metadata
dict
text
stringlengths
60
3.49M
{ "source": "Jenso/ProjectY", "score": 2 }
#### File: pinry/loadimages/views.py ```python from django.views.generic import View, ListView, CreateView, TemplateView, DetailView from elementtree.ElementTree import parse import os import sys from pinry.pins.models import Pin, Category from pinry.loadimages.models import FailedSKUs, Feeds import celery @celery.task def loadfeeds(): for feed in Feeds.objects.all(): tree = parse("pinry/loadimages/feedfiles/" + feed.filename) elem = tree.getroot() # should be dynamically set feed = Feeds.objects.get(id=1) i = 0 for el in elem: try: # dont add products which already have been added sku = el.find("SKU").text pin_object = Pin.objects.filter(sku=sku, store=feed) # product already exist if pin_object: continue # if product has no category -> mark as failed category = el.find("Category").text if not category: fail = FailedSKUs(feed=feed, sku=sku) fail.save() continue category_obj, is_new_obj = Category.objects.get_or_create(name=category) new_pin = Pin(url=el.find("ImageUrl").text, tracking_url=el.find("TrackingUrl").text, price=el.find("Price").text, product_url=el.find("ProductUrl").text, submitter_id=1, category=category_obj, real_description=el.find("Description").text, name=el.find("Name").text, brand=el.find("Brand").text, sku=sku, store=feed ) new_pin.save() except: fail = FailedSKUs(feed=feed, sku=sku) fail.save() class LoadImagesView(TemplateView): """ A search view for all cities. Enables static text instead of dynamically loaded data via ajax. Google likes static text better. """ template_name = "load.html" def get_context_data(self, **kwargs): context = super(LoadImagesView, self).get_context_data(**kwargs) loadfeeds.delay() return context ```
{ "source": "jensparky83/reliability", "score": 3 }
#### File: reliability/reliability/Other_functions.py ```python import matplotlib.pyplot as plt import numpy as np from matplotlib.lines import Line2D from mplcursors import cursor import warnings from reliability.Distributions import Weibull_Distribution, Normal_Distribution, Lognormal_Distribution, Exponential_Distribution, Gamma_Distribution, Beta_Distribution from reliability.Fitters import Fit_Everything class similar_distributions: ''' similar_distributions This is a tool to find similar distributions when given an input distribution. It is useful to see how similar one distribution is to another. For example, you may look at a Weibull distribution and think it looks like a Normal distribution. Using this tool you can determine the parameters of the Normal distribution that most closely matches your Weibull distribution. Inputs: distribution - a distribution object created using the reliability.Distributions module include_location_shifted - True/False. Default is True. When set to True it will include Weibull_3P, Lognormal_3P, Gamma_3P, Expon_2P show_plot - True/False. Default is True print_results - True/False. Default is True number_of_distributions_to_show - the number of similar distributions to show. Default is 3. If the number specified exceeds the number available (typically 8), then the number specified will automatically be reduced. Outputs: results - an array of distributions objects ranked in order of best fit. most_similar_distribution - a distribution object. This is the first item from results. Example usage: from reliability.Distributions import Weibull_Distribution from reliability.Other_functions import similar_distributions dist = Weibull_Distribution(alpha=50,beta=3.3) similar_distributions(distribution=dist) ''' def __init__(self, distribution, include_location_shifted=True, show_plot=True, print_results=True, number_of_distributions_to_show=3): # ensure the input is a distribution object if type(distribution) not in [Weibull_Distribution, Normal_Distribution, Lognormal_Distribution, Exponential_Distribution, Gamma_Distribution, Beta_Distribution]: raise ValueError('distribution must be a probability distribution object from the reliability.Distributions module. First define the distribution using Reliability.Distributions.___') # sample the CDF from 0.001 to 0.999. These samples will be used to fit all other distributions. RVS = distribution.quantile(np.linspace(0.001, 0.999, 698)) # 698 samples is the ideal number for the points to align. Evidenced using plot_points. # filter out negative values RVS_filtered = [] negative_values_error = False for item in RVS: if item > 0: RVS_filtered.append(item) else: negative_values_error = True if negative_values_error is True: print('WARNING: The input distribution has non-negligible area for x<0. Samples from this region have been discarded to enable other distributions to be fitted.') fitted_results = Fit_Everything(failures=RVS_filtered, print_results=False, show_probability_plot=False, show_histogram_plot=False, show_PP_plot=False) # fit all distributions to the filtered samples ranked_distributions = list(fitted_results.results.index.values) ranked_distributions.remove(distribution.name2) # removes the fitted version of the original distribution ranked_distributions_objects = [] ranked_distributions_labels = [] sigfig = 2 for dist_name in ranked_distributions: if dist_name == 'Weibull_2P': ranked_distributions_objects.append(Weibull_Distribution(alpha=fitted_results.Weibull_2P_alpha, beta=fitted_results.Weibull_2P_beta)) ranked_distributions_labels.append(str('Weibull_2P (ฮฑ=' + str(round(fitted_results.Weibull_2P_alpha, sigfig)) + ',ฮฒ=' + str(round(fitted_results.Weibull_2P_beta, sigfig)) + ')')) elif dist_name == 'Gamma_2P': ranked_distributions_objects.append(Gamma_Distribution(alpha=fitted_results.Gamma_2P_alpha, beta=fitted_results.Gamma_2P_beta)) ranked_distributions_labels.append(str('Gamma_2P (ฮฑ=' + str(round(fitted_results.Gamma_2P_alpha, sigfig)) + ',ฮฒ=' + str(round(fitted_results.Gamma_2P_beta, sigfig)) + ')')) elif dist_name == 'Normal_2P': ranked_distributions_objects.append(Normal_Distribution(mu=fitted_results.Normal_2P_mu, sigma=fitted_results.Normal_2P_sigma)) ranked_distributions_labels.append(str('Normal_2P (ฮผ=' + str(round(fitted_results.Normal_2P_mu, sigfig)) + ',ฯƒ=' + str(round(fitted_results.Normal_2P_sigma, sigfig)) + ')')) elif dist_name == 'Lognormal_2P': ranked_distributions_objects.append(Lognormal_Distribution(mu=fitted_results.Lognormal_2P_mu, sigma=fitted_results.Lognormal_2P_sigma)) ranked_distributions_labels.append(str('Lognormal_2P (ฮผ=' + str(round(fitted_results.Lognormal_2P_mu, sigfig)) + ',ฯƒ=' + str(round(fitted_results.Lognormal_2P_sigma, sigfig)) + ')')) elif dist_name == 'Exponential_1P': ranked_distributions_objects.append(Exponential_Distribution(Lambda=fitted_results.Expon_1P_lambda)) ranked_distributions_labels.append(str('Exponential_1P (lambda=' + str(round(fitted_results.Expon_1P_lambda, sigfig)) + ')')) elif dist_name == 'Beta_2P': ranked_distributions_objects.append(Beta_Distribution(alpha=fitted_results.Beta_2P_alpha, beta=fitted_results.Beta_2P_beta)) ranked_distributions_labels.append(str('Beta_2P (ฮฑ=' + str(round(fitted_results.Beta_2P_alpha, sigfig)) + ',ฮฒ=' + str(round(fitted_results.Beta_2P_beta, sigfig)) + ')')) if include_location_shifted is True: if dist_name == 'Weibull_3P': ranked_distributions_objects.append(Weibull_Distribution(alpha=fitted_results.Weibull_3P_alpha, beta=fitted_results.Weibull_3P_beta, gamma=fitted_results.Weibull_3P_gamma)) ranked_distributions_labels.append(str('Weibull_3P (ฮฑ=' + str(round(fitted_results.Weibull_3P_alpha, sigfig)) + ',ฮฒ=' + str(round(fitted_results.Weibull_3P_beta, sigfig)) + ',ฮณ=' + str(round(fitted_results.Weibull_3P_gamma, sigfig)) + ')')) elif dist_name == 'Gamma_3P': ranked_distributions_objects.append(Gamma_Distribution(alpha=fitted_results.Gamma_3P_alpha, beta=fitted_results.Gamma_3P_beta, gamma=fitted_results.Gamma_3P_gamma)) ranked_distributions_labels.append(str('Gamma_3P (ฮฑ=' + str(round(fitted_results.Gamma_3P_alpha, sigfig)) + ',ฮฒ=' + str(round(fitted_results.Gamma_3P_beta, sigfig)) + ',ฮณ=' + str(round(fitted_results.Gamma_3P_gamma, sigfig)) + ')')) elif dist_name == 'Lognormal_3P': ranked_distributions_objects.append(Lognormal_Distribution(mu=fitted_results.Lognormal_3P_mu, sigma=fitted_results.Lognormal_3P_sigma, gamma=fitted_results.Lognormal_3P_gamma)) ranked_distributions_labels.append(str('Lognormal_3P (ฮผ=' + str(round(fitted_results.Lognormal_3P_mu, sigfig)) + ',ฯƒ=' + str(round(fitted_results.Lognormal_3P_sigma, sigfig)) + ',ฮณ=' + str(round(fitted_results.Lognormal_3P_gamma, sigfig)) + ')')) elif dist_name == 'Exponential_2P': ranked_distributions_objects.append(Exponential_Distribution(Lambda=fitted_results.Expon_1P_lambda, gamma=fitted_results.Expon_2P_gamma)) ranked_distributions_labels.append(str('Exponential_1P (lambda=' + str(round(fitted_results.Expon_1P_lambda, sigfig)) + ',ฮณ=' + str(round(fitted_results.Expon_2P_gamma, sigfig)) + ')')) number_of_distributions_fitted = len(ranked_distributions_objects) self.results = ranked_distributions_objects self.most_similar_distribution = ranked_distributions_objects[0] if print_results is True: print('The input distribution was:') print(distribution.param_title_long) if number_of_distributions_fitted < number_of_distributions_to_show: number_of_distributions_to_show = number_of_distributions_fitted print('\nThe top', number_of_distributions_to_show, 'most similar distributions are:') counter = 0 while counter < number_of_distributions_to_show and counter < number_of_distributions_fitted: dist = ranked_distributions_objects[counter] print(dist.param_title_long) counter += 1 if show_plot is True: plt.figure(figsize=(14, 6)) plt.suptitle(str('Plot of similar distributions to ' + distribution.param_title_long)) counter = 0 xlower = distribution.quantile(0.001) xupper = distribution.quantile(0.999) x_delta = xupper - xlower plt.subplot(121) distribution.PDF(label=str('Input distribution [' + distribution.name2 + ']'), linestyle='--') while counter < number_of_distributions_to_show and counter < number_of_distributions_fitted: ranked_distributions_objects[counter].PDF(label=ranked_distributions_labels[counter]) counter += 1 plt.xlim([xlower - x_delta * 0.1, xupper + x_delta * 0.1]) plt.legend() plt.title('PDF') counter = 0 plt.subplot(122) distribution.CDF(label=str('Input distribution [' + distribution.name2 + ']'), linestyle='--') while counter < number_of_distributions_to_show and counter < number_of_distributions_fitted: ranked_distributions_objects[counter].CDF(label=ranked_distributions_labels[counter]) counter += 1 plt.xlim([xlower - x_delta * 0.1, xupper + x_delta * 0.1]) plt.legend() plt.title('CDF') plt.subplots_adjust(left=0.08, right=0.95) plt.show() def histogram(data, white_above=None, bins=None, density=True, cumulative=False, **kwargs): ''' histogram plots a histogram using the data specified This is similar to plt.hist except that it calculates the optimal number of bins to use based on the Freedmanโ€“Diaconis rule ==> https://en.wikipedia.org/wiki/Freedman%E2%80%93Diaconis_rule If you would like to specify the number of bins rather than having the optimal number calculated, then the bins argument allows this. This function also shades the bins white above a specified value (white_above). This is useful for representing complete data as right censored data in a histogram. Inputs: data - the data to plot. Array or list. white_above - bins above this value will be shaded white bins - the number of bins to use. Must be int. Leave empty to have the optimal number calculated automatically density - True/False. Default is True. Always use True if plotting with a probability distribution. cumulative - True/False. Default is False. Use False for PDF and True for CDF. kwargs - plotting kwargs for the histogram (color, alpha, etc.) ''' if type(data) not in [np.ndarray, list]: raise ValueError('data must be an array or list') if white_above is not None: if type(white_above) not in [int, float, np.float64]: raise ValueError('white_above must be int or float') if white_above < min(data): raise ValueError('white_above must be greater than min(data)') if bins is not None: if type(bins) is not int: raise ValueError('bins is the number of bins to use. It must be type int. Leave empty to calculate the optimal number') else: iqr = np.subtract(*np.percentile(data, [75, 25])) # interquartile range bin_width = 2 * iqr * len(data) ** -(1 / 3) # Freedmanโ€“Diaconis rule ==> https://en.wikipedia.org/wiki/Freedman%E2%80%93Diaconis_rule bins = int(np.ceil((max(data) - min(data)) / bin_width)) if 'color' in kwargs: color = kwargs.pop('color') elif 'c' in kwargs: color = kwargs.pop('c') else: color = 'lightgrey' if 'edgecolor' in kwargs: edgecolor = kwargs.pop('egdecolor') else: edgecolor = 'k' if 'linewidth' in kwargs: linewidth = kwargs.pop('linewidth') elif 'lw' in kwargs: linewidth = kwargs.pop('lw') else: linewidth = 0.5 _, bins_out, patches = plt.hist(data, density=density, cumulative=cumulative, color=color, bins=bins, edgecolor=edgecolor, linewidth=linewidth, **kwargs) # plots the histogram of the data if white_above is not None: for i in range(np.argmin(abs(np.array(bins_out) - white_above)), len(patches)): # this is to shade part of the histogram as white patches[i].set_facecolor('white') def convert_dataframe_to_grouped_lists(input_dataframe): ''' Accepts a dataframe containing 2 columns This function assumes the identifying column is the left column returns: lists , names - lists is a list of the grouped lists - names is the identifying values used to group the lists from the first column Example usage: #create sample data import pandas as pd data = {'outcome': ['Failed', 'Censored', 'Failed', 'Failed', 'Censored'], 'cycles': [1253,1500,1342,1489,1500]} df = pd.DataFrame(data, columns = ['outcome', 'cycles']) #usage of the function lists,names = convert_dataframe_to_grouped_lists(df) print(names[1]) >>> Failed print(lists[1]) >>> [1253, 1342, 1489] ''' df = input_dataframe column_names = df.columns.values if len(column_names) > 2: raise ValueError('Dataframe contains more than 2 columns. There should only be 2 columns with the first column containing the labels to group by and the second containing the values to be returned in groups.') grouped_lists = [] group_list_names = [] for key, items in df.groupby(column_names[0]): values = list(items.iloc[:, 1].values) grouped_lists.append(values) group_list_names.append(key) return grouped_lists, group_list_names class make_right_censored_data: ''' make_right_censored_data Right censors data based on specified threshold Inputs: data - list or array of data threshold - point to right censor (right censoring is done if value is > threshold) Outputs: failures - array of failures (data <= threshold) right_censored - array of right_censored values (data > threshold). These will be set to the value of the threshold. ''' def __init__(self, data, threshold): if type(data) is list: data = np.array(data) self.failures = data[data <= threshold] self.right_censored = np.ones_like(data[data > threshold]) * threshold class crosshairs: ''' Adds interactive crosshairs to matplotlib plots Ensure this is used after you plot everything as anything plotted after crosshairs() is called will not be recognised by the snap-to feature. :param xlabel: the xlabel for annotations. Default is 'x' :param ylabel: the ylabel for annotations. Default is 'y' :param decimals: the number of decimals for rounding. Default is 2. :param kwargs: plotting kwargs to change the style of the crosshairs (eg. color, linestyle, etc.) ''' def __init__(self, xlabel=None, ylabel=None, decimals=2, **kwargs): crosshairs.__generate_crosshairs(self, xlabel=xlabel, ylabel=ylabel, decimals=decimals, **kwargs) def __add_lines_and_text_to_crosshairs(sel, decimals, **kwargs): # set the default properties of the lines and text if they were not provided as kwargs if 'c' in kwargs: color = kwargs.pop('c') elif 'color' in kwargs: color = kwargs.pop('color') else: color = 'k' if 'lw' in kwargs: linewidth = kwargs.pop('lw') elif 'linewidth' in kwargs: linewidth = kwargs.pop('linewidth') else: linewidth = 0.5 if 'ls' in kwargs: linestyle = kwargs.pop('ls') elif 'linestyle' in kwargs: linestyle = kwargs.pop('linestyle') else: linestyle = '--' if 'size' in kwargs: fontsize = kwargs.pop('size') elif 'fontsize' in kwargs: fontsize = kwargs.pop('fontsize') else: fontsize = 10 if 'fontweight' in kwargs: fontweight = kwargs.pop('fontweight') elif 'weight' in kwargs: fontweight = kwargs.pop('weight') else: fontweight = 0 if 'fontstyle' in kwargs: fontstyle = kwargs.pop('fontstyle') elif 'style' in kwargs: fontstyle = kwargs.pop('style') else: fontstyle = 'normal' sel.annotation.set(visible=False) # Hide the normal annotation during hover try: ax = sel.artist.axes except: ax = sel.annotation.axes # this exception occurs for bar charts x, y = sel.target lines = [Line2D([x, x], [0, 1], transform=ax.get_xaxis_transform(), c=color, lw=linewidth, ls=linestyle, **kwargs), Line2D([0, 1], [y, y], transform=ax.get_yaxis_transform(), c=color, lw=linewidth, ls=linestyle, **kwargs)] texts = [ax.text(s=round(y, decimals), x=0, y=y, transform=ax.get_yaxis_transform(), color=color, fontsize=fontsize, fontweight=fontweight, fontstyle=fontstyle, **kwargs), ax.text(s=round(x, decimals), x=x, y=0, transform=ax.get_xaxis_transform(), color=color, fontsize=fontsize, fontweight=fontweight, fontstyle=fontstyle, **kwargs)] for i in [0, 1]: line = lines[i] text = texts[i] ax.add_line(line) # the lines and text need to be registered with sel so that they are updated during mouse motion events sel.extras.append(line) sel.extras.append(text) def __format_annotation(sel, decimals, label): # this is some simple formatting for the annotations (applied on click) [x, y] = sel.annotation.xy text = str(label[0] + ' = ' + str(round(x, decimals)) + '\n' + label[1] + ' = ' + str(round(y, decimals))) sel.annotation.set_text(text) sel.annotation.get_bbox_patch().set(fc="white") def __hide_crosshairs(event): ax = event.inaxes # this gets the axes where the event occurred. if len(ax.texts) >= 2: # the lines can't be deleted if they haven't been drawn. if ax.texts[-1].get_position()[1] == 0 and ax.texts[-2].get_position()[0] == 0: # this identifies the texts (crosshair text coords) based on their combination of unique properties ax.lines[-1].set_visible(False) ax.lines[-2].set_visible(False) ax.texts[-1].set_visible(False) ax.texts[-2].set_visible(False) event.canvas.draw() def __generate_crosshairs(self, xlabel=None, ylabel=None, decimals=2, **kwargs): # this is the main program warnings.simplefilter('ignore') # required when using fill_between due to warning in mplcursors: "UserWarning: Pick support for PolyCollection is missing." ch = cursor(hover=True) add_lines_and_text_with_kwargs = lambda _: crosshairs.__add_lines_and_text_to_crosshairs(_, decimals, **kwargs) # adds the line's kwargs before connecting it to cursor ch.connect("add", add_lines_and_text_with_kwargs) plt.gcf().canvas.mpl_connect('axes_leave_event', crosshairs.__hide_crosshairs) # hide the crosshairs and text when the mouse leaves the axes # does the annotation part if xlabel is None: xlabel = 'x' if ylabel is None: ylabel = 'y' warnings.simplefilter('ignore') # required when using fill_between due to warning in mplcursors: "UserWarning: Pick support for PolyCollection is missing." annot = cursor(multiple=True, bindings={"toggle_visible": "h"}) format_annotation_labeled = lambda _: crosshairs.__format_annotation(_, decimals, [xlabel, ylabel]) # adds the labels to the 'format_annotation' function before connecting it to cursor annot.connect("add", format_annotation_labeled) ``` #### File: reliability/reliability/Reliability_testing.py ```python import scipy.stats as ss import matplotlib.pyplot as plt import numpy as np import pandas as pd def one_sample_proportion(trials=None, successes=None, CI=0.95): ''' Calculates the upper and lower bounds of reliability for a given number of trials and successes. inputs: trials - the number of trials which were conducted successes - the number of trials which were successful CI - the desired confidence interval. Defaults to 0.95 for 95% CI. returns: lower, upper - Confidence interval limits. will return nan for lower or upper if only one sided CI is calculated (ie. when successes=0 or successes=trials). ''' if trials is None or successes is None: raise ValueError('You must specify the number of trials and successes.') if successes > trials: raise ValueError('successes cannot be greater than trials') if successes == 0 or successes == trials: # calculate 1 sided CI in these cases n = 1 else: n = 2 V1_lower = 2 * successes V2_lower = 2 * (trials - successes + 1) alpha_lower = (1 - CI) / n F_lower = ss.f.ppf(alpha_lower, V1_lower, V2_lower) LOWER_LIM = (V1_lower * F_lower) / (V2_lower + V1_lower * F_lower) V1_upper = 2 * (successes + 1) V2_upper = 2 * (trials - successes) alpha_upper = 1 - alpha_lower F_upper = ss.f.ppf(alpha_upper, V1_upper, V2_upper) UPPER_LIM = (V1_upper * F_upper) / (V2_upper + V1_upper * F_upper) return LOWER_LIM, UPPER_LIM # will return nan for lower or upper if only one sided CI is calculated (ie. when successes=0 or successes=trials). def two_proportion_test(sample_1_trials=None, sample_1_successes=None, sample_2_trials=None, sample_2_successes=None, CI=0.95): ''' Calculates whether the difference in test results between two samples is statistically significant. For example, assume we have a poll of respondents in which 27/40 people agreed, and another poll in which 42/80 agreed. This test will determine if the difference is statistically significant for the given sample sizes at the specified confidence level. inputs: sample_1_trials - number of trials in the first sample sample_1_successes - number of successes in the first sample sample_2_trials - number of trials in the second sample sample_2_successes - number of successes in the second sample CI - desired confidence interval. Defaults to 0.95 for 95% CI. returns: lower,upper,result - lower and upper are bounds on the difference. If the bounds do not include 0 then it is a statistically significant difference. ''' if CI < 0.5 or CI >= 1: raise ValueError('CI must be between 0.5 and 1. Default is 0.95') if sample_1_trials is None or sample_1_successes is None or sample_2_trials is None or sample_2_successes is None: raise ValueError('You must specify the number of trials and successes for both samples.') if sample_1_successes > sample_1_trials or sample_2_successes > sample_2_trials: raise ValueError('successes cannot be greater than trials') p1 = sample_1_successes / sample_1_trials p2 = sample_2_successes / sample_2_trials diff = p1 - p2 Z = ss.norm.ppf(1 - ((1 - CI) / 2)) k = Z * ((p1 * (1 - p1) / sample_1_trials) + (p2 * (1 - p2) / sample_2_trials)) ** 0.5 lower = diff - k upper = diff + k if lower < 0 and upper > 0: result = 'non-significant' else: result = 'significant' return lower, upper, result def sample_size_no_failures(reliability, CI=0.95, lifetimes=1, weibull_shape=1): ''' This is used to determine the sample size required for a test in which no failures are expected, and the desired outcome is the lower bound on the reliability based on the sample size and desired confidence interval. inputs: reliability - lower bound on product reliability (between 0 and 1) CI - confidence interval of result (between 0.5 and 1). Defaults to 0.95 for 95% CI. lifetimes - if testing the product for multiple lifetimes then more failures are expected so a smaller sample size will be required to demonstrate the desired reliability (assuming no failures). Conversely, if testing for less than one full lifetime then a larger sample size will be required. Default is 1. weibull_shape - if the weibull shape (beta) of the failure mode is known, specify it here. Otherwise leave the default of 1 for the exponential distribution. returns: number of items required in the test. This will always be an integer (rounded up). ''' if CI < 0.5 or CI >= 1: raise ValueError('CI must be between 0.5 and 1') if reliability <= 0 or reliability >= 1: raise ValueError('Reliability must be between 0 and 1') if weibull_shape < 0: raise ValueError('Weibull shape must be greater than 0. Default (exponential distribution) is 1. If unknown then use 1.') if lifetimes > 5: print('Testing for greater than 5 lifetimes is highly unlikely to result in zero failures.') if lifetimes <= 0: raise ValueError('lifetimes must be >0. Default is 1. No more than 5 is recommended due to test feasibility.') n = int(np.ceil((np.log(1 - CI)) / (lifetimes ** weibull_shape * np.log(reliability)))) # rounds up to nearest integer return n def sequential_samling_chart(p1, p2, alpha, beta, show_plot=True, print_results=True, test_results=None, max_samples=100): ''' This function plots the accept/reject boundaries for a given set of quality and risk levels. If supplied, the test results are also plotted on the chart. inputs: p1 - producer_quality. The acceptable failure rate for the producer (typical around 0.01) p2 - consumer_quality. The acceptable failure rate for the consumer (typical around 0.1) alpha - producer_risk. Producer's CI = 1-alpha (typically 0.05) beta - consumer_risk. Consumer's CI = 1-beta (typically 0.1) test_results - array or list of binary test results. eg. [0,0,0,1] for 3 successes and 1 failure. Default=None show_plot - True/False. Defaults to True. print_results - True/False. Defaults to True. max_samples - the x_lim of the plot. optional input. Default=100. outputs: The sequential sampling chart - A plot of sequential sampling chart with decision boundaries. test_results are only plotted on the chart if provided as an input. results - a dataframe of tabulated decision results. ''' if type(test_results) == list: F = np.array(test_results) elif type(test_results) == np.ndarray: F = test_results elif test_results is None: F = None else: raise ValueError('test_results must be a binary array or list with 1 as failures and 0 as successes. eg. [0 0 0 1] for 3 successes and 1 failure.') a = 1 - alpha b = 1 - beta d = np.log(p2 / p1) + np.log((1 - p1) / (1 - p2)) h1 = np.log((1 - a) / b) / d h2 = np.log((1 - b) / a) / d s = np.log((1 - p1) / (1 - p2)) / d xvals = np.arange(max_samples + 1) rejection_line = s * xvals - h1 acceptance_line = s * xvals + h2 acceptance_line[acceptance_line < 0] = 0 upper_line = np.ones_like(xvals) * (s * max_samples - h1) lower_line_range = np.linspace(-h2 / s, max_samples, max_samples + 1) acceptance_line2 = s * lower_line_range + h2 # this is the visible part of the line that starts beyond x=0 acceptance_array = np.asarray(np.floor(s * xvals + h2), dtype=int) rejection_array = np.asarray(np.ceil(s * xvals - h1), dtype=int) for i, x in enumerate(xvals): # this replaces cases where the criteria exceeds the number of samples if rejection_array[i] > x: rejection_array[i] = -1 data = {'Samples': xvals, 'Failures to accept': acceptance_array, 'Failures to reject': rejection_array} df = pd.DataFrame(data, columns=['Samples', 'Failures to accept', 'Failures to reject']) df.set_index('Samples', inplace=True) df.loc[df['Failures to accept'] < 0, 'Failures to accept'] = 'x' df.loc[df['Failures to reject'] < 0, 'Failures to reject'] = 'x' if print_results is True: print(df) if show_plot is True: # plots the results of tests if they are specified if type(F) == np.ndarray: if all(F) not in [0, 1]: raise ValueError('test_results must be a binary array or list with 0 as failures and 1 as successes. eg. [0 0 0 1] for 3 successes and 1 failure.') nx = [] ny = [] failure_count = 0 sample_count = 0 for f in F: if f == 0: sample_count += 1 nx.append(sample_count) ny.append(failure_count) elif f == 1: sample_count += 1 nx.append(sample_count) ny.append(failure_count) failure_count += 1 nx.append(sample_count) ny.append(failure_count) else: raise ValueError('test_results must be a binary array or list with 0 as failures and 1 as successes. eg. [0 0 0 1] for 3 successes and 1 failure.') plt.plot(nx, ny, label='test results') # plots the decision boundaries and shades the areas red and green plt.plot(lower_line_range, acceptance_line2, linestyle='--', color='green') plt.plot(xvals, rejection_line, linestyle='--', color='red') plt.fill_between(xvals, rejection_line, upper_line, color='red', alpha=0.3, label='Reject sample') plt.fill_between(xvals, acceptance_line, rejection_line, color='gray', alpha=0.1, label='Keep Testing') plt.fill_between(lower_line_range, 0, acceptance_line2, color='green', alpha=0.3, label='Accept Sample') plt.ylim([0, max(rejection_line)]) plt.xlim([0, max(xvals)]) plt.xlabel('Number of samples tested') plt.ylabel('Number of failures from samples tested') plt.title('Sequential sampling decision boundaries') plt.legend() plt.show() return df class reliability_test_planner: ''' reliability_test_planner Solves for unknown test planner variables, given known variables. The Chi-squared distribution is used to find the lower confidence bound on MTBF for a given test duration, number of failures, and specified confidence interval. The equation for time-terminated tests is: MTBF = (2*test_duration)/(chisquared_inverse(CI, 2*number_of_failures+2)) The equation for failure-terminated tests is: MTBF = (2*test_duration)/(chisquared_inverse(CI, 2*number_of_failures)) This equation can be rearranged to solve for any of the 4 variables. For example, you may want to know how many failures you are allowed to have in a given test duration to achieve a particular MTBF. The user must specify any 3 out of the 4 variables (not including two_sided, print_results, or time_terminated) and the remaining variable will be calculated. Inputs: MTBF - mean time between failures. This is the lower confidence bound on the MTBF. Units given in same units as the test_duration. number_of_failures - the number of failures recorded (or allowed) to achieve the MTBF. Must be an integer. test_duration - the amount of time on test required (or performed) to achieve the MTBF. May also be distance, rounds fires, cycles, etc. Units given in same units as MTBF. CI - the confidence interval at which the lower confidence bound on the MTBF is given. Must be between 0.5 and 1. For example, specify 0.95 for 95% confidence interval. print_results - True/False. Default is True. two_sided - True/False. Default is True. If set to False, the 1 sided confidence interval will be returned. time_terminated - True/False. Default is True. If set to False, the formula for the failure-terminated test will be used. Outputs: If print_results is True, all the variables will be printed. An output object is also returned with the same values as the inputs and the remaining value also calculated. Examples: reliability_test_planner(test_duration=19520,CI=0.8,number_of_failures=7) Reliability Test Planner results for time-terminated test Solving for MTBF Test duration: 19520 MTBF (lower confidence bound): 1658.3248534993454 Number of failures: 7 Confidence interval (2 sided):0.8 output = reliability_test_planner(number_of_failures=6,test_duration=10000,CI=0.8, print_results=False) print(output.MTBF) 949.4807763260345 ''' def __init__(self, MTBF=None, number_of_failures=None, CI=None, test_duration=None, two_sided=True, time_terminated=True, print_results=True): print_CI_warn = False # used later if the CI is calculated if CI is not None: if CI < 0.5 or CI >= 1: raise ValueError('CI must be between 0.5 and 1. For example, specify CI=0.95 for 95% confidence interval') if two_sided is False: CI_adj = CI else: CI_adj = 1 - ((1 - CI) / 2) if time_terminated is True: p = 2 elif time_terminated is False: p = 0 else: raise ValueError('time_terminated must be True or False. Default is True for the time terminated test (a test stopped after a set time rather than after a set number of failures).') if two_sided is False: sides = 1 elif two_sided is True: sides = 2 else: raise ValueError('two_sided must be True or False. Default is True for the two sided confidence interval.') if number_of_failures is not None: if number_of_failures % 1 != 0 or number_of_failures < 0: raise ValueError('number_of_failures must be a positive integer') if MTBF is None and number_of_failures is not None and CI is not None and test_duration is not None: soln_type = 'MTBF' MTBF = (2 * test_duration) / ss.chi2.ppf(CI_adj, 2 * number_of_failures + p) elif MTBF is not None and number_of_failures is None and CI is not None and test_duration is not None: soln_type = 'failures' number_of_failures = 0 while True: # this requires an iterative search. Begins at 0 and increments by 1 until the solution is found result = (2 * test_duration) / ss.chi2.ppf(CI_adj, 2 * number_of_failures + p) - MTBF if result < 0: # solution is found when result returns a negative number (indicating too many failures) break number_of_failures += 1 MTBF_check = (2 * test_duration) / ss.chi2.ppf(CI_adj, 2 * 0 + p) # checks that the maximum possible MTBF (when there are 0 failures) is within the test_duration if MTBF_check < MTBF: raise ValueError('The specified MTBF is not possible given the specified test_duration. You must increase your test_duration or decrease your MTBF.') elif MTBF is not None and number_of_failures is not None and CI is None and test_duration is not None: soln_type = 'CI' CI_calc = ss.chi2.cdf(test_duration / (MTBF * 0.5), 2 * number_of_failures + p) if two_sided is False: CI = CI_calc else: CI = 1 - (2 * (1 - CI_calc)) # this can give negative numbers, but only when the inputs result in an impossible CI. if CI < 0.5: print_CI_warn = True elif MTBF is not None and number_of_failures is not None and CI is not None and test_duration is None: soln_type = 'test_duration' test_duration = ss.chi2.ppf(CI_adj, 2 * number_of_failures + p) * MTBF / 2 elif MTBF is not None and number_of_failures is not None and CI is not None and test_duration is not None: raise ValueError('All inputs were specified. Nothing to calculate.') else: raise ValueError('More than one input was not specified. You must specify any 3 out of the 4 inputs (not including two_sided or print_results) and the remaining input will be calculated.') self.test_duration = test_duration self.MTBF = MTBF self.number_of_failures = number_of_failures self.CI = CI if print_results is True: if time_terminated is True: print('\nReliability Test Planner results for time-terminated test') else: print('\nReliability Test Planner results for failure-terminated test') if soln_type == 'MTBF': print('Solving for MTBF') elif soln_type == 'failures': print('Solving for number_of_failures') elif soln_type == 'CI': print('Solving for CI') else: print('Solving for test_duration') print('Test duration:', self.test_duration) print('MTBF (lower confidence bound):', self.MTBF) print('Number of failures:', self.number_of_failures) print(str('Confidence interval (' + str(sides) + ' sided):' + str(self.CI))) if print_CI_warn is True: print('WARNING: The calculated CI is less than 0.5. This indicates that the desired MTBF is unachievable for the specified test_duration and number_of_failures.') ```
{ "source": "JensPars/BA-project", "score": 4 }
#### File: JensPars/BA-project/get_data.py ```python def get_data(df,drop = [],split = False, dummies = []): ''' Input: pandas.DataFrame list of keys to be dropped boolean determining wether to split the keys of categorical features for onehot encoding Output: if split == True data cleaned and split into test and train if split == False the whole dataframe cleaned ''' df = df.drop(drop,axis=1) if split == True: ## get dummies if dummies != []: df = pd.get_dummies(df,columns=dummies) ## else remove categorical features else: df = df.drop(['Continent'],axis=1) y = df['CO2 Emissions per Capita (metric tonnes)'] X = df.drop(['CO2 Emissions per Capita (metric tonnes)'],axis=1) split = int(len(df)*0.75) X_train = X[:split] y_train = y[:split] X_test = X[split:] y_test = y[split:] return X_train,y_train,X_test,y_test else: return df ```
{ "source": "jenspetersen/2017_JMI", "score": 2 }
#### File: 2017_JMI/util/iters.py ```python import h5py import itertools as it # ============================================================================= # PROGRAM METADATA # ============================================================================= __author__ = "<NAME>" __email__ = "<EMAIL>" __copyright__ = "" __license__ = "" __date__ = "Wed Nov 9 17:58:37 2016" __version__ = "0.1" # ============================================================================= # METHODS & CLASSES # ============================================================================= def kwargs(parameters, *args): """For a dictionary of parameter lists, yield possible combinations. Combinations will be returned as dictionaries. Additional arguments will no be split (lists remain lists etc.)""" i = 0 # make everything iterable # copy values to not change input object keys = sorted(parameters.keys()) values = [] for key in keys: if hasattr(parameters[key], "__iter__") and key not in args: values.append(parameters[key]) else: values.append([parameters[key]]) for comb in it.product(*values): yield i, dict(zip(keys, comb)) i += 1 def walk_h5(h5object, yield_datasets=True): """Similar to os.walk, walk through tree structure in a HDF5 file. Yields (current object, [dataset names], [group names]).""" if isinstance(h5object, h5py.Dataset): if yield_datasets: yield h5object, [], [] else: raise TypeError("Datasets ignored but object ist dataset.") else: groups = [] datasets = [] for key in h5object.keys(): if isinstance(h5object[key], h5py.Group): groups.append(key) if isinstance(h5object[key], h5py.Dataset): datasets.append(key) yield h5object, groups, datasets for g in groups: for el in walk_h5(h5object[g], yield_datasets): yield el if yield_datasets: for d in datasets: for el in walk_h5(h5object[d], yield_datasets): yield el # ============================================================================= # MAIN METHOD # ============================================================================= def main(): import IPython IPython.embed() # ============================================================================= # RUN # ============================================================================= if __name__ == "__main__": main() ```
{ "source": "jenspetersen/probabilistic-unet", "score": 2 }
#### File: probunet/experiment/probabilistic_unet_segmentation.py ```python from probunet.experiment.probabilistic_unet_future_segmentation import ProbabilisticUNetFutureSegmentation import os import numpy as np import time import torch from torch import nn, optim, distributions from trixi.util import Config from batchgenerators.transforms import ( MirrorTransform, SpatialTransform, CenterCropTransform, SegLabelSelectionBinarizeTransform, Compose ) from batchgenerators.dataloading import MultiThreadedAugmenter from probunet.model import ProbabilisticSegmentationNet, InjectionUNet3D, InjectionConvEncoder3D from probunet.eval import Evaluator, dice from probunet.util import ( get_default_experiment_parser, run_experiment, make_onehot as make_onehot_segmentation, coordinate_grid_samples ) from probunet import data DESCRIPTION = "Segmentation with a Probabilistic U-Net. .test() will give results for upper bound in paper, .test_future() will give results for lower bound." def make_defaults(patch_size=112, in_channels=4, latent_size=3, labels=[0, 1, 2, 3]): if hasattr(patch_size, "__iter__"): if len(patch_size) > 1: patch_size = tuple(patch_size) else: patch_size = patch_size[0] if not hasattr(patch_size, "__iter__"): patch_size = tuple([patch_size, ] * 3) DEFAULTS = Config( # Base name=os.path.basename(__file__).split(".")[0], description=DESCRIPTION, n_epochs=50000, batch_size=2, batch_size_val=1, patch_size=patch_size, in_channels=in_channels, out_channels=len(labels), latent_size=latent_size, seed=1, device="cuda", # Data split_val=3, split_test=4, data_module=data, data_dir=None, # we're setting data_module.data_dir if this is given mmap_mode="r", npz=False, debug=0, # 1 selects (10, 5, 5) patients, 2 a single batch train_on_all=False, # adds val and test to training set generator_train=data.RandomBatchGenerator, generator_val=data.LinearBatchGenerator, transforms_train={ 0: { "type": SpatialTransform, "kwargs": { "patch_size": patch_size, "patch_center_dist_from_border": patch_size[0] // 2, "do_elastic_deform": False, "p_el_per_sample": 0.2, "p_rot_per_sample": 0.3, "p_scale_per_sample": 0.3 }, "active": True }, 1: { "type": MirrorTransform, "kwargs": {"axes": (0, 1, 2)}, "active": True }, 2: { "type": SegLabelSelectionBinarizeTransform, "kwargs": {"label": [1, 2, 3]}, "active": False } }, transforms_val={ 0: { "type": CenterCropTransform, "kwargs": {"crop_size": patch_size}, "active": False }, 1: { "type": SegLabelSelectionBinarizeTransform, "kwargs": {"label": [1, 2, 3]}, "active": False }, 2: { "type": SpatialTransform, "kwargs": { "patch_size": patch_size, "patch_center_dist_from_border": patch_size[0] // 2, "do_elastic_deform": False, "do_rotation": False, "do_scale": True, "p_scale_per_sample": 1, "scale": (1.25, 1.25) }, "active": False } }, augmenter_train=MultiThreadedAugmenter, augmenter_train_kwargs={ "num_processes": 11, "num_cached_per_queue": 6, "pin_memory": True }, augmenter_val=MultiThreadedAugmenter, augmenter_val_kwargs={ "num_processes": 2, "pin_memory": True }, # Model model=ProbabilisticSegmentationNet, model_kwargs={ "in_channels": in_channels, "out_channels": len(labels), "num_feature_maps": 24, "latent_size": latent_size, "depth": 5, "latent_distribution": distributions.Normal, "task_op": InjectionUNet3D, "task_kwargs": { "output_activation_op": nn.LogSoftmax, "output_activation_kwargs": {"dim": 1}, "activation_kwargs": {"inplace": True} }, "prior_op": InjectionConvEncoder3D, "prior_kwargs": { "in_channels": in_channels, "out_channels": latent_size * 2, "depth": 5, "block_depth": 2, "num_feature_maps": 24, "feature_map_multiplier": 2, "activation_kwargs": {"inplace": True}, "norm_depth": 2, }, "posterior_op": InjectionConvEncoder3D, "posterior_kwargs": { "in_channels": in_channels + len(labels), "out_channels": latent_size * 2, "depth": 5, "block_depth": 2, "num_feature_maps": 24, "feature_map_multiplier": 2, "activation_kwargs": {"inplace": True}, "norm_depth": 2, }, }, model_init_weights_args=[nn.init.kaiming_uniform_, 0], model_init_bias_args=[nn.init.constant_, 0], # Learning optimizer=optim.Adam, optimizer_kwargs={"lr": 1e-4}, scheduler=optim.lr_scheduler.StepLR, scheduler_kwargs={"step_size": 200, "gamma": 0.985}, criterion_segmentation=nn.NLLLoss, criterion_segmentation_kwargs={"reduction": "sum"}, criterion_latent=distributions.kl_divergence, criterion_latent_kwargs={}, criterion_latent_init=False, criterion_segmentation_seg_onehot=False, criterion_segmentation_weight=1.0, criterion_latent_weight=1.0, criterion_segmentation_seg_dtype=torch.long, # Logging backup_every=1000, validate_every=1000, validate_subset=0.1, # validate only this percentage randomly show_every=10, validate_metrics=["Dice"], labels=labels, evaluator=Evaluator, evaluator_kwargs={ "label_values": list(labels) + [tuple(labels[1:])], "label_names": { 0: "Background", 1: "Edema", 2: "Enhancing", 3: "Necrosis", tuple(labels[1:]): "Whole Tumor" }, "nan_for_nonexisting": True }, val_save_output=False, val_example_samples=10, val_save_images=False, latent_plot_range=[-5, 5], test_on_val=True, test_save_output=False, test_future=True, test_std_factor=3, test_std_scale=1. ) TASKMEAN = Config( criterion_segmentation_kwargs={"reduction": "elementwise_mean"} ) ELASTIC = Config( transforms_train={0: {"kwargs": {"do_elastic_deform": True}}} ) NONORM = Config( model_kwargs={ "prior_kwargs": {"norm_depth": 0}, "posterior_kwargs": {"norm_depth": 0} } ) FULLNORM = Config( model_kwargs={ "prior_kwargs": {"norm_depth": "full"}, "posterior_kwargs": {"norm_depth": "full"} } ) BATCHNORM = Config( model_kwargs={ "prior_kwargs": {"norm_op": nn.BatchNorm3d}, "posterior_kwargs": {"norm_op": nn.BatchNorm3d}, "task_kwargs": {"norm_op": nn.BatchNorm3d} } ) WHOLETUMOR = Config( transforms_train={2: {"active": True}}, transforms_val={1: {"active": True}}, out_channels=2, labels=[0, 1], model_kwargs={ "out_channels": 2, "posterior_kwargs": {"in_channels": in_channels + 2} }, evaluator_kwargs={ "label_values": [0, 1], "label_names": { 0: "Background", 1: "Whole Tumor" } } ) ENHANCING = Config( transforms_train={2: { "kwargs": {"label": 2}, "active": True }}, transforms_val={1: { "kwargs": {"label": 2}, "active": True }}, out_channels=2, labels=[0, 1], model_kwargs={ "out_channels": 2, "posterior_kwargs": {"in_channels": in_channels + 2} }, evaluator_kwargs={ "label_values": [0, 1], "label_names": { 0: "Background", 1: "Whole Tumor" } } ) NOAUGMENT = Config( transforms_train={ 0: { "kwargs": { "p_el_per_sample": 0, "p_rot_per_sample": 0, "p_scale_per_sample": 0 } }, 1: {"active": False} } ) LOWAUGMENT = Config( transforms_train={ 0: { "kwargs": { "p_el_per_sample": 0., "p_rot_per_sample": 0.15, "p_scale_per_sample": 0.15 } } } ) NOBG = Config( criterion_segmentation_kwargs={"ignore_index": 0} ) VALIDATEPATCHED = Config( transforms_val={2: {"active": True}} ) MODS = { "TASKMEAN": TASKMEAN, "ELASTIC": ELASTIC, "NONORM": NONORM, "FULLNORM": FULLNORM, "BATCHNORM": BATCHNORM, "WHOLETUMOR": WHOLETUMOR, "ENHANCING": ENHANCING, "NOAUGMENT": NOAUGMENT, "LOWAUGMENT": LOWAUGMENT, "NOBG": NOBG, "VALIDATEPATCHED": VALIDATEPATCHED } return {"DEFAULTS": DEFAULTS}, MODS class ProbabilisticUNetSegmentation(ProbabilisticUNetFutureSegmentation): def setup_data(self): c = self.config self.data_train = c.data_module.load(c.mmap_mode, subjects=c.subjects_train, npz=c.npz) self.data_val = c.data_module.load(c.mmap_mode, subjects=c.subjects_val, npz=c.npz) self.data_test = c.data_module.load(c.mmap_mode, subjects=c.subjects_test, npz=c.npz) self.generator_train = c.generator_train( self.data_train, c.batch_size, 3, number_of_threads_in_multithreaded=c.augmenter_train_kwargs.num_processes) self.generator_val = c.generator_val( self.data_val, c.batch_size_val, 3, number_of_threads_in_multithreaded=c.augmenter_val_kwargs.num_processes) self.generator_test = c.generator_val( self.data_test, c.batch_size_val, 3, number_of_threads_in_multithreaded=c.augmenter_val_kwargs.num_processes) def process_data(self, data, epoch): c = self.config if c.debug < 2 or epoch == 0: input_ = torch.from_numpy(data["data"][:, c.in_channels:2*c.in_channels]).to(dtype=torch.float32, device=c.device) gt_segmentation = make_onehot_segmentation(torch.from_numpy(data["seg"][:, -2:-1]).to(dtype=torch.float32, device=c.device), c.labels) if c.debug == 2: self._memo_batch = (input_, gt_segmentation, data) else: return self._memo_batch return input_, gt_segmentation, data def process_data_future(self, data, epoch): c = self.config if c.debug < 2 or epoch == 0: input_ = torch.from_numpy(data["data"][:, c.in_channels:2*c.in_channels]).to(dtype=torch.float32, device=c.device) gt_segmentation = make_onehot_segmentation(torch.from_numpy(data["seg"][:, -1:]).to(dtype=torch.float32, device=c.device), c.labels) if c.debug == 2: self._memo_batch = (input_, gt_segmentation, data) else: return self._memo_batch return input_, gt_segmentation, data def test(self): info = self.validate_make_default_info() info["coords"]["Metric"] = info["coords"]["Metric"] + ["Reference KL", "Reference Reconstruction NLL", "Reference Reconstruction Dice", "Prior Maximum Dice", "Prior Best Volume Dice"] if self.config.test_on_val: augmenter = self.augmenter_val else: augmenter = self.augmenter_test test_scores, info = self.test_inner(augmenter, [], info) test_scores = np.array(test_scores) self.elog.save_numpy_data(test_scores, "test.npy") self.elog.save_dict(info, "test.json") if self.config.test_future: self.test_future() def test_inner(self, augmenter, scores, info, future=False): c = self.config with torch.no_grad(): self.model.eval() for data in augmenter: if future: input_, gt_segmentation, data = self.process_data_future(data, 0) else: input_, gt_segmentation, data = self.process_data(data, 0) prediction = self.model(input_, gt_segmentation, make_onehot=False).cpu() self.model.encode_posterior(input_, gt_segmentation, make_onehot=False) reference_reconstruction = self.model.reconstruct(out_device="cpu") gt_segmentation = torch.argmax(gt_segmentation.cpu(), 1, keepdim=False) reference_kl = distributions.kl_divergence(self.model.posterior, self.model.prior) # sample latent space for volumes and dice scores prior_mean = self.model.prior.loc.cpu().numpy() prior_mean = prior_mean.reshape(prior_mean.shape[0], -1) prior_std = self.model.prior.scale.cpu().numpy() prior_std = prior_std.reshape(prior_std.shape[0], -1) batch_samples = [] for b in range(prior_mean.shape[0]): batch_samples.append(coordinate_grid_samples(prior_mean[b], prior_std[b], c.test_std_factor, c.test_std_scale)) if len(batch_samples) > 1: batch_samples = list(zip(*batch_samples)) batch_samples = list(map(np.stack, batch_samples)) else: batch_samples = batch_samples[0] batch_samples = list(map(lambda x: x[np.newaxis, ...], batch_samples)) volumes = np.zeros((prior_mean.shape[0], len(batch_samples))) dice_scores = np.zeros((prior_mean.shape[0], len(batch_samples))) for s, sample in enumerate(batch_samples): sample = torch.tensor(sample) sample_prediction = self.model.reconstruct(sample=sample, out_device="cpu") sample_prediction = torch.argmax(sample_prediction, 1, keepdim=False).numpy() volumes_current = [] dice_scores_current = [] for b in range(sample_prediction.shape[0]): volumes_current.append(np.sum(sample_prediction[b] != 0)) dice_scores_current.append(dice(sample_prediction[b] != 0, data["seg"][b, -1] != 0)) volumes[:, s] = volumes_current dice_scores[:, s] = dice_scores_current max_dice = np.max(dice_scores, 1) dice_for_best_volume = [] for b in range(volumes.shape[0]): idx = np.argmin(np.abs(volumes[b] - np.sum(data["seg"][b, -1] != 0))) dice_for_best_volume.append(dice_scores[b, idx]) for s, subject in enumerate(data["subject"]): name = "{}_t{}".format(subject, data["timestep"][s]) if name in info["coords"]["Subject and Timestep"]: continue else: info["coords"]["Subject and Timestep"].append(name) # regular evaluation summary = data.copy() summary["data"] = data["data"][s:s+1] summary["seg"] = data["seg"][s:s+1] if future: summary["seg"] = summary["seg"][:, -1:] else: summary["seg"] = summary["seg"][:, -2:-1] summary["prediction"] = prediction[s:s+1] if c.test_save_output: self.elog.save_numpy_data(summary["prediction"].numpy(), "test/{}_prediction.npy".format(name)) # regular results like in validation current_score = self.validate_score(summary, 0) # surprise / information gain current_reference_kl = reference_kl[s:s+1].sum().item() # ability to reconstruct groundtruth current_reference_nll = nn.NLLLoss(reduction="sum")(reference_reconstruction[s:s+1], gt_segmentation[s:s+1]).item() current_reference_dice = self.validate_score({"prediction": reference_reconstruction[s:s+1], "seg": summary["seg"]}, 0) current_reference_dice = current_reference_dice[:, self.evaluator.metrics.index("Dice")] # create arrays, repeating NLL and KL for each label current_reference_kl = np.array([current_reference_kl, ] * len(c.evaluator_kwargs.label_values)) current_reference_nll = np.array([current_reference_nll, ] * len(c.evaluator_kwargs.label_values)) current_max_dice = np.array([max_dice[s], ] * len(c.evaluator_kwargs.label_values)) current_dice_best_volume = np.array([dice_for_best_volume[s], ] * len(c.evaluator_kwargs.label_values)) current_score_extended = np.stack([current_reference_kl, current_reference_nll, current_reference_dice, current_max_dice, current_dice_best_volume], 1) current_score = np.concatenate([current_score, current_score_extended], 1) scores.append(current_score) del input_, gt_segmentation return scores, info def test_future(self): info = self.validate_make_default_info() info["coords"]["Metric"] = info["coords"]["Metric"] + ["Future KL", "Future Reconstruction NLL", "Future Reconstruction Dice", "Prior Maximum Dice", "Prior Best Volume Dice"] # our regular generators only produce 1 timestep, so we create this here manually if self.config.test_on_val: test_data = self.data_val else: test_data = self.data_test generator = self.config.generator_val( test_data, self.config.batch_size_val, 3, number_of_threads_in_multithreaded=self.config.augmenter_val_kwargs.num_processes) transforms = [] for t in sorted(self.config.transforms_val.keys()): if self.config.transforms_val[t]["active"]: cls = self.config.transforms_val[t]["type"] kwargs = self.config.transforms_val[t]["kwargs"] transforms.append(cls(**kwargs)) augmenter = self.config.augmenter_val(generator, Compose(transforms), **self.config.augmenter_val_kwargs) test_scores, info = self.test_inner(augmenter, [], info, future=True) test_scores = np.array(test_scores) self.elog.save_numpy_data(test_scores, "test_future.npy") self.elog.save_dict(info, "test_future.json") if __name__ == '__main__': parser = get_default_experiment_parser() parser.add_argument("-p", "--patch_size", type=int, nargs="+", default=112) parser.add_argument("-in", "--in_channels", type=int, default=4) parser.add_argument("-lt", "--latent_size", type=int, default=3) parser.add_argument("-lb", "--labels", type=int, nargs="+", default=[0, 1, 2, 3]) args, _ = parser.parse_known_args() DEFAULTS, MODS = make_defaults(patch_size=args.patch_size, in_channels=args.in_channels, latent_size=args.latent_size, labels=args.labels) run_experiment(ProbabilisticUNetSegmentation, DEFAULTS, args, mods=MODS, explogger_kwargs=dict(folder_format="{experiment_name}_%Y%m%d-%H%M%S"), globs=globals(), resume_save_types=("model", "simple", "th_vars", "results")) ```
{ "source": "jensqin/samplepack", "score": 3 }
#### File: samplepack/sample01/sample01.py ```python from samplepack.settings import prstat # function definition. def add_one(n): """ add_one(n) The sum of a number and one. Parameters __________ n : int The input number. Returns _______ int The value :math:`n + 1`. """ print(prstat) return n + 1 if __name__ == "__main__": print("hello world 1") ``` #### File: samplepack/tests/test_sample.py ```python import pytest import json from samplepack.sample01 import add_one from samplepack.sample02.sample02 import add_two with open("tests/data/sample.json") as jsonfile: inputs = json.load(jsonfile) def test_load_data(): assert 0 == inputs["set"] def test_add_one(): res = add_one(0) assert res == 1 def test_add_two(): res = add_two(0) assert res == 2 ```
{ "source": "JensRantil/cligh", "score": 3 }
#### File: cligh/cligh/repos.py ```python from cligh.utils import get_working_repo, read_user_input def create(client, args): """Create a new repository.""" def validate_description(text): if len(text) == 0: print 'Description may not be empty. Try again.' return False return True def validate_name(text): if len(text) == 0: print 'Name may not be empty. Try again.' return False if any(char for char in text if char.isspace()): print 'Name may not contain spaces. Try again.' return False # What other characters don't belong in the name? return True def validate_homepage(text): # This is a lame excuse for validation. if len(text) == 0: print 'Home page may not be empty. Try again.' return False return True name = read_user_input('Repository name', validate_name) homepage = read_user_input('Homepage', validate_homepage) description = read_user_input('Description', validate_description) user = client.get_user() print client.get_user().create_repo(name=name, description=description, homepage=homepage) def fork(client, args): """Fork a repository.""" repo_to_fork = get_working_repo(client, args.repository) client.get_user().create_fork(repo_to_fork) print 'Repository forked.' def do_list(client, args): """Command to list the repos for a given user.""" user = client.get_user(args.user) repos = user.get_repos() print '%s has the following repositories:' % args.user print 'Name - Description' for repo in repos: print '%s - %s' % (repo.name, repo.description) def addlabel(client, args): # xxx Make this configurable by the user. White is a sane # default, for now. color = 'ffffff' repository = get_working_repo(client, args.repository) try: repository.create_label(args.label, color) except GithubException as e: die('''Unable to create label %s. The complete error response was: %s ''' % (args.label, e.data)) print 'Label added.' def remlabel(client, args): repository = get_working_repo(client, args.repository) try: label = repository.get_label(args.label) label.delete() except GithubException as e: die('''Unable to delete label %s from this repository. Error message: %s ''' % (args.label, e.data['message'])) print 'Label removed.' def make_repo_parser(subparsers): repo = subparsers.add_parser('repo', help='Manage and query repositories.') subparsers = repo.add_subparsers(title='Repository-related Subcommands') repo_list = subparsers.add_parser('list', help='List repositories belonging to a given user.') repo_list.set_defaults(func=do_list) repo_list.add_argument('user') repo_create = subparsers.add_parser('create', help='Create a new repository.') repo_create.set_defaults(func=create) repo_fork = subparsers.add_parser('fork', help='Fork an existing repository.') repo_fork.set_defaults(func=fork) repo_fork.add_argument('repository', help='Name of the repository, in the form USERNAME/REPONAME') repo_addlabel = subparsers.add_parser('add_label', help='Add a label to a repository.') repo_addlabel.set_defaults(func=addlabel) repo_addlabel.add_argument('--repository', help='Name of the repository, in the form USERNAME/REPONAME') repo_addlabel.add_argument('label', help='Name of the label to add') repo_remlabel = subparsers.add_parser('remove_label', help='Remove a label from a repository.') repo_remlabel.set_defaults(func=remlabel) repo_remlabel.add_argument('--repository', help='Name of the repository, in the form USERNAME/REPONAME') repo_remlabel.add_argument('label', help='Name of the label to remove') ```
{ "source": "JensRantil/rewind-client", "score": 2 }
#### File: rewind/client/__init__.py ```python import logging import zmq logger = logging.getLogger(__name__) class QueryException(Exception): """Raised when rewind server returns an error. Usually this exception means you have used a non-existing query key. """ pass def query_events(socket, from_=None, to=None): """Yield a queried range of events. Parameters: socket -- ZeroMQ socket to use. It must be previously connected to a Rewind instance and of type REQ. from_ -- the (optional) event id for the (chronologically) earliest end of the range. It is exclusive. If not specified, or None, all events from beginning of time are queried for. to -- the (optional) event id for the (chronologically) latest end of the range. It is exclusive. If not specified, or None, all events up to the latest event seen are queried for. Raises `QueryException` if a query failed. Usually this is raised because a given `from_` or `to` does not exist in the event store. This function returns nothing, but yields events that are returned. """ assert from_ is None or isinstance(from_, bytes) assert to is None or isinstance(to, bytes) first_msg = True done = False while not done: # _real_query(...) are giving us events in small batches done, events = _real_query(socket, from_, to) for eventid, eventdata in events: if first_msg: assert eventid != from_, "First message ID wrong" first_msg = False from_ = eventid yield (eventid, eventdata) def _real_query(socket, from_, to): """Make the actual query for events. Since the Rewind streams events in batches, this method might not receive all requested events. Returns the tuple `(done, events)` where * `done` is a boolean whether the limited query result reached the end, or whether there's more events that need to be collected. * `events` is a list of `(eventid, eventdata)` event tuples where * `eventid` is a unique string the signifies the event; and * `eventdata` is a byte string containing the serialized event. """ assert from_ is None or isinstance(from_, bytes), type(from_) assert to is None or isinstance(to, bytes), type(to) socket.send(b'QUERY', zmq.SNDMORE) socket.send(from_ if from_ else b'', zmq.SNDMORE) socket.send(to if to else b'') more = True done = False events = [] while more: data = socket.recv() if data == b"END": assert not socket.getsockopt(zmq.RCVMORE) done = True elif data.startswith(b"ERROR"): assert not socket.getsockopt(zmq.RCVMORE) raise QueryException("Could not query: {0}".format(data)) else: eventid = data assert isinstance(eventid, bytes), type(eventid) assert socket.getsockopt(zmq.RCVMORE) eventdata = socket.recv() eventtuple = (eventid, eventdata) events.append(eventtuple) if not socket.getsockopt(zmq.RCVMORE): more = False return done, events def _get_single_streamed_event(streamsock): """Retrieve a streamed event off a socket. Parameters: streamsock -- the stream socket to be reading from. Returns a tuple consisting of: eventid -- the ID of the streamed event lasteventid -- the ID of the previous streamed event. Can be empty for the first event (which pretty much never happens) eventdata -- the (serialized) data for the event. """ eventid = streamsock.recv() assert streamsock.getsockopt(zmq.RCVMORE) lasteventid = streamsock.recv() assert streamsock.getsockopt(zmq.RCVMORE) eventdata = streamsock.recv() assert not streamsock.getsockopt(zmq.RCVMORE) return eventid, lasteventid, eventdata def yield_events_after(streamsock, reqsock, lasteventid=None): """Generator that yields all the missed out events. Parameters: lasteventid -- the event id of the last seen event. TODO: Handle when there is no lasteventid. """ assert lasteventid is None or isinstance(lasteventid, bytes) funclogger = logger.getChild('yield_events_after') cureventid, preveventid, evdata = _get_single_streamed_event(streamsock) if preveventid != lasteventid and preveventid != b'': # Making sure we did not reach high watermark inbetween here. msg = ('Seem to have reached high watermark. Doing manually querying' ' to catch up.') funclogger.info(msg) for qeventid, qeventdata in query_events(reqsock, lasteventid, preveventid): # Note that this for loop's last event will be preveventid since # its last element is inclusive. yield qeventid, qeventdata yield cureventid, evdata def publish_event(socket, event): """Publish a new event to Rewind. Parameters: socket -- a ZeroMQ REQ socket connected to a Rewind instance. event -- event to be published. Is instance of bytes. """ assert isinstance(event, bytes), type(event) socket.send(b'PUBLISH', zmq.SNDMORE) socket.send(event) response = socket.recv() assert response == b'PUBLISHED' assert not socket.getsockopt(zmq.RCVMORE) ``` #### File: client/test/test_client.py ```python from __future__ import print_function try: # Python < 3 import ConfigParser as configparser except ImportError: # Python >= 3 import configparser try: # Python < 3 import StringIO as io except ImportError: # Python >= 3 import io import threading import time import unittest import uuid import re import mock import zmq import rewind.client as clients import rewind.server.main as main class _RewindRunnerThread(threading.Thread): """A thread that runs a rewind instance. While the thread is given command line arguments, Rewind is started as thread rather than external process. This makes it possible to check code coverage and track exit codes etc. """ _EXIT_CODE = b'EXIT' def __init__(self, bootparams, exit_addr=None): """Constructor. Parameters: bootparams -- Can be either a dictionary of configuration options grouped by section, or a list of command line argument strings. exit_addr -- the ZeroMQ address used to send the exit message to. """ assert isinstance(bootparams, list) or isinstance(bootparams, dict) thread = self if isinstance(bootparams, list): assert '--exit-codeword' not in bootparams, \ ("'--exit-codeword' is added by _RewindRunnerThread." " Not from elsewhere.") args = (main.main, bootparams + ['--exit-codeword', _RewindRunnerThread._EXIT_CODE.decode()]) else: assert isinstance(bootparams, dict) bootparams = dict(bootparams) if "general" not in bootparams: bootparams['general'] = {} EXCODE = _RewindRunnerThread._EXIT_CODE bootparams['general']['exit-code'] = EXCODE rows = [] for section, keyvals in bootparams.items(): rows.append("[{0}]".format(section)) for key, val in keyvals.items(): rows.append("{0}={1}".format(key, val)) configfilecontent = "\n".join(rows) options = configparser.SafeConfigParser() options.readfp(io.StringIO(configfilecontent)) args = (main.run, options, _RewindRunnerThread._EXIT_CODE.decode()) def exitcode_runner(func, *args, **kwargs): try: thread.exit_code = func(*args, **kwargs) except SystemExit as e: print("Runner made SystemExit.") thread.exit_code = e.code except Exception as e: print("Exception happened:", e) traceback.print_exc() thread.exit_code = None else: print("Clean exit of runner.") super(_RewindRunnerThread, self).__init__(target=exitcode_runner, name="test-rewind", args=args) self._exit_addr = exit_addr def stop(self, context=None): """Send a stop message to the event thread.""" assert self._exit_addr is not None if context is None: context = zmq.Context(1) socket = context.socket(zmq.REQ) socket.connect(self._exit_addr) socket.send(_RewindRunnerThread._EXIT_CODE) time.sleep(0.5) # Acceptable exit time assert not self.isAlive() socket.close() class TestReplication(unittest.TestCase): """Test high-level replication behaviour.""" UUID_REGEXP = ("[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-" "[0-9a-f]{12}") def setUp(self): """Starting a Rewind instance to test replication.""" args = { 'general': { 'query-bind-endpoint': 'tcp://127.0.0.1:8090', 'streaming-bind-endpoint': 'tcp://127.0.0.1:8091', } } self.rewind = _RewindRunnerThread(args, 'tcp://127.0.0.1:8090') self.rewind.start() self.context = zmq.Context(3) self.transmitter = self.context.socket(zmq.REQ) self.transmitter.connect('tcp://127.0.0.1:8090') # Making sure context.term() does not time out # Could be removed if this test works as expected self.transmitter.setsockopt(zmq.LINGER, 1000) self.receiver = self.context.socket(zmq.SUB) self.receiver.setsockopt(zmq.SUBSCRIBE, b'') self.receiver.connect('tcp://127.0.0.1:8091') # Time it takes to connect. This is particularly important so that the # receiver does not just receive the tail of the stream. time.sleep(0.5) def testBasicEventProxying(self): """Asserting a single event is proxied.""" eventstring = b"THIS IS AN EVENT" clients.publish_event(self.transmitter, eventstring) received_id = self.receiver.recv().decode() self.assertTrue(bool(self.receiver.getsockopt(zmq.RCVMORE))) prev_received_id = self.receiver.recv() self.assertEquals(prev_received_id, b'') self.assertTrue(bool(self.receiver.getsockopt(zmq.RCVMORE))) received_string = self.receiver.recv() self.assertFalse(bool(self.receiver.getsockopt(zmq.RCVMORE))) self.assertIsNotNone(re.match(self.UUID_REGEXP, received_id)) self.assertEqual(received_string, eventstring) def testProxyingABunchOfEvents(self): """Testing that a bunch of incoming messages processed correctly. That is, they are all being proxied and in order. """ NMESSAGES = 200 messages = [] for id in range(NMESSAGES): eventstring = "THIS IS EVENT NUMBER {0}".format(id).encode() messages.append(eventstring) # Sending for msg in messages: clients.publish_event(self.transmitter, msg) # Receiving and asserting correct messages eventids = [] received_messages = [] previd = b'' for msg in messages: received_id = self.receiver.recv() self.assertTrue(bool(self.receiver.getsockopt(zmq.RCVMORE))) received_prev_id = self.receiver.recv() self.assertEquals(received_prev_id, previd) previd = received_id self.assertTrue(bool(self.receiver.getsockopt(zmq.RCVMORE))) received_string = self.receiver.recv() received_messages.append(received_string) self.assertFalse(bool(self.receiver.getsockopt(zmq.RCVMORE))) self.assertIsNotNone(re.match(self.UUID_REGEXP, received_id.decode())) eventids.append(received_id) self.assertEqual(received_string, msg) self.assertEqual(len(set(eventids)), len(eventids), "Found duplicate event id!") self.assertEqual(messages, received_messages, "Not all messages received") def tearDown(self): """Shutting down Rewind test instance.""" self.transmitter.close() self.receiver.close() self.assertTrue(self.rewind.isAlive(), "Did rewind crash? Not running.") self.rewind.stop(self.context) self.assertFalse(self.rewind.isAlive(), "Rewind should not have been running. It was.") self.context.term() class TestQuerying(unittest.TestCase): """Test high-level event querying behaviour.""" def setUp(self): """Start and populate a Rewind instance to test querying.""" args = { 'general': { 'query-bind-endpoint': 'tcp://127.0.0.1:8090', } } self.rewind = _RewindRunnerThread(args, 'tcp://127.0.0.1:8090') self.rewind.start() self.context = zmq.Context(3) self.querysock = self.context.socket(zmq.REQ) self.querysock.connect('tcp://127.0.0.1:8090') ids = [uuid.uuid1().hex for i in range(200)] self.assertEqual(len(ids), len(set(ids)), 'There were duplicate IDs.' ' Maybe the UUID1 algorithm is flawed?') users = [uuid.uuid1().hex for i in range(30)] self.assertEqual(len(users), len(set(users)), 'There were duplicate users.' ' Maybe the UUID1 algorithm is flawed?') self.sent = [] for id in ids: eventstr = "Event with id '{0}'".format(id).encode() self.querysock.send(b"PUBLISH", zmq.SNDMORE) self.querysock.send(eventstr) response = self.querysock.recv() assert response == b'PUBLISHED' assert not self.querysock.getsockopt(zmq.RCVMORE) self.sent.append(eventstr) def testSyncAllPastEvents(self): """Test querying all events.""" time.sleep(0.5) # Max time to persist the messages allevents = [event[1] for event in clients.query_events(self.querysock)] self.assertEqual(allevents, self.sent) self.assertEqual(allevents, self.sent, "Elements don't match.") def testSyncEventsSince(self): """Test querying events after a certain time.""" time.sleep(0.5) # Max time to persist the messages allevents = [event for event in clients.query_events(self.querysock)] from_ = allevents[3][0] events = [event[1] for event in clients.query_events(self.querysock, from_=from_)] self.assertEqual([event[1] for event in allevents[4:]], events) def testSyncEventsBefore(self): """Test querying events before a certain time.""" time.sleep(0.5) # Max time to persist the messages allevents = [event for event in clients.query_events(self.querysock)] to = allevents[-3][0] events = [event[1] for event in clients.query_events(self.querysock, to=to)] self.assertEqual([event[1] for event in allevents[:-2]], events) def testSyncEventsBetween(self): """Test querying events a slice of the events.""" time.sleep(0.5) # Max time to persist the messages allevents = [event for event in clients.query_events(self.querysock)] from_ = allevents[3][0] to = allevents[-3][0] events = [event[1] for event in clients.query_events(self.querysock, from_=from_, to=to)] self.assertEqual([event[1] for event in allevents[4:-2]], events) def testSyncNontExistentEvent(self): """Test when querying for non-existent event id.""" result = clients.query_events(self.querysock, from_=b"non-exist") self.assertRaises(clients.QueryException, list, result) def tearDown(self): """Close Rewind test instance.""" self.querysock.close() self.assertTrue(self.rewind.isAlive(), "Did rewind crash? Not running.") self.rewind.stop(self.context) self.assertFalse(self.rewind.isAlive(), "Rewind should not have been running. It was.") self.context.term() class TestEventReception(unittest.TestCase): """Test event reception using `yield_events_after`.""" def setUp(self): """Set up the each test.""" self.events = [ (b'a', b'', b'event1'), (b'b', b'a', b'event2'), (b'c', b'b', b'event3'), ] def testRecvFirstEvent(self): """Test fetching the absolutely first event.""" streamsock = mock.NonCallableMock() streamsock.recv.side_effect = self.events[0] streamsock.getsockopt.side_effect = [True, True, False, False] reqsock = mock.NonCallableMock() results = [] for result in clients.yield_events_after(streamsock, reqsock): results.append(result) self.assertEqual(results, [(self.events[0][0], self.events[0][2])]) assert streamsock.recv.called assert not reqsock.recv.called def testRecvNonFloodedNextEvent(self): """Test receiving the next event through streaming socket only.""" streamsock = mock.NonCallableMock() streamsock.recv.side_effect = self.events[2] streamsock.getsockopt.side_effect = [True, True, False] reqsock = mock.NonCallableMock() results = [] for result in clients.yield_events_after(streamsock, reqsock, self.events[1][0]): results.append(result) self.assertEqual(results, [(self.events[2][0], self.events[2][2])]) assert streamsock.recv.called assert not reqsock.recv.called def testRecvFloodedSocket(self): """Test receiving an event when watermark was passed.""" streamsock = mock.NonCallableMock() streamsock.recv.side_effect = self.events[2] streamsock.getsockopt.side_effect = [True, True, False] reqsock = mock.NonCallableMock() toreceive = (self.events[1][0], self.events[1][2], b'END') reqsock.recv.side_effect = toreceive # Need two 'False' here due to assertion logic in query code reqsock.getsockopt.side_effect = [True, True, False, False] results = [] for result in clients.yield_events_after(streamsock, reqsock, self.events[0][0]): results.append(result) # Implementation specific tests that have been used mostly for # debugging of the code. Can be removed without being too worried. assert not streamsock.send.called reqsock.send.assert_has_calls([mock.call(b"QUERY", zmq.SNDMORE), mock.call(self.events[0][0], zmq.SNDMORE), mock.call(self.events[1][0])]) self.assertEqual(streamsock.recv.call_count, 3, streamsock.recv.call_args_list) self.assertEqual(reqsock.recv.call_count, 3) # The actual test that makes sure result is what it's supposed to be. self.assertEqual(results, [(self.events[1][0], self.events[1][2]), (self.events[2][0], self.events[2][2])]) ```
{ "source": "JensRantil/salt", "score": 2 }
#### File: salt/modules/debbuild.py ```python from __future__ import absolute_import, print_function import os import tempfile import shutil from salt.ext.six.moves.urllib.parse import urlparse as _urlparse # pylint: disable=no-name-in-module,import-error # Import salt libs import salt.utils from salt.exceptions import SaltInvocationError # pylint: disable=import-error __virtualname__ = 'pkgbuild' def __virtual__(): ''' Confirm this module is on a Debian based system ''' if __grains__.get('os_family', False) in ('Kali', 'Debian'): return __virtualname__ return False def _get_build_env(env): ''' Get build environment overrides dictionary to use in build process ''' env_override = '' if env is None: return env_override if not isinstance(env, dict): raise SaltInvocationError( '\'env\' must be a Python dictionary' ) for key, value in env.items(): env_override += '{0}={1}\n'.format(key, value) env_override += 'export {0}\n'.format(key) return env_override def _get_repo_env(env): ''' Get repo environment overrides dictionary to use in repo process ''' env_options = '' if env is None: return env_options if not isinstance(env, dict): raise SaltInvocationError( '\'env\' must be a Python dictionary' ) for key, value in env.items(): env_options += '{0}\n'.format(value) return env_options def _create_pbuilders(env): ''' Create the .pbuilder family of files in user's home directory env A list or dictionary of environment variables to be set prior to execution. Example: .. code-block:: yaml - env: - DEB_BUILD_OPTIONS: 'nocheck' .. warning:: The above illustrates a common PyYAML pitfall, that **yes**, **no**, **on**, **off**, **true**, and **false** are all loaded as boolean ``True`` and ``False`` values, and must be enclosed in quotes to be used as strings. More info on this (and other) PyYAML idiosyncrasies can be found :doc:`here </topics/troubleshooting/yaml_idiosyncrasies>`. ''' hook_text = '''#!/bin/sh set -e cat > "/etc/apt/preferences" << EOF Package: python-abalaster Pin: release a=testing Pin-Priority: 950 Package: python-sphinx Pin: release a=experimental Pin-Priority: 900 Package: sphinx-common Pin: release a=experimental Pin-Priority: 900 Package: * Pin: release a=jessie-backports Pin-Priority: 750 Package: * Pin: release a=stable Pin-Priority: 700 Package: * Pin: release a=testing Pin-Priority: 650 Package: * Pin: release a=unstable Pin-Priority: 600 Package: * Pin: release a=experimental Pin-Priority: 550 EOF ''' pbldrc_text = '''DIST="jessie" if [ -n "${DIST}" ]; then TMPDIR=/tmp BASETGZ="`dirname $BASETGZ`/$DIST-base.tgz" DISTRIBUTION=$DIST APTCACHE="/var/cache/pbuilder/$DIST/aptcache" fi HOOKDIR="${HOME}/.pbuilder-hooks" OTHERMIRROR="deb http://ftp.us.debian.org/debian/ testing main contrib non-free | deb http://ftp.us.debian.org/debian/ experimental main contrib non-free" ''' home = os.path.expanduser('~') pbuilder_hooksdir = os.path.join(home, '.pbuilder-hooks') if not os.path.isdir(pbuilder_hooksdir): os.makedirs(pbuilder_hooksdir) d05hook = os.path.join(pbuilder_hooksdir, 'D05apt-preferences') with salt.utils.fopen(d05hook, 'w') as fow: fow.write('{0}'.format(hook_text)) pbuilderrc = os.path.join(home, '.pbuilderrc') with salt.utils.fopen(pbuilderrc, 'w') as fow: fow.write('{0}'.format(pbldrc_text)) env_overrides = _get_build_env(env) if env_overrides and not env_overrides.isspace(): with salt.utils.fopen(pbuilderrc, 'a') as fow: fow.write('{0}'.format(env_overrides)) def _mk_tree(): ''' Create the debian build area ''' basedir = tempfile.mkdtemp() return basedir def _get_spec(tree_base, spec, template, saltenv='base'): ''' Get the spec file (tarball of the debian sub-dir to use) and place it in build area ''' spec_tgt = os.path.basename(spec) dest = os.path.join(tree_base, spec_tgt) return __salt__['cp.get_url'](spec, dest, saltenv=saltenv) def _get_src(tree_base, source, saltenv='base'): ''' Get the named sources and place them into the tree_base ''' parsed = _urlparse(source) sbase = os.path.basename(source) dest = os.path.join(tree_base, sbase) if parsed.scheme: __salt__['cp.get_url'](source, dest, saltenv=saltenv) else: shutil.copy(source, dest) def make_src_pkg(dest_dir, spec, sources, env=None, template=None, saltenv='base'): ''' Create a platform specific source package from the given platform spec/control file and sources CLI Example: Debian salt '*' pkgbuild.make_src_pkg /var/www/html/ https://raw.githubusercontent.com/saltstack/libnacl/master/pkg/deb/python-libnacl.control.tar.xz https://pypi.python.org/packages/source/l/libnacl/libnacl-1.3.5.tar.gz This example command should build the libnacl SOURCE package and place it in /var/www/html/ on the minion ''' _create_pbuilders(env) tree_base = _mk_tree() ret = [] if not os.path.isdir(dest_dir): os.makedirs(dest_dir) spec_pathfile = _get_spec(tree_base, spec, template, saltenv) # build salt equivalents from scratch if isinstance(sources, str): sources = sources.split(',') for src in sources: _get_src(tree_base, src, saltenv) #.dsc then assumes sources already build if spec_pathfile.endswith('.dsc'): for efile in os.listdir(tree_base): full = os.path.join(tree_base, efile) trgt = os.path.join(dest_dir, efile) shutil.copy(full, trgt) ret.append(trgt) trgt = os.path.join(dest_dir, os.path.basename(spec_pathfile)) shutil.copy(spec_pathfile, trgt) ret.append(trgt) return ret # obtain name of 'python setup.py sdist' generated tarball, extract the version # and manipulate the name for debian use (convert minix and add '+ds') salttarball = None for afile in os.listdir(tree_base): if afile.startswith('salt-') and afile.endswith('.tar.gz'): salttarball = afile break else: return ret frontname = salttarball.split('.tar.gz') salttar_name = frontname[0] debname = salttar_name.replace('-', '_') debname += '+ds' debname_orig = debname + '.orig.tar.gz' abspath_debname = os.path.join(tree_base, debname) cmd = 'tar -xvzf {0}'.format(salttarball) __salt__['cmd.run'](cmd, cwd=tree_base) cmd = 'mv {0} {1}'.format(salttar_name, debname) __salt__['cmd.run'](cmd, cwd=tree_base) cmd = 'tar -cvzf {0} {1}'.format(os.path.join(tree_base, debname_orig), debname) __salt__['cmd.run'](cmd, cwd=tree_base) cmd = 'rm -f {0}'.format(salttarball) __salt__['cmd.run'](cmd, cwd=tree_base) cmd = 'cp {0} {1}'.format(spec_pathfile, abspath_debname) __salt__['cmd.run'](cmd, cwd=abspath_debname) cmd = 'tar -xvJf {0}'.format(spec_pathfile) __salt__['cmd.run'](cmd, cwd=abspath_debname) cmd = 'rm -f {0}'.format(os.path.basename(spec_pathfile)) __salt__['cmd.run'](cmd, cwd=abspath_debname) cmd = 'debuild -S -uc -us' __salt__['cmd.run'](cmd, cwd=abspath_debname, python_shell=True) cmd = 'rm -fR {0}'.format(abspath_debname) __salt__['cmd.run'](cmd) for dfile in os.listdir(tree_base): if dfile.startswith('salt_'): if not dfile.endswith('.build'): full = os.path.join(tree_base, dfile) trgt = os.path.join(dest_dir, dfile) shutil.copy(full, trgt) ret.append(trgt) return ret def build(runas, tgt, dest_dir, spec, sources, deps, env, template, saltenv='base'): ''' Given the package destination directory, the tarball containing debian files (e.g. control) and package sources, use pbuilder to safely build the platform package CLI Example: Debian salt '*' pkgbuild.make_src_pkg deb-8-x86_64 /var/www/html/ https://raw.githubusercontent.com/saltstack/libnacl/master/pkg/deb/python-libnacl.control https://pypi.python.org/packages/source/l/libnacl/libnacl-1.3.5.tar.gz This example command should build the libnacl package for Debian using pbuilder and place it in /var/www/html/ on the minion ''' ret = {} if not os.path.isdir(dest_dir): try: os.makedirs(dest_dir) except (IOError, OSError): pass dsc_dir = tempfile.mkdtemp() dscs = make_src_pkg(dsc_dir, spec, sources, env, template, saltenv) # dscs should only contain salt orig and debian tarballs and dsc file for dsc in dscs: afile = os.path.basename(dsc) adist = os.path.join(dest_dir, afile) shutil.copy(dsc, adist) if dsc.endswith('.dsc'): dbase = os.path.dirname(dsc) cmd = 'chown {0} -R {1}'.format(runas, dbase) __salt__['cmd.run'](cmd) results_dir = tempfile.mkdtemp() cmd = 'chown {0} -R {1}'.format(runas, results_dir) __salt__['cmd.run'](cmd) cmd = 'pbuilder create' __salt__['cmd.run'](cmd, runas=runas, python_shell=True) cmd = 'pbuilder --build --buildresult {1} {0}'.format(dsc, results_dir) __salt__['cmd.run'](cmd, runas=runas, python_shell=True) for bfile in os.listdir(results_dir): full = os.path.join(results_dir, bfile) if bfile.endswith('.deb'): bdist = os.path.join(dest_dir, bfile) shutil.copy(full, bdist) else: with salt.utils.fopen(full, 'r') as fp_: ret[bfile] = fp_.read() shutil.rmtree(results_dir) shutil.rmtree(dsc_dir) return ret def make_repo(repodir, keyid=None, env=None): ''' Given the repodir, create a Debian repository out of the dsc therein CLI Example:: salt '*' pkgbuild.make_repo /var/www/html/ ''' repocfg_text = '''Origin: SaltStack Label: salt_debian Suite: unstable Codename: jessie Architectures: i386 amd64 source Components: contrib Description: SaltStack debian package repo Pull: jessie ''' repoconf = os.path.join(repodir, 'conf') if not os.path.isdir(repoconf): os.makedirs(repoconf) repoconfdist = os.path.join(repoconf, 'distributions') with salt.utils.fopen(repoconfdist, 'w') as fow: fow.write('{0}'.format(repocfg_text)) if keyid is not None: with salt.utils.fopen(repoconfdist, 'a') as fow: fow.write('Signwith: {0}\n'.format(keyid)) repocfg_opts = _get_repo_env(env) repoconfopts = os.path.join(repoconf, 'options') with salt.utils.fopen(repoconfopts, 'w') as fow: fow.write('{0}'.format(repocfg_opts)) for debfile in os.listdir(repodir): if debfile.endswith('.changes'): cmd = 'reprepro -Vb . include jessie {0}'.format(os.path.join(repodir, debfile)) __salt__['cmd.run'](cmd, cwd=repodir) if debfile.endswith('.deb'): cmd = 'reprepro -Vb . includedeb jessie {0}'.format(os.path.join(repodir, debfile)) __salt__['cmd.run'](cmd, cwd=repodir) ``` #### File: salt/modules/splay.py ```python from __future__ import absolute_import import time # Import 3rd-party libs import salt.ext.six as six # Import Salt Libs from salt.exceptions import CommandExecutionError _DEFAULT_SPLAYTIME = 600 _DEFAULT_SIZE = 8192 def _get_hash(hashable, size): ''' Jenkins One-At-A-Time Hash Function More Info: http://en.wikipedia.org/wiki/Jenkins_hash_function#one-at-a-time ''' # Using bitmask to emulate rollover behavior of C unsigned 32 bit int bitmask = 0xffffffff h = 0 for i in bytearray(hashable): h = (h + i) & bitmask h = (h + (h << 10)) & bitmask h = (h ^ (h >> 6)) & bitmask h = (h + (h << 3)) & bitmask h = (h ^ (h >> 11)) & bitmask h = (h + (h << 15)) & bitmask return (h & (size - 1)) & bitmask def calc_splay(hashable, splaytime=_DEFAULT_SPLAYTIME, size=_DEFAULT_SIZE): ''' Use directly to get a value from the Jenkins One-At-A-Time Hash Function using an arbitrary key. CLI Example: # Get a value from the hash function between 1 and 60 using key 'foobar' salt example-host calc_splay 'foobar' 60 ''' hash_val = _get_hash(hashable, size) return int(splaytime * hash_val / float(size)) def splay(*args, **kwargs): ''' Splay a salt function call execution time across minions over a number of seconds (default: 600) NOTE: You *probably* want to use --async here and look up the job results later. If you're dead set on getting the output from the CLI command, then make sure to set the timeout (with the -t flag) to something greater than the splaytime (max splaytime + time to execute job). Otherwise, it's very likely that the cli will time out before the job returns. CLI Example: # With default splaytime salt --async '*' splay.splay pkg.install cowsay version=3.03-8.el6 # With specified splaytime (5 minutes) and timeout with 10 second buffer salt -t 310 '*' splay.splay 300 pkg.version cowsay ''' # Convert args tuple to a list so we can pop the splaytime and func out args = list(args) # If the first argument passed is an integer, set it as the splaytime try: splaytime = int(args[0]) args.pop(0) except ValueError: splaytime = _DEFAULT_SPLAYTIME if splaytime <= 0: raise ValueError('splaytime must be a positive integer') func = args.pop(0) # Check if the func is valid before the sleep if func not in __salt__: raise CommandExecutionError('Unable to find module function {0}'.format(func)) my_delay = calc_splay(__grains__['id'], splaytime=splaytime) time.sleep(my_delay) # Get rid of the hidden kwargs that salt injects func_kwargs = dict((k, v) for k, v in six.iteritems(kwargs) if not k.startswith('__')) result = __salt__[func](*args, **func_kwargs) if not isinstance(result, dict): result = {'result': result} result['splaytime'] = str(my_delay) return result def show(splaytime=_DEFAULT_SPLAYTIME): ''' Show calculated splaytime for this minion Will use default value of 600 (seconds) if splaytime value not provided CLI Example: salt example-host splay.show salt example-host splay.show 60 ''' # Coerce splaytime to int (passed arg from CLI will be a str) if not isinstance(splaytime, int): splaytime = int(splaytime) return str(calc_splay(__grains__['id'], splaytime=splaytime)) ```
{ "source": "jensreeder/scikit-bio", "score": 2 }
#### File: jensreeder/scikit-bio/setup.py ```python import os import platform import re import ast from setuptools import find_packages, setup from setuptools.extension import Extension from setuptools.command.build_ext import build_ext as _build_ext # Bootstrap setup.py with numpy # Huge thanks to coldfix's solution # http://stackoverflow.com/a/21621689/579416 class build_ext(_build_ext): def finalize_options(self): _build_ext.finalize_options(self) # Prevent numpy from thinking it is still in its setup process: __builtins__.__NUMPY_SETUP__ = False import numpy self.include_dirs.append(numpy.get_include()) # version parsing from __init__ pulled from Flask's setup.py # https://github.com/mitsuhiko/flask/blob/master/setup.py _version_re = re.compile(r'__version__\s+=\s+(.*)') with open('skbio/__init__.py', 'rb') as f: hit = _version_re.search(f.read().decode('utf-8')).group(1) version = str(ast.literal_eval(hit)) classes = """ Development Status :: 1 - Planning License :: OSI Approved :: BSD License Topic :: Software Development :: Libraries Topic :: Scientific/Engineering Topic :: Scientific/Engineering :: Bio-Informatics Programming Language :: Python Programming Language :: Python :: 2 Programming Language :: Python :: 2.7 Programming Language :: Python :: 3 Programming Language :: Python :: 3.3 Programming Language :: Python :: 3.4 Operating System :: Unix Operating System :: POSIX Operating System :: MacOS :: MacOS X """ classifiers = [s.strip() for s in classes.split('\n') if s] description = ('Data structures, algorithms and educational ' 'resources for bioinformatics.') with open('README.rst') as f: long_description = f.read() # Dealing with Cython USE_CYTHON = os.environ.get('USE_CYTHON', False) ext = '.pyx' if USE_CYTHON else '.c' # There's a bug in some versions of Python 3.4 that propagates # -Werror=declaration-after-statement to extensions, instead of just affecting # the compilation of the interpreter. See http://bugs.python.org/issue21121 for # details. This acts as a workaround until the next Python 3 release -- thanks # <NAME> (wolma) for the workaround! ssw_extra_compile_args = ['-Wno-error=declaration-after-statement'] # Users with i686 architectures have reported that adding this flag allows # SSW to be compiled. See https://github.com/biocore/scikit-bio/issues/409 and # http://stackoverflow.com/q/26211814/3776794 for details. if platform.machine() == 'i686': ssw_extra_compile_args.append('-msse2') extensions = [ Extension("skbio.stats.__subsample", ["skbio/stats/__subsample" + ext]), Extension("skbio.alignment._ssw_wrapper", ["skbio/alignment/_ssw_wrapper" + ext, "skbio/alignment/_lib/ssw.c"], extra_compile_args=ssw_extra_compile_args) ] if USE_CYTHON: from Cython.Build import cythonize extensions = cythonize(extensions) setup(name='scikit-bio', version=version, license='BSD', description=description, long_description=long_description, author="scikit-bio development team", author_email="<EMAIL>", maintainer="scikit-bio development team", maintainer_email="<EMAIL>", url='http://scikit-bio.org', test_suite='nose.collector', packages=find_packages(), ext_modules=extensions, cmdclass={'build_ext': build_ext}, setup_requires=['numpy >= 1.7'], install_requires=['numpy >= 1.7', 'matplotlib >= 1.1.0', 'scipy >= 0.13.0', 'pandas', 'future', 'six', 'natsort >= 4.0.0', 'IPython', 'CacheControl[FileCache]'], extras_require={'test': ["nose >= 0.10.1", "pep8", "flake8", "python-dateutil"], 'doc': ["Sphinx == 1.2.2", "sphinx-bootstrap-theme"]}, classifiers=classifiers, package_data={ 'skbio.io.tests': ['data/*'], 'skbio.stats.tests': ['data/*'], 'skbio.stats.distance.tests': ['data/*'], 'skbio.stats.ordination.tests': ['data/*'] } ) ```
{ "source": "jensren/image-understanding", "score": 2 }
#### File: a4/Part2/a4p2.py ```python import numpy as np import cv2 as cv import matplotlib.pyplot as plt import random from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d.art3d import Poly3DCollection, Line3DCollection M = np.array([[-0.035/0.00002611, 0, 900/2], [0, -0.035/0.00002611, 600/2], [0, 0, 1]]) FOCAL_LENGTH = 0.035 def load_matches(file): """ Load a set of matching points from the matches.txt file and reformat as list of tuples (left point, right point) matches.txt is space delimited in format x y x' y' """ mat = np.loadtxt(file, dtype=int) ret_lst = [] for row in range(mat.shape[0]): ret_lst.append(((mat[row, 0], mat[row, 1]), (mat[row, 2], mat[row, 3]))) return ret_lst def plot_epilines(img1, img2, matches, epip_tup, fundamental, name, plot_f=False): """ Plot the epilines for the two images If plot_f, also plot the fundamental matrix """ # Source of heatmap plotting code for displaying the fundamental matrix: # https://matplotlib.org/3.1.1/gallery/images_contours_and_fields/image_annotated_heatmap.html fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(50, 15)) if plot_f \ else plt.subplots(nrows=1, ncols=2, figsize=(40, 11)) fig.suptitle("Epilines ({})".format(name)) ax[0].imshow(img1) ax[0].set_title("Left Image") ax[1].imshow(img2) ax[1].set_title("Right Image") colour_list = ['r', 'g', 'b', 'c', 'm', 'y'] e_l, e_r = epip_tup for p_l, p_r in matches: colour = random.randint(0, len(colour_list) - 1) ax[0].plot((e_l[0], p_l[0]), (e_l[1], p_l[1]), marker='o', ls='-', c=colour_list[colour]) ax[1].plot((e_r[0], p_r[0]), (e_r[1], p_r[1]), marker='o', ls='-', c=colour_list[colour]) if plot_f: ax[2].imshow(fundamental) ax[2].set_title("Fundamental Matrix") for i in range(len(fundamental)): for j in range(len(fundamental)): ax[2].text(j, i, round(fundamental[i, j], 5), ha="center", va="center", color="w") plt.show() def plot_poly_3d(points_sets, point_matches, name, img1, img2): """ Takes 3d points and plots them as polygons to show depth Each item in the points_sets is a set of points that create one polygon """ # source for code used to plot: # https://stackoverflow.com/questions/4622057/plotting-3d-polygons-in-python-matplotlib # https://stackoverflow.com/questions/18897786/transparency-for-poly3dcollection-plot-in-matplotlib colour_list = ['r', 'g', 'b', 'c', 'm', 'y'] # plot of matching points fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(20, 11)) fig.suptitle("{}".format(name)) ax[0].imshow(img1) ax[0].set_title("Left Image") ax[1].imshow(img2) ax[1].set_title("Right Image") i = 0 # tracks the corresponding point in point_matches for s in range(len(points_sets)): for p in range(len(points_sets[s])): ax[0].scatter(point_matches[i, 0, 0], point_matches[i, 0, 1], c=colour_list[s]) ax[1].scatter(point_matches[i, 1, 0], point_matches[i, 1, 1], c=colour_list[s]) i += 1 plt.show() # plot of recovered depth fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(20, 11)) ax = fig.add_subplot(111, projection='3d') ax.set_title("Recovered Depth ({})".format(name)) ax.set_xlabel('x axis') ax.set_ylabel('y axis') ax.set_zlabel('z axis') for s in range(len(points_sets)): pts = points_sets[s] x, y, z = np.array(pts)[:, 0], np.array(pts)[:, 1], np.array(pts)[:, 2] # x = [0, 1, 1, 0] # y = [0, 0, 1, 1] # z = [1, 1, 1, 1] ax.scatter(x, y, z, c=colour_list[s]) vertices = [[0, 1, 2], [0, 1, 3], [0, 2, 3], [1, 2, 3]] tupleList = list(zip(x, y, z)) poly3d = [[tupleList[vertices[ix][iy]] for iy in range(len(vertices[0]))] for ix in range(len(vertices))] collection = Poly3DCollection(poly3d, linewidths=1, alpha=0.2) collection.set_facecolor(colour_list[s]) collection.set_alpha(0.3) ax.add_collection3d(collection) ax.add_collection3d(Line3DCollection(poly3d, colors='k', linewidths=0.2, linestyles=':')) plt.show() def get_h(point_lst): """ Calculate H, as explained in Exercise 7.6 of the book """ homogeneous_pts = np.array([(p[0], p[1], 1) for p in point_lst]) mean = np.mean(homogeneous_pts, axis=0) dist = np.array([np.linalg.norm(p - mean) for p in homogeneous_pts]) mean_dist = np.mean(dist) return np.array([[np.sqrt(2) / mean_dist, 0, -np.sqrt(2) / mean_dist * mean[0]], [0, np.sqrt(2) / mean_dist, np.sqrt(2) / mean_dist * mean[1]], [0, 0, 1]]) def eight_point(points_lst): """ Eight-point algorithm that returns the estimate of the fundamental matrix points_lst is a list of tuples (left point, right point) in image coordinates max_dim is the max value of (height, width) used to scale points to prevent numerical instabilities """ # get H for normalization and produce normalized points points_lst = np.array(points_lst) h_l = get_h(points_lst[:, 0]) h_r = get_h(points_lst[:, 1]) p_l_norm = [h_l @ np.array([p[0], p[1], 1]) for p in points_lst[:, 0]] p_r_norm = [h_r @ np.array([p[0], p[1], 1]) for p in points_lst[:, 1]] # create A using normalized points a = [] for p_l, p_r in zip(p_l_norm, p_r_norm): x_l, y_l = p_l[0], p_l[1] x_r, y_r = p_r[0], p_r[1] a.append([x_r * x_l, x_r * y_l, x_r, y_r * x_l, y_r * y_l, y_r, x_l, y_l, 1]) a = np.array(a) u, s, vh = np.linalg.svd(a) f_mat = np.reshape(vh[-1, :], (3, 3)) # enforce singularity constraint u, s, vh = np.linalg.svd(f_mat) s[-1] = 0 f_unscaled = (u * s) @ vh # rescale F return np.linalg.inv(h_r) @ f_unscaled @ np.linalg.inv(h_l) def epipoles_location(f_mat): """ Computer the location of the epipoles from the fundamental matrix Returns (left epipole, right epipole) """ u, s, vh = np.linalg.svd(f_mat) e_l = vh[-1, :] e_r = u[:, -1] # get x, y by dividing by w e_l = (e_l[0] / e_l[2], e_l[1] / e_l[2]) e_r = (e_r[0] / e_r[2], e_r[1] / e_r[2]) return e_l, e_r def compute_e(f_mat, m_mat): """ Compute the essential matrix given F and M, assuming M_r = M_l """ return m_mat.T @ f_mat @ m_mat def compute_r_t(e_mat): """ Compute R, t_hat from the essential matrix """ e_hat = e_mat / np.sqrt(np.trace(e_mat.T @ e_mat) / 2) et_e_hat = e_hat.T @ e_hat # using 7.26 from the book t_hat = np.array([np.sqrt(1 - et_e_hat[0, 0]), np.sqrt(1 - et_e_hat[1, 1]), np.sqrt(1 - et_e_hat[2, 2])]) w = np.array([np.cross(e_hat[i, :], t_hat) for i in range(3)]) # [w_i, w_j, w_k] r = np.array([w[0] + np.cross(w[1], w[2]), w[1] + np.cross(w[2], w[0]), w[2] + np.cross(w[0], w[1])]) return r, t_hat def add_z(point, focal_len): """ Given a point (x, y) and the focal length, returns (x, y, f) """ return np.array([point[0], point[1], focal_len]) def triang_point(r_mat, t_vec, focal_len, p_l, p_r): """ Compute P' given p_l, p_r, the rotation matrix, and the translation vector p_l, p_r are in the form (x, y) in image coordinates units are in metres """ # convert p_l, p_r into 3D coordinates (according to the book, z = focal length) p_l = add_z(p_l, focal_len) p_r = add_z(p_r, focal_len) # formulate the linear system and solve for a, b, c a = [p_l, r_mat.T @ p_r, (np.cross(p_l, r_mat.T @ p_r))] sol = np.linalg.inv(a).dot(t_vec) # return the midpoint of line segment joining a * p_l and T + b * R_T @ p_r return (np.reshape(sol[0] * p_l, 3) + (np.reshape(t_vec, 3) + sol[1] * r_mat.T @ p_r)) / 2 def triang_four(matches): # takes 4 matches and returns a set of 4 3d points pts_set = [] for tup in matches[:4]: p_3d = triang_point(R, t, FOCAL_LENGTH, tup[0], tup[1]) pts_set.append(p_3d) return pts_set if __name__ == '__main__': test_q4 = True test_q5 = True test_q6 = True p1 = (cv.cvtColor(cv.imread("first_pair/p11.jpg"), cv.COLOR_BGR2RGB), cv.cvtColor(cv.imread("first_pair/p12.jpg"), cv.COLOR_BGR2RGB)) p2 = (cv.cvtColor(cv.imread("second_pair/p21.jpg"), cv.COLOR_BGR2RGB), cv.cvtColor(cv.imread("second_pair/p22.jpg"), cv.COLOR_BGR2RGB)) p1_matches = load_matches("first_pair/matches.txt") p2_matches = load_matches("second_pair/matches.txt") max_dim = max(p1[0].shape[:-1]) if test_q4: compare_f = True plot_lst_img1 = [] plot_lst_img2 = [] f1 = eight_point(p1_matches) ep1 = epipoles_location(f1) plot_lst_img1.append((f1, ep1, "First Pair, Test F")) f2 = eight_point(p2_matches) ep2 = epipoles_location(f2) plot_lst_img2.append((f2, ep2, "Second Pair, Test F")) if compare_f: p1_matches_subset_1 = p1_matches[5:] p1_matches_subset_2 = p1_matches[:-5] f3 = eight_point(p1_matches_subset_1) plot_lst_img1.append((f3, epipoles_location(f3), "First Pair, Test F Less First 5 Matches")) f4 = eight_point(p1_matches_subset_2) plot_lst_img1.append((f4, epipoles_location(f4), "First Pair, Test F Less Last 5 Matches")) for f, ep, name in plot_lst_img1: plot_epilines(p1[0], p1[1], p1_matches, ep, f, name=name, plot_f=True) for f, ep, name in plot_lst_img2: plot_epilines(p2[0], p2[1], p2_matches, ep, f, name=name, plot_f=True) if test_q5: p1_matches_arr = np.array(p1_matches) k1, k2 = p1_matches_arr[:, 0, :], p1_matches_arr[:, 1, :] f1 = cv.findFundamentalMat(k1, k2)[0] p2_matches_arr = np.array(p2_matches) k1, k2 = p2_matches_arr[:, 0, :], p2_matches_arr[:, 1, :] f2 = cv.findFundamentalMat(k1, k2)[0] epipoles = epipoles_location(f1) epipoles = epipoles_location(f2) plot_epilines(p1[0], p1[1], p1_matches, epipoles, f1, name="First Pair, Test Epipoles", plot_f=True) plot_epilines(p2[0], p2[1], p2_matches, epipoles, f2, name="Second Pair, Test Epipoles", plot_f=True) if test_q6: # first pair p1_matches_arr = np.array(p1_matches) k1, k2 = p1_matches_arr[:, 0, :], p1_matches_arr[:, 1, :] essential = cv.findEssentialMat(k1, k2, M)[0] points, R, t, mask = cv.recoverPose(essential, k1, k2, M) s1 = [] for i in range(0, len(p1_matches), 4): s1.append(triang_four(p1_matches_arr[i:i+4])) plot_poly_3d(s1, p1_matches_arr, "First Pair", p1[0], p1[1]) # second pair p2_matches_arr = np.array(p2_matches) k1, k2 = p2_matches_arr[:, 0, :], p2_matches_arr[:, 1, :] essential = cv.findEssentialMat(k1, k2, M)[0] points, R, t, mask = cv.recoverPose(essential, k1, k2, M) s2 = [] for i in range(0, len(p2_matches), 4): s2.append(triang_four(p2_matches_arr[i:i + 4])) plot_poly_3d(s2, p2_matches_arr, "Second Pair", p2[0], p2[1]) ```
{ "source": "jenssss/micmon", "score": 2 }
#### File: micmon/audio/device.py ```python from micmon.audio import AudioSource class AudioDevice(AudioSource): def __init__(self, system: str = 'alsa', device: str = 'plughw:0,1', *args, **kwargs): super().__init__(*args, **kwargs) self.ffmpeg_args = ( self.ffmpeg_bin, '-f', system, '-i', device, *self.ffmpeg_base_args ) ``` #### File: micmon/audio/segment.py ```python from typing import Optional import numpy as np class AudioSegment: default_low_freq = 20 default_high_freq = 20000 default_bins = 100 def __init__(self, data: bytes, sample_rate: int = 44100, channels: int = 1, label: Optional[int] = None): self.data = data self.audio = np.frombuffer(data, dtype=np.int16) self.sample_rate = sample_rate self.channels = channels self.duration = len(self.audio) / (sample_rate * channels) self.label = label def fft(self, low_freq: int = default_low_freq, high_freq: int = default_high_freq) -> np.ndarray: return np.absolute(np.fft.rfft(self.audio))[low_freq:high_freq] def spectrum(self, low_freq: int = default_low_freq, high_freq: int = default_high_freq, bins: int = default_bins) -> np.ndarray: fft = self.fft(low_freq=low_freq, high_freq=high_freq) bin_size = int(len(fft) / bins) return np.array([ np.average(fft[i * bin_size: i * bin_size + bin_size]) / (self.duration * ((1 << 16) - 1)) for i in range(bins) ]) def plot_audio(self): import matplotlib.pyplot as plt plt.plot(self.audio) plt.show() def plot_spectrum(self, low_freq: int = default_low_freq, high_freq: int = default_high_freq, bins: int = default_bins): import matplotlib.pyplot as plt spectrum = self.spectrum(low_freq=low_freq, high_freq=high_freq, bins=bins) plt.ylim(0, 1) plt.bar(range(len(spectrum)), spectrum) plt.show() ``` #### File: micmon/model/__init__.py ```python import json import os import pathlib import numpy as np from typing import List, Optional from tensorflow.keras import Sequential from tensorflow.keras.layers import Layer from tensorflow.keras.models import load_model, Model as _Model from micmon.audio import AudioSegment from micmon.dataset import Dataset class Model: labels_file_name = 'labels.json' freq_file_name = 'freq.json' # noinspection PyShadowingNames def __init__(self, layers: Optional[List[Layer]] = None, labels: Optional[List[str]] = None, model: Optional[_Model] = None, optimizer='adam', loss='sparse_categorical_crossentropy', metrics=('accuracy',), low_freq: int = AudioSegment.default_low_freq, high_freq: int = AudioSegment.default_high_freq): assert layers or model self.label_names = labels self.cutoff_frequencies = (int(low_freq), int(high_freq)) if layers: self._model = Sequential(layers) self._model.compile(optimizer=optimizer, loss=loss, metrics=list(metrics)) else: self._model = model def fit(self, dataset: Dataset, *args, **kwargs): return self._model.fit(dataset.train_samples, dataset.train_classes, *args, **kwargs) def evaluate(self, dataset: Dataset, *args, **kwargs): return self._model.evaluate(dataset.validation_samples, dataset.validation_classes, *args, **kwargs) def predict(self, audio: AudioSegment): spectrum = audio.spectrum(low_freq=self.cutoff_frequencies[0], high_freq=self.cutoff_frequencies[1]) output = self._model.predict(np.array([spectrum])) prediction = int(np.argmax(output)) return self.label_names[prediction] if self.label_names else prediction def save(self, path: str, *args, **kwargs): path = os.path.abspath(os.path.expanduser(path)) is_file = path.endswith('.h5') or path.endswith('.pb') if is_file: model_dir = str(pathlib.Path(path).parent) else: model_dir = path pathlib.Path(model_dir).mkdir(parents=True, exist_ok=True) self._model.save(path, *args, **kwargs) if self.label_names: labels_file = os.path.join(model_dir, self.labels_file_name) with open(labels_file, 'w') as f: json.dump(self.label_names, f) if self.cutoff_frequencies: freq_file = os.path.join(model_dir, self.freq_file_name) with open(freq_file, 'w') as f: json.dump(self.cutoff_frequencies, f) @classmethod def load(cls, path: str, *args, **kwargs): path = os.path.abspath(os.path.expanduser(path)) is_file = path.endswith('.h5') or path.endswith('.pb') if is_file: model_dir = str(pathlib.Path(path).parent) else: model_dir = path model = load_model(path, *args, **kwargs) labels_file = os.path.join(model_dir, cls.labels_file_name) freq_file = os.path.join(model_dir, cls.freq_file_name) label_names = [] frequencies = [] if os.path.isfile(labels_file): with open(labels_file, 'r') as f: label_names = json.load(f) if os.path.isfile(freq_file): with open(freq_file, 'r') as f: frequencies = json.load(f) return cls(model=model, labels=label_names, low_freq=frequencies[0], high_freq=frequencies[1]) ``` #### File: micmon/utils/datagen.py ```python import argparse import logging import os import sys from micmon.audio import AudioDirectory, AudioFile, AudioSegment from micmon.dataset import DatasetWriter logger = logging.getLogger(__name__) defaults = { 'sample_duration': 2.0, 'sample_rate': 44100, 'channels': 1, 'ffmpeg_bin': 'ffmpeg', } def create_dataset(audio_dir: str, dataset_dir: str, low_freq: int = AudioSegment.default_low_freq, high_freq: int = AudioSegment.default_high_freq, bins: int = AudioSegment.default_bins, sample_duration: float = defaults['sample_duration'], sample_rate: int = defaults['sample_rate'], channels: int = defaults['channels'], ffmpeg_bin: str = defaults['ffmpeg_bin']): audio_dir = os.path.abspath(os.path.expanduser(audio_dir)) dataset_dir = os.path.abspath(os.path.expanduser(dataset_dir)) audio_dirs = AudioDirectory.scan(audio_dir) for audio_dir in audio_dirs: dataset_file = os.path.join(dataset_dir, os.path.basename(audio_dir.path) + '.npz') logger.info(f'Processing audio sample {audio_dir.path}') with AudioFile(audio_dir.audio_file, audio_dir.labels_file, sample_duration=sample_duration, sample_rate=sample_rate, channels=channels, ffmpeg_bin=os.path.expanduser(ffmpeg_bin)) as reader, \ DatasetWriter(dataset_file, low_freq=low_freq, high_freq=high_freq, bins=bins) as writer: for sample in reader: writer += sample def main(): # noinspection PyTypeChecker parser = argparse.ArgumentParser( description=''' Tool to create numpy dataset files with audio spectrum data from a set of labelled raw audio files.''', epilog=''' - audio_dir should contain a list of sub-directories, each of which represents a labelled audio sample. audio_dir should have the following structure: audio_dir/ -> train_sample_1 -> audio.mp3 -> labels.json -> train_sample_2 -> audio.mp3 -> labels.json ... - labels.json is a key-value JSON file that contains the labels for each audio segment. Example: { "00:00": "negative", "02:13": "positive", "04:57": "negative", "15:41": "positive", "18:24": "negative" } Each entry indicates that all the audio samples between the specified timestamp and the next entry or the end of the audio file should be applied the specified label. - dataset_dir is the directory where the generated labelled spectrum dataset in .npz format will be saved. Each dataset file will be named like its associated audio samples directory.''', formatter_class=argparse.RawDescriptionHelpFormatter ) parser.add_argument('audio_dir', help='Directory containing the raw audio samples directories to be scanned.') parser.add_argument('dataset_dir', help='Destination directory for the compressed .npz files containing the ' 'frequency spectrum datasets.') parser.add_argument('--low', help='Specify the lowest frequency to be considered in the generated frequency ' 'spectrum. Default: 20 Hz (lowest possible frequency audible to a human ear).', required=False, default=AudioSegment.default_low_freq, dest='low_freq', type=int) parser.add_argument('--high', help='Specify the highest frequency to be considered in the generated frequency ' 'spectrum. Default: 20 kHz (highest possible frequency audible to a human ear).', required=False, default=AudioSegment.default_high_freq, dest='high_freq', type=int) parser.add_argument('-b', '--bins', help=f'Specify the number of frequency bins to be used for the spectrum ' f'analysis (default: {AudioSegment.default_bins})', required=False, default=AudioSegment.default_bins, dest='bins', type=int) parser.add_argument('-d', '--sample-duration', help=f'The script will calculate the spectrum of audio segments of ' f'this specified length in seconds (default: ' f'{defaults["sample_duration"]}).', required=False, default=defaults['sample_duration'], dest='sample_duration', type=float) parser.add_argument('-r', '--sample-rate', help=f'Audio sample rate (default: {defaults["sample_rate"]} Hz)', required=False, default=defaults['sample_rate'], dest='sample_rate', type=int) parser.add_argument('-c', '--channels', help=f'Number of destination audio channels (default: ' f'{defaults["channels"]})', required=False, default=defaults['channels'], dest='channels', type=int) parser.add_argument('--ffmpeg', help=f'Absolute path to the ffmpeg executable (default: {defaults["ffmpeg_bin"]})', required=False, default=defaults['ffmpeg_bin'], dest='ffmpeg_bin', type=str) opts, args = parser.parse_known_args(sys.argv[1:]) return create_dataset(audio_dir=opts.audio_dir, dataset_dir=opts.dataset_dir, low_freq=opts.low_freq, high_freq=opts.high_freq, bins=opts.bins, sample_duration=opts.sample_duration, sample_rate=opts.sample_rate, channels=opts.channels, ffmpeg_bin=opts.ffmpeg_bin) if __name__ == '__main__': main() ```
{ "source": "jenssss/runana", "score": 3 }
#### File: runana/runana/run.py ```python from __future__ import print_function from sys import stdout from os import path, getcwd, listdir, chdir, makedirs, remove from subprocess import call from io import FileIO from glob import glob from functools import wraps from contextlib import contextmanager from runana import input_file_handling from operator import add, mul from runana.read_numbers import ignored try: from operator import div except ImportError: from operator import truediv as div try: basestring # Python 2.x except NameError: basestring = str # Python 3.x OPERATIONS = {'add': add, 'mul': mul, 'div': div} @contextmanager def cwd(path): """ Contextmanager that changes working directory temporarily """ oldpwd = getcwd() chdir(path) try: yield finally: chdir(oldpwd) def generate_seq(start, incr, nvalues=0, incr_func=add): """Iterator that returns a sequence of numbers :param incr_func: function used to increment the return value. Can be one of the strings 'add', 'mul' or 'div' :type incr_func: func or str """ if isinstance(incr_func, basestring): incr_func = OPERATIONS[incr_func] value = start yield value for i in range(1, nvalues): value = incr_func(value, incr) yield value def generate_list(*args, **kwargs): """Wrap of generate_seq that returns a list instead of an iterator""" return list(generate_seq(*args, **kwargs)) class Dirs(object): """Container class for names of directories :param str scratch_base: Directory prefix :param str local_scratch_base: Prefix for directory in which programs are run. If `None` then `scratch_base` is used :param list copy_2_scratch: List of strings that are globbed and copied from the local scratch directory to scratch directory """ def __init__(self, scratch_base, local_scratch_base=None, copy_2_scratch=['*.txt', '*.nml', '*.stdout', '*.dat']): if local_scratch_base is None: local_scratch_base = scratch_base self.scratch_base = scratch_base self.local_scratch_base = local_scratch_base self.copy_2_scratch = copy_2_scratch makedir(self.scratch_base) def makedir(dir_): if not path.exists(dir_): makedirs(dir_) class OpenWithNone(FileIO): def __init__(self, file_string, *args, **kwargs): self.file_string = file_string if file_string: super(OpenWithNone, self).__init__(file_string, *args, **kwargs) def __enter__(self): handle = None if self.file_string: handle = super(OpenWithNone, self).__enter__() self.fd = handle return self.fd def __exit__(self, type, value, traceback): if self.fd: super(OpenWithNone, self).__exit__() def replace_string_in_file(fileName, text_to_search, text_to_replace): with open(fileName, 'r') as file_handle: filedata = file_handle.read() filedata = filedata.replace(text_to_search, text_to_replace) with open(fileName, 'w') as file_handle: file_handle.write(filedata) def run_program(program, cmdargs, stdin_f, stdout_f, stderr_f, run=True, cmd_prepend="", run_from_cmd=True, **kwargs): """Runs `program` with `cmdargs` using `subprocess.call`. :param str stdin_f: File from which to take standard input :param str stdout_f: File in which to put standard output :param str stderr_f: File in which to put standard error :param bool run: Whether to actually run `program` If `True` the program return code is returned. If false a string pointing to the script which will run the program is returned :param str cmd_prepend: Put in the beginning of the bash script :param bool run_from_cmd: Run `program` using the generated bash script instead of running it directly """ time_file_name = '.'.join(stdout_f.split('.')[:-1])+'.time' cmd_file_name = '.'.join(stdout_f.split('.')[:-1])+'.sh' with open(cmd_file_name, 'w') as cmd_file: cmd = ' '.join([program]+cmdargs) time_cmd = "/usr/bin/time -o {time_file}".format(time_file=time_file_name) cmd = "{time_cmd} {cmd} 1> {stdout} 2> {stderr} \n".format(time_cmd=time_cmd, cmd=cmd, stdout=stdout_f, stderr=stderr_f) cmd = cmd_prepend + cmd cmd_file.write(cmd) if run: with OpenWithNone(stdin_f, 'r') as input_file, open(stdout_f, 'w') as stdout_file, open(stderr_f, 'w') as stderr_file: if run_from_cmd: retcode = call(["bash", cmd_file_name], **kwargs) else: try: with open(time_file_name, 'w') as time_file: with print_time(time_file): retcode = call([program]+cmdargs, stdin=input_file, stdout=stdout_file, stderr=stderr_file, **kwargs) except Exception as e: print(e) print('program ', program) print('cmdargs', cmdargs) print('stdin ', stdin_f) print('stdout ', stdout_f) print('stderr ', stderr_f) # print 'kwargs ', kwargs print(getcwd()) raise replace_string_in_file(stdout_f, '\r', '\n') return retcode else: return cmd_file_name from subprocess import Popen, PIPE from time import sleep # from time import time # from os import fsync def run_program_print_output(program, cmdargs, stdin_f, stdout_f, stderr_f, print_output=False, **kwargs): with OpenWithNone(stdin_f, 'r') as input_file: with open(stdout_f, 'w', buffering=0) as stdout_file: with open(stderr_f, 'w', buffering=0) as stderr_file: try: with open(stdout_f+'.sh', 'w') as cmd_file: cmd_file.write(' '.join([program]+cmdargs)) if print_output: # start_time = time() process = Popen([program]+cmdargs, stdin=input_file, stdout=PIPE, stderr=PIPE, bufsize=0, **kwargs) # print(time()-start_time) # print('Right after process call') while True: stdout = process.stdout.readline() stderr = process.stderr.readline() if stdout == '' and stderr == '' and process.poll() is not None: break if stdout: # print(time()-start_time) print(stdout, end='') stdout_file.write(stdout) # stdout_file.flush() # fsync(stdout_file.fileno()) if stderr: print(stderr, end='') stderr_file.write(stderr) sleep(0.1) else: call([program]+cmdargs, stdin=input_file, stdout=stdout_file, stderr=stderr_file, bufsize=0, **kwargs) except Exception as e: print(e) print('program ', program) print('cmdargs', cmdargs) print('stdin ', stdin_f) print('stdout ', stdout_f) print('stderr ', stderr_f) # print 'kwargs ', kwargs print(getcwd()) raise replace_string_in_file(stdout_f, '\r', '\n') def name_stdout(program, add=''): if isinstance(program, basestring): prog = program else: prog = program[0] stdouts = prog.split('/')[-1] # stdouts = stdouts.split('.')[0].split('_')[0]+add+'.std' stdouts = stdouts+add+'.std' return stdouts+'out', stdouts+'err' def run_prog(program, cmdargs=[], stdin_f=None, add='', **kwargs): # run_program_print_output(program, cmdargs, stdin_f, return run_program(program, cmdargs, stdin_f, *name_stdout(program, add), **kwargs) def copy_ignore_same(from_file, to_file): from shutil import copy, Error try: copy(from_file, to_file) except Error as err: with open('shutil.err', 'a') as f1: f1.write(str(err)+'\n') except IOError: pass def copy_to_scratch(WorkDir, file_strings): files = [] for file_string in file_strings: files = files+glob(file_string) for fil in files: copy_ignore_same(fil, WorkDir) @ignored(OSError) def get_subdirs(a_dir='./'): return [name for name in listdir(a_dir) if path.isdir(path.join(a_dir, name))] def generate_run_ID(work_dir, invalid_IDs=[], prepend=""): subdirs = get_subdirs(work_dir) ID = 1 while True: strID = str(ID) if prepend: strID = prepend + strID if strID in subdirs or strID in invalid_IDs: ID = ID+1 else: return strID def make_run_dirs(ScratchBase, LScratchBase, **gen_ID_kwargs): ID = generate_run_ID(ScratchBase, **gen_ID_kwargs) work_dir = path.join(ScratchBase, ID) lwork_dir = path.join(LScratchBase, ID) makedir(work_dir) makedir(lwork_dir) return ID, work_dir, lwork_dir def lock_wrap_retry(Dir, nretries=10, wait=0.1): def decorate(f): @wraps(f) def call(*args, **kwargs): import fcntl, time pid_file = path.join(Dir, 'lock_ID_gen.pid') with open(pid_file, 'w') as lock_fp: for attempt in range(nretries): try: fcntl.lockf(lock_fp, fcntl.LOCK_EX | fcntl.LOCK_NB) except IOError: import random print('Waiting for lock on', Dir, attempt) time.sleep(wait+0.05*random.random()) continue break else: print('Failed to get ID generation lock') try: ret = f(*args, **kwargs) fcntl.lockf(lock_fp, fcntl.LOCK_UN) finally: fcntl.lockf(lock_fp, fcntl.LOCK_UN) return ret return call return decorate def save_info_in_file(filename, command, copy_back=None): with open(filename, 'w') as output_file: call(command, stdout=output_file) if copy_back: copy_ignore_same(filename, copy_back) def calc_all(replacements, dirs, inp_file, programs, print_finish=True, filter_func='f90nml', use_stdin=False, use_inp_file=True, **gen_ID_kwargs): base_dir = dirs.scratch_base dirID, work_dir, lwork_dir = lock_wrap_retry(base_dir, nretries=10, wait=0.1)( make_run_dirs)(base_dir, dirs.local_scratch_base, **gen_ID_kwargs) inp_file_local = path.join(work_dir, path.basename(inp_file)) input_file_handling.INP_FILE_FILTERS[filter_func](inp_file, inp_file_local, replacements) with cwd(lwork_dir): save_info_in_file('hostname.txt', 'hostname', work_dir) save_info_in_file('started.txt', 'date', work_dir) inp_file_relative = path.relpath(inp_file_local, lwork_dir) run_core(programs, inp_file_relative, use_stdin=use_stdin, use_inp_file=use_inp_file) copy_to_scratch(work_dir, dirs.copy_2_scratch) save_info_in_file('ended.txt', 'date', work_dir) if print_finish: print('Finished', dict((is_it_tuple(key),elem) for key,elem in replacements.items())) return dirID def is_it_tuple(it): if isinstance(it, tuple): return it[1] else: return it @contextmanager def NamedTempFile(name, mode="w", **kwargs): """Contextmanager for creating a named temporary file """ try: with open(name, mode=mode, **kwargs) as f: yield f finally: with ignored(FileNotFoundError): remove(name) def run_core(programs, inp_file_relative, use_stdin=False, use_inp_file=True, add_temp_ignore_file=True): if add_temp_ignore_file: with NamedTempFile("ignore"): run_core_inner(programs, inp_file_relative, use_stdin, use_inp_file) else: run_core_inner(programs, inp_file_relative, use_stdin, use_inp_file) def run_core_inner(programs, inp_file_relative, use_stdin=False, use_inp_file=True): for program in programs: if hasattr(program, '__call__'): if use_inp_file: program(inp_file_relative) else: program() else: if use_inp_file: if use_stdin: run_prog(program, [], stdin_f=inp_file_relative) else: run_prog(program, [inp_file_relative]) else: run_prog(program) def add_to_fname(fname, add=''): fname_list = fname.split('.') fname_list[-2] = fname_list[-2]+add return '.'.join(fname_list) def rerun(replacements, lworkdir, inp_file, programs, filter_func='f90nml'): inp_file_replace = add_to_fname(inp_file, '_rerun') with cwd(lworkdir): input_file_handling.INP_FILE_FILTERS[filter_func](inp_file, inp_file_replace, replacements) save_info_in_file('re_hostname.txt', 'hostname') save_info_in_file('restarted.txt', 'date') run_core(programs, inp_file_replace, lworkdir) save_info_in_file('re_ended.txt', 'date') def merge_dicts(x, y): z = x.copy() z.update(y) return z def product_replacements(product_iters): from itertools import product for value_set in product(*product_iters.values()): yield dict(zip(product_iters.keys(), value_set)) def co_replacements(co_iters): if len(co_iters) >= 1: for vector in zip(*co_iters.values()): yield dict(zip(co_iters.keys(), vector)) else: yield {} def chain_replacements(chain_iters): if len(chain_iters) >= 1: for key, chain_iter in chain_iters.items(): for value in chain_iter: yield {key: value} else: yield {} def replace_iter_gen(product_iters={}, chain_iters={}, co_iters={}, just_replace={}): for prod_iter in product_replacements(product_iters): for chain_iter in chain_replacements(chain_iters): for co_iter in co_replacements(co_iters): yield merge_dicts(merge_dicts(merge_dicts(just_replace, prod_iter), chain_iter), co_iter) def check_dirs(dirs): if not isinstance(dirs, Dirs): dirs = Dirs(dirs) return dirs from functools import partial def pick_filter_func(filter_func, calc_all): return partial(calc_all,filter_func=filter_func) def execute(programs, input_file, dirs, chain_iters={}, product_iters={}, co_iters={}, just_replace={}, filter_func='f90nml', use_stdin=False, calc_all=calc_all, **kwargs): """Run sequence of programs with different parameters defined by iters. :param list programs: List of strings with names of programs. Should contain absolute paths. Could alternately contain functions :param str input_file: Input file :param runana.run.Dirs dirs: Base directory in which programs will be run :type dirs: str or runana.run.Dirs :param dict chain_iters: Entries of the form {'Name of parameter':[*values to replace with*]} :param dict product_iters: Like `chain_iters`, but runs all combinations :param dict co_iters: Runs with several parameters changing simultanously :param dict just_replace: Entries of the form {'Name of parameter':*value to replace with*} :param str filter_func: Which filter function to use. Options are listed as keys in the INPUT_FILE_FILTERS dictionary :param bool use_stdin: send in the content of the filtered input file through stdin rather passing the name of the input file as the first command line argument :param func calc_all: Hook for the parallel decorator, please ignore this argument """ dirs = check_dirs(dirs) input_file = path.abspath(input_file) calc_all = pick_filter_func(filter_func, calc_all) dir_IDs = [] for replacers in replace_iter_gen(product_iters=product_iters, chain_iters=chain_iters, co_iters=co_iters, just_replace=just_replace): dir_ID = calc_all(replacers, dirs, input_file, programs, use_stdin=use_stdin, **kwargs) dir_IDs.append(dir_ID) return dir_IDs def execute_lock_par(lock, parallel, *args, **kwargs): """ Convenience function for running execute with a lock and/or in parallel """ execute_here = execute if parallel: execute_here = parallel_wrap(parallel)(execute_here) if lock: execute_here = lock_wrap(lock)(execute_here) return execute_here(*args, **kwargs) def common_start(chain_iters, just_replace): """ Returns modified `chain_iters` and `just_replace` such that the calculations will start at the first value of each variable in chain_iter """ chain_iters_out = chain_iters.copy() replacers = {} if len(chain_iters_out) > 0: for (key, elem) in chain_iters_out.items(): replacers[key] = elem.pop(0) else: elem.insert(0, replacers[key]) just_replace = just_replace.copy() just_replace.update(replacers) return chain_iters_out, just_replace class PoolApplyAsyncWrap(object): def __init__(self, pool): self.pool = pool def __call__(self, fun): def wrapped_f(*args, **kwargs): import copy for arg in args: print(arg) copy.deepcopy(arg) args = copy.deepcopy(args) kwargs = copy.deepcopy(kwargs) ret = self.pool.apply_async(fun, args, kwargs) return ret return wrapped_f @contextmanager def multi_stuff(parallel, kwargs): import multiprocessing import signal def initializer(): """Ignore CTRL+C in the worker process.""" signal.signal(signal.SIGINT, signal.SIG_IGN) number_of_cpus = multiprocessing.cpu_count() pool = multiprocessing.Pool(number_of_cpus, initializer=initializer) if parallel == 'Calc all': kwargs['calc_all'] = PoolApplyAsyncWrap(pool)(calc_all) elif parallel == 'auto_converge_var': if 'auto_converge_var' in kwargs: kwargs['auto_converge_var'] = PoolApplyAsyncWrap(pool)(kwargs['auto_converge_var']) else: kwargs['auto_converge_var'] = PoolApplyAsyncWrap(pool)(auto_converge_var) try: yield kwargs pool.close() pool.join() except KeyboardInterrupt: print("Caught KeyboardInterrupt, terminating workers") pool.terminate() pool.join() raise import collections def map_nested_dicts(dict_, func): if isinstance(dict_, collections.Mapping): ret = dict((k, map_nested_dicts(v, func)) for k, v in dict_.items()) else: ret = func(dict_) return ret def parallel_wrap(parallel=None): def decorate(fun): @wraps(fun) def call(*args, **kwargs): if parallel is None: converged_parameters = fun(*args, **kwargs) else: with multi_stuff(parallel, kwargs) as kwargs: converged_parameters = fun(*args, **kwargs) if converged_parameters: converged_parameters = list(map(lambda x: x.get(), converged_parameters)) # converged_parameters = map_nested_dicts(converged_parameters, lambda x: x.get()) # converged_parameters = multi_stuff(parallel, fun, args, kwargs) return converged_parameters return call return decorate def lock_wrap(dir_): def decorate(fun): @wraps(fun) def call(*args, **kwargs): import fcntl makedir(dir_) pid_file = path.join(dir_, 'lock.pid') with open(pid_file, 'w') as lock_fp: try: fcntl.lockf(lock_fp, fcntl.LOCK_EX | fcntl.LOCK_NB) except IOError: print('Another instance is running') print('Lock file ', pid_file) raise SystemExit try: ret = fun(*args, **kwargs) fcntl.lockf(lock_fp, fcntl.LOCK_UN) finally: fcntl.lockf(lock_fp, fcntl.LOCK_UN) return ret return call return decorate INTERVALS = ( ('weeks', 604800), # 60 * 60 * 24 * 7 ('days', 86400), # 60 * 60 * 24 ('hours', 3600), # 60 * 60 ('minutes', 60), ('seconds', 1), ) def display_time(seconds, granularity=2, intervals=INTERVALS): list_ = display_time_list(seconds, granularity=granularity, intervals=intervals) return ', '.join(list_) # result = [] # for name, count in intervals: # value = seconds // count # if value: # seconds -= value * count # if value == 1: # name = name.rstrip('s') # result.append("{0:.0f} {1}".format(value, name)) # return ', '.join(result[:granularity]) def display_time_list(seconds, granularity=2, intervals=INTERVALS): result = [] for name, count in intervals: value = seconds // count if value: seconds -= value * count if value == 1: name = name.rstrip('s') result.append("{0:.0f} {1}".format(value, name)) return result[:granularity] @contextmanager def print_time(file_=stdout): """ Contextmanager that prints how much time was spent in it""" import time start = time.time() yield end = time.time() print(display_time(end-start), file=file_) def rel_err_rel_var(O1, O2, x1, x2): """ Estimate of relative error `abs(x2/(x2-x1)*(O1-O2)/O2)` """ return abs(x2/(x2-x1)*(O1-O2)/O2) class ConvCrit(object): """ Contains information on how to check for convergence. :parameter func data_read: Function which will be executed in the directory in which the programs was run. It should return the observable in terms of which convergence is sought :parameter float eps: Desired precision :parameter func conv_funv: Function that calculates convergence criterion. It should take 4 arguments, `f(O1,O2,x1,x2)`, where `x1` and `x2` are the values of the numerical parameter at the current and previous calculation and `O1` and `O2` are the corresponding observable values """ def __init__(self, data_read, eps = 1.0e-3, conv_func = rel_err_rel_var, itermax=10, common_start=False): self.eps = eps self.conv_func = conv_func self.data_read = data_read self.itermax = itermax self.common_start = common_start def make_run_string(replacers): replacers = dict((is_it_tuple(key), elem) for key, elem in replacers.items()) return str(replacers) def float_also_array(varvalue): try: varvalue_f = float(varvalue) except TypeError: varvalue_f = varvalue[0] return varvalue_f def auto_converge_var(var_name, var, replacements, dirs, inp_file, programs, conv_crit): data_read = conv_crit.data_read prevdirID = getattr(var, 'dirID', None) yield_diff = 1.0 iteration = 1 if prevdirID is None: iteration = 0 for iteration, varvalue in enumerate(var, start=iteration): replacers = merge_dicts(replacements,{var_name:varvalue}) dirID = calc_all(replacers, dirs, inp_file, programs, print_finish=False) if not prevdirID is None: # print(prevdirID,varvalue_prev,varvalue,data_read(path.join(dirs.local_scratch_base, dirID)) with cwd(path.join(dirs.local_scratch_base, prevdirID)): O1 = data_read() with cwd(path.join(dirs.local_scratch_base, dirID)): O2 = data_read() yield_diff = conv_crit.conv_func(O1,O2, float_also_array(varvalue_prev), float_also_array(varvalue)) try: print('{: <10.10}\t {:.2f}\t {:.2e}\t {}\t {}'.format(var_name[1], varvalue, yield_diff, iteration, dirID)) except ValueError: print('{: <10.10}\t {}\t {:.2e}\t {}\t {}'.format(var_name[1], varvalue, yield_diff, iteration, dirID)) if (abs(yield_diff) < conv_crit.eps): break prevdirID = dirID varvalue_prev = varvalue return {'VarValue': varvalue, 'PrevVarValue': varvalue_prev, 'iteration': iteration+1} def auto_conv_sub(chain_iters,replacers, dirs, inp_file, programs, conv_crit, auto_converge_var): results={} for chain_iter in chain_iters: results[chain_iter] = auto_converge_var(chain_iter, chain_iters[chain_iter], replacers, dirs, inp_file, programs, conv_crit) return results def auto_conv(programs, inp_file, dirs, conv_crit, chain_iters, product_iters={}, co_iters={}, just_replace={}, auto_converge_var=auto_converge_var, auto_conv_sub=auto_conv_sub): """ Run programs until converged or chain_iters is exhausted. :param list programs: List of strings with names of programs. Should contain absolute paths. Could alternately contain functions :param str input_file: Input file :param runana.run.Dirs dirs: Base directory in which programs will be run :type dirs: str or runana.run.Dirs :param runana.run.ConvCrit conv_crit: Object specifying type of convergence :param dict chain_iters: Entries of the form {'Name of parameter':[*values to replace with*]} :param dict product_iters: Like `chain_iters`, but runs all combinations :param dict co_iters: Runs with several parameters changing simultanously :param bool use_stdin: send in the content of the filtered input file through stdin rather passing the name of the input file as the first command line argument """ # :param dict just_replace: Entries of the form {'Name of parameter':*value to replace with*} # :param str filter_func: Which filter function to use. Options are listed as keys in the INPUT_FILE_FILTERS dictionary dirs = check_dirs(dirs) inp_file = path.abspath(inp_file) results = {} for replacers in replace_iter_gen(product_iters=product_iters, co_iters=co_iters, just_replace=just_replace): run_string = make_run_string(replacers) results[run_string] = auto_conv_sub(chain_iters,replacers, dirs, inp_file, programs, conv_crit, auto_converge_var) return results def intercept_argument(args, kwargs, iarg, name): if len(args)>iarg: ret = args[iarg] else: ret = kwargs.get(name) return ret def reinsert_argument(args, kwargs, iarg, name, argument): if len(args)>iarg: args= args[:iarg] + (argument, ) + args[iarg+1:] else: kwargs[name] = argument return args, kwargs def inject_status(recursion_dict): def decorate(fun): @wraps(fun) def call(*args, **kwargs): chain_iters = intercept_argument(args, kwargs, 0, 'chain_iters') replacements = intercept_argument(args, kwargs, 1, 'replacements') run_string = make_run_string(replacements) this_converged = recursion_dict[run_string].get('This Converged', False) if not this_converged: replacers = recursion_dict[run_string].get('Replacers', {}) if replacers: chain_iters_new = {} for (key,var) in chain_iters.items(): var = var[var.index(replacers[key]):] chain_iters_new[key] = var replacements = merge_dicts(replacements, replacers) args, kwargs = reinsert_argument(args, kwargs, 0, 'chain_iters', chain_iters_new) args, kwargs = reinsert_argument(args, kwargs, 1, 'replacements', replacements) return fun(*args, **kwargs) else: return {} return call return decorate def static_vars(**kwargs): def decorate(func): for k in kwargs: setattr(func, k, kwargs[k]) return func return decorate def auto_conv_rerun(fun): """ Decorator for rerunning :func:`auto_conv`, until convergence is achieved in the first two calculations for each parameter. This is useful for cases where parameters are strongly correlated""" @wraps(fun) @static_vars(status={}) def call(*args, **kwargs): converged_parameters = fun(*args, **kwargs) everything_converged=True for run_string in converged_parameters: replacements={} prevvarvalues={} call.status[run_string]=call.status.get(run_string, {}) this_converged = call.status[run_string].get('This Converged', False) if not this_converged: this_converged = True for var_name in converged_parameters[run_string]: replacements[var_name]=converged_parameters[run_string][var_name]['VarValue'] if converged_parameters[run_string][var_name]['iteration']>2: this_converged = False everything_converged = False prevvarvalues[var_name]=converged_parameters[run_string][var_name]['PrevVarValue'] if this_converged: call.status[run_string]['Final replacements'] = replacements call.status[run_string]['This Converged'] = this_converged call.status[run_string]['Replacers'] = prevvarvalues call.status[run_string]['Run no'] = call.status[run_string].get('Run no', 0)+1 import pprint pprint.pprint(call.status) if not everything_converged: auto_conv_handle = inject_status(call.status)(auto_conv_sub) kwargs.update({'auto_conv_sub': auto_conv_handle}) converged_parameters=call(*args, **kwargs) else: converged_parameters=call.status return converged_parameters return call ```
{ "source": "jensstein/mockdock", "score": 2 }
#### File: src/mockdock/server.py ```python import json import logging import os import multiprocessing import socket import ssl import sys import typing from mockdock import dns CONFIG_PATH = os.getenv("CONFIG_PATH") CONFIG_DATA = os.getenv("CONFIG_DATA") TLS_CERTIFICATE = os.getenv("TLS_CERTIFICATE") TLS_CERTIFICATE_KEY = os.getenv("TLS_CERTIFICATE_KEY") # This variable is used to indicate if additional ports need to be opened # and listened to. EXTRA_PORTS = os.getenv("EXTRA_PORTS") def setup_logging() -> logging.Logger: logger = logging.getLogger() handler = logging.StreamHandler() formatter = logging.Formatter( '{"name": "%(name)s", "level": "%(levelname)s", "message": "%(message)s"}') handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger logger = setup_logging() class ParseRequestError(Exception): pass class HttpResponse(object): def __init__(self, data: bytes = bytes(), code: int = 404, content_type = "text/plain") -> None: # TODO: specify binary data in base64 self.data = data self.code = code self.content_type = content_type def code_to_status(self, code: int) -> str: if code == 200: return "OK" elif code == 404: return "Not Found" return "Error" def to_message(self) -> bytes: status = self.code_to_status(self.code) content_length = len(self.data) header = "HTTP/1.1 {} {}\nContent-Type: {}\nContent-Length: {}\n\n".format( self.code, status, self.content_type, content_length).encode("utf8") return header + self.data class Config(object): def __init__(self, data: typing.Optional[str] = None, config_path: typing.Optional[str] = None) -> None: if data is not None and config_path is not None: raise ValueError("cannot supply both data and config path") if config_path is not None: with open(config_path) as fp: self.data = json.load(fp) elif data is not None: self.data = json.loads(data) else: self.data = {} logger.debug("Using config {}".format(self.data)) def response_for_path(self, path: str) -> HttpResponse: if path in self.data: kwargs = {} if "data" in self.data[path]: kwargs["data"] = self.data[path]["data"].encode("utf8") if "code" in self.data[path]: kwargs["code"] = self.data[path]["code"] if "content-type" in self.data[path]: kwargs["content_type"] = self.data[path]["content-type"] return HttpResponse(**kwargs) return HttpResponse() class HttpRequest(object): def __init__(self, request_bytes: bytes) -> None: try: request = request_bytes.decode("utf8") self.method, self.path, self.headers = self.parse(request) except (UnicodeDecodeError, ValueError) as e: raise ParseRequestError(e) def parse(self, request: str) -> typing.Tuple[str, str, dict]: parts = request.split("\r\n") method, path, _ = parts[0].split(" ") headers = {k.strip(): v.strip() for k, v in [k.split(":", maxsplit=1) for k in [p for p in parts[1:] if p]]} return method, path, headers def __str__(self) -> str: return "HttpRequest({}, {}, {})".format(self.method, self.path, self.headers) class DnsResolverProcess(multiprocessing.Process): def __init__(self, redirect_ip: str = None, port: int = 53): multiprocessing.Process.__init__(self, target=self.start_socket, args=(redirect_ip, port)) def start_socket(self, redirect_ip: str = None, port: int = 53): s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.bind(("0.0.0.0", port)) ip = socket.gethostbyname(socket.getfqdn()) if redirect_ip is None \ else redirect_ip logger.info("Resolving dns to {}".format(ip)) while True: data, address = s.recvfrom(1024) packet = dns.build_packet(data, ip) logger.debug("dns question received from {}: {}. response: {}".format( address, data, packet)) s.sendto(packet, address) class ServerProcess(multiprocessing.Process): def __init__(self, port: int) -> None: multiprocessing.Process.__init__(self, target=self.start_socket, args=(port,)) self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.config = Config(CONFIG_DATA, CONFIG_PATH) def start_socket(self, port: int) -> None: self.socket.bind(("0.0.0.0", port)) self.socket.listen(1) while True: try: conn, address = self.socket.accept() while True: data = conn.recv(1024) logger.debug("conn {} data {} addr {}".format(conn, data, address)) if not data: break request = HttpRequest(data) path = request.headers["Host"] + request.path response = self.config.response_for_path(path) message = response.to_message() conn.send(message) except (ssl.SSLError, ConnectionResetError, BrokenPipeError, ParseRequestError) as e: logger.error("Caught error while handling connection: {}" .format(e)) class TlsServerProcess(ServerProcess): def __init__(self, ssl_certificate: str, ssl_key: str, port: int = 443)\ -> None: ServerProcess.__init__(self, port) context = ssl.SSLContext(ssl.PROTOCOL_TLS_SERVER) context.load_cert_chain(ssl_certificate, ssl_key) self.socket = context.wrap_socket(self.socket, server_side=True) def main(): dns_resolver = DnsResolverProcess() dns_resolver.start() server_process = ServerProcess(80) server_process.start() if TLS_CERTIFICATE is not None and TLS_CERTIFICATE_KEY is not None: tls_server_process = TlsServerProcess(TLS_CERTIFICATE, TLS_CERTIFICATE_KEY) tls_server_process.start() if EXTRA_PORTS is not None: ports = json.loads(EXTRA_PORTS) for port in ports: p = ServerProcess(port) p.start() if __name__ == "__main__": main() ``` #### File: mockdock/tests/integration_test.py ```python import json import logging import os import unittest import subprocess import tempfile import conu import mockdock class IntegrationTest(unittest.TestCase): def test_server(self): print("building image tls-test") conu.DockerImage.build(".", tag="tls-test", dockerfile="Dockerfile-tlstest") print("building image mockdock") conu.DockerImage.build(".", tag="mockdock", dockerfile="Dockerfile") domains = ["google.com", "domain.org"] # This dictionary specify the responses given for different queries. # All elements all optional. config = json.dumps({ "google.com/": { "data": '{"response": "OK"}\n', "code": 200, "content-type": "application/json" }, "domain.org:1010/path": { "data": "Okay response\n", "code": 200 } }) # Generate a certificate with subject alternative names for the # specified domains. cert_file, key_file = mockdock.generate_certificate(domains) image_name = "mockdock" image_tag = "latest" with conu.DockerBackend() as backend: try: server_image = backend.ImageClass(image_name, tag=image_tag) docker_options = mockdock.get_docker_options(cert_file.name, key_file.name) server_container = server_image.run_via_binary( volumes=[(cert_file.name, cert_file.name), (key_file.name, key_file.name)], additional_opts=["-e", "CONFIG_DATA={}".format(config), "-e", "EXTRA_PORTS=[1010]"] + docker_options) server_container.wait_for_port(80) server_container.wait_for_port(1010) container_ips = server_container.get_IPv4s() client_image = backend.ImageClass("tls-test") # Use the docker --dns argument to specify the server # container as dns resolver. docker_run = conu.DockerRunBuilder(["bash"], additional_opts=[ "-it", "-u", "root", "--dns", container_ips[0]]) client_container = client_image.run_via_binary(docker_run) # Install the generated certificate in the server container. # This method is debian-specific. mockdock.install_certificate_debian(cert_file.name, client_container) result1 = client_container.execute(["curl", "-vi", "google.com"]) result1 = b" ".join(r for r in result1) print("Testing {} in {}".format(b'{"response": "OK"}', result1)) self.assertEqual(b'{"response": "OK"}' in result1, True) result2 = client_container.execute(["curl", "-vi", "https://google.com"]) result2 = b" ".join(r for r in result2) print("Testing {} in {}".format(b'{"response": "OK"}', result2)) self.assertEqual(b'{"response": "OK"}' in result2, True) result3 = client_container.execute(["curl", "-vi", "domain.org:1010/path"]) result3 = b" ".join(r for r in result3) print("Testing {} in {}".format(b"Okay response", result3)) self.assertEqual(b"Okay response" in result3, True) result4 = client_container.execute(["curl", "-vi", "https://domain.org"]) result4 = b" ".join(r for r in result4) print("Testing {} in {}".format(b"Not Found", result4)) self.assertEqual(b"Not Found" in result4, True) finally: server_container.kill() server_container.delete() client_container.kill() client_container.delete() def test_install_certificate(self): print("building image tls-test") conu.DockerImage.build(".", tag="tls-test", dockerfile="Dockerfile-tlstest") with conu.DockerBackend() as backend: try: image = backend.ImageClass("tls-test") container = image.run_via_binary(conu.DockerRunBuilder(["bash"], additional_opts=["-it"])) cert_file, key_file = mockdock.generate_certificate(["google.com"]) mockdock.install_certificate_debian(cert_file.name, container) with container.mount() as fs: certificates_conf = fs.read_file("/etc/ca-certificates.conf") self.assertEqual(os.path.basename(cert_file.name) in certificates_conf, True) self.assertEqual(fs.file_is_present(os.path.join( "/usr/share/ca-certificates/", os.path.basename( cert_file.name))), True) finally: container.kill() container.delete() ``` #### File: mockdock/tests/test_dns.py ```python import unittest from mockdock import dns class DNSTest(unittest.TestCase): def test_build_packet(self): data = b"^4\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x06google\x03com\x00\x00\x01\x00\x01" packet = dns.build_packet(data, "192.168.0.1") expeced_result = b"^4\x81\x80\x00\x01\x00\x01\x00\x00\x00\x00\x06google\x03com\x00\x00\x01\x00\x01\xc0\x0c\x00\x01\x00\x01\x00\x00\x00<\x00\x04\xc0\xa8\x00\x01" self.assertEqual(packet, expeced_result) ```
{ "source": "jensstutte/relman-auto-nag", "score": 2 }
#### File: auto_nag/scripts/close_intermittents.py ```python from auto_nag.bzcleaner import BzCleaner class Intermittents(BzCleaner): def __init__(self): super(Intermittents, self).__init__() def description(self): return "Intermittent test failure bugs unchanged in 21 days" def get_bz_params(self, date): params = { "email1": "<EMAIL>", "emailreporter1": "1", "emailtype1": "exact", "n1": "1", "f1": "longdescs.count", "o1": "changedafter", "v1": "-3w", "f2": "blocked", "o2": "isempty", "f3": "flagtypes.name", "o3": "notequals", "v3": "needinfo?", "f4": "OP", "n4": "1", "f5": "bug_status", "o5": "changedto", "v5": "REOPENED", "f6": "bug_status", "o6": "changedafter", "v6": "-7d", "f7": "CP", "f8": "bug_severity", "o8": "notequals", "v8": "critical", "f9": "component", "o9": "nowordssubstr", "v9": "new tab page, messaging system", "keywords_type": "nowords", "keywords": "leave-open", "priority": "P5", "resolution": "---", "status_whiteboard_type": "notregexp", "status_whiteboard": "(leave open|leave-open|leaveopen|test disabled|test-disabled|testdisabled)", } return params def get_autofix_change(self): return { "status": "RESOLVED", "resolution": "INCOMPLETE", "comment": { "body": f"https://wiki.mozilla.org/Bug_Triage#Intermittent_Test_Failure_Cleanup\n{self.get_documentation()}" }, } if __name__ == "__main__": Intermittents().run() ```
{ "source": "JenSte/aiotus", "score": 3 }
#### File: aiotus/aiotus/retry.py ```python from __future__ import annotations import asyncio import dataclasses from types import TracebackType from typing import ( AsyncContextManager, BinaryIO, Callable, Iterable, Mapping, Optional, Type, TypeVar, Union, ) import aiohttp import tenacity import yarl from . import common, core, creation from .log import logger T = TypeVar("T") class asyncnullcontext(AsyncContextManager[T]): # noqa: N801 """Asynchronous version of 'contextlib.nullcontext'.""" def __init__(self, aenter_result: T) -> None: self._aenter_result = aenter_result async def __aenter__(self) -> T: return self._aenter_result async def __aexit__( self, exc_type: Optional[Type[BaseException]], exc_value: Optional[BaseException], traceback: Optional[TracebackType], ) -> None: return None @dataclasses.dataclass class RetryConfiguration: """Class to hold settings for the functions of this module.""" retry_attempts: int = 10 """ Number of retry attempts to do when the communication fails. """ max_retry_period_seconds: float = 60.0 """ Maximum time between retries, in seconds. Exponential backoff is used in case of communication errors, but the time between retries is caped by this value. """ ssl: Optional[common.SSLArgument] = None """ 'ssl' argument passed on to the aiohttp calls. This can be None, False, or an instance of ssl.SSLContext, see the `aiohttp documentation <https://docs.aiohttp.org/en/stable/client_advanced.html#ssl-control-for-tcp-sockets>`_ for the different meanings. """ # noqa: E501 def _make_log_before_function(s: str) -> Callable[[tenacity.RetryCallState], None]: """Create a function used to log before a retry attempt.""" def log(retry_state: tenacity.RetryCallState) -> None: if retry_state.attempt_number > 1: logger.info( f"Trying {s} again, attempt number {retry_state.attempt_number}..." ) return log def _make_log_before_sleep_function( s: str, ) -> Callable[[tenacity.RetryCallState], None]: """Create a function used when a call made through tenacity fails.""" def log(retry_state: tenacity.RetryCallState) -> None: if (retry_state.next_action is not None) and (retry_state.outcome is not None): duration = retry_state.next_action.sleep if retry_state.outcome.failed: value = retry_state.outcome.exception() else: value = retry_state.outcome.result() logger.warning( f"{s.capitalize()} failed, " f"retrying in {duration:.0f} second(s): {value}" ) return log def _make_retrying( s: str, config: RetryConfiguration ) -> tenacity.AsyncRetrying: # type: ignore """Create a tenacity retry object.""" return tenacity.AsyncRetrying( # type: ignore retry=tenacity.retry_if_exception_type(aiohttp.ClientError), # type: ignore stop=tenacity.stop_after_attempt(config.retry_attempts), # type: ignore wait=tenacity.wait_exponential( # type: ignore max=config.max_retry_period_seconds ), before=_make_log_before_function(s), before_sleep=_make_log_before_sleep_function(s), ) async def upload( endpoint: Union[str, yarl.URL], file: BinaryIO, metadata: Optional[common.Metadata] = None, client_session: Optional[aiohttp.ClientSession] = None, config: RetryConfiguration = RetryConfiguration(), headers: Optional[Mapping[str, str]] = None, chunksize: int = 4 * 1024 * 1024, ) -> Optional[yarl.URL]: """Upload a file to a tus server. This function creates an upload on the server and then uploads the data to that location. In case of a communication error, this function retries the upload. :param endpoint: The creation endpoint of the server. :param file: The file to upload. :param metadata: Additional metadata for the upload. :param client_session: An aiohttp ClientSession to use. :param config: Settings to customize the retry behaviour. :param headers: Optional headers used in the request. :param chunksize: The size of individual chunks to upload at a time. :return: The location where the file was uploaded to (if the upload succeeded). .. # noqa: DAR401 asyncio.CancelledError """ url = yarl.URL(endpoint) if metadata is None: metadata = {} retrying_create = _make_retrying("upload creation", config) retrying_upload_file = _make_retrying("upload", config) try: ctx: Union[aiohttp.ClientSession, AsyncContextManager[aiohttp.ClientSession]] if client_session is None: ctx = aiohttp.ClientSession() else: ctx = asyncnullcontext(client_session) async with ctx as session: async for attempt in retrying_create: with attempt: location = await creation.create( session, url, file, metadata, ssl=config.ssl, headers=headers, ) if not location.is_absolute(): location = url / location.path async for attempt in retrying_upload_file: with attempt: await core.upload_buffer( session, location, file, ssl=config.ssl, chunksize=chunksize, headers=headers, ) return location except asyncio.CancelledError: # pragma: no cover raise except tenacity.RetryError as e: logger.error( f"Unable to upload file, even after retrying: {e.last_attempt.exception()}" ) except Exception as e: logger.error(f"Unable to upload file: {e}") return None async def metadata( endpoint: Union[str, yarl.URL], client_session: Optional[aiohttp.ClientSession] = None, config: RetryConfiguration = RetryConfiguration(), headers: Optional[Mapping[str, str]] = None, ) -> Optional[common.Metadata]: """Read back the metadata of an upload. See :data:`aiotus.Metadata` for details on how metadata is handled in the tus protocol. In case of a communication error, this function retries. :param endpoint: The location of the upload. :param client_session: An aiohttp ClientSession to use. :param config: Settings to customize the retry behaviour. :param headers: Optional headers used in the request. :return: The metadata associated with the upload. .. # noqa: DAR401 asyncio.CancelledError """ if isinstance(endpoint, str): url = yarl.URL(endpoint) else: url = endpoint retrying_metadata = _make_retrying("query metadata", config) try: ctx: Union[aiohttp.ClientSession, AsyncContextManager[aiohttp.ClientSession]] if client_session is None: ctx = aiohttp.ClientSession() else: ctx = asyncnullcontext(client_session) async with ctx as session: md: common.Metadata async for attempt in retrying_metadata: with attempt: return await core.metadata( session, url, ssl=config.ssl, headers=headers ) except asyncio.CancelledError: # pragma: no cover raise except tenacity.RetryError as e: logger.error( f"Unable to get metadata, even after retrying: {e.last_attempt.exception()}" ) return None async def _upload_partial( semaphore: asyncio.Semaphore, endpoint: Union[str, yarl.URL], file: BinaryIO, client_session: Optional[aiohttp.ClientSession], config: RetryConfiguration, headers: Optional[Mapping[str, str]], chunksize: int, ) -> str: """Helper function for "upload_multiple() to upload a single part.""" tus_headers = dict(headers or {}) tus_headers["Upload-Concat"] = "partial" async with semaphore: url = await upload( endpoint, file, None, client_session, config, tus_headers, chunksize ) if url is None: raise RuntimeError("Unable to upload part.") return url.path async def upload_multiple( endpoint: Union[str, yarl.URL], files: Iterable[BinaryIO], metadata: Optional[common.Metadata] = None, client_session: Optional[aiohttp.ClientSession] = None, config: RetryConfiguration = RetryConfiguration(), headers: Optional[Mapping[str, str]] = None, chunksize: int = 4 * 1024 * 1024, parallel_uploads: int = 3, ) -> Optional[yarl.URL]: """Upload multiple files and then use the "concatenation" protocol extension to combine the parts on the server-side. :param endpoint: The creation endpoint of the server. :param files: The files to upload. :param metadata: Additional metadata for the final upload. :param client_session: An aiohttp ClientSession to use. :param config: Settings to customize the retry behaviour. :param headers: Optional headers used in the request. :param chunksize: The size of individual chunks to upload at a time. :param parallel_uploads: The number of parallel uploads to do concurrently. :return: The location of the final (concatenated) file on the server. :raises RuntimeError: If the server does not support the "concatenation" extension. .. # noqa: DAR401 asyncio.CancelledError """ url = yarl.URL(endpoint) if metadata is None: metadata = {} retrying_config = _make_retrying("query configuration", config) retrying_create = _make_retrying("upload creation", config) try: ctx: Union[aiohttp.ClientSession, AsyncContextManager[aiohttp.ClientSession]] if client_session is None: ctx = aiohttp.ClientSession() else: ctx = asyncnullcontext(client_session) async with ctx as session: # # Check if the server supports the "concatenation" extension. # async for attempt in retrying_config: with attempt: server_config = await core.configuration( session, url, ssl=config.ssl, headers=headers ) if "concatenation" not in server_config.protocol_extensions: raise RuntimeError( 'Server does not support the "concatenation" extension.' ) # # Upload the individual parts. # # Used to limit the number of coroutines that perform uploads in parallel. semaphore = asyncio.Semaphore(parallel_uploads) coros = [ _upload_partial( semaphore, endpoint, f, session, config, headers, chunksize ) for f in files ] tasks = [asyncio.create_task(c) for c in coros] try: paths = await asyncio.gather(*tasks) except asyncio.CancelledError: # pragma: no cover raise except Exception as e: logger.info("Cancelling other uploads...") for t in tasks: if not t.done(): t.cancel() raise RuntimeError(f"Upload of a part failed: {e}") concat_header = "final;" + " ".join(paths) # # Do the final concatenation. # final_headers = dict(headers or {}) final_headers.update({"Upload-Concat": concat_header}) async for attempt in retrying_create: with attempt: return await creation.create( session, url, None, metadata, ssl=config.ssl, headers=final_headers, ) except asyncio.CancelledError: # pragma: no cover raise except tenacity.RetryError as e: logger.error( f"Unable to upload files, even after retrying: {e.last_attempt.exception()}" ) except Exception as e: logger.error(f"Unable to upload files: {e}") return None ```
{ "source": "JensTimmerman/django-jquery", "score": 2 }
