds=['WhiteMatter', 'CSF'], session_label=None, smoothing_kernel=None, space_label=None, subject_list=["01"], task_label=None, description_label=None, work_dir=work_dir) assert test_np_wf.run() ```
{ "source": "jdkent/sdcflows", "score": 2 }
#### File: sdcflows/workflows/syn.py ```python from pkg_resources import resource_filename from nipype import logging from nipype.pipeline import engine as pe from nipype.interfaces import fsl, utility as niu from nipype.interfaces.image import Rescale from niworkflows.engine.workflows import LiterateWorkflow as Workflow from niworkflows.interfaces.fixes import (FixHeaderApplyTransforms as ApplyTransforms, FixHeaderRegistration as Registration) from niworkflows.func.util import init_skullstrip_bold_wf DEFAULT_MEMORY_MIN_GB = 0.01 LOGGER = logging.getLogger('nipype.workflow') def init_syn_sdc_wf(omp_nthreads, epi_pe=None, atlas_threshold=3, name='syn_sdc_wf'): """ Build the *fieldmap-less* susceptibility-distortion estimation workflow. This workflow takes a skull-stripped T1w image and reference BOLD image and estimates a susceptibility distortion correction warp, using ANTs symmetric normalization (SyN) and the average fieldmap atlas described in [Treiber2016]_. SyN deformation is restricted to the phase-encoding (PE) direction. If no PE direction is specified, anterior-posterior PE is assumed. SyN deformation is also restricted to regions that are expected to have a >3mm (approximately 1 voxel) warp, based on the fieldmap atlas. This technique is a variation on those developed in [Huntenburg2014]_ and [Wang2017]_. Workflow Graph .. workflow :: :graph2use: orig :simple_form: yes from sdcflows.workflows.syn import init_syn_sdc_wf wf = init_syn_sdc_wf( epi_pe='j', omp_nthreads=8) Inputs ------ in_reference reference image in_reference_brain skull-stripped reference image t1w_brain skull-stripped, bias-corrected structural image std2anat_xfm inverse registration transform of T1w image to MNI template Outputs ------- out_reference the ``in_reference`` image after unwarping out_reference_brain the ``in_reference_brain`` image after unwarping out_warp the corresponding :abbr:`DFM (displacements field map)` compatible with ANTs out_mask mask of the unwarped input file References ---------- .. [Treiber2016] <NAME>. et al. (2016) Characterization and Correction of Geometric Distortions in 814 Diffusion Weighted Images, PLoS ONE 11(3): e0152472. doi:`10.1371/journal.pone.0152472 <https://doi.org/10.1371/journal.pone.0152472>`_. .. [Wang2017] <NAME>, et al. (2017) Evaluation of Field Map and Nonlinear Registration Methods for Correction of Susceptibility Artifacts in Diffusion MRI. Front. Neuroinform. 11:17. doi:`10.3389/fninf.2017.00017 <https://doi.org/10.3389/fninf.2017.00017>`_. .. [Huntenburg2014] <NAME>. (2014) Evaluating Nonlinear Coregistration of BOLD EPI and T1w Images. Berlin: Master Thesis, Freie Universität. `PDF <http://pubman.mpdl.mpg.de/pubman/item/escidoc:2327525:5/component/escidoc:2327523/master_thesis_huntenburg_4686947.pdf>`_. """ if epi_pe is None or epi_pe[0] not in ['i', 'j']: LOGGER.warning('Incorrect phase-encoding direction, assuming PA (posterior-to-anterior).') epi_pe = 'j' workflow = Workflow(name=name) workflow.__desc__ = """\ A deformation field to correct for susceptibility distortions was estimated based on *fMRIPrep*'s *fieldmap-less* approach. The deformation field is that resulting from co-registering the BOLD reference to the same-subject T1w-reference with its intensity inverted [@fieldmapless1; @fieldmapless2]. Registration is performed with `antsRegistration` (ANTs {ants_ver}), and the process regularized by constraining deformation to be nonzero only along the phase-encoding direction, and modulated with an average fieldmap template [@fieldmapless3]. """.format(ants_ver=Registration().version or '<ver>') inputnode = pe.Node( niu.IdentityInterface(['in_reference', 'in_reference_brain', 't1w_brain', 'std2anat_xfm']), name='inputnode') outputnode = pe.Node( niu.IdentityInterface(['out_reference', 'out_reference_brain', 'out_mask', 'out_warp']), name='outputnode') # Collect predefined data # Atlas image and registration affine atlas_img = resource_filename('sdcflows', 'data/fmap_atlas.nii.gz') # Registration specifications affine_transform = resource_filename('sdcflows', 'data/affine.json') syn_transform = resource_filename('sdcflows', 'data/susceptibility_syn.json') invert_t1w = pe.Node(Rescale(invert=True), name='invert_t1w', mem_gb=0.3) ref_2_t1 = pe.Node(Registration(from_file=affine_transform), name='ref_2_t1', n_procs=omp_nthreads) t1_2_ref = pe.Node(ApplyTransforms(invert_transform_flags=[True]), name='t1_2_ref', n_procs=omp_nthreads) # 1) BOLD -> T1; 2) MNI -> T1; 3) ATLAS -> MNI transform_list = pe.Node(niu.Merge(3), name='transform_list', mem_gb=DEFAULT_MEMORY_MIN_GB) transform_list.inputs.in3 = resource_filename( 'sdcflows', 'data/fmap_atlas_2_MNI152NLin2009cAsym_affine.mat') # Inverting (1), then applying in reverse order: # # ATLAS -> MNI -> T1 -> BOLD atlas_2_ref = pe.Node( ApplyTransforms(invert_transform_flags=[True, False, False]), name='atlas_2_ref', n_procs=omp_nthreads, mem_gb=0.3) atlas_2_ref.inputs.input_image = atlas_img threshold_atlas = pe.Node( fsl.maths.MathsCommand(args='-thr {:.8g} -bin'.format(atlas_threshold), output_datatype='char'), name='threshold_atlas', mem_gb=0.3) fixed_image_masks = pe.Node(niu.Merge(2), name='fixed_image_masks', mem_gb=DEFAULT_MEMORY_MIN_GB) fixed_image_masks.inputs.in1 = 'NULL' restrict = [[int(epi_pe[0] == 'i'), int(epi_pe[0] == 'j'), 0]] * 2 syn = pe.Node( Registration(from_file=syn_transform, restrict_deformation=restrict), name='syn', n_procs=omp_nthreads) unwarp_ref = pe.Node(ApplyTransforms( dimension=3, float=True, interpolation='LanczosWindowedSinc'), name='unwarp_ref') skullstrip_bold_wf = init_skullstrip_bold_wf() workflow.connect([ (inputnode, invert_t1w, [('t1w_brain', 'in_file'), ('in_reference', 'ref_file')]), (inputnode, ref_2_t1, [('in_reference_brain', 'moving_image')]), (invert_t1w, ref_2_t1, [('out_file', 'fixed_image')]), (inputnode, t1_2_ref, [('in_reference', 'reference_image')]), (invert_t1w, t1_2_ref, [('out_file', 'input_image')]), (ref_2_t1, t1_2_ref, [('forward_transforms', 'transforms')]), (ref_2_t1, transform_list, [('forward_transforms', 'in1')]), (inputnode, transform_list, [ ('std2anat_xfm', 'in2')]), (inputnode, atlas_2_ref, [('in_reference', 'reference_image')]), (transform_list, atlas_2_ref, [('out', 'transforms')]), (atlas_2_ref, threshold_atlas, [('output_image', 'in_file')]), (threshold_atlas, fixed_image_masks, [('out_file', 'in2')]), (inputnode, syn, [('in_reference_brain', 'moving_image')]), (t1_2_ref, syn, [('output_image', 'fixed_image')]), (fixed_image_masks, syn, [('out', 'fixed_image_masks')]), (syn, outputnode, [('forward_transforms', 'out_warp')]), (syn, unwarp_ref, [('forward_transforms', 'transforms')]), (inputnode, unwarp_ref, [('in_reference', 'reference_image'), ('in_reference', 'input_image')]), (unwarp_ref, skullstrip_bold_wf, [ ('output_image', 'inputnode.in_file')]), (unwarp_ref, outputnode, [('output_image', 'out_reference')]), (skullstrip_bold_wf, outputnode, [ ('outputnode.skull_stripped_file', 'out_reference_brain'), ('outputnode.mask_file', 'out_mask')]), ]) return workflow ``` #### File: workflows/tests/test_pepolar.py ```python from os import cpu_count import pytest from niworkflows.interfaces.bids import DerivativesDataSink from nipype.pipeline import engine as pe from ..pepolar import ( check_pes, _split_epi_lists, init_prepare_epi_wf, init_pepolar_unwarp_wf ) def test_split_epi_lists(bids_layouts, tmpdir): """Test preparation workflow.""" tmpdir.chdir() layout = bids_layouts['testdata'] bold = layout.get(suffix='bold', dir='LR', direction='LR', extension=['.nii.gz', '.nii'])[0] epidata = layout.get(suffix='epi', desc=None, extension=['.nii.gz', '.nii']) # EPI fmaps in HCP101006 have 3 volumes each a, b = _split_epi_lists( in_files=[(im.path, im.get_metadata()['PhaseEncodingDirection']) for im in epidata], pe_dir=bold.get_metadata()['PhaseEncodingDirection'] ) assert len(a) == 3 assert len(b) == 3 # If we append the BOLD aligned (not that you would do this), then the # second array should have 53 volumes (50 from _bold, 3 from _epi) a, b = _split_epi_lists( in_files=[(im.path, im.get_metadata()['PhaseEncodingDirection']) for im in epidata + [bold]], pe_dir=bold.get_metadata()['PhaseEncodingDirection'] ) assert len(a) == 3 assert len(b) == 53 def test_prepare_epi_wf0(bids_layouts, tmpdir): """Test preparation workflow.""" tmpdir.chdir() layout = bids_layouts['testdata'] bold = layout.get(suffix='bold', dir='LR', direction='LR', extension=['.nii.gz', '.nii'])[0] epidata = layout.get(suffix='epi', dir='LR', direction='LR', desc=None, extension=['.nii.gz', '.nii']) with pytest.raises(ValueError): check_pes([ (im.path, im.get_metadata()['PhaseEncodingDirection']) for im in epidata], bold.get_metadata()['PhaseEncodingDirection']) def test_prepare_epi_wf1(bids_layouts, tmpdir): """Test preparation workflow.""" tmpdir.chdir() layout = bids_layouts['testdata'] bold = layout.get(suffix='bold', dir='LR', direction='LR', extension=['.nii.gz', '.nii'])[0] boldref = layout.get(suffix='boldref', dir='LR', direction='LR', extension=['.nii.gz', '.nii'])[0] epidata = layout.get(suffix='epi', desc=None, extension=['.nii.gz', '.nii']) matched_pe = check_pes([(im.path, im.get_metadata()['PhaseEncodingDirection']) for im in epidata], bold.get_metadata()['PhaseEncodingDirection']) assert matched_pe is True wf = init_prepare_epi_wf(omp_nthreads=1, matched_pe=matched_pe) wf.inputs.inputnode.maps_pe = [(im.path, im.get_metadata()['PhaseEncodingDirection']) for im in epidata] wf.inputs.inputnode.ref_brain = boldref.path wf.inputs.inputnode.epi_pe = bold.get_metadata()['PhaseEncodingDirection'] def test_prepare_epi_wf2(bids_layouts, tmpdir): """Test preparation workflow.""" tmpdir.chdir() layout = bids_layouts['testdata'] bold = layout.get(suffix='bold', dir='LR', direction='LR', extension=['.nii.gz', '.nii'])[0] boldref = layout.get(suffix='boldref', dir='LR', direction='LR', extension=['.nii.gz', '.nii'])[0] epidata = layout.get(suffix='epi', dir='RL', direction='RL', desc=None, extension=['.nii.gz', '.nii']) matched_pe = check_pes([(im.path, im.get_metadata()['PhaseEncodingDirection']) for im in epidata], bold.get_metadata()['PhaseEncodingDirection']) assert matched_pe is False wf = init_prepare_epi_wf(omp_nthreads=1, matched_pe=matched_pe) wf.inputs.inputnode.maps_pe = [(im.path, im.get_metadata()['PhaseEncodingDirection']) for im in epidata] wf.inputs.inputnode.ref_brain = boldref.path wf.inputs.inputnode.epi_pe = bold.get_metadata()['PhaseEncodingDirection'] @pytest.mark.parametrize('dataset', [ 'ds001600', 'testdata', ]) def test_pepolar_wf1(bids_layouts, output_path, dataset, workdir): """Test preparation workflow.""" layout = bids_layouts[dataset] if dataset == 'testdata': bold = layout.get(suffix='bold', dir='LR', direction='LR', extension=['.nii.gz', '.nii'])[0] boldref = layout.get(suffix='boldref', dir='LR', direction='LR', desc='brain', extension=['.nii.gz', '.nii'])[0] elif dataset == 'ds001600': bold = layout.get(suffix='bold', acquisition='AP', extension=['.nii.gz', '.nii'])[0] epidata = layout.get(suffix='epi', desc=None, extension=['.nii.gz', '.nii']) matched_pe = check_pes([(im.path, im.get_metadata()['PhaseEncodingDirection']) for im in epidata], bold.get_metadata()['PhaseEncodingDirection']) wf = init_pepolar_unwarp_wf(omp_nthreads=cpu_count(), matched_pe=matched_pe) wf.inputs.inputnode.fmaps_epi = [(im.path, im.get_metadata()['PhaseEncodingDirection']) for im in epidata] wf.inputs.inputnode.epi_pe_dir = bold.get_metadata()['PhaseEncodingDirection'] if output_path: from nipype.interfaces import utility as niu from ..pepolar import Workflow from ...interfaces.reportlets import FieldmapReportlet boiler = Workflow(name='pepolar_%s' % dataset) split_field = pe.Node(niu.Function(function=_split_field), name='split_field') if dataset == 'ds001600': from niworkflows.func.util import init_bold_reference_wf gen_ref = init_bold_reference_wf( omp_nthreads=cpu_count(), bold_file=bold.path) boiler.connect([ (gen_ref, wf, [ ('outputnode.ref_image', 'inputnode.in_reference'), ('outputnode.ref_image_brain', 'inputnode.in_reference_brain')]) ]) else: wf.inputs.inputnode.in_reference_brain = boldref.path wf.inputs.inputnode.in_reference = boldref.path rep = pe.Node(FieldmapReportlet(reference_label='EPI Reference'), 'simple_report') rep.interface._always_run = True dsink = pe.Node(DerivativesDataSink( base_directory=str(output_path), keep_dtype=True, desc='pepolar'), name='dsink') dsink.interface.out_path_base = 'sdcflows' dsink.inputs.source_file = epidata[0].path boiler.connect([ (wf, split_field, [ ('inputnode.epi_pe_dir', 'pe_dir'), ('outputnode.out_warp', 'in_field')]), (split_field, rep, [ ('out', 'fieldmap')]), (wf, rep, [ # ('outputnode.out_warp', 'fieldmap'), ('outputnode.out_reference_brain', 'reference'), ('outputnode.out_mask', 'mask')]), (rep, dsink, [('out_report', 'in_file')]), ]) if workdir: boiler.base_dir = str(workdir) boiler.run(plugin='MultiProc', plugin_args={'n_proc': cpu_count()}) def _split_field(in_field, pe_dir): from os.path import abspath import numpy as np import nibabel as nb axis = 'ijk'.index(pe_dir[0]) im = nb.load(in_field) data = np.squeeze(im.get_fdata())[..., axis] dirnii = nb.Nifti1Image(data, im.affine, im.header) dirnii.to_filename('fieldmap.nii.gz') return abspath('fieldmap.nii.gz') ```
{ "source": "jdkizer9/cs5555Lab2", "score": 2 }
#### File: mydata/controllers/my_data_network_controller.py ```python from rauth import OAuth2Service import base64 from django.http import HttpResponseRedirect import json class DPUNetworkController(object): __instance_map = {} @classmethod def RegisterClient(cls, name, instance): cls.__instance_map[name] = instance print cls.__instance_map @classmethod def CheckForClient(cls, name): return name in cls.__instance_map @classmethod def GetClient(cls, name): print cls.__instance_map return cls.__instance_map[name] def __init__(self, name, client_id, client_secret): self.name = name self.service_name = 'omh-client-' + name self.client_id = client_id self.client_secret = client_secret self.service = OAuth2Service( name=self.service_name, client_id=self.client_id, client_secret=self.client_id, access_token_url='https://ohmage-omh.smalldata.io/dsu/oauth/token', authorize_url='https://ohmage-omh.smalldata.io/dsu/oauth/authorize', base_url='https://ohmage-omh.smalldata.io/dsu/') self.session = None self.access_token = None def is_client_authenticated(self): return self.access_token != None def get_authorize_url(self): params = {'redirect_uri': "http://localhost:8000/callback", 'response_type': 'code'} url = self.service.get_authorize_url(**params) return url def configure_access_token(self, code): data = {'code': code, 'redirect_uri': "http://localhost:8000/callback", 'grant_type': 'authorization_code'} pt_auth_header = self.client_id + ':' + self.client_secret en_auth_header = base64.b64encode(pt_auth_header) headers = {'Authorization': "Basic " + en_auth_header} session = self.service.get_auth_session(data=data, headers=headers, decoder=json.loads) self.session = session access_token_response_body = self.service.access_token_response.json() self.access_token = access_token_response_body['access_token'] def getData(self, params): headers = {'Authorization': "Bearer " + self.access_token} r = self.session.get('https://ohmage-omh.smalldata.io/dsu/dataPoints', params=params, headers=headers) return r def getPAMData(self, ios=True, created_on_or_after=None, created_before=None, skip=None, limit=100): if(ios): params = {'schema_namespace' : 'cornell', 'schema_name' : 'photographic-affect-meter-scores', 'schema_version' : '1.0', 'limit' : str(limit) } else: params = {'schema_namespace' : 'omh', 'schema_name' : 'pam', 'schema_version' : '1.0', 'limit' : str(limit) } if(created_on_or_after): params['created_on_or_after'] = created_on_or_after if(created_before): params['created_before'] = created_before if(skip): params['skip'] = str(skip) return self.getData(params) def getMobilityDailySummaryData(self, created_on_or_after=None, created_before=None, skip=None, limit=1000): params = {'schema_namespace' : 'cornell', 'schema_name' : 'mobility-daily-summary', 'schema_version' : '1.0', 'limit' : str(limit) } if(created_on_or_after): params['created_on_or_after'] = created_on_or_after if(created_before): params['created_before'] = created_before if(skip): params['skip'] = str(skip) return self.getData(params) def getMobilityDailySegmentsData(self, created_on_or_after=None, created_before=None, skip=None, limit=1000): params = {'schema_namespace' : 'cornell', 'schema_name' : 'mobility-daily-segments', 'schema_version' : '1.0', 'limit' : str(limit) } if(created_on_or_after): params['created_on_or_after'] = created_on_or_after if(created_before): params['created_before'] = created_before if(skip): params['skip'] = str(skip) return self.getData(params) def getAndroidMobilitySensorData(self, created_on_or_after=None, created_before=None, skip=None, limit=100): params = {'schema_namespace' : 'omh', 'schema_name' : 'mobility', 'schema_version' : '1.0', 'limit' : str(limit) } if(created_on_or_after): params['created_on_or_after'] = created_on_or_after if(created_before): params['created_before'] = created_before if(skip): params['skip'] = str(skip) return self.getData(params) def getAndroidLocationSensorData(self, created_on_or_after=None, created_before=None, skip=None, limit=100): params = {'schema_namespace' : 'omh', 'schema_name' : 'location', 'schema_version' : '1.0', 'limit' : str(limit) } if(created_on_or_after): params['created_on_or_after'] = created_on_or_after if(created_before): params['created_before'] = created_before if(skip): params['skip'] = str(skip) return self.getData(params) def getIOSSensorData(self, created_on_or_after=None, created_before=None, skip=None, limit=100): params = {'schema_namespace' : 'cornell', 'schema_name' : 'mobility-stream-iOS', 'schema_version' : '1.0', 'limit' : str(limit) } if(created_on_or_after): params['created_on_or_after'] = created_on_or_after if(created_before): params['created_before'] = created_before if(skip): params['skip'] = str(skip) return self.getData(params) class GithubNetworkController(object): __instance_map = {} @classmethod def RegisterClient(cls, name, instance): cls.__instance_map[name] = instance print cls.__instance_map @classmethod def CheckForClient(cls, name): return name in cls.__instance_map @classmethod def GetClient(cls, name): print cls.__instance_map return cls.__instance_map[name] def __init__(self, name, client_id, client_secret): self.name = name self.service_name = 'github-' + name self.client_id = client_id self.client_secret = client_secret self.service = OAuth2Service( name=self.service_name, client_id=self.client_id, client_secret=self.client_id, access_token_url='https://github.com/login/oauth/access_token', authorize_url='https://github.com/login/oauth/authorize', base_url='https://github.com/') self.session = None self.access_token = None def is_client_authenticated(self): return self.access_token != None def get_authorize_url(self): params = {'redirect_uri': "http://localhost:8000/callback/github_callback", 'state': 'A random string', 'scope' : 'user,repo'} url = self.service.get_authorize_url(**params) return url def configure_access_token(self, code): data = {'code': code, 'redirect_uri': "http://localhost:8000/callback/github_callback"} session = self.service.get_auth_session(data=data, headers=headers, decoder=json.loads) self.session = session access_token_response_body = self.service.access_token_response.json() self.access_token = access_token_response_body['access_token'] ```
{ "source": "jdkizer9/ls2_app", "score": 2 }
