metadata
dict
text
stringlengths
60
3.49M
{ "source": "jeongseunghyeon/py_certificates_tool", "score": 2 }
#### File: src/views/main.py ```python from PyQt5.QtWidgets import * from PyQt5.QtGui import QIcon from PyQt5.QtCore import QDateTime, QTimer # from openssl_lib import OpenSSLLib from .set_csr import SetCSRView class CSRData: def __init__(self): self.country_name = '' self.state_name = '' self.locality_name = '' self.org_name = '' self.org_unit_name = '' self.common_name = '' self.email = '' class MainView(QMainWindow): def __init__(self): super().__init__() # UI Component Init self.pfx_path = QLineEdit() self.crt_path = QLineEdit() self.key_path = QLineEdit() self.cert_contents = QTextEdit() # Variable self.csr_data = CSRData() self.datetime = QDateTime.currentDateTime() self.datetime_label = '' self.init_ui() def init_ui(self): self.init_menu_bar() self.init_widget() # Status Bar # self.set_current_time() qtimer = QTimer(self) qtimer.timeout.connect(self.set_current_time) qtimer.start(1000) # Window # self.setWindowTitle('Certificates Tool(Developed by <EMAIL>)') self.resize(700, 600) self.move_to_center() self.setWindowIcon(QIcon('./image/icon.png')) self.show() def set_current_time(self): current_date = QDateTime.currentDateTime() self.datetime_label = f"Date : {current_date.toString('yyyy-MM-dd HH:mm:ss')}" self.statusBar().showMessage(self.datetime_label) def init_menu_bar(self): # Top Menu Init # exit_action = QAction('Exit', self) exit_action.setShortcut('Ctrl+Q') exit_action.setStatusTip('Exit application') exit_action.triggered.connect(qApp.quit) menu_bar = self.menuBar() menu_bar.setNativeMenuBar(False) file_menu = menu_bar.addMenu('&File') file_menu.addAction(exit_action) return def init_widget(self): self.setCentralWidget(QWidget()) cw = self.centralWidget() grid = QGridLayout() cw.setLayout(grid) grid.addWidget(self.create_csr_group_layout(), 0, 0, 1, 6) grid.addWidget(QLabel('PFX file : '), 1, 0, 1, 1) grid.addWidget(QLabel('Crt file : '), 2, 0, 1, 1) grid.addWidget(QLabel('Key file : '), 3, 0, 1, 1) grid.addWidget(QLabel('Content : '), 4, 0, 1, 1) self.pfx_path.setReadOnly(True) self.crt_path.setReadOnly(True) self.key_path.setReadOnly(True) self.cert_contents.setReadOnly(True) grid.addWidget(self.pfx_path, 1, 1, 1, 4) grid.addWidget(self.crt_path, 2, 1, 1, 4) grid.addWidget(self.key_path, 3, 1, 1, 4) grid.addWidget(self.cert_contents, 6, 1, 1, 4) pfx_file_btn = QPushButton('File Select', self) pfx_file_btn.clicked.connect(self.onclick_crt_file_open_btn) crt_file_btn = QPushButton('File Select', self) crt_file_btn.clicked.connect(self.onclick_crt_file_open_btn) key_file_btn = QPushButton('File Select', self) key_file_btn.clicked.connect(self.onclick_key_file_open_btn) grid.addWidget(pfx_file_btn, 1, 5, 1, 1) grid.addWidget(crt_file_btn, 2, 5, 1, 1) grid.addWidget(key_file_btn, 3, 5, 1, 1) return def create_csr_group_layout(self): groupbox = QGroupBox('CSR Setting') hbox = QHBoxLayout() set_csr_btn = QPushButton('Set CSR Attributes') set_csr_btn.clicked.connect(self.onclick_set_csr_btn) hbox.addWidget(set_csr_btn) save_csr_btn = QPushButton('Save CSR') hbox.addWidget(save_csr_btn) groupbox.setLayout(hbox) return groupbox def move_to_center(self): qr = self.frameGeometry() cp = QDesktopWidget().availableGeometry().center() qr.moveCenter(cp) self.move(qr.topLeft()) def onclick_set_csr_btn(self): set_csr_view = SetCSRView() res = set_csr_view.show_modal() if res: self.csr_data.country_name = set_csr_view.country_name.text() self.csr_data.state_name = set_csr_view.state_name.text() self.csr_data.locality_name = set_csr_view.locality_name.text() self.csr_data.org_name = set_csr_view.org_name.text() self.csr_data.org_unit_name = set_csr_view.org_unit_name.text() self.csr_data.common_name = set_csr_view.common_name.text() self.csr_data.email = set_csr_view.email.text() def onclick_crt_file_open_btn(self): file_name = QFileDialog.getOpenFileName(self) if file_name[0]: self.crt_path.setText(file_name[0]) f = open(file_name[0], 'r') with f: data = f.read() self.cert_contents.setText(data) def onclick_key_file_open_btn(self): file_name = QFileDialog.getOpenFileName(self) if file_name[0]: self.key_path.setText(file_name[0]) f = open(file_name[0], 'r') with f: data = f.read() self.cert_contents.setText(data) ```
{ "source": "Jeongseup/DACON_BitcoinTrader", "score": 3 }
#### File: DACON_BitcoinTrader/codes/preprocessor.py ```python import numpy as np import pandas as pd from statsmodels.tsa.api import SimpleExpSmoothing from sklearn.preprocessing import KBinsDiscretizer ### ------------ Data preprocess part ------------ ### def coin_index_export(input_array, coin_num): ''' ์ฝ”์ธ๋ณ„ ์ธ๋ฑ์Šค ๋ฝ‘๊ธฐ ''' index = [] sample_id_len = input_array.shape[0] coin_num_col = 0 for sample_id in range(sample_id_len): if input_array[sample_id, 0, coin_num_col] == coin_num: #print(sample_id) index.append(sample_id) return index def df2d_to_array3d(df_2d): feature_size = df_2d.iloc[:,2:].shape[1] time_size = len(df_2d.time.value_counts()) sample_size = len(df_2d.sample_id.value_counts()) array_3d = df_2d.iloc[:,2:].values.reshape([sample_size, time_size, feature_size]) return array_3d def getWeights_FFD(d, size, thres): ''' ํ•จ์ˆ˜ ์„ค๋ช… : ์‹ค์ˆ˜ ์ฐจ๋ถ„์„ ์œ„ํ•œ get weights ''' w = [1.] # w์˜ ์ดˆ๊นƒ๊ฐ’ = 1 for k in range(1, size): w_ = -w[-1] * (d - k + 1) / k # ์‹ 2)๋ฅผ ์‚ฌ์šฉํ–ˆ๋‹ค. if abs(w[-1]) >= thres and abs(w_) <= thres: break else: w.append(w_) # w์˜ inverse w = np.array(w[::-1]).reshape(-1, 1) return w def fracDiff_FFD(series, d, thres=0.002): ''' ํ•จ์ˆ˜ ์„ค๋ช… : ์‹ค์ˆ˜ ์ฐจ๋ถ„ Constant width window (new solution) Note 1: thres determines the cut-off weight for the window Note 2: d can be any positive fractional, not necessarily bounded [0,1] ''' # 1) Compute weights for the longest series w = getWeights_FFD(d, series.shape[0], thres) width = len(w) - 1 # 2) Apply weights to values df = [] seriesF = series for iloc in range(len(w), seriesF.shape[0]): k = np.dot(w.T[::-1], seriesF[iloc - len(w):iloc]) df.append(k) df = np.array(df) return df, w def FFD_smoothing(train_x_array): ''' ํ•จ์ˆ˜ ์„ค๋ช… : ์ฐจ๋ถ„ ๋ฐ์ดํ„ฐ ๋ฝ‘๊ธฐ ''' FFD_array = np.zeros((383, 1339, 1)) for x in range(383): fdiff, w = fracDiff_FFD(train_x_array[x, :, 1], d=0.2, thres=0.002) FFD_array[x]= fdiff return FFD_array def simple_exponetial_smoothing(arr, alpha=0.3): y_series = list() for temp_arr in arr: target_series = temp_arr[:, 1].reshape(-1) # open col is 1 index smoother = SimpleExpSmoothing(target_series, initialization_method="heuristic").fit(smoothing_level=0.3,optimized=False) smoothing_series = smoother.fittedvalues y_series.append(smoothing_series) return np.array(y_series) # ================================================= # def simple_exponetial_smoothing_fory(arr, alpha=0.3): y_series = list() for temp_arr in arr: target_series = temp_arr[:, 1].reshape(-1) # open col is 1 index smoother = SimpleExpSmoothing(target_series, initialization_method="heuristic").fit(smoothing_level=alpha,optimized=False) smoothing_series = smoother.fittedvalues y_series.append(smoothing_series) return np.array(y_series) # ================================================= # def simple_exponetial_smoothing_forX(arr, alpha=0.3): # initialization sample_size = int(arr.shape[0]) time_size = int(arr.shape[1]) feature_size = int(arr.shape[2]) # create empty array smoothing_arr = np.zeros((sample_size, time_size, feature_size - 1)) for idx, temp_arr in enumerate(arr): for col in range(1, feature_size): # open col is 1 index if col < 5: temp_series = temp_arr[:, col].reshape(-1) smoother = SimpleExpSmoothing(temp_series, initialization_method="heuristic").fit(smoothing_level=0.3,optimized=False) temp_smoothing_series = smoother.fittedvalues smoothing_arr[idx, :, col-1] = temp_smoothing_series else: pass_series = temp_arr[:, col].reshape(-1) smoothing_arr[idx, :, col-1] = pass_series return smoothing_arr # ================================================= # def moving_average(arr, window_size = 20): #length = ma ๋ช‡ ํ• ์ง€ length = window_size ma = np.zeros((arr.shape[0], arr.shape[1] - length, arr.shape[2])) for idx in range(arr.shape[0]): for i in range(length, arr.shape[1]): for col in range(arr.shape[2]): ma[idx, i-length, col] = arr[idx,i-length:i, col].mean() #open return ma[:, :, 1] # open col is 1 def time_split(input_array, split_size = 6): ''' n๋ถ„๋ด‰์œผ๋กœ ๋ฐ์ดํ„ฐ ๋‚˜๋ˆ„๋Š” ํ•จ์ˆ˜ ''' # origin size define index_size = input_array.shape[0] origin_time_size = input_array.shape[1] variable_size = input_array.shape[2] # new array size define new_time_size = int(origin_time_size/split_size) # 1380 / 6 new_array = np.zeros((index_size, new_time_size, variable_size)) for idx in range(index_size): for time_idx in range(new_time_size): first_time_idx = time_idx * split_size last_time_idx = ((time_idx+1) * split_size) -1 new_array[idx, time_idx, 0] = input_array[idx, first_time_idx, 0] #coin_num new_array[idx, time_idx, 1] = input_array[idx, first_time_idx, 1] #open new_array[idx, time_idx, 2] = np.max(input_array[idx, first_time_idx:last_time_idx, 2]) #high new_array[idx, time_idx, 3] = np.min(input_array[idx, first_time_idx:last_time_idx, 3]) #low new_array[idx, time_idx, 4] = input_array[idx, last_time_idx, 4] #close new_array[idx, time_idx, 5] = np.sum(input_array[idx, first_time_idx:last_time_idx, 5]) #etc new_array[idx, time_idx, 6] = np.sum(input_array[idx, first_time_idx:last_time_idx, 6]) #etc new_array[idx, time_idx, 7] = np.sum(input_array[idx, first_time_idx:last_time_idx, 7]) #etc new_array[idx, time_idx, 8] = np.sum(input_array[idx, first_time_idx:last_time_idx, 8]) #etc new_array[idx, time_idx, 9] = np.sum(input_array[idx, first_time_idx:last_time_idx, 9]) #etc return new_array ### ---------------------------------------------- ### def train_val_test_spliter(arr): n = len(arr) num_features = arr.shape[2] - 1 train_arr = arr[0:int(n*0.8), :, :] val_arr = arr[int(n*0.8):, :, :] n2 = len(train_arr) + len(val_arr) print( f''' ====================================================== Origin length is {n}, then total split length is {n2} ====================================================== train length is {train_arr.shape}, val length is {val_arr.shape}, num_features is ({num_features}) ''' ) return train_arr, val_arr # study ํ•ด๋ณด๊ณ  ์ œ๋Œ€๋กœ ์•ˆ ์“ด preprocess def each_coin_normalization(train_x_arr): ''' ํ•จ์ˆ˜ ์„ค๋ช… : ์ฝ”์ธ๋ณ„ ๋ฐ์ดํ„ฐ ์ •๊ทœํ™” ''' # ์œ ๋‹ˆํฌ ์ฝ”์ธ ๋ฒˆํ˜ธ unique_coin_index = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] #create empty scaled list scaled_train_x_arr = np.zeros((train_x_arr.shape[0], train_x_arr.shape[1], train_x_arr.shape[2])) for temp_coin_num in unique_coin_index: # ์œ ๋‹ˆํฌ ์ฝ”์ธ ๋ฒˆํ˜ธ ์ค‘ ํ•œ ์ฝ”์ธ ๋ฒˆํ˜ธ์”ฉ ํ•ด๋‹น ์ฝ”์ธ์— ๋งž๋Š” ์ธ๋ฑ์Šค ์ถ”์ถœ # ex) if temp_coin_num is 0, temp_coin_index = [3, 7, 8, 14...] temp_coin_index = coin_index_export(train_x_arr, temp_coin_num) # temp coin num array export temp_x_arr = train_x_arr[temp_coin_index] # initialization num_sample = temp_x_arr.shape[0] # sample dim num_sequence = temp_x_arr.shape[1] # time-sequence dim num_feature = temp_x_arr.shape[2] # feature dim # create emptpy scaler temp_scaler = MinMaxScaler() # ์‹œ๊ณ„์—ด์„ ์„ ํšŒํ•˜๋ฉด์„œ ํ”ผํŒ…ํ•ฉ๋‹ˆ๋‹ค print('Current normalizing coin number is {}'.format(temp_coin_num)) for temp_sample, temp_index in enumerate(temp_coin_index): temp_scaler.partial_fit(temp_x_arr[temp_sample, :, 5:]) # open =1, high = 2, low=3, close=4, volume=5 ~... # ์Šค์ผ€์ผ๋ง(๋ณ€ํ™˜)ํ•ฉ๋‹ˆ๋‹ค. for temp_sample, temp_index in enumerate(temp_coin_index): scaled_train_x_arr[temp_index, :, 5:] = temp_scaler.transform(temp_x_arr[temp_sample, :, 5:]).reshape(1, num_sequence, 5) scaled_train_x_arr[temp_index, :, :5] = temp_x_arr[temp_sample, :, :5] # save scaler for test arr dir_name = './scaler' file_name = f'coin_{temp_coin_num}_scaler.pkl' save_path = os.path.join(dir_name, file_name) joblib.dump(temp_scaler, save_path) print("Each coin normalization, Complete!") return scaled_train_x_arr def kbin_discretizer(input_array): kb = KBinsDiscretizer(n_bins=10, strategy='uniform', encode='ordinal') processed_data = np.zeros((input_array.shape[0], input_array.shape[1], 1)) for i in range(input_array.shape[0]): # coin_index_export args : (input_array, coin_num) globals()['processing_array{}'.format(i)] = input_array[i,:,1] #globals()['outliery_array{}'.format(i)] = train_y_array[outlier[i],:,1] kb.fit(globals()['processing_array{}'.format(i)].reshape(input_array.shape[1],1)) globals()['processed_fit{}'.format(i)] = kb.transform(globals()['processing_array{}'.format(i)].reshape(input_array.shape[1],1)) #globals()['outliery_fit{}'.format(i)] = kb.transform(globals()['outliery_array{}'.format(i)].reshape(120,1)) processed_data[i,:,:] = globals()['processed_fit{}'.format(i)] return processed_data def outlier_detecter(raw_y_arr, outlier_criteria = 0.05): open_arr = raw_y_arr[:, :, 1] #open col is 1 outlier_list = [] openrange_list = [] for idx, temp_arr in enumerate(open_arr): temp_min = temp_arr.min() temp_max = temp_arr.max() temp_arr_range = temp_max - temp_min openrange_list.append(temp_arr_range) if temp_arr_range > outlier_criteria: outlier_list.append(idx) print(f'{idx}๋ฒˆ์งธ open series is outlier sample!') print(f'temp array range is {temp_arr_range:.3}\n') return outlier_list, np.array(openrange_list) # ================================================= # # ====== Generating Dataset ====== # def data_generate(dataframe, x_frames, y_frames, print_mode = False): ''' ์„ค๋ช… ์ƒ๋žต ''' # grouping grouped_df = dataframe.groupby('sample_id') # export unique sample ids unique_sample_id_list = grouped_df.sample_id.unique() # create new lists X, y = list(), list() ''' ์ƒ˜ํ”Œ ํ•˜๋‚˜ ์„ ํƒ loop ''' for sample_id in unique_sample_id_list: # get one sample_id in sample list temp_sample_id = sample_id.item() # get one group by temp_sample_id temp_df = grouped_df.get_group(temp_sample_id) # ํ•œ ์ƒ˜ํ”Œ๋‹น ๋ช‡ ๊ฐœ์˜ arrset๊ฐ€ ๋‚˜์˜ค๋Š” ์ง€ ํ™•์ธ count = 0 split_length = len(temp_df) - (x_frames + y_frames) + 1 ''' ํ•œ ์ƒ˜ํ”Œ ๋‚ด ๋ฐ์ดํ„ฐ split loop ''' for time_idx in range(split_length): # index ๋ณ€๊ฒฝ time_idx += x_frames # temp_data select temp_arr = temp_df.iloc[time_idx - x_frames : time_idx + y_frames, 3:].values # get values temp_x = temp_arr[:x_frames, :] temp_y = temp_arr[x_frames:, :] # # 2d to 3d -> (255, 12) to (1, 255, 12) / (120, 12) to (1, 120, 12) # temp_3d_x = np.expand_dims(temp_2d_x, axis = 0) # temp_3d_y = np.expand_dims(temp_2d_y, axis = 0) # appending X.append(temp_x) y.append(temp_y) # counter printing count += 1 if (count == split_length) & (print_mode == True): print(f'ํ˜„์žฌ sample id : {temp_sample_id}') print(f'{temp_sample_id}๋ฒˆ์งธ sample์˜ ์ƒ์„ฑ array์ˆ˜ : {count}') return np.array(X), np.array(y) # ====== Generating Dataset ====== # def open_data_generate(dataframe, col_name, x_frames, y_frames, print_mode = False): ''' print mode = True๋กœ ๋ฐ”๊พธ๋ฉด ๋ฐ์ดํ„ฐ ์–ด๋–ป๊ฒŒ ๋ถ„ํ• ๋˜๋Š”์ง€ ๋ณผ ์ˆ˜ ์žˆ์Œ example) x_frames = 60 train_x, train_y = open_data_generate(train_df,col_name ='open', x_frames = x_frames, y_frames = 1, print_mode = False) ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ ํ›„ shape train x shape is (288000, 60) train y shape is (288000, 1) ''' # grouping grouped_df = dataframe.groupby('sample_id') # export unique sample ids unique_sample_id_list = grouped_df.sample_id.unique() # create new lists X, y = list(), list() ''' ์ƒ˜ํ”Œ ํ•˜๋‚˜ ์„ ํƒ loop ''' for sample_id in unique_sample_id_list: # get one sample_id in sample list temp_sample_id = sample_id.item() # get one group by temp_sample_id temp_series = grouped_df.get_group(temp_sample_id)[col_name] # ํ•œ ์ƒ˜ํ”Œ๋‹น ๋ช‡ ๊ฐœ์˜ arrset๊ฐ€ ๋‚˜์˜ค๋Š” ์ง€ ํ™•์ธ count = 0 split_length = len(temp_series) - (x_frames + y_frames) + 1 ''' ํ•œ ์ƒ˜ํ”Œ ๋‚ด ๋ฐ์ดํ„ฐ split loop ''' for time_idx in range(split_length): # index ๋ณ€๊ฒฝ time_idx += x_frames # temp_data select temp_arr = temp_series[time_idx - x_frames : time_idx + y_frames] # get values temp_x, temp_y = temp_arr.iloc[:x_frames].values, temp_arr.iloc[x_frames:].values # appending X.append(temp_x) y.append(temp_y) # counter printing count += 1 if (count == split_length) & (print_mode == True): print(f'ํ˜„์žฌ sample id : {temp_sample_id}') print(f'{temp_sample_id}๋ฒˆ์งธ sample์˜ ์ƒ์„ฑ array์ˆ˜ : {count}') return np.array(X), np.array(y) def targetframes_predict(model, dataframe, test_id = 1207, x_frames = 60 , target_len = 120): ''' test_df์˜ test_id = 1207์ด ์‹ค์ œ ๋ฐ์ดํ„ฐ์—์„œ์˜ 7657 target_len๋Š” ๋ฐ˜๋ณต ์˜ˆ์ธกํ•ด์•ผ ํ•  ๊ตฌ๊ฐ„ ๊ธธ์ด example) y_pred_arr, y_true_arr = targetframes_predict(model = model, dataframe = test_df, test_id = 1207, x_frames = x_frames , target_len = 120) ''' # list ๋งŒ๋“ค๊ณ , ๋งˆ์ง€๋ง‰ ๋ฐ์ดํ„ฐ 30๊ฐœ ์ถ”์ถœ y_pred_list = list() y_true_list = dataframe[dataframe.sample_id == test_id].reset_index(drop=True).open[1380:].values x_input = dataframe[dataframe.sample_id == test_id].reset_index(drop=True).open[1380 - x_frames :1380].values for i in range(target_len): yhat = model.predict(x_input.reshape((1, x_frames, 1)), verbose=0) # list append y_pred = round(yhat.item(), 8) y_pred_list.append(y_pred) # exchage input data x_input = np.append(x_input, y_pred) x_input = np.delete(x_input, 0) return np.array(y_pred_list), np.array(y_true_list) def coindata_merger(train_x_df, train_y_df, coin_num): # df์—์„œ ์ง€์ •๋œ ์ฝ”์ธ ๋ฐ์ดํ„ฐ๋งŒ ์ถ”์ถœ coin_num_x_df = train_x_df[train_x_df['coin_index'] == coin_num] coin_num_y_df = train_y_df[train_y_df['coin_index'] == coin_num] # y dataframe time value์— 1380 ์”ฉ adding coin_num_y_df.time = coin_num_y_df.time.copy() + 1380 # x,y df mergeํ•˜๊ณ  sample_id์™€ time ์ˆœ์œผ๋กœ sorting merged_df = pd.concat([coin_num_x_df, coin_num_y_df]) merged_df = merged_df.sort_values(by = ['sample_id','time']).reset_index(drop=True) # sample_id series orderly indexing sample_id_series = merged_df.sample_id.value_counts().reset_index().rename(columns = {"index" : "sample_id"}) reset_index_series = sample_id_series.iloc[:,:1].sort_values(by = ['sample_id']).reset_index(drop=True) # coin index file export coin_index = reset_index_series.reset_index().set_index('sample_id') coin_index_name = f'./coin_{coin_num}_index.json' coin_index.to_json(coin_index_name, orient="table", indent=4) # dict index new_sample_dict = reset_index_series.reset_index().set_index('sample_id').to_dict() # sample_id value initialization merged_df['sample_id'] = merged_df['sample_id'].map(new_sample_dict['index']) merged_df.to_hdf('./data/merged_data.h5', key = 'merged_df') return merged_df ```
{ "source": "jeongsong97/PsychoPy", "score": 3 }
#### File: jeongsong97/PsychoPy/Template.py ```python from psychopy import core, visual, event from psychopy.hardware import keyboard import pandas as pd import csv import psychopy.clock import psychopy.event import random import os win = visual.Window([800,600], fullscr=False, monitor="testMonitor") myMouse = event.Mouse(visible=False) finalTable=[['image','Species', 'RespTime','Answer', 'Correct']] message1= visual.TextStim(win, pos=[0,+0.1],text='Enter the participant number:') message1.draw() win.flip() answer = '' def show_cross(time): cross = visual.TextStim(win, text='+') cross.draw() win.flip() core.wait(time) def block(): grating = psychopy.visual.TextStim(win=win, text ='T') # Draw the stimulus to the window. We always draw at the back buffer of the window. grating.draw() # Flip back buffer and front buffer of the window. win.flip() # Pause 0.5 s, so you get a chance to see it! core.wait(0.5) show_cross(0.5) choice = random.shuffle([0, 1]) stimClock = core.Clock() ''' key = psychopy.event.getKeys(keyList =['2','3'], timeStamped = stimClock) if len(key)>0: ans=key[len(key) -1] Resp_Time=ans[1] x = ans[0] if x=='2': Answer="1" if random_list [i] == 1: Right = "Correct" if random_list [i] == 0: Right = "Incorrect" else: Answer = '0' Resp_Time = 0 if random_list [i] == 1: Right = "Incorrect" if random_list [i] == 0: Right = "Correct" row=[question, species, Resp_Time, Answer,Right] finalTable.append(row) ''' cross = visual.TextStim(win, text='+') # Draw the stimulus to the window. We always draw at the back buffer of the window. cross.draw() # Flip back buffer and front buffer of the window. win.flip() core.wait(0.75) thisResp=None while thisResp==None: allKeys=event.waitKeys() for thisKey in allKeys: if thisKey=='space': thisResp=1 elif thisKey=='return': thisResp=1 elif thisKey=='backspace': answer=answer[:-1] message1.draw() message2 = visual.TextStim(win, pos=[0,-0.1],text=answer) message2.draw() win.flip() else: answer += thisKey message1.draw() message2 = visual.TextStim(win, pos=[0,-0.1],text=answer) message2.draw() win.flip() for i in range(8): block() # filename = 'images_'+answer+'.csv' """ with open(filename, 'a+', newline='') as file: writer = csv.writer(file) writer.writerows(finalTable) """ core.quit() ```
{ "source": "JeongsooHa/char-rnn-tensorflow", "score": 2 }
#### File: JeongsooHa/char-rnn-tensorflow/train.py ```python import tensorflow as tf import numpy as np from utils import TextLoader # ํ•™์Šต์— ํ•„์š”ํ•œ ์„ค์ •๊ฐ’๋“ค์„ ์ง€์ •ํ•ฉ๋‹ˆ๋‹ค. data_dir = 'data/tinyshakespeare' # ์…ฐ์ต์Šคํ”ผ์–ด ํฌ๊ณก <๋ฆฌ์ฒ˜๋“œ 3์„ธ> ๋ฐ์ดํ„ฐ๋กœ ํ•™์Šต #data_dir = 'data/linux' # <Linux ์†Œ์Šค์ฝ”๋“œ> ๋ฐ์ดํ„ฐ๋กœ ํ•™์Šต batch_size = 50 # Training : 50, Sampling : 1 seq_length = 50 # Training : 50, Sampling : 1 hidden_size = 128 # ํžˆ๋“  ๋ ˆ์ด์–ด์˜ ๋…ธ๋“œ ๊ฐœ์ˆ˜ learning_rate = 0.002 num_epochs = 2 num_hidden_layers = 2 grad_clip = 5 # Gradient Clipping์— ์‚ฌ์šฉํ•  ์ž„๊ณ„๊ฐ’ # TextLoader๋ฅผ ์ด์šฉํ•ด์„œ ๋ฐ์ดํ„ฐ๋ฅผ ๋ถˆ๋Ÿฌ์˜ต๋‹ˆ๋‹ค. data_loader = TextLoader(data_dir, batch_size, seq_length) # ํ•™์Šต๋ฐ์ดํ„ฐ์— ํฌํ•จ๋œ ๋ชจ๋“  ๋‹จ์–ด๋“ค์„ ๋‚˜ํƒ€๋‚ด๋Š” ๋ณ€์ˆ˜์ธ chars์™€ chars์— id๋ฅผ ๋ถ€์—ฌํ•ด dict ํ˜•ํƒœ๋กœ ๋งŒ๋“  vocab์„ ์„ ์–ธํ•ฉ๋‹ˆ๋‹ค. chars = data_loader.chars vocab = data_loader.vocab vocab_size = data_loader.vocab_size # ์ „์ฒด ๋‹จ์–ด๊ฐœ์ˆ˜ # ์ธํ’‹๋ฐ์ดํ„ฐ์™€ ํƒ€๊ฒŸ๋ฐ์ดํ„ฐ, ๋ฐฐ์น˜ ์‚ฌ์ด์ฆˆ๋ฅผ ์ž…๋ ฅ๋ฐ›๊ธฐ ์œ„ํ•œ ํ”Œ๋ ˆ์ด์Šคํ™€๋”๋ฅผ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค. input_data = tf.placeholder(tf.int32, shape=[None, None]) # input_data : [batch_size, seq_length]) target_data = tf.placeholder(tf.int32, shape=[None, None]) # target_data : [batch_size, seq_length]) state_batch_size = tf.placeholder(tf.int32, shape=[]) # Training : 50, Sampling : 1 # RNN์˜ ๋งˆ์ง€๋ง‰ ํžˆ๋“ ๋ ˆ์ด์–ด์˜ ์ถœ๋ ฅ์„ ์†Œํ”„ํŠธ๋งฅ์Šค ์ถœ๋ ฅ๊ฐ’์œผ๋กœ ๋ณ€ํ™˜ํ•ด์ฃผ๊ธฐ ์œ„ํ•œ ๋ณ€์ˆ˜๋“ค์„ ์„ ์–ธํ•ฉ๋‹ˆ๋‹ค. # hidden_size -> vocab_size softmax_w = tf.Variable(tf.random_normal(shape=[hidden_size, vocab_size]), dtype=tf.float32) softmax_b = tf.Variable(tf.random_normal(shape=[vocab_size]), dtype=tf.float32) # num_hidden_layers๋งŒํผ LSTM cell(ํžˆ๋“ ๋ ˆ์ด์–ด)๋ฅผ ์„ ์–ธํ•ฉ๋‹ˆ๋‹ค. cells = [] for _ in range(0, num_hidden_layers): cell = tf.nn.rnn_cell.BasicLSTMCell(hidden_size) cells.append(cell) # cell์„ ์ข…ํ•ฉํ•ด์„œ RNN์„ ์ •์˜ํ•ฉ๋‹ˆ๋‹ค. cell = tf.contrib.rnn.MultiRNNCell(cells, state_is_tuple=True) # ์ธํ’‹๋ฐ์ดํ„ฐ๋ฅผ ๋ณ€ํ™˜ํ•˜๊ธฐ ์œ„ํ•œ Embedding Matrix๋ฅผ ์„ ์–ธํ•ฉ๋‹ˆ๋‹ค. # vocab_size -> hidden_size embedding = tf.Variable(tf.random_normal(shape=[vocab_size, hidden_size]), dtype=tf.float32) inputs = tf.nn.embedding_lookup(embedding, input_data) # ์ดˆ๊ธฐ state ๊ฐ’์„ 0์œผ๋กœ ์ดˆ๊ธฐํ™”ํ•ฉ๋‹ˆ๋‹ค. initial_state = cell.zero_state(state_batch_size, tf.float32) # ํ•™์Šต์„ ์œ„ํ•œ tf.nn.dynamic_rnn์„ ์„ ์–ธํ•ฉ๋‹ˆ๋‹ค. # outputs : [batch_size, seq_length, hidden_size] outputs, final_state = tf.nn.dynamic_rnn(cell, inputs, initial_state=initial_state, dtype=tf.float32) # ouputs์„ [batch_size * seq_length, hidden_size]] ํ˜•ํƒœ๋กœ ๋ฐ”๊ฟ‰๋‹ˆ๋‹ค. output = tf.reshape(outputs, [-1, hidden_size]) # ์ตœ์ข… ์ถœ๋ ฅ๊ฐ’์„ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค. # logits : [batch_size * seq_length, vocab_size] logits = tf.matmul(output, softmax_w) + softmax_b probs = tf.nn.softmax(logits) # Cross Entropy ์†์‹ค ํ•จ์ˆ˜๋ฅผ ์ •์˜ํ•ฉ๋‹ˆ๋‹ค. loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=target_data)) # ์˜ตํ‹ฐ๋งˆ์ด์ €๋ฅผ ์„ ์–ธํ•˜๊ณ  ์˜ตํ‹ฐ๋งˆ์ด์ €์— Gradient Clipping์„ ์ ์šฉํ•ฉ๋‹ˆ๋‹ค. # grad_clip(=5)๋ณด๋‹ค ํฐ Gradient๋ฅผ 5๋กœ Clippinํ•ฉ๋‹ˆ๋‹ค. tvars = tf.trainable_variables() grads, _ = tf.clip_by_global_norm(tf.gradients(loss, tvars), grad_clip) optimizer = tf.train.AdamOptimizer(learning_rate) train_step = optimizer.apply_gradients(zip(grads, tvars)) # ์„ธ์…˜์„ ์—ด๊ณ  ํ•™์Šต์„ ์ง„ํ–‰ํ•ฉ๋‹ˆ๋‹ค. with tf.Session() as sess: # ๋ณ€์ˆ˜๋“ค์— ์ดˆ๊ธฐ๊ฐ’์„ ํ• ๋‹นํ•ฉ๋‹ˆ๋‹ค. sess.run(tf.global_variables_initializer()) for e in range(num_epochs): data_loader.reset_batch_pointer() # ์ดˆ๊ธฐ ์ƒํƒœ๊ฐ’์„ ์ง€์ •ํ•ฉ๋‹ˆ๋‹ค. state = sess.run(initial_state, feed_dict={state_batch_size : batch_size}) for b in range(data_loader.num_batches): # x, y ๋ฐ์ดํ„ฐ๋ฅผ ๋ถˆ๋Ÿฌ์˜ต๋‹ˆ๋‹ค. x, y = data_loader.next_batch() # y์— one_hot ์ธ์ฝ”๋”ฉ์„ ์ ์šฉํ•ฉ๋‹ˆ๋‹ค. y = tf.one_hot(y, vocab_size) # y : [batch_size, seq_length, vocab_size] y = tf.reshape(y, [-1, vocab_size]) # y : [batch_size * seq_length, vocab_size] y = y.eval() # feed-dict์— ์‚ฌ์šฉํ•  ๊ฐ’๋“ค๊ณผ LSTM ์ดˆ๊ธฐ cell state(feed_dict[c])๊ฐ’๊ณผ hidden layer ์ถœ๋ ฅ๊ฐ’(feed_dict[h])์„ ์ง€์ •ํ•ฉ๋‹ˆ๋‹ค. feed_dict = {input_data : x, target_data: y, state_batch_size : batch_size} for i, (c, h) in enumerate(initial_state): feed_dict[c] = state[i].c feed_dict[h] = state[i].h # ํ•œ์Šคํ… ํ•™์Šต์„ ์ง„ํ–‰ํ•ฉ๋‹ˆ๋‹ค. _, loss_print, state = sess.run([train_step, loss, final_state], feed_dict=feed_dict) print("{}(ํ•™์Šตํ•œ ๋ฐฐ์น˜๊ฐœ์ˆ˜)/{}(ํ•™์Šตํ•  ๋ฐฐ์น˜๊ฐœ์ˆ˜), ๋ฐ˜๋ณต(epoch): {}, ์†์‹คํ•จ์ˆ˜(loss): {:.3f}".format( e * data_loader.num_batches + b, num_epochs * data_loader.num_batches, (e+1), loss_print)) print("ํŠธ๋ ˆ์ด๋‹์ด ๋๋‚ฌ์Šต๋‹ˆ๋‹ค!") # ์ƒ˜ํ”Œ๋ง ์‹œ์ž‘ print("์ƒ˜ํ”Œ๋ง์„ ์‹œ์ž‘ํ•ฉ๋‹ˆ๋‹ค!") num_sampling = 4000 # ์ƒ์„ฑํ•  ๊ธ€์ž(Character)์˜ ๊ฐœ์ˆ˜๋ฅผ ์ง€์ •ํ•ฉ๋‹ˆ๋‹ค. prime = u' ' # ์‹œ์ž‘ ๊ธ€์ž๋ฅผ ' '(๊ณต๋ฐฑ)์œผ๋กœ ์ง€์ •ํ•ฉ๋‹ˆ๋‹ค. sampling_type = 1 # ์ƒ˜ํ”Œ๋ง ํƒ€์ž…์„ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค. state = sess.run(cell.zero_state(1, tf.float32)) # RNN์˜ ์ตœ์ดˆ state๊ฐ’์„ 0์œผ๋กœ ์ดˆ๊ธฐํ™”ํ•ฉ๋‹ˆ๋‹ค. # Random Sampling์„ ์œ„ํ•œ weighted_pick ํ•จ์ˆ˜๋ฅผ ์ •์˜ํ•ฉ๋‹ˆ๋‹ค. def weighted_pick(weights): t = np.cumsum(weights) s = np.sum(weights) return(int(np.searchsorted(t, np.random.rand(1)*s))) ret = prime # ์ƒ˜ํ”Œ๋ง ๊ฒฐ๊ณผ๋ฅผ ๋ฆฌํ„ด๋ฐ›์„ ret ๋ณ€์ˆ˜์— ์ฒซ๋ฒˆ์งธ ๊ธ€์ž๋ฅผ ํ• ๋‹นํ•ฉ๋‹ˆ๋‹ค. char = prime[-1] # Char-RNN์˜ ์ฒซ๋ฒˆ์จฐ ์ธํ’‹์„ ์ง€์ •ํ•ฉ๋‹ˆ๋‹ค. for n in range(num_sampling): x = np.zeros((1, 1)) x[0, 0] = vocab[char] # RNN์„ ํ•œ์Šคํ… ์‹คํ–‰ํ•˜๊ณ  Softmax ํ–‰๋ ฌ์„ ๋ฆฌํ„ด์œผ๋กœ ๋ฐ›์Šต๋‹ˆ๋‹ค. feed_dict = {input_data: x, state_batch_size : 1, initial_state: state} [probs_result, state] = sess.run([probs, final_state], feed_dict=feed_dict) # ๋ถˆํ•„์š”ํ•œ ์ฐจ์›์„ ์ œ๊ฑฐํ•ฉ๋‹ˆ๋‹ค. # probs_result : (1,65) -> p : (65) p = np.squeeze(probs_result) # ์ƒ˜ํ”Œ๋ง ํƒ€์ž…์— ๋”ฐ๋ผ 3๊ฐ€์ง€ ์ข…๋ฅ˜๋กœ ์ƒ˜ํ”Œ๋ง ํ•ฉ๋‹ˆ๋‹ค. # sampling_type : 0 -> ๋‹ค์Œ ๊ธ€์ž๋ฅผ ์˜ˆ์ธกํ• ๋•Œ ํ•ญ์ƒ argmax๋ฅผ ์‚ฌ์šฉ # sampling_type : 1(defualt) -> ๋‹ค์Œ ๊ธ€์ž๋ฅผ ์˜ˆ์ธกํ• ๋•Œ ํ•ญ์ƒ random sampling์„ ์‚ฌ์šฉ # sampling_type : 2 -> ๋‹ค์Œ ๊ธ€์ž๋ฅผ ์˜ˆ์ธกํ• ๋•Œ ์ด์ „ ๊ธ€์ž๊ฐ€ ' '(๊ณต๋ฐฑ)์ด๋ฉด random sampling, ๊ทธ๋ ‡์ง€ ์•Š์„ ๊ฒฝ์šฐ argmax๋ฅผ ์‚ฌ์šฉ if sampling_type == 0: sample = np.argmax(p) elif sampling_type == 2: if char == ' ': sample = weighted_pick(p) else: sample = np.argmax(p) else: sample = weighted_pick(p) pred = chars[sample] ret += pred # ์ƒ˜ํ”Œ๋ง ๊ฒฐ๊ณผ์— ํ˜„์žฌ ์Šคํ…์—์„œ ์˜ˆ์ธกํ•œ ๊ธ€์ž๋ฅผ ์ถ”๊ฐ€ํ•ฉ๋‹ˆ๋‹ค. (์˜ˆ๋ฅผ๋“ค์–ด pred=L์ผ ๊ฒฝ์šฐ, ret = HEL -> HELL) char = pred # ์˜ˆ์ธกํ•œ ๊ธ€์ž๋ฅผ ๋‹ค์Œ RNN์˜ ์ธํ’‹์œผ๋กœ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. print("์ƒ˜ํ”Œ๋ง ๊ฒฐ๊ณผ:") print(ret) ```
{ "source": "JeongsooHa/handRNN", "score": 3 }
#### File: JeongsooHa/handRNN/make.py ```python import pickle import sys import tensorflow as tf from tqdm import tqdm def get_labels(): """Return a list of our trained labels so we can test our training accuracy. The file is in the format of one label per line, in the same order as the predictions are made. The order can change between training runs.""" with open("./inception/retrained_labels.txt", 'r') as fin: labels = [line.rstrip('\n') for line in fin] return labels def predict_on_frames(frames, batch): """Given a list of frames, predict all their classes.""" # Unpersists graph from file with tf.gfile.FastGFile("./inception/retrained_graph.pb", 'rb') as fin: graph_def = tf.GraphDef() graph_def.ParseFromString(fin.read()) _ = tf.import_graph_def(graph_def, name='') with tf.Session() as sess: softmax_tensor = sess.graph.get_tensor_by_name('final_result:0') frame_predictions = [] image_path = './data/images/' + batch + '/' pbar = tqdm(total=len(frames)) for i, frame in enumerate(frames): filename = frame[0] label = frame[1] # Get the image path. image = image_path + filename + '.jpg' # Read in the image_data image_data = tf.gfile.FastGFile(image, 'rb').read() try: predictions = sess.run( softmax_tensor, {'DecodeJpeg/contents:0': image_data} ) prediction = predictions[0] except KeyboardInterrupt: print("You quit with ctrl+c") sys.exit() except: print("Error making prediction, continuing.") continue # Save the probability that it's each of our classes. frame_predictions.append([prediction, label]) if i > 0 and i % 10 == 0: pbar.update(10) pbar.close() return frame_predictions def get_accuracy(predictions, labels): """After predicting on each batch, check that batch's accuracy to make sure things are good to go. This is a simple accuracy metric, and so doesn't take confidence into account, which would be a better metric to use to compare changes in the model.""" correct = 0 for frame in predictions: # Get the highest confidence class. this_prediction = frame[0].tolist() this_label = frame[1] max_value = max(this_prediction) max_index = this_prediction.index(max_value) predicted_label = labels[max_index] # Now see if it matches. if predicted_label == this_label: correct += 1 accuracy = correct / len(predictions) return accuracy def main(): batches = ['1'] labels = get_labels() for batch in batches: print("Doing batch %s" % batch) with open('data/labeled-frames-' + batch + '.pkl', 'rb') as fin: frames = pickle.load(fin) # Predict on this batch and get the accuracy. predictions = predict_on_frames(frames, batch) accuracy = get_accuracy(predictions, labels) print("Batch accuracy: %.5f" % accuracy) # Save it. with open('data/predicted-frames-' + batch + '.pkl', 'wb') as fout: pickle.dump(predictions, fout) print("Done.") if __name__ == '__main__': main() ```
{ "source": "JeongsooHa/ray", "score": 3 }
#### File: serve/examples/echo_actor_batch.py ```python import time import requests import ray from ray import serve from ray.serve.utils import pformat_color_json from ray.serve import BackendConfig class MagicCounter: def __init__(self, increment): self.increment = increment @serve.accept_batch def __call__(self, flask_request_list, base_number=None): # batch_size = serve.context.batch_size if serve.context.web: result = [] for flask_request in flask_request_list: base_number = int(flask_request.args.get("base_number", "0")) result.append(base_number) return list(map(lambda x: x + self.increment, result)) else: result = [] for b in base_number: ans = b + self.increment result.append(ans) return result serve.init(blocking=True) serve.create_endpoint("magic_counter", "/counter") b_config = BackendConfig(max_batch_size=5) serve.create_backend( MagicCounter, "counter:v1", 42, backend_config=b_config) # increment=42 serve.set_traffic("magic_counter", {"counter:v1": 1.0}) print("Sending ten queries via HTTP") for i in range(10): url = "http://1192.168.127.12:8000/counter?base_number={}".format(i) print("> Pinging {}".format(url)) resp = requests.get(url).json() print(pformat_color_json(resp)) time.sleep(0.2) print("Sending ten queries via Python") handle = serve.get_handle("magic_counter") for i in range(10): print("> Pinging handle.remote(base_number={})".format(i)) result = ray.get(handle.remote(base_number=i)) print("< Result {}".format(result)) ```
{ "source": "jeongsoopark/Falcor", "score": 2 }
#### File: Mogwai/Testing/testSSAO.py ```python def render_graph_testSSAO(): testSSAO = RenderGraph("ForwardRenderer") DepthPass = RenderPass("DepthPass", {'depthFormat': ResourceFormat.D32Float}) testSSAO.addPass(DepthPass, "DepthPass") SkyBox = RenderPass("SkyBox") testSSAO.addPass(SkyBox, "SkyBox") ForwardLightingPass = RenderPass("ForwardLightingPass", {'sampleCount': 1, 'enableSuperSampling': False}) testSSAO.addPass(ForwardLightingPass, "ForwardLightingPass") SSAOPass = RenderPass("SSAOPass") testSSAO.addPass(SSAOPass, "SSAO") testSSAO.addEdge("DepthPass.depth", "ForwardLightingPass.depth") testSSAO.addEdge("DepthPass.depth", "SkyBox.depth") testSSAO.addEdge("SkyBox.target", "ForwardLightingPass.color") testSSAO.addEdge("DepthPass.depth", "SSAO.depth") testSSAO.addEdge("ForwardLightingPass.color", "SSAO.colorIn") testSSAO.markOutput("SSAO.colorOut") return testSSAO test_SSAO = render_graph_testSSAO() try: m.addGraph(test_SSAO) except NameError: None ``` #### File: Tests/Old/StartBuildTest.py ```python import urllib.parse import urllib.request import urllib.error import getpass import argparse import xml.etree.ElementTree as ET import TeamCityCommon from TeamCityCommon import connect from TeamCityCommon import server_url from TeamCityCommon import project_url from TeamCityCommon import connect import base64 import os import GetBuildStatus default_xml_file = './build.xml' queue_url = 'app/rest/buildQueue?locator=project:Falcor' def start_build_internal(xml_data): TeamCityCommon.post_request(queue_url, xml_data, 'application/xml') def start_build(username, xml_file_path, branch_name, git_path, tests_directory, buildTypeId): file = open(xml_file_path, 'rt') data = file.read() file.close() # insert branch name into xml = ET.fromstring(data) print('Starting remote build with id: ' + buildTypeId) # insert branch name into correct location for data in xml.iter(): if data.get('branchName'): data.set('branchName', branch_name) if buildTypeId: if data.get('id'): data.set('id', buildTypeId) for param in data.findall('property'): if ( param.get('name') == 'branchname'): param.set('value', branch_name) if param.get('name') == 'tests_directory': if tests_directory: param.set('value', '--tests_directory ' + tests_directory ) if (param.get('name') == 'vcsRoot'): # get vsc root list from teamcity # find id from config please = GetBuildStatus.get_vcs_instances() string = str(please.read().decode()) vcs_xml = ET.fromstring(string) vcs_id = '' for node in vcs_xml.iter(): for instance in node.findall('vcs-root-instance'): if instance.get('name').startswith(git_path): vcs_id = instance.get('vcs-root-id') set = True break; param.set('value', vcs_id) # convert back to string to be sent in post request xml_data = ET.tostring(xml) start_build_internal(xml_data) def main(): # Argument Parser. parser = argparse.ArgumentParser() # Adds argument for username to connect as parser.add_argument('-u', '--username', action='store', help='UserName To Connect.'); # Adds argument for specifying wich xml to use for the build settings parser.add_argument('-xml', '--xml_filename', action='store', help='XML file to send in POST request for build.') # Parse the Arguments. args = parser.parse_args() if args.username: username = args.username else: username = input('Enter username for teamcity.nvidia.com: ') connect(username) start_build(username, xml_file = default_xml_file) if __name__ == '__main__': main() ```
{ "source": "jeongukjae/bert-optimization", "score": 2 }
#### File: bert-optimization/bert_optimization/metrics.py ```python import numpy as np import tensorflow as tf from tensorflow.python.keras import backend as K from tensorflow.python.keras.utils import generic_utils, metrics_utils class F1Score(tf.keras.metrics.Metric): def __init__(self, thresholds=None, top_k=None, class_id=None, name=None, dtype=None): super().__init__(name=name, dtype=dtype) self.top_k = top_k self.class_id = class_id self.thresholds = metrics_utils.parse_init_thresholds(thresholds, default_threshold=0.5) self.true_positives = self.add_weight("true_positives", shape=(len(self.thresholds),), initializer="zeros") self.false_positives = self.add_weight("false_positives", shape=(len(self.thresholds),), initializer="zeros") self.false_negatives = self.add_weight("false_negatives", shape=(len(self.thresholds),), initializer="zeros") def update_state(self, y_true, y_pred, sample_weight=None): metrics_utils.update_confusion_matrix_variables( { metrics_utils.ConfusionMatrix.TRUE_POSITIVES: self.true_positives, metrics_utils.ConfusionMatrix.FALSE_POSITIVES: self.false_positives, metrics_utils.ConfusionMatrix.FALSE_NEGATIVES: self.false_negatives, }, y_true, y_pred, thresholds=self.thresholds, top_k=self.top_k, class_id=self.class_id, sample_weight=sample_weight, ) def result(self): precision = tf.math.divide_no_nan(self.true_positives, self.true_positives + self.false_positives) recall = tf.math.divide_no_nan(self.true_positives, self.true_positives + self.false_negatives) result = tf.math.divide_no_nan(2 * (precision * recall), (precision + recall)) return result[0] if len(self.thresholds) == 1 else result def reset_states(self): num_thresholds = len(generic_utils.to_list(self.thresholds)) K.batch_set_value([(v, np.zeros((num_thresholds,))) for v in self.variables]) def get_config(self): config = {"thresholds": self.init_thresholds, "top_k": self.top_k, "class_id": self.class_id} base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) ``` #### File: bert_optimization/models/bert.py ```python import json import tensorflow as tf from . import models_utils from .layer_normalization import LayerNormalization from .transformer import TransformerEncoder class BertConfig: """ Configuration of BertModel vocab_size: Size of Vocab hidden_size: Hidden size used in embedding, MHA, pooling layers num_hidden_layers: # of transformer encoder layer num_attention_heads: # of attention heads in MHA intermediate_size: Intermediate size used in MHA hidden_act: Activation function used in transformer encoder layer hidden_dropout_prob: Dropout prob attention_probs_dropout_prob: Attention Dropout prob max_position_embeddings: Max Position Embeddings type_vocab_size: Vocab Type (2 => Sentence A/B) output_hidden_states: A flag for BertModel to return hidden_states output_embedding: A flag for BertModel to return embedding """ def __init__( self, vocab_size: int, hidden_size: int = 768, num_hidden_layers: int = 12, num_attention_heads: int = 12, intermediate_size: int = 3072, hidden_act: str = "gelu", hidden_dropout_prob: float = 0.1, attention_probs_dropout_prob: float = 0.1, max_position_embeddings: int = 512, type_vocab_size: int = 2, output_hidden_states: bool = True, output_embedding: bool = True, use_splitted: bool = False, aware_quantization: bool = False, **kwargs, # unused ): self.attention_probs_dropout_prob = attention_probs_dropout_prob self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.max_position_embeddings = max_position_embeddings self.num_attention_heads = num_attention_heads self.num_hidden_layers = num_hidden_layers self.type_vocab_size = type_vocab_size self.vocab_size = vocab_size self.output_hidden_states = output_hidden_states self.output_embedding = output_embedding self.use_splitted = use_splitted self.aware_quantization = aware_quantization @staticmethod def from_json(path: str, **kwargs) -> "BertConfig": with open(path, "r") as f: file_content = json.load(f) return BertConfig(**file_content, **kwargs) class BertModel(tf.keras.layers.Layer): """ Base Bert Model: https://arxiv.org/abs/1810.04805 Input Shape: input_ids: (Batch Size, Sequence Length) token_type_ids:: (Batch Size, Sequence Length) attention_mask:: (Batch Size, Sequence Length) head_mask: (Batch Size, Num Layers, Num Heads) -> https://arxiv.org/abs/1905.10650 Output Shape: sequence_output: (Batch Size, Sequence Length, Hidden Size) pooled_output: (Batch Size, Hidden Size) embeddings: (Batch Size, Sequence Length, Hidden Size) hidden_states: (Num Layers, Batch Size, Sequence Length, Hidden Size) hidden_states is a "num layers"-length list of tensor that has shape of (Batch Size, Sequence Length, Hidden Size) """ def __init__(self, config: BertConfig): super(BertModel, self).__init__() embedding_component = models_utils.get_embedding(config.aware_quantization) self.token_embeddings = embedding_component(config.vocab_size, config.hidden_size) self.token_type_embeddings = embedding_component(config.type_vocab_size, config.hidden_size) self.position_embeddings = embedding_component(config.max_position_embeddings, config.hidden_size) self.embedding_layer_norm = LayerNormalization() self.embedding_dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) self.encoders = [ TransformerEncoder( config.num_attention_heads, config.hidden_size, config.intermediate_size, config.attention_probs_dropout_prob, config.hidden_act, config.aware_quantization, config.use_splitted, ) for _ in range(config.num_hidden_layers) ] self.pooler_layer = tf.keras.layers.Dense(config.hidden_size) self.output_hidden_states = config.output_hidden_states self.output_embedding = config.output_embedding self.num_layers = config.num_hidden_layers def call(self, input_tensors, head_mask=None): assert len(input_tensors) == 3 input_ids, token_type_ids, attention_mask = input_tensors seq_length = tf.shape(input_ids)[1] position_ids = tf.range(tf.constant(0), seq_length, tf.constant(1), dtype=tf.dtypes.int32) words_embeddings = self.token_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) position_embeddings = self.position_embeddings(position_ids) embeddings = words_embeddings + position_embeddings + token_type_embeddings embeddings = self.embedding_layer_norm(embeddings) embeddings = self.embedding_dropout(embeddings) hidden_state = embeddings hidden_states = tf.TensorArray(tf.float32, size=self.num_layers) for index in range(self.num_layers): head_mask_by_encoder = None if head_mask is None else head_mask[:, index, :] hidden_state = self.encoders[index](hidden_state, mask=attention_mask, head_mask=head_mask_by_encoder) if self.output_hidden_states: hidden_states.write(index, hidden_state) sequence_output = hidden_state pooled_output = tf.nn.tanh(self.pooler_layer(sequence_output[:, 0])) outputs = (sequence_output, pooled_output) if self.output_embedding: outputs += (embeddings,) if self.output_hidden_states: outputs += (hidden_states.stack(),) return outputs ``` #### File: bert_optimization/models/models_utils.py ```python import tensorflow as tf from .quantized_model import QuantizedDense, QuantizedEmbedding def get_dense(aware_quantization: bool): if aware_quantization: return QuantizedDense return tf.keras.layers.Dense def get_embedding(aware_quantization: bool): if aware_quantization: return QuantizedEmbedding return tf.keras.layers.Embedding ``` #### File: jeongukjae/bert-optimization/quantization.py ```python import pathlib import tensorflow as tf from bert_optimization.models.heads import BertForClassificationToQuant from bert_optimization.models import BertConfig @tf.function def build_bert_model_graph(bert_model: BertForClassificationToQuant, bert_config: BertConfig): token_ids = tf.keras.Input((48,), dtype=tf.int32) token_type_ids = tf.keras.Input((48,), dtype=tf.int32) attention_mask = tf.keras.Input((48,), dtype=tf.float32) bert_model([token_ids, token_type_ids, attention_mask]) bert_config = BertConfig.from_json("./tmp/bert_config.json") model = tf.keras.models.Sequential([BertForClassificationToQuant(bert_config, 2)]) build_bert_model_graph(model, bert_config) converter = tf.lite.TFLiteConverter.from_keras_model(model) converter.optimizations = [tf.lite.Optimize.DEFAULT] tflite_model_quant = converter.convert() tflite_models_dir = pathlib.Path("./tmp/") tflite_models_dir.mkdir(exist_ok=True, parents=True) tflite_model_file = tflite_models_dir / "bert_model.tflite" print(tflite_model_file.write_bytes(tflite_model_quant)) print(tflite_model_file) ``` #### File: tests/models/test_bert.py ```python import pytest import tensorflow as tf from bert_optimization.models.bert import BertConfig, BertModel @pytest.fixture def bert_config(): # use smaller dimension for faster unit tests return BertConfig(100, intermediate_size=128) @pytest.mark.parametrize("batch_size, seq_len", [pytest.param(1, 3), pytest.param(3, 12)]) def test_shapes_of_bert_model_outputs(bert_config: BertConfig, batch_size: int, seq_len: int): """Check shapes of BERT model outputs""" # force to set output embedding and hidden states to True bert_config.output_embedding = True bert_config.output_hidden_states = True bert = BertModel(bert_config) input_ids = tf.random.uniform((batch_size, seq_len), maxval=bert_config.vocab_size) token_type_ids = tf.random.uniform((batch_size, seq_len), maxval=bert_config.type_vocab_size) attention_mask = tf.cast(tf.random.uniform((batch_size, seq_len), maxval=2), tf.dtypes.float32) outputs = bert([input_ids, token_type_ids, attention_mask]) assert len(outputs) == 4 assert outputs[0].shape == (batch_size, seq_len, bert_config.hidden_size) # sequence output assert outputs[1].shape == (batch_size, bert_config.hidden_size) # pooled output assert outputs[2].shape == (batch_size, seq_len, bert_config.hidden_size) # embeddings assert all(hidn.shape == (batch_size, seq_len, bert_config.hidden_size) for hidn in outputs[3]) # hidden states ``` #### File: bert-optimization/tests/test_metrics.py ```python import tensorflow as tf from bert_optimization.metrics import F1Score def test_f1_correctness(): f1_score = F1Score() # zero division case f1_score.update_state(tf.constant([0, 0, 0, 0, 0, 0]), tf.constant([0, 0, 0, 0, 0, 0])) assert f1_score.result().shape == tuple() assert f1_score.result() == 0.0 f1_score.reset_states() f1_score.update_state(tf.constant([1, 0, 0, 1, 0, 0]), tf.constant([0, 1, 0, 1, 1, 0])) assert f1_score.result().shape == tuple() assert f1_score.result() == 0.4 f1_score.update_state(tf.constant([0, 0, 0, 0, 0, 0]), tf.constant([0, 0, 0, 0, 0, 0])) assert f1_score.result().shape == tuple() assert f1_score.result() != 0.0 ``` #### File: bert-optimization/tools/masking_each_heads.py ```python import logging import os import sys import tensorflow as tf from bert_optimization import glue_processor, models, tokenizer, utils from bert_optimization.glue_processor import convert_sentence_pair, convert_single_sentence PROCESSOR_BY_TASK = { "cola": glue_processor.CoLAProcessor, "mrpc": glue_processor.MRPCProcessor, "mnli": glue_processor.MNLIProcessor, "sst-2": glue_processor.SST2Processor, "rte": glue_processor.RTEProcessor, "qqp": glue_processor.QQPProcessor, } def get_total_batches(dataset_size, batch_size): return dataset_size // batch_size + bool(dataset_size % batch_size) if __name__ == "__main__": logger = logging.getLogger() logger.setLevel(logging.DEBUG) handler = logging.StreamHandler(sys.stdout) handler.setFormatter(logging.Formatter("%(asctime)s: [%(levelname)s] %(message)s")) logger.addHandler(handler) parser = utils.get_default_bert_argument_parser() args = parser.parse_args() logger.info("Inference Parameters") for key, val in vars(args).items(): logger.info(f" - {key}: {val}") assert args.task.lower() in PROCESSOR_BY_TASK, f"Supported Tasks: {', '.join(PROCESSOR_BY_TASK.keys())}" assert os.path.exists(args.output), f"Output path {args.output} does not exists" assert os.path.exists(args.model + ".index"), f"Model path {args.model} does not exists" assert os.path.exists(args.config), f"Config path {args.config} does not exists" assert os.path.exists(args.dataset), f"Dataset path {args.dataset} does not exists" assert os.path.exists(args.vocab), f"Vocab path {args.vocab} does not exists" vocab = tokenizer.Vocab(args.vocab) tokenizer = tokenizer.SubWordTokenizer(vocab, args.do_lower_case) logger.info("Processing Data") dataset_processor = PROCESSOR_BY_TASK[args.task.lower()]() label_to_index = dataset_processor.get_label_to_index() dev_dataset = dataset_processor.get_dev(args.dataset) if len(dev_dataset) == 2: # single sentence dataset dev_dataset = convert_single_sentence(dev_dataset, label_to_index, tokenizer, args.max_sequence_length) else: # sentence pair dataset dev_dataset = convert_sentence_pair(dev_dataset, label_to_index, tokenizer, args.max_sequence_length) logger.info(f"Dev Dataset Size: {len(dev_dataset[0])}") logger.info(f"Dev Batches: {get_total_batches(len(dev_dataset[0]), args.eval_batch_size)}") dev_dataset = tf.data.Dataset.from_tensor_slices(dev_dataset).batch(args.eval_batch_size) logger.info("Initialize model") bert_config = models.BertConfig.from_json(args.config, use_splitted=True) logger.info("Model Config") for key, val in vars(bert_config).items(): logger.info(f" - {key}: {val}") model = models.BertForClassification(bert_config, len(label_to_index)) assert bert_config.vocab_size == len(vocab), "Actual vocab size and that in bert config are different." logger.info("Load Model Weights") model.load_weights(args.model) logger.info("Initialize Loss function") criterion = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) eval_loss = tf.keras.metrics.Mean(name="eval_loss") @tf.function def eval_step(input_ids, token_type_ids, attention_mask, targets, head_mask): preds, _ = model([input_ids, token_type_ids, attention_mask], head_mask=head_mask) loss = criterion(targets, preds) eval_loss.update_state(loss) dataset_processor.update_state(targets, preds, validation=True) def eval_dev(layer: int, head: int): eval_loss.reset_states() dataset_processor.reset_states(validation=True) head_mask = tf.constant( [ [ [ head_index != head or layer_index != layer for head_index in range(bert_config.num_attention_heads) ] for layer_index in range(bert_config.num_hidden_layers) ] ], dtype=tf.float32, ) for targets, input_ids, token_type_ids, attention_mask in dev_dataset: eval_step(input_ids, token_type_ids, attention_mask, targets, head_mask) logger.info( f"[Eval] " f"masking layer {layer} head {head}, " f"loss: {eval_loss.result():.4f}, " + ", ".join([f"{key}: {val}" for key, val in dataset_processor.get_metrics(validation=True).items()]) ) logger.info("Start Inference") eval_dev(-1, -1) for layer in range(bert_config.num_hidden_layers): for head in range(bert_config.num_attention_heads): eval_dev(layer, head) ``` #### File: bert-optimization/tools/run_early_exit.py ```python import logging import os import sys import tensorflow as tf import tensorflow_addons as tfa from bert_optimization import glue_processor, models, tokenizer, utils from bert_optimization.glue_processor import convert_sentence_pair, convert_single_sentence from bert_optimization.optimizer.scheduler import BertScheduler PROCESSOR_BY_TASK = { "cola": glue_processor.CoLAProcessor, "mrpc": glue_processor.MRPCProcessor, "mnli": glue_processor.MNLIProcessor, "sst-2": glue_processor.SST2Processor, "rte": glue_processor.RTEProcessor, "qqp": glue_processor.QQPProcessor, } def get_total_batches(dataset_size, batch_size): return dataset_size // batch_size + bool(dataset_size % batch_size) @tf.function def build_bert_model_graph(bert_model: models.EarlyExitBertModelForClassification, bert_config: models.BertConfig): token_ids = tf.keras.Input((None,), dtype=tf.int32) token_type_ids = tf.keras.Input((None,), dtype=tf.int32) attention_mask = tf.keras.Input((None,), dtype=tf.float32) bert_model([token_ids, token_type_ids, attention_mask], speed=0.7, training=True) if __name__ == "__main__": logger = logging.getLogger() logger.setLevel(logging.DEBUG) handler = logging.StreamHandler(sys.stdout) handler.setFormatter(logging.Formatter("%(asctime)s: [%(levelname)s] %(message)s")) logger.addHandler(handler) parser = utils.get_default_bert_argument_parser() args = parser.parse_args() logger.info("Training Parameters") for key, val in vars(args).items(): logger.info(f" - {key}: {val}") assert args.task.lower() in PROCESSOR_BY_TASK, f"Supported Tasks: {', '.join(PROCESSOR_BY_TASK.keys())}" assert os.path.exists(args.output), f"Output path {args.output} does not exists" assert os.path.exists(args.model + ".index"), f"Model path {args.model} does not exists" assert os.path.exists(args.config), f"Config path {args.config} does not exists" assert os.path.exists(args.dataset), f"Dataset path {args.dataset} does not exists" assert os.path.exists(args.vocab), f"Vocab path {args.vocab} does not exists" vocab = tokenizer.Vocab(args.vocab) tokenizer = tokenizer.SubWordTokenizer(vocab, args.do_lower_case) logger.info("Processing Data") dataset_processor = PROCESSOR_BY_TASK[args.task.lower()]() label_to_index = dataset_processor.get_label_to_index() train_dataset = dataset_processor.get_train(args.dataset) dev_dataset = dataset_processor.get_dev(args.dataset) if len(train_dataset) == 2: # single sentence dataset train_dataset = convert_single_sentence(train_dataset, label_to_index, tokenizer, args.max_sequence_length) dev_dataset = convert_single_sentence(dev_dataset, label_to_index, tokenizer, args.max_sequence_length) else: # sentence pair dataset train_dataset = convert_sentence_pair(train_dataset, label_to_index, tokenizer, args.max_sequence_length) dev_dataset = convert_sentence_pair(dev_dataset, label_to_index, tokenizer, args.max_sequence_length) logger.info(f"Train Dataset Size: {len(train_dataset[0])}") logger.info(f"Dev Dataset Size: {len(dev_dataset[0])}") train_batch_size = get_total_batches(len(train_dataset[0]), args.train_batch_size) logger.info(f"Train Batches: {train_batch_size}") logger.info(f"Dev Batches: {get_total_batches(len(dev_dataset[0]), args.eval_batch_size)}") train_dataset = tf.data.Dataset.from_tensor_slices(train_dataset).shuffle(10000).batch(args.train_batch_size) dev_dataset = tf.data.Dataset.from_tensor_slices(dev_dataset).batch(args.eval_batch_size) logger.info("Initialize model") bert_config = models.BertConfig.from_json(args.config, aware_quantization=args.aware_quantization) logger.info("Model Config") for key, val in vars(bert_config).items(): logger.info(f" - {key}: {val}") model = models.EarlyExitBertModelForClassification(bert_config, len(label_to_index)) assert bert_config.vocab_size == len(vocab), "Actual vocab size and that in bert config are different." logger.info("Load Model Weights") build_bert_model_graph(model, bert_config) utils.load_bert_weights(args.model, model, bert_config.use_splitted) logger.info("Initialize Optimizer and Loss function") global_step = tf.Variable(0.0, trainable=False) scheduler = BertScheduler(args.warmup_ratio, train_batch_size * args.epoch) learning_rate = lambda: args.learning_rate * scheduler(global_step) weight_decay = lambda: args.weight_decay * args.learning_rate * scheduler(global_step) optimizer = tfa.optimizers.AdamW(learning_rate=learning_rate, weight_decay=weight_decay, epsilon=1e-06) excludes = ["layer_norm", "LayerNorm", "bias"] decay_var_list = [v for v in model.trainable_variables if all(term not in v.name for term in excludes)] criterion = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False) criterion_self = tf.keras.losses.CategoricalCrossentropy(from_logits=False) train_loss = tf.keras.metrics.Mean(name="train_loss") eval_loss = tf.keras.metrics.Mean(name="eval_loss") best_model_score = 0.0 @tf.function def train_step(input_ids, token_type_ids, attention_mask, targets): with tf.GradientTape() as tape: preds = model([input_ids, token_type_ids, attention_mask], training=True) loss = sum([((len(preds) - index) ** 0.5) * criterion(targets, pred) for index, pred in enumerate(preds)]) gradients = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(gradients, model.trainable_variables), decay_var_list=decay_var_list) train_loss.update_state(loss) dataset_processor.update_state(targets, preds[-1]) @tf.function def eval_step(input_ids, token_type_ids, attention_mask, targets): preds = model([input_ids, token_type_ids, attention_mask], speed=0.0) loss = criterion(targets, preds[1]) eval_loss.update_state(loss) dataset_processor.update_state(targets, preds[1], validation=True) def eval_dev(best_model_score): eval_loss.reset_states() dataset_processor.reset_states(validation=True) for targets, input_ids, token_type_ids, attention_mask in dev_dataset: eval_step(input_ids, token_type_ids, attention_mask, targets) logger.info( f"[Eval] Epoch {epoch_index + 1} " f"loss: {eval_loss.result()}, " + ", ".join([f"{key}: {val}" for key, val in dataset_processor.get_metrics(validation=True).items()]) ) if dataset_processor.get_key() > best_model_score: logger.info("Reached Best Score.") model_path = f"{args.output}/checkpoints/model-{args.task}-{dataset_processor.get_hash()}-epoch{epoch_index}-step{int(global_step.numpy()) + 1}" model.save_weights(model_path) logger.info(f"Saved model in {model_path}") best_model_score = dataset_processor.get_key() return best_model_score logger.info("Start Training") for epoch_index in range(args.epoch): for step, (targets, input_ids, token_type_ids, attention_mask) in enumerate(train_dataset): train_step(input_ids, token_type_ids, attention_mask, targets) if (step + 1) % args.log_interval == 0: logger.info( f"Epoch {epoch_index + 1} " f"step: {step + 1}, " f"loss: {train_loss.result()}, " + ", ".join([f"{key}: {val}" for key, val in dataset_processor.get_metrics().items()]) ) train_loss.reset_states() dataset_processor.reset_states() if (step + 1) % args.val_interval == 0: best_model_score = eval_dev(best_model_score) global_step.assign_add(1.0) logger.info( f"Epoch {epoch_index + 1} " f"loss: {train_loss.result()}, " + ", ".join([f"{key}: {val}" for key, val in dataset_processor.get_metrics().items()]) ) train_loss.reset_states() dataset_processor.reset_states() best_model_score = eval_dev(best_model_score) ```
{ "source": "jeongukjae/branching-entropy-with-pos-tagger", "score": 2 }
#### File: jeongukjae/branching-entropy-with-pos-tagger/extract.py ```python import csv import glob import math import os from collections import defaultdict from multiprocessing import Pool from typing import Generator, List, Tuple import nori from absl import app, flags, logging from nori import Dictionary, NoriTokenizer from tqdm import tqdm FLAGS = flags.FLAGS flags.DEFINE_string("corpus", "corpus", help="corpus directory") flags.DEFINE_string("left_output", "entropy-table-left.csv", help="left output") flags.DEFINE_string("right_output", "entropy-table-right.csv", help="right output") flags.DEFINE_integer("max_rows", 1000, "max rows") flags.DEFINE_integer("n_files", 1, "n_files") SUFFIX_INDICATOR = "##" dictionary_path = os.path.join( os.path.dirname(nori.__file__), "dictionary", "latest-dictionary.nori", ) logging.debug(f"dictionary path: {dictionary_path}") dictionary = Dictionary() dictionary.load_prebuilt_dictionary(dictionary_path) tokenizer = NoriTokenizer(dictionary) def main(argv): files = glob.glob(os.path.join(FLAGS.corpus, "*"))[: FLAGS.n_files] logging.info(f"Found {len(files)} files, files[:3]: {files[:3]}") left_side_freq = defaultdict(lambda: defaultdict(int)) right_side_freq = defaultdict(lambda: defaultdict(int)) with Pool() as pool: for filename in tqdm(files, position=0, desc="file"): for left_results, right_results in pool.imap_unordered( _tokenize_and_add_space_info, tqdm(_read_file(filename), position=1, desc="line"), chunksize=1_000, ): for key, token in left_results: left_side_freq[key][token] += 1 for key, token in right_results: right_side_freq[key][token] += 1 def _dump_entropy(freq_dictionary, filename): rows = [] for term, occurances in tqdm( freq_dictionary.items(), desc="calculate entropy...", ): n_total = sum(v for _, v in occurances.items()) if n_total == 1 or len(occurances) == 1: continue if " " not in term: continue entropy = 0.0 for _, v in occurances.items(): freq = v / float(n_total) entropy -= freq * math.log(freq) rows.append({"term": term, "entropy": entropy}) rows = sorted(rows, key=lambda x: x["entropy"], reverse=True) with open(filename, "w") as f: writer = csv.DictWriter(f, fieldnames=["term", "entropy"]) writer.writeheader() writer.writerows(rows[: FLAGS.max_rows]) _dump_entropy(left_side_freq, FLAGS.left_output) _dump_entropy(right_side_freq, FLAGS.right_output) def _read_file(filename: str) -> Generator[str, None, None]: """Read file content of given filename This function will skip empty line Returns: Generator object that yield each line """ with open(filename) as f: for line in f: line = line.strip() if not line: continue yield line def _tokenize_and_add_space_info( line: str, ) -> Tuple[List[List[Tuple[str, str]]], List[List[Tuple[str, str]]]]: """tokenize line and return tokens like BertTokenizer Example: word branching (original line) -> wo rd branch ing (tokenization output) -> wo ##rd branch ##ing (output of this function) """ tokens = tokenizer.tokenize(line).tokens[1:-1] # remove BOS/EOS next_offset = -1 results = [] for token in tokens: if next_offset != token.offset: results.append([(token.surface, token)]) else: results[-1].append((SUFFIX_INDICATOR + token.surface, token)) next_offset = token.offset + token.length left_results = [] right_results = [] for tokens in results: num_tokens = len(tokens) if num_tokens == 1: continue for i in range(1, num_tokens): if any(p.startswith("S") for token in tokens[:i] for p in token[1].postag): continue block_list = {"E", "J"} if any(p in block_list for p in tokens[i - 1][1].postag): continue key = " ".join(t[0] for t in tokens[:i]) left_results.append((key, tokens[i][0])) for i in range(1, num_tokens): if any(p.startswith("S") for token in tokens[-i:] for p in token[1].postag): continue key = " ".join(t[0] for t in tokens[-i:]) right_results.append((key, tokens[-i - 1][0])) return left_results, right_results if __name__ == "__main__": app.run(main) ```
{ "source": "jeongukjae/flask-compressed", "score": 3 }
#### File: flask-compressed/flask_compressed/compression.py ```python import gzip import zlib class Compression: _encoding_name = '' @staticmethod def compress(content, **kwargs): raise NotImplementedError @staticmethod def decompress(compressed, **kwargs): raise NotImplementedError class Gzip(Compression): _encoding_name = 'gzip' @staticmethod def compress(content, level=5): if not isinstance(content, bytes): raise ValueError("content must be bytes literal") return gzip.compress(content) @staticmethod def decompress(compressed): if not isinstance(compressed, bytes): raise ValueError("content must be bytes literal") return gzip.decompress(compressed) class Deflate(Compression): _encoding_name = 'deflate' @staticmethod def compress(content): if not isinstance(content, bytes): raise ValueError("content must be bytes literal") return zlib.compress(content) @staticmethod def decompress(compressed): if not isinstance(compressed, bytes): raise ValueError("content must be bytes literal") return zlib.decompress(compressed) ``` #### File: flask-compressed/tests/test_app.py ```python import gzip import zlib import json import pytest from flask import Flask, g from flask_compressed import FlaskCompressed, compress_as_gzip def test_flask_compressed(): flask_app = Flask(__name__) FlaskCompressed(flask_app) # attached to flask app's hooks assert len(flask_app.before_request_funcs) == 1 def test_send_gzip(): flask_app = Flask(__name__) FlaskCompressed(flask_app) flask_app.config['TESTING'] = True flask_app.route('/', methods=['POST'])(lambda: g.body) with open('./tests/data/test1.json', 'r') as f: original_data = f.read().encode('utf8') compressed_data = gzip.compress(original_data) with flask_app.test_client() as client: response = client.post( '/', data=compressed_data, headers=dict({'Content-Encoding': 'gzip'})) assert response.data == original_data def test_send_zlib(): flask_app = Flask(__name__) FlaskCompressed(flask_app) flask_app.config['TESTING'] = True flask_app.route('/', methods=['POST'])(lambda: g.body) with open('./tests/data/test1.json', 'r') as f: original_data = f.read().encode('utf8') compressed_data = zlib.compress(original_data) with flask_app.test_client() as client: response = client.post( '/', data=compressed_data, headers=dict({'Content-Encoding': 'deflate'})) assert response.data == original_data def test_set_unsupported_encodings(): flask_app = Flask(__name__) with pytest.raises(ValueError): FlaskCompressed(flask_app, encodings=('some-encoding')) def test_send_unsupported_encodings(): flask_app = Flask(__name__) FlaskCompressed(flask_app) @flask_app.route('/') def echo(): return g.body with flask_app.test_client() as client: rv = client.post( '/', headers={'Content-Encoding': 'gzip, unsupported, deflate'}, data=b'some-data') assert rv.status_code == 500 def test_send_multiple(): flask_app = Flask(__name__) FlaskCompressed(flask_app) flask_app.config['TESTING'] = True flask_app.route('/', methods=['POST'])(lambda: g.body) with open('./tests/data/test1.json', 'r') as f: original_data = f.read().encode('utf8') compressed_data = zlib.compress(original_data) compressed_data = gzip.compress(compressed_data) with flask_app.test_client() as client: response = client.post( '/', data=compressed_data, headers=dict({'Content-Encoding': 'deflate, gzip'})) assert response.data == original_data def test_response(): flask_app = Flask(__name__) FlaskCompressed(flask_app) messages = json.dumps({'message': 'hello'}) @flask_app.route('/') @compress_as_gzip def index(): return messages, 200 with flask_app.test_client() as client: response = client.get('/') assert messages.encode('utf8') == gzip.decompress(response.get_data()) ```
{ "source": "jeongukjae/kcbert-tf", "score": 2 }
#### File: jeongukjae/kcbert-tf/convert_base.py ```python import os import numpy as np import tensorflow as tf import tensorflow_text as text import torch from transformers import AutoTokenizer, BertModel as TorchBertModel from model import BertConfig, BertModel tokenizer = AutoTokenizer.from_pretrained("beomi/kcbert-base") torch_model = TorchBertModel.from_pretrained("beomi/kcbert-base").eval() if not os.path.isdir("kcbert-base"): os.mkdir("kcbert-base") tokenizer.save_vocabulary("kcbert-base") config = BertConfig(vocab_size=30000) model = BertModel(config) model( { "input_word_ids": tf.keras.Input(shape=[None], dtype=tf.int64), "input_mask": tf.keras.Input(shape=[None], dtype=tf.int64), "input_type_ids": tf.keras.Input(shape=[None], dtype=tf.int64), } ) sd = torch_model.state_dict() model.token_embeddings.set_weights([sd["embeddings.word_embeddings.weight"].numpy()]) model.position_embeddings.set_weights([sd["embeddings.position_embeddings.weight"].numpy()]) model.token_type_embeddings.set_weights([sd["embeddings.token_type_embeddings.weight"].numpy()]) model.embedding_layer_norm.set_weights([sd["embeddings.LayerNorm.weight"], sd["embeddings.LayerNorm.bias"]]) for i in range(config.num_hidden_layers): qkv_weight = np.concatenate([ sd[f"encoder.layer.{i}.attention.self.query.weight"].T, sd[f"encoder.layer.{i}.attention.self.key.weight"].T, sd[f"encoder.layer.{i}.attention.self.value.weight"].T, ], axis=1) qkv_bias = np.concatenate([ sd[f"encoder.layer.{i}.attention.self.query.bias"], sd[f"encoder.layer.{i}.attention.self.key.bias"], sd[f"encoder.layer.{i}.attention.self.value.bias"], ], axis=0) model.encoders[i].qkv.set_weights([qkv_weight, qkv_bias]) model.encoders[i].attention_dense.set_weights([ sd[f"encoder.layer.{i}.attention.output.dense.weight"].T, sd[f"encoder.layer.{i}.attention.output.dense.bias"], ]) model.encoders[i].attention_layer_norm.set_weights([ sd[f'encoder.layer.{i}.attention.output.LayerNorm.weight'], sd[f'encoder.layer.{i}.attention.output.LayerNorm.bias'], ]) model.encoders[i].intermediate_dense.set_weights([ sd[f'encoder.layer.{i}.intermediate.dense.weight'].T, sd[f'encoder.layer.{i}.intermediate.dense.bias'], ]) model.encoders[i].intermediate_dense2.set_weights([ sd[f'encoder.layer.{i}.output.dense.weight'].T, sd[f'encoder.layer.{i}.output.dense.bias'], ]) model.encoders[i].intermediate_layer_norm.set_weights([ sd[f'encoder.layer.{i}.output.LayerNorm.weight'], sd[f'encoder.layer.{i}.output.LayerNorm.bias'], ]) model.pooler_layer.set_weights([ sd['pooler.dense.weight'].T, sd['pooler.dense.bias'], ]) tf.saved_model.save(model, 'kcbert-base/model/0') to_export = tf.Module() tokenizer = text.BertTokenizer('./kcbert-base/vocab.txt') cls_id = 2 sep_id = 3 @tf.function(input_signature=[tf.TensorSpec([None], tf.string), tf.TensorSpec([], tf.int32)]) def call(input_tensor, seq_length): batch_size = tf.shape(input_tensor)[0] def _parse_single_sentence(x): return tf.concat([[cls_id], x[: seq_length - 2], [sep_id]], axis=0) tokenized = tokenizer.tokenize(input_tensor) tokenized = tokenized.merge_dims(1, 2) input_word_ids = tf.map_fn( _parse_single_sentence, tokenized, fn_output_signature=tf.RaggedTensorSpec([None], tf.int64), ) input_mask = tf.ones_like(input_word_ids, dtype=tf.int64) input_type_ids = tf.zeros_like(input_word_ids, dtype=tf.int64) return { "input_word_ids": input_word_ids.to_tensor(shape=[batch_size, seq_length]), "input_mask": input_mask.to_tensor(shape=[batch_size, seq_length]), "input_type_ids": input_type_ids.to_tensor(shape=[batch_size, seq_length]), } @tf.function(input_signature=[[tf.TensorSpec([None], tf.string), tf.TensorSpec([None], tf.string)], tf.TensorSpec([], tf.int32)]) def call_2(input_tensor, seq_length): segment_a = input_tensor[0] segment_b = input_tensor[1] batch_size = tf.shape(segment_a)[0] segment_a = tokenizer.tokenize(segment_a) segment_b = tokenizer.tokenize(segment_b) segment_a = segment_a.merge_dims(1, 2) segment_b = segment_b.merge_dims(1, 2) def _parse_single_sentence(x): a = x[0] b = x[1] a_len = tf.minimum(tf.size(a), seq_length - 3 - tf.size(b)) input_word_ids = tf.concat( [[cls_id], a[:a_len], [sep_id], b, [sep_id]], axis=0 ) input_mask = tf.ones_like(input_word_ids, dtype=tf.int64) input_type_ids = tf.ragged.row_splits_to_segment_ids( [0, a_len + 2, tf.size(input_word_ids)] ) return input_word_ids, input_mask, input_type_ids input_word_ids, input_mask, input_type_ids = tf.map_fn( _parse_single_sentence, [segment_a, segment_b], fn_output_signature=( tf.RaggedTensorSpec([None], tf.int64), tf.RaggedTensorSpec([None], tf.int64), tf.RaggedTensorSpec([None], tf.int64), ), ) return { "input_word_ids": input_word_ids.to_tensor(shape=[batch_size, seq_length]), "input_mask": input_mask.to_tensor(shape=[batch_size, seq_length]), "input_type_ids": input_type_ids.to_tensor(shape=[batch_size, seq_length]), } to_export.__call__ = call to_export.call_2 = tf.Module() to_export.call_2.__call__ = call_2 to_export.call_2.tokenizer = tokenizer to_export.call_2.sep_id = sep_id to_export.call_2.cls_id = cls_id tf.saved_model.save(to_export, 'kcbert-base/preprocess/0') ```
{ "source": "jeongukjae/korean-spacing-model", "score": 2 }
#### File: jeongukjae/korean-spacing-model/benchmark.py ```python import json import time from argparse import ArgumentParser import tensorflow as tf from train import SpacingModel parser = ArgumentParser() parser.add_argument("--training-config", type=str, required=True) parser.add_argument("--batch-size", type=int, required=True) parser.add_argument("--sequence-length", type=int, required=True) args = parser.parse_args() with open(args.training_config) as f: config = json.load(f) model = SpacingModel( config["vocab_size"], config["hidden_size"], conv_activation=config["conv_activation"], dense_activation=config["dense_activation"], conv_kernel_and_filter_sizes=config["conv_kernel_and_filter_sizes"], dropout_rate=config["dropout_rate"], ) model(tf.keras.Input([None], dtype=tf.int32)) @tf.function def run(batch): return model(batch) print("Warmup stage (10 iteration)") for _ in range(10): run(tf.random.uniform((args.batch_size, args.sequence_length), maxval=config["vocab_size"], dtype=tf.int32)) print("Benchmark model speed with random input (1000 iteration)") s = time.time() for _ in range(1000): run(tf.random.uniform((args.batch_size, args.sequence_length), maxval=config["vocab_size"], dtype=tf.int32)) elapsed = time.time() - s print("Elapsed:", elapsed, "s") print("Per batch:", elapsed / 1000, "s") print("Per sentence:", elapsed / 1000 / args.batch_size, "s") ```
{ "source": "jeongukjae/KR-BERT-SimCSE", "score": 2 }
#### File: jeongukjae/KR-BERT-SimCSE/evaluate_korsts.py ```python import tensorflow as tf import tensorflow_datasets as tfds import tensorflow_text as text import tfds_korean.korsts # noqa from absl import app, flags, logging from scipy import stats from model import BertConfig, BertModel, CosineSimilarity from train_unsupervised import get_single_bert_input FLAGS = flags.FLAGS def def_flags(): flags.DEFINE_string("config", "./configs/char_bert_base.json", help="bert config") flags.DEFINE_string("weight", "", help="bert weight") flags.DEFINE_string("vocab_path", "vocabs/vocab_char_16424.txt", help="Vocab path") flags.DEFINE_string("split", "dev", help="split name") flags.DEFINE_integer("batch_size", 64, help="batch size") flags.DEFINE_integer("max_sequence_length", 64, help="max sequence length") def main(argv): tokenizer = text.BertTokenizer(FLAGS.vocab_path, unknown_token="[UNK]") pad_id = tokenizer._wordpiece_tokenizer._vocab_lookup_table.lookup(tf.constant("[PAD]")) cls_id = tokenizer._wordpiece_tokenizer._vocab_lookup_table.lookup(tf.constant("[CLS]")) sep_id = tokenizer._wordpiece_tokenizer._vocab_lookup_table.lookup(tf.constant("[SEP]")) bert_config = BertConfig.from_json(FLAGS.config) bert_model = BertModel(bert_config, name="bert_model") logging.info(f"Load weights from {FLAGS.weight}") bert_model.load_weights(FLAGS.weight) dataset = tfds.load("korsts", split=FLAGS.split).batch(FLAGS.batch_size) bert_input_fn = get_single_bert_input( tokenizer=tokenizer, pad_id=pad_id, cls_id=cls_id, sep_id=sep_id, max_sequence_length=FLAGS.max_sequence_length, ) @tf.function def calculate_similarity(sentence1, sentence2): representation1 = bert_model(bert_input_fn(sentence1))["sequence_output"][:, 0] representation2 = bert_model(bert_input_fn(sentence2))["sequence_output"][:, 0] return CosineSimilarity()([representation1, representation2]) label_score = [] pred_score = [] for item in dataset: label_score.append(item["score"]) pred_score.append(calculate_similarity(item["sentence1"], item["sentence2"])) label_score = tf.concat(label_score, axis=0) pred_score = tf.concat(pred_score, axis=0) print(stats.spearmanr(label_score, pred_score)) if __name__ == "__main__": def_flags() app.run(main) ```
{ "source": "jeongukjae/module-tracker.py", "score": 3 }
#### File: module-tracker.py/module_tracker/analyzer.py ```python import ast from typing import List, Type, Union, cast ImportType = Type[Union[ast.Import, ast.ImportFrom]] def parse_file(file_name: str) -> List[str]: with open(file_name) as f: return parse_file_content(f.read()) def parse_file_content(file_content: str) -> List[str]: parsed_file = ast.parse(file_content) return [ import_name for node in ast.walk(parsed_file) if _is_import_statement(node) for import_name in _get_imported_modules(node) ] def _is_import_statement(node: ast.AST) -> bool: return isinstance(node, (ast.Import, ast.ImportFrom)) def _get_imported_modules(node: ast.AST): import_statement = cast(ImportType, node) if isinstance(import_statement, ast.Import): return _get_modules_from_import_statement(import_statement) elif isinstance(import_statement, ast.ImportFrom): return _get_modules_from_import_from_statement(import_statement) return [] def _get_modules_from_import_statement(import_statement): return [_normalized_name(alias.name) for alias in import_statement.names] def _get_modules_from_import_from_statement(import_from_statement): return [_normalized_name(import_from_statement.module)] if import_from_statement.level == 0 else [] def _normalized_name(import_name: str) -> str: return import_name.split(".")[0] ``` #### File: module-tracker.py/tests/test_analyzer.py ```python import pytest from module_tracker.analyzer import parse_file_content @pytest.mark.parametrize( "file_content,result", [ pytest.param("import ast", ["ast"]), pytest.param("from ast import AST", ["ast"]), pytest.param("import ast as a", ["ast"]), pytest.param("import ast, time, os", ["ast", "time", "os"]), pytest.param("from .some.relative import kk", []), pytest.param("from ...some.relative import kk", []), ], ) def test_analyze_import_statement(file_content, result): assert parse_file_content(file_content) == result ```
{ "source": "jeongukjae/multilingual-bert-hate-speech-detection", "score": 3 }
#### File: jeongukjae/multilingual-bert-hate-speech-detection/training.py ```python import csv import os import copy import random import tensorflow as tf import tensorflow_hub as hub import tensorflow_addons as tfa import tensorflow_text as text from tqdm import tqdm datasets = [filename for filename in os.listdir(".") if filename.endswith(".csv")] dataset_file_to_lang = { "multilingual_fairness_lrec_English.csv": "english", "hate_speech_mlma_en_dataset_with_stop_words.csv": "english", "multilingual_fairness_lrec_Spanish.csv": "spanish", "hate_speech_mlma_fr_dataset.csv": "france", "hate_speech_mlma_ar_dataset.csv": "arabic", "hate_sonar.csv": "english", "multilingual_fairness_lrec_Italian.csv": "itailian", "multilingual_fairness_lrec_Portuguese.csv": "portuguese", "korean_hate_speech.csv": "korean", "korean-malicious-comments.csv": "korean", "hate_speech_mlma_en_dataset.csv": "english", "multilingual_fairness_lrec_Polish.csv": "polish", } print(set(dataset_file_to_lang.values())) dataset_by_lang = { "polish": [], "korean": [], "portuguese": [], "arabic": [], "france": [], "spanish": [], "itailian": [], "english": [], } for filename, lang in dataset_file_to_lang.items(): with open(filename, encoding="utf8") as f: dataset_by_lang[lang].extend( [ (line[0], int(line[1])) if len(line) == 2 else ((line[0], line[1]), int(line[2])) for line in csv.reader(f) ] ) train_dataset_by_lang = { "polish": [], "korean": [], "portuguese": [], "arabic": [], "france": [], "spanish": [], "itailian": [], "english": [], } dev_dataset_by_lang = copy.deepcopy(train_dataset_by_lang) for lang in dataset_by_lang.keys(): random.shuffle(dataset_by_lang[lang]) length = len(dataset_by_lang[lang]) dev_length = int(length * 0.1) dev_dataset_by_lang[lang] = dataset_by_lang[lang][:dev_length] train_dataset_by_lang[lang] = dataset_by_lang[lang][dev_length:] for lang in dataset_by_lang.keys(): print(lang) print(" train: " + str(len(train_dataset_by_lang[lang]))) print(" dev: " + str(len(dev_dataset_by_lang[lang]))) train_set = [data for data_by_lang in train_dataset_by_lang.values() for data in data_by_lang] dev_set = [data for data_by_lang in dev_dataset_by_lang.values() for data in data_by_lang] print(len(train_set), len(dev_set)) preprocessor = hub.load("https://tfhub.dev/tensorflow/bert_multi_cased_preprocess/2") tokenize = hub.KerasLayer(preprocessor.tokenize) bert_pack_inputs = hub.KerasLayer(preprocessor.bert_pack_inputs, arguments=dict(seq_length=128)) single_bert_input = hub.KerasLayer(preprocessor) def take_first(item): return { "input_mask": item["input_mask"][0], "input_type_ids": item["input_type_ids"][0], "input_word_ids": item["input_word_ids"][0], } @tf.function(input_signature=[tf.TensorSpec([], dtype=tf.string), tf.TensorSpec([], dtype=tf.int32)]) def parse_single(item, label): return [take_first(single_bert_input([item])), tf.one_hot(label, 2)] @tf.function( input_signature=[ tf.TensorSpec([], dtype=tf.string), tf.TensorSpec([], dtype=tf.string), tf.TensorSpec([], dtype=tf.int32), ] ) def parse_multi(item1, item2, label): return [take_first(bert_pack_inputs([tokenize([item1]), tokenize([item2])])), tf.one_hot(label, 2)] train_tensor_set = [ (parse_single(item[0], item[1]) if not isinstance(item[0], tuple) else parse_multi(item[0][0], item[0][1], item[1])) for item in tqdm(train_set) ] dev_tensor_set = [ (parse_single(item[0], item[1]) if not isinstance(item[0], tuple) else parse_multi(item[0][0], item[0][1], item[1])) for item in tqdm(dev_set) ] train_set = tf.data.Dataset.zip( ( tf.data.Dataset.from_tensor_slices( { "input_mask": [i[0]["input_mask"] for i in train_tensor_set], "input_type_ids": [i[0]["input_type_ids"] for i in train_tensor_set], "input_word_ids": [i[0]["input_word_ids"] for i in train_tensor_set], } ), tf.data.Dataset.from_tensor_slices([i[1] for i in train_tensor_set]), ) ) print(train_set.element_spec) dev_set = tf.data.Dataset.zip( ( tf.data.Dataset.from_tensor_slices( { "input_mask": [i[0]["input_mask"] for i in dev_tensor_set], "input_type_ids": [i[0]["input_type_ids"] for i in dev_tensor_set], "input_word_ids": [i[0]["input_word_ids"] for i in dev_tensor_set], } ), tf.data.Dataset.from_tensor_slices([i[1] for i in dev_tensor_set]), ) ) print(dev_set.element_spec) encoder = hub.KerasLayer("https://tfhub.dev/tensorflow/bert_multi_cased_L-12_H-768_A-12/3", trainable=True) def create_model(): input_node = { "input_mask": tf.keras.Input([None], dtype=tf.int32), "input_type_ids": tf.keras.Input([None], dtype=tf.int32), "input_word_ids": tf.keras.Input([None], dtype=tf.int32), } encoder_outputs = encoder(input_node)["pooled_output"] output_prob = tf.keras.layers.Dense(2, activation="softmax", name="output")(encoder_outputs) model = tf.keras.Model(input_node, output_prob) return model train_set = train_set.shuffle(len(train_tensor_set), reshuffle_each_iteration=True).batch(32, drop_remainder=True) dev_set = dev_set.batch(64) print("total example: " + str(len(train_tensor_set))) print("step per epoch: " + str(len(train_tensor_set) // 32)) model = create_model() model.compile( optimizer=tf.keras.optimizers.Adamax( learning_rate=tf.keras.optimizers.schedules.ExponentialDecay( initial_learning_rate=5e-5, decay_steps=100, decay_rate=0.97, ) ), loss=tf.keras.losses.CategoricalCrossentropy(), metrics=["acc", tfa.metrics.F1Score(num_classes=2, name="f1")], ) model.fit( train_set, epochs=3, validation_data=dev_set, callbacks=[ tf.keras.callbacks.ModelCheckpoint("./models/weights.epoch-{epoch:02d}", verbose=1), tf.keras.callbacks.TensorBoard("./logs", update_freq="batch"), ], ) ```
{ "source": "jeongukjae/nori-clone", "score": 3 }
#### File: tools/benchmark/nori_clone_runner.py ```python import time from sys import argv, stdin import nori dictionary = nori.Dictionary() dictionary.load_prebuilt_dictionary("./dictionary/latest-dictionary.nori") dictionary.load_user_dictionary("./dictionary/latest-userdict.txt") tokenizer = nori.NoriTokenizer(dictionary) def run_with_iterator(f): for line in f: tokenizer.tokenize(line) if len(argv) != 1: # read all lines from the input file with open(argv[1]) as f: lines = f.readlines()[:int(argv[2])] start_time = time.time() run_with_iterator(lines) else: start_time = time.time() run_with_iterator(stdin) end_time = time.time() time_diff = (end_time - start_time) print(int(time_diff * 1000)) ``` #### File: tools/comparison/nori_clone_runner.py ```python import time from sys import argv, stdin import nori dictionary = nori.Dictionary() dictionary.load_prebuilt_dictionary("./dictionary/legacy-dictionary.nori") dictionary.load_user_dictionary("./dictionary/legacy-userdict.txt") tokenizer = nori.NoriTokenizer(dictionary) def run_with_iterator(f): for line in f: result = tokenizer.tokenize(line) print(line.rstrip()) for token in result.tokens[1:-1]: print(f"{token.surface}, {token.postype}, {token.postag[0]}, {token.postag[-1]}") print() if len(argv) != 1: # read all lines from the input file with open(argv[1]) as f: lines = f.readlines() start_time = time.time() run_with_iterator(lines) else: start_time = time.time() run_with_iterator(stdin) end_time = time.time() time_diff = (end_time - start_time) print("Elapsed time:", time_diff * 1000, "ms") ``` #### File: lint/google_java_format/def.bzl ```python load("@bazel_skylib//lib:shell.bzl", "shell") def _google_java_format_impl_factory(ctx, test_rule = False): args = ["--aosp"] if test_rule: args.append("--set-exit-if-changed") else: args.append("--replace") runner_files = depset(ctx.files._runner).to_list() if len(runner_files) != 1: fail("length _runner's file should be 1") jar_file = runner_files[0] executable = ctx.actions.declare_file(ctx.attr.name + ".bash") exclude_patterns_str = " ".join(["\\! -path %s" % shell.quote(pattern) for pattern in ctx.attr.exclude_patterns]) substitutions = { "@@ARGS@@": shell.array_literal(args), "@@JAR@@": shell.quote(jar_file.short_path), "@@EXCLUDE_PATTERNS@@": exclude_patterns_str, } ctx.actions.expand_template( template = ctx.file._template, output = executable, substitutions = substitutions, is_executable = True, ) runfiles = [jar_file] if test_rule: runfiles.extend(ctx.files.srcs) return DefaultInfo( files = depset([executable]), executable = executable, runfiles = ctx.runfiles(files = runfiles), ) def _get_attrs_for_google_java_format(test_rule = False): attrs = { "exclude_patterns": attr.string_list(allow_empty = True), "_runner": attr.label( default = "@com_github_google_google_java_format//jar", cfg = "host", ), "_template": attr.label( default = "//tools/lint/google_java_format:google_java_format.template.bash", allow_single_file = True, ), } if test_rule: attrs.update({ "srcs": attr.label_list( allow_empty = False, allow_files = [".java"], ), }) return attrs def _google_java_format_impl(ctx): return [_google_java_format_impl_factory(ctx, False)] google_java_format = rule( attrs = _get_attrs_for_google_java_format(False), implementation = _google_java_format_impl, executable = True, ) def _google_java_format_test_impl(ctx): return [_google_java_format_impl_factory(ctx, True)] google_java_format_test = rule( attrs = _get_attrs_for_google_java_format(True), implementation = _google_java_format_test_impl, test = True, ) ```
{ "source": "JeongUkJae/othello-ml-agent-implementation", "score": 3 }
#### File: JeongUkJae/othello-ml-agent-implementation/train.py ```python import sys import random import numpy as np from keras.models import Sequential from keras.layers import Conv2D, BatchNormalization from keras.utils import to_categorical from PIL import Image from othello_ml import Othello, Action from othello_ml.visualizer import Visualizer class MLRenderer: def __init__(self, path='./result-prob'): self.count = 0 self.path = path def render(self, board): board = board.reshape((8, 8)) * 10000 print(board) image = Image.fromarray(board.astype('uint8'), 'L') image = image.resize((400, 400)) image.save(f"{self.path}task{self.count}.png") self.count += 1 class MLAgent: def __init__(self, othello, model, eps=0.999, random_rate=1., no_reward=False, renderer=None): self.random_rate = random_rate self.othello = othello self.directions = self.othello.directions self.model = model self.eps = eps self.turn = None self.renderer = renderer self.sorted_prediction = None self.predict_before = False self.predict_index = 0 othello.agent_actor(self.act) if not no_reward: othello.agent_reward(self.reward) def _is_opposites_nearby(self, board, point, opposite): if board[point[0]][point[1]] is not 0: return False for dir in self.directions: x = point[0] + dir[0] y = point[1] + dir[1] if x < 0 or x > 7 or y < 0 or y > 7: continue if board[x][y] is opposite: return True return False def get_available_places(self, board, disk): places = [] opposite = -1 if disk is 1 else 1 for x in range(8): for y in range(8): if self._is_opposites_nearby(board, (x, y), opposite): action = Action() action.x, action.y = x, y if self.othello._is_valid_action(0 if disk is -1 else 1, action): places.append((x, y)) return places def act(self, board, turn, invalid_before): action = Action() my_disk = -1 if turn is 0 else 1 if invalid_before: if self.predict_before: self.predict_index += 1 action.x, action.y = self.sorted_prediction[self.predict_index] return action, False places = self.get_available_places(board, my_disk) self.predict_before = False if places: action.x, action.y = places[random.randrange(len(places))] return action, False else: return None, True self.random_rate *= self.eps if self.random_rate > np.random.uniform(): places = self.get_available_places(board, my_disk) self.predict_before = False if places: action.x, action.y = places[random.randrange(len(places))] return action, False else: return None, True self.turn = turn self.predict_index = 0 board = [[1 if i is my_disk else 0 if i is 0 else -1 for i in sl] for sl in board] result = self.model.predict( np.reshape(np.array([board]), (1, 8, 8, 1)))[:, :, :, 1] if self.renderer is not None: self.renderer.render(result) self.sorted_prediction = np.dstack( np.unravel_index(np.argsort(result.ravel()), (8, 8)))[0] action.x, action.y = self.sorted_prediction[0] self.predict_before = True return action, False def reward(self, boards, reward): my_disk = -1 if self.turn is 0 else 1 converted = [] actions = [] for action, board in boards: converted.append([[(1 if i is my_disk else 0 if i is 0 else -1) for i in sl] for sl in board]) ac = np.zeros((8, 8)) ac[(action.x, action.y)] = 1 actions.append(ac) converted = np.array(converted) actions = np.array(actions) if reward > 0: model.fit( converted.reshape((-1, 8, 8, 1)), to_categorical(actions.reshape((-1, 8, 8, 1))), epochs=reward) if __name__ == "__main__": model = Sequential([ Conv2D( 32, kernel_size=(3, 3), input_shape=(8, 8, 1), padding='same', activation='relu'), BatchNormalization(), Conv2D(64, (3, 3), activation='relu', padding='same'), BatchNormalization(), Conv2D(64, (3, 3), activation='relu', padding='same'), BatchNormalization(), Conv2D(64, (3, 3), activation='relu', padding='same'), BatchNormalization(), Conv2D(64, (3, 3), activation='relu', padding='same'), BatchNormalization(), Conv2D(64, (3, 3), activation='relu', padding='same'), BatchNormalization(), Conv2D(64, (3, 3), activation='relu', padding='same'), BatchNormalization(), Conv2D(64, (3, 3), activation='relu', padding='same'), BatchNormalization(), Conv2D(64, (3, 3), activation='relu', padding='same'), BatchNormalization(), Conv2D(32, (3, 3), activation='relu', padding='same'), BatchNormalization(), Conv2D(2, (1, 1), activation='softmax', padding='same'), ]) model.summary() model.compile( 'adam', loss='categorical_crossentropy', metrics=['accuracy']) experience_replay = [] num_of_episode = 1000 result = model.predict(np.zeros((1, 8, 8, 1))) result.shape for i in range(num_of_episode): print(f"episode {i}") othello = Othello() agent1 = MLAgent(othello, model) agent2 = MLAgent(othello, model) # visualizer = Visualizer(othello, path=f'./result/{i}') othello.play() model.save_weights('episode_1000.h5') ``` #### File: JeongUkJae/othello-ml-agent-implementation/vs_people.py ```python import sys import random import numpy as np from keras.models import Sequential from keras.layers import Conv2D, BatchNormalization from keras.utils import to_categorical from othello_ml import Othello, Action from othello_ml.visualizer import Visualizer from train import MLAgent, MLRenderer class CliAgent: def __init__(self, othello): self.othello = othello othello.agent_actor(self.act) def act(self, board, turn, invalid_before): if invalid_before: print("์ •์ƒ์ ์ธ ์ˆ˜๋ฅผ ๋‘์‹œ๊ธฐ ๋ฐ”๋ž๋‹ˆ๋‹ค.") for row in board: print( "|", "|".join( map(lambda x: 'y' if x is 1 else 'n' if x is -1 else 'O', row)), "|") is_pass = 1 if input('ํŒจ์Šค์ž…๋‹ˆ๊นŒ? yn') == 'y' else 0 try: x = int(input('x:')) y = int(input('y:')) except: x = y = 0 is_pass = True print('์ œ๋Œ€๋กœ ๋œ ์ž…๋ ฅ์ด ์•„๋‹ˆ๊ธฐ ๋•Œ๋ฌธ์— ํŒจ์Šคํ•ฉ๋‹ˆ๋‹ค.') action = Action(x=x, y=y) return action, is_pass model = Sequential([ Conv2D( 32, kernel_size=(3, 3), input_shape=(8, 8, 1), padding='same', activation='relu'), BatchNormalization(), Conv2D(64, (3, 3), activation='relu', padding='same'), BatchNormalization(), Conv2D(64, (3, 3), activation='relu', padding='same'), BatchNormalization(), Conv2D(64, (3, 3), activation='relu', padding='same'), BatchNormalization(), Conv2D(64, (3, 3), activation='relu', padding='same'), BatchNormalization(), Conv2D(64, (3, 3), activation='relu', padding='same'), BatchNormalization(), Conv2D(64, (3, 3), activation='relu', padding='same'), BatchNormalization(), Conv2D(64, (3, 3), activation='relu', padding='same'), BatchNormalization(), Conv2D(64, (3, 3), activation='relu', padding='same'), BatchNormalization(), Conv2D(32, (3, 3), activation='relu', padding='same'), BatchNormalization(), Conv2D(2, (1, 1), activation='softmax', padding='same'), ]) model.summary() model.load_weights("episode_1000.h5") while True: othello = Othello() renderer = MLRenderer(path='./result/test-prob-') agent1 = MLAgent( othello, model, random_rate=0, no_reward=True, renderer=renderer) agent2 = CliAgent(othello) visualizer = Visualizer(othello, path=f'./result/test-') othello.play() ```
{ "source": "jeongukjae/python-mecab", "score": 3 }
#### File: python/tests/test_eval.py ```python import os from mecab.cli import run_mecab_system_eval def test_eval(tmpdir): """check evaluate command""" EVAL_DATA_PATH = "../../test-data/eval" SYSTEM_DATA_PATH = os.path.join(EVAL_DATA_PATH, "system") ANSWER_DATA_PATH = os.path.join(EVAL_DATA_PATH, "answer") TRUE_DATA_PATH = os.path.join(EVAL_DATA_PATH, "test.gld") assert os.path.exists(EVAL_DATA_PATH) assert os.path.exists(SYSTEM_DATA_PATH) assert os.path.exists(ANSWER_DATA_PATH) assert os.path.exists(TRUE_DATA_PATH) RESULT_PATH = tmpdir.join("test.out") run_mecab_system_eval(["eval", "-l", "0 1 2 3 4", "-o", str(RESULT_PATH), SYSTEM_DATA_PATH, ANSWER_DATA_PATH]) with open(TRUE_DATA_PATH, "rb") as f: assert f.read() == RESULT_PATH.read(mode="rb") ```
{ "source": "JeongUkJae/pytistory", "score": 3 }
#### File: pytistory/tests/test_category.py ```python import os import warnings import unittest import requests_mock from pytistory import PyTistory class TestCategory(unittest.TestCase): @requests_mock.mock() def setUp(self, mock): mock.post('https://www.tistory.com/auth/login', status_code=302) mock.get('https://www.tistory.com/oauth/authorize', status_code=302, headers={ 'Location': 'some_callback_url/#access_token=some-access-token&state=some-state'}) self.pytistory = PyTistory() self.pytistory.configure(client_id='example client id', tistory_id='example tistory id', tistory_password='<PASSWORD>') @requests_mock.mock() def test_์นดํ…Œ๊ณ ๋ฆฌ_๋ชฉ๋ก(self, mock): mock.get('https://www.tistory.com/apis/category/list', json={ "tistory": { "status": "200", "item": { "url": "oauth", "secondaryUrl": "", "categories": { "category": [ { "id": "403929", "name": "OAuth2.0 Athentication", "parent": "", "label": "OAuth2.0 Athentication", "entries": "0" } ] } } } }) self.pytistory.category.list(blog_name='test-blog-5532') @requests_mock.mock() def test_์นดํ…Œ๊ณ ๋ฆฌ_๋ชฉ๋ก_target_url_deprecated(self, mock): mock.get('https://www.tistory.com/apis/category/list', json={ "tistory": { "status": "200", "item": { "url": "oauth", "secondaryUrl": "", "categories": { "category": [ { "id": "403929", "name": "OAuth2.0 Athentication", "parent": "", "label": "OAuth2.0 Athentication", "entries": "0" } ] } } } }) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") self.pytistory.category.list(target_url='http://oauth.tistory.com') assert len(w) == 1 assert "A parameter `targetUrl` is deprecated." in str( w[-1].message) ``` #### File: pytistory/tests/test_comment.py ```python import unittest import requests_mock from pytistory import PyTistory class TestComment(unittest.TestCase): @requests_mock.mock() def setUp(self, mock): mock.post('https://www.tistory.com/auth/login', status_code=302) mock.get('https://www.tistory.com/oauth/authorize', status_code=302, headers={ 'Location': 'some_callback_url/#access_token=some-access-token&state=some-state'}) self.pytistory = PyTistory() self.pytistory.configure(client_id='example client id', tistory_id='example tistory id', tistory_password='<PASSWORD>') @requests_mock.mock() def test_๋Œ“๊ธ€_๋ฆฌ์ŠคํŠธ_๋ฐ›์•„์˜ค๊ธฐ(self, mock): mock.get('https://www.tistory.com/apis/comment/list', json={ "tistory": { "status": "200", "item": { "url": "http://oauth.tistory.com/4", "secondaryUrl": "", "postId": "4", "totalCount": "3", "comments": { "comment": [ { "id": "8176918", "date": "1303796711", "name": "์ง€๋‚˜๋‹ค๊ฐ€", "parentId": "", "homepage": "http://someurl.com", "visibility": "2", "comment": "์ข‹์€ ๊ธ€ ๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.", "open": "Y" } ] } } } }) self.pytistory.comment.list(1, blog_name='test') @requests_mock.mock() def test_์ตœ๊ทผ_๋Œ“๊ธ€_๋ชฉ๋ก_๊ฐ€์ ธ์˜ค๊ธฐ(self, mock): mock.get('https://www.tistory.com/apis/comment/newest', json={ "tistory": { "status": "200", "item": { "url": "http://oauth.tistory.com", "secondaryUrl": "", "comments": { "comment": [ { "id": "8176926", "date": "1303796900", "postId": "4", "name": "<NAME>", "homepage": "http://oauth.tistory.com", "comment": "๋น„๋ฃจํ•œ ๊ธ€์— ์นญ์ฐฌ์„ ํ•˜์‹œ๋‹ˆ ๋ชธ๋‘˜๋ฐ”๋ฅผ ๋ชจ๋ฅด.. ์ง€ ์•Š์•„!", "open": "Y", "link": "http://oauth.tistory.com/4#comment8176926" } ] } } } }) self.pytistory.comment.newest(blog_name='test') @requests_mock.mock() def test_๋Œ“๊ธ€_์ž‘์„ฑํ•˜๊ธฐ(self, mock): mock.post('https://www.tistory.com/apis/comment/write', json={ "tistory": { "status": "200", "commentUrl": "http://oauth.tistory.com/4#comment8176976", "result": "OK" } }) resp = self.pytistory.comment.write(1, '๋Œ“๊ธ€-์˜ˆ์‹œ', blog_name='test') self.assertEqual(resp['result'], 'OK', '๋Œ“๊ธ€์„ ์ž‘์„ฑํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.') resp = self.pytistory.comment.write( 2, '๋Œ“๊ธ€-์˜ˆ์‹œ', blog_name='test', parent_id=1) self.assertEqual(resp['result'], 'OK', '๋Œ“๊ธ€์„ ์ž‘์„ฑํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.') resp = self.pytistory.comment.write( 1, '๋Œ“๊ธ€-์˜ˆ์‹œ', blog_name='test', secret=1) self.assertEqual(resp['result'], 'OK', '๋Œ“๊ธ€์„ ์ž‘์„ฑํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.') @requests_mock.mock() def test_๋Œ“๊ธ€_์ˆ˜์ •ํ•˜๊ธฐ(self, mock): mock.post('https://www.tistory.com/apis/comment/modify', json={ "tistory": { "status": "200", "commentUrl": "http://oauth.tistory.com/4#comment8176976", "result": "OK" } }) resp = self.pytistory.comment.modify(1, 1, '์ˆ˜์ •๋œ ๋Œ“๊ธ€', blog_name='test') self.assertEqual(resp['result'], 'OK', '๋Œ“๊ธ€์„ ์ž‘์„ฑํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.') resp = self.pytistory.comment.modify( 1, 1, '์ˆ˜์ •๋œ ๋Œ“๊ธ€', blog_name='test', parent_id=1) self.assertEqual(resp['result'], 'OK', '๋Œ“๊ธ€์„ ์ž‘์„ฑํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.') resp = self.pytistory.comment.modify( 1, 1, '์ˆ˜์ •๋œ ๋Œ“๊ธ€', blog_name='test', secret=1) self.assertEqual(resp['result'], 'OK', '๋Œ“๊ธ€์„ ์ž‘์„ฑํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.') @requests_mock.mock() def test_๋Œ“๊ธ€_์‚ญ์ œํ•˜๊ธฐ(self, mock): mock.post('https://www.tistory.com/apis/comment/delete', json={ "tistory": { "status": "200" } }) self.pytistory.comment.delete(1, 1, blog_name='test') ```
{ "source": "jeongukjae/sejong-downloader", "score": 3 }
#### File: sejong-downloader/sejong_downloader/cli.py ```python import argparse import asyncio from .downloader import download_sejong_corpus parser = argparse.ArgumentParser() parser.add_argument("-p", "--path", type=str, help="์„ธ์ข… ์ฝ”ํผ์Šค๊ฐ€ ์ €์žฅ๋  base path", default="./data", required=False) def main(): args = parser.parse_args() asyncio.run(download_sejong_corpus(args.path)) ``` #### File: sejong-downloader/sejong_downloader/downloader.py ```python import asyncio import os import re from typing import Generator, Optional, Union import aiofiles import aiohttp from .logger import logger WORKER_COUNT = 200 SEJONG_ARTICLE_INDEXING_LINK = "https://ithub.korean.go.kr/user/total/database/corpusList.do" SEJONG_ARTICLE_LINK = "https://ithub.korean.go.kr/user/total/database/corpusView.do" SEJONG_DOWNLOAD_LINK = "https://ithub.korean.go.kr/common/boardFileDownload.do" SEJONG_ZIP_DOWNLOAD_LINK = "https://ithub.korean.go.kr/common/boardFileZipDownload.do" SEJONG_DEFAULT_REQUEST_PARAMS = {"boardSeq": 2, "boardType": "CORPUS", "userId": 0, "pageUnit": 10000} SEJONG_DOWNLOAD_REQUEST_PARAMS = { **SEJONG_DEFAULT_REQUEST_PARAMS, "fileSeq": "1", "userId": "0", "boardSeq": "2", "boardType": "CORPUS", } SEJONG_FILE_CATEGORIES = {"orgFileSeq": "1", "posFileSeq": "2", "semFileSeq": "3", "synFileSeq": "4"} __all__ = ["download_sejong_corpus"] class Article: def __init__(self, article_num: str, article_sequence: str, title: str): self.article_num = article_num.strip() self.article_sequence = article_sequence.strip() self.title = title.strip() def __repr__(self): return f"<Article num{self.article_num} {self.title} at {self.article_sequence}>" async def download_sejong_corpus(base_path: str) -> None: """์„ธ์ข… ์ฝ”ํผ์Šค ์ „์ฒด๋ฅผ base_path๋กœ ๋‹ค์šด๋กœ๋“œํ•œ๋‹ค.""" os.makedirs(base_path, exist_ok=True) os.makedirs(os.path.join(base_path, "cached"), exist_ok=True) async with aiohttp.ClientSession() as session: indexing_caching_path = os.path.join(base_path, "cached", "indexing.html") indexing_page_content = await _get_cached(indexing_caching_path) if indexing_page_content is None: indexing_page_content = await _fetch_indexing_page(session, base_path) await _cache_to(indexing_page_content, indexing_caching_path) article_list = _extract_article_list_from(indexing_page_content) logger.debug("trigger async coroutines for save article data") queue = asyncio.Queue() for article in article_list: queue.put_nowait((base_path, article, session)) workers = [] for i in range(WORKER_COUNT): worker = asyncio.create_task(_download_worker(f"worker-{i}", queue)) workers.append(worker) await queue.join() logger.info("complete to download all corpus data") for worker in workers: worker.cancel() await asyncio.gather(*workers) async def _download_worker(name, queue): try: while True: base_path, article, session = queue.get_nowait() await _save_attachements_in_article(base_path, article, session) queue.task_done() logger.info(f"complete to download {article} in {name}") except asyncio.QueueEmpty: logger.info(f"queue is empty now, exit {name}") async def _get_cached(path: str) -> Optional[str]: if os.path.exists(path) and os.path.getsize(path) != 0: logger.debug(f"restore cache from {path}") async with aiofiles.open(path, "r") as f: return await f.read() else: return None def _get_valid_path_name(path: str): return path.replace("/", "") async def _cache_to(content: Union[bytes, str], path: str) -> None: async with aiofiles.open(path, "wb" if isinstance(content, bytes) else "w") as f: logger.debug(f"cache to {path}") await f.write(content) async def _fetch_indexing_page(session: aiohttp.ClientSession, base_path: str) -> str: logger.info("fetching indexing page") async with session.get(SEJONG_ARTICLE_INDEXING_LINK, params=SEJONG_DEFAULT_REQUEST_PARAMS) as response: if response.status != 200: raise ValueError("Cannot fetch Sejong Corpus Page") return await response.text() def _extract_article_list_from(indexing_page_content: str) -> Generator[Article, None, None]: pattern = re.compile( r"<tr.*\n" r"[ \t]*<td[^>]*>([\d]*).+\n" r".*\n" r".*\n" r"[ \t]*<a href=\"javascript:goView\('([\d]*)'.*\n" r"[ \t]*(.*)", re.MULTILINE, ) for item in pattern.finditer(indexing_page_content): yield Article(*item.groups()) async def _save_attachements_in_article(base_path: str, article: Article, session: aiohttp.ClientSession) -> None: caching_path = os.path.join(base_path, "cached", f"article_{article.article_num}.html") article_content = await _get_cached(caching_path) if article_content is None: logger.info(f"fetch article {article}") article_content = await _fetch_article(article, session) await _cache_to(article_content, caching_path) attachment_id = _get_attachment_id_from(article_content) file_sequence_value = _get_file_sequence_values_from(article_content) corpus_path = os.path.join( base_path, f"{int(article.article_num):04}_{_get_valid_path_name(article.title)}.{'zip' if ',' in file_sequence_value else 'text'}", ) if os.path.exists(corpus_path) and os.path.getsize(corpus_path) != 0: logger.debug(f"skip to download {article}") return async with session.post( SEJONG_ZIP_DOWNLOAD_LINK if "," in file_sequence_value else SEJONG_DOWNLOAD_LINK, data={ **SEJONG_DOWNLOAD_REQUEST_PARAMS, "articleSeq": article.article_sequence, "fNo": article.article_sequence, "attachIdx": attachment_id, "fileSeqValues": file_sequence_value, }, ) as response: if response.status != 200: raise ValueError(f"Cannot donwload {article} / {response.status} {await response.text()}") logger.debug(f"start to download {article} ({file_sequence_value}) {response.headers['Content-Length']}") attachment_content = await response.read() logger.debug(f"save content {article}") await _save_articles_attachment(corpus_path, attachment_content) async def _fetch_article(article: Article, session: aiohttp.ClientSession) -> str: async with session.get( SEJONG_ARTICLE_LINK, params={**SEJONG_DEFAULT_REQUEST_PARAMS, "articleSeq": article.article_sequence} ) as response: if response.status != 200: raise ValueError(f"Cannot fetch article {article}") return await response.text() def _get_attachment_id_from(article_content: str) -> str: pattern = re.compile(r"<input type=\"hidden\" id=\"attachIdx\" name=\"attachIdx\" value=\"([^\"]*)\"/>") attachment_ids = pattern.findall(article_content) if len(attachment_ids) != 1: raise ValueError("Length of attachment ids should be 1") return attachment_ids[0] def _get_file_sequence_values_from(article_content: str) -> str: pattern = re.compile(f'<input type="checkbox" name="(.*FileSeq)"') seq_values = pattern.findall(article_content) converted_seq_values = [SEJONG_FILE_CATEGORIES[seq] for seq in seq_values if seq in SEJONG_FILE_CATEGORIES] return ",".join(converted_seq_values) async def _save_articles_attachment(path: str, content: bytes) -> None: async with aiofiles.open(path, "wb") as f: await f.write(content) ```
{ "source": "jeongukjae/tf-bert", "score": 3 }
#### File: tf-bert/tf_bert/modeling.py ```python import json import tensorflow as tf def gelu(x): """Gaussian Error Linear Unit. Original paper: https://arxiv.org/abs/1606.08415 """ return 0.5 * x * (1.0 + tf.tanh(0.7978845608028654 * x * (1 + 0.044715 * x * x))) def get_activation_function(hidden_act): if hidden_act == "linear": return None elif hidden_act == "relu": return tf.nn.relu elif hidden_act == "gelu": return gelu elif hidden_act == "tanh": return tf.tanh else: raise ValueError("Unsupported activation: %s" % hidden_act) def get_initializer(x): return tf.keras.initializers.TruncatedNormal(stddev=x) class BertConfig: def __init__( self, vocab_size: int, hidden_size: int = 768, num_hidden_layers: int = 12, num_attention_heads: int = 12, intermediate_size: int = 3072, hidden_act: str = "gelu", hidden_dropout_prob: float = 0.1, attention_probs_dropout_prob: float = 0.1, max_position_embeddings: int = 512, type_vocab_size: int = 16, initializer_range: float = 0.0, layer_norm_eps: float = 1e-12, **kwargs, # unused ): self.attention_probs_dropout_prob = attention_probs_dropout_prob self.hidden_act = get_activation_function(hidden_act) self.hidden_dropout_prob = hidden_dropout_prob self.hidden_size = hidden_size self.initializer_range = initializer_range self.intermediate_size = intermediate_size self.max_position_embeddings = max_position_embeddings self.num_attention_heads = num_attention_heads self.num_hidden_layers = num_hidden_layers self.type_vocab_size = type_vocab_size self.vocab_size = vocab_size self.layer_norm_eps = layer_norm_eps @staticmethod def from_json(path: str) -> "BertConfig": with open(path, "r") as f: file_content = json.load(f) return BertConfig(**file_content) class Bert(tf.keras.Model): def __init__(self, config: BertConfig): super().__init__() # embedding layer self.token_embeddings = tf.keras.layers.Embedding( config.vocab_size, config.hidden_size, embeddings_initializer=get_initializer(config.initializer_range), ) self.token_type_embeddings = tf.keras.layers.Embedding( config.type_vocab_size, config.hidden_size, embeddings_initializer=get_initializer(config.initializer_range), ) self.position_embeddings = tf.keras.layers.Embedding( config.max_position_embeddings, config.hidden_size, embeddings_initializer=get_initializer(config.initializer_range), ) self.embedding_layer_norm = tf.keras.layers.LayerNormalization( epsilon=config.layer_norm_eps, axis=-1 ) self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) # encoder self.encoders = [ TransformerEncoder(config) for _ in range(config.num_hidden_layers) ] # pooler self.pooler_layer = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", ) def call(self, inputs): input_ids, token_type_ids, position_ids, attention_mask = inputs words_embeddings = self.token_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) position_embeddings = self.position_embeddings(position_ids) attention_mask = (1.0 - attention_mask[:, tf.newaxis, :, tf.newaxis]) * -1e9 embeddings = words_embeddings + token_type_embeddings + position_embeddings embeddings = self.embedding_layer_norm(embeddings) hidden_states = self.dropout(embeddings) for encoder in self.encoders: hidden_states = encoder(hidden_states, attention_mask) pooled_output = self.pooler_layer(hidden_states[:, 0, :]) return hidden_states, pooled_output class TransformerEncoder(tf.keras.layers.Layer): def __init__(self, config: BertConfig): super().__init__() self.attention_proj = tf.keras.layers.Dense( config.hidden_size * 3, kernel_initializer=get_initializer(config.initializer_range), ) self.attention_dense = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), ) self.attention_layer_norm = tf.keras.layers.LayerNormalization( epsilon=config.layer_norm_eps, axis=-1 ) self.intermediate_dense = tf.keras.layers.Dense( config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), ) self.intermediate_act = config.hidden_act self.intermediate_dense2 = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), ) self.intermediate_layer_norm = tf.keras.layers.LayerNormalization( epsilon=config.layer_norm_eps, axis=-1 ) self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) self.scaling_factor = float(config.num_attention_heads) ** -0.5 self.num_head = config.num_attention_heads self.attention_depth = int(config.hidden_size / self.num_head) self.hidden_size = config.hidden_size def call(self, sequence, attention_mask): # multihead attention attention, _ = self._multihead_attention(sequence, attention_mask) # add and norm attention = self.attention_layer_norm(attention + sequence) # fc intermediate = self.intermediate_dense(attention) if self.intermediate_act is not None: intermediate = self.intermediate_act(intermediate) intermediate = self.dropout(self.intermediate_dense2(intermediate)) # add and norm intermediate = self.intermediate_layer_norm(intermediate + attention) return intermediate def _multihead_attention(self, sequence, attention_mask): q, k, v = tf.split(self.attention_proj(sequence), num_or_size_splits=3, axis=-1) q = self._reshape_qkv(q) k = self._reshape_qkv(k) v = self._reshape_qkv(v) # calculate attention q *= self.scaling_factor attention = tf.matmul(q, k, transpose_b=True) attention_weight = tf.nn.softmax(attention, axis=-1) attention = tf.matmul(attention_weight, v) attention += attention_mask # concat attention = tf.transpose(attention, perm=[0, 2, 1, 3]) new_shape = [-1, tf.shape(attention)[1], self.hidden_size] attention = tf.reshape(attention, new_shape) # last dense net attention = self.attention_dense(attention) attention = self.dropout(attention) return attention, attention_weight def _reshape_qkv(self, val): new_shape = [-1, tf.shape(val)[1], self.num_head, self.attention_depth] return tf.transpose(tf.reshape(val, new_shape), perm=[0, 2, 1, 3]) ```
{ "source": "jeongukjae/tfds-korean", "score": 2 }