#### File: django-jquery/jquery/context_processors.py ```python from . import utils def jquery(context): return {'jquery_path': utils.jquery_path} ```
{ "source": "JensTimmerman/django-libs", "score": 2 }
#### File: django-libs/django_libs/models.py ```python from django.core.validators import RegexValidator from django.db.models import CharField try: from south.modelsinspector import add_introspection_rules except ImportError: pass else: add_introspection_rules([], [r"^django_libs\.models\.ColorField"]) from .widgets import ColorPickerWidget class ColorField(CharField): """Custom color field to display a color picker.""" def __init__(self, *args, **kwargs): kwargs['max_length'] = 6 super(ColorField, self).__init__(*args, **kwargs) self.validators.append(RegexValidator( regex='^([A-Fa-f0-9]{6}|[A-Fa-f0-9]{3})$', message='Only RGB color model inputs allowed, like FF00CC', code='nomatch')) def formfield(self, **kwargs): kwargs['widget'] = ColorPickerWidget return super(ColorField, self).formfield(**kwargs) ```
{ "source": "JensTimmerman/django-tex", "score": 2 }
#### File: django-tex/tests/tests.py ```python import datetime from decimal import Decimal from django.test import TestCase from django.test.utils import override_settings from django.core.exceptions import ValidationError from django.http import HttpResponse from django.template import engines from django_tex.core import ( run_tex, compile_template_to_pdf, render_template_with_context, ) from django_tex.exceptions import TexError from django_tex.shortcuts import render_to_pdf from .models import TemplateFile class RunningTex(TestCase): """ Tests calling latex compiler """ def test_run_tex(self): """Call different LaTex interpreters with very simple template""" source = "\ \\documentclass{article}\n\ \\begin{document}\n\ This is a test!\n\ \\end{document}" interpreters = ["pdflatex", "latexmk -pdf", "lualatex"] for name in interpreters: with self.subTest(name=name): with self.settings(LATEX_INTERPRETER=name): pdf = run_tex(source) self.assertIsNotNone(pdf) @override_settings(LATEX_INTERPRETER="does_not_exist") def test_wrong_latex_interpreter(self): """Using an unknown interpreter raises an Exception""" source = "\ \\documentclass{article}\n\ \\begin{document}\n\ This is a test!\n\ \\end{document}" with self.assertRaises(Exception): run_tex(source) # should raise class Exceptions(TestCase): """ Tests custom exceptions """ def test_exception_emergency_stop(self): source = "\ \\documentclass{article}\n\ \\begin{document}\n\ This is a test!\n" with self.assertRaises(TexError) as cm: run_tex(source) self.assertRegex(cm.exception.log, r"^This is Lua") self.assertRegex(cm.exception.message, r"^! Emergency stop") self.assertRegex( cm.exception.message, r"(End of file on the terminal\!$)|(job aborted, no legal \\end found)", ) # First alternative applies # if tex source is given to # pdflatex via stdin. # Second, if tex source is # given as filename @override_settings(LATEX_INTERPRETER="pdflatex") def test_pdflatex_exceptions(self): source = "\ \\documentclass{article}\n\ \\begin{document}\n\ This is a test!\n" with self.assertRaises(TexError) as cm: run_tex(source) self.assertRegex(cm.exception.log, r"^This is pdf") self.assertRegex(cm.exception.message, r"^! Emergency stop") self.assertRegex( cm.exception.message, r"(End of file on the terminal\!$)|(job aborted, no legal \\end found)", ) # First alternative applies # if tex source is given to # pdflatex via stdin. # Second, if tex source is # given as filename def test_exception_unknown_command(self): source = "\ \\documentclass{article}\n\ \\begin{document}\n\ \\unknown{command}\n\ \\end{document}\n" with self.assertRaises(TexError) as cm: run_tex(source) self.assertRegex(cm.exception.log, r"^This is Lua") self.assertRegex(cm.exception.message, r"^! Undefined control sequence") self.assertRegex(cm.exception.message, r"l\.3") def test_template_debug(self): source = ( "\\documentclass{article}\n" "\\begin{document}\n" "\\unknown{command}\n" "\\end{document}\n" ) with self.assertRaises(TexError) as cm: run_tex(source) template_debug = cm.exception.template_debug self.assertEqual(template_debug["during"], "\\unknown{command}") self.assertEqual(template_debug["line"], 3) def test_template_error_context(self): source = ( "\\documentclass{article}\n" "\n" "\n" "\n" "\n" "\\begin{document}\n" "\\unknown{command}\n" "\n" "\n" "\\end{document}\n" ) with self.assertRaises(TexError) as cm: run_tex(source) message = cm.exception.message expected_context = ( " 2 \n" " 3 \n" " 4 \n" " 5 \n" " 6 \\begin{document}\n" " 7 \\unknown{command}\n" " 8 \n" " 9 \n" "10 \\end{document}" ) self.assertIn(expected_context, message) class RenderingTemplates(TestCase): """ Tests rendering a template file with context to a string TODO: Add a test for custom template file locations. """ def test_render_template(self): template_name = "tests/test.tex" context = { "test": "a simple test", "number": Decimal("1000.10"), "date": datetime.date(2017, 10, 25), "names": ["Arjen", "Robert", "Mats"], } output = render_template_with_context(template_name, context) self.assertIn("\\section{a simple test}", output) self.assertIn("This is a number: 1000,10.", output) self.assertIn("And this is a date: 25.10.2017.", output) self.assertIn("\\item Arjen", output) def test_render_template_from_custom_directory(self): template_name = "custom_directory_test.tex" context = {"foo": "bar"} output = render_template_with_context(template_name, context) self.assertIn("bar", output) class CompilingTemplates(TestCase): """ Tests compiling a template file with a context to a pdf file """ def test_compile_template_to_pdf(self): """test compile_template_to_pdf - accepts template name and context - context may contain unicode characters - produces pdf file """ template_name = "tests/test.tex" context = { "test": "a simple test", "number": Decimal("1000.10"), "date": datetime.date(2017, 10, 25), "names": ["Arjen", "Robert", "Mats", "รครผรถรŸรฉรจรดโ™žโ…ง"], } pdf = compile_template_to_pdf(template_name, context) self.assertIsNotNone(pdf) @override_settings(LATEX_INTERPRETER="pdflatex") def test_compile_template_with_graphics_pdflatex(self): template_name = "tests/test_graphics.tex" context = {} pdf = compile_template_to_pdf(template_name, context) self.assertIsNotNone(pdf) class TemplateLanguage(TestCase): """ Tests features such as whitespace control and filters """ def render_template(self, template_string, context={}, using="tex"): engine = engines[using] template = engine.from_string(template_string) return template.render(context) def test_whitespace_control(self): context = {"foo": "bar"} template_string = "\\section{ {{- foo -}} }" output = self.render_template(template_string, context) self.assertEqual(output, "\\section{bar}") def test_localization(self): template_string = "{{ foo|localize }}" parameters = [ ("en", Decimal("1000.10"), "1000.10"), ("de-de", Decimal("1000.10"), "1000,10"), ("de-de", datetime.date(2017, 10, 25), "25.10.2017"), ] for lang, value, expected in parameters: with self.subTest(lang=lang, value=value): with self.settings(LANGUAGE_CODE=lang): output = self.render_template(template_string, {"foo": value}) self.assertEqual(output, expected) @override_settings(LANGUAGE_CODE="de-de") def test_format_long_date(self): context = {"foo": datetime.date(2017, 10, 25)} template_string = "{{ foo | date('d. F Y') }}" # template_string="{{ '{:%d. %B %Y}'.format(foo) }}" output = self.render_template(template_string, context) self.assertEqual(output, "25. Oktober 2017") def test_rendering_unicode(self): context = {"foo": "รครผรŸรฉรด"} template_string = "{{ foo }}" output = self.render_template(template_string, context) self.assertEqual(output, "รครผรŸรฉรด") def test_escape(self): template_string = "{{ value | latex_escape }}" parameters = [ ("&", "\\&"), ("%", "\\%"), ("$", "\\$"), ("#", "\\#"), ("_", "\\_"), ("{", "\\{"), ("}", "\\}"), ("~", "\\textasciitilde{}"), ("^", "\\textasciicircum{}"), ("\\", "\\textbackslash{}"), ("\\\\", "\\textbackslash{}\\textbackslash{}"), ("foo", "foo"), ] for value, expected in parameters: with self.subTest(value): output = self.render_template(template_string, {"value": value}) self.assertEqual(output, expected) def test_linebreaks(self): context = { "brecht": "Ich sitze am StraรŸenhang." + "\nDer Fahrer wechselt das Rad." } template_string = "{{ brecht | linebreaks }}" output = self.render_template(template_string, context) self.assertEqual( output, r"Ich sitze am StraรŸenhang.\\" + "\nDer Fahrer wechselt das Rad." ) # Render with default django renderer output = self.render_template(template_string, context, using="django") self.assertHTMLEqual( output, "<p>Ich sitze am StraรŸenhang.<br>" + "Der Fahrer wechselt das Rad.</p>", ) @override_settings( TEMPLATES=[ { "NAME": "tex", "BACKEND": "django_tex.engine.TeXEngine", "OPTIONS": {"environment": "tests.environment.test_environment"}, } ] ) def test_custom_filters(self): context = { "duration": datetime.timedelta(minutes=90), } template_string = "{{ duration | hhmm_format }}" output = self.render_template(template_string, context) self.assertEqual("1:30", output) @override_settings(LATEX_GRAPHICSPATH=["c:\\foo\\bar", "c:\\bar baz\\foo"]) def test_graphicspath(self): template_string = "{% graphicspath %}" with override_settings(LATEX_INTERPRETER="pdflatex"): output = self.render_template(template_string) self.assertEqual( output, '\\graphicspath{ {c:/foo/bar/} {"c:/bar baz/foo/"} }' ) with override_settings(LATEX_INTERPRETER="lualatex"): output = self.render_template(template_string) self.assertEqual( output, "\\graphicspath{ {c:/foo/bar/} {c:/bar baz/foo/} }" ) class Models(TestCase): """ TeXTemplateFile contains the relative path to a tex template (e.g. django_tex/test.tex) and validates if this template can be loaded.abs Since TeXTemplateFile is an abstract base class, it is used here in a subclassed version 'TemplateFile' """ def test_validation(self): TemplateFile(title="valid", name="tests/test.tex").full_clean() with self.assertRaises(ValidationError): TemplateFile(title="invalid", name="template/doesnt.exist").full_clean() class Views(TestCase): def test_render_to_pdf(self): request = None # request is only needed to make the signature of render_to_pdf similar to the signature of django's render function template_name = "tests/test.tex" context = { "test": "a simple test", "number": Decimal("1000.10"), "date": datetime.date(2017, 10, 25), "names": ["Arjen", "Robert", "Mats"], } response = render_to_pdf(request, template_name, context, filename="test.pdf") self.assertIsInstance(response, HttpResponse) self.assertEqual(response["Content-Type"], "application/pdf") self.assertEqual(response["Content-Disposition"], 'filename="test.pdf"') ```
{ "source": "JensTimmerman/thefuck", "score": 3 }
#### File: tests/rules/test_mkdir_p.py ```python from thefuck.main import Command from thefuck.rules.mkdir_p import match, get_new_command def test_match(): assert match(Command('mkdir foo/bar/baz', '', 'mkdir: foo/bar: No such file or directory'), None) assert not match(Command('mkdir foo/bar/baz', '', ''), None) assert not match(Command('mkdir foo/bar/baz', '', 'foo bar baz'), None) assert not match(Command('', '', ''), None) def test_get_new_command(): assert get_new_command(Command('mkdir foo/bar/baz', '', ''), None) == 'mkdir -p foo/bar/baz' ``` #### File: thefuck/rules/rm_dir.py ```python import re def match(command, settings): return ('rm' in command.script and 'is a directory' in command.stderr) def get_new_command(command, settings): return re.sub('^rm (.*)', 'rm -rf \\1', command.script) ```
{ "source": "JensTimmerman/whois", "score": 3 }
#### File: whois/test/test_query.py ```python from __future__ import unicode_literals from __future__ import print_function from __future__ import division from __future__ import absolute_import from builtins import * import unittest from whois import whois class TestQuery(unittest.TestCase): def test_simple_ascii_domain(self): domain = 'google.com' whois(domain) def test_simple_unicode_domain(self): domain = 'ะฝะฐั€ะพัั†ะธ.com' whois(domain) def test_unicode_domain_and_tld(self): domain = 'ั€ะพััะธั.ั€ั„' whois(domain) def test_ipv4(self): """ Verify ipv4 addresses. """ domain = '172.16.58.3' whois_results = whois(domain) if isinstance(whois_results['domain_name'], list): domain_names = [_.lower() for _ in whois_results['domain_name']] else: domain_names = [whois_results['domain_name'].lower()] self.assertIn('1e100.net', domain_names) self.assertIn('ns1.google.com', [_.lower() for _ in whois_results['name_servers']]) def test_ipv6(self): """ Verify ipv6 addresses. """ domain = 'fc00:e968:6179::de52:7100' whois_results = whois(domain) if isinstance(whois_results['domain_name'], list): domain_names = [_.lower() for _ in whois_results['domain_name']] else: domain_names = [whois_results['domain_name'].lower()] self.assertIn('1e100.net', domain_names) self.assertIn('ns1.google.com', [_.lower() for _ in whois_results['name_servers']]) ```
{ "source": "JensUweUlrich/ganon", "score": 2 }
#### File: JensUweUlrich/ganon/setup.py ```python import io import os import re from setuptools import setup def read(filename): filename = os.path.join(os.path.dirname(__file__), filename) text_type = type(u"") with io.open(filename, mode="r", encoding='utf-8') as fd: return re.sub(text_type(r':[a-z]+:`~?(.*?)`'), text_type(r'``\1``'), fd.read()) setup( name="ganon", version="1.1.2", url="https://www.github.com/pirovc/ganon", license='MIT', author="<NAME>", description="ganon is a k-mer based read classification tool which uses Interleaved Bloom Filters in conjunction with a taxonomic clustering and a k-mer counting-filtering scheme.", long_description=read("README.md"), package_dir={'': 'src'}, packages=["ganon"], entry_points={'console_scripts': ['ganon=ganon.ganon:main_cli']}, scripts=['scripts/ganon-get-seq-info.sh'], classifiers=[ 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', ], ) ```
{ "source": "JensUweUlrich/osprey", "score": 2 }
#### File: osprey/python_nets/sbonito_d2s_eval.py ```python from ont_fast5_api.fast5_interface import get_fast5_file import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import sys from datetime import datetime import os import h5py import deepnano2 def med_mad(x, factor=1.4826): """ Calculate signal median and median absolute deviation """ med = np.median(x) mad = np.median(np.absolute(x - med)) * factor return med, mad def rescale_signal(signal): signal = signal.astype(np.float32) med, mad = med_mad(signal) signal -= med signal /= mad return np.clip(signal, -2.5, 2.5) from modelsbd2s import Model from bonito import model as bmodel import bonito import toml # In[5]: os.listdir() # In[6]: cfgx = toml.load(bonito.__path__[0] + "/models/configs/dna_r9.4.1.toml") cfgx common = dict(activation="swish", dropout=0.0, dilation=[1]) block = [ #C1 dict(**common, repeat = 1, filters = 80, kernel = [9], stride = [3], residual = False, separable = False,), dict(**common, repeat = 5, filters = 80, kernel = [11], stride = [1], residual = True, separable = True, type="BlockX", pool=3, inner_size=160), dict(**common, repeat = 5, filters = 80, kernel = [11], stride = [1], residual = True, separable = True, type="BlockX", pool=3, inner_size=160), dict(**common, repeat = 5, filters = 80, kernel = [11], stride = [1], residual = True, separable = True, type="BlockX", pool=3, inner_size=160), dict(**common, repeat = 5, filters = 80, kernel = [11], stride = [1], residual = True, separable = True, type="BlockX", pool=3, inner_size=160), dict(**common, repeat = 5, filters = 80, kernel = [11], stride = [1], residual = True, separable = True, type="BlockX", pool=3, inner_size=160), #C2 dict(**common, repeat = 1, filters = 80, kernel = [11], stride = [1], residual = False, separable = True,), #C3 dict(**common, repeat = 1, filters = 40, kernel = [7], stride = [1], residual = False, separable = False,) ] cfgx["encoder"]["activation"] = "swish" cfgx["block"] = block cfgx["input"]["features"] = 1 cfgx bmodel.activations["relu6"] = nn.modules.activation.ReLU6 # In[15]: bmodelx = Model(cfgx) # In[16]: C = 5 ls_weights = torch.cat([torch.tensor([0.4]), (0.1 / (C - 1)) * torch.ones(C - 1)]).cuda() class Net(nn.Module): def __init__(self, encoder, oks=40): super(Net, self).__init__() self.e = encoder self.out = torch.nn.Linear(oks, 5) def run_m(self, m): def run(*x): return m(*x) return run def forward(self, x): with torch.cuda.amp.autocast(enabled=True): #print("start size", x.shape) x = x.permute((0,2,1)) for i, l in enumerate(self.e.encoder): x = l(x) #x = self.e(x) #print("after c", x.shape) x = x.permute((0,2,1)) out = self.out(x) out = torch.nn.functional.log_softmax(out, dim=-1) label_smoothing_loss = -((out * ls_weights.to(out.device)).mean()) return out torch.set_grad_enabled(True) bmodelx = Model(cfgx) model = Net(bmodelx.encoder) model.cuda() torch.set_grad_enabled(False) model.load_state_dict(torch.load(sys.argv[1])) #step = 500 #pad = 10 step = 400 pad = 100 model.eval() model.cuda() torch.set_grad_enabled(False) def decode(signal_piece): alph = "NACGT" base_state = torch.zeros((1, 1, 5)) decoder_state = torch.zeros((1, 1, 32)) decoder_state, _ = model.b.gru(base_state, decoder_state) s_enc = signal_piece.unsqueeze(0).cpu() out = [] for i in range(s_enc.shape[1]): #print(decoder_state[0,0].shape, s_enc[0,i].shape) base = model.j(s_enc[:1,i:i+1], decoder_state[:1,:1])[0][0][0].detach().numpy().argmax() if base != 0: base_state[:,:,:] = 0 base_state[0,0,base] = 1 decoder_state, _ = model.b.gru(base_state, decoder_state) out.append(alph[base]) return "".join(out) #dir_name = "../../training-data-nobackup/klebsiela/test_data/" #dir_name = "../../training-data-nobackup/klebsiela/sample_no_restart/" dir_name = sys.argv[2] test_files = [os.path.join(dir_name, fn) for fn in os.listdir(dir_name)] outg = open("%s-g.fasta" % sys.argv[3], "w") outb5 = open("%s-b5.fasta" % sys.argv[3], "w") model.cuda() STEP = 1500 PAD = 100 for find, fn in enumerate(test_files): start = datetime.now() with h5py.File(fn, "r") as f: key = list(f["Raw/Reads"].keys())[0] signal_orig = np.array(f["Raw/Reads"][key]["Signal"][()], dtype=np.float32) signal = rescale_signal(signal_orig) print("go", find, len(signal_orig), len(signal), signal.dtype, datetime.now() - start) outputs = [] batch = [] for i in range(0, len(signal), 3*step): if i + 3*step + 6*pad > len(signal): break part = np.array(signal[i:i+3*step+6*pad]) part = np.vstack([part]).T batch.append(part) print("b ready", datetime.now() - start) for i in range(0, len(batch), 100): net_result = F.softmax(model(torch.Tensor(np.stack(batch[i:i+100])).cuda()).detach().cpu(), dim=-1) #net_result = model_timed(model, torch.Tensor(batch).cpu()).detach().cpu().numpy() print("pred read", datetime.now() - start) for row in net_result: # decoded = decoder.decode(row.numpy()) # outputs.append(decoded[pad:-pad]) outputs.append(row[pad:-pad].numpy()) # seq = [] # last = 47 # for o in outputs[:5]: # seq.append(o.replace("N", "")) # seq = "".join(seq) seqg = deepnano2.beam_search_py(np.vstack(outputs), 1, 0.1) seqb5 = deepnano2.beam_search_py(np.vstack(outputs), 5, 0.1) # seqb10 = deepnano2.beam_search_py(np.vstack(outputs), 10, 0.001) # seqb20 = deepnano2.beam_search_py(np.vstack(outputs), 20, 0.001) print("seq ready", datetime.now() - start, len(seqg), len(seqb5)) print(">%d" % find, file=outg) print(seqg, file=outg) outg.flush() print(">%d" % find, file=outb5) print(seqb5, file=outb5) outb5.flush() # print(">%d" % find, file=outb10) # print(seqb10, file=outb10) # outb10.flush() # print(">%d" % find, file=outb20) # print(seqb20, file=outb20) # outb20.flush() print("done", find, fn, len(seqb5), datetime.now() - start) ```
{ "source": "JensUweUlrich/seqan", "score": 3 }
#### File: pair_align/tests/run_tests.py ```python import logging import os.path import sys # Automagically add util/py_lib to PYTHONPATH environment variable. path = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..', '..', 'util', 'py_lib')) sys.path.insert(0, path) import seqan.app_tests as app_tests def main(source_base, binary_base): """Main entry point of the script.""" print 'Executing test for pair_align' print '=============================' print ph = app_tests.TestPathHelper( source_base, binary_base, 'apps/pair_align/tests') # tests dir # ============================================================ # Auto-detect the binary path. # ============================================================ path_to_program = app_tests.autolocateBinary( binary_base, 'apps/pair_align', 'pair_align') # ============================================================ # Built TestConf list. # ============================================================ # Build list with TestConf objects, analoguely to how the output # was generated in generate_outputs.sh. conf_list = [] # ============================================================ # Run on Proteins (Balibase). # ============================================================ # Run with defaults for all non-mandatory options. for fname in ['1aab', '1ad2', '2trx']: conf = app_tests.TestConf( program=path_to_program, redir_stdout=ph.outFile('%s.stdout' % fname), args=['-s', ph.inFile('%s.fa' % fname), '-o', ph.outFile('%s.fa' % fname)], to_diff=[(ph.inFile('%s_out.fa' % fname), ph.outFile('%s.fa' % fname)), (ph.inFile('%s.stdout' % fname), ph.outFile('%s.stdout' % fname))]) conf_list.append(conf) # Run with explicit alphabet. for fname in ['1aab', '1ad2', '2trx']: conf = app_tests.TestConf( program=path_to_program, args=['-a', 'protein', '-s', ph.inFile('%s.fa' % fname), '-o', ph.outFile('%s.protein.fa' % fname)], redir_stdout=ph.outFile('%s.protein.stdout' % fname), to_diff=[(ph.inFile('%s.protein_out.fa' % fname), ph.outFile('%s.protein.fa' % fname)), (ph.inFile('%s.protein.stdout' % fname), ph.outFile('%s.protein.stdout' % fname))]) conf_list.append(conf) # Run with different alignment methods. for fname in ['1aab', '1ad2', '2trx']: for m in ['nw', 'gotoh', 'sw', 'lcs']: conf = app_tests.TestConf( program=path_to_program, redir_stdout=ph.outFile('%s.m%s.stdout' % (fname, m)), args=['-m', m, '-s', ph.inFile('%s.fa' % fname), '-o', ph.outFile('%s.m%s.fa' % (fname, m))], to_diff=[(ph.inFile('%s.m%s_out.fa' % (fname, m)), ph.outFile('%s.m%s.fa' % (fname, m))), (ph.inFile('%s.m%s.stdout' % (fname, m)), ph.outFile('%s.m%s.stdout' % (fname, m)))]) conf_list.append(conf) # Run with different scoring options. for fname in ['1aab', '1ad2', '2trx']: conf = app_tests.TestConf( program=path_to_program, redir_stdout=ph.outFile('%s.g-20.stdout' % fname), args=['-g', '-20', '-s', ph.inFile('%s.fa' % fname), '-o', ph.outFile('%s.g-20.fa' % fname)], to_diff=[(ph.inFile('%s.g-20_out.fa' % fname), ph.outFile('%s.g-20.fa' % fname)), (ph.inFile('%s.g-20.stdout' % fname), ph.outFile('%s.g-20.stdout' % fname))]) conf_list.append(conf) conf = app_tests.TestConf( program=path_to_program, redir_stdout=ph.outFile('%s.e-5.stdout' % fname), args=['-e', '-5', '-s', ph.inFile('%s.fa' % fname), '-o', ph.outFile('%s.e-5.fa' % fname)], to_diff=[(ph.inFile('%s.e-5_out.fa' % fname), ph.outFile('%s.e-5.fa' % fname)), (ph.inFile('%s.e-5.stdout' % fname), ph.outFile('%s.e-5.stdout' % fname))]) conf_list.append(conf) conf = app_tests.TestConf( program=path_to_program, redir_stdout=ph.outFile('%s.ms10.stdout' % fname), args=['-ms', '10', '-s', ph.inFile('%s.fa' % fname), '-o', ph.outFile('%s.ms10.fa' % fname)], to_diff=[(ph.inFile('%s.ms10_out.fa' % fname), ph.outFile('%s.ms10.fa' % fname)), (ph.inFile('%s.ms10.stdout' % fname), ph.outFile('%s.ms10.stdout' % fname))]) conf_list.append(conf) conf = app_tests.TestConf( program=path_to_program, redir_stdout=ph.outFile('%s.mm-8.stdout' % fname), args=['-mm', '-8', '-s', ph.inFile('%s.fa' % fname), '-o', ph.outFile('%s.mm-8.fa' % fname)], to_diff=[(ph.inFile('%s.mm-8_out.fa' % fname), ph.outFile('%s.mm-8.fa' % fname)), (ph.inFile('%s.mm-8.stdout' % fname), ph.outFile('%s.mm-8.stdout' % fname))]) conf_list.append(conf) # Run with matrix file. for fname in ['1aab', '1ad2', '2trx']: conf = app_tests.TestConf( program=path_to_program, redir_stdout=ph.outFile('%s.maVTML200.stdout' % fname), args=['-ma', ph.inFile('VTML200I'), '-s', ph.inFile('%s.fa' % fname), '-o', ph.outFile('%s.maVTML200.fa' % fname)], to_diff=[(ph.inFile('%s.maVTML200_out.fa' % fname), ph.outFile('%s.maVTML200.fa' % fname)), (ph.inFile('%s.maVTML200.stdout' % fname), ph.outFile('%s.maVTML200.stdout' % fname))]) conf_list.append(conf) # Run with different banded alignment options. for fname in ['1aab', '1ad2', '2trx']: conf = app_tests.TestConf( program=path_to_program, redir_stdout=ph.outFile('%s.lo5.stdout' % fname), args=['-lo', '5', '-s', ph.inFile('%s.fa' % fname), '-o', ph.outFile('%s.lo5.fa' % fname)], to_diff=[(ph.inFile('%s.lo5_out.fa' % fname), ph.outFile('%s.lo5.fa' % fname)), (ph.inFile('%s.lo5.stdout' % fname), ph.outFile('%s.lo5.stdout' % fname))]) conf_list.append(conf) conf = app_tests.TestConf( program=path_to_program, redir_stdout=ph.outFile('%s.hi5.stdout' % fname), args=['-hi', '5', '-s', ph.inFile('%s.fa' % fname), '-o', ph.outFile('%s.hi5.fa' % fname)], to_diff=[(ph.inFile('%s.hi5_out.fa' % fname), ph.outFile('%s.hi5.fa' % fname)), (ph.inFile('%s.hi5.stdout' % fname), ph.outFile('%s.hi5.stdout' % fname))]) conf_list.append(conf) # Run with different matrix configuraiton options. for fname in ['1aab', '1ad2', '2trx']: for c in ['ffff', 'tttt', 'ffft', 'fftf', 'ftff', 'tfff', 'fftt', 'fttf', 'ttff', 'tfft']: conf = app_tests.TestConf( program=path_to_program, redir_stdout=ph.outFile('%s.c%s.stdout' % (fname, c)), args=['-c', c, '-s', ph.inFile('%s.fa' % fname), '-o', ph.outFile('%s.c%s.fa' % (fname, c))], to_diff=[(ph.inFile('%s.c%s_out.fa' % (fname, c)), ph.outFile('%s.c%s.fa' % (fname, c))), (ph.inFile('%s.c%s.stdout' % (fname, c)), ph.outFile('%s.c%s.stdout' % (fname, c)))]) conf_list.append(conf) # ============================================================ # Run on DNA (Adenoviruses). # ============================================================ # Run with defaults for all non-mandatory options. for i in [1, 2, 3]: conf = app_tests.TestConf( program=path_to_program, args=['-a', 'dna', '-s', ph.inFile('adeno%d.fa' % i), '-o', ph.outFile('adeno%d.fa' % i)], to_diff=[(ph.inFile('adeno%d_out.fa' % i), ph.outFile('adeno%d.fa' % i))]) conf_list.append(conf) # ============================================================ # Run on RNA. # ============================================================ # Run with defaults for all non-mandatory options. for i in [1, 2, 3]: conf = app_tests.TestConf( program=path_to_program, args=['-a', 'rna', '-s', ph.inFile('adeno%d-rna.fa' % i), '-o', ph.outFile('adeno%d-rna.fa' % i)], to_diff=[(ph.inFile('adeno%d-rna_out.fa' % i), ph.outFile('adeno%d-rna.fa' % i))]) conf_list.append(conf) # Execute the tests. failures = 0 for conf in conf_list: res = app_tests.runTest(conf) # Output to the user. print ' '.join(['pair_align'] + conf.args), if res: print 'OK' else: failures += 1 print 'FAILED' # Cleanup. ph.deleteTempDir() print '==============================' print ' total tests: %d' % len(conf_list) print ' failed tests: %d' % failures print 'successful tests: %d' % (len(conf_list) - failures) print '==============================' # Compute and return return code. return failures != 0 if __name__ == '__main__': sys.exit(app_tests.main(main)) ``` #### File: seqan/dddoc/dddoc.py ```python import os import os.path import copy import pickle import string import sys # Constant for C++ files. FILETYPE_CPP = 2 # Constant for DDDOC files. FILETYPE_DDDOC = 1 # Constant for none of the above. FILETYPE_OTHER = 0 # Extension of C++ files. CPP_EXTS = ['c', 'C', 'cpp', 'CPP', 'c++', 'C++', 'h', 'H', 'hpp', 'HPP', 'h++', 'H++'] # Extensions of DDDOC files. DDDOC_EXTS = ['dddoc', 'DDDOC'] # List of ignored directory names. IGNORED_DIRS = ['CSV', '.svn', 'seeds2', 'find2', 'cmake'] DATA = None ID = 0 class DddocCache(object): def __init__(self, path): self.path = path self.content = {} self._tryLoad() def _tryLoad(self): try: with open(self.path, 'rb') as f: self.content = pickle.load(f) except: print >>sys.stderr, 'Could not load cache %s' % self.path return False print >>sys.stderr, 'Successfully loaded cache %s' % self.path return True def flush(self): try: with open(self.path, 'wb') as f: pickle.dump(self.content, f) except: print >>sys.stderr, 'Could not store cache %s' % self.path return False print >>sys.stderr, 'Successfully stored cache %s' % self.path return True def has_key(self, key): return self.content.has_key(key) def isFresh(self, filename): if not self.has_key(filename): return False mtime = os.stat(filename).st_mtime return mtime >= self.content[filename][0] def get(self, key, defaultValue=None): return self.content.get(key, (None, defaultValue))[1] def set(self, filename, value): mtime = os.stat(filename).st_mtime self.content[filename] = (mtime, value) class App(object): """Application object for DDDoc. Provides a facade to the functionality of the core module. Usage: app = App() app.loadFiles([<files>]) app.loadFiles([<files>]) app.loadingComplete() Attrs: data The global state Data object. """ def __init__(self): """Initialize object members.""" global DATA DATA = Data([], 0) self.data = DATA self.next_id = ID self.cache = DddocCache('dddoc_cache.bin') def loadFiles(self, filenames): """Load the files with the given file name.""" loadFiles(filenames, self.cache) def loadingComplete(self): """Initialize data object. This method is called after all calls to LoadFiles(). """ self.cache.flush() self.data.init() def getNextId(self): """Returns an identifier. Each id is only returned once. """ assert False, "For future use." self.next_id += 1 return self.next_id - 1 class Line: def __init__(self, _nodes, _text, file_name, line_no): global ID self.nodes = _nodes self._text = _text.rstrip() self.id = ID self.file_name = file_name self.line_no = line_no ID += 1 def __repr__(self): return 'Line(%s, %s, %s, %s)' % (repr(self.nodes), repr(self._text), repr(self.file_name), repr(self.line_no)) def name(self, index = 0): if len(self.nodes) > index: return self.nodes[index] else: return '(unknown)' def text(self): return self._text class Data: def __init__ (self, _lines, _level): self.lines = _lines self.level = _level self.cache = {} def __repr__(self): return 'Data(\n %s,\n%d)' % (',\n '.join(map(repr, self.lines)), self.level) def init(self): self.lines.sort(sortLineCompare) relations = self["globals.relations"].at_level(1).lines for relation in relations: to = relation.name(2) arr = splitName(relation.text()) if len(arr) > 0: findRelation(self, arr, to) self.lines.sort(sortLineCompare) def __getitem__(self, str): return self.find(str) def find(self, str): """Find all lines below the given path. Args: str String with a dot separated path to the lines to find. Returns: Data object with the lines below the given path. """ # If possible, return from cache. if self.cache.has_key(str): return self.cache[str] arr = splitName(str) lines = [] # TODO(holtgrew): Keeping linear code for linear search to be able to fix things quickly. if True: # Use binary search for finding the first hit. def isHit(line, arr, level): """Return True iff arr matches the key of line, from the given level on.""" i = 0 while (i < len(arr)) and (i + level < len(line.nodes)) and (arr[i] == line.nodes[i + level]): i += 1 return i == len(arr) # Use binary search to find the first hit. query = arr lo = 0 hi = len(self.lines) while lo < hi: mid = (lo + hi) // 2 slice = self.lines[mid].nodes[self.level:self.level + len(query)] if slice < query: lo = mid + 1 else: hi = mid result = lo # Output all consecutive hits, if any. if result < len(self.lines) and isHit(self.lines[result], arr, self.level): for line in self.lines[result:]: if isHit(line, arr, self.level): lines.append(line) else: break else: # Use linear search for finding the first hit. Deactivated for now. maxi = 0 for line in self.lines: i = 0 while (i < len(arr)) and (i + self.level < len(line.nodes)) and (arr[i] == line.nodes[i + self.level]): i += 1 if i == len(arr): lines.append(line) elif maxi > i: break maxi = i data = Data(lines, self.level + len(arr)) # Cache result. self.cache[str] = data return data def at_level(self, level = 0): lines = [] for line in self.lines: if len(line.nodes) == self.level + level: lines.append(line) data = Data(lines, self.level + level) return data def sub_level(self, level = 1): lines = [] for line in self.lines: if len(line.nodes) >= self.level + level: lines.append(line) data = Data(lines, self.level + level) return data def by_occ(self): lines = copy.copy(self.lines) lines.sort(sortLinesByOcc) data = Data(lines, self.level) return data def empty(self): return len(self.lines) == 0 def name(self, index = 0): if len(self.lines) > 0: return self.lines[0].name(index) return '(empty)' def text(self): str = '' for line in self.at_level(0).lines: if (str != ''): str += '\n' str += line.text() return str def keys(self, level = 0): dict = {} for line in self.lines: if len(line.nodes) > self.level + level: dict[line.nodes[self.level + level]] = 1 arr = dict.keys() arr.sort() return arr def keys_by_occ(self, level = 0): dict = {} for line in self.lines: if len(line.nodes) > self.level + level: key = line.nodes[self.level + level] if not dict.has_key(key) or (dict[key] > line.id): dict[key] = line.id dict2 = {} for key in dict: dict2[dict[key]] = key arr2 = dict2.keys() arr2.sort() arr = [] for i in arr2: arr.append(dict2[i]) return arr ################################################################################ def sortLineCompare(left, right): l = left.nodes r = right.nodes i = 0 while (i < len(l)) and (i < len(r)): ret = cmp(l[i], r[i]) if ret != 0: return ret i += 1 if len(l) < len(r): return -1 elif len(l) > len(r): return 1 elif left.id < right.id: return -1 else: return 1 ################################################################################ def sortLinesByOcc(left, right): if left.id < right.id: return -1 else: return 1 ################################################################################ def findRelation(data, arr, to): global DATA if len(arr) > 0: if (arr[0] == '*'): sub_data = data.sub_level(1) else: lines = [] for line in data.lines: if line.name(data.level) == arr[0]: lines.append(line) sub_data = Data(lines, data.level + 1) findRelation(sub_data, arr[1:], to) else: for line in data.at_level(0).lines: text = line.name(0) + '.' + line.name(1) entry = splitName(line.text()) entry = entry[:2] + [to] DATA.lines.append(Line(entry, text, '<through-relation>', 0)) ################################################################################ def clearData(): global DATA DATA = Data([], 0) global ID ID = 0 ################################################################################ def loadDDDOCFile(filename, cache): if cache.isFresh(filename): return cache.get(filename) f = open(filename) text = f.readlines() f.close() cache.set(filename, text) return text ################################################################################ def loadCPPFile(filename, cache): if cache.isFresh(filename): return cache.get(filename) f = open(filename) lines = f.readlines() f.close() ret = [] #test for SEQAN_NO_DDDOC for line in lines: if line.find("SEQAN_NO_DDDOC") >= 0: cache.set(filename, ret) return ret; incomment = False innextcomment = False inextract = False for line in lines: line = line.rstrip() str_line = "" if len(line) == 0: if not innextcomment and not incomment: str_line = "." else: str_line = " " while len(line) > 0 : if innextcomment: if line[len(line)-1] == "\\" : if inextract: str_line += line[: len(line)-1] else: if inextract: str_line += line innextcomment = False break elif incomment: pos1 = line.find("*/") if pos1 < 0: if inextract: str_line += line; break; else: if inextract: str_line += line[:pos1]; line = line[pos1 + 3:]; else: line = line[pos1 + 2:]; incomment = False; else: pos1 = line.find("/*") pos2 = line.find("//") pos3 = line.find('"') if (pos1 >= 0) and ((pos2 < 0) or (pos1 < pos2)) and ((pos3 < 0) or (pos1 < pos3)): pos9 = line.find("*/", pos1 + 2) if (len(line) > pos1 + 2): inextract = (line[pos1 + 2] == "/") or (line[pos1 + 2] == "*") else: inextract = False if pos9 < 0 : if inextract: str_line += line[pos1 + 3:] incomment = True break else: if inextract: str_line += line[pos1 + 3: pos3] line = line[pos9 + 3:] else: line = line[pos9 + 2:] elif (pos2 >= 0) and ((pos3 < 0) or (pos2 < pos3)): pos2b = pos2 + 2; while ((pos2b < len(line)) and ((line[pos2b] == "/") or (line[pos2b] == "*"))): pos2b += 1 inextract = (pos2b > pos2 + 2) if line[len(line)-1] == "\\" : if inextract: str_line += line[pos2b: len(line)-1] innextcomment = True else: if inextract: str_line += line[pos2b:] break elif pos3 >= 0: pos9 = line.find('"', pos3 + 2) if pos9 < 0: line = line[pos9+1:] break else: break else: break ret = ret + [str_line] cache.set(filename, ret) return ret ################################################################################ def getFileType(filename): """Determines file type from filename. Determines the file type from the extension of the given filename. >>> getFileType('test.cpp') == FILETYPE_CPP True >>> getFileType('path/file.h') == FILETYPE_CPP True >>> getFileType('test.dddoc') == FILETYPE_DDDOC True Args: filename Filename to parse. Returns: One of {FILETYPE_CPP, FILETYPE_DDDOC, FILETYPE_OTHER}, depending on the extension of filename. """ # Get file extension. base, ext = os.path.splitext(filename) if ext[1:] in CPP_EXTS: return FILETYPE_CPP elif ext[1:] in DDDOC_EXTS: return FILETYPE_DDDOC else: return FILETYPE_OTHER ################################################################################ def loadFile(filename, cache): file_type = getFileType(filename) if (file_type == 2): return loadCPPFile(filename, cache) elif (file_type == 1): return loadDDDOCFile(filename, cache) else: raise "unknown file type" ################################################################################ def parseFile(filename, cache): text = loadFile(filename, cache) text.append('.') context = [[]] str = False line_no = 0 for line in text: line_no += 1 if line != '': if line[0] == '.': parseString(str, context, filename, line_no) str = line elif str: if str[len(str)-1] != '\n': str += '\n' str += line ################################################################################ def parseString(str, context, file_name, line_no): global DATA if not str or (str == '.'): return [[]] level = 0 while (level < len(str)) and (str[level] == '.'): level += 1 str = str[level:] if (level < len(context)): del context[level:] if len(context) > 0: entry = copy.copy(context[len(context) - 1]) else: entry = [] key = '' text = '' pos = 0 is_escaped = False c_quoted = '' while (pos < len(str)): c = str[pos] if c == "\x0d": pos += 1 continue if c_quoted != "": if c_quoted == c: c_quoted = "" else: key += c elif is_escaped: key += c is_escaped = False else: if c == '\\': is_escaped = True elif c in ['"', "'"]: c_quoted = c elif (c == ':'): key = str[0:pos] text = str[pos+1:] break else: key += c pos += 1 entry += splitName(key) DATA.lines.append(Line(entry, text, file_name, line_no)) context.append(entry) ################################################################################ def splitName(line): pos = 0 key = "" c_quoted = "" is_escaped = False li = [] while (pos < len(line)): c = line[pos] if c_quoted != "": if c_quoted == c: c_quoted = "" else: key += c elif is_escaped: key += c is_escaped = False else: if c == '\\': is_escaped = True elif c in ['"', "'"]: c_quoted = c elif c == '.': if key != "": li.append(key) key = "" elif c == '|': if key != "": li.append(key) key = "" rest = line[pos+1:] if len(rest)>0: li.append(rest) break; elif c != '\n': key += c pos += 1 if key != "": li.append(key) return li def splitUrl(line): """Splits a tuple at separator characters. The separator character is '|'. These characters can be escaped using the backslash sign '\', entries can also be quoted. >>> splitUrl('a|b|c') ['a', 'b', 'c'] >>> splitUrl('a\|b|c') ['a|b', 'c'] >>> splitUrl('"a|b"|c') ['a|b', 'c'] Args: line String to split. Returns List with strings, split at | symbols, excluding these symbols themselves. """ pos = 0 key = "" c_quoted = "" is_escaped = False li = [] while (pos < len(line)): c = line[pos] if c_quoted != "": if c_quoted == c: c_quoted = "" else: key += c elif is_escaped: key += c is_escaped = False else: if c == '\\': is_escaped = True elif c in ['"', "'"]: c_quoted = c elif c == '|': if key != "": li.append(key) key = "" elif c != '\n': key += c pos += 1 if key != "": li.append(key) return li def loadFiles(search_path, cache): """Call parseFile() on files. All files below search_path will be searched that have file type FILETYPE_CPP or FILETYPE_DOC as determined by getFileType(). Directories with names of IGNORED_DIRS are skipped. Args: search_path String, path to search files under. """ for root, dirs, files in os.walk(search_path): # Parse all files. for file in files: if os.path.basename(file).startswith('.'): continue # Skipp hidden files. path = os.path.join(root, file) if getFileType(path) in [FILETYPE_CPP, FILETYPE_DDDOC]: parseFile(path, cache) # Exclude ignored diretories. for ignored in IGNORED_DIRS: if ignored in dirs: dirs.remove(ignored) ``` #### File: dox/test/test_inc_mgr.py ```python __author__ = '<NAME> <<EMAIL>>' import os import os.path import unittest import seqan.dox.inc_mgr as inc_mgr class TestIncludeManager(unittest.TestCase): def setUp(self): base_dir = os.path.dirname(os.path.realpath(__file__)) base_dir = os.path.join(base_dir, '../', 'test_src') self.mgr = inc_mgr.IncludeManager([base_dir]) def testIncludeFile(self): txt = self.mgr.loadFile('example.cpp') self.assert_(txt.splitlines()[0].startswith('#include <iostream>')) self.assert_(txt.splitlines()[-1].endswith('}')) def testIncludeSnippet(self): txt = self.mgr.loadSnippet('example.cpp', 'Print to stdout') self.assertEqual(len(txt.splitlines()), 1) self.assertEqual(txt.splitlines()[0], r' std::cout << "This is an example.\n";') if __name__ == '__main__': unittest.main() ```
{ "source": "JensVA/algorithms-python-jensva", "score": 3 }
#### File: JensVA/algorithms-python-jensva/riemannsum.py ```python def RightRiemannSum(a, b, aantal): deltaX = (b-a)/aantal # breedte van een rechthoek x = a # x = huidige x-waarde rechthoek opp_totaal = 0.0 for n in range(0, aantal): # aantal keer herhalen opp_rechthoek = ((x+deltaX)**2 + 1) * deltaX # f(x) = xยฒ + 1 , (x+deltaX) is voor de Right Riemann sum x = x + deltaX # volgende rechthoek opp_totaal = opp_totaal + opp_rechthoek n = n + 1 return opp_totaal def LeftRiemannSum(a, b, aantal): deltaX = (b-a)/aantal # breedte van een rechthoek x = a # x = huidige x-waarde rechthoek opp_totaal = 0.0 for n in range(0, aantal): # aantal keer herhalen opp_rechthoek = (x**2 + 1) * deltaX # f(x) = xยฒ + 1 x = x + deltaX # volgende rechthoek opp_totaal = opp_totaal + opp_rechthoek n = n + 1 return opp_totaal def MiddleRiemannSum(a, b, aantal): deltaX = (b-a)/aantal # breedte van een rechthoek x = a # x = huidige x-waarde rechthoek opp_totaal = 0.0 for n in range(0, aantal): # aantal keer herhalen opp_rechthoek = ((x+(deltaX/2))**2 + 1) * deltaX # f(x) = xยฒ + 1 , (x+(deltaX/2)) is voor de Middle Riemann sum x = x + deltaX # volgende rechthoek opp_totaal = opp_totaal + opp_rechthoek n = n + 1 return opp_totaal # functie: f(x) = xยฒ + 1 a = 0 b = 2 n = 5 print("functie: f(x) = xยฒ + 1 Interval: [" + str(a) + ", " + str(b) + "]\tn = " + str(n)) print("Oppervlakte R: ", RightRiemannSum(a, b, n)) print("Oppervlakte L: ", LeftRiemannSum(a, b, n)) print("Oppervlakte M: ", MiddleRiemannSum(a, b, n)) ```
{ "source": "JensVanHerck/Adafruit_CircuitPython_RGB_Display", "score": 2 }
#### File: Adafruit_CircuitPython_RGB_Display/adafruit_rgb_display/ssd2119.py ```python try: import struct except ImportError: import ustruct as struct from adafruit_rgb_display.rgb import DisplaySPI __version__ = "0.0.0-auto.0" class SSD2119(DisplaySPI): """ A simple driver for the SSD2119 based displays. >>> import busio >>> import digitalio >>> import board >>> from adafruit_rgb_display import color565 >>> import adafruit_rgb_display.ili9341 as ili9341 >>> spi = busio.SPI(clock=board.SCK, MOSI=board.MOSI, MISO=board.MISO) >>> display = ili9341.ILI9341(spi, cs=digitalio.DigitalInOut(board.GPIO0), ... dc=digitalio.DigitalInOut(board.GPIO15)) >>> display.fill(color565(0xff, 0x11, 0x22)) >>> display.pixel(120, 160, 0) """ _COLUMN_SET = 0x004F _PAGE_SET = 0x004E _RAM_WRITE = 0x0022 _RAM_READ = 0x0022 _INIT = ( (0x0028, b'\x0006'), (0x0000, b'\x0001'), (0x0010, b'\x0000'), (0x0001, b'\x32EF'), (0x0002, b'\x0600'), (0x0003, b'\0x6A38'), # Power Control 1, VRH[5:0] (0x0011, b'\x6870'), (0x000F,b'\x0000'), (0X000B,b'\x5308'), (0X000C, b'\x0003'), # Power Control 2, SAP[2:0], BT[3:0] (0X000D, b'\x000A'), (0X000E, b'\x2E00'), (0x001E, b'\x00BE'), (0x0025, b'\x8000'), (0x0026, b'\x7800'), (0x004E, b'\x0000'), (0x004F, b'\x0000'), (0x0012, b'\x08D9'), (0x0030, b'\x0000'), (0x0031, b'\x0104'), (0x0032, b'\x0100'), (0x0033, b'\x0305'), (0x0034, b'\x0505'), (0x0035, b'\x0305'), (0x0036, b'\x0707'), (0x0037, b'\x0300'), (0x003A, B'\x1200'), (0x003B, B'\x0800'), (0x0007, B'\x0033'), (0x0022, None) ) _ENCODE_PIXEL = ">H" _ENCODE_POS = ">HH" _DECODE_PIXEL = ">BBB" #pylint: disable-msg=too-many-arguments def __init__(self, spi, dc, cs, rst=None, width=320, height=240, baudrate=16000000, polarity=0, phase=0, rotation=0): super().__init__(spi, dc, cs, rst=rst, width=width, height=height, baudrate=baudrate, polarity=polarity, phase=phase, rotation=rotation) self._scroll = 0 #pylint: enable-msg=too-many-arguments def scroll(self, dy=None): #pylint: disable-msg=invalid-name """Scroll the display by delta y""" if dy is None: return self._scroll self._scroll = (self._scroll + dy) % self.height self.write(0x37, struct.pack('>H', self._scroll)) return None ```
{ "source": "JensVanHerck/httpdb-gae", "score": 2 }
#### File: JensVanHerck/httpdb-gae/main.py ```python from google.appengine.ext import webapp from google.appengine.ext import db from google.appengine.ext.webapp.util import run_wsgi_app class Folder(db.Model): uuidOwner = db.StringProperty(multiline=False) folderName = db.StringProperty(multiline=False) class StoredData(db.Model): uuidOwner = db.StringProperty(multiline=False) name = db.StringProperty(multiline=False) content = db.StringProperty(multiline=True) folder = db.ReferenceProperty(Folder) class HTTPDB(webapp.RequestHandler): def _isSl(self): if self.request.headers.has_key("X-Secondlife-Shard"): if self.request.headers["X-Secondlife-Shard"] == "Production": return True return False def _fileExists(self, name, uuidOwner, folder): _files = StoredData.gql("WHERE name = :1 AND uuidOwner = :2 AND folder = :3", name, uuidOwner, folder).fetch(1) if len(_files) == 1: self._file = _files[0] return True else: self._file = StoredData() return False def _folderExists(self, name, uuidOwner): _folders = Folder.gql("WHERE folderName = :1 AND uuidOwner = :2", name, uuidOwner).fetch(1) if len(_folders) == 1: self._folder = _folders[0] return True else: self._folder = Folder() return False def _dbget(self, path, mode, uuidOwner): if path.startswith("/"): # Ignore a leading / path = path[1:] parts = path.split("/") length = len(parts) if 1 <= length <= 2: # Either 1 or 2 items in the split string if mode == "list": if self._folderExists( parts[0], uuidOwner ): files = StoredData.gql("WHERE uuidOwner = :1 AND folder = :2", uuidOwner, self._folder) data = "" for item in files: data += item.name + "\n" return data.strip() else: return "404: Folder not found" else: if length == 1: # No parent folder data = StoredData.gql("WHERE uuidOwner = :1 AND name = :2 AND folder = :3", uuidOwner, parts[0], None).fetch(1) if len(data) == 1: return data[0].content if length == 2: # With a parent folder folder = Folder.gql("WHERE uuidOwner = :1 AND folderName = :2", uuidOwner, parts[0]).fetch(1) if len(folder) != 1: return "404: Folder not found" data = StoredData.gql("WHERE uuidOwner = :1 AND name = :2 AND folder = :3", uuidOwner, parts[1], folder[0].key()).fetch(1) if len(data) == 1: return data[0].content else: return "400: Only one parent folder allowed." return "404: Not found" def _dbput(self, path, value, uuidOwner): if path.startswith("/"): # Ignore a leading / path = path[1:] parts = path.split("/") length = len(parts) if 1 <= length <= 2: # Either 1 or 2 items in the split string if length == 1: # No parent folder if self._fileExists(parts[0], uuidOwner, None): # Get file and replace contents, found file has been stored in self._file self._file.content = value else: # File not found, new StoredData item in self._file self._file.uuidOwner = uuidOwner self._file.name = parts[0] self._file.content = value self._file.put() return "201: Successfully created " + path if length == 2: # With a parent folder if not self._folderExists(parts[0], uuidOwner): # A new or existing folder is always placed in self._folder self._folder.uuidOwner = uuidOwner self._folder.folderName = parts[0] self._folder.put() if self._fileExists(parts[1], uuidOwner, self._folder): # Get file and replace contents, found file has been stored in self._file self._file.content = value else: # File not found, new StoredData item in self._file self._file.uuidOwner = uuidOwner self._file.name = parts[1] self._file.content = value self._file.folder = self._folder self._file.put() return "201: Successfully created " + str(parts) else: return "400: Only one parent folder allowed." return "500: You should never encounter this" def _dbdel(self, path, uuidOwner): if path.startswith("/"): # Ignore a leading / path = path[1:] parts = path.split("/") length = len(parts) if 1 <= length <= 2: # Either 1 or 2 items in the split string if length == 1: # No parent folder if self._fileExists(parts[0], uuidOwner, None): self._file.delete() else: return "404: Path not found" if length == 2: # With a parent folder if not self._folderExists(parts[0], uuidOwner): # A new or existing folder is always placed in self._folder return "404: Path not found" if self._fileExists(parts[1], uuidOwner, self._folder): self._file.delete() else: return "404: Path not found" else: return "400: Only one parent folder allowed." return "Deleted " + path def get(self): path = self.request.path mode = self.request.get("mode") body = "" if mode == "": mode = self.request.get("m") if self._isSl(): uuidOwner = self.request.headers["X-Secondlife-Owner-Key"] body = self._dbget(path, mode, uuidOwner) self.response.out.write(body) else: self.response.out.write("Path: " + path + "\n") self.response.out.write("Mode: " + mode + "\n") # self.response.out.write(str(self.request.headers)) self.response.headers['Content-Type'] = 'text/plain' if body.startswith("201"): self.response.set_status(201) if body.startswith("404"): self.response.set_status(404) if body.startswith("400"): self.response.set_status(400) if body.startswith("500"): self.response.set_status(500) def post(self): self.reponse.out.write("POST not implemented") self.response.set_status(501) def put(self): body = "" path = self.request.path _body = self.request.body if self._isSl(): uuidOwner = self.request.headers["X-Secondlife-Owner-Key"] body = self._dbput(path, _body, uuidOwner) self.response.out.write(body) else: self.response.out.write("You may only put values through SL") self.response.out.write(str(self.request.headers)) if body.startswith("201"): self.response.set_status(201) if body.startswith("404"): self.response.set_status(404) if body.startswith("400"): self.response.set_status(400) if body.startswith("500"): self.response.set_status(500) def delete(self): body = "" path = self.request.path if self._isSl(): uuidOwner = self.request.headers["X-Secondlife-Owner-Key"] _body = self._dbdel(path, uuidOwner) self.response.out.write(_body) else: self.response.out.write("You may only delete values through SL") if body.startswith("201"): self.response.set_status(201) if body.startswith("404"): self.response.set_status(404) if body.startswith("400"): self.response.set_status(400) if body.startswith("500"): self.response.set_status(500) def main(): application = webapp.WSGIApplication([('.*', HTTPDB)], debug=True) run_wsgi_app(application) if __name__ == '__main__': main() ```
{ "source": "jensv/fluxtubestability", "score": 2 }
#### File: jensv/fluxtubestability/analytic_condition.py ```python import numpy as np from scipy.special import kv, kvp import matplotlib.pyplot as plt from matplotlib import colors import seaborn as sns sns.set_style('ticks') sns.set_context('poster') def conditions(k_bar, lambda_bar, epsilon, m, delta): r""" Return analytic stability condition. Parameters ---------- k_bar : float normalized inverse aspect ratio lambda_bar : float normalized current-to-magnetic flux ratio epsilon : float core to total current ratio m : float azimuthal periodicity number delta : float abruptness parameter Returns ------- delta_w : float perturbed potential energy of marginal stability case """ term1 = conditions_plasma_term(k_bar, lambda_bar, epsilon, m, delta) term2 = conditions_interface_term(k_bar, lambda_bar, epsilon, m, delta) term3 = conditions_vacuum_term(k_bar, lambda_bar, m, delta) return term1 + term2 - term3 def conditions_without_interface(k_bar, lambda_bar, m, delta): r""" Return analytic stability condition minus interface term (term2). Parameters ---------- k_bar : float normalized inverse aspect ratio lambda_bar : float normalized current-to-magnetic flux ratio m : float azimuthal periodicity number delta : float abruptness parameter Returns ------- delta_w_without_interface : float perturbed potential energy without interface term. Notes ----- For profiles with current smoothly going to zero at the delta_w term is zero. """ term1 = conditions_smooth_plasma_term(k_bar, lambda_bar, m, delta) term3 = conditions_vacuum_term(k_bar, lambda_bar, m, delta) return term1 - term3 def conditions_without_interface_wo_sing(k_bar, lambda_bar, m, xi, xi_der, a): r""" Multiply analytic expression with xi squared to avoid singularity. Parameters ---------- k_bar : float normalized inverse aspect ratio lambda_bar : float normalized current-to-magnetic flux ratio m : float azimuthal periodicity number xi : float solution to Euler-Lagrange equation at boundary xi_der : float derivative of solution to Euler-Lagrange equation at boundary a : float radius of current-carrying magnetic flux tube Returns ------- delta_w_without_interface_wo_sing : float perturbed potential energy without interface or singularity Notes ----- delta can be singular when xi goes through zero. This form is multiplied by xi**2 to avoid singularity. """ term1 = conditions_smooth_plasma_term_wo_sing(k_bar, lambda_bar, m, xi, xi_der, a) term3 = conditions_vacuum_term_wo_sing(k_bar, lambda_bar, m, xi) return term1 - term3 def conditions_plasma_term(k_bar, lambda_bar, epsilon, m, delta): r""" Returns plasma term of analytic stability condition. Parameters ---------- k_bar : float normalized inverse aspect ratio lambda_bar : float normalized current-to-magnetic flux ratio epsilon : float core to total current ratio m : float azimuthal periodicity number delta : float abruptness parameter Returns ------- delta_w_plasma_term : float perturbed potential energy plasma term due to internal currents. """ term1 = (2.*k_bar - m*epsilon*lambda_bar)*((delta + 1)*2.*k_bar - (delta - 1)*m*epsilon * lambda_bar)/(k_bar**2 + m**2) return term1 def conditions_smooth_plasma_term_wo_sing(k_bar, lambda_bar, m, xi, xi_der, a): r""" Multiply analytic expression with xi squared to avoid singularity. Parameters ---------- k_bar : float normalized inverse aspect ratio lambda_bar : float normalized current-to-magnetic flux ratio m : float azimuthal periodicity number xi : float solution to Euler-Lagrange equation at boundary xi_der : float derivative of solution to Euler-Lagrange equation at boundary a : float radius of current-carrying magnetic flux tube """ epsilon = 1. term1 = (2.*k_bar - m*epsilon*lambda_bar)*((xi_der*a*xi + xi**2)*2.*k_bar - (xi_der*a*xi - xi**2)*m*epsilon* lambda_bar)/(k_bar**2 + m**2) return term1 def conditions_smooth_plasma_term(k_bar, lambda_bar, m, delta): r""" Returns plasma term of analytic condition with epsilon set to 1. This should be relvant for a profile that smoothly goes to zero current, since b_v(a) = b_p(a) in that case. Parameters ---------- k_bar : float normalized inverse aspect ratio lambda_bar : float normalized current-to-magnetic flux ratio m : float azimuthal periodicity number delta : float abruptness parameter """ epsilon = 1. term1 = conditions_plasma_term(k_bar, lambda_bar, epsilon, m, delta) return term1 def conditions_interface_term(k_bar, lambda_bar, epsilon, m, delta): r""" Returns interface term of analytic stability condition. Parameters ---------- k_bar : float normalized inverse aspect ratio lambda_bar : float normalized current-to-magnetic flux ratio epsilon : float core to total current ratio m : float azimuthal periodicity number delta : float abruptness parameter """ term2 = (epsilon**2 - 1) * lambda_bar**2 return term2 def conditions_vacuum_term(k_bar, lambda_bar, m, delta): r""" Returns vacuum term of analytic stability condition. Parameters ---------- k_bar : float normalized inverse aspect ratio lambda_bar : float normalized current-to-magnetic flux ratio m : float azimuthal periodicity number delta : float abruptness parameter """ term3 = (m*lambda_bar - 2.*k_bar)**2/k_bar*(kv(m, np.abs(k_bar)) / kvp(m, np.abs(k_bar))) return term3 def conditions_vacuum_term_wo_sing(k_bar, lambda_bar, m, xi): r""" Multiply analytic expression with xi squared to avoid singularity. Parameters ---------- k_bar : float normalized inverse aspect ratio lambda_bar : float normalized current-to-magnetic flux ratio m : float azimuthal periodicity number xi : float Euler-Lagrange solution """ term3 = xi**2 * (m*lambda_bar - 2.*k_bar)**2/k_bar*(kv(m, np.abs(k_bar)) / kvp(m, np.abs(k_bar))) return term3 def condition_map(epsilon=0.5, delta=0.): r""" Draw filled contours of sausage (orange), kink(yellow), and stable (white) regions for given epsilon and delta values. Parameters ---------- epsilon : float core to total current ratio delta : float abruptness parameter """ fig = plt.figure(figsize=(10,10)) lambda_bar = np.linspace(0., 3., 750) k_bar = np.linspace(0, 1.5, 750) lambda_bar_mesh, k_bar_mesh = np.meshgrid(lambda_bar, k_bar) stability_kink = conditions(k_bar_mesh, lambda_bar_mesh, epsilon, 1., delta) stability_kink = stability_kink < 0 stability_sausage = conditions(k_bar_mesh, lambda_bar_mesh, epsilon, 0., delta) stability_sausage = stability_sausage < 0 stability_kink = stability_kink.astype(float) stability_kink[stability_sausage] = 2 cmap = colors.ListedColormap([sns.xkcd_rgb["white"], sns.xkcd_rgb["yellow"], sns.xkcd_rgb["orange"]]) plt.contourf(lambda_bar_mesh, k_bar_mesh, stability_kink, cmap=cmap, levels=[0., 0.5, 1.5, 2.]) plt.contour(lambda_bar_mesh, k_bar_mesh, stability_kink, levels=[0., 0.5, 1.5, 2.], colors='grey') plt.plot([0, 3.], [0., 1.5], '--', c='black', lw=5) axes = plt.gca() plt.setp(axes.get_xticklabels(), fontsize=40) plt.setp(axes.get_yticklabels(), fontsize=40) plt.ylabel(r'$\bar{k}$', fontsize=45, rotation='horizontal', labelpad=25) plt.xlabel(r'$\bar{\lambda}$', fontsize=45) sns.despine() def condition_map_variable_delta(filename, mode=1, epsilon=0.5, conditions_func=conditions_without_interface): r""" Draw filled contours of sausage (orange), kink(yellow), and stable (white) regions for given epsilon and delta values. Delta values are loaded from a .npz mesh file. Parameters ---------- filename : string filename from which to load lambda_bar, k_bar and delta values. mode : int azimuthal mode number 0 or 1 epsilon : float core current to total current ratio conditions_func : function conditions function to use """ data_meshes = np.load(filename) lambda_bar_mesh = data_meshes['lambda_a_mesh'] k_bar_mesh = data_meshes['k_a_mesh'] delta_mesh = data_meshes['delta_m_0'] fig = plt.figure(figsize=(10,10)) cmap = colors.ListedColormap([sns.xkcd_rgb["white"], sns.xkcd_rgb["yellow"], sns.xkcd_rgb["orange"]]) stability_kink = conditions_func(k_bar_mesh, lambda_bar_mesh, epsilon, 1., delta_mesh) stability_kink = stability_kink < 0 stability_sausage = conditions_func(k_bar_mesh, lambda_bar_mesh, epsilon, 0., delta_mesh) stability_sausage = stability_sausage < 0 if mode == 0: stability = stability_sausage cmap = colors.ListedColormap([sns.xkcd_rgb["white"], sns.xkcd_rgb["orange"]]) else: stability = stability_kink cmap = colors.ListedColormap([sns.xkcd_rgb["white"], sns.xkcd_rgb["yellow"]]) plt.contourf(lambda_bar_mesh, k_bar_mesh, stability, cmap=cmap, levels=[0.5, 1.5]) plt.contour(lambda_bar_mesh, k_bar_mesh, stability, levels=[0.5, 1.5], colors='grey') plt.plot([0, 3.], [0., 1.5], '--', c='black', lw=5) axes = plt.gca() plt.setp(axes.get_xticklabels(), fontsize=40) plt.setp(axes.get_yticklabels(), fontsize=40) plt.ylabel(r'$\bar{k}$', fontsize=45, rotation='horizontal', labelpad=25) plt.xlabel(r'$\bar{\lambda}$', fontsize=45) sns.despine() plt.show() ```
{ "source": "jensv/relative_canonical_helicity_tools", "score": 2 }
#### File: relative_canonical_helicity_tools/centroid_fitting/gyration_path.py ```python r"""" Created on Apr 17 2017 @author: <NAME> Plot field line null gyration of RSX magnetic flux tube. """ import numpy as np from scipy.optimize import leastsq import matplotlib.pyplot as plt import seaborn as sns sns.set_style('white') sns.set_context('poster') from mpl_toolkits.axes_grid1 import host_subplot import mpl_toolkits.axisartist as axisartist import matplotlib.patches as patches def gyration_path(axes=None, circles=None, step=25, start=0, error_test=False, points=None, errors=None, field_null_path="/home/jensv/rsx/jens_analysis/output/field_nulls/", field_null_file="2017-04-13-23-41/field_nulls.txt", measurement_limits=(-0.022, 0.024, -0.017, 0.026), bxby_limits = (-0.032, 0.025, -0.072, 0.040), errorevery=10, params_guess=[0, 0, 0.01], circle_fit=False, xlim=(-0.03, 0.05), xticks=None, shift_time=125): size=5 centroid_file = field_null_path + field_null_file if not points is None: field_nulls = np.roll(points, shift_time, axis=0) else: field_nulls = np.loadtxt(centroid_file) x_min, x_max = measurement_limits[0], measurement_limits[1] y_min, y_max = measurement_limits[2], measurement_limits[3] if not axes: fig, axes = plt.subplots(1, 1) measurement_box = patches.Rectangle((x_min, y_min), x_max-x_min, y_max-y_min, color='grey', alpha=0.4) bx_by_x_min, bx_by_x_max = bxby_limits[0:2] bx_by_y_min, bx_by_y_max = bxby_limits[2:4] bx_by_measurement_box = patches.Rectangle((bx_by_x_min, bx_by_y_min), bx_by_x_max - bx_by_x_min, bx_by_y_max - bx_by_y_min, color='grey', alpha=0.1) axes.add_patch(measurement_box) axes.add_patch(bx_by_measurement_box) colormap = np.linspace(0, 1, 250-start) axes.scatter(field_nulls[start:, 0], field_nulls[start:, 1], c=colormap, zorder=100, s=size) if not errors is None: errors = np.roll(errors, shift_time, axis=0) axes.errorbar(field_nulls[start:, 0], field_nulls[start:, 1], xerr=errors[start:, 0], yerr=errors[start:, 1], ecolor='grey', fmt='none', zorder=0, errorevery=errorevery, alpha=0.5) #axes.text(-0.008, -0.015, r'$0 \mu s$') #axes.text(0.03, -0.003, r'$%2.1f \mu s$' % (0.068*56)) #axes.text(-0.03, 0.017, r'$%2.1f \mu s$' % (0.068*208)) if circles: for i, field_null in enumerate(field_nulls[::step]): colormap = np.linspace(1, 0, np.round(250./step)) circle = patches.Circle(field_null, radius=0.02, facecolor='none', edgecolor=str(colormap[i]), alpha=0.5) axes.scatter(field_null[0], field_null[1], c='red', s=size) axes.add_patch(circle) if circle_fit: circle_params, success = leastsq(to_min, params_guess, args=np.asarray([field_nulls[:, 0], field_nulls[:, 1]])) circle = patches.Circle((circle_params[0], circle_params[1]), radius=circle_params[2], facecolor='none', edgecolor='red', lw=5, ls='--', alpha=0.5) print circle_params[0], circle_params[1], circle_params[2] print leastsq(to_min, params_guess, args=np.asarray([field_nulls[:, 0], field_nulls[:, 1]])) axes.add_patch(circle) axes.set_xlabel('x [m]') axes.set_ylabel('y [m]') axes.set_xlim(xlim) if not xticks is None: axes.xaxis.set_ticks(xticks) axes.set_aspect('equal') axes.invert_xaxis() return axes def to_min(params, points): r""" Returns circle expression to minimize with least squares. """ a = 2.*params[0] b = 2.*params[1] c = params[2]**2 - params[1]**2 - params[0]**2 return a*points[0] + b*points[1] + c - points[0]**2 - points[1]**2 ``` #### File: jensv/relative_canonical_helicity_tools/filter_measurements_on_unstructured_grid.py ```python import argparse import numpy as np from datetime import date from datetime import datetime import os from scipy.interpolate import LinearNDInterpolator from scipy import ndimage from write_to_vtk.read_unstructured_vtk import read_unstructured_vtk from mach_probe_analysis import ion_current_to_mach_number as ic_to_mach from read_from_sql import read_from_sql from write_to_vtk import structured_3d_vtk as struc_3d from write_to_vtk import prepare_measurements as pm from write_to_vtk import unstructured_grid as ug def main(args): r""" """ now = datetime.now().strftime("%Y-%m-%d-%H-%M") out_dir = '../output/filtered_unstructured_measurements/' + now try: os.makedirs(out_dir) except: pass planes = [0.249, 0.302, 0.357, 0.416] bx_measurements = pm.read_idl('bx') by_measurements = pm.read_idl('by') bz_measurements = pm.read_idl('bz') te_measurements = pm.read_idl('te') n_measurements = pm.read_idl('n') mach_y_measurements, mach_z_measurements = pm.read_mach_probe_data(args) if args.bxby_only: bx_all_planes = pm.cut_and_average_quantity(bx_measurements, args.bxby_extent, planes) by_all_planes = pm.cut_and_average_quantity(by_measurements, args.bxby_extent, planes) else: bx_all_planes = pm.cut_and_average_quantity(bx_measurements, args.bx_extent, planes) by_all_planes = pm.cut_and_average_quantity(by_measurements, args.by_extent, planes) bz_all_planes = pm.cut_and_average_quantity(bz_measurements, args.bz_extent, planes) n_all_planes = pm.cut_and_average_quantity(n_measurements, args.n_extent, planes, bounds=args.n_bounds) te_all_planes = pm.cut_and_average_quantity(te_measurements, args.te_extent, planes, bounds=args.te_bounds) mach_y_plane = pm.cut_and_average_quantity(mach_y_measurements, args.mach_y_extent, [0.416], bounds=args.mach_bounds) mach_z_plane = pm.cut_and_average_quantity(mach_z_measurements, args.mach_z_extent, [0.416], bounds=args.mach_bounds) n_three_planes = pm.remove_plane(0.302, n_all_planes) te_three_planes = pm.remove_plane(0.302, te_all_planes) if args.bxby_only: bxby_grid = make_grid_from_extent(args.bxby_filter_extent, args.filter_spatial_increment) single_plane = np.unique(bx_all_planes['z_out'])[0] bx_filtered = filter_unstructured_data(bxby_grid, bx_all_planes, single_plane=single_plane, filter_sigma=args.filter_sigma, filter_truncate=args.filter_truncate) by_filtered = filter_unstructured_data(bxby_grid, by_all_planes, single_plane=single_plane, filter_sigma=args.filter_sigma, filter_truncate=args.filter_truncate) else: bx_grid = make_grid_from_extent(args.bx_filter_extent, args.filter_spatial_increment) bx_filtered = filter_unstructured_data(bx_grid, bx_all_planes, filter_sigma=args.filter_sigma, filter_truncate=args.filter_truncate) by_grid = make_grid_from_extent(args.by_filter_extent, args.filter_spatial_increment) by_filtered = filter_unstructured_data(by_grid, by_all_planes, filter_sigma=args.filter_sigma, filter_truncate=args.filter_truncate) bz_grid = make_grid_from_extent(args.bz_filter_extent, args.filter_spatial_increment) bz_filtered = filter_unstructured_data(bz_grid, bz_all_planes, filter_sigma=args.filter_sigma, filter_truncate=args.filter_truncate) n_grid = make_grid_from_extent(args.n_filter_extent, args.filter_spatial_increment) n_filtered = filter_unstructured_data(n_grid, n_all_planes, filter_sigma=args.filter_sigma, filter_truncate=args.filter_truncate) te_grid = make_grid_from_extent(args.te_filter_extent, args.filter_spatial_increment) te_filtered = filter_unstructured_data(te_grid, te_all_planes, filter_sigma=args.filter_sigma, filter_truncate=args.filter_truncate) mach_y_grid = make_grid_from_extent(args.mach_y_extent, args.filter_spatial_increment) mach_y_filtered = filter_unstructured_data(mach_y_grid, mach_y_plane, filter_sigma=args.filter_sigma, filter_truncate=args.filter_truncate) mach_z_grid = make_grid_from_extent(args.mach_z_extent, args.filter_spatial_increment) mach_z_filtered = filter_unstructured_data(mach_z_grid, mach_z_plane, filter_sigma=args.filter_sigma, filter_truncate=args.filter_truncate) ug.save_to_unstructured_grid(bx_filtered, 'bx', out_dir, prefix=args.output_prefix) ug.save_to_unstructured_grid(by_filtered, 'by', out_dir, prefix=args.output_prefix) if not args.bxby_only: ug.save_to_unstructured_grid(bz_filtered, 'bz', out_dir, prefix=args.output_prefix) ug.save_to_unstructured_grid(te_filtered, 'te', out_dir, prefix=args.output_prefix) ug.save_to_unstructured_grid(n_filtered, 'n', out_dir, prefix=args.output_prefix) ug.save_to_unstructured_grid(mach_y_filtered, 'mach_y', out_dir, prefix=args.output_prefix) ug.save_to_unstructured_grid(mach_z_filtered, 'mach_z', out_dir, prefix=args.output_prefix) def make_grid_from_extent(extent, increment): r""" Make rectilinear grid from extent list. """ grid_x_points = int((extent[1] - extent[0])/increment) grid_y_points = int((extent[3] - extent[2])/increment) grid_z_points = int((extent[5] - extent[4])/increment) grid = np.meshgrid(np.linspace(extent[0], extent[1], grid_x_points), np.linspace(extent[2], extent[3], grid_y_points), np.linspace(extent[4], extent[5], grid_z_points)) return grid def filter_unstructured_data(grid, measurements, filter_sigma=None, single_plane=None, filter_truncate=None): r""" Filter data on unstructured grid. Interpolate data to rectilinear grid, filter, resample onto unstructured grid. """ (planes, points_by_plane, values_by_plane) = extract_planes(measurements) if single_plane: planes = [single_plane] filtered_values_by_plane = [] delays = measurements['delays'] for i, plane in enumerate(planes): filtered_by_time_point = interpolate_and_filter_data(points_by_plane[i], values_by_plane[i], grid, delays, filter_sigma=filter_sigma, filter_truncate=filter_truncate) (points, values_by_time_point) = resample_to_unstructured_grid(grid, filtered_by_time_point, points_by_plane[i], delays) filtered_values_by_plane.append(values_by_time_point) filtered_measurements = recombine_planes(planes, points_by_plane, filtered_values_by_plane, delays) return filtered_measurements def extract_planes(measurements): r""" Extract measurement points and values by plane from measurement dictionaries. """ planes = np.unique(measurements['z_out']) points_by_plane = [] values_by_plane = [] measurements['a_out'] = np.asarray(measurements['a_out']) for plane in planes: indexes = np.where(measurements['z_out'] == plane)[0] points = np.stack((measurements['x_out'][indexes], measurements['y_out'][indexes]), axis=1) values = measurements['a_out'][:, indexes] points_by_plane.append(points) values_by_plane.append(values) return planes, points_by_plane, values_by_plane def interpolate_and_filter_data(points, values, grid, delays, filter_sigma=None, filter_truncate=None): r""" Interpolate and filter (with Gaussian) """ filtered_by_time_point = [] for time_point in xrange(delays.size): print 'filter', time_point interpolator = struc_3d.get_interpolator(points, values[time_point]) data = interpolator(grid[0], grid[1]) #print data.size, data.shape #print np.sum(np.isnan(data)) #print 'nan x', np.unique(grid[0][np.isnan(data)]) #print 'nan y', np.unique(grid[1][np.isnan(data)]) #assert np.sum(np.isnan(data)) == 0, 'interpolated data contains nans' if filter_sigma: if filter_truncate: filtered = ndimage.gaussian_filter(data, filter_sigma, truncate=filter_truncate) else: filtered = ndimage.gaussian_filter(data, filter_sigma) else: filtered = data filtered_by_time_point.append(filtered) return filtered_by_time_point def resample_to_unstructured_grid(grid, data, points, delays): r""" Resample filtered data back to measurement grid. """ values_by_time_point = [] grid_points_x = grid[0].ravel() grid_points_y = grid[1].ravel() grid_points = np.stack((grid_points_x, grid_points_y), axis=1) for time_point in xrange(delays.size): print 'resample', time_point grid_values = data[time_point].ravel() interpolator = struc_3d.get_interpolator(grid_points, grid_values) values = interpolator(points[:, 0], points[:, 1]) values_by_time_point.append(values) return points, values_by_time_point def recombine_planes(planes, points_by_plane, values_by_plane, delays): r""" Recombine planes so that ug.save_to_unstructured_grid function can be used. """ measurements = {'delays': delays, 'x_out': points_by_plane[0][:, 0], 'y_out': points_by_plane[0][:, 1], 'z_out': np.ones(points_by_plane[0][:, 0].size)*planes[0], 'a_out': values_by_plane[0]} for i, plane in enumerate(planes[1:]): measurements['x_out'].append(points_by_plane[i][:, 0]) measurements['y_out'].append(points_by_plane[i][:, 1]) measurements['z_out'].append(np.ones(points_by_plane[i].shape[0])*plane) measurements['a_out'].append(values_by_plane[i]) return measurements def parse_args(): r""" """ parser = argparse.ArgumentParser(description='Create unstructured VTK from measurements') parser.add_argument('--bx_extent', help='spatial extent of Bx measurements', nargs=6, type=float, default=[-0.032, 0.028, -0.022, 0.032, 0.249, 0.416]) parser.add_argument('--bx_filter_extent', help="spatial extent of interpolated grid" "on which to filter Bx measurements", nargs=4, type=float, default=[-0.026, 0.025, -0.019, 0.029, 0.249, 0.416]) parser.add_argument('--by_extent', help='spatial extent of By measurements', nargs=6, type=float, default=[-0.032, 0.028, -0.022, 0.032, 0.249, 0.416]) parser.add_argument('--by_filter_extent', help="spatial extent of interpolated grid" "on which to filter Bx measurements", nargs=6, type=float, default=[-0.032, 0.028, -0.022, 0.032, 0.249, 0.416]) parser.add_argument('--bxby_only', help='flag to filter Bx and By only.', default=False, action='store_true') parser.add_argument('--bxby_extent', help='spatial extent of Bx and By measurements', nargs=6, type=float, default=[-0.032, 0.026, -0.06, 0.043, 0.249, 0.416]) parser.add_argument('--bxby_filter_extent', help="spatial extent of interpolated grid" "on which to filter Bx and By", nargs=4, type=float, default=[-0.032, 0.026, -0.06, 0.043, 0.249, 0.416]) parser.add_argument('--bz_extent', help='spatial extent of Bz measurements', nargs=6, type=float, default=[-0.032, 0.028, -0.022, 0.032, 0.249, 0.416]) parser.add_argument('--bz_filter_extent', help="spatial extent of interpolated grid" "on which to filter Bz measurements", nargs=6, type=float, default=[-0.032, 0.028, -0.022, 0.032, 0.249, 0.416]) parser.add_argument('--te_extent', help='spatial extent of temperature measurements', nargs=6, type=float, default=[-0.026, 0.028, -0.03, 0.028, 0.249, 0.416]) parser.add_argument('--te_filter_extent', help="spatial extent of interpolated grid" "on which to filter Te measurements", nargs=6, type=float, default=[-0.026, 0.028, -0.03, 0.028, 0.249, 0.416]) parser.add_argument('--te_bounds', help='sensible bounds for temperature measurements', nargs=2, type=float, default=[1e-3, 1e3]) parser.add_argument('--n_extent', help='spatial extent of density measurements', nargs=6, type=float, default=[-0.026, 0.028, -0.03, 0.028, 0.249, 0.416]) parser.add_argument('--n_filter_extent', help="spatial extent of interpolated grid" "on which to filter n measurements", nargs=6, type=float, default=[-0.026, 0.028, -0.03, 0.028, 0.249, 0.416]) parser.add_argument('--n_bounds', help='sensible bounds for density measurements', nargs=2, type=float, default=[1e3, 1e22]) parser.add_argument('--mach_time_steps', help='# of time steps to extract from one gyration', type=int, default=250) parser.add_argument('--shot_database', help='path to shot database', default='/home/jensv/rsx/jens_analysis/helicity_tools/shots_database/shots.db') parser.add_argument('--table_name', help='name of sql table', default='Shots') parser.add_argument('--min_spectral', help=("minimum spectral energy around gyration" "frequency to include shot"), type=float, default=1.6e-8) parser.add_argument('--mach_y_extent', help='spatial extent of mach measurements to include', nargs=6, type=float, default=[-0.052, 0.052, -0.022, 0.032, 0.249, 0.416]) parser.add_argument('--mach_y_filter_extent', help="spatial extent of interpolated grid" "on which to filter mach_y measurements", nargs=6, type=float, default=[-0.052, 0.052, -0.022, 0.032, 0.249, 0.416]) parser.add_argument('--mach_z_extent', help='spatial extent of mach measurements to include', nargs=6, type=float, default=[-0.032, 0.032, -0.022, 0.032, 0.249, 0.416]) parser.add_argument('--mach_z_filter_extent', help="spatial extent of interpolated grid" "on which to filter Bz measurements", nargs=6, type=float, default=[-0.032, 0.032, -0.022, 0.032, 0.249, 0.416]) parser.add_argument('--mach_bounds', help='bounds on mach measurements', nargs=2, type=float, default=[-10, 10]) parser.add_argument('--output_prefix', help='prefix of output files', default='_filtered_unstructured_') parser.add_argument('--filter_spatial_increment', help='spatial increment of interpolated grid for filtering', default=0.001, type=float) parser.add_argument('--no_filter', help="run with no filter should return same" "unstructured grid as write_measurements_to_unstructured_grid", default=False, action='store_true') parser.add_argument('--filter_sigma', help='standard deviation of gaussian filter', type=float, default=3) parser.add_argument('--filter_truncate', help='truncate Gaussian filter at this multiple of sigma', type=float, default=3) args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() main(args) ``` #### File: jensv/relative_canonical_helicity_tools/interpolate_measurements.py ```python import argparse import numpy as np from scipy.interpolate import LinearNDInterpolator from datetime import date from datetime import datetime import os from write_to_vtk.read_unstructured_vtk import read_unstructured_vtk from write_to_vtk import structured_3d_vtk as struc_3d def main(args): r""" Interpolate unstructured fields to rectilinear grid. """ just_magnetic = args.just_magnetic now = datetime.now().strftime("%Y-%m-%d-%H-%M") out_dir = '../output/' + args.output_prefix + '/' + now + '/' try: os.makedirs(out_dir) except: pass in_dir = args.input_path + args.input_date + '/' in_file = args.input_file_text for time_point in xrange(args.time_steps): print time_point time_str = str(time_point).zfill(4) bx_points, bx_values = read_unstructured_vtk(in_dir + 'bx' + in_file + time_str + '.vtk') by_points, by_values = read_unstructured_vtk(in_dir + 'by' + in_file + time_str + '.vtk') bz_points, bz_values = read_unstructured_vtk(in_dir + 'bz' + in_file + time_str + '.vtk') if not just_magnetic: n_points, n_values = read_unstructured_vtk(in_dir + 'n' + in_file + time_str + '.vtk') te_points, te_values = read_unstructured_vtk(in_dir + 'te' + in_file + time_str + '.vtk') mach_y_points, mach_y_values = read_unstructured_vtk(in_dir + 'mach_y' + in_file + time_str + '.vtk') mach_z_points, mach_z_values = read_unstructured_vtk(in_dir + 'mach_z' + in_file + time_str + '.vtk') bx_interpolator = struc_3d.get_interpolator(bx_points, bx_values) by_interpolator = struc_3d.get_interpolator(by_points, by_values) bz_interpolator = struc_3d.get_interpolator(bz_points, bz_values) if not just_magnetic: te_interpolator = struc_3d.get_interpolator(te_points, te_values) n_interpolator = struc_3d.get_interpolator(n_points, n_values) mach_y_interpolator = struc_3d.get_interpolator(mach_y_points[:, :2], mach_y_values) mach_z_interpolator = struc_3d.get_interpolator(mach_z_points[:, :2], mach_z_values) (x_min, x_max, y_min, y_max, z_min, z_max) = args.joint_extent mesh = np.meshgrid(np.linspace(x_min, x_max, np.ceil((x_max-x_min)/ args.spatial_increment)), np.linspace(y_min, y_max, np.ceil((y_max-y_min)/ args.spatial_increment)), np.linspace(z_min, z_max, np.ceil((z_max-z_min)/ args.spatial_increment))) bx_grad = struc_3d.triangulate_grad(mesh, bx_interpolator, increment=args.derivative_increment) by_grad = struc_3d.triangulate_grad(mesh, by_interpolator, increment=args.derivative_increment) bz_grad = struc_3d.triangulate_grad(mesh, bz_interpolator, increment=args.derivative_increment) if not just_magnetic: te_grad = struc_3d.triangulate_grad(mesh, te_interpolator, increment=args.derivative_increment) n_grad = struc_3d.triangulate_grad(mesh, n_interpolator, increment=args.derivative_increment) plane_mesh = [mesh[0][:, :, 0], mesh[1][:, :, 0]] mach_y_grad_plane = struc_3d.triangulate_grad(plane_mesh, mach_y_interpolator, increment=args.derivative_increment) mach_z_grad_plane = struc_3d.triangulate_grad(plane_mesh, mach_z_interpolator, increment=args.derivative_increment) bx, by, bz = struc_3d.vector_on_mesh((bx_interpolator, by_interpolator, bz_interpolator), mesh) bx, by, bz = struc_3d.add_vacuum_field([bx, by, bz], vacuum_field=args.bias_field_magnitude) if not just_magnetic: te = struc_3d.scalar_on_mesh(te_interpolator, mesh) n = struc_3d.scalar_on_mesh(n_interpolator, mesh) mach_y_plane = struc_3d.scalar_on_mesh(mach_y_interpolator, plane_mesh) mach_z_plane= struc_3d.scalar_on_mesh(mach_z_interpolator, plane_mesh) mach_y = np.repeat(mach_y_plane[:, :, np.newaxis], mesh[0].shape[2], axis=2) mach_z = np.repeat(mach_z_plane[:, :, np.newaxis], mesh[0].shape[2], axis=2) mach_y_dx = np.repeat(mach_y_grad_plane[0][:, :, np.newaxis], mesh[0].shape[2], axis=2) mach_y_dy = np.repeat(mach_y_grad_plane[1][:, :, np.newaxis], mesh[0].shape[2], axis=2) mach_y_dz = np.zeros(mesh[0].shape) mach_z_dx = np.repeat(mach_z_grad_plane[0][:, :, np.newaxis], mesh[0].shape[2], axis=2) mach_z_dy = np.repeat(mach_z_grad_plane[0][:, :, np.newaxis], mesh[0].shape[2], axis=2) mach_z_dz = np.zeros(mesh[0].shape) fields = ([bx] + [by] + [bz] + [n] + [te] + [mach_y] + [mach_z] + list(bx_grad) + list(by_grad) + list(bz_grad) + list(n_grad) + list(te_grad) + [mach_y_dx] + [mach_y_dy] + [mach_y_dz] + [mach_z_dx] + [mach_z_dy] + [mach_z_dz]) quantity_names = ['B_x', 'B_y', 'B_z', 'n', 'Te', 'mach_y', 'mach_z', 'B_x_dx', 'B_x_dy', 'B_x_dz', 'B_y_dx', 'B_y_dy', 'B_y_dz', 'B_z_dx', 'B_z_dy', 'B_z_dz', 'n_dx', 'n_dy', 'n_dz', 'Te_dx', 'Te_dy', 'Te_dz', 'mach_y_dx', 'mach_y_dy', 'mach_y_dz', 'mach_z_dx', 'mach_z_dy', 'mach_z_dz'] else: fields = ([bx] + [by] + [bz] + list(bx_grad) + list(by_grad) + list(bz_grad)) quantity_names = ['B_x', 'B_y', 'B_z', 'B_x_dx', 'B_x_dy', 'B_x_dz', 'B_y_dx', 'B_y_dy', 'B_y_dz', 'B_z_dx', 'B_z_dy', 'B_z_dz'] x, y, z, variables = struc_3d.prepare_for_rectilinear_grid(mesh, fields, quantity_names) vtk_file_path = out_dir + args.output_prefix struc_3d.write_fields_to_rectilinear_grid(vtk_file_path, x, y, z, variables, time_point) def parse_args(): r""" Read arguments. """ parser = argparse.ArgumentParser(description=("Create VTK files of" "interpolated measurements")) parser.add_argument('--input_path', help='path to input files', default='../output/boxed_unstructured_measurements/') parser.add_argument('--input_date', help='time stamp of input files', default='2017-04-04-13-44') parser.add_argument('--input_file_text', help='input file name', default='_boxed_unstructured_') parser.add_argument('--spatial_increment', help='Spatial increment of output file grids', type=float, default=0.001) parser.add_argument('--derivative_increment', help=("spatial increment used to determine" "tetrahedron derivative of Delaunay"), type=float, default=0.0001) parser.add_argument('--joint_extent', help='overlapping spatial extent of all parameters', nargs=6, type=float, default=[-0.022, 0.024, -0.02, 0.029, 0.249, 0.416]) parser.add_argument('--output_prefix', help='prefix of output files', default='data_interp_to_rect_grid') parser.add_argument('--bias_field_magnitude', help='magnitude of axial bias magnetic field', type=float, default=0.02) parser.add_argument('--time_steps', help='number of time steps', type=int, default=250) parser.add_argument('--just_magnetic', help='only interpolate bdot measurements', action='store_true', default=False) #parser.add_argument('--just_one_time_step', # help='only interpolate first time step', # action='store_true', default=False) args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() main(args) ``` #### File: relative_canonical_helicity_tools/invert_curl/invert_curl.py ```python import numpy as np import scipy.fftpack as fft import sys sys.path.append('../laplace_solver/') import laplace_solver as lsolve from scipy.integrate import cumtrapz def fourier_inverse_curl(Bx, By, Bz, x, y, z, method='fourier', pad=True): r""" Invert curl with pseudo-spectral method described in MacKay 2006. """ shape = Bx.shape Bx_copy = np.array(Bx) By_copy = np.array(By) Bz_copy = np.array(Bz) if pad: Bx = np.pad(Bx, pad_width=zip(shape, shape), mode='reflect') By = np.pad(By, pad_width=zip(shape, shape), mode='reflect') Bz = np.pad(Bz, pad_width=zip(shape, shape), mode='reflect') kx1 = np.zeros(Bx[0, :, 0].size) ky1 = np.zeros(By[:, 0, 0].size) kz1 = np.zeros(Bz[0, 0, :].size) dx = x[0, 1, 0] - x[0, 0, 0] dy = y[1, 0, 0] - y[0, 0, 0] dz = z[0, 0, 1] - z[0, 0, 0] nx = kx1.size ny = ky1.size nz = kz1.size kx1 = fft.fftfreq(nx, dx) ky1 = fft.fftfreq(ny, dy) kz1 = fft.fftfreq(nz, dz) kx, ky, kz = np.meshgrid(kx1, ky1, kz1) if method == 'fourier': Bx_k = np.fft.fftn(Bx) By_k = np.fft.fftn(By) Bz_k = np.fft.fftn(Bz) if method == 'cosine': Bx_k = lsolve.dct_3d(shape, Bx) By_k = lsolve.dct_3d(shape, By) Bz_k = lsolve.dct_3d(shape, Bz) k_squared = kx**2. + ky**2. + kz**2. if method == 'fourier': Ax_k = 1j*(ky*Bz_k - kz*By_k)/k_squared Ay_k = 1j*(kz*Bx_k - kx*Bz_k)/k_squared Az_k = 1j*(kx*By_k - ky*Bx_k)/k_squared if method == 'cosine': Ax_k = (ky*Bz_k - kz*By_k)/k_squared Ay_k = (kz*Bx_k - kx*Bz_k)/k_squared Az_k = (kx*By_k - ky*Bx_k)/k_squared Ax_k[0, 0, 0] = 0. Ay_k[0, 0, 0] = 0. Az_k[0, 0, 0] = 0. if method == 'fourier': Ax = np.real(np.fft.ifftn(Ax_k)) Ay = np.real(np.fft.ifftn(Ay_k)) Az = np.real(np.fft.ifftn(Az_k)) if method == 'cosine': Ax = lsolve.idct_3d(shape, Ax_k) Ay = lsolve.idct_3d(shape, Ay_k) Az = lsolve.idct_3d(shape, Az_k) if pad: Ax = Ax[shape[0]:shape[0]*2, shape[1]:shape[1]*2, shape[2]:shape[2]*2] Ay = Ay[shape[0]:shape[0]*2, shape[1]:shape[1]*2, shape[2]:shape[2]*2] Az = Az[shape[0]:shape[0]*2, shape[1]:shape[1]*2, shape[2]:shape[2]*2] B0_x = np.mean(Bx_copy) B0_y = np.mean(By_copy) B0_z = np.mean(Bz_copy) A0_x = -(y*B0_z - z*B0_y)/2. A0_y = -(z*B0_x - x*B0_z)/2. A0_z = -(x*B0_y - y*B0_x)/2. Ax = Ax + A0_x Ay = Ay + A0_y Az = Az + A0_z return [Ax, Ay, Az] def devore_invert_curl(mesh, b_field, with_z=True): r""" """ b_field = np.asarray(b_field) dz = mesh[2][0, 0, 1] - mesh[2][0, 0, 0] z_length = mesh[0].shape[2] A_0x, A_0y = devore_A_0(mesh, b_field) A_x = np.expand_dims(A_0x, 2) A_y = np.expand_dims(A_0y, 2) A_x = np.repeat(A_x, z_length, axis=2) A_y = np.repeat(A_y, z_length, axis=2) A_x += cumtrapz(b_field[1], axis=2, dx=dz, initial=0) A_y -= cumtrapz(b_field[0], axis=2, dx=dz, initial=0) if with_z: A_z = np.zeros(mesh[0].shape) return A_x, A_y, A_z else: return A_x, A_y def devore_A_0(mesh, b_field): r""" """ dx = mesh[0][0, 1, 0] - mesh[0][0, 0, 0] dy = mesh[1][1, 0, 0] - mesh[1][0, 0, 0] A_0x = -0.5*cumtrapz(b_field[2, :, :, 0], axis=0, dx=dy, initial=0) A_0y = 0.5*cumtrapz(b_field[2, :, :, 0], axis=1, dx=dx, initial=0) return A_0x, A_0y ``` #### File: relative_canonical_helicity_tools/read_from_shotlog/read_from_shotlog.py ```python import pandas as pd import sqlite3 def read_and_store_shotlog(shots, database, start=False): r""" """ path = '/Users/vonderlinden2/rsx_drive/RSX/MDS+/Shotlogs/shotlog_2013-05-30.1.xlsx' shotlog1 = pd.read_excel(path, sheetname='shot log', index_col=3) path = '/Users/vonderlinden2/rsx_drive/RSX/MDS+/Shotlogs/shotlog_2013-05-02.8.xlsx' shotlog2 = pd.read_excel(path, sheetname='shot log', index_col=3) path = '/Users/vonderlinden2/rsx_drive/RSX/MDS+/Shotlogs/shotlog_2013-03-08.3.xlsx' shotlog3 = pd.read_excel(path, sheetname='shot log', index_col=3) path = '/Users/vonderlinden2/rsx_drive/RSX/MDS+/Shotlogs/shotlog_2012-09-27.xlsx' shotlog4 = pd.read_excel(path, sheetname='shot log', index_col=3) path = '/Users/vonderlinden2/rsx_drive/RSX/MDS+/Shotlogs/shotlog_2012-09-14_cumulative.xlsx' shotlog5 = pd.read_excel(path, sheetname='shot log', index_col=3) shotlogs = [shotlog1, shotlog2, shotlog3, shotlog4, shotlog5] for shot in shots: print "Writing Shot Settings %i" % shot rsx_settings = read_rsx_settings_shotlog(shot, shotlogs) store_rsx_settings_sql(shot, rsx_settings, database, start=start) def read_rsx_settings_shotlog(shot, shotlogs): r""" Return a dictionary with all mach probe settings from the shotlog for a specific shot number. """ rsx_settings = {} if 17344 <= shot <= 17622: shotlog_num = 0 path = '/Users/vonderlinden2/rsx_drive/RSX/MDS+/Shotlogs/shotlog_2013-05-30.1.xlsx' column = {'mach_orientation': 'Unnamed: 17', 'mach_orientation_read': 'Unnamed: 18', 'mach_x': 'Unnamed: 19', 'mach_y': 'Unnamed: 20', 'mach_y_read': 'Unnamed: 21', 'mach_z': 'Unnamed: 22', 'bdot10_orientation': 'Unnamed: 23', 'bdot10_x': 'Unnamed: 24', 'bdot10_y': 'Unnamed: 25', 'bdot10_z': 'Unnamed: 26', 'tp1_insertion': 'Unnamed: 27', 'tp1_x': 'Unnamed: 28', 'tp1_y': 'Unnamed: 29', 'tp1_z': 'Unnamed: 30', 'shotlog': 'Unnamed: 57'} elif 16594 <= shot <= 17343: shotlog_num = 1 path = '/Users/vonderlinden2/rsx_drive/RSX/MDS+/Shotlogs/shotlog_2013-05-02.8.xlsx' column = {'bdot3a_orientation': 'Unnamed: 17', 'bdot3a_x': 'Unnamed: 18', 'bdot3a_y': 'Unnamed: 19', 'bdot3a_z': 'Unnamed: 20', 'bdot10_orientation': 'Unnamed: 21', 'bdot10_x': 'Unnamed: 22', 'bdot10_y': 'Unnamed: 23', 'bdot10_z': 'Unnamed: 24', 'tp1_insertion': 'Unnamed: 25', 'tp1_x': 'Unnamed: 26', 'tp1_y': 'Unnamed: 27', 'tp1_z': 'Unnamed: 28', 'mach_insertion': 'Unnamed: 37', 'mach_x': 'Unnamed: 38', 'mach_x_read': 'Unnamed: 39', 'mach_orientation': 'Unnamed: 40', 'mach_orientation_read': 'Unnamed: 41', 'mach_y': 'Unnamed: 42', 'mach_z': 'Unnamed: 43', 'shotlog': 'Unnamed: 62'} elif 16057 <= shot <= 16578: shotlog_num = 2 path = '/Users/vonderlinden2/rsx_drive/RSX/MDS+/Shotlogs/shotlog_2013-03-08.3.xlsx' column = {'bdot3a_orientation': 'Unnamed: 17', 'bdot3a_x': 'Unnamed: 18', 'bdot3a_y': 'Unnamed: 19', 'bdot3a_z': 'Unnamed: 20', 'bdot10_orientation': 'Unnamed: 21', 'bdot10_x': 'Unnamed: 22', 'bdot10_y': 'Unnamed: 23', 'bdot10_z': 'Unnamed: 24', 'tp1_insertion': 'Unnamed: 25', 'tp1_x': 'Unnamed: 26', 'tp1_y': 'Unnamed: 27', 'tp1_z': 'Unnamed: 28', 'tp2_insertion': 'Unnamed: 37', 'tp2_x': 'Unnamed: 38', 'tp2_y': 'Unnamed: 39', 'tp2_z': 'Unnamed: 40', 'shotlog': 'Unnamed: 59'} elif 15927 < shot < 16018: shotlog_num = 3 path = '/Users/vonderlinden2/rsx_drive/RSX/MDS+/Shotlogs/shotlog_2012-09-27.xlsx' column = {'bdot3a_orientation': 'Unnamed: 17', 'bdot3a_x': 'Unnamed: 18', 'bdot3a_y': 'Unnamed: 19', 'bdot3a_z': 'Unnamed: 20', 'bdot10_orientation': 'Unnamed: 21', 'bdot10_x': 'Unnamed: 22', 'bdot10_y': 'Unnamed: 23', 'bdot10_z': 'Unnamed: 24', 'mach_orientation': 'Unnamed: 25', 'mach_x': 'Unnamed: 26', 'mach_y': 'Unnamed: 27', 'mach_z': 'Unnamed: 28', 'tp2_insertion': 'Unnamed: 37', 'tp2_x': 'Unnamed: 38', 'tp2_y': 'Unnamed: 39', 'tp2_z': 'Unnamed: 40', 'shotlog': 'Unnamed: 59'} elif 15249 < shot < 15928: shotlog_num = 4 path = '/Users/vonderlinden2/rsx_drive/RSX/MDS+/Shotlogs/shotlog_2012-09-14_cumulative.xlsx' column = {'bdot3a_orientation': 'Unnamed: 17', 'bdot3a_x': 'Unnamed: 18', 'bdot3a_y': 'Unnamed: 19', 'bdot3a_z': 'Unnamed: 20', 'bdot10_orientation': 'Unnamed: 21', 'bdot10_x': 'Unnamed: 22', 'bdot10_y': 'Unnamed: 23', 'bdot10_z': 'Unnamed: 24', 'tp1_insertion': 'Unnamed: 25', 'tp1_x': 'Unnamed: 26', 'tp1_y': 'Unnamed: 27', 'tp1_z': 'Unnamed: 28', 'tp2_insertion': 'Unnamed: 37', 'tp2_x': 'Unnamed: 38', 'tp2_y': 'Unnamed: 39', 'tp2_z': 'Unnamed: 40', 'shotlog': 'Unnamed: 59'} else: print 'No column dictionary defined for %i' % shot return None if shot in shotlogs[shotlog_num]['Unnamed: 0'].index: for key in column.keys(): rsx_settings[key] = shotlogs[shotlog_num][column[key]][shot] rsx_settings['exists_in_shotlog'] = True else: print 'Shot %i not in excel spreadsheet.' % shot rsx_settings['exists_in_shotlog'] = False return rsx_settings def store_rsx_settings_sql(shot, rsx_settings, database, start=False): r""" Write contents of one row (shot) from shotlog sheet to sql database. """ connection = sqlite3.connect(database) cursor = connection.cursor() if start: if rsx_settings: key_string = '(' keys = rsx_settings.keys() for key in keys[:-1]: key_string += ":" + key + ", " key_string += ":" + keys[-1] + ", :shot)" rsx_settings.update({'shot': shot}) cursor.execute("INSERT INTO Shots ( " + str(keys + ['shot'])[1:-1].replace("'", "") + ") VALUES " + key_string + ";", rsx_settings) else: cursor.execute("INSERT INTO Shots (shot, exists_in_shotlog) " + "VALUES (:shot, :exists);", {'shot': shot, 'exists': False}) else: if rsx_settings: for key in rsx_settings.keys(): cursor.execute("UPDATE Shots SET " + key + " = :value " + "WHERE shot = :shot;", {'value': rsx_settings[key], 'shot': shot}) else: cursor.execute("UPDATE Shots SET exists_in_shotlog = :exists " + "WHERE shot = :shot;", {'shot': shot, 'exists': False}) connection.commit() cursor.close() connection.close() ``` #### File: relative_canonical_helicity_tools/read_from_sql/read_from_sql.py ```python import sqlite3 def read_all_rows(condition, database, table): r""" Return all rows from sql table that match condition. """ connection = sqlite3.connect(database) connection.row_factory = sqlite3.Row cursor = connection.cursor() cursor.execute('SELECT * FROM ' + table + ' WHERE ' + condition) rows = cursor.fetchall() cursor.close() connection.close() return rows def cursor_with_rows(condition, database, table): r""" Return cursor object which can iterate through rows matching condition. """ connection = sqlite3.connect(database) connection.row_factory = sqlite3.Row cursor = connection.cursor() cursor.execute('SELECT * FROM ' + table + ' WHERE ' + condition) return cursor, connection def close(connection, cursor): r""" Close connection and cursor. """ cursor.close() connection.close() ``` #### File: jensv/relative_canonical_helicity_tools/vis_canonical_fluxtubes.py ```python from datetime import datetime as date import numpy as np import os from scipy.constants import elementary_charge, proton_mass from glob import glob import sys visit_path1 = "/home/jensv/visit/visit2_10_3.linux-x86_64/2.10.3/linux-x86_64/lib/site-packages" visit_path2 = "/home/jensv/visit/visit2_10_3.linux-x86_64/bin/" sys.path.append(visit_path1) sys.path.append(visit_path2) os.environ["PATH"] += os.pathsep + visit_path1 os.environ["PATH"] += os.pathsep + visit_path2 import visit import argparse tan = (209, 178, 111, 255) olive = (110, 117, 14, 255) dim_grey =(105, 105, 105, 255) black = (0, 0, 0, 255) dark_grey = (169, 169, 169, 255) red = (255, 0, 0, 255) dark_red = (84, 0, 0, 255) green = (0, 154, 0, 255) navy = (0, 0, 128, 255) aqua = (0, 255, 255, 255) def define_expressions(visit): r""" Define Visit expressions. """ visit.DefineVectorExpression("B", "{B_x, B_y, B_z}") visit.DefineVectorExpression("B_norm", "{B_norm_x, B_norm_y, " "B_norm_z}") visit.DefineVectorExpression("B_perp", "{B_x, B_y, 0}") visit.DefineVectorExpression("B_para", "{0, 0, B_z}") visit.DefineScalarExpression("B_para_scalar", "B_z") visit.DefineVectorExpression("Omega_e_times_density", "B*n") visit.DefineVectorExpression("A_vacuum", "{A_vacuum_x, A_vacuum_y, 0}") visit.DefineVectorExpression("A", "{A_x, A_y, A_z}") visit.DefineVectorExpression("J_smooth", "{j_x, j_y, j_z}") visit.DefineScalarExpression("J_smooth_mag", "sqrt(j_x^2 + j_y^2 + j_z^2)") visit.DefineVectorExpression("J_smooth_perp", "{j_x, j_y, 0}") visit.DefineVectorExpression("J_smooth_para", "{0, 0, j_z}") visit.DefineVectorExpression("J_smooth_para_mag", "j_z") visit.DefineVectorExpression("J_raw", "{j_raw_x, j_raw_y, j_raw_z}") visit.DefineScalarExpression("J_raw_mag", "sqrt(j_raw_x^2 +" + "j_raw_y^2 +" + "j_raw_z^2)") visit.DefineVectorExpression("J_raw_perp", "{j_raw_x, j_raw_y, 0}") visit.DefineVectorExpression("J_raw_para", "{0, 0, j_raw_z}") visit.DefineScalarExpression("divergence_B", "divergence(B)") visit.DefineScalarExpression("divergence_Omega_i_raw_plus", "divergence(Omega_i_raw_plus)") visit.DefineScalarExpression("divergence_Omega_i_plus", "divergence(Omega_i_plus)") visit.DefineVectorExpression("J_raw_filtered_by_Te", "J_raw * Te_raw_normalized") visit.DefineVectorExpression("J_raw_filtered_by_Te^2", "J_raw * Te_raw_normalized^2") visit.DefineVectorExpression("J_raw_filtered_by_Te^3", "J_raw * Te_raw_normalized^3") visit.DefineVectorExpression("J_raw_filtered_by_Te^4", "J_raw * Te_raw_normalized^4") visit.DefineVectorExpression("J_raw_filtered_by_Te_smooth", "J_raw * Te_smooth_normalized") visit.DefineVectorExpression("J_raw_filtered_by_Te_smooth^2", "J_raw * Te_smooth_normalized^2") visit.DefineVectorExpression("J_raw_filtered_by_Te_smooth^3", "J_raw * Te_smooth_normalized^3") visit.DefineVectorExpression("J_raw_filtered_by_Te_smooth^4", "J_raw * Te_smooth_normalized^4") visit.DefineVectorExpression("u_i_plus", "{u_i_x_plus, u_i_y, u_i_z}") visit.DefineVectorExpression("u_i_plus_perp", "{dot(u_i_plus, {1, 0, 0}), dot(u_i_plus, " "{0, 1, 0}), 0}") visit.DefineVectorExpression("u_i_plus_para", "{0, 0, dot(u_i_plus, {0, 0, 1})}") visit.DefineVectorExpression("omega_i_plus", "{w_i_x_plus, w_i_y_plus, w_i_z_plus}") visit.DefineVectorExpression("omega_i_plus_perp", "{dot(omega_i_plus, {1, 0, 0})," "dot(omega_i_plus, {0, 1, 0}), 0})") visit.DefineVectorExpression("omega_i_plus_para", "{0, 0, dot(omega_i_plus, " "{0, 0, 1})}") visit.DefineVectorExpression("omega_i_raw_plus", "{w_i_raw_x_plus, w_i_raw_y_plus, w_i_raw_z_plus}") visit.DefineVectorExpression("omega_i_raw_plus_perp", "{dot(omega_i_raw_plus, {1, 0, 0})," "dot(omega_i_raw_plus, {0, 1, 0}), 0})") visit.DefineVectorExpression("omega_i_raw_plus_para", "{0, 0, dot(omega_i_raw_plus, " "{0, 0, 1})}") visit.DefineVectorExpression("Omega_i_plus", str(elementary_charge) + "*B +" + str(proton_mass) + "*omega_i_plus") visit.DefineVectorExpression("Omega_i_plus_perp", "{dot(Omega_i_plus, {1, 0, 0}), " "dot(Omega_i_plus, {0, 1, 0}), 0}") visit.DefineVectorExpression("Omega_i_plus_para", "{0, 0, dot(Omega_i_plus, " "{0, 0, 1})}") visit.DefineScalarExpression("Omega_i_plus_para_scalar", "dot(Omega_i_plus, {0, 0, 1})") visit.DefineVectorExpression("Omega_i_raw_plus", str(elementary_charge) + "*B +" + str(proton_mass) + "*omega_i_raw_plus") visit.DefineVectorExpression("Omega_i_raw_plus_perp", "{dot(Omega_i_raw_plus, {1, 0, 0}), " "dot(Omega_i_raw_plus, {0, 1, 0}), 0}") visit.DefineVectorExpression("Omega_i_raw_plus_para", "{0, 0, dot(Omega_i_raw_plus, " "{0, 0, 1})}") visit.DefineScalarExpression("Omega_i_raw_plus_para_scalar", "dot(Omega_i_raw_plus, {0, 0, 1})") visit.DefineVectorExpression("Omega_i_plus_density_dependence", "n*(%e *B + %e *omega_i_plus) +" "cross(gradient(n), %e *A + %e * u_i_plus)" % (elementary_charge, proton_mass, elementary_charge, proton_mass)) visit.DefineVectorExpression("Omega_i_plus_density_dependence_perp", "{dot(Omega_i_plus_density_dependence, {1, 0, 0}), " "dot(Omega_i_plus_density_dependence, {0, 1, 0}), 0}") visit.DefineVectorExpression("Omega_i_plus_density_dependence_para", "{0, 0, dot(Omega_i_plus_density_dependence, " "{0, 0, 1})}") visit.DefineScalarExpression("Omega_i_plus_density_dependence_para_scalar", "dot(Omega_i_plus_density_dependence, {0, 0, 1})") visit.DefineVectorExpression("Omega_i_raw_plus_density_dependence", "n*(%e *B + %e *omega_i_raw_plus) +" " cross(gradient(n), %e *A + %e * u_i_plus)" % (elementary_charge, proton_mass, elementary_charge, proton_mass)) visit.DefineVectorExpression("Omega_i_raw_plus_density_dependence_perp", "{dot(Omega_i_raw_plus_density_dependence, {1, 0, 0}), " "dot(Omega_i_raw_plus_density_dependence, {0, 1, 0}), 0}") visit.DefineVectorExpression("Omega_i_raw_plus_density_dependence_para", "{0, 0, dot(Omega_i_raw_plus_density_dependence, " "{0, 0, 1})}") visit.DefineScalarExpression("Omega_i_raw_plus_density_dependence_para_scalar", "dot(Omega_i_raw_plus_density_dependence, {0, 0, 1})") visit.DefineVectorExpression("Omega_i_plus_times_density", "n*(%e *B + %e *omega_i_plus)" % (elementary_charge, proton_mass)) visit.DefineVectorExpression("Omega_i_plus_times_density_perp", "{dot(Omega_i_plus_times_density, {1, 0, 0}), " "dot(Omega_i_plus_times_density, {0, 1, 0}), 0}") visit.DefineVectorExpression("Omega_i_plus_times_density_para", "{0, 0, dot(Omega_i_plus_density_dependence, " "{0, 0, 1})}") visit.DefineScalarExpression("Omega_i_plus_times_density_para_scalar", "dot(Omega_i_plus_times_density, {0, 0, 1})") visit.DefineVectorExpression("Omega_i_raw_plus_times_density", "n*(%e *B + %e *omega_i_raw_plus)" % (elementary_charge, proton_mass)) visit.DefineVectorExpression("Omega_i_raw_plus_times_density_perp", "{dot(Omega_i_raw_plus_density_dependence, {1, 0, 0}), " "dot(Omega_i_raw_plus_times_density, {0, 1, 0}), 0}") visit.DefineVectorExpression("Omega_i_raw_plus_times_density_para", "{0, 0, dot(Omega_i_raw_plus_times_density, " "{0, 0, 1})}") visit.DefineScalarExpression("Omega_i_raw_plus_times_density_para_scalar", "dot(Omega_i_raw_plus_times_density, {0, 0, 1})") ## Omega_e density dependence ## visit.DefineVectorExpression("Omega_e_density_dependence", "n*B + cross(gradient(n), A)") visit.DefineVectorExpression("Omega_e_density_dependence_perp", "{dot(Omega_e_density_dependence, {1, 0, 0}), " "dot(Omega_e_density_dependence, {0, 1, 0}), 0}") visit.DefineVectorExpression("Omega_e_density_dependence_para", "{0, 0, dot(Omega_e_plus_density_dependence, " "{0, 0, 1})}") visit.DefineScalarExpression("Omega_e_density_dependence_para_scalar", "dot(Omega_e_density_dependence, {0, 0, 1})") ## u_i_x(t) = u_i_y(t MINUS tau*0.25) ## visit.DefineVectorExpression("u_i_minus", "{u_i_x_minus, u_i_y, u_i_z}") visit.DefineVectorExpression("u_i_minus_perp", "{dot(u_i_minus, {1, 0, 0}), dot(u_i_minus, " "{0, 1, 0}), 0}") visit.DefineVectorExpression("u_i_minus_para", "{0, 0, dot(u_i_minus, {0, 0, 1})}") visit.DefineScalarExpression("u_i_minus_para_scalar", "dot(u_i_minus, {0, 0, 1})") visit.DefineVectorExpression("omega_i_minus", "{w_i_minus_x, w_i_minus_y, w_i_minus_z}") visit.DefineVectorExpression("omega_i_minus_perp", "{dot(omega_i_minus, {1, 0, 0})," "dot(omega_i_minus, {0, 1, 0}), 0})") visit.DefineVectorExpression("omega_i_minus_para", "{0, 0, dot(omega_i_minus, " "{0, 0, 1})}") visit.DefineScalarExpression("omega_i_minus_para_scalar", "dot(omega_i_minus, " "{0, 0, 1})") visit.DefineVectorExpression("omega_i_raw_minus", "{w_i_raw_x_minus, w_i_raw_y_minus, w_i_raw_z_minus}") visit.DefineVectorExpression("omega_i_minus_raw_perp", "{dot(omega_i_raw_minus, {1, 0, 0})," "dot(omega_i_raw_minus, {0, 1, 0}), 0})") visit.DefineVectorExpression("omega_i_minus_raw_para", "{0, 0, dot(omega_i_raw_minus, " "{0, 0, 1})}") visit.DefineScalarExpression("omega_i_raw_minus_para_scalar", "dot(omega_i_raw_minus, " "{0, 0, 1})") visit.DefineVectorExpression("Omega_i_minus", str(elementary_charge) + "*B +" + str(proton_mass) + "*omega_i_minus") visit.DefineVectorExpression("Omega_i_minus_perp", "{dot(Omega_i_minus, {1, 0, 0}), " "dot(Omega_i_minus, {0, 1, 0}), 0}") visit.DefineVectorExpression("Omega_i_minus_para", "{0, 0, dot(Omega_i_minus, " "{0, 0, 1})}") visit.DefineScalarExpression("Omega_i_minus_para_scalar", "dot(Omega_i_minus, {0, 0, 1})") visit.DefineVectorExpression("Omega_i_raw_minus", str(elementary_charge) + "*B +" + str(proton_mass) + "*omega_i_raw_minus") visit.DefineVectorExpression("Omega_i_raw_minus_perp", "{dot(Omega_i_raw_minus, {1, 0, 0}), " "dot(Omega_i_raw_minus, {0, 1, 0}), 0}") visit.DefineVectorExpression("Omega_i_raw_minus_para", "{0, 0, dot(Omega_i_raw_minus, " "{0, 0, 1})}") visit.DefineScalarExpression("Omega_i_raw_minus_para_scalar", "dot(Omega_i_raw_minus, {0, 0, 1})") visit.DefineVectorExpression("Omega_i_minus_density_dependence", "n*(%e *B + %e *omega_i_minus) +" " cross(gradient(n), %e *A + %e * u_i_minus)" % (elementary_charge, proton_mass, elementary_charge, proton_mass)) visit.DefineVectorExpression("Omega_i_minus_density_dependence_perp", "{dot(Omega_i_minus_density_dependence, {1, 0, 0}), " "dot(Omega_i_minus_density_dependence, {0, 1, 0}), 0}") visit.DefineVectorExpression("Omega_i_minus_density_dependence_para", "{0, 0, dot(Omega_i_minus_density_dependence, " "{0, 0, 1})}") visit.DefineScalarExpression("Omega_i_minus_density_dependence_para_scalar", "dot(Omega_i_minus_density_dependence, {0, 0, 1})") visit.DefineVectorExpression("Omega_i_raw_minus_density_dependence", "n*(%e *B + %e *omega_i_raw_minus) +" " cross(gradient(n), %e *A + %e * u_i_minus)" % (elementary_charge, proton_mass, elementary_charge, proton_mass)) visit.DefineVectorExpression("Omega_i_raw_minus_density_dependence_perp", "{dot(Omega_i_raw_minus_density_dependence, {1, 0, 0}), " "dot(Omega_i_raw_minus_density_dependence, {0, 1, 0}), 0}") visit.DefineVectorExpression("Omega_i_raw_minus_density_dependence_para", "{0, 0, dot(Omega_i_raw_minus_density_dependence, " "{0, 0, 1})}") visit.DefineScalarExpression("Omega_i_raw_minus_density_dependence_para_scalar", "dot(Omega_i_raw_minus_density_dependence, {0, 0, 1})") visit.DefineVectorExpression("Omega_i_minus_times_density", "n*(%e *B + %e *omega_i_minus)" % (elementary_charge, proton_mass)) visit.DefineVectorExpression("Omega_i_minus_times_density_perp", "{dot(Omega_i_plus_times_density, {1, 0, 0}), " "dot(Omega_i_minus_times_density, {0, 1, 0}), 0}") visit.DefineVectorExpression("Omega_i_minus_times_density_para", "{0, 0, dot(Omega_i_plus_density_dependence, " "{0, 0, 1})}") visit.DefineScalarExpression("Omega_i_minus_times_density_para_scalar", "dot(Omega_i_minus_times_density, {0, 0, 1})") visit.DefineVectorExpression("Omega_i_raw_minus_times_density", "n*(%e *B + %e *omega_i_raw_minus)" % (elementary_charge, proton_mass)) visit.DefineVectorExpression("Omega_i_raw_minus_times_density_perp", "{dot(Omega_i_raw_minus_density_dependence, {1, 0, 0}), " "dot(Omega_i_raw_minus_times_density, {0, 1, 0}), 0}") visit.DefineVectorExpression("Omega_i_raw_minus_times_density_para", "{0, 0, dot(Omega_i_raw_minus_times_density, " "{0, 0, 1})}") visit.DefineScalarExpression("Omega_i_raw_minus_times_density_para_scalar", "dot(Omega_i_raw_minus_times_density, {0, 0, 1})") ## Canonical momentum fields visit.DefineVectorExpression("P_i", "%e*A + %e*u_i_plus" % (elementary_charge, proton_mass)) visit.DefineVectorExpression("P_i_times_density", "n*P_i") ## Reference fields visit.DefineVectorExpression("B_ref", "{B_ref_x, B_ref_y, B_ref_z}") visit.DefineVectorExpression("A_ref", "{A_ref_x, A_ref_y, A_ref_z}") visit.DefineVectorExpression("u_i_ref", "{u_i_ref_x, u_i_ref_y, u_i_ref_z}") visit.DefineVectorExpression("omega_i_ref", "{omega_i_ref_x, omega_i_ref_y, omega_i_ref_z}") #visit.DefineVectorExpression("u_i_ref_raw_vort", # "{u_i_raw_ref_x, u_i_raw_ref_y, u_i_raw_ref_z}") visit.DefineVectorExpression("omega_i_ref_raw", "{w_i_raw_ref_x, w_i_raw_ref_y, w_i_raw_ref_z}") visit.DefineVectorExpression("P_i_ref", "%e*A_ref + %e*u_i_ref" % (elementary_charge, proton_mass)) visit.DefineVectorExpression("P_i_ref_times_density", "n*P_i_ref") visit.DefineVectorExpression("P_i_ref_raw_vort", "%e*A_ref + %e*u_i_ref_raw_vort" % (elementary_charge, proton_mass)) visit.DefineVectorExpression("P_i_ref_raw_vort_times_density", "n*P_i_ref_raw_vort") visit.DefineVectorExpression("Omega_i_ref", "%e*B_ref + %e*omega_i_ref_raw" % (elementary_charge, proton_mass)) visit.DefineVectorExpression("Omega_i_ref_times_density", "n*Omega_i_ref") visit.DefineVectorExpression("Omega_i_ref_density_dependence", "n*(%e *B_ref + %e *omega_i_ref) +" "cross(gradient(n), %e *A_ref + %e * u_i_ref)" % (elementary_charge,proton_mass, elementary_charge, proton_mass)) visit.DefineVectorExpression("Omega_i_ref_raw_vort", "%e*B_ref + %e*omega_i_ref_raw" % (elementary_charge, proton_mass)) visit.DefineVectorExpression("Omega_i_ref_raw_vort_time_density", "n*Omega_i_ref_raw_vort") visit.DefineVectorExpression("Omega_i_ref_raw_vort_density_dependence", "n*(%e *B_ref + %e *omega_i_ref_raw) +" "cross(gradient(n), %e *A_ref + %e * u_i_ref_raw_vort)" % (elementary_charge,proton_mass, elementary_charge, proton_mass)) ## Relative fields visit.DefineVectorExpression("B_rel", "B + B_ref") visit.DefineVectorExpression("B_rel_minus", "B - B_ref") visit.DefineVectorExpression("A_rel", "A - A_ref") visit.DefineVectorExpression("u_i_rel", "u_i_plus - u_i_ref") visit.DefineVectorExpression("u_i_rel_plus", "u_i_plus + u_i_ref") #visit.DefineVectorExpression("u_i_rel_raw_vort", "u_i_plus - u_i_ref_raw_vort") #visit.DefineVectorExpression("u_i_rel_plus_raw_vort", "u_i_plus + u_i_ref_raw_vort") visit.DefineVectorExpression("omega_i_rel", "omega_i_plus + omega_i_ref") visit.DefineVectorExpression("omega_i_rel_raw", "omega_i_raw_plus + omega_i_ref_raw") visit.DefineVectorExpression("P_i_rel", "P_i - P_i_ref") visit.DefineVectorExpression("P_i_rel_times_density", "P_i_times_density - P_i_ref_times_density") visit.DefineVectorExpression("P_i_rel_raw_vort", "P_i - P_i_ref_raw_vort") visit.DefineVectorExpression("P_i_rel_raw_vort_times_density", "P_i_rel_raw_vort_times_density - P_i_ref_raw_vort_times_density") visit.DefineVectorExpression("Omega_i_rel", "Omega_i_plus + Omega_i_ref") visit.DefineVectorExpression("Omega_i_rel_times_density", "Omega_i_plus_times_density + Omega_i_ref_times_density") visit.DefineVectorExpression("Omega_i_rel_density_dependence", "Omega_i_plus_density_dependence + Omega_i_ref_density_dependence") visit.DefineVectorExpression("Omega_i_raw_rel", "Omega_i_raw_plus + Omega_i_ref_raw_vort") visit.DefineVectorExpression("Omega_i_raw_rel_times_density", "Omega_i_raw_plus_times_density +" "Omega_i_ref_raw_vort_times_density") visit.DefineVectorExpression("Omega_i_ref_raw_density_dependence", "Omega_i_raw_plus_density_dependence +" "Omega_i_ref_raw_vort_density_dependence") ## Dynamic fields visit.DefineVectorExpression("B_dynamic", "{B_dynamic_x, B_dynamic_y, B_dynamic_z}") visit.DefineVectorExpression("A_dynamic", "{A_dynamic_x, A_dynamic_y, A_dynamic_z}") visit.DefineVectorExpression("B_dynamic_ref", "{B_dynamic_ref_x," "B_dynamic_ref_y, B_dynamic_ref_z}") visit.DefineVectorExpression("A_dynamic_ref", "{A_dynamic_ref_x," "A_dynamic_ref_y, A_dynamic_ref_z}") ## Helicity density visit.DefineScalarExpression("mag_helicity_density", "dot(A, B)") visit.DefineScalarExpression("mag_ref_helicity_density", "dot(A_ref, B_ref)") visit.DefineScalarExpression("mag_rel_helicity_density", "dot(A-A_ref, B+B_ref)") visit.DefineScalarExpression("mag_dynamic_helicity_density", "dot(A_dynamic, B_dynamic)") visit.DefineScalarExpression("mag_dynamic_ref_helicity_density", "dot(A_dynamic_ref, B_dynamic_ref)") visit.DefineScalarExpression("mag_dynamic_rel_helicity_density", "dot(A_dynamic - A_dynamic_ref, B_dynamic + B_dynamic_ref)") visit.DefineScalarExpression("kin_helicity_density", "dot(u_i_plus, omega_i_raw_plus)") visit.DefineScalarExpression("kin_ref_helicity_density", "dot(u_i_ref_raw, omega_i_ref_raw)") visit.DefineScalarExpression("kin_rel_helicity_density", "dot(u_i_plus - u_i_ref_raw, omega_i_raw_plus + omega_i_ref_raw)") visit.DefineScalarExpression("cross_helicity_density", "2.*dot(B, u_i_plus)") visit.DefineScalarExpression("cross_ref_helicity_density", "2.*dot(B_ref, u_i_ref)") visit.DefineScalarExpression("cross_rel_helicity_density", "(dot(u_i_plus - u_i_ref, B + B_ref)" "+ dot(u_i_plus + u_i_ref, B - B_ref))") def normalize_scalar(visit, scalar_name, normalized_scalar_name): r""" Determine max of scalar. """ visit.AddPlot("Pseudocolor", scalar_name) visit.DrawPlots() visit.Query("Max") max = visit.GetQueryOutputValue() visit.DefineScalarExpression(normalized_scalar_name, "%s - %g" % (scalar_name, max)) visit.DeleteActivePlots() def launch_points_inner_outer(center, plane=0.249, radius_inner=0.001, radius_outer=0.005, num_inner=80, num_outer=60, return_cut_point=False): r""" Calculate points on a circle outline for a given center point. """ thetas = circle_with_cut_thetas(num_outer) points_outer = launch_points(center, thetas, radius=radius_outer, plane=plane) thetas = full_circle_thetas(num_inner) points_inner = launch_points(center, thetas, radius=radius_inner, plane=plane) cut_point_x = points_outer[(num_outer-1)*3] cut_point_y = points_outer[(num_outer-1)*3+1] cut_point = [cut_point_x, cut_point_y] if return_cut_point: return points_outer, points_inner, cut_point else: return points_outer, points_inner def full_circle_thetas(num_points): r""" Return a linear space of angles. """ thetas = np.linspace(0, 2.*np.pi, num_points) return thetas def circle_with_cut_thetas(num_points): r""" Return a linear space of angles with a cut from 3/4pi to 5/4pi. """ thetas = np.linspace(0, 3./4.*np.pi, num_points) thetas = np.concatenate((thetas, np.linspace(5./4.*np.pi, 2.*np.pi, num_points))) return thetas def launch_points(center, thetas, radius=0.003, plane=0.249): r""" Return launch points for field lines. """ x_points = radius * np.cos(thetas) + center[0] y_points = radius * np.sin(thetas) + center[1] z_points = plane * np.ones(x_points.size) points = np.empty((x_points.size + y_points.size + z_points.size)) points[0::3] = x_points points[1::3] = y_points points[2::3] = z_points points = tuple(points) return points def setup_scalar_isosurface(visit, quantity, colortable="PuRd", max_val=1., min_val=0.9): r""" Setup iso_surface. Works best if quantity is plane normalized. """ visit.AddPlot("Pseudocolor", quantity, 1, 0) PseudocolorAtts = visit.PseudocolorAttributes() PseudocolorAtts.colorTableName = colortable PseudocolorAtts.opacityType = PseudocolorAtts.Constant PseudocolorAtts.opacity = 0.25 PseudocolorAtts.smoothingLevel = 0 PseudocolorAtts.legendFlag = 0 visit.SetPlotOptions(PseudocolorAtts) visit.AddOperator("Isosurface", 0) IsosurfaceAtts = visit.IsosurfaceAttributes() IsosurfaceAtts.contourNLevels = 5 IsosurfaceAtts.contourValue = () IsosurfaceAtts.contourPercent = () IsosurfaceAtts.contourMethod = IsosurfaceAtts.Level IsosurfaceAtts.minFlag = 1 IsosurfaceAtts.min = min_val IsosurfaceAtts.maxFlag = 1 IsosurfaceAtts.max = max_val visit.SetOperatorOptions(IsosurfaceAtts, 0) return PseudocolorAtts, IsosurfaceAtts def setup_current_pseudocolor(visit, current_to_use, colortable="PRGn_Stepped", max_val=1e6, min_val=-1e6, invert=True, horizontal=True): r""" Setup pseudocolor current plot. """ visit.AddPlot("Pseudocolor", current_to_use, 1, 0) PseudocolorAtts = visit.PseudocolorAttributes() PseudocolorAtts.scaling = PseudocolorAtts.Linear PseudocolorAtts.limitsMode = PseudocolorAtts.OriginalData PseudocolorAtts.colorTableName = colortable PseudocolorAtts.invertColorTable = invert if max_val: PseudocolorAtts.maxFlag = 1 PseudocolorAtts.max = max_val if min_val: PseudocolorAtts.minFlag = 1 PseudocolorAtts.min = min_val visit.SetPlotOptions(PseudocolorAtts) visit.AddOperator("Slice", 0) SliceAtts = visit.SliceAttributes() SliceAtts.originType = SliceAtts.Intercept SliceAtts.originIntercept = 0.249 SliceAtts.axisType = SliceAtts.ZAxis SliceAtts.project2d = 0 visit.SetOperatorOptions(SliceAtts, 0) colorbar = visit.GetAnnotationObject('Plot0000') colorbar.SetDrawMinMax(0) if horizontal: colorbar.SetOrientation("HorizontalBottom") colorbar.SetFontHeight(0.017) colorbar.SetNumberFormat('%#3.1g') colorbar.SetManagePosition(0) colorbar.SetPosition((0.05, 0.99)) return PseudocolorAtts, SliceAtts def setup_massless_electron_canonical_flux_tubes(visit, points_outer, points_inner): r""" Setup two massless electron canonical flux tubes i.e. magnetic flux tubes. Intended to be inner and outer flux tubes. """ visit.AddPlot("Streamline", "Omega_e_times_density", 1, 0) StreamlineAtts_outer = visit.StreamlineAttributes() StreamlineAtts_outer.sourceType = StreamlineAtts_outer.SpecifiedPointList StreamlineAtts_outer.SetPointList(points_outer) StreamlineAtts_outer.coloringMethod = StreamlineAtts_outer.Solid StreamlineAtts_outer.colorTableName = "Default" StreamlineAtts_outer.singleColor = (255, 0, 0, 255) StreamlineAtts_outer.legendFlag = 0 visit.SetPlotOptions(StreamlineAtts_outer) visit.AddPlot("Streamline", "Omega_e_times_density", 1, 0) StreamlineAtts_inner = visit.StreamlineAttributes() StreamlineAtts_inner.sourceType = StreamlineAtts_inner.SpecifiedPointList StreamlineAtts_inner.SetPointList(points_inner) StreamlineAtts_inner.coloringMethod = StreamlineAtts_inner.Solid StreamlineAtts_inner.colorTableName = "Default" StreamlineAtts_inner.singleColor = (190, 64, 0, 255) StreamlineAtts_inner.legendFlag = 0 visit.SetPlotOptions(StreamlineAtts_inner) return StreamlineAtts_outer, StreamlineAtts_inner def setup_outer_inner_ion_canonical_flux_tubes(visit, quantity, points_outer, points_inner, outer_color=dark_grey, inner_color=black): r""" Setup two ion canonical flux tubes. Inteteded to be inner and outer flux tubes. """ visit.AddPlot("Streamline", quantity, 1, 0) StreamlineAtts_outer = visit.StreamlineAttributes() StreamlineAtts_outer.sourceType = StreamlineAtts_outer.SpecifiedPointList StreamlineAtts_outer.SetPointList(points_outer) StreamlineAtts_outer.coloringMethod = StreamlineAtts_outer.Solid StreamlineAtts_outer.colorTableName = "Default" StreamlineAtts_outer.singleColor = outer_color StreamlineAtts_outer.legendFlag = 0 visit.SetPlotOptions(StreamlineAtts_outer) visit.AddPlot("Streamline", quantity, 1, 0) StreamlineAtts_inner = visit.StreamlineAttributes() StreamlineAtts_inner.sourceType = StreamlineAtts_inner.SpecifiedPointList StreamlineAtts_inner.SetPointList(points_inner) StreamlineAtts_inner.coloringMethod = StreamlineAtts_inner.Solid StreamlineAtts_inner.colorTableName = "Default" StreamlineAtts_inner.singleColor = inner_color StreamlineAtts_inner.legendFlag = 0 visit.SetPlotOptions(StreamlineAtts_inner) return StreamlineAtts_outer, StreamlineAtts_inner def setup_forward_backward_ion_canonical_flux_tubes(visit, points_foward, points_backward, forward_color=tan, backward_color=olive): r""" Setup two ion canonical flux tubes, one integrating in the forward direction, one integrating in the backward direction. """ visit.AddPlot("Streamline", "Omega_i", 1, 0) StreamlineAtts_forward = visit.StreamlineAttributes() StreamlineAtts_forward.sourceType = StreamlineAtts_forward.SpecifiedPointList StreamlineAtts_forward.SetPointList(points_foward) StreamlineAtts_forward.coloringMethod = StreamlineAtts_forward.Solid StreamlineAtts_forward.colorTableName = "Default" StreamlineAtts_forward.singleColor = forward_color StreamlineAtts_forward.integrationDirection = StreamlineAtts_forward.Forward StreamlineAtts_forward.legendFlag = 0 visit.SetPlotOptions(StreamlineAtts_forward) visit.AddPlot("Streamline", "Omega_i", 1, 0) StreamlineAtts_backward = visit.StreamlineAttributes() StreamlineAtts_backward.sourceType = StreamlineAtts_backward.SpecifiedPointList StreamlineAtts_backward.SetPointList(points_backward) StreamlineAtts_backward.coloringMethod = StreamlineAtts_backward.Solid StreamlineAtts_backward.colorTableName = "Default" StreamlineAtts_backward.singleColor = backward_color StreamlineAtts_backward.integrationDirection = StreamlineAtts_backward.Backward StreamlineAtts_backward.legendFlag = 0 visit.SetPlotOptions(StreamlineAtts_backward) return StreamlineAtts_forward, StreamlineAtts_backward def setup_backward_and_B_stream(visit, name, launch_points, B_launch_points, color=green, B_color=red): r""" Setup fiedlines for a magnetic flux tube and for a backward integrated quantity. """ visit.AddPlot("Streamline", 'B', 1, 0) StreamlineAtts_B = visit.StreamlineAttributes() StreamlineAtts_B.sourceType = StreamlineAtts_B.SpecifiedPointList StreamlineAtts_B.SetPointList(B_launch_points) StreamlineAtts_B.coloringMethod = StreamlineAtts_B.Solid StreamlineAtts_B.colorTableName = "Default" StreamlineAtts_B.singleColor = B_color StreamlineAtts_B.integrationDirection = StreamlineAtts_B.Forward StreamlineAtts_B.legendFlag = 0 visit.SetPlotOptions(StreamlineAtts_B) visit.AddPlot("Streamline", name, 1, 0) StreamlineAtts_backward = visit.StreamlineAttributes() StreamlineAtts_backward.sourceType = StreamlineAtts_backward.SpecifiedPointList StreamlineAtts_backward.SetPointList(launch_points) StreamlineAtts_backward.coloringMethod = StreamlineAtts_backward.Solid StreamlineAtts_backward.colorTableName = "Default" StreamlineAtts_backward.singleColor = color StreamlineAtts_backward.integrationDirection = StreamlineAtts_backward.Backward StreamlineAtts_backward.legendFlag = 0 visit.SetPlotOptions(StreamlineAtts_backward) return StreamlineAtts_B, StreamlineAtts_backward def setup_field_line(visit, quantity, launch_point=(0.01, 0.01), launch_z=0.249, color=dark_red): r""" Setup single field line plot to better see twistedness. """ visit.AddPlot("Streamline", quantity, 1, 0) StreamlineAtts_line = visit.StreamlineAttributes() StreamlineAtts_line.sourceType = StreamlineAtts_line.SpecifiedPoint StreamlineAtts_line.pointSource = (launch_point[0], launch_point[1], launch_z) StreamlineAtts_line.coloringMethod = StreamlineAtts_line.Solid StreamlineAtts_line.singleColor = color StreamlineAtts_line.legendFlag = 0 StreamlineAtts_line.showSeeds = 0 StreamlineAtts_line.lineWidth = 8 visit.SetPlotOptions(StreamlineAtts_line) return StreamlineAtts_line def setup_annotations(visit, time_scale=1, time_offset=0): r""" Setup Annotations: scale tick font size, label font size, hide unecessary text. """ AnnotationAtts = visit.AnnotationAttributes() AnnotationAtts.axes3D.autoSetScaling = 0 AnnotationAtts.axes3D.xAxis.title.visible = 0 AnnotationAtts.axes3D.yAxis.title.visible = 0 AnnotationAtts.axes3D.zAxis.title.visible = 0 AnnotationAtts.axes3D.xAxis.label.font.scale = 3 AnnotationAtts.axes3D.xAxis.label.scaling = -2 AnnotationAtts.axes3D.yAxis.label.font.scale = 3 AnnotationAtts.axes3D.yAxis.label.scaling = -2 AnnotationAtts.axes3D.zAxis.label.font.scale = 3 AnnotationAtts.axes3D.zAxis.label.scaling = -2 AnnotationAtts.userInfoFlag = 0 AnnotationAtts.databaseInfoFlag = 0 AnnotationAtts.databaseInfoTimeScale = time_scale AnnotationAtts.databaseInfoTimeOffset = time_offset visit.SetAnnotationAttributes(AnnotationAtts) return AnnotationAtts def set_default_view(visit): r""" Set default view for viewing fluxtubes. If view needs to be modified it is best to align visit with gui and save parameters from visit.GetView3D(). """ view = visit.GetView3D() view.SetViewNormal((-0.731293, 0.40847, 0.546227)) view.SetFocus((0.00202222, 0.000976744, 0.331997)) view.SetViewUp((0.322268, 0.91274, -0.251095)) view.SetViewAngle(30) view.SetParallelScale(0.088383) view.SetNearPlane(-0.176766) view.SetImagePan((0, 0)) view.SetImageZoom(1.5) view.SetPerspective(1) view.SetEyeAngle(2) view.SetCenterOfRotationSet(0) view.SetCenterOfRotation((0.00202222, 0.000976744, 0.331997)) view.SetAxis3DScaleFlag(0) view.SetAxis3DScales((1, 1, 1)) view.SetShear((0, 0, 1)) view.SetWindowValid(0) visit.SetView3D(view) def set_default_lighting(visit): r""" Set lightening to light up contour plot in z=0.249 plane when default view is used. """ light0 = visit.LightAttributes() light0.enabledFlag = 1 light0.type = light0.Camera light0.direction = (-0.5, 0, -0.5) light0.color = (255, 255, 255, 255) light0.brightness = 1 visit.SetLight(0, light0) def set_default_view_thesis(visit): r""" Set default view for viewing fluxtubes. If view needs to be modified it is best to align visit with gui and save parameters from visit.GetView3D(). """ View3DAtts = visit.View3DAttributes() View3DAtts.viewNormal = (-0.652048, 0.487146, 0.580966) View3DAtts.focus = (0.00151111, 0.0045, 0.331997) View3DAtts.viewUp = (0.365672, 0.873317, -0.321872) View3DAtts.viewAngle = 30 View3DAtts.parallelScale = 0.0883679 View3DAtts.nearPlane = -0.176736 View3DAtts.farPlane = 0.176736 View3DAtts.imagePan = (-0.0429026, -0.00832011) View3DAtts.imageZoom = 0.95 View3DAtts.perspective = 1 View3DAtts.eyeAngle = 2 View3DAtts.centerOfRotationSet = 0 View3DAtts.centerOfRotation = (0.00151111, 0.0045, 0.331997) View3DAtts.axis3DScaleFlag = 0 View3DAtts.axis3DScales = (1, 1, 1) View3DAtts.shear = (0, 0, 1) View3DAtts.windowValid = 0 visit.SetView3D(View3DAtts) def set_default_view_lower_angle(visit): r""" Set view with lower angle for viewing fluxtubes. If view needs to be modified it is best to align visit with gui and save parameters from visit.GetView3D(). """ view = visit.GetView3D() view.setViewNormal((-0.776189, 0.193398, 0.600106)) view.setFocus((0.00202222, 0.000976744, 0.331997)) view.setViewUp((0.138771, 0.980856, -0.136615)) view.setViewAngle(30) view.setParallelScale(0.088383) view.setNearPlane(-0.176766) view.setFarPlane(0.175437) view.setImagePan((0, 0)) view.setImageZoom(1) view.setPerspective(1) view.setEyeAngle(2) view.setCenterOfRotationSet(0) view.setCenterOfRotation((0.00202222, 0.000976744, 0.331997)) view.setAxis3DScaleFlag(0) view.setAxis3DScales((1, 1, 1)) view.setShear((0, 0, 1)) view.setWindowValid(0) visit.SetView3D(view) def set_positive_x_view(visit): r""" Set view along positive x for viewing fluxtubes. If view needs to be modified it is best to align visit with gui and save parameters from visit.GetView3D(). """ view = visit.GetView3D() view.SetViewNormal((-0.00997631, 0.0600385, 0.0335938)) view.SetFocus((0.00202222, -0.00202703, 0.331997)) view.SetViewUp((0.0598395, 0.998184, 0.00689852)) view.SetViewAngle(30) view.SetParallelScale(0.0877186) view.SetNearPlane(-0.175437) view.SetImagePan((0, 0)) view.SetImageZoom(1) view.SetPerspective(1) view.SetEyeAngle(2) view.SetCenterOfRotationSet(0) view.SetCenterOfRotation((0.00202222, -0.00202703, 0.331997)) view.SetAxis3DScaleFlag(0) view.SetAxis3DScales((1, 1, 1)) view.SetShear((0, 0, 1)) view.SetWindowValid(1) visit.SetView3D(view) def set_postive_z_view(visit): r""" Set view along positive z for viewing fluxtubes. If view needs to be modified it is best to align visit with gui and save parameters from visit.GetView3D(). """ view = visit.GetView3D() view.SetViewNormal((0.00944856, 0.0379894, 0.999233)) view.SetFocus((0.00202222, -0.00202703, 0.331997)) view.SetViewUp((-0.00367716, 0.9999274, 0.0037961)) view.SetViewAngle(30) view.SetParallelScale(0.0877186) view.SetNearPlane(-0.175437) view.SetImagePan((0, 0)) view.SetImageZoom(2.14359) view.SetPerspective(1) view.SetEyeAngle(2) view.SetCenterOfRotationSet(0) view.SetCenterOfRotation((0.00202222, -0.00202703, 0.331997)) view.SetAxis3DScaleFlag(0) view.SetAxis3DScales((1, 1, 1)) view.SetShear((0, 0, 1)) view.SetWindowValid(1) visit.SetView3D(view) def set_negative_z_view(visit): r""" Set view along negative z for viewing fluxtubes. If view needs to be modified it is best to align visit with gui and save parameters from visit.GetView3D(). """ view = visit.GetView3D() view.SetViewNormal((-0.00894299, -0.00985814, 0.999911)) view.SetFocus((0.00202222, 0.000976744, 0.331997)) view.SetViewUp((0.00367716, 0.999944, 0.00989136)) view.SetViewAngle(30) view.SetParallelScale(0.0877186) view.SetNearPlane(-0.175437) view.SetImagePan((0, 0)) view.SetImageZoom(2.14359) view.SetPerspective(1) view.SetEyeAngle(2) view.SetCenterOfRotationSet(0) view.SetCenterOfRotation((0.00202222, -0.00202703, 0.331997)) view.SetAxis3DScaleFlag(0) view.SetAxis3DScales((1, 1, 1)) view.SetShear((0, 0, 1)) view.SetWindowValid(1) visit.SetView3D(view) def determine_j_mag_extrema(database_path, plane_num=0): r""" Determine extrema over time of current across all shots. Can be sued to set min and max values for colormaps. """ numpy_archives = glob(database_path + '*.npz') data = np.load(numpy_archives[0]) j_x = data['j_x'][:, :, plane_num] j_y = data['j_y'][:, :, plane_num] j_z = data['j_z'][:, :, plane_num] j_mag = np.sqrt(j_x**2. + j_y**2. + j_z**2.) j_mag_max = np.nanmax(j_mag) j_mag_min = np.nanmin(j_mag) for archive in numpy_archives[1:]: data = np.load(archive) j_x = data['j_x'][:, :, plane_num] j_y = data['j_y'][:, :, plane_num] j_z = data['j_z'][:, :, plane_num] j_mag = np.sqrt(j_x**2. + j_y**2. + j_z**2.) j_mag_max = np.nanmax(j_mag) if np.nanmax(j_mag) > j_mag_max else j_mag_max j_mag_min = np.nanmin(j_mag) if np.nanmin(j_mag) < j_mag_min else j_mag_min return j_mag_max, j_mag_min def set_save_settings(visit): r""" Set and return save_atts. """ save_atts = visit.SaveWindowAttributes() save_atts.format = save_atts.PNG save_atts.height = 1080 save_atts.width = 1920 save_atts.family = 0 visit.SetSaveWindowAttributes(save_atts) return save_atts def setup_slider(visit): r""" Add a time slider with us text label. """ slider = visit.CreateAnnotationObject("TimeSlider") slider.SetText("$time us") slider.SetRounded(0) slider.SetVisible(1) def main(): r""" Plot frames of canonical flux tube animations. """ args = parse_args() database_prefix = args.database_prefix + args.database_date visit.Launch() today = date.now().strftime('%Y-%m-%d-%H-%M') out_dir = '../output/canonical_flux_tubes/' + today try: os.makedirs(out_dir) except: pass if args.interactive_session: visit.OpenDatabase(database_prefix + args.database_postfix + "*.vtk database") define_expressions(visit) visit.OpenGUI() return output_path = out_dir + '/' + args.output_prefix print 'data_path', database_prefix + args.database_postfix visit.OpenDatabase(database_prefix + args.database_postfix + "*.vtk database") define_expressions(visit) field_nulls = np.loadtxt(args.field_nulls) field_nulls = np.roll(field_nulls, args.time_shift, axis=0) time_points = np.arange(args.start_time_point, args.end_time_point) #time_points = np.roll(time_points, args.time_shift, axis=0) AnnotationAtts = setup_annotations(visit, time_scale=args.time_scale, time_offset=0) plot_count = 0 if args.current_plane: PseudocolorAtts, SliceAtts = setup_current_pseudocolor(visit, args.current_to_use, max_val=args.current_max, min_val=args.current_min) plot_count += 1 if args.temperature_tubes: setup_scalar_isosurface(visit, "Te_plane_normalized", colortable="PuRd") plot_count += 1 if args.density_tubes: setup_scalar_isosurface(visit, "n_plane_normalized", colortable="Greys") plot_count += 1 if args.stationary_tube: (points_outer, points_inner, cut_point) = launch_points_inner_outer(field_nulls[0], return_cut_point=True) else: (points_outer, points_inner, cut_point) = launch_points_inner_outer(args.stationary_center, return_cut_point=True) if args.ion: (StreamlineAtts_ion_outer, StreamlineAtts_ion_inner) = setup_outer_inner_ion_canonical_flux_tubes(visit, args.omega_to_use, points_outer, points_inner) plot_count += 2 if args.electron: stream_line_func = setup_massless_electron_canonical_flux_tubes (StreamlineAtts_electron_outer, StreamlineAtts_electron_inner) = setup_massless_electron_canonical_flux_tubes(visit, points_outer, points_inner) plot_count += 2 if not args.ion: cut_point[1] += 0.0005 FieldLineAtts = setup_field_line(visit, 'Omega_e_times_density', launch_point=cut_point) plot_count += 1 if args.velocity: (velocity_stream_1, velocity_stream_2) = setup_outer_inner_ion_canonical_flux_tubes(visit, 'u_i_plus', points_inner, points_outer, outer_color=aqua, inner_color=navy) plot_count += 2 if args.view == 'default': set_default_view_thesis(visit) elif args.view == 'default_lower_angle': set_default_view_lower_angle(visit) elif args.view == 'positive_z': set_postive_z_view(visit) elif args.view == 'negative_z': set_negative_z_view(visit) elif args.view == 'positive_x': set_positive_x_view(visit) set_default_lighting(visit) setup_slider(visit) if args.double_stream: stream_launch_point = (field_nulls[args.start_time_point][0] + args.x_offset, field_nulls[args.start_time_point][1] + args.y_offset) setup_field_line(visit, args.double_stream, launch_point=(stream_launch_point[0] + 0.001, stream_launch_point[1] + 0.)) setup_field_line(visit, args.double_stream, launch_point=(stream_launch_point[0] + 0., stream_launch_point[1] + 0.001)) setup_field_line(visit, args.double_stream, launch_point=(stream_launch_point[0] - 0.001, stream_launch_point[1] + 0.)) setup_field_line(visit, args.double_stream, launch_point=(stream_launch_point[0] + 0., stream_launch_point[1] - 0.001)) setup_field_line(visit, args.double_stream, launch_point=(stream_launch_point[0] + 0.005, stream_launch_point[1] + 0.)) setup_field_line(visit, args.double_stream, launch_point=(stream_launch_point[0] + 0., stream_launch_point[1] + 0.005)) setup_field_line(visit, args.double_stream, launch_point=(stream_launch_point[0] - 0.005, stream_launch_point[1] + 0.)) setup_field_line(visit, args.double_stream, launch_point=(stream_launch_point[0] + 0., stream_launch_point[1] - 0.005)) setup_field_line(visit, args.double_stream, launch_point=stream_launch_point) setup_field_line(visit, 'B', launch_point=stream_launch_point, color=red) visit.DrawPlots() save_atts = set_save_settings(visit) ending = '.png' visit.SetTimeSliderState(time_points[0]) visit.ResizeWindow(1, 960, 1000) if args.wait_for_manual_settings: visit.OpenGUI() comment = raw_input() for index, time_point in enumerate(time_points): print time_point plot_number = 0 save_atts.fileName = output_path + str(index + args.file_number_offset).zfill(4) + ending visit.SetSaveWindowAttributes(save_atts) if args.current_plane: plot_number += 1 if args.temperature_tubes: plot_number += 1 if args.density_tubes: plot_number += 1 (points_outer, points_inner, cut_point) = launch_points_inner_outer(field_nulls[index], return_cut_point=True) if args.stationary_tube: (points_outer, points_inner, cut_point) = launch_points_inner_outer(args.stationary_center, return_cut_point=True) if args.ion: visit.SetActivePlots(plot_number) StreamlineAtts_ion_outer.SetPointList(points_outer) visit.SetPlotOptions(StreamlineAtts_ion_outer) plot_number += 1 visit.SetActivePlots(plot_number) StreamlineAtts_ion_inner.SetPointList(points_inner) visit.SetPlotOptions(StreamlineAtts_ion_inner) plot_number += 1 if args.electron: visit.SetActivePlots(plot_number) StreamlineAtts_electron_outer.SetPointList(points_outer) visit.SetPlotOptions(StreamlineAtts_electron_outer) plot_number += 1 visit.SetActivePlots(plot_number) StreamlineAtts_electron_inner.SetPointList(points_inner) visit.SetPlotOptions(StreamlineAtts_electron_inner) plot_number +=1 if not args.ion: cut_point[1] += 0.0005 visit.SetActivePlots(plot_number) FieldLineAtts.SetPointSource(cut_point[0], cut_point[1], 0.249) visit.SetPlotOptions(FieldLineAtts) plot_number += 1 if args.velocity: visit.SetActivePlots(plot_number) velocity_stream_1.SetPointList(points_outer) visit.SetPlotOptions(velocity_stream_1) plot_number +=1 visit.SetActivePlots(plot_number) velocity_stream_2.SetPointList(points_inner) visit.SetPlotOptions(velocity_stream_2) plot_number +=1 visit.SetTimeSliderState(time_point) name = visit.SaveWindow() def parse_args(): parser = argparse.ArgumentParser(description="Generate time step plots of canonical flux tubes.") parser.add_argument('--database_prefix', help='path to visit database i.e. vtk files', default='/home/jensv/rsx/jens_analysis/output/canonical_quantities/') parser.add_argument('--database_postfix', help='path to visit database i.e. vtk files', default='/canonical_quantities') parser.add_argument('database_date', help='date of data run YYYY-MM-DD-mm-ss') parser.add_argument('--output_prefix', help='output_file_prefix', default='canonical_flux_tubes_') parser.add_argument('--current_min', help='minimum for current color map', default=-3.5e5) parser.add_argument('--current_max', help='maximum for current color map', default=3.5e5) parser.add_argument('--start_time_point', help='time point of first output frame', type=int, default=0) parser.add_argument('--end_time_point', help='time point of last output frame', type=int, default=250) parser.add_argument('--field_nulls', help='path to file listing field_nulls (launching centers)', default='/home/jensv/rsx/jens_analysis/output/field_nulls/2017-05-05/averaged_nulls.txt') parser.add_argument('--time_scale', help='time scale of time steps', default=0.068) parser.add_argument('--current_plane', help='plot temperature contours', action='store_true', default=False) parser.add_argument('--temperature_tubes', help='plot temperature isosurfaces', action='store_true', default=False) parser.add_argument('--density_tubes', help='plot density isosurfaces', action='store_true', default=False) parser.add_argument('--electron', help='plot canonical electron flux tubes', action='store_true', default=False) parser.add_argument('--ion', help='plot canonical ion flux tubes', action='store_true', default=False) parser.add_argument('--current', help='plot thin current flux tube surrounded by electron / magnetic flux tube', action='store_true', default=False) parser.add_argument('--interactive_session', action='store_true', default=False) parser.add_argument('--current_to_use', default='j_z') parser.add_argument('--omega_to_use', default='Omega_i_raw_plus_times_density') parser.add_argument('--view', help='pre-configured_views: default, default_lower_angle, positive_z, negative_z, positive_x', default='default') parser.add_argument('--wait_for_manual_settings', help='flag makes program wait for input before rendering time series.', default=False, action='store_true') parser.add_argument('--double_stream', help='plot canonical streamline and magnetic of given variable', default=None) parser.add_argument('--x_offset', help='x offset of single streamline', default=0, type=int) parser.add_argument('--y_offset', help='y offset of single streamline', default=0, type=int) parser.add_argument('--file_number_offset', help='offset in file numbering', default=0, type=int) parser.add_argument('--turn_off_density_start', help='time step at which to start turning off density cloud.', type=int, default=None) parser.add_argument('--turn_off_density_end', help='time step at which to end turning off density cloud', type=int, default=None) parser.add_argument('--velocity', action='store_true', default=False) parser.add_argument('--stationary_tube', help="flag to hold flux tube launch point" "stationary", action='store_true', default=False) parser.add_argument('--stationary_center', help='launch_point of stationary tube', nargs=2, type=float, default = [0, 0]) parser.add_argument('--time_shift', help='shift gyration phase', type=int, default=125) args = parser.parse_args() return args if __name__ == '__main__': main() ``` #### File: relative_canonical_helicity_tools/write_rsx_planes_to_vtk/idl_sav_to_vtk_unstructured.py ```python import numpy as np from pyvisfile.vtk import (write_structured_grid, UnstructuredGrid, DataArray, AppendedDataXMLGenerator, VTK_VERTEX, VF_LIST_OF_VECTORS, VF_LIST_OF_COMPONENTS) from pytools.obj_array import make_obj_array from os.path import exists import scipy.io.idl as idl from scipy.interpolate import griddata def plane_points_3d(data, z_position): r""" Returns 3d points from dictionary of a 2D scan of RSX. """ assert ('x_out' in data.keys() and 'y_out' in data.keys()), 'No x_out and y_out keys in data ' points_3d = np.dstack((data['x_out'], data['y_out'], np.ones(data['x_out'].size)*z_position))[0] return points_3d def write_scalar_data_to_vtk(file_name, time_point, z_position, labels, data_dicts): r""" Writes scalars to an unstrcutured grid VTK file. """ data_points = plane_points_3d(data_dicts[0], z_position) if len(data_dicts) > 1: msg = 'scalars not measured at same points' for data_dict in data_dicts: assert np.allclose(data_points, plane_points_3d(data_dict, z_position)), msg data = [(labels[i], data_dict['a_out'][time_point]) for i, data_dict in enumerate(data_dicts)] write_data_to_unstructured_vtk(file_name, data, data_points) def write_data_to_unstructured_vtk(file_name, data, points): r""" Writes data to an unstructured grid VTK file. Data is a list of points and values, the values can be scalar, or 3d vector. """ n_points = points.shape[0] grid = UnstructuredGrid((n_points, DataArray("points", points, vector_format=VF_LIST_OF_VECTORS)), cells=np.arange(n_points, dtype=np.uint32), cell_types=np.asarray([VTK_VERTEX] * n_points, dtype=np.uint8)) for name, field in data: print 'number of nans', np.sum(np.isnan(field)) grid.add_pointdata(DataArray(name, field.astype('float64'), vector_format=VF_LIST_OF_COMPONENTS)) if exists(file_name): raise RuntimeError("output file '%s' already exists" % file_name) outf = open(file_name, "w") compressor = None AppendedDataXMLGenerator(compressor)(grid).write(outf) outf.close() def write_vector_data_to_vtk(file_name, time_point, z_position, labels, data_dicts): r""" Writes a vector to an unstructured grid VTK file. """ data_points_x = plane_points_3d(data_dicts[0], z_position) data_points_y = plane_points_3d(data_dicts[1], z_position) data_points_z = plane_points_3d(data_dicts[2], z_position) x_min = np.nanmin(np.concatenate(data_points_x[:][0], data_points_y[:][0], data_points_z[:][0])) x_max = np.nanmax(np.concatenate(data_points_x[:][0], data_points_y[:][0], data_points_z[:][0])) y_min = np.nanmin(np.concatenate(data_points_x[:][1], data_points_y[:][1], data_points_z[:][1])) y_max = np.nanmax(np.concatenate(data_points_x[:][1], data_points_y[:][1], data_points_z[:][1])) x_points = np.linspace(x_min, x_max, 100) y_points = np.linspace(y_min, y_max, 100) data_points = np.dstack(x_points, y_points) gridx, gridy = np.meshgrid(x_points, y_points) interpolated_x = griddata(np.dstack((data_dicts[0]['x_out'], data_dicts[0]['y_out']))[0], data_dicts[0]['a_out'][time_point], (gridx, gridy)) interpolated_y = griddata(np.dstack((data_dicts[1]['x_out'], data_dicts[1]['y_out']))[0], data_dicts[1]['a_out'][time_point], (gridx, gridy)) interpolated_z = griddata(np.dstack((data_dicts[2]['x_out'], data_dicts[2]['y_out']))[0], data_dicts[2]['a_out'][time_point], (gridx, gridy)) interpolated_field = np.dstack((interpolated_x, interpolated_y, interpolated_z))[0] data = [(labels[0], interpolated_field)] write_data_to_unstructured_vtk(file_name, data, data_points) ``` #### File: relative_canonical_helicity_tools/write_to_vtk/maximum_extents.py ```python def maximum_b_extent(): extent_0249_dict = {'x_min': -0.028, 'x_max': 0.025, 'y_min': -0.043, 'y_max': 0.039, 'z_min': 0.249, 'z_max': 0.249} extent_0302_dict = {'x_min': -0.022, 'x_max': 0.021, 'y_min': -0.038, 'y_max': 0.04, 'z_min': 0.302, 'z_max': 0.302} extent_0357_dict = {'x_min': -0.041, 'x_max': 0.030, 'y_min': -0.019, 'y_max': 0.0255, 'z_min': 0.357, 'z_max': 0.357} extent_0416_dict = {'x_min': -0.044, 'x_max': 0.031, 'y_min': -0.022, 'y_max': 0.027, 'z_min': 0.416, 'z_max': 0.416} extent_dicts = {0.249: extent_0249_dict, 0.302: extent_0302_dict, 0.357: extent_0357_dict, 0.416: extent_0416_dict} return extent_dicts def maximum_all_probe_extent(plane): pass ``` #### File: relative_canonical_helicity_tools/write_to_vtk/reference_field.py ```python import numpy as np from invert_curl.invert_curl import devore_invert_curl from laplace_solver.laplace_solver import laplace_3d_dct_fd import vector_calculus.vector_calculus as vc def determine_reference_fields(mesh, circulation, return_scalar_ref=False): r""" Return reference fields used for relative helicity. Reference fields consist of a circulation and the general momentum vector of which the curl gives the circulation. Parameters ---------- mesh: list of ndarray 3D mesh circulation: list of ndarray 3D vector which is the curl quantity. e.g. magnetic field B or flow vorticity omega. Returns ------- momentum_ref: list of ndarray reference general momentum field e.g. reference magnetic vector potential or reference flow circulation_ref: list of ndarray curl of reference field e.g. reference magnetic field, reference flow vorticity. Notes ----- Circulation reference dotted with surface normal should be the negative of the real circulation dotted with the surface normal. .. math:: $-\vec{Circ}_{ref} \cdot \hat{n}= \vec{Circ} \cdot \hat{n}$ """ boundary = make_boundary(circulation) scalar_potential_ref = laplace_3d_dct_fd(mesh, boundary) circulation_ref = vc.gradient(scalar_potential_ref, mesh=mesh) momentum_ref = devore_invert_curl(mesh, circulation_ref) if return_scalar_ref: return momentum_ref, circulation_ref, scalar_potential_ref else: return momentum_ref, circulation_ref def make_boundary(field): r""" Return boundary conditions for circulation reference. .. math:: $-\vec{Circ}_{ref} \cdot \hat{n}= \vec{Circ} \cdot \hat{n}$ """ boundary = np.zeros(field[0].shape) boundary[:, 0, :] = -field[0][:, 0, :] boundary[:, -1, :] = -field[0][:, -1, :] boundary[0, :, :] = -field[1][0, :, :] boundary[-1, :, :] = -field[1][-1, :, :] boundary[:, :, 0] = -field[2][:, :, 0] boundary[:, :, -1] = -field[2][:, :, -1] return boundary ```
{ "source": "jensweissflog/olervaningen", "score": 3 }
#### File: app/models/brewfather.py ```python from app import app import requests from datetime import datetime import json now=datetime.now().timestamp()*1000 def time_(timestamp): return(datetime.fromtimestamp(timestamp/1000)) def get_request(url,params): url=app.config['BREWFATHER_URL']+url return requests.get( url, headers={ "Authorization": app.config['BREWFATHER_TOKEN'], "Content-Type": "application/json", }, params=params ).json() def get_batches(): params={ "include": "recipe.fermentation,batchNotes", "complete": "True", "status": "Fermenting", } return(get_request("batches",params)) def get_target_temp(fridge): batches=get_batches() stepTemp="" for b in batches: try: bnote=b["batchNotes"] except KeyError: bnote="" if fridge in bnote and b["status"]=="Fermenting": try: steps=b["recipe"]["fermentation"]["steps"] except KeyError: print("No fermentation steps found") steps=[] for s in steps: if now > s["actualTime"]: stepTemp=s["stepTemp"] else: break if stepTemp=="": #set last temperature in list as target stepTemp=steps[len(steps)-1]["stepTemp"] if stepTemp != "": return(stepTemp) else: return(app.config['DEFAULT_TEMP']) ```
{ "source": "jenswi-linaro/hafnium", "score": 2 }
#### File: build/image/generate_initrd.py ```python import argparse import os import shutil import subprocess import sys def Main(): parser = argparse.ArgumentParser() parser.add_argument("-f", "--file", action="append", nargs=2, metavar=("NAME", "PATH"), help="File at host location PATH to be added to the RAM disk as NAME") parser.add_argument("-s", "--staging", required=True) parser.add_argument("-o", "--output", required=True) args = parser.parse_args() # Create staging folder if needed. if not os.path.isdir(args.staging): os.makedirs(args.staging) # Copy files into the staging folder. staged_files = [] for name, path in args.file: shutil.copyfile(path, os.path.join(args.staging, name)) assert name not in staged_files staged_files.append(name) # Package files into an initial RAM disk. with open(args.output, "w") as initrd: # Move into the staging directory so the file names taken by cpio don't # include the path. os.chdir(args.staging) cpio = subprocess.Popen( ["cpio", "--create"], stdin=subprocess.PIPE, stdout=initrd, stderr=subprocess.PIPE) cpio.communicate(input="\n".join(staged_files).encode("utf-8")) return 0 if __name__ == "__main__": sys.exit(Main()) ``` #### File: hafnium/build/make.py ```python import argparse import os import shutil import subprocess import sys def Main(): parser = argparse.ArgumentParser() parser.add_argument("--directory", required=True) parser.add_argument("--copy_out_file", nargs=2, help="Copy file after building. Takes two params: <src> <dest>") args, make_args = parser.parse_known_args() os.chdir(args.directory) os.environ["PWD"] = args.directory status = subprocess.call(["make"] + make_args) if status != 0: return status if args.copy_out_file is not None: shutil.copyfile(args.copy_out_file[0], args.copy_out_file[1]) return 0 if __name__ == "__main__": sys.exit(Main()) ```
{ "source": "Jental/find_answer", "score": 3 }