#### File: jdkizer9/ls2_app/datapoint_migration.py ```python from study_management.models import Datapoint import json def migrate_datapoints(): for datapoint in Datapoint.objects.all(): datapoint.encrypted_body = json.dumps(datapoint.body) datapoint.save() ``` #### File: LS2/settings/database_settings.py ```python import urllib.request import json def get_database_settings(environ): database_settings = {} database_settings["DATABASES"] = environ.get("databases") database_settings["DATABASE_ROUTERS"] = environ.get('database_routers', []) fernet_keys = environ.get('fernet_keys') if len(fernet_keys) == 0 or len(fernet_keys[0]) == 0 or len(fernet_keys[0]) == 1: raise ImproperlyConfigured("Fernet keys improperly configured") database_settings["FERNET_KEYS"] = environ.get('fernet_keys') return database_settings # def get_databases(environ): # # try: # # databases_json_string = environ.get('DATABASE_JSON_STRING', '') # # databases = json.loads(databases_json_string) # # return environ.get('DATABASE_DICT') # # except ValueError: # # return None # return environ.get('DATABASE_DICT') # def get_database_routers(environ): # database_routers_string = environ.get('DATABASE_ROUTERS') # if database_routers_string == None: # return [] # else: # return database_routers_string.split(',') # def get_fernet_keys(environ): # fernet_keys_string = environ.get('FERNET_KEYS') # fernet_keys = fernet_keys_string.split('\n') # fernet_keys.reverse() # if len(fernet_keys) == 0 or len(fernet_keys[0]) == 0: # raise ImproperlyConfigured("No FERNET_KEYS specified") # return fernet_keys ``` #### File: ls2_app/study_management/database_routers.py ```python import logging logger = logging.getLogger(__name__) class DatapointRouter: def db_for_read(self, model, **hints): # logger.debug('db_for_read') # logger.debug(model) # logger.debug(model._meta.label) if model._meta.label == "study_management.Datapoint": logger.debug("returning datapoints db") return "datapoints" return None def db_for_write(self, model, **hints): if model._meta.label == "study_management.Datapoint": logger.debug("returning datapoints db") return "datapoints" return None def allow_relation(self, obj1, obj2, **hints): if obj1._meta.label == "study_management.Datapoint" or \ obj2._meta.label == "study_management.Datapoint": return False else: return None def allow_migrate(self, db, app_label, model_name=None, **hints): if db == "datapoints": return app_label == "study_management" and model_name == "datapoint" else: return None ``` #### File: management/commands/generatefernetkey.py ```python from django.core.management.base import BaseCommand, CommandError from study_management.models import Datapoint from cryptography.fernet import Fernet import base64 class Command(BaseCommand): help = 'Generates a new Fernet key' def handle(self, *args, **options): key = Fernet.generate_key() self.stdout.write(self.style.SUCCESS(key)) ``` #### File: management/commands/rotatefernetkey.py ```python from django.core.management.base import BaseCommand, CommandError from study_management.models import Datapoint class Command(BaseCommand): help = 'Rotates the Fernet key to the latest for each Datapoint' def handle(self, *args, **options): datapoint_encrypted_fields = ['body', 'metadata'] self.stdout.write(self.style.SUCCESS('Roating %s datapoints' % Datapoint.objects.all().count())) i = 0 for datapoint in Datapoint.objects.all(): datapoint.save(update_fields=datapoint_encrypted_fields, force_update=True) i = i + 1 self.stdout.write(self.style.SUCCESS('Successfully rotated %s datapoints' % i)) ``` #### File: management/commands/testldap.py ```python from django.core.management.base import BaseCommand, CommandError from django.conf import settings import os from LS2.settings import settings_backend import ldap import getpass from django_auth_ldap.config import LDAPSearch class Command(BaseCommand): help = 'Tests the LDAP connection' def add_arguments(self, parser): parser.add_argument('username') def handle(self, *args, **options): os_environ_dict = dict(os.environ) environ = settings_backend.get_settings_environ(os_environ_dict) ldap_enabled = environ.get('LS2_LDAP_ENABLED', False) if ldap_enabled == False: raise CommandError("LDAP is not enabled") server_uri = environ.get('LS2_LDAP_SERVER_URI') if server_uri == None: raise CommandError("LDAP server URI info missing") self.stdout.write(self.style.SUCCESS(f'Attempting to connect to {server_uri}')) ##ignore cert errors for now ldap.set_option(ldap.OPT_X_TLS_REQUIRE_CERT, ldap.OPT_X_TLS_NEVER) ldap.set_option(ldap.OPT_REFERRALS, ldap.OPT_OFF) l = ldap.initialize(server_uri, trace_level=0) self.stdout.write(self.style.SUCCESS(f'Server initialization success')) bind_dn = environ.get('LS2_LDAP_BIND_DN') bind_password = environ.get('LS2_LDAP_BIND_PASSWORD') if bind_dn == None or bind_password == None: raise CommandError("LDAP bind user info missing") self.stdout.write(self.style.SUCCESS(f'Attempting to bind with DN {bind_dn}')) r = l.simple_bind_s(bind_dn, bind_password) self.stdout.write(self.style.SUCCESS(f'Bind Successful')) ldap_search_base_dn = environ.get('LS2_LDAP_SEARCH_BASE_DN') ldap_search_scope = ldap.SCOPE_SUBTREE ldap_search_filter_template = environ.get('LS2_LDAP_SEARCH_FILTER') user = options['username'] password = <PASSWORD>() self.stdout.write(f'Attempting to search for {user} in \"{ldap_search_base_dn}\"') self.stdout.write(f'Filter {filter}') ldap_search = LDAPSearch(ldap_search_base_dn, ldap.SCOPE_SUBTREE, ldap_search_filter_template) results = ldap_search.execute(l, {'user': user}) if results is not None and len(results) == 1: pass else: raise CommandError("NOT FOUND") user_dn = results[0][0] l.simple_bind_s(user_dn, password) self.stdout.write('Test Successful') ``` #### File: ls2_app/study_management/serializers.py ```python from rest_framework import serializers from .models import Datapoint import json class DatapointSerializer(serializers.ModelSerializer): class Meta: model = Datapoint # fields = ('id', 'participant', 'study', 'uuid') fields = '__all__' def to_internal_value(self, data): request = self.context.get('request') if not request: raise serializers.ValidationError({ 'request': 'The request is required as part of the context.' }) try: participant = request.user.participant participant_uuid = participant.uuid study_uuid = participant.study.uuid except Participant.DoesNotExist: raise serializers.ValidationError({ 'participant': 'The request must include a valid participant.' }) header = data.get('header') # Perform the data validation. if not header: raise serializers.ValidationError({ 'header': 'This field is required.' }) uuid = header.get('id') if not uuid: raise serializers.ValidationError({ 'header.id': 'This field is required.' }) schema = header.get('schema_id') if not schema: raise serializers.ValidationError({ 'header.schema': 'This field is required.' }) schema_namespace = schema.get('namespace') if not schema_namespace: raise serializers.ValidationError({ 'header.schema.namespace': 'This field is required.' }) schema_name = schema.get('name') if not schema_name: raise serializers.ValidationError({ 'header.schema.name': 'This field is required.' }) schema_version = schema.get('version') if not schema_version: raise serializers.ValidationError({ 'header.schema.version': 'This field is required.' }) split_version = schema_version.split('.') if len(split_version) != 3: raise serializers.ValidationError({ 'header.schema.version': 'This field must support semantic versioning (i.e., major.minor.patch).' }) try: schema_version_major = int(split_version[0]) schema_version_minor = int(split_version[1]) schema_version_patch = int(split_version[2]) except ValueError: raise serializers.ValidationError({ 'header.schema.version': 'This field must support semantic versioning (i.e., major.minor.patch).' }) except Exception: raise serializers.ValidationError({ 'header.schema.version': 'This field