metadata
dict
text
stringlengths
60
3.49M
{ "source": "jfburdet/pyicloud", "score": 2 }
#### File: pyicloud/pyicloud/base.py ```python from six import PY2, string_types from uuid import uuid1 import inspect import json import logging from requests import Session from tempfile import gettempdir from os import path, mkdir from re import match import http.cookiejar as cookielib from pyicloud.exceptions import ( PyiCloudFailedLoginException, PyiCloudAPIResponseException, PyiCloud2SARequiredException, PyiCloudServiceNotActivatedException, ) from pyicloud.services import ( FindMyiPhoneServiceManager, CalendarService, UbiquityService, ContactsService, RemindersService, PhotosService, AccountService, DriveService, ) from pyicloud.utils import get_password_from_keyring LOGGER = logging.getLogger(__name__) class PyiCloudPasswordFilter(logging.Filter): """Password log hider.""" def __init__(self, password): super(PyiCloudPasswordFilter, self).__init__(password) def filter(self, record): message = record.getMessage() if self.name in message: record.msg = message.replace(self.name, "*" * 8) record.args = [] return True class PyiCloudSession(Session): """iCloud session.""" def __init__(self, service): self.service = service Session.__init__(self) def request(self, method, url, **kwargs): # pylint: disable=arguments-differ # Charge logging to the right service endpoint callee = inspect.stack()[2] module = inspect.getmodule(callee[0]) request_logger = logging.getLogger(module.__name__).getChild("http") if self.service.password_filter not in request_logger.filters: request_logger.addFilter(self.service.password_filter) request_logger.debug("%s %s %s", method, url, kwargs.get("data", "")) has_retried = kwargs.get("retried") kwargs.pop("retried", None) response = super(PyiCloudSession, self).request(method, url, **kwargs) content_type = response.headers.get("Content-Type", "").split(";")[0] json_mimetypes = ["application/json", "text/json"] if not response.ok and content_type not in json_mimetypes: if has_retried is None and response.status_code == 450: api_error = PyiCloudAPIResponseException( response.reason, response.status_code, retry=True ) request_logger.debug(api_error) kwargs["retried"] = True return self.request(method, url, **kwargs) self._raise_error(response.status_code, response.reason) if content_type not in json_mimetypes: return response try: data = response.json() except: # pylint: disable=bare-except request_logger.warning("Failed to parse response with JSON mimetype") return response request_logger.debug(data) if isinstance(data, dict): reason = data.get("errorMessage") reason = reason or data.get("reason") reason = reason or data.get("errorReason") if not reason and isinstance(data.get("error"), string_types): reason = data.get("error") if not reason and data.get("error"): reason = "Unknown reason" code = data.get("errorCode") if not code and data.get("serverErrorCode"): code = data.get("serverErrorCode") if reason: self._raise_error(code, reason) return response def _raise_error(self, code, reason): if ( self.service.requires_2sa and reason == "Missing X-APPLE-WEBAUTH-TOKEN cookie" ): raise PyiCloud2SARequiredException(self.service.user["apple_id"]) if code in ("ZONE_NOT_FOUND", "AUTHENTICATION_FAILED"): reason = ( "Please log into https://icloud.com/ to manually " "finish setting up your iCloud service" ) api_error = PyiCloudServiceNotActivatedException(reason, code) LOGGER.error(api_error) raise (api_error) if code == "ACCESS_DENIED": reason = ( reason + ". Please wait a few minutes then try again." "The remote servers might be trying to throttle requests." ) api_error = PyiCloudAPIResponseException(reason, code) LOGGER.error(api_error) raise api_error class PyiCloudService(object): """ A base authentication class for the iCloud service. Handles the authentication required to access iCloud services. Usage: from pyicloud import PyiCloudService pyicloud = PyiCloudService('<EMAIL>', 'password') pyicloud.iphone.location() """ HOME_ENDPOINT = "https://www.icloud.com" SETUP_ENDPOINT = "https://setup.icloud.com/setup/ws/1" def __init__( self, apple_id, password=<PASSWORD>, cookie_directory=None, verify=True, client_id=None, with_family=True, ): if password is None: password = <PASSWORD>from_keyring(apple_id) self.data = {} self.client_id = client_id or str(uuid1()).upper() self.with_family = with_family self.user = {"apple_id": apple_id, "password": password} self.password_filter = PyiCloudPasswordFilter(password) LOGGER.addFilter(self.password_filter) self._base_login_url = "%s/login" % self.SETUP_ENDPOINT if cookie_directory: self._cookie_directory = path.expanduser(path.normpath(cookie_directory)) else: self._cookie_directory = path.join(gettempdir(), "pyicloud") self.session = PyiCloudSession(self) self.session.verify = verify self.session.headers.update( { "Origin": self.HOME_ENDPOINT, "Referer": "%s/" % self.HOME_ENDPOINT, "User-Agent": "Opera/9.52 (X11; Linux i686; U; en)", } ) cookiejar_path = self._get_cookiejar_path() self.session.cookies = cookielib.LWPCookieJar(filename=cookiejar_path) if path.exists(cookiejar_path): try: self.session.cookies.load() LOGGER.debug("Read cookies from %s", cookiejar_path) except: # pylint: disable=bare-except # Most likely a pickled cookiejar from earlier versions. # The cookiejar will get replaced with a valid one after # successful authentication. LOGGER.warning("Failed to read cookiejar %s", cookiejar_path) self.params = { "clientBuildNumber": "17DHotfix5", "clientMasteringNumber": "17DHotfix5", "ckjsBuildVersion": "17DProjectDev77", "ckjsVersion": "2.0.5", "clientId": self.client_id, } self.authenticate() self._drive = None self._files = None self._photos = None def authenticate(self): """ Handles authentication, and persists the X-APPLE-WEB-KB cookie so that subsequent logins will not cause additional e-mails from Apple. """ LOGGER.info("Authenticating as %s", self.user["apple_id"]) data = dict(self.user) # We authenticate every time, so "remember me" is not needed data.update({"extended_login": False}) try: req = self.session.post( self._base_login_url, params=self.params, data=json.dumps(data) ) except PyiCloudAPIResponseException as error: msg = "Invalid email/password combination." raise PyiCloudFailedLoginException(msg, error) self.data = req.json() self.params.update({"dsid": self.data["dsInfo"]["dsid"]}) self._webservices = self.data["webservices"] if not path.exists(self._cookie_directory): mkdir(self._cookie_directory) self.session.cookies.save() LOGGER.debug("Cookies saved to %s", self._get_cookiejar_path()) LOGGER.info("Authentication completed successfully") LOGGER.debug(self.params) def _get_cookiejar_path(self): """Get path for cookiejar file.""" return path.join( self._cookie_directory, "".join([c for c in self.user.get("apple_id") if match(r"\w", c)]), ) @property def requires_2sa(self): """Returns True if two-step authentication is required.""" return ( self.data.get("hsaChallengeRequired", False) and self.data["dsInfo"].get("hsaVersion", 0) >= 1 ) # FIXME: Implement 2FA for hsaVersion == 2 # pylint: disable=fixme @property def trusted_devices(self): """Returns devices trusted for two-step authentication.""" request = self.session.get( "%s/listDevices" % self.SETUP_ENDPOINT, params=self.params ) return request.json().get("devices") def send_verification_code(self, device): """Requests that a verification code is sent to the given device.""" data = json.dumps(device) request = self.session.post( "%s/sendVerificationCode" % self.SETUP_ENDPOINT, params=self.params, data=data, ) return request.json().get("success", False) def validate_verification_code(self, device, code): """Verifies a verification code received on a trusted device.""" device.update({"verificationCode": code, "trustBrowser": True}) data = json.dumps(device) try: self.session.post( "%s/validateVerificationCode" % self.SETUP_ENDPOINT, params=self.params, data=data, ) except PyiCloudAPIResponseException as error: if error.code == -21669: # Wrong verification code return False raise # Re-authenticate, which will both update the HSA data, and # ensure that we save the X-APPLE-WEBAUTH-HSA-TRUST cookie. self.authenticate() return not self.requires_2sa def _get_webservice_url(self, ws_key): """Get webservice URL, raise an exception if not exists.""" if self._webservices.get(ws_key) is None: raise PyiCloudServiceNotActivatedException( "Webservice not available", ws_key ) return self._webservices[ws_key]["url"] @property def devices(self): """Returns all devices.""" service_root = self._get_webservice_url("findme") return FindMyiPhoneServiceManager( service_root, self.session, self.params, self.with_family ) @property def iphone(self): """Returns the iPhone.""" return self.devices[0] @property def account(self): """Gets the 'Account' service.""" service_root = self._get_webservice_url("account") return AccountService(service_root, self.session, self.params) @property def files(self): """Gets the 'File' service.""" if not self._files: service_root = self._get_webservice_url("ubiquity") self._files = UbiquityService(service_root, self.session, self.params) return self._files @property def photos(self): """Gets the 'Photo' service.""" if not self._photos: service_root = self._get_webservice_url("ckdatabasews") self._photos = PhotosService(service_root, self.session, self.params) return self._photos @property def calendar(self): """Gets the 'Calendar' service.""" service_root = self._get_webservice_url("calendar") return CalendarService(service_root, self.session, self.params) @property def contacts(self): """Gets the 'Contacts' service.""" service_root = self._get_webservice_url("contacts") return ContactsService(service_root, self.session, self.params) @property def reminders(self): """Gets the 'Reminders' service.""" service_root = self._get_webservice_url("reminders") return RemindersService(service_root, self.session, self.params) @property def drive(self): """Gets the 'Drive' service.""" if not self._drive: self._drive = DriveService( service_root=self._get_webservice_url("drivews"), document_root=self._get_webservice_url("docws"), session=self.session, params=self.params, ) return self._drive def __unicode__(self): return "iCloud API: %s" % self.user.get("apple_id") def __str__(self): as_unicode = self.__unicode__() if PY2: return as_unicode.encode("utf-8", "ignore") return as_unicode def __repr__(self): return "<%s>" % str(self) ```
{ "source": "jfc43/eval-transductive-robustness", "score": 3 }
#### File: eval-transductive-robustness/DENT/norm.py ```python from copy import deepcopy import torch import torch.nn as nn class Norm(nn.Module): """Norm adapts a model by estimating feature statistics during testing. Once equipped with Norm, the model normalizes its features during testing with batch-wise statistics, just like batch norm does during training. """ def __init__(self, model, eps=1e-5, momentum=0.1, reset_stats=False, no_stats=False): super().__init__() self.model = model self.model = configure_model(model, eps, momentum, reset_stats, no_stats) self.model_state = deepcopy(self.model.state_dict()) def forward(self, x): return self.model(x) def reset(self): self.model.load_state_dict(self.model_state, strict=True) def collect_stats(model): """Collect the normalization stats from batch norms. Walk the model's modules and collect all batch normalization stats. Return the stats and their names. """ stats = [] names = [] for nm, m in model.named_modules(): if isinstance(m, nn.BatchNorm2d): state = m.state_dict() if m.affine: del state['weight'], state['bias'] for ns, s in state.items(): stats.append(s) names.append(f"{nm}.{ns}") return stats, names def configure_model(model, eps, momentum, reset_stats, no_stats): """Configure model for adaptation by test-time normalization.""" for m in model.modules(): if isinstance(m, nn.BatchNorm2d): # use batch-wise statistics in forward m.train() # configure epsilon for stability, and momentum for updates m.eps = eps m.momentum = momentum if reset_stats: # reset state to estimate test stats without train stats m.reset_running_stats() if no_stats: # disable state entirely and use only batch stats m.track_running_stats = False m.running_mean = None m.running_var = None return model ``` #### File: RMC/models/resnet.py ```python import torch import torch.nn as nn from torch.autograd import Function import torch.nn.functional as F import torch.nn.init as init from torch.autograd import Variable import math class NormalizeLayer(torch.nn.Module): """Standardize the channels of a batch of images by subtracting the dataset mean and dividing by the dataset standard deviation. """ def __init__(self, means, sds): """ :param means: the channel means :param sds: the channel standard deviations """ super(NormalizeLayer, self).__init__() self.means = torch.tensor(means).cuda() self.sds = torch.tensor(sds).cuda() def forward(self, input): (batch_size, num_channels, height, width) = input.shape means = self.means.repeat((batch_size, height, width, 1)).permute(0, 3, 1, 2) sds = self.sds.repeat((batch_size, height, width, 1)).permute(0, 3, 1, 2) return (input - means)/sds class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d( in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion*planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, in_planes, planes, stride=1): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(self.expansion*planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion*planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) out += self.shortcut(x) out = F.relu(out) return out class ResNet(nn.Module): # ResNet34 def __init__(self, means, sds, block=BasicBlock, num_blocks=[3, 4, 6, 3], num_classes=10): super(ResNet, self).__init__() self.normalize_layer = NormalizeLayer(means, sds) self.in_planes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) self.linear = nn.Linear(512*block.expansion, num_classes) def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1]*(num_blocks-1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def get_feature(self, x): out = self.normalize_layer(x) out = F.relu(self.bn1(self.conv1(out))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) return out def forward(self, x): out = self.normalize_layer(x) out = F.relu(self.bn1(self.conv1(out))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out ``` #### File: eval-transductive-robustness/RMC/prepare_augmented_data.py ```python import argparse import os import numpy as np import torch import torch.optim as optim from torch.utils.data import DataLoader, TensorDataset from torchvision import transforms from torchvision import datasets from utils.lib import * from utils.pgd_attack import * from models.resnet import ResNet def test(model, dataloader): model.eval() n_correct, n_total = 0, 0 for img, label in iter(dataloader): batch_size = len(label) img, label = img.cuda(), label.cuda() with torch.no_grad(): class_output = model(img) pred = class_output.data.max(1, keepdim=True)[1] n_correct += pred.eq(label.data.view_as(pred)).cpu().sum() n_total += batch_size acc = n_correct.double() / n_total return acc if __name__ == '__main__': parser = argparse.ArgumentParser(description='Generate augmented training dataset and extract features') parser.add_argument('--seed', type=int, default=0) parser.add_argument('--model-type', default='nat_model', choices=['nat_model', 'adv_model'], type=str, help='model type') parser.add_argument('--save-dir', default='./generate_data/', type=str, help='dir to save data') parser.add_argument('--model-dir', default='./checkpoints/', type=str, help='dir to saved model') # args parse args = parser.parse_args() # Set random seed set_seed(args.seed) model_type = args.model_type save_dir = os.path.join(args.save_dir, model_type) if not os.path.exists(save_dir): os.makedirs(save_dir) model_path = os.path.join(args.model_dir, model_type, "checkpoint.pth") batch_size = 128 transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), ]) transform_test = transforms.Compose([ transforms.ToTensor(), ]) mean = [x/255.0 for x in [125.3, 123.0, 113.9]] std = [x/255.0 for x in [63.0, 62.1, 66.7]] train_dataset = datasets.CIFAR10('./datasets/cifar10', train=True, download=True, transform=transform_train) train_dataloader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=False, num_workers=2) test_dataset = datasets.CIFAR10('./datasets/cifar10', train=False, transform=transform_test) test_dataloader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False, num_workers=2) # Model Setup model = torch.load(model_path).cuda() model.eval() attacker = LinfPGDAttack(model, eps=8/255.0, nb_iter=40, eps_iter=1/255.0, rand_init=True, clip_min=0., clip_max=1., targeted=False, num_classes=10, elementwise_best=True) augment_data = [] augment_label = [] for batch_x, batch_y in train_dataloader: augment_data.extend(batch_x.numpy()) augment_label.extend(batch_y.numpy()) correct = 0.0 count = 0.0 for j in range(4): for batch_x, batch_y in train_dataloader: batch_x = batch_x.cuda() batch_y = batch_y.cuda() adv_batch_x = attacker.perturb(batch_x, batch_y) augment_data.extend(adv_batch_x.cpu().numpy()) augment_label.extend(batch_y.cpu().numpy()) with torch.no_grad(): outputs = model(adv_batch_x) preds = torch.argmax(outputs, axis=1) correct += torch.sum(preds==batch_y) count += batch_x.shape[0] print("Adv acc: {:.2f}%".format((correct/count)*100)) augment_data = np.array(augment_data) augment_label = np.array(augment_label) np.save(os.path.join(save_dir, "augment_data.npy"), augment_data) np.save(os.path.join(save_dir, "augment_label.npy"), augment_label) augment_data = torch.Tensor(augment_data) augment_label = torch.Tensor(augment_label).long() augment_dataset = TensorDataset(augment_data, augment_label) augment_dataloader = DataLoader(augment_dataset, batch_size=batch_size, shuffle=False) augment_features = [] for batch_x, batch_y in augment_dataloader: batch_x = batch_x.cuda() with torch.no_grad(): feature = model.get_feature(batch_x) augment_features.extend(feature.cpu().numpy()) augment_features = np.array(augment_features) np.save(os.path.join(save_dir, "augment_feature.npy"), augment_features) ``` #### File: TADV/attacks/gmsa_attack.py ```python from __future__ import print_function import torch import torch.nn as nn class GMSAMINLinfPGDAttack: """ GMSA-MIN Attack with order=Linf :param eps: maximum distortion. :param nb_iter: number of iterations. :param eps_iter: attack step size. :param rand_init: (optional bool) random initialization. :param clip_min: mininum value per input dimension. :param clip_max: maximum value per input dimension. :param targeted: if the attack is targeted. """ def __init__( self, models, eps=0.1, nb_iter=100, eps_iter=0.01, rand_init=True, clip_min=0., clip_max=1., targeted=False, num_classes=10, elementwise_best=False): self.eps = eps self.nb_iter = nb_iter self.eps_iter = eps_iter self.rand_init = rand_init self.targeted = targeted self.elementwise_best = elementwise_best self.models = models self.num_classes = num_classes self.loss_func = nn.CrossEntropyLoss(reduction='none') self.clip_min = clip_min self.clip_max = clip_max def get_loss(self, x, y): min_loss = None for model in self.models: outputs = model(x) curr_loss = self.loss_func(outputs, y) if min_loss is None: min_loss = curr_loss else: cond = curr_loss.data < min_loss.data min_loss[cond] = curr_loss[cond] return min_loss def perturb(self, x, y): """ Given examples (x, y), returns their adversarial counterparts with an attack length of eps. :param x: input tensor. :param y: label tensor. :return: tensor containing perturbed inputs. """ for model in self.models: model.eval() x = x.detach().clone() y = y.detach().clone() y = y.cuda() delta = torch.zeros_like(x) delta = nn.Parameter(delta) delta.requires_grad_() if self.elementwise_best: with torch.no_grad(): loss = self.get_loss(x, y) worst_loss = loss.data.clone() worst_perb = delta.data.clone() if self.rand_init: delta.data.uniform_(-self.eps, self.eps) delta.data = (torch.clamp(x.data + delta.data, min=self.clip_min, max=self.clip_max) - x.data) for ii in range(self.nb_iter*len(self.models)): adv_x = x + delta loss = self.get_loss(adv_x, y) if self.elementwise_best: cond = loss.data > worst_loss worst_loss[cond] = loss.data[cond] worst_perb[cond] = delta.data[cond] loss.mean().backward() grad_sign = delta.grad.data.sign() delta.data = delta.data + grad_sign * self.eps_iter delta.data = torch.clamp(delta.data, min=-self.eps, max=self.eps) delta.data = torch.clamp(x.data + delta.data, min=self.clip_min, max=self.clip_max) - x.data delta.grad.data.zero_() if self.elementwise_best: adv_x = x + delta with torch.no_grad(): loss = self.get_loss(adv_x, y) cond = loss.data > worst_loss worst_loss[cond] = loss.data[cond] worst_perb[cond] = delta.data[cond] adv_x = x + worst_perb else: adv_x = x + delta.data return adv_x class GMSAAVGLinfPGDAttack: """ GMSA-AVG Attack with order=Linf :param eps: maximum distortion. :param nb_iter: number of iterations. :param eps_iter: attack step size. :param rand_init: (optional bool) random initialization. :param clip_min: mininum value per input dimension. :param clip_max: maximum value per input dimension. :param targeted: if the attack is targeted. """ def __init__( self, models, eps=0.1, nb_iter=100, eps_iter=0.01, rand_init=True, clip_min=0., clip_max=1., targeted=False, num_classes=10, elementwise_best=False): self.eps = eps self.nb_iter = nb_iter self.eps_iter = eps_iter self.rand_init = rand_init self.targeted = targeted self.elementwise_best = elementwise_best self.models = models self.num_classes = num_classes self.loss_func = nn.CrossEntropyLoss(reduction='none') self.clip_min = clip_min self.clip_max = clip_max def get_loss(self, x, y, update=False): loss = 0.0 for model in self.models: outputs = model(x) if self.targeted: target = ((y + torch.randint(1, self.num_classes, y.shape).cuda()) % self.num_classes).long() curr_loss = -self.loss_func(outputs, target) else: curr_loss = self.loss_func(outputs, y) if update: curr_loss.mean().backward() loss += curr_loss.data return loss def perturb(self, x, y): """ Given examples (x, y), returns their adversarial counterparts with an attack length of eps. :param x: input tensor. :param y: label tensor. :return: tensor containing perturbed inputs. """ for model in self.models: model.eval() x = x.detach().clone() y = y.detach().clone() y = y.cuda() delta = torch.zeros_like(x) delta = nn.Parameter(delta) delta.requires_grad_() if self.elementwise_best: with torch.no_grad(): loss = self.get_loss(x, y, update=False) worst_loss = loss.data.clone() worst_perb = delta.data.clone() if self.rand_init: delta.data.uniform_(-self.eps, self.eps) delta.data = (torch.clamp(x.data + delta.data, min=self.clip_min, max=self.clip_max) - x.data) for ii in range(self.nb_iter): adv_x = x + delta loss = self.get_loss(adv_x, y, update=True) if self.elementwise_best: cond = loss.data > worst_loss worst_loss[cond] = loss.data[cond] worst_perb[cond] = delta.data[cond] grad_sign = delta.grad.data.sign() delta.data = delta.data + grad_sign * self.eps_iter delta.data = torch.clamp(delta.data, min=-self.eps, max=self.eps) delta.data = torch.clamp(x.data + delta.data, min=self.clip_min, max=self.clip_max) - x.data delta.grad.data.zero_() if self.elementwise_best: adv_x = x + delta with torch.no_grad(): loss = self.get_loss(adv_x, y, update=False) cond = loss.data > worst_loss worst_loss[cond] = loss.data[cond] worst_perb[cond] = delta.data[cond] adv_x = x + worst_perb else: adv_x = x + delta.data return adv_x class LinfPGDAttack: """ PGD Attack with order=Linf :param eps: maximum distortion. :param nb_iter: number of iterations. :param eps_iter: attack step size. :param rand_init: (optional bool) random initialization. :param clip_min: mininum value per input dimension. :param clip_max: maximum value per input dimension. :param targeted: if the attack is targeted. """ def __init__( self, model, eps=0.1, nb_iter=100, eps_iter=0.01, rand_init=True, clip_min=0., clip_max=1., targeted=False, num_classes=10, elementwise_best=False): self.eps = eps self.nb_iter = nb_iter self.eps_iter = eps_iter self.rand_init = rand_init self.targeted = targeted self.elementwise_best = elementwise_best self.model = model self.num_classes = num_classes self.loss_func = nn.CrossEntropyLoss(reduction='none') self.clip_min = clip_min self.clip_max = clip_max def get_loss(self, x, y): outputs = self.model(x) if self.targeted: target = ((y + torch.randint(1, self.num_classes, y.shape).cuda()) % self.num_classes).long() loss = -self.loss_func(outputs, target) else: loss = self.loss_func(outputs, y) return loss def perturb(self, x, y): """ Given examples (x, y), returns their adversarial counterparts with an attack length of eps. :param x: input tensor. :param y: label tensor. :return: tensor containing perturbed inputs. """ self.model.eval() x = x.detach().clone() y = y.detach().clone() y = y.cuda() delta = torch.zeros_like(x) delta = nn.Parameter(delta) delta.requires_grad_() if self.elementwise_best: loss = self.get_loss(x, y) worst_loss = loss.data.clone() worst_perb = delta.data.clone() if self.rand_init: delta.data.uniform_(-self.eps, self.eps) delta.data = (torch.clamp(x.data + delta.data, min=self.clip_min, max=self.clip_max) - x.data) for ii in range(self.nb_iter): adv_x = x + delta loss = self.get_loss(adv_x, y) if self.elementwise_best: cond = loss.data > worst_loss worst_loss[cond] = loss.data[cond] worst_perb[cond] = delta.data[cond] loss.mean().backward() grad_sign = delta.grad.data.sign() delta.data = delta.data + grad_sign * self.eps_iter delta.data = torch.clamp(delta.data, min=-self.eps, max=self.eps) delta.data = torch.clamp(x.data + delta.data, min=self.clip_min, max=self.clip_max) - x.data delta.grad.data.zero_() if self.elementwise_best: adv_x = x + delta loss = self.get_loss(adv_x, y) cond = loss.data > worst_loss worst_loss[cond] = loss.data[cond] worst_perb[cond] = delta.data[cond] adv_x = x + worst_perb else: adv_x = x + delta.data return adv_x ``` #### File: TADV/models/fixed_lenet.py ```python import torch import utils.torch from .classifier import Classifier import torch.nn as nn class FixedLeNet(Classifier): """ Fixed LeNet architecture, working on MNIST architectures only. """ def __init__(self, N_class, resolution=(1, 28, 28), **kwargs): """ Initialize classifier. :param N_class: number of classes to classify :type N_class: int :param resolution: resolution (assumed to be square) :type resolution: int """ assert resolution[0] == 1 assert resolution[1] == 28 assert resolution[2] == 28 super(FixedLeNet, self).__init__(N_class, resolution, **kwargs) self.append_layer('0', nn.Conv2d(resolution[0], 32, 5, padding=2)) self.append_layer('1', nn.ReLU()) self.append_layer('2', nn.MaxPool2d(2, 2)) self.append_layer('3', nn.Conv2d(32, 64, 5, padding=2)) self.append_layer('4', nn.ReLU()) self.append_layer('5', nn.MaxPool2d(2, 2)) self.append_layer('6', utils.torch.Flatten()) self.append_layer('7', nn.Linear(7 * 7 * 64, 1024)) self.append_layer('8', nn.ReLU()) self.append_layer('9', nn.Linear(1024, self.N_class)) ``` #### File: TADV/utils/torch.py ```python import torch import numpy import scipy.ndimage import math import random def set_seed(seed): """Sets seed""" if torch.cuda.is_available(): torch.cuda.manual_seed(seed) torch.manual_seed(seed) numpy.random.seed(seed) random.seed(seed) torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True def is_cuda(mixed): """ Check if model/tensor is on CUDA. :param mixed: model or tensor :type mixed: torch.nn.Module or torch.autograd.Variable or torch.Tensor :return: on cuda :rtype: bool """ assert isinstance(mixed, torch.nn.Module) or isinstance(mixed, torch.autograd.Variable) \ or isinstance(mixed, torch.Tensor), 'mixed has to be torch.nn.Module, torch.autograd.Variable or torch.Tensor' is_cuda = False if isinstance(mixed, torch.nn.Module): is_cuda = True for parameters in list(mixed.parameters()): is_cuda = is_cuda and parameters.is_cuda if isinstance(mixed, torch.autograd.Variable): is_cuda = mixed.is_cuda if isinstance(mixed, torch.Tensor): is_cuda = mixed.is_cuda return is_cuda def binary_labels(classes): """ Convert 0,1 labels to -1,1 labels. :param classes: classes as B x 1 :type classes: torch.autograd.Variable or torch.Tensor """ classes[classes == 0] = -1 return classes def one_hot(classes, C): """ Convert class labels to one-hot vectors. :param classes: classes as B x 1 :type classes: torch.autograd.Variable or torch.Tensor :param C: number of classes :type C: int :return: one hot vector as B x C :rtype: torch.autograd.Variable or torch.Tensor """ assert isinstance(classes, torch.autograd.Variable) or isinstance(classes, torch.Tensor), 'classes needs to be torch.autograd.Variable or torch.Tensor' assert len(classes.size()) == 2 or len(classes.size()) == 1, 'classes needs to have rank 2 or 1' assert C > 0 if len(classes.size()) < 2: classes = classes.view(-1, 1) one_hot = torch.Tensor(classes.size(0), C) if is_cuda(classes): one_hot = one_hot.cuda() if isinstance(classes, torch.autograd.Variable): one_hot = torch.autograd.Variable(one_hot) one_hot.zero_() one_hot.scatter_(1, classes, 1) return one_hot def tensor_or_value(mixed): """ Get tensor or single value. :param mixed: variable, tensor or value :type mixed: mixed :return: tensor or value :rtype: torch.Tensor or value """ if isinstance(mixed, torch.Tensor): if mixed.numel() > 1: return mixed else: return mixed.item() elif isinstance(mixed, torch.autograd.Variable): return tensor_or_value(mixed.cpu().data) else: return mixed def as_variable(mixed, cuda=False, requires_grad=False): """ Get a tensor or numpy array as variable. :param mixed: input tensor :type mixed: torch.Tensor or numpy.ndarray :param device: gpu or not :type device: bool :param requires_grad: gradients :type requires_grad: bool :return: variable :rtype: torch.autograd.Variable """ assert isinstance(mixed, numpy.ndarray) or isinstance(mixed, torch.Tensor), 'input needs to be numpy.ndarray or torch.Tensor' if isinstance(mixed, numpy.ndarray): mixed = torch.from_numpy(mixed) if cuda: mixed = mixed.cuda() return torch.autograd.Variable(mixed, requires_grad) def tile(a, dim, n_tile): """ Numpy-like tiling in torch. :param a: tensor :type a: torch.Tensor or torch.autograd.Variable :param dim: dimension to tile :type dim: int :param n_tile: number of tiles :type n_tile: int :return: tiled tensor :rtype: torch.Tensor or torch.autograd.Variable """ init_dim = a.size(dim) repeat_idx = [1] * a.dim() repeat_idx[dim] = n_tile a = a.repeat(*(repeat_idx)) order_index = torch.LongTensor(numpy.concatenate([init_dim * numpy.arange(n_tile) + i for i in range(init_dim)])) if is_cuda(a): order_index = order_index.cuda() return torch.index_select(a, dim, order_index) def expand_as(tensor, tensor_as): """ Expands the tensor using view to allow broadcasting. :param tensor: input tensor :type tensor: torch.Tensor or torch.autograd.Variable :param tensor_as: reference tensor :type tensor_as: torch.Tensor or torch.autograd.Variable :return: tensor expanded with singelton dimensions as tensor_as :rtype: torch.Tensor or torch.autograd.Variable """ view = list(tensor.size()) for i in range(len(tensor.size()), len(tensor_as.size())): view.append(1) return tensor.view(view) def get_exponential_scheduler(optimizer, batches_per_epoch, gamma=0.97): """ Get exponential scheduler. Note that the resulting optimizer's step function is called after each batch! :param optimizer: optimizer :type optimizer: torch.optim.Optimizer :param batches_per_epoch: number of batches per epoch :type batches_per_epoch: int :param gamma: gamma :type gamma: float :return: scheduler :rtype: torch.optim.lr_scheduler.LRScheduler """ return torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=[lambda epoch: gamma ** math.floor(epoch/batches_per_epoch)]) def classification_error(logits, targets, reduction='mean'): """ Accuracy. :param logits: predicted classes :type logits: torch.autograd.Variable :param targets: target classes :type targets: torch.autograd.Variable :param reduce: reduce to number or keep per element :type reduce: bool :return: error :rtype: torch.autograd.Variable """ assert logits.size()[0] == targets.size()[0] assert len(list(targets.size())) == 1# or (len(list(targets.size())) == 2 and targets.size(1) == 1) assert len(list(logits.size())) == 2 if logits.size()[1] > 1: values, indices = torch.max(torch.nn.functional.softmax(logits, dim=1), dim=1) else: indices = torch.round(torch.sigmoid(logits)).view(-1) errors = torch.clamp(torch.abs(indices.long() - targets.long()), max=1) if reduction == 'mean': return torch.mean(errors.float()) elif reduction == 'sum': return torch.sum(errors.float()) else: return errors def f7p_loss(logits, true_classes, reduction='mean'): if logits.size(1) > 1: current_probabilities = torch.nn.functional.softmax(logits, dim=1) current_probabilities = current_probabilities * (1 - one_hot(true_classes, current_probabilities.size(1))) loss = torch.max(current_probabilities, dim=1)[0] else: loss = true_classes.float()*(1 - torch.nn.functional.sigmoid(logits.view(-1))) + (1 - true_classes.float())*(torch.nn.functional.sigmoid(logits.view(-1))) if reduction == "none": return loss elif reduction == "mean": return torch.mean(loss) elif reduction == "sum": return torch.sum(loss) else: raise ValueError def classification_loss(logits, targets, reduction='mean'): """ Calculates either the multi-class or binary cross-entropy loss. :param logits: predicted classes :type logits: torch.autograd.Variable :param targets: target classes :type targets: torch.autograd.Variable :param reduction: reduction type :type reduction: str :return: error :rtype: torch.autograd.Variable """ if logits.size()[1] > 1: return torch.nn.functional.cross_entropy(logits, targets, reduction=reduction) else: # probability 1 is class 1 # probability 0 is class 0 return torch.nn.functional.binary_cross_entropy(torch.sigmoid(logits).view(-1), targets.float(), reduction=reduction) def step_function_perturbation(perturb, epsilon_0, alpha=1e-4, norm_type='inf', smooth_approx=False, temperature=0.01): """ Step function applied to the perturbation norm. By default, it computes the exact step function which is not differentiable. If a smooth approximation based on the sigmoid function is needed, set `smooth_approx=True` and set the `temperature` to a suitably small value. :param perturb: Torch Tensor with the perturbation. Can be a tensor of shape `(b, d1, ...)`, where `b` is the batch size and the rest are dimensions. Can also be a single vector of shape `[d]`. :param epsilon_0: Radius of the smaller perturbation ball - a small positive value. :param alpha: Small negative offset for the step function. The step function's value is `-alpha` when the perturbation norm is less than `epsilon_0`. :param norm_type: Type of norm: 'inf' for infinity norm, '1', '2' etc for the other types of norm. :param smooth_approx: Set to True to get a sigmoid-based approximation of the step function. :param temperature: small non-negative value that controls the steepness of the sigmoid approximation. :returns: tensor of function values computed for each element in the batch. Has shape `[b]`. """ assert isinstance(perturb, (torch.Tensor, torch.autograd.Variable)), ("Input 'perturb' should be of type " "torch.Tensor or torch.autograd.Variable") s = perturb.shape dim = 1 if len(s) > 2: perturb = perturb.view(s[0], -1) # flatten into a vector elif len(s) == 1: # single vector dim = None if norm_type == 'inf': norm_type = float('inf') elif not isinstance(norm_type, (int, float)): # example: norm_type = '2' norm_type = int(norm_type) norm_val = torch.linalg.vector_norm(perturb, ord=norm_type, dim=dim) if not smooth_approx: return torch.where(norm_val <= epsilon_0, -1. * alpha, 1.) else: return torch.sigmoid((1. / temperature) * (norm_val - epsilon_0)) - alpha def ramp_function_perturbation(perturb, epsilon_0, epsilon, alpha=1e-4, norm_type='inf'): """ Ramp function applied to the perturbation norm as defined in the paper. :param perturb: Torch Tensor with the perturbation. Can be a tensor of shape `(b, d1, ...)`, where `b` is the batch size and the rest are dimensions. Can also be a single vector of shape `(d)`. :param epsilon_0: Radius of the smaller perturbation ball - a small positive value. :param epsilon: Radius of the larger perturbation ball. Should be >= `epsilon_0`. :param alpha: Small negative offset for the step function. The step function's value is `-alpha` when the perturbation norm is less than `epsilon_0`. :param norm_type: Type of norm: 'inf' for infinity norm, '1', '2' etc for the other types of norm. :returns: tensor of function values computed for each element in the batch. Has shape `[b]`. """ assert isinstance(perturb, (torch.Tensor, torch.autograd.Variable)), ("Input 'perturb' should be of type " "torch.Tensor or torch.autograd.Variable") assert epsilon >= epsilon_0, "Value of 'epsilon' cannot be smaller than 'epsilon_0'" s = perturb.shape dim = 1 if len(s) > 2: perturb = perturb.view(s[0], -1) # flatten into a vector elif len(s) == 1: # single vector dim = None if norm_type == 'inf': norm_type = float('inf') elif not isinstance(norm_type, (int, float)): # example: norm_type = '2' norm_type = int(norm_type) norm_val = torch.linalg.vector_norm(perturb, ord=norm_type, dim=dim) temp = torch.maximum(norm_val - epsilon_0, torch.zeros_like(norm_val)) return ((1. + alpha) / (epsilon - epsilon_0)) * temp - alpha def max_p_loss(logits, targets=None, reduction='mean'): """ Loss. :param logits: predicted classes :type logits: torch.autograd.Variable :param targets: target classes :type targets: torch.autograd.Variable :param reduction: reduction type :type reduction: str :return: error :rtype: torch.autograd.Variable """ max_log = torch.max(torch.nn.functional.softmax(logits, dim=1), dim=1)[0] if reduction == 'mean': return torch.mean(max_log) elif reduction == 'sum': return torch.sum(max_log) else: return max_log def max_log_loss(logits, targets=None, reduction='mean'): """ Loss. :param logits: predicted classes :type logits: torch.autograd.Variable :param targets: target classes :type targets: torch.autograd.Variable :param reduction: reduction type :type reduction: str :return: error :rtype: torch.autograd.Variable """ max_log = torch.max(torch.nn.functional.log_softmax(logits, dim=1), dim=1)[0] if reduction == 'mean': return torch.mean(max_log) elif reduction == 'sum': return torch.sum(max_log) else: return max_log def cross_entropy_divergence(logits, targets, reduction='mean'): """ Loss. :param logits: predicted logits :type logits: torch.autograd.Variable :param targets: target distributions :type targets: torch.autograd.Variable :param reduction: reduction type :type reduction: str :return: error :rtype: torch.autograd.Variable """ assert len(list(logits.size())) == len(list(targets.size())) assert logits.size()[0] == targets.size()[0] assert logits.size()[1] == targets.size()[1] assert logits.size()[1] > 1 divergences = torch.sum(- targets * torch.nn.functional.log_softmax(logits, dim=1), dim=1) if reduction == 'mean': return torch.mean(divergences) elif reduction == 'sum': return torch.sum(divergences) else: return divergences class View(torch.nn.Module): """ Simple view layer. """ def __init__(self, *args): """ Constructor. :param args: shape :type args: [int] """ super(View, self).__init__() self.shape = args def forward(self, input): """ Forward pass. :param input: input :type input: torch.autograd.Variable :return: output :rtype: torch.autograd.Variable """ return input.view(self.shape) class Flatten(torch.nn.Module): """ Flatten module. """ def forward(self, input): """ Forward pass. :param input: input :type input: torch.autograd.Variable :return: output :rtype: torch.autograd.Variable """ return input.view(input.shape[0], -1) class Clamp(torch.nn.Module): """ Wrapper for clamp. """ def __init__(self, min=0, max=1): """ Constructor. """ super(Clamp, self).__init__() self.min = min """ (float) Min value. """ self.max = max """ (float) Max value. """ def forward(self, input): """ Forward pass. :param input: input :type input: torch.autograd.Variable :return: output :rtype: torch.autograd.Variable """ return torch.clamp(torch.clamp(input, min=self.min), max=self.max) class Scale(torch.nn.Module): """ Simply scaling layer, mainly to allow simple saving and loading. """ def __init__(self, shape): """ Constructor. :param shape: shape :type shape: [int] """ super(Scale, self).__init__() self.weight = torch.nn.Parameter(torch.zeros(shape)) # min self.bias = torch.nn.Parameter(torch.ones(shape)) # max def forward(self, input): """ Forward pass. :param input: input :type input: torch.autograd.Variable :return: output :rtype: torch.autograd.Variable """ return expand_as(self.weight, input) + torch.mul(expand_as(self.bias, input) - expand_as(self.weight, input), input) class Entropy(torch.nn.Module): """ Entropy computation based on logits. """ def __init__(self): """ Constructor. """ super(Entropy, self).__init__() def forward(self, input): """ Forward pass. :param input: input :type input: torch.autograd.Variable :return: output :rtype: torch.autograd.Variable """ return -1.*torch.sum(torch.nn.functional.softmax(input, dim=1) * torch.nn.functional.log_softmax(input, dim=1)) class Normalize(torch.nn.Module): """ Normalization layer to be learned. """ def __init__(self, n_channels): """ Constructor. :param n_channels: number of channels :type n_channels: int """ super(Normalize, self).__init__() self.weight = torch.nn.Parameter(torch.ones(n_channels)) self.bias = torch.nn.Parameter(torch.zeros(n_channels)) def forward(self, input): """ Forward pass. :param input: input :type input: torch.autograd.Variable :return: output :rtype: torch.autograd.Variable """ return (input - self.bias.view(1, -1, 1, 1))/self.weight.view(1, -1, 1, 1) class GaussianLayer(torch.nn.Module): """ Gaussian convolution. """ def __init__(self, sigma=3, channels=3): """ """ super(GaussianLayer, self).__init__() self.sigma = sigma """ (float) Sigma. """ padding = math.ceil(self.sigma) kernel = 2*padding + 1 self.seq = torch.nn.Sequential( torch.nn.ReflectionPad2d((padding, padding, padding, padding)), torch.nn.Conv2d(channels, channels, kernel, stride=1, padding=0, bias=None, groups=channels) ) n = numpy.zeros((kernel, kernel)) n[padding, padding] = 1 k = scipy.ndimage.gaussian_filter(n, sigma=self.sigma) for name, f in self.named_parameters(): f.data.copy_(torch.from_numpy(k)) def forward(self, input): """ Forward pass. :param input: input :type input: torch.autograd.Variable :return: output :rtype: torch.autograd.Variable """ return self.seq(input) ``` #### File: URejectron/utils/data_util.py ```python import os import pickle import sys import csv import matplotlib.pyplot as plt from PIL import Image version = sys.version_info import torch from torch.utils.data import Dataset, DataLoader from PIL import Image import numpy as np import skimage.data import scipy.io as sio import cv2 def image_brightness_normalisation(image): image[:,:,0] = cv2.equalizeHist(image[:,:,0]) image[:,:,1] = cv2.equalizeHist(image[:,:,1]) image[:,:,2] = cv2.equalizeHist(image[:,:,2]) return image def preprocess_data(X): for i in range(len(X)): X[i,:,:,:] = image_brightness_normalisation(X[i,:,:,:]) return X def get_gtsrb_data(path): loaded = np.load(os.path.join(path, 'train.npz')) train_images = loaded['images'] train_images = preprocess_data(train_images) train_labels = loaded['labels'] return (train_images, train_labels) class MyDataset(Dataset): def __init__(self, data, targets, transform=None): self.data = data self.targets = torch.LongTensor(targets) self.transform = transform def __getitem__(self, index): x = self.data[index] y = self.targets[index] if self.transform: x = self.transform(x) return x, y def __len__(self): return len(self.data) class MyDatasetNoLabel(Dataset): def __init__(self, data, transform=None): self.data = data self.transform = transform def __getitem__(self, index): x = self.data[index] if self.transform: x = self.transform(x) return x def __len__(self): return len(self.data) ```
{ "source": "jfc43/informative-outlier-mining", "score": 2 }
#### File: jfc43/informative-outlier-mining/eval_ood_detection.py ```python from __future__ import print_function import argparse import os import sys import torch from torch.autograd import Variable import torch.nn as nn import torch.nn.functional as F import numpy as np import torch.optim as optim import torchvision import torchvision.transforms as transforms from sklearn.linear_model import LogisticRegressionCV import models.densenet as dn import models.wideresnet as wn import models.gmm as gmmlib import utils.svhn_loader as svhn import numpy as np import time from scipy import misc from utils import OODScoreLinfPGDAttack, ConfidenceLinfPGDAttack, MahalanobisLinfPGDAttack, SOFLLinfPGDAttack, metric, sample_estimator, get_Mahalanobis_score, gen_corruction_image parser = argparse.ArgumentParser(description='Pytorch Detecting Out-of-distribution examples in neural networks') parser.add_argument('--in-dataset', default="CIFAR-10", type=str, help='in-distribution dataset') parser.add_argument('--name', required=True, type=str, help='the name of the model trained') parser.add_argument('--model-arch', default='densenet', type=str, help='model architecture') parser.add_argument('--gpu', default = '0', type = str, help='gpu index') parser.add_argument('--adv', help='L_inf OOD', action='store_true') parser.add_argument('--corrupt', help='corrupted OOD', action='store_true') parser.add_argument('--adv-corrupt', help='comp. OOD', action='store_true') parser.add_argument('--in-dist-only', help='only evaluate in-distribution', action='store_true') parser.add_argument('--out-dist-only', help='only evaluate out-distribution', action='store_true') parser.add_argument('--method', default='msp', type=str, help='scoring function') parser.add_argument('--cal-metric', help='calculate metric directly', action='store_true') parser.add_argument('--epsilon', default=8.0, type=float, help='epsilon') parser.add_argument('--iters', default=40, type=int, help='attack iterations') parser.add_argument('--iter-size', default=1.0, type=float, help='attack step size') parser.add_argument('--severity-level', default=5, type=int, help='severity level') parser.add_argument('--epochs', default=100, type=int, help='number of total epochs to run') parser.add_argument('-b', '--batch-size', default=50, type=int, help='mini-batch size') parser.add_argument('--base-dir', default='output/ood_scores', type=str, help='result directory') parser.add_argument('--layers', default=100, type=int, help='total number of layers (default: 100)') parser.add_argument('--depth', default=40, type=int, help='depth of resnet') parser.add_argument('--width', default=4, type=int, help='width of resnet') parser.set_defaults(argument=True) args = parser.parse_args() os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu torch.manual_seed(1) torch.cuda.manual_seed(1) np.random.seed(1) def get_msp_score(inputs, model, method_args): with torch.no_grad(): outputs = model(inputs) scores = np.max(F.softmax(outputs, dim=1).detach().cpu().numpy(), axis=1) return scores def get_sofl_score(inputs, model, method_args): num_classes = method_args['num_classes'] with torch.no_grad(): outputs = model(inputs) scores = -F.softmax(outputs, dim=1)[:, num_classes:].sum(dim=1).detach().cpu().numpy() return scores def get_rowl_score(inputs, model, method_args, raw_score=False): num_classes = method_args['num_classes'] with torch.no_grad(): outputs = model(inputs) if raw_score: scores = -1.0 * F.softmax(outputs, dim=1)[:, num_classes].float().detach().cpu().numpy() else: scores = -1.0 * (outputs.argmax(dim=1)==num_classes).float().detach().cpu().numpy() return scores def get_ood_score(inputs, model, method_args): with torch.no_grad(): outputs = model(inputs) scores = -1.0 * (F.softmax(outputs, dim=1)[:,-1]).float().detach().cpu().numpy() return scores def get_odin_score(inputs, model, method_args): # Calculating the perturbation we need to add, that is, # the sign of gradient of cross entropy loss w.r.t. input temper = method_args['temperature'] noiseMagnitude1 = method_args['magnitude'] criterion = nn.CrossEntropyLoss() inputs = Variable(inputs, requires_grad = True) outputs = model(inputs) maxIndexTemp = np.argmax(outputs.data.cpu().numpy(), axis=1) # Using temperature scaling outputs = outputs / temper labels = Variable(torch.LongTensor(maxIndexTemp).cuda()) loss = criterion(outputs, labels) loss.backward() # Normalizing the gradient to binary in {0, 1} gradient = torch.ge(inputs.grad.data, 0) gradient = (gradient.float() - 0.5) * 2 # Adding small perturbations to images tempInputs = torch.add(inputs.data, -noiseMagnitude1, gradient) outputs = model(Variable(tempInputs)) outputs = outputs / temper # Calculating the confidence after adding perturbations nnOutputs = outputs.data.cpu() nnOutputs = nnOutputs.numpy() nnOutputs = nnOutputs - np.max(nnOutputs, axis=1, keepdims=True) nnOutputs = np.exp(nnOutputs) / np.sum(np.exp(nnOutputs), axis=1, keepdims=True) scores = np.max(nnOutputs, axis=1) return scores def get_mahalanobis_score(inputs, model, method_args): num_classes = method_args['num_classes'] sample_mean = method_args['sample_mean'] precision = method_args['precision'] magnitude = method_args['magnitude'] regressor = method_args['regressor'] num_output = method_args['num_output'] Mahalanobis_scores = get_Mahalanobis_score(inputs, model, num_classes, sample_mean, precision, num_output, magnitude) scores = -regressor.predict_proba(Mahalanobis_scores)[:, 1] return scores def get_score(inputs, model, method, method_args, raw_score=False): if method == "msp": scores = get_msp_score(inputs, model, method_args) elif method == "odin": scores = get_odin_score(inputs, model, method_args) elif method == "mahalanobis": scores = get_mahalanobis_score(inputs, model, method_args) elif method == "sofl": scores = get_sofl_score(inputs, model, method_args) elif method == "rowl": scores = get_rowl_score(inputs, model, method_args, raw_score) elif method == "ntom": scores = get_ood_score(inputs, model, method_args) elif method == "atom": scores = get_ood_score(inputs, model, method_args) return scores def corrupt_attack(x, model, method, method_args, in_distribution, severity_level = 5): x = x.detach().clone() scores = get_score(x, model, method, method_args, raw_score=True) worst_score = scores.copy() worst_x = x.clone() xs = gen_corruction_image(x.cpu(), severity_level) for curr_x in xs: curr_x = curr_x.cuda() scores = get_score(curr_x, model, method, method_args, raw_score=True) if in_distribution: cond = scores < worst_score else: cond = scores > worst_score worst_score[cond] = scores[cond] worst_x[cond] = curr_x[cond] return worst_x def eval_ood_detector(base_dir, in_dataset, out_datasets, batch_size, method, method_args, name, epochs, adv, corrupt, adv_corrupt, adv_args, mode_args): if adv: in_save_dir = os.path.join(base_dir, in_dataset, method, name, 'adv', str(int(adv_args['epsilon']))) elif adv_corrupt: in_save_dir = os.path.join(base_dir, in_dataset, method, name, 'adv_corrupt', str(int(adv_args['epsilon']))) elif corrupt: in_save_dir = os.path.join(base_dir, in_dataset, method, name, 'corrupt') else: in_save_dir = os.path.join(base_dir, in_dataset, method, name, 'nat') if not os.path.exists(in_save_dir): os.makedirs(in_save_dir) transform = transforms.Compose([ transforms.ToTensor(), ]) if in_dataset == "CIFAR-10": normalizer = transforms.Normalize((125.3/255, 123.0/255, 113.9/255), (63.0/255, 62.1/255.0, 66.7/255.0)) testset = torchvision.datasets.CIFAR10(root='./datasets/cifar10', train=False, download=True, transform=transform) testloaderIn = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=True, num_workers=2) num_classes = 10 num_reject_classes = 5 elif in_dataset == "CIFAR-100": normalizer = transforms.Normalize((125.3/255, 123.0/255, 113.9/255), (63.0/255, 62.1/255.0, 66.7/255.0)) testset = torchvision.datasets.CIFAR100(root='./datasets/cifar100', train=False, download=True, transform=transform) testloaderIn = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=True, num_workers=2) num_classes = 100 num_reject_classes = 10 elif in_dataset == "SVHN": normalizer = None testset = svhn.SVHN('datasets/svhn/', split='test', transform=transforms.ToTensor(), download=False) testloaderIn = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=True, num_workers=2) num_classes = 10 num_reject_classes = 5 if method != "sofl": num_reject_classes = 0 if method == "rowl" or method == "atom" or method=="ntom": num_reject_classes = 1 method_args['num_classes'] = num_classes if args.model_arch == 'densenet': model = dn.DenseNet3(args.layers, num_classes + num_reject_classes, normalizer=normalizer) elif args.model_arch == 'wideresnet': model = wn.WideResNet(args.depth, num_classes + num_reject_classes, widen_factor=args.width, normalizer=normalizer) elif args.model_arch == 'densenet_ccu': model = dn.DenseNet3(args.layers, num_classes + num_reject_classes, normalizer=normalizer) gmm = torch.load("checkpoints/{in_dataset}/{name}/".format(in_dataset=args.in_dataset, name=args.name) + 'in_gmm.pth.tar') gmm.alpha = nn.Parameter(gmm.alpha) gmm_out = torch.load("checkpoints/{in_dataset}/{name}/".format(in_dataset=args.in_dataset, name=args.name) + 'out_gmm.pth.tar') gmm_out.alpha = nn.Parameter(gmm.alpha) whole_model = gmmlib.DoublyRobustModel(model, gmm, gmm_out, loglam = 0., dim=3072, classes=num_classes) elif args.model_arch == 'wideresnet_ccu': model = wn.WideResNet(args.depth, num_classes + num_reject_classes, widen_factor=args.width, normalizer=normalizer) gmm = torch.load("checkpoints/{in_dataset}/{name}/".format(in_dataset=args.in_dataset, name=args.name) + 'in_gmm.pth.tar') gmm.alpha = nn.Parameter(gmm.alpha) gmm_out = torch.load("checkpoints/{in_dataset}/{name}/".format(in_dataset=args.in_dataset, name=args.name) + 'out_gmm.pth.tar') gmm_out.alpha = nn.Parameter(gmm.alpha) whole_model = gmmlib.DoublyRobustModel(model, gmm, gmm_out, loglam = 0., dim=3072, classes=num_classes) else: assert False, 'Not supported model arch: {}'.format(args.model_arch) checkpoint = torch.load("./checkpoints/{in_dataset}/{name}/checkpoint_{epochs}.pth.tar".format(in_dataset=in_dataset, name=name, epochs=epochs)) if args.model_arch == 'densenet_ccu' or args.model_arch == 'wideresnet_ccu': whole_model.load_state_dict(checkpoint['state_dict']) else: model.load_state_dict(checkpoint['state_dict']) model.eval() model.cuda() if method == "mahalanobis": temp_x = torch.rand(2,3,32,32) temp_x = Variable(temp_x).cuda() temp_list = model.feature_list(temp_x)[1] num_output = len(temp_list) method_args['num_output'] = num_output if adv or adv_corrupt: epsilon = adv_args['epsilon'] iters = adv_args['iters'] iter_size = adv_args['iter_size'] if method == "msp" or method == "odin": attack_out = ConfidenceLinfPGDAttack(model, eps=epsilon, nb_iter=iters, eps_iter=args.iter_size, rand_init=True, clip_min=0., clip_max=1., num_classes = num_classes) elif method == "mahalanobis": attack_out = MahalanobisLinfPGDAttack(model, eps=args.epsilon, nb_iter=args.iters, eps_iter=iter_size, rand_init=True, clip_min=0., clip_max=1., num_classes = num_classes, sample_mean = sample_mean, precision = precision, num_output = num_output, regressor = regressor) elif method == "sofl": attack_out = SOFLLinfPGDAttack(model, eps=epsilon, nb_iter=iters, eps_iter=iter_size, rand_init=True, clip_min=0., clip_max=1., num_classes = num_classes, num_reject_classes=num_reject_classes) elif method == "rowl": attack_out = OODScoreLinfPGDAttack(model, eps=epsilon, nb_iter=iters, eps_iter=iter_size, rand_init=True, clip_min=0., clip_max=1., num_classes = num_classes) elif method == "atom" or method=="ntom": attack_out = OODScoreLinfPGDAttack(model, eps=epsilon, nb_iter=iters, eps_iter=iter_size, rand_init=True, clip_min=0., clip_max=1., num_classes = num_classes) if not mode_args['out_dist_only']: t0 = time.time() f1 = open(os.path.join(in_save_dir, "in_scores.txt"), 'w') g1 = open(os.path.join(in_save_dir, "in_labels.txt"), 'w') ########################################In-distribution########################################### print("Processing in-distribution images") N = len(testloaderIn.dataset) count = 0 for j, data in enumerate(testloaderIn): images, labels = data images = images.cuda() labels = labels.cuda() curr_batch_size = images.shape[0] inputs = images scores = get_score(inputs, model, method, method_args) for score in scores: f1.write("{}\n".format(score)) if method == "rowl": outputs = F.softmax(model(inputs), dim=1) outputs = outputs.detach().cpu().numpy() preds = np.argmax(outputs, axis=1) confs = np.max(outputs, axis=1) else: outputs = F.softmax(model(inputs)[:, :num_classes], dim=1) outputs = outputs.detach().cpu().numpy() preds = np.argmax(outputs, axis=1) confs = np.max(outputs, axis=1) for k in range(preds.shape[0]): g1.write("{} {} {}\n".format(labels[k], preds[k], confs[k])) count += curr_batch_size print("{:4}/{:4} images processed, {:.1f} seconds used.".format(count, N, time.time()-t0)) t0 = time.time() f1.close() g1.close() if mode_args['in_dist_only']: return for out_dataset in out_datasets: out_save_dir = os.path.join(in_save_dir, out_dataset) if not os.path.exists(out_save_dir): os.makedirs(out_save_dir) f2 = open(os.path.join(out_save_dir, "out_scores.txt"), 'w') if not os.path.exists(out_save_dir): os.makedirs(out_save_dir) if out_dataset == 'SVHN': testsetout = svhn.SVHN('datasets/ood_datasets/svhn/', split='test', transform=transforms.ToTensor(), download=False) testloaderOut = torch.utils.data.DataLoader(testsetout, batch_size=batch_size, shuffle=True, num_workers=2) elif out_dataset == 'dtd': testsetout = torchvision.datasets.ImageFolder(root="datasets/ood_datasets/dtd/images", transform=transforms.Compose([transforms.Resize(32), transforms.CenterCrop(32), transforms.ToTensor()])) testloaderOut = torch.utils.data.DataLoader(testsetout, batch_size=batch_size, shuffle=True, num_workers=2) elif out_dataset == 'places365': testsetout = torchvision.datasets.ImageFolder(root="datasets/ood_datasets/places365/test_subset", transform=transforms.Compose([transforms.Resize(32), transforms.CenterCrop(32), transforms.ToTensor()])) testloaderOut = torch.utils.data.DataLoader(testsetout, batch_size=batch_size, shuffle=True, num_workers=2) else: testsetout = torchvision.datasets.ImageFolder("./datasets/ood_datasets/{}".format(out_dataset), transform=transforms.Compose([transforms.Resize(32), transforms.CenterCrop(32), transforms.ToTensor()])) testloaderOut = torch.utils.data.DataLoader(testsetout, batch_size=batch_size, shuffle=True, num_workers=2) ###################################Out-of-Distributions##################################### t0 = time.time() print("Processing out-of-distribution images") N = len(testloaderOut.dataset) count = 0 for j, data in enumerate(testloaderOut): images, labels = data images = images.cuda() labels = labels.cuda() curr_batch_size = images.shape[0] if adv: inputs = attack_out.perturb(images) elif corrupt: inputs = corrupt_attack(images, model, method, method_args, False, adv_args['severity_level']) elif adv_corrupt: corrupted_images = corrupt_attack(images, model, method, method_args, False, adv_args['severity_level']) inputs = attack_out.perturb(corrupted_images) else: inputs = images scores = get_score(inputs, model, method, method_args) for score in scores: f2.write("{}\n".format(score)) count += curr_batch_size print("{:4}/{:4} images processed, {:.1f} seconds used.".format(count, N, time.time()-t0)) t0 = time.time() f2.close() return if __name__ == '__main__': method_args = dict() adv_args = dict() mode_args = dict() adv_args['epsilon'] = args.epsilon adv_args['iters'] = args.iters adv_args['iter_size'] = args.iter_size adv_args['severity_level'] = args.severity_level mode_args['in_dist_only'] = args.in_dist_only mode_args['out_dist_only'] = args.out_dist_only out_datasets = ['LSUN', 'LSUN_resize', 'iSUN', 'dtd', 'places365', 'SVHN'] if args.method == 'msp': eval_ood_detector(args.base_dir, args.in_dataset, out_datasets, args.batch_size, args.method, method_args, args.name, args.epochs, args.adv, args.corrupt, args.adv_corrupt, adv_args, mode_args) elif args.method == "odin": method_args['temperature'] = 1000.0 if args.model_arch == 'densenet': if args.in_dataset == "CIFAR-10": method_args['magnitude'] = 0.0016 elif args.in_dataset == "CIFAR-100": method_args['magnitude'] = 0.0012 elif args.in_dataset == "SVHN": method_args['magnitude'] = 0.0006 elif args.model_arch == 'wideresnet': if args.in_dataset == "CIFAR-10": method_args['magnitude'] = 0.0006 elif args.in_dataset == "CIFAR-100": method_args['magnitude'] = 0.0012 elif args.in_dataset == "SVHN": method_args['magnitude'] = 0.0002 else: assert False, 'Not supported model arch' eval_ood_detector(args.base_dir, args.in_dataset, out_datasets, args.batch_size, args.method, method_args, args.name, args.epochs, args.adv, args.corrupt, args.adv_corrupt, adv_args, mode_args) elif args.method == 'mahalanobis': sample_mean, precision, lr_weights, lr_bias, magnitude = np.load(os.path.join('output/hyperparams/', args.in_dataset, args.name, 'results.npy'), allow_pickle=True) regressor = LogisticRegressionCV(cv=2).fit([[0,0,0,0],[0,0,0,0],[1,1,1,1],[1,1,1,1]], [0,0,1,1]) regressor.coef_ = lr_weights regressor.intercept_ = lr_bias method_args['sample_mean'] = sample_mean method_args['precision'] = precision method_args['magnitude'] = magnitude method_args['regressor'] = regressor eval_ood_detector(args.base_dir, args.in_dataset, out_datasets, args.batch_size, args.method, method_args, args.name, args.epochs, args.adv, args.corrupt, args.adv_corrupt, adv_args, mode_args) elif args.method == 'sofl': eval_ood_detector(args.base_dir, args.in_dataset, out_datasets, args.batch_size, args.method, method_args, args.name, args.epochs, args.adv, args.corrupt, args.adv_corrupt, adv_args, mode_args) elif args.method == 'rowl': eval_ood_detector(args.base_dir, args.in_dataset, out_datasets, args.batch_size, args.method, method_args, args.name, args.epochs, args.adv, args.corrupt, args.adv_corrupt, adv_args, mode_args) elif args.method == 'ntom': eval_ood_detector(args.base_dir, args.in_dataset, out_datasets, args.batch_size, args.method, method_args, args.name, args.epochs, args.adv, args.corrupt, args.adv_corrupt, adv_args, mode_args) elif args.method == 'atom': eval_ood_detector(args.base_dir, args.in_dataset, out_datasets, args.batch_size, args.method, method_args, args.name, args.epochs, args.adv, args.corrupt, args.adv_corrupt, adv_args, mode_args) ``` #### File: jfc43/informative-outlier-mining/train_ccu.py ```python import argparse import os import sys import shutil import time import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.nn.functional as F import torch.optim import torch.utils.data import torchvision.transforms as transforms import torchvision.datasets as datasets import torchvision import numpy as np import models.densenet as dn import models.wideresnet as wn import models.gmm as gmmlib from utils import TinyImages import utils.svhn_loader as svhn from sklearn import mixture # used for logging to TensorBoard from tensorboard_logger import configure, log_value parser = argparse.ArgumentParser(description='PyTorch DenseNet Training') parser.add_argument('--gpu', default='0', type=str, help='which gpu to use') parser.add_argument('--in-dataset', default="CIFAR-10", type=str, help='in-distribution dataset') parser.add_argument('--model-arch', default='densenet', type=str, help='model architecture') parser.add_argument('--epochs', default=100, type=int, help='number of total epochs to run') parser.add_argument('--save-epoch', default=10, type=int, help='save the model every save_epoch') parser.add_argument('--start-epoch', default=0, type=int, help='manual epoch number (useful on restarts)') parser.add_argument('-b', '--batch-size', default=64, type=int, help='mini-batch size (default: 64)') parser.add_argument('--ood-batch-size', default=50, type=int, help='mini-batch size (default: 50)') parser.add_argument('--lr', '--learning-rate', default=0.1, type=float, help='initial learning rate') parser.add_argument('--momentum', default=0.9, type=float, help='momentum') parser.add_argument('--weight-decay', '--wd', default=0.0001, type=float, help='weight decay (default: 0.0001)') parser.add_argument('--print-freq', '-p', default=10, type=int, help='print frequency (default: 10)') parser.add_argument('--layers', default=100, type=int, help='total number of layers (default: 100)') parser.add_argument('--depth', default=40, type=int, help='depth of resnet') parser.add_argument('--width', default=4, type=int, help='width of resnet') parser.add_argument('--growth', default=12, type=int, help='number of new channels per layer (default: 12)') parser.add_argument('--droprate', default=0.0, type=float, help='dropout probability (default: 0.0)') parser.add_argument('--no-augment', dest='augment', action='store_false', help='whether to use standard augmentation (default: True)') parser.add_argument('--reduce', default=0.5, type=float, help='compression rate in transition stage (default: 0.5)') parser.add_argument('--no-bottleneck', dest='bottleneck', action='store_false', help='To not use bottleneck block') parser.add_argument('--resume', default='', type=str, help='path to latest checkpoint (default: none)') parser.add_argument('--name', required=True, type=str, help='name of experiment') parser.add_argument('--tensorboard', help='Log progress to TensorBoard', action='store_true') parser.set_defaults(bottleneck=True) parser.set_defaults(augment=True) args = parser.parse_args() state = {k: v for k, v in args._get_kwargs()} print(state) directory = "checkpoints/{in_dataset}/{name}/".format(in_dataset=args.in_dataset, name=args.name) if not os.path.exists(directory): os.makedirs(directory) save_state_file = os.path.join(directory, 'args.txt') fw = open(save_state_file, 'w') print(state, file=fw) fw.close() os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu torch.manual_seed(1) np.random.seed(1) def main(): if args.tensorboard: configure("runs/%s"%(args.name)) if args.augment: transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), ]) else: transform_train = transforms.Compose([ transforms.ToTensor(), ]) transform_test = transforms.Compose([ transforms.ToTensor(), ]) kwargs = {'num_workers': 1, 'pin_memory': True} if args.in_dataset == "CIFAR-10": # Data loading code normalizer = transforms.Normalize(mean=[x/255.0 for x in [125.3, 123.0, 113.9]], std=[x/255.0 for x in [63.0, 62.1, 66.7]]) train_loader = torch.utils.data.DataLoader( datasets.CIFAR10('./datasets/cifar10', train=True, download=True, transform=transform_train), batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = torch.utils.data.DataLoader( datasets.CIFAR10('./datasets/cifar10', train=False, transform=transform_test), batch_size=args.batch_size, shuffle=True, **kwargs) lr_schedule=[50, 75, 90] num_classes = 10 elif args.in_dataset == "CIFAR-100": # Data loading code normalizer = transforms.Normalize(mean=[x/255.0 for x in [125.3, 123.0, 113.9]], std=[x/255.0 for x in [63.0, 62.1, 66.7]]) train_loader = torch.utils.data.DataLoader( datasets.CIFAR100('./datasets/cifar100', train=True, download=True, transform=transform_train), batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = torch.utils.data.DataLoader( datasets.CIFAR100('./datasets/cifar100', train=False, transform=transform_test), batch_size=args.batch_size, shuffle=True, **kwargs) lr_schedule=[50, 75, 90] num_classes = 100 elif args.in_dataset == "SVHN": # Data loading code normalizer = None train_loader = torch.utils.data.DataLoader( svhn.SVHN('datasets/svhn/', split='train', transform=transforms.ToTensor(), download=False), batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = torch.utils.data.DataLoader( svhn.SVHN('datasets/svhn/', split='test', transform=transforms.ToTensor(), download=False), batch_size=args.batch_size, shuffle=False, **kwargs) args.epochs = 20 args.save_epoch = 2 lr_schedule=[10, 15, 18] num_classes = 10 out_loader = torch.utils.data.DataLoader( TinyImages(transform=transforms.Compose( [transforms.ToTensor(), transforms.ToPILImage(), transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor()])), batch_size=args.ood_batch_size, shuffle=False, **kwargs) # create model if args.model_arch == 'densenet': base_model = dn.DenseNet3(args.layers, num_classes, args.growth, reduction=args.reduce, bottleneck=args.bottleneck, dropRate=args.droprate, normalizer=normalizer) elif args.model_arch == 'wideresnet': base_model = wn.WideResNet(args.depth, num_classes, widen_factor=args.width, dropRate=args.droprate, normalizer=normalizer) else: assert False, 'Not supported model arch: {}'.format(args.model_arch) gen_gmm(train_loader, out_loader, data_used=50000, PCA=True, N=[100]) gmm = torch.load("checkpoints/{in_dataset}/{name}/".format(in_dataset=args.in_dataset, name=args.name) + 'in_gmm.pth.tar') gmm.alpha = nn.Parameter(gmm.alpha) gmm.mu.requires_grad = True gmm.logvar.requires_grad = True gmm.alpha.requires_grad = False gmm_out = torch.load("checkpoints/{in_dataset}/{name}/".format(in_dataset=args.in_dataset, name=args.name) + 'out_gmm.pth.tar') gmm_out.alpha = nn.Parameter(gmm.alpha) gmm_out.mu.requires_grad = True gmm_out.logvar.requires_grad = True gmm_out.alpha.requires_grad = False loglam = 0. model = gmmlib.DoublyRobustModel(base_model, gmm, gmm_out, loglam, dim=3072, classes=num_classes).cuda() model.loglam.requires_grad = False # get the number of model parameters print('Number of model parameters: {}'.format( sum([p.data.nelement() for p in model.parameters()]))) model = model.cuda() criterion = nn.CrossEntropyLoss().cuda() # optionally resume from a checkpoint if args.resume: if os.path.isfile(args.resume): print("=> loading checkpoint '{}'".format(args.resume)) checkpoint = torch.load(args.resume) args.start_epoch = checkpoint['epoch'] model.load_state_dict(checkpoint['state_dict']) print("=> loaded checkpoint '{}' (epoch {})" .format(args.resume, checkpoint['epoch'])) else: print("=> no checkpoint found at '{}'".format(args.resume)) cudnn.benchmark = True # define loss function (criterion) and pptimizer lr = args.lr lr_gmm = 1e-5 param_groups = [{'params':model.mm.parameters(),'lr':lr_gmm, 'weight_decay':0.}, {'params':model.mm_out.parameters(),'lr':lr_gmm, 'weight_decay':0.}, {'params':model.base_model.parameters(),'lr':lr, 'weight_decay':args.weight_decay}] optimizer = torch.optim.SGD(param_groups, momentum=args.momentum, nesterov=True) for epoch in range(args.start_epoch, args.epochs): adjust_learning_rate(optimizer, epoch, lr_schedule) # train for one epoch lam = model.loglam.data.exp().item() train_CEDA_gmm_out(model, train_loader, out_loader, optimizer, epoch, lam=lam) # evaluate on validation set prec1 = validate(val_loader, model, criterion, epoch) # remember best prec@1 and save checkpoint if (epoch + 1) % args.save_epoch == 0: save_checkpoint({ 'epoch': epoch + 1, 'state_dict': model.state_dict(), }, epoch + 1) def gen_gmm(train_loader, out_loader, data_used=50000, PCA=True, N=[100]): print('Generate GMM...') start = time.time() dim = 3072 X = [] for x, f in train_loader: X.append(x.view(-1,dim)) X = torch.cat(X, 0) X = X[:data_used] #needed to keep memory of distance matrix below 800 GB if PCA: metric = gmmlib.PCAMetric(X, p=2, min_sv_factor=1e6) X = ( ([email protected]_vecs.t()) / metric.singular_values_sqrt[None,:] ) else: metric = gmmlib.LpMetric() for n in N: print(n) gmm = gmmlib.GMM(n, dim, metric=metric) clf = mixture.GMM(n_components=n, covariance_type='spherical', params='mc') clf.fit(X) mu = torch.tensor(clf.means_ ,dtype=torch.float) logvar = torch.tensor(np.log(clf.covars_[:,0]) ,dtype=torch.float) logvar = 0.*logvar + logvar.exp().mean().log() alpha = torch.tensor(np.log(clf.weights_) ,dtype=torch.float) gmm = gmmlib.GMM(n, dim, mu=mu, logvar=logvar, metric=metric) if PCA: gmm.mu.data = ( (gmm.mu.data * metric.singular_values_sqrt[None,:] ) @ metric.comp_vecs.t().inverse() ) directory = "checkpoints/{in_dataset}/{name}/".format(in_dataset=args.in_dataset, name=args.name) if not os.path.exists(directory): os.makedirs(directory) filename = directory + 'in_gmm.pth.tar' torch.save(gmm, filename) X = [] for idx, (x, f) in enumerate(out_loader): if idx>400: break; X.append(x.view(-1,dim)) X = torch.cat(X, 0) if PCA: X = ( ([email protected]_vecs.t()) / metric.singular_values_sqrt[None,:] ) for n in N: print(n) # Out GMM gmm = gmmlib.GMM(n, dim, metric=metric) clf = mixture.GMM(n_components=n, covariance_type='spherical', params='mc') clf.fit(X) mu = torch.tensor(clf.means_ ,dtype=torch.float) logvar = torch.tensor(np.log(clf.covars_[:,0]) ,dtype=torch.float) logvar = 0.*logvar + logvar.exp().mean().log() alpha = torch.tensor(np.log(clf.weights_) ,dtype=torch.float) gmm = gmmlib.GMM(n, dim, mu=mu, logvar=logvar, metric=metric) if PCA: gmm.mu.data = ( (gmm.mu.data * metric.singular_values_sqrt[None,:] ) @ metric.comp_vecs.t().inverse() ) directory = "checkpoints/{in_dataset}/{name}/".format(in_dataset=args.in_dataset, name=args.name) if not os.path.exists(directory): os.makedirs(directory) filename = directory + 'out_gmm.pth.tar' torch.save(gmm, filename) print('Time: ', time.time() - start) print('Done!') def train_CEDA_gmm_out(model, train_loader, ood_loader, optimizer, epoch, lam=1., verbose=10): criterion = nn.NLLLoss() model.train() train_loss = 0 likelihood_loss = 0 correct = 0 margin = np.log(4.) if ood_loader is not None: ood_loader.dataset.offset = np.random.randint(len(ood_loader.dataset)) ood_loader_iter = iter(ood_loader) p_in = torch.tensor(1. / (1. + lam), dtype=torch.float).cuda() p_out = torch.tensor(lam, dtype=torch.float).cuda() * p_in log_p_in = p_in.log() log_p_out = p_out.log() start = time.time() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.cuda(), target.cuda() noise = next(ood_loader_iter)[0].cuda() optimizer.zero_grad() full_data = torch.cat([data, noise], 0) full_out = model(full_data) full_out = F.log_softmax(full_out, dim=1) output = full_out[:data.shape[0]] output_adv = full_out[data.shape[0]:] like_in_in = torch.logsumexp(model.mm(data.view(data.shape[0], -1)), 0 ) like_out_in = torch.logsumexp(model.mm(noise.view(noise.shape[0], -1)), 0 ) like_in_out = torch.logsumexp(model.mm_out(data.view(data.shape[0], -1)), 0 ) like_out_out = torch.logsumexp(model.mm_out(noise.view(noise.shape[0], -1)), 0 ) loss1 = criterion(output, target) loss2 = -output_adv.mean() loss3 = - torch.logsumexp(torch.stack([log_p_in + like_in_in, log_p_out + like_in_out], 0), 0).mean() loss4 = - torch.logsumexp(torch.stack([log_p_in + like_out_in, log_p_out + like_out_out], 0), 0).mean() loss = p_in*(loss1 + loss3) + p_out*(loss2 + loss4) loss.backward() optimizer.step() likelihood_loss += loss3.item() train_loss += loss.item() _, predicted = output.max(1) correct += predicted.eq(target).sum().item() threshold = model.mm.logvar.max() + margin idx = model.mm_out.logvar<threshold model.mm_out.logvar.data[idx] = threshold if (batch_idx % verbose == 0) and verbose>0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) print('Time: ', time.time() - start) def validate(val_loader, model, criterion, epoch): """Perform validation on the validation set""" batch_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() # switch to evaluate mode model.eval() end = time.time() for i, (input, target) in enumerate(val_loader): input = input.cuda() target = target.cuda() # compute output output = model(input) loss = criterion(output, target) # measure accuracy and record loss prec1 = accuracy(output.data, target, topk=(1,))[0] losses.update(loss.data, input.size(0)) top1.update(prec1, input.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: print('Test: [{0}/{1}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format( i, len(val_loader), batch_time=batch_time, loss=losses, top1=top1)) print(' * Prec@1 {top1.avg:.3f}'.format(top1=top1)) # log to TensorBoard if args.tensorboard: log_value('val_loss', losses.avg, epoch) log_value('val_acc', top1.avg, epoch) return top1.avg def save_checkpoint(state, epoch): """Saves checkpoint to disk""" directory = "checkpoints/{in_dataset}/{name}/".format(in_dataset=args.in_dataset, name=args.name) if not os.path.exists(directory): os.makedirs(directory) filename = directory + 'checkpoint_{}.pth.tar'.format(epoch) torch.save(state, filename) class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def adjust_learning_rate(optimizer, epoch, lr_schedule=[50, 75, 90]): """Sets the learning rate to the initial LR decayed by 10 after 40 and 80 epochs""" if epoch in lr_schedule: for group in optimizer.param_groups: group['lr'] *= .1 def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0) res.append(correct_k.mul_(100.0 / batch_size)) return res if __name__ == '__main__': main() ``` #### File: informative-outlier-mining/utils/confidence_pgd_attack.py ```python from __future__ import print_function import torch from torch.autograd import Variable import torch.nn as nn import torch.nn.functional as F import numpy as np import torch.optim as optim import torchvision import torchvision.transforms as transforms import numpy as np import time import os from scipy import misc class OELoss(nn.Module): def __init__(self): super(OELoss, self).__init__() def forward(self, x, y = None): return -(x.mean(1) - torch.logsumexp(x, dim=1)) class ConfidenceLinfPGDAttack: def __init__( self, model, eps=4.0, nb_iter=40, eps_iter=1.0, rand_init=True, clip_min=0., clip_max=1., num_classes = 10, n_restarts=1): self.eps = eps self.nb_iter = nb_iter self.eps_iter = eps_iter self.rand_init = rand_init self.model = model self.detector_loss_func = OELoss() self.clip_min = clip_min self.clip_max = clip_max self.num_classes = num_classes self.n_restarts = n_restarts def get_loss(self, x): outputs = self.model(x) loss = self.detector_loss_func(outputs) return loss def attack_single_run(self, x): x = x.detach().clone() delta = torch.zeros_like(x) delta = nn.Parameter(delta) delta.requires_grad_() with torch.no_grad(): loss = self.get_loss(x) worst_loss = loss.data.clone() worst_perb = delta.data.clone() if self.rand_init: delta.data.uniform_(-1, 1) delta.data *= self.eps delta.data = torch.round(delta.data) delta.data = (torch.clamp(x.data + delta.data / 255.0, min=self.clip_min, max=self.clip_max) - x.data) * 255.0 for ii in range(self.nb_iter): adv_x = x + delta / 255.0 loss = self.get_loss(adv_x) cond = loss.data > worst_loss worst_loss[cond] = loss.data[cond] worst_perb[cond] = delta.data[cond] loss.mean().backward() grad_sign = delta.grad.data.sign() delta.data = delta.data + grad_sign * self.eps_iter delta.data = torch.clamp(delta.data, min=-self.eps, max=self.eps) delta.data = (torch.clamp(x.data + delta.data / 255.0, min=self.clip_min, max=self.clip_max) - x.data) * 255.0 delta.grad.data.zero_() with torch.no_grad(): adv_x = x + delta / 255.0 loss = self.get_loss(adv_x) cond = loss.data > worst_loss worst_loss[cond] = loss.data[cond] worst_perb[cond] = delta.data[cond] return worst_perb, worst_loss def perturb(self, x): """ Given examples x, returns their adversarial counterparts with an attack length of eps. :param x: input tensor. :return: tensor containing perturbed inputs. """ self.model.eval() with torch.no_grad(): loss = self.get_loss(x) worst_loss = loss.data.clone() worst_perb = torch.zeros_like(x) for k in range(self.n_restarts): delta, loss = self.attack_single_run(x) cond = loss.data > worst_loss worst_loss[cond] = loss.data[cond] worst_perb[cond] = delta.data[cond] adv_x = torch.clamp(x + torch.clamp(torch.round(worst_perb), min=-self.eps, max=self.eps) / 255.0, min=self.clip_min, max=self.clip_max) return adv_x ```
{ "source": "jfc43/robust-attribution-regularization", "score": 2 }