#### File: Jental/find_answer/deptree.py ```python import itertools import urllib import word2vec # MSD: http://corpus.leeds.ac.uk/mocky/ru-table.tab # Universal: http://universaldependencies.org/ru/pos/index.html def convert_pos_MSD_to_Universal(pos): if pos.startswith('A'): return 'ADJ' elif pos.startswith('C'): return 'CCONJ' elif pos.startswith('I'): return 'INTJ' elif pos.startswith('M'): return 'NUM' elif pos.startswith('Nc'): return 'NOUN' elif pos.startswith('Np'): return 'PROPN' elif pos.startswith('N'): return 'NOUN' elif pos.startswith('P'): return 'PRON' # TODO: or DET elif pos.startswith('Q'): return 'PART' elif pos.startswith('R'): return 'ADV' elif pos.startswith('S'): return 'ADP' elif pos.startswith('V'): return 'VERB' # TODO: or AUX elif pos.startswith('SENT') or pos.startswith('PUNC'): return 'PUNCT' else: return 'X' # ------------------ # get_dep_tree(sentence) # --- # Creates a word dependency tree from a sentence. # Returns: deptree=(node, [deptree]) # Creates a deptree from the webservice response dictionary def make_dep_tree(respDict, idx): if idx == 0: el = None else: el = respDict[idx] children = [(k, respDict[k]) for k in respDict if int(respDict[k][6]) == idx] childTrees = [ make_dep_tree(respDict, k) for (k, c) in children ] return (el, childTrees) def get_dep_tree(sentence): url = 'http://deptree.jental.name/parse?' + urllib.parse.urlencode({'text': sentence}) respRaw = urllib.request.urlopen(url) resp = respRaw.read() respStr = resp.decode('utf-8') respList = [ r[1:-1].split('\\t') for r in respStr[1:-1].split(',') ] respDict = dict([(int(r[0]), r + [convert_pos_MSD_to_Universal(r[5])]) for r in respList]) (root, trees) = make_dep_tree(respDict, 0) if len(trees) == 0: print('No tree', sentence, trees) return None else: return trees[0] # ------------------ # filter_dep_tree(tree) # --- # Filters out invaluable parts of speech. # Returns: deptree=(node, [deptree]) def filter_dep_tree(tree): root, children = tree posp = convert_pos_MSD_to_Universal(root[3]) if (posp == 'ADJ' or posp == 'NUM' or posp == 'NOUN' or posp == 'PROPN' or posp == 'ADV' or posp == 'VERB'): res = [ (root, list(itertools.chain.from_iterable([ filter_dep_tree(c) for c in children ]))) ] else: cd = [ filter_dep_tree(c) for c in children ] if len(cd) > 0: res = list(itertools.chain.from_iterable(cd)) else: res = [] return res # ------------------ # filter_dep_tree(tree) # --- # Prints a word dependency tree def print_dep_tree(tree): def pdt(t, offset): root, children = t print(''.join([ ' ' for i in range(0, offset) ]), root[1], root[3]) for c in children: pdt(c, offset + 1) pdt(tree, 0) ``` #### File: Jental/find_answer/similarity.py ```python import itertools import scipy import numpy as np import util import word2vec import sentence2vec import jsm DEBUG = False # ------------------ # sentence_similarity_samewords(sentence0, sentence1) # --- # Similarity based on number of identical words. Second element - if one sentence is part of another # Returns: (double, bool) def sentence_similarity_samewords(sentence0, sentence1): words0 = list([ w for (w, prob, poss) in util.extract_nfs(sentence0) if len(w) > 3 ]) words1 = list([ w for (w, prob, poss) in util.extract_nfs(sentence1) if len(w) > 3 ]) if DEBUG: print("sentence_similarity_samewords: words0: {0}".format(words0)) print("sentence_similarity_samewords: words1: {0}".format(words1)) if len(words0) <= 1 or len(words1) <= 1: return 0.0, False elif len(words0) <= 3 or len(words1) <= 3: if set(words0) <= set(words1): return len(words0) / len(words1), True elif set(words1) <= set(words0): return len(words1) / len(words0), True else: return 0.0, False cnt = 0 for w0 in words0: for w1 in words1: if w0 == w1: if DEBUG: print("sentence_similarity_samewords: pair: {0}, {1}".format(w0, w1)) cnt = cnt + 1 return cnt / min(len(words0), len(words1)), set(words1) <= set(words0) or set(words0) <= set(words1) # ------------------ # sentence_similarity_wordvectors(sentence0, sentence1) # --- # Similarity based on top vector-similar word pairs # Returns: double def words_similarity (words0, words1): for word0 in words0: for word1 in words1: if len(word1) > 2: try: similarity = word2vec.w2v.similarity(word0, word1) yield (word0, word1, similarity) except Exception as err: # print(err) pass def sentence_similarity_wordvectors(sentence0, sentence1): words0 = list([ w for (w, prob, poss) in util.extract_nfs(sentence0)]) words1 = list([ w for (w, prob, poss) in util.extract_nfs(sentence1)]) if DEBUG: print("sentence_similarity_wordvectors: words0: {0}".format(words0)) print("sentence_similarity_wordvectors: words1: {0}".format(words1)) pairs = words_similarity(words0, words1) sortedPairs = sorted(pairs, key=lambda tup: tup[2], reverse=True) addedPairs = [] for p in sortedPairs: found = [pa for pa in addedPairs if pa[0] == p[0] or pa[1] == p[1]] if len(found) == 0: addedPairs.append(p) simSum = 0.0 for p in addedPairs: if DEBUG: print("sentence_similarity_wordvectors: pair: {0}".format(p)) simSum += p[2] # sum(sims in addedPairs) / len(addedPairs) * (2 * len(addedPairs)) / (len(words0) + len(words1)) = 2 * sum(sims in addedPairs) / (len(words0) + len(words1)) return simSum * 2.0 / ( len(words0) + len(words1) ) # return simSum * 2.0 / ( len(words0) + len(words1) ) + 0.5 # ------------------ # sentence_similarity_jsm(sentence0, sentence1, mode=0) # --- # Similarity based on top vector-similar word pairs. JSM generalization # https://en.wikipedia.org/wiki/Jaccard_index # mode: 0 - basic jsm; 1 - jsm with smaller union size; 2 - not jsm, but vec average # Returns: double def pair_similarity (words0, words1): pairs0 = list(zip(words0, words0[1:])) pairs1 = list(zip(words1, words1[1:])) for w00, w01 in pairs0: for w10, w11 in pairs1: try: vec00 = word2vec.w2v[w00] vec01 = word2vec.w2v[w01] vec10 = word2vec.w2v[w10] vec11 = word2vec.w2v[w11] vec0 = np.add(vec00, vec01) vec1 = np.add(vec10, vec11) similarity = 1 - scipy.spatial.distance.cosine(vec0, vec1) yield ((w00, w01), (w10, w11), similarity) except Exception as err: print(err) pass def pair_similarity_allpairs (words0, words1): pairs0 = list(itertools.combinations(words0, 2)) pairs1 = list(itertools.combinations(words1, 2)) for w00, w01 in pairs0: for w10, w11 in pairs1: try: vec00 = word2vec.w2v[w00] vec01 = word2vec.w2v[w01] vec10 = word2vec.w2v[w10] vec11 = word2vec.w2v[w11] vec0 = np.add(vec00, vec01) vec1 = np.add(vec10, vec11) similarity = 1 - scipy.spatial.distance.cosine(vec0, vec1) yield ((w00, w01), (w10, w11), similarity) except Exception as err: print(err) pass def sentence_similarity_jsm(sentence0, sentence1, mode=0): words0 = list([ w for (w, prob, poss) in util.extract_nfs(sentence0)]) words1 = list([ w for (w, prob, poss) in util.extract_nfs(sentence1)]) if DEBUG: print("sentence_similarity_jsm: words0: {0}".format(words0)) print("sentence_similarity_jsm: words1: {0}".format(words1)) pairs = words_similarity(words0, words1) matrix = util.tranform_triples_to_matrix(pairs) if mode == 0: return jsm.basic(matrix) elif mode == 1: return jsm.smallerunion(matrix) elif mode == 2: return jsm.average(matrix) else: return jsm.basic(matrix) def sentence_similarity_jsm_pairs(sentence0, sentence1, mode=0): words0 = list([ w for (w, prob, poss) in util.extract_nfs(sentence0)]) words1 = list([ w for (w, prob, poss) in util.extract_nfs(sentence1)]) if DEBUG: print("sentence_similarity_jsm: words0: {0}".format(words0)) print("sentence_similarity_jsm: words1: {0}".format(words1)) pairs = pair_similarity(words0, words1) matrix = util.tranform_triples_to_matrix(pairs) if mode == 0: return jsm.basic(matrix) elif mode == 1: return jsm.smallerunion(matrix) elif mode == 2: return jsm.average(matrix) else: return jsm.basic(matrix) def sentence_similarity_jsm_allpairs(sentence0, sentence1, mode=0): words0 = list([ w for (w, prob, poss) in util.extract_nfs(sentence0)]) words1 = list([ w for (w, prob, poss) in util.extract_nfs(sentence1)]) if DEBUG: print("sentence_similarity_jsm: words0: {0}".format(words0)) print("sentence_similarity_jsm: words1: {0}".format(words1)) pairs = pair_similarity_allpairs(words0, words1) matrix = util.tranform_triples_to_matrix(pairs) if mode == 0: return jsm.basic(matrix) elif mode == 1: return jsm.smallerunion(matrix) elif mode == 2: return jsm.average(matrix) else: return jsm.basic(matrix) # ------------------ # sentence_similarity_vec(sentence0, sentence1) # --- # Similarity based on vector sentence representation. # Returns: double def sentence_similarity_vec(sentence0, sentence1): sv0 = sentence2vec.sentence2vec(sentence0) sv1 = sentence2vec.sentence2vec(sentence1) if sv0 is None or sv1 is None: return 0.0 else: return 1 - scipy.spatial.distance.cosine(sv0, sv1) def sentence_similarity_vec2(sentence0, sentence1): sv0 = sentence2vec.sentence2vec2(sentence0) sv1 = sentence2vec.sentence2vec2(sentence1) if sv0 is None or sv1 is None: return 0.0 else: return 1 - scipy.spatial.distance.cosine(sv0, sv1) # ------- # sentence0 = 'ะœะฐะนัะบะธะผ ัƒั‚ั€ะพะผ ะบะพั€ะพะฒะฐ ั‰ะธะฟะฐะปะฐ ั‚ั€ะฐะฒัƒ' # sentences = [ # 'ะžะฒั†ะฐ ัƒะฑะตะถะฐะปะฐ ะฒ ะปะตั', # 'ะ’ะตั‡ะตั€ - ะฒั€ะตะผั ะฟะธั‚ัŒ ั‡ะฐะน', # 'ะกะผะพั‚ั€ะธั‚, ะบะฐะบ ะฑะฐั€ะฐะฝ ะฝะฐ ะฝะพะฒั‹ะต ะฒะพั€ะพั‚ะฐ', # 'ะ›ะฐะฝัŒ ะฝะฐ ะฒะพัั…ะพะดะต ะตะปะฐ ะทะตะปะตะฝัŒ' # ] # for sentence1 in sentences: # print(sentence0, ' ;-; ', sentence1); # print('similarity (words) :', sentence_similarity_samewords(sentence0, sentence1))[0] # print('similarity (wordvec) :', sentence_similarity_wordvectors(sentence0, sentence1)) # print('similarity (jsm) :', sentence_similarity_jsm(sentence0, sentence1)) # print('similarity (jsm, su) :', sentence_similarity_jsm(sentence0, sentence1, mode=1)) # print('similarity (jsm, avg) :', sentence_similarity_jsm(sentence0, sentence1, mode=2)) # print('similarity (jsm, pairs) :', sentence_similarity_jsm_pairs(sentence0, sentence1)) # print('similarity (jsm, pairs, su) :', sentence_similarity_jsm_pairs(sentence0, sentence1, mode=1)) # print('similarity (jsm, pairs, avg) :', sentence_similarity_jsm_pairs(sentence0, sentence1, mode=2)) # print('similarity (jsm, allpairs) :', sentence_similarity_jsm_pairs(sentence0, sentence1)) # print('similarity (jsm, allpairs, su) :', sentence_similarity_jsm_pairs(sentence0, sentence1, mode=1)) # print('similarity (jsm, allpairs, avg):', sentence_similarity_jsm_pairs(sentence0, sentence1, mode=2)) # print('similarity (vec) :', sentence_similarity_vec(sentence0, sentence1)) # print('similarity (vec-2) :', sentence_similarity_vec2(sentence0, sentence1)) # words0 = list([ w for (w, prob, poss) in util.extract_nfs(sentence0) if len(w) > 3 ]) # words1 = list([ w for (w, prob, poss) in util.extract_nfs(sentences[2]) if len(w) > 3 ]) # pairs = pair_similarity_allpairs(words0, words1) # for p in pairs: # print(p) ``` #### File: Jental/find_answer/top.py ```python import sys from nltk.stem.snowball import SnowballStemmer from nltk.tokenize import RegexpTokenizer import pymorphy2 import util # stemmer = SnowballStemmer("russian") morph = pymorphy2.MorphAnalyzer() def substrings(s1, minSize): return [s1[i:i+ms] for ms in range(minSize, len(s1) + 1) for i in range(len(s1) - ms + 1)] def intersections(s1, s2, minSize): ss1 = substrings(s1, minSize) ss2 = substrings(s2, minSize) iss = list(set(ss1) & set(ss2)) iss.sort(key=len, reverse=True) res = [] for ss in iss: found = [r for r in res if r.find(ss) >= 0] if not found: res.append(ss) return res # with open("unigrams.cyr.lc") as f: # reader = csv.reader(f, delimiter='\t') # for row in reader: # parsed = morph.parse(row[0]) # if len(parsed) > 0: # nf = parsed[0].normal_form # iss = intersections(nf, norm, 5) # if len(iss) > 0: # print(row[0], nf, iss) print(util.extract_keywords(sys.argv[1])) ``` #### File: Jental/find_answer/util.py ```python import itertools import csv import re import pymorphy2 from nltk.tokenize import RegexpTokenizer import numpy as np print("Initializing pymorphy2") morph = pymorphy2.MorphAnalyzer() print("Initializing pymorphy2. Done") print("Initializing tokenizer") tokenizer = RegexpTokenizer(r'\w+') print("Initializing tokenizer. Done") # ------------------ # get_normal_forms(word) # --- # Returns a normal forms of a word with their probabilities # Returns: [(NF, prob, [POS])] def get_normal_forms(word): normalForms = {} parsed = morph.parse(word) for p in parsed: if p.normal_form in normalForms: prob, pos = normalForms[p.normal_form] normalForms[p.normal_form] = (prob + p.score, pos + [ p.tag.POS ]) else: normalForms[p.normal_form] = (p.score, [ p.tag.POS ]) return sorted([ (k, v, poss) for k, (v, poss) in normalForms.items() ], key=lambda tup: tup[1]) # ------------------ # get_normal_form(word) # --- # Returns a normal form of a word (or an original word is no NF found) # Returns: (NF, prob, [POS]) or None def get_normal_form(word): lword = word.lower().strip() if len(word) > 2: try: nfs = get_normal_forms(lword) nf, score, poss = nfs[0] if (score <= 0.5): return (lword, 0.0, poss) else: return (nf, score, poss) except: return None else: return None # ------------------ # extract_nfs(sent) # --- # Retrieves list of NFs from a sentence def extract_nfs(sentence): for w in tokenizer.tokenize(sentence): w2 = get_normal_form(w) if w2 is not None: yield w2 # ------------------ # extract_keywords(sentence) # --- # Extracts key sentence words based on their rarity NORMAL_FORM_THRESHOLD = 0.5 FREQUENCY_THRESHOLDS = [ 8, 64, 256, 512, 1024, 2048 ] # of million frequencyPairs = list(zip([0] + FREQUENCY_THRESHOLDS, FREQUENCY_THRESHOLDS)) with open('normal_forms.lc') as f: reader = list(csv.reader(f, delimiter='\t')) freqWords = [ (thre, [ row[0] for row in reader if int(row[1]) < thre and int(row[1]) >= thrb ]) for (thrb, thre) in frequencyPairs ] def extract_keywords(sentence): words = tokenizer.tokenize(sentence); words_nf_h = [ [ nf for (nf, score, poss) in get_normal_forms(word) if score >= NORMAL_FORM_THRESHOLD ] for word in words ] words_nf = list(itertools.chain(*words_nf_h)) freqSentenceNFs = [ (freq, [ word for word in words_nf if word in group ]) for (freq, group) in freqWords ] return [ group for (freq, group) in freqSentenceNFs] # ------------------ # tranform_triples_to_matrix(triples) # --- # Transforms [(<key>, <key>, <value>)] to a numpy matrix def tranform_triples_to_matrix(triples): return np.matrix([[v[2] for v in group] for key, group in itertools.groupby(triples, key=lambda e: e[0])]) def apply_text_fixes(text): text0 = text.replace('\xa0', ' ').replace('โ€ฆ', '.').replace('ยซ', '"').replace('ยป', '"').replace('\'', '').replace('..', '.') text1 = re.sub(r'\[\d+\]', '', text0.replace('ะฐฬ', 'ะฐ').replace('ัƒฬ', 'ัƒ').replace('ั‘', 'ะต').replace('ั‘', 'ะต')) return text1 def strip_syntax(sent): words = [ nf for (nf, score, poss) in extract_nfs(sent) ] res = ' '.join(words) return res ```
{ "source": "jentenma/pfsimg-cfg", "score": 2 }
#### File: aptype/sfv2/sysdiag.py ```python import json import pprint import telnetlib import logging import os import errno import atexit import subprocess class SysDiagBase(object): def __init__(self, svrcfg, setup_info, logger ): self.svrcfg = svrcfg self.setup_info = setup_info self.logger = logger #print ("name = %s"% (__name__, )) def testNetwork(self, system): self.logger.info('testNetwork') return 0 def testMemory(self,system): self.logger.info('testMemory') return 0 def testCpu(self,system): self.logger.info('testCpu') return 0 def testStorage(self,system): self.logger.info('testStorage') return 0 def __str__(self): return "svrcfg type is %s" % (self.svrcfg) ```
{ "source": "jenterkin/selenium-page-elements", "score": 2 }
#### File: tests/fixtures/driver.py ```python import pytest from selenium import webdriver from selenium.webdriver.common.desired_capabilities import DesiredCapabilities @pytest.fixture(scope='session') def driver(): driver = webdriver.Remote( command_executor='http://localhost:4444/wd/hub', desired_capabilities=DesiredCapabilities.CHROME) driver.get('file:///Users/jenterkin/repos/page_elements/tests/index.html') yield driver driver.close() ```
{ "source": "jen-thomas/wildlife-observations", "score": 2 }
#### File: WildlifeObservations/observations/admin.py ```python from django.contrib import admin from django import forms from . import models # Register your models here. from .models import VegetationStructure, Survey class SourceAdmin(admin.ModelAdmin): list_display = ('name',) ordering = ('name',) search_fields = ('name',) class SiteAdmin(admin.ModelAdmin): list_display = ( 'area', 'site_name', 'altitude_band', 'latitude_start', 'longitude_start', 'altitude_start', 'gps_aspect_start', 'latitude_end', 'longitude_end', 'altitude_end', 'gps_aspect_end', 'transect_length',) ordering = ( 'site_name', 'altitude_band', 'altitude_start', 'altitude_end', 'gps_aspect_start', 'gps_aspect_end', 'transect_length',) search_fields = ('area', 'site_name', 'altitude_band', 'transect_length',) class VisitAdmin(admin.ModelAdmin): list_display = ('site', 'date',) ordering = ('site', 'date',) search_fields = ('site__site_name', 'date',) class SurveyForm(forms.ModelForm): class Meta: model = Survey fields = "__all__" def clean(self): if self.cleaned_data['repeat'] == Survey.Repeat.TWO: exists_repeat1 = Survey.objects. \ filter(visit=self.cleaned_data['visit']). \ filter(method=self.cleaned_data['method']). \ filter(repeat=Survey.Repeat.ONE). \ exists() if not exists_repeat1: raise forms.ValidationError("Check there is an earlier repeat using this survey method") class SurveyAdmin(admin.ModelAdmin): form = SurveyForm list_display = ('visit', 'start_time', 'end_time', 'method', 'repeat', 'observer',) ordering = ('visit', 'start_time', 'end_time', 'method', 'repeat',) search_fields = ('visit__site__site_name', 'start_time', 'end_time', 'method', 'observer',) class ObservationAdmin(admin.ModelAdmin): list_display = ( 'specimen_label', 'survey', 'status', 'length_head_abdomen', 'length_head_tegmina', 'original_preservation', 'current_preservation', 'notes',) ordering = ('specimen_label', 'survey', 'status', 'original_preservation', 'current_preservation',) search_fields = ('specimen_label', 'survey__visit__site__site_name', 'status', 'length_head_abdomen',) class PhotographAdmin(admin.ModelAdmin): list_display = ('filepath', 'observation_list', 'created_on') ordering = ('filepath', 'observation', 'created_on',) search_fields = ('filepath', 'observation__specimen_label', 'created_on',) filter_horizontal = ('observation',) def observation_list(self, obj): return ', '.join([str(observation) for observation in obj.observation.all()]) class IdentificationAdmin(admin.ModelAdmin): list_display = ( 'observation', 'species', 'genus', 'subfamily', 'family', 'suborder', 'specimen_status', 'identification_guide', 'sex', 'stage', 'confidence', 'confidence_reason', 'notebook', 'date_of_identification', 'comments',) ordering = ( 'observation', 'species', 'genus', 'subfamily', 'family', 'suborder', 'identification_guide', 'sex', 'stage', 'confidence', 'confidence_reason',) search_fields = ( 'observation__specimen_label', 'species__latin_name', 'genus__genus', 'subfamily__subfamily', 'family__family', 'suborder__suborder', 'identification_guide__title', 'sex', 'stage', 'confidence', 'confidence_reason',) raw_id_fields = ('observation',) def specimen_status(self, obj): return "{}".format(obj.observation.status) class TaxonomyClassAdmin(admin.ModelAdmin): list_display = ('taxclass',) ordering = ('taxclass',) search_fields = ('taxclass',) class TaxonomyOrderAdmin(admin.ModelAdmin): list_display = ('taxclass', 'order',) ordering = ('taxclass', 'order',) search_fields = ('taxclass__taxclass', 'order',) class TaxonomySuborderAdmin(admin.ModelAdmin): list_display = ('order', 'suborder',) ordering = ('order', 'suborder',) search_fields = ('order__order', 'suborder',) class TaxonomyFamilyAdmin(admin.ModelAdmin): list_display = ('suborder', 'family',) ordering = ('suborder', 'family',) search_fields = ('suborder__suborder', 'family',) class TaxonomySubfamilyAdmin(admin.ModelAdmin): list_display = ('family', 'subfamily',) ordering = ('family', 'subfamily',) search_fields = ('family__family', 'subfamily') class TaxonomyGenusAdmin(admin.ModelAdmin): list_display = ('subfamily', 'genus',) ordering = ('subfamily', 'genus',) search_fields = ('subfamily__subfamily', 'genus',) class TaxonomySpeciesAdmin(admin.ModelAdmin): list_display = ('genus', 'latin_name', 'common_name_english', 'common_name_catalan', 'common_name_spanish',) ordering = ('genus', 'latin_name', 'common_name_english', 'common_name_catalan', 'common_name_spanish',) search_fields = ( 'genus__genus', 'latin_name', 'common_name_english', 'common_name_catalan', 'common_name_spanish',) class IdentificationGuideAdmin(admin.ModelAdmin): list_display = ('author', 'title',) ordering = ('author', 'title',) search_fields = ('author', 'title',) class MeteorologyConditionsAdmin(admin.ModelAdmin): list_display = ( 'survey', 'cloud_coverage_start', 'wind_start', 'rain_start', 'cloud_coverage_end', 'wind_end', 'rain_end', 'notes',) ordering = ( 'survey', 'cloud_coverage_start', 'wind_start', 'rain_start', 'cloud_coverage_end', 'wind_end', 'rain_end',) search_fields = ( 'survey__visit', 'cloud_coverage_start', 'wind_start', 'rain_start', 'cloud_coverage_end', 'wind_end', 'rain_end',) class PlotAdmin(admin.ModelAdmin): list_display = ('visit', 'position',) ordering = ('visit', 'position',) search_fields = ('visit__visit', 'position',) class VegetationStructureForm(forms.ModelForm): class Meta: model = VegetationStructure fields = "__all__" def clean(self): if self.cleaned_data['percentage_rock'] + self.cleaned_data['percentage_bare_ground'] + self.cleaned_data[ 'percentage_vegetation_cover'] != 100: raise forms.ValidationError("Ground cover percentages do not add up to 100") return self.cleaned_data class VegetationStructureAdmin(admin.ModelAdmin): form = VegetationStructureForm list_display = ( 'plot', 'percentage_vegetation_cover', 'percentage_bare_ground', 'percentage_rock', 'height_75percent', 'max_height', 'density_01', 'density_02', 'density_03', 'density_04', 'density_05',) ordering = ('plot', 'percentage_vegetation_cover', 'percentage_bare_ground', 'percentage_rock', 'height_75percent', 'max_height', 'density_01', 'density_02', 'density_03', 'density_04', 'density_05',) search_fields = ( 'plot__plot', 'percentage_vegetation_cover', 'percentage_bare_ground', 'percentage_rock', 'height_75percent', 'max_height', 'density_01', 'density_02', 'density_03', 'density_04', 'density_05',) admin.site.register(models.Source, SourceAdmin) admin.site.register(models.Site, SiteAdmin) admin.site.register(models.Visit, VisitAdmin) admin.site.register(models.Observation, ObservationAdmin) admin.site.register(models.Photograph, PhotographAdmin) admin.site.register(models.Identification, IdentificationAdmin) admin.site.register(models.TaxonomyClass, TaxonomyClassAdmin) admin.site.register(models.TaxonomyOrder, TaxonomyOrderAdmin) admin.site.register(models.TaxonomySuborder, TaxonomySuborderAdmin) admin.site.register(models.TaxonomyFamily, TaxonomyFamilyAdmin) admin.site.register(models.TaxonomySubfamily, TaxonomySubfamilyAdmin) admin.site.register(models.TaxonomyGenus, TaxonomyGenusAdmin) admin.site.register(models.TaxonomySpecies, TaxonomySpeciesAdmin) admin.site.register(models.IdentificationGuide, IdentificationGuideAdmin) admin.site.register(models.MeteorologyConditions, MeteorologyConditionsAdmin) admin.site.register(models.Plot, PlotAdmin) admin.site.register(models.VegetationStructure, VegetationStructureAdmin) admin.site.register(models.Survey, SurveyAdmin) ``` #### File: WildlifeObservations/observations/data_integrity_checks.py ```python from django.db.models import Q, Count from .models import Identification, Observation, Survey, MeteorologyConditions class IdentificationDataChecks: def __init__(self): pass def check_identification_has_sex_adults_only(self): """ Returns list of dictionaries of the identifications that do not have a sex, only for the specimens that have been noted as adults. Note that whilst it might not be possible to determine the sex of an observation if it is not an adult, these identifications should still have sex=UNKNOWN, therefore this query considers all identifications, not just the adults. e.g. [{"specimen_label": TOR08 20211005 H1 C001}, {"specimen_label": TAV09 20211006 N1 C008}] """ identifications = Identification.objects.filter(stage=Identification.Stage.ADULT, sex__isnull=True) identifications_missing_sex = [] for identification in identifications: identifications_missing_sex.append({"specimen_label": identification.observation.specimen_label}) return identifications_missing_sex def check_identification_has_sex(self): """ Returns list of dictionaries of the identifications that do not have a sex. Note that whilst it might not be possible to determine the sex of an observation if it is not an adult, these identifications should still have sex=UNKNOWN, therefore this query considers all identifications, not just the adults. e.g. [{"specimen_label": TOR08 20211005 H1 C001}, {"specimen_label": TAV09 20211006 N1 C008}] """ identifications = Identification.objects.filter(sex__isnull=True) identifications_missing_sex = [] for identification in identifications: identifications_missing_sex.append({"specimen_label": identification.observation.specimen_label}) return identifications_missing_sex def check_identification_has_stage(self): """ Returns list of dictionaries of the identifications that do not have a stage. e.g. [{"specimen_label": TOR08 20211005 H1 C001}, {"specimen_label": TAV09 20211006 N1 C008}] """ identifications = Identification.objects.filter(stage__isnull=True) identifications_missing_stage = [] for identification in identifications: identifications_missing_stage.append({"specimen_label": identification.observation.specimen_label}) return identifications_missing_stage def check_identification_has_confidence(self): """ Returns list of dictionaries of the identifications that do not have a confidence. e.g. [{"specimen_label": TOR08 20211005 H1 C001}, {"specimen_label": TAV09 20211006 N1 C008}] """ identifications = Identification.objects.filter(confidence__isnull=True) identifications_missing_confidence = [] for identification in identifications: identifications_missing_confidence.append({"specimen_label": identification.observation.specimen_label}) return identifications_missing_confidence def find_observations_without_identification(self): """ Returns a set of the observations that do not have any identifications. """ observations = Observation.objects.all().values_list('specimen_label', flat=True) identifications = Identification.objects.all().values_list('observation__specimen_label', flat=True) observations_set = set() for observation in observations: observation: Observation observations_set.add(observation) identifications_set = set() for identification in identifications: identification: Identification identifications_set.add(identification) # creating a set of the identifications, deals with the duplicates # get all of the observations that do not have the specimen label in the identifications observations_without_identifications = observations_set - identifications_set return observations_without_identifications def add_identifications_to_set(self, set, qs): """ Add identifications from a queryset into a set. Return the set. """ for identification in qs: identification: Identification set.add(identification) return set def find_observations_without_confirmed_or_finalised_identification(self): """ Returns a set of the observations that do not have any identifications that have a confidence that is confirmed or finalised. This query will only consider observations that have at least one identification. """ all_identifications = Identification.objects.all().values_list('observation__specimen_label', flat=True) finalised_and_confirmed_identifications = self.get_all_finalised_and_confirmed_identifications() finalised_and_confirmed_identifications_qs = finalised_and_confirmed_identifications.values_list( 'observation__specimen_label', flat=True) all_identifications_set = set() finalised_and_confirmed_identifications_set = set() all_identifications_set = self.add_identifications_to_set(all_identifications_set, all_identifications) finalised_and_confirmed_identifications_set = self.add_identifications_to_set( finalised_and_confirmed_identifications_set, finalised_and_confirmed_identifications_qs) observations_without_confirmation_or_finalisation = \ all_identifications_set - finalised_and_confirmed_identifications_set # as this is # reduced to distinct specimen labels, these are equivalent to the observations return observations_without_confirmation_or_finalisation def check_finalised_confirmed_identifications_sex(self): """ Returns a set of identifications that have confirmed or finalised identifications but the sex in these confirmed or finalised identifications differs. """ finalised_and_confirmed_identifications = self.get_all_finalised_and_confirmed_identifications() finalised_and_confirmed_identifications_qs = finalised_and_confirmed_identifications.values_list( 'observation__specimen_label', flat=True) finalised_confirmed_identifications_different_sex = set() for finalised_confirmed_identification in finalised_and_confirmed_identifications_qs: distinct_sexes = finalised_and_confirmed_identifications.filter( observation__specimen_label=finalised_confirmed_identification).values_list('sex').distinct() if len(distinct_sexes) > 1: finalised_confirmed_identifications_different_sex.add(finalised_confirmed_identification) return finalised_confirmed_identifications_different_sex def check_finalised_confirmed_identifications_stage(self): """ Returns a set of identifications that have confirmed or finalised identifications but the stage in these confirmed or finalised identifications differs. """ finalised_and_confirmed_identifications = self.get_all_finalised_and_confirmed_identifications() finalised_and_confirmed_identifications_qs = finalised_and_confirmed_identifications.values_list( 'observation__specimen_label', flat=True) finalised_and_confirmed_identifications_different_stage = set() for finalised_confirmed_identification in finalised_and_confirmed_identifications_qs: distinct_stages = finalised_and_confirmed_identifications.filter( observation__specimen_label=finalised_confirmed_identification).values_list('stage').distinct() if len(distinct_stages) > 1: finalised_and_confirmed_identifications_different_stage.add(finalised_confirmed_identification) return finalised_and_confirmed_identifications_different_stage def identification_inconsistency(self, identification1, identification2): """ Compares two identifications according to the different levels of taxonomy and return those that are inconsistent at the same level. Return dictionary of the inconsistent identifcation with the observation specimen label and the field that is inconsistent. A non-empty field and null are considered to be inconsistent for the purposes of this function. """ inconsistent_identification = {} for field in ['species', 'genus', 'subfamily', 'family', 'suborder']: if getattr(identification1, field) != getattr(identification2, field): inconsistent_identification['specimen_label'] = identification1.observation.specimen_label inconsistent_identification['field'] = field return inconsistent_identification return None def get_qs_confirmed_identifications(self): """ Returns a queryset of all confirmed identifications. """ confirmed_identifications = Identification.objects.filter(confidence=Identification.Confidence.CONFIRMED) return confirmed_identifications def get_qs_finalised_identifications(self): """ Returns a queryset of all finalised identifications. """ finalised_identifications = Identification.objects.filter(confidence=Identification.Confidence.FINALISED) return finalised_identifications def get_all_finalised_and_confirmed_identifications(self): """ Returns a queryset of all finalised and confirmed identifications. """ finalised_and_confirmed_identifications = self.get_qs_finalised_identifications() | self.get_qs_confirmed_identifications() return finalised_and_confirmed_identifications def get_confirmed_identifications_to_check_taxonomy(self, confirmed_identifications): """ Returns a list of querysets that are the identifications for which more than one identification exists, for a particular observation. These are the identifications that need to be compared to check if they have a consistent taxonomy. """ multiple_confirmed_identifications_for_observation = confirmed_identifications.values( 'observation__specimen_label').annotate(number_ids=Count('observation__specimen_label')).filter( number_ids__gt=1) identifications_to_check = [] for observation in multiple_confirmed_identifications_for_observation: identifications_to_check.append(confirmed_identifications.filter( observation__specimen_label=observation['observation__specimen_label'])) return identifications_to_check def check_confirmed_identifications_taxonomy(self): """ Returns a list of dictionaries of the specimen labels which have inconsistent confirmed identifications. """ confirmed_identifications = self.get_qs_confirmed_identifications() identifications_to_check = self.get_confirmed_identifications_to_check_taxonomy(confirmed_identifications) inconsistent_identifications = [] for qs_of_identifications in identifications_to_check: inconsistent_identification = self.identification_inconsistency(qs_of_identifications[0], qs_of_identifications[1]) if inconsistent_identification != None: inconsistent_identifications.append(inconsistent_identification) return inconsistent_identifications def observations_with_confirmed_and_finalised_identifications(self): """ Return a list of observations which have both confirmed and finalised identifications. These can then be sorted through manually to ensure that there are none with this case, thereby ensuring that observations do not have conflicting identifications and are not used incorrectly in the analysis. """ confirmed_identifications_qs = self.get_qs_confirmed_identifications() finalised_identifications_qs = self.get_qs_finalised_identifications() observations_with_confirmed_and_finalised_identifications = confirmed_identifications_qs.intersection( finalised_identifications_qs).values_list('observation__specimen_label') return observations_with_confirmed_and_finalised_identifications class SurveyDataChecks: def __init__(self): pass def find_surveys_without_met_conditions(self): """ Returns a set of surveys for which there is no meteorological data. """ surveys = Survey.objects.all().values_list('visit__site__site_name', 'visit__date', 'method', 'repeat') met_conditions = MeteorologyConditions.objects.all().values_list('survey__visit__site__site_name', 'survey__visit__date', 'survey__method', 'survey__repeat') surveys_set = set() for survey in surveys: survey: Survey surveys_set.add(survey) met_conditions_surveys_set = set() for surveyed_met_conditions in met_conditions: surveyed_met_conditions: MeteorologyConditions met_conditions_surveys_set.add(surveyed_met_conditions) # get all of the surveys that do not have meteorological condition data surveys_without_met_conditions = surveys_set - met_conditions_surveys_set return surveys_without_met_conditions class ObservationDataChecks: def __init__(self): pass def find_observations_without_suborder(self): """ Get all observations that do not yet have a suborder. Return a set. """ all_identifications_with_suborder = Identification.objects.filter(suborder__isnull=False).values( 'observation__specimen_label') all_observations = Observation.objects.all().values('specimen_label') all_identifications_with_suborder_set = set() for identification in all_identifications_with_suborder: all_identifications_with_suborder_set.add(identification['observation__specimen_label']) all_observations_set = set() for observation in all_observations: all_observations_set.add(observation['specimen_label']) observations_without_suborder = all_observations_set - all_identifications_with_suborder_set return observations_without_suborder ``` #### File: management/commands/data_checks_finalised_identifications.py ```python from django.core.management.base import BaseCommand from ...data_integrity_checks import IdentificationDataChecks class Command(BaseCommand): help = 'Check finalised identification data.' def add_arguments(self, parser): pass def handle(self, *args, **options): identification_checks = IdentificationDataChecks() ``` #### File: management/commands/data_checks_identifications.py ```python from django.core.management.base import BaseCommand from ...data_integrity_checks import IdentificationDataChecks class Command(BaseCommand): help = 'Check identification data.' def add_arguments(self, parser): pass def handle(self, *args, **options): identification_checks = IdentificationDataChecks() print("***** Identifications without a sex (adults only) *****") print(len(identification_checks.check_identification_has_sex_adults_only()), "results:\n") for identification in identification_checks.check_identification_has_sex_adults_only(): print(identification['specimen_label']) print("\n***** Identifications without a sex (all stages) *****") print(len(identification_checks.check_identification_has_sex()), "results:\n") for identification in identification_checks.check_identification_has_sex(): print(identification['specimen_label']) print("\n***** Identifications without a stage *****") print(len(identification_checks.check_identification_has_stage()), "results:\n") for identification in identification_checks.check_identification_has_stage(): print(identification['specimen_label']) print("\n***** Identifications without a confidence *****") print(len(identification_checks.check_identification_has_confidence()), "results:\n") for identification in identification_checks.check_identification_has_confidence(): print(identification['specimen_label']) print("\n***** Observations without an identification *****") print(len(identification_checks.find_observations_without_identification()), "results:\n") for observation in identification_checks.find_observations_without_identification(): print(observation) print("\n***** Observations without a confirmed or finalised identification *****") print(len(identification_checks.find_observations_without_confirmed_or_finalised_identification()), "results:\n") for observation in identification_checks.find_observations_without_confirmed_or_finalised_identification(): print(observation) print("\n***** Finalised/confirmed identifications with different sexes *****") print(len(identification_checks.check_finalised_confirmed_identifications_sex()), "results:\n") for identification in identification_checks.check_finalised_confirmed_identifications_sex(): print(identification) print("\n***** Finalised/confirmed identifications with different stages *****") print(len(identification_checks.check_finalised_confirmed_identifications_stage()), "results:\n") for identification in identification_checks.check_finalised_confirmed_identifications_stage(): print(identification) print("\n***** Confirmed identifications with different taxonomy *****") print(len(identification_checks.check_confirmed_identifications_taxonomy()), "results:\n") for identification in identification_checks.check_confirmed_identifications_taxonomy(): print(identification) print("\n***** Observations with confirmed and finalised identifications *****") print(len(identification_checks.observations_with_confirmed_and_finalised_identifications()), "results:\n") for identification in identification_checks.observations_with_confirmed_and_finalised_identifications(): print(identification) ``` #### File: management/commands/data_checks_observations.py ```python from django.core.management.base import BaseCommand from ...data_integrity_checks import ObservationDataChecks class Command(BaseCommand): help = 'Check observation data.' def add_arguments(self, parser): pass def handle(self, *args, **options): observation_checks = ObservationDataChecks() print("***** Observations without a suborder *****") # print(len(observation_checks.find_observations_without_suborder()), "results:\n") for observation in observation_checks.find_observations_without_suborder(): print(observation) ``` #### File: management/commands/export_observations_csv.py ```python import argparse import csv from django.core.management.base import BaseCommand from ...models import Identification from ...utils import field_or_empty_string header_observations = ['specimen_label', 'site_name', 'date_cest', 'method', 'repeat', 'sex', 'stage', 'id_confidence', 'suborder', 'family', 'subfamily', 'genus', 'species'] def get_row_for_identification(identification): row = {} row['specimen_label'] = identification.observation.specimen_label print(row['specimen_label']) row['site_name'] = identification.observation.survey.visit.site.site_name row['date_cest'] = identification.observation.survey.visit.date row['method'] = identification.observation.survey.method row['repeat'] = identification.observation.survey.repeat row['sex'] = identification.sex # shouldn't be null row['stage'] = identification.stage # shouldn't be null row['id_confidence'] = identification.confidence # shouldn't be null row['suborder'] = identification.suborder.suborder # shouldn't be null row['family'] = field_or_empty_string(identification.family, 'family') # can be null if the identification cannot # be determined to this taxonomic level row['subfamily'] = field_or_empty_string(identification.subfamily, 'subfamily') # can be null if the identification cannot be determined to # this taxonomic level row['genus'] = field_or_empty_string(identification.genus, 'genus') # can be null if the identification cannot be # determined to this taxonomic level row['species'] = field_or_empty_string(identification.species, 'latin_name') # can be null if the identification cannot be determined to # this taxonomic level return row def export_csv(output_file, practice_sites): """ Export data from a query into a CSV file which has a specified output file. Using an ORM query, get some data from the database and export specified fields into a CSV file which uses a set of headers. If all observations have been identified, then the export of observations and identifications can consider just the confirmed and finalised identifications. - Observations should not have both confirmed and finalised identifications. These should be encountered in the data integrity checks. - Where there are observations that have not been identified, these should be encountered in the data integrity checks. These will not be exported. - Where there are observations that have an identification but the identification has not been confirmed or finalised, then these should also be encountered in the data integrity checks. These will not be exported. - Where there is more than one confirmed identification for a particular observation, only one should be selected for the output. Where there is more than one, the data integrity checks will ensure the confirmed identifications are for the same taxa. - Where an observation has finalised identifications, data integrity checks will ensure there are at least two. All finalised identifications for an observation will be exported. Observations from 'practice' sites, are excluded from the export. These were sites that were only visited once during the surveys and were not appropriate for visiting again. """ headers = header_observations csv_writer = csv.DictWriter(output_file, headers) csv_writer.writeheader() # There must only be one identification exported for each observation, where the observation has a confirmed # identification. Note that this can be to any taxonomic level. confirmed_identifications = Identification.objects.exclude( observation__survey__visit__site__site_name__in=practice_sites).filter( confidence=Identification.Confidence.CONFIRMED) # Creating a set of the specimen labels ensures that only one confirmed identification for the same observation # should be exported. Data integrity checks will ensure that if there is more than one confirmed identification # for an observation, then it is for the same taxa. It is then also used as an extra check to make sure that no # finalised identifications can be exported if a confirmed identification for the same observation has been # exported. This case should be accounted for though in the data integrity checks. selected_identification_specimen_label = set() for confirmed_identification in confirmed_identifications: if confirmed_identification.observation.specimen_label not in selected_identification_specimen_label: row = get_row_for_identification(confirmed_identification) selected_identification_specimen_label.add(confirmed_identification.observation.specimen_label) csv_writer.writerow(row) print("Number of specimen labels after confirmed ids: ", len(selected_identification_specimen_label)) # There could be more than one finalised identification that should be exported, so allow for more than one with # the same specimen label, but check that they are not in the set of observations that have confirmed # identifications. finalised_identifications = Identification.objects.exclude( observation__survey__visit__site__site_name__in=practice_sites).filter( confidence=Identification.Confidence.FINALISED) print("Number of finalised ids:", finalised_identifications.count()) for finalised_identification in finalised_identifications: if finalised_identification.observation.specimen_label not in selected_identification_specimen_label: row = get_row_for_identification(finalised_identification) csv_writer.writerow(row) class Command(BaseCommand): def add_arguments(self, parser): parser.add_argument('output_file', type=argparse.FileType('w'), help='Path to the file or - for stdout') parser.add_argument('--practice_sites', type=str, nargs="*", help='Site names of the practice sites to exclude from the export') def handle(self, *args, **options): export_csv(options['output_file'], options['practice_sites']) ``` #### File: management/commands/export_vegetation_surveys_csv.py ```python import argparse import csv from django.core.management.base import BaseCommand from ...models import VegetationStructure, Plot header_vegetation_survey = ['site_name', 'date_cest', 'plot_distance_from_start_m', 'percentage_vegetation_cover', 'percentage_bare_ground', 'percentage_rock', 'height_75percent', 'max_height', 'density_01', 'density_02', 'density_03', 'density_04', 'density_05'] def export_csv(output_file): """ Export data from a query into a CSV file which has a specified output file. Using an ORM query, get some data from the database and export specified fields into a CSV file which uses a set of headers. """ headers = header_vegetation_survey csv_writer = csv.DictWriter(output_file, headers) csv_writer.writeheader() vegetation_surveys = VegetationStructure.objects.all() for vegetation_survey in vegetation_surveys: row = {} row['site_name'] = vegetation_survey.plot.visit.site.site_name row['date_cest'] = vegetation_survey.plot.visit.date row['plot_distance_from_start_m'] = vegetation_survey.plot.position row['percentage_vegetation_cover'] = vegetation_survey.percentage_vegetation_cover row['percentage_bare_ground'] = vegetation_survey.percentage_bare_ground row['percentage_rock'] = vegetation_survey.percentage_rock row['height_75percent'] = vegetation_survey.height_75percent row['max_height'] = vegetation_survey.max_height row['density_01'] = vegetation_survey.density_01 row['density_02'] = vegetation_survey.density_02 row['density_03'] = vegetation_survey.density_03 row['density_04'] = vegetation_survey.density_04 row['density_05'] = vegetation_survey.density_05 csv_writer.writerow(row) class Command(BaseCommand): def add_arguments(self, parser): parser.add_argument('output_file', type=argparse.FileType('w'), help='Path to the file or - for stdout') def handle(self, *args, **options): export_csv(options['output_file']) ``` #### File: management/commands/import_sites.py ```python from django.core.management.base import BaseCommand from django.db import transaction from ...models import Site, Source import csv class Command(BaseCommand): help = 'Adds sites' def add_arguments(self, parser): parser.add_argument('filename', type=str) @transaction.atomic def handle(self, *args, **options): print(options['filename']) self.import_sources() self.import_data_from_csv(options['filename']) def import_sources(self): Source.objects.get_or_create(name=Source.PositionSource.GPS) Source.objects.get_or_create(name=Source.PositionSource.OSMAND) Source.objects.get_or_create(name=Source.PositionSource.DEM) Source.objects.get_or_create(name=Source.PositionSource.VIKINGTOPO) def source_string_to_choice(self, source_string): if source_string == 'GPS': name = Source.PositionSource.GPS elif source_string == 'Osmand': name = Source.PositionSource.OSMAND elif source_string == 'DEM': name = Source.PositionSource.DEM elif source_string == 'Viking': name = Source.PositionSource.VIKINGTOPO else: assert False return Source.objects.get(name=name) def import_data_from_csv(self, filename): with open(filename) as csvfile: reader = csv.DictReader(csvfile) for row in reader: site = Site() site.area = row['area'] site.site_name = row['sitename'] site.altitude_band = row['altitude_band'] site.transect_length = row['transect_length'] site.transect_description = row['transect_description'] site.transect_length_source = self.source_string_to_choice(row['transect_length_source']) site.notes = row['notes'] site.latitude_start = row['start_latitude'] site.longitude_start = row['start_longitude'] site.altitude_start = row['start_altitude'] site.latitude_start_source = self.source_string_to_choice(row['start_latitude_source']) site.longitude_start_source = self.source_string_to_choice(row['start_longitude_source']) site.altitude_start_source = self.source_string_to_choice(row['start_altitude_source']) if row['start_number_satellites'] != '': site.gps_number_satellites_start = row['start_number_satellites'] if row['start_gps_accuracy'] != '': site.gps_accuracy_start = row['start_gps_accuracy'] if row['start_orientation'] != '': site.gps_aspect_start = row['start_orientation'] site.latitude_end = row['end_latitude'] site.longitude_end = row['end_longitude'] site.altitude_end = row['end_altitude'] site.latitude_end_source = self.source_string_to_choice(row['end_latitude_source']) site.longitude_end_source = self.source_string_to_choice(row['end_longitude_source']) site.altitude_end_source = self.source_string_to_choice(row['end_altitude_source']) if row['end_number_satellites'] != '': site.gps_number_satellites_end = row['end_number_satellites'] if row['end_gps_accuracy'] != '': site.gps_accuracy_end = row['end_gps_accuracy'] if row['end_orientation'] != '': site.gps_aspect_end = row['end_orientation'] site.save() ``` #### File: management/commands/report_identifications.py ```python from django.core.management.base import BaseCommand from ...reports import SpeciesReport class Command(BaseCommand): help = 'Print reports about observations and identifications' def add_arguments(self, parser): pass def handle(self, *args, **options): species_reports = SpeciesReport() print("---------- Observations ----------") counting_observations = species_reports.observations_count() print("Total number of observations:", len(counting_observations)) counting_suborders = species_reports.observations_suborder() print("Caelifera:", len(counting_suborders['Caelifera']), "=", 100 * (len(counting_suborders['Caelifera']) / len(counting_observations)).__round__(3), "%") print("Ensifera:", len(counting_suborders['Ensifera']), "=", 100 * (len(counting_suborders['Ensifera']) / len(counting_observations)).__round__(3), "%") print("Number of observations without an identification:", len(counting_observations) - len(counting_suborders['Caelifera']) - len( counting_suborders['Ensifera']) - len(counting_suborders['todo'])) print("\n---------- Observations identified ----------") print( "\nTotal number of observations with finalised identifications (yes, confirmed, cannot identify further, " "small nymphs hard to ID):", species_reports.identified_observations_finalised_count()) counting_species_identified = species_reports.identified_observations_to_species() total_identifications_species_unique = species_reports.unique_observations_identified_to_species(counting_species_identified) identifications_to_check = species_reports.get_species_from_specimen_label_confidence_set(counting_species_identified, 'Check') list_identifications_to_check = sorted(identifications_to_check, key=lambda x: x[1]) print("Total number of observations identified to species:", len(total_identifications_species_unique)) print("\nNumber of unique observations identified to species, identification CONFIRMED:", len(counting_species_identified['Confirmed'])) print("\nNumber of unique observations identified to species, identification FINALISED:", len(counting_species_identified['Finalised'])) print("Number of unique observations identified to species, identification to REVIEW:", len(counting_species_identified['Review'])) print("Number of unique observations identified to species, identification to CHECK AFTER MUSEUM:", len(counting_species_identified['CheckMuseum'])) print("Number of unique observations identified to species, identification to CHECK:", len(counting_species_identified['Check'])) print("Number of unique observations identified to species, identification to REDO / IN PROGRESS:", len(counting_species_identified['Redo'])) print("Number of unique observations identified to species, identification IN PROGRESS:", len(counting_species_identified['InProgress'])) print("Number of unique observations identified to species, identification MISSING CONFIRMATION:", len(counting_species_identified['NoConfirmation'])) counting_genus_identified = species_reports.identified_observations_to_genus_not_species() print("\nNumber of unique observations only identified to genus:", counting_genus_identified['Total']) print("\nNumber of unique observations only identified to genus, identification CONFIRMED:", len(counting_genus_identified['Confirmed'])) print("\nNumber of unique observations only identified to genus, identification FINALISED:", len(counting_genus_identified['Finalised'])) print("Number of unique observations only identified to genus, identification to REVIEW:", len(counting_genus_identified['Review'])) print("Number of unique observations only identified to genus, identification to CHECK AFTER MUSEUM:", len(counting_genus_identified['CheckMuseum'])) print("Number of unique observations only identified to genus, identification to CHECK:", len(counting_genus_identified['Check'])) print("Number of unique observations only identified to genus, identification to REDO:", len(counting_genus_identified['Redo'])) print("Number of unique observations only identified to genus, identification IN PROGRESS:", len(counting_genus_identified['InProgress'])) print("Number of unique observations only identified to genus, identification NO CONFIRMATION:", len(counting_genus_identified['NoConfirmation'])) print("\n---------- Number of each stage identified ----------") print("\nStages identified:") for identification in species_reports.identifications_stage_count(): print(identification["stage"], identification["count"]) print("\nStage with confidence:") for identification in species_reports.identifications_stage_confidence_count(): if identification["stage"] == "Adult": print(identification["stage"], identification["confidence"], identification["count"]) elif identification["stage"] == "Nymph": print(identification["stage"], identification["confidence"], identification["count"]) print("\n-----THINGS TO CHECK-----") print("\n-Number of observations without an identification:", len(counting_observations) - len(counting_suborders['Caelifera']) - len( counting_suborders['Ensifera']) - len(counting_suborders['todo']), ":", counting_observations - counting_suborders['Caelifera'] - counting_suborders['Ensifera'] - counting_suborders['todo']) print("\n-Number of identifications without a suborder:", len(counting_suborders['todo']), ":", counting_suborders['todo']) print("\n-ID'd to species to REVIEW:", len(counting_species_identified['Review']), ":", counting_species_identified['Review']) print("\n-ID'd to species to CHECK:") for element in list_identifications_to_check: print(element) print("\n-ID'd to species to REDO:", len(counting_species_identified['Redo']), ":", counting_species_identified['Redo']) ``` #### File: management/commands/report_survey_summary.py ```python import datetime from django.core.management.base import BaseCommand from ...reports import SurveyReport class Command(BaseCommand): help = 'Print summary reports about a specified survey' def add_arguments(self, parser): parser.add_argument('site_name', type=str, help="Site name") parser.add_argument('date', type=datetime.date.fromisoformat, help='Date of survey') parser.add_argument('method', type=str, help='Survey method') parser.add_argument('repeat', type=int, help='Survey method repeat') def handle(self, *args, **options): survey_reports = SurveyReport() survey = survey_reports.get_survey_object(options['site_name'], options['date'], options['method'], options['repeat']) print("\nSummary of suborders observed during this survey (from all identifications):", survey) for suborder, observations in survey_reports.summarise_survey_suborder(survey).items(): print(suborder, len(observations)) print("\nSummary of confirmed or finalised taxa during this survey:", survey) for taxa, count in survey_reports.summarise_survey_confirmed_finalised_taxa(survey): print(taxa, count) print("\nObservations for this survey (number in brackets: number of " "identifications for the observation):", survey) print("Total:", len(survey_reports.list_survey_observations(survey))) for observation_id_summary in survey_reports.list_observations_count_identifications(survey): print(observation_id_summary['observation'], "(", observation_id_summary['count'], ")") print("\nList of identifications for this survey:", survey) print("Total:", len(survey_reports.list_survey_identifications(survey))) for row in survey_reports.list_survey_identifications(survey): print(row) ``` #### File: management/commands/update_sex_small_nymphs.py ```python from django.core.management.base import BaseCommand from django.db import transaction from ...models import Identification def get_small_nymph_no_sex_identifications(): """Get the identifications of nymphs that have been marked as being confirmed because they are too small to identify further. Return the queryset of objects. """ rows_to_update = Identification.objects.filter(stage=Identification.Stage.NYMPH).filter( confidence_reason=Identification.ConfidenceReason.SMALL_NYMPH_HARD_TO_ID).filter(sex__isnull=True) return rows_to_update def update_sex_unknown_small_nymphs(): """Update the objects with unknown sex.""" rows_to_update = get_small_nymph_no_sex_identifications() rows_to_update.update(sex=Identification.Sex.UNKNOWN) class Command(BaseCommand): help = 'Updates identifications of small nymphs that do not currently have a sex defined.' @transaction.atomic def handle(self, *args, **options): update_sex_unknown_small_nymphs() ``` #### File: WildlifeObservations/observations/models.py ```python from django.core.validators import MinValueValidator, MaxValueValidator, RegexValidator from django.db import models from django.conf import settings from django.db.models import Q from django.utils import timezone from django.utils.translation import gettext_lazy as _ class Source(models.Model): class PositionSource(models.TextChoices): VIKINGTOPO = 'Viking Topo', _('Viking Topo') GPS = 'GPS', _('GPS') DEM = 'DEM', _('DEM') OSMAND = 'OsmAnd', _('OsmAnd') name = models.CharField(max_length=20, choices=PositionSource.choices) def __str__(self): return "{}".format(self.name) class Site(models.Model): area = models.CharField(max_length=30) site_name = models.CharField(max_length=5, unique=True) altitude_band = models.IntegerField(validators=[MinValueValidator(0)]) latitude_start = models.FloatField(validators=[MinValueValidator(-90), MaxValueValidator(90)]) latitude_start_source = models.ForeignKey(Source, on_delete=models.PROTECT, related_name='+') longitude_start = models.FloatField(validators=[MinValueValidator(-180), MaxValueValidator(180)]) longitude_start_source = models.ForeignKey(Source, on_delete=models.PROTECT, related_name='+') altitude_start = models.FloatField(validators=[MinValueValidator(0)]) altitude_start_source = models.ForeignKey(Source, on_delete=models.PROTECT, related_name='+') gps_number_satellites_start = models.IntegerField(null=True, blank=True, validators=[MinValueValidator(0)]) gps_accuracy_start = models.IntegerField(null=True, blank=True) gps_aspect_start = models.FloatField(null=True, blank=True) latitude_end = models.FloatField(validators=[MinValueValidator(-90), MaxValueValidator(90)]) latitude_end_source = models.ForeignKey(Source, on_delete=models.PROTECT, related_name='+') longitude_end = models.FloatField(validators=[MinValueValidator(-180), MaxValueValidator(180)]) longitude_end_source = models.ForeignKey(Source, on_delete=models.PROTECT, related_name='+') altitude_end = models.FloatField(validators=[MinValueValidator(0)]) altitude_end_source = models.ForeignKey(Source, on_delete=models.PROTECT, related_name='+') gps_number_satellites_end = models.IntegerField(null=True, blank=True, validators=[MinValueValidator(0)]) gps_accuracy_end = models.IntegerField(null=True, blank=True) gps_aspect_end = models.FloatField(null=True, blank=True) transect_length = models.FloatField(validators=[MinValueValidator(0), MaxValueValidator(100)]) transect_length_source = models.ForeignKey(Source, on_delete=models.PROTECT) transect_description = models.TextField(max_length=2048, default='', blank=True) notes = models.TextField(max_length=2048, default='', blank=True) created_on = models.DateTimeField(default=timezone.now) def __str__(self): return "{} ({}m)".format(self.site_name, self.altitude_band) class Visit(models.Model): site = models.ForeignKey(Site, on_delete=models.PROTECT) date = models.DateField() created_on = models.DateTimeField(default=timezone.now) class Meta: constraints = [models.UniqueConstraint( name="%(app_label)s_%(class)s_site_date_unique_relationships", fields=['site', 'date'])] def __str__(self): return "{} {}".format(self.site, self.date) class Survey(models.Model): class Method(models.TextChoices): NET = 'Net', _('Net') HAND = 'Hand', _('Hand') class Repeat(models.IntegerChoices): ONE = 1 TWO = 2 visit = models.ForeignKey(Visit, on_delete=models.PROTECT) start_time = models.TimeField() end_time = models.TimeField() method = models.CharField(max_length=5, choices=Method.choices) repeat = models.IntegerField(choices=Repeat.choices) observer = models.CharField(max_length=100) created_on = models.DateTimeField(default=timezone.now) def __str__(self): return "{} {} {}".format(self.visit, self.method, self.repeat) class Meta: constraints = [ models.UniqueConstraint(name="%(app_label)s_%(class)s_visit_method_repeat_unique_relationships", fields=['visit', 'method', 'repeat']), models.UniqueConstraint(name="%(app_label)s_%(class)s_visit_start_unique_relationships", fields=['visit', 'start_time'])] class MeteorologyConditions(models.Model): survey = models.OneToOneField(Survey, on_delete=models.PROTECT, unique=True) cloud_coverage_start = models.IntegerField(null=True, blank=True, validators=[MinValueValidator(0), MaxValueValidator(8)]) wind_start = models.IntegerField(null=True, blank=True, validators=[MinValueValidator(0)]) rain_start = models.IntegerField(null=True, blank=True, validators=[MinValueValidator(0)]) cloud_coverage_end = models.IntegerField(null=True, blank=True, validators=[MinValueValidator(0), MaxValueValidator(8)]) wind_end = models.IntegerField(null=True, blank=True, validators=[MinValueValidator(0)]) rain_end = models.IntegerField(null=True, blank=True, validators=[MinValueValidator(0)]) notes = models.TextField(max_length=2048, default='', blank=True) created_on = models.DateTimeField(default=timezone.now) def __str__(self): return "{}".format(self.survey) class Meta: verbose_name_plural = 'Meteorological conditions' class Observation(models.Model): class Status(models.TextChoices): OBSERVED = 'Observed', _('Observed') SPECIMEN = 'Specimen', _('Specimen') LOST = 'Lost', _('Lost') class PreservationType(models.TextChoices): FROZEN = 'Frozen', _('Frozen') ALCOHOL = 'Alcohol', _('Alcohol') PINNED = 'Pinned', _('Pinned') NA = 'NA', _('NA') specimen_label = models.CharField(max_length=22, unique=True, validators=[ RegexValidator(regex='^[A-Z]{3}[0-9]{2} [0-9]{8} [A-Z]{1}[0-9]{1} [A-Z]{1}[0-9]{3}$', message='Format is sitename yyyymmdd methodrepeat specimen', code='Invalid format')]) survey = models.ForeignKey(Survey, on_delete=models.PROTECT) length_head_abdomen = models.FloatField(null=True, blank=True, validators=[MinValueValidator(0), MaxValueValidator(100)]) length_head_tegmina = models.FloatField(null=True, blank=True, validators=[MinValueValidator(0), MaxValueValidator(100)]) original_preservation = models.CharField(max_length=10, choices=PreservationType.choices, default=PreservationType.FROZEN) current_preservation = models.CharField(max_length=10, choices=PreservationType.choices, default=PreservationType.FROZEN) status = models.CharField(max_length=10, choices=Status.choices) notes = models.TextField(max_length=1024, null=True, blank=True) created_on = models.DateTimeField(default=timezone.now) def __str__(self): return "{}".format(self.specimen_label) class Photograph(models.Model): filepath = models.CharField(max_length=300, unique=True) observation = models.ManyToManyField(Observation) created_on = models.DateTimeField(default=timezone.now) def __str__(self): return "{}".format(self.filepath) class TaxonomyClass(models.Model): taxclass = models.CharField(max_length=255, unique=True) def __str__(self): return "{}".format(self.taxclass) class Meta: verbose_name_plural = 'Taxonomy classes' class TaxonomyOrder(models.Model): order = models.CharField(max_length=255, unique=True) taxclass = models.ForeignKey(TaxonomyClass, on_delete=models.PROTECT) def __str__(self): return "{}".format(self.order) class Meta: verbose_name_plural = 'Taxonomy orders' class TaxonomySuborder(models.Model): suborder = models.CharField(max_length=255, unique=True) order = models.ForeignKey(TaxonomyOrder, on_delete=models.PROTECT) def __str__(self): return "{}".format(self.suborder) class Meta: verbose_name_plural = 'Taxonomy sub-orders' class TaxonomyFamily(models.Model): family = models.CharField(max_length=255, unique=True) suborder = models.ForeignKey(TaxonomySuborder, on_delete=models.PROTECT) def __str__(self): return "{}".format(self.family) class Meta: verbose_name_plural = 'Taxonomy families' class TaxonomySubfamily(models.Model): subfamily = models.CharField(max_length=255, unique=True) family = models.ForeignKey(TaxonomyFamily, on_delete=models.PROTECT) def __str__(self): return "{}".format(self.subfamily) class Meta: verbose_name_plural = 'Taxonomy subfamilies' class TaxonomyGenus(models.Model): genus = models.CharField(max_length=255, unique=True) subfamily = models.ForeignKey(TaxonomySubfamily, on_delete=models.PROTECT, null=True, blank=True) def __str__(self): return "{}".format(self.genus) class Meta: verbose_name_plural = 'Taxonomy genera' ordering = ['genus'] class TaxonomySpecies(models.Model): latin_name = models.CharField(max_length=255, unique=True) genus = models.ForeignKey(TaxonomyGenus, on_delete=models.PROTECT) common_name_english = models.CharField(max_length=100, null=True, blank=True) common_name_catalan = models.CharField(max_length=100, null=True, blank=True) common_name_spanish = models.CharField(max_length=100, null=True, blank=True) def __str__(self): return "{}".format(self.latin_name) class Meta: verbose_name_plural = 'Taxonomy species' class IdentificationGuide(models.Model): title = models.CharField(max_length=150, unique=True) author = models.CharField(max_length=1024) def __str__(self): return "{} - {}".format(self.author, self.title) class Identification(models.Model): class Sex(models.TextChoices): MALE = 'Male', _('Male') FEMALE = 'Female', _('Female') UNKNOWN = 'Unknown', _('Unknown') class Stage(models.TextChoices): ADULT = 'Adult', _('Adult') NYMPH = 'Nymph', _('Nymph') UNKNOWN = 'Unknown', _('Unknown') class Confidence(models.TextChoices): IN_PROGRESS = 'In_progress', _('In progress') CHECK = 'Check', _('Check') CHECK_IN_MUSEUM = 'Check_in_museum', _('Check in museum') CONFIRMED = 'Confirmed', _('Confirmed') REDO = 'Redo', _('Redo') REVIEW = 'Review', _('Review') FINALISED = 'Finalised', _('Finalised') class ConfidenceReason(models.TextChoices): ID_CERTAIN = 'ID_certain', _('ID certain') ID_UNCERTAIN = 'ID_uncertain', _('ID uncertain') ID_INCOMPLETE = 'ID_incomplete', _('ID incomplete') ID_NEEDS_CONFIRMATION = 'ID_needs_confirmation', _('ID needs confirmation') ID_INCORRECT = 'ID_incorrect', _('ID incorrect') CANNOT_DETERMINE_FURTHER = 'Cannot_determine_further', _('Cannot determine further') SMALL_NYMPH_HARD_TO_ID = 'Small_nymph_hard_to_ID', _('Small nymph hard to ID') CANNOT_SPLIT_FURTHER = 'Cannot_split_further', _('Cannot split further') observation = models.ForeignKey(Observation, on_delete=models.PROTECT) species = models.ForeignKey(TaxonomySpecies, on_delete=models.PROTECT, null=True, blank=True) genus = models.ForeignKey(TaxonomyGenus, on_delete=models.PROTECT, null=True, blank=True) subfamily = models.ForeignKey(TaxonomySubfamily, on_delete=models.PROTECT, null=True, blank=True) family = models.ForeignKey(TaxonomyFamily, on_delete=models.PROTECT, null=True, blank=True) suborder = models.ForeignKey(TaxonomySuborder, on_delete=models.PROTECT, null=True, blank=True) identification_notes = models.TextField(max_length=2048, null=True, blank=True) identification_guide = models.ForeignKey(IdentificationGuide, on_delete=models.PROTECT, null=True, blank=True) sex = models.CharField(max_length=7, choices=Sex.choices, null=True, blank=True) stage = models.CharField(max_length=7, choices=Stage.choices, null=True, blank=True) confidence = models.CharField(max_length=30, choices=Confidence.choices, null=True, blank=True) confidence_reason = models.CharField(max_length=30, choices=ConfidenceReason.choices, null=True, blank=True) date_of_identification = models.DateField(null=True, blank=True) notebook = models.CharField(max_length=10) comments = models.TextField(max_length=1000, null=True, blank=True) created_on = models.DateTimeField(default=timezone.now) def save(self, *args, **kwargs): if self.species is not None: self.genus = self.species.genus if self.genus is not None: self.subfamily = self.genus.subfamily if self.subfamily is not None: self.family = self.subfamily.family if self.family is not None: self.suborder = self.family.suborder return super().save(*args, **kwargs) def __str__(self): return "{} - {} [{}]".format(self.observation, self.species, self.confidence) class Meta: constraints = [models.UniqueConstraint( name="%(app_label)s_%(class)s_specimen_guide_species_date_unique_relationships", fields=['observation', 'identification_guide', 'species', 'date_of_identification']), # add constraints to ensure only allowed combinations of confidence and confidence reason models.CheckConstraint(name="%(app_label)s_%(class)s_check_confidence_reasons", check=Q(Q(confidence='Confirmed') & Q(confidence_reason__in=( 'Small_nymph_hard_to_ID', 'Cannot_determine_further', 'ID_certain'))) | Q(Q(confidence__in=('Check', 'Check_in_museum')) & Q(confidence_reason='ID_needs_confirmation')) | Q(Q(confidence='In_progress') & Q(confidence_reason='ID_incomplete')) | Q(Q(confidence='Review') & Q(confidence_reason='ID_uncertain')) | Q(Q(confidence='Redo') & Q(confidence_reason='ID_incorrect')) | Q(Q(confidence='Finalised') & Q(confidence_reason='Cannot_split_further')) )] class Plot(models.Model): visit = models.ForeignKey(Visit, on_delete=models.PROTECT) position = models.IntegerField(validators=[MinValueValidator(0), MaxValueValidator(100)]) created_on = models.DateTimeField(default=timezone.now) def __str__(self): return "{} ({}m)".format(self.visit, self.position) class Meta: constraints = [models.UniqueConstraint( name="%(app_label)s_%(class)s_visit_position_unique_relationships", fields=['visit', 'position'])] class VegetationStructure(models.Model): plot = models.OneToOneField(Plot, on_delete=models.PROTECT) percentage_vegetation_cover = models.IntegerField(validators=[MinValueValidator(0), MaxValueValidator(100)]) percentage_bare_ground = models.IntegerField(validators=[MinValueValidator(0), MaxValueValidator(100)]) percentage_rock = models.IntegerField(validators=[MinValueValidator(0), MaxValueValidator(100)]) height_75percent = models.IntegerField(validators=[MinValueValidator(0)]) max_height = models.IntegerField(validators=[MinValueValidator(0)]) density_01 = models.IntegerField(validators=[MinValueValidator(0)]) density_02 = models.IntegerField(validators=[MinValueValidator(0)]) density_03 = models.IntegerField(validators=[MinValueValidator(0)]) density_04 = models.IntegerField(validators=[MinValueValidator(0)]) density_05 = models.IntegerField(validators=[MinValueValidator(0)]) notes = models.TextField(max_length=2048, default='', blank=True) created_on = models.DateTimeField(default=timezone.now) def __str__(self): return "{}".format(self.plot) ```
{ "source": "jentiai/Korean-Light-OCR-API", "score": 3 }
#### File: jentiai/Korean-Light-OCR-API/tools.py ```python import os import re import cv2 import torch import numpy as np import Polygon as plg from PIL import Image from collections import OrderedDict from matplotlib import patches from matplotlib import font_manager as fm from matplotlib import pyplot as plt def read_txt(txt_path): txt_contents = [] f = open(txt_path, 'r') while True: line = f.readline().strip('\n').strip(' ') if not line: break x1, y1, x2, y2, x3, y3, x4, y4 = line.split(',')[:8] label = line.split(',')[8].strip(' ') if line.endswith(','): label += ',' x1, y1, x2, y2, x3, y3, x4, y4 = map(int, [x1, y1, x2, y2, x3, y3, x4, y4]) polygon = polygon_from_points([x1, y1, x2, y2, x3, y3, x4, y4]) txt_contents.append([polygon, label, f"{x1}, {y1}, {x2}, {y2}, {x3}, {y3}, {x4}, {y4}"]) f.close() return txt_contents def polygon_from_points(points): """ Returns a Polygon object to use with the Polygon2 class from a list of 8 points: x1,y1,x2,y2,x3,y3,x4,y4 """ resBoxes = np.empty([1, 8], dtype='int32') resBoxes[0, 0] = int(points[0]) resBoxes[0, 4] = int(points[1]) resBoxes[0, 1] = int(points[2]) resBoxes[0, 5] = int(points[3]) resBoxes[0, 2] = int(points[4]) resBoxes[0, 6] = int(points[5]) resBoxes[0, 3] = int(points[6]) resBoxes[0, 7] = int(points[7]) pointMat = resBoxes[0].reshape([2, 4]).T return plg.Polygon(pointMat) def get_union(pD, pG): areaA = pD.area() areaB = pG.area() return areaA + areaB - get_intersection(pD, pG) def get_intersection(pD, pG): pInt = pD & pG if len(pInt) == 0: return 0 return pInt.area() def get_intersection_over_union(pD, pG): try: return get_intersection(pD, pG) / get_union(pD, pG) except: return 0 def make_recognition_pred_gt(detection_output_dir, detection_data_dir, iou_threshold, cropped_data_dir): count_dict = dict() if not os.path.isdir(cropped_data_dir): os.makedirs(cropped_data_dir, exist_ok = True) for detection_result in os.listdir(detection_output_dir): if 'txt' in detection_result: detection_path = os.path.join(detection_output_dir, detection_result) gt_path = os.path.join(detection_data_dir, detection_result) eval_data_path = os.path.join(cropped_data_dir, detection_result) gt_polygon_label_coordinate = read_txt(gt_path) pred_polygon_confidence_coordinate = read_txt(detection_path) img_label_count = 0 img_det_count = 0 img_name = detection_result.split('.txt')[0] for gt_polygon, gt_label, gt_coordinate in gt_polygon_label_coordinate: if gt_label not in ['*', '###', 'syeom']: img_label_count += 1 f = open(eval_data_path, 'w') for pred_polygon, pred_confidence, pred_coordinate in pred_polygon_confidence_coordinate: keep_info = [] for gt_polygon, gt_label, gt_coordinate in gt_polygon_label_coordinate: if gt_label in ['*', '###', 'syeom']: pass else: intersection_over_union = get_intersection_over_union(gt_polygon, pred_polygon) if intersection_over_union > iou_threshold: keep_info.append([pred_coordinate, gt_label, intersection_over_union]) if keep_info: img_det_count += 1 keep_info = sorted(keep_info, key = lambda x : -x[2]) data = f"{keep_info[0][0]}, {keep_info[0][1]}\n" f.write(data) count_dict[img_name] =[img_det_count, img_label_count] f.close() return count_dict def coordinate_process(points_confidence): x1, y1, x2, y2, x3, y3, x4, y4, confidence = points_confidence x_points = [int(x1), int(x2), int(x3), int(x4)] y_points = [int(y1), int(y2), int(y3), int(y4)] min_x = int(min(x_points)) max_x = int(max(x_points)) min_y = int(min(y_points)) max_y = int(max(y_points)) return min_x, max_x, min_y, max_y def coordinate_process_pred(points_confidence): x1, y1, x2, y2, x3, y3, x4, y4, label = points_confidence x_points = [int(x1), int(x2), int(x3), int(x4)] y_points = [int(y1), int(y2), int(y3), int(y4)] min_x = int(min(x_points)) max_x = int(max(x_points)) min_y = int(min(y_points)) max_y = int(max(y_points)) label = label.split( ) return min_x, max_x, min_y, max_y, label def polygon_crop(src_img, points_confidence, args): is_vertical = False x1, y1, x2, y2, x3, y3, x4, y4, label = points_confidence x1, y1, x2, y2, x3, y3, x4, y4 = map(int, [x1, y1, x2, y2, x3, y3, x4, y4]) min_x, max_x, min_y, max_y = coordinate_process(points_confidence) if (max_y - min_y) / (max_x - min_x) >= 1.5: is_vertical = True temp_points = np.float32([ [x1, y1], [x2, y2], [x3, y3], [x4, y4]]) sm = temp_points.sum(axis = 1) dif = np.diff(temp_points, axis = 1) tl = temp_points[np.argmin(sm)] br = temp_points[np.argmax(sm)] tr = temp_points[np.argmin(dif)] bl = temp_points[np.argmax(dif)] if is_vertical: H, W = args.imgW, args.imgH else: H, W = args.imgH, args.imgW pts1 = np.float32([tl, tr, bl, br]) pts2 = np.float32([[0,0], [W, 0], [0, H], [W, H]]) M = cv2.getPerspectiveTransform(pts1, pts2) res = cv2.warpPerspective(src_img, M, (W, H)) if is_vertical: res = cv2.rotate(res, cv2.ROTATE_90_COUNTERCLOCKWISE) return res, [x1, y1, x2, y2, x3, y3, x4, y4], label.split( )[0], is_vertical def crop_polygon_with_persp(detection_data_dir, detection_output_dir, args): detection_results = [] for detection_result in os.listdir(detection_output_dir): if detection_result.endswith('.txt'): detection_results.append([os.path.join(detection_output_dir, detection_result), os.path.join(detection_data_dir, os.path.splitext(detection_result)[0] + '.jpg')]) crop_imgs = dict() for txt_path, img_path in detection_results: if not os.path.isfile(img_path): continue img = cv2.imread(img_path) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) src_img = img img_name = os.path.splitext(os.path.basename(img_path))[0] crop_imgs[img_name] = [] crop_imgs_h = [] crop_imgs_v = [] with open(txt_path, 'r') as f: count = 1 while True: line = f.readline().strip('\n').strip(' ') if not line: break rec = ''.join(line.split(',')[8:]).strip(' ') splited_line = [t.strip(' ') for t in line.split(',')[:8]] + [rec] res, coordinate, label, is_vertical = polygon_crop(src_img, splited_line, args) if is_vertical: crop_imgs_v.append([res, coordinate, label]) else: crop_imgs_h.append([res, coordinate, label]) crop_imgs[img_name].append([crop_imgs_h, crop_imgs_v]) return crop_imgs def crop_polygon_with_persp_from_gt(gt_data_dir, args): gt_file_names = [] for gt_file_name in os.listdir(gt_data_dir): if gt_file_name.endswith('.txt'): gt_file_names.append([os.path.join(gt_data_dir, gt_file_name), os.path.join(gt_data_dir, os.path.splitext(gt_file_name)[0]+'.jpg')]) crop_imgs = dict() for txt_path, img_path in gt_file_names: if not os.path.isfile(img_path): continue img = cv2.imread(img_path) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) src_img = img img_name = os.path.splitext(os.path.basename(img_path))[0] crop_imgs[img_name] = [] with open(txt_path, 'r') as f: while True: line = f.readline().strip('\n').strip(' ') if not line: break rec = ''.join(line.split(',')[8:]).strip(' ') splited_line = [t.strip(' ') for t in line.split(',')[:8]] + [rec] res, coordinate, label, is_vertical = polygon_crop(src_img, splited_line, args) if label in ['*', '###', 'syeom']: continue crop_imgs[img_name].append([res, coordinate, label]) return crop_imgs def crop_img(detection_data_dir, detection_output_dir, hv_ratio): detection_results = [] for detection_result in os.listdir(detection_output_dir): if 'txt' in detection_result: detection_results.append([f'{detection_output_dir}{detection_result}', f"{detection_data_dir}{detection_result.split('.txt')[0]}.jpg"]) crop_imgs = dict() for txt_path, img_path in detection_results: if not os.path.isfile(img_path): continue img = cv2.imread(img_path) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img_name = img_path.split('/')[-1].split('.')[0] crop_imgs[img_name] = [] f = open(txt_path, 'r') while True: line = f.readline() if not line: break min_x, max_x, min_y, max_y= coordinate_process(line.split(',')) crop = img[min_y:max_y, min_x:max_x] crop_imgs[img_name].append([crop, [min_x, min_y, max_x, max_y]]) f.close() return crop_imgs def crop_img_pred(detection_data_dir, recognition_eval_data_dir, hv_ratio): detection_results = [] for detection_result in os.listdir(recognition_eval_data_dir): if detection_result.endswith('.txt'): detection_results.append(os.path.join(recognition_eval_data_dir, detection_result), os.path.join(detection_data_dir, os.path.splitext(detection_result)[0] + '.jpg') ) crop_imgs = dict() for txt_path, img_path in detection_results: if not os.path.isfile(img_path): continue img = cv2.imread(img_path) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img_name = img_path.split('/')[-1].split('.')[0] crop_imgs[img_name] = [] f = open(txt_path, 'r') while True: line = f.readline() if not line: break min_x, max_x, min_y, max_y, label = coordinate_process_pred(line.split(',')) crop = img[min_y:max_y, min_x:max_x] crop_imgs[img_name].append([crop, [min_x, min_y, max_x, max_y], label]) f.close() return crop_imgs def change_checkpoint(detection_checkpoint): config = torch.load('./detection/output/DBNet_MobileNetV3_FPN_DBHead/checkpoint/model_best.pth') torch.save(config['state_dict'], detection_checkpoint) def visualization_poly(ocr_output_dir, detection_data_dir): fm.get_fontconfig_fonts() font_path = "./NanumFont/NanumGothicBold.ttf" font_prop = fm.FontProperties(fname=font_path) for txt_name in os.listdir(ocr_output_dir): if 'txt' in txt_name: img_name = f"{txt_name.split('.txt')[0]}.jpg" img_path = os.path.join(detection_data_dir, img_name) txt_path = os.path.join(ocr_output_dir, txt_name) img = Image.open(img_path) plt.imshow(img) ax = plt.gca() with open(txt_path, 'r') as f: while True: line = f.readline().strip('\n').strip(' ') if not line: break else: p4 = re.compile(r"([\d]+)\, ([\d]+)\, ([\d]+)\, ([\d]+)\, (.*)") p8 = re.compile(r"([\d]+)\, ([\d]+)\, ([\d]+)\, ([\d]+)\, ([\d]+)\, ([\d]+)\, ([\d]+)\, ([\d]+)\, (.*)") if m:= p8.search(line): det = [int(m.group(i)) for i in range(1, 9)] rec = m.group(9) elif m := p4.search(line): det = [int(m.group(i)) for i in range(1, 4)] rec = m.group(4) x = [det[i] for i in range(len(det)) if i % 2 == 0] y = [det[i] for i in range(len(det)) if i % 2 == 1] xy = np.array([ [x_i, y_i] for x_i, y_i in zip(x, y)]) poly = patches.Polygon(xy = xy, fill = False, linewidth = 2, edgecolor = 'cyan') ax.add_patch(poly) plt.text(min(x), min(y), rec, fontproperties=font_prop) plt.axis('off') plt.savefig(os.path.join(ocr_output_dir, img_name), bbox_inches = 'tight', pad_inches = 0) plt.clf() def to_tensor(src): src = src.transpose((2, 0 ,1)) src = src/255. src = src[np.newaxis, :, :, :] src_tensor = torch.Tensor(src) src_tensor.sub_(0.5).div_(0.5) return src_tensor def copyStateDict(state_dict): if list(state_dict.keys())[0].startswith("module"): start_idx = 1 else: start_idx = 0 new_state_dict = OrderedDict() for k, v in state_dict.items(): name = ".".join(k.split(".")[start_idx:]) new_state_dict[name] = v return new_state_dict def gt_list_num_except_ignore(gt_list, ignore): gt_list_num = 0 for gt in gt_list: _, _, _, _, _, _, _, _, gt_label = gt if gt_label not in ignore: gt_list_num += 1 return gt_list_num def evaluation(pred_list, gt_list, iou_threshold): ignore = ['*', '###'] gt_num = gt_list_num_except_ignore(gt_list, ignore) if gt_num == 0: return 0, 0 correct_num = 0 for pred in pred_list: x1, y1, x2, y2, x3, y3, x4, y4, pred_label = pred pred_polygon = polygon_from_points([x1, y1, x2, y2, x3, y3, x4, y4]) keep_info = [] for gt in gt_list: x1, y1, x2, y2, x3, y3, x4, y4, gt_label = gt if gt_label not in ignore: gt_polygon = polygon_from_points([x1, y1, x2, y2, x3, y3, x4, y4]) intersection_over_union = get_intersection_over_union(pred_polygon, gt_polygon) if intersection_over_union > iou_threshold: keep_info.append([gt_label, intersection_over_union]) if keep_info: keep_info = sorted(keep_info, key = lambda x : -x[1])[0] if pred_label == gt_label: correct_num += 1 return correct_num, gt_num def visualization(img_path, predict, output_dir): fm.get_fontconfig_fonts() font_path = "./NanumFont/NanumGothicBold.ttf" font_prop = fm.FontProperties(fname=font_path) img_name = img_path.split('/')[-1] img = Image.open(img_path) plt.imshow(img) ax = plt.gca() for label, coordinate in predict.items(): x = [coordinate[i] for i in range(len(coordinate)) if i % 2 == 0] y = [coordinate[i] for i in range(len(coordinate)) if i % 2 == 1] xy = np.array([ [x_i, y_i] for x_i, y_i in zip(x, y)]) poly = patches.Polygon(xy = xy, fill = False, linewidth = 2, edgecolor = 'cyan') ax.add_patch(poly) plt.text(min(x), min(y), label, fontproperties=font_prop) plt.axis('off') plt.savefig(os.path.join(output_dir, img_name), bbox_inches = 'tight', pad_inches = 0) plt.clf() ```
{ "source": "jentiai/Korean-Light-OCR-Data", "score": 2 }
#### File: jentiai/Korean-Light-OCR-Data/jenti.py ```python import os import sys import json import requests from tqdm import tqdm def main(): url = "http://172.16.31.10:5000/evaluation" img_dir = sys.argv[1] with open('./jenti.json', 'w', encoding = 'UTF-8-sig') as json_res: res_dict = {} for img_name in tqdm(list(filter(lambda x: x.find('.jpg') != -1 or x.find('.png') != -1, os.listdir(img_dir)))): img_path = os.path.join(img_dir, img_name) files = {'file': open(img_path, 'rb').read()} r = requests.post(url, files = files) res_dict[os.path.splitext(img_name)[0]] = r.json() json.dump(res_dict, json_res, ensure_ascii = False, indent = '\t') if __name__ == '__main__': main() ``` #### File: Korean-Light-OCR-Data/utils/post_processor.py ```python import os def remove_labels_no_image(image_files, label_path): image_list = list(image_files.keys()) for (path, dir, files) in os.walk(label_path): files = list(files) for file in files: if file.replace(".txt", ".jpg") not in image_list: os.remove(os.path.join(path, file)) def remove_no_gt(parent_dir): deleted_gt = [] for path, dir, files in os.walk(parent_dir): if not files: continue for name in files: gt_path = os.path.join(path, name) # remove duplicated name if ( name == "00C6DD18C320D0A8E8E26AFA84AB5555.txt" or name == "00F3E524ED9EC2FFD20BC6156EDF5BE3.txt" ): deleted_gt.append(gt_path) os.remove(gt_path) continue # remove empty gt with open(gt_path, "r", encoding="utf-8") as f: lines = f.read() if not lines: deleted_gt.append(gt_path) os.remove(gt_path) return ```
{ "source": "jentjr/envirobase", "score": 3 }
#### File: app/api/waste_units.py ```python from flask import jsonify, request, current_app, url_for from . import api from .. import db from ..models import WasteUnit @api.route("/waste-units/", methods=["GET"]) def get_waste_units(): waste_units = WasteUnit.query.all() data = [ { "type": "Feature", "properties": { "facility": waste_unit.facility.name, "name": waste_unit.name, "constructed_date": waste_unit.constructed_date, "unit_type": waste_unit.unit_type, }, "geometry": { "type": "MultiPolygon", "coordinates": [waste_unit.longitude, waste_unit.latitude], }, } for waste_unit in waste_units ] return jsonify({"type": "FeatureCollection", "features": data}) ``` #### File: envirobase/app/models.py ```python import json from . import db import pandas as pd from datetime import datetime from geoalchemy2 import functions from geoalchemy2.types import Geometry from flask import current_app, request, url_for from .errors import AlreadyExistsError class BaseExtension(db.MapperExtension): """Base extension for all entities.""" def before_insert(self, mapper, connection, instance): instance.created_on = datetime.now() def before_update(self, mapper, connection, instance): instance.updated_on = datetime.now() class BaseEntity(object): __mapper_args__ = {"extension": BaseExtension()} created_on = db.Column(db.DateTime) updated_on = db.Column(db.DateTime) class Facility(db.Model, BaseEntity): __tablename__ = "facility" facility_id = db.Column(db.Integer, primary_key=True) name = db.Column(db.Text, nullable=False, unique=True) type = db.Column(db.Text) address = db.Column(db.Text) city = db.Column(db.Text) state = db.Column(db.CHAR(2)) zipcode = db.Column(db.String) longitude = db.Column(db.Float, nullable=True) latitude = db.Column(db.Float, nullable=True) geometry = db.Column(Geometry(geometry_type="POINT", srid=4326)) storage_tank = db.relationship("StorageTank", back_populates="facility") waste_unit = db.relationship("WasteUnit", back_populates="facility") def __repr__(self): return f"Facility('{self.facility_id}','{self.name}', '{self.address}', '{self.city}','{self.state}', '{self.zipcode}')" @classmethod def add_facility(cls, name, address, city, state, zipcode, longitude, latitude): """Add a new facility in the database.""" geometry = "POINT({} {})".format(longitude, latitude) facility = Facility( name=name, address=address, city=city, state=state, zipcode=zipcode, longitude=longitude, latitude=latitude, geometry=geometry, ) db.session.add(facility) db.session.commit() @classmethod def update_geometries(cls): """Using each facility's longitude and latitude, add geometry data to db.""" facilities = Facility.query.all() for facility in facilities: point = "POINT({} {})".format(facility.longitude, facility.latitude) facility.geometry = point db.session.commit() def to_json(self): json_facility = { "url": url_for("api.get_facility", facility_id=self.facility_id), "name": self.name, "address": self.address, "city": self.city, "state": self.state, "zipcode": self.zipcode, "longitude": self.longitude, "latitude": self.latitude, } return json_facility @staticmethod def from_json(json_facility): name = json_facility.get("name") address = json_facility.get("address") city = json_facility.get("city") state = json_facility.get("state") zipcode = json_facility.get("zipcode") longitude = json_facility.get("longitude") latitude = json_facility.get("latitude") if name is None or name == "": raise ValidationError("Facility must have a name") return Facility( name=name, address=address, city=city, state=state, zipcode=zipcode, longitude=longitude, latitude=latitude, created_on=datetime.utcnow() # geometry = "POINT({} {})".format(longitude, latitude) ) class WasteUnit(db.Model, BaseEntity): __tablename__ = "waste_unit" __table_args__ = (db.UniqueConstraint("name", "facility_id"),) unit_id = db.Column(db.Integer, primary_key=True) facility_id = db.Column(db.Integer, db.ForeignKey("facility.facility_id")) name = db.Column(db.String(64), nullable=False) constructed_date = db.Column(db.Date) geometry = db.Column(Geometry(geometry_type="POLYGON", srid=4326)) unit_type = db.Column(db.String(12), nullable=False) facility = db.relationship("Facility", back_populates="waste_unit") __mapper_args__ = { "polymorphic_identity": "waste_unit", "polymorphic_on": unit_type, } def __repr__(self): return f"WasteUnit('{self.name}')" def to_json(self): json_waste_unit = { "url": url_for("api.get_waste_unit", unit_id=self.unit_id), "name": self.name, "constructed_date": self.constructed_date, "unit_type": self.unit_type, } return json_waste_unit class Landfill(WasteUnit, BaseEntity): __tablename__ = "landfill" permit_id = db.Column(db.String(24)) __mapper_args__ = {"polymorphic_identity": "landfill"} def __repr__(self): return f"Landfill('{self.name}')" def to_json(self): json_landfill = { "url": url_for("api.get_landfill", unit_id=self.unit_id), "name": self.name, } return json_landfill class Impoundment(WasteUnit, BaseEntity): __tablename__ = "impoundment" dam_id = db.Column(db.String(24)) hazard_class = db.Column(db.Text) __mapper_args__ = {"polymorphic_identity": "impoundment"} def __repr__(self): return f"Impoundment('{self.dam_id}', '{self.name}', '{self.hazard_class}')" def to_json(self): json_impoundment = { "url": url_for("api.get_impoundment", unit_id=self.unit_id), "name": self.name, } return json_impoundment class StorageTank(db.Model, BaseEntity): """Base class for UndergroundStorageTank and AbovegroundStorageTank classes using Joined Table Inheritance. When StorageTank is queried only columns in this class are returned.""" __tablename__ = "storage_tank" __table_args__ = (db.UniqueConstraint("tank_registration_id", "facility_id"),) tank_id = db.Column(db.Integer, primary_key=True) tank_registration_id = db.Column(db.String(12)) facility_id = db.Column(db.Integer, db.ForeignKey("facility.facility_id")) date_installed = db.Column(db.Date) date_removed = db.Column(db.Date) capacity = db.Column(db.Integer) stored_substance = db.Column(db.String(64)) status = db.Column(db.String(10)) longitude = db.Column(db.Float) latitude = db.Column(db.Float) geometry = db.Column(Geometry(geometry_type="POINT", srid=4326)) tank_type = db.Column(db.String(3), nullable=False) facility = db.relationship("Facility", back_populates="storage_tank") __mapper_args__ = { "polymorphic_identity": "storage_tank", "polymorphic_on": tank_type, } def __repr__(self): return f"StorageTank('{self.tank_id}', '{self.tank_type}', '{self.stored_substance}', '{self.status}')" def to_json(self): json_storage_tank = { "url": url_for("api.get_storage_tank", tank_id=self.tank_id), "facility": self.facility.name, "tank_registration_id": self.tank_registration_id, "capacity": self.capacity, "stored_substance": self.stored_substance, "status": self.status, "tank_type": self.tank_type, "longitude": self.longitude, "latitude": self.latitude, } return json_storage_tank @staticmethod def from_json(json_storage_tank): facility_id = json_storage_tank.get("facility_id") tank_registration_id = json_storage_tank.get("tank_registration_id") capacity = json_storage_tank.get("capacity") stored_substance = json_storage_tank.get("stored_substance") status = json_storage_tank.get("status") tank_type = json_storage_tank.get("tank_type") longitude = json_storage_tank.get("longitude") latitude = json_storage_tank.get("latitude") if facility_id is None or facility_id == "": raise ValidationError("Tank must be associated with a Facility") return StorageTank( facility_id=facility_id, tank_registration_id=tank_registration_id, capacity=capacity, stored_substance=stored_substance, status=status, tank_type=tank_type, longitude=longitude, latitude=latitude, created_on=datetime.utcnow() # geometry = "POINT({} {})".format(longitude, latitude) ) class UndergroundStorageTank(StorageTank, BaseEntity): """Subclass to StorageTank with Joined Table Inheritance. When UndergroundStorageTank is queried all columns from StorageTank are inherited.""" __tablename__ = "ust" __mapper_args__ = {"polymorphic_identity": "ust"} tank_double_wall = db.Column(db.Boolean) inner_tank_material = db.Column(db.Text) outer_tank_material = db.Column(db.Text) tank_leak_detection = db.Column(db.Text) tank_corrosion_protection = db.Column(db.Text) tank_monitoring_system = db.Column(db.Text) piping_double_wall = db.Column(db.Boolean) piping_type = db.Column(db.Text) # Pressurized or suction inner_pipe_material = db.Column(db.Text) outer_pipe_material = db.Column(db.Text) piping_corrosion_protection = db.Column(db.Text) spill_protection = db.Column(db.Text) overflow_protection = db.Column(db.Text) def __repr__(self): return f"UndergroundStorageTank('{self.tank_id}', '{self.tank_type}', '{self.stored_substance}', '{self.status}')" def to_json(self): json_ust = { "url": url_for("api.get_ust", tank_id=self.tank_id), "capacity": self.capacity, "stored_substance": self.stored_substance, } return json_ust class AbovegroundStorageTank(StorageTank, BaseEntity): """Subclass to StorageTank with Joined Table Inheritance. When AbovegroundStorageTank is queried all columns from StorageTank are inherited.""" __tablename__ = "ast" __mapper_args__ = {"polymorphic_identity": "ast"} def __repr__(self): return f"AbovegroundStorageTank('{self.tank_id}', '{self.tank_type}', '{self.stored_substance}', '{self.status}')" def to_json(self): json_ast = { "url": url_for("api.get_ast", tank_id=self.tank_id), "capacity": self.capacity, "stored_substance": self.stored_substance, } return json_ast class MediumCode(db.Model, BaseEntity): __tablename__ = "medium_code" medium_cd = db.Column(db.String(3), primary_key=True) medium_name = db.Column(db.String(64)) medium_description = db.Column(db.Text) legacy_cd = db.Column(db.CHAR(1)) def __init__(self, **kwargs): super(MediumCode, self).__init__(**kwargs) def _insert_medium_codes(): """Inserts USGS Medium Codes. If the codes have already been entered, an error is thrown.""" if MediumCode.query.first(): raise AlreadyExistsError("Medium Codes have already been entered.") else: url = "https://help.waterdata.usgs.gov/medium_cd" df = pd.read_html(url, header=0, converters={0: str})[0] df.rename( index=str, columns={ "Medium Code": "medium_cd", "Medium Name": "medium_name", "Medium Description": "medium_description", "Medium Legacy Code": "legacy_cd", }, inplace=True, ) df.to_sql("medium_code", con=db.engine, if_exists="append", index=False) class SampleParameter(db.Model, BaseEntity): __tablename__ = "sample_parameter" __table_args__ = ( db.CheckConstraint( "param_cd ~ similar_escape('[[:digit:]]{5}'::text, NULL::text)" ), ) param_cd = db.Column(db.CHAR(5), primary_key=True) group_name = db.Column(db.Text) description = db.Column(db.Text) epa_equivalence = db.Column(db.Text) statistical_basis = db.Column(db.Text) time_basis = db.Column(db.Text) weight_basis = db.Column(db.Text) particle_size_basis = db.Column(db.Text) sample_fraction = db.Column(db.Text) temperature_basis = db.Column(db.Text) casrn = db.Column(db.Text) srsname = db.Column(db.Text) parameter_unit = db.Column(db.Text) def __init__(self, **kwargs): super(SampleParameter, self).__init__(**kwargs) def _insert_param_codes(): """Inserts USGS Parameter Codes. If the codes have already been entered, an error is thrown.""" if SampleParameter.query.first(): raise AlreadyExistsError("Parameter Codes have already been entered.") else: url = "https://help.waterdata.usgs.gov/parameter_cd?group_cd=%" df = pd.read_html(url, header=0, converters={0: str})[0] df.rename( index=str, columns={ "Parameter Code": "param_cd", "Group Name": "group_name", "Parameter Name/Description": "description", "Epa equivalence": "epa_equivalence", "Result Statistical Basis": "statistical_basis", "Result Time Basis": "time_basis", "Result Weight Basis": "weight_basis", "Result Particle Size Basis": "particle_size_basis", "Result Sample Fraction": "sample_fraction", "Result Temperature Basis": "temperature_basis", "CASRN": "casrn", "SRSName": "srsname", "Parameter Unit": "parameter_unit", }, inplace=True, ) df.to_sql( "sample_parameter", con=db.engine, if_exists="append", index=False ) class SampleId(db.Model, BaseEntity): __tablename__ = "sample_id" __table_args__ = (db.UniqueConstraint("sample_id", "facility_id"),) sample_id = db.Column(db.Integer, primary_key=True) facility_id = db.Column(db.Integer, db.ForeignKey("facility.facility_id")) sample_name = db.Column(db.Text) description = db.Column(db.Text) longitude = db.Column(db.Float, nullable=True) latitude = db.Column(db.Float, nullable=True) geometry = db.Column(Geometry(geometry_type="POINT", srid=4326)) sample_type = db.Column(db.String(24)) facility = db.relationship("Facility") __mapper_args__ = { "polymorphic_identity": "sample_id", "polymorphic_on": sample_type, } def __repr__(self): return f"SampleId('{self.sample_id}', '{self.facility.name}', '{self.sample_type}')" def to_json(self): json_sample_location = { "url": url_for("api.get_sample_id", sample_id_id=self.sample_id), "facility": self.facility.name, "sample_id": self.sample_id, "sample_type": self.sample_type, } return json_sample_id @staticmethod def from_json(json_sample_location): facility = json_sample_location.get("facility.name") sample_id = json_sample_location.get("sample_id") sample_type = json_sample_location.get("sample_type") if location_id is None or location_id == "": raise ValidationError("Sample does not have an ID") return SampleId(sample_id=sample_id, sample_type=sample_type) class Boring(db.Model, BaseEntity): __tablename__ = "boring" boring_id = db.Column(db.Text, primary_key=True) start_date = db.Column(db.Date) end_date = db.Column(db.Date) class Well(SampleId, BaseEntity): __tablename__ = "well" __mapper_args__ = {"polymorphic_identity": "monitoring_well"} well_id = db.Column(db.Text) boring_id = db.Column(db.Text, db.ForeignKey("boring.boring_id")) well_type = db.Column(db.String(10)) installation_date = db.Column(db.Date) abandoned_date = db.Column(db.Date) top_riser = db.Column(db.Float) top_bent_seal = db.Column(db.Float) top_gravel_pack = db.Column(db.Float) top_screen = db.Column(db.Float) bottom_screen = db.Column(db.Float) bottom_well = db.Column(db.Float) bottom_gravel_pack = db.Column(db.Float) bottom_boring = db.Column(db.Float) grout_seal_desc = db.Column(db.Text) bent_seal_desc = db.Column(db.Text) screen_type = db.Column(db.Text) gravel_pack_desc = db.Column(db.Text) riser_pipe_desc = db.Column(db.Text) spacer_depths = db.Column(db.Text) notes = db.Column(db.Text) boring = db.relationship("Boring") def __repr__(self): return f"MonitoringWell('{self.well_id}')" def to_json(self): json_monitoring_well = { "url": url_for("api.get_monitoring_well", well_id=self.well_id), "top_screen": self.top_screen, "bottom_screen": self.bottom_screen, } return json_monitoring_well class SampleResult(db.Model, BaseEntity): __tablename__ = "sample_result" __table_args__ = ( db.UniqueConstraint( "lab_id", "sample_id", "sample_date", "param_cd", "analysis_result" ), db.CheckConstraint( "param_cd ~ similar_escape('[[:digit:]]{5}'::text, NULL::text)" ), ) result_id = db.Column(db.Integer, primary_key=True) lab_id = db.Column(db.Text) facility_id = db.Column(db.Integer, db.ForeignKey("facility.facility_id")) sample_id = db.Column(db.Integer, db.ForeignKey("sample_id.sample_id")) param_cd = db.Column(db.CHAR(5), db.ForeignKey("sample_parameter.param_cd")) medium_cd = db.Column(db.String(3), db.ForeignKey("medium_code.medium_cd")) sample_date = db.Column(db.Date, nullable=False) sample_time = db.Column(db.Time, nullable=True) prep_method = db.Column(db.Text) analysis_method = db.Column(db.Text, nullable=True) analysis_flag = db.Column(db.CHAR(1), nullable=True) analysis_result = db.Column(db.Float, nullable=True) analysis_unit = db.Column(db.Text, nullable=False) detection_limit = db.Column(db.Float) reporting_limit = db.Column(db.Float) analysis_qualifier = db.Column(db.CHAR(1)) disclaimer = db.Column(db.Text) analysis_date = db.Column(db.DateTime) order_comment = db.Column(db.Text) analysis_comment = db.Column(db.Text) sample = db.relationship("SampleId") medium_code = db.relationship("MediumCode") sample_parameter = db.relationship("SampleParameter") facility = db.relationship("Facility") def __repr__(self): return f"SampleResult('{self.result_id}')" def to_json(self): json_sample_result = { "url": url_for("api.get_sample_result", result_id=self.result_id), "lab_id": self.lab_id, } return json_sample_result ``` #### File: envirobase/external/manages.py ```python import pyodbc import pandas __all__ = ["read_manages3"] def _list_or_tuple(x): return isinstance(x, (list, tuple)) def _flatten(sequence, to_expand=_list_or_tuple): for item in sequence: if to_expand(item): for subitem in _flatten(item, to_expand): yield subitem else: yield item def read_manages3(mdb_path): """ Function to read a MANAGES 3.x database and return the data in a pandas DataFrame for analysis. Parameters ---------- mdb_path : str The path to the MANAGES 3.x Site.mdb file. Returns ------- DataFrame : pandas DataFrame returns a pandas DataFrame. Examples -------- >>> from enviropy.external import read_manages3 >>> data = read_manages3('H:\INTERNAL\MANAGES_DATA\Cardinal\Cardinal\Site.mdb') """ driver = "{Microsoft Access Driver (*.mdb, *.accdb)}" database = mdb_path conxn = pyodbc.connect("DRIVER={0};DBQ={1}".format(driver, database)) query = """ SELECT sample_results.lab_id, sample_results.location_id, sample_results.sample_date, site_parameters.param_name, sample_results.lt_measure, sample_results.analysis_result, site_parameters.default_unit FROM sample_results LEFT JOIN site_parameters ON sample_results.storet_code = site_parameters.storet_code """ data = pandas.read_sql(query, conxn) conxn.close() return data class Manages(object): """ Function to read a MANAGES 4.x database and return the data in a pandas DataFrame for analysis. Parameters ---------- server : str The name of the server. database : str The name of the database Returns ------- DataFrame : pandas DataFrame returns a pandas DataFrame. Examples -------- >>> from enviropy.external import manages >>> db = manages.Manages() """ _instance = None def __new__(cls): if cls._instance is None: cls._instance = object.__new__(cls) try: print("connecting to manages database...") params = config.config(filename="database.ini", section="manages") _conxn = Manages._instance._conxn = pyodbc.connect(**params) except (Exception, pyodbc.DatabaseError) as error: print(error) Manages._instance = None else: print("connection established") return cls._instance def __init__(self): self._conxn = self._instance._conxn def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self._conxn.close() def site_names(self): return pandas.read_sql("SELECT NAME FROM SITE", self._conxn) def get_results(self, site=None): """ query Manages database by Site """ query = """ SELECT site.site_id, site.name, sample_results.lab_id, sample_results.location_id, sample_results.sample_date, site_parameters.param_name, sample_results.lt_measure, sample_results.analysis_result, sample_results.detection_limit, sample_results.RL, sample_results.flags, site_parameters.default_unit FROM sample_results LEFT JOIN site_parameters ON sample_results.storet_code = site_parameters.storet_code AND sample_results.site_id = site_parameters.site_id LEFT JOIN locations ON locations.site_id = sample_results.site_id AND locations.location_id = sample_results.location_id LEFT JOIN site ON site.site_id = locations.site_id WHERE (name in ({0})) """ if site is not None: query = query.format(",".join("?" * len(site))) query_params = tuple(_flatten(site)) else: all_sites = self.site_names()["NAME"] query = query.format(",".join("?" * len(all_sites))) query_params = tuple(_flatten(all_sites)) return pandas.read_sql(query, self._conxn, params=query_params) ``` #### File: tests/unit/test_models.py ```python def test_new_facility(new_facility): """Test Facility model when a new Facility is created""" assert new_facility.name == "test site" assert new_facility.address == "1234 test rd." assert new_facility.city == "Test" assert new_facility.state == "OH" assert new_facility.zipcode == "12345" assert new_facility.longitude == -80.0 assert new_facility.latitude == 40.0 ```
{ "source": "jentjr/enviropy", "score": 3 }
#### File: enviropy/io/file.py ```python import pandas as pd from enviropy import Enviropy def read_csv(fname): df = pd.read_csv(fname) return Enviropy(df) ```
{ "source": "jentjr/observations", "score": 3 }
#### File: observations/io/io_knmi.py ```python import os import re from io import StringIO import numpy as np import pandas as pd import requests def get_stations(variable='RD'): """get knmi stations from json files according to variable Parameters ---------- variable : str, optional [description], by default 'RD' Returns ------- pandas DataFrame with stations, names and coordinates (Lat/Lon & RD) """ dir_path = os.path.dirname(os.path.realpath(__file__)) if variable == "RD": fname = "../../data/knmi_neerslagstation.json" else: fname = "../../data/knmi_meteostation.json" stations = pd.read_json(os.path.join(dir_path, fname)) if variable == 'PG': # in Ell wordt geen luchtdruk gemeten stations.drop(377, inplace=True) if variable == 'EV24': # in Woensdrecht wordt geen verdamping gemeten stations.drop(340, inplace=True) return stations def get_nearest_stations_xy(x, y, variable, n=1, stations=None, ignore=None): """find the KNMI stations that measure 'variable' closest to the x, y coordinates Parameters ---------- x : int or float x coordinate in RD y : int or float x coordinate in RD variable : str measurement variable e.g. 'RD' or 'EV24' n : int, optional number of stations you want to return. The default is 1. stations : pd.DataFrame, optional if None stations will be obtained using the get_stations function. The default is None. ignore : list, optional list of stations to ignore. The default is None. Returns ------- list station numbers. """ if stations is None: stations = get_stations(variable=variable) if ignore is not None: stations.drop(ignore, inplace=True) if stations.empty: return None d = np.sqrt((stations.x - x)**2 + (stations.y - y)**2) return d.nsmallest(n).index.to_list() def get_nearest_station_df(locations, stations=None, variable="RD", ignore=None): """find the KNMI stations that measure 'variable' closest to the stations in 'locations'. Parameters ---------- locations : pd.DataFrame station number, x and y coordinates stations : pd.DataFrame, optional if None stations will be obtained using the get_stations function. The default is None. variable : str measurement variable e.g. 'RD' or 'EV24' ignore : list, optional list of stations to ignore. The default is None. Returns ------- stns : list station numbers. """ if stations is None: stations = get_stations(variable=variable) if ignore is not None: stations.drop(ignore, inplace=True) if stations.empty: return None xo = pd.to_numeric(locations.x) xt = pd.to_numeric(stations.x) yo = pd.to_numeric(locations.y) yt = pd.to_numeric(stations.y) xh, xi = np.meshgrid(xt, xo) yh, yi = np.meshgrid(yt, yo) distances = pd.DataFrame(np.sqrt((xh - xi) ** 2 + (yh - yi) ** 2), index=locations.index, columns=stations.index) stns = distances.idxmin(axis=1).unique() if np.any(np.isnan(stns)): stns = stns[~np.isnan(stns)].astype(int) return stns def _start_end_to_datetime(start, end): """convert start and endtime to datetime Parameters ---------- start : str, datetime, None start time end : str, datetime, None start time Returns ------- start : pd.TimeStamp start time end : pd.TimeStamp end time """ if start is None: start = pd.Timestamp(pd.Timestamp.today().year, 1, 1) else: start = pd.to_datetime(start) # start date one day before because later the datetime index is modified start = start - pd.Timedelta(1, 'D') if end is None: end = pd.Timestamp.today() else: end = pd.to_datetime(end) return start, end def download_knmi_data(stn, var='RD', start=None, end=None, interval='daily', inseason=False, raise_exceptions=True, verbose=False): """download knmi data of a measurements station for certain observation type Parameters ---------- stn : int or str number of measurements station var : str, optional measurement type 'RD' or 'EV24'. The default is 'RD'. start : str, datetime or None, optional start date of observations. The default is None. end : str, datetime or None, optional end date of observations. The default is None. interval : str, optional time interval of observations. The default is 'daily'. inseason : bool, optional passed to the knmi api. The default is False. raise_exceptions : bool, optional if True you get errors when no data is returned. The default is True. verbose : boolean, optional Print additional information to the screen (default is False). Raises ------ NotImplementedError different time intervals and inseason data is not yet working. ValueError if the data from knmi cannot not be read a ValueError is raised. Unless raise_exceptions is False Returns ------- knmi_df : pd.DataFrame data from one station from one type of observation variables : dictionary information about the observerd variables stations : pd.DataFrame information about the measurement station. """ # checks if interval.startswith('hour') and var == 'RD': message = 'Interval can not be hourly for rainfall-stations' raise (ValueError(message)) if interval != 'daily': raise NotImplementedError('only daily intervals are working now') if inseason: raise NotImplementedError('season stuff not implemented') start, end = _start_end_to_datetime(start, end) # convert possible integer to string stn = str(stn) # define variables knmi_df = pd.DataFrame() variables = {} stations = pd.DataFrame() # download and read data try: if interval.startswith('hour'): # hourly data from meteorological stations url = 'http://projects.knmi.nl/klimatologie/uurgegevens/getdata_uur.cgi' knmi_df = get_knmi_hourly(url, stn, var, start, end) elif var == 'RD': # daily data from rainfall-stations url = 'http://projects.knmi.nl/klimatologie/monv/reeksen/getdata_rr.cgi' knmi_df, variables = get_knmi_daily_rainfall( url, stn, var, start, end, inseason, verbose) else: # daily data from meteorological stations url = 'http://projects.knmi.nl/klimatologie/daggegevens/getdata_dag.cgi' knmi_df, variables, stations = get_knmi_daily_meteo( url, stn, var, start, end, inseason, verbose) except ValueError as e: if verbose: print(e) if raise_exceptions: raise ValueError(e) return knmi_df, variables, stations def get_knmi_daily_rainfall(url, stn, var, start, end, inseason, verbose=False): """download and read knmi daily rainfall Parameters ---------- url : str download url. stn : str station number. var : str must be 'RD'. start : pd.TimeStamp start time of observations. end : pd.TimeStamp end time of observations. inseason : boolean flag to obtain inseason data. verbose : boolean, optional Print additional information to the screen (default is False). Raises ------ ValueError if there is no data for the provided stn an error is raised. Returns ------- pd.DataFrame measurements. variables : dictionary additional information about the variables """ data = { 'start': start.strftime('%Y%m%d'), 'end': end.strftime('%Y%m%d'), 'inseason': str(int(inseason)), 'vars': var, 'stns': stn, } result = requests.get(url, params=data).text f = StringIO(result) knmi_df, variables = read_knmi_daily_rainfall(f, var, verbose=verbose) if int(stn) not in knmi_df.STN.unique(): raise ValueError(f'KNMI station {stn} not recognized please provide ' 'valid rainfall station number') return knmi_df[[var]], variables def _read_knmi_header(f, verbose=False): variables = {} line = f.readline() if 'DOCTYPE HTML PUBLIC' in line: if verbose: print(f.read()) raise ValueError('Internal Server Error') for iline in range(500): if ' = ' in line: line = line.lstrip(' #').strip('\n') varDes = line.split(' = ') variables[varDes[0].strip()] = varDes[1].strip() if 'STN,YY' in line: header = line.split(',') header = [item.lstrip().rstrip() for item in header] break line = f.readline() if iline > 498: raise ValueError('cannot read measurements from file') return f, variables, header def _transform_variables(df, variables, verbose=False): for key, value in variables.items(): # test if key existst in data if key not in df.keys(): if key == 'YYYYMMDD' or key == 'HH': pass elif key == 'T10N': variables.pop(key) key = 'T10' else: raise NameError(key + ' does not exist in data') if '0.1 ' in value: if verbose: print(f'transform {key}, {value} from 0.1 to 1') # transform 0.1 to 1 df[key] = df[key] * 0.1 value = value.replace('0.1 ', '') if ' tiende ' in value: if verbose: print(f'transform {key}, {value} from 0.1 to 1') # transform 0.1 to 1 df[key] = df[key] * 0.1 value = value.replace(' tiende ', ' ') if ' mm' in value: if verbose: print(f'transform {key}, {value} from mm to m') # transform mm to m df[key] = df[key] * 0.001 value = value.replace(' mm', ' m') if ' millimeters' in value: if verbose: print(f'transform {key}, {value} from mm to m') # transform mm to m df[key] = df[key] * 0.001 value = value.replace(' millimeters', ' m') # Store new variable variables[key] = value return df, variables def read_knmi_daily_rainfall(f, var, verbose=False): f, variables, header = _read_knmi_header(f) df = pd.read_csv(f, header=None, names=header, na_values=' ') f.close() df.set_index(pd.to_datetime(df.YYYYMMDD, format='%Y%m%d'), inplace=True) df = df.drop('YYYYMMDD', axis=1) # sometimes the last row is messed up, check for that and remove it if df.iloc[-1].isna().any(): if verbose: print('last row contains no data, remove last row') df = df.drop(index=df.index[-1]) df.loc[:, var] = df[var].astype(float) # daily precipitation amount in 0.1 mm over the period 08.00 # preceding day - 08.00 UTC present day df.index = df.index + pd.to_timedelta(8, unit='h') # from UT to UT+1 (standard-time in the Netherlands) df.index = df.index + pd.to_timedelta(1, unit='h') df, variables = _transform_variables(df, variables, verbose) return df, variables def _read_station_location(f, verbose=False): stations = None line = f.readline() for iline in range(30): if 'STN' in line: titels = line.strip('# ').split() titels = [x.replace('(', '_') for x in titels] titels = [x.replace(r')', '') for x in titels] values = f.readline().strip('# ').strip().replace(':', '') values = re.split(r'\s{2,}', values) # Create pd.DataFrame for station data stations = pd.DataFrame(columns=titels, data=[values]) stations.set_index(['STN'], inplace=True) for col in stations.columns: try: stations.loc[:, col] = stations[col].astype(float) except ValueError: pass if ':' in f.readline(): raise ValueError( 'KNMI station number not recognized please provide ' 'valid meteo station number') break line = f.readline() if stations is None: if verbose: print('could not find stations') return f, stations def get_knmi_daily_meteo(url, stn, var, start, end, inseason, verbose=False): """download and read knmi daily meteo data Parameters ---------- url : str download url. stn : str station number. var : str e.g. 'EV24'. start : pd.TimeStamp start time of observations. end : pd.TimeStamp end time of observations. inseason : boolean flag to obtain inseason data. verbose : boolean, optional Print additional information to the screen (default is False). Returns ------- pd.DataFrame measurements. variables : dictionary additional information about the variables stations : pd.DataFrame additional data about the measurement station """ data = { 'start': start.strftime('%Y%m%d'), 'end': end.strftime('%Y%m%d'), 'inseason': str(int(inseason)), 'vars': var, 'stns': stn, } result = requests.get(url, params=data).text f = StringIO(result) knmi_df, variables, stations = read_knmi_daily_meteo(f) return knmi_df[[var]], variables, stations def read_knmi_daily_meteo(f, verbose=False): f, stations = _read_station_location(f, verbose) f, variables, header = _read_knmi_header(f) header[0] = header[0].lstrip('# ') df = pd.read_csv(f, header=None, names=header, na_values=' ') f.close() df.set_index(pd.to_datetime(df.YYYYMMDD, format='%Y%m%d'), inplace=True) df = df.drop('YYYYMMDD', axis=1) df = df.loc[df.index.notnull(), :] # add a full day for meteorological data, so that the # timestamp is at the end of the period in the data df.index = df.index + pd.to_timedelta(1, unit='d') # from UT to UT+1 (standard-time in the Netherlands) df.index = df.index + pd.to_timedelta(1, unit='h') df, variables = _transform_variables(df, variables, verbose) return df, variables, stations # return knmi_series def get_knmi_hourly(url, stn, var, start, end): data = { 'start': start.strftime('%Y%m%d') + '01', 'end': end.strftime('%Y%m%d') + '24', 'vars': var, 'stns': stn, } result = requests.get(url, params=data).text f = StringIO(result) knmi_series = read_knmi_hourly(f) return knmi_series def read_knmi_hourly(f): raise NotImplementedError('work in progress') knmi_df = pd.DataFrame() return knmi_df def get_knmi_timeseries_xy(x, y, var, start, end, fill_missing_obs=True, interval='daily', inseason=False, raise_exceptions=False, verbose=False): # get station stations = get_stations(variable=var) stn = get_nearest_stations_xy(x, y, var, stations=stations)[0] # download data if fill_missing_obs: knmi_df, variables, station_meta = \ fill_missing_measurements(stn, var, start, end, interval, raise_exceptions, verbose=verbose) else: knmi_df, variables, station_meta = \ download_knmi_data(stn, var, start, end, interval, inseason, raise_exceptions, verbose=verbose) meta = station_meta.to_dict() meta.update(variables) # set metadata name = var + ' ' + stations.loc[stn, 'naam'] x = stations.loc[stn, 'x'] y = stations.loc[stn, 'y'] meta.update({'x': x, 'y': y, 'station': stn, 'name': name}) return knmi_df, meta def get_knmi_timeseries_stn(stn, var, start, end, fill_missing_obs=True, interval='daily', inseason=False, raise_exceptions=False, verbose=False): # get station stations = get_stations(variable=var) # download data if fill_missing_obs: knmi_df, variables, station_meta = \ fill_missing_measurements(stn, var, start, end, interval, raise_exceptions, verbose=verbose) else: knmi_df, variables, station_meta = \ download_knmi_data(stn, var, start, end, interval, inseason, raise_exceptions, verbose=verbose) meta = station_meta.to_dict() meta.update(variables) # set metadata name = var + ' ' + stations.loc[stn, 'naam'] x = stations.loc[stn, 'x'] y = stations.loc[stn, 'y'] meta.update({'x': x, 'y': y, 'station': stn, 'name': name}) return knmi_df, meta def add_missing_indices(knmi_df, stn, start, end, verbose=False): """when downloading KNMI data you don't always get a DataFrame with the periods that you provided in your request. Thus the index does not cover the complete period that you are interested in. This function adds the missing period to the index of the DataFrame. Parameters ---------- knmi_df : pd.DataFrame data from one station from one type of observation, with additional column to see which station is used to fill the value stn : int or str measurement station. start : pd.TimeStamp start time of observations. end : pd.TimeStamp end time of observations. verbose : boolean, optional Print additional information to the screen (default is False). Returns ------- knmi_df : pd.DataFrame data from one station from one type of observation """ # check if given dates are more or less similar than measurement dates if (knmi_df.index[0] - start).days < 2: new_start = knmi_df.index[0] else: new_start = pd.Timestamp(year=start.year, month=start.month, day=start.day, hour=knmi_df.index[0].hour, minute=knmi_df.index[0].minute, second=knmi_df.index[0].second) if verbose: print( f'station {stn} has no measurements before {knmi_df.index[0]}') if (knmi_df.index[-1] - end).days < 2: new_end = knmi_df.index[-1] else: new_end = pd.Timestamp(year=end.year, month=end.month, day=end.day, hour=knmi_df.index[-1].hour, minute=knmi_df.index[-1].minute, second=knmi_df.index[-1].second) if verbose: print( f'station {stn} has no measurements after {knmi_df.index[-1]}') # add missing indices new_index = pd.date_range(new_start, new_end, freq='D') knmi_df = knmi_df.reindex(new_index) return knmi_df def fill_missing_measurements(stn, var='RD', start=None, end=None, interval='daily', raise_exceptions=False, verbose=False): """fill missing measurements in knmi data Parameters ---------- stn : int or str measurement station. interval : str, optional desired time interval for observations. The default is 'daily'. var : str, optional observation type. The default is 'RD'. start : str, datetime or None, optional start date of observations. The default is None. end : str, datetime or None, optional end date of observations. The default is None. raise_exceptions : bool, optional if True you get errors when no data is returned. The default is True. verbose : boolean, optional Print additional information to the screen (default is False). Returns ------- knmi_df : pd.DataFrame data from one station from one type of observation, with additional column to see which station is used to fill the value variables : dictionary information about the observerd variables stations : pd.DataFrame information about the measurement station. """ if type(var) is not str: raise (TypeError('Only one variable supported for now')) # get the location of the stations stations = get_stations(variable=var) if start is None: start = pd.Timestamp(pd.Timestamp.today().year, 1, 1) else: start = pd.to_datetime(start) if end is None: end = pd.Timestamp.today() else: end = pd.to_datetime(end) if verbose: print('Download ' + var + ' from ' + str(stn) + ' ' + stations.loc[stn, 'naam']) knmi_df, variables, station_meta = \ download_knmi_data(stn, var, start=start, end=end, interval=interval, inseason=False, raise_exceptions=raise_exceptions, verbose=verbose) # if the first station cannot be read, read another station as the first ignore = [stn] while knmi_df.empty: stn = get_nearest_station_df( stations.loc[[stn]], variable=var, ignore=ignore)[0] if verbose: print('Download ' + var + ' from ' + str(stn) + ' ' + stations.loc[stn, 'naam']) knmi_df, variables, station_meta = \ download_knmi_data(stn, var, start=start, end=end, interval=interval, inseason=False, raise_exceptions=raise_exceptions, verbose=verbose) ignore.append(stn) # find missing values knmi_df = add_missing_indices(knmi_df, stn, start, end, verbose) missing = knmi_df[var].isna() if verbose: print(f'station {stn} has {missing.sum()} missing measurements') # fill missing values while np.any(missing) and not np.all(missing): stn_comp = get_nearest_station_df( stations.loc[[stn]], variable=var, ignore=ignore) if verbose: print(f'trying to fill {missing.sum()} ' f'measurements with station {stn_comp}') if stn_comp is None: if verbose: print('could not fill all missing measurements there are ' 'no stations left to check') missing[:] = False break else: stn_comp = stn_comp[0] knmi_df_comp, _, __ = \ download_knmi_data(stn_comp, var, start=start, end=end, interval=interval, inseason=False, raise_exceptions=raise_exceptions, verbose=verbose) if knmi_df_comp.empty: if verbose: print(f'station {stn_comp} cannot be downloaded') else: # dropnans from new data knmi_df_comp = knmi_df_comp.loc[~knmi_df_comp[var].isna(), :] # get index of missing data in original timeseries missing_idx = missing.loc[missing].index # if any missing are in the new data, update if missing_idx.isin(knmi_df_comp.index).any(): # index for missing but in newly downloaded data ix_idx = missing_idx.intersection(knmi_df_comp.index) # update missing data knmi_df.loc[ix_idx, var] = knmi_df_comp.loc[ix_idx, var] # add source station number knmi_df.loc[ix_idx, 'station_opvulwaarde'] = str(stn_comp) missing = knmi_df[var].isna() ignore.append(stn_comp) return knmi_df, variables, station_meta ``` #### File: observations/observations/observation.py ```python import warnings import numpy as np from pandas import DataFrame class Obs(DataFrame): """class for point observations. An Obs object is a subclass of a pandas.DataFrame and allows for additional attributes and methods. pandas can be found here: http://pandas.pydata.org/pandas-docs/stable/development/extending.html#extending-subclassing-pandas Parameters ---------- x : int or float x coordinate of observation point y : int or float y coordinate of observation point name : str name meta : dictionary metadata filename : str filename with data of observation point """ # temporary properties _internal_names = DataFrame._internal_names + ['none'] _internal_names_set = set(_internal_names) # normal properties _metadata = ['x', 'y', 'name', 'meta', 'filename'] def __init__(self, *args, **kwargs): """ constructor of Obs class *args must be input for the pandas.DataFrame constructor, **kwargs can be one of the attributes listed in _metadata or keyword arguments for the constructor of a pandas.DataFrame. """ self.x = kwargs.pop('x', np.nan) self.y = kwargs.pop('y', np.nan) self.name = kwargs.pop('name', '') self.meta = kwargs.pop('meta', {}) self.filename = kwargs.pop('filename', '') super(Obs, self).__init__(*args, **kwargs) @property def _constructor(self): return Obs def to_collection_dict(self, include_meta=False): """get dictionary with registered attributes and their values of an Obs object. This method can be used to create a dataframe from a collection of Obs objects. Parameters ---------- include_meta : boolean, optional include the meta dictionary in the collection dictionary, default is false Returns ------- d : dictionary dictionary with Obs information """ attrs = self._metadata.copy() if not include_meta: attrs.remove('meta') d = {} for att in attrs: d[att] = getattr(self, att) d['obs'] = self return d class GroundwaterObs(Obs): """class for groundwater quantity point observations Subclass of the Obs class. Can have the following attributes: - locatie: 2 filters at one piezometer should have the same 'locatie' - filternr: 2 filters at one piezometer should have a different 'filternr'. a higher filter number is preferably deeper than a lower filter number. - bovenkant_filter: top op the filter in m NAP - onderkant_filter: bottom of the filter in m NAP - maaiveld: surface level in m NAP - meetpunt: ? in m NAP - metadata_available: boolean indicating if metadata is available for the measurement point. """ _metadata = Obs._metadata + \ ['locatie', 'filternr', 'bovenkant_filter', 'onderkant_filter', 'maaiveld', 'meetpunt', 'metadata_available' ] def __init__(self, *args, **kwargs): """ *args must be input for the pandas.DataFrame constructor, **kwargs can be one of the attributes listed in _metadata or keyword arguments for the constructor of a pandas.DataFrame. if the pandas.DataFrame has a column 'stand_m_tov_nap' a lot of plotting and other methods will work automatically without changing the default arguments. """ self.locatie = kwargs.pop('locatie', '') self.filternr = kwargs.pop('filternr', '') self.maaiveld = kwargs.pop('maaiveld', np.nan) self.meetpunt = kwargs.pop('meetpunt', np.nan) self.bovenkant_filter = kwargs.pop('bovenkant_filter', np.nan) self.onderkant_filter = kwargs.pop('onderkant_filter', np.nan) self.metadata_available = kwargs.pop('metadata_available', np.nan) super(GroundwaterObs, self).__init__(*args, **kwargs) @property def _constructor(self): return GroundwaterObs @classmethod def from_dino(cls, fname=None, location=None, filternr=1., tmin="1900-01-01", tmax="2040-01-01", **kwargs): """download dino data from the server. Parameters ---------- fname : str, optional dino csv filename location : str, optional location of the peilbuis, i.e. B57F0077 filternr : float, optional filter_nr of the peilbuis, i.e. 1. tmin : str start date in format YYYY-MM-DD tmax : str end date in format YYYY-MM-DD kwargs : key-word arguments these arguments are passed to io_dino.read_dino_groundwater_csv if fname is not None and otherwise to io_dino.findMeetreeks """ from .io import io_dino if fname is not None: # read dino csv file measurements, meta = io_dino.read_dino_groundwater_csv( fname, **kwargs) return cls(measurements, meta=meta, **meta) elif location is not None: measurements, meta = io_dino.download_dino_groundwater(location, filternr, tmin, tmax, **kwargs) if meta['metadata_available']: return cls(measurements, meta=meta, x=meta.pop('x'), y=meta.pop('y'), onderkant_filter=meta.pop('onderkant_filter'), bovenkant_filter=meta.pop('bovenkant_filter'), name=meta.pop('name'), metadata_available=meta.pop('metadata_available'), locatie=meta.pop('locatie'), maaiveld=meta.pop('maaiveld'), filternr=meta.pop('filternr')) else: return cls(measurements, meta=meta) else: raise ValueError( 'specify fname or location to obtain groundwater heads') @classmethod def from_dino_server(cls, location, filternr=1., tmin="1900-01-01", tmax="2040-01-01", **kwargs): """download dino data from the server. Parameters ---------- location : str location of the peilbuis, i.e. B57F0077 filternr : float filter_nr of the peilbuis, i.e. 1.0 tmin : str start date in format YYYY-MM-DD tmax : str end date in format YYYY-MM-DD kwargs : key-word arguments these arguments are passed to dino.findMeetreeks functie """ warnings.warn( "this method will be removed in future versions, use from_dino instead", DeprecationWarning) from .io import io_dino measurements, meta = io_dino.download_dino_groundwater(location, filternr, tmin, tmax, **kwargs) if meta['metadata_available']: return cls(measurements, meta=meta, x=meta.pop('x'), y=meta.pop('y'), onderkant_filter=meta.pop('onderkant_filter'), bovenkant_filter=meta.pop('bovenkant_filter'), name=meta.pop('name'), locatie=meta.pop('locatie'), maaiveld=meta.pop('maaiveld'), filternr=meta.pop('filternr')) else: return cls(measurements, meta=meta) @classmethod def from_dino_file(cls, fname=None, **kwargs): """read a dino csv file. Parameters ---------- name : str, optional name of the peilbuis, i.e. B57F0077 fname : str, optional dino csv filename kwargs : key-word arguments these arguments are passed to io_dino.read_dino_groundwater_csv """ warnings.warn( "this method will be removed in future versions, use from_dino instead", DeprecationWarning) from .io import io_dino if fname is not None: # read dino csv file measurements, meta = io_dino.read_dino_groundwater_csv( fname, **kwargs) return cls(measurements, meta=meta, **meta) else: raise ValueError( 'specify either the name or the filename of the measurement point') @classmethod def from_artdino_file(cls, fname=None, **kwargs): """read a dino csv file (artdiver style). Parameters ---------- name : str, optional name of the peilbuis, i.e. B57F0077 fname : str, optional dino csv filename kwargs : key-word arguments these arguments are passed to io_dino.read_dino_groundwater_csv """ from .io import io_dino if fname is not None: # read dino csv file measurements, meta = io_dino.read_artdino_groundwater_csv( fname, **kwargs) return cls(measurements, meta=meta, **meta) else: raise ValueError('specify either the name or the filename of the ' 'measurement point!') @classmethod def from_wiski(cls, fname, **kwargs): """[summary] Parameters ---------- fname : [type] [description] Returns ------- [type] [description] """ from .io import io_wiski data, metadata = io_wiski.read_wiski_file(fname, **kwargs) return cls(data, meta=metadata, **metadata) @classmethod def from_pystore_item(cls, item): """Create GroundwaterObs DataFrame from Pystore item Parameters ---------- item : pystore.item.Item Pystore item Returns ------- GroundwaterObs GroundwaterObs DataFrame """ df = item.to_pandas() try: x = item.metadata["x"] y = item.metadata["y"] except KeyError: x = np.nan y = np.nan item.metadata["datastore"] = item.datastore return cls(df, x=x, y=y, meta=item.metadata) class GroundwaterQualityObs(Obs): """class for groundwater quality (grondwatersamenstelling) point observations. Subclass of the Obs class """ _metadata = Obs._metadata + \ ['locatie', 'filternr', 'maaiveld', 'metadata_available'] def __init__(self, *args, **kwargs): self.locatie = kwargs.pop('locatie', '') self.filternr = kwargs.pop('filternr', '') self.maaiveld = kwargs.pop('maaiveld', np.nan) self.metadata_available = kwargs.pop('metadata_available', np.nan) super(GroundwaterQualityObs, self).__init__(*args, **kwargs) @property def _constructor(self): return GroundwaterQualityObs @classmethod def from_dino(cls, fname, **kwargs): """read ad dino file with groundwater quality data Parameters ---------- fname : str dino txt filename kwargs : key-word arguments these arguments are passed to io_dino.read_dino_groundwater_quality_txt """ from .io import io_dino measurements, meta = io_dino.read_dino_groundwater_quality_txt( fname, **kwargs) return cls(measurements, meta=meta, **meta) class WaterlvlObs(Obs): """class for water level point observations. Subclass of the Obs class """ _metadata = Obs._metadata + ['locatie', 'metadata_available'] def __init__(self, *args, **kwargs): self.locatie = kwargs.pop('locatie', '') self.metadata_available = kwargs.pop('metadata_available', np.nan) super(WaterlvlObs, self).__init__(*args, **kwargs) @property def _constructor(self): return WaterlvlObs @classmethod def from_dino(cls, fname, **kwargs): """read a dino file with waterlvl data Parameters ---------- fname : str dino csv filename kwargs : key-word arguments these arguments are passed to io_dino.read_dino_waterlvl_csv """ from .io import io_dino measurements, meta = io_dino.read_dino_waterlvl_csv(fname, **kwargs) return cls(measurements, meta=meta, **meta) @classmethod def from_waterinfo(cls, fname, **kwargs): """ Read data from waterinfo csv-file or zip. Parameters ---------- fname : str path to file (file can zip or csv) Returns ------- df : WaterlvlObs WaterlvlObs object Raises ------ ValueError if file contains data for more than one location """ from .io import io_waterinfo df, metadata = io_waterinfo.read_waterinfo_file(fname, return_metadata=True) return cls(df, meta=metadata, **metadata) class ModelObs(Obs): """class for model point results. Subclass of the Obs class """ _metadata = Obs._metadata + ['model'] def __init__(self, *args, **kwargs): self.model = kwargs.pop('model', '') super(ModelObs, self).__init__(*args, **kwargs) @property def _constructor(self): return ModelObs class KnmiObs(Obs): """class for KNMI timeseries. Subclass of the Obs class """ _metadata = Obs._metadata + ['station'] def __init__(self, *args, **kwargs): self.station = kwargs.pop('station', np.nan) super(KnmiObs, self).__init__(*args, **kwargs) @property def _constructor(self): return KnmiObs @classmethod def from_knmi(cls, stn, variable, startdate=None, enddate=None, fill_missing_obs=True, verbose=False): from .io import io_knmi ts, meta = io_knmi.get_knmi_timeseries_stn(stn, variable, startdate, enddate, fill_missing_obs, verbose=verbose) return cls(ts, meta=meta, station=meta['station'], x=meta['x'], y=meta['y'], name=meta['name']) @classmethod def from_nearest_xy(cls, x, y, variable, startdate=None, enddate=None, fill_missing_obs=True, verbose=False): from .io import io_knmi ts, meta = io_knmi.get_knmi_timeseries_xy(x, y, variable, startdate, enddate, fill_missing_obs, verbose=verbose) return cls(ts, meta=meta, station=meta['station'], x=meta['x'], y=meta['y'], name=meta['name']) @classmethod def from_obs(cls, obs, variable, startdate=None, enddate=None, fill_missing_obs=True, verbose=False): from .io import io_knmi x = obs.x y = obs.y if startdate is None: startdate = obs.index[0] if enddate is None: enddate = obs.index[-1] ts, meta = io_knmi.get_knmi_timeseries_xy(x, y, variable, startdate, enddate, fill_missing_obs, verbose=verbose) return cls(ts, meta=meta, station=meta['station'], x=meta['x'], y=meta['y'], name=meta['name']) ```
{ "source": "jent-ly/summarizer_server", "score": 3 }
#### File: summarizer_server/summarizer_server/account_service.py ```python from models import database, Account from serializers import AccountSchema class AccountService: def __init__(self): self.anonymous_email = "<EMAIL>" self.anonymous_gaia = "ew<PASSWORD>" self.user_single = AccountSchema() self.user_multiple = AccountSchema(many=True) def serialize_single(self, account): return self.user_single.dump(account) def serialize_multiple(self, users): return self.user_multiple.dump(users) def get_or_create(self, email, gaia): account = self.get(email) if account is not None: print("Account <'email={0} gaia={1}'> already exists.".format(email, gaia)) return account account = Account(email=email, gaia=gaia) database.session.add(account) database.session.commit() return account def get(self, email): account = Account.query.filter_by(email=email).first() if account is None: print("Account <'email={0}'> does not exist yet.".format(email)) return None return account def get_all(self): return Account.query.order_by(Account.create_time.desc()).all() def get_anonymous(self): return self.get_or_create(self.anonymous_email, self.anonymous_gaia) ``` #### File: summarizer_server/tests/test_text_rank.py ```python import unittest import tests.utils as utils import math import pdb from nltk import tokenize from text_rank import TextRank class TestTextRank(unittest.TestCase): def setUp(self): self.text_rank = TextRank() def test_process_html(self): article_html = utils.get_article_contents("article1.html") expected_article_text = utils.get_article_contents("article1.txt") article = self.text_rank.process_html(article_html) self.assertEqual( "Poll finds Raptorsโ€™ playoff run has attracted new fans across Canada", article.title, ) self.assertEqual(expected_article_text, article.text) self.assertEqual("en", article.config.get_language()) def test_summarize_from_html(self): article_html = utils.get_article_contents("article2.html") summary = self.text_rank.summarize_from_html(article_html, 15) self.assertTrue(summary) def test_evaluate_newspaper_summary_deterministic(self): article = utils.get_article_contents("article2.txt") sentences = tokenize.sent_tokenize(article) scores = self.text_rank.evaluate_newspaper_summary( "What's inside the Barcode?", article, sentences, "en" ) ranked_sentences = sorted(((v, k[1]) for k, v in scores.items()), reverse=True) top_sentences = list( score_sentence_tuple[1] for score_sentence_tuple in ranked_sentences[:3] ) self.assertListEqual( [ "If the Scanner doesnโ€™t find it, it will not acknowledge the EAN13 barcode.", "In this article, weโ€™re gonna take an example of the EAN13 barcode.", "Whatโ€™s inside the Barcode?", ], top_sentences, ) def test_evaluate_newspaper_summary_returns_normalized_scores(self): article = utils.get_article_contents("article2.txt") sentences = tokenize.sent_tokenize(article) scores = self.text_rank.evaluate_newspaper_summary( "What's inside the Barcode?", article, sentences, "en" ) score_sum = sum(scores.values()) self.assertEqual(1, score_sum) def test_evaluate_textrank_summary_returns_normalized_scores(self): # evaluate_textrank_summary depends heavily on word vectorizations # which are impractical to load on every test run, so this is all we can do article = utils.get_article_contents("article1.txt") sentences = tokenize.sent_tokenize(article) scores = self.text_rank.evaluate_textrank_summary(sentences) score_sum = sum(scores.values()) self.assertEqual(1, score_sum) def test_summarize_returns_15_percent_of_sentences(self): article = utils.get_article_contents("article1.txt") sentences = tokenize.sent_tokenize(article) all_top_sentences = self.text_rank.summarize("test title", article, "en", 100) top_15p_sentences = self.text_rank.summarize("test title", article, "en", 15) self.assertEqual(len(sentences), len(all_top_sentences)) self.assertEqual( math.ceil(len(all_top_sentences) * 15 / 100), len(top_15p_sentences) ) def test_summarize_one_sentence(self): summary = self.text_rank.summarize("Hello world!", "Hello world!", "en", 100) self.assertListEqual([], summary) def test_summarize_default_language(self): summary = self.text_rank.summarize( "Hello world!", "Hello world! Welcome.", None, 100 ) self.assertListEqual(["Welcome."], summary) if __name__ == "__main__": unittest.main() ``` #### File: summarizer_server/tests/utils.py ```python def get_article_contents(article_name): article_file_name = "summarizer_server/tests/fixtures/" + article_name with open(article_file_name, "r") as f: return f.read() ``` #### File: summarizer_server/summarizer_server/text_rank.py ```python import logging import pickle import math import os import re import pdb import networkx as nx import nltk import numpy as np import pandas as pd from collections import Counter from nltk import tokenize from nltk import corpus from sklearn.metrics.pairwise import cosine_similarity from newspaper import Article from newspaper import nlp from image_setup import WORD_EMBEDDINGS_FILE log = logging.getLogger("summarizer_server") class TextRank: def __init__(self): self.word_embeddings = {} self.stop_words = set() def setup(self): # TODO: consider how to handle languages other than English self.stop_words = set(corpus.stopwords.words("english")) with open(WORD_EMBEDDINGS_FILE, "rb") as handle: self.word_embeddings = pickle.load(handle) def _remove_stopwords(self, sen): sen_new = " ".join([i for i in sen if i not in self.stop_words]) return sen_new def process_html(self, html): # fetch page content and parse html using newspaper article = Article(url="") article.set_html(html) article.parse() return article def normalize_scores(self, scores): total = sum(scores.values()) return {key: score / total for key, score in scores.items()} # Implemented following: # https://www.analyticsvidhya.com/blog/2018/11/introduction-text-summarization-textrank-python/ def evaluate_textrank_summary(self, sentences): # remove punctuations, numbers and special characters clean_sentences = pd.Series(sentences).str.replace("[^a-zA-Z]", " ") clean_sentences = [s.lower() for s in clean_sentences] clean_sentences = [self._remove_stopwords(r.split()) for r in clean_sentences] # create sentence vectors sentence_vectors = [] for i in clean_sentences: if len(i) != 0: v = sum( [self.word_embeddings.get(w, np.zeros((300,))) for w in i.split()] ) / (len(i.split()) + 0.001) else: v = np.zeros((300,)) sentence_vectors.append(v) # similarity matrix sim_mat = np.zeros([len(sentences), len(sentences)]) # initialize matrix for i in range(len(sentences)): for j in range(len(sentences)): if i != j: sim_mat[i][j] = cosine_similarity( sentence_vectors[i].reshape(1, 300), sentence_vectors[j].reshape(1, 300), )[0, 0] # convert matrix into graph nx_graph = nx.from_numpy_array(sim_mat) textrank_scores = self.normalize_scores(nx.pagerank(nx_graph)) # return a dictionary of index to sentences and their scores # ie. { 0: 0.145, 1: 0.105, 2: 0.127, 3: 0.123, 4: 0.120, 5: 0.154, 6: 0.101, 7: 0.125 } return textrank_scores def evaluate_newspaper_summary(self, title, text, sentences, language): # get newspaper's nlp scores # https://github.com/codelucas/newspaper/blob/master/newspaper/article.py#L372 nlp.load_stopwords(language) # call to: nlp.summarize(title=article.title, text=article.text, max_sents=max_sents) # https://github.com/codelucas/newspaper/blob/master/newspaper/nlp.py#L40 title_words = nlp.split_words(title) most_frequent = nlp.keywords(text) nlp_scores = self.normalize_scores( nlp.score(sentences, title_words, most_frequent) ) # Return a dictionary of tuple<sentence index, setence text> to score # ie. { (0, 'A new poll suggests that the Toronto Raptors...') : 0.144, ... } return nlp_scores def summarize_from_html(self, html, percent_sentences): # Use newspaper3k's clean text extraction and parsing article = self.process_html(html) return self.summarize( article.title, article.text, article.config.get_language(), percent_sentences, ) def summarize(self, title, text, language, percent_sentences): # remove title from the text, if it appears in the text if text.startswith(title): text = text[len(title) :] if not text: return [] if not language: language = "en" text = text.lstrip() sentences = tokenize.sent_tokenize(text) textrank_scores = self.evaluate_textrank_summary(sentences) newspaper_scores = self.evaluate_newspaper_summary( title, text, sentences, language ) totalled_scores = Counter() for key, value in newspaper_scores.items(): totalled_scores[key[0]] += value for key, value in textrank_scores.items(): totalled_scores[key] += value num_sentences = int(math.ceil(len(sentences) * percent_sentences / 100)) sentence_indices = list( map(lambda x: x[0], totalled_scores.most_common(num_sentences)) ) return list(map(lambda x: sentences[x], sentence_indices)) ```
{ "source": "jentron/Blender-PT2", "score": 3 }
#### File: Blender-PT2/libs/Material.py ```python import bpy class Material: def __init__(self, name='Material', overwrite=True): self.diffuse_color = (1.0, 1.0, 1.0, 1.0) self.specular_color = (1.0, 1.0, 1.0, 1.0) self.ambient_color = (1.0, 1.0, 1.0, 1.0) self.texture_color = (1.0, 1.0, 1.0, 1.0) self.reflection_color= (1.0, 1.0, 1.0, 1.0) self.reflect_factor = 0.5 self.ns_exponent = 50 self.tMax = 0 self.tMin = 0 self.tExpo = 0.6 self.bumpStrength = 1.0 self.ks_ignore_texture = 0 self.reflect_thru_lights = 0 self.reflect_thru_kd = 0 self.diffuse_texture =False #FIXME: Map to a texture class object self.bump_texture =False #FIXME: Map to a texture class object self.transparent_texture=False #FIXME: Map to a texture class object self.reflection_texture =False #FIXME: Map to a texture class object self.use_transparency=False # set for transparent_texture or alpha value < 1.0 self.specular = 0.5 self.roughness = 0.5 self.alpha = 1.0 if(overwrite is True) and ( name in bpy.data.materials ): self.name=name self.mat = bpy.data.materials[self.name] else: # get the material self.mat = bpy.data.materials.new(name) self.name = self.mat.name # get the nodes self.mat.use_nodes=True self.nodes = self.mat.node_tree.nodes # clear all nodes to start clean for node in self.nodes: self.nodes.remove(node) # link nodes self.links = self.mat.node_tree.links def createBlenderMaterial(self): #lazy typist links=self.links nodes=self.nodes # Set custom values self.alpha = 1 - self.tMax if(self.alpha < 1): self.use_transparency = True #create the basic material nodes node_output = self.nodes.new(type='ShaderNodeOutputMaterial') node_output.location = 400,0 node_pbsdf = self.nodes.new(type='ShaderNodeBsdfPrincipled') node_pbsdf.location = 0,0 node_pbsdf.inputs['Base Color'].default_value = self.diffuse_color node_pbsdf.inputs['Alpha'].default_value = self.alpha link = links.new(node_pbsdf.outputs['BSDF'], node_output.inputs['Surface']) # create the texture mapping nodes if( self.diffuse_texture or self.bump_texture or self.transparent_texture): node_mapping = nodes.new(type='ShaderNodeMapping') node_mapping.location = -1000, 0 node_texcoord = nodes.new(type='ShaderNodeTexCoord') node_texcoord.location = -1200, 0 link = links.new(node_texcoord.outputs['UV'], node_mapping.inputs['Vector']) # create diffuse texture if(self.diffuse_texture): node_texture = nodes.new(type='ShaderNodeTexImage') node_texture.location = -600,0 node_texture.label = 'Diffuse Map' node_texture.image = self.diffuse_texture node_diffuseColor = nodes.new(type='ShaderNodeRGB') node_diffuseColor.location = -500,250 node_diffuseColor.outputs['Color'].default_value=self.diffuse_color node_diffuseMix = nodes.new(type='ShaderNodeMixRGB') node_diffuseMix.location = -300, 25 node_diffuseMix.blend_type='MULTIPLY' node_diffuseMix.inputs['Fac'].default_value = 1 link = links.new(node_diffuseColor.outputs['Color'], node_diffuseMix.inputs['Color1']) link = links.new(node_texture.outputs['Color'], node_diffuseMix.inputs['Color2']) link = links.new(node_diffuseMix.outputs['Color'], node_pbsdf.inputs['Base Color']) link = links.new(node_mapping.outputs['Vector'], node_texture.inputs['Vector']) # create transparent texture if(self.transparent_texture): self.use_transparency = True node_trtext = nodes.new(type='ShaderNodeTexImage') node_trtext.location = -600,-250 node_trtext.label = 'Transparent Map' node_trtext.image = self.transparent_texture node_trtext.image.colorspace_settings.name = 'Non-Color' link = links.new(node_mapping.outputs['Vector'], node_trtext.inputs['Vector']) link = links.new(node_trtext.outputs['Color'], node_pbsdf.inputs['Alpha']) # create bump texture if(self.bump_texture): node_bump = nodes.new(type='ShaderNodeBump') node_bump.location = -300,-500 node_bump.inputs['Strength'].default_value = self.bumpStrength node_bumptext= nodes.new(type='ShaderNodeTexImage') node_bumptext.location = -600,-500 node_bumptext.label = 'Bump Map' node_bumptext.image = self.bump_texture node_bumptext.image.colorspace_settings.name = 'Non-Color' link = links.new(node_mapping.outputs['Vector'], node_bumptext.inputs['Vector']) link = links.new(node_bumptext.outputs['Color'], node_bump.inputs['Height']) link = links.new(node_bump.outputs['Normal'], node_pbsdf.inputs['Normal']) if(self.reflection_texture): print('I don\'t do reflective textures') if(self.use_transparency): self.mat.blend_method = 'HASHED' self.mat.shadow_method = 'HASHED' # return the material return( self.mat ) if __name__ == "__main__": myMat = Material(name='3 mat2', overwrite=True) # myMat.diffuse_color = (.757, .757,.757, 1) myMat.diffuse_color = (.455,.455,.455,1) myMat.transparent_texture=False myMat.bump_texture=True myMat.createBlenderMaterial() ``` #### File: Blender-PT2/libs/PT2_open.py ```python import gzip from pathlib import Path import re import errno import os def PT2_open(name, mode): is_gzip=True myfile=Path(name) #print("Test Existance") if( myfile.exists() ): print(f"%s exists!"%myfile) new_file=myfile else: stem = list(myfile.suffix) print(stem) stem[-1] = 'z' new_file = Path(myfile.parents[0], myfile.stem + "".join(stem)) if( new_file.exists()): pass else: raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), new_file) with gzip.open(new_file, mode) as fh: try: fh.read(1) except OSError: print(f'%s is not a gzip file by OSError'%new_file) is_gzip=False if(is_gzip): return( gzip.open(new_file, mode)) return( open(new_file, mode)) def namecheck01(input): output = re.sub(r' *: *[0-9]+', '', input) return( output ) ``` #### File: Blender-PT2/libs/ReadPZMD.py ```python import struct import os import logging logger = logging.getLogger(__name__) class Morph: def __init__(self): self.deltas=[] self.min = 0 self.max = 1 self.trackingScale = 0.02 self.value = 0 self.name = 'shape' self.group = '' self.indexes = -1 # this is the number of vertexes in the morph! ITS BACKWARDS self.numbDeltas = -1 # this is the number of vertexes in target! self.fileOffset = -1 def print(self): print('Morph:', self.name, 'Target:', self.group, 'Indexes: ', self.indexes, 'numbDeltas:', self.numbDeltas ) def log(self, level=logging.INFO): logger.log(level, 'Morph: %s\tTarget: %s\tIndexes: %s\tnumbDeltas: %s'% (self.name, self.group, self.indexes, self.numbDeltas ) ) def readPZMD(filename): filesize=os.stat(filename).st_size file=open(filename, 'rb') ## 4bytes PZMD foo=file.read(4) if (foo==b'PZMD'): logger.info("%s is a Poser Morph File!"%filename) else: logger.critical("%s is not a PZMD Morph File!" % filename) raise ValueError("%s is not a PZMD Morph File!" % filename) ## 4bytes Number of morphs, or version? foo=int.from_bytes(file.read(4), byteorder='big', signed=False) logger.debug('Version: %d' % foo) if(foo > 1): logger.warning('Unexpected version %d' % foo ) ## 4bytes pad? or should header size by 64 bits? foo=int.from_bytes(file.read(4), byteorder='big', signed=False) if(foo==0): logger.debug('Always 0?\t%d' % foo) else: logger.critical('Pad is not zero! Contact Developer!') ## 4bytes Size of morph header header_length=int.from_bytes(file.read(4), byteorder='big', signed=False) logger.debug('Header Length?\t%d'%header_length) ## 4bytes Number of morphs, or version? morphs_count=int.from_bytes(file.read(4), byteorder='big', signed=False) logger.debug('Number of morphs?\t%d' % morphs_count) morphs=[] for m in range(morphs_count): morph=Morph() ## bpl string [1 byte length, followed by ascii chars] bpl_length=int.from_bytes(file.read(1), byteorder='big', signed=False) morph.name=(file.read(bpl_length)).decode("ascii") ## bpl string [1 byte length, followed by ascii chars] bpl_length=int.from_bytes(file.read(1), byteorder='big', signed=False) morph.group=(file.read(bpl_length)).decode("ascii") ## 4 bytes number of verts in group morph.numbDeltas=int.from_bytes(file.read(4), byteorder='big', signed=False) ## 4 bytes numDeltas morph.fileOffset=int.from_bytes(file.read(4), byteorder='big', signed=False) morphs.append( morph ) # Calculate number of indexes by finding the file offset of the next morph, subtract # the file offset of this morph, subtract 4 for the size, then divide by 16 for i in range(morphs_count-1): morphs[i].indexes=int( (morphs[i+1].fileOffset - morphs[i].fileOffset - 4) / 16 ) morphs[i].log() # handle last morph separately morphs[-1].indexes=int( (filesize - morphs[-1].fileOffset - 4) / 16 ) morphs[-1].log() for morph in morphs: file.seek(morph.fileOffset) indexes = int.from_bytes(file.read(4), byteorder='big', signed=False) if indexes == morph.indexes: logger.debug('%s indexes count matched!' % morph.name) ## ## 4 bytes index 3x4 bytes delta for i in range(morph.indexes): delta = file.read(16) idx=int.from_bytes(delta[0:4], byteorder='big', signed=False) vect=struct.unpack('>fff', delta[4:17]) morph.deltas.append( { int(idx) : vect } ) # print(idx, vect) if indexes == len(morph.deltas): logger.debug('%s all delta indexes read!'%morph.name ) else: logger.critical('Expected %d deltas but found %d' %(morph.indexes, indexes) ) raise ValueError('Morphs were not parsed correctly!') file.close() logger.info('Read %d morphs, expected %d' % (len(morphs), morphs_count) ) return(morphs) if __name__ == '__main__': import sys print (sys.argv[1]) logging.basicConfig(level=logging.DEBUG) morphs = readPZMD(filename=sys.argv[1]) ```
{ "source": "jenuk/clip-bb", "score": 2 }
#### File: jenuk/clip-bb/config2object.py ```python import importlib def get_obj_from_str(string, reload=False): module, cls = string.rsplit(".", 1) if reload: module_imp = importlib.import_module(module) importlib.reload(module_imp) return getattr(importlib.import_module(module, package=None), cls) def instantiate_from_config(config): if not "target" in config: raise KeyError("Expected key `target` to instantiate.") return get_obj_from_str(config["target"])(**config.get("params", dict())) ```
{ "source": "jenwich/practicum_game_project", "score": 3 }
#### File: jenwich/practicum_game_project/bear.py ```python import pygame, random bears = [] bear_img = pygame.image.load("src/images/Bear.png") class Bear: width = 64 height = 136 hp = 1 def __init__(self, screen, gameMap, moveDir, speed): self.screen = screen self.gameMap = gameMap self.moveDir = moveDir self.speed = speed * 0.3 + 0.5 if moveDir == 1: self.x = self.width/2 elif moveDir == 2: self.speed *= -1 self.x = screen.get_width() - self.width/2 self.y = self.gameMap.getY(self.x) self.xi = self.x self.yi = self.y self.rect = pygame.Rect(self.x - self.width/2, self.y - self.height, self.width, self.height) self.discard = 0 def getXY(self): return (self.x, self.y) def getSize(self): return (self.width, self.height) def isOut(self, x): if self.moveDir == 1: return x + self.width/2 >= self.screen.get_width() elif self.moveDir == 2: return x - self.width/2 <= 0 def move(self): x = self.x + self.speed if not self.isOut(x): y = self.gameMap.getY(int(x)) self.rect = self.rect.move(int(x - self.xi) - int(self.x - self.xi), y - self.y) self.x = x self.y = y else: self.discard = 1 def isDiscarded(self): return self.discard def draw(self): # pygame.draw.rect(self.screen, (0, 0, 255), self.rect) img_scaled = pygame.transform.scale(bear_img, (self.width, self.height)) if self.moveDir == 1: img_scaled = pygame.transform.flip(img_scaled, 1, 0) self.screen.blit(img_scaled, self.rect) def isHitPlayer(self, player): x, y = int(self.x), self.y w, h = self.width, self.height px, py = player.getXY() pw, ph = player.getSize() return ((x-w/2 >= px-pw/2) and (x-w/2 <= px+pw/2)) or ((x+w/2 >= px-pw/2) and (x+w/2 <= px+pw/2)) def hitted(self): self.hp = self.hp - 1 if self.hp == 0: self.discard = 1 def spawnBear(screen, gameMap): moveDir = random.randint(1, 2) speed = random.randint(0, 2) bear = Bear(screen, gameMap, moveDir, speed) bears.append(bear) def bearsExec(): for bear in bears: bear.move() bear.draw() if bear.isDiscarded(): bears.remove(bear) def clearBears(): del bears[:] ``` #### File: jenwich/practicum_game_project/player.py ```python import pygame, math from arrow import Arrow pygame.mixer.init() player_img = pygame.image.load("src/images/Player.png") arrows = [] counter = { "score": 0, "allBear": 0, "latestBear": 0, "comboBear": 0 } bear_sound = pygame.mixer.Sound("src/sounds/Bear.wav") class Player: def __init__(self, screen, gameMap): self.screen = screen self.screenWidth = screen.get_width() self.screenHeight = screen.get_height() self.gameMap = gameMap self.moveDir = 0 self.currentDir = 1 self.speed = 2 self.dead = 0 def set(self, x, width, height): self.x = x self.y = self.gameMap.getY(self.x) self.width = width self.height = height self.rect = pygame.Rect(self.x - self.width/2, self.y - self.height, width, height) def getXY(self): return (self.x, self.y) def getSize(self): return (self.width, self.height) def getAngle(self, x, y): mx = self.x my = self.y - self.height/2 if x == mx: return math.pi / 2 elif my - y < 0: return 0 else: return math.atan(math.fabs(float(y - my)/(x - mx))) def isOut(self, x): return x - self.width/2 <= 0 or x + self.width/2 >= self.screenWidth def isDead(self): return self.dead def move(self): x = self.x if self.moveDir == 1: x = x - self.speed elif self.moveDir == 2: x = x + self.speed if self.moveDir != 0: if not self.isOut(x): y = self.gameMap.getY(x) self.rect = self.rect.move(x-self.x, y-self.y) self.x = x self.y = y def setDir(self, moveDir): self.moveDir = moveDir if moveDir != 0: self.currentDir = moveDir def draw(self): # pygame.draw.rect(self.screen, (225, 0, 0), self.rect) img_scaled = pygame.transform.scale(player_img, (self.width, self.height)) if self.currentDir == 1: img_scaled = pygame.transform.flip(img_scaled, 1, 0) self.screen.blit(img_scaled, self.rect) def calculateU(self, t): if t < 300: return 3 elif t < 1500: return t / 100 else: return 15 def setupArrow(self, dt, angle): u = self.calculateU(dt) ux = u * math.cos(angle) uy = u * math.sin(angle) if self.currentDir == 1: startX = self.x - self.width / 2 if self.currentDir == 2: startX = self.x + self.width / 2 ux = ux * -1 arrow = Arrow(self.screen, self.gameMap, startX, self.y - self.height*0.75, ux, uy) arrows.append(arrow) def arrowsExec(self): for arrow in arrows: arrow.move() arrow.draw() if arrow.isDiscarded(): arrows.remove(arrow) def hitBear(self, bears): for bear in bears: if bear.isHitPlayer(self): self.dead = 1 def arrowHitBear(self, bears): for bear in bears: for arrow in arrows: if arrow.isHitBear(bear): arrow.discard = 1 bear.hitted() for bear in bears: if bear.isDiscarded(): global counter counter["allBear"] += 1 counter["latestBear"] += 1 counter["comboBear"] += 1 bearPos = bear.getXY() dist = math.sqrt((self.x-bearPos[0])**2 + (self.y-bearPos[1])**2) sc = int(10 + dist * 0.1) counter["score"] += sc bear_sound.play() bears.remove(bear) for arrow in arrows: if arrow.isDiscarded(): arrows.remove(arrow) def clearArrows(): del arrows[:] def resetCounter(): counter["score"] = 0 counter["allBear"] = 0 counter["latestBear"] = 0 counter["comboBear"] = 0 ```
{ "source": "Jenya26/MLP", "score": 2 }