must support semantic versioning (i.e., major.minor.patch).' }) acquisition_provenance = header.get('acquisition_provenance') if not acquisition_provenance: raise serializers.ValidationError({ 'header.acquisition_provenance': 'This field is required.' }) ap_source_name = acquisition_provenance.get('source_name') if not ap_source_name: raise serializers.ValidationError({ 'header.acquisition_provenance.source_name': 'This field is required.' }) ap_source_creation_date_time = acquisition_provenance.get('source_creation_date_time') if not ap_source_creation_date_time: raise serializers.ValidationError({ 'header.acquisition_provenance.source_creation_date_time': 'This field is required.' }) ap_source_modality = acquisition_provenance.get('modality') if not ap_source_modality: raise serializers.ValidationError({ 'header.acquisition_provenance.modality': 'This field is required.' }) body = json.dumps(data.get('body')) if not body: raise serializers.ValidationError({ 'body': 'This field is required.' }) internal_representation = { 'participant_uuid': participant_uuid, 'study_uuid': study_uuid, 'uuid': uuid, 'schema_namespace': schema_namespace, 'schema_name': schema_name, 'schema_version_major': schema_version_major, 'schema_version_minor': schema_version_minor, 'schema_version_patch': schema_version_patch, 'ap_source_name': ap_source_name, 'ap_source_creation_date_time': ap_source_creation_date_time, 'ap_source_modality': ap_source_modality, 'body': body } headerJSON = header.get('metadata') if headerJSON != None: internal_representation['metadata'] = json.dumps(headerJSON) return internal_representation def to_representation(self, obj): schema_version = '.'.join([ str(obj.schema_version_major), str(obj.schema_version_minor), str(obj.schema_version_patch), ]) header = { 'participant_id': obj.participant_uuid, 'id': obj.uuid, 'creation_date_time': obj.created_date_time, 'schema_id': { 'namespace': obj.schema_namespace, 'name': obj.schema_name, 'version': schema_version, }, 'acquisition_provenance': { 'source_name': obj.ap_source_name, 'modality': obj.ap_source_modality, 'source_creation_date_time': obj.ap_source_creation_date_time, } } if obj.metadata != None: header['metadata'] = json.loads(obj.metadata) return { 'header': header, 'body': json.loads(obj.body) } class ParticipantMappingSerializer(serializers.Serializer): participant_id = serializers.UUIDField() username = serializers.CharField() def to_representation(self, obj): return { 'participant_id': obj.uuid, 'username': obj.user.username } class ParticipantAccountGeneratorAuthenticationSerializer(serializers.Serializer): generator_id = serializers.UUIDField() generator_password = serializers.CharField() class TokenBasedParticipantAccountGeneratorAuthenticationSerializer(serializers.Serializer): generator_id = serializers.UUIDField() token = serializers.CharField() ```
{ "source": "jdkleuver/PcodeSym", "score": 3 }
#### File: PcodeSym/ghidra_scripts/RunSolve.py ```python import argparse def run_script(server_host, server_port): import ghidra_bridge # load something ghidra doesn't have import angr from angr.engines.pcode.lifter import IRSB, PcodeBasicBlockLifter, ExitStatement, IRSB_MAX_SIZE, IRSB_MAX_INST, MAX_INSTRUCTIONS, MAX_BYTES import claripy import sys import pypcode import archinfo import time print("Running inside the bridge!") # create the bridge and load the flat API/ghidra modules into the namespace with ghidra_bridge.GhidraBridge(connect_to_host=server_host, connect_to_port=server_port, namespace=globals()) as bridge: class MemoryMapping(): def __init__(self, program, startAddress): self.program = program self.startAddress = startAddress # when calling an external function, we need to remember which function and library it is that we call next_function = "" next_library = "" class MySpace(): def __init__(self, name): self.name = name class MyAddress(pypcode.Address): def __init__(self, ctx, space, offset, ghidra_address): super().__init__(ctx, space, offset) self.ghidra_address = ghidra_address @property def is_constant(self): return self.ghidra_address.isConstantAddress() class MyVarnode(pypcode.Varnode): def __init__(self, ctx, space, offset, size, ghidra_varnode): super().__init__(ctx, space, offset, size) program = getCurrentProgram() language = program.getLanguage() programContext = bridge.get_ghidra_api().program.util.ProgramContextImpl(language) spaceContext = bridge.get_ghidra_api().program.util.ProgramContextImpl(language) self.vcontext = bridge.get_ghidra_api().program.util.VarnodeContext(program, programContext, spaceContext) self.ghidra_varnode = ghidra_varnode def get_register_name(self): return self.vcontext.getRegister(self.ghidra_varnode).getName() def get_space_from_const(self): # self.ghidra_varnode.getAddress().getAddressSpace().getName() returns const, but for some reason that won't work return MySpace("mem") # if the name of the address space is "const" then it expects this to return an addres space with a name of either "ram" or "mem", not sure exactly the consequences of faking this out are def get_addr(self): return MyAddress(self.ctx, self.space, self.offset, self.ghidra_varnode.getAddress()) class GhidraPcodeBlockLifter(PcodeBasicBlockLifter): def __init__(self, arch): super().__init__(arch) ''' Mostly copied this whole function from PcodeBasicBlockLifter just changed the line that calls out to pypcode translate to do a direct mapping from pcode to TranslationResult instead ''' def lift(self, irsb, program, baseaddr, adjusted_address, pcodes, bytes_offset = 0, max_bytes = None, max_inst = None): if max_bytes is None or max_bytes > MAX_BYTES: max_bytes = min(len(pcodes), MAX_BYTES) if max_inst is None or max_inst > MAX_INSTRUCTIONS: max_inst = MAX_INSTRUCTIONS irsb.behaviors = self.behaviors # FIXME # Translate addr = baseaddr + bytes_offset ##### Start of modified block ###### pcode_array = [] for pcode in pcodes: inputs_varnodes = [] # convert pcode input Varnodes to pypcode Varnodes for inp in pcode.inputs: inputs_varnodes.append(MyVarnode(self.context, inp.getAddress().getAddressSpace(), inp.offset, inp.size, inp)) # convert pcode output Varnode to pypcode Varnode if pcode.output is not None: output_varnode = MyVarnode(self.context, pcode.output.getAddress().getAddressSpace(), pcode.output.offset, pcode.output.size, pcode.output) else: output_varnode = None # Convert Ghidra raw Pcode to pypcode PcodeOp pcode_array.append(pypcode.PcodeOp(self.context, pcode.seqnum, pypcode.OpCode(pcode.opcode), inputs_varnodes, output_varnode)) translations = [] addrspace = getAddressFactory().getAddress(hex(baseaddr)).getAddressSpace() address = pypcode.Address(self.context, addrspace, baseaddr) instruction = program.getListing().getInstructionAt(getAddressFactory().getAddress(adjusted_address)) # Convert PcodeOps to Translations translation = pypcode.Translation( ctx = self.context, address = address, length = instruction.getLength(), asm_mnem = instruction.getMnemonicString(), asm_body = instruction.toString().split(instruction.getMnemonicString())[1], ops = pcode_array ) translations.append(translation) ##### End modified block ##### irsb._instructions = translations # Post-process block to mark exits and next block next_block = None for insn in irsb._instructions: for op in insn.ops: if (op.opcode in [pypcode.OpCode.BRANCH, pypcode.OpCode.CBRANCH] and op.inputs[0].get_addr().is_constant): print('Block contains relative p-code jump at ' 'instruction {}:{}, which is not emulated ' 'yet.'.format(op.seq.getTarget().getOffset(), op.seq.getTime())) if op.opcode == pypcode.OpCode.CBRANCH: irsb._exit_statements.append(( op.seq.getTarget().getOffset(), op.seq.getTime(), ExitStatement(op.inputs[0].offset, 'Ijk_Boring'))) elif op.opcode == pypcode.OpCode.BRANCH: next_block = (op.inputs[0].offset, 'Ijk_Boring') elif op.opcode == pypcode.OpCode.BRANCHIND: next_block = (None, 'Ijk_Boring') elif op.opcode == pypcode.OpCode.CALL: next_block = (op.inputs[0].offset, 'Ijk_Call') elif op.opcode == pypcode.OpCode.CALLIND: next_block = (None, 'Ijk_Call') elif op.opcode == pypcode.OpCode.RETURN: next_block = (None, 'Ijk_Ret') if len(irsb._instructions) > 0: last_insn = irsb._instructions[-1] fallthru_addr = last_insn.address.offset + last_insn.length else: fallthru_addr = addr if next_block is None: next_block = (fallthru_addr, 'Ijk_Boring') irsb.next, irsb.jumpkind = next_block def is_successful(state): if(state.ip.args[0] == sink): return True return False def get_func_address(funcName): return int(getFunction(funcName).getBody().getMinAddress().toString(), 16) def get_pcode_at_address(address): # Fails when trying to get pcode of an external thunk-ed function try: return getCurrentProgram().getListing().getInstructionAt(getAddressFactory().getAddress(address)).getPcode(), getCurrentProgram(), address except AttributeError: # The address doesn't exist in the main program, check if globals are set global next_library global next_function if next_library != "" and next_function != "": external_program = get_external_program(next_library) functionManager = external_program.getFunctionManager() for fn in functionManager.getFunctions(True): if fn.getName() == next_function: function = fn break if function is None: # couldn't find the function in