#### File: tfds_korean/klue_mrc/klue_mrc.py ```python import json import tensorflow as tf import tensorflow_datasets as tfds _DESCRIPTION = """ KLUE benchmark - Machine Reading Comprehension (MRC) task. or more details, see [KLUE Benchmark - MRC Task - Overview description](https://klue-benchmark.com/tasks/72/overview/description) """ _CITATION = """ @misc{park2021klue, title={KLUE: Korean Language Understanding Evaluation}, author={<NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and Joohong Lee and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME>}, year={2021}, eprint={2105.09680}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ _LICENSE = """ This work is licensed under a [Creative Commons Attribution-ShareAlike 4.0 International License](http://creativecommons.org/licenses/by-sa/4.0/). See also [Copyright notice](https://klue-benchmark.com/tasks/72/overview/copyright). """ class KlueMrc(tfds.core.GeneratorBasedBuilder): VERSION = tfds.core.Version("1.1.0") RELEASE_NOTES = { "1.0.0": "Initial release.", "1.1.0": "KLUE 1.1.0", } def _info(self) -> tfds.core.DatasetInfo: return tfds.core.DatasetInfo( builder=self, description=_DESCRIPTION, features=tfds.features.FeaturesDict( { "guid": tfds.features.Text(), "title": tfds.features.Text(), "news_category": tfds.features.Text(), "source": tfds.features.Text(), "context": tfds.features.Text(), "question": tfds.features.Text(), "question_type": tfds.features.Tensor(shape=[], dtype=tf.int64), "answers": tfds.features.Sequence( { "text": tfds.features.Text(), "answer_start": tfds.features.Tensor(shape=[], dtype=tf.int64), } ), "is_impossible": tfds.features.Tensor(shape=[], dtype=tf.bool), } ), supervised_keys=None, homepage="https://github.com/KLUE-benchmark/KLUE", citation=_CITATION, redistribution_info={"license": _LICENSE}, ) def _split_generators(self, dl_manager: tfds.download.DownloadManager): files = dl_manager.download_and_extract( { "train": "https://raw.githubusercontent.com/KLUE-benchmark/KLUE/1cc52e64c0e0b6915577244f7439c55a42199a64/klue_benchmark/klue-mrc-v1.1/klue-mrc-v1.1_train.json", "dev": "https://raw.githubusercontent.com/KLUE-benchmark/KLUE/1cc52e64c0e0b6915577244f7439c55a42199a64/klue_benchmark/klue-mrc-v1.1/klue-mrc-v1.1_dev.json", } ) return { "train": self._generate_examples(files["train"]), "dev": self._generate_examples(files["dev"]), } def _generate_examples(self, path): with path.open() as f: for document in json.load(f)["data"]: title, source = document["title"], document["source"] news_category = document["news_category"] if document["news_category"] is not None else "" for paragraph in document["paragraphs"]: context = paragraph["context"] for qa in paragraph["qas"]: guid, question, question_type, is_impossible = qa["guid"], qa["question"], qa["question_type"], qa["is_impossible"] answers = qa["answers" if question_type in [1, 2] else "plausible_answers"] yield guid, { "guid": guid, "title": title, "news_category": news_category, "source": source, "context": context, "question": question, "question_type": question_type, "answers": answers, "is_impossible": is_impossible, } ```
{ "source": "jeongwhanchoi/graph-neural-pde", "score": 2 }
#### File: graph-neural-pde/src/block_mixed.py ```python import torch from torch import nn from function_transformer_attention import SpGraphTransAttentionLayer from base_classes import ODEblock from utils import get_rw_adj class MixedODEblock(ODEblock): def __init__(self, odefunc, regularization_fns, opt, data, device, t=torch.tensor([0, 1]), gamma=0.): super(MixedODEblock, self).__init__(odefunc, regularization_fns, opt, data, device, t) self.odefunc = odefunc(self.aug_dim * opt['hidden_dim'], self.aug_dim * opt['hidden_dim'], opt, data, device) # self.odefunc.edge_index, self.odefunc.edge_weight = data.edge_index, edge_weight=data.edge_attr edge_index, edge_weight = get_rw_adj(data.edge_index, edge_weight=data.edge_attr, norm_dim=1, fill_value=opt['self_loop_weight'], num_nodes=data.num_nodes, dtype=data.x.dtype) self.odefunc.edge_index = edge_index.to(device) self.odefunc.edge_weight = edge_weight.to(device) self.reg_odefunc.odefunc.edge_index, self.reg_odefunc.odefunc.edge_weight = self.odefunc.edge_index, self.odefunc.edge_weight if opt['adjoint']: from torchdiffeq import odeint_adjoint as odeint else: from torchdiffeq import odeint self.train_integrator = odeint self.test_integrator = odeint self.set_tol() # parameter trading off between attention and the Laplacian self.gamma = nn.Parameter(gamma * torch.ones(1)) self.multihead_att_layer = SpGraphTransAttentionLayer(opt['hidden_dim'], opt['hidden_dim'], opt, device).to(device) def get_attention_weights(self, x): attention, values = self.multihead_att_layer(x, self.odefunc.edge_index) return attention def get_mixed_attention(self, x): gamma = torch.sigmoid(self.gamma) attention = self.get_attention_weights(x) mixed_attention = attention.mean(dim=1) * (1 - gamma) + self.odefunc.edge_weight * gamma return mixed_attention def forward(self, x): t = self.t.type_as(x) self.odefunc.attention_weights = self.get_mixed_attention(x) integrator = self.train_integrator if self.training else self.test_integrator if self.opt["adjoint"] and self.training: z = integrator( self.odefunc, x, t, method=self.opt['method'], options={'step_size': self.opt['step_size']}, adjoint_method=self.opt['adjoint_method'], adjoint_options={'step_size': self.opt['adjoint_step_size']}, atol=self.atol, rtol=self.rtol, adjoint_atol=self.atol_adjoint, adjoint_rtol=self.rtol_adjoint)[1] else: z = integrator( self.odefunc, x, t, method=self.opt['method'], options={'step_size': self.opt['step_size']}, atol=self.atol, rtol=self.rtol)[1] return z def __repr__(self): return self.__class__.__name__ + '( Time Interval ' + str(self.t[0].item()) + ' -> ' + str(self.t[1].item()) \ + ")" ``` #### File: graph-neural-pde/src/function_transformer_attention.py ```python import torch from torch import nn from torch_geometric.utils import softmax import torch_sparse from torch_geometric.utils.loop import add_remaining_self_loops import numpy as np from data import get_dataset from utils import MaxNFEException from base_classes import ODEFunc class ODEFuncTransformerAtt(ODEFunc): def __init__(self, in_features, out_features, opt, data, device): super(ODEFuncTransformerAtt, self).__init__(opt, data, device) if opt['self_loop_weight'] > 0: self.edge_index, self.edge_weight = add_remaining_self_loops(data.edge_index, data.edge_attr, fill_value=opt['self_loop_weight']) else: self.edge_index, self.edge_weight = data.edge_index, data.edge_attr self.multihead_att_layer = SpGraphTransAttentionLayer(in_features, out_features, opt, device, edge_weights=self.edge_weight).to(device) def multiply_attention(self, x, attention, v=None): # todo would be nice if this was more efficient if self.opt['mix_features']: vx = torch.mean(torch.stack( [torch_sparse.spmm(self.edge_index, attention[:, idx], v.shape[0], v.shape[0], v[:, :, idx]) for idx in range(self.opt['heads'])], dim=0), dim=0) ax = self.multihead_att_layer.Wout(vx) else: mean_attention = attention.mean(dim=1) ax = torch_sparse.spmm(self.edge_index, mean_attention, x.shape[0], x.shape[0], x) return ax def forward(self, t, x): # t is needed when called by the integrator if self.nfe > self.opt["max_nfe"]: raise MaxNFEException self.nfe += 1 attention, values = self.multihead_att_layer(x, self.edge_index) ax = self.multiply_attention(x, attention, values) if not self.opt['no_alpha_sigmoid']: alpha = torch.sigmoid(self.alpha_train) else: alpha = self.alpha_train f = alpha * (ax - x) if self.opt['add_source']: f = f + self.beta_train * self.x0 return f def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features) + ' -> ' + str(self.out_features) + ')' class SpGraphTransAttentionLayer(nn.Module): """ Sparse version GAT layer, similar to https://arxiv.org/abs/1710.10903 """ def __init__(self, in_features, out_features, opt, device, concat=True, edge_weights=None): super(SpGraphTransAttentionLayer, self).__init__() self.in_features = in_features self.out_features = out_features self.alpha = opt['leaky_relu_slope'] self.concat = concat self.device = device self.opt = opt self.h = int(opt['heads']) self.edge_weights = edge_weights try: self.attention_dim = opt['attention_dim'] except KeyError: self.attention_dim = out_features assert self.attention_dim % self.h == 0, "Number of heads ({}) must be a factor of the dimension size ({})".format( self.h, self.attention_dim) self.d_k = self.attention_dim // self.h self.Q = nn.Linear(in_features, self.attention_dim) self.init_weights(self.Q) self.V = nn.Linear(in_features, self.attention_dim) self.init_weights(self.V) self.K = nn.Linear(in_features, self.attention_dim) self.init_weights(self.K) self.activation = nn.Sigmoid() # nn.LeakyReLU(self.alpha) self.Wout = nn.Linear(self.d_k, in_features) self.init_weights(self.Wout) def init_weights(self, m): if type(m) == nn.Linear: # nn.init.xavier_uniform_(m.weight, gain=1.414) # m.bias.data.fill_(0.01) nn.init.constant_(m.weight, 1e-5) def forward(self, x, edge): q = self.Q(x) k = self.K(x) v = self.V(x) # perform linear operation and split into h heads k = k.view(-1, self.h, self.d_k) q = q.view(-1, self.h, self.d_k) v = v.view(-1, self.h, self.d_k) # transpose to get dimensions [n_nodes, attention_dim, n_heads] k = k.transpose(1, 2) q = q.transpose(1, 2) v = v.transpose(1, 2) src = q[edge[0, :], :, :] dst_k = k[edge[1, :], :, :] prods = torch.sum(src * dst_k, dim=1) / np.sqrt(self.d_k) if self.opt['reweight_attention'] and self.edge_weights is not None: prods = prods * self.edge_weights.unsqueeze(dim=1) attention = softmax(prods, edge[self.opt['attention_norm_idx']]) return attention, v def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features) + ' -> ' + str(self.out_features) + ')' if __name__ == '__main__': device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') opt = {'dataset': 'Cora', 'self_loop_weight': 1, 'leaky_relu_slope': 0.2, 'heads': 2, 'K': 10, 'attention_norm_idx': 0, 'add_source': False, 'alpha_dim': 'sc', 'beta_dim': 'sc', 'max_nfe': 1000, 'mix_features': False } dataset = get_dataset(opt, '../data', False) t = 1 func = ODEFuncTransformerAtt(dataset.data.num_features, 6, opt, dataset.data, device) out = func(t, dataset.data.x) ``` #### File: graph-neural-pde/src/population_search.py ```python from functools import partial from ray import tune from ray.tune import CLIReporter from ray.tune.schedulers import ASHAScheduler, PopulationBasedTraining from GNN import GNN from run_GNN import train, test, get_optimizer, get_cora_opt from data import get_dataset import torch from torch import nn import time import os import argparse import numpy as np from ray_tune import train_ray def set_pop_search_space(opt): opt['decay'] = tune.loguniform(2e-3, 5e-2) opt['hidden_dim'] = tune.sample_from(lambda _: 2 ** np.random.randint(4, 7)) opt['lr'] = tune.loguniform(0.001, 0.03) opt['input_dropout'] = tune.uniform(0, 0.8) opt['dropout'] = tune.uniform(0, 0.8) if opt['ode'] == 'att': opt['self_loop_weight'] = tune.choice([0,1]) else: opt['self_loop_weight'] = tune.uniform(0, 5) opt['time'] = tune.uniform(1., 10.) opt['tol_scale'] = tune.loguniform(1e1, 1e5) return opt class CustomStopper(tune.Stopper): def __init__(self, max_iter): self.should_stop = False self.max_iter = max_iter def __call__(self, trial_id, result): if not self.should_stop and result["accuracy"] > 0.96: self.should_stop = True return self.should_stop or result["training_iteration"] >= self.max_iter def stop_all(self): return self.should_stop def main(opt): data_dir = os.path.abspath("../data") device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') opt = set_pop_search_space(opt) scheduler = PopulationBasedTraining( time_attr='training_iteration', metric='accuracy', mode='max', resample_probability=0.75, perturbation_interval=opt['pi'], hyperparam_mutations={ 'lr': tune.loguniform(0.001, 0.03), 'self_loop_weight': tune.uniform(0, 5), 'decay': tune.loguniform(2e-3, 5e-2), 'input_dropout': tune.uniform(0, 0.8), 'dropout': tune.uniform(0, 0.8), # 'hidden_dim' : tune.uniform(16, 64), 'tol_scale': tune.loguniform(1e2, 1e4), 'time': tune.uniform(1., 15.), # 'alpha_dim': ['sc', 'vc'], 'no_alpha_sigmoid': [True, False] }) reporter = CLIReporter( metric_columns=["accuracy", "loss", "training_iteration"]) result = tune.run( partial(train_ray, data_dir=data_dir), name=opt['name'], stop=CustomStopper(opt['max_iter']), resources_per_trial={"cpu": opt['cpus'], "gpu": opt['gpus']}, config=opt, num_samples=opt['num_samples'], scheduler=scheduler, max_failures=3, local_dir='../ray_tune', progress_reporter=reporter, raise_on_failed_trial=False) best_trial = result.get_best_trial("accuracy", "max", "all") print("Best trial config: {}".format(best_trial.config)) print("Best trial final validation loss: {}".format( best_trial.last_result["loss"])) print("Best trial final validation accuracy: {}".format( best_trial.last_result["accuracy"])) dataset = get_dataset(opt, data_dir, False) best_trained_model = GNN(best_trial.config, dataset, device) if opt['gpus'] > 1: best_trained_model = nn.DataParallel(best_trained_model) best_trained_model.to(device) checkpoint_path = os.path.join(best_trial.checkpoint.value, "checkpoint") model_state, optimizer_state = torch.load(checkpoint_path) best_trained_model.load_state_dict(model_state) test_acc = test(best_trained_model, best_trained_model.data.to(device)) print("Best trial test set accuracy: {}".format(test_acc)) df = result.dataframe(metric="accuracy", mode="max").sort_values('accuracy', ascending=False) # get max accuracy for each trial timestr = time.strftime("%Y%m%d-%H%M%S") df.to_csv('../hyperopt_results/result_{}.csv'.format(timestr)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--dataset', type=str, default='Cora', help='Cora, Citeseer, Pubmed, Computers, Photo, CoauthorCS') parser.add_argument('--hidden_dim', type=int, default=32, help='Hidden dimension.') parser.add_argument('--input_dropout', type=float, default=0.5, help='Input dropout rate.') parser.add_argument('--dropout', type=float, default=0.1, help='Dropout rate.') parser.add_argument('--optimizer', type=str, default='adam', help='Optimizer.') parser.add_argument('--lr', type=float, default=0.01, help='Learning rate.') parser.add_argument('--decay', type=float, default=0.005, help='Weight decay for optimization') parser.add_argument('--self_loop_weight', type=float, default=1.0, help='Weight of self-loops.') parser.add_argument('--epoch', type=int, default=50, help='Number of training epochs per iteration.') parser.add_argument('--alpha', type=float, default=1.0, help='Factor in front matrix A.') parser.add_argument('--time', type=float, default=7.0, help='End time of ODE function.') parser.add_argument('--augment', action='store_true', help='double the length of the feature vector by appending zeros to stabilist ODE learning') parser.add_argument('--alpha_dim', type=str, default='vc', help='choose either scalar (sc) or vector (vc) alpha') parser.add_argument('--no_alpha_sigmoid', dest='no_alpha_sigmoid', action='store_true', help='apply sigmoid before multiplying by alpha') parser.add_argument('--beta_dim', type=str, default='vc', help='choose either scalar (sc) or vector (vc) beta') # ODE args parser.add_argument('--method', type=str, default='dopri5', help="set the numerical solver: dopri5, euler, rk4, midpoint") parser.add_argument('--ode', type=str, default='att', help="set ode block. Either 'ode', 'att', 'sde'") parser.add_argument('--adjoint', default=False, help='use the adjoint ODE method to reduce memory footprint') parser.add_argument('--tol_scale', type=float, default=30., help='multiplier for atol and rtol') # SDE args parser.add_argument('--dt_min', type=float, default=1e-5, help='minimum timestep for the SDE solver') parser.add_argument('--dt', type=float, default=1e-3, help='fixed step size') parser.add_argument('--adaptive', type=bool, default=False, help='use adaptive step sizes') # Attention args parser.add_argument('--attention_dropout', type=float, default=0., help='dropout of attention weights') parser.add_argument('--leaky_relu_slope', type=float, default=0.2, help='slope of the negative part of the leaky relu used in attention') parser.add_argument('--heads', type=int, default=5, help='number of attention heads') # ray args parser.add_argument('--num_samples', type=int, default=20, help='number of ray trials') parser.add_argument('--gpus', type=float, default=0, help='number of gpus per trial. Can be fractional') parser.add_argument('--cpus', type=float, default=1, help='number of cpus per trial. Can be fractional') parser.add_argument('--name', type=str, default='ray_exp') parser.add_argument('--max_iter', type=int, default=100, help='maximum number of iterations of a population search trial') parser.add_argument('--pi', type=int, default=5, help='perturbation interval: the mutation frequency') args = parser.parse_args() opt = vars(args) main(opt) ``` #### File: graph-neural-pde/test/test_attention.py ```python import unittest import torch from torch import tensor from torch import nn from function_GAT_attention import SpGraphAttentionLayer, ODEFuncAtt from torch_geometric.utils import softmax, to_dense_adj from data import get_dataset class AttentionTests(unittest.TestCase): def setUp(self): self.edge = tensor([[0, 2, 2, 1], [1, 0, 1, 2]]) self.x = tensor([[1., 2.], [3., 2.], [4., 5.]], dtype=torch.float) self.W = tensor([[2, 1], [3, 2]], dtype=torch.float) self.alpha = tensor([[1, 2, 3, 4]], dtype=torch.float) self.edge1 = tensor([[0, 0, 1, 1, 2, 2], [1, 2, 0, 2, 0, 1]]) self.x1 = torch.ones((3, 2), dtype=torch.float) self.leakyrelu = nn.LeakyReLU(0.2) self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.opt = {'dataset': 'Cora', 'self_loop_weight': 1, 'leaky_relu_slope': 0.2, 'beta_dim': 'vc', 'heads': 2, 'K': 10, 'attention_norm_idx': 0, 'add_source': False, 'max_nfe': 1000, 'mix_features': False, 'attention_dim': 32, 'mixed_block': False, 'rewiring': None, 'no_alpha_sigmoid': False, 'reweight_attention': False, 'kinetic_energy': None, 'jacobian_norm2': None, 'total_deriv': None, 'directional_penalty': None} def tearDown(self) -> None: pass def test(self): h = torch.mm(self.x, self.W) edge_h = torch.cat((h[self.edge[0, :], :], h[self.edge[1, :], :]), dim=1) self.assertTrue(edge_h.shape == torch.Size([self.edge.shape[1], 2 * 2])) ah = self.alpha.mm(edge_h.t()).t() self.assertTrue(ah.shape == torch.Size([self.edge.shape[1], 1])) edge_e = self.leakyrelu(ah) attention = softmax(edge_e, self.edge[1]) print(attention) def test_function(self): in_features = self.x.shape[1] out_features = self.x.shape[1] def get_round_sum(tens, n_digits=3): val = torch.sum(tens, dim=int(not self.opt['attention_norm_idx'])) return (val * 10 ** n_digits).round() / (10 ** n_digits) att_layer = SpGraphAttentionLayer(in_features, out_features, self.opt, self.device, concat=True) attention, _ = att_layer(self.x, self.edge) # should be n_edges x n_heads self.assertTrue(attention.shape == (self.edge.shape[1], self.opt['heads'])) dense_attention1 = to_dense_adj(self.edge, edge_attr=attention[:, 0]).squeeze() dense_attention2 = to_dense_adj(self.edge, edge_attr=attention[:, 1]).squeeze() self.assertTrue(torch.all(torch.eq(get_round_sum(dense_attention1), 1.))) self.assertTrue(torch.all(torch.eq(get_round_sum(dense_attention2), 1.))) self.assertTrue(torch.all(attention > 0.)) self.assertTrue(torch.all(attention <= 1.)) dataset = get_dataset(self.opt, '../data', False) data = dataset.data in_features = data.x.shape[1] out_features = data.x.shape[1] att_layer = SpGraphAttentionLayer(in_features, out_features, self.opt, self.device, concat=True) attention, _ = att_layer(data.x, data.edge_index) # should be n_edges x n_heads self.assertTrue(attention.shape == (data.edge_index.shape[1], self.opt['heads'])) dense_attention1 = to_dense_adj(data.edge_index, edge_attr=attention[:, 0]).squeeze() dense_attention2 = to_dense_adj(data.edge_index, edge_attr=attention[:, 1]).squeeze() self.assertTrue(torch.all(torch.eq(get_round_sum(dense_attention1), 1.))) self.assertTrue(torch.all(torch.eq(get_round_sum(dense_attention2), 1.))) self.assertTrue(torch.all(attention > 0.)) self.assertTrue(torch.all(attention <= 1.)) def test_symetric_attention(self): in_features = self.x1.shape[1] out_features = self.x1.shape[1] att_layer = SpGraphAttentionLayer(in_features, out_features, self.opt, self.device, concat=True) attention, _ = att_layer(self.x1, self.edge1) # should be n_edges x n_heads self.assertTrue(torch.all(torch.eq(attention, 0.5 * torch.ones((self.edge1.shape[1], self.x1.shape[1]))))) def test_module(self): dataset = get_dataset(self.opt, '../data', False) t = 1 out_dim = 6 func = ODEFuncAtt(dataset.data.num_features, out_dim, self.opt, dataset.data, self.device) out = func(t, dataset.data.x) print(out.shape) self.assertTrue(out.shape == (dataset.data.num_nodes, dataset.num_features)) ``` #### File: graph-neural-pde/test/test_ICML_gnn.py ```python import unittest import torch from torch import tensor from torch import nn from GNN_ICML20 import gcn_norm_fill_val, coo2tensor, train_ray from data import get_dataset from torch_geometric.nn.conv.gcn_conv import gcn_norm from torch_geometric.utils.convert import to_scipy_sparse_matrix from ray.tune.utils import diagnose_serialization from functools import partial import os from test_params import OPT class ICMLGNNTests(unittest.TestCase): def setUp(self): self.edge = tensor([[0, 2, 2], [1, 0, 1]]) self.x = tensor([[1., 2.], [3., 2.], [4., 5.]], dtype=float) self.W = tensor([[2, 1], [3, 2]], dtype=float) self.alpha = tensor([[1, 2, 3, 4]], dtype=float) self.leakyrelu = nn.LeakyReLU(0.2) def tearDown(self) -> None: pass def test_fill_norm(self): opt = {'dataset': 'Cora', 'improved': False, 'self_loop_weight': 1., 'rewiring': None, 'no_alpha_sigmoid': False, 'reweight_attention': False, 'kinetic_energy': None, 'jacobian_norm2': None, 'total_deriv': None, 'directional_penalty': None, 'beltrami': False} opt = {**OPT, **opt} dataset = get_dataset(opt, '../data', False) data = dataset.data edge_index1, edge_weight1 = gcn_norm(data.edge_index, data.edge_attr, data.num_nodes, opt['improved'], opt['self_loop_weight'] > 0, dtype=data.x.dtype) edge_index, edge_weight = gcn_norm_fill_val(data.edge_index, data.edge_attr, opt['self_loop_weight'], data.num_nodes, dtype=data.x.dtype) assert torch.all(edge_index.eq(edge_index1)) assert torch.all(edge_weight.eq(edge_weight1)) def main(): data_dir = os.path.abspath("../data") trainable = partial(train_ray, data_dir=data_dir) diagnose_serialization(trainable) opt = {'dataset': 'Cora', 'improved': False, 'self_loop_weight': 1.} dataset = get_dataset(opt, '../data', False) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') data = dataset.data edge_index1, edge_weight1 = gcn_norm(data.edge_index, data.edge_attr, data.num_nodes, opt['improved'], opt['self_loop_weight'] > 0, dtype=data.x.dtype) edge_index, edge_weight = gcn_norm_fill_val(data.edge_index, data.edge_attr, opt['self_loop_weight'], data.num_nodes, opt['self_loop_weight'] > 0) assert torch.all(edge_index.eq(edge_index1)) assert torch.all(edge_weight.eq(edge_weight1)) coo = to_scipy_sparse_matrix(edge_index, edge_weight) coo = coo2tensor(coo, device) if __name__ == '__main__': main() ```
{ "source": "jeongwhanchoi/LT-OCF", "score": 2 }
#### File: LT-OCF/code/world.py ```python import os from os.path import join import torch from torch.nn import parallel from parse import parse_args import multiprocessing os.environ['KMP_DUPLICATE_LIB_OK'] = 'True' args = parse_args() ROOT_PATH = os.path.dirname(os.path.abspath(__file__ + "/../")) CODE_PATH = join(ROOT_PATH, 'code') DATA_PATH = join(ROOT_PATH, 'data') BOARD_PATH = join(CODE_PATH, 'runs') FILE_PATH = join(CODE_PATH, 'checkpoints') PRETRAINED_FILE_PATH = join(CODE_PATH, 'pretrain') import sys sys.path.append(join(CODE_PATH, 'sources')) if not os.path.exists(FILE_PATH): os.makedirs(FILE_PATH, exist_ok=True) config = {} all_dataset = ['lastfm', 'gowalla', 'yelp2018', 'amazon-book'] all_models = ['mf', 'lgn', 'ltocf', 'ltocf2', 'ltocf1'] # config['batch_size'] = 4096 config['bpr_batch_size'] = args.bpr_batch config['latent_dim_rec'] = args.recdim config['lightGCN_n_layers']= args.layer config['dropout'] = args.dropout config['keep_prob'] = args.keepprob config['A_n_fold'] = args.a_fold config['test_u_batch_size'] = args.testbatch config['multicore'] = args.multicore config['lr'] = args.lr config['lr_time'] = args.lr_time config['decay'] = args.decay config['pretrain'] = args.pretrain config['A_split'] = False config['bigdata'] = False config['time_split'] = args.timesplit config['solver'] = args.solver config['learnable_time'] = args.learnable_time config['dual_res'] = args.dual_res config['pretrained_file_name'] = args.pretrained_file config['K'] = args.K CORES = multiprocessing.cpu_count() // 2 seed = args.seed GPU_NUM = args.gpuid device = torch.device(f'cuda:{GPU_NUM}' if torch.cuda.is_available() else 'cpu') torch.cuda.set_device(device) # change allocation of current GPU parallel = args.parallel dataset = args.dataset model_name = args.model if dataset not in all_dataset: raise NotImplementedError(f"Haven't supported {dataset} yet!, try {all_dataset}") if model_name not in all_models: raise NotImplementedError(f"Haven't supported {model_name} yet!, try {all_models}") adjoint = args.adjoint rtol = args.rtol atol = args.atol TRAIN_epochs = args.epochs LOAD = args.load PATH = args.path topks = eval(args.topks) tensorboard = args.tensorboard comment = args.comment # let pandas shut up from warnings import simplefilter simplefilter(action="ignore", category=FutureWarning) def cprint(words : str): print(f"\033[0;30;43m{words}\033[0m") logo = r""" โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•—โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•— โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•— โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•—โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•— โ–ˆโ–ˆโ•”โ•โ•โ•โ•โ•โ•šโ•โ•โ–ˆโ–ˆโ•”โ•โ•โ• โ–ˆโ–ˆโ•”โ•โ•โ•โ–ˆโ–ˆโ•—โ–ˆโ–ˆโ•”โ•โ•โ•โ•โ•โ–ˆโ–ˆโ•”โ•โ•โ•โ•โ• โ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•—โ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•— โ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ•‘โ•šโ•โ•โ•โ•โ•โ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ•”โ•โ•โ• โ•šโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•— โ–ˆโ–ˆโ•‘ โ•šโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•”โ•โ•šโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•—โ–ˆโ–ˆโ•‘ โ•šโ•โ•โ•โ•โ•โ• โ•šโ•โ• โ•šโ•โ•โ•โ•โ•โ• โ•šโ•โ•โ•โ•โ•โ•โ•šโ•โ• """ # font: ANSI Shadow # http://patorjk.com/software/taag/#p=display&f=ANSI%20Shadow&t=CT-OCF print(logo) print ('Current cuda device ', torch.cuda.current_device()) # check ```
{ "source": "jeongwhanchoi/STG-NCDE", "score": 3 }
#### File: STG-NCDE/model/GCDE.py ```python import torch import torch.nn.functional as F import torch.nn as nn import controldiffeq from vector_fields import * class NeuralGCDE(nn.Module): def __init__(self, args, func_f, func_g, input_channels, hidden_channels, output_channels, initial, device, atol, rtol, solver): super(NeuralGCDE, self).__init__() self.num_node = args.num_nodes self.input_dim = input_channels self.hidden_dim = hidden_channels self.output_dim = output_channels self.horizon = args.horizon self.num_layers = args.num_layers self.default_graph = args.default_graph self.node_embeddings = nn.Parameter(torch.randn(self.num_node, args.embed_dim), requires_grad=True) self.func_f = func_f self.func_g = func_g self.solver = solver self.atol = atol self.rtol = rtol #predictor self.end_conv = nn.Conv2d(1, args.horizon * self.output_dim, kernel_size=(1, self.hidden_dim), bias=True) self.init_type = 'fc' if self.init_type == 'fc': self.initial_h = torch.nn.Linear(self.input_dim, self.hidden_dim) self.initial_z = torch.nn.Linear(self.input_dim, self.hidden_dim) elif self.init_type == 'conv': self.start_conv_h = nn.Conv2d(in_channels=input_channels, out_channels=hidden_channels, kernel_size=(1,1)) self.start_conv_z = nn.Conv2d(in_channels=input_channels, out_channels=hidden_channels, kernel_size=(1,1)) def forward(self, times, coeffs): #source: B, T_1, N, D #target: B, T_2, N, D #supports = F.softmax(F.relu(torch.mm(self.nodevec1, self.nodevec1.transpose(0,1))), dim=1) spline = controldiffeq.NaturalCubicSpline(times, coeffs) if self.init_type == 'fc': h0 = self.initial_h(spline.evaluate(times[0])) z0 = self.initial_z(spline.evaluate(times[0])) elif self.init_type == 'conv': h0 = self.start_conv_h(spline.evaluate(times[0]).transpose(1,2).unsqueeze(-1)).transpose(1,2).squeeze() z0 = self.start_conv_z(spline.evaluate(times[0]).transpose(1,2).unsqueeze(-1)).transpose(1,2).squeeze() z_t = controldiffeq.cdeint_gde_dev(dX_dt=spline.derivative, #dh_dt h0=h0, z0=z0, func_f=self.func_f, func_g=self.func_g, t=times, method=self.solver, atol=self.atol, rtol=self.rtol) # init_state = self.encoder.init_hidden(source.shape[0]) # output, _ = self.encoder(source, init_state, self.node_embeddings) #B, T, N, hidden # output = output[:, -1:, :, :] #B, 1, N, hidden z_T = z_t[-1:,...].transpose(0,1) #CNN based predictor output = self.end_conv(z_T) #B, T*C, N, 1 output = output.squeeze(-1).reshape(-1, self.horizon, self.output_dim, self.num_node) output = output.permute(0, 1, 3, 2) #B, T, N, C return output ``` #### File: STG-NCDE/model/vector_fields.py ```python import torch import torch.nn as nn import torch.nn.functional as F class FinalTanh_f(nn.Module): def __init__(self, input_channels, hidden_channels, hidden_hidden_channels, num_hidden_layers): super(FinalTanh_f, self).__init__() self.input_channels = input_channels self.hidden_channels = hidden_channels self.hidden_hidden_channels = hidden_hidden_channels self.num_hidden_layers = num_hidden_layers self.linear_in = nn.Linear(hidden_channels, hidden_hidden_channels) self.linears = nn.ModuleList(torch.nn.Linear(hidden_hidden_channels, hidden_hidden_channels) for _ in range(num_hidden_layers - 1)) self.linear_out = nn.Linear(hidden_hidden_channels, input_channels * hidden_channels) #32,32*4 -> # 32,32,4 def extra_repr(self): return "input_channels: {}, hidden_channels: {}, hidden_hidden_channels: {}, num_hidden_layers: {}" \ "".format(self.input_channels, self.hidden_channels, self.hidden_hidden_channels, self.num_hidden_layers) def forward(self, z): z = self.linear_in(z) z = z.relu() for linear in self.linears: z = linear(z) z = z.relu() # z: torch.Size([64, 207, 32]) # self.linear_out(z): torch.Size([64, 207, 64]) z = self.linear_out(z).view(*z.shape[:-1], self.hidden_channels, self.input_channels) z = z.tanh() return z class FinalTanh_f_prime(nn.Module): def __init__(self, input_channels, hidden_channels, hidden_hidden_channels, num_hidden_layers): super(FinalTanh_f_prime, self).__init__() self.input_channels = input_channels self.hidden_channels = hidden_channels self.hidden_hidden_channels = hidden_hidden_channels self.num_hidden_layers = num_hidden_layers self.linear_in = nn.Linear(hidden_channels, hidden_hidden_channels) self.linears = nn.ModuleList(torch.nn.Linear(hidden_hidden_channels, hidden_hidden_channels) for _ in range(num_hidden_layers - 1)) # self.linear_out = nn.Linear(hidden_hidden_channels, input_channels * hidden_channels) #32,32*4 -> # 32,32,4 self.linear_out = nn.Linear(hidden_hidden_channels, hidden_channels * hidden_channels) #32,32*4 -> # 32,32,4 def extra_repr(self): return "input_channels: {}, hidden_channels: {}, hidden_hidden_channels: {}, num_hidden_layers: {}" \ "".format(self.input_channels, self.hidden_channels, self.hidden_hidden_channels, self.num_hidden_layers) def forward(self, z): z = self.linear_in(z) z = z.relu() for linear in self.linears: z = linear(z) z = z.relu() # z: torch.Size([64, 207, 32]) # self.linear_out(z): torch.Size([64, 207, 64]) # z = self.linear_out(z).view(*z.shape[:-1], self.hidden_channels, self.input_channels) z = self.linear_out(z).view(*z.shape[:-1], self.hidden_channels, self.hidden_channels) z = z.tanh() return z class FinalTanh_f2(torch.nn.Module): def __init__(self, input_channels, hidden_channels, hidden_hidden_channels, num_hidden_layers): super(FinalTanh_f2, self).__init__() self.input_channels = input_channels self.hidden_channels = hidden_channels self.hidden_hidden_channels = hidden_hidden_channels self.num_hidden_layers = num_hidden_layers # self.linear_in = torch.nn.Linear(hidden_channels, hidden_hidden_channels) # self.linears = torch.nn.ModuleList(torch.nn.Linear(hidden_hidden_channels, hidden_hidden_channels) # for _ in range(num_hidden_layers - 1)) # self.linear_out = torch.nn.Linear(hidden_hidden_channels, input_channels * hidden_channels) #32,32*4 -> # 32,32,4 self.start_conv = torch.nn.Conv2d(in_channels=hidden_channels, out_channels=hidden_channels, kernel_size=(1,1)) # self.linear = torch.nn.Conv2d(in_channels=hidden_channels, # out_channels=hidden_channels, # kernel_size=(1,1)) self.linears = torch.nn.ModuleList(torch.nn.Conv2d(in_channels=hidden_channels, out_channels=hidden_channels, kernel_size=(1,1)) for _ in range(num_hidden_layers - 1)) self.linear_out = torch.nn.Conv2d(in_channels=hidden_channels, out_channels=input_channels*hidden_channels, kernel_size=(1,1)) def extra_repr(self): return "input_channels: {}, hidden_channels: {}, hidden_hidden_channels: {}, num_hidden_layers: {}" \ "".format(self.input_channels, self.hidden_channels, self.hidden_hidden_channels, self.num_hidden_layers) def forward(self, z): # z: torch.Size([64, 207, 32]) z = self.start_conv(z.transpose(1,2).unsqueeze(-1)) z = z.relu() for linear in self.linears: z = linear(z) z = z.relu() z = self.linear_out(z).squeeze().transpose(1,2).view(*z.transpose(1,2).shape[:-2], self.hidden_channels, self.input_channels) z = z.tanh() return z class VectorField_g(torch.nn.Module): def __init__(self, input_channels, hidden_channels, hidden_hidden_channels, num_hidden_layers, num_nodes, cheb_k, embed_dim, g_type): super(VectorField_g, self).__init__() self.input_channels = input_channels self.hidden_channels = hidden_channels self.hidden_hidden_channels = hidden_hidden_channels self.num_hidden_layers = num_hidden_layers self.linear_in = torch.nn.Linear(hidden_channels, hidden_hidden_channels) # self.linears = torch.nn.ModuleList(torch.nn.Linear(hidden_hidden_channels, hidden_hidden_channels) # for _ in range(num_hidden_layers - 1)) #FIXME: # self.linear_out = torch.nn.Linear(hidden_hidden_channels, input_channels * hidden_channels) #32,32*4 -> # 32,32,4 self.linear_out = torch.nn.Linear(hidden_hidden_channels, hidden_channels * hidden_channels) #32,32*4 -> # 32,32,4 self.g_type = g_type if self.g_type == 'agc': self.node_embeddings = nn.Parameter(torch.randn(num_nodes, embed_dim), requires_grad=True) self.cheb_k = cheb_k self.weights_pool = nn.Parameter(torch.FloatTensor(embed_dim, cheb_k, hidden_hidden_channels, hidden_hidden_channels)) self.bias_pool = nn.Parameter(torch.FloatTensor(embed_dim, hidden_hidden_channels)) def extra_repr(self): return "input_channels: {}, hidden_channels: {}, hidden_hidden_channels: {}, num_hidden_layers: {}" \ "".format(self.input_channels, self.hidden_channels, self.hidden_hidden_channels, self.num_hidden_layers) def forward(self, z): z = self.linear_in(z) z = z.relu() if self.g_type == 'agc': z = self.agc(z) else: raise ValueError('Check g_type argument') # for linear in self.linears: # z = linear(x_gconv) # z = z.relu() #FIXME: # z = self.linear_out(z).view(*z.shape[:-1], self.hidden_channels, self.input_channels) z = self.linear_out(z).view(*z.shape[:-1], self.hidden_channels, self.hidden_channels) z = z.tanh() return z #torch.Size([64, 307, 64, 1]) def agc(self, z): """ Adaptive Graph Convolution - Node Adaptive Parameter Learning - Data Adaptive Graph Generation """ node_num = self.node_embeddings.shape[0] supports = F.softmax(F.relu(torch.mm(self.node_embeddings, self.node_embeddings.transpose(0, 1))), dim=1) # laplacian=False laplacian=False if laplacian == True: # support_set = [torch.eye(node_num).to(supports.device), -supports] support_set = [supports, -torch.eye(node_num).to(supports.device)] # support_set = [torch.eye(node_num).to(supports.device), -supports] # support_set = [-supports] else: support_set = [torch.eye(node_num).to(supports.device), supports] #default cheb_k = 3 for k in range(2, self.cheb_k): support_set.append(torch.matmul(2 * supports, support_set[-1]) - support_set[-2]) supports = torch.stack(support_set, dim=0) weights = torch.einsum('nd,dkio->nkio', self.node_embeddings, self.weights_pool) #N, cheb_k, dim_in, dim_out bias = torch.matmul(self.node_embeddings, self.bias_pool) #N, dim_out x_g = torch.einsum("knm,bmc->bknc", supports, z) #B, cheb_k, N, dim_in x_g = x_g.permute(0, 2, 1, 3) # B, N, cheb_k, dim_in z = torch.einsum('bnki,nkio->bno', x_g, weights) + bias #b, N, dim_out return z class VectorField_only_g(torch.nn.Module): def __init__(self, input_channels, hidden_channels, hidden_hidden_channels, num_hidden_layers, num_nodes, cheb_k, embed_dim, g_type): super(VectorField_only_g, self).__init__() self.input_channels = input_channels self.hidden_channels = hidden_channels self.hidden_hidden_channels = hidden_hidden_channels self.num_hidden_layers = num_hidden_layers self.linear_in = torch.nn.Linear(hidden_channels, hidden_hidden_channels) # self.linears = torch.nn.ModuleList(torch.nn.Linear(hidden_hidden_channels, hidden_hidden_channels) # for _ in range(num_hidden_layers - 1)) #FIXME: self.linear_out = torch.nn.Linear(hidden_hidden_channels, input_channels * hidden_channels) #32,32*4 -> # 32,32,4 # self.linear_out = torch.nn.Linear(hidden_hidden_channels, hidden_channels * hidden_channels) #32,32*4 -> # 32,32,4 self.g_type = g_type if self.g_type == 'agc': self.node_embeddings = nn.Parameter(torch.randn(num_nodes, embed_dim), requires_grad=True) self.cheb_k = cheb_k self.weights_pool = nn.Parameter(torch.FloatTensor(embed_dim, cheb_k, hidden_hidden_channels, hidden_hidden_channels)) self.bias_pool = nn.Parameter(torch.FloatTensor(embed_dim, hidden_hidden_channels)) def extra_repr(self): return "input_channels: {}, hidden_channels: {}, hidden_hidden_channels: {}, num_hidden_layers: {}" \ "".format(self.input_channels, self.hidden_channels, self.hidden_hidden_channels, self.num_hidden_layers) def forward(self, z): z = self.linear_in(z) z = z.relu() if self.g_type == 'agc': z = self.agc(z) else: raise ValueError('Check g_type argument') # for linear in self.linears: # z = linear(x_gconv) # z = z.relu() #FIXME: z = self.linear_out(z).view(*z.shape[:-1], self.hidden_channels, self.input_channels) # z = self.linear_out(z).view(*z.shape[:-1], self.hidden_channels, self.hidden_channels) z = z.tanh() return z #torch.Size([64, 307, 64, 1]) def agc(self, z): """ Adaptive Graph Convolution - Node Adaptive Parameter Learning - Data Adaptive Graph Generation """ node_num = self.node_embeddings.shape[0] supports = F.softmax(F.relu(torch.mm(self.node_embeddings, self.node_embeddings.transpose(0, 1))), dim=1) laplacian=False if laplacian == True: # support_set = [torch.eye(node_num).to(supports.device), -supports] support_set = [supports, -torch.eye(node_num).to(supports.device)] # support_set = [torch.eye(node_num).to(supports.device), -supports] # support_set = [-supports] else: support_set = [torch.eye(node_num).to(supports.device), supports] #default cheb_k = 3 for k in range(2, self.cheb_k): support_set.append(torch.matmul(2 * supports, support_set[-1]) - support_set[-2]) supports = torch.stack(support_set, dim=0) weights = torch.einsum('nd,dkio->nkio', self.node_embeddings, self.weights_pool) #N, cheb_k, dim_in, dim_out bias = torch.matmul(self.node_embeddings, self.bias_pool) #N, dim_out x_g = torch.einsum("knm,bmc->bknc", supports, z) #B, cheb_k, N, dim_in x_g = x_g.permute(0, 2, 1, 3) # B, N, cheb_k, dim_in z = torch.einsum('bnki,nkio->bno', x_g, weights) + bias #b, N, dim_out return z class VectorField_g_prime(torch.nn.Module): def __init__(self, input_channels, hidden_channels, hidden_hidden_channels, num_hidden_layers, num_nodes, cheb_k, embed_dim, g_type): super(VectorField_g_prime, self).__init__() self.input_channels = input_channels self.hidden_channels = hidden_channels self.hidden_hidden_channels = hidden_hidden_channels self.num_hidden_layers = num_hidden_layers self.linear_in = torch.nn.Linear(hidden_channels, hidden_hidden_channels) # self.linears = torch.nn.ModuleList(torch.nn.Linear(hidden_hidden_channels, hidden_hidden_channels) # for _ in range(num_hidden_layers - 1)) self.linear_out = torch.nn.Linear(hidden_hidden_channels, input_channels * hidden_channels) #32,32*4 -> # 32,32,4 self.g_type = g_type if self.g_type == 'agc': self.node_embeddings = nn.Parameter(torch.randn(num_nodes, embed_dim), requires_grad=True) self.cheb_k = cheb_k self.weights_pool = nn.Parameter(torch.FloatTensor(embed_dim, cheb_k, hidden_hidden_channels, hidden_hidden_channels)) self.bias_pool = nn.Parameter(torch.FloatTensor(embed_dim, hidden_hidden_channels)) def extra_repr(self): return "input_channels: {}, hidden_channels: {}, hidden_hidden_channels: {}, num_hidden_layers: {}" \ "".format(self.input_channels, self.hidden_channels, self.hidden_hidden_channels, self.num_hidden_layers) def forward(self, z): z = self.linear_in(z) z = z.relu() if self.g_type == 'agc': z = self.agc(z) else: raise ValueError('Check g_type argument') # for linear in self.linears: # z = linear(x_gconv) # z = z.relu() z = self.linear_out(z).view(*z.shape[:-1], self.hidden_channels, self.input_channels) z = z.tanh() return z #torch.Size([64, 307, 64, 1]) def agc(self, z): """ Adaptive Graph Convolution - Node Adaptive Parameter Learning - Data Adaptive Graph Generation """ node_num = self.node_embeddings.shape[0] supports = F.softmax(F.relu(torch.mm(self.node_embeddings, self.node_embeddings.transpose(0, 1))), dim=1) support_set = [torch.eye(node_num).to(supports.device), supports] #default cheb_k = 3 for k in range(2, self.cheb_k): support_set.append(torch.matmul(2 * supports, support_set[-1]) - support_set[-2]) supports = torch.stack(support_set, dim=0) weights = torch.einsum('nd,dkio->nkio', self.node_embeddings, self.weights_pool) #N, cheb_k, dim_in, dim_out bias = torch.matmul(self.node_embeddings, self.bias_pool) #N, dim_out x_g = torch.einsum("knm,bmc->bknc", supports, z) #B, cheb_k, N, dim_in x_g = x_g.permute(0, 2, 1, 3) # B, N, cheb_k, dim_in z = torch.einsum('bnki,nkio->bno', x_g, weights) + bias #b, N, dim_out return z ```
{ "source": "jeongwhanchoi/Z-GCNETs", "score": 3 }
#### File: Z-GCNETs/model/logger.py ```python import os import logging from datetime import datetime def get_logger(root, name=None, debug=True): #when debug is true, show DEBUG and INFO in screen #when debug is false, show DEBUG in file and info in both screen&file #INFO will always be in screen # create a logger logger = logging.getLogger(name) #critical > error > warning > info > debug > notset logger.setLevel(logging.DEBUG) # define the formate formatter = logging.Formatter('%(asctime)s: %(message)s', "%Y-%m-%d %H:%M") # create another handler for output log to console console_handler = logging.StreamHandler() if debug: console_handler.setLevel(logging.DEBUG) else: console_handler.setLevel(logging.INFO) # create a handler for write log to file logfile = os.path.join(root, 'run.log') print('Creat Log File in: ', logfile) file_handler = logging.FileHandler(logfile, mode='w') file_handler.setLevel(logging.DEBUG) file_handler.setFormatter(formatter) console_handler.setFormatter(formatter) # add Handler to logger logger.addHandler(console_handler) if not debug: logger.addHandler(file_handler) return logger if __name__ == '__main__': time = datetime.now().strftime('%Y%m%d%H%M%S') print(time) logger = get_logger('./log.txt', debug=True) logger.debug('this is a {} debug message'.format(1)) logger.info('this is an info message') logger.debug('this is a debug message') logger.info('this is an info message') logger.debug('this is a debug message') logger.info('this is an info message') ``` #### File: Z-GCNETs/model/utils.py ```python import numpy as np import pandas as pd import scipy.sparse as sp import os path = os.getcwd() def get_adjacency_matrxix(dataset, number_nodes): PEMS_net_dataset = pd.read_csv(path + '/data/PEMS0' + str(dataset)[5] + '/distance.csv', header=0) PEMS_net_edges = PEMS_net_dataset.values[:, 0:2] A = np.zeros((number_nodes, number_nodes), dtype= np.float32) for i in range(PEMS_net_edges.shape[0]): A[int(PEMS_net_edges[i,0] -1 ), int(PEMS_net_edges[i,1] -1 )] = 1. A[int(PEMS_net_edges[i, 1] - 1), int(PEMS_net_edges[i, 0] -1 )] = 1. A = sp.csr_matrix(A) return A # Fractional power def fractional_fltr(adj, number_nodes, sigma, gamma): degrees = np.array(adj.sum(1)).flatten() degrees[np.isinf(degrees)] = 0. D = sp.diags(degrees, 0) L_darray = (D - adj).toarray() D, V = np.linalg.eigh(L_darray, 'U') M_gamma_Lambda = D M_gamma_Lambda[M_gamma_Lambda < 1e-5] = 0 M_V = V M_gamma_Lambda = np.float_power(M_gamma_Lambda, gamma) M_gamma_Lambda = np.diag(M_gamma_Lambda, 0) M_gamma_Lambda = sp.csr_matrix(M_gamma_Lambda) M_V = sp.csr_matrix(M_V) Lg = M_V * M_gamma_Lambda Lg = Lg * sp.csr_matrix.transpose(M_V) Lg = Lg.toarray() Lg = Lg.reshape(1, -1) Lg[abs(Lg) < 1e-5] = 0. Lg = Lg.reshape(number_nodes, -1) Dg = np.diag(np.diag(Lg)) Ag = Dg - Lg Ag = sp.csr_matrix(Ag) power_Dg_l = np.float_power(np.diag(Dg), -sigma) power_Dg_l = sp.csr_matrix(np.diag(power_Dg_l)) power_Dg_r = np.float_power(np.diag(Dg), (sigma - 1)) power_Dg_r = sp.csr_matrix(np.diag(power_Dg_r)) fractional_fltr = power_Dg_l * Ag fractional_fltr = fractional_fltr * power_Dg_r return fractional_fltr trans_adj = get_adjacency_matrxix(dataset= 'PEMS04', number_nodes= 307) #frac_fltr = fractional_fltr(adj= trans_adj, number_nodes= 307, sigma= 0.5, gamma= 2.) sp.save_npz('PEMSD4_adj.npz', trans_adj) #test = sp.load_npz('PEMSD4_fltr.npz') ``` #### File: Z-GCNETs/model/ZGCNETs.py ```python import torch import torch.nn as nn from ZGCNCELL import NLSGCRNCNNCell class NNLSDCRNNCNN(nn.Module): def __init__(self, node_num, dim_in, dim_out, link_len, embed_dim, num_layers=1, window_len = 12): super(NNLSDCRNNCNN, self).__init__() assert num_layers >= 1, 'At least one DCRNN layer in the Encoder.' self.node_num = node_num self.input_dim = dim_in self.num_layers = num_layers self.window_len = window_len self.nlsdcrnncnn_cells = nn.ModuleList() for _ in range(0, num_layers-1): self.nlsdcrnncnn_cells.append(NLSGCRNCNNCell(node_num, dim_in, dim_out, window_len, link_len, embed_dim)) for _ in range(num_layers-1, num_layers): self.nlsdcrnncnn_cells.append(NLSGCRNCNNCell(node_num, dim_out, dim_out, window_len, link_len, embed_dim)) def forward(self, x, init_state, node_embeddings, zigzag_PI): assert x.shape[2] == self.node_num and x.shape[3] == self.input_dim seq_length = x.shape[1] current_inputs = x output_hidden = [] for i in range(self.num_layers): state = init_state[i] inner_states = [] for t in range(seq_length): state = self.nlsdcrnncnn_cells[i](current_inputs[:, t, :, :], state, current_inputs, node_embeddings, zigzag_PI[:, :, :].view(-1, 1, 100, 100)) #zigzag PI input shape inner_states.append(state) output_hidden.append(state) current_inputs = torch.stack(inner_states, dim=1) return current_inputs, output_hidden def init_hidden(self, batch_size): init_states = [] for i in range(self.num_layers): init_states.append(self.nlsdcrnncnn_cells[i].init_hidden_state(batch_size)) return torch.stack(init_states, dim=0) #(num_layers, B, N, hidden_dim) #------------------------------------------------------------------------------------------------------------------------# class NNLSGCRNCNN(nn.Module): def __init__(self, args): super(NNLSGCRNCNN, self).__init__() self.num_node = args.num_nodes self.input_dim = args.input_dim self.hidden_dim = args.rnn_units self.output_dim = args.output_dim self.horizon = args.horizon self.num_layers = args.num_layers self.default_graph = args.default_graph self.node_embeddings = nn.Parameter(torch.randn(self.num_node, args.embed_dim), requires_grad=True) self.encoder = NNLSDCRNNCNN(args.num_nodes, args.input_dim, args.rnn_units, args.link_len, args.embed_dim, args.num_layers, args.window_len) #predictor self.end_conv = nn.Conv2d(1, args.horizon * self.output_dim, kernel_size=(1, self.hidden_dim), bias=True) def forward(self, source, targets, zigzag_PI, teacher_forcing_ratio=0.5): #source: B, T_1, N, D #target: B, T_2, N, D init_state = self.encoder.init_hidden(source.shape[0]) output, _ = self.encoder(source, init_state, self.node_embeddings, zigzag_PI) #B, T, N, hidden output = output[:, -1:, :, :] #B, 1, N, hidden #CNN based predictor output = self.end_conv((output)) #B, T*C, N, 1 output = output.squeeze(-1).reshape(-1, self.horizon, self.output_dim, self.num_node) output = output.permute(0, 1, 3, 2) #B, T, N, C return output ```
{ "source": "jeongwonkwak/Korean-to-English-NMT", "score": 3 }
#### File: Korean-to-English-NMT/simple_nmt/decoder.py ```python import torch import torch.nn as nn from torch.nn.utils.rnn import pack_padded_sequence as pack from torch.nn.utils.rnn import pad_packed_sequence as unpack class Decoder(nn.Module): def __init__(self, word_vec_dim, hidden_size, n_layers=4, dropout_p=.2): super(Decoder, self).__init__() # Be aware of value of 'batch_first' parameter and 'bidirectional' parameter. self.rnn = nn.LSTM(word_vec_dim + hidden_size, hidden_size, num_layers=n_layers, dropout=dropout_p, bidirectional=False, batch_first=True ) def forward(self, emb_t, h_t_1_tilde, h_t_1): # |emb_t| = (batch_size, 1, word_vec_dim) # |h_t_1_tilde| = (batch_size, 1, hidden_size) # |h_t_1[0]| = (n_layers, batch_size, hidden_size) batch_size = emb_t.size(0) hidden_size = h_t_1[0].size(-1) if h_t_1_tilde is None: # If this is the first time-step, h_t_1_tilde = emb_t.new(batch_size, 1, hidden_size).zero_() # Input feeding trick. x = torch.cat([emb_t, h_t_1_tilde], dim=-1) # Unlike encoder, decoder must take an input for sequentially. y, h = self.rnn(x, h_t_1) return y, h class Generator(nn.Module): def __init__(self, hidden_size, output_size): super(Generator, self).__init__() self.output = nn.Linear(hidden_size, output_size) self.softmax = nn.LogSoftmax(dim=-1) def forward(self, x): # |x| = (batch_size, length, hidden_size) y = self.softmax(self.output(x)) # |y| = (batch_size, length, output_size) # Return log-probability instead of just probability. print("***********generator****************") return y ```
{ "source": "Jeongwoo-KGI/maplestory_dpm_calc", "score": 2 }
#### File: dpmModule/jobs/cadena.py ```python from ..kernel.graph import DynamicVariableOperation from ..kernel import core from ..character import characterKernel as ck from functools import partial from ..status.ability import Ability_tool from . import globalSkill from .jobbranch import thieves from .jobclass import nova from math import ceil from typing import Any, Dict ###### Passive Skill ###### class WeaponVarietyStackWrapper(core.StackSkillWrapper): def __init__(self, _max, prof_agent, final_attack, use_prof_agent_attack): super(WeaponVarietyStackWrapper, self).__init__(core.BuffSkill("์›จํฐ ๋ฒ„๋ผ์ด์–ดํ‹ฐ ์Šคํƒ", 0, 99999999), _max) self.currentWeapon = None self.use_final_attack = core.OptionalElement(final_attack.is_available, final_attack, name = "์›จํฐ ๋ฒ„๋ผ์ด์–ดํ‹ฐ ์ฟจํƒ€์ž„") self.use_prof_agent_attack = use_prof_agent_attack self.prof_agent = prof_agent self.modifierInvariantFlag = False def vary(self, weapon): self.currentWeapon = weapon return core.ResultObject(0, core.CharacterModifier(), 0, 0, sname = self.skill.name, spec = 'graph control') def get_modifier(self): multiplier = 11 if self.prof_agent.is_active(): multiplier *= 2 return core.CharacterModifier(pdamage_indep = 8 * multiplier) def _changed(self, weapon): return self.currentWeapon != weapon def stackController(self, weapon): task = core.Task(self, partial(self.vary, weapon)) taskHolder = core.TaskHolder(task, name = "์›จ๋ฒ„ ์Šคํƒ") taskHolder.onAfter(self.use_final_attack) taskHolder.onAfter(self.use_prof_agent_attack) conditionalTask = core.OptionalElement(partial(self._changed, weapon), taskHolder, name = "๋ฌด๊ธฐ ๊ต์ฒด") return conditionalTask class MaelstromWrapper(core.SummonSkillWrapper): def __init__(self, vEhc, tick): self.tick_list = [840, 120, 180, 270, 390, 540, 720, 930, 1170, 1440, 1740, 99999999] self.currentTick = len(self.tick_list) self.reuseTick = tick skill = core.SummonSkill("์ฒด์ธ์•„์ธ :๋ฉ”์ผ์ŠคํŠธ๋กฌ", 540, 0, 300+12*vEhc.getV(3,2), 4, 8540).isV(vEhc,3,2) super(MaelstromWrapper, self).__init__(skill) def check_use(self): return self.currentTick >= self.reuseTick def _use(self, skill_modifier): result = super(MaelstromWrapper, self)._use(skill_modifier) self.tick = self.tick_list[0] self.currentTick = 1 return result def _useTick(self): result = super(MaelstromWrapper, self)._useTick() self.currentTick += 1 return result def get_delay(self) -> float: return self.tick_list[self.currentTick] def comboBuilder(name, skill_list): combo = core.DamageSkill(name, 0, 0, 0).wrap(core.DamageSkillWrapper) for sk in skill_list: combo.onAfter(sk) delaySum = 0 cnst_list = [] for sk in skill_list: if DynamicVariableOperation.reveal_argument(sk.skill.cooltime) > 0: cnst_list += [core.ConstraintElement(sk._id + "(์ฟจํƒ€์ž„)", sk, partial(sk.is_cooltime_left, delaySum, -1))] delaySum += DynamicVariableOperation.reveal_argument(sk.skill.delay) for cnst in cnst_list: combo.onConstraint(cnst) return combo class JobGenerator(ck.JobGenerator): def __init__(self): super(JobGenerator, self).__init__() self.vEnhanceNum = 11 self.jobtype = "luk" self.jobname = "์นด๋ฐ๋‚˜" self.ability_list = Ability_tool.get_ability_set('boss_pdamage', 'reuse', 'mess') # ์ž„์‹œ๋กœ ๋ณด๊ณต ์ฒซ์ค„ ์‚ฌ์šฉ, ์žฌ์‚ฌ์šฉ ๊ตฌํ˜„์‹œ ๋ณ€๊ฒฝ self.preEmptiveSkills = 1 def get_passive_skill_list(self, vEhc, chtr : ck.AbstractCharacter, options: Dict[str, Any]): passive_level = chtr.get_base_modifier().passive_level + self.combat CollectingForLeap = core.InformedCharacterModifier("์ฝœ๋ ‰ํŒ… ํฌ๋ฆฌํ”„", stat_main = 50) PhisicalTraining = core.InformedCharacterModifier("ํ”ผ์ง€์ปฌ ํŠธ๋ ˆ์ด๋‹", stat_main = 30, stat_sub = 30) QuickserviceMind = core.InformedCharacterModifier("ํ€ต์„œ๋น„์Šค ๋งˆ์ธ๋“œ", att = 10, crit_damage = 5, crit = 10) BasicDetection = core.InformedCharacterModifier("๋ฒ ์ด์ง ๋””ํ…์…˜", armor_ignore = 20) WeaponMastery = core.InformedCharacterModifier("์›จํฐ ์—‘์ŠคํผํŠธ", att = 30 + passive_level, crit = 30 + passive_level, crit_damage = 15 + ceil(passive_level / 2)) QuickserviceMind_II = core.InformedCharacterModifier("ํ€ต์„œ๋น„์Šค ๋งˆ์ธ๋“œ II", att = 30, crit_damage = 5, crit = 10) ReadyToDiePassive = thieves.ReadyToDiePassiveWrapper(vEhc, 2, 3) return [CollectingForLeap, PhisicalTraining, QuickserviceMind, BasicDetection, WeaponMastery, QuickserviceMind_II, ReadyToDiePassive] def get_modifier_optimization_hint(self): return core.CharacterModifier(armor_ignore = 30, crit_damage = 44, pdamage = 20, crit = 6) def get_not_implied_skill_list(self, vEhc, chtr : ck.AbstractCharacter, options: Dict[str, Any]): passive_level = chtr.get_base_modifier().passive_level + self.combat WeaponConstant = core.InformedCharacterModifier("๋ฌด๊ธฐ์ƒ์ˆ˜",pdamage_indep = 30) Mastery = core.InformedCharacterModifier("์ˆ™๋ จ๋„",pdamage_indep = -5 + 0.5 * ceil(passive_level / 2)) return [WeaponConstant, Mastery] def generate(self, vEhc, chtr : ck.AbstractCharacter, options: Dict[str, Any]): ''' ๋…ผ์ฒด์ธ์•„์ธ -๋ฆฌ์ธํฌ์Šค, ๋ณด์Šคํ‚ฌ๋Ÿฌ ์ฒด์ธ์•„์ธ ์ŠคํŠธ๋กœํฌ-๋„ฅ์ŠคํŠธ์–ดํƒ ๋ฆฌ์ธํฌ์Šค, ๋ฆฌ์ธํฌ์Šค ์ฒด์ธ์•„์ธ :ํ…Œ์ดํฌ๋‹ค์šด-์ฟจํƒ€์ž„ ๋ฆฌ๋“€์Šค ์ฝ”๊ฐ•์ˆœ์„œ: ์ŠคํŠธ๋กœํฌ,๋ฒ„๋ผ์ด์–ดํ‹ฐ,ํ—ˆ์Šฌ - ๋‹ˆ๋“ค๋ฐฐํŠธ - ๋ธŒ๋ฆญ - ์ƒท๊ฑด/๋ด„ - ํฌ๋Ÿฌ์‹œ/์—์ด์ „ํŠธ - ์‹œ๋ฏธํ„ฐ/ํด๋กœ - ๋‚˜์ดํ”„/์œ™๋Œ€๊ฑฐ - ํ…Œ์ดํฌ๋‹ค์šด ์Šคํ‚ฌ๊ฐ•ํ™”์ˆœ์„œ: ํ“จ๋ฆฌ-์˜ค๋“œ-๋ฒ„์ŠคํŠธ-๋ฉœ-๋ ˆํˆฌ๋‹ค 1ํƒ€์บ”์Šฌ 150ms ์บ”์Šฌ 180ms ์„œ๋จผ ์Šค๋กœ์ž‰ ์œ™๋Œ€๊ฑฐ 3ํƒ€ ํ›„ ํญ๋ฐœ ์‹œ๋ฏธํ„ฐ, ์ƒท๊ฑด, ๋‚˜์ดํ”„, ๋ธŒ๋ฆญ, ๋‹ˆ๋“ค๋ฐฐํŠธ 1ํƒ€, ์œ™๋Œ€๊ฑฐ 1ํ‹ฑ์€ ์ตœ์ข…๋Ž€ 15%๋ฅผ ๋ฐ›๊ณ  ์žˆ์Œ. ๋ด„-๋ธŒ๋ฆญ / ์ƒท๊ฑด-ํด๋กœ / ๋‚˜์ดํ”„ / ์œ™๋Œ€๊ฑฐ / ๋ฐฐํŠธ / ์‹œ๋ฏธํ„ฐ-์ฒด์ด์Šค / ๋ฉ”์ผ์ŠคํŠธ๋กฌ 4์ดˆ๋‹น 1ํšŒ ''' STROKE1_HIT_RATE = 1 STROKE1_CANCEL_TIME = 150 CANCEL_TIME = 180 WINGDAGGER_HIT = 3 passive_level = chtr.get_base_modifier().passive_level + self.combat CheapShotII = core.CharacterModifier(crit = 2, crit_damage = 10 + ceil(passive_level / 4)) # ์œ„ํฌํฌ์ธํŠธ ์ปจ๋ฒ„์ง• ์–ดํƒ CheapShotIIBleed = core.DotSkill("์œ„ํฌํฌ์ธํŠธ ์ปจ๋ฒ„์ง• ์–ดํƒ(์ถœํ˜ˆ)", 0, 1000, 110 + 2 * passive_level, 1, 99999999).wrap(core.DotSkillWrapper) CheapShotIIBleedBuff = core.BuffSkill("์œ„ํฌํฌ์ธํŠธ ์ปจ๋ฒ„์ง• ์–ดํƒ(์ถœํ˜ˆ)(๋””๋ฒ„ํ”„)", 0, 99999999, crit = CheapShotII.crit, crit_damage = CheapShotII.crit_damage).wrap(core.BuffSkillWrapper) CheapShotIIAdventureMageBuff = core.BuffSkill("์œ„ํฌํฌ์ธํŠธ ์ปจ๋ฒ„์ง• ์–ดํƒ(๋ชจ๋ฒ•๋งํฌ)", 0, 99999999, crit = CheapShotII.crit, crit_damage = CheapShotII.crit_damage).wrap(core.BuffSkillWrapper) #๋ฒ„ํ”„ Booster = core.BuffSkill("๋ถ€์Šคํ„ฐ", 0, 200000).wrap(core.BuffSkillWrapper) SpecialPotion = core.BuffSkill("์ƒ์ธ๋‹จ ํŠน์ œ ๋น„์•ฝ", 570, 60*1000, pdamage = 10, crit = 10, cooltime = 120*1000).wrap(core.BuffSkillWrapper) # ์นด๋ฐ๋‚˜๋งŒ ๋”œ๋ ˆ์ด์žˆ์Œ ProfessionalAgent = core.BuffSkill("ํ”„๋กœํŽ˜์…”๋„ ์—์ด์ „ํŠธ", 570, 30000, cooltime = 200000).wrap(core.BuffSkillWrapper) ProfessionalAgentAdditionalDamage = core.DamageSkill("ํ”„๋กœํŽ˜์…”๋„ ์—์ด์ „ํŠธ(๊ณต๊ฒฉ)", 0, 255, 2).setV(vEhc, 4, 2, False).wrap(core.DamageSkillWrapper) ProfessionalAgent_Attack = core.OptionalElement(ProfessionalAgent.is_active, ProfessionalAgentAdditionalDamage, name= "ํ”„๋กœํŽ˜์…”๋„ ์—์ด์ „ํŠธ ์ถ”๊ฐ€ํƒ€") #์›จํฐ๋ฒ„๋ผ์ด์–ดํ‹ฐ ์ถ”๊ฐ€ํƒ€ WeaponVarietyAttack = core.DamageSkill("์›จํฐ ๋ฒ„๋ผ์ด์–ดํ‹ฐ", 0, 350 + 15 * passive_level, 4, cooltime = 250).setV(vEhc, 0, 2, False).wrap(core.DamageSkillWrapper) WeaponVariety = WeaponVarietyStackWrapper(11, ProfessionalAgent, WeaponVarietyAttack, ProfessionalAgent_Attack) #์ฒด์ธ์•„์ธ  ChainArts_Stroke_1 = core.DamageSkill("์ฒด์ธ์•„์ธ :์ŠคํŠธ๋กœํฌ(1ํƒ€)", 210, 150, 2 * STROKE1_HIT_RATE, modifier = core.CharacterModifier(pdamage = 20)).setV(vEhc, 0, 2, False).wrap(core.DamageSkillWrapper) ChainArts_Stroke_1_Cancel = core.DamageSkill("์ฒด์ธ์•„์ธ :์ŠคํŠธ๋กœํฌ(1ํƒ€)(์บ”์Šฌ)", STROKE1_CANCEL_TIME, 150, 2 * STROKE1_HIT_RATE, modifier = core.CharacterModifier(pdamage = 20)).setV(vEhc, 0, 2, False).wrap(core.DamageSkillWrapper) ChainArts_Stroke_2 = core.DamageSkill("์ฒด์ธ์•„์ธ :์ŠคํŠธ๋กœํฌ(2ํƒ€)", 390, 400, 5, modifier = core.CharacterModifier(pdamage = 20)).setV(vEhc, 0, 2, False).wrap(core.DamageSkillWrapper) ChainArts_Stroke_2_Cancel = core.DamageSkill("์ฒด์ธ์•„์ธ :์ŠคํŠธ๋กœํฌ(2ํƒ€)(์บ”์Šฌ)", CANCEL_TIME, 400, 5, modifier = core.CharacterModifier(pdamage = 20)).setV(vEhc, 0, 2, False).wrap(core.DamageSkillWrapper) ChainArts_Chais = core.DamageSkill("์ฒด์ธ์•„์ธ :์ฒด์ด์Šค", 150, 100, 1).wrap(core.DamageSkillWrapper) ChainArts_Crush = core.DamageSkill("์ฒด์ธ์•„์ธ :ํฌ๋Ÿฌ์‹œ", 750, 510, 15, cooltime = 30000).setV(vEhc, 4, 2, True).wrap(core.DamageSkillWrapper) # ๋ฏธ์‚ฌ์šฉ #ChainArts_ToughHustleInit = core.DamageSkill("์ฒด์ธ์•„์ธ :ํ„ฐํ”„ํ—ˆ์Šฌ", 0, 0, 0, cooltime = 50000).setV(vEhc, 0, 2, False) #์ง€์†ํ˜• #ChainArts_ToughHustle = core.DamageSkill("์ฒด์ธ์•„์ธ :ํ„ฐํ”„ํ—ˆ์Šฌ", 5000000, 600 + 7 * self.combat, 2).setV(vEhc, 0, 2, False) #์ง€์†ํ˜•, 6์ดˆ, ๋ฏธ์‚ฌ์šฉ ChainArts_Takedown_Init = core.DamageSkill("์ฒด์ธ์•„์ธ :ํ…Œ์ดํฌ๋‹ค์šด", 4080, 300+3*self.combat, 2, cooltime = (150-30)*1000, red=True).setV(vEhc, 7, 2, False).wrap(core.DamageSkillWrapper) ChainArts_Takedown_Attack = core.DamageSkill("์ฒด์ธ์•„์ธ :ํ…Œ์ดํฌ๋‹ค์šด(์—ฐ์† ๊ณต๊ฒฉ)", 2970, 990+15*self.combat, 15, modifier = core.CharacterModifier(armor_ignore = 80)).setV(vEhc, 7, 2, False).wrap(core.DamageSkillWrapper) ChainArts_Takedown_Wave = core.DamageSkill("์ฒด์ธ์•„์ธ :ํ…Œ์ดํฌ๋‹ค์šด(ํŒŒ๋™)", 0, 600+5*self.combat, 4).setV(vEhc, 7, 2, False).wrap(core.DamageSkillWrapper) # 8ํšŒ ๋ฐ˜๋ณต ChainArts_Takedown_Final = core.DamageSkill("์ฒด์ธ์•„์ธ :ํ…Œ์ดํฌ๋‹ค์šด(์ตœ์ข…)", 0, 500, 10, modifier = core.CharacterModifier(armor_ignore = 80)).setV(vEhc, 7, 2, False).wrap(core.DamageSkillWrapper) ChainArts_Takedown_Bind = core.BuffSkill("์ฒด์ธ์•„์ธ :ํ…Œ์ดํฌ๋‹ค์šด(๋ฐ”์ธ๋“œ)", 0, 10000, crit = CheapShotII.crit, crit_damage = CheapShotII.crit_damage, cooltime = -1).wrap(core.BuffSkillWrapper) #๋…ผ์ฒด์ธ์•„์ธ  ์Šคํ‚ฌ SummonCuttingSimiter = core.DamageSkill("์„œ๋จผ ์ปคํŒ… ์‹œ๋ฏธํ„ฐ", CANCEL_TIME, 425 + 5 * passive_level, 5, cooltime = 4000, red = True, modifier = core.CharacterModifier(boss_pdamage = 20, pdamage = 20, pdamage_indep = 15)).setV(vEhc, 5, 2, False).wrap(core.DamageSkillWrapper) SummonScratchingClaw = core.DamageSkill("์„œ๋จผ ์Šคํฌ๋ž˜์นญ ํด๋กœ", CANCEL_TIME, 455 + 5 * passive_level, 4, cooltime = 3000, red = True, modifier = core.CharacterModifier(boss_pdamage = 20, pdamage = 20)).setV(vEhc, 5, 2, False).wrap(core.DamageSkillWrapper) SummonThrowingWingdagger = core.DamageSkill("์„œ๋จผ ์Šค๋กœ์ž‰ ์œ™๋Œ€๊ฑฐ", 780, 0, 0, cooltime = 10000, red = True, modifier = core.CharacterModifier(boss_pdamage = 20, pdamage = 20)).wrap(core.DamageSkillWrapper) SummonThrowingWingdaggerSummon = core.SummonSkill("์„œ๋จผ ์Šค๋กœ์ž‰ ์œ™๋Œ€๊ฑฐ(์†Œํ™˜)", 0, 330, 425 + 5 * passive_level, 1, 330*WINGDAGGER_HIT, cooltime= -1, modifier = core.CharacterModifier(boss_pdamage = 20, pdamage = 20, pdamage_indep = 15 / WINGDAGGER_HIT)).setV(vEhc, 6, 2, False).wrap(core.SummonSkillWrapper) SummonThrowingWingdaggerEnd = core.DamageSkill("์„œ๋จผ ์Šค๋กœ์ž‰ ์œ™๋Œ€๊ฑฐ(ํญ๋ฐœ)", 0, 670 + 5 * passive_level, 3, cooltime = -1, modifier = core.CharacterModifier(boss_pdamage = 20, pdamage = 20)).setV(vEhc, 6, 2, False).wrap(core.DamageSkillWrapper) SummonShootingShotgun = core.DamageSkill("์„œ๋จผ ์ŠˆํŒ… ์ƒท๊ฑด", CANCEL_TIME, 510 + 5 * passive_level, 7, cooltime = 5000, red = True, modifier = core.CharacterModifier(boss_pdamage = 20, pdamage = 20, pdamage_indep = 15)).setV(vEhc, 3, 2, False).wrap(core.DamageSkillWrapper) SummonSlachingKnife = core.DamageSkill("์„œ๋จผ ์Šฌ๋ž˜์‹ฑ ๋‚˜์ดํ”„", CANCEL_TIME, 435 + 5 * passive_level, 8, cooltime = 10000, red = True, modifier = core.CharacterModifier(boss_pdamage = 20, pdamage = 20, pdamage_indep = 15)).setV(vEhc, 6, 2, False).wrap(core.DamageSkillWrapper) SummonSlachingKnife_Horror = core.BuffSkill("์„œ๋จผ ์Šฌ๋ž˜์‹ฑ ๋‚˜์ดํ”„(๊ณตํฌ)", 0, 10000, armor_ignore = 30, crit = CheapShotII.crit, crit_damage = CheapShotII.crit_damage, cooltime = -1).wrap(core.BuffSkillWrapper) SummonReleasingBoom = core.DamageSkill("์„œ๋จผ ๋ฆด๋ฆฌ์ง• ๋ด„", CANCEL_TIME, 0, 0, cooltime = 8000, red = True).setV(vEhc, 3, 2, False).wrap(core.DamageSkillWrapper) SummonReleasingBoom_Explode = core.DamageSkill("์„œ๋จผ ๋ฆด๋ฆฌ์ง• ๋ด„(ํญ๋ฐœ)", 0, 535 + 5 * passive_level, 6, cooltime = -1, modifier = core.CharacterModifier(boss_pdamage = 20, pdamage = 20)).setV(vEhc, 3, 2, False).wrap(core.DamageSkillWrapper) SummonStrikingBrick = core.DamageSkill("์„œ๋จผ ์ŠคํŠธ๋ผ์ดํ‚น ๋ธŒ๋ฆญ", 390+CANCEL_TIME-STROKE1_CANCEL_TIME, 485 + 8*self.combat, 7, cooltime = 8000, red = True, modifier = core.CharacterModifier(boss_pdamage = 20, pdamage = 20, pdamage_indep = 15)).setV(vEhc, 2, 2, False).wrap(core.DamageSkillWrapper) # ๊ฐ•์ œ์ด๋™ 390ms, ํญ๋ฐœ 360ms(์บ”์Šฌ๊ฐ€๋Šฅ), ๊ฐ•์ œ์ด๋™ ๋„์ค‘ 1ํƒ€ ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•˜๋ฏ€๋กœ 1ํƒ€ ๋”œ๋ ˆ์ด๋งŒํผ ๋บŒ. SummonBeatingNeedlebat_1 = core.DamageSkill("์„œ๋จผ ๋น„ํŒ… ๋‹ˆ๋“ค๋ฐฐํŠธ(1ํƒ€)", 360, 450 + 10 * self.combat, 6, modifier = core.CharacterModifier(pdamage = 40 + 20, boss_pdamage = 20, pdamage_indep = 15), cooltime = 12000, red = True).setV(vEhc, 1, 2, False).wrap(core.DamageSkillWrapper) SummonBeatingNeedlebat_2 = core.DamageSkill("์„œ๋จผ ๋น„ํŒ… ๋‹ˆ๋“ค๋ฐฐํŠธ(2ํƒ€)", 420, 555 + 10 * self.combat, 7, modifier = core.CharacterModifier(pdamage = 40 + 20, boss_pdamage = 20)).setV(vEhc, 1, 2, False).wrap(core.DamageSkillWrapper) SummonBeatingNeedlebat_3 = core.DamageSkill("์„œ๋จผ ๋น„ํŒ… ๋‹ˆ๋“ค๋ฐฐํŠธ(3ํƒ€)", CANCEL_TIME, 715 + 10 * self.combat, 8, modifier = core.CharacterModifier(pdamage = 50 + 20, boss_pdamage = 20)).setV(vEhc, 1, 2, False).wrap(core.DamageSkillWrapper) SummonBeatingNeedlebat_Honmy = core.BuffSkill("์„œ๋จผ ๋น„ํŒ… ๋‹ˆ๋“ค๋ฐฐํŠธ(ํ˜ผ๋ฏธ)", 0, 15000, crit = CheapShotII.crit, crit_damage = CheapShotII.crit_damage, cooltime = -1).wrap(core.BuffSkillWrapper) # 5์ฐจ VenomBurst = core.DotSkill("๋ฒ ๋†ˆ ๋ฒ„์ŠคํŠธ", 0, 1000, 160+6*vEhc.getV(4,4), 1, 99999999).isV(vEhc,4,4).wrap(core.DotSkillWrapper) VenomBurst_Poison = core.BuffSkill("๋ฒ ๋†ˆ ๋ฒ„์ŠคํŠธ(์ค‘๋…)", 0, 99999999, crit = CheapShotII.crit, crit_damage = CheapShotII.crit_damage, cooltime = -1).isV(vEhc,4,4).wrap(core.BuffSkillWrapper) ReadyToDie = thieves.ReadyToDieWrapper(vEhc, 2, 3) MirrorBreak, MirrorSpider = globalSkill.SpiderInMirrorBuilder(vEhc, 0, 0) NovaGoddessBless = nova.NovaGoddessBlessWrapper(vEhc, 0, 0) ChainArts_Fury = core.BuffSkill("์ฒด์ธ์•„์ธ :ํ“จ๋ฆฌ", 420, (35+vEhc.getV(0,0))*1000, cooltime = (180-vEhc.getV(0,0))*1000, red = True).isV(vEhc,0,0).wrap(core.BuffSkillWrapper) ChainArts_Fury_Damage = core.DamageSkill("์ฒด์ธ์•„์ธ :ํ“จ๋ฆฌ(๊ณต๊ฒฉ)", 0, 250+10*vEhc.getV(0,0), 6, cooltime = 600).isV(vEhc,0,0).wrap(core.DamageSkillWrapper) AD_Odnunce = core.SummonSkill("A.D ์˜ค๋“œ๋„Œ์Šค", 360, 270, 225+9*vEhc.getV(1,1), 5, 10000, cooltime = 25000, red = True).isV(vEhc,1,1).wrap(core.SummonSkillWrapper) # 37*5ํƒ€ AD_Odnunce_Final = core.DamageSkill("A.D ์˜ค๋“œ๋„Œ์Šค(๋ง‰ํƒ€)", 0, 750+30*vEhc.getV(1,1), 8, cooltime = -1).isV(vEhc,1,1).wrap(core.DamageSkillWrapper) ChainArts_Maelstorm = MaelstromWrapper(vEhc, 8) ChainArts_Maelstorm_Slow = core.BuffSkill("์ฒด์ธ์•„์ธ :๋ฉ”์ผ์ŠคํŠธ๋กฌ(์ค‘๋…)", 0, 4000+6000, crit = CheapShotII.crit, crit_damage = CheapShotII.crit_damage, cooltime = -1).isV(vEhc,3,2).wrap(core.BuffSkillWrapper) WeaponVarietyFinale = core.StackableDamageSkillWrapper( core.DamageSkill("์›จํฐ ๋ฒ„๋ผ์ด์–ดํ‹ฐ ํ”ผ๋‚ ๋ ˆ", 0, 250+10*vEhc.getV(0, 0), 7*4, cooltime=11000).isV(vEhc, 0, 0), 3 ) WeaponVarietyFinaleTrigger = core.StackSkillWrapper(core.BuffSkill("์›จํฐ ๋ฒ„๋ผ์ด์–ดํ‹ฐ ํ”ผ๋‚ ๋ ˆ(์›จ๋ฒ„ํšŸ์ˆ˜)", 0, 99999999), 4) ###### Skill Wrapper ###### #๊ธฐ๋ณธ ์—ฐ๊ณ„ ์—ฐ๊ฒฐ #ChainArts_ToughHustleInit.onAfter(ChainArts_ToughHustle) ํ„ฐํ”„ํ—ˆ์Šฌ ๋ฏธ์‚ฌ์šฉ ChainArts_Takedown_Init.onBefore(ChainArts_Takedown_Bind) ChainArts_Takedown_Init.onAfter(ChainArts_Takedown_Attack) ChainArts_Takedown_Init.onAfter(core.RepeatElement(ChainArts_Takedown_Wave, 8)) ChainArts_Takedown_Init.onAfter(ChainArts_Takedown_Final) SummonThrowingWingdagger.onAfter(SummonThrowingWingdaggerSummon) SummonThrowingWingdaggerSummon.onAfter(SummonThrowingWingdaggerEnd.controller(330*WINGDAGGER_HIT)) SummonSlachingKnife.onAfter(SummonSlachingKnife_Horror) SummonReleasingBoom.onAfter(SummonReleasingBoom_Explode.controller(1000)) # 1์ดˆ ํ›„ ํญ๋ฐœ VenomBurst.onAfter(VenomBurst_Poison) ChainArts_Fury_Use = core.OptionalElement(lambda : ChainArts_Fury_Damage.is_available() and ChainArts_Fury.is_active(), ChainArts_Fury_Damage, name = "์ฒด์ธ์•„์ธ :ํ“จ๋ฆฌ ๋ฐœ๋™์กฐ๊ฑด") AD_Odnunce.onEventEnd(AD_Odnunce_Final) ChainArts_Maelstorm.onAfter(ChainArts_Maelstorm_Slow) # ์›จํฐ ๋ฒ„๋ผ์ด์–ดํ‹ฐ ํ˜ธ์ถœ SummonCuttingSimiter.onAfter(WeaponVariety.stackController("์‹œ๋ฏธํ„ฐ")) SummonScratchingClaw.onAfter(WeaponVariety.stackController("ํด๋กœ")) SummonThrowingWingdaggerSummon.onTick(WeaponVariety.stackController("์œ™๋Œ€๊ฑฐ")) SummonThrowingWingdaggerEnd.onAfter(WeaponVariety.stackController("์œ™๋Œ€๊ฑฐ")) SummonShootingShotgun.onAfter(WeaponVariety.stackController("์ƒท๊ฑด")) SummonSlachingKnife.onAfter(WeaponVariety.stackController("๋‚˜์ดํ”„")) SummonReleasingBoom_Explode.onAfter(WeaponVariety.stackController("๋ด„")) SummonStrikingBrick.onAfter(WeaponVariety.stackController("๋ธŒ๋ฆญ")) SummonBeatingNeedlebat_1.onAfter(WeaponVariety.stackController("๋ฐฐํŠธ")) SummonBeatingNeedlebat_1.onAfter(SummonBeatingNeedlebat_2) SummonBeatingNeedlebat_2.onAfter(WeaponVariety.stackController("๋ฐฐํŠธ")) SummonBeatingNeedlebat_2.onAfter(SummonBeatingNeedlebat_3) SummonBeatingNeedlebat_3.onAfter(WeaponVariety.stackController("๋ฐฐํŠธ")) SummonBeatingNeedlebat_3.onAfter(SummonBeatingNeedlebat_Honmy) # ์›จํฐ ๋ฒ„๋ผ์ด์–ดํ‹ฐ ํ”ผ๋‚ ๋ ˆ WeaponVarietyFinale.onAfter(WeaponVarietyFinaleTrigger.stackController(-4)) WeaponVarietyAttack.onAfter(WeaponVarietyFinaleTrigger.stackController(1)) WeaponVarietyAttack.onAfter( core.OptionalElement(lambda: WeaponVarietyFinaleTrigger.judge(4, 1) and WeaponVarietyFinale.is_available(), WeaponVarietyFinale, name="์›จ๋ฒ„ํ”ผ ๋ฐœ๋™์กฐ๊ฑด")) Reduce2sec = WeaponVarietyFinale.controller(2000, 'reduce_cooltime') Reduce1sec = WeaponVarietyFinale.controller(1000, 'reduce_cooltime') ChainArts_Fury_Damage.onAfter(Reduce1sec) ChainArts_Crush.onAfter(Reduce2sec) ChainArts_Takedown_Init.onAfter(Reduce2sec) ChainArts_Takedown_Attack.onAfter(Reduce2sec) ChainArts_Takedown_Wave.onAfter(Reduce2sec) ChainArts_Takedown_Final.onAfter(Reduce2sec) # ์นด๋ฐ๋‚˜ ๋”œ ์‚ฌ์ดํด๋“ค. # ํ‰ํƒ€ NormalAttack = core.DamageSkill("ํ‰ํƒ€", 0, 0, 0).wrap(core.DamageSkillWrapper) for i in [ChainArts_Stroke_1, ChainArts_Stroke_2]: NormalAttack.onAfter(i) # ์ƒท๊ฑด-ํด๋กœ ShootgunClawCombo = comboBuilder("์ƒท๊ฑด-ํด๋กœ", [ChainArts_Stroke_1_Cancel, SummonShootingShotgun, ChainArts_Stroke_1, ChainArts_Stroke_2_Cancel, SummonScratchingClaw]) # ์‹œ๋ฏธํ„ฐ - ์ฒด์ด์Šค SimiterChaseCombo = comboBuilder("์‹œ๋ฏธํ„ฐ-์ฒด์ด์Šค", [ChainArts_Stroke_1_Cancel, SummonCuttingSimiter, ChainArts_Chais]) # ๋‚˜์ดํ”„ KnifeCombo = comboBuilder("๋‚˜์ดํ”„", [ChainArts_Stroke_1_Cancel, SummonSlachingKnife]) # ๋ด„-๋ธŒ๋ฆญ BommBrickCombo = comboBuilder("๋ด„๋ธŒ๋ฆญ", [ChainArts_Stroke_1_Cancel, SummonReleasingBoom, ChainArts_Stroke_1_Cancel, SummonStrikingBrick]) # ์œ™๋Œ€๊ฑฐ WingDaggerCombo = comboBuilder("์œ™๋Œ€๊ฑฐ", [ChainArts_Stroke_1_Cancel, SummonThrowingWingdagger]) # ๋ฐฐํŠธ BatCombo = comboBuilder("๋ฐฐํŠธ", [ChainArts_Stroke_1_Cancel, SummonBeatingNeedlebat_1]) # ๋ฉ”์ผ์ŠคํŠธ๋กฌ MaleStromCombo = core.DamageSkill("๋ฉ”์ผ์ŠคํŠธ๋กฌ", 0, 0, 0).wrap(core.DamageSkillWrapper) for i in [ChainArts_Stroke_1, ChainArts_Stroke_2_Cancel, ChainArts_Maelstorm]: MaleStromCombo.onAfter(i) for c in [core.ConstraintElement('๋ฉ”์ผ์ŠคํŠธ๋กฌ', ChainArts_Maelstorm, ChainArts_Maelstorm.check_use)]: MaleStromCombo.onConstraint(c) # ์ฒด์ธ์•„์ธ  - ํ“จ๋ฆฌ ์—ฐ๋™ # TODO: ํ“จ๋ฆฌ, ํ”„๋กœํŽ˜์…”๋„ ์ถ”๊ฐ€ํƒ€ ๋ฐœ๋™์— ํ„ฐํ”„ํ—ˆ์Šฌ ์ถ”๊ฐ€ for s in [ChainArts_Stroke_1, ChainArts_Stroke_2, ChainArts_Stroke_1_Cancel, ChainArts_Stroke_2_Cancel, SummonCuttingSimiter, SummonScratchingClaw, SummonShootingShotgun, SummonSlachingKnife, ChainArts_Chais, SummonThrowingWingdaggerEnd, ChainArts_Takedown_Init, ChainArts_Takedown_Attack, ChainArts_Takedown_Wave, ChainArts_Takedown_Final, ChainArts_Crush, SummonReleasingBoom, SummonStrikingBrick, SummonBeatingNeedlebat_1, SummonBeatingNeedlebat_2, SummonBeatingNeedlebat_3, MirrorBreak]: s.onAfter(ChainArts_Fury_Use) for s in [SummonThrowingWingdaggerSummon, ChainArts_Maelstorm]: s.onTick(ChainArts_Fury_Use) # ํ”„๋กœํŽ˜์…”๋„ ์—์ด์ „ํŠธ ์ถ”๊ฐ€ํƒ€ for s in [ChainArts_Stroke_1, ChainArts_Stroke_2, ChainArts_Stroke_1_Cancel, ChainArts_Stroke_2_Cancel, SummonCuttingSimiter, SummonScratchingClaw, SummonShootingShotgun, SummonSlachingKnife, ChainArts_Chais, SummonThrowingWingdaggerEnd, SummonReleasingBoom, SummonStrikingBrick, SummonBeatingNeedlebat_1, SummonBeatingNeedlebat_2, SummonBeatingNeedlebat_3, ChainArts_Crush, ChainArts_Takedown_Init, ChainArts_Takedown_Attack, ChainArts_Takedown_Wave, ChainArts_Takedown_Final, ChainArts_Maelstorm, ChainArts_Fury_Damage]: s.onAfter(ProfessionalAgent_Attack) for s in [SummonThrowingWingdaggerSummon]: s.onTick(ProfessionalAgent_Attack) for s in [ChainArts_Fury_Damage, SummonShootingShotgun, SummonScratchingClaw, SummonCuttingSimiter, SummonSlachingKnife, SummonReleasingBoom, SummonStrikingBrick, SummonBeatingNeedlebat_1, SummonThrowingWingdagger, ChainArts_Maelstorm, WeaponVarietyAttack, WeaponVarietyFinale]: s.protect_from_running() return(NormalAttack, [globalSkill.maple_heros(chtr.level, name = "<NAME>", combat_level=self.combat), globalSkill.useful_sharp_eyes(), globalSkill.useful_combat_orders(), WeaponVariety, Booster, SpecialPotion, ProfessionalAgent, ReadyToDie, ChainArts_Fury, NovaGoddessBless, SummonSlachingKnife_Horror, SummonBeatingNeedlebat_Honmy, VenomBurst_Poison, ChainArts_Maelstorm_Slow, globalSkill.soul_contract(), CheapShotIIBleed, CheapShotIIBleedBuff, CheapShotIIAdventureMageBuff] +\ [SummonReleasingBoom_Explode, SummonThrowingWingdaggerEnd, AD_Odnunce_Final] +\ [WingDaggerCombo, BatCombo, BommBrickCombo, ShootgunClawCombo, SimiterChaseCombo, KnifeCombo, MaleStromCombo, ChainArts_Crush, MirrorBreak, MirrorSpider] +\ [WeaponVarietyAttack, SummonThrowingWingdaggerSummon, VenomBurst, AD_Odnunce, ChainArts_Maelstorm] +\ [ChainArts_Fury_Damage, WeaponVarietyFinale, SummonShootingShotgun, SummonScratchingClaw, SummonCuttingSimiter, SummonSlachingKnife, SummonReleasingBoom, SummonStrikingBrick, SummonBeatingNeedlebat_1, SummonThrowingWingdagger] +\ [NormalAttack]) ``` #### File: dpmModule/jobs/cannonshooter.py ```python from ..kernel import core from ..character import characterKernel as ck from ..status.ability import Ability_tool from ..execution.rules import RuleSet, ConditionRule from . import globalSkill from .jobbranch import pirates from .jobclass import adventurer from . import jobutils from math import ceil from typing import Any, Dict class JobGenerator(ck.JobGenerator): def __init__(self): super(JobGenerator, self).__init__() self.jobtype = "str" self.jobname = "์บ๋…ผ์Šˆํ„ฐ" self.vEnhanceNum = 16 self.ability_list = Ability_tool.get_ability_set( "boss_pdamage", "crit", "reuse" ) self.preEmptiveSkills = 2 def get_ruleset(self): def cannonball_rule(soul_contract): if soul_contract.is_active(): return True if soul_contract.is_cooltime_left(50000, -1): return False return True ruleset = RuleSet() ruleset.add_rule( ConditionRule("๋น… ํœด์ฆˆ ๊ธฐ๊ฐ„ํ‹ฑ ์บ๋…ผ๋ณผ", "์†Œ์šธ ์ปจํŠธ๋ž™ํŠธ", cannonball_rule), RuleSet.BASE, ) return ruleset def get_modifier_optimization_hint(self): return core.CharacterModifier(pdamage=66, crit_damage=6, armor_ignore=30) def get_passive_skill_list( self, vEhc, chtr: ck.AbstractCharacter, options: Dict[str, Any] ): passive_level = chtr.get_base_modifier().passive_level + self.combat BuildupCannon = core.InformedCharacterModifier("๋นŒ๋“œ์—… ์บ๋…ผ", att=20) CriticalFire = core.InformedCharacterModifier( "ํฌ๋ฆฌํ‹ฐ์ปฌ ํŒŒ์ด์–ด", crit=20, crit_damage=5 ) PirateTraining = core.InformedCharacterModifier( "ํŒŒ์ด๋ › ํŠธ๋ ˆ์ด๋‹", stat_main=30, stat_sub=30 ) MonkeyWavePassive = core.InformedCharacterModifier("๋ชฝํ‚ค ์›จ์ด๋ธŒ(ํŒจ์‹œ๋ธŒ)", crit=20) OakRuletPassive = core.InformedCharacterModifier( "์˜คํฌํ†ต ๋ฃฐ๋ ›(ํŒจ์‹œ๋ธŒ)", pdamage_indep=10 ) ReinforceCannon = core.InformedCharacterModifier("๋ฆฌ์ธํฌ์Šค ์บ๋…ผ", att=40) PirateSpirit = core.InformedCharacterModifier( "ํŒŒ์ด๋ › ์Šคํ”ผ๋ฆฟ", boss_pdamage=40 + self.combat ) OverburningCannon = core.InformedCharacterModifier( "์˜ค๋ฒ„๋ฒ„๋‹ ์บ๋…ผ", pdamage_indep=30 + passive_level, armor_ignore=20 + passive_level // 2, ) LoadedDicePassive = pirates.LoadedDicePassiveWrapper(vEhc, 3, 4) return [ BuildupCannon, CriticalFire, PirateTraining, MonkeyWavePassive, OakRuletPassive, ReinforceCannon, PirateSpirit, OverburningCannon, LoadedDicePassive, ] def get_not_implied_skill_list( self, vEhc, chtr: ck.AbstractCharacter, options: Dict[str, Any] ): passive_level = chtr.get_base_modifier().passive_level + self.combat WeaponConstant = core.InformedCharacterModifier("๋ฌด๊ธฐ์ƒ์ˆ˜", pdamage_indep=50) Mastery = core.InformedCharacterModifier( "์ˆ™๋ จ๋„", pdamage_indep=-7.5 + 0.5 * ceil(passive_level / 2) ) return [WeaponConstant, Mastery] def generate(self, vEhc, chtr: ck.AbstractCharacter, options: Dict[str, Any]): """ ํ•˜์ดํผ : ๋ชฝํ‚คํŠธ์œˆ์Šค-์Šคํ”Œ๋ฆฟ, ์ธํ•ธ์Šค, ์บ๋…ผ๋ฒ„์Šคํ„ฐ - ๋ฆฌ์ธํฌ์Šค, ๋ณด๋„ˆ์Šค ์–ดํƒ. ๋กค๋ง์บ๋…ผ๋ ˆ์ธ๋ณด์šฐ 26ํƒ€ ์ฝ”์ฝ”๋ณผ 6์ดˆ ์ด์”จ๋ฐค 5ํƒ€ ์ฝ”๊ฐ• ์ˆœ์„œ: ๋ฒ„์Šคํ„ฐ-์„œํฌํŠธ-๋‹ค์ˆ˜๊ธฐ-๋กค์บ """ COCOBALLHIT = options.get("cocoball_hit", 27) ICBMHIT = 6 passive_level = chtr.get_base_modifier().passive_level + self.combat # Buff skills Booster = core.BuffSkill("๋ถ€์Šคํ„ฐ", 0, 200 * 1000).wrap(core.BuffSkillWrapper) Buckshot = core.BuffSkill("๋ฒ… ์ƒท", 0, 180000).wrap(core.BuffSkillWrapper) LuckyDice = ( core.BuffSkill( "๋กœ๋””๋“œ ๋‹ค์ด์Šค", delay=0, remain=180 * 1000, pdamage=20 # ๋กœ๋””๋“œ ๋ฐ๋ฏธ์ง€ ๊ณ ์ •. + 10 / 6 + 10 / 6 * (5 / 6 + 1 / 11) * (10 * (5 + passive_level) * 0.01), ) .isV(vEhc, 3, 4) .wrap(core.BuffSkillWrapper) ) MonkeyWave = core.DamageSkill( "๋ชฝํ‚ค ์›จ์ด๋ธŒ", delay=810, damage=860, hit=1, cooltime=30 * 1000, ).wrap(core.DamageSkillWrapper) MonkeyWaveBuff = core.BuffSkill( "๋ชฝํ‚ค ์›จ์ด๋ธŒ(๋ฒ„ํ”„)", delay=0, remain=30000, cooltime=-1, crit_damage=5, ).wrap(core.BuffSkillWrapper) MonkeyFurious = core.DamageSkill( "๋ชฝํ‚ค ํ“จ๋ฆฌ์–ด์Šค", delay=720, damage=180, hit=3, cooltime=30 * 1000, ).wrap(core.DamageSkillWrapper) MonkeyFuriousBuff = core.BuffSkill( "๋ชฝํ‚ค ํ“จ๋ฆฌ์–ด์Šค(๋ฒ„ํ”„)", delay=0, remain=30000, cooltime=-1, pdamage=40, ).wrap(core.BuffSkillWrapper) MonkeyFuriousDot = core.DotSkill( "๋ชฝํ‚ค ํ“จ๋ฆฌ์–ด์Šค(๋„ํŠธ)", summondelay=0, delay=1000, damage=200, hit=1, remain=30000, cooltime=-1, ).wrap(core.DotSkillWrapper) OakRoulette = core.BuffSkill( "์˜คํฌํ†ต ๋ฃฐ๋ ›", delay=840, remain=180000, rem=True, cooltime=180000, crit_damage=1.25, ).wrap(core.BuffSkillWrapper) OakRuletDOT = core.DotSkill( "์˜คํฌํ†ต ๋ฃฐ๋ ›(๋„ํŠธ)", summondelay=0, delay=1000, damage=50, hit=1, remain=5000, cooltime=-1, ).wrap(core.DotSkillWrapper) MonkeyMagic = core.BuffSkill( "ํ•˜์ดํผ ๋ชฝํ‚ค ์ŠคํŽ ", delay=0, remain=180000, rem=True, stat_main=60 + passive_level, stat_sub=60 + passive_level, ).wrap(core.BuffSkillWrapper) # Damage Skills CannonBuster = ( core.DamageSkill( "์บ๋…ผ ๋ฒ„์Šคํ„ฐ", delay=690, damage=(750 + 5 * self.combat) * 0.45, # BuckShot hit=3 * (4 + 1), modifier=core.CharacterModifier( crit=15 + ceil(self.combat / 2), armor_ignore=20 + self.combat // 2, pdamage=20, ), ) .setV(vEhc, 0, 2, True) .wrap(core.DamageSkillWrapper) ) # Summon Skills SupportMonkeyTwins = ( core.SummonSkill( "์„œํฌํŠธ ๋ชฝํ‚ค ํŠธ์œˆ์Šค", summondelay=720, delay=930, damage=(295 + 8 * self.combat) * 0.6, # Split Damage hit=(1 + 1) * (2 + 1), # Split Damage, Enhance remain=60000 + 2000 * self.combat, rem=True, ) .setV(vEhc, 1, 2, False) .wrap(core.SummonSkillWrapper) ) # Hyper RollingCannonRainbow = ( core.SummonSkill( "๋กค๋ง ์บ๋…ผ ๋ ˆ์ธ๋ณด์šฐ", summondelay=480, delay=12000 / 26, damage=600, hit=3, remain=12000, cooltime=90000, ) .setV(vEhc, 3, 2, True) .wrap(core.SummonSkillWrapper) ) EpicAdventure = core.BuffSkill( "์—ํ”ฝ ์–ด๋“œ๋ฒค์ฒ˜", delay=0, remain=60000, cooltime=120000, pdamage=10, ).wrap(core.BuffSkillWrapper) # V skills WEAPON_ATT = jobutils.get_weapon_att(chtr) Overdrive = pirates.OverdriveWrapper(vEhc, 5, 5, WEAPON_ATT) PirateFlag = adventurer.PirateFlagWrapper(vEhc, 4, 3, chtr.level) MirrorBreak, MirrorSpider = globalSkill.SpiderInMirrorBuilder(vEhc, 0, 0) # ์ฟจํƒ€์ž„๋งˆ๋‹ค ์‚ฌ์šฉ # ํ—ˆ์ˆ˜์•„๋น„ ๋Œ€์ƒ 27ํšŒ ์ถฉ๋Œ BFGCannonball = core.StackableSummonSkillWrapper( core.SummonSkill( "๋น… ํœด์ฆˆ ๊ธฐ๊ฐ„ํ‹ฑ ์บ๋…ผ๋ณผ", summondelay=600, delay=210, damage=(450 + 15 * vEhc.getV(0, 0)) * 0.45, # BuckShot hit=4 * 3, remain=210 * COCOBALLHIT, cooltime=25000, ).isV(vEhc, 0, 0), max_stack=3, ) ICBM = ( core.DamageSkill( "ICBM", delay=1140, damage=(800 + 32 * vEhc.getV(1, 1)) * 0.45, # BuckShot hit=5 * ICBMHIT * 3, cooltime=30000, red=True, ) .isV(vEhc, 1, 1) .wrap(core.DamageSkillWrapper) ) ICBMDOT = ( core.SummonSkill( "ICBM(์žฅํŒ)", summondelay=0, delay=15000 / 27, # 27ํƒ€ damage=(500 + 20 * vEhc.getV(1, 1)) * 0.45, # BuckShot hit=1 * 3, remain=15000, cooltime=-1, ) .isV(vEhc, 1, 1) .wrap(core.SummonSkillWrapper) ) SpecialMonkeyEscort_Cannon = ( core.SummonSkill( "์ŠคํŽ˜์…œ ๋ชฝํ‚ค ์—์Šค์ฝ”ํŠธ", summondelay=780, delay=1500, damage=300 + 12 * vEhc.getV(2, 2), hit=4 * 3, remain=(30 + vEhc.getV(2, 2) // 2) * 1000, cooltime=120000, red=True, ) .isV(vEhc, 2, 2) .wrap(core.SummonSkillWrapper) ) SpecialMonkeyEscort_Bomb = ( core.SummonSkill( "์ŠคํŽ˜์…œ ๋ชฝํ‚ค ์—์Šค์ฝ”ํŠธ(ํญํƒ„)", summondelay=0, delay=5000, damage=450 + 18 * vEhc.getV(2, 2), hit=7 * 3, remain=(30 + vEhc.getV(2, 2) // 2) * 1000, cooltime=-1, modifier=core.CharacterModifier(armor_ignore=100), ) .isV(vEhc, 2, 2) .wrap(core.SummonSkillWrapper) ) FullMaker = ( core.SummonSkill( "ํ’€ ๋ฉ”์ด์ปค", summondelay=720, delay=360, damage=(700 + 28 * vEhc.getV(0, 0)) * 0.45, # BuckShot hit=3 * 3, remain=360 * 20 - 1, cooltime=60000, red=True, ) .isV(vEhc, 0, 0) .wrap(core.SummonSkillWrapper) ) ### build graph relationships MonkeyWave.onAfter(MonkeyWaveBuff) MonkeyFurious.onAfters([MonkeyFuriousBuff, MonkeyFuriousDot]) CannonBuster.onAfter(OakRuletDOT) BFGCannonball.onAfter(OakRuletDOT) ICBM.onAfter(OakRuletDOT) ICBM.onAfter(ICBMDOT) SpecialMonkeyEscort_Cannon.onJustAfter(SpecialMonkeyEscort_Bomb) return ( CannonBuster, [ globalSkill.maple_heros(chtr.level, combat_level=self.combat), globalSkill.useful_sharp_eyes(), globalSkill.useful_combat_orders(), globalSkill.useful_wind_booster(), Booster, OakRoulette, Buckshot, MonkeyMagic, LuckyDice, globalSkill.MapleHeroes2Wrapper(vEhc, 0, 0, chtr.level, self.combat), EpicAdventure, Overdrive, PirateFlag, globalSkill.soul_contract(), ] + [ SpecialMonkeyEscort_Cannon, BFGCannonball, FullMaker, RollingCannonRainbow, SupportMonkeyTwins, ] + [MonkeyWave, MonkeyFurious, ICBM, MirrorBreak] + [ SpecialMonkeyEscort_Bomb, MirrorSpider, OakRuletDOT, MonkeyFuriousDot, MonkeyWaveBuff, MonkeyFuriousBuff, ICBMDOT, ] # Not used from scheduler + [CannonBuster], ) ``` #### File: dpmModule/jobs/xenon.py ```python from ..kernel import core from ..character import characterKernel as ck from ..execution.rules import RuleSet, ConcurrentRunRule, ConditionRule from ..status.ability import Ability_tool from . import globalSkill from .jobbranch import thieves, pirates from .jobclass import resistance from . import jobutils from math import ceil from typing import Any, Dict ''' Advisor: Monolith, ๋ชฐ๋ผ#4508 ''' # TODO: ํ•˜์ดํผ์Šคํƒฏ์œผ๋กœ ์Šคํƒ ์Šค 10% ํ™•๋ณด ํ•„์š” # ๋„์ ํ…œ ๋Ÿญ์ œ๋…ผ ๊ฐ€์ • # ์ด์ง€์Šค ์‹œ์Šคํ…œ ๋ฏธ์‚ฌ์šฉ class SupplyStackWrapper(core.StackSkillWrapper): def __init__(self, skill, amaranth_generator): super(SupplyStackWrapper, self).__init__(skill, 20) self.stack = 20 self.set_name_style("์„œํ”Œ๋ผ์ด ๋ณ€ํ™” : %d") self.amaranth_generator = amaranth_generator # ์•„๋งˆ๋ž€์Šค ํ™œ์„ฑํ™”์‹œ ์—๋„ˆ์ง€ ์†Œ๋ชจ ์—†์Œ def vary(self, d): delta = d if self.amaranth_generator.is_active(): delta = max(0, delta) result = super().vary(delta) return result def get_modifier(self): ''' ์„œํ”Œ๋Ÿฌ์Šค ์„œํ”Œ๋ผ์ด: ์„œํ”Œ๋Ÿฌ์Šค ์—๋„ˆ์ง€ 1๊ฐœ ๋‹น ๋ชจ๋“  ๋Šฅ๋ ฅ์น˜ 1%๋งŒํผ ์ฆ๊ฐ€, 20 ์ดˆ๊ณผ์‹œ ์ดˆ๊ณผ ์—๋„ˆ์ง€๋‹น ์ตœ์ข… ๋ฐ๋ฏธ์ง€ 1% ์ฆ๊ฐ€ ''' return core.CharacterModifier(pstat_main=self.stack, pstat_sub=self.stack, pdamage_indep=max(0, self.stack-20)) def begin_overload(self): self._max = 40 return self._result_object_cache def beginOverloadMode(self): return core.TaskHolder(core.Task(self, self.begin_overload), name="์˜ค๋ฒ„๋กœ๋“œ ๋ชจ๋“œ ์‹œ์ž‘") def end_overload(self): self.stack = min(20, self.stack) self._max = 20 return self._result_object_cache def endOverloadMode(self): return core.TaskHolder(core.Task(self, self.end_overload), name="์˜ค๋ฒ„๋กœ๋“œ ๋ชจ๋“œ ์ข…๋ฃŒ") class JobGenerator(ck.JobGenerator): def __init__(self): super(JobGenerator, self).__init__() self.jobtype = "luk" self.jobname = "์ œ๋…ผ" self.vEnhanceNum = None self.ability_list = Ability_tool.get_ability_set('boss_pdamage', 'crit', 'buff_rem') self.preEmptiveSkills = 2 def get_ruleset(self): ruleset = RuleSet() for skill in ['๋ฉ”๊ฐ€ ์Šค๋งค์…”(๊ฐœ์‹œ)', '์†Œ์šธ ์ปจํŠธ๋ž™ํŠธ', '๋ ˆ๋”” ํˆฌ ๋‹ค์ด', '์˜ค๋ฒ„ ๋“œ๋ผ์ด๋ธŒ']: ruleset.add_rule(ConcurrentRunRule(skill, 'ํ™€๋กœ๊ทธ๋žจ ๊ทธ๋ž˜ํ”ผํ‹ฐ : ์œตํ•ฉ'), RuleSet.BASE) # ruleset.add_rule(ConditionRule('ํฌํ†ค ๋ ˆ์ด', 'ํ™€๋กœ๊ทธ๋žจ ๊ทธ๋ž˜ํ”ผํ‹ฐ : ์œตํ•ฉ', lambda sk : sk.is_active() or sk.is_cooltime_left(690*15, 1)), RuleSet.BASE) ruleset.add_rule(ConcurrentRunRule('๋ฉ”๊ฐ€ ์Šค๋งค์…”(๊ฐœ์‹œ)', '์˜คํŒŒ์ธ  ์ฝ”๋“œ'), RuleSet.BASE) ruleset.add_rule(ConditionRule('์—‘์ŠคํŠธ๋ผ ์„œํ”Œ๋ผ์ด', '์„œํ”Œ๋Ÿฌ์Šค ์„œํ”Œ๋ผ์ด', lambda sk : sk.stack < sk._max - 10), RuleSet.BASE) return ruleset def get_modifier_optimization_hint(self): return core.CharacterModifier(pstat_main=20, pstat_sub=20) def get_passive_skill_list(self, vEhc, chtr : ck.AbstractCharacter, options: Dict[str, Any]): passive_level = chtr.get_base_modifier().passive_level + self.combat Multilateral1 = core.InformedCharacterModifier("๋ฉ€ํ‹ฐ๋ž˜ํ„ฐ๋Ÿด I", pdamage=3) Multilateral2 = core.InformedCharacterModifier("๋ฉ€ํ‹ฐ๋ž˜ํ„ฐ๋Ÿด II", pdamage=5) Multilateral3 = core.InformedCharacterModifier("๋ฉ€ํ‹ฐ๋ž˜ํ„ฐ๋Ÿด III", pdamage=7) Multilateral4 = core.InformedCharacterModifier("๋ฉ€ํ‹ฐ๋ž˜ํ„ฐ๋Ÿด IV", pdamage=10) Multilateral5 = core.InformedCharacterModifier("๋ฉ€ํ‹ฐ๋ž˜ํ„ฐ๋Ÿด V", pdamage=10) Multilateral6 = core.InformedCharacterModifier("๋ฉ€ํ‹ฐ๋ž˜ํ„ฐ๋Ÿด VI", pdamage=5) Multilateral = [Multilateral1, Multilateral2, Multilateral3, Multilateral4, Multilateral5, Multilateral6] LinearPerspective = core.InformedCharacterModifier("๋ฆฌ๋‹ˆ์–ด ํผ์ŠคํŽ™ํ‹ฐ๋ธŒ", crit=40) MinoritySupport = core.InformedCharacterModifier("๋งˆ์ด๋„ˆ๋ฆฌํ‹ฐ ์„œํฌํŠธ", stat_main=20, stat_sub=20) XenonMastery = core.InformedCharacterModifier("์ œ๋…ผ ๋งˆ์Šคํ„ฐ๋ฆฌ", att=20) HybridDefensesPassive = core.InformedCharacterModifier("๋“€์–ผ๋ธŒ๋ฆฌ๋“œ ๋””ํŽœ์‹œ๋ธŒ(ํŒจ์‹œ๋ธŒ)", stat_main=10, stat_sub=10) XenonExpert = core.InformedCharacterModifier("์ œ๋…ผ ์—‘์ŠคํผํŠธ", att=30 + passive_level, crit_damage=8) OffensiveMatrix = core.InformedCharacterModifier("์˜คํŽœ์‹œ๋ธŒ ๋งคํŠธ๋ฆญ์Šค", armor_ignore=30 + passive_level) LoadedDicePassive = pirates.LoadedDicePassiveWrapper(vEhc, 3, 4) ReadyToDiePassive = thieves.ReadyToDiePassiveWrapper(vEhc, 2, 2) return Multilateral + [LinearPerspective, MinoritySupport, XenonMastery, HybridDefensesPassive, XenonExpert, OffensiveMatrix, LoadedDicePassive, ReadyToDiePassive] def get_not_implied_skill_list(self, vEhc, chtr : ck.AbstractCharacter, options: Dict[str, Any]): passive_level = chtr.get_base_modifier().passive_level + self.combat WeaponConstant = core.InformedCharacterModifier("๋ฌด๊ธฐ์ƒ์ˆ˜", pdamage_indep=50) JobConstant = core.InformedCharacterModifier("์ง์—…์ƒ์ˆ˜", pdamage_indep=-12.5) Mastery = core.InformedCharacterModifier("์ˆ™๋ จ๋„", pdamage_indep=-5+0.5*ceil(passive_level/2)) return [WeaponConstant, JobConstant, Mastery] def generate(self, vEhc, chtr : ck.AbstractCharacter, options: Dict[str, Any]): ''' TODO: ๋”œ์‚ฌ์ดํด ์ตœ์ ํ™”, return๋ฌธ ์ •๋ฆฌ ํ•˜์ดํผ ์Šคํ‚ฌ: ํ™€๋กœ๊ทธ๋žจ 3์ข…, ํผ์ง€๋กญ ๋Ž€์ฆ + ๋ฐฉ๋ฌด ''' # Buff skills # ํŽซ๋ฒ„ํ”„: ์ธํด๋ผ์ธ, ์—ํ”ผ์…˜์‹œ, ๋ถ€์Šคํ„ฐ InclinePower = core.BuffSkill("์ธํด๋ผ์ธ ํŒŒ์›Œ", 0, 240000, att=30, rem=True).wrap(core.BuffSkillWrapper) EfficiencyPipeLine = core.BuffSkill("์—ํ”ผ์…˜์‹œ ํŒŒ์ดํ”„๋ผ์ธ", 0, 240000, rem=True).wrap(core.BuffSkillWrapper) Booster = core.BuffSkill("์ œ๋…ผ ๋ถ€์Šคํ„ฐ", 0, 240000, rem=True).wrap(core.BuffSkillWrapper) HybridDefenses = core.BuffSkill("๋“€์–ผ๋ธŒ๋ฆฌ๋“œ ๋””ํŽœ์‹œ๋ธŒ", 0, 999999999).wrap(core.BuffSkillWrapper) VirtualProjection = core.BuffSkill("๋ฒ„์ถ”์–ผ ํ”„๋กœ์ ์…˜", 0, 999999999).wrap(core.BuffSkillWrapper) # ์œ„์ปด์•Œ์— ๋”œ๋ ˆ์ด ์—†์Œ ExtraSupply = core.BuffSkill("์—‘์ŠคํŠธ๋ผ ์„œํ”Œ๋ผ์ด", 0, 1, cooltime=30000, red=True).wrap(core.BuffSkillWrapper) OOPArtsCode = core.BuffSkill("์˜คํŒŒ์ธ  ์ฝ”๋“œ", 990, (30+self.combat//2)*1000, pdamage_indep=25+self.combat//2, boss_pdamage=30+self.combat).wrap(core.BuffSkillWrapper) # Damage skills # ๋กœ์ผ“๊ฐ•ํ™” ์ ์šฉ๋จ PinpointRocket = core.DamageSkill("ํ•€ํฌ์ธํŠธ ๋กœ์ผ“", 0, 50+40+40+100, 4, cooltime=2000).setV(vEhc, 0, 2, True).wrap(core.DamageSkillWrapper) # ํƒ€์ˆ˜๋Š” Skill Wrapper ์ชฝ์œผ๋กœ ์ด๊ด€ # AegisSystem = core.DamageSkill("์ด์ง€์Šค ์‹œ์Šคํ…œ", 0, 120, 1, modifier=core.CharacterModifier(pdamage=20+passive_level//3), cooltime=1500).setV(vEhc, 0, 2, True).wrap(core.DamageSkillWrapper) # 30%ํ™•๋ฅ ๋กœ ์ค‘์ฒฉ ์Œ“์ž„, 3์ค‘์ฒฉ ์Œ“์€ ํ›„ ๊ณต๊ฒฉ์‹œ ํ„ฐ์ง€๋ฉด์„œ ์‚ฌ๋ผ์ง€๋„๋ก Triangulation = core.DamageSkill("ํŠธ๋ผ์ด์•ต๊ธ€ ํฌ๋ฉ”์ด์…˜", 0, 340, 3).setV(vEhc, 0, 3, True).wrap(core.DamageSkillWrapper) PurgeSnipe = core.DamageSkill("ํผ์ง€๋กญ ๋งค์Šค์ปค๋ ˆ์ด๋“œ : ์ €๊ฒฉ", 690, 345 + 2*self.combat, 7, modifier=core.CharacterModifier(armor_ignore=30 + self.combat) + core.CharacterModifier(pdamage=20, armor_ignore=10)).setV(vEhc, 0, 2, True).wrap(core.DamageSkillWrapper) # ์—ญ์žฅ ๊ธฐ์ค€ # ํ•˜์ดํผ 3์ข… ์ ์šฉ Hologram_Penetrate = core.SummonSkill("ํ™€๋กœ๊ทธ๋žจ ๊ทธ๋ž˜ํ”ผํ‹ฐ : ๊ด€ํ†ต", 720, 30000/116, 213+3*self.combat, 1, 20000+10000, cooltime=30000-1000*ceil(self.combat/3), modifier=core.CharacterModifier(pdamage=10), red=True).setV(vEhc, 0, 2, True).wrap(core.SummonSkillWrapper) Hologram_ForceField = core.SummonSkill("ํ™€๋กœ๊ทธ๋žจ ๊ทธ๋ž˜ํ”ผํ‹ฐ : ์—ญ์žฅ", 720, 30000/64, 400+5*self.combat, 1, 20000+10000, cooltime=30000-1000*ceil(self.combat/3), modifier=core.CharacterModifier(pdamage=10), red=True).setV(vEhc, 0, 2, True).wrap(core.SummonSkillWrapper) ''' BladeDancingPrepare = core.DamageSkill("๋ธ”๋ ˆ์ด๋“œ ๋Œ„์‹ฑ (์ค€๋น„)", 720 + 420, 0, 0).setV(vEhc, 0, 2, True).wrap(core.DamageSkillWrapper) BladeDancing = core.DamageSkill("๋ธ”๋ ˆ์ด๋“œ ๋Œ„์‹ฑ", 480, 140+4*self.combat, 1).setV(vEhc, 0, 2, True).wrap(core.DamageSkillWrapper) BladeDancingEnd = core.DamageSkill("๋ธ”๋ ˆ์ด๋“œ ๋Œ„์‹ฑ(์ข…๋ฃŒ)", 300, 0, 0).setV(vEhc, 0, 2, True).wrap(core.DamageSkillWrapper) ''' # Hyper skills AmaranthGenerator = core.BuffSkill("์•„๋งˆ๋ž€์Šค ์ œ๋„ค๋ ˆ์ดํ„ฐ", 900, 10000, cooltime=90000, rem=False).wrap(core.BuffSkillWrapper) # ์—๋„ˆ์ง€ ์ตœ๋Œ€์น˜, 10์ดˆ๊ฐ„ ์—๋„ˆ์ง€ ์†Œ๋ชจ ์—†์Œ MeltDown = core.DamageSkill("๋ฉœํŠธ๋‹ค์šด ์ต์Šคํ”Œ๋กœ์ „", 3150, 900, 6, red=False, cooltime=50000).setV(vEhc, 0, 2, False).wrap(core.DamageSkillWrapper) MeltDown_Armor = core.BuffSkill("๋ฉœํŠธ๋‹ค์šด ์ต์Šคํ”Œ๋กœ์ „ (๋ฐฉ๋ฌด)", 0, 10000, armor_ignore=30, rem=False, cooltime=-1).wrap(core.BuffSkillWrapper) MeltDown_Damage = core.BuffSkill("๋ฉœํŠธ๋‹ค์šด ์ต์Šคํ”Œ๋กœ์ „ (๋ฐ๋ฏธ์ง€)", 0, 25000, pdamage=10, rem=False, cooltime=-1).wrap(core.BuffSkillWrapper) # V skills MirrorBreak, MirrorSpider = globalSkill.SpiderInMirrorBuilder(vEhc, 0, 0) LuckyDice = core.BuffSkill("๋Ÿญํ‚ค ๋‹ค์ด์Šค", 0, 180*1000, pdamage=20).isV(vEhc, 3, 4).wrap(core.BuffSkillWrapper) ResistanceLineInfantry = resistance.ResistanceLineInfantryWrapper(vEhc, 0, 0) ReadyToDie = thieves.ReadyToDieWrapper(vEhc, 4, 4) WEAPON_ATT = jobutils.get_weapon_att(chtr) Overdrive = pirates.OverdriveWrapper(vEhc, 5, 5, WEAPON_ATT) MegaSmasher = core.DamageSkill("๋ฉ”๊ฐ€ ์Šค๋งค์…”(๊ฐœ์‹œ)", 0, 0, 0, cooltime=180000, red=True).wrap(core.DamageSkillWrapper) MegaSmasherTick = core.DamageSkill("๋ฉ”๊ฐ€ ์Šค๋งค์…”(ํ‹ฑ)", 210, 300+10*vEhc.getV(4, 4), 6).isV(vEhc, 4, 4).wrap(core.DamageSkillWrapper) OVERLOAD_TIME = 70 OverloadMode = core.BuffSkill("์˜ค๋ฒ„๋กœ๋“œ ๋ชจ๋“œ", 720, OVERLOAD_TIME*1000, cooltime=180000, red=True).wrap(core.BuffSkillWrapper) # ์ฒซ ๊ณต๊ฒฉ์€ ํ•ญ์ƒ 5100ms ํ›„์— ์‹œ์ž‘ # ๊ณต๊ฒฉ ์ฃผ๊ธฐ๋Š” 3600ms~10800ms ์ค‘ ๋žœ๋ค OverloadHit = core.SummonSkill("์˜ค๋ฒ„๋กœ๋“œ ๋ชจ๋“œ(์ „๋ฅ˜)", 0, (3600+10800)/2, 180+7*vEhc.getV(4, 4), 6*4, OVERLOAD_TIME*1000-5100, cooltime=-1).isV(vEhc, 4, 4).wrap(core.SummonSkillWrapper) OverloadHit_copy = core.SummonSkill("์˜ค๋ฒ„๋กœ๋“œ ๋ชจ๋“œ(์ „๋ฅ˜)(๋ฒ„์ถ”์–ผ ํ”„๋กœ์ ์…˜)", 0, (3600+10800)/2, (180+7*vEhc.getV(4, 4))*0.7, 6*4, OVERLOAD_TIME*1000-5100, cooltime=-1).isV(vEhc, 4, 4).wrap(core.SummonSkillWrapper) # ํ•˜์ดํผ ์ ์šฉ๋จ Hologram_Fusion = core.SummonSkill("ํ™€๋กœ๊ทธ๋žจ ๊ทธ๋ž˜ํ”ผํ‹ฐ : ์œตํ•ฉ", 930, (30000+10000)/176, 250+10*vEhc.getV(4, 4), 5, 30000+10000, cooltime=100000, red=True, modifier=core.CharacterModifier(pdamage=10)).isV(vEhc, 4, 4).wrap(core.SummonSkillWrapper) Hologram_Fusion_Buff = core.BuffSkill("ํ™€๋กœ๊ทธ๋žจ ๊ทธ๋ž˜ํ”ผํ‹ฐ : ์œตํ•ฉ (๋ฒ„ํ”„)", 0, 30000+10000, pdamage=5+vEhc.getV(4, 4)//2, rem=False).wrap(core.BuffSkillWrapper) # 30ํšŒ ๋ฐœ๋™, ๋ฐœ์‚ฌ ๋”œ๋ ˆ์ด ์ƒ๋žต, ํผ์ง€๋กญ์œผ๋กœ ์ถฉ์ „ PhotonRay = core.BuffSkill("ํฌํ†ค ๋ ˆ์ด", 0, 20000, cooltime=35000, red=True).wrap(core.BuffSkillWrapper) PhotonRayHit = core.DamageSkill("ํฌํ†ค ๋ ˆ์ด(์บ๋…ผ)", 0, 350+vEhc.getV(4, 4)*14, 4*30).isV(vEhc, 4, 4).wrap(core.DamageSkillWrapper) ###### Skill Wrapper ###### SupplySurplus = SupplyStackWrapper(core.BuffSkill("์„œํ”Œ๋Ÿฌ์Šค ์„œํ”Œ๋ผ์ด", 0, 999999999), AmaranthGenerator) SupplyCharger = core.SummonSkill("์„œํ”Œ๋ผ์ด ์ถฉ์ „", 0, 4000, 0, 0, 9999999999).wrap(core.SummonSkillWrapper) SupplyCharger.onTick(SupplySurplus.stackController(1)) # ํ™€๋กœ๊ทธ๋žจ ์Šคํ‚ฌ๋“ค์€ ์œตํ•ฉ๊ณผ ํ•จ๊ป˜ ์‚ฌ์šฉ๋ถˆ๊ฐ€ for skill in [Hologram_ForceField, Hologram_Penetrate]: skill.onConstraint(core.ConstraintElement(skill._id + '(์‚ฌ์šฉ ์ œํ•œ)', Hologram_Fusion, Hologram_Fusion.is_not_active)) Hologram_Fusion.onAfter(skill.controller(1, 'set_disabled')) PinpointRocketOpt = core.OptionalElement(PinpointRocket.is_available, PinpointRocket) # ํ™€๋กœ๊ทธ๋žจ ์œตํ•ฉ ํ™œ์„ฑํ™”์‹œ 10๊ฐœ, ์•„๋‹ˆ๋ฉด 3๊ฐœ # AegisSystemOpt_ = core.OptionalElement(Hologram_Fusion_Buff.is_active, core.RepeatElement(AegisSystem, 10), core.RepeatElement(AegisSystem, 3)) # AegisSystemOpt = core.OptionalElement(AegisSystem.is_active, AegisSystemOpt_) InclinePower.onAfter(SupplySurplus.stackController(-3)) HybridDefenses.onAfter(SupplySurplus.stackController(-7)) ExtraSupply.onAfter(SupplySurplus.stackController(10)) OOPArtsCode.onAfter(SupplySurplus.stackController(-20)) AmaranthGenerator.onAfter(SupplySurplus.stackController(40)) TriangulationStack = core.StackSkillWrapper(core.BuffSkill("ํŠธ๋ผ์ด์•ต๊ธ€ ์Šคํƒ", 0, 99999999), 3) TriangulationTrigger = core.OptionalElement(lambda : TriangulationStack.judge(3, 1), Triangulation, TriangulationStack.stackController(0.3)) Triangulation.onAfter(TriangulationStack.stackController(0, dtype='set')) MegaSmasher.onAfter(core.RepeatElement(MegaSmasherTick, 78)) OverloadMode.onAfter(SupplySurplus.beginOverloadMode()) OverloadMode.onEventElapsed(SupplySurplus.endOverloadMode(), OVERLOAD_TIME*1000) OverloadMode.onEventElapsed(OverloadHit, 5100) OverloadMode.onEventElapsed(OverloadHit_copy, 5100) # ํผ์ง€๋กญ 15ํšŒ ์‚ฌ์šฉ ํ›„ ํฌํ†ค๋ ˆ์ด ๋ฐœ๋™, ์ตœ์ ํ™” ํ•„์š” PhotonRay.onEventElapsed(PhotonRayHit, 690*15) for sk in [PurgeSnipe, MeltDown, MegaSmasherTick]: sk.onAfter(TriangulationTrigger) sk.onAfter(PinpointRocketOpt) jobutils.create_auxilary_attack(sk, 0.7, nametag="(๋ฒ„์ถ”์–ผ ํ”„๋กœ์ ์…˜)") MeltDown.onAfter(MeltDown_Armor) MeltDown.onAfter(MeltDown_Damage) OverloadHit.onTick(TriangulationTrigger) OverloadHit.onTick(PinpointRocketOpt) Hologram_Fusion.onAfter(Hologram_Fusion_Buff) for sk in [PinpointRocket, Triangulation, MegaSmasherTick, Hologram_Fusion_Buff, PhotonRayHit]: sk.protect_from_running() return(PurgeSnipe, [globalSkill.maple_heros(chtr.level, combat_level=self.combat), globalSkill.useful_sharp_eyes(), globalSkill.useful_combat_orders(), globalSkill.useful_hyper_body_xenon(), globalSkill.MapleHeroes2Wrapper(vEhc, 0, 0, chtr.level, self.combat), globalSkill.soul_contract(), SupplySurplus, SupplyCharger, InclinePower, EfficiencyPipeLine, Booster, HybridDefenses, VirtualProjection, ExtraSupply] + [Hologram_ForceField, AmaranthGenerator, MirrorBreak, MirrorSpider, MegaSmasher, MegaSmasherTick, ResistanceLineInfantry, LuckyDice, ReadyToDie, Overdrive, OverloadMode, Hologram_Fusion, Hologram_Fusion_Buff, OverloadHit, OverloadHit_copy, PhotonRay, PhotonRayHit, MeltDown, MeltDown_Armor, MeltDown_Damage] + [PinpointRocket, Triangulation, OOPArtsCode] + [PurgeSnipe]) ``` #### File: Jeongwoo-KGI/maplestory_dpm_calc/dpm_sheet.py ```python import argparse from concurrent.futures import ProcessPoolExecutor from itertools import product from statistics.preset import get_preset_list from dpmModule.character.characterTemplate import get_template_generator from dpmModule.util.dpmgenerator import IndividualDPMGenerator try: import pandas as pd import xlsxwriter except ImportError: print("pandas, xlsxwriter ๋ชจ๋“ˆ์„ ์„ค์น˜ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.") exit() def get_args(): parser = argparse.ArgumentParser("DPM Sheet argument") parser.add_argument("--ulevel", type=int, default=8000) parser.add_argument("--time", type=int, default=1800) parser.add_argument("--thread", type=int, default=4) return parser.parse_args() def test(args): preset, ulevel, cdr, runtime = args id, jobname, description, options, alt = preset template = get_template_generator("high_standard")().get_template(ulevel) parser = IndividualDPMGenerator(jobname, template) parser.set_runtime(runtime * 1000) result = parser.get_detailed_dpm(ulevel=ulevel, cdr=cdr, options=options) dpm = result["dpm"] loss = result["loss"] return jobname, cdr, description, dpm, loss, alt if __name__ == "__main__": args = get_args() ulevel = args.ulevel tasks = product(get_preset_list(), [ulevel], [0, 2, 4], [args.time]) pool = ProcessPoolExecutor(max_workers=args.thread) results = pool.map(test, tasks) df = pd.DataFrame.from_records( results, exclude=["loss"], columns=["์ง์—…", "์ฟจ๊ฐ", "๋น„๊ณ ", "dpm", "loss", "alt"], ) # df.to_pickle("cache.pkl") # df: pd.DataFrame = pd.read_pickle("cache.pkl") df = df.sort_values(by="dpm", axis=0, ascending=False) df = df.drop_duplicates(subset=["์ง์—…", "๋น„๊ณ "]).copy() df["best"] = df.groupby(["์ง์—…"])["dpm"].transform("max") df = df.sort_values(by=["best", "dpm"], axis=0, ascending=False) median = df["best"].median() df["๋ฐฐ์œจ"] = df["dpm"] / median df = df[["์ง์—…", "์ฟจ๊ฐ", "๋น„๊ณ ", "dpm", "๋ฐฐ์œจ", "alt"]] writer = pd.ExcelWriter("./dpm_sheet.xlsx", engine="xlsxwriter") df.to_excel(writer, sheet_name="dpm", index=False) workbook: xlsxwriter.Workbook = writer.book worksheet: xlsxwriter.workbook.Worksheet = writer.sheets["dpm"] center_format = workbook.add_format({"align": "center"}) num_format = workbook.add_format({"num_format": "#,##0", "align": "center"}) percent_format = workbook.add_format({"num_format": "0.00%", "align": "center"}) alt_format = workbook.add_format({"font_color": "#808080"}) worksheet.set_column("A:I", None, center_format) worksheet.set_column("A:A", 15) worksheet.set_column("B:B", 5) worksheet.set_column("C:C", 45) worksheet.set_column("D:D", 18, num_format) worksheet.set_column("E:E", 10, percent_format) worksheet.set_column("F:F", None, None, {"hidden": True}) worksheet.conditional_format( "E2:E55", {"type": "data_bar", "bar_solid": True, "bar_color": "#63C384"} ) worksheet.conditional_format( "A2:D55", {"type": "formula", "criteria": "$F2>0", "format": alt_format} ) writer.close() ``` #### File: maplestory_dpm_calc/statistics/optimization_hint.py ```python import argparse import pandas as pd from dpmModule.character.characterKernel import ItemedCharacter, JobGenerator from dpmModule.character.characterTemplate import get_template_generator from dpmModule.jobs import jobMap, weaponList from dpmModule.kernel import core from dpmModule.status.ability import Ability_grade from .loader import load_data from .preset import get_preset from .saver import save_data def get_args(): parser = argparse.ArgumentParser("Optimization hint argument") parser.add_argument( "--id", type=str, help="Target preset id to calculate statistics" ) parser.add_argument("--ulevel", type=int, default=8000) parser.add_argument("--cdr", type=int, default=0) parser.add_argument("--time", type=int, default=1800) parser.add_argument("--task", default="dpm") parser.add_argument("--calc", action="store_true") return parser.parse_args() def armor_percent_to_float(num: float): return (100 - num) / 100 def armor_float_to_percent(num: float): return 100 - num * 100 def get_modifier(args) -> core.CharacterModifier: preset = get_preset(args.id) template = get_template_generator("high_standard")().get_template(args.ulevel) target: ItemedCharacter = template(weaponList[preset.job], args.cdr) gen: JobGenerator = jobMap[preset.job].JobGenerator() v_builder = core.AlwaysMaximumVBuilder() graph = gen.package( target, v_builder, options=preset.options, ulevel=args.ulevel, weaponstat=[4, 9], ability_grade=Ability_grade(4, 1), ) return graph.get_default_buff_modifier() def optimization_hint(args, df: pd.DataFrame): buff_modifier = get_modifier(args) df = df[["name", "deal", "mdf"]] df = df.loc[df["deal"] > 0] deal_total = df["deal"].sum() df["crit_damage"] = df["mdf"].apply(lambda x: x["crit_damage"]) df["pdamage"] = df["mdf"].apply(lambda x: x["pdamage"]) df["boss_pdamage"] = df["mdf"].apply(lambda x: x["boss_pdamage"]) df["armor_ignore"] = df["mdf"].apply(lambda x: x["armor_ignore"]) df["patt"] = df["mdf"].apply(lambda x: x["patt"]) grouped = df.groupby(["name"]) df = pd.DataFrame() df["share"] = grouped["deal"].sum() / deal_total df["crit_damage"] = grouped["crit_damage"].mean() df["pdamage"] = grouped["pdamage"].mean() df["boss_pdamage"] = grouped["boss_pdamage"].mean() df["armor_ignore"] = grouped["armor_ignore"].mean() df["patt"] = grouped["patt"].mean() print(df) crit_damage = (df["crit_damage"] * df["share"]).sum() pdamage = (df["pdamage"] * df["share"]).sum() boss_pdamage = (df["boss_pdamage"] * df["share"]).sum() armor_ignore = (df["armor_ignore"] * df["share"]).sum() patt = (df["patt"] * df["share"]).sum() print( { "crit_damage": crit_damage - buff_modifier.crit_damage, "pdamage": pdamage - buff_modifier.pdamage, "boss_pdamage": boss_pdamage - buff_modifier.boss_pdamage, "armor_ignore": armor_float_to_percent( armor_percent_to_float(armor_ignore) / armor_percent_to_float(buff_modifier.armor_ignore) / armor_percent_to_float(20) ), "patt": patt - buff_modifier.patt, } ) if __name__ == "__main__": args = get_args() if args.calc: data = save_data(args) else: data = load_data(args) optimization_hint(args, data) ``` #### File: Jeongwoo-KGI/maplestory_dpm_calc/test.py ```python from dpmModule.character.characterTemplate import get_template_generator from dpmModule.util.dpmgenerator import IndividualDPMGenerator from dpmModule.util.configurations import export_configuration import json import argparse def get_args(): parser = argparse.ArgumentParser("DPM Test argument") parser.add_argument("--job", type=str, help="Target class' Korean name to test DPM") parser.add_argument("--level", type=int, default=None, help="Character's level, default depends on ulevel") parser.add_argument("--ulevel", type=int, default=6000, help="Union level, default is 6000") parser.add_argument("--time", type=int, default=1800, help="Test time in seconds, default is 1800(30 min)") parser.add_argument("--cdr", type=int, default=0, help="Cooltime reduce (hat potential) in seconds, default is 0") parser.add_argument("--log", action="store_true", help="print the log of the test") parser.add_argument("--stat", action="store_true", help="print the statistics of the test") parser.add_argument("--task", default="dpm") return parser.parse_args() def test(): args = get_args() if args.task == "dpm": dpm(args) elif args.task == "conf": conf(args) def conf(args): job_real = args.job[:].replace("-", "/") configuration = export_configuration(job_real) regularized_configuration = {} for k_name, v in configuration.items(): new_v = v if new_v['cooltime'] == 99999999: new_v['cooltime'] = -1 if 'static_character_modifier' in new_v: for modifier_k, modifier_v in new_v.items(): if modifier_v != 0: new_v[modifier_k] = modifier_v new_v.pop('static_character_modifier') if 'static_character_modifier' in new_v: new_v['type'] = 'BuffSkill' elif 'summondelay' in new_v: new_v['type'] = 'SummonSkill' else: new_v['type'] = 'DamageSkill' new_v.pop('explanation') if '_static_skill_modifier' in new_v: if '0' in new_v['_static_skill_modifier']: for k in new_v['_static_skill_modifier']: pops = [k1 for k1, v in new_v['_static_skill_modifier'][k].items() if v == 0] for k2 in pops: new_v['_static_skill_modifier'][k].pop(k2) else: pops = [k1 for k1, v in new_v['_static_skill_modifier'].items() if v == 0] for k2 in pops: new_v['_static_skill_modifier'].pop(k2) regularized_configuration[k_name] = v with open(f"{args.job}.conf.json", "w", encoding="utf8") as f: json.dump(regularized_configuration, f, ensure_ascii=False, indent=4) def dpm(args): template = get_template_generator("high_standard")().get_template(args.ulevel) parser = IndividualDPMGenerator(args.job, template) parser.set_runtime(args.time * 1000) try: dpm = parser.get_dpm( ulevel=args.ulevel, cdr=args.cdr, level=args.level, weaponstat=[4, 9], printFlag=args.log, statistics=args.stat or args.log, ) finally: print(args.job, f"{dpm:,.3f}") if __name__ == "__main__": test() ```
{ "source": "JeongwookUm/TEST_AutoSpeech-master", "score": 2 }