#### File: MLP/assertion/fail.py ```python from .assertion_fail import AssertionFail __all__ = ['fail'] def fail(message="Assertion fail"): raise AssertionFail(message) ``` #### File: MLP/assertion/ok.py ```python from .equals import equals __all__ = ['ok'] def ok(): equals(True, True) ``` #### File: functions/tests/linear_test.py ```python import numpy as np from assertion import equals from functions import LinearFunction __all__ = ['should_calculate_single_input', 'should_calculate_multiple_input'] def should_calculate_single_input(): linear = LinearFunction() equals(12., linear(12.)) def should_calculate_multiple_input(): linear = LinearFunction() equals([12., 8.], linear(np.asarray([12., 8.]))) ``` #### File: MLP/gradients/gradient.py ```python import numpy as np __all__ = ['Gradient'] class Gradient: @staticmethod def _forward(network, x, y): layer_inputs = [x] layer_outputs = [network.layers[0](x)] for i, layer in enumerate(network.layers[1:]): layer_inputs += [layer_outputs[i]] layer_outputs += [layer(layer_inputs[i + 1])] return layer_inputs, layer_outputs @staticmethod def _normalize_vectors(vectors): if isinstance(vectors, float): return np.asarray([vectors]) return vectors @staticmethod def _calculate_layer_gradient(gradient, layer, inputs, outputs, outputs_gradient): activation_function_gradient = outputs_gradient * layer.activation_function.derivative(inputs, outputs) weights_gradient = np.zeros((layer.input_dimension, layer.output_dimension)) for i in range(inputs.shape[0]): current_input = inputs[i].reshape((layer.input_dimension, 1)) current_output = activation_function_gradient[i].reshape((1, layer.output_dimension)) weights_gradient += np.dot(current_input, current_output) biases_gradient = np.sum(activation_function_gradient, axis=0) gradient += [[ weights_gradient, biases_gradient ]] return activation_function_gradient.dot(layer.weights.T) def __call__(self, network, inputs, outputs, error): inputs = Gradient._normalize_vectors(inputs) outputs = Gradient._normalize_vectors(outputs) layer_inputs, layer_outputs = Gradient._forward(network, inputs, outputs) outputs_gradient = error(outputs, layer_outputs[-1], 1) gradient = [] for i, layer in enumerate(network.layers[::-1]): outputs_gradient = Gradient._calculate_layer_gradient( gradient, layer, layer_inputs[-1 - i], layer_outputs[-1 - i], outputs_gradient ) return np.asarray(gradient[::-1]) ``` #### File: MLP/graphics/neural_network_model_controller_widget.py ```python from PyQt5.QtWidgets import QWidget, QPushButton, QVBoxLayout, QHBoxLayout, QLineEdit, QLabel, QComboBox from PyQt5.QtCore import Qt from functions import SigmoidFunction, LinearFunction __all__ = ['NeuralNetworkModelControllerWidget'] def get_current_function_index(function): if isinstance(function, LinearFunction): return 0 if isinstance(function, SigmoidFunction): return 1 return -1 class NeuralNetworkModelControllerWidget(QWidget): def __init__(self, model, parent=None): super(NeuralNetworkModelControllerWidget, self).__init__(parent=parent) self._model = model self._layout = QVBoxLayout(self) self._layers_layout = QVBoxLayout() self.__update_layers_info() add_layout_button = QPushButton("Add new layer") add_layout_button.clicked.connect(self._add_layer) self._layout.addLayout(self._layers_layout, 1) self._layout.addWidget(add_layout_button, alignment=Qt.AlignBottom) @property def model(self): return self._model @model.setter def model(self, model): self._model = model self.__update_layers_info() def __update_layers_info(self): for i in range(self._layers_layout.count()): child = self._layers_layout.itemAt(i) widget = child.widget() widget.setVisible(False) for i, layer in enumerate(self._model.layers[:-1]): self.__add_layer_info(i, layer) index = len(self._model.layers) - 1 self.__add_layer_info(index, self._model.layers[-1], False) self._layers_layout.setAlignment(Qt.AlignTop) def __create_new_layer(self, i, layer, enabled=True): widget = QWidget() layout = QVBoxLayout(widget) layer_count_line_edit = QLineEdit(str(layer.output_dimension)) layer_count_line_edit.setFixedWidth(120) layer_count_line_edit.textChanged[str].connect( self.__on_change_layer_count_maker(layer_count_line_edit, i) ) layer_count_line_edit.setEnabled(enabled) remove_layout_button = QPushButton("X") remove_layout_button.clicked.connect(self._remove_layout_maker(i)) remove_layout_button.setVisible(enabled) label = QLabel("Layer %d:" % (i + 1)) line = QHBoxLayout() line.addWidget(label, alignment=Qt.AlignTop) line.addWidget(remove_layout_button, alignment=Qt.AlignTop) activation_functions = QComboBox() activation_functions.addItem("Linear function") activation_functions.addItem("Sigmoid function") activation_functions.setCurrentIndex(get_current_function_index(layer.activation_function)) activation_functions.currentIndexChanged.connect(self.__change_activation_function_maker(i)) layout.addLayout(line) layout.addWidget(layer_count_line_edit, alignment=Qt.AlignTop) layout.addWidget(activation_functions, alignment=Qt.AlignTop) return widget def __add_layer_info(self, i, layer, enabled=True): item = self._layers_layout.itemAt(i) if item is not None: widget = item.widget() widget_layout = widget.layout() line_item = widget_layout.itemAt(0) line = line_item.layout() remove_layout_button_item = line.itemAt(1) remove_layout_button = remove_layout_button_item.widget() remove_layout_button.setVisible(enabled) layer_count_line_edit_item = widget_layout.itemAt(1) layer_count_line_edit = layer_count_line_edit_item.widget() layer_count_line_edit.setText(str(layer.output_dimension)) layer_count_line_edit.setEnabled(enabled) activation_function_item = widget_layout.itemAt(2) activation_function = activation_function_item.widget() activation_function.setCurrentIndex(get_current_function_index(layer.activation_function)) widget.setVisible(True) else: widget = self.__create_new_layer(i, layer, enabled) self._layers_layout.addWidget(widget, alignment=Qt.AlignTop) def __change_activation_function_maker(self, index): def __change_activation_function(selected): function = None if selected == 0: function = LinearFunction() if selected == 1: function = SigmoidFunction() if function is not None: self._model.change_activation_function(index, function) return __change_activation_function def _remove_layout_maker(self, index): def _remove_layout(): self._model.remove_layer(index) self.__update_layers_info() self.repaint() return _remove_layout def _add_layer(self): self._model.add_layer() self.__update_layers_info() def __on_change_layer_count_maker(self, layer_count_line_edit, index): def __on_change_layer_count(text): layer_count = 0 for ch in text: if ord('0') <= ord(ch) <= ord('9'): layer_count = 10 * layer_count + ord(ch) - ord('0') layer_count_line_edit.setText(str(layer_count)) layer_count = max(layer_count, 1) self._model.change_layer_count(index, layer_count) return __on_change_layer_count ``` #### File: MLP/graphics/neural_network_teaching_service.py ```python from PyQt5.QtCore import QThread __all__ = ['NeuralNetworkTeachingService'] class NeuralNetworkTeachingService(QThread): def __init__(self, model, teacher, gradient, error, train_data_store, batch=10, learning_rate=1e-3, iterations=1): QThread.__init__(self) self._teacher = teacher self._model = model self._gradient = gradient self._error = error self._train_data_store = train_data_store self._batch = batch self._learning_rate = learning_rate self._iterations = iterations self._on_update_model = None self._start_callback = None self._stop_callback = None self._is_stop = False def __del__(self): self.wait() @property def network(self): return self._model @network.setter def network(self, network): self._model = network @property def gradient(self): return self._gradient @gradient.setter def gradient(self, gradient): self._gradient = gradient @property def error(self): return self._error @error.setter def error(self, error): self._error = error @property def train_data_store(self): return self._train_data_store @train_data_store.setter def train_data_store(self, train_data_store): self._train_data_store = train_data_store @property def teacher(self): return self._teacher @teacher.setter def teacher(self, teacher): self._teacher = teacher @property def learning_rate(self): return self._learning_rate @learning_rate.setter def learning_rate(self, learning_rate): self._learning_rate = learning_rate @property def iterations(self): return self._iterations @iterations.setter def iterations(self, iterations): self._iterations = iterations @property def on_update_model(self): return self._on_update_model @on_update_model.setter def on_update_model(self, on_update_model): if not callable(on_update_model): raise ValueError('on_update_model should be callable') self._on_update_model = on_update_model @property def start_callback(self): return self._start_callback @start_callback.setter def start_callback(self, start_callback): if not callable(start_callback): raise ValueError('Stop callback should be callable') self._start_callback = start_callback @property def stop_callback(self): return self._stop_callback @stop_callback.setter def stop_callback(self, stop_callback): if not callable(stop_callback): raise ValueError('Stop callback should be callable') self._stop_callback = stop_callback def stop(self, stop_callback=None): self._is_stop = True if callable(stop_callback): self._stop_callback = stop_callback def run(self): if self._start_callback is not None: self._start_callback() self._is_stop = False model = self._model while self._iterations > 0 and not self._is_stop: model = model.copy() self._teacher( model=model, gradient=self._gradient, error=self._error, data_store=self._train_data_store, max_iterations=1, batch=self._batch, learning_rate=self._learning_rate ) self._model = model if self._on_update_model is not None: self._on_update_model(model) self._iterations -= 1 if self._stop_callback is not None: self._stop_callback(self._iterations, model) ```
{ "source": "Jenyay/py_cache_manager", "score": 2 }
#### File: py_cache_manager/cacheman/csvcache.py ```python import os from .registers import * from .cachewrap import CacheWrap from .autosync import AutoSyncCacheBase class CSVCache(CacheWrap): def __init__(self, cache_name, row_builder=None, row_reader=None, **kwargs): self.row_builder = row_builder self.row_reader = row_reader CacheWrap.__init__(self, cache_name, **kwargs) def saver(self, name, contents): return csv_saver(self.manager.cache_directory, name, contents, self.row_builder) def loader(self, name): return csv_loader(self.manager.cache_directory, name, self.row_reader) def deleter(self, name): try: os.remove(generate_csv_path(self.manager.cache_directory, name)) except OSError: pass def async_presaver(self, name, contents, extensions): return csv_pre_saver(self.manager.cache_directory, name, contents, extensions, self.row_builder) def async_saver(self, name, contents, extensions): return csv_mover(self.manager.cache_directory, name, contents, extensions) def async_cleaner(self, name, extensions): return csv_cleaner(self.manager.cache_directory, name, extensions) class AutoSyncCSVCache(AutoSyncCacheBase, CSVCache): ''' AutoSyncCSVCache defaults to a csv basis. ''' def __init__(self, cache_name, **kwargs): AutoSyncCacheBase.__init__(self, CSVCache, cache_name, **kwargs) ```
{ "source": "jenyu7/hw9", "score": 3 }
#### File: hw9/hw9/mle.py ```python import scipy.stats as st import scipy.optimize import warnings import numpy as np def log_like_iid_gamma(params, n): """Log likelihood for i.i.d. Gamma measurements, parametrized by x, a""" beta, alpha = params if n.any() <= 0: return -np.inf if beta <= 0: return -np.inf if alpha<=0: return -np.inf return st.gamma.logpdf(n , alpha, loc=0, scale=1/beta).sum() #Code based on Bois (2020) def mle_iid_gamma(n): """Perform maximum likelihood estimates for parameters for i.i.d. Gamma measurements, parametrized by x, a (cov matrix)""" with warnings.catch_warnings(): warnings.simplefilter("ignore") res = scipy.optimize.minimize( fun=lambda params, n: -log_like_iid_gamma(params, n), x0=np.array([2.00, 0.005]), args=(n,), method='Powell' ) if res.success: return res.x else: raise RuntimeError('Convergence failed with message', res.message) def log_like_iid_bespoke(params, n): beta, dbeta = params if n.any() <= 0: return -np.inf if beta <= 0: return -np.inf if dbeta <= 0: return -np.inf return np.sum(np.log(beta)+np.log(beta+dbeta)-np.log(dbeta)-beta*n+np.log(1-np.exp(-dbeta*n))) def mle_iid_bespoke(n): with warnings.catch_warnings(): warnings.simplefilter("ignore") res = scipy.optimize.minimize( fun=lambda params, n: -log_like_iid_bespoke(params, n), x0=np.array([1.00, 0.5]), args=(n,), method='Powell' ) if res.success: return res.x else: raise RuntimeError('Convergence failed with message', res.message) ``` #### File: hw9/hw9/reps.py ```python import numpy as np from tqdm import tqdm #Set up Numpy random generator rg = np.random.default_rng() def draw_parametric_bs_reps_mle( mle_fun, gen_fun, data, args=(), size=1, progress_bar=False ): """Draw parametric bootstrap replicates of maximum likelihood estimator. Parameters ---------- mle_fun : function Function with call signature mle_fun(data, *args) that computes a MLE for the parameters gen_fun : function Function to randomly draw a new data set out of the model distribution parametrized by the MLE. Must have call signature `gen_fun(*params, size)`. data : one-dimemsional Numpy array Array of measurements args : tuple, default () Arguments to be passed to `mle_fun()`. size : int, default 1 Number of bootstrap replicates to draw. progress_bar : bool, default False Whether or not to display progress bar. Returns ------- output : numpy array Bootstrap replicates of MLEs. """ params = mle_fun(data, *args) if progress_bar: iterator = tqdm(range(size)) else: iterator = range(size) return np.array( [mle_fun(gen_fun(*params, size=len(data), *args)) for _ in iterator] ) #Generates samples from the model distribution. def sp_gamma(beta, alpha, size): return rg.gamma(alpha, 1/beta, size=size) ```
{ "source": "jen-zecena/matrix-to-latex", "score": 3 }
#### File: data/data-prep/convertall.py ```python from __future__ import print_function import inkml2img, glob, os import pickle import os.path import csv #.inkml2img('2013ALL_inkml_data/200923-1556-49.inkml','./2013ALL_inkml_data_image/200923-1556-49.png') #inkml2img.inkml2img('200923-1556-49.inkml','linewidth.jpg') """takes a txt file with the names of all the inkml files you want to convert to convert input: filename (+ path if not in same directory) textfile with inkml file names in it, foldername is a string you want to name the directory the converted jpgs are stored. output: technically none, but creates a folder called foldername with jpgs in it. """ def convert2jpgs(filename): inkmls = open(filename, "r") for row in inkmls.readlines(): jpgname = 'jpgs/' + os.path.splitext(row)[0] + '.jpg' print(jpgname) inkml2img.inkml2img('TestEM2014/' + row.rstrip('\n'), jpgname) filename = 'MatricesTrain/listeMatTrain.txt' filename1 = 'individualsymbols/individualsymbols1.txt' filename2 = 'individualsymbols/individualsymbols2.txt' filename3 = 'TestEM2014/listTestInkml.txt' convert2jpgs(filename3) print("made it half way!!!!!!!!!!") #convert2jpgs(filename2) ```
{ "source": "jenzenho/pyMARS", "score": 2 }
#### File: pyMARS/pymars/pfa.py ```python import networkx as nx import numpy as np import h5py from collections import Counter import time as tm from drg import graph_search import os, sys, argparse import cantera as ct import soln2ck import soln2cti import math from create_trimmed_model import trim from numpy import genfromtxt from readin_initial_conditions import readin_conditions import helper def trim_pfa(total_edge_data, solution_object, threshold_value, keeper_list, done, target_species, model_file): """ This function determines what species should be excluded from the reduced model based on their DICs compared to the threshold value and a simple graph search. Parameters ---------- total_edge_data: information containing the DICs for the graph edge weights solution_object: The solution being reduced threshold_value: User specified threshold value keeper_list: Speicies that should always be kept done: Determines wether or not the reduction is complete target_species: The target species for the search in the array model_file: File holding the model being reduced Returns ------- Returns an array of species that should be excluded from the original model at this threshold level """ start_time = tm.time() # Initalize solution and components solution = solution_object species_objects = solution.species() reaction_objects = solution.reactions() # Use the networkx library to create a weighted graph of all of the species and their dependencies on each other. graph = nx.DiGraph() safe = [] # A list of species that are to be retained for this threshold value # Calculate edge weights based on list received from get_rate_data # Initial condition for ic in total_edge_data.keys(): # For each initial condition for species in species_objects: # Make graph graph.add_node(species.name) # Timestep for tstep in total_edge_data[ic].keys(): # Set edge values for the graph number = total_edge_data[ic][tstep] # Each species for edge in number: try: edge_name = edge.split('_', 1) species_a_name = edge_name[0] species_b_name = edge_name[1] # PFA weight between two species weight = number[edge] if graph.has_edge(species_a_name, species_b_name): old_weight = graph[species_a_name][species_b_name]['weight'] if weight > old_weight and weight > threshold_value: # Only include the weight if it is greater than the threshold value. graph.add_weighted_edges_from( [(species_a_name, species_b_name, weight)]) #elif weight > 1: # print("Error. Edge weights should not be greater than one.") # exit() elif weight > threshold_value: graph.add_weighted_edges_from( [(species_a_name, species_b_name, weight)]) #elif weight > 1: # print("Error. Edge weights should not be greater than one.") # exit() except IndexError: print(edge) continue dic = graph_search(graph, target_species) # Search graph for max values to each species based on targets for sp in dic: # Add to max dictionary if it is new or greater than the value already there. if sp not in safe: safe.append(sp) graph.clear() # Reset graph core_species = [] species_objects = solution_object.species() # Take all species that are over the threshold value and add them to essentail species. essential_species = [] for sp in species_objects: if sp.name in safe: if sp not in essential_species: essential_species.append(sp) done[0] = False # Add all species in essential species to core species for sp in essential_species: if sp not in core_species: core_species.append(sp.name) # Add all of the must keep species to core species retained_species = keeper_list # Specified by the user. A list of species that also need to be kept. for sp in retained_species: if sp not in core_species: core_species.append(sp) exclusion_list = [] # Exclude everything not in core species. for species in solution_object.species(): # If its not one of our species we must keep, add it to the list of species to be trimmed. if species.name not in core_species: exclusion_list.append(species.name) return exclusion_list def run_pfa(solution_object, conditions_file, error_limit, target_species, retained_species, model_file, final_error): """" This is the MAIN top level function for running PFA Parameters ---------- solution_object: a Cantera object of the solution to be reduced conditions_file: The file holding the initial conditions to simulate error_limit: The highest allowed error percentage target_species: The target species for reduction retained_species: A list of species to be retained even if they should be cut by the algorithm model_file: The path to the file where the solution object was generated from final_error: To hold the error level of the simulation Returns ------- Writes reduced Cantera file and returns reduced Catnera solution object """ if len(target_species) == 0: # If the target species are not specified, puke and die. print("Please specify a target species.") exit() done = [] # Singleton to hold wether or not any more species can be cut from the simulation. done.append(False) threshold = .1 # Starting threshold value threshold_i = .1 n = 1 error = [10.0] # Singleton to hold the error value of the previously ran simulation. # Check to make sure that conditions exist if conditions_file: conditions_array = readin_conditions(str(conditions_file)) elif not conditions_file: print("Conditions file not found") exit() # Turn conditions array into unran simulation objects for the original solution sim_array = helper.setup_simulations(conditions_array,solution_object) ignition_delay_detailed = helper.simulate(sim_array) #Run simulations and process results rate_edge_data = get_rates_pfa(sim_array, solution_object) #Get edge weight calculation data. print("Testing for starting threshold value") # Trim the solution at that threshold and find the error. pfa_loop_control( solution_object, target_species, retained_species, model_file, error, threshold, done, rate_edge_data, ignition_delay_detailed, conditions_array) while error[0] != 0 and threshold_i > .001: # While the error for trimming with that threshold value is greater than allowed. threshold = threshold / 10 # Reduce the starting threshold value and try again. threshold_i = threshold_i / 10 n = n + 1 pfa_loop_control( solution_object, target_species, retained_species, model_file, error, threshold, done, rate_edge_data, ignition_delay_detailed, conditions_array) if error[0] <= .02: error[0] = 0 print("Starting with a threshold value of " + str(threshold)) sol_new = solution_object final_error[0] = 0 # An integer representing the error introduced in the final simulation. done[0] = False while not done[0] and error[0] < error_limit: # Run the simulation until nothing else can be cut. # Trim at this threshold value and calculate error. sol_new = pfa_loop_control( solution_object, target_species, retained_species, model_file, error, threshold, done, rate_edge_data, ignition_delay_detailed, conditions_array) if error_limit >= error[0]: # If a new max species cut without exceeding what is allowed is reached, save that threshold. max_t = threshold #if (final_error == error[0]): #If error wasn't increased, increase the threshold at a higher rate. # threshold = threshold + (threshold_i * 4) final_error[0] = error[0] #if (threshold >= .01): # threshold_i = .01 threshold = threshold + threshold_i threshold = round(threshold, n) print("\nGreatest result: ") sol_new = pfa_loop_control( solution_object, target_species, retained_species, model_file, error, max_t, done, rate_edge_data, ignition_delay_detailed, conditions_array) return sol_new def pfa_loop_control(solution_object, target_species, retained_species, model_file, stored_error, threshold, done, rate_edge_data, ignition_delay_detailed, conditions_array): """ This function handles the reduction, simulation, and comparision for a single threshold value Parameters ---------- solution_object: object being reduced # target_species: target_species: The target species for reduction retained_species: A list of species to be retained even if they should be cut by the algorithm model_file: The path to the file where the solution object was generated from stored_error: Error from the previous reduction attempt threshold: current threshold value done: are we done reducing yet? Boolean rate_edge_data: the DICs for reduction ignition_delay_detailed: ignition delay of detailed model conditions_array: array holding information about initial conditions Returns ------- Returns the reduced solution object for this threshold and updates error value """ # Run detailed mechanism and retain initial conditions species_retained = [] printout = '' print('Threshold Species in Mech Error') # Run DRG and create new reduced solution exclusion_list = trim_pfa( rate_edge_data, solution_object, threshold, retained_species, done,target_species,model_file) # Find out what to cut from the model new_solution_objects = trim(solution_object, exclusion_list, model_file) # Cut the exclusion list from the model. species_retained.append(len(new_solution_objects[1].species())) # Simulated reduced solution new_sim = helper.setup_simulations(conditions_array,new_solution_objects[1]) # Create simulation objects for reduced model for all conditions ignition_delay_reduced = helper.simulate(new_sim) # Run simulations and process results if (ignition_delay_detailed.all() == 0): # Ensure that ignition occured print("Original model did not ignite. Check initial conditions.") exit() # Calculate error error = (abs(ignition_delay_reduced-ignition_delay_detailed)/ignition_delay_detailed)*100 # Calculate error printout += str(threshold) + ' ' + str(len(new_solution_objects[1].species())) + ' '+ str(round(np.max(error), 2)) +'%' + '\n' print(printout) stored_error[0] = round(np.max(error), 2) # Return new model new_solution_objects = new_solution_objects[1] return new_solution_objects def get_rates_pfa(sim_array, solution_object): """ This function calculates values to be used in the calculation of Direct Interaction Coefficients Parameters ---------- sim_array: Array of simulated simulation objects solution_object: Cantera object of the solution being reduced Returns ------- total_edge_data: a dictionary with keys of initial conditions and values of dictionarys that hold information for caculating DICs at each timestep. *the subdictionaries have the timestep as their keys and their values hold an array of DICs """ old_solution = solution_object # Iterate through all initial conditions total_edge_data = {} for ic in sim_array: ic_edge_data = {} for tstep in ic.sample_points: # Iterate through all timesteps temp = tstep[0] # Set up variables pressure = tstep[1] mass_fractions = np.array(tstep[2]) # Set up solution at current timestep new_solution = old_solution new_solution.TPY = temp, pressure, mass_fractions new_reaction_production_rates = new_solution.net_rates_of_progress new_species_prod_rates=new_solution.net_production_rates DIC = {} single = get_PA(new_solution,new_reaction_production_rates) # Get PA and CA PA = single[0] CA = single[1] double = get_PAB(new_solution,new_reaction_production_rates) # Get PAB and CAB PAB = double[0] CAB = double[1] r1 = get_rAB_1(new_solution,PA,CA,PAB,CAB) rAB_p1 = r1[0] rAB_c1 = r1[1] r2 = get_rAB_2(new_solution,rAB_p1,rAB_c1) rAB_p2 = r2[0] rAB_c2 = r2[1] s_names = new_solution.species_names for species_a in s_names: for species_b in s_names: if (species_a != species_b): full_name = species_a + "_" + species_b add = rAB_p1[full_name] + rAB_c1[full_name] + rAB_p2[full_name] + rAB_c2[full_name] DIC[full_name] = add ic_edge_data[temp] = DIC total_edge_data[ic] = ic_edge_data return total_edge_data def get_PA(new_solution, new_reaction_production_rates): """ Gets the PA (and CA) values of all species in a given solution. Parameters ---------- new_solution: The object representing the cantera model new_reaction_production_rates: the production rates associated with the model Returns ------- PA and CA dictionaries """ PA = {} # Dictionary that will hold the PA values for each species. CA = {} # Dictionary that will hold the CA values for each species. # Initalize all species s_names = new_solution.species_names for species in s_names: PA[species] = 0 CA[species] = 0 for i, reac in enumerate(new_solution.reactions()): # For all reactions reac_prod_rate = float(new_reaction_production_rates[i]) # Set up values if reac_prod_rate != 0: if reac_prod_rate > 0: # For forward reactions # Add all products to PA for species in reac.products: add = float(reac_prod_rate * reac.products[species]) PA[species] += abs(add) # Add all reactants to CA for species in reac.reactants: add = float(reac_prod_rate * reac.reactants[species]) CA[species] += abs(add) if reac_prod_rate < 0: # For forward reactions # Add all products to CA for species in reac.products: add = float(reac_prod_rate * reac.products[species]) CA[species] += abs(add) # Add all reactants to PA for species in reac.reactants: add = float(reac_prod_rate * reac.reactants[species]) PA[species] += abs(add) return PA,CA def get_PAB(new_solution, new_reaction_production_rates): """ Gets the PAB (and CAB) values of all species in a given solution. Parameters ---------- new_solution: The object representing the cantera model new_reaction_production_rates: the production rates associated with the model Returns ------- PAB and CAB dictionaries. """ PAB = {} # Set up dictionaries CAB = {} s_names = new_solution.species_names for species_a in s_names: # For every pair of species A and B in the solution for species_b in s_names: if species_a != species_b: full_name = species_a + "_" + species_b PAB[full_name] = 0 CAB[full_name] = 0 for i, reac in enumerate(new_solution.reactions()): # For all reactions reac_prod_rate = float(new_reaction_production_rates[i]) # Set up values all_species = reac.products all_species.update(reac.reactants) # If both species exsist in the reaction, add the calculated value to the correct dictionary. if reac_prod_rate != 0: if species_a in all_species: if species_b in all_species: # For forward reactions if reac_prod_rate > 0: # Add products to PAB if species_a in reac.products: add = float(reac_prod_rate * reac.products[species_a]) PAB[full_name] += abs(add) # Add reactants to CAB if species_a in reac.reactants: add = float(reac_prod_rate * reac.reactants[species_a]) CAB[full_name] += abs(add) # For backward reactions if reac_prod_rate < 0: # Add products to CAB if species_a in reac.products: add = float(reac_prod_rate * reac.products[species_a]) CAB[full_name] += abs(add) # Add reactants to PAB if species_a in reac.reactants: add = float(reac_prod_rate * reac.reactants[species_a]) PAB[full_name] += abs(add) return PAB, CAB def get_rAB_1(new_solution,PA,CA,PAB,CAB): """ Gets the rAB_p1 (and rAB_c1) values of all species in a given solution. Parameters ---------- new_solution: The object representing the cantera model PA: A dictionary containing the PA values for the reduction CA: A dictionary containing the CA values for the reduction PAB: A dictionary containing the PAB values for the reduction CAB: A dictionary containing the CAB values for the reduction Returns ------- rAB_p1 and rAB_c1 dictionaries. """ rAB_p1 = {} # Set up dictionaries rAB_c1 = {} s_names = new_solution.species_names for species_a in s_names: # For all pairs of species for species_b in s_names: if species_a != species_b: full_name = species_a + "_" + species_b # Set up rAB_p1[full_name] = 0 rAB_c1[full_name] = 0 top_p = PAB[full_name] # Get numerator top_c = CAB[full_name] if (PA[species_a] > CA[species_a]): # Get denomonator bot = PA[species_a] else: bot = CA[species_a] if (bot != 0): # Calculate rAB_p1[full_name] = top_p/bot rAB_c1[full_name] = top_c/bot return rAB_p1, rAB_c1 def get_rAB_2(new_solution,rAB_p1,rAB_c1): """ Gets the rAB_p2 (and rAB_c2) values of all species in a given solution. Parameters ---------- new_solution: The object representing the cantera model rAB_p1: A dictionary containing the rAB_p1 values for the reduction rAB_c1: A dictionary containing the rAB_c1 values for the reduction Returns ------- rAB_p2 and rAB_c2 dictionaries. """ rAB_p2 = {} # Set up dictionaries rAB_c2 = {} s_names = new_solution.species_names for species_a in s_names: # For all pairs of species for species_b in s_names: if species_a != species_b: full_name = species_a + "_" + species_b # Set up rAB_p2[full_name] = 0 rAB_c2[full_name] = 0 # Look through all possible middle step species for species_m in s_names: if (species_m != species_a and species_m != species_b): am_name = species_a + "_" + species_m mb_name = species_m + "_" + species_b # Get what to add for species_m add_p = rAB_p1[am_name] * rAB_p1[mb_name] add_c = rAB_c1[am_name] * rAB_c1[mb_name] # Add that value rAB_p2[full_name] += add_p rAB_c2[full_name] += add_c return rAB_p2,rAB_c2 ```
{ "source": "jeobrien/cfn-python-lint", "score": 2 }
#### File: cfnlint/decode/__init__.py ```python import sys import logging import six try: from json.decoder import JSONDecodeError except ImportError: JSONDecodeError = ValueError from yaml.parser import ParserError, ScannerError from yaml import YAMLError from cfnlint.decode import cfn_yaml, cfn_json from cfnlint.rules import Match, ParseError LOGGER = logging.getLogger(__name__) def decode(filename, ignore_bad_template): """ Decode filename into an object """ template = None matches = [] try: template = cfn_yaml.load(filename) except IOError as e: if e.errno == 2: LOGGER.error('Template file not found: %s', filename) matches.append(create_match_file_error( filename, 'Template file not found: %s' % filename)) elif e.errno == 21: LOGGER.error('Template references a directory, not a file: %s', filename) matches.append(create_match_file_error( filename, 'Template references a directory, not a file: %s' % filename)) elif e.errno == 13: LOGGER.error('Permission denied when accessing template file: %s', filename) matches.append(create_match_file_error( filename, 'Permission denied when accessing template file: %s' % filename)) if matches: return(None, matches) except UnicodeDecodeError as err: LOGGER.error('Cannot read file contents: %s', filename) matches.append(create_match_file_error( filename, 'Cannot read file contents: %s' % filename)) except cfn_yaml.CfnParseError as err: err.match.Filename = filename matches = [err.match] except ParserError as err: matches = [create_match_yaml_parser_error(err, filename)] except ScannerError as err: if err.problem in [ 'found character \'\\t\' that cannot start any token', 'found unknown escape character']: try: template = cfn_json.load(filename) except cfn_json.JSONDecodeError as json_err: json_err.match.filename = filename matches = [json_err.match] except JSONDecodeError as json_err: if hasattr(json_err, 'message'): if json_err.message == 'No JSON object could be decoded': # pylint: disable=no-member matches = [create_match_yaml_parser_error(err, filename)] else: matches = [create_match_json_parser_error(json_err, filename)] if hasattr(json_err, 'msg'): if json_err.msg == 'Expecting value': # pylint: disable=no-member matches = [create_match_yaml_parser_error(err, filename)] else: matches = [create_match_json_parser_error(json_err, filename)] except Exception as json_err: # pylint: disable=W0703 if ignore_bad_template: LOGGER.info('Template %s is malformed: %s', filename, err.problem) LOGGER.info('Tried to parse %s as JSON but got error: %s', filename, str(json_err)) else: LOGGER.error( 'Template %s is malformed: %s', filename, err.problem) LOGGER.error('Tried to parse %s as JSON but got error: %s', filename, str(json_err)) return (None, [create_match_file_error( filename, 'Tried to parse %s as JSON but got error: %s' % ( filename, str(json_err)))]) else: matches = [create_match_yaml_parser_error(err, filename)] except YAMLError as err: matches = [create_match_file_error(filename, err)] if not isinstance(template, dict) and not matches: # Template isn't a dict which means nearly nothing will work matches = [Match(1, 1, 1, 1, filename, ParseError(), message='Template needs to be an object.')] return (template, matches) def create_match_yaml_parser_error(parser_error, filename): """Create a Match for a parser error""" lineno = parser_error.problem_mark.line + 1 colno = parser_error.problem_mark.column + 1 msg = parser_error.problem return Match( lineno, colno, lineno, colno + 1, filename, ParseError(), message=msg) def create_match_file_error(filename, msg): """Create a Match for a parser error""" return Match( linenumber=1, columnnumber=1, linenumberend=1, columnnumberend=2, filename=filename, rule=ParseError(), message=msg) def create_match_json_parser_error(parser_error, filename): """Create a Match for a parser error""" if sys.version_info[0] == 3: lineno = parser_error.lineno colno = parser_error.colno msg = parser_error.msg elif sys.version_info[0] == 2: lineno = 1 colno = 1 msg = parser_error.message return Match( lineno, colno, lineno, colno + 1, filename, ParseError(), message=msg) ```
{ "source": "jeoe12/selenium", "score": 2 }
#### File: webdriver/webkitgtk/options.py ```python from selenium.webdriver.common.desired_capabilities import DesiredCapabilities class Options(object): KEY = 'webkitgtk:browserOptions' def __init__(self): self._binary_location = '' self._arguments = [] self._overlay_scrollbars_enabled = True @property def binary_location(self): """ Returns the location of the browser binary otherwise an empty string """ return self._binary_location @binary_location.setter def binary_location(self, value): """ Allows you to set the browser binary to launch :Args: - value : path to the browser binary """ self._binary_location = value @property def arguments(self): """ Returns a list of arguments needed for the browser """ return self._arguments def add_argument(self, argument): """ Adds an argument to the list :Args: - Sets the arguments """ if argument: self._arguments.append(argument) else: raise ValueError("argument can not be null") @property def overlay_scrollbars_enabled(self): """ Returns whether overlay scrollbars should be enabled """ return self._overlay_scrollbars_enabled @overlay_scrollbars_enabled.setter def overlay_scrollbars_enabled(self, value): """ Allows you to enable or disable overlay scrollbars :Args: - value : True or False """ self._overlay_scrollbars_enabled = value def to_capabilities(self): """ Creates a capabilities with all the options that have been set and returns a dictionary with everything """ webkitgtk = DesiredCapabilities.WEBKITGTK.copy() browser_options = {} if self.binary_location: browser_options["binary"] = self.binary_location if self.arguments: browser_options["args"] = self.arguments browser_options["useOverlayScrollbars"] = self.overlay_scrollbars_enabled webkitgtk[Options.KEY] = browser_options return webkitgtk ```
{ "source": "Jeoffreybauvin/puppenc", "score": 3 }
#### File: app/environments/routes.py ```python from flask_restful import Resource from flask import jsonify, request from app.puppenc import api, db, app, auth, PuppencResource from app.decorators import * from app.environments.models import Environment from app.environments.schema import EnvironmentSchema class Environments(PuppencResource): def __init__(self): self.environment_schema = EnvironmentSchema() self.environments_schema = EnvironmentSchema(many=True) @auth.login_required @get_item(Environment) def get(self, id=None): """ @api {get} /environments Get all environments @apiName get_environments @apiGroup Environments @apiVersion 1.0.0 @apiPermission user @apiParam {String} [limit=10] (query parameter) Objects per page to display. Use limit=0 for disabling limit @apiParam {String} [page=1] (query parameter) Current page @apiParam {String} [filter] (query parameter) Filter on name parameter (use * for searching any strings. Ex: *maclass*) @apiSuccess {Number} id The environment's id @apiSuccess {String} name The environment's name @apiSuccess {Array} nodes The environment's nodes (by id) @apiSuccess {Datetime} insert_date The environment's inserted date @apiSuccess {Datetime} update_date The environment's updated date @apiSuccess {Datetime} delete_date The environment's deleted date @apiExample {curl} Example usage : curl -X GET -u user:pwd http://127.0.0.1:5000/api/v1/environments @apiSuccessExample {json} Success-Response: HTTP/1.0 200 OK [ { "delete_date": null, "id": 1, "insert_date": "2017-04-11T13:56:03+00:00", "name": "stable", "nodes": [ 104, 2582, 2588 ], "update_date": null }, { "delete_date": null, "id": 2, "insert_date": "2017-04-11T13:56:04+00:00", "name": "staging", "nodes": [ 8, 34, 42 ], "update_date": null } ] """ """ @api {get} /environments/:id Get a single environment @apiName get_environment @apiGroup Environments @apiVersion 1.0.0 @apiPermission user @apiParam {Number} id (uri parameter) The environment's id. @apiSuccess {Number} id The environment's id. @apiSuccess {String} name The environment's name. @apiSuccess {Array} nodes The environment's nodes (by id) @apiSuccess {Datetime} insert_date The environment's inserted date @apiSuccess {Datetime} update_date The environment's updated date @apiSuccess {Datetime} delete_date The environment's deleted date @apiExample {curl} Example usage : curl -X GET -u user:pwd http://127.0.0.1:5000/api/v1/environments/1 @apiSuccessExample {json} Success-Response: HTTP/1.0 200 OK { "delete_date": null, "id": 2, "insert_date": "2017-04-11T13:56:03+00:00", "name": "my_environment", "nodes": [ 1498, 2817, 2818 ], "update_date": null } """ if not id: return self.environments_schema.jsonify(g.obj_info) else: return self.environment_schema.jsonify(g.obj_info) @auth.login_required @body_is_valid @is_unique_item(Environment) @post_item(Environment) def post(self): """ @api {post} /environments Add a new environment @apiName add_environment @apiGroup Environments @apiVersion 1.0.0 @apiPermission user @apiParam {String} name (json document) The environment's name. @apiSuccess {Number} id The environment's id. @apiExample {curl} Example usage : curl -X POST -H "Content-Type: application/json" \ -d '{ "name": "my_new_environment" }' \ http://127.0.0.1:5000/api/v1/environments @apiSuccessExample {json} Success-Response: HTTP/1.0 200 OK { "227": { "name": "my_new_environment" } } """ pass @auth.login_required @body_is_valid @is_unique_item(Environment) @get_item(Environment) @edit_item(Environment) def put(self, id=None): """ @api {put} /environments/:id Edit an existing environment @apiName edit_environment @apiGroup Environments @apiVersion 1.0.0 @apiPermission user @apiParam {String} name (uri parameter) The environment's id @apiParam {String} name (json document) The new environment's name @apiSuccess {Number} success True if success @apiSuccess {Number} message A information message @apiExample {curl} Example usage : curl -X PUT -H "Content-Type: application/json" \ -d '{ "name": "my_new_environment" }' \ http://127.0.0.1:5000/api/v1/environments/:id @apiSuccessExample {json} Success-Response: HTTP/1.0 200 OK { "message": "successfully modified", "success": true } """ pass @auth.login_required @get_item(Environment) @delete_item(Environment) def delete(self, id): """ @api {delete} /environments/:id Delete a single environment @apiName rm_hostgorup @apiGroup Environments @apiVersion 1.0.0 @apiPermission user @apiParam {Number} id (uri parameter) The environment's id. @apiSuccess {Boolean} success Success (True if ok). @apiSuccess {String} message A success or error message. @apiExample {curl} Example usage : curl -X DELETE http://127.0.0.1:5000/api/v1/environments/:id @apiSuccessExample {json} Success-Response: HTTP/1.0 200 OK { "message": "<Environment 'my_new_environment'> deleted", "success": true } """ pass ``` #### File: app/hostgroups/models.py ```python from app.puppenc import db from sqlalchemy.orm import scoped_session, sessionmaker, relationship, backref from app.nodes.models import Node class Hostgroup(db.Model): __tablename__ = 'hostgroups' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(255)) insert_date = db.Column(db.DateTime, default=db.func.current_timestamp()) update_date = db.Column(db.DateTime, default=None) delete_date = db.Column(db.DateTime, default=None) class_id = db.Column(db.Integer, db.ForeignKey('classes.id')) nodes = db.relationship('Node', backref='hostgroup_info', lazy='dynamic') def __init__(self, name, class_id): self.name = name self.class_id = class_id def __repr__(self): return '<Hostgroup %r>' % (self.name) ``` #### File: app/hostgroups/routes.py ```python from flask_restful import Resource from flask import jsonify, request from app.puppenc import api, db, app, auth, PuppencResource from app.decorators import * from app.hostgroups.models import Hostgroup from app.hostgroups.schema import HostgroupSchema class Hostgroups(PuppencResource): def __init__(self): self.hostgroup_schema = HostgroupSchema() self.hostgroups_schema = HostgroupSchema(many=True) @auth.login_required @get_item(Hostgroup) def get(self, id=None): """ @api {get} /hostgroups Get all hostgroups @apiName get_hostgroups @apiGroup Hostgroups @apiVersion 1.0.0 @apiPermission user @apiParam {String} [limit=10] (query parameter) Objects per page to display. Use limit=0 for disabling limit @apiParam {String} [page=1] (query parameter) Current page @apiParam {String} [filter] (query parameter) Filter on name parameter (use * for searching any strings. Ex: *maclass*) @apiSuccess {Number} id The hostgroup's id. @apiSuccess {String} name The hostgroup's name. @apiSuccess {Array} nodes The environment's nodes (by id) @apiSuccess {Datetime} insert_date The hostgroup's inserted date @apiSuccess {Datetime} update_date The hostgroup's updated date @apiSuccess {Datetime} delete_date The hostgroup's deleted date @apiExample {curl} Example usage : curl -X GET -u user:pwd http://127.0.0.1:5000/api/v1/hostgroups @apiSuccessExample {json} Success-Response: HTTP/1.0 200 OK [ { "class_id": 1, "id": 1, "insert_date": "2017-04-11T13:57:08+00:00", "name": "webserver", "nodes": [ 8, 42, 2661 ], "update_date": null }, { "class_id": 2, "id": 2, "insert_date": "2017-04-11T13:56:40+00:00", "name": "logs", "nodes": [], "update_date": null } ] """ """ @api {get} /hostgroups/<id> Get a single hostgroup @apiVersion 1.0.0 @apiName get_hostgroup @apiGroup Hostgroups @apiPermission user @apiParam {Number} id The hostgroup's id. @apiSuccess {Number} id The hostgroup's id. @apiSuccess {String} name The hostgroup's name. @apiSuccess {Array} nodes The environment's nodes (by id) @apiSuccess {Datetime} insert_date The hostgroup's inserted date @apiSuccess {Datetime} update_date The hostgroup's updated date @apiSuccess {Datetime} delete_date The hostgroup's deleted date @apiExample {curl} Example usage : curl -X GET http://127.0.0.1:5000/api/v1/classes/:id @apiSuccessExample {json} Success-Response: HTTP/1.0 200 OK { "class_id": 10, "id": 15, "insert_date": "2017-04-11T13:56:30+00:00", "name": "my_hostgroup", "nodes": [ 2164, 2165, 2166, 2167 ], "update_date": "2017-05-09T17:08:57+00:00" } """ if not id: return self.hostgroups_schema.jsonify(g.obj_info) else: return self.hostgroup_schema.jsonify(g.obj_info) @auth.login_required @is_unique_item(Hostgroup) @body_is_valid # @post_item(Hostgroup) def post(self, id=None): """ @api {post} /hostgroups Add a new hostgroup @apiVersion 1.0.0 @apiName add_hostgroup @apiPermission user @apiGroup Hostgroups @apiParam {String} name The hostgroup's name. @apiParam {Number} class_id The related class id. @apiSuccess {Number} id The hostgroup's id. @apiExample {curl} Example usage : curl -X POST -H "Content-Type: application/json" \ -d '{ "name": "my_new_hostgroup" }' \ http://127.0.0.1:5000/api/v1/hostgroups @apiSuccessExample {json} Success-Response: HTTP/1.0 200 OK { "227": { "name": "my_new_hostgroup" } } """ content = request.get_json(silent=True) if not 'class_id' in content: class_id = None else: class_id = content['class_id'] obj = Hostgroup(g.obj_name, class_id=class_id) db.session.add(obj) db.session.commit() app.logger.info(u"Create Hostgroup %s %s by %s" % (Hostgroup, g.obj_name, g.user)) return jsonify({obj.id: { 'name': obj.name, }}) @auth.login_required @edit_item(Hostgroup) def put(self, id): """ @api {put} /hostgroups/:id Edit an hostgroup @apiVersion 1.0.0 @apiName put_hostgroup @apiGroup Hostgroups @apiPermission user @apiParam {Number} id The hostgroup's id. @apiParam {String} name The hostgroup's name. @apiParam {Number} class_id The hostgroup's class_id. @apiSuccess {Boolean} success Success (True if ok). @apiSuccess {String} message A success or error message. @apiExample {curl} Example usage : curl -X PUT -H "Content-Type: application/json" \ -d '{ "name": "my_new_hostgroup" }' \ http://127.0.0.1:5000/api/v1/hostgroups/1 @apiSuccessExample {json} Success-Response: HTTP/1.0 200 OK { "message": "successfully modified", "success": true } """ pass @auth.login_required @get_item(Hostgroup) @delete_item(Hostgroup) def delete(self, id): """ @api {delete} /hostgroups/<id> Delete a single hostgroup @apiVersion 1.0.0 @apiPermission user @apiName rm_hostgorup @apiGroup Hostgroups @apiParam {Number} id The hostgroup's id. @apiSuccess {Boolean} success Success (True if ok). @apiSuccess {String} message A success or error message. @apiExample {curl} Example usage : curl -X DELETE http://127.0.0.1:5000/api/v1/environments/:id @apiSuccessExample {json} Success-Response: HTTP/1.0 200 OK { "message": "<Hostgroup 'my_new_hostgroup'> deleted", "success": true } """ pass ``` #### File: app/users/models.py ```python from app.puppenc import db, app, g from sqlalchemy.orm import scoped_session, sessionmaker, relationship, backref from passlib.apps import custom_app_context as pwd_context from itsdangerous import (TimedJSONWebSignatureSerializer as Serializer, BadSignature, SignatureExpired) class User(db.Model): __tablename__ = 'users' id = db.Column(db.Integer, primary_key =True) name = db.Column(db.String(32), index = True) password_hash = db.Column(db.String(128)) def __init__(self, name): self.name = name def __repr__(self): return '<User %r>' % (self.name) def hash_password(self, password): self.password_hash = pwd_context.encrypt(password) def verify_password(self, password): return pwd_context.verify(password, self.password_hash) def generate_auth_token(self, expiration=app.config['AUTH_DURATION']): app.logger.info("Generate a token for %s with duration of %s seconds", g.user, expiration) s = Serializer(app.config['SECRET_KEY'], expires_in=expiration) return s.dumps({'id': self.id}) def verify_auth_token(token): s = Serializer(app.config['SECRET_KEY']) try: data = s.loads(token) except SignatureExpired: return None # valid token, but expired except BadSignature: return None # invalid token user = User.query.get(data['id']) # app.logger.info('Sending a token for user %s', user) return user ```
{ "source": "jeohalves/leetcode_solutions", "score": 3 }
#### File: leetcode_solutions/python/13-roman_to_integer.py ```python class Solution: def romanToInt(self, s: str) -> int: number = 0 sbl = dict() sbl['I'] = 1 sbl['V'] = 5 sbl['X'] = 10 sbl['L'] = 50 sbl['C'] = 100 sbl['D'] = 500 sbl['M'] = 1000 s_list = list(s) while s_list: cur = s_list.pop(0) if s_list and sbl[cur] < sbl[s_list[0]]: next_value = sbl[s_list.pop(0)] number += next_value - sbl[cur] else: number += sbl[cur] return number ``` #### File: leetcode_solutions/python/20-valid_parentheses.py ```python class Solution: def isValid(self, s: str) -> bool: stack = list() open_chars = ['(', '{', '['] combo = ['()', '{}', '[]'] s_list = list(s) while(s_list): cur_char = s_list.pop(0) if not stack: if cur_char not in open_chars: return False stack += [cur_char] else: if cur_char in open_chars: stack += [cur_char] else: open_in_stack = stack.pop() if f'{open_in_stack}{cur_char}' not in combo: return False if stack: return False else: return True ``` #### File: leetcode_solutions/python/26_remove-duplicates-from-sorted-array.py ```python class Solution: def removeDuplicates(self, nums: List[int]) -> int: temp = list() temp.extend(nums) nums.clear() for x in temp: if x not in nums: nums += [x] return len(nums) ``` #### File: leetcode_solutions/python/9-palindrome_number.py ```python class Solution: def isPalindrome(self, x: int) -> bool: str_x = str(x) for i in range(len(str_x)//2+1): if str_x[i] != str_x[-i-1]: return False return True ```
{ "source": "jeojoe/simple-http-server", "score": 3 }
#### File: jeojoe/simple-http-server/demo.py ```python from httpserver.HTTPServer import HTTPServer import signal import sys server = None def signal_handler(signum, frame): if signum == signal.SIGINT: print('Closing server...') server.server_close() print('Server closed.') sys.exit() else: print('Other signal received', signum) if __name__ == "__main__": server = HTTPServer(8080) server.serve('sample_docroot', { '400': '400.html', '404': '404.html' }) # Handle server close with ctrl+c in terminal signal.signal(signal.SIGINT, signal_handler) # Start the server... server.serve_forever() ``` #### File: simple-http-server/httpserver/HTTPServer.py ```python import os import mimetypes from datetime import datetime from httpserver.TCPServer import TCPServer from httpserver.HTTPConnectionHandler import HTTPConnectionHandler, HTTPResponse, BadRequestError, RecvTimeoutError from httpserver.utils import debugprint def get_last_modified_formatted_string(requested_path): timestamp = os.path.getmtime(requested_path) time_format = '%a, %d %b %y %T %z' return datetime.fromtimestamp(timestamp).strftime(time_format) class HTTPServer(TCPServer): """ Wrapper for TCPServer that implements HTTP protocol """ def __init__(self, port): # We support only GET, so use daemon threads TCPServer.__init__(self, port, self.handle_tcp_connection, use_daemon_threads=True) self.serve_docroot = None self.serve_config = {} def handle_tcp_connection(self, connection, client_address): http_connection = HTTPConnectionHandler(connection, client_address) try: # Continue to get request(s) over the socket # Until: # client closes the connection, # client timeout, # request header is not keep-alive, # or bad request from client. while True: request = http_connection.get_request() if not request: break # TODO: Allow choosing to handle request or serve file self.__serve_file(request, http_connection) if not request.is_connection_keep_alive(): break except RecvTimeoutError: if len(http_connection.unprocessed_data) > 0: # There's an incomplete request on timeout http_connection.send_response(HTTPResponse.client_error_400()) except BadRequestError as e: debugprint('Bad Request Error', e) http_connection.send_response(HTTPResponse.client_error_400()) finally: http_connection.close() def serve(self, docroot, serve_config={}): """ Serve files from `docroot`. Can pass config as dict with keys mapped to html pages, i.e.: { 'index': 'custom_index.html', '400': '400.html', '404': '404.html' } Note that paths must be relative to `docroot`. Also 'index.html' is the default mapping for 'index'. """ self.serve_docroot = docroot self.serve_config = serve_config def get_index_html_path(self): """ Get index.html (or any from config) path. """ return os.path.join('/', self.serve_config.get('index', 'index.html')) def get_abspath_relative_to_docroot(self, path): assert self.serve_docroot is not None, 'Must setup `serve_docroot` first.' return os.path.abspath(os.path.join(self.serve_docroot, path)) def __serve_file(self, request, http_connection): """ Return HTTPResponse for serving file. """ requested_path = self.get_index_html_path() if request.path == '/' else request.path if requested_path.startswith('/'): requested_path = requested_path[1:] abs_requested_path = self.get_abspath_relative_to_docroot(requested_path) abs_docroot_path = os.path.abspath(self.serve_docroot) del requested_path # Won't serve out of docroot if not abs_requested_path.startswith(abs_docroot_path): if '400' in self.serve_config: http_connection.send_response(HTTPResponse.client_error_400()) http_connection.send_body(self.get_abspath_relative_to_docroot(self.serve_config['400'])) else: http_connection.send_response(HTTPResponse.client_error_400()) return # File not exists if not os.path.exists(abs_requested_path): if '404' in self.serve_config: http_connection.send_response(HTTPResponse.not_found_404()) http_connection.send_body(self.get_abspath_relative_to_docroot(self.serve_config['404'])) else: http_connection.send_response(HTTPResponse.not_found_404()) return mimetype, _ = mimetypes.guess_type(abs_requested_path) file_size = os.path.getsize(abs_requested_path) last_modified_time = get_last_modified_formatted_string(abs_requested_path) response_headers = { 'Content-Type': mimetype, 'Content-Length': file_size, 'Last-Modified': last_modified_time } # Send first-line and headers http_connection.send_response(HTTPResponse(200, headers=response_headers)) # Send body n_bytes_sent = http_connection.send_file(abs_requested_path) assert n_bytes_sent == file_size, 'Incomplete file sent.' ```
{ "source": "jeok/Cavern", "score": 4 }
#### File: jeok/Cavern/classes.py ```python import pyglet import pytmx.util_pyglet import game_utils class Rect(): """ Class for storing rectangular information """ def __init__(self, x, y, width, height): self.x = x self.y = y self.width = width self.height = height self.topleft = (x, y + height) self.topright = (x + width, y + height) self.middle = (self.topright[0] / 2, self.topright[1] / 2) self.right = self.x + width def move(self, x_delta, y_delta): self.x = self.x + x_delta self.y = self.y + y_delta self.topleft = (self.x, self.y + self.height) self.topright = (self.x + self.width, self.y + self.height) self.middle = (self.topright[0] / 2, self.topright[1] / 2) self.right = self.x + self.width def updateposition(self, new_x, new_y): self.x = new_x self.y = new_y self.topleft = (self.x, self.y + self.height) self.topright = (self.x + self.width, self.y + self.height) self.middle = (self.topright[0] / 2, self.topright[1] / 2) self.right = self.x + self.width class Player(): """ Class for player x = position on x plane y = -,,- y plane Different animation states: idle walk run jump push """ def __init__(self, x, y): self.speed_x = 0 self.speed_y = 0 self.x = x self.y = y self.size_x = 10 self.size_y = 10 self.anim_state = "idle" # Create a rectangle for collision detection self.collision_box = Rect(self.x, self.y, self.size_x, self.size_y) def move(self, movement_direction, jump_pressed, run_pressed): if movement_direction == "NONE": self.speed_x = 0 if movement_direction == "LEFT": self.speed_x = -1 elif movement_direction == "RIGHT": self.speed_x = 1 if jump_pressed: self.speed_y = 5 def update(self, collisionmap, GRAVITY): """ Update method which checks if player can move. Collision detection works as such: See if player's future position is legal according to tilemap's foreground layer (layer 1) """ # print(self.speed_y) if self.speed_y > -5: self.speed_y += GRAVITY # If player's going left, boundaries need to aknowledge player's size_x if self.speed_x > 0: if not game_utils.check_collision(self, collisionmap, "RIGHT"): self.x += self.speed_x elif self.speed_x < 0: if not game_utils.check_collision(self, collisionmap, " "): self.x += self.speed_x if self.speed_y > 0: if not game_utils.check_collision(self, collisionmap, "UP"): self.y += self.speed_y if self.speed_y < 0: if not game_utils.check_collision(self, collisionmap, "UP"): self.y += self.speed_y else: self.speed_y = - 1 * (self.y % collisionmap.tileheight) self.collision_box.updateposition(self.x, self.y) class Camera(object): """ Camera class, heavily inspired by: https://stackoverflow.com/questions/14354171/add-scrolling-to-a-platformer-in-pygame """ def __init__(self, camera_func, width, height): self.camera_func = camera_func self.state = Rect(0, 0, width, height) def apply(self, target): return target.rect.move(self.state.topleft) def update(self, target): self.state = self.camera_func(self.state, target.rect) ```
{ "source": "jeokrohn/wxc_sdk", "score": 4 }
#### File: wxc_sdk/examples/calendarific.py ```python import os from datetime import date from typing import Literal, List, Union, Any from pydantic import BaseModel, Field, parse_obj_as, validator import requests HolidayType = Literal['national', 'local', 'religious', 'observance'] class Country(BaseModel): country_id: str = Field(alias='id') name: str AllOrAny = Union[Literal['All'], Any] class ApiError(Exception): pass class Holiday(BaseModel): name: str description: str country: Country date: date holiday_type: List[str] = Field(alias='type') locations: AllOrAny # quick and dirty. Don't need more detail right now states: AllOrAny # quick and dirty. Don't need more detail right now @validator('date', pre=True) def validate_date(cls, v): data = v['datetime'] r = date(day=data['day'], month=data['month'], year=data['year']) return r class CalendarifiyApi: def __init__(self, api_key: str = None): self.api_key = api_key or os.getenv('CALENDARIFIC_KEY') if not self.api_key: raise ValueError('API key needs to be passed or present in CALENDARIFIC_KEY environment variable') def holidays(self, *, country: str, year: int, day: int = None, month: int = None, location: str = None, holiday_type: HolidayType = None) -> List[Holiday]: """ This provides a list of holidays based on the parameters passed to it. https://calendarific.com/api-documentation :param country: The country parameter must be in the iso-3166 format as specified in the document here. To view a list of countries and regions we support, visit our list of supported countries. :type country: str :param year: The year you want to return the holidays. We currently support both historical and future years until 2049. The year must be specified as a number eg, 2019 :type year: int :param day: Limits the number of holidays to a particular day. Must be passed as the numeric value of the day [1..31]. :type day: int :param month: Limits the number of holidays to a particular month. Must be passed as the numeric value of the month [1..12]. :type month: int :param location: We support multiple counties, states and regions for all the countries we support. This optional parameter allows you to limit the holidays to a particular state or region. The value of field is iso-3166 format of the state. View a list of supported countries and states. An example is, for New York state in the United States, it would be us-nyc :type location: str :param holiday_type: We support multiple types of holidays and observances. This parameter allows users to return only a particular type of holiday or event. By default, the API returns all holidays. Below is the list of holiday types supported by the API and this is how to reference them. * national - Returns public, federal and bank holidays * local - Returns local, regional and state holidays * religious - Return religious holidays: buddhism, christian, hinduism, muslim, etc * observance - Observance, Seasons, Times :type holiday_type: HolidayType :return: list of holidays :rtype: List[Holiday] """ params = {k: v for i, (k, v) in enumerate(locals().items()) if i and v is not None and k != 'holiday_type'} params['api_key'] = self.api_key if holiday_type: params['type'] = holiday_type r = requests.get('https://calendarific.com/api/v2/holidays', params=params) r.raise_for_status() data = r.json() code = data['meta']['code'] if code != 200: raise ApiError(data['meta']['code'], data['meta']['error_type'], data['meta']['error_detail']) result = parse_obj_as(List[Holiday], data['response']['holidays']) return result ``` #### File: wxc_sdk/script/all_types.py ```python import os.path import sys from importlib import import_module from io import StringIO from pathlib import Path def module_name_from_path(path): """ Create a module name from a path :param path: :return: """ p_split = str(path).split('/') wxc_sdk_base = next(i for i in range(100) if p_split[-i] == 'wxc_sdk') p_split = p_split[-wxc_sdk_base:] p_split[-1] = os.path.splitext(p_split[-1])[0] if p_split[-1] == '__init__': p_split = p_split[:-1] mod_name = '.'.join(p_split) return mod_name def main(): # all Python sources wxc_sdk = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'wxc_sdk')) py_files = list(Path(wxc_sdk).rglob('*.py')) py_files.sort() # module names from paths module_names = list(map(module_name_from_path, py_files)) # a set to collect all identifiers combined_all = set() # print to a string source = StringIO() # exclude some sources to_skip = ['wxc_sdk', 'wxc_sdk.api_child', 'wxc_sdk.integration', 'wxc_sdk.rest', 'wxc_sdk.as_rest', 'wxc_sdk.as_api', 'wxc_sdk.all_types'] err = False for module_name in module_names: if module_name in to_skip: continue module = import_module(module_name) module_all = module.__dict__.get('__all__') if module_all is None: continue names_in_module = [] for name in module_all: if name.endswith('Api'): # Apis not needed continue if name in combined_all: print(f'duplicate name {module_name}.{name}', file=sys.stderr) err = True else: combined_all.add(name) names_in_module.append(name) # import statement for module if names_in_module: names_in_module.sort() line = f'from {module_name} import ' max_line = 116 pending_line = '' for name in names_in_module: entry = f"{name}, " if len(line) + len(entry) >= max_line: if pending_line: print(f'{pending_line.rstrip()}\\', file=source) pending_line = line.rstrip() # next line is indented by 4 spaces line = ' ' * 4 line = f'{line}{entry}' if pending_line: if line.strip(): print(f'{pending_line.rstrip()}\\', file=source) print(f'{line.rstrip(" ,")}', file=source) else: print(f'{pending_line.rstrip(" ,")}\\', file=source) else: print(f'{line.rstrip(" ,")}', file=source) if err: raise NameError('Duplicate names') # create __all__ print(file=source) line = '__all__ = [' combined_all = sorted(combined_all) max_line = 120 for name in combined_all: entry = f"'{name}', " if len(line) + len(entry) >= max_line: print(line.rstrip(), file=source) line = ' ' * 11 line = f'{line}{entry}' print(f'{line.rstrip(" ,")}]', file=source) with open(os.path.join(wxc_sdk, 'all_types.py'), mode='w') as f: f.write(source.getvalue()) print(source.getvalue()) return if __name__ == '__main__': main() ``` #### File: wxc_sdk/tests/test_license.py ```python from .base import TestCaseWithLog class TestLicense(TestCaseWithLog): def test_001_list(self): """ list licenses """ lic_list = list(self.api.licenses.list()) print(f'got {len(lic_list)} licenses') def test_002_calling_users_by_license(self): calling_license_ids = set(lic.license_id for lic in self.api.licenses.list() if lic.webex_calling) calling_users = [user for user in self.api.people.list() if any(license_id in calling_license_ids for license_id in user.licenses)] print(f'Found {len(calling_users)} calling users') ``` #### File: wxc_sdk/tests/test_locations.py ```python from .base import TestCaseWithLog class TestLocation(TestCaseWithLog): def test_001_list_all(self): """ list all locations """ location_list = list(self.api.locations.list()) print(f'Got {len(location_list)} locations') ``` #### File: wxc_sdk/tests/test_person_appservices.py ```python import random from concurrent.futures import ThreadPoolExecutor from contextlib import contextmanager from dataclasses import dataclass from unittest import skip from wxc_sdk.all_types import Person, AppServicesSettings from .base import TestCaseWithUsers class TestRead(TestCaseWithUsers): def test_001_read_all(self): """ Read app services settings of all users """ asa = self.api.person_settings.appservices with ThreadPoolExecutor() as pool: settings = list(pool.map(lambda user: asa.read(person_id=user.person_id), self.users)) print(f'Got app services settings for {len(self.users)} users') print('\n'.join(s.json() for s in settings)) @dataclass(init=False) class TestUpdate(TestCaseWithUsers): @contextmanager def target_user(self): """ Get target user """ user = random.choice(self.users) settings = self.api.person_settings.appservices.read(person_id=user.person_id) try: yield user finally: # restore old settings self.api.person_settings.appservices.configure(person_id=user.person_id, settings=settings) restored = self.api.person_settings.appservices.read(person_id=user.person_id) self.assertEqual(settings, restored) def test_001_toggle_ring_devices_for_click_to_dial_calls_enabled(self): """ Toggle ring_devices_for_click_to_dial_calls_enabled on random user """ with self.target_user() as user: asa = self.api.person_settings.appservices user: Person before = asa.read(person_id=user.person_id) settings = AppServicesSettings( ring_devices_for_click_to_dial_calls_enabled=not before.ring_devices_for_click_to_dial_calls_enabled) asa.configure(person_id=user.person_id, settings=settings) after = asa.read(person_id=user.person_id) self.assertEqual(settings.ring_devices_for_click_to_dial_calls_enabled, after.ring_devices_for_click_to_dial_calls_enabled) after.ring_devices_for_click_to_dial_calls_enabled = before.ring_devices_for_click_to_dial_calls_enabled self.assertEqual(before, after) @skip('available_line_count cannot be changed') def test_002_available_line_count(self): """ change available_line_count """ with self.target_user() as user: asa = self.api.person_settings.appservices user: Person before = asa.read(person_id=user.person_id) settings = before.copy(deep=True) settings.available_line_count = settings.available_line_count - 1 asa.configure(person_id=user.person_id, settings=settings) after = asa.read(person_id=user.person_id) self.assertEqual(settings.available_line_count, after.available_line_count) after.available_line_count = before.available_line_count self.assertEqual(before, after) ``` #### File: wxc_sdk/tests/test_person_call_privacy.py ```python import random from concurrent.futures import ThreadPoolExecutor from contextlib import contextmanager from dataclasses import dataclass from wxc_sdk.all_types import Person, Privacy import base64 from .base import TestCaseWithUsers class TestRead(TestCaseWithUsers): def test_001_read_all(self): """ Read privacy setting of all users """ ps = self.api.person_settings.privacy with ThreadPoolExecutor() as pool: list(pool.map(lambda user: ps.read(person_id=user.person_id), self.users)) print(f'Got privacy settings for {len(self.users)} users') @dataclass(init=False) class TestUpdate(TestCaseWithUsers): @contextmanager def target_user(self): """ Get target user """ user = random.choice(self.users) settings = self.api.person_settings.privacy.read(person_id=user.person_id) try: yield user finally: # restore old settings # makes sure to clear list of monitored elements settings.monitoring_agents = settings.monitoring_agents or [] self.api.person_settings.privacy.configure(person_id=user.person_id, settings=settings) settings.monitoring_agents = settings.monitoring_agents or None restored = self.api.person_settings.privacy.read(person_id=user.person_id) self.assertEqual(settings, restored) def test_001_toggle_aa_extension_dialing_enabled(self): """ Toggle aa_extension_dialing_enabled on random user """ with self.target_user() as user: priv = self.api.person_settings.privacy user: Person before = priv.read(person_id=user.person_id) settings = Privacy(aa_extension_dialing_enabled=not before.aa_extension_dialing_enabled) priv.configure(person_id=user.person_id, settings=settings) after = priv.read(person_id=user.person_id) self.assertEqual(settings.aa_extension_dialing_enabled, after.aa_extension_dialing_enabled) after.aa_extension_dialing_enabled = before.aa_extension_dialing_enabled self.assertEqual(before, after) def test_002_toggle_enable_phone_status_directory_privacy(self): """ Toggle enable_phone_status_directory_privacy on random user """ with self.target_user() as user: priv = self.api.person_settings.privacy user: Person before = priv.read(person_id=user.person_id) settings = Privacy(enable_phone_status_directory_privacy=not before.enable_phone_status_directory_privacy) priv.configure(person_id=user.person_id, settings=settings) after = priv.read(person_id=user.person_id) self.assertEqual(settings.enable_phone_status_directory_privacy, after.enable_phone_status_directory_privacy) after.enable_phone_status_directory_privacy = before.enable_phone_status_directory_privacy self.assertEqual(before, after) def test_003_add_user_by_id(self): """ Add some users by ID """ with self.target_user() as user: # API shortcut priv = self.api.person_settings.privacy # get current settings before = priv.read(person_id=user.person_id) present_ids = [agent.agent_id for agent in before.monitoring_agents or []] user_candidates = [user for user in self.users if user.person_id not in present_ids] to_add = random.sample(user_candidates, 3) # ths is what we want to add new_agents = [user.person_id for user in to_add] settings = Privacy( monitoring_agents=(before.monitoring_agents or []) + new_agents) # update priv.configure(person_id=user.person_id, settings=settings) # how does it look like after the update? after = priv.read(person_id=user.person_id) # all new user ids need to be present now after_agent_ids = set(agent.agent_id for agent in after.monitoring_agents) new_user_ids = set(user.person_id for user in to_add) try: self.assertEqual(new_user_ids, after_agent_ids & new_user_ids) except AssertionError as e: new_ids_missing = new_user_ids - after_agent_ids for new_id in new_ids_missing: print(f'New ID missing: {new_id}, {base64.b64decode(new_id + "==").decode()}') unexpected_ids = after_agent_ids - set(agent.agent_id for agent in before.monitoring_agents or []) - \ new_user_ids for unexpected_id in unexpected_ids: print(f'Unexpected ID: {unexpected_id}, {base64.b64decode(unexpected_id + "==").decode()}') raise # other than that nothing should've changed after.monitoring_agents = before.monitoring_agents self.assertEqual(before, after) def test_004_verify_agent_id_format(self): """ verify format of agent IDs # TODO: defect, wrong agent id format; broadcloud ID instead of UUID, CALL-68642 """ with self.target_user() as user: # API shortcut priv = self.api.person_settings.privacy # get current settings before = priv.read(person_id=user.person_id) present_ids = [agent.agent_id for agent in before.monitoring_agents or []] user_candidates = [user for user in self.users if user.person_id not in present_ids] to_add = random.sample(user_candidates, 3) # ths is what we want to add new_agents = [user.person_id for user in to_add] settings = Privacy( monitoring_agents=(before.monitoring_agents or []) + new_agents) # update priv.configure(person_id=user.person_id, settings=settings) # how does it look like after the update? after = priv.read(person_id=user.person_id) decoded_agent_ids = list(map(lambda agent: base64.b64decode(agent.agent_id + '==').decode(), after.monitoring_agents)) for agent, decoded in zip(after.monitoring_agents, decoded_agent_ids): print(f'id: {agent.agent_id} -> {decoded}') # an "@" in the decoded agent IDs is an indicator that broadcloud IDs are returned instead of proper user IDs self.assertTrue(not any('@' in d for d in decoded_agent_ids), "wrong format for agent IDs") ``` #### File: wxc_sdk/tests/test_person_call_waiting.py ```python import asyncio from concurrent.futures import ThreadPoolExecutor from .base import TestCaseWithUsers class TestRead(TestCaseWithUsers): def test_001_read_all(self): """ read settings for all users """ cw = self.api.person_settings.call_waiting with ThreadPoolExecutor() as pool: details = list(pool.map(lambda user:cw.read(person_id=user.person_id), self.users)) print(f'Got details for {len(details)} users.') @TestCaseWithUsers.async_test async def test_002_read_all_async(self): """ read settings for all users """ cw = self.async_api.person_settings.call_waiting details = await asyncio.gather(*[cw.read(person_id=u.person_id) for u in self.users]) print(f'Got details for {len(details)} users.') ... ``` #### File: wxc_sdk/tests/test_person_exec_assistant.py ```python import random from concurrent.futures import ThreadPoolExecutor from wxc_sdk.all_types import ExecAssistantType from .base import TestCaseWithUsers class TestRead(TestCaseWithUsers): def test_001_read_all(self): """ Read exec assistant settings of all users """ ea = self.api.person_settings.exec_assistant with ThreadPoolExecutor() as pool: settings = list(pool.map(lambda user: ea.read(person_id=user.person_id), self.users)) print(f'Got exec assistant settings for {len(self.users)} users') max_len = max(len(user.display_name) for user in self.users) print('\n'.join(f'{user.display_name:{max_len}}: {s.name}' for user, s in zip(self.users, settings))) def test_002_update(self): """ update exec assistant settings for a user """ target = random.choice(self.users) ea = self.api.person_settings.exec_assistant setting = ea.read(person_id=target.person_id) try: # cycle through all possible values for new_setting in ExecAssistantType: if new_setting == setting: continue ea.configure(person_id=target.person_id, setting=new_setting) after = ea.read(person_id=target.person_id) self.assertEqual(new_setting, after) finally: # restore old settings ea.configure(person_id=target.person_id, setting=setting) restored = ea.read(person_id=target.person_id) self.assertEqual(setting, restored) ``` #### File: wxc_sdk/tests/test_person_numbers.py ```python from concurrent.futures import ThreadPoolExecutor from .base import TestCaseWithUsers class TestRead(TestCaseWithUsers): def test_001_read_all(self): """ Read numbers all users """ nu = self.api.person_settings.numbers with ThreadPoolExecutor() as pool: _ = list(pool.map(lambda user: nu.read(person_id=user.person_id), self.users)) print(f'Got numbers for {len(self.users)} users') def test_002_direct_number_format(self): """ Read numbers all users, verify number format for direct number # TODO: defect, direct number are not +E.164, CALL-69213 """ nu = self.api.person_settings.numbers with ThreadPoolExecutor() as pool: numbers = list(pool.map(lambda user: nu.read(person_id=user.person_id), self.users)) direct_number_issues = [(user, direct_numbers) for user, numbers in zip(self.users, numbers) if (direct_numbers := [number.direct_number for number in numbers.phone_numbers if number.direct_number and not number.direct_number.startswith('+')])] print('\n'.join(f'{user.display_name}: {", ".join(numbers)}' for user, numbers in direct_number_issues)) self.assertTrue(not direct_number_issues), 'Some direct numbers are not +E.164' ``` #### File: wxc_sdk/tests/test_person_permisssions_in.py ```python import random from concurrent.futures import ThreadPoolExecutor from contextlib import contextmanager from wxc_sdk.all_types import * from .base import TestCaseWithUsers class TestRead(TestCaseWithUsers): def test_001_read_all(self): """ Read incoming permissions settings of all users """ pi = self.api.person_settings.permissions_in with ThreadPoolExecutor() as pool: settings = list(pool.map(lambda user: pi.read(person_id=user.person_id), self.users)) print(f'Got incoming permissions for {len(self.users)} users') print('\n'.join(f'{user.display_name}: {s.json()}' for user, s in zip(self.users, settings))) class TestUpdate(TestCaseWithUsers): @contextmanager def target_user(self): """ Get target user """ user = random.choice(self.users) settings = self.api.person_settings.permissions_in.read(person_id=user.person_id) try: yield user finally: # restore old settings # makes sure to clear list of monitored elements self.api.person_settings.permissions_in.configure(person_id=user.person_id, settings=settings) restored = self.api.person_settings.permissions_in.read(person_id=user.person_id) self.assertEqual(settings, restored) def test_001_toggle_enabled(self): """ toggle enabled """ with self.target_user() as user: pi = self.api.person_settings.permissions_in user: Person before = pi.read(person_id=user.person_id) settings: IncomingPermissions = before.copy(deep=True) settings.use_custom_enabled = not settings.use_custom_enabled pi.configure(person_id=user.person_id, settings=settings) after = pi.read(person_id=user.person_id) self.assertEqual(settings, after) def test_002_external_transfer(self): """ try all external_transfer options """ with self.target_user() as user: pi = self.api.person_settings.permissions_in user: Person before = pi.read(person_id=user.person_id) settings: IncomingPermissions = before.copy(deep=True) settings.use_custom_enabled = True et = before.external_transfer for v in ExternalTransfer: if v == et: continue settings.external_transfer = v pi.configure(person_id=user.person_id, settings=settings) after = pi.read(person_id=user.person_id) self.assertEqual(settings, after) ``` #### File: wxc_sdk/tests/test_person_settings.py ```python import os.path import random import uuid from concurrent.futures import ThreadPoolExecutor from contextlib import contextmanager from typing import Callable from .base import TestCaseWithUsers, gather from wxc_sdk.people import Person from wxc_sdk.person_settings.barge import BargeSettings from wxc_sdk.person_settings.call_intercept import InterceptSetting, InterceptTypeIncoming, Greeting from wxc_sdk.person_settings.caller_id import CallerIdSelectedType class TestRead(TestCaseWithUsers): def execute_read_test(self, f: Callable): with ThreadPoolExecutor() as pool: result_map = pool.map(lambda user: f(person_id=user.person_id), self.users) results = list(gather(result_map, return_exceptions=True)) return results def test_001_read_barge(self): """ read_barge for all users """ results = self.execute_read_test(self.api.person_settings.barge.read) for e in (r for r in results if isinstance(r, Exception)): print(f'{e}') self.assertFalse(any(isinstance(r, Exception) for r in results)) def test_002_read_forwarding(self): """ read_barge for all users """ results = self.execute_read_test(self.api.person_settings.forwarding.read) for e in (r for r in results if isinstance(r, Exception)): print(f'{e}') self.assertFalse(any(isinstance(r, Exception) for r in results)) def test_003_read_call_intercept(self): """ read_barge for all users """ results = self.execute_read_test(self.api.person_settings.call_intercept.read) for e in (r for r in results if isinstance(r, Exception)): print(f'{e}') self.assertFalse(any(isinstance(r, Exception) for r in results)) def test_004_read_call_recording(self): """ read call recording settings for all users """ results = self.execute_read_test(self.api.person_settings.call_recording.read) for e in (r for r in results if isinstance(r, Exception)): print(f'{e}') self.assertFalse(any(isinstance(r, Exception) for r in results)) def test_005_read_caller_id(self): """ read caller id settings for all users """ results = self.execute_read_test(self.api.person_settings.caller_id.read) for e in (r for r in results if isinstance(r, Exception)): print(f'{e}') self.assertFalse(any(isinstance(r, Exception) for r in results)) class TestConfigure(TestCaseWithUsers): """ Testing configure (update) endpoints """ @property def wav_path(self) -> str: return os.path.join(os.path.dirname(os.path.abspath(__file__)), 'sample.wav') def test_004_configure_barge(self): """ pick random user and try to update barge settings """ @contextmanager def user_context(): """ pick a random user, save barge setting and restore setting after end of test """ target_user = random.choice(self.users) barge_settings = self.api.person_settings.barge.read(person_id=target_user.person_id) print(f'target user: {target_user.display_name}: enabled: {barge_settings.enabled}, tone enabled: ' f'{barge_settings.tone_enabled}') try: yield target_user finally: # restore barge settings print(f'restore enabled: {barge_settings.enabled}, tone enabled: {barge_settings.tone_enabled}') self.api.person_settings.barge.configure(person_id=target_user.person_id, barge_settings=barge_settings) def update_and_check(barge_settings: BargeSettings): """ Update and verify barge settings """ print(f'Setting enabled: {barge_settings.enabled}, tone enabled: {barge_settings.tone_enabled}') self.api.person_settings.barge.configure(person_id=user.person_id, barge_settings=barge_settings) after = self.api.person_settings.barge.read(person_id=user.person_id) self.assertEqual(barge_settings, after) return with user_context() as user: # try all barge setting variations user: Person bs = BargeSettings(enabled=True, tone_enabled=True) update_and_check(bs) bs = BargeSettings(enabled=True, tone_enabled=False) update_and_check(bs) bs = BargeSettings(enabled=False, tone_enabled=True) update_and_check(bs) bs = BargeSettings(enabled=False, tone_enabled=False) update_and_check(bs) @contextmanager def call_intercept_user_context(self): """ pick a random user, save call intercept setting and restore setting after end of test """ target_user = random.choice(self.users) settings = self.api.person_settings.call_intercept.read(person_id=target_user.person_id) print(f'target user: {target_user.display_name}: {settings} ') try: yield target_user finally: # restore settings print(f'restore {settings}') self.api.person_settings.call_intercept.configure(person_id=target_user.person_id, intercept=settings) def call_intercept_update_and_check(self, user: Person, settings: InterceptSetting): """ Update and verify call intercept settings """ print(f'setting: {settings}') self.api.person_settings.call_intercept.configure(person_id=user.person_id, intercept=settings) after = self.api.person_settings.call_intercept.read(person_id=user.person_id) self.assertEqual(settings, after) return def test_005_configure_call_intercept(self): """ try to update call intercept settings of a user :return: """ with self.call_intercept_user_context() as user: user: Person intercept = self.api.person_settings.call_intercept.read(person_id=user.person_id) intercept.enabled = not intercept.enabled self.call_intercept_update_and_check(user=user, settings=intercept) def test_006_upload_intercept_greeting(self): """ test to upload a custom greeting for call intercept :return: """ with self.call_intercept_user_context() as user: ps = self.api.person_settings ps.call_intercept.greeting(person_id=user.person_id, content=self.wav_path) intercept = ps.call_intercept.read(person_id=user.person_id) self.assertEqual(os.path.basename(self.wav_path), intercept.incoming.announcements.file_name) @TestCaseWithUsers.async_test async def test_006a_async_upload_intercept_greeting(self): """ test to upload a custom greeting for call intercept :return: """ with self.call_intercept_user_context() as user: ps = self.async_api.person_settings await ps.call_intercept.greeting(person_id=user.person_id, content=self.wav_path) intercept = await ps.call_intercept.read(person_id=user.person_id) self.assertEqual(os.path.basename(self.wav_path), intercept.incoming.announcements.file_name) def test_007_upload_intercept_greeting_from_open_file(self): """ test to upload a custom greeting for call intercept from an open file :return: """ with self.call_intercept_user_context() as user: with open(self.wav_path, mode='rb') as wav_file: upload_as = f'w{uuid.uuid4()}.wav' ps = self.api.person_settings ps.call_intercept.greeting(person_id=user.person_id, content=wav_file, upload_as=upload_as) intercept = ps.call_intercept.read(person_id=user.person_id) self.assertEqual(upload_as, intercept.incoming.announcements.file_name) def test_008_incoming_intercept_with_custom_greeting(self): """ set tup incoming intercept w/ custom greeting """ with self.call_intercept_user_context() as user: ps = self.api.person_settings intercept = ps.call_intercept.read(person_id=user.person_id) intercept.incoming.intercept_type = InterceptTypeIncoming.intercept_all intercept.incoming.announcements.greeting = Greeting.custom # first upload custom greeting with open(self.wav_path, mode='rb') as file: upload_as = f'w{uuid.uuid4()}.wav' ps.call_intercept.greeting(person_id=user.person_id, content=file, upload_as=upload_as) intermediate = ps.call_intercept.read(person_id=user.person_id) # .. and then set the greeting to custom ps.call_intercept.configure(person_id=user.person_id, intercept=intercept) updated = ps.call_intercept.read(person_id=user.person_id) # validation self.assertEqual(upload_as, intermediate.incoming.announcements.file_name) self.assertEqual(upload_as, updated.incoming.announcements.file_name) self.assertEqual(Greeting.custom, updated.incoming.announcements.greeting) class TestCallerIdConfigure(TestCaseWithUsers): """ Tests for """ @contextmanager def user_context(self, *, users_with_tn: bool) -> Person: candidates = [user for user in self.users if not users_with_tn or user.tn] if not candidates: self.skipTest('No candidate user for test found') target_user = random.choice(candidates) print(f'Target user: {target_user.display_name}') # get caller id settings ps = self.api.person_settings caller_id = ps.caller_id.read(person_id=target_user.person_id) try: yield random.choice(candidates) finally: # restore caller id settings restore = caller_id.configure_params() ps.caller_id.configure(person_id=target_user.person_id, **restore) return def test_set_direct_line(self): """ Try to set the caller ID to direct line """ with self.user_context(users_with_tn=True) as user: ps = self.api.person_settings ps.caller_id.configure(person_id=user.person_id, selected=CallerIdSelectedType.direct_line) after = ps.caller_id.read(person_id=user.person_id) self.assertEqual(CallerIdSelectedType.direct_line, after.selected) def test_set_location_number(self): """ Try to set the caller ID to location number """ with self.user_context(users_with_tn=True) as user: ps = self.api.person_settings ps.caller_id.configure(person_id=user.person_id, selected=CallerIdSelectedType.location_number) after = ps.caller_id.read(person_id=user.person_id) self.assertEqual(CallerIdSelectedType.location_number, after.selected) ``` #### File: wxc_sdk/tests/test_person_vm_pin.py ```python from concurrent.futures import ThreadPoolExecutor from .base import TestCaseWithUsers class TestRead(TestCaseWithUsers): def test_001_reset_all(self): """ Read numbers all users """ ps = self.api.person_settings with ThreadPoolExecutor() as pool: list(pool.map(lambda user: ps.reset_vm_pin(person_id=user.person_id), self.users)) print(f'reset VM PIN for {len(self.users)} users') ``` #### File: wxc_sdk/tests/test_telephony_autoattendant.py ```python import json # TODO: additional tests import random from concurrent.futures import ThreadPoolExecutor from wxc_sdk.all_types import AutoAttendant, ScheduleType from .base import TestCaseWithLog, TestWithLocations class TestAutoAttendant(TestCaseWithLog): """ List all auto attendants """ def test_001_list(self): """ List all auto attendants """ aa_list = list(self.api.telephony.auto_attendant.list()) print(f'got {len(aa_list)} auto attendants') print('\n'.join(f'{aa}' for aa in aa_list)) def test_002_details(self): """ Get details of all auto attendants """ aa_list = list(self.api.telephony.auto_attendant.list()) if not aa_list: self.skipTest('No existing auto attendants') ata = self.api.telephony.auto_attendant with ThreadPoolExecutor() as pool: aa = aa_list[0] ata.details(location_id=aa.location_id, auto_attendant_id=aa.auto_attendant_id) details = list(pool.map( lambda aa: ata.details(location_id=aa.location_id, auto_attendant_id=aa.auto_attendant_id), aa_list)) print(f'got details for {len(aa_list)} auto attendants') print('\n'.join(f'{aa}' for aa in details)) class TestCreate(TestWithLocations): def test_001_create(self): """ Create a simple AA in a random location """ target_location = random.choice(self.locations) schedules = list(self.api.telephony.schedules.list(obj_id=target_location.location_id, schedule_type=ScheduleType.business_hours)) if not schedules: self.skipTest(f'No business hours schedule in location "{target_location.name}"') # we prefer schedule "workday" target_schedule = next((schedule for schedule in schedules if schedule.name == 'workday'), None) # .. but are ok with any other scheduled if that doesn't exist target_schedule = target_schedule or schedules[0] # shortcut ata = self.api.telephony.auto_attendant # get an available name for the new auto attendant existing_aa = list(ata.list(location_id=target_location.location_id)) names = set(aa.name for aa in existing_aa) new_name = next(name for i in range(1000) if (name := f'aa_{i:03}') not in names) # for simplicity we just assume that auto attendants can use extension 9XXX extension = str(9000 + int(new_name[-3:])) print(f'creating AA "{new_name}" ({extension}) witch scheduled "{target_schedule.name}" ' f'in location "{target_location.name}"...') aa_settings = AutoAttendant.create(name=new_name, business_schedule=target_schedule.name, extension=extension) aa_id = ata.create(location_id=target_location.location_id, settings=aa_settings) details = ata.details(location_id=target_location.location_id, auto_attendant_id=aa_id) print(json.dumps(json.loads(details.json()), indent=2)) print(f'Created AA: {aa_id}') class TestDelete(TestCaseWithLog): def test_001_delete(self): """ Delete a random "aa_*" auto attendant :return: """ ata = self.api.telephony.auto_attendant aa_list = list(ata.list(name='aa_')) if not aa_list: self.skipTest('No existing auto attendant "aa_*"') target_aa = random.choice(aa_list) print(f'Deleting aa "{target_aa.name}" in location "{target_aa.location_name}"') ata.delete_auto_attendant(location_id=target_aa.location_id, auto_attendant_id=target_aa.auto_attendant_id) class TestForwarding(TestCaseWithLog): def test_001_get_all_forwarding_settings(self): """ get forwarding settings for all auto attendants """ ata = self.api.telephony.auto_attendant aa_list = list(ata.list(name='aa_')) with ThreadPoolExecutor() as pool: forwarding_settings = list(pool.map( lambda aa: ata.forwarding.settings(location_id=aa.location_id, feature_id=aa.auto_attendant_id), aa_list)) print(f'Got forwarding settings for {len(forwarding_settings)} auto attendants.') ``` #### File: wxc_sdk/tests/test_telephony_location_vm.py ```python import random from concurrent.futures import ThreadPoolExecutor from .base import TestWithLocations from wxc_sdk.common import AuthCode from wxc_sdk.telephony.location_vm import LocationVoiceMailSettings class Test(TestWithLocations): def test_001_read_all(self): with ThreadPoolExecutor() as pool: details = list(pool.map( lambda location: self.api.telephony.location_voicemail.read(location_id=location.location_id), self.locations)) print(f'Got voicemail settings for {len(details)} locations') def test_002_update(self): """ Update VM settings for one locations """ target_location = random.choice(self.locations) lvm = self.api.telephony.location_voicemail before = lvm.read(location_id=target_location.location_id) try: new_settings = LocationVoiceMailSettings( voicemail_transcription_enabled=not before.voicemail_transcription_enabled) lvm.update(location_id=target_location.location_id, settings=new_settings) after = lvm.read(location_id=target_location.location_id) self.assertEqual(new_settings, after) finally: # restore old settings lvm.update(location_id=target_location.location_id, settings=before) after = lvm.read(location_id=target_location.location_id) self.assertEqual(before, after) ``` #### File: wxc_sdk/tests/test_workspaces.py ```python import random from collections.abc import Generator from concurrent.futures import ThreadPoolExecutor from contextlib import contextmanager from wxc_sdk.rest import RestError from wxc_sdk.all_types import * from .base import TestCaseWithLog TEST_WORKSPACES_PREFIX = 'workspace test ' class TestList(TestCaseWithLog): def test_001_list(self): workspaces = list(self.api.workspaces.list()) print(f'got {len(workspaces)} workspaces') print('\n'.join(w.json() for w in workspaces)) class TestDetails(TestCaseWithLog): def test_001_all(self): """ details for all workspaces """ ws = self.api.workspaces ws_list = ws.list() with ThreadPoolExecutor() as pool: details = list(pool.map(lambda w: ws.details(workspace_id=w.workspace_id), ws_list)) print(f'got details for {len(details)} workspaces') class TestOutgoingPermissionsAutoTransferNumbers(TestCaseWithLog): def test_001_get_all(self): """ get outgoing permissions auto transfer numbers for all workspaces """ wsa = self.api.workspaces tna = self.api.workspace_settings.permissions_out.transfer_numbers targets = [ws for ws in wsa.list() if ws.calling == CallingType.webex] if not targets: self.skipTest('Need some WxC enabled workspaces to run this test') with ThreadPoolExecutor() as pool: _ = list(pool.map(lambda ws: tna.read(person_id=ws.workspace_id), targets)) print(f'outgoing permissions auto transfer numbers for {len(targets)} workspaces') @contextmanager def target_ws_context(self, use_custom_enabled: bool = True) -> Workspace: """ pick a random workspace and make sure that the outgoing permission settings are restored :return: """ po = self.api.workspace_settings.permissions_out targets = [ws for ws in self.api.workspaces.list() if ws.calling == CallingType.webex] if not targets: self.skipTest('Need some WxC enabled workspaces to run this test') random.shuffle(targets) # if enable == False then we need a workspace where custom_enabled is not set. Else setting it to False # will clear all existing customer settings and we want to avoid that side effect of the test po_settings = None target_ws = next((ws for ws in targets if use_custom_enabled or not (po_settings := po.read(person_id=ws.workspace_id)).use_custom_enabled), None) if target_ws is None: self.skipTest('No WxC enabled workspace with use_custom_enabled==False') if po_settings is None: po_settings = po.read(person_id=target_ws.workspace_id) try: if use_custom_enabled: # enable custom settings: else auto transfer numbers can't be set po.configure(person_id=target_ws.workspace_id, settings=OutgoingPermissions(use_custom_enabled=use_custom_enabled)) yield target_ws finally: # restore old settings if use_custom_enabled: po.configure(person_id=target_ws.workspace_id, settings=po_settings) po_restored = po.read(person_id=target_ws.workspace_id) self.assertEqual(po_settings, po_restored) def test_002_update_wo_custom_enabled(self): """ updating auto transfer numbers requires use_custom_enabled to be set :return: """ tna = self.api.workspace_settings.permissions_out.transfer_numbers with self.target_ws_context(use_custom_enabled=False) as target_ws: target_ws: Workspace numbers = tna.read(person_id=target_ws.workspace_id) try: # change auto transfer number 1 update = numbers.copy(deep=True) transfer = f'+4961007739{random.randint(0, 999):03}' update.auto_transfer_number1 = transfer tna.configure(person_id=target_ws.workspace_id, settings=update) # verify update updated = tna.read(person_id=target_ws.workspace_id) # update should not work with use_custom_enabled == False self.assertEqual(numbers, updated) finally: # restore old settings tna.configure(person_id=target_ws.workspace_id, settings=numbers.configure_unset_numbers) restored = tna.read(person_id=target_ws.workspace_id) self.assertEqual(numbers, restored) # try # with def test_003_update_one_number(self): """ try to update auto transfer numbers for a workspace """ tna = self.api.workspace_settings.permissions_out.transfer_numbers with self.target_ws_context() as target_ws: target_ws: Workspace numbers = tna.read(person_id=target_ws.workspace_id) try: # change auto transfer number 1 update = numbers.copy(deep=True) transfer = f'+496100773{random.randint(0, 9999):03}' update.auto_transfer_number1 = transfer tna.configure(person_id=target_ws.workspace_id, settings=update) # verify update updated = tna.read(person_id=target_ws.workspace_id) # number should be equal; ignore hyphens in number returned by API self.assertEqual(transfer, updated.auto_transfer_number1.replace('-', '')) # other than that the updated numbers should be identical to the numbers before updated.auto_transfer_number1 = numbers.auto_transfer_number1 self.assertEqual(numbers, updated) finally: # restore old settings tna.configure(person_id=target_ws.workspace_id, settings=numbers.configure_unset_numbers) restored = tna.read(person_id=target_ws.workspace_id) self.assertEqual(numbers, restored) # try # with def test_002_update_one_number_no_effect_on_other_numbers(self): """ try to update auto transfer numbers for a workspace. Verify that updating a single number doesn't affect the other numbers """ tna = self.api.workspace_settings.permissions_out.transfer_numbers with self.target_ws_context() as target_ws: target_ws: Workspace numbers = tna.read(person_id=target_ws.workspace_id) try: all_numbers_set = AutoTransferNumbers(auto_transfer_number1='+4961007738001', auto_transfer_number2='+4961007738002', auto_transfer_number3='+4961007738003') tna.configure(person_id=target_ws.workspace_id, settings=all_numbers_set) all_numbers_set = tna.read(person_id=target_ws.workspace_id) # change auto transfer number 1 transfer = f'+496100773{random.randint(0, 9999):03}' update = AutoTransferNumbers(auto_transfer_number1=transfer) tna.configure(person_id=target_ws.workspace_id, settings=update) # verify update updated = tna.read(person_id=target_ws.workspace_id) # number should be equal; ignore hyphens in number returned by API self.assertEqual(transfer, updated.auto_transfer_number1.replace('-', '')) # other than that the updated numbers should be identical to the numbers before updated.auto_transfer_number1 = all_numbers_set.auto_transfer_number1 self.assertEqual(all_numbers_set, updated) finally: # restore old settings tna.configure(person_id=target_ws.workspace_id, settings=numbers.configure_unset_numbers) restored = tna.read(person_id=target_ws.workspace_id) self.assertEqual(numbers, restored) # try # with class TestCreateUpdate(TestCaseWithLog): def new_names(self) -> Generator[str, None, None]: ws_list = list(self.api.workspaces.list()) ws_names = set(w.display_name for w in ws_list) new_gen = (name for i in range(1000) if (name := f'{TEST_WORKSPACES_PREFIX}{i:03}') not in ws_names) return new_gen @contextmanager def target(self, no_edge: bool = False): ws = self.api.workspaces ws_list = list(ws.list()) if no_edge: ws_list = [ws for ws in ws_list if ws.calling != CallingType.edge_for_devices] targat_ws = random.choice(ws_list) targat_ws = ws.details(workspace_id=targat_ws.workspace_id) try: yield targat_ws finally: ws.update(workspace_id=targat_ws.workspace_id, settings=targat_ws) restored = ws.details(workspace_id=targat_ws.workspace_id) self.assertEqual(targat_ws, restored) def test_001_trivial(self): """ create workspace with minimal settings """ ws = self.api.workspaces name = next(self.new_names()) settings = Workspace.create(display_name=name) workspace = ws.create(settings=settings) print(f'new worksspace: {workspace.json()}') self.assertEqual(name, workspace.display_name) def test_002_edge_for_devices(self): """ create workspace with edge_for_devices """ ws = self.api.workspaces name = next(self.new_names()) settings = Workspace(display_name=name, calling=CallingType.edge_for_devices) workspace = ws.create(settings=settings) print(f'new worksspace: {workspace.json()}') self.assertEqual(name, workspace.display_name) def test_003_change_name_full(self): """ change name of a workspace, full settings """ ws = self.api.workspaces with self.target(no_edge=True) as target_ws: target_ws: Workspace settings: Workspace = target_ws.copy(deep=True) new_name = next(self.new_names()) settings.display_name = new_name after = ws.update(workspace_id=target_ws.workspace_id, settings=settings) self.assertEqual(new_name, after.display_name) def test_004_change_name_name_only(self): """ change name of a workspace, only name update """ ws = self.api.workspaces with self.target(no_edge=True) as target_ws: target_ws: Workspace new_name = next(self.new_names()) settings = Workspace(display_name=new_name) after = ws.update(workspace_id=target_ws.workspace_id, settings=settings) self.assertEqual(new_name, after.display_name) class TestDelete(TestCaseWithLog): def test_001_delete_one(self): """ delete a random workspace """ ws = self.api.workspaces ws_list = list(ws.list(display_name=TEST_WORKSPACES_PREFIX)) if not ws_list: self.skipTest('No test workspace to delete') target = random.choice(ws_list) ws.delete_workspace(workspace_id=target.workspace_id) with self.assertRaises(RestError) as exc: ws.details(workspace_id=target.workspace_id) rest_error: RestError = exc.exception self.assertEqual(404, rest_error.response.status_code) ``` #### File: wxc_sdk/wxc_sdk/api_child.py ```python from dataclasses import dataclass from .base import StrOrDict from .rest import RestSession __all__ = ['ApiChild'] @dataclass(init=False) class ApiChild: """ Base class for child APIs of :class:`WebexSimpleApi` """ session: RestSession def __init__(self, *, session: RestSession, base: str = None): #: REST session self.session = session if base: self.base = base def __init_subclass__(cls, base: str): """ Subclass registration hook. Each APIChild has a specific endpoint prefix which we gather at subclass registration time- :param base: APIChild specific URL path """ super().__init_subclass__() # save endpoint prefix cls.base = base def ep(self, path: str = None): """ endpoint URL for given path :param path: path after APIChild subclass specific endpoint URI prefix :type path: str :return: endpoint URL :rtype: str """ path = path and f'/{path}' or '' return self.session.ep(f'{self.base}{path}') def get(self, *args, **kwargs) -> StrOrDict: """ GET request :param args: :param kwargs: :return: """ return self.session.rest_get(*args, **kwargs) def post(self, *args, **kwargs) -> StrOrDict: """ POST request :param args: :param kwargs: :return: """ return self.session.rest_post(*args, **kwargs) def put(self, *args, **kwargs) -> StrOrDict: """ PUT request :param args: :param kwargs: :return: """ return self.session.rest_put(*args, **kwargs) def delete(self, *args, **kwargs) -> None: """ DELETE request :param args: :param kwargs: """ self.session.rest_delete(*args, **kwargs) def patch(self, *args, **kwargs) -> StrOrDict: """ PATCH request :param args: :param kwargs: """ return self.session.rest_patch(*args, **kwargs) ``` #### File: wxc_sdk/wxc_sdk/as_api.py ```python import json import logging import os from collections.abc import AsyncGenerator from dataclasses import dataclass from enum import Enum from io import BufferedReader from typing import Union, Dict, Optional, Literal, List from aiohttp import MultipartWriter from pydantic import parse_obj_as from wxc_sdk.all_types import * from wxc_sdk.as_rest import AsRestSession from wxc_sdk.base import to_camel, StrOrDict log = logging.getLogger(__name__) __all__ = ['AsWebexSimpleApi'] class MultipartEncoder(MultipartWriter): """ Compatibility class for requests toolbelt MultipartEncoder """ def __init__(self, *, fields: dict): super().__init__('form_data') for field_name, (file_name, content, content_type) in fields.items(): # noinspection PyTypeChecker part = self.append(content, {'Content-Type': content_type}) part.set_content_disposition('form-data', name=field_name, filename=file_name) # there seems to be a problem with getting too many users with calling data at the same time # this is the maximum number the SDK enforces MAX_USERS_WITH_CALLING_DATA = 10 __all__ = ['AsAccessCodesApi', 'AsAnnouncementApi', 'AsApiChild', 'AsAppServicesApi', 'AsAuthCodesApi', 'AsAutoAttendantApi', 'AsBargeApi', 'AsCallInterceptApi', 'AsCallParkApi', 'AsCallPickupApi', 'AsCallQueueApi', 'AsCallRecordingApi', 'AsCallWaitingApi', 'AsCallerIdApi', 'AsCallingBehaviorApi', 'AsCallparkExtensionApi', 'AsCallsApi', 'AsDndApi', 'AsExecAssistantApi', 'AsForwardingApi', 'AsGroupsApi', 'AsHotelingApi', 'AsHuntGroupApi', 'AsIncomingPermissionsApi', 'AsLicensesApi', 'AsLocationInterceptApi', 'AsLocationMoHApi', 'AsLocationVoicemailSettingsApi', 'AsLocationsApi', 'AsMonitoringApi', 'AsNumbersApi', 'AsOrganisationVoicemailSettingsAPI', 'AsOutgoingPermissionsApi', 'AsPagingApi', 'AsPeopleApi', 'AsPersonForwardingApi', 'AsPersonSettingsApi', 'AsPersonSettingsApiChild', 'AsPrivacyApi', 'AsPrivateNetworkConnectApi', 'AsPushToTalkApi', 'AsReceptionistApi', 'AsRestSession', 'AsScheduleApi', 'AsTelephonyApi', 'AsTransferNumbersApi', 'AsVoicePortalApi', 'AsVoicemailApi', 'AsVoicemailGroupsApi', 'AsVoicemailRulesApi', 'AsWebexSimpleApi', 'AsWebhookApi', 'AsWorkspaceSettingsApi', 'AsWorkspacesApi'] @dataclass(init=False) class AsApiChild: """ Base class for child APIs of :class:`WebexSimpleApi` """ session: AsRestSession def __init__(self, *, session: AsRestSession, base: str = None): #: REST session self.session = session if base: self.base = base def __init_subclass__(cls, base: str): """ Subclass registration hook. Each APIChild has a specific endpoint prefix which we gather at subclass registration time- :param base: APIChild specific URL path """ super().__init_subclass__() # save endpoint prefix cls.base = base def ep(self, path: str = None): """ endpoint URL for given path :param path: path after APIChild subclass specific endpoint URI prefix :type path: str :return: endpoint URL :rtype: str """ path = path and f'/{path}' or '' return self.session.ep(f'{self.base}{path}') async def get(self, *args, **kwargs) -> StrOrDict: """ GET request :param args: :param kwargs: :return: """ return await self.session.rest_get(*args, **kwargs) async def post(self, *args, **kwargs) -> StrOrDict: """ POST request :param args: :param kwargs: :return: """ return await self.session.rest_post(*args, **kwargs) async def put(self, *args, **kwargs) -> StrOrDict: """ PUT request :param args: :param kwargs: :return: """ return await self.session.rest_put(*args, **kwargs) async def delete(self, *args, **kwargs) -> None: """ DELETE request :param args: :param kwargs: """ await self.session.rest_delete(*args, **kwargs) async def patch(self, *args, **kwargs) -> StrOrDict: """ PATCH request :param args: :param kwargs: """ return await self.session.rest_patch(*args, **kwargs) class AsGroupsApi(AsApiChild, base='groups'): def list_gen(self, *, include_members: bool = None, attributes: str = None, sort_by: str = None, sort_order: str = None, list_filter: str = None, org_id: str = None, **params) -> AsyncGenerator[Group, None, None]: """ List groups :param include_members: Include members in list response :type include_members: bool :param attributes: comma separated list of attributes to return :type attributes: str :param sort_by: attribute to sort by :type sort_by: str :param sort_order: sort order, ascending or descending :type sort_order: str :param org_id: organisation ID :type org_id: str :param list_filter: filter expression. Example: displayName eq "test" :type list_filter: str :param params: :return: generator of :class:`Group` objects """ params.update((to_camel(k), v) for i, (k, v) in enumerate(locals().items()) if i and k != 'params' and v is not None) for k, v in params.items(): if isinstance(v, bool): params[k] = 'true' if v else 'false' if lf := params.pop('listFilter', None): params['filter'] = lf url = self.ep() return self.session.follow_pagination(url=url, model=Group, item_key='groups', params=params) async def list(self, *, include_members: bool = None, attributes: str = None, sort_by: str = None, sort_order: str = None, list_filter: str = None, org_id: str = None, **params) -> List[Group]: """ List groups :param include_members: Include members in list response :type include_members: bool :param attributes: comma separated list of attributes to return :type attributes: str :param sort_by: attribute to sort by :type sort_by: str :param sort_order: sort order, ascending or descending :type sort_order: str :param org_id: organisation ID :type org_id: str :param list_filter: filter expression. Example: displayName eq "test" :type list_filter: str :param params: :return: generator of :class:`Group` objects """ params.update((to_camel(k), v) for i, (k, v) in enumerate(locals().items()) if i and k != 'params' and v is not None) for k, v in params.items(): if isinstance(v, bool): params[k] = 'true' if v else 'false' if lf := params.pop('listFilter', None): params['filter'] = lf url = self.ep() return [o async for o in self.session.follow_pagination(url=url, model=Group, item_key='groups', params=params)] async def create(self, *, settings: Group) -> Group: """ Create a new group using the provided settings. Only display_name is mandatory :param settings: settings for new group :type settings: Group :return: new group :rtype: :class:`Group` """ url = self.ep() body = settings.json(exclude={'group_id': True, 'members': {'__all__': {'member_type': True, 'display_name': True, 'operation': True}}, 'created': True, 'last_modified': True}) data = await self.post(url, data=body) return Group.parse_obj(data) async def details(self, group_id: str, include_members: bool = None) -> Group: """ Get group details :param group_id: group id :type group_id: str :param include_members: return members in response :type include_members: bool :return: group details :rtype: Group """ url = self.ep(group_id) params = dict() if include_members is not None: params['includeMembers'] = 'true' if include_members else 'false' data = await self.get(url, params=params) return Group.parse_obj(data) def members_gen(self, *, group_id: str, **params) -> AsyncGenerator[GroupMember, None, None]: """ Query members of a group :param group_id: group id :type group_id: str :param params: :return: generator of :class:`GroupMember` instances """ url = self.ep(f'{group_id}/Members') return self.session.follow_pagination(url=url, model=GroupMember, params=params, item_key='members') async def members(self, *, group_id: str, **params) -> List[GroupMember]: """ Query members of a group :param group_id: group id :type group_id: str :param params: :return: generator of :class:`GroupMember` instances """ url = self.ep(f'{group_id}/Members') return [o async for o in self.session.follow_pagination(url=url, model=GroupMember, params=params, item_key='members')] async def update(self, *, group_id: str, settings: Group = None, remove_all: bool = None) -> Group: """ update group information. Options: change displayName, add new members, remove some or all members, replace all members :param group_id: :param settings: :param remove_all: :return: """ if not any((settings, remove_all)): raise ValueError('settings or remove_all have to be present') url = self.ep(group_id) if settings: body = settings.json(exclude={'group_id': True, 'members': {'__all__': {'member_type': True, 'display_name': True}}, 'created': True, 'last_modified': True}) else: body = 'purgeAllValues:{"attributes":["members"]}' data = await self.patch(url, data=body) return Group.parse_obj(data) async def delete_group(self, group_id: str): """ Delete a group :param group_id: group id :type group_id: str """ url = self.ep(group_id) await self.delete(url) class AsLicensesApi(AsApiChild, base='licenses'): """ Licenses An allowance for features and services that are provided to users on a Webex services subscription. Cisco and its partners manage the amount of licenses provided to administrators and users. This license resource can be accessed only by an admin. """ def list_gen(self, org_id: str = None) -> AsyncGenerator[License, None, None]: """ List all licenses for a given organization. If no org_id is specified, the default is the organization of the authenticated user. Response properties that are not applicable to the license will not be present in the response. :param org_id: List licenses for this organization. :type org_id: str :return: yields :class:`License` instances """ params = org_id and {'orgId': org_id} or None ep = self.ep() # noinspection PyTypeChecker return self.session.follow_pagination(url=ep, model=License, params=params) async def list(self, org_id: str = None) -> List[License]: """ List all licenses for a given organization. If no org_id is specified, the default is the organization of the authenticated user. Response properties that are not applicable to the license will not be present in the response. :param org_id: List licenses for this organization. :type org_id: str :return: yields :class:`License` instances """ params = org_id and {'orgId': org_id} or None ep = self.ep() # noinspection PyTypeChecker return [o async for o in self.session.follow_pagination(url=ep, model=License, params=params)] async def details(self, license_id) -> License: """ Shows details for a license, by ID. Response properties that are not applicable to the license will not be present in the response. :param license_id: The unique identifier for the license. :type license_id: str :return: license details :rtype: License """ ep = self.ep(license_id) return License.parse_obj(await self.get(ep)) class AsLocationsApi(AsApiChild, base='locations'): """ Location API Locations are used to organize Webex Calling (BroadCloud) features within physical locations. Webex Control Hub may be used to define new locations. Searching and viewing locations in your organization requires an administrator auth token with the spark-admin:people_read and spark-admin:people_write or spark-admin:device_read AND spark-admin:device_write scope combinations. """ def list_gen(self, name: str = None, location_id: str = None, org_id: str = None, **params) -> AsyncGenerator[Location, None, None]: """ List locations for an organization. :param name: List locations whose name contains this string (case-insensitive). :type name: str :param location_id: List locations by ID. :type location_id: str :param org_id: List locations in this organization. Only admin users of another organization (such as partners) may use this parameter. :type org_id: str :return: generator of :class:`Location` instances """ params.update((to_camel(k), v) for i, (k, v) in enumerate(locals().items()) if i and k != 'params' and v is not None) if location_id is not None: params.pop('locationId') params['id'] = location_id ep = self.ep() # noinspection PyTypeChecker return self.session.follow_pagination(url=ep, model=Location, params=params) async def list(self, name: str = None, location_id: str = None, org_id: str = None, **params) -> List[Location]: """ List locations for an organization. :param name: List locations whose name contains this string (case-insensitive). :type name: str :param location_id: List locations by ID. :type location_id: str :param org_id: List locations in this organization. Only admin users of another organization (such as partners) may use this parameter. :type org_id: str :return: generator of :class:`Location` instances """ params.update((to_camel(k), v) for i, (k, v) in enumerate(locals().items()) if i and k != 'params' and v is not None) if location_id is not None: params.pop('locationId') params['id'] = location_id ep = self.ep() # noinspection PyTypeChecker return [o async for o in self.session.follow_pagination(url=ep, model=Location, params=params)] async def by_name(self, name: str, org_id: str = None) -> Optional[Location]: """ Get a location by name :param name: name of the location to search :type name: str :param org_id: search in list of locations in this organization. Only admin users of another organization (such as partners) may use this parameter. :type org_id: str :return: locations :rtype: Location """ return next((location for location in await self.list(name=name, org_id=org_id) if location.name == name), None) async def details(self, location_id) -> Location: """ Shows details for a location, by ID. This API only works for Customer administrators and for Partner administrators to query their own organization. Partner administrators looking to query customer organizations should use the List Locations endpoint to retrieve information about locations. :param location_id: A unique identifier for the location. :type location_id: str :return: location details :rtype: Location """ ep = self.ep(location_id) return Location.parse_obj(await self.get(ep)) class AsPeopleApi(AsApiChild, base='people'): """ People API """ def list_gen(self, email: str = None, display_name: str = None, id_list: list[str] = None, org_id: str = None, calling_data: bool = None, location_id: str = None, **params) -> AsyncGenerator[Person, None, None]: """ List people in your organization. For most users, either the email or display_name parameter is required. Admin users can omit these fields and list all users in their organization. Response properties associated with a user's presence status, such as status or last_activity, will only be displayed for people within your organization or an organization you manage. Presence information will not be shown if the authenticated user has disabled status sharing. Admin users can include Webex Calling (BroadCloud) user details in the response by specifying calling_data parameter as True. Admin users can list all users in a location or with a specific phone number. :param email: List people with this email address. For non-admin requests, either this or displayName are required. :type email: str :param display_name: List people whose name starts with this string. For non-admin requests, either this or email are required. :type display_name: str :param id_list: List people by ID. Accepts up to 85 person IDs. If this parameter is provided then presence information (such as the last_activity or status properties) will not be included in the response. :type id_list: list[str] :param org_id: List people in this organization. Only admin users of another organization (such as partners) may use this parameter. :type org_id: str :param calling_data: Include Webex Calling user details in the response. Default: False :type calling_data: bool :param location_id: List people present in this location. :type location_id: str :return: yield :class:`Person` instances """ params.update((to_camel(k), v) for i, (k, v) in enumerate(locals().items()) if i and v is not None and k != 'params') if calling_data: params['callingData'] = 'true' # apparently there is a performance problem with getting too many users w/ calling data at the same time params['max'] = params.get('max', MAX_USERS_WITH_CALLING_DATA) id_list = params.pop('idList', None) if id_list: params['id'] = ','.join(id_list) ep = self.ep() # noinspection PyTypeChecker return self.session.follow_pagination(url=ep, model=Person, params=params) async def list(self, email: str = None, display_name: str = None, id_list: list[str] = None, org_id: str = None, calling_data: bool = None, location_id: str = None, **params) -> List[Person]: """ List people in your organization. For most users, either the email or display_name parameter is required. Admin users can omit these fields and list all users in their organization. Response properties associated with a user's presence status, such as status or last_activity, will only be displayed for people within your organization or an organization you manage. Presence information will not be shown if the authenticated user has disabled status sharing. Admin users can include Webex Calling (BroadCloud) user details in the response by specifying calling_data parameter as True. Admin users can list all users in a location or with a specific phone number. :param email: List people with this email address. For non-admin requests, either this or displayName are required. :type email: str :param display_name: List people whose name starts with this string. For non-admin requests, either this or email are required. :type display_name: str :param id_list: List people by ID. Accepts up to 85 person IDs. If this parameter is provided then presence information (such as the last_activity or status properties) will not be included in the response. :type id_list: list[str] :param org_id: List people in this organization. Only admin users of another organization (such as partners) may use this parameter. :type org_id: str :param calling_data: Include Webex Calling user details in the response. Default: False :type calling_data: bool :param location_id: List people present in this location. :type location_id: str :return: yield :class:`Person` instances """ params.update((to_camel(k), v) for i, (k, v) in enumerate(locals().items()) if i and v is not None and k != 'params') if calling_data: params['callingData'] = 'true' # apparently there is a performance problem with getting too many users w/ calling data at the same time params['max'] = params.get('max', MAX_USERS_WITH_CALLING_DATA) id_list = params.pop('idList', None) if id_list: params['id'] = ','.join(id_list) ep = self.ep() # noinspection PyTypeChecker return [o async for o in self.session.follow_pagination(url=ep, model=Person, params=params)] async def create(self, settings: Person, calling_data: bool = False) -> Person: """ Create a Person Create a new user account for a given organization. Only an admin can create a new user account. At least one of the following body parameters is required to create a new user: displayName, firstName, lastName. Currently, users may have only one email address associated with their account. The emails parameter is an array, which accepts multiple values to allow for future expansion, but currently only one email address will be used for the new user. Admin users can include Webex calling (BroadCloud) user details in the response by specifying callingData parameter as true. When doing attendee management, to make the new user an attendee for a site: append #attendee to the siteUrl parameter (eg: mysite.webex.com#attendee). :param settings: settings for new user :type settings: Person :param calling_data: Include Webex Calling user details in the response. :type calling_data: bool :return: new user :rtype: Person """ params = calling_data and {'callingData': 'true'} or None url = self.ep() data = settings.json(exclude={'person_id': True, 'created': True, 'last_modified': True, 'timezone': True, 'last_activity': True, 'sip_addresses': True, 'status': True, 'invite_pending': True, 'login_enabled': True, 'person_type': True}) return Person.parse_obj(await self.post(url, data=data, params=params)) async def details(self, person_id: str, calling_data: bool = False) -> Person: """ Shows details for a person, by ID. Response properties associated with a user's presence status, such as status or last_activity, will only be displayed for people within your organization or an organization you manage. Presence information will not be shown if the authenticated user has disabled status sharing. Admin users can include Webex Calling (BroadCloud) user details in the response by specifying calling_data parameter as True. :param person_id: A unique identifier for the person. :type person_id: str :param calling_data: Include Webex Calling user details in the response. Default: false :type calling_data: bool :return: person details :rtype: Person """ ep = self.ep(path=person_id) params = calling_data and {'callingData': 'true'} or None return Person.parse_obj(await self.get(ep, params=params)) async def delete_person(self, person_id: str): """ Remove a person from the system. Only an admin can remove a person. :param person_id: A unique identifier for the person. :return: """ ep = self.ep(path=person_id) await self.delete(ep) async def update(self, person: Person, calling_data: bool = False, show_all_types: bool = False) -> Person: """ Update details for a person, by ID. Only an admin can update a person details. Include all details for the person. This action expects all user details to be present in the request. A common approach is to first GET the person's details, make changes, then PUT both the changed and unchanged values. Admin users can include Webex Calling (BroadCloud) user details in the response by specifying calling_data parameter as True. Note: The location_id can only be set when adding a calling license to a user. It cannot be changed if a user is already an existing calling user. When doing attendee management, to update a user โ€œfrom host to attendeeโ€ for a site append #attendee to the respective site_url and remove the meeting host license for this site from the license array. To update a person โ€œfrom attendee to hostโ€ for a site, add the meeting license for this site in the meeting array and remove that site from the site_url parameter. Removing the attendee privilege for a user on a meeting site is done by removing that sitename#attendee from the siteUrls array. The show_all_types parameter must be set to True. :param person: The person to update :type person: Person :param calling_data: Include Webex Calling user details in the response. Default: False :type calling_data: bool :param show_all_types: Include Webex Calling user details in the response. Default: False :type show_all_types: bool :return: Person details :rtype: Person """ params = calling_data and {'callingData': 'true'} or None if not all(v is not None for v in (person.display_name, person.first_name, person.last_name)): raise ValueError('display_name, first_name, and last_name are required') # some attributes should not be included in update data = person.json(exclude={'created': True, 'last_modified': True, 'timezone': True, 'last_activity': True, 'sip_addresses': True, 'status': True, 'invite_pending': True, 'login_enabled': True, 'person_type': True}) ep = self.ep(path=person.person_id) return Person.parse_obj(await self.put(url=ep, data=data, params=params)) async def me(self, calling_data: bool = False) -> Person: """ Show the profile for the authenticated user. This is the same as GET /people/{personId} using the Person ID associated with your Auth token. Admin users can include Webex Calling (BroadCloud) user details in the response by specifying callingData parameter as true. :param calling_data: True -> return calling data :type calling_data: bool :rtype: Person :return: profile of authenticated user """ ep = self.ep('me') params = calling_data and {'callingData': 'true'} or None data = await self.get(ep, params=params) result = Person.parse_obj(data) return result class AsPersonSettingsApiChild(AsApiChild, base=''): """ Base class for all classes implementing person settings APIs """ feature = None def __init__(self, *, session: AsRestSession, base: str = None, workspaces: bool = False, locations: bool = False): self.feature_prefix = '/features/' if workspaces: self.selector = 'workspaces' elif locations: self.selector = 'telephony/config/locations' self.feature_prefix = '/' else: self.selector = 'people' super().__init__(session=session, base=base) def __init_subclass__(cls, **kwargs): super().__init_subclass__(base='') if cls.feature is None: raise TypeError('feature has to be defined') def f_ep(self, *, person_id: str, path: str = None) -> str: """ person specific feature endpoint like v1/people/{uid}/features/.... :param person_id: Unique identifier for the person. :type person_id: str :param path: path in the endpoint after the feature base URL :type path: str :return: full endpoint :rtype: str """ path = path and f'/{path}' or '' return self.session.ep(f'{self.selector}/{person_id}{self.feature_prefix}{self.feature}{path}') class AsAppServicesApi(AsPersonSettingsApiChild): """ API for person's app services settings """ feature = 'applications' async def read(self, *, person_id: str, org_id: str = None) -> AppServicesSettings: """ Retrieve a Person's Application Services Settings Application services let you determine the ringing behavior for calls made to people in certain scenarios. You can also specify which devices can download the Webex Calling app. This API requires a full, user, or read-only administrator auth token with a scope of spark-admin:people_read. :param person_id: Unique identifier for the person. :type person_id: str :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str :return: privacy settings :rtype: :class:`Privacy` """ ep = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None data = await self.get(ep, params=params) return AppServicesSettings.parse_obj(data) async def configure(self, *, person_id: str, settings: AppServicesSettings, org_id: str = None): """ Modify a Person's Application Services Settings Application services let you determine the ringing behavior for calls made to users in certain scenarios. You can also specify which devices users can download the Webex Calling app on. This API requires a full or user administrator auth token with the spark-admin:people_write scope. :param person_id: Unique identifier for the person. :type person_id: str :param settings: settings for update :type settings: :class:`AppServicesSettings` :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str """ ep = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None data = settings.json(exclude={'available_line_count': True}) await self.put(ep, params=params, data=data) class AsBargeApi(AsPersonSettingsApiChild): """ API for person's barge settings """ feature = 'bargeIn' async def read(self, *, person_id: str, org_id: str = None) -> BargeSettings: """ Retrieve a Person's Barge In Settings The Barge In feature enables you to use a Feature Access Code (FAC) to answer a call that was directed to another subscriber, or barge-in on the call if it was already answered. Barge In can be used across locations. This API requires a full, user, or read-only administrator auth token with a scope of spark-admin:people_read or a user auth token with spark:people_read scope can be used by a person to read their own settings. :param person_id: Unique identifier for the person. :type person_id: str :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str :return: barge settings for specific user :rtype: BargeSettings """ ep = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None return BargeSettings.parse_obj(await self.get(ep, params=params)) async def configure(self, *, person_id: str, barge_settings: BargeSettings, org_id: str = None): """ Configure a Person's Barge In Settings The Barge In feature enables you to use a Feature Access Code (FAC) to answer a call that was directed to another subscriber, or barge-in on the call if it was already answered. Barge In can be used across locations. This API requires a full or user administrator auth token with the spark-admin:people_write scope or a user auth token with spark:people_write scope can be used by a person to update their own settings. :param person_id: Unique identifier for the person. :type person_id: str :param barge_settings: new setting to be applied :type barge_settings: BargeSettings :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. """ ep = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None await self.put(ep, params=params, data=barge_settings.json()) class AsCallInterceptApi(AsPersonSettingsApiChild): """ API for person's call intercept settings """ feature = 'intercept' async def read(self, *, person_id: str, org_id: str = None) -> InterceptSetting: """ Read Call Intercept Settings for a Person Retrieves Person's Call Intercept Settings The intercept feature gracefully takes a personโ€™s phone out of service, while providing callers with informative announcements and alternative routing options. Depending on the service configuration, none, some, or all incoming calls to the specified person are intercepted. Also depending on the service configuration, outgoing calls are intercepted or rerouted to another location. This API requires a full, user, or read-only administrator auth token with a scope of spark-admin:people_read. :param person_id: Unique identifier for the person. :type person_id: str :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str :return: user's call intercept settings :rtype: InterceptSetting """ ep = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None return InterceptSetting.parse_obj(await self.get(ep, params=params)) async def configure(self, *, person_id: str, intercept: InterceptSetting, org_id: str = None): """ Configure Call Intercept Settings for a Person Configures a Person's Call Intercept Settings The intercept feature gracefully takes a personโ€™s phone out of service, while providing callers with informative announcements and alternative routing options. Depending on the service configuration, none, some, or all incoming calls to the specified person are intercepted. Also depending on the service configuration, outgoing calls are intercepted or rerouted to another location. This API requires a full or user administrator auth token with the spark-admin:people_write scope. :param person_id: Unique identifier for the person. :type person_id: str :param intercept: new intercept settings :type intercept: InterceptSetting :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str """ ep = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None data = json.loads(intercept.json()) try: # remove attribute not present in update data['incoming']['announcements'].pop('fileName', None) except KeyError: pass await self.put(ep, params=params, json=data) async def greeting(self, person_id: str, content: Union[BufferedReader, str], upload_as: str = None, org_id: str = None): """ Configure Call Intercept Greeting for a Person Configure a Person's Call Intercept Greeting by uploading a Waveform Audio File Format, .wav, encoded audio file. Your request will need to be a multipart/form-data request rather than JSON, using the audio/wav Content-Type. This API requires a full or user administrator auth token with the spark-admin:people_write scope or a user auth token with spark:people_write scope can be used by a person to update their settings. :param person_id: Unique identifier for the person. :type person_id: str :param content: the file to be uploaded, can be a path to a file or a buffered reader (opened file); if a reader referring to an open file is passed then make sure to open the file as binary b/c otherwise the content length might be calculated wrong :type content: Union[BufferedReader, str] :param upload_as: filename for the content. Only required if content is a reader; has to be a .wav file name. :type upload_as: str :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str """ if isinstance(content, str): upload_as = os.path.basename(content) content = open(content, mode='rb') must_close = True pass else: must_close = False # an existing reader if not upload_as: raise ValueError('upload_as is required') encoder = MultipartEncoder(fields={'file': (upload_as, content, 'audio/wav')}) ep = self.f_ep(person_id=person_id, path='actions/announcementUpload/invoke') params = org_id and {'orgId': org_id} or None try: await self.post(ep, data=encoder, headers={'Content-Type': encoder.content_type}, params=params) finally: if must_close: content.close() return class AsCallRecordingApi(AsPersonSettingsApiChild): """ API for person's call recording settings """ feature = 'callRecording' async def read(self, *, person_id: str, org_id: str = None) -> CallRecordingSetting: """ Read Call Recording Settings for a Person Retrieve a Person's Call Recording Settings The Call Recording feature provides a hosted mechanism to record the calls placed and received on the Carrier platform for replay and archival. This feature is helpful for quality assurance, security, training, and more. This API requires a full or user administrator auth token with the spark-admin:people_write scope. :param person_id: Unique identifier for the person. :type person_id: str :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str """ ep = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None return CallRecordingSetting.parse_obj(await self.get(ep, params=params)) async def configure(self, *, person_id: str, recording: CallRecordingSetting, org_id: str = None): """ Configure Call Recording Settings for a Person Configure a Person's Call Recording Settings The Call Recording feature provides a hosted mechanism to record the calls placed and received on the Carrier platform for replay and archival. This feature is helpful for quality assurance, security, training, and more. This API requires a full or user administrator auth token with the spark-admin:people_write scope. :param person_id: Unique identifier for the person. :type person_id: str :param recording: the new recording settings :type recording: CallRecordingSetting :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str """ ep = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None data = json.loads(recording.json()) for key in ['serviceProvider', 'externalGroup', 'externalIdentifier']: # remove attribute not present in update data.pop(key, None) await self.put(ep, params=params, json=data) class AsCallWaitingApi(AsPersonSettingsApiChild): """ API for person's call waiting settings """ feature = 'callWaiting' async def read(self, *, person_id: str, org_id: str = None) -> bool: """ Read Call Waiting Settings for a Person Retrieve a Person's Call Waiting Settings With this feature, a person can place an active call on hold and answer an incoming call. When enabled, while you are on an active call, a tone alerts you of an incoming call and you can choose to answer or ignore the call. This API requires a full, user, or read-only administrator auth token with a scope of spark-admin:people_read. :param person_id: Unique identifier for the person. :type person_id: str :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str :return: call waiting setting :rtype: bool """ ep = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None data = await self.get(ep, params=params) return data['enabled'] async def configure(self, *, person_id: str, enabled: bool, org_id: str = None): """ Configure Call Waiting Settings for a Person Configure a Person's Call Waiting Settings With this feature, a person can place an active call on hold and answer an incoming call. When enabled, while you are on an active call, a tone alerts you of an incoming call and you can choose to answer or ignore the call. This API requires a full or user administrator auth token with the spark-admin:people_write scope. :param person_id: Unique identifier for the person. :type person_id: str :param enabled: true if the Call Waiting feature is enabled. :type enabled: bool :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str """ ep = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None data = json.dumps({'enabled': enabled}) await self.put(ep, params=params, json=data) class AsCallerIdApi(AsPersonSettingsApiChild): """ API for person's caller id settings """ feature = 'callerId' async def read(self, *, person_id: str, org_id: str = None) -> CallerId: """ Retrieve a Person's Caller ID Settings Caller ID settings control how a personโ€™s information is displayed when making outgoing calls. This API requires a full, user, or read-only administrator auth token with a scope of spark-admin:people_read or a user auth token with spark:people_read scope can be used by a person to read their settings. :param person_id: Unique identifier for the person. :type person_id: str :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str """ ep = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None return CallerId.parse_obj(await self.get(ep, params=params)) async def configure(self, *, person_id: str, org_id: str = None, selected: CallerIdSelectedType = None, custom_number: str = None, first_name: str = None, last_name: str = None, external_caller_id_name_policy: ExternalCallerIdNamePolicy = None, custom_external_caller_id_name: str = None): """ Configure a Person's Caller ID Settings Caller ID settings control how a personโ€™s information is displayed when making outgoing calls. This API requires a full or user administrator auth token with the spark-admin:people_write scope or a user auth token with spark:people_write scope can be used by a person to update their own settings. :param person_id: Unique identifier for the person. :type person_id: str :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str :param selected: Which type of outgoing Caller ID will be used. :type selected: CallerIdSelectedType :param custom_number: This value must be an assigned number from the person\'s location. :type custom_number: str :param first_name: Person\'s Caller ID first name. Characters of %, +, \`, \" and Unicode characters are not allowed. :type first_name: str :param last_name: Person\'s Caller ID last name. Characters of %, +, \`, \" and Unicode characters are not allowed. :type last_name: str :param external_caller_id_name_policy: Designates which type of External Caller Id Name policy is used. Default is DIRECT_LINE. :type external_caller_id_name_policy: ExternalCallerIdNamePolicy :param custom_external_caller_id_name: Custom External Caller Name, which will be shown if External Caller Id Name is OTHER. :type custom_external_caller_id_name: str """ data = {to_camel(k): v for i, (k, v) in enumerate(locals().items()) if i > 2 and v is not None} params = org_id and {'orgId': org_id} or None ep = self.f_ep(person_id=person_id) await self.put(ep, params=params, json=data) class AsCallingBehaviorApi(AsPersonSettingsApiChild): """ API for person's calling behavior settings """ feature = 'callingBehavior' async def read(self, *, person_id: str, org_id: str = None) -> CallingBehavior: """ Read Person's Calling Behavior Retrieves the calling behavior and UC Manager Profile settings for the person which includes overall calling behavior and calling UC Manager Profile ID. Webex Calling Behavior controls which Webex telephony application is to be used. An organization has an organization-wide default Calling Behavior that may be overridden for individual persons. In addition, UC Manager Profiles are applicable if your organization uses Jabber in Team Messaging mode or Calling in Webex Teams (Unified CM). The UC Manager Profile also has an organization-wide default and may be overridden for individual persons. This API requires a full, user, or read-only administrator auth token with a scope of spark-admin:people_read. :param person_id: Unique identifier for the person. :type person_id: str :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str :return: calling behavior setting :rtype: CallingBehavior """ ep = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None data = await self.get(ep, params=params) return CallingBehavior.parse_obj(data) async def configure(self, *, person_id: str, settings: CallingBehavior, org_id: str = None): """ Configure a Person's Calling Behavior Modifies the calling behavior settings for the person which includes overall calling behavior and UC Manager Profile ID. Webex Calling Behavior controls which Webex telephony application is to be used. An organization has an organization-wide default Calling Behavior that may be overridden for individual persons. In addition, UC Manager Profiles are applicable if your organization uses Jabber in Team Messaging mode or Calling in Webex Teams (Unified CM). The UC Manager Profile also has an organization-wide default and may be overridden for individual persons. This API requires a full or user administrator auth token with the spark-admin:people_write scope. :param person_id: Unique identifier for the person. :type person_id: str :param settings: new settings :type settings: CallingBehavior :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str """ ep = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None data = settings.json(exclude_none=False, exclude={'effective_behavior_type'}, exclude_unset=True) await self.put(ep, params=params, data=data) class AsDndApi(AsPersonSettingsApiChild): """ API for person's DND settings """ feature = 'doNotDisturb' async def read(self, *, person_id: str, org_id: str = None) -> DND: """ Read Do Not Disturb Settings for a Person Retrieve a Person's Do Not Disturb Settings When enabled, this feature will give all incoming calls the busy treatment. Optionally, you can enable a Ring Reminder to play a brief tone on your desktop phone when you receive incoming calls. This API requires a full, user, or read-only administrator auth token with a scope of spark-admin:people_read or a user auth token with spark:people_read scope can be used by a person to read their settings. :param person_id: Unique identifier for the person. :type person_id: str :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str :return: """ ep = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None return DND.parse_obj(await self.get(ep, params=params)) async def configure(self, *, person_id: str, dnd_settings: DND, org_id: str = None): """ Configure Do Not Disturb Settings for a Person Configure a Person's Do Not Disturb Settings When enabled, this feature will give all incoming calls the busy treatment. Optionally, you can enable a Ring Reminder to play a brief tone on your desktop phone when you receive incoming calls. This API requires a full or user administrator auth token with the spark-admin:people_write scope or a user auth token with spark:people_write scope can be used by a person to update their settings. :param person_id: Unique identifier for the person. :type person_id: str :param dnd_settings: new setting to be applied :type dnd_settings: DND :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. """ ep = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None await self.put(ep, params=params, data=dnd_settings.json()) class AsExecAssistantApi(AsPersonSettingsApiChild): """ API for person's exec assistant settings """ feature = 'executiveAssistant' async def read(self, *, person_id: str, org_id: str = None) -> ExecAssistantType: """ Retrieve Executive Assistant Settings for a Person Retrieve the executive assistant settings for the specified personId. People with the executive service enabled, can select from a pool of assistants who have been assigned the executive assistant service and who can answer or place calls on their behalf. Executive assistants can set the call forward destination and join or leave an executive's pool. This API requires a full, user, or read-only administrator auth token with a scope of spark-admin:people_read. :param person_id: Unique identifier for the person. :type person_id: str :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str :return: exec assistant setting :rtype: :class:`ExecAssistantType` """ ep = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None data = await self.get(ep, params=params) h: _Helper = _Helper.parse_obj(data) return h.exec_type async def configure(self, *, person_id: str, setting: ExecAssistantType, org_id: str = None): """ Modify Executive Assistant Settings for a Person Modify the executive assistant settings for the specified personId. People with the executive service enabled, can select from a pool of assistants who have been assigned the executive assistant service and who can answer or place calls on their behalf. Executive assistants can set the call forward destination and join or leave an executive's pool. This API requires a full or user administrator auth token with the spark-admin:people_write scope. :param person_id: Unique identifier for the person. :type person_id: str :param setting: New exex assistant settings :type setting: :class:`ExecAssistantType` :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str """ ep = self.f_ep(person_id=person_id) h = _Helper(exec_type=setting) params = org_id and {'orgId': org_id} or None data = h.json() await self.put(ep, params=params, data=data) class AsHotelingApi(AsPersonSettingsApiChild): """ API for person's hoteling settings """ feature = 'hoteling' async def read(self, *, person_id: str, org_id: str = None) -> bool: """ Read Hoteling Settings for a Person Retrieve a person's hoteling settings. As an administrator, you can enable hoteling for people so that their phone profile (phone number, features, and calling plan) is temporarily loaded onto a shared (host) phone. This API requires a full, user, or read-only administrator auth token with a scope of spark-admin:people_read. :param person_id: Unique identifier for the person. :type person_id: str :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str :return: hoteling setting :rtype: bool """ ep = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None data = await self.get(ep, params=params) return data['enabled'] async def configure(self, *, person_id: str, enabled: bool, org_id: str = None): """ Configure Hoteling Settings for a Person Configure a person's hoteling settings. As an administrator, you can enable hoteling for people so that their phone profile (phone number, features, and calling plan) is temporarily loaded onto a shared (host) phone. This API requires a full or user administrator auth token with the spark-admin:people_write scope. :param person_id: Unique identifier for the person. :type person_id: str :param enabled: When true, allow this person to connect to a Hoteling host device. :type enabled: bool :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str """ ep = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None data = json.dumps({'enabled': enabled}) await self.put(ep, params=params, json=data) class AsIncomingPermissionsApi(AsPersonSettingsApiChild): """ API for person's incoming permissions settings """ feature = 'incomingPermission' async def read(self, *, person_id: str, org_id: str = None) -> IncomingPermissions: """ Read Incoming Permission Settings for a Person Retrieve a Person's Incoming Permission Settings You can change the incoming calling permissions for a person if you want them to be different from your organization's default. This API requires a full, user, or read-only administrator auth token with a scope of spark-admin:people_read. :param person_id: Unique identifier for the person. :type person_id: str :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str :return: incoming permission settings for specific user :rtype: :class:`IncomingPermissions` """ ep = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None return IncomingPermissions.parse_obj(await self.get(ep, params=params)) async def configure(self, *, person_id: str, settings: IncomingPermissions, org_id: str = None): """ Configure a Person's Barge In Settings The Barge In feature enables you to use a Feature Access Code (FAC) to answer a call that was directed to another subscriber, or barge-in on the call if it was already answered. Barge In can be used across locations. This API requires a full or user administrator auth token with the spark-admin:people_write scope or a user auth token with spark:people_write scope can be used by a person to update their own settings. :param person_id: Unique identifier for the person. :type person_id: str :param settings: new setting to be applied :type settings: :class:`IncomingPermissions` :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str """ ep = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None await self.put(ep, params=params, data=settings.json()) class AsMonitoringApi(AsPersonSettingsApiChild): """ API for person's call monitoring settings """ feature = 'monitoring' async def read(self, *, person_id: str, org_id: str = None) -> Monitoring: """ Retrieve a Person's Monitoring Settings Retrieves the monitoring settings of the person, which shows specified people, places or, call park extensions under monitoring. Monitors the line status which indicates if a person or place is on a call and if a call has been parked on that extension. This API requires a full, user, or read-only administrator auth token with a scope of spark-admin:people_read. :param person_id: Unique identifier for the person. :type person_id: str :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str :return: monitoring settings :rtype: :class:`Monitoring` """ ep = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None data = await self.get(ep, params=params) return Monitoring.parse_obj(data) async def configure(self, *, person_id: str, settings: Monitoring, org_id: str = None): """ Configure Call Waiting Settings for a Person Configure a Person's Call Waiting Settings With this feature, a person can place an active call on hold and answer an incoming call. When enabled, while you are on an active call, a tone alerts you of an incoming call and you can choose to answer or ignore the call. This API requires a full or user administrator auth token with the spark-admin:people_write scope. :param person_id: Unique identifier for the person. :type person_id: str :param settings: settings for update :type settings: :class:`Monitoring` :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str """ ep = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None data = {} if settings.call_park_notification_enabled is not None: data['enableCallParkNotification'] = settings.call_park_notification_enabled if settings.monitored_elements is not None: id_list = [] for me in settings.monitored_elements: if isinstance(me, str): id_list.append(me) else: id_list.append(me.member and me.member.member_id or me.cpe and me.cpe.cpe_id) data['monitoredElements'] = id_list await self.put(ep, params=params, json=data) class AsNumbersApi(AsPersonSettingsApiChild): """ API for person's numbers """ feature = 'numbers' # TODO: documentation defect: # https://developer.webex.com/docs/api/v1/webex-calling-person-settings-with-additional-settings/get-a-list-of-phone-numbers-for-a-person # says the URL is /v1/people/{personId}/numbers # while it actually is /v1/people/{personId}/features/numbers async def read(self, *, person_id: str, org_id: str = None) -> PersonNumbers: """ Read Do Not Disturb Settings for a Person Retrieve a Person's Do Not Disturb Settings When enabled, this feature will give all incoming calls the busy treatment. Optionally, you can enable a Ring Reminder to play a brief tone on your desktop phone when you receive incoming calls. This API requires a full, user, or read-only administrator auth token with a scope of spark-admin:people_read or a user auth token with spark:people_read scope can be used by a person to read their settings. :param person_id: Unique identifier for the person. :type person_id: str :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str :return: """ # ep = self.ep(path=f'{person_id}/numbers') ep = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None return PersonNumbers.parse_obj(await self.get(ep, params=params)) class AsAuthCodesApi(AsPersonSettingsApiChild): """ API for person's outgoing permission authorization codes """ feature = 'outgoingPermission/authorizationCodes' async def read(self, person_id: str, org_id: str = None) -> list[AuthCode]: """ Retrieve Authorization codes for a Workspace. Authorization codes are used to bypass permissions. This API requires a full or read-only administrator auth token with a scope of spark-admin:workspaces_read or a user auth token with spark:workspaces_read scope can be used to read workspace settings. :param person_id: Unique identifier for the workspace. :type person_id: str :param org_id: Workspace is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str :return: list of authorization codes :rtype: list of :class:`AuthCode` """ url = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None data = await self.get(url, params=params) return parse_obj_as(list[AuthCode], data['authorizationCodes']) async def delete_codes(self, person_id: str, access_codes: list[Union[str, AuthCode]], org_id: str = None): """ Modify Authorization codes for a workspace. Authorization codes are used to bypass permissions. This API requires a full or user administrator auth token with the spark-admin:workspaces_write scope or a user auth token with spark:workspaces_write scope can be used to update workspace settings. :param person_id: Unique identifier for the workspace. :type person_id: str :param access_codes: authorization codes to remove :type access_codes: list[str] :param org_id: Workspace is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str """ url = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None body = {'deleteCodes': [ac.code if isinstance(ac, AuthCode) else ac for ac in access_codes]} await self.put(url, params=params, json=body) async def create(self, person_id: str, code: str, description: str, org_id: str = None): """ Modify Authorization codes for a workspace. Authorization codes are used to bypass permissions. This API requires a full or user administrator auth token with the spark-admin:workspaces_write scope or a user auth token with spark:workspaces_write scope can be used to update workspace settings. :param person_id: Unique identifier for the workspace. :type person_id: str :param code: Indicates an authorization code. :type code: str :param description: Indicates the description of the authorization code. :type description: str :param org_id: Workspace is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str """ url = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None body = {'code': code, 'description': description} await self.post(url, params=params, json=body) @dataclass(init=False) class AsTransferNumbersApi(AsPersonSettingsApiChild): """ API for outgoing permission auto transfer numbers """ feature = 'outgoingPermission/autoTransferNumbers' async def read(self, person_id: str, org_id: str = None) -> AutoTransferNumbers: """ Retrieve Transfer Numbers Settings for a Workspace. When calling a specific call type, this workspace will be automatically transferred to another number. The person assigned the Auto Transfer Number can then approve the call and send it through or reject the call type. You can add up to 3 numbers. This API requires a full or read-only administrator auth token with a scope of spark-admin:workspaces_read or a user auth token with spark:workspaces_read scope can be used to read workspace settings. :param person_id: Unique identifier for the workspace. :type person_id: str :param org_id: Workspace is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str :return: auto transfer numbers :rtype: :class:`AutoTransferNumbers` """ url = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None data = await self.get(url, params=params) return AutoTransferNumbers.parse_obj(data) async def configure(self, person_id: str, settings: AutoTransferNumbers, org_id: str = None): """ Modify Transfer Numbers Settings for a Place. When calling a specific call type, this workspace will be automatically transferred to another number. The person assigned the Auto Transfer Number can then approve the call and send it through or reject the call type. You can add up to 3 numbers. This API requires a full or user administrator auth token with the spark-admin:workspaces_write scope or a user auth token with spark:workspaces_write scope can be used to update workspace settings. :param person_id: Unique identifier for the workspace. :type person_id: str :param settings: new auto transfer numbers :type settings: AutoTransferNumbers :param org_id: Workspace is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str """ url = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None body = settings.json() await self.put(url, params=params, data=body) class AsOutgoingPermissionsApi(AsPersonSettingsApiChild): """ API for person's outgoing permissions settings also used for workspace and location outgoing permissions """ #: Only available for workspaces transfer_numbers: AsTransferNumbersApi #: Only available for workspaces auth_codes: AsAuthCodesApi feature = 'outgoingPermission' def __init__(self, *, session: AsRestSession, base: str = None, workspaces: bool = False, locations: bool = False): super().