external program, propagate exception print("Couldn't find function {} in {}".format(next_function, next_library)) raise functionAddress = function.getBody().getMinAddress().getOffset() memory_start = int(address, 16) - (functionAddress - external_program.getImageBase().getOffset()) # find the address where this library is mapped in memory address_in_program = hex(int(address, 16) - memory_start + external_program.getImageBase().getOffset()) print("Address {} is at {} in program {}".format(address, address_in_program, next_library)) next_library = "" next_function = "" return external_program.getListing().getInstructionAt(getAddressFactory().getAddress(address_in_program)).getPcode(), external_program, address_in_program else: raise def successor_func(state, **run_args): currentAddress = state.ip.args[0] containingFunction = get_function_containing_address(hex(currentAddress)) print("current address in state:", hex(currentAddress)) # figure out if we are about to make a call to an external program if containingFunction is not None and containingFunction.isThunk(): externalLibraryName = get_library_name(containingFunction) print("Preparing for external function call to {} in {}".format(get_function_name(containingFunction), externalLibraryName)) # prepare to get the function in the external program global next_library global next_function next_library = externalLibraryName next_function = get_function_name(containingFunction) try: current_pcode, program, adjusted_address = get_pcode_at_address(hex(currentAddress)) except AttributeError: print("Couldn't get pcode at address:", hex(currentAddress), "falling back to pypcode lifter") # fallback to original lifter for external function return state.project.factory.successors(state, **run_args) irsb = IRSB.empty_block(archinfo.ArchAMD64, currentAddress, None, None, None, None, None, None) block_lifter.lift(irsb, program, currentAddress, adjusted_address, current_pcode, 0, None, None) return state.project.factory.successors(state, irsb=irsb, **run_args) def get_function_containing_address(address): return currentProgram.getFunctionManager().getFunctionContaining(getAddressFactory().getAddress(address)) def get_library_name(function): if not function.isThunk(): print("Can't find library name for a non-Thunk function") return None thunked_function = function.getThunkedFunction(True) if not thunked_function.isExternal(): print("Can't get library name for function that is not external") return None return thunked_function.getExternalLocation().getLibraryName() def get_function_name(function): return function.getName() def get_external_program(library_name): libraryPath = currentProgram.getExternalManager().getExternalLibrary(library_name).getAssociatedProgramPath() libraryFile = state.getProject().getProjectData().getFile(libraryPath) libraryProgram = libraryFile.getImmutableDomainObject(java.lang.Object(), ghidra.framework.model.DomainFile.DEFAULT_VERSION, None) return libraryProgram def get_pcode_of_external_function(program, function_name): functionManager = program.getFunctionManager() for fn in functionManager.getFunctions(True): if fn.getName() == function_name: function = fn break if function is None: return None firstInstruction = program.getListing().getInstructionAt(function.getBody().getMinAddress()) lastInstruction = program.getListing().getInstructionAt(function.getBody().getMaxAddress()) currentInstruction = firstInstruction pcode = [] pcode += currentInstruction.getPcode() while True: currentInstruction = currentInstruction.getNext() pcode += currentInstruction.getPcode() if currentInstruction == lastInstruction.getNext(): # Reached the end of the function break print("Min address:", function.getBody().getMinAddress()) print("Max address:", function.getBody().getMaxAddress()) print("Pcodes:", pcode) return pcode def get_sink_address(): sink_addr = ghidra.concolic.ConcolicAnalyzer.getSink() if sink_addr is None: print('Please set the Sink address before running the script!') sys.exit(1) return int(sink_addr.toString(), 16) def get_avoid_addresses(): avoid_addrs = [int(address.toString(), 16) for address in ghidra.concolic.ConcolicAnalyzer.getAvoidAddresses()] if len(avoid_addrs) == 0: print('WARN: list of avoid addresses is empty') return avoid_addrs def get_source_address(): source_addr = ghidra.concolic.ConcolicAnalyzer.getSource() if source_addr is None: print('Please set the Source address before running the script!') sys.exit(1) return int(source_addr.toString(), 16) ############ Setup state ########## start_time = time.time() # Get program name from ghidra filename = getCurrentProgram().getExecutablePath() base_address = getCurrentProgram().getImageBase().getOffset() engine = ghidra.concolic.ConcolicAnalyzer.getEngine() if engine.name() == "PYPCODE" or engine.name() == "PCODESYM": project = angr.Project(filename, load_options={'main_opts':{'base_addr': base_address},'auto_load_libs':False}, engine=angr.engines.UberEnginePcode) else: project = angr.Project(filename, load_options={'main_opts':{'base_addr': base_address},'auto_load_libs':False}) sink = get_sink_address() avoids = get_avoid_addresses() start = get_source_address() stdin_args = [] for buff in ghidra.concolic.ConcolicAnalyzer.getStdin(): if buff.getSymbolic(): stdin_args.append(claripy.BVS('arg' + str(len(stdin_args)), len(buff.getValue())*8)) else: # process string with escape characters into a bytestring value = buff.getValue().encode('utf-8').decode('unicode-escape').encode('utf-8') stdin_args.append(claripy.BVV(value)) stdin_arg = angr.SimFileStream(name='stdin', content=claripy.Concat(*stdin_args), has_end=False) func_args = [] for arg in ghidra.concolic.ConcolicAnalyzer.getArgs(): array_elems = [] for elem in arg.getValues(): if arg.getSymbolic(): array_elems.append(claripy.BVS('arg'+str(len(func_args)), len(elem)*8)) else: # process string with escape characters into a bytestring value = elem.encode('utf-8').decode('unicode-escape').encode('utf-8') array_elems.append(claripy.BVV(value)) if arg.getArray(): func_args.append([angr.PointerWrapper(e) for e in array_elems]) else: func_args.append(array_elems[0]) call_state = project.factory.call_state(start, *func_args, stdin=stdin_arg, add_options={angr.options.LAZY_SOLVES, angr.options.ZERO_FILL_UNCONSTRAINED_MEMORY, angr.options.ZERO_FILL_UNCONSTRAINED_REGISTERS}) simulation = project.factory.simgr(call_state) block_lifter = GhidraPcodeBlockLifter(archinfo.ArchAMD64) ######### Do symbolic execution ######## if engine.name() == "PCODESYM": simulation.explore(find=is_successful, avoid=avoids, successor_func=successor_func) else: simulation.explore(find=is_successful, avoid=avoids) ######## Post run analysis ######### if len(simulation.found) > 0: for solution_state in simulation.found: for i, arg in enumerate(func_args): if isinstance(arg, list): print("[>>] arg {}:".format(i+1)) for k, elem in enumerate(arg): print("\t{}: {!r}".format(k+1, solution_state.solver.eval(elem.value, cast_to=bytes).split(b"\0")[0])) else: print("[>>] arg {}: {!r}".format(i+1, solution_state.solver.eval(arg, cast_to=bytes).split(b"\0")[0])) print("stdin: {}".format(solution_state.posix.dumps(0))) else: print("[>>>] no solution found :(") print("Script ran in {} seconds".format(time.time() - start_time)) if __name__ == "__main__": in_ghidra = False try: import ghidra # we're in ghidra! in_ghidra = True except ModuleNotFoundError: # not ghidra pass if in_ghidra: import ghidra_bridge_server script_file = getSourceFile().getAbsolutePath() # spin up a ghidra_bridge_server and spawn the script in external python to connect back to it python_path = ghidra.concolic.ConcolicAnalyzer.getPython() ghidra_bridge_server.GhidraBridgeServer.run_script_across_ghidra_bridge(script_file, python=python_path) else: # we're being run outside ghidra! (almost certainly from spawned by run_script_across_ghidra_bridge()) parser = argparse.ArgumentParser( description="Example py3 script that's expected to be called from ghidra with a bridge") # the script needs to handle these command-line arguments and use them to connect back to the ghidra server that spawned it parser.add_argument("--connect_to_host", type=str, required=False, default="127.0.0.1", help="IP to connect to the ghidra_bridge server") parser.add_argument("--connect_to_port", type=int, required=True, help="Port to connect to the ghidra_bridge server") args = parser.parse_args() run_script(server_host=args.connect_to_host, server_port=args.connect_to_port) ```
{ "source": "jdkloe/pygrib", "score": 2 }