#### File: robust-attribution-regularization/Flower/utils.py ```python import numpy as np import tensorflow as tf import random from skimage import feature, transform import _pickle as pkl import matplotlib.pyplot as plt from pylab import rcParams import scipy import scipy.stats as stats from tensorflow.python.ops import gen_nn_ops from tensorflow.python.ops import math_ops import flower_input config_gpu = tf.ConfigProto() config_gpu.gpu_options.allow_growth = True EPSILON = 1e-12 MIN_INPUT = np.zeros([1, 128, 128, 3]).astype(np.float32) MAX_INPUT = 255 * np.ones([1,128, 128,3]).astype(np.float32) def softmax(x): """Compute softmax values for each sets of scores in x.""" e_x = np.exp(x - np.max(x)) return e_x / e_x.sum() def plot(data, xi=None, cmap=None, axis=plt, percentile=100, dilation=3.0, alpha=0.8): dx, dy = 0.05, 0.05 xx = np.arange(0.0, data.shape[1], dx) yy = np.arange(0.0, data.shape[0], dy) xmin, xmax, ymin, ymax = np.amin(xx), np.amax(xx), np.amin(yy), np.amax(yy) extent = xmin, xmax, ymin, ymax cmap_xi = plt.get_cmap('Greys_r') cmap_xi.set_bad(alpha=0) overlay = None if xi is not None: # Compute edges (to overlay to heatmaps later) xi_greyscale = xi if len(xi.shape) == 2 else np.mean(xi, axis=-1) in_image_upscaled = transform.rescale(xi_greyscale, dilation, mode='constant') edges = feature.canny(in_image_upscaled).astype(float) edges[edges < 0.5] = np.nan edges[:5, :] = np.nan edges[-5:, :] = np.nan edges[:, :5] = np.nan edges[:, -5:] = np.nan overlay = edges abs_max = np.percentile(np.abs(data), percentile) abs_min = abs_max if xi is None: axis.imshow(data, extent=extent, interpolation='none', cmap=cmap) else: axis.imshow(data, extent=extent, interpolation='none', cmap=cmap, vmin=-abs_min, vmax=abs_max) if overlay is not None: axis.imshow(overlay, extent=extent, interpolation='none', cmap=cmap_xi, alpha=alpha) axis.axis('off') axis.xticks([]) axis.yticks([]) return axis def dataReader(): flower = flower_input.FlowerData('data') X = flower.eval_data.xs y = flower.eval_data.ys return X, y.astype(int) def get_session(number=None): config_gpu = tf.ConfigProto() config_gpu.gpu_options.allow_growth = True return tf.Session(config=config_gpu) def integrated_gradients( sess, baseline, inp, target_label_index, model, gradient_func='output_input_gradient', steps=50): """Computes integrated gradients for a given network and prediction label. Integrated gradients is a technique for attributing a deep network's prediction to its input features. It was introduced by: https://arxiv.org/abs/1703.01365 In addition to the integrated gradients tensor, the method also returns some additional debugging information for sanity checking the computation. See sanity_check_integrated_gradients for how this information is used. This method only applies to classification networks, i.e., networks that predict a probability distribution across two or more class labels. Access to the specific network is provided to the method via a 'predictions_and_gradients' function provided as argument to this method. The function takes a batch of inputs and a label, and returns the predicted probabilities of the label for the provided inputs, along with gradients of the prediction with respect to the input. Such a function should be easy to create in most deep learning frameworks. Args: inp: The specific input for which integrated gradients must be computed. target_label_index: Index of the target class for which integrated gradients must be computed. predictions_and_gradients: This is a function that provides access to the network's predictions and gradients. It takes the following arguments: - inputs: A batch of tensors of the same same shape as 'inp'. The first dimension is the batch dimension, and rest of the dimensions coincide with that of 'inp'. - target_label_index: The index of the target class for which gradients must be obtained. and returns: - predictions: Predicted probability distribution across all classes for each input. It has shape <batch, num_classes> where 'batch' is the number of inputs and num_classes is the number of classes for the model. - gradients: Gradients of the prediction for the target class (denoted by target_label_index) with respect to the inputs. It has the same shape as 'inputs'. baseline: [optional] The baseline input used in the integrated gradients computation. If None (default), the all zero tensor with the same shape as the input (i.e., 0*input) is used as the baseline. The provided baseline and input must have the same shape. steps: [optional] Number of intepolation steps between the baseline and the input used in the integrated gradients computation. These steps along determine the integral approximation error. By default, steps is set to 50. Returns: integrated_gradients: The integrated_gradients of the prediction for the provided prediction label to the input. It has the same shape as that of the input. The following output is meant to provide debug information for sanity checking the integrated gradients computation. See also: sanity_check_integrated_gradients prediction_trend: The predicted probability distribution across all classes for the various (scaled) inputs considered in computing integrated gradients. It has shape <steps, num_classes> where 'steps' is the number of integrated gradient steps and 'num_classes' is the number of target classes for the model. """ if baseline is None: baseline = 0*inp assert(baseline.shape == inp.shape) # Scale input and compute gradients. scaled_inputs = [baseline + (float(i + 1)/steps)*(inp-baseline) for i in range(0, steps)] scaled_labels = [target_label_index for i in range(0, steps)] if gradient_func == 'loss_input_gradient': grads = sess.run(model.loss_input_gradient, feed_dict = {model.input: scaled_inputs, model.label: scaled_labels}) # shapes: <steps+1, inp.shape> else: grads = sess.run(model.output_input_gradient, feed_dict = {model.input: scaled_inputs, model.label_ph: target_label_index}) avg_grads = np.average(grads[:-1], axis=0) integrated_gradients = (inp-baseline)*avg_grads # shape: <inp.shape> return integrated_gradients ``` #### File: robust-attribution-regularization/GTSRB/gtsrb_input.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import pickle import sys import tensorflow as tf import csv import matplotlib.pyplot as plt from PIL import Image version = sys.version_info import numpy as np import skimage.data import scipy.io as sio import cv2 def image_brightness_normalisation(image): image[:,:,0] = cv2.equalizeHist(image[:,:,0]) image[:,:,1] = cv2.equalizeHist(image[:,:,1]) image[:,:,2] = cv2.equalizeHist(image[:,:,2]) return image def preprocess_data(X): for i in range(len(X)): X[i,:,:,:] = image_brightness_normalisation(X[i,:,:,:]) return X class GTSRBData(object): def __init__(self, path): loaded = np.load(os.path.join(path, 'train.npz')) train_images = loaded['images'] train_images = preprocess_data(train_images) train_labels = loaded['labels'] loaded = np.load(os.path.join(path,'test.npz')) eval_images = loaded['images'] eval_images = preprocess_data(eval_images) eval_labels = loaded['labels'] self.train_data = DataSubset(train_images, train_labels) self.eval_data = DataSubset(eval_images, eval_labels) class DataSubset(object): def __init__(self, xs, ys): self.xs = xs self.n = xs.shape[0] self.ys = ys self.batch_start = 0 self.cur_order = np.random.permutation(self.n) def get_next_batch(self, batch_size, multiple_passes=False, reshuffle_after_pass=True): if self.n < batch_size: raise ValueError('Batch size can be at most the dataset size') if not multiple_passes: actual_batch_size = min(batch_size, self.n - self.batch_start) if actual_batch_size <= 0: raise ValueError('Pass through the dataset is complete.') batch_end = self.batch_start + actual_batch_size batch_xs = self.xs[self.cur_order[self.batch_start : batch_end], ...] batch_ys = self.ys[self.cur_order[self.batch_start : batch_end], ...] self.batch_start += actual_batch_size return batch_xs, batch_ys actual_batch_size = min(batch_size, self.n - self.batch_start) if actual_batch_size < batch_size: if reshuffle_after_pass: self.cur_order = np.random.permutation(self.n) self.batch_start = 0 batch_end = self.batch_start + batch_size batch_xs = self.xs[self.cur_order[self.batch_start : batch_end], ...] batch_ys = self.ys[self.cur_order[self.batch_start : batch_end], ...] self.batch_start += actual_batch_size return batch_xs, batch_ys ```
{ "source": "jfc43/robust-ood-detection", "score": 2 }
#### File: robust-ood-detection/CIFAR/eval.py ```python import argparse import os import sys sys.path.append("..") import shutil import time import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim import torch.utils.data import torchvision.transforms as transforms import torchvision.datasets as datasets import models.densenet as dn from utils import TinyImages, softmax, LinfPGDAttack parser = argparse.ArgumentParser(description='PyTorch DenseNet Training') parser.add_argument('--gpu', default='0', type=str, help='which gpu to use') parser.add_argument('--adv', action='store_true', help='adversarial robustness') parser.add_argument('--epsilon', default=1.0, type=float, help='epsilon') parser.add_argument('--iters', default=10, type=int, help='attack iterations') parser.add_argument('--iter-size', default=1.0, type=float, help='attack step size') parser.add_argument('--epochs', default=100, type=int, help='number of total epochs to run') parser.add_argument('--dataset', default="CIFAR-10", type=str, help='in-distribution dataset') parser.add_argument('--classes', default=10, type=int, help='number of classes') parser.add_argument('-b', '--batch-size', default=25, type=int, help='mini-batch size') parser.add_argument('--layers', default=100, type=int, help='total number of layers (default: 100)') parser.add_argument('--name', required=True, type=str, help='name of model') parser.set_defaults(bottleneck=True) parser.set_defaults(augment=True) args = parser.parse_args() os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0) res.append(correct_k.mul_(100.0 / batch_size)) return res # Data loading code normalizer = transforms.Normalize(mean=[x/255.0 for x in [125.3, 123.0, 113.9]], std=[x/255.0 for x in [63.0, 62.1, 66.7]]) transform_test = transforms.Compose([ transforms.ToTensor() ]) if args.dataset == "CIFAR-10": testset = datasets.CIFAR10(root='./datasets/cifar10', train=False, download=True, transform=transform_test) test_loader = torch.utils.data.DataLoader(testset, batch_size=args.batch_size, shuffle=False, num_workers=2) num_classes = 10 elif args.dataset == "CIFAR-100": testset = datasets.CIFAR100(root='./datasets/cifar100', train=False, download=True, transform=transform_test) test_loader = torch.utils.data.DataLoader(testset, batch_size=args.batch_size, shuffle=False, num_workers=2) num_classes = 100 # create model model = dn.DenseNet3(args.layers, num_classes, normalizer=normalizer) model.eval() model = model.cuda() checkpoint = torch.load("./checkpoints/{name}/checkpoint_{epochs}.pth.tar".format(name=args.name, epochs=args.epochs)) model.load_state_dict(checkpoint['state_dict']) attack = LinfPGDAttack(model = model, eps=args.epsilon, nb_iter=args.iters, eps_iter=args.iter_size, rand_init=True) nat_top1 = AverageMeter() adv_top1 = AverageMeter() for batch_index, (input, target) in enumerate(test_loader): print(batch_index * args.batch_size, '/', 10000) target = target.cuda() nat_input = input.detach().clone() nat_output = model(nat_input) nat_prec1 = accuracy(nat_output.data, target, topk=(1,))[0] nat_top1.update(nat_prec1, input.size(0)) if args.adv: adv_input = attack.perturb(input, target) adv_output = model(adv_input) adv_prec1 = accuracy(adv_output.data, target, topk=(1,))[0] adv_top1.update(adv_prec1, input.size(0)) print('Accuracy: %.4f'%nat_top1.avg) print('Robustness: %.4f'%adv_top1.avg) ``` #### File: robust-ood-detection/utils/tinyimages_80mn_loader.py ```python import numpy as np import torch from bisect import bisect_left class TinyImages(torch.utils.data.Dataset): def __init__(self, transform=None, exclude_cifar=True): data_file = open('datasets/unlabeled_datasets/80M_Tiny_Images/tiny_images.bin', "rb") def load_image(idx): data_file.seek(idx * 3072) data = data_file.read(3072) return np.fromstring(data, dtype='uint8').reshape(32, 32, 3, order="F") self.load_image = load_image self.offset = 0 # offset index self.transform = transform self.exclude_cifar = exclude_cifar if exclude_cifar: self.cifar_idxs = [] with open('datasets/unlabeled_datasets/80M_Tiny_Images/80mn_cifar_idxs.txt', 'r') as idxs: for idx in idxs: # indices in file take the 80mn database to start at 1, hence "- 1" self.cifar_idxs.append(int(idx) - 1) # hash table option self.cifar_idxs = set(self.cifar_idxs) self.in_cifar = lambda x: x in self.cifar_idxs # bisection search option # self.cifar_idxs = tuple(sorted(self.cifar_idxs)) # # def binary_search(x, hi=len(self.cifar_idxs)): # pos = bisect_left(self.cifar_idxs, x, 0, hi) # find insertion position # return True if pos != hi and self.cifar_idxs[pos] == x else False # # self.in_cifar = binary_search def __getitem__(self, index): index = (index + self.offset) % 79302016 if self.exclude_cifar: while self.in_cifar(index): index = np.random.randint(79302017) img = self.load_image(index) if self.transform is not None: img = self.transform(img) return img, 0 # 0 is the class def __len__(self): return 79302017 ```
{ "source": "jfcaballero/Tutorial-sobre-scikit-learn-abreviado", "score": 3 }
#### File: talleres_inov_docente/figures/plot_2d_separator.py ```python import numpy as np import matplotlib.pyplot as plt def plot_2d_separator(classifier, X, fill=False, ax=None, eps=None): if eps is None: eps = X.std() / 2. x_min, x_max = X[:, 0].min() - eps, X[:, 0].max() + eps y_min, y_max = X[:, 1].min() - eps, X[:, 1].max() + eps xx = np.linspace(x_min, x_max, 100) yy = np.linspace(y_min, y_max, 100) X1, X2 = np.meshgrid(xx, yy) X_grid = np.c_[X1.ravel(), X2.ravel()] try: decision_values = classifier.decision_function(X_grid) levels = [0] fill_levels = [decision_values.min(), 0, decision_values.max()] except AttributeError: # no decision_function decision_values = classifier.predict_proba(X_grid)[:, 1] levels = [.5] fill_levels = [0, .5, 1] if ax is None: ax = plt.gca() if fill: ax.contourf(X1, X2, decision_values.reshape(X1.shape), levels=fill_levels, colors=['blue', 'red']) else: ax.contour(X1, X2, decision_values.reshape(X1.shape), levels=levels, colors="black") ax.set_xlim(x_min, x_max) ax.set_ylim(y_min, y_max) ax.set_xticks(()) ax.set_yticks(()) if __name__ == '__main__': from sklearn.datasets import make_blobs from sklearn.linear_model import LogisticRegression X, y = make_blobs(centers=2, random_state=42) clf = LogisticRegression().fit(X, y) plot_2d_separator(clf, X, fill=True) plt.scatter(X[:, 0], X[:, 1], c=y) plt.show() ``` #### File: talleres_inov_docente/figures/plot_scaling.py ```python import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import make_blobs from sklearn.preprocessing import StandardScaler, MinMaxScaler, Normalizer, RobustScaler from sklearn.model_selection import train_test_split from .plot_helpers import cm2 def plot_scaling(): X, y = make_blobs(n_samples=50, centers=2, random_state=4, cluster_std=1) X += 3 plt.figure(figsize=(15, 8)) main_ax = plt.subplot2grid((2, 4), (0, 0), rowspan=2, colspan=2) main_ax.scatter(X[:, 0], X[:, 1], c=y, cmap=cm2, s=60) maxx = np.abs(X[:, 0]).max() maxy = np.abs(X[:, 1]).max() main_ax.set_xlim(-maxx + 1, maxx + 1) main_ax.set_ylim(-maxy + 1, maxy + 1) main_ax.set_title("Datos originales") other_axes = [plt.subplot2grid((2, 4), (i, j)) for j in range(2, 4) for i in range(2)] for ax, scaler in zip(other_axes, [StandardScaler(), RobustScaler(), MinMaxScaler(), Normalizer(norm='l2')]): X_ = scaler.fit_transform(X) ax.scatter(X_[:, 0], X_[:, 1], c=y, cmap=cm2, s=60) ax.set_xlim(-2, 2) ax.set_ylim(-2, 2) ax.set_title(type(scaler).__name__) other_axes.append(main_ax) for ax in other_axes: ax.spines['left'].set_position('center') ax.spines['right'].set_color('none') ax.spines['bottom'].set_position('center') ax.spines['top'].set_color('none') ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') def plot_relative_scaling(): # make synthetic data X, _ = make_blobs(n_samples=50, centers=5, random_state=4, cluster_std=2) # split it into training and test set X_train, X_test = train_test_split(X, random_state=5, test_size=.1) # plot the training and test set fig, axes = plt.subplots(1, 3, figsize=(13, 4)) axes[0].scatter(X_train[:, 0], X_train[:, 1], c='b', label="conjunto de entrenamiento", s=60) axes[0].scatter(X_test[:, 0], X_test[:, 1], marker='^', c='r', label="conjunto de test", s=60) axes[0].legend(loc='upper left') axes[0].set_title("datos originales") # scale the data using MinMaxScaler scaler = MinMaxScaler() scaler.fit(X_train) X_train_scaled = scaler.transform(X_train) X_test_scaled = scaler.transform(X_test) # visualize the properly scaled data axes[1].scatter(X_train_scaled[:, 0], X_train_scaled[:, 1], c='b', label="conjunto de entrenamiento", s=60) axes[1].scatter(X_test_scaled[:, 0], X_test_scaled[:, 1], marker='^', c='r', label="conjunto de test", s=60) axes[1].set_title("datos escalados") # rescale the test set separately, so that test set min is 0 and test set max is 1 # DO NOT DO THIS! For illustration purposes only test_scaler = MinMaxScaler() test_scaler.fit(X_test) X_test_scaled_badly = test_scaler.transform(X_test) # visualize wrongly scaled data axes[2].scatter(X_train_scaled[:, 0], X_train_scaled[:, 1], c='b', label="conjunto de entrenamiento", s=60) axes[2].scatter(X_test_scaled_badly[:, 0], X_test_scaled_badly[:, 1], marker='^', c='r', label="conjunto de test", s=60) axes[2].set_title("datos incorrectamente escalados") ```
{ "source": "Jfcabral/SE2015", "score": 2 }
#### File: Jfcabral/SE2015/cluster_handler.py ```python from time import sleep from sys import stderr, exc_info from upload_to_s3 import select_s3_bucket from boto.emr.connection import EmrResponseError from boto.emr.instance_group import InstanceGroup from amazon_utilities import ACTIVE_CLUSTER_STATES, ALL_CLUSTER_STATES, RESIZABLE_CLUSTER_STATES, connect_emr class Cluster: # Maximum allowed Task instances for a Cluster MAX_TASK_INSTANCES = 5 # Maximum allowed Core instances for a Cluster MAX_CORE_INSTANCES = 3 # Hadoop version 1.x (required to allow the use of m1.small instances) EMR_HADOOP_VERSION = '1.0.3' # Amazon AMI last version to support Hadoop 1 EMR_AMI_VERSION = '2.4' DEFAULT_INSTANCE_GROUPS = [ InstanceGroup(1, 'MASTER', 'm1.small', 'ON_DEMAND', 'Master'), InstanceGroup(1, 'CORE', 'm1.small', 'ON_DEMAND', 'Core'), InstanceGroup(1, 'TASK', 'm1.small', 'ON_DEMAND', 'Task') ] def __init__(self, conn=connect_emr()): self.conn_emr = conn def menu(self): op = -1 while op != 0: print "\n---------- Cluster Menu ----------" print "1.\tList Active Clusters\n" \ "2.\tList All Clusters\n" \ "3.\tCreate Cluster\n" \ "4.\tResize Cluster\n" \ "5.\tTerminate Cluster\n\n" \ "0.\tMain Menu\n" ops = {1: 'self.list_clusters()', 2: 'self.list_clusters(True)', 3: 'self.create_cluster()', 4: 'self.handle_cluster_resize()', 5: 'self.terminate_cluster()'} op = input('Your option: ') if op in ops: print eval(ops[op]) sleep(2) elif op != 0: print 'Invalid option! Please, try again...' def create_cluster(self): print 'Please select a bucket to save the logs ' s3_bucket_log = select_s3_bucket() _name = raw_input('\tCluster Name: ') cluster_id = self.conn_emr.run_jobflow(log_uri='s3://%s/logs' % s3_bucket_log, name=_name, steps=[], # num_instances=1, instance_groups=Cluster.DEFAULT_INSTANCE_GROUPS, job_flow_role='EMR_EC2_DefaultRole', service_role='EMR_DefaultRole', action_on_failure='CANCEL_AND_WAIT', # TODO careful! # should it be CANCEL_AND_WAIT? ami_version=Cluster.EMR_AMI_VERSION, hadoop_version=Cluster.EMR_HADOOP_VERSION, keep_alive=True) # Enabling the termination protection self.conn_emr.set_termination_protection(cluster_id, True) if cluster_id: print 'Created cluster: ', cluster_id return cluster_id def terminate_cluster(self): cluster = self.input_select_cluster() if cluster: try: self.conn_emr.set_termination_protection(cluster.id, False) self.conn_emr.terminate_jobflow(cluster.id) print 'Cluster %s was successfully terminated after %s normalized hours.' \ % (cluster.id, cluster.normalizedinstancehours) except EmrResponseError: print >> stderr, 'Error terminating Cluster', exc_info()[1].message def input_select_cluster(self): ret = None cluster_list = self.list_clusters() if cluster_list and len(cluster_list) > 0: while True: cluster_op = input('Please select an option (-1 to go back): ') if cluster_op < -1 or cluster_op > len(cluster_list): print >> stderr, 'Invalid option' else: break if cluster_op != -1: ret = cluster_list[cluster_op] return ret def input_select_create_cluster(self): cluster_id = None cluster_list = self.list_clusters(False, True) index_create_new_cluster = len(cluster_list) print '%d.\tCreate new Cluster' % index_create_new_cluster while True: try: cluster_op = int(raw_input('Please select an option (-1 to go back): ')) if cluster_op == index_create_new_cluster: cluster_id = self.create_cluster() break elif cluster_op == -1: cluster_id = -1 break elif cluster_list and 0 <= cluster_op < len(cluster_list): cluster_id = cluster_list[cluster_op].id break else: print >> stderr, 'Invalid option' except ValueError: print >> stderr, 'Invalid option' return cluster_id def handle_cluster_resize(self): cluster = self.input_select_cluster() if cluster: instances = self.conn_emr.list_instance_groups(cluster.id) if not instances or len(instances.instancegroups) == 0: print >> stderr, 'No instances were found.' else: instance = self.print_input_instance_group(instances) if instance: if instance.instancegrouptype == 'MASTER': print >> stderr, 'Master instances can not be resided!' elif instance.instancegrouptype in 'CORE': self.__handle_core_increase(instance) elif instance.instancegrouptype == 'TASK': self.__handle_task_resize(instance) else: print >> stderr, 'Unknown Instance Group Type ', instance.instancegrouptype def __handle_task_resize(self, instance): print '\tCurrent instances: ', instance.runninginstancecount number_instances = input('\tNew number of instances: ') if 0 <= number_instances <= Cluster.MAX_TASK_INSTANCES: try: self.conn_emr.modify_instance_groups(instance.id, number_instances) print 'Task instance number was successfully changed from %s to %d!' \ % (instance.runninginstancecount, number_instances) sleep(1) except EmrResponseError: print >> stderr, 'Error occurred when increasing core size ', exc_info()[1].message else: print >> stderr, 'Invalid option' def __handle_core_increase(self, instance): print 'Attention: Core instances can only be increased!\n\tCurrent instances: ', instance.runninginstancecount number_instances = input('\tNew number of instances: ') if int(instance.runninginstancecount) < number_instances <= Cluster.MAX_CORE_INSTANCES: try: self.conn_emr.modify_instance_groups(instance.id, number_instances) print 'Core instance number was successfully increased from %s to %d!' \ % (instance.runninginstancecount, number_instances) sleep(2) except EmrResponseError: print >> stderr, 'Error occurred when increasing core size', exc_info()[1].message else: print >> stderr, 'Invalid option' def print_input_instance_group(self, instances): i = 0 resizable_instance = False print "\n\n\t---------- Groups ----------" for instance in instances.instancegroups: if instance.status.state in RESIZABLE_CLUSTER_STATES: resizable_instance = True print '\t%d)\n\t\tType:\t%s\n\t\tID:\t%s\n\t\tType:\t%s - %s\n\t\tRequested / Running Count:\t%s/%s\n' \ '\t\tStatus:\t%s\n\t------------------------------------' \ % (i, instance.instancegrouptype, instance.id, instance.instancetype, instance.market, instance.requestedinstancecount, instance.runninginstancecount, instance.status.state) i += 1 op = -1 if resizable_instance: while True: try: op = int(raw_input('Select a Instance Group (-1 to go back): ')) if op < -1 or op >= len(instances.instancegroups) \ or instances.instancegroups[op].status.state not in RESIZABLE_CLUSTER_STATES: raise ValueError() else: break except ValueError: print >> stderr, 'Invalid option' else: print 'No Running or Waiting (resizable) instances were found at the moment. Try a bit later.' if op != -1: ret = instances.instancegroups[op] else: ret = None return ret def list_instances(self, cluster): temp = self.conn_emr.list_instances(cluster.id) print temp def list_clusters(self, all_states=False, silent=False): if all_states: out = self.conn_emr.list_clusters(cluster_states=ALL_CLUSTER_STATES) else: out = self.conn_emr.list_clusters(cluster_states=ACTIVE_CLUSTER_STATES) if not out or not out.clusters or len(out.clusters) == 0: if not silent: print 'No clusters found / available for the selected option.' else: i = 0 print "\n---------- Clusters ----------\n" for cluster in out.clusters: instances = self.conn_emr.list_instance_groups(cluster.id) master_count = 0 core_count = 0 task_count = 0 for instance in instances.instancegroups: if instance.instancegrouptype in "MASTER": master_count += 1 elif instance.instancegrouptype in "CORE": core_count += 1 elif instance.instancegrouptype in "TASK": task_count += 1 print '%d:\n\tID:\t%s\n\tName:\t%s\n\tStatus:\t%s\n\tComposition:\n\t\t%d x Master\n\t\t%d x Core\n' \ '\t\t%d x Task\n--------------------------------\n' \ % (i, cluster.id, cluster.name, cluster.status.state, master_count, core_count, task_count) i += 1 return out.clusters if __name__ == '__main__': from boto.emr.connection import EmrConnection # input_select_cluster(EmrConnection()) #cluster_menu(EmrConnection()) Cluster().menu() ``` #### File: SE2015/deprecated/consumerProgram.py ```python import cPickle import time import boto.sqs from boto.sqs.message import Message import boto.emr from boto.emr.step import StreamingStep from deprecated.emailNotification import sendemail ''' ACCESS_KEY = "<enter ACCESS_KEY>" SECRET_KEY = "<enter SECRET_KEY>" ''' REGION = "eu-west-1" def sendnotification(msg, status, downloadlink): receipients_list = (msg('emailaddress')) subject = 'MapReduce Job Notification' if status == 'COMPLETED': message = "Your MapReduce job is complete. Download results from: " + downloadlink sendemail(receipients_list, subject, message) def createemrjob(msg): print "Connecting to EMR" conn = boto.emr.connect_to_region(REGION) print "Creating streaming step" t = time.localtime(time.time()) job_datetime = str(t.tm_year) + str(t.tm_mon) + str(t.tm_mday) + str(t.tm_hour) + str(t.tm_min) + str(t.tm_sec) outputlocation = 's3n://mybucket/uploadfiles/' + job_datetime step = StreamingStep(name=job_datetime, mapper=msg('mapper'), reducer=msg('reducer'), input=msg('datafile'), output=outputlocation) print "Creating job flow" jobid = conn.run_jobflow(name=job_datetime, log_uri='s3n://mybucket/uploadfiles/mapred_logs', steps=[step]) print "Submitted job flow" print "Waiting for job flow to complete" status = conn.describe_jobflow(jobid) print status.state while status.state == 'STARTING' or status.state == 'RUNNING' or status.state == 'WAITING' or status.state == 'SHUTTING_DOWN': time.sleep(10) status = conn.describe_jobflow(jobid) print "Job status: " + str(status.state) print "Completed Job: " + job_datetime downloadlink = 'http://mybucket.s3.amazonaws.com/uploadedfiles/' + job_datetime + '/part-00000' sendnotification(msg, status.state, downloadlink) print "Connecting to SQS" conn = boto.sqs.connect_to_region(REGION) queue_name = 'arsh_queue' print "Connecting to queue: " + queue_name q = conn.get_all_queues(prefix=queue_name) count = q(0).count() print "Total messages in queue: " + str(count) print "Reading message from queue" for i in range(count): m = q(0).read() msg = cPickle.loads(m.get_body()) print "Message %d: %s" % (i + 1, msg) q(0).delete_message(m) createemrjob(msg) print "Read %d messages from queue" % count ``` #### File: SE2015/deprecated/createEnqueueJob.py ```python import cPickle import boto.sqs from boto.sqs.message import Message import s3upload ''' ACCESS_KEY = "<enter ACCESS_KEY>" SECRET_KEY = "<enter SECRET_KEY>" ''' REGION = "eu-weast-1" def enqueuejob(datafile, mapper, reducer, emailaddress): conn = boto.sqs.connect_to_region(REGION) queue_name = 'arsh_queue' q = conn.get_all_queues(prefix=queue_name) msgdict = {'datafile': datafile, 'mapper': mapper, 'reducer': reducer, 'emailaddress': emailaddress} msg = cPickle.dumps(msgdict) m = Message() m.set_body(msg) status = q(0).write(m) def createjob(datafilename, mapfilename, reducefilename, mapreduceprogram, emailaddress): s3upload.upload('mybucket', 'uploadfiles', datafilename) datafile = 's3n://mybucket/uploadedfiles/' + datafilename if mapreduceprogram == 'wordcount': mapper = 's3n://mybucket/uploadedfiles/wordCountMapper.py' reducer = 's3n://mybucket/uploadedfiles/wordCountReducer.py' elif mapreduceprogram == 'invertedindex': mapper = 's3n://mybucket/uploadedfiles/invertedindexMapper.py' reducer = 's3n://mybucket/uploadedfiles/invertedindexReducer.py' else: s3upload.upload('mybucket', 'uploadedfiles', mapfilename) s3upload.upload('mybucket', 'uploadedfiles', reducefilename) mapper = 's3n://mybucket/uploadedfiles/' + mapfilename reducer = 's3n://mybucket/uploadedfiles' + reducefilename enqueuejob(datafile, mapper, reducer, emailaddress) return datafile, mapper, reducer, emailaddress ``` #### File: Jfcabral/SE2015/dynamo_handler.py ```python from time import sleep from sys import exc_info, stderr from boto.dynamodb2.fields import HashKey, RangeKey from boto.dynamodb2.table import Table from boto.dynamodb2.layer1 import DynamoDBConnection from boto.dynamodb2.exceptions import JSONResponseError, ItemNotFound # This class aims to encapsulate the operations with Amazon NoSQL Engine: Dynamo DB v2 # Docs: # * http://boto.readthedocs.org/en/latest/dynamodb2_tut.html # * http://boto.readthedocs.org/en/latest/ref/dynamodb2.html class DynamoHandler: CREATE_TABLE_IF_MISSING = True TABLE_CREATION_TIME = 30 MAP_REDUCE_PROFILE_TABLE = 'map_reduce_profiles' MAP_REDUCE_PROFILE_SCHEMA = [HashKey('profile_name')] MAP_REDUCE_PROFILE_THROUGHPUT = {'read': 1, 'write': 1} def __init__(self, region='us-east-1'): #self.connection = connect_to_region(region) # bugs the scan list self.connection = DynamoDBConnection() self.profiles_table = Table(DynamoHandler.MAP_REDUCE_PROFILE_TABLE, schema=DynamoHandler.MAP_REDUCE_PROFILE_SCHEMA, throughput=DynamoHandler.MAP_REDUCE_PROFILE_THROUGHPUT, connection=self.connection) """if DynamoHandler.CREATE_TABLE_IF_MISSING: try: self.profiles_table.describe() except JSONResponseError: if exc_info()[1].error_code == 'ResourceNotFoundException': self.configure_first_run()""" def check_create_table(self): try: self.profiles_table.describe() print '\tMap-Reduce dynamo db already exists' except JSONResponseError: if exc_info()[1].error_code == 'ResourceNotFoundException': self.create_table() def get_all_profile_names(self): ret = None profiles = self.connection.scan(table_name=DynamoHandler.MAP_REDUCE_PROFILE_TABLE, attributes_to_get=['profile_name']) if profiles and 'Items' in profiles and len(profiles['Items']) > 0: ret = profiles['Items'] if ret: return [elem['profile_name']['S'] for elem in ret] else: return None def list_input_profile(self): ret = None profiles = self.get_all_profile_names() while not ret: i = 1 for elem in profiles: print '\t%d.\t%s' % (i, elem) i += 1 try: option = int(raw_input("\t0.\tMain Menu\nPlease chose a profile: ")) if option == 0: break elif 0 < option <= len(profiles): ret = self.get_profile_data(profiles[option-1]) else: print >> stderr, 'Invalid Option!' except ValueError: print >> stderr, 'Invalid option' return ret def check_if_profile_exists(self, profile_name): try: self.profiles_table.get_item(profile_name=profile_name) ret = True except ItemNotFound: ret = False return ret def get_profile_data(self, profile_name): return self.profiles_table.get_item(profile_name=profile_name)._data # Todo check repeated def create_profile(self, profile_name, sample_path, mapper_file_path, reducer_file_path, combiner_file_path=None): if combiner_file_path: self.profiles_table.put_item(data={'profile_name': profile_name, 'sample_path': sample_path, 'mapper_file_path': mapper_file_path, 'reducer_file_path': reducer_file_path, 'combiner_file_path': combiner_file_path}) else: self.profiles_table.put_item(data={'profile_name': profile_name, 'sample_path': sample_path, 'mapper_file_path': mapper_file_path, 'reducer_file_path': reducer_file_path}) def create_table(self): print '\tCreating a new table on Dynamo to save the Map Reduce Profiles. Please wait...' self.profiles_table = Table.create(DynamoHandler.MAP_REDUCE_PROFILE_TABLE, schema=DynamoHandler.MAP_REDUCE_PROFILE_SCHEMA, throughput=DynamoHandler.MAP_REDUCE_PROFILE_THROUGHPUT, connection=self.connection) def configure_first_run(self): self.create_table() # wait until the table is created before populating it sleep(self.TABLE_CREATION_TIME) print 'Populating with default profiles' # Word Count profile base_path = 's3://eng-serv-teste3/' self.create_profile('Word Count', base_path + 'input/Word_Count', base_path + 'scripts/WordCountMapper.py', base_path + 'scripts/WordCountReducer2.py') if __name__ == '__main__': handler = DynamoHandler() #print handler.get_all_profile_names() print handler.get_profile_data('Word Count') ``` #### File: Jfcabral/SE2015/email_dispatcher.py ```python import json from time import sleep from email_management import send_email from amazon_utilities import connect_emr, connect_ses, connect_s3, connect_sqs, create_get_queue, set_folder_public_simple, QUEUE_EMAIL_DISPATCH TIME_WAIT_FOR_MESSAGES = 20 # 20s is the maximum allowed by amazon SLEEP_TIME_AFTER_EMAIL = 15 # in seconds # Allows to send email notifications in regard to a step # Receives email notification requests from a Queue class EmailDispatcher: def __init__(self): self.jobs = [] self.conn_emr = connect_emr() self.conn_ses = connect_ses() self.conn_s3 = connect_s3() def init_mail_dispatch(self, queue): while True: # read message from queue print 'waiting for messages' message = queue.read(wait_time_seconds=TIME_WAIT_FOR_MESSAGES) if message: print 'New Message!' # get message content body = message.get_body() #print body # parse message {'recipient', 'link', 'step_id', 'job_id'} self.jobs.append(json.loads(body)) # delete message queue.delete_message(message) sleep(SLEEP_TIME_AFTER_EMAIL) # check if a job has finished self.check_jobs() def check_jobs(self): for elem in self.jobs: if 'link' in elem and 'recipient' in elem and 'step_id' in elem and 'cluster_id' in elem: step_info = self.conn_emr.describe_step(elem['cluster_id'], elem['step_id']) step_data = self.parse_step_info(elem['link'], step_info) if step_data: if step_info.status.state == 'COMPLETED': # Make sure the link is accessible set_folder_public_simple(elem['link'], self.conn_s3) send_email(elem['recipient'], step_data, self.conn_ses) self.jobs.remove(elem) # returns a dictionary containing all data relevant to the step def parse_step_info(self, url, step_info): ret = None if step_info.status.state in ['COMPLETED', 'TERMINATING', 'TERMINATED']: ret = {'step_id': step_info.id, 'step_name': step_info.name, 'status': step_info.status.state, 'creation_date': step_info.status.timeline.creationdatetime, 'end_date': step_info.status.timeline.enddatetime, 'link': url} elif step_info.status.state in ['TERMINATED_WITH_ERRORS', 'FAILED', 'CANCELLED', 'SHUTTING_DOWN']: ret = {'step_id': step_info.id, 'step_name': step_info.name, 'status': step_info.status.state, 'creation_date': step_info.status.timeline.creationdatetime} return ret if __name__ == '__main__': # connect SQS conn_sqs = connect_sqs() # setup queue (create if it doesn't exit) queue = create_get_queue(QUEUE_EMAIL_DISPATCH, conn_sqs) # start listening from the queue and sending emails EmailDispatcher().init_mail_dispatch(queue) """conn_emr = connect_emr() step_info = conn_emr.describe_step('j-3O983JX5SNZBI', 's-9V22DHFEBQB4') EmailDispatcher().parse_step_info('fjdsfjhsdjfhsljflskxhgds', step_info) print step_info""" ```
{ "source": "jfcamel/meta-mender", "score": 2 }
#### File: tests/acceptance/common.py ```python from fabric.api import * from fabric.contrib.files import append import fabric.network from distutils.version import LooseVersion import pytest import os import re import subprocess import time import tempfile import errno import shutil import signal import sys from contextlib import contextmanager import conftest class ProcessGroupPopen(subprocess.Popen): """Wrapper for subprocess.Popen that starts the underlying process in a separate process group. The wrapper overrides kill() and terminate() so that the corresponding SIGKILL/SIGTERM are sent to the whole process group and not just the forked process. Note that ProcessGroupPopen() constructor hijacks preexec_fn parameter. """ def __init__(self, *args, **kwargs): def start_new_session(): os.setsid() # for Python > 3.2 it's enough to set start_new_session=True super(ProcessGroupPopen, self).__init__(*args, preexec_fn=start_new_session, **kwargs) def __signal(self, sig): os.killpg(self.pid, sig) def terminate(self): self.__signal(signal.SIGTERM) def kill(self): self.__signal(signal.SIGKILL) def start_qemu(qenv=None): """Start qemu and return a subprocess.Popen object corresponding to a running qemu process. `qenv` is a dict of environment variables that will be added to `subprocess.Popen(..,env=)`. Once qemu is stated, a connection over ssh will attempted, so the returned process is actually a qemu instance with fully booted guest os. The helper uses `meta-mender-qemu/scripts/mender-qemu` to start qemu, thus you can use `VEXPRESS_IMG`, `QEMU_DRIVE` and other environment variables to override the default behavior. """ env = dict(os.environ) if qenv: env.update(qenv) proc = ProcessGroupPopen(["../../meta-mender-qemu/scripts/mender-qemu", "-snapshot"], env=env) try: # make sure we are connected. execute(run_after_connect, "true", hosts = conftest.current_hosts()) execute(qemu_prep_after_boot, hosts = conftest.current_hosts()) except: # or do the necessary cleanup if we're not try: # qemu might have exited and this would raise an exception print('cleaning up qemu instance with pid {}'.format(proc.pid)) proc.terminate() except: pass proc.wait() raise return proc def start_qemu_block_storage(latest_sdimg, suffix): """Start qemu instance running block storage""" fh, img_path = tempfile.mkstemp(suffix=suffix, prefix="test-image") # don't need an open fd to temp file os.close(fh) # Make a disposable image. shutil.copy(latest_sdimg, img_path) # pass QEMU drive directly qenv = {} qenv["DISK_IMG"] = img_path try: qemu = start_qemu(qenv) except: os.remove(img_path) raise return qemu, img_path def start_qemu_flash(latest_vexpress_nor): """Start qemu instance running *.vexpress-nor image""" print("qemu raw flash with image {}".format(latest_vexpress_nor)) # make a temp file, make sure that it has .vexpress-nor suffix, so that # mender-qemu will know how to handle it fh, img_path = tempfile.mkstemp(suffix=".vexpress-nor", prefix="test-image") # don't need an open fd to temp file os.close(fh) # vexpress-nor is more complex than sdimg, inside it's compose of 2 raw # files that represent 2 separate flash banks (and each file is a 'drive' # passed to qemu). Because of this, we cannot directly apply qemu-img and # create a qcow2 image with backing file. Instead make a disposable copy of # flash image file. shutil.copyfile(latest_vexpress_nor, img_path) qenv = {} # pass QEMU drive directly qenv["DISK_IMG"] = img_path qenv["MACHINE"] = "vexpress-qemu-flash" try: qemu = start_qemu(qenv) except: os.remove(img_path) raise return qemu, img_path def reboot(wait = 120): with settings(warn_only = True): try: run("reboot") except: # qemux86-64 is so fast that sometimes the above call fails with # an exception because the connection was broken before we returned. # So catch everything, even though it might hide real errors (but # those will probably be caught below after the timeout). pass # Make sure reboot has had time to take effect. time.sleep(5) for attempt in range(5): try: fabric.network.disconnect_all() break except IOError: # Occasionally we get an IO error here because resource is temporarily # unavailable. time.sleep(5) continue run_after_connect("true", wait) qemu_prep_after_boot() def run_after_connect(cmd, wait=360): output = "" start_time = time.time() with settings(timeout=30, abort_exception=Exception): while True: attempt_time = time.time() try: output = run(cmd) break except BaseException as e: print("Could not connect to host %s: %s" % (env.host_string, e)) if attempt_time >= start_time + wait: raise Exception("Could not reconnect to host") now = time.time() if now - attempt_time < 5: time.sleep(60) continue return output def ssh_prep_args(): return ssh_prep_args_impl("ssh") def scp_prep_args(): return ssh_prep_args_impl("scp") def ssh_prep_args_impl(tool): if not env.host_string: raise Exception("get()/put() called outside of execute()") cmd = ("%s -C -o StrictHostKeyChecking=no -o UserKnownHostsFile=/dev/null" % tool) host_parts = env.host_string.split(":") host = "" port = "" port_flag = "-p" if tool == "scp": port_flag = "-P" if len(host_parts) == 2: host = host_parts[0] port = "%s%s" % (port_flag, host_parts[1]) elif len(host_parts) == 1: host = host_parts[0] port = "" else: raise Exception("Malformed host string") return (cmd, host, port) def determine_active_passive_part(bitbake_variables): """Given the output from mount, determine the currently active and passive partitions, returning them as a pair in that order.""" mount_output = run("mount") a = bitbake_variables["MENDER_ROOTFS_PART_A"] b = bitbake_variables["MENDER_ROOTFS_PART_B"] if mount_output.find(a) >= 0: return (a, b) elif mount_output.find(b) >= 0: return (b, a) else: raise Exception("Could not determine active partition. Mount output:\n {}" \ "\nwas looking for {}".format(mount_output, (a, b))) # Yocto build SSH is lacking SFTP, let's override and use regular SCP instead. def put(file, local_path = ".", remote_path = "."): (scp, host, port) = scp_prep_args() local("%s %s %s/%s %s@%s:%s" % (scp, port, local_path, file, env.user, host, remote_path)) # See comment for put(). def get(file, local_path = ".", remote_path = "."): (scp, host, port) = scp_prep_args() local("%s %s %s@%s:%s/%s %s" % (scp, port, env.user, host, remote_path, file, local_path)) def qemu_prep_after_boot(): # Nothing needed ATM. pass def qemu_prep_fresh_host(): # Nothing needed ATM. pass def manual_uboot_commit(): run("fw_setenv upgrade_available 0") run("fw_setenv bootcount 0") def common_board_setup(files=None, remote_path='/tmp', image_file=None): """ Deploy and activate an image to a board that usese mender-qa tools. :param image_file: IMAGE_FILE as passed to deploy-test-image, can be None :param remote_path: where files will be stored in the remote system :param files: list of files to deploy """ for f in files: put(os.path.basename(f), local_path=os.path.dirname(f), remote_path=remote_path) env_overrides = {} if image_file: env_overrides['IMAGE_FILE'] = image_file run("{} mender-qa deploy-test-image".format(' '.join( ['{}={}'.format(k, v) for k, v in env_overrides.items()]))) with settings(warn_only=True): sudo("mender-qa activate-test-image") def common_board_cleanup(): sudo("mender-qa activate-test-image off") with settings(warn_only=True): sudo("reboot") execute(run_after_connect, "true", hosts = conftest.current_hosts()) def common_boot_from_internal(): sudo("mender-qa activate-test-image on") with settings(warn_only=True): sudo("reboot") execute(run_after_connect, "true", hosts = conftest.current_hosts()) def latest_build_artifact(builddir, extension): output = subprocess.check_output(["sh", "-c", "ls -t %s/tmp*/deploy/images/*/*%s | grep -v data*%s| head -n 1" % (builddir, extension, extension)]) output = output.rstrip('\r\n') print("Found latest image of type '%s' to be: %s" % (extension, output)) return output def get_bitbake_variables(target, env_setup="true", export_only=False): current_dir = os.open(".", os.O_RDONLY) os.chdir(os.environ['BUILDDIR']) output = subprocess.Popen("%s && bitbake -e %s" % (env_setup, target), stdout=subprocess.PIPE, shell=True, executable="/bin/bash") if export_only: export_only_expr = "" else: export_only_expr = "?" matcher = re.compile('^(?:export )%s([A-Za-z][^=]*)="(.*)"$' % export_only_expr) ret = {} for line in output.stdout: line = line.strip() match = matcher.match(line) if match is not None: ret[match.group(1)] = match.group(2) output.wait() os.fchdir(current_dir) # For some unknown reason, 'MACHINE' is not included in the 'bitbake -e' output. # We set MENDER_MACHINE in mender-setup.bbclass as a proxy so look for that instead. if ret.get('MACHINE') is None: if ret.get('MENDER_MACHINE') is not None: ret['MACHINE'] = ret.get('MENDER_MACHINE') else: raise Exception("Could not determine MACHINE or MENDER_MACHINE value.") return ret def signing_key(key_type): # RSA pregenerated using these. # openssl genrsa -out files/test-private-RSA.pem 2048 # openssl rsa -in files/test-private-RSA.pem -outform PEM -pubout -out files/test-public-RSA.pem # EC pregenerated using these. # openssl ecparam -genkey -name prime256v1 -out /tmp/private-and-params.pem # openssl ec -in /tmp/private-and-params.pem -out files/test-private-EC.pem # openssl ec -in files/test-private-EC.pem -pubout -out files/test-public-EC.pem class KeyPair: if key_type == "EC": private = "files/test-private-EC.pem" public = "files/test-public-EC.pem" else: private = "files/test-private-RSA.pem" public = "files/test-public-RSA.pem" return KeyPair() # `capture` can be a bool, meaning the captured output is returned, or a stream, # in which case the output is redirected there, and the process handle is # returned instead. def run_verbose(cmd, capture=False): if type(capture) is not bool: print("subprocess.Popen(\"%s\")" % cmd) return subprocess.Popen(cmd, shell=True, executable="/bin/bash", stderr=subprocess.STDOUT, stdout=capture) elif capture: print("subprocess.check_output(\"%s\")" % cmd) return subprocess.check_output(cmd, shell=True, executable="/bin/bash", stderr=subprocess.STDOUT) else: print(cmd) return subprocess.check_call(cmd, shell=True, executable="/bin/bash") # Capture is true or false and conditonally returns output. def run_bitbake(prepared_test_build, target=None, capture=False): if target is None: target = prepared_test_build['image_name'] cmd = "%s && bitbake %s" % (prepared_test_build['env_setup'], target) ps = run_verbose(cmd, capture=subprocess.PIPE) output = "" try: # Cannot use for loop here due to buffering and iterators. while True: line = ps.stdout.readline() if not line: break if line.find("is not a recognized MENDER_ variable") >= 0: pytest.fail("Found variable which is not in mender-vars.json: %s" % line.strip()) if capture: output += line else: sys.stdout.write(line) finally: # Empty any remaining lines. try: if capture: output += ps.stdout.readlines() else: ps.stdout.readlines() except: pass ps.wait() if ps.returncode != 0: e = subprocess.CalledProcessError(ps.returncode, cmd) if capture: e.output = output raise e return output def add_to_local_conf(prepared_test_build, string): """Add given string to local.conf before the build. Newline is added automatically.""" with open(prepared_test_build['local_conf'], "a") as fd: fd.write('\n## ADDED BY TEST\n') fd.write("%s\n" % string) def reset_local_conf(prepared_test_build): new_file = prepared_test_build['local_conf'] old_file = prepared_test_build['local_conf_orig'] # Restore original local.conf run_verbose("cp %s %s" % (old_file, new_file)) def versions_of_recipe(recipe): """Returns a list of all the versions we have of the given recipe, excluding git recipes.""" versions = [] for entry in os.listdir("../../meta-mender-core/recipes-mender/%s/" % recipe): match = re.match(r"^%s_([1-9][0-9]*\.[0-9]+\.[0-9]+[^.]*)\.bb" % recipe, entry) if match is not None: versions.append(match.group(1)) return versions @contextmanager def make_tempdir(delete=True): """context manager for temporary directories""" tdir = tempfile.mkdtemp(prefix='meta-mender-acceptance.') print('created dir', tdir) try: yield tdir finally: if delete: shutil.rmtree(tdir) ```
{ "source": "jfcann/va-transformer", "score": 2 }
#### File: preprocessing/mimic/process_for_strong_coupling.py ```python import os import numpy as np import pickle as pickle import tqdm from pprint import pprint from preprocessing_arguments import PreprocessingArguments def fetch_data_as_numpy(path, var_key): with open(path, 'rb') as f: data = pickle.load(f) di = data[var_key] return di def postprocess(args): print('*' * 17, 'processing data for strong-coupling experiment with the following settings:', sep='\n') pprint(vars(args), indent=2) print('*' * 17) # define and save mapping dicts mappings_path = os.path.join(args.data_root, "mappings.pkl") with open(mappings_path, "rb") as f: mappings_dict = pickle.load(f) del mappings_dict['itemid2token']['[PAD]'] del mappings_dict['token2itemid'][0] del mappings_dict['qname2qtoken']['[PAD]'] del mappings_dict['qtoken2qname'][0] l1 = len(mappings_dict['itemid2token']) l2 = len(mappings_dict['qname2qtoken']) itemval2ptokens = dict(zip( [(i, j) for i in mappings_dict['itemid2token'] for j in mappings_dict['qname2qtoken']], range(1, l1 * l2) )) itemval2ptokens[('[PAD]', '[PAD]')] = 0 ptokens2itemval = {v:k for k, v in itemval2ptokens.items()} tokqtok2ptokens = dict(zip( [(i, j) for i in mappings_dict['token2itemid'] for j in mappings_dict['qtoken2qname']], range(1, l1 * l2) )) tokqtok2ptokens[(0, 0)] = 0 ptokens2tokqtok = {v: k for k, v in tokqtok2ptokens.items()} def convert_pair_to_tokens(t, q): return tokqtok2ptokens[(t, q)] ptokens2count = {k: 0 for k in ptokens2tokqtok} # loop through index sets and generate output files for subset in ['train', 'val', 'test']: print(f'Processing {subset} set data...') # data data_path = os.path.join(args.data_root, f'{subset}_data.pkl') tokens_np = fetch_data_as_numpy(data_path, f'{subset}_tokens') quants_np = fetch_data_as_numpy(data_path, f'{subset}_quants') times_rel = fetch_data_as_numpy(data_path, f'{subset}_times_rel') # initialise tokens_sc = dict() # populate with entries for i in tqdm.tqdm(tokens_np): tokens_sc[i] = np.fromiter( map(convert_pair_to_tokens, tokens_np[i], quants_np[i]), dtype=np.int32 ) if subset == 'train': for tok in tokens_sc[i]: ptokens2count[tok] += 1 # reverse-sort ptokens2count ptokens2count = dict(sorted(ptokens2count.items(), key=lambda item: item[1], reverse=True)) ptokens2count = {k:v for k, v in ptokens2count.items() if v > 0} print(ptokens2count) save_path = os.path.join(args.save_root, f'{subset}_data_sc.pkl') with open(save_path, 'wb') as f: pickle.dump({f'{subset}_tokens': tokens_sc, f'{subset}_times_rel': times_rel }, f) del tokens_np, tokens_sc, quants_np, times_rel print(f'{subset} set data processed!') mappings_save_path = os.path.join(args.save_root, "mappings_sc.pkl") with open(mappings_save_path, "wb") as f: pickle.dump({'itemid2token': tokqtok2ptokens, 'token2itemid': ptokens2tokqtok, 'token2trcount': ptokens2count, 'qname2qtoken': None, 'qtoken2qname': None}, f) if __name__ == "__main__": arguments = PreprocessingArguments().parse() postprocess(arguments) ``` #### File: va-transformer/va_transformers/va_transformers.py ```python import sys import math import torch from torch import nn, einsum import torch.nn.functional as F from functools import partial from inspect import isfunction from collections import namedtuple from einops import rearrange, repeat, reduce from einops.layers.torch import Rearrange from entmax import entmax15 # constants DEFAULT_DIM_HEAD = 64 Intermediates = namedtuple('Intermediates', [ 'pre_softmax_attn', 'post_softmax_attn' ]) LayerIntermediates = namedtuple('Intermediates', [ 'hiddens', 'attn_intermediates' ]) # helpers def exists(val): return val is not None def default(val, d): if exists(val): return val return d() if isfunction(d) else d class always(): def __init__(self, val): self.val = val def __call__(self, *args, **kwargs): return self.val class not_equals(): def __init__(self, val): self.val = val def __call__(self, x, *args, **kwargs): return x != self.val class equals(): def __init__(self, val): self.val = val def __call__(self, x, *args, **kwargs): return x == self.val def max_neg_value(tensor): return -torch.finfo(tensor.dtype).max # keyword argument helpers def pick_and_pop(keys, d): values = list(map(lambda key: d.pop(key), keys)) return dict(zip(keys, values)) def group_dict_by_key(cond, d): return_val = [dict(), dict()] for key in d.keys(): match = bool(cond(key)) ind = int(not match) return_val[ind][key] = d[key] return (*return_val,) def string_begins_with(prefix, str): return str.startswith(prefix) def group_by_key_prefix(prefix, d): return group_dict_by_key(partial(string_begins_with, prefix), d) def groupby_prefix_and_trim(prefix, d): kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d) kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items()))) return kwargs_without_prefix, kwargs # positional embeddings class DepthWiseConv1d(nn.Module): def __init__(self, dim_in, dim_out, kernel_size, padding=0, stride=1, bias=True, groups=False): super().__init__() groups = default(groups, dim_in) self.net = nn.Sequential( nn.Conv1d(dim_in, dim_in, kernel_size=kernel_size, padding=padding, groups=dim_in, stride=stride, bias=bias), nn.Conv1d(dim_in, dim_out, 1) ) def forward(self, x): return self.net(x) class AbsolutePositionalEmbedding(nn.Module): def __init__(self, dim, max_seq_len): super().__init__() self.scale = dim ** -0.5 self.emb = nn.Embedding(max_seq_len, dim) def forward(self, x): n = torch.arange(x.shape[1], device=x.device) pos_emb = self.emb(n) pos_emb = rearrange(pos_emb, 'n d -> () n d') return pos_emb * self.scale class FixedPositionalEmbedding(nn.Module): def __init__(self, dim): super().__init__() inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer('inv_freq', inv_freq) def forward(self, x, seq_dim=1, offset=0): t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) + offset sinusoid_inp = torch.einsum('i , j -> i j', t, self.inv_freq) emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1) return emb[None, :, :] class RelativePositionBias(nn.Module): def __init__(self, scale, causal=False, num_buckets=32, max_distance=128, heads=8): super().__init__() self.scale = scale self.causal = causal self.num_buckets = num_buckets self.max_distance = max_distance self.relative_attention_bias = nn.Embedding(num_buckets, heads) @staticmethod def _relative_position_bucket(relative_position, causal=True, num_buckets=32, max_distance=128): ret = 0 n = -relative_position if not causal: num_buckets //= 2 ret += (n < 0).long() * num_buckets n = torch.abs(n) else: n = torch.max(n, torch.zeros_like(n)) max_exact = num_buckets // 2 is_small = n < max_exact val_if_large = max_exact + ( torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).long() val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) ret += torch.where(is_small, n, val_if_large) return ret def forward(self, qk_dots): i, j, device = *qk_dots.shape[-2:], qk_dots.device q_pos = torch.arange(i, dtype=torch.long, device=device) k_pos = torch.arange(j, dtype=torch.long, device=device) rel_pos = k_pos[None, :] - q_pos[:, None] rp_bucket = self._relative_position_bucket(rel_pos, causal=self.causal, num_buckets=self.num_buckets, max_distance=self.max_distance) values = self.relative_attention_bias(rp_bucket) bias = rearrange(values, 'i j h -> () h i j') return qk_dots + (bias * self.scale) # TODO: class RotaryEmbedding(nn.Module): def __init__(self, dim): super().__init__() inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer('inv_freq', inv_freq) def forward(self, max_seq_len, device): t = torch.arange(max_seq_len, device=device).type_as(self.inv_freq) freqs = torch.einsum('i, j -> i j', t, self.inv_freq) emb = torch.cat((freqs, freqs), dim=-1) return rearrange(emb, 'n d -> () () n d') def rotate_half(x): x = rearrange(x, '... (j d) -> ... j d', j=2) x1, x2 = x.unbind(dim=-2) return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(t, freqs): seq_len = t.shape[-2] freqs = freqs[:, :, -seq_len:] return (t * freqs.cos()) + (rotate_half(t) * freqs.sin()) # classes class Scale(nn.Module): def __init__(self, value, fn): super().__init__() self.value = value self.fn = fn def forward(self, x, **kwargs): x, *rest = self.fn(x, **kwargs) return (x * self.value, *rest) class Rezero(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn self.g = nn.Parameter(torch.zeros(1)) def forward(self, x, **kwargs): x, *rest = self.fn(x, **kwargs) return (x * self.g, *rest) class ScaleNorm(nn.Module): def __init__(self, dim, eps=1e-5): super().__init__() self.scale = dim ** -0.5 self.eps = eps self.g = nn.Parameter(torch.ones(1)) def forward(self, x): norm = torch.norm(x, dim=-1, keepdim=True) * self.scale return x / norm.clamp(min=self.eps) * self.g class RMSNorm(nn.Module): def __init__(self, dim, eps=1e-8): super().__init__() self.scale = dim ** -0.5 self.eps = eps self.g = nn.Parameter(torch.ones(dim)) def forward(self, x): norm = torch.norm(x, dim=-1, keepdim=True) * self.scale return x / norm.clamp(min=self.eps) * self.g class Residual(nn.Module): def forward(self, x, residual): return x + residual class GRUGating(nn.Module): def __init__(self, dim): super().__init__() self.gru = nn.GRUCell(dim, dim) def forward(self, x, residual): gated_output = self.gru( rearrange(x, 'b n d -> (b n) d'), rearrange(residual, 'b n d -> (b n) d') ) return gated_output.reshape_as(x) # feedforward class GEGLU(nn.Module): def __init__(self, dim_in, dim_out): super().__init__() self.proj = nn.Linear(dim_in, dim_out * 2) def forward(self, x): x, gate = self.proj(x).chunk(2, dim=-1) return x * F.gelu(gate) class FeedForward(nn.Module): def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): super().__init__() inner_dim = int(dim * mult) dim_out = default(dim_out, dim) project_in = nn.Sequential( nn.Linear(dim, inner_dim), nn.GELU() ) if not glu else GEGLU(dim, inner_dim) self.net = nn.Sequential( project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) ) def forward(self, x): return self.net(x) # attention. class Attention(nn.Module): def __init__( self, dim, dim_head=DEFAULT_DIM_HEAD, heads=8, causal=False, mask=None, talking_heads=False, collab_heads=False, collab_compression=.3, sparse_topk=None, use_entmax15=False, num_mem_kv=0, dropout=0., on_attn=False, gate_values=False ): super().__init__() self.scale = dim_head ** -0.5 self.heads = heads self.causal = causal self.mask = mask qk_dim = v_dim = heads * dim_head # stacking heads together # collaborative heads self.collab_heads = collab_heads if self.collab_heads: qk_dim = int(collab_compression * qk_dim) self.collab_mixing = nn.Parameter(torch.randn(heads, qk_dim)) self.to_q = nn.Linear(dim, qk_dim, bias=False) # the attention heads self.to_k = nn.Linear(dim, qk_dim, bias=False) self.to_v = nn.Linear(dim, v_dim, bias=False) self.dropout = nn.Dropout(dropout) # add GLU gating for aggregated values, from alphafold2 self.to_v_gate = None if gate_values: self.to_v_gate = nn.Linear(dim, v_dim) nn.init.constant_(self.to_v_gate.weight, 0) nn.init.constant_(self.to_v_gate.bias, 1) # talking heads self.talking_heads = talking_heads if talking_heads: self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads)) self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads)) # explicit topk sparse attention self.sparse_topk = sparse_topk # entmax self.attn_fn = entmax15 if use_entmax15 else F.softmax # add memory key / values self.num_mem_kv = num_mem_kv if num_mem_kv > 0: self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) # attention on attention self.attn_on_attn = on_attn self.to_out = nn.Sequential(nn.Linear(v_dim, dim * 2), nn.GLU()) if on_attn else nn.Linear(v_dim, dim) def forward( self, x, context=None, mask=None, context_mask=None, rel_pos=None, sinusoidal_emb=None, rotary_pos_emb=None, prev_attn=None, mem=None ): b, n, _, h = *x.shape, self.heads talking_heads, collab_heads = self.talking_heads, self.collab_heads device, has_context = x.device, exists(context) kv_input = default(context, x) q_input = x # queries always computed from x k_input = kv_input # keys and values computed from context in cross-attention, otherwise from x v_input = kv_input if exists(mem): k_input = torch.cat((mem, k_input), dim=-2) v_input = torch.cat((mem, v_input), dim=-2) if exists(sinusoidal_emb): # in shortformer, the query would start at a position offset depending on the past cached memory offset = k_input.shape[-2] - q_input.shape[-2] q_input = q_input + sinusoidal_emb(q_input, offset=offset) k_input = k_input + sinusoidal_emb(k_input) q = self.to_q(q_input) # output is x_dims * (dim_head * heads). i.e. b * k = self.to_k(k_input) v = self.to_v(v_input) if not collab_heads: # split b x n x (dim_head + dim) into b x h x (n x d) matrices. i.e. each head h is an n * d matrix q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v)) else: q = einsum('b i d, h d -> b h i d', q, self.collab_mixing) k = rearrange(k, 'b n d -> b () n d') v = rearrange(v, 'b n (h d) -> b h n d', h=h) if exists(rotary_pos_emb) and not has_context: l = rotary_pos_emb.shape[-1] (ql, qr), (kl, kr), (vl, vr) = map(lambda t: (t[..., :l], t[..., l:]), (q, k, v)) ql, kl = map(lambda t: apply_rotary_pos_emb(t, rotary_pos_emb), (ql, kl)) q, k, v = map(lambda t: torch.cat(t, dim=-1), ((ql, qr), (kl, kr), (vl, vr))) input_mask = None if any(map(exists, (mask, context_mask))): q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool()) k_mask = q_mask if not exists(context) else context_mask k_mask = default(k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool()) q_mask = rearrange(q_mask, 'b i -> b () i ()') k_mask = rearrange(k_mask, 'b j -> b () () j') input_mask = q_mask * k_mask if self.num_mem_kv > 0: mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b=b), (self.mem_k, self.mem_v)) k = torch.cat((mem_k, k), dim=-2) v = torch.cat((mem_v, v), dim=-2) if exists(input_mask): input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True) if collab_heads: k = k.expand(-1, h, -1, -1) dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale # inner product between q and k mask_value = max_neg_value(dots) # gets max neg value for given torch dtype, to be pushed through softmax. if exists(prev_attn): dots = dots + prev_attn pre_softmax_attn = dots.clone() if talking_heads: dots = einsum('b h i j, h k -> b k i j', dots, self.pre_softmax_proj).contiguous() if exists(rel_pos): dots = rel_pos(dots) if exists(input_mask): dots.masked_fill_(~input_mask, mask_value) del input_mask if self.causal: i, j = dots.shape[-2:] r = torch.arange(i, device=device) mask = rearrange(r, 'i -> () () i ()') < rearrange(r, 'j -> () () () j') mask = F.pad(mask, (j - i, 0), value=False) # fit mask to correct shape. only necc if q.shape != k.shape dots.masked_fill_(mask, mask_value) del mask if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]: top, _ = dots.topk(self.sparse_topk, dim=-1) vk = top[..., -1].unsqueeze(-1).expand_as(dots) mask = dots < vk dots.masked_fill_(mask, mask_value) del mask attn = self.attn_fn(dots, dim=-1) # specify attention non-linearity post_softmax_attn = attn.clone() attn = self.dropout(attn) if talking_heads: attn = einsum('b h i j, h k -> b k i j', attn, self.post_softmax_proj).contiguous() out = einsum('b h i j, b h j d -> b h i d', attn, v) # use attn weights with values out = rearrange(out, 'b h n d -> b n (h d)') # collapse output of all heads and dim again. if exists(self.to_v_gate): gates = self.gate_v(x) out = out * gates.sigmoid() intermediates = Intermediates( pre_softmax_attn=pre_softmax_attn, post_softmax_attn=post_softmax_attn ) return self.to_out(out), intermediates class AttentionLayers(nn.Module): def __init__( self, dim, depth, heads=8, causal=False, cross_attend=False, only_cross=False, use_scalenorm=False, use_rmsnorm=False, use_rezero=False, rel_pos_bias=False, rel_pos_num_buckets=32, rel_pos_max_distance=128, position_infused_attn=False, rotary_pos_emb=False, rotary_emb_dim=None, custom_layers=None, sandwich_coef=None, par_ratio=None, residual_attn=False, cross_residual_attn=False, macaron=False, pre_norm=True, gate_residual=False, **kwargs ): super().__init__() ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs) # note: trims and groups kwargs attn_kwargs, _ = groupby_prefix_and_trim('attn_', kwargs) dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD) self.dim = dim self.depth = depth self.layers = nn.ModuleList([]) self.has_pos_emb = position_infused_attn or rel_pos_bias or rotary_pos_emb self.pia_pos_emb = FixedPositionalEmbedding(dim) if position_infused_attn else None rotary_emb_dim = max(default(rotary_emb_dim, dim_head // 2), 32) self.rotary_pos_emb = RotaryEmbedding(rotary_emb_dim) if rotary_pos_emb else None assert rel_pos_num_buckets <= rel_pos_max_distance, \ 'number of relative position buckets must be less than the relative position max distance' self.rel_pos = RelativePositionBias(scale=dim_head ** 0.5, causal=causal, heads=heads, num_buckets=rel_pos_num_buckets, max_distance=rel_pos_max_distance) if rel_pos_bias else None self.pre_norm = pre_norm self.residual_attn = residual_attn self.cross_residual_attn = cross_residual_attn self.cross_attend = cross_attend norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm norm_class = RMSNorm if use_rmsnorm else norm_class norm_fn = partial(norm_class, dim) norm_fn = nn.Identity if use_rezero else norm_fn branch_fn = Rezero if use_rezero else None if cross_attend and not only_cross: default_block = ('a', 'c', 'f') elif cross_attend and only_cross: default_block = ('c', 'f') else: default_block = ('a', 'f') if macaron: default_block = ('f',) + default_block if exists(custom_layers): layer_types = custom_layers elif exists(par_ratio): par_depth = depth * len(default_block) assert 1 < par_ratio <= par_depth, 'par ratio out of range' default_block = tuple(filter(not_equals('f'), default_block)) par_attn = par_depth // par_ratio depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper par_width = (depth_cut + depth_cut // par_attn) // par_attn assert len(default_block) <= par_width, 'default block is too large for par_ratio' par_block = default_block + ('f',) * (par_width - len(default_block)) par_head = par_block * par_attn layer_types = par_head + ('f',) * (par_depth - len(par_head)) elif exists(sandwich_coef): assert 0 < sandwich_coef <= depth, 'sandwich coefficient should be less than the depth' layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef else: layer_types = default_block * depth self.layer_types = layer_types self.num_attn_layers = len(list(filter(equals('a'), layer_types))) for layer_type in self.layer_types: if layer_type == 'a': layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs) elif layer_type == 'c': layer = Attention(dim, heads=heads, **attn_kwargs) elif layer_type == 'f': layer = FeedForward(dim, **ff_kwargs) layer = layer if not macaron else Scale(0.5, layer) else: raise Exception(f'invalid layer type {layer_type}') if isinstance(layer, Attention) and exists(branch_fn): layer = branch_fn(layer) if gate_residual: residual_fn = GRUGating(dim) else: residual_fn = Residual() self.layers.append(nn.ModuleList([ norm_fn(), layer, residual_fn ])) def forward( self, x, context=None, mask=None, context_mask=None, mems=None, return_hiddens=False ): assert not (self.cross_attend ^ exists(context)), 'context must be passed in if cross_attend is set to True' hiddens = [] intermediates = [] prev_attn = None prev_cross_attn = None mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers rotary_pos_emb = None if exists(self.rotary_pos_emb): max_rotary_emb_length = max(list(map(lambda m: (m.shape[1] if exists(m) else 0) + x.shape[1], mems))) rotary_pos_emb = self.rotary_pos_emb(max_rotary_emb_length, x.device) for i, (layer_type, (norm, block, residual_fn)) in enumerate(zip(self.layer_types, self.layers)): is_last = i == (len(self.layers) - 1) if layer_type == 'a': hiddens.append(x) layer_mem = mems.pop(0) residual = x if self.pre_norm: x = norm(x) if layer_type == 'a': out, inter = block(x, mask=mask, sinusoidal_emb=self.pia_pos_emb, rel_pos=self.rel_pos, rotary_pos_emb=rotary_pos_emb, prev_attn=prev_attn, mem=layer_mem) elif layer_type == 'c': out, inter = block(x, context=context, mask=mask, context_mask=context_mask, prev_attn=prev_cross_attn) elif layer_type == 'f': out = block(x) x = residual_fn(out, residual) if layer_type in ('a', 'c'): intermediates.append(inter) if layer_type == 'a' and self.residual_attn: prev_attn = inter.pre_softmax_attn elif layer_type == 'c' and self.cross_residual_attn: prev_cross_attn = inter.pre_softmax_attn if not self.pre_norm and not is_last: x = norm(x) if return_hiddens: intermediates = LayerIntermediates( hiddens=hiddens, attn_intermediates=intermediates ) return x, intermediates return x class Encoder(AttentionLayers): def __init__(self, **kwargs): assert 'causal' not in kwargs, 'cannot set causality on encoder' super().__init__(causal=False, **kwargs) class Decoder(AttentionLayers): def __init__(self, **kwargs): assert 'causal' not in kwargs, 'cannot set causality on decoder' super().__init__(causal=True, **kwargs) class CrossAttender(AttentionLayers): def __init__(self, **kwargs): super().__init__(cross_attend=True, only_cross=True, **kwargs) class TransformerWrapper(nn.Module): def __init__(self, *, num_tokens, max_seq_len, attn_layers, emb_dim=None, token_emb_dim=None, quant_emb_dim=None, max_mem_len=0., emb_dropout=0., num_quant_tokens=None, use_pos_emb=True, va_transformer=False, with_values=False, logit_head=None): super().__init__() assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder' dim = attn_layers.dim token_emb_dim = default(token_emb_dim, dim) quant_emb_dim = default(quant_emb_dim, dim) emb_dim = default(emb_dim, dim) self.quant_emb_dim = quant_emb_dim self.with_values = with_values self.va_transformer = va_transformer self.num_quant_tokens = num_quant_tokens self.logit_head = logit_head self.max_seq_len = max_seq_len self.max_mem_len = max_mem_len self.token_emb = nn.Embedding(num_tokens, token_emb_dim) if self.va_transformer: self.quant_emb = nn.Embedding(num_quant_tokens, quant_emb_dim) emb_dim = quant_emb_dim + token_emb_dim self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len) \ if (use_pos_emb and not attn_layers.has_pos_emb) else always(0) else: self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len) \ if (use_pos_emb and not attn_layers.has_pos_emb) else always(0) self.emb_dropout = nn.Dropout(emb_dropout) self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity() self.attn_layers = attn_layers self.norm = nn.LayerNorm(dim) self.init_(self.token_emb.weight) if self.va_transformer: self.init_(self.quant_emb.weight) if self.va_transformer: if self.logit_head == "weak": assert dim > quant_emb_dim self.to_logits = nn.Linear(dim - quant_emb_dim, num_tokens) self.to_quant_logits = nn.Linear(dim, num_quant_tokens) elif self.logit_head == "separate": assert dim > quant_emb_dim self.to_logits = nn.Linear(dim - quant_emb_dim, num_tokens) self.to_quant_logits = nn.Linear(quant_emb_dim, num_quant_tokens) elif self.logit_head == "shared": self.to_logits = nn.Linear(dim, num_tokens) self.to_quant_logits = nn.Linear(dim, num_quant_tokens) elif self.logit_head == "hierarchical": self.project_out = nn.Linear(dim, emb_dim) if emb_dim != dim else nn.Identity() self.to_logits = nn.Linear(token_emb_dim, num_tokens) self.to_quant_logits = nn.Linear(quant_emb_dim + 1, num_quant_tokens) else: raise Exception("Unknown or missing logit_head specified for chart-transformers!") else: self.to_logits = nn.Linear(dim, num_tokens) @staticmethod def init_(weights): nn.init.kaiming_normal_(weights) def forward( self, x, quants=None, return_embeddings=False, mask=None, return_attn=False, mems=None, **kwargs ): b, n, device = *x.shape, x.device x = self.token_emb(x) if self.va_transformer: quants = self.quant_emb(quants) x = torch.cat((x, quants), dim=2) x = x + self.pos_emb(x) x = self.emb_dropout(x) x = self.project_emb(x) x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs) x = self.norm(x) if self.va_transformer: if self.logit_head == "weak": x_token = x[:, :, :-self.quant_emb_dim] x_quant = x elif self.logit_head == "separate": x_token = x[:, :, :-self.quant_emb_dim] x_quant = x[:, :, -self.quant_emb_dim:] elif self.logit_head == "shared": x_token = x_quant = x elif self.logit_head == "hierarchical": x = self.project_out(x) x_token = x[:, :, :-self.quant_emb_dim] x_quant = x[:, :, -self.quant_emb_dim:] else: raise Exception("Unknown or missing logit_head specified for chart-transformers!") out = self.to_logits(x_token) if not return_embeddings else x_token if self.logit_head == "hierarchical": pred = torch.argmax(out, dim=2) pred = torch.unsqueeze(pred, dim=-1) x_quant = torch.cat((x_quant, pred), dim=2) quants_out = self.to_quant_logits(x_quant) if not return_embeddings else x_quant return out, quants_out else: out = self.to_logits(x) if not return_embeddings else x if return_attn: attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates)) return out, attn_maps return out ```
{ "source": "jfcarr-astronomy/astro-now", "score": 3 }