#### File: JeongwookUm/TEST_AutoSpeech-master/functions.py ```python import time import torch import torch.nn.functional as F import logging import numpy as np import matplotlib.pyplot as plt from utils import compute_eer from utils import AverageMeter, ProgressMeter, accuracy plt.switch_backend('agg') logger = logging.getLogger(__name__) def train(cfg, model, optimizer, train_loader, val_loader, criterion, architect, epoch, writer_dict, lr_scheduler=None): batch_time = AverageMeter('Time', ':6.3f') data_time = AverageMeter('Data', ':6.3f') losses = AverageMeter('Loss', ':.4e') top1 = AverageMeter('Acc@1', ':6.2f') top5 = AverageMeter('Acc@5', ':6.2f') alpha_entropies = AverageMeter('Entropy', ':.4e') progress = ProgressMeter( len(train_loader), batch_time, data_time, losses, top1, top5, alpha_entropies, prefix="Epoch: [{}]".format(epoch), logger=logger) writer = writer_dict['writer'] # switch to train mode model.train() end = time.time() for i, (input, target) in enumerate(train_loader): global_steps = writer_dict['train_global_steps'] if lr_scheduler: current_lr = lr_scheduler.set_lr(optimizer, global_steps, epoch) else: current_lr = cfg.TRAIN.LR # measure data loading time data_time.update(time.time() - end) input = input.cuda(non_blocking=True) target = target.cuda(non_blocking=True) input_search, target_search = next(iter(val_loader)) input_search = input_search.cuda(non_blocking=True) target_search = target_search.cuda(non_blocking=True) # step architecture architect.step(input_search, target_search) alpha_entropy = architect.model.compute_arch_entropy() alpha_entropies.update(alpha_entropy.mean(), input.size(0)) # compute output output = model(input) # measure accuracy and record loss acc1, acc5 = accuracy(output, target, topk=(1, 5)) top1.update(acc1[0], input.size(0)) top5.update(acc5[0], input.size(0)) loss = criterion(output, target) losses.update(loss.item(), input.size(0)) # compute gradient and do SGD step optimizer.zero_grad() loss.backward() optimizer.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() # write to logger writer.add_scalar('lr', current_lr, global_steps) writer.add_scalar('train_loss', losses.val, global_steps) writer.add_scalar('arch_entropy', alpha_entropies.val, global_steps) writer_dict['train_global_steps'] = global_steps + 1 # log acc for cross entropy loss writer.add_scalar('train_acc1', top1.val, global_steps) writer.add_scalar('train_acc5', top5.val, global_steps) if i % cfg.PRINT_FREQ == 0: progress.print(i) def train_from_scratch(cfg, model, optimizer, train_loader, criterion, epoch, writer_dict, lr_scheduler=None): batch_time = AverageMeter('Time', ':6.3f') data_time = AverageMeter('Data', ':6.3f') losses = AverageMeter('Loss', ':.4e') top1 = AverageMeter('Acc@1', ':6.2f') top5 = AverageMeter('Acc@5', ':6.2f') progress = ProgressMeter( len(train_loader), batch_time, data_time, losses, top1, top5, prefix="Epoch: [{}]".format(epoch), logger=logger) writer = writer_dict['writer'] # switch to train mode model.train() end = time.time() for i, (input, target) in enumerate(train_loader): global_steps = writer_dict['train_global_steps'] if lr_scheduler: current_lr = lr_scheduler.get_lr() else: current_lr = cfg.TRAIN.LR # measure data loading time data_time.update(time.time() - end) input = input.cuda(non_blocking=True) target = target.cuda(non_blocking=True) # compute output output = model(input) # measure accuracy and record loss loss = criterion(output, target) acc1, acc5 = accuracy(output, target, topk=(1, 5)) top1.update(acc1[0], input.size(0)) top5.update(acc5[0], input.size(0)) losses.update(loss.item(), input.size(0)) # compute gradient and do SGD step optimizer.zero_grad() loss.backward() optimizer.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() # write to logger writer.add_scalar('lr', current_lr, global_steps) writer.add_scalar('train_loss', losses.val, global_steps) writer_dict['train_global_steps'] = global_steps + 1 # log acc for cross entropy loss writer.add_scalar('train_acc1', top1.val, global_steps) writer.add_scalar('train_acc5', top5.val, global_steps) if i % cfg.PRINT_FREQ == 0: progress.print(i) def validate_verification(cfg, model, test_loader): batch_time = AverageMeter('Time', ':6.3f') progress = ProgressMeter( len(test_loader), batch_time, prefix='Test: ', logger=logger) # switch to evaluate mode model.eval() labels, distances = [], [] with torch.no_grad(): end = time.time() for i, (input1, input2, label) in enumerate(test_loader): input1 = input1.cuda(non_blocking=True).squeeze(0) input2 = input2.cuda(non_blocking=True).squeeze(0) label = label.cuda(non_blocking=True) # compute output outputs1 = model(input1).mean(dim=0).unsqueeze(0) outputs2 = model(input2).mean(dim=0).unsqueeze(0) dists = F.cosine_similarity(outputs1, outputs2) dists = dists.data.cpu().numpy() distances.append(dists) labels.append(label.data.cpu().numpy()) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % 2000 == 0: progress.print(i) labels = np.array([sublabel for label in labels for sublabel in label]) distances = np.array([subdist for dist in distances for subdist in dist]) eer = compute_eer(distances, labels) logger.info('Test EER: {:.8f}'.format(np.mean(eer))) return eer def validate_identification(cfg, model, test_loader, criterion): batch_time = AverageMeter('Time', ':6.3f') losses = AverageMeter('Loss', ':.4e') top1 = AverageMeter('Acc@1', ':6.2f') top5 = AverageMeter('Acc@5', ':6.2f') progress = ProgressMeter( len(test_loader), batch_time, losses, top1, top5, prefix='Test: ', logger=logger) # switch to evaluate mode model.eval() with torch.no_grad(): end = time.time() for i, (input, target) in enumerate(test_loader): input = input.cuda(non_blocking=True).squeeze(0) target = target.cuda(non_blocking=True) # compute output output = model(input) output = torch.mean(output, dim=0, keepdim=True) output = model.forward_classifier(output) acc1, acc5 = accuracy(output, target, topk=(1, 5)) top1.update(acc1[0], input.size(0)) top5.update(acc5[0], input.size(0)) loss = criterion(output, target) losses.update(loss.item(), 1) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % 2000 == 0: progress.print(i) logger.info('Test Acc@1: {:.8f} Acc@5: {:.8f}'.format(top1.avg, top5.avg)) return top1.avg ```
{ "source": "jeongyoonlee/audiomentations", "score": 3 }
#### File: audiomentations/core/utils.py ```python import os from pathlib import Path import numpy as np AUDIO_FILENAME_ENDINGS = (".aiff", ".flac", ".m4a", ".mp3", ".ogg", ".opus", ".wav") def get_file_paths( root_path, filename_endings=AUDIO_FILENAME_ENDINGS, traverse_subdirectories=True ): """Return a list of paths to all files with the given filename extensions in a directory. Also traverses subdirectories by default. """ file_paths = [] for root, dirs, filenames in os.walk(root_path): filenames = sorted(filenames) for filename in filenames: input_path = os.path.abspath(root) file_path = os.path.join(input_path, filename) if filename.lower().endswith(filename_endings): file_paths.append(Path(file_path)) if not traverse_subdirectories: # prevent descending into subfolders break return file_paths def calculate_rms(samples): """Given a numpy array of audio samples, return its Root Mean Square (RMS).""" return np.sqrt(np.mean(np.square(samples), axis=-1)) def calculate_desired_noise_rms(clean_rms, snr): """ Given the Root Mean Square (RMS) of a clean sound and a desired signal-to-noise ratio (SNR), calculate the desired RMS of a noise sound to be mixed in. Based on https://github.com/Sato-Kunihiko/audio-SNR/blob/8d2c933b6c0afe6f1203251f4877e7a1068a6130/create_mixed_audio_file.py#L20 :param clean_rms: Root Mean Square (RMS) - a value between 0.0 and 1.0 :param snr: Signal-to-Noise (SNR) Ratio in dB - typically somewhere between -20 and 60 :return: """ a = float(snr) / 20 noise_rms = clean_rms / (10 ** a) return noise_rms def convert_decibels_to_amplitude_ratio(decibels): return 10 ** (decibels / 20) def is_waveform_multichannel(samples): """ Return bool that answers the question: Is the given ndarray a multichannel waveform or not? :param samples: numpy ndarray :return: """ return len(samples.shape) > 1 def is_spectrogram_multichannel(spectrogram): """ Return bool that answers the question: Is the given ndarray a multichannel spectrogram? :param samples: numpy ndarray :return: """ return len(spectrogram.shape) > 2 and spectrogram.shape[-1] > 1 def convert_float_samples_to_int16(y): """Convert floating-point numpy array of audio samples to int16.""" if not issubclass(y.dtype.type, np.floating): raise ValueError("input samples not floating-point") return (y * np.iinfo(np.int16).max).astype(np.int16) ``` #### File: audiomentations/tests/test_clipping_distortion.py ```python import unittest import numpy as np from audiomentations.augmentations.transforms import ClippingDistortion from audiomentations.core.composition import Compose class TestClippingDistortion(unittest.TestCase): def test_distort(self): sample_len = 1024 samples_in = np.random.normal(0, 1, size=sample_len).astype(np.float32) sample_rate = 16000 augmenter = Compose( [ ClippingDistortion( min_percentile_threshold=20, max_percentile_threshold=40, p=1.0 ) ] ) samples_out = augmenter(samples=samples_in, sample_rate=sample_rate) self.assertEqual(samples_out.dtype, np.float32) self.assertEqual(len(samples_out), sample_len) self.assertLess(sum(abs(samples_out)), sum(abs(samples_in))) def test_distort_multichannel(self): sample_len = 32000 samples_in = np.random.normal(0, 1, size=(2, sample_len)).astype(np.float32) sample_rate = 16000 augmenter = ClippingDistortion( min_percentile_threshold=20, max_percentile_threshold=40, p=1.0 ) samples_out = augmenter(samples=samples_in, sample_rate=sample_rate) self.assertEqual(samples_out.dtype, np.float32) self.assertEqual(samples_out.shape, samples_in.shape) self.assertLess(np.sum(np.abs(samples_out)), np.sum(np.abs(samples_in))) self.assertAlmostEqual(np.amax(samples_out[0, :]), np.amax(samples_out[1, :])) ``` #### File: audiomentations/tests/test_frequency_mask.py ```python import unittest import numpy as np from numpy.testing import assert_array_equal from audiomentations.augmentations.transforms import FrequencyMask from audiomentations.core.composition import Compose class TestFrequencyMask(unittest.TestCase): def test_apply_frequency_mask(self): sample_len = 1024 samples_in = np.random.normal(0, 1, size=sample_len).astype(np.float32) samples_in_copy = np.copy(samples_in) sample_rate = 16000 augmenter = Compose( [FrequencyMask(min_frequency_band=0.3, max_frequency_band=0.5, p=1.0)] ) samples_out = augmenter(samples=samples_in, sample_rate=sample_rate) self.assertEqual(samples_out.dtype, np.float32) self.assertEqual(len(samples_out), sample_len) # Check that the input is left untouched assert_array_equal(samples_in, samples_in_copy) std_in = np.mean(np.abs(samples_in)) std_out = np.mean(np.abs(samples_out)) self.assertLess(std_out, std_in) def test_apply_frequency_mask_stereo(self): np.random.seed(42) sample_len = 1024 samples_in = np.random.uniform(low=-0.5, high=0.5, size=(2, sample_len)).astype( np.float32 ) samples_in_copy = np.copy(samples_in) sample_rate = 16000 augmenter = FrequencyMask(min_frequency_band=0.3, max_frequency_band=0.3, p=1.0) samples_out = augmenter(samples=samples_in, sample_rate=sample_rate) self.assertEqual(samples_out.dtype, np.float32) self.assertEqual(samples_out.shape, samples_in.shape) # Check that the input is left untouched assert_array_equal(samples_in, samples_in_copy) std_in = np.mean(np.abs(samples_in)) std_out = np.mean(np.abs(samples_out)) self.assertLess(std_out, std_in) augmenter.freeze_parameters() samples_only_1st_channel = augmenter( samples=samples_in[0, :], sample_rate=sample_rate ) assert_array_equal(samples_out[0, :], samples_only_1st_channel) def test_filter_instability(self): """ An early implementation of FrequencyMask had a problem with filter instability sometimes. That would lead to NaN values in the result. This test checks whether or not the problem currently exists. """ np.random.seed(42) sample_len = 32000 samples_in = np.random.uniform(-1, 1, size=sample_len).astype(np.float32) sample_rate = 16000 augmenter = Compose([FrequencyMask(p=1.0)]) augmenter.transforms[0].randomize_parameters(samples_in, sample_rate) augmenter.transforms[0].parameters["bandwidth"] = 600 augmenter.transforms[0].parameters["freq_start"] = 17 augmenter.freeze_parameters() samples_out = augmenter(samples=samples_in, sample_rate=sample_rate) self.assertFalse(np.isnan(samples_out).any()) ``` #### File: audiomentations/tests/test_gaussian_noise.py ```python import unittest import numpy as np from audiomentations.augmentations.transforms import AddGaussianNoise from audiomentations.core.composition import Compose class TestGaussianNoise(unittest.TestCase): def test_gaussian_noise(self): samples = np.zeros((20,), dtype=np.float32) sample_rate = 16000 augmenter = Compose([AddGaussianNoise(p=1.0)]) samples = augmenter(samples=samples, sample_rate=sample_rate) self.assertEqual(samples.dtype, np.float32) self.assertNotAlmostEqual(float(np.sum(np.abs(samples))), 0.0) def test_gaussian_noise_stereo(self): samples = np.zeros((2, 2000), dtype=np.float32) sample_rate = 16000 augmenter = Compose([AddGaussianNoise(p=1.0)]) samples = augmenter(samples=samples, sample_rate=sample_rate) self.assertEqual(samples.dtype, np.float32) self.assertNotAlmostEqual(float(np.sum(np.abs(samples))), 0.0) ``` #### File: audiomentations/tests/test_loudness_normalization.py ```python import unittest import numpy as np from numpy.testing import assert_almost_equal from audiomentations import LoudnessNormalization class TestLoudnessNormalization(unittest.TestCase): def test_loudness_normalization(self): samples = np.random.uniform(low=-0.2, high=-0.001, size=(8000,)).astype( np.float32 ) sample_rate = 16000 augment = LoudnessNormalization(min_lufs_in_db=-32, max_lufs_in_db=-12, p=1.0) processed_samples = augment(samples=samples, sample_rate=sample_rate) gain_factors = processed_samples / samples self.assertAlmostEqual(np.amin(gain_factors), np.amax(gain_factors), places=6) self.assertEqual(processed_samples.dtype, np.float32) def test_loudness_normalization_digital_silence(self): samples = np.zeros(8000, dtype=np.float32) sample_rate = 16000 augment = LoudnessNormalization(min_lufs_in_db=-32, max_lufs_in_db=-12, p=1.0) processed_samples = augment(samples=samples, sample_rate=sample_rate) assert_almost_equal(processed_samples, np.zeros(8000, dtype=np.float32)) self.assertEqual(processed_samples.dtype, np.float32) def test_loudness_normalization_too_short_input(self): samples = np.random.uniform(low=-0.2, high=-0.001, size=(800,)).astype( np.float32 ) sample_rate = 16000 augment = LoudnessNormalization(min_lufs_in_db=-32, max_lufs_in_db=-12, p=1.0) with self.assertRaises(ValueError): _ = augment(samples=samples, sample_rate=sample_rate) def test_loudness_normalization_multichannel(self): samples = np.random.uniform(low=-0.2, high=-0.001, size=(3, 8000)).astype( np.float32 ) sample_rate = 16000 augment = LoudnessNormalization(min_lufs_in_db=-32, max_lufs_in_db=-12, p=1.0) processed_samples = augment(samples=samples, sample_rate=sample_rate) gain_factors = processed_samples / samples self.assertAlmostEqual(np.amin(gain_factors), np.amax(gain_factors), places=6) self.assertEqual(processed_samples.dtype, np.float32) ``` #### File: audiomentations/tests/test_mp3_compression.py ```python import unittest import numpy as np from audiomentations.augmentations.transforms import Mp3Compression from audiomentations.core.composition import Compose class TestMp3Compression(unittest.TestCase): def test_apply_mp3_compression_pydub(self): sample_len = 44100 samples_in = np.random.normal(0, 1, size=sample_len).astype(np.float32) sample_rate = 44100 augmenter = Compose( [Mp3Compression(p=1.0, min_bitrate=48, max_bitrate=48, backend="pydub")] ) samples_out = augmenter(samples=samples_in, sample_rate=sample_rate) self.assertEqual(samples_out.dtype, np.float32) self.assertGreaterEqual(len(samples_out), sample_len) self.assertLess(len(samples_out), sample_len + 2500) def test_apply_mp3_compression_lameenc(self): sample_len = 44100 samples_in = np.random.normal(0, 1, size=sample_len).astype(np.float32) sample_rate = 44100 augmenter = Compose( [Mp3Compression(p=1.0, min_bitrate=48, max_bitrate=48, backend="lameenc")] ) samples_out = augmenter(samples=samples_in, sample_rate=sample_rate) self.assertEqual(samples_out.dtype, np.float32) self.assertGreaterEqual(len(samples_out), sample_len) self.assertLess(len(samples_out), sample_len + 2500) def test_apply_mp3_compression_low_bitrate_pydub(self): sample_len = 16000 samples_in = np.random.normal(0, 1, size=sample_len).astype(np.float32) sample_rate = 16000 augmenter = Compose( [Mp3Compression(p=1.0, min_bitrate=8, max_bitrate=8, backend="pydub")] ) samples_out = augmenter(samples=samples_in, sample_rate=sample_rate) self.assertEqual(samples_out.dtype, np.float32) self.assertGreaterEqual(len(samples_out), sample_len) self.assertLess(len(samples_out), sample_len + 2500) def test_apply_mp3_compression_low_bitrate_lameenc(self): sample_len = 16000 samples_in = np.random.normal(0, 1, size=sample_len).astype(np.float32) sample_rate = 16000 augmenter = Compose( [Mp3Compression(p=1.0, min_bitrate=8, max_bitrate=8, backend="lameenc")] ) samples_out = augmenter(samples=samples_in, sample_rate=sample_rate) self.assertEqual(samples_out.dtype, np.float32) self.assertGreaterEqual(len(samples_out), sample_len) self.assertLess(len(samples_out), sample_len + 2500) def test_invalid_argument_combination(self): with self.assertRaises(AssertionError): _ = Mp3Compression(min_bitrate=400, max_bitrate=800) with self.assertRaises(AssertionError): _ = Mp3Compression(min_bitrate=2, max_bitrate=4) with self.assertRaises(AssertionError): _ = Mp3Compression(min_bitrate=64, max_bitrate=8) ``` #### File: audiomentations/tests/test_spec_channel_shuffle.py ```python import os import unittest import librosa import numpy as np from audiomentations import SpecChannelShuffle from audiomentations.core.audio_loading_utils import load_sound_file from audiomentations.core.transforms_interface import MonoAudioNotSupportedException from demo.demo import DEMO_DIR from .utils import plot_matrix DEBUG = False class TestSpecChannelShuffle(unittest.TestCase): def test_shuffle_channels(self): samples, sample_rate = load_sound_file( os.path.join(DEMO_DIR, "background_noises", "hens.ogg"), sample_rate=None, mono=False, ) assert samples.shape[0] == 2 magnitude_spectrogram_chn0 = librosa.feature.melspectrogram( y=np.asfortranarray(samples[0, :]), sr=sample_rate ) magnitude_spectrogram_chn1 = librosa.feature.melspectrogram( y=np.asfortranarray(samples[1, :]), sr=sample_rate ) multichannel_magnitude_spectrogram = np.zeros( shape=( magnitude_spectrogram_chn0.shape[0], magnitude_spectrogram_chn0.shape[1], 3, ), dtype=np.float32, ) multichannel_magnitude_spectrogram[:, :, 0] = magnitude_spectrogram_chn0 multichannel_magnitude_spectrogram[:, :, 1] = magnitude_spectrogram_chn1 multichannel_magnitude_spectrogram[:, :, 2] = magnitude_spectrogram_chn1 * 0.7 if DEBUG: image = (7 + np.log10(multichannel_magnitude_spectrogram + 0.0000001)) / 8 plot_matrix(image, title="before") # Make sure the shuffled channels do not equal the original order transform = SpecChannelShuffle(p=1.0) for _ in range(100000): transform.randomize_parameters(multichannel_magnitude_spectrogram) if transform.parameters["shuffled_channel_indexes"] != [0, 1, 2]: break transform.freeze_parameters() augmented_spectrogram = transform(multichannel_magnitude_spectrogram) if DEBUG: image = (7 + np.log10(augmented_spectrogram + 0.0000001)) / 8 plot_matrix(image, title="after") with np.testing.assert_raises(AssertionError): np.testing.assert_array_equal( augmented_spectrogram, multichannel_magnitude_spectrogram ) for augmented_index, original_index in enumerate( transform.parameters.get("shuffled_channel_indexes") ): np.testing.assert_array_equal( augmented_spectrogram[:, :, augmented_index], multichannel_magnitude_spectrogram[:, :, original_index], ) def test_shuffle_channels_mono(self): samples, sample_rate = load_sound_file( os.path.join(DEMO_DIR, "acoustic_guitar_0.wav"), sample_rate=None ) magnitude_spectrogram = librosa.feature.melspectrogram( y=samples, sr=sample_rate ) transform = SpecChannelShuffle(p=1.0) with self.assertRaises(MonoAudioNotSupportedException): augmented_spectrogram = transform(magnitude_spectrogram) def test_empty_spectrogram(self): spec = np.zeros(shape=(0, 0), dtype=np.float32) transform = SpecChannelShuffle(p=1.0) augmented_spectrogram = transform(spec) np.testing.assert_array_equal(spec, augmented_spectrogram) ``` #### File: audiomentations/tests/test_utils.py ```python import unittest from audiomentations.core.utils import ( calculate_desired_noise_rms, convert_decibels_to_amplitude_ratio, get_file_paths, ) from demo.demo import DEMO_DIR class TestUtils(unittest.TestCase): def test_calculate_desired_noise_rms(self): noise_rms = calculate_desired_noise_rms(clean_rms=0.5, snr=6) self.assertAlmostEqual(noise_rms, 0.2505936168136362) def test_convert_decibels_to_amplitude_ratio(self): amplitude_ratio = convert_decibels_to_amplitude_ratio(decibels=-6) self.assertAlmostEqual(amplitude_ratio, 0.5011872336272722) amplitude_ratio = convert_decibels_to_amplitude_ratio(decibels=6) self.assertAlmostEqual(amplitude_ratio, 1.9952623149688795) def test_get_file_paths_uppercase_extension(self): file_paths = get_file_paths(DEMO_DIR, traverse_subdirectories=False) found_it = False for file_path in file_paths: if file_path.name == "stereo_24bit.WAV": found_it = True break self.assertTrue(found_it) ```
{ "source": "jeongyoonlee/kddcup2019track1", "score": 3 }
#### File: kddcup2019track1/src/build_features.py ```python import json import pandas as pd import numpy as np from sklearn.decomposition import TruncatedSVD from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.preprocessing import LabelEncoder from tqdm import tqdm def read_profile_data(): profile_data = pd.read_csv('../input/profiles.csv') profile_na = np.zeros(67) profile_na[0] = -1 profile_na = pd.DataFrame(profile_na.reshape(1, -1)) profile_na.columns = profile_data.columns profile_data = profile_data.append(profile_na) return profile_data def merge_raw_data(): tr_queries = pd.read_csv('../input/train_queries.csv') te_queries = pd.read_csv('../input/test_queries.csv') tr_plans = pd.read_csv('../input/train_plans.csv') te_plans = pd.read_csv('../input/test_plans.csv') tr_click = pd.read_csv('../input/train_clicks.csv') tr_data = tr_queries.merge(tr_click, on='sid', how='left') tr_data = tr_data.merge(tr_plans, on='sid', how='left') tr_data = tr_data.drop(['click_time'], axis=1) tr_data['click_mode'] = tr_data['click_mode'].fillna(0) te_data = te_queries.merge(te_plans, on='sid', how='left') te_data['click_mode'] = -1 data = pd.concat([tr_data, te_data], axis=0) data = data.drop(['plan_time'], axis=1) data = data.reset_index(drop=True) print('total data size: {}'.format(data.shape)) print('raw data columns: {}'.format(', '.join(data.columns))) return data def gen_od_feas(data): enc = LabelEncoder() data['o1'] = data['o'].apply(lambda x: float(x.split(',')[0])) data['o2'] = data['o'].apply(lambda x: float(x.split(',')[1])) data['d1'] = data['d'].apply(lambda x: float(x.split(',')[0])) data['d2'] = data['d'].apply(lambda x: float(x.split(',')[1])) #data['o_enc'] = enc.fit_transform(data['o']) #data['d_enc'] = enc.fit_transform(data['d']) data = data.drop(['o', 'd'], axis=1) return data def gen_plan_feas(data): n = data.shape[0] mode_list_feas = np.zeros((n, 12)) max_dist, min_dist, mean_dist, std_dist = np.zeros( (n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)) max_price, min_price, mean_price, std_price = np.zeros( (n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)) max_eta, min_eta, mean_eta, std_eta = np.zeros( (n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)) min_dist_mode, max_dist_mode, min_price_mode, max_price_mode, min_eta_mode, max_eta_mode, first_mode = np.zeros( (n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)) mode_texts = [] for i, plan in tqdm(enumerate(data['plans'].values)): try: cur_plan_list = json.loads(plan) except: cur_plan_list = [] if len(cur_plan_list) == 0: mode_list_feas[i, 0] = 1 first_mode[i] = 0 max_dist[i] = -1 min_dist[i] = -1 mean_dist[i] = -1 std_dist[i] = -1 max_price[i] = -1 min_price[i] = -1 mean_price[i] = -1 std_price[i] = -1 max_eta[i] = -1 min_eta[i] = -1 mean_eta[i] = -1 std_eta[i] = -1 min_dist_mode[i] = -1 max_dist_mode[i] = -1 min_price_mode[i] = -1 max_price_mode[i] = -1 min_eta_mode[i] = -1 max_eta_mode[i] = -1 mode_texts.append('word_null') else: distance_list = [] price_list = [] eta_list = [] mode_list = [] for tmp_dit in cur_plan_list: distance_list.append(int(tmp_dit['distance'])) if tmp_dit['price'] == '': price_list.append(0) else: price_list.append(int(tmp_dit['price'])) eta_list.append(int(tmp_dit['eta'])) mode_list.append(int(tmp_dit['transport_mode'])) mode_texts.append( ' '.join(['word_{}'.format(mode) for mode in mode_list])) distance_list = np.array(distance_list) price_list = np.array(price_list) eta_list = np.array(eta_list) mode_list = np.array(mode_list, dtype='int') mode_list_feas[i, mode_list] = 1 distance_sort_idx = np.argsort(distance_list) price_sort_idx = np.argsort(price_list) eta_sort_idx = np.argsort(eta_list) max_dist[i] = distance_list[distance_sort_idx[-1]] min_dist[i] = distance_list[distance_sort_idx[0]] mean_dist[i] = np.mean(distance_list) std_dist[i] = np.std(distance_list) max_price[i] = price_list[price_sort_idx[-1]] min_price[i] = price_list[price_sort_idx[0]] mean_price[i] = np.mean(price_list) std_price[i] = np.std(price_list) max_eta[i] = eta_list[eta_sort_idx[-1]] min_eta[i] = eta_list[eta_sort_idx[0]] mean_eta[i] = np.mean(eta_list) std_eta[i] = np.std(eta_list) first_mode[i] = mode_list[0] max_dist_mode[i] = mode_list[distance_sort_idx[-1]] min_dist_mode[i] = mode_list[distance_sort_idx[0]] max_price_mode[i] = mode_list[price_sort_idx[-1]] min_price_mode[i] = mode_list[price_sort_idx[0]] max_eta_mode[i] = mode_list[eta_sort_idx[-1]] min_eta_mode[i] = mode_list[eta_sort_idx[0]] feature_data = pd.DataFrame(mode_list_feas) feature_data.columns = ['mode_feas_{}'.format(i) for i in range(12)] feature_data['max_dist'] = max_dist feature_data['min_dist'] = min_dist feature_data['mean_dist'] = mean_dist feature_data['std_dist'] = std_dist feature_data['max_price'] = max_price feature_data['min_price'] = min_price feature_data['mean_price'] = mean_price feature_data['std_price'] = std_price feature_data['max_eta'] = max_eta feature_data['min_eta'] = min_eta feature_data['mean_eta'] = mean_eta feature_data['std_eta'] = std_eta feature_data['max_dist_mode'] = max_dist_mode feature_data['min_dist_mode'] = min_dist_mode feature_data['max_price_mode'] = max_price_mode feature_data['min_price_mode'] = min_price_mode feature_data['max_eta_mode'] = max_eta_mode feature_data['min_eta_mode'] = min_eta_mode feature_data['first_mode'] = first_mode print('mode tfidf...') tfidf_enc = TfidfVectorizer(ngram_range=(1, 2)) tfidf_vec = tfidf_enc.fit_transform(mode_texts) svd_enc = TruncatedSVD(n_components=10, n_iter=20, random_state=2019) mode_svd = svd_enc.fit_transform(tfidf_vec) mode_svd = pd.DataFrame(mode_svd) mode_svd.columns = ['svd_mode_{}'.format(i) for i in range(10)] data = pd.concat([data, feature_data, mode_svd], axis=1) data = data.drop(['plans'], axis=1) return data def gen_profile_feas(data): profile_data = read_profile_data() x = profile_data.drop(['pid'], axis=1).values svd = TruncatedSVD(n_components=20, n_iter=20, random_state=2019) svd_x = svd.fit_transform(x) svd_feas = pd.DataFrame(svd_x) svd_feas.columns = ['svd_fea_{}'.format(i) for i in range(20)] svd_feas['pid'] = profile_data['pid'].values data['pid'] = data['pid'].fillna(-1) data = data.merge(svd_feas, on='pid', how='left') return data def group_weekday_and_hour(row): if row['weekday'] == 0 or row['weekday'] == 6: w = 0 else: w = row['weekday'] if row['hour'] > 7 and row['hour'] < 18: # 7:00 - 18:00 h = row['hour'] elif row['hour'] >= 18 and row['hour'] < 21: # 18:00 - 21:00 h = 1 elif row['hour'] >= 21 or row['hour'] < 6: # 21:00 - 6:00 h = 0 else: # 6:00 - 7:00 h = 2 return str(w) + '_' + str(h) def gen_time_feas(data): data['req_time'] = pd.to_datetime(data['req_time']) data['weekday'] = data['req_time'].dt.dayofweek data['hour'] = data['req_time'].dt.hour #data['group-weekday-n-hour'] = LabelEncoder().fit_transform(data.apply(group_weekday_and_hour, axis = 1)) data = data.drop(['req_time'], axis=1) return data def gen_ratio_feas(data): data['dist-d-eta'] = data['mean_dist'] / data['mean_eta'] data['price-d-dist'] = data['mean_price'] / data['mean_dist'] data['price-d-eta'] = data['mean_price'] / data['mean_eta'] data['o1-d-d1'] = data['o1'] / data['d1'] data['o2-d-d2'] = data['o2'] / data['d2'] return data def gen_fly_dist_feas(data): data['fly-dist'] = ((data['d1'] - data['o1'])**2 + (data['d2'] - data['o2'])**2)**0.5 data['fly-dist-d-dist'] = data['fly-dist'] / data['mean_dist'] data['fly-dist-d-eta'] = data['fly-dist'] / data['mean_eta'] data['price-d-fly-dist'] = data['mean_price'] / data['fly-dist'] return data def gen_aggregate_profile_feas(data): aggr = data.groupby('pid')['sid'].agg(['count']) aggr.columns = ['%s_%s' % ('sid', col) for col in aggr.columns.values] aggr = aggr.reset_index() aggr.loc[aggr['pid'] == -1.0,'sid_count'] = 0 # reset in case pid == -1 data = data.merge(aggr, how='left', on=['pid']) return data def gen_pid_feat(data): feat = pd.read_csv('../feat/pid_feat.csv') data = data.merge(feat, how='left', on='pid') return data def gen_sid_feat(data): feat = pd.read_csv('../feat/sid_feat.csv') data = data.merge(feat, how='left', on='sid') data['first_mode-eq-min_dist_mode'] = (data['first_mode']==data['min_dist_mode']).astype(int) data['first_mode-eq-min_eta_mode'] = (data['first_mode']==data['min_eta_mode']).astype(int) data['first_mode-eq-min_price_mode'] = (data['first_mode']==data['min_price_mode']).astype(int) return data def gen_od_feat(data): feat = pd.read_csv('../feat/od_feat.csv') tr_sid = pd.read_csv('../input/train_queries.csv', usecols=['sid','o','d']) te_sid = pd.read_csv('../input/test_queries.csv', usecols=['sid','o','d']) sid = pd.concat((tr_sid, te_sid)) print(sid.shape) feat = sid.merge(feat, how='left', on=['o','d']).drop(['o','d'], axis=1) print(feat.shape) print(feat.columns) data = data.merge(feat, how='left', on='sid') click_cols = [c for c in feat.columns if c.endswith('click')] data.drop(click_cols, axis=1, inplace=True) return data def gen_od_cluster_feat(data): feat = pd.read_csv('../feat/od_node_cluster.csv') tr_sid = pd.read_csv('../input/train_queries.csv', usecols=['sid','o','d']) te_sid = pd.read_csv('../input/test_queries.csv', usecols=['sid','o','d']) sid = pd.concat((tr_sid, te_sid)) f = feat.copy() feat = sid.merge(feat, how='left', left_on='o', right_on='od').drop(['od','o'], axis=1) feat.rename(columns={'cluster': 'o_cluster'}, inplace=True) feat = feat.merge(f, how='left', left_on='d', right_on='od').drop(['od','d'], axis=1) feat.rename(columns={'cluster': 'd_cluster'}, inplace=True) data = data.merge(feat, how='left', on='sid') return data def gen_od_eq_feat(data): data['o1-eq-d1'] = (data['o1'] == data['d1']).astype(int) data['o2-eq-d2'] = (data['o2'] == data['d2']).astype(int) data['o-eq-d'] = data['o1-eq-d1']*data['o2-eq-d2'] return data def gen_encode_feas(data): return data def split_train_test(data): train_data = data[data['click_mode'] != -1] test_data = data[data['click_mode'] == -1] submit = test_data[['sid']].copy() train_data = train_data.drop(['sid', 'pid'], axis=1) test_data = test_data.drop(['sid', 'pid'], axis=1) test_data = test_data.drop(['click_mode'], axis=1) train_y = train_data['click_mode'].values train_x = train_data.drop(['click_mode'], axis=1) return train_x, train_y, test_data, submit def get_train_test_feas_data(): data = merge_raw_data() data = gen_od_feas(data) data = gen_plan_feas(data) data = gen_profile_feas(data) data = gen_time_feas(data) # 0.6758 data = gen_ratio_feas(data) data = gen_fly_dist_feas(data) data = gen_aggregate_profile_feas(data) # 0.6759966661470926 data = gen_pid_feat(data) # 0.6762996872664375 #data = gen_sid_feat(data) # 0.6752915844109314 (not work) data = gen_od_feat(data) # without click count: 0.6780576865566392; with click count: 0.6795810670221226 data = gen_od_cluster_feat(data) # 0.6796523605372234 #data = gen_od_eq_feat(data) train_x, train_y, test_x, submit = split_train_test(data) return train_x, train_y, test_x, submit if __name__ == '__main__': pass ``` #### File: kddcup2019track1/src/utils.py ```python import numpy as np import pandas as pd def eval_f(y_pred, train_data): y_true = train_data.label y_pred = y_pred.reshape((config.n_class, -1)).T y_pred = np.argmax(y_pred, axis=1) score = f1_score(y_true, y_pred, average='weighted') return 'weighted-f1-score', score, True def submit_result(submit, result, trn_result, score): now_time = strftime("%Y-%m-%d-%H-%M-%S", gmtime()) submit['recommend_mode'] = result submit.to_csv(config.submission_file, index=False) if trn_result is not None: submit['recommend_mode'] = trn_result submit.to_csv(config.trn_submission_file, index=False) if os.path.exists(config.metric_file): metric = pd.read_csv(config.metric_file) metric.append({'model': config.model_name, 'feature': config.feature_name, 'datetime': now_time, 'score': score}, ignore_index=True) else: metric = pd.DataFrame({'model': [config.model_name], 'feature': config.feature_name, 'datetime': [now_time], 'score': [score]}) metric.round(6).to_csv(config.metric_file, index=False) ```
{ "source": "jeongyoonlee/kddcup2019track2", "score": 3 }
#### File: starting_kit_0401/sample_code_submission/preprocess.py ```python import datetime import CONSTANT from util import log, timeit import numpy as np from pandas.api.types import is_categorical_dtype @timeit def clean_tables(tables): for tname in tables: log(f"cleaning table {tname}") clean_df(tables[tname]) @timeit def clean_df(df): log('memory usage: {:.2f}MB'.format(df.memory_usage().sum() // 1e6)) fillna(df) cols_to_drop = [] for col in df.columns: s = df[col] if s.dtype == np.object: s = s.astype('category') if len(s.cat.categories) == 1: cols_to_drop.append(col) elif is_categorical_dtype(s): if len(s.cat.categories) == 1: cols_to_drop.append(col) elif s.min() == s.max(): cols_to_drop.append(col) log('dropping constant features') log('{}'.format(cols_to_drop)) df.drop(cols_to_drop, axis=1, inplace=True) log('memory usage: {:.2f}MB'.format(df.memory_usage().sum() // 1e6)) @timeit def fillna(df): for c in [c for c in df if c.startswith(CONSTANT.NUMERICAL_PREFIX)]: df[c].fillna(-1, inplace=True) for c in [c for c in df if c.startswith(CONSTANT.CATEGORY_PREFIX)]: df[c].fillna("0", inplace=True) for c in [c for c in df if c.startswith(CONSTANT.TIME_PREFIX)]: df[c].fillna(datetime.datetime(1970, 1, 1), inplace=True) for c in [c for c in df if c.startswith(CONSTANT.MULTI_CAT_PREFIX)]: df[c].fillna("0", inplace=True) @timeit def feature_engineer(df, config): transform_categorical_hash(df) transform_datetime(df, config) @timeit def transform_datetime(df, config): for c in [c for c in df if c.startswith(CONSTANT.TIME_PREFIX)]: df.drop(c, axis=1, inplace=True) @timeit def transform_categorical_hash(df): for c in [c for c in df if c.startswith(CONSTANT.CATEGORY_PREFIX)]: df[c] = df[c].apply(lambda x: int(x)) for c in [c for c in df if c.startswith(CONSTANT.MULTI_CAT_PREFIX)]: df[c] = df[c].apply(lambda x: int(x.split(',')[0])) ``` #### File: starting_kit_0401/scoring_program/score.py ```python import os from os.path import join, isfile import sys import pandas as pd from sklearn import metrics from datetime import datetime def mprint(msg): """info""" cur_time = datetime.now().strftime('%m-%d %H:%M:%S') print(f"INFO [{cur_time}] {msg}") def init_dirs(): if len(sys.argv) == 1: # default local root_dir = os.getcwd() dirs = { 'ref': join(root_dir, 'sample_ref'), 'output': join(root_dir, 'sample_scoring_output'), 'prediction': join(root_dir, 'sample_predictions') } elif len(sys.argv) == 3: # codalab dirs = { 'ref': join(sys.argv[1], 'ref'), 'output': sys.argv[2], 'prediction': join(sys.argv[1], 'res') } elif len(sys.argv) == 5 and sys.argv[1] == 'local': # full call in local dirs = { 'prediction': join(sys.argv[2]), 'ref': join(sys.argv[3]), 'output': sys.argv[4] } else: raise ValueError("Wrong number of arguments") os.makedirs(dirs['output'], exist_ok=True) return dirs def write_score(dirs, score_file): datanames = sorted(os.listdir(dirs['ref'])) mprint(f'Datanames: {datanames}') total_score = 0 for idx, dataname in enumerate(datanames): auc = get_auc(dirs, dataname) total_score += auc score_file.write(f'set{idx+1}_score: {auc}\n') def get_auc(dirs, dataname): predict_file = join(dirs['prediction'], f'{dataname}.predict') if not isfile(predict_file): mprint(f"{dataname}.predict does not exist") auc = 0 else: prediction = pd.read_csv(predict_file) solution = pd.read_csv( join(dirs['ref'], dataname, 'main_test.solution')) try: auc = metrics.roc_auc_score(solution, prediction) except: mprint(f"{dataname}: can not caculate AUC") auc = 0 mprint(f'{dataname} AUC: {auc}') return auc def write_duration(dirs, score_file): with open(join(dirs['prediction'], 'duration.txt')) as time_f: time = time_f.read() score_file.write(f'Duration: {time}\n') def main(): dirs = init_dirs() with open(join(dirs['output'], 'scores.txt'), 'w') as score_file: write_score(dirs, score_file) write_duration(dirs, score_file) if __name__ == '__main__': main() ```
{ "source": "Jeonhappywife/MyKiwoom", "score": 2 }
#### File: MyKiwoom/trader/strategy.py ```python import os import sys import psutil import numpy as np import pandas as pd sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from utility.setting import ui_num, DICT_SET, columns_gj from utility.static import now, timedelta_sec, thread_decorator, strf_time, float2str1p6 class Strategy: def __init__(self, windowQ, traderQ, stgQ): self.windowQ = windowQ self.traderQ = traderQ self.stgQ = stgQ self.list_buy = [] # ๋งค์ˆ˜์ฃผ๋ฌธ๋ฆฌ์ŠคํŠธ self.list_sell = [] # ๋งค๋„์ฃผ๋ฌธ๋ฆฌ์ŠคํŠธ self.int_tujagm = 0 # ์ข…๋ชฉ๋‹น ํˆฌ์ž๊ธˆ self.startjjstg = False # ์žฅ์ค‘์ „๋žต self.dict_gsjm = {} # key: ์ข…๋ชฉ์ฝ”๋“œ, value: DataFrame self.dict_data = {} # key: ์ข…๋ชฉ์ฝ”๋“œ, value: list self.dict_high = {} # key: ์ข…๋ชฉ์ฝ”๋“œ, value: float self.dict_time = { '๊ด€์‹ฌ์ข…๋ชฉ': now(), '๋ถ€๊ฐ€์ •๋ณด': now(), '์—ฐ์‚ฐ์‹œ๊ฐ„': now() } self.dict_intg = { '์Šค๋ ˆ๋“œ': 0, '์‹œํ”ผ์œ ': 0., '๋ฉ”๋ชจ๋ฆฌ': 0. } self.Start() def Start(self): while True: data = self.stgQ.get() if type(data) == int: self.int_tujagm = data elif type(data) == list: if len(data) == 2: self.UpdateList(data[0], data[1]) elif len(data) == 38: self.BuyStrategy(data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7], data[8], data[9], data[10], data[11], data[12], data[13], data[14], data[15], data[16], data[17], data[18], data[19], data[20], data[21], data[22], data[23], data[24], data[25], data[26], data[27], data[28], data[29], data[30], data[31], data[32], data[33], data[34], data[35], data[36], data[37]) elif len(data) == 6: self.SellStrategy(data[0], data[1], data[2], data[3], data[4], data[5]) elif data == '์ „๋žตํ”„๋กœ์„ธ์Šค์ข…๋ฃŒ': break if now() > self.dict_time['๊ด€์‹ฌ์ข…๋ชฉ']: self.windowQ.put([ui_num['๊ด€์‹ฌ์ข…๋ชฉ'], self.dict_gsjm]) self.dict_time['๊ด€์‹ฌ์ข…๋ชฉ'] = timedelta_sec(1) if now() > self.dict_time['๋ถ€๊ฐ€์ •๋ณด']: self.UpdateInfo() self.dict_time['๋ถ€๊ฐ€์ •๋ณด'] = timedelta_sec(2) self.windowQ.put([1, '์‹œ์Šคํ…œ ๋ช…๋ น ์‹คํ–‰ ์•Œ๋ฆผ - ์ „๋žต ์—ฐ์‚ฐ ํ”„๋กœ์„ธ์Šค ์ข…๋ฃŒ']) def UpdateList(self, gubun, code): if '์กฐ๊ฑด์ง„์ž…' in gubun: if code not in self.dict_gsjm.keys(): if int(strf_time('%H%M%S')) < 100000: data = np.zeros((DICT_SET['์žฅ์ดˆํ‰๊ท ๊ฐ’๊ณ„์‚ฐํ‹ฑ์ˆ˜'] + 2, len(columns_gj))).tolist() else: data = np.zeros((DICT_SET['์žฅ์ค‘ํ‰๊ท ๊ฐ’๊ณ„์‚ฐํ‹ฑ์ˆ˜'] + 2, len(columns_gj))).tolist() df = pd.DataFrame(data, columns=columns_gj) self.dict_gsjm[code] = df.copy() elif gubun == '์กฐ๊ฑด์ดํƒˆ': if code in self.dict_gsjm.keys(): del self.dict_gsjm[code] elif gubun in ['๋งค์ˆ˜์™„๋ฃŒ', '๋งค์ˆ˜์ทจ์†Œ']: if code in self.list_buy: self.list_buy.remove(code) elif gubun in ['๋งค๋„์™„๋ฃŒ', '๋งค๋„์ทจ์†Œ']: if code in self.list_sell: self.list_sell.remove(code) if code in self.dict_high.keys(): del self.dict_high[code] def BuyStrategy(self, ํ˜„์žฌ๊ฐ€, ์‹œ๊ฐ€, ๊ณ ๊ฐ€, ์ €๊ฐ€, ๋“ฑ๋ฝ์œจ, ๋‹น์ผ๊ฑฐ๋ž˜๋Œ€๊ธˆ, ์ฒด๊ฒฐ๊ฐ•๋„, ์ดˆ๋‹น๋งค์ˆ˜์ˆ˜๋Ÿ‰, ์ดˆ๋‹น๋งค๋„์ˆ˜๋Ÿ‰, VIํ•ด์ œ์‹œ๊ฐ„, VI์•„๋ž˜5ํ˜ธ๊ฐ€, ๋งค๋„์ด์ž”๋Ÿ‰, ๋งค์ˆ˜์ด์ž”๋Ÿ‰, ๋งค๋„ํ˜ธ๊ฐ€5, ๋งค๋„ํ˜ธ๊ฐ€4, ๋งค๋„ํ˜ธ๊ฐ€3, ๋งค๋„ํ˜ธ๊ฐ€2, ๋งค๋„ํ˜ธ๊ฐ€1, ๋งค์ˆ˜ํ˜ธ๊ฐ€1, ๋งค์ˆ˜ํ˜ธ๊ฐ€2, ๋งค์ˆ˜ํ˜ธ๊ฐ€3, ๋งค์ˆ˜ํ˜ธ๊ฐ€4, ๋งค์ˆ˜ํ˜ธ๊ฐ€5, ๋งค๋„์ž”๋Ÿ‰5, ๋งค๋„์ž”๋Ÿ‰4, ๋งค๋„์ž”๋Ÿ‰3, ๋งค๋„์ž”๋Ÿ‰2, ๋งค๋„์ž”๋Ÿ‰1, ๋งค์ˆ˜์ž”๋Ÿ‰1, ๋งค์ˆ˜์ž”๋Ÿ‰2, ๋งค์ˆ˜์ž”๋Ÿ‰3, ๋งค์ˆ˜์ž”๋Ÿ‰4, ๋งค์ˆ˜์ž”๋Ÿ‰5, ์ข…๋ชฉ์ฝ”๋“œ, ์ฒด๊ฒฐ์‹œ๊ฐ„, ํ‹ฑ์ˆ˜์‹ ์‹œ๊ฐ„, ์ข…๋ชฉ๋ช…, ์ž”๊ณ ์ข…๋ชฉ): if ์ข…๋ชฉ์ฝ”๋“œ not in self.dict_gsjm.keys(): return self.CheckStrategy() ๊ณ ์ €ํ‰๊ท  = round((๊ณ ๊ฐ€ + ์ €๊ฐ€) / 2) ๊ณ ์ €ํ‰๊ท ๋Œ€๋น„๋“ฑ๋ฝ์œจ = round((ํ˜„์žฌ๊ฐ€ / ๊ณ ์ €ํ‰๊ท  - 1) * 100, 2) ์ง์ „๋‹น์ผ๊ฑฐ๋ž˜๋Œ€๊ธˆ = self.dict_gsjm[์ข…๋ชฉ์ฝ”๋“œ]['๋‹น์ผ๊ฑฐ๋ž˜๋Œ€๊ธˆ'][0] ์ดˆ๋‹น๊ฑฐ๋ž˜๋Œ€๊ธˆ = 0 if ์ง์ „๋‹น์ผ๊ฑฐ๋ž˜๋Œ€๊ธˆ == 0 else int(๋‹น์ผ๊ฑฐ๋ž˜๋Œ€๊ธˆ - ์ง์ „๋‹น์ผ๊ฑฐ๋ž˜๋Œ€๊ธˆ) ๊ตฌ๋ถ„ = '์žฅ์ดˆ' if int(strf_time('%H%M%S')) < 100000 else '์žฅ์ค‘' ํ‰๊ท ๊ฐ’๊ณ„์‚ฐํ‹ฑ์ˆ˜ = DICT_SET[f'{๊ตฌ๋ถ„}ํ‰๊ท ๊ฐ’๊ณ„์‚ฐํ‹ฑ์ˆ˜'] ํ‰๊ท ๊ฐ’์ธ๋ฑ์Šค = ํ‰๊ท ๊ฐ’๊ณ„์‚ฐํ‹ฑ์ˆ˜ + 1 self.dict_gsjm[์ข…๋ชฉ์ฝ”๋“œ] = self.dict_gsjm[์ข…๋ชฉ์ฝ”๋“œ].shift(1) self.dict_gsjm[์ข…๋ชฉ์ฝ”๋“œ].at[0] = ๋“ฑ๋ฝ์œจ, ๊ณ ์ €ํ‰๊ท ๋Œ€๋น„๋“ฑ๋ฝ์œจ, ์ดˆ๋‹น๊ฑฐ๋ž˜๋Œ€๊ธˆ, ๋‹น์ผ๊ฑฐ๋ž˜๋Œ€๊ธˆ, ์ฒด๊ฒฐ๊ฐ•๋„, 0. if self.dict_gsjm[์ข…๋ชฉ์ฝ”๋“œ]['์ฒด๊ฒฐ๊ฐ•๋„'][ํ‰๊ท ๊ฐ’๊ณ„์‚ฐํ‹ฑ์ˆ˜] != 0.: ์ดˆ๋‹น๊ฑฐ๋ž˜๋Œ€๊ธˆํ‰๊ท  = int(self.dict_gsjm[์ข…๋ชฉ์ฝ”๋“œ]['์ดˆ๋‹น๊ฑฐ๋ž˜๋Œ€๊ธˆ'][1:ํ‰๊ท ๊ฐ’์ธ๋ฑ์Šค].mean()) ์ฒด๊ฒฐ๊ฐ•๋„ํ‰๊ท  = round(self.dict_gsjm[์ข…๋ชฉ์ฝ”๋“œ]['์ฒด๊ฒฐ๊ฐ•๋„'][1:ํ‰๊ท ๊ฐ’์ธ๋ฑ์Šค].mean(), 2) ์ตœ๊ณ ์ฒด๊ฒฐ๊ฐ•๋„ = round(self.dict_gsjm[์ข…๋ชฉ์ฝ”๋“œ]['์ฒด๊ฒฐ๊ฐ•๋„'][1:ํ‰๊ท ๊ฐ’์ธ๋ฑ์Šค].max(), 2) self.dict_gsjm[์ข…๋ชฉ์ฝ”๋“œ].at[ํ‰๊ท ๊ฐ’์ธ๋ฑ์Šค] = 0., 0., ์ดˆ๋‹น๊ฑฐ๋ž˜๋Œ€๊ธˆํ‰๊ท , 0, ์ฒด๊ฒฐ๊ฐ•๋„ํ‰๊ท , ์ตœ๊ณ ์ฒด๊ฒฐ๊ฐ•๋„ ๋งค์ˆ˜ = True ์ง์ „์ฒด๊ฒฐ๊ฐ•๋„ = self.dict_gsjm[์ข…๋ชฉ์ฝ”๋“œ]['์ฒด๊ฒฐ๊ฐ•๋„'][1] self.dict_data[์ข…๋ชฉ์ฝ”๋“œ] = [ ํ˜„์žฌ๊ฐ€, ์‹œ๊ฐ€, ๊ณ ๊ฐ€, ์ €๊ฐ€, ๋“ฑ๋ฝ์œจ, ๊ณ ์ €ํ‰๊ท ๋Œ€๋น„๋“ฑ๋ฝ์œจ, ๋‹น์ผ๊ฑฐ๋ž˜๋Œ€๊ธˆ, ์ดˆ๋‹น๊ฑฐ๋ž˜๋Œ€๊ธˆ, ์ดˆ๋‹น๊ฑฐ๋ž˜๋Œ€๊ธˆํ‰๊ท , ์ฒด๊ฒฐ๊ฐ•๋„, ์ฒด๊ฒฐ๊ฐ•๋„ํ‰๊ท , ์ตœ๊ณ ์ฒด๊ฒฐ๊ฐ•๋„, ์ง์ „์ฒด๊ฒฐ๊ฐ•๋„, ์ดˆ๋‹น๋งค์ˆ˜์ˆ˜๋Ÿ‰, ์ดˆ๋‹น๋งค๋„์ˆ˜๋Ÿ‰, VIํ•ด์ œ์‹œ๊ฐ„, VI์•„๋ž˜5ํ˜ธ๊ฐ€, ๋งค๋„์ด์ž”๋Ÿ‰, ๋งค์ˆ˜์ด์ž”๋Ÿ‰, ๋งค๋„ํ˜ธ๊ฐ€5, ๋งค๋„ํ˜ธ๊ฐ€4, ๋งค๋„ํ˜ธ๊ฐ€3, ๋งค๋„ํ˜ธ๊ฐ€2, ๋งค๋„ํ˜ธ๊ฐ€1, ๋งค์ˆ˜ํ˜ธ๊ฐ€1, ๋งค์ˆ˜ํ˜ธ๊ฐ€2, ๋งค์ˆ˜ํ˜ธ๊ฐ€3, ๋งค์ˆ˜ํ˜ธ๊ฐ€4, ๋งค์ˆ˜ํ˜ธ๊ฐ€5, ๋งค๋„์ž”๋Ÿ‰5, ๋งค๋„์ž”๋Ÿ‰4, ๋งค๋„์ž”๋Ÿ‰3, ๋งค๋„์ž”๋Ÿ‰2, ๋งค๋„์ž”๋Ÿ‰1, ๋งค์ˆ˜์ž”๋Ÿ‰1, ๋งค์ˆ˜์ž”๋Ÿ‰2, ๋งค์ˆ˜์ž”๋Ÿ‰3, ๋งค์ˆ˜์ž”๋Ÿ‰4, ๋งค์ˆ˜์ž”๋Ÿ‰5 ] if ์ž”๊ณ ์ข…๋ชฉ: return if ์ข…๋ชฉ์ฝ”๋“œ in self.list_buy: return # ์ „๋žต ๋น„๊ณต๊ฐœ if ๋งค์ˆ˜: ๋งค์ˆ˜์ˆ˜๋Ÿ‰ = int(self.int_tujagm / ํ˜„์žฌ๊ฐ€) if ๋งค์ˆ˜์ˆ˜๋Ÿ‰ > 0: ๋‚จ์€์ˆ˜๋Ÿ‰ = ๋งค์ˆ˜์ˆ˜๋Ÿ‰ ์ง์ „๋‚จ์€์ˆ˜๋Ÿ‰ = ๋งค์ˆ˜์ˆ˜๋Ÿ‰ ๋งค์ˆ˜๊ธˆ์•ก = 0 ํ˜ธ๊ฐ€์ •๋ณด = {๋งค๋„ํ˜ธ๊ฐ€1: ๋งค๋„์ž”๋Ÿ‰1} for ๋งค๋„ํ˜ธ๊ฐ€, ๋งค๋„์ž”๋Ÿ‰ in ํ˜ธ๊ฐ€์ •๋ณด.items(): ๋‚จ์€์ˆ˜๋Ÿ‰ -= ๋งค๋„์ž”๋Ÿ‰ if ๋‚จ์€์ˆ˜๋Ÿ‰ <= 0: ๋งค์ˆ˜๊ธˆ์•ก += ๋งค๋„ํ˜ธ๊ฐ€ * ์ง์ „๋‚จ์€์ˆ˜๋Ÿ‰ break else: ๋งค์ˆ˜๊ธˆ์•ก += ๋งค๋„ํ˜ธ๊ฐ€ * ๋งค๋„์ž”๋Ÿ‰ ์ง์ „๋‚จ์€์ˆ˜๋Ÿ‰ = ๋‚จ์€์ˆ˜๋Ÿ‰ if ๋‚จ์€์ˆ˜๋Ÿ‰ <= 0: ์˜ˆ์ƒ์ฒด๊ฒฐ๊ฐ€ = round(๋งค์ˆ˜๊ธˆ์•ก / ๋งค์ˆ˜์ˆ˜๋Ÿ‰, 2) self.list_buy.append(์ข…๋ชฉ์ฝ”๋“œ) self.traderQ.put(['๋งค์ˆ˜', ์ข…๋ชฉ์ฝ”๋“œ, ์ข…๋ชฉ๋ช…, ์˜ˆ์ƒ์ฒด๊ฒฐ๊ฐ€, ๋งค์ˆ˜์ˆ˜๋Ÿ‰]) if now() > self.dict_time['์—ฐ์‚ฐ์‹œ๊ฐ„']: gap = float2str1p6((now() - ํ‹ฑ์ˆ˜์‹ ์‹œ๊ฐ„).total_seconds()) self.windowQ.put([1, f'์ „๋žต์Šค ์—ฐ์‚ฐ ์‹œ๊ฐ„ ์•Œ๋ฆผ - ์ˆ˜์‹ ์‹œ๊ฐ„๊ณผ ์—ฐ์‚ฐ์‹œ๊ฐ„์˜ ์ฐจ์ด๋Š” [{gap}]์ดˆ์ž…๋‹ˆ๋‹ค.']) self.dict_time['์—ฐ์‚ฐ์‹œ๊ฐ„'] = timedelta_sec(60) def SellStrategy(self, ์ข…๋ชฉ์ฝ”๋“œ, ์ข…๋ชฉ๋ช…, ์ˆ˜์ต๋ฅ , ๋ณด์œ ์ˆ˜๋Ÿ‰, ํ˜„์žฌ๊ฐ€, ๋งค์ˆ˜์‹œ๊ฐ„): if ์ข…๋ชฉ์ฝ”๋“œ not in self.dict_gsjm.keys() or ์ข…๋ชฉ์ฝ”๋“œ not in self.dict_data.keys(): return if ์ข…๋ชฉ์ฝ”๋“œ in self.list_sell: return ๋งค๋„ = False ๊ตฌ๋ถ„ = '์žฅ์ดˆ' if int(strf_time('%H%M%S')) < 100000 else '์žฅ์ค‘' ํ˜„์žฌ๊ฐ€, ์‹œ๊ฐ€, ๊ณ ๊ฐ€, ์ €๊ฐ€, ๋“ฑ๋ฝ์œจ, ๊ณ ์ €ํ‰๊ท ๋Œ€๋น„๋“ฑ๋ฝ์œจ, ๋‹น์ผ๊ฑฐ๋ž˜๋Œ€๊ธˆ, ์ดˆ๋‹น๊ฑฐ๋ž˜๋Œ€๊ธˆ, ์ดˆ๋‹น๊ฑฐ๋ž˜๋Œ€๊ธˆํ‰๊ท , ์ฒด๊ฒฐ๊ฐ•๋„, \ ์ฒด๊ฒฐ๊ฐ•๋„ํ‰๊ท , ์ตœ๊ณ ์ฒด๊ฒฐ๊ฐ•๋„, ์ง์ „์ฒด๊ฒฐ๊ฐ•๋„, ์ดˆ๋‹น๋งค์ˆ˜์ˆ˜๋Ÿ‰, ์ดˆ๋‹น๋งค๋„์ˆ˜๋Ÿ‰, VIํ•ด์ œ์‹œ๊ฐ„, VI์•„๋ž˜5ํ˜ธ๊ฐ€, ๋งค๋„์ด์ž”๋Ÿ‰, ๋งค์ˆ˜์ด์ž”๋Ÿ‰, \ ๋งค๋„ํ˜ธ๊ฐ€5, ๋งค๋„ํ˜ธ๊ฐ€4, ๋งค๋„ํ˜ธ๊ฐ€3, ๋งค๋„ํ˜ธ๊ฐ€2, ๋งค๋„ํ˜ธ๊ฐ€1, ๋งค์ˆ˜ํ˜ธ๊ฐ€1, ๋งค์ˆ˜ํ˜ธ๊ฐ€2, ๋งค์ˆ˜ํ˜ธ๊ฐ€3, ๋งค์ˆ˜ํ˜ธ๊ฐ€4, ๋งค์ˆ˜ํ˜ธ๊ฐ€5, \ ๋งค๋„์ž”๋Ÿ‰5, ๋งค๋„์ž”๋Ÿ‰4, ๋งค๋„์ž”๋Ÿ‰3, ๋งค๋„์ž”๋Ÿ‰2, ๋งค๋„์ž”๋Ÿ‰1, ๋งค์ˆ˜์ž”๋Ÿ‰1, ๋งค์ˆ˜์ž”๋Ÿ‰2, ๋งค์ˆ˜์ž”๋Ÿ‰3, ๋งค์ˆ˜์ž”๋Ÿ‰4, ๋งค์ˆ˜์ž”๋Ÿ‰5 = \ self.dict_data[์ข…๋ชฉ์ฝ”๋“œ] if ์ข…๋ชฉ์ฝ”๋“œ not in self.dict_high.keys(): self.dict_high[์ข…๋ชฉ์ฝ”๋“œ] = ์ˆ˜์ต๋ฅ  elif ์ˆ˜์ต๋ฅ  > self.dict_high[์ข…๋ชฉ์ฝ”๋“œ]: self.dict_high[์ข…๋ชฉ์ฝ”๋“œ] = ์ˆ˜์ต๋ฅ  ์ตœ๊ณ ์ˆ˜์ต๋ฅ  = self.dict_high[์ข…๋ชฉ์ฝ”๋“œ] """ ๋งค๋„ ์กฐ๊ฑด ์˜ˆ์‹œ """ if ์ˆ˜์ต๋ฅ  <= -2 or ์ˆ˜์ต๋ฅ  >= 3: ๋งค๋„ = True # ์ „๋žต ๋น„๊ณต๊ฐœ if ๋งค๋„: ๋‚จ์€์ˆ˜๋Ÿ‰ = ๋ณด์œ ์ˆ˜๋Ÿ‰ ์ง์ „๋‚จ์€์ˆ˜๋Ÿ‰ = ๋ณด์œ ์ˆ˜๋Ÿ‰ ๋งค๋„๊ธˆ์•ก = 0 ํ˜ธ๊ฐ€์ •๋ณด = {๋งค์ˆ˜ํ˜ธ๊ฐ€1: ๋งค์ˆ˜์ž”๋Ÿ‰1, ๋งค์ˆ˜ํ˜ธ๊ฐ€2: ๋งค์ˆ˜์ž”๋Ÿ‰2, ๋งค์ˆ˜ํ˜ธ๊ฐ€3: ๋งค์ˆ˜์ž”๋Ÿ‰3, ๋งค์ˆ˜ํ˜ธ๊ฐ€4: ๋งค์ˆ˜์ž”๋Ÿ‰4, ๋งค์ˆ˜ํ˜ธ๊ฐ€5: ๋งค์ˆ˜์ž”๋Ÿ‰5} for ๋งค์ˆ˜ํ˜ธ๊ฐ€, ๋งค์ˆ˜์ž”๋Ÿ‰ in ํ˜ธ๊ฐ€์ •๋ณด.items(): ๋‚จ์€์ˆ˜๋Ÿ‰ -= ๋งค์ˆ˜์ž”๋Ÿ‰ if ๋‚จ์€์ˆ˜๋Ÿ‰ <= 0: ๋งค๋„๊ธˆ์•ก += ๋งค์ˆ˜ํ˜ธ๊ฐ€ * ์ง์ „๋‚จ์€์ˆ˜๋Ÿ‰ break else: ๋งค๋„๊ธˆ์•ก += ๋งค์ˆ˜ํ˜ธ๊ฐ€ * ๋งค์ˆ˜์ž”๋Ÿ‰ ์ง์ „๋‚จ์€์ˆ˜๋Ÿ‰ = ๋‚จ์€์ˆ˜๋Ÿ‰ if ๋‚จ์€์ˆ˜๋Ÿ‰ <= 0: ์˜ˆ์ƒ์ฒด๊ฒฐ๊ฐ€ = round(๋งค๋„๊ธˆ์•ก / ๋ณด์œ ์ˆ˜๋Ÿ‰, 2) self.list_sell.append(์ข…๋ชฉ์ฝ”๋“œ) self.traderQ.put(['๋งค๋„', ์ข…๋ชฉ์ฝ”๋“œ, ์ข…๋ชฉ๋ช…, ์˜ˆ์ƒ์ฒด๊ฒฐ๊ฐ€, ๋ณด์œ ์ˆ˜๋Ÿ‰]) def CheckStrategy(self): if int(strf_time('%H%M%S')) >= 100000 and not self.startjjstg: for code in list(self.dict_gsjm.keys()): data = np.zeros((DICT_SET['์žฅ์ค‘ํ‰๊ท ๊ฐ’๊ณ„์‚ฐํ‹ฑ์ˆ˜'] + 2, len(columns_gj))).tolist() df = pd.DataFrame(data, columns=columns_gj) self.dict_gsjm[code] = df.copy() self.startjjstg = True @thread_decorator def UpdateInfo(self): info = [6, self.dict_intg['๋ฉ”๋ชจ๋ฆฌ'], self.dict_intg['์Šค๋ ˆ๋“œ'], self.dict_intg['์‹œํ”ผ์œ ']] self.windowQ.put(info) self.UpdateSysinfo() def UpdateSysinfo(self): p = psutil.Process(os.getpid()) self.dict_intg['๋ฉ”๋ชจ๋ฆฌ'] = round(p.memory_info()[0] / 2 ** 20.86, 2) self.dict_intg['์Šค๋ ˆ๋“œ'] = p.num_threads() self.dict_intg['์‹œํ”ผ์œ '] = round(p.cpu_percent(interval=2) / 2, 2) ``` #### File: MyKiwoom/utility/query.py ```python import sqlite3 import pandas as pd from utility.setting import DB_STG, DB_TICK from utility.static import now, float2str1p6 class Query: def __init__(self, windowQ, traderQ, queryQ): self.windowQ = windowQ self.traderQ = traderQ self.queryQ = queryQ self.con1 = sqlite3.connect(DB_STG) self.cur1 = self.con1.cursor() self.con2 = sqlite3.connect(DB_TICK) self.cur2 = self.con2.cursor() self.cur2.execute('pragma journal_mode=WAL') self.cur2.execute('pragma synchronous=normal') self.cur2.execute('pragma temp_store=memory') self.trigger = False self.remove_trigger() self.Start() def __del__(self): self.remove_trigger() self.con1.close() self.con2.close() def Start(self): k, j = 0, 0 df = pd.DataFrame() while True: query = self.queryQ.get() if query == '๋””๋น„ํŠธ๋ฆฌ๊ฑฐ์‹œ์ž‘': self.create_trigger() self.trigger = True elif query[0] == 1: if len(query) == 2: try: self.cur1.execute(query[1]) except Exception as e: self.windowQ.put([1, f'์‹œ์Šคํ…œ ๋ช…๋ น ์˜ค๋ฅ˜ ์•Œ๋ฆผ - con1 execute {e}']) else: self.con1.commit() elif len(query) == 4: try: query[1].to_sql(query[2], self.con1, if_exists=query[3], chunksize=1000, method='multi') except Exception as e: self.windowQ.put([1, f'์‹œ์Šคํ…œ ๋ช…๋ น ์˜ค๋ฅ˜ ์•Œ๋ฆผ - con1 to_sql {e}']) elif query[0] == 2: try: if len(query) == 2: if type(query[1]) == str: self.con2.execute(query[1]) self.con2.commit() else: start = now() k += 1 for code in list(query[1].keys()): query[1][code]['์ข…๋ชฉ์ฝ”๋“œ'] = code df = df.append(query[1][code]) if k == 4 and self.trigger: df.to_sql("temp", self.con2, if_exists='append', chunksize=1000, method='multi') self.con2.execute('insert into "dist" ("cnt") values (1);') save_time = float2str1p6((now() - start).total_seconds()) text = f'์‹œ์Šคํ…œ ๋ช…๋ น ์‹คํ–‰ ์•Œ๋ฆผ - ํ‹ฑ๋ฐ์ดํ„ฐ ์ €์žฅ ์“ฐ๊ธฐ์†Œ์š”์‹œ๊ฐ„์€ [{save_time}]์ดˆ์ž…๋‹ˆ๋‹ค.' self.windowQ.put([1, text]) k = 0 df = pd.DataFrame() elif len(query) == 3: start = now() j += 1 last = len(list(query[1].keys())) for i, code in enumerate(list(query[1].keys())): text = f'์‹œ์Šคํ…œ ๋ช…๋ น ์‹คํ–‰ ์•Œ๋ฆผ - ์‹œ์Šคํ…œ ๋ช…๋ น ์‹คํ–‰ ์•Œ๋ฆผ - ํ‹ฑ๋ฐ์ดํ„ฐ ์ €์žฅ ์ค‘ ... [{j}]{i+1}/{last}' self.windowQ.put([1, text]) query[1][code].to_sql(code, self.con2, if_exists='append', chunksize=1000, method='multi') save_time = float2str1p6((now() - start).total_seconds()) self.windowQ.put([1, f'์‹œ์Šคํ…œ ๋ช…๋ น ์‹คํ–‰ ์•Œ๋ฆผ - ํ‹ฑ๋ฐ์ดํ„ฐ ์ €์žฅ ์“ฐ๊ธฐ์†Œ์š”์‹œ๊ฐ„์€ [{save_time}]์ดˆ์ž…๋‹ˆ๋‹ค.']) if j == 4: self.traderQ.put('ํ‹ฑ๋ฐ์ดํ„ฐ์ €์žฅ์™„๋ฃŒ') elif len(query) == 4: query[1].to_sql(query[2], self.con2, if_exists=query[3], chunksize=1000, method='multi') except Exception as e: self.windowQ.put([1, f'์‹œ์Šคํ…œ ๋ช…๋ น ์˜ค๋ฅ˜ ์•Œ๋ฆผ - con2 to_sql {e}']) def create_trigger(self): res = self.cur2.execute("SELECT name FROM sqlite_master WHERE type='table';") table_list = [] for name in res.fetchall(): table_list.append(name[0]) const_str = '"index", ํ˜„์žฌ๊ฐ€, ์‹œ๊ฐ€, ๊ณ ๊ฐ€, ์ €๊ฐ€, ๋“ฑ๋ฝ์œจ, ๋‹น์ผ๊ฑฐ๋ž˜๋Œ€๊ธˆ, ์ฒด๊ฒฐ๊ฐ•๋„, ์ดˆ๋‹น๋งค์ˆ˜์ˆ˜๋Ÿ‰, ์ดˆ๋‹น๋งค๋„์ˆ˜๋Ÿ‰, VIํ•ด์ œ์‹œ๊ฐ„,' \ 'VI์•„๋ž˜5ํ˜ธ๊ฐ€, ๋งค๋„์ด์ž”๋Ÿ‰, ๋งค์ˆ˜์ด์ž”๋Ÿ‰, ๋งค๋„ํ˜ธ๊ฐ€5, ๋งค๋„ํ˜ธ๊ฐ€4, ๋งค๋„ํ˜ธ๊ฐ€3, ๋งค๋„ํ˜ธ๊ฐ€2, ๋งค๋„ํ˜ธ๊ฐ€1, ๋งค์ˆ˜ํ˜ธ๊ฐ€1, ๋งค์ˆ˜ํ˜ธ๊ฐ€2,' \ '๋งค์ˆ˜ํ˜ธ๊ฐ€3, ๋งค์ˆ˜ํ˜ธ๊ฐ€4, ๋งค์ˆ˜ํ˜ธ๊ฐ€5, ๋งค๋„์ž”๋Ÿ‰5, ๋งค๋„์ž”๋Ÿ‰4, ๋งค๋„์ž”๋Ÿ‰3, ๋งค๋„์ž”๋Ÿ‰2, ๋งค๋„์ž”๋Ÿ‰1, ๋งค์ˆ˜์ž”๋Ÿ‰1, ๋งค์ˆ˜์ž”๋Ÿ‰2,' \ '๋งค์ˆ˜์ž”๋Ÿ‰3, ๋งค์ˆ˜์ž”๋Ÿ‰4, ๋งค์ˆ˜์ž”๋Ÿ‰5' list_stock_table = [] for table_name in table_list: if len(table_name) == 6: list_stock_table.append(table_name) query_create_temp = \ 'CREATE TABLE IF NOT EXISTS "temp" ("index" TEXT, "์ข…๋ชฉ์ฝ”๋“œ" TEXT, "ํ˜„์žฌ๊ฐ€" REAL, "์‹œ๊ฐ€" REAL, "๊ณ ๊ฐ€" REAL,' \ '"์ €๊ฐ€" REAL, "๋“ฑ๋ฝ์œจ" REAL, "๋‹น์ผ๊ฑฐ๋ž˜๋Œ€๊ธˆ" REAL, "์ฒด๊ฒฐ๊ฐ•๋„" REAL, "์ดˆ๋‹น๋งค์ˆ˜์ˆ˜๋Ÿ‰" REAL, "์ดˆ๋‹น๋งค๋„์ˆ˜๋Ÿ‰" REAL,' \ '"VIํ•ด์ œ์‹œ๊ฐ„" TEXT, "VI์•„๋ž˜5ํ˜ธ๊ฐ€" REAL, "๋งค๋„์ด์ž”๋Ÿ‰" REAL, "๋งค์ˆ˜์ด์ž”๋Ÿ‰" REAL, "๋งค๋„ํ˜ธ๊ฐ€5" REAL, "๋งค๋„ํ˜ธ๊ฐ€4" REAL,' \ '"๋งค๋„ํ˜ธ๊ฐ€3" REAL, "๋งค๋„ํ˜ธ๊ฐ€2" REAL, "๋งค๋„ํ˜ธ๊ฐ€1" REAL, "๋งค์ˆ˜ํ˜ธ๊ฐ€1" REAL, "๋งค์ˆ˜ํ˜ธ๊ฐ€2" REAL, "๋งค์ˆ˜ํ˜ธ๊ฐ€3" REAL,' \ '"๋งค์ˆ˜ํ˜ธ๊ฐ€4" REAL, "๋งค์ˆ˜ํ˜ธ๊ฐ€5" REAL, "๋งค๋„์ž”๋Ÿ‰5" REAL, "๋งค๋„์ž”๋Ÿ‰4" REAL, "๋งค๋„์ž”๋Ÿ‰3" REAL, "๋งค๋„์ž”๋Ÿ‰2" REAL,' \ '"๋งค๋„์ž”๋Ÿ‰1" REAL, "๋งค์ˆ˜์ž”๋Ÿ‰1" REAL, "๋งค์ˆ˜์ž”๋Ÿ‰2" REAL, "๋งค์ˆ˜์ž”๋Ÿ‰3" REAL, "๋งค์ˆ˜์ž”๋Ÿ‰4" REAL, "๋งค์ˆ˜์ž”๋Ÿ‰5" REAL);' query_create_dist = \ 'CREATE TABLE IF NOT EXISTS "dist" (uid integer primary key autoincrement, cnt integer,' \ ' reg_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL);' query_create_distchk = \ 'CREATE TABLE IF NOT EXISTS "dist_chk" (uid integer primary key autoincrement, cnt integer,' \ 'reg_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL);' s = 'CREATE TRIGGER IF NOT EXISTS "dist_trigger" INSERT ON "dist" BEGIN INSERT INTO "dist_chk" ("cnt") values (1);\n' for i in range(len(list_stock_table)): s += 'INSERT INTO "' + list_stock_table[i] + '" SELECT ' + const_str + ' FROM temp WHERE ์ข…๋ชฉ์ฝ”๋“œ = "' + \ list_stock_table[i] + '";\n' s += 'DELETE FROM temp;\n' s += 'INSERT INTO "dist_chk" ("cnt") values (2);\n' # ๋””๋ฒ„๊น… ์†๋„์ธก์ •์šฉ s += 'END;\n' query_create_trigger = s self.cur2.execute(query_create_temp) self.cur2.execute(query_create_dist) self.cur2.execute(query_create_distchk) self.cur2.execute(query_create_trigger) def remove_trigger(self): try: self.cur2.execute('drop trigger dist_trigger;') except sqlite3.OperationalError: pass ```
{ "source": "JeonHyeongJunKW/DORNG", "score": 3 }
#### File: JeonHyeongJunKW/DORNG/MatchMaker.py ```python import torch import torch.nn.functional as F def find_local_matches(desc1, desc2, kernel_size=9): # Computes the correlation between each pixel on desc1 with all neighbors # inside a window of size (kernel_size, kernel_size) on desc2. The match # vector if then computed by linking each pixel on desc1 with # the pixel with desc2 with the highest correlation. # # This approch requires a lot of memory to build the unfolded descriptor. # A better approach is to use the Correlation package from e.g. # https://github.com/NVIDIA/flownet2-pytorch/tree/master/networks/correlation_package desc2_unfolded = F.unfold(desc2, kernel_size, padding=kernel_size//2) desc2_unfolded = desc2_unfolded.reshape( 1, desc2.shape[1], kernel_size*kernel_size, desc2.shape[2], desc2.shape[3]) desc1 = desc1.unsqueeze(dim=2) correlation = torch.sum(desc1 * desc2_unfolded, dim=1) _, match_idx = torch.max(correlation, dim=1) hmatch = torch.fmod(match_idx, kernel_size) - kernel_size // 2#height๊ฐ€ ์•„๋‹ˆ๋ผ horizontal์ด๋‹ค. vmatch = match_idx // kernel_size - kernel_size // 2#vertical์ด๋‹ค. matches = torch.cat((hmatch, vmatch), dim=0) return matches ```
{ "source": "Jeonhyunil/Dss8", "score": 4 }
#### File: Dss8/Baekjoon/quick_sort.py ```python def left_side(s): if len(s) <= 1: # ๊ธฐ์ €์กฐ๊ฑด = ๋ฌธ์žฅ์˜ ๊ธธ์ด๊ฐ€ 1๋ณด๋‹ค ์ž‘๊ฑฐ๋‚˜ ๊ฐ™์œผ๋ฉด ๊ทธ๋ƒฅ ์ถœ๋ ฅ return s pivot = s[len(s)//2] # ๋ฌธ์žฅ์˜ ์ค‘๊ฐ„์ฏค์˜ ์ˆซ์ž๋ฅผ pivot์œผ๋กœ ์„ค์ • middle = [x for x in s if x == pivot ] # pivot์ด ์—ฌ๋Ÿฌ๊ฐœ์ผ ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ ๊ณจ๋ผ๋‚ด์ค€๋‹ค. left = [x for x in s if x < pivot] # pivot๋ณด๋‹ค ์ž‘์€ ์ˆซ์ž๋“ค์„ left์— ์ €์žฅ right = [x for x in s if x > pivot] # pivot๋ณด๋‹ค ํฐ ์ˆซ์ž๋“ค์„ right์— ์ €์žฅ return left_side(left) + middle + right_side(right) # left์™€ right ๋“ค์€ ๊ฐ๊ฐ์— ์œ„์น˜์— ๋งž๋Š” ํ•จ์ˆ˜(left_side(), right_side())๋กœ ์žฌ๊ท€์‹œ์ผœ์ค€๋‹ค. def right_side(s): # ์œ„์™€ ๋งˆ์ฐฌ๊ฐ€์ง€ if len(s) <= 1: return s pivot = s[len(s)//2] middle = [x for x in s if x == pivot ] left = [x for x in s if x < pivot] right = [x for x in s if x > pivot] return left_side(left) + middle + right_side(right) def quick_sort(s): # ์œ„์™€ ๋งˆ์ฐฌ๊ฐ€์ง€ pivot = s[len(s)//2] middle = [x for x in s if x == pivot ] left = [x for x in s if x < pivot] right = [x for x in s if x > pivot] return left_side(left) + middle + right_side(right) ```
{ "source": "jeonhyunji/web-crawling", "score": 3 }
#### File: web-crawling/src/crawling_main.py ```python from bs4 import BeautifulSoup import requests import json import os import hashlib import textwrap import argparse import logging from crontab import CronTab from item.ranking_item import RankingItem BASE_URL = 'https://news.naver.com/main/ranking/popularDay.nhn?rankingType=popular_day' BASE_DIR = os.path.dirname(os.path.abspath(__file__)) DATA_FILE = f'{BASE_DIR}/data.json' UPDATE_NEWS_URL = 'http://localhost:8080/update_news' if not os.path.exists(f'{BASE_DIR}/../log'): os.makedirs(f'{BASE_DIR}/../log') logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) file_handler = logging.FileHandler(f'{BASE_DIR}/../log/crawling.log') formatter = logging.Formatter('[%(asctime)s] [%(levelname)s] (%(filename)s:%(lineno)d) > %(message)s') file_handler.setFormatter(formatter) logger.addHandler(file_handler) cron = CronTab(user=True) def convert_to_ranking_item(rankingItemDiv): rankingThumbDiv = rankingItemDiv.find('div', class_='ranking_thumb') rankingTextDiv = rankingItemDiv.find('div', class_='ranking_text') headlineDiv = rankingTextDiv.find('div', class_='ranking_headline') ledeDiv = rankingTextDiv.find('div', class_='ranking_lede') officeDiv = rankingTextDiv.find('div', class_='ranking_office') viewDiv = rankingTextDiv.find('div', class_='ranking_view') item = RankingItem() if rankingThumbDiv is not None: item.image_link = rankingThumbDiv.a.img.get('src') item.link = 'https://news.naver.com' + headlineDiv.a.get('href') item.headline = headlineDiv.a.get('title') item.lede = ledeDiv.text.strip() item.office = officeDiv.text item.view = int(viewDiv.text.replace(',', '')) return item def get_crawling_data(sectionId=105, num=30, date=None): url = f'{BASE_URL}&sectionId={sectionId}' if date: url = f'{url}&date={date}' # get html response = requests.get(url) logger.info("requests.get(url), url: " + url) html = response.text # parse html & get python object soup = BeautifulSoup(html, 'html.parser') rankingItems = soup.find_all('li', class_='ranking_item') # convert to RankingItem rankingItemList = [] for idx in range(0, num): item = convert_to_ranking_item(rankingItems[idx]) item.rank = idx + 1 rankingItemList.append(item) return rankingItemList def process_crawling_data(ranking_list): # get before ranking from data.json before_ranking_dict = read_json_datafile() # set previous item and set new ranking ranking_dict = {} for item in ranking_list: hash_id_obj = hashlib.sha256() hash_id_obj.update(item.headline.encode('UTF-8')) id = hash_id_obj.hexdigest() # id = hash(item.link) item.id = id if before_ranking_dict.get(id) is None: item.previous_item = None else: item.previous_item = RankingItem.from_dict( before_ranking_dict.get(id)) item.previous_item.previous_item = None pass ranking_dict[id] = item.to_dict() # write new ranking to data.json write_json_datafile(ranking_dict) def read_json_datafile(): if os.path.isfile(DATA_FILE): with open(DATA_FILE, 'r') as data_file: before_raw_json = data_file.read().encode('utf-8') before_ranking_json = json.loads(before_raw_json) return before_ranking_json else: return {} def write_json_datafile(ranking_dict): with open(DATA_FILE, 'w') as data_file: json.dump(ranking_dict, data_file, ensure_ascii=False) def notify_to_server(): response = requests.get(UPDATE_NEWS_URL) logger.info("requests.get(UPDATE_NEWS_URL), UPDATE_NEWS_URL: " + UPDATE_NEWS_URL) logger.info(f"UPDATE_NEWS response status code: {response.status_code}") return response def cron_job_start(): if cron_job_ls() is True: print("Already running crawling daemon") else: job = cron.new(command=f'python {BASE_DIR}/crawling_main.py', comment="crawling-daemon") job.minute.every(1) cron.write() print("Start crawling daemon") def cron_job_stop(): cron.remove_all() cron.write() print("Stop crawling daemon") def cron_job_ls(): if len(cron) == 0: return False else: return True def main(): # get ranking data ranking_list = get_crawling_data() # process data process_crawling_data(ranking_list) logger.info("RUN Crawling, update crawling data(data.json)") # notify to server # notify_to_server() if __name__ == "__main__": parser = argparse.ArgumentParser(usage='%(prog)s -c [command]') parser.add_argument('-c', metavar='-c', type=str, nargs='?', help='command for processing crontab', choices=['start', 'stop', 'status']) args = parser.parse_args() if args.c is None: main() elif args.c == 'start': cron_job_start() elif args.c == 'stop': cron_job_stop() else: print(cron_job_ls()) ``` #### File: src/item/ranking_item.py ```python class RankingItem(object): id = 0 rank = 0 image_link = None link = None headline = None lede = None office = None view = 0 previous_item = None def to_dict(self): return { 'id': self.id, 'rank': self.rank, 'image_link': self.image_link, 'link': self.link, 'headline': self.headline, 'lede': self.lede, 'office': self.office, 'view': self.view, 'previous_item': {} if self.previous_item is None else self.previous_item.to_dict() } @staticmethod def from_dict(dictObj): item = RankingItem() item.id = dictObj['id'] item.rank = dictObj['rank'] item.image_link = dictObj['image_link'] item.link = dictObj['link'] item.headline = dictObj['headline'] item.lede = dictObj['lede'] item.office = dictObj['office'] item.view = dictObj['view'] item.previous_item = None if dictObj['previous_item'] == {} else RankingItem.from_dict(dictObj['previous_item']) return item def print_item(self): print('======================== print_item ========================') print(f' id: {self.id}') print(f' rank: {self.rank}') print(f' image_link: {self.image_link}') print(f' link: {self.link}') print(f' headline: {self.headline}') print(f' lede: {self.lede}') print(f' office: {self.office}') print(f' view: {self.view}') ``` #### File: web-crawling/src/test_kakao_bot_main.py ```python import unittest class TestFlask(unittest.TestCase): def setUp(self): return super().setUp() ```
{ "source": "JeonMoonSu/mask_rcnn_person_size", "score": 2 }
#### File: JeonMoonSu/mask_rcnn_person_size/afreecatv.py ```python from PyQt5.QtWidgets import * from PyQt5.QtCore import Qt,QThread from PyQt5 import QtCore,QtGui,QtWidgets,uic import cv2 import os import sys import json import datetime import numpy as np import matplotlib.pyplot as plt import matplotlib import skimage import threading import time import queue from mrcnn import visualize from mrcnn.visualize import display_instances from mrcnn.config import Config from mrcnn import model as modellib, utils from pose import OpenPoseImage from pose.OpenPoseImage import GetPersonPoint matplotlib.use('Agg') # epoch number EPOCH_NUM = 10 SP_EPOCH = 100 ROOT_DIR = os.path.abspath("../../") DATASET_DIR = "" WEIGHTS_PATH = "" FILE_PATH = "" active =False running = False capture_thread = None form_class = uic.loadUiType("simple.ui")[0] q = queue.Queue() q2 = queue.Queue() t_model = None num=0 num2=0 sys.path.append(ROOT_DIR) COCO_WEIGHTS_PATH = os.path.join(ROOT_DIR,"mask_rcnn_coco.h5") DEFAULT_LOGS_DIR = os.path.join(ROOT_DIR,"logs") class VThread(QThread): def __init__(self): QThread.__init__(self) def run(self): global q global running capture = cv2.VideoCapture(0) while(running): frame = {} plt.clf() retval, img = capture.read() if not retval: break frame["img"] = img q.put(frame) capture.release() class OwnImageWidget(QtWidgets.QWidget): def __init__(self, parent=None): super(OwnImageWidget, self).__init__(parent) self.image = None self.setMinimumSize(800,600) def setImage(self, image): self.image = image self.update() def paintEvent(self, event): qp = QtGui.QPainter() qp.begin(self) if self.image: qp.drawImage(QtCore.QPoint(0, 0), self.image) print("Paint Event") qp.end() class TestWindow(QDialog,form_class): def measureClicked(self): global active global running if running: active=True def runClicked(self): global running running = True if self.capture_thread.isRunning(): self.capture_thread.terminate() self.capture_thread.wait() self.capture_thread.start() else: self.capture_thread.start() def __init__(self): super().__init__() self.init_ui() def init_ui(self): global q q.queue.clear() class InferenceConfig(PersonConfig): GPU_COUNT = 1 IMAGES_PER_GPU = 1 #Make inference model self.capture_thread = VThread() self.config = InferenceConfig() self.config.display() self.model = modellib.MaskRCNN(mode="inference",config = self.config,model_dir = DEFAULT_LOGS_DIR) #Widget self.label1 = QLabel("<NAME>") self.label2 = QLabel("๋ณ„ํ’์„ ") self.label1.setAlignment(Qt.AlignCenter) self.label2.setAlignment(Qt.AlignCenter) self.table = QTableWidget(12,4,self) self.table.setHorizontalHeaderLabels(["Height","Weight","Size(Top)","Size(Pants)"]) self.play_button = QPushButton("Play Video") self.play_button.clicked.connect(self.runClicked) self.play_button.setToolTip('Get the frame by webcam') self.measure_button = QPushButton("Measure") self.measure_button.clicked.connect(self.measureClicked) self.measure_button.setToolTip('Measuring instance profile') self.ImgWidget = OwnImageWidget() self.window_width = self.ImgWidget.frameSize().width() self.window_height = self.ImgWidget.frameSize().height() self.retranslateUi(self) QtCore.QMetaObject.connectSlotsByName(self) #Layout layout = QGridLayout() layout.addWidget(self.label1,0,0) layout.addWidget(self.label2,0,1) layout.addWidget(self.ImgWidget,1,0) layout.addWidget(self.table,1,1) horLayout = QHBoxLayout() horLayout.addStretch(1) horLayout.addWidget(self.play_button) horLayout.addStretch(1) layout.addLayout(horLayout,2,0) horLayout2 = QHBoxLayout() horLayout2.addStretch(1) horLayout2.addWidget(self.measure_button) horLayout2.addStretch(1) layout.addLayout(horLayout2,2,1) self.setLayout(layout) self.setGeometry(200,200,1350,650) #Timer self.timer = QtCore.QTimer(self) self.timer.setInterval(10) self.timer.timeout.connect(self.update_frame) self.timer.start() def retranslateUi(self,TestQFileDialog): _translate = QtCore.QCoreApplication.translate TestQFileDialog.setWindowTitle(_translate("TestQFileDialog","Dialog")) def update_frame(self): if not q.empty(): frame = q.get() img = frame["img"] img = cv2.resize(img, None, fx=1.0, fy=1.0, interpolation = cv2.INTER_NEAREST) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) height, width, bpc = img.shape bpl = bpc * width image = QtGui.QImage(img.data, width, height, bpl, QtGui.QImage.Format_RGB888) self.ImgWidget.setImage(image) def closeEvent(self,event): global running running = False print("end testing") #train class TrainWindow(QDialog): def _open_file_dialog1(self): directory = str(QFileDialog.getExistingDirectory()) self.lineEdit1.setText('{}'.format(directory)) def _open_file_dialog2(self): directory = QFileDialog.getOpenFileName(self,'Open file','/home/default') self.lineEdit2.setText(directory[0]) def __init__(self): super().__init__() self.init_ui() def init_ui(self): #train model self.config = PersonConfig() self.config.display() self.model = modellib.MaskRCNN(mode = "training", config = self.config, model_dir = DEFAULT_LOGS_DIR) #pyqt layout = QGridLayout() boxlayout = QBoxLayout(QBoxLayout.TopToBottom,self) self.toolButtonOpenDialog1 = QToolButton(self) self.toolButtonOpenDialog1.setGeometry(QtCore.QRect(210,10,25,19)) self.toolButtonOpenDialog1.setObjectName("toolButtonOpenDialog") self.toolButtonOpenDialog1.clicked.connect(self._open_file_dialog1) self.toolButtonOpenDialog2 = QToolButton(self) self.toolButtonOpenDialog2.setGeometry(QtCore.QRect(210,10,25,19)) self.toolButtonOpenDialog2.setObjectName("toolButtonOpenDialog2") self.toolButtonOpenDialog2.clicked.connect(self._open_file_dialog2) self.lineEdit1 = QLineEdit(self) self.lineEdit1.setEnabled(False) self.lineEdit1.setGeometry(QtCore.QRect(10, 10, 191, 20)) self.lineEdit2 = QLineEdit(self) self.lineEdit2.setEnabled(False) self.lineEdit2.setGeometry(QtCore.QRect(10, 10, 191, 20)) self.retranslateUi(self) QtCore.QMetaObject.connectSlotsByName(self) self.setGeometry(1100,200,300,100) self.setWindowTitle("train") btn1 = QPushButton("Start Training") btn2 = QPushButton("Close") btn1.clicked.connect(self.trainClicked) btn2.clicked.connect(self.closeClicked) self.groupbox = QGroupBox("",self) self.groupbox.setLayout(boxlayout) self.chk1 = QRadioButton("COCO",self) self.chk2 = QRadioButton("LAST",self) self.chk3 = QRadioButton("Other",self) boxlayout.addWidget(self.chk1) boxlayout.addWidget(self.chk2) boxlayout.addWidget(self.chk3) label1 = QLabel("Epoch : ") label2 = QLabel("Numbers per epoch : ") label3 = QLabel("Location of dataset : ") label4 = QLabel("Weight : ") self.spinBox1 = QSpinBox(self) self.spinBox2 = QSpinBox(self) self.spinBox1.setMaximum(1000) self.spinBox2.setMaximum(1000) self.spinBox1.setValue(10) self.spinBox2.setValue(100) layout.addWidget(label1,0,0) layout.addWidget(label2,1,0) layout.addWidget(label3,2,0) layout.addWidget(label4,4,0) layout.addWidget(self.spinBox1,0,1) layout.addWidget(self.spinBox2,1,1) layout.addWidget(self.toolButtonOpenDialog1,2,1) layout.addWidget(self.lineEdit1,3,0,1,2) layout.addWidget(self.groupbox,4,1) layout.addWidget(self.toolButtonOpenDialog2,5,1) layout.addWidget(self.lineEdit2,6,0,1,2) layout.addWidget(btn1,7,0) layout.addWidget(btn2,7,1) self.setLayout(layout) self.setGeometry(300,300,300,200) def trainClicked(self): global EPOCH_NUM global SP_EPOCH EPOCH_NUM = self.spinBox1.value() SP_EPOCH = self.spinBox2.value() self.config.STEPS_PER_EPOCH = SP_EPOCH #dataset path global DATASET_DIR DATASET_DIR = self.lineEdit1.text() if DATASET_DIR == "": QMessageBox.about(self,"error","Set dataset directory!") #weights path global WEIGHTS_PATH WEIGHTS_PATH = self.lineEdit2.text() if self.chk1.isChecked(): WEIGHTS_PATH = COCO_WEIGHTS_PATH elif self.chk2.isChecked(): WEIGHTS_PATH = self.model.find_last() elif self.chk3.isChecked(): if WEIGHTS_PATH == "": QMessageBox.about(self,"error","Set weight directory!") else: QMessageBox.about(self,"error","Check weight!") #load weights if DATASET_DIR == "" or WEIGHTS_PATH == "": print("Check before run!") else: print("epoch_num is : ",EPOCH_NUM) print("steps per epoch is : ",SP_EPOCH) print("dataset directory is : ",DATASET_DIR) print("weights directory is : ",WEIGHTS_PATH) if WEIGHTS_PATH == COCO_WEIGHTS_PATH: self.model.load_weights(WEIGHTS_PATH,by_name = True, exclude=["mrcnn_class_logits","mrcnn_bbox_fc","mrcnn_bbox","mrcnn_mask"]) else: self.model.load_weights(WEIGHTS_PATH,by_name=True) train(self.model) def closeClicked(self): self.close() def retranslateUi(self,TestQFileDialog): _translate = QtCore.QCoreApplication.translate TestQFileDialog.setWindowTitle(_translate("TestQFileDialog","Dialog")) self.toolButtonOpenDialog1.setIcon(QtGui.QIcon('./icon.png')) self.toolButtonOpenDialog2.setIcon(QtGui.QIcon('./icon.png')) class ExWindow(QWidget): def __init__(self): super().__init__() self.init_ui() def init_ui(self): label = QLabel('Mask R-CNN Person',self) label.setAlignment(Qt.AlignCenter) font = label.font() font.setBold(True) btn1 = QPushButton('Train',self) btn2 = QPushButton('Test',self) btn3 = QPushButton('Close',self) btn1.clicked.connect(self.trainEvent) btn2.clicked.connect(self.testEvent) btn3.clicked.connect(self.close) vbox = QVBoxLayout() vbox.addWidget(label) vbox.addWidget(btn1) vbox.addWidget(btn2) vbox.addWidget(btn3) self.setLayout(vbox) self.setGeometry(800,200,300,300) self.show() def testEvent(self): dia = TestWindow() dia.exec_() def trainEvent(self): dia = TrainWindow() dia.exec_() def closeEvent(self, event): reply = QMessageBox.question(self, 'Message', 'Are you sure to quit?',QMessageBox.Yes | QMessageBox.No, QMessageBox.No) if reply == QMessageBox.Yes: event.accept() else: event.ignore() class PersonConfig(Config): NAME = "person" GPU_COUNT = 1 IMAGES_PER_GPU = 2 NUM_CLASSES = 1 + 1 # Background + objects STEPS_PER_EPOCH = SP_EPOCH DETECTION_MIN_CONFIDENCE = 0.9 class PersonDataset(utils.Dataset): def load_VIA(self, dataset_dir, subset, hc=False): self.add_class("person", 1, "person") #self.add_class("pig", 2, "lying_pig") assert subset in ["train","val"] dataset_dir = os.path.join(dataset_dir, subset) annotations1 = json.load(open(os.path.join(dataset_dir, "via_region_data.json"))) annotations = list(annotations1.values()) annotations = [a for a in annotations if a['regions']] for a in annotations: # Get the x, y coordinaets of points of the polygons that make up # the outline of each object instance. There are stores in the # shape_attributes (see json format above) polygons = [r['shape_attributes'] for r in a['regions'].values()] #names = [r['region_attributes'] for r in a['regions'].values()] # load_mask() needs the image size to convert polygons to masks. # Unfortunately, VIA doesn't include it in JSON, so we must read # the image. This is only managable since the dataset is tiny. image_path = os.path.join(dataset_dir, a['filename']) image = skimage.io.imread(image_path) height, width = image.shape[:2] self.add_image( "person", image_id=a['filename'], # use file name as a unique image id path=image_path, width=width, height=height, polygons=polygons) #names=names) def load_mask(self, image_id): image_info = self.image_info[image_id] if image_info["source"] != "person": return super(self.__class__, self).load_mask(image_id) info = self.image_info[image_id] #class_names = info["names"] mask = np.zeros([info["height"], info["width"], len(info["polygons"])], dtype=np.uint8) for i, p in enumerate(info["polygons"]): rr, cc = skimage.draw.polygon(p['all_points_y'], p['all_points_x']) mask[rr, cc, i] = 1 #class_ids = np.zeros([len(info["polygons"])]) #for i, p in enumerate(class_names): #if p['name'] == 'standing_pig': #class_ids[i] = 1 #elif p['name'] == 'lying_pig': #class_ids[i] = 2 #assert code here to extend to other labels #class_ids = class_ids.astype(int) # Return mask, and array of class IDs of each instance. Since we have # one class ID only, we return an array of 1s return mask.astype(np.bool), np.ones([mask.shape[-1]], dtype=np.int32) #return mask.astype(np.bool), class_ids def image_reference(self, image_id): """Return the path of the image.""" info = self.image_info[image_id] if info["source"] == "person": return info["path"] else: super(self.__class__, self).image_reference(image_id) def detect_and_color_splash(model, image_path=None, video_path=None, out_dir=''): assert image_path or video_path class_names = ['BG', 'person'] # Image or video? if image_path: # Read image image = skimage.io.imread(FILE_PATH) # Detect objects r = model.detect([image], verbose=1)[0] # Color splash and save masked_image = visualize.display_instances2(image, r['rois'], r['masks'], r['class_ids'], class_names, r['scores'],"image") return masked_image elif video_path: # Video capture vcapture = cv2.VideoCapture(video_path) # width = int(vcapture.get(cv2.CAP_PROP_FRAME_WIDTH)) # height = int(vcapture.get(cv2.CAP_PROP_FRAME_HEIGHT)) count = 0 success = True #For video, we wish classes keep the same mask in frames, generate colors for masks colors = visualize.random_colors(len(class_names)) while success: print("frame: ", count) plt.clf() plt.close() success, image = vcapture.read() if success: # OpenCV returns images as BGR, convert to RGB image = image[..., ::-1] # Detect objects r = model.detect([image], verbose=0)[0] # Color splash # splash = color_splash(image, r['masks']) splash = visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], class_names, r['scores'], colors=colors,making_video=True) # Add image to video writer cv2.imshow('img',splash) if cv2.waitKey(1) & 0xFF == ord('q'): break count += 1 vcapture.release() def train(model): dataset_train = PersonDataset() dataset_train.load_VIA(DATASET_DIR, "train") dataset_train.prepare() dataset_val = PersonDataset() dataset_val.load_VIA(DATASET_DIR, "val") dataset_val.prepare() print("Training network heads") model.train(dataset_train, dataset_val, learning_rate=PersonConfig().LEARNING_RATE, epochs=model.epoch+EPOCH_NUM, layers='heads') if __name__ == '__main__': app = QApplication(sys.argv) ex = ExWindow() sys.exit(app.exec_()) ```
{ "source": "JeonMoonSu/mask_r_cnn_pigdetection", "score": 2 }
#### File: JeonMoonSu/mask_r_cnn_pigdetection/main.py ```python from PyQt5.QtWidgets import * from PyQt5.QtCore import Qt from PyQt5 import QtCore,QtGui,QtWidgets from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas import cv2 import os import sys import json import datetime import numpy as np import matplotlib.pyplot as plt import skimage from mrcnn import visualize from mrcnn.visualize import display_instances # epoch number EPOCH_NUM = 10 SP_EPOCH = 100 ROOT_DIR = os.path.abspath("../../") DATASET_DIR = "" WEIGHTS_PATH = "" IMAGE_PATH = "" sys.path.append(ROOT_DIR) from mrcnn.config import Config from mrcnn import model as modellib, utils COCO_WEIGHTS_PATH = os.path.join(ROOT_DIR,"mask_rcnn_coco.h5") DEFAULT_LOGS_DIR = os.path.join(ROOT_DIR,"logs") class TestWindow(QDialog): def _open_file_dialog1(self): directory = QFileDialog.getOpenFileName(self,'Open file','/home/default/logs') self.lineEdit1.setText(directory[0]) def _open_file_dialog2(self): directory = QFileDialog.getOpenFileName(self,'Open file','/home/default') self.lineEdit2.setText(directory[0]) def runClicked(self): global WEIGHTS_PATH global IMAGE_PATH WEIGHTS_PATH = self.lineEdit1.text() IMAGE_PATH = self.lineEdit2.text() if WEIGHTS_PATH == "" or IMAGE_PATH == "": QMessageBox.about(self,"error","You missed something") else: self.model.load_weights(WEIGHTS_PATH,by_name=True) masked_image=detect_and_color_splash(self.model, image_path=IMAGE_PATH,video_path="./") masked_image.show() print("๋") def __init__(self): super().__init__() self.init_ui() def init_ui(self): class InferenceConfig(PigConfig): GPU_COUNT = 1 IMAGES_PER_GPU = 1 self.config = InferenceConfig() self.config.display() self.model = modellib.MaskRCNN(mode="inference",config = self.config,model_dir = DEFAULT_LOGS_DIR) label1 = QLabel('Weight:') label2 = QLabel('Image:') self.lineEdit1 = QLineEdit() self.lineEdit1.setEnabled(False) self.lineEdit1.setGeometry(QtCore.QRect(10, 10, 191, 20)) self.lineEdit2 = QLineEdit() self.lineEdit2.setEnabled(False) self.lineEdit2.setGeometry(QtCore.QRect(10, 10, 191, 20)) self.toolButtonOpenDialog1 = QToolButton(self) self.toolButtonOpenDialog1.setGeometry(QtCore.QRect(210,10,25,19)) self.toolButtonOpenDialog1.setObjectName("toolButtonOpenDialog") self.toolButtonOpenDialog1.clicked.connect(self._open_file_dialog1) self.toolButtonOpenDialog2 = QToolButton(self) self.toolButtonOpenDialog2.setGeometry(QtCore.QRect(210,10,25,19)) self.toolButtonOpenDialog2.setObjectName("toolButtonOpenDialog") self.toolButtonOpenDialog2.clicked.connect(self._open_file_dialog2) self.pushButton = QPushButton("run test") self.pushButton.clicked.connect(self.runClicked) self.fig = plt.Figure() self.canvas = FigureCanvas(self.fig) self.retranslateUi(self) QtCore.QMetaObject.connectSlotsByName(self) #Layout myLayout1 = QHBoxLayout() myLayout2 = QHBoxLayout() myLayout1.addWidget(label1) myLayout1.addWidget(self.toolButtonOpenDialog1) myLayout2.addWidget(label2) myLayout2.addWidget(self.toolButtonOpenDialog2) self.leftLayout = QVBoxLayout() self.leftLayout.addWidget(self.canvas) rightLayout = QVBoxLayout() rightLayout.addLayout(myLayout1) rightLayout.addWidget(self.lineEdit1) rightLayout.addLayout(myLayout2) rightLayout.addWidget(self.lineEdit2) rightLayout.addWidget(self.pushButton) rightLayout.addStretch(1) layout = QHBoxLayout() layout.addLayout(self.leftLayout) layout.addLayout(rightLayout) layout.setStretchFactor(self.leftLayout,4) layout.setStretchFactor(rightLayout,1) self.setLayout(layout) self.setGeometry(100,100,900,600) def retranslateUi(self,TestQFileDialog): _translate = QtCore.QCoreApplication.translate TestQFileDialog.setWindowTitle(_translate("TestQFileDialog","Dialog")) self.toolButtonOpenDialog1.setIcon(QtGui.QIcon('./icon.png')) self.toolButtonOpenDialog2.setIcon(QtGui.QIcon('./icon.png')) #train class TrainWindow(QDialog): def _open_file_dialog1(self): directory = str(QFileDialog.getExistingDirectory()) self.lineEdit1.setText('{}'.format(directory)) def _open_file_dialog2(self): directory = QFileDialog.getOpenFileName(self,'Open file','/home/default') self.lineEdit2.setText(directory[0]) def __init__(self): super().__init__() self.init_ui() def init_ui(self): #train model self.config = PigConfig() self.config.display() self.model = modellib.MaskRCNN(mode = "training", config = self.config, model_dir = DEFAULT_LOGS_DIR) #pyqt layout = QGridLayout() boxlayout = QBoxLayout(QBoxLayout.TopToBottom,self) self.toolButtonOpenDialog1 = QToolButton(self) self.toolButtonOpenDialog1.setGeometry(QtCore.QRect(210,10,25,19)) self.toolButtonOpenDialog1.setObjectName("toolButtonOpenDialog") self.toolButtonOpenDialog1.clicked.connect(self._open_file_dialog1) self.toolButtonOpenDialog2 = QToolButton(self) self.toolButtonOpenDialog2.setGeometry(QtCore.QRect(210,10,25,19)) self.toolButtonOpenDialog2.setObjectName("toolButtonOpenDialog2") self.toolButtonOpenDialog2.clicked.connect(self._open_file_dialog2) self.lineEdit1 = QLineEdit(self) self.lineEdit1.setEnabled(False) self.lineEdit1.setGeometry(QtCore.QRect(10, 10, 191, 20)) self.lineEdit2 = QLineEdit(self) self.lineEdit2.setEnabled(False) self.lineEdit2.setGeometry(QtCore.QRect(10, 10, 191, 20)) self.retranslateUi(self) QtCore.QMetaObject.connectSlotsByName(self) self.setGeometry(1100,200,300,100) self.setWindowTitle("train") btn1 = QPushButton("Start Training") btn2 = QPushButton("Close") btn1.clicked.connect(self.trainClicked) btn2.clicked.connect(self.closeClicked) self.groupbox = QGroupBox("",self) self.groupbox.setLayout(boxlayout) self.chk1 = QRadioButton("COCO",self) self.chk2 = QRadioButton("LAST",self) self.chk3 = QRadioButton("Other",self) boxlayout.addWidget(self.chk1) boxlayout.addWidget(self.chk2) boxlayout.addWidget(self.chk3) label1 = QLabel("Epoch : ") label2 = QLabel("Numbers per epoch : ") label3 = QLabel("Location of dataset : ") label4 = QLabel("Weight : ") self.spinBox1 = QSpinBox(self) self.spinBox2 = QSpinBox(self) self.spinBox1.setMaximum(1000) self.spinBox2.setMaximum(1000) self.spinBox1.setValue(10) self.spinBox2.setValue(100) layout.addWidget(label1,0,0) layout.addWidget(label2,1,0) layout.addWidget(label3,2,0) layout.addWidget(label4,4,0) layout.addWidget(self.spinBox1,0,1) layout.addWidget(self.spinBox2,1,1) layout.addWidget(self.toolButtonOpenDialog1,2,1) layout.addWidget(self.lineEdit1,3,0,1,2) layout.addWidget(self.groupbox,4,1) layout.addWidget(self.toolButtonOpenDialog2,5,1) layout.addWidget(self.lineEdit2,6,0,1,2) layout.addWidget(btn1,7,0) layout.addWidget(btn2,7,1) self.setLayout(layout) self.setGeometry(300,300,300,200) def trainClicked(self): global EPOCH_NUM global SP_EPOCH EPOCH_NUM = self.spinBox1.value() SP_EPOCH = self.spinBox2.value() self.config.STEPS_PER_EPOCH = SP_EPOCH #dataset path global DATASET_DIR DATASET_DIR = self.lineEdit1.text() if DATASET_DIR == "": QMessageBox.about(self,"error","Set dataset directory!") #weights path global WEIGHTS_PATH WEIGHTS_PATH = self.lineEdit2.text() if self.chk1.isChecked(): WEIGHTS_PATH = COCO_WEIGHTS_PATH elif self.chk2.isChecked(): WEIGHTS_PATH = self.model.find_last() elif self.chk3.isChecked(): if WEIGHTS_PATH == "": QMessageBox.about(self,"error","Set weight directory!") else: QMessageBox.about(self,"error","Check weight!") #load weights if DATASET_DIR == "" or WEIGHTS_PATH == "": print("ํ•˜๊ธฐ์ „์— ์ข€ ์ฒดํฌ์ข€ํ•ด๋ผ ") else: print("epoch_num is : ",EPOCH_NUM) print("steps per epoch is : ",SP_EPOCH) print("dataset directory is : ",DATASET_DIR) print("weights directory is : ",WEIGHTS_PATH) if WEIGHTS_PATH == COCO_WEIGHTS_PATH: self.model.load_weights(WEIGHTS_PATH,by_name = True, exclude=["mrcnn_class_logits","mrcnn_bbox_fc","mrcnn_bbox","mrcnn_mask"]) else: self.model.load_weights(WEIGHTS_PATH,by_name=True) train(self.model) self.close() def closeClicked(self): self.close() def retranslateUi(self,TestQFileDialog): _translate = QtCore.QCoreApplication.translate TestQFileDialog.setWindowTitle(_translate("TestQFileDialog","Dialog")) self.toolButtonOpenDialog1.setText(_translate("TestQfileDialog","...")) self.toolButtonOpenDialog2.setText(_translate("TestQfileDialog2","...")) class ExWindow(QWidget): def __init__(self): super().__init__() self.init_ui() def init_ui(self): label = QLabel('Mask R-CNN PIG',self) label.setAlignment(Qt.AlignCenter) font = label.font() font.setBold(True) btn1 = QPushButton('Train',self) btn2 = QPushButton('Test',self) btn3 = QPushButton('Close',self) btn1.clicked.connect(self.trainEvent) btn2.clicked.connect(self.testEvent) btn3.clicked.connect(self.close) vbox = QVBoxLayout() vbox.addWidget(label) vbox.addWidget(btn1) vbox.addWidget(btn2) vbox.addWidget(btn3) self.setLayout(vbox) self.setGeometry(800,200,300,300) self.show() def testEvent(self): dia = TestWindow() dia.exec_() def trainEvent(self): dia = TrainWindow() dia.exec_() def closeEvent(self, event): reply = QMessageBox.question(self, 'Message', 'Are you sure to quit?',QMessageBox.Yes | QMessageBox.No, QMessageBox.No) if reply == QMessageBox.Yes: event.accept() else: event.ignore() class PigConfig(Config): NAME = "pig" GPU_COUNT = 1 IMAGES_PER_GPU = 4 NUM_CLASSES = 1 + 2 # Background + objects STEPS_PER_EPOCH = SP_EPOCH DETECTION_MIN_CONFIDENCE = 0.9 class PigDataset(utils.Dataset): def load_VIA(self, dataset_dir, subset, hc=False): self.add_class("pig", 1, "standing_pig") self.add_class("pig", 2, "lying_pig") assert subset in ["train","val"] dataset_dir = os.path.join(dataset_dir, subset) annotations1 = json.load(open(os.path.join(dataset_dir, "via_region_data.json"))) annotations = list(annotations1.values()) annotations = [a for a in annotations if a['regions']] for a in annotations: # Get the x, y coordinaets of points of the polygons that make up # the outline of each object instance. There are stores in the # shape_attributes (see json format above) polygons = [r['shape_attributes'] for r in a['regions'].values()] names = [r['region_attributes'] for r in a['regions'].values()] # load_mask() needs the image size to convert polygons to masks. # Unfortunately, VIA doesn't include it in JSON, so we must read # the image. This is only managable since the dataset is tiny. image_path = os.path.join(dataset_dir, a['filename']) image = skimage.io.imread(image_path) height, width = image.shape[:2] self.add_image( "pig", image_id=a['filename'], # use file name as a unique image id path=image_path, width=width, height=height, polygons=polygons, names=names) def load_mask(self, image_id): image_info = self.image_info[image_id] if image_info["source"] != "pig": return super(self.__class__, self).load_mask(image_id) info = self.image_info[image_id] class_names = info["names"] mask = np.zeros([info["height"], info["width"], len(info["polygons"])], dtype=np.uint8) for i, p in enumerate(info["polygons"]): rr, cc = skimage.draw.polygon(p['all_points_y'], p['all_points_x']) mask[rr, cc, i] = 1 class_ids = np.zeros([len(info["polygons"])]) for i, p in enumerate(class_names): if p['name'] == 'standing_pig': class_ids[i] = 1 elif p['name'] == 'lying_pig': class_ids[i] = 2 #assert code here to extend to other labels class_ids = class_ids.astype(int) # Return mask, and array of class IDs of each instance. Since we have # one class ID only, we return an array of 1s return mask.astype(np.bool), class_ids def image_reference(self, image_id): """Return the path of the image.""" info = self.image_info[image_id] if info["source"] == "pig": return info["path"] else: super(self.__class__, self).image_reference(image_id) def detect_and_color_splash(model, image_path=None, video_path=None, out_dir=''): assert image_path or video_path class_names = ['BG', 'standing_pig', 'lying_pig'] # Image or video? if image_path: print("Running on {}".format(IMAGE_PATH)) # Read image image = skimage.io.imread(IMAGE_PATH) # Detect objects r = model.detect([image], verbose=1)[0] # Color splash and save masked_image = visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], class_names, r['scores'],"image") return masked_image elif video_path: # Video capture vcapture = cv2.VideoCapture(video_path) # width = int(vcapture.get(cv2.CAP_PROP_FRAME_WIDTH)) # height = int(vcapture.get(cv2.CAP_PROP_FRAME_HEIGHT)) width = 1600 height = 1600 fps = vcapture.get(cv2.CAP_PROP_FPS) # Define codec and create video writer file_name = "splash_{:%Y%m%dT%H%M%S}.wmv".format(datetime.datetime.now()) vwriter = cv2.VideoWriter(file_name, cv2.VideoWriter_fourcc(*'MJPG'), fps, (width, height)) count = 0 success = True #For video, we wish classes keep the same mask in frames, generate colors for masks colors = visualize.random_colors(len(class_names)) while success: print("frame: ", count) plt.clf() plt.close() success, image = vcapture.read() if success: # OpenCV returns images as BGR, convert to RGB image = image[..., ::-1] # Detect objects r = model.detect([image], verbose=0)[0] # Color splash # splash = color_splash(image, r['masks']) splash = visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], class_names, r['scores'], colors=colors, making_video=True) # Add image to video writer vwriter.write(splash) count += 1 vwriter.release() def train(model): dataset_train = PigDataset() dataset_train.load_VIA(DATASET_DIR, "train") dataset_train.prepare() dataset_val = PigDataset() dataset_val.load_VIA(DATASET_DIR, "val") dataset_val.prepare() print("Training network heads") model.train(dataset_train, dataset_val, learning_rate=PigConfig().LEARNING_RATE, epochs=model.epoch+EPOCH_NUM, layers='heads') if __name__ == '__main__': app = QApplication(sys.argv) ex = ExWindow() sys.exit(app.exec_()) ```
{ "source": "jeonsworld/MLP-Mixer-Pytorch", "score": 2 }
#### File: MLP-Mixer-Pytorch/models/configs.py ```python import ml_collections def get_mixer_b16_config(): """Returns Mixer-B/16 configuration.""" config = ml_collections.ConfigDict() config.name = 'Mixer-B_16' config.patches = ml_collections.ConfigDict({'size': (16, 16)}) config.hidden_dim = 768 config.num_blocks = 12 config.tokens_mlp_dim = 384 config.channels_mlp_dim = 3072 return config def get_mixer_l16_config(): """Returns Mixer-L/16 configuration.""" config = ml_collections.ConfigDict() config.name = 'Mixer-L_16' config.patches = ml_collections.ConfigDict({'size': (16, 16)}) config.hidden_dim = 1024 config.num_blocks = 24 config.tokens_mlp_dim = 512 config.channels_mlp_dim = 4096 return config ```
{ "source": "Jeontaeyun/python-team-notes", "score": 3 }
#### File: python-team-notes/dynamic-programming/fibo.py ```python d = [0] * 100 def fibo(x): if x == 1 or x == 2: return 1 if d[x] != 0: return d[x] print("f(", x, ")") d[x] = fibo(x-1) + fibo(x-2) return d[x] print(fibo(6)) ``` #### File: python-team-notes/dynamic-programming/to-be-one.py ```python n = int(input()) # ์ œํ•œ๋œ ์ •์ˆ˜(n)๊ฐ€ 1 <= n <= 30,000 dynamic_table = [-1] * 30001 # Top-Down ๋ฐฉ์‹์œผ๋กœ ์ง„ํ–‰ def calculator(x): if x == 1: dynamic_table[x] = 0 return dynamic_table[x] # Memoization Code if dynamic_table[x] != -1: return dynamic_table[x] # Memoization Check Code print("f(", x, ")") dynamic_table[x-1] = calculator(x-1) result = dynamic_table[x-1] if x % 2 == 0: dynamic_table[x//2] = calculator(x//2) result = min(dynamic_table[x//2], result) if x % 3 == 0: dynamic_table[x//3] = calculator(x//3) result = min(dynamic_table[x//3], result) if x % 5 == 0: dynamic_table[x//5] = calculator(x//5) result = min(dynamic_table[x//5], result) return result + 1 print(calculator(n)) ``` #### File: python-team-notes/graph/city-divide.py ```python def find_parent(parent, x): if parent[x] != x: parent[x] = find_parent(parent, parent[x]) return parent[x] def union_city(parent, a, b): a = find_parent(parent, a) b = find_parent(parent, b) if a < b: parent[b] = a else: parent[a] = b def check_cycle(parent, a, b): if find_parent(parent, a) == find_parent(parent, b): return True else: return False def sort_edges(edges): edges = edges.sort(key=lambda x: x[-1]) def divide_city(edges, cycle_tables): cost_list = [] sort_edges(edges) for edge in edges: a, b, cost = edge if not check_cycle(cycle_tables, a, b): union_city(cycle_tables, a, b) cost_list.append(cost) result = 0 cost_list.pop(len(cost_list)-1) for cost in cost_list: result += cost return result v, e = map(int, input().split()) edges = [] cycle_tables = [0] * (v+1) # Initial Cycle Table for i in range(1, v+1): cycle_tables[i] = i for _ in range(e): a, b, cost = map(int, input().split()) edges.append((a, b, cost)) result = divide_city(edges, cycle_tables) print(result) ``` #### File: implementation/basic/game-developer.py ```python n, k = map(int, input().split()) position_data = list(map(int, input().split())) map_data = [[int(x) for x in input().split()] for _ in range(n)] # [up, down, left, right] directions = [(-1, 0), (0, 1), (1, 0), (0, -1)] current_position = [position_data[0], position_data[1]] current_direction = position_data[2] count_scan = 0 memoization = [] def turn_left(): global count_scan global current_direction count_scan += 1 current_direction -= 1 if current_direction == -1: current_direction = 3 def check_is_block(row, column): is_block_row = row < 0 or row >= n is_block_column = column < 0 or column >= n return is_block_row or is_block_column while True: turn_left() next_row = current_position[0] + directions[current_direction][0] next_column = current_position[1] + directions[current_direction][1] if check_is_block(next_row, next_column): continue if not (next_row, next_column) in memoization and map_data[next_row][next_column] == 0: count_scan = 0 current_position = [next_row, next_column] memoization.append((next_row, next_column)) if count_scan == 3: back_row = current_position[0] - directions[current_direction][0] back_column = current_position[1] - directions[current_direction][1] if check_is_block(back_row, back_column): continue if not map_data[back_row][back_column] == 1: break else: current_position = [back_row, back_column] solution = len(memoization) print(solution) ``` #### File: python-team-notes/search/rice-cake-problem.py ```python n, m = map(int, input().split()) data = list(map(int, input().split())) data.sort() maxValue = data[n-1] def binary_search(array, start, end): mid = (start + end) // 2 result = 0 for length in data: if length > mid: result += length - mid if result == m: return mid if result > m: return binary_search(array, mid + 1, end) else: return binary_search(array, start, mid - 1) print(binary_search(data, 0, maxValue)) ``` #### File: python-team-notes/search/search-part.py ```python n = int(input()) part_list = list(map(int, input().split())) m = int(input()) require_list = list(map(int, input().split())) def binary_search(array, target, start, end): mid = (start + end) // 2 if start >= end: return "no" if array[mid] == target: return "yes" if array[mid] > target: return binary_search(array, target, start, mid - 1) else: return binary_search(array, target, mid + 1, end) return "no" part_list = sorted(part_list) result = [binary_search(part_list, i, 0, n) for i in require_list] for answer in result: print(answer, end=" ") ```
{ "source": "JeorgeReds78/HCap-FeCriJor", "score": 3 }
#### File: JeorgeReds78/HCap-FeCriJor/ejercicioHCAP.py ```python import cv2 import numpy as np #Funciรณn de la escala de grises def escala_gris(A): B = np.zeros([A.shape[0], A.shape[1]]) for i in range(0, len(A)): for j in range(0, len(A[0])): suma = 0 for k in range(0, len(A[0][0])): suma += A[i][j][k] suma = int(suma/len(A[0][0])) B[i][j] = suma return B #Funciรณn de la convolucio def convolucion(A, B): C = np.zeros([A.shape[0]-2, A.shape[1]-2]) for i in range(0, len(A)-2): for j in range(0, len(A[0])-2): suma = 0 for x in range(0, len(B)): for y in range(0, len(B[0])): suma += A[i+x][j+y]*B[x][y] if suma > 255: suma = 255 C[i][j] = suma return C #Funciรณn de la escala en blanco y negro def escala_BN(A): B = np.zeros([A.shape[0], A.shape[1]]) for i in range(0, len(A)): for j in range(0, len(A[0])): if A[i][j] > 128: B[i][j] = 255 return B #Funciรณn para agregar 0 def padding(A): B = np.zeros((len(A)+2, len(A[0])+2)) for i in range(0, len(A)): for j in range(0, len(A[0])): B[i+1][j+1] = A[i][j] return B Filtro = [[1, 1, 1],[1, 0, 1],[1, 1, 1]] Img = cv2.imread('image.jpg') Img = cv2.cvtColor(Img,cv2.COLOR_BGR2RGB) Img2 = escala_gris(Img) cv2.imwrite('gris.jpg', Img2) Img_pad = padding(Img2) Img_pad = convolucion(Img_pad, Filtro) cv2.imwrite('pad.jpg', Img_pad) Img_sin_pad = convolucion(Img2, Filtro) cv2.imwrite('sinpad.jpg', Img_sin_pad) Img_BN = escala_BN(Img2) cv2.imwrite('blancoYNegro.jpg', Img_BN) ```
{ "source": "jeorjebot/kp-anonymity", "score": 3 }
#### File: kp-anonymity/Utility/draw_stat.py ```python from pathlib import Path import matplotlib import matplotlib.pyplot as plt import numpy as np with open(Path('tmp.txt'), 'r') as f: lines_read = f.readlines() lines = list() for line in lines_read: lines.append(line.split()) labels = list() naive_time = list() kapra_time = list() for index, line in enumerate(lines): if index % 2 == 0: # naive labels.append(line[1]) naive_time.append(float(line[2])) else: # kapra kapra_time.append(float(line[2])) x = np.arange(len(labels)) # the label locations width = 0.35 # the width of the bars fig, ax = plt.subplots() rects1 = ax.bar(x - width/2, naive_time, width, label='Naive') rects2 = ax.bar(x + width/2, kapra_time, width, label='Kapra') # Add some text for labels, title and custom x-axis tick labels, etc. ax.set_ylabel('Time (s)') ax.set_xlabel('Number of instances') ax.set_title('Time efficiency') ax.set_xticks(x) ax.set_xticklabels(labels) ax.legend() def autolabel(rects): """Attach a text label above each bar in *rects*, displaying its height.""" for rect in rects: height = rect.get_height() ax.annotate('{}'.format(height), xy=(rect.get_x() + rect.get_width() / 2, height), xytext=(0, 3), # 3 points vertical offset textcoords="offset points", ha='center', va='bottom') autolabel(rects1) autolabel(rects2) fig.tight_layout() #plt.show() plt.savefig('stat.png') ```
{ "source": "jeorjebot/lithops", "score": 2 }
#### File: lithops/lithops/wait.py ```python import signal import logging import time import concurrent.futures as cf from functools import partial from lithops.utils import is_unix_system, timeout_handler, \ is_notebook, is_lithops_worker, FuturesList from lithops.storage import InternalStorage from lithops.monitor import JobMonitor from types import SimpleNamespace from itertools import chain ALL_COMPLETED = 1 ANY_COMPLETED = 2 ALWAYS = 3 THREADPOOL_SIZE = 64 WAIT_DUR_SEC = 1 logger = logging.getLogger(__name__) def wait(fs, internal_storage=None, throw_except=True, timeout=None, return_when=ALL_COMPLETED, download_results=False, job_monitor=None, threadpool_size=THREADPOOL_SIZE, wait_dur_sec=WAIT_DUR_SEC): """ Wait for the Future instances (possibly created by different Executor instances) given by fs to complete. Returns a named 2-tuple of sets. The first set, named done, contains the futures that completed (finished or cancelled futures) before the wait completed. The second set, named not_done, contains the futures that did not complete (pending or running futures). timeout can be used to control the maximum number of seconds to wait before returning. :param fs: Futures list. Default None :param throw_except: Re-raise exception if call raised. Default True. :param return_when: One of `ALL_COMPLETED`, `ANY_COMPLETED`, `ALWAYS` :param download_results: Download results. Default false (Only get statuses) :param timeout: Timeout of waiting for results. :param threadpool_zise: Number of threads to use. Default 64 :param wait_dur_sec: Time interval between each check. :return: `(fs_done, fs_notdone)` where `fs_done` is a list of futures that have completed and `fs_notdone` is a list of futures that have not completed. :rtype: 2-tuple of list """ if not fs: return if type(fs) != list and type(fs) != FuturesList: fs = [fs] if download_results: msg = 'ExecutorID {} - Getting results from functions'.format(fs[0].executor_id) fs_done = [f for f in fs if f.done] fs_not_done = [f for f in fs if not f.done] else: msg = 'ExecutorID {} - Waiting for functions to complete'.format(fs[0].executor_id) fs_done = [f for f in fs if f.success or f.done] fs_not_done = [f for f in fs if not (f.success or f.done)] logger.info(msg) if not fs_not_done: return fs_done, fs_not_done if is_unix_system() and timeout is not None: logger.debug('Setting waiting timeout to {} seconds'.format(timeout)) error_msg = 'Timeout of {} seconds exceeded waiting for function activations to finish'.format(timeout) signal.signal(signal.SIGALRM, partial(timeout_handler, error_msg)) signal.alarm(timeout) # Setup progress bar pbar = None if not is_lithops_worker() and logger.getEffectiveLevel() == logging.INFO: from tqdm.auto import tqdm if not is_notebook(): print() pbar = tqdm(bar_format=' {l_bar}{bar}| {n_fmt}/{total_fmt} ', total=len(fs), disable=None) pbar.update(len(fs_done)) try: jobs = _create_jobs_from_futures(fs, internal_storage) if not job_monitor: job_monitor = JobMonitor(backend='storage') [job_monitor.create(**job_data).start() for job_data in jobs] sleep_sec = wait_dur_sec if job_monitor.backend == 'storage' else 0.3 if return_when == ALL_COMPLETED: while not _all_done(fs, download_results): for job_data in jobs: new_data = _get_job_data(fs, job_data, pbar=pbar, throw_except=throw_except, download_results=download_results, threadpool_size=threadpool_size) time.sleep(0 if new_data else sleep_sec) elif return_when == ANY_COMPLETED: while not _any_done(fs, download_results): for job_data in jobs: new_data = _get_job_data(fs, job_data, pbar=pbar, throw_except=throw_except, download_results=download_results, threadpool_size=threadpool_size) time.sleep(0 if new_data else sleep_sec) elif return_when == ALWAYS: for job_data in jobs: _get_job_data(fs, job_data, pbar=pbar, throw_except=throw_except, download_results=download_results, threadpool_size=threadpool_size) except KeyboardInterrupt as e: if download_results: not_dones_call_ids = [(f.job_id, f.call_id) for f in fs if not f.done] else: not_dones_call_ids = [(f.job_id, f.call_id) for f in fs if not f.success and not f.done] msg = ('Cancelled - Total Activations not done: {}'.format(len(not_dones_call_ids))) if pbar: pbar.close() print() logger.info(msg) raise e except Exception as e: raise e finally: if is_unix_system(): signal.alarm(0) if pbar and not pbar.disable: pbar.close() if not is_notebook(): print() if download_results: fs_done = [f for f in fs if f.done] fs_notdone = [f for f in fs if not f.done] else: fs_done = [f for f in fs if f.success or f.done] fs_notdone = [f for f in fs if not f.success and not f.done] return fs_done, fs_notdone def get_result(fs, throw_except=True, timeout=None, threadpool_zise=THREADPOOL_SIZE, wait_dur_sec=WAIT_DUR_SEC, internal_storage=None): """ For getting the results from all function activations :param fs: Futures list. Default None :param throw_except: Reraise exception if call raised. Default True. :param verbose: Shows some information prints. Default False :param timeout: Timeout for waiting for results. :param THREADPOOL_SIZE: Number of threads to use. Default 128 :param WAIT_DUR_SEC: Time interval between each check. :return: The result of the future/s """ if type(fs) != list and type(fs) != FuturesList: fs = [fs] fs_done, _ = wait(fs=fs, throw_except=throw_except, timeout=timeout, download_results=True, internal_storage=internal_storage, threadpool_zise=threadpool_zise, wait_dur_sec=wait_dur_sec) result = [] fs_done = [f for f in fs_done if not f.futures and f._produce_output] for f in fs_done: result.append(f.result(throw_except=throw_except)) logger.debug("ExecutorID {} - Finished getting results".format(fs[0].executor_id)) return result def _create_jobs_from_futures(fs, internal_storage): """ Creates a dummy job necessary for the job monitor """ jobs = [] present_jobs = {f.job_key for f in fs} for job_key in present_jobs: job_data = {} job = SimpleNamespace() job.futures = [f for f in fs if f.job_key == job_key] job.total_calls = len(job.futures) f = job.futures[0] job.executor_id = f.executor_id job.job_id = f.job_id job.job_key = f.job_key job_data['job'] = job if internal_storage and internal_storage.backend == f._storage_config['backend']: job_data['internal_storage'] = internal_storage else: job_data['internal_storage'] = InternalStorage(f._storage_config) jobs.append(job_data) return jobs def _all_done(fs, download_results): """ Checks if all futures are ready or done """ if download_results: return all([f.done for f in fs]) else: return all([f.success or f.done for f in fs]) def _any_done(fs, download_results): """ Checks if any futures irs ready or done """ if download_results: return any([f.done for f in fs]) else: return any([f.success or f.done for f in fs]) def _get_job_data(fs, job_data, download_results, throw_except, threadpool_size, pbar): """ Downloads all status/results from ready futures """ job = job_data['job'] internal_storage = job_data['internal_storage'] if download_results: callids_done = [(f.executor_id, f.job_id, f.call_id) for f in job.futures if (f.ready or f.success)] not_done_futures = [f for f in job.futures if not f.done] else: callids_done = [(f.executor_id, f.job_id, f.call_id) for f in job.futures if f.ready] not_done_futures = [f for f in job.futures if not (f.success or f.done)] not_done_call_ids = set([(f.executor_id, f.job_id, f.call_id) for f in not_done_futures]) new_callids_done = not_done_call_ids.intersection(callids_done) fs_to_wait_on = [] for f in job.futures: if (f.executor_id, f.job_id, f.call_id) in new_callids_done: fs_to_wait_on.append(f) def get_result(f): f.result(throw_except=throw_except, internal_storage=internal_storage) def get_status(f): f.status(throw_except=throw_except, internal_storage=internal_storage) pool = cf.ThreadPoolExecutor(max_workers=threadpool_size) if download_results: list(pool.map(get_result, fs_to_wait_on)) else: list(pool.map(get_status, fs_to_wait_on)) pool.shutdown() if pbar: for f in fs_to_wait_on: if (download_results and f.done) or \ (not download_results and (f.success or f.done)): pbar.update(1) pbar.refresh() # Check for new futures new_futures = list(chain(*[f._new_futures for f in fs_to_wait_on if f._new_futures])) if new_futures: fs.extend(new_futures) job.futures.extend(new_futures) if pbar: pbar.total = pbar.total + len(new_futures) pbar.refresh() return len(fs_to_wait_on) ```
{ "source": "jeorme/tf-quant-finance", "score": 2 }