#### File: jdkloe/pygrib/setup.py ```python import os import glob import setuptools from Cython.Distutils import build_ext class NumpyBuildExtCommand(build_ext): """ build_ext command for use when numpy headers are needed. from https://stackoverflow.com/questions/2379898/ and https://stackoverflow.com/questions/48283503/ """ def run(self): import numpy self.distribution.fetch_build_eggs(["numpy"]) self.include_dirs.append(numpy.get_include()) build_ext.run(self) def extract_version(CYTHON_FNAME): version = None with open(CYTHON_FNAME) as fi: for line in fi: if line.startswith("__version__"): _, version = line.split("=") version = version.strip()[1:-1] # Remove quotation characters. break return version def package_files(directory): paths = [] for (path, directories, filenames) in os.walk(directory): for filename in filenames: paths.append(os.path.join("..", path, filename)) return paths package_data = {} if os.environ.get("PYGRIB_WHEEL") is not None: package_data[""] = package_files("eccodes") cmdclass = {"build_ext": NumpyBuildExtCommand} searchdirs = [] if os.environ.get("GRIBAPI_DIR"): searchdirs.append(os.environ["GRIBAPI_DIR"]) if os.environ.get("ECCODES_DIR"): searchdirs.append(os.environ["ECCODES_DIR"]) if os.environ.get("CONDA_PREFIX"): searchdirs.append(os.environ["CONDA_PREFIX"]) searchdirs += [ os.path.expanduser("~"), "/usr", "/usr/local", "/opt/local", "/opt", "/sw", ] # look for grib_api.h in searchdirs eccdir = None for d in searchdirs: try: incpath = os.path.join(os.path.join(d, "include"), "grib_api.h") f = open(incpath) eccdir = d print("eccodes found in %s" % eccdir) break except IOError: continue if eccdir is not None: incdirs = [os.path.join(eccdir, "include")] libdirs = [os.path.join(eccdir, "lib"), os.path.join(eccdir, "lib64")] else: print("eccodes not found, build may fail...") incdirs = [] libdirs = [] ext_modules = [ setuptools.Extension( "pygrib._pygrib", ["pygrib/_pygrib.pyx"], include_dirs=incdirs, library_dirs=libdirs, runtime_library_dirs=libdirs, libraries=["eccodes"], ) ] # Import README.md as PyPi long_description this_directory = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(this_directory, "README.md")) as f: long_description = f.read() # man pages installed in MAN_DIR/man1 if os.environ.get("MAN_DIR"): man_dir = os.environ.get("MAN_DIR") manpages = glob.glob(os.path.join("man", "*.1")) data_files = [(os.path.join(man_dir, "man1"), manpages)] # if MAN_DIR not set, man pages not installed else: data_files = None setuptools.setup( name="pygrib", version=extract_version("pygrib/_pygrib.pyx"), description="Python module for reading/writing GRIB files", author="<NAME>", author_email="<EMAIL>", url="https://github.com/jswhit/pygrib", download_url="http://python.org/pypi/pygrib", license="License :: OSI Approved :: MIT License", classifiers=[ "Development Status :: 4 - Beta", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Intended Audience :: Science/Research", "License :: OSI Approved :: MIT License", "Topic :: Software Development :: Libraries :: Python Modules", ], cmdclass=cmdclass, long_description=long_description, long_description_content_type="text/markdown", scripts=[ "utils/grib_list", "utils/grib_repack", "utils/cnvgrib1to2", "utils/cnvgrib2to1", ], ext_modules=ext_modules, data_files=data_files, packages=["pygrib"], package_data=package_data, setup_requires=["setuptools", "cython"], install_requires=[ "pyproj", "numpy", ], ) ```
{ "source": "jdkloe/python-metar", "score": 3 }
#### File: jdkloe/python-metar/get_report.py ```python from __future__ import print_function import os import sys import getopt import string try: from urllib2 import urlopen except: from urllib.request import urlopen from metar import Metar BASE_URL = "http://tgftp.nws.noaa.gov/data/observations/metar/stations" def usage(): program = os.path.basename(sys.argv[0]) print("Usage: ", program, "<station> [ <station> ... ]") print( """Options: <station> . a four-letter ICAO station code (e.g., "KEWR") """ ) sys.exit(1) stations = [] debug = False try: opts, stations = getopt.getopt(sys.argv[1:], "d") for opt in opts: if opt[0] == "-d": debug = True except: usage() if not stations: usage() for name in stations: url = "%s/%s.TXT" % (BASE_URL, name) if debug: sys.stderr.write("[ " + url + " ]") try: urlh = urlopen(url) report = "" for line in urlh: if not isinstance(line, str): line = line.decode() # convert Python3 bytes buffer to string if line.startswith(name): report = line.strip() obs = Metar.Metar(line) print(obs.string()) break if not report: print("No data for ", name, "\n\n") except Metar.ParserError as exc: print("METAR code: ", line) print(string.join(exc.args, ", "), "\n") except: import traceback print(traceback.format_exc()) print("Error retrieving", name, "data", "\n") ``` #### File: python-metar/test/test_direction.py ```python import pytest from metar.Datatypes import direction def test_usage(): """Test basic usage.""" assert direction("90").value() == 90.0 assert direction(90).value() == 90.0 assert direction(90.0).value() == 90.0 assert direction("90").string() == "90 degrees" assert direction("E").compass() == "E" def test_error_checking(): """Test that exceptions are raised.""" with pytest.raises(ValueError): direction("North") with pytest.raises(ValueError): direction(-10) with pytest.raises(ValueError): direction("361") def test_conversion(): """Test conversion of str direction to numeric and back.""" assert direction("N").value() == 0.0 assert direction("NNE").value() == 22.5 assert direction("NE").value() == 45.0 assert direction("ENE").value() == 67.5 assert direction("E").value() == 90.0 assert direction("ESE").value() == 112.5 assert direction("SE").value() == 135.0 assert direction("SSE").value() == 157.5 assert direction("S").value() == 180.0 assert direction("SSW").value() == 202.5 assert direction("SW").value() == 225.0 assert direction("WSW").value() == 247.5 assert direction("W").value() == 270.0 assert direction("WNW").value() == 292.5 assert direction("NW").value() == 315.0 assert direction("NNW").value() == 337.5 assert direction("0").compass() == "N" assert direction("5").compass() == "N" assert direction("355").compass() == "N" assert direction("20").compass() == "NNE" assert direction("60").compass() == "ENE" assert direction("247.5").compass() == "WSW" ``` #### File: python-metar/test/test_temperature.py ```python import pytest from metar.Datatypes import temperature, UnitsError def test_defaults(): """Test basic usage.""" assert temperature("32").value() == 32.0 assert temperature("32").value("C") == 32.0 assert temperature("32").string() == "32.0 C" assert temperature("32", "F").string() == "32.0 F" def test_inputs(): """Test various inputs.""" assert temperature("32").value() == 32.0 assert temperature(32).value() == 32.0 assert temperature(32.0).value() == 32.0 assert temperature("32", "c").value() == 32.0 assert temperature("32", "f").value() == 32.0 assert temperature("32", "k").value() == 32.0 assert temperature("50", "F").value("c") == 10.0 assert temperature("50", "f").value("C") == 10.0 def test_error_checking(): """Test exception raising.""" with pytest.raises(ValueError): temperature("32C") with pytest.raises(ValueError): temperature("M10F") with pytest.raises(UnitsError): temperature("32", "J") with pytest.raises(UnitsError): temperature(temperature("32").value, "J") with pytest.raises(UnitsError): temperature(temperature("32").string, "J") def test_conversions(): """Test unit conversions.""" assert temperature("32", "F").value("F") == 32.0 assert temperature("32", "F").value("C") == 0.0 assert temperature("50", "F").value("C") == 10.0 assert temperature("32", "F").value("K") == 273.15 assert temperature("20", "C").value("C") == 20.0 assert temperature("M10", "C").value("F") == 14.0 assert temperature("M0", "C").value("F") == 32.0 assert temperature("20", "C").value("K") == 293.15 assert temperature("20", "C").value("F") == 68.0 assert temperature("30", "C").value("F") == 86.0 assert temperature("263.15", "K").value("K") == 263.15 assert temperature("263.15", "K").value("C") == -10.0 assert temperature("263.15", "K").value("F") == 14.0 assert temperature("10", "C").string("C") == "10.0 C" assert temperature("10", "C").string("F") == "50.0 F" assert temperature("10", "C").string("K") == "283.1 K" ```
{ "source": "jdknight/sphinxcontrib-blockdiag", "score": 2 }
#### File: sphinxcontrib-blockdiag/tests/test_errors.py ```python from mock import patch from sphinx_testing import with_app import sys import unittest class TestSphinxcontribBlockdiagErrors(unittest.TestCase): @with_app(srcdir='tests/docs/basic', write_docstring=True) def test_parse_error(self, app, status, warning): """ .. blockdiag:: { A -> B; """ app.builder.build_all() self.assertIn('got unexpected token:', warning.getvalue()) @with_app(srcdir='tests/docs/basic', confoverrides=dict(blockdiag_html_image_format='JPG')) def test_unknown_format_error(self, app, status, warning): app.builder.build_all() self.assertIn('unknown format: JPG', warning.getvalue()) @with_app(srcdir='tests/docs/basic', confoverrides=dict(blockdiag_html_image_format='PDF')) def test_reportlab_not_found_error(self, app, status, warning): try: # unload reportlab and make loading it impossible sys.modules.pop('reportlab', None) path = sys.path sys.path = [] app.builder.build_all() self.assertIn('Could not output PDF format. Install reportlab.', warning.getvalue()) finally: sys.path = path @with_app(srcdir='tests/docs/basic') @patch("blockdiag.utils.rst.nodes.blockdiag.processor.drawer.DiagramDraw") def test_rendering_error(self, app, status, warning, DiagramDraw): DiagramDraw.side_effect = RuntimeError("UNKNOWN ERROR!") app.builder.build_all() self.assertIn('UNKNOWN ERROR!', warning.getvalue()) @with_app(srcdir='tests/docs/basic') @patch("sphinxcontrib.blockdiag.blockdiag.drawer.DiagramDraw.draw") def test_font_settings_error(self, app, status, warning, draw): draw.side_effect = UnicodeEncodeError("", "", 0, 0, "") app.builder.build_all() self.assertIn('UnicodeEncodeError caught (check your font settings)', warning.getvalue()) ```
{ "source": "jdkr/ImageFeature", "score": 3 }