#### File: jfcarr-astronomy/astro-now/unittest_astro_util.py ```python import astro_util as AU import sys import unittest class AstroTest(unittest.TestCase): def test_Azimuth_North(self): self.assertEqual(AU.AzimuthToCompassDirection(AU.DegreesToRadians(0)), "North") def test_Azimuth_East(self): self.assertEqual(AU.AzimuthToCompassDirection(AU.DegreesToRadians(90)), "East") def test_Azimuth_South(self): self.assertEqual(AU.AzimuthToCompassDirection(AU.DegreesToRadians(180)), "South") def test_Azimuth_West(self): self.assertEqual(AU.AzimuthToCompassDirection(AU.DegreesToRadians(270)), "West") def main(args): unittest.main() if __name__ == '__main__': sys.exit(main(sys.argv)) ```
{ "source": "jfcarr/GFPGAN", "score": 2 }
#### File: GFPGAN/tests/test_stylegan2_clean_arch.py ```python import torch from gfpgan.archs.stylegan2_clean_arch import StyleGAN2GeneratorClean def test_stylegan2generatorclean(): """Test arch: StyleGAN2GeneratorClean.""" # model init and forward (gpu) if torch.cuda.is_available(): net = StyleGAN2GeneratorClean( out_size=32, num_style_feat=512, num_mlp=8, channel_multiplier=1, narrow=0.5).cuda().eval() style = torch.rand((1, 512), dtype=torch.float32).cuda() output = net([style], input_is_latent=False) assert output[0].shape == (1, 3, 32, 32) assert output[1] is None # -------------------- with return_latents ----------------------- # output = net([style], input_is_latent=True, return_latents=True) assert output[0].shape == (1, 3, 32, 32) assert len(output[1]) == 1 # check latent assert output[1][0].shape == (8, 512) # -------------------- with randomize_noise = False ----------------------- # output = net([style], randomize_noise=False) assert output[0].shape == (1, 3, 32, 32) assert output[1] is None # -------------------- with truncation = 0.5 and mixing----------------------- # output = net([style, style], truncation=0.5, truncation_latent=style) assert output[0].shape == (1, 3, 32, 32) assert output[1] is None # ------------------ test make_noise ----------------------- # out = net.make_noise() assert len(out) == 7 assert out[0].shape == (1, 1, 4, 4) assert out[1].shape == (1, 1, 8, 8) assert out[2].shape == (1, 1, 8, 8) assert out[3].shape == (1, 1, 16, 16) assert out[4].shape == (1, 1, 16, 16) assert out[5].shape == (1, 1, 32, 32) assert out[6].shape == (1, 1, 32, 32) # ------------------ test get_latent ----------------------- # out = net.get_latent(style) assert out.shape == (1, 512) # ------------------ test mean_latent ----------------------- # out = net.mean_latent(2) assert out.shape == (1, 512) ```
{ "source": "jfcarter2358/aphelper", "score": 3 }
#### File: aphelper/aphelper/enums.py ```python from enum import Enum, unique class BaseEnum(Enum): @classmethod def values(cls) -> list: """Returns a list of raw values for the class""" values = [member.value for role, member in cls.__members__.items()] return values @unique class Keys(BaseEnum): """Represents categories of objects in cli definition files""" META = "meta" SUBPARSERS = "subparsers" SUBCOMMANDS = "subcommands" @unique class LogicalOperators(BaseEnum): """Represents logical operators that can be used in determining required arguments""" NOT = "NOT" OR = "OR" AND = "AND" XOR = "XOR" NAND = "NAND" NOR = "NOR" @unique class SubparserMeta(BaseEnum): """Represents fields that are used to define subparser metadata""" PARSER_DESCRIPTION = "parser_description" PARSER_HELP = "parser_help" SUBPARSER_TITLE = "subparser_title" SUBPARSER_DESCRIPTION = "subparser_description" SUBPARSER_DEST = "subparser_dest" @unique class SubcommandMeta(BaseEnum): """Represents fields that are used to define subcommand metadata""" SUBCOMMAND_DESCRIPTION = "description" SUBCOMMAND_HELP = "help" SUBCOMMAND_FUNCTION = "function" SUBCOMMAND_REQUIRES = "requires" class Argument(BaseEnum): ARGUMENT_SHORT = "short" ARGUMENT_LONG = "long" ```
{ "source": "jfcarter2358/calligraphy", "score": 3 }
#### File: calligraphy/calligraphy_scripting/cli.py ```python from __future__ import annotations import sys import os from calligraphy_scripting import parser from calligraphy_scripting import runner from calligraphy_scripting import transpiler from calligraphy_scripting import __version__ # Setup global helper variables here = os.path.dirname(os.path.abspath(__file__)) if "-n" in sys.argv or "--no-ansi" in sys.argv: # pragma: no cover ANSI_BOLD = "" ANSI_RED = "" ANSI_GREEN = "" ANSI_BLUE = "" ANSI_RESET = "" transpiler.ANSI_GREEN = "" transpiler.ANSI_CYAN = "" transpiler.ANSI_BLUE = "" transpiler.ANSI_RESET = "" else: ANSI_BOLD = "\033[1m" ANSI_RED = "\033[31m" ANSI_GREEN = "\033[32m" ANSI_BLUE = "\033[34m" ANSI_RESET = "\033[0m" def version() -> None: """Print out the currently installed version of Calligraphy""" # Output the detected version print( f"{ANSI_GREEN}{ANSI_BOLD}Calligraphy{ANSI_RESET}: {ANSI_BLUE}{__version__}{ANSI_RESET}" ) def explain(path: str) -> None: """Print out the source code with language annotations Args: path (str): Path to the Calligraphy script file """ if path == "-": # Grab the code from stdin contents = "\n".join(sys.stdin.readlines()) else: # Open the file to parse with open(path, encoding="utf-8") as code_file: contents = code_file.read() # Process the contents contents, inline_indices = parser.handle_line_breaks(contents) lines, langs = parser.determine_language(contents) explanation = transpiler.explain(lines, langs, inline_indices) print(explanation) def intermediate(path: str, args: list) -> None: """Print out the intermediate Python code that will be run Args: path (str): Path to the Calligraphy script file args (list): Command line arguments to pass to the program """ if path == "-": # Grab the code from stdin contents = "\n".join(sys.stdin.readlines()) else: # Open the file to parse with open(path, encoding="utf-8") as code_file: contents = code_file.read() # Process the contents contents, inline_indices = parser.handle_line_breaks(contents) contents = parser.handle_sourcing(contents) lines, langs = parser.determine_language(contents) transpiled = transpiler.transpile(lines, langs, inline_indices) # Add the header to enable functionality with open(os.path.join(here, "data", "header.py"), encoding="utf-8") as header_file: header = header_file.read() header = header.replace('"PROGRAM_ARGS"', str(["calligraphy"] + args)) code = f"{header}\n\n{transpiled}" print(code) def execute(path: str, args: list) -> None: """Run a Calligraphy script Args: path (str): Path to the Calligraphy script file args (list): Command line arguments to pass to the program """ if path == "-": # Grab the code from stdin contents = "\n".join(sys.stdin.readlines()) else: # Open the file to parse with open(path, encoding="utf-8") as code_file: contents = code_file.read() # Run the code try: runner.execute(contents, args=[sys.argv[1]] + args) except Exception: help_prefix = f'Use `calligraphy -i {path} {" ".join(args)}'.strip() print(f"{help_prefix}` to see the intermediate Python for debugging") def cli() -> None: """Handle command line parsing""" # Help text to be displayed if need be help_text = f"""{ANSI_GREEN}usage{ANSI_RESET}: calligraphy [option] [file | -] [arg] {ANSI_BOLD}{ANSI_BLUE}options:{ANSI_RESET} -h, --help Show this help message and exit -e, --explain Parse input and show the language breakdown of the source -v, --version Print out the version of Calligraphy and exit -i, --intermediate Print out the compiled Python code and exit -n, --no-ansi Print without ANSI terminal colors {ANSI_BOLD}{ANSI_BLUE}arguments:{ANSI_RESET} file Program read from script file - Program read from stdin arg ... Arguments passed to the program""" args = sys.argv[1:] # Check if any arguments have been passed if len(args) == 0: print(help_text) sys.exit(1) # Setup variable defaults flag_intermediate = False flag_explain = False program_path = "" program_args = [] # Parse arguments for arg in args: if program_path: program_args.append(arg) continue if arg in ("-n", "--no-ansi"): continue # pragma: no cover if arg in ("-h", "--help"): print(help_text) sys.exit(0) if arg in ("-v", "--version"): version() sys.exit(0) if arg in ("-i", "--intermediate"): flag_intermediate = True if flag_explain: print( f"{ANSI_RED}{ANSI_BOLD}[ERROR]{ANSI_RESET} :: Both the `intermediate` and `explain` options cannot be set at the same time." ) sys.exit(1) continue # pragma: no cover if arg in ("-e", "--explain"): flag_explain = True if flag_intermediate: print( f"{ANSI_RED}{ANSI_BOLD}[ERROR]{ANSI_RESET} :: Both the `intermediate` and `explain` options cannot be set at the same time." ) sys.exit(1) continue # pragma: no cover program_path = arg # Make sure a program path was supplied if not program_path: print( f"{ANSI_RED}{ANSI_BOLD}[ERROR]{ANSI_RESET} :: Program input is required, either supply a file path or use `-` for stdin" ) sys.exit(1) # Handle any set flags if flag_explain: explain(program_path) sys.exit(0) if flag_intermediate: intermediate(program_path, program_args) sys.exit(0) # If we did nothing else then run the program execute(program_path, program_args) if __name__ == "__main__": cli() # pragma: no cover ``` #### File: calligraphy/calligraphy_scripting/runner.py ```python import os import sys import traceback from calligraphy_scripting import parser from calligraphy_scripting import transpiler from calligraphy_scripting import utils here = os.path.dirname(os.path.abspath(__file__)) def execute(contents: str, args: list) -> None: """Run Calligraphy code from another program Args: contents (str): The Calligraphy code to run args: (list): The arguments to pass to the script """ # Process the contents contents, inline_indices = parser.handle_line_breaks(contents) contents = parser.handle_sourcing(contents) lines, langs = parser.determine_language(contents) transpiled = transpiler.transpile(lines, langs, inline_indices) # Add the header to enable functionality header = utils.load_header() header = header.replace('"PROGRAM_ARGS"', str(args)) code = f"{header}\n\n{transpiled}" # Run the code try: exec(code, globals()) except KeyboardInterrupt: sys.exit() except Exception as exception: trace = traceback.format_exc() parts = trace.split("\n") idx = 1 exception_out = [parts[0]] while not parts[idx].startswith(' File "<string>"') and idx < len(parts): idx += 1 while idx < len(parts): exception_out.append(parts[idx]) idx += 1 print("\n".join(exception_out)) raise exception ``` #### File: calligraphy/tests/test_cli.py ```python from calligraphy_scripting.cli import __version__ from calligraphy_scripting import cli import os import pytest import io import sys import re class MockIO(): def __init__(self, stdin=''): self._stdout = io.StringIO() self._stderr = io.StringIO() self._stdin = io.StringIO(stdin) def __enter__(self): sys.stdout = self._stdout sys.stderr = self._stderr sys.stdin = self._stdin return self def __exit__(self, _, __, ___): sys.stdout = sys.__stdout__ sys.stderr = sys.__stderr__ sys.stdin = sys.__stdin__ @property def stdout(self): self._stdout.seek(0) return self._stdout.read() @property def stderr(self): self._stderr.seek(0) return self._stderr.read() here = os.path.dirname(os.path.abspath(__file__)) def escape_ansi(line): ansi_escape = re.compile(r'(?:\x1B[@-_]|[\x80-\x9F])[0-?]*[ -/]*[@-~]') return ansi_escape.sub('', line) def test_version(capfd): cli.version() out, _ = capfd.readouterr() assert escape_ansi(out) == f"Calligraphy: {__version__}\n" def test_explain(capfd): file_path = os.path.join(here, 'data', 'data.txt') with open(os.path.join(here, 'data', 'cli.explain.out')) as out_file: explain_out = out_file.read() with open(os.path.join(here, 'data', 'cli.explain.stdin.out')) as out_file: explain_stdin_out = out_file.read() with open(os.path.join(here, 'data', 'test1.script')) as script_file: script = script_file.read() # Test with file cli.explain(os.path.join(here, 'data', 'test1.script')) out, _ = capfd.readouterr() assert escape_ansi(out) == explain_out # Test with stdin with MockIO(stdin=script) as mock: cli.explain('-') out = mock.stdout assert escape_ansi(out) == explain_stdin_out def test_intermediate(capfd): file_path = os.path.join(here, 'data', 'data.txt') with open(os.path.join(here, 'data', 'cli.intermediate.out')) as out_file: intermediate_out = out_file.read() intermediate_out = intermediate_out.replace('<FILE_PATH>', file_path) with open(os.path.join(here, 'data', 'cli.intermediate.stdin.out')) as out_file: intermediate_stdin_out = out_file.read() intermediate_stdin_out = intermediate_stdin_out.replace('<FILE_PATH>', file_path) with open(os.path.join(here, 'data', 'test1.script')) as script_file: script = script_file.read() # Test with file cli.intermediate(os.path.join(here, 'data', 'test1.script'), [file_path, 'Plagueis']) out, _ = capfd.readouterr() assert escape_ansi(out) == intermediate_out # Test with stdin with MockIO(stdin=script) as mock: cli.intermediate('-', [file_path, 'Plagueis']) out = mock.stdout assert escape_ansi(out) == intermediate_stdin_out def test_execute(capfd): file_path = os.path.join(here, 'data', 'data.txt') with open(os.path.join(here, 'data', 'cli.execute.out')) as out_file: execute_out = out_file.read() execute_out = execute_out.replace('<FILE_PATH>', file_path) with open(os.path.join(here, 'data', 'test1.script')) as script_file: script = script_file.read() # Test with file cli.execute(os.path.join(here, 'data', 'test1.script'), [file_path, 'Plagueis']) out, _ = capfd.readouterr() assert escape_ansi(out) == execute_out # Test with stdin with MockIO(stdin=script) as mock: cli.execute('-', [file_path, 'Plagueis']) out = mock.stdout assert escape_ansi(out) == execute_out def test_calligraphy_cli(capfd): file_path = os.path.join(here, 'data', 'data.txt') with open(os.path.join(here, 'data', 'cli.version.out')) as out_file: version_out = out_file.read() with open(os.path.join(here, 'data', 'cli.explain.out')) as out_file: explain_out = out_file.read() with open(os.path.join(here, 'data', 'cli.explain.stdin.out')) as out_file: explain_stdin_out = out_file.read() with open(os.path.join(here, 'data', 'cli.intermediate.out')) as out_file: intermediate_out = out_file.read() intermediate_out = intermediate_out.replace('<FILE_PATH>', file_path) with open(os.path.join(here, 'data', 'cli.execute.out')) as out_file: execute_out = out_file.read() execute_out = execute_out.replace('<FILE_PATH>', file_path) with open(os.path.join(here, 'data', 'cli.cli.help.out')) as out_file: help_out = out_file.read() with open(os.path.join(here, 'data', 'cli.cli.flag_conflict.out')) as out_file: conflict_out = out_file.read() with open(os.path.join(here, 'data', 'cli.cli.no_program.out')) as out_file: no_program_out = out_file.read() with open(os.path.join(here, 'data', 'test1.script')) as script_file: script = script_file.read() # test no args sys.argv = ['foobar'] with pytest.raises(SystemExit) as pytest_wrapped_e: cli.cli() assert pytest_wrapped_e.type == SystemExit assert pytest_wrapped_e.value.code == 1 out, _ = capfd.readouterr() assert escape_ansi(out) == help_out # Test help flag sys.argv = ['foobar', '-h'] with pytest.raises(SystemExit) as pytest_wrapped_e: cli.cli() assert pytest_wrapped_e.type == SystemExit assert pytest_wrapped_e.value.code == 0 out, _ = capfd.readouterr() assert escape_ansi(out) == help_out # Test long help flag sys.argv = ['foobar', '--help'] with pytest.raises(SystemExit) as pytest_wrapped_e: cli.cli() assert pytest_wrapped_e.type == SystemExit assert pytest_wrapped_e.value.code == 0 out, _ = capfd.readouterr() assert escape_ansi(out) == help_out # Test version flag sys.argv = ['foobar', '-v'] with pytest.raises(SystemExit) as pytest_wrapped_e: cli.cli() assert pytest_wrapped_e.type == SystemExit assert pytest_wrapped_e.value.code == 0 out, _ = capfd.readouterr() assert escape_ansi(out) == version_out # Test long version flag sys.argv = ['foobar', '--version'] with pytest.raises(SystemExit) as pytest_wrapped_e: cli.cli() assert pytest_wrapped_e.type == SystemExit assert pytest_wrapped_e.value.code == 0 out, _ = capfd.readouterr() assert escape_ansi(out) == version_out # Test intermediate flag sys.argv = ['foobar', '-i', os.path.join(here, 'data', 'test1.script'), file_path, 'Plagueis'] with pytest.raises(SystemExit) as pytest_wrapped_e: cli.cli() assert pytest_wrapped_e.type == SystemExit assert pytest_wrapped_e.value.code == 0 out, _ = capfd.readouterr() assert escape_ansi(out) == intermediate_out # Test long intermediate flag sys.argv = ['foobar', '--intermediate', os.path.join(here, 'data', 'test1.script'), file_path, 'Plagueis'] with pytest.raises(SystemExit) as pytest_wrapped_e: cli.cli() assert pytest_wrapped_e.type == SystemExit assert pytest_wrapped_e.value.code == 0 out, _ = capfd.readouterr() assert escape_ansi(out) == intermediate_out # Test intermediate flag conflict sys.argv = ['foobar', '--intermediate', '-e', os.path.join(here, 'data', 'test1.script'), file_path, 'Plagueis'] with pytest.raises(SystemExit) as pytest_wrapped_e: cli.cli() assert pytest_wrapped_e.type == SystemExit assert pytest_wrapped_e.value.code == 1 out, _ = capfd.readouterr() assert escape_ansi(out) == conflict_out # Test explain flag sys.argv = ['foobar', '-e', os.path.join(here, 'data', 'test1.script')] with pytest.raises(SystemExit) as pytest_wrapped_e: cli.cli() assert pytest_wrapped_e.type == SystemExit assert pytest_wrapped_e.value.code == 0 out, _ = capfd.readouterr() assert escape_ansi(out) == explain_out # Test long explain flag sys.argv = ['foobar', '--explain', os.path.join(here, 'data', 'test1.script')] with pytest.raises(SystemExit) as pytest_wrapped_e: cli.cli() assert pytest_wrapped_e.type == SystemExit assert pytest_wrapped_e.value.code == 0 out, _ = capfd.readouterr() assert escape_ansi(out) == explain_out # Test explain flag conflict sys.argv = ['foobar', '-e', '-i', os.path.join(here, 'data', 'test1.script')] with pytest.raises(SystemExit) as pytest_wrapped_e: cli.cli() assert pytest_wrapped_e.type == SystemExit assert pytest_wrapped_e.value.code == 1 out, _ = capfd.readouterr() assert escape_ansi(out) == conflict_out # Test not passing a path sys.argv = ['foobar', '-e'] with pytest.raises(SystemExit) as pytest_wrapped_e: cli.cli() assert pytest_wrapped_e.type == SystemExit assert pytest_wrapped_e.value.code == 1 out, _ = capfd.readouterr() assert escape_ansi(out) == no_program_out # Test running a script sys.argv = ['foobar', os.path.join(here, 'data', 'test1.script'), file_path, 'Plagueis'] cli.cli() out, _ = capfd.readouterr() assert escape_ansi(out) == execute_out def test_help_flag(capfd): with open(os.path.join(here, 'data', 'cli.help_flag.out')) as out_file: help_flag_out = out_file.read() with open(os.path.join(here, 'data', 'cli.explain2.out')) as out_file: explain_out = out_file.read() # Test help flag passing sys.argv = ['foobar', os.path.join(here, 'data', 'test2.script'), '-h'] cli.cli() out, _ = capfd.readouterr() assert escape_ansi(out) == help_flag_out # Test explain output with source sys.argv = ['foobar', '-e', os.path.join(here, 'data', 'test2.script')] with pytest.raises(SystemExit) as pytest_wrapped_e: cli.cli() assert pytest_wrapped_e.type == SystemExit assert pytest_wrapped_e.value.code == 0 out, _ = capfd.readouterr() assert escape_ansi(out) == explain_out def test_shellopts(capfd): with open(os.path.join(here, 'data', 'cli.shellopts.out')) as out_file: shellopts_out = out_file.read() with open(os.path.join(here, 'data', 'cli.shellopts.err')) as err_file: shellopts_err = err_file.read() # Test help flag passing sys.argv = ['foobar', os.path.join(here, 'data', 'test4.script')] cli.cli() out, err = capfd.readouterr() assert escape_ansi(out) == shellopts_out assert escape_ansi(err) == shellopts_err def test_formatting(capfd): with open(os.path.join(here, 'data', 'cli.formatting.out')) as out_file: formatting_out = out_file.read() # Test help flag passing sys.argv = ['foobar', os.path.join(here, 'data', 'test5.script')] cli.cli() out, _ = capfd.readouterr() assert escape_ansi(out) == formatting_out def test_exception(capfd): file_path = os.path.join(here, 'data', 'test6.script') with open(os.path.join(here, 'data', 'cli.exception.out')) as out_file: formatting_out = out_file.read() formatting_out = formatting_out.replace('<FILE_PATH>', file_path) # Test help flag passing sys.argv = ['foobar', os.path.join(here, 'data', 'test6.script')] cli.cli() out, _ = capfd.readouterr() assert escape_ansi(out) == formatting_out ```
{ "source": "jfcarter2358/Ceres", "score": 2 }
#### File: Ceres/src/exporter.py ```python import common import utils def get_data(id): group, block, offset, length = utils.extract_from_id(id) with open('{}/{}/{}'.format(common.CERES_HOME + "/data", group, block), "rb") as f: f.seek(common.BLOCK_SIZE * block + offset) data = f.read(length) return data.decode(common.DATA_ENCODING) ``` #### File: Ceres/src/manager.py ```python import common import utils import index import exporter def delete_data(ident, free_data): data = exporter.get_data(ident) formatted = utils.map_dict(data, ident) for k in common.SCHEMA['meta']: index.remove_ident(ident, '{}/{}'.format(k, formatted[k])) group, block, offset, length = utils.extract_from_id(ident) with open('{}/{}/{}'.format(common.CERES_HOME + "/data", group, block), "r+b") as f: f.seek(common.BLOCK_SIZE * block + offset) f.write('\x00'.encode(common.DATA_ENCODING) * length) free_data[group][block].append({'start': offset, 'end': offset + length}) return free_data def merge_free(free_data): for group in range(0, len(free_data)): for block in range(0, len(free_data[group])): data = sorted(free_data[group][block], key = lambda x: x['start']) i = 1 while i < len(data): if data[i - 1]['end'] == data[i]['start']: data[i - 1]['end'] = data[i]['end'] del data[i] else: i += 1 free_data[group][block] = data return free_data ``` #### File: Ceres/src/utils.py ```python import common def merge_lists(A, B): out = [] for i in range(0, len(A)): if len(B) == 0: out += A[i:] break while B[0] < A[i]: out.append(B[0]) B.pop(0) if len(B) == 0: out += A[i:] break out.append(A[i]) out += B return out def extract_from_id(id): parts = id.split(':') return int(parts[0]), int(parts[1]), int(parts[2]), int(parts[3]) def map_dict(datum, ident): data = datum.split(',') out = {'id': ident} try: for i in range(0, len(common.SCHEMA['order'])): out[common.SCHEMA['order'][i]] = data[i].replace('<COMMA>', ',') except: print('MISSING DATA') print(data) return out ```
{ "source": "jfcarter2358/ceres", "score": 2 }
#### File: test/regression/test_regression.py ```python from ceresdb_python import __version__ from ceresdb_python import Connection import json import pytest CERESDB_USERNAME="ceresdb" CERESDB_PASSWORD="<PASSWORD>" CERESDB_HOST="localhost" CERESDB_PORT=7437 def test_database(): conn = Connection(CERESDB_USERNAME, CERESDB_PASSWORD, CERESDB_HOST, CERESDB_PORT) # Delete resources conn.query("delete database foo") # Get databases when none exist expected_data = [ {"name":"_auth"}, ] data = conn.query("get database") assert data == expected_data # Post database expected_data = [ {"name":"_auth"}, {"name":"foo"} ] conn.query("post database foo") data = conn.query("get database") assert data == expected_data # Delete database expected_data = [ {"name":"_auth"}, ] conn.query("delete database foo") data = conn.query("get database") assert data == expected_data def test_collection(): conn = Connection(CERESDB_USERNAME, CERESDB_PASSWORD, CERESDB_HOST, CERESDB_PORT) # Delete resources conn.query("delete database foo") # Create resources conn.query("post database foo") # Get collections when none exist expected_data = [ {"name":"_users",'schema':{'role':'STRING','username':'STRING'}} ] data = conn.query("get collection foo") assert data == expected_data # Post collection expected_data = [ {"name":"_users",'schema':{'role':'STRING','username':'STRING'}}, {"name":"bar",'schema':{'hello':'STRING','world':'INT'}} ] input_data = {"hello":"STRING","world":"INT"} conn.query(f"post collection foo.bar {json.dumps(input_data)}") data = conn.query("get collection foo | ORDERASC name") assert data == expected_data # Put collection expected_data = [ {"name":"_users",'schema':{'role':'STRING','username':'STRING'}}, {"name":"bar",'schema':{'hello':'STRING','world':'STRING'}} ] input_data = {"hello":"STRING","world":"STRING"} conn.query(f"put collection foo.bar {json.dumps(input_data)}") data = conn.query("get collection foo | ORDERASC name") data = sorted(data, key=lambda d: d['name']) assert data == expected_data # Delete collection expected_data = [ {"name":"_users",'schema':{'role':'STRING','username':'STRING'}} ] conn.query("delete collection foo.bar") data = conn.query("get collection foo") assert data == expected_data # Delete resources conn.query("delete database foo") def test_record(): conn = Connection(CERESDB_USERNAME, CERESDB_PASSWORD, CERESDB_HOST, CERESDB_PORT) # Delete resources conn.query("delete database foo") # Create resources conn.query("post database foo") conn.query("post collection foo.bar {\"item\":\"STRING\",\"price\":\"FLOAT\",\"in_stock\":\"BOOL\",\"count\":\"INT\"}") # Get records when none exist data = conn.query("get record foo.bar *") assert data == [] # Post record expected_data = [ {"item": "bolt", "price": 0.8, "in_stock": True, "count": 20}, {"item": "nail", "price": 0.3, "in_stock": True, "count": 10}, {"item": "nut", "price": 0.5, "in_stock": True, "count": 50}, {"item": "screw", "price": 0.2, "in_stock": False, "count": 0} ] input_data = [ {"item": "bolt", "price": 0.8, "in_stock": True, "count": 20}, {"item": "nail", "price": 0.3, "in_stock": True, "count": 10}, {"item": "nut", "price": 0.5, "in_stock": True, "count": 50}, {"item": "screw", "price": 0.2, "in_stock": False, "count": 0} ] conn.query(f"post record foo.bar {json.dumps(input_data)}") data = conn.query("get record foo.bar [\"item\",\"price\",\"in_stock\",\"count\"] | ORDERASC item") assert data == expected_data # Put record expected_data = [ {"item": "bolt", "price": 0.8, "in_stock": True, "count": 20}, {"item": "nail", "price": 0.3, "in_stock": True, "count": 10}, {"item": "nut", "price": 0.5, "in_stock": True, "count": 60}, {"item": "screw", "price": 0.2, "in_stock": False, "count": 0} ] input_data = conn.query(f"get record foo.bar | filter item = \"nut\"")[0] input_data["count"] = 60 conn.query(f"put record foo.bar {json.dumps(input_data)}") data = conn.query("get record foo.bar [\"item\",\"price\",\"in_stock\",\"count\"] | ORDERASC item") assert data == expected_data # Patch record expected_data = [ {"item": "bolt", "price": 1.0, "in_stock": True, "count": 20}, {"item": "nail", "price": 1.0, "in_stock": True, "count": 10}, {"item": "nut", "price": 1.0, "in_stock": True, "count": 60}, {"item": "screw", "price": 1.0, "in_stock": False, "count": 0} ] input_data = {"price": 1.0} conn.query(f"get record foo.bar | patch record foo.bar - {json.dumps(input_data)}") data = conn.query("get record foo.bar [\"item\",\"price\",\"in_stock\",\"count\"] | ORDERASC item") assert data == expected_data # Delete record expected_data = [] input_data = [datum[".id"] for datum in conn.query("get record foo.bar .id")] conn.query(f"delete record foo.bar {json.dumps(input_data)}") data = conn.query("get record foo.bar *") assert data == expected_data # Delete resources conn.query("delete collection foo.bar") conn.query("delete database foo") def test_permit(): conn = Connection(CERESDB_USERNAME, CERESDB_PASSWORD, CERESDB_HOST, CERESDB_PORT) # Delete resources conn.query("delete database foo") # Create resources conn.query("post database foo") conn.query("post user {\"username\":\"readonly\",\"role\":\"READ\",\"password\":\"<PASSWORD>\"}") # Get permit when none exist expected_data = [ {"username": "ceresdb", "role": "ADMIN"}, ] data = conn.query("get permit foo [\"username\",\"role\"]") assert data == expected_data # Post permit expected_data = [ {"username": "ceresdb", "role": "ADMIN"}, {"username": "readonly", "role": "READ"} ] input_data = [ {"username": "readonly", "role": "READ"} ] conn.query(f"post permit foo {json.dumps(input_data)}") data = conn.query("get permit foo [\"username\",\"role\"] | ORDERASC username") assert data == expected_data # Verify permission check with pytest.raises(Exception): input_data = {'role':'STRING','username':'STRING'} conn_readonly = Connection("readonly", "readonly", CERESDB_HOST, CERESDB_PORT) conn_readonly.query(f"post collection foo.bar {json.dumps(input_data)}") # Put permit expected_data = [ {"username": "ceresdb", "role": "ADMIN"}, {"username": "readonly", "role": "WRITE"} ] input_data = conn.query(f"get permit foo | filter username = \"readonly\"")[0] input_data["role"] = "WRITE" conn.query(f"put permit foo {json.dumps(input_data)}") data = conn.query("get permit foo [\"username\",\"role\"] | ORDERASC username") assert data == expected_data # Delete permit expected_data = [ {"username": "ceresdb", "role": "ADMIN"}, ] input_data = [datum[".id"] for datum in conn.query("get permit foo .id | filter username != \"ceresdb\"")] conn.query(f"delete permit foo {json.dumps(input_data)}") data = conn.query("get permit foo [\"username\",\"role\"] | ORDERASC username") assert data == expected_data # Delete resources conn.query("delete collection foo.bar") conn.query("delete database foo") def test_user(): conn = Connection(CERESDB_USERNAME, CERESDB_PASSWORD, CERESDB_HOST, CERESDB_PORT) # Delete resources input_data = [datum[".id"] for datum in conn.query("get user .id | filter username != \"ceresdb\"")] conn.query(f"delete user {json.dumps(input_data)}") # Get user when none exist expected_data = [ {"username": "ceresdb", "role": "ADMIN"}, ] data = conn.query("get user [\"username\",\"role\"]") assert data == expected_data # Post user expected_data = [ {"username": "ceresdb", "role": "ADMIN"}, {"username": "readonly", "role": "READ"} ] input_data = [ {"username": "readonly", "password": "<PASSWORD>", "role": "READ"} ] conn.query(f"post user {json.dumps(input_data)}") data = conn.query("get user [\"username\",\"role\"] | ORDERASC username") assert data == expected_data # Verify permission check with pytest.raises(Exception): input_data = {'role':'STRING','username':'STRING'} conn_readonly = Connection("readonly", "readonly", CERESDB_HOST, CERESDB_PORT) conn_readonly.query(f"post collection foo.bar {json.dumps(input_data)}") # Put user expected_data = [ {"username": "readonly", "role": "WRITE"}, {"username": "ceresdb", "role": "ADMIN"} ] input_data = conn.query(f"get user | filter username = \"readonly\"")[0] input_data["role"] = "WRITE" input_data["password"] = "<PASSWORD>" conn.query(f"put user {json.dumps(input_data)}") data = conn.query("get user [\"username\",\"role\"] | ORDERDSC username") assert data == expected_data # Delete user expected_data = [ {"username": "ceresdb", "role": "ADMIN"}, ] input_data = [datum[".id"] for datum in conn.query("get user .id | filter username != \"ceresdb\"")] conn.query(f"delete user {json.dumps(input_data)}") data = conn.query("get user [\"username\",\"role\"] | ORDERASC username") assert data == expected_data ``` #### File: test/stress/test_stress.py ```python from ceresdb_python import __version__ from ceresdb_python import Connection import json import pytest import matplotlib.pyplot as plt CERESDB_USERNAME="ceresdb" CERESDB_PASSWORD="<PASSWORD>" CERESDB_HOST="localhost" CERESDB_PORT=7437 def test_stress_1000(): conn = Connection(CERESDB_USERNAME, CERESDB_PASSWORD, CERESDB_HOST, CERESDB_PORT) conn.query("post database foo") conn.query("post collection foo.bar {\"foo\":\"STRING\",\"idx\":\"INT\"}") max_count = 1000 iterations = 100 # populate with records timings_post = [] timings_get = [] for i in range(0, iterations): input_data = [{"foo": "bar", "idx": j} for j in range(0, max_count)] _, timing = conn.timed_query(f"post record foo.bar {json.dumps(input_data)}") timings_post.append(timing) _, timing = conn.timed_query(f"get record foo.bar *") timings_get.append(timing) with open(f'timing_{max_count}_post.json', 'w') as f: json.dump(timings_post, f, indent=4) with open(f'timing_{max_count}_get.json', 'w') as f: json.dump(timings_get, f, indent=4) conn.query("delete collection foo.bar") conn.query("delete database foo") get_send_x = [(i+1) * max_count for i in range(0, iterations)] get_send_y = [float(datum["send"]) for datum in timings_get] get_process_x = [(i+1) * max_count for i in range(0, iterations)] get_process_y = [float(datum["process"]) for datum in timings_get] get_receive_x = [(i+1) * max_count for i in range(0, iterations)] get_receive_y = [float(datum["receive"]) for datum in timings_get] post_send_x = [(i+1) * max_count for i in range(0, iterations)] post_send_y = [float(datum["send"]) for datum in timings_post] post_process_x = [(i+1) * max_count for i in range(0, iterations)] post_process_y = [float(datum["process"]) for datum in timings_post] post_receive_x = [(i+1) * max_count for i in range(0, iterations)] post_receive_y = [float(datum["receive"]) for datum in timings_post] plt.plot(get_send_x, get_send_y, label = "Send") plt.plot(get_process_x, get_process_y, label = "Process") plt.plot(get_receive_x, get_receive_y, label = "Receive") plt.legend() plt.savefig('get.png') plt.clf() plt.plot(post_send_x, post_send_y, label = "Send") plt.plot(post_process_x, post_process_y, label = "Process") plt.plot(post_receive_x, post_receive_y, label = "Receive") plt.legend() plt.savefig('post.png') ```
{ "source": "jfcarter2358/manifest-to-helm", "score": 3 }
#### File: manifest-to-helm/tests/testing_utils.py ```python import filecmp import os.path class dircmp(filecmp.dircmp): """ Compare the content of dir1 and dir2. In contrast with filecmp.dircmp, this subclass compares the content of files with the same path. """ def phase3(self): """ Find out differences between common files. Ensure we are using content comparison with shallow=False. """ fcomp = filecmp.cmpfiles(self.left, self.right, self.common_files, shallow=False) self.same_files, self.diff_files, self.funny_files = fcomp def is_same(dir1, dir2): """ Compare two directory trees content. Return False if they differ, True is they are the same. """ compared = dircmp(dir1, dir2) if (compared.left_only or compared.right_only or compared.diff_files or compared.funny_files): return False for subdir in compared.common_dirs: if not is_same(os.path.join(dir1, subdir), os.path.join(dir2, subdir)): return False return True ```
{ "source": "jfcarter2358/Meringue", "score": 3 }
#### File: Meringue/meringue/create_config.py ```python import os class create_config: def __init__(self, meringue_path): with open(meringue_path + '/data/meringue_config.ini', 'w') as f_out: f_out.write('foreground=#ffffff\n') f_out.write('background=#000000\n') f_out.write('file_color=#00FF00\n') f_out.write('dir_color=#ff00ff\n') f_out.write('line_num_color=#ff0000\n') f_out.write('line_num_background_color=#333333\n') f_out.write('file_bar_color=#666666\n') f_out.write('file_bar_text_color=#ffffff\n') f_out.write('notebook_background=#333333\n') f_out.write('highlight_foreground=#ffff00\n') f_out.write('highlight_background=#0000ff\n') f_out.write('token_keyword=#ff0000\n') f_out.write('token_name=#ff<PASSWORD>\n') f_out.write('token_literal=#ffff00\n') f_out.write('token_string=#ff00ff\n') f_out.write('token_number=#0000ff\n') f_out.write('token_operators=#00ff00\n') f_out.write('token_punctuation=#00ffff\n') f_out.write('token_comments=#777777\n') f_out.write('token_generic=#77ffff\n') f_out.write('folder=\n') ``` #### File: Meringue/meringue/find_and_replace_dialog.py ```python try: from Tkinter import * import Tkinter as tk import ttk import tkFileDialog import tkMessageBox from tkFileDialog import askdirectory except: from tkinter import * import tkinter as tk import tkinter.ttk as ttk import tkinter.messagebox as tkMessageBox from tkinter.filedialog import askdirectory import os from os import listdir from os.path import isfile, join from os import walk class find_and_replace_dialog: #tell the parent to find all instances of the item the user typed in def find(self): self.parent_obj.find(self.entryWidget.get()) #tell the parent to find one instance of the item the user typed in def find_one(self): self.parent_obj.find_one(self.entryWidget.get()) #tell the parent to replace items def replace(self): self.parent_obj.replace(self.entryWidget.get(), self.entryWidget2.get()) #tell the parent to replace all instances of the items def replace_all(self): self.parent_obj.replace_all(self.entryWidget.get(), self.entryWidget2.get()) def end(self): self.parent_obj.reset_counters() self.top.destroy() def __init__(self, parent, parent_obj): #create all the gui -- see access_ssh.py and change_color.py for a explanation top = self.top = Toplevel(parent) self.textFrame = Frame(top) self.entryLabel = Label(self.textFrame) self.entryLabel["text"] = "Find:" self.entryLabel["width"] = 20 self.entryLabel.grid(row=0, column=0) self.entryWidget = Entry(self.textFrame) self.entryWidget["width"] = 50 self.entryWidget.grid(row=0, column=1) self.entryWidget.focus_set() self.entryLabel2 = Label(self.textFrame) self.entryLabel2["text"] = "Replace:" self.entryLabel2.grid(row=1, column=0) self.entryWidget2 = Entry(self.textFrame) self.entryWidget2["width"] = 50 self.entryWidget2.grid(row=1, column=1) self.textFrame.grid() self.button = Button(self.textFrame, text="Find All", command=self.find) self.button.grid(row=2, column=0, columnspan=2, sticky=E+W) self.button1 = Button(self.textFrame, text="Find Next", command=self.find_one) self.button1.grid(row=3, column=0, columnspan=2, sticky=E+W) self.button2 = Button(self.textFrame, text="Replace", command=self.replace) self.button2.grid(row=4, column=0, columnspan=2, sticky=E+W) self.button3 = Button(self.textFrame, text="Replace All", command=self.replace_all) self.button3.grid(row=5, column=0, columnspan=2, sticky=E+W) self.button4 = Button(self.textFrame, text="Done", command=self.end) self.button4.grid(row=6, column=0, columnspan=2, sticky=E+W) self.parent_obj = parent_obj ``` #### File: Meringue/meringue/interactive_paramiko.py ```python import threading import paramiko import time class SSH: shell = None client = None transport = None parnent = None current_command = None def __init__(self, address, username, password, port, parent): print("Connecting to server on ip", str(address) + ".") self.parent = parent self.client = paramiko.client.SSHClient() self.client.set_missing_host_key_policy(paramiko.client.AutoAddPolicy()) self.client.connect(address, username=username, password=password, look_for_keys=False) self.transport = paramiko.Transport((address, port)) self.transport.connect(username=username, password=password) thread = threading.Thread(target=self.process) thread.daemon = True thread.start() def closeConnection(self): if(self.client != None): self.client.close() self.transport.close() def openShell(self): self.shell = self.client.invoke_shell() def sendShell(self, command): if(self.shell): self.current_command = command[command.find('ls'):] print(self.current_command) self.shell.send(command + "\n") else: print("Shell not opened.") def process(self): global connection output = [] should_return = False temp_str = '' while True: while should_return == False: if self.shell != None and self.shell.recv_ready(): alldata = self.shell.recv(1024) while self.shell.recv_ready(): alldata += self.shell.recv(1024) time.sleep(0.5) strdata = str(alldata) strdata = strdata.replace("b'", '') strdata = strdata.replace("'", '') strdata = strdata.replace('\\r', '') strdata = strdata.replace('\\n', '\n') strdata = strdata.replace('\r', '') temp_str = temp_str + strdata data = strdata.split(' ') for dat in data: if dat != '': if dat.endswith("$"): should_return = True else: pass if should_return: temp = temp_str.split('\n') print(temp) del(temp[0]) del(temp[len(temp) - 1]) if temp[0].startswith('ls: cannot access */'): output = [] else: tot_string = '' for item in temp: tot_string = tot_string + ' ' + item print(tot_string) data = tot_string.split(' ') output = [] for dat in data: if dat != '': dat = dat.replace('/', '') output.append(dat) self.parent.Process_Output(self.current_command, output) should_return = False temp_str = '' ```
{ "source": "jfcarter2358/pipeline-reader", "score": 3 }
#### File: src/pipeline_reader/objects.py ```python class Pipeline: def __init__(self): self.stages = [] self.options = [] def __str__(self): return f'Pipeline(stages="{self.stages}", options="{self.options}")' def __repr__(self): return self.__str__() class Stage: def __init__(self, name=''): self.name = name self.code = '' self.indent = -1 def __str__(self): return f'Stage(name="{self.name}", code="{self.code}")' def __repr__(self): return self.__str__() class Options: def __init__(self): self.code = '' ```
{ "source": "jfcb853/Udacity-DevOps-Azure-Project-2", "score": 3 }
#### File: jfcb853/Udacity-DevOps-Azure-Project-2/locustfile.py ```python import time from locust import HttpUser, task, between class WebsiteTestUser(HttpUser): wait_time = between(0.5, 3.0) def on_start(self): """ on_start is called when a Locust start before any task is scheduled """ pass def on_stop(self): """ on_stop is called when the TaskSet is stopping """ pass @task(1) def index(self): self.client.get("https://jc-my-ml-app.azurewebsites.net/") @task(2) def predict(self): self.client.post("/predict",{ "CHAS":{ "0":0 }, "RM":{ "0":6.575 }, "TAX":{ "0":296.0 }, "PTRATIO":{ "0":15.3 }, "B":{ "0":396.9 }, "LSTAT":{ "0":4.98 } }, headers="Content-Type: application/json") ```
{ "source": "JFCeron/turingadvice", "score": 3 }
#### File: turingadvice/best_of_n/generator.py ```python import os import tensorflow as tf from data.to_tfrecord_t5 import _fix_reddit_text, _trim_to_desired_length, encoder from reward.comparative.data import SELFTEXT_DESIRED_LEN class BestOfNGenerator(): def __init__( self, N, t5_model, t5_model_ckpt_steps, sampling_keep_top_p, reward_model, reward_model_ckpt_steps, tmp_dir ): self.N = N self.t5_model = t5_model self.t5_model_ckpt_steps = t5_model_ckpt_steps self.sampling_keep_top_p = sampling_keep_top_p self.reward_model = reward_model self.reward_model_ckpt_steps = reward_model_ckpt_steps self.tmp_dir = tmp_dir def generate_N(self, inputs_path, outputs_path): """ Args: inputs_path: str A text file with one T5-formatted question per line, i.e. line = "Subreddit: ... Date: ... Title: ... Selftext: ..." outputs_path: str A text file with N answers per question, preceded by the question, i.e. each line looks like <question>\t<answer> """ # Repeat each input N times, store in temporary file REPEATED_QUESTIONS_PATH = os.path.join(self.tmp_dir, "repeated-questions.txt") T5_PREDICTIONS_PATH = os.path.join(self.tmp_dir, "t5-predictions.txt") with tf.io.gfile.GFile(inputs_path, "r") as inputs_file, \ tf.io.gfile.GFile(REPEATED_QUESTIONS_PATH, "w") as repeats_file: for line in inputs_file: for _ in range(self.N): repeats_file.write(line) # Predict over repeated inputs file self.t5_model.predict( input_file=REPEATED_QUESTIONS_PATH, output_file=T5_PREDICTIONS_PATH, checkpoint_steps=self.t5_model_ckpt_steps, sampling_keep_top_p=self.sampling_keep_top_p ) T5_PREDICTIONS_PATH += f"-{self.t5_model_ckpt_steps}" # Append answers to repeated questions and write output with tf.io.gfile.GFile(REPEATED_QUESTIONS_PATH, "r") as repeats_file, \ tf.io.gfile.GFile(T5_PREDICTIONS_PATH, "r") as predictions_file, \ tf.io.gfile.GFile(outputs_path, "w") as outputs_file: for question, answer in zip(repeats_file, predictions_file): question = question[:-1] # remove newline character outputs_file.write(question + "\t" + answer) def generate(self, inputs_path, outputs_path): """ Args: inputs_path: str A text file with one T5-formatted question per line, i.e line = "Subreddit: ... Date: ... Title: ... Selftext: ..." outputs_path: str A text file with one answer (no preceding question!) per line """ N_GENERATIONS_PATH = os.path.join(self.tmp_dir, "N-generations") N_SCORES_PATH = os.path.join(self.tmp_dir, "N-scores") self.generate_N(inputs_path, N_GENERATIONS_PATH) self.reward_model.predict_from_file( input_path=N_GENERATIONS_PATH, output_path=N_SCORES_PATH, checkpoint_steps=self.reward_model_ckpt_steps ) # Write top-scoring answer to every question with tf.io.gfile.GFile(N_GENERATIONS_PATH, "r") as gens_file, \ tf.io.gfile.GFile(N_SCORES_PATH, "r") as scores_file, \ tf.io.gfile.GFile(outputs_path, "w") as outputs_file: best_score = -float("inf") best_answer = None answer_count = 0 for answer, str_score in zip(gens_file, scores_file): score = float(str_score) answer_count += 1 if score > best_score: best_score = score best_answer = answer.split("\t")[1] # Drop question text if answer_count >= self.N: # Write best answer and start processing next question outputs_file.write(best_answer) answer_count = 0 best_score = -float("inf") best_answer = None def generate_from_instances(self, instances): """ Args: instances: [dict] Each element is a dict with keys "title", "date", "selftext", "subreddit" Returns: advices: [str] """ # Write a temporary file with the instances TMP_INSTANCES_FILE = os.path.join(self.tmp_dir, "instances.txt") with tf.io.gfile.GFile(TMP_INSTANCES_FILE, "w") as instances_file: for instance in instances: instance["selftext"] = _trim_to_desired_length( encoder, instance["selftext"], desired_len=SELFTEXT_DESIRED_LEN ) instance = {k: _fix_reddit_text(v) for k,v in instance.items()} str_instance = \ "Subreddit: " + instance["subreddit"] \ + " Date: " + instance["date"] \ + " Title: " + instance["title"] \ + " Selftext: " + instance["selftext"] instances_file.write(str_instance + "\n") # Call self.generate TMP_OUTPUTS_PATH = os.path.join(self.tmp_dir, "instance_outputs.txt") self.generate(TMP_INSTANCES_FILE, TMP_OUTPUTS_PATH) advices = [] with tf.io.gfile.GFile(TMP_OUTPUTS_PATH, "r") as outputs_file: for instance_output in outputs_file: advices.append(instance_output[:-1]) # Remove newline return advices ``` #### File: turingadvice/best_of_n/sample_generations.py ```python import sys from absl import flags import tensorflow as tf def _define_flags(): flags.DEFINE_string( name="input_path", default=None, help="Path to a text file" ) flags.DEFINE_string( name="output_path", default=None, help="File to store sampled generations" ) flags.DEFINE_integer( name="N", default=1, help="The number of generations per question in the input file" ) flags.DEFINE_integer( name="n", default=None, help="The number of generations per question in the output file" ) return flags.FLAGS if __name__ == "__main__": """ Sample n <= N text generations per question from an input file with N generations per question """ FLAGS = _define_flags() FLAGS(sys.argv) assert FLAGS.n <= FLAGS.N, "n > N" with tf.io.gfile.GFile(FLAGS.input_path, "r") as input_file, \ tf.io.gfile.GFile(FLAGS.output_path, "w") as output_file: gens_written = 0 gens_seen = 0 for input_line in input_file: if gens_written < FLAGS.n: output_file.write(input_line) gens_written += 1 gens_seen += 1 if gens_seen >= FLAGS.N: gens_seen = 0 gens_written = 0 ``` #### File: turingadvice/frontend/api.py ```python import os import re import json import logging from datetime import datetime import flask from flask_cors import CORS import click from gevent.pywsgi import WSGIServer import tensorflow as tf from t5.models.mtf_model import MtfModel from reward.comparative.model import ComparativeRewardModel from best_of_n.generator import BestOfNGenerator SAMPLING_KEEP_TOP_P = 0.95 BEST_OF_N_N = 80 T5_MODEL_DIR = "gs://seri2021-advice-eu/turingadvice/baselines/t5/11B" T5_MODEL_CKPT = 1010000 REWARD_MODEL_DIR = "gs://seri2021-advice-eu/turingadvice/reward/comparative/checkpoints/3B/f2-1-small-batch" REWARD_MODEL_CKPT = 1019348 BoN_TMP_DIR = "gs://seri2021-advice-eu/turingadvice/frontend" MODEL_PARALLELISM = 8 ITERATIONS_PER_LOOP = 10 TEMPLATE_DIR = "./frontend" # Initialize models and Best-of-N generator t5_model = MtfModel( model_dir=T5_MODEL_DIR, tpu=os.uname()[1], tpu_topology="2x2", # Must be this for validation (Rowan) model_parallelism=MODEL_PARALLELISM, batch_size=1, sequence_length={"inputs": 1280, "targets": 512}, iterations_per_loop=ITERATIONS_PER_LOOP ) reward_model = ComparativeRewardModel( model_dir=REWARD_MODEL_DIR, tpu=os.uname()[1], tpu_topology="2x2", # Must be this for validation (Rowan) model_parallelism=MODEL_PARALLELISM, batch_size=1, sequence_length={"inputs": 1280, "targets": 512}, iterations_per_loop=ITERATIONS_PER_LOOP ) BoN_generator = BestOfNGenerator( t5_model=t5_model, t5_model_ckpt_steps=T5_MODEL_CKPT, reward_model=reward_model, reward_model_ckpt_steps=REWARD_MODEL_CKPT, N=BEST_OF_N_N, sampling_keep_top_p=SAMPLING_KEEP_TOP_P, tmp_dir=BoN_TMP_DIR ) # Initialize API app = flask.Flask(__name__, template_folder=TEMPLATE_DIR) CORS(app, resources={r'/api/*': {'origins': '*'}}) logger = logging.getLogger(__name__) def _datetime_to_str(date): return [ 'January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December' ][date.month - 1] + ' {}, {}'.format(date.day, date.year) @app.route('/api/askbatch', methods=['POST']) def api_askbatch(): request_dict = dict(flask.request.json) instances = request_dict["instances"] date = datetime.utcnow() date_str = _datetime_to_str(date) for instance in instances: instance["date"] = date_str advices = BoN_generator.generate_from_instances(instances) advices = [re.sub(r'\s+»\s+', '\n\n', advice).strip() for advice in advices] request_dict.update({"advices": advices}) with tf.io.gfile.GFile(os.path.join(BoN_TMP_DIR, "log.jsonl"), "a+") as logfile: logfile.write(json.dumps(request_dict) + "\n") return flask.jsonify({"gens": advices}), 200 @click.command() def serve(): """Serve predictions on port 5000.""" logging.basicConfig( format='%(asctime)s:%(levelname)s:%(name)s:%(message)s', level=logging.INFO) logger.info('Running prod server on http://127.0.0.1:5000/') WSGIServer(('0.0.0.0', 5000), app).serve_forever() ```
{ "source": "Jf-Chen/FRN-main", "score": 2 }
#### File: FRN-main/data/init_meta_iNat.py ```python import os import json import torch import argparse from PIL import Image import sys from tqdm import tqdm import shutil import yaml sys.path.append('..') from utils import util # import util with open('../config.yml','r') as f: # with open('config.yml','r') as f: config = yaml.safe_load(f) data_path = os.path.abspath(config['data_path']) origin_path = os.path.join(data_path,'inat2017') imgfolder = 'inat2017_84x84' img_path = os.path.join(data_path,imgfolder) rel_path = os.path.join('..','..','..',imgfolder) inat_path = os.path.join(data_path,'meta_iNat') tier_path = os.path.join(data_path,'tiered_meta_iNat') util.mkdir(img_path) util.mkdir(inat_path) util.mkdir(tier_path) with open(os.path.join(origin_path,'train_2017_bboxes.json')) as f: allinfo = json.load(f) annolist = allinfo['annotations'] annodict = dict() # im_id to list of box_ids boxdict = dict() # box_id to box coords catdict = dict() # dict of numerical category codes / labels to corresponding list of image ids for d in annolist: im = d['image_id'] boxid = d['id'] cat = d['category_id'] # Add box_id to image entry if im in annodict: annodict[im].append(boxid) else: annodict[im] = [boxid] # Add mapping from box_id to box boxdict[boxid] = d['bbox'] # Add image to category set if cat in catdict: catdict[cat].add(im) else: catdict[cat] = set([im]) # assemble im_id -> filepath dictionary namelist = allinfo['images'] keys = [] vals = [] for d in namelist: keys.append(d['id']) vals.append(os.path.join(origin_path,d['file_name'])) pather = dict(zip(keys,vals)) # Pare down the category dictionary to the desired size clist = list(catdict.keys()) for c in clist: if len(catdict[c]) < 50 or len(catdict[c]) > 1000: catdict.pop(c) supercat = dict() for d in allinfo['categories']: catid = d['id'] if catid in catdict: sc = d['supercategory'] if sc in supercat: supercat[sc].append(catid) else: supercat[sc] = [catid,] # shrink images catlist = list(catdict.keys()) boxdict_shrunk = dict() # abbreviated path -> [box corners] pather_shrunk = dict() # im_id -> new path (relative, for symlinks) print('Shrinking images to 84x84 ...') for c in tqdm(catlist): # For each category: catpath = os.path.join(img_path,str(c)) if not os.path.exists(catpath): os.makedirs(catpath) ims = catdict[c] for imkey in ims: # For each image: path = pather[imkey] file = path[path.rfind(os.path.sep)+1:path.rfind('.')]+'.png' fname = os.path.join(str(c),file) newpath = os.path.join(catpath,fname) pather_shrunk[imkey] = os.path.join(rel_path,fname) # Downsize the image to 84x84 with open(path, 'rb') as f: p = Image.open(f) w,h = p.size p = p.convert('RGB') p = p.resize((84,84), Image.BILINEAR) p.save(newpath) # Downsize the bounding box annotations to 10x10 boxes = annodict[imkey] boxdict_shrunk[str(c)+'/'+file] = [] for boxcode in boxes: box = boxdict[boxcode] xmin = box[0] xmax = box[2]+xmin ymin = box[1] ymax = box[3]+ymin boxdict_shrunk[str(c)+'/'+file].append([xmin*10/w, ymin*10/h, xmax*10/w, ymax*10/h]) torch.save(boxdict_shrunk, os.path.join(img_path,'box_coords.pth')) def makedataset(traincatlist, testcatlist, datapath, catdict, pather): def makesplit(catlist, datapath, split, catdict, pather, imsplit): splitpath = os.path.join(datapath,split) util.mkdir(splitpath) for c in catlist: # For each category: catpath = os.path.join(splitpath,str(c)) if not os.path.exists(catpath): os.makedirs(catpath) ims = list(catdict[c]) ims = imsplit(ims) for imkey in ims: path = pather[imkey] newpath = os.path.join(catpath,path[path.rfind(os.path.sep)+1:path.rfind('.')]+'.png') os.symlink(path, newpath) makesplit(traincatlist, datapath, 'train', catdict, pather, lambda x: x) makesplit(testcatlist, datapath, 'test', catdict, pather, lambda x: x) makesplit(testcatlist, datapath, 'refr', catdict, pather, lambda x: x[:len(x)//5]) makesplit(testcatlist, datapath, 'query', catdict, pather, lambda x: x[len(x)//5:]) # meta-iNat print('Organizing meta-iNat ...') split_folder = os.path.abspath('./meta_iNat_split/') traincatlist = torch.load(os.path.join(split_folder,'meta_iNat_traincats.pth')) testcatlist = torch.load(os.path.join(split_folder,'meta_iNat_testcats.pth')) makedataset(traincatlist, testcatlist, inat_path, catdict, pather_shrunk) torch.save(boxdict_shrunk, os.path.join(inat_path,'box_coords.pth')) # tiered meta-iNat print('Organizing tiered meta-iNat ...') traincatlist = (supercat['Animalia']+supercat['Aves']+supercat['Reptilia']+supercat['Amphibia'] +supercat['Mammalia']+supercat['Actinopterygii']+supercat['Mollusca']) testcatlist = supercat['Insecta']+supercat['Arachnida'] makedataset(traincatlist, testcatlist, tier_path, catdict, pather_shrunk) torch.save(boxdict_shrunk, os.path.join(tier_path,'box_coords.pth')) print('Organizing complete!') ``` #### File: FRN-main/utils/util.py ```python from PIL import Image import torch import os import numpy as np import sys import argparse import shutil from tqdm import tqdm import torchvision.transforms as transforms def mkdir(path): if os.path.exists(path): print("--- the folder already exists ---") else: os.makedirs(path) # get pre-resized 84x84 images for validation and test def get_pre_folder(image_folder,transform_type): split = ['val','test'] if transform_type == 0: transform = transforms.Compose([transforms.Resize(92), transforms.CenterCrop(84)]) elif transform_type == 1: transform = transforms.Compose([transforms.Resize([92,92]), transforms.CenterCrop(84)]) cat_list = [] for i in split: cls_list = os.listdir(os.path.join(image_folder,i)) folder_name = i+'_pre' mkdir(os.path.join(image_folder,folder_name)) for j in tqdm(cls_list): mkdir(os.path.join(image_folder,folder_name,j)) img_list = os.listdir(os.path.join(image_folder,i,j)) for img_name in img_list: img = Image.open(os.path.join(image_folder,i,j,img_name)) img = img.convert('RGB') img = transform(img) img.save(os.path.join(image_folder,folder_name,j,img_name[:-3]+'png')) def get_device_map(gpu): cuda = lambda x: 'cuda:%d'%x temp = {} for i in range(4): temp[cuda(i)]=cuda(gpu) return temp ```
{ "source": "Jf-Chen/my_FRN", "score": 3 }
#### File: my_FRN/models/set_function.py ```python import torch from torch import nn from torch.nn import functional as F # 看作是MLP # 为了防止出bug,应该在forward的输入中添加train_shot和query_shot,而不是初始化后就一成不变 class SetFunction(nn.Module): def __init__(self, train_way,train_shot, resolution,input_dimension, output_dimension): super(SetFunction, self).__init__()# nn.Module.__init()__ self.resolution=resolution self.train_way=train_way self.train_shot=train_shot self.resolution=resolution self.input_dimension = input_dimension self.output_dimension = output_dimension self.psi = nn.Sequential( # nn.Linear() y=x*A'+b,A是weight, nn.Linear(input_dimension, input_dimension * 2), nn.ReLU(), nn.Linear(input_dimension * 2, input_dimension * 2), nn.ReLU() ) self.rho = nn.Sequential( nn.Linear(input_dimension * 3, input_dimension * 2), nn.ReLU(), nn.Linear(input_dimension * 2, output_dimension), ) def forward(self, support_embeddings, level,train_way,train_shot, resolution): if level == 'task': psi_output = self.psi(support_embeddings) #[ rho_input = torch.cat([psi_output, support_embeddings], dim=2) rho_input = torch.sum(rho_input, dim=0, keepdim=True) rho_output = torch.nn.functional.relu6(self.rho(rho_input)) / 6 return rho_output elif level == 'class': psi_output = self.psi(support_embeddings) rho_input = torch.cat([psi_output, support_embeddings], dim=2) rho_input = rho_input.view(train_way, train_shot,resolution, -1) rho_input = torch.sum(rho_input, dim=1) rho_output = torch.nn.functional.relu6(self.rho(rho_input)) / 6 return rho_output # level = balance 不要了 ```
{ "source": "jfcherng/LSP-bash", "score": 2 }
#### File: jfcherng/LSP-bash/plugin.py ```python from LSP.plugin.core.typing import Tuple from lsp_utils import NpmClientHandler import os def plugin_loaded(): LspBashPlugin.setup() def plugin_unloaded(): LspBashPlugin.cleanup() class LspBashPlugin(NpmClientHandler): package_name = __package__ server_directory = "language-server" server_binary_path = os.path.join( server_directory, "node_modules", "bash-language-server", "bin", "main.js", ) @classmethod def minimum_node_version(cls) -> Tuple[int, int, int]: return (12, 0, 0) ```
{ "source": "jfcherng/Sublime-ASS", "score": 3 }
#### File: plugin/commands/ass_toggle_comment.py ```python from typing import List, Set, Tuple import sublime import sublime_plugin ASS_COMMENT_PAIRS: Tuple[Tuple[str, str], ...] = ( # (before_command_executed, after_command_executed), ("Comment: ", "Dialogue: "), ("Dialogue: ", "Comment: "), ("; ", ""), ("", "; "), # always matches ) def find_first_diff_pos(str1: str, str2: str) -> int: """Finds the first difference position. Returns `-1` if both strings are identical.""" if str1 == str2: return -1 shorter, longer = sorted((str1, str2), key=len) shorter_len = len(shorter) return next( (i for i in range(shorter_len) if shorter[i] != longer[i]), shorter_len, ) def get_caret_line_beginning_points(view: sublime.View) -> List[int]: """Gets the points of the first non-space char of the caret lines.""" points: Set[int] = set() for region in view.sel(): points |= {view.find(r"^[ \t]*", line_region.begin()).end() for line_region in view.lines(region)} return sorted(points) class AssToggleCommentCommand(sublime_plugin.TextCommand): def run(self, edit: sublime.Edit) -> None: for beginning_point in reversed(get_caret_line_beginning_points(self.view)): for before, after in ASS_COMMENT_PAIRS: comment_region = sublime.Region(beginning_point, beginning_point + len(before)) comment_content = self.view.substr(comment_region) if not comment_content.startswith(before.rstrip()): continue if comment_content != before: comment_region.b -= len(comment_content) - find_first_diff_pos(comment_content, before) self.view.insert(edit, comment_region.a, after) self.view.erase( edit, sublime.Region( comment_region.a + len(after), comment_region.b + len(after), ), ) break ``` #### File: Sublime-ASS/plugin/functions.py ```python import sublime def is_my_syntax(view: sublime.View) -> bool: return syntax.scope == "text.ass" if (syntax := view.syntax()) else False def is_my_scope(view: sublime.View, point: int) -> bool: return view.match_selector(point, "text.ass") ``` #### File: Sublime-ASS/plugin/listener.py ```python from .functions import is_my_scope from .functions import is_my_syntax from typing import Any, Dict, Optional, Tuple import sublime import sublime_plugin class AssToggleCommentEventListener(sublime_plugin.EventListener): def on_text_command( self, view: sublime.View, command_name: str, args: Dict[str, Any], ) -> Optional[Tuple[str, Optional[Dict[str, Any]]]]: if command_name != "toggle_comment": return None if is_my_syntax(view): return ("ass_toggle_comment", None) # command only works when all target lines are in ASS scope if not all( # ... is_my_scope(view, line.begin()) for sel_region in view.sel() for line in view.lines(sel_region) ): return None return ("ass_toggle_comment", None) ```
{ "source": "jfcherng/Sublime-AutoSetSyntax", "score": 2 }
#### File: plugin/commands/auto_set_syntax_restart_guesslang.py ```python from ..constant import PLUGIN_NAME from ..guesslang.client import GuesslangClient from ..guesslang.server import GuesslangServer from ..settings import get_merged_plugin_setting from ..shared import G from .auto_set_syntax import GuesslangClientCallbacks import sublime_plugin import threading import time class AutoSetSyntaxRestartGuesslangCommand(sublime_plugin.ApplicationCommand): def description(self) -> str: return f"{PLUGIN_NAME}: Restart Guesslang Client And Server" def is_enabled(self) -> bool: return bool(get_merged_plugin_setting("guesslang.enabled")) def run(self) -> None: t = threading.Thread(target=self._worker) t.start() def _worker(self) -> None: host = "localhost" port: int = get_merged_plugin_setting("guesslang.port") GuesslangServer.stop() if GuesslangServer.start(host, port): time.sleep(1) # wait for server initialization G.guesslang = GuesslangClient(host, port, callback_object=GuesslangClientCallbacks()) ``` #### File: plugin/guesslang/server.py ```python from ..constant import PLUGIN_NAME from ..constant import PLUGIN_STORAGE_DIR from ..helper import expand_variables from ..logger import Logger from ..settings import get_merged_plugin_setting from pathlib import Path from typing import Dict, Optional, Set, Sequence, Union import os import shutil import socket import sublime import subprocess class GuesslangServer: server_dir = PLUGIN_STORAGE_DIR / "guesslang-server" server_file = PLUGIN_STORAGE_DIR / "guesslang-server/websocket.js" # background server process(es) _subprocesses: Set[subprocess.Popen] = set() @classmethod def start(cls, host: str, port: int) -> bool: """Starts the guesslang server and return whether it starts.""" if not is_executable(node_path := parse_node_path()): sublime.error_message(f'[{PLUGIN_NAME}] Node.js binary not found or not executable: "{node_path}"') return False if is_port_in_use(port): Logger.log(sublime.active_window(), f"⚠ Port {port} is in use.") try: process = cls._start_process( (node_path, cls.server_file), cwd=cls.server_dir, extra_env={ "NODE_SKIP_PLATFORM_CHECK": "1", "HOST": host, "PORT": str(port), }, ) except Exception as e: sublime.error_message(f"[{PLUGIN_NAME}] Fail starting guesslang server because {e}") return False if process.stdout and process.stdout.read(2) == "OK": cls._subprocesses.add(process) return True sublime.error_message(f"[{PLUGIN_NAME}] Fail starting guesslang server.") return False @classmethod def stop(cls) -> None: for p in cls._subprocesses: try: p.kill() except Exception: pass for p in cls._subprocesses: try: p.wait() except Exception: pass cls._subprocesses.clear() @classmethod def is_running(cls) -> bool: return len(cls._subprocesses) > 0 @staticmethod def _start_process( cmd: Union[str, Path, Sequence[Union[str, Path]]], extra_env: Optional[Dict[str, str]] = None, **kwargs, ) -> subprocess.Popen: if os.name == "nt": # do not create a window for the process startupinfo = subprocess.STARTUPINFO() # type: ignore startupinfo.dwFlags |= subprocess.SW_HIDE | subprocess.STARTF_USESHOWWINDOW # type: ignore else: startupinfo = None # type: ignore env = os.environ.copy() env.update(extra_env or {}) return subprocess.Popen( cmd, startupinfo=startupinfo, stdin=subprocess.DEVNULL, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, encoding="utf-8", env=env, **kwargs, ) def parse_node_path() -> str: return expand_variables(get_merged_plugin_setting("guesslang.node_bin")) def is_executable(path: Union[str, Path]) -> bool: return bool((os.path.isfile(path) and os.access(path, os.X_OK)) or shutil.which(path)) def is_port_in_use(port: int) -> bool: with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: return s.connect_ex(("localhost", port)) == 0 ``` #### File: Sublime-AutoSetSyntax/plugin/logger.py ```python from .compatibility import view_clear_undo_stack from .constant import PLUGIN_NAME from .helper import get_st_window from .settings import get_merged_plugin_setting from .settings import get_st_setting from contextlib import contextmanager from typing import Dict, Generator, Optional, Union import math import re import sublime import sublime_plugin @contextmanager def _editable_view(view: sublime.View) -> Generator[sublime.View, None, None]: is_read_only = view.is_read_only() view.set_read_only(False) try: yield view finally: view.set_read_only(is_read_only) def _find_log_panel(obj: Union[sublime.View, sublime.Window]) -> Optional[sublime.View]: return window.find_output_panel(PLUGIN_NAME) if (window := get_st_window(obj)) else None def _create_log_panel(window: sublime.Window) -> sublime.View: panel = window.create_output_panel(PLUGIN_NAME) # Somehow there is an error about "scope:output.autosetsyntax.log" not found during updating this plugin. # Thus, I change it to use the syntax path to load the syntax. panel.assign_syntax("Packages/AutoSetSyntax/syntaxes/AutoSetSyntaxLog.sublime-syntax") panel.set_read_only(True) panel.set_scratch(True) panel.settings().update( { "draw_white_space": "none", "gutter": False, "is_widget": True, # ST 3 convention for a non-normal view "line_numbers": False, "scroll_past_end": False, "spell_check": False, "word_wrap": False, } ) return panel class Logger: # per-window, WindowId => history count history_counts: Dict[int, int] = {} @classmethod def log(cls, window: Optional[sublime.Window], msg: str, enabled: bool = True) -> None: if not (enabled and window and get_merged_plugin_setting("enable_log", window=window)): return max_lines = get_st_setting("console_max_history_lines", math.inf) / 8 if cls._get_history_count(window) >= max_lines: cls.clear(window) window.run_command("auto_set_syntax_append_log", {"msg": msg}) cls._increase_history_count(window) cls._clear_undo_stack(window) @classmethod def clear(cls, window: sublime.Window) -> None: window.run_command("auto_set_syntax_clear_log_panel", {"from_logger": True}) cls._set_history_count(window, 0) cls._clear_undo_stack(window) @classmethod def destroy(cls, window: sublime.Window) -> None: window.destroy_output_panel(PLUGIN_NAME) cls.history_counts.pop(window.id()) @classmethod def _get_history_count(cls, window: sublime.Window) -> int: return cls.history_counts.get(window.id(), 0) @classmethod def _set_history_count(cls, window: sublime.Window, value: int) -> None: cls.history_counts[window.id()] = value @classmethod def _increase_history_count(cls, window: sublime.Window, amount: int = 1) -> None: cls._set_history_count(window, cls._get_history_count(window) + amount) @classmethod def _clear_undo_stack(cls, window: sublime.Window) -> None: if panel := _find_log_panel(window): view_clear_undo_stack(panel) class AutoSetSyntaxAppendLogCommand(sublime_plugin.TextCommand): """Internal use only.""" def is_visible(self) -> bool: return False def run(self, edit: sublime.Edit, msg: str, squash_history: bool = True) -> None: if not (window := self.view.window()): return if not (panel := _find_log_panel(window)): panel = _create_log_panel(window) if ( squash_history and (last_line_region := panel.full_line(panel.size() - 1)) and (last_line := panel.substr(last_line_region).rstrip()).startswith(msg) and (m := re.match(r"(?: +\(x(\d+)\))?", last_line[len(msg) :])) ): msg = f"{msg} (x{int(m.group(1) or 1) + 1})" replace_region = last_line_region else: replace_region = sublime.Region(panel.size()) # EOF with _editable_view(panel) as panel: panel.replace(edit, replace_region, f"{msg}\n") class AutoSetSyntaxClearLogPanelCommand(sublime_plugin.TextCommand): """Clear the plugin log panel for the current window.""" def description(self) -> str: return f"{PLUGIN_NAME}: Clear Log Panel" def is_enabled(self) -> bool: return bool(_find_log_panel(self.view)) def run(self, edit: sublime.Edit, from_logger: bool = False) -> None: if not (window := self.view.window()): return # ensure command is triggered by the logger so that we can maintain internal states if not from_logger: Logger.clear(window) return if panel := _find_log_panel(window): with _editable_view(panel) as panel: panel.erase(edit, sublime.Region(0, panel.size())) class AutoSetSyntaxToggleLogPanelCommand(sublime_plugin.WindowCommand): """Toggle the visibility of the plugin log panel for the current window.""" def description(self) -> str: return f"{PLUGIN_NAME}: Toggle Log Panel" def is_enabled(self) -> bool: return bool(_find_log_panel(self.window)) def run(self) -> None: self.window.run_command( "show_panel", { "panel": f"output.{PLUGIN_NAME}", "toggle": True, }, ) ``` #### File: Sublime-AutoSetSyntax/plugin/lru_cache.py ```python from functools import _lru_cache_wrapper from functools import lru_cache from typing import Any, Callable, Set, TypeVar, cast AnyCallable = TypeVar("AnyCallable", bound=Callable[..., Any]) cached_functions: Set[_lru_cache_wrapper] = set() def clearable_lru_cache(*args: Any, **kwargs: Any) -> Callable[[AnyCallable], AnyCallable]: def decorator(func: AnyCallable) -> AnyCallable: wrapped = lru_cache(*args, **kwargs)(func) cached_functions.add(wrapped) return cast(AnyCallable, wrapped) return decorator def clear_all_cached_functions(): for func in cached_functions: func.cache_clear() ``` #### File: rules/matches/any.py ```python from ..match import AbstractMatch from ..match import MatchableRule from typing import Tuple, final import sublime @final class AnyMatch(AbstractMatch): """Matches when any rule is matched.""" def is_droppable(self, rules: Tuple[MatchableRule, ...]) -> bool: return len(rules) == 0 def test(self, view: sublime.View, rules: Tuple[MatchableRule, ...]) -> bool: return any(rule.test(view) for rule in rules) ``` #### File: plugin/rules/syntax.py ```python from __future__ import annotations # __future__ must be the first import from ..constant import VERSION from ..helper import find_syntax_by_syntax_likes from ..helper import first from ..types import ListenerEvent, Optimizable, ST_SyntaxRule from .match import MatchRule from dataclasses import dataclass from typing import Generator, Iterable, List, Optional, Set, Tuple import sublime @dataclass class SyntaxRule(Optimizable): comment: str = "" syntax: Optional[sublime.Syntax] = None syntaxes_name: Optional[Tuple[str, ...]] = tuple() selector: str = "text.plain" on_events: Optional[Set[ListenerEvent]] = None root_rule: Optional[MatchRule] = None def is_droppable(self) -> bool: return not (self.syntax and self.on_events != [] and self.root_rule) def optimize(self) -> Generator[Optimizable, None, None]: if self.root_rule: if self.root_rule.is_droppable(): yield self.root_rule self.root_rule = None else: yield from self.root_rule.optimize() if self.root_rule.is_droppable(): yield self.root_rule self.root_rule = None def test(self, view: sublime.View, event: Optional[ListenerEvent] = None) -> bool: if event and self.on_events is not None and event not in self.on_events: return False if self.selector and not view.match_selector(0, self.selector): return False assert self.root_rule return self.root_rule.test(view) @classmethod def make(cls, syntax_rule: ST_SyntaxRule) -> SyntaxRule: """Build this object with the `syntax_rule`.""" obj = cls() if comment := syntax_rule.get("comment"): obj.comment = str(comment) syntaxes = syntax_rule.get("syntaxes", []) if isinstance(syntaxes, str): syntaxes = [syntaxes] obj.syntaxes_name = tuple(syntaxes) if target_syntax := find_syntax_by_syntax_likes(syntaxes): obj.syntax = target_syntax # note that an empty string selector should match any scope if (selector := syntax_rule.get("selector")) is not None: obj.selector = selector if (on_events := syntax_rule.get("on_events")) is not None: if isinstance(on_events, str): on_events = [on_events] obj.on_events = set(filter(None, map(ListenerEvent.from_value, on_events))) if match_rule_compiled := MatchRule.make(syntax_rule): obj.root_rule = match_rule_compiled return obj @dataclass class SyntaxRuleCollection(Optimizable): version: str = VERSION rules: Tuple[SyntaxRule, ...] = tuple() def optimize(self) -> Generator[Optimizable, None, None]: rules: List[SyntaxRule] = [] for rule in self.rules: if rule.is_droppable(): yield rule continue yield from rule.optimize() if rule.is_droppable(): yield rule continue rules.append(rule) self.rules = tuple(rules) def test(self, view: sublime.View, event: Optional[ListenerEvent] = None) -> Optional[SyntaxRule]: return first(self.rules, lambda rule: rule.test(view, event)) @classmethod def make(cls, syntax_rules: Iterable[ST_SyntaxRule]) -> SyntaxRuleCollection: """Build this object with the `syntax_rules`.""" obj = cls() obj.rules = tuple(map(SyntaxRule.make, syntax_rules)) return obj ``` #### File: Sublime-AutoSetSyntax/plugin/shared.py ```python from .guesslang.client import GuesslangClient from .rules import SyntaxRuleCollection from .settings import get_merged_plugin_settings from typing import Any, Dict, Optional, Tuple import sublime WindowId = int DroppedRules = Tuple[Any, ...] class G: """This class holds "G"lobal variables as its class variables.""" # the guesslang object, which interacts with the Node.js guesslang server guesslang: Optional[GuesslangClient] = None # views exist when ST just starts (even before plugin loaded) views_on_init: Tuple[sublime.View, ...] = tuple() # per window, the compiled top-level plugin rules windows_syntax_rule_collection: Dict[WindowId, SyntaxRuleCollection] = {} # per window, those rules which are dropped after doing optimizations windows_dropped_rules: Dict[WindowId, DroppedRules] = {} @classmethod def is_plugin_ready(cls, window: sublime.Window) -> bool: return bool(get_merged_plugin_settings(window=window) and cls.get_syntax_rule_collection(window)) @classmethod def set_syntax_rule_collection(cls, window: sublime.Window, value: SyntaxRuleCollection) -> None: cls.windows_syntax_rule_collection[window.id()] = value @classmethod def get_syntax_rule_collection(cls, window: sublime.Window) -> Optional[SyntaxRuleCollection]: return cls.windows_syntax_rule_collection.get(window.id()) @classmethod def remove_syntax_rule_collection(cls, window: sublime.Window) -> Optional[SyntaxRuleCollection]: return cls.windows_syntax_rule_collection.pop(window.id(), None) @classmethod def set_dropped_rules(cls, window: sublime.Window, value: DroppedRules) -> None: cls.windows_dropped_rules[window.id()] = value @classmethod def get_dropped_rules(cls, window: sublime.Window) -> DroppedRules: return cls.windows_dropped_rules.get(window.id()) or tuple() @classmethod def remove_dropped_rules(cls, window: sublime.Window) -> Optional[DroppedRules]: return cls.windows_dropped_rules.pop(window.id(), None) ```
{ "source": "jfcherng-sublime/LSP-intelephense-patcher", "score": 2 }