#### File: experimental/local_volatility/local_volatility_model_test.py ```python from absl.testing import parameterized import tensorflow.compat.v2 as tf import tf_quant_finance as tff from tensorflow.python.framework import test_util # pylint: disable=g-direct-tensorflow-import implied_vol = tff.black_scholes.implied_vol LocalVolatilityModel = tff.experimental.local_volatility.LocalVolatilityModel volatility_surface = tff.experimental.pricing_platform.framework.market_data.volatility_surface # This function can't be moved to SetUp since that would break graph mode # execution def build_tensors(dim): year = dim * [[2021, 2022]] month = dim * [[1, 1]] day = dim * [[1, 1]] expiries = tff.datetime.dates_from_year_month_day(year, month, day) valuation_date = [(2020, 1, 1)] expiry_times = tff.datetime.daycount_actual_365_fixed( start_date=valuation_date, end_date=expiries, dtype=tf.float64) strikes = dim * [[[0.1, 0.9, 1.0, 1.1, 3], [0.1, 0.9, 1.0, 1.1, 3]]] iv = dim * [[[0.135, 0.13, 0.1, 0.11, 0.13], [0.135, 0.13, 0.1, 0.11, 0.13]]] spot = dim * [1.0] return valuation_date, expiries, expiry_times, strikes, iv, spot def build_volatility_surface(val_date, expiry_times, expiries, strikes, iv, dtype): interpolator = tff.math.interpolation.interpolation_2d.Interpolation2D( expiry_times, strikes, iv, dtype=dtype) def _interpolator(t, x): x_transposed = tf.transpose(x) t = tf.broadcast_to(t, x_transposed.shape) return tf.transpose(interpolator.interpolate(t, x_transposed)) return volatility_surface.VolatilitySurface( val_date, expiries, strikes, iv, interpolator=_interpolator, dtype=dtype) # @test_util.run_all_in_graph_and_eager_modes class LocalVolatilityTest(tf.test.TestCase, parameterized.TestCase): def setUp(self): super(LocalVolatilityTest, self).setUp() def _get_implied_vol_from_simulations(time, strike, paths, spot, r, dtype): r = tf.convert_to_tensor(r, dtype=dtype) discount_factor = tf.math.exp(-r * time) paths = tf.boolean_mask( paths, tf.math.logical_not(tf.math.is_nan(paths))) option_value = tf.math.reduce_mean(tf.nn.relu(paths - strike)) iv = implied_vol( prices=discount_factor * option_value, strikes=strike, expiries=time, spots=spot, discount_factors=discount_factor, dtype=dtype) return iv self._get_implied_vol = _get_implied_vol_from_simulations @parameterized.named_parameters( ('1d', 1, [0.0], 0.1, True), ('2d', 2, [0.0], 0.1, True), ('3d', 3, [0.0], 0.1, True), ('1d_nonzero_riskfree_rate', 1, [0.05], 0.05, True), ('1d_using_vol_surface', 1, [0.0], 0.1, False), ) def test_lv_correctness(self, dim, risk_free_rate, time_step, using_market_data): """Tests that the model reproduces implied volatility smile.""" dtype = tf.float64 num_samples = 10000 val_date, expiries, expiry_times, strikes, iv, spot = build_tensors(dim) if using_market_data: lv = LocalVolatilityModel.from_market_data( dim, val_date, expiries, strikes, iv, spot, risk_free_rate, [0.0], dtype=dtype) else: vs = build_volatility_surface( val_date, expiry_times, expiries, strikes, iv, dtype=dtype) lv = LocalVolatilityModel.from_volatility_surface( dim, spot, vs, risk_free_rate, [0.0], dtype) paths = lv.sample_paths( [1.0, 2.0], num_samples=num_samples, initial_state=spot, time_step=time_step, random_type=tff.math.random.RandomType.STATELESS_ANTITHETIC, seed=[1, 2]) for d in range(dim): for i in range(2): for j in [1, 2, 3]: sim_iv = self.evaluate( self._get_implied_vol(expiry_times[d][i], strikes[d][i][j], paths[:, i, d], spot[d], risk_free_rate, dtype)) self.assertAllClose(sim_iv[0], iv[d][i][j], atol=0.005, rtol=0.005) if __name__ == '__main__': tf.test.main() ``` #### File: equity_instruments/american_option/american_option_impl.py ```python from typing import Any, Optional, List, Dict, Union, Tuple import dataclasses import tensorflow.compat.v2 as tf from tf_quant_finance import datetime as dateslib from tf_quant_finance.experimental.pricing_platform.framework.core import curve_types as curve_types_lib from tf_quant_finance.experimental.pricing_platform.framework.core import instrument from tf_quant_finance.experimental.pricing_platform.framework.core import processed_market_data as pmd from tf_quant_finance.experimental.pricing_platform.framework.core import types from tf_quant_finance.experimental.pricing_platform.framework.equity_instruments import utils as equity_utils from tf_quant_finance.experimental.pricing_platform.framework.equity_instruments.american_option import proto_utils from tf_quant_finance.experimental.pricing_platform.framework.equity_instruments.american_option import utils from tf_quant_finance.experimental.pricing_platform.framework.market_data import utils as market_data_utils from tf_quant_finance.experimental.pricing_platform.framework.rate_instruments import cashflow_streams from tf_quant_finance.experimental.pricing_platform.instrument_protos import american_equity_option_pb2 as american_option_pb2 @dataclasses.dataclass(frozen=True) class AmericanOptionConfig: discounting_curve: Optional[ Dict[types.CurrencyProtoType, curve_types_lib.CurveType]] = dataclasses.field(default_factory=dict) model: str = "BS-LSM" # default pricing model is LSM under Black-Scholes num_samples: int = 96000 num_calibration_samples: int = None num_exercise_times: int = 100 seed: types.IntTensor = (42, 42) # Should be an integer `Tensor` of shape [2] class AmericanOption(instrument.Instrument): """Represents a batch of American Equity Options. An American equity option is a contract that gives the holder an opportunity to buy (call) or sell (put) an equity for a predifined value (strike) at any date before the expiry. The AmericanOption class can be used to create and price multiple options simultaneously. #### Example: The following example illustrates the construction of a batch of American options and pricing them. ```None american_option_proto = american_option_pb2.AmericanEquityOption( short_position=True, expiry_date=date_pb2.Date(year=2022, month=5, day=21), contract_amount=decimal_pb2.Decimal(units=10000), strike=decimal_pb2.Decimal(units=1500), equity="GOOG", currency=Currency.USD(), business_day_convention=BusinessDayConvention.MODIFIED_FOLLOWING(), is_call_option=False) valuation_date = [(2020, 2, 8)] market = market_data.MarketDataDict(valuation_date, ...) am_option_portfolio = forward_rate_agreement.ForwardRateAgreement.from_protos( [american_option_proto]) am_option_portfolio[0].price(market) ``` """ def __init__(self, short_position: types.BoolTensor, currency: types.CurrencyProtoType, expiry_date: types.DateTensor, equity: List[str], contract_amount: types.FloatTensor, strike: types.FloatTensor, is_call_option: List[bool], business_day_convention: types.BusinessDayConventionProtoType, calendar: types.BankHolidaysProtoType, settlement_days: Optional[types.IntTensor] = 0, discount_curve_type: curve_types_lib.CurveType = None, discount_curve_mask: types.IntTensor = None, equity_mask: types.IntTensor = None, config: Union[AmericanOptionConfig, Dict[str, Any]] = None, batch_names: Optional[types.StringTensor] = None, dtype: Optional[types.Dtype] = None, name: Optional[str] = None): """Initializes the batch of American Equity Options. Args: short_position: Whether the price is computed for the contract holder. Default value: `True` which means that the price is for the contract holder. currency: The denominated currency. expiry_date: A `DateTensor` specifying the dates on which the options expire. equity: A string name of the underlyings. contract_amount: A `Tensor` of real dtype and shape compatible with with `short_position`. strike: `Tensor` of real dtype and shape compatible with with `short_position`. Option strikes. is_call_option: A bool `Tensor` of shape compatible with with `short_position`. Indicates which options are of call type. business_day_convention: A business count convention. calendar: A calendar to specify the weekend mask and bank holidays. settlement_days: An integer `Tensor` of the shape broadcastable with the shape of `fixing_date`. discount_curve_type: An optional instance of `CurveType` or a list of those. If supplied as a list and `discount_curve_mask` is not supplied, the size of the list should be the same as the number of priced instruments. Defines discount curves for the instruments. Default value: `None`, meaning that discount curves are inferred from `currency` and `config`. discount_curve_mask: An optional integer `Tensor` of values ranging from `0` to `len(discount_curve_type) - 1` and of shape `batch_shape`. Identifies a mapping between `discount_curve_type` list and the underlying instruments. Default value: `None`. equity_mask: An optional integer `Tensor` of values ranging from `0` to `len(equity) - 1` and of shape `batch_shape`. Identifies a mapping between `equity` list and the underlying instruments. Default value: `None`. config: Optional `AmericanOptionConfig` or a dictionary. If dictionary, then the keys should be the same as the field names of `AmericanOptionConfig`. batch_names: A string `Tensor` of instrument names. Should be of shape `batch_shape + [2]` specying name and instrument type. This is useful when the `from_protos` method is used and the user needs to identify which instruments got batched together. dtype: `tf.Dtype` of the input and output real `Tensor`s. Default value: `None` which maps to `float64`. name: Python str. The name to give to the ops created by this class. Default value: `None` which maps to 'AmericanOption'. """ self._name = name or "AmericanOption" with tf.name_scope(self._name): if batch_names is not None: self._names = tf.convert_to_tensor(batch_names, name="batch_names") else: self._names = None self._dtype = dtype or tf.float64 ones = tf.constant(1, dtype=self._dtype) self._short_position = tf.where( short_position, ones, -ones, name="short_position") self._contract_amount = tf.convert_to_tensor( contract_amount, dtype=self._dtype, name="contract_amount") self._strike = tf.convert_to_tensor(strike, dtype=self._dtype, name="strike") self._is_call_option = tf.convert_to_tensor( is_call_option, dtype=tf.bool, name="strike") settlement_days = tf.convert_to_tensor(settlement_days) # Business day roll convention and the end of month flag roll_convention, eom = market_data_utils.get_business_day_convention( business_day_convention) # TODO(b/160446193): Calendar is ignored at the moment calendar = dateslib.create_holiday_calendar( weekend_mask=dateslib.WeekendMask.SATURDAY_SUNDAY) if isinstance(expiry_date, types.IntTensor): self._expiry_date = dateslib.dates_from_tensor(expiry_date) else: self._expiry_date = dateslib.convert_to_date_tensor(expiry_date) self._settlement_days = settlement_days self._roll_convention = roll_convention # Get discount and reference curves self._currency = cashflow_streams.to_list(currency) self._equity = cashflow_streams.to_list(equity) if len(self._currency) != len(self._equity): if len(self._currency) > 1 and len(self._equity) > 1: raise ValueError( "Number of currencies and equities should be the same " "but it is {0} and {1}".format(len(self._currency), len(self._equity))) config = _process_config(config) [ self._model, self._num_samples, self._seed, self._num_exercise_times, self._num_calibration_samples ] = _get_config_values(config) if discount_curve_type is None: discount_curve_type = [] for currency in self._currency: if currency in config.discounting_curve: curve_type = config.discounting_curve[currency] else: # Default discounting curve curve_type = curve_types_lib.RiskFreeCurve( currency=currency) discount_curve_type.append(curve_type) # Get masks for discount curves and vol surfaces [ self._discount_curve_type, self._discount_curve_mask ] = cashflow_streams.process_curve_types(discount_curve_type, discount_curve_mask) [ self._equity, self._equity_mask, ] = equity_utils.process_equities(self._equity, equity_mask) # Get batch shape self._batch_shape = tf.shape(strike) @classmethod def create_constructor_args( cls, proto_list: List[american_option_pb2.AmericanEquityOption], config: AmericanOptionConfig = None) -> Dict[str, Any]: """Creates a dictionary to initialize AmericanEquityOption. The output dictionary is such that the instruments can be initialized as follows: ``` initializer = create_constructor_args(proto_list, config) american_options = [AmericanEquityOption(**data) for data in initializer.values()] ``` The keys of the output dictionary are unique identifiers of the batched instruments. This is useful for identifying an existing graph that could be reused for the instruments without the need of rebuilding the graph. Args: proto_list: A list of protos for which the initialization arguments are constructed. config: An instance of `AmericanOptionConfig`. Returns: A possibly nested dictionary such that each value provides initialization arguments for the AmericanEquityOption. """ am_option_data = proto_utils.from_protos(proto_list, config) res = {} for key in am_option_data: tensor_repr = proto_utils.tensor_repr(am_option_data[key]) res[key] = tensor_repr return res @classmethod def from_protos( cls, proto_list: List[american_option_pb2.AmericanEquityOption], config: AmericanOptionConfig = None ) -> List["AmericanOption"]: proto_dict = proto_utils.from_protos(proto_list, config) intruments = [] for kwargs in proto_dict.values(): # Create an instrument intruments.append(cls(**kwargs)) return intruments @classmethod def group_protos( cls, proto_list: List[american_option_pb2.AmericanEquityOption], config: AmericanOptionConfig = None ) -> Dict[str, List["AmericanOption"]]: return proto_utils.group_protos(proto_list, config) def price(self, market: pmd.ProcessedMarketData, name: Optional[str] = None) -> types.FloatTensor: """Returns the present value of the American options. Args: market: An instance of `ProcessedMarketData`. name: Python str. The name to give to the ops created by this function. Default value: `None` which maps to 'price'. Returns: A `Tensor` of shape `batch_shape` containing the modeled price of each American option contract based on the input market data. """ name = name or (self._name + "_price") with tf.name_scope(name): discount_curve = cashflow_streams.get_discount_curve( self._discount_curve_type, market, self._discount_curve_mask) vol_surface = equity_utils.get_vol_surface( self._equity, market, self._equity_mask) spots = tf.stack(market.spot(self._equity), axis=0) discount_factors = discount_curve.discount_factor( self._expiry_date.expand_dims(axis=-1)) daycount_convention = discount_curve.daycount_convention day_count_fn = market_data_utils.get_daycount_fn(daycount_convention) if spots.shape.rank > 0: spots = tf.gather(spots, self._equity_mask) if self._model == "BS-LSM": # TODO(b/168798725): volatility should be time-dependent vols = vol_surface.volatility( expiry_dates=self._expiry_date.expand_dims(axis=-1), strike=tf.expand_dims(self._strike, axis=-1)) prices = utils.bs_lsm_price( spots=spots, expiry_times=day_count_fn( start_date=market.date, end_date=self._expiry_date, dtype=self._dtype), strikes=self._strike, volatility=tf.squeeze(vols, axis=-1), discount_factors=tf.squeeze(discount_factors), is_call_option=self._is_call_option, num_samples=self._num_samples, num_exercise_times=self._num_exercise_times, num_calibration_samples=self._num_calibration_samples, seed=self._seed) return self._short_position * self._contract_amount * prices else: raise ValueError("Only BS-LSM model is suppoted. " "Supplied {}".format(self._model)) @property def batch_shape(self) -> tf.Tensor: return self._batch_shape @property def names(self) -> tf.Tensor: """Returns a string tensor of names and instrument types. The shape of the output is [batch_shape, 2]. """ return self._names def ir_delta(self, tenor: types.DateTensor, processed_market_data: pmd.ProcessedMarketData, curve_type: Optional[curve_types_lib.CurveType] = None, shock_size: Optional[float] = None) -> tf.Tensor: """Computes delta wrt to the tenor perturbation.""" raise NotImplementedError("Coming soon.") def ir_delta_parallel( self, processed_market_data: pmd.ProcessedMarketData, curve_type: Optional[curve_types_lib.CurveType] = None, shock_size: Optional[float] = None) -> tf.Tensor: """Computes delta wrt to the curve parallel perturbation.""" raise NotImplementedError("Coming soon.") def ir_vega(self, tenor: types.DateTensor, processed_market_data: pmd.ProcessedMarketData, shock_size: Optional[float] = None) -> tf.Tensor: """Computes vega wrt to the tenor perturbation.""" raise NotImplementedError("Coming soon.") def _process_config( config: Union[AmericanOptionConfig, Dict[str, Any], None] ) -> AmericanOptionConfig: """Converts config to AmericanOptionConfig.""" if config is None: return AmericanOptionConfig() if isinstance(config, AmericanOptionConfig): return config model = config.get("model", "BS-LSM") seed = config.get("seed", [42, 42]) num_exercise_times = config.get("num_exercise_times", 100) num_samples = config.get("num_samples", 96000) num_calibration_samples = config.get("num_calibration_samples", None) discounting_curve = config.get("discounting_curve", dict()) return AmericanOptionConfig(discounting_curve=discounting_curve, model=model, seed=seed, num_exercise_times=num_exercise_times, num_samples=num_samples, num_calibration_samples=num_calibration_samples) def _get_config_values( config: AmericanOptionConfig ) -> Tuple[str, int, types.IntTensor, int, int]: """Extracts config values.""" [ model, num_samples, seed, num_exercise_times, num_calibration_samples ] = [config.model, config.num_samples, tf.convert_to_tensor(config.seed, name="seed"), config.num_exercise_times, config.num_calibration_samples] return model, num_samples, seed, num_exercise_times, num_calibration_samples __all__ = ["AmericanOptionConfig", "AmericanOption"] ``` #### File: framework/market_data/market_data_test.py ```python import tensorflow.compat.v2 as tf import tf_quant_finance as tff from tensorflow.python.framework import test_util # pylint: disable=g-direct-tensorflow-import core = tff.experimental.pricing_platform.framework.core market_data = tff.experimental.pricing_platform.framework.market_data interpolation_method = tff.experimental.pricing_platform.framework.core.interpolation_method @test_util.run_all_in_graph_and_eager_modes class MarketDataTest(tf.test.TestCase): def setUp(self): dates = [[2021, 2, 8], [2022, 2, 8], [2023, 2, 8], [2025, 2, 8], [2027, 2, 8], [2030, 2, 8], [2050, 2, 8]] discounts = [0.97197441, 0.94022746, 0.91074031, 0.85495089, 0.8013675, 0.72494879, 0.37602059] vol_dates = [ [2021, 2, 8], [2022, 2, 8], [2023, 2, 8], [2025, 2, 8], [2027, 2, 8]] strikes = [[1500, 1550, 1510], [1500, 1550, 1510], [1500, 1550, 1510], [1500, 1550, 1510], [1500, 1550, 1510]] volatilities = [[0.1, 0.12, 0.13], [0.15, 0.2, 0.15], [0.1, 0.2, 0.1], [0.1, 0.2, 0.1], [0.1, 0.1, 0.3]] libor_3m_config = market_data.config.RateConfig( interpolation_method=interpolation_method.InterpolationMethod.LINEAR) self._rate_config = {"USD": {"LIBOR_3M": libor_3m_config}} risk_free_dates = [ [2021, 2, 8], [2022, 2, 8], [2023, 2, 8], [2025, 2, 8], [2050, 2, 8]] risk_free_discounts = [ 0.97197441, 0.94022746, 0.91074031, 0.85495089, 0.37602059] self._market_data_dict = { "USD": { "risk_free_curve": {"dates": risk_free_dates, "discounts": risk_free_discounts}, "OIS": {"dates": dates, "discounts": discounts}, "LIBOR_3M": {"dates": dates, "discounts": discounts},}, "GOOG": { "spot": 1500, "volatility_surface": {"dates": vol_dates, "strikes": strikes, "implied_volatilities": volatilities} }} self._valuation_date = [(2020, 6, 24)] self._libor_discounts = discounts self._risk_free_discounts = risk_free_discounts super(MarketDataTest, self).setUp() def test_discount_curve(self): market = market_data.MarketDataDict( self._valuation_date, self._market_data_dict, config=self._rate_config) # Get the risk free discount curve risk_free_curve_type = core.curve_types.RiskFreeCurve(currency="USD") risk_free_curve = market.yield_curve(risk_free_curve_type) # Get LIBOR 3M discount libor_3m = core.rate_indices.RateIndex(type="LIBOR_3M") rate_index_curve_type = core.curve_types.RateIndexCurve( currency="USD", index=libor_3m) libor_3m_curve = market.yield_curve(rate_index_curve_type) with self.subTest("RiskFree"): discount_factor_nodes = risk_free_curve.discount_factor_nodes self.assertAllClose(discount_factor_nodes, self._risk_free_discounts) with self.subTest("LIBOR_3M"): discount_factor_nodes = libor_3m_curve.discount_factor_nodes self.assertAllClose(discount_factor_nodes, self._libor_discounts) def test_volatility(self): market = market_data.MarketDataDict( self._valuation_date, self._market_data_dict, config=self._rate_config) # Get volatility surface vol_surface = market.volatility_surface(["GOOG", "GOOG"]) expiry = tff.datetime.dates_from_year_month_day( year=[[2023], [2030]], month=[[5], [10]], day=[[10], [15]]) vols = vol_surface.volatility(expiry_dates=expiry, strike=[[1510], [1520]]) self.assertAllClose( self.evaluate(vols), [[0.108], [0.31]], atol=1e-6) if __name__ == "__main__": tf.test.main() ``` #### File: models/hjm/zero_coupon_bond_option_test.py ```python import numpy as np import tensorflow.compat.v2 as tf import tf_quant_finance as tff from tensorflow.python.framework import test_util # pylint: disable=g-direct-tensorflow-import # @test_util.run_all_in_graph_and_eager_modes class HJMBondOptionTest(tf.test.TestCase): def setUp(self): self.mean_reversion_1d = [0.03] self.volatility_1d = [0.02] self.volatility_time_dep_1d = [0.01, 0.02] self.mean_reversion_2d = [0.03, 0.06] self.volatility_2d = [0.02, 0.01] super(HJMBondOptionTest, self).setUp() def test_correctness_1d(self): """Tests model with constant parameters in 1 dimension.""" dtype = tf.float64 error_tol = 1e-2 discount_rate_fn = lambda x: 0.01 * tf.ones_like(x, dtype=dtype) expiries = np.array([1.0]) maturities = np.array([5.0]) strikes = np.exp(-0.01 * maturities) / np.exp(-0.01 * expiries) price = tff.models.hjm.bond_option_price( strikes=strikes, expiries=expiries, maturities=maturities, dim=1, mean_reversion=self.mean_reversion_1d, volatility=self.volatility_1d, discount_rate_fn=discount_rate_fn, num_samples=500000, time_step=0.1, random_type=tff.math.random.RandomType.STATELESS_ANTITHETIC, dtype=dtype, seed=[1, 2]) self.assertEqual(price.dtype, dtype) self.assertAllEqual(price.shape, [1, 1]) price = self.evaluate(price) self.assertAllClose(price, [[0.02817777]], rtol=error_tol, atol=error_tol) def test_correctness_time_dep_1d(self): """Tests model with piecewise constant volatility in 1 dimension.""" dtype = tf.float64 error_tol = 1e-2 discount_rate_fn = lambda x: 0.01 * tf.ones_like(x, dtype=dtype) expiries = np.array([1.0]) maturities = np.array([5.0]) strikes = np.exp(-0.01 * maturities) / np.exp(-0.01 * expiries) vol_piecewise_constant_fn = tff.math.piecewise.PiecewiseConstantFunc( jump_locations=[0.5], values=self.volatility_time_dep_1d, dtype=dtype) def piecewise_1d_volatility_fn(t, r_t): vol = vol_piecewise_constant_fn([t]) return tf.fill(dims=[r_t.shape[0], 1], value=vol) price = tff.models.hjm.bond_option_price( strikes=strikes, expiries=expiries, maturities=maturities, dim=1, mean_reversion=self.mean_reversion_1d, volatility=piecewise_1d_volatility_fn, discount_rate_fn=discount_rate_fn, num_samples=500000, time_step=0.05, random_type=tff.math.random.RandomType.STATELESS_ANTITHETIC, dtype=dtype, seed=[1, 2]) self.assertEqual(price.dtype, dtype) self.assertAllEqual(price.shape, [1, 1]) price = self.evaluate(price) self.assertAllClose(price, [[0.02237839]], rtol=error_tol, atol=error_tol) def test_1d_batch(self): """Tests model with 1d batch of options.""" dtype = tf.float64 error_tol = 1e-2 discount_rate_fn = lambda x: 0.01 * tf.ones_like(x, dtype=dtype) expiries = np.array([1.0, 1.0, 1.0]) maturities = np.array([5.0, 5.0, 5.0]) strikes = np.exp(-0.01 * maturities) / np.exp(-0.01 * expiries) price = tff.models.hjm.bond_option_price( strikes=strikes, expiries=expiries, maturities=maturities, dim=1, mean_reversion=self.mean_reversion_1d, volatility=self.volatility_1d, discount_rate_fn=discount_rate_fn, num_samples=500000, time_step=0.1, random_type=tff.math.random.RandomType.STATELESS_ANTITHETIC, dtype=dtype, seed=[1, 2]) self.assertEqual(price.dtype, dtype) self.assertAllEqual(price.shape, [3, 1]) price = self.evaluate(price) self.assertAllClose( price, [[0.02817777], [0.02817777], [0.02817777]], rtol=error_tol, atol=error_tol) def test_2d_batch(self): """Tests model with 2d batch of options.""" dtype = tf.float64 error_tol = 1e-2 discount_rate_fn = lambda x: 0.01 * tf.ones_like(x, dtype=dtype) expiries = np.array([[1.0, 1.0], [2.0, 2.0]]) maturities = np.array([[5.0, 5.0], [4.0, 4.0]]) strikes = np.exp(-0.01 * maturities) / np.exp(-0.01 * expiries) price = tff.models.hjm.bond_option_price( strikes=strikes, expiries=expiries, maturities=maturities, dim=1, mean_reversion=self.mean_reversion_1d, volatility=self.volatility_1d, discount_rate_fn=discount_rate_fn, num_samples=500000, time_step=0.1, random_type=tff.math.random.RandomType.STATELESS_ANTITHETIC, dtype=dtype, seed=[1, 2]) self.assertEqual(price.dtype, dtype) self.assertAllEqual(price.shape, [2, 2, 1]) price = self.evaluate(price) expected = [[[0.02817777], [0.02817777]], [[0.02042677], [0.02042677]]] self.assertAllClose(price, expected, rtol=error_tol, atol=error_tol) def test_correctness_2_factor(self): """Tests model with constant parameters with 2 factors.""" dtype = tf.float64 error_tol = 1e-3 discount_rate_fn = lambda x: 0.01 * tf.ones_like(x, dtype=dtype) expiries = np.array([1.0]) maturities = np.array([5.0]) strikes = np.exp(-0.01 * maturities) / np.exp(-0.01 * expiries) price = tff.models.hjm.bond_option_price( strikes=strikes, expiries=expiries, maturities=maturities, dim=2, mean_reversion=self.mean_reversion_2d, volatility=self.volatility_2d, discount_rate_fn=discount_rate_fn, num_samples=500000, time_step=0.1, random_type=tff.math.random.RandomType.STATELESS_ANTITHETIC, dtype=dtype, seed=[1, 2]) self.assertEqual(price.dtype, dtype) self.assertAllEqual(price.shape, [1, 1]) price = self.evaluate(price) self.assertAllClose(price, [[0.03111126]], rtol=error_tol, atol=error_tol) def test_correctness_2_factor_with_correlation(self): """Tests model with constant parameters with 2 correlated factors.""" dtype = tf.float64 error_tol = 1e-3 discount_rate_fn = lambda x: 0.01 * tf.ones_like(x, dtype=dtype) expiries = np.array([1.0]) maturities = np.array([5.0]) strikes = np.exp(-0.01 * maturities) / np.exp(-0.01 * expiries) price = tff.models.hjm.bond_option_price( strikes=strikes, expiries=expiries, maturities=maturities, dim=2, mean_reversion=self.mean_reversion_2d, volatility=self.volatility_2d, discount_rate_fn=discount_rate_fn, corr_matrix=[[1.0, 0.5], [0.5, 1.0]], num_samples=500000, time_step=0.1, random_type=tff.math.random.RandomType.STATELESS_ANTITHETIC, dtype=dtype, seed=[1, 2]) self.assertEqual(price.dtype, dtype) self.assertAllEqual(price.shape, [1, 1]) price = self.evaluate(price) self.assertAllClose(price, [[0.036809]], rtol=error_tol, atol=error_tol) def test_correctness_2_factor_hull_white_consistency(self): """Test that under certain conditions HJM matches analytic HW results. For the two factor model, when both mean reversions are equivalent, then the HJM model matches that of a HW one-factor model with the same mean reversion, and effective volatility: eff_vol = sqrt(vol1^2 + vol2^2 + 2 rho vol1 * vol2) where rho is the cross correlation between the two factors. """ dtype = tf.float64 error_tol = 1e-3 mu = 0.03 rho = 0.5 vol1 = 0.02 vol2 = 0.01 discount_rate_fn = lambda x: 0.01 * tf.ones_like(x, dtype=dtype) expiries = np.array([1.0]) maturities = np.array([5.0]) strikes = np.exp(-0.01 * maturities) / np.exp(-0.01 * expiries) hjm_price = tff.models.hjm.bond_option_price( strikes=strikes, expiries=expiries, maturities=maturities, dim=2, mean_reversion=[mu, mu], volatility=[vol1, vol2], discount_rate_fn=discount_rate_fn, corr_matrix=[[1.0, rho], [rho, 1.0]], num_samples=100000, time_step=0.05, random_type=tff.math.random.RandomType.STATELESS_ANTITHETIC, dtype=dtype, seed=[1, 2]) hjm_price = self.evaluate(hjm_price) hw_price = tff.models.hull_white.bond_option_price( strikes=strikes, expiries=expiries, maturities=maturities, dim=1, mean_reversion=[mu], volatility=[np.sqrt(vol1**2 + vol2**2 + 2.0 * rho * vol1 * vol2)], discount_rate_fn=discount_rate_fn, use_analytic_pricing=True, dtype=dtype) hw_price = self.evaluate(hw_price) self.assertAllClose(hjm_price, hw_price, rtol=error_tol, atol=error_tol) def test_mixed_1d_batch_2_factor(self): """Tests mixed 1d batch with constant parameters with 2 factors.""" dtype = tf.float64 error_tol = 1e-2 discount_rate_fn = lambda x: 0.01 * tf.ones_like(x, dtype=dtype) expiries = np.array([1.0, 1.0, 2.0]) maturities = np.array([5.0, 6.0, 4.0]) strikes = np.exp(-0.01 * maturities) / np.exp(-0.01 * expiries) price = tff.models.hjm.bond_option_price( strikes=strikes, expiries=expiries, maturities=maturities, dim=2, mean_reversion=self.mean_reversion_2d, volatility=self.volatility_2d, discount_rate_fn=discount_rate_fn, num_samples=500000, time_step=0.1, random_type=tff.math.random.RandomType.STATELESS_ANTITHETIC, dtype=dtype, seed=[1, 2]) self.assertEqual(price.dtype, dtype) self.assertAllEqual(price.shape, [3, 1]) price = self.evaluate(price) expected = [[0.03115176], [0.03789011], [0.02266191]] self.assertAllClose(price, expected, rtol=error_tol, atol=error_tol) def test_call_put(self): """Tests call and put pricing.""" dtype = tf.float64 error_tol = 1e-2 discount_rate_fn = lambda x: 0.01 * tf.ones_like(x, dtype=dtype) expiries = np.array([1.0, 1.0, 2.0]) maturities = np.array([5.0, 6.0, 4.0]) strikes = np.exp(-0.01 * maturities) / np.exp(-0.01 * expiries) - 0.01 price = tff.models.hjm.bond_option_price( strikes=strikes, expiries=expiries, maturities=maturities, is_call_options=[True, False, False], dim=2, mean_reversion=self.mean_reversion_2d, volatility=self.volatility_2d, discount_rate_fn=discount_rate_fn, num_samples=500000, time_step=0.1, random_type=tff.math.random.RandomType.STATELESS_ANTITHETIC, dtype=dtype, seed=[1, 2]) self.assertEqual(price.dtype, dtype) self.assertAllEqual(price.shape, [3, 1]) price = self.evaluate(price) expected = [[0.03620415], [0.03279728], [0.01784987]] self.assertAllClose(price, expected, rtol=error_tol, atol=error_tol) if __name__ == '__main__': tf.test.main() ``` #### File: models/hjm/zero_coupon_bond_option_util.py ```python import tensorflow.compat.v2 as tf from tf_quant_finance.models import utils def options_price_from_samples(strikes, expiries, maturities, is_call_options, sample_discount_curve_paths_fn, num_samples, time_step, dtype=None): """Computes the zero coupon bond options price from simulated discount curves. Args: strikes: A real `Tensor` of any shape and dtype. The strike price of the options. The shape of this input determines the number (and shape) of the options to be priced and the output. expiries: A real `Tensor` of the same dtype and compatible shape as `strikes`. The time to expiry of each bond option. maturities: A real `Tensor` of the same dtype and compatible shape as `strikes`. The time to maturity of the underlying zero coupon bonds. is_call_options: A boolean `Tensor` of a shape compatible with `strikes`. Indicates whether the option is a call (if True) or a put (if False). sample_discount_curve_paths_fn: Callable which takes the following args: 1) times: Rank 1 `Tensor` of positive real values, specifying the times at which the path points are to be evaluated. 2) curve_times: Rank 1 `Tensor` of positive real values, specifying the maturities at which the discount curve is to be computed at each simulation time. 3) num_samples: Positive scalar integer specifying the number of paths to draw. and returns two `Tensor`s, the first being a Rank-4 tensor of shape [num_samples, m, k, d] containing the simulated zero coupon bond curves, and the second being a `Tensor` of shape [num_samples, k, d] containing the simulated short rate paths. Here, m is the size of `curve_times`, k is the size of `times`, and d is the dimensionality of the paths. num_samples: Positive scalar `int32` `Tensor`. The number of simulation paths during Monte-Carlo valuation. time_step: Scalar real `Tensor`. Maximal distance between time grid points in Euler scheme. Relevant when Euler scheme is used for simulation. dtype: The default dtype to use when converting values to `Tensor`s. Default value: `None` which means that default dtypes inferred by TensorFlow are used. Returns: A `Tensor` of real dtype and shape `strikes.shape + [dim]` containing the computed option prices. """ sim_times, _ = tf.unique(tf.reshape(expiries, shape=[-1])) longest_expiry = tf.reduce_max(sim_times) sim_times, _ = tf.unique( tf.concat( [sim_times, tf.range(time_step, longest_expiry, time_step)], axis=0)) sim_times = tf.sort(sim_times, name='sort_sim_times') tau = maturities - expiries curve_times_builder, _ = tf.unique(tf.reshape(tau, shape=[-1])) curve_times = tf.sort(curve_times_builder, name='sort_curve_times') p_t_tau, r_t = sample_discount_curve_paths_fn( times=sim_times, curve_times=curve_times, num_samples=num_samples) dim = p_t_tau.shape[-1] dt_builder = tf.concat( axis=0, values=[ tf.convert_to_tensor([0.0], dtype=dtype), sim_times[1:] - sim_times[:-1] ]) dt = tf.expand_dims(tf.expand_dims(dt_builder, axis=-1), axis=0) discount_factors_builder = tf.math.exp(-r_t * dt) # Transpose before (and after) because we want the cumprod along axis=1 # and `matvec` operates on the last axis. The shape before and after would # be `(num_samples, len(times), dim)` discount_factors_builder = tf.transpose( utils.cumprod_using_matvec( tf.transpose(discount_factors_builder, [0, 2, 1])), [0, 2, 1]) # make discount factors the same shape as `p_t_tau`. This involves adding # an extra dimenstion (corresponding to `curve_times`). discount_factors_builder = tf.expand_dims(discount_factors_builder, axis=1) discount_factors_simulated = tf.repeat( discount_factors_builder, p_t_tau.shape.as_list()[1], axis=1) # `sim_times` and `curve_times` are sorted for simulation. We need to # select the indices corresponding to our input. sim_time_index = tf.searchsorted(sim_times, tf.reshape(expiries, [-1])) curve_time_index = tf.searchsorted(curve_times, tf.reshape(tau, [-1])) gather_index = _prepare_indices( tf.range(0, num_samples), curve_time_index, sim_time_index, tf.range(0, dim)) # The shape after `gather_nd` would be (num_samples*num_strikes*dim,) payoff_discount_factors_builder = tf.gather_nd(discount_factors_simulated, gather_index) # Reshape to `[num_samples] + strikes.shape + [dim]` payoff_discount_factors = tf.reshape(payoff_discount_factors_builder, [num_samples] + strikes.shape + [dim]) payoff_bond_price_builder = tf.gather_nd(p_t_tau, gather_index) payoff_bond_price = tf.reshape(payoff_bond_price_builder, [num_samples] + strikes.shape + [dim]) is_call_options = tf.reshape( tf.broadcast_to(is_call_options, strikes.shape), [1] + strikes.shape + [1]) strikes = tf.reshape(strikes, [1] + strikes.shape + [1]) payoff = tf.where(is_call_options, tf.math.maximum(payoff_bond_price - strikes, 0.0), tf.math.maximum(strikes - payoff_bond_price, 0.0)) option_value = tf.math.reduce_mean(payoff_discount_factors * payoff, axis=0) return option_value def _prepare_indices(idx0, idx1, idx2, idx3): """Prepare indices to get relevant slice from discount curve simulations.""" len0 = idx0.shape.as_list()[0] len1 = idx1.shape.as_list()[0] len3 = idx3.shape.as_list()[0] idx0 = tf.repeat(idx0, len1 * len3) idx1 = tf.tile(tf.repeat(idx1, len3), [len0]) idx2 = tf.tile(tf.repeat(idx2, len3), [len0]) idx3 = tf.tile(idx3, [len0 * len1]) return tf.stack([idx0, idx1, idx2, idx3], axis=-1) ``` #### File: tf_quant_finance/models/ito_process.py ```python import abc import six @six.add_metaclass(abc.ABCMeta) class ItoProcess(object): """Interface for specifying Ito processes. Interface for defining stochastic process defined by the Ito SDE: ```None dX_i = a_i(t, X) dt + Sum(S_{ij}(t, X) dW_j for 1 <= j <= n), 1 <= i <= n ``` The vector coefficient `a_i` is referred to as the drift of the process and the matrix `S_{ij}` as the volatility of the process. For the process to be well defined, these coefficients need to satisfy certain technical conditions which may be found in Ref. [1]. The vector `dW_j` represents independent Brownian increments. For a simple and instructive example of the implementation of this interface, see `models.GenericItoProcess`. #### References [1]: <NAME>. Stochastic Differential Equations: An Introduction with Applications. Springer. 2010. """ @abc.abstractmethod def name(self): """The name to give to ops created by this class.""" pass @abc.abstractmethod def dim(self): """The dimension of the process. A positive python integer.""" pass @abc.abstractmethod def dtype(self): """The data type of process realizations.""" pass @abc.abstractmethod def drift_fn(self): """Python callable calculating instantaneous drift. The callable should accept two real `Tensor` arguments of the same dtype. The first argument is the scalar time t, the second argument is the value of Ito process X as a tensor of shape `batch_shape + [dim]`. The result is value of drift a(t, X). The return value of the callable is a real `Tensor` of the same dtype as the input arguments and of shape `batch_shape + [dim]`. """ pass @abc.abstractmethod def volatility_fn(self): """Python callable calculating the instantaneous volatility matrix. The callable should accept two real `Tensor` arguments of the same dtype. The first argument is the scalar time t and the second argument is the value of Ito process X as a tensor of shape `batch_shape + [dim]`. The result is the instantaneous volatility matrix at time t and location X: S(t, X). The return value of the callable is a real `Tensor` of the same dtype as the input arguments and of shape `batch_shape + [dim, dim]`. """ pass @abc.abstractmethod def sample_paths(self, times, num_samples=1, initial_state=None, random_type=None, seed=None, **kwargs): """Returns a sample of paths from the process. Args: times: Rank 1 `Tensor` of increasing positive real values. The times at which the path points are to be evaluated. num_samples: Positive scalar `int`. The number of paths to draw. initial_state: `Tensor` of shape `[dim]`. The initial state of the process. Default value: None which maps to a zero initial state. random_type: Enum value of `RandomType`. The type of (quasi)-random number generator to use to generate the paths. Default value: None which maps to the standard pseudo-random numbers. seed: Seed for the random number generator. The seed is only relevant if `random_type` is one of `[STATELESS, PSEUDO, HALTON_RANDOMIZED, PSEUDO_ANTITHETIC, STATELESS_ANTITHETIC]`. For `PSEUDO`, `PSEUDO_ANTITHETIC` and `HALTON_RANDOMIZED` the seed should be an Python integer. For `STATELESS` and `STATELESS_ANTITHETIC `must be supplied as an integer `Tensor` of shape `[2]`. Default value: `None` which means no seed is set. **kwargs: Any other keyword args needed by an implementation. Returns: A real `Tensor` of shape [num_samples, k, n] where `k` is the size of the `times`, `n` is the dimension of the process. """ pass @abc.abstractmethod def fd_solver_backward(self, start_time, end_time, coord_grid, values_grid, discounting=None, one_step_fn=None, boundary_conditions=None, start_step_count=0, num_steps=None, time_step=None, values_transform_fn=None, dtype=None, **kwargs): """Returns a solver for Feynman-Kac PDE associated to the process. This method applies a finite difference method to solve the final value problem as it appears in the Feynman-Kac formula associated to this Ito process. The Feynman-Kac PDE is closely related to the backward Kolomogorov equation associated to the stochastic process and allows for the inclusion of a discounting function. For more details of the Feynman-Kac theorem see [1]. The PDE solved by this method is: ```None V_t + Sum[mu_i(t, x) V_i, 1<=i<=n] + (1/2) Sum[ D_{ij} V_{ij}, 1 <= i,j <= n] - r(t, x) V = 0 ``` In the above, `V_t` is the derivative of `V` with respect to `t`, `V_i` is the partial derivative with respect to `x_i` and `V_{ij}` the (mixed) partial derivative with respect to `x_i` and `x_j`. `mu_i` is the drift of this process and `D_{ij}` are the components of the diffusion tensor: ```None D_{ij}(t,x) = (Sigma(t,x) . Transpose[Sigma(t,x)])_{ij} ``` This method evolves a spatially discretized solution of the above PDE from time `t0` to time `t1 < t0` (i.e. backwards in time). The solution `V(t,x)` is assumed to be discretized on an `n`-dimensional rectangular grid. A rectangular grid, G, in n-dimensions may be described by specifying the coordinates of the points along each axis. For example, a 2 x 4 grid in two dimensions can be specified by taking the cartesian product of [1, 3] and [5, 6, 7, 8] to yield the grid points with coordinates: `[(1, 5), (1, 6), (1, 7), (1, 8), (3, 5) ... (3, 8)]`. This method allows batching of solutions. In this context, batching means the ability to represent and evolve multiple independent functions `V` (e.g. V1, V2 ...) simultaneously. A single discretized solution is specified by stating its values at each grid point. This can be represented as a `Tensor` of shape [d1, d2, ... dn] where di is the grid size along the `i`th axis. A batch of such solutions is represented by a `Tensor` of shape: [K, d1, d2, ... dn] where `K` is the batch size. This method only requires that the input parameter `values_grid` be broadcastable with shape [K, d1, ... dn]. The evolution of the solution from `t0` to `t1` is often done by discretizing the differential equation to a difference equation along the spatial and temporal axes. The temporal discretization is given by a (sequence of) time steps [dt_1, dt_2, ... dt_k] such that the sum of the time steps is equal to the total time step `t0 - t1`. If a uniform time step is used, it may equivalently be specified by stating the number of steps (n_steps) to take. This method provides both options via the `time_step` and `num_steps` parameters. However, not all methods need discretization along time direction (e.g. method of lines) so this argument may not be applicable to some implementations. The workhorse of this method is the `one_step_fn`. For the commonly used methods, see functions in `math.pde.steppers` module. The mapping between the arguments of this method and the above equation are described in the Args section below. For a simple instructive example of implementation of this method, see `models.GenericItoProcess.fd_solver_backward`. TODO(b/142309558): Complete documentation. Args: start_time: Real positive scalar `Tensor`. The start time of the grid. Corresponds to time `t0` above. end_time: Real scalar `Tensor` smaller than the `start_time` and greater than zero. The time to step back to. Corresponds to time `t1` above. coord_grid: List of `n` rank 1 real `Tensor`s. `n` is the dimension of the domain. The i-th `Tensor` has shape, `[d_i]` where `d_i` is the size of the grid along axis `i`. The coordinates of the grid points. Corresponds to the spatial grid `G` above. values_grid: Real `Tensor` containing the function values at time `start_time` which have to be stepped back to time `end_time`. The shape of the `Tensor` must broadcast with `[K, d_1, d_2, ..., d_n]`. The first axis of size `K` is the values batch dimension and allows multiple functions (with potentially different boundary/final conditions) to be stepped back simultaneously. discounting: Callable corresponding to `r(t,x)` above. If not supplied, zero discounting is assumed. one_step_fn: The transition kernel. A callable that consumes the following arguments by keyword: 1. 'time': Current time 2. 'next_time': The next time to step to. For the backwards in time evolution, this time will be smaller than the current time. 3. 'coord_grid': The coordinate grid. 4. 'values_grid': The values grid. 5. 'boundary_conditions': The boundary conditions. 6. 'quadratic_coeff': A callable returning the quadratic coefficients of the PDE (i.e. `(1/2)D_{ij}(t, x)` above). The callable accepts the time and coordinate grid as keyword arguments and returns a `Tensor` with shape that broadcasts with `[dim, dim]`. 7. 'linear_coeff': A callable returning the linear coefficients of the PDE (i.e. `mu_i(t, x)` above). Accepts time and coordinate grid as keyword arguments and returns a `Tensor` with shape that broadcasts with `[dim]`. 8. 'constant_coeff': A callable returning the coefficient of the linear homogenous term (i.e. `r(t,x)` above). Same spec as above. The `one_step_fn` callable returns a 2-tuple containing the next coordinate grid, next values grid. boundary_conditions: A list of size `dim` containing boundary conditions. The i'th element of the list is a 2-tuple containing the lower and upper boundary condition for the boundary along the i`th axis. start_step_count: Scalar integer `Tensor`. Initial value for the number of time steps performed. Default value: 0 (i.e. no previous steps performed). num_steps: Positive int scalar `Tensor`. The number of time steps to take when moving from `start_time` to `end_time`. Either this argument or the `time_step` argument must be supplied (but not both). If num steps is `k>=1`, uniform time steps of size `(t0 - t1)/k` are taken to evolve the solution from `t0` to `t1`. Corresponds to the `n_steps` parameter above. time_step: The time step to take. Either this argument or the `num_steps` argument must be supplied (but not both). The type of this argument may be one of the following (in order of generality): (a) None in which case `num_steps` must be supplied. (b) A positive real scalar `Tensor`. The maximum time step to take. If the value of this argument is `dt`, then the total number of steps taken is N = (t0 - t1) / dt rounded up to the nearest integer. The first N-1 steps are of size dt and the last step is of size `t0 - t1 - (N-1) * dt`. (c) A callable accepting the current time and returning the size of the step to take. The input and the output are real scalar `Tensor`s. values_transform_fn: An optional callable applied to transform the solution values at each time step. The callable is invoked after the time step has been performed. The callable should accept the time of the grid, the coordinate grid and the values grid and should return the values grid. All input arguments to be passed by keyword. dtype: The dtype to use. **kwargs: Any other keyword args needed by an implementation. Returns: A tuple object containing at least the following attributes: final_values_grid: A `Tensor` of same shape and dtype as `values_grid`. Contains the final state of the values grid at time `end_time`. final_coord_grid: A list of `Tensor`s of the same specification as the input `coord_grid`. Final state of the coordinate grid at time `end_time`. step_count: The total step count (i.e. the sum of the `start_step_count` and the number of steps performed in this call.). final_time: The final time at which the evolution stopped. This value is given by `max(min(end_time, start_time), 0)`. """ pass def fd_solver_forward(self, start_time, end_time, coord_grid, values_grid, one_step_fn=None, boundary_conditions=None, start_step_count=0, num_steps=None, time_step=None, values_transform_fn=None, dtype=None, **kwargs): r"""Returns a solver for the Fokker Plank equation of this process. The Fokker Plank equation (also known as the Kolmogorov Forward equation) associated to this Ito process is given by: ```None V_t + Sum[(mu_i(t, x) V)_i, 1<=i<=n] - (1/2) Sum[ (D_{ij} V)_{ij}, 1 <= i,j <= n] = 0 ``` with the initial value condition $$V(0, x) = u(x)$$. This method evolves a spatially discretized solution of the above PDE from time `t0` to time `t1 > t0` (i.e. forwards in time). The solution `V(t,x)` is assumed to be discretized on an `n`-dimensional rectangular grid. A rectangular grid, G, in n-dimensions may be described by specifying the coordinates of the points along each axis. For example, a 2 x 4 grid in two dimensions can be specified by taking the cartesian product of [1, 3] and [5, 6, 7, 8] to yield the grid points with coordinates: `[(1, 5), (1, 6), (1, 7), (1, 8), (3, 5) ... (3, 8)]`. Batching of solutions is supported. In this context, batching means the ability to represent and evolve multiple independent functions `V` (e.g. V1, V2 ...) simultaneously. A single discretized solution is specified by stating its values at each grid point. This can be represented as a `Tensor` of shape [d1, d2, ... dn] where di is the grid size along the `i`th axis. A batch of such solutions is represented by a `Tensor` of shape: [K, d1, d2, ... dn] where `K` is the batch size. This method only requires that the input parameter `values_grid` be broadcastable with shape [K, d1, ... dn]. The evolution of the solution from `t0` to `t1` is often done by discretizing the differential equation to a difference equation along the spatial and temporal axes. The temporal discretization is given by a (sequence of) time steps [dt_1, dt_2, ... dt_k] such that the sum of the time steps is equal to the total time step `t1 - t0`. If a uniform time step is used, it may equivalently be specified by stating the number of steps (n_steps) to take. This method provides both options via the `time_step` and `num_steps` parameters. However, not all methods need discretization along time direction (e.g. method of lines) so this argument may not be applicable to some implementations. The workhorse of this method is the `one_step_fn`. For the commonly used methods, see functions in `math.pde.steppers` module. The mapping between the arguments of this method and the above equation are described in the Args section below. For a simple instructive example of implementation of this method, see `models.GenericItoProcess.fd_solver_forward`. TODO(b/142309558): Complete documentation. Args: start_time: Real positive scalar `Tensor`. The start time of the grid. Corresponds to time `t0` above. end_time: Real scalar `Tensor` smaller than the `start_time` and greater than zero. The time to step back to. Corresponds to time `t1` above. coord_grid: List of `n` rank 1 real `Tensor`s. `n` is the dimension of the domain. The i-th `Tensor` has shape, `[d_i]` where `d_i` is the size of the grid along axis `i`. The coordinates of the grid points. Corresponds to the spatial grid `G` above. values_grid: Real `Tensor` containing the function values at time `start_time` which have to be stepped back to time `end_time`. The shape of the `Tensor` must broadcast with `[K, d_1, d_2, ..., d_n]`. The first axis of size `K` is the values batch dimension and allows multiple functions (with potentially different boundary/final conditions) to be stepped back simultaneously. one_step_fn: The transition kernel. A callable that consumes the following arguments by keyword: 1. 'time': Current time 2. 'next_time': The next time to step to. For the backwards in time evolution, this time will be smaller than the current time. 3. 'coord_grid': The coordinate grid. 4. 'values_grid': The values grid. 5. 'quadratic_coeff': A callable returning the quadratic coefficients of the PDE (i.e. `(1/2)D_{ij}(t, x)` above). The callable accepts the time and coordinate grid as keyword arguments and returns a `Tensor` with shape that broadcasts with `[dim, dim]`. 6. 'linear_coeff': A callable returning the linear coefficients of the PDE (i.e. `mu_i(t, x)` above). Accepts time and coordinate grid as keyword arguments and returns a `Tensor` with shape that broadcasts with `[dim]`. 7. 'constant_coeff': A callable returning the coefficient of the linear homogenous term (i.e. `r(t,x)` above). Same spec as above. The `one_step_fn` callable returns a 2-tuple containing the next coordinate grid, next values grid. boundary_conditions: A list of size `dim` containing boundary conditions. The i'th element of the list is a 2-tuple containing the lower and upper boundary condition for the boundary along the i`th axis. start_step_count: Scalar integer `Tensor`. Initial value for the number of time steps performed. Default value: 0 (i.e. no previous steps performed). num_steps: Positive int scalar `Tensor`. The number of time steps to take when moving from `start_time` to `end_time`. Either this argument or the `time_step` argument must be supplied (but not both). If num steps is `k>=1`, uniform time steps of size `(t0 - t1)/k` are taken to evolve the solution from `t0` to `t1`. Corresponds to the `n_steps` parameter above. time_step: The time step to take. Either this argument or the `num_steps` argument must be supplied (but not both). The type of this argument may be one of the following (in order of generality): (a) None in which case `num_steps` must be supplied. (b) A positive real scalar `Tensor`. The maximum time step to take. If the value of this argument is `dt`, then the total number of steps taken is N = (t1 - t0) / dt rounded up to the nearest integer. The first N-1 steps are of size dt and the last step is of size `t1 - t0 - (N-1) * dt`. (c) A callable accepting the current time and returning the size of the step to take. The input and the output are real scalar `Tensor`s. values_transform_fn: An optional callable applied to transform the solution values at each time step. The callable is invoked after the time step has been performed. The callable should accept the time of the grid, the coordinate grid and the values grid and should return the values grid. All input arguments to be passed by keyword. dtype: The dtype to use. **kwargs: Any other keyword args needed by an implementation. Returns: A tuple object containing at least the following attributes: final_values_grid: A `Tensor` of same shape and dtype as `values_grid`. Contains the final state of the values grid at time `end_time`. final_coord_grid: A list of `Tensor`s of the same specification as the input `coord_grid`. Final state of the coordinate grid at time `end_time`. step_count: The total step count (i.e. the sum of the `start_step_count` and the number of steps performed in this call.). final_time: The final time at which the evolution stopped. This value is given by `max(min(end_time, start_time), 0)`. """ pass ```
{ "source": "jeorryb/30daysofcode", "score": 4 }
#### File: 30daysofcode/01_Word_Value_P1/wordvalue.py ```python from data import DICTIONARY, LETTER_SCORES def load_words(dictfile=DICTIONARY): """Load dictionary into a list and return list""" try: with open(dictfile) as f: websters = f.readlines() websters = [x.strip() for x in websters] return websters except TypeError: return dictfile def calc_word_value(word, score=0): """Calculate the value of the word entered into function using imported constant mapping LETTER_SCORES""" for w in word: if not w.isalpha(): continue score += LETTER_SCORES[w.upper()] return score def max_word_value(wordlist=DICTIONARY): """Calculate the word with the max value, can receive a list of words as arg, if none provided uses default DICTIONARY""" wordscores = [] websters = load_words(dictfile=wordlist) for word in websters: score = calc_word_value(word) entry = (word, score) wordscores.append(entry) wordscores = sorted(wordscores, key=lambda x: x[1], reverse=True) return wordscores[0][0] if __name__ == "__main__": pass # run unittests to validate ``` #### File: 30daysofcode/02_Word_Value_P2/game_help.py ```python import itertools import random from data import DICTIONARY, LETTER_SCORES, POUCH NUM_LETTERS = 7 def draw_letters(): """Pick NUM_LETTERS letters randomly. Hint: use stdlib random""" draw = random.sample(POUCH, NUM_LETTERS) return draw def input_word(draw): """Ask player for a word and validate against draw. Use _validation(word, draw) helper.""" word = input("Enter your word: ") if _validation(word, draw): return word def _validation(word, draw): """Validations: 1) only use letters of draw, 2) valid dictionary word""" for w in word.upper(): if w not in draw: print(f'Letter {w} not in draw') return False break elif draw.count(w) < word.upper().count(w): print(f'Letter {w} used too many times') return False break else: continue return True # From challenge 01: def calc_word_value(word): """Calc a given word value based on Scrabble LETTER_SCORES mapping""" return sum(LETTER_SCORES.get(char.upper(), 0) for char in word) # Below 2 functions pass through the same 'draw' argument (smell?). # Maybe you want to abstract this into a class? # get_possible_dict_words and _get_permutations_draw would be instance methods. # 'draw' would be set in the class constructor (__init__). def get_possible_dict_words(draw): """Get all possible words from draw which are valid dictionary words. Use the _get_permutations_draw helper and DICTIONARY constant""" words = [] permuts = _get_permutations_draw(draw) for p in permuts: if p.lower() in DICTIONARY: words.append(p) return words def _get_permutations_draw(draw): """Helper for get_possible_dict_words to get all permutations of draw letters. Hint: use itertools.permutations""" permuts = list(''.join(h) for h in (x for l in range(1, 8) for x in itertools.permutations(draw, l))) return permuts # From challenge 01: def max_word_value(words): """Calc the max value of a collection of words""" return max(words, key=calc_word_value) def main(): """Main game interface calling the previously defined methods""" draw = draw_letters() print('Letters drawn: {}'.format(', '.join(draw))) word = input_word(draw) word_score = calc_word_value(word) print('Word chosen: {} (value: {})'.format(word, word_score)) possible_words = get_possible_dict_words(draw) max_word = max_word_value(possible_words) max_word_score = calc_word_value(max_word) print('Optimal word possible: {} (value: {})'.format( max_word, max_word_score)) game_score = word_score / max_word_score * 100 print('You scored: {:.1f}'.format(game_score)) if __name__ == "__main__": main() ``` #### File: 30daysofcode/03_Twitter_Analysis_P1/usertweets-help.py ```python from collections import namedtuple import csv import os import tweepy from config import CONSUMER_KEY, CONSUMER_SECRET from config import ACCESS_TOKEN, ACCESS_SECRET DEST_DIR = 'data' EXT = 'csv' NUM_TWEETS = 100 Tweet = namedtuple('Tweet', 'id_str created_at text') class UserTweets(object): def __init__(self, handle, max_id=None): """Get handle and optional max_id. Use tweepy.OAuthHandler, set_access_token and tweepy.API to create api interface. Use _get_tweets() helper to get a list of tweets. Save the tweets as data/<handle>.csv""" # ... self._tweets = list(self._get_tweets()) self._save_tweets() def _get_tweets(self): """Hint: use the user_timeline() method on the api you defined in init. See tweepy API reference: http://docs.tweepy.org/en/v3.5.0/api.html Use a list comprehension / generator to filter out fields id_str created_at text (optionally use namedtuple)""" pass def _save_tweets(self): """Use the csv module (csv.writer) to write out the tweets. If you use a namedtuple get the column names with Tweet._fields. Otherwise define them as: id_str created_at text You can use writerow for the header, writerows for the rows""" pass def __len__(self): """See http://pybit.es/python-data-model.html""" pass def __getitem__(self, pos): """See http://pybit.es/python-data-model.html""" pass if __name__ == "__main__": for handle in ('pybites', 'techmoneykids', 'bbelderbos'): print('--- {} ---'.format(handle)) user = UserTweets(handle) for tw in user[:5]: print(tw) print() ```
{ "source": "jeorryb/datarambler", "score": 3 }
#### File: plugins/interlinks/interlinks.py ```python ๏ปฟ# -*- coding: utf-8 -*- """ Interlinks ========================= This plugin allows you to include "interwiki" or shortcuts links into the blog, as keyword>rest_of_url """ from bs4 import BeautifulSoup from bs4 import SoupStrainer from pelican import signals import re interlinks = {} def getSettings (generator): global interlinks interlinks = {'this': generator.settings['SITEURL']+"/"} if 'INTERLINKS' in generator.settings: for key, value in generator.settings['INTERLINKS'].items(): interlinks[key] = value def parse_links(instance): if instance._content is not None: content = instance._content if '<a' in content: text = BeautifulSoup(content, "html.parser", parse_only=SoupStrainer("a")) for link in text.find_all("a",href=re.compile("(.+?)>")): old_tag = str(link) url = link.get('href') m = re.search(r"(.+?)>", url).groups() name = m[0] if name in interlinks: hi = url.replace(name + ">", interlinks[name]) link['href'] = hi content = content.replace(old_tag, str(link)) if '<img' in content: text = BeautifulSoup(content, "html.parser", parse_only=SoupStrainer("img")) for img in text.find_all('img', src=re.compile("(.+?)>")): old_tag = str(img) url = img.get('src') m = re.search(r"(.+?)>", url).groups() name = m[0] if name in interlinks: hi = url.replace(name+">",interlinks[name]) img['src'] = hi content = content.replace(old_tag, str(link)) instance._content = content def register(): signals.generator_init.connect(getSettings) signals.content_object_init.connect(parse_links) ``` #### File: plugins/render_math/pelican_mathjax_markdown_extension.py ```python import markdown from markdown.util import etree from markdown.util import AtomicString class PelicanMathJaxPattern(markdown.inlinepatterns.Pattern): """Inline markdown processing that matches mathjax""" def __init__(self, pelican_mathjax_extension, tag, pattern): super(PelicanMathJaxPattern,self).__init__(pattern) self.math_tag_class = pelican_mathjax_extension.getConfig('math_tag_class') self.pelican_mathjax_extension = pelican_mathjax_extension self.tag = tag def handleMatch(self, m): node = markdown.util.etree.Element(self.tag) node.set('class', self.math_tag_class) prefix = '\\(' if m.group('prefix') == '$' else m.group('prefix') suffix = '\\)' if m.group('suffix') == '$' else m.group('suffix') node.text = markdown.util.AtomicString(prefix + m.group('math') + suffix) # If mathjax was successfully matched, then JavaScript needs to be added # for rendering. The boolean below indicates this self.pelican_mathjax_extension.mathjax_needed = True return node class PelicanMathJaxCorrectDisplayMath(markdown.treeprocessors.Treeprocessor): """Corrects invalid html that results from a <div> being put inside a <p> for displayed math""" def __init__(self, pelican_mathjax_extension): self.pelican_mathjax_extension = pelican_mathjax_extension def correct_html(self, root, children, div_math, insert_idx, text): """Separates out <div class="math"> from the parent tag <p>. Anything in between is put into its own parent tag of <p>""" current_idx = 0 for idx in div_math: el = markdown.util.etree.Element('p') el.text = text el.extend(children[current_idx:idx]) # Test to ensure that empty <p> is not inserted if len(el) != 0 or (el.text and not el.text.isspace()): root.insert(insert_idx, el) insert_idx += 1 text = children[idx].tail children[idx].tail = None root.insert(insert_idx, children[idx]) insert_idx += 1 current_idx = idx+1 el = markdown.util.etree.Element('p') el.text = text el.extend(children[current_idx:]) if len(el) != 0 or (el.text and not el.text.isspace()): root.insert(insert_idx, el) def run(self, root): """Searches for <div class="math"> that are children in <p> tags and corrects the invalid HTML that results""" math_tag_class = self.pelican_mathjax_extension.getConfig('math_tag_class') for parent in root: div_math = [] children = list(parent) for div in parent.findall('div'): if div.get('class') == math_tag_class: div_math.append(children.index(div)) # Do not process further if no displayed math has been found if not div_math: continue insert_idx = list(root).index(parent) self.correct_html(root, children, div_math, insert_idx, parent.text) root.remove(parent) # Parent must be removed last for correct insertion index return root class PelicanMathJaxAddJavaScript(markdown.treeprocessors.Treeprocessor): """Tree Processor for adding Mathjax JavaScript to the blog""" def __init__(self, pelican_mathjax_extension): self.pelican_mathjax_extension = pelican_mathjax_extension def run(self, root): # If no mathjax was present, then exit if (not self.pelican_mathjax_extension.mathjax_needed): return root # Add the mathjax script to the html document mathjax_script = etree.Element('script') mathjax_script.set('type','text/javascript') mathjax_script.text = AtomicString(self.pelican_mathjax_extension.getConfig('mathjax_script')) root.append(mathjax_script) # Reset the boolean switch to false so that script is only added # to other pages if needed self.pelican_mathjax_extension.mathjax_needed = False return root class PelicanMathJaxExtension(markdown.Extension): """A markdown extension enabling mathjax processing in Markdown for Pelican""" def __init__(self, config): try: # Needed for markdown versions >= 2.5 self.config['mathjax_script'] = ['', 'Mathjax JavaScript script'] self.config['math_tag_class'] = ['math', 'The class of the tag in which mathematics is wrapped'] self.config['auto_insert'] = [True, 'Determines if mathjax script is automatically inserted into content'] super(PelicanMathJaxExtension,self).__init__(**config) except AttributeError: # Markdown versions < 2.5 config['mathjax_script'] = [config['mathjax_script'], 'Mathjax JavaScript script'] config['math_tag_class'] = [config['math_tag_class'], 'The class of the tag in which mathematic is wrapped'] config['auto_insert'] = [config['auto_insert'], 'Determines if mathjax script is automatically inserted into content'] super(PelicanMathJaxExtension,self).__init__(config) # Used as a flag to determine if javascript # needs to be injected into a document self.mathjax_needed = False def extendMarkdown(self, md, md_globals): # Regex to detect mathjax mathjax_inline_regex = r'(?P<prefix>\$)(?P<math>.+?)(?P<suffix>(?<!\s)\2)' mathjax_display_regex = r'(?P<prefix>\$\$|\\begin\{(.+?)\})(?P<math>.+?)(?P<suffix>\2|\\end\{\3\})' # Process mathjax before escapes are processed since escape processing will # intefer with mathjax. The order in which the displayed and inlined math # is registered below matters md.inlinePatterns.add('mathjax_displayed', PelicanMathJaxPattern(self, 'div', mathjax_display_regex), '<escape') md.inlinePatterns.add('mathjax_inlined', PelicanMathJaxPattern(self, 'span', mathjax_inline_regex), '<escape') # Correct the invalid HTML that results from teh displayed math (<div> tag within a <p> tag) md.treeprocessors.add('mathjax_correctdisplayedmath', PelicanMathJaxCorrectDisplayMath(self), '>inline') # If necessary, add the JavaScript Mathjax library to the document. This must # be last in the ordered dict (hence it is given the position '_end') if self.getConfig('auto_insert'): md.treeprocessors.add('mathjax_addjavascript', PelicanMathJaxAddJavaScript(self), '_end') ```
{ "source": "jeorryb/pyasan", "score": 3 }
#### File: pyasan/pyasan/patents.py ```python from . import helpers import pprint class Patents(object): def __init__(self, url=helpers.get_url('PATENT'), params=None, **kwargs): self.url = url self.params = params def req(self): self.response = helpers.api_get(self.url, self.params) return self.response def __str__(self): return pprint.pformat(self.req()) def get(query=None, patent_num=None, center=None, patent_exp=None, case_num=None, title=None, app_sn=None, status=None, **kwargs): params = {'$q': query, 'patent_number': patent_num, 'center': center, 'case_number': case_num, 'title': title, 'application_sn': app_sn, 'status': status} pat = Patents(params=params) return pat.req() ``` #### File: pyasan/tests/test_patents.py ```python from pyasan import patents, Patents import vcr from pytest import fixture @fixture def patent_keys(): #Responsible only for returning the test data. return ['patent_number', 'center', 'patent_expiration_date', 'case_number', 'title', 'application_sn', 'status'] @vcr.use_cassette('tests/vcr_cassettes/Patent_req.yml') def test_Patent_req_successful(patent_keys): """Tests and API call to return a patent from the NASA API""" patent_params = {'$q': 'fuel'} p = Patents(params=patent_params) test_query = p.req() assert isinstance(test_query[1], dict) assert set(patent_keys).issubset(test_query[1].keys()), 'All keys should be in the response' assert 'fuel' in test_query[1]['title'].lower(), 'Query should be in the title' @vcr.use_cassette('tests/vcr_cassettes/Patent_req.yml') def test_patent_get_successful(patent_keys): """Tests get call to query patent database from NASA API""" test_get = patents.get(query='fuel') assert isinstance(test_get[1], dict) assert set(patent_keys).issubset(test_get[1].keys()), 'All keys should be in the response' assert 'fuel' in test_get[1]['title'].lower(), 'Query should be in the title' ```
{ "source": "jeosol/bazelisp", "score": 2 }
#### File: jeosol/bazelisp/provider.bzl ```python LispInfo = provider( doc = "Information about a lisp_* target and its transitive dependencies.", fields = { "fasls": "Depset of FASLs for transitive dependencies", "srcs": "Depset of transitive sources", "hashes": "Depset of md5 hash files for transitive sources", "warnings": ( "Depset of files of warnings checked at link time (FASL load) " + "for transitive sources" ), "features": "Depset of transitive declared Lisp features", "compile_data": ( "Depset of files from transitive compile_data, made available " + "at build time as well as runtime." ), "cc_info": "CcInfo representing transitive C++ dependencies for linking", }, ) def collect_lisp_info(deps = [], cdeps = [], build_image = None, features = [], compile_data = []): """Create a LispInfo collecting the data needed for Lisp compilation. Args: deps: Immediate Lisp dependencies of this target. cdeps: Immediate C++ dependencies of this target. build_image: Optional build image Target, which may also contain dependencies. May be unset if this target just propagates LispInfo from its dependencies. features: Lisp features added by this target. compile_data: Data dependency Targets of this target, which are made available to this target and its consumers' at build time as well as runtime. Returns: LispInfo """ lisp_infos = [dep[LispInfo] for dep in deps] if build_image and LispInfo in build_image: lisp_infos.append(build_image[LispInfo]) cc_infos = [lisp_info.cc_info for lisp_info in lisp_infos] for cdep in cdeps: cc_infos.append(cdep[CcInfo]) transitive_compile_data = [li.compile_data for li in lisp_infos] for compile_data_target in compile_data: default_info = compile_data_target[DefaultInfo] if default_info.files: transitive_compile_data.append(default_info.files) if default_info.default_runfiles: transitive_compile_data.append(default_info.default_runfiles.files) return LispInfo( fasls = depset( transitive = [li.fasls for li in lisp_infos], order = "postorder", ), srcs = depset( transitive = [li.srcs for li in lisp_infos], order = "postorder", ), hashes = depset(transitive = [li.hashes for li in lisp_infos]), warnings = depset(transitive = [li.warnings for li in lisp_infos]), features = depset( features, transitive = [li.features for li in lisp_infos], ), compile_data = depset(transitive = transitive_compile_data), cc_info = cc_common.merge_cc_infos(cc_infos = cc_infos), ) def extend_lisp_info( base, fasls = [], srcs = [], hashes = [], warnings = []): """Extends a LispInfo with compilation inputs and outputs. Args: base: The base LispInfo provider to be extended. fasls: FASLs generated for this target. srcs: This target's Lisp sources. hashes: Hash files for each file in srcs. warnings: Warnings files for each file in srcs. """ return LispInfo( fasls = depset(fasls, transitive = [base.fasls], order = "postorder"), srcs = depset(srcs, transitive = [base.srcs], order = "postorder"), hashes = depset(hashes, transitive = [base.hashes]), warnings = depset(warnings, transitive = [base.warnings]), features = base.features, compile_data = base.compile_data, cc_info = base.cc_info, ) # buildozer: disable=print def print_provider(p): """Prints the LispInfo provider. Args: p: A LispInfo provider. """ if p.fasls: print("FASLs: %s" % [f.short_path for f in p.fasls.to_list()]) if p.srcs: print("Srcs: %s" % [s.short_path for s in p.srcs.to_list()]) if p.hashes: print("Hashes: %s" % [h.short_path for h in p.hashes.to_list()]) if p.warnings: print("Warnings: %s" % [w.short_path for w in p.warnings.to_list()]) if p.features: print("Features: %s" % p.features.to_list()) if p.compile_data: print("Compile Data: %s" % p.compile_data.to_list()) ``` #### File: jeosol/bazelisp/rules.bzl ```python load( ":provider.bzl", "LispInfo", "collect_lisp_info", "extend_lisp_info", ) load("@rules_cc//cc:find_cc_toolchain.bzl", "find_cc_toolchain") load("@bazel_skylib//rules:common_settings.bzl", "BuildSettingInfo") _BAZEL_LISP_IMAGE = "//:image" _BAZEL_LISP_IMAGE_MAIN = "bazel.main:main" _BAZEL_LISP_IMAGE_ENV = {"LISP_MAIN": _BAZEL_LISP_IMAGE_MAIN} _ELFINATE = "//:elfinate" _DEFAULT_MALLOC = "@bazel_tools//tools/cpp:malloc" _DEFAULT_LIBSBCL = "@local_sbcl//:c-support" _COMPILATION_ORDERS = ["multipass", "serial", "parallel"] _LISP_LIBRARY_ATTRS = { "srcs": attr.label_list( allow_files = [".lisp", ".lsp"], doc = ("Common Lisp (`.lisp` or `.lsp`) source files. If there are " + "multiple files in `srcs`, which other files in `srcs` are " + "loaded before each file is compiled depends on the `order` " + "attr."), ), "deps": attr.label_list( providers = [LispInfo], doc = ("Common Lisp dependencies (generally [`lisp_library`]" + "(#lisp-library), but you can put [`lisp_binary`]" + "(#lisp-binary) in deps for testing)."), ), "cdeps": attr.label_list( providers = [CcInfo], doc = ("C++ dependencies (generally [`cc_library`]" + "(https://docs.bazel.build/versions/master/be/c-cpp.html" + "#cc_library))."), ), "experimental_block_compile": attr.bool( default = False, doc = ("Whether to block-compile the sources. If True, the " + "sources will be block-compiled with " + "SB-C:COMPILE-MULTIPLE-FILES as a single block, with " + ":BLOCK-COMPILE T.\n\n" + "It should be noted that block compilation in SBCL " + "currently has compiler crashes that prevent this feature " + "from being enabled on all source code, and so this feature " + "should be used with caution."), ), "entry_points": attr.string_list( default = [], doc = ("If block-compiling, this is the list of entry points passed " + "to SB-C:COMPILE-FILES (or if using the " + "experimental_block_compile_specified feature, to COMPILE-FILE)"), ), "experimental_block_compile_specified": attr.bool( default = False, doc = ("Whether to pass :SPECIFIED to :BLOCK-COMPILE in " + ":COMPILE-FILE. This causes SBCL to respect (START-BLOCK) " + "and (END-BLOCK) declarations on a sub-file basis."), ), "order": attr.string( default = "serial", values = _COMPILATION_ORDERS, doc = ( "Compilation order, one of:\n" + "\n" + '`"serial"` (default) - Each source is compiled in an image ' + "with previous sources loaded. (Note that in this " + "configuration you should put a comment at the top of the " + "list of srcs if there is more than one, so that formatters " + "like Buildozer do not change the order.)\n" + "\n" + '`"multipass"` - Each source is compiled in an image with all ' + "sources loaded.\n" + "\n" + '`"parallel"` - Each source is compiled independently.' ), ), "data": attr.label_list( allow_files = True, doc = ("Data available to this target and its consumers in the " + "runfiles directory at runtime."), ), "compile_data": attr.label_list( allow_files = True, doc = ("Data available to this target and its consumers at build " + "time, added to the inputs of LispCompile and LispCore " + "actions."), ), "add_features": attr.string_list( doc = ("Names of symbols (by default in the keyword package) to be " + "added to `\\*features\\*` of this library and its consumers, at " + "compile time and in the resulting binary. Note that this " + "differs from the [`features`](https://docs.bazel.build/" + "versions/master/be/common-definitions.html#common.features) " + "attribute common to all build rules which controls " + "[toolchain](https://docs.bazel.build/versions/master/" + "toolchains.html) features."), ), "nowarn": attr.string_list( doc = "Suppressed Lisp warning types or warning handlers.", ), "image": attr.label( allow_single_file = True, executable = True, cfg = "target", default = Label(_BAZEL_LISP_IMAGE), doc = ( "Lisp binary used as Bazel compilation image. This should be a " + "binary with the main function `#'bazel:main` defined in " + "`main.lisp`." ), ), "verbose": attr.int( default = 0, doc = ("Enable verbose debugging output when analyzing and " + "compiling this target (`0` = none (default), `3` = max)."), ), "instrument_coverage": attr.int( values = [-1, 0, 1], default = -1, doc = ( "Force coverage instrumentation. Possible values:\n" + "\n" + "`0`: Never instrument this target. Should be used if the" + "target compiles generated source files or does not compile" + "with coverage instrumentation.\n" + "\n" + "`1`: Always instrument this target. Generally should not be " + "used outside of tests for the coverage implementation.\n" + "\n" + "`-1` (default): If coverage data collection is enabled, " + "instrument this target per [`--instrumentation_filter]" + "(https://docs.bazel.build/versions/master/" + "command-line-reference.html#flag--instrumentation_filter).`" ), ), "_additional_dynamic_load_outputs": attr.label( default = Label( "//:additional_dynamic_load_outputs", ), providers = [BuildSettingInfo], ), # Do not add references, temporary attribute for find_cc_toolchain. "_cc_toolchain": attr.label( default = Label("@bazel_tools//tools/cpp:current_cc_toolchain"), ), "_grep_includes": attr.label( allow_single_file = True, executable = True, cfg = "host", default = Label("@bazel_tools//tools/cpp:grep-includes"), ), } _LISP_BINARY_ATTRS = dict(_LISP_LIBRARY_ATTRS) _LISP_BINARY_ATTRS.update({ "main": attr.string( default = "main", doc = ("Name of function (by default in the `cl-user` package) or " + "snippet of Lisp code to run when starting the binary. " + '`"nil"` or `"t"` to start the default REPL. Can be ' + "overridden by naming a function (or `nil` or `t`) in the " + "`LISP_MAIN` environment variable."), ), "malloc": attr.label( default = _DEFAULT_MALLOC, providers = [CcInfo], doc = ("Target providing a custom malloc implementation. Same as " + "[`cc_binary.malloc`](https://docs.bazel.build/versions/" + "master/be/c-cpp.html#cc_binary.malloc). Note that these " + "rules do not respect [`--custom_malloc`]" + "(https://docs.bazel.build/versions/master/" + "command-line-reference.html#flag--custom_malloc)."), ), "stamp": attr.int( values = [-1, 0, 1], default = -1, doc = ("Same as [`cc_binary.stamp`](https://docs.bazel.build/" + "versions/master/be/c-cpp.html#cc_binary.stamp)."), ), "allow_save_lisp": attr.bool( default = False, doc = ("Whether to preserve the ability to run `save-lisp-and-die` " + "instead of altering the binary format to be more compatible " + "with C++ debugging tools (which, for example, allows you to " + "get combined stacktraces of C/C++ and Lisp code). Must be " + "`True` for targets used as a compilation image."), ), "precompile_generics": attr.bool( default = True, doc = "If `False`, skip precompiling generic functions.", ), "save_runtime_options": attr.bool( default = True, doc = ("If `False`, process SBCL runtime options at the " + "command-line on binary startup."), ), "runtime": attr.label( default = Label(_DEFAULT_LIBSBCL), providers = [CcInfo], doc = ("SBCL C++ dependencies. Consumers should generally omit this " + "attr and use the default value."), ), "_elfinate": attr.label( default = Label(_ELFINATE), executable = True, allow_single_file = True, cfg = "target", ), "_custom_malloc": attr.label( default = configuration_field( fragment = "cpp", name = "custom_malloc", ), providers = [CcInfo], ), }) _LISP_TEST_ATTRS = dict(_LISP_BINARY_ATTRS) _LISP_TEST_ATTRS.update({ "stamp": attr.int( values = [-1, 0, 1], default = 0, doc = ("Same as [`cc_test.stamp`](https://docs.bazel.build/" + "versions/master/be/c-cpp.html#cc_test.stamp). Build version " + "stamping is disabled by default."), ), }) def _concat_fasls(ctx, inputs, output): """Concatenates several FASLs into a combined FASL. Args: ctx: Rule context inputs: List of files to concatenate. output: File output for the concatenated contents. """ if not inputs: return None elif len(inputs) == 1: return inputs[0] else: cat_command = "cat ${@:2} > $1" cat_args = ctx.actions.args() cat_args.add(output) cat_args.add_all(inputs) ctx.actions.run_shell( inputs = inputs, outputs = [output], progress_message = "Combining %{output}", mnemonic = "LispConcatFASLs", command = cat_command, arguments = [cat_args], ) return output def _build_flags(ctx, add_features, verbose_level, instrument_coverage): """Returns Args for flags for all Lisp build actions. Args: ctx: The rule context. add_features: Depset of transitive Lisp feature strings provided by this target and its dependencies. verbose_level: int indicating level of debugging output. If positive, a --verbose flags is added. instrument_coverage: Controls coverage instrumentation, with the following values: -1 (default) - Instruments if coverage is enabled for this target. 0 - Instruments never. 1 - Instruments always (for testing purposes). Returns: Args object to be passed to Lisp build actions. """ cc_toolchain = find_cc_toolchain(ctx) # Needs to match logic for the :msan config_setting target. Unfortunately, # config_setting rules don't yet have a Starlark API. Note that this is not # equivalent to looking at ctx.var.get("msan_config"), we want to know if # msan is used in this specific configuration, not if it's an msan build in # general. (It might be better to look at whether msan is enabled in # features with cc_common.configure_features (_cc_configure_features) and # cc_common.is_enabled, but the important thing is that the behavior is # consistent between this target and the targets in its image and runtime # attrs.) if cc_toolchain.compiler in ["msan", "msan-track-origins"]: add_features = depset(["msan"], transitive = [add_features]) flags = ctx.actions.args() flags.add( "--compilation-mode", ctx.var.get("LISP_COMPILATION_MODE", ctx.var["COMPILATION_MODE"]), ) flags.add("--bindir", ctx.bin_dir.path) flags.add_joined("--features", add_features, join_with = " ") if (instrument_coverage > 0 or (instrument_coverage < 0 and ctx.coverage_instrumented())): flags.add("--coverage") if verbose_level > 0: flags.add("--verbose", str(verbose_level)) if int(ctx.var.get("LISP_BUILD_FORCE", "0")) > 0: flags.add("--force") return flags def _list_excluding_depset(items, exclude): exclude_set = {item: True for item in exclude.to_list()} return [item for item in items if item not in exclude_set] def lisp_compile_srcs( ctx, srcs = [], deps = [], cdeps = [], block_compile = False, block_compile_specified = False, entry_points = [], image = None, add_features = [], nowarn = [], order = "serial", compile_data = [], verbose_level = 0, instrument_coverage = -1, indexer_metadata = []): """Generate LispCompile actions, return LispInfo and FASL output. This is the core functionality shared by the Lisp build rules. Args: ctx: The rule context. srcs: list of src Files. deps: list of immediate Lisp dependency Targets. cdeps: list of immediate C++ dependency Targets. image: Build image Target used to compile the sources. add_features: list of Lisp feature strings added by this target. nowarn: List of suppressed warning type strings. order: Order in which to load sources, either "serial", "parallel", or "multipass". compile_data: list of data dependency Targets whose outputs and runfiles are made available at load/compile time for this target and its consumers. verbose_level: int indicating level of debugging output. instrument_coverage: Controls coverage instrumentation, with the following values: -1 (default) - Instruments if coverage is enabled for this target. 0 - Instruments never. 1 - Instruments always (for testing purposes). indexer_metadata: Extra metadata files to be passed to the --deps flag of LispCompile when the Kythe indexer is run. Ignored by the build image itself, but this appears in the command-line for the LispCompile action which can be inspected by action_listener. Returns: struct with fields: - lisp_info: LispInfo for the target - output_fasl: Combined FASL for this target (which is also included in lisp_info.fasls if there are srcs) - build_flags: Args to pass to all LispCompile and LispCore actions """ if not order in _COMPILATION_ORDERS: fail("order {} must be one of {}".format(order, _COMPILATION_ORDERS)) if block_compile and block_compile_specified: fail("cannot block-compile while block-compiling with :specified") if entry_points and not block_compile: fail("cannot use entry points without block-compiling") name = ctx.label.name verbosep = verbose_level > 0 indexer_build = (ctx.var.get("GROK_ELLIPSIS_BUILD", "0") == "1") lisp_info = collect_lisp_info( deps = deps, cdeps = cdeps, build_image = image, features = add_features, compile_data = compile_data, ) build_flags = _build_flags( ctx = ctx, add_features = lisp_info.features, verbose_level = verbose_level, instrument_coverage = instrument_coverage, ) if not srcs: return struct( lisp_info = lisp_info, output_fasl = None, build_flags = build_flags, ) multipass = (order == "multipass") or block_compile serial = (order == "serial") and not multipass build_image = image[DefaultInfo].files_to_run compile_image = build_image # Lisp source files for all the transitive dependencies not already in the # image, loaded before compilation, passed to --deps. deps_srcs = lisp_info.srcs.to_list() if LispInfo in image: deps_srcs = _list_excluding_depset(deps_srcs, image[LispInfo].srcs) if indexer_build: deps_srcs.extend(indexer_metadata) # Sources for this target loaded before compilation (after deps), passed to # --load. What this contains depends on the compilation order: # multipass: Contains everything # parallel: Contains nothing # serial: Contains previous entries in srcs (accumulated below) load_srcs = srcs if multipass else [] # Arbitrary heuristic to reduce load on the build system by bundling # FASL and source files load into one compile-image binary. compile_flags = ctx.actions.args() if multipass: nowarn = nowarn + ["redefined-method", "redefined-function"] # buildozer: disable=print if verbosep: print("Target: " + name) print("Build Img: " + build_image.executable.short_path) print("Compile Img: " + compile_image.executable.short_path) fasls = [] warnings = [] hashes = [] output_fasl = ctx.actions.declare_file(name + ".fasl") if not block_compile: for src in srcs: stem = "{}~/{}".format(name, src.short_path[:-len(src.extension) - 1]) if len(srcs) == 1: fasl = output_fasl else: fasl = ctx.actions.declare_file(stem + ".fasl") fasls.append(fasl) hashes.append(ctx.actions.declare_file(stem + ".hash")) warnings.append(ctx.actions.declare_file(stem + ".warnings")) outs = [fasls[-1], hashes[-1], warnings[-1]] file_flags = ctx.actions.args() file_flags.add_joined("--outs", outs, join_with = " ") file_flags.add("--srcs", src) file_flags.add_joined("--deps", deps_srcs, join_with = " ") file_flags.add_joined("--load", load_srcs, join_with = " ") file_flags.add_joined("--nowarn", nowarn, join_with = " ") if block_compile_specified: file_flags.add("--block-compile-specified") direct_inputs = [src] direct_inputs.extend(deps_srcs) direct_inputs.extend(load_srcs) ctx.actions.run( outputs = outs, inputs = depset( direct_inputs, transitive = [lisp_info.compile_data], order = "preorder", ), progress_message = "Compiling %{input}", mnemonic = "LispCompile", env = _BAZEL_LISP_IMAGE_ENV, arguments = ["compile", build_flags, compile_flags, file_flags], executable = compile_image, ) if serial: load_srcs.append(src) else: stem = "{}~/".format(name) fasls.append(output_fasl) hashes.extend([ctx.actions.declare_file(stem + src.short_path[:-len(src.extension) - 1] + ".hash") for src in srcs]) warnings.append(ctx.actions.declare_file(stem + name + ".warnings")) outs = [fasls[0], warnings[0]] + hashes file_flags = ctx.actions.args() file_flags.add_joined("--outs", outs, join_with = " ") file_flags.add_joined("--srcs", srcs, join_with = " ") file_flags.add_joined("--deps", deps_srcs, join_with = " ") file_flags.add_joined("--load", load_srcs, join_with = " ") file_flags.add_joined("--nowarn", nowarn, join_with = " ") if entry_points: file_flags.add_joined("--entry-points", entry_points, join_with = " ") direct_inputs = [s for s in srcs] direct_inputs.extend(deps_srcs) direct_inputs.extend(load_srcs) ctx.actions.run( outputs = outs, inputs = depset( direct_inputs, transitive = [lisp_info.compile_data], ), progress_message = "Compiling " + str([x.short_path for x in srcs]), mnemonic = "LispCompile", env = _BAZEL_LISP_IMAGE_ENV, arguments = ["block-compile", build_flags, compile_flags, file_flags], executable = compile_image, ) if indexer_build: srcs = indexer_metadata + srcs lisp_info = extend_lisp_info( lisp_info, srcs = srcs, fasls = [output_fasl] if srcs else [], hashes = hashes, warnings = warnings, ) return struct( lisp_info = lisp_info, output_fasl = _concat_fasls(ctx, fasls, output_fasl), build_flags = build_flags, ) def _cc_configure_features(ctx, cc_toolchain): return cc_common.configure_features( ctx = ctx, cc_toolchain = cc_toolchain, requested_features = ctx.features, unsupported_features = ctx.disabled_features, ) # DEPS file is used to list all the Lisp sources for a target. # It is a quick hack to make (bazel:load ...) work. def _lisp_deps_manifest(ctx, lisp_info): """Creates a file that lists all Lisp files needed by the target in order.""" out = ctx.actions.declare_file(ctx.label.name + ".deps") content = ctx.actions.args() content.set_param_file_format("multiline") content.add_joined( lisp_info.features, join_with = "\n", format_each = "feature: %s", ) content.add_joined( lisp_info.srcs, join_with = "\n", format_each = "src: %s", ) ctx.actions.write( output = out, content = content, ) return out def _lisp_dynamic_library(ctx, lisp_info): cc_toolchain = find_cc_toolchain(ctx) feature_configuration = _cc_configure_features(ctx, cc_toolchain) linking_outputs = cc_common.link( name = ctx.label.name, actions = ctx.actions, feature_configuration = feature_configuration, cc_toolchain = cc_toolchain, linking_contexts = [lisp_info.cc_info.linking_context], output_type = "dynamic_library", grep_includes = ctx.executable._grep_includes, ) return linking_outputs.library_to_link.dynamic_library def _lisp_output_group_info(ctx, lisp_info, fasl_list): outputs = {"fasl": fasl_list} # Additional outputs for dynamic loading. These should only be used when # explicitly requested, so condition the generation of the extra actions # on a flag. (It might be better to just condition this on --output_groups, # but that's not readable from Starlark.) generate_dynamic_load_outputs = ( ctx.attr._additional_dynamic_load_outputs[BuildSettingInfo].value ) if generate_dynamic_load_outputs: outputs["deps_manifest"] = [_lisp_deps_manifest(ctx, lisp_info)] outputs["dynamic_library"] = [_lisp_dynamic_library(ctx, lisp_info)] return OutputGroupInfo(**outputs) def _lisp_instrumented_files_info(ctx): return coverage_common.instrumented_files_info( ctx, source_attributes = ["srcs"], dependency_attributes = ["deps", "cdeps", "image", "data"], ) def _lisp_runfiles(ctx): runfiles = ctx.runfiles(files = ctx.files.data) transitive_runfiles = [] for runfiles_attr in ( ctx.attr.srcs, ctx.attr.deps, ctx.attr.cdeps, ctx.attr.data, ): for target in runfiles_attr: transitive_runfiles.append(target[DefaultInfo].default_runfiles) transitive_runfiles.append(ctx.attr.image[DefaultInfo].default_runfiles) # return runfiles.merge_all(transitive_runfiles) # obtaining errors that runfiles has no field or method 'merge_all' (did you mean 'merge'?) # so lets try to use merger for file in transitive_runfiles: runfiles = runfiles.merge(file) return runfiles def _lisp_providers(ctx, lisp_info, fasl, executable = None): executable_list = [executable] if executable != None else [] fasl_list = [fasl] if fasl != None else [] return [ DefaultInfo( runfiles = _lisp_runfiles(ctx), files = depset(executable_list or fasl_list), executable = executable, ), lisp_info, _lisp_output_group_info(ctx, lisp_info, fasl_list), _lisp_instrumented_files_info(ctx), ] ################################################################################ # Lisp Binary and Lisp Test ################################################################################ def _lisp_binary_impl(ctx): """Implementation for lisp_binary and lisp_test rules.""" name = ctx.label.name core = ctx.actions.declare_file(name + ".core") verbose_level = max( ctx.attr.verbose, int(ctx.var.get("VERBOSE_LISP_BUILD", "0")), ) verbosep = verbose_level > 0 # buildozer: disable=print if verbosep: print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~") print("Core: %s" % core) compile = lisp_compile_srcs( ctx = ctx, srcs = ctx.files.srcs, deps = ctx.attr.deps, cdeps = ctx.attr.cdeps, image = ctx.attr.image, add_features = ctx.attr.add_features, nowarn = ctx.attr.nowarn, order = ctx.attr.order, compile_data = ctx.attr.compile_data, verbose_level = verbose_level, instrument_coverage = ctx.attr.instrument_coverage, ) # TODO(czak): Add --hashes, and --warnings flags to bazl.main. lisp_info = compile.lisp_info fasls = lisp_info.fasls.to_list() hashes = lisp_info.hashes.to_list() warnings = lisp_info.warnings.to_list() if LispInfo in ctx.attr.image: # The image already includes some deps. included = ctx.attr.image[LispInfo] fasls = _list_excluding_depset(fasls, included.fasls) hashes = _list_excluding_depset(hashes, included.hashes) warnings = _list_excluding_depset(warnings, included.warnings) build_image = ctx.file.image # buildozer: disable=print if verbosep: print("Build image: %s" % build_image.short_path) specs = ctx.actions.declare_file(name + ".specs") content = ctx.actions.args() content.set_param_file_format("multiline") content.add_joined(fasls, format_joined = '(:deps\n "%s")', join_with = '"\n "') content.add_joined(warnings, format_joined = '(:warnings\n "%s")', join_with = '"\n "') content.add_joined(hashes, format_joined = '(:hashes\n "%s")', join_with = '"\n "') ctx.actions.write( output = specs, content = content, ) inputs = [specs] inputs.extend(fasls) inputs.extend(hashes) inputs.extend(warnings) inputs = depset(inputs, transitive = [lisp_info.compile_data]) core_flags = ctx.actions.args() core_flags.add("--specs", specs) core_flags.add("--outs", core) core_flags.add("--main", ctx.attr.main) core_flags.add_joined("--nowarn", ctx.attr.nowarn, join_with = " ") if ctx.attr.precompile_generics: core_flags.add("--precompile-generics") if ctx.attr.save_runtime_options: core_flags.add("--save-runtime-options") ctx.actions.run( outputs = [core], inputs = inputs, progress_message = "Building Lisp core %{output}", mnemonic = "LispCore", env = _BAZEL_LISP_IMAGE_ENV, arguments = ["core", compile.build_flags, core_flags], executable = build_image, ) cc_toolchain = find_cc_toolchain(ctx) feature_configuration = _cc_configure_features(ctx, cc_toolchain) # The support in ELFinator exists for -pie code, and a non-elfinated SBCL binaries # are always position-independent; however, extreme inefficiency is imparted to ELF # binaries that are position-independent. Lisp pointers are all absolute, and a # typical Lisp heap might contain 3 to 5 million pointers to functions, therefore # require that many relocations on each invocation to adjust to wherever the system # moved the text segment. C on the other hand uses function pointers sparingly. # I don't have "typical" numbers of pointers, and it can't be inferred from a binary, # but it's nothing like having 40,000 closures over #<FUNCTION ALWAYS-BOUND {xxxxxx}> # (which is the SLOT-BOUNDP method "fast method function" for every defstruct slot) # and another 40,000 over CALL-NEXT-METHOD and so on and so on. linkopts = ["-Wl,-no-pie"] # Transform the .core file into a -core.o file, so that can be linked in # with the C++ dependencies. core_object_file = ctx.actions.declare_file(name + "-core.o") link_additional_inputs = [] compilation_outputs = [ cc_common.create_compilation_outputs( # This file contains the SBCL core, essentially as '.data' in the # object file, so it can be linked as PIC or not. For the other # dependencies, we still want the link action to choose normally # between PIC and non-PIC outputs. objects = depset([core_object_file]), pic_objects = depset([core_object_file]), ), ] elfinate_args = ctx.actions.args() if ctx.attr.allow_save_lisp: # If we want to allow the binary to be used as a compilation image, the # Lisp image has to stay in a form save-lisp-and-die understands. In # this case, copy the entire native SBCL core into a binary blob in a # normal '.o' file. linker_script_file = ctx.actions.declare_file(name + "-syms.lds") link_additional_inputs.append(linker_script_file) elfinate_outs = [core_object_file, linker_script_file] elfinate_cmd = ( "$1 copy $2 $3 && nm -p $3 | " + "awk '" + '{print $2";"}BEGIN{print "{"}END{print "};"}' + "' > $4" ) elfinate_args.add(ctx.executable._elfinate) elfinate_args.add(core) elfinate_args.add(core_object_file) elfinate_args.add(linker_script_file) linkopts.append( "-Wl,--dynamic-list={}".format(linker_script_file.path), ) else: # Otherwise, produce a '.s' file holding only compiled Lisp code and a # '-core.o' containing the balance of the original Lisp spaces. assembly_file = ctx.actions.declare_file(name + ".s") elfinate_outs = [assembly_file, core_object_file] elfinate_cmd = "$1 split $2 $3" elfinate_args.add(ctx.executable._elfinate) elfinate_args.add(core) elfinate_args.add(assembly_file) # The .s file will get re-assembled before it's linked into the binary. # Note that this cc_common.compile action is declared before the # action below which runs elfinate to create this input. The elfinate # action still ends up first when the graph of actions is computed. compilation_context, asm_compilation_output = cc_common.compile( name = name, actions = ctx.actions, feature_configuration = feature_configuration, cc_toolchain = cc_toolchain, srcs = [assembly_file], ) compilation_outputs.append(asm_compilation_output) ctx.actions.run_shell( outputs = elfinate_outs, tools = [ctx.executable._elfinate], inputs = [core], command = elfinate_cmd, arguments = [elfinate_args], progress_message = "Elfinating Lisp core %{output}", mnemonic = "LispElfinate", ) # The rule's malloc attribute can be overridden by the --custom_malloc flag. malloc = ctx.attr._custom_malloc or ctx.attr.malloc linking_outputs = cc_common.link( name = name, actions = ctx.actions, feature_configuration = feature_configuration, cc_toolchain = cc_toolchain, user_link_flags = linkopts, # compilation_outpus contains all the Lisp code. If allow_save_lisp, # it's all in the -core.o file. Otherwise, the compiled Lisp code was # disassembled and reassembled, and this contains the output from that # plus the remainder of the Lisp core in the -core.o file. compilation_outputs = cc_common.merge_compilation_outputs( compilation_outputs = compilation_outputs, ), # linking_contexts contains all the C++ code to be linked in. linking_contexts = [ # C++ code from transitive dependencies. lisp_info.cc_info.linking_context, # SBCL's C++ dependencies. ctx.attr.runtime[CcInfo].linking_context, # A custom malloc library gets linked in like any other library. # It's important that each binary gets a single malloc # implementation, so this does not get propagated to any of the # binary's consumers. malloc[CcInfo].linking_context, ], stamp = ctx.attr.stamp, output_type = "executable", additional_inputs = link_additional_inputs, grep_includes = ctx.executable._grep_includes, ) return _lisp_providers( ctx = ctx, lisp_info = lisp_info, fasl = compile.output_fasl, executable = linking_outputs.executable, ) lisp_binary = rule( implementation = _lisp_binary_impl, executable = True, attrs = _LISP_BINARY_ATTRS, fragments = ["cpp"], toolchains = ["@bazel_tools//tools/cpp:toolchain_type"], incompatible_use_toolchain_transition = True, doc = """ Supports all of the same attributes as [`lisp_library`](#lisp_library), plus additional attributes governing the behavior of the completed binary. The [`main`](#lisp_binary-main) attribute defines behavior (generally specifying a function to run with no arguments) when the binary is started. By default, it runs `(cl-user::main)`. Example: lisp_binary( name = "binary" srcs = ["binary.lisp"], main = "binary:main", deps = [":library"], )""", ) lisp_test = rule( implementation = _lisp_binary_impl, executable = True, test = True, attrs = _LISP_TEST_ATTRS, fragments = ["cpp"], toolchains = ["@bazel_tools//tools/cpp:toolchain_type"], incompatible_use_toolchain_transition = True, doc = """ Like [`lisp_binary`](#lisp_binary), for defining tests to be run with the [`test`](https://docs.bazel.build/versions/master/user-manual.html#test) command. The [`main`](#lisp_test-main) attribute should name a function which runs the tests, outputs information about failing assertions, and exits with a non-zero exit status if there are any failures. Example: lisp_test( name = "library-test" srcs = ["library-test.lisp"], main = "library-test:run-tests", deps = [ ":library", "//path/to/unit-test:framework", ], )""", ) ################################################################################ # Lisp Library ################################################################################ def _lisp_library_impl(ctx): """Lisp specific implementation for lisp_library rules.""" verbose_level = max( getattr(ctx.attr, "verbose", 0), int(ctx.var.get("VERBOSE_LISP_BUILD", "0")), ) verbosep = verbose_level > 0 # buildozer: disable=print if verbosep: print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~") print("Library: %s" % ctx.label.name) compile = lisp_compile_srcs( ctx = ctx, srcs = ctx.files.srcs, deps = ctx.attr.deps, cdeps = ctx.attr.cdeps, block_compile = ctx.attr.experimental_block_compile, block_compile_specified = ctx.attr.experimental_block_compile_specified, entry_points = ctx.attr.entry_points, image = ctx.attr.image, add_features = ctx.attr.add_features, nowarn = ctx.attr.nowarn, order = ctx.attr.order, compile_data = ctx.attr.compile_data, verbose_level = verbose_level, instrument_coverage = ctx.attr.instrument_coverage, ) return _lisp_providers( ctx = ctx, lisp_info = compile.lisp_info, fasl = compile.output_fasl, ) lisp_library = rule( implementation = _lisp_library_impl, attrs = _LISP_LIBRARY_ATTRS, fragments = ["cpp"], toolchains = ["@bazel_tools//tools/cpp:toolchain_type"], incompatible_use_toolchain_transition = True, doc = """ The basic compilation unit for Lisp code. Can have Lisp dependencies ([`deps`](#lisp_library-deps)) and C/C++ dependencies ([`cdeps`](#lisp_library-cdeps)). Example: lisp_test( name = "library" srcs = ["library.lisp"], cdeps = [":cc-dependency-ci"], deps = [":dependency"], )""", ) ```
{ "source": "Jeoungseungho/identity", "score": 2 }