#### File: jdkr/ImageFeature/Test.py ```python import os from imageio import imread import matplotlib.pyplot as plt from Feature import detectFeaturepoints def testDetectFeaturepoints(): imageArray = imread(os.path.dirname(__file__)+'/img/ruin.JPG', as_gray=True) resolutionMax = 1 scalerangeFactor = 3 scalesCount = 8 hessianThreshold = 0.03 minFeatureScales = 3 featurepoints = detectFeaturepoints( imageArray, resolutionMax, scalerangeFactor, scalesCount, hessianThreshold, minFeatureScales) featurepointsX = [f.x for f in featurepoints] featurepointsY = [f.y for f in featurepoints] plt.imshow(imageArray, cmap = plt.get_cmap('gray')) plt.scatter(featurepointsX,featurepointsY,s=1,c="red") plt.savefig("ruinFeatures.jpg") if __name__ == "__main__": testDetectFeaturepoints() ```
{ "source": "jdks/envmgr-cli", "score": 2 }
#### File: emcli/commands/cycle.py ```python import semver import time import sys import os from envmgr import EmClient, ASG from emcli.commands.base import BaseCommand from emcli.commands.patching.patch_operation import PatchOperation from emcli.commands.patching.patch_table import patch_table from emcli.commands.patching.validate import server_has_valid_ami from emcli.commands.user_confirmation import confirm from math import ceil from repoze.lru import lru_cache class CycleCommand(BaseCommand): amis = [] servers = [] all_servers = [] def __init__(self, options, *args, **kwargs): super(CycleCommand, self).__init__(options, *args, **kwargs) self.api = EmClient() self._register(('get', 'status'), self.describe_status) self._register(('cycle', '!status'), self.run_patch_update) def describe_status(self, cluster, env): if PatchOperation.is_in_progress(cluster, env, True): self.show_current_status(cluster, env) else: self.get_patch_status(cluster, env) def show_current_status(self, cluster, env): patch_operation = PatchOperation.get_current(cluster, env, True) patch_status = PatchOperation.get_current_status(cluster, env, True) self.stop_spinner() self.show_result(patch_operation, patch_status) def get_patch_status(self, cluster, env): from_ami = self.opts.get('from-ami') to_ami = self.opts.get('to-ami') whitelist = self.get_user_filter('whitelist', 'match') blacklist = self.get_user_filter('blacklist', 'ignore') result = self.get_patch_requirements(cluster, env, from_ami, to_ami, whitelist, blacklist) if not result: self.patch_not_required(cluster, env) else: message = PatchOperation.describe_patches(result) self.show_result(result, message) def get_user_filter(self, filename, argname): argvalue = self.opts.get(argname) filter_file = self.opts.get(filename) if len(argvalue): return argvalue elif filter_file is not None: filepath = os.path.abspath(filter_file) with open(filepath) as f: filter_list = f.readlines() return [x.strip() for x in filter_list] def patch_not_required(self, cluster, env): self.show_result({}, '{0} do not need to cycle any Windows servers in {1}'.format(cluster, env)) def run_patch_update(self, cluster, env): env = env.lower() if self.environment_is_protected(env): self.stop_spinner() print('Bulk cycle is temporarily disabled in {0}'.format(env)) return if self.opts.get('kill', False): self.stop_spinner() PatchOperation.kill(cluster, env, True) else: patch_operation = PatchOperation(self.api) current_operation = PatchOperation.get_current(cluster, env, True) if current_operation is None: from_ami = self.opts.get('from-ami') to_ami = self.opts.get('to-ami') whitelist = self.get_user_filter('whitelist', 'match') blacklist = self.get_user_filter('blacklist', 'ignore') current_operation = self.get_patch_requirements(cluster, env, from_ami, to_ami, whitelist, blacklist) self.stop_spinner() if not current_operation: return self.patch_not_required(cluster, env) if not self.confirm_patch(current_operation): return else: print('') patch_operation.run(current_operation, cluster, env, True) def confirm_patch(self, patches): to_patch = PatchOperation.get_patches_by_availability(patches, True) to_ignore = PatchOperation.get_patches_by_availability(patches, False) to_ignore += [ {'server_name':server, 'invalid_ami':True} for server in self.ignored_servers ] message = PatchOperation.describe_patches(to_patch, to_ignore) if not to_patch: self.show_result({}, message) return False else: message.append('Do you want to continue? (y/n) ') return confirm(message) def get_patch_requirements(self, cluster, env, from_ami=None, to_ami=None, whitelist=None, blacklist=None): # We're only interested in Windows as Linux instances auto-update self.amis = self.api.get_images() self.validate_ami_compatibility(from_ami, to_ami) # List of clusters' servers with AMI info self.servers = self.api.get_environment_servers(env).get('Value') self.servers = [ server for server in self.servers if 'Ami' in server and server.get('Cluster').lower() == cluster.lower() and server.get('IsBeingDeleted') != True ] # Filter out odd servers with no valid AMI info self.ignored_servers = [ server.get('Name') for server in self.servers if not server_has_valid_ami(server) ] self.servers = [ server for server in self.servers if server_has_valid_ami(server) ] # List of requirements to be considered for updates # Prefer 'latest stable' info from image, not server update_requirements = [ lambda ami,server: ami.get('Name') == server.get('Ami').get('Name') ] # Update any non-latest-stable if no "from ami" given if from_ami is not None: update_requirements.append( lambda ami,server: ami.get('Name') == from_ami ) if whitelist: update_requirements.append( lambda ami,server: server.get('Name') in whitelist ) elif blacklist: update_requirements.append( lambda ami,server: server.get('Name') not in blacklist ) # List of servers with Windows AMI that matches update requirement servers_to_update = [ server for server in self.servers if any(ami for ami in self.amis if all([ requirement(ami,server) for requirement in update_requirements ]) ) ] # List of patches to apply patches = list(map(self.create_patch_item, servers_to_update)) self.get_asg_details(patches, env) return patches def environment_is_protected(self, env): result = self.api.get_environment_protected(env, 'BULK_PATCH_AMI') return result.get('isProtected', False) def get_asg_details(self, patches, env): for p in patches: asg_name = p.get('server_name') asg = self.api.get_asg(env, asg_name) # Calculate required scale out size n_azs = len(list(asg.get('AvailabilityZones'))) n_instances = p.get('instances_count') scale_up_count = n_instances * 2 if scale_up_count >= n_azs and scale_up_count % n_azs != 0: scale_up_count += 1 p['az_count'] = n_azs p['scale_up_count'] = scale_up_count p['max_count'] = asg.get('MaxSize', n_instances) # Check for any instances in standby if any([ instance for instance in asg.get('Instances', []) if instance.get('LifecycleState') == 'Standby' ]): p['has_standby_instances'] = True # Check for overall health asg_status = ASG(asg_name, env).get_health() if not asg_status.get('is_healthy'): p['unhealthy'] = asg_status def create_patch_item(self, server): from_name = server.get('Ami').get('Name') from_ami = self.get_ami_by_key('Name', from_name) target_name = self.opts.get('to-ami') if target_name is not None: target = self.get_ami_by_key('Name', target_name) else: target = self.get_target_ami(from_name) target_name = target.get('Name') from_version = from_ami.get('AmiVersion') target_version = target.get('AmiVersion') patch = { 'server_name': server.get('Name'), 'current_version': from_version, 'target_version': target_version, 'ami_type': target.get('AmiType'), 'new_ami_id': target.get('ImageId'), 'server_role': server.get('Role'), 'services_count': len(list(server.get('Services'))), 'instances_count': server.get('Size').get('Current') } # Warn if target version is older than current verion if semver.compare(target_version, from_version) != 1: patch['Warning'] = True return patch @lru_cache(128) def get_target_ami(self, from_name): from_ami = self.get_ami_by_key('Name', from_name) ami_type = from_ami['AmiType'] ami = [ ami for ami in self.amis if ami['AmiType'] == ami_type and ami['IsLatestStable'] == True] return ami[0] @lru_cache(128) def get_ami_by_key(self, key, value, unique=True): ami = [ ami for ami in self.amis if ami[key] == value ] if not ami: raise ValueError('Could not find AMI with {0}={1}'.format(key, value)) elif unique and len(list(ami)) != 1: raise ValueError('Multiple AMI definitions found with {0}={1}'.format(key, value)) return ami[0] def validate_ami_compatibility(self, from_name=None, to_name=None): from_ami = None to_ami = None if from_name is not None: from_ami = self.get_ami_by_key('Name', from_name) if to_name is not None: to_ami = self.get_ami_by_key('Name', to_name) if from_name is None: raise ValueError('You must specify --from-ami if --to-ami is given') if from_ami is not None and to_ami is not None: if from_ami['AmiType'] != to_ami['AmiType']: raise ValueError('AMI types for from_ami and to_ami must match') ``` #### File: commands/patching/patch_table.py ```python import os from emcli.commands.utils.asg_health import describe_asg_health from tabulate import tabulate def get_default_status(p): if p.get('has_standby_instances'): return 'Instances in standby' elif p.get('unhealthy') is not None: return describe_asg_health(p.get('unhealthy')) elif p.get('invalid_ami'): return 'Invalid AMI data' elif p.get('warning'): return 'Warning' else: return '' def patch_table(patches, get_status=get_default_status): table_data = map(lambda p: { 0: p.get('server_name'), 1: p.get('ami_type'), 2: p.get('current_version'), 3: p.get('target_version'), 4: p.get('instances_count'), 5: p.get('scale_up_count'), 6: get_status(p) }, patches) headers = {0:'ASG', 1:'AMI Type', 2:'Current', 3:'Target', 4:'Instances', 5:'Scale out', 6:'Status'} return os.linesep + tabulate(table_data, headers, tablefmt="simple") + os.linesep ``` #### File: commands/patching/validate.py ```python def server_has_valid_ami(server): return server and server.get('Ami') and server.get('Ami').get('Name') ``` #### File: emcli/commands/toggle.py ```python import time from envmgr import Upstream, Service from emcli.commands.base import BaseCommand class ToggleCommand(BaseCommand): def __init__(self, options, *args, **kwargs): super(ToggleCommand, self).