#### File: LSP-intelephense-patcher/plugin/plugin_message.py ```python import sublime def pluginfy_msg(msg: str, *args, **kwargs) -> str: package_name = __package__.split(".")[0] return msg.format(*args, _=package_name, **kwargs) def console_msg(msg: str, *args, **kwargs) -> None: print(pluginfy_msg(msg, *args, **kwargs)) def status_msg(msg: str, *args, **kwargs) -> None: sublime.status_message(pluginfy_msg(msg, *args, **kwargs)) def info_box(msg: str, *args, **kwargs) -> None: sublime.message_dialog(pluginfy_msg(msg, *args, **kwargs)) def error_box(msg: str, *args, **kwargs) -> None: sublime.error_message(pluginfy_msg(msg, *args, **kwargs)) ```
{ "source": "jfcherng-sublime/ST-AceJump", "score": 3 }
#### File: ST-AceJump/libs/char_width_converter.py ```python FULL_TO_HALF_TABLE = {i + 0xFEE0: i for i in range(0x21, 0x7F)} HALF_TO_FULL_TABLE = {i: i + 0xFEE0 for i in range(0x21, 0x7F)} def f2h(string: str) -> str: """ Convert into half-width. """ return string.translate(FULL_TO_HALF_TABLE) def h2f(string: str) -> str: """ Convert into full-width. """ return string.translate(HALF_TO_FULL_TABLE) ```
{ "source": "jfcherng-sublime/ST-AutoSetIndentation", "score": 2 }
#### File: ST-AutoSetIndentation/plugin/functions.py ```python import sublime from typing import Any, Dict from .settings import get_setting from .log import msg, print_msg, show_status_message def is_view_at_front(view: sublime.View) -> bool: if not view: return False window = view.window() if not window: return False return view == window.active_view() def is_view_only_invisible_chars(view: sublime.View) -> bool: return bool(view and view.find(r"[^\s]", 0).begin() < 0) def is_view_set_by_editorconfig_plugin(view: sublime.View) -> bool: EDITORCONFIG_PLUGIN_MARKER = "editorconfig" return bool(view.settings().get(EDITORCONFIG_PLUGIN_MARKER, False)) def is_event_listener_enabled(event: str) -> bool: """ @brief Check if a event listener is enabled. @param event The event @return True if event listener enabled, False otherwise. """ try: return bool(get_setting("event_listeners", {})[event]) except KeyError: print_msg('"event_listeners[%s]" is not set in user settings (assumed false)' % event) return False def set_indentation_for_view(view: sublime.View, args: Dict[str, Any] = {}) -> None: """ @brief Set the indentation for the current view. @param view The view @param args The arguments """ _args = {"show_message": is_view_at_front(view)} _args.update(args) if is_view_set_by_editorconfig_plugin(view): show_status_message(msg("EditorConfig detected indentation"), _args["show_message"]) else: view.run_command("auto_set_indentation", _args) # type: ignore view.settings().set("ASI_is_indentation_detected", True) ``` #### File: libs/IndentFinder/indent_finder.py ```python import sys import re help = \ """Usage : %s [ --vim-output ] [ --verbose ] file1 file2 ... fileN Display indentation used in the list of files. Possible answers are (with X being the number of spaces used for indentation): space X tab 8 mixed tab X space Y mixed means that indentation style is tab at the beginning of the line (tab being 8 positions) and then spaces to do the indentation, unless you reach 8 spaces which are replaced by a tab. This is the vim source file indentation for example. In my opinion, this is the worst possible style. --vim-output: output suitable to use inside vim: set sts=0 | set tabstop=4 | set noexpandtab | set shiftwidth=4 """ VERSION='1.4' ### Used when indentation is tab, to set tabstop in vim DEFAULT_TAB_WIDTH = 4 ### default values for files where indentation is not meaningful (empty files) # possible values: # DEFAULT_RESULT = ('space', 4 ) # DEFAULT_RESULT = ('space', 2 ) # DEFAULT_RESULT = ('space', 8 ) # DEFAULT_RESULT = ('tab', DEFAULT_TAB_WIDTH ) DEFAULT_RESULT = ('space', 4 ) VERBOSE_QUIET = 0 VERBOSE_INFO = 1 VERBOSE_DEBUG = 2 VERBOSE_DEEP_DEBUG = 3 DEFAULT_VERBOSITY = VERBOSE_QUIET ### class LineType: NoIndent = 'NoIndent' SpaceOnly = 'SpaceOnly' TabOnly = 'TabOnly' Mixed = 'Mixed' BeginSpace = 'BeginSpace' def info( s ): log( VERBOSE_INFO, s ) def dbg( s ): log( VERBOSE_DEBUG, s ) def deepdbg( s ): log( VERBOSE_DEEP_DEBUG, s ) def log( level, s ): if level <= IndentFinder.VERBOSITY: print( s ) class IndentFinder: """ IndentFinder reports the indentation used in a source file. Its approach is not tied to any particular language. It was tested successfully with python, C, C++ and Java code. How does it work ? It scans each line of the entry file for a space character (white space or tab) repeated until a non space character is found. Such a line is considered to be a properly indented line of code. Blank lines and comments line (starting with # or /* or * ) are ignored. Lines coming after a line ending in '\\' have higher chance of being not properly indented, and are thus ignored too. Only the increment in indentation are fed in. Dedentation or maintaining the same indentation is not taken into account when analysing a file. Increment in indentation from zero indentation to some indentation is also ignored because it's wrong in many cases (header file with many structures for example, do not always obey the indentation of the rest of the code). Each line is analysed as: - SpaceOnly: indentation of more than 8 space - TabOnly: indentation of tab only - Mixed: indentation of tab, then less than 8 spaces - BeginSpace: indentation of less than 8 space, that could be either a mixed indentation or a pure space indentation. - non-significant Then two consecutive significant lines are then considered. The only valid combinations are: - (NoIndent, BeginSpace) => space or mixed - (NoIndent, Tab) => tab - (BeginSpace, BeginSpace) => space or mixed - (BeginSpace, SpaceOnly) => space - (SpaceOnly, SpaceOnly) => space - (TabOnly, TabOnly) => tab - (TabOnly, Mixed) => mixed - (Mixed, TabOnly) => mixed The increment in number of spaces is then recorded. At the end, the number of lines with space indentation, mixed space and tab indentation are compared and a decision is made. If no decision can be made, DEFAULT_RESULT is returned. If IndentFinder ever reports wrong indentation, send me immediately a mail, if possible with the offending file. """ def __init__(self, default_result=DEFAULT_RESULT): self.clear() self.default_result = default_result VERBOSITY = DEFAULT_VERBOSITY def parse_string( self, string ): self.clear() for line in string.splitlines(): self.analyse_line( line ) def parse_file( self, fname ): self.clear() with open( fname ) as file: for line in file: self.analyse_line( line ) def clear( self ): self.lines = {} for i in range(2,9): self.lines['space%d' % i] = 0 for i in range(2,9): self.lines['mixed%d' % i] = 0 self.lines['tab'] = 0 self.nb_processed_lines = 0 self.nb_indent_hint = 0 self.indent_re = re.compile( "^([ \t]+)([^ \t]+)" ) self.mixed_re = re.compile( "^(\t+)( +)$" ) self.skip_next_line = False self.previous_line_info = None def analyse_line( self, line ): if line[-1:] == '\n': line = line[:-1] deepdbg( 'analyse_line: "%s"' % line.replace(' ', '.' ).replace('\t','\\t') ) self.nb_processed_lines += 1 skip_current_line = self.skip_next_line self.skip_next_line = False if line[-1:] == '\\': deepdbg( 'analyse_line: Ignoring next line!' ) # skip lines after lines ending in \ self.skip_next_line = True if skip_current_line: deepdbg( 'analyse_line: Ignoring current line!' ) return ret = self.analyse_line_indentation( line ) if ret: self.nb_indent_hint += 1 deepdbg( 'analyse_line: Result of line analysis: %s' % str(ret) ) return ret def analyse_line_type( self, line ): """Analyse the type of line and return (LineType, <indentation part of the line>). The function will reject improperly formatted lines (mixture of tab and space for example) and comment lines. """ mixed_mode = False tab_part = '' space_part = '' if len(line) > 0 and line[0] != ' ' and line[0] != '\t': return (LineType.NoIndent, '') mo = self.indent_re.match( line ) if not mo: deepdbg( 'analyse_line_type: line is not indented' ) return None indent_part = mo.group(1) text_part = mo.group(2) deepdbg( 'analyse_line_type: indent_part="%s" text_part="%s"' % (indent_part.replace(' ', '.').replace('\t','\\t').replace('\n', '\\n' ), text_part ) ) if text_part[0] == '*': # continuation of a C/C++ comment, unlikely to be indented correctly return None if text_part[0:2] == '/*' or text_part[0] == '#': # python, C/C++ comment, might not be indented correctly return None if '\t' in indent_part and ' ' in indent_part: # mixed mode mo = self.mixed_re.match( indent_part ) if not mo: # line is not composed of '\t\t\t ', ignore it return None mixed_mode = True tab_part = mo.group(1) space_part = mo.group(2) if mixed_mode: if len(space_part) >= 8: # this is not mixed mode, this is garbage ! return None return (LineType.Mixed, tab_part, space_part ) if '\t' in indent_part: return (LineType.TabOnly, indent_part) if ' ' in indent_part: if len(indent_part) < 8: # this could be mixed mode too return (LineType.BeginSpace, indent_part) else: # this is really a line indented with spaces return (LineType.SpaceOnly, indent_part ) assert False, 'We should never get there !' def analyse_line_indentation( self, line ): previous_line_info = self.previous_line_info current_line_info = self.analyse_line_type( line ) self.previous_line_info = current_line_info if current_line_info == None or previous_line_info == None: deepdbg('analyse_line_indentation: Not enough line info to analyse line: %s, %s' % (str(previous_line_info), str(current_line_info))) return t = (previous_line_info[0], current_line_info[0]) deepdbg( 'analyse_line_indentation: Indent analysis: %s %s' % t ) if (t == (LineType.TabOnly, LineType.TabOnly) or t == (LineType.NoIndent, LineType.TabOnly) ): if len(current_line_info[1]) - len(previous_line_info[1]) == 1 : self.lines['tab'] += 1 return 'tab' elif (t == (LineType.SpaceOnly, LineType.SpaceOnly) or t == (LineType.BeginSpace, LineType.SpaceOnly) or t == (LineType.NoIndent, LineType.SpaceOnly) ): nb_space = len(current_line_info[1]) - len(previous_line_info[1]) if 1 < nb_space <= 8: key = 'space%d' % nb_space self.lines[key] += 1 return key elif (t == (LineType.BeginSpace, LineType.BeginSpace) or t == (LineType.NoIndent, LineType.BeginSpace) ): nb_space = len(current_line_info[1]) - len(previous_line_info[1]) if 1 < nb_space <= 8: key1 = 'space%d' % nb_space key2 = 'mixed%d' % nb_space self.lines[ key1 ] += 1 self.lines[ key2 ] += 1 return key1 elif t == (LineType.BeginSpace, LineType.TabOnly): # we assume that mixed indentation used 8 characters tabs if len(current_line_info[1]) == 1: # more than one tab on the line --> not mixed mode ! nb_space = len(current_line_info[1])*8 - len(previous_line_info[1]) if 1 < nb_space <= 8: key = 'mixed%d' % nb_space self.lines[ key ] += 1 return key elif t == (LineType.TabOnly, LineType.Mixed): tab_part, space_part = tuple(current_line_info[1:3]) if len(previous_line_info[1]) == len(tab_part): nb_space = len(space_part) if 1 < nb_space <= 8: key = 'mixed%d' % nb_space self.lines[ key ] += 1 return key elif t == (LineType.Mixed, LineType.TabOnly): tab_part, space_part = previous_line_info[1:3] if len(tab_part)+1 == len(current_line_info[1]): nb_space = 8-len(space_part) if 1 < nb_space <= 8: key = 'mixed%d' % nb_space self.lines[ key ] += 1 return key else: pass return None def results( self ): dbg( "Nb of scanned lines : %d" % self.nb_processed_lines ) dbg( "Nb of indent hint : %d" % self.nb_indent_hint ) dbg( "Collected data:" ) for key in self.lines: if self.lines[key] > 0: dbg( '%s: %d' % (key, self.lines[key] ) ) max_line_space = max( [ self.lines['space%d'%i] for i in range(2,9) ] ) max_line_mixed = max( [ self.lines['mixed%d'%i] for i in range(2,9) ] ) max_line_tab = self.lines['tab'] dbg( 'max_line_space: %d' % max_line_space ) dbg( 'max_line_mixed: %d' % max_line_mixed ) dbg( 'max_line_tab: %d' % max_line_tab ) ### Result analysis # # 1. Space indented file # - lines indented with less than 8 space will fill mixed and space array # - lines indented with 8 space or more will fill only the space array # - almost no lines indented with tab # # => more lines with space than lines with mixed # => more a lot more lines with space than tab # # 2. Tab indented file # - most lines will be tab only # - very few lines as mixed # - very few lines as space only # # => a lot more lines with tab than lines with mixed # => a lot more lines with tab than lines with space # # 3. Mixed tab/space indented file # - some lines are tab-only (lines with exactly 8 step indentation) # - some lines are space only (less than 8 space) # - all other lines are mixed # # If mixed is tab + 2 space indentation: # - a lot more lines with mixed than with tab # If mixed is tab + 4 space indentation # - as many lines with mixed than with tab # # If no lines exceed 8 space, there will be only lines with space # and tab but no lines with mixed. Impossible to detect mixed indentation # in this case, the file looks like it's actually indented as space only # and will be detected so. # # => same or more lines with mixed than lines with tab only # => same or more lines with mixed than lines with space only # result = None # Detect space indented file if max_line_space >= max_line_mixed and max_line_space > max_line_tab: nb = 0 indent_value = None for i in range(8,1,-1): if self.lines['space%d'%i] > int( nb * 1.1 ) : # give a 10% threshold indent_value = i nb = self.lines[ 'space%d' % indent_value ] if indent_value is None: # no lines result = self.default_result else: result = ('space', indent_value ) # Detect tab files elif max_line_tab > max_line_mixed and max_line_tab > max_line_space: result = ('tab', DEFAULT_TAB_WIDTH ) # Detect mixed files elif max_line_mixed >= max_line_tab and max_line_mixed > max_line_space: nb = 0 indent_value = None for i in range(8,1,-1): if self.lines['mixed%d'%i] > int( nb * 1.1 ) : # give a 10% threshold indent_value = i nb = self.lines[ 'mixed%d' % indent_value ] if indent_value is None: # no lines result = self.default_result else: result = ('mixed', (8,indent_value) ) else: # not enough information to make a decision result = self.default_result info( "Result: %s" % str( result ) ) return result def __str__ (self): itype, ival = self.results() if itype != 'mixed': return '%s %d' % (itype, ival) else: itab, ispace = ival return '%s tab %d space %d' % (itype, itab, ispace) def vim_output( self ): result = self.results() indent_type, n = result if indent_type == "space": # spaces: # => set sts to the number of spaces # => set tabstop to the number of spaces # => expand tabs to spaces # => set shiftwidth to the number of spaces return "set sts=%d | set tabstop=%d | set expandtab | set shiftwidth=%d \" (%s %d)" % (n,n,n,indent_type,n) elif indent_type == "tab": # tab: # => set sts to 0 # => set tabstop to preferred value # => set expandtab to false # => set shiftwidth to tabstop return "set sts=0 | set tabstop=%d | set noexpandtab | set shiftwidth=%d \" (%s)" % (DEFAULT_TAB_WIDTH, DEFAULT_TAB_WIDTH, indent_type ) if indent_type == 'mixed': tab_indent, space_indent = n # tab: # => set sts to 0 # => set tabstop to tab_indent # => set expandtab to false # => set shiftwidth to space_indent return "set sts=4 | set tabstop=%d | set noexpandtab | set shiftwidth=%d \" (%s %d)" % (tab_indent, space_indent, indent_type, space_indent ) def main(): VIM_OUTPUT = 0 file_list = [] for opt in sys.argv[1:]: if opt == "--vim-output": VIM_OUTPUT = 1 elif opt == "--verbose" or opt == '-v': IndentFinder.VERBOSITY += 1 elif opt == "--version": print( 'IndentFinder v%s' % VERSION ) return elif opt[0] == "-": print( help % sys.argv[0] ) return else: file_list.append( opt ) fi = IndentFinder() one_file = (len(file_list) == 1) for fname in file_list: fi.parse_file( fname ) if not one_file: if VIM_OUTPUT: print( "%s : %s" % (fname, fi.vim_output()) ) else: print( "%s : %s" % (fname, str(fi)) ) if one_file: if VIM_OUTPUT: sys.stdout.write( fi.vim_output() ) else: print( str(fi) ) if __name__ == "__main__": main() ``` #### File: ST-AutoSetIndentation/plugin/log.py ```python import sublime def msg(message: str) -> str: """ @brief Generate plugin message. @param message The message @return The plugin message. """ from .settings import get_package_name return "[{plugin}] {message}".format(plugin=get_package_name(), message=message) def print_msg(message: str, show_message: bool = True) -> None: """ @brief Print plugin message to ST's console. @param message The message @param show_message Whether to print the message """ if show_message: print(msg(message)) def show_status_message(message: str, show_message: bool = True) -> None: """ @brief Shows message in the status bar. @param message The message @param show_message Whether to show the message """ from .settings import get_setting if show_message and get_setting("show_status_message"): sublime.status_message(message) ```
{ "source": "jfcherng-sublime/ST-AutoSetSyntax", "score": 3 }
#### File: rules/constraints/is_in_git_repo.py ```python from ..constraint import AbstractConstraint import sublime class IsInGitRepoConstraint(AbstractConstraint): """Check whether this file is in a git repo.""" def test(self, view: sublime.View) -> bool: view_info = self.get_view_info(view) # early return so that we may save some IO operations if not view_info["file_name"]: return False # `.git/` directory for normal Git repo and `.git` file for Git worktree return self.has_sibling(view_info["file_path"], ".git", use_exists=True) ``` #### File: rules/constraints/name_contains.py ```python from ..constraint import AbstractConstraint from typing import Any, Tuple import sublime class NameContainsConstraint(AbstractConstraint): def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) self.needles: Tuple[str, ...] = self._handled_args() def is_droppable(self) -> bool: return not self.needles def test(self, view: sublime.View) -> bool: filename = self.get_view_info(view)["file_name"] return any((needle in filename) for needle in self.needles) ``` #### File: plugin/rules/match.py ```python from __future__ import annotations # __future__ must be the first import from ..helper import camel_to_snake from ..helper import first from ..helper import get_all_subclasses from ..helper import remove_suffix from ..lru_cache import clearable_lru_cache from ..types import Optimizable, ST_MatchRule from .constraint import ConstraintRule from abc import ABCMeta, abstractmethod from dataclasses import dataclass from dataclasses import field from typing import Any, Dict, Generator, List, Optional, Tuple, Type, Union import sublime def get_match(obj: Any) -> Optional[Type[AbstractMatch]]: return first(get_matches(), lambda t: t.is_supported(obj)) @clearable_lru_cache() def get_matches() -> Tuple[Type[AbstractMatch], ...]: return tuple( sorted( get_all_subclasses(AbstractMatch, skip_abstract=True), # type: ignore key=lambda cls: cls.name(), ) ) @dataclass class MatchRule(Optimizable): match: Optional[AbstractMatch] = None match_name: str = "" args: Tuple[Any, ...] = tuple() kwargs: Dict[str, Any] = field(default_factory=dict) rules: Tuple[MatchableRule, ...] = tuple() def is_droppable(self) -> bool: return not (self.rules and self.match and not self.match.is_droppable(self.rules)) def optimize(self) -> Generator[Any, None, None]: rules: List[MatchableRule] = [] for rule in self.rules: if rule.is_droppable(): yield rule continue yield from rule.optimize() if rule.is_droppable(): yield rule continue rules.append(rule) self.rules = tuple(rules) def test(self, view: sublime.View) -> bool: assert self.match return self.match.test(view, self.rules) @classmethod def make(cls, match_rule: ST_MatchRule) -> MatchRule: """Build this object with the `match_rule`.""" obj = cls() if args := match_rule.get("args"): # make sure args is always a tuple obj.args = tuple(args) if isinstance(args, list) else (args,) if kwargs := match_rule.get("kwargs"): obj.kwargs = kwargs match = match_rule.get("match", "any") if match_class := get_match(match): obj.match_name = match obj.match = match_class(*obj.args, **obj.kwargs) rules_compiled: List[MatchableRule] = [] for rule in match_rule.get("rules", []): rule_class: Optional[Type[MatchableRule]] = None if "constraint" in rule: rule_class = ConstraintRule elif "match" in rule: rule_class = MatchRule if rule_class and (rule_compiled := rule_class.make(rule)): # type: ignore rules_compiled.append(rule_compiled) obj.rules = tuple(rules_compiled) return obj # rules that can be used in a match rule MatchableRule = Union[ConstraintRule, MatchRule] class AbstractMatch(metaclass=ABCMeta): def __init__(self, *args: Any, **kwargs: Any) -> None: self.args = args self.kwargs = kwargs @classmethod def name(cls) -> str: """The nickname of this class. Converts "FooBarMatch" into "foo_bar" by default.""" return camel_to_snake(remove_suffix(cls.__name__, "Match")) @classmethod def is_supported(cls, obj: Any) -> bool: """Determines whether this class supports `obj`.""" return str(obj) == cls.name() def is_droppable(self, rules: Tuple[MatchableRule, ...]) -> bool: """ Determines whether this object is droppable. If it's droppable, then it may be dropped by who holds it during optimizing. """ return False @abstractmethod def test(self, view: sublime.View, rules: Tuple[MatchableRule, ...]) -> bool: """Tests whether the `view` passes this `match` with those `rules`.""" ... @staticmethod def test_count(view: sublime.View, rules: Tuple[MatchableRule, ...], goal: float) -> bool: """Tests whether the amount of passing `rules` is greater than or equal to `goal`.""" if goal <= 0: return True tolerance = len(rules) - goal # how many rules can be failed at most for rule in rules: if tolerance < 0: return False if rule.test(view): goal -= 1 if goal == 0: return True else: tolerance -= 1 return False ```
{ "source": "jfcherng-sublime/ST-BracketHighlighter", "score": 3 }
#### File: ST-BracketHighlighter/bh_modules/erlangcase.py ```python from BracketHighlighter.bh_plugin import import_module lowercase = import_module("bh_modules.lowercase") def validate(*args): """Check if bracket is lowercase.""" return lowercase.validate(*args) ``` #### File: ST-BracketHighlighter/bh_modules/phpkeywords.py ```python def compare(name, first, second, bfr): """Pair the appropriate open bracket with its close.""" return "end" + bfr[first.begin:first.end].lower() == bfr[second.begin:second.end].lower() ``` #### File: ST-BracketHighlighter/bh_modules/tags.py ```python from backrefs import bre from collections import namedtuple import sublime from os.path import basename, splitext TAG_OPEN = 0 TAG_CLOSE = 1 last_mode = None def process_tag_pattern(pattern, variables=None): """Process the tag pattern.""" if variables is None: variables = {} if isinstance(pattern, str): pattern = bre.compile_search(pattern % variables, bre.I | bre.M) return pattern class TagEntry(namedtuple('TagEntry', ['begin', 'end', 'name', 'optional', 'single'], verbose=False)): """Tag entry tuple.""" def move(self, begin, end): """Create a new tuple from this tuple.""" return self._replace(begin=begin, end=end) def compare_languge(language, lang_list): """Check if language is found.""" found = False for l in lang_list: if language == l.lower(): found = True break return found def get_tag_mode(view, tag_mode_config): """Get the tag mode.""" default_mode = None syntax = view.settings().get('syntax') language = splitext(basename(syntax))[0].lower() if syntax is not None else "plain text" if isinstance(tag_mode_config, list): for item in tag_mode_config: if isinstance(item, dict) and compare_languge(language, item.get('syntax', [])): first_line = item.get('first_line', '') if first_line: size = view.size() - 1 if size > 256: size = 256 if ( isinstance(first_line, str) and bre.compile_search(first_line, bre.I).match(view.substr(sublime.Region(0, size))) ): return item.get('mode', default_mode) else: return item.get('mode', default_mode) return default_mode def highlighting(view, name, style, left, right): """Highlight only the tag name.""" tag_settings = sublime.load_settings("bh_tag.sublime-settings") match_style = tag_settings.get("tag_style", {}).get(last_mode, None) if match_style is not None and style == match_style: tag_name = tag_settings.get('tag_name', {}).get(last_mode, r'[\w\:\.\-]+') if left is not None: region = view.find(tag_name, left.begin) left = left.move(region.begin(), region.end()) if right is not None: region = view.find(tag_name, right.begin) right = right.move(region.begin(), region.end()) return left, right def post_match(view, name, style, first, second, center, bfr, threshold): """ Given two brackets, determine if they contain a tag. Decide whether it is an opening or closing, and then find its respective closing or opening. """ # We need to know the mode during the highlight event, so track the last mode. global last_mode left, right = first, second threshold = [0, len(bfr)] if threshold is None else threshold bh_settings = sublime.load_settings("bh_core.sublime-settings") tag_settings = sublime.load_settings("bh_tag.sublime-settings") tag_mode = get_tag_mode(view, tag_settings.get("tag_mode", [])) tag_style = tag_settings.get("tag_style", {}).get(tag_mode, '?') last_mode = tag_mode outside_adj = bh_settings.get("bracket_outside_adjacent", False) bracket_style = style if first is not None and tag_mode is not None: matcher = TagMatch(view, bfr, threshold, first, second, center, outside_adj, tag_mode) left, right = matcher.match() if not matcher.no_tag: bracket_style = tag_style return left, right, bracket_style class TagSearch(object): """Searches for tags.""" def __init__( self, view, bfr, window, center, pattern, match_type, mode, optional_tags, self_closing_tags, void_tags ): """Prepare tag search object.""" self.start = int(window[0]) self.end = int(window[1]) self.optional_tags = optional_tags self.void_tags = void_tags self.self_closing_tags = self_closing_tags self.center = center self.pattern = pattern self.match_type = match_type self.mode = mode self.bfr = bfr self.prev_match = None self.return_prev = False self.done = False self.view = view settings = sublime.load_settings("bh_tag.sublime-settings") try: self.scope_exclude = settings.get("tag_scope_exclude", {}).get(mode, ['string', 'comment']) except Exception: self.scope_exclude = ['string', 'comment'] def scope_check(self, pt): """Check if scope is good.""" illegal_scope = False for exclude in self.scope_exclude: illegal_scope |= bool(self.view.score_selector(pt, exclude)) return illegal_scope def reset_end_state(self): """Reset and end the current state.""" self.done = False self.prev_match = None self.return_prev = False def remember(self): """Instruct object to return the last tag.""" self.return_prev = True self.done = False def get_tags(self): """Find all the tags.""" if self.done: return if self.return_prev: self.return_prev = False yield self.prev_match for m in self.pattern.finditer(self.bfr, self.start, self.end): name = m.group(1).lower() if not self.match_type: self_closing_slash = bool(m.group(2) != "") if not self_closing_slash and self.optional_tags is not None: optional = self.optional_tags.match(name) is not None else: optional = False if self_closing_slash and self.self_closing_tags is not None: self_closing = self.self_closing_tags.match(name) is not None else: self_closing = False if not optional and not self_closing and self.void_tags is not None: void = self.void_tags.match(name) is not None else: void = False else: if self.void_tags is not None and self.void_tags.match(name) is not None: continue void = False optional = False self_closing = False start = m.start(0) end = m.end(0) if not self.scope_check(start): self.prev_match = TagEntry(start, end, name, optional, void or self_closing) self.start = end yield self.prev_match self.done = True class TagMatch(object): """Find a tag match.""" def __init__(self, view, bfr, threshold, first, second, center, outside_adj, mode): """Prepare tag match object.""" tag_settings = sublime.load_settings('bh_tag.sublime-settings') self.view = view self.bfr = bfr self.mode = mode self.tag_open = process_tag_pattern( tag_settings.get("start_tag")[mode], { "attributes": tag_settings.get('attributes', {}).get(mode, ''), "tag_name": tag_settings.get('tag_name', {}).get(mode, '') } ) self.tag_close = process_tag_pattern( tag_settings.get("end_tag")[mode] ) try: self.optional_tags = bre.compile_search(tag_settings.get('optional_tag_patterns')[self.mode], bre.I) except Exception: self.optional_tags = None try: self.void_tags = bre.compile_search(tag_settings.get('void_tag_patterns')[self.mode], bre.I) except Exception: self.void_tags = None try: self.self_closing_tags = bre.compile_search(tag_settings.get('self_closing_tag_patterns')[self.mode], bre.I) except Exception: self.self_closing_tags = None tag, tag_type, tag_end = self.get_first_tag(first[0]) self.left, self.right = None, None self.window = None self.no_tag = False if outside_adj: if first[0] == center: center += 1 elif center == tag_end: center -= 1 if tag and first[0] < center < tag_end: if tag.single: self.left = tag self.right = tag else: if tag_type == "open": self.left = tag self.window = (tag_end, len(bfr) if threshold is None else threshold[1]) else: self.right = tag self.window = (0 if threshold is None else threshold[0], first[0]) else: self.left = first self.right = second self.no_tag = True def get_first_tag(self, offset): """ Check if tag region is an opening tag or closing tag. Return the results """ tag = None tag_type = None optional = False void = False m = self.tag_open.match(self.bfr[offset:]) end = None if m: name = m.group(1).lower() self_closing_slash = bool(m.group(2) != "") optional = ( self.optional_tags is not None and not self_closing_slash and self.optional_tags.match(name) is not None ) self_closing = ( self.self_closing_tags is not None and self_closing_slash and self.self_closing_tags.match(name) is not None ) void = ( not optional and not self_closing and self.void_tags is not None and self.void_tags.match(name) is not None ) start = m.start(0) + offset end = m.end(0) + offset tag = TagEntry(start, end, name, optional, void or self_closing) tag_type = "open" self.center = end else: m = self.tag_close.match(self.bfr[offset:]) if m: name = m.group(1).lower() void = ( self.void_tags is not None and self.void_tags.match(name) is not None ) if not void: start = m.start(0) + offset end = m.end(0) + offset tag = TagEntry(start, end, name, optional, void) tag_type = "close" self.center = offset return tag, tag_type, end def compare_tags(self, left, right): """Check if tags share the same name.""" return left.name == right.name def resolve_optional(self, stack, c): """Handle self closing tags.""" found_tag = None b = stack[-1] if self.compare_tags(b, c): found_tag = b stack.pop() else: while b is not None and b.optional: stack.pop() if len(stack): b = stack[-1] if self.compare_tags(b, c): found_tag = b stack.pop() break else: b = None return found_tag def match(self): """ Find the corresponding open or close. Match only if either the close or open is already found. """ stack = [] # No tags to search for if self.no_tag or (self.left and self.right): return self.left, self.right # Initialize tag matching objects osearch = TagSearch( self.view, self.bfr, self.window, self.center, self.tag_open, 0, self.mode, self.optional_tags, self.self_closing_tags, self.void_tags ) csearch = TagSearch( self.view, self.bfr, self.window, self.center, self.tag_close, 1, self.mode, self.optional_tags, self.self_closing_tags, self.void_tags ) # Searching for opening or closing tag to match match_type = TAG_OPEN if self.right else TAG_CLOSE # Match the tags for c in csearch.get_tags(): if len(stack) and osearch.done: if self.resolve_optional(stack, c): continue for o in osearch.get_tags(): if o.end <= c.begin: if not o.single: stack.append(o) continue else: osearch.remember() break if len(stack): if self.resolve_optional(stack, c): continue elif match_type == TAG_OPEN and not osearch.done: continue if match_type == TAG_CLOSE: if self.left is None or self.compare_tags(self.left, c): self.right = c elif self.left.optional: self.right = self.left break if match_type == TAG_OPEN: # Find the rest of the the unmatched left side open brackets # approaching the cursor if all closing brackets were matched # Select the most recent open bracket on the stack. for o in osearch.get_tags(): if not o.single: stack.append(o) if len(stack): self.left = self.resolve_optional(stack, self.right) elif self.right is None and self.left is not None and self.left.optional: # Account for the opening tag that was found being a self closing self.right = self.left return self.left, self.right ``` #### File: jfcherng-sublime/ST-BracketHighlighter/bh_plugin.py ```python import sublime import sublime_plugin from os.path import normpath, join import imp from collections import namedtuple import sys import traceback import re from .bh_logging import log class Payload(object): """Plugin payload.""" status = False plugin = None args = None @classmethod def clear(cls): """Clear payload.""" cls.status = False cls.plugin = None cls.args = None class BracketRegion (namedtuple('BracketRegion', ['begin', 'end'], verbose=False)): """Bracket regions for plugins.""" def move(self, begin, end): """Move bracket region to different points.""" return self._replace(begin=begin, end=end) def size(self): """Get the size of the region.""" return abs(self.begin - self.end) def toregion(self): """Convert to sublime region.""" return sublime.Region(self.begin, self.end) def is_bracket_region(obj): """Check if object is a `BracketRegion`.""" return isinstance(obj, BracketRegion) def sublime_format_path(pth): """Format path for Sublime internally.""" m = re.match(r"^([A-Za-z]{1}):(?:/|\\)(.*)", pth) if sublime.platform() == "windows" and m is not None: pth = m.group(1) + "/" + m.group(2) return pth.replace("\\", "/") def load_modules(obj, loaded): """Load bracket plugin modules.""" plib = obj.get("plugin_library") if plib is None: return try: module = _import_module(plib, loaded) obj["compare"] = getattr(module, "compare", None) obj["post_match"] = getattr(module, "post_match", None) obj["validate"] = getattr(module, "validate", None) obj["highlighting"] = getattr(module, "highlighting", None) loaded.add(plib) except Exception: log("Could not load module %s\n%s" % (plib, str(traceback.format_exc()))) raise def _import_module(module_name, loaded=None): """ Import the module. Import the module and track which modules have been loaded so we don't load already loaded modules. """ # Pull in built-in and custom plugin directory if module_name.startswith("bh_modules."): path_name = join("Packages", "BracketHighlighter", normpath(module_name.replace('.', '/'))) else: path_name = join("Packages", normpath(module_name.replace('.', '/'))) path_name += ".py" if loaded is not None and module_name in loaded: module = sys.modules[module_name] else: module = imp.new_module(module_name) sys.modules[module_name] = module exec( compile( sublime.load_resource(sublime_format_path(path_name)), module_name, 'exec' ), sys.modules[module_name].__dict__ ) return module def import_module(module, attribute=None): """Import module or module attribute.""" mod = _import_module(module) return getattr(mod, attribute) if attribute is not None else mod class BracketPluginRunCommand(sublime_plugin.TextCommand): """Sublime run command to run BH plugins.""" def run(self, edit): """Run the plugin.""" try: Payload.args["edit"] = edit Payload.plugin.run(**Payload.args) Payload.status = True except Exception: print("BracketHighlighter: Plugin Run Error:\n%s" % str(traceback.format_exc())) class BracketPlugin(object): """Class for preparing and running plugins.""" def __init__(self, plugin, loaded): """Load plugin module.""" self.enabled = False self.args = plugin['args'] if ("args" in plugin) else {} self.plugin = None if 'command' in plugin: plib = plugin['command'] try: module = _import_module(plib, loaded) self.plugin = getattr(module, 'plugin')() loaded.add(plib) self.enabled = True except Exception: print('BracketHighlighter: Load Plugin Error: %s\n%s' % (plugin['command'], traceback.format_exc())) def is_enabled(self): """Check if plugin is enabled.""" return self.enabled def run_command(self, view, name, left, right, selection): """Load arguments into plugin and run.""" nobracket = False refresh_match = False Payload.status = False Payload.plugin = self.plugin() setattr(Payload.plugin, "left", left) setattr(Payload.plugin, "right", right) setattr(Payload.plugin, "view", view) setattr(Payload.plugin, "selection", selection) setattr(Payload.plugin, "nobracket", False) setattr(Payload.plugin, "refresh_match", False) self.args["edit"] = None self.args["name"] = name Payload.args = self.args # Call a `TextCommand` to run the plugin so it can feed in the `Edit` object view.run_command("bracket_plugin_run") if Payload.status: left = Payload.plugin.left right = Payload.plugin.right selection = Payload.plugin.selection nobracket = Payload.plugin.nobracket refresh_match = Payload.plugin.refresh_match Payload.clear() return left, right, selection, nobracket, refresh_match class BracketPluginCommand(object): """Bracket Plugin base class.""" def run(self, bracket, content, selection): """Run the plugin class.""" pass ```
{ "source": "jfcherng-sublime/ST-CommandAndMenu", "score": 2 }
#### File: plugin/commands/open_git_repo_on_web.py ```python from pathlib import Path from typing import Any, Callable, Optional, Tuple, Union import re import shlex import shutil import sublime import sublime_plugin import subprocess import threading PathLike = Union[str, Path] class GitException(Exception): """Exception raised when something went wrong for git""" def __init__(self, message: str) -> None: super().__init__(message) class Git: """Git command wrapper""" def __init__( self, repo_path: PathLike, git_bin: str = "git", encoding: str = "utf-8", shell: bool = False, timeout_s: float = 3, ) -> None: """Init a Git wrapper with an instance""" # always use folder as repo path if (path := Path(repo_path).resolve()).is_file(): path = path.parent self.repo_path = path self.git_bin = shutil.which(git_bin) or git_bin self.encoding = encoding self.shell = shell self.timeout_s = timeout_s def run(self, *args: str) -> str: """Run a git command.""" cmd_tuple = (self.git_bin,) + args if sublime.platform() == "windows": # do not create a window for the process startupinfo = subprocess.STARTUPINFO() # type: ignore startupinfo.dwFlags |= subprocess.STARTF_USESHOWWINDOW # type: ignore else: startupinfo = None # type: ignore process = subprocess.Popen( cmd_tuple, cwd=self.repo_path, encoding=self.encoding, shell=self.shell, startupinfo=startupinfo, stderr=subprocess.PIPE, stdout=subprocess.PIPE, text=True, ) out, err = process.communicate(timeout=self.timeout_s) ret_code = process.poll() or 0 if ret_code: cmd_str = " ".join(map(shlex.quote, cmd_tuple)) raise GitException(f"`{cmd_str}` returned code {ret_code}: {err}") return out.rstrip() def get_version(self) -> Optional[Tuple[int, int, int]]: try: m = re.search(r"(\d+)\.(\d+)\.(\d+)", self.run("version")) return tuple(map(int, m.groups())) if m else None # type: ignore except GitException: return None def get_remote_web_url(self, remote: Optional[str] = None) -> Optional[str]: try: # use the tracking upstream if not remote: # `upstream` will be something like "refs/remotes/origin/master" upstream = self.run("rev-parse", "--symbolic-full-name", "@{upstream}") remote = re.sub(r"^refs/remotes/", "", upstream).partition("/")[0] remote_uri = self.run("remote", "get-url", remote) remote_url = self.get_url_from_remote_uri(remote_uri) return remote_url except GitException: return None @staticmethod def is_in_git_repo(path: PathLike) -> bool: path_prev, path = None, Path(path).resolve() while path != path_prev: # git dir or worktree, which has a .git file in it if (path / ".git").exists(): return True path_prev, path = path, path.parent return False @staticmethod def get_url_from_remote_uri(uri: str) -> Optional[str]: url: Optional[str] = None re_flags = re.IGNORECASE | re.MULTILINE # SSH (unsupported) if re.search(r"^ssh://", uri, re_flags): url = None # HTTP if re.search(r"^https?://", uri, re_flags): url = uri # common providers if re.search(r"^git@", uri, re_flags): parts = uri[4:].split(":") # "4:" removes "git@" host = ":".join(parts[:-1]) path = parts[-1] url = f"https://{host}/{path}" return re.sub(r"\.git$", "", url, re_flags) if url else None def get_dir_for_git(view: sublime.View) -> Optional[str]: if filename := view.file_name(): return str(Path(filename).parent) if not (window := view.window()): return None return next(iter(window.folders()), None) def guarantee_git_dir(failed_return: Optional[Any] = None) -> Callable: def decorator(func: Callable) -> Callable: def wrapped(self: sublime_plugin.WindowCommand, *args: Any, **kwargs: Any) -> Any: if not ((view := self.window.active_view()) and (git_dir := get_dir_for_git(view))): return failed_return return func(self, git_dir, *args, **kwargs) return wrapped return decorator class OpenGitRepoOnWebCommand(sublime_plugin.WindowCommand): @guarantee_git_dir(failed_return=False) def is_enabled(self, git_dir: str) -> bool: return Git.is_in_git_repo(git_dir) @guarantee_git_dir() def run(self, git_dir: str, remote: Optional[str] = None) -> None: t = threading.Thread(target=self._worker, args=(git_dir, remote)) t.start() @staticmethod def _worker(git_dir: str, remote: Optional[str] = None) -> None: if not (git := Git(git_dir)): return if not (repo_url := git.get_remote_web_url(remote=remote)): return sublime.error_message("Can't determine repo web URL...") sublime.run_command("open_url", {"url": repo_url}) ```
{ "source": "jfcherng-sublime/ST-FollowLnk", "score": 2 }
#### File: libs/pylnk/pylnk3.py ```python import argparse import ntpath import os import re import time from datetime import datetime from io import BytesIO, IOBase from pprint import pformat from struct import pack, unpack from typing import Dict, Optional, Tuple, Union DEFAULT_CHARSET = 'cp1251' # ---- constants _SIGNATURE = b'L\x00\x00\x00' _GUID = b'\x01\x14\x02\x00\x00\x00\x00\x00\xc0\x00\x00\x00\x00\x00\x00F' _LINK_INFO_HEADER_DEFAULT = 0x1C _LINK_INFO_HEADER_OPTIONAL = 0x24 _LINK_FLAGS = ( 'HasLinkTargetIDList', 'HasLinkInfo', 'HasName', 'HasRelativePath', 'HasWorkingDir', 'HasArguments', 'HasIconLocation', 'IsUnicode', 'ForceNoLinkInfo', # new 'HasExpString', 'RunInSeparateProcess', 'Unused1', 'HasDarwinID', 'RunAsUser', 'HasExpIcon', 'NoPidlAlias', 'Unused2', 'RunWithShimLayer', 'ForceNoLinkTrack', 'EnableTargetMetadata', 'DisableLinkPathTracking', 'DisableKnownFolderTracking', 'DisableKnownFolderAlias', 'AllowLinkToLink', 'UnaliasOnSave', 'PreferEnvironmentPath', 'KeepLocalIDListForUNCTarget', ) _FILE_ATTRIBUTES_FLAGS = ( 'read_only', 'hidden', 'system_file', 'reserved1', 'directory', 'archive', 'reserved2', 'normal', 'temporary', 'sparse_file', 'reparse_point', 'compressed', 'offline', 'not_content_indexed', 'encrypted', ) _MODIFIER_KEYS = ('SHIFT', 'CONTROL', 'ALT') WINDOW_NORMAL = "Normal" WINDOW_MAXIMIZED = "Maximized" WINDOW_MINIMIZED = "Minimized" _SHOW_COMMANDS = {1: WINDOW_NORMAL, 3: WINDOW_MAXIMIZED, 7: WINDOW_MINIMIZED} _SHOW_COMMAND_IDS = dict((v, k) for k, v in _SHOW_COMMANDS.items()) DRIVE_UNKNOWN = "Unknown" DRIVE_NO_ROOT_DIR = "No root directory" DRIVE_REMOVABLE = "Removable" DRIVE_FIXED = "Fixed (Hard disk)" DRIVE_REMOTE = "Remote (Network drive)" DRIVE_CDROM = "CD-ROM" DRIVE_RAMDISK = "Ram disk" _DRIVE_TYPES = {0: DRIVE_UNKNOWN, 1: DRIVE_NO_ROOT_DIR, 2: DRIVE_REMOVABLE, 3: DRIVE_FIXED, 4: DRIVE_REMOTE, 5: DRIVE_CDROM, 6: DRIVE_RAMDISK} _DRIVE_TYPE_IDS = dict((v, k) for k, v in _DRIVE_TYPES.items()) _KEYS = { 0x30: '0', 0x31: '1', 0x32: '2', 0x33: '3', 0x34: '4', 0x35: '5', 0x36: '6', 0x37: '7', 0x38: '8', 0x39: '9', 0x41: 'A', 0x42: 'B', 0x43: 'C', 0x44: 'D', 0x45: 'E', 0x46: 'F', 0x47: 'G', 0x48: 'H', 0x49: 'I', 0x4A: 'J', 0x4B: 'K', 0x4C: 'L', 0x4D: 'M', 0x4E: 'N', 0x4F: 'O', 0x50: 'P', 0x51: 'Q', 0x52: 'R', 0x53: 'S', 0x54: 'T', 0x55: 'U', 0x56: 'V', 0x57: 'W', 0x58: 'X', 0x59: 'Y', 0x5A: 'Z', 0x70: 'F1', 0x71: 'F2', 0x72: 'F3', 0x73: 'F4', 0x74: 'F5', 0x75: 'F6', 0x76: 'F7', 0x77: 'F8', 0x78: 'F9', 0x79: 'F10', 0x7A: 'F11', 0x7B: 'F12', 0x7C: 'F13', 0x7D: 'F14', 0x7E: 'F15', 0x7F: 'F16', 0x80: 'F17', 0x81: 'F18', 0x82: 'F19', 0x83: 'F20', 0x84: 'F21', 0x85: 'F22', 0x86: 'F23', 0x87: 'F24', 0x90: 'NUM LOCK', 0x91: 'SCROLL LOCK' } _KEY_CODES = dict((v, k) for k, v in _KEYS.items()) ROOT_MY_COMPUTER = 'MY_COMPUTER' ROOT_MY_DOCUMENTS = 'MY_DOCUMENTS' ROOT_NETWORK_SHARE = 'NETWORK_SHARE' ROOT_NETWORK_SERVER = 'NETWORK_SERVER' ROOT_NETWORK_PLACES = 'NETWORK_PLACES' ROOT_NETWORK_DOMAIN = 'NETWORK_DOMAIN' ROOT_INTERNET = 'INTERNET' RECYCLE_BIN = 'RECYCLE_BIN' ROOT_CONTROL_PANEL = 'CONTROL_PANEL' ROOT_USER = 'USERPROFILE' ROOT_UWP_APPS = 'APPS' _ROOT_LOCATIONS = { '{20D04FE0-3AEA-1069-A2D8-08002B30309D}': ROOT_MY_COMPUTER, '{450D8FBA-AD25-11D0-98A8-0800361B1103}': ROOT_MY_DOCUMENTS, '{54a754c0-4bf1-11d1-83ee-00a0c90dc849}': ROOT_NETWORK_SHARE, '{c0542a90-4bf0-11d1-83ee-00a0c90dc849}': ROOT_NETWORK_SERVER, '{208D2C60-3AEA-1069-A2D7-08002B30309D}': ROOT_NETWORK_PLACES, '{46e06680-4bf0-11d1-83ee-00a0c90dc849}': ROOT_NETWORK_DOMAIN, '{871C5380-42A0-1069-A2EA-08002B30309D}': ROOT_INTERNET, '{645FF040-5081-101B-9F08-00AA002F954E}': RECYCLE_BIN, '{21EC2020-3AEA-1069-A2DD-08002B30309D}': ROOT_CONTROL_PANEL, '{59031A47-3F72-44A7-89C5-5595FE6B30EE}': ROOT_USER, '{4234D49B-0245-4DF3-B780-3893943456E1}': ROOT_UWP_APPS, } _ROOT_LOCATION_GUIDS = dict((v, k) for k, v in _ROOT_LOCATIONS.items()) TYPE_FOLDER = 'FOLDER' TYPE_FILE = 'FILE' _ENTRY_TYPES = { 0x00: 'KNOWN_FOLDER', 0x31: 'FOLDER', 0x32: 'FILE', 0x35: 'FOLDER (UNICODE)', 0x36: 'FILE (UNICODE)', 0x802E: 'ROOT_KNOWN_FOLDER', # founded in doc, not tested 0x1f: 'ROOT_FOLDER', 0x61: 'URI', 0x71: 'CONTROL_PANEL', } _ENTRY_TYPE_IDS = dict((v, k) for k, v in _ENTRY_TYPES.items()) _DRIVE_PATTERN = re.compile(r'(\w)[:/\\]*$') # ---- read and write binary data def read_byte(buf): return unpack('<B', buf.read(1))[0] def read_short(buf): return unpack('<H', buf.read(2))[0] def read_int(buf): return unpack('<I', buf.read(4))[0] def read_double(buf): return unpack('<Q', buf.read(8))[0] def read_cunicode(buf): s = b"" b = buf.read(2) while b != b'\x00\x00': s += b b = buf.read(2) return s.decode('utf-16-le') def read_cstring(buf, padding=False): s = b"" b = buf.read(1) while b != b'\x00': s += b b = buf.read(1) if padding and not len(s) % 2: buf.read(1) # make length + terminator even # TODO: encoding is not clear, unicode-escape has been necessary sometimes return s.decode(DEFAULT_CHARSET) def read_sized_string(buf, string=True): size = read_short(buf) if string: return buf.read(size*2).decode('utf-16-le') else: return buf.read(size) def get_bits(value, start, count, length=16): mask = 0 for i in range(count): mask = mask | 1 << i shift = length - start - count return value >> shift & mask def read_dos_datetime(buf): date = read_short(buf) time = read_short(buf) year = get_bits(date, 0, 7) + 1980 month = get_bits(date, 7, 4) day = get_bits(date, 11, 5) hour = get_bits(time, 0, 5) minute = get_bits(time, 5, 6) second = get_bits(time, 11, 5) # fix zeroes month = max(month, 1) day = max(day, 1) return datetime(year, month, day, hour, minute, second) def write_byte(val, buf): buf.write(pack('<B', val)) def write_short(val, buf): buf.write(pack('<H', val)) def write_int(val, buf): buf.write(pack('<I', val)) def write_double(val, buf): buf.write(pack('<Q', val)) def write_cstring(val, buf, padding=False): # val = val.encode('unicode-escape').replace('\\\\', '\\') val = val.encode(DEFAULT_CHARSET) buf.write(val + b'\x00') if padding and not len(val) % 2: buf.write(b'\x00') def write_cunicode(val, buf): uni = val.encode('utf-16-le') buf.write(uni + b'\x00\x00') def write_sized_string(val, buf, string=True): size = len(val) write_short(size, buf) if string: buf.write(val.encode('utf-16-le')) else: buf.write(val.encode()) def put_bits(bits, target, start, count, length=16): return target | bits << (length - start - count) def write_dos_datetime(val, buf): date = time = 0 date = put_bits(val.year-1980, date, 0, 7) date = put_bits(val.month, date, 7, 4) date = put_bits(val.day, date, 11, 5) time = put_bits(val.hour, time, 0, 5) time = put_bits(val.minute, time, 5, 6) time = put_bits(val.second, time, 11, 5) write_short(date, buf) write_short(time, buf) # ---- helpers def convert_time_to_unix(windows_time): # Windows time is specified as the number of 0.1 nanoseconds since January 1, 1601. # UNIX time is specified as the number of seconds since January 1, 1970. # There are 134774 days (or 11644473600 seconds) between these dates. unix_time = windows_time / 10000000.0 - 11644473600 try: return datetime.fromtimestamp(unix_time) except OSError: return datetime.now() def convert_time_to_windows(unix_time): if isinstance(unix_time, datetime): unix_time = time.mktime(unix_time.timetuple()) return int((unix_time + 11644473600) * 10000000) class FormatException(Exception): pass class MissingInformationException(Exception): pass class InvalidKeyException(Exception): pass def guid_from_bytes(bytes): if len(bytes) != 16: raise FormatException("This is no valid _GUID: %s" % bytes) ordered = [ bytes[3], bytes[2], bytes[1], bytes[0], bytes[5], bytes[4], bytes[7], bytes[6], bytes[8], bytes[9], bytes[10], bytes[11], bytes[12], bytes[13], bytes[14], bytes[15] ] return "{%02X%02X%02X%02X-%02X%02X-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X}" % tuple([x for x in ordered]) def bytes_from_guid(guid): nums = [ guid[1:3], guid[3:5], guid[5:7], guid[7:9], guid[10:12], guid[12:14], guid[15:17], guid[17:19], guid[20:22], guid[22:24], guid[25:27], guid[27:29], guid[29:31], guid[31:33], guid[33:35], guid[35:37] ] ordered_nums = [ nums[3], nums[2], nums[1], nums[0], nums[5], nums[4], nums[7], nums[6], nums[8], nums[9], nums[10], nums[11], nums[12], nums[13], nums[14], nums[15], ] return bytes([int(x, 16) for x in ordered_nums]) def assert_lnk_signature(f): f.seek(0) sig = f.read(4) guid = f.read(16) if sig != _SIGNATURE: raise FormatException("This is not a .lnk file.") if guid != _GUID: raise FormatException("Cannot read this kind of .lnk file.") def is_lnk(f): if hasattr(f, 'name'): if f.name.split(os.path.extsep)[-1] == "lnk": assert_lnk_signature(f) return True else: return False else: try: assert_lnk_signature(f) return True except FormatException: return False def path_levels(p): dirname, base = ntpath.split(p) if base != '': for level in path_levels(dirname): yield level yield p def is_drive(data): if type(data) not in (str, str): return False p = re.compile("[a-zA-Z]:\\\\?$") return p.match(data) is not None # ---- data structures class Flags(object): def __init__(self, flag_names: Tuple[str, ...], flags_bytes=0): self._flag_names = flag_names self._flags: Dict[str, bool] = dict([(name, False) for name in flag_names]) self.set_flags(flags_bytes) def set_flags(self, flags_bytes): for pos, flag_name in enumerate(self._flag_names): self._flags[flag_name] = bool(flags_bytes >> pos & 0x1) @property def bytes(self): bytes = 0 for pos in range(len(self._flag_names)): bytes = (self._flags[self._flag_names[pos]] and 1 or 0) << pos | bytes return bytes def __getitem__(self, key): if key in self._flags: return object.__getattribute__(self, '_flags')[key] return object.__getattribute__(self, key) def __setitem__(self, key, value): if key not in self._flags: raise KeyError("The key '%s' is not defined for those flags." % key) self._flags[key] = value def __getattr__(self, key): if key in self._flags: return object.__getattribute__(self, '_flags')[key] return object.__getattribute__(self, key) def __setattr__(self, key, value): if '_flags' not in self.__dict__: object.__setattr__(self, key, value) elif key in self.__dict__: object.__setattr__(self, key, value) else: self.__setitem__(key, value) def __str__(self): return pformat(self._flags, indent=2) class ModifierKeys(Flags): def __init__(self, flags_bytes=0): Flags.__init__(self, _MODIFIER_KEYS, flags_bytes) def __str__(self): s = "" s += self.CONTROL and "CONTROL+" or "" s += self.SHIFT and "SHIFT+" or "" s += self.ALT and "ALT+" or "" return s # _ROOT_INDEX = { # 0x00: 'INTERNET_EXPLORER1', # 0x42: 'LIBRARIES', # 0x44: 'USERS', # 0x48: 'MY_DOCUMENTS', # 0x50: 'MY_COMPUTER', # 0x58: 'MY_NETWORK_PLACES', # 0x60: 'RECYCLE_BIN', # 0x68: 'INTERNET_EXPLORER2', # 0x70: 'UNKNOWN', # 0x80: 'MY_GAMES', # } class RootEntry(object): def __init__(self, root): if root is not None: # create from text representation if root in list(_ROOT_LOCATION_GUIDS.keys()): self.root = root self.guid = _ROOT_LOCATION_GUIDS[root] return # from binary root_type = root[0] index = root[1] guid_bytes = root[2:18] self.guid = guid_from_bytes(guid_bytes) self.root = _ROOT_LOCATIONS.get(self.guid, f"UNKNOWN {self.guid}") # if self.root == "UNKNOWN": # self.root = _ROOT_INDEX.get(index, "UNKNOWN") @property def bytes(self): guid = self.guid[1:-1].replace('-', '') chars = [bytes([int(x, 16)]) for x in [guid[i:i+2] for i in range(0, 32, 2)]] return ( b'\x1F\x50' + chars[3] + chars[2] + chars[1] + chars[0] + chars[5] + chars[4] + chars[7] + chars[6] + b''.join(chars[8:]) ) def __str__(self): return "<RootEntry: %s>" % self.root class DriveEntry(object): def __init__(self, drive: str): if len(drive) == 23: # binary data from parsed lnk self.drive = drive[1:3] else: # text representation m = _DRIVE_PATTERN.match(drive.strip()) if m: self.drive = m.groups()[0].upper() + ':' self.drive = self.drive.encode() else: raise FormatException("This is not a valid drive: " + str(drive)) @property def bytes(self): drive = self.drive padded_str = drive + b'\\' + b'\x00' * 19 return b'\x2F' + padded_str # drive = self.drive # if isinstance(drive, str): # drive = drive.encode() # return b'/' + drive + b'\\' + b'\x00' * 19 def __str__(self): return "<DriveEntry: %s>" % self.drive class PathSegmentEntry(object): def __init__(self, bytes=None): self.type = None self.file_size = None self.modified = None self.short_name = None self.created = None self.accessed = None self.full_name = None if bytes is None: return buf = BytesIO(bytes) self.type = _ENTRY_TYPES.get(read_short(buf), 'UNKNOWN') short_name_is_unicode = self.type.endswith('(UNICODE)') if self.type == 'ROOT_KNOWN_FOLDER': self.full_name = '::' + guid_from_bytes(buf.read(16)) # then followed Beef0026 structure: # short size # short version # int signature == 0xBEEF0026 # (16 bytes) created timestamp # (16 bytes) modified timestamp # (16 bytes) accessed timestamp return if self.type == 'KNOWN_FOLDER': _ = read_short(buf) # extra block size extra_signature = read_int(buf) if extra_signature == 0x23FEBBEE: _ = read_short(buf) # unknown _ = read_short(buf) # guid len # that format recognized by explorer self.full_name = '::' + guid_from_bytes(buf.read(16)) return self.file_size = read_int(buf) self.modified = read_dos_datetime(buf) unknown = read_short(buf) # FileAttributesL if short_name_is_unicode: self.short_name = read_cunicode(buf) else: self.short_name = read_cstring(buf, padding=True) extra_size = read_short(buf) extra_version = read_short(buf) extra_signature = read_int(buf) if extra_signature == 0xBEEF0004: # indicator_1 = read_short(buf) # see below # only_83 = read_short(buf) < 0x03 # unknown = read_short(buf) # 0x04 # self.is_unicode = read_short(buf) == 0xBeef self.created = read_dos_datetime(buf) # 4 bytes self.accessed = read_dos_datetime(buf) # 4 bytes offset_unicode = read_short(buf) # offset from start of extra_size # only_83_2 = offset_unicode >= indicator_1 or offset_unicode < 0x14 if extra_version >= 7: offset_ansi = read_short(buf) file_reference = read_double(buf) unknown2 = read_double(buf) long_string_size = 0 if extra_version >= 3: long_string_size = read_short(buf) if extra_version >= 9: unknown4 = read_int(buf) if extra_version >= 8: unknown5 = read_int(buf) if extra_version >= 3: self.full_name = read_cunicode(buf) if long_string_size > 0: if extra_version >= 7: self.localized_name = read_cunicode(buf) else: self.localized_name = read_cstring(buf) version_offset = read_short(buf) @classmethod def create_for_path(cls, path): entry = cls() entry.type = os.path.isdir(path) and TYPE_FOLDER or TYPE_FILE try: st = os.stat(path) entry.file_size = st.st_size entry.modified = datetime.fromtimestamp(st.st_mtime) entry.created = datetime.fromtimestamp(st.st_ctime) entry.accessed = datetime.fromtimestamp(st.st_atime) except FileNotFoundError: now = datetime.now() entry.file_size = 0 entry.modified = now entry.created = now entry.accessed = now entry.short_name = ntpath.split(path)[1] entry.full_name = entry.short_name return entry def _validate(self): if self.type is None: raise MissingInformationException("Type is missing, choose either TYPE_FOLDER or TYPE_FILE.") if self.file_size is None: if self.type.startswith('FOLDER') or self.type in ['KNOWN_FOLDER', 'ROOT_KNOWN_FOLDER']: self.file_size = 0 else: raise MissingInformationException("File size missing") if self.created is None: self.created = datetime.now() if self.modified is None: self.modified = datetime.now() if self.accessed is None: self.accessed = datetime.now() # if self.modified is None or self.accessed is None or self.created is None: # raise MissingInformationException("Date information missing") if self.full_name is None: raise MissingInformationException("A full name is missing") if self.short_name is None: self.short_name = self.full_name @property def bytes(self): if self.full_name is None: return self._validate() out = BytesIO() entry_type = self.type if entry_type == 'KNOWN_FOLDER': write_short(_ENTRY_TYPE_IDS[entry_type], out) write_short(0x1A, out) # size write_int(0x23FEBBEE, out) # extra signature write_short(0x00, out) # extra signature write_short(0x10, out) # guid size out.write(bytes_from_guid(self.full_name.strip(':'))) return out.getvalue() if entry_type == 'ROOT_KNOWN_FOLDER': write_short(_ENTRY_TYPE_IDS[entry_type], out) out.write(bytes_from_guid(self.full_name.strip(':'))) write_short(0x26, out) # 0xBEEF0026 structure size write_short(0x01, out) # version write_int(0xBEEF0026, out) # extra signature write_int(0x11, out) # some flag for containing datetime write_double(0x00, out) # created datetime write_double(0x00, out) # modified datetime write_double(0x00, out) # accessed datetime write_short(0x14, out) # unknown return out.getvalue() short_name_len = len(self.short_name) + 1 try: self.short_name.encode("ascii") short_name_is_unicode = False short_name_len += short_name_len % 2 # padding except (UnicodeEncodeError, UnicodeDecodeError): short_name_is_unicode = True short_name_len = short_name_len * 2 self.type += " (UNICODE)" write_short(_ENTRY_TYPE_IDS[entry_type], out) write_int(self.file_size, out) write_dos_datetime(self.modified, out) write_short(0x10, out) if short_name_is_unicode: write_cunicode(self.short_name, out) else: write_cstring(self.short_name, out, padding=True) indicator = 24 + 2 * len(self.short_name) write_short(indicator, out) # size write_short(0x03, out) # version write_short(0x04, out) # signature part1 write_short(0xBeef, out) # signature part2 write_dos_datetime(self.created, out) write_dos_datetime(self.accessed, out) offset_unicode = 0x14 # fixed data structure, always the same write_short(offset_unicode, out) offset_ansi = 0 # we always write unicode write_short(offset_ansi, out) # long_string_size write_cunicode(self.full_name, out) offset_part2 = 0x0E + short_name_len write_short(offset_part2, out) return out.getvalue() def __str__(self): return "<PathSegmentEntry: %s>" % self.full_name class UwpSubBlock: block_names = { 0x11: 'PackageFamilyName', # 0x0e: '', # 0x19: '', 0x15: 'PackageFullName', 0x05: 'Target', 0x0f: 'Location', 0x20: 'RandomGuid', 0x0c: 'Square150x150Logo', 0x02: 'Square44x44Logo', 0x0d: 'Wide310x150Logo', # 0x04: '', # 0x05: '', 0x13: 'Square310x310Logo', # 0x0e: '', 0x0b: 'DisplayName', 0x14: 'Square71x71Logo', 0x64: 'RandomByte', 0x0a: 'DisplayName', # 0x07: '', } block_types = { 'string': [0x11, 0x15, 0x05, 0x0f, 0x0c, 0x02, 0x0d, 0x13, 0x0b, 0x14, 0x0a], } def __init__(self, bytes=None, type=None, value=None): self._data = bytes or b'' self.type = type self.value = value self.name = None if self.type is not None: self.name = self.block_names.get(self.type, 'UNKNOWN') if not bytes: return buf = BytesIO(bytes) self.type = read_byte(buf) self.name = self.block_names.get(self.type, 'UNKNOWN') self.value = self._data[1:] # skip type if self.type in self.block_types['string']: unknown = read_int(buf) probably_type = read_int(buf) if probably_type == 0x1f: string_len = read_int(buf) self.value = read_cunicode(buf) def __str__(self): string = f'UwpSubBlock {self.name} ({hex(self.type)}): {self.value}' return string.strip() @property def bytes(self): out = BytesIO() if self.value: if isinstance(self.value, str): string_len = len(self.value) + 1 write_byte(self.type, out) write_int(0, out) write_int(0x1f, out) write_int(string_len, out) write_cunicode(self.value, out) if string_len % 2 == 1: # padding write_short(0, out) elif isinstance(self.value, bytes): write_byte(self.type, out) out.write(self.value) result = out.getvalue() return result class UwpMainBlock: magic = b'\x31\x53\x50\x53' def __init__(self, bytes=None, guid: Optional[str] = None, blocks=None): self._data = bytes or b'' self._blocks = blocks or [] self.guid: str = guid if not bytes: return buf = BytesIO(bytes) magic = buf.read(4) self.guid = guid_from_bytes(buf.read(16)) # read sub blocks while True: sub_block_size = read_int(buf) if not sub_block_size: # last size is zero break sub_block_data = buf.read(sub_block_size - 4) # includes block_size self._blocks.append(UwpSubBlock(sub_block_data)) def __str__(self): string = f'<UwpMainBlock> {self.guid}:\n' for block in self._blocks: string += f' {block}\n' return string.strip() @property def bytes(self): blocks_bytes = [block.bytes for block in self._blocks] out = BytesIO() out.write(self.magic) out.write(bytes_from_guid(self.guid)) for block in blocks_bytes: write_int(len(block) + 4, out) out.write(block) write_int(0, out) result = out.getvalue() return result class UwpSegmentEntry: magic = b'APPS' header = b'\x08\x00\x03\x00\x00\x00\x00\x00\x00\x00' def __init__(self, bytes=None): self._blocks = [] self._data = bytes if bytes is None: return buf = BytesIO(bytes) unknown = read_short(buf) size = read_short(buf) magic = buf.read(4) # b'APPS' blocks_size = read_short(buf) unknown2 = buf.read(10) # read main blocks while True: block_size = read_int(buf) if not block_size: # last size is zero break block_data = buf.read(block_size - 4) # includes block_size self._blocks.append(UwpMainBlock(block_data)) def __str__(self): string = '<UwpSegmentEntry>:\n' for block in self._blocks: string += f' {block}\n' return string.strip() @property def bytes(self): blocks_bytes = [block.bytes for block in self._blocks] blocks_size = sum([len(block) + 4 for block in blocks_bytes]) + 4 # with terminator size = ( 2 # size + len(self.magic) + 2 # second size + len(self.header) + blocks_size # blocks with terminator ) out = BytesIO() write_short(0, out) write_short(size, out) out.write(self.magic) write_short(blocks_size, out) out.write(self.header) for block in blocks_bytes: write_int(len(block) + 4, out) out.write(block) write_int(0, out) # empty block write_short(0, out) # ?? result = out.getvalue() return result @classmethod def create(cls, package_family_name, target, location=None, logo44x44=None): segment = cls() blocks = [ UwpSubBlock(type=0x11, value=package_family_name), UwpSubBlock(type=0x0e, value=b'\x00\x00\x00\x00\x13\x00\x00\x00\x02\x00\x00\x00'), UwpSubBlock(type=0x05, value=target), ] if location: blocks.append(UwpSubBlock(type=0x0f, value=location)) # need for relative icon path main1 = UwpMainBlock(guid='{9F4C2855-9F79-4B39-A8D0-E1D42DE1D5F3}', blocks=blocks) segment._blocks.append(main1) if logo44x44: main2 = UwpMainBlock( guid='{86D40B4D-9069-443C-819A-2A54090DCCEC}', blocks=[UwpSubBlock(type=0x02, value=logo44x44)] ) segment._blocks.append(main2) return segment class LinkTargetIDList(object): def __init__(self, bytes=None): self.items = [] if bytes is not None: buf = BytesIO(bytes) raw = [] entry_len = read_short(buf) while entry_len > 0: raw.append(buf.read(entry_len - 2)) # the length includes the size entry_len = read_short(buf) self._interpret(raw) def _interpret(self, raw): if not raw: return elif raw[0][0] == 0x1F: self.items.append(RootEntry(raw[0])) if self.items[0].root == ROOT_MY_COMPUTER: if len(raw[1]) == 0x17: self.items.append(DriveEntry(raw[1])) elif raw[1][0:2] == b'\x2E\x80': # ROOT_KNOWN_FOLDER self.items.append(PathSegmentEntry(raw[1])) else: raise ValueError("This seems to be an absolute link which requires a drive as second element.") items = raw[2:] elif self.items[0].root == ROOT_NETWORK_PLACES: raise NotImplementedError( "Parsing network lnks has not yet been implemented. " "If you need it just contact me and we'll see..." ) else: items = raw[1:] else: items = raw for item in items: if item[4:8] == b'APPS': self.items.append(UwpSegmentEntry(item)) else: self.items.append(PathSegmentEntry(item)) def get_path(self): segments = [] for item in self.items: if type(item) == RootEntry: segments.append('%' + item.root + '%') elif type(item) == DriveEntry: segments.append(item.drive.decode()) elif type(item) == PathSegmentEntry: if item.full_name is not None: segments.append(item.full_name) else: segments.append(item) return '\\'.join(segments) def _validate(self): if not len(self.items): return if type(self.items[0]) == RootEntry and self.items[0].root == ROOT_MY_COMPUTER: if type(self.items[1]) == DriveEntry: return if type(self.items[1]) == PathSegmentEntry and self.items[1].full_name.startswith('::'): return raise ValueError("A drive is required for absolute lnks") @property def bytes(self): self._validate() out = BytesIO() for item in self.items: bytes = item.bytes # skip invalid if bytes is None: continue write_short(len(bytes) + 2, out) # len + terminator out.write(bytes) out.write(b'\x00\x00') return out.getvalue() def __str__(self): string = '<LinkTargetIDList>:\n' for item in self.items: string += f' {item}\n' return string.strip() class LinkInfo(object): def __init__(self, lnk=None): if lnk is not None: self.start = lnk.tell() self.size = read_int(lnk) self.header_size = read_int(lnk) link_info_flags = read_int(lnk) self.local = link_info_flags & 1 self.remote = link_info_flags & 2 self.offs_local_volume_table = read_int(lnk) self.offs_local_base_path = read_int(lnk) self.offs_network_volume_table = read_int(lnk) self.offs_base_name = read_int(lnk) if self.header_size >= _LINK_INFO_HEADER_OPTIONAL: print("TODO: read the unicode stuff") # TODO: read the unicode stuff self._parse_path_elements(lnk) else: self.size = None self.header_size = _LINK_INFO_HEADER_DEFAULT self.local = 0 self.remote = 0 self.offs_local_volume_table = 0 self.offs_local_base_path = 0 self.offs_network_volume_table = 0 self.offs_base_name = 0 self.drive_type = None self.drive_serial = None self.volume_label = None self.local_base_path = None self.network_share_name = None self.base_name = None self._path = None def _parse_path_elements(self, lnk): if self.remote: # 20 is the offset of the network share name lnk.seek(self.start + self.offs_network_volume_table + 20) self.network_share_name = read_cstring(lnk) lnk.seek(self.start + self.offs_base_name) self.base_name = read_cstring(lnk) if self.local: lnk.seek(self.start + self.offs_local_volume_table + 4) self.drive_type = _DRIVE_TYPES.get(read_int(lnk)) self.drive_serial = read_int(lnk) lnk.read(4) # volume name offset (10h) self.volume_label = read_cstring(lnk) lnk.seek(self.start + self.offs_local_base_path) self.local_base_path = read_cstring(lnk) # TODO: unicode self.make_path() def make_path(self): if self.remote: self._path = self.network_share_name + '\\' + self.base_name if self.local: self._path = self.local_base_path def write(self, lnk): if self.remote is None: raise MissingInformationException("No location information given.") self.start = lnk.tell() self._calculate_sizes_and_offsets() write_int(self.size, lnk) write_int(self.header_size, lnk) write_int((self.local and 1) + (self.remote and 2), lnk) write_int(self.offs_local_volume_table, lnk) write_int(self.offs_local_base_path, lnk) write_int(self.offs_network_volume_table, lnk) write_int(self.offs_base_name, lnk) if self.remote: self._write_network_volume_table(lnk) write_cstring(self.base_name, lnk, padding=False) else: self._write_local_volume_table(lnk) write_cstring(self.local_base_path, lnk, padding=False) write_byte(0, lnk) def _calculate_sizes_and_offsets(self): self.size_base_name = 1 # len(self.base_name) + 1 # zero terminated strings self.size = 28 + self.size_base_name if self.remote: self.size_network_volume_table = 20 + len(self.network_share_name) + len(self.base_name) + 1 self.size += self.size_network_volume_table self.offs_local_volume_table = 0 self.offs_local_base_path = 0 self.offs_network_volume_table = 28 self.offs_base_name = self.offs_network_volume_table + self.size_network_volume_table else: self.size_local_volume_table = 16 + len(self.volume_label) + 1 self.size_local_base_path = len(self.local_base_path) + 1 self.size += self.size_local_volume_table + self.size_local_base_path self.offs_local_volume_table = 28 self.offs_local_base_path = self.offs_local_volume_table + self.size_local_volume_table self.offs_network_volume_table = 0 self.offs_base_name = self.offs_local_base_path + self.size_local_base_path def _write_network_volume_table(self, buf): write_int(self.size_network_volume_table, buf) write_int(2, buf) # ? write_int(20, buf) # size of Network Volume Table write_int(0, buf) # ? write_int(131072, buf) # ? write_cstring(self.network_share_name, buf) def _write_local_volume_table(self, buf): write_int(self.size_local_volume_table, buf) try: drive_type = _DRIVE_TYPE_IDS[self.drive_type] except KeyError: raise ValueError("This is not a valid drive type: %s" % self.drive_type) write_int(drive_type, buf) write_int(self.drive_serial, buf) write_int(16, buf) # volume name offset write_cstring(self.volume_label, buf) @property def path(self): return self._path def __str__(self): s = "File Location Info:" if self._path is None: return s + " <not specified>" if self.remote: s += "\n (remote)" s += "\n Network Share: %s" % self.network_share_name s += "\n Base Name: %s" % self.base_name else: s += "\n (local)" s += "\n Volume Type: %s" % self.drive_type s += "\n Volume Serial Number: %s" % self.drive_serial s += "\n Volume Label: %s" % self.volume_label s += "\n Path: %s" % self.local_base_path return s EXTRA_DATA_TYPES = { 0xA0000002: 'ConsoleDataBlock', # size 0x000000CC 0xA0000004: 'ConsoleFEDataBlock', # size 0x0000000C 0xA0000006: 'DarwinDataBlock', # size 0x00000314 0xA0000001: 'EnvironmentVariableDataBlock', # size 0x00000314 0xA0000007: 'IconEnvironmentDataBlock', # size 0x00000314 0xA000000B: 'KnownFolderDataBlock', # size 0x0000001C 0xA0000009: 'PropertyStoreDataBlock', # size >= 0x0000000C 0xA0000008: 'ShimDataBlock', # size >= 0x00000088 0xA0000005: 'SpecialFolderDataBlock', # size 0x00000010 0xA0000003: 'VistaAndAboveIDListDataBlock', # size 0x00000060 0xA000000C: 'VistaIDListDataBlock', # size 0x00000173 } class ExtraData_Unparsed(object): def __init__(self, bytes=None, signature=None, data=None): self._signature = signature self._size = None self.data = data # if data: # self._size = len(data) if bytes: # self._size = len(bytes) self.data = bytes # self.read(bytes) # def read(self, bytes): # buf = BytesIO(bytes) # size = len(bytes) # # self._size = read_int(buf) # # self._signature = read_int(buf) # self.data = buf.read(self._size - 8) def bytes(self): buf = BytesIO() write_int(len(self.data)+8, buf) write_int(self._signature, buf) buf.write(self.data) return buf.getvalue() def __str__(self): s = 'ExtraDataBlock\n signature %s\n data: %s' % (hex(self._signature), self.data) return s def padding(val, size, byte=b'\x00'): return val + (size-len(val)) * byte class ExtraData_IconEnvironmentDataBlock(object): def __init__(self, bytes=None): # self._size = None # self._signature = None self._signature = 0xA0000007 self.target_ansi = None self.target_unicode = None if bytes: self.read(bytes) def read(self, bytes): buf = BytesIO(bytes) # self._size = read_int(buf) # self._signature = read_int(buf) self.target_ansi = buf.read(260).decode('ansi') self.target_unicode = buf.read(520).decode('utf-16-le') def bytes(self): target_ansi = padding(self.target_ansi.encode(), 260) target_unicode = padding(self.target_unicode.encode('utf-16-le'), 520) size = 8 + len(target_ansi) + len(target_unicode) assert self._signature == 0xA0000007 assert size == 0x00000314 buf = BytesIO() write_int(size, buf) write_int(self._signature, buf) buf.write(target_ansi) buf.write(target_unicode) return buf.getvalue() def __str__(self): target_ansi = self.target_ansi.replace('\x00', '') target_unicode = self.target_unicode.replace('\x00', '') s = f'IconEnvironmentDataBlock\n TargetAnsi: {target_ansi}\n TargetUnicode: {target_unicode}' return s def guid_to_str(guid): ordered = [guid[3], guid[2], guid[1], guid[0], guid[5], guid[4], guid[7], guid[6], guid[8], guid[9], guid[10], guid[11], guid[12], guid[13], guid[14], guid[15]] res = "{%02X%02X%02X%02X-%02X%02X-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X}" % tuple([x for x in ordered]) # print(guid, res) return res class TypedPropertyValue(object): # types: [MS-OLEPS] section 2.15 def __init__(self, bytes=None, type=None, value=None): self.type = type self.value = value if bytes: self.type = read_short(BytesIO(bytes)) padding = bytes[2:4] self.value = bytes[4:] def set_string(self, value): self.type = 0x1f buf = BytesIO() write_int(len(value)+2, buf) buf.write(value.encode('utf-16-le')) # terminator (included in size) buf.write(b'\x00\x00\x00\x00') # padding (not included in size) if len(value) % 2: buf.write(b'\x00\x00') self.value = buf.getvalue() @property def bytes(self): buf = BytesIO() write_short(self.type, buf) write_short(0x0000, buf) buf.write(self.value) return buf.getvalue() def __str__(self): value = self.value if self.type == 0x1F: size = value[:4] value = value[4:].decode('utf-16-le') if self.type == 0x15: value = unpack('<Q', value)[0] if self.type == 0x13: value = unpack('<I', value)[0] if self.type == 0x14: value = unpack('<q', value)[0] if self.type == 0x16: value = unpack('<i', value)[0] if self.type == 0x17: value = unpack('<I', value)[0] if self.type == 0x48: value = guid_to_str(value) if self.type == 0x40: # FILETIME (Packet Version) stream = BytesIO(value) low = read_int(stream) high = read_int(stream) num = (high << 32) + low value = convert_time_to_unix(num) return '%s: %s' % (hex(self.type), value) class PropertyStore: def __init__(self, bytes=None, properties=None, format_id=None, is_strings=False): self.is_strings = is_strings self.properties = [] self.format_id = format_id self._is_end = False if properties: self.properties = properties if bytes: self.read(bytes) def read(self, bytes_io): buf = bytes_io size = read_int(buf) assert size < len(buf.getvalue()) if size == 0x00000000: self._is_end = True return version = read_int(buf) assert version == 0x53505331 self.format_id = buf.read(16) if self.format_id == b'\xD5\xCD\xD5\x05\x2E\x9C\x10\x1B\x93\x97\x08\x00\x2B\x2C\xF9\xAE': self.is_strings = True else: self.is_strings = False while True: # assert lnk.tell() < (start + size) value_size = read_int(buf) if value_size == 0x00000000: break if self.is_strings: name_size = read_int(buf) reserved = read_byte(buf) name = buf.read(name_size).decode('utf-16-le') value = TypedPropertyValue(buf.read(value_size-9)) self.properties.append((name, value)) else: value_id = read_int(buf) reserved = read_byte(buf) value = TypedPropertyValue(buf.read(value_size-9)) self.properties.append((value_id, value)) @property def bytes(self): size = 8 + len(self.format_id) properties = BytesIO() for name, value in self.properties: value_bytes = value.bytes if self.is_strings: name_bytes = name.encode('utf-16-le') value_size = 9 + len(name_bytes) + len(value_bytes) write_int(value_size, properties) name_size = len(name_bytes) write_int(name_size, properties) properties.write(b'\x00') properties.write(name_bytes) else: value_size = 9 + len(value_bytes) write_int(value_size, properties) write_int(name, properties) properties.write(b'\x00') properties.write(value_bytes) size += value_size write_int(0x00000000, properties) size += 4 buf = BytesIO() write_int(size, buf) write_int(0x53505331, buf) buf.write(self.format_id) buf.write(properties.getvalue()) return buf.getvalue() def __str__(self): s = ' PropertyStore' s += '\n FormatID: %s' % guid_to_str(self.format_id) for name, value in self.properties: s += '\n %3s = %s' % (name, str(value)) return s.strip() class ExtraData_PropertyStoreDataBlock(object): def __init__(self, bytes=None, stores=None): self._size = None self._signature = 0xA0000009 self.stores = [] if stores: self.stores = stores if bytes: self.read(bytes) def read(self, bytes): buf = BytesIO(bytes) # self._size = read_int(buf) # self._signature = read_int(buf) # [MS-PROPSTORE] section 2.2 while True: prop_store = PropertyStore(buf) if prop_store._is_end: break self.stores.append(prop_store) def bytes(self): stores = b'' for prop_store in self.stores: stores += prop_store.bytes size = len(stores) + 8 + 4 assert self._signature == 0xA0000009 assert size >= 0x0000000C buf = BytesIO() write_int(size, buf) write_int(self._signature, buf) buf.write(stores) write_int(0x00000000, buf) return buf.getvalue() def __str__(self): s = 'PropertyStoreDataBlock' for prop_store in self.stores: s += '\n %s' % str(prop_store) return s class ExtraData_EnvironmentVariableDataBlock(object): def __init__(self, bytes=None): self._signature = 0xA0000001 self.target_ansi = None self.target_unicode = None if bytes: self.read(bytes) def read(self, bytes): buf = BytesIO(bytes) self.target_ansi = buf.read(260).decode() self.target_unicode = buf.read(520).decode('utf-16-le') def bytes(self): target_ansi = padding(self.target_ansi.encode(), 260) target_unicode = padding(self.target_unicode.encode('utf-16-le'), 520) size = 8 + len(target_ansi) + len(target_unicode) assert self._signature == 0xA0000001 assert size == 0x00000314 buf = BytesIO() write_int(size, buf) write_int(self._signature, buf) buf.write(target_ansi) buf.write(target_unicode) return buf.getvalue() def __str__(self): target_ansi = self.target_ansi.replace('\x00', '') target_unicode = self.target_unicode.replace('\x00', '') s = f'EnvironmentVariableDataBlock\n TargetAnsi: {target_ansi}\n TargetUnicode: {target_unicode}' return s EXTRA_DATA_TYPES_CLASSES = { 'IconEnvironmentDataBlock': ExtraData_IconEnvironmentDataBlock, 'PropertyStoreDataBlock': ExtraData_PropertyStoreDataBlock, 'EnvironmentVariableDataBlock': ExtraData_EnvironmentVariableDataBlock, } class ExtraData(object): # EXTRA_DATA = *EXTRA_DATA_BLOCK TERMINAL_BLOCK def __init__(self, lnk=None, blocks=None): self.blocks = [] if blocks: self.blocks = blocks if lnk is None: return while True: size = read_int(lnk) if size < 4: # TerminalBlock break signature = read_int(lnk) bytes = lnk.read(size-8) # lnk.seek(-8, 1) block_type = EXTRA_DATA_TYPES[signature] if block_type in EXTRA_DATA_TYPES_CLASSES: block_class = EXTRA_DATA_TYPES_CLASSES[block_type] block = block_class(bytes=bytes) else: block_class = ExtraData_Unparsed block = block_class(bytes=bytes, signature=signature) self.blocks.append(block) @property def bytes(self): result = b'' for block in self.blocks: result += block.bytes() result += b'\x00\x00\x00\x00' # TerminalBlock return result def __str__(self): s = '' for block in self.blocks: s += '\n' + str(block) return s class Lnk(object): def __init__(self, f=None): self.file = None if type(f) == str or type(f) == str: self.file = f try: f = open(self.file, 'rb') except IOError: self.file += ".lnk" f = open(self.file, 'rb') # defaults self.link_flags = Flags(_LINK_FLAGS) self.file_flags = Flags(_FILE_ATTRIBUTES_FLAGS) self.creation_time = datetime.now() self.access_time = datetime.now() self.modification_time = datetime.now() self.file_size = 0 self.icon_index = 0 self._show_command = WINDOW_NORMAL self.hot_key = None self._link_info = LinkInfo() self.description = None self.relative_path = None self.work_dir = None self.arguments = None self.icon = None self.extra_data = None if f is not None: assert_lnk_signature(f) self._parse_lnk_file(f) if self.file: f.close() def _read_hot_key(self, lnk): low = read_byte(lnk) high = read_byte(lnk) key = _KEYS.get(low, '') modifier = high and str(ModifierKeys(high)) or '' return modifier + key def _write_hot_key(self, hot_key, lnk): if hot_key is None or not hot_key: low = high = 0 else: hot_key = hot_key.split('+') try: low = _KEY_CODES[hot_key[-1]] except KeyError: raise InvalidKeyException("Cannot find key code for %s" % hot_key[1]) modifiers = ModifierKeys() for modifier in hot_key[:-1]: modifiers[modifier.upper()] = True high = modifiers.bytes write_byte(low, lnk) write_byte(high, lnk) def _parse_lnk_file(self, lnk): # SHELL_LINK_HEADER [LINKTARGET_IDLIST] [LINKINFO] [STRING_DATA] *EXTRA_DATA # SHELL_LINK_HEADER lnk.seek(20) # after signature and guid self.link_flags.set_flags(read_int(lnk)) self.file_flags.set_flags(read_int(lnk)) self.creation_time = convert_time_to_unix(read_double(lnk)) self.access_time = convert_time_to_unix(read_double(lnk)) self.modification_time = convert_time_to_unix(read_double(lnk)) self.file_size = read_int(lnk) self.icon_index = read_int(lnk) show_command = read_int(lnk) self._show_command = _SHOW_COMMANDS[show_command] if show_command in _SHOW_COMMANDS else _SHOW_COMMANDS[1] self.hot_key = self._read_hot_key(lnk) lnk.read(10) # reserved (0) # LINKTARGET_IDLIST (HasLinkTargetIDList) if self.link_flags.HasLinkTargetIDList: shell_item_id_list_size = read_short(lnk) self.shell_item_id_list = LinkTargetIDList(lnk.read(shell_item_id_list_size)) # LINKINFO (HasLinkInfo) if self.link_flags.HasLinkInfo and not self.link_flags.ForceNoLinkInfo: self._link_info = LinkInfo(lnk) lnk.seek(self._link_info.start + self._link_info.size) # STRING_DATA = [NAME_STRING] [RELATIVE_PATH] [WORKING_DIR] [COMMAND_LINE_ARGUMENTS] [ICON_LOCATION] if self.link_flags.HasName: self.description = read_sized_string(lnk, self.link_flags.IsUnicode) if self.link_flags.HasRelativePath: self.relative_path = read_sized_string(lnk, self.link_flags.IsUnicode) if self.link_flags.HasWorkingDir: self.work_dir = read_sized_string(lnk, self.link_flags.IsUnicode) if self.link_flags.HasArguments: self.arguments = read_sized_string(lnk, self.link_flags.IsUnicode) if self.link_flags.HasIconLocation: self.icon = read_sized_string(lnk, self.link_flags.IsUnicode) # *EXTRA_DATA self.extra_data = ExtraData(lnk) def save(self, f: Optional[Union[str, IOBase]] = None, force_ext=False): if f is None: f = self.file if f is None: raise ValueError("File (name) missing for saving the lnk") is_file = hasattr(f, 'write') if not is_file: if not type(f) == str and not type(f) == str: raise ValueError("Need a writeable object or a file name to save to, got %s" % f) if force_ext: if not f.lower().endswith('.lnk'): f += '.lnk' f = open(f, 'wb') self.write(f) # only close the stream if it's our own if not is_file: f.close() def write(self, lnk): lnk.write(_SIGNATURE) lnk.write(_GUID) write_int(self.link_flags.bytes, lnk) write_int(self.file_flags.bytes, lnk) write_double(convert_time_to_windows(self.creation_time), lnk) write_double(convert_time_to_windows(self.access_time), lnk) write_double(convert_time_to_windows(self.modification_time), lnk) write_int(self.file_size, lnk) write_int(self.icon_index, lnk) write_int(_SHOW_COMMAND_IDS[self._show_command], lnk) self._write_hot_key(self.hot_key, lnk) lnk.write(b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00') # reserved if self.link_flags.HasLinkTargetIDList: shell_item_id_list = self.shell_item_id_list.bytes write_short(len(shell_item_id_list), lnk) lnk.write(shell_item_id_list) if self.link_flags.HasLinkInfo: self._link_info.write(lnk) if self.link_flags.HasName: write_sized_string(self.description, lnk, self.link_flags.IsUnicode) if self.link_flags.HasRelativePath: write_sized_string(self.relative_path, lnk, self.link_flags.IsUnicode) if self.link_flags.HasWorkingDir: write_sized_string(self.work_dir, lnk, self.link_flags.IsUnicode) if self.link_flags.HasArguments: write_sized_string(self.arguments, lnk, self.link_flags.IsUnicode) if self.link_flags.HasIconLocation: write_sized_string(self.icon, lnk, self.link_flags.IsUnicode) if self.extra_data: lnk.write(self.extra_data.bytes) else: lnk.write(b'\x00\x00\x00\x00') def _get_shell_item_id_list(self): return self._shell_item_id_list def _set_shell_item_id_list(self, shell_item_id_list): self._shell_item_id_list = shell_item_id_list self.link_flags.HasLinkTargetIDList = shell_item_id_list is not None shell_item_id_list = property(_get_shell_item_id_list, _set_shell_item_id_list) def _get_link_info(self): return self._link_info def _set_link_info(self, link_info): self._link_info = link_info self.link_flags.ForceNoLinkInfo = link_info is None self.link_flags.HasLinkInfo = link_info is not None link_info = property(_get_link_info, _set_link_info) def _get_description(self): return self._description def _set_description(self, description): self._description = description self.link_flags.HasName = description is not None description = property(_get_description, _set_description) def _get_relative_path(self): return self._relative_path def _set_relative_path(self, relative_path): self._relative_path = relative_path self.link_flags.HasRelativePath = relative_path is not None relative_path = property(_get_relative_path, _set_relative_path) def _get_work_dir(self): return self._work_dir def _set_work_dir(self, work_dir): self._work_dir = work_dir self.link_flags.HasWorkingDir = work_dir is not None work_dir = working_dir = property(_get_work_dir, _set_work_dir) def _get_arguments(self): return self._arguments def _set_arguments(self, arguments): self._arguments = arguments self.link_flags.HasArguments = arguments is not None arguments = property(_get_arguments, _set_arguments) def _get_icon(self): return self._icon def _set_icon(self, icon): self._icon = icon self.link_flags.HasIconLocation = icon is not None icon = property(_get_icon, _set_icon) def _get_window_mode(self): return self._show_command def _set_window_mode(self, value): if value not in list(_SHOW_COMMANDS.values()): raise ValueError("Not a valid window mode: %s. Choose any of pylnk.WINDOW_*" % value) self._show_command = value window_mode = show_command = property(_get_window_mode, _set_window_mode) @property def path(self): # lnk can contains several different paths at different structures # here is some logic consistent with link properties at explorer (at least on test examples) link_info_path = self._link_info.path if self._link_info and self._link_info.path else None id_list_path = self._shell_item_id_list.get_path() if hasattr(self, '_shell_item_id_list') else None env_var_path = None if self.extra_data and self.extra_data.blocks: for block in self.extra_data.blocks: if type(block) == ExtraData_EnvironmentVariableDataBlock: env_var_path = block.target_unicode.strip('\x00') or block.target_ansi.strip('\x00') break if id_list_path and id_list_path.startswith('%MY_COMPUTER%'): # full local path has priority return id_list_path[14:] if id_list_path and id_list_path.startswith('%USERPROFILE%\\::'): # path to KNOWN_FOLDER also has priority over link_info return id_list_path[14:] if link_info_path: # local path at link_info_path has priority over network path at id_list_path # full local path at link_info_path has priority over partial path at id_list_path return link_info_path if env_var_path: # some links in Recent folder contains path only at ExtraData_EnvironmentVariableDataBlock return env_var_path return id_list_path def specify_local_location(self, path, drive_type=None, drive_serial=None, volume_label=None): self._link_info.drive_type = drive_type or DRIVE_UNKNOWN self._link_info.drive_serial = drive_serial or '' self._link_info.volume_label = volume_label or '' self._link_info.local_base_path = path self._link_info.local = True self._link_info.make_path() def specify_remote_location(self, network_share_name, base_name): self._link_info.network_share_name = network_share_name self._link_info.base_name = base_name self._link_info.remote = True self._link_info.make_path() def __str__(self): s = "Target file:\n" s += str(self.file_flags) s += "\nCreation Time: %s" % self.creation_time s += "\nModification Time: %s" % self.modification_time s += "\nAccess Time: %s" % self.access_time s += "\nFile size: %s" % self.file_size s += "\nWindow mode: %s" % self._show_command s += "\nHotkey: %s\n" % self.hot_key s += str(self._link_info) if self.link_flags.HasLinkTargetIDList: s += "\n%s" % self.shell_item_id_list if self.link_flags.HasName: s += "\nDescription: %s" % self.description if self.link_flags.HasRelativePath: s += "\nRelative Path: %s" % self.relative_path if self.link_flags.HasWorkingDir: s += "\nWorking Directory: %s" % self.work_dir if self.link_flags.HasArguments: s += "\nCommandline Arguments: %s" % self.arguments if self.link_flags.HasIconLocation: s += "\nIcon: %s" % self.icon if self._link_info: s += "\nUsed Path: %s" % self.path if self.extra_data: s += str(self.extra_data) return s # ---- convenience functions def parse(lnk): return Lnk(lnk) def create(f=None): lnk = Lnk() lnk.file = f return lnk def for_file( target_file, lnk_name=None, arguments=None, description=None, icon_file=None, icon_index=0, work_dir=None, window_mode=None, ): lnk = create(lnk_name) lnk.link_flags.IsUnicode = True lnk.link_info = None if target_file.startswith('\\\\'): # remote link lnk.link_info = LinkInfo() lnk.link_info.remote = 1 # extract server + share name from full path path_parts = target_file.split('\\') share_name, base_name = '\\'.join(path_parts[:4]), '\\'.join(path_parts[4:]) lnk.link_info.network_share_name = share_name.upper() lnk.link_info.base_name = base_name # somehow it requires EnvironmentVariableDataBlock & HasExpString flag env_data_block = ExtraData_EnvironmentVariableDataBlock() env_data_block.target_ansi = target_file env_data_block.target_unicode = target_file lnk.extra_data = ExtraData(blocks=[env_data_block]) lnk.link_flags.HasExpString = True else: # local link levels = list(path_levels(target_file)) elements = [RootEntry(ROOT_MY_COMPUTER), DriveEntry(levels[0])] for level in levels[1:]: segment = PathSegmentEntry.create_for_path(level) elements.append(segment) lnk.shell_item_id_list = LinkTargetIDList() lnk.shell_item_id_list.items = elements # lnk.link_flags.HasLinkInfo = True if arguments: lnk.link_flags.HasArguments = True lnk.arguments = arguments if description: lnk.link_flags.HasName = True lnk.description = description if icon_file: lnk.link_flags.HasIconLocation = True lnk.icon = icon_file lnk.icon_index = icon_index if work_dir: lnk.link_flags.HasWorkingDir = True lnk.work_dir = work_dir if window_mode: lnk.window_mode = window_mode if lnk_name: lnk.save() return lnk def from_segment_list(data, lnk_name=None): """ Creates a lnk file from a list of path segments. If lnk_name is given, the resulting lnk will be saved to a file with that name. The expected list for has the following format ("C:\\dir\\file.txt"): ['c:\\', {'type': TYPE_FOLDER, 'size': 0, # optional for folders 'name': "dir", 'created': datetime.datetime(2012, 10, 12, 23, 28, 11, 8476), 'modified': datetime.datetime(2012, 10, 12, 23, 28, 11, 8476), 'accessed': datetime.datetime(2012, 10, 12, 23, 28, 11, 8476) }, {'type': TYPE_FILE, 'size': 823, 'name': "file.txt", 'created': datetime.datetime(2012, 10, 12, 23, 28, 11, 8476), 'modified': datetime.datetime(2012, 10, 12, 23, 28, 11, 8476), 'accessed': datetime.datetime(2012, 10, 12, 23, 28, 11, 8476) } ] For relative paths just omit the drive entry. Hint: Correct dates really are not crucial for working lnks. """ if type(data) not in (list, tuple): raise ValueError("Invalid data format, list or tuple expected") lnk = Lnk() entries = [] if is_drive(data[0]): # this is an absolute link entries.append(RootEntry(ROOT_MY_COMPUTER)) if not data[0].endswith('\\'): data[0] += "\\" drive = data.pop(0).encode("ascii") entries.append(DriveEntry(drive)) for level in data: segment = PathSegmentEntry() segment.type = level['type'] if level['type'] == TYPE_FOLDER: segment.file_size = 0 else: segment.file_size = level['size'] segment.short_name = level['name'] segment.full_name = level['name'] segment.created = level['created'] segment.modified = level['modified'] segment.accessed = level['accessed'] entries.append(segment) lnk.shell_item_id_list = LinkTargetIDList() lnk.shell_item_id_list.items = entries if data[-1]['type'] == TYPE_FOLDER: lnk.file_flags.directory = True if lnk_name: lnk.save(lnk_name) return lnk def build_uwp( package_family_name, target, location=None,logo44x44=None, lnk_name=None, ) -> Lnk: """ :param lnk_name: ex.: crafted_uwp.lnk :param package_family_name: ex.: Microsoft.WindowsCalculator_10.1910.0.0_x64__8wekyb3d8bbwe :param target: ex.: Microsoft.WindowsCalculator_8wekyb3d8bbwe!App :param location: ex.: C:\\Program Files\\WindowsApps\\Microsoft.WindowsCalculator_10.1910.0.0_x64__8wekyb3d8bbwe :param logo44x44: ex.: Assets\\CalculatorAppList.png """ lnk = Lnk() lnk.link_flags.HasLinkTargetIDList = True lnk.link_flags.IsUnicode = True lnk.link_flags.EnableTargetMetadata = True lnk.shell_item_id_list = LinkTargetIDList() elements = [ RootEntry(ROOT_UWP_APPS), UwpSegmentEntry.create( package_family_name=package_family_name, target=target, location=location, logo44x44=logo44x44, ) ] lnk.shell_item_id_list.items = elements if lnk_name: lnk.file = lnk_name lnk.save() return lnk def get_prop(obj, prop_queue): attr = getattr(obj, prop_queue[0]) if len(prop_queue) > 1: return get_prop(attr, prop_queue[1:]) return attr def cli(): parser = argparse.ArgumentParser(add_help=False) subparsers = parser.add_subparsers(dest='action', metavar='{p, c, d}') parser.add_argument('--help', '-h', action='store_true') parser_parse = subparsers.add_parser('parse', aliases=['p'], help='read lnk file') parser_parse.add_argument('filename', help='lnk filename to read') parser_parse.add_argument('props', nargs='*', help='props path to read') parser_create = subparsers.add_parser('create', aliases=['c'], help='create new lnk file') parser_create.add_argument('target', help='target path') parser_create.add_argument('name', help='lnk filename to create') parser_create.add_argument('--arguments', '-a', nargs='?', help='additional arguments') parser_create.add_argument('--description', '-d', nargs='?', help='description') parser_create.add_argument('--icon', '-i', nargs='?', help='icon filename') parser_create.add_argument('--icon-index', '-ii', type=int, default=0, nargs='?', help='icon index') parser_create.add_argument('--workdir', '-w', nargs='?', help='working directory') parser_create.add_argument('--mode', '-m', nargs='?', choices=['Maximized', 'Normal', 'Minimized'], help='window mode') parser_dup = subparsers.add_parser('duplicate', aliases=['d'], help='read and write lnk file') parser_dup.add_argument('filename', help='lnk filename to read') parser_dup.add_argument('new_filename', help='new filename to write') args = parser.parse_args() if args.help or not args.action: print(''' Tool for read or create .lnk files usage: pylnk3.py [p]arse / [c]reate ... Examples: pylnk3 p filename.lnk pylnk3 c c:\\prog.exe shortcut.lnk pylnk3 c \\\\192.168.1.1\\share\\file.doc doc.lnk pylnk3 create c:\\1.txt text.lnk -m Minimized -d "Description" for more info use help for each action (ex.: "pylnk3 create -h") '''.strip()) exit(1) if args.action in ['create', 'c']: for_file( args.target, args.name, arguments=args.arguments, description=args.description, icon_file=args.icon, icon_index=args.icon_index, work_dir=args.workdir, window_mode=args.mode, ) elif args.action in ['parse', 'p']: lnk = parse(args.filename) props = args.props if len(props) == 0: print(lnk) else: for prop in props: print(get_prop(lnk, prop.split('.'))) elif args.action in ['d', 'duplicate']: lnk = parse(args.filename) new_filename = args.new_filename print(lnk) lnk.save(new_filename) print('saved') if __name__ == '__main__': cli() ```
{ "source": "jfcherng-sublime/ST-OpenUri", "score": 2 }
#### File: plugin/helpers/image_processing.py ```python from ..libs import png from .settings import get_image_color from .shared import global_get from .utils import simple_decorator from functools import lru_cache from typing import List, Sequence import base64 import io import re import sublime @lru_cache def get_colored_image_base64_by_color(img_name: str, rgba_code: str) -> str: """ @brief Get the colored image in base64 string by RGBA color code. @param img_name The image name @param rgba_code The color code in #RRGGBBAA @return The image base64 string """ if not rgba_code: return global_get(f"images.{img_name}.base64") img_bytes: bytes = global_get(f"images.{img_name}.bytes") img_bytes = change_png_bytes_color(img_bytes, rgba_code) return base64.b64encode(img_bytes).decode() def get_colored_image_base64_by_region(img_name: str, region: sublime.Region) -> str: """ @brief Get the colored image in base64 string by region. @param img_name The image name @param region The region @return The image base64 string """ return get_colored_image_base64_by_color(img_name, get_image_color(img_name, region)) @lru_cache def change_png_bytes_color(img_bytes: bytes, rgba_code: str) -> bytes: """ @brief Change all colors in the PNG bytes to the new color. @param img_bytes The PNG image bytes @param rgba_code The color code in the form of #RRGGBBAA @return Color-changed PNG image bytes. """ if not rgba_code: return img_bytes if not re.match(r"#[0-9a-fA-F]{8}$", rgba_code): raise ValueError("Invalid RGBA color code: " + rgba_code) def render_pixel(rgba_src: Sequence[int], rgba_dst: Sequence[int], invert_gray: bool = False) -> List[int]: gray = calculate_gray(rgba_src) if invert_gray: gray = 0xFF - gray # ">> 8" is an approximation for "/ 0xFF" in following calculations return [ int(rgba_dst[0] * gray) >> 8, int(rgba_dst[1] * gray) >> 8, int(rgba_dst[2] * gray) >> 8, int(rgba_dst[3] * rgba_src[3]) >> 8, ] invert_gray = not is_img_light(img_bytes) # invert for dark image to get a solid looking rgba_dst = [int(rgba_code[i : i + 2], 16) for i in range(1, 9, 2)] w, h, rows_src, img_info = png.Reader(bytes=img_bytes).asRGBA() rows_dst: List[List[int]] = [] for row_src in rows_src: row_dst: List[int] = [] for i in range(0, len(row_src), 4): row_dst.extend(render_pixel(row_src[i : i + 4], rgba_dst, invert_gray)) rows_dst.append(row_dst) buf = io.BytesIO() png.from_array(rows_dst, "RGBA").write(buf) return buf.getvalue() def calculate_gray(rgb: Sequence[int]) -> int: """ @brief Calculate the gray scale of a color. @see https://atlaboratary.blogspot.com/2013/08/rgb-g-rey-l-gray-r0.html @param rgb The rgb color in list form @return The gray scale. """ return int(rgb[0] * 38 + rgb[1] * 75 + rgb[2] * 15) >> 7 def is_img_light(img_bytes: bytes) -> bool: """ @brief Determine if image is light colored. @param img_bytes The image bytes @return True if image is light, False otherwise. """ w, h, rows, img_info = png.Reader(bytes=img_bytes).asRGBA() gray_sum = 0 for row in rows: for i in range(0, len(row), 4): gray_sum += calculate_gray(row[i : i + 4]) return (gray_sum >> 7) > w * h def add_alpha_to_rgb(color_code: str) -> str: """ @brief Add the alpha part to a valid RGB color code (#RGB, #RRGGBB, #RRGGBBAA) @param color_code The color code @return The color code in the form of #RRGGBBAA """ if not color_code: return "" rgb = color_code[1:9] # strip "#" and possible extra chars # RGB to RRGGBB if len(rgb) == 3: rgb = rgb[0] * 2 + rgb[1] * 2 + rgb[2] * 2 return "#" + (rgb + "ff")[:8].lower() @simple_decorator(add_alpha_to_rgb) def color_code_to_rgba(color_code: str, region: sublime.Region) -> str: """ @brief Convert user settings color code into #RRGGBBAA form @param color_code The color code string from user settings @param region The scope-related region @return The color code in the form of #RRGGBBAA """ if not color_code: return "" # "color_code" is a scope? if not color_code.startswith("#"): if view := sublime.active_window().active_view(): # "color" is guaranteed to be #RRGGBB or #RRGGBBAA color = view.style_for_scope(view.scope_name(region.end() - 1)).get("foreground", "") if color_code == "@scope": return color if color_code == "@scope_inverted": # strip "#" and make color into RRGGBBAA int rgba_int = int((color + "ff")[1:9], 16) # invert RRGGBB, remain AA, strip "0x" prefix from hex and prepend 0s until 8 chars return "#" + hex((~rgba_int & 0xFFFFFF00) | (rgba_int & 0xFF))[2:].zfill(8) return "" # now color code must starts with "#" rgb = color_code[1:9] # strip "#" and possible extra chars # RGB, RRGGBB, RRGGBBAA are legal if len(rgb) in [3, 6, 8] and re.match(r"[0-9a-fA-F]+$", rgb): return f"#{rgb}" return "" ``` #### File: ST-OpenUri/plugin/OpenUriCommands.py ```python from .helpers.functions import find_uri_regions_by_region from .helpers.functions import find_uri_regions_by_regions from .helpers.functions import open_uri_with_browser from .helpers.settings import get_setting import sublime import sublime_plugin class OpenUriFromCursorsCommand(sublime_plugin.TextCommand): def run(self, edit: sublime.Edit, browser: str = "") -> None: uris = map( self.view.substr, find_uri_regions_by_regions(self.view, self.view.sel(), get_setting("uri_search_radius")), ) for uri in set(uris): open_uri_with_browser(uri, browser) class OpenUriFromViewCommand(sublime_plugin.TextCommand): def run(self, edit: sublime.Edit, browser: str = "") -> None: region = (0, self.view.size()) uris = map( self.view.substr, find_uri_regions_by_region(self.view, region, get_setting("uri_search_radius")), ) for uri in set(uris): open_uri_with_browser(uri, browser) class SelectUriFromCursorsCommand(sublime_plugin.TextCommand): def run(self, edit: sublime.Edit) -> None: sel = self.view.sel() if uri_regions := find_uri_regions_by_regions(self.view, sel, get_setting("uri_search_radius")): sel.clear() sel.add_all(uri_regions) class SelectUriFromViewCommand(sublime_plugin.TextCommand): def run(self, edit: sublime.Edit) -> None: region = (0, self.view.size()) sel = self.view.sel() if uri_regions := find_uri_regions_by_region(self.view, region, get_setting("uri_search_radius")): sel.clear() sel.add_all(uri_regions) ``` #### File: ST-OpenUri/plugin/OpenUri.py ```python from .helpers.functions import find_uri_regions_by_region from .helpers.functions import view_is_dirty_val from .helpers.functions import view_last_typing_timestamp_val from .helpers.phantom_set import delete_phantom_set from .helpers.phantom_set import init_phantom_set from .helpers.popup import show_popup from .helpers.region_drawing import draw_uri_regions from .helpers.settings import get_setting from .helpers.settings import get_setting_show_open_button from .helpers.settings import get_timestamp from typing import List import sublime import sublime_plugin class OpenUri(sublime_plugin.ViewEventListener): def __init__(self, view: sublime.View) -> None: super().__init__(view) init_phantom_set(self.view) view_last_typing_timestamp_val(self.view, 0) def on_pre_close(self) -> None: delete_phantom_set(self.view) def on_load_async(self) -> None: view_is_dirty_val(self.view, True) def on_modified_async(self) -> None: view_is_dirty_val(self.view, True) view_last_typing_timestamp_val(self.view, get_timestamp()) def on_hover(self, point: int, hover_zone: int) -> None: if hover_zone != sublime.HOVER_TEXT: uri_regions: List[sublime.Region] = [] else: uri_regions = find_uri_regions_by_region(self.view, point, get_setting("uri_search_radius")) if uri_regions and get_setting_show_open_button(self.view) == "hover": show_popup(self.view, uri_regions[0], point) if get_setting("draw_uri_regions.enabled") == "hover": draw_uri_regions(self.view, uri_regions) ```
{ "source": "jfcherng/Sublime-ToggleLoggings", "score": 2 }
#### File: plugin/commands/console_loggings.py ```python from abc import ABCMeta from typing import Callable, Optional import sublime import sublime_plugin ST_METHODS = set(dir(sublime)) class AbstractToggleConsoleLoggingCommand(sublime_plugin.ApplicationCommand, metaclass=ABCMeta): @property def logging_method_name(self) -> str: # strips the leading "toggle_" from the command name return self.name()[7:] @property def logging_method(self) -> Callable[..., None]: return getattr(sublime, self.logging_method_name) @property def logging_status_method(self) -> Callable[[], bool]: return getattr(sublime, f"get_{self.logging_method_name}") def description(self) -> str: # "toogle_log_fps" => "Toggle log fps" return self.name().replace("_", " ").capitalize() def is_checked(self) -> bool: return (self.logging_status_method)() def is_enabled(self) -> bool: return self.logging_method_name in ST_METHODS is_visible = is_enabled def run(self, enable: Optional[bool] = None) -> None: args = tuple() if enable is None else (enable,) self.logging_method(*args) class ToggleLogBuildSystemsCommand(AbstractToggleConsoleLoggingCommand): """Toggle `sublime.log_build_systems()`""" ... class ToggleLogCommandsCommand(AbstractToggleConsoleLoggingCommand): """Toggle `sublime.log_commands()`""" ... class ToggleLogControlTreeCommand(AbstractToggleConsoleLoggingCommand): """Toggle `sublime.log_control_tree()`""" ... class ToggleLogFpsCommand(AbstractToggleConsoleLoggingCommand): """Toggle `sublime.log_fps()`""" ... class ToggleLogIndexingCommand(AbstractToggleConsoleLoggingCommand): """Toggle `sublime.log_indexing()`""" ... class ToggleLogInputCommand(AbstractToggleConsoleLoggingCommand): """Toggle `sublime.log_input()`""" ... class ToggleLogResultRegexCommand(AbstractToggleConsoleLoggingCommand): """Toggle `sublime.log_result_regex()`""" ... ``` #### File: plugin/commands/open_sublime_text_dir.py ```python from functools import lru_cache from pathlib import Path from typing import Dict import sublime import sublime_plugin import tempfile PACKAGE_NAME = __package__.partition(".")[0] @lru_cache def get_folder_map() -> Dict[str, str]: cache_path = Path(sublime.cache_path()) packages_path = Path(sublime.packages_path()) return { name: str(path.resolve()) for name, path in { # from OS "home": Path.home(), "temp_dir": Path(tempfile.gettempdir()), # from ST itself "bin": Path(sublime.executable_path()).parent, "cache": cache_path, "data": packages_path / "..", "index": cache_path / ".." / "Index", "installed_packages": Path(sublime.installed_packages_path()), "lib": packages_path / ".." / "Lib", "local": packages_path / ".." / "Local", "log": packages_path / ".." / "Log", "packages": packages_path, # from LSP "package_storage": cache_path / ".." / "Package Storage", }.items() } class OpenSublimeTextDirCommand(sublime_plugin.ApplicationCommand): def run(self, folder: str, error_on_not_found: bool = True) -> None: window = sublime.active_window() path = Path( sublime.expand_variables( folder, { **window.extract_variables(), # type: ignore **get_folder_map(), }, ) ) if not path.is_dir(): if error_on_not_found: sublime.error_message(f"[{PACKAGE_NAME}] Directory not found: `{path}`") return window.run_command("open_dir", {"dir": str(path)}) ```
{ "source": "jfcherng/Sublime-VisualizeZeroWidthChars", "score": 2 }
#### File: Sublime-VisualizeZeroWidthChars/plugin/PhatomSetsManager.py ```python import sublime from typing import Dict, Iterable, Optional class PhatomSetsManager: # class-level (shared across objects) _phantom_sets = { # phantom_set_id: PhantomSet object, } # type: Dict[str, sublime.PhantomSet] @classmethod def get_phantom_set(cls, phantom_set_id: str) -> Optional[sublime.PhantomSet]: return cls._phantom_sets.get(phantom_set_id) @classmethod def init_phantom_set(cls, view: sublime.View, phantom_set_id: str, phantom_set_key: str = "") -> None: cls._phantom_sets[phantom_set_id] = sublime.PhantomSet(view, phantom_set_key) @classmethod def delete_phantom_set(cls, phantom_set_id: str) -> None: cls._phantom_sets.pop(phantom_set_id, None) @classmethod def erase_phantom_set(cls, phantom_set_id: str) -> None: if phantom_set_id in cls._phantom_sets: cls._phantom_sets[phantom_set_id].update([]) @classmethod def update_phantom_set(cls, phantom_set_id: str, phantoms: Iterable[sublime.Phantom]) -> None: if phantom_set_id in cls._phantom_sets: cls._phantom_sets[phantom_set_id].update(list(phantoms)) @classmethod def clear(cls) -> None: for phantom_set_id in list(cls._phantom_sets.keys()): cls.delete_phantom_set(phantom_set_id) cls._phantom_sets = {} ``` #### File: Sublime-VisualizeZeroWidthChars/plugin/popup.py ```python import sublime from .functions import get_char_unicode_info POPUP_TEMPLATE = """ <body id="visualize-zero-width-chars-popup"> <span>U+{code_point}: {name}</span> </body> """ def generate_popup_html(view: sublime.View, char_region: sublime.Region) -> str: char = view.substr(char_region) char_info = get_char_unicode_info(char) return POPUP_TEMPLATE.format_map(char_info) def show_popup(view: sublime.View, char_region: sublime.Region, point: int) -> None: view.show_popup( generate_popup_html(view, char_region), flags=sublime.COOPERATE_WITH_AUTO_COMPLETE, location=point, max_width=500, ) ``` #### File: Sublime-VisualizeZeroWidthChars/plugin/RepeatingTimer.py ```python import threading from typing import Callable, Optional class RepeatingTimer: def __init__(self, interval_ms: int, func: Callable, *args, **kwargs) -> None: self.interval_s = interval_ms / 1000 self.func = func self.args = args self.kwargs = kwargs self.timer = None # type: Optional[threading.Timer] self.is_running = False def set_func(self, func: Callable, *args, **kwargs) -> None: self.func = func self.args = args self.kwargs = kwargs def set_interval(self, interval_ms: int) -> None: self.interval_s = interval_ms / 1000 def start(self) -> None: self.timer = threading.Timer(self.interval_s, self._callback) self.timer.start() self.is_running = True def cancel(self) -> None: assert isinstance(self.timer, threading.Timer) self.timer.cancel() self.is_running = False def _callback(self) -> None: self.func(*self.args, **self.kwargs) self.start() ```
{ "source": "jfchevrette/qontract-reconcile", "score": 2 }
#### File: qontract-reconcile/reconcile/jenkins_job_builder.py ```python import sys import json import logging from reconcile.utils import gql from reconcile import queries from reconcile.utils.defer import defer from reconcile.utils.jjb_client import JJB from reconcile.utils.state import State QUERY = """ { jenkins_configs: jenkins_configs_v1 { name instance { name serverUrl token { path field } deleteMethod } type config config_path } } """ QONTRACT_INTEGRATION = 'jenkins-job-builder' GENERATE_TYPE = ['jobs', 'views'] def get_openshift_saas_deploy_job_name(saas_file_name, env_name, settings): job_template_name = settings['saasDeployJobTemplate'] return f"{job_template_name}-{saas_file_name}-{env_name}" def collect_saas_file_configs(settings, instance_name=None): # collect a list of jobs per saas file per environment. # each saas_file_config should have the structure described # in the above query. # to make things understandable, each variable used to form # the structure will be called `jc_<variable>` (jenkins config). saas_file_configs = [] repo_urls = set() saas_files = queries.get_saas_files() job_template_name = settings['saasDeployJobTemplate'] for saas_file in saas_files: saas_file_name = saas_file['name'] jc_instance = saas_file['instance'] if instance_name is not None and jc_instance['name'] != instance_name: continue app_name = saas_file['app']['name'] # currently ignoring the actual Slack workspace # as that is configured in Jenkins. # revisit this if we support more then a single Slack workspace. output = saas_file['slack'].get('output') or 'publish' # if the output type is 'publish', we send notifications # to the selected slack_channel slack_channel = \ saas_file['slack']['channel'] \ if output == 'publish' \ else 'dev-null' slack_notify_start = False slack_notifications = saas_file['slack'].get('notifications') if slack_notifications: start = slack_notifications.get('start') if start: slack_notify_start = True timeout = saas_file.get('timeout', None) for resource_template in saas_file['resourceTemplates']: url = resource_template['url'] repo_urls.add(url) for target in resource_template['targets']: env_name = target['namespace']['environment']['name'] upstream = target.get('upstream') or '' final_job_template_name = \ f'{job_template_name}-with-upstream' if upstream \ else job_template_name jc_name = get_openshift_saas_deploy_job_name( saas_file_name, env_name, settings) existing_configs = \ [c for c in saas_file_configs if c['name'] == jc_name] if existing_configs: # if upstream is defined - append it to existing upstreams if upstream: # should be exactly one jc_data = existing_configs[0]['data'] project = jc_data['project'] # append upstream to existing upstreams project['upstream'] += f',{upstream}' # update job template name if needed job_definition = project['jobs'][0] if job_template_name in job_definition: job_definition[final_job_template_name] = \ job_definition.pop(job_template_name) continue # each config is a list with a single item # with the following structure: # project: # name: 'openshift-saas-deploy-{saas_file_name}-{env_name}' # saas_file_name: '{saas_file_name}' # env_name: '{env_name}' # app_name: '{app_name}' # slack_channel: '{slack_channel}' # slack_notify_start: '{slack_notify_start} # jobs: # - 'openshift-saas-deploy': # display_name: display name of the job jc_data = { 'project': { 'name': jc_name, 'saas_file_name': saas_file_name, 'env_name': env_name, 'app_name': app_name, 'slack_channel': slack_channel, 'slack_notify_start': slack_notify_start, 'upstream': upstream, 'jobs': [{ final_job_template_name: { 'display_name': jc_name } }] } } if timeout: jc_data['project']['timeout'] = timeout saas_file_configs.append({ 'name': jc_name, 'instance': jc_instance, 'type': 'jobs', 'data': jc_data }) for saas_file_config in saas_file_configs: jc_data = saas_file_config.pop('data') saas_file_config['config'] = json.dumps([jc_data]) return saas_file_configs, repo_urls def collect_configs(instance_name, config_name, settings): gqlapi = gql.get_api() raw_jjb_configs = gqlapi.query(QUERY)['jenkins_configs'] if instance_name is not None: raw_jjb_configs = [n for n in raw_jjb_configs if n['instance']['name'] == instance_name] if config_name is not None: raw_jjb_configs = [n for n in raw_jjb_configs if n['type'] not in GENERATE_TYPE or n['name'] == config_name] if not raw_jjb_configs: raise ValueError(f"config name {config_name} is not found") return raw_jjb_configs, {} saas_file_configs, saas_file_repo_urls = \ collect_saas_file_configs(settings, instance_name) configs = raw_jjb_configs + saas_file_configs if not configs: raise ValueError(f"instance name {instance_name} is not found") return configs, saas_file_repo_urls def init_jjb(instance_name=None, config_name=None, print_only=False): settings = queries.get_app_interface_settings() configs, additional_repo_urls = \ collect_configs(instance_name, config_name, settings) return JJB(configs, ssl_verify=False, settings=settings, print_only=print_only), \ additional_repo_urls def validate_repos_and_admins(jjb, additional_repo_urls): jjb_repos = jjb.get_repos() jjb_repos.update(additional_repo_urls) app_int_repos = queries.get_repos() missing_repos = [r for r in jjb_repos if r not in app_int_repos] for r in missing_repos: logging.error('repo is missing from codeComponents: {}'.format(r)) jjb_admins = jjb.get_admins() app_int_users = queries.get_users() app_int_bots = queries.get_bots() external_users = queries.get_external_users() github_usernames = \ [u.get('github_username') for u in app_int_users] + \ [b.get('github_username') for b in app_int_bots] + \ [u.get('github_username') for u in external_users] unknown_admins = [a for a in jjb_admins if a not in github_usernames] for a in unknown_admins: logging.warning('admin is missing from users: {}'.format(a)) if missing_repos: sys.exit(1) @defer def run(dry_run, io_dir='throughput/', print_only=False, config_name=None, job_name=None, instance_name=None, defer=None): if not print_only and config_name is not None: raise Exception("--config-name must works with --print-only mode") jjb, additional_repo_urls = \ init_jjb(instance_name, config_name, print_only) defer(jjb.cleanup) if print_only: jjb.print_jobs(job_name=job_name) if config_name is not None: jjb.generate(io_dir, 'printout') sys.exit(0) accounts = queries.get_aws_accounts() state = State( integration=QONTRACT_INTEGRATION, accounts=accounts, settings=jjb.settings ) if dry_run: validate_repos_and_admins(jjb, additional_repo_urls) jjb.generate(io_dir, 'desired') jjb.overwrite_configs(state) jjb.generate(io_dir, 'current') jjb.print_diffs(io_dir, instance_name) else: jjb.update() configs = jjb.get_configs() for name, desired_config in configs.items(): state.add(name, value=desired_config, force=True) ```
{ "source": "JFChi/Understanding-and-Mitigating-Accuracy-Disparity-in-Regression", "score": 4 }
#### File: JFChi/Understanding-and-Mitigating-Accuracy-Disparity-in-Regression/prep_law.py ```python import pandas as pd import numpy as np from sklearn.model_selection import train_test_split ''' The bar passage study was initiated in 1991 by Law School Admission Council national longitudinal. The dataset contains records for law students who took the bar exam. The binary outcome indicates whether the student passed the bar exam or not. The features include variables such as cluster, lsat score, undergraduate GPA, zfyGPA, zGPA, full-time status, family income, age and also sensitive variables such as race and gender. The variable cluster is the result of a clustering of similar law schools (which is done apriori), and is used to adjust for the effect of type of law school. zGPA is the z-scores of the students overall GPA and zfyGPA is the first year GPA relative to students at the same law school. ''' def clean_dataset(dataset, attributes, centered): df = pd.read_csv(dataset) sens_df = pd.read_csv(attributes) ## Get and remove label Y y_col = [str(c) for c in sens_df.columns if sens_df[c][0] == 2] print('label feature: {}'.format(y_col)) if(len(y_col) > 1): raise ValueError('More than 1 label column used') if (len(y_col) < 1): raise ValueError('No label column used') y = df[y_col[0]] ## Do not use labels in rest of data X = df.loc[:, df.columns != y_col[0]] X = X.loc[:, X.columns != 'Unnamed: 0'] ## Create X_prime, by getting protected attributes sens_cols = [str(c) for c in sens_df.columns if sens_df[c][0] == 1] print('sensitive features: {}'.format(sens_cols)) sens_dict = {c: 1 if c in sens_cols else 0 for c in df.columns} X, sens_dict = one_hot_code(X, sens_dict) sens_names = [key for key in sens_dict.keys() if sens_dict[key] == 1] print('there are {} sensitive features including derivative features'.format(len(sens_names))) X_prime = X[sens_names] if(centered): X = center(X) # normalize y to [0, 1] y = ( y - np.min(y) ) / (np.max(y) - np.min(y) ) return X, X_prime, y def center(X): for col in X.columns: X.loc[:, col] = ( X.loc[:, col]-np.mean(X.loc[:, col]) ) / np.std(X.loc[:, col]) # X.loc[:, col] = X.loc[:, col]-np.mean(X.loc[:, col]) return X def one_hot_code(df1, sens_dict): cols = df1.columns for c in cols: if isinstance(df1[c][0], str): column = df1[c] df1 = df1.drop(c, 1) unique_values = list(set(column)) n = len(unique_values) if n > 2: for i in range(n): col_name = '{}.{}'.format(c, i) col_i = [1 if el == unique_values[i] else 0 for el in column] df1[col_name] = col_i sens_dict[col_name] = sens_dict[c] del sens_dict[c] else: col_name = c col = [1 if el == unique_values[0] else 0 for el in column] df1[col_name] = col return df1, sens_dict if __name__ == "__main__": # load data data_path = "data/lawschool.csv" centered = True lawschool_attributes = "data/lawschool_protected.csv" # save data summary to csv law_school_df = pd.read_csv(data_path) law_school_df.describe().to_csv("data/lawschool_summary.csv") df_X, df_A, df_Y = clean_dataset(data_path, lawschool_attributes, centered) # to numpy X = df_X.values Y = df_Y.values A = df_A.values.astype(int).squeeze() print("X.shape, Y.shape, A.shape", X.shape, Y.shape, A.shape) print(np.min(X), np.max(X)) print(np.min(Y), np.max(Y)) print(np.min(A), np.max(A)) # train/test split: 0.8/0.2 X_train, X_test, Y_train, Y_test, A_train, A_test = train_test_split(X, Y, A, test_size=0.2, random_state=0, stratify=A) print(A_train.shape, A_test.shape) print(A_train.sum(), A_test.sum()) f_out_np = 'data/law_school.npz' np.savez(f_out_np, x_train=X_train, x_test=X_test, y_train=Y_train, y_test=Y_test, attr_train=A_train, attr_test=A_test) ```
{ "source": "jfckm/ocf", "score": 2 }
#### File: tests/security/conftest.py ```python import os import sys from ctypes import ( c_uint64, c_uint32, c_uint16, c_int ) from tests.utils import get_random_strings, get_random_ints import pytest sys.path.append(os.path.join(os.path.dirname(__file__), os.path.pardir)) @pytest.fixture(params=get_random_ints(c_uint16)) def c_uint16_randomize(request): return request.param @pytest.fixture(params=get_random_ints(c_uint32)) def c_uint32_randomize(request): return request.param @pytest.fixture(params=get_random_ints(c_uint64)) def c_uint64_randomize(request): return request.param @pytest.fixture(params=get_random_ints(c_int)) def c_int_randomize(request): return request.param @pytest.fixture(params=get_random_strings()) def string_randomize(request): return request.param ``` #### File: tests/security/test_management_fuzzy.py ```python import pytest from pyocf.types.cache import Cache, CacheMode, CleaningPolicy, AlruParams, AcpParams from pyocf.types.core import Core from pyocf.types.volume import Volume from pyocf.utils import Size as S from tests.utils import generate_random_numbers from pyocf.types.shared import OcfError, CacheLineSize, SeqCutOffPolicy from ctypes import ( c_uint64, c_uint32 ) @pytest.mark.parametrize("cm", CacheMode) @pytest.mark.parametrize("cls", CacheLineSize) @pytest.mark.security def test_neg_change_cache_mode(pyocf_ctx, cm, cls): """ Test whether it is possible to change cache mode to invalid value. :param pyocf_ctx: basic pyocf context fixture :param cm: cache mode we start with :param cls: cache line size we start with """ # Start cache device cache_device = Volume(S.from_MiB(30)) cache = Cache.start_on_device( cache_device, cache_mode=cm, cache_line_size=cls ) # Change cache mode to invalid one and check if failed for i in generate_random_numbers(c_uint32): if i in [item.value for item in CacheMode]: continue with pytest.raises(OcfError, match="Error changing cache mode"): cache.change_cache_mode(i) @pytest.mark.parametrize("cm", CacheMode) @pytest.mark.parametrize("cls", CacheLineSize) @pytest.mark.security def test_neg_set_cleaning_policy(pyocf_ctx, cm, cls): """ Test whether it is possible to change cleaning policy to invalid value :param pyocf_ctx: basic pyocf context fixture :param cm: cache mode we start with :param cls: cache line size we start with :return: """ # Start cache device cache_device = Volume(S.from_MiB(30)) cache = Cache.start_on_device( cache_device, cache_mode=cm, cache_line_size=cls ) # Set cleaning policy to invalid one and check if failed for i in generate_random_numbers(c_uint32): if i in [item.value for item in CleaningPolicy]: continue with pytest.raises(OcfError, match="Error changing cleaning policy"): cache.set_cleaning_policy(i) @pytest.mark.parametrize("cm", CacheMode) @pytest.mark.parametrize("cls", CacheLineSize) @pytest.mark.security def test_neg_attach_cls(pyocf_ctx, cm, cls): """ Test whether it is possible to change cache line size to invalid value while attaching cache device :param pyocf_ctx: basic pyocf context fixture :param cm: cache mode we start with :param cls: cache line size we start with :return: """ # Start cache device cache_device = Volume(S.from_MiB(30)) cache = Cache(owner=cache_device.owner, cache_mode=cm, cache_line_size=cls) cache.start_cache() # Check whether it is possible to attach cache device with invalid cache line size for i in generate_random_numbers(c_uint64): if i in [item.value for item in CacheLineSize]: continue with pytest.raises(OcfError, match="Attaching cache device failed"): cache.attach_device(cache_device, cache_line_size=i) @pytest.mark.parametrize("cm", CacheMode) @pytest.mark.parametrize("cls", CacheLineSize) @pytest.mark.security def test_neg_cache_set_seq_cut_off_policy(pyocf_ctx, cm, cls): """ Test whether it is possible to change cache seq cut-off policy to invalid value :param pyocf_ctx: basic pyocf context fixture :param cm: cache mode we start with :param cls: cache line size we start with :return: """ # Start cache device cache_device = Volume(S.from_MiB(30)) cache = Cache.start_on_device( cache_device, cache_mode=cm, cache_line_size=cls ) # Create 2 core devices core_device1 = Volume(S.from_MiB(10)) core1 = Core.using_device(core_device1) core_device2 = Volume(S.from_MiB(10)) core2 = Core.using_device(core_device2) # Add cores cache.add_core(core1) cache.add_core(core2) # Change cache seq cut off policy to invalid one and check if failed for i in generate_random_numbers(c_uint32): if i in [item.value for item in SeqCutOffPolicy]: continue with pytest.raises(OcfError, match="Error setting cache seq cut off policy"): cache.set_seq_cut_off_policy(i) @pytest.mark.parametrize("cm", CacheMode) @pytest.mark.parametrize("cls", CacheLineSize) @pytest.mark.security def test_neg_core_set_seq_cut_off_policy(pyocf_ctx, cm, cls): """ Test whether it is possible to change core seq cut-off policy to invalid value :param pyocf_ctx: basic pyocf context fixture :param cm: cache mode we start with :param cls: cache line size we start with :return: """ # Start cache device cache_device = Volume(S.from_MiB(30)) cache = Cache.start_on_device( cache_device, cache_mode=cm, cache_line_size=cls ) # Create core device core_device = Volume(S.from_MiB(10)) core = Core.using_device(core_device) # Add core cache.add_core(core) # Change core seq cut off policy to invalid one and check if failed for i in generate_random_numbers(c_uint32): if i in [item.value for item in SeqCutOffPolicy]: continue with pytest.raises(OcfError, match="Error setting core seq cut off policy"): core.set_seq_cut_off_policy(i) @pytest.mark.parametrize("cm", CacheMode) @pytest.mark.parametrize("cls", CacheLineSize) @pytest.mark.security def test_neg_set_alru_param(pyocf_ctx, cm, cls): """ Test whether it is possible to set invalid param for alru cleaning policy :param pyocf_ctx: basic pyocf context fixture :param cm: cache mode we start with :param cls: cache line size we start with :return: """ # Start cache device cache_device = Volume(S.from_MiB(30)) cache = Cache.start_on_device( cache_device, cache_mode=cm, cache_line_size=cls ) # Change invalid alru param and check if failed for i in generate_random_numbers(c_uint32): if i in [item.value for item in AlruParams]: continue with pytest.raises(OcfError, match="Error setting cleaning policy param"): cache.set_cleaning_policy_param(CleaningPolicy.ALRU, i, 1) @pytest.mark.parametrize("cm", CacheMode) @pytest.mark.parametrize("cls", CacheLineSize) @pytest.mark.security def test_neg_set_acp_param(pyocf_ctx, cm, cls): """ Test whether it is possible to set invalid param for acp cleaning policy :param pyocf_ctx: basic pyocf context fixture :param cm: cache mode we start with :param cls: cache line size we start with :return: """ # Start cache device cache_device = Volume(S.from_MiB(30)) cache = Cache.start_on_device( cache_device, cache_mode=cm, cache_line_size=cls ) # Change invalid acp param and check if failed for i in generate_random_numbers(c_uint32): if i in [item.value for item in AcpParams]: continue with pytest.raises(OcfError, match="Error setting cleaning policy param"): cache.set_cleaning_policy_param(CleaningPolicy.ALRU, i, 1) ``` #### File: functional/tests/utils.py ```python import random import string from ctypes import ( c_uint64, c_uint32, c_uint16, c_int, c_uint ) def generate_random_numbers(c_type, count=1000): type_dict = { c_uint16: [0, c_uint16(-1).value], c_uint32: [0, c_uint32(-1).value], c_uint64: [0, c_uint64(-1).value], c_int: [int(-c_uint(-1).value / 2) - 1, int(c_uint(-1).value / 2)] } values = [] for i in range(0, count): values.append(random.randint(type_dict[c_type][0], type_dict[c_type][1])) return values def generate_random_strings(): values = [] for t in [string.digits, string.ascii_letters + string.digits, string.ascii_lowercase, string.ascii_uppercase, string.printable, string.punctuation, string.hexdigits]: for i in range(0, 100): values.append(''.join(random.choice(t) for _ in range(random.randint(0, 20)))) return values def get_random_ints(c_type): for value in generate_random_numbers(c_type): yield value def get_random_strings(): for value in generate_random_strings(): yield value ```
{ "source": "jfckm/open-cas-linux", "score": 2 }
#### File: utils_tests/opencas-py-tests/test_casadm_01.py ```python import pytest import subprocess import mock from opencas import casadm from helpers import get_process_mock @mock.patch("subprocess.Popen") def test_run_cmd_01(mock_popen): mock_popen.return_value = get_process_mock(0, "successes", "errors") result = casadm.run_cmd(["casadm", "-L"]) assert result.exit_code == 0 assert result.stdout == "successes" assert result.stderr == "errors" mock_popen.assert_called_once_with( ["casadm", "-L"], stdout=subprocess.PIPE, stderr=subprocess.PIPE ) @mock.patch("subprocess.Popen") def test_run_cmd_02(mock_popen): mock_popen.return_value = get_process_mock(4, "successes", "errors") with pytest.raises(casadm.CasadmError): casadm.run_cmd(["casadm", "-L"]) @mock.patch("subprocess.Popen") def test_get_version_01(mock_popen): mock_popen.return_value = get_process_mock(0, "0.0.1", "errors") result = casadm.get_version() assert result.exit_code == 0 assert result.stdout == "0.0.1" assert result.stderr == "errors" mock_popen.assert_called_once_with( [casadm.casadm_path, "--version", "--output-format", "csv"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) @mock.patch("subprocess.Popen") def test_get_version_02(mock_popen): mock_popen.return_value = get_process_mock(4, "successes", "errors") with pytest.raises(casadm.CasadmError): casadm.get_version() ```
{ "source": "jfckm/spdk", "score": 2 }
#### File: scripts/rpc/env_dpdk.py ```python def env_dpdk_get_mem_stats(client): """Dump the applications memory stats to a file. Returns: The path to the file where the stats are written. """ return client.call('env_dpdk_get_mem_stats') ``` #### File: scripts/rpc/ioat.py ```python from .helpers import deprecated_alias @deprecated_alias('ioat_scan_copy_engine') @deprecated_alias('scan_ioat_copy_engine') def ioat_scan_accel_engine(client): """Enable IOAT accel engine. """ return client.call('ioat_scan_accel_engine') ```
{ "source": "jfclere/AC2021", "score": 3 }
#### File: AC2021/scripts/ssl.py ```python import sys def main(): print(f"Arguments count: {len(sys.argv)}") for i, arg in enumerate(sys.argv): filename = {arg} print(f"Argument {i:>6}: {arg}") with open(arg) as file: msg = bytearray() for line in file: if line.endswith("|\n"): start = " | " end = "|\n" string = (line.split(start))[1].split(end)[0] data = string[6:-19] data = data.replace('-', ' ') print(data) hexdata = bytearray.fromhex(data) msg += hexdata print(msg) # analisys of the message i = 3 if msg[0] == 0x16: print("TLS handshake protocol") print("Version: " + str(msg[1]) + str(msg[2])) # length is the 2 next bytes l = msg[3]*256 + msg[4] print("Length: " + str(l) + ":" + str(len(msg))) if l > len(msg): raise SystemExit("not enough bytes in the trace") i = 5 if msg[5] == 0x01: print("client hello") l = (msg[6]*256 + msg[7])*256 + msg[8] print("Payload length: " + str(l)) # version again i = 9 i += 2 # Client Random i += 32 # Client Session l = msg[i] print("Session ID length: " + str(l)) i += l + 1 # Cipher Suites l = msg[i]*256 + msg[i+1] print("Cipher Suites length: " + str(l)) i +=l + 2 # Compression Methods l = msg[i] print("Compression Methods length: " + str(l)) i +=l + 1 # Extensions l = msg[i]*256 + msg[i+1] print("Extensions length: " + str(l)) i += 2 endext = i + l while i < endext: # the extensions are 2 bytes type + 2 bytes length + value t = msg[i]*256 + msg[i+1] i += 2 l = msg[i]*256 + msg[i+1] i += 2 print("Extension: " + str(t) + " length: " + str(l)) if t == 0: # the sni several pieces 2 byte length + 1 byte type + 2 byte length j = i + 3 snil = msg[j]*256 + msg[j+1] j +=3 sni = msg[j:j+snil] print("SNI: length: " + str(snil) + " value: " + str(sni)) if t == 41: print("pre_shared_key") if t == 65281: print("65281: weird...") i += l print("client hello: " + str(i) + " bytes decoded") if __name__=="__main__": main() ```
{ "source": "jf---/compas_occ", "score": 2 }
#### File: compas_occ/scripts/nsided.py ```python import math from compas.geometry import Point, Polygon, Polyline, Rotation from compas_occ.geometry.surfaces import BSplineSurface from compas_occ.geometry.curves import BSplineCurve from compas_view2.app import App from OCC.Core.BRepFill import BRepFill_Filling from OCC.Core.BRepBuilderAPI import BRepBuilderAPI_MakePolygon from OCC.Core.GeomAbs import GeomAbs_C0 from OCC.Core.gp import gp_Pnt from OCC.Extend.TopologyUtils import TopologyExplorer polygon = Polygon.from_sides_and_radius_xy(5, 2).transformed(Rotation.from_axis_and_angle([1, 1, 0], math.radians(30))) points = [gp_Pnt(* point) for point in polygon] poly = BRepBuilderAPI_MakePolygon() for point in points: poly.Add(point) poly.Build() poly.Close() edges = TopologyExplorer(poly.Wire()).edges() nsided = BRepFill_Filling() for edge in edges: nsided.Add(edge, GeomAbs_C0) nsided.Add(gp_Pnt(* (polygon.centroid + Point(0, 0, 0.2)))) nsided.Build() face = nsided.Face() surface = BSplineSurface.from_face(face) viewer = App() viewer.add(surface.to_vizmesh(resolution=100)) viewer.add(polygon, linewidth=5, linecolor=(1, 0, 0)) for edge in edges: curve = BSplineCurve.from_edge(edge) if curve: viewer.add(Polyline(curve.to_locus(resolution=16)), linecolor=(1, 0, 0), linewidth=5) viewer.run() # def build_plate(polygon, points): # ''' # build a surface from a constraining polygon(s) and point(s) # @param polygon: list of polygons ( TopoDS_Shape) # @param points: list of points ( gp_Pnt ) # ''' # # plate surface # bpSrf = GeomPlate_BuildPlateSurface(3, 15, 2) # # add curve constraints # for poly in polygon: # for edg in WireExplorer(poly).ordered_edges(): # c = BRepAdaptor_HCurve() # c.ChangeCurve().Initialize(edg) # constraint = BRepFill_CurveConstraint(c, 0) # bpSrf.Add(constraint) # # add point constraint # for pt in points: # bpSrf.Add(GeomPlate_PointConstraint(pt, 0)) # bpSrf.Perform() # maxSeg, maxDeg, critOrder = 9, 8, 0 # tol = 1e-4 # dmax = max([tol, 10 * bpSrf.G0Error()]) # srf = bpSrf.Surface() # plate = GeomPlate_MakeApprox(srf, tol, maxSeg, maxDeg, dmax, critOrder) # uMin, uMax, vMin, vMax = srf.Bounds() # return make_face(plate.Surface(), uMin, uMax, vMin, vMax, 1e-4) # def build_geom_plate(edges): # bpSrf = GeomPlate_BuildPlateSurface(3, 9, 12) # # add curve constraints # for edg in edges: # c = BRepAdaptor_HCurve() # print('edge:', edg) # c.ChangeCurve().Initialize(edg) # constraint = BRepFill_CurveConstraint(c, 0) # bpSrf.Add(constraint) # # add point constraint # try: # bpSrf.Perform() # except RuntimeError: # print('failed to build the geom plate surface ') # srf = bpSrf.Surface() # plate = GeomPlate_MakeApprox(srf, 0.01, 10, 5, 0.01, 0, GeomAbs_C0) # uMin, uMax, vMin, vMax = srf.Bounds() # face = make_face(plate.Surface(), uMin, uMax, vMin, vMax, 1e-6) # return ```
{ "source": "jf---/compas", "score": 2 }
#### File: compas_blender/artists/networkartist.py ```python from functools import partial import compas_blender from compas_blender.artists._artist import BaseArtist from compas.utilities import color_to_colordict colordict = partial(color_to_colordict, colorformat='rgb', normalize=True) __all__ = [ 'NetworkArtist', ] class NetworkArtist(BaseArtist): """Artist for COMPAS network objects. Parameters ---------- network : :class:`compas.datastructures.Network` A COMPAS network. settings : dict, optional A dict with custom visualisation settings. Attributes ---------- network : :class:`compas.datastructures.Network` The COMPAS network associated with the artist. settings : dict Default settings for color, scale, tolerance, ... """ def __init__(self, network): super().__init__() self._nodecollection = None self._edgecollection = None self._pathcollection = None self._object_node = {} self._object_edge = {} self._object_path = {} self.color_nodes = (1.0, 1.0, 1.0) self.color_edges = (0.0, 0.0, 0.0) self.show_nodes = True, self.show_edges = True, self.show_nodelabels = False, self.show_edgelabels = False self.network = network @property def nodecollection(self): path = f"{self.network.name}::Nodes" if not self._nodecollection: self._nodecollection = compas_blender.create_collections_from_path(path)[1] return self._nodecollection @property def edgecollection(self): path = f"{self.network.name}::Edges" if not self._edgecollection: self._edgecollection = compas_blender.create_collections_from_path(path)[1] return self._edgecollection @property def pathcollection(self): path = f"{self.network.name}::Paths" if not self._pathcollection: self._pathcollection = compas_blender.create_collections_from_path(path)[1] return self._pathcollection @property def object_node(self): if not self._object_node: self._object_node = {} return self._object_node @object_node.setter def object_node(self, values): self._object_node = dict(values) @property def object_edge(self): if not self._object_edge: self._object_edge = {} return self._object_edge @object_edge.setter def object_edge(self, values): self._object_edge = dict(values) @property def object_path(self): if not self._object_path: self._object_path = {} return self._object_path @object_path.setter def object_path(self, values): self._object_path = dict(values) def clear(self): objects = list(self.object_node) objects += list(self.object_edge) objects += list(self.object_path) compas_blender.delete_objects(objects, purge_data=True) self._object_node = {} self._object_edge = {} self._object_path = {} def draw(self): """Draw the network. Returns ------- list of :class:`bpy.types.Object` The created Blender objects. """ self.clear() if self.show_nodes: self.draw_nodes() if self.show_edges: self.draw_edges() return self.objects def draw_nodes(self, nodes=None, color=None): """Draw a selection of nodes. Parameters ---------- nodes : list of int, optional A list of node identifiers. Default is ``None``, in which case all nodes are drawn. color : rgb-tuple or dict of rgb-tuples The color specififcation for the nodes. Returns ------- list of :class:`bpy.types.Object` """ nodes = nodes or list(self.network.nodes()) node_color = colordict(color, nodes, default=self.color_nodes) points = [] for node in nodes: points.append({ 'pos': self.network.node_coordinates(node), 'name': f"{self.network.name}.node.{node}", 'color': node_color[node], 'radius': 0.05}) objects = compas_blender.draw_points(points, self.nodecollection) self.object_node = zip(objects, nodes) return objects def draw_edges(self, edges=None, color=None): """Draw a selection of edges. Parameters ---------- edges : list A list of edge keys (as uv pairs) identifying which edges to draw. The default is ``None``, in which case all edges are drawn. color : rgb-tuple or dict of rgb-tuples The color specififcation for the edges. Returns ------- list of :class:`bpy.types.Object` """ edges = edges or list(self.network.edges()) edge_color = colordict(color, edges, default=self.color_edges) lines = [] for edge in edges: lines.append({ 'start': self.network.node_coordinates(edge[0]), 'end': self.network.node_coordinates(edge[1]), 'color': edge_color[edge], 'name': f"{self.network.name}.edge.{edge[0]}-{edge[1]}", 'width': 0.02}) objects = compas_blender.draw_lines(lines, self.edgecollection) self.object_edge = zip(objects, edges) return objects # ============================================================================== # Main # ============================================================================== if __name__ == "__main__": pass ``` #### File: geometry/icp/icp_numpy.py ```python from __future__ import print_function from __future__ import absolute_import from __future__ import division import numpy as np from numpy import asarray from numpy import argmin from numpy.linalg import det from scipy.spatial.distance import cdist from scipy.linalg import svd from scipy.linalg import norm from compas.numerical import pca_numpy from compas.numerical import normrow from compas.geometry import Transformation from compas.geometry import Frame from compas.geometry import transform_points_numpy __all__ = ['icp_numpy'] def bestfit_transform(A, B): n, m = A.shape Am = np.mean(A, axis=0) Bm = np.mean(B, axis=0) AA = A - Am BB = B - Bm # cross-covariance matrix C = np.dot(AA.T, BB) U, S, Vt = svd(C) # rigid rotation of the data frames R = np.dot(Vt.T, U.T) # check for RotoReflection if det(R) < 0: Vt[m-1, :] *= -1 R = np.dot(Vt.T, U.T) # translation that moves data set means to same location # this can be done differently (by applying three transformations (T1, R, T2)) T = Bm.T - np.dot(R, Am.T) X = np.identity(m+1) X[:m, :m] = R X[:m, m] = T return X def icp_numpy(source, target, tol=1e-3): """Align two point clouds using the Iterative Closest Point (ICP) method. Parameters ---------- source : list of point The source data. target : list of point The target data. tol : float, optional Tolerance for finding matches. Default is ``1e-3``. Returns ------- The transformed points Notes ----- First we align the source with the target cloud using the frames resulting from a PCA of each of the clouds, simply by calculating a frame-to-frame transformation. This initial alignment is used to establish an initial correspondence between the points of the two clouds. Then we iteratively improve the alignment by computing successive "best-fit" transformations using SVD of the cross-covariance matrix of the two data sets. During this iterative process, we continuously update the correspondence between the point clouds by finding the closest point in the target to each of the source points. The algorithm terminates when the alignment error is below a specified tolerance. Examples -------- >>> """ A = asarray(source) B = asarray(target) origin, axes, _ = pca_numpy(A) A_frame = Frame(origin, axes[0], axes[1]) origin, axes, _ = pca_numpy(B) B_frame = Frame(origin, axes[0], axes[1]) X = Transformation.from_frame_to_frame(A_frame, B_frame) A = transform_points_numpy(A, X) for i in range(20): D = cdist(A, B, 'euclidean') closest = argmin(D, axis=1) if norm(normrow(A - B[closest])) < tol: break X = bestfit_transform(A, B[closest]) A = transform_points_numpy(A, X) return A, X # ============================================================================== # Main # ============================================================================== if __name__ == "__main__": import doctest doctest.testmod(globs=globals()) ``` #### File: geometry/transformations/transformations_numpy.py ```python from __future__ import print_function from __future__ import absolute_import from __future__ import division from numpy import asarray from numpy import hstack from numpy import ones from numpy import vectorize from numpy import tile from scipy.linalg import solve from compas.geometry import cross_vectors __all__ = [ 'transform_points_numpy', 'transform_vectors_numpy', 'homogenize_numpy', 'dehomogenize_numpy', 'homogenize_and_flatten_frames_numpy', 'dehomogenize_and_unflatten_frames_numpy', 'world_to_local_coordinates_numpy', 'local_to_world_coordinates_numpy', ] def transform_points_numpy(points, T): """Transform multiple points with one Transformation using numpy. Parameters ---------- points : list of :class:`Point` or list of list of float A list of points to be transformed. T : :class:`Transformation` or list of list of float The transformation to apply. Examples -------- >>> points = [[1, 0, 0], [1, 2, 4], [4, 7, 1]] >>> T = matrix_from_axis_and_angle([0, 2, 0], math.radians(45), point=[4, 5, 6]) >>> points_transformed = transform_points_numpy(points, T) """ T = asarray(T) points = homogenize_numpy(points, w=1.0) return dehomogenize_numpy(points.dot(T.T)) def transform_vectors_numpy(vectors, T): """Transform multiple vectors with one Transformation using numpy. Parameters ---------- vectors : list of :class:`Vector` A list of vectors to be transformed. T : :class:`Transformation` The transformation to apply. Examples -------- >>> vectors = [[1, 0, 0], [1, 2, 4], [4, 7, 1]] >>> T = matrix_from_axis_and_angle([0, 2, 0], math.radians(45), point=[4, 5, 6]) >>> vectors_transformed = transform_vectors_numpy(vectors, T) """ T = asarray(T) vectors = homogenize_numpy(vectors, w=0.0) return dehomogenize_numpy(vectors.dot(T.T)) def transform_frames_numpy(frames, T): """Transform multiple frames with one Transformation usig numpy. Parameters ---------- frames : list of :class:`Frame` A list of frames to be transformed. T : :class:`Transformation` The transformation to apply on the frames. Examples -------- >>> frames = [Frame([1, 0, 0], [1, 2, 4], [4, 7, 1]), Frame([0, 2, 0], [5, 2, 1], [0, 2, 1])] >>> T = matrix_from_axis_and_angle([0, 2, 0], math.radians(45), point=[4, 5, 6]) >>> transformed_frames = transform_frames_numpy(frames, T) """ T = asarray(T) points_and_vectors = homogenize_and_flatten_frames_numpy(frames) return dehomogenize_and_unflatten_frames_numpy(points_and_vectors.dot(T.T)) def world_to_local_coordinates_numpy(frame, xyz): """Convert global coordinates to local coordinates. Parameters ---------- frame : :class:`Frame` or [point, xaxis, yaxis] The local coordinate system. xyz : array-like The global coordinates of the points to convert. Returns ------- array The coordinates of the given points in the local coordinate system. Examples -------- >>> import numpy as np >>> frame = Frame([0, 1, 0], [3, 4, 1], [1, 5, 9]) >>> xyz = [Point(2, 3, 5)] >>> rst = world_to_local_coordinates_numpy(frame, xyz) >>> np.allclose(rst, [[3.726, 4.088, 1.550]], rtol=1e-3) True """ origin = frame[0] uvw = [frame[1], frame[2], cross_vectors(frame[1], frame[2])] uvw = asarray(uvw).T xyz = asarray(xyz).T - asarray(origin).reshape((-1, 1)) rst = solve(uvw, xyz) return rst.T def local_to_world_coordinates_numpy(frame, rst): """Convert local coordinates to global (world) coordinates. Parameters ---------- frame : :class:`Frame` or [point, xaxis, yaxis] The local coordinate system. rst : array-like The coordinates of the points wrt the local coordinate system. Returns ------- array The world coordinates of the given points. Notes ----- ``origin`` and ``uvw`` together form the frame of local coordinates. Examples -------- >>> frame = Frame([0, 1, 0], [3, 4, 1], [1, 5, 9]) >>> rst = [Point(3.726, 4.088, 1.550)] >>> xyz = local_to_world_coordinates_numpy(frame, rst) >>> numpy.allclose(xyz, [[2.000, 3.000, 5.000]], rtol=1e-3) True """ origin = frame[0] uvw = [frame[1], frame[2], cross_vectors(frame[1], frame[2])] uvw = asarray(uvw).T rst = asarray(rst).T xyz = uvw.dot(rst) + asarray(origin).reshape((-1, 1)) return xyz.T # ============================================================================== # helping helpers # ============================================================================== def homogenize_numpy(points, w=1.0): """Dehomogenizes points or vectors. Parameters ---------- points: list of :class:`Points` or list of :class:`Vectors` Returns ------- :class:`numpy.ndarray` Examples -------- >>> points = [[1, 1, 1], [0, 1, 0], [1, 0, 0]] >>> res = homogenize_numpy(points, w=1.0) >>> numpy.allclose(res, [[1.0, 1.0, 1.0, 1.0], [0.0, 1.0, 0.0, 1.0], [1.0, -0.0, 0.0, 1.0]]) True """ points = asarray(points) points = hstack((points, w * ones((points.shape[0], 1)))) return points def dehomogenize_numpy(points): """Dehomogenizes points or vectors. Parameters ---------- points: list of :class:`Points` or list of :class:`Vectors` Returns ------- :class:`numpy.ndarray` Examples -------- >>> points = [[1, 1, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0]] >>> res = dehomogenize_numpy(points) >>> numpy.allclose(res, [[1.0, 1.0, 1.0], [0.0, 1.0, 0.0], [1.0, -0.0, 0.0]]) True """ def func(a): return a if a else 1. func = vectorize(func) points = asarray(points) return points[:, :-1] / func(points[:, -1]).reshape((-1, 1)) def homogenize_and_flatten_frames_numpy(frames): """Homogenize a list of frames and flatten the 3D list into a 2D list using numpy. The frame consists of a point and 2 orthonormal vectors. Parameters ---------- frames: list of :class:`Frame` Returns ------- :class:`numpy.ndarray` An array of points and vectors. Examples -------- >>> frames = [Frame((1, 1, 1), (0, 1, 0), (1, 0, 0))] >>> res = homogenize_and_flatten_frames_numpy(frames) >>> numpy.allclose(res, [[1.0, 1.0, 1.0, 1.0], [0.0, 1.0, 0.0, 0.0], [1.0, -0.0, 0.0, 0.0]]) True """ n = len(frames) frames = asarray(frames).reshape(n * 3, 3) extend = tile(asarray([1, 0, 0]).reshape(3, 1), (n, 1)) return hstack((frames, extend)) def dehomogenize_and_unflatten_frames_numpy(points_and_vectors): """Dehomogenize a list of vectors and unflatten the 2D list into a 3D list. Parameters ---------- points_and_vectors: list of list of float Homogenized points and vectors. Returns ------- :class:`numpy.ndarray` The frames. Examples -------- >>> points_and_vectors = [(1., 1., 1., 1.), (0., 1., 0., 0.), (1., 0., 0., 0.)] >>> res = dehomogenize_and_unflatten_frames_numpy(points_and_vectors) >>> numpy.allclose(res, [[1.0, 1.0, 1.0], [0.0, 1.0, 0.0], [1.0, 0.0, 0.0]]) True """ frames = dehomogenize_numpy(points_and_vectors) return frames.reshape((int(frames.shape[0]/3.), 3, 3)) # ============================================================================== # Main # ============================================================================== if __name__ == "__main__": import doctest import numpy # noqa: F401 import math # noqa: F401 from compas.geometry import Frame # noqa: F401 from compas.geometry import Point # noqa: F401 from compas.geometry import matrix_from_axis_and_angle # noqa: F401 doctest.testmod(globs=globals()) ``` #### File: compas_rhino/artists/polyhedronartist.py ```python from __future__ import print_function from __future__ import absolute_import from __future__ import division import compas_rhino from ._shapeartist import ShapeArtist class PolyhedronArtist(ShapeArtist): """Artist for drawing polyhedron shapes. Parameters ---------- shape : :class:`compas.geometry.Polyhedron` A COMPAS polyhedron. Notes ----- See :class:`compas_rhino.artists.ShapeArtist` for all other parameters. Examples -------- .. code-block:: python import random from compas.geometry import Pointcloud from compas.geometry import Polyhedron from compas.geometry import Translation from compas.utilities import i_to_rgb import compas_rhino from compas_rhino.artists import PolyhedronArtist pcl = Pointcloud.from_bounds(10, 10, 10, 100) tpl = Polyhedron.from_platonicsolid(12) compas_rhino.clear_layer("Test::PolyhedronArtist") for point in pcl.points: polyhedron = tpl.transformed(Translation.from_vector(point)) artist = PolyhedronArtist(polyhedron, color=i_to_rgb(random.random()), layer="Test::PolyhedronArtist") artist.draw() """ def draw(self, show_vertices=False, show_edges=False, show_faces=True, join_faces=True): """Draw the polyhedron associated with the artist. Parameters ---------- show_vertices : bool, optional Default is ``False``. show_edges : bool, optional Default is ``False``. show_faces : bool, optional Default is ``True``. join_faces : bool, optional Default is ``True``. Returns ------- list The GUIDs of the objects created in Rhino. """ vertices = [list(vertex) for vertex in self.shape.vertices] guids = [] if show_vertices: points = [{'pos': point, 'color': self.color, 'name': str(index)} for index, point in enumerate(vertices)] guids += compas_rhino.draw_points(points, layer=self.layer, clear=False, redraw=False) if show_edges: edges = self.shape.edges lines = [{'start': vertices[i], 'end': vertices[j], 'color': self.color} for i, j in edges] guids += compas_rhino.draw_lines(lines, layer=self.layer, clear=False, redraw=False) if show_faces: faces = self.shape.faces if join_faces: guid = compas_rhino.draw_mesh(vertices, faces, layer=self.layer, name=self.name, color=self.color, disjoint=True) guids.append(guid) else: polygons = [{'points': [vertices[index] for index in face], 'color': self.color} for face in faces] guids += compas_rhino.draw_faces(polygons, layer=self.layer, clear=False, redraw=False) self._guids = guids return guids # ============================================================================== # Main # ============================================================================== if __name__ == '__main__': pass ``` #### File: compas_rhino/objects/_select.py ```python from __future__ import print_function from __future__ import absolute_import from __future__ import division import ast import rhinoscriptsyntax as rs __all__ = [ 'mesh_select_vertex', 'mesh_select_vertices', 'mesh_select_face', 'mesh_select_faces', 'mesh_select_edge', 'mesh_select_edges', 'network_select_node', 'network_select_nodes', 'network_select_edge', 'network_select_edges', ] def mesh_select_vertex(mesh, message="Select a vertex."): """Select a single vertex of a mesh. Parameters ---------- mesh: :class:`compas.datastructures.Mesh` message: str, optional Returns ------- int or None """ guid = rs.GetObject(message, preselect=True, filter=rs.filter.point | rs.filter.textdot) if guid: prefix = mesh.attributes['name'] name = rs.ObjectName(guid).split('.') if 'vertex' in name: if not prefix or prefix in name: key = name[-1] return ast.literal_eval(key) return None def mesh_select_vertices(mesh, message="Select vertices."): """Select multiple vertices of a mesh. Parameters ---------- mesh: :class:`compas.datastructures.Mesh` message: str, optional Returns ------- list of int """ keys = [] guids = rs.GetObjects(message, preselect=True, filter=rs.filter.point | rs.filter.textdot) if guids: prefix = mesh.attributes['name'] seen = set() for guid in guids: name = rs.ObjectName(guid).split('.') if 'vertex' in name: if not prefix or prefix in name: key = name[-1] if not seen.add(key): key = ast.literal_eval(key) keys.append(key) return keys def mesh_select_face(mesh, message="Select a face."): """Select a single face of a mesh. Parameters ---------- mesh: :class:`compas.datastructures.Mesh` message: str, optional Returns ------- int or None """ guid = rs.GetObject(message, preselect=True, filter=rs.filter.mesh | rs.filter.textdot) if guid: prefix = mesh.attributes['name'] name = rs.ObjectName(guid).split('.') if 'face' in name: if not prefix or prefix in name: key = name[-1] key = ast.literal_eval(key) return key return None def mesh_select_faces(mesh, message="Select faces."): """Select multiple faces of a mesh. Parameters ---------- mesh: :class:`compas.datastructures.Mesh` message: str, optional Returns ------- list of int """ keys = [] guids = rs.GetObjects(message, preselect=True, filter=rs.filter.mesh | rs.filter.textdot) if guids: prefix = mesh.attributes['name'] seen = set() for guid in guids: name = rs.ObjectName(guid).split('.') if 'face' in name: if not prefix or prefix in name: key = name[-1] if not seen.add(key): key = ast.literal_eval(key) keys.append(key) return keys def mesh_select_edge(mesh, message="Select an edge."): """Select a single edge of a mesh. Parameters ---------- mesh: :class:`compas.datastructures.Mesh` message: str, optional Returns ------- tuple of int, or None """ guid = rs.GetObject(message, preselect=True, filter=rs.filter.curve | rs.filter.textdot) if guid: prefix = mesh.attributes['name'] name = rs.ObjectName(guid).split('.') if 'edge' in name: if not prefix or prefix in name: key = name[-1] u, v = key.split('-') u = ast.literal_eval(u) v = ast.literal_eval(v) return u, v return None def mesh_select_edges(mesh, message="Select edges."): """Select multiple edges of a mesh. Parameters ---------- mesh: :class:`compas.datastructures.Mesh` message: str, optional Returns ------- list of tuple of int """ keys = [] guids = rs.GetObjects(message, preselect=True, filter=rs.filter.curve | rs.filter.textdot) if guids: prefix = mesh.attributes['name'] seen = set() for guid in guids: name = rs.ObjectName(guid).split('.') if 'edge' in name: if not prefix or prefix in name: key = name[-1] if not seen.add(key): u, v = key.split('-') u = ast.literal_eval(u) v = ast.literal_eval(v) keys.append((u, v)) return keys def network_select_node(network, message="Select a node."): """Select a single node of a network. Parameters ---------- network: :class:`compas.datastructures.Network` message: str, optional Returns ------- hashable or None """ guid = rs.GetObject(message, preselect=True, filter=rs.filter.point | rs.filter.textdot) if guid: prefix = network.attributes['name'] name = rs.ObjectName(guid).split('.') if 'node' in name: if not prefix or prefix in name: key = name[-1] return ast.literal_eval(key) return None def network_select_nodes(network, message="Select nodes."): """Select multiple nodes of a network. Parameters ---------- network: :class:`compas.datastructures.Network` message: str, optional Returns ------- list of hashable """ keys = [] guids = rs.GetObjects(message, preselect=True, filter=rs.filter.point | rs.filter.textdot) if guids: prefix = network.attributes['name'] seen = set() for guid in guids: name = rs.ObjectName(guid).split('.') if 'node' in name: if not prefix or prefix in name: key = name[-1] if not seen.add(key): key = ast.literal_eval(key) keys.append(key) return keys def network_select_edge(network, message="Select an edge."): """Select a single edge of a network. Parameters ---------- network: :class:`compas.datastructures.Network` message: str, optional Returns ------- tuple of hashable, or None """ guid = rs.GetObject(message, preselect=True, filter=rs.filter.curve | rs.filter.textdot) if guid: prefix = network.attributes['name'] name = rs.ObjectName(guid).split('.') if 'edge' in name: if not prefix or prefix in name: key = name[-1] u, v = key.split('-') u = ast.literal_eval(u) v = ast.literal_eval(v) return u, v return None def network_select_edges(network, message="Select edges."): """Select multiple edges of a network. Parameters ---------- network: :class:`compas.datastructures.Network` message: str, optional Returns ------- list of tuple of hashable """ keys = [] guids = rs.GetObjects(message, preselect=True, filter=rs.filter.curve | rs.filter.textdot) if guids: prefix = network.attributes['name'] seen = set() for guid in guids: name = rs.ObjectName(guid).split('.') if 'edge' in name: if not prefix or prefix in name: key = name[-1] if not seen.add(key): u, v = key.split('-') u = ast.literal_eval(u) v = ast.literal_eval(v) keys.append((u, v)) return keys # ============================================================================== # Main # ============================================================================== if __name__ == '__main__': pass ```
{ "source": "jfcorbett/data-driven-web-apps-with-flask", "score": 3 }