#### File: api/v1/project_group.py ```python from spaceone.api.identity.v1 import project_group_pb2, project_group_pb2_grpc from spaceone.core.pygrpc import BaseAPI class ProjectGroup(BaseAPI, project_group_pb2_grpc.ProjectGroupServicer): pb2 = project_group_pb2 pb2_grpc = project_group_pb2_grpc def create(self, request, context): params, metadata = self.parse_request(request, context) with self.locator.get_service('ProjectGroupService', metadata) as project_group_svc: return self.locator.get_info('ProjectGroupInfo', project_group_svc.create(params)) def update(self, request, context): params, metadata = self.parse_request(request, context) with self.locator.get_service('ProjectGroupService', metadata) as project_group_svc: return self.locator.get_info('ProjectGroupInfo', project_group_svc.update(params)) def delete(self, request, context): params, metadata = self.parse_request(request, context) with self.locator.get_service('ProjectGroupService', metadata) as project_group_svc: project_group_svc.delete(params) return self.locator.get_info('EmptyInfo') def get(self, request, context): params, metadata = self.parse_request(request, context) with self.locator.get_service('ProjectGroupService', metadata) as project_group_svc: return self.locator.get_info('ProjectGroupInfo', project_group_svc.get(params)) def list(self, request, context): params, metadata = self.parse_request(request, context) with self.locator.get_service('ProjectGroupService', metadata) as project_group_svc: project_group_vos, total_count = project_group_svc.list(params) return self.locator.get_info('ProjectGroupsInfo', project_group_vos, total_count, minimal=self.get_minimal(params)) def stat(self, request, context): params, metadata = self.parse_request(request, context) with self.locator.get_service('ProjectGroupService', metadata) as project_group_svc: return self.locator.get_info('StatisticsInfo', project_group_svc.stat(params)) def add_member(self, request, context): params, metadata = self.parse_request(request, context) with self.locator.get_service('ProjectGroupService', metadata) as project_group_svc: return self.locator.get_info('ProjectGroupRoleBindingInfo', project_group_svc.add_member(params)) def modify_member(self, request, context): params, metadata = self.parse_request(request, context) with self.locator.get_service('ProjectGroupService', metadata) as project_group_svc: return self.locator.get_info('ProjectGroupRoleBindingInfo', project_group_svc.modify_member(params)) def remove_member(self, request, context): params, metadata = self.parse_request(request, context) with self.locator.get_service('ProjectGroupService', metadata) as project_group_svc: project_group_svc.remove_member(params) return self.locator.get_info('EmptyInfo') def list_members(self, request, context): params, metadata = self.parse_request(request, context) with self.locator.get_service('ProjectGroupService', metadata) as project_group_svc: project_group_map_vos, total_count = project_group_svc.list_members(params) return self.locator.get_info('ProjectGroupRoleBindingsInfo', project_group_map_vos, total_count, minimal=self.get_minimal(params)) def list_projects(self, request, context): params, metadata = self.parse_request(request, context) with self.locator.get_service('ProjectGroupService', metadata) as project_group_svc: project_vos, total_count = project_group_svc.list_projects(params) return self.locator.get_info('ProjectGroupProjectsInfo', project_vos, total_count, minimal=self.get_minimal(params)) ``` #### File: api/v1/token.py ```python from spaceone.api.identity.v1 import token_pb2, token_pb2_grpc from spaceone.core.pygrpc import BaseAPI class Token(BaseAPI, token_pb2_grpc.TokenServicer): pb2 = token_pb2 pb2_grpc = token_pb2_grpc def issue(self, request, context): params, metadata = self.parse_request(request, context) with self.locator.get_service('TokenService', metadata) as token_svc: data = token_svc.issue(params) return self.locator.get_info('TokenInfo', data) def refresh(self, request, context): params, metadata = self.parse_request(request, context) with self.locator.get_service('TokenService', metadata) as token_svc: data = token_svc.refresh(params) return self.locator.get_info('TokenInfo', data) ``` #### File: identity/info/authorization_info.py ```python from spaceone.core.pygrpc.message_type import * __all__ = ['AuthorizationResponse'] def AuthorizationResponse(auth_data): return change_handler_authorization_response(auth_data) ``` #### File: identity/info/endpoint_info.py ```python import functools from spaceone.api.identity.v1 import endpoint_pb2 __all__ = ['EndpointInfo', 'EndpointsInfo'] def EndpointInfo(endpoint_vo: dict, minimal=False): info = { 'service': endpoint_vo['service'], 'name': endpoint_vo['name'], 'endpoint': endpoint_vo['endpoint'], } if not minimal: info.update({ 'state': endpoint_vo.get('state'), 'version': endpoint_vo.get('version'), }) return endpoint_pb2.EndpointInfo(**info) def EndpointsInfo(endpoint_vos, total_count, **kwargs): results = list(map(functools.partial(EndpointInfo, **kwargs), endpoint_vos)) return endpoint_pb2.EndpointsInfo(results=results, total_count=total_count) ``` #### File: identity/info/service_account_info.py ```python import functools from spaceone.api.core.v1 import tag_pb2 from spaceone.api.identity.v1 import service_account_pb2 from spaceone.core.pygrpc.message_type import * from spaceone.identity.model.service_account_model import ServiceAccount from spaceone.identity.info.project_info import ProjectInfo __all__ = ['ServiceAccountInfo', 'ServiceAccountsInfo'] def ServiceAccountInfo(service_account_vo: ServiceAccount, minimal=False): info = { 'service_account_id': service_account_vo.service_account_id, 'name': service_account_vo.name, 'provider': service_account_vo.provider } if not minimal: info.update({ 'data': change_struct_type(service_account_vo.data), 'tags': [tag_pb2.Tag(key=tag.key, value=tag.value) for tag in service_account_vo.tags], 'domain_id': service_account_vo.domain_id, 'created_at': change_timestamp_type(service_account_vo.created_at) }) if service_account_vo.project: info.update({ 'project_info': ProjectInfo(service_account_vo.project, minimal=True) }) # Temporary code for DB migration if not service_account_vo.project_id and service_account_vo.project: service_account_vo.update({'project_id': service_account_vo.project.project_id}) return service_account_pb2.ServiceAccountInfo(**info) def ServiceAccountsInfo(service_account_vos, total_count, **kwargs): results = list(map(functools.partial(ServiceAccountInfo, **kwargs), service_account_vos)) return service_account_pb2.ServiceAccountsInfo(results=results, total_count=total_count) ``` #### File: identity/manager/role_binding_manager.py ```python import logging from spaceone.core import cache from spaceone.core.manager import BaseManager from spaceone.identity.error.error_role import * from spaceone.identity.model.role_binding_model import * from spaceone.identity.manager import RoleManager, ProjectManager, ProjectGroupManager, UserManager _LOGGER = logging.getLogger(__name__) _SUPPORTED_RESOURCE_TYPES = ['identity.User'] class RoleBindingManager(BaseManager): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.role_binding_model: RoleBinding = self.locator.get_model('RoleBinding') def create_role_binding(self, params): def _rollback(role_binding_vo): _LOGGER.info(f'[create_role_binding._rollback] Delete role binding : {role_binding_vo.name} ({role_binding_vo.role_binding_id})') role_binding_vo.delete() resource_type = params['resource_type'] resource_id = params['resource_id'] role_id = params['role_id'] project_id = params.get('project_id') project_group_id = params.get('project_group_id') domain_id = params['domain_id'] role_mgr: RoleManager = self.locator.get_manager('RoleManager') project_mgr: ProjectManager = self.locator.get_manager('ProjectManager') project_group_mgr: ProjectGroupManager = self.locator.get_manager('ProjectGroupManager') user_mgr: UserManager = self.locator.get_manager('UserManager') self._check_resource_type(resource_type) if resource_type == 'identity.User': params['user'] = user_mgr.get_user(resource_id, domain_id) role_vo = role_mgr.get_role(role_id, domain_id) self._check_role_type(role_vo.role_type, resource_type, resource_id, domain_id) params['role'] = role_vo if role_vo.role_type == 'PROJECT': if project_id: project_vo = project_mgr.get_project(project_id, domain_id) self._check_duplicate_project_role(resource_type, resource_id, project_vo, project_id) params['project'] = project_vo elif project_group_id: project_group_vo = project_group_mgr.get_project_group(project_group_id, domain_id) self._check_duplicate_project_group_role(resource_type, resource_id, project_group_vo, project_group_id) params['project_group'] = project_group_vo else: raise ERROR_REQUIRED_PROJECT_OR_PROJECT_GROUP() else: self._check_duplicate_domain_or_system_role(resource_type, resource_id, role_vo, role_id) if project_id: raise ERROR_NOT_ALLOWED_PROJECT_ID() elif project_group_id: raise ERROR_NOT_ALLOWED_PROJECT_GROUP_ID() role_binding_vo = self.role_binding_model.create(params) self.transaction.add_rollback(_rollback, role_binding_vo) cache.delete_pattern(f'role-bindings:{domain_id}:{resource_id}*') cache.delete_pattern(f'user-permissions:{domain_id}:{resource_id}*') cache.delete_pattern(f'user-scopes:{domain_id}:{resource_id}*') return role_binding_vo def update_role_binding(self, params): role_binding_vo = self.get_role_binding(params['role_binding_id'], params['domain_id']) return self.update_role_binding_by_vo(params, role_binding_vo) def update_role_binding_by_vo(self, params, role_binding_vo): def _rollback(old_data): _LOGGER.info(f'[update_role_binding._rollback] Revert Data : {old_data["role_binding_id"]}') role_binding_vo.update(old_data) self.transaction.add_rollback(_rollback, role_binding_vo.to_dict()) return role_binding_vo.update(params) def delete_role_binding(self, role_binding_id, domain_id): role_binding_vo = self.get_role_binding(role_binding_id, domain_id) self.delete_role_binding_by_vo(role_binding_vo) def delete_role_binding_by_vo(self, role_binding_vo): resource_id = role_binding_vo.resource_id domain_id = role_binding_vo.domain_id role_binding_vo.delete() cache.delete_pattern(f'role-bindings:{domain_id}:{resource_id}*') cache.delete_pattern(f'user-permissions:{domain_id}:{resource_id}*') cache.delete_pattern(f'user-scopes:{domain_id}:{resource_id}*') def get_role_binding(self, role_binding_id, domain_id, only=None): return self.role_binding_model.get(role_binding_id=role_binding_id, domain_id=domain_id, only=only) def get_project_role_binding(self, resource_type, resource_id, domain_id, project_vo=None, project_group_vo=None): return self.role_binding_model.filter(resource_type=resource_type, resource_id=resource_id, domain_id=domain_id, project=project_vo, project_group=project_group_vo) def get_user_role_bindings(self, user_id, domain_id): return self.role_binding_model.filter(resource_type='identity.User', resource_id=user_id, domain_id=domain_id) def list_role_bindings(self, query): return self.role_binding_model.query(**query) def stat_role_bindings(self, query): return self.role_binding_model.stat(**query) @staticmethod def _check_resource_type(resource_type): if resource_type not in _SUPPORTED_RESOURCE_TYPES: raise ERROR_INVALID_PARAMETER( key='resource_type', reason=f'resource_type is not supported. (support = {_SUPPORTED_RESOURCE_TYPES})') def _check_role_type(self, role_type, resource_type, resource_id, domain_id): role_binding_vos = self.role_binding_model.filter(resource_type=resource_type, resource_id=resource_id, domain_id=domain_id) for role_binding_vo in role_binding_vos: if role_type == 'SYSTEM': if role_binding_vo.role.role_type in ['PROJECT', 'DOMAIN']: raise ERROR_NOT_ALLOWED_ROLE_TYPE() else: if role_binding_vo.role.role_type == 'SYSTEM': raise ERROR_NOT_ALLOWED_ROLE_TYPE() def _check_duplicate_domain_or_system_role(self, resource_type, resource_id, role_vo, role_id): rb_vos = self.role_binding_model.filter(resource_type=resource_type, resource_id=resource_id, role=role_vo) if rb_vos.count() > 0: raise ERROR_DUPLICATE_ROLE_BOUND(role_id=role_id, resource_id=resource_id) def _check_duplicate_project_role(self, resource_type, resource_id, project_vo, project_id): project_rb_vos = self.role_binding_model.filter(resource_type=resource_type, resource_id=resource_id, project=project_vo) if project_rb_vos.count() > 0: raise ERROR_DUPLICATE_RESOURCE_IN_PROJECT(project_id=project_id, resource_id=resource_id) def _check_duplicate_project_group_role(self, resource_type, resource_id, project_group_vo, project_group_id): pg_rb_vos = self.role_binding_model.filter(resource_type=resource_type, resource_id=resource_id, project_group=project_group_vo) if pg_rb_vos.count() > 0: raise ERROR_DUPLICATE_RESOURCE_IN_PROJECT_GROUP(project_group_id=project_group_id, resource_id=resource_id) ``` #### File: identity/service/domain_owner_service.py ```python import pytz from spaceone.core.service import * from spaceone.core.error import * from spaceone.identity.manager import DomainOwnerManager @authentication_handler(exclude=['create']) @authorization_handler(exclude=['create']) @mutation_handler(exclude=['create']) @event_handler class DomainOwnerService(BaseService): def __init__(self, metadata): super().__init__(metadata) self.domain_owner_mgr: DomainOwnerManager = self.locator.get_manager('DomainOwnerManager') @transaction(append_meta={'authorization.scope': 'DOMAIN'}) @check_required(['owner_id', 'password', 'domain_id']) def create(self, params): """ Create domain owner Args: params (dict): { 'owner_id': 'str', 'password': '<PASSWORD>', 'name': 'str', 'email': 'str', 'language': 'str', 'timezone': 'str', 'domain_id': 'str' } Returns: domain_owner_vo (object) """ if 'timezone' in params: self._check_timezone(params['timezone']) return self.domain_owner_mgr.create_owner(params) @transaction(append_meta={'authorization.scope': 'DOMAIN'}) @check_required(['owner_id', 'domain_id']) def update(self, params): """ Update domain owner Args: params (dict): { 'owner_id': 'str', 'password': '<PASSWORD>', 'name': 'str', 'email': 'str', 'language': 'str', 'timezone': 'str', 'domain_id': 'str' } Returns: domain_owner_vo (object) """ if 'timezone' in params: self._check_timezone(params['timezone']) return self.domain_owner_mgr.update_owner(params) @transaction(append_meta={'authorization.scope': 'DOMAIN'}) @check_required(['domain_id', 'owner_id']) def delete(self, params): """ Delete domain owner Args: params (dict): { 'owner_id': 'str', 'domain_id': 'str' } Returns: None """ self.domain_owner_mgr.delete_owner(params['domain_id'], params['owner_id']) @transaction(append_meta={'authorization.scope': 'DOMAIN'}) @check_required(['domain_id']) def get(self, params): """ Delete domain owner Args: params (dict): { 'owner_id': 'str', 'domain_id': 'str', 'only': 'list' } Returns: domain_owner_vo (object) """ return self.domain_owner_mgr.get_owner(params['domain_id'], params.get('owner_id'), params.get('only')) @staticmethod def _check_timezone(timezone): if timezone not in pytz.all_timezones: raise ERROR_INVALID_PARAMETER(key='timezone', reason='Timezone is invalid.') ``` #### File: test/api/test_authentication.py ```python import json import os import unittest import pprint from google.protobuf.json_format import MessageToDict from spaceone.core import utils, pygrpc from spaceone.core.auth.jwt import JWTUtil class TestAuthentication(unittest.TestCase): config = utils.load_yaml_from_file( os.environ.get('SPACEONE_TEST_CONFIG_FILE', './config.yml')) pp = pprint.PrettyPrinter(indent=4) domain = None api_key_info = None api_key = None identity_v1 = None owner_id = None owner_pw = utils.generate_password() owner_token = None @classmethod def setUpClass(cls): super(TestAuthentication, cls).setUpClass() endpoints = cls.config.get('ENDPOINTS', {}) cls.identity_v1 = pygrpc.client(endpoint=endpoints.get('identity', {}).get('v1'), version='v1') cls._create_domain() cls._create_domain_owner() cls._issue_owner_token() @classmethod def tearDownClass(cls): super(TestAuthentication, cls).tearDownClass() cls.identity_v1.DomainOwner.delete( { 'domain_id': cls.domain.domain_id, 'owner_id': cls.owner_id }, metadata=(('token', cls.owner_token),) ) cls.identity_v1.Domain.delete( { 'domain_id': cls.domain.domain_id }, metadata=(('token', cls.owner_token),) ) if cls.api_key_info: cls.identity_v1.APIKey.delete( { 'api_key_id': cls.api_key_info.api_key_id }, metadata=(('token', cls.owner_token),) ) @classmethod def _create_domain(cls): name = utils.random_string() params = { 'name': name } cls.domain = cls.identity_v1.Domain.create( params, metadata=(('token', cls.owner_token),) ) @classmethod def _create_api_key(cls): params = { 'domain_id': cls.domain.domain_id } api_key_info = cls.identity_v1.APIKey.create( params, metadata=(('token', cls.owner_token),) ) cls.api_key_info = api_key_info cls.api_key = api_key_info.api_key @classmethod def _create_domain_owner(cls): cls.owner_id = utils.random_string() params = { 'owner_id': cls.owner_id, 'password': <PASSWORD>, 'domain_id': cls.domain.domain_id } owner = cls.identity_v1.DomainOwner.create( params ) cls.domain_owner = owner @classmethod def _issue_owner_token(cls): token_param = { 'user_type': 'DOMAIN_OWNER', 'user_id': cls.owner_id, 'credentials': { 'password': <PASSWORD> }, 'domain_id': cls.domain.domain_id } issue_token = cls.identity_v1.Token.issue(token_param) cls.owner_token = issue_token.access_token def setUp(self): self.user = None self.user_params = None self.token = None def tearDown(self): if self.user: print(f'[tearDown] Delete User. {self.user.user_id}') self.identity_v1.User.delete( { 'user_id': self.user.user_id, 'domain_id': self.domain.domain_id }, metadata=(('token', self.owner_token),) ) def _print_data(self, message, description=None): print() if description: print(f'[ {description} ]') self.pp.pprint(MessageToDict(message, preserving_proto_field_name=True)) def _create_user(self, user_type=None, backend=None): self.user_params = { 'user_id': utils.random_string() + '@mz.co.kr', 'password': utils.generate_password(), 'name': 'Steven' + utils.random_string(), 'timezone': 'Asia/Seoul', 'user_type': user_type or 'USER', 'backend': backend or 'LOCAL', 'domain_id': self.domain.domain_id } self.user = self.identity_v1.User.create( self.user_params, metadata=(('token', self.owner_token),) ) self._print_data(self.user, '_create_user') def _issue_token(self): params = { 'user_id': self.user.user_id, 'credentials': { 'password': <PASSWORD>['password'] }, 'domain_id': self.domain.domain_id } self.token = self.identity_v1.Token.issue(params) decoded = JWTUtil.unverified_decode(self.token.access_token) print() print('[ _issue_token: decoded token ]') self.pp.pprint(decoded) def _get_user(self): params = { 'user_id': self.user.user_id } user = self.identity_v1.User.get( params, metadata=( ('token', self.token.access_token), ) ) self._print_data(user, '_get_user') def test_id_pw_authentication(self): self._create_user() self._issue_token() self._get_user() def test_get_public_key(self): params = { 'domain_id': self.domain.domain_id } secret = self.identity_v1.Domain.get_public_key(params) self.assertEqual(self.domain.domain_id, secret.domain_id) key = json.loads(secret.public_key) self.assertEqual("RSA", key['kty']) ``` #### File: test/api/test_domain_owner.py ```python import os import random import unittest from langcodes import Language from spaceone.core import utils, pygrpc from spaceone.core.unittest.runner import RichTestRunner class TestDomainOwner(unittest.TestCase): config = utils.load_yaml_from_file( os.environ.get('SPACEONE_TEST_CONFIG_FILE', './config.yml')) @classmethod def setUpClass(cls): super(TestDomainOwner, cls).setUpClass() @classmethod def tearDownClass(cls): super(TestDomainOwner, cls).tearDownClass() def setUp(self): endpoints = self.config.get('ENDPOINTS', {}) self.identity_v1 = pygrpc.client(endpoint=endpoints.get('identity', {}).get('v1'), version='v1') self.domain = None self.domain_owner = None self._create_domain() def tearDown(self): if self.domain_owner: print(f'[TearDown] Delete domain owner. (domain_id: {self.domain.domain_id})') params = { 'domain_id': self.domain.domain_id, 'owner_id': self.domain_owner.owner_id } self.identity_v1.DomainOwner.delete( params, metadata=(('token', self.owner_token),) ) if self.domain: print(f'[TearDown] Delete domain. (domain_id: {self.domain.domain_id})') self.identity_v1.Domain.delete( { 'domain_id': self.domain.domain_id }, metadata=(('token', self.owner_token),) ) def _create_domain(self): name = utils.random_string() params = { 'name': name } self.domain = self.identity_v1.Domain.create(params) def _issue_owner_token(self, owner_id, owner_pw): token_params = { 'user_type': 'DOMAIN_OWNER', 'user_id': owner_id, 'credentials': { 'password': <PASSWORD> }, 'domain_id': self.domain.domain_id } issue_token = self.identity_v1.Token.issue(token_params) self.owner_token = issue_token.access_token def test_create_owner(self): lang_code = random.choice(['zh-hans', 'jp', 'ko', 'en', 'es']) language = Language.get(lang_code) owner_id = utils.random_string() params = { 'owner_id': owner_id, 'password': utils.generate_password(), 'name': 'Steven' + utils.random_string(), 'language': language.__str__(), 'timezone': 'Asia/Seoul', 'email': 'Steven' + utils.random_string() + '@mz.co.kr', 'domain_id': self.domain.domain_id } owner = self.identity_v1.DomainOwner.create( params ) self.domain_owner = owner self.params = params self.assertEqual(params['name'], self.domain_owner.name) self._issue_owner_token(params['owner_id'], params['password']) def test_failure_create_two_owners(self): self.test_create_owner() with self.assertRaises(Exception) as e: self.test_create_owner() self.assertIn("ERROR_NOT_UNIQUE", str(e.exception)) def test_update_owner(self): self.test_create_owner() self.params['owner_id'] = self.domain_owner.owner_id self.params['name'] = '<NAME>' owner = self.identity_v1.DomainOwner.update( self.params, metadata=(('token', self.owner_token),) ) self.assertEqual(owner.name, self.params['name']) def test_get_domain_owner(self): self.test_create_owner() params = { 'owner_id': self.domain_owner.owner_id, 'domain_id': self.domain.domain_id } owner = self.identity_v1.DomainOwner.get( params, metadata=(('token', self.owner_token),) ) self.assertEqual(owner.name, self.domain_owner.name) def test_get_domain_owner_with_domain_id(self): self.test_create_owner() params = { 'domain_id': self.domain.domain_id } owner = self.identity_v1.DomainOwner.get( params, metadata=(('token', self.owner_token),) ) self.assertEqual(owner.name, self.domain_owner.name) def test_failure_get_not_exist_owner(self): self.test_create_owner() params = { 'domain_id': 'no-domain', 'owner_id': 'no-owner' } with self.assertRaises(Exception) as e: self.identity_v1.DomainOwner.get( params, metadata=(('token', self.owner_token),) ) self.assertIn('ERROR_NOT_FOUND', str(e.exception)) if __name__ == "__main__": unittest.main(testRunner=RichTestRunner) ``` #### File: test/api/test_endpoint.py ```python import os import unittest import pprint from google.protobuf.json_format import MessageToDict from spaceone.core import utils, pygrpc from spaceone.core.unittest.runner import RichTestRunner class TestEndpoint(unittest.TestCase): config = utils.load_yaml_from_file( os.environ.get('SPACEONE_TEST_CONFIG_FILE', './config.yml')) pp = pprint.PrettyPrinter(indent=4) identity_v1 = None domain = None domain_owner = None owner_id = None owner_pw = None owner_token = None @classmethod def setUpClass(cls): super(TestEndpoint, cls).setUpClass() endpoints = cls.config.get('ENDPOINTS', {}) cls.identity_v1 = pygrpc.client(endpoint=endpoints.get('identity', {}).get('v1'), version='v1') cls._create_domain() cls._create_domain_owner() cls._issue_owner_token() @classmethod def tearDownClass(cls): super(TestEndpoint, cls).tearDownClass() cls.identity_v1.DomainOwner.delete( { 'domain_id': cls.domain.domain_id, 'owner_id': cls.owner_id }, metadata=(('token', cls.owner_token),) ) print(f'>> delete domain owner: {cls.owner_id}') if cls.domain: cls.identity_v1.Domain.delete( { 'domain_id': cls.domain.domain_id }, metadata=(('token', cls.owner_token),) ) print(f'>> delete domain: {cls.domain.name} ({cls.domain.domain_id})') @classmethod def _create_domain(cls): name = utils.random_string() params = { 'name': name } cls.domain = cls.identity_v1.Domain.create(params) print(f'domain_id: {cls.domain.domain_id}') print(f'domain_name: {cls.domain.name}') @classmethod def _create_domain_owner(cls): cls.owner_id = utils.random_string() cls.owner_pw = utils.generate_password() owner = cls.identity_v1.DomainOwner.create({ 'owner_id': cls.owner_id, 'password': <PASSWORD>, 'domain_id': cls.domain.domain_id }) cls.domain_owner = owner print(f'owner_id: {cls.owner_id}') print(f'owner_pw: {cls.owner_pw}') @classmethod def _issue_owner_token(cls): token_params = { 'user_type': 'DOMAIN_OWNER', 'user_id': cls.owner_id, 'credentials': { 'password': <PASSWORD> }, 'domain_id': cls.domain.domain_id } issue_token = cls.identity_v1.Token.issue(token_params) cls.owner_token = issue_token.access_token def setUp(self): pass def tearDown(self): pass def _print_data(self, message, description=None): print() if description: print(f'[ {description} ]') self.pp.pprint(MessageToDict(message, preserving_proto_field_name=True)) def test_list_endpoints(self): params = {} result = self.identity_v1.Endpoint.list( params, metadata=(('token', self.owner_token),)) self._print_data(result, 'test_list_endpoints') if __name__ == '__main__': unittest.main(testRunner=RichTestRunner) ```
{ "source": "jeovazero/zoas-store-api-graphql", "score": 2 }
#### File: flaskr/controllers/product.py ```python from ..models import ProductModel from flaskr import db from flaskr.graphqlr.errors import INVALID_PRODUCT_ID, ZoasError Session = db.session class ProductController: @staticmethod def get(id: str): product = Session.query(ProductModel).filter_by(id=id).first() if not product: raise ZoasError(INVALID_PRODUCT_ID) else: return product ``` #### File: graphqlr/cart/types.py ```python from graphene import ( ObjectType, List, Int, String, Float, InputObjectType, relay, Field, ) from ..mixins import SessionMixin from flaskr.models import ProductCartModel from flaskr import db DbSession = db.session class PhotoProductCart(ObjectType): """A photo of a product in the cart""" url = String() class ProductCart(ObjectType, SessionMixin): """A product in the cart""" product_id = Int() title = String() description = String() price = Float() quantity = Int() photos = List(PhotoProductCart) class Meta: interfaces = (relay.Node,) @classmethod def get_node(cls, info, id): prod_cart = ( DbSession.query(ProductCartModel) .filter_by(cart_id=cls.sid(), product_id=id) .first() ) if prod_cart is not None: return ProductCart(prod_cart) return prod_cart def __init__(self, prodcart): self.id = prodcart.product_id self.product_id = prodcart.product_id self.title = prodcart.product.title self.description = prodcart.product.description self.price = prodcart.product.price self.quantity = prodcart.quantity self.photos = prodcart.product.photos class Address(ObjectType): """A address of a customer""" city = String() country = String() zipcode = String() street = String() number = String() district = String() class AddressInput(InputObjectType): """A address input of a customer""" city = String(required=True) country = String(required=True) zipcode = String(required=True) street = String(required=True) number = String(required=True) district = String(required=True) class CreditCardInput(InputObjectType): """A credit card input of a customer""" card_number = String(required=True) expiration_date = String(required=True) cvv = String(required=True) class PurchaseResult(ObjectType): """A purchase result of a customer""" customer = String() address = Field(Address) total_paid = Float() products_paid = List(ProductCart) ``` #### File: tests/helpers/api.py ```python from .func import encode_base64 def create_cart(client, uid): return client.post( "/graphql", json={ "query": """ mutation { createCart(input: {""" f'clientMutationId: "{uid}"' """}) { clientMutationId confirmation } } """ }, ) def delete_cart(client, mutation_id): return client.post( "/graphql", json={ "query": """ mutation{ deleteCart(input: {""" f'clientMutationId: "{mutation_id}"' """}){ clientMutationId confirmation } } """ }, ) def get_cart(client): return client.post( "/graphql", json={ "query": """ query { cart { id productId quantity price photos { url } } } """ }, ) def put_product_cart(client, pid, qtd, uid): id = encode_base64(f"Product:{pid}") return client.post( "/graphql", json={ "query": """ mutation { putProductToCart(input: {""" f'id: "{id}", quantity: {qtd}, clientMutationId: "{uid}"' """}){ clientMutationId payload{ id productId quantity price photos { url } } } } """ }, ) def remove_product_cart(client, pid, uid): id = encode_base64(f"ProductCart:{pid}") return client.post( "/graphql", json={ "query": """ mutation { removeProductOfCart(input: {""" f'id: "{id}", clientMutationId: "{uid}"' """}) { clientMutationId payload{ id productId quantity price photos { url } } } } """ }, ) def get_product(client, pid): id = encode_base64(f"Product:{pid}") return client.post( "/graphql", json={ "query": """ query {""" f'product(id: "{id}")' """{ id title photos { url } price description avaliable avaliability } } """ }, ) def get_product_cart(client, pid): id = encode_base64(f"ProductCart:{pid}") return client.post( "/graphql", json={ "query": """ query {""" f'node(id: "{id}")' """{ ...on ProductCart { id title productId quantity price photos { url } } } } """ }, ) def unpack_dict(d): s = [] for key, val in d.items(): r = ( ("{ " + unpack_dict(val) + " }") if isinstance(d[key], dict) else f'"{val}"' ) s.append(f"{key}: {r}") return ",".join(s) def pay_cart(client, payload, mutation_id): client_mutation_id = f'clientMutationId: "{mutation_id}"' params = unpack_dict(payload) + ", " + client_mutation_id mutation = ( """ mutation { payCart(input: {""" f"{params}" """}) { clientMutationId payload{ customer address { city country zipcode street number district } totalPaid productsPaid { id productId title description photos { url } price quantity } } } } """ ) return client.post("/graphql", json={"query": mutation}) ``` #### File: zoas-store-api-graphql/tests/test_query_cart.py ```python from .helpers import api from .helpers.func import add_fake_cart_products def test_query_get_cart(client): # add fake cart with products in database add_fake_cart_products(client) # request response = api.get_cart(client) # json of response json = response.get_json() cart = json["data"]["cart"] # asserts assert len(cart) == 2 assert cart[0]["productId"] == 1 assert cart[1]["productId"] == 2 def test_invalid_session(client): # add fake cart with products in database add_fake_cart_products(client) # Setting the invalid session id with client.session_transaction() as session: session["u"] = "fake_session" # request response = api.get_cart(client) # json of response json = response.get_json() # asserts assert json["data"]["cart"] is None assert json["errors"] is not None assert ( json["errors"][0]["message"] == "The session has expired or is invalid" ) assert json["errors"][0]["code"] == "INVALID_SESSION" ```
{ "source": "jeoygin/gadget", "score": 3 }
#### File: algorithms/rect/rect-area.py ```python import os, sys from rects import Rect, rect_area, load_rect_from_file, load_rect_from_path def main(argv): if len(argv) > 0: checkfile(argv[0]) rects = load_rect_from_path(argv[0]) else: rects = load_rect_from_file(sys.stdin) print rect_area(rects) def checkfile(path): if not os.path.isfile(path): print 'No such file: {0}'.format(path) sys.exit(1) if __name__ == "__main__": main(sys.argv[1:]) ``` #### File: caffe/print/print.py ```python import sys import yaml import pprint def print_model(conf): pp = pprint.PrettyPrinter() pp.pprint(conf) sys.path.insert(0, conf['caffeRoot'] + 'python') import caffe net = caffe.Net(conf['proto'], conf['model'], caffe.TEST) print("\n======================================================") print("blobs: {}\nparams: {}".format(net.blobs.keys(), net.params.keys())) print("======================================================") for param in conf['params']: print '{}:'.format(param) print 'weights are {} dimensional'.format(net.params[param][0].data.shape) shape = net.params[param][0].data.shape for i in range(shape[0]): for j in range(shape[1]): print '{}-{}:'.format(i+1, j+1) print net.params[param][0].data[i][j] print '\nbiases are {} dimensional'.format(net.params[param][1].data.shape) print '{}'.format(net.params[param][1].data) print("======================================================") def main(argv): if (len(argv) < 1): print 'Usage: ' + sys.argv[0] + ' conf.yml' sys.exit(1) with open(argv[0], 'r') as f: print_model(yaml.load(f)) if __name__ == "__main__": main(sys.argv[1:]) ``` #### File: gadget/yaodao/yaodao_dict.py ```python import os import sys import json import cookielib, urllib2, urllib import getpass import argparse import hashlib import requests class SmartRedirectHandler(urllib2.HTTPRedirectHandler): def http_error_302(self, req, fp, code, msg, headers): result = urllib2.HTTPRedirectHandler.http_error_302(self, req, fp, code, msg, headers) result.status = code result.headers = headers return result fake_header = [ ('User-Agent', 'Mozilla/5.0 (Macintosh Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/47.0.2526.106 Safari/537.36'), ('Content-Type', 'application/x-www-form-urlencoded'), ('Cache-Control', 'no-cache'), ('Accept', '*/*'), ('Connection', 'Keep-Alive'), ] class YaoDaoDict(object): def __init__(self, username, password, cookie_filename='youdao_cookie', local_store='store'): self.username = username self.password = password self.cookie_filename = cookie_filename self.local_store = local_store self.cj = cookielib.LWPCookieJar(cookie_filename) if os.access(cookie_filename, os.F_OK): self.cj.load(cookie_filename, ignore_discard=True, ignore_expires=True) self.opener = urllib2.build_opener( SmartRedirectHandler(), urllib2.HTTPHandler(debuglevel=0), urllib2.HTTPSHandler(debuglevel=0), urllib2.HTTPCookieProcessor(self.cj) ) self.opener.addheaders = fake_header def login(self): self.cj.clear() self.opener.open('http://account.youdao.com/login?back_url=http://dict.youdao.com&service=dict') login_data = urllib.urlencode({ 'app' : 'web', 'tp' : 'urstoken', 'cf' : '7', 'fr' : '1', 'ru' : 'http://dict.youdao.com', 'product' : 'DICT', 'type' : '1', 'um' : 'true', 'username' : self.username, 'password' : self.password, 'savelogin' : '1', }) response = self.opener.open('https://logindict.youdao.com/login/acc/login', login_data) if response.headers.get('Set-Cookie').find(self.username) > -1: self.cj.save(self.cookie_filename, ignore_discard=True, ignore_expires=True) return True else: return False def query(self, keyfrom, key, word): local_file = '{}/{}.json'.format(self.local_store, word.lower()) if os.access(local_file, os.F_OK): try: with open(local_file, 'r') as f: data = json.load(f.read()) if 'basic' in data: return data except Exception: pass url = 'http://fanyi.youdao.com/openapi.do?keyfrom={}&key={}&type=data&doctype=json&version=1.1&q={}'.format(keyfrom, key, word) r = requests.get(url) if r.status_code == 200: with open(local_file, 'w') as f: f.write(json.dumps(r.json())) return r.json() else: return None def add_word(self, word, desc, phonetic, tags): post_data = urllib.urlencode({ 'word' : word, 'phonetic' : unicode(phonetic).encode('utf-8'), 'desc': unicode(desc).encode('utf-8'), 'tags' : unicode(tags).encode('utf-8'), }) self.opener.addheaders = fake_header + [ ('Referer', 'http://dict.youdao.com/wordbook/wordlist'), ] response = self.opener.open('http://dict.youdao.com/wordbook/wordlist?action=add', post_data) return response.headers.get('Location') == 'http://dict.youdao.com/wordbook/wordlist' ```
{ "source": "jepabe/Demo_earth2", "score": 2 }
#### File: python/ee/_helpers.py ```python import contextlib import json import sys # pylint: disable=g-importing-member from . import data from . import oauth from .apifunction import ApiFunction from .ee_exception import EEException # pylint: enable=g-importing-member import six from google.auth import crypt from google.oauth2 import service_account from google.oauth2.credentials import Credentials def _GetPersistentCredentials(): """Read persistent credentials from ~/.config/earthengine. Raises EEException with helpful explanation if credentials don't exist. Returns: OAuth2Credentials built from persistently stored refresh_token """ try: tokens = json.load(open(oauth.get_credentials_path())) refresh_token = tokens['refresh_token'] return Credentials( None, refresh_token=refresh_token, token_uri=oauth.TOKEN_URI, client_id=oauth.CLIENT_ID, client_secret=oauth.CLIENT_SECRET, scopes=oauth.SCOPES) except IOError: raise EEException('Please authorize access to your Earth Engine account ' 'by running\n\nearthengine authenticate\n\nin your ' 'command line, and then retry.') def ServiceAccountCredentials(email, key_file=None, key_data=None): """Configure OAuth2 credentials for a Google Service Account. Args: email: The email address of the account for which to configure credentials. Ignored if key_file or key_data represents a JSON service account key. key_file: The path to a file containing the private key associated with the service account. Both JSON and PEM files are supported. key_data: Raw key data to use, if key_file is not specified. Returns: An OAuth2 credentials object. """ # Assume anything that doesn't end in '.pem' is a JSON key. if key_file and not key_file.endswith('.pem'): return service_account.Credentials.from_service_account_file( key_file, scopes=oauth.SCOPES) # If 'key_data' can be decoded as JSON, it's probably a raw JSON key. if key_data: try: key_data = json.loads(key_data) return service_account.Credentials.from_service_account_info( key_data, scopes=oauth.SCOPES) except ValueError: # It may actually be a raw PEM string, we'll try that below. pass # Probably a PEM key - just read the file into 'key_data'. if key_file: with open(key_file, 'r') as file_: key_data = file_.read() # Raw PEM key. signer = crypt.RSASigner.from_string(key_data) return service_account.Credentials( signer, email, oauth.TOKEN_URI, scopes=oauth.SCOPES) def call(func, *args, **kwargs): """Invoke the given algorithm with the specified args. Args: func: The function to call. Either an ee.Function object or the name of an API function. *args: The positional arguments to pass to the function. **kwargs: The named arguments to pass to the function. Returns: A ComputedObject representing the called function. If the signature specifies a recognized return type, the returned value will be cast to that type. """ if isinstance(func, six.string_types): func = ApiFunction.lookup(func) return func.call(*args, **kwargs) def apply(func, named_args): # pylint: disable=redefined-builtin """Call a function with a dictionary of named arguments. Args: func: The function to call. Either an ee.Function object or the name of an API function. named_args: A dictionary of arguments to the function. Returns: A ComputedObject representing the called function. If the signature specifies a recognized return type, the returned value will be cast to that type. """ if isinstance(func, six.string_types): func = ApiFunction.lookup(func) return func.apply(named_args) @contextlib.contextmanager def profilePrinting(destination=sys.stderr): # pylint: disable=g-doc-return-or-yield """Returns a context manager that prints a profile of enclosed API calls. The profile will be printed when the context ends, whether or not any error occurred within the context. # Simple example: with ee.profilePrinting(): print ee.Number(1).add(1).getInfo() Args: destination: A file-like object to which the profile text is written. Defaults to sys.stderr. """ # TODO(user): Figure out why ee.Profile.getProfiles isn't generated and fix # that. getProfiles = ApiFunction.lookup('Profile.getProfiles') profile_ids = [] try: with data.profiling(profile_ids.append): yield finally: profile_text = getProfiles.call(ids=profile_ids).getInfo() destination.write(profile_text) ```
{ "source": "jepayne1138/ModularMailer-ClassifierNetwork", "score": 2 }
#### File: ModularMailer-ClassifierNetwork/classifiernetwork/console.py ```python import argparse import sys import classifiernetwork.defaults as defaults SUPPORTED_OBJECTIVES = ( 'mean_squared_error', 'mse', 'mean_absolute_error', 'mae', 'mean_absolute_percentage_error', 'mape', 'mean_squared_logarithmic_error', 'msle', 'squared_hinge', 'hinge', 'binary_crossentropy', 'categorical_crossentropy', 'sparse_categorical_crossentropy', 'kullback_leibler_divergence', 'kld', 'poisson', 'cosine_proximity', ) SUPPORTED_ACTIVATIONS = ( 'softmax', 'softplus', 'softsign', 'relu', 'tanh', 'sigmoid', 'hard_sigmoid', 'linear', ) def _build_training_subparser(train_parser): """Create the options for the 'train' subparser""" train_parser.add_argument( 'input_vectors', type=str, help='Path to the numpy array of input vectors (.npy file).' ) train_parser.add_argument( 'output_vectors', type=str, help='path to the numpy array of output vectors (.npy file)' ) train_parser.add_argument( 'save_name', type=str, help='Save trained network file name.' ) train_parser.add_argument( '-o', '--output-directory', type=str, help='Directory for output file. Defaults to input_vectors location.' ) # Network compilation option compile_group = train_parser.add_argument_group( title='Compilation options', description='Options for the structure of the network.' ) compile_group.add_argument( '-i', '--hidden-size', type=int, help='Size of the hidden layer. Defaults to geometric_mean(in, out).' ) compile_group.add_argument( '-a', '--activation', type=str, default=defaults.ACTIVATION, choices=SUPPORTED_ACTIVATIONS, help='Activation function for the hidden layer (see Keras docs).' ) compile_group.add_argument( '-p', '--dropout', type=float, default=defaults.DROPOUT, help='Fraction of the input units to drop.' ) compile_group.add_argument( '-l', '--loss', type=str, default=defaults.LOSS, choices=SUPPORTED_OBJECTIVES, help='The string identifier of an optimizer (see Keras docs).' ) # Options for the stochastic gradient descent optimizer sgd_group = train_parser.add_argument_group( title='Stochastic Gradient Descent optimizer (SGD) options', description='The network is trained using a SGD optimizer.' ) sgd_group.add_argument( '-r', '--learning-rate', type=float, default=defaults.LEARNING_RATE, help='Learning rate.' ) sgd_group.add_argument( '-m', '--momentum', type=float, default=defaults.MOMENTUM, help='Number of epochs to train the network.' ) sgd_group.add_argument( '-d', '--decay', type=float, default=defaults.DECAY, help='Learning rate decay over each update.' ) sgd_group.add_argument( '-n', '--nesterov', action='store_true', help='Apply Nesterov momentum to the SGD optimizer.' ) # Options for training the model train_group = train_parser.add_argument_group( title='Training options', description='Options for how the network is to be trained.' ) train_group.add_argument( '-e', '--epochs', type=int, default=defaults.EPOCH, help='The number of epochs to train the model.' ) train_group.add_argument( '-s', '--validation-split', type=float, help='Fraction of the data to use as held-out validation data.' ) train_group.add_argument( '--v', '--verbose', type=int, default=defaults.VERBOSE, choices=(0, 1, 2), help='0 for no logging, 1 for progress bar, 2 for line per epoch.' ) train_group.add_argument( '-b', '--batch-size', type=int, help='Number of samples per gradient update.' ) def argument_parser(args): parser = argparse.ArgumentParser( description='Trains neural networks from labeled input data.' ) # Create subparser subparsers = parser.add_subparsers(dest='command') subparsers.required = True # Parse 'train' command train_parser = subparsers.add_parser( 'train', help='Train a neural network from the given input.' ) _build_training_subparser(train_parser) # Return parsed arguments return parser.parse_args(args) def main(): """Entry point for the console script usage of this package. Returns: int: Error return code. """ args = argument_parser(sys.argv[1:]) return 0 ```
{ "source": "jepayne1138/ModularMailer-PluginBase", "score": 2 }
#### File: ModularMailer-PluginBase/mmpluginbase/plugin_base.py ```python import abc class FileDriverBase(abc.ABC): def onLoad(self): pass @abc.abstractmethod def read(self, filename, **kwargs): pass ```
{ "source": "jepayne1138/PTCAccount", "score": 3 }
#### File: PTCAccount/ptcaccount/accountcreator.py ```python from six.moves import range import random import string # urllib imports supporting Python 2 and 3 try: # Python 3 from urllib.parse import urlencode except ImportError: # Python 2 from urllib import urlencode import requests from ptcaccount.ptcexceptions import * __all__ = [ 'create_account', 'random_account', 'PROVIDER', 'USERNAME', 'PASSWORD', 'EMAIL' ] # Constants defining the keys of the returned account dictionary PROVIDER = 'provider' USERNAME = 'username' PASSWORD = 'password' EMAIL = 'email' _PTC_PROVIDER = 'ptc' # Account provider (APIs take 'ptc' or 'google') # The base URL for Pokemon Trainer Club _BASE_URL = 'https://club.pokemon.com/us/pokemon-trainer-club' # Account creation validation is done by checking the response URLs # The following are control flow URL constants _SUCCESS_DESTS = ( 'https://club.pokemon.com/us/pokemon-trainer-club/parents/email', # This initially seemed to be the proper success redirect 'https://club.pokemon.com/us/pokemon-trainer-club/sign-up/', # but experimentally it now seems to return to the sign-up, but still registers ) # As both seem to work, we'll check against both success destinations until I have I better idea for how to check success _DUPE_EMAIL_DEST = 'https://club.pokemon.com/us/pokemon-trainer-club/forgot-password?msg=users.email.exists' _BAD_DATA_DEST = 'https://club.pokemon.com/us/pokemon-trainer-club/parents/sign-up' class PTCSession(requests.Session): """"A Session subclass handling creating, sending, & validating requests A likely unnecessary subclass of requests.Session, but I thought it helped to clean up the code. """ def request(self, url, headers=None, data=None, resp_code=None, **kwargs): """ Creates, sends, and validates a request for this session. If data parameter is provided, the request will be POST, otherwise a GET request is sent If a specific response status code is expected, set the resp_code parameter and the status code of the response will be validated after sending the request. If the status codes doesn't match, an exception is raised. Args: url (str): URL to send. headers (dict, optional): Headers to send. Defaults to {}. data (dict, optional): Data for a POST request. Defaults to {}. resp_code (int, optional): Check if this status code was returned upon receiving a response. If no desired code is given, no check will be made to validate the response status_code. Defaults to None. **kwargs: Keyword arguments passed to the Request object. Returns: requests.Response: The Response object for the sent request. Raises: PTCInvalidStatusCodeException: If a desired response code was provided (resp_code), raise this exception if the actual response status codes does not match the desired code. """ # Set headers to an empty dict if no argument provided headers = {} if headers is None else headers # Encode the data dict if provided if isinstance(data, dict): data = urlencode(data, doseq=True) # If data provided, the request must be a POST method method = 'POST' if data else 'GET' # Create, prepare, and send the request req = requests.Request(method, url, data=data, **kwargs) prepped = self.prepare_request(req) prepped.headers.update(headers) resp = self.send(prepped) # Validate the status_code if a desired code was given if resp_code is not None and resp.status_code != resp_code: raise PTCInvalidStatusCodeException(str(resp.status_code)) # Return the Response object return resp def _random_string(length=15): """Generate a random alpha-numeric string of the given length Args: length (int, optional): Length of the string to randomly generate. Defaults to 15. Returns: str: String of the desired length consiting of upper, lower, and numeric characters. """ return ''.join( [random.choice(string.ascii_letters + string.digits) for _ in range(length)] ) def _random_email(local_length=10, sub_domain_length=5, top_domain='.com'): """Generate a random email-like string Generates a random email-like string (i.e. [email protected]). The length of both the local section and sub-domain section can be modified, and a different top-level domain can be set. Args: local_length (int, optional): Length of the local portion of the fake email. Defaults to 10. sub_domain_length (int, optional): Length of the sub-domain portion of the fake email. Defaults to 5. top_domain (str, optional): String to append to the end of the fake email as the top-level domain. Defaults to '.com' Returns: str: Random email-like string. """ return '{local}@{sub_domain}{top_domain}'.format( local=_random_string(local_length), sub_domain=_random_string(sub_domain_length), top_domain=top_domain, ) def _validate_password(password): """Validates that the password can be used to create a PTC account As currently the only requirement I am aware of is a length restriction, this only checks that the give password string is between 6 and 15 characters long. If I determine any other restrictions, they can be added here later. Args: password (str, optional): Password to be validated. Returns: bool: True if the password is valid. (Does not return false, rather raise exception with description of invalid nature.) Raises: PTCInvalidPasswordException: If the given password is not a valid password that can be used to make an account. (Currently just validates length, so this means the given password was not between 6 and 15 characters long.) """ # Check that password length is between 6 and 15 characters long if len(password) < 6 or len(password) > 15: raise PTCInvalidPasswordException('Password must be between 6 and 15 characters.') return True def _tag_email(email_address, tag): """Add a plus sign and the tag before the first at sign in the email Args: email_address (str): Email address tag is to be added to. tag (str): Tag to add after the plus sign before first at sign. Returns: str: Email with the tag added. """ return email_address.replace('@', '+{}@'.format(tag), 1) def create_account(username, password, email): """Creates a new Pokemon Trainer Club account Creates a new PTC account with the given username, password and email. Currently sets the following account settings: - Date of birth: 1970-01-01 - Country: US - Public profile: False - Screen name: '' Args: username (str): Username for the PTC account password (str): Password for the PTC account email (str): Email for the PtC account Returns: bool: True if the account was successfully created. (Should not ever return false, rather raise exceptions detailing type of failure.) Raises: PTCInvalidNameException: If the given username is already in use. PTCInvalidPasswordException: If the given password is not a valid password that can be used to make an account. (Currently just validates length, so this means the given password was not between 6 and 15 characters long.) PTCInvalidEmailException: If the given email was either in an invalid format (i.e. not [email protected]) or the email is already registered to an existing account. PTCInvalidStatusCodeException: If an invalid status code was received at any time. (Server or underlying code issue; try again and submit bug report on continues failure if creation works in browser.) """ # Validate a user given password if password is not None: _validate_password(password) # Set up the session session = PTCSession() successfully_created = False while not successfully_created: try: # (Emulates navigating to the sign-up age verification page) session.request( url='{base_url}/parents/sign-up'.format(base_url=_BASE_URL), headers={ # No headers required 'Host': 'club.pokemon.com', 'Connection': 'keep-alive', 'Upgrade-Insecure-Requests': '1', 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/51.0.2704.103 Safari/537.36', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8', 'Accept-Encoding': 'gzip, deflate, sdch, br', 'Accept-Language': 'en-US,en;q=0.8', }, resp_code=200 ) # Post request submitting date of birth and country session.request( url='{base_url}/sign-up/'.format(base_url=_BASE_URL), headers={ # Content-Type and Referer headers are required 'Host': 'club.pokemon.com', 'Cache-Control': 'max-age=0', 'Origin': 'https://club.pokemon.com', 'Upgrade-Insecure-Requests': '1', 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/51.0.2704.103 Safari/537.36', 'Content-Type': 'application/x-www-form-urlencoded', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8', 'Referer': '{base_url}/sign-up/'.format(base_url=_BASE_URL), 'Accept-Encoding': 'gzip, deflate, br', 'Accept-Language': 'en-US,en;q=0.8' }, data={ 'csrfmiddlewaretoken': session.cookies.get_dict()['csrftoken'], 'dob': '1970-01-01', 'country': 'US', }, resp_code=200 ) # Post request submitting account information resp = session.request( url='{base_url}/parents/sign-up'.format(base_url=_BASE_URL), headers={ # Content-Type and Referer headers are required 'Host': 'club.pokemon.com', 'Cache-Control': 'max-age=0', 'Origin': 'https://club.pokemon.com', 'Upgrade-Insecure-Requests': '1', 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/51.0.2704.103 Safari/537.36', 'Content-Type': 'application/x-www-form-urlencoded', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8', 'Referer': 'https://club.pokemon.com/us/pokemon-trainer-club/parents/sign-up', 'Accept-Encoding': 'gzip, deflate, br', 'Accept-Language': 'en-US,en;q=0.8' }, data={ 'csrfmiddlewaretoken': session.cookies.get_dict()['csrftoken'], 'username': username, 'password': password, 'confirm_password': password, 'email': email, 'confirm_email': email, 'public_profile_opt_in': 'False', 'screen_name': '', 'terms': 'on', }, resp_code=200 ) # Indicates that we created the account and can exit the retry loop successfully_created = True except PTCInvalidStatusCodeException: print("[-] Received invalid status code, retrying ...") # Validate response return _validate_response(resp) def _validate_response(resp): """Validate final request response to determine if account was created Args: resp (requests.Response): Response instance from sending a requests Returns: bool: True if the account was successfully created. (Should not ever return false, rather raise exceptions detailing type of failure.) Raises: PTCInvalidNameException: If the given username is already in use. PTCInvalidPasswordException: If the given password is not a valid password that can be used to make an account. (Currently just validates length, so this means the given password was not between 6 and 15 characters long.) PTCInvalidEmailException: If the given email was either in an invalid format (i.e. not <EMAIL>) or the email is already registered to an existing account. PTCInvalidStatusCodeException: If an invalid status code was received at any time. (Server or underlying code issue; try again and submit bug report on continues failure if creation works in browser.) """ if resp.url in _SUCCESS_DESTS: return True elif resp.url == _DUPE_EMAIL_DEST: raise PTCInvalidEmailException('Email already in use.') elif resp.url == _BAD_DATA_DEST: if 'Enter a valid email address.' in resp.text: raise PTCInvalidEmailException('Invalid email.') else: raise PTCInvalidNameException('Username already in use.') else: raise PTCException('Generic failure. User was not created.') return False # Should never hit here def random_account(username=None, password=<PASSWORD>, email=None, email_tag=False): """Crate a random Pokemon Trainer Club account Creates a new account with random username, password, and email. If any of those parameters are given, use them instead of creating a random replacement. If a password is given, it must be valid, and an exception will be raised if the password is not acceptable. New random strings will be generated for username and email on a failure so that eventually a new account will be successfully created. However, if a specific username or email was given and account creation fails, a new string will not be generated as it assumes the user wanted to use that specific value. Instead, and exception is raised indicating the reason for account creation failure. Args: username (str, optional): Specific username for the new account. Defaults to a random alpha-numeric string. password (str, optional): Specific password for the new account. Defaults to a random alpha-numeric string. email (str, optional): Specific email for the new account. Defaults to a randomly generated email-like string. email_tag (bool, optional): The username should be added as a tag to the email address. Defaults to False. Returns: Dict[str, str]: A dict of the new account information, containing the provider ('ptc'), username, password, and email. Access using the exposed constants PROVIDER, USERNAME, PASSWORD, and EMAIL. Raises: PTCInvalidNameException: If the given username is already in use. PTCInvalidPasswordException: If the given password is not a valid password that can be used to make an account. (Currently just validates length, so this means the given password was not between 6 and 15 characters long.) PTCInvalidEmailException: If the given email was either in an invalid format (i.e. not <EMAIL>) or the email is already registered to an existing account. PTCInvalidStatusCodeException: If an invalid status code was received at any time. (Server or underlying code issue; try again and submit bug report on continues failure if creation works in browser.) """ try_username = _random_string() if username is None else str(username) password = _random_string() if password is None else str(password) try_email = _random_email() if email is None else str(email) account_created = False while not account_created: # Add tag in loop so that it is update if email or username changes if email_tag: try_email = _tag_email(try_email, try_username) # Attempt to create the new account try: account_created = create_account( try_username, password, try_email ) except PTCInvalidNameException: # If no username was provided, create new username and try again if username is None: try_username = _random_string() else: # If username was provided, re-raise the exception for bad name raise except PTCInvalidEmailException: if email is None: try_email = _random_email() elif email_tag and username is None: # If the bad email has a tag of a random username, # re-generate a new username and try again try_username = _random_string() else: # If email was provided, re-raise the exception for bad email raise # Return the username, password, and email of the new account return { PROVIDER: _PTC_PROVIDER, USERNAME: try_username, PASSWORD: password, EMAIL: try_email, } ```
{ "source": "jepayne1138/TownMapServer", "score": 3 }
#### File: TownMapServer/townmapserver/console.py ```python import sys import argparse import townmapserver.database as database import townmapserver.server as server def build_run_parser(subparsers): run_parser = subparsers.add_parser( 'run', help='Run the server.' ) run_parser.add_argument( '-a', '--address', type=str, default='localhost', help='Host address for running the server' ) run_parser.add_argument( '-p', '--port', type=int, default=5000, help='Port for running the server' ) run_parser.add_argument( '-d', '--debug', action='store_true', help='Runs server in debug mode.' ) return run_parser def build_database_parser(subparsers): db_parser = subparsers.add_parser( 'database', help='Manage the database.' ) db_subparser = db_parser.add_subparsers(dest='subcommand') db_subparser.required = True # Create database subcommand db_create_parser = db_subparser.add_parser( 'create', help='Create the database schema from the defined models.' ) db_create_parser.add_argument( 'username', type=str, help='Name of Postgres login role with create permissions.' ) db_create_parser.add_argument( 'password', type=str, help='Password of Postgres login role with create permissions.' ) db_connection_uri_parser = db_subparser.add_parser( 'uri', help='Display the connection URI' ) return db_parser def parse_arguments(args): # Parse command line arguments parser = argparse.ArgumentParser( description='Manages the backend server API for the Town Map app' ) subparsers = parser.add_subparsers(dest='command') subparsers.required = True # Build command parsers build_run_parser(subparsers) build_database_parser(subparsers) return parser.parse_args(args) def handle_command_database(args): if args.subcommand == 'create': database.create_schema(server.flaskApp, args.username, args.password) if args.subcommand == 'uri': print(database.build_connection_uri()) def handle_command_run(args): server.launch_server(args.address, args.port, args.debug) def handle_command(args): globals()['handle_command_{}'.format(args.command)](args) # launch_server(args.address, args.port) def main(): args = parse_arguments(sys.argv[1:]) handle_command(args) ``` #### File: TownMapServer/townmapserver/database.py ```python import time import os import flask_sqlalchemy # To use, we need to create a settings.py modules in the same directory with # the following variables (USER, PASSWORD, HOST, PORT, DATABASE) db = flask_sqlalchemy.SQLAlchemy() class User(db.Model): userId = db.Column(db.Integer, primary_key=True) googleId = db.Column(db.String(32), unique=True) # TODO: Check length trainerName = db.Column(db.String(32), unique=True) trainerLevel = db.Column(db.Integer) def __init__(self, googleId, trainerName, trainerLevel=0): self.googleId = googleId self.trainerName = trainerName self.trainerLevel = trainerLevel # Database table definition class Catch(db.Model): catchId = db.Column(db.Integer, primary_key=True) userId = db.Column(db.Integer, db.ForeignKey('user.userId')) user = db.relationship('User', backref=db.backref('catches', lazy='joined')) usingLure = db.Column(db.Boolean) usingIncense = db.Column(db.Boolean) creatureId = db.Column(db.Integer) latitude = db.Column(db.Float) longitude = db.Column(db.Float) catchTime = db.Column(db.Float) # Store as Unix time def __init__( self, user, creatureId, latitude, longitude, usingLure=False, usingIncense=False, catchTime=None): self.user = user self.creatureId = creatureId self.usingLure = usingLure self.usingIncense = usingIncense self.latitude = latitude self.longitude = longitude if catchTime is None: catchTime = time.time() self.catchTime = catchTime def initialize_app(app): app.config['SQLALCHEMY_DATABASE_URI'] = os.environ['DATABASE_URL'] # Disable Flask-SQLAlchemy tracking of modification to objects # See: http://flask-sqlalchemy.pocoo.org/2.1/config/ app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False with app.app_context(): db.init_app(app) def create_schema(app): initialize_app(app) with app.app_context(): db.create_all() ``` #### File: TownMapServer/townmapserver/server.py ```python import flask import flask_restful as restful import townmapserver.resources as resources import townmapserver.database as database flaskApp = flask.Flask(__name__) def add_resources(api, resource_list): """Add all resources to the api in the resource list. All objects in the resource_list must implement the ResourceBase abc. """ for resource in resource_list: api.add_resource( resource, *resource.urls(), endpoint=resource.endpoint() ) def launch_server(address, port, debug=False): # Initialize the Flask application database database.initialize_app(flaskApp) api = restful.Api(flaskApp) add_resources(api, resources.ResourceBase.__subclasses__()) # Run the server flaskApp.run(host=address, port=port, debug=debug) ```
{ "source": "jepcor97/agnpy", "score": 3 }
#### File: agnpy/constraints/spectral_constraints.py ```python import numpy as np import astropy.units as u from astropy.constants import e, sigma_T from ..utils.conversion import mec2 e = e.gauss __all__ = ["SpectralConstraints"] class SpectralConstraints: r""" Class to describe the self-consistency constraints on the electron energy distribution Parameters ---------- blob : :class: `Blob` emission region """ def __init__(self, blob): self.blob = blob @property def gamma_max_larmor(self): r"""maximum Lorentz factor of electrons that have their Larmour radius smaller than the blob radius: :math:`R_L < R_b`. The Larmor frequency and radius in Gaussian units read .. math:: \omega_L &= \frac{eB}{\gamma m_e c} \\ R_L &= \frac{v}{\omega_L} = \frac{\gamma m_e v c}{e B} \approx \frac{\gamma m_e c^2}{e B} therefore .. math:: R_L < R_b \Rightarrow \gamma_{\mathrm{max}} < \frac{R_b e B}{m_e c^2} """ return (self.blob.R_b * e * self.blob.B_cgs / mec2).to_value("") @property def gamma_max_ballistic(self): r"""Naive estimation of maximum Lorentz factor of electrons comparing acceleration time scale with ballistic time scale. For the latter we assume that the particles crosses the blob radius. .. math:: (\mathrm{d}E/\mathrm{d}t)_{\mathrm{acc}} &= \xi c E / R_L \\ T_{\mathrm{acc}} &= E \,/\,(\mathrm{d}E/\mathrm{d}t)_{\mathrm{acc}} = R_L / (\xi c) \\ T_{\mathrm{bal}} &= R_b / c \\ T_{\mathrm{acc}} &< T_{\mathrm{bal}} \Rightarrow \gamma_{\mathrm{max}} < \frac{\xi R_b e B}{m_e c^2} """ return self.blob.xi * self.gamma_max_larmor @property def gamma_max_synch(self): r"""Simple estimation of maximum Lorentz factor of electrons comparing the acceleration time scale with the synchrotron energy loss .. math:: (\mathrm{d}E/\mathrm{d}t)_{\mathrm{acc}} &= \xi c E / R_L \\ (\mathrm{d}E/\mathrm{d}t)_{\mathrm{synch}} &= 4 / 3 \sigma_T c U_B \gamma^2 \\ (\mathrm{d}E/\mathrm{d}t)_{\mathrm{acc}} &= (\mathrm{d}E/\mathrm{d}t)_{\mathrm{synch}} \Rightarrow \gamma_{\mathrm{max}} < \sqrt{\frac{6 \pi \xi e}{\sigma_T B}} """ return np.sqrt( 6 * np.pi * self.blob.xi * e / (sigma_T * self.blob.B_cgs) ).to_value("") @property def gamma_max_SSC(self): r"""Simple estimation of maximum Lorentz factor of electrons comparing the acceleration time scale with the SSC energy loss (in Thomson range) WARNING: the highest energy electrons will most often scatter in Klein-Nishina range instead .. math:: (\mathrm{d}E/\mathrm{d}t)_{\mathrm{acc}} &= \xi c E / R_L \\ (\mathrm{d}E/\mathrm{d}t)_{\mathrm{SSC}} &= 4 / 3 \sigma_T c U_{\mathrm{synch}} \gamma^2 \\ (\mathrm{d}E/\mathrm{d}t)_{\mathrm{acc}} &= (\mathrm{d}E/\mathrm{d}t)_{\mathrm{SSC}} \Rightarrow \gamma_{\mathrm{max}} < \sqrt{\frac{3 \xi e B }{\sigma_T U_SSC}} """ return np.sqrt( 3 * self.blob.xi * e * self.blob.B_cgs / (4 * sigma_T * self.blob.u_ph_synch) ).to_value("") def gamma_max_EC_DT(self, dt, r=0 * u.cm): r"""Simple estimation of maximum Lorentz factor of electrons comparing the acceleration time scale with the EC energy loss (in Thomson range, see B&G 1970), like in gamma_max_SSC WARNING: assumes Thomson regime .. math:: \gamma_{\mathrm{max}} = \sqrt{\frac{3 \xi e B }{ \sigma_T U'_\mathrm{ext}}} """ return np.sqrt( 3 * self.blob.xi * e * self.blob.B_cgs / (4 * sigma_T * dt.u(r, self.blob)) ).to_value("") @property def gamma_break_synch(self): r"""Simple estimation of the cooling break of electrons comparing synchrotron cooling time scale with the ballistic time scale: .. math:: T_{\mathrm{synch}} &= E\,/\,(\mathrm{d}E/\mathrm{d}t)_{\mathrm{synch}} = 3 m_e c^2 / (4 \sigma_T U_B \gamma) \\ T_{\mathrm{bal}} &= R_b / c \\ T_{\mathrm{synch}} &= T_{\mathrm{bal}} \Rightarrow \gamma_b = 6 \pi m_e c^2 / \sigma_T B^2 R_b """ gamma_max = ( ( 6 * np.pi * mec2 / (sigma_T * np.power(self.blob.B_cgs, 2) * self.blob.R_b) ) .to("") .value ) return gamma_max @property def gamma_break_SSC(self): r"""Simple estimation of the cooling break of electrons comparing SSC time scale (see B&G 1970) with the ballistic time scale: WARNING: only applicable in Thomson regime .. math:: T_{\mathrm{SSC}} &= E\,/\,(\mathrm{d}E/\mathrm{d}t)_{\mathrm{SSC}} = 3 m_e c^2 / (4 \sigma_T U_{\mathrm{SSC}} \gamma) \\ T_{\mathrm{bal}} &= R_b / c \\ T_{\mathrm{SSC}} &= T_{\mathrm{bal}} \Rightarrow \gamma_b = 3 m_e c^2 / 4 \sigma_T U_{\mathrm{SSC}} R_b """ return ( (3 * mec2 / (4 * sigma_T * self.blob.u_ph_synch * self.blob.R_b)) .to("") .value ) def gamma_break_EC_DT(self, dt, r=0 * u.cm): r"""Simple estimation of the cooling break of electrons comparing EC time scale (see B&G 1970) with the ballistic time scale, like in gamma_break_SSC WARNING: assumes Thomson regime .. math:: \gamma_b = 3 m_e c^2 / 4 \sigma_T U'_{\mathrm{ext}} R_b """ # u_ext=np.power(self.Gamma,2) * np.power(1-mu*self.Beta,2) * dt.xi_dt*dt.L_disk/(4*np.pi*np.power(d,2) * c) return ( (3 * mec2 / (4 * sigma_T * dt.u(r, self.blob) * self.blob.R_b)).to("").value ) ```
{ "source": "jepebe/fractal", "score": 2 }
#### File: jepebe/fractal/fractal.py ```python import time import numpy as np import pxng from pxng.keys import * from fractal import Range2D from fractal import py_create_fractal from fractal.shader_fractal import ShaderFractal from fractal.term_fractal import term_fractal from fractal._fractal import create_fractal as rust_create_fractal def handle_input(window, context): context['mouse'] = window.mouse.x, window.mouse.y context['mouse_delta'] = window.mouse.dx, window.mouse.dy if window.mouse.hover and window.mouse.button_left.held: context['panning'] = True context['dirty'] = True elif window.mouse.hover and window.mouse.button_left.released: context['panning'] = False context['dirty'] = True if window.key_state(KEY_SPACE).pressed: context['iterations'] = 128 context['world'] = WorldSpace(0, 0, window.width, window.height, -2, -1, 1, 1) context['dirty'] = True if window.key_state(KEY_Q).pressed: window.close_window() if window.key_state(KEY_1).pressed: context['method'] = 'Rust' context['dirty'] = True if window.key_state(KEY_2).pressed: context['method'] = 'Python' context['dirty'] = True if window.key_state(KEY_3).pressed: context['method'] = 'Shader' context['dirty'] = True if window.key_state(KEY_T).pressed: iterations = context['iterations'] frac = calculate_world_view(window) term_fractal(iterations=iterations, fra=frac) if window.key_state(KEY_F).pressed: frac = calculate_world_view(window) print(f'dx={frac[2] - frac[0]} dy={frac[3] - frac[1]}') if window.key_state(KEY_I).pressed: iterations = context['iterations'] iterations += 64 if iterations >= 64 else 16 iterations = min(2048, iterations) context['iterations'] = iterations context['dirty'] = True if window.key_state(KEY_J).pressed: iterations = context['iterations'] iterations -= 64 if iterations >= 128 else 16 iterations = max(16, iterations) context['iterations'] = iterations context['dirty'] = True scroll_dy = window.mouse.scroll_dy if window.key_state(KEY_Z).held or scroll_dy > 0: context['world'].zoom(1.1) context['dirty'] = True if window.key_state(KEY_X).held or scroll_dy < 0: context['world'].zoom(0.9) context['dirty'] = True def update(window: pxng.Window): handle_input(window, window.context) if window.context['dirty']: render_fractal(window) if window.context['method'] == 'Shader': now = time.time() # Since we are not rendering to texture we need to draw every frame iterations = window.context['iterations'] frac = calculate_world_view(window) pix = Range2D(0, 0, w, h) sf: ShaderFractal = window.context['shaderfractal'] sf.create_fractal(window._spaces, pix, frac, iterations=iterations) window.context['rendering_time'] = time.time() - now else: sprite = window.context['sprite'] window.draw_sprite(0, 0, sprite, scale=1) window.draw_text(0, 0, 'Fractal Renderer', scale=2) rendering_time = window.context["rendering_time"] iterations = window.context["iterations"] window.draw_text(0, 18, f'Iterations: {iterations}') window.draw_text(0, 28, f'Time Taken: {rendering_time :.04f} s.') method = window.context['method'] window.draw_text(0, 36, f'Method: {method}') class WorldSpace: def __init__(self, sx1, sy1, sx2, sy2, wx1, wy1, wx2, wy2): self.sx1 = sx1 self.sy1 = sy1 self.sx2 = sx2 self.sy2 = sy2 self.wx1 = wx1 self.wy1 = wy1 self.wx2 = wx2 self.wy2 = wy2 self._x_scale = (self.sx2 - self.sx1) / (self.wx2 - self.wx1) self._y_scale = (self.sy2 - self.sy1) / (self.wy2 - self.wy1) self._offset_x = self.wx1 self._offset_y = self.wy1 self._zoom = 1 def screen_to_world(self, x1, y1): x = x1 / self._x_scale + self._offset_x y = y1 / self._y_scale + self._offset_y return x, y def screen_to_world_units(self, dx, dy): x = dx / self._x_scale y = dy / self._y_scale return x, y def apply_zoom(self): self._x_scale *= self._zoom self._y_scale *= self._zoom self._zoom = 1 def zoom(self, zoom_factor): self._zoom *= zoom_factor def adjust_offset(self, dx, dy): self._offset_x += dx self._offset_y += dy def render_fractal(window: pxng.Window): iterations = window.context['iterations'] sprite = window.context['sprite'] frac = calculate_world_view(window) now = time.time() pix = Range2D(0, 0, w, h) if window.context['method'] == 'Rust': rust_create_fractal(pix, frac, iterations=iterations, data=sprite._data) sprite.update() elif window.context['method'] == 'Python': py_create_fractal(pix, frac, iterations=iterations, data=sprite) window.context['rendering_time'] = time.time() - now window.context['dirty'] = False def calculate_world_view(window: pxng.Window): world: WorldSpace = window.context['world'] if window.context['panning']: dx, dy = window.context['mouse_delta'] dx, dy = world.screen_to_world_units(dx, dy) world.adjust_offset(dx, dy) mx, my = window.context['mouse'] pzmx, pzmy = world.screen_to_world(mx, my) world.apply_zoom() zmx, zmy = world.screen_to_world(mx, my) world.adjust_offset(pzmx - zmx, pzmy - zmy) fx1, fy1 = world.screen_to_world(0, 0) fx2, fy2 = world.screen_to_world(window.width, window.height) return Range2D(fx1, fy1, fx2, fy2) if __name__ == "__main__": w = 1280 h = 720 sprite = pxng.Sprite(np.zeros((h, w, 3), dtype=np.uint8)) window = pxng.Window(w, h, 'Fractal', scale=1) window.context = { 'sprite': sprite, 'count': 0, 'dirty': True, 'iterations': 128, 'rendering_time': 0, 'method': 'Shader', # Options: Rust, Python, Shader 'world': WorldSpace(0, 0, w, h, -2, -1, 1, 1), 'panning': False, 'mouse': (0, 0), 'mouse_delta': (0, 0), 'shaderfractal': ShaderFractal() } render_fractal(window) window.set_update_handler(update) window.start_event_loop() ```
{ "source": "jepebe/pixelengine", "score": 3 }
#### File: pixelengine/examples/animated_sprites.py ```python import pxng from pxng.colors import LIGHT_GREEN, DARK_GREY from pxng.keys import KEY_SPACE, KEY_Q def update(window: pxng.Window): handle_input(window) paused = window.context['paused'] window.draw_grid(size=5, tint=(0.125, 0.125, 0.125), gap_size=1, dash_size=1) window.draw_grid(size=20, tint=DARK_GREY) window.draw_text(5, 5, "Animated Sprites", tint=LIGHT_GREEN) flame_sprite = window.context['flame_sprite'] if not paused: flame_sprite.advance_time(window.elapsed_time) window.draw_sprite(250, 10, flame_sprite, 0.5) fire_sprite = window.context['fire_sprite'] if not paused: fire_sprite.advance_time(window.elapsed_time) window.draw_sprite(200, 240 - 128, fire_sprite, 1) window.draw_sprite(30, 240 - 64, fire_sprite, 0.5) fire2_sprite = window.context['fire2_sprite'] if not paused: fire2_sprite.advance_time(window.elapsed_time) window.draw_sprite(105, 240 - 128, fire2_sprite, 1) pale_blue = window.context['pale_blue'] if not paused: pale_blue.advance_time_all(window.elapsed_time) pale_blue.set_current_animation('walk_left') window.draw_sprite(70, 40, pale_blue, scale=0.5) window.draw_sprite(90, 40, pale_blue, scale=1) window.draw_sprite(120, 40, pale_blue, scale=2) window.draw_sprite(170, 40, pale_blue, scale=3) x, y = window.context['big_pos'] pale_blue.set_current_animation('run_right') window.draw_sprite(0-x, 40 + y, pale_blue, scale=4) pale_blue.set_current_animation('shoot_right') window.draw_sprite(120, 200, pale_blue) pale_blue.set_current_animation('shoot_left') window.draw_sprite(170, 200, pale_blue) pale_blue.set_current_animation('idle_right') window.draw_sprite(0, 200, pale_blue) pale_blue.set_current_animation('idle_left') window.draw_sprite(70, 200, pale_blue) if not window.context['paused']: window.context['frame'] += 1 def handle_input(window: pxng.Window): if window.key_state(KEY_SPACE).pressed: window.context['paused'] = not window.context['paused'] if window.key_state(KEY_Q).pressed: window.close_window() if window.mouse.hover and window.mouse.button_left.held: x, y = window.context['big_pos'] x += window.mouse.dx / window.x_scale y -= window.mouse.dy / window.y_scale window.context['big_pos'] = (x, y) if __name__ == "__main__": spr = pxng.Sprite.create_from_image('sprites/pale_blue_original.png') pale_blue = pxng.AnimatedSprite(spr, grid_size=(8, 8)) pale_blue.set_animation('idle_left', [(x, 0) for x in range(5)], fps=5) pale_blue.set_animation('idle_right', [(x, 1) for x in range(5)], fps=5) pale_blue.set_animation('walk_left', [(x, 2) for x in range(8)], fps=10) pale_blue.set_animation('run_left', [(x, 2) for x in range(8)], fps=20) pale_blue.set_animation('walk_right', [(x, 3) for x in range(8)], fps=10) pale_blue.set_animation('run_right', [(x, 3) for x in range(8)], fps=20) pale_blue.set_animation('shoot_left', [(x, 4) for x in range(5)], fps=10) pale_blue.set_animation('shoot_right', [(x, 5) for x in range(5)], fps=10) spr = pxng.Sprite.create_from_image('sprites/lighter_flame_01.png') flame_sprite = pxng.AnimatedSprite(spr, grid_size=(8, 8)) spr = pxng.Sprite.create_from_image('sprites/fire_01.png') fire_sprite = pxng.AnimatedSprite(spr, grid_size=(8, 8)) spr = pxng.Sprite.create_from_image('sprites/fire_02.png') fire2_sprite = pxng.AnimatedSprite(spr, grid_size=(8, 8)) window = pxng.Window(640, 480, 'PixelEngine', scale=2) window.context['frame'] = 0 window.context['paused'] = False window.context['flame_sprite'] = flame_sprite window.context['fire_sprite'] = fire_sprite window.context['fire2_sprite'] = fire2_sprite window.context['pale_blue'] = pale_blue window.context['big_pos'] = (0, 0) window.set_update_handler(update) window.start_event_loop() ``` #### File: pixelengine/pxng/buffer_object.py ```python import glm from OpenGL.GL import (GL_ARRAY_BUFFER, glGenBuffers, glBindBuffer, glBufferData, GL_DYNAMIC_DRAW, glEnableVertexAttribArray, GL_UNSIGNED_INT, GL_UNSIGNED_SHORT, GL_UNSIGNED_BYTE, GL_FLOAT, glVertexAttribPointer, GL_ELEMENT_ARRAY_BUFFER, GL_DOUBLE) class BufferObject: def __init__(self, data_type, array_type=GL_ARRAY_BUFFER, max_size=10000): self._data_type = data_type self._array_type = array_type self._arr = glm.array(data_type()) * max_size self._index = 0 self._vbo = glGenBuffers(1) self._changed = True @property def type(self): return self._data_type @property def dtype(self): return self._arr.dtype @property def index(self): return self._index def __len__(self): return self._index @property def changed(self): return self._changed @property def component_count(self): return len(self._data_type()) @property def bytes_per_element(self): return self._arr.dt_size * self.component_count def set_value(self, value): self._arr[self._index] = value self._index += 1 self._changed = True def reset(self): self._index = 0 self._changed = True def bind(self, attrib_index): if self._index == 0: return False glBindBuffer(self._array_type, self._vbo) if self._changed: data = self._arr size = data.itemsize * self._index glBufferData(self._array_type, size, data.ptr, GL_DYNAMIC_DRAW) self._changed = False if self._array_type == GL_ARRAY_BUFFER: glEnableVertexAttribArray(attrib_index) count = self.component_count stride = self.bytes_per_element dtype = self.dtype if dtype == 'float32': gl_type = GL_FLOAT elif dtype == 'float64': gl_type = GL_DOUBLE elif dtype == 'uint8': gl_type = GL_UNSIGNED_BYTE elif dtype == 'uint16': gl_type = GL_UNSIGNED_SHORT elif dtype == 'uint32': gl_type = GL_UNSIGNED_INT else: raise UserWarning(f'Unknown data type: {dtype}') glVertexAttribPointer(attrib_index, count, gl_type, False, stride, None) return True ``` #### File: pixelengine/pxng/grid.py ```python import glm from OpenGL.GL import GL_LINES import pxng class Grid: def __init__(self, width, height): program = pxng.ShaderProgram('GridShader') program.add_shader(pxng.resource('shaders/line.vert'), pxng.ShaderType.Vertex) program.add_shader(pxng.resource('shaders/line.frag'), pxng.ShaderType.Fragment) program.compile_and_link() program.add_uniform('projection_view', glm.mat4x4) program.add_uniform('model', glm.mat4x4) program.add_uniform('color', glm.vec4) program.add_uniform('resolution', glm.vec2) program.add_uniform('dash_size', glm.vec1) program.add_uniform('gap_size', glm.vec1) self._shader_program = program self._vao = pxng.VertexArrayObject(GL_LINES) self._vao.attach_buffer(pxng.BufferObject(data_type=glm.vec3)) # vertex buffer x = 1 y = 1 while x < width: self._vao.add_line(glm.vec3(x, 0, 0), glm.vec3(x, height, 0)) x += 1 while y < height: self._vao.add_line(glm.vec3(0, y, 0), glm.vec3(width, y, 0)) y += 1 def draw(self, spaces: pxng.Spaces, size, dash_size, gap_size): if self._vao.bind(): spaces.model.push() spaces.model.scale((size, size, 1)) program = self._shader_program program.activate() program.set_uniform('projection_view', spaces.projection_view) program.set_uniform('model', spaces.model.m) program.set_uniform('color', spaces.tint) program.set_uniform('resolution', glm.vec2(spaces.width, spaces.height)) program.set_uniform('dash_size', dash_size) program.set_uniform('gap_size', gap_size) self._vao.draw() spaces.model.pop() ``` #### File: pixelengine/pxng/sprite.py ```python from typing import Tuple import glm import imageio from numpy.core.multiarray import ndarray import pxng from pxng import resource from OpenGL.GL import GL_TRIANGLES, GL_RGBA, GL_RGB, glGenTextures, \ GL_TEXTURE_RECTANGLE, glBindTexture, glTexParameteri, GL_TEXTURE_MAG_FILTER, \ GL_NEAREST, GL_TEXTURE_MIN_FILTER, glTexImage2D, GL_UNSIGNED_BYTE, glTexSubImage2D, \ GL_BLEND, glDisable, GL_RED, glPixelStorei, GL_UNPACK_ALIGNMENT, glGetInteger class SpriteRectangle: def __init__(self): program = pxng.ShaderProgram('SpriteShader') program.add_shader(resource('shaders/sprite.vert'), pxng.ShaderType.Vertex) program.add_shader(resource('shaders/sprite.frag'), pxng.ShaderType.Fragment) program.compile_and_link() program.add_uniform('projection_view', glm.mat4x4) program.add_uniform('model', glm.mat4x4) program.add_uniform('texture_matrix', glm.mat4x4) program.add_uniform('color', glm.vec4) program.add_uniform('sprite_texture', glm.ivec1) self._program = program self._vao = pxng.VertexArrayObject(GL_TRIANGLES) self._vao.attach_buffer(pxng.BufferObject(data_type=glm.vec3)) # vertex buffer self._vao.attach_buffer(pxng.BufferObject(data_type=glm.uvec2)) # texture buffer self._vao.add_quad( glm.vec3(0, 0, 0), glm.vec3(0, -1, 0), glm.vec3(1, -1, 0), glm.vec3(1, 0, 0), ) self._vao.set_texture( glm.uvec2(0, 1), glm.uvec2(0, 0), glm.uvec2(1, 0), glm.uvec2(1, 1) ) def draw(self, spaces: pxng.Spaces): if self._vao.bind(): self._program.activate() self._program.set_uniform('projection_view', spaces.projection_view) self._program.set_uniform('model', spaces.model.m) self._program.set_uniform('texture_matrix', spaces.texture.m) self._program.set_uniform('color', spaces.tint) self._program.set_uniform('sprite_texture', 0) self._vao.draw() class Sprite: def __init__(self, data: ndarray): self._data = data self._created = False self._dirty = False self._texid = None self._width = data.shape[1] self._height = data.shape[0] self._components = 1 if len(data.shape) > 2: self._components = data.shape[2] if self._components == 4: self._format = GL_RGBA elif self._components == 3: self._format = GL_RGB elif self._components == 1: self._format = GL_RED self._rect = None @property def width(self): return self._width @property def height(self): return self._height def set_pixel(self, x, y, color: Tuple[int, int, int]): self._data[y, x] = color self._dirty = True def _set_unpack_alignment(self): self._unpack_alignment = glGetInteger(GL_UNPACK_ALIGNMENT) if self._width % 2 == 1 or self._width % 4 == 2: # Odd sized texture glPixelStorei(GL_UNPACK_ALIGNMENT, 1) def _reset_unpack_alignment(self): glPixelStorei(GL_UNPACK_ALIGNMENT, self._unpack_alignment) def _create(self): self._texid = glGenTextures(1) glBindTexture(GL_TEXTURE_RECTANGLE, self._texid) glTexParameteri(GL_TEXTURE_RECTANGLE, GL_TEXTURE_MAG_FILTER, GL_NEAREST) glTexParameteri(GL_TEXTURE_RECTANGLE, GL_TEXTURE_MIN_FILTER, GL_NEAREST) d = self._data w = self._width h = self._height fmt = self._format self._set_unpack_alignment() glTexImage2D(GL_TEXTURE_RECTANGLE, 0, fmt, w, h, 0, fmt, GL_UNSIGNED_BYTE, d) self._reset_unpack_alignment() self._rect = SpriteRectangle() self._created = True def _update(self): glBindTexture(GL_TEXTURE_RECTANGLE, self._texid) d = self._data w = self._width h = self._height fmt = self._format self._set_unpack_alignment() glTexSubImage2D(GL_TEXTURE_RECTANGLE, 0, 0, 0, w, h, fmt, GL_UNSIGNED_BYTE, d) self._reset_unpack_alignment() self._updated = True def update(self): self._dirty = True def activate(self): if not self._created: self._create() if self._dirty: self._update() glBindTexture(GL_TEXTURE_RECTANGLE, self._texid) glTexParameteri(GL_TEXTURE_RECTANGLE, GL_TEXTURE_MAG_FILTER, GL_NEAREST) glTexParameteri(GL_TEXTURE_RECTANGLE, GL_TEXTURE_MIN_FILTER, GL_NEAREST) def deactivate(self): glBindTexture(GL_TEXTURE_RECTANGLE, 0) def _pre_draw(self, spaces: pxng.Spaces): self.activate() spaces.model.push() spaces.texture.push() def _post_draw(self, spaces: pxng.Spaces): self.deactivate() spaces.model.pop() spaces.texture.pop() def draw(self, spaces: pxng.Spaces): """ Draw the sprite at the current position. Parameters ---------- spaces : pxng.Spaces the current coordinate systems """ self._pre_draw(spaces) spaces.model.translate((0, self._height, 0)) # anchor is upper left spaces.model.scale((self._width, self._height, 1)) spaces.texture.scale(glm.vec3(self._width, self._height, 1)) self._rect.draw(spaces) self._post_draw(spaces) def draw_partial(self, spaces: pxng.Spaces, x, y, width, height): """ Draw a partial sprite using pixel coordinates for the partial image data. The coordinates represent a sub region in the sprite. Parameters ---------- spaces: pxng.Spaces the current coordinate systems x: int x coordinate in pixel space y: int y coordinate in pixel space width: int width in number of pixels height: int height in number of pixels """ self._pre_draw(spaces) spaces.model.translate((0, height, 0)) # anchor is upper left spaces.model.scale((width, height, 1)) spaces.texture.translate(glm.vec3(x, y, 0)) spaces.texture.scale(glm.vec3(width, height, 1)) self._rect.draw(spaces) self._post_draw(spaces) @classmethod def create_from_image(cls, path): img_data = imageio.imread(path) return Sprite(img_data) ``` #### File: pixelengine/pxng/_utils.py ```python def resource(resource): from pathlib import Path font_path = Path(__file__).parent / 'resources' / resource return str(font_path) ```
{ "source": "jepegit/cellpy", "score": 2 }
#### File: readers/instruments/pec.py ```python import os from dateutil.parser import parse from datetime import datetime import logging import warnings import numpy as np import pandas as pd from cellpy.readers.core import FileID, Cell, humanize_bytes from cellpy.parameters.internal_settings import get_headers_normal from cellpy.readers.instruments.mixin import Loader pec_headers_normal = dict() pec_headers_normal["step_index_txt"] = "Step" pec_headers_normal["cycle_index_txt"] = "Cycle" pec_headers_normal["test_time_txt"] = "Total_Time_Seconds" # This might change pec_headers_normal["step_time_txt"] = "Step_Time_Seconds" # This might change pec_headers_normal["datetime_txt"] = "Real_Time" pec_headers_normal["voltage_txt"] = "Voltage_mV" # This might change pec_headers_normal["current_txt"] = "Current_mA" # This might change pec_headers_normal["charge_capacity_txt"] = "Charge_Capacity_mAh" pec_headers_normal["discharge_capacity_txt"] = "Discharge_Capacity_mAh" pec_headers_normal["charge_energy_txt"] = "Charge_Capacity_mWh" pec_headers_normal["discharge_energy_txt"] = "Discharge_Capacity_mWh" pec_headers_normal["internal_resistance_txt"] = "Internal_Resistance_1_mOhm" pec_headers_normal["test_id_txt"] = "Test" # TODO: better reading of first part of the file (comments and headers) # 1. find the units # 2. convert cycle and step numbers so that they start with 1 and not 0 # 3. find user-defined variables class PECLoader(Loader): """Main loading class""" def __init__(self): self.headers_normal = ( get_headers_normal() ) # should consider to move this to the Loader class self.current_chunk = 0 # use this to set chunks to load self.pec_data = None self.pec_log = None self.pec_settings = None self.variable_header_keywords = [ "Voltage (V)", "Current (A)", ] # The unit of these will be read from file self.fake_header_length = [ "#RESULTS CHECK\n", "#END RESULTS CHECK\n", ] # Ignores number of delimiters in between self.pec_file_delimiter = "," self.filename = None self.number_of_header_lines = None # Number of header lines is not constant self.cellpy_headers = ( get_headers_normal() ) # should consider to move this to the Loader class # @staticmethod # def _get_pec_units(): # pec_units = dict() # pec_units["voltage"] = 0.001 # V # pec_units["current"] = 0.001 # A # pec_units["charge"] = 0.001 # Ah # pec_units["mass"] = 0.001 # g # pec_units["energy"] = 0.001 # Wh # return pec_units def _get_pec_units(self): # Fetches units from a csv file # Mapping prefixes to values prefix = {"ยต": 10 ** -6, "m": 10 ** -3, "": 1} # Adding the non-variable units to the return value pec_units = {"charge": 0.001, "mass": 0.001, "energy": 0.001} # Ah # g # Wh # A list with all the variable keywords without any prefixes, used as search terms header = self.variable_header_keywords data = pd.read_csv(self.filename, skiprows=self.number_of_header_lines, nrows=1) # Searching for the prefix for all the variable units for item in data.keys(): for unit in header: x = unit.find("(") - len(unit) if unit[: x + 1] in item: y = item[x].replace("(", "") # Adding units conversion factor to return value, renaming the headers to include correct units if header.index(unit) == 0: pec_units["voltage"] = prefix.get(y) pec_headers_normal["voltage_txt"] = f"Voltage_{y}V" elif header.index(unit) == 1: pec_units["current"] = prefix.get(y) pec_headers_normal["current_txt"] = f"Current_{y}A" return pec_units def _get_pec_times(self): # Mapping units to their conversion values logging.debug("retrieve pec units") units = { "(Hours in hh:mm:ss.xxx)": self.timestamp_to_seconds, "(Decimal Hours)": 3600, "(Minutes)": 60, "(Seconds)": 1, } data = pd.read_csv(self.filename, skiprows=self.number_of_header_lines, nrows=0) pec_times = dict() # Adds the time variables and their units to the pec_times dictonary return value # Also updates the column headers in pec_headers_normal with the correct name for item in data.keys(): for unit in units: if unit in item: x = item.find("(") var = item[: x - 1].lower().replace(" ", "_") its_unit = item[x:] pec_times[var] = units.get(its_unit) if var == "total_time": pec_headers_normal[ "test_time_txt" ] = f'Total_Time_{its_unit[1:-1].replace(" ", "_")}' if var == "step_time": pec_headers_normal[ "step_time_txt" ] = f'Step_Time_{its_unit[1:-1].replace(" ", "_")}' return pec_times @staticmethod def get_raw_units(): """Include the settings for the units used by the instrument. The units are defined w.r.t. the SI units ('unit-fractions'; currently only units that are multiples of Si units can be used). For example, for current defined in mA, the value for the current unit-fraction will be 0.001. Returns: dictionary containing the unit-fractions for current, charge, and mass """ raw_units = dict() raw_units["voltage"] = 1.0 # V raw_units["current"] = 1.0 # A raw_units["charge"] = 1.0 # Ah raw_units["mass"] = 0.001 # g raw_units["energy"] = 1.0 # Wh raw_units["total_time"] = 1.0 # s raw_units["step_time"] = 1.0 # s return raw_units def get_raw_limits(self): """Include the settings for how to decide what kind of step you are examining here. The raw limits are 'epsilons' used to check if the current and/or voltage is stable (for example for galvanostatic steps, one would expect that the current is stable (constant) and non-zero). It is expected that different instruments (with different resolution etc.) have different 'epsilons'. Returns: the raw limits (dict) """ warnings.warn("raw limits have not been subject for testing yet") raw_limits = dict() raw_limits["current_hard"] = 0.1 # There is a bug in PEC raw_limits["current_soft"] = 1.0 raw_limits["stable_current_hard"] = 2.0 raw_limits["stable_current_soft"] = 4.0 raw_limits["stable_voltage_hard"] = 2.0 raw_limits["stable_voltage_soft"] = 4.0 raw_limits["stable_charge_hard"] = 2.0 raw_limits["stable_charge_soft"] = 5.0 raw_limits["ir_change"] = 0.00001 return raw_limits def loader(self, file_name, bad_steps=None, **kwargs): new_tests = [] if not os.path.isfile(file_name): self.logger.info("Missing file_\n %s" % file_name) return None self.filename = file_name self.number_of_header_lines = self._find_header_length() filesize = os.path.getsize(file_name) hfilesize = humanize_bytes(filesize) txt = "Filesize: %i (%s)" % (filesize, hfilesize) logging.debug(txt) data = Cell() fid = FileID(file_name) # div parameters and information (probably load this last) test_no = 1 data.cell_no = test_no data.loaded_from = file_name # some overall prms data.channel_index = None data.channel_number = None data.creator = None data.item_ID = None data.schedule_file_name = None data.test_ID = None data.test_name = None data.raw_data_files.append(fid) # --------- read raw-data (normal-data) ------------------------- self._load_pec_data(file_name, bad_steps) data.start_datetime = self.pec_settings["start_time"] length_of_test = self.pec_data.shape[0] logging.debug(f"length of test: {length_of_test}") logging.debug("renaming columns") self._rename_headers() self._convert_units() # cycle indices should not be 0 if 0 in self.pec_data["cycle_index"]: self.pec_data["cycle_index"] += 1 data.raw = self.pec_data data.raw_data_files_length.append(length_of_test) new_tests.append(data) return new_tests def _load_pec_data(self, file_name, bad_steps): number_of_header_lines = self.number_of_header_lines # ----------------- reading the data --------------------- df = pd.read_csv(file_name, skiprows=number_of_header_lines) # get rid of unnamed columns df = df.loc[:, ~df.columns.str.contains("^Unnamed")] # get rid of spaces, parenthesis, and the deg-sign new_column_headers = { c: c.replace(" ", "_") .replace("(", "") .replace(")", "") .replace("ยฐ", "") .replace(r"%", "pct") for c in df.columns } df.rename(columns=new_column_headers, inplace=True) # add missing columns df.insert(0, self.headers_normal.data_point_txt, range(len(df))) df[self.headers_normal.sub_step_index_txt] = 0 df[self.headers_normal.sub_step_time_txt] = 0 self.pec_data = df # ---------------- reading the parameters --------------- with open(file_name, "r") as ofile: counter = 0 lines = [] for line in ofile: counter += 1 if counter > number_of_header_lines: break lines.append(line) self._extract_variables(lines) def _extract_variables(self, lines): header_comments = dict() comment_loop = False for line_number, line in enumerate(lines): if line.startswith("#"): if not comment_loop: comment_loop = True else: comment_loop = False else: if not comment_loop: parts = line.split(",") variable = parts[0].strip() variable = variable.strip(":") variable = variable.replace(" ", "_") try: value = parts[1].strip() except IndexError: value = None if not value: value = np.nan header_comments[variable] = value logging.debug(" Headers Dict ") logging.debug(header_comments) headers = dict() start_time = parse(header_comments["Start_Time"]) end_time = parse(header_comments["End_Time"]) headers["start_time"] = start_time headers["end_time"] = end_time # headers["test_regime_name"] = header_comments["TestRegime_Name"] self.pec_settings = headers def _rename_headers(self): logging.debug("Trying to rename the columns") # logging.debug("Current columns:") # logging.debug(self.pec_data.columns) # logging.debug("Rename to:") # logging.debug(self.headers_normal) for key in pec_headers_normal: self._rename_header(key, pec_headers_normal[key]) # logging.debug("New cols:") # logging.debug(self.pec_data.columns) def _convert_units(self): logging.debug("Trying to convert all data into correct units") logging.debug("- dtypes") self.pec_data[self.headers_normal.datetime_txt] = pd.to_datetime( self.pec_data[self.headers_normal.datetime_txt] ) self.pec_data["Position_Start_Time"] = pd.to_datetime( self.pec_data["Position_Start_Time"] ) self.pec_data["Rack"] = self.pec_data["Rack"].astype("category") logging.debug("- cellpy units") pec_units = self._get_pec_units() pec_times = self._get_pec_times() raw_units = self.get_raw_units() self._rename_headers() # Had to run this again after fixing the headers, might be a better way to fix this _v = pec_units["voltage"] / raw_units["voltage"] _i = pec_units["current"] / raw_units["current"] _c = pec_units["charge"] / raw_units["charge"] _w = pec_units["energy"] / raw_units["energy"] # Check if time is given in a units proportional to seconds or in a hh:mm:ss.xxx format # Convert all hh:mm:ss.xxx formats to seconds using self.timestamp_to_seconds() relevant_times = ["total_time", "step_time"] for x in relevant_times: if isinstance(pec_times[x], (int, float)): if x == relevant_times[0]: _tt = pec_times["total_time"] / raw_units["total_time"] self.pec_data[self.headers_normal.test_time_txt] *= _tt elif x == relevant_times[1]: _st = pec_times["step_time"] / raw_units["step_time"] self.pec_data[self.headers_normal.step_time_txt] *= _st elif callable(pec_times[x]): # EDIT jepe 18.06.2020: change to .apply(func) instead of for-loop # (now the column is of float64 type and behaves properly) if x == relevant_times[0]: # col = self.pec_data[self.headers_normal.test_time_txt] hdr = self.headers_normal.test_time_txt elif x == relevant_times[1]: # col = self.pec_data[self.headers_normal.step_time_txt] hdr = self.headers_normal.test_time_txt self.pec_data[hdr] = self.pec_data[hdr].apply(pec_times[x]) # for i in range(len(col)): # col[i] = pec_times[x](col[i]) v_txt = self.headers_normal.voltage_txt i_txt = self.headers_normal.current_txt self.pec_data[v_txt] *= _v self.pec_data[i_txt] *= _i self.pec_data[self.headers_normal.charge_capacity_txt] *= _c self.pec_data[self.headers_normal.discharge_capacity_txt] *= _c self.pec_data[self.headers_normal.charge_energy_txt] *= _w self.pec_data[self.headers_normal.discharge_energy_txt] *= _w def _rename_header(self, h_old, h_new): try: self.pec_data.rename( columns={h_new: self.cellpy_headers[h_old]}, inplace=True ) except KeyError as e: logging.info(f"Problem during conversion to cellpy-format ({e})") def _find_header_length(self): skiprows = 0 resultscheck = False # Ignore number of delimiters inside RESULTS CHECK with open(self.filename, "r") as header: for line in header: if line in self.fake_header_length: resultscheck = not resultscheck if ( line.count(self.pec_file_delimiter) > 1 and not resultscheck ): # End when there are >2 columns break skiprows += 1 return skiprows @staticmethod def timestamp_to_seconds(timestamp): # Changes hh:mm:s.xxx time format to seconds total_secs = 0 # strptime can not handle more than 24 hours, days are counted manually hours = int(timestamp[:2]) if hours >= 24: days = hours // 24 total_secs += days * 3600 * 24 timestamp = str(hours - 24 * days) + timestamp[2:] total_secs += ( datetime.strptime(timestamp, "%H:%M:%S.%f") - datetime.strptime("00:00:00.000", "%H:%M:%S.%f") ).total_seconds() return total_secs if __name__ == "__main__": pass ``` #### File: utils/batch_tools/batch_helpers.py ```python import logging import os import warnings import pandas as pd import csv import itertools from cellpy import filefinder, prms from cellpy.exceptions import ExportFailed, NullData, WrongFileVersion import cellpy.parameters.internal_settings # logger = logging.getLogger(__name__) hdr_summary = cellpy.parameters.internal_settings.get_headers_summary() hdr_journal = cellpy.parameters.internal_settings.get_headers_journal() def look_up_and_get(cellpy_file_name, table_name, root=None): """Extracts table from cellpy hdf5-file.""" # infoname = '/CellpyData/info' # dataname = '/CellpyData/dfdata' # summaryname = '/CellpyData/dfsummary' # fidname = '/CellpyData/fidtable' # stepname = '/CellpyData/step_table' if root is None: root = "/CellpyData" table_path = "/".join([root, table_name]) logging.debug(f"look_up_and_get({cellpy_file_name}, {table_name}") store = pd.HDFStore(cellpy_file_name) try: table = store.select(table_path) store.close() except KeyError as e: logging.warning("Could not read the table") store.close() raise WrongFileVersion(e) return table def create_folder_structure(project_name, batch_name): """This function creates a folder structure for the batch project. The folder structure consists of main working folder ``project_name` located in the ``outdatadir`` (as defined in the cellpy configuration file) with a sub-folder named ``batch_name``. It also creates a folder inside the ``batch_name`` folder for storing the raw data. If the folders does not exist, they will be made. The function also returns the name of the info-df. Args: project_name: name of the project batch_name: name of the batch Returns: (info_file, (project_dir, batch_dir, raw_dir)) """ out_data_dir = prms.Paths["outdatadir"] project_dir = os.path.join(out_data_dir, project_name) batch_dir = os.path.join(project_dir, batch_name) raw_dir = os.path.join(batch_dir, "raw_data") # create folders if not os.path.isdir(project_dir): os.mkdir(project_dir) if not os.path.isdir(batch_dir): os.mkdir(batch_dir) if not os.path.isdir(raw_dir): os.mkdir(raw_dir) # create file-name for the info_df (json) info_file = "cellpy_batch_%s.json" % batch_name info_file = os.path.join(project_dir, info_file) return info_file, (project_dir, batch_dir, raw_dir) def find_files(info_dict, file_list=None, pre_path=None, **kwargs): """Find files using cellpy.filefinder. Args: info_dict: journal pages. file_list: list of files names to search through. pre_path: path to prepend found files from file_list (if file_list is given). **kwargs: sent to filefinder.search_for_files. Returns: info_dict """ # searches for the raw data files and the cellpyfile-name # TODO: implement faster file searching # TODO: implement option for not searching for raw-file names if force_cellpy is True for run_name in info_dict[hdr_journal["filename"]]: logging.debug(f"checking for {run_name}") raw_files, cellpyfile = filefinder.search_for_files( run_name, file_list=file_list, pre_path=pre_path, **kwargs ) if not raw_files: raw_files = None info_dict[hdr_journal["raw_file_names"]].append(raw_files) info_dict[hdr_journal["cellpy_file_name"]].append(cellpyfile) return info_dict def fix_groups(groups): """Takes care of strange group numbers.""" _groups = [] for g in groups: try: if not float(g) > 0: _groups.append(1000) else: _groups.append(int(g)) except TypeError as e: logging.info("Error in reading group number (check your db)") logging.debug(g) logging.debug(e) _groups.append(1000) return _groups def save_multi(data, file_name, sep=";"): """Convenience function for storing data column-wise in a csv-file.""" logging.debug("saving multi") with open(file_name, "w", newline="") as f: logging.debug(f"{file_name} opened") writer = csv.writer(f, delimiter=sep) try: writer.writerows(itertools.zip_longest(*data)) logging.info(f"{file_name} OK") except Exception as e: logging.info(f"Exception encountered in batch._save_multi: {e}") raise ExportFailed logging.debug("wrote rows using itertools in _save_multi") def make_unique_groups(info_df): """This function cleans up the group numbers a bit.""" # fixes group numbering unique_g = info_df[hdr_journal.group].unique() unique_g = sorted(unique_g) new_unique_g = list(range(len(unique_g))) info_df[hdr_journal.sub_group] = info_df[hdr_journal.group] * 0 for i, j in zip(unique_g, new_unique_g): counter = 1 for indx, row in info_df.loc[info_df[hdr_journal.group] == i].iterrows(): info_df.at[indx, hdr_journal.sub_group] = counter counter += 1 info_df.loc[info_df[hdr_journal.group] == i, hdr_journal.group] = j + 1 return info_df def _remove_date_and_celltype(label,): parts = label.split("_") parts.pop(0) if parts[-1] in ["cc", "ec", "eth"]: parts.pop(-1) return "_".join(parts) def create_labels(label, *args): """Returns a re-formatted label (currently it only removes the dates from the run-name)""" return _remove_date_and_celltype(label) def create_selected_summaries_dict(summaries_list): """Creates a dictionary with summary column headers. Examples: >>> summaries_to_output = ["discharge_capacity", "charge_capacity"] >>> summaries_to_output_dict = create_selected_summaries_dict( >>> summaries_to_output >>> ) >>> print(summaries_to_output_dict) {'discharge_capacity': "Discharge_Capacity(mAh/g)", 'charge_capacity': "Charge_Capacity(mAh/g)} Args: summaries_list: list containing cellpy summary column id names Returns: dictionary of the form {cellpy id name: cellpy summary header name,} """ selected_summaries = dict() for h in summaries_list: selected_summaries[h] = hdr_summary[h] return selected_summaries def pick_summary_data(key, summary_df, selected_summaries): """picks the selected pandas.DataFrame""" selected_summaries_dict = create_selected_summaries_dict(selected_summaries) value = selected_summaries_dict[key] return summary_df.iloc[:, summary_df.columns.get_level_values(1) == value] def join_summaries(summary_frames, selected_summaries, keep_old_header=False): """parse the summaries and combine based on column (selected_summaries)""" if not summary_frames: raise NullData("No summaries available to join") selected_summaries_dict = create_selected_summaries_dict(selected_summaries) frames = [] keys = [] # test-name for key in summary_frames: keys.append(key) if summary_frames[key].empty: logging.debug("Empty summary_frame encountered") frames.append(summary_frames[key]) out = [] summary_df = pd.concat(frames, keys=keys, axis=1) for key, value in selected_summaries_dict.items(): _summary_df = summary_df.iloc[ :, summary_df.columns.get_level_values(1) == value ] _summary_df.name = key if not keep_old_header: try: _summary_df.columns = _summary_df.columns.droplevel(-1) except AttributeError as e: logging.debug("could not drop level from frame") logging.debug(e) out.append(_summary_df) logging.debug("finished joining summaries") return out def generate_folder_names(name, project): """Creates sensible folder names.""" out_data_dir = prms.Paths.outdatadir project_dir = os.path.join(out_data_dir, project) batch_dir = os.path.join(project_dir, name) raw_dir = os.path.join(batch_dir, "raw_data") return out_data_dir, project_dir, batch_dir, raw_dir def _extract_dqdv(cell_data, extract_func, last_cycle): """Simple wrapper around the cellpy.utils.ica.dqdv function.""" from cellpy.utils.ica import dqdv list_of_cycles = cell_data.get_cycle_numbers() if last_cycle is not None: list_of_cycles = [c for c in list_of_cycles if c <= int(last_cycle)] logging.debug(f"only processing up to cycle {last_cycle}") logging.debug(f"you have {len(list_of_cycles)} cycles to process") out_data = [] for cycle in list_of_cycles: try: c, v = extract_func(cycle) v, dq = dqdv(v, c) v = v.tolist() dq = dq.tolist() except NullData as e: v = list() dq = list() logging.info(" Ups! Could not process this (cycle %i)" % cycle) logging.info(" %s" % e) header_x = "dQ cycle_no %i" % cycle header_y = "voltage cycle_no %i" % cycle dq.insert(0, header_x) v.insert(0, header_y) out_data.append(v) out_data.append(dq) return out_data def export_dqdv(cell_data, savedir, sep, last_cycle=None): """Exports dQ/dV data from a CellpyData instance. Args: cell_data: CellpyData instance savedir: path to the folder where the files should be saved sep: separator for the .csv-files. last_cycle: only export up to this cycle (if not None) """ logging.debug("exporting dqdv") filename = cell_data.cell.loaded_from no_merged_sets = "" firstname, extension = os.path.splitext(filename) firstname += no_merged_sets if savedir: firstname = os.path.join(savedir, os.path.basename(firstname)) logging.debug(f"savedir is true: {firstname}") outname_charge = firstname + "_dqdv_charge.csv" outname_discharge = firstname + "_dqdv_discharge.csv" list_of_cycles = cell_data.get_cycle_numbers() number_of_cycles = len(list_of_cycles) logging.debug("%s: you have %i cycles" % (filename, number_of_cycles)) # extracting charge out_data = _extract_dqdv(cell_data, cell_data.get_ccap, last_cycle) logging.debug("extracted ica for charge") try: save_multi(data=out_data, file_name=outname_charge, sep=sep) except ExportFailed as e: logging.info("could not export ica for charge") warnings.warn(f"ExportFailed exception raised: {e}") else: logging.debug("saved ica for charge") # extracting discharge out_data = _extract_dqdv(cell_data, cell_data.get_dcap, last_cycle) logging.debug("extracted ica for discharge") try: save_multi(data=out_data, file_name=outname_discharge, sep=sep) except ExportFailed as e: logging.info("could not export ica for discharge") warnings.warn(f"ExportFailed exception raised: {e}") else: logging.debug("saved ica for discharge") ``` #### File: cellpy/utils/easyplot.py ```python import logging import os import warnings from pathlib import Path from re import S import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import pandas as pd from matplotlib import lines from matplotlib.artist import kwdoc from matplotlib.lines import Line2D from matplotlib.scale import LogScale from matplotlib.ticker import FuncFormatter import cellpy from cellpy import log from cellpy.utils.batch_tools.batch_journals import LabJournal from cellpy.parameters.internal_settings import ( get_headers_journal, keys_journal_session, ) hdr_journal = get_headers_journal() # Dictionary of all possible user input arguments(as keys) with example values of correct type # Value is a tuple (immutable) of type and default value. USER_PARAMS = { "cyclelife_plot": (bool, True), "cyclelife_separate_data": ( bool, False, ), # will plot each cyclelife datafile in separate plots "cyclelife_percentage": (bool, False), "cyclelife_coulombic_efficiency": (bool, False), "cyclelife_coulombic_efficiency_ylabel": (str, "Coulombic efficiency [%]"), "cyclelife_charge_c_rate": (bool, False), "cyclelife_discharge_c_rate": (bool, False), "cyclelife_c_rate_ylabel": (str, "Effective C-rate"), "cyclelife_ir": (bool, False), # Allows user to plot IR data aswell "cyclelife_xlabel": (str, "Cycles"), "cyclelife_ylabel": (str, r"Capacity $\left[\frac{mAh}{g}\right]$"), "cyclelife_ylabel_percent": (str, "Capacity retention [%]"), "cyclelife_legend_outside": ( bool, False, ), # if True, the legend is placed outside the plot "cyclelife_degradation_slope": ( bool, False, ), # Adds simple degradation slope regression to plot "capacity_determination_from_ratecap": ( bool, False, ), # If True, uses the ratecap and capacity to determine the exp capacity "galvanostatic_plot": (bool, True), "galvanostatic_potlim": (tuple, None), # min and max limit on potential-axis "galvanostatic_caplim": (tuple, None), "galvanostatic_xlabel": (str, r"Capacity $\left[\frac{mAh}{g}\right]$"), "galvanostatic_ylabel": (str, "Cell potential [V]"), "galvanostatic_normalize_capacity": ( bool, False, ), # Normalizes all cycles' capacity to 1. "dqdv_plot": (bool, False), "dqdv_potlim": (tuple, None), # min and max limit on potential-axis "dqdv_dqlim": (tuple, None), "dqdv_xlabel": ( str, r"dQ/dV $\left[\frac{mAh}{gV}\right]$", ), # TODO what unit? jees "dqdv_ylabel": (str, "Cell potential [V]"), "specific_cycles": (list, None), "exclude_cycles": (list, None), "all_in_one": ( bool, False, ), # Decides if everything should be plotted in the same plot in GC and dQdV plot "only_dischg": (bool, False), # Only show discharge curves "only_chg": (bool, False), # Only show charge curves "outpath": (str, "./"), "outtype": (str, ".png"), # What file format to save in "outname": (str, None), # Overrides the automatic filename generation "figsize": (tuple, (6, 4)), # 6 inches wide, 4 inches tall "figres": (int, 100), # Dots per Inch "figtitle": (str, "Title"), # None = original filepath "save_figures": (bool, True), "save_journal": (bool, False), # Save journal } def help(): """Method of the EasyPlot class which prints some helptext in addition to all supported params.""" ## Prints out help page of this module help_str = ( "The easyplot extension to cellpy aims to easily plot data in a pretty manner.\n" "In order to use this function, you must import cellpy, and easyplot from cellpy.utils.\n" "\n" "Usage:\n" "Create list of datafiles you want to plot on the following format:\n" "\n" "files = [\n" "\t'./folder/filename.ext',\n" "\t'./folder/filename2.ext',\n" "\t]\n" "\n" "And then call the easyplot.plot function with the files list as the first parameter, and any optional keyword arguments.\n" "Here is an example of the use of all keyword arguments:\n" ) for kw in USER_PARAMS: if type(USER_PARAMS[kw][1]) == str: insert = "'" + USER_PARAMS[kw][1] + "'" else: insert = str(USER_PARAMS[kw][1]) help_str += "\t" + kw + " = " + insert + ",\n" print(help_str) class EasyPlot: """Main easyplot class. Takes all the inputs from the user in its kwargs upon object initialization. Gathers data, handles and plots it when object.plot() is called. Help: type easyplot.help() """ def __init__(self, files=None, nicknames=None, journal=None, **kwargs): """Initialization function of the EasyPlot class. Input parameters: filenames (list of strings). nicknames (list of strings), must match length of filenames. journal (str or pathlib.Path object): journal file name (should not be used if files is given). any kwargs: use easyplot.help() to print all kwargs to terminal. Returns: easyplot object Most basic usage: ezpltobj = easyplot.EasyPlot(["name1", "name2"], None)""" # Make all user input variables of self self.files = files self.nicknames = nicknames self.kwargs = kwargs # More needed variables self.figs = [] self.file_data = [] self.use_arbin_sql = False if journal is not None: self.journal_file = Path(journal) else: self.journal_file = None self.journal = None # Dictionary of all possible user input arguments(as keys) with example values of correct type # Value is a tuple (immutable) of type and default value. self.user_params = USER_PARAMS # Create 'empty' attributes for later use self.outpath = None self.masses = None self.labels = None self.nom_caps = None self.colors = None # List of available colors # Fill in the rest of the variables from self.user_params if the user didn't specify self.fill_input() # Verify that the user input is sufficient self.verify_input() self._generate_list_of_available_colors() def _generate_list_of_available_colors(self): if 19 >= len(self.files) > 10: self.colors = [ "#e6194b", "#3cb44b", "#ffe119", "#4363d8", "#f58231", "#911eb4", "#46f0f0", "#f032e6", "#bcf60c", "#fabebe", "#008080", "#e6beff", "#9a6324", "#fffac8", "#800000", "#aaffc3", "#808000", "#ffd8b1", "#000075", "#808080", "#000000", ] warnings.warn( "You inserted more than 10 datafiles! In a desperate attempt to keep " "the plots tidy, another colorpalette with 19 distinct colors were chosen." ) elif len(self.files) > 19: warnings.warn( "You inserted more than 19 datafiles! We do not have that " "many colors in the palette, this some colors are beeing recycled. " "Keep track of the filenames and legends and make sure this doesn't confuse you." ) else: self.colors = [ "tab:blue", "tab:orange", "tab:green", "tab:red", "tab:purple", "tab:brown", "tab:pink", "tab:gray", "tab:olive", "tab:cyan", ] * 5 def plot(self): """This is the method the user calls on his/hers easyplot object in order to gather the data and plot it. Usage: object.plot()""" # Load all cellpy files logging.debug("starting plotting") for file in self.files: if isinstance(file, (list, tuple)): logging.debug("linked files provided - need to merge") linked_files = True else: linked_files = False # If using arbin sql if self.use_arbin_sql: cpobj = cellpy.get( filename=file, instrument="arbin_sql" ) # Initiate cellpy object else: # Not Arbin SQL? Then its probably a local file # Check that file(s) exist if linked_files: file_name = "_".join(file) for _f in file: if not os.path.isfile(_f): logging.error("File not found: " + str(_f)) raise FileNotFoundError else: file_name = file if not os.path.isfile(file): logging.error("File not found: " + str(file)) print(os.getcwd()) raise FileNotFoundError cpobj = cellpy.get(filename=file) # Load regular file # Check that we get data if cpobj is None: warnings.warn( f"File reader returned no data for filename {file}. Please make sure that the file exists or " f"that the data exists in an eventual database." ) # Get ID of all cycles cyc_nums = cpobj.get_cycle_numbers() # Only get the cycles which both exist in data, and that the user want if self.kwargs["specific_cycles"] is not None: cyc_not_available = ( set(cyc_nums) ^ set(self.kwargs["specific_cycles"]) ) & set(self.kwargs["specific_cycles"]) if len(cyc_not_available) > 0: warn_str = ( f"You want to plot cycles which are not available in the data! Datafile(s): " f"{file}" f", Cycle(s): {str(cyc_not_available)}" ) warnings.warn(warn_str) cyc_nums = list( set(cyc_nums).intersection(self.kwargs["specific_cycles"]) ) if self.kwargs["exclude_cycles"] is not None: cyc_nums = list(set(cyc_nums) - set(self.kwargs["exclude_cycles"])) color = self.give_color() # Get a color for the data self.file_data.append((cpobj, cyc_nums, color, file_name)) # Check kwargs/input parameters to see what plots to make if self.kwargs["cyclelife_plot"]: self.plot_cyclelife() if self.kwargs["galvanostatic_plot"] and not self.kwargs["dqdv_plot"]: self.plot_gc() if self.kwargs["dqdv_plot"] and not self.kwargs["galvanostatic_plot"]: self.plot_dQdV() if self.kwargs["galvanostatic_plot"] and self.kwargs["dqdv_plot"]: self.plot_gc_and_dQdV() if self.kwargs["capacity_determination_from_ratecap"]: self.plot_cap_from_rc() self._wrap_up() def _wrap_up(self): # saving journal file if self.kwargs["save_journal"]: if self.journal is not None: if self.outpath is not None: journal_file_path = Path(self.outpath) / self.journal_file.name else: journal_file_path = self.journal_file.name # if we want to enforce that the file will be a xlsx file: # journal_file_path = journal_file_path.with_suffix(".xlsx") journal_file_path = journal_file_path.with_suffix(".json") self.journal.to_file( file_name=journal_file_path, paginate=False, to_project_folder=False ) xlsx_journal_file_path = journal_file_path.with_name( f"{journal_file_path.stem}.xlsx" ) self.journal.to_file( file_name=xlsx_journal_file_path, paginate=False, to_project_folder=False, ) def verify_input(self): """Verifies that the users' input to the object is correct.""" # Check that output dir exist (or create one) self.outpath = self.handle_outpath() # Takes care of the output path # Check the nicknames if self.nicknames: if len(self.nicknames) != len(self.files): logging.error( "Use nicknames = None, or specify exactly one nickname per datafile. You have specified " + str(len(self.nicknames)) + " nicknames while inputting " + str(len(self.files)) + " datafiles" ) raise AssertionError # Check that all kwargs are used correctly for key in self.kwargs: # Check that input parameter exist try: self.user_params[key] except KeyError as e: logging.error( "Input parameter " + key + " is not a valid parameter! Please see example configuration for help or run easyplot.help()" ) # Check that the type is correct if type(self.kwargs[key]) != self.user_params[key][0] and type( self.kwargs[key] ) != type(None): logging.error( "Type of inputparameter for keyword '" + key + "' is wrong. The user specified " + str(type(self.kwargs[key])) + " but the program needs a " + str(self.user_params[key][0]) ) raise TypeError # Check that the user isn't trying to plot "only" both discharge and charge. if self.kwargs["only_dischg"] and self.kwargs["only_chg"]: logging.error( "You can't plot 'only' discharge AND charge curves! Set one to False please." ) if self.journal_file is not None: # Check that the user isn't providing both a list of files and a journal filename if self.files is not None: logging.error( "You can't give both filenames and a journal file at the same time." ) logging.error("Chose either filenames OR journal file name please.") raise ValueError self._read_journal_file() self._populate_from_journal() # Temporary fix - the parameters should be read directly from journal later else: if self.files is None: logging.error("No file names provided.") logging.error("Add file names OR journal file name please.") raise ValueError def _read_journal_file(self): logging.debug(f"reading journal file {self.journal_file}") journal = LabJournal(db_reader=None) journal.from_file(self.journal_file, paginate=False) self.journal = journal def _populate_from_journal(self): logging.debug(f"populating from journal") # populating from only a subset of the available journal columns # - can be increased later try: self.files = self.journal.pages[hdr_journal["raw_file_names"]].to_list() except AttributeError: logging.debug("No raw files found in your journal") try: self.masses = self.journal.pages[hdr_journal["mass"]].to_list() except AttributeError: logging.debug("No masses found in your journal") try: self.labels = self.journal.pages[hdr_journal["label"]].to_list() except AttributeError: logging.debug("No labels found in your journal") try: self.nom_cap = self.journal.pages[hdr_journal["nom_cap"]].to_list() except AttributeError: logging.debug("No nominal capacity found in your journal") try: self.cellpy_files = self.journal.pages[ hdr_journal["cellpy_file_name"] ].to_list() except AttributeError: logging.debug("No cellpy files found in your journal") def fill_input(self): """Fill in the rest of the variables from self.user_params if the user didn't specify""" # Can't just join dicts since they have differing formats, need to loop... for key in self.user_params: try: self.kwargs[key] except KeyError: self.kwargs[key] = self.user_params[key][1] def set_arbin_sql_credentials( self, server="localhost", uid="sa", pwd="<PASSWORD>", driver="ODBC Driver 17 for SQL Server", ): """Sets cellpy.prms.Instruments.Arbin details to fit what is inserted. Parameters: Server = 'IP of server', uid = 'username', pwd = 'password', driver = 'ODBC Driver 17 for SQL Server' """ cellpy.prms.Instruments.Arbin["SQL_server"] = server cellpy.prms.Instruments.Arbin["SQL_UID"] = uid cellpy.prms.Instruments.Arbin["SQL_PWD"] = pwd cellpy.prms.Instruments.Arbin["SQL_Driver"] = driver self.use_arbin_sql = True def give_color(self): """Picks the first color from the color list and gives it away""" color = self.colors[0] self.colors = self.colors[1:] return color def give_fig(self): """Gives figure to whoever asks and appends it to figure list""" fig, ax = plt.subplots(figsize=(6, 4)) self.figs.append((fig, ax)) return fig, ax def handle_outpath(self): """Makes sure that self.outpath exists, or creates it.""" out_path = self.kwargs["outpath"] # should make this a pathlib.Path object - but not sure if str is assumed later on in the code if os.path.isdir(out_path): logging.debug(f"out path set to {out_path}") return out_path elif not os.path.isdir(out_path): logging.debug(f"outpath does not exits - creating") try: os.makedirs(out_path) logging.debug(f"out path set to {out_path}") return out_path except OSError as e: logging.error( f"Cannot create output directory {out_path}. Please make sure you " f"have write permission. Error message: {e}" ) def plot_cyclelife(self): """Takes all the parameters inserted in the object creation and plots cyclelife""" # Spawn fig and axis for plotting if not self.kwargs["cyclelife_separate_data"]: fig, ax = self.give_fig() if self.kwargs["cyclelife_coulombic_efficiency"]: # Spawn twinx axis and set label ax_ce = ax.twinx() ax_ce.set(ylabel=self.kwargs["cyclelife_coulombic_efficiency_ylabel"]) if ( self.kwargs["cyclelife_charge_c_rate"] or self.kwargs["cyclelife_discharge_c_rate"] ): ax_c_rate = ax.twinx() def format_label(x, pos): # The commented out code here makes the fractioned C-rate like C/50 and so on. """ if x >= 1: s = '%.2gC' % x elif x == 0: s = r'C/$\infty$' else: newfloat = 1/x s = 'C/%.2g' % newfloat """ # The following just has decimal place C-rate. s = "%.3gC" % x return s ax_c_rate.yaxis.set_major_formatter(FuncFormatter(format_label)) ax_c_rate.set(ylabel="Effective C-rate") if self.kwargs["cyclelife_ir"]: ax_ir = ax.twinx() outpath = self.outpath for cpobj, cyc_nums, color, filename in self.file_data: if self.kwargs["cyclelife_separate_data"]: fig, ax = self.give_fig() if self.kwargs["cyclelife_coulombic_efficiency"]: # Spawn twinx axis and set label ax_ce = ax.twinx() ax_ce.set( ylabel=self.kwargs["cyclelife_coulombic_efficiency_ylabel"] ) if ( self.kwargs["cyclelife_charge_c_rate"] or self.kwargs["cyclelife_discharge_c_rate"] ): ax_c_rate = ax.twinx() def format_label(x, pos): # The following just has decimal place C-rate. s = "%.3gC" % x return s ax_c_rate.yaxis.set_major_formatter(FuncFormatter(format_label)) ax_c_rate.set(ylabel="Effective C-rate") if self.kwargs["cyclelife_ir"]: ax_ir = ax.twinx() # Get Pandas DataFrame of pot vs cap from cellpy object df = cpobj.get_cap( method="forth-and-forth", label_cycle_number=True, categorical_column=True, ) outpath += os.path.basename(filename).split(".")