__init__(options, *args, **kwargs) self._register('wait-for', self.wait_for_toggle, False) self._register('status', self.get_upstream_status) self._register(('!get', '!to'), self.toggle_service_slices) def get_upstream_status(self, slice, service, env): name = self.opts.get('upstream') upstream = Upstream(service, slice, env, name) status = upstream.get_status() desc = "{0} is configured {1}, {2} of {3} upstreams are active across {4} load balancers".format( slice, status.slice_config, status.active_upstreams, status.total_upstreams, status.total_load_balancers ) self.show_result(status.__dict__, desc) return status def toggle_service_slices(self, service, env): svc = Service(service, env) upstream = svc.toggle() self.show_result(upstream.__dict__, "{0} is now configured active for {1} in {2}".format(upstream.slice, service, env)) def wait_for_toggle(self, slice, service, env): start = time.time() timeout = int(self.opts.get('timeout', 0)) while True: elapsed = int(time.time() - start) if timeout is not 0 and elapsed > timeout: self.show_result({}, "Timeout exceeded") return 1 else: status = self.get_upstream_status(slice, service, env) if status.is_active: return 0 else: time.sleep(5) ``` #### File: commands/utils/file_utils.py ```python import os import errno def safe_create_dir_path(filepath): path = os.path.dirname(filepath) try: os.makedirs(path) except OSError as exc: if exc.errno == errno.EEXIST and os.path.isdir(path): pass else: raise ``` #### File: emcli/commands/verify.py ```python from envmgr import EmClient from emcli.commands.base import BaseCommand class VerifyCommand(BaseCommand): def __init__(self, options, *args, **kwargs): super(VerifyCommand, self).__init__(options, *args, **kwargs) self._register('verify', self.verify_setup) def verify_setup(self): client = EmClient() result = client.get_accounts_config() if result is not None: msg = 'Hooray, envmgr cli is correctly configured.' else: msg = 'Verify failed, see error for log for details' self.show_result({}, msg) ``` #### File: commands/helpers/utils.py ```python import random import string import json from codecs import open from os.path import abspath, dirname, join MOCK_ENV_VARS = { 'ENVMGR_HOST':'envmgr.acme.com', 'ENVMGR_USER':'roadrunner', 'ENVMGR_PASS':'<PASSWORD>' } def load_json_data(file_name): this_dir = abspath(dirname(__file__)) with open(join(this_dir, '../../data/', file_name), encoding='utf-8') as file_data: json_data = json.load(file_data) return json_data def mock_asg(): name = 'asg-{0}'.format(rand_str()) arn = 'arn:aws:autoscaling:eu-west-1:123456789012:asg:{0}/mock'.format(rand_str()) return { 'AutoScalingGroupName': name, 'AutoScalingGroupARN': arn, 'Tags': [ mock_asg_tag('SecurityZone', 'Other') ] } def mock_asg_tag(key, value): return { 'ResourceId': 'envmgr-cli-mock', 'ResourceType': 'auto-scaling-group', 'Key': key, 'Value': value, 'PropagateAtLaunch': True } def mock_server(cluster, ami_name, is_latest_stable, current=1, desired=1): rnd = rand_str() name = 'mock-server-{0}'.format(rnd) role = 'mock-role-{0}'.format(rnd) service = 'mock-service-{0}'.format(rnd) server = { 'Name': name, 'Role': role, 'Cluster': cluster, 'Schedule': 'ON', 'IsBeingDeleted': False, 'Services': [ service ], 'Ami': { 'Name': ami_name, 'IsLatestStable': is_latest_stable }, 'Size': { 'Current': current, 'Desired': desired } } return server def rand_str(length=8): return ''.join(random.choice(string.ascii_letters) for x in range(length)) ``` #### File: tests/commands/test_patch.py ```python import responses import random import string import os from unittest import TestCase from emcli.commands import PatchCommand from parameterized import parameterized, param from mock import patch from .helpers.api_test_case import APITestCase from .helpers.utils import mock_server, MOCK_ENV_VARS from .helpers.patch_scenarios import TEST_SCENARIOS class PatchTest(APITestCase): @parameterized.expand( TEST_SCENARIOS ) @responses.activate @patch.dict(os.environ, MOCK_ENV_VARS) def test_get_patch_requirements(self, *args, **kwargs): patch_cluster = kwargs.get('patch_cluster') expected_result = kwargs.get('expected') from_ami = kwargs.get('from_ami') servers_in_env = [] self.mock_response(r'/asgs/[\w\.\-]+', {'AvailabilityZones':[1]}) self.mock_response(r'/environments/[\w\.\-]+/servers/[\w\.\-]+', {'ServicesCount':{'Expected':2}, 'Instances':[{'RunningServicesCount':2}]} ) # Create a list of servers in env, based on test scenario for server_desc in args: servers_in_env += self.create_servers(**server_desc) self.setup_responses() self.respond_with_servers(servers_in_env) sut = PatchCommand({}) result = sut.get_patch_requirements( **{ 'cluster':patch_cluster, 'env':'staging', 'from_ami':from_ami }) self.assertEqual(len(list(result)), expected_result) def respond_with_servers(self, servers): server_response = { 'EnvironmentName': 'staging', 'Value': servers } self.mock_response(r'/environments/[\w\.\-]+/servers', server_response) def setup_responses(self): self.mock_authentication() self.mock_response_with_file(r'/images', 'ami_response.json') def create_servers(self, cluster, n=1, ami='mock-ami-1.0.0', latest=False): servers = [ mock_server(cluster, ami, latest) for x in range(n) ] return servers ```
{ "source": "jdlabsco/wagtail-themes", "score": 2 }
#### File: tests/unit/test_thread.py ```python from wagtailthemes.thread import get_theme, set_theme def test_get_theme(): # Check when no theme is set set_theme(None) assert not get_theme() # Check when theme is set set_theme('brand') assert get_theme() == 'brand' # Check when theme is overridden set_theme('personal') assert get_theme() == 'personal' ``` #### File: src/wagtailthemes/thread.py ```python from threading import local _thread_locals = local() def set_theme(theme): setattr(_thread_locals, 'wagtail_theme', theme) def get_theme(): theme = getattr(_thread_locals, 'wagtail_theme', None) return theme ```
{ "source": "jdlambright/Guess_who-1", "score": 3 }
#### File: Guess_who-1/src/helper.py ```python import sys from os import system from time import sleep from .display import (MENU, ABOUT, CREDITS) # Global variables LINE = "=" * 66 def show_menu(first_option) -> None: """ Display the home page """ print(MENU.format(first_option)) def show_about_page() -> None: """ Display the about page """ print(ABOUT) input() def show_credits_page() -> None: """ Display the credits page """ print(CREDITS) input() def exit_game() -> None: """ Exit the game! """ print(f"{LINE}\n\t\t\t|Thanks for playing!|\n{LINE}") sleep(0.4) sys.exit() def clear_screen() -> int: """ This function uses the system function from os to clear the console screen. It passes 'clear' or 'cls' as the arguments depending on the OS. """ return system("cls") if sys.__name__ == "nt" else system("clear") ```
{ "source": "jdlangs/tesseract_ros2", "score": 2 }
#### File: tesseract_monitoring/launch/environment_monitor.launch.py ```python import os from ament_index_python.packages import get_package_share_directory from ament_index_python.packages import get_package_prefix import launch import launch_ros.actions def generate_launch_description(): if not "tesseract_collision" in os.environ["AMENT_PREFIX_PATH"]: head, tail = os.path.split(get_package_prefix('tesseract_monitoring')) path = os.path.join(head, 'tesseract_collision') os.environ["AMENT_PREFIX_PATH"] += os.pathsep + path print(os.environ["AMENT_PREFIX_PATH"]) urdf = os.path.join(get_package_share_directory('ur_description'), 'urdf', 'ur10_robot.urdf') srdf = os.path.join(get_package_share_directory('ur_description'), 'urdf', 'ur10_robot.srdf') return launch.LaunchDescription([ launch_ros.actions.Node( node_name='environment_monitor', package='tesseract_monitoring', node_executable='tesseract_monitoring_environment_node', output='screen', arguments=[], parameters=[{'desc_param': 'robot_description', 'robot_description': urdf, 'robot_description_semantic': srdf}]), launch_ros.actions.Node( node_name='joint_state_pub', package='joint_state_publisher', node_executable='joint_state_publisher', output='screen', arguments=[urdf], parameters=[{'use_gui': 'false'}]), ]) ```