#### File: pypi_org/data/package.py ```python import datetime from typing import Iterable import sqlalchemy as sa import sqlalchemy.orm as orm from pypi_org.data.modelbase import SqlAlchemyBase from pypi_org.data.releases import Release class Package(SqlAlchemyBase): # This class will be associated to one table in the db. # Inherits from singleton base class. (One base class for one database.) # Style: db table names are same as class, but lowercase and plural __tablename__ = 'packages' # The class' fields are each associated to a column in the db table (col name = field var name) id = sa.Column(sa.String, primary_key=True) # primary keys automatically get an index created = sa.Column(sa.DateTime, default=datetime.datetime.now, index=True) summary = sa.Column(sa.String, nullable=False) description = sa.Column(sa.String, nullable=True) homepage = sa.Column(sa.String) docs_url = sa.Column(sa.String) package_url = sa.Column(sa.String) author_name = sa.Column(sa.String) author_email = sa.Column(sa.String, index=True) # index improves++ perf for sorting, lookup... license = sa.Column(sa.String, index=True) # releases relationship # Set up this field's (db column's) relationship to some other db table releases: Iterable[Release] = orm.relation("Release", order_by=[ Release.major_ver.desc(), Release.minor_ver.desc(), Release.build_ver.desc(), ], back_populates='package') # user can now access relationship via Release.package def __repr__(self): return f'<Package {self.id}>' ``` #### File: flasktut/tests/test_package.py ```python import datetime import unittest.mock from flask import Response from tests.client_for_tests import flask_app, client def test_package_details_success(): # Arrange from pypi_org.views.package_views import package_details from pypi_org.data.package import Package from pypi_org.data.releases import Release test_package = Package() test_package.id = 'sqlalchemy' test_package.description = "TDB" test_package.releases = [ Release(created_date=datetime.datetime.now(), major_ver=1, minor_ver=2, build_ver=200), Release(created_date=datetime.datetime.now() - datetime.timedelta(days=10)), ] # Act with unittest.mock.patch('pypi_org.services.package_service.get_package_by_id', return_value=test_package): with flask_app.test_request_context(path='/project/' + test_package.id): resp: Response = package_details(test_package.id) # Assert assert b'sqlalchemy 1.2.200' in resp.data def test_package_details_404(client): # Arrange bad_package_url = 'sqlalchemy_missing' # Act with unittest.mock.patch('pypi_org.services.package_service.get_package_by_id', return_value=None): resp: Response = client.get(bad_package_url) assert resp.status_code == 404 ```
{ "source": "jfcorbett/flask-sspi", "score": 2 }
#### File: flask-sspi/flask_sspi_fake/_stubs.py ```python import base64 import logging logger = logging.getLogger(__name__) from flask import Response from flask import _request_ctx_stack as stack from flask import make_response from flask import request, session, g from functools import wraps from socket import gethostname import os import datetime import uuid _PKG_NAME = 'NTLM' _sessions = {} def _user_context_processor(): if hasattr(g, "current_user") and g.current_user is not None: return dict(current_user=g.current_user) else: return {} def init_sspi(app, service='HTTP', hostname=gethostname(), package='NTLM', add_context_processor=True): ''' Configure the SSPI service, and validate the presence of the appropriate informations if necessary. :param app: a flask application :type app: flask.Flask :param service: GSSAPI service name :type service: str :param hostname: hostname the service runs under :type hostname: str :param package: package the service runs under ('NTLM') ('Negotiate' is not yet implemented) :type package: str ''' global _SERVICE_NAME _SERVICE_NAME = "%s@%s" % (service, hostname) _PKG_NAME = package if add_context_processor: app.context_processor(_user_context_processor) def _get_user_name(): return os.getlogin() def _init_session(): logger.debug("Init session") session['uuid'] = uuid.uuid4().bytes _sessions[session['uuid']] = {} _sessions[session['uuid']]['sa'] = 'sspi.ServerAuth(_PKG_NAME)' # one per session # TODO cleanup other entries def _sspi_handler(session): global _sessions if 'uuid' not in session or session['uuid'] not in _sessions: _init_session() if 'username' in _sessions[session['uuid']]: if 30 * 60 < (datetime.datetime.now() - _sessions[session['uuid']]['last_access']).seconds: logger.debug('timed out.') del _sessions[session['uuid']] _init_session() else: logger.debug('Already authenticated') _sessions[session['uuid']]['last_access'] = datetime.datetime.now() return None logger.debug("Negotiation complete") return None class Impersonate(): ''' Class that creates a context for the impersonalisation of the client user. May be used to get his name or group appartenance. Could also be used to make trusted connections with databases (not tested). Preferred usage: with Impersonate(): ... ''' def open(self): ''' Start of the impersonalisation ''' uuid = session['uuid'] self._sa = _sessions[uuid]['sa'] def close(self): ''' End of the impersonalisation ''' if self._sa: self._sa = None def __del__(self): if self._sa: self.close() def __enter__(self): self.open() return self def __exit__(self, type, value, tb): self.close() def requires_authentication(function): ''' Require that the wrapped view function only be called by users authenticated with SSPI. The view function will have the authenticated users principal passed to it as its first argument. :param function: flask view function :type function: function :returns: decorated function :rtype: function ''' @wraps(function) def decorated(*args, **kwargs): ret = _sspi_handler(session) if ret is not None: return ret else: uuid = session['uuid'] if 'username' not in _sessions[session['uuid']]: # get username through impersonalisation with Impersonate(): current_user = _get_user_name() g.current_user = current_user _sessions[uuid]['username'] = current_user _sessions[uuid]['last_access'] = datetime.datetime.now() else: g.current_user = _sessions[uuid]['username'] # call route function response = function(g.current_user, *args, **kwargs) response = make_response(response) return response return decorated def authenticate(function): ''' Require that the wrapped view function only be called by users authenticated with SSPI. :param function: flask view function :type function: function :returns: decorated function :rtype: function ''' @wraps(function) def decorated(*args, **kwargs): ret = _sspi_handler(session) if ret is not None: return ret else: uuid = session['uuid'] if 'username' not in _sessions[session['uuid']]: # get username through impersonalisation with Impersonate(): current_user = _get_user_name() g.current_user = current_user _sessions[uuid]['username'] = current_user _sessions[uuid]['last_access'] = datetime.datetime.now() else: g.current_user = _sessions[uuid]['username'] # call route function response = function(*args, **kwargs) if response: response = make_response(response) return response return decorated ```
{ "source": "jfcorsini/aviguardx", "score": 4 }
#### File: aviguardx/FRCNN_predict/predict.py ```python from FRCNN_predict.frcnn import FRCNN from PIL import Image frcnn = FRCNN() def run_prediction(image_path, show=False): image = Image.open('./results/' + image_path + '.jpeg') try: image = image.convert("RGB") except: print('Open Error! Try again!') else: r_image, prediction = frcnn.detect_image(image) r_image.save('./results/' + image_path + '_predicted.jpeg') if show: r_image.show() if len(prediction) == 0: print("No object") else: print('left, top, right, bottom coordinates:') print(prediction) return prediction ``` #### File: processing/passiveRadar/config.py ```python import yaml import fractions import numpy as np def getConfiguration(): '''sets up parameters for passive radar processing''' config_file = open('processing/PRconfig.yaml', 'r') config = yaml.safe_load(config_file) config_file.close() # get the cpi length in samples - should be a power of 2 for computational # efficiency. config['cpi_samples'] = nextpow2(config['input_sample_rate'] * config['cpi_seconds_nominal']) # Override because sample config['IF_sample_rate'] = config['input_sample_rate'] # as a result of the approximate rational resampling, the actual cpi # duration differs from the nominal value by a small amount. config['cpi_seconds_actual'] = config['cpi_samples'] \ / config['input_sample_rate'] config['doppler_cell_width'] = 1 / config['cpi_seconds_actual'] # the width of each range cell in km config['range_cell_width'] = 2.998e5 / config['IF_sample_rate'] # number of range cells needed to obtaine the desired range config['num_range_cells'] = round(config['max_range_nominal'] / config['range_cell_width']) # true bistatic range config['max_range_actual'] = config['num_range_cells'] \ * config['range_cell_width'] # number of doppler cells - is a power of 2 for computational efficiency config['num_doppler_cells'] = nearestpow2(2 * config['max_doppler_nominal'] * config['cpi_seconds_actual']) # actual maximum doppler shift config['max_doppler_actual'] = config['num_doppler_cells'] \ / (2 * config['cpi_seconds_actual']) # get the chunk sizes to be used for processing. This depends on whether # the CPI sections overlap if config['overlap_cpi']: config['input_chunk_length'] = int(np.floor(config['cpi_samples'])) if config['input_chunk_length'] % 2 != 0: config['input_chunk_length'] -= 1 config['output_chunk_length'] = config['cpi_samples'] // 2 config['window_overlap'] = config['cpi_samples'] // 4 config['frame_interval'] = config['cpi_seconds_actual'] / 2 else: config['input_chunk_length'] = int(np.floor(config['cpi_samples']) * 2) config['output_chunk_length'] = config['cpi_samples'] config['frame_interval'] = config['cpi_seconds_actual'] config['range_doppler_map_fname'] = config['output_fname'] + '.zarr' config['meta_fname'] = config['output_fname'] + '.npz' return config def nextpow2(i): n = 1 while n < i: n *= 2 return n def nearestpow2(i): nextp2 = nextpow2(i) prevp2 = nextp2 // 2 if (nextp2 - i) < (i - prevp2): return nextp2 else: return prevp2 ``` #### File: processing/passiveRadar/data_processor.py ```python import numpy as np import zarr import dask.array as da import scipy.signal as signal from processing.passiveRadar.signal_utils import find_channel_offset, \ deinterleave_IQ, preprocess_kerberossdr_input from processing.passiveRadar.clutter_removal import LS_Filter_Multiple from processing.passiveRadar.range_doppler_processing import fast_xambg def process_data(config, folder_name): file1 = './data/' + folder_name + '/output1' file2 = './data/' + folder_name + '/output2' refInputFile = preprocess_kerberossdr_input(np.fromfile( open(file1), dtype=np.float32)) svrInputFile = preprocess_kerberossdr_input(np.fromfile( open(file2), dtype=np.float32)) # get the first few hundred thousand samples of data and use it to # estimate the offset between the channels refc1 = refInputFile[0:20*config['cpi_samples']] srvc1 = svrInputFile[0:20*config['cpi_samples']] offset = find_channel_offset(refc1, srvc1, 1, 5000000) # Convert to dask array after de-interleave IQ samples if offset > 0: ref_data = da.from_array(deinterleave_IQ(refInputFile[offset:]), chunks=(config['input_chunk_length']//2,)) srv_data = da.from_array(deinterleave_IQ(svrInputFile[:-offset]), chunks=(config['input_chunk_length']//2,)) elif offset < 0: ref_data = da.from_array(deinterleave_IQ(refInputFile[:offset]), chunks=(config['input_chunk_length']//2,)) srv_data = da.from_array(deinterleave_IQ(svrInputFile[-offset:]), chunks=(config['input_chunk_length']//2,)) else: ref_data = da.from_array(deinterleave_IQ(refInputFile), chunks=(config['input_chunk_length']//2,)) srv_data = da.from_array(deinterleave_IQ(svrInputFile), chunks=(config['input_chunk_length']//2,)) print(f"Corrected a sample offset of {offset} samples between channels") # trim the data to an integer number of block lengths N_chunks_ref = ref_data.shape[0] // (config['input_chunk_length']//2) N_chunks_srv = srv_data.shape[0] // (config['input_chunk_length']//2) N_chunks = min(N_chunks_ref, N_chunks_srv, config['num_frames']) - 1 ref_data = ref_data[0:N_chunks*config['input_chunk_length']//2] srv_data = srv_data[0:N_chunks*config['input_chunk_length']//2] # apply the block least squares filter srv_cleaned = da.map_blocks(LS_Filter_Multiple, ref_data, srv_data, config['num_range_cells'], config['IF_sample_rate'], # remove clutter at 0Hz, +/-1Hz, +/-2Hz [0, 1, -1, 2, -2], dtype=np.complex64, chunks=(config['output_chunk_length'],)) if config['overlap_cpi']: # pad chunks with overlapping sections ref_data = da.overlap.overlap( ref_data, depth=config['window_overlap'], boundary=0) srv_cleaned = da.overlap.overlap( srv_cleaned, depth=config['window_overlap'], boundary=0) # Compute Dask operation and convert to Numpy array ref_data = ref_data.compute() srv_cleaned = srv_cleaned.compute() # reshape to N_chunks, chunk_length ref_data = ref_data.reshape(N_chunks, -1) srv_cleaned = srv_cleaned.reshape(N_chunks, -1) window = signal.get_window(('kaiser', 5.0), config['cpi_samples']) # use the cross-ambiguity function to compute range-doppler maps xambg = fast_xambg(ref_data, srv_cleaned, config['num_range_cells'], config['num_doppler_cells'], config['cpi_samples'], window) return xambg ```
{ "source": "jfcoz/azure-cli", "score": 2 }
#### File: command_modules/acr/build_task.py ```python from msrest.exceptions import ValidationError from msrestazure.azure_exceptions import CloudError from knack.log import get_logger from knack.util import CLIError from azure.cli.core.commands import LongRunningOperation from azure.mgmt.containerregistry.v2018_02_01_preview.models import ( BuildTask, SourceRepositoryProperties, SourceControlAuthInfo, PlatformProperties, DockerBuildStep, BuildTaskBuildRequest, BuildTaskUpdateParameters, SourceRepositoryUpdateParameters, DockerBuildStepUpdateParameters, OsType ) from ._utils import validate_managed_registry from ._stream_utils import stream_logs from ._build_polling import get_build_with_polling logger = get_logger(__name__) BUILD_TASKS_NOT_SUPPORTED = 'Build Tasks are only supported for managed registries.' DEFAULT_TOKEN_TYPE = 'PAT' def acr_build_task_create(cmd, # pylint: disable=too-many-locals client, build_task_name, registry_name, repository_url, image_names, git_access_token, alias=None, status='Enabled', os_type=OsType.linux.value, cpu=2, timeout=3600, commit_trigger_enabled=True, branch='master', no_push=False, no_cache=False, docker_file_path="Dockerfile", build_arg=None, secret_build_arg=None, base_image_trigger='Runtime', resource_group_name=None): registry, resource_group_name = validate_managed_registry( cmd.cli_ctx, registry_name, resource_group_name, BUILD_TASKS_NOT_SUPPORTED) source_control_type = 'VisualStudioTeamService' if 'GITHUB.COM' in repository_url.upper(): source_control_type = 'GitHub' build_task_create_parameters = BuildTask( location=registry.location, alias=alias if alias else build_task_name, source_repository=SourceRepositoryProperties( source_control_type=source_control_type, repository_url=repository_url, is_commit_trigger_enabled=commit_trigger_enabled, source_control_auth_properties=SourceControlAuthInfo( token=git_access_token, token_type=DEFAULT_TOKEN_TYPE, refresh_token='', scope='repo', expires_in=1313141 ) ), platform=PlatformProperties(os_type=os_type, cpu=cpu), status=status, timeout=timeout ) try: build_task = LongRunningOperation(cmd.cli_ctx)( client.create(resource_group_name=resource_group_name, registry_name=registry_name, build_task_name=build_task_name, build_task_create_parameters=build_task_create_parameters)) except ValidationError as e: raise CLIError(e) from ._client_factory import cf_acr_build_steps client_build_steps = cf_acr_build_steps(cmd.cli_ctx) docker_build_step = DockerBuildStep( branch=branch, image_names=image_names, is_push_enabled=not no_push, no_cache=no_cache, docker_file_path=docker_file_path, build_arguments=(build_arg if build_arg else []) + (secret_build_arg if secret_build_arg else []), base_image_trigger=base_image_trigger ) try: build_step = LongRunningOperation(cmd.cli_ctx)( client_build_steps.create(resource_group_name=resource_group_name, registry_name=registry_name, build_task_name=build_task_name, step_name=_get_build_step_name(build_task_name), properties=docker_build_step)) setattr(build_task, 'properties', build_step.properties) except ValidationError as e: raise CLIError(e) return build_task def acr_build_task_show(cmd, client, build_task_name, registry_name, with_secure_properties=False, resource_group_name=None): _, resource_group_name = validate_managed_registry( cmd.cli_ctx, registry_name, resource_group_name, BUILD_TASKS_NOT_SUPPORTED) build_task = client.get(resource_group_name, registry_name, build_task_name) from ._client_factory import cf_acr_build_steps client_build_steps = cf_acr_build_steps(cmd.cli_ctx) try: build_step = client_build_steps.get(resource_group_name, registry_name, build_task_name, _get_build_step_name(build_task_name)) setattr(build_task, 'properties', build_step.properties) except CloudError as e: if e.status_code != 404: raise logger.warning("Could not get build task details. Build task basic information is printed.") if not with_secure_properties: return build_task try: source_repository = client.list_source_repository_properties(resource_group_name, registry_name, build_task_name) setattr(getattr(build_task, 'source_repository'), 'source_control_auth_properties', getattr(source_repository, 'source_control_auth_properties')) except CloudError as e: if e.status_code != 403: raise logger.warning("No permission to get source repository secure properties.") try: build_arguments = client_build_steps.list_build_arguments(resource_group_name=resource_group_name, registry_name=registry_name, build_task_name=build_task_name, step_name=_get_build_step_name(build_task_name)) setattr(getattr(build_task, 'properties'), 'buildArguments', list(build_arguments)) except CloudError as e: if e.status_code != 403: raise logger.warning("No permission to get secure build arguments.") return build_task def acr_build_task_list(cmd, client, registry_name, resource_group_name=None): _, resource_group_name = validate_managed_registry( cmd.cli_ctx, registry_name, resource_group_name, BUILD_TASKS_NOT_SUPPORTED) return client.list(resource_group_name, registry_name) def acr_build_task_delete(cmd, client, build_task_name, registry_name, resource_group_name=None): _, resource_group_name = validate_managed_registry( cmd.cli_ctx, registry_name, resource_group_name, BUILD_TASKS_NOT_SUPPORTED) return client.delete(resource_group_name, registry_name, build_task_name) def acr_build_task_update(cmd, # pylint: disable=too-many-locals client, build_task_name, registry_name, resource_group_name=None, # build task parameters alias=None, status=None, os_type=None, cpu=None, timeout=None, repository_url=None, commit_trigger_enabled=None, git_access_token=None, # build step parameters branch=None, image_names=None, no_push=None, no_cache=None, docker_file_path=None, build_arg=None, secret_build_arg=None, base_image_trigger=None): _, resource_group_name = validate_managed_registry( cmd.cli_ctx, registry_name, resource_group_name, BUILD_TASKS_NOT_SUPPORTED) build_task = client.get(resource_group_name, registry_name, build_task_name) # pylint: disable=too-many-boolean-expressions if alias or status or os_type or cpu or timeout or repository_url or commit_trigger_enabled or git_access_token: build_task_update_parameters = BuildTaskUpdateParameters() build_task_update_parameters.alias = alias build_task_update_parameters.status = status build_task_update_parameters.platform = PlatformProperties(os_type=os_type or build_task.platform.os_type, cpu=cpu) build_task_update_parameters.timeout = timeout build_task_update_parameters.source_repository = SourceRepositoryUpdateParameters( source_control_auth_properties=SourceControlAuthInfo( token=git_access_token, token_type=DEFAULT_TOKEN_TYPE) if git_access_token else None, is_commit_trigger_enabled=commit_trigger_enabled) build_task = LongRunningOperation(cmd.cli_ctx)( client.update(resource_group_name=resource_group_name, registry_name=registry_name, build_task_name=build_task_name, step_name=_get_build_step_name(build_task_name), build_task_update_parameters=build_task_update_parameters)) from ._client_factory import cf_acr_build_steps client_build_steps = cf_acr_build_steps(cmd.cli_ctx) build_step = None # pylint: disable=too-many-boolean-expressions if branch or image_names or no_push is not None or no_cache is not None or \ docker_file_path or build_arg or secret_build_arg or base_image_trigger: build_step_update_parameters = DockerBuildStepUpdateParameters() build_step_update_parameters.branch = branch build_step_update_parameters.image_names = image_names build_step_update_parameters.is_push_enabled = (not no_push) if no_push is not None else None build_step_update_parameters.no_cache = no_cache build_step_update_parameters.docker_file_path = docker_file_path build_step_update_parameters.build_arguments = build_arg + secret_build_arg \ if build_arg and secret_build_arg else build_arg or secret_build_arg build_step_update_parameters.base_image_trigger = base_image_trigger try: build_step = LongRunningOperation(cmd.cli_ctx)( client_build_steps.update(resource_group_name=resource_group_name, registry_name=registry_name, build_task_name=build_task_name, step_name=_get_build_step_name(build_task_name), properties=build_step_update_parameters)) except CloudError as e: if e.status_code != 404: raise logger.warning("Could not update build task details. Build task basic information is updated.") # If build step is not updated, get it here if not build_step: try: build_step = client_build_steps.get(resource_group_name, registry_name, build_task_name, _get_build_step_name(build_task_name)) except CloudError as e: if e.status_code != 404: raise if build_step: setattr(build_task, 'properties', build_step.properties) return build_task def acr_build_task_update_build(cmd, client, build_id, registry_name, no_archive=None, resource_group_name=None): _, resource_group_name = validate_managed_registry( cmd.cli_ctx, registry_name, resource_group_name, BUILD_TASKS_NOT_SUPPORTED) is_archive_enabled = not no_archive if no_archive is not None else None return client.update(resource_group_name=resource_group_name, registry_name=registry_name, build_id=build_id, is_archive_enabled=is_archive_enabled) def _get_build_step_name(build_task_name): return '{}StepName'.format(build_task_name) def acr_build_task_run(cmd, client, # cf_acr_builds build_task_name, registry_name, no_format=False, no_logs=False, resource_group_name=None): _, resource_group_name = validate_managed_registry( cmd.cli_ctx, registry_name, resource_group_name, BUILD_TASKS_NOT_SUPPORTED) from ._client_factory import cf_acr_registries_builds client_registries = cf_acr_registries_builds(cmd.cli_ctx) queued_build = LongRunningOperation(cmd.cli_ctx)( client_registries.queue_build(resource_group_name, registry_name, BuildTaskBuildRequest(build_task_name=build_task_name))) build_id = queued_build.build_id logger.warning("Queued a build with ID: %s", build_id) logger.warning("Waiting for agent...") if no_logs: return get_build_with_polling(client, build_id, registry_name, resource_group_name) return stream_logs(client, build_id, registry_name, resource_group_name, no_format, True) def acr_build_task_show_build(cmd, client, # cf_acr_builds build_id, registry_name, resource_group_name=None): _, resource_group_name = validate_managed_registry( cmd.cli_ctx, registry_name, resource_group_name, BUILD_TASKS_NOT_SUPPORTED) return client.get(resource_group_name, registry_name, build_id) def acr_build_task_list_builds(cmd, client, # cf_acr_builds registry_name, top=15, build_task_name=None, build_status=None, image=None, resource_group_name=None): _, resource_group_name = validate_managed_registry( cmd.cli_ctx, registry_name, resource_group_name, BUILD_TASKS_NOT_SUPPORTED) filter_str = None filter_str = _add_build_filter(filter_str, 'BuildTaskName', build_task_name, 'eq') filter_str = _add_build_filter(filter_str, 'Status', build_status, 'eq') if image: from .repository import get_image_digest try: repository, _, manifest = get_image_digest(cmd.cli_ctx, registry_name, image) filter_str = _add_build_filter( filter_str, 'OutputImageManifests', '{}@{}'.format(repository, manifest), 'contains') except CLIError as e: raise CLIError("Could not find image '{}'. {}".format(image, e)) return client.list(resource_group_name, registry_name, filter=filter_str, top=top) def _add_build_filter(orig_filter, name, value, operator): if not value: return orig_filter if operator == 'contains': new_filter_str = "contains({}, '{}')".format(name, value) elif operator == 'eq': new_filter_str = "{} eq '{}'".format(name, value) else: raise ValueError("Allowed filter operator: {}".format(['contains', 'eq'])) return "{} and {}".format(orig_filter, new_filter_str) if orig_filter else new_filter_str def acr_build_task_logs(cmd, client, # cf_acr_builds registry_name, build_id=None, build_task_name=None, image=None, no_format=False, resource_group_name=None): _, resource_group_name = validate_managed_registry( cmd.cli_ctx, registry_name, resource_group_name, BUILD_TASKS_NOT_SUPPORTED) if not build_id: # show logs for the last build paged_builds = acr_build_task_list_builds(cmd, client, registry_name, top=1, build_task_name=build_task_name, image=image) try: build_id = paged_builds.get(0)[0].build_id logger.warning(_get_list_builds_message(base_message="Showing logs of the last created build", build_task_name=build_task_name, image=image)) logger.warning("Build ID: %s", build_id) except (AttributeError, KeyError, TypeError, IndexError): raise CLIError(_get_list_builds_message(base_message="Could not find the last created build", build_task_name=build_task_name, image=image)) return stream_logs(client, build_id, registry_name, resource_group_name, no_format) def _get_list_builds_message(base_message, build_task_name=None, image=None): if build_task_name: base_message = "{} for build task '{}'".format(base_message, build_task_name) if image: base_message = "{} for image '{}'".format(base_message, image) return "{}.".format(base_message) ``` #### File: command_modules/acs/_format.py ```python from collections import OrderedDict def aks_list_table_format(results): """"Format a list of managed clusters as summary results for display with "-o table".""" return [_aks_table_format(r) for r in results] def osa_list_table_format(results): """"Format a list of OpenShift managed clusters as summary results for display with "-o table".""" return [_osa_table_format(r) for r in results] def aks_show_table_format(result): """Format a managed cluster as summary results for display with "-o table".""" return [_aks_table_format(result)] def _aks_table_format(result): from jmespath import compile as compile_jmes, Options parsed = compile_jmes("""{ name: name, location: location, resourceGroup: resourceGroup, kubernetesVersion: kubernetesVersion, provisioningState: provisioningState, fqdn: fqdn }""") # use ordered dicts so headers are predictable return parsed.search(result, Options(dict_cls=OrderedDict)) def _osa_table_format(result): from jmespath import compile as compile_jmes, Options parsed = compile_jmes("""{ name: name, location: location, resourceGroup: resourceGroup, openShiftVersion: openShiftVersion, provisioningState: provisioningState, fqdn: fqdn }""") # use ordered dicts so headers are predictable return parsed.search(result, Options(dict_cls=OrderedDict)) def aks_upgrades_table_format(result): """Format get-upgrades results as a summary for display with "-o table".""" from jmespath import compile as compile_jmes, Options # This expression assumes there is one node pool, and that the master and nodes upgrade in lockstep. parsed = compile_jmes("""{ name: name, resourceGroup: resourceGroup, masterVersion: controlPlaneProfile.kubernetesVersion || `unknown`, nodePoolVersion: agentPoolProfiles[0].kubernetesVersion || `unknown`, upgrades: controlPlaneProfile.upgrades || [`None available`] | sort_versions(@) | join(`, `, @) }""") # use ordered dicts so headers are predictable return parsed.search(result, Options(dict_cls=OrderedDict, custom_functions=_custom_functions())) def aks_versions_table_format(result): """Format get-versions results as a summary for display with "-o table".""" from jmespath import compile as compile_jmes, Options parsed = compile_jmes("""orchestrators[].{ kubernetesVersion: orchestratorVersion, upgrades: upgrades[].orchestratorVersion || [`None available`] | sort_versions(@) | join(`, `, @) }""") # use ordered dicts so headers are predictable results = parsed.search(result, Options(dict_cls=OrderedDict, custom_functions=_custom_functions())) return sorted(results, key=lambda x: version_to_tuple(x.get('kubernetesVersion')), reverse=True) def version_to_tuple(v): """Quick-and-dirty sort function to handle simple semantic versions like 1.7.12 or 1.8.7.""" return tuple(map(int, (v.split('.')))) def _custom_functions(): from jmespath import functions class CustomFunctions(functions.Functions): # pylint: disable=too-few-public-methods @functions.signature({'types': ['array']}) def _func_sort_versions(self, s): # pylint: disable=no-self-use """Custom JMESPath `sort_versions` function that sorts an array of strings as software versions.""" try: return sorted(s, key=version_to_tuple) except (TypeError, ValueError): # if it wasn't sortable, return the input so the pipeline continues return s return CustomFunctions() ``` #### File: tests/latest/test_configure.py ```python import unittest class TestConfigure(unittest.TestCase): def test_configure_output_options(self): from azure.cli.core._output import AzOutputProducer from azure.cli.core.mock import DummyCli from azure.cli.command_modules.configure._consts import OUTPUT_LIST output_producer = AzOutputProducer(DummyCli()) cli_output_options = set(output_producer._FORMAT_DICT.keys()) configure_output_options = set(item["name"] for item in OUTPUT_LIST) self.assertEqual(cli_output_options, configure_output_options, "\n{}'s output options: {}\ndon't match az configure's output options ({})." .format(AzOutputProducer.__name__, cli_output_options, configure_output_options)) if __name__ == '__main__': unittest.main() ``` #### File: command_modules/eventgrid/custom.py ```python import re from six.moves.urllib.parse import quote # pylint: disable=import-error from knack.log import get_logger from knack.util import CLIError from msrestazure.tools import parse_resource_id from azure.cli.core.commands.client_factory import get_subscription_id from azure.mgmt.eventgrid.models import ( EventSubscription, EventSubscriptionUpdateParameters, WebHookEventSubscriptionDestination, RetryPolicy, EventHubEventSubscriptionDestination, StorageQueueEventSubscriptionDestination, HybridConnectionEventSubscriptionDestination, StorageBlobDeadLetterDestination, EventSubscriptionFilter) logger = get_logger(__name__) EVENTGRID_NAMESPACE = "Microsoft.EventGrid" RESOURCES_NAMESPACE = "Microsoft.Resources" SUBSCRIPTIONS = "subscriptions" RESOURCE_GROUPS = "resourcegroups" EVENTGRID_TOPICS = "topics" WEBHOOK_DESTINATION = "webhook" EVENTHUB_DESTINATION = "eventhub" STORAGEQUEUE_DESTINATION = "storagequeue" HYBRIDCONNECTION_DESTINATION = "hybridconnection" GLOBAL = "global" def cli_topic_list( client, resource_group_name=None): if resource_group_name: return client.list_by_resource_group(resource_group_name) return client.list_by_subscription() def cli_topic_create_or_update( client, resource_group_name, topic_name, location, tags=None): async_topic_create = client.create_or_update( resource_group_name, topic_name, location, tags) created_topic = async_topic_create.result() return created_topic def cli_eventgrid_event_subscription_create( # pylint: disable=too-many-locals cmd, client, event_subscription_name, endpoint, resource_id=None, source_resource_id=None, resource_group_name=None, topic_name=None, endpoint_type=WEBHOOK_DESTINATION, included_event_types=None, subject_begins_with=None, subject_ends_with=None, is_subject_case_sensitive=False, max_delivery_attempts=30, event_ttl=1440, deadletter_endpoint=None, labels=None): scope = _get_scope_for_event_subscription( cli_ctx=cmd.cli_ctx, source_resource_id=source_resource_id, resource_id=resource_id, topic_name=topic_name, resource_group_name=resource_group_name) # Construct RetryPolicy based on max_delivery_attempts and event_ttl max_delivery_attempts = int(max_delivery_attempts) event_ttl = int(event_ttl) _validate_retry_policy(max_delivery_attempts, event_ttl) retry_policy = RetryPolicy(max_delivery_attempts=max_delivery_attempts, event_time_to_live_in_minutes=event_ttl) destination = _get_endpoint_destination(endpoint_type, endpoint) event_subscription_filter = EventSubscriptionFilter( subject_begins_with=subject_begins_with, subject_ends_with=subject_ends_with, included_event_types=included_event_types, is_subject_case_sensitive=is_subject_case_sensitive) deadletter_destination = None if deadletter_endpoint is not None: deadletter_destination = _get_deadletter_destination(deadletter_endpoint) event_subscription_info = EventSubscription( destination=destination, filter=event_subscription_filter, labels=labels, retry_policy=retry_policy, dead_letter_destination=deadletter_destination) _warn_if_manual_handshake_needed(endpoint_type, endpoint) return client.create_or_update( scope, event_subscription_name, event_subscription_info).result() def cli_eventgrid_event_subscription_delete( cmd, client, event_subscription_name, resource_id=None, source_resource_id=None, resource_group_name=None, topic_name=None): scope = _get_scope_for_event_subscription( cli_ctx=cmd.cli_ctx, source_resource_id=source_resource_id, resource_id=resource_id, topic_name=topic_name, resource_group_name=resource_group_name) async_event_subscription_delete = client.delete( scope, event_subscription_name) return async_event_subscription_delete.result() def event_subscription_setter( cmd, client, parameters, event_subscription_name, source_resource_id=None, resource_id=None, resource_group_name=None, topic_name=None): scope = _get_scope_for_event_subscription( cli_ctx=cmd.cli_ctx, source_resource_id=source_resource_id, resource_id=resource_id, topic_name=topic_name, resource_group_name=resource_group_name) async_event_subscription_update = client.update( scope, event_subscription_name, parameters) updated_event_subscription = async_event_subscription_update.result() return updated_event_subscription def cli_eventgrid_event_subscription_get( cmd, client, event_subscription_name, source_resource_id=None, resource_id=None, resource_group_name=None, topic_name=None, include_full_endpoint_url=False): scope = _get_scope_for_event_subscription( cli_ctx=cmd.cli_ctx, source_resource_id=source_resource_id, resource_id=resource_id, topic_name=topic_name, resource_group_name=resource_group_name) retrieved_event_subscription = client.get(scope, event_subscription_name) destination = retrieved_event_subscription.destination if include_full_endpoint_url and isinstance(destination, WebHookEventSubscriptionDestination): full_endpoint_url = client.get_full_url(scope, event_subscription_name) destination.endpoint_url = full_endpoint_url.endpoint_url return retrieved_event_subscription def cli_event_subscription_list( # pylint: disable=too-many-return-statements client, resource_id=None, source_resource_id=None, topic_name=None, resource_group_name=None, location=None, topic_type_name=None): if source_resource_id is not None: # If Source Resource ID is specified, we need to list event subscriptions for that particular resource. # Since a full resource ID is specified, it should override all other defaults such as default location and RG # No other parameters must be specified if (topic_type_name is not None or resource_id is not None): raise CLIError('usage error: Since --source-resource-id is specified, none of the other parameters must ' 'be specified.') return _list_event_subscriptions_by_resource_id(client, source_resource_id) if resource_id is not None: # DEPRECATED # If resource ID is specified, we need to list event subscriptions for that particular resource. # Since a full resource ID is specified, it should override all other defaults such as default location and RG # No other parameters must be specified if topic_type_name is not None: raise CLIError('usage error: Since --resource-id is specified, none of the other parameters must ' 'be specified.') return _list_event_subscriptions_by_resource_id(client, resource_id) if topic_name: # DEPRECATED if resource_group_name is None: raise CLIError('Since --topic-name is specified, --resource-group must also be specified.') return client.list_by_resource( resource_group_name, EVENTGRID_NAMESPACE, EVENTGRID_TOPICS, topic_name) if location is None: # Since resource-id was not specified, location must be specified: e.g. "westus2" or "global". If not error OUT. raise CLIError('usage error: --source-resource-id ID | --location LOCATION' ' [--resource-group RG] [--topic-type-name TOPIC_TYPE_NAME]') if topic_type_name is None: # No topic-type is specified: return event subscriptions across all topic types for this location. if location.lower() == GLOBAL.lower(): if resource_group_name: return client.list_global_by_resource_group(resource_group_name) return client.list_global_by_subscription() if resource_group_name: return client.list_regional_by_resource_group(resource_group_name, location) return client.list_regional_by_subscription(location) # Topic type name is specified if location.lower() == GLOBAL.lower(): if not _is_topic_type_global_resource(topic_type_name): raise CLIError('Invalid usage: Global cannot be specified for the location ' 'as the specified topic type is a regional topic type with ' 'regional event subscriptions. Specify a location value such ' 'as westus. Global can be used only for global topic types: ' 'Microsoft.Resources.Subscriptions and Microsoft.Resources.ResourceGroups.') if resource_group_name: return client.list_global_by_resource_group_for_topic_type(resource_group_name, topic_type_name) return client.list_global_by_subscription_for_topic_type(topic_type_name) if resource_group_name: return client.list_regional_by_resource_group_for_topic_type(resource_group_name, location, topic_type_name) return client.list_regional_by_subscription_for_topic_type(location, topic_type_name) def _get_scope( cli_ctx, resource_group_name, provider_namespace, resource_type, resource_name): subscription_id = get_subscription_id(cli_ctx) if provider_namespace == RESOURCES_NAMESPACE: if resource_group_name: scope = ( '/subscriptions/{}/resourceGroups/{}' .format(quote(subscription_id), quote(resource_group_name))) else: scope = ( '/subscriptions/{}' .format(quote(subscription_id))) else: scope = ( '/subscriptions/{}/resourceGroups/{}/providers/{}/{}/{}' .format(quote(subscription_id), quote(resource_group_name), quote(provider_namespace), quote(resource_type), quote(resource_name))) return scope def _get_scope_for_event_subscription( cli_ctx, resource_id, source_resource_id, topic_name, resource_group_name): if all([resource_id, source_resource_id]): raise CLIError('usage error: specify either "--resource-id" or "--source-resource-id", not both.') if all([resource_id, topic_name]): raise CLIError('usage error: specify either "--topic-name" or "--resource-id", not both.') if all([source_resource_id, topic_name]): raise CLIError('usage error: specify either "--topic-name" or "--source-resource-id", not both.') # A default resource Group Name could have been configured # but if --resource-id or --source-resource-id is provided, it always overrides it. if source_resource_id: # Source Resource ID is provided, use that as the scope for the event subscription. # This is the latest non-deprecated way of specifying the source resource. scope = source_resource_id elif resource_id: # Deprecated scope = resource_id elif topic_name: # DEPRECATED: Topic name is provided, use the topic and resource group to build a scope for the user topic if resource_group_name is None: raise CLIError("When --topic-name is specified, the --resource-group-name must also be specified.") scope = _get_scope(cli_ctx, resource_group_name, EVENTGRID_NAMESPACE, EVENTGRID_TOPICS, topic_name) elif resource_group_name: # DEPRECATED: Event subscription to a resource group. scope = _get_scope(cli_ctx, resource_group_name, RESOURCES_NAMESPACE, RESOURCE_GROUPS, resource_group_name) else: # DEPRECATED logger.warning('This default option uses Azure subscription as the source resource.' ' This is deprecated and will be removed in a future release.' ' Use `--source-resource-id /subscriptions/{subid}` instead.') scope = _get_scope(cli_ctx, None, RESOURCES_NAMESPACE, SUBSCRIPTIONS, get_subscription_id(cli_ctx)) return scope def event_subscription_getter( cmd, client, event_subscription_name, source_resource_id=None, resource_id=None, resource_group_name=None, topic_name=None): scope = _get_scope_for_event_subscription( cli_ctx=cmd.cli_ctx, source_resource_id=source_resource_id, resource_id=resource_id, topic_name=topic_name, resource_group_name=resource_group_name) return client.get(scope, event_subscription_name) def update_event_subscription( instance, endpoint=None, endpoint_type=WEBHOOK_DESTINATION, subject_begins_with=None, subject_ends_with=None, included_event_types=None, labels=None, deadletter_endpoint=None): event_subscription_destination = None deadletter_destination = None event_subscription_labels = instance.labels event_subscription_filter = instance.filter retry_policy = instance.retry_policy if endpoint_type.lower() != WEBHOOK_DESTINATION.lower() and endpoint is None: raise CLIError('Invalid usage: Since --endpoint-type is specified, a valid endpoint must also be specified.') if endpoint is not None: event_subscription_destination = _get_endpoint_destination(endpoint_type, endpoint) if deadletter_endpoint is not None: deadletter_destination = _get_deadletter_destination(deadletter_endpoint) if subject_begins_with is not None: event_subscription_filter.subject_begins_with = subject_begins_with if subject_ends_with is not None: event_subscription_filter.subject_ends_with = subject_ends_with if included_event_types is not None: event_subscription_filter.included_event_types = included_event_types if labels is not None: event_subscription_labels = labels params = EventSubscriptionUpdateParameters( destination=event_subscription_destination, filter=event_subscription_filter, labels=event_subscription_labels, retry_policy=retry_policy, dead_letter_destination=deadletter_destination ) return params def _get_endpoint_destination(endpoint_type, endpoint): if endpoint_type.lower() == WEBHOOK_DESTINATION.lower(): destination = WebHookEventSubscriptionDestination(endpoint_url=endpoint) elif endpoint_type.lower() == EVENTHUB_DESTINATION.lower(): destination = EventHubEventSubscriptionDestination(resource_id=endpoint) elif endpoint_type.lower() == HYBRIDCONNECTION_DESTINATION.lower(): destination = HybridConnectionEventSubscriptionDestination(resource_id=endpoint) elif endpoint_type.lower() == STORAGEQUEUE_DESTINATION.lower(): destination = _get_storage_queue_destination(endpoint) return destination def _get_storage_queue_destination(endpoint): # Supplied endpoint would be in the following format: # /subscriptions/.../storageAccounts/sa1/queueServices/default/queues/{queueName})) # and we need to break it up into: # /subscriptions/.../storageAccounts/sa1 and queueName queue_items = re.split( "/queueServices/default/queues/", endpoint, flags=re.IGNORECASE) if len(queue_items) != 2 or queue_items[0] is None or queue_items[1] is None: raise CLIError('Argument Error: Expected format of --endpoint for storage queue is:' + '/subscriptions/id/resourceGroups/rg/providers/Microsoft.Storage/' + 'storageAccounts/sa1/queueServices/default/queues/queueName') return StorageQueueEventSubscriptionDestination(resource_id=queue_items[0], queue_name=queue_items[1]) def _get_deadletter_destination(deadletter_endpoint): blob_items = re.split( "/blobServices/default/containers/", deadletter_endpoint, flags=re.IGNORECASE) if len(blob_items) != 2 or blob_items[0] is None or blob_items[1] is None: raise CLIError('Argument Error: Expected format of --deadletter-endpoint is:' + '/subscriptions/id/resourceGroups/rg/providers/Microsoft.Storage/' + 'storageAccounts/sa1/blobServices/default/containers/containerName') return StorageBlobDeadLetterDestination(resource_id=blob_items[0], blob_container_name=blob_items[1]) def _validate_retry_policy(max_delivery_attempts, event_ttl): if max_delivery_attempts < 1 or max_delivery_attempts > 30: raise CLIError('--max-delivery-attempts should be a number between 1 and 30.') if event_ttl < 1 or event_ttl > 1440: raise CLIError('--event-ttl should be a number between 1 and 1440.') def _warn_if_manual_handshake_needed(endpoint_type, endpoint): # If the endpoint belongs to a service that we know implements the subscription validation # handshake, there's no need to show this message, hence we check for those services # before showing this message. This list includes Azure Automation, EventGrid Trigger based # Azure functions, and Azure Logic Apps. if endpoint_type.lower() == WEBHOOK_DESTINATION.lower() and \ "azure-automation" not in endpoint.lower() and \ "eventgridextension" not in endpoint.lower() and \ "logic.azure" not in endpoint.lower(): logger.warning('If the provided endpoint does not support subscription validation ' 'handshake, navigate to the validation URL that you receive in the ' 'subscription validation event, in order to complete the event ' 'subscription creation or update. For more details, ' 'please visit http://aka.ms/esvalidation') def _list_event_subscriptions_by_resource_id(client, resource_id): # parse_resource_id doesn't handle resource_ids for Azure subscriptions and RGs # so, first try to look for those two patterns. if resource_id is not None: id_parts = list(filter(None, resource_id.split('/'))) if len(id_parts) < 5: # Azure subscriptions or Resource group if id_parts[0].lower() != "subscriptions": raise CLIError('The specified value for resource-id is not in the' ' expected format. It should start with /subscriptions.') subscription_id = id_parts[1] _validate_subscription_id_matches_default_subscription_id( default_subscription_id=client.config.subscription_id, provided_subscription_id=subscription_id) if len(id_parts) == 2: return client.list_global_by_subscription_for_topic_type("Microsoft.Resources.Subscriptions") if len(id_parts) == 4 and id_parts[2].lower() == "resourcegroups": resource_group_name = id_parts[3] if resource_group_name is None: raise CLIError('The specified value for resource-id is not' ' in the expected format. A valid value for' ' resource group must be provided.') return client.list_global_by_resource_group_for_topic_type( resource_group_name, "Microsoft.Resources.ResourceGroups") id_parts = parse_resource_id(resource_id) subscription_id = id_parts.get('subscription') _validate_subscription_id_matches_default_subscription_id( default_subscription_id=client.config.subscription_id, provided_subscription_id=subscription_id) rg_name = id_parts.get('resource_group') resource_name = id_parts.get('name') namespace = id_parts.get('namespace') resource_type = id_parts.get('type') if (subscription_id is None or rg_name is None or resource_name is None or namespace is None or resource_type is None): raise CLIError('The specified value for resource-id is not' ' in the expected format.') # Invoke the standard list_by_resource return client.list_by_resource( rg_name, namespace, resource_type, resource_name) def _is_topic_type_global_resource(topic_type_name): # TODO: Add here if any other global topic types get added in the future. TOPIC_TYPE_AZURE_SUBSCRIPTIONS = "Microsoft.Resources.Subscriptions" TOPIC_TYPE_AZURE_RESOURCE_GROUP = "Microsoft.Resources.ResourceGroups" TOPIC_TYPE_MAPS_ACCOUNTS = "Microsoft.Maps.Accounts" if (topic_type_name.lower() == TOPIC_TYPE_AZURE_SUBSCRIPTIONS.lower() or topic_type_name.lower() == TOPIC_TYPE_MAPS_ACCOUNTS or topic_type_name.lower() == TOPIC_TYPE_AZURE_RESOURCE_GROUP.lower()): return True return False def _validate_subscription_id_matches_default_subscription_id( default_subscription_id, provided_subscription_id): # The CLI/SDK infrastructure doesn't support overriding the subscription ID. # Hence, we validate that the provided subscription ID is the same as the default # configured subscription. if provided_subscription_id.lower() != default_subscription_id.lower(): raise CLIError('The subscription ID in the specified resource-id' ' does not match the default subscription ID. To set the default subscription ID,' ' use az account set ID_OR_NAME, or use the global argument --subscription ') ``` #### File: command_modules/kusto/commands.py ```python from azure.cli.command_modules.kusto._client_factory import cf_cluster, cf_database from azure.cli.command_modules.kusto._validators import validate_cluster_args, validate_database_args def load_command_table(self, _): from azure.cli.core.commands import CliCommandType clusters_operations = CliCommandType( operations_tmpl='azure.mgmt.kusto.operations.clusters_operations#ClustersOperations.{}', client_factory=cf_cluster) database_operations = CliCommandType( operations_tmpl='azure.mgmt.kusto.operations.databases_operations#DatabasesOperations.{}', client_factory=cf_database) with self.command_group('kusto cluster', clusters_operations, client_factory=cf_cluster) as g: g.custom_command('create', 'cluster_create', supports_no_wait=True, validator=validate_cluster_args) g.custom_command('stop', 'cluster_stop', supports_no_wait=True) g.custom_command('start', 'cluster_start', supports_no_wait=True) g.command('list', 'list_by_resource_group') g.show_command('show', 'get') g.command('delete', 'delete', confirmation=True) g.generic_update_command('update', custom_func_name='update_kusto_cluster') g.wait_command('wait') with self.command_group('kusto database', database_operations, client_factory=cf_database) as g: g.custom_command('create', 'database_create', supports_no_wait=True, validator=validate_database_args) g.command('delete', 'delete', confirmation=True) g.generic_update_command('update', custom_func_name='update_kusto_database', validator=validate_database_args, supports_no_wait=True) g.command('list', 'list_by_cluster') g.show_command('show', 'get') g.wait_command('wait') ``` #### File: command_modules/kusto/_validators.py ```python from knack.util import CLIError def validate_database_args(namespace): if namespace.hot_cache_period: hot_cache_period_in_days = round_hot_cache_to_days(namespace.hot_cache_period) if hot_cache_period_in_days < 0: raise CLIError('hot_cache_period must be a valid time') if namespace.soft_delete_period: soft_delete_period_in_days = round_soft_delete_to_days(namespace.soft_delete_period) if soft_delete_period_in_days < 0: raise CLIError('soft_delete_period must be a valid time') def validate_cluster_args(namespace): max_name_length = 22 name_length = len(namespace.cluster_name) if name_length > max_name_length: raise CLIError('name can not be longer then ' + str(max_name_length) + " letters") def round_hot_cache_to_days(time): return round_timedelta_to_days(time, 'hot_cache_period') def round_soft_delete_to_days(time): return round_timedelta_to_days(time, 'soft_delete_period') def round_timedelta_to_days(time, parameter_name): try: splitted = time.split(":") numberOfDays = int(splitted[0]) if int(splitted[1]) > 0: numberOfDays += 1 return numberOfDays except: raise CLIError(parameter_name + ' must be a valid time format') ``` #### File: command_modules/security/_params.py ```python from azure.cli.core.commands.parameters import resource_group_name_type from knack.arguments import CLIArgumentType from ._validators import (validate_alert_status, validate_auto_provisioning_toggle, validate_pricing_tier) name_arg_type = CLIArgumentType(options_list=('--name', '-n'), metavar='NAME', help='name of the resource to be fetched') home_region_arg_type = CLIArgumentType(options_list=('--home-region', '-hr'), metavar='HOMEREGION', help='home region that was selected for the subscription') location_arg_type = CLIArgumentType(options_list=('--location', '-l'), metavar='LOCATION', help='location of the resource') # Alerts alert_status_arg_type = CLIArgumentType(options_list=('--status'), metavar='STATUS', help='target status of the alert. possible values are "dismiss" and "activate"') # Auto Provisioning auto_provisioning_auto_provision_arg_type = CLIArgumentType(options_list=('--auto-provision'), metavar='AUTOPROVISION', help='Automatic provisioning toggle. possible values are "on" or "off"') # Contacts contact_email_arg_type = CLIArgumentType(options_list=('--email'), metavar='EMAIL', help='E-mail of the security contact') contact_phone_arg_type = CLIArgumentType(options_list=('--phone'), metavar='PHONE', help='Phone of the security contact') contact_alert_notifications_arg_type = CLIArgumentType(options_list=('--alert-notifications'), metavar='ALERTNOTIFICATIONS', help='Whether to send mail notifications to the security contacts') contact_alerts_admins_arg_type = CLIArgumentType(options_list=('--alerts-admins'), metavar='ALERTADMINS', help='Whether to send mail notifications to the subscription administrators') # Pricing pricing_tier_arg_type = CLIArgumentType(options_list=('--tier'), metavar='TIER', help='pricing tier type') # Workspace settings workspace_setting_target_workspace_arg_type = CLIArgumentType(options_list=('--target-workspace'), metavar='TARGETWORKSPACE', help='An ID of the workspace resource that will hold the security data') def load_arguments(self, _): for scope in ['alert', 'task', 'setting', 'contact', 'auto-provisioning-setting', 'discovered-security-solution', 'external-security-solution', 'jit-policy', 'location', 'pricing', 'topology', 'workspace-setting']: with self.argument_context('security {}'.format(scope)) as c: c.argument( 'resource_group_name', options_list=['--resource-group', '-g'], arg_type=resource_group_name_type) c.argument( 'resource_name', arg_type=name_arg_type) c.argument( 'location', arg_type=location_arg_type) for scope in ['alert update']: with self.argument_context('security {}'.format(scope)) as c: c.argument( 'status', validator=validate_alert_status, arg_type=alert_status_arg_type) for scope in ['auto-provisioning-setting update']: with self.argument_context('security {}'.format(scope)) as c: c.argument( 'auto_provision', validator=validate_auto_provisioning_toggle, arg_type=auto_provisioning_auto_provision_arg_type) for scope in ['contact create']: with self.argument_context('security {}'.format(scope)) as c: c.argument( 'email', arg_type=contact_email_arg_type) c.argument( 'phone', arg_type=contact_phone_arg_type) c.argument( 'alert_notifications', arg_type=contact_alert_notifications_arg_type) c.argument( 'alerts_admins', arg_type=contact_alerts_admins_arg_type) for scope in ['pricing create']: with self.argument_context('security {}'.format(scope)) as c: c.argument( 'tier', validator=validate_pricing_tier, arg_type=pricing_tier_arg_type) for scope in ['workspace-setting create']: with self.argument_context('security {}'.format(scope)) as c: c.argument( 'target_workspace', arg_type=workspace_setting_target_workspace_arg_type) ``` #### File: tests/latest/test_tasks_scenario.py ```python from azure.cli.testsdk import ScenarioTest from azure_devtools.scenario_tests import AllowLargeResponse import re class SecurityCenterTasksTests(ScenarioTest): @AllowLargeResponse() def test_security_tasks(self): tasks = self.cmd('az security task list').get_output_in_json() assert len(tasks) >= 0 rg_task = next(task for task in tasks if "resourceGroups" in task["id"]) match = re.search('resourceGroups/([^/]+)', rg_task["id"]) task = self.cmd('az security task show -g ' + match.group(1) + ' -n ' + rg_task["name"]).get_output_in_json() assert task is not None subscription_task = next(task for task in tasks if "resourceGroups" not in task["id"]) task = self.cmd('az security task show -n ' + subscription_task["name"]).get_output_in_json() assert task is not None ``` #### File: command_modules/storage/_validators.py ```python from knack.log import get_logger from azure.cli.core.commands.client_factory import get_mgmt_service_client from azure.cli.core.commands.validators import validate_key_value_pairs from azure.cli.core.profiles import ResourceType, get_sdk from azure.cli.command_modules.storage._client_factory import get_storage_data_service_client from azure.cli.command_modules.storage.util import glob_files_locally, guess_content_type from azure.cli.command_modules.storage.sdkutil import get_table_data_type from azure.cli.command_modules.storage.url_quote_util import encode_for_url from azure.cli.command_modules.storage.oauth_token_util import TokenUpdater storage_account_key_options = {'primary': 'key1', 'secondary': 'key2'} logger = get_logger(__name__) # Utilities # pylint: disable=inconsistent-return-statements,too-many-lines def _query_account_key(cli_ctx, account_name): """Query the storage account key. This is used when the customer doesn't offer account key but name.""" rg, scf = _query_account_rg(cli_ctx, account_name) t_storage_account_keys = get_sdk( cli_ctx, ResourceType.MGMT_STORAGE, 'models.storage_account_keys#StorageAccountKeys') if t_storage_account_keys: return scf.storage_accounts.list_keys(rg, account_name).key1 # of type: models.storage_account_list_keys_result#StorageAccountListKeysResult return scf.storage_accounts.list_keys(rg, account_name).keys[0].value # pylint: disable=no-member def _query_account_rg(cli_ctx, account_name): """Query the storage account's resource group, which the mgmt sdk requires.""" scf = get_mgmt_service_client(cli_ctx, ResourceType.MGMT_STORAGE) acc = next((x for x in scf.storage_accounts.list() if x.name == account_name), None) if acc: from msrestazure.tools import parse_resource_id return parse_resource_id(acc.id)['resource_group'], scf raise ValueError("Storage account '{}' not found.".format(account_name)) def _create_token_credential(cli_ctx): from knack.cli import EVENT_CLI_POST_EXECUTE TokenCredential = get_sdk(cli_ctx, ResourceType.DATA_STORAGE, 'common#TokenCredential') token_credential = TokenCredential() updater = TokenUpdater(token_credential, cli_ctx) def _cancel_timer_event_handler(_, **__): updater.cancel() cli_ctx.register_event(EVENT_CLI_POST_EXECUTE, _cancel_timer_event_handler) return token_credential # region PARAMETER VALIDATORS def process_resource_group(cmd, namespace): """Processes the resource group parameter from the account name""" if namespace.account_name and not namespace.resource_group_name: namespace.resource_group_name = _query_account_rg(cmd.cli_ctx, namespace.account_name)[0] def validate_table_payload_format(cmd, namespace): t_table_payload = get_table_data_type(cmd.cli_ctx, 'table', 'TablePayloadFormat') if namespace.accept: formats = { 'none': t_table_payload.JSON_NO_METADATA, 'minimal': t_table_payload.JSON_MINIMAL_METADATA, 'full': t_table_payload.JSON_FULL_METADATA } namespace.accept = formats[namespace.accept.lower()] def validate_bypass(namespace): if namespace.bypass: namespace.bypass = ', '.join(namespace.bypass) if isinstance(namespace.bypass, list) else namespace.bypass def validate_client_parameters(cmd, namespace): """ Retrieves storage connection parameters from environment variables and parses out connection string into account name and key """ n = namespace def get_config_value(section, key, default): return cmd.cli_ctx.config.get(section, key, default) if hasattr(n, 'auth_mode'): auth_mode = n.auth_mode or get_config_value('storage', 'auth_mode', None) del n.auth_mode if not n.account_name: n.account_name = get_config_value('storage', 'account', None) if auth_mode == 'login': n.token_credential = _create_token_credential(cmd.cli_ctx) # give warning if there are account key args being ignored account_key_args = [n.account_key and "--account-key", n.sas_token and "--sas-token", n.connection_string and "--connection-string"] account_key_args = [arg for arg in account_key_args if arg] if account_key_args: logger.warning('In "login" auth mode, the following arguments are ignored: %s', ' ,'.join(account_key_args)) return if not n.connection_string: n.connection_string = get_config_value('storage', 'connection_string', None) # if connection string supplied or in environment variables, extract account key and name if n.connection_string: conn_dict = validate_key_value_pairs(n.connection_string) n.account_name = conn_dict.get('AccountName') n.account_key = conn_dict.get('AccountKey') n.sas_token = conn_dict.get('SharedAccessSignature') # otherwise, simply try to retrieve the remaining variables from environment variables if not n.account_name: n.account_name = get_config_value('storage', 'account', None) if not n.account_key: n.account_key = get_config_value('storage', 'key', None) if not n.sas_token: n.sas_token = get_config_value('storage', 'sas_token', None) # strip the '?' from sas token. the portal and command line are returns sas token in different # forms if n.sas_token: n.sas_token = n.sas_token.lstrip('?') # if account name is specified but no key, attempt to query if n.account_name and not n.account_key and not n.sas_token: n.account_key = _query_account_key(cmd.cli_ctx, n.account_name) def process_blob_source_uri(cmd, namespace): """ Validate the parameters referenced to a blob source and create the source URI from them. """ from .util import create_short_lived_blob_sas usage_string = \ 'Invalid usage: {}. Supply only one of the following argument sets to specify source:' \ '\n\t --source-uri' \ '\n\tOR --source-container --source-blob --source-snapshot [--source-account-name & sas] ' \ '\n\tOR --source-container --source-blob --source-snapshot [--source-account-name & key] ' ns = vars(namespace) # source as blob container = ns.pop('source_container', None) blob = ns.pop('source_blob', None) snapshot = ns.pop('source_snapshot', None) # source credential clues source_account_name = ns.pop('source_account_name', None) source_account_key = ns.pop('source_account_key', None) sas = ns.pop('source_sas', None) # source in the form of an uri uri = ns.get('copy_source', None) if uri: if any([container, blob, sas, snapshot, source_account_name, source_account_key]): raise ValueError(usage_string.format('Unused parameters are given in addition to the ' 'source URI')) else: # simplest scenario--no further processing necessary return validate_client_parameters(cmd, namespace) # must run first to resolve storage account # determine if the copy will happen in the same storage account if not source_account_name and source_account_key: raise ValueError(usage_string.format('Source account key is given but account name is not')) elif not source_account_name and not source_account_key: # neither source account name or key is given, assume that user intends to copy blob in # the same account source_account_name = ns.get('account_name', None) source_account_key = ns.get('account_key', None) elif source_account_name and not source_account_key: if source_account_name == ns.get('account_name', None): # the source account name is same as the destination account name source_account_key = ns.get('account_key', None) else: # the source account is different from destination account but the key is missing # try to query one. try: source_account_key = _query_account_key(cmd.cli_ctx, source_account_name) except ValueError: raise ValueError('Source storage account {} not found.'.format(source_account_name)) # else: both source account name and key are given by user if not source_account_name: raise ValueError(usage_string.format('Storage account name not found')) if not sas: sas = create_short_lived_blob_sas(cmd, source_account_name, source_account_key, container, blob) query_params = [] if sas: query_params.append(sas) if snapshot: query_params.append('snapshot={}'.format(snapshot)) uri = 'https://{}.blob.{}/{}/{}{}{}'.format(source_account_name, cmd.cli_ctx.cloud.suffixes.storage_endpoint, container, blob, '?' if query_params else '', '&'.join(query_params)) namespace.copy_source = uri def validate_source_uri(cmd, namespace): # pylint: disable=too-many-statements from .util import create_short_lived_blob_sas, create_short_lived_file_sas usage_string = \ 'Invalid usage: {}. Supply only one of the following argument sets to specify source:' \ '\n\t --source-uri [--source-sas]' \ '\n\tOR --source-container --source-blob [--source-account-name & sas] [--source-snapshot]' \ '\n\tOR --source-container --source-blob [--source-account-name & key] [--source-snapshot]' \ '\n\tOR --source-share --source-path' \ '\n\tOR --source-share --source-path [--source-account-name & sas]' \ '\n\tOR --source-share --source-path [--source-account-name & key]' ns = vars(namespace) # source as blob container = ns.pop('source_container', None) blob = ns.pop('source_blob', None) snapshot = ns.pop('source_snapshot', None) # source as file share = ns.pop('source_share', None) path = ns.pop('source_path', None) # source credential clues source_account_name = ns.pop('source_account_name', None) source_account_key = ns.pop('source_account_key', None) source_sas = ns.pop('source_sas', None) # source in the form of an uri uri = ns.get('copy_source', None) if uri: if any([container, blob, snapshot, share, path, source_account_name, source_account_key]): raise ValueError(usage_string.format('Unused parameters are given in addition to the ' 'source URI')) if source_sas: source_sas = source_sas.lstrip('?') uri = '{}{}{}'.format(uri, '?', source_sas) namespace.copy_source = uri return # ensure either a file or blob source is specified valid_blob_source = container and blob and not share and not path valid_file_source = share and path and not container and not blob and not snapshot if not valid_blob_source and not valid_file_source: raise ValueError(usage_string.format('Neither a valid blob or file source is specified')) elif valid_blob_source and valid_file_source: raise ValueError(usage_string.format('Ambiguous parameters, both blob and file sources are ' 'specified')) validate_client_parameters(cmd, namespace) # must run first to resolve storage account if not source_account_name: if source_account_key: raise ValueError(usage_string.format('Source account key is given but account name is not')) # assume that user intends to copy blob in the same account source_account_name = ns.get('account_name', None) # determine if the copy will happen in the same storage account same_account = False if not source_account_key and not source_sas: if source_account_name == ns.get('account_name', None): same_account = True source_account_key = ns.get('account_key', None) source_sas = ns.get('sas_token', None) else: # the source account is different from destination account but the key is missing try to query one. try: source_account_key = _query_account_key(cmd.cli_ctx, source_account_name) except ValueError: raise ValueError('Source storage account {} not found.'.format(source_account_name)) # Both source account name and either key or sas (or both) are now available if not source_sas: # generate a sas token even in the same account when the source and destination are not the same kind. if valid_file_source and (ns.get('container_name', None) or not same_account): import os dir_name, file_name = os.path.split(path) if path else (None, '') source_sas = create_short_lived_file_sas(cmd, source_account_name, source_account_key, share, dir_name, file_name) elif valid_blob_source and (ns.get('share_name', None) or not same_account): source_sas = create_short_lived_blob_sas(cmd, source_account_name, source_account_key, container, blob) query_params = [] if source_sas: query_params.append(source_sas.lstrip('?')) if snapshot: query_params.append('snapshot={}'.format(snapshot)) uri = 'https://{0}.{1}.{6}/{2}/{3}{4}{5}'.format( source_account_name, 'blob' if valid_blob_source else 'file', container if valid_blob_source else share, encode_for_url(blob if valid_blob_source else path), '?' if query_params else '', '&'.join(query_params), cmd.cli_ctx.cloud.suffixes.storage_endpoint) namespace.copy_source = uri def validate_blob_type(namespace): if not namespace.blob_type: namespace.blob_type = 'page' if namespace.file_path.endswith('.vhd') else 'block' def validate_storage_data_plane_list(namespace): if namespace.num_results == '*': namespace.num_results = None else: namespace.num_results = int(namespace.num_results) def get_content_setting_validator(settings_class, update, guess_from_file=None): def _class_name(class_type): return class_type.__module__ + "." + class_type.__class__.