__init__(session=session, base=base, workspaces=workspaces, locations=locations) if workspaces: # auto transfer numbers API seems to only exist for workspaces self.transfer_numbers = AsTransferNumbersApi(session=session, base=base, workspaces=True) self.auth_codes = AsAuthCodesApi(session=session, base=base, workspaces=True) elif locations: self.transfer_numbers = AsTransferNumbersApi(session=session, base=base, locations=True) self.auth_codes = None else: self.transfer_numbers = None self.auth_codes = None async def read(self, *, person_id: str, org_id: str = None) -> OutgoingPermissions: """ Retrieve a Person's Outgoing Calling Permissions Settings You can change the outgoing calling permissions for a person if you want them to be different from your organization's default. This API requires a full, user, or read-only administrator auth token with a scope of spark-admin:people_read. :param person_id: Unique identifier for the person. :type person_id: str :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str :return: outgoing permission settings for specific user :rtype: :class:`OutgoingPermissions` """ ep = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None return OutgoingPermissions.parse_obj(await self.get(ep, params=params)) async def configure(self, *, person_id: str, settings: OutgoingPermissions, org_id: str = None): """ Configure a Person's Outgoing Calling Permissions Settings Turn on outgoing call settings for this person to override the calling settings from the location that are used by default. This API requires a full or user administrator auth token with the spark-admin:people_write scope or a user auth token with spark:people_write scope can be used by a person to update their own settings. :param person_id: Unique identifier for the person. :type person_id: str :param settings: new setting to be applied :type settings: :class:`OutgoingPermissions` :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. """ ep = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None await self.put(ep, params=params, data=settings.json()) class AsPersonForwardingApi(AsPersonSettingsApiChild): """ API for person's call forwarding settings """ feature = 'callForwarding' async def read(self, *, person_id: str, org_id: str = None) -> PersonForwardingSetting: """ Retrieve a Person's Call Forwarding Settings Three types of call forwarding are supported: * Always โ€“ forwards all incoming calls to the destination you choose. * When busy โ€“ forwards all incoming calls to the destination you chose while the phone is in use or the person is busy. * When no answer โ€“ forwarding only occurs when you are away or not answering your phone. In addition, the Business Continuity feature will send calls to a destination of your choice if your phone is not connected to the network for any reason, such as power outage, failed Internet connection, or wiring problem This API requires a full, user, or read-only administrator auth token with a scope of spark-admin:people_read or a user auth token with spark:people_read scope can be used by a person to read their own settings. :param person_id: Unique identifier for the person. :type person_id: str :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str :return: user's forwarding settings :rtype: PersonForwardingSetting """ ep = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None return PersonForwardingSetting.parse_obj(await self.get(ep, params=params)) async def configure(self, *, person_id: str, forwarding: PersonForwardingSetting, org_id: str = None): """ Configure a Person's Call Forwarding Settings Three types of call forwarding are supported: * Always โ€“ forwards all incoming calls to the destination you choose. * When busy โ€“ forwards all incoming calls to the destination you chose while the phone is in use or the person is busy. * When no answer โ€“ forwarding only occurs when you are away or not answering your phone. In addition, the Business Continuity feature will send calls to a destination of your choice if your phone is not connected to the network for any reason, such as power outage, failed Internet connection, or wiring problem This API requires a full or user administrator auth token with the spark-admin:people_write scope or a user auth token with spark:people_write scope can be used by a person to update their settings. :param person_id: Unique identifier for the person. :type person_id: str :param forwarding: new forwarding settings :type forwarding: PersonForwardingSetting :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str """ ep = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None # system_max_number_of_ring cannot be used in update data = forwarding.json( exclude={'call_forwarding': {'no_answer': {'system_max_number_of_rings': True}}}) await self.put(ep, params=params, data=data) class AsPrivacyApi(AsPersonSettingsApiChild): """ API for person's call monitoring settings """ feature = 'privacy' async def read(self, *, person_id: str, org_id: str = None) -> Privacy: """ Get a person's Privacy Settings Get a person's privacy settings for the specified person id. The privacy feature enables the person's line to be monitored by others and determine if they can be reached by Auto Attendant services. This API requires a full, user, or read-only administrator auth token with a scope of spark-admin:people_read. :param person_id: Unique identifier for the person. :type person_id: str :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str :return: privacy settings :rtype: :class:`Privacy` """ ep = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None data = await self.get(ep, params=params) return Privacy.parse_obj(data) async def configure(self, *, person_id: str, settings: Privacy, org_id: str = None): """ Configure Call Waiting Settings for a Person Configure a Person's Call Waiting Settings With this feature, a person can place an active call on hold and answer an incoming call. When enabled, while you are on an active call, a tone alerts you of an incoming call and you can choose to answer or ignore the call. This API requires a full or user administrator auth token with the spark-admin:people_write scope. :param person_id: Unique identifier for the person. :type person_id: str :param settings: settings for update :type settings: :class:`Monitoring` :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str """ ep = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None data = json.loads(settings.json()) if settings.monitoring_agents is not None: id_list = [] for ma in settings.monitoring_agents: if isinstance(ma, str): id_list.append(ma) else: id_list.append(ma.agent_id) data['monitoringAgents'] = id_list await self.put(ep, params=params, json=data) class AsPushToTalkApi(AsPersonSettingsApiChild): """ API for person's PTT settings """ feature = 'pushToTalk' async def read(self, *, person_id: str, org_id: str = None) -> PushToTalkSettings: """ Read Push-to-Talk Settings for a Person Retrieve a Person's Push-to-Talk Settings Push-to-Talk allows the use of desk phones as either a one-way or two-way intercom that connects people in different parts of your organization. This API requires a full, user, or read-only administrator auth token with a scope of spark-admin:people_read. :param person_id: Unique identifier for the person. :type person_id: str :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str :return: PTT settings for specific user :rtype: PushToTalkSettings """ ep = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None return PushToTalkSettings.parse_obj(await self.get(ep, params=params)) async def configure(self, *, person_id: str, settings: PushToTalkSettings, org_id: str = None): """ Configure Push-to-Talk Settings for a Person Configure a Person's Push-to-Talk Settings Push-to-Talk allows the use of desk phones as either a one-way or two-way intercom that connects people in different parts of your organization. This API requires a full or user administrator auth token with the spark-admin:people_write scope. :param person_id: Unique identifier for the person. :type person_id: str :param settings: new setting to be applied. For members only the ID needs to be set :type settings: PushToTalkSettings :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. """ ep = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None if settings.members: # for an update member is just a list of IDs body_settings = settings.copy(deep=True) members = [m.member_id if isinstance(m, MonitoredMember) else m for m in settings.members] body_settings.members = members else: body_settings = settings body = body_settings.json(exclude_none=False, exclude_unset=True) await self.put(ep, params=params, data=body) class AsReceptionistApi(AsPersonSettingsApiChild): """ API for person's receptionist client settings """ feature = 'reception' async def read(self, *, person_id: str, org_id: str = None) -> ReceptionistSettings: """ Read Receptionist Client Settings for a Person Retrieve a Person's Receptionist Client Settings To help support the needs of your front-office personnel, you can set up people or workspaces as telephone attendants so that they can screen all incoming calls to certain numbers within your organization. This API requires a full, user, or read-only administrator auth token with a scope of spark-admin:people_read. :param person_id: Unique identifier for the person. :type person_id: str :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str :return: receptionist client settings :rtype: :class:`ReceptionistSettings` """ ep = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None data = await self.get(ep, params=params) return ReceptionistSettings.parse_obj(data) async def configure(self, *, person_id: str, settings: ReceptionistSettings, org_id: str = None): """ Modify Executive Assistant Settings for a Person Modify the executive assistant settings for the specified personId. People with the executive service enabled, can select from a pool of assistants who have been assigned the executive assistant service and who can answer or place calls on their behalf. Executive assistants can set the call forward destination and join or leave an executive's pool. This API requires a full or user administrator auth token with the spark-admin:people_write scope. :param person_id: Unique identifier for the person. :type person_id: str :param settings: New receptionist client settings :type settings: :class:`ReceptionistSettings` :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str """ if settings.enabled is None: raise ValueError('enabled is a mandatory parameter for updates') if settings.monitored_members and not settings.enabled: raise ValueError('when setting members enabled has to be True') ep = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None data = json.loads(settings.json()) if settings.monitored_members is not None: id_list = [] for me in settings.monitored_members: if isinstance(me, str): id_list.append(me) else: id_list.append(me.member_id) data['monitoredMembers'] = id_list await self.put(ep, params=params, json=data) class AsScheduleApi(AsApiChild, base='telephony/config/locations'): """ Schedules API """ def __init__(self, *, session: AsRestSession, base: ScheduleApiBase): super().__init__(session=session, base=base.value) if base == ScheduleApiBase.people: self.after_id = '/features/schedules' elif base == ScheduleApiBase.locations: self.after_id = '/schedules' else: raise ValueError('unexpected value for base') def _endpoint(self, *, obj_id: str, schedule_type: ScheduleTypeOrStr = None, schedule_id: str = None, event_id: str = None): """ location specific feature endpoint like v1/telephony/config/locations/{obj_id}/schedules/.... or v1/people/{obj_id}/features/schedules/.... :meta private: :param obj_id: Unique identifier for the location or user :type obj_id: str :param schedule_type: type of schedule :type schedule_type: ScheduleType :param schedule_id: schedule id :type schedule_id: str :return: full endpoint :rtype: str """ ep = self.ep(path=f'{obj_id}{self.after_id}') if schedule_type is not None: schedule_type = ScheduleType.type_or_str(schedule_type) ep = f'{ep}/{schedule_type.value}/{schedule_id}' if event_id is not None: event_id = event_id and f'/{event_id}' or '' ep = f'{ep}/events{event_id}' return ep def list_gen(self, *, obj_id: str, org_id: str = None, schedule_type: ScheduleType = None, name: str = None, **params) -> AsyncGenerator[Schedule, None, None]: """ List of Schedules for a Person or location List schedules for a person or location in an organization. Schedules are used to support calling features and can be defined at the location or person level. businessHours schedules allow you to apply specific call settings at different times of the day or week by defining one or more events. holidays schedules define exceptions to normal business hours by defining one or more events. This API requires a full, user, or read-only administrator auth token with a scope of spark-admin:people_read. :param obj_id: Return the list of schedules for this location or user :type obj_id: str :param org_id: List schedules for this organization. :type org_id: str :param schedule_type: Type of the schedule. businessHours - Business hours schedule type. holidays - Holidays schedule type. :param name: Only return schedules with the matching name. :return: yields schedules """ url = self._endpoint(obj_id=obj_id) if schedule_type is not None: params['type'] = schedule_type.value if name is not None: params['name'] = name if org_id is not None: params['orgId'] = org_id # noinspection PyTypeChecker return self.session.follow_pagination(url=url, model=Schedule, params=params or None) async def list(self, *, obj_id: str, org_id: str = None, schedule_type: ScheduleType = None, name: str = None, **params) -> List[Schedule]: """ List of Schedules for a Person or location List schedules for a person or location in an organization. Schedules are used to support calling features and can be defined at the location or person level. businessHours schedules allow you to apply specific call settings at different times of the day or week by defining one or more events. holidays schedules define exceptions to normal business hours by defining one or more events. This API requires a full, user, or read-only administrator auth token with a scope of spark-admin:people_read. :param obj_id: Return the list of schedules for this location or user :type obj_id: str :param org_id: List schedules for this organization. :type org_id: str :param schedule_type: Type of the schedule. businessHours - Business hours schedule type. holidays - Holidays schedule type. :param name: Only return schedules with the matching name. :return: yields schedules """ url = self._endpoint(obj_id=obj_id) if schedule_type is not None: params['type'] = schedule_type.value if name is not None: params['name'] = name if org_id is not None: params['orgId'] = org_id # noinspection PyTypeChecker return [o async for o in self.session.follow_pagination(url=url, model=Schedule, params=params or None)] async def details(self, *, obj_id: str, schedule_type: ScheduleTypeOrStr, schedule_id: str, org_id: str = None) -> Schedule: """ Get Details for a Schedule Retrieve Schedule details. A time schedule establishes a set of times during the day or holidays in the year in which a feature, for example auto attendants, can perform a specific action. Retrieving schedule details requires a full or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param obj_id: Retrieve schedule details in this location or user :type obj_id: str :param schedule_type: Type of the schedule. businessHours - Business hours schedule type. holidays - Holidays schedule type. :type schedule_type: ScheduleTypeOrStr :param schedule_id: Retrieve the schedule with the matching ID. :type schedule_id: str :param org_id: Retrieve schedule details from this organization. :type org_id: str :return: """ params = org_id and {'orgId': org_id} or None url = self._endpoint(obj_id=obj_id, schedule_type=schedule_type, schedule_id=schedule_id) data = await self.get(url, params=params) result = Schedule.parse_obj(data) return result async def create(self, *, obj_id: str, schedule: Schedule, org_id: str = None) -> str: """ Create a Schedule Create new Schedule for the given location. A time schedule establishes a set of times during the day or holidays in the year in which a feature, for example auto attendants, can perform a specific action. Creating a schedule requires a full administrator auth token with a scope of spark-admin:telephony_config_write. :param obj_id: Create the schedule for this location or user :type obj_id: str :param schedule: Schedule to be created :type schedule: Schedule :param org_id: Create the schedule for this organization. :type org_id: str :return: ID of the newly created schedule. :rtype: str """ schedule_data = schedule.create_update() params = org_id and {'orgId': org_id} or None url = self._endpoint(obj_id=obj_id) data = await self.post(url, data=schedule_data, params=params) result = data['id'] return result async def update(self, *, obj_id: str, schedule: Schedule, schedule_type: ScheduleTypeOrStr = None, schedule_id: str = None, org_id: str = None) -> str: """ Update a Schedule Update the designated Schedule. A time schedule establishes a set of times during the day or holidays in the year in which a feature, for example auto attendants, can perform a specific action. Updating a schedule requires a full administrator auth token with a scope of spark-admin:telephony_config_write. NOTE: The Schedule ID will change upon modification of the Schedule name :param obj_id: Location or user for which this schedule exists :type obj_id: str :param schedule: data for the update :type schedule: Schedule :param schedule_type: Type of the schedule. Default: schedule_type from schedule businessHours - Business hours schedule type. holidays - Holidays schedule type. :type schedule_type: ScheduleTypeOrStr :param schedule_id: Update schedule with the matching ID. Default: schedule_id from schedule :type schedule_id: str :param org_id: Update schedule from this organization. :type org_id: str :return: schedule id """ schedule_type = schedule_type or schedule.schedule_type schedule_id = schedule_id or schedule.schedule_id schedule_data = schedule.create_update(update=True) params = org_id and {'orgId': org_id} or None url = self._endpoint(obj_id=obj_id, schedule_type=schedule_type, schedule_id=schedule_id) data = await self.put(url, data=schedule_data, params=params) return data['id'] async def delete_schedule(self, *, obj_id: str, schedule_type: ScheduleTypeOrStr, schedule_id: str, org_id: str = None): """ Delete a Schedule Delete the designated Schedule. A time schedule establishes a set of times during the day or holidays in the year in which a feature, for example auto attendants, can perform a specific action. Deleting a schedule requires a full administrator auth token with a scope of spark-admin:telephony_config_write. :param obj_id: Location or user from which to delete a schedule. :type obj_id: str :param schedule_type: Type of the schedule. businessHours - Business hours schedule type. holidays - Holidays schedule type. :type schedule_type: ScheduleTypeOrStr :param schedule_id: Delete the schedule with the matching ID. :type schedule_id: str :param org_id: Retrieve schedule details from this organization. :type org_id: str :return: """ url = self._endpoint(obj_id=obj_id, schedule_type=schedule_type, schedule_id=schedule_id) params = org_id and {'orgId': org_id} or None await self.delete(url, params=params) async def event_details(self, *, obj_id: str, schedule_type: ScheduleTypeOrStr, schedule_id: str, event_id: str, org_id: str = None) -> Event: """ Get Details for a Schedule Event Retrieve Schedule Event details. A time schedule establishes a set of times during the day or holidays in the year in which a feature, for example auto attendants, can perform a specific action. Retrieving schedule event details requires a full or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param obj_id: Retrieve schedule event details for this location or user :type obj_id: str :param schedule_type: Type of the schedule. businessHours - Business hours schedule type. holidays - Holidays schedule type. :type schedule_type: ScheduleTypeOrStr :param schedule_id: Retrieve schedule event details for schedule with the matching ID. :type schedule_id: str :param event_id: Retrieve the schedule event with the matching schedule event ID. :type event_id: str :param org_id: Retrieve schedule event details from this organization. :type org_id: str :return: """ params = org_id and {'orgId': org_id} or None url = self._endpoint(obj_id=obj_id, schedule_type=schedule_type, schedule_id=schedule_id, event_id=event_id) data = await self.get(url, params=params) result = Event.parse_obj(data) return result async def event_create(self, *, obj_id: str, schedule_type: ScheduleTypeOrStr, schedule_id: str, event: Event, org_id: str = None) -> str: """ Create a Schedule Event Create new Event for the given location or user Schedule. A time schedule establishes a set of times during the day or holidays in the year in which a feature, for example auto attendants, can perform a specific action. Creating a schedule event requires a full administrator auth token with a scope of spark-admin:telephony_config_write. :param obj_id: Create the schedule for this location. :type obj_id: str :param schedule_type: Type of the schedule. businessHours - Business hours schedule type. holidays - Holidays schedule type. :type schedule_type: ScheduleTypeOrStr :param schedule_id: Create event for a given schedule ID. :type schedule_id: str :param event: event data :type event: Event :param org_id: Retrieve schedule event details from this organization. :type org_id: str :return: event id :rtype: str """ params = org_id and {'orgId': org_id} or None url = self._endpoint(obj_id=obj_id, schedule_type=schedule_type, schedule_id=schedule_id, event_id='') data = event.json(exclude={'event_id'}) data = await self.post(url, data=data, params=params) return data['id'] async def event_update(self, *, obj_id: str, schedule_type: ScheduleTypeOrStr, schedule_id: str, event: Event, event_id: str = None, org_id: str = None) -> str: """ Update a Schedule Event Update the designated Schedule Event. A time schedule establishes a set of times during the day or holidays in the year in which a feature, for example auto attendants, can perform a specific action. Updating a schedule event requires a full administrator auth token with a scope of spark-admin:telephony_config_write. NOTE: The Schedule Event ID will change upon modification of the Schedule event name. :param obj_id: Location or user for which this schedule event exists. :type obj_id: str :param schedule_type: Type of the schedule. businessHours - Business hours schedule type. holidays - Holidays schedule type. :type schedule_type: ScheduleTypeOrStr :param schedule_id: Update schedule event with the matching schedule ID. :type schedule_id: str :param event: update settings :type event: Event :param event_id: Update the schedule event with the matching schedule event ID. Default: event id from event :type event_id: str :param org_id: Update schedule from this organization. :type org_id: str :return: event id; changed if name changed """ event_id = event_id or event.event_id params = org_id and {'orgId': org_id} or None url = self._endpoint(obj_id=obj_id, schedule_type=schedule_type, schedule_id=schedule_id, event_id=event_id) event_data = event.json(exclude={'event_id'}) data = await self.put(url, data=event_data, params=params) return data['id'] async def event_delete(self, *, obj_id: str, schedule_type: ScheduleTypeOrStr, schedule_id: str, event_id: str, org_id: str = None): """ Delete a Schedule Event Delete the designated Schedule Event. A time schedule establishes a set of times during the day or holidays in the year in which a feature, for example auto attendants, can perform a specific action. Deleting a schedule event requires a full administrator auth token with a scope of spark-admin:telephony_config_write. :param obj_id: Location or user from which to delete a schedule. :type obj_id: str :param schedule_type: Type of the schedule. businessHours - Business hours schedule type. holidays - Holidays schedule type. :type schedule_type: ScheduleTypeOrStr :param schedule_id: Delete schedule event with the matching schedule ID. :type schedule_id: str :param event_id: Delete the schedule event with the matching schedule event ID. Default: event id from event :type event_id: str :param org_id: Delete schedule from this organization. :type org_id: str """ params = org_id and {'orgId': org_id} or None url = self._endpoint(obj_id=obj_id, schedule_type=schedule_type, schedule_id=schedule_id, event_id=event_id) await self.delete(url, params=params) class AsVoicemailApi(AsPersonSettingsApiChild): """ API for person's call voicemail settings """ feature = 'voicemail' async def read(self, *, person_id: str, org_id: str = None) -> VoicemailSettings: """ Read Voicemail Settings for a Person Retrieve a Person's Voicemail Settings The voicemail feature transfers callers to voicemail based on your settings. You can then retrieve voice messages via Voicemail. Voicemail audio is sent in Waveform Audio File Format, .wav, format. Optionally, notifications can be sent to a mobile phone via text or email. These notifications will not include the voicemail files. This API requires a full, user, or read-only administrator auth token with a scope of spark-admin:people_read or a user auth token with spark:people_read scope can be used by a person to read their settings. :param person_id: Unique identifier for the person. :type person_id: str :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str :return: user's voicemail settings :rtype: VoicemailSettings """ url = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None return VoicemailSettings.parse_obj(await self.get(url, params=params)) async def configure(self, *, person_id: str, settings: VoicemailSettings, org_id: str = None): """ Configure Voicemail Settings for a Person Configure a person's Voicemail Settings The voicemail feature transfers callers to voicemail based on your settings. You can then retrieve voice messages via Voicemail. Voicemail audio is sent in Waveform Audio File Format, .wav, format. Optionally, notifications can be sent to a mobile phone via text or email. These notifications will not include the voicemail files. This API requires a full or user administrator auth token with the spark-admin:people_write scope or a user auth token with spark:people_write scope can be used by a person to update their settings. :return: """ # some settings can't be part of an update data = settings.json(exclude={'send_busy_calls': {'greeting_uploaded': True}, 'send_unanswered_calls': {'system_max_number_of_rings': True, 'greeting_uploaded': True}, 'voice_message_forwarding_enabled': True }) url = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None await self.put(url, data=data, params=params) async def _configure_greeting(self, *, person_id: str, content: Union[BufferedReader, str], upload_as: str = None, org_id: str = None, greeting_key: str): """ handled greeting configuration :param person_id: Unique identifier for the person. :type person_id: str :param content: the file to be uploaded, can be a path to a file or a buffered reader (opened file); if a reader referring to an open file is passed then make sure to open the file as binary b/c otherwise the content length might be calculated wrong :type content: Union[BufferedReader, str] :param upload_as: filename for the content. Only required if content is a reader; has to be a .wav file name. :type upload_as: str :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str :param greeting_key: 'uploadBusyGreeting' or 'uploadNoAnswerGreeting' """ if isinstance(content, str): upload_as = os.path.basename(content) content = open(content, mode='rb') must_close = True else: must_close = False # an existing reader if not upload_as: raise ValueError('upload_as is required') encoder = MultipartEncoder(fields={'file': (upload_as, content, 'audio/wav')}) ep = self.f_ep(person_id=person_id, path=f'actions/{greeting_key}/invoke') params = org_id and {'orgId': org_id} or None try: await self.post(ep, data=encoder, headers={'Content-Type': encoder.content_type}, params=params) finally: if must_close: content.close() def configure_busy_greeting(self, *, person_id: str, content: Union[BufferedReader, str], upload_as: str = None, org_id: str = None): """ Configure Busy Voicemail Greeting for a Person Configure a Person's Busy Voicemail Greeting by uploading a Waveform Audio File Format, .wav, encoded audio file. Your request will need to be a multipart/form-data request rather than JSON, using the audio/wav Content-Type. This API requires a full or user administrator auth token with the spark-admin:people_write scope or a user auth token with spark:people_write scope can be used by a person to update their settings. :param person_id: Unique identifier for the person. :type person_id: str :param content: the file to be uploaded, can be a path to a file or a buffered reader (opened file); if a reader referring to an open file is passed then make sure to open the file as binary b/c otherwise the content length might be calculated wrong :type content: Union[BufferedReader, str] :param upload_as: filename for the content. Only required if content is a reader; has to be a .wav file name. :type upload_as: str :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str """ self._configure_greeting(person_id=person_id, content=content, upload_as=upload_as, org_id=org_id, greeting_key='uploadBusyGreeting') def configure_no_answer_greeting(self, person_id: str, content: Union[BufferedReader, str], upload_as: str = None, org_id: str = None): """ Configure No Answer Voicemail Greeting for a Person Configure a Person's No Answer Voicemail Greeting by uploading a Waveform Audio File Format, .wav, encoded audio file. Your request will need to be a multipart/form-data request rather than JSON, using the audio/wav Content-Type. This API requires a full or user administrator auth token with the spark-admin:people_write scope or a user auth token with spark:people_write scope can be used by a person to update their settings. :param person_id: Unique identifier for the person. :type person_id: str :param content: the file to be uploaded, can be a path to a file or a buffered reader (opened file); if a reader referring to an open file is passed then make sure to open the file as binary b/c otherwise the content length might be calculated wrong :type content: Union[BufferedReader, str] :param upload_as: filename for the content. Only required if content is a reader; has to be a .wav file name. :type upload_as: str :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str """ self._configure_greeting(person_id=person_id, content=content, upload_as=upload_as, org_id=org_id, greeting_key='uploadNoAnswerGreeting') @dataclass(init=False) class AsPersonSettingsApi(AsApiChild, base='people'): """ API for all user level settings """ appservices: AsAppServicesApi barge: AsBargeApi dnd: AsDndApi call_intercept: AsCallInterceptApi call_recording: AsCallRecordingApi call_waiting: AsCallWaitingApi caller_id: AsCallerIdApi calling_behavior: AsCallingBehaviorApi exec_assistant: AsExecAssistantApi forwarding: AsPersonForwardingApi hoteling: AsHotelingApi monitoring: AsMonitoringApi numbers: AsNumbersApi permissions_in: AsIncomingPermissionsApi permissions_out: AsOutgoingPermissionsApi privacy: AsPrivacyApi push_to_talk: AsPushToTalkApi receptionist: AsReceptionistApi schedules: AsScheduleApi voicemail: AsVoicemailApi def __init__(self, session: AsRestSession): super().__init__(session=session) self.appservices = AsAppServicesApi(session=session) self.barge = AsBargeApi(session=session) self.dnd = AsDndApi(session=session) self.call_intercept = AsCallInterceptApi(session=session) self.call_recording = AsCallRecordingApi(session=session) self.call_waiting = AsCallWaitingApi(session=session) self.calling_behavior = AsCallingBehaviorApi(session=session) self.caller_id = AsCallerIdApi(session=session) self.exec_assistant = AsExecAssistantApi(session=session) self.forwarding = AsPersonForwardingApi(session=session) self.hoteling = AsHotelingApi(session=session) self.monitoring = AsMonitoringApi(session=session) self.numbers = AsNumbersApi(session=session) self.permissions_in = AsIncomingPermissionsApi(session=session) self.permissions_out = AsOutgoingPermissionsApi(session=session) self.privacy = AsPrivacyApi(session=session) self.push_to_talk = AsPushToTalkApi(session=session) self.receptionist = AsReceptionistApi(session=session) self.schedules = AsScheduleApi(session=session, base=ScheduleApiBase.people) self.voicemail = AsVoicemailApi(session=session) async def reset_vm_pin(self, person_id: str, org_id: str = None): """ Reset Voicemail PIN Reset a voicemail PIN for a person. The voicemail feature transfers callers to voicemail based on your settings. You can then retrieve voice messages via Voicemail. A voicemail PIN is used to retrieve your voicemail messages. This API requires a full or user administrator auth token with the spark-admin:people_write scope. :param person_id: Unique identifier for the person. :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. """ params = org_id and {'orgId': org_id} or None url = self.ep(f'{person_id}/features/voicemail/actions/resetPin/invoke') await self.post(url, params=params) class AsAccessCodesApi(AsApiChild, base='telephony/config/locations'): """ Access codes API """ def _endpoint(self, *, location_id: str, path: str = None) -> str: """ location specific feature endpoint like /v1/telephony/config/locations/{locationId}/outgoingPermission/accessCodes} :meta private: :param location_id: Unique identifier for the location. :type location_id: str :param path: additional path :type: path: str :return: full endpoint :rtype: str """ path = path and f'/{path}' or '' ep = self.session.ep(f'telephony/config/locations/{location_id}/outgoingPermission/accessCodes{path}') return ep async def read(self, *, location_id: str, org_id: str = None) -> list[AuthCode]: """ Get Location Access Code Retrieve access codes details for a customer location. Use Access Codes to bypass the set permissions for all persons/workspaces at this location. Retrieving access codes details requires a full, user or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param location_id: Retrieve access codes details for this location. :type location_id: str :param org_id: Retrieve access codes details for a customer location in this organization :type org_id: str :return: list of :class:`wxc_sdk.common.CallPark` """ params = org_id and {'orgId': org_id} or None url = self._endpoint(location_id=location_id) data = await self.get(url, params=params) return parse_obj_as(list[AuthCode], data['accessCodes']) async def create(self, *, location_id: str, access_codes: list[AuthCode], org_id: str = None) -> list[AuthCode]: """ :param location_id: Add new access code for this location. :type location_id: str :param access_codes: Access code details :type access_codes: list of :class:`wxc_sdk.common.AuthCode` :param org_id: Add new access code for this organization. :type org_id: str """ params = org_id and {'orgId': org_id} or None url = self._endpoint(location_id=location_id) body = {'accessCodes': [json.loads(ac.json()) for ac in access_codes]} await self.post(url, json=body, params=params) async def delete_codes(self, *, location_id: str, access_codes: list[Union[str, AuthCode]], org_id: str = None) -> list[AuthCode]: """ Delete Access Code Location Deletes the access code details for a particular location for a customer. Use Access Codes to bypass the set permissions for all persons/workspaces at this location. Modifying the access code location details requires a full administrator auth token with a scope of spark-admin:telephony_config_write. :param location_id: Deletes the access code details for this location. :type location_id: str :param access_codes: access codes to delete :type access_codes: list of :class:`wxc_sdk.common.AuthCode` or str :param org_id: Delete access codes from this organization. :type org_id: str """ params = org_id and {'orgId': org_id} or None url = self._endpoint(location_id=location_id) body = {'deleteCodes': [ac.code if isinstance(ac, AuthCode) else ac for ac in access_codes]} await self.put(url, json=body, params=params) class AsForwardingApi: """ API for forwarding settings on call queues, hunt groups, and auto attendants """ def __init__(self, session: AsRestSession, feature_selector: FeatureSelector): self._session = session self._feature = feature_selector def _endpoint(self, location_id: str, feature_id: str, path: str = None): """ :meta private: :param location_id: :param feature_id: :param path: :return: """ path = path and f'/{path}' or '' ep = self._session.ep(path=f'telephony/config/locations/{location_id}/{self._feature.value}/' f'{feature_id}/callForwarding{path}') return ep async def settings(self, location_id: str, feature_id: str, org_id: str = None) -> CallForwarding: """ Retrieve Call Forwarding settings for the designated feature including the list of call forwarding rules. :param location_id: Location in which this feature exists. :type location_id: str :param feature_id: Retrieve the call forwarding settings for this entity :type feature_id: str :param org_id: Retrieve call forwarding settings from this organization. :type org_id: str :return: call forwarding settings :rtype: class:`CallForwarding` """ params = org_id and {'orgId': org_id} or {} url = self._endpoint(location_id=location_id, feature_id=feature_id) data = await self._session.rest_get(url=url, params=params) result = CallForwarding.parse_obj(data['callForwarding']) return result async def update(self, location_id: str, feature_id: str, forwarding: CallForwarding, org_id: str = None): """ Update Call Forwarding Settings for a feature Update Call Forwarding settings for the designated feature. Updating call forwarding settings for a feature requires a full administrator auth token with a scope of spark-admin:telephony_config_write. :param location_id: Location in which this feature exists. :type location_id: str :param feature_id: Update call forwarding settings for this feature. :type feature_id: str :param forwarding: Forwarding settings :type forwarding: :class:`CallForwarding` :param org_id: Update feature forwarding settings from this organization. :type org_id: str """ params = org_id and {'orgId': org_id} or {} url = self._endpoint(location_id=location_id, feature_id=feature_id) body = forwarding.dict() # update only has 'id' and 'enabled' in rules # determine names of ForwardingRule fields to remove to_pop = [field for field in ForwardingRule.__fields__ if field not in {'id', 'enabled'}] for rule in body['rules']: rule: Dict for field in to_pop: rule.pop(field, None) body = {'callForwarding': body} await self._session.rest_put(url=url, json=body, params=params) async def create_call_forwarding_rule(self, location_id: str, feature_id: str, forwarding_rule: ForwardingRuleDetails, org_id: str = None) -> str: """ Create a Selective Call Forwarding Rule feature A selective call forwarding rule for feature to be forwarded or not forwarded to the designated number, based on the defined criteria. Note that the list of existing call forward rules is available feature's call forwarding settings. :param location_id: Location in which the call queue exists. :type location_id: str :param feature_id: Create the rule for this feature :type feature_id: str :param forwarding_rule: details of rule to be created :type forwarding_rule: :class:`ForwardingRuleDetails` :param org_id: Create the feature forwarding rule for this organization. :type org_id: str :return: forwarding rule id :rtype; str """ url = self._endpoint(location_id=location_id, feature_id=feature_id, path='selectiveRules') body = forwarding_rule.dict() params = org_id and {'orgId': org_id} or None data = await self._session.rest_post(url=url, json=body, params=params) return data['id'] async def call_forwarding_rule(self, location_id: str, feature_id: str, rule_id: str, org_id: str = None) -> ForwardingRuleDetails: """ Retrieve a Selective Call Forwarding Rule's settings for the designated Call Queue. A selective call forwarding rule for feature allows calls to be forwarded or not forwarded to the designated number, based on the defined criteria. Note that the list of existing call forward rules is available in the feature's call forwarding settings. :param location_id: Location in which the feature exists. :type location_id: stre :param feature_id: Retrieve setting for a rule for this feature. :type feature_id: str :param rule_id: feature rule you are retrieving settings for. :type rule_id: str :param org_id: Retrieve feature forwarding settings from this organization. :type org_id: str :return: call forwarding rule details :rtype: :class:`ForwardingRuleDetails` """ url = self._endpoint(location_id=location_id, feature_id=feature_id, path=f'selectiveRules/{rule_id}') params = org_id and {'orgId': org_id} or None data = await self._session.rest_get(url=url, params=params) result = ForwardingRuleDetails.parse_obj(data) return result async def update_call_forwarding_rule(self, location_id: str, feature_id: str, rule_id: str, forwarding_rule: ForwardingRuleDetails, org_id: str = None) -> str: """ Update a Selective Call Forwarding Rule's settings for the designated feature. A selective call forwarding rule for feature allows calls to be forwarded or not forwarded to the designated number, based on the defined criteria. Note that the list of existing call forward rules is available in the feature's call forwarding settings. NOTE: The Call Forwarding Rule ID will change upon modification of the Call Forwarding Rule name. :param location_id: Location in which the feature exists. :type location_id: str :param feature_id: Update settings for a rule for this feature. :type feature_id: str :param rule_id: feature you are updating settings for. :type rule_id: str :param forwarding_rule: forwarding rule details for update :type forwarding_rule: :class:`ForwardingRuleDetails` :param org_id: Update feature rule settings for this organization. :type org_id: str :return: new call forwarding rule id :rtype: str """ url = self._endpoint(location_id=location_id, feature_id=feature_id, path=f'selectiveRules/{rule_id}') params = org_id and {'orgId': org_id} or None body = forwarding_rule.dict() data = await self._session.rest_put(url=url, params=params, json=body) return data['id'] async def delete_call_forwarding_rule(self, location_id: str, feature_id: str, rule_id: str, org_id: str = None): """ Delete a Selective Call Forwarding Rule for the designated feature. A selective call forwarding rule for a feature allows calls to be forwarded or not forwarded to the designated number, based on the defined criteria. Note that the list of existing call forward rules is available in the feature's call forwarding settings. """ url = self._endpoint(location_id=location_id, feature_id=feature_id, path=f'selectiveRules/{rule_id}') params = org_id and {'orgId': org_id} or None await self._session.delete(url=url, params=params) class AsAutoAttendantApi(AsApiChild, base='telephony/config/autoAttendants'): """ Auto attendant API """ forwarding: AsForwardingApi def __init__(self, session: AsRestSession): super().__init__(session=session) self.forwarding = AsForwardingApi(session=session, feature_selector=FeatureSelector.auto_attendants) def _endpoint(self, *, location_id: str = None, auto_attendant_id: str = None) -> str: """ auto attendant specific feature endpoint like /v1/telephony/config/locations/{locationId}/autoAttendants/{ auto_attendant_id} :meta private: :param location_id: Unique identifier for the location. :type location_id: str :param auto_attendant_id: auto attendant id :type auto_attendant_id: str :return: full endpoint :rtype: str """ if location_id is None: return self.session.ep('telephony/config/autoAttendants') else: ep = self.session.ep(f'telephony/config/locations/{location_id}/autoAttendants') if auto_attendant_id: ep = f'{ep}/{auto_attendant_id}' return ep def list_gen(self, *, org_id: str = None, location_id: str = None, name: str = None, phone_number: str = None, **params) -> AsyncGenerator[AutoAttendant, None, None]: """ Read the List of Auto Attendants List all Auto Attendants for the organization. Auto attendants play customized prompts and provide callers with menu options for routing their calls through your system. Retrieving this list requires a full or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param org_id: List auto attendants for this organization. :type org_id: str :param location_id: Return the list of auto attendants for this location. :type location_id: str :param name: Only return auto attendants with the matching name. :type name: str :param phone_number: Only return auto attendants with the matching phone number. :type phone_number: str :return: yields :class:`AutoAttendant` objects """ params.update((to_camel(k), v) for i, (k, v) in enumerate(locals().items()) if i and v is not None and k != 'params') url = self._endpoint() # noinspection PyTypeChecker return self.session.follow_pagination(url=url, model=AutoAttendant, params=params, item_key='autoAttendants') async def list(self, *, org_id: str = None, location_id: str = None, name: str = None, phone_number: str = None, **params) -> List[AutoAttendant]: """ Read the List of Auto Attendants List all Auto Attendants for the organization. Auto attendants play customized prompts and provide callers with menu options for routing their calls through your system. Retrieving this list requires a full or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param org_id: List auto attendants for this organization. :type org_id: str :param location_id: Return the list of auto attendants for this location. :type location_id: str :param name: Only return auto attendants with the matching name. :type name: str :param phone_number: Only return auto attendants with the matching phone number. :type phone_number: str :return: yields :class:`AutoAttendant` objects """ params.update((to_camel(k), v) for i, (k, v) in enumerate(locals().items()) if i and v is not None and k != 'params') url = self._endpoint() # noinspection PyTypeChecker return [o async for o in self.session.follow_pagination(url=url, model=AutoAttendant, params=params, item_key='autoAttendants')] async def by_name(self, *, name: str, location_id: str = None, org_id: str = None) -> Optional[AutoAttendant]: """ Get auto attendant info by name :param location_id: :param name: :param org_id: :return: """ return next((hg for hg in await self.list(name=name, location_id=location_id, org_id=org_id) if hg.name == name), None) async def details(self, *, location_id: str, auto_attendant_id: str, org_id: str = None) -> AutoAttendant: """ Get Details for an Auto Attendant Retrieve an Auto Attendant details. Auto attendants play customized prompts and provide callers with menu options for routing their calls through your system. Retrieving an auto attendant details requires a full or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param location_id: Retrieve an auto attendant details in this location. :type location_id: str :param auto_attendant_id: Retrieve the auto attendant with the matching ID. :type auto_attendant_id: str :param org_id: Retrieve auto attendant details from this organization. :type org_id: str :return: auto attendant details :rtype: :class:`AutoAttendant` """ url = self._endpoint(location_id=location_id, auto_attendant_id=auto_attendant_id) params = org_id and {'orgId': org_id} or None return AutoAttendant.parse_obj(await self.get(url, params=params)) async def create(self, *, location_id: str, settings: AutoAttendant, org_id: str = None) -> str: """ Create an Auto Attendant Create new Auto Attendant for the given location. Auto attendants play customized prompts and provide callers with menu options for routing their calls through your system. Creating an auto attendant requires a full administrator auth token with a scope of spark-admin:telephony_config_write. :param location_id: Create the auto attendant for this location. :type location_id: str :param settings: auto attendant settings for new auto attendant :type settings: :class:`AutoAttendant` :param org_id: Create the auto attendant for this organization. :type org_id: str :return: ID of the newly created auto attendant. :rtype: str """ data = settings.create_or_update() url = self._endpoint(location_id=location_id) params = org_id and {'orgId': org_id} or None data = await self.post(url, data=data, params=params) return data['id'] async def update(self, *, location_id: str, auto_attendant_id: str, settings: AutoAttendant, org_id: str = None): """ Update an Auto Attendant Update the designated Auto Attendant. Auto attendants play customized prompts and provide callers with menu options for routing their calls through your system. Updating an auto attendant requires a full administrator auth token with a scope of spark-admin:telephony_config_write. :param location_id: Location in which this auto attendant exists. :type location_id: str :param auto_attendant_id: Update an auto attendant with the matching ID. :type auto_attendant_id: str :param settings: auto attendant settings for the update :type settings: :class:`AutoAttendant` :param org_id: Create the auto attendant for this organization. :type org_id: str """ data = settings.create_or_update() url = self._endpoint(location_id=location_id, auto_attendant_id=auto_attendant_id) params = org_id and {'orgId': org_id} or None await self.put(url, data=data, params=params) async def delete_auto_attendant(self, *, location_id: str, auto_attendant_id: str, org_id: str = None): """ elete the designated Auto Attendant. Auto attendants play customized prompts and provide callers with menu options for routing their calls through your system. Deleting an auto attendant requires a full administrator auth token with a scope of spark-admin:telephony_config_write. :param location_id: Location from which to delete an auto attendant. :type location_id: str :param auto_attendant_id: Delete the auto attendant with the matching ID. :type auto_attendant_id: str :param org_id: Delete the auto attendant from this organization. :type org_id: str """ url = self._endpoint(location_id=location_id, auto_attendant_id=auto_attendant_id) params = org_id and {'orgId': org_id} or None await self.delete(url, params=params) class AsCallParkApi(AsApiChild, base='telephony/config/callParks'): """ Call Park API """ def _endpoint(self, *, location_id: str, callpark_id: str = None, path: str = None) -> str: """ call park specific feature endpoint like /v1/telephony/config/locations/{locationId}/callParks/{callpark_id} :meta private: :param location_id: Unique identifier for the location. :type location_id: str :param callpark_id: call park id :type callpark_id: str :param path: addtl. path :type path: str :return: full endpoint :rtype: str """ call_park_id = callpark_id and f'/{callpark_id}' or '' path = path and f'/{path}' or '' ep = self.session.ep(f'telephony/config/locations/{location_id}/callParks{call_park_id}{path}') return ep def list_gen(self, location_id: str, order: Literal['ASC', 'DSC'] = None, name: str = None, org_id: str = None, **params) -> AsyncGenerator[CallPark, None, None]: """ Read the List of Call Parks List all Call Parks for the organization. Call Park allows call recipients to place a call on hold so that it can be retrieved from another device. Retrieving this list requires a full or read-only administrator auth token with a scope of spark-admin:telephony_config_read. NOTE: The Call Park ID will change upon modification of the Call Park name. :param location_id: Return the list of call parks for this location. :type location_id: str :param order: Sort the list of call parks by name, either ASC or DSC. Default is ASC. :type order: str :param name: Return the list of call parks that contains the given name. The maximum length is 80. :type name: str :param org_id: List call parks for this organization. :param params: dict of additional parameters passed directly to endpoint :type params: dict :type org_id: str :return yields :class:`CallPark` objects """ params.update((to_camel(k), v) for i, (k, v) in enumerate(locals().items()) if i > 1 and v is not None and k != 'params') url = self._endpoint(location_id=location_id) # noinspection PyTypeChecker return self.session.follow_pagination(url=url, model=CallPark, params=params, item_key='callParks') async def list(self, location_id: str, order: Literal['ASC', 'DSC'] = None, name: str = None, org_id: str = None, **params) -> List[CallPark]: """ Read the List of Call Parks List all Call Parks for the organization. Call Park allows call recipients to place a call on hold so that it can be retrieved from another device. Retrieving this list requires a full or read-only administrator auth token with a scope of spark-admin:telephony_config_read. NOTE: The Call Park ID will change upon modification of the Call Park name. :param location_id: Return the list of call parks for this location. :type location_id: str :param order: Sort the list of call parks by name, either ASC or DSC. Default is ASC. :type order: str :param name: Return the list of call parks that contains the given name. The maximum length is 80. :type name: str :param org_id: List call parks for this organization. :param params: dict of additional parameters passed directly to endpoint :type params: dict :type org_id: str :return yields :class:`CallPark` objects """ params.update((to_camel(k), v) for i, (k, v) in enumerate(locals().items()) if i > 1 and v is not None and k != 'params') url = self._endpoint(location_id=location_id) # noinspection PyTypeChecker return [o async for o in self.session.follow_pagination(url=url, model=CallPark, params=params, item_key='callParks')] async def create(self, location_id: str, settings: CallPark, org_id: str = None) -> str: """ Create a Call Park Create new Call Parks for the given location. Call Park allows call recipients to place a call on hold so that it can be retrieved from another device. Creating a call park requires a full administrator auth token with a scope of spark-admin:telephony_config_write. NOTE: The Call Park ID will change upon modification of the Call Park name. :param location_id: Create the call park for this location. :type location_id: str :param settings: settings for new call park :type settings: :class:`CallPark` :param org_id: Create the call park for this organization. :return: ID of the newly created call park. :rtype: str """ params = org_id and {'orgId': org_id} or None url = self._endpoint(location_id=location_id) body = settings.create_or_update() data = await self.post(url, data=body, params=params) return data['id'] async def delete_callpark(self, location_id: str, callpark_id: str, org_id: str = None): """ Delete a Call Park Delete the designated Call Park. Call Park allows call recipients to place a call on hold so that it can be retrieved from another device. Deleting a call park requires a full administrator auth token with a scope of spark-admin:telephony_config_write. NOTE: The Call Park ID will change upon modification of the Call Park name. :param location_id: Location from which to delete a call park. :type location_id: str :param callpark_id: Delete the call park with the matching ID. :type callpark_id: str :param org_id: Delete the call park from this organization. :type org_id: str """ url = self._endpoint(location_id=location_id, callpark_id=callpark_id) params = org_id and {'orgId': org_id} or None await self.delete(url, params=params) async def details(self, location_id: str, callpark_id: str, org_id: str = None) -> CallPark: """ Get Details for a Call Park Retrieve Call Park details. Call Park allows call recipients to place a call on hold so that it can be retrieved from another device. Retrieving call park details requires a full or read-only administrator auth token with a scope of spark-admin:telephony_config_read. NOTE: The Call Park ID will change upon modification of the Call Park name. :param location_id: Retrieve settings for a call park in this location. :type location_id: str :param callpark_id: Retrieve settings for a call park with the matching ID. :type callpark_id: str :param org_id: Retrieve call park settings from this organization. :type org_id: str :return: call park info :rtype: :class:`CallPark` """ url = self._endpoint(location_id=location_id, callpark_id=callpark_id) params = org_id and {'orgId': org_id} or None return CallPark.parse_obj(await self.get(url, params=params)) async def update(self, location_id: str, callpark_id: str, settings: CallPark, org_id: str = None) -> str: """ Update a Call Park Update the designated Call Park. Call Park allows call recipients to place a call on hold so that it can be retrieved from another device. Updating a call park requires a full administrator auth token with a scope of spark-admin:telephony_config_write. NOTE: The Call Park ID will change upon modification of the Call Park name. :param location_id: RLocation in which this call park exists. :type location_id: str :param callpark_id: Update settings for a call park with the matching ID. :type callpark_id: str :param settings: updates :type settings: :class:`CallPark` :param org_id: Update call park settings from this organization. :type org_id: str """ params = org_id and {'orgId': org_id} or None url = self._endpoint(location_id=location_id, callpark_id=callpark_id) body = settings.create_or_update() data = await self.put(url, data=body, params=params) return data['id'] def available_agents_gen(self, location_id: str, call_park_name: str = None, name: str = None, phone_number: str = None, order: str = None, org_id: str = None) -> AsyncGenerator[PersonPlaceAgent, None, None]: """ Get available agents from Call Parks Retrieve available agents from call parks for a given location. Call Park allows call recipients to place a call on hold so that it can be retrieved from another device. Retrieving available agents from call parks requires a full or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param location_id: Return the available agents for this location. :type location_id: str :param call_park_name: Only return available agents from call parks with the matching name. :type call_park_name: str :param name: Only return available agents with the matching name. :type name: str :param phone_number: Only return available agents with the matching primary number. :type phone_number: str :param order: Order the available agents according to the designated fields. Up to three vertical bar (|) separated sort order fields may be specified. Available sort fields: fname, lname, number and extension. The maximum supported sort order value is 3. :type order: str :param org_id: Return the available agents for this organization. :type org_id: str :return: yields :class:`PersonPlaceCallPark` objects """ params = {to_camel(k): v for i, (k, v) in enumerate(locals().items()) if i > 1 and v is not None} url = self._endpoint(location_id=location_id, path='availableUsers') # noinspection PyTypeChecker return self.session.follow_pagination(url=url, model=PersonPlaceAgent, params=params, item_key='agents') async def available_agents(self, location_id: str, call_park_name: str = None, name: str = None, phone_number: str = None, order: str = None, org_id: str = None) -> List[PersonPlaceAgent]: """ Get available agents from Call Parks Retrieve available agents from call parks for a given location. Call Park allows call recipients to place a call on hold so that it can be retrieved from another device. Retrieving available agents from call parks requires a full or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param location_id: Return the available agents for this location. :type location_id: str :param call_park_name: Only return available agents from call parks with the matching name. :type call_park_name: str :param name: Only return available agents with the matching name. :type name: str :param phone_number: Only return available agents with the matching primary number. :type phone_number: str :param order: Order the available agents according to the designated fields. Up to three vertical bar (|) separated sort order fields may be specified. Available sort fields: fname, lname, number and extension. The maximum supported sort order value is 3. :type order: str :param org_id: Return the available agents for this organization. :type org_id: str :return: yields :class:`PersonPlaceCallPark` objects """ params = {to_camel(k): v for i, (k, v) in enumerate(locals().items()) if i > 1 and v is not None} url = self._endpoint(location_id=location_id, path='availableUsers') # noinspection PyTypeChecker return [o async for o in self.session.follow_pagination(url=url, model=PersonPlaceAgent, params=params, item_key='agents')] def available_recalls_gen(self, location_id: str, name: str = None, order: str = None, org_id: str = None) -> AsyncGenerator[AvailableRecallHuntGroup, None, None]: """ Get available recall hunt groups from Call Parks Retrieve available recall hunt groups from call parks for a given location. Call Park allows call recipients to place a call on hold so that it can be retrieved from another device. Retrieving available recall hunt groups from call parks requires a full or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param location_id: Return the available recall hunt groups for this location. :type location_id: str :param name: Only return available recall hunt groups with the matching name. :type name: str :param order: Order the available recall hunt groups according to the designated fields. Available sort fields: lname. :param order: str :param org_id: Return the available recall hunt groups for this organization. :type org_id: str :return: yields :class:`AvailableRecallHuntGroup` objects """ params = {to_camel(k): v for i, (k, v) in enumerate(locals().items()) if i > 1 and v is not None} url = self._endpoint(location_id=location_id, path='availableRecallHuntGroups') # noinspection PyTypeChecker return self.session.follow_pagination(url=url, model=AvailableRecallHuntGroup, params=params, item_key='huntGroups') async def available_recalls(self, location_id: str, name: str = None, order: str = None, org_id: str = None) -> List[AvailableRecallHuntGroup]: """ Get available recall hunt groups from Call Parks Retrieve available recall hunt groups from call parks for a given location. Call Park allows call recipients to place a call on hold so that it can be retrieved from another device. Retrieving available recall hunt groups from call parks requires a full or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param location_id: Return the available recall hunt groups for this location. :type location_id: str :param name: Only return available recall hunt groups with the matching name. :type name: str :param order: Order the available recall hunt groups according to the designated fields. Available sort fields: lname. :param order: str :param org_id: Return the available recall hunt groups for this organization. :type org_id: str :return: yields :class:`AvailableRecallHuntGroup` objects """ params = {to_camel(k): v for i, (k, v) in enumerate(locals().items()) if i > 1 and v is not None} url = self._endpoint(location_id=location_id, path='availableRecallHuntGroups') # noinspection PyTypeChecker return [o async for o in self.session.follow_pagination(url=url, model=AvailableRecallHuntGroup, params=params, item_key='huntGroups')] async def call_park_settings(self, location_id: str, org_id: str = None) -> LocationCallParkSettings: """ Get Call Park Settings Retrieve Call Park Settings from call parks for a given location. Call Park allows call recipients to place a call on hold so that it can be retrieved from another device. Retrieving settings from call parks requires a full or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param location_id: Return the call park settings for this location. :type location_id: str :param org_id: Return the call park settings for this organization. :type org_id: str :return: """ params = org_id and {'orgId': org_id} or None url = self._endpoint(location_id=location_id, path='settings') return LocationCallParkSettings.parse_obj(await self.get(url, params=params)) async def update_call_park_settings(self, location_id: str, settings: LocationCallParkSettings, org_id: str = None): """ Update Call Park settings Update Call Park settings for the designated location. Call Park allows call recipients to place a call on hold so that it can be retrieved from another device. Updating call park settings requires a full administrator auth token with a scope of spark-admin:telephony_config_write. :param location_id: Location for which call park settings will be updated. :type location_id: str :param settings: update settings :type settings: :class:`LocationCallParkSettings` :param org_id: Update call park settings from this organization. :type org_id: str """ params = org_id and {'orgId': org_id} or None url = self._endpoint(location_id=location_id, path='settings') body = settings.update() await self.put(url, params=params, data=body) class AsCallPickupApi(AsApiChild, base='telephony/config/callPickups'): """ Call Pickup API """ def _endpoint(self, *, location_id: str, pickup_id: str = None, path: str = None) -> str: """ call park specific feature endpoint like /v1/telephony/config/locations/{locationId}/callPickups/{pickup_id} :meta private: :param location_id: Unique identifier for the location. :type location_id: str :param pickup_id: call pickup id :type pickup_id: str :param path: addtl. path :type path: str :return: full endpoint :rtype: str """ pickup_id = pickup_id and f'/{pickup_id}' or '' path = path and f'/{path}' or '' ep = self.session.ep(f'telephony/config/locations/{location_id}/callPickups{pickup_id}{path}') return ep def list_gen(self, location_id: str, order: Literal['ASC', 'DSC'] = None, name: str = None, org_id: str = None, **params) -> AsyncGenerator[CallPickup, None, None]: """ Read the List of Call Pickups List all Call Pickups for the organization. Call Pickup enables a user(agent) to answer any ringing line within their pickup group. Retrieving this list requires a full, user, or read-only administrator auth token with a scope of spark-admin:telephony_config_read. NOTE: The Call Pickup ID will change upon modification of the Call Pickup name. :param location_id: Return the list of call pickups for this location. :type location_id: str :param order: Sort the list of call pickups by name, either ASC or DSC. Default is ASC. :type order: str :param name: Return the list of call pickups that contains the given name. The maximum length is 80. :type name: str :param org_id: List call pickups for this organization. :type org_id: str :return yields :class:`CallPickup` objects """ params.update((to_camel(k), v) for i, (k, v) in enumerate(locals().items()) if i > 1 and v is not None and k != 'params') url = self._endpoint(location_id=location_id) # noinspection PyTypeChecker return self.session.follow_pagination(url=url, model=CallPickup, params=params, item_key='callPickups') async def list(self, location_id: str, order: Literal['ASC', 'DSC'] = None, name: str = None, org_id: str = None, **params) -> List[CallPickup]: """ Read the List of Call Pickups List all Call Pickups for the organization. Call Pickup enables a user(agent) to answer any ringing line within their pickup group. Retrieving this list requires a full, user, or read-only administrator auth token with a scope of spark-admin:telephony_config_read. NOTE: The Call Pickup ID will change upon modification of the Call Pickup name. :param location_id: Return the list of call pickups for this location. :type location_id: str :param order: Sort the list of call pickups by name, either ASC or DSC. Default is ASC. :type order: str :param name: Return the list of call pickups that contains the given name. The maximum length is 80. :type name: str :param org_id: List call pickups for this organization. :type org_id: str :return yields :class:`CallPickup` objects """ params.update((to_camel(k), v) for i, (k, v) in enumerate(locals().items()) if i > 1 and v is not None and k != 'params') url = self._endpoint(location_id=location_id) # noinspection PyTypeChecker return [o async for o in self.session.follow_pagination(url=url, model=CallPickup, params=params, item_key='callPickups')] async def create(self, location_id: str, settings: CallPickup, org_id: str = None) -> str: """ Create a Call Pickup Create new Call Pickups for the given location. Call Pickup enables a user(agent) to answer any ringing line within their pickup group. Creating a call pickup requires a full or user administrator auth token with a scope of spark-admin:telephony_config_write. NOTE: The Call Pickup ID will change upon modification of the Call Pickup name. :param location_id: Create the call pickup for this location. :type location_id: str :param settings: settings for new call pickup :type settings: :class:`CallPickup` :param org_id: Create the call pickup for this organization. :return: ID of the newly created call pickup. :rtype: str """ params = org_id and {'orgId': org_id} or None url = self._endpoint(location_id=location_id) body = settings.create_or_update() data = await self.post(url, data=body, params=params) return data['id'] async def delete_pickup(self, location_id: str, pickup_id: str, org_id: str = None): """ Delete a Call Pickup Delete the designated Call Pickup. Call Pickup enables a user(agent) to answer any ringing line within their pickup group. Deleting a call pickup requires a full or user administrator auth token with a scope of spark-admin:telephony_config_write. NOTE: The Call Pickup ID will change upon modification of the Call Pickup name. :param location_id: Location from which to delete a call pickup. :type location_id: str :param pickup_id: Delete the call pickup with the matching ID. :type pickup_id: str :param org_id: Delete the call pickup from this organization. :type org_id: str """ url = self._endpoint(location_id=location_id, pickup_id=pickup_id) params = org_id and {'orgId': org_id} or None await self.delete(url, params=params) async def details(self, location_id: str, pickup_id: str, org_id: str = None) -> CallPickup: """ Get Details for a Call Pickup Retrieve Call Pickup details. Call Pickup enables a user(agent) to answer any ringing line within their pickup group. Retrieving call pickup details requires a full, user, or read-only administrator auth token with a scope of spark-admin:telephony_config_read. NOTE: The Call Pickup ID will change upon modification of the Call Pickup name. :param location_id: Retrieve settings for a call pickup in this location. :type location_id: str :param pickup_id: Retrieve settings for a call pickup with the matching ID. :type pickup_id: str :param org_id: Retrieve call pickup settings from this organization. :type org_id: str :return: call pickup info :rtype: :class:`CallPickup` """ url = self._endpoint(location_id=location_id, pickup_id=pickup_id) params = org_id and {'orgId': org_id} or None return CallPickup.parse_obj(await self.get(url, params=params)) async def update(self, location_id: str, pickup_id: str, settings: CallPickup, org_id: str = None) -> str: """ Update a Call Pickup Update the designated Call Pickup. Call Pickup enables a user(agent) to answer any ringing line within their pickup group. Updating a call pickup requires a full or user administrator auth token with a scope of spark-admin:telephony_config_write. NOTE: The Call Pickup ID will change upon modification of the Call Pickup name. :param location_id: Location in which this call pickup exists. :type location_id: str :param pickup_id: Update settings for a call pickup with the matching ID. :type pickup_id: str :param settings: updates :type settings: :class:`CallPickup` :param org_id: Update call pickup settings from this organization. :type org_id: str """ params = org_id and {'orgId': org_id} or None url = self._endpoint(location_id=location_id, pickup_id=pickup_id) body = settings.create_or_update() data = await self.put(url, data=body, params=params) return data['id'] def available_agents_gen(self, location_id: str, call_pickup_name: str = None, name: str = None, phone_number: str = None, order: str = None, org_id: str = None) -> AsyncGenerator[PersonPlaceAgent, None, None]: """ Get available agents from Call Pickups Retrieve available agents from call pickups for a given location. Call Pickup enables a user(agent) to answer any ringing line within their pickup group. Retrieving available agents from call pickups requires a full, user, or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param location_id: Return the available agents for this location. :type location_id: str :param call_pickup_name: Only return available agents from call pickups with the matching name. :type call_pickup_name: str :param name: Only return available agents with the matching name. :type name: str :param phone_number: Only return available agents with the matching primary number. :type phone_number: str :param order: Order the available agents according to the designated fields. Up to three vertical bar (|) separated sort order fields may be specified. Available sort fields: fname, lname, number and extension. The maximum supported sort order value is 3. :type order: str :param org_id: Return the available agents for this organization. :type org_id: str :return: yields :class:`PersonPlaceCallPark` objects """ params = {to_camel(k): v for i, (k, v) in enumerate(locals().items()) if i > 1 and v is not None} url = self._endpoint(location_id=location_id, path='availableUsers') # noinspection PyTypeChecker return self.session.follow_pagination(url=url, model=PersonPlaceAgent, params=params, item_key='agents') async def available_agents(self, location_id: str, call_pickup_name: str = None, name: str = None, phone_number: str = None, order: str = None, org_id: str = None) -> List[PersonPlaceAgent]: """ Get available agents from Call Pickups Retrieve available agents from call pickups for a given location. Call Pickup enables a user(agent) to answer any ringing line within their pickup group. Retrieving available agents from call pickups requires a full, user, or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param location_id: Return the available agents for this location. :type location_id: str :param call_pickup_name: Only return available agents from call pickups with the matching name. :type call_pickup_name: str :param name: Only return available agents with the matching name. :type name: str :param phone_number: Only return available agents with the matching primary number. :type phone_number: str :param order: Order the available agents according to the designated fields. Up to three vertical bar (|) separated sort order fields may be specified. Available sort fields: fname, lname, number and extension. The maximum supported sort order value is 3. :type order: str :param org_id: Return the available agents for this organization. :type org_id: str :return: yields :class:`PersonPlaceCallPark` objects """ params = {to_camel(k): v for i, (k, v) in enumerate(locals().items()) if i > 1 and v is not None} url = self._endpoint(location_id=location_id, path='availableUsers') # noinspection PyTypeChecker return [o async for o in self.session.follow_pagination(url=url, model=PersonPlaceAgent, params=params, item_key='agents')] class AsAnnouncementApi: """ API for call queue Announcements """ def __init__(self, *, session: AsRestSession): self._session = session def _endpoint(self, location_id: str, queue_id: str, path: str = None): """ :meta private: :param location_id: :param queue_id: :param path: :return: """ path = path and f'/{path}' or '' ep = self._session.ep(path=f'telephony/config/locations/{location_id}/queues/{queue_id}/announcements{path}') return ep def list_gen(self, *, location_id: str, queue_id: str, org_id: str = None) -> AsyncGenerator[Announcement]: """ :param location_id: :param queue_id: :param org_id: :return: """ url = self._endpoint(location_id=location_id, queue_id=queue_id) params = org_id and {'orgId': org_id} or dict() # noinspection PyTypeChecker return self._session.follow_pagination(url=url, model=Announcement, params=params) async def list(self, *, location_id: str, queue_id: str, org_id: str = None) -> List[Announcement]: """ :param location_id: :param queue_id: :param org_id: :return: """ url = self._endpoint(location_id=location_id, queue_id=queue_id) params = org_id and {'orgId': org_id} or dict() # noinspection PyTypeChecker return [o async for o in self._session.follow_pagination(url=url, model=Announcement, params=params)] async def delete_announcement(self, *, location_id: str, queue_id: str, file_name: str, org_id: str = None): """ :param location_id: :type location_id: str :param queue_id: :type queue_id: str :param file_name: :type file_name: str :param org_id: """ url = self._endpoint(location_id=location_id, queue_id=queue_id, path=file_name) params = org_id and {'orgId': org_id} or None await self._session.delete(url=url, params=params) class AsCallQueueApi: """ Call Queue APร """ forwarding: AsForwardingApi announcement: AsAnnouncementApi def __init__(self, session: AsRestSession): self._session = session self.forwarding = AsForwardingApi(session=session, feature_selector=FeatureSelector.queues) self.announcement = AsAnnouncementApi(session=session) def _endpoint(self, *, location_id: str = None, queue_id: str = None): """ Helper to get URL for API endpoints :meta private: :param location_id: :param queue_id: :return: """ if location_id is None: return self._session.ep('telephony/config/queues') else: ep = self._session.ep(f'telephony/config/locations/{location_id}/queues') if queue_id: ep = f'{ep}/{queue_id}' return ep @staticmethod def update_or_create(*, queue: CallQueue) -> str: """ Get JSON for update or create :param queue: :return: :meta private: """ return queue.json( exclude={'id': True, 'location_name': True, 'location_id': True, 'toll_free_number': True, 'language': True, 'agents': {'__all__': {'first_name': True, 'last_name': True, 'user_type': True, 'extension': True, 'phone_number': True}}, 'alternate_number_settings': {'alternate_numbers': {'__all__': {'toll_free_number': True}}}, 'queue_settings': {'overflow': {'is_transfer_number_set': True}}}) def list_gen(self, *, location_id: str = None, name: str = None, org_id: str = None, **params) -> AsyncGenerator[CallQueue, None, None]: """ Read the List of Call Queues List all Call Queues for the organization. Call queues temporarily hold calls in the cloud when all agents, which can be users or agents, assigned to receive calls from the queue are unavailable. Queued calls are routed to an available agent when not on an active call. Each call queue is assigned a Lead Number, which is a telephone number outside callers can dial to reach users assigned to the call queue. Call queues are also assigned an internal extension, which can be dialed internally to reach users assigned to the call queue. Retrieving this list requires a full or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param location_id: Only return call queues with matching location ID. :type location_id: str :param name: Only return call queues with the matching name. :type name: str :param org_id: List call queues for this organization :type org_id: str :param params: dict of additional parameters passed directly to endpoint :type params: dict :return: yields :class:`CallQueue` objects """ params.update((to_camel(k), v) for i, (k, v) in enumerate(locals().items()) if i and v is not None and k != 'params') url = self._endpoint() # noinspection PyTypeChecker return self._session.follow_pagination(url=url, model=CallQueue, params=params) async def list(self, *, location_id: str = None, name: str = None, org_id: str = None, **params) -> List[CallQueue]: """ Read the List of Call Queues List all Call Queues for the organization. Call queues temporarily hold calls in the cloud when all agents, which can be users or agents, assigned to receive calls from the queue are unavailable. Queued calls are routed to an available agent when not on an active call. Each call queue is assigned a Lead Number, which is a telephone number outside callers can dial to reach users assigned to the call queue. Call queues are also assigned an internal extension, which can be dialed internally to reach users assigned to the call queue. Retrieving this list requires a full or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param location_id: Only return call queues with matching location ID. :type location_id: str :param name: Only return call queues with the matching name. :type name: str :param org_id: List call queues for this organization :type org_id: str :param params: dict of additional parameters passed directly to endpoint :type params: dict :return: yields :class:`CallQueue` objects """ params.update((to_camel(k), v) for i, (k, v) in enumerate(locals().items()) if i and v is not None and k != 'params') url = self._endpoint() # noinspection PyTypeChecker return [o async for o in self._session.follow_pagination(url=url, model=CallQueue, params=params)] async def by_name(self, *, name: str, location_id: str = None, org_id: str = None) -> Optional[CallQueue]: """ Get queue info by name :param location_id: :param name: :param org_id: :return: """ return next((cq for cq in await self.list(location_id=location_id, org_id=org_id, name=name) if cq.name == name), None) async def create(self, *, location_id: str, settings: CallQueue, org_id: str = None) -> str: """ Create a Call Queue Create new Call Queues for the given location. Call queues temporarily hold calls in the cloud when all agents, which can be users or agents, assigned to receive calls from the queue are unavailable. Queued calls are routed to an available agent when not on an active call. Each call queue is assigned a Lead Number, which is a telephone number outside callers can dial to reach users assigned to the call queue. Call queues are also assigned an internal extension, which can be dialed internally to reach users assigned to the call queue. Creating a call queue requires a full administrator auth token with a scope of spark-admin:telephony_config_write. :param location_id: Create the call queue for this location. :type location_id: str :param settings: parameters for queue creation. :type settings: :class:`CallQueue` :param org_id: Create the call queue for this organization. :type org_id: str :return: queue id :rtype: str """ params = org_id and {'orgId': org_id} or {} cq_data = settings.create_or_update() url = self._endpoint(location_id=location_id) data = await self._session.rest_post(url, data=cq_data, params=params) return data['id'] async def delete_queue(self, *, location_id: str, queue_id: str, org_id: str = None): """ Delete a Call Queue Delete the designated Call Queue. Call queues temporarily hold calls in the cloud when all agents, which can be users or agents, assigned to receive calls from the queue are unavailable. Queued calls are routed to an available agent when not on an active call. Each call queue is assigned a Lead Number, which is a telephone number outside callers can dial to reach users assigned to the call queue. Call queues are also assigned an internal extension, which can be dialed internally to reach users assigned to the call queue. Deleting a call queue requires a full administrator auth token with a scope of spark-admin:telephony_config_write. :param location_id: Location from which to delete a call queue. :type location_id: str :param queue_id: Delete the call queue with the matching ID. :type queue_id: str :param org_id: Delete the call queue from this organization. :type org_id: str """ url = self._endpoint(location_id=location_id, queue_id=queue_id) params = org_id and {'orgId': org_id} or None await self._session.rest_delete(url=url, params=params) async def details(self, *, location_id: str, queue_id: str, org_id: str = None) -> CallQueue: """ Get Details for a Call Queue Retrieve Call Queue details. Call queues temporarily hold calls in the cloud when all agents, which can be users or agents, assigned to receive calls from the queue are unavailable. Queued calls are routed to an available agent when not on an active call. Each call queue is assigned a Lead Number, which is a telephone number outside callers can dial to reach users assigned to the call queue. Call queues are also assigned anvinternal extension, which can be dialed internally to reach users assigned to the call queue. Retrieving call queue details requires a full or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param location_id: Retrieve settings for a call queue in this location :type location_id: str :param queue_id: Retrieve settings for the call queue with this identifier. :type queue_id: str :param org_id: Retrieve call queue settings from this organization. :type org_id: str :return: call queue details :rtype: :class:`CallQueue` """ url = self._endpoint(location_id=location_id, queue_id=queue_id) params = {'orgId': org_id} if org_id is not None else {} data = await self._session.rest_get(url, params=params) result = CallQueue.parse_obj(data) # noinspection PyTypeChecker return result async def update(self, *, location_id: str, queue_id: str, update: CallQueue, org_id: str = None): """ Update a Call Queue Update the designated Call Queue. Call queues temporarily hold calls in the cloud when all agents, which can be users or agents, assigned to receive calls from the queue are unavailable. Queued calls are routed to an available agent when not on an active call. Each call queue is assigned a Lead Number, which is a telephone number outside callers can dial to reach users assigned to the call queue. Call queues are also assigned an internal extension, which can be dialed internally to reach users assigned to the call queue. Updating a call queue requires a full administrator auth token with a scope of spark-admin:telephony_config_write. Examples: .. code-block:: api = WebexSimpleApi() # shortcut cq = api.telephony.callqueue # disable a call queue update = CallQueue(enabled=False) cq.update(location_id=..., queue_id=..., update=update) # set the call routing policy to SIMULTANEOUS update = CallQueue(call_policies=CallPolicies(policy=Policy.simultaneous)) cq.update(location_id=..., queue_id=..., update=update) # don't bounce calls after the set number of rings. update = CallQueue( call_policies=CallPolicies( call_bounce=CallBounce( enabled=False))) cq.update(location_id=..., queue_id=..., update=update) Alternatively you can also read call queue details, update them in place and then call update(). .. code-block:: details = cq.details(location_id=..., queue_id=...) details.call_policies.call_bounce.agent_unavailable_enabled=False details.call_policies.call_bounce.on_hold_enabled=False cq.update(location_id=..., queue_id=..., update=details) :param location_id: Location in which this call queue exists. :type location_id: str :param queue_id: Update setting for the call queue with the matching ID. :type queue_id: str :param update: updates :type update: :class:`CallQueue` :param org_id: Update call queue settings from this organization. """ params = org_id and {'orgId': org_id} or None cq_data = update.create_or_update() url = self._endpoint(location_id=location_id, queue_id=queue_id) await self._session.rest_put(url=url, data=cq_data, params=params) class AsCallparkExtensionApi(AsApiChild, base='telephony/config/huntGroups'): """ Call Park Extension API """ def _endpoint(self, *, location_id: str = None, cpe_id: str = None) -> str: """ call park extension specific feature endpoint like /v1/telephony/config/locations/{locationId}/callParkExtensions/{cpe_id} :meta private: :param location_id: Unique identifier for the location. :type location_id: str :param cpe_id: call park extension id :type cpe_id: str :return: full endpoint :rtype: str """ if location_id is None: return self.session.ep('telephony/config/callParkExtensions') else: ep = self.session.ep(f'telephony/config/locations/{location_id}/callParkExtensions') if cpe_id: ep = f'{ep}/{cpe_id}' return ep def list_gen(self, org_id: str = None, extension: str = None, name: str = None, location_id: str = None, location_name: str = None, order: str = None, **params) -> AsyncGenerator[CallParkExtension, None, None]: """ Read the List of Call Park Extensions List all Call Park Extensions for the organization. The Call Park service, enabled for all users by default, allows a user to park a call against an available user's extension or to a Call Park Extension. Call Park Extensions are extensions defined within the Call Park service for holding parked calls. Retrieving this list requires a full or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param org_id: List call park extensions for this organization. :type org_id: str :param extension: Only return call park extensions with the matching extension. :type extension: str :param name: Only return call park extensions with the matching name. :type name: str :param location_id: Only return call park extensions with matching location ID. :type location_id: str :param location_name: Only return call park extensions with matching location name. :type location_name: str :param order: Order the available agents according to the designated fields. Available sort fields: groupName, callParkExtension, callParkExtensionName, callParkExtensionExternalId. :type order: str :param params: additional parameters :return: yields :class:`wxc_sdk.common.CallParkExtension` instances """ params.update((to_camel(k), v) for i, (k, v) in enumerate(locals().items()) if i and v is not None and k != 'params') url = self._endpoint() # noinspection PyTypeChecker return self.session.follow_pagination(url=url, model=CallParkExtension, params=params) async def list(self, org_id: str = None, extension: str = None, name: str = None, location_id: str = None, location_name: str = None, order: str = None, **params) -> List[CallParkExtension]: """ Read the List of Call Park Extensions List all Call Park Extensions for the organization. The Call Park service, enabled for all users by default, allows a user to park a call against an available user's extension or to a Call Park Extension. Call Park Extensions are extensions defined within the Call Park service for holding parked calls. Retrieving this list requires a full or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param org_id: List call park extensions for this organization. :type org_id: str :param extension: Only return call park extensions with the matching extension. :type extension: str :param name: Only return call park extensions with the matching name. :type name: str :param location_id: Only return call park extensions with matching location ID. :type location_id: str :param location_name: Only return call park extensions with matching location name. :type location_name: str :param order: Order the available agents according to the designated fields. Available sort fields: groupName, callParkExtension, callParkExtensionName, callParkExtensionExternalId. :type order: str :param params: additional parameters :return: yields :class:`wxc_sdk.common.CallParkExtension` instances """ params.update((to_camel(k), v) for i, (k, v) in enumerate(locals().items()) if i and v is not None and k != 'params') url = self._endpoint() # noinspection PyTypeChecker return [o async for o in self.session.follow_pagination(url=url, model=CallParkExtension, params=params)] async def details(self, location_id: str, cpe_id: str, org_id: str = None) -> CallParkExtension: """ Get Details for a Call Park Extension Retrieve Call Park Extension details. The Call Park service, enabled for all users by default, allows a user to park a call against an available user's extension or to a Call Park Extension. Call Park Extensions are extensions defined within the Call Park service for holding parked calls. Retrieving call park extension details requires a full or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param location_id: Retrieve details for a call park extension in this location. :type location_id: str :param cpe_id: Retrieve details for a call park extension with the matching ID. :type cpe_id: str :param org_id: Retrieve call park extension details from this organization :type org_id: str :return: call park extension details :rtype: :class:`wxc_sdk.common.CallParkExtension` instance (only name and extension are set) """ url = self._endpoint(location_id=location_id, cpe_id=cpe_id) params = org_id and {'orgId': org_id} or {} data = await self.get(url, params=params) return CallParkExtension.parse_obj(data) class AsCallsApi(AsApiChild, base='telephony/calls'): async def dial(self, destination: str) -> DialResponse: """ Initiate an outbound call to a specified destination. This is also commonly referred to as Click to Call or Click to Dial. Alerts on all the devices belonging to the user. When the user answers on one of these alerting devices, an outbound call is placed from that device to the destination. :param destination: The destination to be dialed. The destination can be digits or a URI. Some examples for destination include: 1234, 2223334444, +12223334444, \*73, tel:+12223334444, <EMAIL>, sip:<EMAIL> :type destination: str :return: Call id and call session id """ ep = self.ep('dial') data = await self.post(ep, json={'destination': destination}) return DialResponse.parse_obj(data) async def answer(self, call_id: str): """ Answer an incoming call on the user's primary device. :param call_id: The call identifier of the call to be answered. :type call_id: str """ ep = self.ep('answer') await self.post(ep, json={'callId': call_id}) async def reject(self, call_id: str, action: RejectAction = None): """ Reject an unanswered incoming call. :param call_id: The call identifier of the call to be rejected. :type call_id: str :param action: The rejection action to apply to the call. The busy action is applied if no specific action is provided. """ data = {to_camel(p): v for i, (p, v) in enumerate(locals().items()) if i and v is not None} ep = self.ep('reject') await self.post(ep, json=data) async def hangup(self, call_id: str): """ Hangup a call. If used on an unanswered incoming call, the call is rejected and sent to busy. :param call_id: The call identifier of the call to hangup. :type call_id: str """ ep = self.ep('hangup') await self.post(ep, json={'callId': call_id}) async def hold(self, call_id: str): """ Hold a connected call. :param call_id: The call identifier of the call to hold. :type call_id: str """ data = {to_camel(p): v for i, (p, v) in enumerate(locals().items()) if i and v is not None} ep = self.ep('hold') await self.post(ep, json=data) async def resume(self, call_id: str): """ Resume a held call. :param call_id: The call identifier of the call to resume. :type call_id: str """ data = {to_camel(p): v for i, (p, v) in enumerate(locals().items()) if i and v is not None} ep = self.ep('resume') await self.post(ep, json=data) async def divert(self, call_id: str, destination: str = None, to_voicemail: bool = None): """ Divert a call to a destination or a user's voicemail. This is also commonly referred to as Blind Transfer :param call_id: The call identifier of the call to divert. :type call_id: str :param destination: The destination to divert the call to. If toVoicemail is false, destination is required. The destination can be digits or a URI. Some examples for destination include: 1234, 2223334444, +12223334444, \*73, tel:+12223334444, <EMAIL>, sip:<EMAIL> :type destination: str :param to_voicemail: If set to true, the call is diverted to voicemail. If no destination is specified, the call is diverted to the user's own voicemail. If a destination is specified, the call is diverted to the specified user's voicemail. :type to_voicemail: bool """ data = {to_camel(p): v for i, (p, v) in enumerate(locals().items()) if i and v is not None} ep = self.ep('divert') await self.post(ep, json=data) async def transfer(self, call_id1: str = None, call_id2: str = None, destination: str = None): """ Transfer two calls together. Unanswered incoming calls cannot be transferred but can be diverted using the divert API. If the user has only two calls and wants to transfer them together, the callId1 and callId2 parameters are optional and when not provided the calls are automatically selected and transferred. If the user has more than two calls and wants to transfer two of them together, the callId1 and callId2 parameters are mandatory to specify which calls are being transferred. These are also commonly referred to as Attended Transfer, Consultative Transfer, or Supervised Transfer and will return a 204 response. If the user wants to transfer one call to a new destination but only when the destination responds, the callId1 and destination parameters are mandatory to specify the call being transferred and the destination. This is referred to as a Mute Transfer and is similar to the divert API with the difference of waiting for the destination to respond prior to transferring the call. If the destination does not respond, the call is not transferred. This will return a 201 response. :param call_id1: The call identifier of the first call to transfer. This parameter is mandatory if either call_id2 or destination is provided. :type call_id1: str :param call_id2: The call identifier of the first call to transfer. This parameter is mandatory if either callId2 or destination is provided. :type call_id1: str :param destination: The destination to be transferred to. The destination can be digits or a URI. Some examples for destination include: 1234, 2223334444, +12223334444, \*73, tel:+12223334444, <EMAIL>, sip:<EMAIL>. This parameter is mandatory if call_id1 is provided and call_id2 is not provided. :type destination: str """ data = {to_camel(p): v for i, (p, v) in enumerate(locals().items()) if i and v is not None} ep = self.ep('transfer') await self.post(ep, json=data) async def park(self, call_id: str, destination: str = None, is_group_park: bool = None) -> ParkedAgainst: """ Park a connected call. The number field in the response can be used as the destination for the retrieve command to retrieve the parked call. :param call_id: The call identifier of the call to park. :type call_id: str :param destination: Identifies where the call is to be parked. If not provided, the call is parked against the parking user. The destination can be digits or a URI. Some examples for destination include: 1234, 2223334444, +12223334444, \*73, tel:+12223334444, <EMAIL>, sip:<EMAIL> :type destination: str :param is_group_park: If set to true, the call is parked against an automatically selected member of the user's call park group and the destination parameter is ignored. :type is_group_park: bool :return: The details of where the call has been parked. :rtype: :class:`ParkedAgainst` """ data = {to_camel(p): v for i, (p, v) in enumerate(locals().items()) if i and v is not None} ep = self.ep('park') data = await self.post(ep, json=data) return ParkedAgainst.parse_obj(data) async def retrieve(self, destination: str) -> CallInfo: """ :param destination: Identifies where the call is parked. The number field from the park command response can be used as the destination for the retrieve command. If not provided, the call parked against the retrieving user is retrieved. The destination can be digits or a URI. Some examples for destination include: 1234, 2223334444, +12223334444, \*73, tel:+12223334444, <EMAIL>, sip:<EMAIL> :return: call id and call session id of retreived call :rtype: :class:`CallInfo` """ data = {to_camel(p): v for i, (p, v) in enumerate(locals().items()) if i and v is not None} ep = self.ep('retrieve') data = await self.post(ep, json=data) return CallInfo.parse_obj(data) async def start_recording(self, call_id: str): """ Start recording a call. Use of this API is only valid when the user's call recording mode is set to "On Demand". :param call_id: The call identifier of the call to start recording. :type call_id: str """ data = {to_camel(p): v for i, (p, v) in enumerate(locals().items()) if i and v is not None} ep = self.ep('startRecording') await self.post(ep, json=data) async def stop_recording(self, call_id: str): """ Stop recording a call. Use of this API is only valid when a call is being recorded and the user's call recording mode is set to "On Demand". :param call_id: The call identifier of the call to stop recording. :type call_id: str """ data = {to_camel(p): v for i, (p, v) in enumerate(locals().items()) if i and v is not None} ep = self.ep('stopRecording') await self.post(ep, json=data) async def pause_recording(self, call_id: str): """ Pause recording on a call. Use of this API is only valid when a call is being recorded and the user's call recording mode is set to "On Demand" or "Always with Pause/Resume". :param call_id: The call identifier of the call to pause recording. :type call_id: str """ data = {to_camel(p): v for i, (p, v) in enumerate(locals().items()) if i and v is not None} ep = self.ep('pauseRecording') await self.post(ep, json=data) async def resume_recording(self, call_id: str): """ Resume recording a call. Use of this API is only valid when a call's recording is paused and the user's call recording mode is set to "On Demand" or "Always with Pause/Resume". :param call_id: The call identifier of the call to resume recording. :type call_id: str """ data = {to_camel(p): v for i, (p, v) in enumerate(locals().items()) if i and v is not None} ep = self.ep('resumeRecording') await self.post(ep, json=data) async def transmit_dtmf(self, call_id: str, dtmf: str): """ Transmit DTMF digits to a call. :param call_id: The call identifier of the call to hold. :type call_id: str :param dtmf: The DTMF digits to transmit. Each digit must be part of the following set: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, \*, #, A, B, C, D]. A comma "," may be included to indicate a pause between digits. For the value โ€œ1,234โ€, the DTMF 1 digit is initially sent. After a pause, the DTMF 2, 3, and 4 digits are sent successively. """ data = {to_camel(p): v for i, (p, v) in enumerate(locals().items()) if i and v is not None} ep = self.ep('transmitDtmf') await self.post(ep, json=data) async def push(self, call_id: str): """ Pushes a call from the assistant to the executive the call is associated with. Use of this API is only valid when the assistantโ€™s call is associated with an executive. :param call_id: The call identifier of the call to push. :type call_id: str """ data = {to_camel(p): v for i, (p, v) in enumerate(locals().items()) if i and v is not None} ep = self.ep('push') await self.post(ep, json=data) async def pickup(self, target: str) -> CallInfo: """ Picks up an incoming call to another user. A new call is initiated to perform the pickup in a similar manner to the dial command. When target is not present, the API pickups up a call from the userโ€™s call pickup group. When target is present, the API pickups an incoming call from the specified target user. :param target: Identifies the user to pickup an incoming call from. If not provided, an incoming call to the userโ€™s call pickup group is picked up. The target can be digits or a URI. Some examples for target include: 1234, 2223334444, +12223334444, tel:+12223334444, <EMAIL>, sip:<EMAIL> :type target: str :return: call info of picked up call :rtype: :class:`CallInfo` """ data = {to_camel(p): v for i, (p, v) in enumerate(locals().items()) if i and v is not None} ep = self.ep('pickup') data = await self.post(ep, json=data) return CallInfo.parse_obj(data) async def barge_in(self, target: str): """ Barge-in on another userโ€™s answered call. A new call is initiated to perform the barge-in in a similar manner to the dial command. :param target: Identifies the user to barge-in on. The target can be digits or a URI. Some examples for target include: 1234, 2223334444, +12223334444, tel:+12223334444, <EMAIL>, sip:<EMAIL> :type target: str :return: call info of picked up call :rtype: :class:`CallInfo` """ data = {to_camel(p): v for i, (p, v) in enumerate(locals().items()) if i and v is not None} ep = self.ep('bargeIn') data = await self.post(ep, json=data) return CallInfo.parse_obj(data) def list_calls_gen(self) -> AsyncGenerator[TelephonyCall, None, None]: """ Get the list of details for all active calls associated with the user. :return: yield :class:`TelephonyCall` """ ep = self.ep() # noinspection PyTypeChecker return self.session.follow_pagination(url=ep, model=TelephonyCall) async def list_calls(self) -> List[TelephonyCall]: """ Get the list of details for all active calls associated with the user. :return: yield :class:`TelephonyCall` """ ep = self.ep() # noinspection PyTypeChecker return [o async for o in self.session.follow_pagination(url=ep, model=TelephonyCall)] async def call_details(self, call_id: str) -> TelephonyCall: """ Get the details of the specified active call for the user. :param call_id: The call identifier of the call. :type call_id: str :return: call details :rtype: :class:`TelephonyCall` """ ep = self.ep(call_id) data = await self.get(ep) return TelephonyCall.parse_obj(data) def call_history_gen(self, history_type: Union[str, HistoryType] = None) -> AsyncGenerator[CallHistoryRecord, None, None]: """ List Call History Get the list of call history records for the user. A maximum of 20 call history records per type (placed, missed, received) are returned. :param history_type: The type of call history records to retrieve. If not specified, then all call history records are retrieved. Possible values: placed, missed, received :type history_type: HistoryType or str :return: yields :class:`CallHistoryRecord` objects """ history_type = history_type and HistoryType.history_type_or_str(history_type) params = history_type and {'type': history_type.value} or None url = self.ep('history') return self.session.follow_pagination(url=url, model=CallHistoryRecord, params=params) async def call_history(self, history_type: Union[str, HistoryType] = None) -> List[CallHistoryRecord]: """ List Call History Get the list of call history records for the user. A maximum of 20 call history records per type (placed, missed, received) are returned. :param history_type: The type of call history records to retrieve. If not specified, then all call history records are retrieved. Possible values: placed, missed, received :type history_type: HistoryType or str :return: yields :class:`CallHistoryRecord` objects """ history_type = history_type and HistoryType.history_type_or_str(history_type) params = history_type and {'type': history_type.value} or None url = self.ep('history') return [o async for o in self.session.follow_pagination(url=url, model=CallHistoryRecord, params=params)] class AsHuntGroupApi(AsApiChild, base='telephony/config/huntGroups'): """ Hunt Group API """ forwarding: AsForwardingApi def __init__(self, session: AsRestSession): super().__init__(session=session) self.forwarding = AsForwardingApi(session=session, feature_selector=FeatureSelector.huntgroups) def _endpoint(self, *, location_id: str = None, huntgroup_id: str = None) -> str: """ hunt group specific feature endpoint like /v1/telephony/config/locations/{locationId}/huntGroups/{huntGroupId} :meta private: :param location_id: Unique identifier for the location. :type location_id: str :param huntgroup_id: schedule id :type huntgroup_id: str :return: full endpoint :rtype: str """ if location_id is None: return self.session.ep('telephony/config/huntGroups') else: ep = self.session.ep(f'telephony/config/locations/{location_id}/huntGroups') if huntgroup_id: ep = f'{ep}/{huntgroup_id}' return ep def list_gen(self, org_id: str = None, location_id: str = None, name: str = None, phone_number: str = None, **params) -> AsyncGenerator[HuntGroup, None, None]: """ Read the List of Hunt Groups List all calling Hunt Groups for the organization. Hunt groups can route incoming calls to a group of people or workspaces. You can even configure a pattern to route to a whole group. Retrieving this list requires a full or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param org_id: List hunt groups for this organization. :param location_id: Only return hunt groups with matching location ID. :param name: Only return hunt groups with the matching name. :param phone_number: Only return hunt groups with the matching primary phone number or extension. :return: yields :class:`HuntGroup` instances """ params.update((to_camel(k), v) for i, (k, v) in enumerate(locals().items()) if i and v is not None and k != 'params') url = self._endpoint() # noinspection PyTypeChecker return self.session.follow_pagination(url=url, model=HuntGroup, params=params) async def list(self, org_id: str = None, location_id: str = None, name: str = None, phone_number: str = None, **params) -> List[HuntGroup]: """ Read the List of Hunt Groups List all calling Hunt Groups for the organization. Hunt groups can route incoming calls to a group of people or workspaces. You can even configure a pattern to route to a whole group. Retrieving this list requires a full or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param org_id: List hunt groups for this organization. :param location_id: Only return hunt groups with matching location ID. :param name: Only return hunt groups with the matching name. :param phone_number: Only return hunt groups with the matching primary phone number or extension. :return: yields :class:`HuntGroup` instances """ params.update((to_camel(k), v) for i, (k, v) in enumerate(locals().items()) if i and v is not None and k != 'params') url = self._endpoint() # noinspection PyTypeChecker return [o async for o in self.session.follow_pagination(url=url, model=HuntGroup, params=params)] async def by_name(self, name: str, location_id: str = None, org_id: str = None) -> Optional[HuntGroup]: """ Get hunt group info by name :param location_id: :param name: :param org_id: :return: """ return next((hg for hg in await self.list(name=name, location_id=location_id, org_id=org_id) if hg.name == name), None) async def create(self, location_id: str, settings: HuntGroup, org_id: str = None) -> str: """ Create a Hunt Group Create new Hunt Groups for the given location. Hunt groups can route incoming calls to a group of people or workspaces. You can even configure a pattern to route to a whole group. Creating a hunt group requires a full administrator auth token with a scope of spark-admin:telephony_config_write. :param location_id: Create the hunt group for the given location. :type location_id: str :param settings: hunt group details :type settings: :class:`HuntGroup` :param org_id: Create the hunt group for this organization. :type org_id: str :return: ID of the newly created hunt group. :rtype: str """ params = org_id and {'orgId': org_id} or {} settings.call_policies = settings.call_policies or HGCallPolicies().default() data = settings.create_or_update() url = self._endpoint(location_id=location_id) data = await self.post(url, data=data, params=params) return data['id'] async def delete_huntgroup(self, location_id: str, huntgroup_id: str, org_id: str = None): """ Delete a Hunt Group Delete the designated Hunt Group. Hunt groups can route incoming calls to a group of people or workspaces. You can even configure a pattern to route to a whole group. Deleting a hunt group requires a full administrator auth token with a scope of spark-admin:telephony_config_write. :param location_id: Location from which to delete a hunt group. :type location_id: str :param huntgroup_id: Delete the hunt group with the matching ID. :type huntgroup_id: str :param org_id: Delete the hunt group with the matching ID. :type org_id: str """ params = org_id and {'orgId': org_id} or None url = self._endpoint(location_id=location_id, huntgroup_id=huntgroup_id) await self.delete(url, params=params) async def details(self, location_id: str, huntgroup_id: str, org_id: str = None) -> HuntGroup: """ Get Details for a Hunt Group Retrieve Hunt Group details. Hunt groups can route incoming calls to a group of people or workspaces. You can even configure a pattern to route to a whole group. Retrieving hunt group details requires a full or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param location_id: Retrieve settings for a hunt group in this location. :type location_id: str :param huntgroup_id: Retrieve settings for the hunt group with this identifier. :type huntgroup_id: str :param org_id: Retrieve hunt group settings from this organization. :type org_id: str :return: hunt group details """ url = self._endpoint(location_id=location_id, huntgroup_id=huntgroup_id) params = org_id and {'orgId': org_id} or {} data = await self.get(url, params=params) result = HuntGroup.parse_obj(data) return result async def update(self, location_id: str, huntgroup_id: str, update: HuntGroup, org_id: str = None): """ Update a Hunt Group Update the designated Hunt Group. Hunt groups can route incoming calls to a group of people or workspaces. You can even configure a pattern to route to a whole group. Updating a hunt group requires a full administrator auth token with a scope of spark-admin:telephony_config_write. :param location_id: Update the hunt group for this location. :type location_id: str :param huntgroup_id: Update setting for the hunt group with the matching ID. :type huntgroup_id: str :param update: hunt group settings :type update: :class:`HuntGroup` :param org_id: Update hunt group settings from this organization. """ params = org_id and {'orgId': org_id} or None data = update.create_or_update() url = self._endpoint(location_id=location_id, huntgroup_id=huntgroup_id) await self.put(url, data=data, params=params) class AsLocationInterceptApi(AsApiChild, base='telephony/config/locations'): """ API for location's call intercept settings """ def _endpoint(self, *, location_id: str, path: str = None) -> str: """ location specific telephony/config/locations/{locationId}/intercept :meta private: :param location_id: Unique identifier for the location. :type location_id: str :param path: additional path :type: path: str :return: full endpoint :rtype: str """ path = path and f'/{path}' or '' ep = self.session.ep(f'telephony/config/locations/{location_id}/intercept{path}') return ep async def read(self, *, location_id: str, org_id: str = None) -> InterceptSetting: """ Get Location Intercept Retrieve intercept location details for a customer location. Intercept incoming or outgoing calls for persons in your organization. If this is enabled, calls are either routed to a designated number the person chooses, or to the person's voicemail. Retrieving intercept location details requires a full, user or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param location_id: Retrieve intercept details for this location. :type location_id: str :param org_id: Retrieve intercept location details for a customer location. :type org_id: str :return: user's call intercept settings :rtype: :class:`wxc_sdk.person_settings.call_intercept.InterceptSetting` """ ep = self._endpoint(location_id=location_id) params = org_id and {'orgId': org_id} or None return InterceptSetting.parse_obj(await self.get(ep, params=params)) async def configure(self, *, location_id: str, settings: InterceptSetting, org_id: str = None): """ Put Location Intercept Modifies the intercept location details for a customer location. Intercept incoming or outgoing calls for users in your organization. If this is enabled, calls are either routed to a designated number the user chooses, or to the user's voicemail. Modifying the intercept location details requires a full, user administrator auth token with a scope of spark-admin:telephony_config_write. :param location_id: Unique identifier for the person. :type location_id: str :param settings: new intercept settings :type settings: InterceptSetting :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str """ ep = self._endpoint(location_id=location_id) params = org_id and {'orgId': org_id} or None data = settings.json() await self.put(ep, params=params, data=data) class AsLocationMoHApi(AsApiChild, base='telephony/config/locations'): """ Access codes API """ def _endpoint(self, *, location_id: str, path: str = None) -> str: """ location specific feature endpoint like /v1/telephony/config/locations/{locationId}/musicOnHold :meta private: :param location_id: Unique identifier for the location. :type location_id: str :param path: additional path :type: path: str :return: full endpoint :rtype: str """ path = path and f'/{path}' or '' ep = self.session.ep(f'telephony/config/locations/{location_id}/musicOnHold{path}') return ep async def read(self, *, location_id: str, org_id: str = None) -> LocationMoHSetting: """ Get Music On Hold Retrieve the location's music on hold settings. Location's music on hold settings allows you to play music when a call is placed on hold or parked. Retrieving location's music on hold settings requires a full, user or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param location_id: Retrieve access codes details for this location. :type location_id: str :param org_id: Retrieve access codes details for a customer location in this organization :type org_id: str :return: MoH settings :rtype: :class:`LocationMoHSetting` """ params = org_id and {'orgId': org_id} or None url = self._endpoint(location_id=location_id) data = await self.get(url, params=params) return LocationMoHSetting.parse_obj(data) async def update(self, *, location_id: str, settings: LocationMoHSetting, org_id: str = None) -> LocationMoHSetting: """ Get Music On Hold Retrieve the location's music on hold settings. Location's music on hold settings allows you to play music when a call is placed on hold or parked. Retrieving location's music on hold settings requires a full, user or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param location_id: Retrieve access codes details for this location. :type location_id: str :param settings: new settings :type settings: :class:`LocationMoHSetting` :param org_id: Retrieve access codes details for a customer location in this organization :type org_id: str :return: list of :class:`wxc_sdk.common.CallPark` """ params = org_id and {'orgId': org_id} or None data = settings.json() url = self._endpoint(location_id=location_id) await self.put(url, params=params, data=data) async def create(self, *, location_id: str, access_codes: list[AuthCode], org_id: str = None) -> list[AuthCode]: """ :param location_id: Add new access code for this location. :type location_id: str :param access_codes: Access code details :type access_codes: list of :class:`wxc_sdk.common.AuthCode` :param org_id: Add new access code for this organization. :type org_id: str """ params = org_id and {'orgId': org_id} or None url = self._endpoint(location_id=location_id) body = {'accessCodes': [json.loads(ac.json()) for ac in access_codes]} await self.post(url, json=body, params=params) async def delete_codes(self, *, location_id: str, access_codes: list[Union[str, AuthCode]], org_id: str = None) -> list[AuthCode]: """ Delete Access Code Location Deletes the access code details for a particular location for a customer. Use Access Codes to bypass the set permissions for all persons/workspaces at this location. Modifying the access code location details requires a full administrator auth token with a scope of spark-admin:telephony_config_write. :param location_id: Deletes the access code details for this location. :type location_id: str :param access_codes: access codes to delete :type access_codes: list of :class:`wxc_sdk.common.AuthCode` or str :param org_id: Delete access codes from this organization. :type org_id: str """ params = org_id and {'orgId': org_id} or None url = self._endpoint(location_id=location_id) body = {'deleteCodes': [ac.code if isinstance(ac, AuthCode) else ac for ac in access_codes]} await self.put(url, json=body, params=params) class AsLocationVoicemailSettingsApi(AsApiChild, base='telephony/config/locations'): """ location voicemail settings API, for now only enable/disable Vm transcription """ def _endpoint(self, *, location_id: str, path: str = None) -> str: """ location specific telephony/config/locations/{locationId}/voicemail :meta private: :param location_id: Unique identifier for the location. :type location_id: str :param path: additional path :type: path: str :return: full endpoint :rtype: str """ path = path and f'/{path}' or '' ep = self.session.ep(f'telephony/config/locations/{location_id}/voicemail{path}') return ep async def read(self, *, location_id: str, org_id: str = None) -> LocationVoiceMailSettings: """ Get Location Voicemail Retrieve voicemail settings for a specific location. Location's voicemail settings allows you to enable voicemail transcription for a specific location. Retrieving location's voicemail settings requires a full, user or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param location_id: Retrieve access codes details for this location. :type location_id: str :param org_id: Retrieve access codes details for a customer location in this organization :type org_id: str :return: location voicemail settings :rtype: :class:`LocationVoiceMailSettings` """ params = org_id and {'orgId': org_id} or None url = self._endpoint(location_id=location_id) data = await self.get(url, params=params) return LocationVoiceMailSettings.parse_obj(data) async def update(self, *, location_id: str, settings: LocationVoiceMailSettings, org_id: str = None): """ Get Location Voicemail Retrieve voicemail settings for a specific location. Location's voicemail settings allows you to enable voicemail transcription for a specific location. Retrieving location's voicemail settings requires a full, user or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param location_id: Retrieve access codes details for this location. :type location_id: str :param settings: new settings :type settings: :class:`LocationVoiceMailSettings` :param org_id: Retrieve access codes details for a customer location in this organization :type org_id: str """ params = org_id and {'orgId': org_id} or None url = self._endpoint(location_id=location_id) body = settings.json() await self.put(url, params=params, data=body) class AsOrganisationVoicemailSettingsAPI(AsApiChild, base='telephony/config/voicemail/settings'): """ API for Organisation voicemail settings """ async def read(self, *, org_id: str = None) -> OrganisationVoicemailSettings: """ Get Voicemail Settings Retrieve the organization's voicemail settings. Organizational voicemail settings determines what voicemail features a person can configure and automatic message expiration. Retrieving organization's voicemail settings requires a full, user or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param org_id: Retrieve voicemail settings for this organization. :type org_id: str :return: VM settings :rtype: OrganisationVoicemailSettings """ params = org_id and {'orgId': org_id} or None url = self.ep() return OrganisationVoicemailSettings.parse_obj(await self.get(url, params=params)) async def update(self, *, settings: OrganisationVoicemailSettings, org_id: str = None): """ Update the organization's voicemail settings. Organizational voicemail settings determines what voicemail features a person can configure and automatic message expiration. Updating organization's voicemail settings requires a full administrator auth token with a scope of spark-admin:telephony_config_write. :param settings: new settings :type settings: OrganisationVoicemailSettings :param org_id: Update voicemail settings for this organization. :type org_id: str """ params = org_id and {'orgId': org_id} or None url = self.ep() data = settings.json() await self.put(url, data=data, params=params) class AsPagingApi(AsApiChild, base='telephony/config'): def _endpoint(self, *, location_id: str = None, paging_id: str = None) -> str: """ endpoint for paging group operation :meta private: :param location_id: :type location_id: str :param paging_id: :type paging_id: str """ if location_id is None: return super().ep('paging') paging_id = paging_id and f'/{paging_id}' or '' return super().ep(f'locations/{location_id}/paging{paging_id}') def list_gen(self, *, location_id: str = None, name: str = None, phone_number: str = None, org_id: str = None, **params) -> AsyncGenerator[Paging, None, None]: """ Read the List of Paging Groups List all Paging Groups for the organization. Group Paging allows a person to place a one-way call or group page to up to 75 people and/or workspaces by dialing a number or extension assigned to a specific paging group. The Group Paging service makes a simultaneous call to all the assigned targets. Retrieving this list requires a full or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param location_id: Return only paging groups with matching location ID. Default is all locations :type location_id: str :param name: Return only paging groups with the matching name. :type name: str :param phone_number: Return only paging groups with matching primary phone number or extension. :type phone_number: str :param org_id: List paging groups for this organization. :type org_id: str :return: generator of class:`Paging` objects """ params.update((to_camel(k), v) for i, (k, v) in enumerate(locals().items()) if i and v is not None and k != 'params') url = self._endpoint() # noinspection PyTypeChecker return self.session.follow_pagination(url=url, model=Paging, params=params, item_key='locationPaging') pass async def list(self, *, location_id: str = None, name: str = None, phone_number: str = None, org_id: str = None, **params) -> List[Paging]: """ Read the List of Paging Groups List all Paging Groups for the organization. Group Paging allows a person to place a one-way call or group page to up to 75 people and/or workspaces by dialing a number or extension assigned to a specific paging group. The Group Paging service makes a simultaneous call to all the assigned targets. Retrieving this list requires a full or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param location_id: Return only paging groups with matching location ID. Default is all locations :type location_id: str :param name: Return only paging groups with the matching name. :type name: str :param phone_number: Return only paging groups with matching primary phone number or extension. :type phone_number: str :param org_id: List paging groups for this organization. :type org_id: str :return: generator of class:`Paging` objects """ params.update((to_camel(k), v) for i, (k, v) in enumerate(locals().items()) if i and v is not None and k != 'params') url = self._endpoint() # noinspection PyTypeChecker return [o async for o in self.session.follow_pagination(url=url, model=Paging, params=params, item_key='locationPaging')] pass async def create(self, *, location_id: str, settings: Paging, org_id: str = None) -> str: """ Create a new Paging Group Create a new Paging Group for the given location. Group Paging allows a person to place a one-way call or group page to up to 75 people and/or workspaces by dialing a number or extension assigned to a specific paging group. The Group Paging service makes a simultaneous call to all the assigned targets. Creating a paging group requires a full administrator auth token with a scope of spark-admin:telephony_config_write. :param location_id: Create the paging group for this location. :type location_id: str :param settings: new paging group :type settings: Paging :param org_id: Create the paging group for this organization. :type org_id: str :return: ID of the newly created paging group. :rtype: str """ params = org_id and {'orgId': org_id} or None if settings.originators and settings.originator_caller_id_enabled is None: raise TypeError('originator_caller_id_enabled required if originators are provided') url = self._endpoint(location_id=location_id) data = settings.create_or_update() data = await self.post(url, data=data, params=params) return data['id'] async def delete_paging(self, *, location_id: str, paging_id: str, org_id: str = None): """ Delete a Paging Group Delete the designated Paging Group. Group Paging allows a person to place a one-way call or group page to up to 75 people and/or workspaces by dialing a number or extension assigned to a specific paging group. The Group Paging service makes a simultaneous call to all the assigned targets. Deleting a paging group requires a full administrator auth token with a scope of spark-admin:telephony_config_write. :param location_id: Location from which to delete a paging group. :type location_id: str :param paging_id: Delete the paging group with the matching ID. :param org_id: Delete the paging group from this organization. """ params = org_id and {'orgId': org_id} or None url = self._endpoint(location_id=location_id, paging_id=paging_id) await self.delete(url, params=params) async def details(self, *, location_id: str, paging_id: str, org_id: str = None) -> Paging: """ Get Details for a Paging Group Retrieve Paging Group details. Group Paging allows a person to place a one-way call or group page to up to 75 people and/or workspaces by dialing a number or extension assigned to a specific paging group. The Group Paging service makes a simultaneous call to all the assigned targets. Retrieving paging group details requires a full or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param location_id: Retrieve settings for a paging group in this location. :param paging_id: Retrieve settings for the paging group with this identifier. :param org_id: Retrieve paging group settings from this organization. :return: :class:`Paging` object """ params = org_id and {'orgId': org_id} or None url = self._endpoint(location_id=location_id, paging_id=paging_id) return Paging.parse_obj(await self.get(url, params=params)) async def update(self, *, location_id: str, update: Paging, paging_id: str, org_id: str = None): """ Update the designated Paging Group. Group Paging allows a person to place a one-way call or group page to up to 75 people and/or workspaces by dialing a number or extension assigned to a specific paging group. The Group Paging service makes a simultaneous call to all the assigned targets. Updating a paging group requires a full administrator auth token with a scope of spark-admin:telephony_config_write. :param location_id: Update settings for a paging group in this location. :type location_id: str :param update: update parameters :type update: Paging :param paging_id: Update settings for the paging group with this identifier. :type paging_id: str :param org_id: Update paging group settings from this organization. :type org_id: str """ params = org_id and {'orgId': org_id} or None url = self._endpoint(location_id=location_id, paging_id=paging_id) data = update.create_or_update() await self.put(url, data=data, params=params) class AsPrivateNetworkConnectApi(AsApiChild, base='telephony/config/locations'): """ API for location private network connect API settings """ async def read(self, *, location_id: str, org_id: str = None) -> NetworkConnectionType: """ Get Private Network Connect Retrieve the location's network connection type. Network Connection Type determines if the location's network connection is public or private. Retrieving location's network connection type requires a full, user or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param location_id: Retrieve network connection type for this location. :type location_id: str :param org_id: Retrieve network connection type for this organization. :type org_id: str :return: location PNC settings :rtype: NetworkConnectionType """ params = org_id and {'orgId': org_id} or None url = self.session.ep(f'telephony/config/locations/{location_id}/privateNetworkConnect') data = await self.get(url, params=params) return parse_obj_as(NetworkConnectionType, data['networkConnectionType']) async def update(self, *, location_id: str, connection_type: NetworkConnectionType, org_id: str = None): """ Get Private Network Connect Retrieve the location's network connection type. Network Connection Type determines if the location's network connection is public or private. Retrieving location's network connection type requires a full, user or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param location_id: Update network connection type for this location. :type location_id: str :param connection_type: Network Connection Type for the location. :type connection_type: NetworkConnectionType :param org_id: Update network connection type for this organization. :type org_id: str """ params = org_id and {'orgId': org_id} or None url = self.session.ep(f'telephony/config/locations/{location_id}/privateNetworkConnect') body = {'networkConnectionType': connection_type.value} await self.put(url, json=body, params=params) class AsVoicePortalApi(AsApiChild, base='telephony/config/locations'): """ location voice portal API """ def _endpoint(self, *, location_id: str, path: str = None) -> str: """ location specific telephony/config/locations/{locationId}/voicePortal :meta private: :param location_id: Unique identifier for the location. :type location_id: str :param path: additional path :type: path: str :return: full endpoint :rtype: str """ path = path and f'/{path}' or '' ep = self.session.ep(f'telephony/config/locations/{location_id}/voicePortal{path}') return ep async def read(self, *, location_id: str, org_id: str = None) -> VoicePortalSettings: """ :param location_id: Location to which the voice portal belongs. :type location_id: str :param org_id: Organization to which the voice portal belongs. :type org_id: str :return: location voice portal settings :rtype: VoicePortalSettings """ params = org_id and {'orgId': org_id} or None url = self._endpoint(location_id=location_id) return VoicePortalSettings.parse_obj(await self.get(url, params=params)) async def update(self, *, location_id: str, settings: VoicePortalSettings, passcode: str = None, org_id: str = None): """ Update VoicePortal Update Voice portal information for the location. Voice portals provide an interactive voice response (IVR) system so administrators can manage auto attendant announcements. Updating voice portal information for organization and/or rules requires a full administrator auth token with a scope of spark-admin:telephony_config_write. :param location_id: Location to which the voice portal belongs. :type location_id: str :param settings: new settings :type settings: VoicePortalSettings :param passcode: new passcode :type passcode: str :param org_id: Organization to which the voice portal belongs. :type org_id: str """ data = json.loads(settings.json(exclude={'portal_id': True, 'language': True})) if passcode is not None: data['passcode'] = {'newPasscode': passcode, 'confirmPasscode': passcode} params = org_id and {'orgId': org_id} or None url = self._endpoint(location_id=location_id) await self.put(url, params=params, json=data) async def passcode_rules(self, *, location_id: str, org_id: str = None) -> PasscodeRules: """ Get VoicePortal Passcode Rule Retrieve the voice portal passcode rule for a location. Voice portals provide an interactive voice response (IVR) system so administrators can manage auto attendant announcements Retrieving the voice portal passcode rule requires a full read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param location_id: Retrieve voice portal passcode rules for this location. :type location_id: str :param org_id: Retrieve voice portal passcode rules for this organization. :type org_id: str :return: passcode rules :rtype: PasscodeRules """ params = org_id and {'orgId': org_id} or None url = self._endpoint(location_id=location_id, path='passcodeRules') return PasscodeRules.parse_obj(await self.get(url, params=params)) class AsVoicemailGroupsApi(AsApiChild, base='telephony/config/voicemailGroups'): """ API for location private network connect API settings """ def list(self, *, location_id: str = None, name: str = None, phone_number: str = None, org_id: str = None): params = {to_camel(p): v for p, v in locals().items() if p != 'self' and v is not None} url = self.ep() return self.session.follow_pagination(url=url, model=VoicemailGroup, params=params, item_key='voicemailGroups') class AsVoicemailRulesApi(AsApiChild, base='telephony/config/voicemail/rules'): """ API for voicemail rules settings """ async def read(self, *, org_id: str = None) -> VoiceMailRules: """ Get Voicemail Rules Retrieve the organization's voicemail rules. Organizational voicemail rules specify the default passcode requirements. Retrieving the organization's voicemail rules requires a full, user or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param org_id: Retrieve voicemail settings for this organization. :type org_id: str :return: VM settings :rtype: OrganisationVoicemailSettings """ params = org_id and {'orgId': org_id} or None url = self.ep() return VoiceMailRules.parse_obj(await self.get(url, params=params)) async def update(self, *, settings: VoiceMailRules, org_id: str = None): """ Update Voicemail Rules Update the organization's default voicemail passcode and/or rules. Organizational voicemail rules specify the default passcode requirements. If you choose to set default passcode for new people added to your organization, communicate to your people what that passcode is, and that it must be reset before they can access their voicemail. If this feature is not turned on, each new person must initially set their own passcode. Updating organization's voicemail passcode and/or rules requires a full administrator auth token with a scope of spark-admin:telephony_config_write. :param settings: new settings :type settings: VoiceMailRules :param org_id: Update voicemail rules for this organization. :type org_id: str """ params = org_id and {'orgId': org_id} or None url = self.ep() data = settings.json(exclude={'default_voicemail_pin_rules': True}) await self.put(url, params=params, data=data) class AsTelephonyApi(AsApiChild, base='telephony'): """ The telephony settings (features) API. """ #: access or authentication codes access_codes: AsAccessCodesApi auto_attendant: AsAutoAttendantApi calls: AsCallsApi callpark: AsCallParkApi callpark_extension: AsCallparkExtensionApi callqueue: AsCallQueueApi huntgroup: AsHuntGroupApi location_intercept: AsLocationInterceptApi location_moh: AsLocationMoHApi #: Location VM settings (only enable/disable transcription for now) location_voicemail: AsLocationVoicemailSettingsApi #: organisation voicemail settings organisation_voicemail: AsOrganisationVoicemailSettingsAPI paging: AsPagingApi permissions_out: AsOutgoingPermissionsApi pickup: AsCallPickupApi pnc: AsPrivateNetworkConnectApi schedules: AsScheduleApi voicemail_groups: AsVoicemailGroupsApi voicemail_rules: AsVoicemailRulesApi voiceportal: AsVoicePortalApi def __init__(self, session: AsRestSession): super().__init__(session=session) self.access_codes = AsAccessCodesApi(session=session) self.auto_attendant = AsAutoAttendantApi(session=session) self.calls = AsCallsApi(session=session) self.callpark = AsCallParkApi(session=session) self.callpark_extension = AsCallparkExtensionApi(session=session) self.callqueue = AsCallQueueApi(session=session) self.huntgroup = AsHuntGroupApi(session=session) self.location_intercept = AsLocationInterceptApi(session=session) self.location_moh = AsLocationMoHApi(session=session) self.location_voicemail = AsLocationVoicemailSettingsApi(session=session) self.organisation_voicemail = AsOrganisationVoicemailSettingsAPI(session=session) self.paging = AsPagingApi(session=session) self.permissions_out = AsOutgoingPermissionsApi(session=session, locations=True) self.pickup = AsCallPickupApi(session=session) self.pnc = AsPrivateNetworkConnectApi(session=session) self.schedules = AsScheduleApi(session=session, base=ScheduleApiBase.locations) self.voicemail_groups = AsVoicemailGroupsApi(session=session) self.voicemail_rules = AsVoicemailRulesApi(session=session) self.voiceportal = AsVoicePortalApi(session=session) def phone_numbers_gen(self, *, location_id: str = None, phone_number: str = None, available: bool = None, order: str = None, owner_name: str = None, owner_id: str = None, owner_type: OwnerType = None, extension: str = None, number_type: NumberType = None, phone_number_type: NumberListPhoneNumberType = None, state: NumberState = None, toll_free_numbers: bool = None, org_id: str = None, **params) -> AsyncGenerator[NumberListPhoneNumber, None, None]: """ Get Phone Numbers for an Organization with given criteria. List all the phone numbers for the given organization along with the status and owner (if any). PSTN phone numbers are associated with a specific location and can be active/inactive and assigned/unassigned. The owner is the person, workspace, or feature to which the number is assigned. Retrieving this list requires a full or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param location_id: Return the list of phone numbers for this location within the given organization. :type location_id: str :param phone_number: Search for this phone number. :type phone_number: str :param available: Search among the available phone numbers. This parameter cannot be used along with owner_type parameter when set to true. :type available: bool :param order: Sort the list of phone numbers based on the following:lastName,dn,extension. Default sort will be based on number and extension in an Ascending order :type order: str :param owner_name: Return the list of phone numbers that is owned by given owner name. Maximum length is 255. :type owner_name: str :param owner_id: Returns only the matched number/extension entries assigned to the feature with specified uuid/broadsoftId. :type owner_id: str :param owner_type: Returns the list of phone numbers that are of given owner_type. :type owner_type: OwnerType :param extension: Returns the list of PSTN phone numbers with given extension. :type extension: str :param number_type: Returns the filtered list of PSTN phone numbers that contains given type of numbers. This parameter cannot be used along with available or state. :type number_type: NumberType :param phone_number_type: Returns the filtered list of PSTN phone numbers that are of given phoneNumberType. :type phone_number_type: NumberListPhoneNumberType :param state: Returns the list of PSTN phone numbers with matching state. :type state: NumberState :param toll_free_numbers: Returns the list of toll free phone numbers. :type toll_free_numbers: bool :param org_id: List numbers for this organization. :type org_id: str :return: yields :class:`NumberListPhoneNumber` instances """ params.update((to_camel(p), v) for i, (p, v) in enumerate(locals().items()) if i and v is not None and p != 'params') for param, value in params.items(): if isinstance(value, bool): value = 'true' if value else 'false' params[param] = value elif isinstance(value, Enum): value = value.value params[param] = value url = self.ep(path='config/numbers') return self.session.follow_pagination(url=url, model=NumberListPhoneNumber, params=params, item_key='phoneNumbers') async def phone_numbers(self, *, location_id: str = None, phone_number: str = None, available: bool = None, order: str = None, owner_name: str = None, owner_id: str = None, owner_type: OwnerType = None, extension: str = None, number_type: NumberType = None, phone_number_type: NumberListPhoneNumberType = None, state: NumberState = None, toll_free_numbers: bool = None, org_id: str = None, **params) -> List[NumberListPhoneNumber]: """ Get Phone Numbers for an Organization with given criteria. List all the phone numbers for the given organization along with the status and owner (if any). PSTN phone numbers are associated with a specific location and can be active/inactive and assigned/unassigned. The owner is the person, workspace, or feature to which the number is assigned. Retrieving this list requires a full or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param location_id: Return the list of phone numbers for this location within the given organization. :type location_id: str :param phone_number: Search for this phone number. :type phone_number: str :param available: Search among the available phone numbers. This parameter cannot be used along with owner_type parameter when set to true. :type available: bool :param order: Sort the list of phone numbers based on the following:lastName,dn,extension. Default sort will be based on number and extension in an Ascending order :type order: str :param owner_name: Return the list of phone numbers that is owned by given owner name. Maximum length is 255. :type owner_name: str :param owner_id: Returns only the matched number/extension entries assigned to the feature with specified uuid/broadsoftId. :type owner_id: str :param owner_type: Returns the list of phone numbers that are of given owner_type. :type owner_type: OwnerType :param extension: Returns the list of PSTN phone numbers with given extension. :type extension: str :param number_type: Returns the filtered list of PSTN phone numbers that contains given type of numbers. This parameter cannot be used along with available or state. :type number_type: NumberType :param phone_number_type: Returns the filtered list of PSTN phone numbers that are of given phoneNumberType. :type phone_number_type: NumberListPhoneNumberType :param state: Returns the list of PSTN phone numbers with matching state. :type state: NumberState :param toll_free_numbers: Returns the list of toll free phone numbers. :type toll_free_numbers: bool :param org_id: List numbers for this organization. :type org_id: str :return: yields :class:`NumberListPhoneNumber` instances """ params.update((to_camel(p), v) for i, (p, v) in enumerate(locals().items()) if i and v is not None and p != 'params') for param, value in params.items(): if isinstance(value, bool): value = 'true' if value else 'false' params[param] = value elif isinstance(value, Enum): value = value.value params[param] = value url = self.ep(path='config/numbers') return [o async for o in self.session.follow_pagination(url=url, model=NumberListPhoneNumber, params=params, item_key='phoneNumbers')] async def phone_number_details(self, *, org_id: str = None) -> NumberDetails: """ get summary (counts) of phone numbers :param org_id: detaild for numbers in this organization. :type org_id: str :return: phone number details :rtype: :class:`NumberDetails` """ params = {to_camel(p): v for i, (p, v) in enumerate(locals().items()) if i and v is not None} params['details'] = 'true' params['max'] = 1 url = self.ep(path='config/numbers') data = await self.get(url, params=params) return NumberDetails.parse_obj(data['count']) async def validate_extensions(self, *, extensions: list[str]) -> ValidateExtensionsResponse: """ Validate the List of Extensions Validate the List of Extensions. Retrieving this list requires a full or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param extensions: Array of Strings of ID of Extensions. :return: """ url = self.ep(path='config/actions/validateExtensions/invoke') data = await self.post(url, json={'extensions': extensions}) return ValidateExtensionsResponse.parse_obj(data) async def ucm_profiles(self, *, org_id: str = None) -> list[UCMProfile]: """ Read the List of UC Manager Profiles List all calling UC Manager Profiles for the organization. UC Manager Profiles are applicable if your organization uses Jabber in Team Messaging mode or Calling in Webex Teams (Unified CM). The UC Manager Profile has an organization-wide default and may be overridden for individual persons, although currently only setting at a user level is supported by Webex APIs. Retrieving this list requires a full or read-only administrator auth token with a scope of spark-admin:people_read as this API is designed to be used in conjunction with calling behavior at the user level. :param org_id: List manager profiles in this organization. :type org_id: str :return: list of :class:`UCMProfile` """ params = org_id and {'orgId': org_id} or None url = self.ep(path='config/callingProfiles') data = await self.get(url, params=params) return parse_obj_as(list[UCMProfile], data['callingProfiles']) async def change_announcement_language(self, *, location_id: str, language_code: str, agent_enabled: bool = None, service_enabled: bool = None, org_id: str = None): """ Change Announcement Language Change announcement language for the given location. Change announcement language for current people/workspaces and/or existing feature configurations. This does not change the default announcement language which is applied to new users/workspaces and new feature configurations. Changing announcement language for the given location requires a full administrator auth token with a scope of spark-admin:telephony_config_write. :param location_id: Change announcement language for this location. :type location_id: str :param language_code: Language code. :type language_code: str :param agent_enabled: Set to true to change announcement language for existing people and workspaces. :type agent_enabled: bool :param service_enabled: Set to true to change announcement language for existing feature configurations. :type service_enabled: bool :param org_id: Change announcement language for this organization. :type org_id: str """ params = org_id and {'orgId': org_id} or None body = {'announcementLanguageCode': language_code} if agent_enabled is not None: body['agentEnabled'] = agent_enabled if service_enabled is not None: body['serviceEnabled'] = service_enabled url = self.session.ep(f'telephony/config/locations/{location_id}/actions/modifyAnnouncementLanguage/invoke') await self.put(url, json=body, params=params) class AsWebhookApi(AsApiChild, base='webhooks'): """ API for webhook management """ def list_gen(self) -> AsyncGenerator[WebHook, None, None]: """ List all of your webhooks. :return: yields webhooks """ ep = self.ep() # noinspection PyTypeChecker return self.session.follow_pagination(url=ep, model=WebHook) async def list(self) -> List[WebHook]: """ List all of your webhooks. :return: yields webhooks """ ep = self.ep() # noinspection PyTypeChecker return [o async for o in self.session.follow_pagination(url=ep, model=WebHook)] async def create(self, *, name: str, target_url: str, resource: WebHookResource, event: WebHookEvent, filter: str = None, secret: str = None, owned_by: str = None) -> WebHook: """ Creates a webhook. :param name: A user-friendly name for the webhook. :param target_url: The URL that receives POST requests for each event. :param resource: The resource type for the webhook. Creating a webhook requires 'read' scope on the resource the webhook is for. :param event: The event type for the webhook. :param filter: The filter that defines the webhook scope. :param secret: The secret used to generate payload signature. :param owned_by: Specified when creating an org/admin level webhook. Supported for meetings, recordings and meetingParticipants resources for now. :return: the new webhook """ params = {to_camel(param): value for i, (param, value) in enumerate(locals().items()) if i and value is not None} body = json.loads(WebHookCreate(**params).json()) ep = self.ep() data = await self.post(ep, json=body) result = WebHook.parse_obj(data) return result async def details(self, *, webhook_id: str) -> WebHook: """ Get Webhook Details Shows details for a webhook, by ID. :param webhook_id: The unique identifier for the webhook. :type webhook_id: str :return: Webhook details """ url = self.ep(webhook_id) return WebHook.parse_obj(await self.get(url)) async def update(self, *, webhook_id: str, update: WebHook) -> WebHook: """ Updates a webhook, by ID. You cannot use this call to deactivate a webhook, only to activate a webhook that was auto deactivated. The fields that can be updated are name, targetURL, secret and status. All other fields, if supplied, are ignored. :param webhook_id: The unique identifier for the webhook. :type webhook_id: str :param update: The webhook update :type update: WebHook :return: updated :class:`WebHook` object """ url = self.ep(webhook_id) webhook_data = update.json(include={'name', 'target_url', 'secret', 'owned_by', 'status'}) return WebHook.parse_obj(await self.put(url, data=webhook_data)) async def webhook_delete(self, *, webhook_id: str): """ Deletes a webhook, by ID. :param webhook_id: The unique identifier for the webhook. :type webhook_id: str :return: None """ ep = self.ep(f'{webhook_id}') await self.delete(ep) @dataclass(init=False) class AsWorkspaceSettingsApi(AsApiChild, base='workspaces'): """ API for all workspace settings. Most of the workspace settings are equivalent to corresponding user settings. For these settings the attributes of this class are instances of the respective user settings APIs. When calling endpoints of these APIs workspace IDs need to be passed to the ``person_id`` parameter of the called function. """ call_intercept: AsCallInterceptApi call_waiting: AsCallWaitingApi caller_id: AsCallerIdApi forwarding: AsPersonForwardingApi monitoring: AsMonitoringApi numbers: AsNumbersApi permissions_in: AsIncomingPermissionsApi permissions_out: AsOutgoingPermissionsApi def __init__(self, session: AsRestSession): super().