[0] + "_" # Group by cycle and make list of cycle numbers cycgrouped = df.groupby("cycle") keys = [] for key, item in cycgrouped: keys.append(key) chgs = [[], []] # List with cycle num and capacity dchgs = [[], []] # Accumulate cycles for cyc in keys: # Loop over all cycles if cyc in cyc_nums: # Check if it is in list of wanted cycles cyc_df = cycgrouped.get_group( cyc ) # Get the group of datapoints from specific cycle cyc_redox_grouped = cyc_df.groupby( "direction" ) # Group by direction (meaning if it is charging or discharging) dchg_df = cyc_redox_grouped.get_group( -1 ) # Data for the discharge curve dchgs[0].append(cyc) # Append to dchg list dchgs[1].append(dchg_df["capacity"].iat[-2]) chg_df = cyc_redox_grouped.get_group(1) # Data for the charge curve chgs[0].append(cyc) # Append to chg list chgs[1].append(chg_df["capacity"].iat[-2]) if self.kwargs[ "cyclelife_percentage" ]: # Normalize all datapoints on the first one norm_fact = ( dchgs[1][0] / 100 ) # /100 is to get range from 0-100(%) in stead of 0-1 for i in range(len(chgs[1])): chgs[1][i] /= norm_fact for i in range(len(dchgs[1])): dchgs[1][i] /= norm_fact # Make label from filename or nickname if self.nicknames: label = self.nicknames[self.files.index(filename)] else: label = str(os.path.basename(filename)) # print("Discharge capacities:") # print(dchgs[1]) # Actully place it in plot if not self.kwargs["only_dischg"] and not self.kwargs["only_chg"]: ax.scatter( chgs[0], chgs[1], c=color, alpha=0.2, ) ax.scatter(dchgs[0], dchgs[1], c=color, label=label) elif self.kwargs["only_dischg"]: ax.scatter(dchgs[0], dchgs[1], c=color, label=label) elif self.kwargs["only_chg"]: ax.scatter( chgs[0], chgs[1], c=color, alpha=0.2, ) if self.kwargs["cyclelife_coulombic_efficiency"]: # Get CE for cyc_nums coulombic_efficiency = cpobj.cell.summary[ "coulombic_efficiency_u_percentage" ] cycs = [] CEs = [] for cyc in keys: if cyc in cyc_nums: cycs.append(cyc) CEs.append(coulombic_efficiency[cyc]) # Place it in the plot ax_ce.scatter(cycs, CEs, c=color, marker="+") # print(filename + " Dchg 1-3: " + str(dchgs[1][0:3]) + ", CE 1-3: " + str(coulombic_efficiency[0:3])) if ( self.kwargs["cyclelife_charge_c_rate"] or self.kwargs["cyclelife_discharge_c_rate"] ): # charge_c_rate = cpobj.cell.summary["charge_c_rate"] #This gives incorrect c-rates. stepstable = cpobj.cell.steps chg_c_rates, dchg_c_rates = get_effective_C_rates(stepstable) selected_chg_c_rates = [] selected_dchg_c_rates = [] selected_cycs = [] for cyc in keys: if cyc in cyc_nums: selected_chg_c_rates.append(chg_c_rates[cyc - 1]) selected_dchg_c_rates.append(dchg_c_rates[cyc - 1]) selected_cycs.append(cyc) if ( self.kwargs["cyclelife_charge_c_rate"] and not self.kwargs["cyclelife_discharge_c_rate"] ): ax_c_rate.scatter( selected_cycs, selected_chg_c_rates, c=color, marker="_" ) elif ( not self.kwargs["cyclelife_charge_c_rate"] and self.kwargs["cyclelife_discharge_c_rate"] ): ax_c_rate.scatter( selected_cycs, selected_dchg_c_rates, c=color, marker="_" ) elif ( self.kwargs["cyclelife_charge_c_rate"] and self.kwargs["cyclelife_discharge_c_rate"] ): ax_c_rate.scatter( selected_cycs, selected_chg_c_rates, c=color, marker="_" ) ax_c_rate.scatter( selected_cycs, selected_dchg_c_rates, c=color, alpha=0.2, marker="_", ) if self.kwargs["cyclelife_degradation_slope"]: from scipy.stats import linregress slope, intercept, r, p, se = linregress(dchgs[0], dchgs[1]) x = np.linspace(0, ax.get_xlim()[1] * 0.9, 10) degradation_unit = ( r" $\frac{mAh}{g\cdot cycle}$" if not self.kwargs["cyclelife_percentage"] else r" $\frac{\%}{cycle}$" ) intercept_unit = ( r" $\frac{mAh}{g}$" if not self.kwargs["cyclelife_percentage"] else r"%" ) ax.plot( x, x * slope + intercept, c=color, label="Degradation: %g" % slope + degradation_unit + "\nIntercept: %g" % intercept + intercept_unit + ", r=%g" % r, ) """if self.kwargs["cyclelife_ir"]: chg_ir = [] dchg_ir = [] steptable = cpobj.steps print(steptable) newdf = steptable[["ir", "cycle", "type"]] for i,elem in enumerate(newdf.iterrows()): if elem[1]["type"] == "charge": chg_ir.append(elem[1]["ir"]) elif elem[1]["type"] == "discharge": dchg_ir.append(elem[1]["ir"]) print(chg_ir) for cyc in keys: if cyc in cyc_nums: ax_ir.scatter(cyc, chg_ir[cyc], c = color, marker = "*") """ if self.kwargs["cyclelife_separate_data"]: # Set all plot settings from Plot object self.fix_cyclelife(fig, ax) # Save fig savepath = outpath.strip("_") + "_Cyclelife" self.save_fig(fig, savepath) if not self.kwargs["cyclelife_separate_data"]: # Set all plot settings from Plot object self.fix_cyclelife(fig, ax) # Save fig savepath = outpath.strip("_") + "_Cyclelife" self.save_fig(fig, savepath) def plot_gc(self): """Takes all the parameters inserted in the object creation and plots Voltage-Capacity curves""" if self.kwargs["all_in_one"]: # Everything goes in the same figure. fig, ax = self.give_fig() colors = [ "tab:blue", "tab:orange", "tab:green", "tab:red", "tab:purple", "tab:brown", "tab:pink", "tab:gray", "tab:olive", "tab:cyan", ] * 5 savepath = self.outpath colorbar_incrementor = -1 for cpobj, cyc_nums, color, filename in self.file_data: # Get Pandas DataFrame of pot vs cap from cellpy object df = cpobj.get_cap( method="forth-and-forth", label_cycle_number=True, categorical_column=True, ) # Group by cycle and make list of cycle numbers cycgrouped = df.groupby("cycle") keys = [] for key, item in cycgrouped: keys.append(key) # Make label from filename or nickname if self.nicknames: label = str(self.nicknames[self.files.index(filename)]) else: label = str(os.path.basename(filename)) # Fix colorbar or cycle colors if self.kwargs["specific_cycles"] == None: # Plot all cycles # Set up colormap and add colorbar cmap = mpl.colors.LinearSegmentedColormap.from_list( "name", [color, "black"], N=256, gamma=1.0 ) norm = mpl.colors.Normalize(vmin=cyc_nums[0], vmax=cyc_nums[-1]) cbaxes = fig.add_axes( [1.05 + colorbar_incrementor / 8, 0.1, 0.03, 0.8] ) colorbar_incrementor += 1 fig.colorbar( mpl.cm.ScalarMappable(norm=norm, cmap=cmap), cax=cbaxes, label="Cycle number for " + os.path.basename(filename).split(".")[0], ) # fig.colorbar.ax.yaxis.get_major_locator().set_params(integer=True) #TODO fix such that we dont have decimals on the cycle colorbar!! # Plot cycles for cyc in keys: if cyc in cyc_nums: if self.kwargs["specific_cycles"]: cyccolor = colors[0] colors = colors[1:] else: cyccolor = cmap(cyc / keys[-1]) cyc_df = cycgrouped.get_group(cyc) if ( not self.kwargs["only_dischg"] and not self.kwargs["only_chg"] ): pass elif self.kwargs["only_dischg"]: dchg = cyc_df.groupby("direction") cyc_df = dchg.get_group(-1) elif self.kwargs["only_chg"]: chg = cyc_df.groupby("direction") cyc_df = chg.get_group(1) # TODO: The way this is set up, when plotting both discharge and charge, the whole cycle is normalized on the maximum capacity, meaning the charge can be normalized on the discharge or the other way around. if self.kwargs["galvanostatic_normalize_capacity"]: # Then we normalize capacity column on the max value (since this should be max cap) maxcap = cyc_df["capacity"].max() cyc_df["capacity"] = cyc_df["capacity"].div(maxcap) ax.set_xlabel("Normalized Capacity") ax.plot( cyc_df["capacity"], cyc_df["voltage"], label=label + ", Cyc " + str(cyc), c=cyccolor, ) savepath += os.path.basename(filename).split(".")[0] fig.suptitle("Galvanostatic cyclingdata") self.fix_gc(fig, ax) # Save fig savepath += "_GC-plot" self.save_fig(fig, savepath) else: # Then each data goes in its own figure for cpobj, cyc_nums, color, filename in self.file_data: fig, ax = self.give_fig() # Get Pandas DataFrame of pot vs cap from cellpy object df = cpobj.get_cap( method="forth-and-forth", label_cycle_number=True, categorical_column=True, ) # Group by cycle and make list of cycle numbers cycgrouped = df.groupby("cycle") keys = [] for key, item in cycgrouped: keys.append(key) # Fix colorbar or cycle colors if self.kwargs["specific_cycles"] == None: # Plot all cycles # Set up colormap and add colorbar cmap = mpl.colors.LinearSegmentedColormap.from_list( "name", [color, "black"], N=256, gamma=1.0 ) norm = mpl.colors.Normalize(vmin=cyc_nums[0], vmax=cyc_nums[-1]) fig.colorbar( mpl.cm.ScalarMappable(norm=norm, cmap=cmap), label="Cycle" ) # fig.colorbar.ax.yaxis.get_major_locator().set_params(integer=True) #TODO fix such that we dont have decimals on the cycle colorbar!! # Make label from filename or nickname if self.nicknames: label = str(self.nicknames[self.files.index(filename)]) else: label = str(os.path.basename(filename)) # Plot cycles colors = [ "tab:blue", "tab:orange", "tab:green", "tab:red", "tab:purple", "tab:brown", "tab:pink", "tab:gray", "tab:olive", "tab:cyan", ] for cyc in keys: if cyc in cyc_nums: if self.kwargs["specific_cycles"]: cyccolor = colors[0] colors = colors[1:] else: cyccolor = cmap(cyc / keys[-1]) cyc_df = cycgrouped.get_group(cyc) # TODO: This if elif block is pretty much the same as the one above (for all in one plot), can it be reused in stead of written twice? if ( not self.kwargs["only_dischg"] and not self.kwargs["only_chg"] ): pass elif self.kwargs["only_dischg"]: dchg = cyc_df.groupby("direction") cyc_df = dchg.get_group(-1) elif self.kwargs["only_chg"]: chg = cyc_df.groupby("direction") cyc_df = chg.get_group(1) # TODO: The way this is set up, when plotting both discharge and charge, the whole cycle is normalized on the maximum capacity, meaning the charge can be normalized on the discharge or the other way around. if self.kwargs["galvanostatic_normalize_capacity"]: # Then we normalize capacity column on the max value (since this should be max cap) maxcap = cyc_df["capacity"].max() cyc_df["capacity"] = cyc_df["capacity"].div(maxcap) ax.set_xlabel("Normalized Capacity") ax.plot( cyc_df["capacity"], cyc_df["voltage"], label=label.split(".")[0] + ", Cyc " + str(cyc), c=cyccolor, ) # Set all plot settings from Plot object fig.suptitle(label) self.fix_gc(fig, ax) # Save fig savepath = ( self.outpath + os.path.basename(filename).split(".")[0] + "_GC-plot" ) self.save_fig(fig, savepath) def plot_dQdV(self): """Takes all the parameters inserted in the object creation and plots dQdV""" from cellpy.utils import ica if self.kwargs["all_in_one"]: # Everything goes in the same figure. fig, ax = self.give_fig() colors = [ "tab:blue", "tab:orange", "tab:green", "tab:red", "tab:purple", "tab:brown", "tab:pink", "tab:gray", "tab:olive", "tab:cyan", ] * 5 savepath = self.outpath colorbar_incrementor = -1 for cpobj, cyc_nums, color, filename in self.file_data: # Get Pandas DataFrame of dQdV if self.kwargs["only_dischg"]: _, df = ica.dqdv_frames(cpobj, split=True) elif self.kwargs["only_chg"]: df, _ = ica.dqdv_frames(cpobj, split=True) else: df = ica.dqdv_frames(cpobj) # Group by cycle and make list of cycle numbers cycgrouped = df.groupby("cycle") keys = [] for key, item in cycgrouped: keys.append(key) # Fix colorbar or cycle colors if self.kwargs["specific_cycles"] == None: # Plot all cycles # Set up colormap and add colorbar cmap = mpl.colors.LinearSegmentedColormap.from_list( "name", [color, "black"], N=256, gamma=1.0 ) norm = mpl.colors.Normalize(vmin=cyc_nums[0], vmax=cyc_nums[-1]) cbaxes = fig.add_axes( [1.05 + colorbar_incrementor / 8, 0.1, 0.03, 0.8] ) colorbar_incrementor += 1 fig.colorbar( mpl.cm.ScalarMappable(norm=norm, cmap=cmap), cax=cbaxes, label="Cycle number for " + os.path.basename(filename).split(".")[0], ) # fig.colorbar.ax.yaxis.get_major_locator().set_params(integer=True) #TODO fix such that we dont have decimals on the cycle colorbar!! # Plot cycles for cyc in keys: if cyc in cyc_nums: if self.kwargs["specific_cycles"]: cyccolor = colors[0] colors = colors[1:] else: cyccolor = cmap(cyc / keys[-1]) cyc_df = cycgrouped.get_group(cyc) ax.plot( cyc_df["voltage"], cyc_df["dq"], label=os.path.basename(filename).split(".")[0] + ", Cyc " + str(cyc), c=cyccolor, ) savepath += os.path.basename(filename).split(".")[0] fig.suptitle("dQdV") self.fix_dqdv(fig, ax) # Save fig savepath += "_dQdV-plot" self.save_fig(fig, savepath) else: for cpobj, cyc_nums, color, filename in self.file_data: fig, ax = self.give_fig() # Get Pandas DataFrame of dQdV if self.kwargs["only_dischg"]: _, df = ica.dqdv_frames(cpobj, split=True) elif self.kwargs["only_chg"]: df, _ = ica.dqdv_frames(cpobj, split=True) else: df = ica.dqdv_frames(cpobj) # Group by cycle and make list of cycle numbers cycgrouped = df.groupby("cycle") keys = [] for key, item in cycgrouped: keys.append(key) # Create the plot obj fig, ax = plt.subplots(figsize=(6, 4)) # Fix colorbar or cycle colors if self.kwargs["specific_cycles"] == None: # Plot all cycles # Set up colormap and add colorbar cmap = mpl.colors.LinearSegmentedColormap.from_list( "name", [color, "black"], N=256, gamma=1.0 ) norm = mpl.colors.Normalize(vmin=cyc_nums[0], vmax=cyc_nums[-1]) fig.colorbar( mpl.cm.ScalarMappable(norm=norm, cmap=cmap), label="Cycle" ) # fig.colorbar.ax.yaxis.get_major_locator().set_params(integer=True) #TODO fix such that we dont have decimals on the cycle colorbar!! # Plot cycles colors = [ "tab:blue", "tab:orange", "tab:green", "tab:red", "tab:purple", "tab:brown", "tab:pink", "tab:gray", "tab:olive", "tab:cyan", ] for cyc in keys: if cyc in cyc_nums: if self.kwargs["specific_cycles"]: cyccolor = colors[0] colors = colors[1:] else: cyccolor = cmap(cyc / keys[-1]) cyc_df = cycgrouped.get_group(cyc) ax.plot( cyc_df["voltage"], cyc_df["dq"], label="Cycle " + str(cyc), c=cyccolor, ) # Set all plot settings from Plot object fig.suptitle(os.path.basename(filename)) self.fix_dqdv(fig, ax) # Save fig savepath = ( self.outpath + os.path.basename(filename).split(".")[0] + "_dQdV-plot" ) self.save_fig(fig, savepath) def plot_gc_and_dQdV(self): """Takes all the parameters inserted in the object creation and plots Voltage-Curves and dQdV data together""" from cellpy.utils import ica if self.kwargs["all_in_one"]: # Everything goes in the same figure. fig, ax = self.give_fig() fig.delaxes(ax) ax1, ax2 = fig.subplots(1, 2, sharey=True) fig.set_size_inches(8, 4) fig.subplots_adjust(wspace=0) colors = [ "tab:blue", "tab:orange", "tab:green", "tab:red", "tab:purple", "tab:brown", "tab:pink", "tab:gray", "tab:olive", "tab:cyan", ] * 5 savepath = self.outpath colorbar_incrementor = -1 for cpobj, cyc_nums, color, filename in self.file_data: # Get Pandas DataFrame of pot vs cap from cellpy object df = cpobj.get_cap( method="forth-and-forth", label_cycle_number=True, categorical_column=True, ) # Group by cycle and make list of cycle numbers cycgrouped = df.groupby("cycle") keys = [] for key, item in cycgrouped: keys.append(key) # Fix colorbar or cycle colors if self.kwargs["specific_cycles"] == None: # Plot all cycles # Set up colormap and add colorbar cmap = mpl.colors.LinearSegmentedColormap.from_list( "name", [color, "black"], N=256, gamma=1.0 ) norm = mpl.colors.Normalize(vmin=cyc_nums[0], vmax=cyc_nums[-1]) cbaxes = fig.add_axes( [1.05 + colorbar_incrementor / 8, 0.1, 0.03, 0.8] ) colorbar_incrementor += 1 fig.colorbar( mpl.cm.ScalarMappable(norm=norm, cmap=cmap), cax=cbaxes, label="Cycle number for " + os.path.basename(filename).split(".")[0], pad=0.2, ) # Plot GC in leftmost plot (ax) for cyc in keys: if cyc in cyc_nums: if self.kwargs["specific_cycles"]: cyccolor = colors[0] colors = colors[1:] else: cyccolor = cmap(cyc / keys[-1]) cyc_df = cycgrouped.get_group(cyc) if ( not self.kwargs["only_dischg"] and not self.kwargs["only_chg"] ): ax1.plot( cyc_df["capacity"], cyc_df["voltage"], label=os.path.basename(filename).split(".")[0] + ", Cyc " + str(cyc), c=cyccolor, ) elif self.kwargs["only_dischg"]: dchg = cyc_df.groupby("direction") dchg_df = dchg.get_group(-1) ax1.plot( dchg_df["capacity"], dchg_df["voltage"], label=os.path.basename(filename).split(".")[0] + ", Cyc " + str(cyc), c=cyccolor, ) elif self.kwargs["only_chg"]: chg = cyc_df.groupby("direction") chg_df = chg.get_group(1) ax1.plot( chg_df["capacity"], chg_df["voltage"], label=os.path.basename(filename).split(".")[0] + ", Cyc " + str(cyc), c=cyccolor, ) # Get Pandas DataFrame for dQdV if self.kwargs["only_dischg"]: _, df = ica.dqdv_frames(cpobj, split=True) elif self.kwargs["only_chg"]: df, _ = ica.dqdv_frames(cpobj, split=True) else: df = ica.dqdv_frames(cpobj) # Group by cycle and make list of cycle numbers cycgrouped = df.groupby("cycle") keys = [] for key, item in cycgrouped: keys.append(key) # Plot cycles for cyc in keys: if cyc in cyc_nums: if self.kwargs["specific_cycles"]: cyccolor = colors[0] colors = colors[1:] else: cyccolor = cmap(cyc / keys[-1]) cyc_df = cycgrouped.get_group(cyc) ax2.plot( cyc_df["dq"], cyc_df["voltage"], label=os.path.basename(filename).split(".")[0] + ", Cyc " + str(cyc), c=cyccolor, ) savepath += os.path.basename(filename).split(".")[0] # Set all plot settings from Plot object fig.suptitle("GC and dQdV") self.fix_gc_and_dqdv(fig, [ax1, ax2]) # Save fig savepath = savepath + "_GC-dQdV-plot" self.save_fig(fig, savepath) else: # Then all files are placed in separate plots for cpobj, cyc_nums, color, filename in self.file_data: fig, ax = self.give_fig() fig.delaxes(ax) ax1, ax2 = fig.subplots(1, 2, sharey=True) fig.set_size_inches(8, 4) fig.subplots_adjust(wspace=0) colors = [ "tab:blue", "tab:orange", "tab:green", "tab:red", "tab:purple", "tab:brown", "tab:pink", "tab:gray", "tab:olive", "tab:cyan", ] * 5 # Get Pandas DataFrame of pot vs cap from cellpy object df = cpobj.get_cap( method="forth-and-forth", label_cycle_number=True, categorical_column=True, ) # Group by cycle and make list of cycle numbers cycgrouped = df.groupby("cycle") keys = [] for key, item in cycgrouped: keys.append(key) # Fix colorbar or cycle colors if self.kwargs["specific_cycles"] == None: # Plot all cycles # Set up colormap and add colorbar cmap = mpl.colors.LinearSegmentedColormap.from_list( "name", [color, "black"], N=256, gamma=1.0 ) norm = mpl.colors.Normalize(vmin=cyc_nums[0], vmax=cyc_nums[-1]) fig.colorbar( mpl.cm.ScalarMappable(norm=norm, cmap=cmap), label="Cycle" ) # Plot GC in leftmost plot (ax) for cyc in keys: if cyc in cyc_nums: if self.kwargs["specific_cycles"]: cyccolor = colors[0] colors = colors[1:] else: cyccolor = cmap(cyc / keys[-1]) cyc_df = cycgrouped.get_group(cyc) if ( not self.kwargs["only_dischg"] and not self.kwargs["only_chg"] ): ax1.plot( cyc_df["capacity"], cyc_df["voltage"], label=os.path.basename(filename).split(".")[0] + ", Cyc " + str(cyc), c=cyccolor, ) elif self.kwargs["only_dischg"]: dchg = cyc_df.groupby("direction") dchg_df = dchg.get_group(-1) ax1.plot( dchg_df["capacity"], dchg_df["voltage"], label=os.path.basename(filename).split(".")[0] + ", Cyc " + str(cyc), c=cyccolor, ) elif self.kwargs["only_chg"]: chg = cyc_df.groupby("direction") chg_df = chg.get_group(1) ax1.plot( chg_df["capacity"], chg_df["voltage"], label=os.path.basename(filename).split(".")[0] + ", Cyc " + str(cyc), c=cyccolor, ) # Get Pandas DataFrame for dQdV if self.kwargs["only_dischg"]: _, df = ica.dqdv_frames(cpobj, split=True) elif self.kwargs["only_chg"]: df, _ = ica.dqdv_frames(cpobj, split=True) else: df = ica.dqdv_frames(cpobj) # Group by cycle and make list of cycle numbers cycgrouped = df.groupby("cycle") keys = [] for key, item in cycgrouped: keys.append(key) # Plot cycles for cyc in keys: if cyc in cyc_nums: if self.kwargs["specific_cycles"]: cyccolor = colors[0] colors = colors[1:] else: cyccolor = cmap(cyc / keys[-1]) cyc_df = cycgrouped.get_group(cyc) ax2.plot( cyc_df["dq"], cyc_df["voltage"], label=os.path.basename(filename).split(".")[0] + ", Cyc " + str(cyc), c=cyccolor, ) # Set all plot settings from Plot object fig.suptitle(os.path.basename(filename)) self.fix_gc_and_dqdv(fig, [ax1, ax2]) # Save fig savepath = ( self.outpath + os.path.basename(filename).split(".")[0] + "_GC-dQdV-plot" ) self.save_fig(fig, savepath) """# Fix colorbar or cycle colors if not specific_cycles: # If this is none, then plot all! # Set up colormap and add colorbar cmap = mpl.colors.LinearSegmentedColormap.from_list("name", [color, "black"], N=256, gamma=1.0) norm = mpl.colors.Normalize(vmin=cyc_nums[0], vmax=cyc_nums[-1]) fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap),label='Cycle') ## Plot GC on the left subplot (ax[0]) ## # Get Pandas DataFrame of pot vs cap from cellpy object df = cpobj.get_cap(method="forth-and-forth", label_cycle_number=True, categorical_column=True) # Group by cycle and make list of cycle numbers cycgrouped = df.groupby("cycle") keys = [] for key, item in cycgrouped: keys.append(key) # Plot cycles colors = ['tab:blue', 'tab:orange', 'tab:green', 'tab:red', 'tab:purple', 'tab:brown', 'tab:pink', 'tab:gray', 'tab:olive', 'tab:cyan' ] for cyc in keys: if cyc in cyc_nums: if specific_cycles: cyccolor = colors[0] colors = colors[1:] else: cyccolor = cmap(cyc/keys[-1]) cyc_df = cycgrouped.get_group(cyc) axs[0].plot(cyc_df["capacity"], cyc_df["voltage"], label="Cycle " + str(cyc), c = cyccolor) ## Plot dQdV on the right subplot (ax[1]) ## from cellpy.utils import ica # Get Pandas DataFrame of pot vs cap from cellpy object df = ica.dqdv_frames(cpobj) # Group by cycle and make list of cycle numbers cycgrouped = df.groupby("cycle") keys = [] for key, item in cycgrouped: keys.append(key) # Plot cycles colors = ['tab:blue', 'tab:orange', 'tab:green', 'tab:red', 'tab:purple', 'tab:brown', 'tab:pink', 'tab:gray', 'tab:olive', 'tab:cyan' ] for cyc in keys: if cyc in cyc_nums: if specific_cycles: cyccolor = colors[0] colors = colors[1:] else: cyccolor = cmap(cyc/keys[-1]) cyc_df = cycgrouped.get_group(cyc) axs[1].plot(cyc_df["dq"], cyc_df["voltage"], label=str(cyc), c = cyccolor) # Set all plot settings from Plot object fig.suptitle(os.path.basename(file)) self.fix_gc_and_dqdv(fig, axs) # Save fig savepath = self.outpath + os.path.basename(file).split(".")[0] + "_GC-dQdV-plot" print("Saving to: " + savepath) fig.savefig(savepath, bbox_inches='tight')""" def plot_cap_from_rc(self): """Takes all the parameters inserted in the object creation and plots capacity VS inverse c-rate""" # Spawn fig and axis for plotting fig, ax = self.give_fig() # Get labels and handles for legend generation and eventual savefile handles, labels = ax.get_legend_handles_labels() # handles.append(Line2D([0], [0], marker='o', color='black', alpha = 0.2, label = 'Charge capacity', linestyle='')) # handles.append(Line2D([0], [0], marker='o', color='black', alpha = 0.2, label = 'Disharge capacity', linestyle='')) # handles.append(Line2D([0], [0], marker='+', color='black', label = 'Cap avg per C-rate', linestyle='')) outpath = self.outpath for cpobj, cyc_nums, color, filename in self.file_data: # Get Pandas DataFrame of pot vs cap from cellpy object # df = cpobj.get_cap(method="forth-and-forth", label_cycle_number=True, categorical_column=True) outpath += os.path.basename(filename).split(".")[0] + "_" handles.append( Line2D([0], [0], marker="o", color=color, label=filename, linestyle="") ) stepstable = cpobj.cell.steps chglist, dchglist = get_effective_C_rates_and_caps(stepstable) # Remove all cycles which are not in cyc_nums by looking at the 0th element (cyc num) of every sublist in chglist new_chglist = [x for x in chglist if x[0] in cyc_nums] new_dchglist = [x for x in dchglist if x[0] in cyc_nums] linregress_xlist = [] linregress_ylist = [] for chg, dchg in zip(new_chglist, new_dchglist): # print(dchg) # ax.scatter(chg[1] , chg[2] , color = color, alpha = 0.2) ax.scatter(1 / dchg[1], dchg[2], color=color, alpha=1) linregress_xlist.append(1 / dchg[1]) linregress_ylist.append(dchg[2]) # print(linregress_ylist) # Fitting curve to the exponential function # Import curve fitting package from scipy # from scipy.optimize import curve_fit x_arr = np.array(linregress_xlist) y_arr = np.array(linregress_ylist) # Average the capacity for each c-rate def _reduce_to_averages(xvals, yvals): """This function scans through the data and averages relevant points together.""" point_grouped = [] point_lst = [] dists = [] for i in range(1, len(xvals)): prev_point = np.array((xvals[i - 1], yvals[i - 1])) curr_point = np.array((xvals[i], yvals[i])) dev = 0.3 if ( (prev_point * (1 - dev))[0] < curr_point[0] < (prev_point * (1 + dev))[0] ): # If this point is within dev (percentage sort of) of last point, then its in the same c-rate point_lst.append(curr_point) else: # New c-rate point_grouped.append(point_lst) point_lst = [] print(point_grouped) x_arr = [] y_arr = [] for group in point_grouped: stacked_arr = np.stack(group, axis=1) averaged_arr = np.average(stacked_arr, axis=1) x_arr.append(averaged_arr[0]) y_arr.append(averaged_arr[1]) print(x_arr) print(y_arr) return x_arr, y_arr # x_arr, y_arr = _reduce_to_averages(x_arr, y_arr) # ax.scatter(x_arr, y_arr, marker="+") # def _exp_func(x,a,b,c): # return -a* (b**x) + a + -a * (b**(x+c)) +a # pars, cov = curve_fit(f=_exp_func, p0 = [50, 0.7, 0], xdata = x_arr, ydata=y_arr, bounds = ([0,0.1, -20],[1e9, 1, 20])) # x_vals = np.linspace(min(x_arr), max(x_arr), 100) #x_arr[0], x_arr[-1], 100) # ax.plot(x_vals, _exp_func(x_vals, *pars)) # ax.hlines(max(y_arr), ax.get_xlim()[0], ax.get_xlim()[1], colors = color, linestyle='--') # Get the standard deviations of the parameters (square roots of the # diagonal of the covariance) # std_dev = np.sqrt(np.diag(cov)) # Make a sweet legend to put on this # handles.append( # Line2D( # [0], [0], # marker="_", color=color, # label = 'Calculated maximum capacity:' + '\n' +'{:.2e} $\pm$ {:.2e}'.format(pars[0], std_dev[0]) + r'$\left[\mu Ah\right]$', linestyle='' # )) ax.hlines( max(y_arr), ax.get_xlim()[0], ax.get_xlim()[1], colors=color, linestyle="--", ) handles.append( Line2D( [0], [0], marker="_", color=color, label="Highest capacity:" + "\n" + "{:.2e}".format(max(y_arr)) + r"$\left[\mu Ah\right]$", linestyle="", ) ) self.fix_cap_from_rc(fig, ax, handles) # Save fig savepath = outpath + "CapDet" self.save_fig(fig, savepath) def fix_cyclelife(self, fig, ax): """Makes the finishing touches to the cyclelife plot""" # Applies kwargs settings and other plot settings ## Parameters which could be user defined later """ ax.set( xticks = (np.arange(0, 150), step=20)), yticks = (np.arange(3, 5, step=0.2)), ) """ # Get labels and handles for legend generation and eventual savefile handles, labels = ax.get_legend_handles_labels() if not self.kwargs["only_dischg"]: handles.append( Line2D( [0], [0], marker="o", color="black", alpha=0.2, label="Charge capacity", linestyle="", ) ) if self.kwargs["cyclelife_coulombic_efficiency"]: handles.append( Line2D( [0], [0], marker="+", color="black", alpha=1, label="Coulombic Efficiency", linestyle="", ) ) if ( self.kwargs["cyclelife_charge_c_rate"] and not self.kwargs["cyclelife_discharge_c_rate"] ): handles.append( Line2D( [0], [0], marker="_", color="black", alpha=1, label="Effective charge C-rate", linestyle="", ) ) elif ( not self.kwargs["cyclelife_charge_c_rate"] and self.kwargs["cyclelife_discharge_c_rate"] ): handles.append( Line2D( [0], [0], marker="_", color="black", alpha=1, label="Effective discharge C-rate", linestyle="", ) ) elif ( self.kwargs["cyclelife_charge_c_rate"] and self.kwargs["cyclelife_discharge_c_rate"] ): handles.append( Line2D( [0], [0], marker="_", color="black", alpha=1, label="Effective charge C-rate", linestyle="", ) ) handles.append( Line2D( [0], [0], marker="_", color="black", alpha=0.2, label="Effective discharge C-rate", linestyle="", ) ) # The params below should always be like this. ax.tick_params(direction="in", top="true", right="true") ax.xaxis.get_major_locator().set_params(integer=True) # Apply all kwargs to plot try: # Cyclelife plot details ax.set(xlabel=self.kwargs["cyclelife_xlabel"]) if self.kwargs["cyclelife_percentage"]: ax.set(ylabel=self.kwargs["cyclelife_ylabel_percent"]) else: ax.set(ylabel=self.kwargs["cyclelife_ylabel"]) # General plot details fig.set_size_inches(self.kwargs["figsize"]) if type(self.kwargs["figtitle"]) == str: fig.suptitle(self.kwargs["figtitle"]) else: fig.suptitle("Capacity versus Cycle life") except Exception as e: logging.error(e) # Take care of having the legend outside the plot if self.kwargs["cyclelife_legend_outside"]: if ( self.kwargs["cyclelife_coulombic_efficiency"] or self.kwargs["cyclelife_charge_c_rate"] or self.kwargs["cyclelife_discharge_c_rate"] ): ax.legend(handles=handles, bbox_to_anchor=(1.18, 1), loc="upper left") else: ax.legend(handles=handles, bbox_to_anchor=(1.05, 1), loc="upper left") figsize = self.kwargs["figsize"] fig.set_size_inches((figsize[0] + 3, figsize[1])) else: ax.legend(handles=handles) fig.tight_layout() # Needed to not clip ylabel on coulombic efficiency def fix_cap_from_rc(self, fig, ax, handles): """Makes the finishing touches to the capacity vs inverse C-rate plot""" ax.tick_params(direction="in", top="true", right="true") ax.set( xlabel=r"Inverse C-rate $\left[ h \right]$", ylabel=r"Capacity $\left[\mu Ah \right]$", ) # General plot details fig.set_size_inches(self.kwargs["figsize"]) if type(self.kwargs["figtitle"]) == str: fig.suptitle(self.kwargs["figtitle"]) else: fig.suptitle("Capacity determination from Rate Capability") # Take care of having the legend outside the plot if self.kwargs["cyclelife_legend_outside"]: ax.legend(handles=handles, bbox_to_anchor=(1.05, 1), loc="upper left") figsize = self.kwargs["figsize"] fig.set_size_inches((figsize[0] + 3, figsize[1])) else: ax.legend(handles=handles) fig.tight_layout() # Needed to not clip ylabel on coulombic efficiency def fix_gc(self, fig, ax): """Makes the finishing touches to the voltage-curves plot""" # Applies kwargs settings and other plot settings ## Parameters which could be user defined later """ ax.set( xticks = (np.arange(0, 150), step=20)), yticks = (np.arange(3, 5, step=0.2)), ) """ # The params below should always be like this. ax.tick_params(direction="in", top="true", right="true") # Apply all kwargs to plot try: # Galvanostatic plot details ax.set(xlabel=self.kwargs["galvanostatic_xlabel"]) ax.set(ylabel=self.kwargs["galvanostatic_ylabel"]) ax.set(ylim=self.kwargs["galvanostatic_potlim"]) ax.set(xlim=self.kwargs["galvanostatic_caplim"]) if self.kwargs["specific_cycles"] != None: ax.legend() # General plot details fig.set_size_inches(self.kwargs["figsize"]) if type(self.kwargs["figtitle"]) == str: fig.suptitle(self.kwargs["figtitle"]) except Exception as e: logging.error(e) def fix_dqdv(self, fig, ax): """Makes the finishing touches to the dQdV plot""" # Applies kwargs settings and other plot settings ## Parameters which could be user defined later """ ax.set( xticks = (np.arange(0, 150), step=20)), yticks = (np.arange(3, 5, step=0.2)), ) """ # The params below should always be like this. ax.tick_params(direction="in", top="true", right="true") # Apply all kwargs to plot try: # Cyclelife plot details ax.set(xlabel=self.kwargs["dqdv_xlabel"]) ax.set(ylabel=self.kwargs["dqdv_ylabel"]) ax.set(ylim=self.kwargs["dqdv_dqlim"]) ax.set(xlim=self.kwargs["dqdv_potlim"]) if self.kwargs["specific_cycles"] != None: ax.legend() # General plot details fig.set_size_inches(self.kwargs["figsize"]) if type(self.kwargs["figtitle"]) == str: fig.suptitle(self.kwargs["figtitle"]) except Exception as e: logging.error(e) def fix_gc_and_dqdv(self, fig, axs): """Makes the finishing touches to the dQdV / Voltage curves plot""" for ax in axs: # The params below should always be like this. ax.tick_params(direction="in", top="true", right="true") # Apply all kwargs to plot try: # dQdV plot details axs[1].set( xlabel=self.kwargs["dqdv_ylabel"] ) # switched x and y label since this dQdV plot is flipped to match the adjacent gc plot axs[1].set(ylabel="") # Empty since we already have potential on gc axs axs[1].set(ylim=self.kwargs["galvanostatic_potlim"]) axs[1].set(xlim=self.kwargs["dqdv_dqlim"]) # Galvanostatic plot details axs[0].set(xlabel=self.kwargs["galvanostatic_xlabel"]) axs[0].set(ylabel=self.kwargs["galvanostatic_ylabel"]) axs[0].set(ylim=self.kwargs["galvanostatic_potlim"]) axs[0].set(xlim=self.kwargs["galvanostatic_caplim"]) if self.kwargs["specific_cycles"] != None: axs[0].legend() # General plot details fig.set_size_inches(self.kwargs["figsize"]) if type(self.kwargs["figtitle"]) == str: fig.suptitle(self.kwargs["figtitle"]) except Exception as e: print(e) logging.error(e) def save_fig(self, fig, savepath): """The point of this is to have savefig parameters the same across all plots (for now just fig dpi and bbox inches)""" if self.kwargs.get("save_figures", True): if self.kwargs["outname"]: savepath = ( self.kwargs["outpath"] + self.kwargs["outname"] + self.kwargs["outtype"] ) else: savepath += self.kwargs["outtype"] print("Saving to: " + savepath) fig.savefig(savepath, bbox_inches="tight", dpi=self.kwargs["figres"]) def get_effective_C_rates(steptable): newdf = steptable[["step_time_avr", "cycle", "type"]] chg_c_rates = [] dchg_c_rates = [] for i, elem in enumerate(newdf.iterrows()): if elem[1]["type"] == "charge": chg_c_rates.append(1 / (elem[1]["step_time_avr"] / 3600)) elif elem[1]["type"] == "discharge": dchg_c_rates.append(1 / (elem[1]["step_time_avr"] / 3600)) return chg_c_rates, dchg_c_rates def get_effective_C_rates_and_caps(steptable): newdf = steptable[ ["step_time_avr", "cycle", "type", "charge_avr", "discharge_last"] ] chglist = ( [] ) # [[cycle, chg_crate, chg_cap], [cycle increase with crates and capacities for this cycle]] dchglist = [] for i, elem in enumerate(newdf.iterrows()): cyc = elem[1]["cycle"] if elem[1]["type"] == "charge": chglist.append( [ cyc, 1 / (elem[1]["step_time_avr"] / 3600), elem[1]["charge_avr"] * 1000, ] ) elif elem[1]["type"] == "discharge": dchglist.append( [ cyc, 1 / (elem[1]["step_time_avr"] / 3600), elem[1]["discharge_last"] * 1000 * 1000, ] ) return chglist, dchglist def main(): log.setup_logging(default_level="DEBUG") f1 = Path("../../testdata/data/20160805_test001_45_cc_01.res") f2 = Path("../../testdata/data/20160805_test001_47_cc_01.res") raw_files = [f1, f2] nicknames = ["cell1", "cell2"] logging.debug(raw_files) logging.debug(nicknames) ezplt = EasyPlot(raw_files, nicknames, figtitle="Test1", save_figures=True) ezplt.plot() plt.show() return def _dev_journal_loading(): log.setup_logging(default_level="DEBUG") journal_file = Path("../../testdata/db/cellpy_batch_test.json") ezplt = EasyPlot( None, journal=journal_file, figtitle="Test1", save_figures=False, save_journal=True, outpath="./tmp/", ) ezplt.plot() # plt.show() return if __name__ == "__main__": print(" running easyplot ".center(80, "-")) _dev_journal_loading() print(" finished ".center(80, "-")) ``` #### File: cellpy/tests/test_maccor.py ```python import tempfile import shutil import pytest import logging from cellpy import log, get from . import fdv log.setup_logging(default_level=logging.DEBUG) @pytest.fixture def cellpy_data_instance(): from cellpy import cellreader return cellreader.CellpyData() @pytest.fixture def dataset(): from cellpy import cellreader d = cellreader.CellpyData() d.load(fdv.mpr_cellpy_file_path) return d def test_set_instrument(cellpy_data_instance): import os instrument = "maccor_txt" cellpy_data_instance.set_instrument(instrument=instrument) cellpy_data_instance.from_raw(fdv.mcc_file_path, sep="\t") cellpy_data_instance.make_step_table() cellpy_data_instance.make_summary() assert len(cellpy_data_instance.cell.raw) == 6704 temp_dir = tempfile.mkdtemp() logging.debug(f"created a temporary directory and dumping csv there ({temp_dir})") cellpy_data_instance.to_csv(datadir=temp_dir) assert len(os.listdir(temp_dir)) > 0 shutil.rmtree(temp_dir) def test_cellpy_get(cellpy_data_instance): instrument = "maccor_txt" c = get(fdv.mcc_file_path, instrument=instrument, sep="\t") assert len(c.cell.raw) == 6704 ```
{ "source": "jepegit/coffeshop", "score": 2 }
#### File: jepegit/coffeshop/test_schedules.py ```python import pytest import schedule_tester def test_open_schedule(): print(schedule_tester) def ```
{ "source": "jepemo/basic-agent", "score": 2 }
#### File: basic-agent/bagent/core.py ```python import asyncio import logging from contextlib import ContextDecorator from bagent.messages import MessageContext logger = logging.getLogger(__name__) class AgentMixin(object): def __init__(self, loop, debug): self.next_pid = 1 self.parent_ctx = None self.parent = None self.parent_pid = '0' self.agents = {} self.tasks = {} self.loop = loop self.debug = debug self.pid = '0' self.messages = asyncio.Queue(loop=loop) self.fn = None self.args = None self.kwargs = None def create_agent(self, agent_fn, *args, **kwargs): agent = AgentContext(self.loop, debug=self.debug) pid = '{0}-{1}'.format(self.pid, self.next_pid) agent.pid = pid agent.parent = self agent.parent_pid = self.pid agent.fn = agent_fn agent.args = args agent.kwargs = kwargs agent.parent_ctx = self self.agents[pid] = agent self.next_pid += 1 logger.debug("Agent created: {0}".format(pid)) return pid async def recv(self): logger.debug("{0} waiting for message...".format(self.pid)) return await self.messages.get() def get_message(self): return MessageContext(self) async def send(self, pid, msg, sender=None): if not sender: sender = self.pid logger.debug("From {0}, sending {1} to {2}".format(sender, str(msg), pid)) if self.pid == pid: await self.messages.put((sender, msg)) else: agent = self._find_child_path(pid) if agent: await agent.send(pid, msg, sender=sender) else: if self.pid == 0: logger.warning("PID {0} not FOUND".format(pid)) else: await self.parent.send(pid, msg, sender=sender) def _find_child_path(self, pid): for apid, agent in self.agents.items(): if apid.startswith(pid): return agent return None class AgentContext(AgentMixin): def __init__(self, loop, debug=False): AgentMixin.__init__(self, loop, debug) self.running_agents = 0 def _decr_children_count(self, fn): async def func(*args, **kwargs): await fn(*args, **kwargs) self.running_agents -= 1 logger.debug("Agent terminated: {0}".format(self.pid)) return func async def start(self, agent_fn, *args, **kwargs): agent_fn = self._decr_children_count(agent_fn) pid = self.create_agent(agent_fn, *args, **kwargs) agent = self.agents[pid] task = asyncio.ensure_future(agent.execute()) self.tasks[pid] = task self.running_agents += 1 return pid def _wait_children(self, fn): async def func(*args, **kwargs): await fn(*args, **kwargs) while self.running_agents > 0: await asyncio.sleep(1) return func async def execute(self): logger.debug("Starting agent: {0}".format(self.pid)) self.fn = self._wait_children(self.fn) await self.fn(self, *self.args, **self.kwargs) class RootContext(ContextDecorator, AgentMixin): def __init__(self, loop, debug=False): ContextDecorator.__init__(self) AgentMixin.__init__(self, loop, debug) if debug: logging.basicConfig(level=logging.DEBUG) else: logging.basicConfig(level=logging.ERROR) def start(self, agent_fn, *args, **kwargs): pid = self.create_agent(agent_fn, *args, **kwargs) return pid def send(self): raise Exception("Not implemented") def recv(self): raise Exception("Not implemented") def __enter__(self): return self def __exit__(self, *exc): tasks = [agent.execute() for agent in self.agents.values()] self.loop.run_until_complete(asyncio.wait(tasks)) self.loop.close() return False ``` #### File: basic-agent/bagent/messages.py ```python import re class MessageHandler(object): def __init__(self, msg, sender, ctx): self.ctx = ctx self.msg = msg self.sender = sender def is_int(self): return self.is_type(int) def is_str(self): return self.is_type(str) def is_float(self): return self.is_type(float) def is_re(self, expr): if not self.is_type(str): return False else: p = re.compile(expr) return p.match(self.msg) is not None def is_type(self, clazz): return isinstance(self.msg, clazz) def match_int(self, fn): if self.is_int(): fn(self.msg) def match_str(self, fn): if self.is_str(): fn(self.msg) def match_float(self, fn): if self.is_float(): fn(self.msg) def match_re(self, expr, fn): if self.is_re(expr): fn(self.msg) def match(self, obj, fn): for key, value in obj.items(): print(key, value) def respond(self, resp_msg): self.respond_to(self.sender, resp_msg) def respond_to(self, resp_pid, resp_msg): self.ctx.send(resp_pid, resp_msg) class MessageContext: def __init__(self, ctx): self.ctx = ctx def __enter__(self): raise TypeError("Use async with instead") def __exit__(self, exc_type, exc_val, exc_tb): pass # pragma: no cover async def __aenter__(self): (sender, msg) = await self.ctx.recv() return MessageHandler(msg, sender, self.ctx) async def __aexit__(self, exc_type, exc_val, exc_tb): return False ```
{ "source": "jepenven-silabs/connectedhomeip", "score": 2 }
#### File: mdns/minimal/format_test.py ```python import argparse import asyncio import coloredlogs import logging from dataclasses import dataclass from construct import * LOCAL_ADDR = ("0.0.0.0", 5388) # LOCAL_ADDR = ("::%178", 5388) DEST_ADDR = ("192.168.3.11", 5353) # DEST_ADDR = ("fdf8:f53e:61e4::18", 5353) QUERY_QNAME = "_googlecast._tcp.local" def EndsWithEmpty(x, lst, ctx): return not x class QNameValidator(Validator): def _validate(self, obj, context, path): return obj[-1] == "" class QNameArrayAdapter(Adapter): def _decode(self, obj, context, path): return ".".join(map(str, obj[:-1])) def _encode(self, obj, context, path): return list(map(str, obj.split("."))) + [""] @dataclass class AnswerPtr: offset: int class AnswerPart(Subconstruct): def __init__(self): self.name = "AnswerPart" self.subcon = PascalString self.flagbuildnone = False self.parsed = None def _parse(self, stream, context, path): # read from the stream # return object len = stream.read(1)[0] if (len & 0xC0) == 0xC0: l2 = stream.read(1)[0] return AnswerPtr(((len & 0x3F) << 8) | l2) else: return stream.read(len) def _build(self, obj, stream, context, path): # write obj to the stream # return same value (obj) or a modified value # that will replace the context dictionary entry raise Error("Answer part build not yet implemented") def _sizeof(self, context, path): # return computed size (when fixed size or depends on context) # or raise SizeofError (when variable size or unknown) raise SizeofError("Answer part has avariable size") def EndsWithEmptyOrPointer(x, lst, ctx): return (not x) or isinstance(x, AnswerPtr) class IpAddressAdapter(Adapter): def _decode(self, obj, context, path): return ".".join(map(str, obj)) def _encode(self, obj, context, path): return list(map(int, obj.split("."))) IpAddress = IpAddressAdapter(Byte[4]) HEX = HexDump(GreedyBytes) QNAME = QNameArrayAdapter( QNameValidator(RepeatUntil(EndsWithEmpty, PascalString(Byte, "utf8")))) DNSAnswer = Struct( "NAME" / RepeatUntil(EndsWithEmptyOrPointer, AnswerPart()), "TYPE" / Enum( Int16ub, A=1, NS=2, CNAME=5, SOA=6, WKS=11, PTR=12, MX=15, TXT=16, AAA=28, SRV=33, ), "CLASS" / BitStruct( "FlushCache" / Flag, "CLASS" / Enum(BitsInteger(15), IN=1), ), "TTL" / Int32ub, "RDATA" / Prefixed( Int16ub, Switch( this.TYPE, { "TXT": GreedyRange(PascalString(Byte, "utf8")), "A": IpAddress, "AAAA": Array(16, Byte), "PTR": RepeatUntil(EndsWithEmptyOrPointer, AnswerPart()), }, default=GreedyBytes)), ) DNSQuery = Struct( "ID" / Int16ub, "Control" / BitStruct( "QR" / Default(Flag, False), "OpCode" / Default(Enum(BitsInteger(4), QUERY=0, IQUERY=1, STATUS=2), "QUERY"), "AA" / Default(Flag, False), "TC" / Default(Flag, False), "RD" / Default(Flag, False), "RA" / Default(Flag, False), "Z" / Padding(1), "AD" / Default(Flag, False), "CD" / Default(Flag, False), "Rcode" / Default( Enum( BitsInteger(4), OK=0, FORMAT_ERROR=1, SERVER_FAILURE=2, NAME_ERROR=3, NOT_IMPLEMENTED=4, REFUSED=5, ), "OK", ), ), "QuestionCount" / Rebuild(Int16ub, len_(this.Questions)), "AnswerCount" / Rebuild(Int16ub, len_(this.Answers)), "AuthorityCount" / Rebuild(Int16ub, len_(this.Authorities)), "AdditionalCount" / Rebuild(Int16ub, len_(this.Additionals)), "Questions" / Array( this.QuestionCount, Struct( "QNAME" / QNAME, "QTYPE" / Default( Enum( Int16ub, A=1, NS=2, CNAME=5, SOA=6, WKS=11, PTR=12, MX=15, SRV=33, AAAA=28, ANY=255, ), "ANY"), "QCLASS" / BitStruct( "Unicast" / Default(Flag, False), "Class" / Default(Enum(BitsInteger(15), IN=1, ANY=255), "IN"), ), ), ), "Answers" / Default(Array(this.AnswerCount, DNSAnswer), []), "Authorities" / Default(Array(this.AuthorityCount, DNSAnswer), []), "Additionals" / Default(Array(this.AdditionalCount, DNSAnswer), []), ) class EchoClientProtocol: def __init__(self, on_con_lost): self.on_con_lost = on_con_lost self.transport = None def connection_made(self, transport): self.transport = transport query = DNSQuery.build({ "ID": 0x1234, "Questions": [ { "QNAME": QUERY_QNAME, "QCLASS": { "Unicast": True } }, ], "Answers": [], "Authorities": [], "Additionals": [], }) logging.info("Connection made") logging.info("Sending:\n%s", DNSQuery.parse(query)) logging.info("BINARY:\n%s", HEX.parse(query)) self.transport.sendto(query, DEST_ADDR) logging.info("Query sent") def datagram_received(self, data, addr): logging.info("Received reply from: %r", addr) logging.debug(HEX.parse(data)) logging.info(DNSQuery.parse(data)) def error_received(self, exc): logging.error("Error") def connection_lost(self, exc): logging.error("Lost connection") self.on_con_lost.set_result(True) async def main(): loop = asyncio.get_running_loop() client_done = loop.create_future() transport, protocol = await loop.create_datagram_endpoint( lambda: EchoClientProtocol(client_done), local_addr=LOCAL_ADDR ) try: await client_done finally: transport.close() if __name__ == "__main__": parser = argparse.ArgumentParser(description="mDNS test app") parser.add_argument( "--log-level", default=logging.INFO, type=lambda x: getattr(logging, x), help="Configure the logging level.", ) args = parser.parse_args() logging.basicConfig( level=args.log_level, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", ) coloredlogs.install(level=args.log_level) asyncio.run(main()) ```
{ "source": "jepetersohn/haikuna-matata", "score": 3 }
#### File: jepetersohn/haikuna-matata/runner_test.py ```python import unittest import runner class TestRunnerMethods(unittest.TestCase): def test_count_syllables(self): syllables = runner.countSyllables('hello') self.assertEqual(syllables, 2) def test_is_haiku(self): trueHaiku = runner.isHaiku("I am a haiku trust me this is a haiku, I'm dead serious") falseHaiku = runner.isHaiku("I'm a donut") self.assertTrue(trueHaiku) self.assertFalse(falseHaiku) #def test_generate_random_haiku(self): # haiku = runner.generateHaiku('the') # self.assertIsInstance(haiku, basestring) # self.assertEqual(haiku, 'Hello, World') def test_pick_random_word(self): word = runner.pickRandomWord(1) from models import Unigram queryWord = Unigram.query.filter(Unigram.word1 == word)[0].word1 self.assertIsInstance(word, basestring) self.assertEqual(word, queryWord) def test_generate_line(self): line = runner.generateLine(4, "the") lineSyllables = runner.countSyllables(line) self.assertEqual(lineSyllables, 5) def test_grab_possible_words(self): from models import Unigram unigrams = Unigram.query.filter(Unigram.word1 == 'the') possibleWords = runner.grabPossibleWords("the", 1) self.assertIsInstance(possibleWords, list) self.assertEqual(len(possibleWords), 1) if __name__ == '__main__': unittest.main() ```
{ "source": "jepetolee/CRYPTONALYTICS", "score": 2 }
#### File: CRYPTONALYTICS/TrainingModel/Chad.py ```python import warnings import numpy as np import sys import PIL from binance import ThreadedWebsocketManager from PIL import ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True sys.path.append('..') from time import sleep from ValueCrypto import Trader from binance.client import Client from datetime import datetime from make_pd import * from torchvision import transforms from TradeAlgorithm import DatasetFinal, TradeDataSetOut, update_future_15min_csv, update_future_1min_csv, \ update_future_1hour_csv from tqdm import tqdm, trange import torch.nn as nn import torch.nn.functional as F import torch import gc import pandas as pd from torch.distributions import Categorical import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from mpl_finance import candlestick2_ohlc def build_numpy(data, temper): fig = plt.figure(figsize=(20, 20)) gs = gridspec.GridSpec(2, 4) axes = list() axes.append(plt.subplot(gs[0, :])) axes.append(plt.subplot(gs[1, :], sharex=axes[0])) candlestick2_ohlc(axes[0], data[0], data[1], data[2], data[3], width=1, colorup='r', colordown='b') axes[1].bar(data.index + 1, data[4], color='k', width=0.8, align='center') copies = data[3].copy() axes[0].plot(data.index + 1, copies.rolling(window=3).mean(), label='Ma3') axes[0].plot(data.index + 1, copies.rolling(window=14).mean(), label='Ma14') plt.savefig('D:/CRYPTONALYTICS/TrainingModel/' + temper + '_day.png', dpi=100) plt.close('all') X = PIL.Image.open('D:/CRYPTONALYTICS/TrainingModel/' + temper + '_day.png').convert("L") x = np.array(X) X.close() return x def DayRealChad(symbol, device, leveragen, impulse=-1, saved=False, grad_lock=False): # (XRP,BNB,BTC,ETH) print("AwesomeChad") trader = Trader(device).to(device) client = Client(api_key="", api_secret="") if saved: trader.load_state_dict(torch.load('./model/' + symbol + '_trader.pt')) trans = transforms.Compose([transforms.ToTensor(), transforms.Resize(size=(500, 500)), transforms.Normalize(0.5, 0.5)]) # <----------------------------------------------------------------------> current_time = datetime.now().strftime("%H:%M:%S") print(current_time + '์— ์‹œ์ž‘') # <----------------------------------------------------------------------> onehour = client.futures_klines(symbol=symbol, interval='1d', limit=1500) onehour = pd.DataFrame(np.array(onehour, dtype=np.float)[-45:].T[1:6].T) onehour = build_numpy(onehour, symbol) s_oneH = trans(onehour).float().to(device).reshape(-1, 1, 500, 500) sleep(0.1) fifteen_data = client.futures_klines(symbol=symbol, interval='15m', limit=1500) fifteen_data = pd.DataFrame(np.array(fifteen_data, dtype=np.float)[-120:].T[1:6].T) fifteen_data = build_numpy(fifteen_data, symbol) s_oneF = trans(fifteen_data).float().to(device).reshape(-1, 1, 500, 500) oneminute_data = client.futures_klines(symbol=symbol, interval='4h', limit=1500) oneminute_data = pd.DataFrame(np.array(oneminute_data, dtype=np.float)[-60:].T[1:6].T) oneminute_data = build_numpy(oneminute_data, symbol) s_oneM = trans(oneminute_data).float().to(device).reshape(-1, 1, 500, 500) # <----------------------------------------------------------------------> hidden = ( torch.zeros([1, 1, 16], dtype=torch.float).to(device), torch.zeros([1, 1, 16], dtype=torch.float).to(device)) h_in = [hidden, hidden, hidden] benefit = 100 selecter = True position = False t = 0 locker, ring = 20, 1 while True: sleep(1) # <----------------------------------------------------------------------> current_price = float(client.futures_symbol_ticker(symbol=symbol, limit=1500)['price']) if selecter: with torch.no_grad(): position_t, h_out = trader.SetPosition(s_oneH, s_oneF, s_oneM, h_in) position_t = position_t.detach().reshape(-1) position_a = Categorical(position_t).sample() position_prob = position_t[position_a.item()] s_oneHP = s_oneH s_oneMP = s_oneM s_oneFP = s_oneF h_inP = h_in h_outP = h_out if position_a == 0: position_v = 'LONG' selected_price = current_price selecter = False elif position_a == 1: position_v = 'SHORT' selected_price = current_price selecter = False else: position_v = 'NONE' selected_price = current_price selecter = False print(position_v + ': ', current_price) # <----------------------------------------------------------------------> difference = (0.9998 * current_price - selected_price) if position_v == 'SHORT': difference = (0.9998 * selected_price - current_price) if position_v == 'NONE' and difference > 0: difference *= -1 # <----------------------------------------------------------------------> percent = leveragen * difference / selected_price * 100 # <----------------------------------------------------------------------> if percent < impulse: selecter = True percent = impulse reward = -1 ring = 1 if difference > locker * ring: ring += 1 position = True if position: if difference <= locker * (ring - 1)-10: difference = locker * (ring - 1)-10 reward = ring-1 selecter = True position = False ring = 1 elif position_v is 'NONE': percent = 0 sleep(10800) reward = 0 ring = 1 selecter = True if selecter: if position_v is not 'NONE': sleep(700) benefit *= (1 + percent / 100) onehour = client.futures_klines(symbol=symbol, interval='4h', limit=1500) onehour = pd.DataFrame(np.array(onehour, dtype=np.float)[-45:].T[1:6].T) onehour = build_numpy(onehour, symbol) sprime_oneH = trans(onehour).float().to(device).reshape(-1, 1, 500, 500) oneminute_data = client.futures_klines(symbol=symbol, interval='1h', limit=1500) oneminute_data = pd.DataFrame(np.array(oneminute_data, dtype=np.float)[-60:].T[1:6].T) oneminute_data = build_numpy(oneminute_data, symbol) sprime_oneM = trans(oneminute_data).float().to(device).reshape(-1, 1, 500, 500) fifteen_data = client.futures_klines(symbol=symbol, interval='15m', limit=1500) fifteen_data = pd.DataFrame(np.array(fifteen_data, dtype=np.float)[-120:].T[1:6].T) fifteen_data = build_numpy(fifteen_data, symbol) sprime_oneF = trans(fifteen_data).float().to(device).reshape(-1, 1, 500, 500) trader.TrainModelP(s_oneHP, s_oneFP, s_oneMP, sprime_oneH, sprime_oneF, sprime_oneM, h_inP, h_outP, position_a, position_prob, reward) torch.save(trader.state_dict(), './model/' + symbol + '_trader.pt') print(str(round(benefit, 2)) + "% " + position_v + " reward is " + str(round(percent, 2)), current_price) s_oneM = sprime_oneM s_oneF = sprime_oneF s_oneH = sprime_oneH h_in = h_out if t % 75 == 0: print(current_price, percent) t += 1 DayRealChad('BTCUSDT', 'cpu', 125, impulse=-10, saved=True) # ํฐ๊ฑฐ 20 ์ž‘์€๊ฑฐ 5 ''' SOLUSDT 'TRXUSDT', 'AVAXUSDT', 'NEARUSDT', 'USDCUSDT' ''' ```
{ "source": "JephDiel/BCI", "score": 4 }
#### File: JephDiel/BCI/main.py ```python import pygame from pygame.constants import K_DOLLAR, K_DOWN, K_ESCAPE, K_LEFT, K_RIGHT, K_UP from pygame.time import Clock import random from ThinkGear import ThinkGear from collections import deque import numpy as np my_device = ThinkGear("COM5") reads_per_data = 256 raw_data = deque(maxlen=reads_per_data) #192 data_size = 180 time_per_data = 1 lastdata = 0 training_data_input = [] training_data_output = [] data_index = 0 def saveData(dir): global data_index global training_data_input global training_data_output training_data_input += [list(raw_data)] training_data_output += [[0,0,0,0]] training_data_output[-1][dir] = 1 data_index += 1 pygame.init() # Set up the drawing window screen = pygame.display.set_mode([500, 500]) font = pygame.font.Font(pygame.font.get_default_font(), 36) # Run until the user asks to quit running = True pos = (250,250) dir = (0,0) clock = Clock() speed = 2 score = 0 foodpos = (250, 100) while running: delta = 1 / float(clock.tick(reads_per_data)) # Did the user click the window close button? for event in pygame.event.get(): if event.type == pygame.QUIT: running = False if event.type == pygame.KEYDOWN and len(raw_data) == reads_per_data: if event.key == K_UP: print("Up") dir = (0, -speed) saveData(0) if event.key == K_DOWN: print("Down") dir = (0, speed) saveData(1) if event.key == K_LEFT: print("Left") dir = (-speed, 0) saveData(2) if event.key == K_RIGHT: print("Right") dir = (speed, 0) saveData(3) if event.key == K_ESCAPE: running = False # Fill the background with white screen.fill((50, 50, 50)) if(len(raw_data) == reads_per_data): pygame.draw.circle(screen, (0, 150, 0), foodpos, 5) # Draw a solid blue circle in the center pygame.draw.circle(screen, (200, 200, 0), pos, 10) x = (pos[0] + (dir[0] * delta)) % 500 y = (pos[1] + (dir[1] * delta)) % 500 pos = (x,y) text_surface = font.render("Score: " + str(score), True, (250, 250, 250)) screen.blit(text_surface, dest=(10,10)) if ((pos[0]-foodpos[0])**2 + (pos[1] - foodpos[1]) ** 2) < 225: score += 1 print("Score") while ((pos[0]-foodpos[0])**2 + (pos[1] - foodpos[1]) ** 2) < 225: foodpos = (random.randint(10, 490), random.randint(40, 490)) # Flip the display pygame.display.flip() my_device.fetch_data() data = my_device.data if 'eeg_raw' in data: raw_data.append(data['eeg_raw']) lastdata = data['eeg_raw'] else: raw_data.append(lastdata) # Done! Time to quit. pygame.quit() my_device.close() training_data_input = np.array(training_data_input) training_data_output = np.array(training_data_output) print("Adding " + str(training_data_input.shape[0]) + " Items with " + str(training_data_input.shape[1]) + " elements each") try: old_training_input = np.load("trainingdata/input3.npy") old_training_output = np.load("trainingdata/output3.npy") training_data_input = np.concatenate((training_data_input, old_training_input)) training_data_output = np.concatenate((training_data_output, old_training_output)) except: print("Old Data Not Found, Overriding") np.save("trainingdata/input3.npy", training_data_input) np.save("trainingdata/output3.npy", training_data_output) print("Total " + str(training_data_input.shape[0]) + " Items with " + str(training_data_input.shape[1]) + " elements each") ``` #### File: JephDiel/BCI/ThinkGear.py ```python import serial, math#, pygame codes = [0x02, 0x03, 0x04, 0x05, 0x06, 0x80, 0x83 ] names = ["quality","heartrate","attention","meditation","8bit_raw","eeg_raw","eeg_asic"] c_len = [1, 1, 1, 1, 1, 3, 25 ] bands = ["delta","theta","low-alpha","high-alpha","low-beta","high-beta","low-gamma","mid-gamma"] #convert signed bit/byte array to int def signed_thing_to_int(b, length): return b-((b >> (length-1)) & 1)*2**length #return b if first bit is 0, otherwise subtract max value representable with given number of bits and return '''EEG Device Class''' class ThinkGear(object): def __init__(self, port, baudrate=57600): self.ser = serial.Serial(port, baudrate) #initialize serial communication/connection self.data = {} def fetch_data(self): self.data = {} #reset values while True: self.ser.read_until(b"\xAA\xAA") #wait for sync bytes plength = ord(self.ser.read(1)) #payload length payload = self.ser.read(plength) #read entire payload of given length checksum = ~(int(math.fsum([b for b in payload])) & 0xFF) & 0xFF #calculate checksum by doing... checksum-calculation stuff (described in the docs) if checksum == ord(self.ser.read(1)): break #checksums match, move on else: print("ERROR: Checksum mismatch!") #checksum mismatch, repeat i = 0 while i < len(payload)-1: code = payload[i] if code in codes: #check if current byte is a supported code c = codes.index(code) #find corresponding index in the three code-related lists above '''old code which I prefer (because it's technically one line) (sadly without a way to add comments) self.data[names[c]] = payload[i+1] if c < 5 \ else signed_thing_to_int(payload[i+2] << 8 | payload[i+3], 16) if c == 5 \ else dict(zip(bands, [payload[b] << 16 | payload[b+1] << 8 | payload[b+2] for b in range(i+1, i+25, 3)])) ''' if c < 5: #all single-byte codes (quality, heartrate, attention, meditation, 8bit_raw) self.data[names[c]] = payload[i+1] elif c == 5: #eeg_raw (fun fact: the first byte after the code is completely useless) self.data[names[c]] = signed_thing_to_int(payload[i+2] << 8 | payload[i+3], 16) elif c == 6: #eeg_asic self.data[names[c]] = dict(zip(bands, [payload[b] << 16 | payload[b+1] << 8 | payload[b+2] for b in range(i+1, i+25, 3)])) i += c_len[c] #add code-specific number of bytes to i i += 1 #add 1 each time to avoid getting stuck on unused bytes def close(self): self.ser.close() # print("Connecting Thinkgear") # eeg_device = ThinkGear("COM5", 9600) # print ("Connected") # '''Visualization Stuff''' # vis_points = 640 #number of eeg readings to be plotted at once # size = (640, 480) #window size in pixels # x_vals = [int(size[0]*(x+0.5)/vis_points) for x in range(vis_points)] # y_vals = [int(size[1]/2) for x in range(vis_points)] # surface = pygame.display.set_mode(size) #initialize window # pygame.display.set_caption("EEG Visualizer") #... # raw_eeg_range = 8192 #technically 2*32768=65536 (2^16), but for some reason it doesn't use the full available range # clock = pygame.time.Clock() # while True: # try: # clock.tick(30) # print("Fetching") # eeg_device.fetch_data() # print("Fetched") # if len(eeg_device.data) == 1: y_vals = y_vals[1:]+[int(size[1]/2-size[1]*eeg_device.data["eeg_raw"]/raw_eeg_range)] # surface.fill((0,0,0)) #Do I really need to explain this? # points = list(zip(x_vals, y_vals)) #zip x and y values to pairs (list(zip([x0,x1,...xN], [y0,y1,...,yN])) = [(x0,y0),(x1,y1),...,(xN,yN)]) # pygame.draw.lines(surface, (255,255,255), False, points) #draw continuous line segments through points # pygame.display.flip() #display changes # except KeyboardInterrupt: #I don't even know if this works, heck. <insert wrinkly Pikachu> # pygame.quit() ```
{ "source": "jephstahl/mpf-docs", "score": 2 }
#### File: scriptlets/scriptlets/test_scriptlet.py ```python from mpf.core.scriptlet import Scriptlet class TestScriptlet(Scriptlet): def on_load(self): self.log.debug("Loaded!") self.machine.events.add_handler('test_event', self._update) def _update(self, **kwargs): del kwargs self.machine.events.post("test_response") ```
{ "source": "jepierre/python_apps", "score": 3 }
#### File: python_apps/aiosync_ex/asyncio_ex.py ```python import logging import os import asyncio # set up logger import time logger = logging.getLogger("root") logger.setLevel(logging.DEBUG) # Paths PATH = os.path.dirname(__file__) def main(*args): # Turns on logging to console ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) formatter = logging.Formatter( "%(asctime)s - %(name)s - %(levelname)s - <%(funcName)s:%(lineno)s> - %(message)s", "%Y-%m-%d %H:%M:%S", ) ch.setFormatter(formatter) logger.addHandler(ch) async def print_x(name, number, seconds): for i in range(number): logger.debug("Task {} at number: {}".format(name, i)) await asyncio.sleep(seconds) start = time.time() my_event_loop = asyncio.get_event_loop() tasks = [ asyncio.ensure_future(print_x("A", number=10, seconds=2)), asyncio.ensure_future(print_x("B", number=15, seconds=1)), ] my_event_loop.run_until_complete(asyncio.wait(tasks)) my_event_loop.close() end = time.time() logger.debug("total time: {}".format(end - start)) if __name__ == "__main__": main() ``` #### File: python_apps/PyMonthlyExpense/plain_text_edit_logger.py ```python import logging from PyQt5 import uic, Qt, QtCore from PyQt5.QtGui import QTextCursor from PyQt5.QtWidgets import ( QPlainTextEdit, QWidget, QApplication, QMainWindow, QPushButton, QVBoxLayout, QDockWidget, QTextEdit, QGroupBox, ) import sys logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger() logger.setLevel(logging.DEBUG) FORMATTER = logging.Formatter( "%(asctime)s: %(name)s - %(levelname)s - <%(module)s:%(funcName)s:%(lineno)d> - %(message)s" ) class QPlainTextEditLogger(logging.Handler): def __init__(self, text_box_handle): logging.Handler.__init__(self) self.text_edit_logger = text_box_handle self.text_edit_logger.setReadOnly(True) def emit(self, record): msg = self.format(record) self.text_edit_logger.append(msg) self.text_edit_logger.moveCursor(QTextCursor.End) def write(self, m): pass class CustomLoggerWidget(QDockWidget): def __init__(self, formatter=FORMATTER): super().__init__() self.setWindowTitle("Log") self.formatter = formatter self.init_ui() def init_ui(self): text_box_handle = QTextEdit() text_box_handle.document().setDefaultStyleSheet( ".CRITICAL{color:red; font-weight:bold} .ERROR{color:#CC0000; weight:bold} " ".WARNING{color:#CCAA33} .INFO{color:black} .DEBUG{color:green} .VERBOSE{color:blue} " ".TIME{color:black} .MODULE{color:purple} .FUNCTION {color:gray; font-weight:bold}" ) text_box_handle.append("<style>.DEBUG {color:red} .INFO {color:blue} </style>") formatter = logging.Formatter( fmt="<span class=TIME>%(asctime)s </span>" + "<span class=MODULE>&lt;%(module)s&gt; </span>" + "<span class=FUNCTION>&lt;%(funcName)s:%(lineno)s&gt;</span>" + "<span class=%(levelname)s> %(levelname)s - %(message)s</span>" ) # text_box_handle.document().setDefaultStyleSheet('.CRITICAL{color:red; font-weight:bold}' # '.ERROR{color:#cc000; weight:bold}' # '.WARNING{color:#CCAA33} .INFO{color:black}') # text_box_handle.append('<style>.DEBUG {color:red} .INFO{color:blue} </style>') # formatter = logging.Formatter(fmt='<span class=TIME>%(asctime)s </span>' + # '<span class=MODULE>&lt;%(module)s&gt; </span>') log_text_box = QPlainTextEditLogger(text_box_handle) # set format log_text_box.setFormatter(formatter) logging.getLogger().addHandler(log_text_box) # set logging level logging.getLogger().setLevel(logging.DEBUG) # vboxformat.addWidget(log_text_box.text_edit_logger) # vboxformat.addWidget(text_box_handle) self.setWidget(text_box_handle) # self.dock_log.setWidget(text_box_handle) class MainWindow(QMainWindow): def __init__(self, parent=None): super().__init__(parent) self.init_ui() def init_ui(self): self.setWindowTitle("Logger Example") self.setGeometry(200, 200, 640, 480) self._button = QPushButton() self._button.setText("Test Me") group_box = QGroupBox() layout = QVBoxLayout() layout.addWidget(self._button) te = QTextEdit() logg = QPlainTextEditLogger(te) clogger = CustomLoggerWidget(self) # layout.addWidget(clogger) # layout.addWidget(logg.text_edit_logger) self._button.clicked.connect(self.test) group_box.setLayout(layout) # self.setCentralWidget(QTextEdit()) self.layout().addWidget(group_box) self.addDockWidget(QtCore.Qt.BottomDockWidgetArea, clogger) # self.layout().addWidget(self._button) self.show() def test(self): logging.debug("damn, a bug") logging.info("something to remember") logging.warning("that's not right") logging.error("foobar") def main(): # Enable logging on the console ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) ch.setFormatter(FORMATTER) logger.addHandler(ch) # Opens the app app = QApplication(sys.argv) App = MainWindow() sys.exit(app.exec_()) if __name__ == "__main__": main() ``` #### File: python_apps/PyNotePad/Main.py ```python __appname__ = "PyNotePad" import logging import os import sys from PyQt5 import uic from PyQt5.QtWidgets import QApplication, QMainWindow from PyQt5.Qt import QFontDatabase import termcolor import traceback app_path = os.path.dirname(__file__) __path__ = app_path app_log_path = os.path.join(app_path, "logs") if not os.path.exists(app_log_path): os.makedirs(app_log_path) log_file_name = __appname__ + ".txt" formatter = "%(asctime)s: %(name)s -%(levelname)s -%(module)s -%(funcName)s -%(lineno)-3d -%(message)s" logging.basicConfig( filename=os.path.join(app_log_path, log_file_name), format=formatter ) logger = logging.getLogger(name="main-gui") logger.setLevel(logging.DEBUG) class Main(QMainWindow): def __init__(self, *args, **kargs): super().__init__(*args, **kargs) uic.loadUi(r"ui_files/main.ui", self) logger.debug("loading main.ui") self.setWindowTitle(__appname__) self.init_ui() self.show() def init_ui(self): fixed_font = QFontDatabase.systemFont(QFontDatabase.FixedFont) fixed_font.setPointSize(12) self.main_text_edit.setFont(fixed_font) self.action_exit.triggered.connect(self.exit_app) def exit_app(self): sys.exit(0) def save_file(self): pass def save_file_as(self): pass def open_file(self): pass def main(): # make sure were in the current path of the Main file os.chdir(os.path.dirname(__file__)) # Enable logging on the console ch = logging.StreamHandler() ch.setFormatter(logging.Formatter(formatter)) ch.setLevel(logging.DEBUG) logger.addHandler(ch) # catches errors in gui and print them def excepthook(etype, value, tb): if isinstance(value, KeyboardInterrupt): sys.exit(1) else: termcolor.cprint("Sorry, something's wrong! ", "yellow", file=sys.stderr) # print traceback traceback.print_exception(etype, value, tb) # Set global exception handler. sys.excepthook = excepthook # Open the app app = QApplication(sys.argv) App = Main(parent=None) sys.exit(app.exec_()) if __name__ == "__main__": main() ``` #### File: python_apps/TDD/mycode.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals def hello_world(): return "hello world" def create_num_list(length): return [x for x in range(length)] def custom_func_x(x, const, power): return const * x ** power def custom_non_lin_num_list(length, const, power): return [custom_func_x(x, const, power) for x in range(length)] def main(): pass if __name__ == "__main__": main() ``` #### File: python_apps/Threading/threading_ex3.py ```python from PyQt5 import uic from PyQt5.QtWidgets import QWidget, QApplication, QLabel, QSplashScreen, QMainWindow from PyQt5.QtCore import ( QTime, QTimer, Qt, QThread, pyqtSignal, QObject, QRunnable, QThreadPool, ) from PyQt5 import uic import sys import time import logging logger = logging.getLogger("root") logger.setLevel(logging.DEBUG) # Note that a QRunnable isn't a subclass of QObject and therefore does # not provide signals and slots. # this keeps running even after app quits class RunableThread(QRunnable): finished = pyqtSignal() def __init__(self, line_edit): super(RunableThread, self).__init__() self.threadLineEdit = line_edit def run(self): logger.debug("printing from thread 3") loop = 1000 for x in range(loop): logger.debug(f"thread 3: in loop: {x}") time.sleep(1) self.threadLineEdit.setText(f"thread counter: {x}") self.finished.emit() class WorkerThread(QThread): threadLineEdit = None thread_counter = 0 def __init__(self, line_edit): super(WorkerThread, self).__init__() self.threadLineEdit = line_edit def run(self): logger.debug("printing from thread 1") loop = 1000 for x in range(loop): logger.debug(f"in loop: {x}") if self.thread_counter > loop: self.thread_counter = 0 else: time.sleep(1) self.thread_counter += 1 self.threadLineEdit.setText(f"thread counter: {self.thread_counter}") class ObjectToThread(QObject): finished = pyqtSignal() def __init__(self, line_edit): super(ObjectToThread, self).__init__() self.thread2LineEdit = line_edit def long_running_process(self): logger.debug("printing from thread 2") loop = 1000 for x in range(loop): logger.debug(f"thread 2: in loop: {x}") time.sleep(1) self.thread2LineEdit.setText(f"thread counter: {x}") self.finished.emit() class Main(QMainWindow): class TempClass(QThread): def __init__(self): QThread.__init__(self) def run(self): for x in range(1000): logger.debug(f"in temp class: {x}") time.sleep(1) tmp_clas = TempClass() INTERVAL = 1000 count = 0 thread_counter = 0 count1 = 0 finished = pyqtSignal(bool) my_thread = QThread() def __init__(self): super().__init__() uic.loadUi(r"main.ui", self) self.init_ui() def init_ui(self): self.temp_thread = self.TempClass() self.temp_thread.finished.connect(self.print_all_done) self.temp_thread.start() self.print_msg() self.use_qthread() self.use_runnable() self.use_move_to_thread() self.show() def use_runnable(self): myrunnable = RunableThread(self.thread3LineEdit) QThreadPool.globalInstance().start(myrunnable) def use_qthread(self): self.message_thread = WorkerThread(self.threadLineEdit) self.message_thread.finished.connect(self.print_all_done) self.message_thread.start() def use_move_to_thread(self): # in order for this to work: # 1. you can't put main application window in a thread # 2. my thread has to be defined globally self.obj = ObjectToThread(self.thread2LineEdit) self.obj.moveToThread(self.my_thread) self.obj.finished.connect(self.my_thread.quit) self.my_thread.started.connect(self.obj.long_running_process) self.my_thread.finished.connect(self.print_all_done) self.my_thread.start() def print_all_done(self): logger.debug("all done") # Timer with single shot def print_msg(self): self.count1 %= 1000 self.count1 += 1 self.printLineEdit.setText(f"print counter: {self.count1}") QTimer.singleShot(self.INTERVAL, self.print_msg) def main(): # Enable logging on the console ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) logger.addHandler(ch) sys._excepthook = sys.excepthook def exception_hook(exctype, value, traceback): print(exctype, value, traceback) sys._excepthook(exctype, value, traceback) sys.exit(1) sys.excepthook = exception_hook # Opens the app app = QApplication(sys.argv) App = Main() sys.exit(app.exec_()) if __name__ == "__main__": main() ```
{ "source": "jepler/adabot", "score": 2 }
#### File: adabot/adabot/circuitpython_libraries.py ```python import argparse import datetime import inspect import logging import re import sys import traceback from adabot import github_requests as github from adabot import pypi_requests as pypi from adabot.lib import circuitpython_library_validators as cirpy_lib_vals from adabot.lib import common_funcs from adabot.lib import assign_hacktober_label as hacktober from adabot.lib import blinka_funcs from adabot import circuitpython_library_download_stats as dl_stats logger = logging.getLogger(__name__) ch = logging.StreamHandler(stream=sys.stdout) logging.basicConfig(level=logging.INFO, format="%(message)s", handlers=[ch]) # Setup ArgumentParser cmd_line_parser = argparse.ArgumentParser( description="Adabot utility for CircuitPython Libraries.", prog="Adabot CircuitPython Libraries Utility", ) cmd_line_parser.add_argument( "-o", "--output_file", help="Output log to the filename provided.", metavar="<OUTPUT FILENAME>", dest="output_file", ) cmd_line_parser.add_argument( "-p", "--print", help="Set the level of verbosity printed to the command prompt." " Zero is off; One is on (default).", type=int, default=1, dest="verbose", choices=[0, 1], ) cmd_line_parser.add_argument( "-e", "--error_depth", help="Set the threshold for outputting an error list. Default is 5.", dest="error_depth", type=int, default=5, metavar="n", ) cmd_line_parser.add_argument( "-v", "--validator", help="Run validators with 'all', or only the validator(s) supplied in a string.", dest="validator", metavar='all OR "validator1, validator2, ..."', ) # Functions to run on repositories to validate their state. By convention these # return a list of string errors for the specified repository (a dictionary # of Github API repository object state). default_validators = [ vals for vals in inspect.getmembers(cirpy_lib_vals.LibraryValidator) if vals[0].startswith("validate") ] pr_sort_re = re.compile(r"(?<=\(Open\s)(.+)(?=\sdays)") close_pr_sort_re = re.compile(r"(?<=\(Days\sopen:\s)(.+)(?=\))") blinka_repos = [ "Adafruit_Blinka", "Adafruit_Blinka_bleio", "Adafruit_Blinka_Displayio", "Adafruit_Python_PlatformDetect", "Adafruit_Python_PureIO", "Adafruit_Blinka_PyPortal", "Adafruit_Python_Extended_Bus", ] # pylint: disable=too-many-locals, too-many-branches, too-many-statements def run_library_checks(validators, kw_args, error_depth): """runs the various library checking functions""" # Load the latest pylint version latest_pylint = "2.0.1" pylint_info = pypi.get("/pypi/pylint/json") if pylint_info and pylint_info.ok: latest_pylint = pylint_info.json()["info"]["version"] logger.info("Latest pylint is: %s", latest_pylint) repos = common_funcs.list_repos( include_repos=tuple(blinka_repos) + ("CircuitPython_Community_Bundle", "cookiecutter-adafruit-circuitpython") ) logger.info("Found %s repos to check.", len(repos)) bundle_submodules = common_funcs.get_bundle_submodules() logger.info("Found %s submodules in the bundle.", len(bundle_submodules)) github_user = common_funcs.whois_github_user() logger.info("Running GitHub checks as %s", github_user) need_work = 0 lib_insights = common_funcs.InsightData() blinka_insights = common_funcs.InsightData() core_insights = common_funcs.InsightData() core_insights["milestones"] = dict() repo_needs_work = [] since = datetime.datetime.now() - datetime.timedelta(days=7) repos_by_error = {} new_libs = {} updated_libs = {} validator = cirpy_lib_vals.LibraryValidator( validators, bundle_submodules, latest_pylint, **kw_args ) for repo in repos: if len(validators) != 0: errors = validator.run_repo_validation(repo) if errors: need_work += 1 repo_needs_work.append(repo) # print(repo["full_name"]) # print("\n".join(errors)) # print() for error in errors: if not isinstance(error, tuple): # check for an error occurring in the valiator module if error == cirpy_lib_vals.ERROR_OUTPUT_HANDLER: # print(errors, "repo output handler error:", validator.output_file_data) logger.info(", ".join(validator.output_file_data)) validator.output_file_data.clear() if error not in repos_by_error: repos_by_error[error] = [] repos_by_error[error].append(repo["html_url"]) else: if error[0] not in repos_by_error: repos_by_error[error[0]] = [] repos_by_error[error[0]].append( "{0} ({1} days)".format(repo["html_url"], error[1]) ) insights = lib_insights if repo["owner"]["login"] == "adafruit": if repo["name"] in blinka_repos: insights = blinka_insights elif repo["name"] == "circuitpython": insights = core_insights closed_metric = bool(insights == lib_insights) errors = validator.gather_insights( repo, insights, since, show_closed_metric=closed_metric ) if errors: print("insights error") for error in errors: if error == cirpy_lib_vals.ERROR_OUTPUT_HANDLER: logger.info(", ".join(validator.output_file_data)) validator.output_file_data.clear() # get a list of new & updated libraries for the last week if repo["name"] != "Adafruit_CircuitPython_Bundle": check_releases = common_funcs.is_new_or_updated(repo) if check_releases == "new": new_libs[repo["name"]] = repo["html_url"] elif check_releases == "updated": updated_libs[repo["name"]] = repo["html_url"] logger.info("") logger.info("State of CircuitPython + Libraries + Blinka") logger.info("### Overall") print_pr_overview(lib_insights, core_insights, blinka_insights) print_issue_overview(lib_insights, core_insights, blinka_insights) logger.info("") logger.info("### Core") print_pr_overview(core_insights) logger.info("* %s open pull requests", len(core_insights["open_prs"])) sorted_prs = sorted( core_insights["open_prs"], key=lambda days: int(pr_sort_re.search(days).group(1)), reverse=True, ) for pull_request in sorted_prs: logger.info(" * %s", pull_request) print_issue_overview(core_insights) logger.info("* %s open issues", len(core_insights["open_issues"])) logger.info(" * https://github.com/adafruit/circuitpython/issues") logger.info("* %s active milestones", len(core_insights["milestones"])) ms_count = 0 for milestone in sorted(core_insights["milestones"].keys()): ms_count += core_insights["milestones"][milestone] logger.info( " * %s: %s open issues", milestone, core_insights["milestones"][milestone] ) logger.info( " * %s issues not assigned a milestone", len(core_insights["open_issues"]) - ms_count, ) logger.info("") ## temporarily disabling core download stats: # - GitHub API has been broken, due to the number of release artifacts # - Release asset delivery is being moved to AWS CloudFront/S3 # print_circuitpython_dl_stats() logger.info("* Core download stats available at https://circuitpython.org/stats") logger.info("") logger.info("### Libraries") print_pr_overview(lib_insights) logger.info(" * Merged pull requests:") sorted_prs = sorted( lib_insights["merged_prs"], key=lambda days: int(close_pr_sort_re.search(days).group(1)), reverse=True, ) for pull_request in sorted_prs: logger.info(" * %s", pull_request) open_pr_days = [ int(pr_sort_re.search(pull_request).group(1)) for pull_request in lib_insights["open_prs"] if pr_sort_re.search(pull_request) is not None ] if len(lib_insights["open_prs"]) != 0: logger.info( " * %s open pull requests (Oldest: %s, Newest: %s)", len(lib_insights["open_prs"]), max(open_pr_days), max((min(open_pr_days), 1)), # ensure the minumum is '1' ) print_issue_overview(lib_insights) logger.info(" * %s open issues", len(lib_insights["open_issues"])) logger.info(" * %s good first issues", lib_insights["good_first_issues"]) logger.info("* https://circuitpython.org/contributing") logger.info("Library updates in the last seven days:") if len(new_libs) != 0: logger.info("**New Libraries**") for title, link in new_libs.items(): logger.info(" * [%s](%s)", title, link) if len(updated_libs) != 0: logger.info("**Updated Libraries**") for title, link in updated_libs.items(): logger.info(" * [%s](%s)", title, link) if len(validators) != 0: lib_repos = [] for repo in repos: if repo["owner"]["login"] == "adafruit" and repo["name"].startswith( "Adafruit_CircuitPython" ): lib_repos.append(repo) logger.info("%s out of %s repos need work.", need_work, len(lib_repos)) list_repos_for_errors = [cirpy_lib_vals.ERROR_NOT_IN_BUNDLE] logger.info("") for error in sorted(repos_by_error): if not repos_by_error[error]: continue logger.info("") error_count = len(repos_by_error[error]) logger.info("%s - %s", error, error_count) if error_count <= error_depth or error in list_repos_for_errors: logger.info( "%s", "\n".join([" * " + x for x in repos_by_error[error]]) ) logger.info("") logger.info("### Blinka") print_pr_overview(blinka_insights) logger.info("* %s open pull requests", len(blinka_insights["open_prs"])) sorted_prs = sorted( blinka_insights["open_prs"], key=lambda days: int(pr_sort_re.search(days).group(1)), reverse=True, ) for pull_request in sorted_prs: logger.info(" * %s", pull_request) print_issue_overview(blinka_insights) logger.info("* %s open issues", len(blinka_insights["open_issues"])) logger.info(" * https://github.com/adafruit/Adafruit_Blinka/issues") blinka_dl = dl_stats.piwheels_stats().get("adafruit-blinka", {}).get("month", "N/A") logger.info("* Piwheels Downloads in the last month: %s", blinka_dl) logger.info("Number of supported boards: %s", blinka_funcs.board_count()) # pylint: disable=too-many-branches,too-many-statements def print_circuitpython_dl_stats(): """Gather and report analytics on the main CircuitPython repository.""" # TODO: with the move of release assets to AWS CloudFront/S3, update # this to use AWS CloudWatch metrics to gather download stats. # AWS' Python SDK `boto3` has CloudWatch interfaces which should # enable this. try: response = github.get("/repos/adafruit/circuitpython/releases") except (ValueError, RuntimeError): logger.info("Core CircuitPython GitHub download statistics request failed.") return if not response.ok: logger.info("Core CircuitPython GitHub download statistics request failed.") return releases = response.json() found_unstable = False found_stable = False stable_tag = None prerelease_tag = None by_board = {} by_language = {} by_both = {} total = {} asset_re = re.compile( r""" circuitpython\- # end of the prefix (?P<board>.+)\- # board name (?P<lang>.+)\- # language (\d\.\d\.\d.*) # version \.(?=uf2|bin|hex) # file extension """, re.I | re.X, ) for release in releases: if not found_unstable and not release["draft"] and release["prerelease"]: found_unstable = True prerelease_tag = release["tag_name"] elif not found_stable and not release["draft"] and not release["prerelease"]: found_stable = True stable_tag = release["tag_name"] else: continue for asset in release["assets"]: if not asset["name"].startswith("adafruit-circuitpython"): continue count = asset["download_count"] info_re = asset_re.search(asset["name"]) if not info_re: print("Skipping stats for '{}'".format(asset["name"])) continue board = info_re.group("board") language = info_re.group("lang") if language not in by_language: by_language[language] = {release["tag_name"]: 0} if release["tag_name"] not in by_language[language]: by_language[language][release["tag_name"]] = 0 by_language[language][release["tag_name"]] += count if board not in by_board: by_board[board] = {release["tag_name"]: 0} by_both[board] = {} if release["tag_name"] not in by_board[board]: by_board[board][release["tag_name"]] = 0 by_board[board][release["tag_name"]] += count by_both[board][language] = count if release["tag_name"] not in total: total[release["tag_name"]] = 0 total[release["tag_name"]] += count logger.info("Number of supported boards: %s", len(by_board)) logger.info("") logger.info("Download stats by board:") logger.info("") by_board_list = [ [ "Board", "{}".format(stable_tag.strip(" ")), "{}".format(prerelease_tag.strip(" ")), ], ] for board in sorted(by_board.items()): by_board_list.append( [ str(board[0]), (str(board[1][stable_tag]) if stable_tag in board[1] else "-"), (str(board[1][prerelease_tag]) if prerelease_tag in board[1] else "-"), ] ) long_col = [ (max([len(str(row[i])) for row in by_board_list]) + 3) for i in range(len(by_board_list[0])) ] # row_format = "".join(["{:<" + str(this_col) + "}" for this_col in long_col]) row_format = "".join( [ "| {:<" + str(long_col[0]) + "}", "|{:^" + str(long_col[1]) + "}", "|{:^" + str(long_col[2]) + "}|", ] ) by_board_list.insert( 1, [ "{}".format("-" * (long_col[0])), "{}".format("-" * (long_col[1])), "{}".format("-" * (long_col[2])), ], ) by_board_list.extend( ( [ "{}".format("-" * (long_col[0])), "{}".format("-" * (long_col[1])), "{}".format("-" * (long_col[2])), ], [ "{0}{1}".format(" " * (long_col[0] - 6), "Total"), "{}".format(total[stable_tag]), "{}".format(total[prerelease_tag]), ], [ "{}".format("-" * (long_col[0])), "{}".format("-" * (long_col[1])), "{}".format("-" * (long_col[2])), ], ) ) for row in by_board_list: logger.info("%s", row_format.format(*row)) logger.info("") logger.info("Download stats by language:") logger.info("") by_lang_list = [ [ "Board", "{}".format(stable_tag.strip(" ")), "{}".format(prerelease_tag.strip(" ")), ], ] for board in sorted(by_language.items()): by_lang_list.append( [ str(board[0]), (str(board[1][stable_tag]) if stable_tag in board[1] else "-"), (str(board[1][prerelease_tag]) if prerelease_tag in board[1] else "-"), ] ) long_col = [ (max([len(str(row[i])) for row in by_lang_list]) + 3) for i in range(len(by_lang_list[0])) ] # row_format = "".join(["{:<" + str(this_col) + "}" for this_col in long_col]) row_format = "".join( [ "| {:<" + str(long_col[0]) + "}", "|{:^" + str(long_col[1]) + "}", "|{:^" + str(long_col[2]) + "}|", ] ) by_lang_list.insert( 1, [ "{}".format("-" * (long_col[0])), "{}".format("-" * (long_col[1])), "{}".format("-" * (long_col[2])), ], ) by_lang_list.extend( ( [ "{}".format("-" * (long_col[0])), "{}".format("-" * (long_col[1])), "{}".format("-" * (long_col[2])), ], [ "{0}{1}".format(" " * (long_col[0] - 6), "Total"), "{}".format(total[stable_tag]), "{}".format(total[prerelease_tag]), ], [ "{}".format("-" * (long_col[0])), "{}".format("-" * (long_col[1])), "{}".format("-" * (long_col[2])), ], ) ) for row in by_lang_list: logger.info("%s", row_format.format(*row)) # for language in by_language: # logger.info("* %s - %s", language, by_language[language]) logger.info("") def print_pr_overview(*insights): """Prints an overview of Pull Requests""" merged_prs = sum([len(x["merged_prs"]) for x in insights]) authors = set().union(*[x["pr_merged_authors"] for x in insights]) reviewers = set().union(*[x["pr_reviewers"] for x in insights]) logger.info("* %s pull requests merged", merged_prs) logger.info(" * %s authors - %s", len(authors), ", ".join(authors)) logger.info(" * %s reviewers - %s", len(reviewers), ", ".join(reviewers)) def print_issue_overview(*insights): """Prints an overview of Issues""" closed_issues = sum([x["closed_issues"] for x in insights]) issue_closers = set().union(*[x["issue_closers"] for x in insights]) new_issues = sum([x["new_issues"] for x in insights]) issue_authors = set().union(*[x["issue_authors"] for x in insights]) logger.info( "* %s closed issues by %s people, %s opened by %s people", closed_issues, len(issue_closers), new_issues, len(issue_authors), ) # print Hacktoberfest labels changes if its Hacktober in_season, season_action = hacktober.is_hacktober_season() if in_season: hacktober_changes = "" if season_action == "add": hacktober_changes = "* Assigned Hacktoberfest label to {} issues.".format( sum([x["hacktober_assigned"] for x in insights]) ) elif season_action == "remove": hacktober_changes += "* Removed Hacktoberfest label from {} issues.".format( sum([x["hacktober_removed"] for x in insights]) ) logger.info(hacktober_changes) # pylint: disable=too-many-branches def main(verbose=1, output_file=None, validator=None, error_depth=5): """Main""" validator_kwarg_list = {} startup_message = [ "Running CircuitPython Library checks...", "Report Date: {}".format(datetime.datetime.now().strftime("%d %B %Y, %I:%M%p")), ] if verbose == 0: logger.setLevel("CRITICAL") if output_file: file_handler = logging.FileHandler(output_file) logger.addHandler(file_handler) startup_message.append( " - Report output will be saved to: {}".format(output_file) ) validators = [] validator_names = [] if validator: startup_message.append( " - Depth for listing libraries with errors: {}".format(error_depth) ) if validator != "all": validators = [] for func in validator.split(","): func_name = func.strip() try: if not func_name.startswith("validate"): raise KeyError # print('{}'.format(func_name)) if "contents" not in func_name: validators.append( [ val[1] for val in default_validators if func_name in val[0] ][0] ) else: validators.insert( 0, [ val[1] for val in default_validators if func_name in val[0] ][0], ) validator_names.append(func_name) except KeyError: # print(default_validators) logger.info( "Error: '%s' is not an available validator.\nAvailable validators are: %s", func.strip(), ", ".join([val[0] for val in default_validators]), ) sys.exit() else: validators = [val_funcs[1] for val_funcs in default_validators] validator_names = [val_names[0] for val_names in default_validators] startup_message.append( " - These validators will run: {}".format(", ".join(validator_names)) ) if "validate_contents" not in validator_names: validator_kwarg_list["validate_contents_quiet"] = True validators.insert( 0, [val[1] for val in default_validators if "validate_contents" in val[0]][ 0 ], ) try: for message in startup_message: logger.info(message) logger.info("") # print(validators) run_library_checks( validators, validator_kwarg_list, error_depth, ) except: _, exc_val, exc_tb = sys.exc_info() logger.error("Exception Occurred!") logger.error(("-" * 60)) logger.error("Traceback (most recent call last):") trace = traceback.format_tb(exc_tb) for line in trace: logger.error(line) logger.error(exc_val) raise if __name__ == "__main__": cli_args = cmd_line_parser.parse_args() main( verbose=cli_args.verbose, output_file=cli_args.output_file, validator=cli_args.validator, error_depth=cli_args.error_depth, ) ``` #### File: adabot/adabot/circuitpython_library_patches.py ```python import argparse import os import shutil import sys import requests import sh from sh.contrib import git from adabot.lib import common_funcs working_directory = os.path.abspath(os.getcwd()) lib_directory = working_directory + "/.libraries/" patch_directory = working_directory + "/patches/" repos = [] check_errors = [] apply_errors = [] stats = [] """ Setup the command line argument parsing object. """ cli_parser = argparse.ArgumentParser( description="Apply patches to any common file(s) in" " all Adafruit CircuitPython Libraries." ) cli_parser.add_argument( "-l", "--list", help="Lists the available patches to run.", action="store_true" ) cli_parser.add_argument( "-p", help="Runs only the single patch referenced.", metavar="<PATCH FILENAME>", dest="patch", ) cli_parser.add_argument( "-f", help="Adds the referenced FLAGS to the git.am call." " Only available when using '-p'. Enclose flags in brackets '[]'." " Multiple flags can be passed. NOTE: '--signoff' is already used " " used by default, and will be ignored. EXAMPLE: -f [-C0] -f [-s]", metavar="FLAGS", action="append", dest="flags", type=str, ) cli_parser.add_argument( "--use-apply", help="Forces use of 'git apply' instead of 'git am'." " This is necessary when needing to use 'apply' flags not available" " to 'am' (e.g. '--unidiff-zero'). Only available when using '-p'.", action="store_true", dest="use_apply", ) cli_parser.add_argument( "--dry-run", help="Accomplishes a dry run of patches, without applying" " them.", action="store_true", dest="dry_run", ) cli_parser.add_argument( "--local", help="Force use of local patches. This skips verification" " of patch files in the adabot GitHub repository. MUST use '--dry-run'" " with this argument; this guards against applying unapproved patches.", action="store_true", dest="run_local", ) def get_repo_list(): """Uses adabot.circuitpython_libraries module to get a list of CircuitPython repositories. Filters the list down to adafruit owned/sponsored CircuitPython libraries. """ repo_list = [] get_repos = common_funcs.list_repos() for repo in get_repos: if not ( repo["owner"]["login"] == "adafruit" and repo["name"].startswith("Adafruit_CircuitPython") ): continue repo_list.append(dict(name=repo["name"], url=repo["clone_url"])) return repo_list def get_patches(run_local): """Returns the list of patch files located in the adabot/patches directory. """ return_list = [] if not run_local: contents = requests.get( "https://api.github.com/repos/adafruit/adabot/contents/patches" ) if contents.ok: for patch in contents.json(): patch_name = patch["name"] return_list.append(patch_name) else: contents = os.listdir(patch_directory) for file in contents: if file.endswith(".patch"): return_list.append(file) return return_list # pylint: disable=too-many-arguments def apply_patch(repo_directory, patch_filepath, repo, patch, flags, use_apply): """Apply the `patch` in `patch_filepath` to the `repo` in `repo_directory` using git am or git apply. The commit with the user running the script (adabot if credentials are set for that). When `use_apply` is true, the `--apply` flag is automatically added to ensure that any passed flags that turn off apply (e.g. `--check`) are overridden. """ if not os.getcwd() == repo_directory: os.chdir(repo_directory) if not use_apply: try: git.am(flags, patch_filepath) except sh.ErrorReturnCode as err: apply_errors.append( dict(repo_name=repo, patch_name=patch, error=err.stderr) ) return False else: apply_flags = ["--apply"] for flag in flags: if not flag == "--signoff": apply_flags.append(flag) try: git.apply(apply_flags, patch_filepath) except sh.ErrorReturnCode as err: apply_errors.append( dict(repo_name=repo, patch_name=patch, error=err.stderr) ) return False with open(patch_filepath) as patchfile: for line in patchfile: if "[PATCH]" in line: message = '"' + line[(line.find("]") + 2) :] + '"' break try: git.commit("-a", "-m", message) except sh.ErrorReturnCode as err: apply_errors.append( dict(repo_name=repo, patch_name=patch, error=err.stderr) ) return False try: git.push() except sh.ErrorReturnCode as err: apply_errors.append(dict(repo_name=repo, patch_name=patch, error=err.stderr)) return False return True # pylint: disable=too-many-locals,too-many-branches,too-many-statements def check_patches(repo, patches, flags, use_apply, dry_run): """Gather a list of patches from the `adabot/patches` directory on the adabot repo. Clone the `repo` and run git apply --check to test wether it requires any of the gathered patches. When `use_apply` is true, any flags except `--apply` are passed through to the check call. This ensures that the check call is representative of the actual apply call. """ applied = 0 skipped = 0 failed = 0 repo_directory = lib_directory + repo["name"] for patch in patches: try: os.chdir(lib_directory) except FileNotFoundError: os.mkdir(lib_directory) os.chdir(lib_directory) try: git.clone(repo["url"]) except sh.ErrorReturnCode_128 as err: if b"already exists" in err.stderr: pass else: raise RuntimeError(err.stderr) from None os.chdir(repo_directory) patch_filepath = patch_directory + patch try: check_flags = ["--check"] if use_apply: for flag in flags: if not flag in ("--apply", "--signoff"): check_flags.append(flag) git.apply(check_flags, patch_filepath) run_apply = True except sh.ErrorReturnCode_1 as err: run_apply = False if b"error" not in err.stderr or b"patch does not apply" in err.stderr: parse_err = err.stderr.decode() parse_err = parse_err[parse_err.rfind(":") + 1 : -1] print(" . Skipping {}:{}".format(repo["name"], parse_err)) skipped += 1 else: failed += 1 error_str = str(err.stderr, encoding="utf-8").replace("\n", " ") error_start = error_str.rfind("error:") + 7 check_errors.append( dict( repo_name=repo["name"], patch_name=patch, error=error_str[error_start:], ) ) except sh.ErrorReturnCode as err: run_apply = False failed += 1 error_str = str(err.stderr, encoding="utf-8").replace("\n", " ") error_start = error_str.rfind("error:") + 7 check_errors.append( dict( repo_name=repo["name"], patch_name=patch, error=error_str[error_start:], ) ) if run_apply and not dry_run: result = apply_patch( repo_directory, patch_filepath, repo["name"], patch, flags, use_apply ) if result: applied += 1 else: failed += 1 elif run_apply and dry_run: applied += 1 return [applied, skipped, failed] if __name__ == "__main__": cli_args = cli_parser.parse_args() if cli_args.run_local: if cli_args.dry_run or cli_args.list: pass else: raise RuntimeError( "'--local' can only be used in conjunction with" " '--dry-run' or '--list'." ) run_patches = get_patches(cli_args.run_local) cmd_flags = ["--signoff"] if cli_args.list: print("Available Patches:", run_patches) sys.exit() if cli_args.patch: if not cli_args.patch in run_patches: raise ValueError( "'{}' is not an available patchfile.".format(cli_args.patch) ) run_patches = [cli_args.patch] if cli_args.flags is not None: if not cli_args.patch: raise RuntimeError( "Must be used with a single patch. See help (-h) for usage." ) if "[-i]" in cli_args.flags: raise ValueError("Interactive Mode flag not allowed.") for flag_arg in cli_args.flags: if not flag_arg == "[--signoff]": cmd_flags.append(flag_arg.strip("[]")) if cli_args.use_apply: if not cli_args.patch: raise RuntimeError( "Must be used with a single patch. See help (-h) for usage." ) print(".... Beginning Patch Updates ....") print(".... Working directory:", working_directory) print(".... Library directory:", lib_directory) print(".... Patches directory:", patch_directory) check_errors = [] apply_errors = [] stats = [0, 0, 0] print(".... Deleting any previously cloned libraries") try: libs = os.listdir(path=lib_directory) for lib in libs: shutil.rmtree(lib_directory + lib) except FileNotFoundError: pass repos = get_repo_list() print(".... Running Patch Checks On", len(repos), "Repos ....") for repository in repos: results = check_patches( repository, run_patches, cmd_flags, cli_args.use_apply, cli_args.dry_run ) for k in range(3): stats[k] += results[k] print(".... Patch Updates Completed ....") print(".... Patches Applied:", stats[0]) print(".... Patches Skipped:", stats[1]) print(".... Patches Failed:", stats[2], "\n") print(".... Patch Check Failure Report ....") if len(check_errors) > 0: for error in check_errors: print( ">> Repo: {0}\tPatch: {1}\n Error: {2}".format( error["repo_name"], error["patch_name"], error["error"] ) ) else: print("No Failures") print("\n") print(".... Patch Apply Failure Report ....") if len(apply_errors) > 0: for error in apply_errors: print( ">> Repo: {0}\tPatch: {1}\n Error: {2}".format( error["repo_name"], error["patch_name"], error["error"] ) ) else: print("No Failures") ```
{ "source": "jepler/Adafruit_CircuitPython_DisplayIO_Color_Picker", "score": 2 }
#### File: Adafruit_CircuitPython_DisplayIO_Color_Picker/adafruit_displayio_color_picker/color_picker.py ```python import math from displayio import TileGrid, OnDiskBitmap, ColorConverter from adafruit_displayio_layout.widgets.widget import Widget from adafruit_displayio_layout.widgets.control import Control __version__ = "0.0.0-auto.0" __repo__ = ( "https://github.com/adafruit/Adafruit_CircuitPython_DisplayIO_Color_Picker.git" ) # pylint: disable=missing-class-docstring, too-few-public-methods class ColorPicker(Widget, Control): """A widget to be used to select colors from a heel. :param str filename: name of the bitmap file to be used as a ColorPicker :param int x: x position of the color picker origin :param int y: y position of the color picker origin :param int imagesize: size of the bitmap file. The bitmap colorwheels are squares. **Quickstart: Importing and using the Color Picker** Here is one way of importing the ``ColorPicker`` class so you can use: .. code-block:: python from adafruit_displayio_color_picker import color_picker Now you can create an Slider at pixel position x=20, y=30 using: .. code-block:: python my_colorpicker=color_picker.ColorPicker(x=20, y=30) Once you setup your display, you can now add ``my_colorpicker`` to your display using: .. code-block:: python display.show(my_colorpicker) # add the group to the display If you want to have multiple display elements, you can create a group and then append the slider and the other elements to the group. Then, you can add the full group to the display as in this example: .. code-block:: python my_colorpicker= ColorPicker(20, 30) my_group = displayio.Group(max_size=2) # make a group that can hold 2 items my_group.append(my_colorpicker) # Add my_colorpicker to the group # # Append other display elements to the group # display.show(my_group) # add the group to the display **Final Notes** Depending on the screen results may vary. Resolution of the bitmap will no be as seen in a PC. Sensitivity of the screen could also affect the behaviour of the library. **The Color Picker Widget** .. figure:: color_picker.png :scale: 100 % :align: center :alt: Example of the color picker widget. Example of the color picker. representation will vary according to screen used. """ # pylint: disable=too-many-lines, too-many-instance-attributes, too-many-arguments # pylint: disable=too-many-locals, too-many-statements def __init__( self, filename: str = None, x: int = 0, y: int = 0, image_size: int = 100, **kwargs, ): Widget.__init__( self, x=x, y=y, height=image_size, width=image_size, **kwargs, max_size=4 ) Control.__init__(self) self._file = open(filename, "rb") image = OnDiskBitmap(self._file) tile_grid = TileGrid(image, pixel_shader=ColorConverter()) self._image_size = image_size self.append(tile_grid) self.touch_boundary = ( 0, 0, image.width, image.height, ) def contains(self, touch_point): # overrides, then calls Control.contains(x,y) """Checks if the ColorPicker was touched. Returns True if the touch_point is within the ColorPicker's touch_boundary. :param touch_point: x,y location of the screen, converted to local coordinates. :type touch_point: Tuple[x,y] :return: Boolean """ touch_x = ( touch_point[0] - self.x ) # adjust touch position for the local position touch_y = touch_point[1] - self.y return super().contains((touch_x, touch_y, 0)) def when_selected(self, touch_point, screen_height): """Response function when ColorPicker is selected. When selected, the ColorPicker will give the color corresponding with the position :param touch_point: x,y location of the screen, in absolute display coordinates. :param int screen_height: screen height :return: Color """ touch_x = ( touch_point[0] - self.x ) # adjust touch position for the local position touch_y = screen_height - touch_point[1] - self.y # Call the parent's .selected function in case there is any work up there. # touch_point is adjusted for group's x,y position before sending to super() super().selected((touch_x, touch_y, 0)) return self._color_from_position(touch_x, touch_y, self._image_size) def _color_from_position(self, x, y, image_size): img_half = image_size // 2 dist = abs(math.sqrt((x - img_half) ** 2 + (y - img_half) ** 2)) if x - img_half == 0: angle = -90 if y > img_half: angle = 90 else: angle = math.atan2((y - img_half), (x - img_half)) * 180 / math.pi angle = (angle + 30) % 360 shade = 1 * dist / img_half idx = angle / 60 base = int(round(idx)) adj = (6 + base + (-1 if base > idx else 1)) % 6 ratio = max(idx, base) - min(idx, base) color = self._make_color(base, adj, ratio, shade) return color @staticmethod def _make_color(base, adj, ratio, shade): """ Go through each bit of the colors adjusting blue with blue, red with red, green with green, etc. """ color_wheel = [ [0xFF, 0x00, 0xFF], [0xFF, 0x00, 0x00], [0xFF, 0xFF, 0x00], [0x00, 0xFF, 0x00], [0x00, 0xFF, 0xFF], [0x00, 0x00, 0xFF], [0xFF, 0x00, 0xFF], ] output = 0x0 bit = 0 for pos in range(3): base_chan = color_wheel[base][pos] adj_chan = color_wheel[adj][pos] new_chan = int(round(base_chan * (1 - ratio) + adj_chan * ratio)) # now alter the channel by the shade if shade < 1: new_chan = new_chan * shade elif shade > 1: shade_ratio = shade - 1 new_chan = (0xFF * shade_ratio) + (new_chan * (1 - shade_ratio)) output = output + (int(new_chan) << bit) bit = bit + 8 return output ```
{ "source": "jepler/Adafruit_CircuitPython_OV7670", "score": 2 }