__name__ def validator(cmd, namespace): t_base_blob_service, t_file_service, t_blob_content_settings, t_file_content_settings = cmd.get_models( 'blob.baseblobservice#BaseBlobService', 'file#FileService', 'blob.models#ContentSettings', 'file.models#ContentSettings') # must run certain validators first for an update if update: validate_client_parameters(cmd, namespace) if update and _class_name(settings_class) == _class_name(t_file_content_settings): get_file_path_validator()(namespace) ns = vars(namespace) # retrieve the existing object properties for an update if update: account = ns.get('account_name') key = ns.get('account_key') cs = ns.get('connection_string') sas = ns.get('sas_token') if _class_name(settings_class) == _class_name(t_blob_content_settings): client = get_storage_data_service_client(cmd.cli_ctx, t_base_blob_service, account, key, cs, sas) container = ns.get('container_name') blob = ns.get('blob_name') lease_id = ns.get('lease_id') props = client.get_blob_properties(container, blob, lease_id=lease_id).properties.content_settings elif _class_name(settings_class) == _class_name(t_file_content_settings): client = get_storage_data_service_client(cmd.cli_ctx, t_file_service, account, key, cs, sas) share = ns.get('share_name') directory = ns.get('directory_name') filename = ns.get('file_name') props = client.get_file_properties(share, directory, filename).properties.content_settings # create new properties new_props = settings_class( content_type=ns.pop('content_type', None), content_disposition=ns.pop('content_disposition', None), content_encoding=ns.pop('content_encoding', None), content_language=ns.pop('content_language', None), content_md5=ns.pop('content_md5', None), cache_control=ns.pop('content_cache_control', None) ) # if update, fill in any None values with existing if update: for attr in ['content_type', 'content_disposition', 'content_encoding', 'content_language', 'content_md5', 'cache_control']: if getattr(new_props, attr) is None: setattr(new_props, attr, getattr(props, attr)) else: if guess_from_file: new_props = guess_content_type(ns[guess_from_file], new_props, settings_class) ns['content_settings'] = new_props return validator def validate_custom_domain(namespace): if namespace.use_subdomain and not namespace.custom_domain: raise ValueError('usage error: --custom-domain DOMAIN [--use-subdomain]') def validate_encryption_services(cmd, namespace): """ Builds up the encryption services object for storage account operations based on the list of services passed in. """ if namespace.encryption_services: t_encryption_services, t_encryption_service = get_sdk(cmd.cli_ctx, ResourceType.MGMT_STORAGE, 'EncryptionServices', 'EncryptionService', mod='models') services = {service: t_encryption_service(enabled=True) for service in namespace.encryption_services} namespace.encryption_services = t_encryption_services(**services) def validate_encryption_source(cmd, namespace): ns = vars(namespace) key_name = ns.pop('encryption_key_name', None) key_version = ns.pop('encryption_key_version', None) key_vault_uri = ns.pop('encryption_key_vault', None) if namespace.encryption_key_source == 'Microsoft.Keyvault' and not (key_name and key_version and key_vault_uri): raise ValueError('--encryption-key-name, --encryption-key-vault, and --encryption-key-version are required ' 'when --encryption-key-source=Microsoft.Keyvault is specified.') if key_name or key_version or key_vault_uri: if namespace.encryption_key_source != 'Microsoft.Keyvault': raise ValueError('--encryption-key-name, --encryption-key-vault, and --encryption-key-version are not ' 'applicable when --encryption-key-source=Microsoft.Keyvault is not specified.') KeyVaultProperties = get_sdk(cmd.cli_ctx, ResourceType.MGMT_STORAGE, 'KeyVaultProperties', mod='models') if not KeyVaultProperties: return kv_prop = KeyVaultProperties(key_name=key_name, key_version=key_version, key_vault_uri=key_vault_uri) namespace.encryption_key_vault_properties = kv_prop def validate_entity(namespace): """ Converts a list of key value pairs into a dictionary. Ensures that required RowKey and PartitionKey are converted to the correct case and included. """ values = dict(x.split('=', 1) for x in namespace.entity) keys = values.keys() for key in keys: if key.lower() == 'rowkey': val = values[key] del values[key] values['RowKey'] = val elif key.lower() == 'partitionkey': val = values[key] del values[key] values['PartitionKey'] = val keys = values.keys() missing_keys = 'RowKey ' if 'RowKey' not in keys else '' missing_keys = '{}PartitionKey'.format(missing_keys) \ if 'PartitionKey' not in keys else missing_keys if missing_keys: import argparse raise argparse.ArgumentError( None, 'incorrect usage: entity requires: {}'.format(missing_keys)) def cast_val(key, val): """ Attempts to cast numeric values (except RowKey and PartitionKey) to numbers so they can be queried correctly. """ if key in ['PartitionKey', 'RowKey']: return val def try_cast(to_type): try: return to_type(val) except ValueError: return None return try_cast(int) or try_cast(float) or val # ensure numbers are converted from strings so querying will work correctly values = {key: cast_val(key, val) for key, val in values.items()} namespace.entity = values def validate_marker(namespace): """ Converts a list of key value pairs into a dictionary. Ensures that required nextrowkey and nextpartitionkey are included. """ if not namespace.marker: return marker = dict(x.split('=', 1) for x in namespace.marker) expected_keys = {'nextrowkey', 'nextpartitionkey'} for key in marker: new_key = key.lower() if new_key in expected_keys: expected_keys.remove(key.lower()) val = marker[key] del marker[key] marker[new_key] = val if expected_keys: import argparse raise argparse.ArgumentError( None, 'incorrect usage: marker requires: {}'.format(' '.join(expected_keys))) namespace.marker = marker def get_file_path_validator(default_file_param=None): """ Creates a namespace validator that splits out 'path' into 'directory_name' and 'file_name'. Allows another path-type parameter to be named which can supply a default filename. """ def validator(namespace): import os if not hasattr(namespace, 'path'): return path = namespace.path dir_name, file_name = os.path.split(path) if path else (None, '') if default_file_param and '.' not in file_name: dir_name = path file_name = os.path.split(getattr(namespace, default_file_param))[1] dir_name = None if dir_name in ('', '.') else dir_name namespace.directory_name = dir_name namespace.file_name = file_name del namespace.path return validator def validate_included_datasets(cmd, namespace): if namespace.include: include = namespace.include if set(include) - set('cmsd'): help_string = '(c)opy-info (m)etadata (s)napshots (d)eleted' raise ValueError('valid values are {} or a combination thereof.'.format(help_string)) t_blob_include = cmd.get_models('blob#Include') namespace.include = t_blob_include('s' in include, 'm' in include, False, 'c' in include, 'd' in include) def validate_key(namespace): namespace.key_name = storage_account_key_options[namespace.key_name] def validate_metadata(namespace): if namespace.metadata: namespace.metadata = dict(x.split('=', 1) for x in namespace.metadata) def get_permission_help_string(permission_class): allowed_values = [x.lower() for x in dir(permission_class) if not x.startswith('__')] return ' '.join(['({}){}'.format(x[0], x[1:]) for x in allowed_values]) def get_permission_validator(permission_class): allowed_values = [x.lower() for x in dir(permission_class) if not x.startswith('__')] allowed_string = ''.join(x[0] for x in allowed_values) def validator(namespace): if namespace.permission: if set(namespace.permission) - set(allowed_string): help_string = get_permission_help_string(permission_class) raise ValueError( 'valid values are {} or a combination thereof.'.format(help_string)) namespace.permission = permission_class(_str=namespace.permission) return validator def table_permission_validator(cmd, namespace): """ A special case for table because the SDK associates the QUERY permission with 'r' """ t_table_permissions = get_table_data_type(cmd.cli_ctx, 'table', 'TablePermissions') if namespace.permission: if set(namespace.permission) - set('raud'): help_string = '(r)ead/query (a)dd (u)pdate (d)elete' raise ValueError('valid values are {} or a combination thereof.'.format(help_string)) namespace.permission = t_table_permissions(_str=namespace.permission) def validate_container_public_access(cmd, namespace): from .sdkutil import get_container_access_type t_base_blob_svc = cmd.get_models('blob.baseblobservice#BaseBlobService') if namespace.public_access: namespace.public_access = get_container_access_type(cmd.cli_ctx, namespace.public_access.lower()) if hasattr(namespace, 'signed_identifiers'): # must retrieve the existing ACL to simulate a patch operation because these calls # are needlessly conflated ns = vars(namespace) validate_client_parameters(cmd, namespace) account = ns.get('account_name') key = ns.get('account_key') cs = ns.get('connection_string') sas = ns.get('sas_token') client = get_storage_data_service_client(cmd.cli_ctx, t_base_blob_svc, account, key, cs, sas) container = ns.get('container_name') lease_id = ns.get('lease_id') ns['signed_identifiers'] = client.get_container_acl(container, lease_id=lease_id) def validate_select(namespace): if namespace.select: namespace.select = ','.join(namespace.select) # pylint: disable=too-many-statements def get_source_file_or_blob_service_client(cmd, namespace): """ Create the second file service or blob service client for batch copy command, which is used to list the source files or blobs. If both the source account and source URI are omitted, it indicates that user want to copy files or blobs in the same storage account, therefore the destination client will be set None hence the command will use destination client. """ t_file_svc, t_block_blob_svc = cmd.get_models('file#FileService', 'blob.blockblobservice#BlockBlobService') usage_string = 'invalid usage: supply only one of the following argument sets:' + \ '\n\t --source-uri [--source-sas]' + \ '\n\tOR --source-container' + \ '\n\tOR --source-container --source-account-name --source-account-key' + \ '\n\tOR --source-container --source-account-name --source-sas' + \ '\n\tOR --source-share --source-account-name --source-account-key' + \ '\n\tOR --source-share --source-account-name --source-account-sas' ns = vars(namespace) source_account = ns.pop('source_account_name', None) source_key = ns.pop('source_account_key', None) source_uri = ns.pop('source_uri', None) source_sas = ns.get('source_sas', None) source_container = ns.get('source_container', None) source_share = ns.get('source_share', None) if source_uri and source_account: raise ValueError(usage_string) if not source_uri and bool(source_container) == bool(source_share): # must be container or share raise ValueError(usage_string) if (not source_account) and (not source_uri): # Set the source_client to None if neither source_account or source_uri is given. This # indicates the command that the source files share or blob container is in the same storage # account as the destination file share or blob container. # # The command itself should create the source service client since the validator can't # access the destination client through the namespace. # # A few arguments check will be made as well so as not to cause ambiguity. if source_key or source_sas: raise ValueError('invalid usage: --source-account-name is missing; the source account is assumed to be the' ' same as the destination account. Do not provide --source-sas or --source-account-key') ns['source_client'] = None if 'token_credential' not in ns: # not using oauth return # oauth is only possible through destination, must still get source creds source_account, source_key, source_sas = ns['account_name'], ns['account_key'], ns['sas_token'] if source_account: if not (source_key or source_sas): # when neither storage account key or SAS is given, try to fetch the key in the current # subscription source_key = _query_account_key(cmd.cli_ctx, source_account) if source_container: ns['source_client'] = get_storage_data_service_client( cmd.cli_ctx, t_block_blob_svc, name=source_account, key=source_key, sas_token=source_sas) elif source_share: ns['source_client'] = get_storage_data_service_client( cmd.cli_ctx, t_file_svc, name=source_account, key=source_key, sas_token=source_sas) elif source_uri: if source_key or source_container or source_share: raise ValueError(usage_string) from .storage_url_helpers import StorageResourceIdentifier if source_sas: source_uri = '{}{}{}'.format(source_uri, '?', source_sas.lstrip('?')) identifier = StorageResourceIdentifier(cmd.cli_ctx.cloud, source_uri) nor_container_or_share = not identifier.container and not identifier.share if not identifier.is_url(): raise ValueError('incorrect usage: --source-uri expects a URI') elif identifier.blob or identifier.directory or \ identifier.filename or nor_container_or_share: raise ValueError('incorrect usage: --source-uri has to be blob container or file share') if identifier.sas_token: ns['source_sas'] = identifier.sas_token else: source_key = _query_account_key(cmd.cli_ctx, identifier.account_name) if identifier.container: ns['source_container'] = identifier.container if identifier.account_name != ns.get('account_name'): ns['source_client'] = get_storage_data_service_client( cmd.cli_ctx, t_block_blob_svc, name=identifier.account_name, key=source_key, sas_token=identifier.sas_token) elif identifier.share: ns['source_share'] = identifier.share if identifier.account_name != ns.get('account_name'): ns['source_client'] = get_storage_data_service_client( cmd.cli_ctx, t_file_svc, name=identifier.account_name, key=source_key, sas_token=identifier.sas_token) def add_progress_callback(cmd, namespace): def _update_progress(current, total): hook = cmd.cli_ctx.get_progress_controller(det=True) if total: hook.add(message='Alive', value=current, total_val=total) if total == current: hook.end() if not namespace.no_progress: namespace.progress_callback = _update_progress del namespace.no_progress def process_container_delete_parameters(cmd, namespace): """Process the parameters for storage container delete command""" # check whether to use mgmt or data-plane if namespace.bypass_immutability_policy: # use management-plane namespace.processed_account_name = namespace.account_name namespace.processed_resource_group, namespace.mgmt_client = _query_account_rg( cmd.cli_ctx, namespace.account_name) del namespace.auth_mode else: # use data-plane, like before validate_client_parameters(cmd, namespace) def process_blob_download_batch_parameters(cmd, namespace): """Process the parameters for storage blob download command""" import os # 1. quick check if not os.path.exists(namespace.destination) or not os.path.isdir(namespace.destination): raise ValueError('incorrect usage: destination must be an existing directory') # 2. try to extract account name and container name from source string _process_blob_batch_container_parameters(cmd, namespace) # 3. Call validators add_progress_callback(cmd, namespace) def process_blob_upload_batch_parameters(cmd, namespace): """Process the source and destination of storage blob upload command""" import os # 1. quick check if not os.path.exists(namespace.source) or not os.path.isdir(namespace.source): raise ValueError('incorrect usage: source must be an existing directory') # 2. try to extract account name and container name from destination string _process_blob_batch_container_parameters(cmd, namespace, source=False) # 3. collect the files to be uploaded namespace.source = os.path.realpath(namespace.source) namespace.source_files = [c for c in glob_files_locally(namespace.source, namespace.pattern)] # 4. determine blob type if namespace.blob_type is None: vhd_files = [f for f in namespace.source_files if f[0].endswith('.vhd')] if any(vhd_files) and len(vhd_files) == len(namespace.source_files): # when all the listed files are vhd files use page namespace.blob_type = 'page' elif any(vhd_files): # source files contain vhd files but not all of them from knack.util import CLIError raise CLIError("""Fail to guess the required blob type. Type of the files to be uploaded are not consistent. Default blob type for .vhd files is "page", while others are "block". You can solve this problem by either explicitly set the blob type or ensure the pattern matches a correct set of files.""") else: namespace.blob_type = 'block' # 5. call other validators validate_metadata(namespace) t_blob_content_settings = cmd.loader.get_sdk('blob.models#ContentSettings') get_content_setting_validator(t_blob_content_settings, update=False)(cmd, namespace) add_progress_callback(cmd, namespace) def process_blob_delete_batch_parameters(cmd, namespace): _process_blob_batch_container_parameters(cmd, namespace) def _process_blob_batch_container_parameters(cmd, namespace, source=True): """Process the container parameters for storage blob batch commands before populating args from environment.""" if source: container_arg, container_name_arg = 'source', 'source_container_name' else: # destination container_arg, container_name_arg = 'destination', 'destination_container_name' # try to extract account name and container name from source string from .storage_url_helpers import StorageResourceIdentifier container_arg_val = getattr(namespace, container_arg) # either a url or name identifier = StorageResourceIdentifier(cmd.cli_ctx.cloud, container_arg_val) if not identifier.is_url(): setattr(namespace, container_name_arg, container_arg_val) elif identifier.blob: raise ValueError('incorrect usage: {} should be either a container URL or name'.format(container_arg)) else: setattr(namespace, container_name_arg, identifier.container) if namespace.account_name is None: namespace.account_name = identifier.account_name elif namespace.account_name != identifier.account_name: raise ValueError('The given storage account name is not consistent with the ' 'account name in the destination URL') # if no sas-token is given and the container url contains one, use it if not namespace.sas_token and identifier.sas_token: namespace.sas_token = identifier.sas_token # Finally, grab missing storage connection parameters from environment variables validate_client_parameters(cmd, namespace) def process_file_upload_batch_parameters(cmd, namespace): """Process the parameters of storage file batch upload command""" import os # 1. quick check if not os.path.exists(namespace.source): raise ValueError('incorrect usage: source {} does not exist'.format(namespace.source)) if not os.path.isdir(namespace.source): raise ValueError('incorrect usage: source must be a directory') # 2. try to extract account name and container name from destination string from .storage_url_helpers import StorageResourceIdentifier identifier = StorageResourceIdentifier(cmd.cli_ctx.cloud, namespace.destination) if identifier.is_url(): if identifier.filename or identifier.directory: raise ValueError('incorrect usage: destination must be a file share url') namespace.destination = identifier.share if not namespace.account_name: namespace.account_name = identifier.account_name namespace.source = os.path.realpath(namespace.source) def process_file_download_batch_parameters(cmd, namespace): """Process the parameters for storage file batch download command""" import os # 1. quick check if not os.path.exists(namespace.destination) or not os.path.isdir(namespace.destination): raise ValueError('incorrect usage: destination must be an existing directory') # 2. try to extract account name and share name from source string process_file_batch_source_parameters(cmd, namespace) def process_file_batch_source_parameters(cmd, namespace): from .storage_url_helpers import StorageResourceIdentifier identifier = StorageResourceIdentifier(cmd.cli_ctx.cloud, namespace.source) if identifier.is_url(): if identifier.filename or identifier.directory: raise ValueError('incorrect usage: source should be either share URL or name') namespace.source = identifier.share if not namespace.account_name: namespace.account_name = identifier.account_name def process_file_download_namespace(namespace): import os get_file_path_validator()(namespace) dest = namespace.file_path if not dest or os.path.isdir(dest): namespace.file_path = os.path.join(dest, namespace.file_name) \ if dest else namespace.file_name def process_metric_update_namespace(namespace): import argparse namespace.hour = namespace.hour == 'true' namespace.minute = namespace.minute == 'true' namespace.api = namespace.api == 'true' if namespace.api else None if namespace.hour is None and namespace.minute is None: raise argparse.ArgumentError( None, 'incorrect usage: must specify --hour and/or --minute') if (namespace.hour or namespace.minute) and namespace.api is None: raise argparse.ArgumentError( None, 'incorrect usage: specify --api when hour or minute metrics are enabled') def validate_subnet(cmd, namespace): from msrestazure.tools import resource_id, is_valid_resource_id from azure.cli.core.commands.client_factory import get_subscription_id subnet = namespace.subnet subnet_is_id = is_valid_resource_id(subnet) vnet = namespace.vnet_name if (subnet_is_id and not vnet) or (not subnet and not vnet): return elif subnet and not subnet_is_id and vnet: namespace.subnet = resource_id( subscription=get_subscription_id(cmd.cli_ctx), resource_group=namespace.resource_group_name, namespace='Microsoft.Network', type='virtualNetworks', name=vnet, child_type_1='subnets', child_name_1=subnet) else: from knack.util import CLIError raise CLIError('incorrect usage: [--subnet ID | --subnet NAME --vnet-name NAME]') def get_datetime_type(to_string): """ Validates UTC datetime. Examples of accepted forms: 2017-12-31T01:11:59Z,2017-12-31T01:11Z or 2017-12-31T01Z or 2017-12-31 """ from datetime import datetime def datetime_type(string): """ Validates UTC datetime. Examples of accepted forms: 2017-12-31T01:11:59Z,2017-12-31T01:11Z or 2017-12-31T01Z or 2017-12-31 """ accepted_date_formats = ['%Y-%m-%dT%H:%M:%SZ', '%Y-%m-%dT%H:%MZ', '%Y-%m-%dT%HZ', '%Y-%m-%d'] for form in accepted_date_formats: try: if to_string: return datetime.strptime(string, form).strftime(form) return datetime.strptime(string, form) except ValueError: continue raise ValueError("Input '{}' not valid. Valid example: 2000-12-31T12:59:59Z".format(string)) return datetime_type def ipv4_range_type(string): """ Validates an IPv4 address or address range. """ import re ip_format = r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}' if not re.match("^{}$".format(ip_format), string): if not re.match("^{}-{}$".format(ip_format, ip_format), string): raise ValueError return string def resource_type_type(loader): """ Returns a function which validates that resource types string contains only a combination of service, container, and object. Their shorthand representations are s, c, and o. """ def impl(string): t_resources = loader.get_models('common.models#ResourceTypes') if set(string) - set("sco"): raise ValueError return t_resources(_str=''.join(set(string))) return impl def services_type(loader): """ Returns a function which validates that services string contains only a combination of blob, queue, table, and file. Their shorthand representations are b, q, t, and f. """ def impl(string): t_services = loader.get_models('common.models#Services') if set(string) - set("bqtf"): raise ValueError return t_services(_str=''.join(set(string))) return impl def get_char_options_validator(types, property_name): def _validator(namespace): service_types = set(getattr(namespace, property_name, list())) if not service_types: raise ValueError('Missing options --{}.'.format(property_name.replace('_', '-'))) if service_types - set(types): raise ValueError( '--{}: only valid values are: {}.'.format(property_name.replace('_', '-'), ', '.join(types))) setattr(namespace, property_name, service_types) return _validator def page_blob_tier_validator(cmd, namespace): if not namespace.tier: return if namespace.blob_type != 'page' and namespace.tier: raise ValueError('Blob tier is only applicable to page blobs on premium storage accounts.') try: namespace.tier = getattr(cmd.get_models('blob.models#PremiumPageBlobTier'), namespace.tier) except AttributeError: from azure.cli.command_modules.storage.sdkutil import get_blob_tier_names raise ValueError('Unknown premium page blob tier name. Choose among {}'.format(', '.join( get_blob_tier_names(cmd.cli_ctx, 'PremiumPageBlobTier')))) def block_blob_tier_validator(cmd, namespace): if not namespace.tier: return if namespace.blob_type != 'block' and namespace.tier: raise ValueError('Blob tier is only applicable to block blobs on standard storage accounts.') try: namespace.tier = getattr(cmd.get_models('blob.models#StandardBlobTier'), namespace.tier) except AttributeError: from azure.cli.command_modules.storage.sdkutil import get_blob_tier_names raise ValueError('Unknown block blob tier name. Choose among {}'.format(', '.join( get_blob_tier_names(cmd.cli_ctx, 'StandardBlobTier')))) def blob_tier_validator(cmd, namespace): if namespace.blob_type == 'page': page_blob_tier_validator(cmd, namespace) elif namespace.blob_type == 'block': block_blob_tier_validator(cmd, namespace) else: raise ValueError('Blob tier is only applicable to block or page blob.') ``` #### File: cli_linter/rules/help_rules.py ```python from ..rule_decorators import help_file_entry_rule from ..linter import RuleError from ..util import LinterError import shlex import mock from knack.log import get_logger logger = get_logger(__name__) @help_file_entry_rule def unrecognized_help_entry_rule(linter, help_entry): if help_entry not in linter.commands and help_entry not in linter.command_groups: raise RuleError('Not a recognized command or command-group') @help_file_entry_rule def faulty_help_type_rule(linter, help_entry): if linter.get_help_entry_type(help_entry) != 'group' and help_entry in linter.command_groups: raise RuleError('Command-group should be of help-type `group`') elif linter.get_help_entry_type(help_entry) != 'command' and help_entry in linter.commands: raise RuleError('Command should be of help-type `command`') @help_file_entry_rule def unrecognized_help_parameter_rule(linter, help_entry): if help_entry not in linter.commands: return param_help_names = linter.get_help_entry_parameter_names(help_entry) violations = [] for param_help_name in param_help_names: if not linter.is_valid_parameter_help_name(help_entry, param_help_name): violations.append(param_help_name) if violations: raise RuleError('The following parameter help names are invalid: {}'.format(' | '.join(violations))) @help_file_entry_rule def faulty_help_example_rule(linter, help_entry): violations = [] for index, example in enumerate(linter.get_help_entry_examples(help_entry)): if 'az '+ help_entry not in example.get('text', ''): violations.append(str(index)) if violations: raise RuleError('The following example entry indices do not include the command: {}'.format( ' | '.join(violations))) @help_file_entry_rule def faulty_help_example_parameters_rule(linter, help_entry): parser = linter.command_parser violations = [] for example in linter.get_help_entry_examples(help_entry): max_profile = example.get('max_profile') if max_profile and max_profile != 'latest': logger.warning("\n\tSKIPPING example: {}\n\tas its max profile is {}, instead of latest.".format(example['text'], example['max_profile'])) continue example_text = example.get('text','') commands = _extract_commands_from_example(example_text) while commands: command = commands.pop() violation, nested_commands = _lint_example_command(command, parser) commands.extend(nested_commands) # append commands that are the source of any arguments if violation: violations.append(violation) if violations: num_err = len(violations) violation_str = "\n\n".join(violations) violation_msg = "\n\tThere is a violation:\n{}.".format(violation_str) if num_err == 1 else \ "\n\tThere are {} violations:\n{}".format(num_err, violation_str) raise RuleError(violation_msg + "\n\n") ### Faulty help example parameters rule helpers @mock.patch("azure.cli.core.parser.AzCliCommandParser._check_value") @mock.patch("argparse.ArgumentParser._get_value") @mock.patch("azure.cli.core.parser.AzCliCommandParser.error") def _lint_example_command(command, parser, mocked_error_method, mocked_get_value, mocked_check_value): def get_value_side_effect(action, arg_string): return arg_string mocked_error_method.side_effect = LinterError # mock call of parser.error so usage won't be printed. mocked_get_value.side_effect = get_value_side_effect violation = None nested_commands = [] try: command_args = shlex.split(command)[1:] command_args, nested_commands = _process_command_args(command_args) parser.parse_args(command_args) except ValueError as e: # handle exception thrown by shlex. if str(e) == "No closing quotation": violation = '\t"{}"\n\thas no closing quotation. Tip: to continue an example ' \ 'command on the next line, use a "\\" followed by a newline.\n\t' \ 'If needed, you can escape the "\\", like so "\\\\"'.format(command) else: raise e except LinterError: # handle parsing failure due to invalid option violation = '\t"{}" is not a valid command'.format(command) if mocked_error_method.called: call_args = mocked_error_method.call_args violation = "{}.\n\t{}".format(violation, call_args[0][0]) return violation, nested_commands # return list of commands in the example text def _extract_commands_from_example(example_text): # fold commands spanning multiple lines into one line. Split commands that use pipes example_text = example_text.replace("\\\n", " ") example_text = example_text.replace("\\ ", " ") example_text = example_text.replace(" | ", "\n") commands = example_text.splitlines() processed_commands = [] for command in commands: # filter out commands if command.startswith("az"): processed_commands.append(command) elif "az " in command: # some commands start with "$(az ..." and even "`az in one case" idx = command.find("az ") command = command[idx:] processed_commands.append(command) return processed_commands def _process_command_args(command_args): result_args = [] new_commands = [] unwanted_chars = "$()`" control_operators = ["&&","||"] for arg in command_args: # strip unnecessary punctuation, otherwise arg validation could fail. if arg in control_operators: # handle cases where multiple commands are connected by control operators. idx = command_args.index(arg) maybe_new_command = " ".join(command_args[idx:]) idx = maybe_new_command.find("az ") if idx != -1: new_commands.append(maybe_new_command[idx:]) # remaining command is in fact a new command / commands. break arg = arg.strip(unwanted_chars) if arg.startswith("az "): # store any new commands new_commands.append(arg) result_args.append(arg) return result_args, new_commands ```
{ "source": "jfcrenshaw/GausSED", "score": 3 }
#### File: GausSED/gaussed/bandpasses.py ```python import numpy as np from numbers import Number import os class Bandpass: """ Class to handle instrument filter bandpass. Parameters ---------- filename : str Location and name of file where bandpass is stored. Must be a file with two columns: wavelength and bandpass throughput. name : str Name of bandpass dlambda : float Width of wavelength grid on which bandpass will be sampled. Default = 10 Attributes ---------- wavelen : numpy.ndarray Bandpass wavelength grid. Range determined from the wavelengths in the provided file. Resampled on wavelength grid with width dlambda. T : numpy.ndarray Bandpass throughput from the provided file. R : numpy.ndarray Bandpass normalized response function, defined :math:`R = \lambda T(\lambda) / \int(\lambda T(\lambda) d\lambda)` mean_wavelen: float Mean wavelength of the bandpass, defined :math:`\lambda_{\mathrm{mean}} = \int \lambda R(\lambda) d\lambda` eff_width: float Effective width of the bandpass, defined :math:`W_{\mathrm{eff}} = \max{[R(\lambda)]}^{-1}` """ def __init__(self, filename: str, name: str = None, dlambda: float = 10): # validate inputs if not isinstance(filename, str): raise ValueError("filename should be a string") if not os.path.isfile(filename): raise OSError(f"Cannot find bandpass file '{filename}'") if name is not None and not isinstance(name, str): raise ValueError("name should be a string") if not isinstance(dlambda, Number): raise ValueError("dlambda should be a number") elif dlambda <= 0: raise ValueError("dlambda must be a positive number") # load system response from file wavelen, T = np.loadtxt(filename, unpack=True) # resample wavelen and calculate R self.wavelen = np.arange(min(wavelen), max(wavelen) + dlambda, dlambda) self.T = np.interp(self.wavelen, wavelen, T, left=0, right=0) self.R = self.T * self.wavelen self.R /= (self.R * dlambda).sum() del wavelen, T # calculate mean wavelength and effective width self.mean_wavelen = (self.wavelen * self.R * dlambda).sum() self.eff_width = (self.R * dlambda).sum() / max(self.R) # set the name name = filename.split("/")[-1].split(".")[0] if name is None else name self.name = name def flux(self, seds) -> np.ndarray: """ Return flux through the bandpass for the provided sed(s). Parameters ---------- seds : SED or iterable of SEDs Returns ------- np.ndarray Array of fluxes. If only a single SED is given, array is squeezed. """ raise NotImplementedError def __repr__(self): return f"Bandpass({self.name})" ``` #### File: GausSED/tests/test_bandpasses.py ```python import os import numpy as np import pytest from gaussed.bandpasses import Bandpass filename = os.path.join(os.getcwd(), "tests/test_files/lsst-r.dat") @pytest.mark.parametrize( "filename,name,dlambda,exception", [ (1, "N", 1, ValueError("filename should be a string")), ("filename", "N", 1, OSError("Cannot find bandpass file 'filename'")), (filename, 1, 1, ValueError("name should be a string")), (filename, "N", "a", ValueError("dlambda should be a number")), (filename, "N", -2, ValueError("dlambda must be a positive number")), ], ) def test_bandpass_bad_inputs(filename, name, dlambda, exception): try: Bandpass(filename, name=name, dlambda=dlambda) except (ValueError, OSError) as err: pass assert isinstance(err, type(exception)) assert err.args == exception.args else: pytest.fail("Expected error but found none") def test_bandpass_creation(): # check auto-naming bandpass = Bandpass(filename) assert bandpass.name == "lsst-r" # check specified name and dlambda name = "Name" dlambda = 1 bandpass = Bandpass(filename, dlambda=dlambda, name=name) assert bandpass.name == name diff = np.diff(bandpass.wavelen) assert all([d == dlambda for d in diff]) # check that T and R are sensible assert isinstance(bandpass.T, np.ndarray) assert isinstance(bandpass.R, np.ndarray) Rsum = (bandpass.R * np.diff(bandpass.wavelen)[0]).sum() assert np.isclose(Rsum, 1) # check mean wavelen and eff width against known values r_mean_wavelen = 6257.74 assert np.isclose(bandpass.mean_wavelen, r_mean_wavelen) r_eff_width = 1206.92 assert np.isclose(bandpass.eff_width, r_eff_width) assert bandpass.__repr__() == "Bandpass(Name)" ```
{ "source": "jfcrenshaw/LGSM", "score": 3 }
#### File: LGSM/lgsm/losses.py ```python import elegy import jax.numpy as jnp import numpy as np from jax import random class KLDiv(elegy.Loss): """Kullback-Leibler Divergence for a Gaussian distribution over latent variables.""" def __init__(self, alpha: float = 0): super().__init__() self.alpha = alpha def call(self, y_pred: dict) -> np.ndarray: logvar = 2 * jnp.log(y_pred["latent_std"]) mean = y_pred["latent_mean"] return ( -(1 - self.alpha) / 2 * jnp.mean((1 + logvar) - mean ** 2 - jnp.exp(logvar), axis=-1) ) class MMD(elegy.Loss): """Maximum-Mean Discrepancy, calculated using the method found in this tutorial https://ermongroup.github.io/blog/a-tutorial-on-mmd-variational-autoencoders/ """ def __init__(self, alpha: float = 0, beta: float = 1e3, nsamples: int = 200): super().__init__() self.alpha = alpha self.beta = beta self.nsamples = nsamples @staticmethod def kernel(x: np.ndarray, y: np.ndarray) -> np.ndarray: """ Computes mean of the Gaussian kernel matrix """ # set the hyperparam to dim / 2 dim = x.shape[1] sigma_sq = float(dim / 2) # compute the matrix of square distances sq_dist_matrix = jnp.sum((x[:, None, ...] - y[None, :, ...]) ** 2, axis=-1) # compute and return mean of the kernel matrix return jnp.exp(-sq_dist_matrix / (2 * sigma_sq)).mean() def call(self, y_pred: dict) -> np.ndarray: # get the latent samples from the training set train_latent_samples = y_pred["intrinsic_latents"] # generate latent samples from the true latent distribution PRNGKey = random.PRNGKey(train_latent_samples[0, 0].astype(int)) true_latent_samples = random.normal( PRNGKey, shape=[self.nsamples, train_latent_samples.shape[1]] ) # calculate MMD E_xx = self.kernel(train_latent_samples, train_latent_samples) E_yy = self.kernel(true_latent_samples, true_latent_samples) E_xy = self.kernel(train_latent_samples, true_latent_samples) mmd = E_xx + E_yy - 2 * E_xy return (self.alpha + self.beta - 1) * mmd class PhotometryMSE(elegy.losses.MeanSquaredError): """Mean Square Error for photometry. Note I added a factor of 0.5 for the VAE definition, and 1/0.05^2 to hardcode an error of 0.05 mags for all photometry. Will change this later. """ def call(self, x: np.ndarray, y_pred: dict) -> np.ndarray: return ( 0.5 / 0.05 ** 2 * super().call(y_true=x[:, 1:], y_pred=y_pred["predicted_photometry"]) ) class ColorMSE(elegy.Loss): """Mean Square Error for the colors. Note I added a factor of 0.5 for the VAE definition, and I hardcoded an error of 0.05 mags for all photometry. """ def __init__(self, ref_idx: int): super().__init__() self.ref_idx = ref_idx # index of the reference band def call(self, x: np.ndarray, y_pred: dict) -> np.ndarray: mag_SE = ( 1 / 0.05 ** 2 * ( x[..., self.ref_idx + 1] - y_pred["predicted_photometry"][..., self.ref_idx] ) ** 2 ) color_SE = ( 1 / (2 * 0.05 ** 2) * ( jnp.diff(x[:, 1:], axis=-1) - jnp.diff(y_pred["predicted_photometry"], axis=-1) ) ** 2 ).sum(axis=-1) MSE = mag_SE + color_SE / y_pred["predicted_photometry"].shape[-1] return 0.5 * MSE class SlopeLoss(elegy.Loss): """Penalty on differences in neighboring bins. I also hardcoded an error of 0.05 mags here """ def __init__(self, eta: float): super().__init__() self.eta = eta def call(self, y_pred: dict) -> np.ndarray: return ( 1 / 0.05 ** 2 * self.eta * jnp.mean(jnp.diff(y_pred["sed_mag"], axis=-1) ** 2) ) class SpectralLoss(elegy.Loss): """Calculates loss w.r.t. latent SEDs, assuming a fraction of true SEDs are known exactly. """ def __init__(self, eta: float, frac: int): super().__init__() self.eta = eta self.frac = frac def call(self, y_true: np.ndarray, y_pred: dict) -> np.ndarray: N = int(self.frac * y_pred["amplitude"].shape[0]) assert N > 0, "With this batch size, the given frac results in no spectra." true_sed = y_true[:N] pred_sed = y_pred["amplitude"][:N] + y_pred["sed_mag"][:N] return self.eta * jnp.mean((true_sed - pred_sed) ** 2) ``` #### File: LGSM/lgsm/sed_utils.py ```python import jax.numpy as jnp import numpy as np def mag_to_fnu( mag: np.ndarray, wave: None = None # pylint: disable=unused-argument ) -> np.ndarray: """Convert AB magnitudes to F_nu in erg/s/Hz/cm^2. In the AB magnitude system, an object with flux density F_nu = 3631 Jansky has a magnitude of zero in all bands (note: 1 Jansky = 1e-23 erg/s/Hz/cm^2). Thus, to convert from AB magnitude to F_nu, we do the following: F_nu = (3631e-23 erg/s/Hz/cm^2) * 10^(m_AB / -2.5). """ fnu = 3631e-23 * 10 ** (mag / -2.5) return fnu def fnu_to_flambda(fnu: np.ndarray, wave: np.ndarray) -> np.ndarray: """Convert F_nu in erg/s/Hz/cm^2 to F_lambda in erg/s/AA/cm^2. To convert from F_nu to F_lambda, we use the formula F_lambda = c / lambda^2 * F_nu, resulting in an SED with units of erg/s/cm^2/AA. """ flambda = 2.998e18 / wave ** 2 * fnu return flambda def mag_to_flambda(mag: np.ndarray, wave: np.ndarray) -> np.ndarray: """Convert AB magnitudes to F_lambda in erg/s/AA/cm^2. In the AB magnitude system, an object with flux density F_nu = 3631 Jansky has a magnitude of zero in all bands (note: 1 Jansky = 1e-23 erg/s/Hz/cm^2). Thus, to convert from AB magnitude to F_nu, we do the following: F_nu = (3631e-23 erg/s/Hz/cm^2) * 10^(m_AB / -2.5). To convert from F_nu to F_lambda, we use the formula F_lambda = c / lambda^2 * F_nu, resulting in an SED with units of erg/s/cm^2/AA. """ fnu = mag_to_fnu(mag) flambda = fnu_to_flambda(fnu, wave) return flambda def flambda_to_fnu(flambda: np.ndarray, wave: np.ndarray) -> np.ndarray: """Convert F_lambda in erg/s/AA/cm^2 to F_nu in erg/s/Hz/cm^2. To convert from F_lambda to F_nu, we use the formula F_nu = lambda^2 / c * F_lambda, resulting in an SED with units of erg/s/Hz/cm^2. """ fnu = wave ** 2 / 2.998e18 * flambda return fnu def fnu_to_mag( fnu: np.ndarray, wave: None = None # pylint: disable=unused-argument ) -> np.ndarray: """Convert F_nu in erg/s/Hz/cm^2 to AB magnitudes. In the AB magnitude system, an object with flux density F_nu = 3631 Jansky has a magnitude of zero in all bands (note: 1 Jansky = 1e-23 erg/s/Hz/cm^2). Thus, to convert from F_nu to AB magnitude, we do the following: m_AB = -2.5 * log10(F_nu / 3631e-23 erg/s/Hz/cm^2). """ mag = -2.5 * jnp.log10(fnu / 3631e-23) return mag def flambda_to_mag(flambda: np.ndarray, wave: np.ndarray) -> np.ndarray: """Convert F_lambda in erg/s/AA/cm^2 to AB magnitudes. To convert from F_lambda to F_nu, we use the formula F_nu = lambda^2 / c * F_lambda, resulting in an SED with units of erg/s/Hz/cm^2. In the AB magnitude system, an object with flux density F_nu = 3631 Jansky has a magnitude of zero in all bands (note: 1 Jansky = 1e-23 erg/s/Hz/cm^2). Thus, to convert from F_nu to AB magnitude, we do the following: m_AB = -2.5 * log10(F_nu / 3631e-23 erg/s/Hz/cm^2). """ fnu = flambda_to_fnu(flambda, wave) mag = fnu_to_mag(fnu) return mag def wave_to_freq(wave: np.ndarray) -> np.ndarray: """Convert wavelength in Angstroms (AA) to frequency in Hertz (Hz).""" freq = 2.998e18 / wave return freq def freq_to_wave(freq: np.ndarray) -> np.ndarray: """Convert frequency in Hertz (Hz) to wavelength in Angstroms (AA).""" wave = 2.998e18 / freq return wave def setup_wave_grid(wave_min: float, wave_max: float, wave_bins: int) -> np.ndarray: """Setup an evenly spaced wavelength grid.""" dwave = dwave = (wave_max - wave_min) / (wave_bins - 1) wave_grid = jnp.arange(wave_min, wave_max + dwave, dwave) return wave_grid ```
{ "source": "jfcrenshaw/ml-aos", "score": 3 }
#### File: ml-aos/ml_aos/david_net.py ```python import numpy as np import torch from torch import nn class DavidNet(nn.Module): """Network to predict wavefront Zernike coefficients from donut images. Consists of a DonutNet that creates image features from the donut image. These are concatenated with a set of meta parameters (usually the donut's location on the focal plane), which is then passed to the MetaNet, which predicts a set of Zernike coefficients. """ def __init__(self, n_meta_layers: int) -> None: """Create a WaveNet to predict Zernike coefficients for donut images. Parameters ---------- n_meta_layers: int Number of fully connected layers in the MetaNet. """ super().__init__() self.donut_net = DonutNet() self.meta_net = MetaNet(n_meta_layers) def forward( self, image: torch.Tensor, fx: torch.Tensor, fy: torch.Tensor, intra: torch.Tensor, ) -> torch.Tensor: """Predict Zernike coefficients for the donut image. Parameters ---------- image: torch.Tensor The donut image fx: torch.Tensor The x angle of the source with respect to the optic axis fy: torch.Tensor The y angle of the source with respect to the optic axis intra: torch.Tensor Boolean indicating whether the donut is intra or extra focal Returns ------- torch.Tensor Array of Zernike coefficients """ image_features = self.donut_net(image) features = torch.cat([image_features, fx, fy, intra], axis=1) return self.meta_net(features) class DonutNet(nn.Module): """Network encodes donut image as latent_dim dimensional latent vector. Takes batches of 1x256x256 donut images as input and produces a (1 x 1024) dimensional representation. """ def __init__(self) -> None: """Create the donut encoder network.""" super().__init__() # first apply a convolution that maintains the image dimensions # but increases the channels from 1 to 8 self.layers = nn.ModuleList( [ nn.Conv2d(1, 8, 3, stride=1, padding=1), nn.BatchNorm2d(8), nn.ReLU(inplace=True), ] ) # now apply a series of DownBlocks that increases the number of # channels by a factor of 2, while decreasing height and width # by a factor of 2. for i in range(7): in_channels = 2 ** (i + 3) out_channels = 2 ** (i + 3 + 1) self.layers.append(DownBlock(in_channels, out_channels)) # a final down block that doesn't increase the number of channels self.layers.append(DownBlock(2 ** 10, 2 ** 10)) # Finally, flatten the output self.layers.append(nn.Flatten()) def forward(self, x: torch.Tensor) -> torch.Tensor: """Return latent space encoding of the donut image. Parameters ---------- x: torch.Tensor Input images of shape (batch x 256 x 256) Returns ------- torch.Tensor Latent space encoding of shape (batch x 1024) """ for layer in self.layers: x = layer(x) return x class DownBlock(nn.Module): """Convolutional block that decreases height and width by factor of 2. Consists of a convolutional residual/skip layer, followed by a regular convolutional layer that decreases the dimensions by a factor of 2. """ def __init__(self, in_channels: int, out_channels: int) -> None: """Create a downblock that reduces image dimensions. Parameters ---------- in_channels: int The number of input channels out_channels: int The number of output channels """ super().__init__() # create the list of layers self.layers = nn.ModuleList( [ # residual layer with convolution that preserves dimensions SkipBlock(in_channels), # this convolution decreases height and width by factor of 2 nn.Conv2d(in_channels, out_channels, 3, stride=2, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), ] ) def forward(self, x: torch.Tensor) -> torch.Tensor: """Return a convolved image with half the height and weight. Parameters ---------- x: torch.Tensor Input image of shape (batch x in_channels x height x width) Returns ------- torch.Tensor Output image of shape (batch x out_channels x height/2 x width/2) """ for layer in self.layers: x = layer(x) return x class SkipBlock(nn.Module): """Convolutional layer with a residual/skip connection.""" def __init__(self, channels: int) -> None: """Create a convolution layer with a skip connection. Parameters ---------- channels: int The number of input and output channels for the convolution. """ super().__init__() # layers to compute dx self.layers = nn.Sequential( nn.Conv2d(channels, channels, 3, stride=1, padding="same"), nn.BatchNorm2d(channels), nn.ReLU(inplace=True), ) def forward(self, x: torch.Tensor) -> torch.Tensor: """Convolve image and add to original via the skip connection. Parameters ---------- x: torch.Tensor Input image of shape (batch x channels x height x width) Returns ------- torch.Tensor Output image of shape (batch x channels x height x width) """ dx = self.layers(x) return x + dx class MetaNet(nn.Module): """Network that maps image features and meta parameters onto Zernikes. Consists of several fully connected layers. """ # number of Zernike coefficients to predict N_ZERNIKES = 18 # number of meta parameters to use in prediction N_METAS = 3 # the dimenson of the image features. This is determined by looking # at the dimension of outputs from DonutNet IMAGE_DIM = 1024 def __init__(self, n_layers: int) -> None: """Create a MetaNet to map image features and meta params to Zernikes. Parameters ---------- n_layers: int The number of layers in the MetaNet. """ super().__init__() # set number of nodes in network layers using a geometric series n_nodes = np.geomspace( self.IMAGE_DIM + self.N_METAS, self.N_ZERNIKES, n_layers + 1, dtype=int, ) # create the hidden layers, which all have BatchNorm and ReLU self.layers = nn.ModuleList() for i in range(n_layers - 1): self.layers.extend( [ nn.Linear(n_nodes[i], n_nodes[i + 1]), nn.BatchNorm1d(n_nodes[i + 1]), nn.ReLU(inplace=True), ] ) # we will add dropout to the first layer for regularization if i == 0: self.layers.append(nn.Dropout(0.1)) # create the output layer, which doesn't have BatchNorm or ReLU self.layers.append(nn.Linear(n_nodes[-2], n_nodes[-1])) def forward(self, x: torch.Tensor) -> torch.Tensor: """Map image features and meta parameters onto Zernikes. Parameters ---------- x: torch.Tensor Input vector of image features and meta parameters. Returns ------- torch.Tensor Array of Zernike coefficients. Size = cls.N_ZERNIKES """ for layer in self.layers: x = layer(x) return x ``` #### File: ml-aos/ml_aos/lightning.py ```python from typing import Dict, Tuple import matplotlib.pyplot as plt import pytorch_lightning as pl import torch import wandb from torch.utils.data import DataLoader from ml_aos.dataloader import Donuts from ml_aos.david_net import DavidNet as TorchDavidNet class DonutLoader(pl.LightningDataModule): """Pytorch Lightning wrapper for the simulated Donuts DataSet.""" def __init__( self, background: bool = True, badpix: bool = True, dither: int = 5, max_blend: float = 0.50, center_brightest: bool = True, normalize_pixels: bool = True, convert_zernikes: bool = True, mask_buffer: int = 0, nval: int = 2 ** 16, ntest: int = 2 ** 16, split_seed: int = 0, batch_size: int = 64, num_workers: int = 16, persistent_workers: bool = True, pin_memory: bool = True, data_dir: str = "/epyc/users/jfc20/thomas_aos_sims/", ) -> None: """Load the simulated Donuts data. Parameters ---------- mode: str, default="train" Which set to load. Options are train, val (i.e. validation), or test. background: bool, default=True Whether to add the sky background to the donut images. badpix: bool, default=True Whether to simulate bad pixels and columns. dither: int, default=5 Maximum number of pixels to dither in both directions. This simulates mis-centering. max_blend: float, default=0.50 Maximum fraction of the central star to be blended. For images with many blends, only the first handful of stars will be drawn, stopping when the next star would pass this blend threshold. center_brightest: bool, default=True Whether to center the brightest star in blended images. normalize_pixels: bool, default=True Whether to normalize the pixel values using the mean and std of the single-donut pixels. convert_zernikes: bool, default=True Whether to convert Zernike coefficients from units of r band wavelength to quadrature contribution to PSF FWHM. mask_buffer: int, default=0 The number of buffer pixels to add to outside of masks. nval: int, default=256 Number of donuts in the validation set. ntest: int, default=2048 Number of donuts in the test set split_seed: int, default=0 Random seed for training set/test set/validation set selection. batch_size: int, default=64 The batch size for SGD. num_workers: int, default=16 The number of workers for parallel loading of batches. persistent_workers: bool, default=True Whether to shutdown worker processes after dataset is consumed once pin_memory: bool, default=True Whether to automatically put data in pinned memory (recommended whenever using a GPU). data_dir: str, default=/epyc/users/jfc20/thomas_aos_sims/ Location of the data directory. The default location is where I stored the simulations on epyc. """ super().__init__() self.save_hyperparameters() def _build_loader(self, mode: str, shuffle: bool = False) -> DataLoader: return DataLoader( Donuts( mode=mode, background=self.hparams.background, badpix=self.hparams.badpix, dither=self.hparams.dither, max_blend=self.hparams.max_blend, center_brightest=self.hparams.center_brightest, normalize_pixels=self.hparams.normalize_pixels, convert_zernikes=self.hparams.convert_zernikes, mask_buffer=self.hparams.mask_buffer, nval=self.hparams.nval, ntest=self.hparams.ntest, split_seed=self.hparams.split_seed, data_dir=self.hparams.data_dir, ), batch_size=self.hparams.batch_size, num_workers=self.hparams.num_workers, persistent_workers=self.hparams.persistent_workers, pin_memory=self.hparams.pin_memory, shuffle=shuffle, ) def train_dataloader(self) -> DataLoader: """Return the training DataLoader.""" return self._build_loader("train", shuffle=True) def val_dataloader(self) -> DataLoader: """Return the validation DataLoader.""" return self._build_loader("val") def test_dataloader(self) -> DataLoader: """Return the testing DataLoader.""" return self._build_loader("test") class DavidNet(TorchDavidNet, pl.LightningModule): """Pytorch Lightning wrapper for training DavidNet.""" def __init__(self, n_meta_layers: int = 3) -> None: """Create the DavidNet. Parameters ---------- n_meta_layers: int, default=3 Number of layers in the MetaNet inside the DavidNet. These are the linear layers that map image features plus field position to Zernike coefficients. """ # set up the DavidNet implemented in torch, # as well as the LightningModule boilerplate super().__init__(n_meta_layers=n_meta_layers) # save the hyperparams in the log self.save_hyperparameters() def _predict( self, batch: Dict[str, torch.Tensor] ) -> Tuple[torch.Tensor, torch.Tensor]: """Make predictions for a batch of donuts.""" # unpack the data img = batch["image"] z_true = batch["zernikes"] fx = batch["field_x"] fy = batch["field_y"] intra = batch["intrafocal"] # predict the zernikes z_pred = self(img, fx, fy, intra) return z_pred, z_true def training_step( self, batch: Dict[str, torch.Tensor], batch_idx: int ) -> torch.Tensor: """Calculate the loss of the training step.""" # calculate the MSE for the batch z_pred, z_true = self._predict(batch) mse = calc_mse(z_pred, z_true) # log the mean rmse self.log("train_rmse", torch.sqrt(mse).mean()) # loss = mean mse loss = mse.mean() self.log("train_loss", loss) return loss def validation_step( self, batch: Dict[str, torch.Tensor], batch_idx: int ) -> Tuple[torch.Tensor, ...]: """Perform validation step.""" # calculate the MSE for the validation sample z_pred, z_true = self._predict(batch) mse = calc_mse(z_pred, z_true) # log the mean rmse self.log("val_rmse", torch.sqrt(mse).mean()) # log the loss self.log("val_loss", mse.mean()) # for the first batch of the validation set, plot the Zernikes if batch_idx == 0 and wandb.run is not None: # draw the Zernike figure and convert to wandb image for logging fig = wandb.Image(plot_zernikes(z_true.cpu(), z_pred.cpu())) # log the image wandb.log( {"zernikes": fig, "global_step": self.trainer.global_step} ) del fig # calculate distance from the center of focal plane in meters x = batch["focal_x"] y = batch["focal_y"] dist_rads = torch.sqrt(x ** 2 + y ** 2) # distance in radians dist_arcsecs = dist_rads * 206_265 # distance in arcsecs dist_microns = dist_arcsecs * 5 # distance in microns dist_meters = dist_microns / 1e6 # get the fraction blended frac_blended = batch["fraction_blended"] val_outputs = torch.hstack((dist_meters, frac_blended, mse)) return val_outputs def validation_epoch_end(self, val_outputs: torch.Tensor) -> None: """Compute metrics for the whole validation epoch.""" # extract the validation outputs val_outputs = torch.stack(val_outputs).reshape(-1, 3) frac_blended = val_outputs[:, 1] mse = val_outputs[:, 2] # compute the validation loss for the unblended stars unblended_idx = torch.where(frac_blended < 0.01) self.log("val_rmse_unblended", torch.sqrt(mse[unblended_idx]).mean()) self.log("val_loss_unblended", mse[unblended_idx].mean()) # compute the validation loss for the blended stars blended_idx = torch.where(frac_blended >= 0.01) self.log("val_rmse_blended", torch.sqrt(mse[blended_idx]).mean()) self.log("val_loss_blended", mse[blended_idx].mean()) def calc_mse(pred: torch.Tensor, true: torch.Tensor) -> torch.Tensor: """Calculate the MSE for the predicted values. Parameters ---------- pred: torch.Tensor Array of predicted values true: torch.Tensor Array of true values Returns ------- torch.Tensor Array of MSE values """ return torch.mean((pred - true) ** 2, axis=1, keepdim=True) def plot_zernikes(z_true: torch.Tensor, z_pred: torch.Tensor) -> plt.Figure: """Plot true and predicted zernikes (up to 8). Parameters ---------- z_true: torch.Tensor 2D Array of true Zernike coefficients z_pred: torch.Tensor 2D Array of predicted Zernike coefficients Returns ------- plt.Figure Figure containing the 8 axes with the true and predicted Zernike coefficients plotted together. """ # create the figure fig, axes = plt.subplots( 2, 4, figsize=(12, 5), constrained_layout=True, dpi=150, sharex=True, sharey=True, ) # loop through the axes/zernikes for ax, zt, zp in zip(axes.flatten(), z_true, z_pred): ax.plot(zt, label="True") ax.plot(zp, label="Predicted") axes[0, 0].set(xticks=[]) # remove x ticks axes[0, 0].legend() # add legend to first panel # set axis labels for ax in axes[:, 0]: ax.set_ylabel("Arcsec FWHM") for ax in axes[1, :]: ax.set_xlabel("Zernike number (Noll)") return fig def plot_loss_vs_blended( frac_blended: torch.Tensor, val_loss: torch.Tensor ) -> plt.Figure: """Plot validation loss vs the fraction blended Parameters ---------- frac_blended: torch.Tensor Array of blend fraction. val_loss: torch.Tensor Array of validation losses Returns ------- plt.Figure Figure containing plot of validation loss vs fraction blended """ fig, ax = plt.subplots(constrained_layout=True, dpi=150) ax.scatter(frac_blended[:100], val_loss[:100], marker=".", rasterized=True) ax.set(xlabel="Fraction blended", ylabel="Validation loss [arcsec FWHM]") return fig def plot_loss_vs_distance( distance: torch.Tensor, val_loss: torch.Tensor ) -> plt.Figure: """Plot validation loss vs the distance from the center of the focal plane, in meters. Parameters ---------- distance: torch.Tensor Array of distances from the center of the focal plane, in meters val_loss: torch.Tensor Array of validation losses Returns ------- plt.Figure Figure containing plot of validation loss vs distance from center of the focal plane """ fig, ax = plt.subplots(constrained_layout=True, dpi=150) ax.scatter(distance, val_loss, marker=".") ax.set( xlabel="Dist. from center of focal plane [m]", ylabel="Validation loss [arcsec FWHM]", ) return fig ```
{ "source": "jfcrenshaw/python-package", "score": 2 }
#### File: python-package/package/module.py ```python def f(x): return 2*x ```
{ "source": "jfcrenshaw/pzflow", "score": 2 }
#### File: pzflow/pzflow/flow.py ```python import itertools from typing import Any, Callable, Sequence, Tuple import dill as pickle import jax.numpy as np import numpy as onp import pandas as pd from jax import grad, jit, ops, random from jax.experimental.optimizers import Optimizer, adam from pzflow import distributions from pzflow.bijectors import Bijector_Info, InitFunction, Pytree from pzflow.utils import build_bijector_from_info, gaussian_error_model class Flow: """A normalizing flow that models tabular data. Attributes ---------- data_columns : tuple List of DataFrame columns that the flow expects/produces. conditional_columns : tuple List of DataFrame columns on which the flow is conditioned. info : Any Object containing any kind of info included with the flow. Often describes the data the flow is trained on. latent The latent distribution of the normalizing flow. Has it's own sample and log_prob methods. """ def __init__( self, data_columns: Sequence[str] = None, bijector: Tuple[InitFunction, Bijector_Info] = None, conditional_columns: Sequence[str] = None, latent=None, data_error_model: Callable = None, condition_error_model: Callable = None, autoscale_conditions: bool = True, seed: int = 0, info: Any = None, file: str = None, _dictionary: dict = None, ): """Instantiate a normalizing flow. Note that while all of the init parameters are technically optional, you must provide either data_columns and bijector OR file. In addition, if a file is provided, all other parameters must be None. Parameters ---------- data_columns : Sequence[str], optional Tuple, list, or other container of column names. These are the columns the flow expects/produces in DataFrames. bijector : Bijector Call, optional A Bijector call that consists of the bijector InitFunction that initializes the bijector and the tuple of Bijector Info. Can be the output of any Bijector, e.g. Reverse(), Chain(...), etc. conditional_columns : Sequence[str], optional Names of columns on which to condition the normalizing flow. latent : distribution, optional The latent distribution for the normalizing flow. Can be any of the distributions from pzflow.distributions. If not provided, a normal distribution is used with the number of dimensions inferred. data_error_model : Callable, optional A callable that defines the error model for data variables. data_error_model must take key, X, Xerr, nsamples as arguments where: key is a jax rng key, e.g. jax.random.PRNGKey(0) X is a 2 dimensional array of data variables, where the order of variables matches the order of the columns in data_columns Xerr is the corresponding 2 dimensional array of errors nsamples is the number of samples to draw from the error distribution data_error_model must return an array of samples with the shape (X.shape[0], nsamples, X.shape[1]). If data_error_model is not provided, a Gaussian error model is assumed. condition_error_model : Callable, optional A callable that defines the error model for conditional variables. condition_error_model must take key, X, Xerr, nsamples as arguments where: key is a jax rng key, e.g. jax.random.PRNGKey(0) X is a 2 dimensional array of conditional variables, where the order of variables matches the order of the columns in conditional_columns Xerr is the corresponding 2 dimensional array of errors nsamples is the number of samples to draw from the error distribution condition_error_model must return an array of samples with the shape (X.shape[0], nsamples, X.shape[1]). If condition_error_model is not provided, a Gaussian error model is assumed. autoscale_conditions : bool, default=True Sets whether or not conditions are automatically standard scaled when passed to a conditional flow. I recommend you leave this as True. seed : int, default=0 The random seed for initial parameters info : Any, optional An object to attach to the info attribute. file : str, optional Path to file from which to load a pretrained flow. If a file is provided, all other parameters must be None. """ # validate parameters if ( data_columns is None and bijector is None and file is None and _dictionary is None ): raise ValueError("You must provide data_columns and bijector OR file.") if data_columns is not None and bijector is None: raise ValueError("Please also provide a bijector.") if data_columns is None and bijector is not None: raise ValueError("Please also provide data_columns.") if any( ( data_columns is not None, bijector is not None, conditional_columns is not None, latent is not None, data_error_model is not None, condition_error_model is not None, info is not None, ) ): if file is not None: raise ValueError( "If providing a file, please do not provide any other parameters." ) if _dictionary is not None: raise ValueError( "If providing a dictionary, please do not provide any other parameters." ) if file is not None and _dictionary is not None: raise ValueError("Only provide file or _dictionary, not both.") # if file or dictionary is provided, load everything from it if file is not None or _dictionary is not None: save_dict = self._save_dict() if file is not None: with open(file, "rb") as handle: save_dict.update(pickle.load(handle)) else: save_dict.update(_dictionary) if save_dict["class"] != self.__class__.__name__: raise TypeError( f"This save file isn't a {self.__class__.__name__}." + f"It is a {save_dict['class']}" ) # load columns and dimensions self.data_columns = save_dict["data_columns"] self.conditional_columns = save_dict["conditional_columns"] self._input_dim = len(self.data_columns) self.info = save_dict["info"] # load the latent distribution self._latent_info = save_dict["latent_info"] self.latent = getattr(distributions, self._latent_info[0])( *self._latent_info[1] ) # load the error models self.data_error_model = save_dict["data_error_model"] self.condition_error_model = save_dict["condition_error_model"] # load the bijector self._bijector_info = save_dict["bijector_info"] init_fun, _ = build_bijector_from_info(self._bijector_info) _, self._forward, self._inverse = init_fun( random.PRNGKey(0), self._input_dim ) self._params = save_dict["params"] # load the conditional means and stds self._condition_means = save_dict["condition_means"] self._condition_stds = save_dict["condition_stds"] # set whether or not to automatically standard scale any # conditions passed to the normalizing flow self._autoscale_conditions = save_dict["autoscale_conditions"] # if no file is provided, use provided parameters else: self.data_columns = tuple(data_columns) self._input_dim = len(self.data_columns) self.info = info if conditional_columns is None: self.conditional_columns = None self._condition_means = None self._condition_stds = None else: self.conditional_columns = tuple(conditional_columns) self._condition_means = np.zeros(len(self.conditional_columns)) self._condition_stds = np.ones(len(self.conditional_columns)) # set whether or not to automatically standard scale any # conditions passed to the normalizing flow self._autoscale_conditions = autoscale_conditions # set up the latent distribution if latent is None: self.latent = distributions.Normal(self._input_dim) else: self.latent = latent self._latent_info = self.latent.info # set up the error models if data_error_model is None: self.data_error_model = gaussian_error_model else: self.data_error_model = data_error_model if condition_error_model is None: self.condition_error_model = gaussian_error_model else: self.condition_error_model = condition_error_model # set up the bijector with random params init_fun, self._bijector_info = bijector bijector_params, self._forward, self._inverse = init_fun( random.PRNGKey(seed), self._input_dim ) self._params = (self.latent._params, bijector_params) def _get_conditions(self, inputs: pd.DataFrame) -> np.ndarray: """Return an array of the bijector conditions.""" # if this isn't a conditional flow, just return empty conditions if self.conditional_columns is None: conditions = np.zeros((inputs.shape[0], 1)) # if this a conditional flow, return an array of the conditions else: columns = list(self.conditional_columns) conditions = np.array(inputs[columns].values) conditions = (conditions - self._condition_means) / self._condition_stds return conditions def _get_err_samples( self, key, inputs: pd.DataFrame, err_samples: int, type: str = "data", skip: str = None, ) -> np.ndarray: """Draw error samples for each row of inputs. """ X = inputs.copy() # get list of columns if type == "data": columns = list(self.data_columns) error_model = self.data_error_model elif type == "conditions": if self.conditional_columns is None: return np.zeros((err_samples * X.shape[0], 1)) else: columns = list(self.conditional_columns) error_model = self.condition_error_model else: raise ValueError("type must be `data` or `conditions`.") # make sure all relevant variables have error columns for col in columns: # if errors not provided for the column, fill in zeros if f"{col}_err" not in inputs.columns and col != skip: X[f"{col}_err"] = np.zeros(X.shape[0]) # if we are skipping this column, fill in nan's elif col == skip: X[col] = np.nan * np.zeros(X.shape[0]) X[f"{col}_err"] = np.nan * np.zeros(X.shape[0]) # pull out relevant columns err_columns = [col + "_err" for col in columns] X, Xerr = np.array(X[columns].values), np.array(X[err_columns].values) # generate samples Xsamples = error_model(key, X, Xerr, err_samples) Xsamples = Xsamples.reshape(X.shape[0] * err_samples, X.shape[1]) # delete the column corresponding to skip if skip is not None: idx = columns.index(skip) Xsamples = np.delete(Xsamples, idx, axis=1) # if these are samples of conditions, standard scale them! if type == "conditions": Xsamples = (Xsamples - self._condition_means) / self._condition_stds return Xsamples def _log_prob( self, params: Pytree, inputs: np.ndarray, conditions: np.ndarray ) -> np.ndarray: """Log prob for arrays.""" # calculate log_prob u, log_det = self._forward(params[1], inputs, conditions=conditions) log_prob = self.latent.log_prob(params[0], u) + log_det # set NaN's to negative infinity (i.e. zero probability) log_prob = np.nan_to_num(log_prob, nan=np.NINF) return log_prob def log_prob( self, inputs: pd.DataFrame, err_samples: int = None, seed: int = None ) -> np.ndarray: """Calculates log probability density of inputs. Parameters ---------- inputs : pd.DataFrame Input data for which log probability density is calculated. Every column in self.data_columns must be present. If self.conditional_columns is not None, those must be present as well. If other columns are present, they are ignored. err_samples : int, default=None Number of samples from the error distribution to average over for the log_prob calculation. If provided, Gaussian errors are assumed, and method will look for error columns in `inputs`. Error columns must end in `_err`. E.g. the error column for the variable `u` must be `u_err`. Zero error assumed for any missing error columns. seed : int, default=None Random seed for drawing the samples with Gaussian errors. Returns ------- np.ndarray Device array of shape (inputs.shape[0],). """ if err_samples is None: # convert data to an array with columns ordered columns = list(self.data_columns) X = np.array(inputs[columns].values) # get conditions conditions = self._get_conditions(inputs) # calculate log_prob return self._log_prob(self._params, X, conditions) else: # validate nsamples assert isinstance( err_samples, int ), "err_samples must be a positive integer." assert err_samples > 0, "err_samples must be a positive integer." # get Gaussian samples seed = onp.random.randint(1e18) if seed is None else seed key = random.PRNGKey(seed) X = self._get_err_samples(key, inputs, err_samples, type="data") C = self._get_err_samples(key, inputs, err_samples, type="conditions") # calculate log_probs log_probs = self._log_prob(self._params, X, C) probs = np.exp(log_probs.reshape(-1, err_samples)) return np.log(probs.mean(axis=1)) def posterior( self, inputs: pd.DataFrame, column: str, grid: np.ndarray, marg_rules: dict = None, normalize: bool = True, err_samples: int = None, seed: int = None, batch_size: int = None, nan_to_zero: bool = True, ) -> np.ndarray: """Calculates posterior distributions for the provided column. Calculates the conditional posterior distribution, assuming the data values in the other columns of the DataFrame. Parameters ---------- inputs : pd.DataFrame Data on which the posterior distributions are conditioned. Must have columns matching self.data_columns, *except* for the column specified for the posterior (see below). column : str Name of the column for which the posterior distribution is calculated. Must be one of the columns in self.data_columns. However, whether or not this column is one of the columns in `inputs` is irrelevant. grid : np.ndarray Grid on which to calculate the posterior. marg_rules : dict, optional Dictionary with rules for marginalizing over missing variables. The dictionary must contain the key "flag", which gives the flag that indicates a missing value. E.g. if missing values are given the value 99, the dictionary should contain {"flag": 99}. The dictionary must also contain {"name": callable} for any variables that will need to be marginalized over, where name is the name of the variable, and callable is a callable that takes the row of variables nad returns a grid over which to marginalize the variable. E.g. {"y": lambda row: np.linspace(0, row["x"], 10)}. Note: the callable for a given name must *always* return an array of the same length, regardless of the input row. err_samples : int, default=None Number of samples from the error distribution to average over for the posterior calculation. If provided, Gaussian errors are assumed, and method will look for error columns in `inputs`. Error columns must end in `_err`. E.g. the error column for the variable `u` must be `u_err`. Zero error assumed for any missing error columns. seed : int, default=None Random seed for drawing the samples with Gaussian errors. batch_size : int, default=None Size of batches in which to calculate posteriors. If None, all posteriors are calculated simultaneously. Simultaneous calculation is faster, but memory intensive for large data sets. normalize : boolean, default=True Whether to normalize the posterior so that it integrates to 1. nan_to_zero : bool, default=True Whether to convert NaN's to zero probability in the final pdfs. Returns ------- np.ndarray Device array of shape (inputs.shape[0], grid.size). """ # get the index of the provided column, and remove it from the list columns = list(self.data_columns) idx = columns.index(column) columns.remove(column) nrows = inputs.shape[0] batch_size = nrows if batch_size is None else batch_size # make sure indices run 0 -> nrows inputs = inputs.reset_index(drop=True) if err_samples is not None: # validate nsamples assert isinstance( err_samples, int ), "err_samples must be a positive integer." assert err_samples > 0, "err_samples must be a positive integer." # set the seed seed = onp.random.randint(1e18) if seed is None else seed key = random.PRNGKey(seed) # empty array to hold pdfs pdfs = np.zeros((nrows, len(grid))) # if marginalization rules were passed, we will loop over the rules # and repeatedly call this method if marg_rules is not None: # if the flag is NaN, we must use np.isnan to check for flags if onp.isnan(marg_rules["flag"]): def check_flags(data): return onp.isnan(data) # else we use np.isclose to check for flags else: def check_flags(data): return onp.isclose(data, marg_rules["flag"]) # first calculate pdfs for unflagged rows unflagged_idx = inputs[ ~check_flags(inputs[columns]).any(axis=1) ].index.tolist() unflagged_pdfs = self.posterior( inputs=inputs.iloc[unflagged_idx], column=column, grid=grid, err_samples=err_samples, seed=seed, batch_size=batch_size, normalize=False, nan_to_zero=nan_to_zero, ) # save these pdfs in the big array pdfs = ops.index_update( pdfs, ops.index[unflagged_idx, :], unflagged_pdfs, indices_are_sorted=True, unique_indices=True, ) # we will keep track of all the rows we've already calculated # posteriors for already_done = unflagged_idx # now we will loop over the rules in marg_rules for name, rule in marg_rules.items(): # ignore the flag, because that's not a column in the data if name == "flag": continue # get the list of new rows for which we need to calculate posteriors flagged_idx = inputs[check_flags(inputs[name])].index.tolist() flagged_idx = list(set(flagged_idx).difference(already_done)) # if flagged_idx is empty, move on! if len(flagged_idx) == 0: continue # get the marginalization grid for each row marg_grids = ( inputs.iloc[flagged_idx] .apply(rule, axis=1, result_type="expand") .values ) # make a new data frame with the marginalization grids replacing # the values of the flag in the column marg_inputs = pd.DataFrame( np.repeat( inputs.iloc[flagged_idx].values, marg_grids.shape[1], axis=0 ), columns=inputs.columns, ) marg_inputs[name] = marg_grids.reshape(marg_inputs.shape[0], 1) # remove the error column if it's present marg_inputs.drop(f"{name}_err", axis=1, inplace=True, errors="ignore") # calculate posteriors for these marg_pdfs = self.posterior( inputs=marg_inputs, column=column, grid=grid, marg_rules=marg_rules, err_samples=err_samples, seed=seed, batch_size=batch_size, normalize=False, nan_to_zero=nan_to_zero, ) # sum over the marginalized dimension marg_pdfs = marg_pdfs.reshape( len(flagged_idx), marg_grids.shape[1], grid.size ) marg_pdfs = marg_pdfs.sum(axis=1) # save the new pdfs in the big array pdfs = ops.index_update( pdfs, ops.index[flagged_idx, :], marg_pdfs, indices_are_sorted=True, unique_indices=True, ) # add these flagged indices to the list of rows already done already_done += flagged_idx # now for the main posterior calculation loop else: # loop through batches for batch_idx in range(0, nrows, batch_size): # get the data batch # and, if this is a conditional flow, the correpsonding conditions batch = inputs.iloc[batch_idx : batch_idx + batch_size] # if not drawing samples, just grab batch and conditions if err_samples is None: conditions = self._get_conditions(batch) batch = np.array(batch[columns].values) # if only drawing condition samples... elif len(self.data_columns) == 1: conditions = self._get_err_samples( key, batch, err_samples, type="conditions" ) batch = np.repeat(batch[columns].values, err_samples, axis=0) # if drawing data and condition samples... else: conditions = self._get_err_samples( key, batch, err_samples, type="conditions" ) batch = self._get_err_samples( key, batch, err_samples, skip=column, type="data" ) # make a new copy of each row for each value of the column # for which we are calculating the posterior batch = np.hstack( ( np.repeat(batch[:, :idx], len(grid), axis=0,), np.tile(grid, len(batch))[:, None], np.repeat(batch[:, idx:], len(grid), axis=0,), ) ) # make similar copies of the conditions conditions = np.repeat(conditions, len(grid), axis=0) # calculate probability densities log_prob = self._log_prob(self._params, batch, conditions).reshape( (-1, len(grid)) ) prob = np.exp(log_prob) # if we were Gaussian sampling, average over the samples if err_samples is not None: prob = prob.reshape(-1, err_samples, len(grid)) prob = prob.mean(axis=1) # add the pdfs to the bigger list pdfs = ops.index_update( pdfs, ops.index[batch_idx : batch_idx + batch_size, :], prob, indices_are_sorted=True, unique_indices=True, ) if normalize: # normalize so they integrate to one pdfs = pdfs / np.trapz(y=pdfs, x=grid).reshape(-1, 1) if nan_to_zero: # set NaN's equal to zero probability pdfs = np.nan_to_num(pdfs, nan=0.0) return pdfs def sample( self, nsamples: int = 1, conditions: pd.DataFrame = None, save_conditions: bool = True, seed: int = None, ) -> pd.DataFrame: """Returns samples from the normalizing flow. Parameters ---------- nsamples : int, default=1 The number of samples to be returned. conditions : pd.DataFrame, optional If this is a conditional flow, you must pass conditions for each sample. nsamples will be drawn for each row in conditions. save_conditions : bool, default=True If true, conditions will be saved in the DataFrame of samples that is returned. seed : int, optional Sets the random seed for the samples. Returns ------- pd.DataFrame Pandas DataFrame of samples. """ # validate nsamples assert isinstance(nsamples, int), "nsamples must be a positive integer." assert nsamples > 0, "nsamples must be a positive integer." if self.conditional_columns is not None and conditions is None: raise ValueError( f"Must provide the following conditions\n{self.conditional_columns}" ) # if this isn't a conditional flow, get empty conditions if self.conditional_columns is None: conditions = np.zeros((nsamples, 1)) # otherwise get conditions and make `nsamples` copies of each else: conditions = self._get_conditions(conditions) conditions = np.repeat(conditions, nsamples, axis=0) # draw from latent distribution u = self.latent.sample(self._params[0], conditions.shape[0], seed) # take the inverse back to the data distribution x = self._inverse(self._params[1], u, conditions=conditions)[0] # if not conditional, or save_conditions is False, this is all we need if self.conditional_columns is None or save_conditions is False: x = pd.DataFrame(x, columns=self.data_columns) # but if conditional and save_conditions is True, # save conditions with samples else: # unscale the conditons conditions = conditions * self._condition_stds + self._condition_means x = pd.DataFrame( np.hstack((x, conditions)), columns=self.data_columns + self.conditional_columns, ) # return the samples! return x def _save_dict(self): """Returns the dictionary of all flow params to be saved.""" save_dict = {"class": self.