__init__(session=session) self.call_intercept = AsCallInterceptApi(session=session, workspaces=True) self.call_waiting = AsCallWaitingApi(session=session, workspaces=True) self.caller_id = AsCallerIdApi(session=session, workspaces=True) self.forwarding = AsPersonForwardingApi(session=session, workspaces=True) self.monitoring = AsMonitoringApi(session=session, workspaces=True) self.numbers = AsNumbersApi(session=session, workspaces=True) self.permissions_in = AsIncomingPermissionsApi(session=session, workspaces=True) self.permissions_out = AsOutgoingPermissionsApi(session=session, workspaces=True) class AsWorkspacesApi(AsApiChild, base='workspaces'): """ Workspaces API Workspaces represent where people work, such as conference rooms, meeting spaces, lobbies, and lunch rooms. Devices may be associated with workspaces. Viewing the list of workspaces in an organization requires an administrator auth token with the spark-admin:workspaces_read scope. Adding, updating, or deleting workspaces in an organization requires an administrator auth token with the spark-admin:workspaces_write scope. The Workspaces API can also be used by partner administrators acting as administrators of a different organization than their own. In those cases an orgId value must be supplied, as indicated in the reference documentation for the relevant endpoints. """ def list_gen(self, *, workspace_location_id: str = None, floor_id: str = None, display_name: str = None, capacity: int = None, workspace_type: WorkSpaceType = None, calling: CallingType = None, calendar: CalendarType = None, org_id: str = None, **params) -> AsyncGenerator[Workspace, None, None]: """ List Workspaces List workspaces. Use query parameters to filter the response. The orgId parameter can only be used by admin users of another organization (such as partners). The workspaceLocationId, floorId, capacity and type fields will only be present for workspaces that have a value set for them. The special values notSet (for filtering on category) and -1 (for filtering on capacity) can be used to filter for workspaces without a type and/or capacity. :param workspace_location_id: Location associated with the workspace :type workspace_location_id: str :param floor_id: Floor associated with the workspace. :type floor_id: str :param display_name: List workspaces by display name. :type display_name: str :param capacity: List workspaces with the given capacity. Must be -1 or higher. A value of -1 lists workspaces with no capacity set. :type capacity: int :param workspace_type: List workspaces by type. :type workspace_type: :class:`WorkSpaceType` :param calling: List workspaces by calling type. :type calling: :class:`CallingType` :param calendar: List workspaces by calendar type. :type calendar: :class:`CalendarType` :param org_id: List workspaces in this organization. Only admin users of another organization (such as partners) may use this parameter. :type org_id: str :return: generator of :class:`Workspace` instances """ params.update((to_camel(k), v) for i, (k, v) in enumerate(locals().items()) if i and k != 'params' and v is not None) if workspace_type is not None: params.pop('workspaceType') params['type'] = workspace_type ep = self.ep() # noinspection PyTypeChecker return self.session.follow_pagination(url=ep, model=Workspace, params=params) async def list(self, *, workspace_location_id: str = None, floor_id: str = None, display_name: str = None, capacity: int = None, workspace_type: WorkSpaceType = None, calling: CallingType = None, calendar: CalendarType = None, org_id: str = None, **params) -> List[Workspace]: """ List Workspaces List workspaces. Use query parameters to filter the response. The orgId parameter can only be used by admin users of another organization (such as partners). The workspaceLocationId, floorId, capacity and type fields will only be present for workspaces that have a value set for them. The special values notSet (for filtering on category) and -1 (for filtering on capacity) can be used to filter for workspaces without a type and/or capacity. :param workspace_location_id: Location associated with the workspace :type workspace_location_id: str :param floor_id: Floor associated with the workspace. :type floor_id: str :param display_name: List workspaces by display name. :type display_name: str :param capacity: List workspaces with the given capacity. Must be -1 or higher. A value of -1 lists workspaces with no capacity set. :type capacity: int :param workspace_type: List workspaces by type. :type workspace_type: :class:`WorkSpaceType` :param calling: List workspaces by calling type. :type calling: :class:`CallingType` :param calendar: List workspaces by calendar type. :type calendar: :class:`CalendarType` :param org_id: List workspaces in this organization. Only admin users of another organization (such as partners) may use this parameter. :type org_id: str :return: generator of :class:`Workspace` instances """ params.update((to_camel(k), v) for i, (k, v) in enumerate(locals().items()) if i and k != 'params' and v is not None) if workspace_type is not None: params.pop('workspaceType') params['type'] = workspace_type ep = self.ep() # noinspection PyTypeChecker return [o async for o in self.session.follow_pagination(url=ep, model=Workspace, params=params)] async def create(self, *, settings: Workspace, org_id: str = None): """ Create a Workspace Create a workspace. The workspaceLocationId, floorId, capacity, type and notes parameters are optional, and omitting them will result in the creation of a workspace without these values set, or set to their default. A workspaceLocationId must be provided when the floorId is set. Calendar and calling can also be set for a new workspace. Omitting them will default to free calling and no calendaring. The orgId parameter can only be used by admin users of another organization (such as partners). :param settings: settings for new Workspace :type settings: :class:`Workspace` :param org_id: OrgId associated with the workspace. Only admin users of another organization (such as partners) may use this parameter. :type org_id: str :return: new workspace :rtype: :class:`Workspace` """ if org_id: settings.org_id = org_id data = settings.update_or_create() url = self.ep() data = await self.post(url, data=data) return Workspace.parse_obj(data) async def details(self, workspace_id) -> Workspace: """ Get Workspace Details Shows details for a workspace, by ID. The workspaceLocationId, floorId, capacity, type and notes fields will only be present if they have been set for the workspace. :param workspace_id: A unique identifier for the workspace. :type workspace_id: str :return: workspace details :rtype: :class:`Workspace` """ url = self.ep(workspace_id) return Workspace.parse_obj(await self.get(url)) async def update(self, *, workspace_id, settings: Workspace) -> Workspace: """ Update a Workspace Updates details for a workspace, by ID. Specify the workspace ID in the workspaceId parameter in the URI. Include all details for the workspace that are present in a GET request for the workspace details. Not including the optional capacity, type or notes fields will result in the fields no longer being defined for the workspace. A workspaceLocationId must be provided when the floorId is set. The workspaceLocationId, floorId, calendar and calling fields do not change when omitted from the update request. Updating the calling parameter is not supported. :param workspace_id: A unique identifier for the workspace. :type workspace_id: str :param settings: new workspace settings :type settings: :class:`Workspace` :return: updated workspace :rtype: :class:`Workspace` """ url = self.ep(workspace_id) j_data = settings.update_or_create(for_update=True) data = await self.put(url, data=j_data) return Workspace.parse_obj(data) async def delete_workspace(self, workspace_id): """ Delete a Workspace Deletes a workspace, by ID. Will also delete all devices associated with the workspace. Any deleted devices will need to be reactivated. :param workspace_id: A unique identifier for the workspace. :type workspace_id: str """ url = self.ep(workspace_id) await self.delete(url) @dataclass(init=False) class AsWebexSimpleApi: """ The main API object """ #: groups API :class:`AsGroupsApi` groups: AsGroupsApi #: Licenses API :class:`AsLicensesApi` licenses: AsLicensesApi #: Location API :class:`AsLocationsApi` locations: AsLocationsApi #: Person settings API :class:`AsPersonSettingsApi` person_settings: AsPersonSettingsApi #: People API :class:`AsPeopleApi` people: AsPeopleApi #: Telephony (features) API :class:`AsTelephonyApi` telephony: AsTelephonyApi #: Webhooks API :class:`AsWebhookApi` webhook: AsWebhookApi #: Workspaces API :class:`AsWorkspacesApi` workspaces: AsWorkspacesApi #: Workspace setting API :class:`AsWorkspaceSettingsApi` workspace_settings: AsWorkspaceSettingsApi #: :class:`AsRestSession` used for all API requests session: AsRestSession def __init__(self, *, tokens: Union[str, Tokens] = None, concurrent_requests: int = 10): """ :param tokens: token to be used by the API. Can be a :class:`tokens.Tokens` instance, a string or None. If None then an access token is expected in the WEBEX_ACCESS_TOKEN environment variable. :param concurrent_requests: number of concurrent requests when using multi-threading :type concurrent_requests: int """ if isinstance(tokens, str): tokens = Tokens(access_token=tokens) elif tokens is None: tokens = os.getenv('WEBEX_ACCESS_TOKEN') if tokens is None: raise ValueError('if no access token is passed, then a valid access token has to be present in ' 'WEBEX_ACCESS_TOKEN environment variable') tokens = Tokens(access_token=tokens) session = AsRestSession(tokens=tokens, concurrent_requests=concurrent_requests) self.groups = AsGroupsApi(session=session) self.licenses = AsLicensesApi(session=session) self.locations = AsLocationsApi(session=session) self.person_settings = AsPersonSettingsApi(session=session) self.people = AsPeopleApi(session=session) self.telephony = AsTelephonyApi(session=session) self.webhook = AsWebhookApi(session=session) self.workspaces = AsWorkspacesApi(session=session) self.workspace_settings = AsWorkspaceSettingsApi(session=session) self.session = session @property def access_token(self) -> str: """ access token used for all requests :return: access token :rtype: str """ return self.session.access_token async def close(self): await self.session.close() async def __aenter__(self): return self async def __aexit__(self, exc_type, exc_val, exc_tb): await self.close() ``` #### File: wxc_sdk/wxc_sdk/__init__.py ```python import logging import os from typing import Union from .groups import GroupsApi from .licenses import LicensesApi from .locations import LocationsApi from .people import PeopleApi from .person_settings import PersonSettingsApi from .rest import RestSession from .telephony import TelephonyApi from .tokens import Tokens from .webhook import WebhookApi from .workspaces import WorkspacesApi from .workspace_settings import WorkspaceSettingsApi from dataclasses import dataclass __all__ = ['WebexSimpleApi'] __version__ = '1.4.1' log = logging.getLogger(__name__) # TODO: devices @dataclass(init=False) class WebexSimpleApi: """ The main API object """ #: groups API :class:`groups.GroupsApi` groups: GroupsApi #: Licenses API :class:`licenses.LicensesApi` licenses: LicensesApi #: Location API :class:`locations.LocationsApi` locations: LocationsApi #: Person settings API :class:`person_settings.PersonSettingsApi` person_settings: PersonSettingsApi #: People API :class:`people.PeopleApi` people: PeopleApi #: Telephony (features) API :class:`telephony.TelephonyApi` telephony: TelephonyApi #: Webhooks API :class:`webhook.WebhookApi` webhook: WebhookApi #: Workspaces API :class:`workspaces.WorkspacesApi` workspaces: WorkspacesApi #: Workspace setting API :class:`workspace_settings.WorkspaceSettingsApi` workspace_settings: WorkspaceSettingsApi #: :class:`rest.RestSession` used for all API requests session: RestSession def __init__(self, *, tokens: Union[str, Tokens] = None, concurrent_requests: int = 10): """ :param tokens: token to be used by the API. Can be a :class:`tokens.Tokens` instance, a string or None. If None then an access token is expected in the WEBEX_ACCESS_TOKEN environment variable. :param concurrent_requests: number of concurrent requests when using multi-threading :type concurrent_requests: int """ if isinstance(tokens, str): tokens = Tokens(access_token=tokens) elif tokens is None: tokens = os.getenv('WEBEX_ACCESS_TOKEN') if tokens is None: raise ValueError('if no access token is passed, then a valid access token has to be present in ' 'WEBEX_ACCESS_TOKEN environment variable') tokens = Tokens(access_token=tokens) session = RestSession(tokens=tokens, concurrent_requests=concurrent_requests) self.groups = GroupsApi(session=session) self.licenses = LicensesApi(session=session) self.locations = LocationsApi(session=session) self.person_settings = PersonSettingsApi(session=session) self.people = PeopleApi(session=session) self.telephony = TelephonyApi(session=session) self.webhook = WebhookApi(session=session) self.workspaces = WorkspacesApi(session=session) self.workspace_settings = WorkspaceSettingsApi(session=session) self.session = session @property def access_token(self) -> str: """ access token used for all requests :return: access token :rtype: str """ return self.session.access_token def close(self): self.session.close() def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.close() ``` #### File: wxc_sdk/person_settings/voicemail.py ```python import os from enum import Enum from io import BufferedReader from typing import Optional, Union from requests_toolbelt.multipart.encoder import MultipartEncoder from .common import PersonSettingsApiChild from ..base import ApiModel from ..common import Greeting __all__ = ['VoicemailApi', 'VoicemailEnabled', 'VoicemailEnabledWithGreeting', 'UnansweredCalls', 'StorageType', 'VoicemailMessageStorage', 'VoicemailCopyOfMessage', 'VoicemailFax', 'VoicemailTransferToNumber', 'VoicemailNotifications', 'VoiceMailFax', 'VoicemailSettings'] class VoicemailEnabled(ApiModel): enabled: bool class VoicemailEnabledWithGreeting(VoicemailEnabled): """ Voicemail enablement setting with greeting details """ #: DEFAULT indicates the default greeting will be played. CUSTOM indicates a custom .wav file will be played. greeting: Optional[Greeting] #: Indicates a custom greeting has been uploaded. greeting_uploaded: Optional[bool] class UnansweredCalls(VoicemailEnabledWithGreeting): """ Voicemail enablement settungs for unsanswered cals """ #: Number of rings before unanswered call will be sent to voicemail. number_of_rings: Optional[int] #: System-wide maximum number of rings allowed for number_of_rings setting. system_max_number_of_rings: Optional[int] class StorageType(str, Enum): """ Designates which type of voicemail message storage is used. """ #: For message access via phone or the Calling User Portal. internal = 'INTERNAL' #: For sending all messages to the person's email. external = 'EXTERNAL' class VoicemailMessageStorage(ApiModel): """ Settings for message storage """ #: When true desktop phone will indicate there are new voicemails. mwi_enabled: Optional[bool] #: Designates which type of voicemail message storage is used. storage_type: Optional[StorageType] #: External email address to which the new voicemail audio will be sent. A value for this field must be provided # in the request if a storageType of EXTERNAL is given in the request. external_email: Optional[str] class VoicemailCopyOfMessage(VoicemailEnabled): """ Settings for sending a copy of new voicemail message audio via email. """ #: Email address to which the new voicemail audio will be sent. email_id: Optional[str] class VoicemailFax(VoicemailEnabled): phone_number: Optional[str] extension: Optional[str] class VoicemailTransferToNumber(VoicemailEnabled): """ Settings for voicemail caller to transfer to a different number by pressing zero (0). """ #: Number voicemail caller will be transferred to when they press zero (0). destination: Optional[str] class VoicemailNotifications(VoicemailEnabled): """ Settings for notifications when there are any new voicemails. """ #: Email address to which the notification will be sent. For text messages, use an email to text message gateway #: like <EMAIL>. destination: Optional[str] class VoiceMailFax(VoicemailEnabled): """ Fax message settings """ #: Designates optional extension for fax. extension: Optional[str] #: Designates phone number for fax. A value for this field must be provided in the request if faxMessage enabled #: field is given as true in the request. phone_number: Optional[str] class VoicemailSettings(ApiModel): """ User's voicemail settings """ #: Voicemail is enabled or disabled. enabled: Optional[bool] #: Settings for sending all calls to voicemail. send_all_calls: Optional[VoicemailEnabled] #: Settings for sending calls to voicemail when the line is busy. send_busy_calls: Optional[VoicemailEnabledWithGreeting] #: Settings for sending calls to voicemail when call is unanswered send_unanswered_calls: Optional[UnansweredCalls] #: Settings for notifications when there are any new voicemails. notifications: Optional[VoicemailNotifications] #: Settings for voicemail caller to transfer to a different number by pressing zero (0). transfer_to_number: Optional[VoicemailTransferToNumber] #: Settings for sending a copy of new voicemail message audio via email. email_copy_of_message: Optional[VoicemailCopyOfMessage] #: Settings for message storage message_storage: Optional[VoicemailMessageStorage] #: Fax message settings fax_message: Optional[VoiceMailFax] voice_message_forwarding_enabled: Optional[bool] # TODO: raise documentation defect @staticmethod def default() -> 'VoicemailSettings': """ Default voicemail settings :return: defauilt settings :rtype: :class:`VoicemailSettings` """ return VoicemailSettings(enabled=True, send_all_calls=VoicemailEnabled(enabled=False), send_busy_calls=VoicemailEnabledWithGreeting(enabled=False, greeting=Greeting.default), send_unanswered_calls=UnansweredCalls(enabled=True, greeting=Greeting.default, number_of_rings=3), notifications=VoicemailNotifications(enabled=False), transfer_to_number=VoicemailTransferToNumber(enabled=False), email_copy_of_message=VoicemailCopyOfMessage(enabled=False), message_storage=VoicemailMessageStorage(mwi_enabled=True, storage_type=StorageType.internal), fax_message=VoiceMailFax(enabled=False), voice_message_forwarding_enabled=False) class XForwardingSetting: pass class VoicemailApi(PersonSettingsApiChild): """ API for person's call voicemail settings """ feature = 'voicemail' def read(self, *, person_id: str, org_id: str = None) -> VoicemailSettings: """ Read Voicemail Settings for a Person Retrieve a Person's Voicemail Settings The voicemail feature transfers callers to voicemail based on your settings. You can then retrieve voice messages via Voicemail. Voicemail audio is sent in Waveform Audio File Format, .wav, format. Optionally, notifications can be sent to a mobile phone via text or email. These notifications will not include the voicemail files. This API requires a full, user, or read-only administrator auth token with a scope of spark-admin:people_read or a user auth token with spark:people_read scope can be used by a person to read their settings. :param person_id: Unique identifier for the person. :type person_id: str :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str :return: user's voicemail settings :rtype: VoicemailSettings """ url = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None return VoicemailSettings.parse_obj(self.get(url, params=params)) def configure(self, *, person_id: str, settings: VoicemailSettings, org_id: str = None): """ Configure Voicemail Settings for a Person Configure a person's Voicemail Settings The voicemail feature transfers callers to voicemail based on your settings. You can then retrieve voice messages via Voicemail. Voicemail audio is sent in Waveform Audio File Format, .wav, format. Optionally, notifications can be sent to a mobile phone via text or email. These notifications will not include the voicemail files. This API requires a full or user administrator auth token with the spark-admin:people_write scope or a user auth token with spark:people_write scope can be used by a person to update their settings. :return: """ # some settings can't be part of an update data = settings.json(exclude={'send_busy_calls': {'greeting_uploaded': True}, 'send_unanswered_calls': {'system_max_number_of_rings': True, 'greeting_uploaded': True}, 'voice_message_forwarding_enabled': True }) url = self.f_ep(person_id=person_id) params = org_id and {'orgId': org_id} or None self.put(url, data=data, params=params) def _configure_greeting(self, *, person_id: str, content: Union[BufferedReader, str], upload_as: str = None, org_id: str = None, greeting_key: str): """ handled greeting configuration :param person_id: Unique identifier for the person. :type person_id: str :param content: the file to be uploaded, can be a path to a file or a buffered reader (opened file); if a reader referring to an open file is passed then make sure to open the file as binary b/c otherwise the content length might be calculated wrong :type content: Union[BufferedReader, str] :param upload_as: filename for the content. Only required if content is a reader; has to be a .wav file name. :type upload_as: str :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str :param greeting_key: 'uploadBusyGreeting' or 'uploadNoAnswerGreeting' """ if isinstance(content, str): upload_as = os.path.basename(content) content = open(content, mode='rb') must_close = True else: must_close = False # an existing reader if not upload_as: raise ValueError('upload_as is required') encoder = MultipartEncoder(fields={'file': (upload_as, content, 'audio/wav')}) ep = self.f_ep(person_id=person_id, path=f'actions/{greeting_key}/invoke') params = org_id and {'orgId': org_id} or None try: self.post(ep, data=encoder, headers={'Content-Type': encoder.content_type}, params=params) finally: if must_close: content.close() def configure_busy_greeting(self, *, person_id: str, content: Union[BufferedReader, str], upload_as: str = None, org_id: str = None): """ Configure Busy Voicemail Greeting for a Person Configure a Person's Busy Voicemail Greeting by uploading a Waveform Audio File Format, .wav, encoded audio file. Your request will need to be a multipart/form-data request rather than JSON, using the audio/wav Content-Type. This API requires a full or user administrator auth token with the spark-admin:people_write scope or a user auth token with spark:people_write scope can be used by a person to update their settings. :param person_id: Unique identifier for the person. :type person_id: str :param content: the file to be uploaded, can be a path to a file or a buffered reader (opened file); if a reader referring to an open file is passed then make sure to open the file as binary b/c otherwise the content length might be calculated wrong :type content: Union[BufferedReader, str] :param upload_as: filename for the content. Only required if content is a reader; has to be a .wav file name. :type upload_as: str :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str """ self._configure_greeting(person_id=person_id, content=content, upload_as=upload_as, org_id=org_id, greeting_key='uploadBusyGreeting') def configure_no_answer_greeting(self, person_id: str, content: Union[BufferedReader, str], upload_as: str = None, org_id: str = None): """ Configure No Answer Voicemail Greeting for a Person Configure a Person's No Answer Voicemail Greeting by uploading a Waveform Audio File Format, .wav, encoded audio file. Your request will need to be a multipart/form-data request rather than JSON, using the audio/wav Content-Type. This API requires a full or user administrator auth token with the spark-admin:people_write scope or a user auth token with spark:people_write scope can be used by a person to update their settings. :param person_id: Unique identifier for the person. :type person_id: str :param content: the file to be uploaded, can be a path to a file or a buffered reader (opened file); if a reader referring to an open file is passed then make sure to open the file as binary b/c otherwise the content length might be calculated wrong :type content: Union[BufferedReader, str] :param upload_as: filename for the content. Only required if content is a reader; has to be a .wav file name. :type upload_as: str :param org_id: Person is in this organization. Only admin users of another organization (such as partners) may use this parameter as the default is the same organization as the token used to access API. :type org_id: str """ self._configure_greeting(person_id=person_id, content=content, upload_as=upload_as, org_id=org_id, greeting_key='uploadNoAnswerGreeting') ``` #### File: telephony/callqueue/announcement.py ```python from collections.abc import Generator from pydantic import Field from ...base import ApiModel from ...rest import RestSession __all__ = ['AnnouncementApi', 'Announcement'] class Announcement(ApiModel): """ Announcement file information """ name: str = Field(alias='fileName') size: int = Field(alias='fileSize') class AnnouncementApi: """ API for call queue Announcements """ def __init__(self, *, session: RestSession): self._session = session def _endpoint(self, location_id: str, queue_id: str, path: str = None): """ :meta private: :param location_id: :param queue_id: :param path: :return: """ path = path and f'/{path}' or '' ep = self._session.ep(path=f'telephony/config/locations/{location_id}/queues/{queue_id}/announcements{path}') return ep def list(self, *, location_id: str, queue_id: str, org_id: str = None) -> Generator[Announcement]: """ :param location_id: :param queue_id: :param org_id: :return: """ url = self._endpoint(location_id=location_id, queue_id=queue_id) params = org_id and {'orgId': org_id} or dict() # noinspection PyTypeChecker return self._session.follow_pagination(url=url, model=Announcement, params=params) def delete_announcement(self, *, location_id: str, queue_id: str, file_name: str, org_id: str = None): """ :param location_id: :type location_id: str :param queue_id: :type queue_id: str :param file_name: :type file_name: str :param org_id: """ url = self._endpoint(location_id=location_id, queue_id=queue_id, path=file_name) params = org_id and {'orgId': org_id} or None self._session.delete(url=url, params=params) ``` #### File: telephony/callqueue/__init__.py ```python from collections.abc import Generator from dataclasses import dataclass from enum import Enum from typing import Optional from pydantic import Field from .announcement import AnnouncementApi from ..forwarding import ForwardingApi, FeatureSelector from ..hg_and_cq import HGandCQ, Policy, Agent from ...base import to_camel, ApiModel from ...common import RingPattern, Greeting from ...rest import RestSession __all__ = ['CallBounce', 'DistinctiveRing', 'CallQueueCallPolicies', 'OverflowAction', 'OverflowSetting', 'WaitMode', 'WaitMessageSetting', 'AudioSource', 'WelcomeMessageSetting', 'ComfortMessageSetting', 'MohMessageSetting', 'QueueSettings', 'CallQueue', 'CallQueueApi'] class CallBounce(ApiModel): """ Settings for when the call into the call queue is not answered. """ #: If enabled, bounce calls after the set number of rings. enabled: Optional[bool] = Field(alias='callBounceEnabled') #: Number of rings after which to bounce call, if call bounce is enabled. max_rings: Optional[int] = Field(alias='callBounceMaxRings') #: Bounce if agent becomes unavailable. agent_unavailable_enabled: Optional[bool] #: Alert agent if call on hold more than alert_agent_max_seconds. alert_agent_enabled: Optional[bool] #: Number of second after which to alert agent if alertAgentEnabled. alert_agent_max_seconds: Optional[int] #: Bounce if call on hold more than on_hold_max_seconds on_hold_enabled: Optional[bool] = Field(alias='callBounceOnHoldEnabled') #: Number of second after which to bounce if on_hold_enabled. on_hold_max_seconds: Optional[int] = Field(alias='callBounceOnHoldMaxSeconds') @staticmethod def default() -> 'CallBounce': return CallBounce(enabled=True, max_rings=8, agent_unavailable_enabled=False, alert_agent_enabled=False, alert_agent_max_seconds=30, on_hold_enabled=False, on_hold_max_seconds=60) class DistinctiveRing(ApiModel): """ Whether or not the call queue has the distinctive ring option enabled. """ #: Whether or not the distinctive ring is enabled. enabled: bool #: Ring pattern for when this callqueue is called. Only available when distinctiveRing is enabled for the call #: queue. ring_pattern: Optional[RingPattern] @staticmethod def default() -> 'DistinctiveRing': """ Default DistinctiveRing """ return DistinctiveRing(enabled=True, ring_pattern=RingPattern.normal) class CallQueueCallPolicies(ApiModel): """ Policy controlling how calls are routed to agents. """ #: Call routing policy to use to dispatch calls to agents. policy: Optional[Policy] #: Settings for when the call into the call queue is not answered. call_bounce: Optional[CallBounce] #: Whether or not the call queue has the distinctive ring option enabled. distinctive_ring: Optional[DistinctiveRing] @staticmethod def default() -> 'CallQueueCallPolicies': """ Default CallPolicies """ return CallQueueCallPolicies(policy=Policy.circular, call_bounce=CallBounce.default(), distinctive_ring=DistinctiveRing.default()) @staticmethod def simple() -> 'CallQueueCallPolicies': return CallQueueCallPolicies(policy=Policy.circular, call_bounce=CallBounce.default()) class OverflowAction(str, Enum): """ How to handle new calls when the queue is full. """ #: The caller hears a fast-busy tone. perform_busy_treatment = 'PERFORM_BUSY_TREATMENT' #: Enter the number where you want to transfer overflow calls. transfer_to_phone_number = 'TRANSFER_TO_PHONE_NUMBER' #: The caller hears ringing until they disconnect. play_ringing_until_caller_hangs_up = 'PLAY_RINGING_UNTIL_CALLER_HANGS_UP' class OverflowSetting(ApiModel): """ Settings for incoming calls exceed queueSize. """ #: How to handle new calls when the queue is full. action: Optional[OverflowAction] #: When true, forward all calls to a voicemail service of an internal number. This option is ignored when an #: external transfer_number is entered. send_to_voicemail: Optional[bool] #: Destination number for overflow calls when action is set to TRANSFER_TO_PHONE_NUMBER. transfer_number: Optional[str] #: True: transfer number is set is_transfer_number_set: Optional[bool] #: After calls wait for the configured number of seconds and no agent is available, the overflow treatment #: is triggered. overflow_after_wait_enabled: Optional[bool] #: Number of seconds to wait before the overflow treatment is triggered when no agent is available. overflow_after_wait_time: Optional[int] #: Indicate overflow audio to be played, otherwise callers will hear the hold music until the call is answered #: by a user. play_overflow_greeting_enabled: Optional[bool] #: How to handle new calls when the queue is full. greeting: Optional[Greeting] #: Array of announcement file name strings to be played as overflow greetings. These files must be from the list #: of announcements files associated with this call queue. audio_files: Optional[list[str]] @staticmethod def default() -> 'OverflowSetting': return OverflowSetting(action=OverflowAction.perform_busy_treatment, send_to_voicemail=False, is_transfer_number_set=False, overflow_after_wait_enabled=False, overflow_after_wait_time=30, play_overflow_greeting_enabled=False, greeting=Greeting.default, audio_files=list()) class WaitMode(str, Enum): time = 'TIME' position = 'POSITION' class WaitMessageSetting(ApiModel): enabled: Optional[bool] wait_mode: Optional[WaitMode] handling_time: Optional[int] queue_position: Optional[int] high_volume_message_enabled: Optional[bool] default_handling_time: Optional[int] @staticmethod def default(): return WaitMessageSetting(enabled=False, wait_mode=WaitMode.position, handling_time=100, queue_position=100, high_volume_message_enabled=False, default_handling_time=5) class AudioSource(ApiModel): enabled: bool = Field(default=True) greeting: Greeting = Field(default=Greeting.default) audio_files: list[str] = Field(default_factory=list) class WelcomeMessageSetting(AudioSource): always_enabled: bool = Field(default=False) class ComfortMessageSetting(AudioSource): time_between_messages: int = Field(default=10) @staticmethod def default() -> 'ComfortMessageSetting': return ComfortMessageSetting(enabled=False) class MohMessageSetting(ApiModel): normal_source: AudioSource alternate_source: AudioSource @staticmethod def default() -> 'MohMessageSetting': return MohMessageSetting(normal_source=AudioSource(enabled=True), alternate_source=AudioSource(enabled=False)) class QueueSettings(ApiModel): """ Overall call queue settings. """ #: maximum number of calls for this call queue. Once this number is reached, the overflow settings are triggered # (max 50). queue_size: int #: Play ringing tone to callers when their call is set to an available agent. call_offer_tone_enabled: Optional[bool] #: Reset caller statistics upon queue entry. reset_call_statistics_enabled: Optional[bool] #: Settings for incoming calls exceed queue_size. overflow: Optional[OverflowSetting] #: wait_message: Optional[WaitMessageSetting] welcome_message: Optional[WelcomeMessageSetting] comfort_message: Optional[ComfortMessageSetting] moh_message: Optional[MohMessageSetting] @staticmethod def default(*, queue_size: int) -> 'QueueSettings': """ Simple queue settings :param queue_size: queue size :type queue_size: int """ return QueueSettings(queue_size=queue_size, overflow=OverflowSetting.default()) class CallQueue(HGandCQ): """ Call queue details """ #: Policy controlling how calls are routed to agents. call_policies: Optional[CallQueueCallPolicies] # TODO: file documentation defect. This is missing at # https://developer.webex.com/docs/api/v1/webex-calling-organization-settings/get-details-for-a-call-queue #: Overall call queue settings. queue_settings: Optional[QueueSettings] # TODO: file documentation defect. This is missing at # https://developer.webex.com/docs/api/v1/webex-calling-organization-settings/get-details-for-a-call-queue allow_call_waiting_for_agents_enabled: Optional[bool] @staticmethod def exclude_update_or_create() -> dict: """ Exclude dict for update or create calls :return: dict :meta private: """ base_exclude = HGandCQ.exclude_update_or_create() base_exclude.update({'queue_settings': {'overflow': {'is_transfer_number_set': True}}}) return base_exclude @staticmethod def create(*, name: str, agents: list[Agent], queue_size: int = None, enabled: bool = None, language_code: str = None, first_name: str = None, last_name: str = None, time_zone: str = None, phone_number: str = None, extension: str = None, call_policies: CallQueueCallPolicies = None, queue_settings: QueueSettings = None, allow_call_waiting_for_agents_enabled: bool = None) -> 'CallQueue': """ Get an instance which can be uses for a create() call. Allows simplified creation of default queue settings based on queue_size :param name: :param agents: :param queue_size: :param enabled: :param language_code: :param first_name: :param last_name: :param time_zone: :param phone_number: :param extension: :param call_policies: :param queue_settings: :param allow_call_waiting_for_agents_enabled: :return: """ if not (queue_size or queue_settings): raise ValueError('One of queue_size and queue_settings has to be given') if queue_size and queue_settings: raise ValueError('Only one of queue_size and queue_settings can be given') if not (phone_number or extension): raise ValueError('One of phone_number and extension has to be given') if queue_size: queue_settings = QueueSettings(queue_size=queue_size) params = {k: v for k, v in locals().items() if v is not None and k != 'queue_size'} return CallQueue(**params) @dataclass(init=False) class CallQueueApi: """ Call Queue APร """ forwarding: ForwardingApi announcement: AnnouncementApi def __init__(self, session: RestSession): self._session = session self.forwarding = ForwardingApi(session=session, feature_selector=FeatureSelector.queues) self.announcement = AnnouncementApi(session=session) def _endpoint(self, *, location_id: str = None, queue_id: str = None): """ Helper to get URL for API endpoints :meta private: :param location_id: :param queue_id: :return: """ if location_id is None: return self._session.ep('telephony/config/queues') else: ep = self._session.ep(f'telephony/config/locations/{location_id}/queues') if queue_id: ep = f'{ep}/{queue_id}' return ep @staticmethod def update_or_create(*, queue: CallQueue) -> str: """ Get JSON for update or create :param queue: :return: :meta private: """ return queue.json( exclude={'id': True, 'location_name': True, 'location_id': True, 'toll_free_number': True, 'language': True, 'agents': {'__all__': {'first_name': True, 'last_name': True, 'user_type': True, 'extension': True, 'phone_number': True}}, 'alternate_number_settings': {'alternate_numbers': {'__all__': {'toll_free_number': True}}}, 'queue_settings': {'overflow': {'is_transfer_number_set': True}}}) def list(self, *, location_id: str = None, name: str = None, org_id: str = None, **params) -> Generator[CallQueue, None, None]: """ Read the List of Call Queues List all Call Queues for the organization. Call queues temporarily hold calls in the cloud when all agents, which can be users or agents, assigned to receive calls from the queue are unavailable. Queued calls are routed to an available agent when not on an active call. Each call queue is assigned a Lead Number, which is a telephone number outside callers can dial to reach users assigned to the call queue. Call queues are also assigned an internal extension, which can be dialed internally to reach users assigned to the call queue. Retrieving this list requires a full or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param location_id: Only return call queues with matching location ID. :type location_id: str :param name: Only return call queues with the matching name. :type name: str :param org_id: List call queues for this organization :type org_id: str :param params: dict of additional parameters passed directly to endpoint :type params: dict :return: yields :class:`CallQueue` objects """ params.update((to_camel(k), v) for i, (k, v) in enumerate(locals().items()) if i and v is not None and k != 'params') url = self._endpoint() # noinspection PyTypeChecker return self._session.follow_pagination(url=url, model=CallQueue, params=params) def by_name(self, *, name: str, location_id: str = None, org_id: str = None) -> Optional[CallQueue]: """ Get queue info by name :param location_id: :param name: :param org_id: :return: """ return next((cq for cq in self.list(location_id=location_id, org_id=org_id, name=name) if cq.name == name), None) def create(self, *, location_id: str, settings: CallQueue, org_id: str = None) -> str: """ Create a Call Queue Create new Call Queues for the given location. Call queues temporarily hold calls in the cloud when all agents, which can be users or agents, assigned to receive calls from the queue are unavailable. Queued calls are routed to an available agent when not on an active call. Each call queue is assigned a Lead Number, which is a telephone number outside callers can dial to reach users assigned to the call queue. Call queues are also assigned an internal extension, which can be dialed internally to reach users assigned to the call queue. Creating a call queue requires a full administrator auth token with a scope of spark-admin:telephony_config_write. :param location_id: Create the call queue for this location. :type location_id: str :param settings: parameters for queue creation. :type settings: :class:`CallQueue` :param org_id: Create the call queue for this organization. :type org_id: str :return: queue id :rtype: str """ params = org_id and {'orgId': org_id} or {} cq_data = settings.create_or_update() url = self._endpoint(location_id=location_id) data = self._session.rest_post(url, data=cq_data, params=params) return data['id'] def delete_queue(self, *, location_id: str, queue_id: str, org_id: str = None): """ Delete a Call Queue Delete the designated Call Queue. Call queues temporarily hold calls in the cloud when all agents, which can be users or agents, assigned to receive calls from the queue are unavailable. Queued calls are routed to an available agent when not on an active call. Each call queue is assigned a Lead Number, which is a telephone number outside callers can dial to reach users assigned to the call queue. Call queues are also assigned an internal extension, which can be dialed internally to reach users assigned to the call queue. Deleting a call queue requires a full administrator auth token with a scope of spark-admin:telephony_config_write. :param location_id: Location from which to delete a call queue. :type location_id: str :param queue_id: Delete the call queue with the matching ID. :type queue_id: str :param org_id: Delete the call queue from this organization. :type org_id: str """ url = self._endpoint(location_id=location_id, queue_id=queue_id) params = org_id and {'orgId': org_id} or None self._session.rest_delete(url=url, params=params) def details(self, *, location_id: str, queue_id: str, org_id: str = None) -> CallQueue: """ Get Details for a Call Queue Retrieve Call Queue details. Call queues temporarily hold calls in the cloud when all agents, which can be users or agents, assigned to receive calls from the queue are unavailable. Queued calls are routed to an available agent when not on an active call. Each call queue is assigned a Lead Number, which is a telephone number outside callers can dial to reach users assigned to the call queue. Call queues are also assigned anvinternal extension, which can be dialed internally to reach users assigned to the call queue. Retrieving call queue details requires a full or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param location_id: Retrieve settings for a call queue in this location :type location_id: str :param queue_id: Retrieve settings for the call queue with this identifier. :type queue_id: str :param org_id: Retrieve call queue settings from this organization. :type org_id: str :return: call queue details :rtype: :class:`CallQueue` """ url = self._endpoint(location_id=location_id, queue_id=queue_id) params = {'orgId': org_id} if org_id is not None else {} data = self._session.rest_get(url, params=params) result = CallQueue.parse_obj(data) # noinspection PyTypeChecker return result def update(self, *, location_id: str, queue_id: str, update: CallQueue, org_id: str = None): """ Update a Call Queue Update the designated Call Queue. Call queues temporarily hold calls in the cloud when all agents, which can be users or agents, assigned to receive calls from the queue are unavailable. Queued calls are routed to an available agent when not on an active call. Each call queue is assigned a Lead Number, which is a telephone number outside callers can dial to reach users assigned to the call queue. Call queues are also assigned an internal extension, which can be dialed internally to reach users assigned to the call queue. Updating a call queue requires a full administrator auth token with a scope of spark-admin:telephony_config_write. Examples: .. code-block:: api = WebexSimpleApi() # shortcut cq = api.telephony.callqueue # disable a call queue update = CallQueue(enabled=False) cq.update(location_id=..., queue_id=..., update=update) # set the call routing policy to SIMULTANEOUS update = CallQueue(call_policies=CallPolicies(policy=Policy.simultaneous)) cq.update(location_id=..., queue_id=..., update=update) # don't bounce calls after the set number of rings. update = CallQueue( call_policies=CallPolicies( call_bounce=CallBounce( enabled=False))) cq.update(location_id=..., queue_id=..., update=update) Alternatively you can also read call queue details, update them in place and then call update(). .. code-block:: details = cq.details(location_id=..., queue_id=...) details.call_policies.call_bounce.agent_unavailable_enabled=False details.call_policies.call_bounce.on_hold_enabled=False cq.update(location_id=..., queue_id=..., update=details) :param location_id: Location in which this call queue exists. :type location_id: str :param queue_id: Update setting for the call queue with the matching ID. :type queue_id: str :param update: updates :type update: :class:`CallQueue` :param org_id: Update call queue settings from this organization. """ params = org_id and {'orgId': org_id} or None cq_data = update.create_or_update() url = self._endpoint(location_id=location_id, queue_id=queue_id) self._session.rest_put(url=url, data=cq_data, params=params) ``` #### File: wxc_sdk/telephony/voicemail_groups.py ```python from typing import Optional from pydantic import Field from ..api_child import ApiChild __all__ = ['VoicemailGroup', 'VoicemailGroupsApi'] from ..base import to_camel, ApiModel class VoicemailGroup(ApiModel): #: Voicemail Group Id. group_id: str = Field(alias='id') #: Voicemail Group Name. name: str #: Location Name. location_name: str #: location id location_id: str #: Extension of the voicemail group. extension: Optional[str] #: Phone number of the voicemail group. phone_number: Optional[str] #: If enabled, incoming calls are sent to voicemail. enabled: bool #: Flag to indicate if the number is toll free. toll_free_number: Optional[bool] class VoicemailGroupsApi(ApiChild, base='telephony/config/voicemailGroups'): """ API for location private network connect API settings """ def list(self, *, location_id: str = None, name: str = None, phone_number: str = None, org_id: str = None): params = {to_camel(p): v for p, v in locals().items() if p != 'self' and v is not None} url = self.ep() return self.session.follow_pagination(url=url, model=VoicemailGroup, params=params, item_key='voicemailGroups') ```
{ "source": "jeoliva/dash-analyzer", "score": 2 }
#### File: dash-analyzer/mpd/mpd.py ```python from collections import namedtuple import os import posixpath import errno import math import re import xml.etree.ElementTree as ET from mediapresentationdescription import MediaPresentationDescription try: import urlparse as url_parser except ImportError: import urllib.parse as url_parser class Mpd(object): DURATION_REGEX_STR = "^(-)?P(([0-9]*)Y)?(([0-9]*)M)?(([0-9]*)D)?(T(([0-9]*)H)?(([0-9]*)M)?(([0-9.]*)S)?)?$" DURATION_REGEX = re.compile(DURATION_REGEX_STR) def __init__(self, content=None, base_path=None, base_uri=None): if content is not None: self.manifest = self.parse(content) else: self.manifest = {} self._base_uri = base_uri self.base_path = base_path def parse(self, content): root = ET.fromstring(content) manifest = MediaPresentationDescription() self.parseRoot(root, manifest) return manifest def parseRoot(self, mpdRoot, manifest): for name, value in mpdRoot.attrib.items(): if name == "type": manifest.dynamic = (value == "dynamic") elif name == "mediaPresentationDuration": manifest.duration = self.parseDuration(value) elif name == "availabilityStartTime": manifest.availabilityStartTime = value elif name == "maxSegmentDuration": manifest.maxSegmentDuration = self.parseDuration(value) elif name == "minBufferTime": manifest.minBufferTime = self.parseDuration(value) elif name == "profiles": manifest.profiles = value def parseDuration(self, str): result = self.DURATION_REGEX.match(str) duration = 0 if result != None: negated = not(result.group(1) == None or len(result.group(1)) == 0) years = result.group(3) if years != None: duration += float(years) * 31556908 months = result.group(5) if months != None: duration += float(months) * 2629739 days = result.group(7) if days != None: duration += float(days) * 86400 hours = result.group(10) if hours != None: duration += float(hours) * 3600 minutes = result.group(12) if minutes != None: duration += float(minutes) * 60 seconds = result.group(14) if seconds != None: duration += float(seconds) if negated: return -1 * long(duration * 1000) else: return long(duration * 1000) else: return long(float(str) * 3600 * 1000) ``` #### File: dash-analyzer/mpd/rangeduri.py ```python class RangedUri(object): def __init__(self): self.start = 0 self.length = -1 self.baseUri = "" self.referenceUri = "" ``` #### File: dash-analyzer/mpd/representation.py ```python class Representation(object): def __init__(self): self.revisionId = 0 self.format = "" self.presentationTimeOffsetUs = 0 self.initializationUri = None ```
{ "source": "jeoncw1030/study", "score": 4 }
#### File: jeoncw1030/study/calculator_3.py ```python from pythonds.basic.stack import Stack def calculator(str): expression = [] #list numbers = [] operator = Stack() #stack ranking = {'+':1,'-':1,'*':2,'/':2 } middle_num = 0 right_num = 0 left_num = 0 # ๋‹ด๊ธฐ #์ˆซ์ž : ๋ฐฐ์—ด์— ๋„ฃ๊ธฐ #๊ธฐํ˜ธ(๋งจ ์œ„ ์—ฐ์‚ฐ์ž๋ณด๋‹ค ์šฐ์„ ์ˆœ์œ„๊ฐ€ ๋‚ฎ๊ฑฐ๋‚˜ ๊ฐ™์„ ๋•Œ ) : ๊ธฐ์กด ๊ฐ’๋“ค์„ ๋ฐฐ์—ด์—, ๋ณธ์ธ์€ ์Šคํƒ์— #๊ธฐํ˜ธ(์šฐ์„ ์ˆœ์œ„ ๋†’์„ ๋•Œ) : ์Šคํƒ์— ๋ณธ์ธ ๊ฐ’ ์ €์žฅ for s in str: if s.isdigit(): expression.append(s) elif s in ranking.keys(): if len(operator) == 0: operator.append(s) elif ranking[s] <= ranking[operator.peek()] : while operator: expression.append(operator.pop()) operator.push(s) else: operator.push(s) # ๋‚จ์€ ๊ธฐํ˜ธ๋“ค ๋ฐฐ์—ด์— ๋„ฃ๊ธฐ while operator: expression.append(operator.pop()) # ๊ณ„์‚ฐํ•˜๊ธฐ for e in expression: if e.isdigit(): numbers.push(e) else: right_num = int(numbers.pop()) left_num = int(numbers.pop()) if e == '+': middle_num = left_num+right_num elif e == '-': middle_num = left_num-right_num elif e == '*': middle_num = left_num*right_num elif e == '/': middle_num = left_num/right_num numbers.push(middle_num) return numbers.pop() if __name__ == '__main__': s = 3+5*2 #input("Enter the arithmetic expression : ") result = calculator(s) print('Calculation result : {} = {}'.format(s, result)) ''' ์ด์ „ ์—ฐ์‚ฐ ์ฝ”๋“œ while operator: o = operator.pop() right_num = int(numbers.pop()) left_num = int(numbers.pop()) if o == '+': middle_num = left_num+right_num elif o == '-': middle_num = left_num-right_num elif o == '*': middle_num = left_num*right_num elif o == '/': middle_num = left_num/right_num #if middle_num < 0: # middle_num *= -1 numbers.append(middle_num) return middle_num ''' ''' example = [ '1+1', ' 2 - 5', '5 * 2', '8/ 2', '3*4-2', '4-1/3', '1-1-1' ] for e in example: result = calculator(e) print('calculation result : {} = {}'.format(e, result)) ''' ```
{ "source": "jeong242/gre-voca-tester", "score": 4 }
#### File: jeong242/gre-voca-tester/stat_util.py ```python import json import json # more_wrong increase the probability of asking a word. more_wrong = 2 """ Typical use pattern: stat = Stat() # Do some stuffs... if right_answer: stat.right_answer(word) else: stat.wrong_answer(word) ... stat.save() """ class Stat: def __init__(self, load_fname="stat.json"): with open(load_fname, "r") as f: self.stat_dict = json.load(f) self._update() def _update(self, fname="voca.json"): with open(fname, "r") as f: voca_dict = json.load(f) n_voca = len(voca_dict) n_stat = len(self.stat_dict) # Check if update is required. # The difference is only determined by the lengths. voca_keys = list(voca_dict.keys()) while n_stat < n_voca: new_key = voca_keys[n_stat] self.stat_dict[new_key] = [0,0] n_stat += 1 def get_prob(self, word): n_right, n_wrong = self.stat_dict[word] prob = (n_wrong + more_wrong) / (n_right + n_wrong + 2) return prob def right_answer(self, word): self.stat_dict[word][0] += 1 def wrong_answer(self, word): self.stat_dict[word][1] += 1 def save(self, fname = "stat.json"): stat = self.stat_dict with open(fname, "w") as f: json.dump(stat, f) # Call once. # Create a dictionary, where dict = {word: (# correct answer, # wrong answer)}. def init_stat(src_fname="voca.json", dst_fname="stat.json"): # Open voca json file. with open(src_fname, "r") as f: stat = json.load(f) # Set all the values to 0. for w in stat: stat[w] = (0,0) # Store stat as json. with open(dst_fname, "w") as f: json.dump(stat, f) ```
{ "source": "Jeongah-Shin/integer-seq2seq-tensorflow", "score": 2 }
#### File: Jeongah-Shin/integer-seq2seq-tensorflow/common.py ```python import os import tensorflow as tf tf.logging.set_verbosity(tf.logging.INFO) def create_folder(location): if not os.path.exists(location): os.makedirs(location) def get_session_config(): config = tf.ConfigProto( allow_soft_placement=True, log_device_placement=False ) config.gpu_options.allow_growth = True config.gpu_options.per_process_gpu_memory_fraction = 1.0 return config def get_checkpoint(checkpoint_dir, log=True): ckpt = tf.train.get_checkpoint_state(checkpoint_dir) if log: tf.logging.info("loading tensorflow checkpoints...") tf.logging.info('[+] Get checkpoint {}'.format(ckpt)) if ckpt and ckpt.model_checkpoint_path: last_step = int(ckpt.model_checkpoint_path.split("-")[-1]) ckpt_path = ckpt.model_checkpoint_path if log: tf.logging.info("[+] RESTORE SAVED VARIBALES : restored {}".format(ckpt_path)) tf.logging.info("[+] RESTORE SAVED VARIBALES : restart from step {}".format(last_step)) else: raise RuntimeError('checkpoint file was not found') return ckpt_path, last_step def get_batch_nums(batch_size, gpus): q, r = divmod(batch_size, gpus) return [q + 1] * r + [q] * (gpus - r) def get_init_pretrained(): saver_reader = tf.train.Saver( tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) ) init_fn = lambda sess, ckpt_path: saver_reader.restore(sess, ckpt_path) return init_fn # borrowed from https://github.com/lengstrom/fast-style-transfer/blob/master/src/utils.py def get_files(img_dir): imgs, masks, xmls = list_files(img_dir) return list(map(lambda x: os.path.join(img_dir,x), imgs)),\ list(map(lambda x: os.path.join(img_dir,x), masks)),\ list(map(lambda x: os.path.join(img_dir,x), xmls)) def list_files(in_path): img_files = [] mask_files = [] gt_files = [] for (dirpath, dirnames, filenames) in os.walk(in_path): for file in filenames: filename, ext = os.path.splitext(file) ext = str.lower(ext) if ext == '.jpg' or ext == '.jpeg' or ext == '.gif' or ext == '.png' or ext == '.pgm': img_files.append(os.path.join(dirpath, file)) elif ext == '.bmp': mask_files.append(os.path.join(dirpath, file)) elif ext == '.xml' or ext == '.gt' or ext == '.txt': gt_files.append(os.path.join(dirpath, file)) elif ext == '.zip': continue else: print ('There is no file : %s'%(file)) # img_files.sort() # mask_files.sort() # gt_files.sort() return img_files, mask_files, gt_files ``` #### File: Jeongah-Shin/integer-seq2seq-tensorflow/process_data.py ```python import json import numpy as np def process(is_train=True): with open('./data/config.json') as data_config: data = json.load(data_config) if is_train : with open(data['train_s'], 'r', encoding='utf-8') as source: source_lines = source.read().splitlines() with open(data['train_t'], 'r', encoding='utf-8') as target: target_lines = target.read().splitlines() else: with open(data['test_s'], 'r', encoding='utf-8') as source: source_lines = source.read().splitlines() with open(data['test_t'], 'r', encoding='utf-8') as target: target_lines = target.read().splitlines() num_train_samples = len(source_lines) # Vectorize the data. input_texts = [] target_texts = [] input_characters = set() target_characters = set() for idx in range(num_train_samples): input_text = source_lines[idx] input_texts.append(input_text) # We use "s" as the "start sequence" character # for the targets, and "e" as "end sequence" character. target_text = 's' + target_lines[idx] + 'e' target_texts.append(target_text) for char in input_text: if char not in input_characters: input_characters.add(char) for char in target_text: if char not in target_characters: target_characters.add(char) input_characters = sorted(list(input_characters)) target_characters = sorted(list(target_characters)) num_encoder_tokens = len(input_characters) num_decoder_tokens = len(target_characters) max_encoder_seq_length = max([len(txt) for txt in input_texts]) max_decoder_seq_length = max([len(txt) for txt in target_texts]) print('Number of samples:', len(input_texts)) print('Number of unique input tokens:', num_encoder_tokens) print('Number of unique output tokens:', num_decoder_tokens) print('Max sequence length for inputs:', max_encoder_seq_length) print('Max sequence length for outputs:', max_decoder_seq_length) input_token_index = dict( [(char, i) for i, char in enumerate(input_characters)]) target_token_index = dict( [(char, i) for i, char in enumerate(target_characters)]) encoder_input_data = np.zeros( (len(input_texts), max_encoder_seq_length, num_encoder_tokens), dtype='float32') decoder_input_data = np.zeros( (len(input_texts), max_decoder_seq_length, num_decoder_tokens), dtype='float32') decoder_target_data = np.zeros( (len(input_texts), max_decoder_seq_length, num_decoder_tokens), dtype='float32') for i, (input_text, target_text) in enumerate(zip(input_texts, target_texts)): for t, char in enumerate(input_text): encoder_input_data[i, t, input_token_index[char]] = 1. encoder_input_data[i, t + 1:, input_token_index[' ']] = 1. for t, char in enumerate(target_text): # decoder_target_data is ahead of decoder_input_data by one timestep decoder_input_data[i, t, target_token_index[char]] = 1. if t > 0: # decoder_target_data will be ahead by one timestep # and will not include the start character. decoder_target_data[i, t - 1, target_token_index[char]] = 1. decoder_input_data[i, t + 1:, target_token_index[' ']] = 1. decoder_target_data[i, t:, target_token_index[' ']] = 1. return encoder_input_data, decoder_input_data, decoder_target_data ```
{ "source": "jeongbal/Gamble", "score": 2 }
#### File: jeongbal/Gamble/bot.py ```python from discord.activity import Game from discord.enums import Status from discord.ext import commands from pathlib import Path import os from utils.database.mongo import Mongo bot = commands.Bot(command_prefix=";", help_command=None) bot.mongo = Mongo(os.getenv("MONGO_DB_URL")) token = os.environ["DISCORD_TOKEN"] cwd = Path(__file__).parents[0] cwd = str(cwd) bot.cwd = cwd @bot.event async def on_ready(): print("Bot is ready") await bot.change_presence(status=Status.online, activity=Game(";help")) if __name__ == "__main__": for file in os.listdir(os.path.join(cwd, "cogs")): if file.endswith(".py") and not file.startswith("_"): bot.load_extension(f"cogs.{file[:-3]}") bot.load_extension("jishaku") bot.run(token) ``` #### File: Gamble/cogs/general.py ```python import discord from discord.ext import commands from discord.ext.commands.bot import Bot from discord.ext.commands.context import Context from discord.embeds import Embed from discord.message import Message class General(commands.Cog): def __init__(self, bot): self.bot: Bot = bot @commands.command(name="์ดˆ๋Œ€") async def _invite(self, ctx: Context): """ ์ด ๋ด‡์˜ ์ดˆ๋Œ€ ๋งํฌ๋ฅผ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ์‚ฌ์šฉ ์˜ˆ์‹œ: ``;์ดˆ๋Œ€`` """ url = discord.utils.oauth_url(self.bot.user.id) await ctx.send(url) @commands.command(name="help", aliases=["๋„์›€๋ง", "๋„์›€", "ใ…—๋””ใ…”"]) async def _help(self, ctx: Context): msg: Message = await ctx.send(embed=Embed(title="ใ„ฑใ„ท")) embed = Embed(title="๋ช…๋ น์–ด ๋ชฉ๋ก") command_list = [ command for command in self.bot.commands if command.name not in ["jishaku", "set_money", "help"] ] for command in command_list: embed.add_field(name=command.name, value=command.help) await msg.edit(embed=embed) def setup(bot): bot.add_cog(General(bot)) ``` #### File: Gamble/cogs/money.py ```python from discord.embeds import Embed from discord.ext import commands from discord.ext.commands.bot import Bot from discord.ext.commands.context import Context from discord.message import Message from utils.database.mongo import Mongo from utils.money import MoneyExt class Money(commands.Cog): def __init__(self, bot: Bot, mongo: Mongo): self.bot = bot self.money = MoneyExt(mongo) @commands.command(name="๋ˆ", aliases=["์ง€๊ฐ‘", "ใ„ท", "ใ…ˆใ„ฑ", "wr", "ehs", "e"]) async def _money(self, ctx: Context): """ ํ˜„์žฌ ์ž”๊ณ ๋ฅผ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ์ง€๊ฐ‘์ด ์—†์„ ๊ฒฝ์šฐ ์ž๋™์œผ๋กœ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. ์‚ฌ์šฉ ์˜ˆ์‹œ: ``;๋ˆ`` """ msg: Message = await ctx.send(embed=Embed(title="๋ถˆ๋Ÿฌ์˜ค๋Š” ์ค‘")) embed = await self.money.money(ctx.author.id) await msg.edit(embed=embed) @commands.command(name="์ถœ์„", aliases=["ใ…Šใ……", "ct", "cnftjr", "cใ……"]) @commands.cooldown(1, 600, commands.BucketType.user) async def _attend(self, ctx: Context): """ 10,000์› ~ 100,000์› ์„ ๋žœ๋ค์œผ๋กœ ์ง€๊ธ‰ํ•ฉ๋‹ˆ๋‹ค. 10๋ถ„๋งˆ๋‹ค ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์‚ฌ์šฉ ์˜ˆ์‹œ: ``;์ถœ์„`` """ msg: Message = await ctx.send(embed=Embed(title="ใ„ฑใ„ท")) embed = await self.money.attend(ctx) await msg.edit(embed=embed) @commands.command(name="๋žญํ‚น", aliases=["ใ„นใ…‹", "fz", "fใ…‹"]) async def _ranking(self, ctx: Context): """ ์œ ์ € ๋žญํ‚น์„ ์†Œ์ง€๊ธˆ ์ˆœ์œผ๋กœ Top10 ๊นŒ์ง€ ํ‘œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์‚ฌ์šฉ ์˜ˆ์‹œ: ``;๋žญํ‚น`` """ msg: Message = await ctx.send(embed=Embed(title="๋ถˆ๋Ÿฌ์˜ค๋Š” ์ค‘")) embed = await self.money.ranking(ctx) await msg.edit(embed=embed) def setup(bot): bot.add_cog(Money(bot, bot.mongo)) ``` #### File: Gamble/utils/money.py ```python from utils.database.mongo import Mongo from discord import Embed from discord.ext.commands.context import Context from random import randint class MoneyExt: def __init__(self, mongo: Mongo) -> None: self.mongo = mongo async def money(self, user_id: int) -> Embed: if user_data := await self.mongo.get_user_data(user_id): return Embed( title="์ž”๊ณ ", description=f"**{format(user_data['money'], ',')}**์›", color=0x30807C, ) await self.mongo.initialize_user(user_id) return Embed(title="์ง€๊ฐ‘ ์—†์Œ", description="์ง€๊ฐ‘์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค.", color=0x80307C) async def attend(self, ctx: Context) -> Embed: if user_data := await self.mongo.get_user_data(ctx.author.id): current = user_data["money"] amount = randint(10000, 100000) // 1000 * 1000 await self.mongo.set_user_money(ctx.author.id, current + amount) return Embed(title=f"์ถœ์„ํ•˜์—ฌ {amount}์›์„ ๋ฐ›์•˜์Šต๋‹ˆ๋‹ค.") ctx.command.reset_cooldown(ctx) return Embed(title="์ง€๊ฐ‘์ด ์—†์Šต๋‹ˆ๋‹ค.", description="`;๋ˆ` ๋ช…๋ น์–ด๋กœ ์ง€๊ฐ‘์„ ์ƒ์„ฑํ•˜์„ธ์š”.") async def ranking(self, ctx: Context) -> Embed: ranking = await self.mongo.get_all_users_data(10) embed = Embed(title="Top 10") for user in ranking: embed.add_field( name=f"{await ctx.bot.fetch_user(user['user_id'])}", value=f"{format(user['money'], ',')}์›", inline=False, ) return embed ```
{ "source": "jeongchans/smrf", "score": 3 }
#### File: jeongchans/smrf/util.py ```python import os.path import sys import time def open_file(filename): return open(filename) def write_file(buf, filename): fp = sys.stdout if filename == "stdout" else open(filename, 'w') fp.write(buf) fp.close() def message(msg): print '[%s] %s'%(time.asctime(), msg) ```
{ "source": "JeongChanwoo/Deep-POC-2019", "score": 3 }
#### File: image/binary_image_classification/binary_image_classification.py ```python import numpy as np import pandas as pd import os import argparse from keras.models import Model from keras.layers import Input,Conv2D, MaxPooling2D, Flatten, Dense from keras_preprocessing.image import ImageDataGenerator from keras.callbacks import TensorBoard, LearningRateScheduler, ModelCheckpoint from sklearn.metrics import confusion_matrix, classification_report # input_shape = 64 filters = 32 kernel_size = 3 strides = (3,3) iterations = 782 # resize_shape = (64,64) def createFolder(directory): if not os.path.exists(directory): os.makedirs(directory) def arguments(): parser = argparse.ArgumentParser(description = "binary image classification") parser.add_argument('--train_path' , required = True, help = 'train data directory path') parser.add_argument('--resize_x', required = False, type = int, default = 32, help = 'resizing x') parser.add_argument('--epoch', required = False, type= int, default = 50, help = 'epoch size') parser.add_argument('--sample_count', required = False, type = int, default = 5000, help = 'tarining sampe count') args = parser.parse_args() return args def working_model(input_dim, filters , kernel_size , strides): inputs = Input(shape = (input_dim, input_dim, 3)) cnn = Conv2D(filters = filters, kernel_size=kernel_size, strides=strides, activation = 'relu')(inputs) cnn = MaxPooling2D(pool_size=(2,2))(cnn) cnn = Flatten()(cnn) cnn = Dense(128, activation='relu')(cnn) output = Dense(1, activation='sigmoid')(cnn) classifier = Model(inputs,output) return classifier def image_generator(train_path, resize_shape): train_datagen = ImageDataGenerator(rescale=1./255, shear_range = 0.2, zoom_range = 0.2, horizontal_flip = True, validation_split = 0.2) # test_datagen = ImageDataGenerator(rescale= 1./255) training_set = train_datagen.flow_from_directory(train_path, target_size = resize_shape, batch_size = 32, class_mode = 'binary', subset = 'training') validation_set = train_datagen.flow_from_directory(train_path, target_size = resize_shape, batch_size = 1, class_mode = 'binary', subset = 'validation') # test_set = test_datagen.flow_from_directory(test_path, # target_size = resize_shape, # batch_size = 32, # class_mode = 'binary') return training_set, validation_set def train(train_set,validation_set ,model, epoch, sample_size): model.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy']) # tb_hist = TensorBoard(log_dir='./graph/image_classification/binary', # histogram_freq=0, write_graph=True, write_images=True) tb_cb = TensorBoard(log_dir = './graph/', histogram_freq=0, write_graph=True, write_images=True) ckpt = ModelCheckpoint('./weight/ckpt.h5', save_best_only = True, mode = 'auto', period = 10) cbks = [tb_cb, ckpt] model.fit_generator(train_set, # steps_per_epoch = 15, # epochs = 5, samples_per_epoch = sample_size, epochs = epoch, # steps_per_epoch = iterations, steps_per_epoch = train_set.samples// 32, validation_data = validation_set, # validation_steps=1, validation_steps=validation_set.samples, # nb_val_samples = 2000, verbose = 2, callbacks = cbks, workers = os.cpu_count(), use_multiprocessing = True) return model def score(validation_set, model): predict_res = model.predict_generator(validation_set, verbose = 2, workers = os.cpu_count(), use_multiprocessing = True, steps = validation_set.samples) print(validation_set.class_indices) def label(x): if x>0.5: return 1 else: return 0 label_encode = np.vectorize(label) res = label_encode(predict_res) # print(np.unique(res)) # print(res.shape) # print(confusion_matrix(validation_set.classes,res)) print(classification_report(validation_set.classes, res)) if __name__ == '__main__': args = arguments() createFolder('./graph') createFolder('./weight') model = working_model(args.resize_x, filters, kernel_size, strides) print(model.summary()) print('Data argumentation for binary classification') resize_shape = (args.resize_x, args.resize_x) train_datagen, validation_datagen = image_generator(args.train_path, resize_shape) model = train(train_datagen , validation_datagen, model, args.epoch, args.sample_count) model.save('./weight/model_weight.h5') # predict_res = model.predict_generator() score(validation_datagen, model) ``` #### File: Deep-POC-2019/src/metric.py ```python from keras import backend as K from keras.losses import binary_crossentropy import numpy as np from tqdm import tqdm def dice_coef(y_true, y_pred): y_true_f = K.flatten(y_true) y_pred = K.cast(y_pred, 'float32') y_pred_f = K.cast(K.greater(K.flatten(y_pred), 0.5), 'float32') intersection = y_true_f * y_pred_f score = 2. * K.sum(intersection) / (K.sum(y_true_f) + K.sum(y_pred_f)) return score def dice_loss(y_true, y_pred): smooth = 1. y_true_f = K.flatten(y_true) y_pred_f = K.flatten(y_pred) intersection = y_true_f * y_pred_f score = (2. * K.sum(intersection) + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth) return 1. - score def bce_dice_loss(y_true, y_pred): return binary_crossentropy(y_true, y_pred) + dice_loss(y_true, y_pred) def bce_logdice_loss(y_true, y_pred): return binary_crossentropy(y_true, y_pred) - K.log(1. - dice_loss(y_true, y_pred)) def dice_channel_label(probability, truth): batch_size = truth.shape[0] channel_num = truth.shape[-1] mean_dice_channel = 0. # channel_1 = 0. # channel_2 = 0. # channel_3 = 0. # channel_4 = 0. for i in range(batch_size): # for j in range(channel_num): channel_dice = dice_single_channel(probability[i, :,:], truth[i, :, :]) mean_dice_channel += channel_dice/(batch_size) # mean_dice_channel += channel_dice/(batch_size) # mean_channels[j] += channel_dice/batch_size # print("Channel_1 : {}, Channel_2 : {}, Channel_3 : {},Channel_4 : {},".format( # round(mean_channels[0],5 ), # round(mean_channels[1],5 ), # round(mean_channels[2],5 ), # round(mean_channels[3],5 ))) return mean_dice_channel def dice_channel_torch(probability, truth): batch_size = truth.shape[0] channel_num = truth.shape[-1] mean_dice_channel = 0. mean_channels = [0.]* channel_num for i in tqdm(range(batch_size)): for j in range(channel_num): channel_dice = dice_single_channel(probability[i, :,:,j], truth[i, :, :, j]) mean_dice_channel += channel_dice/(batch_size * channel_num) mean_channels[j] += channel_dice/batch_size # print(channel_num) score_text = ' : {}, '.join(['channnel_{}'.format(k + 1) for k in range(channel_num)]) + ' : {}' # print(score_text) score = np.round(np.array(mean_channels), 5) total_score = np.round(np.append(mean_dice_channel, np.array(mean_channels)),5) score_text = score_text.format(*score) print("Mean_dice_channel : {} ".format(total_score[0])) print(score_text) return total_score def dice_single_channel(probability, truth, eps = 1E-9): p = probability.astype(np.float32) t = truth.astype(np.float32) dice = (2.0 * (p * t).sum() + eps)/ (p.sum() + t.sum() + eps) return dice ``` #### File: Deep-POC-2019/src/model.py ```python import keras from keras.models import Model, load_model from keras.layers import Concatenate,Dense,Input,Dropout,BatchNormalization,Activation,Add,Lambda, InputLayer, UpSampling2D,ZeroPadding2D from keras.layers.core import Lambda from keras.layers.convolutional import Conv2D, Conv2DTranspose from keras.layers.pooling import MaxPooling2D from keras.layers.merge import concatenate from keras.callbacks import TensorBoard,EarlyStopping, ModelCheckpoint, ReduceLROnPlateau,CSVLogger from keras import backend as K from keras.losses import binary_crossentropy from keras.optimizers import Adam # from keras_radam import RAdam import efficientnet.keras as efn from keras.layers import ReLU,LeakyReLU import tensorflow as tf from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img import cv2 # from data import df_gen from metric import bce_dice_loss,bce_logdice_loss,dice_coef,dice_loss import efficientnet.keras as efn from keras.layers import ReLU, LeakyReLU # def UpSampling2DBilinear(stride, **kwargs): # def layer(x): # input_shape = K.int_shape(x) # output_shape = (stride * input_shape[1], stride * input_shape[2]) # return tf.image.resize_bilinear(x, output_shape, align_corners=True) # return Lambda(layer, **kwargs) # def get_model(label_counts = 4, input_shape=(256,256,3)): # K.clear_session() # base_model = efn.EfficientNetB2(weights='imagenet',include_top=False, input_shape= input_shape) # base_model.trainable = False # base_out = base_model.output # conv1 = Conv2DTranspose(8, (2, 2), strides=(2, 2), padding='same') (base_out) # (8, 16, 16) # up = UpSampling2DBilinear(8 )(conv1) # (8, 128, 128) # conv2 = Conv2DTranspose(1, (2, 2), strides=(2, 2), padding='same') (up) # (1, 256, 256) # conv3 = Conv2D(label_counts, (1, 1))(conv2) # conv4 = Activation('sigmoid')(conv3) # model = Model(input=base_model.input, output=conv4) # return model # ACTIVATION = "relu" def H(lst, name, use_gn=False): # if use_gn: # norm = GroupNormalization(groups=1, name=name+'_gn') # else: norm = BatchNormalization(name=name+'_bn') x = concatenate(lst) num_filters = int(x.shape.as_list()[-1]/2) x = Conv2D(num_filters, (2, 2), padding='same', name=name)(x) x = norm(x) x = LeakyReLU(alpha = 0.1, name=name+'_activation')(x) return x def U(x, use_gn=False): # if use_gn: # norm = GroupNormalization(groups=1) # else: norm = BatchNormalization() num_filters = int(x.shape.as_list()[-1]/2) x = Conv2DTranspose(num_filters, (3, 3), strides=(2, 2), padding='same')(x) x = norm(x) x = LeakyReLU(alpha = 0.1 )(x) return x def get_model(label_counts = 4 , input_shape = (256,256,3)): base_model = efn.EfficientNetB4(weights=None, include_top=False, input_shape=input_shape) input = base_model.input x00 = base_model.input # (256, 512, 3) x10 = base_model.get_layer('stem_activation').output # (128, 256, 4) x20 = base_model.get_layer('block2d_add').output # (64, 128, 32) x30 = base_model.get_layer('block3d_add').output # (32, 64, 56) x40 = base_model.get_layer('block5f_add').output # (16, 32, 160) x50 = base_model.get_layer('block7b_add').output # (8, 16, 448) x01 = H([x00, U(x10)], 'X01') x11 = H([x10, U(x20)], 'X11') x21 = H([x20, U(x30)], 'X21') x31 = H([x30, U(x40)], 'X31') x41 = H([x40, U(x50)], 'X41') x02 = H([x00, x01, U(x11)], 'X02') x12 = H([x11, U(x21)], 'X12') x22 = H([x21, U(x31)], 'X22') x32 = H([x31, U(x41)], 'X32') x03 = H([x00, x01, x02, U(x12)], 'X03') x13 = H([x12, U(x22)], 'X13') x23 = H([x22, U(x32)], 'X23') x04 = H([x00, x01, x02, x03, U(x13)], 'X04') x14 = H([x13, U(x23)], 'X14') x05 = H([x00, x01, x02, x03, x04, U(x14)], 'X05') x_out = Concatenate(name='bridge')([x01, x02, x03, x04, x05]) x_out = Conv2D(label_counts, (3,3), padding="same", name='final_output', activation="sigmoid")(x_out) return Model(inputs=input, outputs=x_out) ```
{ "source": "jeongeun980906/YOLOS_code_review", "score": 3 }
#### File: YOLOS_code_review/util/scheduler.py ```python import logging import math import numpy as np import torch from typing import Dict, Any import torch class Scheduler: """ Parameter Scheduler Base Class A scheduler base class that can be used to schedule any optimizer parameter groups. Unlike the builtin PyTorch schedulers, this is intended to be consistently called * At the END of each epoch, before incrementing the epoch count, to calculate next epoch's value * At the END of each optimizer update, after incrementing the update count, to calculate next update's value The schedulers built on this should try to remain as stateless as possible (for simplicity). This family of schedulers is attempting to avoid the confusion of the meaning of 'last_epoch' and -1 values for special behaviour. All epoch and update counts must be tracked in the training code and explicitly passed in to the schedulers on the corresponding step or step_update call. Based on ideas from: * https://github.com/pytorch/fairseq/tree/master/fairseq/optim/lr_scheduler * https://github.com/allenai/allennlp/tree/master/allennlp/training/learning_rate_schedulers """ def __init__(self, optimizer: torch.optim.Optimizer, param_group_field: str, noise_range_t=None, noise_type='normal', noise_pct=0.67, noise_std=1.0, noise_seed=None, initialize: bool = True) -> None: self.optimizer = optimizer self.param_group_field = param_group_field self._initial_param_group_field = f"initial_{param_group_field}" if initialize: for i, group in enumerate(self.optimizer.param_groups): if param_group_field not in group: raise KeyError(f"{param_group_field} missing from param_groups[{i}]") group.setdefault(self._initial_param_group_field, group[param_group_field]) else: for i, group in enumerate(self.optimizer.param_groups): if self._initial_param_group_field not in group: raise KeyError(f"{self._initial_param_group_field} missing from param_groups[{i}]") self.base_values = [group[self._initial_param_group_field] for group in self.optimizer.param_groups] self.metric = None # any point to having this for all? self.noise_range_t = noise_range_t self.noise_pct = noise_pct self.noise_type = noise_type self.noise_std = noise_std self.noise_seed = noise_seed if noise_seed is not None else 42 self.update_groups(self.base_values) def state_dict(self) -> Dict[str, Any]: return {key: value for key, value in self.__dict__.items() if key != 'optimizer'} def load_state_dict(self, state_dict: Dict[str, Any]) -> None: self.__dict__.update(state_dict) def get_epoch_values(self, epoch: int): return None def get_update_values(self, num_updates: int): return None def step(self, epoch: int, metric: float = None) -> None: self.metric = metric values = self.get_epoch_values(epoch) if values is not None: values = self._add_noise(values, epoch) self.update_groups(values) def step_update(self, num_updates: int, metric: float = None): self.metric = metric values = self.get_update_values(num_updates) if values is not None: values = self._add_noise(values, num_updates) self.update_groups(values) def update_groups(self, values): if not isinstance(values, (list, tuple)): values = [values] * len(self.optimizer.param_groups) for param_group, value in zip(self.optimizer.param_groups, values): param_group[self.param_group_field] = value def _add_noise(self, lrs, t): if self.noise_range_t is not None: if isinstance(self.noise_range_t, (list, tuple)): apply_noise = self.noise_range_t[0] <= t < self.noise_range_t[1] else: apply_noise = t >= self.noise_range_t if apply_noise: g = torch.Generator() g.manual_seed(self.noise_seed + t) if self.noise_type == 'normal': while True: # resample if noise out of percent limit, brute force but shouldn't spin much noise = torch.randn(1, generator=g).item() if abs(noise) < self.noise_pct: break else: noise = 2 * (torch.rand(1, generator=g).item() - 0.5) * self.noise_pct lrs = [v + v * noise for v in lrs] return lrs class CosineLRScheduler(Scheduler): """ Cosine decay with restarts. This is described in the paper https://arxiv.org/abs/1608.03983. Inspiration from https://github.com/allenai/allennlp/blob/master/allennlp/training/learning_rate_schedulers/cosine.py """ def __init__(self, optimizer: torch.optim.Optimizer, t_initial: int, t_mul: float = 1., lr_min: float = 0., decay_rate: float = 1., warmup_t=0, warmup_lr_init=0, warmup_prefix=False, cycle_limit=0, t_in_epochs=True, noise_range_t=None, noise_pct=0.67, noise_std=1.0, noise_seed=42, initialize=True) -> None: super().__init__( optimizer, param_group_field="lr", noise_range_t=noise_range_t, noise_pct=noise_pct, noise_std=noise_std, noise_seed=noise_seed, initialize=initialize) assert t_initial > 0 assert lr_min >= 0 if t_initial == 1 and t_mul == 1 and decay_rate == 1: _logger.warning("Cosine annealing scheduler will have no effect on the learning " "rate since t_initial = t_mul = eta_mul = 1.") self.t_initial = t_initial self.t_mul = t_mul self.lr_min = lr_min self.decay_rate = decay_rate self.cycle_limit = cycle_limit self.warmup_t = warmup_t self.warmup_lr_init = warmup_lr_init self.warmup_prefix = warmup_prefix self.t_in_epochs = t_in_epochs if self.warmup_t: self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in self.base_values] super().update_groups(self.warmup_lr_init) else: self.warmup_steps = [1 for _ in self.base_values] def _get_lr(self, t): if t < self.warmup_t: lrs = [self.warmup_lr_init + t * s for s in self.warmup_steps] else: if self.warmup_prefix: t = t - self.warmup_t if self.t_mul != 1: i = math.floor(math.log(1 - t / self.t_initial * (1 - self.t_mul), self.t_mul)) t_i = self.t_mul ** i * self.t_initial t_curr = t - (1 - self.t_mul ** i) / (1 - self.t_mul) * self.t_initial else: i = t // self.t_initial t_i = self.t_initial t_curr = t - (self.t_initial * i) gamma = self.decay_rate ** i lr_min = self.lr_min * gamma lr_max_values = [v * gamma for v in self.base_values] if self.cycle_limit == 0 or (self.cycle_limit > 0 and i < self.cycle_limit): lrs = [ lr_min + 0.5 * (lr_max - lr_min) * (1 + math.cos(math.pi * t_curr / t_i)) for lr_max in lr_max_values ] else: lrs = [self.lr_min for _ in self.base_values] return lrs def get_epoch_values(self, epoch: int): if self.t_in_epochs: return self._get_lr(epoch) else: return None def get_update_values(self, num_updates: int): if not self.t_in_epochs: return self._get_lr(num_updates) else: return None def get_cycle_length(self, cycles=0): if not cycles: cycles = self.cycle_limit cycles = max(1, cycles) if self.t_mul == 1.0: return self.t_initial * cycles else: return int(math.floor(-self.t_initial * (self.t_mul ** cycles - 1) / (1 - self.t_mul))) def create_scheduler(args, optimizer): num_epochs = args.epochs if getattr(args, 'lr_noise', None) is not None: lr_noise = getattr(args, 'lr_noise') if isinstance(lr_noise, (list, tuple)): noise_range = [n * num_epochs for n in lr_noise] if len(noise_range) == 1: noise_range = noise_range[0] else: noise_range = lr_noise * num_epochs else: noise_range = None lr_scheduler = None if args.sched == 'step': lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop) elif args.sched == 'warmupcos': lr_scheduler = CosineLRScheduler( optimizer, t_initial=num_epochs, t_mul=getattr(args, 'lr_cycle_mul', 1.), lr_min=args.min_lr, decay_rate=args.decay_rate, warmup_lr_init=args.warmup_lr, warmup_t=args.warmup_epochs, cycle_limit=getattr(args, 'lr_cycle_limit', 1), t_in_epochs=True, noise_range_t=noise_range, noise_pct=getattr(args, 'lr_noise_pct', 0.67), noise_std=getattr(args, 'lr_noise_std', 1.), noise_seed=getattr(args, 'seed', 42), ) num_epochs = lr_scheduler.get_cycle_length() return lr_scheduler, num_epochs ```
{ "source": "jeonggwanlee/varibad", "score": 2 }
#### File: ad_envs/online_adaptation_suite/mj_env.py ```python import os from gym import error, spaces from gym.utils import seeding import numpy as np from os import path import gym import six import time as timer from mujoco_py import load_model_from_path, MjSim, MjViewer import mujoco_py BIG = 1e6 class MujocoEnv(gym.Env): def __init__(self, model_path, frame_skip=1, action_noise=0.0, random_init_state=True): if model_path.startswith("/"): fullpath = model_path else: fullpath = os.path.join(os.path.dirname(__file__), "assets", model_path) if not path.exists(fullpath): raise IOError("File %s does not exist" % fullpath) self.frame_skip = frame_skip self.model = load_model_from_path(fullpath) self.sim = MjSim(self.model) self.data = self.sim.data self.viewer = None self.init_qpos = self.data.qpos.ravel().copy() self.init_qvel = self.data.qvel.ravel().copy() self.init_qacc = self.data.qacc.ravel().copy() self.init_ctrl = self.data.ctrl.ravel().copy() self.qpos_dim = self.init_qpos.size self.qvel_dim = self.init_qvel.size self.ctrl_dim = self.init_ctrl.size self.action_noise = action_noise self.random_init_state = random_init_state """ if "init_qpos" in self.model.numeric_names: init_qpos_id = self.model.numeric_names.index("init_qpos") addr = self.model.numeric_adr.flat[init_qpos_id] size = self.model.numeric_size.flat[init_qpos_id] init_qpos = self.model.numeric_data.flat[addr:addr + size] self.init_qpos = init_qpos """ self.dcom = None self.current_com = None self.reset() super(MujocoEnv, self).__init__() @property def action_space(self): bounds = self.model.actuator_ctrlrange.copy() lb = bounds[:, 0] ub = bounds[:, 1] return spaces.Box(lb, ub) @property def observation_space(self): shp = self.get_current_obs().shape ub = BIG * np.ones(shp) return spaces.Box(ub * -1, ub) @property def action_bounds(self): return self.action_space.low, self.action_space.high def reset_mujoco(self, init_state=None): if init_state is None: if self.random_init_state: qp = self.init_qpos.copy() + \ np.random.normal(size=self.init_qpos.shape) * 0.01 qv = self.init_qvel.copy() + \ np.random.normal(size=self.init_qvel.shape) * 0.1 else: qp = self.init_qpos.copy() qv = self.init_qvel.copy() qacc = self.init_qacc.copy() ctrl = self.init_ctrl.copy() else: pass """ start = 0 for datum_name in ["qpos", "qvel", "qacc", "ctrl"]: datum = getattr(self.data, datum_name) datum_dim = datum.shape[0] datum = init_state[start: start + datum_dim] setattr(self.model.data, datum_name, datum) start += datum_dim """ self.set_state(qp, qv) def reset(self, init_state=None): #self.reset_mujoco(init_state) self.sim.reset() self.sim.forward() self.current_com = self.data.subtree_com[0] self.dcom = np.zeros_like(self.current_com) return self.get_current_obs() def set_state(self, qpos, qvel, qacc): assert qpos.shape == (self.qpos_dim,) and qvel.shape ==(self.qvel_dim, ) and qacc.shape == (self.qacc_dim,) state = self.sim.get_state() for i in range(self.model.nq): state.qpos[i] = qpos[i] for i in range(self.model.nv): state.qvel[i] = qvel[i] self.sim.set_state(state) self.sim.forward() def get_current_obs(self): return self._get_full_obs() def _get_full_obs(self): data = self.data cdists = np.copy(self.model.geom_margin).flat for c in self.model.data.contact: cdists[c.geom2] = min(cdists[c.geom2], c.dist) obs = np.concatenate([ data.qpos.flat, data.qvel.flat, # data.cdof.flat, data.cinert.flat, data.cvel.flat, # data.cacc.flat, data.qfrc_actuator.flat, data.cfrc_ext.flat, data.qfrc_constraint.flat, cdists, # data.qfrc_bias.flat, # data.qfrc_passive.flat, self.dcom.flat, ]) return obs @property def _state(self): return np.concatenate([ self.data.qpos.flat, self.data.qvel.flat ]) @property def _full_state(self): return np.concatenate([ self.data.qpos, self.data.qvel, self.data.qacc, self.data.ctrl, ]).ravel() def inject_action_noise(self, action): # generate action noise noise = self.action_noise * \ np.random.normal(size=action.shape) # rescale the noise to make it proportional to the action bounds lb, ub = self.action_bounds noise = 0.5 * (ub - lb) * noise return action + noise def forward_dynamics(self, action): ctrl = self.inject_action_noise(action) for i in range(self.model.nu): self.sim.data.ctrl[i] = ctrl[i] for _ in range(self.frame_skip): self.sim.step() new_com = self.data.subtree_com[0] self.dcom = new_com - self.current_com self.current_com = new_com def get_viewer(self, config=None): if self.viewer is None: self.viewer = MjViewer(self.sim) #self.viewer.start() #self.viewer.set_model(self.model) if config is not None: pass # self.viewer.set_window_pose(config["xpos"], config["ypos"]) # self.viewer.set_window_size(config["width"], config["height"]) # self.viewer.set_window_title(config["title"]) return self.viewer def render(self, close=False, mode='human', config=None): if mode == 'human': # viewer = self.get_viewer(config=config) try: self.viewer.render() except: self.get_viewer(config=config) self.viewer.render() elif mode == 'rgb_array': viewer = self.get_viewer(config=config) viewer.loop_once() # self.get_viewer(config=config).render() data, width, height = self.get_viewer(config=config).get_image() return np.fromstring(data, dtype='uint8').reshape(height, width, 3)[::-1,:,:] if close: self.stop_viewer() # def start_viewer(self): # viewer = self.get_viewer() # if not viewer.running: # viewer.start() # # def stop_viewer(self): # if self.viewer: # self.viewer.finish() # self.viewer = None # def release(self): # # temporarily alleviate the issue (but still some leak) # from learning_to_adapt.mujoco_py.mjlib import mjlib # mjlib.mj_deleteModel(self.model._wrapped) # mjlib.mj_deleteData(self.data._wrapped) def get_body_xmat(self, body_name): idx = self.model.body_names.index(body_name) return self.data.ximat[idx].reshape((3, 3)) def get_body_com(self, body_name): idx = self.model.body_names.index(body_name) return self.data.subtree_com[idx] def get_body_comvel(self, body_name): idx = self.model.body_names.index(body_name) ## _compute_subtree body_vels = np.zeros((self.model.nbody, 6)) # bodywise quantities mass = self.model.body_mass.flatten() for i in range(self.model.nbody): # body velocity # Compute object 6D velocity in object-centered frame, world/local orientation. #mj_objectVelocity(const mjModel* m, const mjData* d, int objtype, int objid, mjtMum* res, int flg_local) mujoco_py.cymj._mj_objectVelocity(self.model, self.data, 1, i, body_vels[i], 0) lin_moms = body_vels[:, 3:] * mass.reshape((-1, 1)) # init subtree mass body_parentid = self.model.body_parentid # subtree com and com_vel for i in range(self.model.nbody - 1, -1, -1): if i > 0: parent = body_parentid[i] # add scaled velocities lin_moms[parent] += lin_moms[i] # accumulate mass mass[parent] += mass[i] return_ = lin_moms / mass.reshape((-1, 1)) return return_[idx] #return self.model.body_comvels[idx] # def get_body_comvel(self, body_name): # idx = self.model.body_names.index(body_name) # # return self.model.body_comvels[idx] # def print_stats(self): # super(MujocoEnv, self).print_stats() # print("qpos dim:\t%d" % len(self.data.qpos)) def action_from_key(self, key): raise NotImplementedError # def set_state_tmp(self, state, restore=True): # if restore: # prev_pos = self.data.qpos # prev_qvel = self.data.qvel # prev_ctrl = self.data.ctrl # prev_act = self.data.act # qpos, qvel = self.decode_state(state) # self.model.data.qpos = qpos # self.model.data.qvel = qvel # self.model.forward() # yield # if restore: # self.data.qpos = prev_pos # self.data.qvel = prev_qvel # self.data.ctrl = prev_ctrl # self.data.act = prev_act # self.model.forward() def get_param_values(self): return {} def set_param_values(self, values): pass ``` #### File: environments/mujoco/half_cheetah_blocks_env.py ```python import numpy as np # from learning_to_adapt.utils.serializable import Serializable # from learning_to_adapt.envs.mujoco_env import MujocoEnv # from learning_to_adapt.logger import logger import os from environments.mujoco.mj_env import MujocoEnv class HalfCheetahBlocksEnv(MujocoEnv): #<<<<<<< ys def __init__(self, task='damping', max_episode_steps=200, reset_every_episode=False, ctrl_cost_weight=0.5, contact_cost_weight=5e-4, healthy_reward=1.0, terminate_when_unhealthy=False, healthy_z_range=(0.3, 0.85), contact_force_range=(-1.0, 1.0), ): # Serializable.quick_init(self, locals()) #======= # # def __init__(self, task='damping', max_episode_steps=200, reset_every_episode=False, frame_skip=1): # #Serializable.quick_init(self, locals()) #>>>>>>> master self.reset_every_episode = reset_every_episode self.first = True print("frame_skip :", frame_skip) MujocoEnv.__init__(self, os.path.join(os.path.abspath(os.path.dirname(__file__)), "assets", "half_cheetah_blocks.xml"), frame_skip=frame_skip) task = None if task == 'None' else task self.cripple_mask = np.ones(self.action_space.shape) self._init_geom_rgba = self.model.geom_rgba.copy() self._init_geom_contype = self.model.geom_contype.copy() self._init_geom_size = self.model.geom_size.copy() self._init_geom_pos = self.model.geom_pos.copy() self.dt = self.model.opt.timestep assert task in [None, 'damping'] self.task = task self._max_episode_steps = max_episode_steps #self.visualise_behaviour = True #<<<<<<< ys #reward self._ctrl_cost_weight = ctrl_cost_weight self._contact_cost_weight = contact_cost_weight self._healthy_reward = healthy_reward self._terminate_when_unhealthy = terminate_when_unhealthy self._healthy_z_range = healthy_z_range self._contact_force_range = contact_force_range @property def healthy_reward(self): return float( self.is_healthy or self._terminate_when_unhealthy) \ * self._healthy_reward @property def is_healthy(self): z = self.get_body_com("torso")[2].copy() #print("z: {}".format(z)) min_z, max_z = self._healthy_z_range is_healthy = (min_z <= z <= max_z) return is_healthy @property def contact_forces(self): raw_contact_forces = self.sim.data.cfrc_ext min_value, max_value = self._contact_force_range contact_forces = np.clip(raw_contact_forces, min_value, max_value) return contact_forces @property def contact_cost(self): contact_cost = self._contact_cost_weight * np.sum( np.square(self.contact_forces)) return contact_cost @property def done(self): done = (not self.is_healthy if self._terminate_when_unhealthy else False) return done #======= #>>>>>>> master def get_current_obs(self): return np.concatenate([ self.data.qpos.flatten()[9:], self.data.qvel.flat[8:], self.get_body_com("torso").flat, ]) def get_task(self): return 1 # dummy def step(self, action): xy_position_before = self.get_body_com("torso")[:2].copy() self.forward_dynamics(action) xy_position_after = self.get_body_com("torso")[:2].copy() next_obs = self.get_current_obs() xy_velocity = (xy_position_after - xy_position_before) / self.dt x_velocity, y_velocity = xy_velocity #<<<<<<< ys # ctrl_cost = 1e-1 * 0.5 * np.sum(np.square(action)) ctrl_cost = 1e-1 * self._ctrl_cost_weight * np.sum(np.square(action)) contact_cost = self.contact_cost costs = ctrl_cost + contact_cost #forward_reward = x_velocity forward_reward = self.get_body_comvel("torso")[0] healthy_reward= self.healthy_reward reward = forward_reward - costs + healthy_reward done = self.done #======= # ctrl_cost = 1e-1 * 0.5 * np.sum(np.square(action)) # #forward_reward = x_velocity # forward_reward = self.get_body_comvel("torso")[0] # reward = forward_reward - ctrl_cost # done = False #>>>>>>> master info = { 'reward_forward': forward_reward, 'reward_ctrl': -ctrl_cost, 'healthy_reward': healthy_reward, 'x_postiion': xy_position_after[0], 'y_position': xy_position_after[1], 'distance_from_origin': np.linalg.norm(xy_position_after, ord=2), 'x_velocity': x_velocity, 'y_velocity': y_velocity, 'forward_reward': forward_reward, 'task': 1, ## dummy ## TODO } return next_obs, reward, done, info def reward(self, obs, action, next_obs): assert obs.ndim == 2 assert obs.shape == next_obs.shape assert obs.shape[0] == action.shape[0] ctrl_cost = 1e-1 * 0.5 * np.sum(np.square(action), axis=1) forward_reward = (next_obs[:, -3] - obs[:, -3]) / self.dt reward = forward_reward - ctrl_cost return reward def reset_mujoco(self, init_state=None): super(HalfCheetahBlocksEnv, self).reset_mujoco(init_state=init_state) if self.reset_every_episode and not self.first: self.reset_task() if self.first: self.first = False def reset_task(self, value=None): if self.task == 'damping': damping = self.model.dof_damping.copy() damping[:8] = value if value is not None else np.random.uniform(0, 10, size=8) for idx in range(8): self.model.dof_damping[idx] = damping[idx] elif self.task is None: pass else: raise NotImplementedError self.sim.forward() # def log_diagnostics(self, paths): # progs = [ # path["observations"][-1][-3] - path["observations"][0][-3] # for path in paths # ] # logger.logkv('AverageForwardProgress', np.mean(progs)) # logger.logkv('MaxForwardProgress', np.max(progs)) # logger.logkv('MinForwardProgress', np.min(progs)) # logger.logkv('StdForwardProgress', np.std(progs)) if __name__ == '__main__': env = HalfCheetahBlocksEnv(task='damping') while True: env.reset() env.reset_task() for _ in range(1000): env.step(env.action_space.sample()) env.render() ``` #### File: varibad/environments/parallel_envs.py ```python import os import gym import numpy as np import torch from environments.wrappers import TimeLimitMask from environments.wrappers import VariBadWrapper from utils import bench from utils.common.vec_env import VecEnvWrapper from utils.common.vec_env.dummy_vec_env import DummyVecEnv from utils.common.vec_env.subproc_vec_env import SubprocVecEnv from utils.common.vec_env.vec_normalize import VecNormalize as VecNormalize_ def make_env(env_id, seed, rank, log_dir, allow_early_resets, episodes_per_task, **kwargs): def _thunk(): env = gym.make(env_id, **kwargs) if seed is not None: env.seed(seed + rank) if str(env.__class__.__name__).find('TimeLimit') >= 0: env = TimeLimitMask(env) env = VariBadWrapper(env=env, episodes_per_task=episodes_per_task) if log_dir is not None: env = bench.Monitor(env, os.path.join(log_dir, str(rank)), allow_early_resets=allow_early_resets) return env return _thunk def make_vec_envs(env_name, seed, num_processes, gamma, log_dir, device, allow_early_resets, episodes_per_task, obs_rms, ret_rms, rank_offset=0, **kwargs): """ :param obs_rms: running mean and std for observations :param ret_rms: running return and std for rewards """ envs = [make_env(env_id=env_name, seed=seed, rank=rank_offset + i, log_dir=log_dir, allow_early_resets=allow_early_resets, episodes_per_task=episodes_per_task, **kwargs) for i in range(num_processes)] if len(envs) > 1: envs = SubprocVecEnv(envs) else: envs = DummyVecEnv(envs) if len(envs.observation_space.shape) == 1: if gamma is None: envs = VecNormalize(envs, obs_rms=obs_rms, ret_rms=ret_rms, ret=False) else: envs = VecNormalize(envs, obs_rms=obs_rms, ret_rms=ret_rms, gamma=gamma) envs = VecPyTorch(envs, device) return envs class VecPyTorch(VecEnvWrapper): def __init__(self, venv, device): """Return only every `skip`-th frame""" super(VecPyTorch, self).__init__(venv) self.device = device # TODO: Fix data types def reset_mdp(self, index=None): obs = self.venv.reset_mdp(index=index) if isinstance(obs, list): obs = [torch.from_numpy(o).float().to(self.device) for o in obs] else: obs = torch.from_numpy(obs).float().to(self.device) return obs def reset(self, index=None, task=None): if task is not None: assert isinstance(task, list) obs = self.venv.reset(index=index, task=task) if isinstance(obs, list): obs = [torch.from_numpy(o).float().to(self.device) for o in obs] else: obs = torch.from_numpy(obs).float().to(self.device) return obs def step_async(self, actions): actions = actions.squeeze(1).cpu().numpy() self.venv.step_async(actions) def step_wait(self): obs, reward, done, info = self.venv.step_wait() if isinstance(obs, list): # raw + normalised obs = [torch.from_numpy(o).float().to(self.device) for o in obs] else: obs = torch.from_numpy(obs).float().to(self.device) if isinstance(reward, list): # raw + normalised reward = [torch.from_numpy(r).unsqueeze(dim=1).float().to(self.device) for r in reward] else: reward = torch.from_numpy(reward).unsqueeze(dim=1).float().to(self.device) return obs, reward, done, info def __getattr__(self, attr): """ If env does not have the attribute then call the attribute in the wrapped_env """ if attr in ['num_states', '_max_episode_steps']: return self.unwrapped.get_env_attr(attr) try: orig_attr = self.__getattribute__(attr) except AttributeError: orig_attr = self.unwrapped.__getattribute__(attr) if callable(orig_attr): def hooked(*args, **kwargs): result = orig_attr(*args, **kwargs) return result return hooked else: return orig_attr class VecNormalize(VecNormalize_): def __init__(self, envs, obs_rms, ret_rms, *args, **kwargs): super(VecNormalize, self).__init__(envs, obs_rms=obs_rms, ret_rms=ret_rms, *args, **kwargs) self.training = True def _obfilt(self, obs): if self.training: self.obs_rms.update(obs) obs_norm = np.clip((obs - self.obs_rms.mean) / np.sqrt(self.obs_rms.var + self.epsilon), -self.clipobs, self.clipobs) return [obs, obs_norm] def train(self): self.training = True def eval(self): self.training = False def __getattr__(self, attr): """ If env does not have the attribute then call the attribute in the wrapped_env """ try: orig_attr = self.__getattribute__(attr) except AttributeError: orig_attr = self.unwrapped.__getattribute__(attr) if callable(orig_attr): def hooked(*args, **kwargs): result = orig_attr(*args, **kwargs) return result return hooked else: return orig_attr ``` #### File: learning_to_adapt/dynamics/meta_mlp_dynamics.py ```python from learning_to_adapt.dynamics.core.layers import MLP from collections import OrderedDict import tensorflow as tf import numpy as np from learning_to_adapt.utils.serializable import Serializable from learning_to_adapt.utils import tensor_utils from learning_to_adapt.logger import logger import time class MetaMLPDynamicsModel(Serializable): """ Class for MLP continous dynamics model """ _activations = { None: None, "relu": tf.nn.relu, "tanh": tf.tanh, "sigmoid": tf.sigmoid, "softmax": tf.nn.softmax, "swish": lambda x: x * tf.sigmoid(x) } def __init__(self, name, env, hidden_sizes=(512, 512), meta_batch_size=10, hidden_nonlinearity=tf.nn.relu, output_nonlinearity=None, batch_size=500, learning_rate=0.001, inner_learning_rate=0.1, normalize_input=True, optimizer=tf.train.AdamOptimizer, valid_split_ratio=0.2, rolling_average_persitency=0.99, ): Serializable.quick_init(self, locals()) self.normalization = None self.normalize_input = normalize_input self.next_batch = None self.meta_batch_size = meta_batch_size self.valid_split_ratio = valid_split_ratio self.rolling_average_persitency = rolling_average_persitency self.batch_size = batch_size self.learning_rate = learning_rate self.inner_learning_rate = inner_learning_rate self.name = name self._dataset_train = None self._dataset_test = None self._prev_params = None self._adapted_param_values = None # determine dimensionality of state and action space self.obs_space_dims = obs_space_dims = env.observation_space.shape[0] self.action_space_dims = action_space_dims = env.action_space.shape[0] hidden_nonlinearity = self._activations[hidden_nonlinearity] output_nonlinearity = self._activations[output_nonlinearity] """ ------------------ Pre-Update Graph + Adaptation ----------------------- """ with tf.variable_scope(name): # Placeholders self.obs_ph = tf.placeholder(tf.float32, shape=(None, obs_space_dims)) self.act_ph = tf.placeholder(tf.float32, shape=(None, action_space_dims)) self.delta_ph = tf.placeholder(tf.float32, shape=(None, obs_space_dims)) # Concatenate action and observation --> NN input self.nn_input = tf.concat([self.obs_ph, self.act_ph], axis=1) # Create MLP mlp = MLP(name, output_dim=obs_space_dims, hidden_sizes=hidden_sizes, hidden_nonlinearity=hidden_nonlinearity, output_nonlinearity=output_nonlinearity, input_var=self.nn_input, input_dim=obs_space_dims+action_space_dims) self.delta_pred = mlp.output_var # shape: (batch_size, ndim_obs, n_models) self.loss = tf.reduce_mean(tf.square(self.delta_ph - self.delta_pred)) self.optimizer = tf.train.GradientDescentOptimizer(self.learning_rate) self.adaptation_sym = tf.train.GradientDescentOptimizer(self.inner_learning_rate).minimize(self.loss) # Tensor_utils self.f_delta_pred = tensor_utils.compile_function([self.obs_ph, self.act_ph], self.delta_pred) """ --------------------------- Meta-training Graph ---------------------------------- """ nn_input_per_task = tf.split(self.nn_input, self.meta_batch_size, axis=0) delta_per_task = tf.split(self.delta_ph, self.meta_batch_size, axis=0) pre_input_per_task, post_input_per_task = zip(*[tf.split(nn_input, 2, axis=0) for nn_input in nn_input_per_task]) pre_delta_per_task, post_delta_per_task = zip(*[tf.split(delta, 2, axis=0) for delta in delta_per_task]) pre_losses = [] post_losses = [] self._adapted_params = [] for idx in range(self.meta_batch_size): with tf.variable_scope(name + '/pre_model_%d' % idx, reuse=tf.AUTO_REUSE): pre_mlp = MLP(name, output_dim=obs_space_dims, hidden_sizes=hidden_sizes, hidden_nonlinearity=hidden_nonlinearity, output_nonlinearity=output_nonlinearity, input_var=pre_input_per_task[idx], input_dim=obs_space_dims + action_space_dims, params=mlp.get_params()) pre_delta_pred = pre_mlp.output_var pre_loss = tf.reduce_mean(tf.square(pre_delta_per_task[idx] - pre_delta_pred)) adapted_params = self._adapt_sym(pre_loss, pre_mlp.get_params()) self._adapted_params.append(adapted_params) with tf.variable_scope(name + '/post_model_%d' % idx, reuse=tf.AUTO_REUSE): post_mlp = MLP(name, output_dim=obs_space_dims, hidden_sizes=hidden_sizes, hidden_nonlinearity=hidden_nonlinearity, output_nonlinearity=output_nonlinearity, input_var=post_input_per_task[idx], params=adapted_params, input_dim=obs_space_dims + action_space_dims) post_delta_pred = post_mlp.output_var post_loss = tf.reduce_mean(tf.square(post_delta_per_task[idx] - post_delta_pred)) pre_losses.append(pre_loss) post_losses.append(post_loss) self.pre_loss = tf.reduce_mean(pre_losses) self.post_loss = tf.reduce_mean(post_losses) self.train_op = optimizer(self.learning_rate).minimize(self.post_loss) """ --------------------------- Post-update Inference Graph --------------------------- """ with tf.variable_scope(name + '_ph_graph'): self.post_update_delta = [] self.network_phs_meta_batch = [] nn_input_per_task = tf.split(self.nn_input, self.meta_batch_size, axis=0) for idx in range(meta_batch_size): with tf.variable_scope('task_%i' % idx): network_phs = self._create_placeholders_for_vars(mlp.get_params()) self.network_phs_meta_batch.append(network_phs) mlp_meta_batch = MLP(name, output_dim=obs_space_dims, hidden_sizes=hidden_sizes, hidden_nonlinearity=hidden_nonlinearity, output_nonlinearity=output_nonlinearity, params=network_phs, input_var=nn_input_per_task[idx], input_dim=obs_space_dims + action_space_dims, ) self.post_update_delta.append(mlp_meta_batch.output_var) self._networks = [mlp] def fit(self, obs, act, obs_next, epochs=1000, compute_normalization=True, valid_split_ratio=None, rolling_average_persitency=None, verbose=False, log_tabular=False): assert obs.ndim == 3 and obs.shape[2] == self.obs_space_dims assert obs_next.ndim == 3 and obs_next.shape[2] == self.obs_space_dims assert act.ndim == 3 and act.shape[2] == self.action_space_dims if valid_split_ratio is None: valid_split_ratio = self.valid_split_ratio if rolling_average_persitency is None: rolling_average_persitency = self.rolling_average_persitency assert 1 > valid_split_ratio >= 0 sess = tf.get_default_session() if (self.normalization is None or compute_normalization) and self.normalize_input: self.compute_normalization(obs, act, obs_next) if self.normalize_input: # Normalize data obs, act, delta = self._normalize_data(obs, act, obs_next) assert obs.ndim == act.ndim == obs_next.ndim == 3 else: delta = obs_next - obs # Split into valid and test set obs_train, act_train, delta_train, obs_test, act_test, delta_test = train_test_split(obs, act, delta, test_split_ratio=valid_split_ratio) if self._dataset_test is None: self._dataset_test = dict(obs=obs_test, act=act_test, delta=delta_test) self._dataset_train = dict(obs=obs_train, act=act_train, delta=delta_train) else: self._dataset_test['obs'] = np.concatenate([self._dataset_test['obs'], obs_test]) self._dataset_test['act'] = np.concatenate([self._dataset_test['act'], act_test]) self._dataset_test['delta'] = np.concatenate([self._dataset_test['delta'], delta_test]) self._dataset_train['obs'] = np.concatenate([self._dataset_train['obs'], obs_train]) self._dataset_train['act'] = np.concatenate([self._dataset_train['act'], act_train]) self._dataset_train['delta'] = np.concatenate([self._dataset_train['delta'], delta_train]) valid_loss_rolling_average = None epoch_times = [] """ ------- Looping over training epochs ------- """ num_steps_per_epoch = max(int(np.prod(self._dataset_train['obs'].shape[:2]) / (self.meta_batch_size * self.batch_size * 2)), 1) num_steps_test = max(int(np.prod(self._dataset_test['obs'].shape[:2]) / (self.meta_batch_size * self.batch_size * 2)), 1) for epoch in range(epochs): # preparations for recording training stats pre_batch_losses = [] post_batch_losses = [] t0 = time.time() """ ------- Looping through the shuffled and batched dataset for one epoch -------""" for _ in range(num_steps_per_epoch): obs_batch, act_batch, delta_batch = self._get_batch(train=True) pre_batch_loss, post_batch_loss, _ = sess.run([self.pre_loss, self.post_loss, self.train_op], feed_dict={self.obs_ph: obs_batch, self.act_ph: act_batch, self.delta_ph: delta_batch}) pre_batch_losses.append(pre_batch_loss) post_batch_losses.append(post_batch_loss) valid_losses = [] for _ in range(num_steps_test): obs_test, act_test, delta_test = self._get_batch(train=False) # compute validation loss feed_dict = {self.obs_ph: obs_test, self.act_ph: act_test, self.delta_ph: delta_test} valid_loss = sess.run(self.loss, feed_dict=feed_dict) valid_losses.append(valid_loss) valid_loss = np.mean(valid_losses) if valid_loss_rolling_average is None: valid_loss_rolling_average = 1.5 * valid_loss # set initial rolling to a higher value avoid too early stopping valid_loss_rolling_average_prev = 2 * valid_loss if valid_loss < 0: valid_loss_rolling_average = valid_loss/1.5 # set initial rolling to a higher value avoid too early stopping valid_loss_rolling_average_prev = valid_loss/2 valid_loss_rolling_average = rolling_average_persitency*valid_loss_rolling_average \ + (1.0-rolling_average_persitency)*valid_loss epoch_times.append(time.time() - t0) if verbose: logger.log("Training DynamicsModel - finished epoch %i - " "train loss: %.4f valid loss: %.4f valid_loss_mov_avg: %.4f epoch time: %.2f" % (epoch, np.mean(post_batch_losses), valid_loss, valid_loss_rolling_average, time.time() - t0)) if valid_loss_rolling_average_prev < valid_loss_rolling_average or epoch == epochs - 1: logger.log('Stopping Training of Model since its valid_loss_rolling_average decreased') break valid_loss_rolling_average_prev = valid_loss_rolling_average """ ------- Tabular Logging ------- """ if log_tabular: logger.logkv('AvgModelEpochTime', np.mean(epoch_times)) logger.logkv('Post-Loss', np.mean(post_batch_losses)) logger.logkv('Pre-Loss', np.mean(pre_batch_losses)) logger.logkv('Epochs', epoch) def predict(self, obs, act): assert obs.shape[0] == act.shape[0] assert obs.ndim == 2 and obs.shape[1] == self.obs_space_dims assert act.ndim == 2 and act.shape[1] == self.action_space_dims obs_original = obs if self.normalize_input: obs, act = self._normalize_data(obs, act) delta = np.array(self._predict(obs, act)) delta = denormalize(delta, self.normalization['delta'][0], self.normalization['delta'][1]) else: delta = np.array(self._predict(obs, act)) assert delta.ndim == 2 pred_obs = obs_original + delta return pred_obs def _predict(self, obs, act): if self._adapted_param_values is not None: sess = tf.get_default_session() obs, act = self._pad_inputs(obs, act) feed_dict = {self.obs_ph: obs, self.act_ph: act} feed_dict.update(self.network_params_feed_dict) delta = sess.run(self.post_update_delta[:self._num_adapted_models], feed_dict=feed_dict) delta = np.concatenate(delta, axis=0) else: delta = self.f_delta_pred(obs, act) return delta def _pad_inputs(self, obs, act, obs_next=None): if self._num_adapted_models < self.meta_batch_size: pad = int(obs.shape[0] / self._num_adapted_models * (self.meta_batch_size - self._num_adapted_models)) obs = np.concatenate([obs, np.zeros((pad,) + obs.shape[1:])], axis=0) act = np.concatenate([act, np.zeros((pad,) + act.shape[1:])], axis=0) if obs_next is not None: obs_next = np.concatenate([obs_next, np.zeros((pad,) + obs_next.shape[1:])], axis=0) if obs_next is not None: return obs, act, obs_next else: return obs, act def adapt(self, obs, act, obs_next): self._num_adapted_models = len(obs) assert len(obs) == len(act) == len(obs_next) obs = np.concatenate([np.concatenate([ob, np.zeros_like(ob)], axis=0) for ob in obs], axis=0) act = np.concatenate([np.concatenate([a, np.zeros_like(a)], axis=0) for a in act], axis=0) obs_next = np.concatenate([np.concatenate([ob, np.zeros_like(ob)], axis=0) for ob in obs_next], axis=0) obs, act, obs_next = self._pad_inputs(obs, act, obs_next) assert obs.shape[0] == act.shape[0] == obs_next.shape[0] assert obs.ndim == 2 and obs.shape[1] == self.obs_space_dims assert act.ndim == 2 and act.shape[1] == self.action_space_dims assert obs_next.ndim == 2 and obs_next.shape[1] == self.obs_space_dims if self.normalize_input: # Normalize data obs, act, delta = self._normalize_data(obs, act, obs_next) assert obs.ndim == act.ndim == obs_next.ndim == 2 else: delta = obs_next - obs self._prev_params = [nn.get_param_values() for nn in self._networks] sess = tf.get_default_session() self._adapted_param_values = sess.run(self._adapted_params[:self._num_adapted_models], feed_dict={self.obs_ph: obs, self.act_ph: act, self.delta_ph: delta}) def switch_to_pre_adapt(self): if self._prev_params is not None: [nn.set_params(params) for nn, params in zip(self._networks, self._prev_params)] self._prev_params = None self._adapted_param_values = None def _get_batch(self, train=True): if train: num_paths, len_path = self._dataset_train['obs'].shape[:2] idx_path = np.random.randint(0, num_paths, size=self.meta_batch_size) idx_batch = np.random.randint(self.batch_size, len_path - self.batch_size, size=self.meta_batch_size) obs_batch = np.concatenate([self._dataset_train['obs'][ip, ib - self.batch_size:ib + self.batch_size, :] for ip, ib in zip(idx_path, idx_batch)], axis=0) act_batch = np.concatenate([self._dataset_train['act'][ip, ib - self.batch_size:ib + self.batch_size, :] for ip, ib in zip(idx_path, idx_batch)], axis=0) delta_batch = np.concatenate([self._dataset_train['delta'][ip, ib - self.batch_size:ib + self.batch_size, :] for ip, ib in zip(idx_path, idx_batch)], axis=0) else: num_paths, len_path = self._dataset_test['obs'].shape[:2] idx_path = np.random.randint(0, num_paths, size=self.meta_batch_size) idx_batch = np.random.randint(self.batch_size, len_path - self.batch_size, size=self.meta_batch_size) obs_batch = np.concatenate([self._dataset_test['obs'][ip, ib - self.batch_size:ib + self.batch_size, :] for ip, ib in zip(idx_path, idx_batch)], axis=0) act_batch = np.concatenate([self._dataset_test['act'][ip, ib - self.batch_size:ib + self.batch_size, :] for ip, ib in zip(idx_path, idx_batch)], axis=0) delta_batch = np.concatenate([self._dataset_test['delta'][ip, ib - self.batch_size:ib + self.batch_size, :] for ip, ib in zip(idx_path, idx_batch)], axis=0) return obs_batch, act_batch, delta_batch def _normalize_data(self, obs, act, obs_next=None): obs_normalized = normalize(obs, self.normalization['obs'][0], self.normalization['obs'][1]) actions_normalized = normalize(act, self.normalization['act'][0], self.normalization['act'][1]) if obs_next is not None: delta = obs_next - obs deltas_normalized = normalize(delta, self.normalization['delta'][0], self.normalization['delta'][1]) return obs_normalized, actions_normalized, deltas_normalized else: return obs_normalized, actions_normalized def compute_normalization(self, obs, act, obs_next): assert obs.shape[0] == obs_next.shape[0] == act.shape[0] assert obs.shape[1] == obs_next.shape[1] == act.shape[1] delta = obs_next - obs assert delta.ndim == 3 and delta.shape[2] == obs_next.shape[2] == obs.shape[2] # store means and std in dict self.normalization = OrderedDict() self.normalization['obs'] = (np.mean(obs, axis=(0, 1)), np.std(obs, axis=(0, 1))) self.normalization['delta'] = (np.mean(delta, axis=(0, 1)), np.std(delta, axis=(0, 1))) self.normalization['act'] = (np.mean(act, axis=(0, 1)), np.std(act, axis=(0, 1))) def _adapt_sym(self, loss, params_var): update_param_keys = list(params_var.keys()) grads = tf.gradients(loss, [params_var[key] for key in update_param_keys]) gradients = dict(zip(update_param_keys, grads)) # Gradient descent adapted_policy_params = [params_var[key] - tf.multiply(self.inner_learning_rate, gradients[key]) for key in update_param_keys] adapted_policy_params_dict = OrderedDict(zip(update_param_keys, adapted_policy_params)) return adapted_policy_params_dict def _create_placeholders_for_vars(self, vars): placeholders = OrderedDict() for key, var in vars.items(): placeholders[key] = tf.placeholder(tf.float32, shape=var.shape, name=key + '_ph') return OrderedDict(placeholders) @property def network_params_feed_dict(self): return dict(list((self.network_phs_meta_batch[i][key], self._adapted_param_values[i][key]) for key in self._adapted_param_values[0].keys() for i in range(self._num_adapted_models))) def __getstate__(self): state = dict() state['init_args'] = Serializable.__getstate__(self) state['normalization'] = self.normalization state['networks'] = [nn.__getstate__() for nn in self._networks] return state def __setstate__(self, state): Serializable.__setstate__(self, state['init_args']) self.normalization = state['normalization'] for i in range(len(self._networks)): self._networks[i].__setstate__(state['networks'][i]) def normalize(data_array, mean, std): return (data_array - mean) / (std + 1e-10) def denormalize(data_array, mean, std): return data_array * (std + 1e-10) + mean def train_test_split(obs, act, delta, test_split_ratio=0.2): assert obs.shape[0] == act.shape[0] == delta.shape[0] dataset_size = obs.shape[0] indices = np.arange(dataset_size) np.random.shuffle(indices) split_idx = int(dataset_size * (1-test_split_ratio)) idx_train = indices[:split_idx] idx_test = indices[split_idx:] assert len(idx_train) + len(idx_test) == dataset_size return obs[idx_train, :], act[idx_train, :], delta[idx_train, :], \ obs[idx_test, :], act[idx_test, :], delta[idx_test, :] ```
{ "source": "jeonggyukim/pyathena", "score": 3 }
#### File: pyathena/feedback_test/profile_1d.py ```python import numpy as np from scipy import stats from inspect import getsource from ..load_sim import LoadSim class Profile1D: @LoadSim.Decorators.check_pickle def get_profile1d(self, num, fields_y, field_x='r', bins=None, statistic='mean', prefix='profile1d', savdir=None, force_override=False): """ Function to calculate 1D profile(s) and pickle using scipy.stats.binned_statistics Parameters ---------- num : int vtk output number fields_y : (list of) str Fields to be profiled fields_x : str Field for binning bins : int or sequence of scalars, optional If bins is an int, it defines the number of equal-width bins in the given range. If bins is a sequence, it defines the bin edges, including the rightmost edge, allowing for non-uniform bin widths. Values in x that are smaller than lowest bin edge are assigned to bin number 0, values beyond the highest bin are assigned to bins[-1]. If the bin edges are specified, the number of bins will be, (nx = len(bins)-1). The default value is np.linspace(x.min(), x.max(), 50) statistic : (list of) string or callable The statistic to compute (default is โ€˜meanโ€™). The following statistics are available: โ€˜meanโ€™ : compute the mean of values for points within each bin. Empty bins will be represented by NaN. โ€˜stdโ€™ : compute the standard deviation within each bin. This is implicitly calculated with ddof=0. โ€˜medianโ€™ : compute the median of values for points within each bin. Empty bins will be represented by NaN. โ€˜countโ€™ : compute the count of points within each bin. This is identical to an unweighted histogram. values array is not referenced. โ€˜sumโ€™ : compute the sum of values for points within each bin. This is identical to a weighted histogram. โ€˜minโ€™ : compute the minimum of values for points within each bin. Empty bins will be represented by NaN. โ€˜maxโ€™ : compute the maximum of values for point within each bin. Empty bins will be represented by NaN. function : a user-defined function which takes a 1D array of values, and outputs a single numerical statistic. This function will be called on the values in each bin. Empty bins will be represented by function([]), or NaN if this returns an error. savdir : str, optional Directory to pickle results prefix : str Prefix for python pickle file force_override : bool Flag to force read of starpar_vtk file even when pickle exists """ fields_y = np.atleast_1d(fields_y) statistic = np.atleast_1d(statistic) ds = self.load_vtk(num) ddy = ds.get_field(fields_y) ddx = ds.get_field(field_x) x1d = ddx[field_x].data.flatten() if bins is None: bins = np.linspace(x1d.min(), x1d.max(), 50) res = dict() res[field_x] = dict() for y in fields_y: res[y] = dict() get_lambda_name = lambda l: getsource(l).split('=')[0].strip() # Compute statistics for y in fields_y: y1d = ddy[y].data.flatten() for st in statistic: # Get name of statistic if callable(st): if st.__name__ == "<lambda>": name = get_lambda_name(st) else: name = st.__name__ else: name = st st, bine, _ = stats.binned_statistic(x1d, y1d, st, bins=bins) # Store result res[y][name] = st # bin edges res[field_x]['bine'] = bine # bin centers res[field_x]['binc'] = 0.5*(bine[1:] + bine[:-1]) # Time of the snapshot res['time_code'] = ds.domain['time'] res['time'] = ds.domain['time']*self.u.Myr return res ``` #### File: pyathena/microphysics/rec_rate.py ```python import os import os.path as osp import numpy as np import matplotlib.pyplot as plt import pathlib class RecRate(object): """Class to compute Badnell (radiative/dielectronic) recombination rates, Draine (2011)'s recombination rates """ def __init__(self): # read data self._read_data() def _read_data(self): basedir = osp.join(pathlib.Path(__file__).parent.absolute(), '../../data/microphysics') self.fname_dr_C = os.path.join(basedir, 'badnell_dr_C.dat') self.fname_dr_E = os.path.join(basedir, 'badnell_dr_E.dat') self.fname_rr = os.path.join(basedir, 'badnell_rr.dat') # Read dielectronic recombination rate data with open(self.fname_dr_C, 'r') as fp: lines1 = fp.readlines() with open(self.fname_dr_E, 'r') as fp: lines2 = fp.readlines() i0 = 4 nline = len(lines1) - i0 if len(lines1) != len(lines2): print('Check data file (lines1, lines2) = {0:d}, {1:d}', len(lines1), len(lines2)) raise self.Zd = np.zeros(nline, dtype='uint8') self.Nd = np.zeros(nline, dtype='uint8') self.Md = np.zeros(nline, dtype='uint8') self.Wd = np.zeros(nline, dtype='uint8') self.Cd = np.zeros((nline, 9)) self.Ed = np.zeros((nline, 9)) self.nd = np.zeros(nline, dtype='uint8') for i, (l1, l2) in enumerate(zip(lines1[i0:i0 + nline], lines2[i0:i0 + nline])): l1 = l1.split() l2 = l2.split() # Make sure that Z, N, M, W all match if int(l1[0]) == int(l2[0]) and \ int(l1[1]) == int(l2[1]) and \ int(l1[2]) == int(l2[2]) and \ int(l1[3]) == int(l2[3]): self.Zd[i] = int(l1[0]) self.Nd[i] = int(l1[1]) self.Md[i] = int(l1[2]) self.Wd[i] = int(l1[3]) for j, l1_ in enumerate(l1[4:]): self.Cd[i, j] = float(l1_) for j, l2_ in enumerate(l2[4:]): self.Ed[i, j] = float(l2_) self.nd[i] = j + 1 else: print("Columns do not match!") raise del lines1, lines2 # Read radiative recombination rate data with open(self.fname_rr, 'r') as fp: lines = fp.readlines() i0 = 4 nline = len(lines) - i0 self.Zr = np.zeros(nline, dtype='uint8') self.Nr = np.zeros(nline, dtype='uint8') self.Mr = np.zeros(nline, dtype='uint8') self.Wr = np.zeros(nline, dtype='uint8') self.Ar = np.zeros(nline) self.Br = np.zeros(nline) self.T0r = np.zeros(nline) self.T1r = np.zeros(nline) self.Cr = np.zeros(nline) self.T2r = np.zeros(nline) # Use modifed B for low-charge ions self.modr = np.zeros(nline, dtype='bool') for i, l1 in enumerate(lines[i0:i0 + nline]): l1 = l1.split() self.Zr[i] = int(l1[0]) self.Nr[i] = int(l1[1]) self.Mr[i] = int(l1[2]) self.Wr[i] = int(l1[3]) self.Ar[i] = float(l1[4]) self.Br[i] = float(l1[5]) self.T0r[i] = float(l1[6]) self.T1r[i] = float(l1[7]) try: self.Cr[i] = float(l1[8]) self.T2r[i] = float(l1[9]) self.modr[i] = True except IndexError: self.modr[i] = False def get_rr_rate(self, Z, N, T, M=1): """ Calculate radiative recombination rate coefficient Parameters ---------- Z : int Nuclear Charge N : int Number of electrons of the initial target ion T : array of floats Temperature [K] M : int Initial metastable levels (M=1 for the ground state) of the ground and metastable terms. The defualt value is 1. Returns ------- rr: array of floats Radiative recombination coefficients [cm^3 s^-1] """ c1 = self.Zr == Z c2 = self.Nr == N c3 = self.Mr == M idx = np.where(c1 & c2 & c3) i = idx[0][0] sqrtTT0 = np.sqrt(T/self.T0r[i]) sqrtTT1 = np.sqrt(T/self.T1r[i]) if self.modr[i]: B = self.Br[i] + self.Cr[i]*np.exp(-self.T2r[i]/T) else: B = self.Br[i] rr = self.Ar[i] / (sqrtTT0 * (1.0 + sqrtTT0)**(1.0 - B) * \ (1.0 + sqrtTT1)**(1.0 + B)) return rr def get_dr_rate(self, Z, N, T, M=1): """ Calculate dielectronic recombination rate coefficient Parameters ---------- Z : int Nuclear Charge N : int Number of electrons of the initial target ion (before recombination) T : array of floats Temperature [K] M : int Initial metastable levels (M=1 for the ground state) of the ground and metastable terms. The defualt value is 1. Returns ------- rr: array of floats Dielectronic recombination coefficients [cm^3 s^-1] """ c1 = self.Zd == Z c2 = self.Nd == N c3 = self.Md == M idx = np.where(c1 & c2 & c3) i = idx[0][0] dr = 0.0 for m in range(self.nd[i]): dr += self.Cd[i, m]*np.exp(-self.Ed[i, m]/T) dr *= T**(-1.5) return dr def get_rec_rate(self, Z, N, T, M=1, kind='badnell'): """ Calculate radiative + dielectronic recombination rate coefficient Parameters ---------- Z : int Nuclear Charge N : int Number of electrons of the initial target ion (before recombination) T : array of floats Temperature [K] M : int Initial metastable levels (M=1 for the ground state) of the ground and metastable terms. The defualt value is 1. kind : str Set to 'badnell' to use fits Badnell fits or 'dr11' to use Draine (2011)'s formula. Returns ------- rrate: array of floats Recombination rate coefficient [cm^3 s^-1] """ if kind == 'badnell': if Z == 1: # No dielectronic recombination return self.get_rr_rate(Z, N, T, M=M) else: return self.get_rr_rate(Z, N, T, M=M) + \ self.get_dr_rate(Z, N, T, M=M) elif kind == 'dr11': if Z == 1: return self.get_rec_rate_H_caseA(T) else: print('Z > 1 is not supported for dr11 recombination rate.') raise @staticmethod def get_rec_rate_H_caseA(T): """Compute case A recombination rate coefficient for H Table 14.1 in Draine (2011) """ T4 = T*1e-4 return 4.13e-13*T4**(-0.7131 - 0.0115*np.log(T4)) @staticmethod def get_rec_rate_H_caseB(T): """Compute case B recombination rate coefficient for H Table 14.1 in Draine (2011) """ T4 = T*1e-4 return 2.54e-13*T4**(-0.8163 - 0.0208*np.log(T4)) @staticmethod def get_alpha_gr(T, psi, Z): # Parameters for Fit (14.37) to Grain Recombination Rate coefficients # alpha_gr(X +) for selected ions. (Draine 2011) C = dict() C['H'] = np.array([12.25, 8.074e-6, 1.378, 5.087e2, 1.586e-2, 0.4723, 1.102e-5]) C['He']= np.array([5.572, 3.185e-7, 1.512, 5.115e3, 3.903e-7, 0.4956, 5.494e-7]) C['C'] = np.array([45.58, 6.089e-3, 1.128, 4.331e2, 4.845e-2, 0.8120, 1.333e-4]) C['Mg']= np.array([2.510, 8.116e-8, 1.864, 6.170e4, 2.169e-6, 0.9605, 7.232e-5]) C['S'] = np.array([3.064, 7.769e-5, 1.319, 1.087e2, 3.475e-1, 0.4790, 4.689e-2]) C['Ca']= np.array([1.636, 8.208e-9, 2.289, 1.254e5, 1.349e-9, 1.1506, 7.204e-4]) if Z == 1: e = 'H' elif Z == 2: e = 'He' elif Z == 6: e = 'C' elif Z == 12: e = 'Mg' elif Z == 16: e = 'S' elif Z == 20: e = 'Ca' return 1e-14*C[e][0]/(1.0 + C[e][1]*psi**C[e][2]*\ (1.0 + C[e][3]*T**C[e][4]*psi**(-C[e][5]-C[e][6]*np.log(T)))) @staticmethod def get_rec_rate_grain(ne, G0, T, Z): """Compute grain assisted recombination coefficient Ch 14.8 in Draine (2011) """ psi = G0*T**0.5/ne return RecRate.get_alpha_gr(T, psi, Z) def plt_rec_rate(self, Z, N, M=1): T = np.logspace(3, 6) # Z = ct.EnumAtom.He.value # N = Z - 1 # M = M plt.loglog(T, self.get_rec_rate(Z, N, T, M=M), '-') plt.loglog(T, self.get_rr_rate(Z, N, T, M=M), ':') plt.loglog(T, self.get_dr_rate(Z, N, T, M=M), '--') plt.ylim(1e-14, 1e-10) return plt.gca() ``` #### File: pyathena/sf_cloud_rad/pdf.py ```python import os.path as osp import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import astropy.units as au import astropy.constants as ac import pandas as pd from mpl_toolkits.axes_grid1 import ImageGrid from ..plt_tools.cmap import cmap_apply_alpha from ..util.scp_to_pc import scp_to_pc from ..load_sim import LoadSim class PDF: bins=dict(nH=np.logspace(-2,5,71), nHI=np.logspace(-2,5,71), nH2=np.logspace(-2,5,71), nHII=np.logspace(-2,5,71), T=np.logspace(0,5,51), pok=np.logspace(0,7,71), chi_PE_tot=np.logspace(-4,5,91), chi_FUV_tot=np.logspace(-4,5,91), Bmag=np.logspace(-7,-4,91), Erad_LyC=np.logspace(-17,-8,91), ) @LoadSim.Decorators.check_pickle def read_pdf2d(self, num, bin_fields=None, bins=None, prefix='pdf2d', savdir=None, force_override=False): if bins is not None: self.bins = bins bin_fields_def = [['nH', 'pok'], ['nH', 'T']] if bin_fields is None: bin_fields = bin_fields_def ds = self.load_vtk(num=num) res = dict() for bf in bin_fields: k = '-'.join(bf) res[k] = dict() dd = ds.get_field(bf) xdat = dd[bf[0]].data.flatten() ydat = dd[bf[1]].data.flatten() # Volume weighted hist weights = None H, xe, ye = np.histogram2d(xdat, ydat, (self.bins[bf[0]], self.bins[bf[1]]), weights=weights) res[k]['H'] = H res[k]['xe'] = xe res[k]['ye'] = ye # Density weighted hist weights = (ds.get_field('nH'))['nH'].data.flatten() Hw, xe, ye = np.histogram2d(xdat, ydat, (self.bins[bf[0]], self.bins[bf[1]]), weights=weights) res[k]['Hw'] = Hw res['domain'] = ds.domain return res @LoadSim.Decorators.check_pickle def read_pdf2d_phase(self, num, prefix='pdf2d_phase', savdir=None, force_override=False): """ Read 2d pdf of density, chi_FUV, pok """ r = dict() ds = self.load_vtk(num) fields = ['nH','xH2','xHII','xHI','pok','T','Bmag','Erad_LyC'] self.logger.info('Reading fields {0:s}'.format(', '.join(fields))) dd = self.get_chi(ds, fields=fields, freq=['LW','PE']) # see ./fields.py #bins = (np.logspace(-2,5,71), np.logspace(-4,5,91)) # Masked array idx_HII = dd['xHII'].data.flatten() > 0.5 idx_HI = (dd['xHI'].data.flatten() > 0.5) idx_H2 = (dd['xH2'].data.flatten() > 0.25) #idx_HI = ~idx_HII & ~idx_H2 dat_all = { 'nH-chi_PE_tot': (dd['nH'].data.flatten(), (dd['chi_PE_ext'] + dd['chi_PE']).data.flatten(), dd['nH'].data.flatten()), 'nH2-chi_PE_tot': (dd['nH'].data.flatten()[idx_H2], (dd['chi_PE_ext'] + dd['chi_PE']).data.flatten()[idx_H2], dd['nH'].data.flatten()[idx_H2]), 'nHI-chi_PE_tot': (dd['nH'].data.flatten()[idx_HI], (dd['chi_PE_ext'] + dd['chi_PE']).data.flatten()[idx_HI], dd['nH'].data.flatten()[idx_HI]), 'nHII-chi_PE_tot': (dd['nH'].data.flatten()[idx_HII], (dd['chi_PE_ext'] + dd['chi_PE']).data.flatten()[idx_HII], dd['nH'].data.flatten()[idx_HII]), 'nH-chi_FUV_tot': (dd['nH'].data.flatten(), (dd['chi_FUV_ext'] + dd['chi_FUV']).data.flatten(), dd['nH'].data.flatten()), 'nH2-chi_FUV_tot': (dd['nH'].data.flatten()[idx_H2], (dd['chi_FUV_ext'] + dd['chi_FUV']).data.flatten()[idx_H2], dd['nH'].data.flatten()[idx_H2]), 'nHI-chi_FUV_tot': (dd['nH'].data.flatten()[idx_HI], (dd['chi_FUV_ext'] + dd['chi_FUV']).data.flatten()[idx_HI], dd['nH'].data.flatten()[idx_HI]), 'nHII-chi_FUV_tot': (dd['nH'].data.flatten()[idx_HII], (dd['chi_FUV_ext'] + dd['chi_FUV']).data.flatten()[idx_HII], dd['nH'].data.flatten()[idx_HII]), 'nH-pok': (dd['nH'].data.flatten(), dd['pok'].data.flatten(), dd['nH'].data.flatten()), 'nH2-pok': (dd['nH'].data.flatten()[idx_H2], dd['pok'].data.flatten()[idx_H2], dd['nH'].data.flatten()[idx_H2]), 'nHI-pok': (dd['nH'].data.flatten()[idx_HI], dd['pok'].data.flatten()[idx_HI], dd['nH'].data.flatten()[idx_HI]), 'nHII-pok': (dd['nH'].data.flatten()[idx_HII], dd['pok'].data.flatten()[idx_HII], dd['nH'].data.flatten()[idx_HII]), 'nH-Bmag': (dd['nH'].data.flatten(), dd['Bmag'].data.flatten(), dd['nH'].data.flatten()), 'nH2-Bmag': (dd['nH'].data.flatten()[idx_H2], dd['Bmag'].data.flatten()[idx_H2], dd['nH'].data.flatten()[idx_H2]), 'nHI-Bmag': (dd['nH'].data.flatten()[idx_HI], dd['Bmag'].data.flatten()[idx_HI], dd['nH'].data.flatten()[idx_HI]), 'nHII-Bmag': (dd['nH'].data.flatten()[idx_HII], dd['Bmag'].data.flatten()[idx_HII], dd['nH'].data.flatten()[idx_HII]), 'nH-T': (dd['nH'].data.flatten(), dd['T'].data.flatten(), dd['nH'].data.flatten()), 'nH2-T': (dd['nH'].data.flatten()[idx_H2], dd['T'].data.flatten()[idx_H2], dd['nH'].data.flatten()[idx_H2]), 'nHI-T': (dd['nH'].data.flatten()[idx_HI], dd['T'].data.flatten()[idx_HI], dd['nH'].data.flatten()[idx_HI]), 'nHII-T': (dd['nH'].data.flatten()[idx_HII], dd['T'].data.flatten()[idx_HII], dd['nH'].data.flatten()[idx_HII]), 'nH-Erad_LyC': (dd['nH'].data.flatten(), dd['Erad_LyC'].data.flatten(), dd['nH'].data.flatten()), 'nHII-Erad_LyC': (dd['nH'].data.flatten()[idx_HII], dd['Erad_LyC'].data.flatten()[idx_HII], dd['nH'].data.flatten()[idx_HII]), } for k, (xdat,ydat,wdat) in dat_all.items(): r[k] = dict() kx, ky = k.split('-') bins = (self.bins[kx], self.bins[ky]) H, xe, ye = np.histogram2d(xdat, ydat, bins=bins, weights=None) Hw, _, _ = np.histogram2d(xdat, ydat, bins=bins, weights=wdat) r[k]['H'] = H r[k]['Hw'] = Hw r[k]['xe'] = xe r[k]['ye'] = ye return r @LoadSim.Decorators.check_pickle def read_density_pdf_all(self, prefix='density_pdf_all', savdir=None, force_override=False): rr = dict() # nums = self.nums #nums = [0,10,20] nums = range(0, self.get_num_max_virial()) print('density_pdf_all: {0:s} nums:'.format(self.basename), nums, end=' ') for i in nums: print(i, end=' ') r = self.read_density_pdf(num=i, force_override=False) if i == 0: for k in r.keys(): rr[k] = [] for k in r.keys(): try: rr[k].append(r[k].value.item()) except: rr[k].append(r[k]) rr = pd.DataFrame(rr) return rr @LoadSim.Decorators.check_pickle def read_density_pdf(self, num, prefix='density_pdf', savdir=None, force_override=False): """ Read 1d pdf of density """ bins = np.logspace(-3, 7, 101) ds = self.load_vtk(num) dd = ds.get_field(['nH','specific_scalar_CL','xn']) # Select neutral cloud gas idx = np.logical_and(dd['xn'].data > 0.5, dd['specific_scalar_CL'].data > 5e-1) nH_cl = (dd['nH']*dd['specific_scalar_CL']).data[idx] x = np.log(nH_cl) res = dict() res['time_code'] = ds.domain['time'] try: res['nH_cl_meanV'] = np.mean(nH_cl) res['nH_cl_meanM'] = np.average(nH_cl, weights=nH_cl) res['muV'] = np.sum(x)/len(nH_cl) res['muM'] = np.sum(x*nH_cl)/np.sum(nH_cl) res['sigmaV'] = np.std(x) res['sigmaM'] = np.sqrt(np.sum((x - res['muM'])**2*nH_cl)/np.sum(nH_cl)) res['histV'], res['bineV'] = np.histogram(nH_cl, bins=bins) res['histM'], res['bineM'] = np.histogram(nH_cl, bins=bins, weights=nH_cl) except ZeroDivisionError: pass return res def plt_pdf2d_one_model(s, dt_Myr=[-0.2,2,5,8], yvar='chi_PE_tot', alpha=1.0, force_override=False): """Function to plot 2d histograms at different snapshots """ minmax = dict(chi_PE_tot=(1e-4,1e4), chi_FUV_tot=(1e-4,1e4), pok=(1e2,1e7), nH=(1e-2,3e4), T=(1e1,3e4), Bmag=(1e-7,1e-4), Erad_LyC=(1e-4,1e4), ) ylabels = dict(chi_PE_tot=r'$\chi_{\rm PE}$', chi_FUV_tot=r'$\chi_{\rm FUV}$', pok=r'$P/k_{\rm B}\;[{\rm cm}^{-3}\,{\rm K}]$', T=r'$T\,{\rm K}$', Bmag=r'$|\mathbf{B}|\;[\mu{\rm G}]$', Erad_LyC=r'$\mathcal{E}_{\rm LyC}\;[10^{-13}\,{\rm erg}\,{\rm cm}^{-3}]$', ) pcargs = dict(edgecolor='face', linewidth=0, rasterized=True) norm = [mpl.colors.LogNorm(1e-6,5e-2), mpl.colors.LogNorm(1e-5,5e-2), mpl.colors.LogNorm(1e-5,5e-2), mpl.colors.LogNorm(1e-5,5e-2)] nums = s.get_nums(dt_Myr=dt_Myr) cm0 = plt.cm.viridis # cm1 = cmap_apply_alpha('Blues') # cm2 = cmap_apply_alpha('Greens') # cm3 = cmap_apply_alpha('Oranges') cm1 = plt.cm.Blues cm2 = plt.cm.Greens cm3 = plt.cm.Oranges fig = plt.figure(figsize=(15, 12)) nr = 4 nc = len(dt_Myr) imgrid_args = dict(nrows_ncols=(nr,nc), direction='row', aspect=False, label_mode='L', axes_pad=0.2, cbar_mode='edge', cbar_location='right') g1 = ImageGrid(fig, [0.02, 0.05, 0.90, 0.90], **imgrid_args) for ic,num in enumerate(nums): print(num, end=' ') rr = s.read_pdf2d_phase(num, force_override=force_override) k0 = f'nH-{yvar}' k = f'nH-{yvar}' im0 = g1[ic].pcolormesh(rr[k]['xe'], rr[k]['ye'], rr[k]['Hw'].T/rr[k0]['Hw'].T.sum(), norm=norm[0], cmap=cm0, alpha=alpha, **pcargs) k = f'nH2-{yvar}' im1 = g1[nc+ic].pcolormesh(rr[k]['xe'], rr[k]['ye'], rr[k]['Hw'].T/rr[k0]['Hw'].T.sum(), norm=norm[1], cmap=cm1, alpha=alpha, **pcargs) k = f'nHI-{yvar}' im2 = g1[2*nc+ic].pcolormesh(rr[k]['xe'], rr[k]['ye'], rr[k]['Hw'].T/rr[k0]['Hw'].T.sum(), norm=norm[2], cmap=cm2, alpha=alpha, **pcargs) if yvar == 'chi_FUV_tot': k0 = r'nH-Erad_LyC' k = r'nHII-Erad_LyC' im3 = g1[3*nc+ic].pcolormesh(rr[k]['xe'], rr[k]['ye']*1e13, rr[k]['Hw'].T/rr[k0]['Hw'].T.sum(), norm=norm[3], cmap=cm3, alpha=alpha, **pcargs) else: k = f'nHII-{yvar}' im3 = g1[3*nc+ic].pcolormesh(rr[k]['xe'], rr[k]['ye'], rr[k]['Hw'].T/rr[k0]['Hw'].T.sum(), norm=norm[3], cmap=cm3, alpha=alpha, **pcargs) for i, ax in enumerate(g1): if yvar == 'pok': # Plot lines of constant temperature 8000/40K for ionized/molecular gas nH = np.logspace(np.log10(minmax['nH'][0]), np.log10(minmax['nH'][1])) for T,xe,xH2,c,label in zip((20.0,8000.0),(0.0,1.0),\ (0.5,0.0),('blue','orange'), (r'$T=20\,{\rm K} (x_{\rm H_2}=0.5)$', r'$T=8000\,{\rm K} (x_{\rm H^+}=1)$')): l, = ax.loglog(nH, (1.1 + xe - xH2)*nH*T, c=c, lw=0.75, ls='-', label=label) if yvar == 'chi_FUV_tot' and i >= (nr - 1)*nc: # Plot lines of constant ionization parameter hnui = (s.par['radps']['hnu_PH']*au.eV).cgs.value Uion = (1e0, 1e-2, 1e-4) nH = np.logspace(np.log10(minmax['nH'][0]), np.log10(minmax['nH'][1])) for U in Uion: Erad = hnui*U*nH ax.loglog(nH, Erad*1e13, c='grey', lw=0.75, ls='--') ax.set(xscale='log', yscale='log', xlim=minmax['nH'], ylim=minmax['Erad_LyC'], xlabel=r'$n_{\rm H}\;[{\rm cm^{-3}}]$', ylabel=ylabels['Erad_LyC']) else: ax.set(xscale='log', yscale='log', xlim=minmax['nH'], ylim=minmax[yvar], xlabel=r'$n_{\rm H}\;[{\rm cm^{-3}}]$', ylabel=ylabels[yvar]) ax.grid() # Annotate time for ic, dt_ in zip(range(nc),dt_Myr): if dt_ < 0.0: g1[ic].set_title(r'$t_{*,0}-$' + r'{0:.1f}'.format(np.abs(dt_)) + r' Myr') else: g1[ic].set_title(r'$t_{*,0}+$' + r'{0:.1f}'.format(dt_) + r' Myr') for i,(im,cm) in enumerate(zip((im0,im1,im2,im3),(cm0,cm1,cm2,cm3))): plt.colorbar(im, cax=g1[(i+1)*nc-1].cax, label='mass fraction', norm=norm[i], cmap=cm) savefig = True if savefig: basedir = '/tigress/jk11/figures/GMC/paper/pdf/' name = 'pdf2d-{0:s}-{1:s}.png'.format('nH', yvar) savname = osp.join(basedir, name) fig.savefig(savname, dpi=200, bbox_inches='tight') scp_to_pc(savname, target='GMC-AB') print('saved to', savname) return fig ``` #### File: pyathena/sf_cloud/sfe_raskutti.py ```python import numpy as np import matplotlib.pyplot as plt import scipy.special as sp import astropy.units as au import astropy.constants as ac def Sigma_E(SFE, Psi): """Eddington surface density""" return SFE/(1.0 + SFE)*Psi/(2.0*np.pi*ac.c.cgs.value*ac.G.cgs.value) def mu_M(Sigma_cl, SFE, x, sigma): return np.log(Sigma_cl*(1.0 - SFE)/(4.0*x**2)) + 0.5*sigma**2 def y_E(Sigma_cl, SFE, x, sigma, Psi): """ Returns the random variable with a standard normal distribution for mass-weighted surface density distribution corresponding to Sigma_E y_E = (ln(Sigma_E) - mu_M)/(sqrt(2)*sigma_lnSigma) """ Sigma_E_ = Sigma_E(SFE,Psi) muM_ = mu_M(Sigma_cl, SFE, x, sigma) return (np.log(Sigma_E_) - muM_)/(np.sqrt(2.0)*sigma) def argmax_eps_of(Sigmacl, Psi=2000.0, sigma=1.0, x=1.0): SFE=np.linspace(0.0001, 0.9999, num=1000) yE = y_E(Sigmacl, SFE, x, sigma, Psi) eps_of = 0.5*(1.0 - SFE)*(1.0 + sp.erf(yE)) return SFE, yE, eps_of, SFE[np.argmax(eps_of)] def eps_min_max(Sigmacl, Psi=2000.0, sigma=1.0, x=1.0): """ Compute final SF efficiency given Sigmacl, Psi, sigma_lnSigma, x """ if not isinstance(Sigmacl, (np.ndarray, np.generic)): if isinstance(Sigmacl, float): Sigmacl = np.asarray([Sigmacl]) else: Sigmacl = np.asarray(Sigmacl) eps_min = np.zeros_like(Sigmacl) eps_max = np.zeros_like(Sigmacl) for i, Sigmacl_ in enumerate(Sigmacl): SFE, yE, eps_of, SFE_min = argmax_eps_of(Sigmacl_, Psi=Psi, sigma=sigma, x=x) eps_min[i] = SFE_min eps_max[i] = 1.0 - max(eps_of) return eps_min, eps_max ``` #### File: pyathena/util/units.py ```python import astropy.units as au import astropy.constants as ac import numpy as np class Units(object): """Simple class for simulation unit. Msun, Lsun, etc.: physical constants in code unit """ def __init__(self, kind='LV', muH=1.4271): """ Parameters ---------- kind: string "LV" for (pc, km/s) or "LT" for (pc, Myr) muH: float mean particle mass per H (for neutral gas). Default value is 1.4271 (assuming solar metallicity). """ mH = 1.008*au.u if kind == 'LV': self.muH = muH self.length = (1.0*au.pc).to('pc') self.velocity = (1.0*au.km/au.s).to('km/s') self.time = (self.length/self.velocity).cgs elif kind == 'LT': self.muH = muH self.length = (1.0*au.pc).to('pc') self.time = (1.0*au.Myr).to('Myr') self.velocity = (self.length/self.time).to('km/s') elif kind == 'cgs': self.time = 1.0*au.s self.velocity = (self.length/self.time).to('km/s') self.mH = mH.to('g') self.mass = (self.muH*mH*(self.length.to('cm').value)**3).to('Msun') self.density = (self.mass/self.length**3).cgs self.momentum = (self.mass*self.velocity).to('Msun km s-1') self.energy = (self.mass*self.velocity**2).cgs self.pressure = (self.density*self.velocity**2).cgs self.energy_density = self.pressure.to('erg/cm**3') self.mass_flux = (self.density*self.velocity).to('Msun kpc-2 yr-1') self.momentum_flux = (self.density*self.velocity**2).to('Msun km s-1 kpc-2 yr-1') self.energy_flux = (self.density*self.velocity**3).to('erg kpc-2 yr-1') # Define (physical constants in code units)^-1 # # Opposite to the convention chosen by set_units function in # athena/src/units.c This is because in post-processing we want to # convert from code units to more convenient ones by "multiplying" these # constants self.cm = self.length.to('cm').value self.pc = self.length.to('pc').value self.kpc = self.length.to('kpc').value self.Myr = self.time.to('Myr').value self.kms = self.velocity.to('km/s').value self.Msun = self.mass.to('Msun').value self.Lsun = (self.energy/self.time).to('Lsun').value self.erg = self.energy.to('erg').value self.eV = self.energy.to('eV').value self.s = self.time.to('s').value self.pok = ((self.pressure/ac.k_B).to('cm**-3*K')).value self.muG = np.sqrt(4*np.pi*self.energy_density.cgs.value)/1e-6 # For yt self.units_override = dict(length_unit=(self.length.to('pc').value, 'pc'), time_unit=(self.time.to('Myr').value, 'Myr'), mass_unit=(self.mass.to('Msun').value, 'Msun')) ```
{ "source": "jeonggyukim/pyglet", "score": 3 }
#### File: pyglet/utils/units.py ```python import astropy.units as au import astropy.constants as ac # import numpy as np class Units(object): """Simple class for simulation unit. Msun, Lsun, etc.: physical constants in code unit """ def __init__(self, kind='tigris', muH=1.4): """ Parameters ---------- kind : str "tigris" for mass=1.4*muH*mH*(pc/cm)**3, length=pc velocity=km/s with physical constants defined in tigris source code muH : float mean particle mass per H (for neutral gas). """ if kind == 'tigris': # Physical constants defined in cgs units (src/units.hpp) self.mH = 1.6733e-24*au.g self.pc = 3.085678e+18*au.cm self.kms = 1.0e+5*au.cm/au.s self.kpc = 3.085678e+21*au.cm self.Myr = 3.155815e+13*au.s self.yr = 3.155815e+7*au.s self.c = 2.99792458e+10*au.cm/au.s self.k_B = 1.380658e-16*au.erg/au.K self.G = 6.67259e-8*au.cm**3/au.g/au.s**2 self.M_sun = 1.9891e+33*au.g self.L_sun = 3.8268e+33*au.erg/au.s self.e = 4.80320427e-10*au.cm**1.5*au.g**0.5/au.s self.aR = 7.5646e-15*au.erg/au.cm**3/au.K**4 self.muH = muH self.length = self.pc self.mass = ((self.mH*self.muH)*(self.length/au.cm)**3).to('Msun') self.density = (self.mH*self.muH)*au.cm**-3 self.velocity = (self.kms).to('km s-1') self.time = (self.length/self.velocity).to('Myr') self.momentum = self.mass*self.velocity self.pressure = (self.density*self.velocity**2).to('erg cm-3') self.energy = self.mass*self.velocity**2 # For yt self.units_override = dict(length_unit=(1.0, 'pc'), time_unit=(1.0, 'pc/km*s'), mass_unit=(muH*self.mH.value*self.length.value**3, 'g')) # self.density = (self.mass/self.length**3).cgs # self.momentum = (self.mass*self.velocity).to('Msun km s-1') # self.energy = (self.mass*self.velocity**2).cgs # self.pressure = (self.density*self.velocity**2).cgs # self.energy_density = self.pressure.to('erg/cm**3') # self.mass_flux = (self.density*self.velocity).to('Msun pc-2 Myr-1') # self.momentum_flux = (self.density*self.velocity**2).to('Msun km s-1 pc-2 Myr-1') # Define (physical constants in code units)^-1 # # Opposite to the convention chosen by set_units function in # athena/src/units.c This is because in post-processing we want to # convert from code units to more convenient ones by "multiplying" these # constants # self.pc = self.length.to('pc').value # self.kpc = self.length.to('kpc').value # self.Myr = self.time.to('Myr').value # self.kms = self.velocity.to('km/s').value # self.Msun = self.mass.to('Msun').value # self.Lsun = (self.energy/self.time).to('Lsun').value # self.erg = self.energy.to('erg').value # self.eV = self.energy.to('eV').value # self.s = self.time.to('s').value # self.pok = ((self.pressure/ac.k_B).to('cm**-3*K')).value # self.muG = np.sqrt(4*np.pi*self.energy_density.cgs.value)/1e-6 ```
{ "source": "Jeonghan57/A-Study-on-Patch-Wise-Deepfake-Image-Detection", "score": 2 }
#### File: A-Study-on-Patch-Wise-Deepfake-Image-Detection/Patch Selection/check_npy_img.py ```python import torch import numpy as np from torch.utils.data import TensorDataset, DataLoader device = torch.device("cuda" if torch.cuda.is_available() else "cpu") patch_size = 128 img_per_patch = int((256 / patch_size) ** 2) data_size = img_per_patch * 2000 def get_data(batch_size): path = "./Dataset(npy)/Church(LSUN)/" data_holder = np.zeros([data_size*2, 3, patch_size, patch_size], dtype=np.uint8) labels = np.zeros([data_size*2, 2]) temp = np.load(path + "test(StyleGAN2)_real.npy") # temp = np.load(path + "test(StyleGAN2)("+ str(patch_size) +")_real.npy") # data_size, patch_size, patch_size, 3 temp = np.reshape(temp, [data_size, 3, patch_size, patch_size]) data_holder[:data_size, :, :, :] = temp[:data_size] temp = np.load(path + "test(StyleGAN2)_fake.npy") # temp = np.load(path + "test(StyleGAN2)("+ str(patch_size) +")_fake.npy") # data_size, patch_size, patch_size, 3 temp = np.reshape(temp, [data_size, 3, patch_size, patch_size]) data_holder[data_size:, :, :, :] = temp[:data_size] # data_holder.shape -> (data_size*2, 3, patch_size, patch_size) labels[:data_size, 0] = 1 labels[data_size:, 1] = 1 # labels.shape -> (data_size*2, 2) # numpy ๋ฐฐ์—ด์„ torchํ™” ํ•จ. data_holder = torch.from_numpy(data_holder).float() labels = torch.from_numpy(labels).long() ds = TensorDataset(data_holder, labels) del temp, labels data_loader = DataLoader(ds, batch_size=batch_size, shuffle=False) return data_loader from XceptionNet import Xception net = Xception(num_classes = 2) """ # ์ด๋ฏธ์ง€๊ฐ€ ์–ด๋А ์ •๋„ ์ •๋‹ต์ธ์ง€ def Evaluate_whole_image(Net): save_path = "./result/Xception(" + str(patch_size) + ")/" for i in range(50): Net.load_state_dict(torch.load(save_path + "epoch_" + str(i) + ".pth"), strict=False) Net = Net.to(device).eval() test_data = get_data(2048) # Test ys = [] ypreds = [] for X, Y in test_data: X = X.to(device) Y = Y.to(device) with torch.no_grad(): _, y_pred = Net(X).max(1) ys.append(Y.max(1)[1]) ypreds.append(y_pred) ys = torch.cat(ys) ypreds = torch.cat(ypreds) correct = 0 unknown = 0 incorrect = 0 acc = 0 for j in range(0, data_size*2, img_per_patch): whole = (ys[j:j+img_per_patch] == ypreds[j:j+img_per_patch]).float().sum() if whole > (img_per_patch/2): correct += 1 elif whole == (img_per_patch/2): unknown += 1 elif whole < (img_per_patch/2): incorrect += 1 del whole acc = ((correct) / (correct + unknown + incorrect)) * 100 print("epoch " + str(i)) print("Correct:{0} / Unknown:{1} / Incorrect:{2} / Accuracy:{3:.2f}%" .format(correct, unknown, incorrect, acc)) """ """ # Real๊ณผ Fake์˜ ์ˆ˜๊ฐ€ ๊ฐ™์œผ๋ฉด Fake์ธ ์ด๋ฏธ์ง€๋ผ๊ณ  ํŒ๋‹จํ•˜๊ฒŒ ํ•˜์—ฌ ์ •ํ™•๋„ ๋ถ„์„ def Evaluate_whole_image(Net): # save_path = "./result/Xception/" save_path = "./result/Xception(" + str(patch_size) + ")/" for i in range(50): Net.load_state_dict(torch.load(save_path + "epoch_" + str(i) + ".pth"), strict=False) Net = Net.to(device).eval() test_data = get_data(512) # Test ys = [] ypreds = [] for X, Y in test_data: X = X.to(device) Y = Y.to(device) with torch.no_grad(): _, y_pred = Net(X).max(1) ys.append(Y.max(1)[1]) ypreds.append(y_pred) ys = torch.cat(ys) ypreds = torch.cat(ypreds) correct = 0 incorrect = 0 acc = 0 for j in range(0, data_size*2, img_per_patch): whole = (ys[j:j+img_per_patch] == ypreds[j:j+img_per_patch]).float().sum() if j < data_size: if whole > (img_per_patch/2): correct += 1 else: incorrect += 1 else: if whole >= (img_per_patch/2): correct += 1 else: incorrect += 1 acc = ((correct) / (correct + incorrect)) * 100 print("epoch " + str(i)) print("Correct:{0} / Incorrect:{1} / Accuracy:{2:.2f}%" .format(correct, incorrect, acc)) Evaluate_whole_image(net) def Evaluate_Random_image(Net): save_path = "./result/Xception(" + str(patch_size) + ")/" for i in range(50): Net.load_state_dict(torch.load(save_path + "epoch_" + str(i) + ".pth"), strict=False) Net = Net.to(device).eval() test_data = get_data(512) # Test ys = [] ypreds = [] for X, Y in test_data: X = X.to(device) Y = Y.to(device) with torch.no_grad(): _, y_pred = Net(X).max(1) ys.append(Y.max(1)[1]) ypreds.append(y_pred) ys = torch.cat(ys) ypreds = torch.cat(ypreds) correct = 0 incorrect = 0 acc = 0 for j in range(0, data_size*2, img_per_patch): whole = (ys[j:j+img_per_patch] == ypreds[j:j+img_per_patch]).float().sum() if whole > (img_per_patch/2): correct += 1 else: incorrect += 1 acc = ((correct) / (correct + incorrect)) * 100 print("epoch " + str(i)) print("Correct:{0} / Incorrect:{1} / Accuracy:{2:.2f}%" .format(correct, incorrect, acc)) # Evaluate_Random_image(net) """ ``` #### File: A-Study-on-Patch-Wise-Deepfake-Image-Detection/Patch Selection/check_npy_img_threshold.py ```python import torch import numpy as np from torch.utils.data import TensorDataset, DataLoader device = torch.device("cuda" if torch.cuda.is_available() else "cpu") ################# Adjustable Parameter ################# batch_size = 64 patch_size = 128 delta = 0.8 # upper threshold ######################################################## img_per_patch = int((256 / patch_size) ** 2) data_size = img_per_patch * 2000 def get_data(batch_size): path = "./Dataset(npy)/Celeb/" data_holder = np.zeros([data_size*2, 3, patch_size, patch_size], dtype=np.uint8) labels = np.zeros([data_size*2, 2]) # temp = np.load(path + "test(StyleGAN2)_real.npy") temp = np.load(path + "test(PROGAN)("+ str(patch_size) +")_real.npy") # data_size, patch_size, patch_size, 3 temp = np.reshape(temp, [data_size, 3, patch_size, patch_size]) data_holder[:data_size, :, :, :] = temp[:data_size] # temp = np.load(path + "test(StyleGAN2)_fake.npy") temp = np.load(path + "test(PROGAN)("+ str(patch_size) +")_fake.npy") # data_size, patch_size, patch_size, 3 temp = np.reshape(temp, [data_size, 3, patch_size, patch_size]) data_holder[data_size:, :, :, :] = temp[:data_size] labels[:data_size, 0] = 1 labels[data_size:, 1] = 1 data_holder = torch.from_numpy(data_holder).float() labels = torch.from_numpy(labels).long() ds = TensorDataset(data_holder, labels) del temp, labels data_loader = DataLoader(ds, batch_size=batch_size, shuffle=False) return data_loader from XceptionNet import Xception net = Xception(num_classes = 2) # Evaluate images with filtered patches in upper threshold only def Evaluate_whole_image_ver1(Net): # save_path = "./result/Xception/" save_path = "./result/Xception(" + str(patch_size) + ")/" for i in range(50): Net.load_state_dict(torch.load(save_path + "epoch_" + str(i) + ".pth"), strict=False) Net = Net.to(device).eval() test_data = get_data(batch_size) # Test ys = [] ypreds = [] y_tt = [] for X, Y in test_data: X = X.to(device) Y = Y.to(device) with torch.no_grad(): y_predict = Net(X) _, y_pred = Net(X).max(1) for p in range(len(y_predict)): z = float(y_predict[p, 1]) - float(y_predict[p, 0]) y_tt.append(z) ys.append(Y.max(1)[1]) ypreds.append(y_pred) ys = torch.cat(ys) ypreds = torch.cat(ypreds) y_tt_a = np.abs(y_tt) threshold = (max(y_tt_a) - min(y_tt_a)) * (1 - delta) lib = [] for l in range(len(y_tt_a)): if y_tt_a[l] > threshold: lib.append(l) # print(lib) # print("์„ ํƒ๋œ ํŒจ์น˜ ๊ฐœ์ˆ˜ :", len(lib), "/", str(data_size * 2)) correct_tt = 0 incorrect_tt = 0 acc = 0 for j in range(0, data_size*2, img_per_patch): if j < data_size: for k in range(0, img_per_patch): correct = 0 incorrect = 0 if j+k in lib: if (ys[j+k] == ypreds[j+k]): correct += 1 else: incorrect += 1 if correct > incorrect: correct_tt += 1 elif correct == 0 and incorrect == 0: continue elif correct <= incorrect: incorrect_tt +=1 else: for k in range(0, img_per_patch): correct = 0 incorrect = 0 if j+k in lib: if (ys[j+k] == ypreds[j+k]): correct += 1 else: incorrect += 1 if correct >= incorrect: correct_tt += 1 elif correct == 0 and incorrect == 0: continue elif correct < incorrect: incorrect_tt +=1 acc = ((correct_tt) / (correct_tt + incorrect_tt)) * 100 print("epoch " + str(i)) print("Correct:{0} / Incorrect:{1} / Accuracy:{2:.2f}%" .format(correct_tt, incorrect_tt, acc)) # Evaluate all images. If there aren't filtered patches in single image, # then use all patches in single image def Evaluate_whole_image_ver2(Net): # save_path = "./result/Xception/" save_path = "./result/Xception(" + str(patch_size) + ")/" for i in range(50): Net.load_state_dict(torch.load(save_path + "epoch_" + str(i) + ".pth"), strict=False) Net = Net.to(device).eval() test_data = get_data(batch_size) # Test ys = [] ypreds = [] y_tt = [] for X, Y in test_data: X = X.to(device) Y = Y.to(device) with torch.no_grad(): y_predict = Net(X) _, y_pred = Net(X).max(1) for p in range(len(y_predict)): z = float(y_predict[p, 1]) - float(y_predict[p, 0]) y_tt.append(z) ys.append(Y.max(1)[1]) ypreds.append(y_pred) ys = torch.cat(ys) ypreds = torch.cat(ypreds) y_tt_a = np.abs(y_tt) threshold = (max(y_tt_a) - min(y_tt_a)) * (1 - delta) lib = [] for l in range(len(y_tt_a)): if y_tt_a[l] > threshold: lib.append(l) # print(lib) # print("์„ ํƒ๋œ ํŒจ์น˜ ๊ฐœ์ˆ˜ :", len(lib), "/", str(data_size * 2)) correct_tt = 0 incorrect_tt = 0 acc = 0 for j in range(0, data_size*2, img_per_patch): if j < data_size: correct = 0 incorrect = 0 for k in range(0, img_per_patch): if j+k in lib: if (ys[j+k] == ypreds[j+k]): correct += 1 else: incorrect += 1 if correct > incorrect: correct_tt += 1 elif correct == 0 and incorrect == 0: whole = (ys[j:j+img_per_patch] == ypreds[j:j+img_per_patch]).float().sum() if whole > (img_per_patch/2): correct_tt += 1 else: incorrect_tt += 1 elif correct <= incorrect: incorrect_tt +=1 else: correct = 0 incorrect = 0 for k in range(0, img_per_patch): if j+k in lib: if (ys[j+k] == ypreds[j+k]): correct += 1 else: incorrect += 1 if correct >= incorrect: correct_tt += 1 elif correct == 0 and incorrect == 0: whole = (ys[j:j+img_per_patch] == ypreds[j:j+img_per_patch]).float().sum() if whole >= (img_per_patch/2): correct_tt += 1 else: incorrect_tt += 1 elif correct < incorrect: incorrect_tt +=1 acc = ((correct_tt) / (correct_tt + incorrect_tt)) * 100 print("epoch " + str(i)) print("Correct:{0} / Incorrect:{1} / Accuracy:{2:.2f}%" .format(correct_tt, incorrect_tt, acc)) ###################### Recall Fucntions ###################### # Evaluate_whole_image_ver1(net) # Evaluate_whole_image_ver2(net) ############################################################## ```
{ "source": "Jeonghan57/legendary-potato", "score": 2 }