#### File: jepler/Adafruit_CircuitPython_OV7670/adafruit_ov7670.py ```python __version__ = "0.0.0-auto.0" __repo__ = "https://github.com/adafruit/Adafruit_CircuitPython_ov7670.git" import time import digitalio import imagecapture import pwmio from adafruit_bus_device.i2c_device import I2CDevice from micropython import const # Supported color formats OV7670_COLOR_RGB = 0 # RGB565 big-endian OV7670_COLOR_YUV = 1 # YUV/YCbCr 4:2:2 big-endian # Supported sizes (VGA division factor) for OV7670_set_size() OV7670_SIZE_DIV1 = 0 # 640 x 480 OV7670_SIZE_DIV2 = 1 # 320 x 240 OV7670_SIZE_DIV4 = 2 # 160 x 120 OV7670_SIZE_DIV8 = 3 # 80 x 60 OV7670_SIZE_DIV16 = 4 # 40 x 30 # Test patterns OV7670_TEST_PATTERN_NONE = 0 # Disable test pattern OV7670_TEST_PATTERN_SHIFTING_1 = 1 # "Shifting 1" pattern OV7670_TEST_PATTERN_COLOR_BAR = 2 # 8 color bars OV7670_TEST_PATTERN_COLOR_BAR_FADE = 3 # Color bars w/fade to white # Table of bit patterns for the different supported night modes. # There's a "same frame rate" option for OV7670 night mode but it # doesn't seem to do anything useful and can be skipped over. OV7670_NIGHT_MODE_OFF = 0 # Disable night mode OV7670_NIGHT_MODE_2 = 0b10100000 # Night mode 1/2 frame rate OV7670_NIGHT_MODE_4 = 0b11000000 # Night mode 1/4 frame rate OV7670_NIGHT_MODE_8 = 0b11100000 # Night mode 1/8 frame rate OV7670_ADDR = 0x21 # Default I2C address if unspecified _OV7670_REG_GAIN = const(0x00) # AGC gain bits 7:0 (9:8 in VREF) _OV7670_REG_BLUE = const(0x01) # AWB blue channel gain _OV7670_REG_RED = const(0x02) # AWB red channel gain _OV7670_REG_VREF = const(0x03) # Vert frame control bits _OV7670_REG_COM1 = const(0x04) # Common control 1 _OV7670_COM1_R656 = const(0x40) # COM1 enable R656 format _OV7670_REG_BAVE = const(0x05) # U/B average level _OV7670_REG_GbAVE = const(0x06) # Y/Gb average level _OV7670_REG_AECHH = const(0x07) # Exposure value - AEC 15:10 bits _OV7670_REG_RAVE = const(0x08) # V/R average level _OV7670_REG_COM2 = const(0x09) # Common control 2 _OV7670_COM2_SSLEEP = const(0x10) # COM2 soft sleep mode _OV7670_REG_PID = const(0x0A) # Product ID MSB (read-only) _OV7670_REG_VER = const(0x0B) # Product ID LSB (read-only) _OV7670_REG_COM3 = const(0x0C) # Common control 3 _OV7670_COM3_SWAP = const(0x40) # COM3 output data MSB/LSB swap _OV7670_COM3_SCALEEN = const(0x08) # COM3 scale enable _OV7670_COM3_DCWEN = const(0x04) # COM3 DCW enable _OV7670_REG_COM4 = const(0x0D) # Common control 4 _OV7670_REG_COM5 = const(0x0E) # Common control 5 _OV7670_REG_COM6 = const(0x0F) # Common control 6 _OV7670_REG_AECH = const(0x10) # Exposure value 9:2 _OV7670_REG_CLKRC = const(0x11) # Internal clock _OV7670_CLK_EXT = const(0x40) # CLKRC Use ext clock directly _OV7670_CLK_SCALE = const(0x3F) # CLKRC Int clock prescale mask _OV7670_REG_COM7 = const(0x12) # Common control 7 _OV7670_COM7_RESET = const(0x80) # COM7 SCCB register reset _OV7670_COM7_SIZE_MASK = const(0x38) # COM7 output size mask _OV7670_COM7_PIXEL_MASK = const(0x05) # COM7 output pixel format mask _OV7670_COM7_SIZE_VGA = const(0x00) # COM7 output size VGA _OV7670_COM7_SIZE_CIF = const(0x20) # COM7 output size CIF _OV7670_COM7_SIZE_QVGA = const(0x10) # COM7 output size QVGA _OV7670_COM7_SIZE_QCIF = const(0x08) # COM7 output size QCIF _OV7670_COM7_RGB = const(0x04) # COM7 pixel format RGB _OV7670_COM7_YUV = const(0x00) # COM7 pixel format YUV _OV7670_COM7_BAYER = const(0x01) # COM7 pixel format Bayer RAW _OV7670_COM7_PBAYER = const(0x05) # COM7 pixel fmt proc Bayer RAW _OV7670_COM7_COLORBAR = const(0x02) # COM7 color bar enable _OV7670_REG_COM8 = const(0x13) # Common control 8 _OV7670_COM8_FASTAEC = const(0x80) # COM8 Enable fast AGC/AEC algo, _OV7670_COM8_AECSTEP = const(0x40) # COM8 AEC step size unlimited _OV7670_COM8_BANDING = const(0x20) # COM8 Banding filter enable _OV7670_COM8_AGC = const(0x04) # COM8 AGC (auto gain) enable _OV7670_COM8_AWB = const(0x02) # COM8 AWB (auto white balance) _OV7670_COM8_AEC = const(0x01) # COM8 AEC (auto exposure) enable _OV7670_REG_COM9 = const(0x14) # Common control 9 - max AGC value _OV7670_REG_COM10 = const(0x15) # Common control 10 _OV7670_COM10_HSYNC = const(0x40) # COM10 HREF changes to HSYNC _OV7670_COM10_PCLK_HB = const(0x20) # COM10 Suppress PCLK on hblank _OV7670_COM10_HREF_REV = const(0x08) # COM10 HREF reverse _OV7670_COM10_VS_EDGE = const(0x04) # COM10 VSYNC chg on PCLK rising _OV7670_COM10_VS_NEG = const(0x02) # COM10 VSYNC negative _OV7670_COM10_HS_NEG = const(0x01) # COM10 HSYNC negative _OV7670_REG_HSTART = const(0x17) # Horiz frame start high bits _OV7670_REG_HSTOP = const(0x18) # Horiz frame end high bits _OV7670_REG_VSTART = const(0x19) # Vert frame start high bits _OV7670_REG_VSTOP = const(0x1A) # Vert frame end high bits _OV7670_REG_PSHFT = const(0x1B) # Pixel delay select _OV7670_REG_MIDH = const(0x1C) # Manufacturer ID high byte _OV7670_REG_MIDL = const(0x1D) # Manufacturer ID low byte _OV7670_REG_MVFP = const(0x1E) # Mirror / vert-flip enable _OV7670_MVFP_MIRROR = const(0x20) # MVFP Mirror image _OV7670_MVFP_VFLIP = const(0x10) # MVFP Vertical flip _OV7670_REG_LAEC = const(0x1F) # Reserved _OV7670_REG_ADCCTR0 = const(0x20) # ADC control _OV7670_REG_ADCCTR1 = const(0x21) # Reserved _OV7670_REG_ADCCTR2 = const(0x22) # Reserved _OV7670_REG_ADCCTR3 = const(0x23) # Reserved _OV7670_REG_AEW = const(0x24) # AGC/AEC upper limit _OV7670_REG_AEB = const(0x25) # AGC/AEC lower limit _OV7670_REG_VPT = const(0x26) # AGC/AEC fast mode op region _OV7670_REG_BBIAS = const(0x27) # B channel signal output bias _OV7670_REG_GbBIAS = const(0x28) # Gb channel signal output bias _OV7670_REG_EXHCH = const(0x2A) # Dummy pixel insert MSB _OV7670_REG_EXHCL = const(0x2B) # Dummy pixel insert LSB _OV7670_REG_RBIAS = const(0x2C) # R channel signal output bias _OV7670_REG_ADVFL = const(0x2D) # Insert dummy lines MSB _OV7670_REG_ADVFH = const(0x2E) # Insert dummy lines LSB _OV7670_REG_YAVE = const(0x2F) # Y/G channel average value _OV7670_REG_HSYST = const(0x30) # HSYNC rising edge delay _OV7670_REG_HSYEN = const(0x31) # HSYNC falling edge delay _OV7670_REG_HREF = const(0x32) # HREF control _OV7670_REG_CHLF = const(0x33) # Array current control _OV7670_REG_ARBLM = const(0x34) # Array ref control - reserved _OV7670_REG_ADC = const(0x37) # ADC control - reserved _OV7670_REG_ACOM = const(0x38) # ADC & analog common - reserved _OV7670_REG_OFON = const(0x39) # ADC offset control - reserved _OV7670_REG_TSLB = const(0x3A) # Line buffer test option _OV7670_TSLB_NEG = const(0x20) # TSLB Negative image enable _OV7670_TSLB_YLAST = const(0x04) # TSLB UYVY or VYUY, see COM13 _OV7670_TSLB_AOW = const(0x01) # TSLB Auto output window _OV7670_REG_COM11 = const(0x3B) # Common control 11 _OV7670_COM11_NIGHT = const(0x80) # COM11 Night mode _OV7670_COM11_NMFR = const(0x60) # COM11 Night mode frame rate mask _OV7670_COM11_HZAUTO = const(0x10) # COM11 Auto detect 50/60 Hz _OV7670_COM11_BAND = const(0x08) # COM11 Banding filter val select _OV7670_COM11_EXP = const(0x02) # COM11 Exposure timing control _OV7670_REG_COM12 = const(0x3C) # Common control 12 _OV7670_COM12_HREF = const(0x80) # COM12 Always has HREF _OV7670_REG_COM13 = const(0x3D) # Common control 13 _OV7670_COM13_GAMMA = const(0x80) # COM13 Gamma enable _OV7670_COM13_UVSAT = const(0x40) # COM13 UV saturation auto adj _OV7670_COM13_UVSWAP = const(0x01) # COM13 UV swap, use w TSLB[3] _OV7670_REG_COM14 = const(0x3E) # Common control 14 _OV7670_COM14_DCWEN = const(0x10) # COM14 DCW & scaling PCLK enable _OV7670_REG_EDGE = const(0x3F) # Edge enhancement adjustment _OV7670_REG_COM15 = const(0x40) # Common control 15 _OV7670_COM15_RMASK = const(0xC0) # COM15 Output range mask _OV7670_COM15_R10F0 = const(0x00) # COM15 Output range 10 to F0 _OV7670_COM15_R01FE = const(0x80) # COM15 01 to FE _OV7670_COM15_R00FF = const(0xC0) # COM15 00 to FF _OV7670_COM15_RGBMASK = const(0x30) # COM15 RGB 555/565 option mask _OV7670_COM15_RGB = const(0x00) # COM15 Normal RGB out _OV7670_COM15_RGB565 = const(0x10) # COM15 RGB 565 output _OV7670_COM15_RGB555 = const(0x30) # COM15 RGB 555 output _OV7670_REG_COM16 = const(0x41) # Common control 16 _OV7670_COM16_AWBGAIN = const(0x08) # COM16 AWB gain enable _OV7670_REG_COM17 = const(0x42) # Common control 17 _OV7670_COM17_AECWIN = const(0xC0) # COM17 AEC window must match COM4 _OV7670_COM17_CBAR = const(0x08) # COM17 DSP Color bar enable _OV7670_REG_AWBC1 = const(0x43) # Reserved _OV7670_REG_AWBC2 = const(0x44) # Reserved _OV7670_REG_AWBC3 = const(0x45) # Reserved _OV7670_REG_AWBC4 = const(0x46) # Reserved _OV7670_REG_AWBC5 = const(0x47) # Reserved _OV7670_REG_AWBC6 = const(0x48) # Reserved _OV7670_REG_REG4B = const(0x4B) # UV average enable _OV7670_REG_DNSTH = const(0x4C) # De-noise strength _OV7670_REG_MTX1 = const(0x4F) # Matrix coefficient 1 _OV7670_REG_MTX2 = const(0x50) # Matrix coefficient 2 _OV7670_REG_MTX3 = const(0x51) # Matrix coefficient 3 _OV7670_REG_MTX4 = const(0x52) # Matrix coefficient 4 _OV7670_REG_MTX5 = const(0x53) # Matrix coefficient 5 _OV7670_REG_MTX6 = const(0x54) # Matrix coefficient 6 _OV7670_REG_BRIGHT = const(0x55) # Brightness control _OV7670_REG_CONTRAS = const(0x56) # Contrast control _OV7670_REG_CONTRAS_CENTER = const(0x57) # Contrast center _OV7670_REG_MTXS = const(0x58) # Matrix coefficient sign _OV7670_REG_LCC1 = const(0x62) # Lens correction option 1 _OV7670_REG_LCC2 = const(0x63) # Lens correction option 2 _OV7670_REG_LCC3 = const(0x64) # Lens correction option 3 _OV7670_REG_LCC4 = const(0x65) # Lens correction option 4 _OV7670_REG_LCC5 = const(0x66) # Lens correction option 5 _OV7670_REG_MANU = const(0x67) # Manual U value _OV7670_REG_MANV = const(0x68) # Manual V value _OV7670_REG_GFIX = const(0x69) # Fix gain control _OV7670_REG_GGAIN = const(0x6A) # G channel AWB gain _OV7670_REG_DBLV = const(0x6B) # PLL & regulator control _OV7670_REG_AWBCTR3 = const(0x6C) # AWB control 3 _OV7670_REG_AWBCTR2 = const(0x6D) # AWB control 2 _OV7670_REG_AWBCTR1 = const(0x6E) # AWB control 1 _OV7670_REG_AWBCTR0 = const(0x6F) # AWB control 0 _OV7670_REG_SCALING_XSC = const(0x70) # Test pattern X scaling _OV7670_REG_SCALING_YSC = const(0x71) # Test pattern Y scaling _OV7670_REG_SCALING_DCWCTR = const(0x72) # DCW control _OV7670_REG_SCALING_PCLK_DIV = const(0x73) # DSP scale control clock divide _OV7670_REG_REG74 = const(0x74) # Digital gain control _OV7670_REG_REG76 = const(0x76) # Pixel correction _OV7670_REG_SLOP = const(0x7A) # Gamma curve highest seg slope _OV7670_REG_GAM_BASE = const(0x7B) # Gamma register base (1 of 15) _OV7670_GAM_LEN = const(15) # Number of gamma registers _OV7670_R76_BLKPCOR = const(0x80) # REG76 black pixel corr enable _OV7670_R76_WHTPCOR = const(0x40) # REG76 white pixel corr enable _OV7670_REG_RGB444 = const(0x8C) # RGB 444 control _OV7670_R444_ENABLE = const(0x02) # RGB444 enable _OV7670_R444_RGBX = const(0x01) # RGB444 word format _OV7670_REG_DM_LNL = const(0x92) # Dummy line LSB _OV7670_REG_LCC6 = const(0x94) # Lens correction option 6 _OV7670_REG_LCC7 = const(0x95) # Lens correction option 7 _OV7670_REG_HAECC1 = const(0x9F) # Histogram-based AEC/AGC ctrl 1 _OV7670_REG_HAECC2 = const(0xA0) # Histogram-based AEC/AGC ctrl 2 _OV7670_REG_SCALING_PCLK_DELAY = const(0xA2) # Scaling pixel clock delay _OV7670_REG_BD50MAX = const(0xA5) # 50 Hz banding step limit _OV7670_REG_HAECC3 = const(0xA6) # Histogram-based AEC/AGC ctrl 3 _OV7670_REG_HAECC4 = const(0xA7) # Histogram-based AEC/AGC ctrl 4 _OV7670_REG_HAECC5 = const(0xA8) # Histogram-based AEC/AGC ctrl 5 _OV7670_REG_HAECC6 = const(0xA9) # Histogram-based AEC/AGC ctrl 6 _OV7670_REG_HAECC7 = const(0xAA) # Histogram-based AEC/AGC ctrl 7 _OV7670_REG_BD60MAX = const(0xAB) # 60 Hz banding step limit _OV7670_REG_ABLC1 = const(0xB1) # ABLC enable _OV7670_REG_THL_ST = const(0xB3) # ABLC target _OV7670_REG_SATCTR = const(0xC9) # Saturation control _OV7670_REG_LAST = const(_OV7670_REG_SATCTR) # Maximum register address # Manual output format, RGB, use RGB565 and full 0-255 output range _OV7670_rgb = bytes( [ _OV7670_REG_COM7, _OV7670_COM7_RGB, _OV7670_REG_RGB444, 0, _OV7670_REG_COM15, _OV7670_COM15_RGB565 | _OV7670_COM15_R00FF, ] ) # Manual output format, YUV, use full output range _OV7670_yuv = bytes( [ _OV7670_REG_COM7, _OV7670_COM7_YUV, _OV7670_REG_COM15, _OV7670_COM15_R00FF, ] ) _OV7670_init = bytes( [ _OV7670_REG_TSLB, _OV7670_TSLB_YLAST, # No auto window _OV7670_REG_COM10, _OV7670_COM10_VS_NEG, # -VSYNC (req by SAMD PCC) _OV7670_REG_SLOP, 0x20, _OV7670_REG_GAM_BASE, 0x1C, _OV7670_REG_GAM_BASE + 1, 0x28, _OV7670_REG_GAM_BASE + 2, 0x3C, _OV7670_REG_GAM_BASE + 3, 0x55, _OV7670_REG_GAM_BASE + 4, 0x68, _OV7670_REG_GAM_BASE + 5, 0x76, _OV7670_REG_GAM_BASE + 6, 0x80, _OV7670_REG_GAM_BASE + 7, 0x88, _OV7670_REG_GAM_BASE + 8, 0x8F, _OV7670_REG_GAM_BASE + 9, 0x96, _OV7670_REG_GAM_BASE + 10, 0xA3, _OV7670_REG_GAM_BASE + 11, 0xAF, _OV7670_REG_GAM_BASE + 12, 0xC4, _OV7670_REG_GAM_BASE + 13, 0xD7, _OV7670_REG_GAM_BASE + 14, 0xE8, _OV7670_REG_COM8, _OV7670_COM8_FASTAEC | _OV7670_COM8_AECSTEP | _OV7670_COM8_BANDING, _OV7670_REG_GAIN, 0x00, _OV7670_COM2_SSLEEP, 0x00, _OV7670_REG_COM4, 0x00, _OV7670_REG_COM9, 0x20, # Max AGC value _OV7670_REG_BD50MAX, 0x05, _OV7670_REG_BD60MAX, 0x07, _OV7670_REG_AEW, 0x75, _OV7670_REG_AEB, 0x63, _OV7670_REG_VPT, 0xA5, _OV7670_REG_HAECC1, 0x78, _OV7670_REG_HAECC2, 0x68, 0xA1, 0x03, # Reserved register? _OV7670_REG_HAECC3, 0xDF, # Histogram-based AEC/AGC setup _OV7670_REG_HAECC4, 0xDF, _OV7670_REG_HAECC5, 0xF0, _OV7670_REG_HAECC6, 0x90, _OV7670_REG_HAECC7, 0x94, _OV7670_REG_COM8, _OV7670_COM8_FASTAEC | _OV7670_COM8_AECSTEP | _OV7670_COM8_BANDING | _OV7670_COM8_AGC | _OV7670_COM8_AEC, _OV7670_REG_COM5, 0x61, _OV7670_REG_COM6, 0x4B, 0x16, 0x02, # Reserved register? _OV7670_REG_MVFP, 0x07, # 0x07, _OV7670_REG_ADCCTR1, 0x02, _OV7670_REG_ADCCTR2, 0x91, 0x29, 0x07, # Reserved register? _OV7670_REG_CHLF, 0x0B, 0x35, 0x0B, # Reserved register? _OV7670_REG_ADC, 0x1D, _OV7670_REG_ACOM, 0x71, _OV7670_REG_OFON, 0x2A, _OV7670_REG_COM12, 0x78, 0x4D, 0x40, # Reserved register? 0x4E, 0x20, # Reserved register? _OV7670_REG_GFIX, 0x5D, _OV7670_REG_REG74, 0x19, 0x8D, 0x4F, # Reserved register? 0x8E, 0x00, # Reserved register? 0x8F, 0x00, # Reserved register? 0x90, 0x00, # Reserved register? 0x91, 0x00, # Reserved register? _OV7670_REG_DM_LNL, 0x00, 0x96, 0x00, # Reserved register? 0x9A, 0x80, # Reserved register? 0xB0, 0x84, # Reserved register? _OV7670_REG_ABLC1, 0x0C, 0xB2, 0x0E, # Reserved register? _OV7670_REG_THL_ST, 0x82, 0xB8, 0x0A, # Reserved register? _OV7670_REG_AWBC1, 0x14, _OV7670_REG_AWBC2, 0xF0, _OV7670_REG_AWBC3, 0x34, _OV7670_REG_AWBC4, 0x58, _OV7670_REG_AWBC5, 0x28, _OV7670_REG_AWBC6, 0x3A, 0x59, 0x88, # Reserved register? 0x5A, 0x88, # Reserved register? 0x5B, 0x44, # Reserved register? 0x5C, 0x67, # Reserved register? 0x5D, 0x49, # Reserved register? 0x5E, 0x0E, # Reserved register? _OV7670_REG_LCC3, 0x04, _OV7670_REG_LCC4, 0x20, _OV7670_REG_LCC5, 0x05, _OV7670_REG_LCC6, 0x04, _OV7670_REG_LCC7, 0x08, _OV7670_REG_AWBCTR3, 0x0A, _OV7670_REG_AWBCTR2, 0x55, _OV7670_REG_MTX1, 0x80, _OV7670_REG_MTX2, 0x80, _OV7670_REG_MTX3, 0x00, _OV7670_REG_MTX4, 0x22, _OV7670_REG_MTX5, 0x5E, _OV7670_REG_MTX6, 0x80, # 0x40? _OV7670_REG_AWBCTR1, 0x11, _OV7670_REG_AWBCTR0, 0x9F, # Or use 0x9E for advance AWB _OV7670_REG_BRIGHT, 0x00, _OV7670_REG_CONTRAS, 0x40, _OV7670_REG_CONTRAS_CENTER, 0x80, # 0x40? ] ) _window = [ [9, 162, 2, 2], # SIZE_DIV1 640x480 VGA [10, 174, 4, 2], # SIZE_DIV2 320x240 QVGA [11, 186, 2, 2], # SIZE_DIV4 160x120 QQVGA [12, 210, 0, 2], # SIZE_DIV8 80x60 ... [15, 252, 3, 2], # SIZE_DIV16 40x30 ] class OV7670: # pylint: disable=too-many-instance-attributes """Library for the OV7670 digital camera""" def __init__( self, i2c_bus, data0, clock, vsync, href, shutdown=None, reset=None, mclk=None, mclk_frequency=16_000_000, colorspace=OV7670_COLOR_RGB, i2c_address=0x21, ): # pylint: disable=too-many-arguments """ Args: i2c_bus (busio.I2C): The I2C bus used to configure the OV7670 i2c_address (int): The I2C address of the camera data0 (microcontroller.Pin): The first of 8 parallel data capture pins clock (microcontroller.Pin): The pixel clock from the OV7670 vsync (microcontroller.Pin): The vsync signal from the OV7670 href (microcontroller.Pin): The href signal from the OV7670 shutdown: The microcontroller.Pin that controls the camera's \ shutdown signal, also called the powerdown or enable pin, or \ None reset: The microcontroller.Pin that controls the camera's reset \ signal, or enable pin, or None mclk: The pin on which to create a master clock signal, or None mclk_frequency: The frequency of the master clock to generate, \ ignored if mclk is None colorspace: The colorspace to operate in size: The size of image to capture """ # Initialize the master clock if mclk: self._mclk_pwm = pwmio.PWMOut(mclk, frequency=mclk_frequency) self._mclk_pwm.duty_cycle = 32768 else: self._mclk_pwm = None if shutdown: self._shutdown = digitalio.DigitalInOut(shutdown) self._shutdown.switch_to_output(True) time.sleep(0.001) self._shutdown.switch_to_output(False) time.sleep(0.3) else: self._shutdown = None if reset: self._reset = digitalio.DigitalInOut(reset) self._reset.switch_to_output(False) time.sleep(0.001) self._reset.switch_to_output(True) self._i2c_device = I2CDevice(i2c_bus, i2c_address) if not reset: self._write_register(_OV7670_REG_COM7, _OV7670_COM7_RESET) time.sleep(0.001) self._colorspace = None self.colorspace = colorspace self._write_list(_OV7670_init) self._size = None self.size = OV7670_SIZE_DIV8 self._test_pattern = None self.test_pattern = OV7670_TEST_PATTERN_NONE self._flip_x = False self._flip_y = False self._night = OV7670_NIGHT_MODE_OFF self._imagecapture = imagecapture.ParallelImageCapture( data0=data0, clock=clock, vsync=vsync, href=href ) def capture(self, buf): """Capture an image into the buffer.""" self._imagecapture.capture(buf) @property def mclk_frequency(self): """Get the actual frequency the generated mclk, or None""" return self._mclk_pwm.frequency if self._mclk_pwm else None @property def width(self): """Get the image width in pixels. A buffer of 2*width*height bytes \ stores a whole image.""" return 640 >> self._size @property def height(self): """Get the image height in pixels. A buffer of 2*width*height bytes \ stores a whole image.""" return 480 >> self._size @property def colorspace(self): """Get or set the colorspace""" return self._colorspace @colorspace.setter def colorspace(self, colorspace): self._colorspace = colorspace self._write_list(_OV7670_rgb if colorspace == OV7670_COLOR_RGB else _OV7670_yuv) def deinit(self): """Deinitialize the camera""" if self._mclk_pwm: self._mclk_pwm.deinit() if self._shutdown: self._shutdown.deinit() if self._reset: self._reset.deinit() @property def size(self): """Get or set the captured image size""" return self._size @size.setter def size(self, size): self._frame_control(size, *_window[size]) self._size = size @property def test_pattern(self): """Get or set the test pattern""" return self._test_pattern @test_pattern.setter def test_pattern(self, pattern): # Modify only test pattern bits (not scaling bits) xsc = self._read_register(_OV7670_REG_SCALING_XSC) & ~0x80 ysc = self._read_register(_OV7670_REG_SCALING_YSC) & ~0x80 if pattern & 1: xsc |= 0x80 if pattern & 3: ysc |= 0x80 # Write modified result back to SCALING_XSC and SCALING_YSC self._write_register(_OV7670_REG_SCALING_XSC, xsc) self._write_register(_OV7670_REG_SCALING_YSC, ysc) def _set_flip(self): mvfp = self._read_register(_OV7670_REG_MVFP) if self._flip_x: mvfp |= _OV7670_MVFP_MIRROR else: mvfp &= ~_OV7670_MVFP_MIRROR if self._flip_y: mvfp |= _OV7670_MVFP_VFLIP else: mvfp &= ~_OV7670_MVFP_VFLIP self._write_register(_OV7670_REG_MVFP, mvfp) @property def flip_x(self): """Get or set the X-flip flag""" return self._flip_x @flip_x.setter def flip_x(self, value): self._flip_x = bool(value) self._set_flip() @property def flip_y(self): """Get or set the Y-flip flag""" return self._flip_y @flip_y.setter def flip_y(self, value): self._flip_y = bool(value) self._set_flip() @property def night(self): """Get or set the night-vision mode""" return self._night @night.setter def night(self, value): com11 = self._read_register(_OV7670_REG_COM11) com11 = (com11 & 0b00011111) | value self._write_register(_OV7670_REG_COM11, com11) self._night = value @property def product_id(self): """Get the product id (PID) register""" return self._read_register(_OV7670_REG_PID) @property def product_version(self): """Get the version (VER) register""" return self._read_register(_OV7670_REG_VER) def _write_list(self, reg_list): for i in range(0, len(reg_list), 2): self._write_register(reg_list[i], reg_list[i + 1]) time.sleep(0.001) def _write_register(self, reg, value): b = bytearray(2) b[0] = reg b[1] = value with self._i2c_device as i2c: i2c.write(b) def _read_register(self, reg): b = bytearray(1) b[0] = reg with self._i2c_device as i2c: i2c.write(b) i2c.readinto(b) return b[0] def _frame_control( self, size, vstart, hstart, edge_offset, pclk_delay ): # pylint: disable=too-many-arguments # Enable downsampling if sub-VGA, and zoom if 1:16 scale value = _OV7670_COM3_DCWEN if (size > OV7670_SIZE_DIV1) else 0 if size == OV7670_SIZE_DIV16: value |= _OV7670_COM3_SCALEEN self._write_register(_OV7670_REG_COM3, value) # Enable PCLK division if sub-VGA 2,4,8,16 = 0x19,1A,1B,1C value = (0x18 + size) if (size > OV7670_SIZE_DIV1) else 0 self._write_register(_OV7670_REG_COM14, value) # Horiz/vert downsample ratio, 1:8 max (H,V are always equal for now) value = size if (size <= OV7670_SIZE_DIV8) else OV7670_SIZE_DIV8 self._write_register(_OV7670_REG_SCALING_DCWCTR, value * 0x11) # Pixel clock divider if sub-VGA value = (0xF0 + size) if (size > OV7670_SIZE_DIV1) else 0x08 self._write_register(_OV7670_REG_SCALING_PCLK_DIV, value) # Apply 0.5 digital zoom at 1:16 size (others are downsample only) value = 0x40 if (size == OV7670_SIZE_DIV16) else 0x20 # 0.5, 1.0 # Read current SCALING_XSC and SCALING_YSC register values because # test pattern settings are also stored in those registers and we # don't want to corrupt anything there. xsc = self._read_register(_OV7670_REG_SCALING_XSC) ysc = self._read_register(_OV7670_REG_SCALING_YSC) xsc = (xsc & 0x80) | value # Modify only scaling bits (not test pattern) ysc = (ysc & 0x80) | value # Write modified result back to SCALING_XSC and SCALING_YSC self._write_register(_OV7670_REG_SCALING_XSC, xsc) self._write_register(_OV7670_REG_SCALING_YSC, ysc) # Window size is scattered across multiple registers. # Horiz/vert stops can be automatically calc'd from starts. vstop = vstart + 480 hstop = (hstart + 640) % 784 self._write_register(_OV7670_REG_HSTART, hstart >> 3) self._write_register(_OV7670_REG_HSTOP, hstop >> 3) self._write_register( _OV7670_REG_HREF, (edge_offset << 6) | ((hstop & 0b111) << 3) | (hstart & 0b111), ) self._write_register(_OV7670_REG_VSTART, vstart >> 2) self._write_register(_OV7670_REG_VSTOP, vstop >> 2) self._write_register(_OV7670_REG_VREF, ((vstop & 0b11) << 2) | (vstart & 0b11)) self._write_register(_OV7670_REG_SCALING_PCLK_DELAY, pclk_delay) ```
{ "source": "jepler/Adafruit_CircuitPython_Pypixelbuf", "score": 2 }
#### File: Adafruit_CircuitPython_Pypixelbuf/examples/adafruit_pypixelbuf_simpletest.py ```python import adafruit_pypixelbuf class TestBuf(adafruit_pypixelbuf.PixelBuf): called = False def show(self): self.called = True buffer = TestBuf(20, bytearray(20 * 3), "RGB", 1.0, auto_write=True) buffer[0] = (1, 2, 3) print(buffer[0]) print(buffer[0:2]) print(buffer[0:2:2]) print(buffer.called) ```
{ "source": "jepler/Adafruit_CircuitPython_Register", "score": 3 }
#### File: Adafruit_CircuitPython_Register/examples/register_simpletest.py ```python from board import SCL, SDA from busio import I2C from adafruit_bus_device.i2c_device import I2CDevice from adafruit_register.i2c_struct import Struct DEVICE_ADDRESS = 0x40 # device address of PCA9685 board A_DEVICE_REGISTER = 0x06 # PWM 0 control register on the PCA9685 board class DeviceControl: # pylint: disable-msg=too-few-public-methods def __init__(self, i2c): self.i2c_device = i2c # self.i2c_device required by Struct class tuple_of_numbers = Struct(A_DEVICE_REGISTER, "<HH") # 2 16-bit numbers # The follow is for I2C communications comm_port = I2C(SCL, SDA) device = I2CDevice(comm_port, DEVICE_ADDRESS) registers = DeviceControl(device) # set the bits in the device registers.tuple_of_numbers = (0, 0x00FF) # display the device values for the bits print("register 1: {}; register 2: {}".format(*registers.tuple_of_numbers)) # toggle the bits registers.tuple_of_numbers = (0x1000, 0) # display the device values for the bits print("register 1: {}; register 2: {}".format(*registers.tuple_of_numbers)) ```
{ "source": "jepler/Adafruit_CircuitPython_Requests", "score": 3 }
#### File: Adafruit_CircuitPython_Requests/tests/legacy_mocket.py ```python from unittest import mock SOCK_STREAM = 0 set_interface = mock.Mock() interface = mock.MagicMock() getaddrinfo = mock.Mock() socket = mock.Mock() class Mocket: def __init__(self, response): self.settimeout = mock.Mock() self.close = mock.Mock() self.connect = mock.Mock() self.send = mock.Mock(side_effect=self._send) self.readline = mock.Mock(side_effect=self._readline) self.recv = mock.Mock(side_effect=self._recv) self.fail_next_send = False self._response = response self._position = 0 def _send(self, data): if self.fail_next_send: self.fail_next_send = False raise RuntimeError("Send failed") return None def _readline(self): i = self._response.find(b"\r\n", self._position) r = self._response[self._position : i + 2] self._position = i + 2 return r def _recv(self, count): end = self._position + count r = self._response[self._position : end] self._position = end print(r) return r ``` #### File: Adafruit_CircuitPython_Requests/tests/parse_test.py ```python from unittest import mock import mocket import json import adafruit_requests ip = "1.2.3.4" host = "httpbin.org" response = {"Date": "July 25, 2019"} encoded = json.dumps(response).encode("utf-8") # Padding here tests the case where a header line is exactly 32 bytes buffered by # aligning the Content-Type header after it. headers = "HTTP/1.0 200 OK\r\npadding: 000\r\nContent-Type: application/json\r\nContent-Length: {}\r\n\r\n".format( len(encoded) ).encode( "utf-8" ) def test_json(): pool = mocket.MocketPool() pool.getaddrinfo.return_value = ((None, None, None, None, (ip, 80)),) sock = mocket.Mocket(headers + encoded) pool.socket.return_value = sock s = adafruit_requests.Session(pool) r = s.get("http://" + host + "/get") sock.connect.assert_called_once_with((ip, 80)) assert r.json() == response ```
{ "source": "jepler/Adafruit_CircuitPython_seesaw", "score": 2 }
#### File: Adafruit_CircuitPython_seesaw/adafruit_seesaw/seesaw.py ```python import time try: import struct except ImportError: import ustruct as struct from micropython import const from adafruit_bus_device.i2c_device import I2CDevice __version__ = "0.0.0-auto.0" __repo__ = "https://github.com/adafruit/Adafruit_CircuitPython_seesaw.git" _STATUS_BASE = const(0x00) _GPIO_BASE = const(0x01) _SERCOM0_BASE = const(0x02) _TIMER_BASE = const(0x08) _ADC_BASE = const(0x09) _DAC_BASE = const(0x0A) _INTERRUPT_BASE = const(0x0B) _DAP_BASE = const(0x0C) _EEPROM_BASE = const(0x0D) _NEOPIXEL_BASE = const(0x0E) _TOUCH_BASE = const(0x0F) _GPIO_DIRSET_BULK = const(0x02) _GPIO_DIRCLR_BULK = const(0x03) _GPIO_BULK = const(0x04) _GPIO_BULK_SET = const(0x05) _GPIO_BULK_CLR = const(0x06) _GPIO_BULK_TOGGLE = const(0x07) _GPIO_INTENSET = const(0x08) _GPIO_INTENCLR = const(0x09) _GPIO_INTFLAG = const(0x0A) _GPIO_PULLENSET = const(0x0B) _GPIO_PULLENCLR = const(0x0C) _STATUS_HW_ID = const(0x01) _STATUS_VERSION = const(0x02) _STATUS_OPTIONS = const(0x03) _STATUS_TEMP = const(0x04) _STATUS_SWRST = const(0x7F) _TIMER_STATUS = const(0x00) _TIMER_PWM = const(0x01) _TIMER_FREQ = const(0x02) _ADC_STATUS = const(0x00) _ADC_INTEN = const(0x02) _ADC_INTENCLR = const(0x03) _ADC_WINMODE = const(0x04) _ADC_WINTHRESH = const(0x05) _ADC_CHANNEL_OFFSET = const(0x07) _SERCOM_STATUS = const(0x00) _SERCOM_INTEN = const(0x02) _SERCOM_INTENCLR = const(0x03) _SERCOM_BAUD = const(0x04) _SERCOM_DATA = const(0x05) _NEOPIXEL_STATUS = const(0x00) _NEOPIXEL_PIN = const(0x01) _NEOPIXEL_SPEED = const(0x02) _NEOPIXEL_BUF_LENGTH = const(0x03) _NEOPIXEL_BUF = const(0x04) _NEOPIXEL_SHOW = const(0x05) _TOUCH_CHANNEL_OFFSET = const(0x10) _HW_ID_CODE = const(0x55) _EEPROM_I2C_ADDR = const(0x3F) #TODO: update when we get real PID _CRICKIT_PID = const(9999) _ROBOHATMM1_PID = const(9998) class Seesaw: """Driver for Seesaw i2c generic conversion trip :param ~busio.I2C i2c_bus: Bus the SeeSaw is connected to :param int addr: I2C address of the SeeSaw device""" INPUT = const(0x00) OUTPUT = const(0x01) INPUT_PULLUP = const(0x02) INPUT_PULLDOWN = const(0x03) def __init__(self, i2c_bus, addr=0x49, drdy=None): self._drdy = drdy if drdy is not None: drdy.switch_to_input() self.i2c_device = I2CDevice(i2c_bus, addr) self.sw_reset() def sw_reset(self): """Trigger a software reset of the SeeSaw chip""" self.write8(_STATUS_BASE, _STATUS_SWRST, 0xFF) time.sleep(.500) chip_id = self.read8(_STATUS_BASE, _STATUS_HW_ID) if chip_id != _HW_ID_CODE: raise RuntimeError("Seesaw hardware ID returned (0x{:x}) is not " "correct! Expected 0x{:x}. Please check your wiring." .format(chip_id, _HW_ID_CODE)) pid = self.get_version() >> 16 if pid == _CRICKIT_PID: from adafruit_seesaw.crickit import Crickit_Pinmap self.pin_mapping = Crickit_Pinmap elif pid == _ROBOHATMM1_PID: from adafruit_seesaw.robohat import MM1_Pinmap self.pin_mapping = MM1_Pinmap else: from adafruit_seesaw.samd09 import SAMD09_Pinmap self.pin_mapping = SAMD09_Pinmap def get_options(self): buf = bytearray(4) self.read(_STATUS_BASE, _STATUS_OPTIONS, buf) ret = struct.unpack(">I", buf)[0] return ret def get_version(self): buf = bytearray(4) self.read(_STATUS_BASE, _STATUS_VERSION, buf) ret = struct.unpack(">I", buf)[0] return ret def pin_mode(self, pin, mode): if pin >= 32: self.pin_mode_bulk_b(1 << (pin - 32), mode) else: self.pin_mode_bulk(1 << pin, mode) def digital_write(self, pin, value): if pin >= 32: self.digital_write_bulk_b(1 << (pin - 32), value) else: self.digital_write_bulk(1 << pin, value) def digital_read(self, pin): if pin >= 32: return self.digital_read_bulk_b((1 << (pin - 32))) != 0 return self.digital_read_bulk((1 << pin)) != 0 def digital_read_bulk(self, pins): buf = bytearray(4) self.read(_GPIO_BASE, _GPIO_BULK, buf) buf[0] = buf[0] & 0x3F ret = struct.unpack(">I", buf)[0] return ret & pins def digital_read_bulk_b(self, pins): buf = bytearray(8) self.read(_GPIO_BASE, _GPIO_BULK, buf) ret = struct.unpack(">I", buf[4:])[0] return ret & pins def set_GPIO_interrupts(self, pins, enabled): cmd = struct.pack(">I", pins) if enabled: self.write(_GPIO_BASE, _GPIO_INTENSET, cmd) else: self.write(_GPIO_BASE, _GPIO_INTENCLR, cmd) def analog_read(self, pin): buf = bytearray(2) if pin not in self.pin_mapping.analog_pins: raise ValueError("Invalid ADC pin") self.read(_ADC_BASE, _ADC_CHANNEL_OFFSET + self.pin_mapping.analog_pins.index(pin), buf) ret = struct.unpack(">H", buf)[0] time.sleep(.001) return ret def touch_read(self, pin): buf = bytearray(2) if pin not in self.pin_mapping.touch_pins: raise ValueError("Invalid touch pin") self.read(_TOUCH_BASE, _TOUCH_CHANNEL_OFFSET + self.pin_mapping.touch_pins.index(pin), buf) ret = struct.unpack(">H", buf)[0] return ret def moisture_read(self): buf = bytearray(2) self.read(_TOUCH_BASE, _TOUCH_CHANNEL_OFFSET, buf, .005) ret = struct.unpack(">H", buf)[0] time.sleep(.001) # retry if reading was bad count = 0 while ret > 4095: self.read(_TOUCH_BASE, _TOUCH_CHANNEL_OFFSET, buf, .005) ret = struct.unpack(">H", buf)[0] time.sleep(.001) count += 1 if count > 3: raise RuntimeError("Could not get a valid moisture reading.") return ret def _pin_mode_bulk_x(self, capacity, offset, pins, mode): cmd = bytearray(capacity) cmd[offset:] = struct.pack(">I", pins) if mode == self.OUTPUT: self.write(_GPIO_BASE, _GPIO_DIRSET_BULK, cmd) elif mode == self.INPUT: self.write(_GPIO_BASE, _GPIO_DIRCLR_BULK, cmd) elif mode == self.INPUT_PULLUP: self.write(_GPIO_BASE, _GPIO_DIRCLR_BULK, cmd) self.write(_GPIO_BASE, _GPIO_PULLENSET, cmd) self.write(_GPIO_BASE, _GPIO_BULK_SET, cmd) elif mode == self.INPUT_PULLDOWN: self.write(_GPIO_BASE, _GPIO_DIRCLR_BULK, cmd) self.write(_GPIO_BASE, _GPIO_PULLENSET, cmd) self.write(_GPIO_BASE, _GPIO_BULK_CLR, cmd) else: raise ValueError("Invalid pin mode") def pin_mode_bulk(self, pins, mode): self._pin_mode_bulk_x(4, 0, pins, mode) def pin_mode_bulk_b(self, pins, mode): self._pin_mode_bulk_x(8, 4, pins, mode) def digital_write_bulk(self, pins, value): cmd = struct.pack(">I", pins) if value: self.write(_GPIO_BASE, _GPIO_BULK_SET, cmd) else: self.write(_GPIO_BASE, _GPIO_BULK_CLR, cmd) def digital_write_bulk_b(self, pins, value): cmd = bytearray(8) cmd[4:] = struct.pack(">I", pins) if value: self.write(_GPIO_BASE, _GPIO_BULK_SET, cmd) else: self.write(_GPIO_BASE, _GPIO_BULK_CLR, cmd) def analog_write(self, pin, value): pin_found = False if self.pin_mapping.pwm_width == 16: if pin in self.pin_mapping.pwm_pins: pin_found = True cmd = bytearray([self.pin_mapping.pwm_pins.index(pin), (value >> 8), value & 0xFF]) else: if pin in self.pin_mapping.pwm_pins: pin_found = True cmd = bytearray([self.pin_mapping.pwm_pins.index(pin), value]) if pin_found is False: raise ValueError("Invalid PWM pin") self.write(_TIMER_BASE, _TIMER_PWM, cmd) time.sleep(.001) def get_temp(self): buf = bytearray(4) self.read(_STATUS_BASE, _STATUS_TEMP, buf, .005) buf[0] = buf[0] & 0x3F ret = struct.unpack(">I", buf)[0] return 0.00001525878 * ret def set_pwm_freq(self, pin, freq): if pin in self.pin_mapping.pwm_pins: cmd = bytearray([self.pin_mapping.pwm_pins.index(pin), (freq >> 8), freq & 0xFF]) self.write(_TIMER_BASE, _TIMER_FREQ, cmd) else: raise ValueError("Invalid PWM pin") # def enable_sercom_data_rdy_interrupt(self, sercom): # # _sercom_inten.DATA_RDY = 1 # self.write8(SEESAW_SERCOM0_BASE + sercom, SEESAW_SERCOM_INTEN, _sercom_inten.get()) # # # def disable_sercom_data_rdy_interrupt(self, sercom): # # _sercom_inten.DATA_RDY = 0 # self.write8(SEESAW_SERCOM0_BASE + sercom, SEESAW_SERCOM_INTEN, _sercom_inten.get()) # # # def read_sercom_data(self, sercom): # # return self.read8(SEESAW_SERCOM0_BASE + sercom, SEESAW_SERCOM_DATA) def set_i2c_addr(self, addr): self.eeprom_write8(_EEPROM_I2C_ADDR, addr) time.sleep(.250) self.i2c_device.device_address = addr self.sw_reset() def get_i2c_addr(self): return self.read8(_EEPROM_BASE, _EEPROM_I2C_ADDR) def eeprom_write8(self, addr, val): self.eeprom_write(addr, bytearray([val])) def eeprom_write(self, addr, buf): self.write(_EEPROM_BASE, addr, buf) def eeprom_read8(self, addr): return self.read8(_EEPROM_BASE, addr) def uart_set_baud(self, baud): cmd = struct.pack(">I", baud) self.write(_SERCOM0_BASE, _SERCOM_BAUD, cmd) def write8(self, reg_base, reg, value): self.write(reg_base, reg, bytearray([value])) def read8(self, reg_base, reg): ret = bytearray(1) self.read(reg_base, reg, ret) return ret[0] def read(self, reg_base, reg, buf, delay=.005): self.write(reg_base, reg) if self._drdy is not None: while self._drdy.value is False: pass else: time.sleep(delay) with self.i2c_device as i2c: i2c.readinto(buf) def write(self, reg_base, reg, buf=None): full_buffer = bytearray([reg_base, reg]) if buf is not None: full_buffer += buf if self._drdy is not None: while self._drdy.value is False: pass with self.i2c_device as i2c: i2c.write(full_buffer) ```
{ "source": "jepler/Adafruit_Learning_System_Guides", "score": 3 }
#### File: CircuitPython_Templates/i2s_find_pins/code.py ```python import board import audiobusio from microcontroller import Pin def is_hardware_i2s(bit_clock, word_select, data): try: p = audiobusio.I2SOut(bit_clock, word_select, data) p.deinit() return True except ValueError: return False def get_unique_pins(): exclude = [ getattr(board, p) for p in [ # This is not an exhaustive list of unexposed pins. Your results # may include other pins that you cannot easily connect to. "NEOPIXEL", "DOTSTAR_CLOCK", "DOTSTAR_DATA", "APA102_SCK", "APA102_MOSI", "LED", "SWITCH", "BUTTON", ] if p in dir(board) ] pins = [ pin for pin in [getattr(board, p) for p in dir(board)] if isinstance(pin, Pin) and pin not in exclude ] unique = [] for p in pins: if p not in unique: unique.append(p) return unique for bit_clock_pin in get_unique_pins(): for word_select_pin in get_unique_pins(): for data_pin in get_unique_pins(): if bit_clock_pin is word_select_pin or bit_clock_pin is data_pin or word_select_pin \ is data_pin: continue if is_hardware_i2s(bit_clock_pin, word_select_pin, data_pin): print("Bit clock pin:", bit_clock_pin, "\t Word select pin:", word_select_pin, "\t Data pin:", data_pin) else: pass ``` #### File: Smart_Alarm_Clock/button/code.py ```python import ssl import time import board import digitalio import socketpool import wifi import adafruit_minimqtt.adafruit_minimqtt as MQTT from adafruit_io.adafruit_io import IO_MQTT led = digitalio.DigitalInOut(board.IO8) led.direction = digitalio.Direction.OUTPUT btn1 = digitalio.DigitalInOut(board.IO9) btn1.direction = digitalio.Direction.INPUT btn1.pull = digitalio.Pull.DOWN ALARM = None ### WiFi ### # Get wifi details and more from a secrets.py file try: from secrets import secrets except ImportError: print("WiFi secrets are kept in secrets.py, please add them there!") raise print("Connecting to %s" % secrets["ssid"]) wifi.radio.connect(secrets["ssid"], secrets["password"]) print("Connected to %s!" % secrets["ssid"]) # Define callback functions which will be called when certain events happen. # pylint: disable=unused-argument def connected(client): # Connected function will be called when the client is connected to Adafruit IO. # This is a good place to subscribe to feed changes. The client parameter # passed to this function is the Adafruit IO MQTT client so you can make # calls against it easily. print("Connected to Adafruit IO!") client.subscribe("alarm-clock.alarm") def subscribe(client, userdata, topic, granted_qos): # This method is called when the client subscribes to a new feed. print("Subscribed to {0} with QOS level {1}".format(topic, granted_qos)) def unsubscribe(client, userdata, topic, pid): # This method is called when the client unsubscribes from a feed. print("Unsubscribed from {0} with PID {1}".format(topic, pid)) # pylint: disable=unused-argument def disconnected(client): # Disconnected function will be called when the client disconnects. print("Disconnected from Adafruit IO!") # pylint: disable=unused-argument def message(client, feed_id, payload): # Message function will be called when a subscribed feed has a new value. # The feed_id parameter identifies the feed, and the payload parameter has # the new value. print("Feed {0} received new value: {1}".format(feed_id, payload)) def on_alarm(client, feed_id, payload): global ALARM # pylint: disable=global-statement print(payload) ALARM = eval(payload) # pylint: disable=eval-used # Create a socket pool pool = socketpool.SocketPool(wifi.radio) # Initialize a new MQTT Client object mqtt_client = MQTT.MQTT( broker="io.adafruit.com", username=secrets["aio_username"], password=secrets["aio_key"], socket_pool=pool, ssl_context=ssl.create_default_context(), ) # Initialize an Adafruit IO MQTT Client io = IO_MQTT(mqtt_client) # Connect the callback methods defined above to Adafruit IO io.on_connect = connected io.on_disconnect = disconnected io.on_subscribe = subscribe io.on_unsubscribe = unsubscribe io.on_message = message io.add_feed_callback("alarm-clock.alarm", on_alarm) # Connect to Adafruit IO print("Connecting to Adafruit IO...") io.connect() io.get("alarm-clock.alarm") LAST = 0 while True: io.loop() if ALARM and time.monotonic() - LAST >= 0.2: led.value = not led.value LAST = time.monotonic() if btn1.value: io.publish("alarm-clock.alarm", "False") led.value = False led.value = True time.sleep(1) led.value = False ``` #### File: Adafruit_Learning_System_Guides/Tilemap_Game_With_CircuitPython/code.py ```python import time import random import gc import board import displayio import adafruit_imageload import ugame import terminalio from adafruit_display_text import label from tilegame_assets.tiles import TILES from tilegame_assets.states import ( STATE_PLAYING, STATE_MAPWIN, STATE_WAITING, STATE_LOST_SPARKY, STATE_MINERVA, ) from tilegame_assets.fun_facts import FACTS from tilegame_assets.text_helper import wrap_nicely # pylint: disable=bad-continuation # Direction constants for comparison UP = 0 DOWN = 1 RIGHT = 2 LEFT = 3 # how long to wait between rendering frames FPS_DELAY = 1 / 60 # how many tiles can fit on thes screen. Tiles are 16x16 pixels SCREEN_HEIGHT_TILES = 8 SCREEN_WIDTH_TILES = 10 # list of maps in order they should be played MAPS = ["map0.csv", "map1.csv"] GAME_STATE = { # hold the map state as it came out of the csv. Only holds non-entities. "ORIGINAL_MAP": {}, # hold the current map state as it changes. Only holds non-entities. "CURRENT_MAP": {}, # Dictionary with touple keys that map to lists of entity objects. # Each one has the index of the sprite in the ENTITY_SPRITES list # and the tile type string "ENTITY_SPRITES_DICT": {}, # hold the location of the player in tile coordinates "PLAYER_LOC": (0, 0), # list of items the player has in inventory "INVENTORY": [], # how many hearts there are in this map level "TOTAL_HEARTS": 0, # sprite object to draw for the player "PLAYER_SPRITE": None, # size of the map "MAP_WIDTH": 0, "MAP_HEIGHT": 0, # which map level within MAPS we are currently playing "MAP_INDEX": 0, # current state of the state machine "STATE": STATE_PLAYING, } # dictionary with tuple keys that map to tile type values # e.x. {(0,0): "left_wall", (1,1): "floor"} CAMERA_VIEW = {} # how far offset the camera is from the GAME_STATE['CURRENT_MAP'] # used to determine where things are at in the camera view vs. the MAP CAMERA_OFFSET_X = 0 CAMERA_OFFSET_Y = 0 # list of sprite objects, one for each entity ENTITY_SPRITES = [] # list of entities that need to be on the screen currently based on the camera view NEED_TO_DRAW_ENTITIES = [] def get_tile(coords): """ :param coords: (x, y) tuple :return: tile name of the tile at the given coords from GAME_STATE['CURRENT_MAP'] """ return GAME_STATE["CURRENT_MAP"][coords[0], coords[1]] def get_tile_obj(coords): """ :param coords: (x, y) tuple :return: tile object with stats and behavior for the tile at the given coords. """ return TILES[GAME_STATE["CURRENT_MAP"][coords[0], coords[1]]] # def is_tile_moveable(tile_coords): """ Check the can_walk property of the tile at the given coordinates :param tile_coords: (x, y) tuple :return: True if the player can walk on this tile. False otherwise. """ return TILES[GAME_STATE["CURRENT_MAP"][tile_coords[0], tile_coords[1]]]["can_walk"] print("after funcs {}".format(gc.mem_free())) # display object variable display = board.DISPLAY # Load the sprite sheet (bitmap) sprite_sheet, palette = adafruit_imageload.load( "tilegame_assets/sprite_sheet.bmp", bitmap=displayio.Bitmap, palette=displayio.Palette, ) # make green be transparent so entities can be drawn on top of map tiles palette.make_transparent(0) # Create the castle TileGrid castle = displayio.TileGrid( sprite_sheet, pixel_shader=palette, width=10, height=8, tile_width=16, tile_height=16, ) # Create a Group to hold the sprite and castle group = displayio.Group() # Add castle to the group group.append(castle) def load_map(file_name): # pylint: disable=global-statement,too-many-statements,too-many-nested-blocks,too-many-branches global ENTITY_SPRITES, CAMERA_VIEW # empty the sprites from the group for cur_s in ENTITY_SPRITES: group.remove(cur_s) # remove player sprite try: group.remove(GAME_STATE["PLAYER_SPRITE"]) except ValueError: pass # reset map and other game state objects GAME_STATE["ORIGINAL_MAP"] = {} GAME_STATE["CURRENT_MAP"] = {} ENTITY_SPRITES = [] GAME_STATE["ENTITY_SPRITES_DICT"] = {} CAMERA_VIEW = {} GAME_STATE["INVENTORY"] = [] GAME_STATE["TOTAL_HEARTS"] = 0 # Open and read raw string from the map csv file f = open("tilegame_assets/{}".format(file_name), "r") map_csv_str = f.read() f.close() # split the raw string into lines map_csv_lines = map_csv_str.replace("\r", "").split("\n") # set the WIDTH and HEIGHT variables. # this assumes the map is rectangular. GAME_STATE["MAP_HEIGHT"] = len(map_csv_lines) GAME_STATE["MAP_WIDTH"] = len(map_csv_lines[0].split(",")) # loop over each line storing index in y variable for y, line in enumerate(map_csv_lines): # ignore empty line if line != "": # loop over each tile type separated by commas, storing index in x variable for x, tile_name in enumerate(line.split(",")): print("%s '%s'" % (len(tile_name), str(tile_name))) # if the tile exists in our main dictionary if tile_name in TILES.keys(): # if the tile is an entity if ( "entity" in TILES[tile_name].keys() and TILES[tile_name]["entity"] ): # set the map tiles to floor GAME_STATE["ORIGINAL_MAP"][x, y] = "floor" GAME_STATE["CURRENT_MAP"][x, y] = "floor" if tile_name == "heart": GAME_STATE["TOTAL_HEARTS"] += 1 # if it's the player if tile_name == "player": # Create the sprite TileGrid GAME_STATE["PLAYER_SPRITE"] = displayio.TileGrid( sprite_sheet, pixel_shader=palette, width=1, height=1, tile_width=16, tile_height=16, default_tile=TILES[tile_name]["sprite_index"], ) # set the position of sprite on screen GAME_STATE["PLAYER_SPRITE"].x = x * 16 GAME_STATE["PLAYER_SPRITE"].y = y * 16 # set position in x,y tile coords for reference later GAME_STATE["PLAYER_LOC"] = (x, y) # add sprite to the group group.append(GAME_STATE["PLAYER_SPRITE"]) else: # not the player # Create the sprite TileGrid entity_srite = displayio.TileGrid( sprite_sheet, pixel_shader=palette, width=1, height=1, tile_width=16, tile_height=16, default_tile=TILES[tile_name]["sprite_index"], ) # set the position of sprite on screen # default to off the edge entity_srite.x = -16 entity_srite.y = -16 # add the sprite object to ENTITY_SPRITES list ENTITY_SPRITES.append(entity_srite) # print("setting GAME_STATE['ENTITY_SPRITES_DICT'][%s,%s]" % (x,y)) # create an entity obj _entity_obj = { "entity_sprite_index": len(ENTITY_SPRITES) - 1, "map_tile_name": tile_name, } # if there are no entities at this location yet if (x, y) not in GAME_STATE["ENTITY_SPRITES_DICT"]: # create a list and add it to the dictionary at the x,y location GAME_STATE["ENTITY_SPRITES_DICT"][x, y] = [_entity_obj] else: # append the entity to the existing list in the dictionary GAME_STATE["ENTITY_SPRITES_DICT"][x, y].append( _entity_obj ) else: # tile is not entity # set the tile_name into MAP dictionaries GAME_STATE["ORIGINAL_MAP"][x, y] = tile_name GAME_STATE["CURRENT_MAP"][x, y] = tile_name else: # tile type wasn't found in dict print("tile: %s not found in TILES dict" % tile_name) # add all entity sprites to the group print("appending {} sprites".format(len(ENTITY_SPRITES))) for entity in ENTITY_SPRITES: group.append(entity) print("loading map") load_map(MAPS[GAME_STATE["MAP_INDEX"]]) # Add the Group to the Display display.show(group) # variables to store previous value of button state prev_up = False prev_down = False prev_left = False prev_right = False # helper function returns true if player is allowed to move given direction # based on can_walk property of the tiles next to the player def can_player_move(direction): try: if direction == UP: tile_above_coords = ( GAME_STATE["PLAYER_LOC"][0], GAME_STATE["PLAYER_LOC"][1] - 1, ) return TILES[ GAME_STATE["CURRENT_MAP"][tile_above_coords[0], tile_above_coords[1]] ]["can_walk"] if direction == DOWN: tile_below_coords = ( GAME_STATE["PLAYER_LOC"][0], GAME_STATE["PLAYER_LOC"][1] + 1, ) return TILES[ GAME_STATE["CURRENT_MAP"][tile_below_coords[0], tile_below_coords[1]] ]["can_walk"] if direction == LEFT: tile_left_of_coords = ( GAME_STATE["PLAYER_LOC"][0] - 1, GAME_STATE["PLAYER_LOC"][1], ) return TILES[ GAME_STATE["CURRENT_MAP"][ tile_left_of_coords[0], tile_left_of_coords[1] ] ]["can_walk"] if direction == RIGHT: tile_right_of_coords = ( GAME_STATE["PLAYER_LOC"][0] + 1, GAME_STATE["PLAYER_LOC"][1], ) return TILES[ GAME_STATE["CURRENT_MAP"][ tile_right_of_coords[0], tile_right_of_coords[1] ] ]["can_walk"] except KeyError: return False return None # set the appropriate tiles into the CAMERA_VIEW dictionary # based on given starting coords and size def set_camera_view(startX, startY, width, height): # pylint: disable=global-statement global CAMERA_OFFSET_X global CAMERA_OFFSET_Y # set the offset variables for use in other parts of the code CAMERA_OFFSET_X = startX CAMERA_OFFSET_Y = startY # loop over the rows and indexes in the desired size section for y_index, y in enumerate(range(startY, startY + height)): # loop over columns and indexes in the desired size section for x_index, x in enumerate(range(startX, startX + width)): # print("setting camera_view[%s,%s]" % (x_index,y_index)) try: # set the tile at the current coordinate of the MAP into the CAMERA_VIEW CAMERA_VIEW[x_index, y_index] = GAME_STATE["CURRENT_MAP"][x, y] except KeyError: # if coordinate is out of bounds set it to floor by default CAMERA_VIEW[x_index, y_index] = "floor" # draw the current CAMERA_VIEW dictionary and the GAME_STATE['ENTITY_SPRITES_DICT'] def draw_camera_view(): # list that will hold all entities that have been drawn based on their MAP location # any entities not in this list should get moved off the screen drew_entities = [] # print(CAMERA_VIEW) # pylint: disable=too-many-nested-blocks # loop over y tile coordinates for y in range(0, SCREEN_HEIGHT_TILES): # loop over x tile coordinates for x in range(0, SCREEN_WIDTH_TILES): # tile name at this location tile_name = CAMERA_VIEW[x, y] # if tile exists in the main dictionary if tile_name in TILES.keys(): # if there are entity(s) at this location if (x + CAMERA_OFFSET_X, y + CAMERA_OFFSET_Y) in GAME_STATE[ "ENTITY_SPRITES_DICT" ]: # default background for entities is floor castle[x, y] = TILES["floor"]["sprite_index"] # if it's not the player if tile_name != "player": # loop over all entities at this location for entity_obj_at_tile in GAME_STATE["ENTITY_SPRITES_DICT"][ x + CAMERA_OFFSET_X, y + CAMERA_OFFSET_Y ]: # set appropriate x,y screen coordinates # based on tile coordinates ENTITY_SPRITES[ int(entity_obj_at_tile["entity_sprite_index"]) ].x = (x * 16) ENTITY_SPRITES[ int(entity_obj_at_tile["entity_sprite_index"]) ].y = (y * 16) # add the index of the entity sprite to the draw_entities # list so we know not to hide it later. drew_entities.append( entity_obj_at_tile["entity_sprite_index"] ) else: # no entities at this location # set the sprite index of this tile into the CASTLE dictionary castle[x, y] = TILES[tile_name]["sprite_index"] else: # tile type not found in main dictionary # default to floor tile castle[x, y] = TILES["floor"]["sprite_index"] # if the player is at this x,y tile coordinate accounting for camera offset if GAME_STATE["PLAYER_LOC"] == ((x + CAMERA_OFFSET_X, y + CAMERA_OFFSET_Y)): # set player sprite screen coordinates GAME_STATE["PLAYER_SPRITE"].x = x * 16 GAME_STATE["PLAYER_SPRITE"].y = y * 16 # loop over all entity sprites for index in range(0, len(ENTITY_SPRITES)): # if the sprite wasn't drawn then it's outside the camera view if index not in drew_entities: # hide the sprite by moving it off screen ENTITY_SPRITES[index].x = int(-16) ENTITY_SPRITES[index].y = int(-16) # variable to store timestamp of last drawn frame last_update_time = 0 # variables to store movement offset values x_offset = 0 y_offset = 0 def show_splash(new_text, color, vertical_offset=18): text_area.text = "" text_area.text = new_text text_area.anchor_point = (0, 0) text_area.anchored_position = (0, vertical_offset) text_area.color = color group.append(splash) # Make the splash context splash = displayio.Group() # CircuitPython 6 & 7 compatible # game message background bmp file game_message_background = open("tilegame_assets/game_message_background.bmp", "rb") odb = displayio.OnDiskBitmap(game_message_background) bg_grid = displayio.TileGrid(odb, pixel_shader=getattr(odb, 'pixel_shader', displayio.ColorConverter())) # # CircuitPython 7+ compatible # game message background bmp file # odb = displayio.OnDiskBitmap("tilegame_assets/game_message_background.bmp") # bg_grid = displayio.TileGrid(odb, pixel_shader=odb.pixel_shader) splash.append(bg_grid) # Text for the message text_group = displayio.Group(x=14, y=8) text_area = label.Label(terminalio.FONT, text=" " * 180, color=0xD39AE5) text_group.append(text_area) splash.append(text_group) # main loop while True: # set the current button values into variables cur_btn_vals = ugame.buttons.get_pressed() cur_up = cur_btn_vals & ugame.K_UP cur_down = cur_btn_vals & ugame.K_DOWN cur_right = cur_btn_vals & ugame.K_RIGHT cur_left = cur_btn_vals & ugame.K_LEFT cur_a = cur_btn_vals & ugame.K_O or cur_btn_vals & ugame.K_X if GAME_STATE["STATE"] == STATE_WAITING: print(cur_a) if cur_a: GAME_STATE["STATE"] = STATE_PLAYING group.remove(splash) if GAME_STATE["STATE"] == STATE_PLAYING: # check for up button press / release if not cur_up and prev_up: if can_player_move(UP): x_offset = 0 y_offset = -1 # check for down button press / release if not cur_down and prev_down: if can_player_move(DOWN): x_offset = 0 y_offset = 1 # check for right button press / release if not cur_right and prev_right: if can_player_move(RIGHT): x_offset = 1 y_offset = 0 # check for left button press / release if not cur_left and prev_left: if can_player_move(LEFT): x_offset = -1 y_offset = 0 # if any offset is not zero then we need to process player movement if x_offset != 0 or y_offset != 0: # variable to store if player is allowed to move can_move = False # coordinates the player is moving to moving_to_coords = ( GAME_STATE["PLAYER_LOC"][0] + x_offset, GAME_STATE["PLAYER_LOC"][1] + y_offset, ) # tile name of the spot player is moving to moving_to_tile_name = GAME_STATE["CURRENT_MAP"][ moving_to_coords[0], moving_to_coords[1] ] # if there are entity(s) at spot the player is moving to if moving_to_coords in GAME_STATE["ENTITY_SPRITES_DICT"]: print("found entity(s) where we are moving to") # loop over all entities at the location player is moving to for entity_obj in GAME_STATE["ENTITY_SPRITES_DICT"][ moving_to_coords ]: print("checking entity %s" % entity_obj["map_tile_name"]) # if the entity has a before_move behavior function if "before_move" in TILES[entity_obj["map_tile_name"]].keys(): print( "calling before_move %s, %s, %s" % ( moving_to_coords, GAME_STATE["PLAYER_LOC"], entity_obj, ) ) # call the before_move behavior function act upon it's result if TILES[entity_obj["map_tile_name"]]["before_move"]( moving_to_coords, GAME_STATE["PLAYER_LOC"], entity_obj, GAME_STATE, ): # all the movement if it returned true can_move = True else: # break and don't allow movement if it returned false break else: # entity does not have a before_move function # allow movement can_move = True if can_move: # set the player loc variable to the new coords GAME_STATE["PLAYER_LOC"] = moving_to_coords else: # no entities at the location player is moving to # set player loc variable to new coords GAME_STATE["PLAYER_LOC"] = moving_to_coords # reset movement offset variables y_offset = 0 x_offset = 0 # set previous button values for next iteration prev_up = cur_up prev_down = cur_down prev_right = cur_right prev_left = cur_left # current time now = time.monotonic() # if it has been long enough based on FPS delay if now > last_update_time + FPS_DELAY: # Set camera to 10x8 centered on the player # Clamped to (0, MAP_WIDTH) and (0, MAP_HEIGHT) set_camera_view( max( min( GAME_STATE["PLAYER_LOC"][0] - 4, GAME_STATE["MAP_WIDTH"] - SCREEN_WIDTH_TILES, ), 0, ), max( min( GAME_STATE["PLAYER_LOC"][1] - 3, GAME_STATE["MAP_HEIGHT"] - SCREEN_HEIGHT_TILES, ), 0, ), 10, 8, ) # draw the camera draw_camera_view() # if player beat this map if GAME_STATE["STATE"] == STATE_MAPWIN: GAME_STATE["MAP_INDEX"] += 1 # if player has beaten all maps if GAME_STATE["MAP_INDEX"] >= len(MAPS): GAME_STATE["MAP_INDEX"] = 0 GAME_STATE["STATE"] = STATE_WAITING load_map(MAPS[GAME_STATE["MAP_INDEX"]]) show_splash( "You Win \n =D \nCongratulations. \nStart Over?", 0x29C1CF ) else: # prompt to start next GAME_STATE["STATE"] = STATE_WAITING load_map(MAPS[GAME_STATE["MAP_INDEX"]]) show_splash( "You beat this level\n =D \nCongratulations. \nStart Next?", 0x29C1CF, ) # game over from sparky elif GAME_STATE["STATE"] == STATE_LOST_SPARKY: GAME_STATE["MAP_INDEX"] = 0 GAME_STATE["STATE"] = STATE_WAITING game_over_text = ( "Be careful not to \ntouch Sparky unless \n" "you've collected \nenough Mho's.\nStarting Over" ) load_map(MAPS[GAME_STATE["MAP_INDEX"]]) show_splash(game_over_text, 0x25AFBB) # talking to minerva elif GAME_STATE["STATE"] == STATE_MINERVA: GAME_STATE["STATE"] = STATE_WAITING random_fact = random.choice(FACTS) minerva_txt = wrap_nicely("Minerva: {}".format(random_fact), 23) show_splash(minerva_txt, 0xD39AE5, 0) # store the last update time last_update_time = now ```
{ "source": "jepler/circup", "score": 2 }
#### File: jepler/circup/circup.py ```python import ctypes import glob import json import logging import os from pathlib import Path import re import shutil from subprocess import check_output import sys import zipfile import appdirs import click import requests from semver import VersionInfo # Useful constants. #: The unique USB vendor ID for Adafruit boards. VENDOR_ID = 9114 #: Flag to indicate if the command is being run in verbose mode. VERBOSE = False #: The location of data files used by circup (following OS conventions). DATA_DIR = appdirs.user_data_dir(appname="circup", appauthor="adafruit") #: The path to the JSON file containing the metadata about the current bundle. BUNDLE_DATA = os.path.join(DATA_DIR, "circup.json") #: The path to the zip file containing the current library bundle. BUNDLE_ZIP = os.path.join(DATA_DIR, "adafruit-circuitpython-bundle-{}.zip") #: The path to the directory into which the current bundle is unzipped. BUNDLE_DIR = os.path.join(DATA_DIR, "adafruit_circuitpython_bundle_{}") #: The directory containing the utility's log file. LOG_DIR = appdirs.user_log_dir(appname="circup", appauthor="adafruit") #: The location of the log file for the utility. LOGFILE = os.path.join(LOG_DIR, "circup.log") #: The libraries (and blank lines) which don't go on devices NOT_MCU_LIBRARIES = [ "", "adafruit-blinka", "adafruit-blinka-bleio", "adafruit-blinka-displayio", "pyserial", ] #: The version of CircuitPython found on the connected device. CPY_VERSION = "" #: The latest version of the CircuitPython Bundle from github. LATEST_BUNDLE_VERSION = "" # Ensure DATA_DIR / LOG_DIR related directories and files exist. if not os.path.exists(DATA_DIR): # pragma: no cover os.makedirs(DATA_DIR) if not os.path.exists(LOG_DIR): # pragma: no cover os.makedirs(LOG_DIR) # Setup logging. logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) logfile_handler = logging.FileHandler(LOGFILE) log_formatter = logging.Formatter( "%(asctime)s %(levelname)s: %(message)s", datefmt="%m/%d/%Y %H:%M:%S" ) logfile_handler.setFormatter(log_formatter) logger.addHandler(logfile_handler) __version__ = "0.0.0-auto.0" __repo__ = "https://github.com/adafruit/circup.git" class Module: """ Represents a CircuitPython module. """ # pylint: disable=too-many-arguments def __init__(self, path, repo, device_version, bundle_version, mpy): """ The ``self.file`` and ``self.name`` attributes are constructed from the ``path`` value. If the path is to a directory based module, the resulting self.file value will be None, and the name will be the basename of the directory path. :param str path: The path to the module on the connected CIRCUITPYTHON device. :param str repo: The URL of the Git repository for this module. :param str device_version: The semver value for the version on device. :param str bundle_version: The semver value for the version in bundle. :param bool mpy: Flag to indicate if the module is byte-code compiled. """ self.path = path if os.path.isfile(self.path): # Single file module. self.file = os.path.basename(path) self.name = self.file.replace(".py", "").replace(".mpy", "") else: # Directory based module. self.file = None self.name = os.path.basename(os.path.dirname(self.path)) self.repo = repo self.device_version = device_version self.bundle_version = bundle_version self.mpy = mpy # Figure out the bundle path. self.bundle_path = None if self.mpy: # Byte compiled, now check CircuitPython version. major_version = CPY_VERSION.split(".")[0] bundle_platform = "{}mpy".format(major_version) else: # Regular Python bundle_platform = "py" for search_path, _, _ in os.walk(BUNDLE_DIR.format(bundle_platform)): if os.path.basename(search_path) == "lib": if self.file: self.bundle_path = os.path.join(search_path, self.file) else: self.bundle_path = os.path.join(search_path, self.name) logger.info(self) # pylint: enable=too-many-arguments @property def outofdate(self): """ Returns a boolean to indicate if this module is out of date. :return: Truthy indication if the module is out of date. """ if self.device_version and self.bundle_version: try: return VersionInfo.parse(self.device_version) < VersionInfo.parse( self.bundle_version ) except ValueError as ex: logger.warning("Module '%s' has incorrect semver value.", self.name) logger.warning(ex) return True # Assume out of date to try to update. @property def major_update(self): """ Returns a boolean to indicate if this is a major version update. :return: Boolean indicating if this is a major version upgrade """ try: if ( VersionInfo.parse(self.device_version).major == VersionInfo.parse(self.bundle_version).major ): return False except (TypeError, ValueError) as ex: logger.warning("Module '%s' has incorrect semver value.", self.name) logger.warning(ex) return True # Assume Major Version udpate. @property def row(self): """ Returns a tuple of items to display in a table row to show the module's name, local version and remote version. :return: A tuple containing the module's name, version on the connected device and version in the latest bundle. """ loc = self.device_version if self.device_version else "unknown" rem = self.bundle_version if self.bundle_version else "unknown" major_update = str(self.major_update) return (self.name, loc, rem, major_update) def update(self): """ Delete the module on the device, then copy the module from the bundle back onto the device. The caller is expected to handle any exceptions raised. """ if os.path.isdir(self.path): # Delete and copy the directory. shutil.rmtree(self.path, ignore_errors=True) shutil.copytree(self.bundle_path, self.path) else: # Delete and copy file. os.remove(self.path) shutil.copyfile(self.bundle_path, self.path) def __repr__(self): """ Helps with log files. :return: A repr of a dictionary containing the module's metadata. """ return repr( { "path": self.path, "file": self.file, "name": self.name, "repo": self.repo, "device_version": self.device_version, "bundle_version": self.bundle_version, "bundle_path": self.bundle_path, "mpy": self.mpy, } ) def clean_library_name(assumed_library_name): """ Most CP repos and library names are look like this: repo: Adafruit_CircuitPython_LC709203F library: adafruit_lc709203f But some do not and this handles cleaning that up. Also cleans up if the pypi or reponame is passed in instead of the CP library name. :param str assumed_library_name: An assumed name of a library from user or requirements.txt entry :return: str proper library name """ not_standard_names = { # Assumed Name : Actual Name "adafruit_adafruitio": "adafruit_io", "adafruit_busdevice": "adafruit_bus_device", "adafruit_neopixel": "neopixel", "adafruit_sd": "adafruit_sdcard", "adafruit_simpleio": "simpleio", } if "circuitpython" in assumed_library_name: # convert repo or pypi name to common library name assumed_library_name = ( assumed_library_name.replace("-circuitpython-", "_") .replace("_circuitpython_", "_") .replace("-", "_") ) if assumed_library_name in not_standard_names.keys(): return not_standard_names[assumed_library_name] return assumed_library_name def ensure_latest_bundle(): """ Ensure that there's a copy of the latest library bundle available so circup can check the metadata contained therein. """ logger.info("Checking for library updates.") tag = get_latest_tag() old_tag = "0" if os.path.isfile(BUNDLE_DATA): with open(BUNDLE_DATA, encoding="utf-8") as data: try: old_tag = json.load(data)["tag"] except json.decoder.JSONDecodeError as ex: # Sometimes (why?) the JSON file becomes corrupt. In which case # log it and carry on as if setting up for first time. logger.error("Could not parse %s", BUNDLE_DATA) logger.exception(ex) if tag > old_tag: logger.info("New version available (%s).", tag) try: get_bundle(tag) with open(BUNDLE_DATA, "w", encoding="utf-8") as data: json.dump({"tag": tag}, data) except requests.exceptions.HTTPError as ex: # See #20 for reason this this click.secho( ( "There was a problem downloading the bundle. " "Please try again in a moment." ), fg="red", ) logger.exception(ex) sys.exit(1) else: logger.info("Current library bundle up to date %s.", tag) def extract_metadata(path): """ Given an file path, return a dictionary containing metadata extracted from dunder attributes found therein. Works with both .py and .mpy files. For Python source files, such metadata assignments should be simple and single-line. For example:: __version__ = "1.1.4" __repo__ = "https://github.com/adafruit/SomeLibrary.git" For byte compiled .mpy files, a brute force / backtrack approach is used to find the __version__ number in the file -- see comments in the code for the implementation details. :param str path: The path to the file containing the metadata. :return: The dunder based metadata found in the file, as a dictionary. """ result = {} logger.info("%s", path) if path.endswith(".py"): result["mpy"] = False with open(path, encoding="utf-8") as source_file: content = source_file.read() #: The regex used to extract ``__version__`` and ``__repo__`` assignments. dunder_key_val = r"""(__\w+__)\s*=\s*(?:['"]|\(\s)(.+)['"]""" for match in re.findall(dunder_key_val, content): result[match[0]] = str(match[1]) if result: logger.info("Extracted metadata: %s", result) return result if path.endswith(".mpy"): result["mpy"] = True with open(path, "rb") as mpy_file: content = mpy_file.read() # Find the start location of the "__version__" (prepended with byte # value of 11 to indicate length of "__version__"). loc = content.find(b"\x0b__version__") if loc > -1: # Backtrack until a byte value of the offset is reached. offset = 1 while offset < loc: val = int(content[loc - offset]) if val == offset - 1: # Off by one..! # Found version, extract the number given boundaries. start = loc - offset + 1 # No need for prepended length. end = loc # Up to the start of the __version__. version = content[start:end] # Slice the version number. # Create a string version as metadata in the result. result = {"__version__": version.decode("utf-8"), "mpy": True} break # Nothing more to do. offset += 1 # ...and again but backtrack by one. return result def find_device(): """ Return the location on the filesystem for the connected Adafruit device. This is based upon how Mu discovers this information. :return: The path to the device on the local filesystem. """ device_dir = None # Attempt to find the path on the filesystem that represents the plugged in # CIRCUITPY board. if os.name == "posix": # Linux / OSX for mount_command in ["mount", "/sbin/mount"]: try: mount_output = check_output(mount_command).splitlines() mounted_volumes = [x.split()[2] for x in mount_output] for volume in mounted_volumes: if volume.endswith(b"CIRCUITPY"): device_dir = volume.decode("utf-8") except FileNotFoundError: continue elif os.name == "nt": # Windows def get_volume_name(disk_name): """ Each disk or external device connected to windows has an attribute called "volume name". This function returns the volume name for the given disk/device. Based upon answer given here: http://stackoverflow.com/a/12056414 """ vol_name_buf = ctypes.create_unicode_buffer(1024) ctypes.windll.kernel32.GetVolumeInformationW( ctypes.c_wchar_p(disk_name), vol_name_buf, ctypes.sizeof(vol_name_buf), None, None, None, None, 0, ) return vol_name_buf.value # # In certain circumstances, volumes are allocated to USB # storage devices which cause a Windows popup to raise if their # volume contains no media. Wrapping the check in SetErrorMode # with SEM_FAILCRITICALERRORS (1) prevents this popup. # old_mode = ctypes.windll.kernel32.SetErrorMode(1) try: for disk in "ABCDEFGHIJKLMNOPQRSTUVWXYZ": path = "{}:\\".format(disk) if os.path.exists(path) and get_volume_name(path) == "CIRCUITPY": device_dir = path # Report only the FIRST device found. break finally: ctypes.windll.kernel32.SetErrorMode(old_mode) else: # No support for unknown operating systems. raise NotImplementedError('OS "{}" not supported.'.format(os.name)) logger.info("Found device: %s", device_dir) return device_dir def find_modules(device_path): """ Extracts metadata from the connected device and available bundle and returns this as a list of Module instances representing the modules on the device. :return: A list of Module instances describing the current state of the modules on the connected device. """ # pylint: disable=broad-except try: device_modules = get_device_versions(device_path) bundle_modules = get_bundle_versions() result = [] for name, device_metadata in device_modules.items(): if name in bundle_modules: bundle_metadata = bundle_modules[name] path = device_metadata["path"] repo = bundle_metadata.get("__repo__") device_version = device_metadata.get("__version__") bundle_version = bundle_metadata.get("__version__") mpy = device_metadata["mpy"] result.append(Module(path, repo, device_version, bundle_version, mpy)) return result except Exception as ex: # If it's not possible to get the device and bundle metadata, bail out # with a friendly message and indication of what's gone wrong. logger.exception(ex) click.echo("There was a problem: {}".format(ex)) sys.exit(1) # pylint: enable=broad-except def get_bundle(tag): """ Downloads and extracts the version of the bundle with the referenced tag. :param str tag: The GIT tag to use to download the bundle. :return: The location of the resulting zip file in a temporary location on the local filesystem. """ urls = { "py": ( "https://github.com/adafruit/Adafruit_CircuitPython_Bundle" "/releases/download" "/{tag}/adafruit-circuitpython-bundle-py-{tag}.zip".format(tag=tag) ), "6mpy": ( "https://github.com/adafruit/Adafruit_CircuitPython_Bundle/" "releases/download" "/{tag}/adafruit-circuitpython-bundle-6.x-mpy-{tag}.zip".format(tag=tag) ), "7mpy": ( "https://github.com/adafruit/Adafruit_CircuitPython_Bundle/" "releases/download" "/{tag}/adafruit-circuitpython-bundle-7.x-mpy-{tag}.zip".format(tag=tag) ), } click.echo("Downloading latest version information.\n") for platform, url in urls.items(): logger.info("Downloading bundle: %s", url) r = requests.get(url, stream=True) # pylint: disable=no-member if r.status_code != requests.codes.ok: logger.warning("Unable to connect to %s", url) r.raise_for_status() # pylint: enable=no-member total_size = int(r.headers.get("Content-Length")) temp_zip = BUNDLE_ZIP.format(platform) with click.progressbar(r.iter_content(1024), length=total_size) as pbar, open( temp_zip, "wb" ) as f: for chunk in pbar: f.write(chunk) pbar.update(len(chunk)) logger.info("Saved to %s", temp_zip) temp_dir = BUNDLE_DIR.format(platform) if os.path.isdir(temp_dir): shutil.rmtree(temp_dir) with zipfile.ZipFile(temp_zip, "r") as zfile: zfile.extractall(temp_dir) click.echo("\nOK\n") def get_bundle_versions(): """ Returns a dictionary of metadata from modules in the latest known release of the library bundle. Uses the Python version (rather than the compiled version) of the library modules. :return: A dictionary of metadata about the modules available in the library bundle. """ ensure_latest_bundle() path = None for path, _, _ in os.walk(BUNDLE_DIR.format("py")): if os.path.basename(path) == "lib": break return get_modules(path) def get_circuitpython_version(device_path): """ Returns the version number of CircuitPython running on the board connected via ``device_path``. This is obtained from the ``boot_out.txt`` file on the device, whose content will start with something like this:: Adafruit CircuitPython 4.1.0 on 2019-08-02; :param str device_path: The path to the connected board. :return: The version string for CircuitPython running on the connected board. """ with open(os.path.join(device_path, "boot_out.txt")) as boot: circuit_python, _ = boot.read().split(";") return circuit_python.split(" ")[-3] def get_dependencies(*requested_libraries, mod_names, to_install=()): """ Return a list of other CircuitPython libraries :param tuple requested_libraries: The libraries to search for dependencies :param object mod_names: All the modules metadata from bundle :return: tuple of module names to install which we build """ # Internal variables _to_install = to_install _requested_libraries = [] _rl = requested_libraries[0] if not requested_libraries[0]: # If nothing is requested, we're done return _to_install for l in _rl: # Convert tuple to list and force all to lowercase, Clean the names l = clean_library_name(l.lower()) if l in NOT_MCU_LIBRARIES: logger.info("Skipping %s. It is not for microcontroller installs.", l) else: try: # Don't process any names we can't find in mod_names mod_names[l] # pylint: disable=pointless-statement _requested_libraries.append(l) except KeyError: click.secho( f"WARNING:\n\t{l} is not a known CircuitPython library.", fg="yellow", ) if not _requested_libraries: # If nothing is requested, we're done return _to_install for library in _requested_libraries: if library not in _to_install: _to_install = _to_install + (library,) # get the requirements.txt from bundle requirements_txt = get_requirements(library) if requirements_txt: _requested_libraries.extend( libraries_from_requirements(requirements_txt) ) # we've processed this library, remove it from the list _requested_libraries.remove(library) return get_dependencies( tuple(_requested_libraries), mod_names=mod_names, to_install=_to_install, ) def get_device_versions(device_path): """ Returns a dictionary of metadata from modules on the connected device. :return: A dictionary of metadata about the modules available on the connected device. """ return get_modules(os.path.join(device_path, "lib")) def get_latest_release_from_url(url): """ Find the tag name of the latest release by using HTTP HEAD and decoding the redirect. :return: The most recent tag value for the release. """ logger.info("Requesting redirect information: %s", url) response = requests.head(url) responseurl = response.url if response.is_redirect: responseurl = response.headers["Location"] tag = responseurl.rsplit("/", 1)[-1] logger.info("Tag: '%s'", tag) return tag def get_latest_tag(): """ Find the value of the latest tag for the Adafruit CircuitPython library bundle. :return: The most recent tag value for the project. """ global LATEST_BUNDLE_VERSION if LATEST_BUNDLE_VERSION == "": LATEST_BUNDLE_VERSION = get_latest_release_from_url( "https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest" ) return LATEST_BUNDLE_VERSION def get_modules(path): """ Get a dictionary containing metadata about all the Python modules found in the referenced path. :param str path: The directory in which to find modules. :return: A dictionary containing metadata about the found modules. """ result = {} if not path: return result single_file_py_mods = glob.glob(os.path.join(path, "*.py")) single_file_mpy_mods = glob.glob(os.path.join(path, "*.mpy")) directory_mods = [ d for d in glob.glob(os.path.join(path, "*", "")) if not os.path.basename(os.path.normpath(d)).startswith(".") ] single_file_mods = single_file_py_mods + single_file_mpy_mods for sfm in [f for f in single_file_mods if not os.path.basename(f).startswith(".")]: metadata = extract_metadata(sfm) metadata["path"] = sfm result[os.path.basename(sfm).replace(".py", "").replace(".mpy", "")] = metadata for dm in directory_mods: name = os.path.basename(os.path.dirname(dm)) metadata = {} py_files = glob.glob(os.path.join(dm, "*.py")) mpy_files = glob.glob(os.path.join(dm, "*.mpy")) all_files = py_files + mpy_files for source in [f for f in all_files if not os.path.basename(f).startswith(".")]: metadata = extract_metadata(source) if "__version__" in metadata: metadata["path"] = dm result[name] = metadata break else: # No version metadata found. result[name] = {"path": dm, "mpy": bool(mpy_files)} return result def get_requirements(library_name): """ Return a string of the requirements.txt for a GitHub Repo NOTE: This is only looks at the py bundle. No known differences in the mpy bundle for requirements.txt :param str library_name: CircuitPython library name :return: str the content of requirements.txt or None if not found """ bundle_path = BUNDLE_DIR.format("py") requirements_txt = ( "{}/adafruit-circuitpython-bundle-py-{}/requirements/{}/" "requirements.txt".format(bundle_path, get_latest_tag(), library_name) ) if Path(requirements_txt).is_file(): return open(requirements_txt).read() return None # pylint: disable=too-many-locals,too-many-branches def install_module(device_path, name, py, mod_names): # pragma: no cover """ Finds a connected device and installs a given module name if it is available in the current module bundle and is not already installed on the device. TODO: There is currently no check for the version. :param str device_path: The path to the connected board. :param str name: Name of module to install :param bool py: Boolean to specify if the module should be installed from source or from a pre-compiled module :param mod_names: Dictionary of metadata from modules that can be generated with get_bundle_versions() """ if not name: click.echo("No module name(s) provided.") elif name in mod_names: library_path = os.path.join(device_path, "lib") if not os.path.exists(library_path): # pragma: no cover os.makedirs(library_path) metadata = mod_names[name] # Grab device modules to check if module already installed device_modules = [] for module in find_modules(device_path): device_modules.append(module.name) if name in device_modules: click.echo("'{}' is already installed.".format(name)) return if py: # Use Python source for module. source_path = metadata["path"] # Path to Python source version. if os.path.isdir(source_path): target = os.path.basename(os.path.dirname(source_path)) target_path = os.path.join(library_path, target) # Copy the directory. shutil.copytree(source_path, target_path) else: target = os.path.basename(source_path) target_path = os.path.join(library_path, target) # Copy file. shutil.copyfile(source_path, target_path) else: # Use pre-compiled mpy modules. module_name = os.path.basename(metadata["path"]).replace(".py", ".mpy") if not module_name: # Must be a directory based module. module_name = os.path.basename(os.path.dirname(metadata["path"])) major_version = CPY_VERSION.split(".")[0] bundle_platform = "{}mpy".format(major_version) bundle_path = "" for path, _, _ in os.walk(BUNDLE_DIR.format(bundle_platform)): if os.path.basename(path) == "lib": bundle_path = os.path.join(path, module_name) if bundle_path: if os.path.isdir(bundle_path): target_path = os.path.join(library_path, module_name) # Copy the directory. shutil.copytree(bundle_path, target_path) else: target = os.path.basename(bundle_path) target_path = os.path.join(library_path, target) # Copy file. shutil.copyfile(bundle_path, target_path) else: raise IOError("Cannot find compiled version of module.") click.echo("Installed '{}'.".format(name)) else: click.echo("Unknown module named, '{}'.".format(name)) # pylint: enable=too-many-locals,too-many-branches def libraries_from_requirements(requirements): """ Clean up supplied requirements.txt and turn into tuple of CP libraries :param str requirements: A string version of a requirements.txt :return: tuple of library names """ libraries = () for line in requirements.split("\n"): line = line.lower().strip() if line.startswith("#") or line == "": # skip comments pass else: if any(operators in line for operators in [">", "<", "="]): # Remove everything after any pip style version specifiers line = re.split("[<|>|=|]", line)[0] libraries = libraries + (line,) return libraries # ----------- CLI command definitions ----------- # # The following functions have IO side effects (for instance they emit to # stdout). Ergo, these are not checked with unit tests. Most of the # functionality they provide is provided by the functions above, which *are* # tested. Most of the logic of the following functions is to prepare things for # presentation to / interaction with the user. @click.group() @click.option( "--verbose", is_flag=True, help="Comprehensive logging is sent to stdout." ) @click.option( "--path", type=click.Path(exists=True, file_okay=False), help="Path to CircuitPython directory. Overrides automatic path detection.", ) @click.version_option( prog_name="CircUp", message="%(prog)s, A CircuitPython module updater. Version %(version)s", ) @click.pass_context def main(ctx, verbose, path): # pragma: no cover """ A tool to manage and update libraries on a CircuitPython device. """ ctx.ensure_object(dict) if verbose: # Configure additional logging to stdout. global VERBOSE VERBOSE = True verbose_handler = logging.StreamHandler(sys.stdout) verbose_handler.setLevel(logging.INFO) verbose_handler.setFormatter(log_formatter) logger.addHandler(verbose_handler) click.echo("Logging to {}\n".format(LOGFILE)) logger.info("### Started Circup ###") if path: device_path = path else: device_path = find_device() ctx.obj["DEVICE_PATH"] = device_path if device_path is None: click.secho("Could not find a connected Adafruit device.", fg="red") sys.exit(1) global CPY_VERSION CPY_VERSION = get_circuitpython_version(device_path) click.echo( "Found device at {}, running CircuitPython {}.".format(device_path, CPY_VERSION) ) latest_version = get_latest_release_from_url( "https://github.com/adafruit/circuitpython/releases/latest" ) try: if VersionInfo.parse(CPY_VERSION) < VersionInfo.parse(latest_version): click.secho( "A newer version of CircuitPython ({}) is available.".format( latest_version ), fg="green", ) except ValueError as ex: logger.warning("CircuitPython has incorrect semver value.") logger.warning(ex) @main.command() @click.option("-r", "--requirement", is_flag=True) @click.pass_context def freeze(ctx, requirement): # pragma: no cover """ Output details of all the modules found on the connected CIRCUITPYTHON device. Option -r saves output to requirements.txt file """ logger.info("Freeze") modules = find_modules(ctx.obj["DEVICE_PATH"]) if modules: output = [] for module in modules: output.append("{}=={}".format(module.name, module.device_version)) for module in output: click.echo(module) logger.info(module) if requirement: cwd = os.path.abspath(os.getcwd()) for i, module in enumerate(output): output[i] += "\n" with open(cwd + "/" + "requirements.txt", "w", newline="\n") as file: file.truncate(0) file.writelines(output) else: click.echo("No modules found on the device.") @main.command() @click.pass_context def list(ctx): # pragma: no cover """ Lists all out of date modules found on the connected CIRCUITPYTHON device. """ logger.info("List") # Grab out of date modules. data = [("Module", "Version", "Latest", "Major Update")] modules = [m.row for m in find_modules(ctx.obj["DEVICE_PATH"]) if m.outofdate] if modules: data += modules # Nice tabular display. col_width = [0, 0, 0, 0] for row in data: for i, word in enumerate(row): col_width[i] = max(len(word) + 2, col_width[i]) dashes = tuple(("-" * (width - 1) for width in col_width)) data.insert(1, dashes) click.echo( "The following modules are out of date or probably need an update.\n" "Major Updates may include breaking changes. Review before updating.\n" ) for row in data: output = "" for index, cell in enumerate(row): output += cell.ljust(col_width[index]) if not VERBOSE: click.echo(output) logger.info(output) else: click.echo("All modules found on the device are up to date.") @main.command() @click.argument("modules", required=False, nargs=-1) @click.option("--py", is_flag=True) @click.option("-r", "--requirement") @click.pass_context def install(ctx, modules, py, requirement): # pragma: no cover """ Install a named module(s) onto the device. Multiple modules can be installed at once by providing more than one module name, each separated by a space. Option -r allows specifying a text file to install all modules listed in the text file. TODO: Ensure there's enough space on the device, work out the version of CircuitPytho on the device in order to copy the appropriate .mpy versions too. ;-) """ available_modules = get_bundle_versions() mod_names = {} for module, metadata in available_modules.items(): mod_names[module.replace(".py", "").lower()] = metadata if requirement: cwd = os.path.abspath(os.getcwd()) requirements_txt = open(cwd + "/" + requirement, "r").read() requested_installs = sorted(libraries_from_requirements(requirements_txt)) else: requested_installs = sorted(modules) click.echo(f"Searching for dependencies for: {requested_installs}") to_install = get_dependencies(requested_installs, mod_names=mod_names) if to_install is not None: to_install = sorted(to_install) click.echo(f"Ready to install: {to_install}\n") for library in to_install: install_module(ctx.obj["DEVICE_PATH"], library, py, mod_names) @click.argument("match", required=False, nargs=1) @main.command() def show(match): # pragma: no cover """ Show a list of available modules in the bundle. These are modules which *could* be installed on the device. If MATCH is specified only matching modules will be listed. """ available_modules = get_bundle_versions() module_names = sorted([m.replace(".py", "") for m in available_modules]) if match is not None: module_names = [m for m in module_names if match in m] click.echo("\n".join(module_names)) click.echo( "{} shown of {} packages.".format(len(module_names), len(available_modules)) ) @main.command() @click.argument("module", nargs=-1) @click.pass_context def uninstall(ctx, module): # pragma: no cover """ Uninstall a named module(s) from the connected device. Multiple modules can be uninstalled at once by providing more than one module name, each separated by a space. """ for name in module: device_modules = get_device_versions(ctx.obj["DEVICE_PATH"]) name = name.lower() mod_names = {} for module_item, metadata in device_modules.items(): mod_names[module_item.replace(".py", "").lower()] = metadata if name in mod_names: library_path = os.path.join(ctx.obj["DEVICE_PATH"], "lib") metadata = mod_names[name] module_path = metadata["path"] if os.path.isdir(module_path): target = os.path.basename(os.path.dirname(module_path)) target_path = os.path.join(library_path, target) # Remove the directory. shutil.rmtree(target_path) else: target = os.path.basename(module_path) target_path = os.path.join(library_path, target) # Remove file os.remove(target_path) click.echo("Uninstalled '{}'.".format(name)) else: click.echo("Module '{}' not found on device.".format(name)) @main.command( short_help=( "Update modules on the device. " "Use --all to automatically update all modules without Major Version warnings." ) ) @click.option( "--all", is_flag=True, help="Update all modules without Major Version warnings." ) @click.pass_context def update(ctx, all): # pragma: no cover """ Checks for out-of-date modules on the connected CIRCUITPYTHON device, and prompts the user to confirm updating such modules. """ logger.info("Update") # Grab out of date modules. modules = [m for m in find_modules(ctx.obj["DEVICE_PATH"]) if m.outofdate] if modules: click.echo("Found {} module[s] needing update.".format(len(modules))) if not all: click.echo("Please indicate which modules you wish to update:\n") for module in modules: update_flag = all if VERBOSE: click.echo( "Device version: {}, Bundle version: {}".format( module.device_version, module.bundle_version ) ) if isinstance(module.bundle_version, str) and not VersionInfo.isvalid( module.bundle_version ): click.secho( f"WARNING: Library {module.name} repo has incorrect __version__" "\n\tmetadata. Circup will assume it needs updating." "\n\tPlease file an issue in the library repo.", fg="yellow", ) if module.repo: click.secho(f"\t{module.repo}", fg="yellow") if not update_flag: if module.major_update: update_flag = click.confirm( ( "'{}' is a Major Version update and may contain breaking " "changes. Do you want to update?".format(module.name) ) ) else: update_flag = click.confirm("Update '{}'?".format(module.name)) if update_flag: # pylint: disable=broad-except try: module.update() click.echo("Updated {}".format(module.name)) except Exception as ex: logger.exception(ex) click.echo( "Something went wrong, {} (check the logs)".format(str(ex)) ) # pylint: enable=broad-except else: click.echo("None of the modules found on the device need an update.") # Allows execution via `python -m circup ...` # pylint: disable=no-value-for-parameter if __name__ == "__main__": # pragma: no cover main() ``` #### File: tests/bad_module/my_module.py ```python def hello(): """A hello function""" return "Hello, World!" ``` #### File: circup/tests/local_module.py ```python __version__ = "1.2.3" __repo__ = "https://github.com/adafruit/SomeLibrary.git" def hello(): """A hello function""" return "Hello, World!" ```
{ "source": "jepler/live-wrapper", "score": 3 }
#### File: live-wrapper/lwr/cdroot.py ```python import os import tempfile class CDRoot: def __init__(self, path=None): if not path: self.path = tempfile.mkdtemp() else: self.path = path if not os.path.exists(path): os.makedirs(path) def __getitem__(self, i): return CDRoot(os.path.join(self.path, i)) def __str__(self): return self.path ```
{ "source": "jepler/passport.py", "score": 3 }
#### File: passport.py/passport/eddimage.py ```python from passport.wozardry import Track, raise_if import bitarray import json class EDDError(Exception): pass # base class class EDDLengthError(EDDError): pass class EDDSeekError(EDDError): pass class EDDReader: def __init__(self, iostream): self.tracks = [] for i in range(137): raw_bytes = iostream.read(16384) raise_if(len(raw_bytes) != 16384, EDDLengthError, "Bad EDD file (did you image by quarter tracks?)") bits = bitarray.bitarray(endian="big") bits.frombytes(raw_bytes) self.tracks.append(Track(bits, 131072)) def seek(self, track_num): if type(track_num) != float: track_num = float(track_num) if track_num < 0.0 or \ track_num > 35.0 or \ track_num.as_integer_ratio()[1] not in (1,2,4): raise EDDSeekError("Invalid track %s" % track_num) trk_id = int(track_num * 4) return self.tracks[trk_id] def to_json(self): j = {"edd": {"info": {"synchronized":False, "write_protected":False, "cleaned":False }, "meta":{} } } return json.dumps(j, indent=2) ``` #### File: passport/patchers/bbf9.py ```python from passport.patchers import Patch, Patcher from passport.util import * class BBF9Patcher(Patcher): """patch nibble check seen in Sunburst disks 1988 and later see write-up of 4am crack no. 1165 Muppet Slate tested on - Muppet Slate (1988) - Memory Building Blocks (1989) - Odd One Out (1989) - Regrouping (1989) - <NAME> (1989) - Teddy and Iggy (1990) - 1-2-3 Sequence Me (1991) """ def should_run(self, track_num): return self.g.is_prodos def run(self, logical_sectors, track_num): buffy = concat_track(logical_sectors) if -1 == find.wild(buffy, b'\x8E\xC0' b'\x18' b'\xA5' + find.WILDCARD + \ b'\x69\x8C' b'\x8D'): return [] offset = find.wild(buffy, b'\xBD\x89\xC0') if offset == -1: return [] return [Patch(track_num, offset // 256, offset % 256, b'\x18\x60', "bbf9")] ``` #### File: passport/patchers/sunburst.py ```python from passport.patchers import Patch, Patcher from passport.util import * class SunburstPatcher(Patcher): """RWTS with track-based address and data prologue modifications tested on - Challenge Math - Safari Search - Ten Clues - The Factory - Trading Post - Word Quest """ def should_run(self, track_num): return self.g.is_rwts and (track_num == 0) def run(self, logical_sectors, track_num): if not find.at(0x40, logical_sectors[3], b'\xD0'): return [] if not find.at(0x9C, logical_sectors[3], b'\xF0'): return [] if not find.at(0x69, logical_sectors[4], bytes.fromhex( "48" "A5 2A" "4A" "A8" "B9 29 BA" "8D 6A B9" "8D 84 BC" "B9 34 BA" "8D FC B8" "8D 5D B8" "C0 11" "D0 03" "A9 02" "AC" "A9 0E" "8D C0 BF" "68" "69 00" "48" "AD 78 04" "90 2B")): return [] if not find.at(0x69, logical_sectors[6], bytes.fromhex( "4C B8 B6" "EA" "EA" "EA")): return [] if not find.at(0x8C, logical_sectors[8], bytes.fromhex( "69 BA")): return [] return [Patch(0, 3, 0x40, bytes.fromhex("F0")), Patch(0, 3, 0x9C, bytes.fromhex("D0")), Patch(0, 6, 0x69, bytes.fromhex("20 C3 BC 20 C3 BC")), Patch(0, 8, 0x8C, bytes.fromhex("A0 B9")), Patch(0, 4, 0xC0, bytes.fromhex("C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA"))] ``` #### File: passport/rwts/border.py ```python from passport.rwts.dos33 import DOS33RWTS class BorderRWTS(DOS33RWTS): # TODO doesn't work yet, not sure why def reset(self, logical_sectors): DOS33RWTS.reset(self, logical_sectors) self.address_prologue = (logical_sectors[9][0x16], logical_sectors[9][0x1B], logical_sectors[9][0x20]) self.address_epilogue = (logical_sectors[9][0x25], logical_sectors[9][0x2A]) self.data_prologue = (logical_sectors[8][0xFD], logical_sectors[9][0x02], logical_sectors[9][0x02]) self.data_epilogue = (logical_sectors[9][0x0C], logical_sectors[9][0x11]) ```
{ "source": "jepler/pyrockout", "score": 3 }
#### File: jepler/pyrockout/install.py ```python import os import shutil import subprocess def match(dest, content): if not os.path.exists(dest): return False with open(dest, "rb") as f: destcontent = f.read() return content == destcontent def copy(destdir, srcdir, name, *, destname=None): if destname is None: destname = name src = os.path.join(srcdir, name) dest = os.path.join(destdir, destname) with open(src, "rb") as f: content = f.read() put(dest, content) def put(dest, content): if not match(dest, content): with open(dest, "wb") as f: f.write(content) SRCPATH = 'src' DSTPATH = 'CIRCUITPY' for dirpath, dirnames, filenames in os.walk('src', followlinks=True): outpath = os.path.join(DSTPATH, os.path.relpath(dirpath, SRCPATH)) os.makedirs(outpath, exist_ok=True) for f in filenames: if f.startswith('.'): continue copy(outpath, dirpath, f) ```
{ "source": "jepma/bare-python-package", "score": 3 }
#### File: src/bare_python_package/main.py ```python import sys import os import logging import argparse import requests logging.basicConfig() logger = logging.getLogger(__name__) def main(): p = argparse.ArgumentParser(description="...") p.add_argument("--url", default="https://api.spotify.com/v1/search?type=artist&q=limpbizkit") args = p.parse_args() logger.info(f"Running with args {args}") process_url(args.url) def process_url(url): r = requests.get(url) logger.debug(r.json()) logger.info("Done processing your URL") if __name__ == "__main__": main() ```
{ "source": "jepohle/Part-IA-Flood-Control-Lab-Group-153", "score": 4 }
#### File: Part-IA-Flood-Control-Lab-Group-153/floodsystem/flood.py ```python from floodsystem.utils import sorted_by_key def stations_level_over_threshold(stations, tol): """A function that takes a list of station objects and a threshold value for relative water level and returns a list of station object which have a flood level higher than the tolerance. It takes form stations_level_over_threshold(list of station objects, tolerance (float)).""" list = [] for station in stations: rellevel = station.relative_water_level() if rellevel == None: continue elif rellevel > tol: if rellevel > 10: continue else: list.append((station, station.relative_water_level())) return sorted_by_key(list, 1, reverse=True) def stations_highest_rel_level(stations, N): """Returns the N stations with the highest relative water level from a list of station objects (stations).""" list = [] for station in stations: rellevel = station.relative_water_level() if rellevel == None: continue if rellevel > 10: continue else: list.append((station, station.relative_water_level())) listsorted = sorted_by_key(list, 1, reverse=True) output = [x[0] for x in listsorted] return output[:N] ``` #### File: jepohle/Part-IA-Flood-Control-Lab-Group-153/Task1C.py ```python from floodsystem.geo import stations_by_distance from floodsystem.geo import stations_within_radius from floodsystem.stationdata import build_station_list from floodsystem.utils import sorted_by_key def run(): stations = build_station_list() list = stations_within_radius(stations, (52.2053, 0.1218), 10) list.sort() for item in list: print(item.name) if __name__ == "__main__": print("*** Task 1C: CUED Part IA Flood Warning System ***") run() ``` #### File: jepohle/Part-IA-Flood-Control-Lab-Group-153/Task1F.py ```python from floodsystem.stationdata import build_station_list from floodsystem.station import inconsistent_typical_range_stations def run(): """Prints a list of the names of stations with faulty range data.""" x = build_station_list() inconsistentstations = inconsistent_typical_range_stations(x) names = [station.name for station in inconsistentstations] names.sort() print(names) if __name__ == "__main__": print("*** Task 1F: CUED Part IA Flood Warning System ***") run() ``` #### File: jepohle/Part-IA-Flood-Control-Lab-Group-153/test_analysis.py ```python from floodsystem.stationdata import build_station_list, update_water_levels from floodsystem.datafetcher import fetch_measure_levels import numpy as np from floodsystem.analysis import polyfit import datetime def test_polyfit(): x = build_station_list() update_water_levels(x) dates, levels = fetch_measure_levels(x[0].measure_id, datetime.timedelta(3)) test_levels = np.full(len(dates), 1).tolist() p, d0 = polyfit(dates, test_levels, 3) print(p) assert round(p.c[0], 10) == 0 assert round(p.c[1], 10) == 0 assert round(p.c[2], 10) == 0 assert round(p.c[3], 10) == 1 ``` #### File: jepohle/Part-IA-Flood-Control-Lab-Group-153/test_geo.py ```python from distutils.command.build import build from floodsystem.stationdata import build_station_list from floodsystem.geo import rivers_by_station_number, stations_by_distance, stations_within_radius from floodsystem.geo import stations_by_river from floodsystem.geo import rivers_with_station def test_stations_by_distance(): """Tests the function of the sort by distance algorithm by checking for an increase in distance by checking the difference between the first and second entry in the sorted list.""" x = build_station_list() sorted = stations_by_distance(x, (51.5072, -0.1276)) sortedfirst = sorted[0] sortedsecond = sorted[1] diff = sortedfirst[1] - sortedsecond[1] assert diff < 0 def test_rivers_with_stations(): """Tests if function rivers_with_station in callable and returns the expected datatype""" x = build_station_list() rivers = rivers_with_station(x) assert type(rivers) == set def test_stations_by_river(): """Tests if function stations_by_rivers in callable and returns the expected datatype""" x = build_station_list() stations = stations_by_river(x) assert type(stations) == dict def test_station_within_radius(): """Test if funcion station_within_radius works correctly""" stations = build_station_list() stations_within_10k = stations_within_radius(stations, (52.2053, 0.1218) , 10) id_list = [] for station in stations_within_10k: id_list.append(station.name) id_list.sort() assert id_list == ['<NAME>', 'Cambridge Baits Bite', "Cambridge Byron's Pool", '<NAME>', 'Comberton', 'Dernford', 'Girton', 'Haslingfield Burnt Mill', 'Lode', 'Oakington', 'Stapleford'] def test_rivers_by_station_number(): """Test to see if rivers_by_station_number is callable and if it returns valid data""" stations = build_station_list() rivers_by_station = rivers_by_station_number(stations, 1) test_river_name = rivers_by_station[0][0] print("testing number of stations for " + test_river_name) n = 0 for station in stations: if(station.river == test_river_name): n += 1 assert n == rivers_by_station[0][1] ```
{ "source": "JEPooleyOS/osdatahub-graphics", "score": 3 }
#### File: osdatahub-graphics/roads/roads_walk.py ```python from os import environ import geopandas as gpd import matplotlib.pyplot as plt from osdatahub import Extent, FeaturesAPI from shapely.affinity import translate from shapely.geometry import LineString, MultiLineString from shapely.ops import linemerge # Get OS Data Hub API key key = environ.get("OS_API_KEY") # Define extent extent = Extent.from_ons_code("E09000001") # Define product product = "zoomstack_roads_local" # Query Features API features_api = FeaturesAPI(key, product, extent) local_roads = features_api.query(limit=1000000) # Convert to GeoDataFrame local_roads_gdf = gpd.GeoDataFrame.from_features( local_roads['features'], crs=extent.crs) local_roads_gdf.to_crs("EPSG:27700", inplace=True) # Move buildings according to their area def merge_lines(lines: list) -> LineString: """ Turn a list of contiguous LineStrings into one LineString """ multi_line = MultiLineString(lines) return linemerge(multi_line) def stack_lines(lines: gpd.GeoDataFrame) -> LineString: """ Transform all lines so that they are stacked end-to-end """ stacked_lines = [] end_x, end_y = 0, 0 for line in lines.itertuples(): # Extract geometry geometry = line.geometry # Transform lines to the end of the stack start_x, start_y = geometry.coords[0] shifted_line = translate(geometry, xoff=-start_x + end_x, yoff=-start_y + end_y) # Update shift parameters end_x, end_y = shifted_line.coords[-1] # Update stacked_lines list stacked_lines.append(shifted_line) return merge_lines(stacked_lines) # Iterate the line stacking with a random order each time paths = [] for _ in range(500): local_roads_gdf = local_roads_gdf.sample(frac=1) path = stack_lines(local_roads_gdf) paths.append(path) # Create GeoSeries gs = gpd.GeoSeries(paths) # Plot edgecolor = "#FFFFFF03" background = "#222222" fig, ax = plt.subplots(facecolor=background) gs.plot(edgecolor=edgecolor, ax=ax) plt.axis('off') plt.show() ```
{ "source": "Jepp0103/System_Integration_Tasks", "score": 3 }
#### File: Mandatory_1/python_servers/python_server_one.py ```python import requests import csv def send(): while True: print("Enter number") number = input() xml = f"<?xml version='1.0' encoding='utf-8'?><data>{number}</data>" headers = {"Content-Type": "application/xml"} # set what your server accepts response = requests.post( "http://127.0.0.1:2222/receive-xml", data=xml, headers=headers ) readcsv(response.text.splitlines()) def readcsv(csvdata): reader = csv.reader(csvdata, delimiter=",") for row in reader: print(row) send() # run(host="127.0.0.1", port=1111, debug=False, reloader=True, server="paste") ``` #### File: python_integration/Lecture_2/server_one.py ```python from bottle import run, get, post, request import time import requests import threading def timer(): while True: result = requests.get("http://127.0.0.1:4444") print(result.text) time.sleep(1) @get("/") # Can use same method name because of the decorator def do(): return "X server 1" @post("/letter") def do(): letter = request.forms.get("letter") if letter in ("a", "b", "c"): return f"Yes I got the letter: {letter}" else: req = int(requests.get("http://127.0.0.1:4444").text) print(f"Number: {req}") req_multiply = req * 2 return f"Did not match a letter, hence a number: {str(req_multiply)}" @ post("/signin") def do(): # Getting the form data name = request.forms.get("name") email = request.forms.get("email") return f"Hi {name}, your email is {email}" # xtimer = threading.Thread(target=timer) # Targeting the method name timer. # xtimer.start() run(host="127.0.0.1", port=3333, debug=True, reloader=True) ``` #### File: python_integration/Lecture_3_5_company_nemid_fat_sms/nem_id_app.py ```python from bottle import run, get, view, response ############################## @get("/nemid") @view("index_nem_id.html") def do(): return ############################## run(host="127.0.0.1", port=3333, debug=True, reloader=True, server="paste") ``` #### File: python_integration/Mandatory_2/xml_to_csv.py ```python from bottle import request, run, post, response import csv import io import xml.etree.ElementTree as ET hostname = "127.0.0.1" port = 3333 @post("/xml-to-csv") def converXmlToCsv(): xml_data = request.body tree = ET.parse(xml_data) root = tree.getroot() msg = root.text.strip() print("message:", msg) csv_data = ["message", msg] result = convertToCsv(csv_data) print("Converted CSV:", result) response.content_type = "text/csv" return result def convertToCsv(input): output = io.StringIO() writer = csv.writer(output, delimiter=",") writer.writerow(input) return output.getvalue() run(host=hostname, port=port, debug=True, reloader=True, server="paste") ```
{ "source": "jeppard/infotrainer", "score": 3 }
#### File: jeppard/infotrainer/AllToDec.py ```python def AllToDec_ui(): i = int(input('Ausgangsystem (z.B. 8 fรผr Oktal) ')) zahl = input('Ausgangszahl: ') input('Dezimalzahl: ') print(All2dec(zahl, i)) def All2dec(z, p): s = '' n = 0 for i in range(0, len(z)): n += int(z[len(z) - (i + 1)], p) * (p ** i) s += str(int(z[len(z) - (i + 1)], p)) + '*' + str(p ** i) + ' + ' s = s[:-3] + ' = ' + str(n) return s if __name__ == '__main__': AllToDec_ui() ```
{ "source": "JeppeDruedahl/HANKPY", "score": 2 }
#### File: JeppeDruedahl/HANKPY/solve.py ```python import time import ctypes as ct from numba import njit, prange import numpy as np from scipy.sparse import spdiags, diags from scipy.sparse.linalg import spsolve from scipy import interpolate from consav.misc import elapsed # local import modelfuncs import income_process eps_low = 1e-12 ############## # 1. generic # ############## def derivatives(par,sol): """ take numerical derivatives """ # a. differences modelfuncs.diff(sol.v,sol.vaB,sol.vaF,axis=1,dxf=par.daaaf,dxb=par.daaab) modelfuncs.diff(sol.v,sol.vbB,sol.vbF,axis=2,dxf=par.dbbbf,dxb=par.dbbbb) # b. correct with boundary conditions sol.vaB[:,0,:] = 0 sol.vaF[:,-1,:] = 1e-8 sol.vbB[:,:,0] = -999.9 sol.vbF[:,:,-1] = 1e-8 ################## # 2. preparation # ################## def construct_switch(par,ast): """ split markov transition matrix """ # i. generate diagonal vector and off-diagonal matrix par.switch_diag, ast.switch_off, par.switch_off = income_process.split_markov_matrix(par,par.z_markov) # ii. ensure sorted indices for UMFPACK ast.switch_off.sort_indices() def prep(par,sol,solmethod): """ prepare sol and ast classes """ class ast: None # a. construct switch matrix construct_switch(par,ast) # c. derivatives shape = (par.Nz,par.Na,par.Nb) sol.vbB = np.zeros(shape) sol.vbF = np.zeros(shape) sol.vaB = np.zeros(shape) sol.vaF = np.zeros(shape) sol.c_B = np.zeros(shape) sol.c_F = np.zeros(shape) sol.h_B = np.zeros(shape) sol.h_F = np.zeros(shape) sol.Hc_B = np.zeros(shape) sol.Hc_F = np.zeros(shape) sol.sbc_B = np.zeros(shape) sol.sbc_F = np.zeros(shape) sol.daBbB = np.zeros(shape) sol.daBbF = np.zeros(shape) sol.daFbB = np.zeros(shape) sol.HdaFbB = np.zeros(shape) sol.HdaBbF = np.zeros(shape) sol.HdaBbB = np.zeros(shape) sol.daBbF_adj = np.zeros(shape) sol.daBbB_adj = np.zeros(shape) # d. solution containers sol.v = np.zeros((par.Nz,par.Na,par.Nb)) sol.c = np.zeros(shape) sol.h = np.zeros(shape) sol.d = np.zeros(shape) sol.d_adj = np.zeros(shape) sol.s = np.zeros(shape) sol.g = np.zeros((par.Nz,par.Nab)) # e. diagonals shape = (par.Nz,par.Nab) sol.centdiag = np.zeros(shape) sol.a_updiag = np.zeros(shape) sol.b_updiag = np.zeros(shape) sol.b_lowdiag = np.zeros(shape) sol.a_lowdiag = np.zeros(shape) # f. Q sol.Qps = np.zeros((par.Nz,par.Nab+1),dtype=np.int32) # element per column Nmax = par.Nab + 2*(par.Nab-1) + 2*(par.Nab-par.Nb) shape = (par.Nz,Nmax) sol.Qis = np.zeros(shape,dtype=np.int32) # indices sol.Qxs = np.zeros(shape) # data # pointers and pointers to pointers ast.Qs = [None]*par.Nz if solmethod == 'UMFPACK': ast.p_Qps = [None]*par.Nz ast.p_Qis = [None]*par.Nz ast.p_Qxs = [None]*par.Nz for iz in range(par.Nz): # pointers ast.p_Qps[iz] = np.ctypeslib.as_ctypes(sol.Qps[iz]) ast.p_Qis[iz] = np.ctypeslib.as_ctypes(sol.Qis[iz]) ast.p_Qxs[iz] = np.ctypeslib.as_ctypes(sol.Qxs[iz]) # pointers to pointers ast.pp_Qps = (ct.POINTER(ct.c_long)*par.Nz)(*ast.p_Qps,) ast.pp_Qis = (ct.POINTER(ct.c_long)*par.Nz)(*ast.p_Qis,) ast.pp_Qxs = (ct.POINTER(ct.c_double)*par.Nz)(*ast.p_Qxs,) # g. working memory sol.v = np.zeros((par.Nz,par.Na,par.Nb)) sol.g = np.zeros((par.Nz,par.Nab)) ast.RHS_HJB = np.zeros(par.Nzab) ast.RHS_KFE = np.zeros(par.Nzab) ast.Wi = np.zeros((par.Nz,par.Nab),dtype=np.int32) ast.W = np.zeros((par.Nz,5*par.Nab)) # list of pointers ast.p_v = [None]*par.Nz # value function ast.p_g = [None]*par.Nz # distribution ast.p_RHS_HJB = [None]*par.Nz # RHS in HJB eq. sys ast.p_RHS_KFE = [None]*par.Nz # RHS in KF eq. sys ast.p_Wi = [None]*par.Nz # working memory for UMFPACK ast.p_W = [None]*par.Nz # working memory for UMFPACK for iz,i0,i1 in [(iz,iz*par.Nab,(iz+1)*par.Nab) for iz in range(par.Nz)]: ast.p_RHS_HJB[iz] = np.ctypeslib.as_ctypes(ast.RHS_HJB[i0:i1]) ast.p_RHS_KFE[iz] = np.ctypeslib.as_ctypes(ast.RHS_KFE[i0:i1]) ast.p_v[iz] = np.ctypeslib.as_ctypes(sol.v[iz].ravel()) ast.p_g[iz] = np.ctypeslib.as_ctypes(sol.g[iz].ravel()) ast.p_Wi[iz] = np.ctypeslib.as_ctypes(ast.Wi[iz]) ast.p_W[iz] = np.ctypeslib.as_ctypes(ast.W[iz]) # pointers to pointers ast.pp_RHS_HJB = (ct.POINTER(ct.c_double)*par.Nz)(*ast.p_RHS_HJB,) ast.pp_RHS_KFE = (ct.POINTER(ct.c_double)*par.Nz)(*ast.p_RHS_KFE,) ast.pp_v = (ct.POINTER(ct.c_double)*par.Nz)(*ast.p_v,) ast.pp_g = (ct.POINTER(ct.c_double)*par.Nz)(*ast.p_g,) ast.pp_Wi = (ct.POINTER(ct.c_long)*par.Nz)(*ast.p_Wi,) ast.pp_W = (ct.POINTER(ct.c_double)*par.Nz)(*ast.p_W,) # precomputed symbolic matrices in UMFPACK ast.pp_symbolics = (ct.c_void_p*par.Nz)(*[None for _ in range(par.Nz)]) return ast ################ # 3. solve HJB # ################ @njit(parallel=True,fastmath=True) def upwind(par,sol): """ apply upwind scheme """ # unpack s = sol.s h = sol.h c = sol.c d = sol.d d_adj = sol.d_adj h_B = sol.h_B h_F = sol.h_F c_B = sol.c_B c_F = sol.c_F Hc_B = sol.Hc_B Hc_F = sol.Hc_F sbc_B = sol.sbc_B sbc_F = sol.sbc_F daBbB = sol.daBbB daFbB = sol.daFbB daBbF = sol.daBbF HdaFbB = sol.HdaFbB HdaBbF = sol.HdaBbF HdaBbB = sol.HdaBbB daBbF_adj = sol.daBbF_adj daBbB_adj = sol.daBbB_adj # loop in parallel for iz in prange(par.Nz): for ia in range(par.Na): for ib in range(par.Nb): a = par.grid_a[ia] b = par.grid_b[ib] z = par.grid_z[iz] index = (iz,ia,ib) # a. consumption and liquid savings from foc c_F[index],h_F[index],sbc_F[index],Hc_F[index] = modelfuncs.optimal_consumption(par,sol.vbF[index],z,b,par.Rb[index],par.w) # forwards c_B[index],h_B[index],sbc_B[index],Hc_B[index] = modelfuncs.optimal_consumption(par,sol.vbB[index],z,b,par.Rb[index],par.w) # backwards c_0,h_0,sbc_0,Hc_0 = modelfuncs.optimal_consumption(par,-999.9,z,b,par.Rb[index],par.w) # stationary if ib == par.Nb-1: sbc_F[index] = 0 Hc_F[index] = -1e12 # i. conditions validF = sbc_F[index] > 0 validB = sbc_B[index] < 0 # ii. consumption and liquid savings decision if validF and (~validB or Hc_F[index] >= Hc_B[index]) and Hc_F[index] >= Hc_0: # forward c[index] = c_F[index] h[index] = h_F[index] s[index] = sbc_F[index] if validB and (~validF or Hc_B[index] >= Hc_F[index]) and Hc_B[index] >= Hc_0: # backwards c[index] = c_B[index] h[index] = h_B[index] s[index] = sbc_B[index] if ~validF and ~validB: # stationary c[index] = c_0 s[index] = sbc_0 h[index] = h_0 # b. deposits from foc's daFbB[index] = modelfuncs.transaction_cost_foc(sol.vaF[index],sol.vbB[index],a,par) # a forward, b backward daBbF[index] = modelfuncs.transaction_cost_foc(sol.vaB[index],sol.vbF[index],a,par) # a backward, b forward daBbB[index] = modelfuncs.transaction_cost_foc(sol.vaB[index],sol.vbB[index],a,par) # a backward, b forward HdaFbB[index] = sol.vaF[index]*daFbB[index] - sol.vbB[index]*(daFbB[index] + modelfuncs.transaction_cost(daFbB[index],a,par)) daBbF_adj[index] = daBbF[index] + modelfuncs.transaction_cost(daBbF[index],a,par) HdaBbF[index] = sol.vaB[index]*daBbF[index] - sol.vbF[index]*daBbF_adj[index] daBbB_adj[index] = daBbB[index] + modelfuncs.transaction_cost(daBbB[index],a,par) HdaBbB[index] = sol.vaB[index]*daBbB[index] - sol.vbB[index]*daBbB_adj[index] # i. correct boundaries if ia == 0: HdaBbF[index] = -1e12 HdaBbB[index] = -1e12 if ia == par.Na-1: HdaFbB[index] = -1e12 if ib == 0: HdaFbB[index] = -1e12 # ii. conditions validFB = daFbB[index] > 0 and HdaFbB[index] > 0 validBF = daBbF_adj[index] <= 0 and HdaBbF[index] > 0 validBB = daBbB_adj[index] > 0 and daBbB[index] <= 0 and HdaBbB[index] > 0 # c. find d if validFB and (~validBF or HdaFbB[index]>=HdaBbF[index]) and (~validBB or HdaFbB[index]>=HdaBbB[index]): d[index] = daFbB[index] if validBF and (~validFB or HdaBbF[index]>=HdaFbB[index]) and (~validBB or HdaBbF[index]>=HdaBbB[index]): d[index] = daBbF[index] if validBB and (~validFB or HdaBbB[index]>=HdaFbB[index]) and (~validBF or HdaBbB[index]>=HdaBbF[index]): d[index] = daBbB[index] if (~validFB and ~validBF and ~validBB): d[index] = 0 # d. find d_adj d_adj[index] = d[index] + modelfuncs.transaction_cost(d[index],a,par) def create_RHS_HJB(par,sol,ast,v_prev): """ create RHS of HJB """ # a. utility u = modelfuncs.util(par,sol.c,sol.h) u = u.ravel() # d. total value v = v_prev.ravel() ast.RHS_HJB[:] = par.DeltaHJB*u + v + par.DeltaHJB*ast.switch_off@v @njit(parallel=True,fastmath=True) def create_diags_HJB(par,sol): """ create diagonals """ # unpack centdiag = sol.centdiag a_lowdiag = sol.a_lowdiag a_updiag = sol.a_updiag b_lowdiag = sol.b_lowdiag b_updiag = sol.b_updiag # generate ltau0 ltau0 = (par.ra+par.eta)*(par.a_max*0.999)**(1-par.ltau) # parallel loop for iz in prange(par.Nz): for ia in range(par.Na): for ib in range(par.Nb): index = (iz,ia,ib) # a. set mechanical drift in a a = par.grid_a[ia] adrift = (par.ra + par.eta)*a - ltau0*a**par.ltau + par.xi*par.w # b. find diagonals in a and b space a_up = np.fmax(sol.d[index],0) + np.fmax(adrift,0) a_up /= par.daaaf[index] a_low = -np.fmin(sol.d[index],0) - np.fmin(adrift,0) a_low /= par.daaab[index] b_up = np.fmax(-sol.d_adj[index],0) + np.fmax(sol.s[index],0) b_up /= par.dbbbf[index] b_low = -np.fmin(-sol.d_adj[index],0) - np.fmin(sol.s[index],0) b_low /= par.dbbbb[index] # c. update i = ia*par.Nb + ib a_centdiag = a_low + a_up b_centdiag = b_low + b_up centdiag[iz,i] = 1 + par.DeltaHJB*(a_centdiag + b_centdiag + par.rho + par.eta - par.switch_diag[iz]) if ia < par.Na-1: a_updiag[iz,i+par.Nb] = -par.DeltaHJB*a_up if ia > 0: a_lowdiag[iz,i-par.Nb] = -par.DeltaHJB*a_low if ib < par.Nb-1: b_updiag[iz,i+1] = -par.DeltaHJB*b_up if ib > 0: b_lowdiag[iz,i-1] = -par.DeltaHJB*b_low def create_Q(par,sol,ast,solmethod): """ create Q matrix """ if solmethod == 'scipy': create_Q_scipy(par,sol,ast,solmethod) elif solmethod == 'UMFPACK': create_Q_UMFPACK(par,sol) # equivalent: # create_Q_scipy(par,sol,ast,solmethod) # sol.Qps[:] = 0 # sol.Qis[:] = 0 # sol.Qxs[:] = 0 # for iz in range(par.Nz): # Qz = ast.Qs[iz] # N = Qz.data.size # sol.Qps[iz,:] = Qz.indptr # sol.Qis[iz,:N] = Qz.indices # sol.Qxs[iz,:N] = Qz.data else: raise('unkwon solution method') def create_Q_scipy(par,sol,ast,solmethod): """ create Q for use with scipy """ def remove_small(x): I = np.abs(x) < eps_low y = x.copy() y[I] = 0 return y for iz in range(par.Nz): #order of diagionals is important to getsorted indices ast.Qs[iz] = diags( diagonals=[ remove_small(sol.a_updiag[iz,par.Nb:]), remove_small(sol.b_updiag[iz,1:]), remove_small(sol.centdiag[iz,:]), remove_small(sol.b_lowdiag[iz,:-1]), remove_small(sol.a_lowdiag[iz,:-par.Nb]), ], offsets=[par.Nb,1,0,-1,-par.Nb], shape=(par.Nab,par.Nab),format='csc') @njit(parallel=True,fastmath=True) def create_Q_UMFPACK(par,sol): """ create Q matrix for use in UMFPACK """ # unpack Qps = sol.Qps Qis = sol.Qis Qxs = sol.Qxs Qps[:] = 0 Qis[:] = 0 Qxs[:] = 0 # loop in parallel for iz in prange(par.Nz): k = 0 # number of elements (so far) for col in range(par.Nab): # a upper if col >= par.Nb: x = sol.a_updiag[iz,col] if not np.abs(x) < eps_low: Qis[iz,k] = col - par.Nb # row Qxs[iz,k] = x k += 1 # b upper if col >= 1: x = sol.b_updiag[iz,col] if not np.abs(x) < eps_low: Qis[iz,k] = col - 1 # row Qxs[iz,k] = x k += 1 # center x = sol.centdiag[iz,col] if not np.abs(x) < eps_low: Qis[iz,k] = col # row Qxs[iz,k] = x k += 1 # b lower if col <= par.Nab-2: x = sol.b_lowdiag[iz,col] if not np.abs(x) < eps_low: Qis[iz,k] = col + 1 # row Qxs[iz,k] = x k += 1 # a lower if col <= par.Nab-par.Nb-1: x = sol.a_lowdiag[iz,col] if not np.abs(x) < eps_low: Qis[iz,k] = col + par.Nb # row Qxs[iz,k] = x k += 1 # update total number of elements so far Qps[iz,col+1] = k def solve_eq_sys_HJB(par,sol,ast,solmethod,cppfile): """ solve equation system for HJB """ if solmethod == 'scipy': for iz,i0,i1 in [(iz,iz*par.Nab,(iz+1)*par.Nab) for iz in range(par.Nz)]: sol.v.ravel()[i0:i1] = spsolve(ast.Qs[iz],ast.RHS_HJB[i0:i1],permc_spec='NATURAL') elif solmethod == 'UMFPACK': cppfile.solve_many(par.Nab,par.Nz,ast.pp_Qps,ast.pp_Qis,ast.pp_Qxs, ast.pp_RHS_HJB,ast.pp_v,ast.pp_symbolics,ast.pp_Wi,ast.pp_W,True,True,True,par.cppthreads) else: raise Exception('unkwon solution method') def howard_improvement_steps(par,sol,ast,solmethod,cppfile): """ take howard improvement steps """ for _ in range(par.maxiter_HIS): # a. create RHS v_prev_HIS = sol.v.copy() create_RHS_HJB(par,sol,ast,v_prev_HIS) # b. solve solve_eq_sys_HJB(par,sol,ast,solmethod,cppfile) # c. distance HIS_dist = np.max(np.abs(sol.v-v_prev_HIS)) if HIS_dist < par.HIStol: break def solve_HJB(model,do_print=True,print_freq=100,solmethod='UMFPACK'): """ solve HJB equation """ t0 = time.time() # unpack par = model.par sol = model.sol ast = model.ast cppfile = model.cppfile # solve HJB it = 1 while it < par.maxiter_HJB: v_prev = sol.v.copy() # i. derivatives derivatives(par,sol) # ii. upwind scheme upwind(par,sol) # iii. RHS create_RHS_HJB(par,sol,ast,v_prev) # iv. diagonals create_diags_HJB(par,sol) # v. construct Q create_Q(par,sol,ast,solmethod) # vi. solve equation system solve_eq_sys_HJB(par,sol,ast,solmethod,cppfile) # viii. howard improvement step if it > par.start_HIS and dist > par.stop_HIS_fac*par.HJBtol: howard_improvement_steps(par,sol,ast,solmethod,cppfile) # viii. check convergence dist = np.max(np.abs(sol.v-v_prev)) if dist < par.HJBtol: if do_print: print(f' converged in {elapsed(t0)} in iteration {it}') break else: if do_print and (it < 10 or it%print_freq == 0): print(f'{it:5d}: {dist:.16f}') it += 1 # assert converged value function monotonicity (not always fulfilled with dense grids) #assert np.any(np.diff(sol.v,axis = 1)<-1e-8) == 0 # monotonicity in a dimension #assert np.any(np.diff(sol.v,axis = 2)<-1e-8) == 0 # monotonicity in b dimension return time.time()-t0 ################ # 4. solve KFE # ################ @njit(parallel=True,fastmath=True) def create_diags_KFE(par,sol): """ create diagonals for KFE """ # unpack a_lowdiag = sol.a_lowdiag a_updiag = sol.a_updiag b_lowdiag = sol.b_lowdiag b_updiag = sol.b_updiag centdiag = sol.centdiag for iz in prange(par.Nz): for ia in range(par.Na): for ib in range(par.Nb): a = par.grid_a[ia] adrift = (par.ra + par.eta)*a - par.ltau0*a**par.ltau + par.xi*par.w a_low = -np.fmin(sol.d[iz,ia,ib] + adrift,0)/par.dab[ia] a_up = np.fmax(sol.d[iz,ia,ib] + adrift,0)/par.daf[ia] b_low = -np.fmin(sol.s[iz,ia,ib] - sol.d_adj[iz,ia,ib],0)/par.dbb[ib] b_up = np.fmax(sol.s[iz,ia,ib] - sol.d_adj[iz,ia,ib],0)/par.dbf[ib] # correct boundaries if ib == par.Nb-1: a_low = -np.fmin(sol.d[iz,ia,ib-1] + adrift,0)/par.dab[ia] a_up = np.fmax(sol.d[iz,ia,ib-1] + adrift,0)/par.daf[ia] b_low = -np.fmin(sol.s[iz,ia,ib] - sol.d_adj[iz,ia,ib-1],0)/par.dbb[ib] # update i = ib*par.Na + ia a_centdiag = a_low + a_up b_centdiag = b_low + b_up centdiag[iz,i] = 1 + par.DeltaKFE*(a_centdiag + b_centdiag + par.eta - par.switch_diag[iz]) a_updiag[iz,i] = -par.DeltaKFE*a_up*par.DAB_lowdiag1[i] a_lowdiag[iz,i] = -par.DeltaKFE*a_low*par.DAB_updiag1[i] b_updiag[iz,i] = -par.DeltaKFE*b_up*par.DAB_lowdiag2[i] b_lowdiag[iz,i] = -par.DeltaKFE*b_low*par.DAB_updiag2[i] return sol def create_B(par,sol,ast,solmethod): """ create B matrix """ # think of: # Qps as Bps # Qis as Bis # Qxs as Bxs # a. initialize if solmethod == 'UMFPACK': sol.Qps[:] = 0 sol.Qis[:] = 0 sol.Qxs[:] = 0 # b. construct sparse matrices for iz in range(par.Nz): ast.Qs[iz] = diags( diagonals=[ sol.b_lowdiag[iz,par.Na:], sol.a_lowdiag[iz,1:], sol.centdiag[iz,:], sol.a_updiag[iz,:-1], sol.b_updiag[iz,:-par.Na], ], offsets=[par.Na,1,0,-1,-par.Na], shape=(par.Nab,par.Nab),format='csc') # pack information for UMFPACK if solmethod == 'UMFPACK': Qz = ast.Qs[iz] N = Qz.data.size sol.Qps[iz,:] = Qz.indptr sol.Qis[iz,:N] = Qz.indices sol.Qxs[iz,:N] = Qz.data def solve_eq_sys_KFE(par,sol,ast,g_prev,solmethod,cppfile): """ solve equation system for KFE """ # a. update g sol.g[:] = (np.identity(par.Nz) + par.DeltaKFE*par.switch_off).T@g_prev index = par.Na*par.Nb_neg sol.g[:,index] = sol.g[:,index] + par.DeltaKFE*par.eta/par.dab_tilde[par.Nb_neg,0]*(par.dab_tilde.ravel()@g_prev.T) # b. solve if solmethod == 'scipy': for iz in range(par.Nz): sol.g[iz,:] = spsolve(ast.Qs[iz],sol.g[iz,:]) elif solmethod == 'UMFPACK': ast.RHS_KFE[:] = sol.g.ravel() # copy to RHS cppfile.solve_many(par.Nab,par.Nz,ast.pp_Qps,ast.pp_Qis,ast.pp_Qxs, ast.pp_RHS_KFE,ast.pp_g,ast.pp_symbolics,ast.pp_Wi,ast.pp_W,True,True,True,par.cppthreads) else: raise Exception('unkwon solution method') def solve_KFE(model,do_print=True,print_freq=100,solmethod='UMFPACK'): """ solve Kolmogorov-Forward equation """ t0 = time.time() # unpack par = model.par sol = model.sol ast = model.ast cppfile = model.cppfile # a. diagonals create_diags_KFE(par,sol) # b. iterate it = 1 while it < par.maxiter_KFE: g_prev = sol.g.copy() # i. construct B create_B(par,sol,ast,solmethod) # ii. solve equation solve_eq_sys_KFE(par,sol,ast,g_prev,solmethod,cppfile) # iii. check convergence dist = np.max(np.abs(g_prev.ravel()-sol.g.ravel())) if dist < par.KFEtol: if do_print: print(f' converged in {elapsed(t0)} secs in iteration {it}') break else: if do_print and (it < 10 or it%print_freq == 0): print(f'{it:5d}: {dist:.16f}') it += 1 return time.time()-t0 ########## # 4. MPC # ########## @njit(parallel=True,fastmath=True) def create_diags_cumcon(par,sol): """ create diagonals for cumulative consumption """ # unpack a_lowdiag = sol.a_lowdiag a_updiag = sol.a_updiag b_lowdiag = sol.b_lowdiag b_updiag = sol.b_updiag centdiag = sol.centdiag for iz in prange(par.Nz): for ia in range(par.Na): for ib in range(par.Nb): a = par.grid_a[ia] adrift = (par.ra + par.eta)*a - par.ltau0*a**par.ltau + par.xi*par.w a_low = -np.fmin(sol.d[iz,ia,ib] + adrift,0)/par.dab[ia] a_up = np.fmax(sol.d[iz,ia,ib] + adrift,0)/par.daf[ia] b_low = -np.fmin(sol.s[iz,ia,ib] - sol.d_adj[iz,ia,ib],0)/par.dbb[ib] b_up = np.fmax(sol.s[iz,ia,ib] - sol.d_adj[iz,ia,ib],0)/par.dbf[ib] # correct boundaries if ib == par.Nb-1: a_low = -np.fmin(sol.d[iz,ia,ib-1] + adrift,0)/par.dab[ia] a_up = np.fmax(sol.d[iz,ia,ib-1] + adrift,0)/par.daf[ia] b_low = -np.fmin(sol.s[iz,ia,ib] - sol.d_adj[iz,ia,ib-1],0)/par.dbb[ib] # update i = ib*par.Na + ia a_centdiag = a_low + a_up b_centdiag = b_low + b_up centdiag[iz,i] = 1 + par.DeltaCUMCON*(a_centdiag + b_centdiag - par.switch_diag[iz]) a_updiag[iz,i] = -par.DeltaCUMCON*a_up a_lowdiag[iz,i] = -par.DeltaCUMCON*a_low b_updiag[iz,i] = -par.DeltaCUMCON*b_up b_lowdiag[iz,i] = -par.DeltaCUMCON*b_low def cumulative_consumption(par,sol): # a. create diags for sparse matrix create_diags_cumcon(par,sol) # b. define variables and containers for solution nsteps = int(np.round(1/par.DeltaCUMCON)) # 1 quarter cdvec = (np.reshape(np.array([sol.c,sol.d]),(2,par.Nz,par.Nab),order='F').swapaxes(0,1)).swapaxes(0,2) cdcumvec = np.zeros((par.Nab,2,par.Nz)) # c. solve for _ in range(nsteps): cdcumvec += par.DeltaCUMCON*(cdvec + np.reshape(cdcumvec.reshape(2*par.Nab,par.Nz)@par.switch_off.T,(par.Nab,2,par.Nz))) # sweep over z for iz in range(par.Nz): Bz = spdiags(data=[sol.centdiag[iz,:], sol.a_updiag[iz,:], sol.a_lowdiag[iz,:], sol.b_updiag[iz,:], sol.b_lowdiag[iz,:]], diags=[0,-1,1,-par.Na,par.Na], m=par.Nab, n=par.Nab, format='csc') cdcumvec[:,:,iz] = spsolve(Bz.T,cdcumvec[:,:,iz]) # d. calculate one quarter cumulative expected consumption ccum1 = cdcumvec[:,0,:].reshape(par.Na,par.Nb,par.Nz,order='F') ccum1 = (ccum1.swapaxes(0,2)).swapaxes(1,2) # change ordering so this becomes unneccessary return ccum1 def FeynmanKac_MPC(par,sol,moms): # a. solve PDE ccum = cumulative_consumption(par,sol) # b. calculate MPC's rebamount = (500/115_000)*(moms['Y']*4) lmpreb = np.zeros((par.Nz,par.Na,par.Nb)) for ia in range(par.Na): for iz in range(par.Nz): f = interpolate.interp1d(par.grid_b,ccum[iz,ia,:],fill_value='extrapolate') lmpreb[iz,ia,:] = f(par.grid_b+rebamount) MPCs = (lmpreb-ccum)/rebamount return MPCs ``` #### File: HANKPY/UMFPACK/cpptools.py ```python import os import shutil import time import ctypes as ct import numpy as np builderfolder_func = lambda filename: f'build_{filename}' def build_cpp_project(filename,do_print=False,force=False,clean=True): """ build cpp project using CMake """ buildfolder = builderfolder_func(filename) # a. check if build exists if os.path.isdir(buildfolder): if not force: if do_print: print(f'{buildfolder} is already build') return else: shutil.rmtree(buildfolder) time.sleep(2) # b. make build os.mkdir(buildfolder) os.mkdir(buildfolder + '/build/') # c. write CMakeLists.txt CMakeLists_txt = '' CMakeLists_txt += 'PROJECT(project)\n' CMakeLists_txt += 'cmake_minimum_required(VERSION 2.8)\n' CMakeLists_txt += 'set(SuiteSparse_DIR "C:/suitesparse-metis-for-windows/build/SuiteSparse")\n' CMakeLists_txt += 'find_package(SuiteSparse CONFIG REQUIRED)\n' CMakeLists_txt += 'set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -openmp -Ox")\n' CMakeLists_txt += f'add_library({filename} SHARED ../{filename}.cpp)\n' CMakeLists_txt += 'include_directories("C:/suitesparse-metis-for-windows/build/install/include/suitesparse")\n' CMakeLists_txt += f'target_link_libraries({filename} ${{SuiteSparse_LIBRARIES}})\n' with open(f'{buildfolder}/CMakeLists.txt', 'w') as txtfile: txtfile.write(CMakeLists_txt) # d. call CMake batfile_txt = f'"C:/Program Files/CMake/bin/cmake.exe" -S{buildfolder} -B{buildfolder}/build -G"Visual Studio 15 2017 Win64"' with open('build.bat', 'w') as batfile: batfile.write(batfile_txt) os.system('build.bat') # e. clean if clean: os.remove('build.bat') def compile_cpp(filename,do_print=False,force=False,clean=True): """ compile cpp files using Visual Studio""" buildfolder = builderfolder_func(filename) # a. check if build exists if os.path.isdir(f'{buildfolder}/build/Release/'): if not force: if do_print: print(f'{filename} already compiled') return # a. write compile.bat batfile_txt = '' batfile_txt += 'call "C:/Program Files (x86)/Microsoft Visual Studio/2017/Community/VC/Auxiliary/Build/vcvarsall.bat" x64\n' batfile_txt += f'call msbuild "{os.getcwd()}/{buildfolder}/build/project.sln" /p:Configuration=Release' with open('compile.bat', 'w') as batfile: batfile.write(batfile_txt) # b. run compile.bat os.system('compile.bat') # c. clean if clean: os.remove('compile.bat') def link(filename,do_print=False): """ link to filename with hack for getting openmp to work """ buildfolder = builderfolder_func(filename) # a. load cppfile = ct.cdll.LoadLibrary(f'{buildfolder}/build/Release/{filename}.dll') # b. setup openmp and delink cppfile.setup_omp() delink(cppfile,do_print=False) # c. link again cppfile = ct.cdll.LoadLibrary(f'{buildfolder}/build/Release/{filename}.dll') if do_print: print('cppfile linked succesfully') return cppfile def delink(cppfile,do_print=False): """ delinking cppfile is necessary before recompiling (otherwise kernal must be re-started) """ # a. get handle handle = cppfile._handle # b. delete linking variable del cppfile # c. free handle ct.windll.kernel32.FreeLibrary.argtypes = [ct.wintypes.HMODULE] ct.windll.kernel32.FreeLibrary(handle) if do_print: print('cppfile delinked succesfully') ```
{ "source": "JeppeDruedahl/HighFreqInc", "score": 3 }
#### File: JeppeDruedahl/HighFreqInc/moments.py ```python import numpy as np from numba import njit ########### # 1. base # ########### @njit def mean_var_skew_kurt(x): """ calculate mean, variance, skewness and kurtosis """ # a. allocate memory and initialize out = np.zeros(4) mean = out[0:] var = out[1:] skew = out[2:] kurt = out[3:] Nactive = 0 # b. determine sum and active for i in range(x.size): if ~np.isnan(x[i]): Nactive += 1 mean[0] += x[i] # c. means if Nactive == 0: mean[0] = np.nan else: mean[0] /= Nactive # d. variance, skewness and kurtosis for i in range(x.size): if Nactive == 0: continue if ~np.isnan(x[i]): diff = x[i]-mean[0] diff2 = diff*diff var[0] += diff2 skew[0] += diff2*diff kurt[0] += diff2*diff2 # e. results if Nactive > 0: var[0] /= Nactive-1 else: var[0] = np.nan if Nactive > 2: cor_fac = Nactive/((Nactive-1)*(Nactive-2)) skew[0] *= cor_fac skew[0] /= var[0]**(3/2) else: skew[0] = np.nan if Nactive > 3: cor_fac = (((Nactive-1)/Nactive)*((Nactive-2)/(Nactive+1))*(Nactive-3)) cor_sub = 3*(Nactive-1)*(Nactive-1) / ((Nactive-2)*(Nactive-3)) kurt[0] /= cor_fac kurt[0] /= var[0]*var[0] kurt[0] -= cor_sub else: kurt[0] = np.nan return out @njit def cov(a,b): """ calculate covariance """ # a. initialize mean_a = 0.0 mean_b = 0.0 Nactive = 0 # b. determine sums and active for i in range(a.size): if ~np.isnan(a[i]) and ~np.isnan(b[i]): Nactive += 1 mean_a += a[i] mean_b += b[i] # c. means if Nactive == 0: return np.nan mean_a /= Nactive mean_b /= Nactive # d. covariance cov = 0.0 for i in range(a.size): if ~np.isnan(a[i]) and ~np.isnan(b[i]): cov += (a[i]-mean_a)*(b[i]-mean_b) # e. result cov /= (Nactive-1) return cov @njit def share_in_range(x,omegas_low,omegas_high): """ calculate share in range """ # a. allocate memory and inialize Nomegas = omegas_low.size Ntrue = np.zeros(Nomegas) Nactive = 0 # b. compute for i in range(x.size): if ~np.isnan(x[i]): Nactive += 1 for h in range(Nomegas): if (x[i] >= omegas_low[h]) and (x[i] <= omegas_high[h]): Ntrue[h] += 1 else: break # assuming ordered from high to low # c. result out = np.zeros(Nomegas) if Nactive > 0: for h in range(Nomegas): out[h] = Ntrue[h]/Nactive else: for h in range(Nomegas): out[h] = np.nan return out @njit def share_in_range_cond(x,y,omegas_low,omegas_high,cond_low,cond_high): """ calculate conditional share in range """ # a. allocate memory and inialize Nomegas = omegas_low.size Ntrue = np.zeros(Nomegas) Ntrue_l = np.zeros(Nomegas) Ntrue_u = np.zeros(Nomegas) Nactive = 0 Nactive_l = 0 Nactive_u = 0 # b. compute for i in range(x.size): if ~np.isnan(x[i]) and (y[i] >= cond_low) and (y[i] <= cond_high): Nactive += 1 for h in range(Nomegas): if (x[i] >= omegas_low[h]) and (x[i] <= omegas_high[h]): Ntrue[h] += 1 else: break # assuming ordered from high to low if ~np.isnan(x[i]) and y[i] < cond_low: Nactive_l += 1 for h in range(Nomegas): if (x[i] >= omegas_low[h]) and (x[i] <= omegas_high[h]): Ntrue_l[h] += 1 else: break # assuming ordered from high to low if ~np.isnan(x[i]) and y[i] > cond_high: Nactive_u += 1 for h in range(Nomegas): if (x[i] >= omegas_low[h]) and (x[i] <= omegas_high[h]): Ntrue_u[h] += 1 else: break # assuming ordered from high to low # c. result out = np.zeros((3,Nomegas)) if Nactive > 0: for h in range(Nomegas): out[0,h] = Ntrue[h]/Nactive out[1,h] = Ntrue_l[h]/Nactive_l out[2,h] = Ntrue_u[h]/Nactive_u else: for h in range(Nomegas): out[0,h] = np.nan out[1,h] = np.nan out[2,h] = np.nan return out ###################### # 2. autocovariances # ###################### def auto_cov_d1y1l(par,sim,l): assert l > 0 return cov(sim.d1ky[0,:,l:].ravel(),sim.d1ky[0,:,:-l].ravel()) def auto_cov_d12y12l(par,sim,l): assert l > 0 return cov(sim.d12ky[0,:,12*l:].ravel(),sim.d12ky[0,:,:-12*l].ravel()) def frac_auto_cov_d12y1l(par,sim,l): assert l > 0 and l < 12 return cov(sim.d12ky[0,:,l:].ravel(),sim.d12ky[0,:,:-l].ravel()) # windsorized def auto_cov_d1yw1l(par,sim,l): assert l > 0 return cov(sim.d1kyw[0,:,l:].ravel(),sim.d1kyw[0,:,:-l].ravel()) def auto_cov_d12yw12l(par,sim,l): assert l > 0 return cov(sim.d12kyw[0,:,12*l:].ravel(),sim.d12kyw[0,:,:-12*l].ravel()) def frac_auto_cov_d12yw1l(par,sim,l): assert l > 0 and l < 12 return cov(sim.d12kyw[0,:,l:].ravel(),sim.d12kyw[0,:,:-l].ravel()) ########### # 4. fast # ########### def get_omegas(model,momname,k): """ unpack omegas from moment specification """ if momname in model.specs: return np.array([info['args'][1] for info in model.specs[momname] if info['args'][0] == k]) else: return np.array([]) def fast(model,momname,args): """ function for calculating moments fast """ # a. mean_var_skew_kurt _d12ky_list = ['mean_d12ky','var_d12ky','skew_d12ky','kurt_d12ky'] _d12kyw_list = ['mean_d12kyw','var_d12kyw','skew_d12kyw','kurt_d12kyw'] if (momname in _d12ky_list) or (momname in _d12kyw_list): # i. compute k = args if momname in _d12ky_list: x = model.sim.d12ky[k-1].ravel() else: x = model.sim.d12kyw[k-1].ravel() out = mean_var_skew_kurt(x) # ii. unpack if momname in _d12ky_list: _d12ky_list_now = _d12ky_list else: _d12ky_list_now = _d12kyw_list for i,momname_ in enumerate(_d12ky_list_now): if momname_ in model.specs: model.moms[(momname_,args)] = out[i] return True _d1ky_list = ['mean_d1ky','var_d1ky','skew_d1ky','kurt_d1ky'] _d1kyw_list = ['mean_d1kyw','var_d1kyw','skew_d1kyw','kurt_d1kyw'] if (momname in _d1ky_list) or (momname in _d1kyw_list): # i. compute k = args if _d1ky_list: x = model.sim.d1ky[k-1].ravel() else: x = model.sim.d1kyw[k-1].ravel() out = mean_var_skew_kurt(x) # ii. unpack if momname in _d1ky_list: _d1ky_list_now = _d1ky_list else: _d1ky_list_now = _d1kyw_list for i,momname_ in enumerate(_d1ky_list_now): if momname_ in model.specs: model.moms[(momname_,args)] = out[i] return True # b. leq if momname in ['leq_d12ky','cdf_d12ky']: # i. k and omegas k = args[0] if momname == 'leq_d12ky': omegas_high = get_omegas(model,'leq_d12ky',k) else: omegas_high = model.par.omegas_cdf omegas_low = -np.inf*np.ones(omegas_high.size) # ii. compute x = model.sim.d12ky[k-1].ravel() out = share_in_range(x,omegas_low,omegas_high) # iii. unpack for i,omega in enumerate(omegas_high): if momname == 'leq_d12ky': model.moms[(momname,(k,omega))] = out[i] else: model.moms[(momname,(k,i))] = out[i] return True if momname in ['leq_d1ky','cdf_d1ky']: # i. k and omegas k = args[0] if momname == 'leq_d1ky': omegas_high = get_omegas(model,'leq_d1ky',k) else: omegas_high = model.par.omegas_cdf omegas_low = -np.inf*np.ones(omegas_high.size) # ii. compute x = model.sim.d1ky[k-1].ravel() out = share_in_range(x,omegas_low,omegas_high) # iii. unpack for i,omega in enumerate(omegas_high): if momname == 'leq_d1ky': model.moms[(momname,(k,omega))] = out[i] else: model.moms[(momname,(k,i))] = out[i] return True # c. leq_d*ky_midrange if momname in ['leq_d12ky_midrange','cdf_d12ky_midrange']: # i. k and omegas k = args[0] if momname == 'leq_d12ky_midrange': omegas_high = get_omegas(model,'leq_d12ky_midrange',k) else: omegas_high = model.par.omegas_cdf omegas_low = -np.inf*np.ones(omegas_high.size) # ii. compute x = model.sim.d12ky[k-1].ravel() y = model.sim.d12ky_lag[k-1].ravel() cond_low = -model.par.omega_cond_midrange cond_high = model.par.omega_cond_midrange out = share_in_range_cond(x,y,omegas_low,omegas_high,cond_low,cond_high) # iii. unpack for i,omega in enumerate(omegas_high): if momname == 'leq_d12ky_midrange': model.moms[('leq_d12ky_midrange',(k,omega))] = out[0,i] if ('leq_d12ky_midrange_l',(k,omega)) in model.specs: model.moms[('leq_d12ky_midrange_l',(k,omega))] = out[1,i] if ('leq_d12ky_midrange_u',(k,omega)) in model.specs: model.moms[('leq_d12ky_midrange_u',(k,omega))] = out[2,i] else: model.moms[(momname,(k,i))] = out[0,i] return True if momname in ['leq_d1ky_midrange','cdf_d1ky_midrange']: # i. k and omegas k = args[0] if momname == 'leq_d1ky_midrange': omegas_high = get_omegas(model,'leq_d1ky_midrange',k) else: omegas_high = model.par.omegas_cdf omegas_low = -np.inf*np.ones(omegas_high.size) # ii. compute x = model.sim.d1ky[k-1].ravel() y = model.sim.d1ky_lag[k-1].ravel() cond_low = -model.par.omega_cond_midrange cond_high = model.par.omega_cond_midrange out = share_in_range_cond(x,y,omegas_low,omegas_high,cond_low,cond_high) # iii. unpack for i,omega in enumerate(omegas_high): if momname == 'leq_d1ky_midrange': model.moms[('leq_d1ky_midrange',(k,omega))] = out[0,i] if ('leq_d1ky_midrange_l',(k,omega)) in model.specs: model.moms[('leq_d1ky_midrange_l',(k,omega))] = out[1,i] if ('leq_d1ky_midrange_l',(k,omega)) in model.specs: model.moms[('leq_d1ky_midrange_u',(k,omega))] = out[2,i] else: model.moms[(momname,(k,i))] = out[0,i] return True if momname == 'var_y_d12_diff': var_y = np.var(model.sim.y,axis=0) for k in range(1,model.par.kmax): model.moms[('var_y_d12_diff',k)] = np.mean(var_y[12*k:]-var_y[:-12*k]) return True if momname == 'cov_y_y_d12_diff': cov_y_d12_diff_ = np.nan*np.ones((model.par.kmax-2,model.par.simT)) for t in range(model.par.simT-12): cov_short = cov(model.sim.y[:,t],model.sim.y[:,t+12]) for k in range(1,model.par.kmax-1): if t+12+12*k < model.par.simT: cov_long = cov(model.sim.y[:,t],model.sim.y[:,t+12+12*k]) cov_y_d12_diff_[k-1,t] = cov_long-cov_short for k in range(1,model.par.kmax-1): model.moms[('cov_y_y_d12_diff',k)] = np.nanmean(cov_y_d12_diff_[k-1]) return True # did not find anything return False ```
{ "source": "JeppeDruedahl/IOGE", "score": 3 }
#### File: JeppeDruedahl/IOGE/HousingModel.py ```python import time import numpy as np import pandas as pd # consav package from consav import ModelClass from consav.misc import elapsed, nonlinspace, markov_rouwenhorst # local import post_decision import negm import nvfi import simulate def solve_model(model,t_min=0,do_print=True): """ solve the model """ par = model.par sol = model.sol t0_outer = time.time() # a. re-set up grids t0 = time.time() model.create_grids() if do_print: print(f'setup grids in {elapsed(t0)}') # c. time loop for t in reversed(range(t_min,par.T)): t0 = time.time() # i. post-decions t0_pd = time.time() post_decision.compute_wq_renters(par,sol,t) post_decision.compute_wq_owners(par,sol,t) t_pd = elapsed(t0_pd) # ii. negm t0_negm = time.time() negm.solve_renters(par,sol,t) negm.solve_owners(par,sol,t) t_negm = elapsed(t0_negm) # iii. evaluate values of each discrete choice t0_evaluate = time.time() nvfi.evaluate_rt(par,sol,t) nvfi.evaluate_ft(par,sol,t) nvfi.evaluate_bt(par,sol,t) t_evaluate = elapsed(t0_evaluate) # iv. final nvfi t0_nvfi = time.time() nvfi.solve_renters(par,sol,t) t_nvfi_r = elapsed(t0_nvfi) t0_nvfi = time.time() nvfi.solve_owners(par,sol,t) t_nvfi_o = elapsed(t0_nvfi) if do_print: msg = f't = {t:2d} solved in {elapsed(t0)}' msg += f'[pd: {t_pd}, negm: {t_negm}, evaluate: {t_evaluate}, nvfi_r: {t_nvfi_r}, nvfi_o: {t_nvfi_o}]' print(msg) if do_print: print(f'model solved in {elapsed(t0_outer)}') def simulate_model(model,do_print=True,seed=1986): """ simulate the model """ if not seed is None: np.random.seed(seed) par = model.par sol = model.sol sim = model.sim t0_outer = time.time() # a. draw random numbers sim.i_beta[:] = np.random.choice(par.Nbeta,size=par.simN) # preferences sim.a0[:] = np.random.gamma(par.a0_shape,par.a0_scale,size=par.simN) # initial assets sim.pi_p[:] = np.random.uniform(size=(par.simN,par.T)) # income process sim.pi_c[:] = np.random.uniform(size=(par.simN,par.T)) # discrete choice # b. simulate simulate.simulate(par,sol,sim) if do_print: print(f'model simulated in {elapsed(t0_outer)}') # class class HousingModelClass(ModelClass): def setup(self): """ set baseline parameters in .par """ par = self.par # specify list over parameters, which are allowed not to be floats self.not_float_list = ['T','TR','age_min','t_min','Delta_iota', 'Nbeta','Na','Niota','Nh','Nht','Np','NLTV','Nm','Nx','Nz', 'Nrt','Nbt','Nft','Nkt','Ncr','Nco','do_sim','simN'] # a. economic parameters # life-cycle par.T = 55 # life-span from age_min par.TR = 37 # working-life-span from age_min par.age_min = 25 # only used in figures par.t_min = 0 # used when solving # income par.rho_p = 0.99 # persistence of income shocks par.sigma_p = 0.30 # std. of income shocks par.G = np.ones(par.T) # age-specific growth factors of income par.G[:20] = 1.066 par.G[20:par.TR] = 1.015 par.G[par.TR:] = 0.96 par.retirement_drop = 1.00 # drop in income at retirement # assets and housing par.ra = 0.035 # return on liquid assets par.rm = 0.040 # mortgage interest rate par.rb = 0.070 # bank loan interest rate par.ph = 1.000 # housing price par.rh = 0.045 # rental price par.delta = 0.0075 # mortgage interest only spread par.gamma_m = 0.050 # mortgage repayment rate par.gamma_b = 0.100 # bank loan repayment rate par.tau_f = 0.100 # loan refinancing cost par.tau_h = 0.200 # moving-in cost for owners par.tau_ht = 0.010 # moving-in cost for renters par.kappa_p = 4.00 # loan-to-income ratio par.kappa_h = 0.95 # loan-to-value ratio par.kappa_h_mortgage = 0.80 # loan-to-value ratio (mortgage) par.grid_h = np.array([2.0,4.0,6.0,8.0,10.0,15.0,20.0,25.0,30.0,35.0],dtype=np.float_) # housing choices par.grid_ht = par.grid_h.copy() par.Niota = 2 # maximum interest only period par.Delta_iota = 0 # = 0 permanent interest only possible, else = 1 # preferences par.beta_mean = 0.96 par.beta_low = 0.85 par.beta_high = 0.99 par.rho = 2.0 # CRRA parameter par.nu = 20.0 # bequest utility multiplicative scaling par.zeta = 8.0 # bequest utility additive scaling par.alpha = 0.70 # non-durable weight par.omega = 1.20 # homeowner bonus par.sigma = 0.025 # smoothing par.sigma_agg = 0.050 # smoothing # b. computational parameters par.Nbeta = 3 # grid for beta par.Np = 7 # grid for p par.NLTV = 20 # grid for LTV par.LTV_phi = 1.0 # 1 -> equally spaced, > 1 more points closer to kappa_p par.Na = 100 # grid for a par.a_min = 0.0 par.a_max = 50.0 par.a_phi = 1.25 # 1 -> equally spaced, > 1 more points closer to min par.Nx = 200 # grid for x par.x_min = 0.0 par.x_max = 80.0 par.x_phi = 1.25 # 1 -> equally spaced, > 1 more points closer to min par.Nz = 200 # grid for z par.z_min = 0.0 par.z_max = 50.0 par.z_phi = 1.25 # 1 -> equally spaced, > 1 more points closer to min # c. simulation parameters par.do_sim = True par.a0_shape = 0.1 par.a0_scale = 5.0 par.simN = 100_000 def create_grids(self): """ create grids """ par = self.par assert par.Delta_iota in [0,1] # a. states if par.Nbeta == 1: par.grid_beta = np.array([par.beta_mean]) else: par.grid_beta = np.array([par.beta_low,par.beta_mean,par.beta_high]) assert par.Nbeta == par.grid_beta.size par.grid_LTV = np.flip(par.kappa_h-nonlinspace(0.0,par.kappa_h,par.NLTV,par.LTV_phi)) par.grid_a = nonlinspace(par.a_min,par.a_max,par.Na,par.a_phi) par.grid_z = nonlinspace(0,par.z_max,par.Nz,par.z_phi) par.grid_x = nonlinspace(0,par.x_max,par.Nx,par.x_phi) # inferred size of housing grids par.Nh = par.grid_h.size # owners par.Nht = par.grid_ht.size # renters # infered number of discrete choices par.Nrt = par.Nht # number of choices for renters par.Nkt = 1 # number of choices for keepers par.Nft = par.Niota*par.NLTV # number of choices for refinancers par.Nbt = par.Niota*par.Nh*par.NLTV # number of choices for buyers par.Ncr = par.Nht + par.Nbt # number of choices for lagged renters par.Nco = par.Nht + par.Nbt + par.Nft + par.Nkt # number of choices for lagged owners # renters par.r_i_ht = -1*np.ones(par.Ncr,dtype=np.int_) par.r_iota = -1*np.ones(par.Ncr,dtype=np.int_) par.r_i_h = -1*np.ones(par.Ncr,dtype=np.int_) par.r_i_LTV = -1*np.ones(par.Ncr,dtype=np.int_) par.r_d = -1*np.ones(par.Ncr,dtype=np.int_) # owners par.o_i_ht = -1*np.ones(par.Nco,dtype=np.int_) par.o_iota = -1*np.ones(par.Nco,dtype=np.int_) par.o_i_h = -1*np.ones(par.Nco,dtype=np.int_) par.o_i_LTV = -1*np.ones(par.Nco,dtype=np.int_) par.o_d = -1*np.ones(par.Nco,dtype=np.int_) # rt i = 0 for i_ht in range(par.Nht): par.r_i_ht[i] = i_ht par.r_d[i] = 0 par.o_i_ht[i] = i_ht par.o_d[i] = 0 i += 1 # bt for iota in range(par.Niota): for i_h in range(par.Nh): for i_LTV in range(par.NLTV): par.r_iota[i] = iota par.r_i_h[i] = i_h par.r_i_LTV[i] = i_LTV par.r_d[i] = 1 par.o_iota[i] = iota par.o_i_h[i] = i_h par.o_i_LTV[i] = i_LTV par.o_d[i] = 1 i += 1 # ft for iota in range(par.Niota): for i_LTV in range(par.NLTV): par.o_iota[i] = iota par.o_i_LTV[i] = i_LTV par.o_d[i] = 2 i += 1 # kt par.o_d[i] = 3 # b. income out_ = markov_rouwenhorst(par.rho_p,par.sigma_p,par.Np) par.grid_p, par.trans_p, par.ergodic_p, par.trans_cs_p, par.ergodic_cs_p = out_ par.Gamma = np.empty(par.T) for t in range(par.T): if t == 0: par.Gamma[t] = 1 else: par.Gamma[t] = par.G[t]*par.Gamma[t-1] if t == par.TR: par.Gamma[t] *= par.retirement_drop def allocate(self): """ create grids and allocate memory for .par, .sol and .sim """ par = self.par sol = self.sol sim = self.sim # a. parameters self.create_grids() # b. solution # post-decison post_r_shape = (par.T,par.Nbeta,par.Nht,par.Np,par.Na) sol.r_q = np.nan*np.ones(post_r_shape) sol.r_w = np.nan*np.ones(post_r_shape) sol.r_inv_w = np.nan*np.ones(post_r_shape) post_o_shape = (par.T,par.Nbeta,par.Niota,par.Nh,par.Np,par.NLTV,par.Na) sol.o_q = np.nan*np.ones(post_o_shape) sol.o_w = np.nan*np.ones(post_o_shape) sol.o_inv_w = np.nan*np.ones(post_o_shape) # consumption negm_r_shape = (par.T,par.Nbeta,par.Nht,par.Np,par.Nz) sol.r_inv_vbar = np.nan*np.ones(negm_r_shape) sol.r_inv_mubar = np.nan*np.ones(negm_r_shape) sol.r_cbar = np.nan*np.ones(negm_r_shape) negm_o_shape = (par.T,par.Nbeta,par.Niota,par.Nh,par.Np,par.NLTV,par.Nz) sol.o_inv_vbar = np.nan*np.ones(negm_o_shape) sol.o_inv_mubar = np.nan*np.ones(negm_o_shape) sol.o_cbar = np.nan*np.ones(negm_o_shape) # intermediary rt_shape = (par.T,par.Nbeta,par.Nht+1,par.Np,par.Nx,par.Nht) sol.rt_inv_v = np.nan*np.ones(rt_shape) sol.rt_inv_mu = np.nan*np.ones(rt_shape) bt_shape = (par.T,par.Nbeta,par.Np,par.Nx,par.Niota,par.Nh,par.NLTV) sol.bt_inv_v = np.nan*np.ones(bt_shape) sol.bt_inv_mu = np.nan*np.ones(bt_shape) ft_shape = (par.T,par.Nbeta,par.Nh,par.Np,par.Nx,par.Niota,par.NLTV) sol.ft_inv_v = np.nan*np.ones(ft_shape) sol.ft_inv_mu = np.nan*np.ones(ft_shape) # final final_r_shape = (par.T,par.Nbeta,par.Nht,par.Np,par.Na) sol.r_v = np.nan*np.ones(final_r_shape) sol.r_mu = np.nan*np.ones(final_r_shape) sol.r_d = np.nan*np.ones(final_r_shape,dtype=np.int_) final_o_shape = (par.T,par.Nbeta,par.Niota,par.Nh,par.Np,par.NLTV,par.Na) sol.o_v = np.nan*np.ones(final_o_shape) sol.o_mu = np.nan*np.ones(final_o_shape) sol.o_d = np.nan*np.ones(final_o_shape,dtype=np.int_) # b. simulation sim_shape = (par.simN,par.T) sim.d = -1*np.ones(sim_shape,dtype=np.int_) sim.iota = -1*np.ones(sim_shape,dtype=np.int_) sim.i_h = -1*np.ones(sim_shape,dtype=np.int_) sim.i_ht = -1*np.ones(sim_shape,dtype=np.int_) sim.i_p = -1*np.ones(sim_shape,dtype=np.int_) sim.LTV = np.nan*np.ones(sim_shape) sim.a = np.nan*np.ones(sim_shape) sim.c = np.nan*np.ones(sim_shape) sim.Nc = np.nan*np.ones(sim_shape) sim.x = np.nan*np.ones(sim_shape) sim.i_beta = -1*np.ones(par.simN,dtype=np.int_) sim.a0 = np.nan*np.ones(par.simN) sim.pi_p = np.nan*np.ones(sim_shape) sim.pi_c = np.nan*np.ones(sim_shape) def load_data(self): self.owner = dict() self.renter = dict() self.full = dict() stats = ['count', 'mean', 'p10', 'p25', 'p50', 'p75', 'p90'] for stat in stats: self.owner[stat] = pd.read_csv(f'moments/{stat}_by_age_owner.txt', index_col='fam_age') self.renter[stat] = pd.read_csv(f'moments/{stat}_by_age_renter.txt', index_col='fam_age') self.full[stat] = pd.read_csv(f'moments/{stat}_by_age_all.txt', index_col='fam_age') solve = solve_model simulate = simulate_model def test(self): """ used for testing parallel possibilities """ solve_model(self,t_min=0,do_print=True) self.simulate() ```
{ "source": "JeppeDruedahl/MPCF", "score": 2 }
#### File: JeppeDruedahl/MPCF/figs.py ```python import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot3d import Axes3D plt.style.use("seaborn-whitegrid") prop_cycle = plt.rcParams["axes.prop_cycle"] colors = prop_cycle.by_key()["color"] def _cfunc(model): # a. unpack par = model.par sol = model.sol # b. figure fig = plt.figure() ax = fig.add_subplot(1,1,1) # c. plot consumption for idelta in range(0,par.Ndelta,10): ax.plot(par.grid_m,sol.c[0,idelta,:],ls='-',label=f'$\delta_t = {par.grid_delta[idelta]:.2f}$') # d. details ax.set_xlabel('cash-on-hand, $m_t$') ax.set_ylabel('consumption, $c_t$') if par.Ndelta > 1: ax.legend(frameon=True) return fig,ax def cfunc(model,m_max=12,c_max=1.5,postfix='',savefig=False): fig,ax = _cfunc(model) ax.set_xlim([0,m_max]) ax.set_ylim([0,c_max]) ax.set_xticks(np.arange(0,m_max+1,1)) fig.tight_layout() if savefig: fig.savefig(f'figs/cfunc{postfix}.pdf') def _MPC(model): # a. unpack par = model.par sol = model.sol # b. figure fig = plt.figure() ax = fig.add_subplot(1,1,1) # c. plot consumption MPC = np.diff(sol.c[0,0,:])/np.diff(par.grid_m) ax.plot(par.grid_m[:-1],MPC,ls='-') # d. details ax.set_xlabel('cash-on-hand, $m_t$') ax.set_ylabel('MPC') ax.axhline(par.MPC_PF,ls='--',lw=1,color=colors[0]) ax.text(0.25,1.1*par.MPC_PF,'PIH') return fig,ax def MPC(model,m_max=12,postfix='',savefig=False): # a. zoom fig,ax = _MPC(model) ax.set_yscale('log') ax.set_xlim([model.par.grid_m[0],m_max]) ax.set_ylim([0.001,1.1]) ax.set_xticks(np.arange(0,m_max+1,1)) fig.tight_layout() if savefig: fig.savefig(f'figs/MPC{postfix}.pdf') # b. convergence fig,ax = _MPC(model) ax.set_yscale('log') ax.set_xscale('log') ax.set_xlim([0.1,model.par.grid_m[-1]]) ax.set_ylim([0.001,1.1]) fig.tight_layout() if savefig: fig.savefig(f'figs/MPC_convergence{postfix}.pdf') def _MPCF(model,taus=[0,1,4,12],show_analytical=False): # a. unpack par = model.par sol = model.sol # b. figure fig = plt.figure() ax = fig.add_subplot(1,1,1) # c. plot consumption for tau in taus: MPCF = (sol.c[tau,5,:]-sol.c[tau,0,:])/(par.grid_delta[5]-par.grid_delta[0]) ax.plot(par.grid_m,MPCF,label=f'$\\tau_t = {tau}$') # d. details ax.set_xlabel('cash-on-hand, $m_t$') ax.set_ylabel('MPCF') if show_analytical: for i,tau in enumerate(taus): ax.axhline(par.MPCF_PF[tau],ls='--',lw=1,color=colors[i],label='') ax.text(0.25,par.MPCF_PF[taus[-1]]-0.15,'PIH$\Rightarrow$',rotation=90) ax.legend(frameon=True) return fig,ax def MPCF(model,m_max=12,taus=[1,4,6,8],show_analytical=True,postfix='',savefig=False): # a. zoom fig,ax = _MPCF(model,taus=taus,show_analytical=show_analytical) ax.set_xlim([0,m_max]) ax.set_xticks(np.arange(0,m_max+1,1)) ax.set_ylim([0,1.3]) fig.tight_layout() if savefig: fig.savefig(f'figs/MPCF{postfix}.pdf') # b. convergence fig,ax = _MPCF(model,taus=taus,show_analytical=True) ax.set_xscale('log') ax.set_xlim([0.1,model.par.grid_m[-1]]) ax.set_ylim([0,1.3]) fig.tight_layout() if savefig: fig.savefig(f'figs/MPCF_convergence{postfix}.pdf') def simulate(model,savefig=False,postfix=''): # a. settings m0s = np.array([0.75,1.5,2,4,12]) tau0 = 6 delta0 = 0.05 simN = 100_000 simT = 31 # b. simulate m_before,c_before,C_before = model.simulate(simN,simT,m0s,tau0,0) m_after,c_after,C_after = model.simulate(simN,simT,m0s,tau0,delta0) # c. figure - response fig = plt.figure() ax = fig.add_subplot(1,1,1) time = np.arange(-tau0,-tau0+simT,1) xticks = np.arange(-tau0,-tau0+simT,2) for j,m0 in enumerate(m0s): ax.plot(time,np.mean(C_after[j,:,:]-C_before[j,:,:],axis=1)/delta0, ls='-',marker='o',markersize=4, label=f'$M_0 = {m0:.2f}$') ax.axvline(0,ls='--',lw=1,color='black') ax.text(0.25,0.1,'$\Leftarrow$cash-flow arrives') ax.set_xlabel('time relative to arrival of cash-flow') ax.set_ylabel('dynamic MPCF') ax.set_xticks(xticks) ax.legend(frameon=True) fig.tight_layout() if savefig: fig.savefig(f'figs/simulation{postfix}.pdf') # d. figure - still constrained fig = plt.figure() ax = fig.add_subplot(1,1,1) # before j = 0 ax.plot(time,np.mean(c_before[j,:,:] >= 0.99*m_before[j,:,:],axis=1), ls='-',marker='o',markersize=4,color=colors[0], label=f'$\Delta = 0.00$') # after ax.plot(time,np.mean(c_after[j,:,:] >= 0.99*m_after[j,:,:],axis=1), ls='-',marker='o',markersize=4,color=colors[1], label=f'$\Delta = {delta0:.2f}$') ax.axvline(0,ls='--',lw=1,color='black') ax.set_xlabel('time relative to arrival of cash-flow') ax.set_ylabel('constrained, share') ax.set_xticks(xticks) ax.legend(frameon=True) fig.tight_layout() if savefig: fig.savefig(f'figs/simulation{postfix}_constrained.pdf') ``` #### File: JeppeDruedahl/MPCF/MPCFModel.py ```python import time import numpy as np # consav package from consav import ModelClass,jit # baseline model class and jit from consav.grids import nonlinspace # grids from consav.quadrature import create_PT_shocks # income shocks # local modules import utility import post_decision import egm import simulate ############ # 2. model # ############ class MPCFClass(ModelClass): ######### # setup # ######### def settings(self): # a. namespaces self.namespaces = [] # b. other attributes self.other_attrs = [] # c. savefolder self.savefolder = 'saved' # d. list not-floats for safe type inference self.not_floats = ['Npsi','Nxi','Ndelta','Nm','Na','Ntau','Nshocks','max_iter','do_print'] def setup(self): """ set baseline parameters """ par = self.par # a. preferences par.beta = 0.96**(1/12) par.rho = 2.0 # b. returns and income par.R = 1.04**(1/12) par.G = 1.03**(1/12) par.sigma_psi = 0.02122033 par.Npsi = 6 par.sigma_xi = 0.30467480 par.Nxi = 6 par.pi = 0.0 par.mu = np.nan # c. extra income par.zeta = 1.0 par.Ntau = 12 # d. grids (number of points) par.Ndelta = 50 par.Nm = 20_000 par.m_mid = 120.0 par.m_max = 100_000.0 par.Na = 10_000 par.a_mid = par.m_mid par.a_max = par.m_max # e. misc par.max_iter = 10_000 par.tol = 1e-6 par.do_print = True def allocate(self): """ allocate model, i.e. create grids and allocate solution and simluation arrays """ self.setup_grids() self._solve_prep() def setup_grids(self): """ construct grids for states and shocks """ par = self.par # a. states (unequally spaced vectors of length Na) par.grid_delta = np.zeros(par.Ndelta) if par.Ndelta > 1: par.grid_delta[1] = 1e-4 par.grid_delta[2:] = nonlinspace(2*1e-4,0.1,par.Ndelta-2,1.3) m_min = 0 if np.isnan(par.m_mid): par.grid_m = nonlinspace(m_min,par.m_max,par.Nm,1.2) else: Nm_base = par.Nm//2 par.grid_m = np.zeros(par.Nm) par.grid_m[:Nm_base] = nonlinspace(m_min,par.m_mid,Nm_base,1.1) par.grid_m[Nm_base-1:] = nonlinspace(par.m_mid,par.m_max,par.Nm-Nm_base+1,1.1) a_min = m_min+1e-6 if np.isnan(par.a_mid): par.grid_a = nonlinspace(a_min,par.a_max,par.Na,1.2) else: Na_base = par.Na//2 par.grid_a = np.zeros(par.Na) par.grid_a[:Na_base] = nonlinspace(a_min,par.a_mid,Na_base,1.1) par.grid_a[Na_base-1:] = nonlinspace(par.a_mid,par.a_max,par.Na-Na_base+1,1.1) # b. shocks (qudrature nodes and weights using GaussHermite) par.Nxi = 1 if par.sigma_xi == 0 else par.Nxi par.Npsi = 1 if par.sigma_psi == 0 else par.Npsi shocks = create_PT_shocks(par.sigma_psi,par.Npsi,par.sigma_xi,par.Nxi,par.pi,par.mu) par.psi,par.psi_w,par.xi,par.xi_w,par.Nshocks = shocks # c. perfect foresight par.MPC_PF = 1-(par.R*par.beta)**(1/par.rho)/par.R par.MPCP_PF = par.MPC_PF/(1-1/par.R) par.MPCF_PF = np.zeros(par.Ntau+1) for tau in range(par.Ntau+1): par.MPCF_PF[tau] = par.R**(-tau)*par.MPC_PF/(1-par.zeta/par.R) ######### # solve # ######### def _solve_prep(self): """ allocate memory for solution """ par = self.par sol = self.sol sol.c = np.zeros((par.Ntau+1,par.Ndelta,par.Nm)) sol.q = np.zeros((par.Ntau+1,par.Ndelta,par.Na)) def solve(self): par = self.par # a. solve directly if par.Ndelta == 1: if par.do_print: print('solving full model\n') self.solve_with_c0() # b. solve in two steps else: # i. without delta dimension if par.do_print: print('solving model with Ndelta=1 and Ntau=1\n') Ntau = par.Ntau Ndelta = par.Ndelta tol = par.tol Npsi = par.Npsi Nxi = par.Nxi par.Ntau = 1 par.Ndelta = 1 par.tol = 1e-8 par.Npsi = 3 par.Nxi = 3 self.setup_grids() self.solve_with_c0() c0 = self.sol.c[0,:,:].copy() for idelta in range(par.Ndelta): c0[idelta,:] += par.MPC_PF*1/(1-par.zeta*1/par.R)*par.grid_delta[idelta] par.Ntau = Ntau par.Ndelta = Ndelta par.tol = tol par.Npsi = Npsi par.Nxi = Nxi self.setup_grids() if par.do_print: print('') # ii. full if par.do_print: print('solving full model\n') self.solve_with_c0(c0=c0) def solve_with_c0(self,c0=np.array([])): """ solve the model using egm and the initial guess in c0 """ # a. allocate solution self._solve_prep() # b. backwards induction until convergence with jit(self) as model: par = model.par sol = model.sol it = 0 max_abs_diff = np.inf while it < par.max_iter: # i. first iteration if it == 0: tic = time.time() if c0.size == 0: for idelta in range(par.Ndelta): b = par.grid_m-1 h = 1/(1-par.G/par.R) + 1/(1-par.zeta*1/par.R)*par.grid_delta[idelta] sol.c[0,idelta,:] = np.fmin(par.MPC_PF*(b+h),par.grid_m) elif c0.size: sol.c[0,:,:] = c0 # ii. all other iteration else: # o. compute post-decision functions post_decision.compute_q(sol,par,0,0) # oo. solve bellman equation egm.solve_bellman(sol,par,0) # iii. check convergence if it > 0: max_abs_diff = np.max(np.abs(sol.c[0]-c_old)) # iv. save old consumption function c_old = sol.c[0].copy() # v. print toc = time.time() if it > 0 and it%50 == 0 and par.do_print: print(f'{it:4d}: max_abs_diff = {max_abs_diff:12.8f} (elapsed: {toc-tic:5.1f} secs)') if max_abs_diff < par.tol: print('-> convergence achieved') break it += 1 # c. bakcwards induction through the anticipation horizon for itau in range(1,par.Ntau+1): # a. compute post-decision functions post_decision.compute_q(sol,par,itau,itau-1) # b. solve bellman equation egm.solve_bellman(sol,par,itau) ############ # simulate # ############ def simulate(self,simN,simT,m0s,tau0,delta0,seed=1917,postfix=''): with jit(self) as model: par = model.par sol = model.sol # a. allocate shape =(m0s.size,simT,simN) m = np.zeros(shape) delta = np.zeros(shape) c = np.zeros(shape) P = np.zeros(shape) C = np.zeros(shape) # b. draw random np.random.seed(1917) psi = np.exp(np.random.normal(loc=-0.5*par.sigma_psi**2,scale=par.sigma_psi,size=(simT,simN))) xi = np.exp(np.random.normal(loc=-0.5*par.sigma_xi**2,scale=par.sigma_xi,size=(simT,simN))) # c. simulate simulate.simulate(simT,par,sol,m,delta,c,P,C,m0s,tau0,delta0,psi,xi) return m,c,C ```
{ "source": "jeppefm1/Parkering", "score": 3 }
#### File: Parkering/Nummerpladegenkendelse/findPlates.py ```python import cv2 import numpy as np import math import numberplateRec import imageProcess import findChars import classPossiblePlate import classPossibleChar #Konstanter der beskriver nummerplades kendetegn PLATE_WIDTH_PADDING_FACTOR = 1.3 PLATE_HEIGHT_PADDING_FACTOR = 1.5 def findPlatesInImg(imgCaptured): #Tom liste til at gemme mulige nummerplader listOfPossiblePlates = [] #Finder billedets dimmensioner height, width, numChannels = imgCaptured.shape #Laver tomme arrays til billeder og konturer imgGrayscaleScene = np.zeros((height, width, 1), np.uint8) imgThreshScene = np.zeros((height, width, 1), np.uint8) imgContours = np.zeros((height, width, 3), np.uint8) #Anvender egen funktion til at grayscale og thessholde billedet imgGrayscaleScene, imgThreshScene = imageProcess.preprocessImg(imgCaptured) #Anvender egen funktion til at finde mulige bogstaver og tal i billedet listOfPossibleCharsInScene = findPotentialCharsInIMG(imgThreshScene) #Anvender liste med alle potentielle bogstaver eller tal til at grupperer dem efter andre der ligner dem. listOfListsOfMatchingCharsInScene = findChars.findListOfListsOfMatchingChars(listOfPossibleCharsInScene) #Herefter bliver der prรธvet at genkende en nummerplade ud fra hver gruppe. for listOfMatchingChars in listOfListsOfMatchingCharsInScene: possiblePlate = extractPlate(imgCaptured, listOfMatchingChars) #Gemmer de potentielle nummerplader i liste if possiblePlate.imgPlate is not None: listOfPossiblePlates.append(possiblePlate) #Print antallet af fundne nummerplader print("\n" + str(len(listOfPossiblePlates)) + " mulige nummerplader fundet") return listOfPossiblePlates def findPotentialCharsInIMG(imgThresh): #Laver liste til at gemme chars, samt en variabel til at tรฆlle antallet af chars listOfPossibleChars = [] countOfPossibleChars = 0 #Kopirer billedet, da sรธgningen vil รฆndre i det. imgThreshCopy = imgThresh.copy() #Anvender Cv2 til at finde konturer i billedet contours, npaHierarchy = cv2.findContours(imgThreshCopy, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) #Laver et tomt array til konturerne height, width = imgThresh.shape imgContours = np.zeros((height, width, 3), np.uint8) #Loop gennem konturer for i in range(0, len(contours)): #Laver et nyt objekt til at gemme det potentielle char possibleChar = classPossibleChar.PossibleChar(contours[i]) #Hvis konturen opfylder reglerne for en char, gemmes objektet i en liste. if findChars.checkIfPossibleChar(possibleChar): countOfPossibleChars = countOfPossibleChars + 1 listOfPossibleChars.append(possibleChar) return listOfPossibleChars def extractPlate(imgCaptured, listOfMatchingChars): #Lav nummerplade objekt possiblePlate = classPossiblePlate.PossiblePlate() #Sorter fundende bogstaver efter x position. Listen gรฅr dermed fra venstre mod hรธjre. #lamda keywordet kan bruges til at definere en funktion i python. #I dette tilfรฆlde betyder det, at key bliver sat til x vรฆrdien, og det er dermed den der anvendes til sorteringen. listOfMatchingChars.sort(key = lambda matchingChar: matchingChar.centerX) #Find centerpunket i nummerpladen plateCenterX = (listOfMatchingChars[0].centerX + listOfMatchingChars[len(listOfMatchingChars) - 1].centerX) / 2.0 plateCenterY = (listOfMatchingChars[0].centerY + listOfMatchingChars[len(listOfMatchingChars) - 1].centerY) / 2.0 #Gem centrum i en tuple plateCenter = plateCenterX, plateCenterY #Bestem nummerpladens dimmensioner - hermed hรธjde og bredde. #Bredden bestemmes ved at finde x hjรธrnepunktet. Derefter anvendes bredden til at finde det andet hjรธrnepunkt. #Derefter anvendes bredde konstanten til at trรฆkke kanten fra. plateWidth = int((listOfMatchingChars[len(listOfMatchingChars) - 1].boundingRectX + listOfMatchingChars[len(listOfMatchingChars) - 1].boundingRectWidth - listOfMatchingChars[0].boundingRectX) * PLATE_WIDTH_PADDING_FACTOR) #Hรธjden af nummerpladen findes derefter som et gennemsnit af alle bogstavernes hรธjde. #Ogsรฅ her anvendes en konstant til at korrigere nummerpladens hรธjde. totalCharHeights = 0 for matchingChar in listOfMatchingChars: totalCharHeights = totalCharHeights + matchingChar.boundingRectHeight averageCharHeight = totalCharHeights / len(listOfMatchingChars) plateHeight = int(averageCharHeight * PLATE_HEIGHT_PADDING_FACTOR) #Bestemmer derfor den vinkel som nummerpladen er drejet med. #Hertil anvendes sinus relationen. opposite = listOfMatchingChars[len(listOfMatchingChars) - 1].centerY - listOfMatchingChars[0].centerY hypotenuse = findChars.distanceBetweenCharsFunction(listOfMatchingChars[0], listOfMatchingChars[len(listOfMatchingChars) - 1]) correctionAngleRad = math.asin(opposite / hypotenuse) correctionAngleDeg = correctionAngleRad * (180.0 / math.pi) #Gemmer oplysninger i klassen possiblePlate.locationInImg = (tuple(plateCenter), (plateWidth, plateHeight), correctionAngleDeg) #Opretter derefter en rotationsmatrix til at rotere nummerpladen. #Hertil anvendes den beregnede vinkel. #Syntax: cv2.getRotationMatrix2D(center, angle, scale) rotationMatrix = cv2.getRotationMatrix2D(tuple(plateCenter), correctionAngleDeg, 1.0) #Den oprettede matrix kan derefter anvendes til at roterer hele billedet #Her skal billedets oplysninger bruges. height, width, numChannels = imgCaptured.shape imgRotated = cv2.warpAffine(imgCaptured, rotationMatrix, (width, height)) #Beskรฆrer billedet sรฅledes at det kun er nummerpladen imgCropped = cv2.getRectSubPix(imgRotated, (plateWidth, plateHeight), tuple(plateCenter)) #Gemmer nummerpladen i klassen. possiblePlate.imgPlate = imgCropped #Returnerer klassen return possiblePlate ``` #### File: Parkering/Nummerpladegenkendelse/imageProcess.py ```python import cv2 import numpy as np import math #Konstanter til billedebehandlingen FILTER_SIZE_GAUSSIAN = (5,5) #Thresshold konstanter - skal vรฆre ullige #Bestemmer den mรฅde billedet bliver binรฆrt simplificeret THRESSHOLD_BLOCKSIZE = 21 THESSHOLD_WEIGHT = 11 def preprocessImg(imgUnprocessed): #Anvend egen funktion til at Grayscale billedet, anvender HSV metoden - nรฆrmere beskrevet i funktionen. imgGrayscaled = HSVGrayscale(imgUnprocessed) #Anvender egen funktion til at fjerne stรธj fra subjekt og baggrund. Metode nรฆrmere beskrevet i funktionen. imgDenoised = removeNoise(imgGrayscaled) #Finder billedets dimmensioner height, width = imgGrayscaled.shape #Slรธrer billedet, hertil laves fรธrst et tomt array. imgBlurred = np.zeros((height, width, 1), np.uint8) #Anvender en gaussisk funktion til slรธringen. imgBlurred = cv2.GaussianBlur(imgDenoised, FILTER_SIZE_GAUSSIAN, 0) #Thressholder billedet - hvilket betyder at billedet bliver binรฆrt simplificeret. #Prรธver dermed at lave billedet sort hvidt. #Anvender en adaptiv funktion i cv2, der kigger billedet og tilpasser metoden til sort hvid konverteringen. imgThressholded = cv2.adaptiveThreshold(imgBlurred, 255.0, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, THRESSHOLD_BLOCKSIZE, THESSHOLD_WEIGHT) return imgGrayscaled, imgThressholded def HSVGrayscale(imgUnprocessed): #Et billede kan ogsรฅ beskrive som HSV (hue, saturation, value), der er et alternativ til RGB. #Den ene vรฆrdi beskriver billedet som grรฅskaleret, og denne kan derfor udtrรฆkkes ved transformationen. #Henter dimmensionerne fra billedet height, width, numChannels = imgUnprocessed.shape #Laver tomt array til transformeret billede imgHSV = np.zeros((height, width, 3), np.uint8) #Transformer billede til HSV imgHSV = cv2.cvtColor(imgUnprocessed, cv2.COLOR_BGR2HSV) #Gemmer vรฆrdier i tre variabler imgHue, imgSaturation, imgValue = cv2.split(imgHSV) #Skal kun bruge value, der svarer til Grayscale return imgValue def removeNoise(imgGrayscaled): #Funktionen laver flere Morphological Transformations, der har til hensigt at fjerne stรธj. #https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_morphological_ops/py_morphological_ops.html #https://www.youtube.com/watch?v=YA5u2PI3hF0 #Der findes foskellige typer: #Opening fjerner false positive i baggrunden #Closeing fjerner false negative i subjektet #Tophat - forskel mellem input og opening af input billedet #Blackhat - forskel mellem input og closing af input billedet height, width = imgGrayscaled.shape #Tomme numpy arrays til Tophat og Blackhat imgTopHat = np.zeros((height, width, 1), np.uint8) imgBlackHat = np.zeros((height, width, 1), np.uint8) #Form der anvendes til tranformationerne. Her anvendes en regtangel. structuringElement = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) #Laver tophat og blackhat transformationer - se foklaring over. imgTopHat = cv2.morphologyEx(imgGrayscaled, cv2.MORPH_TOPHAT, structuringElement) imgBlackHat = cv2.morphologyEx(imgGrayscaled, cv2.MORPH_BLACKHAT, structuringElement) #Lรฆgger billederne sammen - Grayscale + tophat - blackhat imgGrayscalePlusTopHat = cv2.add(imgGrayscaled, imgTopHat) imgGrayscalePlusTopHatMinusBlackHat = cv2.subtract(imgGrayscalePlusTopHat, imgBlackHat) return imgGrayscalePlusTopHatMinusBlackHat ``` #### File: Parkering/Nummerpladegenkendelse/numberplateRec.py ```python import cv2 import numpy as np import os import findChars import findPlates import classPossiblePlate DISPLAY_PLATE = True COLOR_YELLOW = (0.0, 255.0, 255.0) COLOR_GREEN = (0.0, 255.0, 0.0) COLOR_RED = (0.0, 0.0, 255.0) licPlate = 0 licPlate = " " def main(IMAGE): #Indlรฆs billede image = cv2.imread(IMAGE) #Anvend egne funktioner til at finde mulige nummerplader og chars listOfPossiblePlates = findPlates.findPlatesInImg(image) listOfPossiblePlates = findChars.detectCharsInPlates(listOfPossiblePlates) if(DISPLAY_PLATE == True): #Vis billede cv2.imshow("Billede", image) #Check om der blev fundet nummerplaer if len(listOfPossiblePlates) != 0: #Sorter mulige nummerplader efter lรฆngde. Her kommer den lรฆngste nummerplade fรธrst. #Til sorteringen anvendes en lamda funktion, der finder lรฆngden af nummerpladen listOfPossiblePlates.sort(key = lambda possiblePlate: len(possiblePlate.charsInPlate), reverse = True) #Antag at den lรฆngste nummerplade er den korrekte licPlate = listOfPossiblePlates[0] if(DISPLAY_PLATE == True): #Vis nummerpladen og thresshold billedet cv2.imshow("imgPlate", licPlate.imgPlate) cv2.imshow("imgThresh", licPlate.imgThressholded) #Hvis ingen chars er genkendt if len(licPlate.charsInPlate) == 0: print("\nIngen chars blev opdaget\n\n") return if(DISPLAY_PLATE == True): #Tegn regtangel omkring nummerplade drawRedRectangleAroundPlate(image, licPlate) #Print nummerpladen print("\n Nummerplade genkendt i billede = " + licPlate.charsInPlate + "\n") # write license plate text to std out #Vis nummerpladen pรฅ billedet writeLicensePlateCharsOnImage(image, licPlate) cv2.imshow("Nummerplade genkendt", image) #Gem billedet cv2.imwrite("nummerpladeGenkendt.png", image) cv2.waitKey(0) return licPlate.charsInPlate #Funktion til at tegne rรธd regtangel omkring nummerpladen def drawRedRectangleAroundPlate(originalScene, licPlate): centerOfTextAreaX = 0 centerOfTextAreaY = 0 lowerLeftTextOriginX = 0 lowerLeftTextOriginY = 0 #Find punkter rectPoints = cv2.boxPoints(licPlate.locationInImg) cv2.line(originalScene, tuple(rectPoints[0]), tuple(rectPoints[1]), COLOR_RED, 2) cv2.line(originalScene, tuple(rectPoints[1]), tuple(rectPoints[2]), COLOR_RED, 2) cv2.line(originalScene, tuple(rectPoints[2]), tuple(rectPoints[3]), COLOR_RED, 2) cv2.line(originalScene, tuple(rectPoints[3]), tuple(rectPoints[0]), COLOR_RED, 2) def writeLicensePlateCharsOnImage(image, licPlate): #Henter oplysninger om billedet sceneHeight, sceneWidth, sceneNumChannels = image.shape plateHeight, plateWidth, plateNumChannels = licPlate.imgPlate.shape #Instillinger omkring skrifttype og stรธrrelse fontFace = cv2.FONT_HERSHEY_SIMPLEX fontScale = float(plateHeight) / 30.0 fontThickness = int(round(fontScale * 1.5)) textSize, baseline = cv2.getTextSize(licPlate.charsInPlate, fontFace, fontScale, fontThickness) #Hent oplysninger om position i billedet ((plateCenterX, plateCenterY), (plateWidth, plateHeight), correctionAngleInDeg) = licPlate.locationInImg #Konverter til integer plateCenterX = int(plateCenterX) plateCenterY = int(plateCenterY) centerOfTextAreaX = int(plateCenterX) #Bestem om teksten skal vรฆre under eller over nummerpladen if plateCenterY < (sceneHeight * 0.75): centerOfTextAreaY = int(round(plateCenterY)) + int(round(plateHeight * 1.6)) else: centerOfTextAreaY = int(round(plateCenterY)) - int(round(plateHeight * 1.6)) textSizeWidth, textSizeHeight = textSize lowerLeftTextOriginX = int(centerOfTextAreaX - (textSizeWidth / 2)) lowerLeftTextOriginY = int(centerOfTextAreaY + (textSizeHeight / 2)) #Tegn tekst pรฅ billedet cv2.putText(image, licPlate.charsInPlate, (lowerLeftTextOriginX, lowerLeftTextOriginY), fontFace, fontScale, COLOR_YELLOW, fontThickness) ``` #### File: main/templatetags/app_filters.py ```python from django import template from datetime import date, timedelta register = template.Library() @register.filter(name='multiply') def multiply(value1, value2): return round(value1*value2) ```
{ "source": "JeppeKlitgaard/Archimedes", "score": 2 }
#### File: Archimedes/archimedes/archimedes.py ```python from __future__ import annotations from typing import TYPE_CHECKING if TYPE_CHECKING: from doit.doit_cmd import DoitMain from archimedes.author import Author from archimedes.config import SiteConfig class ArchimedesSite: doit_main: DoitMain | None = None def __init__( self, site_config: SiteConfig, project_active: bool, ) -> None: self.site_config = site_config self.project_active = project_active def resolve_author(self, ident: str) -> Author: pass ``` #### File: archimedes/utils/path.py ```python from collections.abc import Generator, Iterable from pathlib import Path # https://stackoverflow.com/questions/6639394/what-is-the-python-way-to-walk-a-directory-tree def walk_dirs(head_dirs: Iterable[Path]) -> Generator[Path, None, None]: """ Walks the subdirectories and files of a directory. Args: head_dir: Directory to walk from. """ for head_dir in head_dirs: for p in head_dir.iterdir(): if p.is_dir(): yield from walk_dirs([p]) continue yield p.resolve() ``` #### File: archimedes/utils/version.py ```python from pathlib import Path import toml from semantic_version import Version def get_version() -> Version: """ Returns the version of Archimedes. """ main_path = Path(__file__).resolve().parents[2] # /archimedes/ # Note this depends on where this module is located within Archimedes pyproject = toml.load(main_path / "pyproject.toml") return pyproject["tool"]["poetry"]["version"] ```
{ "source": "JeppeKlitgaard/barista", "score": 2 }
#### File: barista/tests/test_verify.py ```python import pytest from barista.models import Match def test_both_trigger_and_triggers(): with pytest.raises(ValueError): Match.parse_obj( { "replace": "asd", "trigger": "asd", "triggers": ["asd", "abc"], } ) def test_neither_trigger_or_triggers(): with pytest.raises(ValueError): Match.parse_obj({"replace": "asd"}) def test_trigger(): Match.parse_obj( { "replace": "asd", "trigger": "ads", } ) def test_triggers(): Match.parse_obj( { "replace": "asd", "triggers": ["ads", "ads2"], } ) ```
{ "source": "JeppeKlitgaard/DDMTools", "score": 3 }
#### File: ddmtools/utils/number.py ```python from typing import Tuple import numpy as np def log_spaced(max_num: int, points_per_decate: int = 15) -> np.ndarray: """Generate an array of log spaced integers smaller than L""" decades = np.log10(max_num) series: np.ndarray = np.unique( np.logspace( start=0, stop=decades, num=int(decades * points_per_decate), base=10, endpoint=False, ).astype(int) ) return series def get_centre_matrix(big_matrix: np.ndarray, small_matrix_shape: Tuple[int, int]) -> np.ndarray: assert big_matrix.ndim == 2 big_center = np.array(big_matrix.shape) // 2 corner = big_center - np.array(small_matrix_shape) // 2 aa = corner[0] ba = corner[1] ab = corner[0] + small_matrix_shape[0] bb = corner[1] + small_matrix_shape[1] small_matrix: np.ndarray = big_matrix[aa:ab, ba:bb] return small_matrix ``` #### File: ddmtools/utils/progress.py ```python from typing import Any, Optional from joblib import Parallel from tqdm.auto import tqdm # https://stackoverflow.com/a/61900501/5036246 class ProgressParallel(Parallel): # type: ignore def __init__( self, use_tqdm: bool = True, total: Optional[int] = None, *args: Any, **kwargs: Any ): self._use_tqdm = use_tqdm self._total = total super().__init__(*args, **kwargs) def __call__(self, *args: Any, **kwargs: Any) -> Any: with tqdm(disable=not self._use_tqdm, total=self._total) as self._pbar: return Parallel.__call__(self, *args, **kwargs) def print_progress(self) -> None: if self._total is None: self._pbar.total = self.n_dispatched_tasks self._pbar.n = self.n_completed_tasks self._pbar.refresh() ``` #### File: ddmtools/utils/string.py ```python def removeprefix(string: str, prefix: str) -> str: if string.startswith(prefix): return string[len(prefix) :] return string ```
{ "source": "JeppeKlitgaard/DevIconsLatex", "score": 3 }
#### File: JeppeKlitgaard/DevIconsLatex/compile.py ```python import json from pathlib import Path from dataclasses import dataclass from string import digits ICOMOON_JSON_PATH = Path("devicons") / "icomoon.json" TEMPLATE_STY_HEAD = r"""%% Generated by github.com/JeppeKlitgaard/DevIconsLatex % Identify this package. \NeedsTeXFormat{LaTeX2e} \ProvidesPackage{devicon}[Provides some DevIcons] % Requirements to use. \usepackage{fontspec} % Define shortcut to load the devicon \newfontfamily{\DI}{devicon} % Generic command displaying an icon by its name. \newcommand*{\devicon}[1]{{ \DI\csname devicon@#1\endcsname }} """ TEMPLATE_STY_TAIL = r""" \endinput """ def remove_numbers(input: str) -> str: remove_digits = str.maketrans("", "", digits) return input.translate(remove_digits) @dataclass class Icon: name: str code: int def code_as_latex_hex(self) -> str: return '"' + hex(self.code)[2:].upper() def name_as_latex_name(self) -> str: name = "di" name += remove_numbers("".join([x.title() for x in self.name.split("-")])) return name def to_latex_command(self) -> str: command = r"\expandafter\def\csname devicon@" command += self.name command += r"\endcsname { \symbol{" command += self.code_as_latex_hex() command += "}} \def\\" command += self.name_as_latex_name() command += r" {{\DI\csname devicon@" command += self.name command += r"\endcsname}}" return command icons: list[Icon] = [] with open(ICOMOON_JSON_PATH) as f: o = json.load(f) for icon in o["icons"]: i = Icon(icon["properties"]["name"], icon["properties"]["code"]) icons.append(i) with open("devicons.sty", "w") as f: f.write(TEMPLATE_STY_HEAD) for icon in icons: f.write(icon.to_latex_command() + "\n") f.write(TEMPLATE_STY_TAIL) ```
{ "source": "jeppeliisberg/certbot-heroku", "score": 3 }
#### File: certbot-heroku/certbot_heroku/configurator.py ```python import argparse import collections import logging import os import subprocess import time import zope.component import zope.interface from acme import challenges from certbot import errors from certbot import interfaces from certbot.display import util as display_util from certbot.plugins import common logger = logging.getLogger(__name__) DEV_NULL = open(os.devnull, 'w') @zope.interface.implementer(interfaces.IAuthenticator, interfaces.IInstaller) @zope.interface.provider(interfaces.IPluginFactory) class HerokuConfigurator(common.Plugin): """Heroku configurator.""" description = "Heroku SSL" MORE_INFO = """\ Plugin that performs hostname validation using Heroku by setting a config var, then installs the generated certificate with Heroku SSL. It expects that your Heroku app is already configured to serve the proper response when it receives the ACME challenge request, and that the Heroku CLI is already installed and functional. See https://github.com/gboudreau/certbot-heroku for detailed set-up instructions.""" def more_info(self): # pylint: disable=missing-docstring,no-self-use return self.MORE_INFO @classmethod def add_parser_arguments(cls, add): add("app", "-H", default=[], action=_HerokuAppAction, help="The name of your Heroku app. This can be specified multiple " "times to handle different domains; each domain will use " "the Heroku app that preceded it. For instance: `-H " "MyApp -d example.com -d www.example.com -H " "MyAppDev -d dev.example.com` (default: Ask)") add("configvar", default="LETS_ENCRYPT_CHALLENGE", action=_HerokuConfigVarAction, help="The name of the Heroku config var that needs to be set " "for your Heroku app to correctly answer the ACME challenge. " "(default: LETS_ENCRYPT_CHALLENGE)") def get_chall_pref(self, domain): # pragma: no cover # pylint: disable=missing-docstring,no-self-use,unused-argument return [challenges.HTTP01] def __init__(self, *args, **kwargs): super(HerokuConfigurator, self).__init__(*args, **kwargs) if not hasattr(self.config, self.dest('map')): setattr(self.config, self.dest('map'), {}) self.performed = collections.defaultdict(set) def prepare(self): # pylint: disable=missing-docstring pass def perform(self, achalls): # pylint: disable=missing-docstring domains = [] for achall in achalls: domains.append(achall.domain) self._set_heroku_apps(domains) self._check_heroku_apps_map() return [self._perform_single(achall) for achall in achalls] def _set_heroku_apps(self, domains): if self.conf("app"): heroku_app = self.conf("app")[-1] for domain in domains: if domain not in self.conf("map"): self.conf("map").setdefault(domain, heroku_app) else: for domain in domains: if domain not in self.conf("map"): new_heroku_app = self._prompt_for_heroku_app(domain) self.conf("map")[domain] = new_heroku_app def _prompt_for_heroku_app(self, domain): heroku_app = None while heroku_app is None: heroku_app = self._prompt_for_new_app(domain) return heroku_app def _prompt_for_new_app(self, domain): display = zope.component.getUtility(interfaces.IDisplay) while True: code, heroku_app = display.input( "Input the Heroku app name for {0}:".format(domain), force_interactive=True) if code == display_util.HELP: # Displaying help is not currently implemented return None elif code == display_util.CANCEL: return None else: # code == display_util.OK try: return _validate_app(heroku_app) except errors.PluginError as error: display.notification(str(error), pause=False) def _check_heroku_apps_map(self): if not self.conf("map"): raise errors.PluginError( "Missing parts of Heroku configuration; please set " "-H and --domains. Run with --help heroku for examples.") def _perform_single(self, achall): response, validation = achall.response_and_validation() heroku_app = self.conf("map")[achall.domain] config_value = "{0}={1}".format(self.conf("configvar"), validation.encode()) logger.info("Using the Heroku app %s for domain %s", heroku_app, achall.domain) try: # Check if we need to add the custom domain to the Heroku app ps = subprocess.Popen([_get_heroku_cli(), "domains", "-a", heroku_app], stdout=subprocess.PIPE) subprocess.check_call(['grep', achall.domain], stdin=ps.stdout, stdout=DEV_NULL) ps.wait() except subprocess.CalledProcessError: # Need to add domain to Heroku app subprocess.call([_get_heroku_cli(), "domains:add", achall.domain, "-a", heroku_app], stdout=DEV_NULL) ps = subprocess.Popen([_get_heroku_cli(), "domains", "-a", heroku_app], stdout=subprocess.PIPE) output = subprocess.check_output(['grep', achall.domain], stdin=ps.stdout) ps.wait() dns_host = output.decode("utf-8").replace("{0} ".format(achall.domain), "").strip() raise errors.PluginError( "Error: Domain {0} was missing from Heroku app {1} custom domains.\n" "It was added, but you will need to update your DNS configuration to " "add a CNAME for {0} that points to {2}".format(achall.domain, heroku_app, dns_host)) try: # Check if we need to disable preboot ps = subprocess.Popen([_get_heroku_cli(), "features", "-a", heroku_app], stdout=subprocess.PIPE) subprocess.check_call(['grep', "+.*preboot"], stdin=ps.stdout, stdout=DEV_NULL) ps.wait() preboot_was_enabled = True logger.warning(" Disabling preboot feature") subprocess.call([_get_heroku_cli(), "features:disable", "preboot", "-a", heroku_app], stdout=DEV_NULL) except subprocess.CalledProcessError: # preboot is not enabled; all is good preboot_was_enabled = False logger.info(" Saving ACME challenge response in config var") try: subprocess.check_call([_get_heroku_cli(), "config:set", config_value, "-a", heroku_app], stdout=DEV_NULL) except subprocess.CalledProcessError: raise errors.PluginError( "Failed to use 'heroku config:set' to set the config var {0} " "for the Heroku app named {1}. Make sure the Heroku CLI is installed, " "and that running 'heroku info -a {1}' works.".format(config_value, heroku_app) ) logger.info(" Waiting for web dynos to restart...") while True: time.sleep(5) # Need to wait until Heroku finished restarting the web dynos try: ps = subprocess.Popen([_get_heroku_cli(), "ps", "web", "-a", heroku_app], stdout=subprocess.PIPE) subprocess.check_call(['grep', "starting"], stdin=ps.stdout, stdout=DEV_NULL) ps.wait() # Dynos are still restarting; continue waiting... except subprocess.CalledProcessError: # Dynos finished restarting; let the ACME server do its validation break if preboot_was_enabled: logger.warning(" Re-enabling preboot feature") subprocess.call([_get_heroku_cli(), "features:enable", "preboot", "-a", heroku_app], stdout=DEV_NULL) self.performed[heroku_app].add(achall) return response def cleanup(self, achalls): # pylint: disable=missing-docstring for achall in achalls: heroku_app = self.conf("map")[achall.domain] logger.info("Clearing ACME challenge response config var from '%s'", heroku_app) subprocess.check_call([_get_heroku_cli(), "config:unset", self.conf("configvar"), "-a", heroku_app], stdout=DEV_NULL) ##### # Installer ##### # Entry point in main.py for installing cert def deploy_cert(self, domain, cert_path, key_path, chain_path=None, fullchain_path=None): # pylint: disable=unused-argument if domain not in self.conf("map"): self._set_heroku_apps([domain]) heroku_app = self.conf("map")[domain] try: # Check if we need to add the custom domain to the Heroku app ps = subprocess.Popen([_get_heroku_cli(), "domains", "-a", heroku_app], stdout=subprocess.PIPE) subprocess.check_call(['grep', domain], stdin=ps.stdout, stdout=DEV_NULL) ps.wait() except subprocess.CalledProcessError: # Need to add domain to Heroku app logger.info("Adding domain %s to Heroku app %s", domain, heroku_app) subprocess.call([_get_heroku_cli(), "domains:add", domain, "-a", heroku_app], stdout=DEV_NULL) try: # Check if we need to add or update the SSL cert ps = subprocess.Popen([_get_heroku_cli(), "certs", "-a", heroku_app], stdout=subprocess.PIPE) subprocess.check_call(['grep', domain], stdin=ps.stdout, stdout=DEV_NULL) ps.wait() # Cert found; i.e. need to update logger.info("Updating existing Heroku SSL endpoint... ") try: subprocess.check_call( [_get_heroku_cli(), "certs:update", fullchain_path, key_path, "-a", heroku_app, "--confirm", heroku_app], stdout=DEV_NULL) except subprocess.CalledProcessError: raise errors.PluginError("'heroku certs:update' command failed. See error above.") except subprocess.CalledProcessError: # Need to add SSL; it wasn't setup before logger.info("Configuring new Heroku SSL endpoint... ") try: subprocess.check_call([_get_heroku_cli(), "certs:add", fullchain_path, key_path, "-a", heroku_app], stdout=DEV_NULL) except subprocess.CalledProcessError: raise errors.PluginError("'heroku certs:add' command failed. See error above.") def get_all_names(self): all_names = set() for domain, app in self.conf("map").items(): if domain not in all_names: all_names.add(domain) return all_names def supported_enhancements(self): # pylint: disable=no-self-use return [] def enhance(self, domain, enhancement, options=None): return def save(self, title=None, temporary=False): return def rollback_checkpoints(self, rollback=1): return def recovery_routine(self): return def view_config_changes(self): return def config_test(self): return def restart(self): return def get_all_certs_keys(self): return set() class _HerokuConfigVarAction(argparse.Action): """Action class for parsing heroku_config_var.""" def __call__(self, parser, namespace, heroku_config_var, option_string=None): if heroku_config_var: namespace.heroku_config_var = heroku_config_var class _HerokuAppAction(argparse.Action): """Action class for parsing heroku_app.""" def __init__(self, *args, **kwargs): super(_HerokuAppAction, self).__init__(*args, **kwargs) self._domain_before_app = False def __call__(self, parser, namespace, heroku_app, option_string=None): if self._domain_before_app: raise errors.PluginError( "If you specify multiple Heroku apps, " "one of them must precede all domain flags.") if getattr(namespace, 'certbot_heroku:heroku_app'): # Apply previous app to all matched # domains before setting the new app prev_app = getattr(namespace, 'certbot_heroku:heroku_app')[-1] for domain in namespace.domains: if 'certbot_heroku:heroku_map' not in namespace: setattr(namespace, 'certbot_heroku:heroku_map', {}) getattr(namespace, 'certbot_heroku:heroku_map').setdefault(domain, prev_app) elif namespace.domains: self._domain_before_app = True getattr(namespace, 'certbot_heroku:heroku_app').append(_validate_app(heroku_app)) def _validate_app(heroku_app): """Validates and returns the Heroku app name. :param str heroku_app: name of the Heroku app :returns: name of the Heroku app :rtype: str """ try: subprocess.check_call([_get_heroku_cli(), "info", "-a", heroku_app], stdout=DEV_NULL) except subprocess.CalledProcessError: raise errors.PluginError( "No Heroku app named {0} was found. Make sure you have the Heroku " "CLI installed, and that running 'heroku info -a {0}' works.".format(heroku_app) ) return heroku_app def _get_heroku_cli(): try: # Check if we need to add the custom domain to the Heroku app heroku_cli = subprocess.check_output(["which", "heroku"], stderr=DEV_NULL).strip() except subprocess.CalledProcessError: # Looking for heroku CLI at the usual places if os.path.isfile("/usr/local/heroku/bin/heroku"): heroku_cli = "/usr/local/heroku/bin/heroku" elif os.path.isfile("/usr/local/bin/heroku"): heroku_cli = "/usr/local/bin/heroku" else: raise errors.PluginError("Error: can't find Heroku CLI") return heroku_cli ```
{ "source": "JeppeLovstad/Bachelor-project-crypto", "score": 3 }
#### File: JeppeLovstad/Bachelor-project-crypto/bla.py ```python import numpy as np import matplotlib.pyplot as plt import os delta_data = [] #x-axis in plot time_data = [] #y-axis in plot overall_time = [] overall_delta = [] subpltno = 111 def export_fig(name, fig): my_path = os.path.join("", name) fig.savefig(my_path) with open('timeLog_goodstuff') as fp: for line in fp: old_d_7 = None get_d6 = line.split(',') delta_6 = get_d6[0] #we get delta_6 by seperating at the first comma and taking the first element #then get delta_7 and plot vs its time in the plot data = get_d6[1].split('-') delta_7 = int(data[0]) delta_data.append(int(delta_6)) #add new delta_6-point ---- possibly value error of it thinks delta is a float timepoint = float(data[1]) time_data.append(timepoint) #add corresponding time-point if delta_7 != old_d_7: #make new plot fig = plt.figure(int(delta_7)) old_d_7 = delta_7 string = ''.join([str(delta_6), ",", str(delta_7)]) overall_delta.append(string) overall_time.append(timepoint) if int(delta_6) == 255: plt.plot(delta_data,time_data, 'ro') #plot the data points - 'ro' means red dots export_fig(str(delta_7), fig) #export the figure to .png - stolen from some ML-code from handin 1 (model_stats.py) #old_d_7 = delta_7 #we are done - ready for next delta_6 delta_data = [] #reset data arrays time_data = [] #ready for new data points plt.plot(delta_data,time_data, 'ro') #plot the data points - 'ro' means red dots export_fig(str(delta_7), fig) #export the figure to .png - stolen from some ML-code from handin 1 (model_stats.py) last_fig = delta_7 +1 min_index = np.argmin(overall_time) minimum = overall_time[min_index] min_delta = overall_delta[min_index] print("Minimum: ", min_delta, " : ", minimum) average = np.average(overall_time) median = np.median(overall_time) allowed_error = 1.05 print("Average: ", average, "\n Median: ", median) #overall_time[min_index] = np.inf #sec_index = np.argmin(overall_time) #sec_min = overall_time[sec_index] #sec_delta = overall_delta[sec_index] #print("Second smallest: ", sec_delta, " : ", sec_min) #remove outliers: clean_time = [] clean_delta = [] for i in range(len(overall_delta)): if overall_time[i] <= average*allowed_error: clean_time.append(overall_time[i]) clean_delta.append(overall_delta[i]) min_index = np.argmin(clean_time) minimum = clean_time[min_index] min_delta = clean_delta[min_index] print("Without outliers") print("Minimum: ", min_delta, " : ", minimum) average = np.average(clean_time) median = np.median(clean_time) print("Average: ", average, "\n Median: ", median) clean_delta_data = [] clean_time_data = [] with open('timeLog_goodstuff') as fp: for line in fp: old_d_7 = None get_d6 = line.split(',') delta_6 = get_d6[0] #we get delta_6 by seperating at the first comma and taking the first element #then get delta_7 and plot vs its time in the plot data = get_d6[1].split('-') delta_7 = int(data[0]) timepoint = float(data[1]) if timepoint <= average*allowed_error: clean_delta_data.append(int(delta_6)) #add new delta_6-point ---- possibly value error of it thinks delta is a float clean_time_data.append(timepoint) #add corresponding time-point if delta_7 != old_d_7: #make new plot fig = plt.figure(last_fig+delta_7) old_d_7 = delta_7 if int(delta_6) == 255: plt.plot(clean_delta_data,clean_time_data, 'go') #plot the data points - 'ro' means red dots export_fig(str(delta_7)+ "_clean", fig) #export the figure to .png - stolen from some ML-code from handin 1 (model_stats.py) #old_d_7 = delta_7 #we are done - ready for next delta_6 clean_delta_data = [] clean_time_data = [] plt.plot(delta_data,time_data, 'go') #plot the data points - 'ro' means red dots export_fig(str(delta_7), fig) #export the figure to .png - stolen from some ML-code from handin 1 (model_stats.py) ```
{ "source": "jeppenodgaard/pyRFExplorer", "score": 3 }
#### File: pyRFExplorer/pyrfe/plot.py ```python import numpy as np import matplotlib as mpl mpl.use( 'TkAgg' ) font = {'family' : 'Arial', 'weight' : 'bold', 'size' : 8} mpl.rc('font', **font) import matplotlib.pyplot as plt import matplotlib.image as img from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2TkAgg import Tkinter as tk class LcdPlot( object ): def __init__( self, rfe, frame ): self.rfe = rfe self.frame = frame self.lcd_data = self.rfe.lcd_data self.figure_lcd = mpl.figure.Figure( figsize=(2,1), dpi=100, frameon=False ) self.canvas_lcd = FigureCanvasTkAgg( self.figure_lcd, master=self.frame ) self.lcd_subplot = self.figure_lcd.add_subplot( '111' ) # style figure self.figure_lcd.patch.set_alpha( 0.0 ) # makes background patch invisible self.figure_lcd.patch.set_visible( False ) # style lcd self.lcd_subplot.set_axis_off() # will show graph only, rest is transparent self.img = self.lcd_subplot.matshow( np.random.random((64*2, 128*2)), cmap='Greys' ) # why does only random work, not zeros or ones? #self.figure_lcd.tight_layout() self.canvas_lcd.show() self.canvas_lcd.get_tk_widget().grid() def update( self ): if not self.lcd_data.empty(): while not self.lcd_data.empty(): lcd = self.lcd_data.get() lcd = np.kron( lcd, np.ones((2,2)) ) # scale by factor 2 self.img.set_array( lcd ) self.canvas_lcd.draw() class SweepPlot( object ): sweep_max = None sweep_avg = None sweep_min = None sweep_fstart = 0 sweep_fstop = 0 sweep_flen = 0 def __init__( self, rfe, frame ): self.rfe = rfe self.frame = frame self.sweep_data = self.rfe.sweep_data self.figure = mpl.figure.Figure( figsize=(8,6), dpi=100 ) self.canvas = FigureCanvasTkAgg( self.figure, master=self.frame ) self.sweep_subplot = self.figure.add_subplot( '111' ) # style figure self.figure.patch.set_color('black') # style sweep #pself.sweep_subplot.patch.set_alpha( 0.0 ) # makes graph background transparent self.sweep_subplot.patch.set_visible( False ) # makes graph background invisible self.sweep_subplot.xaxis.grid( color='gray', linestyle='dashed', alpha=0.3 ) self.sweep_subplot.yaxis.grid( color='gray', linestyle='dashed', alpha=0.3 ) self.sweep_subplot.set_frame_on( False ) # remove border around graph #self.sweep_subplot.spines['bottom'].set_color( 'white' ) # bottom border color (it's off) #self.sweep_subplot.spines['top'].set_color( 'white' ) # top border color (it's off) #self.sweep_subplot.xaxis.label.set_color( 'white' ) # label color (we have none) self.sweep_subplot.tick_params( axis='x', colors='white' ) # ticks and tick labels self.sweep_subplot.tick_params( axis='y', colors='white' ) # ticks and tick labels self.sweep_subplot.xaxis.get_major_formatter().set_scientific( False ) self.figure.tight_layout() self.canvas.show() self.canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=1) def update( self ): if not self.sweep_data.empty(): # flush queue if we're too slow while not self.sweep_data.empty(): freq, db, minmax = self.sweep_data.get() if len(freq) != len(db): print 'freq/db length mismatch' return if (self.sweep_avg is None) or (freq[0]!=self.sweep_fstart) or (freq[-1]!=self.sweep_fstop) or (len(freq)!=self.sweep_flen): self.sweep_max = db self.sweep_avg = db self.sweep_min = db self.sweep_fstart = freq[0] self.sweep_fstop = freq[-1] self.sweep_flen = len(freq) mm = (np.min(self.sweep_min),np.max(self.sweep_max)) self.sweep_subplot.set_ylim( mm ) xoff = (self.sweep_fstop - self.sweep_fstart)*0.05 self.sweep_subplot.set_xlim( (self.sweep_fstart-xoff, self.sweep_fstop+xoff) ) try: self.pminmax.remove() self.pavg.remove() self.pdb.remove() except: pass self.pminmax = self.sweep_subplot.fill_between( freq, self.sweep_min, self.sweep_max, facecolor='white', alpha=0.1, linewidth=0.2 ) self.pavg, = self.sweep_subplot.plot( freq, self.sweep_avg, color='red', alpha=0.8, linewidth=1.5 ) #self.pdb, = self.sweep_subplot.plot( freq, db, color='#666666', linewidth=0.0, marker='.', alpha=0.5 ) self.pdb = self.sweep_subplot.fill_between( freq, self.sweep_avg, db, facecolor='#666666', linewidth=0.2, alpha=0.3 ) else: self.sweep_max = np.maximum(self.sweep_max, db) self.sweep_min = np.minimum(self.sweep_min, db) self.sweep_avg = self.sweep_avg*0.95+db*0.05 mm = (np.min(self.sweep_min),np.max(self.sweep_max)) self.sweep_subplot.set_ylim( mm ) #self.pminmax.set_xdata( freq ) #self.pminmax.set_ydata( self.sweep_min, self.sweep_max ) #self.pavg.set_xdata( freq ) #self.pavg.set_ydata( self.sweep_avg ) #self.pdb.set_xdata( freq ) #self.pdb.set_ydata( db ) self.pminmax.remove() self.pminmax = self.sweep_subplot.fill_between( freq, self.sweep_min, self.sweep_max, facecolor='white', alpha=0.1, linewidth=0.2 ) self.pavg.remove() self.pavg, = self.sweep_subplot.plot( freq, self.sweep_avg, color='red', alpha=0.8, linewidth=1.5 ) self.pdb.remove() #self.pdb, = self.sweep_subplot.plot( freq, db, color='#666666', linewidth=0.0, marker='.', alpha=0.5 ) self.pdb = self.sweep_subplot.fill_between( freq, self.sweep_avg, db, facecolor='#666666', linewidth=0.2, alpha=0.3 ) self.canvas.draw() ```
{ "source": "jepperaskdk/doctest", "score": 3 }
#### File: pydoctest/reporters/text_reporter.py ```python from pydoctest.configuration import Configuration, Verbosity from pydoctest.reporters.reporter import Reporter from pydoctest.validation import ClassValidationResult, FunctionValidationResult, ModuleValidationResult, ResultType, ValidationResult SUCCESS = "OK" FAILED = "FAIL" SKIPPED = "SKIPPED" class TextReporter(Reporter): def get_output(self, result: ValidationResult) -> str: """Returns the text output by walking the ValidationResult object. Args: result (ValidationResult): The results from running Pydoctest. Returns: str: The output to be returned. """ output = "" for module_result in result.module_results: output += self.get_module_output(module_result) return output def get_module_output(self, result: ModuleValidationResult) -> str: """Returns the text output from the result object from walking the module. Args: result (ModuleValidationResult): The result from running Pydoctest on the module. Returns: str: The output of the module. """ output = "" if result.fail_reason != "": output = f"{result.fail_reason}\n" for f_r in result.function_results: output += self.get_function_output(f_r) for c_r in result.class_results: output += self.get_class_output(c_r) return output def get_function_output(self, result: FunctionValidationResult) -> str: """Returns the text output from the result object from the function. Args: result (FunctionValidationResult): The result from running Pydoctest on the function. Returns: str: The output from the function. """ if result.result == ResultType.OK: if self.config.verbosity == Verbosity.SHOW_ALL: return f"Function: {result.function} {SUCCESS}\n" return "" if result.result == ResultType.FAILED: return f"Function: {result.function} {FAILED} | {result.fail_reason}\n" if result.result == ResultType.NO_DOC and self.config.fail_on_missing_docstring: return f"Function: {result.function} is missing a docstring\n" return "" def get_class_output(self, result: ClassValidationResult) -> str: """Returns the text output from the result object from the class. Args: result (ClassValidationResult): The result from running Pydoctest on the class. Returns: str: The output of the class and its functions. """ output = "" for fn in result.function_results: output += self.get_function_output(fn) return output ``` #### File: tests/test_parsers/test_google_parser.py ```python import pydoc import pytest from pydoctest.parsers.google_parser import GoogleParser from pydoctest.exceptions import ParseException import tests.test_class.incorrect_class class TestGoogleParser(): def test_parse_exception_get_parameters(self) -> None: parser = GoogleParser() doc = pydoc.getdoc(tests.test_class.incorrect_class.IncorrectTestClass.func_parse_exception) with pytest.raises(ParseException) as exc_info: parser.get_parameters(doc, tests.test_class.incorrect_class) def test_parse_exception_get_return_type(self) -> None: parser = GoogleParser() doc = pydoc.getdoc(tests.test_class.incorrect_class.IncorrectTestClass.func_parse_exception) with pytest.raises(ParseException) as exc_info: parser.get_return_type(doc, tests.test_class.incorrect_class) def test_get_exceptions_raised(self) -> None: parser = GoogleParser() doc = pydoc.getdoc(tests.test_class.incorrect_class.IncorrectTestClass.func_parse_exception) with pytest.raises(ParseException) as exc_info: parser.get_exceptions_raised(doc) def test_empty_func(self) -> None: parser = GoogleParser() doc = pydoc.getdoc(tests.test_class.correct_class.CorrectTestClass.empty_func) arguments = parser.get_parameters(doc, tests.test_class.correct_class) assert len(arguments) == 0, f"GoogleParser failed assertion" return_type = parser.get_return_type(doc, tests.test_class.correct_class) assert return_type == type(None), f"GoogleParser failed assertion" def test_func_returns_none(self) -> None: parser = GoogleParser() doc = pydoc.getdoc(tests.test_class.correct_class.CorrectTestClass.func_returns_none) arguments = parser.get_parameters(doc, tests.test_class.correct_class) assert len(arguments) == 1, f"GoogleParser failed assertion" assert arguments[0].type == int, f"GoogleParser failed assertion" return_type = parser.get_return_type(doc, tests.test_class.correct_class) assert return_type == type(None), f"GoogleParser failed assertion" def test_func_returns_int(self) -> None: parser = GoogleParser() doc = pydoc.getdoc(tests.test_class.correct_class.CorrectTestClass.func_returns_int) arguments = parser.get_parameters(doc, tests.test_class.correct_class) assert len(arguments) == 0, f"GoogleParser failed assertion" return_type = parser.get_return_type(doc, tests.test_class.correct_class) assert return_type == int, f"GoogleParser failed assertion" def test_func_has_arg_returns_arg(self) -> None: parser = GoogleParser() doc = pydoc.getdoc(tests.test_class.correct_class.CorrectTestClass.func_has_arg_returns_arg) arguments = parser.get_parameters(doc, tests.test_class.correct_class) assert len(arguments) == 1, f"GoogleParser failed assertion" assert arguments[0].type == int, f"GoogleParser failed assertion" return_type = parser.get_return_type(doc, tests.test_class.correct_class) assert return_type == float, f"GoogleParser failed assertion" def test_func_has_raises_doc(self) -> None: parser = GoogleParser() doc = pydoc.getdoc(tests.test_class.correct_class.CorrectTestClass.func_has_raises_doc) arguments = parser.get_parameters(doc, tests.test_class.correct_class) assert len(arguments) == 1, f"GoogleParser failed assertion" assert arguments[0].type == int, f"GoogleParser failed assertion" return_type = parser.get_return_type(doc, tests.test_class.correct_class) assert return_type == int, f"GoogleParser failed assertion" def test_func_with_multiline_summary(self) -> None: parser = GoogleParser() doc = pydoc.getdoc(tests.test_class.correct_class.CorrectTestClass.func_with_multiline_summary) arguments = parser.get_parameters(doc, tests.test_class.correct_class) assert len(arguments) == 1, f"GoogleParser failed assertion" assert arguments[0].type == int, f"GoogleParser failed assertion" return_type = parser.get_return_type(doc, tests.test_class.correct_class) assert return_type == int, f"GoogleParser failed assertion" def test_get_summary_multiline_summary(self) -> None: parser = GoogleParser() doc = pydoc.getdoc(tests.test_class.correct_class.CorrectTestClass.func_with_multiline_summary) summary = parser.get_summary(doc, tests.test_class.correct_class) assert summary is not None assert len(summary) > 0, f"GoogleParser failed assertion" assert(len([x for x in summary if x == '\n']) > 1), f"GoogleParser failed assertion" def test_get_summary_empty_summary(self) -> None: parser = GoogleParser() doc = pydoc.getdoc(tests.test_class.correct_class.CorrectTestClass.func_no_summary) arguments = parser.get_parameters(doc, tests.test_class.correct_class) assert len(arguments) == 0, f"GoogleParser failed assertion" return_type = parser.get_return_type(doc, tests.test_class.correct_class) assert return_type == type(None), f"GoogleParser failed assertion" summary = parser.get_summary(doc, tests.test_class.correct_class) assert summary is None, f"GoogleParser failed assertion" def test_func_with_raise_and_args_and_return(self) -> None: parser = GoogleParser() doc = pydoc.getdoc(tests.test_class.raises_class.RaisesClass.func_with_raise_and_args_and_return) actual_exceptions = parser.get_exceptions_raised(doc) expected_exceptions = [ 'RuntimeError', 'ValueError', 'IndexError' ] assert len(expected_exceptions) == len(actual_exceptions) intersection = set(expected_exceptions) - set(actual_exceptions) assert len(intersection) == 0 def test_func_with_raise_and_args(self) -> None: parser = GoogleParser() doc = pydoc.getdoc(tests.test_class.raises_class.RaisesClass.func_with_raise_and_args) actual_exceptions = parser.get_exceptions_raised(doc) expected_exceptions = [ 'RuntimeError', 'ValueError', 'IndexError' ] assert len(expected_exceptions) == len(actual_exceptions) intersection = set(expected_exceptions) - set(actual_exceptions) assert len(intersection) == 0 def test_func_with_raise(self) -> None: parser = GoogleParser() doc = pydoc.getdoc(tests.test_class.raises_class.RaisesClass.func_with_raise) actual_exceptions = parser.get_exceptions_raised(doc) expected_exceptions = [ 'RuntimeError', 'ValueError', 'IndexError' ] assert len(expected_exceptions) == len(actual_exceptions) intersection = set(expected_exceptions) - set(actual_exceptions) assert len(intersection) == 0 ``` #### File: tests/test_parsers/test_numpy_parser.py ```python import pydoc from typing import Any, Dict import pytest from pydoctest.parsers.numpy_parser import NumpyParser from pydoctest.exceptions import ParseException import tests.test_parsers.numpy_class class TestNumpyParser(): def test_parse_exception_get_parameters(self) -> None: parser = NumpyParser() doc = pydoc.getdoc(tests.test_parsers.numpy_class.IncorrectTestClass.func_parse_exception) with pytest.raises(ParseException) as exc_info: parser.get_parameters(doc, tests.test_parsers.numpy_class) def test_parse_exception_get_return_type(self) -> None: parser = NumpyParser() doc = pydoc.getdoc(tests.test_parsers.numpy_class.IncorrectTestClass.func_parse_exception) with pytest.raises(ParseException) as exc_info: parser.get_return_type(doc, tests.test_parsers.numpy_class) def test_empty_func(self) -> None: parser = NumpyParser() doc = pydoc.getdoc(tests.test_parsers.numpy_class.CorrectTestClass.empty_func) arguments = parser.get_parameters(doc, tests.test_parsers.numpy_class) assert len(arguments) == 0, f"NumpyParser failed assertion" return_type = parser.get_return_type(doc, tests.test_parsers.numpy_class) assert return_type == type(None), f"NumpyParser failed assertion" def test_func_returns_none(self) -> None: parser = NumpyParser() doc = pydoc.getdoc(tests.test_parsers.numpy_class.CorrectTestClass.func_returns_none) arguments = parser.get_parameters(doc, tests.test_parsers.numpy_class) assert len(arguments) == 1, f"NumpyParser failed assertion" assert arguments[0].type == int, f"NumpyParser failed assertion" return_type = parser.get_return_type(doc, tests.test_parsers.numpy_class) assert return_type == type(None), f"NumpyParser failed assertion" def test_func_returns_int(self) -> None: parser = NumpyParser() doc = pydoc.getdoc(tests.test_parsers.numpy_class.CorrectTestClass.func_returns_int) arguments = parser.get_parameters(doc, tests.test_parsers.numpy_class) assert len(arguments) == 0, f"NumpyParser failed assertion" return_type = parser.get_return_type(doc, tests.test_parsers.numpy_class) assert return_type == int, f"NumpyParser failed assertion" def test_func_returns_int_name_type(self) -> None: parser = NumpyParser() doc = pydoc.getdoc(tests.test_parsers.numpy_class.CorrectTestClass.func_returns_int_name_type) arguments = parser.get_parameters(doc, tests.test_parsers.numpy_class) assert len(arguments) == 0, f"NumpyParser failed assertion" return_type = parser.get_return_type(doc, tests.test_parsers.numpy_class) assert return_type == int, f"NumpyParser failed assertion" def test_func_has_arg_returns_arg(self) -> None: parser = NumpyParser() doc = pydoc.getdoc(tests.test_parsers.numpy_class.CorrectTestClass.func_has_arg_returns_arg) arguments = parser.get_parameters(doc, tests.test_parsers.numpy_class) assert len(arguments) == 1, f"NumpyParser failed assertion" assert arguments[0].type == int, f"NumpyParser failed assertion" return_type = parser.get_return_type(doc, tests.test_parsers.numpy_class) assert return_type == float, f"NumpyParser failed assertion" def test_func_has_raises_doc(self) -> None: parser = NumpyParser() doc = pydoc.getdoc(tests.test_parsers.numpy_class.CorrectTestClass.func_has_raises_doc) arguments = parser.get_parameters(doc, tests.test_parsers.numpy_class) assert len(arguments) == 1, f"NumpyParser failed assertion" assert arguments[0].type == int, f"NumpyParser failed assertion" return_type = parser.get_return_type(doc, tests.test_parsers.numpy_class) assert return_type == int, f"NumpyParser failed assertion" def test_func_with_multiline_summary(self) -> None: parser = NumpyParser() doc = pydoc.getdoc(tests.test_parsers.numpy_class.CorrectTestClass.func_with_multiline_summary) arguments = parser.get_parameters(doc, tests.test_parsers.numpy_class) assert len(arguments) == 1, f"NumpyParser failed assertion" assert arguments[0].type == int, f"NumpyParser failed assertion" return_type = parser.get_return_type(doc, tests.test_parsers.numpy_class) assert return_type == int, f"NumpyParser failed assertion" def test_get_summary_multiline_summary(self) -> None: parser = NumpyParser() doc = pydoc.getdoc(tests.test_parsers.numpy_class.CorrectTestClass.func_with_multiline_summary) summary = parser.get_summary(doc, tests.test_parsers.numpy_class) assert summary is not None assert len(summary) > 0, f"NumpyParser failed assertion" assert(len([x for x in summary if x == '\n']) > 1), f"NumpyParser failed assertion" def test_get_summary_empty_summary(self) -> None: parser = NumpyParser() doc = pydoc.getdoc(tests.test_parsers.numpy_class.CorrectTestClass.func_no_summary) arguments = parser.get_parameters(doc, tests.test_parsers.numpy_class) assert len(arguments) == 0, f"NumpyParser failed assertion" return_type = parser.get_return_type(doc, tests.test_parsers.numpy_class) assert return_type == type(None), f"NumpyParser failed assertion" summary = parser.get_summary(doc, tests.test_parsers.numpy_class) assert summary is None, f"NumpyParser failed assertion" def test_func_with_raise_and_args_and_return(self) -> None: parser = NumpyParser() doc = pydoc.getdoc(tests.test_parsers.numpy_class.RaisesClass.func_with_raise_and_args_and_return) actual_exceptions = parser.get_exceptions_raised(doc) expected_exceptions = [ 'RuntimeError', 'ValueError', 'IndexError' ] assert len(expected_exceptions) == len(actual_exceptions) intersection = set(expected_exceptions) - set(actual_exceptions) assert len(intersection) == 0 def test_func_with_raise_and_args(self) -> None: parser = NumpyParser() doc = pydoc.getdoc(tests.test_parsers.numpy_class.RaisesClass.func_with_raise_and_args) actual_exceptions = parser.get_exceptions_raised(doc) expected_exceptions = [ 'RuntimeError', 'ValueError', 'IndexError' ] assert len(expected_exceptions) == len(actual_exceptions) intersection = set(expected_exceptions) - set(actual_exceptions) assert len(intersection) == 0 parameters = parser.get_parameters(doc, tests.test_parsers.numpy_class) assert len(parameters) == 2 assert parameters[0].name == 'a' assert parameters[0].type == int assert parameters[1].name == 'b' assert parameters[1].type == float def test_func_with_raise(self) -> None: parser = NumpyParser() doc = pydoc.getdoc(tests.test_parsers.numpy_class.RaisesClass.func_with_raise) actual_exceptions = parser.get_exceptions_raised(doc) expected_exceptions = [ 'RuntimeError', 'ValueError', 'IndexError' ] assert len(expected_exceptions) == len(actual_exceptions) intersection = set(expected_exceptions) - set(actual_exceptions) assert len(intersection) == 0 def test_func_with_generics(self) -> None: parser = NumpyParser() doc = pydoc.getdoc(tests.test_parsers.numpy_class.CorrectTestClass.func_with_generics) parameters = parser.get_parameters(doc, tests.test_parsers.numpy_class) assert len(parameters) == 1 assert parameters[0].type == Dict[str, Any] assert parameters[0].name == 'a_a' return_type = parser.get_return_type(doc, tests.test_parsers.numpy_class) assert return_type == Dict[str, Any] ```
{ "source": "jeppe-style/code-quality-and-popularity", "score": 3 }
#### File: jeppe-style/code-quality-and-popularity/static_code_metrics.py ```python import json import os import subprocess import git import pandas import shutil from git import Repo from shared_constants import data_dir, repo_candidates_filename temp_repo_dir = "temp-repo" code_metrics_file = "code-metrics.csv" code_metrics_folder = "code-metrics" def read_json(filename): print("reading result from {}/{}".format(data_dir, filename)) with open("{}/{}.json".format(data_dir, filename), "r") as file: data = json.load(file) return data def main(): # for all repos candidate_repos = read_json(repo_candidates_filename) # create the folder where to store the code metrics if not os.path.exists("{}/{}".format(data_dir, code_metrics_folder)): os.makedirs("{}/{}".format(data_dir, code_metrics_folder)) metrics = None for i in range(0, len(candidate_repos)): # for i in range(0, 10): # create the folder where to store the repos temporarily if not os.path.exists(temp_repo_dir): os.makedirs(temp_repo_dir) candidate_repo = candidate_repos[i] # download repo git_url = candidate_repo["html_url"] repo_name = candidate_repo["name"] print("============================================") print("cloning repository {}".format(repo_name)) try: Repo.clone_from(git_url, temp_repo_dir) except git.exc.GitCommandError: print("error cloning repository") continue # calculate code metrics on last snapshot print("calculating code metrics") repo_id = candidate_repo["id"] output_file = "{}/{}/{}-{}".format(data_dir, code_metrics_folder, repo_id, code_metrics_file) if not compute_metrics(output_file): continue temp_frame = prepare_metrics_data(candidate_repo, output_file, repo_id, repo_name) if metrics is None: metrics = temp_frame else: metrics = pandas.concat([metrics, temp_frame], ignore_index=True) print("save data to csv") metrics.to_csv("{}/final-{}".format(data_dir, code_metrics_file)) shutil.rmtree(temp_repo_dir) def compute_metrics(output_file): # e.g "Exception in thread "main" java.lang.NullPointerException..." # java -jar ck/ck-0.2.1-SNAPSHOT-jar-with-dependencies.jar temp-repo/ data/36057260-code-metrics.csv # subprocess.run("java -jar ck/ck-0.2.1-SNAPSHOT-jar-with-dependencies.jar {} {}" # .format(temp_repo_dir, output_file), shell=True) try: subprocess.run( " ".join( ["java", "-jar", "ck/ck-0.2.1-SNAPSHOT-jar-with-dependencies.jar", temp_repo_dir, output_file] ), shell=True, check=True, timeout=60 * 10 ) except subprocess.CalledProcessError: print("exception analysing the repository - skipping") shutil.rmtree(temp_repo_dir) return False except subprocess.TimeoutExpired: print("timeout analysing the repository - skipping") shutil.rmtree(temp_repo_dir) return False return True def prepare_metrics_data(candidate_repo, output_file, repo_id, repo_name): # analyse code quality vs stars and num contributors print("preparing data") metrics_raw = pandas.read_csv(output_file) metrics_raw.pop("file") metrics_raw.pop("class") metrics_raw.pop("type") # for each metric compute mean, median, Q1, and Q3 mean = metrics_raw.mean().rename(lambda x: "average_{}".format(x)) median = metrics_raw.median().rename(lambda x: "median_{}".format(x)) q1 = metrics_raw.quantile(q=0.25).rename(lambda x: "Q1_{}".format(x)) q3 = metrics_raw.quantile(q=0.75).rename(lambda x: "Q3_{}".format(x)) temp_frame = pandas.DataFrame(pandas.concat([mean, median, q1, q3])).T temp_frame['id'] = repo_id temp_frame['name'] = repo_name temp_frame['stars'] = candidate_repo["stargazers_count"] temp_frame['contributors_total'] = candidate_repo["num_contributors"] return temp_frame if __name__ == '__main__': main() ```
{ "source": "jeppeter/extargsparse", "score": 3 }
#### File: test/tstextargsparse/opthandle.py ```python import tempfile import sys import os _extargs_parent_dir = os.path.abspath(os.path.join(os.path.abspath(os.path.dirname(__file__)),'..','..')) if _extargs_parent_dir not in sys.path: _temp_path = sys.path sys.path = [_extargs_parent_dir] sys.path.extend(_temp_path) import extargsparse def pair_parse(args,validx,keycls,params): if (validx + 1) >= len(params): raise Exception('need 2 args for [++pair|+p]') val = getattr(args,keycls.optdest,None) if val is None: val = [] val.append(params[validx]) val.append(params[(validx+1)]) setattr(args,keycls.optdest,val) return 2 def pair_help(keycls): return '[first] [second]' def single_2_jsonfunc(args,keycls,value): if not isinstance(value,list): raise Exception('not list value') if (len(value) % 2) != 0: raise Exception('not even sized') setvalue = [] i = 0 while i < len(value): setvalue.append(value[i]) i += 2 setattr(args,keycls.optdest,setvalue) return def main(): commandline=''' { "verbose|v" : "+", "pair|p!optparse=pair_parse;opthelp=pair_help!" : [], "even|e!jsonfunc=single_2_jsonfunc!" : [], "clr_CA_name" : null, "$" : "*" } ''' options = extargsparse.ExtArgsOptions() options.longprefix = '++' options.shortprefix = '+' options.jsonlong = 'jsonfile' options.helplong = 'usage' options.helpshort = '?' options.flagnochange = True parser = extargsparse.ExtArgsParse(options) parser.load_command_line_string(commandline) args = parser.parse_command_line() print('verbose [%d]'%(args.verbose)) print('pair (%s)'%(args.pair)) print('args (%s)'%(args.args)) print('clr_CA_name (%s)'%(args.clr_CA_name)) print('event (%s)'%(args.even)) return if __name__ == '__main__': main() ``` #### File: test/tstextargsparse/testver.py ```python import sys import os def _reload_extargs_path(curpath): _extargs_init_py = os.path.join(curpath,'extargsparse','__init__.py') if os.path.exists(_extargs_init_py): if curpath != sys.path[0]: if curpath in sys.path: sys.path.remove(curpath) oldpath=sys.path sys.path = [curpath] sys.path.extend(oldpath) return _reload_extargs_path(os.path.abspath(os.path.dirname(__file__))) _reload_extargs_path(os.path.abspath(os.path.join(os.path.abspath(os.path.dirname(__file__)),'..','..'))) import extargsparse import rtools def main(): print('extargsparse version %s'%(extargsparse.__version__)) print('extargsparse version info %s'%(repr(extargsparse.__version_info__))) if __name__ == '__main__': main() ```