#### File: legendary-potato/Li et al/classifier_chrominance.py ```python import torch from torch import nn, optim import numpy as np from torch.utils.data import TensorDataset, DataLoader import tqdm device = torch.device("cuda" if torch.cuda.is_available() else "cpu") #gpu ์‚ฌ์šฉ ๊ฐ€๋Šฅ? import pandas as pd # ํŒŒ์ผ ๊ฒฝ๋กœ location_train = './csv/LSUN/cat/PGGAN/YCbCr' location_test = './csv/LSUN/church/PGGAN/YCbCr' channel = 3 param = 75 * channel # ์ถ”์ถœ ๋ฐ ๋ณ€ํ™˜ ์ฝ”๋“œ #train_fake train_fake_pd = pd.read_csv('{}/{}'.format(location_train, 'train_features_fake_all.csv'), header=None, index_col=None, names=None) train_fake_np = pd.DataFrame.to_numpy(train_fake_pd) #train_real train_real_pd = pd.read_csv('{}/{}'.format(location_train, 'train_features_real_all.csv'), header=None, index_col=None, names=None) train_real_np = pd.DataFrame.to_numpy(train_real_pd) #test_fake test_fake_pd = pd.read_csv('{}/{}'.format(location_test, 'test_features_fake.csv'), header=None, index_col=None, names=None) test_fake_np = pd.DataFrame.to_numpy(test_fake_pd) #test_real test_real_pd = pd.read_csv('{}/{}'.format(location_test, 'test_features_real.csv'), header=None, index_col=None, names=None) test_real_np = pd.DataFrame.to_numpy(test_real_pd) def get_data(batch_size, train=True): if train: temp_real = train_real_np[:25000] #20000 temp_real = np.reshape(temp_real, [25000, param]) temp_fake = train_fake_np[:25000] #20000 temp_fake = np.reshape(temp_fake, [25000, param]) else: temp_real = test_real_np[:2000] #2000 temp_real = np.reshape(temp_real, [temp_real.shape[0], param]) temp_fake = train_fake_np[:2000] #2000 temp_fake = np.reshape(temp_fake, [temp_fake.shape[0], param]) data_holder = np.concatenate((temp_real, temp_fake)) size_real, size_fake = temp_real.shape[0], temp_fake.shape[0] del temp_real, temp_fake print("\nData Loading Complete") labels = np.zeros([size_real + size_fake, 2]) labels[:size_real, 0] = 1 labels[size_real:, 1] = 1 data_holder = torch.from_numpy(data_holder).float() labels = torch.from_numpy(labels).long() ds = TensorDataset(data_holder, labels) del data_holder, labels data_loader=DataLoader(ds, batch_size=batch_size, shuffle=train) return data_loader def train(Net, batch_size): Net = Net.to(device) lr = 0.001 loss_fn = nn.CrossEntropyLoss() optimizer = optim.SGD(Net.parameters(), lr=lr, momentum=0.9) print("Training Start") train_data = get_data(batch_size, True) for epoch in range(50): count = 0 for X, Y in train_data: X = X.to(device) Y = Y.to(device) y_pred = Net(X) loss = loss_fn(y_pred, torch.max(Y, 1)[1]) optimizer.zero_grad() loss.backward() optimizer.step() count +=1 if count % 100 == 0: print(f"epoch:{epoch}, loss={loss}") torch.save(Net.state_dict(), f"./result/LSUN/epoch(cat(PGGAN)_YCbCr)_{epoch}_1.pth") def Evaluate_Networks(Net): save_path = "./result/LSUN/" # data Net.load_state_dict(torch.load(save_path + "epoch(cat(PGGAN)_YCbCr)_49_1.pth"), strict=False) Net = Net.to(device).eval() test_data = get_data(64, train=False) # Test ys = [] ypreds = [] for X, Y in tqdm.tqdm(test_data): X = X.to(device) Y = Y.to(device) with torch.no_grad(): _, y_pred = Net(X).max(1) ys.append(Y.max(1)[1]) ypreds.append(y_pred) ys = torch.cat(ys) ypreds = torch.cat(ypreds) acc_real = (ys[2000:] == ypreds[2000:]).float().sum() / len(ys[2000:]) acc_fake = (ys[:2000] == ypreds[:2000]).float().sum() / len(ys[:2000]) acc = (ys == ypreds).float().sum() / len(ys) print('\nReal Accuracy : ', acc_real.item()) print('Fake Accuracy : ', acc_fake.item()) print('Tatal AVG : ', acc.item()) net = nn.Linear(param, 2) # train(net , 64) Evaluate_Networks(net) ```
{ "source": "Jeongheum/BalancingBike", "score": 3 }
#### File: Jeongheum/BalancingBike/dqn_replaybuffer.py ```python import numpy as np from collections import deque import random class ReplayBuffer(object): """ Reply Buffer """ def __init__(self, buffer_size): self.buffer_size = buffer_size self.buffer = deque() self.count = 0 ## save to buffer def add_buffer(self, state, action, reward, next_state, done): transition = (state, action, reward, next_state, done) # check if buffer is full if self.count < self.buffer_size: self.buffer.append(transition) self.count += 1 else: self.buffer.popleft() self.buffer.append(transition) ## sample a batch def sample_batch(self, batch_size): if self.count < batch_size: batch = random.sample(self.buffer, self.count) else: batch = random.sample(self.buffer, batch_size) # return a batch of transitions states = np.asarray([i[0] for i in batch]) actions = np.asarray([i[1] for i in batch]) rewards = np.asarray([i[2] for i in batch]) next_states = np.asarray([i[3] for i in batch]) dones = np.asarray([i[4] for i in batch]) return states, actions, rewards, next_states, dones ## Current buffer occupation def buffer_count(self): return self.count ## Clear buffer def clear_buffer(self): self.buffer = deque() self.count = 0 ```
{ "source": "JeongHoLim/practice", "score": 3 }
#### File: practice/boj/1439.py ```python def func(s): one = 0 zero = 0 for i in range(len(s)): if i > 0 and s[i] == s[i-1] : continue if s[i] == "1": one += 1 else : zero += 1 return min(one,zero) s = input() print(func(s)) ``` #### File: practice/boj/23290.py ```python from copy import deepcopy m,s = map(int,input().split()) grid = [[[] for _ in range(4)] for _ in range(4)] smell = [[0 for _ in range(4)] for _ in range(4)] directions = { 0: [0,-1], 1: [-1,-1], 2: [-1,0], 3: [-1,1], 4: [0,1], 5: [1,1], 6: [1,0], 7: [1,-1] } for i in range(m): fx,fy,d = map(int,input().split()) grid[fx-1][fy-1].append(d-1) s_xy = list(map(lambda x : int(x)-1,input().split())) def get_valid_move(smell,x,y,d,directions,s_xy): od = d for _ in range(8): dx,dy = directions[d] f_xy = [x+dx,y+dy] if f_xy[0]<0 or f_xy[0] >= 4 or f_xy[1] <0 or f_xy[1] >=4: d = (d+7)%8 elif s_xy == f_xy: d = (d+7)%8 elif smell[f_xy[0]][f_xy[1]] >0: d = (d+7)%8 else: return f_xy[0],f_xy[1],d return x,y,od def move_fish(grid,smell,directions,s_xy): new_grid = [[[] for _ in range(4)] for _ in range(4)] for i in range(4): for j in range(4): if len(grid[i][j]) == 0: continue for d in grid[i][j]: dx,dy,nd = get_valid_move(smell,i,j,d,directions,s_xy) new_grid[dx][dy].append(nd) return new_grid def is_valid_move(x,y): return (0<=x<4) and (0<=y<4) def compare(c1,c2,paths): global path t1,t2 = sum(map(lambda x: x[2],c1)),sum(map(lambda x : x[2],c2)) if t1 > t2: return True elif t1 == t2: return "".join(map(str,path)) > "".join(map(str,paths)) # ์ƒ์€ 1, ์ขŒ๋Š” 2, ํ•˜๋Š” 3, ์šฐ๋Š” 4๋กœ ๋ณ€ํ™˜ํ•œ๋‹ค. def move_shark(grid,smell,s_xy,path,caught=[],step = 0): if step == 3: if compare(caught,globals()["caught"],path): globals()["caught"] = caught[:] globals()["next_move"] = s_xy[:] globals()["path"] = path[:] return possible_move = [[-1,0],[0,-1],[1,0],[0,1]] x,y = s_xy for k,dxy in enumerate(possible_move,1): temp = [] dx,dy = dxy if not is_valid_move(x+dx,y+dy): continue if len(grid[x+dx][y+dy]) > 0: temp = grid[x+dx][y+dy][:] grid[x+dx][y+dy] = [] caught.append([x+dx,y+dy,len(temp)]) move_shark(grid,smell,[x+dx,y+dy],path + [k],caught,step+1) if temp: grid[x+dx][y+dy] = temp[:] caught.pop() return def remove_smell(smell,cnt): for i in range(4): for j in range(4): if cnt-smell[i][j] == 2: smell[i][j] = 0 def duplicate_fish(duplicate,grid): for i in range(4): for j in range(4): if len(duplicate[i][j]) > 0 : grid[i][j].extend(duplicate[i][j]) def remove_fish(grid,smell,caught,index): for c in caught: grid[c[0]][c[1]] = [] smell[c[0]][c[1]] = index next_move = [] for i in range(s): duplicate = deepcopy(grid) caught,path = [],[5,5,5] grid = move_fish(grid,smell,directions,s_xy) move_shark(grid,smell,s_xy,[]) s_xy = next_move[:] remove_fish(grid,smell,caught,i+1) duplicate_fish(duplicate,grid) remove_smell(smell,i+1) k = 0 for i in range(4): for j in range(4): k += len(grid[i][j]) print(k) ``` #### File: practice/boj/2747.py ```python n = int(input()) fibs = dict() def fib(n): if n not in fibs: if n <= 1: fibs[n] = n return n else: fibs[n-1],fibs[n-2] = fib(n-1),fib(n-2) fibs[n] = fibs[n-1] + fibs[n-2] return fibs[n] else: return fibs[n] print(fib(n)) ``` #### File: leetcode/Hard/332.py ```python from collections import defaultdict class List(list): pass class Solution: def findItinerary(self, tickets: List[List[str]]) -> List[str]: graph = defaultdict(list) answer = [] for f,t in sorted(tickets,reverse=True): graph[f].append(t) def dfs(f): while graph[f]: dfs(graph[f].pop()) answer.append(f) dfs("JFK") return answer[::-1] s = Solution() tickets = [["MUC","LHR"],["JFK","MUC"],["SFO","SJC"],["LHR","SFO"]] print(s.findItinerary(tickets)) ``` #### File: leetcode/Medium/17.py ```python class List(list): pass from itertools import product class Solution: def letterCombinations(self, digits: str) -> List[str]: if not digits: return [] phone = { "2" : "abc", "3" : "def", "4" : "ghi", "5" : "jkl", "6" : "mno", "7" : "pqrs", "8" : "tuv", "9" : "wxyz" } return list(map("".join,product(*(phone[x] for x in digit)))) s = Solution() digit = "23" print(s.letterCombinations(digit)) ``` #### File: leetcode/Medium/39.py ```python class List(list): pass class Solution: def combinationSum(self, candidates: List[int], target: int) -> List[List[int]]: n = len(candidates) answer = [] def makeAnswer(idx,path,temp_sum): if idx == n: return if temp_sum == target: answer.append(path[:]) return for i in range(idx,n): check = temp_sum + candidates[i] if check > target: return path.append(candidates[i]) makeAnswer(i,path,check) path.pop() candidates.sort() makeAnswer(0,[],0) return answer s = Solution() candidates = [2,3,6,7] target = 7 print(s.combinationSum(candidates,target)) ``` #### File: programmers/Lv2/14.py ```python def solution(p): answer = '' def is_balanced(p): return p.count("(") == p.count(")") def is_correct(p): count = 0 if is_balanced(p): for x in p: if x =='(': count += 1 else: count -=1 if count <0: return False return True return False def remove_and_transform(p): ret = "" for c in p[1:-1]: if c==')': ret += "(" else: ret += ")" return ret def func(p): if len(p) ==0: return "" for i in range(2,len(p)+2,2): if is_balanced(p[:i]) and is_balanced(p[i:]): u,v = p[:i],p[i:] if is_correct(u): u += func(v) return u else: nc = "(" + func(v) + ")" return nc + remove_and_transform(u) answer = func(p) return answer ``` #### File: programmers/Lv2/16.py ```python import collections import bisect import itertools def solution(info, queries): answer = [] default_val=[ ["java","python","cpp"], ["backend","frontend"], ["junior","senior"], ["chicken","pizza"] ] def push(combi,my_dict,l,p,c,f,s): my_dict[(l,p,c,f)].append(s) for cm in combi: for t in list(cm): copy = [l,p,c,f] for i in t: copy[i] = '-' my_dict[tuple(copy)].append(s) combinations = [] examples = [0,1,2,3] for i in range(1,5): combinations.append(list(itertools.combinations(examples,i))) my_dict = collections.defaultdict(list) for x in info: l,p,c,f,s = x.split() push(combinations,my_dict,l,p,c,f,int(s)) for x in my_dict.items(): x[1].sort() for query in queries: l,p,c,fs = map(str.strip,query.split('and')) f,s = fs.split() s = int(s) t = my_dict[l,p,c,f] answer.append(len(t) - bisect.bisect_left(t,s)) return answer ``` #### File: programmers/Lv2/19.py ```python from itertools import combinations,permutations import math def solution(numbers): answer = 0 def is_prime(x): if x <= 1: return False for i in range(2,int(math.sqrt(x))+1): if x % i ==0: return False return True found = set() for i in range(1,len(numbers)+1): combi = list(combinations(numbers,i)) for c in combi: for p in permutations(c): value = int("".join(p)) if value not in found and is_prime(value): answer += 1 found.add(value) return answer ``` #### File: programmers/Lv2/1.py ```python import collections def solution(record): answer = [] my_dict = collections.defaultdict(str) action_dict = {"Enter" : "๋‹˜์ด ๋“ค์–ด์™”์Šต๋‹ˆ๋‹ค.","Leave":"๋‹˜์ด ๋‚˜๊ฐ”์Šต๋‹ˆ๋‹ค."} for info in record[::-1]: parsed = info.split() if len(parsed) == 2: continue action,user_id,nick_name = parsed if my_dict[user_id]=="": my_dict[user_id] = nick_name for info in record: parsed = info.split() if parsed[0] == "Change": continue action,user_id = parsed[0],parsed[1] answer.append(my_dict[user_id]+action_dict[action]) return answer ``` #### File: programmers/Lv2/3.py ```python def solution(n): answer = '' my_dict = ['4','1','2'] r = n while r>0: r,q = divmod(r,3) answer += my_dict[q] if q== 0: r -= 1 return answer[::-1] ``` #### File: programmers/Lv2/6.py ```python def solution(numbers, target): answer = 0 def func(nums,i,n,t,res): if i == n: if sum(nums) == t: res[0] += 1 return func(nums,i+1,n,t,res) nums[i] *= -1 func(nums,i+1,n,t,res) res = [0] func(numbers[:],0,len(numbers),target,res) answer = res[0] return answer ``` #### File: programmers/Lv2/7.py ```python def solution(s): check,stack = {},[] alpha = "abcdefghijklmnopqrstuvwxyz" reversed_s = s[::-1] for a in alpha: check[a] = len(s) - reversed_s.find(a) + 1 i = 0 while True: if i == len(s): if stack: answer = 0 else: answer = 1 break cur = s[i] if check[cur] < i or len(stack) > len(s)-i: answer = 0 break if stack and stack[-1] == cur: stack.pop() else: stack.append(cur) i += 1 return answer ``` #### File: programmers/Lv2/8.py ```python import re import itertools def solution(expression): answer = 0 p1 = re.compile('\d+') p2 = re.compile("[-*+]") nums = list(map(int,p1.findall(expression))) ops = p2.findall(expression) def cal(op,n1,n2): if op == "-": return n1-n2 elif op == "+" : return n1 + n2 else : return n1*n2 pd = {} per = list(itertools.permutations([str(i) for i in range(3)])) for pd['+'],pd['-'],pd['*'] in per: print(f"+:{pd['+']}, - : {pd['-']}, * : {pd['*']}") n_stack = [nums[0],nums[1]] op_stack = [ops[0]] equation = f"({nums[0]} {ops[0]} {nums[1]}" for index in range(1,len(nums)-1): op1 = op_stack[-1] op2 = ops[index] n3 = nums[index+1] print(equation) if pd[op1] > pd[op2]: temp = eval(equation+")") equation = f"({temp}" op_stack.append(op2) equation += f"{op2} {n3}" answer = max(answer,abs(eval(equation+")"))) return answer ``` #### File: programmers/Lv3/14.py ```python from collections import defaultdict,deque def solution(gems): answer = [] s = e = 0 count = defaultdict(int) window = deque() current,n = 0, len(set(gems)) length = float('inf') while e < len(gems): cur = gems[e] count[cur] += 1 window.append(e) if count[cur] == 1: current += 1 if current == n: while True: if length > e-s+1: answer = [s+1,e+1] length = min(length,e-s+1) if length == n: return [s+1,e+1] peek = gems[s] if count[peek] == 1: break count[gems[window.popleft()]] -= 1 s += 1 e += 1 while count[gems[s]] > 1: length = min(length,e-s) count[window.popleft()] -= 1 s += 1 return answer ``` #### File: programmers/Lv3/4.py ```python from collections import defaultdict,deque def solution(n, edges): def bfs(graph,n): queue = deque() queue.append(1) visited = [-1]*(n+1) visited[1] = 0 while queue: node = queue.popleft() for v in graph[node]: if visited[v] == -1: queue.append(v) visited[v] = visited[node]+1 return visited.count(max(visited)) graph = defaultdict(list) for f,t in edges: graph[f].append(t) graph[t].append(f) return bfs(graph,n) ``` #### File: programmers/Lv3/5.py ```python from collections import defaultdict,deque def solution(n, computers): answer = 0 def bfs(graph,start,found): queue = deque() queue.append(start) visited = [] while queue: f = queue.popleft() found.append(f) for t in graph[f]: if t not in visited: queue.append(t) visited.append(t) def get_answer(grpah): found = [] ret = 0 for k,v in graph.items(): if len(v) == 1: ret += 1 found.append(k) continue if k not in found: bfs(graph,k,found) ret += 1 return ret graph = defaultdict(list) for i,com in enumerate(computers): for ci,c in enumerate(com): if c == 1: graph[i].append(ci) answer = get_answer(graph) return answer ``` #### File: programmers/Lv3/6.py ```python from collections import defaultdict,deque def solution(n, results): answer = 0 graph = defaultdict(list) win = [0]+[set() for _ in range(n)] lose = [0]+[set() for _ in range(n)] for i in range(1,n+1): graph[i].extend([]) for a,b in results: graph[a].append(b) win[a].add(b) lose[b].add(a) for f,s in graph.items(): queue = deque([f]) visited = [] while queue: v = queue.popleft() win[f] |= win[v] lose[v] |= lose[f] for t in graph[v]: if t not in visited: queue.append(t) visited.append(t) for i in range(1,n+1): if len(win[i]) + len(lose[i]) == n-1: answer += 1 return answer ``` #### File: programmers/Lv3/9.py ```python import itertools def solution(N, number): if N == number: return 1 answer = -1 dp = [{0},{N}] def add(dp,l,r,idx,N): dp[idx].add(l+r) dp[idx].add(l-r) dp[idx].add(-l+r) dp[idx].add(l*r) if str(l).count(N) == len(str(l)) and str(r).count(N) == len(str(r)): dp[idx].add(eval(f"{l}{r}")) if r != 0: dp[idx].add(l//r) if l != 0: dp[idx].add(r//l) for idx in range(2,9): dp.append(set()) i,j = 1,idx-1 while i <= j: pd = list(itertools.product(dp[i],dp[j])) for l,r in pd: add(dp,l,r,idx,str(N)) i,j = i+1,j-1 if number in dp[idx]: answer = idx break if answer != -1: break return answer ```
{ "source": "jeonghoonkang/BerePi", "score": 3 }
#### File: apps/co2/co2_t110.py ```python import serial,os,time import sys import RPi.GPIO as GPIO import logging import logging.handlers import json import requests import fcntl, socket, struct DEBUG_PRINT = 1 SERIAL_READ_BYTE = 12 FILEMAXBYTE = 1024 * 1024 * 100 #100MB LOG_PATH = '/home/pi/log_tos.log' # important, sensorname shuould be pre-defined, unique sensorname sensorname = "co2.ws" url = "http://xxx.xxx.xxx.xxx/api/put" def getHwAddr(ifname): s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) info = fcntl.ioctl(s.fileno(), 0x8927, struct.pack('256s', ifname[:15])) return ':'.join(['%02x' %ord(char) for char in info[18:24]]) macAddr = getHwAddr('eth0') macAddr = macAddr.replace(':','.') level = 0 ppm = 0 def led0On(): GPIO.output(18, True) def led1On(): GPIO.output(23, True) def led2On(): GPIO.output(24, True) def led3On(): GPIO.output(25, True) def led0Off(): GPIO.output(18, False) def led1Off(): GPIO.output(23, False) def led2Off(): GPIO.output(24, False) def led3Off(): GPIO.output(25, False) def ledAllOff(): led0Off() led1Off() led2Off() led3Off() def ledAllOn(): led0On() led1On() led2On() led3On() def rled0On(): led0Off() def rled1On(): led1Off() def rled2On(): led2Off() def rled3On(): led3Off() def rled0Off(): led0On() def rled1Off(): led1On() def rled2Off(): led2On() def rled3Off(): led3On() def rledAllOff(): ledAllOn() def rledAllOn(): ledAllOff() def rled0Blink(): led0On() time.sleep(0.5) led0Off() time.sleep(0.3) led0On() time.sleep(0.5) led0Off() time.sleep(0.3) led0On() def rled1Blink(): led1On() time.sleep(0.5) led1Off() time.sleep(0.3) led1On() time.sleep(0.5) led1Off() time.sleep(0.3) led1On() def rled2Blink(): led2On() time.sleep(0.5) led2Off() time.sleep(0.3) led2On() time.sleep(0.5) led2Off() time.sleep(0.3) led2On() def rled3Blink(): led3On() time.sleep(0.5) led3Off() time.sleep(0.3) led3On() time.sleep(0.5) led3Off() time.sleep(0.3) led3On() # check length, alignment of incoming packet string def syncfind(): index = 0 alignment = 0 while 1: in_byte = serial_in_device.read(1) # packet[8] should be 'm' # end of packet is packet[10] if in_byte is 'm' : #print 'idx =', index, in_byte alignment = 8 if alignment is 10 : alignment = 1 index = 0 break elif alignment > 0 : alignment += 1 index += 1 def checkAlignment(incoming): idxNum = incoming.find('m') # idxNum is 9, correct offset = idxNum - 9 if offset > 0 : new_str = incoming[offset:] new_str = new_str + incoming[:offset] if offset < 0 : offset = 12 + offset new_str = incoming[offset:] new_str = new_str + incoming[:offset] return new_str def init_process(): print " " print "MSG - [S100, T110 CO2 Sensor Driver on RASPI2, Please check log file : ", LOG_PATH print "MSG - now starting to read SERIAL PORT" print " " # HW setup, GPIO GPIO.setwarnings(False) GPIO.cleanup() GPIO.setmode(GPIO.BCM) GPIO.setup(18, GPIO.OUT) GPIO.setup(23, GPIO.OUT) GPIO.setup(24, GPIO.OUT) GPIO.setup(25, GPIO.OUT) logger.info(' *start* GPIO all set, trying to open serial port, SW starting ') rledAllOn() ###################################################################### # START Here. Main ###################################################################### # set logger file logger = logging.getLogger(sensorname) logger.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') fileHandler = logging.handlers.RotatingFileHandler(LOG_PATH, maxBytes=FILEMAXBYTE,backupCount=10) fileHandler.setLevel(logging.DEBUG) fileHandler.setFormatter(formatter) logger.addHandler(fileHandler) #consoleHandler = logging.StreamHandler() #consoleHandler.setLevel(logging.DEBUG) #consoleHandler.setFormatter(formatter) #logger.addHandler(consoleHandler) # call raspi init... init_process() # open RASPI serial device, 38400 try: serial_in_device = serial.Serial('/dev/ttyAMA0',38400) except serial.SerialException, e: logger.error("Serial port open error") rled0Off() rled1Off() rled2Off() rled3Off() while True: ppm = 0 try: in_byte = serial_in_device.read(SERIAL_READ_BYTE) pos = 0 except serial.SerialException, e: rled0Off() rled1Off() rled2Off() rled3Off() if not (len(in_byte) is SERIAL_READ_BYTE) : logger.error("Serial packet size is strange, %d, expected size is %d" % (len(in_byte),SERIAL_READ_BYTE)) print 'serial byte read count error' continue # sometimes, 12 byte alighn is in-correct # espacially run on /etc/rc.local if not in_byte[9] is 'm': shift_byte = checkAlignment(in_byte) in_byte = shift_byte if ('ppm' in in_byte): if DEBUG_PRINT : print '-----\/---------\/------ DEBUG_PRINT set -----\/---------\/------ ' for byte in in_byte : print "serial_in_byte[%d]: " %pos, pos += 1 if ord(byte) is 0x0d : print "escape:", '0x0d'," Hex: ", byte.encode('hex') continue elif ord(byte) is 0x0a : print "escape:", '0x0a'," Hex: ", byte.encode('hex') continue print " String:", byte, " Hex: ", byte.encode('hex') if not (in_byte[2] is ' ') : ppm += (int(in_byte[2])) * 1000 if not (in_byte[3] is ' ') : ppm += (int(in_byte[3])) * 100 if not (in_byte[4] is ' ') : ppm += (int(in_byte[4])) * 10 if not (in_byte[5] is ' ') : ppm += (int(in_byte[5])) logline = sensorname + ' CO2 Level is '+ str(ppm) + ' ppm' #now = time.localtime() #now_str = "%04d-%02d-%02d %02d:%02d:%02d" % (now.tm_year, now.tm_mon, now.tm_mday, now.tm_hour, now.tm_min, now.tm_sec) #logline += now_str if DEBUG_PRINT : print logline if ppm > 2500 : logger.error("%s", logline) continue else : logger.info("%s", logline) data = { "metric": "rc1.co2.ppm", "timestamp": time.time(), "value": ppm, "tags": { "eth0": macAddr, "stalk": "VOLOSSH" , "sensor" : "co2.t110", "name" : sensorname, "floor_room": "10fl_min_room", "building": "woosung", "owner": "kang", "country": "kor" } #tags should be less than 9, 8 is alright, 9 returns http error } try : ret = requests.post(url, data=json.dumps(data)) logger.info("http ret %s", ret) if DEBUG_PRINT : print "http return : %s" %ret except requests.exceptions.Timeout : logger.error("http connection error, Timeout %s", ret) continue except requests.exceptions.ConnectionError : logger.error("http connection error, Too many requests %s") continue #except requests.exceptions : # print " --------------" # continue # level = 1, 0~1000 ppm, no- LED # level = 2, 1000~1150 ppm, 1 - LED # level = 3, 1150~1300 ppm, 2 - LED # level = 4, 1300~1700 ppm, 3 - LED # level = 5, 1750~ ppm, 4 - LED if ppm < 800 : rled0Blink() rled0Blink() rled0Blink() led1Off() led2Off() led3Off() elif ppm < 1000 : led0On() led1Off() led2Off() led3Off() elif ppm < 1300 : led0Off() led1On() led2Off() led3Off() elif ppm < 1600: led0Off() led1Off() led2On() led3Off() elif ppm < 1900: led0Off() led1Off() rled2Blink() rled2Blink() rled2Blink() led3Off() elif ppm >= 1900 : rled0Blink() rled0Blink() rled0Blink() rled1Blink() rled1Blink() rled1Blink() rled2Blink() rled2Blink() rled2Blink() rled3Blink() rled3Blink() rled3Blink() GPIO.cleanup() ``` #### File: excel/extract_ids/save_xlsx_list_df.py ```python from __future__ import print_function import argparse import pandas as pd import os import sys import math import xlsxwriter def brush_argparse(): parser = argparse.ArgumentParser() #parser.add_argument("-xlsx", help="xlsx ํŒŒ์ผ ์ด๋ฆ„", action="store_true") parser.add_argument("-xlsx", help="xlsx ํŒŒ์ผ ์ด๋ฆ„") args = parser.parse_args() return args if __name__ =='__main__': filename = 'out_put_list.py' _args_pack_ = brush_argparse() #print (_args_pack_) _args_ = vars(_args_pack_) #print (_args_) #key xlsx : value ํŒŒ์ผ๋ช….ํ™•์žฅ๋ช… _input_xlsx = _args_['xlsx'] if _input_xlsx == None: print ('Please input xlsx filename on cli run argument') sys.exit(0) # ํŒŒ์ผ ๋ฆฌ์ŠคํŠธ๋ฅผ ๋ณด์—ฌ์ฃผ๊ณ  ์„ ํƒํ•˜๋„๋ก ๊ธฐ๋Šฅ ์ถ”๊ฐ€ # todo : ๊ณ ์ •์ž…๋ ฅ๋œ ์—‘์…€ ํ•ญ๋ชฉ๋“ค์„ ์ž…๋ ฅ๋ฐ›๋„๋ก ์ˆ˜์ • ํ•„์š” dframe = pd.read_excel(_input_xlsx, sheet_name='201906') dframe = dframe.sort_values(["COUNT"], ascending=[False]).reset_index(drop=True) carID = dframe["PHONE_NUM"].unique() id_list = carID.tolist() _len = len(id_list) print ("len of list = ", _len) #print (type(id_list)) # to String, save list object to string __ofile = open(filename,"w") print ("writing list to file ") print ("id_list=", file=__ofile) print (id_list, file=__ofile) print ('#', 'length=', _len, file=__ofile) print ("finish : file write ") __ofile.close() ``` #### File: apps/lcd_berepi/Baseball.py ```python from gluon import * from gluon import current import urllib2 global g_myScore, g_otScore, g_playState g_Score_1 = 0 g_Score_2 = 0 g_playState = "init" def getBaseballinfo(): global g_myScore, g_otScore, g_playState baseballinfo = ["Baseball","Information"] try: page = urllib2.urlopen("http://sports.news.naver.com/schedule/index.nhn?category=kbo") text = page.read() except httplib.IncompleteRead, e: baseballinfo[0] = "Sorry," baseballinfo[1] = "Now Loading..." return baseballinfo if '<ul class="sch_vs" id="todaySchedule">' not in text: baseballinfo[0] = "Sorry," baseballinfo[1] = "Not Season." return baseballinfo cut_1 = text.split('<ul class="sch_vs" id="todaySchedule">')[1].split('<form name="monthlyScheduleForm"')[0] cut_2 = cut_1.split('<div class="vs_cnt ">') myTeamInfo = " " for i in cut_2: if teamName(getMyTeamfromDB(),0) in i: myTeamInfo = i if '<div class="cancel">' in myTeamInfo: baseballinfo[0] = "Sorry," baseballinfo[1] = "Game Cancel." return baseballinfo play_state = myTeamInfo.split('<em class="state">')[1].split('</em>')[0].strip() if g_playState == "init": g_playState = play_state if g_playState in ['18:30']: if play_state not in ['18:30','์ข…๋ฃŒ']: th = threading.Thread(target=printAlarm_game_start_end, args=()) th.start() g_playState = play_state if g_playState not in ['18:30','์ข…๋ฃŒ']: if play_state in ['์ข…๋ฃŒ']: th = threading.Thread(target=printAlarm_game_start_end, args=()) th.start() g_playState = 'init' if play_state in ['18:30']: baseballinfo[0] = "Sorry," baseballinfo[1] = "Not Game Time." return baseballinfo team_1=["name1","score1"] team_2=["name2","score2"] team_1[0] = myTeamInfo.split('alt="')[1].split('" title=')[0] team_2[0] = myTeamInfo.split('alt="')[2].split('" title=')[0] team_1[1] = myTeamInfo.split('<strong class="vs_num">')[1].split('<')[0] team_2[1] = myTeamInfo.split('<strong class="vs_num">')[2].split('<')[0] if (g_Score_1 != int(team_1[1])) or (g_Score_2 != int(team_2[1])): th = threading.Thread(target=printAlarm_game_score, args=()) th.start() g_Score_1 = int(team_1[1]) g_Score_2 = int(team_2[1]) baseballinfo[0] = teamName(team_1[0],1) + " vs " + teamName(team_2[0],1) baseballinfo[1] = team_1[1] + " : " + team_2[1] + " " + convertState(play_state) return baseballinfo #def getMyTeamfromDB(): # db = current.db # if db(db.tablebar_baseball.team_name).isempty(): # return "์‚ผ์„ฑ" # else: # return db(db.tablebar_baseball.id>0).select().first().team_name def teamName(teamcode, code): #code - 0:searching , 1:printing if teamcode == "์‚ผ์„ฑ": return "SS" elif teamcode == "NC": return "NC" elif teamcode == "๋‘์‚ฐ": if code == 0: return "OB" elif code == 1: return "DB" elif teamcode == "๋„ฅ์„ผ": if code == 0: return "WO" elif code == 1: return "NX" elif teamcode == "ํ•œํ™”": return "HH" elif teamcode == "SK": return "SK" elif teamcode == "KIA": if code == 0: return "HT" elif code == 1: return "KIA" elif teamcode == "๋กฏ๋ฐ": return "LT" elif teamcode == "LG": return "LG" elif teamcode == "KT": return "KT" else: return "default" def convertState(state): if state in ['์ข…๋ฃŒ']: return 'end' else: if '์ดˆ' in state: return '%sTOP'%state[:state.find('ํšŒ์ดˆ')] else: return '%sBOT'%state[:state.find('ํšŒ๋ง')] def printAlarm_game_start_end(): for i in range(0,10): redLCDon() time.sleep(0.2) whiteLCDon() time.sleep(0.2) def printAlarm_game_score(): for i in range(0,3): redLCDon() time.sleep(0.2) yellowLCDon() time.sleep(0.2) pinkLCDon() time.sleep(0.2) whiteLCDon() time.sleep(0.2) ``` #### File: apps/led_berepi/led1_test.py ```python import serial,os,time import sys import RPi.GPIO as GPIO import logging import json import requests import socket import fcntl import struct debug_print = 0 level = 0 ppm = 0 # important, sensorname shuould be pre-defined, unique sensorname bdname = "led.00" url = "http://xx.xx.xx.xx:4242/api/put" def getHwAddr(ifname): s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) info = fcntl.ioctl(s.fileno(), 0x8927, struct.pack('256s', ifname[:15])) return ':'.join(['%02x' %ord(char) for char in info[18:24]]) macAddr = getHwAddr('eth0') macAddr = macAddr.replace(':','.') logging.basicConfig(filename='/home/pi/log_led1_test.log',level=logging.DEBUG) logging.info("Start------------------------------- ") bled = 16 gled = 20 rled = 21 # HW setup, GPIO GPIO.cleanup() GPIO.setmode(GPIO.BCM) GPIO.setup(bled, GPIO.OUT) GPIO.setup(gled, GPIO.OUT) GPIO.setup(rled, GPIO.OUT) GPIO.output(bled, True) GPIO.output(gled, True) GPIO.output(rled, True) time.sleep(1) logging.info('---->>>> GPIO all set ') def ledb_on(): GPIO.output(bled, True) def ledg_on(): GPIO.output(gled, True) def ledr_on(): GPIO.output(rled, True) def ledb_off(): GPIO.output(bled, False) def ledg_off(): GPIO.output(gled, False) def ledr_off(): GPIO.output(rled, False) def ledall_off(): GPIO.output(bled, False) GPIO.output(gled, False) GPIO.output(rled, False) led_time_idx = 0 while True: led_time_idx += 1 if ((led_time_idx % 3) == 0) : logline = bdname + 'LED is ' now = time.localtime() now_str = "%04d-%02d-%02d %02d:%02d:%02d" % (now.tm_year, now.tm_mon, now.tm_mday, now.tm_hour, now.tm_min, now.tm_sec) logline += now_str logging.warning("logline = %s", logline) logline = "" ledall_off() ledb_on() elif ((led_time_idx % 3) == 1) : ledall_off() ledg_on() elif ((led_time_idx % 3) == 2) : ledall_off() ledr_on() time.sleep(0.5) GPIO.cleanup() ``` #### File: apps/mail/event_shot.py ```python import requests # Try running this locally. def send_email(): print "email sending....." # temperature check # when out range of temp. send email if __name__ == "__main__" : send_email() ``` #### File: meter/portable/put_sensor.py ```python import serial,os,time import sys #import RPi.GPIO as GPIO import logging import logging.handlers import json import requests import socket import fcntl import struct debug_print = 1 FILEMAXBYTE = 1024 * 1024 * 100 #100MB LOG_PATH = '/home/pi/log_tos.log' level = 0 ppm = 777 import urllib try: import http.client as http_client except ImportError: import httplib as http_client http_client.HTTPConnection.debuglevel = 1 logging.basicConfig() logging.getLogger().setLevel(logging.DEBUG) requests_log = logging.getLogger("requests.packages.urllib3") requests_log.setLevel(logging.DEBUG) requests_log.propagate = True # important, sensorname shuould be pre-defined, unique sensorname sensorname = "KETI_1" url = "http://172.16.17.32:8000/svc/PointService.asmx/SetPointValue" #def getHwAddr(ifname): # s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # info = fcntl.ioctl(s.fileno(), 0x8927, struct.pack('256s', ifname[:15])) # return ':'.join(['%02x' %ord(char) for char in info[18:24]]) macAddr = 'eth0' #logger = logging.getLogger(sensorname) #logger.setLevel(logging.DEBUG) #formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') #s #fileHandler = logging.handlers.RotatingFileHandler(LOG_PATH, maxBytes=FILEMAXBYTE,backupCount=10) #fileHandler.setLevel(logging.DEBUG) #fileHandler.setFormatter(formatter) #logger.addHandler(fileHandler) #try: logline = sensorname + ' log ' + str(ppm) + ' ppm' params = urllib.urlencode({'value': 7}) #headers = {'Content-type': 'application/json', 'Accept': 'text/plain'} #headers = {'Content-type': 'application/x-www-form-urlencoded'} headers = {'Content-Type': 'application/x-www-form-urlencoded', 'Accept':'text/plain'} data = { #"metric": 'keti' , #"timestamp": 'tea', "value": '0' # "tags": { # "hw": "raspberrypi2" , # "sensor" : "sensor.xxx", # "name" : sensorname, # "floor_room": "10fl_min_room", # "zone":"1st zone", # "building": "name", # "owner": "me",jjjj # "country": "kor" # } #tags should be less than 9, 8 is alright, 9 returns http error } print data print headers #conn = httplib.HTTPConnection("172.16.17.32:8000") #conn.request("POST", "/svc/PointService.asmx/SetPointValue",params,headers) ret = requests.post(url, data=json.dumps(data), headers=headers) print ret.text #ret = requests.post(url, data=data, headers=headers) #ret = conn.getresponse() print ret.status, response.reason #except requests.exceptions.Timeout : #except requests.exceptions.ConnectionError : # logger.info("%s",logline) ``` #### File: otsdb/put/put_test.py ```python devel_dir="/home/pi/devel" tmp_dir=devel_dir+"/BerePi/apps" from types import * import sys import time import datetime import requests import json import subprocess import ketidatetime import time ''' example : url = "http://10.0.0.43:4242/api/put warning : we have to 50 JSON pack to put in OpenTSDB, on first stage. if you add more, you shoud test amount of TX packets ''' def otsdb_restful_put(url, metric=None, ts=None, val=None, tags=None, iter_n=1 ): if tags == None : sname = "kang.tinyos.test.000" sensor = "keti.put.test" tags = { "sensor" : "keti.put_test", "name" : sname } #tags should be less than 9, 8 is alright, 9 returns http error mname = metric if metric == None : mname = "__keti.tinyos.test.0001__" print ts if ts == None or ts == 'now' : uts = int(time.time()) else : ts = ketidatetime._check_time_len(ts) print ts uts = ketidatetime.datetime2ts(ts) print uts print " metric name = ", mname print tags tags = eval(tags) print type(tags) ''' if you want to add iteration, use iter_n valiable ''' for i in range(0,iter_n): if val == None : exit('can not make forward val = None') data = { "metric": mname, #alphabet and number . _ / "timestamp": int(uts), "value": val, #integer "tags": tags } print data ''' if you want to check inserted POINT on TSDB server, use below URL to check, you should modify URL PORT to proper IP address http://URL:PORT/api/query?start=2018/06/25-00:00:00&end=2018/06/26-00:00:00&m=none:keti.tinyos.packet.test ''' try : #s = requests.Session() ret = requests.post(url, data=json.dumps(data)) print ret.content print "\n return is ", ret outstring = "\n now trying to put below data to TSDB, url %s " %(url) outstring += str(data) outstring += "\n try %d / %d " % (i, iter_n-1) sys.stdout.write(outstring) sys.stdout.flush() except requests.exceptions.Timeout : logger.error("http connection error, Timeout %s", ret) pass except requests.exceptions.ConnectionError : logger.error("http connection error, Too many requests %s") pass return def helpmsg(): volubility = len(sys.argv) # merge list word items to one string line _stringargv = " ".join(sys.argv) print "\n ********************************************** " print " *** TEST OpenTSDB put *** " print " *** By 3POKang *** " print " ********************************************** " timestamp=time.localtime() print " Thanks for the try, time : ", time.asctime(timestamp) , \ " >> Volubility, Arg length = ", volubility if volubility > 1: argv1 = sys.argv[1] print " sys.argv[%d] = %s" % (1, argv1) , else : exit (" you should input the IP address of openTSDB server like 10.0.0.1:4242") return argv1 import argparse def parse_args(): story = 'OpenTSDB needs many arguments URL, start time, end time, port ' usg = '\n python tsdb_read.py -url x.x.x.x \ -port 4242 -start 2016110100 -end 2016110222 \ -rdm metric_name, -wm write_metric_name -tags="{id:911}" --help for more info' parser=argparse.ArgumentParser(description=story, usage=usg, formatter_class=argparse.RawTextHelpFormatter) parser.add_argument("-url", default="127.0.0.1", help="URL input, or run fails") parser.add_argument("-start", default='2016070100', help="start time input, like 2016110100") parser.add_argument("-port", default=4242, help="port input, like 4242") parser.add_argument("-val", default=802, help="value which will be inserted to OpenTSDB") parser.add_argument("-wtm", default='__keti_test__', help="write-metric ") parser.add_argument("-tags", default="{'sensor':'_test_sensor_', 'desc':'_test_'}", help="tags ") args = parser.parse_args() #check args if valid url = args.url _ht = 'http://' if ( url[:7] != _ht ) : url = _ht + url port = args.port if port == 80 : port = '' else : port = ":"+ str(port) url = url + port +'/api/put' wm = args.wtm if wm == None : print usg exit("... I can not do anything without metric") return url, wm, args.start, args.val, args.tags def put_tsdb(url, write_metric, time, val, tags): if url.find('http') == -1 : url = 'http://' + url + '/api/put' #+ ':4242' otsdb_restful_put(url, write_metric, time, val, tags) #python put_test.py -url 192.168.0.200 -start 2018081800 -val 21766000 -wtm rc01.t_power.WH -tags "{'id':'911'}" def put_now_tsdb(url, write_metric, time, val, tags): if url.find('http') == -1 : url = 'http://' + url + '/api/put' #+ ':4242' otsdb_restful_put(url, write_metric, 'now', val, tags) if __name__== "__main__" : print "...starting..." args = parse_args() print args otsdb_restful_put(args[0], args[1], args[2], args[3], args[4]) time.sleep(0.1) print "\n ...ending..." ``` #### File: apps/sht20/sht20.py ```python import smbus import time SHT20_ADDR = 0x40 # SHT20 register address #SHT20_CMD_R_T = 0xE3 # hold Master Mode (Temperature) #SHT20_CMD_R_RH = 0xE5 # hold Master Mode (Humidity) SHT20_CMD_R_T = 0xF3 # no hold Master Mode (Temperature) SHT20_CMD_R_RH = 0xF5 # no hold Master Mode (Humidity) #SHT20_WRITE_REG = 0xE6 # write user register #SHT20_READ_REG = 0xE7 # read user register SHT20_CMD_RESET = 0xFE # soft reset bus = smbus.SMBus(1) # 0 = /dev/i2c-0 (port I2C0), 1 = /dev/i2c-1 (port I2C1) def reading(v): #bus.write_quick(SHT20_ADDR) if v == 1: bus.write_byte(SHT20_ADDR, SHT20_CMD_R_T) elif v == 2: bus.write_byte(SHT20_ADDR, SHT20_CMD_R_RH) else: return False time.sleep(.1) b = (bus.read_byte(SHT20_ADDR)<<8) b += bus.read_byte(SHT20_ADDR) return b def calc(temp, humi): tmp_temp = -46.85 + 175.72 * float(temp) / pow(2,16) tmp_humi = -6 + 125 * float(humi) / pow(2,16) return tmp_temp, tmp_humi if __name__== "__main__" : while True: temp = reading(1) humi = reading(2) if not temp or not humi: print "register error" break value = calc(temp, humi) print "temp : %s\thumi : %s" % (value[0], value[1]) time.sleep(1) ``` #### File: apps/sht20/sht20_ubuntu64.py ```python import lgpio import time SHT20_ADDR = 0x40 # SHT20 register address #SHT20_CMD_R_T = 0xE3 # hold Master Mode (Temperature) #SHT20_CMD_R_RH = 0xE5 # hold Master Mode (Humidity) SHT20_CMD_R_T = 0xF3 # no hold Master Mode (Temperature) SHT20_CMD_R_RH = 0xF5 # no hold Master Mode (Humidity) #SHT20_WRITE_REG = 0xE6 # write user register #SHT20_READ_REG = 0xE7 # read user register SHT20_CMD_RESET = 0xFE # soft reset #bus = smbus.SMBus(1) # 0 = /dev/i2c-0 (port I2C0), 1 = /dev/i2c-1 (port I2C1) bus = lgpio.i2c_open(1, SHT20_ADDR) def reading(v): if v == 1: lgpio.i2c_write_byte(bus, SHT20_CMD_R_T) elif v == 2: lgpio.i2c_write_byte(bus, SHT20_CMD_R_RH) else: return False time.sleep(.1) b = (lgpio.i2c_read_byte(bus)<<8) b += lgpio.i2c_read_byte(bus) return b def calc(temp, humi): tmp_temp = -46.85 + 175.72 * float(temp) / pow(2,16) tmp_humi = -6 + 125 * float(humi) / pow(2,16) return tmp_temp, tmp_humi if __name__== "__main__" : while True: temp = reading(1) humi = reading(2) if not temp or not humi: print ("register error") break value = calc(temp, humi) print ("temp : %s\thumi : %s" % (value[0], value[1])) time.sleep(1) ``` #### File: telegram/diskreport/main.py ```python import json import time import socket import fcntl import struct import os import datetime import telegram import requests from pytz import timezone def get_ip_address(ifname): s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) info = fcntl.ioctl (s.fileno(), 0x8915, struct.pack('256s', bytes(ifname[:15], 'utf-8'))) return ''.join(['%d.' % b for b in info[20:24]])[:-1] def get_free_space(): ret = os.statvfs('./') free_space = ret.f_frsize * ret.f_bfree / 1024 / 1024 / 1024 # ๊ธฐ๊ฐ€๋ฐ”์ดํŠธ return free_space def send_message(token, chat_id, message): bot = telegram.Bot(token=token) bot.sendMessage(chat_id=chat_id, text=message, parse_mode="markdown") if __name__ == "__main__" : monitoring_time = datetime.datetime.now(timezone("Asia/Seoul")) message = f"""{monitoring_time}""" message += ' \n(****)์„œ๋ฒ„ ๋™์ž‘์ค‘, HDD ์ž”์—ฌ์šฉ๋Ÿ‰ ' + str(int(get_free_space())) + 'GByte IP์ฃผ์†Œ: ' local_ip = get_ip_address('enp1s0') message += local_ip with open("telegramconfig.json") as f: #์ ˆ๋Œ€๊ฒฝ๋กœ ์‚ฌ์šฉ ์ถ”์ฒœ settings = json.load(f) for x,y in settings.items(): #print (x, y) if x == "telegram_bot_setting": for sub in y: #print (sub) token = sub["token"] chat_id = sub["chat_id"] try: send_message(token=token, chat_id=chat_id, message=message) except telegram.error.TelegramError as e: None print ("finish end of sending telegram message via Bot, good bye .... ") # 10 */8 * * * python3 /home/---/devel/crontab/diskreport/main.py > /home/---/devel/crontab/diskreport/err.txt 2>&1 ``` #### File: apps/tinyosGW/index.py ```python import os import cgi #Check the .log file and return to just file name def chkFileExt(filename): if filename.find('.log') > 0: filename = filename.split('.')[0] else: return None return str(filename) #convert from escape sequence to html (/n > <br>, /r > <br>) def fileToHTML(content): content = content.replace('\n', '<br>') content = content.replace('\r', '<br>') return content #๊ฒฝ๋กœ๋ฅผ ์„ค์ •ํ•˜์ง€ ์•Š์œผ๋ฉด ํ˜„์žฌ ํŒŒ์ผ ๊ฒฝ๋กœ ์‚ฌ์šฉ def printFilesList(path_dir=os.getcwd()+'/out/'): return os.listdir(path_dir) #start to cgi form = cgi.FieldStorage() if 'parameter' in form: fileContent = form['parameter'].value webContent = open('out/'+fileContent, 'r').read() else: fileContent = None webContent = "" print("Content-type:text/html\r\n\r\n") print('<html>') print('<head>') print('<title>tinyosGW status</title>') print('</head>') print('<body>') print('<h2>tinyosGW status</h2>') print('<ol>') for file_name in printFilesList(): if chkFileExt(file_name): print('<li><a href="index.py?parameter='+file_name+'">'+str(chkFileExt(file_name))+'</a></li>') print('</ol>') print('<p>{webcontent}</p>'.format(webcontent=fileToHTML(webContent))) print('</body>') print('</html>') ``` #### File: apps/TTS/sample.py ```python def speak(text): from gtts import gTTS import os tts = gTTS(text=text, lang='ko') tts.save("tmp_talk.mp3") os.system("omxplayer tmp_talk.mp3") os.system("rm -f tmp_talk.mp3") text = "์•ˆ๋…•ํ•˜์„ธ์š”, ์ข‹์€ ์•„์นจ์ž…๋‹ˆ๋‹ค" speak(text) ```
{ "source": "jeonghoonkang/keti-tinyos-CSV2JSON", "score": 3 }
#### File: keti-tinyos-CSV2JSON/CSV2JSON/CSVJSON_main.py ```python from __future__ import print_function #import requests import time import json from collections import OrderedDict import pandas as pd import sys import os import argparse import shutil import copy from datetime import datetime import pcs #์ถœ๋ ฅ ๋””๋ ‰ํ† ๋ฆฌ ์ด๋ฆ„์„ output์œผ๋กœ ๋ณ€๊ฒฝ # Result, changed JSON ๋“ฑ , output ๋””๋ ‰ํ† ๋ฆฌ ํ•˜๋ถ€์— ์ €์žฅ # write ๊ด€๋ จ ํ•จ์ˆ˜๋Š” ๋ชจ๋“ˆ์„ ๋”ฐ๋กœ ํŒŒ์ผ๋กœ ๋งŒ๋“ค๋ฉด ์ข‹์„๊ฒƒ๊ฐ™์Œ ARG= 50 #argment def dprint(s): # debug_print global g_DEBUG if (g_DEBUG): print (' ', s) else : return None def brush_argparse(): global g_DEBUG # dprint ํ•จ์ˆ˜ ์‹คํ–‰์„ ์œ„ํ•œ ํ”Œ๋ž˜๊ทธ parser = argparse.ArgumentParser() parser.add_argument("-debug", help="debug mode run", action="store_true") parser.add_argument("-jsonpack", help="how many json's in one output file", type=int) parser.add_argument("-filetype", help="csv or xlsx") parser.add_argument("-filekind", help="select file type number you'll store") parser.add_argument("-field", help="select field idx you'll store") parser.add_argument("-ts", help="select timestamp field idx you'll store") parser.add_argument("-carid", help="select carid field idx you'll store") parser.add_argument("-metric", help="select metric you'll store") parser.add_argument("-outdir", help="select outdir", type=str, default='./output') parser.add_argument("-pn", help="select producer num", default='4') parser.add_argument("-cn", help="select consumer num", default='2') args = parser.parse_args() if (args.debug) : g_DEBUG = True dprint ('DPRINT Enabled ************************************** ' + __file__ ) return args def make_result_dirctory_tree(_savepath, filepath, _carid): _savepath = _savepath+"/resultData" if not(os.path.isdir(_savepath)): os.makedirs(os.path.join(_savepath)) filepath = filepath.split('originalCSVData')[-1] if filepath[0] == '/': filepath = filepath[1:] filepath = filepath.split('/')[0:-1] for sub in filepath: _savepath = _savepath + '/' + sub if not(os.path.isdir(_savepath)): os.makedirs(os.path.join(_savepath)) if _savepath[-1] == '/': _savepath = _savepath[0:-1] _savepath = _savepath + '/' + _carid if not(os.path.isdir(_savepath)): os.makedirs(os.path.join(_savepath)) return _savepath # make a file def writeJson(_buffer, _json_title): with open(_json_title+'.json', 'a') as f: json.dump(_buffer, f, ensure_ascii=False, indent=4) # create folder & make files def writeJsonfiles(_buffer, _json_title, _num, _fname, _carid, _outdir): #try: savepath = os.path.dirname(os.path.realpath(__file__)) savepath = savepath + _outdir[1:] _indx = savepath.find('//') if _indx != -1: savepath = savepath[:_indx+1] + savepath[_indx+2:] if not(os.path.isdir(savepath)): os.makedirs(os.path.join(savepath)) #print ('-->',savepath) savepath = make_result_dirctory_tree(savepath, _fname, _carid) # Unicode decode error๊ฐ€ ๋ฐœ์ƒํ•˜์—ฌ ์ˆ˜์ •ํ•ด์คŒ with open(str(savepath + '/' +_json_title+'_'+str(_num)+'.json'), 'w') as f: try: json.dump(_buffer, f, ensure_ascii=False, indent=4) # ๋ช‡๋ช‡ ํŒŒ์ผ์—์„œ ascii๊ด€๋ จ DecodeError ๋ฐœ์ƒ except: json.dump(_buffer, f, ensure_ascii=True, indent=4) print ('[' + _json_title + '_'+str(_num)+'.json] saved') # convert Time to Epoch def convertTimeToEpoch(_time): date_time = "%s.%s.%s %s:%s:%s" %(_time[8:10], _time[5:7], _time[:4], _time[11:13], _time[14:16], _time[17:]) pattern = "%d.%m.%Y %H:%M:%S" epoch = int (time.mktime(time.strptime(date_time, pattern))) return epoch # YYYYmmddHHMMSS -> dd.mm.YY HH:MM:SS def convertTimeToEpoch_v2(_time): date_time = "%s.%s.%s %s:%s:%s" %(_time[6:8], _time[4:6], _time[:4], _time[8:10], _time[10:12], _time[12:]) pattern = "%d.%m.%Y %H:%M:%S" epoch = int (time.mktime(time.strptime(date_time, pattern))) return epoch # display progress bar def printProgressBar(iteration, total, prefix = u'์ฒ˜๋ฆฌ์ค‘', suffix = u'์™„๋ฃŒ',\ decimals = 1, length = 60, fill = 'โ–ˆ'): # ์ž‘์—…์˜ ์ง„ํ–‰์ƒํ™ฉ์„ ํ‘œ์‹œ percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total))) filledLength = int(length * iteration // total) bar = fill * filledLength + '-' * (length - filledLength) print('\r%s |%s| %s%% %s' %(prefix, bar, percent, suffix), end='\r') sys.stdout.flush() if iteration == total: None #print() # ํŒŒ์ผ๋กœ ์ €์žฅํ•˜๊ธฐ์ „ ๋ฐ์ดํ„ฐ์˜ ์ •๋ณด๋ฅผ ์š”์•ฝํ•ด์ฃผ๋Š” _dataInfo๋ฅผ ๋งŒ๋“ค์–ด์คŒ def initDataInfo(_dataInfo, __list): _dataInfo["1.metric"]= __list[0]["metric"] vallist = [d["value"] for d in __list] tslist = [int(d["timestamp"]) for d in __list] _dataInfo["2.mints"]=min(tslist) _dataInfo["3.maxts"]=max(tslist) _dataInfo["4.mindt"]=str(datetime.fromtimestamp(_dataInfo["2.mints"])) _dataInfo["5.maxdt"]=str(datetime.fromtimestamp(_dataInfo["3.maxts"])) _dataInfo["6.totalCnt"]=len(__list) _dataInfo["7.minval"]=min(vallist) _dataInfo["8.maxval"]=max(vallist) _dataInfo["9.tags"]=__list[0]["tags"] def ToJsonFormat(_list, _args_pack_, _json_title, _filename): _list = _list.sort_values(by=[_args_pack_.ts.decode('utf-8')], axis=0) Car_id = str(_list[_args_pack_.carid.decode('utf-8')].iloc[0]) dftime = _list[_args_pack_.ts.decode('utf-8')].tolist() dfval = _list[_args_pack_.field.decode('utf-8')].tolist() data_len = len(_list) _buffer = [] count=0 perCount=0 num=0 # for i in range(len(dftime)): perCount += 1 value = dfval[i] # skip NaN value & ts if value == 'nan' or dftime[i] == 'nan': continue elif value == 'NaN' or dftime[i] == 'NaN': continue ts = convertTimeToEpoch(dftime[i]) ts = str(ts) csv_data = dict() csv_data['metric'] = _args_pack_.metric csv_data["tags"] = dict() csv_data['timestamp'] = ts csv_data["value"] = value csv_data["tags"]['VEHICLE_NUM'] = str(Car_id) csv_data["tags"]["fieldname"] = _args_pack_.field count += 1 _buffer.append(csv_data) if count >= _args_pack_.jsonpack: dataInfo={} initDataInfo(dataInfo, _buffer) dataInfo = OrderedDict(sorted(dataInfo.items(), key=lambda t: t[0])) _buffer.insert(0, dataInfo) num +=1 writeJsonfiles(_buffer, _json_title, num, _filename, Car_id, _args_pack_.outdir) #save files by bundle _buffer = [] count = 0 #printProgressBar(perCount, data_len) if len(_buffer) != 0: # ๋ฒ„ํผ์— ๋‚จ์€ ๋ฐ์ดํ„ฐ json ํŒŒ์ผ ์ƒ์„ฑ #writeJson(_buffer, _json_title)# make a file dataInfo={} initDataInfo(dataInfo, _buffer) dataInfo = OrderedDict(sorted(dataInfo.items(), key=lambda t: t[0])) _buffer.insert(0, dataInfo) num +=1 writeJsonfiles(_buffer, _json_title, num, _filename, Car_id, _args_pack_.outdir) #save files by bundle def field_IndextoStr(_fieldnum, _collist): return _collist[_fieldnum] def ts_IndextoStr(_tsnum, _collist): return _collist[_tsnum] def carid_IndextoStr(_caridnum, _collist): return _collist[_caridnum] def CSVtoDF(_filename, _args_pack_, fieldidx, tsidx, carididx): print("\nreading %s" %_filename) if _args_pack_.filetype == 'xlsx' : df = pd.read_excel(_filename) elif _args_pack_.filetype == 'csv' : try: chunks = pd.read_csv(_filename, usecols = [fieldidx, tsidx, carididx] ,low_memory=False, chunksize=10000, encoding='utf-8') except UnicodeDecodeError: try: chunks = pd.read_csv(_filename,usecols = [fieldidx, tsidx, carididx], low_memory=False, chunksize=10000, encoding='euc-kr') except UnicodeDecodeError: chunks = pd.read_csv(_filename, usecols = [fieldidx, tsidx, carididx], low_memory=False, chunksize=10000, encoding='cp949') df = pd.concat(chunks, ignore_index=True) #print(df.columns) if _args_pack_.filetype == 'xlsx' : jsonTitle = (_filename.split('/'))[-1][:-5]+'_'+_args_pack_.field elif _args_pack_.filetype == 'csv' : jsonTitle = (_filename.split('/'))[-1][:-4]+'_'+_args_pack_.field print("%s -> DF" %_filename) return df, jsonTitle def pack_to_meta(pack): ret = {} ret['field']=pack.field ret['timestamp']=pack.ts ret['carid']=pack.carid ret['metric']=pack.metric ret['pn']=pack.pn ret['cn']=pack.cn ret['field']=pack.field ret['bundle']=pack.jsonpack ret['outdir']=pack.outdir return ret if __name__ == "__main__": global g_DEBUG g_DEBUG = False #gFile_type, bundle = brush_args() _args_pack_ = brush_argparse() _args_pack_.pn = int(_args_pack_.pn) _args_pack_.cn = int(_args_pack_.cn) dprint (vars(_args_pack_)) import type_file file_type = type_file.file_type file_list = file_type['type_'+_args_pack_.filekind]['files'] col_list = file_type['type_'+_args_pack_.filekind]['columns'] file_list = [i.encode('utf-8') for i in file_list] #unicodeํ˜•ํƒœ(u' ~ ')๋ฅผ ์ผ๋ฐ˜ string์œผ๋กœ ๋ฐ”๊ฟ”์คŒ col_list = [i.encode('utf-8') for i in col_list] fieldidx = int(_args_pack_.field) tsidx = int(_args_pack_.ts) carididx = int(_args_pack_.carid) # ์ž…๋ ฅํ•œ index ์ •๋ณด๋ฅผ ์‹ค์ œ string์œผ๋กœ ์ „ํ™˜ _args_pack_.field = field_IndextoStr(fieldidx, col_list) _args_pack_.ts = ts_IndextoStr(tsidx, col_list) _args_pack_.carid = carid_IndextoStr(carididx, col_list) #print(_args_pack_.field) print('๋ณ€ํ™˜ ํŒŒ์ผ ๋ชฉ๋ก') for f in file_list: print(f) np = _args_pack_.pn nc = _args_pack_.cn meta = pack_to_meta(_args_pack_) # ์„œ๋ธŒ ํ”„๋กœ์„ธ์Šค ๊ด€๋ฆฌ์ž, ์ƒ์‚ฐ์ž, ์†Œ๋น„์ž ์ƒ์„ฑ workers = pcs.Workers(np, nc) works_basket_list = workers.start_work(meta) for file_name in file_list: # csv -> df df, title = CSVtoDF(file_name, _args_pack_, fieldidx, tsidx, carididx) if len(df) == 0: continue # df์˜ ํฌ๊ธฐ๊ฐ€ np๋ณด๋‹ค ์ž‘์œผ๋ฉด main process์—์„œ ์ฒ˜๋ฆฌ if len(df) < np: ToJsonFormat(df, _args_pack_, title, file_name) # df๋ฅผ np๋งŒํผ ๋ถ„ํ• ํ•˜์—ฌ ๊ฐ ์ƒ์‚ฐ์ž์—๊ฒŒ ํ๋กœ ์ „์†ก else : start=0 end=start+len(df)/np for idx in range(np): if idx == np-1: end = len(df) while (works_basket_list[idx].full()): time.sleep(0.5) works_basket_list[idx].put([df[start:end], title, file_name]) start = end end = start+len(df)/np print("\nmain : [csv -> df] done") print("work basket์˜ ๋ชจ๋“  data ์ „์†ก ์™„๋ฃŒ") print("subprocess๊ฐ€ ์•„์ง ์‹คํ–‰ ์ค‘ ์ž…๋‹ˆ๋‹ค...\n") lines = workers.report() totallines=0 for line in lines: totallines += line print("total processed lines : %d" %totallines) ```
{ "source": "jeonghopark/ddsp", "score": 2 }
#### File: ddsp/ddsp/spectral_ops_test.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from ddsp import spectral_ops import numpy as np import tensorflow.compat.v1 as tf tf.disable_v2_behavior() class STFTTest(tf.test.TestCase): def test_tf_and_np_are_consistent(self): amp = 1e-2 audio = amp * (np.random.rand(64000).astype(np.float32) * 2.0 - 1.0) frame_size = 2048 hop_size = 128 overlap = 1.0 - float(hop_size) / frame_size pad_end = True s_np = spectral_ops.stft_np( audio, frame_size=frame_size, overlap=overlap, pad_end=pad_end) sess = tf.Session() with self.cached_session() as sess: s_tf = sess.run( spectral_ops.stft( audio, frame_size=frame_size, overlap=overlap, pad_end=pad_end)) # TODO(jesseengel): The phase comes out a little different, figure out why. self.assertAllClose(np.abs(s_np), np.abs(s_tf), rtol=1e-3, atol=1e-3) class LoudnessTest(tf.test.TestCase): def test_tf_and_np_are_consistent(self): amp = 1e-2 audio = amp * (np.random.rand(64000).astype(np.float32) * 2.0 - 1.0) frame_size = 2048 frame_rate = 250 with self.cached_session() as sess: ld_tf = sess.run( spectral_ops.compute_loudness( audio, n_fft=frame_size, frame_rate=frame_rate, use_tf=True)) ld_np = spectral_ops.compute_loudness( audio, n_fft=frame_size, frame_rate=frame_rate, use_tf=False) self.assertAllClose(np.abs(ld_np), np.abs(ld_tf), rtol=1e-3, atol=1e-3) if __name__ == '__main__': tf.test.main() ``` #### File: ddsp/training/eval_util.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import io import itertools import os import time from absl import logging from ddsp import spectral_ops import gin import librosa import matplotlib.pyplot as plt import numpy as np from scipy.io import wavfile import tensorflow.compat.v1 as tf # Global values for evaluation. MIN_F0_CONFIDENCE = 0.85 OUTLIER_MIDI_THRESH = 12 def check_and_squeeze_to_vector(input_vector): """Ensure vector only has one axis of dimensionality.""" if input_vector.ndim > 1: return np.squeeze(input_vector) else: return input_vector def l1_distance(prediction, ground_truth): """L1 distance difference between two vectors.""" if prediction.shape != ground_truth.shape: prediction, ground_truth = np.squeeze(prediction), np.squeeze(ground_truth) min_length = min(prediction.size, ground_truth.size) return np.abs(prediction[:min_length] - ground_truth[:min_length]) def compute_audio_features(audio, n_fft=2048, sample_rate=16000, frame_rate=250): """Compute features from audio.""" audio_feats = {'audio': audio} audio = check_and_squeeze_to_vector(audio) audio_feats['loudness_db'] = spectral_ops.compute_loudness( audio, sample_rate, frame_rate, n_fft) audio_feats['f0_hz'], audio_feats['f0_confidence'] = spectral_ops.compute_f0( audio, sample_rate, frame_rate) return audio_feats def is_outlier(ground_truth_f0_conf): """Determine if ground truth f0 for audio sample is an outlier.""" ground_truth_f0_conf = check_and_squeeze_to_vector(ground_truth_f0_conf) return np.max(ground_truth_f0_conf) < MIN_F0_CONFIDENCE def f0_dist_conf_thresh(gen_f0, gen_f0_confidence, ground_truth_f0, ground_truth_f0_confidence, f0_confidence_thresh=MIN_F0_CONFIDENCE): """Compute L1 between gen audio and ground truth audio. Calculating F0 distance is more complicated than calculating loudness distance because of inherent inaccuracies in pitch tracking. We take the following steps: - Define a `keep_mask` that only select f0 values above when f0_confidence in the GENERATED AUDIO (not ground truth) exceeds a minimum threshold. Experimentation by jessengel@ and hanoih@ found this to be optimal way to filter out bad f0 pitch tracking. - Compute `delta_f0` between generated audio and ground truth audio. - Only select values in `delta_f0` based on this `keep_mask` - Compute mean on this selection - At the start of training, audio samples will sound bad and thus have no pitch content. If the `f0_confidence` is all below the threshold, we keep a count of it. A better performing model will have a smaller count of "untrackable pitch" samples. Args: gen_f0: generated audio f0 [MB,:] gen_f0_confidence: generated audio f0 confidence [MB,:] ground_truth_f0: ground truth audio f0 confidence [MB,:] ground_truth_f0_confidence: ground truth audio f0 confidence [MB,:] f0_confidence_thresh: confidence threshold above which f0 metrics will be computed Returns: delta_f0_mean: float or None if entire generated sample had f0_confidence below threshold. """ if np.max(gen_f0_confidence) < f0_confidence_thresh: # Generated audio is not good enough for reliable pitch tracking. return None else: keep_mask = ground_truth_f0_confidence >= f0_confidence_thresh # Report mean error in midi space for easier interpretation. gen_f0_midi = librosa.core.hz_to_midi(gen_f0) ground_truth_f0_midi = librosa.core.hz_to_midi(ground_truth_f0) # Set -infs introduced by hz_to_midi to 0. gen_f0_midi[gen_f0_midi == -np.inf] = 0 ground_truth_f0_midi[ground_truth_f0_midi == -np.inf] = 0 delta_f0_midi = l1_distance(gen_f0_midi, ground_truth_f0_midi) delta_f0_midi_filt = delta_f0_midi[keep_mask] delta_f0_midi_mean = np.mean(delta_f0_midi_filt) return delta_f0_midi_mean # ---------------------- WAV files -------------------------------------------- def get_wav_file(wav_data, sample_rate): mem_file = io.BytesIO() try: wavfile.write(mem_file, sample_rate, wav_data) except: # pylint: disable=bare-except logging.warning('error in writing WAV file') return mem_file # ---------------------- Spectrogram ------------------------------------------ def spectrogram(audio, sess=None, rotate=False, size=2048): """Compute logmag spectrogram.""" if sess is None: sess = tf.Session() mag = sess.run( spectral_ops.compute_logmag( tf.convert_to_tensor(audio, tf.float32), size=size)) if rotate: mag = np.rot90(mag) return mag # ---------------------- Summary Writers -------------------------------------- class Writer(object): """Base Class for writing tensorboard summaries dataset.""" def __init__(self, batch_size, summary_dir, global_step, verbose=True): """Initializes the result writer.""" self._batch_size = batch_size self._summary_dir = summary_dir self._global_step = global_step self._file_writer = tf.summary.FileWriter(self._summary_dir) self._verbose = verbose def update(self, gen_audio_outputs, ground_truth_feats, tensor_dict): raise NotImplementedError('update() not defined') def flush(self): raise NotImplementedError('flush() not defined') class Writers(object): """Result writer that wraps a list of writers.""" def __init__(self, writers=None): """Initializes the result writer. Args: writers: list of `eval_utils.Writer` """ self._writers = writers or [] def add(self, writer): self._writers.append(writer) def update(self, gen_audio_outputs, ground_truth_feats, tensor_dict=None): for writer in self._writers: writer.update(gen_audio_outputs, ground_truth_feats, tensor_dict) def flush(self): for writer in self._writers: writer.flush() class MetricsWriter(Writer): """Class for writing WaveRNN metrics in Dataset to tensorboard.""" def __init__(self, batch_size, summary_dir, global_step): super(MetricsWriter, self).__init__(batch_size, summary_dir, global_step) self._metrics_dict = { 'ld_metric': 0, 'ld_dist_sum': 0, 'ld_count': 0, 'f0_metric': 0, 'f0_outlier_ratio': 0, 'f0_dist_sum': 0, 'f0_ground_truth_untrackable_pitch_count': 0, 'f0_gen_pitch_outlier_count': 0, 'f0_gen_untrackable_pitch_count': 0, 'f0_gen_trackable_pitch_count': 0, } def _compute_ld_dist_and_update_counts(self, gen_ld, ground_truth_ld): metrics_d = self._metrics_dict ld_dist = np.mean(l1_distance(gen_ld, ground_truth_ld)) metrics_d['ld_dist_sum'] += ld_dist metrics_d['ld_count'] += 1 return ld_dist def _compute_f0_dist_and_update_counts(self, gen_f0, gen_f0_confidence, ground_truth_f0, ground_truth_f0_confidence): """Compute f0 dist and update corresponding counts.""" metrics_d = self._metrics_dict if is_outlier(ground_truth_f0_confidence): # Ground truth f0 was unreliable to begin with. Discard. metrics_d['f0_ground_truth_untrackable_pitch_count'] += 1 f0_dist = None else: # Gound truth f0 was reliable, compute f0 distance with generated audio f0_dist = f0_dist_conf_thresh(gen_f0, gen_f0_confidence, ground_truth_f0, ground_truth_f0_confidence) if f0_dist is not None and f0_dist > OUTLIER_MIDI_THRESH: # Generated audio had trackable pitch content but is an outlier metrics_d['f0_gen_pitch_outlier_count'] += 1 elif f0_dist is not None and f0_dist <= OUTLIER_MIDI_THRESH: # Generated audio had trackable pitch content and is within tolerance metrics_d['f0_dist_sum'] += f0_dist metrics_d['f0_gen_trackable_pitch_count'] += 1 elif f0_dist is None: # Generated audio had untrackable pitch content metrics_d['f0_gen_untrackable_pitch_count'] += 1 return f0_dist def _compute_update_ld_metric(self): """Compute and update ld metric.""" metrics_d = self._metrics_dict if metrics_d['ld_count'] == 0: ld_metric = np.nan else: ld_metric = metrics_d['ld_dist_sum'] / metrics_d['ld_count'] metrics_d['ld_metric'] = ld_metric return ld_metric def _compute_update_f0_metric(self): """Compute and update f0 metric.""" metrics_d = self._metrics_dict if metrics_d['f0_gen_trackable_pitch_count'] == 0: f0_metric = np.nan else: f0_metric = metrics_d['f0_dist_sum'] / metrics_d[ 'f0_gen_trackable_pitch_count'] metrics_d['f0_metric'] = f0_metric return f0_metric def _compute_update_outlier_ratio(self): """Compute and update the outlier ratio. Outlier ratio distinguishes the number of poorly generated audio by the model vs.audio with poor pitch tracking to begin with. The lowest (best) possible ratio is `f0_ground_truth_untrackable_pitch_count / total_count` = 0.02. Indicating all generated samples were of good quality, and only ground truth samples with poor pitch content to begin with had to be omitted from evaluation. The outlier ratio is computed using: f0_ground_truth_untrackable_pitch_count + f0_gen_pitch_outlier_count + f0_gen_untrackable_pitch_count / f0_ground_truth_untrackable_pitch_count + f0_gen_pitch_outlier_count + f0_gen_untrackable_pitch_count + f0_gen_trackable_pitch_count As the model improves in performance `f0_gen_pitch_outlier_count` and `f0_gen_untrackable_pitch_count` should decrease, causing a lower ratio. Args: None Returns: outlier_ratio: float or np.nan if division by 0 """ metrics_d = self._metrics_dict numerator = metrics_d['f0_ground_truth_untrackable_pitch_count'] numerator += metrics_d['f0_gen_pitch_outlier_count'] numerator += metrics_d['f0_gen_untrackable_pitch_count'] denominator = copy.copy(numerator) denominator += metrics_d['f0_gen_trackable_pitch_count'] if denominator == 0: outlier_ratio = np.nan else: outlier_ratio = numerator / denominator metrics_d['f0_outlier_ratio'] = outlier_ratio return outlier_ratio def update(self, gen_audio_outputs, ground_truth_feats, tensor_dict=None): """Update metrics dictionary given a batch of audio.""" # Compute metrics per sample. No batch operations possible. for sample_idx in range(self._batch_size): # Extract generated audio gen_audio = check_and_squeeze_to_vector(gen_audio_outputs[sample_idx]) gen_feats = compute_audio_features(gen_audio) ld_dist = self._compute_ld_dist_and_update_counts( gen_feats['loudness_db'], ground_truth_feats['loudness_db'][sample_idx]) f0_dist = self._compute_f0_dist_and_update_counts( gen_feats['f0_hz'], gen_feats['f0_confidence'], ground_truth_feats['f0_hz'][sample_idx], ground_truth_feats['f0_confidence'][sample_idx]) if self._verbose: log_string = 'sample {} | ld_dist: {:.3f} | '.format( sample_idx, ld_dist) if f0_dist: # Only log f0 distance if it was calculated log_string = log_string + 'f0_dist(midi): {:.3f}'.format(f0_dist) logging.info(log_string) def get_current_metrics(self): _ = self._compute_update_ld_metric() _ = self._compute_update_f0_metric() _ = self._compute_update_outlier_ratio() return self._metrics_dict def flush(self): """Output metrics to tensorboard for global step.""" metrics_d = self.get_current_metrics() if self._verbose: logging.info('COMPUTING METRICS COMPLETE. FLUSHING ALL METRICS') metric_keys = ['ld_metric', 'f0_metric', 'f0_outlier_ratio'] metrics_str = ' | '.join( '{}: {:0.3f}'.format(m, metrics_d[m]) for m in metric_keys) logging.info(metrics_str) counts_keys = [ 'f0_gen_trackable_pitch_count', 'f0_gen_pitch_outlier_count', 'f0_gen_untrackable_pitch_count', 'f0_ground_truth_untrackable_pitch_count' ] counts_str = ' | '.join( '{}: {}'.format(c, metrics_d[c]) for c in counts_keys) logging.info(counts_str) summary = tf.Summary() for value_name in [ 'ld_metric', 'f0_metric', 'f0_outlier_ratio', ]: summary.value.add( tag='rt_metrics/' + value_name, simple_value=metrics_d[value_name]) for value_name in [ 'f0_gen_trackable_pitch_count', 'f0_gen_pitch_outlier_count', 'f0_gen_untrackable_pitch_count', 'f0_ground_truth_untrackable_pitch_count' ]: summary.value.add( tag='counts/' + value_name, simple_value=metrics_d[value_name]) self._file_writer.add_summary(summary, self._global_step) self._file_writer.flush() logging.info('Wrote metric summaries for step %s to %s', self._global_step, self._summary_dir) spectral_ops.reset_crepe() # Reset CREPE global state class WaveformImageWriter(Writer): """Class for writing waveform tensorboard summaries.""" def __init__(self, batch_size, summary_dir, global_step): super(WaveformImageWriter, self).__init__(batch_size, summary_dir, global_step) def update(self, gen_audio_outputs, ground_truth_feats, tensor_dict): """Update metrics dictionary given a batch of audio.""" gt = ground_truth_feats['audio'] a1 = tensor_dict.get('additive_audio') a2 = tensor_dict.get('noise_audio') a3 = gen_audio_outputs def _plot(summary, sample_idx, length=None, prefix='waveform'): """Plots all waveforms.""" waveforms = [] labels = [] for a, label in zip([gt, a1, a2, a3], ['gt', 'additive', 'noise', 'synthesized']): if a is not None: x = check_and_squeeze_to_vector(a[sample_idx]) if length is not None: x = x[:length] waveforms.append(x) labels.append(label) # Manually specify exact size of fig for tensorboard num_subplots = len(labels) fig = plt.figure(figsize=(2.5 * num_subplots, 10)) for i in range(num_subplots): ax = fig.add_subplot(num_subplots, 1, i + 1) ax.plot(waveforms[i]) ax.set_title(labels[i]) # Format and save plot to image buf = io.BytesIO() fig.savefig(buf, format='png') image_summary = tf.Summary.Image(encoded_image_string=buf.getvalue()) plt.close(fig) summary.value.add( tag='{}/{}'.format(prefix, sample_idx), image=image_summary) summary = tf.Summary() for sample_idx in range(self._batch_size): _plot(summary, sample_idx, length=None, prefix='waveform_4s') _plot(summary, sample_idx, length=2000, prefix='waveform_125ms') self._file_writer.add_summary(summary, self._global_step) def flush(self): """Output metrics to tensorboard for global step.""" self._file_writer.flush() logging.info('Wrote image summaries for step %s to %s', self._global_step, self._summary_dir) class SpectrogramImageWriter(Writer): """Class for writing spectrogram tensorboard summaries.""" def __init__(self, batch_size, summary_dir, global_step): super(SpectrogramImageWriter, self).__init__(batch_size, summary_dir, global_step) def update(self, gen_audio_outputs, ground_truth_feats, unused_tensor_dict, sess=None): """Update metrics dictionary given a batch of audio.""" # Batch spectrogram operations gtr_spectrograms = spectrogram(ground_truth_feats['audio'], sess=sess) gen_spectrograms = spectrogram(gen_audio_outputs, sess=sess) logging.info('spec writer') summary = tf.Summary() for sample_idx in range(self._batch_size): # Manually specify exact size of fig for tensorboard fig = plt.figure(figsize=(8, 5)) ax = fig.add_subplot(111) ax.set_title('original') ax.set_xticks([0, 1000]) ax.matshow(gtr_spectrograms[sample_idx], vmin=-5, vmax=1) ax = fig.add_subplot(212) ax.set_title('synthesized') ax.set_xticks([]) ax.set_yticks([]) ax.matshow(gen_spectrograms[sample_idx], vmin=-5, vmax=1) # Format and save plot to image buf = io.BytesIO() fig.savefig(buf, format='png') image_summary = tf.Summary.Image(encoded_image_string=buf.getvalue()) plt.close(fig) summary.value.add( tag='spectrogram/{}'.format(sample_idx), image=image_summary) logging.info('spec writer 2') self._file_writer.add_summary(summary, self._global_step) def flush(self): """Output metrics to tensorboard for global step.""" self._file_writer.flush() logging.info('Wrote image summaries for step %s to %s', self._global_step, self._summary_dir) class AudioWriter(Writer): """Class for writing audio samples to tensorboard.""" def __init__(self, batch_size, summary_dir, global_step, sample_rate=16000): super(AudioWriter, self).__init__(batch_size, summary_dir, global_step) self._sample_rate = sample_rate def update(self, gen_audio_outputs, ground_truth_feats, unused_tensor_dict): """Update metrics dictionary given a batch of audio.""" # Compute metrics per sample. No batch operations possible. summary = tf.Summary() for sample_idx in range(self._batch_size): # Ground truth audio gtr_audio = check_and_squeeze_to_vector( ground_truth_feats['audio'][sample_idx]) gtr_audio_summary = tf.Summary.Audio( sample_rate=self._sample_rate, num_channels=1, length_frames=len(gtr_audio), encoded_audio_string=get_wav_file(gtr_audio, self._sample_rate).getvalue(), content_type='wav') summary.value.add( tag='ground_truth_audio/{}'.format(sample_idx), audio=gtr_audio_summary) # Synthesized audio gen_audio = check_and_squeeze_to_vector(gen_audio_outputs[sample_idx]) gen_audio_summary = tf.Summary.Audio( sample_rate=self._sample_rate, num_channels=1, length_frames=len(gen_audio), encoded_audio_string=get_wav_file(gen_audio, self._sample_rate).getvalue(), content_type='wav') summary.value.add( tag='gen_audio/{}'.format(sample_idx), audio=gen_audio_summary) self._file_writer.add_summary(summary, self._global_step) def flush(self): """Output metrics to tensorboard for global step.""" self._file_writer.flush() logging.info('Wrote audio summaries for step %s to %s', self._global_step, self._summary_dir) # ---------------------- Evaluation -------------------------------------------- def evaluate_or_sample(data_provider, model, mode='eval', model_dir='~/tmp/ddsp/training', master='', batch_size=32, num_batches=50, keys_to_fetch='additive_audio,noise_audio', ckpt_delay_secs=0, run_once=False): """Run evaluation loop. Args: data_provider: DataProvider instance. model: Model instance. mode: Whether to 'eval' with metrics or create 'sample' s. model_dir: Path to directory with checkpoints and summary events. master: Name of TensorFlow runtime to use. batch_size: Size of each eval/sample batch. num_batches: How many batches to eval from dataset. -1 denotes all batches. keys_to_fetch: Additional tensors to fetch from model outputs. ckpt_delay_secs: Time to wait when a new checkpoint was not detected. run_once: Only run evaluation or sampling once. """ # Set up dataset. input_fn = data_provider.get_input_fn(shuffle=False, repeats=1) model_dir = os.path.expanduser(model_dir) params = {'batch_size': batch_size, 'model_dir': model_dir} dataset = input_fn(params) dataset = dataset.take(num_batches) dataset = dataset.make_one_shot_iterator() features_tf = dataset.get_next()[0] # Load model checkpoint predictions = model.get_outputs(features_tf, training=False) # additional tensors to fetch during eval tensor_dict_tf = {} for k in keys_to_fetch.split(','): v = predictions.get(k) if v is not None: tensor_dict_tf[k] = v trainable_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) saver = tf.train.Saver(var_list=trainable_variables) # Sample continuously and load the newest checkpoint each time checkpoints_iterator = tf.train.checkpoints_iterator(model_dir, ckpt_delay_secs) for checkpoint in checkpoints_iterator: # Set up writers before calling Sess() so computations run in same sess base_summary_dir = os.path.join(model_dir, 'summaries') if not tf.gfile.IsDirectory(base_summary_dir): tf.gfile.MakeDirs(base_summary_dir) global_step = int(checkpoint.split('-')[-1]) writers_list = [] if mode == 'eval': writers_list.append( MetricsWriter( batch_size=batch_size, summary_dir=base_summary_dir, global_step=global_step)) elif mode == 'sample': writers_list.append( SpectrogramImageWriter( batch_size=batch_size, summary_dir=base_summary_dir, global_step=global_step)) writers_list.append( WaveformImageWriter( batch_size=batch_size, summary_dir=base_summary_dir, global_step=global_step)) writers_list.append( AudioWriter( batch_size=batch_size, summary_dir=base_summary_dir, global_step=global_step)) writers = Writers(writers_list) # Setup session. sess = tf.Session(target=master) sess.run(tf.global_variables_initializer()) start_time = time.time() saver.restore(sess, checkpoint) logging.info('Loading model took %.1f seconds', time.time() - start_time) # Iterate through dataset and make predictions for batch_idx in itertools.count(1, 1): try: start_time = time.time() logging.info('Predicting batch %d', batch_idx) audio_gen, ground_truth_feats, tensor_dict = sess.run( (predictions['audio_gen'], features_tf, tensor_dict_tf)) logging.info('Prediction took %.1f seconds', time.time() - start_time) writers.update(audio_gen, ground_truth_feats, tensor_dict=tensor_dict) logging.info('Batch index %i with size %i took %.1f seconds', batch_idx, batch_size, time.time() - start_time) except tf.errors.OutOfRangeError: logging.info('End of dataset.') break writers.flush() if run_once: break @gin.configurable def evaluate(data_provider, model, model_dir='~/tmp/ddsp/training', master='', batch_size=32, num_batches=50, keys_to_fetch='additive_audio,noise_audio', ckpt_delay_secs=0, run_once=False): """Run evaluation loop. Args: data_provider: DataProvider instance. model: Model instance. model_dir: Path to directory with checkpoints and summary events. master: Name of TensorFlow runtime to use. batch_size: Size of each eval/sample batch. num_batches: How many batches to eval from dataset. -1 denotes all batches. keys_to_fetch: Additional tensors to fetch from model outputs. ckpt_delay_secs: Time to wait when a new checkpoint was not detected. run_once: Only run evaluation or sampling once. """ evaluate_or_sample( data_provider=data_provider, model=model, mode='eval', model_dir=model_dir, master=master, batch_size=batch_size, num_batches=num_batches, keys_to_fetch=keys_to_fetch, ckpt_delay_secs=ckpt_delay_secs, run_once=run_once) @gin.configurable def sample(data_provider, model, model_dir='~/tmp/ddsp/training', master='', batch_size=32, num_batches=50, keys_to_fetch='additive_audio,noise_audio', ckpt_delay_secs=0, run_once=False): """Run sampling loop. Args: data_provider: DataProvider instance. model: Model instance. model_dir: Path to directory with checkpoints and summary events. master: Name of TensorFlow runtime to use. batch_size: Size of each eval/sample batch. num_batches: How many batches to eval from dataset. -1 denotes all batches. keys_to_fetch: Additional tensors to fetch from model outputs. ckpt_delay_secs: Time to wait when a new checkpoint was not detected. run_once: Only run evaluation or sampling once. """ evaluate_or_sample( data_provider=data_provider, model=model, mode='sample', model_dir=model_dir, master=master, batch_size=batch_size, num_batches=num_batches, keys_to_fetch=keys_to_fetch, ckpt_delay_secs=ckpt_delay_secs, run_once=run_once) ```
{ "source": "Jeonghun-Ban/corona-bot", "score": 3 }
#### File: corona-bot/crawler/hospital_info.py ```python import requests from bs4 import BeautifulSoup import json hosiptal = {} # ์ „์ฒด ์„ ๋ณ„์ง„๋ฃŒ์†Œ hospital_dic = {} # retry get raw without timeout exception def get_raw(url): while True: try: return requests.get(url, timeout=10, headers={"User-Agent": "Mozilla/5.0"}) except: print("internet not connected") # ๊ฒ€์ฒด์ฑ„์ทจ๊ฐ€๋Šฅ ์ง„๋ฃŒ์†Œ possible_hospital=[] raw_hospital = get_raw("http://www.mohw.go.kr/react/popup_200128.html") # print(raw_hospital.encoding) # raw_hospital.encoding = None html_hospital = BeautifulSoup(raw_hospital.content, 'html.parser', from_encoding='euc-kr') hospitals = html_hospital.select("tbody.tb_center tr") # 546 city_dic = {} item_list = [] for h in hospitals: id = h.select_one("th").text city = h.select_one("td:nth-of-type(1)").text region = h.select_one("td:nth-of-type(2)").text selected = h.select_one("td:nth-of-type(3)").text.replace(" ","").replace("(๊ฒ€์ฒด์ฑ„์ทจ ๊ฐ€๋Šฅ)", "") number = h.select_one("td:nth-of-type(4)").text.replace(",","/") # city_dic = {} # item_list = [] if "*" in selected: possible_hospital.append(selected) if city in hospital_dic.keys(): if region in city_dic.keys(): print(region, "์•ˆ์— ๋” ์ถ”๊ฐ€") item_list.append([selected, number]) city_dic[region] = item_list else: print(region, "์ƒˆ๋กญ๊ฒŒ ์ถ”๊ฐ€") item_list = list() item_list.append([selected, number]) city_dic[region] = item_list else: print(city, "์‹œ ์ถ”๊ฐ€") item_list = list() city_dic = dict() item_list.append([selected, number]) city_dic[region] = item_list hospital_dic[city] = city_dic print(hospital_dic) json_hospital = json.dumps(hospital_dic, indent=4) print(json_hospital) with open('hospital.json', 'w', encoding="utf-8") as make_hosptial: json.dump(hospital_dic, make_hosptial, ensure_ascii=False, indent="\t") ``` #### File: corona-bot/crawler/summary_info.py ```python import requests from bs4 import BeautifulSoup import json import boto3 import os # TODO ์ง€์—ญ๋ณ„ ํ™•์ง„์ž def set_summary_info(event, context): data = dict() raw_status = get_raw(os.environ['summary_url']) html_status = BeautifulSoup(raw_status.text, 'html.parser') statusbox = html_status.select("span.num") checkbox = html_status.select_one("span.num_rnum").text updatebox = html_status.select_one("span.livedate").text[1:].split(".") data['update_date'] = updatebox[0] + "์›” " + updatebox[1] + "์ผ" + updatebox[2].split(",")[0] data['confirmator_num'] = statusbox[0].text.replace("(๋ˆ„์ )", "") data['discharged_num'] = statusbox[1].text data['charged_num'] = statusbox[2].text data['death_num'] = statusbox[3].text data['check_num'] = checkbox.split()[0] data['cured_rate'] = round(int(data['discharged_num'].replace(",", ""))/int(data['confirmator_num'].replace(",", ""))*100, 1) json_data = json.dumps(data) s3 = boto3.resource('s3') bucket = s3.Bucket('facebook-coronabot') bucket.put_object(Key='summary.json', Body=json_data) return { 'statusCode': 200, 'body': json_data } # retry get raw without timeout exception def get_raw(url): while True: try: return requests.get(url, timeout=10, headers={"User-Agent": "Mozilla/5.0"}) except: pass ``` #### File: corona-bot/facebook/webhook.py ```python import json import os import re import requests from parser import summary_info from parser import hospital_info CHATBOT_RESPONSE = { '์ผ์ผํ™•์ง„์ž': '', 'ํ™•์ง„ํ™˜์ž์ˆ˜': '', 'ํ‡ด์›์กฐ์น˜์ˆ˜': '', '์‚ฌ๋ง์ž์ˆ˜': '', '์„ ๋ณ„์ง„๋ฃŒ์†Œ': """์‹œ๋„ ๋ฐ ์‹œ๊ตฐ๊ตฌ๋ฅผ ์ž…๋ ฅํ•˜๋ฉด\n์„ ๋ณ„์ง„๋ฃŒ์†Œ ์กฐํšŒ๋ฅผ ์‹œ์ž‘ํ•ฉ๋‹ˆ๋‹ค. \n(๊ฒ€์ƒ‰์–ด ์˜ˆ์‹œ: '์„œ์šธ ์ข…๋กœ๊ตฌ')""", '๋ฐœ๋‹จ': """2019๋…„ 12์›”, ์ค‘๊ตญ ์šฐํ•œ์—์„œ ์ฒ˜์Œ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ฐ์—ผ์›์€ ๋™๋ฌผ๋กœ ์ถ”์ •๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ๋™๋ฌผ์—๊ฒŒ์„œ ์‚ฌ๋žŒ์œผ๋กœ ์ „ํŒŒ๋œ ๊ฒƒ์œผ๋กœ ์ถ”์ •๋ฉ๋‹ˆ๋‹ค.""", '์ฆ์ƒ': """๊ฐ์—ผ๋˜๋ฉด ์ตœ๋Œ€ 2์ฃผ๊ฐ„์˜ ์ž ๋ณต๊ธฐ๋ฅผ ๊ฑฐ์นœ ํ›„, ๋ฐœ์—ด/๊ธฐ์นจ/ํ˜ธํก๊ณค๋ž€์„ ๋น„๋กฏํ•œ ํ๋ ด ์ฆ์ƒ์ด ์ฃผ๋กœ ๋‚˜ํƒ€๋‚ฉ๋‹ˆ๋‹ค. ๋‹ค๋งŒ, ์ฆ์ƒ์ด ๋‚˜ํƒ€๋‚˜์ง€ ์•Š๋Š” ๋ฌด์ฆ์ƒ ๊ฐ์—ผ ์‚ฌ๋ก€๋„ ์กด์žฌํ•ฉ๋‹ˆ๋‹ค.""", '์ „์—ผ๊ฒฝ๋กœ': """์ฝ”๋กœ๋‚˜19๋Š” ์‚ฌ๋žŒ ๊ฐ„ ์ „ํŒŒ๊ฐ€ ํ™•์ธ๋œ ๋ฐ”์ด๋Ÿฌ์Šค์ž…๋‹ˆ๋‹ค. ์ฃผ๋œ ๊ฐ์—ผ๊ฒฝ๋กœ๋Š” ๋น„๋ง๊ฐ์—ผ์œผ๋กœ, ๊ฐ์—ผ์ž์˜ ์นจ๋ฐฉ์šธ์ด ํ˜ธํก๊ธฐ๋‚˜ ๋ˆˆ/์ฝ”/์ž…์˜ ์ ๋ง‰์œผ๋กœ ์นจํˆฌ๋  ๋•Œ ์ „์—ผ๋ฉ๋‹ˆ๋‹ค.""", '์˜ˆ๋ฐฉ๋ฒ•': """1. ์šฐ์„ , ๋น„๋ˆ„์™€ ๋ฌผ๋กœ ์†์„ ์ž์ฃผ ์”ป์Šต๋‹ˆ๋‹ค. ์† ์†Œ๋…์ œ ์‚ฌ์šฉ๋„ ์ข‹์€ ๋Œ€์•ˆ์ž…๋‹ˆ๋‹ค. \n2. ์”ป์ง€ ์•Š์€ ์†์œผ๋กœ ๋ˆˆ์ด๋‚˜ ์ฝ”, ์ž…์„ ๋งŒ์ง€์ง€ ์•Š์Šต๋‹ˆ๋‹ค. \n3. ๊ธฐ์นจ์ด๋‚˜ ์žฌ์ฑ„๊ธฐ๋ฅผ ํ•  ๋•Œ ํ‹ฐ์Šˆ๋‚˜ ์†Œ๋งค๋กœ ์ž…/์ฝ”๋ฅผ ๊ฐ€๋ฆฝ๋‹ˆ๋‹ค. \n4. ์•„ํ”Œ ๋•Œ๋Š” ์ž๊ฐ€๊ฒฉ๋ฆฌ๋ฅผ ํ†ตํ•ด ๋‹ค๋ฅธ ์‚ฌ๋žŒ๊ณผ์˜ ์ ‘์ด‰์„ ํ”ผํ•ฉ๋‹ˆ๋‹ค.""", '์น˜๋ฃŒ': """์ฝ”๋กœ๋‚˜19 ์น˜๋ฃŒ๋Š” ํ™˜์ž์˜ ์ฆ์ƒ์— ๋Œ€์‘ํ•˜๋Š” ์น˜๋ฃŒ๋กœ ์ด๋ฃจ์–ด์ง‘๋‹ˆ๋‹ค.\n๊ธฐ์นจ/์ธํ›„ํ†ต/ํ๋ ด ๋“ฑ ์ฃผ์š” ์ฆ์ƒ์— ๋”ฐ๋ผ ํ•ญ๋ฐ”์ด๋Ÿฌ์Šค์ œ๋‚˜ ํ•ญ์ƒ์ œ ํˆฌ์—ฌ๊ฐ€ ํ•ด๋‹น๋ฉ๋‹ˆ๋‹ค.""", } cities = ('์„œ์šธ', '๋ถ€์‚ฐ', '๋Œ€๊ตฌ', '์ธ์ฒœ', '๊ด‘์ฃผ', '๋Œ€์ „', '์šธ์‚ฐ', '์„ธ์ข…', '๊ฒฝ๊ธฐ', '๊ฐ•์›', '์ถฉ๋ถ', '์ถฉ๋‚จ', '์ „๋ถ', '์ „๋‚จ', '๊ฒฝ๋ถ', '๊ฒฝ๋‚จ', '์ œ์ฃผ') def event_handler(event, context): # TODO implement if event["httpMethod"] == "GET": hub_challenge = event["queryStringParameters"]["hub.challenge"] hub_verify_token = event["queryStringParameters"]["hub.verify_token"] if hub_verify_token == os.environ['VERIFY_TOKEN']: return {'statusCode': '200', 'body': hub_challenge, 'headers': {'Content-Type': 'application/json'}} else: return {'statusCode': '401', 'body': 'Incorrect verify token', 'headers': {'Content-Type': 'application/json'}} elif event["httpMethod"] == "POST": incoming_message = json.loads(event['body']) for entry in incoming_message['entry']: for message in entry['messaging']: if 'message' in message: send_dots(message['sender']['id']) try: send_text( message['sender']['id'], message['message']['text']) except: send_text( message['sender']['id'], '.') return {'statusCode': '200', 'body': 'Success' , 'headers': {'Content-Type': 'application/json'}} def send_text(fbid, received_message): reply = '' quick_replies = list() # add crawler data in dict if '์ผ์ผํ™•์ง„์ž' in received_message: CHATBOT_RESPONSE['์ผ์ผํ™•์ง„์ž'] = summary_info.get_daily_num() if 'ํ™•์ง„ํ™˜์ž์ˆ˜' in received_message: CHATBOT_RESPONSE['ํ™•์ง„ํ™˜์ž์ˆ˜'] = summary_info.get_confirmator_num() if 'ํ‡ด์›์กฐ์น˜์ˆ˜' in received_message: CHATBOT_RESPONSE['ํ‡ด์›์กฐ์น˜์ˆ˜'] = summary_info.get_discharged_num() if '์‚ฌ๋ง์ž์ˆ˜' in received_message: CHATBOT_RESPONSE['์‚ฌ๋ง์ž์ˆ˜'] = summary_info.get_death_num() for key in CHATBOT_RESPONSE.keys(): quick_replies.append({ "content_type": "text", "title": key, "payload": 'DEVELOPER_DEFINED_PAYLOAD'}) if key in received_message: reply += CHATBOT_RESPONSE[key] + '\n\n' # parse hospital_list for city in cities: if re.compile(city).search(received_message): reply += hospital_info.get_hospital_list(city, received_message) break if not reply: reply = "์•ˆ๋…•ํ•˜์„ธ์š”,\n์ฝ”๋กœ๋‚˜ ์•Œ๋ฆฌ๋ฏธ์ž…๋‹ˆ๋‹ค!\n\n์•„๋ž˜ ์ œ์‹œ๋œ ํ‚ค์›Œ๋“œ๋ฅผ ํฌํ•จํ•˜์—ฌ ์งˆ๋ฌธํ•ด์ฃผ์„ธ์š”." send_message(json.dumps({ "recipient": {"id": fbid}, "message": {"text": reply, "quick_replies": quick_replies}})) def send_dots(fbid): send_message(json.dumps({ "recipient": {"id": fbid}, "sender_action": "typing_on" })) def send_message(response_msg): endpoint = 'https://graph.facebook.com/v6.0/me/messages?access_token=%s' % os.environ['PAGE_ACCESS_TOKEN'] requests.post(endpoint, headers={ "Content-Type": "application/json"}, data=response_msg) ```
{ "source": "Jeonghun-Ban/likelion-mju.com", "score": 2 }
#### File: likelion-mju.com/account/models.py ```python from django.db import models from django.contrib.auth.models import ( BaseUserManager, AbstractBaseUser, PermissionsMixin ) class UserManager(BaseUserManager): def create_user(self, email, number, name, gender, phone, college, department, grade, password=None): if not email: raise ValueError(_('Users must have an email address')) user = self.model( email=self.normalize_email(email), number = number, name = name, gender = gender, phone = phone, college = college, department = department, grade = grade, ) user.set_password(password) user.save(using=self._db) return user def create_superuser(self, email, number, name, gender, phone, college, department, grade, password): user = self.create_user( email=email, password=password, number = number, name = name, gender = gender, phone = phone, college = college, department = department, grade = grade, ) user.is_superuser = True user.is_active = True user.save(using=self._db) return user class User(AbstractBaseUser, PermissionsMixin): number = models.CharField( verbose_name = 'ํ•™๋ฒˆ', max_length=15, unique=True ) name = models.CharField( verbose_name = '์ด๋ฆ„', max_length=15, null=True ) gender = models.CharField( verbose_name = '์„ฑ๋ณ„', max_length=15, null=True ) email = models.EmailField( verbose_name = '์ด๋ฉ”์ผ', max_length=255, unique=True, null=True ) phone = models.CharField( verbose_name = '์ „ํ™”๋ฒˆํ˜ธ', max_length=15, null=True ) college = models.CharField( verbose_name = '๋‹จ๊ณผ๋Œ€', max_length=15, null=True ) department = models.CharField( verbose_name = '์ „๊ณต', max_length=15, null=True ) grade = models.IntegerField( verbose_name = 'ํ•™๋…„', null=True ) is_active = models.BooleanField(default=False) objects = UserManager() USERNAME_FIELD = 'number' REQUIRED_FIELDS = [ 'name', 'gender', 'phone', 'email', 'college', 'department', 'grade' ] def __str__(self): return self.name def has_perm(self, perm, obj=None): return True def has_module_perms(self, app_label): return True @property def is_staff(self): return self.is_superuser ```
{ "source": "Jeonghun-Ban/likelionmyongji_lotto", "score": 3 }
#### File: likelionmyongji_lotto/lotto/views.py ```python from django.shortcuts import render, redirect import random # Create your views here. def home(request): return render(request, 'home.html') def result(request): # input number number_list = list() for i in range(0,6): number = request.GET['number'+str(i+1)] # if number is null, redirect home.html if number == '': return redirect('home') number_list.append(int(number)) # random number rand_list = list() for i in range(0,7): rand = random.randrange(1,46) # when rand in rand_list while rand in rand_list: rand = random.randrange(1,46) rand_list.append(rand) # count same number count=0 for i in range(0,6): for j in range(0,7): if number_list[i]==rand_list[j]: count+=1 return render(request, 'result.html', {'number_list':number_list, 'rand_list':rand_list, 'count':count }) ```
{ "source": "jeonghunn/EverytimeBot", "score": 3 }
#### File: jeonghunn/EverytimeBot/bot.py ```python import logging import telegram import requests, json import traceback from time import sleep import model as ml import tensorflow as tf from earlystop import EarlyStopping import random import math import os, sys import data import datetime from configs import DEFINES update_id = 0 def __del__(self): bot = telegram.Bot('auth') bot.send_message(chat_id = -116418298, text="Penta ์„œ๋น„์Šค๊ฐ€ ์ข…๋ฃŒ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.") def main(): """Run the bot.""" global update_id # Telegram Bot Authorization Token bot = telegram.Bot('auth') URL = "https://unopenedbox.com/develop/square/api.php" last_message = "" bootcount = 0 lcount = 0 readingold = False readingold_lastcount = 0 now = datetime.datetime.now() # get the first pending update_id, this is so we can skip over it in case # we get an "Unauthorized" exception. # ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•œ ์‚ฌ์ „ ๊ตฌ์„ฑ ํ•œ๋‹ค. char2idx, idx2char, vocabulary_length = data.load_vocabulary() # ์—์Šคํ‹ฐ๋ฉ”์ดํ„ฐ ๊ตฌ์„ฑํ•œ๋‹ค. classifier = tf.estimator.Estimator( model_fn=ml.Model, # ๋ชจ๋ธ ๋“ฑ๋กํ•œ๋‹ค. model_dir=DEFINES.check_point_path, # ์ฒดํฌํฌ์ธํŠธ ์œ„์น˜ ๋“ฑ๋กํ•œ๋‹ค. params={ # ๋ชจ๋ธ ์ชฝ์œผ๋กœ ํŒŒ๋ผ๋ฉ”ํ„ฐ ์ „๋‹ฌํ•œ๋‹ค. 'hidden_size': DEFINES.hidden_size, # ๊ฐ€์ค‘์น˜ ํฌ๊ธฐ ์„ค์ •ํ•œ๋‹ค. 'layer_size': DEFINES.layer_size, # ๋ฉ€ํ‹ฐ ๋ ˆ์ด์–ด ์ธต ๊ฐœ์ˆ˜๋ฅผ ์„ค์ •ํ•œ๋‹ค. 'learning_rate': DEFINES.learning_rate, # ํ•™์Šต์œจ ์„ค์ •ํ•œ๋‹ค. 'teacher_forcing_rate': DEFINES.teacher_forcing_rate, # ํ•™์Šต์‹œ ๋””์ฝ”๋” ์ธํ’‹ ์ •๋‹ต ์ง€์›์œจ ์„ค์ • 'vocabulary_length': vocabulary_length, # ๋”•์…”๋„ˆ๋ฆฌ ํฌ๊ธฐ๋ฅผ ์„ค์ •ํ•œ๋‹ค. 'embedding_size': DEFINES.embedding_size, # ์ž„๋ฒ ๋”ฉ ํฌ๊ธฐ๋ฅผ ์„ค์ •ํ•œ๋‹ค. 'embedding': DEFINES.embedding, # ์ž„๋ฒ ๋”ฉ ์‚ฌ์šฉ ์œ ๋ฌด๋ฅผ ์„ค์ •ํ•œ๋‹ค. 'multilayer': DEFINES.multilayer, # ๋ฉ€ํ‹ฐ ๋ ˆ์ด์–ด ์‚ฌ์šฉ ์œ ๋ฌด๋ฅผ ์„ค์ •ํ•œ๋‹ค. 'attention': DEFINES.attention, # ์–ดํ…์…˜ ์ง€์› ์œ ๋ฌด๋ฅผ ์„ค์ •ํ•œ๋‹ค. 'teacher_forcing': DEFINES.teacher_forcing, # ํ•™์Šต์‹œ ๋””์ฝ”๋” ์ธํ’‹ ์ •๋‹ต ์ง€์› ์œ ๋ฌด ์„ค์ •ํ•œ๋‹ค. 'loss_mask': DEFINES.loss_mask, # PAD์— ๋Œ€ํ•œ ๋งˆ์Šคํฌ๋ฅผ ํ†ตํ•œ loss๋ฅผ ์ œํ•œ ํ•œ๋‹ค. 'serving': DEFINES.serving # ๋ชจ๋ธ ์ €์žฅ ๋ฐ serving ์œ ๋ฌด๋ฅผ ์„ค์ •ํ•œ๋‹ค. }) while 1: sleep(3) now = datetime.datetime.now() bootcount = bootcount + 1 lcount = lcount + 1 try: #data = {'a': 'penta_check', 'auth': '<PASSWORD>', 'start_num' : '0', 'number' : '15'} #res = requests.post(URL, data=data) #answer = "[๋ณด๊ณ ]" + res.json()[0]['description']; answer = "" if bootcount == 1 : #answer = "๋‹ค์‹œ ์‹œ์ž‘ํ–ˆ์Šต๋‹ˆ๋‹ค. Penta ๋ฒ„์ „ 1.0.625 ๋ฐ€๋ฆฐ ์ฑ„ํŒ…์„ ์ฝ๋Š” ์ค‘ ์ž…๋‹ˆ๋‹ค..." readingold = True readingold_lastcount = bootcount if readingold_lastcount < bootcount and readingold is True : readingold = False #bot.send_message(chat_id = -116418298, text="์ด์ „๊ธ€ ์ฝ๊ธฐ ์™„๋ฃŒ.") if last_message != answer and answer != "" : bot.send_message(chat_id = -116418298, text=answer) last_message = answer if last_message == answer : tlm = "" last_user = 0 last_talk = "" updates = bot.get_updates(offset=update_id) for i in updates: if i.message: if last_user != i.message.from_user.id : last_talk = tlm tlm = "" last_user = i.message.from_user.id # with open("./data_in/ChatBotData.csv", "a") as myfile: # myfile.write("\n") if i.message.text is not None and tlm != "" : tlm = tlm + " " + i.message.text # with open("./data_in/ChatBotData.csv", "a") as myfile: # myfile.write(" " + i.message.text) if i.message.text is not None and tlm == "" : tlm = i.message.text # with open("./data_in/ChatBotData.csv", "a") as myfile: # myfile.write(i.message.text) update_id = i.update_id + 1 now_last_id = updates[-1].update_id if tlm != "" and tlm is not None and now_last_id + 1 <= update_id: readingold_lastcount = readingold_lastcount +1 lcount = 0 if not readingold : predic_input_enc, predic_input_enc_length = data.enc_processing([tlm], char2idx) predic_target_dec, _ = data.dec_target_processing([""], char2idx) # ์˜ˆ์ธก์„ ํ•˜๋Š” ๋ถ€๋ถ„์ด๋‹ค. predictions = classifier.predict( input_fn=lambda:data.eval_input_fn(predic_input_enc, predic_target_dec, DEFINES.batch_size)) # ์˜ˆ์ธกํ•œ ๊ฐ’์„ ์ธ์ง€ ํ•  ์ˆ˜ ์žˆ๋„๋ก # ํ…์ŠคํŠธ๋กœ ๋ณ€๊ฒฝํ•˜๋Š” ๋ถ€๋ถ„์ด๋‹ค. aimessage = data.pred2string(predictions, idx2char) if aimessage != "" : bot.send_message(chat_id = -116418298, text=aimessage) except IndexError: update_id = None except: if last_message != traceback.format_exc() and "Message text is empty" not in traceback.format_exc(): bot.send_message(chat_id = -11641828, text="[์˜ค๋ฅ˜] ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค. ์ ๊ฒ€์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค. \n"+ traceback.format_exc()) last_message = traceback.format_exc() logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') def echo(bot): """Echo the message the user sent.""" global update_id # Request updates after the last update_id for update in bot.get_updates(offset=update_id, timeout=10): update_id = update.update_id + 1 if update.message: # your bot can receive updates without messages # Reply to the message update.message.reply_text("HI") if __name__ == '__main__': main() ```
{ "source": "jeonghunseo1/github_test", "score": 3 }
#### File: github_test/gui_basic/4_text_entry.py ```python from tkinter import * root = Tk() root.title("Nado GUI") root.geometry("640x480") # ๊ฐ€๋กœ * ์„ธ๋กœ txt = Text(root, width=30, height=5) txt.pack() txt.insert(END, "๊ธ€์ž๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š”") e = Entry(root, width=30) e.pack() e.insert(0, "ํ•œ ์ค„๋งŒ ์ž…๋ ฅํ•ด์š”") #0: ์ฒ˜์Œ์œ„์น˜์— ๊ธฐ๋ณธ๊ฐ’์ด ๋“ค์–ด๊ฐ def btncmd(): #๋‚ด์šฉ ์ถœ๋ ฅ print(txt.get("1.0",END)) # 1: ์ฒซ๋ฒˆ์งธ ๋ผ์ธ, 0: 0๋ฒˆ์งธ column ์œ„์น˜ print(e.get()) #๋‚ด์šฉ ์‚ญ์ œ txt.delete("1.0",END) e.delete(0, END) btn = Button(root, text="ํด๋ฆญ", command=btncmd) btn.pack() root.mainloop() ``` #### File: github_test/gui_basic/menu.py ```python from tkinter import * root = Tk() root.title("Nado GUI") root.geometry("640x480") # ๊ฐ€๋กœ * ์„ธ๋กœ def create_new_file(): print("์ƒˆ ํŒŒ์ผ์„ ๋งŒ๋“ญ๋‹ˆ๋‹ค") menu = Menu(root) # File ๋ฉ”๋‰ด menu_file = Menu(menu, tearoff=0) menu_file.add_command(label="New File", command=create_new_file) menu_file.add_command(label="New Window") menu_file.add_separator() menu_file.add_command(label="Open File...") menu_file.add_separator() menu_file.add_command(label="Save All",state="disabled") # ๋น„ํ™œ์„ฑํ™” menu_file.add_separator() menu_file.add_command(label="Exit", command=root.quit) menu.add_cascade(label="File", menu=menu_file) # Edit ๋ฉ”๋‰ด (๋นˆ ๊ฐ’) menu.add_cascade(label="Edit") # Language ๋ฉ”๋‰ด ์ถ”๊ฐ€ (radio ๋ฒ„ํŠผ์„ ํ†ตํ•ด์„œ ํƒ1) menu_lang = Menu(menu, tearoff=0) menu_lang.add_radiobutton(label="Python") menu_lang.add_radiobutton(label="Java") menu_lang.add_radiobutton(label="C++") menu.add_cascade(label="Language", menu= menu_lang) # View ๋ฉ”๋‰ด menu_view = Menu(menu, tearoff=0) menu_view.add_checkbutton(label="Show Minimap") menu.add_cascade(label="View", menu=menu_view) root.config(menu= menu) root.mainloop() ``` #### File: jeonghunseo1/github_test/main1.py ```python import time from watchdog.observers import Observer from watchdog.events import FileSystemEventHandler class Watcher: DIRECTORY_WATCH = "./logDir" def __init__(self): self.observer = Observer() def run(self): event_handler = Handler() self.observer.schedule(event_handler, self.DIRECTORY_WATCH, recursive=True) self.observer.start() try: while True: time.sleep(5) except: self.observer.stop() print("Error") self.observer.join() class Handler(FileSystemEventHandler): @staticmethod def on_moved(event): print("move ๋ฐœ์ƒ") def on_created(shelf,event): print("move ๋ฐœ์ƒ") def on_deleted(shelf,event): print("delete ๋ฐœ์ƒ") def on_modified(shelf,event): print("modified ๋ฐœ์ƒ") def on_any_event(shelf,event): print("ํŠน์ • event ๋ฐœ์ƒ") print("test ") if __name__ == "__main__": w = Watcher() w.run() ``` #### File: jeonghunseo1/github_test/tray_icon.py ```python import PySimpleGUI as sg from psgtray import SystemTray def main(): menu = ['', ['Show Window', 'Hide Window', '---', '!Disabled Item', 'Change Icon', ['Happy', 'Sad', 'Plain'], 'Exit']] tooltip = 'Tooltip' layout = [ [sg.Multiline(size=(60,10), reroute_stdout=False, reroute_cprint=True, write_only=True, key='-OUT-')], [sg.B('Hide Window'), sg.Button('Exit')]] window = sg.Window('Window Title', layout, finalize=True, enable_close_attempted_event=True) tray = SystemTray(menu, single_click_events=False, window=window, tooltip=tooltip, icon=sg.DEFAULT_BASE64_ICON) tray.show_message('System Tray', 'System Tray Icon Started!') #sg.cprint(sg.get_versions()) while True: event, values = window.read() # IMPORTANT step. It's not required, but convenient. Set event to value from tray # if it's a tray event, change the event variable to be whatever the tray sent if event == tray.key: #sg.cprint(f'System Tray Event = ', values[event], c='white on red') event = values[event] # use the System Tray's event as if was from the window if event in (sg.WIN_CLOSED, 'Exit'): break #sg.cprint(event, values) #tray.show_message(title=event, message=values) if event in ('Show Window', sg.EVENT_SYSTEM_TRAY_ICON_DOUBLE_CLICKED): window.un_hide() window.bring_to_front() elif event in ('Hide Window', sg.WIN_CLOSE_ATTEMPTED_EVENT): window.hide() tray.show_icon() # if hiding window, better make sure the icon is visible tray.notify('System Tray Item Chosen', f'You chose {event}') elif event == 'Happy': tray.change_icon(sg.EMOJI_BASE64_HAPPY_JOY) elif event == 'Sad': tray.change_icon(sg.EMOJI_BASE64_FRUSTRATED) elif event == 'Plain': tray.change_icon(sg.DEFAULT_BASE64_ICON) elif event == 'Hide Icon': tray.hide_icon() elif event == 'Show Icon': tray.show_icon() elif event == 'Change Tooltip': tray.set_tooltip(values['-IN-']) tray.close() # optional but without a close, the icon may "linger" until moused over window.close() if __name__ == '__main__': main() ```
{ "source": "jeonghwaYoo/high-res-mapping", "score": 3 }
#### File: keras_contrib/metrics/segmentation_metrics.py ```python import sys from keras import metrics import keras.backend as K def _end_mean(x, axis=-1): """ Same as K.mean, but defaults to the final axis. """ return K.mean(x, axis=axis) def _metric_2d_adaptor(y_true, y_pred, metric=None, summary=_end_mean, **kwargs): """ Adapt a one dimensional loss function to work with 2d segmentation data. """ if metric is None: raise ValueError("You must provide a metric function such as binary_crossentropy") pred_shape = K.shape(y_pred) true_shape = K.shape(y_true) y_pred_reshaped = K.reshape(y_pred, (-1, pred_shape[-1])) y_true_reshaped = K.reshape(y_true, (-1, true_shape[-1])) result = metric(y_pred_reshaped, y_true_reshaped, **kwargs) if summary is not None: result = summary(result) # if len(true_shape) >= 3: if true_shape.get_shape()[0].value >= 3: return K.reshape(result, true_shape[:-1]) else: return result def categorical_pixel_accuracy(y_true, y_pred): pred_shape = K.shape(y_pred) true_shape = K.shape(y_true) # reshape such that w and h dim are multiplied together y_pred_reshaped = K.reshape(y_pred, (-1, pred_shape[-1])) y_true_reshaped = K.reshape(y_true, (-1, true_shape[-1])) # correctly classified clf_pred = K.one_hot(K.argmax(y_pred_reshaped), num_classes=true_shape[-1]) correct_pixels_per_class = K.cast( K.equal(clf_pred, y_true_reshaped), dtype='float32') return K.mean(correct_pixels_per_class) def mean_accuracy(y_true, y_pred): pred_shape = K.shape(y_pred) true_shape = K.shape(y_true) # reshape such that w and h dim are multiplied together y_pred_reshaped = K.reshape(y_pred, (-1, pred_shape[-1])) y_true_reshaped = K.reshape(y_true, (-1, true_shape[-1])) # correctly classified clf_pred = K.one_hot(K.argmax(y_pred_reshaped), num_classes=true_shape[-1]) equal_entries = K.cast( K.equal(clf_pred, y_true_reshaped), dtype='float32') * y_true_reshaped correct_pixels_per_class = K.sum(equal_entries, axis=1) n_pixels_per_class = K.sum(y_true_reshaped, axis=1) # epsilon added to avoid dividing by zero acc = (correct_pixels_per_class + K.epsilon()) / (n_pixels_per_class + K.epsilon()) return K.mean(acc) def binary_accuracy(y_true, y_pred): """ Same as keras.metrics.binary_accuracy for 2d label data. """ return _metric_2d_adaptor(y_true, y_pred, loss=metrics.binary_accuracy, summary=_end_mean) def categorical_accuracy(y_true, y_pred): """ Same as keras.metrics.categorical_accuracy for 2d label data. """ return _metric_2d_adaptor(y_true, y_pred, loss=metrics.categorical_accuracy, summary=_end_mean) def top_k_categorical_accuracy(y_true, y_pred): """ Same as keras.metrics.top_k_categorical_accuracy for 2d label data. """ return _metric_2d_adaptor(y_true, y_pred, loss=metrics.top_k_categorical_accuracy, summary=_end_mean) def sparse_top_k_categorical_accuracy(y_true, y_pred): """ Same as keras.metrics.categorical_accuracy for 2d label data. """ return _metric_2d_adaptor(y_true, y_pred, loss=metrics.sparse_top_k_categorical_accuracy, summary=_end_mean) def mean_intersection_over_union(y_true, y_pred, smooth=None, axis=-1): """Jaccard distance for semantic segmentation, also known as the intersection-over-union loss. This loss is useful when you have unbalanced numbers of pixels within an image because it gives all classes equal weight. However, it is not the defacto standard for image segmentation. For example, assume you are trying to predict if each pixel is cat, dog, or background. You have 80% background pixels, 10% dog, and 10% cat. If the model predicts 100% background should it be be 80% right (as with categorical cross entropy) or 30% (with this loss)? The loss has been modified to have a smooth gradient as it converges on zero. This has been shifted so it converges on 0 and is smoothed to avoid exploding or disappearing gradient. Also see jaccard which takes a slighty different approach. Jaccard = (|X & Y|)/ (|X|+ |Y| - |X & Y|) = sum(|A*B|)/(sum(|A|)+sum(|B|)-sum(|A*B|)) # References Csurka, Gabriela & Larlus, Diane & Perronnin, Florent. (2013). What is a good evaluation measure for semantic segmentation?. IEEE Trans. Pattern Anal. Mach. Intell.. 26. . 10.5244/C.27.32. https://en.wikipedia.org/wiki/Jaccard_index """ if smooth is None: smooth = K.epsilon() pred_shape = K.shape(y_pred) true_shape = K.shape(y_true) # reshape such that w and h dim are multiplied together y_pred_reshaped = K.reshape(y_pred, (-1, pred_shape[-1])) y_true_reshaped = K.reshape(y_true, (-1, true_shape[-1])) # correctly classified clf_pred = K.one_hot(K.argmax(y_pred_reshaped), num_classes=true_shape[-1]) equal_entries = K.cast( K.equal(clf_pred, y_true_reshaped), dtype='float32') * y_true_reshaped intersection = K.sum(equal_entries, axis=1) union_per_class = K.sum( y_true_reshaped, axis=1) + K.sum( y_pred_reshaped, axis=1) # smooth added to avoid dividing by zero iou = (intersection + smooth) / ( (union_per_class - intersection) + smooth) return K.mean(iou) ``` #### File: high-res-mapping/utils/plotting.py ```python import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import ConnectionPatch from matplotlib.transforms import Bbox import seaborn as sns import utils from utils import filters, maxima, segment, merge import warnings def pipeline(img, low, high, roi_percentile=85, focal_scope='global', maxima_areas='small', merge_type='blend', merge_alpha=0.5, filter_type='percentage', filter_percentage=15, filter_threshold=0.6): """ Visualization of the whole workflow. Requires the original image and the high and low res CAMs to work. Performs the following steps: 1. Applies a filter to blur the high-res map. 2. Extracts the ROI from the low-res map through a percentile. 3. Identifies the focal points of the low-res map by locating it's local maxima. 4. Computes the gradient of the high-res map through a sobel filter. 5. Draws a histogram of the gradient. Only considers areas corresponding to the ROI extracted from the low-res map. 6. Calculates a 'lower' and 'upper' bound on the 25th and 75th percentile, respectively. 7. Performs a region-growing segmentation algorithm on the gradient. The boundaries are the previous percentiles, while the focal points are set as the initial seeds (from where to start growing). 8. Merges the result of the segmentation with the low-res map. 9. Segments the original image according to the result of the previous merger. Note: it would be more efficient and elegant if I went for 'axes fraction' instead of 'data' for the coordinates of the ConnectionPatches, but it's too much of a hassle to change. :param img: Original RBG image, default shape=(224, 224, 3). :param low: Low-resolution CAM, default shape=(14, 14). :param high: High-resolution CAM, default shape=(224, 224). :param roi_percentile: Percentile based on which the ROI will be extracted. The default percentile=85 means that the ROI will include the 15% highest-intensity pixels from the low-res map. :param focal_scope: The scope in which the focal points will be identified. 'global' looks for global maxima, while 'local' looks for local maxima. Accepted values: ['global', 'local'] :param maxima_areas: Specifies the size of the focal points. Two options available: 'small' and 'large'. :param merge_type: Specifies the method of merging the high-res segment map with the low-res map. Two methods available: 'blend' and 'multiply'. The first is a possibly weighted linear combination of the two, while the second simply multiplies them. :param merge_alpha: If merge_type='blend', alpha regulates the importance of each of the two images (i.e. the low and the high-res maps). Should be a float in [0, 1]. High values result in more influence from the high-res map. :param filter_type: Specifies the method of segmenting the original image based on the combined CAM. Two methods are available: 'percentage' and 'threshold'. The first keeps a percentage of the original image's pixels while the second relies solely on the values of the combined CAM exceeding a threshold. :param filter_percentage: Selects the percentage of pixels to be included in the final segment. Only relevant if filter_type='percentage'. Should be a number between 0 and 100. :param filter_threshold: Selects the threshold based on which the final segmentation will be performed. Only pixels of the combined CAM that have an intensity greater than this threshold will be included. Based on this mask, the original image will be segmented. Should be a float in [0, 1]. """ # Value checks # Categorical arguments if maxima_areas not in ('small', 'large'): raise ValueError("available options for maxima_areas are: 'small' and 'large'.") if merge_type not in ('blend', 'multiply'): raise ValueError("available options for merge_type are: 'blend' and 'multiply'.") if filter_type not in ('percentage', 'threshold'): raise ValueError("vailable options for filter_type are: 'percentage' and 'threshold'.") # Percentage arguments if roi_percentile <= 0 or roi_percentile >= 100: raise ValueError('roi_percentile should be a percentage in (0, 100)') elif roi_percentile < 1: warnings.warn('roi_percentile value in [0, 1). Should be defined as a percentage in (0, 100), ' 'e.g. If the desired percentage is 13%, pass 33 instead of 0.33!') if filter_percentage <= 0 or filter_percentage >= 100: raise ValueError('filter_percentage should be a percentage in (0, 100)') elif filter_percentage < 1: warnings.warn('filter_percentage value in [0, 1). Should be defined as a percentage in (0, 100), ' 'e.g. If the desired percentage is 13%, pass 33 instead of 0.33!') # Value arguments if merge_alpha < 0 or merge_alpha > 1: raise ValueError('merge_alpha should be a float in [0, 1]') if filter_threshold < 0 or filter_threshold > 1: raise ValueError('filter_threshold should be a float in [0, 1]') # Coordinates of the top/bottom/left/right/middle of the input image left = (0, img.shape[1] / 2) right = (img.shape[1], img.shape[1] / 2) bottom = (img.shape[1] / 2, img.shape[1]) top = (img.shape[1] / 2, 0) midpoint = (img.shape[1] / 2, img.shape[1] / 2) # Create two 'blank' images for filling empty positions blank = np.ones(img[0].shape, dtype=np.uint8) half_blank = blank[::2] # Initialize 5x7 grid fig, ax = plt.subplots(5, 7, figsize=(16, 16)) ############################## ######## First column ######## ############################## # Fill first, second, fourth and fifth rows with blank images ax[0, 0].imshow(blank, alpha=0) ax[0, 0].axis('off') ax[1, 0].imshow(blank, alpha=0) ax[1, 0].axis('off') ax[3, 0].imshow(blank, alpha=0) ax[3, 0].axis('off') ax[4, 0].imshow(half_blank, alpha=0) ax[4, 0].axis('off') # Add original image to the third row ax[2, 0].imshow(img[0], zorder=3) ax[2, 0].axis('off') ax[2, 0].set_title('Original image', backgroundcolor='white', zorder=2) # Three crooked lines starting from the first row, represented by thirteen (!) connection patches # Connection of 'original image' to 'high-res map' con1a = ConnectionPatch(xyA=top, xyB=midpoint, coordsA='data', coordsB='data', axesA=ax[2, 0], axesB=ax[1, 0], color='black', lw=2, zorder=1) con1b = ConnectionPatch(xyA=midpoint, xyB=left, coordsA='data', coordsB='data', axesA=ax[1, 0], axesB=ax[1, 1], color='black', lw=2, arrowstyle='->') # Connection of 'original image' to 'low-res map' con2a = ConnectionPatch(xyA=bottom, xyB=midpoint, coordsA='data', coordsB='data', axesA=ax[2, 0], axesB=ax[3, 0], color='black', lw=2) con2b = ConnectionPatch(xyA=midpoint, xyB=left, coordsA='data', coordsB='data', axesA=ax[3, 0], axesB=ax[3, 1], color='black', lw=2, arrowstyle='->') # Connection of 'original image' to 'result' con3b = ConnectionPatch(xyA=midpoint, xyB=bottom, coordsA='data', coordsB='data', axesA=ax[1, 0], axesB=ax[0, 0], color='black', lw=2) con3c = ConnectionPatch(xyA=bottom, xyB=bottom, coordsA='data', coordsB='data', axesA=ax[0, 0], axesB=ax[0, 1], color='black', lw=2) con3d = ConnectionPatch(xyA=bottom, xyB=bottom, coordsA='data', coordsB='data', axesA=ax[0, 1], axesB=ax[0, 2], color='black', lw=2) con3e = ConnectionPatch(xyA=bottom, xyB=bottom, coordsA='data', coordsB='data', axesA=ax[0, 2], axesB=ax[0, 3], color='black', lw=2) con3f = ConnectionPatch(xyA=bottom, xyB=bottom, coordsA='data', coordsB='data', axesA=ax[0, 3], axesB=ax[0, 4], color='black', lw=2) con3g = ConnectionPatch(xyA=bottom, xyB=bottom, coordsA='data', coordsB='data', axesA=ax[0, 4], axesB=ax[0, 5], color='black', lw=2) con3h = ConnectionPatch(xyA=bottom, xyB=bottom, coordsA='data', coordsB='data', axesA=ax[0, 5], axesB=ax[0, 6], color='black', lw=2) con3i = ConnectionPatch(xyA=bottom, xyB=midpoint, coordsA='data', coordsB='data', axesA=ax[0, 6], axesB=ax[1, 6], color='black', lw=2) con3k = ConnectionPatch(xyA=midpoint, xyB=midpoint, coordsA='data', coordsB='data', axesA=ax[1, 6], axesB=ax[2, 6], color='black', lw=2) con3l = ConnectionPatch(xyA=midpoint, xyB=top, coordsA='data', coordsB='data', axesA=ax[2, 6], axesB=ax[3, 6], color='black', lw=2, arrowstyle='->', zorder=1) # Add each patch to its respective axis ax[2, 0].add_artist(con1a) ax[1, 0].add_artist(con1b) ax[2, 0].add_artist(con2a) ax[3, 0].add_artist(con2b) ax[1, 0].add_artist(con3b) ax[0, 0].add_artist(con3c) ax[0, 1].add_artist(con3d) ax[0, 2].add_artist(con3e) ax[0, 3].add_artist(con3f) ax[0, 4].add_artist(con3g) ax[0, 5].add_artist(con3h) ax[0, 6].add_artist(con3i) ax[1, 6].add_artist(con3k) ax[2, 6].add_artist(con3l) ############################### ######## Second column ######## ############################### # High-res map on the second line ax[1, 1].imshow(high) ax[1, 1].axis('off') ax[1, 1].set_title('High-res CAM') # Low-res map on the fourth line ax[3, 1].imshow(utils.resize(low), zorder=3) ax[3, 1].axis('off') ax[3, 1].set_title('Low-res CAM', backgroundcolor='white', zorder=2) # Fill the first, third and fifth lines with blank images ax[0, 1].imshow(blank, alpha=0) ax[0, 1].axis('off') ax[2, 1].imshow(blank, alpha=0) ax[2, 1].axis('off') ax[4, 1].imshow(half_blank, alpha=0) ax[4, 1].axis('off') # Four lines represented by eleven (!) connection patches # Connection of 'high-res map' to 'gradient' con4 = ConnectionPatch(xyA=right, xyB=left, coordsA='data', coordsB='data', axesA=ax[1, 1], axesB=ax[1, 2], color='black', lw=2, arrowstyle='->') # Connection of 'low-res map' to 'roi' con5a = ConnectionPatch(xyA=top, xyB=midpoint, coordsA='data', coordsB='data', axesA=ax[3, 1], axesB=ax[2, 1], color='black', lw=2, zorder=1) con5b = ConnectionPatch(xyA=midpoint, xyB=left, coordsA='data', coordsB='data', axesA=ax[2, 1], axesB=ax[2, 2], color='black', lw=2, arrowstyle='->') # Connection of 'low-res map' to 'focal points' con6 = ConnectionPatch(xyA=right, xyB=left, coordsA='data', coordsB='data', axesA=ax[3, 1], axesB=ax[3, 2], color='black', lw=2, arrowstyle='->') # Connection of 'low-res map' to 'merger' con7a = ConnectionPatch(xyA=bottom, xyB=top, coordsA='data', coordsB='data', axesA=ax[3, 1], axesB=ax[4, 1], color='black', lw=2, zorder=1) con7b = ConnectionPatch(xyA=top, xyB=top, coordsA='data', coordsB='data', axesA=ax[4, 1], axesB=ax[4, 2], color='black', lw=2, zorder=1) con7c = ConnectionPatch(xyA=top, xyB=top, coordsA='data', coordsB='data', axesA=ax[4, 2], axesB=ax[4, 3], color='black', lw=2, zorder=1) con7d = ConnectionPatch(xyA=top, xyB=top, coordsA='data', coordsB='data', axesA=ax[4, 3], axesB=ax[4, 4], color='black', lw=2, zorder=1) con7e = ConnectionPatch(xyA=top, xyB=top, coordsA='data', coordsB='data', axesA=ax[4, 4], axesB=ax[4, 5], color='black', lw=2, zorder=1) con7f = ConnectionPatch(xyA=top, xyB=bottom, coordsA='data', coordsB='data', axesA=ax[4, 5], axesB=ax[3, 5], color='black', lw=2, zorder=1, arrowstyle='->') # Add the patches to their respective axes ax[1, 1].add_artist(con4) ax[3, 1].add_artist(con5a) ax[2, 1].add_artist(con5b) ax[3, 1].add_artist(con6) ax[3, 1].add_artist(con7a) ax[4, 1].add_artist(con7b) ax[4, 2].add_artist(con7c) ax[4, 3].add_artist(con7d) ax[4, 4].add_artist(con7e) ax[4, 5].add_artist(con7f) ############################## ######## Third column ######## ############################## # High-res blur blurred = filters.blur(high) ax[1, 2].imshow(blurred) ax[1, 2].axis('off') ax[1, 2].set_title('Blurred') # Region of Interest roi = utils.resize(low) > utils.percentile(utils.resize(low), roi_percentile) a = ax[2, 2].imshow(roi) ax[2, 2].axis('off') ax[2, 2].set_title('Region of Interest') # Focal Points focal_points = maxima.find_focal_points(low, scope=focal_scope, maxima_areas=maxima_areas) bg, dots = a.get_cmap().colors[0], a.get_cmap().colors[-1] ax[3, 2].imshow((blank.reshape(-1, 3) * bg).reshape(img.shape[1], img.shape[1], 3)) ax[3, 2].scatter([x[0] for x in focal_points], [x[1] for x in focal_points], marker='x', s=30, c=dots) ax[3, 2].axis('off') ax[3, 2].set_title('Focal Points') # Fill first and fifth rows with blank images ax[0, 2].imshow(blank, alpha=0) ax[0, 2].axis('off') ax[4, 2].imshow(half_blank, alpha=0) ax[4, 2].axis('off') # Three lines represented by five connection patches con8 = ConnectionPatch(xyA=right, xyB=left, coordsA='data', coordsB='data', axesA=ax[1, 2], axesB=ax[1, 3], color='black', lw=2, arrowstyle='->') con9 = ConnectionPatch(xyA=right, xyB=(0, 0.5), coordsA='data', coordsB='axes fraction', axesA=ax[2, 2], axesB=ax[2, 3], color='black', lw=2, arrowstyle='->') con10a = ConnectionPatch(xyA=right, xyB=midpoint, coordsA='data', coordsB='data', axesA=ax[3, 2], axesB=ax[3, 3], color='black', lw=2) con10b = ConnectionPatch(xyA=midpoint, xyB=midpoint, coordsA='data', coordsB='data', axesA=ax[3, 3], axesB=ax[3, 4], color='black', lw=2) con10c = ConnectionPatch(xyA=midpoint, xyB=left, coordsA='data', coordsB='data', axesA=ax[3, 4], axesB=ax[3, 5], color='black', lw=2, arrowstyle='->') # Add the patches to their respective axes ax[1, 2].add_artist(con8) ax[2, 2].add_artist(con9) ax[3, 2].add_artist(con10a) ax[3, 3].add_artist(con10b) ax[3, 4].add_artist(con10c) ############################### ######## Fourth column ######## ############################### # High-res edge detection grad = utils.normalize_image(filters.sobel(blurred)) ax[1, 3].imshow(grad) ax[1, 3].axis('off') ax[1, 3].set_title('Edge detection') # Gradient percentiles roi_grad = grad[roi] lower = utils.percentile(roi_grad, 25) upper = utils.percentile(roi_grad, 75) ax[2, 3] = sns.distplot(roi_grad.ravel(), ax=ax[2, 3]) ax[2, 3].plot([lower, lower], [0, 4], c='C1') ax[2, 3].plot([upper, upper], [0, 4], c='C1') ax[2, 3].text(lower, -0.5, 'lower', color='C1', horizontalalignment='center') ax[2, 3].text(upper, 4.5, 'upper', color='C1', horizontalalignment='center') ax[2, 3].axis('off') ttl = ax[2, 3].set_title('Edge Histogram') ttl.set_bbox(dict(color='white', alpha=0.5, zorder=2)) square_axes(ax[2, 3]) # custom function that shrinks the axis object to a square box # Fill first, fourth and fifth rows ax[0, 3].imshow(blank, alpha=0) ax[0, 3].axis('off') ax[3, 3].imshow(blank, alpha=0) ax[3, 3].axis('off') ax[4, 3].imshow(half_blank, alpha=0) ax[4, 3].axis('off') # Three lines represented by four connection patches con11 = ConnectionPatch(xyA=bottom, xyB=(0.5, 1), coordsA='data', coordsB='axes fraction', axesA=ax[1, 3], axesB=ax[2, 3], color='black', lw=2, arrowstyle='->') con12a = ConnectionPatch(xyA=right, xyB=midpoint, coordsA='data', coordsB='data', axesA=ax[1, 3], axesB=ax[1, 4], color='black', lw=2) con12b = ConnectionPatch(xyA=midpoint, xyB=top, coordsA='data', coordsB='data', axesA=ax[1, 4], axesB=ax[2, 4], color='black', lw=2, arrowstyle='->', zorder=1) con13 = ConnectionPatch(xyA=(1, 0.5), xyB=left, coordsA='axes fraction', coordsB='data', axesA=ax[2, 3], axesB=ax[2, 4], color='black', lw=2, arrowstyle='->') # Add the patches to their respective axes ax[1, 3].add_artist(con11) ax[1, 3].add_artist(con12a) ax[1, 4].add_artist(con12b) ax[2, 3].add_artist(con13) ############################## ######## Fifth column ######## ############################## # Region Growing Segmentation segm = segment.region_growing(grad, seeds=focal_points, lower=lower, upper=upper) ax[2, 4].imshow(segm, zorder=3) ax[2, 4].axis('off') ttl = ax[2, 4].set_title('Region Growing\nSegmentation') ttl.set_bbox(dict(color='white', alpha=0.5, zorder=2)) # Fill first, second fourth and fifth rows ax[0, 4].imshow(blank, alpha=0) ax[0, 4].axis('off') ax[1, 4].imshow(blank, alpha=0) ax[1, 4].axis('off') ax[3, 4].imshow(blank, alpha=0) ax[3, 4].axis('off') ax[4, 4].imshow(half_blank, alpha=0) ax[4, 4].axis('off') # Just one connection! :) con14 = ConnectionPatch(xyA=right, xyB=left, coordsA='data', coordsB='data', axesA=ax[2, 4], axesB=ax[2, 5], color='black', lw=2, arrowstyle='->') ax[2, 4].add_artist(con14) ############################## ######## Sixth column ######## ############################## # Add edges and fill small holes edges = (grad >= upper).astype(float) roi_edges = edges * roi segm_with_edges = segm + roi_edges filled = maxima.remove_small_holes(segm_with_edges) ax[2, 5].imshow(filled) ax[2, 5].axis('off') ax[2, 5].set_title('Remove small holes') # High-Low merger merged = merge.merge_images(filled, low, method=merge_type, alpha=merge_alpha) ax[3, 5].imshow(merged) ax[3, 5].axis('off') ttl = ax[3, 5].set_title('High-Low Merger') ttl.set_bbox(dict(color='white', alpha=0.5, zorder=2)) # Fill remaining rows ax[0, 5].imshow(blank, alpha=0) ax[0, 5].axis('off') ax[1, 5].imshow(blank, alpha=0) ax[1, 5].axis('off') ax[3, 5].imshow(blank, alpha=0) ax[3, 5].axis('off') ax[4, 5].imshow(half_blank, alpha=0) ax[4, 5].axis('off') # Last connection patches... con15 = ConnectionPatch(xyA=bottom, xyB=top, coordsA='data', coordsB='data', axesA=ax[2, 5], axesB=ax[3, 5], color='black', lw=2, zorder=-1, arrowstyle='->') con16 = ConnectionPatch(xyA=right, xyB=left, coordsA='data', coordsB='data', axesA=ax[3, 5], axesB=ax[3, 6], color='black', lw=2, zorder=-1, arrowstyle='->') ax[2, 5].add_artist(con15) ax[3, 5].add_artist(con16) ################################ ######## Seventh column ######## ################################ # Result if filter_type == 'percentage': result = merge.keep_percentage(img, merged, percentage=filter_percentage/100) else: result = merge.filter_image(img, merged, threshold=filter_threshold) ax[3, 6].imshow(result, zorder=3) ax[3, 6].axis('off') ttl = ax[3, 6].set_title('Result') ttl.set_bbox(dict(color='white', alpha=0.5, zorder=2)) # Fill remaining rows ax[0, 6].imshow(blank, alpha=0) ax[0, 6].axis('off') ax[1, 6].imshow(blank, alpha=0) ax[1, 6].axis('off') ax[2, 6].imshow(blank, alpha=0) ax[2, 6].axis('off') ax[4, 6].imshow(half_blank, alpha=0) ax[4, 6].axis('off') def plt_to_static(axes): """ Should convert an axis object to an image in a numpy.array. Doesn't work as intended! :param axes: A matplotlib.axes.Axes object :return: The same object as a numpy.array """ fig = plt.figure() fig.axes.append(axes) fig.canvas.draw() buf = fig.canvas.tostring_rgb() width, height = fig.canvas.get_width_height() return np.frombuffer(buf, dtype=np.uint8).reshape(height, width, 3) def square_axes(axes): """ Takes a matplotlib.axes.Axes object, finds its height and width and shrinks the largest dimension to match the smallest one. Caution: it actually changes the object (in-place)! :param axes: A matplotlib.axes.Axes object. :return: The new Bbox coordinates. """ bbox = axes.get_position()._points.copy() width = bbox[1, 0] - bbox[0, 0] height = bbox[1, 1] - bbox[0, 1] if width < height: center = bbox[0, 1] + height / 2 bbox[0, 1] = center - width / 2 bbox[1, 1] = center + width / 2 else: center = bbox[0, 0] + width / 2 bbox[0, 0] = center - height / 2 bbox[1, 0] = center + height / 2 axes.set_position(Bbox(bbox)) return bbox ```
{ "source": "jeonghyukpark/msi_highlow", "score": 2 }
#### File: msi_highlow/msi/maskrcnn_gland.py ```python import os import time import random import collections import numpy as np import pandas as pd from PIL import Image import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split import torch import torchvision from torchvision.transforms import ToPILImage from torchvision.transforms import functional as F from torch.utils.data import Dataset, DataLoader from torchvision.models.detection.faster_rcnn import FastRCNNPredictor from torchvision.models.detection.mask_rcnn import MaskRCNNPredictor import os import pickle from tqdm import tqdm import cv2 # Fix randomness def fix_all_seeds(seed): np.random.seed(seed) random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) fix_all_seeds(2021) class Compose: def __init__(self, transforms): self.transforms = transforms def __call__(self, image, target): for t in self.transforms: image, target = t(image, target) return image, target class Normalize: def __call__(self, image, target): image = F.normalize(image, RESNET_MEAN, RESNET_STD) return image, target class ToTensor: def __call__(self, image, target): image = F.to_tensor(image.copy()) return image, target def get_transform(train): transforms = [ToTensor()] NORMALIZE = False if NORMALIZE: transforms.append(Normalize()) # Data augmentation for train if train: transforms.append(HorizontalFlip(0.5)) transforms.append(VerticalFlip(0.5)) return Compose(transforms) def get_model(): NUM_CLASSES = 1+2 BOX_DETECTIONS_PER_IMG = 100 model = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=True, box_detections_per_img=BOX_DETECTIONS_PER_IMG) in_features = model.roi_heads.box_predictor.cls_score.in_features model.roi_heads.box_predictor = FastRCNNPredictor(in_features, NUM_CLASSES) in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels hidden_layer = 256 model.roi_heads.mask_predictor = MaskRCNNPredictor(in_features_mask, hidden_layer, NUM_CLASSES) return model def result_nms_pp(result, conf_thrs = 0.8, seg_ths = 0.5, nms_ths = 0.5): masks = result['masks'].cpu() labels = result['labels'].cpu() mask_scores_raw = np.asarray(result['scores'].cpu()) mask_scores = mask_scores_raw>=conf_thrs masks = np.asarray(masks[mask_scores].cpu()) labels = labels[mask_scores] mask_scores_raw = mask_scores_raw[mask_scores] len_pred = len(masks) buffer = np.zeros((len_pred, len_pred)) class_ind = 0 for ind_pred_1 in range(len_pred): for ind_pred_2 in range(ind_pred_1+1, len_pred): intersection = ((masks[ind_pred_1, class_ind]>=seg_ths) * (masks[ind_pred_2, class_ind]>=seg_ths)).sum() union = ((masks[ind_pred_1, class_ind]>=seg_ths) + (masks[ind_pred_2, class_ind]>=seg_ths)>=1).sum() buffer[ind_pred_1, ind_pred_2] = intersection/union buffer = buffer >= nms_ths overlapped_idx = [] sorted_idx = list(np.argsort(mask_scores_raw)[::-1]) for idx in sorted_idx: overlapped = np.where(buffer[idx] == 1) if len(overlapped[0]) > 0: #print(overlapped[0]) overlapped_idx.extend(overlapped[0]) nms_post_idx = np.delete(sorted_idx, overlapped_idx) if len(nms_post_idx) == 0: return [], [], [] masks = masks[nms_post_idx] mask_scores_raw = mask_scores_raw[nms_post_idx] labels = labels[nms_post_idx] return masks, mask_scores_raw, labels def metric_counter(masks_gt, masks_pred, class_ind = 0, seg_ths = 0.5): len_gt, len_pred = len(masks_gt), len(masks_pred) buffer = np.zeros((len_gt, len_pred)) for ind_gt in range(len_gt): for ind_pred in range(len_pred): buffer[ind_gt, ind_pred] = (masks_gt[ind_gt] * masks_pred[ind_pred, class_ind]>=seg_ths).sum()/masks_gt[ind_gt].sum() TP = ((buffer.max(axis=1) >= 0.5) == 1).sum() FN = ((buffer.max(axis=1) >= 0.5) == 0).sum() FP = ((buffer.max(axis=0) >= 0.5) == 0).sum() return {'TP':TP, 'FN':FN, 'FP':FP} class SingleImageDataset(Dataset): def __init__(self, imgs, transforms=None): self.transforms = transforms self.imgs = imgs #print(self.imgs) def __getitem__(self, idx): img_path = self.imgs[idx] image_name = img_path.split('/')[-1] image = cv2.imread(img_path)[:,:,::-1] if self.transforms is not None: image, _ = self.transforms(image=image, target=None) return {'image': image, 'image_name': image_name} def __len__(self): return len(self.imgs) def inference(image_paths, model_path, device, save_dir=None): SAVE_NPZ = False DEVICE=device model = get_model() model.to(DEVICE) for param in model.parameters(): param.requires_grad = True model.load_state_dict(torch.load(model_path)) model.eval(); image_sample_paths = ['./data/patch_sample/blk-TMIGEPVTWTVC-TCGA-AA-3837-01Z-00-DX1.png', './data/patch_sample/blk-EYIAGQICRLWL-TCGA-CM-4743-01Z-00-DX1.png'] simage = SingleImageDataset(image_sample_paths, transforms=get_transform(train=False)) predictions = {} for sample in tqdm(simage): img = sample['image'] img_id = sample['image_name'].split('.')[0] with torch.no_grad(): result = model([img.to(DEVICE)])[0] masks, mask_scores_raw, labels = result_nms_pp(result) predictions[img_id] = {} predictions[img_id]['masks'] = np.asarray(masks) predictions[img_id]['scores'] = np.asarray(mask_scores_raw) predictions[img_id]['labels'] = np.asarray(labels) if SAVE_NPZ == True: np.savez(f'{save_dir}/{img_id}.npz', masks=np.asarray(masks), scores=np.asarray(mask_scores_raw), labels = np.asarray(labels)) return predictions ``` #### File: msi_highlow/utils/visualization.py ```python import numpy as np import pandas as pd import matplotlib.pyplot as plt import cv2 from pathlib import Path def plot(ax, df, idx, patch_sample_base = './data/patch_sample', alpha=0, fontsize=12): cell_labels = ['no-label', 'neoplastic', 'inflammatory', 'connective', 'necrosis', 'non-neoplastic'] tissue_labels = ['ADI', 'BACK', 'DEB', 'LYM', 'MUC', 'MUS', 'NORM', 'STR', 'TUM'] gland_labels = ['benign_gland', 'malignant_gland'] gland_colors = {1:(246,232,195), 2:(128,205,193)} # tissue_colors = {'LYM':[30,148,189], 'ADI':[141,141,141], 'BACK':[53,53,53], 'DEB': [186,39,154], # 'MUC':[252,215,203], 'MUS':[67,172,34], 'NORM':[200,103,1], 'STR':[245,184,9], # 'TUM':[231,71,23]} tissue_colors = {'LYM': (0.11764705882352941, 0.5803921568627451, 0.7411764705882353), 'ADI': (0.5529411764705883, 0.5529411764705883, 0.5529411764705883), 'BACK': (0.20784313725490197, 0.20784313725490197, 0.20784313725490197), 'DEB': (0.7294117647058823, 0.15294117647058825, 0.6039215686274509), 'MUC': (0.9882352941176471, 0.8431372549019608, 0.796078431372549), 'MUS': (0.2627450980392157, 0.6745098039215687, 0.13333333333333333), 'NORM': (0.7843137254901961, 0.403921568627451, 0.00392156862745098), 'STR': (0.9607843137254902, 0.7215686274509804, 0.03529411764705882), 'TUM': (0.9058823529411765, 0.2784313725490196, 0.09019607843137255)} patch_name = str(Path(df.loc[idx, 'filename']).stem) tissue_argmax = df.loc[idx, 'tissue_type_ind'] cell_overlay_path = f'{patch_sample_base}/cell_overlay_{patch_name}.png' gland_npz_path = f'{patch_sample_base}/gland_{patch_name}.npz' with np.load(gland_npz_path, 'rb') as a: masks = a['masks'] labels = a['labels'] cell_overlay_img = cv2.imread(cell_overlay_path) cell_overlay_img = cv2.cvtColor(cell_overlay_img, cv2.COLOR_BGR2RGB) cell_overlay_img = cv2.resize(cell_overlay_img, (224,224), interpolation = cv2.INTER_AREA) for mask_ind in range(len(masks)): mask_bin = 255*(masks[mask_ind][0]>0.5).astype(np.uint8) contours, hierarchy = cv2.findContours(mask_bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) gland_class = labels[mask_ind] for cnt in contours: cv2.drawContours(cell_overlay_img, [cnt], 0, gland_colors[gland_class], 5) # blue tissue_label = tissue_labels[tissue_argmax] ax.imshow(cell_overlay_img) ax.text(4, -8, tissue_label, color='w', backgroundcolor=tissue_colors[tissue_label], fontsize=fontsize) ```
{ "source": "JeonghyunJoo/dynamic-arg-parser", "score": 3 }
#### File: JeonghyunJoo/dynamic-arg-parser/dynamicargparse.py ```python import yaml import sys import itertools def bool_converter(s): if isinstance(s, str): s = s.lower() if s == 'true': return True elif s == 'false': return False else: raise ValueError elif isinstance(s, bool): return s elif isinstance(s, int): return s != 0 else: raise ValueError #Check a type consistency b/w two types, typ1 and typ2 #If their types disagree but one type can cover the other, then return the more general type among them. #If their types are contradictory, then raise exception def type_consistency(typ1, typ2): if typ1 == typ2: return typ1 terminal_typ1 = typ1.replace('list_', '') if typ1.startswith('list') else typ1 terminal_typ2 = typ2.replace('list_', '') if typ2.startswith('list') else typ2 if terminal_typ1 == terminal_typ2: #this case happens, only when two types have the same terminal type but one is a list type and the other is not return 'list_' + terminal_typ1 #relationship #String <- float, int, bool #Float <- int #int <- bool num = {'str' : 3, 'float' : 2, 'int' : 1, 'bool' : 0} M = max(num[terminal_typ1], num[terminal_typ2]) m = min(num[terminal_typ1], num[terminal_typ2]) if M == 3: unified_terminal_typ = 'str' elif M == 2 and m == 1: unified_terminal_typ = 'float' elif M == 1 and m == 0: unified_terminal_typ = 'int' else: raise Exception() if typ1.startswith('list') or typ2.startswith('list'): return 'list_' + unified_terminal_typ return unified_terminal_typ class DynamicArgumentParser(): converters = { 'list_int' : int, 'int' : int, 'list_float' : float, 'float' : float, 'list_bool' : bool_converter, 'bool' : bool_converter, 'list_str' : str, 'str' : str } @classmethod def _convert(cls, v): if isinstance(v, list): result_list = [] unified_terminal_typ = None for e in v: e, typ = DynamicArgumentParser._convert(e) unified_terminal_typ = type_consistency(unified_terminal_typ, typ) if unified_terminal_typ else typ result_list.append(e) return result_list, 'list_' + unified_terminal_typ if isinstance(v, bool): return v, 'bool' if isinstance(v, int): return v, 'int' elif isinstance(v, float): return v, 'float' elif isinstance(v, str): #inspired by 'https://github.com/bruth/strconv' for typ in ['int', 'float', 'bool']: try: converter = cls.converters[typ] v = converter(v) return v, typ except ValueError: pass return v, 'str' else: raise Exception("Can not handle the conversion of the type {}".format(type(v))) def __init__(self, staticparser = None, check_type_consistency = True): # - check_type_consistency : Check whether a data type is matched for the same argument super(DynamicArgumentParser, self).__init__() self.staticparser = staticparser self.arg_dict = {} # Key: arg name, Value: (arg value #converted python data, arg type #string, terminal type) self.check_type_consistency = check_type_consistency @classmethod def dict_to_arg_dict(cls, dic, arg_dict = {}, prefix = []): for k, v in dic.items(): if v is None: continue if isinstance(v, dict): argname = '.'.join(prefix + [k]) arg_dict[argname] = ({}, 'dict') cls.dict_to_arg_dict(v, arg_dict, prefix = prefix + [k]) else: argname = '.'.join(prefix + [k]) _v, typ = cls._convert(v) arg_dict[argname] = (v, typ) return arg_dict def update(self, add_dict, overwrite = True): # - overwrite: # If true, self.arg_dict has a priority over add_dict when a duplicate key occurs # if not overwrite: # filtered = filter(lambda item: item[0] not in self.arg_dict, add_dict.items()) # else: # filtered = add_dict.items() for arg, v in add_dict.items(): if arg in self.arg_dict: value = self.arg_dict[arg][0] typ = self.arg_dict[arg][1] if self.check_type_consistency: typ1 = self.arg_dict[arg][1] typ2 = v[1] try: typ = type_consistency(typ1, typ2) except KeyError: #it happens when one type is 'dict' and the other type is 'dictionary' msg = "Type Consistency check Error\n"\ "If you want to overwrite the argument value anyway, then set 'check_type_consistency = Fasle'\n"\ "Error Caused by:\n" if typ2 == 'dict': msg += "{} can not be extended, because the terminal value {value} is already assigned".format(arg) elif typ1 == 'dict': msg += "The terminal value {} can not be assigned to {}, because it has its children".format(v[0], arg) raise Exception(msg) except Exception: msg = "Type Consistency check Error\n"\ "If you want to overwrite the argument value anyway, then set 'check_type_consistency = Fasle'\n"\ "Error Caused by:\n" raise Exception("Contradictory types {} and {} for {}".format(typ1, typ2, arg)) if overwrite: value = v[0] self.arg_dict[arg] = (value, typ) else: self.arg_dict[arg] = v #add_mode: # - 'o' : Overwrite if a new value is given for the existing argument # - 'a' : Add values only for new values # - 'n' : Remove an old parsing result def parse_config_file(self, file, add_mode = ['o', 'a', 'n'][0]): if add_mode == 'n': self.arg_dict = {} with open(file, 'r') as f: cfg = yaml.load(f, Loader=yaml.FullLoader) arg_dict = DynamicArgumentParser.dict_to_arg_dict(cfg, arg_dict = {}) self.update(arg_dict, add_mode == 'o') def static_parse_cmd_args(self, args = None, add_mode = ['o', 'a', 'n'][0]): if add_mode == 'n': self.arg_dict = {} if args is None: args = sys.argv[1:] if self.staticparser is not None: static_args, args = self.staticparser.parse_known_args(args) arg_dict = DynamicArgumentParser.dict_to_arg_dict(static_args.__dict__, arg_dict = {}) self.update(arg_dict, add_mode == 'o') return args def dynamic_parse_cmd_args(self, args = None, add_mode = ['o', 'a', 'n'][0]): if add_mode == 'n': self.arg_dict = {} if args is None: args = sys.argv[1:] arg_dict = {} argvalue = [] argname = None for arg in args + ["-"]: #Append a dummy argument to keep the logic simple if arg.startswith(("-", "--")): if argname is not None: v = None typ = None if len(argvalue) == 0: v, typ = True, 'bool' elif len(argvalue) == 1: v, typ = self._convert(argvalue[0]) elif len(argvalue) > 1: v, typ = self._convert(argvalue) lastindex = 0 while True: lastindex = argname.find('.', lastindex) if lastindex == -1: break arg_dict[ argname[:lastindex] ] = ({}, 'dict') lastindex = lastindex + 1 arg_dict[argname] = (v, typ) argname = arg.lstrip('-') argvalue = [] assign_symbol = argname.find('=') if assign_symbol != -1: argname, argvalue = argname[:assign_symbol], argname[assign_symbol+1:] argvalue = [x for x in argvalue.split(',') if len(x) > 0] else: argvalue.append(arg) self.update(arg_dict, add_mode == 'o') def parse_argument(self, args = None, cfgfile_arg = ''): if args is None: args = sys.argv[1:] #renew old parsing results and parse command line arguments with a static parser args_yet_to_be_parsed = self.static_parse_cmd_args(args, add_mode = 'n') #handle arguments unrecognized by the static parser self.dynamic_parse_cmd_args(args_yet_to_be_parsed, add_mode = 'a') if cfgfile_arg != '' and cfgfile_arg in self.arg_dict: cfg_filepath = self.arg_dict.get(cfgfile_arg)[0] #Load arguments from the configuration file self.parse_config_file(cfg_filepath, 'a') #'a' is No-Overwrite mode. CMD-line args has a priority def convert_2_recursive_dict(arg_dict): root_dir = {} for k in sorted(arg_dict.keys()): v, _ = arg_dict[k] #Drop type information key_chain = k.split('.') def get_parent_dict(keys, parent): if len(keys) == 1: return parent else: return get_parent_dict(keys[1:], parent[keys[0]]) p_dict = get_parent_dict(key_chain, root_dir) p_dict[key_chain[-1]] = {} if isinstance(v, dict) else v return root_dir rdict = convert_2_recursive_dict(self.arg_dict) #args_namespace = argdict_to_namespace(self.arg_dict) args_tree = AugmentedNameSpace(rdict) args_tree.activate(True) return args_tree#args_namespace class AugmentedNameSpace(): MEMBER_ATTRIBUTE = {'_mem_parent', '_mem_children', '_mem_activate', '_mem_argument_dict', '_mem_absorbing_node', '_mem_key_chain_buffer'} def __init__(self, arg_dict, p = None, activate = False): super(AugmentedNameSpace, self).__init__() self._mem_parent = p self._mem_children = {} self._mem_activate = activate self._mem_argument_dict = {} #key: arg name , value: {'value': value, 'ref_count': ref count} self._mem_absorbing_node = NoneLike(self) self._mem_key_chain_buffer = [] self._build(arg_dict) def keys(self): return itertools.chain(self._mem_argument_dict.keys(), self._mem_children) def __getitem__(self, item): if item in self._mem_argument_dict: return self._mem_argument_dict[item]['value'] elif item in self._mem_children: return self._mem_children[item].todict() def toyaml(self, save_path = None): if save_path != None: with open(save_path, 'w') as f: yaml.dump(self.todict(), f, sort_keys=True) else: yaml_str = yaml.dump(self.todict(), sort_keys=True) return yaml_str #def asdict(self): def todict(self, include_ref_count = False): root_dir = {} for k,v in self._mem_argument_dict.items(): arg_value = v['value'] if include_ref_count: root_dir[k] = (arg_value, v['ref_count']) else: root_dir[k] = arg_value for k,v in self._mem_children.items(): root_dir[k] = v.todict(include_ref_count) return root_dir def activate(self, v = True): self._mem_activate = v for c in self._mem_children.values(): c.activate(v) def trim(self, min_ref_count = 1): del_keys = [] for k,v in self._mem_argument_dict.items(): if v['ref_count'] < min_ref_count: del_keys.append(k) for k in del_keys: del self._mem_argument_dict[k] del_keys = [] for k, c in self._mem_children.items(): if c.trim(min_ref_count) is None: del_keys.append(k) for k in del_keys: del self._mem_children[k] if len(self._mem_argument_dict) + len(self._mem_children) == 0: return None else: return self def _build(self, arg_dict): for k,v in arg_dict.items(): if isinstance(v, dict): self._add_child(k, v) else: setattr(self, k, v) # setattr(self, k, v) def _add_child(self, k, arg_dict): self._mem_children[k] = AugmentedNameSpace(arg_dict, self, self._mem_activate) def __repr__(self, as_str = True): root_dir = {} for k,v in self._mem_argument_dict.items(): root_dir[k] = '(value: {}, ref_count: {})'.format(v['value'], v['ref_count']) #('value: ' + str(arg_value), 'ref_count: ' + str(v['ref_count'])) for k,v in self._mem_children.items(): root_dir[k] = v.__repr__(as_str = False) if as_str: return str(root_dir) else: return root_dir #return str(self.todict(True)) def _get_key_chain(self, key_chain = [], terminal_node = True): assert isinstance(self._mem_key_chain_buffer[0], str) key_chain.append( self._mem_key_chain_buffer[0] ) if self._mem_parent is None: return else: self._mem_parent._get_key_chain(key_chain, terminal_node = False) if terminal_node: key_chain.reverse() return def __setattr__(self, key, value): if key in AugmentedNameSpace.MEMBER_ATTRIBUTE: super().__setattr__(key, value) return #Should I check the type of value? #The value should satisfy: # it can be stored in yaml-format # it can be recovered from yaml-format #Otherwise, An error might occur when it is saved or it might be loaded from the saved file in a wrong way if key in self._mem_children: self._mem_key_chain_buffer.clear() self._mem_parent._get_key_chain( self._mem_key_chain_buffer ) self._mem_key_chain_buffer.append(key) print("Warning: You just tried to assign the value '{}' to '{}', which is already taken by AugmentedNamespace node.".format(value, '.'.join(self._mem_key_chain_buffer)), "This attempt will be ignored") return #raise Exception("It tries to assign a value by replacing AugmentedNode") #Handle argument assignment if key not in self._mem_argument_dict: self._mem_argument_dict[key] = {'value': value, 'ref_count': 0} else: self._mem_argument_dict[key]['value'] = value self._stack_ref_count(key) def __getattr__(self, key): if key in AugmentedNameSpace.MEMBER_ATTRIBUTE: #Unreachable code. __getattribute__() should have handled this case as those attributes can be looked up through __dir__[key] raise Exception() if key in self._mem_children: #Go through deeper level self._mem_key_chain_buffer.clear() self._mem_key_chain_buffer.append(key) return self._mem_children[key] elif key in self._mem_argument_dict: #The terminal value get return self._stack_ref_count(key) return self._mem_argument_dict[key]['value'] else: #The referenced key does not exist in the namespace. Move to the absorbing state self._clear_key_chain_buffer() self._append_key_chain_buffer(key) return self._mem_absorbing_node def _stack_ref_count(self, key): additional_ref_count = 1 if self._mem_activate else 0 self._mem_argument_dict[key]['ref_count'] = self._mem_argument_dict[key]['ref_count'] + additional_ref_count def _clear_key_chain_buffer(self): self._mem_key_chain_buffer.clear() def _append_key_chain_buffer(self, key): self._mem_key_chain_buffer.append(key) class NoneLike(): #Member = ['_momp'] def __init__(self, p): super(NoneLike, self).__init__() self._mem_p = p def __bool__(self): return False def __str__(self): return "None" def __eq__(self, other): return (other is None) or isinstance(other, NoneLike) def __getattr__(self, key): self._mem_p._append_key_chain_buffer(key) return self def __setattr__(self, key, value): if key.startswith('_mem_'): super().__setattr__(key, value) else: root_dict = {} ptr = root_dict for k in self._mem_p._mem_key_chain_buffer[1:]: ptr[k] = {} ptr = ptr[k] ptr[key] = value root_key = self._mem_p._mem_key_chain_buffer[0] self._mem_p._add_child(root_key, root_dict) #setattr(self._mem_p, root_key, root_dict) ```
{ "source": "jeonghyunkeem/cs492h", "score": 2 }
#### File: models/retrieval/collect_embedding.py ```python import os, sys, time import numpy as np import torch import torch.nn.functional as F from plyfile import PlyData, PlyElement from torch.utils.tensorboard import SummaryWriter from tqdm import tqdm # from chamfer_distance.chamfer_distance import ChamferDistance from autoencoder import PointNetAE from Data.dataset import Dataset import pickle from sklearn.neighbors import NearestNeighbors from sklearn.neighbors import KDTree from pdb import set_trace from sklearn.manifold import TSNE from matplotlib import pyplot as plt BASE_DIR = os.path.dirname(__file__) DUMP_DIR = os.path.join(BASE_DIR, 'dump') sys.path.append(os.path.join(BASE_DIR, 'chamfer_distance')) # Hyperparam BATCH_SIZE = 32 data = 'shapenetcorev2' n_points = 2048 latent = 512 NUM_NEIGHBORS = 3 dump = True # Set CUDA device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(device) # Dataset/loader TRAIN_DATASET = Dataset(dataset_name=data, num_points=n_points, split='train', class_choice=True) TEST_DATASET = Dataset(dataset_name=data, num_points=n_points, split='test', class_choice=True) EVAL_DATASET = Dataset(dataset_name=data, num_points=n_points, split='val', class_choice=True) TRAIN_DATALOADER = torch.utils.data.DataLoader(TRAIN_DATASET, batch_size=BATCH_SIZE, shuffle=False, num_workers=4) TEST_DATALOADER = torch.utils.data.DataLoader(TEST_DATASET, batch_size=BATCH_SIZE, shuffle=False, num_workers=4) # Set Network n_dims = 3 net = PointNetAE(latent, n_dims, n_points) net.to(device) model = os.path.join(BASE_DIR, 'outputs') + "/model512_50.pth" net.load_state_dict(torch.load(model)) net.eval() # # Set Loss function # chamfer_distance = ChamferDistance() # criterion = chamfer_distance def collect_embedding(): n = len(TRAIN_DATASET) pbar = tqdm(total=n, leave=False) # Evaluate total_loss = 0.0 net.eval() # Set embeddings check = True for i, data in enumerate(TRAIN_DATALOADER): # Parse data points, label, category, filename = data points = points.cuda() # if check: return with torch.no_grad(): recon_ret, embedding = net(points) embedding = np.array(embedding.cpu()) label = np.array(label.cpu()) category = np.array(category.cpu()).reshape(-1, 1) filename = np.array(list(filename)).reshape(-1, 1) # if check: return if i == 0: all_embeddings = np.array(embedding) all_labels = np.array(label) all_category = np.array(category) all_filenames = np.array(filename) else: all_embeddings = np.vstack((all_embeddings, embedding)) all_labels = np.vstack((all_labels, label)) all_category = np.vstack((all_category, category)) all_filenames = np.vstack((all_filenames, filename)) # dist1, dist2 = criterion(points, recon_ret) # loss = (torch.mean(dist1)) + (torch.mean(dist2)) batch_size = list(data[0].size())[0] # total_loss += loss * batch_size # pbar.set_description('Train Loss: {:f}'.format(loss)) pbar.update(batch_size) pbar.close() np.save(DUMP_DIR + '/all_embeddings', all_embeddings) np.save(DUMP_DIR + '/all_labels', all_labels) np.save(DUMP_DIR + '/all_category', all_category) np.save(DUMP_DIR + '/all_filenames', all_filenames) ####For Retrieval if dump: database_kdtree = KDTree(all_embeddings) pickle_out = open(os.path.join(DUMP_DIR, "shapenet_kdtree.pickle"),"wb") pickle.dump(database_kdtree, pickle_out) pickle_out.close() def tsne_visualization(): all_embeddings = np.load(DUMP_DIR + '/all_embeddings.npy') all_labels = np.load(DUMP_DIR + '/all_labels.npy') time_start = time.time() tsne = TSNE(n_components=2, random_state=0) embeddings_2d = tsne.fit_transform(all_embeddings) print('t-SNE done! Time elapsed: {} seconds'.format(time.time()-time_start)) plt.scatter(embeddings_2d[:, 0], embeddings_2d[:, 1], c=all_labels, label=all_labels, s=0.2, alpha=0.5) plt.legend() plt.savefig(os.path.join(DUMP_DIR, 'tsne.png')) def retrieval(q, test=False): # Set data all_embeddings = np.load(DUMP_DIR + '/all_embeddings.npy') all_labels = np.load(DUMP_DIR + '/all_labels.npy') all_filenames = np.load(DUMP_DIR + '/all_filenames.npy') with open(DUMP_DIR + '/shapenet_kdtree.pickle', 'rb') as pickle_file: database_kdtree = pickle.load(pickle_file) if not test: # Result dict pred = {} # Target data points, label, _, filename = TRAIN_DATASET[q] points = points.cuda().unsqueeze(0) embedding = net(points, r=True).detach().cpu() # Search nearest neighbor in embedding space dist, idx = database_kdtree.query(embedding, k=1) pred['label'] = all_labels[idx] pred['filename'] = all_filenames[idx] else: n = len(TRAIN_DATASET) for i in range(n): # Target data points, label, category, filename = TRAIN_DATASET[i] points = points.cuda().unsqueeze(0) embedding = net(points, r=True).detach().cpu() # Search nearest neighbor in embedding space label = label.cpu().item() filename = filename dist, q_pred_idx = database_kdtree.query(embedding, k=1) dist, e_pred_idx = database_kdtree.query(np.array([all_embeddings[i]]), k=1) # Output query_filename = all_filenames[q_pred_idx][0][0][0] emb_filename = all_filenames[e_pred_idx][0][0][0] if filename != emb_filename or filename != query_filename: print(i) print(filename) print(emb_filename) print(query_filename) pickle_file.close() return 0 print('success!') pickle_file.close() return 0 pickle_file.close() return pred if __name__ == "__main__": collect_embedding() # tsne_visualization() output = retrieval(0, test=True) ``` #### File: retrieval/Data/dataset.py ```python import os import torch import json import h5py from glob import glob import numpy as np import torch.utils.data as data # import nyuName2ID as nyu BASE_DIR = os.path.dirname(os.path.abspath(__file__)) RET_DIR = os.path.dirname(BASE_DIR) ROOT_DIR = os.path.dirname(RET_DIR) ROOT2_DIR = os.path.dirname(ROOT_DIR) HOME_DIR = os.path.dirname(ROOT2_DIR) DATA_PATH = os.path.join(HOME_DIR, 'Dataset/ShapeNet') shapenetpart_seg_num = [4, 2, 2, 4, 4, 3, 3, 2, 4, 2, 6, 2, 3, 3, 3, 3] shapenetpart_seg_start_index = [0, 4, 6, 8, 12, 16, 19, 22, 24, 28, 30, 36, 38, 41, 44, 47] CARED_CATEGORY = {'03001627': 'chair', '04379243': 'table', '02933112': 'cabinet', '02747177': 'trash bin', '02871439': 'bookshelf', '03211117': 'display', '04256520': 'sofa', '02808440': 'bathtub', "02818832": 'bed', "03337140": 'file cabinet', "02773838": 'bag', "04004475": 'printer', "04554684": 'washer', "03636649": 'lamp', "03761084": 'microwave', "04330267": 'stove', "02801938": 'basket', "02828884": 'bench', "03642806": 'laptop', "03085013": 'keyboard'} NAME2CLASS = {CARED_CATEGORY[key]:i for i, (key, item) in enumerate(CARED_CATEGORY.items())} NAME2CLASS['other'] = 20 def translate_pointcloud(pointcloud): xyz1 = np.random.uniform(low=2./3., high=3./2., size=[3]) xyz2 = np.random.uniform(low=-0.2, high=0.2, size=[3]) translated_pointcloud = np.add(np.multiply(pointcloud, xyz1), xyz2).astype('float32') return translated_pointcloud def jitter_pointcloud(pointcloud, sigma=0.01, clip=0.02): N, C = pointcloud.shape pointcloud += np.clip(sigma * np.random.randn(N, C), -1*clip, clip) return pointcloud def rotate_pointcloud(pointcloud): theta = np.pi*2 * np.random.rand() rotation_matrix = np.array([[np.cos(theta), -np.sin(theta)],[np.sin(theta), np.cos(theta)]]) pointcloud[:,[0,2]] = pointcloud[:,[0,2]].dot(rotation_matrix) # random rotation (x,z) return pointcloud class Dataset(data.Dataset): def __init__(self, dataset_name='shapenetcorev2', class_choice=None, num_points=2048, split='train', load_name=True, load_file=True, segmentation=False, random_rotate=False, random_jitter=False, random_translate=False): assert dataset_name.lower() in ['shapenetcorev2', 'shapenetpart', 'modelnet10', 'modelnet40', 'shapenetpartpart'] assert num_points <= 2048 if dataset_name in ['shapenetcorev2', 'shapenetpart', 'shapenetpartpart']: assert split.lower() in ['train', 'test', 'val', 'trainval', 'all'] else: assert split.lower() in ['train', 'test', 'all'] if dataset_name not in ['shapenetcorev2', 'shapenetpart'] and segmentation == True: raise AssertionError # self.root = os.path.join(root, dataset_name + '_' + '*hdf5_2048') self.root = os.path.join(DATA_PATH, dataset_name + '_' + 'hdf5_2048') #*hdf5_2048') self.dataset_name = dataset_name self.class_choice = class_choice self.num_points = num_points self.split = split self.load_name = load_name self.load_file = load_file self.segmentation = segmentation self.random_rotate = random_rotate self.random_jitter = random_jitter self.random_translate = random_translate self.path_h5py_all = [] self.path_name_all = [] self.path_file_all = [] if class_choice: class_choice_list = [] for i, (key, value) in enumerate(CARED_CATEGORY.items()): class_choice_list.append(value) if self.split in ['train','trainval','all']: self.get_path('train') if self.dataset_name in ['shapenetcorev2', 'shapenetpart', 'shapenetpartpart']: if self.split in ['val','trainval','all']: self.get_path('val') if self.split in ['test', 'all']: self.get_path('test') self.path_h5py_all.sort() data, label, seg = self.load_h5py(self.path_h5py_all) if self.load_name or self.class_choice != None: self.path_name_all.sort() self.name = self.load_json(self.path_name_all) # load label name if self.load_file: self.path_file_all.sort() self.file = self.load_json(self.path_file_all) # load file name self.data = np.concatenate(data, axis=0) self.label = np.concatenate(label, axis=0) if self.segmentation: self.seg = np.concatenate(seg, axis=0) if self.class_choice != None: indices = np.where(np.isin(self.name, class_choice_list) == True)[0] self.name = np.array(self.name) self.name = self.name[indices].tolist() self.data = self.data[indices] self.label = self.label[indices] # if self.segmentation: # self.seg = self.seg[indices] # self.seg_num_all = shapenetpart_seg_num[id_choice] # self.seg_start_index = shapenetpart_seg_start_index[id_choice] if self.load_file: self.file = np.array(self.file) self.file = self.file[indices].tolist() elif self.segmentation: self.seg_num_all = 50 self.seg_start_index = 0 def get_path(self, type): path_h5py = os.path.join(self.root, '*%s*.h5'%type) self.path_h5py_all += glob(path_h5py) if self.load_name: path_json = os.path.join(self.root, '%s*_id2name.json'%type) self.path_name_all += glob(path_json) if self.load_file: path_json = os.path.join(self.root, '%s*_id2file.json'%type) self.path_file_all += glob(path_json) return def load_h5py(self, path): all_data = [] all_label = [] all_seg = [] for h5_name in path: f = h5py.File(h5_name, 'r+') data = f['data'][:].astype('float32') label = f['label'][:].astype('int64') if self.segmentation: seg = f['seg'][:].astype('int64') f.close() all_data.append(data) all_label.append(label) if self.segmentation: all_seg.append(seg) return all_data, all_label, all_seg def load_json(self, path): all_data = [] for json_name in path: j = open(json_name, 'r+') data = json.load(j) all_data += data return all_data def __getitem__(self, item): point_set = self.data[item][:self.num_points] label = self.label[item] if self.load_name: name = self.name[item] # get label name name = NAME2CLASS[name] if self.load_file: file = self.file[item] # get file name if self.random_rotate: point_set = rotate_pointcloud(point_set) if self.random_jitter: point_set = jitter_pointcloud(point_set) if self.random_translate: point_set = translate_pointcloud(point_set) # convert numpy array to pytorch Tensor point_set = torch.from_numpy(point_set) label = torch.from_numpy(np.array([label]).astype(np.int64)) label = label.squeeze(0) if self.segmentation: seg = self.seg[item] seg = torch.from_numpy(seg) return point_set, label, seg, name, file else: return point_set, label, name, file def __len__(self): return self.data.shape[0] if __name__ == '__main__': root = os.getcwd() # choose dataset name from 'shapenetcorev2', 'shapenetpart', 'modelnet40' and 'modelnet10' dataset_name = 'shapenetcorev2' batch_size = 32 # choose split type from 'train', 'test', 'all', 'trainval' and 'val' # only shapenetcorev2 and shapenetpart dataset support 'trainval' and 'val' split = 'train' # 'test', 'all', 'val' data = Dataset(dataset_name='shapenetcorev2', num_points=2048, split=split, class_choice=True) print("datasize:", data.__len__()) n = len(data) for i in range(n): ps, lb, cat, fn = data[i] if cat not in NAME2CLASS: print(cat, fn) break # item = 0 # ps, lb, n, f = data[item] # print(ps.size(), ps.type(), lb, lb.size(), lb.type(), n, f) # item = 1 # ps, lb, n, f = data[item] # print(ps.size(), ps.type(), lb, lb.size(), lb.type(), n, f) # item = 2 # ps, lb, n, f = data[item] # print(ps.size(), ps.type(), lb, lb.size(), lb.type(), n, f) ``` #### File: cs492h/models/RPCADnet.py ```python import torch import torch.nn as nn import numpy as np import sys import os BASE_DIR = os.path.dirname(os.path.abspath(__file__)) ROOT_DIR = os.path.dirname(BASE_DIR) sys.path.append(BASE_DIR) from backbone_module import Pointnet2Backbone from voting_module import VotingModule from models.cad_proposal_module import ProposalModule from dump_helper import dump_results from loss_helper_rpcad import get_loss class RPCADNet(nn.Module): def __init__(self, num_class, num_heading_bin, input_feature_dim=0, num_proposal=128, vote_factor=1, sampling='vote_fps'): super().__init__() self.num_class = num_class self.num_heading_bin = num_heading_bin self.input_feature_dim = input_feature_dim self.num_proposal = num_proposal self.vote_factor = vote_factor self.sampling=sampling # Backbone point feature learning self.backbone_net = Pointnet2Backbone(input_feature_dim=self.input_feature_dim) # Hough voting self.vgen = VotingModule(self.vote_factor, 256) # Vote aggregation and detection self.pnet = ProposalModule(num_class, num_heading_bin, num_proposal, sampling) def forward(self, inputs): """ Forward pass of the network Args: inputs: dict {point_clouds} point_clouds: Variable(torch.cuda.FloatTensor) (B, N, 3 + input_channels) tensor Point cloud to run predicts on Each point in the point-cloud MUST be formated as (x, y, z, features...) Returns: end_points: dict """ end_points = {} point_cloud = inputs['point_clouds'] batch_size = inputs['point_clouds'].shape[0] end_points = self.backbone_net(inputs['point_clouds'], end_points) # --------- HOUGH VOTING --------- xyz = end_points['fp2_xyz'] features = end_points['fp2_features'] end_points['seed_inds'] = end_points['fp2_inds'] end_points['seed_xyz'] = xyz end_points['seed_features'] = features xyz, features = self.vgen(xyz, features) features_norm = torch.norm(features, p=2, dim=1) features = features.div(features_norm.unsqueeze(1)) end_points['vote_xyz'] = xyz end_points['vote_features'] = features # --------- BOUNDING BOX & CAD ALIGNMENT PROPOSAL --------- end_points = self.pnet(xyz, features, point_cloud, end_points) return end_points # if __name__=='__main__': # sys.path.append(os.path.join(ROOT_DIR, 'sunrgbd')) # from sunrgbd_detection_dataset import SunrgbdDetectionVotesDataset, DC # from loss_helper import get_loss # # Define model # model = VoteNet(10,12,10,np.random.random((10,3))).cuda() # try: # # Define dataset # TRAIN_DATASET = SunrgbdDetectionVotesDataset('train', num_points=20000, use_v1=True) # # Model forward pass # sample = TRAIN_DATASET[5] # inputs = {'point_clouds': torch.from_numpy(sample['point_clouds']).unsqueeze(0).cuda()} # except: # print('Dataset has not been prepared. Use a random sample.') # inputs = {'point_clouds': torch.rand((20000,3)).unsqueeze(0).cuda()} # end_points = model(inputs) # for key in end_points: # print(key, end_points[key]) # try: # # Compute loss # for key in sample: # end_points[key] = torch.from_numpy(sample[key]).unsqueeze(0).cuda() # loss, end_points = get_loss(end_points, DC) # print('loss', loss) # end_points['point_clouds'] = inputs['point_clouds'] # end_points['pred_mask'] = np.ones((1,128)) # dump_results(end_points, 'tmp', DC) # except: # print('Dataset has not been prepared. Skip loss and dump.') ``` #### File: cs492h/scan2cad/s2c_config.py ```python import numpy as np import sys import os BASE_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(BASE_DIR) ROOT_DIR = os.path.dirname(BASE_DIR) sys.path.append(os.path.join(ROOT_DIR, 'utils')) class Scan2CADDatasetConfig(object): def __init__(self): self.num_class = 21 # 9 self.num_heading_bin = 12 # Top 20 categories self.ShapenetIDToName = { '03001627': 'chair', '04379243': 'table', '02933112': 'cabinet', '02747177': 'trash bin', '02871439': 'bookshelf', '03211117': 'display', '04256520': 'sofa', '02808440': 'bathtub', "02818832": 'bed', "03337140": 'file cabinet', "02773838": 'bag', "04004475": 'printer', "04554684": 'washer', "03636649": 'lamp', "03761084": 'microwave', "04330267": 'stove', "02801938": 'basket', "02828884": 'bench', "03642806": 'laptop', "03085013": 'keyboard' } self.ShapenetNameToClass = { 'chair': 0, 'table': 1, 'cabinet': 2, 'trash bin': 3, 'bookshelf': 4,'display': 5,'sofa': 6, 'bathtub': 7,'bed': 8, 'file cabinet': 9, 'bag': 10, 'printer': 11, 'washer': 12, 'lamp': 13, 'microwave': 14, 'stove': 15, 'basket': 16, 'bench': 17, 'laptop': 18, 'keyboard': 19, 'other': 20 } self.ClassToName = {self.ShapenetNameToClass[t]:t for t in self.ShapenetNameToClass} def ShapenetIDtoClass(self, id): if id in self.ShapenetIDToName: cad_category = self.ShapenetIDToName[id] else: cad_category = 'other' cad_class = self.ShapenetIDtoClass[cad_category] return cad_class def angle2class(self, angle): ''' Convert continuous angle to discrete class [optinal] also small regression number from class center angle to current angle. angle is from 0-2pi (or -pi~pi), class center at 0, 1*(2pi/N), 2*(2pi/N) ... (N-1)*(2pi/N) return is class of int32 of 0,1,...,N-1 and a number such that class*(2pi/N) + number = angle ''' num_class = self.num_heading_bin angle = angle%(2*np.pi) assert(angle>=0 and angle<=2*np.pi) angle_per_class = 2*np.pi/float(num_class) shifted_angle = (angle+angle_per_class/2)%(2*np.pi) class_id = int(shifted_angle/angle_per_class) residual_angle = shifted_angle - (class_id*angle_per_class+angle_per_class/2) return class_id, residual_angle def class2angle(self, pred_cls, residual, to_label_format=True): ''' Inverse function to angle2class ''' num_class = self.num_heading_bin angle_per_class = 2*np.pi/float(num_class) angle_center = pred_cls * angle_per_class angle = angle_center + residual if to_label_format and angle>np.pi: angle = angle - 2*np.pi return angle ``` #### File: cs492h/scan2cad/s2c_eval.py ```python import torch import numpy as np import quaternion import os import s2c_utils import pickle ShapenetNameToClass = {'chair': 0, 'table': 1, 'cabinet': 2, 'trash bin': 3, 'bookshelf': 4,'display': 5,'sofa': 6, 'bathtub': 7, 'other': 8} ShapenetClassToName = {ShapenetNameToClass[k]: k for k in ShapenetNameToClass} BASE_DIR = os.path.dirname(os.path.abspath(__file__)) ROOT_DIR = os.path.dirname(BASE_DIR) RET_DIR = os.path.join(ROOT_DIR, 'models/retrieval/dump') from models.retrieval.autoencoder import PointNetAE def from_6d_to_mat(v): v1 = v[:,:,:3].unsqueeze(-1) # (B, K, 3, 1) v2 = v[:,:,3:].unsqueeze(-1) # (B, K, 3, 1) v3 = torch.cross(v1, v2, dim=2) M = torch.stack([v1, v2, v3], dim=3).squeeze(-1) return M def from_mat_to_q(M): R = M[:, :, 0:3, 0:3].detach().cpu().numpy().copy() q = quaternion.from_rotation_matrix(R[:, :, 0:3, 0:3]) return q def from_6d_to_q(v): M = from_6d_to_mat(v) q = from_mat_to_q(M) return q def softmax(x): ''' Numpy function for softmax''' shape = x.shape probs = np.exp(x - np.max(x, axis=len(shape)-1, keepdims=True)) probs /= np.sum(probs, axis=len(shape)-1, keepdims=True) return probs # helper function to calculate difference between two quaternions def calc_rotation_diff(q, q00): rotation_dot = np.dot(quaternion.as_float_array(q00), quaternion.as_float_array(q)) rotation_dot_abs = np.abs(rotation_dot) try: error_rotation_rad = 2 * np.arccos(rotation_dot_abs) except: return 0.0 error_rotation_rad = 2 * np.arccos(rotation_dot_abs) error_rotation = np.rad2deg(error_rotation_rad) return error_rotation def get_top_8_category(cat_id): if cat_id > 7: cat = 8 else: cat = cat_id return cat class Evaluation: def __init__(self, nms_iou=0.25): self.class_total = {} self.pred_total = {} self.acc_per_scan = {} self.acc_proposal_per_class = {} self.acc_translation_per_class = {} self.acc_rotation_per_class = {} self.acc_scale_per_class = {} for i in ShapenetClassToName: self.class_total[i] = 0 self.pred_total[i]= 0 self.acc_proposal_per_class[i] = 0 self.acc_translation_per_class[i] = 0 self.acc_rotation_per_class[i] = 0 self.acc_scale_per_class[i] = 0 self.validate_idx_per_scene = {} self.nms_iou = nms_iou self.extra_dict = {} # CAD Retrieval self.sem_clses = np.load(RET_DIR + '/all_category.npy') print(np.unique(self.sem_clses)) self.filenames = np.load(RET_DIR + '/all_filenames.npy') self.CADnet = PointNetAE(latent=512, in_dims=3, n_points=2048) self.CADnet.load_state_dict(torch.load(RET_DIR + '/model512_50.pth')) self.CADnet.cuda() self.CADnet.eval() def NMS(self, B, K, center, size, obj_prob, sem_cls): pred_crnrs_3d_upright_cam = np.zeros((B, K, 8, 3)) for b in range(B): for k in range(K): crnrs_3d_upright_cam = s2c_utils.get_3d_box(size[b,k,:3], 0, center[b,k,:3]) pred_crnrs_3d_upright_cam[b,k] = crnrs_3d_upright_cam # ---------- NMS input: pred_with_prob in (B,K,8) ----------- pred_mask = np.zeros((B, K)) nonempty_box_mask = np.ones((B, K)) for i in range(B): boxes_3d_with_prob = np.zeros((K,8)) for j in range(K): boxes_3d_with_prob[j,0] = np.min(pred_crnrs_3d_upright_cam[i,j,:,0]) boxes_3d_with_prob[j,1] = np.min(pred_crnrs_3d_upright_cam[i,j,:,1]) boxes_3d_with_prob[j,2] = np.min(pred_crnrs_3d_upright_cam[i,j,:,2]) boxes_3d_with_prob[j,3] = np.max(pred_crnrs_3d_upright_cam[i,j,:,0]) boxes_3d_with_prob[j,4] = np.max(pred_crnrs_3d_upright_cam[i,j,:,1]) boxes_3d_with_prob[j,5] = np.max(pred_crnrs_3d_upright_cam[i,j,:,2]) boxes_3d_with_prob[j,6] = obj_prob[i,j] boxes_3d_with_prob[j,7] = sem_cls[i,j] # only suppress if the two boxes are of the same class!! nonempty_box_inds = np.where(nonempty_box_mask[i,:]==1)[0] pick = s2c_utils.nms_3d_faster_samecls(boxes_3d_with_prob[nonempty_box_mask[i,:]==1,:], self.nms_iou) assert(len(pick)>0) pred_mask[i, nonempty_box_inds[pick]] = 1 return pred_mask # ---------- NMS output: pred_mask in (B,K) ----------- def step(self, end_points, batch_iter, pcd=None): gt_center = end_points['center_label'] pred_center = end_points['center'] B = gt_center.shape[0] # Batch size K = pred_center.shape[1] # Num proposals K2 = gt_center.shape[1] # Max obj num # Ground-truth gt_center = end_points['center_label'].detach().cpu().numpy() # (B, K2, 3) gt_quaternion = end_points['rotation_label'].detach().cpu().numpy() # (B, K2, 4) gt_scale = end_points['scale_label'].detach().cpu().numpy() # (B, K2, 3) gt_class = end_points['sem_cls_label'].reshape(B, K2, 1) # (B, K2, 1) gt_cad_total = end_points['n_total'].reshape(B, 1) # (B, 1) gt_sym_label = end_points['cad_sym_label'].reshape(B, K2, 1) # prediction pred_class = torch.argmax(end_points['sem_cls_scores'], -1).reshape(B, K, 1) pred_center = end_points['center'].detach().cpu().numpy() pred_size = end_points['box_size'].detach().cpu().numpy() pred_rot_6d = end_points['rot_6d_scores'] # (B, K, 6) pred_quaternion = from_6d_to_q(pred_rot_6d) # pred_quaternion = end_points['rotation_scores'].detach().cpu().numpy() # (B, K, 4) pred_scale = end_points['scale_scores'].detach().cpu().numpy() pred_obj_logits = end_points['objectness_scores'].detach().cpu().numpy() pred_obj = softmax(pred_obj_logits)[:,:,1] # (B,K) pred_mask = self.NMS(B, K, pred_center, pred_scale, pred_obj, pred_class) # Threshold threshold_translation = 0.2 # <-- in meter threshold_rotation = 20 # <-- in deg threshold_scale = 20 # <-- in % class_total = {} pred_total = {} acc_proposal_per_class = {} acc_translation_per_class = {} acc_rotation_per_class = {} acc_scale_per_class = {} for i in ShapenetClassToName: class_total[i] = 0 pred_total[i] = 0 acc_proposal_per_class[i] = 0 acc_translation_per_class[i] = 0 acc_rotation_per_class[i] = 0 acc_scale_per_class[i] = 0 # Change category for b in range(B): for k in range(K): pred_class[b,k,:] = get_top_8_category(pred_class[b,k,:]) for k2 in range(K2): gt_class[b,k2,:] = get_top_8_category(gt_class[b,k2,:]) acc_per_scan = {} for b in range(B): acc_per_scan[batch_iter + b] = {} acc_per_scan[batch_iter + b]['n_total'] = gt_cad_total[b] acc_per_scan[batch_iter + b]["n_good"] = 0 acc_per_scan[batch_iter + b]["n_files"] = [] self.validate_idx_per_scene[b] = [] K2 = gt_cad_total[b] # GT_cad_in_one_scene for k_gt in range(K2): # ------ Update total ------ gt_sem_cls = gt_class[b,k_gt,:].item() if gt_sem_cls not in class_total: class_total[gt_sem_cls] = 1 else: class_total[gt_sem_cls] += 1 # CAD Retrieval if pcd is not None: batch_pc = pcd.cpu().numpy()[:,:,0:3] # (B, N, 3) for b in range(B): # loop in scenes K2 = gt_cad_total[b] # GT_cad_in_one_scene pred_gt = [] with open(RET_DIR + '/shapenet_kdtree.pickle', 'rb') as pickle_file: database_kdtree = pickle.load(pickle_file) for k in np.where(pred_mask[b, :] == 1)[0]: # loop in proposals # Class prediction if pcd is not None: box3d = s2c_utils.get_3d_box(pred_size[b,k,:3], 0, pred_center[b,k,:3]) box3d = s2c_utils.flip_axis_to_depth(box3d) pc_in_box, inds = s2c_utils.extract_pc_in_box3d(batch_pc[b,:,:3], box3d) if len(pc_in_box) < 5: continue cad_inds = np.where(inds == True) cad_pc = pcd[b, cad_inds, :3] embedding = self.CADnet(cad_pc, r=True) embedding = embedding.detach().cpu() dist, pred_idx = database_kdtree.query(embedding, k=5) # Output pred_sem_clses = self.sem_clses[pred_idx].squeeze(0) cad_files = self.filenames[pred_idx].squeeze(0) else: pred_sem_cls = pred_class[b, k, :][0] for k_gt in range(K2): # Pass predicted ground-truth if k_gt in pred_gt: continue # ------ Compare Prediction with GT ------ gt_sem_cls = gt_class[b,k_gt,:].item() if pcd is not None: gt_sem_cls += 1 pred_sem_cls = -1 # Only compare with same class for i in range(5): if pred_sem_clses[i] > 8: pred_sem_clses[i] = 8 if pred_sem_clses[i] == gt_sem_cls: pred_sem_cls = pred_sem_clses[i, 0:1] cad_file = cad_files[i, 0:1] is_same_class = pred_sem_cls == gt_sem_cls if is_same_class: pred_total[gt_sem_cls] += 1 # Predicted Transformation c = pred_center[b,k,:] # q0 = pred_quaternion[b,k] # q = np.quaternion(q0[0], q0[1], q0[2], q0[3]) q = pred_quaternion[b,k] # q = np.quaternion(q0[0], q0[1], q0[2], q0[3]) s = pred_scale[b,k,:] # Ground-truth Transformation c_gt = gt_center[b,k_gt,:] q_gt0 = gt_quaternion[b,k_gt,:] q_gt = np.quaternion(q_gt0[0], q_gt0[1], q_gt0[2], q_gt0[3]) s_gt = gt_scale[b,k_gt,:] # ---- Compute Error ---- # CENTER error_translation = np.linalg.norm(c-c_gt, ord=2) if error_translation <= threshold_translation: acc_translation_per_class[gt_sem_cls] += 1 # SCALE error_scale = 100.0*np.abs(np.mean(s/s_gt) - 1) if error_scale <= threshold_scale: acc_scale_per_class[gt_sem_cls] += 1 # ROTATION sym = gt_sym_label[b, k_gt].item() if sym == 1: m = 2 tmp = [calc_rotation_diff(q, q_gt*quaternion.from_rotation_vector([0, (i*2.0/m)*np.pi, 0])) for i in range(m)] error_rotation = np.min(tmp) elif sym == 2: m = 4 tmp = [calc_rotation_diff(q, q_gt*quaternion.from_rotation_vector([0, (i*2.0/m)*np.pi, 0])) for i in range(m)] error_rotation = np.min(tmp) elif sym == 3: m = 36 tmp = [calc_rotation_diff(q, q_gt*quaternion.from_rotation_vector([0, (i*2.0/m)*np.pi, 0])) for i in range(m)] error_rotation = np.min(tmp) else: error_rotation = calc_rotation_diff(q, q_gt) if error_rotation <= threshold_rotation: acc_rotation_per_class[gt_sem_cls] += 1 # CHECK ANSWER is_valid_transformation = error_rotation <= threshold_rotation and error_translation <= threshold_translation and error_scale <= threshold_scale if is_valid_transformation: acc_per_scan[batch_iter + b]["n_good"] += 1 if gt_sem_cls not in acc_proposal_per_class: acc_proposal_per_class[gt_sem_cls] = 1 else: acc_proposal_per_class[gt_sem_cls] += 1 if pcd is not None: acc_per_scan[batch_iter + b]["n_files"].append(cad_file) self.validate_idx_per_scene[b].append(k) pred_gt.append(k_gt) break # print(acc_per_scan) # Update for b in range(B): b_id_scan = batch_iter + b self.acc_per_scan[b_id_scan] = {} self.acc_per_scan[b_id_scan]["n_total"] = acc_per_scan[b_id_scan]["n_total"].item() self.acc_per_scan[b_id_scan]["n_good"] = acc_per_scan[b_id_scan]["n_good"] if pcd is not None: self.acc_per_scan[b_id_scan]["n_files"] = acc_per_scan[b_id_scan]["n_files"] for sem_cls, n_total in class_total.items(): self.class_total[sem_cls] += n_total self.pred_total[sem_cls] += pred_total[sem_cls] self.acc_proposal_per_class[sem_cls] += acc_proposal_per_class[sem_cls] self.acc_translation_per_class[sem_cls] += acc_translation_per_class[sem_cls] self.acc_rotation_per_class[sem_cls] += acc_rotation_per_class[sem_cls] self.acc_scale_per_class[sem_cls] += acc_scale_per_class[sem_cls] def summary(self): eval_dict = {} accuracy_per_class = {} good_t_per_class = {} good_r_per_class = {} good_s_per_class = {} # Per scan total_accuracy = {"n_total": 0, "n_good": 0} for id_scan in self.acc_per_scan: total_accuracy["n_total"] += self.acc_per_scan[id_scan]["n_total"] total_accuracy["n_good"] += self.acc_per_scan[id_scan]["n_good"] instance_mean_accuracy = float(total_accuracy["n_good"])/total_accuracy["n_total"] # Per class for sem_cls, n_total in self.class_total.items(): cat_name = ShapenetClassToName[sem_cls] prediction = self.acc_proposal_per_class[sem_cls] accuracy_per_class[sem_cls] = float(prediction / (n_total + 1e-6)) pred_total = self.pred_total[sem_cls] center = self.acc_translation_per_class[sem_cls] rotation = self.acc_rotation_per_class[sem_cls] scale = self.acc_scale_per_class[sem_cls] good_t_per_class[sem_cls] = float(center / (pred_total + 1e-6)) good_r_per_class[sem_cls] = float(rotation / (pred_total + 1e-6)) good_s_per_class[sem_cls] = float(scale / (pred_total + 1e-6)) eval_dict[cat_name] = [accuracy_per_class[sem_cls], prediction, n_total, center, rotation, scale, pred_total] # Mean scores class_mean_accuracy = np.mean([v for k,v in accuracy_per_class.items()]) class_mean_translation = np.mean([v for k,v in good_t_per_class.items()]) class_mean_rotation = np.mean([v for k,v in good_r_per_class.items()]) class_mean_scale = np.mean([v for k,v in good_s_per_class.items()]) return instance_mean_accuracy, class_mean_accuracy, class_mean_translation, class_mean_rotation, class_mean_scale, eval_dict ```
{ "source": "jeonghyunkeem/MLCVNet", "score": 2 }
#### File: MLCVNet/models/loss_helper.py ```python import torch import torch.nn as nn import numpy as np import sys import os BASE_DIR = os.path.dirname(os.path.abspath(__file__)) ROOT_DIR = os.path.dirname(BASE_DIR) sys.path.append(os.path.join(ROOT_DIR, 'utils')) from nn_distance import nn_distance, huber_loss FAR_THRESHOLD = 0.6 NEAR_THRESHOLD = 0.3 GT_VOTE_FACTOR = 3 # number of GT votes per point OBJECTNESS_CLS_WEIGHTS = [0.2,0.8] # put larger weights on positive objectness def compute_vote_loss(end_points): """ Compute vote loss: Match predicted votes to GT votes. Args: end_points: dict (read-only) Returns: vote_loss: scalar Tensor Overall idea: If the seed point belongs to an object (votes_label_mask == 1), then we require it to vote for the object center. Each seed point may vote for multiple translations v1,v2,v3 A seed point may also be in the boxes of multiple objects: o1,o2,o3 with corresponding GT votes c1,c2,c3 Then the loss for this seed point is: min(d(v_i,c_j)) for i=1,2,3 and j=1,2,3 """ # Load ground truth votes and assign them to seed points batch_size = end_points['seed_xyz'].shape[0] num_seed = end_points['seed_xyz'].shape[1] # B,num_seed,3 vote_xyz = end_points['vote_xyz'] # B,num_seed*vote_factor,3 seed_inds = end_points['seed_inds'].long() # B,num_seed in [0,num_points-1] # Get groundtruth votes for the seed points # vote_label_mask: Use gather to select B,num_seed from B,num_point # non-object point has no GT vote mask = 0, object point has mask = 1 # vote_label: Use gather to select B,num_seed,9 from B,num_point,9 # with inds in shape B,num_seed,9 and 9 = GT_VOTE_FACTOR * 3 seed_gt_votes_mask = torch.gather(end_points['vote_label_mask'], 1, seed_inds) seed_inds_expand = seed_inds.view(batch_size,num_seed,1).repeat(1,1,3*GT_VOTE_FACTOR) seed_gt_votes = torch.gather(end_points['vote_label'], 1, seed_inds_expand) seed_gt_votes += end_points['seed_xyz'].repeat(1,1,3) # Compute the min of min of distance vote_xyz_reshape = vote_xyz.view(batch_size*num_seed, -1, 3) # from B,num_seed*vote_factor,3 to B*num_seed,vote_factor,3 seed_gt_votes_reshape = seed_gt_votes.view(batch_size*num_seed, GT_VOTE_FACTOR, 3) # from B,num_seed,3*GT_VOTE_FACTOR to B*num_seed,GT_VOTE_FACTOR,3 # A predicted vote to no where is not penalized as long as there is a good vote near the GT vote. dist1, _, dist2, _ = nn_distance(vote_xyz_reshape, seed_gt_votes_reshape, l1=True) votes_dist, _ = torch.min(dist2, dim=1) # (B*num_seed,vote_factor) to (B*num_seed,) votes_dist = votes_dist.view(batch_size, num_seed) vote_loss = torch.sum(votes_dist*seed_gt_votes_mask.float())/(torch.sum(seed_gt_votes_mask.float())+1e-6) return vote_loss def compute_objectness_loss(end_points): """ Compute objectness loss for the proposals. Args: end_points: dict (read-only) Returns: objectness_loss: scalar Tensor objectness_label: (batch_size, num_seed) Tensor with value 0 or 1 objectness_mask: (batch_size, num_seed) Tensor with value 0 or 1 object_assignment: (batch_size, num_seed) Tensor with long int within [0,num_gt_object-1] """ # Associate proposal and GT objects by point-to-point distances aggregated_vote_xyz = end_points['aggregated_vote_xyz'] gt_center = end_points['center_label'][:,:,0:3] B = gt_center.shape[0] K = aggregated_vote_xyz.shape[1] K2 = gt_center.shape[1] dist1, ind1, dist2, _ = nn_distance(aggregated_vote_xyz, gt_center) # dist1: BxK, dist2: BxK2 # Generate objectness label and mask # objectness_label: 1 if pred object center is within NEAR_THRESHOLD of any GT object # objectness_mask: 0 if pred object center is in gray zone (DONOTCARE), 1 otherwise euclidean_dist1 = torch.sqrt(dist1+1e-6) objectness_label = torch.zeros((B,K), dtype=torch.long).cuda() objectness_mask = torch.ones((B,K)).cuda() objectness_label[euclidean_dist1<NEAR_THRESHOLD] = 1 objectness_mask[euclidean_dist1<NEAR_THRESHOLD] = 1 objectness_mask[euclidean_dist1>FAR_THRESHOLD] = 1 # Compute objectness loss objectness_scores = end_points['objectness_scores'] criterion = nn.CrossEntropyLoss(torch.Tensor(OBJECTNESS_CLS_WEIGHTS).cuda(), reduction='none') objectness_loss = criterion(objectness_scores.transpose(2,1), objectness_label) objectness_loss = torch.sum(objectness_loss * objectness_mask)/(torch.sum(objectness_mask)+1e-6) # Set assignment object_assignment = ind1 # (B,K) with values in 0,1,...,K2-1 return objectness_loss, objectness_label, objectness_mask, object_assignment def compute_box_and_sem_cls_loss(end_points, config): """ Compute 3D bounding box and semantic classification loss. Args: end_points: dict (read-only) Returns: center_loss heading_cls_loss heading_reg_loss size_cls_loss size_reg_loss sem_cls_loss """ num_heading_bin = config.num_heading_bin num_size_cluster = config.num_size_cluster num_class = config.num_class mean_size_arr = config.mean_size_arr object_assignment = end_points['object_assignment'] batch_size = object_assignment.shape[0] # Compute center loss pred_center = end_points['center'] gt_center = end_points['center_label'][:,:,0:3] dist1, ind1, dist2, _ = nn_distance(pred_center, gt_center) # dist1: BxK, dist2: BxK2 box_label_mask = end_points['box_label_mask'] objectness_label = end_points['objectness_label'].float() centroid_reg_loss1 = \ torch.sum(dist1*objectness_label)/(torch.sum(objectness_label)+1e-6) centroid_reg_loss2 = \ torch.sum(dist2*box_label_mask)/(torch.sum(box_label_mask)+1e-6) center_loss = centroid_reg_loss1 + centroid_reg_loss2 # Compute heading loss heading_class_label = torch.gather(end_points['heading_class_label'], 1, object_assignment) # select (B,K) from (B,K2) criterion_heading_class = nn.CrossEntropyLoss(reduction='none') heading_class_loss = criterion_heading_class(end_points['heading_scores'].transpose(2,1), heading_class_label) # (B,K) heading_class_loss = torch.sum(heading_class_loss * objectness_label)/(torch.sum(objectness_label)+1e-6) heading_residual_label = torch.gather(end_points['heading_residual_label'], 1, object_assignment) # select (B,K) from (B,K2) heading_residual_normalized_label = heading_residual_label / (np.pi/num_heading_bin) # Ref: https://discuss.pytorch.org/t/convert-int-into-one-hot-format/507/3 heading_label_one_hot = torch.cuda.FloatTensor(batch_size, heading_class_label.shape[1], num_heading_bin).zero_() heading_label_one_hot.scatter_(2, heading_class_label.unsqueeze(-1), 1) # src==1 so it's *one-hot* (B,K,num_heading_bin) heading_residual_normalized_loss = huber_loss(torch.sum(end_points['heading_residuals_normalized']*heading_label_one_hot, -1) - heading_residual_normalized_label, delta=1.0) # (B,K) heading_residual_normalized_loss = torch.sum(heading_residual_normalized_loss*objectness_label)/(torch.sum(objectness_label)+1e-6) # Compute size loss size_class_label = torch.gather(end_points['size_class_label'], 1, object_assignment) # select (B,K) from (B,K2) criterion_size_class = nn.CrossEntropyLoss(reduction='none') size_class_loss = criterion_size_class(end_points['size_scores'].transpose(2,1), size_class_label) # (B,K) size_class_loss = torch.sum(size_class_loss * objectness_label)/(torch.sum(objectness_label)+1e-6) size_residual_label = torch.gather(end_points['size_residual_label'], 1, object_assignment.unsqueeze(-1).repeat(1,1,3)) # select (B,K,3) from (B,K2,3) size_label_one_hot = torch.cuda.FloatTensor(batch_size, size_class_label.shape[1], num_size_cluster).zero_() size_label_one_hot.scatter_(2, size_class_label.unsqueeze(-1), 1) # src==1 so it's *one-hot* (B,K,num_size_cluster) size_label_one_hot_tiled = size_label_one_hot.unsqueeze(-1).repeat(1,1,1,3) # (B,K,num_size_cluster,3) predicted_size_residual_normalized = torch.sum(end_points['size_residuals_normalized']*size_label_one_hot_tiled, 2) # (B,K,3) mean_size_arr_expanded = torch.from_numpy(mean_size_arr.astype(np.float32)).cuda().unsqueeze(0).unsqueeze(0) # (1,1,num_size_cluster,3) mean_size_label = torch.sum(size_label_one_hot_tiled * mean_size_arr_expanded, 2) # (B,K,3) size_residual_label_normalized = size_residual_label / mean_size_label # (B,K,3) size_residual_normalized_loss = torch.mean(huber_loss(predicted_size_residual_normalized - size_residual_label_normalized, delta=1.0), -1) # (B,K,3) -> (B,K) size_residual_normalized_loss = torch.sum(size_residual_normalized_loss*objectness_label)/(torch.sum(objectness_label)+1e-6) # 3.4 Semantic cls loss sem_cls_label = torch.gather(end_points['sem_cls_label'], 1, object_assignment) # select (B,K) from (B,K2) criterion_sem_cls = nn.CrossEntropyLoss(reduction='none') sem_cls_loss = criterion_sem_cls(end_points['sem_cls_scores'].transpose(2,1), sem_cls_label) # (B,K) sem_cls_loss = torch.sum(sem_cls_loss * objectness_label)/(torch.sum(objectness_label)+1e-6) return center_loss, heading_class_loss, heading_residual_normalized_loss, size_class_loss, size_residual_normalized_loss, sem_cls_loss def get_loss(end_points, config): """ Loss functions Args: end_points: dict { seed_xyz, seed_inds, vote_xyz, center, heading_scores, heading_residuals_normalized, size_scores, size_residuals_normalized, sem_cls_scores, #seed_logits,# center_label, heading_class_label, heading_residual_label, size_class_label, size_residual_label, sem_cls_label, box_label_mask, vote_label, vote_label_mask } config: dataset config instance Returns: loss: pytorch scalar tensor end_points: dict """ # Vote loss vote_loss = compute_vote_loss(end_points) end_points['vote_loss'] = vote_loss # Obj loss objectness_loss, objectness_label, objectness_mask, object_assignment = \ compute_objectness_loss(end_points) end_points['objectness_loss'] = objectness_loss end_points['objectness_label'] = objectness_label end_points['objectness_mask'] = objectness_mask end_points['object_assignment'] = object_assignment total_num_proposal = objectness_label.shape[0]*objectness_label.shape[1] end_points['pos_ratio'] = \ torch.sum(objectness_label.float().cuda())/float(total_num_proposal) end_points['neg_ratio'] = \ torch.sum(objectness_mask.float())/float(total_num_proposal) - end_points['pos_ratio'] # Box loss and sem cls loss center_loss, heading_cls_loss, heading_reg_loss, size_cls_loss, size_reg_loss, sem_cls_loss = \ compute_box_and_sem_cls_loss(end_points, config) end_points['center_loss'] = center_loss end_points['heading_cls_loss'] = heading_cls_loss end_points['heading_reg_loss'] = heading_reg_loss end_points['size_cls_loss'] = size_cls_loss end_points['size_reg_loss'] = size_reg_loss end_points['sem_cls_loss'] = sem_cls_loss box_loss = center_loss + 0.1*heading_cls_loss + heading_reg_loss + 0.1*size_cls_loss + size_reg_loss end_points['box_loss'] = box_loss # Final loss function loss = vote_loss + 0.5*objectness_loss + box_loss + 0.1*sem_cls_loss loss *= 10 end_points['loss'] = loss # -------------------------------------------- # Some other statistics obj_pred_val = torch.argmax(end_points['objectness_scores'], 2) # B,K obj_acc = torch.sum((obj_pred_val==objectness_label.long()).float()*objectness_mask)/(torch.sum(objectness_mask)+1e-6) end_points['obj_acc'] = obj_acc return loss, end_points ``` #### File: MLCVNet/scan2cad/s2c_utils.py ```python import math import quaternion import numpy as np from plyfile import PlyData, PlyElement def write_ply(points, filename, text=True): """ input: Nx3, write points to filename as PLY format. """ points = [(points[i,0], points[i,1], points[i,2]) for i in range(points.shape[0])] vertex = np.array(points, dtype=[('x', 'f4'), ('y', 'f4'),('z', 'f4')]) el = PlyElement.describe(vertex, 'vertex', comments=['vertices']) PlyData([el], text=text).write(filename) def random_sampling(pc, num_sample, replace=None, return_choices=False): """ Input is NxC, output is num_samplexC """ if replace is None: replace = (pc.shape[0]<num_sample) choices = np.random.choice(pc.shape[0], num_sample, replace=replace) if return_choices: return pc[choices], choices else: return pc[choices] def euler_from_quaternion(x, y, z, w): """ Convert a quaternion into euler angles (roll, pitch, yaw) roll is rotation around x in radians (counterclockwise) pitch is rotation around y in radians (counterclockwise) yaw is rotation around z in radians (counterclockwise) """ t0 = +2.0 * (w * x + y * z) t1 = +1.0 - 2.0 * (x * x + y * y) roll_x = math.atan2(t0, t1) t2 = +2.0 * (w * y - z * x) t2 = +1.0 if t2 > +1.0 else t2 t2 = -1.0 if t2 < -1.0 else t2 pitch_y = math.asin(t2) t3 = +2.0 * (w * z + x * y) t4 = +1.0 - 2.0 * (y * y + z * z) yaw_z = math.atan2(t3, t4) return roll_x, pitch_y, yaw_z # in radians def make_M_from_tqs(t, q, s): q = np.quaternion(q[0], q[1], q[2], q[3]) T = np.eye(4) T[0:3, 3] = t R = np.eye(4) R[0:3, 0:3] = quaternion.as_rotation_matrix(q) S = np.eye(4) S[0:3, 0:3] = np.diag(s) M = T.dot(R).dot(S) return M def flip_axis_to_camera(pc): ''' Flip X-right,Y-forward,Z-up to X-right,Y-down,Z-forward Input and output are both (N,3) array ''' pc2 = np.copy(pc) pc2[...,[0,1,2]] = pc2[...,[0,2,1]] # cam X,Y,Z = depth X,-Z,Y pc2[...,1] *= -1 return pc2 def flip_axis_to_depth(pc): pc2 = np.copy(pc) pc2[...,[0,1,2]] = pc2[...,[0,2,1]] # depth X,Y,Z = cam X,Z,-Y pc2[...,2] *= -1 return pc2 def in_hull(p, hull, check): from scipy.spatial import Delaunay if not isinstance(hull,Delaunay): hull = Delaunay(hull) return hull.find_simplex(p)>=0 def extract_pc_in_box3d(pc, box3d, check): ''' pc: (N,3), box3d: (8,3) Order of indices: (3)-----(2) / | / | (4)-+---(1) | | (7)---+-(6) | / | / (8)-----(5) -: l (x) |: h (y) /: w (z) ''' box3d_roi_inds = in_hull(pc[:,0:3], box3d, check) return pc[box3d_roi_inds,:], box3d_roi_inds def roty(t): """Rotation about the y-axis.""" c = np.cos(t) s = np.sin(t) return np.array([[c, 0, s], [0, 1, 0], [-s, 0, c]]) def rotate_aligned_boxes(centers, lengths, rot_mat): # centers, lengths = input_boxes[:,0:3], input_boxes[:,3:6] new_centers = np.dot(centers, np.transpose(rot_mat)) dx, dy = lengths[:,0]/2.0, lengths[:,1]/2.0 new_x = np.zeros((dx.shape[0], 4)) new_y = np.zeros((dx.shape[0], 4)) for i, crnr in enumerate([(-1,-1), (1, -1), (1, 1), (-1, 1)]): crnrs = np.zeros((dx.shape[0], 3)) crnrs[:,0] = crnr[0]*dx crnrs[:,1] = crnr[1]*dy crnrs = np.dot(crnrs, np.transpose(rot_mat)) new_x[:,i] = crnrs[:,0] new_y[:,i] = crnrs[:,1] new_dx = 2.0*np.max(new_x, 1) new_dy = 2.0*np.max(new_y, 1) new_lengths = np.stack((new_dx, new_dy, lengths[:,2]), axis=1) # return np.concatenate([new_centers, new_lengths], axis=1) return new_centers, new_lengths def filter_dominant_cls(points, sem_cls, not_cared_id): ''' args: points: (N, 3) sem_cls: (N, 1) returns: dom_points: (M, 3) ''' cls_book = {'max_total': 0, 'dominant': 0} for cls_id in np.unique(sem_cls): if cls_id in not_cared_id: continue cls_sum = np.sum(np.where(sem_cls == cls_id)[0]) if cls_sum > cls_book['max_total']: cls_book['dominant'] = cls_id cls_book['max_total'] = cls_sum choices = np.where(sem_cls == cls_book['dominant'])[0] return points[choices], choices def get_3d_box_rotated(box_size, rot_mat, padding=None): ''' @<NAME>, KAIST box_size is array(l,w,h), heading_angle is radius clockwise from pos x axis, center is xyz of box center output (8,3) array for 3D box cornders Similar to utils/compute_orientation_3d Order of indices: (3)-----(2) / | / | (4)-+---(1) | | (7)---+-(6) | / | / (8)-----(5) -: l (x) |: h (y) /: w (z) args: box_size: float (3) rot_mat: float (4, 4) returns: corners_3d: float (8, 3) ''' R = rot_mat # (4, 4) l,h,w = box_size * 2 x_corners = [l/2,l/2,-l/2,-l/2,l/2,l/2,-l/2,-l/2]; y_corners = [h/2,h/2,h/2,h/2,-h/2,-h/2,-h/2,-h/2]; z_corners = [w/2,-w/2,-w/2,w/2,w/2,-w/2,-w/2,w/2]; hcoord = np.ones(8, dtype=np.float32) corners_3d = np.vstack([x_corners,y_corners,z_corners, hcoord]) if padding: p = padding corners_3d[0:1, :] += [p, p, -p, -p, p, p, -p, -p] corners_3d[1:2, :] += [p, p, p, p, -p, -p, -p, -p] corners_3d[2:3, :] += [p, -p, -p, p, p, -p, -p, p] corners_3d = np.dot(R, corners_3d) corners_3d = np.transpose(corners_3d) corners_3d = corners_3d[:, :3] assert(corners_3d.shape[0] * corners_3d.shape[1] == 24) return corners_3d def batch_get_3d_box_rotated(box_size, rot_mat): ''' box_size: [x1,x2,...,xn,3] => (B, 3) heading_angle: [x1,x2,...,xn,4,4] => (B, 4, 4) center: [x1,x2,...,xn,3] => (B, 3) Return: [x1,x3,...,xn,8,3] => (B, 8, 3) ''' input_shape = box_size.shape[0] # B R = rot_mat # (B, 4, 4) l = np.expand_dims(box_size[...,0], -1) # [x1,...,xn,1] w = np.expand_dims(box_size[...,1], -1) h = np.expand_dims(box_size[...,2], -1) corners_3d = np.zeros(tuple(list(input_shape)+[8,3])) corners_3d[...,:,0] = np.concatenate((l/2,l/2,-l/2,-l/2,l/2,l/2,-l/2,-l/2, 1), -1) corners_3d[...,:,1] = np.concatenate((h/2,h/2,h/2,h/2,-h/2,-h/2,-h/2,-h/2, 1), -1) corners_3d[...,:,2] = np.concatenate((w/2,-w/2,-w/2,w/2,w/2,-w/2,-w/2,w/2, 1), -1) tlist = [i for i in range(len(input_shape))] tlist += [len(input_shape)+1, len(input_shape)] corners_3d = np.matmul(corners_3d, np.transpose(R, tuple(tlist))) assert(corners_3d.shape[1] * corners_3d.shape[2] == 24) return corners_3d def get_3d_box(box_size, heading_angle, center): ''' box_size is array(l,w,h), heading_angle is radius clockwise from pos x axis, center is xyz of box center output (8,3) array for 3D box cornders Similar to utils/compute_orientation_3d ''' R = roty(heading_angle) l,w,h = box_size x_corners = [l/2,l/2,-l/2,-l/2,l/2,l/2,-l/2,-l/2]; y_corners = [h/2,h/2,h/2,h/2,-h/2,-h/2,-h/2,-h/2]; z_corners = [w/2,-w/2,-w/2,w/2,w/2,-w/2,-w/2,w/2]; corners_3d = np.dot(R, np.vstack([x_corners,y_corners,z_corners])) corners_3d[0,:] = corners_3d[0,:] + center[0]; corners_3d[1,:] = corners_3d[1,:] + center[1]; corners_3d[2,:] = corners_3d[2,:] + center[2]; corners_3d = np.transpose(corners_3d) return corners_3d def nms_3d_faster_samecls(boxes, overlap_threshold, old_type=False): x1 = boxes[:,0] y1 = boxes[:,1] z1 = boxes[:,2] x2 = boxes[:,3] y2 = boxes[:,4] z2 = boxes[:,5] score = boxes[:,6] cls = boxes[:,7] area = (x2-x1)*(y2-y1)*(z2-z1) I = np.argsort(score) pick = [] while (I.size!=0): last = I.size i = I[-1] pick.append(i) xx1 = np.maximum(x1[i], x1[I[:last-1]]) yy1 = np.maximum(y1[i], y1[I[:last-1]]) zz1 = np.maximum(z1[i], z1[I[:last-1]]) xx2 = np.minimum(x2[i], x2[I[:last-1]]) yy2 = np.minimum(y2[i], y2[I[:last-1]]) zz2 = np.minimum(z2[i], z2[I[:last-1]]) cls1 = cls[i] cls2 = cls[I[:last-1]] l = np.maximum(0, xx2-xx1) w = np.maximum(0, yy2-yy1) h = np.maximum(0, zz2-zz1) if old_type: o = (l*w*h)/area[I[:last-1]] else: inter = l*w*h o = inter / (area[i] + area[I[:last-1]] - inter) o = o * (cls1==cls2) I = np.delete(I, np.concatenate(([last-1], np.where(o>overlap_threshold)[0]))) return pick ```
{ "source": "jeonghyunkeem/PointGroup", "score": 2 }
#### File: dataset/scan2cad/prepare_data_inst_gttxt.py ```python import numpy as np import glob import torch import os from s2c_map import CARED_CLASS_MASK semantic_label_idxs = [sem_idx+1 for sem_idx in CARED_CLASS_MASK] BASE_DIR = os.path.dirname(os.path.abspath(__file__)) META_DATA = os.path.join(BASE_DIR, 'meta_data') DATA_ROOT = os.path.join(BASE_DIR, 'data3') FILENAME = '_inst.pth' def load_data_split(split): all_scan_names = list(set(os.path.basename(scan)[:12] \ for scan in os.listdir(DATA_ROOT) if scan.startswith('scene'))) split_file = os.path.join(META_DATA, 'scan2cad_{}.txt'.format(split)) with open(split_file, 'r') as f: split_names = [] split_names = f.read().splitlines() error_meta = os.path.join(DATA_ROOT, 'error_scan.txt') with open(error_meta, 'r') as f: error_list = [] error_list = f.read().splitlines() split_data_names = [] for i, scan_name in enumerate(split_names): if scan_name not in all_scan_names or scan_name in error_list: continue split_data_names.append(os.path.join(DATA_ROOT, scan_name + FILENAME)) return split_data_names if __name__ == '__main__': split = 'val' data_names = load_data_split(split) files = sorted(data_names) rooms = [torch.load(i) for i in files if os.path.exists(i)] SPLIT_DIR = os.path.join(BASE_DIR, '{}'.format(split)) + '_gt' if not os.path.exists(SPLIT_DIR): os.mkdir(SPLIT_DIR) for i in range(len(rooms)): xyz, rgb, label, instance_label = rooms[i] # label 0~19 (-1); instance_label 0~instance_num-1 (-1) scene_name = files[i].split('/')[-1][:12] print(f'{(i+1):4d}/{len(rooms):4d}: {scene_name:12s}') instance_label_new = np.zeros(instance_label.shape, dtype=np.int32) # 0 for unannotated, xx00y: x for semantic_label, y for inst_id (1~instance_num) instance_num = int(instance_label.max()) + 1 for inst_id in range(instance_num): instance_mask = np.where(instance_label == inst_id)[0] sem_id = int(label[instance_mask[0]]) if(sem_id == -1): sem_id = 0 semantic_label = semantic_label_idxs[sem_id] instance_label_new[instance_mask] = semantic_label * 1000 + inst_id + 1 np.savetxt(os.path.join(SPLIT_DIR, scene_name + '.txt'), instance_label_new, fmt='%d') ``` #### File: dataset/scan2cad/s2c_collect_pgroup.py ```python import os, sys import json import h5py import numpy as np import quaternion import torch from torch.utils.data import Dataset BASE_DIR_1 = os.path.dirname(os.path.abspath(__file__)) # scan2cad BASE_DIR = os.path.dirname(BASE_DIR_1) # dataset ROOT_DIR = os.path.dirname(BASE_DIR) # PointGroup DATA_DIR = os.path.dirname(ROOT_DIR) # /root/ DATA_DIR = os.path.join(DATA_DIR, 'Dataset') # /root/Dataset DUMP_DIR = os.path.join(ROOT_DIR, 'data') sys.path.append(BASE_DIR) sys.path.append(ROOT_DIR) from s2c_map import CLASS_MAPPING, ID2NAME, CARED_CLASS_MASK from s2c_config import Scan2CADDatasetConfig import s2c_utils sys.path.append(os.path.join(ROOT_DIR, 'models/retrieval/')) DC = Scan2CADDatasetConfig() MAX_NUM_POINT = 50000 MAX_NUM_OBJ = 64 INS_NUM_POINT = 2048 FEATURE_DIMENSION = 512 MAX_DATA_SIZE = 15000 CHUNK_SIZE = 1000 INF = 9999 NOT_CARED_ID = np.array([INF]) # wall, floor # Thresholds PADDING = 0.05 SCALE_THRASHOLD = 0.05 SEG_THRESHOLD = 1 REMAPPER = np.ones(35, dtype=np.int64) * (-1) for i, x in enumerate(CARED_CLASS_MASK): REMAPPER[x] = i print(f'REMAPPER[{x:2d}] => {i:2d}') SYM2CLASS = {"__SYM_NONE": 0, "__SYM_ROTATE_UP_2": 1, "__SYM_ROTATE_UP_4": 2, "__SYM_ROTATE_UP_INF": 3} # functions ============================================================================================== def from_q_to_6d(q): q = np.quaternion(q[0], q[1], q[2], q[3]) mat = quaternion.as_rotation_matrix(q) # 3x3 rep6d = mat[:, 0:2].transpose().reshape(-1, 6) # 6 return rep6d def nn_search(p, ps): target = torch.from_numpy(ps.copy()) p = torch.from_numpy(p.copy()) p_diff = target - p p_dist = torch.sum(p_diff**2, dim=-1) dist, idx = torch.min(p_dist, dim=-1) return dist.item(), idx.item() def make_M_from_tqs(t, q, s): q = np.quaternion(q[0], q[1], q[2], q[3]) T = np.eye(4) T[0:3, 3] = t R = np.eye(4) R[0:3, 0:3] = quaternion.as_rotation_matrix(q) S = np.eye(4) S[0:3, 0:3] = np.diag(s) M = T.dot(R).dot(S) return M def compose_mat4(t, q, s, center=None): if not isinstance(q, np.quaternion): q = np.quaternion(q[0], q[1], q[2], q[3]) T = np.eye(4) T[0:3, 3] = t R = np.eye(4) R[0:3, 0:3] = quaternion.as_rotation_matrix(q) S = np.eye(4) S[0:3, 0:3] = np.diag(s) C = np.eye(4) if center is not None: C[0:3, 3] = center M = T.dot(R).dot(S).dot(C) return M def decompose_mat4(M): R = M[0:3, 0:3].copy() sx = np.linalg.norm(R[0:3, 0]) sy = np.linalg.norm(R[0:3, 1]) sz = np.linalg.norm(R[0:3, 2]) s = np.array([sx, sy, sz]) R[:,0] /= sx R[:,1] /= sy R[:,2] /= sz q = quaternion.from_rotation_matrix(R[0:3, 0:3]) t = M[0:3, 3] return t, q, s # ======================================================================================================== LOG_N = 100 def print_log(log): print('-'*LOG_N+'\n'+log+' \n'+'-'*LOG_N) class Scan2CADCollect(Dataset): def __init__(self, split_set='train', distr_check=False): self.data_path = os.path.join(DATA_DIR, 'Scan2CAD/export') self.out_path = os.path.join(BASE_DIR_1, 'data4') if not os.path.exists(self.out_path): os.mkdir(self.out_path) print("Create export directory: {}".format(self.out_path)) all_scan_names = list(set([os.path.basename(x)[0:12] \ for x in os.listdir(self.data_path) if x.startswith('scene')])) self.scan_names = [] if split_set in ['all', 'train', 'val', 'test']: split_filenames = os.path.join(BASE_DIR_1, 'meta_data', 'scan2cad_{}.txt'.format(split_set)) with open(split_filenames, 'r') as f: self.scan_list = f.read().splitlines() # remove unavailiable scans num_scans = len(self.scan_list) self.scan_list = [sname for sname in self.scan_list \ if sname in all_scan_names] print_log('Dataset for {}: kept {} scans out of {}'.format(split_set, len(self.scan_list), num_scans)) num_scans = len(self.scan_list) else: print('illegal split name') return filename_json = BASE_DIR_1 + "/full_annotations.json" assert filename_json self.dataset = {} cat_summary = dict.fromkeys(DC.ClassToName, 0) cat_ids = [] with open(filename_json, 'r') as f: data = json.load(f) d = {} i = -1 for idx, r in enumerate(data): i_scan = r["id_scan"] if i_scan not in self.scan_list: continue self.scan_names.append(i_scan) i += 1 d[i] = {} d[i]['id_scan'] = i_scan d[i]['trs'] = r["trs"] n_model = r["n_aligned_models"] d[i]['n_total'] = n_model d[i]['models'] = {} for j in range(n_model): d[i]['models'][j] = {} d[i]['models'][j]['trs'] = r["aligned_models"][j]['trs'] d[i]['models'][j]['center'] = r["aligned_models"][j]['center'] d[i]['models'][j]['bbox'] = r["aligned_models"][j]['bbox'] d[i]['models'][j]['sym'] = SYM2CLASS[r["aligned_models"][j]['sym']] d[i]['models'][j]['fname'] = r["aligned_models"][j]['id_cad'] cat_id = r["aligned_models"][j]['catid_cad'] cat_ids.append(cat_id) d[i]['models'][j]['cat_id'] = cat_id cat_class = DC.ShapenetIDtoClass(cat_id) d[i]['models'][j]['sem_cls'] = cat_class # category summary cat_summary[cat_class]+=1 self.dataset = d self.cat_ids = np.unique(cat_ids) if distr_check: for k, v in sorted(cat_summary.items(), key=lambda item:item[1], reverse=True): print(f'{k:2d}: {DC.ClassToName[k]:12s} => {v:4d}') def __len__(self): return len(self.dataset) def size_check(self, scale, id_scan, sem_cls): check = False if scale[0] < SCALE_THRASHOLD: scale[0] = SCALE_THRASHOLD check = True if scale[1] < SCALE_THRASHOLD: scale[1] = SCALE_THRASHOLD check = True if scale[2] < SCALE_THRASHOLD: scale[2] = SCALE_THRASHOLD check = True return scale def collect(self, N, dump=False): """ Return dictionary of {verts(x,y,z): cad filename} Note: NK = a total number of instances in dataset V = a number of vertices args: N: int a size of dataset return: dict: (NK, 1, V, 3) a dictionary for verts-cad_file pairs """ # ======= GLOBAL LABEL VARIABLES ======= error_scan = {} # Text # Anchor collection (for detection) print_log(" LOADING SCENES") collect_path = os.path.join(BASE_DIR, 'collect') for index in range(N): data = self.dataset[index] id_scan = data['id_scan'] K = data['n_total'] assert(K <= MAX_NUM_OBJ) # Point Cloud mesh_vertices = np.load(os.path.join(self.data_path, id_scan) + '_vert.npy') # (N, 3) semantic_labels = np.load(os.path.join(self.data_path, id_scan) + '_sem_label.npy') # (N, sem_cls(0, 1~35, 36~MAX, INF)) point_cloud = mesh_vertices[:,0:3] colors = mesh_vertices[:,3:6] / 127.5 - 1 instance_vertices = np.ones((point_cloud.shape[0]), dtype=np.int64) * (-1) semantic_vertices = np.ones((point_cloud.shape[0]), dtype=np.int64) * (-1) # Sorting points cropping order to avoid overlapping sort_by_scale = {} for model in range(K): obj_scale = np.array(data['models'][model]['trs']['scale']) sort_by_scale[model] = np.sum(obj_scale) model_scale_order = {model: scale for model, scale in sorted(sort_by_scale.items(), key=(lambda item:item[1]), reverse=True)} K = len(model_scale_order.keys()) # Iterate on scale_order checked = False k = -1 for i, model in enumerate(model_scale_order.keys()): k += 1 # semantics () sem_cls = data['models'][model]['sem_cls'] # (0~num_classes-1) # Transform obj_center = np.array(data['models'][model]['center']) obj_translation = np.array(data['models'][model]['trs']['translation']) obj_rotation = np.array(data['models'][model]['trs']['rotation']) obj_scale = np.array(data['models'][model]['trs']['scale']) obj_scale = self.size_check(obj_scale, id_scan, sem_cls) Mobj = compose_mat4(obj_translation, obj_rotation, obj_scale, obj_center) # Instance vertices # - (1) Region Crop & Axis-aligned Bounding Box vert_choices = np.array([]) ins_bbox = np.array(data['models'][model]['bbox']) obj_corners = s2c_utils.get_3d_box_rotated(ins_bbox, Mobj, padding=PADDING) ex_points, obj_vert_ind = s2c_utils.extract_pc_in_box3d(point_cloud, obj_corners) nx = ex_points.shape[0] # - (2) Instance Segments Crop seg_points, vert_choices = \ s2c_utils.filter_dominant_cls(point_cloud, obj_vert_ind, semantic_labels, sem_cls+1, NOT_CARED_ID) seg_nx = seg_points.shape[0] # ======= Semantic/Instance vertices ======= if seg_nx < SEG_THRESHOLD: k -= 1 checked = True continue sem_cls = REMAPPER[sem_cls] # if sem_cls < 0: continue # ignore non-valid class object (only preserve CARED classes) instance_vertices[vert_choices] = k # (0~K-1) NOTE:unannotated=-1 semantic_vertices[vert_choices] = sem_cls # (0~num_classes-1) NOTE:unannotated=-1 # error check ins_list = np.unique(instance_vertices) if (np.max(instance_vertices)+1) != (len(ins_list)-1): print_log(f"[{index}/{N} Error] Please check this scene --> {id_scan}") error_scan[id_scan] = 0 continue # DUMP COLLECT RESULTS if dump: scene_path = os.path.join(collect_path, f'{id_scan}') if not os.path.exists(scene_path): os.mkdir(scene_path) print("Created scene directory: {}".format(scene_path)) s2c_utils.write_scene_results(points=point_cloud, ins_points=instance_vertices, num_instances=K, bboxes=None, file_path=scene_path) point_cloud = np.ascontiguousarray(point_cloud[:, :3] - point_cloud[:, :3].mean(0)) pcoord = point_cloud.astype(np.float64) colors = colors.astype(np.float32) sem_labels = semantic_vertices.astype(np.float64) ins_labels = instance_vertices.astype(np.float64) # ============ DUMP ============ # scene data file_path = os.path.join(self.out_path, id_scan+'_inst.pth') torch.save((pcoord, colors, sem_labels, ins_labels), file_path) print(f"[{index}/{N} Saved] {id_scan} >>> {file_path}") # error scan with open(self.out_path+'/error_scan.txt', 'w') as f: print_log("ERROR SCAN") for i, sname in enumerate(error_scan.keys()): print('{:2d}: {}'.format(i, sname)) f.write(sname) f.write('\n') if __name__ == "__main__": Dataset = Scan2CADCollect(split_set='all', distr_check=True) N = len(Dataset) Dataset.collect(N, dump=False) ```
{ "source": "jeonghyunkeem/structurenet", "score": 3 }
#### File: structurenet/code/data.py ```python import sys import os import json import torch import numpy as np from torch.utils import data from pyquaternion import Quaternion from sklearn.decomposition import PCA from collections import namedtuple from utils import one_hot import trimesh # store a part hierarchy of graphs for a shape class Tree(object): # global object category information part_name2id = dict() part_id2name = dict() part_name2cids = dict() part_non_leaf_sem_names = [] num_sem = None root_sem = None @ staticmethod def load_category_info(cat): with open(os.path.join('../stats/part_semantics/', cat+'.txt'), 'r') as fin: for l in fin.readlines(): x, y, _ = l.rstrip().split() x = int(x) Tree.part_name2id[y] = x Tree.part_id2name[x] = y Tree.part_name2cids[y] = [] if '/' in y: Tree.part_name2cids['/'.join(y.split('/')[:-1])].append(x) Tree.num_sem = len(Tree.part_name2id) + 1 for k in Tree.part_name2cids: Tree.part_name2cids[k] = np.array(Tree.part_name2cids[k], dtype=np.int32) if len(Tree.part_name2cids[k]) > 0: Tree.part_non_leaf_sem_names.append(k) Tree.root_sem = Tree.part_id2name[1] # store a part node in the tree class Node(object): def __init__(self, part_id=0, is_leaf=False, box=None, label=None, children=None, edges=None, full_label=None, geo=None, geo_feat=None): self.is_leaf = is_leaf # store True if the part is a leaf node self.part_id = part_id # part_id in result_after_merging.json of PartNet self.box = box # box parameter for all nodes self.geo = geo # 1 x 1000 x 3 point cloud self.geo_feat = geo_feat # 1 x 100 geometry feature self.label = label # node semantic label at the current level self.full_label = full_label # node semantic label from root (separated by slash) self.children = [] if children is None else children # all of its children nodes; each entry is a Node instance self.edges = [] if edges is None else edges # all of its children relationships; # each entry is a tuple <part_a, part_b, type, params, dist> """ Here defines the edges format: part_a, part_b: Values are the order in self.children (e.g. 0, 1, 2, 3, ...). This is an directional edge for A->B. If an edge is commutative, you may need to manually specify a B->A edge. For example, an ADJ edge is only shown A->B, there is no edge B->A in the json file. type: Four types considered in StructureNet: ADJ, ROT_SYM, TRANS_SYM, REF_SYM. params: There is no params field for ADJ edge; For ROT_SYM edge, 0-2 pivot point, 3-5 axis unit direction, 6 radian rotation angle; For TRANS_SYM edge, 0-2 translation vector; For REF_SYM edge, 0-2 the middle point of the segment that connects the two box centers, 3-5 unit normal direction of the reflection plane. dist: For ADJ edge, it's the closest distance between two parts; For SYM edge, it's the chamfer distance after matching part B to part A. """ def get_semantic_id(self): return Tree.part_name2id[self.full_label] def get_semantic_one_hot(self): out = np.zeros((1, Tree.num_sem), dtype=np.float32) out[0, Tree.part_name2id[self.full_label]] = 1 return torch.tensor(out, dtype=torch.float32).to(device=self.box.device) def get_box_quat(self): box = self.box.cpu().numpy().squeeze() center = box[:3] size = box[3:6] xdir = box[6:9] xdir /= np.linalg.norm(xdir) ydir = box[9:] ydir /= np.linalg.norm(ydir) zdir = np.cross(xdir, ydir) zdir /= np.linalg.norm(zdir) rotmat = np.vstack([xdir, ydir, zdir]).T q = Quaternion(matrix=rotmat) quat = np.array([q.w, q.x, q.y, q.z], dtype=np.float32) box_quat = np.hstack([center, size, quat]).astype(np.float32) return torch.from_numpy(box_quat).view(1, -1).to(device=self.box.device) def set_from_box_quat(self, box_quat): box_quat = box_quat.cpu().numpy().squeeze() center = box_quat[:3] size = box_quat[3:6] q = Quaternion(box_quat[6], box_quat[7], box_quat[8], box_quat[9]) rotmat = q.rotation_matrix box = np.hstack([center, size, rotmat[:, 0].flatten(), rotmat[:, 1].flatten()]).astype(np.float32) self.box = torch.from_numpy(box).view(1, -1) def to(self, device): if self.box is not None: self.box = self.box.to(device) for edge in self.edges: if 'params' in edge: edge['params'].to(device) if self.geo is not None: self.geo = self.geo.to(device) for child_node in self.children: child_node.to(device) return self def _to_str(self, level, pid, detailed=False): out_str = ' |'*(level-1) + ' โ”œ'*(level > 0) + str(pid) + ' ' + self.label + (' [LEAF] ' if self.is_leaf else ' ') + '{' + str(self.part_id) + '}' if detailed: out_str += 'Box('+';'.join([str(item) for item in self.box.numpy()])+')\n' else: out_str += '\n' if len(self.children) > 0: for idx, child in enumerate(self.children): out_str += child._to_str(level+1, idx) if detailed and len(self.edges) > 0: for edge in self.edges: if 'params' in edge: edge = edge.copy() # so the original parameters don't get changed edge['params'] = edge['params'].cpu().numpy() out_str += ' |'*(level) + ' โ”œ' + 'Edge(' + str(edge) + ')\n' return out_str def __str__(self): return self._to_str(0, 0) def depth_first_traversal(self): nodes = [] stack = [self] while len(stack) > 0: node = stack.pop() nodes.append(node) stack.extend(reversed(node.children)) return nodes def child_adjacency(self, typed=False, max_children=None): if max_children is None: adj = torch.zeros(len(self.children), len(self.children)) else: adj = torch.zeros(max_children, max_children) if typed: edge_types = ['ADJ', 'ROT_SYM', 'TRANS_SYM', 'REF_SYM'] for edge in self.edges: if typed: edge_type_index = edge_types.index(edge['type']) adj[edge['part_a'], edge['part_b']] = edge_type_index adj[edge['part_b'], edge['part_a']] = edge_type_index else: adj[edge['part_a'], edge['part_b']] = 1 adj[edge['part_b'], edge['part_a']] = 1 return adj def geos(self, leafs_only=True): nodes = list(self.depth_first_traversal()) out_geos = []; out_nodes = []; for node in nodes: if not leafs_only or node.is_leaf: out_geos.append(node.geo) out_nodes.append(node) return out_geos, out_nodes def boxes(self, per_node=False, leafs_only=False): nodes = list(reversed(self.depth_first_traversal())) node_boxesets = [] boxes_stack = [] for node in nodes: node_boxes = [] for i in range(len(node.children)): node_boxes = boxes_stack.pop() + node_boxes if node.box is not None and (not leafs_only or node.is_leaf): node_boxes.append(node.box) if per_node: node_boxesets.append(node_boxes) boxes_stack.append(node_boxes) assert len(boxes_stack) == 1 if per_node: return node_boxesets, list(nodes) else: boxes = boxes_stack[0] return boxes def graph(self, leafs_only=False): part_boxes = [] part_geos = [] edges = [] part_ids = [] part_sems = [] nodes = list(reversed(self.depth_first_traversal())) box_index_offset = 0 for node in nodes: child_count = 0 box_idx = {} for i, child in enumerate(node.children): if leafs_only and not child.is_leaf: continue part_boxes.append(child.box) part_geos.append(child.geo) part_ids.append(child.part_id) part_sems.append(child.full_label) box_idx[i] = child_count+box_index_offset child_count += 1 for edge in node.edges: if leafs_only and not ( node.children[edge['part_a']].is_leaf and node.children[edge['part_b']].is_leaf): continue edges.append(edge.copy()) edges[-1]['part_a'] = box_idx[edges[-1]['part_a']] edges[-1]['part_b'] = box_idx[edges[-1]['part_b']] box_index_offset += child_count return part_boxes, part_geos, edges, part_ids, part_sems def edge_tensors(self, edge_types, device, type_onehot=True): num_edges = len(self.edges) # get directed edge indices in both directions as tensor edge_indices = torch.tensor( [[e['part_a'], e['part_b']] for e in self.edges] + [[e['part_b'], e['part_a']] for e in self.edges], device=device, dtype=torch.long).view(1, num_edges*2, 2) # get edge type as tensor edge_type = torch.tensor([edge_types.index(edge['type']) for edge in self.edges], device=device, dtype=torch.long) if type_onehot: edge_type = one_hot(inp=edge_type, label_count=len(edge_types)).transpose(0, 1).view(1, num_edges, len(edge_types)).to(dtype=torch.float32) else: edge_type = edge_type.view(1, num_edges) edge_type = torch.cat([edge_type, edge_type], dim=1) # add edges in other direction (symmetric adjacency) return edge_type, edge_indices def get_subtree_edge_count(self): cnt = 0 if self.children is not None: for cnode in self.children: cnt += cnode.get_subtree_edge_count() if self.edges is not None: cnt += len(self.edges) return cnt # functions for class Tree def __init__(self, root): self.root = root def to(self, device): self.root = self.root.to(device) return self def __str__(self): return str(self.root) def depth_first_traversal(self): return self.root.depth_first_traversal() def boxes(self, per_node=False, leafs_only=False): return self.root.boxes(per_node=per_node, leafs_only=leafs_only) def graph(self, leafs_only=False): return self.root.graph(leafs_only=leafs_only) def free(self): for node in self.depth_first_traversal(): del node.geo del node.geo_feat del node.box del node # extend torch.data.Dataset class for PartNet class PartNetDataset(data.Dataset): def __init__(self, root, object_list, data_features, load_geo=False): self.root = root self.data_features = data_features self.load_geo = load_geo if isinstance(object_list, str): with open(os.path.join(self.root, object_list), 'r') as f: self.object_names = [item.rstrip() for item in f.readlines()] else: self.object_names = object_list def __getitem__(self, index): if 'object' in self.data_features: obj = self.load_object(os.path.join(self.root, self.object_names[index]+'.json'), \ load_geo=self.load_geo) data_feats = () for feat in self.data_features: if feat == 'object': data_feats = data_feats + (obj,) elif feat == 'name': data_feats = data_feats + (self.object_names[index],) else: assert False, 'ERROR: unknow feat type %s!' % feat return data_feats def __len__(self): return len(self.object_names) def get_anno_id(self, anno_id): obj = self.load_object(os.path.join(self.root, anno_id+'.json'), \ load_geo=self.load_geo) return obj @staticmethod def load_object(fn, load_geo=False): if load_geo: geo_fn = fn.replace('_hier', '_geo').replace('json', 'npz') geo_data = np.load(geo_fn) with open(fn, 'r') as f: root_json = json.load(f) # create a virtual parent node of the root node and add it to the stack StackElement = namedtuple('StackElement', ['node_json', 'parent', 'parent_child_idx']) stack = [StackElement(node_json=root_json, parent=None, parent_child_idx=None)] root = None # traverse the tree, converting each node json to a Node instance while len(stack) > 0: stack_elm = stack.pop() parent = stack_elm.parent parent_child_idx = stack_elm.parent_child_idx node_json = stack_elm.node_json node = Tree.Node( part_id=node_json['id'], is_leaf=('children' not in node_json), label=node_json['label']) if 'geo' in node_json.keys(): node.geo = torch.tensor(np.array(node_json['geo']), dtype=torch.float32).view(1, -1, 3) if load_geo: node.geo = torch.tensor(geo_data['parts'][node_json['id']], dtype=torch.float32).view(1, -1, 3) if 'box' in node_json: node.box = torch.from_numpy(np.array(node_json['box'])).to(dtype=torch.float32) if 'children' in node_json: for ci, child in enumerate(node_json['children']): stack.append(StackElement(node_json=node_json['children'][ci], parent=node, parent_child_idx=ci)) if 'edges' in node_json: for edge in node_json['edges']: if 'params' in edge: edge['params'] = torch.from_numpy(np.array(edge['params'])).to(dtype=torch.float32) node.edges.append(edge) if parent is None: root = node root.full_label = root.label else: if len(parent.children) <= parent_child_idx: parent.children.extend([None] * (parent_child_idx+1-len(parent.children))) parent.children[parent_child_idx] = node node.full_label = parent.full_label + '/' + node.label obj = Tree(root=root) return obj @staticmethod def save_object(obj, fn): # create a virtual parent node of the root node and add it to the stack StackElement = namedtuple('StackElement', ['node', 'parent_json', 'parent_child_idx']) stack = [StackElement(node=obj.root, parent_json=None, parent_child_idx=None)] obj_json = None # traverse the tree, converting child nodes of each node to json while len(stack) > 0: stack_elm = stack.pop() parent_json = stack_elm.parent_json parent_child_idx = stack_elm.parent_child_idx node = stack_elm.node node_json = { 'id': node.part_id, 'label': f'{node.label if node.label is not None else ""}'} if node.geo is not None: node_json['geo'] = node.geo.cpu().numpy().reshape(-1).tolist() if node.box is not None: node_json['box'] = node.box.cpu().numpy().reshape(-1).tolist() if len(node.children) > 0: node_json['children'] = [] for child in node.children: node_json['children'].append(None) stack.append(StackElement(node=child, parent_json=node_json, parent_child_idx=len(node_json['children'])-1)) if len(node.edges) > 0: node_json['edges'] = [] for edge in node.edges: node_json['edges'].append(edge) if 'params' in edge: node_json['edges'][-1]['params'] = node_json['edges'][-1]['params'].cpu().numpy().reshape(-1).tolist() if parent_json is None: obj_json = node_json else: parent_json['children'][parent_child_idx] = node_json with open(fn, 'w') as f: json.dump(obj_json, f) ``` #### File: structurenet/partnet_edges/detect_rot_sym.py ```python import numpy as np from utils import get_pc_center, get_pca_axes, get_chamfer_distance ''' rotational symmetry Output: ret: T/F, pt: pivot point xyz, nor: normal unit vector, angle: rotation radian angle Usage: part_B_point = Rot(part_A_point - pt, nor, angel) + pt ''' def compute_params(pc1_center, pc2_center, pc1_v1, pc1_v2, pc2_v1, pc2_v2): mid_v1 = (pc1_v1 + pc2_v1) / 2 nor_v1 = pc1_v1 - pc2_v1 nor_v1_len = np.linalg.norm(nor_v1) if nor_v1_len < 1e-6: return np.zeros((3), dtype=np.float32), np.zeros((3), dtype=np.float32), 0.0 nor_v1 /= nor_v1_len mid_v2 = (pc1_v2 + pc2_v2) / 2 nor_v2 = pc1_v2 - pc2_v2 nor_v2_len = np.linalg.norm(nor_v2) if nor_v2_len < 1e-6: return np.zeros((3), dtype=np.float32), np.zeros((3), dtype=np.float32), 0.0 nor_v2 /= nor_v2_len # compute the axis direction nor = np.cross(nor_v1, nor_v2) nor_len = np.linalg.norm(nor) if nor_len < 1e-6: return np.zeros((3), dtype=np.float32), np.zeros((3), dtype=np.float32), 0.0 nor /= nor_len # compute one pivot point (any point along the axis is good) A = np.array([[nor_v1[0], nor_v1[1], nor_v1[2]], \ [nor_v2[0], nor_v2[1], nor_v2[2]], \ [nor[0], nor[1], nor[2]]], dtype=np.float32) b = np.array([np.dot(nor_v1, mid_v1), np.dot(nor_v2, mid_v2), np.dot(nor, mid_v1)]) pt = np.matmul(np.linalg.inv(A), b) # compute rotation angle tv1 = pc1_center - pt - nor * np.dot(pc1_center - pt, nor) tv2 = pc2_center - pt - nor * np.dot(pc2_center - pt, nor) c = np.dot(tv1, tv2) / (np.linalg.norm(tv1) * np.linalg.norm(tv2)) c = np.clip(c, -1.0, 1.0) angle = np.arccos(c) return pt, nor, angle def compute_rot_sym(pc1, pc2): pc1_center = get_pc_center(pc1) pc2_center = get_pc_center(pc2) pc1_axes = get_pca_axes(pc1) pc2_axes = get_pca_axes(pc2) min_error = 1e8; min_pt = None; min_nor = None; min_angle = None; for axe_id in range(3): pc1_axis1 = pc1_axes[axe_id] pc1_axis2 = pc1_axes[(axe_id+1)%3] pc2_axis1 = pc2_axes[axe_id] pc2_axis2 = pc2_axes[(axe_id+1)%3] pt, nor, angle = compute_params(pc1_center, pc2_center, pc1_center + pc1_axis1, pc1_center + pc1_axis2, pc2_center + pc2_axis1, pc2_center + pc2_axis2) new_pc1 = atob_rot_sym(pc1, pt, nor, angle) error = get_chamfer_distance(new_pc1, pc2) if error < min_error: min_error = error; min_pt = pt; min_nor = nor; min_angle = angle; pt, nor, angle = compute_params(pc1_center, pc2_center, pc1_center + pc1_axis1, pc1_center + pc1_axis2, pc2_center - pc2_axis1, pc2_center + pc2_axis2) new_pc1 = atob_rot_sym(pc1, pt, nor, angle) error = get_chamfer_distance(new_pc1, pc2) if error < min_error: min_error = error; min_pt = pt; min_nor = nor; min_angle = angle; pt, nor, angle = compute_params(pc1_center, pc2_center, pc1_center + pc1_axis1, pc1_center + pc1_axis2, pc2_center + pc2_axis1, pc2_center - pc2_axis2) new_pc1 = atob_rot_sym(pc1, pt, nor, angle) error = get_chamfer_distance(new_pc1, pc2) if error < min_error: min_error = error; min_pt = pt; min_nor = nor; min_angle = angle; pt, nor, angle = compute_params(pc1_center, pc2_center, pc1_center + pc1_axis1, pc1_center + pc1_axis2, pc2_center - pc2_axis1, pc2_center - pc2_axis2) new_pc1 = atob_rot_sym(pc1, pt, nor, angle) error = get_chamfer_distance(new_pc1, pc2) if error < min_error: min_error = error; min_pt = pt; min_nor = nor; min_angle = angle; return min_error, min_pt, min_nor, min_angle def atob_rot_sym(pc, pt, nor, angle): s = np.sin(angle); c = np.cos(angle); nx = nor[0]; ny = nor[1]; nz = nor[2]; rotmat = np.array([[c + (1 - c) * nx * nx, (1 - c) * nx * ny - s * nz, (1 - c) * nx * nz + s * ny], \ [(1 - c) * nx * ny + s * nz, c + (1 - c) * ny * ny, (1 - c) * ny * nz - s * nx], \ [(1 - c) * nx * nz - s * ny, (1 - c) * ny * nz + s * nx, c + (1 - c) * nz * nz]], dtype=np.float32) return np.matmul(rotmat, (pc - pt).T).T + pt ``` #### File: structurenet/partnet_edges/detect_trans_sym.py ```python import numpy as np from utils import get_pc_center, get_chamfer_distance ''' translation symmetry Output: ret: T/F, trans: translation vector xyz Usage: part_B_point = part_A_point + (x, y, z) ''' def compute_trans_sym(pc1, pc2): pc1_center = get_pc_center(pc1) pc2_center = get_pc_center(pc2) trans = pc2_center - pc1_center new_pc1 = atob_trans_sym(pc1, trans) error = get_chamfer_distance(new_pc1, pc2) return error, trans def atob_trans_sym(pc, trans): return pc + trans ```
{ "source": "jeonghyun-kim-jake/CoCosNet", "score": 2 }
#### File: CoCosNet/data/bf_ade20k_dataset.py ```python import os import random from data.pix2pix_dataset import Pix2pixDataset from data.image_folder import make_dataset from data.base_dataset import BaseDataset, get_params, get_transform import torch import torchvision.transforms as transforms from PIL import Image from os.path import isfile, join, abspath class BFADE20KDataset(Pix2pixDataset): @staticmethod def modify_commandline_options(parser, is_train): parser = Pix2pixDataset.modify_commandline_options(parser, is_train) parser.set_defaults(preprocess_mode='resize_and_crop') if is_train: parser.set_defaults(load_size=286) else: parser.set_defaults(load_size=256) parser.set_defaults(crop_size=256) parser.set_defaults(display_winsize=256) parser.set_defaults(label_nc=150) parser.set_defaults(contain_dontcare_label=True) parser.set_defaults(cache_filelist_read=False) parser.set_defaults(cache_filelist_write=False) return parser def get_paths(self, opt): instance_dir = opt.instance_dir instance_paths = make_dataset(instance_dir, recursive=False, read_cache=True) image_dir = opt.image_dir image_paths = make_dataset(image_dir, recursive=False, read_cache=True) image_files = [] image_files_checks = [] instance_files = [] for p in image_paths: file_name = os.path.basename(p) instance_check_path = join(instance_dir, file_name) if ( p.endswith('.jpg') or p.endswith('.png') )and isfile(instance_check_path): image_files.append(p) image_files_checks.append(file_name) for p in instance_paths: file_name = os.path.basename(p) if ( p.endswith('.png') and not p.endswith('.png.png') ) and file_name in image_files_checks: instance_files.append(p) assert len(instance_files) == len(image_files), "The #images in {} and {} do not match.".format(len(instance_files),len(image_files)) return instance_files, image_files def get_ref(self, opt): extra = '_test' if opt.phase == 'test' else '' with open('./data/ade20k_ref{}.txt'.format(extra)) as fd: lines = fd.readlines() ref_dict = {} for i in range(len(lines)): items = lines[i].strip().split(',') key = items[0] if opt.phase == 'test': val = items[1:] else: val = [items[1], items[-1]] ref_dict[key] = val train_test_folder = ('training', 'validation') return ref_dict, train_test_folder def __getitem__(self, index): # Label Image label_path = self.label_paths[index] label_tensor, params1 = self.get_label_tensor(label_path) file_name = os.path.basename(label_path) # input image (real images) image_path = self.image_paths[index] if not self.opt.no_pairing_check: assert self.paths_match(label_path, image_path), \ "The label_path %s and image_path %s don't match." % \ (label_path, image_path) # input image image = Image.open(image_path) image = image.convert('RGB') transform_image = get_transform(self.opt, params1) image_tensor = transform_image(image) ref_tensor = 0 label_ref_tensor = 0 # input's segment segment_path = join(self.opt.instance_dir, file_name) path_ref = image_path # input_image --> ref image_ref = Image.open(path_ref).convert('RGB') # ref label -> expansion path_ref_label = join(self.opt.segment_dir, file_name) label_ref_tensor, params = self.get_label_tensor(path_ref_label) transform_image = get_transform(self.opt, params) ref_tensor = transform_image(image_ref) self_ref_flag = torch.zeros_like(ref_tensor) input_dict = {'label': label_tensor, 'image': image_tensor, 'path': image_path, 'self_ref': self_ref_flag, 'ref': ref_tensor, 'label_ref': label_ref_tensor } print("\n\n====") print("image_path", image_path) print("label_path", label_path) print("segment_path", segment_path) print("====\n\n") # Give subclasses a chance to modify the final output self.postprocess(input_dict) return input_dict ```
{ "source": "jeongin8885/scheduler-cli", "score": 3 }
#### File: dist-packages/scheduler/valid_date.py ```python def valid_date(year, month, day): month31 = [1, 3, 5, 7, 8, 10, 12] month30 = [4, 6, 9, 11] return (month in month31 and day > 0 and day < 32) or (month in month30 and day > 0 and day < 31) or (month == 2 and day > 0 and day < 29) or (month == 2 and day == 29 and (year % 4 == 0 and (year % 100 != 0 or year % 400 == 0))) ``` #### File: scheduler-cli/scheduler/main.py ```python from termcolor import colored from colorama import init from .input_command import input_command import sys from pathlib import Path def main_scheduler(): init() import sqlite3 home_dir = str(Path.home()) # SQLite DBํŒŒ์ผ์„ ์ƒ์„ฑํ•˜๊ฑฐ๋‚˜ ์—ฐ๊ฒฐํ•ฉ๋‹ˆ๋‹ค. conn = sqlite3.connect(home_dir + "/scheduler.db") cur = conn.cursor() # table ๋งŒ๋“œ๋Š” sql ๊ตฌ๋ฌธ create_table = 'create table if not exists todo(year integer not null, category text not null, month integer not null, day integer not null, what text not null, done integer)' # ์ฒ˜์Œ์— ํ•ด๋‹น ํ…Œ์ด๋ธ”์ด ์—†์„ ๋•Œ ํ…Œ์ด๋ธ” ์ƒ์„ฑ ๊ตฌ๋ฌธ cur.execute(create_table) # ๊ฐ์ข… ๋„์›€๋ง ๋ฉ”์„ธ์ง€ ๋ฌธ์ž์—ด # ์ „์ฒด ๋„์›€๋ง title_string = "%-35s|%-36s|%-40s\n"%("function", "command", "example") add_help_string = ("-" * 35 + '+') + ("-" * 36 + '+') + ("-" * 30 + '+') + '\n' add_help_string += "%-35s|%-45s|%-40s\n"%("add schedule with category", colored("add {due} {content} in {category}", 'yellow'), colored("add 2018/3/2 go school in school", 'cyan')) add_help_string += "%-35s|%-45s|%-40s\n"%("add schedule without category", colored("add {due} {content}", 'yellow'), colored("add 2018/3/2 go school", 'cyan')) delete_help_string = ("-" * 35 + '+') + ("-" * 36 + '+') + ("-" * 30 + '+') + '\n' delete_help_string += "%-35s|%-45s|%-40s\n"%("delete all schedule", colored("delete all", 'yellow'), colored("delete all", 'cyan')) delete_help_string += "%-35s|%-45s|%-40s\n"%("delete schedule with category", colored("delete in {category}", 'yellow'), colored("delete in hoesung", 'cyan')) delete_help_string += "%-35s|%-45s|%-40s\n"%("delete schedule with content", colored("delete {content}", 'yellow'), colored("delete hit hoesung", 'cyan')) update_help_string = ("-" * 35 + '+') + ("-" * 36 + '+') + ("-" * 30 + '+') + '\n' update_help_string += "%-35s|%-45s|%-40s\n"%("update state with content", colored("update {content} {done/undone}", 'yellow'), colored("update hit hoesung done", 'cyan')) update_help_string += "%-35s|%-45s|%-40s\n"%("update due date with content", colored("update {content} at {due}", 'yellow'), colored("update hit hoesung at 2018/7/1", 'cyan')) update_help_string += ("-" * 35 + '+') + ("-" * 36 + '+') + ("-" * 30 + '+') + '\n' update_help_string += "%-35s|%-45s|%-40s\n"%("update state with category", colored("update in {category} {done/undone}", 'yellow'), colored("update in school done", 'cyan')) update_help_string += "%-35s|%-45s|%-40s\n"%("update due date with category", colored("update in {category} at {due}", 'yellow'), colored("update in school at 2018/7/1", 'cyan')) show_help_string = ("-" * 35 + '+') + ("-" * 36 + '+') + ("-" * 30 + '+') + '\n' show_help_string += "%-35s|%-45s|%-40s\n"%("get all schedule", colored("show all", 'yellow'), colored("show all", 'cyan')) show_help_string += "%-35s|%-45s|%-40s\n"%("get schedule with content", colored("show {content}", 'yellow'), colored("show hit hoesung", 'cyan')) show_help_string += "%-35s|%-45s|%-40s\n"%("get all schedule in category", colored("show in {category}", 'yellow'), colored("show in school", 'cyan')) show_help_string += "%-35s|%-45s|%-40s\n"%("get all calender at specific month", colored("show cal {year/month}", 'yellow'), colored("show cal 2018/03", 'cyan')) full_help_string = title_string + add_help_string + delete_help_string + update_help_string + show_help_string add_help_string = title_string + add_help_string show_help_string = title_string + show_help_string update_help_string = title_string + update_help_string delete_help_string = title_string + delete_help_string # exit์„ ์ž…๋ ฅ๋ฐ›์„ ๋•Œ๊นŒ์ง€ ๊ณ„์† ์ž…๋ ฅ if len(sys.argv) == 1: # ์ดˆ๊ธฐ ๋„์›€๋ง ๋ฉ”์„ธ์ง€ 1ํšŒ ์ถœ๋ ฅ print(full_help_string) while True: # ์ž…๋ ฅ์„ ๋ฌธ์žฅ์œผ๋กœ ๋ฐ›๋Š”๋‹ค. command = input('Input a command: ') if input_command(command) == 1: break else: input_command(sys.argv[1:]) cur.close() conn.close() if __name__ == "__main__": main_scheduler() ``` #### File: scheduler-cli/scheduler/make_string.py ```python from termcolor import colored from colorama import init from datetime import datetime # ๊ฒ€์ƒ‰ ํ›„ ๊ฒฐ๊ณผ ๋ฌธ์ž์—ด ๋งŒ๋“œ๋Š” ํ•จ์ˆ˜ def make_string(schedule_list): init() string = 'due\t\t |content\t\t |category\t |done\t |D-day\n' string += '-' * 88 + '\n' done = ['undone', 'done', 'overdue'] color = ['yellow', 'green', 'red'] if not schedule_list: string += 'No result found. To show all schedule, enter \"show all\"' for x in schedule_list: overdue = datetime(x[0], x[2], x[3]) - datetime.now() if overdue.days < 0: if x[5] == 0: a = 2 else: a = x[5] dday = 'D+' + str((-1) * overdue.days) else: a = x[5] dday = 'D' + str((-1) * overdue.days) if x[3] > 9: day = str(x[3]) else: day = '0' + str(x[3]) if x[2] > 9: month = str(x[2]) else: month = '0' + str(x[2]) date = datetime(x[0], x[2], x[3]).weekday() weekdays = ['MON', 'TUE', 'WED', 'THU', 'FRI', 'SAT', 'SUN'] string += '%-16s |%-22s |%-14s |%-20s|%-10s\n'%(str(x[0]) +'/' + month + '/' + day + '(' + weekdays[date] + ')' , x[4], x[1], colored(done[a], color[a]), dday) return string.strip() ``` #### File: scheduler-cli/slackbot/input_command.py ```python import sqlite3, os from pathlib import Path from .valid_date import valid_date from .make_string import make_string from slacker import Slacker import websocket home_dir = str(Path.home()) def handler(command, user): conn = sqlite3.connect(home_dir + '/server.db') cur = conn.cursor() create_db = 'create table if not exists server(user text not null, year integer not null, category text not null, month integer not null, day integer not null, what text not null, done integer)' cur.execute(create_db) conn.close() command_list = command.split(' ') if command_list[0] == '!scheduler': string = input_command(command_list[1:], user) return string def input_command(command, user): if command[0] == 'add': if '/' in command[1] and len(command[1].split('/')) == 3: year, month, day = command[1].split('/') if int(year) > 9999: print("Please input year under 10000") return 1 if not valid_date(int(year), int(month), int(day)): print("Date is not valid") return 1 # in ํ‚ค์›Œ๋“œ๋ฅผ ํ†ตํ•ด ์–ด๋А category์— ๋„ฃ์„์ง€ ์ •ํ•  ์ˆ˜ ์žˆ๋‹ค. if 'in' in command: category_split = command.index('in') category_list = command[category_split + 1:] content_list = command[2:category_split] # in ํ‚ค์›Œ๋“œ๊ฐ€ ์—†์œผ๋ฉด no category ์ฒ˜๋ฆฌํ•œ๋‹ค. else: category = 'No category' content_list = command[2:] # content, category๋ฅผ ๋„์–ด์“ฐ๊ธฐ๋กœ ๋ฌถ๊ธฐ content = '' for x in content_list: content += x + ' ' if len(content) > 22: print("plz enter content less than 20 letters") return 1 category = '' if 'in' in command: for x in category_list: category += x + ' ' else: category = "No category" category = category.strip() content = content.strip() add_cal(category, int(year), int(month), int(day), content, 0, user) string = 'add ok' elif command[0] == 'show': if len(command) > 2 and command[1] == 'in': cat = '' for x in command[2:]: cat += x + ' ' result = return_cal_cat(user, cat.strip()) string = make_string(result) elif len(command) == 2 and command[1] == 'all': result = return_cal(user) string = make_string(result) elif command[0] == 'delete': if len(command) > 2 and command[1] == 'in': cat = '' for x in command[2:]: cat += x + ' ' delete_cal_cat(user, cat.strip()) result = return_cal(user) string = make_string(result) elif len(command) == 2 and command[1] == 'all': result = return_cal(user) string = make_string(result) elif len(command) > 1: content = '' for x in command[1:]: content += x + ' ' delete_cal(user, content.strip()) result = return_cal(user) string = make_string(result) else: string = '!scheduler add {due} {content} in {category}\n!scheduler show all\n!scheduler show in {category}' return string def return_cal_cat(user, category): conn = sqlite3.connect(home_dir + '/server.db') cur = conn.cursor() select_data = 'select * from server where user=? and category=?' cur.execute(select_data, (user,category,)) result = cur.fetchall() conn.close() return result def return_cal(user): conn = sqlite3.connect(home_dir + '/server.db') cur = conn.cursor() select_data = 'select * from server where user=?' cur.execute(select_data, (user,)) result = cur.fetchall() conn.close() return result def delete_cal_cat(user, category): conn = sqlite3.connect(home_dir + '/server.db') cur = conn.cursor() select_data = 'delete from server where user=? and category=?' cur.execute(select_data, (user,category,)) conn.commit() conn.close() def delete_cal(user, content): conn = sqlite3.connect(home_dir + '/server.db') cur = conn.cursor() select_data = 'delete from server where user=? and content = ?' cur.execute(select_data, (user,)) conn.close() def delete_cal_all(user): conn = sqlite3.connect(home_dir + '/server.db') cur = conn.cursor() select_data = 'delete from server where user=?' cur.execute(select_data, (user,)) conn.close() def add_cal(category, year, month, day, content, finished, user): conn = sqlite3.connect(home_dir + '/server.db') cur = conn.cursor() insert_db = 'insert into server (year, user, category, month, day, what, done) values (?,?,?,?,?,?,?)' cur.execute(insert_db,(year, user, category, month, day, content, finished,)) conn.commit() conn.close() ```
{ "source": "jeonginlee/groove_scheduler", "score": 2 }
#### File: groove_scheduler/controllers/album.py ```python from flask import * album = Blueprint('album', __name__, template_folder='templates') @album.route('/album/edit') def album_edit_route(): options = { "edit": True } return render_template("album.html", **options) @album.route('/album') def album_route(): options = { "edit": False } return render_template("album.html", **options) ``` #### File: groove_scheduler/controllers/albums.py ```python from flask import * albums = Blueprint('albums', __name__, template_folder='templates') @albums.route('/albums/edit') def albums_edit_route(): options = { "edit": True } return render_template("albums.html", **options) @albums.route('/albums') def albums_route(): options = { "edit": False } return render_template("albums.html", **options) ```
{ "source": "Jeongisu94/KDT_HWrepo", "score": 3 }
#### File: KDT_HWrepo/KDT_HWrepo_Week3/kdt_hw_week3.py ```python from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart import smtplib import re #regular expression SMTP_SERVER = 'smtp.gmail.com' SMTP_PORT = 465 SMTP_USER = '' SMTP_PASSWORD = '' def send_mail(name, addr, subject, contents, attachment=None): if not re.match('(^[a-zA-Z0-9_.-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$)', addr): print('Wrong email') return msg = MIMEMultipart('alternative') if attachment: msg = MIMEMultipart('mixed') msg['From'] = SMTP_USER msg['To'] = addr msg['Subject'] = name + '๋‹˜, ' + subject text = MIMEText(contents, _charset='utf-8') msg.attach(text) if attachment: from email.mime.base import MIMEBase from email import encoders file_data = MIMEBase('application', 'octect-stream') file_data.set_payload(open(attachment, 'rb').read()) encoders.encode_base64(file_data) import os filename = os.path.basename(attachment) file_data.add_header('Content-Disposition', 'attachment; filename="' + filename + '"') msg.attach(file_data) smtp = smtplib.SMTP_SSL(SMTP_SERVER, SMTP_PORT) smtp.login(SMTP_USER, SMTP_PASSWORD) smtp.sendmail(SMTP_USER, addr, msg.as_string()) smtp.close() #### ํ”„๋กœ์ ํŠธ ํด๋”์— ์žˆ๋Š” email_list.xlsx ํŒŒ์ผ์— ์ด๋ฉ”์ผ ๋ฐ›์„ ์‚ฌ๋žŒ๋“ค์˜ ์ •๋ณด๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š”. #### ์—‘์…€ ํŒŒ์ผ์˜ ์ •๋ณด๋ฅผ ์ฝ์–ด์˜ฌ ์ˆ˜ ์žˆ๋Š” ๋ชจ๋“ˆ์„ importํ•˜์„ธ์š”. #### email_list.xlsx ํŒŒ์ผ์„ ์ฝ์–ด์™€ ํ•ด๋‹น ์‚ฌ๋žŒ๋“ค์—๊ฒŒ ์ˆ˜์ง‘ํ•œ ๋‰ด์Šค ์ •๋ณด ์—‘์…€ ํŒŒ์ผ์„ send_mail ํ•จ์ˆ˜๋ฅผ ์ด์šฉํ•ด ์ „์†กํ•˜์„ธ์š”. from openpyxl import load_workbook wb = load_workbook('email_list.xlsx', read_only=True) data = wb.active receivers = [] #email_list์˜ ํŒŒ์ผ์—์„œ ์ด๋ฆ„๊ณผ ์ด๋ฉ”์ผ์„ ๊ฐ€์ ธ์™€ ๋ฆฌ์ŠคํŠธ์— ์ €์žฅ for names, emails in zip (data.iter_rows(min_row=3,min_col=2, max_col=2),data.iter_rows(min_row=3,min_col=3,max_col=3)): for name, email in zip(names, emails): tempReceive = [name.value,email.value] receivers.append(tempReceive) #from NaverNewsCrawler import NaverNewsCrawler #crawler = NaverNewsCrawler("ํŒจ์ŠคํŠธ ์บ ํผ์Šค") # ๋„ค์ด๋ฒ„๋‰ด์Šค์—์„œ ๋ฐ์ดํ„ฐ ํฌ๋กค๋ง #crawler.get_news("data.xlsx") crawledWorkbook = load_workbook('data.xlsx', read_only=True) crawledData = crawledWorkbook.active contents = '' for row in crawledData.iter_rows(): for cell in row: contents = contents + " "+ str(cell.value) contents += '\n' for name , mail in receivers: send_mail(name,mail,'Naver News : ',contents) ```
{ "source": "jeongj/AlbumView", "score": 3 }
#### File: jeongj/AlbumView/AlbumViewer.py ```python import sys import os import screeninfo from PIL import Image, ImageTk # Pillow module import zipfile if sys.version_info[0] == 2: # not tested yet import Tkinter as tk # Tkinter -> tkinter in Python3, Tkinter in python2 from BytesIO import BytesIO # import StringIO #Python2 import tkFileDialog as tkFD else: import tkinter as tk # Tkinter -> tkinter in Python3, Tkinter in python2 from io import BytesIO import tkinter.filedialog as tkFD from tkinter import messagebox as mbox class App(tk.Frame): def __init__(self): self.root = tk.Tk() self.SetWigets() self.SetCanvas() self.SetHotKey() # bind self.color = '#000000' self.nCurrnetImage = 0 self.filename = "" self.filemod = "" self.foldername = "" self.bFullScreen, self.bInformation = False, False self.lImageExts = ['.jpg', '.jpeg', '.png', '.gif', '.webp'] self.nMode = 0 # 0:one view,1:two view(odd left),2:two view(even left) self.lImages = [] #self.foldername = os.getcwd() #print(self.foldername) self.lImages.append("HotKeys.png") #self.ShowImage() def Quit(self,event=None): self.root.quit() def SetWigets(self): self.btnframe = tk.Frame(self.root) self.btnframe.pack({"side": "top"}) self.btnQuit = tk.Button(self.btnframe,text="QUIT",command=self.Quit) self.btnQuit["fg"] = "red" self.btnQuit.pack({"side": "left"}) self.btnZip = tk.Button(self.btnframe,text="Load Zip File",command=self.LoadZip) self.btnZip.pack({"side": "left"}) self.btnLoadFolder = tk.Button(self.btnframe,text="Choose a Folder",command=self.LoadFolder) self.btnLoadFolder.pack({"side": "left"}) self.btnLoadFile = tk.Button(self.btnframe,text="Load A File",command=self.LoadFile) self.btnLoadFile.pack({"side": "left"}) self.btnPrev = tk.Button(self.btnframe,text="Previous",command=self.PreviousImage) self.btnPrev.pack({"side": "left"}) self.btnNext = tk.Button(self.btnframe,text="Next",command=self.NextImage) self.btnNext.pack({"side": "left"}) def SetCanvas(self,W=640,H=480): self.canvas = tk.Canvas(self.root, width=W, height=H) self.canvas.pack(expand=True) #self.canvas.create_text() # for initial help for shortcut def SetHotKey(self): self.root.bind('<a>', self.PreviousImage) self.root.bind('<d>', self.NextImage) self.root.bind('<f>', self.ToggleFullScreen) self.root.bind('<e>', self.LoadFile) self.root.bind('<q>', self.Quit) self.root.bind('<r>', self.LoadFolder) self.root.bind('<o>', self.LoadFile) self.root.bind('<z>', self.LoadZip) self.root.bind('<t>', self.ToggleMode) self.root.bind('<BackSpace>', self.Delete) self.root.bind('<i>', self.ToggleInformation) def ToggleInformation(self,event=None): self.bInformation = not self.bInformation def Delete(self,event=None): if self.bFullScreen: # tkinter lose focus after askokcancel when fullscreen self.ToggleFullScreen() # full to normal WasFullScreen = True else : WasFullScreen = False if mbox.askokcancel(title="Delete", message="Sure?", icon="warning"): os.remove(self.foldername + '/' + self.lImages[self.nCurrnetImage]) self.lImages.remove(self.lImages[self.nCurrnetImage]) self.ShowImage() #if WasFullScreen: # self.ToggleFullScreen() def ToggleMode(self,event=None): _,self.nMode=divmod(self.nMode+1,3) def LoadZip(self, event=None): # deal with zip file self.filename = tkFD.askopenfilename() if len(self.filename) < 1: # when cancel chosen from the dialog return if not zipfile.is_zipfile(self.filename): self.canvas.create_text("Loaded file is not a zipfile.") return self.filemod = 'Zipped' self.zf = zipfile.ZipFile(self.filename,"r") # open zipfile self.lImages = self.zf.namelist() # get filelist from zipfile for filename in self.lImages: if self.CheckExt(filename) == False: self.lImages.remove(filename) self.lImages.sort() # sort the filelist self.nCurrnetImage = 0 # number for current image # image indexes self.ShowImage() # call show image for first image print('%d image(s) found'%len(self.lImages)) for filename in self.lImages: print(filename) def LoadFolder(self, event=None): # deal with zip file self.foldername = tkFD.askdirectory() if self.foldername : self.ProcessFolder() self.filemod = 'Folder' self.nCurrnetImage = 0 # number for current image # image indexes self.ShowImage() # call show image for first image def ProcessFolder(self): # list a directory, remove non-readables then sort self.lImages = os.listdir(self.foldername) for filename in self.lImages: if self.CheckExt(filename) == False: self.lImages.remove(filename) self.lImages.sort() # sort the filelist def LoadFile(self): # just load an image file with PIL and Tkinter filename = tkFD.askopenfilename() if len(filename) < 1: # when cancel chosen from the dialog return if self.CheckExt(filename) == False: print('%s:Not a supported file'%filename) return self.filemod = 'File' self.foldername = os.path.split(filename)[0] self.filename = os.path.split(filename)[1] self.ProcessFolder() self.nCurrnetImage = self.lImages.index(self.filename) self.ShowImage() def ShowImage(self): w, h = self.root.winfo_width(),self.root.winfo_height() wc,hc = self.canvas.winfo_width(),self.canvas.winfo_height() self.canvas.delete("all") # clear canvas if self.bFullScreen == True: self.canvas.config(width=w-6,height=h-6) else : self.canvas.config(width=w-6,height=h-28) # if not smaller it frame expands on next image #self.canvas.create_rectangle(3,3,w-4,h-28) # for measuring canvas size if self.filemod == 'Zipped': imagedata = self.zf.read(self.lImages[self.nCurrnetImage]) obj = BytesIO(imagedata) # image data convert to BytesIO img = Image.open(obj) # open pil image if self.nMode != 0: if self.nMode == 1: tFilename = self.lImages[self.nCurrnetImage-1] else:# self.nMode == 2: tFilename = self.lImages[self.nCurrnetImage+1] imagedata2 = self.zf.read(tFilename) obj2 = BytesIO(imagedata2) img2 = Image.open(obj2) else:# self.filemod == 'Folder' or 'File': fullpathfilename = self.foldername + '/' if len(self.foldername) > 0 else "" fullpathfilename += self.lImages[self.nCurrnetImage] try: fullpathfilename = self.foldername + '/' if len(self.foldername)>0 else "" fullpathfilename += self.lImages[self.nCurrnetImage] print(fullpathfilename) img = Image.open(fullpathfilename) except: self.lImages.remove(self.lImages[self.nCurrnetImage]) return if self.nMode != 0: if self.nMode == 1: img2 = Image.open(self.foldername + '/' + self.lImages[self.nCurrnetImage-1]) elif self.nMode == 2: img2 = Image.open(self.foldername + '/' + self.lImages[self.nCurrnetImage+1]) if self.nMode == 0 : # one view mode self.photo = self.RatioResize(img,wc,hc) self.canvas.create_image(w/2, h/2, image=self.photo, anchor=tk.CENTER) else : self.photo = self.RatioResize(img,wc/2,hc) self.photo2 = self.RatioResize(img2,wc/2,hc) if self.nMode == 1 : # two view mode, img2 on left self.canvas.create_image(wc/2,0,image=self.photo, anchor=tk.NW) self.canvas.create_image(0,0,image=self.photo2, anchor=tk.NW) else : # two view mode, img2 on right self.canvas.create_image(0, 0, image=self.photo, anchor=tk.NW) self.canvas.create_image(wc / 2, 0, image=self.photo2, anchor=tk.NW) if self.bInformation: self.canvas.create_text(5, 5, anchor="nw", font=("Purisa", 12), text="%dx%d" % (img.size[0], img.size[1])) self.canvas.create_text(5, 15, anchor="nw", font=("Purisa", 12), text=self.lImages[self.nCurrnetImage]) self.root.title("[%d/%d]"%(self.nCurrnetImage,len(self.lImages))) def RatioResize(self,img,wc,hc): ratiow, ratioh = float(wc) / img.size[0], float(hc) / img.size[1] ratio = ratioh if ratiow > ratioh else ratiow img_resized = img.resize((int(img.size[0] * ratio), int(img.size[1] * ratio)), Image.ANTIALIAS) return ImageTk.PhotoImage(img_resized) def PreviousImage(self, event=None): if self.filemod == "Zipped" and self.filename == "": return elif self.filemod == "" : return self.nCurrnetImage= self.nCurrnetImage-1 if self.nMode==0 else self.nCurrnetImage-2 if self.nCurrnetImage < 0: # bounded at first image self.nCurrnetImage = 0 self.ShowImage() def NextImage(self, event=None): if self.filemod == "Zipped" and self.filename == "": return elif self.filemod == "" : return self.nCurrnetImage= self.nCurrnetImage+1 if self.nMode==0 else self.nCurrnetImage+2 if self.nCurrnetImage >= len(self.lImages): # bounded at last image self.nCurrnetImage = len(self.lImages)-1 # list ends with len-1 self.ShowImage() def ToggleFullScreen(self, event=None): if self.bFullScreen : # full to normal self.canvas.pack_forget() self.btnframe.pack() self.canvas.pack() else: # normal to full self.btnframe.pack_forget() # hide button frame # self.root.state('zoomed') # Windows and Mac only, Not X11 self.root.overrideredirect(True) # for mac, cover the dock area self.root.geometry("{0}x{1}+0+0".format(self.root.winfo_screenwidth(), self.root.winfo_screenheight())) #self.root.wm_attributes("-zoomed", False) # once effected, top menu bar stays self.root.update_idletasks() self.bFullScreen = not self.bFullScreen self.root.wm_attributes("-fullscreen", self.bFullScreen) self.ShowImage() def CheckExt(self,filename): for ext in self.lImageExts: if filename.lower().endswith(ext): return True return False app = App() app.root.mainloop() ```
{ "source": "JEONG-JIWOO/PinoBot", "score": 3 }
#### File: modules/Hardware/pino_uart.py ```python import serial import ast , time class Pino_UART: """ Description: - Uart Module for use in pinobot Summary of Class 1. write(self, str_msg="", pino_response = None): 2. read(self): """ def __init__(self, port="/dev/serial0", baud_rate=115200): # 0. Argument self.port = port # Rpi basic : /dev/serial0 self.baud = baud_rate # default : 115200 self.last_exception = "" # save exception message for logging self.parsed_data = {} # 3. Objects self.pino_serial = serial.Serial( self.port, self.baud, timeout=0, write_timeout=0.05 ) # [B.1] write "string" or "DialogFlow result" to serial port def write(self, str_msg="", pino_response = None): """ Description ----------- send string message or pino_response Parameters ---------- str_msg: message to send {str, optional} pino_response { pino_dialogflow.py | PinoResponse , optional}: pino_response.stt_result : stt text (str) pino_response.tts_result : audio .wav format (binary file) pino_response.intent_name : intent name (str) pino_response.intent_response : intent response text (str) pino_response.intent_parameter = {} : intent parameter (dict) pino_response.action_cmd = [] : pinobot command (list) Notes ----- [Serial protocol send Rpi to Arduino] $stt|$intent_name|$intent_response|$num_action_parameter|$action_parameter_1_key:$action_parameter_2_value.. ex1 ํŒŒ๋ผ๋ฏธํ„ฐ 0๊ฐœ์ผ๋•Œ: ์•ˆ๋…•ํ•˜์„ธ์š”|Welcome|๋ฐ˜๊ฐ€์›Œ์š”|0 stt๊ฒฐ๊ณผ : ์•ˆ๋…•ํ•˜์„ธ์š” DialogFlow ์ธํ…ํŠธ ์ด๋ฆ„ : Welcome DialogFlow ์‘๋‹ต ํ…์ŠคํŠธ : ๋ฐ˜๊ฐ€์›Œ์š” DialogFlow ํŒŒ๋ผ๋ฏธํ„ฐ ๊ฐœ์ˆ˜ : 0 ex2 ํŒŒ๋ผ๋ฏธํ„ฐ 1๊ฐœ์ผ๋•Œ: ์•ˆ๋…•ํ•˜์„ธ์š”|Welcome|๋ฐ˜๊ฐ€์›Œ์š”|1|play_sound:1.wav| DialogFlow ํŒŒ๋ผ๋ฏธํ„ฐ ๊ฐœ์ˆ˜ : 1 ํŒŒ๋ผ๋ฏธํ„ฐ1 ์ด๋ฆ„ : play_sound ํŒŒ๋ผ๋ฏธํ„ฐ1 ๊ฐ’ : 1.wav ex2 ํŒŒ๋ผ๋ฏธํ„ฐ 2๊ฐœ์ผ๋•Œ: ์•ˆ๋…•ํ•˜์„ธ์š”|Welcome|๋ฐ˜๊ฐ€์›Œ์š”|2|play_sound:1.wav|temp:30 DialogFlow ํŒŒ๋ผ๋ฏธํ„ฐ ๊ฐœ์ˆ˜ : 2 ํŒŒ๋ผ๋ฏธํ„ฐ1 ์ด๋ฆ„ : play_sound ํŒŒ๋ผ๋ฏธํ„ฐ2 ๊ฐ’ : 1.wav ํŒŒ๋ผ๋ฏธํ„ฐ2 ์ด๋ฆ„ : temp ํŒŒ๋ผ๋ฏธํ„ฐ2 ๊ฐ’ : 30 Return ------ result : fail -1 success 0 Example ------- uart = Pino_UART() uart.write("ready") Gbot.start_stream() result2 = Gbot.get_stream_response() uart.write(pino_response=result2) """ try: # 1.1 send DialogFlow result if pino_response is not None : new_msg = "%s|%s|%s|%d"%(pino_response.stt_result, pino_response.intent_name, pino_response.intent_response, len(pino_response.intent_parameter)) action_dict = pino_response.intent_parameter for action_parameter in action_dict.keys(): new_msg += "|%s:%s"%(action_parameter, action_dict[action_parameter]) self.pino_serial.write(new_msg.encode()) # 1.2 or send just string message elif str_msg != "": self.pino_serial.write(str_msg.encode()) # 2. if Fail to send data except Exception as E: self.last_exception = "PINO_UART.write()" + repr(E) # save Error message to class for log return -1 # 3. Success to send data else: return 0 # [B.2] read msgs form serial port , if exist. def read(self): """ Description ----------- read serial port without block and parse and return Notes ----- [Serial protocol receive form Arduino] event_name:$name|para1Name:$para1Value|para2Name:$para2Value|para3Name:$para3Value|para4Name:$para1Value after decode { event_name : $name , para1Name : $para1Value, para2Name : $para2Value, para3Name : $para3Value, ... paraNName : $paraNValue, } ex) event_name:humidity_event|humidity:50|temp:12.3|cds:457 Return ------ parsed_data : {dict} ex) { event_name : humidity_event, humidity : 50, temp : 12.3, cds : 457 } """ # 1. read serial data received_msg = "" try: data_left = self.pino_serial.inWaiting() time.sleep(0.01) # wait for get all data if data_left > 0: time.sleep(0.2) data_left = self.pino_serial.inWaiting() received_msg = str(self.pino_serial.read(data_left).decode()) self.pino_serial.flushInput() else : return None except Exception as E: self.last_exception = "PINO_UART.read()" + repr(E) # save Error message to class for log return None # 2. if there are empty message , clear buffer and return None if received_msg is "": self.pino_serial.flushInput() return None blocks = received_msg.split("|") # 3. split each word parsed_data = {} for block in blocks: b2 = block.split(":") if len(b2) == 2: parameter_name = b2[0] parsed_data[parameter_name] = b2[1] # 4. try to convert string to float or int for k in parsed_data.keys(): try: new_value = ast.literal_eval(parsed_data[k]) except ValueError : pass else : parsed_data.update({k:new_value}) # 5. check parse response in valid and return if 'event_name' not in parsed_data or len(parsed_data) < 1 : return None else : self.parsed_data = parsed_data return parsed_data ``` #### File: PinoBot/modules/pinobot.py ```python from modules.pino_boot_loader import PinoBootLoader import time , threading, logging from logging.handlers import RotatingFileHandler from enum import Enum from google.api_core.exceptions import Unknown class PinoState(Enum): IDLE = 0 SENSOR_ON =1 STILL_ON = 2 SENSOR_OFF = 3 LISTEN_SUCCESS = 11 LISTEN_FAIL = 12 LISTEN_CLOUD_ERROR = 13 UART_ON = 20 DO_SOMETHING = 30 #GO_SLEEP = 4 #WAKEP_UP = 5 class PinoBot: """ Description: pinobot main module - Summary of Class 1. setup(self): set logging and boot pinobot 2. update(self): read hardware and update PinoBot's State 3. listen(self): start audio recording and streaming and return response if google cloud error occurs, display to OLED 4. say(self,response): pinobot say tts response 5. act(self, response): pinobot do action by response.action_cmd 6. call_uart_event(self): if pinobot's uart got some message, use this to call dialogflow event 5. call_intent(self,text = "" ,event_name="", event_parameter=None): call dialogflow manually by dict or text, and get responses """ def __init__(self,base_path ="/home/pi/Desktop/PinoBot/"): # 0. Argument # 1. Static Variables # 2. variables self.cur_volume = 0 # current speaker volume rate [ 0 ~ 10 ] self.detect = { "pre_state": 0, # last sensor state, 1: in , 0: out "distance": 30, # cm # sonic sensor threshold to between 1 to 0 "first_time": time.time(), } # sec # first time sonic sensor detect object self.base_path = base_path self.state = PinoState.IDLE # 3. Objects self.hardware = None self.cloud = None self.config = None self.log = None self.response = None self.uart_cmd = None # threads self.say_thread = None self.act_thread = None # 4. Run setup self.setup() def setup(self): """ Description ----------- set logging and boot pinobot """ # 1. init log path = self.base_path + "/main.log" self.log = logging.getLogger("Main") self.log.setLevel(logging.DEBUG) formatter = logging.Formatter( "[%(levelname)s] (%(asctime)s : %(filename)s:%(lineno)d) > %(message)s" ) log_file = RotatingFileHandler( filename=path, maxBytes=5 * 1024 * 1024, mode="w", encoding="utf-8" ) log_file.setFormatter(formatter) self.log.addHandler(log_file) log_console = logging.StreamHandler() log_console.setFormatter(formatter) self.log.addHandler(log_console) self.log.info("[PinoBot] Start Boot") boot = PinoBootLoader(self.base_path,self.log) # 2. run boot sequence self.hardware, self.cloud, self.config = boot.boot() del boot self.log.info("[PinoBot] Boot Done..") def update(self): """ Description ----------- read hardware and update PinoBot's State Notes ----- State : PinoState priority [1] : Serial command priority [2] : ultrasonic sensor state If the ultrasonic sensor and uart command come in at the same time, the uart command is given priority. """ # 2. read hardware signals cur_sensor_state = 0 distance,uart_cmd = self.hardware.read() if self.detect["distance"] > distance > 4: cur_sensor_state = 1 # 3. uart command on if uart_cmd is not None: self.uart_cmd = uart_cmd self.state = PinoState.UART_ON print("uart : ",self.uart_cmd) return self.state # 4. set state by sensor if self.detect["pre_state"] == 0 and cur_sensor_state == 1: # 4.1 object [ 0 -> 1 ] , new object, add talk task self.detect["first_time"] = time.time() self.state = PinoState.SENSOR_ON elif self.detect["pre_state"] == 1 and cur_sensor_state == 1: # 4.2 object [ 1 -> 1 ] , object still in self.state = PinoState.STILL_ON elif self.detect["pre_state"] == 1 and cur_sensor_state == 0: # 4.3 object [ 1 -> 0 ] , object gone self.state = PinoState.SENSOR_OFF self.detect["pre_state"] = cur_sensor_state # update sensor state return self.state def listen(self): """ Description ----------- start audio recording and streaming and return response if google cloud error occurs, display to OLED Return ------ response : { Parsed DialogFlow response , PinoResponse object} """ self.log.info("listen") self.hardware.write(text="๋“ฃ๋Š”์ค‘") # 2.1. streaming voice if self.cloud.start_stream() == -1: self.hardware.write(text="๋…น์Œ ์‹คํŒจ\n ใ… ใ… ") return None self.hardware.write(text="๋“ฃ๋Š”์ค‘..") try: response = self.cloud.get_stream_response() if response.stt_result == "[Fail]": self.state = PinoState.LISTEN_FAIL return None # 2.E0. Gcloud Error if self.cloud.gcloud_state < 0: self.state = PinoState.LISTEN_CLOUD_ERROR if self.cloud.gcloud_state == -1: # Internet Error self.hardware.write(text="์ธํ„ฐ๋„ท ๋ฌธ์ œ\n ๊ฐ€ ์žˆ์–ด์š” ใ… ใ…  ") elif self.cloud.gcloud_state == -2: # google server error self.hardware.write(text="์ธํ„ฐ๋„ท ๋ฌธ์ œ\n ๊ฐ€ ์žˆ์–ด์š” ใ… ใ…  ") elif self.cloud.gcloud_state == -3: self.hardware.write(text="์˜ค๋Š˜์˜ ํ• ๋‹น๋Ÿ‰์„ \n ๋‹ค ์‚ฌ์šฉํ–ˆ๋„ค์š” ใ… ใ… ") elif self.cloud.gcloud_state < -3: self.hardware.write(text="๋ฌด์–ธ๊ฐ€ ๋ฌธ์ œ๊ฐ€ ์žˆ์–ด์š” \n ใ… ใ… ") self.log.warning("[PinoBot] cloud Error type : %d" % self.cloud.gcloud_state) except Exception as E: self.log.error("[PinoBot] listen Error : %s" % repr(E)) return None else: return response def start_say(self, response): """ Description ----------- pinobot say tts response Parameters ---------- response : { Parsed DialogFlow response , PinoResponse object} PinoResponse.tts_result is audio binary file .wav format [TODO] add local wave file play feature """ if response is None: self.log.warning("say.. nothing") return 0 try: self.say_thread = threading.Thread( target=self.cloud.play_audio_response, args=(response,) ) self.say_thread.start() except Exception as E: self.log.error("[PinoBot] say Error : %s" % repr(E)) return -1 def start_act(self, response): """ Description ----------- pinobot do action by response.action_cmd Notes ----- action could take few seconds, therefor add threading Parameters ---------- response : { Parsed DialogFlow response , PinoResponse object} PinoResponse.action_cmd is list of comaands Return ------ result : 0 Success 1 Fail """ if response is None: self.log.warning('act.. nothing') return 0 try: self.act_thread = threading.Thread( target=self.hardware.run_pinobot_cmd, args=(response,) ) self.act_thread.start() except Exception as E: self.log.error("[PinoBot] act Error : %s" % repr(E)) return -1 else : return 0 def wait_say_and_act(self,timeout = 30): """ Description ----------- wait until say and act finish Parameters ---------- timeout : seconds {int or float} Return ------ result : 0 Success 1 Fail """ self.state = PinoState.DO_SOMETHING if self.act_thread and self.say_thread : for i in range (int(timeout*1000)): if self.act_thread.is_alive() and self.say_thread.is_alive(): time.sleep(0.01) else : return 0 # [TODO] add flag to all thread and make ways to force stop. return -1 def call_uart_event(self): """ Description ----------- if pinobot's uart got some message, use this to call dialogflow event Notes ----- uart_cmd : { dict } { event_name : $name , para1Name : $para1Value, ... paraNName : $paraNValue, } Return ------ response : { Parsed DialogFlow response , PinoResponse object} z """ try: if self.uart_cmd is not None: self.hardware.write(text="๋ฉ”์„ธ์ง€ ํ™•์ธ์ค‘..") response = self.cloud.send_event(self.uart_cmd ['event_name'], self.uart_cmd ) self.uart_cmd = None # reset self.state = PinoState.IDLE self.hardware.write(serial_msg = "ready") return response else: self.hardware.write(serial_msg = "ready") return self.cloud.parsing_response(None,None,None) except Exception as E: self.log.error("[PinoBot] call_uart_event Error : %s" % repr(E)) return None def call_intent(self,text = "" ,event_name="", event_parameter=None): """ Description ----------- call dialogflow manually by dict or text, and get responses Parameters ---------- text : natural word message to call dialogflow { str, optional } event_name : dialogflow intent event name { str, optional } event_parameter : dialogflow intent parameter { dict, optional } event_parameter without event_name is useless Return ------ response : { Parsed DialogFlow response , PinoResponse object} Example ------- r = bot.call_intent(text = '์•ˆ๋…•ํ•˜์„ธ์š”') print(r.intent_response) >> ๋ฐ˜๊ฐ‘์Šต๋‹ˆ๋‹ค ์ €๋Š” ํ”ผ๋…ธ๋ด‡์ž…๋‹ˆ๋‹ค r = bot.call_intent("weather",{'humidity:'50','temp':'20'} print(r.intent_response) >> ์ง€๊ธˆ ๋ฐฉ์˜ ์ƒํƒœ๋ฅผ ์•Œ๋ ค๋“œ๋ฆฝ๋‹ˆ๋‹ค, ์Šต๋„๋Š” 50ํ”„๋กœ ์˜จ๋„๋Š” 20๋„์ž…๋‹ˆ๋‹ค. """ try : if event_name is not "": self.cloud.send_event(event_name, event_parameter) return self.cloud.parsing_response() except Exception as E: self.log.error("[PinoBot] call_intent Error : %s" % repr(E)) return None def return_idle(self): """ Description ----------- display idle message and return state to idle """ self.hardware.write(text="๋Œ€๊ธฐ์ค‘..") self.state = PinoState.IDLE ```
{ "source": "JeongJuhyeon/my-talon-scripts", "score": 3 }
#### File: my-talon-scripts/misc/repeater.py ```python from talon.voice import Context, Rep, talon from inspect import signature from math import floor from ..utils import optional_numerals, text_to_number ctx = Context("repeater") ordinals = {} def ordinal(n): """ Convert an integer into its ordinal representation:: ordinal(0) => '0th' ordinal(3) => '3rd' ordinal(122) => '122nd' ordinal(213) => '213th' """ n = int(n) suffix = ["th", "st", "nd", "rd", "th"][min(n % 10, 4)] if 11 <= (n % 100) <= 13: suffix = "th" return str(n) + suffix ordinal_words = {} ordinal_ones = ['first', 'second', 'third', 'fourth', 'fifth', 'sixth', 'seventh', 'eight', 'ninth'] ordinal_teens = ['tenth', 'eleventh', 'twelfth', 'thirteenth', 'fourteenth', 'fifteenth', 'sixteenth', 'seventeenth', 'eighteenth', 'nineteenth'] ordinal_tens = ['twentieth', 'thirtieth', 'fortieth', 'fiftieth', 'sixtieth', 'seventieth', 'eightieth', 'ninetieth'] ordinal_tenty = ['twenty', 'thirty', 'forty', 'fifty', 'sixty', 'seventy', 'eighty', 'ninety'] def ordinal_word(n): n = int(n) result = "" if n > 19: if n % 10 == 0: result += ordinal_tens[floor((n / 10)) - 2] else: result += ordinal_tenty[floor(n / 10) - 2] result += ordinal_ones[(n % 10) - 1] elif n > 9: result += ordinal_teens[n - 11] else: result += ordinal_ones[n - 1] return result for n in range(2, 100): ordinals[ordinal(n)] = n - 1 ordinal_words[ordinal_word(n)] = n - 1 ctx.set_list("ordinals", ordinals.keys()) ctx.set_list("ordinal_words", ordinal_words.keys()) def repeat_ordinal(m): o = m["repeater.ordinals"][0] repeater = Rep(int(ordinals[o])) repeater.ctx = talon return repeater(None) def repeat_ordinal_word(m): o = m["repeater.ordinal_words"][0] repeater = Rep(int(ordinal_words[o])) repeater.ctx = talon return repeater(None) ctx.keymap({ "{repeater.ordinals}": repeat_ordinal, "{repeater.ordinal_words}": repeat_ordinal_word, }) ```
{ "source": "jeongjuns/Control_yolact", "score": 2 }
#### File: jeongjuns/Control_yolact/W_conv.py ```python import math import warnings import torch from torch import Tensor from torch.nn.parameter import Parameter import torch.nn.functional as F import torch.nn.init as init from torch.nn.modules.module import Module from torch.nn.modules.utils import _single, _pair, _triple, _reverse_repeat_tuple from torch.autograd import Variable from torch.nn.common_types import _size_1_t, _size_2_t, _size_3_t from typing import Optional, List, Tuple #from torch.nn.modules.conv import _ConvNd flcnt1=0 flcnt2=0 flcnt3=0 avgcnt1=0 avgcnt2=0 avgcnt3=0 #fpnlatlayercnt=0 flfpnlatlayercnt=0 bboxcnt=0 flbboxcnt=0 confcnt=0 flconfcnt=0 maskcnt=0 flmaskcnt=0 makenetcnt=0 flmakenetcnt=0 segcnt=0 flsegcnt=0 # torch.nn.conv2d ๋ณ€ํ˜• class W_ConvNd(Module): __constants__ = ['stride', 'padding', 'dilation', 'groups', 'padding_mode', 'output_padding', 'in_channels', 'out_channels', 'kernel_size'] __annotations__ = {'bias': Optional[torch.Tensor]} _in_channels: int out_channels: int kernel_size: Tuple[int, ...] stride: Tuple[int, ...] padding: Tuple[int, ...] dilation: Tuple[int, ...] transposed: bool output_padding: Tuple[int, ...] groups: int padding_mode: str weight: Tensor bias: Optional[Tensor] def __init__(self, in_channels: int, out_channels: int, kernel_size: _size_1_t, stride: _size_1_t, padding: _size_1_t, dilation: _size_1_t, transposed: bool, output_padding: _size_1_t, groups: int, bias: Optional[Tensor], padding_mode: str) -> None: super(W_ConvNd, self).__init__() if in_channels % groups != 0: raise ValueError('in_channels must be divisible by groups') if out_channels % groups != 0: raise ValueError('out_channels must be divisible by groups') valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'} if padding_mode not in valid_padding_modes: raise ValueError("padding_mode must be one of {}, but got padding_mode='{}'".format( valid_padding_modes, padding_mode)) self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.dilation = dilation self.transposed = transposed self.output_padding = output_padding self.groups = groups self.padding_mode = padding_mode # `_reversed_padding_repeated_twice` is the padding to be passed to # `F.pad` if needed (e.g., for non-zero padding types that are # implemented as two ops: padding + conv). `F.pad` accepts paddings in # reverse order than the dimension. self._reversed_padding_repeated_twice = _reverse_repeat_tuple(self.padding, 2) if transposed: self.weight = Parameter(torch.Tensor( in_channels, out_channels // groups, *kernel_size)) else: self.weight = Parameter(torch.Tensor( out_channels, in_channels // groups, *kernel_size)) if bias: self.bias = Parameter(torch.Tensor(out_channels)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self) -> None: init.kaiming_uniform_(self.weight, a=math.sqrt(5)) if self.bias is not None: fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight) bound = 1 / math.sqrt(fan_in) init.uniform_(self.bias, -bound, bound) def extra_repr(self): s = ('{in_channels}, {out_channels}, kernel_size={kernel_size}' ', stride={stride}') if self.padding != (0,) * len(self.padding): s += ', padding={padding}' if self.dilation != (1,) * len(self.dilation): s += ', dilation={dilation}' if self.output_padding != (0,) * len(self.output_padding): s += ', output_padding={output_padding}' if self.groups != 1: s += ', groups={groups}' if self.bias is None: s += ', bias=False' if self.padding_mode != 'zeros': s += ', padding_mode={padding_mode}' return s.format(**self.__dict__) def __setstate__(self, state): super(_ConvNd, self).__setstate__(state) if not hasattr(self, 'padding_mode'): self.padding_mode = 'zeros' class W_Conv2d1(W_ConvNd): def __init__( self, in_channels: int, out_channels: int, kernel_size: _size_2_t, stride: _size_2_t = 1, padding: _size_2_t = 0, dilation: _size_2_t = 1, groups: int = 1, bias: bool = True, padding_mode: str = 'zeros' # TODO: refine this type ): kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) super(W_Conv2d1, self).__init__( in_channels, out_channels, kernel_size, stride, padding, dilation, False, _pair(0), groups, bias, padding_mode) ################################################# jj add self.W1 = Parameter(make_mw(out_channels, in_channels, kernel_size[0]), requires_grad=True) W_Conv2d1.fl = {} W_Conv2d1.Wweight={} ################################################# jj end def _conv_forward(self, input, weight): if self.padding_mode != 'zeros': return F.conv2d(F.pad(input, self._reversed_padding_repeated_twice, mode=self.padding_mode), weight, self.bias, self.stride, _pair(0), self.dilation, self.groups) return F.conv2d(input, weight, self.bias, self.stride, self.padding, self.dilation, self.groups) def forward(self, input: Tensor) -> Tensor: ################################################# jj add global flcnt1 global avgcnt1 if avgcnt1 == 34: avgcnt1 = 1 if flcnt1 == 33: avgcnt1 += 1 for i in range(33,66): if flcnt1 == i: W_Conv2d1.fl['{0}'.format(i-33)] = self.weight.clone().detach() if flcnt1 > 32: for i in range(1,34): if avgcnt1 == i: W_Conv2d1.Wweight['{0}'.format(i)] = mod_compute(W_Conv2d1.fl['{0}'.format(i-1)], self.W1) if flcnt1 < 66: flcnt1+=1 if 0 < avgcnt1 < 34: avgcnt1+=1 if flcnt1 < 34: return self._conv_forward(input, self.weight) else : return self._conv_forward(input, mod_compute(W_Conv2d1.fl['{0}'.format(avgcnt1-2)], self.W1)) def mod_compute(fl, w): # seungil modification if fl.size(3) == 1: fl = fl.squeeze(-1).squeeze(-1) fla_tensor = w@fl fla_tensor = fla_tensor.unsqueeze(-1).unsqueeze(-1) elif fl.size(3) == 3: fla_tensor = torch.zeros(fl.size(0), fl.size(1), 3, 3) for i in range(3): for j in range(3): temp = fl[:,:,i,j].squeeze(-1).squeeze(-1) temp = w@temp fla_tensor[:,:,i,j] = temp return fla_tensor def make_mw(o_size, i_size, k_size): # seungil modification mw = torch.eye(o_size) return mw ################################################# jj end class W_Conv2d2(W_ConvNd): def __init__( self, in_channels: int, out_channels: int, kernel_size: _size_2_t, stride: _size_2_t = 1, padding: _size_2_t = 0, dilation: _size_2_t = 1, groups: int = 1, bias: bool = True, padding_mode: str = 'zeros' # TODO: refine this type ): kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) super(W_Conv2d2, self).__init__( in_channels, out_channels, kernel_size, stride, padding, dilation, False, _pair(0), groups, bias, padding_mode) ################################################# jj add self.W2 = Parameter(make_mw(out_channels, in_channels, kernel_size[0]), requires_grad=True) W_Conv2d2.fl = {} W_Conv2d2.Wweight={} ################################################# jj end def _conv_forward(self, input, weight): if self.padding_mode != 'zeros': return F.conv2d(F.pad(input, self._reversed_padding_repeated_twice, mode=self.padding_mode), weight, self.bias, self.stride, _pair(0), self.dilation, self.groups) return F.conv2d(input, weight, self.bias, self.stride, self.padding, self.dilation, self.groups) def forward(self, input: Tensor) -> Tensor: ################################################# jj add global flcnt2 global avgcnt2 if avgcnt2 == 34: avgcnt2 = 1 if flcnt2 == 33: avgcnt2 += 1 for i in range(33,66): if flcnt2 == i: W_Conv2d2.fl['{0}'.format(i-33)] = self.weight.clone().detach() if flcnt2 > 32: for i in range(1,34): if avgcnt2 == i: W_Conv2d2.Wweight['{0}'.format(i)] = mod_compute(W_Conv2d2.fl['{0}'.format(i-1)], self.W2) if flcnt2 < 66: flcnt2+=1 if 0 < avgcnt2 < 34: avgcnt2+=1 #if flcnt2 == 66: # print(W_Conv2d2.fl['{0}'.format(32)][0][0]) if flcnt2 < 34: return self._conv_forward(input, self.weight) else : return self._conv_forward(input, mod_compute(W_Conv2d2.fl['{0}'.format(avgcnt2-2)], self.W2)) ################################################# jj end class W_Conv2d3(W_ConvNd): def __init__( self, in_channels: int, out_channels: int, kernel_size: _size_2_t, stride: _size_2_t = 1, padding: _size_2_t = 0, dilation: _size_2_t = 1, groups: int = 1, bias: bool = True, padding_mode: str = 'zeros' # TODO: refine this type ): kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) super(W_Conv2d3, self).__init__( in_channels, out_channels, kernel_size, stride, padding, dilation, False, _pair(0), groups, bias, padding_mode) ################################################# jj add self.W3 = Parameter(make_mw(out_channels, in_channels, kernel_size[0]), requires_grad=True) W_Conv2d3.fl = {} W_Conv2d3.Wweight={} ################################################# jj end def _conv_forward(self, input, weight): if self.padding_mode != 'zeros': return F.conv2d(F.pad(input, self._reversed_padding_repeated_twice, mode=self.padding_mode), weight, self.bias, self.stride, _pair(0), self.dilation, self.groups) return F.conv2d(input, weight, self.bias, self.stride, self.padding, self.dilation, self.groups) def forward(self, input: Tensor) -> Tensor: ################################################# jj add global flcnt3 global avgcnt3 if avgcnt3 == 34: avgcnt3 = 1 if flcnt3 == 33: avgcnt3 += 1 for i in range(33,66): if flcnt3 == i: W_Conv2d3.fl['{0}'.format(i-33)] = self.weight.clone().detach() if flcnt3 > 32: for i in range(1,34): if avgcnt3 == i: W_Conv2d3.Wweight['{0}'.format(i)] = mod_compute(W_Conv2d3.fl['{0}'.format(i-1)], self.W3) if flcnt3 < 66: flcnt3+=1 if 0 < avgcnt3 < 34: avgcnt3+=1 if flcnt3 < 34: return self._conv_forward(input, self.weight) else : return self._conv_forward(input, mod_compute(W_Conv2d3.fl['{0}'.format(avgcnt3-2)], self.W3)) ################################################# jj end class bbox_Conv2d(W_ConvNd): def __init__( self, in_channels: int, out_channels: int, kernel_size: _size_2_t, stride: _size_2_t = 1, padding: _size_2_t = 0, dilation: _size_2_t = 1, groups: int = 1, bias: bool = True, padding_mode: str = 'zeros' # TODO: refine this type ): kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) super(bbox_Conv2d, self).__init__( in_channels, out_channels, kernel_size, stride, padding, dilation, False, _pair(0), groups, bias, padding_mode) self.mw = Parameter(make_mw(out_channels,in_channels,kernel_size[0]), requires_grad=True) bbox_Conv2d.fl={} bbox_Conv2d.Wweight={} def _conv_forward(self, input, weight): if self.padding_mode != 'zeros': return F.conv2d(F.pad(input, self._reversed_padding_repeated_twice, mode=self.padding_mode), weight, self.bias, self.stride, _pair(0), self.dilation, self.groups) return F.conv2d(input, weight, self.bias, self.stride, self.padding, self.dilation, self.groups) def forward(self, input: Tensor) -> Tensor: global flbboxcnt global bboxcnt if bboxcnt == 6: bboxcnt = 1 if flbboxcnt == 5: bboxcnt += 1 for i in range(5,10): if flbboxcnt == i: bbox_Conv2d.fl['{0}'.format(i-5)] = self.weight.clone().detach() if flbboxcnt > 4: for i in range(1,6): if bboxcnt == i: bbox_Conv2d.Wweight['{0}'.format(i)] = mod_compute(bbox_Conv2d.fl['{0}'.format(i-1)], self.mw) if flbboxcnt < 10: flbboxcnt+=1 if 0 < bboxcnt < 6: bboxcnt+=1 #if flbboxcnt == 10: # print(bbox_Conv2d.fl['{0}'.format(0)][0][0]) # print(bbox_Conv2d.Wweight['{0}'.format(1)][0][0]) if flbboxcnt < 6: return self._conv_forward(input, self.weight) else : return self._conv_forward(input, mod_compute(bbox_Conv2d.fl['{0}'.format(bboxcnt-2)], self.mw)) class conf_Conv2d(W_ConvNd): def __init__( self, in_channels: int, out_channels: int, kernel_size: _size_2_t, stride: _size_2_t = 1, padding: _size_2_t = 0, dilation: _size_2_t = 1, groups: int = 1, bias: bool = True, padding_mode: str = 'zeros' # TODO: refine this type ): kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) super(conf_Conv2d, self).__init__( in_channels, out_channels, kernel_size, stride, padding, dilation, False, _pair(0), groups, bias, padding_mode) self.mw = Parameter(make_mw(out_channels,in_channels,kernel_size[0]), requires_grad=True) conf_Conv2d.fl={} conf_Conv2d.Wweight={} def _conv_forward(self, input, weight): if self.padding_mode != 'zeros': return F.conv2d(F.pad(input, self._reversed_padding_repeated_twice, mode=self.padding_mode), weight, self.bias, self.stride, _pair(0), self.dilation, self.groups) return F.conv2d(input, weight, self.bias, self.stride, self.padding, self.dilation, self.groups) def forward(self, input: Tensor) -> Tensor: global flconfcnt global confcnt if confcnt == 6: confcnt = 1 if flconfcnt == 5: confcnt += 1 for i in range(5,10): if flconfcnt == i: conf_Conv2d.fl['{0}'.format(i-5)] = self.weight.clone().detach() if flconfcnt > 4: for i in range(1,6): if confcnt == i: conf_Conv2d.Wweight['{0}'.format(i)] = mod_compute(conf_Conv2d.fl['{0}'.format(i-1)], self.mw) if flconfcnt < 10: flconfcnt+=1 if 0 < confcnt < 6: confcnt+=1 if flconfcnt < 6: return self._conv_forward(input, self.weight) else : return self._conv_forward(input, mod_compute(conf_Conv2d.fl['{0}'.format(confcnt-2)], self.mw)) class mask_Conv2d(W_ConvNd): def __init__( self, in_channels: int, out_channels: int, kernel_size: _size_2_t, stride: _size_2_t = 1, padding: _size_2_t = 0, dilation: _size_2_t = 1, groups: int = 1, bias: bool = True, padding_mode: str = 'zeros' # TODO: refine this type ): kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) super(mask_Conv2d, self).__init__( in_channels, out_channels, kernel_size, stride, padding, dilation, False, _pair(0), groups, bias, padding_mode) self.mw = Parameter(make_mw(out_channels,in_channels,kernel_size[0]), requires_grad=True) mask_Conv2d.fl={} mask_Conv2d.Wweight={} def _conv_forward(self, input, weight): if self.padding_mode != 'zeros': return F.conv2d(F.pad(input, self._reversed_padding_repeated_twice, mode=self.padding_mode), weight, self.bias, self.stride, _pair(0), self.dilation, self.groups) return F.conv2d(input, weight, self.bias, self.stride, self.padding, self.dilation, self.groups) def forward(self, input: Tensor) -> Tensor: global flmaskcnt global maskcnt if maskcnt == 6: maskcnt = 1 if flmaskcnt == 5: maskcnt += 1 for i in range(5,10): if flmaskcnt == i: mask_Conv2d.fl['{0}'.format(i-5)] = self.weight.clone().detach() if flmaskcnt > 4: for i in range(1,6): if maskcnt == i: mask_Conv2d.Wweight['{0}'.format(i)] = mod_compute(mask_Conv2d.fl['{0}'.format(i-1)], self.mw) if flmaskcnt < 10: flmaskcnt+=1 if 0 < maskcnt < 6: maskcnt+=1 if flmaskcnt < 6: return self._conv_forward(input, self.weight) else : return self._conv_forward(input, mod_compute(mask_Conv2d.fl['{0}'.format(maskcnt-2)], self.mw)) class makenet_Conv2d(W_ConvNd): def __init__( self, in_channels: int, out_channels: int, kernel_size: _size_2_t, stride: _size_2_t = 1, padding: _size_2_t = 0, dilation: _size_2_t = 1, groups: int = 1, bias: bool = True, padding_mode: str = 'zeros' # TODO: refine this type ): kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) super(makenet_Conv2d, self).__init__( in_channels, out_channels, kernel_size, stride, padding, dilation, False, _pair(0), groups, bias, padding_mode) self.mw = Parameter(make_mw(out_channels,in_channels,kernel_size[0]), requires_grad=True) makenet_Conv2d.fl={} makenet_Conv2d.Wweight={} def _conv_forward(self, input, weight): if self.padding_mode != 'zeros': return F.conv2d(F.pad(input, self._reversed_padding_repeated_twice, mode=self.padding_mode), weight, self.bias, self.stride, _pair(0), self.dilation, self.groups) return F.conv2d(input, weight, self.bias, self.stride, self.padding, self.dilation, self.groups) def forward(self, input: Tensor) -> Tensor: global flmakenetcnt global makenetcnt if makenetcnt == 11: makenetcnt = 1 if flmakenetcnt == 10: makenetcnt += 1 for i in range(10,20): if flmakenetcnt == i: makenet_Conv2d.fl['{0}'.format(i-10)] = self.weight.clone().detach() if flmakenetcnt > 9: for i in range(1,11): if makenetcnt == i: makenet_Conv2d.Wweight['{0}'.format(i)] = mod_compute(makenet_Conv2d.fl['{0}'.format(i-1)], self.mw) if flmakenetcnt < 20: flmakenetcnt+=1 if 0 < makenetcnt < 11: makenetcnt+=1 if flmakenetcnt < 11: return self._conv_forward(input, self.weight) else : return self._conv_forward(input, mod_compute(makenet_Conv2d.fl['{0}'.format(makenetcnt-2)], self.mw)) class seg_Conv2d(W_ConvNd): def __init__( self, in_channels: int, out_channels: int, kernel_size: _size_2_t, stride: _size_2_t = 1, padding: _size_2_t = 0, dilation: _size_2_t = 1, groups: int = 1, bias: bool = True, padding_mode: str = 'zeros' # TODO: refine this type ): kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) super(seg_Conv2d, self).__init__( in_channels, out_channels, kernel_size, stride, padding, dilation, False, _pair(0), groups, bias, padding_mode) self.mw = Parameter(make_mw(out_channels,in_channels,kernel_size[0]), requires_grad=True) seg_Conv2d.fl={} seg_Conv2d.Wweight={} def _conv_forward(self, input, weight): if self.padding_mode != 'zeros': return F.conv2d(F.pad(input, self._reversed_padding_repeated_twice, mode=self.padding_mode), weight, self.bias, self.stride, _pair(0), self.dilation, self.groups) return F.conv2d(input, weight, self.bias, self.stride, self.padding, self.dilation, self.groups) def forward(self, input: Tensor) -> Tensor: global flsegcnt global segcnt if segcnt == 2: segcnt = 1 if flsegcnt == 1: segcnt += 1 for i in range(1,2): if flsegcnt == i: seg_Conv2d.fl['{0}'.format(i-1)] = self.weight.clone().detach() if flsegcnt > 0: for i in range(1,2): if segcnt == i: seg_Conv2d.Wweight['{0}'.format(i)] = mod_compute(seg_Conv2d.fl['{0}'.format(i-1)], self.mw) if flsegcnt < 2: flsegcnt+=1 if 0 < segcnt < 2: segcnt+=1 if flsegcnt < 2: return self._conv_forward(input, self.weight) else : return self._conv_forward(input, mod_compute(seg_Conv2d.fl['{0}'.format(segcnt-2)], self.mw)) class fpn_lat_layers_Conv2d(W_ConvNd): def __init__( self, in_channels: int, out_channels: int, kernel_size: _size_2_t, stride: _size_2_t = 1, padding: _size_2_t = 0, dilation: _size_2_t = 1, groups: int = 1, bias: bool = True, padding_mode: str = 'zeros' # TODO: refine this type ): kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) super(fpn_lat_layers_Conv2d, self).__init__( in_channels, out_channels, kernel_size, stride, padding, dilation, False, _pair(0), groups, bias, padding_mode) self.mw = Parameter(make_mw(out_channels,in_channels,kernel_size[0]), requires_grad=True) self.fl_2048=torch.ones(256,2048,1,1) self.fl_1024=torch.ones(256,1024,1,1) self.fl_512=torch.ones(256,512,1,1) self.fla_2048=torch.ones(256,2048,1,1) self.fla_1024=torch.ones(256,1024,1,1) self.fla_512=torch.ones(256,512,1,1) self.in_channels = in_channels self.cnt = 0 def _conv_forward(self, input, weight): if self.padding_mode != 'zeros': return F.conv2d(F.pad(input, self._reversed_padding_repeated_twice, mode=self.padding_mode), weight, self.bias, self.stride, _pair(0), self.dilation, self.groups) return F.conv2d(input, weight, self.bias, self.stride, self.padding, self.dilation, self.groups) def forward(self, input: Tensor) -> Tensor: if self.cnt < 2: self.cnt += 1 if self.cnt == 2: if self.in_channels == 2048: self.fl_2048 = self.weight.clone().detach() elif self.in_channels == 1024: self.fl_1024 = self.weight.clone().detach() elif self.in_channels == 512: self.fl_512 = self.weight.clone().detach() self.cnt += 1 if self.cnt > 2: if self.in_channels == 2048: self.fla_2048 = self.fl_2048.squeeze(-1).squeeze(-1) self.fla_2048 = [email protected]_2048 self.fla_2048 = self.fla_2048.unsqueeze(-1).unsqueeze(-1) elif self.in_channels == 1024: self.fla_1024 = self.fl_1024.squeeze(-1).squeeze(-1) self.fla_1024 = [email protected]_1024 self.fla_1024 = self.fla_1024.unsqueeze(-1).unsqueeze(-1) elif self.in_channels == 512: self.fla_512 = self.fl_512.squeeze(-1).squeeze(-1) self.fla_512 = [email protected]_512 self.fla_512 = self.fla_512.unsqueeze(-1).unsqueeze(-1) #print(self.fl_512[0][0]) if self.cnt < 2: return self._conv_forward(input, self.weight) elif self.in_channels == 2048: return self._conv_forward(input, self.fla_2048) elif self.in_channels == 1024: return self._conv_forward(input, self.fla_1024) elif self.in_channels == 512: return self._conv_forward(input, self.fla_512) return self._conv_forward(input, self.weight) class fpn_pred_layers_Conv2d(W_ConvNd): def __init__( self, in_channels: int, out_channels: int, x_cnt : int, kernel_size: _size_2_t, stride: _size_2_t = 1, padding: _size_2_t = 0, dilation: _size_2_t = 1, groups: int = 1, bias: bool = True, padding_mode: str = 'zeros' # TODO: refine this type ): kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) super(fpn_pred_layers_Conv2d, self).__init__( in_channels, out_channels, kernel_size, stride, padding, dilation, False, _pair(0), groups, bias, padding_mode) self.mw = Parameter(make_mw(out_channels,in_channels,kernel_size[0]), requires_grad=True) self.fl_512=torch.ones(256,256,3,3) self.fl_1024=torch.ones(256,256,3,3) self.fl_2048=torch.ones(256,256,3,3) self.fla_512=torch.ones(256,256,3,3) self.fla_1024=torch.ones(256,256,3,3) self.fla_2048=torch.ones(256,256,3,3) self.cnt = 0 self.x_cnt = x_cnt def _conv_forward(self, input, weight): if self.padding_mode != 'zeros': return F.conv2d(F.pad(input, self._reversed_padding_repeated_twice, mode=self.padding_mode), weight, self.bias, self.stride, _pair(0), self.dilation, self.groups) return F.conv2d(input, weight, self.bias, self.stride, self.padding, self.dilation, self.groups) def forward(self, input: Tensor) -> Tensor: if self.cnt < 2: self.cnt += 1 if self.cnt == 2: if self.x_cnt == 512: self.fl_512 = self.weight.clone().detach() elif self.x_cnt == 1024: self.fl_1024 = self.weight.clone().detach() elif self.x_cnt == 2048: self.fl_2048 = self.weight.clone().detach() self.cnt += 1 if self.cnt > 2: if self.x_cnt == 512: self.fla_512 = torch.zeros(self.fl_512.size(0), self.fl_512.size(1),3,3).cuda() for i in range(3): for j in range(3): temp = self.fl_512[:,:,i,j].squeeze(-1).squeeze(-1) temp = self.mw@temp self.fla_512[:,:,i,j] = temp if self.x_cnt == 1024: self.fla_1024 = torch.zeros(self.fl_1024.size(0), self.fl_1024.size(1),3,3).cuda() for i in range(3): for j in range(3): temp = self.fl_1024[:,:,i,j].squeeze(-1).squeeze(-1) temp = self.mw@temp self.fla_1024[:,:,i,j] = temp if self.x_cnt == 2048: self.fla_2048 = torch.zeros(self.fl_2048.size(0), self.fl_2048.size(1),3,3).cuda() for i in range(3): for j in range(3): temp = self.fl_2048[:,:,i,j].squeeze(-1).squeeze(-1) temp = self.mw@temp self.fla_2048[:,:,i,j] = temp if self.cnt < 2: return self._conv_forward(input, self.weight) elif self.x_cnt == 512: return self._conv_forward(input, self.fla_512) elif self.x_cnt == 1024: return self._conv_forward(input, self.fla_1024) elif self.x_cnt == 2048: return self._conv_forward(input, self.fla_2048) return self._conv_forward(input, self.weight) class fpn_down_layers_Conv2d(W_ConvNd): def __init__( self, in_channels: int, out_channels: int, x_cnt : int, kernel_size: _size_2_t, stride: _size_2_t = 1, padding: _size_2_t = 0, dilation: _size_2_t = 1, groups: int = 1, bias: bool = True, padding_mode: str = 'zeros' # TODO: refine this type ): kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) super(fpn_down_layers_Conv2d, self).__init__( in_channels, out_channels, kernel_size, stride, padding, dilation, False, _pair(0), groups, bias, padding_mode) self.mw = Parameter(make_mw(out_channels,in_channels,kernel_size[0]), requires_grad=True) self.fl_0=torch.ones(2,2,2,2) self.fl_1=torch.ones(2,2,2,2) self.fla_0=torch.ones(2,2,2,2) self.fla_1=torch.ones(2,2,2,2) self.cnt = 0 self.x_cnt = x_cnt def _conv_forward(self, input, weight): if self.padding_mode != 'zeros': return F.conv2d(F.pad(input, self._reversed_padding_repeated_twice, mode=self.padding_mode), weight, self.bias, self.stride, _pair(0), self.dilation, self.groups) return F.conv2d(input, weight, self.bias, self.stride, self.padding, self.dilation, self.groups) def forward(self, input: Tensor) -> Tensor: if self.cnt < 2: self.cnt += 1 if self.cnt == 2: if self.x_cnt == 0: self.fl_0 = self.weight.clone().detach() elif self.x_cnt == 1: self.fl_1 = self.weight.clone().detach() self.cnt += 1 if self.cnt > 2: if self.x_cnt == 0: self.fla_0 = torch.zeros(self.fl_0.size(0), self.fl_0.size(1),3,3).cuda() for i in range(3): for j in range(3): temp = self.fl_0[:,:,i,j].squeeze(-1).squeeze(-1) temp = self.mw@temp self.fla_0[:,:,i,j] = temp if self.x_cnt == 1: self.fla_1 = torch.zeros(self.fl_1.size(0), self.fl_1.size(1),3,3).cuda() for i in range(3): for j in range(3): temp = self.fl_1[:,:,i,j].squeeze(-1).squeeze(-1) temp = self.mw@temp self.fla_1[:,:,i,j] = temp if self.cnt < 2: return self._conv_forward(input, self.weight) elif self.x_cnt == 0: return self._conv_forward(input, self.fla_0) elif self.x_cnt == 1: return self._conv_forward(input, self.fla_1) return self._conv_forward(input, self.weight) ```
{ "source": "jeongjuns/yolactpose", "score": 3 }
#### File: jeongjuns/yolactpose/opt.py ```python import argparse import torch def str2bool(v): if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') parser = argparse.ArgumentParser(description='PyTorch AlphaPose Training') "----------------------------- General options -----------------------------" parser.add_argument('--expID', default='default', type=str, help='Experiment ID') parser.add_argument('--datasetA', default='coco', type=str, help='Dataset choice: mpii | coco') parser.add_argument('--nThreads', default=30, type=int, help='Number of data loading threads') parser.add_argument('--debug', default=False, type=bool, help='Print the debug information') parser.add_argument('--snapshot', default=1, type=int, help='How often to take a snapshot of the model (0 = never)') "----------------------------- AlphaPose options -----------------------------" parser.add_argument('--addDPG', default=False, type=bool, help='Train with data augmentation') parser.add_argument('--sp', default=True, action='store_true', help='Use single process for pytorch') parser.add_argument('--profile', default=False, action='store_true', help='add speed profiling at screen output') "----------------------------- Model options -----------------------------" parser.add_argument('--netType', default='hgPRM', type=str, help='Options: hgPRM | resnext') parser.add_argument('--loadModel', default=None, type=str, help='Provide full path to a previously trained model') parser.add_argument('--Continue', default=False, type=bool, help='Pick up where an experiment left off') parser.add_argument('--nFeats', default=256, type=int, help='Number of features in the hourglass') parser.add_argument('--nClasses', default=33, type=int, help='Number of output channel') parser.add_argument('--nStack', default=4, type=int, help='Number of hourglasses to stack') "----------------------------- Hyperparameter options -----------------------------" parser.add_argument('--fast_inference', default=True, type=bool, help='Fast inference') parser.add_argument('--use_pyranet', default=True, type=bool, help='use pyranet') "----------------------------- Hyperparameter options -----------------------------" parser.add_argument('--LR', default=2.5e-4, type=float, help='Learning rate') parser.add_argument('--momentum', default=0, type=float, help='Momentum') parser.add_argument('--weightDecay', default=0, type=float, help='Weight decay') parser.add_argument('--crit', default='MSE', type=str, help='Criterion type') parser.add_argument('--optMethod', default='rmsprop', type=str, help='Optimization method: rmsprop | sgd | nag | adadelta') "----------------------------- Training options -----------------------------" parser.add_argument('--nEpochs', default=50, type=int, help='Number of hourglasses to stack') parser.add_argument('--epoch', default=0, type=int, help='Current epoch') parser.add_argument('--trainBatch', default=40, type=int, help='Train-batch size') parser.add_argument('--validBatch', default=20, type=int, help='Valid-batch size') parser.add_argument('--trainIters', default=0, type=int, help='Total train iters') parser.add_argument('--valIters', default=0, type=int, help='Total valid iters') parser.add_argument('--init', default=None, type=str, help='Initialization') "----------------------------- Data options -----------------------------" parser.add_argument('--inputResH', default=320, type=int, help='Input image height') parser.add_argument('--inputResW', default=256, type=int, help='Input image width') parser.add_argument('--outputResH', default=80, type=int, help='Output heatmap height') parser.add_argument('--outputResW', default=64, type=int, help='Output heatmap width') parser.add_argument('--scale', default=0.25, type=float, help='Degree of scale augmentation') parser.add_argument('--rotate', default=30, type=float, help='Degree of rotation augmentation') parser.add_argument('--hmGauss', default=1, type=int, help='Heatmap gaussian size') "----------------------------- PyraNet options -----------------------------" parser.add_argument('--baseWidth', default=9, type=int, help='Heatmap gaussian size') parser.add_argument('--cardinality', default=5, type=int, help='Heatmap gaussian size') parser.add_argument('--nResidual', default=1, type=int, help='Number of residual modules at each location in the pyranet') "----------------------------- Distribution options -----------------------------" parser.add_argument('--dist', dest='dist', type=int, default=1, help='distributed training or not') parser.add_argument('--backend', dest='backend', type=str, default='gloo', help='backend for distributed training') parser.add_argument('--port', dest='port', help='port of server') "----------------------------- Detection options -----------------------------" parser.add_argument('--net', dest='demo_net', help='Network to use [vgg16 res101]', default='res152') #parser.add_argument('--indir', dest='inputpath', # help='image-directory', default="") parser.add_argument('--list', dest='inputlist', help='image-list', default="") parser.add_argument('--mode', dest='mode', help='detection mode, fast/normal/accurate', default="normal") parser.add_argument('--outdir', dest='outputpath', help='output-directory', default="examples/res/") parser.add_argument('--inp_dim', dest='inp_dim', type=str, default='608', help='inpdim') parser.add_argument('--conf', dest='confidence', type=float, default=0.05, help='bounding box confidence threshold') parser.add_argument('--nms', dest='nms_thesh', type=float, default=0.6, help='bounding box nms threshold') parser.add_argument('--save_img', default=False, action='store_true', help='save result as image') parser.add_argument('--vis', default=False, action='store_true', help='visualize image') parser.add_argument('--matching', default=False, action='store_true', help='use best matching') parser.add_argument('--format', type=str, help='save in the format of cmu or coco or openpose, option: coco/cmu/open') parser.add_argument('--detbatch', type=int, default=1, help='detection batch size') parser.add_argument('--posebatch', type=int, default=80, help='pose estimation maximum batch size') "----------------------------- Video options -----------------------------" parser.add_argument('--videoA', dest='video', help='video-name', default="") parser.add_argument('--webcam', dest='webcam', type=str, help='webcam number', default='0') parser.add_argument('--save_video', dest='save_video', help='whether to save rendered video', default=False, action='store_true') parser.add_argument('--vis_fast', dest='vis_fast', help='use fast rendering', action='store_true', default=False) parser.add_argument('--trained_model', default='weights/ssd300_mAP_77.43_v2.pth', type=str, help='Trained state_dict file path to open. If "interrupt", this will open the interrupt file.') parser.add_argument('--color', type=str, help='color you want detect') parser.add_argument('--top_k', default=5, type=int, help='Further restrict the number of predictions to parse') parser.add_argument('--cuda', default=True, type=str2bool, help='Use cuda to evaulate model') parser.add_argument('--fast_nms', default=True, type=str2bool, help='Whether to use a faster, but not entirely correct version of NMS.') parser.add_argument('--cross_class_nms', default=False, type=str2bool, help='Whether compute NMS cross-class or per-class.') parser.add_argument('--display_masks', default=True, type=str2bool, help='Whether or not to display masks over bounding boxes') parser.add_argument('--display_bboxes', default=True, type=str2bool, help='Whether or not to display bboxes around masks') parser.add_argument('--display_text', default=True, type=str2bool, help='Whether or not to display text (class [score])') parser.add_argument('--display_scores', default=True, type=str2bool, help='Whether or not to display scores in addition to classes') parser.add_argument('--display', dest='display', action='store_true', help='Display qualitative results instead of quantitative ones.') parser.add_argument('--shuffle', dest='shuffle', action='store_true', help='Shuffles the images when displaying them. Doesn\'t have much of an effect when display is off though.') parser.add_argument('--ap_data_file', default='results/ap_data.pkl', type=str, help='In quantitative mode, the file to save detections before calculating mAP.') parser.add_argument('--resume', dest='resume', action='store_true', help='If display not set, this resumes mAP calculations from the ap_data_file.') parser.add_argument('--max_images', default=-1, type=int, help='The maximum number of images from the dataset to consider. Use -1 for all.') parser.add_argument('--output_coco_json', dest='output_coco_json', action='store_true', help='If display is not set, instead of processing IoU values, this just dumps detections into the coco json file.') parser.add_argument('--bbox_det_file', default='results/bbox_detections.json', type=str, help='The output file for coco bbox results if --coco_results is set.') parser.add_argument('--mask_det_file', default='results/mask_detections.json', type=str, help='The output file for coco mask results if --coco_results is set.') parser.add_argument('--config', default=None, help='The config object to use.') parser.add_argument('--output_web_json', dest='output_web_json', action='store_true', help='If display is not set, instead of processing IoU values, this dumps detections for usage with the detections viewer web thingy.') parser.add_argument('--web_det_path', default='web/dets/', type=str, help='If output_web_json is set, this is the path to dump detections into.') parser.add_argument('--no_bar', dest='no_bar', action='store_true', help='Do not output the status bar. This is useful for when piping to a file.') parser.add_argument('--display_lincomb', default=False, type=str2bool, help='If the config uses lincomb masks, output a visualization of how those masks are created.') parser.add_argument('--benchmark', default=False, dest='benchmark', action='store_true', help='Equivalent to running display mode but without displaying an image.') parser.add_argument('--no_sort', default=False, dest='no_sort', action='store_true', help='Do not sort images by hashed image ID.') parser.add_argument('--seed', default=None, type=int, help='The seed to pass into random.seed. Note: this is only really for the shuffle and does not (I think) affect cuda stuff.') parser.add_argument('--mask_proto_debug', default=False, dest='mask_proto_debug', action='store_true', help='Outputs stuff for scripts/compute_mask.py.') parser.add_argument('--no_crop', default=False, dest='crop', action='store_false', help='Do not crop output masks with the predicted bounding box.') parser.add_argument('--image', default=None, type=str, help='A path to an image to use for display.') parser.add_argument('--images', default=None, type=str, help='An input folder of images and output folder to save detected images. Should be in the format input->output.') parser.add_argument('--video', default=None, type=str, help='A path to a video to evaluate on. Passing in a number will use that index webcam.') parser.add_argument('--video_multiframe', default=1, type=int, help='The number of frames to evaluate in parallel to make videos play at higher fps.') parser.add_argument('--score_threshold', default=0, type=float, help='Detections with a score under this threshold will not be considered. This currently only works in display mode.') parser.add_argument('--dataset', default=None, type=str, help='If specified, override the dataset specified in the config with this one (example: coco2017_dataset).') parser.add_argument('--detect', default=False, dest='detect', action='store_true', help='Don\'t evauluate the mask branch at all and only do object detection. This only works for --display and --benchmark.') parser.add_argument('--display_fps', default=False, dest='display_fps', action='store_true', help='When displaying / saving video, draw the FPS on the frame') parser.add_argument('--emulate_playback', default=False, dest='emulate_playback', action='store_true', help='When saving a video, emulate the framerate that you\'d get running in real-time mode.') parser.set_defaults(no_bar=False, display=False, resume=False, output_coco_json=False, output_web_json=False, shuffle=False, benchmark=False, no_sort=False, no_hash=False, mask_proto_debug=False, crop=True, detect=False, display_fps=False, emulate_playback=False) opt = parser.parse_args() opt.num_classes = 80 ```
{ "source": "jeongjy0317/Arcalive-Emoji-Downloader", "score": 3 }
#### File: jeongjy0317/Arcalive-Emoji-Downloader/main.py ```python import os import requests from bs4 import BeautifulSoup defaultURL = "https://arca.live/" placeHolder = { "emoji": "body > div > div.content-wrapper.clearfix > article > div > div.article-wrapper > div.article-body", "info": "body > div > div.content-wrapper.clearfix > article > div > div.article-wrapper > div.article-head" } downloadDirectory = "./downloads" counter = 0 returnFormat = { "name": "", "author": "", "sold": "", "submitted": "", "emojis": [] } def requestData(startsWith, numericOnly=False): data = input(f"\n์ž…๋ ฅ ์˜ˆ์‹œ : %se/1234\n๋‹ค์šด๋กœ๋“œ๋ฐ›์„ ์ด๋ชจํ‹ฐ์ฝ˜์˜ URL์„ ์ž…๋ ฅํ•ด์ฃผ์„ธ์š” > " % defaultURL) if not data.startswith(startsWith): print("โŒ ์ž˜๋ชป๋œ ์ž…๋ ฅ์ž…๋‹ˆ๋‹ค.") return False elif numericOnly and data.isdigit(): print("โŒ ํ˜•์‹์ด ์ž˜๋ชป๋˜์—ˆ์Šต๋‹ˆ๋‹ค.") return False else: return data.replace(startsWith, "") def createFolder(directory): try: if not os.path.exists(directory): os.makedirs(directory) except OSError: print('Error: Creating directory. ' + directory) print("[์•„์นด๋ผ์ด๋ธŒ ์ด๋ชจํ‹ฐ์ฝ˜ ๋‹ค์šด๋กœ๋”]\n์†Œ์žฅํ•˜๊ณ  ์‹ถ์€ ์ด๋ชจํ‹ฐ์ฝ˜์„ ๋‹ค์šด๋ฐ›์•„ ์ €์žฅํ•˜์„ธ์š”.\nโ—๋ณธ ํ”„๋กœ๊ทธ๋žจ์˜ ์‚ฌ์šฉ์œผ๋กœ ์ธํ•ด ๋ฐœ์ƒํ•˜๋Š” ๋ชจ๋“  ๋ฌธ์ œ์— ๋Œ€ํ•ด ์ œ์ž‘์ž๋Š” ์•„๋ฌด๋Ÿฐ ์ฑ…์ž„์„ ์ง€์ง€ ์•Š์Šต๋‹ˆ๋‹ค.", end="\n\n") # Create download folder if not exists if os.path.isdir(downloadDirectory): print(f"โœ… ๋‹ค์šด๋กœ๋“œ๋ฐ›์„ ๋””๋ ‰ํ† ๋ฆฌ(%s) ํ™•์ธ ์™„๋ฃŒ" % downloadDirectory) else: print(f"โŒ ๋‹ค์šด๋กœ๋“œ๋ฐ›์„ ๋””๋ ‰ํ† ๋ฆฌ(%s)๊ฐ€ ์กด์žฌํ•˜์ง€ ์•Š์•„ ์ƒ์„ฑํ•˜์˜€์Šต๋‹ˆ๋‹ค." % downloadDirectory) createFolder(downloadDirectory) # Get emoji ID while True: emojiID = requestData(defaultURL + "e/") if str(type(emojiID)) == "<class 'str'>" and len(emojiID) >= 1: print(f"โœ… ๋Œ€์ƒ ์ด๋ชจํ‹ฐ์ฝ˜ ID: %s" % emojiID) break GETdata = requests.get(f"%se/%s" % (defaultURL, emojiID)) if GETdata.status_code == 200: EmojiShopHTML = GETdata.text soup = BeautifulSoup(EmojiShopHTML, 'html.parser') EmojiData = soup.select_one(placeHolder['emoji']) EmojiInfo = soup.select_one(placeHolder['info']) else: print(f"โŒ HTTP ERROR %s\n์„œ๋ฒ„์— ์—ฐ๊ฒฐํ•  ์ˆ˜ ์—†๊ฑฐ๋‚˜ ์ ‘๊ทผํ•  ์ˆ˜ ์—†๋Š” ์ด๋ชจํ‹ฐ์ฝ˜์ž…๋‹ˆ๋‹ค." % GETdata.status_code) quit() # Data processing try: returnFormat["name"] = EmojiInfo.findAll("div")[1].text.replace("\n", "") returnFormat["author"] = EmojiInfo.findAll("div")[3].text.replace("\n", "") returnFormat["sold"] = EmojiInfo.findAll("div")[4].findAll("span")[1].text.replace("\n", "") returnFormat["submitted"] = EmojiInfo.findAll("div")[4].findAll("span")[2].findAll("span")[2].text.replace("\n", "") for piece in EmojiData.findAll('img'): returnFormat["emojis"].append(piece["src"].replace("//", "https://")) print("\nโœ… ์ด๋ชจํ‹ฐ์ฝ˜ ์ •๋ณด๋ฅผ ์„ฑ๊ณต์ ์œผ๋กœ ๋ถˆ๋Ÿฌ์™”์Šต๋‹ˆ๋‹ค.") print(f" - ์ด๋ฆ„ : %s" % returnFormat["name"]) print(f" - ๊ฐฏ์ˆ˜ : %s๊ฐœ" % len(returnFormat["emojis"])) print(f" - ์ œ์ž‘์ž : %s" % returnFormat["author"]) print(f" - ํŒ๋งค์ˆ˜ : %sํšŒ" % returnFormat["sold"]) print(f" - ๋“ฑ๋ก์ผ : %s" % returnFormat["submitted"]) except: print("โŒ ๋‚ด๋ ค๋ฐ›์„ ์ˆ˜ ์—†๋Š” ์ด๋ชจํ‹ฐ์ฝ˜์ž…๋‹ˆ๋‹ค.") quit() # Download try: saveDirectory = f"%s/%s-%s-%s/" % (downloadDirectory, emojiID, returnFormat["name"], returnFormat["author"]) if os.path.isdir(saveDirectory): print(f"\nโŒ ์ตœ์ข… ๋‹ค์šด๋กœ๋“œ ๋””๋ ‰ํ† ๋ฆฌ๊ฐ€ ์ด๋ฏธ ์กด์žฌํ•ฉ๋‹ˆ๋‹ค.\n๋‹ค์Œ ๋””๋ ‰ํ† ๋ฆฌ๋ฅผ ์‚ญ์ œํ•œ ํ›„ ๋‹ค์‹œ ์‹œ๋„ํ•ด์ฃผ์„ธ์š” : %s" % saveDirectory) quit() else: createFolder(saveDirectory) print("\nโœ… ๋‹ค์šด๋กœ๋“œ ๋ฐ›์„ ํด๋”๋ฅผ ์ƒ์„ฑํ•˜์˜€์Šต๋‹ˆ๋‹ค.") for imageURL in returnFormat["emojis"]: link = imageURL.split("/") currentFile = { "name": link[len(link)-1].split(".")[0], "ext": link[len(link)-1].split(".")[1] } print(f" > %d ๊ฐœ์ค‘ %d ๋ฒˆ์งธ ํ•ญ๋ชฉ์„ ๋‚ด๋ ค๋ฐ›๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค." % (len(returnFormat["emojis"]), counter + 1)) fileFromURL = requests.get(imageURL) openedFile = open(f"%s%d.%s" % (saveDirectory, counter, currentFile["ext"]), "wb") openedFile.write(fileFromURL.content) openedFile.close() counter = counter + 1 print("\nโœ… ๋‹ค์šด๋กœ๋“œ๊ฐ€ ์™„๋ฃŒ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.") except: print("\n์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค.") ```
{ "source": "Jeongkiwon/nomadgram", "score": 2 }
#### File: nomadgram/notifications/views.py ```python from rest_framework.views import APIView from rest_framework.response import Response from . import models, serializers # Create your views here. class Notifications(APIView): def get(self,request, format=None): user=request.user notifications=models.Notifications.objects.filter(to=user) serializer=serializers.NotificationSerializer(notifications, many=True) return Response(data=serializer.data, status=200) def create_notification(creator, to, notification_type, image=None, comment=None): notification=models.Notifications.objects.create( creator=creator, to=to, notification_type=notification_type, image=image, comment=comment, ) notification.save ```
{ "source": "JeongminB/pp", "score": 2 }
#### File: models/networks/encoder.py ```python import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from models.networks.base_network import BaseNetwork import torch.nn.utils.spectral_norm as spectral_norm class ImageEncoder(BaseNetwork): def __init__(self, params): super().__init__() self.act = nn.LeakyReLU(0.2) kw = 3 pw = int(np.ceil((kw-1.)/2)) nef = params.num_encoder_filters self.layer1 = self.norm_layer(nn.Conv2d(3, nef, kw, 2, pw)) self.layer2 = self.norm_layer(nn.Conv2d(1 * nef, 2 * nef, kw, 2, pw)) self.layer3 = self.norm_layer(nn.Conv2d(2 * nef, 4 * nef, kw, 2, pw)) self.layer4 = self.norm_layer(nn.Conv2d(4 * nef, 8 * nef, kw, 2, pw)) self.layer5 = self.norm_layer(nn.Conv2d(8 * nef, 8 * nef, kw, 2, pw)) if params.crop_size >=256: self.layer6 = self.get_norm_layer(nn.Conv2d(8 * nef, 8 * nef, kw, 2, pw)) self.s0 = s0 = 4 self.fc_mu = nn.Linear(nef * 8 * s0 * s0, 256) self.fc_var = nn.Linear(nef * 8 * s0 * s0, 256) self.params = params def norm_layer(self, layer): if self.params.use_spec_norm_e: layer = spectral_norm(layer) num_ch = getattr(layer, 'out_channels') norm_layer = nn.InstanceNorm2d(num_ch, affine=False) return nn.Sequential(layer, norm_layer) def forward(self, style_image): x = style_image if x.size(2) != 256 or x.size(3) != 256: x = F.interpolate(x, size=(256, 256), mode='bilinear') # ๋งˆ์ง€๋ง‰ conv ์ถœ๋ ฅ์ด (N, 8*nef, s0, s0) ์ด๋ฏ€๋กœ x = self.act(self.layer1(x)) x = self.act(self.layer2(x)) x = self.act(self.layer3(x)) x = self.act(self.layer4(x)) x = self.act(self.layer5(x)) if self.params.crop_size >= 256: x = self.act(self.layer6(x)) x = x.view(x.size(0), -1) mu = self.fc_mu(x) logvar = self.fc_var(x) return mu, logvar ```
{ "source": "JEONGSEJIN/OneDayOneCoding", "score": 4 }
#### File: 2021.11./16/solution_sjin.py ```python n = int(input()) def Factorial(n): if n == 0: return 1 else: return Factorial(n - 1) * n print(Factorial(n)) ```
{ "source": "Jeongseo21/Algorithm-1", "score": 3 }
#### File: leetcode/easy/953. Verifying an Alien Dictionary.py ```python class Solution: def isAlienSorted(self, words: List[str], order: str) -> bool: orderList = ['a'] * 26 for ind in range(len(list(order))): orderList[ord(order[ind]) - ord('a')] =chr(ind + ord('a')) for ind in range(len(words)): newWord = '' for e in list(words[ind]): newWord += orderList[ord(e) - ord('a')] words[ind] = newWord return sorted(words) == words ``` #### File: leetcode/hard/145. Binary Tree Postorder Traversal.py ```python class Solution: def postorderTraversal(self, root: TreeNode) -> List[int]: ans = [] s = [(root, 0)] while len(s) > 0: node, appearCnt = s.pop() if node is None: continue if appearCnt == 0: s.append((node, 1)) s.append((node.right, 0)) s.append((node.left, 0)) else: ans.append(node.val) return ans ``` #### File: leetcode/medium/1286. Iterator for Combination.py ```python class CombinationIterator: def __init__(self, characters: str, combinationLength: int): self.ind = 0 self.ans = [] N = len(characters) def dfs(index, tempStr): if len(tempStr) == combinationLength: self.ans.append(tempStr) return if index >= N: return dfs(index+1, tempStr + characters[index]) dfs(index+1, tempStr) dfs(0, "") def next(self) -> str: if self.ind >= len(self.ans): return None ans = self.ans[self.ind] self.ind +=1 return ans def hasNext(self) -> bool: return self.ind < len(self.ans) # Your CombinationIterator object will be instantiated and called as such: # obj = CombinationIterator(characters, combinationLength) # param_1 = obj.next() # param_2 = obj.hasNext() ``` #### File: leetcode/medium/467. Unique Substrings in Wraparound String.py ```python class Solution: def findSubstringInWraproundString(self, p: str) -> int: lengths = [0]*26 currentLength = 0 for i in range(len(p)): now = ord(p[i])-97 prev = ord(p[i-1])-97 if i > 0 and (now - prev) % 26 == 1: currentLength += 1 else: currentLength = 1 lengths[now] = max(lengths[now], currentLength) return sum(lengths) ``` #### File: leetcode/medium/518. Coin Change 2.py ```python class Solution: def change(self, amount: int, coins: List[int]) -> int: if amount == 0 and len(coins) == 0: return 1 dp = [[0] * (amount + 1)] * (len(coins) + 1) for coinInd in range(len(coins)): coin = coins[coinInd] prev = dp[coinInd] now = dp[coinInd + 1] now[0] = 1 for ind in range(coin, amount + 1): now[ind] = now[ind-coin] + prev[ind] return dp[len(coins)][amount] ```