__class__.__name__} keys = [ "data_columns", "conditional_columns", "condition_means", "condition_stds", "data_error_model", "condition_error_model", "autoscale_conditions", "info", "latent_info", "bijector_info", "params", ] for key in keys: try: save_dict[key] = getattr(self, key) except AttributeError: try: save_dict[key] = getattr(self, "_" + key) except AttributeError: save_dict[key] = None return save_dict def save(self, file: str): """Saves the flow to a file. Pickles the flow and saves it to a file that can be passed as the `file` argument during flow instantiation. WARNING: Currently, this method only works for bijectors that are implemented in the `bijectors` module. If you want to save a flow with a custom bijector, you either need to add the bijector to that module, or handle the saving and loading on your end. Parameters ---------- file : str Path to where the flow will be saved. Extension `.pkl` will be appended if not already present. """ save_dict = self._save_dict() with open(file, "wb") as handle: pickle.dump(save_dict, handle, recurse=True) def train( self, inputs: pd.DataFrame, epochs: int = 50, batch_size: int = 1024, optimizer: Optimizer = None, loss_fn: Callable = None, convolve_errs: bool = False, seed: int = 0, verbose: bool = False, ) -> list: """Trains the normalizing flow on the provided inputs. Parameters ---------- inputs : pd.DataFrame Data on which to train the normalizing flow. Must have columns matching self.data_columns. epochs : int, default=50 Number of epochs to train. batch_size : int, default=1024 Batch size for training. optimizer : jax Optimizer, default=adam(step_size=1e-3) An optimizer from jax.experimental.optimizers. loss_fn : Callable, optional A function to calculate the loss: loss = loss_fn(params, x). If not provided, will be -mean(log_prob). convolve_errs : bool, default=False Whether to draw new data from the error distributions during each epoch of training. Assumes errors are Gaussian, and method will look for error columns in `inputs`. Error columns must end in `_err`. E.g. the error column for the variable `u` must be `u_err`. Zero error assumed for any missing error columns. seed : int, default=0 A random seed to control the batching and the (optional) error sampling. verbose : bool, default=False If true, print the training loss every 5% of epochs. Returns ------- list List of training losses from every epoch. """ # validate epochs if not isinstance(epochs, int) or epochs <= 0: raise ValueError("epochs must be a positive integer.") # if no loss_fn is provided, use the default loss function if loss_fn is None: @jit def loss_fn(params, x, c): return -np.mean(self._log_prob(params, x, c)) # initialize the optimizer optimizer = adam(step_size=1e-3) if optimizer is None else optimizer opt_init, opt_update, get_params = optimizer opt_state = opt_init(self._params) # define the training step function @jit def step(i, opt_state, x, c): params = get_params(opt_state) gradients = grad(loss_fn)(params, x, c) return opt_update(i, gradients, opt_state) # get list of data columns columns = list(self.data_columns) # if this is a conditional flow, and autoscale_conditions == True # save the means and stds of the conditional columns if self.conditional_columns is not None and self._autoscale_conditions: self._condition_means = np.array( inputs[list(self.conditional_columns)].values.mean(axis=0) ) condition_stds = np.array( inputs[list(self.conditional_columns)].values.std(axis=0) ) self._condition_stds = np.where(condition_stds != 0, condition_stds, 1) # define a function to return batches if convolve_errs: def get_batch(sample_key, x, type): return self._get_err_samples(sample_key, x, 1, type=type) else: def get_batch(sample_key, x, type): if type == "conditions": return self._get_conditions(x) else: return np.array(x[columns].values) # get random seed for training loop key = random.PRNGKey(seed) if verbose: print(f"Training {epochs} epochs \nLoss:") # save the initial loss X = np.array(inputs[columns].values) C = self._get_conditions(inputs) losses = [loss_fn(self._params, X, C)] if verbose: print(f"(0) {losses[-1]:.4f}") # loop through training itercount = itertools.count() for epoch in range(epochs): # new permutation of batches permute_key, sample_key, key = random.split(key, num=3) idx = random.permutation(permute_key, inputs.shape[0]) X = inputs.iloc[idx] # loop through batches and step optimizer for batch_idx in range(0, len(X), batch_size): # if sampling from the error distribution, this returns a # Gaussian sample of the batch. Else just returns batch as a # jax array batch = get_batch( sample_key, X.iloc[batch_idx : batch_idx + batch_size], type="data" ) batch_conditions = get_batch( sample_key, X.iloc[batch_idx : batch_idx + batch_size], type="conditions", ) opt_state = step(next(itercount), opt_state, batch, batch_conditions,) # save end-of-epoch training loss params = get_params(opt_state) losses.append( loss_fn(params, np.array(X[columns].values), self._get_conditions(X),) ) if verbose and ( epoch % max(int(0.05 * epochs), 1) == 0 or (epoch + 1) == epochs ): print(f"({epoch+1}) {losses[-1]:.4f}") # update the flow parameters with the final training state self._params = get_params(opt_state) return losses ``` #### File: pzflow/tests/test_examples.py ```python import jax.numpy as np import pandas as pd from pzflow import examples from pzflow import Flow def test_get_twomoons_data(): data = examples.get_twomoons_data() assert isinstance(data, pd.DataFrame) assert data.shape == (10000, 2) def test_get_galaxy_data(): data = examples.get_galaxy_data() assert isinstance(data, pd.DataFrame) assert data.shape == (100000, 7) def test_get_city_data(): data = examples.get_city_data() assert isinstance(data, pd.DataFrame) assert data.shape == (47966, 5) def test_get_example_flow(): flow = examples.get_example_flow() assert isinstance(flow, Flow) assert isinstance(flow.info, str) samples = flow.sample(2) flow.log_prob(samples) grid = np.arange(0, 2.5, 0.5) flow.posterior(samples, column="redshift", grid=grid) ``` #### File: pzflow/tests/test_flow.py ```python import dill as pickle import jax.numpy as np import numpy as onp import pandas as pd import pytest from jax import random from pzflow import Flow from pzflow.bijectors import Reverse, RollingSplineCoupling from pzflow.distributions import * @pytest.mark.parametrize( "data_columns,bijector,info,file,_dictionary", [ (None, None, None, None, None), (("x", "y"), None, None, None, None), (None, Reverse(), None, None, None), (("x", "y"), None, None, "file", None), (None, Reverse(), None, "file", None), (None, None, "fake", "file", None), (("x", "y"), Reverse(), None, None, "dict"), (None, None, None, "file", "dict"), ], ) def test_bad_inputs(data_columns, bijector, info, file, _dictionary): with pytest.raises(ValueError): Flow( data_columns, bijector=bijector, info=info, file=file, _dictionary=_dictionary, ) @pytest.mark.parametrize( "flow", [ Flow(("redshift", "y"), Reverse(), latent=Normal(2)), Flow(("redshift", "y"), Reverse(), latent=Tdist(2)), Flow(("redshift", "y"), Reverse(), latent=Uniform((-3, 3), (-3, 3))), Flow(("redshift", "y"), Reverse(), latent=CentBeta(2)), ], ) def test_returns_correct_shape(flow): xarray = np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]) x = pd.DataFrame(xarray, columns=("redshift", "y")) conditions = flow._get_conditions(x) xfwd, xfwd_log_det = flow._forward(flow._params, xarray, conditions=conditions) assert xfwd.shape == x.shape assert xfwd_log_det.shape == (x.shape[0],) xinv, xinv_log_det = flow._inverse(flow._params, xarray, conditions=conditions) assert xinv.shape == x.shape assert xinv_log_det.shape == (x.shape[0],) nsamples = 4 assert flow.sample(nsamples).shape == (nsamples, x.shape[1]) assert flow.log_prob(x).shape == (x.shape[0],) grid = np.arange(0, 2.1, 0.12) pdfs = flow.posterior(x, column="y", grid=grid) assert pdfs.shape == (x.shape[0], grid.size) pdfs = flow.posterior(x.iloc[:, 1:], column="redshift", grid=grid) assert pdfs.shape == (x.shape[0], grid.size) pdfs = flow.posterior(x.iloc[:, 1:], column="redshift", grid=grid, batch_size=2) assert pdfs.shape == (x.shape[0], grid.size) assert len(flow.train(x, epochs=11, verbose=True)) == 12 assert len(flow.train(x, epochs=11, verbose=True, convolve_errs=True)) == 12 @pytest.mark.parametrize("flag", [99, onp.nan,]) def test_posterior_with_marginalization(flag): flow = Flow(("a", "b", "c", "d"), Reverse()) # test posteriors with marginalization x = pd.DataFrame(np.arange(16).reshape(-1, 4), columns=("a", "b", "c", "d")) grid = np.arange(0, 2.1, 0.12) marg_rules = { "flag": flag, "b": lambda row: np.linspace(0, 1, 2), "c": lambda row: np.linspace(1, 2, 3), } x["b"] = flag * np.ones(x.shape[0]) pdfs = flow.posterior(x, column="a", grid=grid, marg_rules=marg_rules) assert pdfs.shape == (x.shape[0], grid.size) x["c"] = flag * np.ones(x.shape[0]) pdfs = flow.posterior(x, column="a", grid=grid, marg_rules=marg_rules) assert pdfs.shape == (x.shape[0], grid.size) @pytest.mark.parametrize( "flow,x,x_with_err", [ ( Flow(("redshift", "y"), RollingSplineCoupling(2), latent=Normal(2)), pd.DataFrame( np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]), columns=("redshift", "y"), ), pd.DataFrame( np.array( [[1.0, 2.0, 0.1, 0.2], [3.0, 4.0, 0.2, 0.3], [5.0, 6.0, 0.1, 0.2]] ), columns=("redshift", "y", "redshift_err", "y_err"), ), ), ( Flow( ("redshift", "y"), RollingSplineCoupling(2, n_conditions=2), latent=Normal(2), conditional_columns=("a", "b"), ), pd.DataFrame( np.array([[1.0, 2.0, 10, 20], [3.0, 4.0, 30, 40], [5.0, 6.0, 50, 60]]), columns=("redshift", "y", "a", "b"), ), pd.DataFrame( np.array( [ [1.0, 2.0, 10, 20, 0.1, 0.2, 1, 2], [3.0, 4.0, 30, 40, 0.2, 0.3, 3, 4], [5.0, 6.0, 50, 60, 0.1, 0.2, 5, 6], ] ), columns=( "redshift", "y", "a", "b", "redshift_err", "y_err", "a_err", "b_err", ), ), ), ( Flow( ("redshift", "y"), RollingSplineCoupling(2, n_conditions=1), latent=Normal(2), conditional_columns=("a",), ), pd.DataFrame( np.array([[1.0, 2.0, 10], [3.0, 4.0, 30], [5.0, 6.0, 50]]), columns=("redshift", "y", "a"), ), pd.DataFrame( np.array( [ [1.0, 2.0, 10, 0.1, 0.2, 1], [3.0, 4.0, 30, 0.2, 0.3, 3], [5.0, 6.0, 50, 0.1, 0.2, 5], ] ), columns=("redshift", "y", "a", "redshift_err", "y_err", "a_err",), ), ), ( Flow( ("y",), RollingSplineCoupling(1, n_conditions=2), latent=Normal(1), conditional_columns=("a", "b"), ), pd.DataFrame( np.array([[1.0, 10, 20], [3.0, 30, 40], [5.0, 50, 60]]), columns=("y", "a", "b"), ), pd.DataFrame( np.array( [ [1.0, 10, 20, 0.1, 1, 2], [3.0, 30, 40, 0.2, 3, 4], [5.0, 50, 60, 0.1, 5, 6], ] ), columns=("y", "a", "b", "y_err", "a_err", "b_err",), ), ), ], ) def test_error_convolution(flow, x, x_with_err): assert flow.log_prob(x, err_samples=10).shape == (x.shape[0],) assert np.allclose(flow.log_prob(x, err_samples=10, seed=0), flow.log_prob(x),) assert ~np.allclose( flow.log_prob(x_with_err, err_samples=10, seed=0), flow.log_prob(x_with_err), ) assert np.allclose( flow.log_prob(x_with_err, err_samples=10, seed=0), flow.log_prob(x_with_err, err_samples=10, seed=0), ) assert ~np.allclose( flow.log_prob(x_with_err, err_samples=10, seed=0), flow.log_prob(x_with_err, err_samples=10, seed=1), ) assert ~np.allclose( flow.log_prob(x_with_err, err_samples=10), flow.log_prob(x_with_err, err_samples=10), ) grid = np.arange(0, 2.1, 0.12) pdfs = flow.posterior(x, column="y", grid=grid, err_samples=10) assert pdfs.shape == (x.shape[0], grid.size) assert np.allclose( flow.posterior(x, column="y", grid=grid, err_samples=10, seed=0), flow.posterior(x, column="y", grid=grid), rtol=1e-4, ) assert np.allclose( flow.posterior(x_with_err, column="y", grid=grid, err_samples=10, seed=0), flow.posterior(x_with_err, column="y", grid=grid, err_samples=10, seed=0), ) def test_posterior_batch(): columns = ("redshift", "y") flow = Flow(columns, Reverse()) xarray = np.array([[1, 2], [3, 4], [5, 6]]) x = pd.DataFrame(xarray, columns=columns) grid = np.arange(0, 2.1, 0.12) pdfs = flow.posterior(x.iloc[:, 1:], column="redshift", grid=grid) pdfs_batched = flow.posterior( x.iloc[:, 1:], column="redshift", grid=grid, batch_size=2 ) assert np.allclose(pdfs, pdfs_batched) def test_flow_bijection(): columns = ("x", "y") flow = Flow(columns, Reverse()) x = np.array([[1, 2], [3, 4]]) xrev = np.array([[2, 1], [4, 3]]) assert np.allclose(flow._forward(flow._params, x)[0], xrev) assert np.allclose( flow._inverse(flow._params, flow._forward(flow._params, x)[0])[0], x ) assert np.allclose( flow._forward(flow._params, x)[1], flow._inverse(flow._params, x)[1] ) def test_load_flow(tmp_path): columns = ("x", "y") flow = Flow(columns, Reverse(), info=["random", 42]) file = tmp_path / "test-flow.pzflow.pkl" flow.save(str(file)) file = tmp_path / "test-flow.pzflow.pkl" flow = Flow(file=str(file)) x = np.array([[1, 2], [3, 4]]) xrev = np.array([[2, 1], [4, 3]]) assert np.allclose(flow._forward(flow._params, x)[0], xrev) assert np.allclose( flow._inverse(flow._params, flow._forward(flow._params, x)[0])[0], x ) assert np.allclose( flow._forward(flow._params, x)[1], flow._inverse(flow._params, x)[1] ) assert flow.info == ["random", 42] with open(str(file), "rb") as handle: save_dict = pickle.load(handle) save_dict["class"] = "FlowEnsemble" with open(str(file), "wb") as handle: pickle.dump(save_dict, handle, recurse=True) with pytest.raises(TypeError): Flow(file=str(file)) def test_control_sample_randomness(): columns = ("x", "y") flow = Flow(columns, Reverse()) assert onp.all(~onp.isclose(flow.sample(2), flow.sample(2))) assert onp.allclose(flow.sample(2, seed=0), flow.sample(2, seed=0)) @pytest.mark.parametrize( "epochs,loss_fn,", [(-1, None), (2.4, None), ("a", None),], ) def test_train_bad_inputs(epochs, loss_fn): columns = ("redshift", "y") flow = Flow(columns, Reverse()) xarray = np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]) x = pd.DataFrame(xarray, columns=columns) with pytest.raises(ValueError): flow.train( x, epochs=epochs, loss_fn=loss_fn, ) def test_conditional_sample(): flow = Flow(("x", "y"), Reverse(), conditional_columns=("a", "b")) x = np.arange(12).reshape(-1, 4) x = pd.DataFrame(x, columns=("x", "y", "a", "b")) conditions = flow._get_conditions(x) assert conditions.shape == (x.shape[0], 2) with pytest.raises(ValueError): flow.sample(4) samples = flow.sample(4, conditions=x) assert samples.shape == (4 * x.shape[0], 4) samples = flow.sample(4, conditions=x, save_conditions=False) assert samples.shape == (4 * x.shape[0], 2) def test_train_no_errs_same(): columns = ("redshift", "y") flow = Flow(columns, Reverse()) xarray = np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]) x = pd.DataFrame(xarray, columns=columns) losses1 = flow.train(x, convolve_errs=True) losses2 = flow.train(x, convolve_errs=False) assert np.allclose(np.array(losses1), np.array(losses2)) def test_get_err_samples(): rng = random.PRNGKey(0) # check Gaussian data samples columns = ("x", "y") flow = Flow(columns, Reverse()) xarray = np.array([[1.0, 2.0, 0.1, 0.2], [3.0, 4.0, 0.3, 0.4]]) x = pd.DataFrame(xarray, columns=("x", "y", "x_err", "y_err")) samples = flow._get_err_samples(rng, x, 10) assert samples.shape == (20, 2) # test skip xarray = np.array([[1.0, 2.0, 0, 0]]) x = pd.DataFrame(xarray, columns=("x", "y", "x_err", "y_err")) samples = flow._get_err_samples(rng, x, 10, skip="y") assert np.allclose(samples, np.ones((10, 1))) samples = flow._get_err_samples(rng, x, 10, skip="x") assert np.allclose(samples, 2 * np.ones((10, 1))) # check Gaussian conditional samples flow = Flow(("x"), Reverse(), conditional_columns=("y")) samples = flow._get_err_samples(rng, x, 10, type="conditions") assert np.allclose(samples, 2 * np.ones((10, 1))) # check incorrect type with pytest.raises(ValueError): flow._get_err_samples(rng, x, 10, type="wrong") # check constant shift data samples columns = ("x", "y") shift_err_model = lambda key, X, Xerr, nsamples: np.repeat( X + Xerr, nsamples, axis=0 ).reshape(X.shape[0], nsamples, X.shape[1]) flow = Flow(columns, Reverse(), data_error_model=shift_err_model) xarray = np.array([[1.0, 2.0, 0.1, 0.2], [3.0, 4.0, 0.3, 0.4]]) x = pd.DataFrame(xarray, columns=("x", "y", "x_err", "y_err")) samples = flow._get_err_samples(rng, x, 10) assert samples.shape == (20, 2) assert np.allclose( samples, shift_err_model(None, xarray[:, :2], xarray[:, 2:], 10).reshape(20, 2), ) # check constant shift conditional samples flow = Flow( ("x"), Reverse(), conditional_columns=("y"), condition_error_model=shift_err_model, ) samples = flow._get_err_samples(rng, x, 10, type="conditions") assert np.allclose(samples, np.repeat(np.array([[2.2], [4.4]]), 10, axis=0)) def test_train_w_conditions(): xarray = np.array( [[1.0, 2.0, 0.1, 0.2], [3.0, 4.0, 0.3, 0.4], [5.0, 6.0, 0.5, 0.6]] ) x = pd.DataFrame(xarray, columns=("redshift", "y", "a", "b")) flow = Flow( ("redshift", "y"), Reverse(), latent=Normal(2), conditional_columns=("a", "b") ) assert len(flow.train(x, epochs=11)) == 12 print("------->>>>>") print(flow._condition_stds, "\n\n") print(xarray[:, 2:].std(axis=0)) assert np.allclose(flow._condition_means, xarray[:, 2:].mean(axis=0)) assert np.allclose(flow._condition_stds, xarray[:, 2:].std(axis=0)) ```
{ "source": "jfcrenshaw/uw_stempals_demos", "score": 3 }
#### File: uw_stempals_demos/uw_stempals_demos/pandemic_sim.py ```python import numpy as np import matplotlib.pyplot as plt from matplotlib import animation, rc # set animation backends rc("animation", html="jshtml") rc("animation", embed_limit=60) def pandemicSim( N: int = 50, Nsick: int = 1, pVacc: float = 0.0, pMask: float = 50.0, qMask: float = 75.0, c: float = 1.0, v: float = 1.0, L: float = 1.0, tRecover: int = 200, tTotal: int = 550, seed: int = 0, ) -> animation.FuncAnimation: """ Parameters ---------- N : int, default=50 Total number of people in the simulation. Must be a positive integer. Nsick : int, default=1 Number of people sick at the beginning. Must be a positive integer < N. pVacc : float, default=0 Percent of people vaccinated at the beginning. Must be a float between 0 and 100. pMask : float, default=50 Percent of people wearing masks. Must be a float between 0 and 100. qMask : float, default=75 Quality of the masks in percent reduction of contagiousness. Must be a float between 0 and 100. c : float, default=1 The contagiousness of the disease. Must be a positive float. v : float, default=1 Speed of the people. Must be a positive float L : float, default=1 Side length of the box the people move in. Must be a positive float. Note that technically they are moving on the surface of a 2-torus that cannot be embedded in R^3. This is the torus circumference in both directions. tRecover : int, default=200 The time to recover from the disease. Must be a positive integer. tTotal : int, default=550 The total time of the simulation. Must be a positive integer. seed : int, default=0 The random seed that determines the initial conditions and the paths walked by the people during the simulation. Returns ------- anim : matplotlib.animation.FuncAnimation """ # -------------------------- # validate parameter values # -------------------------- assert isinstance(N, int) & (N > 0), "N must be a positive integer." assert isinstance(Nsick, int) & ( Nsick >= 0 ), "Nsick must be a non-negative integer." assert (pVacc >= 0) & (pVacc <= 100), "pVacc must be between 0 and 100." assert (pMask >= 0) & (pMask <= 100), "pMask must be between 0 and 100." assert (qMask >= 0) & (qMask <= 100), "qMask must be between 0 and 100." assert c >= 0, "c must be non-negative." assert v >= 0, "v must be non-negative." assert L > 0, "L must be positive." assert isinstance(tRecover, int) & ( tRecover >= 0 ), "tRecover must be a non-negative integer." assert isinstance(tTotal, int) & (tTotal > 0), "tTotal must be a positive integer." assert isinstance(seed, int) & (seed >= 0), "seed must be non-negative." # ----------------------- # set initial conditions # ----------------------- rng = np.random.default_rng(seed) x = rng.uniform(0, L, size=(N, 2)) # initial positions phi = rng.uniform(0, 2 * np.pi, size=N) # initial directions Nvacc = int(pVacc / 100 * N) # number of vaccinated people Nnormal = N - Nsick - Nvacc # number of normal people Nmasked = int(pMask / 100 * N) # number of masked people status = Nnormal * ["normal"] + Nsick * ["sick"] + Nvacc * ["vaccinated"] status = rng.permutation(np.array(status, dtype="<U10")) # initial statuses masked, unmasked = np.split(rng.permutation(np.arange(N)), [Nmasked]) recover_counter = np.zeros(N) recover_counter[status == "sick"] = 1 # days since infected for each person # ----------------- # setup the figure # ----------------- fig_inches = 8 wpad, hpad, mpad = 0.1, 0.15, 0.1 wsubplot = (1 - 2 * wpad - mpad) / 2 hsubplot = 1 - 2 * hpad fig = plt.figure(figsize=(fig_inches, fig_inches / 2), dpi=150) ax1 = fig.add_axes( [wpad, hpad, wsubplot, hsubplot], xlim=(0, L), ylim=(0, L), xticks=[], yticks=[] ) ax2 = fig.add_axes( [wpad + wsubplot + mpad, hpad, wsubplot, hsubplot], xlim=(0, tTotal), ylim=(0, N), ) ax2.set(xlabel="Time", ylabel="Number of sick people") # bubble colors for each status colors = { "normal": "cornflowerblue", "sick": "tomato", "vaccinated": "orange", "recovered": "mediumseagreen", } # set sizes of plotting elements r_bbl = 0.04 * np.sqrt(c) * np.ones(N) # radius of the unmasked bubbles r_bbl[masked] *= np.sqrt(1 - qMask / 100) # radius of masked bubbles s_bbl = (72 * 2 * r_bbl * fig_inches * wsubplot / L) ** 2 * np.ones(N) s_unmasked_ppl = 3 / L ** 2 s_masked_ppl = 10 / L ** 2 # bubbles around people bbl = ax1.scatter( x[:, 0], x[:, 1], c=np.vectorize(colors.get)(status), s=s_bbl, alpha=0.5 ) # markers for people unmasked_ppl = ax1.scatter(x[unmasked, 0], x[unmasked, 1], c="k", s=s_unmasked_ppl) masked_ppl = ax1.scatter( x[masked, 0], x[masked, 1], c="k", s=s_masked_ppl, marker="x" ) # track number of sick people N_currently_sick, N_total_sick = [Nsick], [Nsick] (currently_sick_ppl,) = ax2.plot(N_currently_sick, c="C3", label="Currently") (total_sick_ppl,) = ax2.plot(N_total_sick, c="k", ls=":", label="Total") ax2.legend(loc="upper left") plt.close() # ------------------------------------------------------ # define a function to perform a step of the simulation # ------------------------------------------------------ def step(n): # step forward nonlocal x, phi phi = rng.vonmises(phi, 10) V = v / 100 * np.vstack([np.cos(phi), np.sin(phi)]) x = (x + V.T) % L # new infections if "normal" in status: normal = np.where(status == "normal")[0] sick = np.where(status == "sick")[0] # calculate square distances of sick people to normal people d2 = np.sum((x[sick, None] - x[normal]) ** 2, axis=-1) # infect! too_close = ( ((d2 > 0) & (d2 < r_bbl[sick, None] ** 2)) .squeeze() .astype(int) .reshape(-1, len(normal)) ) if too_close.ndim > 1: too_close = too_close.sum(axis=0) new_cases = normal[too_close > 0] status[new_cases] = "sick" # record the number of sick people N_currently_sick.append(np.where(status == "sick")[0].size) N_total_sick.append( np.where((status == "sick") | (status == "recovered"))[0].size ) # update the plots bbl.set_offsets(x) bbl.set_color(np.vectorize(colors.get)(status)) unmasked_ppl.set_offsets(x[unmasked]) masked_ppl.set_offsets(x[masked]) currently_sick_ppl.set_data(np.arange(len(N_currently_sick)), N_currently_sick) total_sick_ppl.set_data(np.arange(len(N_total_sick)), N_total_sick) # recovery status[recover_counter > tRecover] = "recovered" recover_counter[status == "sick"] += 1 return bbl, unmasked_ppl, masked_ppl, currently_sick_ppl, total_sick_ppl # --------------------- # create the animation # --------------------- anim = animation.FuncAnimation(fig, step, frames=tTotal, interval=50, blit=True) return anim ```
{ "source": "jfcsantos/python-threads", "score": 3 }
#### File: jfcsantos/python-threads/onu_logging.py ```python import json logBuffer = "" def __init__(self, arg): super(OnuLogging, self).__init__() self.arg = arg def logMessage(message): global logBuffer print message logBuffer += "<p>" + message + "</p>" def logErrorMessage(message, lineNumber): logMessage("Line " + str(lineNumber)) logMessage(message) def logJsonMessage(message, jsonObj): jsonString = json.dumps(jsonObj, sort_keys=True, indent=4, separators=(',', ': ')) logMessage(message) logMessage(jsonString) def returnLog(): global logBuffer log = logBuffer return log ```
{ "source": "jfdahl/Advent-of-Code-2019", "score": 4 }
#### File: Advent-of-Code-2019/day04/code2.py ```python import re import numpy as np start = 168630 stop = 718098 double = re.compile(r'(\d)\1') triple = re.compile(r'(\d)\1\1') def is_decreasing(num): previous = None for digit in str(num): if not previous: previous = digit continue if previous > digit: return True previous = digit return False v_is_decreasing = np.vectorize(is_decreasing) def has_doubles(num): return bool(double.search(str(num))) v_has_doubles = np.vectorize(has_doubles) def remove_triples(num): num = str(num) dbs = set(double.findall(num)) tps = set(triple.findall(num)) if dbs - tps: return int(num) else: return False v_remove_triples = np.vectorize(remove_triples) data = np.arange(start, stop) # Create the initial data set data = data[~v_is_decreasing(data)] # Remove the items containing decreasing sequences data = data[v_has_doubles(data)] # Remove the items not containing doubles print(f'Part 1: {len(data)}') data = data[v_remove_triples(data)] # Remove the items containing triplets without doubles print(f'Part 2: {len(data)}') ```
{ "source": "jfdelgad/etherscanAPI", "score": 2 }
#### File: etherscanAPI/etherscanAPI/etherscanAPI.py ```python import requests class etherscan: def __init__(self, apikey, network): self.network = network self.apikey = apikey if network=='mainnet': self.apipath = 'https://api.etherscan.io/api?' else: self.apipath = 'https://api' + '-' + network + '.etherscan.io/api?' # Acounts API def getBalance(self, address): payload = {'module':'account', 'action':'balance', 'address':address, 'tag':'latest', 'apikey':self.apikey} return requests.get(self.apipath, params=payload).json()['result'] def getBalanceMulti(self, address): payload = {'module':'account', 'action':'balancemulti', 'address':','.join(address), 'tag':'latest', 'apikey':self.apikey} return requests.get(self.apipath, params=payload).json()['result'] def getTransactions(self, address, fromblock, toblock): payload = {'module':'account', 'action':'txlist', 'address':address, 'startblock':fromblock, 'endblock':toblock, 'sort':'asc', 'apikey':self.apikey} return requests.get(self.apipath, params=payload).json()['result'] def getInternalTransactionsByAddress(self, address, fromblock, toblock): payload = {'module':'account', 'action':'txlistinternal', 'address':address, 'startblock':fromblock, 'endblock':toblock, 'sort':'asc', 'apikey':self.apikey} return requests.get(self.apipath, params=payload).json()['result'] def getInternalTransactionsByTxHash(self, txhash, fromblock, toblock): payload = {'module':'account', 'action':'txlistinternal', 'txhash':txhash, 'apikey':self.apikey} return requests.get(self.apipath, params=payload).json()['result'] def getERC20TransfersByAddress(self, address, fromblock, toblock): payload = {'module':'account', 'action':'tokentx', 'address':address, 'startblock':fromblock, 'endblock':toblock, 'sort':'asc', 'apikey':self.apikey} return requests.get(self.apipath, params=payload).json()['result'] def getERC20TransfersByContract(self, contractAddress, address, fromblock, toblock): payload = {'module':'account', 'action':'tokentx', 'address':address, 'contractaddress':contractAddress, 'startblock':fromblock, 'endblock':toblock, 'sort':'asc', 'apikey':self.apikey} return requests.get(self.apipath, params=payload).json()['result'] def getMinedBlocks(self, address): payload = {'module':'account', 'action':'getminedblocks', 'address':address, 'blocktype':'blocks', 'apikey':self.apikey} return requests.get(self.apipath, params=payload).json()['result'] # Contracts API def getContractABI(self, address): payload = {'module':'contract', 'action':'getabi', 'address':address, 'apikey':self.apikey} return requests.get(self.apipath, params=payload).json()['result'] def getSourceCode(self, address): payload = {'module':'contract', 'action':'getsourcecode', 'address':address, 'apikey':self.apikey} return requests.get(self.apipath, params=payload).json()['result'] # Transactions API def getReceiptStatus(self, txhash): payload = {'module':'transaction', 'action':'gettxreceiptstatus', 'txhash':txhash, 'apikey':self.apikey} return requests.get(self.apipath, params=payload).json()['result'] def getContractTxStatus(self, txhash): payload = {'module':'transaction', 'action':'getstatus', 'txhash':txhash, 'apikey':self.apikey} return requests.get(self.apipath, params=payload).json()['result'] # Blocks def getBlockRewards(self, blockNumber): payload = {'module':'block', 'action':'getblockreward', 'blockno':blockNumber, 'apikey':self.apikey} return requests.get(self.apipath, params=payload).json()['result'] # GETH/PARITY Proxy API def getBlockNumber(self): payload = {'module':'proxy', 'action':'eth_BlockNumber', 'apikey':self.apikey} return requests.get(self.apipath, params=payload).json()['result'] def getBlockByNumber(self, number): payload = {'module':'proxy', 'action':'eth_getBlockByNumber', 'tag':hex(number), 'boolean':'true', 'apikey':self.apikey} return requests.get(self.apipath, params=payload).json()['result'] def getBlockTransactionCountByNumber(self, number): payload = {'module':'proxy', 'action':'eth_getBlockTransactionCountByNumber', 'tag':hex(number), 'apikey':self.apikey} return requests.get(self.apipath, params=payload).json()['result'] def getUncleByBlockNumberAndIndex(self, number, index): payload = {'module':'proxy', 'action':'eth_getUncleByBlockNumberAndIndex', 'tag':hex(number), 'index':hex(index), 'apikey':self.apikey} return requests.get(self.apipath, params=payload).json()['result'] def getTransactionByHash(self, txhash): payload = {'module':'proxy', 'action':'eth_getTransactionByHash', 'txhash':txhash, 'apikey':self.apikey} return requests.get(self.apipath, params=payload).json()['result'] def getTransactionByBlockNumberAndIndex(self, number, index): payload = {'module':'proxy', 'action':'eth_getTransactionByBlockNumberAndIndex', 'tag':hex(number), 'index':hex(index), 'apikey':self.apikey} return requests.get(self.apipath, params=payload).json()['result'] def getTransactionCount(self, address): payload = {'module':'proxy', 'action':'eth_getTransactionCount', 'address':address,'tag':'latest', 'apikey':self.apikey} return requests.get(self.apipath, params=payload).json()['result'] def sendRawTransaction(self, signedTx): payload = {'module':'proxy', 'action':'eth_sendRawTransaction', 'hex':signedTx, 'apikey':self.apikey} return requests.get(self.apipath, params=payload).json()['result'] def getTransactionReceipt(self, txhash): payload = {'module':'proxy', 'action':'eth_getTransactionReceipt', 'txhash':txhash, 'apikey':self.apikey} return requests.get(self.apipath, params=payload).json()['result'] def call(self, to, data): payload = {'module':'proxy', 'action':'eth_call', 'tag':'latest', 'apikey':self.apikey} return requests.get(self.apipath, params=payload).json()['result'] def getCode(self, address): payload = {'module':'proxy', 'action':'eth_getCode', 'address':address, 'tag':'latest', 'apikey':self.apikey} return requests.get(self.apipath, params=payload).json()['result'] def getStorageAt(self, address, position): payload = {'module':'proxy', 'action':'eth_getStorageAt', 'address':address, 'position':hex(position), 'tag':'latest', 'apikey':self.apikey} return requests.get(self.apipath, params=payload).json()['result'] def gasPrice(self): payload = {'module':'proxy', 'action':'eth_gasPrice', 'apikey':self.apikey} return requests.get(self.apipath, params=payload).json()['result'] def estimateGas(self, to, value, gasprice, gas): payload = {'module':'proxy', 'action':'eth_estimateGas', 'to':to, 'value':hex(value), 'gasPrice':hex(gasprice), 'gas':hex(gas), 'apikey':self.apikey} return requests.get(self.apipath, params=payload).json()['result'] # EVENT logs def getLogs(self, fromBlock, toBlock, address, topics, topicsOperator): payload = {'module':'logs', 'action':'getLogs', 'fromBlock':fromBlock, 'toBlock':toBlock, 'apikey':self.apikey} payload.update(dict(topics,**topicsOperator)) return requests.get(self.apipath, params=payload).json()['result'] # Token def getTokenTotalSupply(self, contractAddress): payload = {'module':'account', 'action':'tokensupply', 'contractaddress':contractAddress, 'apikey':self.apikey} return requests.get(self.apipath, params=payload).json()['result'] def getTokenBalance(self, address, contractAddress): payload = {'module':'account', 'action':'tokenbalance', 'contractaddress':contractAddress, 'address':address, 'tag':'latest', 'apikey':self.apikey} return requests.get(self.apipath, params=payload).json()['result'] # Stats def getEtherSupply(self): payload = {'module':'stats', 'action':'ethsupply', 'apikey':self.apikey} return requests.get(self.apipath, params=payload).json()['result'] def getEtherPrice(self): payload = {'module':'stats', 'action':'ethprice', 'apikey':self.apikey} return requests.get(self.apipath, params=payload).json()['result'] ```
{ "source": "JFDesigner/MTG", "score": 2 }
#### File: scripts/mtg/mtgGUI.py ```python import os import sys import time import subprocess from functools import partial as par import threading import Queue try: import maya.cmds as cmds import maya.OpenMaya as Om import maya.mel as mel import maya.utils as mu except: pass import mayaSnippet.mayaFuncs as Mf import mtg.terrainWave as Tw import mtg.mtgMain as Main CLIFF_COLOUR = (0.41, 0.311468, 0.26937) GRASS_COLOUR = (0.15478, 0.494, 0.138814) SNOW_COLOUR = (1, 1, 1) if sys.platform == 'win32': def open_file(fileDir): """Used to open a file with the default program on Windows32 OS system Parameter: fileDir [str] : The directory of the file to be opened. On Exit: Opens the file with the default program on the system.""" try: os.startfile(fileDir) return True, None, None except WindowsError: return False, 0, fileDir except Exception as e: return False, None, e.args elif sys.platform == "darwin": def open_file(file_directory): """Used to open a file with the default program on a Darwin OS system Parameter: file_directory [str] : The directory of the file to be opened. On Exit: Opens the file with the default program on the system.""" try: subprocess.call(["open", file_directory]) except Exception as e: return False, None, e.args else: def open_file(file_directory): """Used to open a file with the default program on a Linux OS system Parameter: file_directory [str] : The directory of the file to be opened. On Exit: Opens the file with the default program on the system.""" try: subprocess.call(["xdg-open", file_directory]) except Exception as e: return False, None, e.args class GenerateTerrainThread(threading.Thread): def __init__(self, queue, songInfo, deformMag, pObjectNam, axis, sSelect, falloffCurve, falloffMode, falloffRadius, negativeValues, separateDeformDirection, reverseSong, refresh): threading.Thread.__init__(self) self.daemon = False self.q = queue self.signal = False self.songInfo = songInfo self.deformMag = deformMag self.pObjectNam = pObjectNam self.axis = axis self.sSelect = sSelect self.falloffCurve = falloffCurve self.falloffMode = falloffMode self.falloffRadius = falloffRadius self.negativeValues = negativeValues self.separateDeformDir = separateDeformDirection self.reverse = reverseSong self.refresh = refresh def run(self): mu.executeInMainThreadWithResult(Main.music_displace, self.songInfo, self.deformMag, self.pObjectNam, self.axis, self.sSelect, self.falloffCurve, self.falloffMode, self.falloffRadius, self.negativeValues, self.separateDeformDir, self.reverse, self.refresh, self.q) class MTGGui: """Creates the Music Terrain Generator Parameters: winID [str] : The window name. This is to ensure that no two of the same window exist at the same time. Attributes: win [str] : The actual name of the newly created window. wavFilter [str] : The string used to filter files in the open file dialog. currentSong [str] : The name of the current song loaded into the program. currentSongDir [None][str] : The current song's directory on the disc drive. songInfo [None][object] : The song info class object from terrainWave.TerrainWaveFile. fileTextures [dict] : Stores all the files from the file directories. The string name 'cliffTextures' and 'grassTextures' are the only values currently used. cliffTypeFolders [list] : The list of all the folders in the main.CLIFF_TEX folder self.newFileJob [str] : The name of the script job so to close the script when a new file is created to remove the chance of errors polygonObjTFGrp [str] : The name of the polygon object text field group songText [str] : The name of the currently loaded song text label musicLoadGrp [str] : The name of the Music Location text field button group loadMusicB [str] : The name of the load music button playMusicB [str] : The name of the play music button reloadMusicB [str] : The name of the reload music button clearMusicB [str] : The name of the clear music button soundScrb [str] : The name of the Sound Scrubber preview control soundCtrl [str] : Then name of the sound control to change the Sound Scrubber deformMagFSLGrp [str] : The name of the Deform Magnitude Float slider group deformDirCBGrp [str] : The name of the Deform Direction Check Box group otherOptCBGrp [str] : The name of the Other Options Check Box group sSelectCB [str] : The name of the Soft Select check box sSelectReset [str] : The name of the Soft Select reset button falloffModeOMGrp [str] : The name of the soft select Falloff mode Option Menu group falloffRadFSlGrp [str] : The name of the soft select Falloff radius float slider group falloffCurveRow [str] : The name of the soft select falloff curve row falloffCurveCtrl [str] : The name of the soft select falloff curve graph control interpolationOMGrp [str] : The name of the curve interpolation option menu group curvePresetsRow [str] : The name of the row containing all the curve preset curves generateTerrainB [str] : The name of the Generate Terrain Button randomCTexRow [str] : The name of the random cliff texture row randomCTexCB [str] : The name of the random cliff texture check button cliffTypesOMGrp [str] : The name of the cliff types option menu group nOfCliffTexIF [str] : The name of the cliff texture integer field texRepeatU [str] : The name of the texture repeat U float slider texRepeatV [str] : The name of the texture repeat V float slider texNoiseU [str] : The name of the texture noise U float slider texNoiseV [str] : The name of the texture noise V float slider bDepth [str] : The name of the bump depth float slider texPosFrame [str] : The name of the texture positioning frame ramp [str] : The name of the current ramp preview name in the interface rampPreviewImg [str] : The name of the ramp preview swatch display rampType [str] : The name of the ramp type option menu group rampInterpol [str] : The name of the ramp interpolation option menu group rampCliffTex [str] : The name of the ramp cliff texture colour port resetButton [str] : The name of the ramp reset button entryTypeOMGrp [str] : The name of the ramp entry type option menu cliffEntry [str] : The name of the cliff entry menu item of entryTypeOMGrp snowEntry [str] : The name of the snow entry menu item of entryTypeOMGrp grassEntry [str] : The name of the grass entry menu item of entryTypeOMGrp createEntryButton [str] : The name of the create entry button for the ramp preview uWaveSl [str] : The name of the ramp U Wave float slider vWaveSl [str] : The name of the ramp V Wave float slider noiseSl [str] : The name of the ramp noise float slider freqSl [str] : The name of the ramp noise frequency slider generateTerrainB [str] : The name of the generate terrain button """ def __init__(self, winID='mtgScriptWindow'): if cmds.window(winID, exists=True): cmds.deleteUI(winID) self.win = cmds.window(winID, title='MTG :: Music Terrain Generator', iconName='MTG', widthHeight=(570,770)) self.wavFilter = "WAV Files (*.wav);;All Files (*.*)" self.currentSong = '...' self.currentSongDir = None self.songInfo = None self.fileTextures = {} self.create_interface() self.newFileJob = cmds.scriptJob(event=['deleteAll', self.end], protected=True) self.queue = Queue.Queue() self.complete = False cmds.showWindow(self.win) def end(self): """Used to, when a new file is created, to close the window and end the scriptJob which causes it to do this. On Exit: Closes the window on a new file creation and kills the script job that allows it. """ if cmds.window(self.win, exists=True): cmds.deleteUI(self.win) cmds.scriptJob(kill=self.newFileJob, force=True) def error_message(self, errNo=None, value=''): """Used to create error messages or notifications to the user about a specific error. Parameters: errNo [None][int] : The number pertaining to the error message. value [str] : The value pertaining to the error message. Usually the cause of the error. On Exit: Creates a error message dialog for the user to be notified of the problem with the program. """ if errNo == 0: cmds.confirmDialog(title='Error', message='The system cannot fine the file "%s".'\ ' The song will not be played.' % value, icon="warning") elif errNo == 1: cmds.confirmDialog(title='Error', message='No value has been entered into the '\ '"Music Location" field.\nPlease enter a WAV '\ 'file directory to load.', icon="warning") elif errNo == 2: cmds.confirmDialog(title='Error', message='The file location you have entered '\ 'into the "Music Location" field is incorrect.'\ '\nPlease enter a valid WAV file directory to '\ 'load.', icon="warning") elif errNo == 3: cmds.confirmDialog(title='Error', message='The file location for the song "%s" '\ 'has been moved or deleted.\nThe song will now'\ ' be unloaded from the program.' % value, icon="warning") elif errNo == 4: cmds.confirmDialog(title='Error', message='No object has the name "%s" in the '\ 'scene.\nPlease select another object.' % value, icon="warning") elif errNo == 5: cmds.confirmDialog(title='Error', message='You have not selected a direction for'\ ' the terrain to be deformed in.\nPlease '\ 'select one to continue.', icon="warning") elif errNo == 6: cmds.confirmDialog(title='Error', message='The current song you have loaded has'\ ' been moved or removed from the hard drive. '\ '\n Please try loading a new song. This file'\ ' will be unloaded', icon="warning") elif errNo == 7: cmds.confirmDialog(title='Error', message='You have not loaded a song into the'\ ' program.\nPlease do this before continuing.', icon="warning") else: if 'RIFF' in value[0]: cmds.confirmDialog(title='Error', message='This is not a WAV file.\nPlease '\ 'select a valid WAV file.', icon="warning") else: cmds.confirmDialog(title='Unknown Error', message='This is an unknown error. Here is'\ ' the message:\n%s' % value, icon="warning") def music_browse(self, *args): """Creates a open file dialog window to find the location of the song file on the disc drive. Parameters: args [tuple] : Ignore value. The value is returned by the button and is unused. On Exit: Finds a wave file on the disc drive and sets the text field to the found files location. """ filename = cmds.fileDialog2(fileMode=1, caption="Import Music", fileFilter=self.wavFilter) if filename != None: cmds.textFieldButtonGrp(self.musicLoadGrp, e=True, fileName=filename[0]) def load_song(self, *args): """Loads the song in the musicLoadGrp field and loads it into maya and creates a TerrainWaveFile with it. Parameters: args [tuple] : Ignore value. The value is returned by the button and is unused. On Exit: Loads the song into the program and stores the information into the self.songInfo variable. It also activates the buttons related to the newly loaded song. """ filename = cmds.textFieldButtonGrp(self.musicLoadGrp, q=True, fileName=True) if filename == '': self.error_message(1, filename) else: self.clear_song() try: self.songInfo = Tw.TerrainWaveFile(os.path.abspath(filename), self.queue) except IOError: self.error_message(2, filename) except Exception as e: self.error_message(value=str(e.args)) else: self.currentSong = mel.eval('doSoundImportArgList ("1", {"%s","0"})' % filename) self.currentSongDir = filename endFrame = cmds.getAttr('%s.endFrame' % self.currentSong) cmds.soundControl(self.soundScrb, e=True, sound=self.currentSong, maxTime=endFrame) cmds.text(self.songText, e=True, label=self.currentSong) self.enable_disable_widgets((self.reloadMusicB, self.playMusicB, self.clearMusicB), enable=True) def reload_song(self, *args): """Reloads the currently loaded song. Parameters: args [tuple] : Ignore value. The value is returned by the button and is unused. On Exit: Reloads the song into the program and stores the information into the self.songInfo variable. """ try: self.songInfo = Tw.TerrainWaveFile(self.currentSongDir, self.queue) except IOError: self.error_message(3, self.currentSong) self.clear_song() except: self.error_message(6) self.clear_song() self.currentSong = mel.eval('doSoundImportArgList ("1", {"%s","0"})' % self.currentSongDir) def play_song(self, *args): """Attempts to open the chosen song file using the systems default music player. Parameters: args [tuple] : Ignore value. The value is returned by the button and is unused. On Exit: On success, will open the file and play the song in the default music player. """ filename = cmds.textFieldButtonGrp(self.musicLoadGrp, q=True, fileName=True) check, errNo, msg = open_file(filename) if not(check): self.error_message(errNo, msg) def clear_song(self, *args): """Clears the currently loaded song in the program. Parameters: args [tuple] : Ignore value. The value is returned by the button and is unused. On Exit: Clears the song from the program aswell as the songInfo stored in the program. It also disables the related widgets with a loaded song. """ if self.currentSong != '...': cmds.delete(self.currentSong) self.currentSong = '...' self.currentSongDir = None cmds.text(self.songText, e=True, label=self.currentSong) self.songInfo.close() self.songInfo = None self.enable_disable_widgets((self.reloadMusicB, self.playMusicB, self.clearMusicB), enable=False) def enable_disable_widgets(self, widgets, enable=True): """This command is used to disable the widgets/controls passed to the function. Parameters: widgets [str][list] : The widget(s) that will be either enabled or disabled dependent on the 'enable' parameter. enable [bool] : If True, the widgets will be enabled, else disabled On Exit: The listed widgets/controls will be disabled or enabled. """ if isinstance(widgets, (str,unicode)): cmds.control(widgets, e=True, enable=enable) else: for widg in widgets: cmds.control(widg, e=True, enable=enable) def visbile_invisible_widgets(self, widgets, visible=True): """This command is used to change the visibility of the widgets/controls passed to the function. Parameters: widgets [str][list] : The widget(s) that will be either enabled or disabled dependent on the 'enable' parameter. visible [bool] : If True, the widgets will be visible, else invisible On Exit: The listed widgets/controls will be visible or invisible. """ if isinstance(widgets, (str,unicode)): cmds.control(widgets, e=True, visible=visible) else: for widg in widgets: cmds.control(widg, e=True, visible=visible) def toggle_sselect_widgets(self, state, *args): """Used to change the enable state of the soft select widgets/controls. Parameters: state [bool] : The state for which the widgets will be turned to. args [tuple] : Ignore value. The value is returned by the button and is unused. On Exit: The soft select widgets/controls will be enabled or disabled. """ widgets = (self.falloffModeOMGrp, self.falloffRadFSlGrp, self.falloffCurveRow, self.interpolationOMGrp, self.curvePresetsRow) self.enable_disable_widgets(widgets, state) def select_obj(self): """Used for the polygonObjTFGrp. Stores the first currently selected object in the Maya scene if it is a polygon object. Parameters: An object selection in Maya. On Exit: Either, changes the field to be the name of a selected poly object or clears the field. """ obj = cmds.ls(selection=True) if len(obj) != 0: obj = obj[0] if Mf.poly_check(obj): cmds.textFieldButtonGrp(self.polygonObjTFGrp, e=True, text=obj) else: cmds.textFieldButtonGrp(self.polygonObjTFGrp, e=True, text='') def default_falloff_curve(self): """Sets up the option variable in Maya for the interfaces soft select curve graph. On Exit: Either stores the current graph values of the default falloff curve for soft select or re-uses the values already stored in the option variable. """ if cmds.optionVar(q="softSelectCurve") == 0: graphValues = Mf.setup_graph_values(cmds.softSelect(q=True, softSelectCurve=True)) self.setup_falloff_curve(values=graphValues) else: pass def reset_falloff_curve(self): """Used to reset the soft select falloff curve curve to the default variable in the option variable. On Exit: Sets the current falloff curve to the graph values in the soft select option variable. """ graphValues = cmds.optionVar(q='softSelectCurveOptionVar') self.change_falloff_curve_prest(values=graphValues) def setup_falloff_curve(self, values, stringValues=('softSelectCurve', 'softSelectCurveOptionVar')): """Sets up the falloff curve option variables with values. Parameters: values [list] : Values used to set the option variables storing the soft select falloff curves stringValues [str][tuple] : The name of the option variables to which the values will change for. On Exit: Stores the values in the option variables passed in 'stringValues' """ if isinstance(stringValues, (str, unicode)): stringValues = (stringValues,) for optVal in stringValues: cmds.optionVar(stringValue=[optVal, values[0]]) for optVal in stringValues: for val in values[1:]: cmds.optionVar(stringValueAppend=[optVal, val]) def falloff_curve_change_key(self, *args): """Updates the interpolation of the selected soft select curve graph in the interpolation option menu to match the graph curve.. Parameters: args [tuple] : Ignore value. The value is returned by the control and is unused. On Exit: Changes the interpolation option menu to the one set on the curve """ curKeyInterpVal = cmds.gradientControlNoAttr(self.falloffCurveCtrl, q=True, civ=True) cmds.optionMenuGrp(self.interpolationOMGrp, e=True, select=curKeyInterpVal+1) def change_falloff_key_interp(self, *args): """Changes the currently selected key of the soft select curve graph to the value in the interpolationOMGrp. Parameters: args [tuple] : Ignore value. The value is returned by the control and is unused. On Exit: Sets the currently selected point on the soft select curve to the interpolation value in the interpolationOMGrp. """ curKey = cmds.gradientControlNoAttr(self.falloffCurveCtrl, q=True, ck=True) newInterpVal = cmds.optionMenuGrp(self.interpolationOMGrp, q=True, select=True) cmds.gradientControlNoAttr(self.falloffCurveCtrl, e=True, ck=curKey, civ=newInterpVal-1) self.falloff_curve_change_key() def change_falloff_curve_prest(self, preset=None, values=None): """Changes the falloff graph curve to one of the selected presets or to the values passed to the function. Parameters: preset [str][int][None] : Can either be the name of a preset or the number of the preset as the key for the mf.SSELECT_CURVES. values [str][None] : Can be used instead of preset to set the value of the curve. On Exit: Sets the value of the falloff curve graph by setting the value of the option variable 'softSelectCurve'. """ pare = cmds.gradientControlNoAttr(self.falloffCurveCtrl, q=True, parent=True) cmds.deleteUI(self.falloffCurveCtrl) if preset != None: self.setup_falloff_curve(Mf.setup_graph_values(Mf.SSELECT_CURVES[preset]), 'softSelectCurve') elif values != None: self.setup_falloff_curve(values, 'softSelectCurve') else: raise ValueError('No Value has been specified. Either "preset" or'\ ' "values" should be a non None value.') self.falloffCurveCtrl = cmds.gradientControlNoAttr('falloffCurveGradient', h=90, optionVar='softSelectCurve', width=200, ckc=self.falloff_curve_change_key, parent=pare) def reset_soft_select_options(self, *args): cmds.optionMenuGrp(self.falloffModeOMGrp, e=True, select=1) cmds.floatSliderGrp(self.falloffRadFSlGrp, e=True, value=5) self.reset_falloff_curve() def cycle_preview_img(self, texVar, fNode, *args): curImgPath = cmds.getAttr('%s.fileTextureName' % fNode) curImgNo = self.fileTextures[texVar].index(curImgPath) if curImgNo >= len(self.fileTextures[texVar])-1: newImgNo = 0 else: newImgNo = curImgNo+1 self.set_preview(newImgNo, texVar, fNode) def set_preview(self, num, texVar, fNode): imgPath = self.fileTextures[texVar][num] cmds.setAttr('%s.fileTextureName' % fNode,imgPath, type='string') def update_file_node_swatch(self, fNode): mel.eval('updateFileNodeSwatch("%s")' % fNode) def update_preview(self, texVar, imgDir, fNode, all=False, *args): if all: self.fileTextures[texVar] = [] for root, _, filenames in os.walk(imgDir): if os.path.split(root)[1] == '.mayaSwatches': continue self.fileTextures[texVar].extend([os.path.join(root,f).replace('\\','/') \ for f in filenames]) else: value = cmds.optionMenuGrp(args[0], q=True, value=True) texPath = os.path.join(imgDir,value) self.fileTextures[texVar] = [os.path.join(texPath,f).replace('\\','/') \ for f in os.listdir(texPath) \ if os.path.isfile(os.path.join(texPath,f))] self.set_preview(0, texVar, fNode) def toggle_randomtex(self, texVar, imgDir, field, fNode, *args): state=cmds.checkBox(args[0], q=True, value=True) self.update_preview(texVar, imgDir, fNode, all=True) self.enable_disable_widgets(field, not(state)) def toggle_visble_grasstex(self, state, *args): self.visbile_invisible_widgets(self.grassTexturesFrame, state) self.check_other_tex_states() def check_other_tex_states(self, *args): snow = cmds.checkBox(self.snowTexCB, q=True, value=1) grass = cmds.checkBox(self.grassTexCB, q=True, value=1) if snow or grass: self.visbile_invisible_widgets(self.texPosFrame, True) else: self.visbile_invisible_widgets(self.texPosFrame, False) if not(snow): self.replace_ramp_entry_type(self.ramp, SNOW_COLOUR) if not(grass): self.replace_ramp_entry_type(self.ramp, GRASS_COLOUR) if not(grass) and not(snow): self.clear_ramp(self.ramp) cmds.menuItem(self.snowEntry, e=True, enable=snow) cmds.menuItem(self.grassEntry, e=True, enable=grass) cmds.optionMenuGrp(self.entryTypeOMGrp, e=True, select=1) def setup_preview_file(self, name): if cmds.optionVar(exists='mtg_%s' % name) and cmds.objExists(cmds.optionVar(q='mtg_%s' % name)): fileNode = cmds.optionVar(q='mtg_%s' % name) else: fileNode = cmds.createNode('file', name='mtg_%s' % name, skipSelect=True) cmds.lockNode(fileNode) cmds.optionVar(stringValue=('mtg_%s' % name, fileNode)) return fileNode def setup_texture_pos_ramp(self): if cmds.optionVar(exists='mtg_texPositionRamp') and cmds.objExists(cmds.optionVar(q='mtg_texPositionRamp')): self.ramp = cmds.optionVar(q='mtg_texPositionRamp') else: self.ramp = cmds.createNode('ramp', name='mtg_texPositionRamp', skipSelect=True) cmds.lockNode(self.ramp) cmds.optionVar(stringValue=('mtg_texPositionRamp', self.ramp)) self.reset_ramp(self.ramp, self.snowTexCB, self.grassTexCB) def get_tex_ramp_info(self, ramp): rampColPos = {'ramp': ramp} for index in cmds.getAttr('%s.colorEntryList' % ramp, mi=True): rampColPos[index] = (cmds.getAttr('%s.colorEntryList[%d].position' % (rampColPos['ramp'], index)), cmds.getAttr('%s.colorEntryList[%d].color' % (rampColPos['ramp'], index))[0]) return rampColPos def reset_ramp_colours(self, ramp): graphInfo = self.get_tex_ramp_info(ramp) for key, value in graphInfo.items(): if key == 'ramp': continue closestColour = Mf.closest_colour(value[1], (GRASS_COLOUR,CLIFF_COLOUR,SNOW_COLOUR)) if closestColour == GRASS_COLOUR: cmds.setAttr(*('%s.colorEntryList[%d].color' % (self.ramp, key),) + GRASS_COLOUR, type='double3') elif closestColour == CLIFF_COLOUR: cmds.setAttr(*('%s.colorEntryList[%d].color' % (self.ramp, key),) + CLIFF_COLOUR, type='double3') elif closestColour == SNOW_COLOUR: cmds.setAttr(*('%s.colorEntryList[%d].color' % (self.ramp, key),) + SNOW_COLOUR, type='double3') def replace_ramp_entry_type(self, ramp, remove): graphInfo = self.get_tex_ramp_info(ramp) for key, value in graphInfo.items(): if key == 'ramp': continue closestColour = Mf.closest_colour(value[1], (GRASS_COLOUR,CLIFF_COLOUR,SNOW_COLOUR)) if closestColour == remove: cmds.removeMultiInstance('%s.colorEntryList[%d]' % (ramp,key)) self.reset_ramp_colours(ramp) def clear_ramp(self,ramp): entriesLs = cmds.getAttr('%s.colorEntryList' % ramp, mi=True) for eNum in entriesLs: cmds.removeMultiInstance('%s.colorEntryList[%d]' % (ramp,eNum)) cmds.setAttr(*('%s.colorEntryList[0].color' % ramp,) + CLIFF_COLOUR, type='double3') def reset_ramp(self, ramp, snowCtrl, grassCtrl, *args): cmds.setAttr(*('%s.colorEntryList[0].color' % ramp,) + CLIFF_COLOUR, type='double3') cmds.setAttr('%s.colorEntryList[0].position' % ramp, 0.5) snow = cmds.checkBox(snowCtrl, q=True, value=True) grass = cmds.checkBox(grassCtrl, q=True, value=True) entriesLs = cmds.getAttr('%s.colorEntryList' % ramp, mi=True) for eNum in entriesLs: if eNum == 0: continue cmds.removeMultiInstance('%s.colorEntryList[%d]' % (ramp,eNum)) if snow: cmds.setAttr(*('%s.colorEntryList[1].color' % ramp,) + SNOW_COLOUR, type='double3') cmds.setAttr('%s.colorEntryList[1].position' % ramp, 1) if grass: cmds.setAttr(*('%s.colorEntryList[2].color' % ramp,) + GRASS_COLOUR, type='double3') cmds.setAttr('%s.colorEntryList[2].position' % ramp, 0) def create_entry(self, entryType, ramp, *args): eType = cmds.optionMenuGrp(entryType, q=True, value=True) entriesLs = cmds.getAttr('%s.colorEntryList' % ramp, mi=True) newEntryNum = Mf.find_empty_entry_value(entriesLs) if eType == 'Cliff': color = CLIFF_COLOUR elif eType == 'Snow': color = SNOW_COLOUR elif eType == 'Grass': color = GRASS_COLOUR else: color = (0,0,0) cmds.setAttr(*('%s.colorEntryList[%d].color' % (ramp,newEntryNum),)+color, type='double3') cmds.setAttr('%s.colorEntryList[%d].position' % (ramp,newEntryNum), 0.5) def generate_terrain(self, *args): checkBoxOpt = {'axis': ''} check = True pObjectNam = cmds.textFieldButtonGrp(self.polygonObjTFGrp, q=True, tx=True) deformMag = cmds.floatSliderGrp(self.deformMagFSlGrp, q=True, v=True) for val, axis in enumerate(('x', 'y', 'z', 'n'), 1): if cmds.checkBoxGrp(self.deformDirCBGrp, **{"q": True, "v%d" % val: True}): checkBoxOpt['axis'] += axis for val, option in enumerate(('negativeValues', 'separateDeformDirection', 'reverseSong', 'refresh'), 1): checkBoxOpt[option] = cmds.checkBoxGrp(self.otherOptCBGrp, **{"q": True, "v%d" % val: True}) sSelect = cmds.checkBox(self.sSelectCB, q=True, v=True) falloffMode = cmds.optionMenuGrp(self.falloffModeOMGrp, q=True, sl=True)-1 falloffRadius = cmds.floatSliderGrp(self.falloffRadFSlGrp, q=True, v=True) falloffCurve = ",".join(cmds.optionVar(q='softSelectCurve')) if self.currentSongDir is not None and not(os.path.exists(self.currentSongDir)): self.error_message(6) check = False if self.currentSongDir is None: self.error_message(7) check = False if not(cmds.objExists(pObjectNam)): self.error_message(4, pObjectNam) check = False if checkBoxOpt['axis'] == '': self.error_message(5) check = False if check: msg = "Starting" ratio = 1 currentProgress = 0 completeMessage = "{}: {}%".format(msg, currentProgress) cmds.progressWindow(title='Generating Terrain', progress=currentProgress, status=completeMessage, isInterruptable=False) thread = GenerateTerrainThread(self.queue, self.songInfo, deformMag, pObjectNam, checkBoxOpt['axis'], sSelect, falloffCurve, falloffMode, falloffRadius, checkBoxOpt['negativeValues'], checkBoxOpt['separateDeformDirection'], checkBoxOpt['reverseSong'], checkBoxOpt['refresh']) mu.processIdleEvents() thread.start() self.complete = False while not self.complete: while not self.queue.empty(): getM = self.queue.get(block=False) if type(getM) == tuple: ratio = 100.0/getM[1] msg = getM[0] currentProgress = 0 completeMessage = "{}: {}%".format(msg, currentProgress) elif type(getM) == str and getM.lower() == "complete": self.complete=True elif getM == None: pass else: currentProgress = int(getM * ratio) completeMessage = "{}: {}%".format(msg, currentProgress) cmds.progressWindow(edit=True, progress=currentProgress, status=completeMessage) cmds.pause(seconds=0.001) mu.processIdleEvents() cmds.progressWindow(endProgress=1) def generate_texture(self, *args): check=True pObjectNam = cmds.textFieldButtonGrp(self.polygonObjTFGrp, q=True, tx=True) cRandomTex = cmds.checkBox(self.randomCTexCB, q=True, value=True) cTexType = cmds.optionMenuGrp(self.cliffTypesOMGrp, q=True, value=True) cNumOfTex = cmds.intField(self.nOfCliffTexIF, q=True, value=True) snowTex = cmds.checkBox(self.snowTexCB, q=True, value=True) grassTex = cmds.checkBox(self.grassTexCB, q=True, value=True) gRandomTex = cmds.checkBox(self.randomGTexCB, q=True, value=True) gTexType = cmds.optionMenuGrp(self.grassTypesOMGrp, q=True, value=True) gNumofTex = cmds.intField(self.nOfGrassTexIF, q=True, value=True) texRepU = cmds.floatSliderGrp(self.texRepeatU, q=True, value=True) texRepV = cmds.floatSliderGrp(self.texRepeatV, q=True, value=True) texNoiseU = cmds.floatSliderGrp(self.texNoiseV, q=True, value=True) texNoiseV = cmds.floatSliderGrp(self.texNoiseV, q=True, value=True) imgColSpace = cmds.optionMenuGrp(self.imageColOMGrp, q=True, select=True) renColSpace = cmds.optionMenuGrp(self.renderColOMGrp, q=True, select=True) bDepth = cmds.floatSliderGrp(self.bDepth, q=True, value=True) rampType = cmds.getAttr('%s.type' % self.ramp) rampInterp = cmds.getAttr('%s.interpolation' % self.ramp) rampUWave = cmds.getAttr('%s.uWave' % self.ramp) rampVWave = cmds.getAttr('%s.vWave' % self.ramp) rampNoise = cmds.getAttr('%s.noise' % self.ramp) rampNoiseFreq = cmds.getAttr('%s.noiseFreq' % self.ramp) self.reset_ramp_colours(self.ramp) rampInfo = self.get_tex_ramp_info(self.ramp) cliffPos = [] grassPos = [] snowPos = [] for key,value in rampInfo.items(): if key == 'ramp': continue v = Mf.closest_colour(value[1], (GRASS_COLOUR,CLIFF_COLOUR,SNOW_COLOUR)) if v == CLIFF_COLOUR: cliffPos.append(value[0]) elif v == GRASS_COLOUR: grassPos.append(value[0]) elif v == SNOW_COLOUR: snowPos.append(value[0]) else: raise ValueError('Something has gone wrong with ramp colours') if not(cmds.objExists(pObjectNam)): self.error_message(4, pObjectNam) check = False if check: tInfo = Main.create_texture(cTexType, nOfCTex=cNumOfTex, cRandTexs=cRandomTex, cliffPos=cliffPos, snow=snowTex, snowPos=snowPos, grass=grassTex, grassPos=grassPos, grassType=gTexType, nOfGTex=gNumofTex, gRandTexs=gRandomTex, uRep=texRepU, vRep=texRepV, uNoise=texNoiseU, vNoise=texNoiseV, bDepth=bDepth, rampType=rampType, rampInterp=rampInterp, rampUWave=rampUWave, rampVWave=rampVWave, rampNoise=rampNoise, rampFreq=rampNoiseFreq, colSpace=imgColSpace, rendSpace=renColSpace) Main.assign_terrain_shader(tInfo['lambert'][1], pObjectNam, tInfo['placements']) cmds.select(tInfo['lambert'][0]) def create_interface(self): mainForm = cmds.formLayout() bannerPane = cmds.paneLayout(height=140, bgc=(0.247059, 0.278431, 0.305882)) imageLayout = cmds.formLayout() bannerImg = cmds.image( image=os.path.join(Main.MTG_DIRECTORY, 'banner.jpg')) cmds.formLayout(imageLayout, e=True, attachForm=[(bannerImg, 'left', 0), (bannerImg, 'right', 0), (bannerImg, 'top', 0), (bannerImg, 'bottom', 0)]) cmds.setParent(mainForm) self.polygonObjTFGrp = cmds.textFieldButtonGrp(label='Polygon Object:', buttonLabel='Select', bc=self.select_obj, adj=2, cw=[(1,100)], cat=[(2,'left', 5)]) cmds.setParent('..') tabs = cmds.tabLayout(innerMarginWidth=5, innerMarginHeight=5, scr=True, cr=True) cmds.formLayout(mainForm, e=True, attachForm=[(bannerPane, 'left', 5), (bannerPane, 'top', 5), (bannerPane, 'right', 5), (tabs, 'left', 5), (tabs, 'right', 5), (tabs, 'bottom', 5), (self.polygonObjTFGrp, 'left', 5), (self.polygonObjTFGrp, 'right', 5)], attachControl=[(tabs, 'top', 2, self.polygonObjTFGrp), (self.polygonObjTFGrp, 'top', 2, bannerPane)]) mainTerrainTab = cmds.columnLayout(adjustableColumn=True) cmds.frameLayout(label='Load Music', borderStyle='in', cll=True) cmds.rowLayout(numberOfColumns=2, adjustableColumn=2, columnWidth2=(80, 75), columnAlign=[(1, 'right'), (2, 'left')], columnAttach=[(1, 'both', 0), (2, 'both', 0)]) cmds.text(label='Current Song:') self.songText = cmds.text(label=self.currentSong, font="boldLabelFont") cmds.setParent('..') cmds.columnLayout(adjustableColumn=True) self.musicLoadGrp = cmds.textFieldButtonGrp(label='Music Location', buttonLabel='Browse', buttonCommand=self.music_browse, adj=2, columnWidth3=(80, 75, 150)) musicForm = cmds.formLayout(numberOfDivisions=100) self.loadMusicB = cmds.button(label='Load', command=self.load_song, width=70) self.playMusicB = cmds.button(label='Play', command=self.play_song, width=70, enable=False) self.reloadMusicB = cmds.button(label='Reload', command=self.reload_song, width=70, enable=False) self.clearMusicB = cmds.button(label='Clear', command=self.clear_song, width=70, enable=False) cmds.formLayout(musicForm, edit=True, attachForm=[(self.loadMusicB, "bottom", 5), (self.playMusicB, "bottom", 5), (self.reloadMusicB, "bottom", 5), (self.clearMusicB, "bottom", 5)], attachControl=[(self.loadMusicB, 'right', 5, self.playMusicB), (self.playMusicB, 'right', 5, self.reloadMusicB), (self.reloadMusicB, 'right', 5, self.clearMusicB)], attachPosition=[(self.loadMusicB, "left", 5, 15), (self.playMusicB, "left", 5, 34), (self.reloadMusicB, "left", 5, 53), (self.clearMusicB, "left", 5, 71), (self.clearMusicB, "right", 5, 90)], attachNone=[(self.loadMusicB, "top"), (self.playMusicB, "top"), (self.reloadMusicB, "top"), (self.clearMusicB, "top")]) cmds.setParent('..') cmds.frameLayout(label='Sound Scrubber', borderStyle='in', cll=True) cmds.columnLayout(adjustableColumn=True) self.soundScrb = cmds.soundControl(height=45, displaySound=True, waveform='both') self.soundCtrl = cmds.rangeControl(minRange=1, maxRange=25, height=20) cmds.setParent(mainTerrainTab) cmds.frameLayout(label='Terrain Generator', borderStyle='in', cll=True) terrainOptColLayout = cmds.columnLayout(adjustableColumn=True) self.deformMagFSlGrp = cmds.floatSliderGrp(label='Deform Magnitude:', field=True, minValue=0, fieldMaxValue=100000, value=10, adj=3, cw=[(1,100)], cat=[(2,'left', 5)]) self.deformDirCBGrp = cmds.checkBoxGrp(numberOfCheckBoxes=4, label='Deform Direction:', labelArray4=['X', 'Y', 'Z', 'N'], cw=[(1,100),(2,50),(3,50),(4,50)], cat=[(2,'left', 7)], value2=True) self.otherOptCBGrp = cmds.checkBoxGrp(numberOfCheckBoxes=4, label='Other Options:', labelArray4=['Negative Values', 'Separate Deform Direction', 'Reverse Song', 'Refresh on Deform'], height=23, cw=[(1,100),(3,150),(4,90)], cat=[(2,'left', 7)]) cmds.frameLayout(label='Soft Select Options', borderStyle='in', cll=True) cmds.rowLayout(numberOfColumns=3, columnWidth3=(100, 150, 75), columnAlign=[(1, 'right'), (2, 'left'), (3, 'left')], columnAttach=[(1, 'right', 0), (2, 'left', 5), (3, 'left', 5)], height=25) cmds.text(label='Soft Select:') self.sSelectCB = cmds.checkBox(label='', cc=self.toggle_sselect_widgets, value=1) self.sSelectResetB = cmds.button('Reset', width=50, command=self.reset_soft_select_options) cmds.setParent('..') self.falloffModeOMGrp = cmds.optionMenuGrp(label='Falloff Mode:', cw=[(1,100),(3,150)], cat=[(2,'left', 5)]) cmds.menuItem(label='Volume') cmds.menuItem(label='Surface') cmds.menuItem(label='Global') cmds.menuItem(label='Object') self.falloffRadFSlGrp = cmds.floatSliderGrp(label='Falloff radius:', field=True, minValue=0, fieldMaxValue=100000, value=5, precision=2, adj=3, cw=[(1,100)], cat=[(2,'left', 5)]) self.falloffCurveRow = cmds.rowLayout(numberOfColumns=2, columnWidth2=(100, 200), columnAlign=[(1, 'right'), (2, 'left')], columnAttach=[(1, 'both', 0), (2, 'left', 5)]) self.default_falloff_curve() cmds.text(label='Falloff curve:') self.falloffCurveCtrl = cmds.gradientControlNoAttr(h=90, optionVar='softSelectCurve', width=200) cmds.setParent('..') self.interpolationOMGrp = cmds.optionMenuGrp(label='Interpolation:', cw=[(1,100),(3,150)], cat=[(2,'left', 5)], changeCommand=self.change_falloff_key_interp) cmds.menuItem(label='None') cmds.menuItem(label='Linear') cmds.menuItem(label='Smooth') cmds.menuItem(label='Spline') cmds.gradientControlNoAttr(self.falloffCurveCtrl, e=True, ckc=self.falloff_curve_change_key) self.curvePresetsRow = cmds.rowLayout(numberOfColumns=10, columnWidth=[(1,100)], columnAlign=[(1, 'right')], columnAttach=[(1, 'right', 0), (2, 'left', 5)], height=25) cmds.text(label='Curve presets:') cmds.iconTextButton( style='iconOnly', image1='softCurveProfile.png', c=par(self.change_falloff_curve_prest,'soft')) cmds.iconTextButton( style='iconOnly', image1='mediumCurveProfile.png', c=par(self.change_falloff_curve_prest,'medium')) cmds.iconTextButton( style='iconOnly', image1='linearCurveProfile.png', c=par(self.change_falloff_curve_prest,'linear')) cmds.iconTextButton( style='iconOnly', image1='hardCurveProfile.png', c=par(self.change_falloff_curve_prest,'hard')) cmds.iconTextButton( style='iconOnly', image1='craterCurveProfile.png', c=par(self.change_falloff_curve_prest,'crater')) cmds.iconTextButton( style='iconOnly', image1='waveCurveProfile.png', c=par(self.change_falloff_curve_prest,'wave')) cmds.iconTextButton( style='iconOnly', image1='stairsCurveProfile.png', c=par(self.change_falloff_curve_prest,'stairs')) cmds.iconTextButton( style='iconOnly', image1='ringCurveProfile.png', c=par(self.change_falloff_curve_prest,'ring')) cmds.iconTextButton( style='iconOnly', image1='sineCurveProfile.png', c=par(self.change_falloff_curve_prest,'sine')) cmds.setParent(mainTerrainTab) self.generateTerrainB = cmds.button(label='Generate Terrain!', height=29, command=self.generate_terrain) cmds.setParent(tabs) ########################################## mainTexturingTab = cmds.columnLayout(adjustableColumn=True) cmds.frameLayout(label='Cliff Textures', borderStyle='in', cll=True) cliffTypesForm = cmds.formLayout() self.randomCTexRow = cmds.rowLayout(numberOfColumns=2, columnWidth2=(115, 15), columnAlign=[(1, 'right'), (2, 'left')], columnAttach=[(1, 'right', 0), (2, 'left', 5)], height=25) cmds.text(label='Random Textures:') self.randomCTexCB = cmds.checkBox(label='', value=0) cmds.setParent('..') self.cliffTypesOMGrp = cmds.optionMenuGrp(label='Cliff Types:', cw=[(1,110),(3,150)], cat=[(2,'left', 5)]) self.cliffTypeFolders = [f for f in os.listdir(Main.CLIFF_TEX_DIR) \ if os.path.isdir(os.path.join(Main.CLIFF_TEX_DIR,f))] for cliff in self.cliffTypeFolders: cmds.menuItem(label=cliff) nOfCTexRow = cmds.rowLayout(nc=2, cw=[(1,110)], cal=[(1,'right')], cat=[(1,'right',0),(2,'left', 5)]) cmds.text(label='Number of Textures:') self.nOfCliffTexIF = cmds.intField(v=3, min=1) cmds.setParent('..') cliffPrevText = cmds.text('Cliff Preview:') cliffPreviewPL = cmds.paneLayout(w=65,h=65) cliffFileNode = self.setup_preview_file('cliffTexturePreview') cliffPreviewImg = cmds.swatchDisplayPort(wh=(65,65), sn=cliffFileNode, pc=par(self.update_file_node_swatch, cliffFileNode)) self.update_preview('cliffTextures', Main.CLIFF_TEX_DIR, cliffFileNode, False, self.cliffTypesOMGrp) cmds.setParent('..') self.cycleCliffPrevB = cmds.button(label='Cycle Images', command=par(self.cycle_preview_img, 'cliffTextures', cliffFileNode)) cmds.checkBox(self.randomCTexCB, e=True, cc=par(self.toggle_randomtex,'cliffTextures', Main.CLIFF_TEX_DIR, self.cliffTypesOMGrp, cliffFileNode, self.randomCTexCB)) cmds.optionMenuGrp(self.cliffTypesOMGrp, e=True, cc=par(self.update_preview, 'cliffTextures', Main.CLIFF_TEX_DIR, cliffFileNode, False, self.cliffTypesOMGrp)) cmds.formLayout(cliffTypesForm, e=True, attachForm=[(self.randomCTexRow, 'left', 0), (self.randomCTexRow, 'top', 5), (self.cliffTypesOMGrp, 'left', 5), (nOfCTexRow, 'left', 5), (cliffPreviewPL, 'top', 5), (cliffPreviewPL, 'bottom', 5)], attachControl=[(cliffPrevText, 'left', 100, self.cliffTypesOMGrp), (cliffPreviewPL, 'left', 5, cliffPrevText), (nOfCTexRow, 'top', 5, self.cliffTypesOMGrp), (self.cliffTypesOMGrp, 'top', 5, self.randomCTexRow), (self.cycleCliffPrevB, 'left', 5, cliffPreviewPL)], attachNone=[(nOfCTexRow,'bottom'), (self.randomCTexRow, 'right'), (cliffPrevText, 'bottom'), (self.cycleCliffPrevB, 'right')], attachPosition=[(self.cycleCliffPrevB, 'top', 0, 40), (cliffPrevText, 'top', 0, 45)]) cmds.setParent(mainTexturingTab) cmds.frameLayout(label='Other Textures', borderStyle='in', cll=True) self.snowTexRow = cmds.rowLayout(numberOfColumns=2, columnWidth2=(115, 15), columnAlign=[(1, 'right'), (2, 'left')], columnAttach=[(1, 'right', 0), (2, 'left', 5)], height=25) cmds.text(label='Snow Texture:') self.snowTexCB = cmds.checkBox(label='', value=1, cc=self.check_other_tex_states) cmds.setParent('..') self.grassTexRow = cmds.rowLayout(numberOfColumns=2, columnWidth2=(115, 15), columnAlign=[(1, 'right'), (2, 'left')], columnAttach=[(1, 'right', 0), (2, 'left', 5)], height=25) cmds.text(label='Grass Texture:') self.grassTexCB = cmds.checkBox(label='', value=1, cc=self.toggle_visble_grasstex) cmds.setParent('..') self.grassTexturesFrame = cmds.frameLayout(label='Grass Textures', borderStyle='in', cll=True) grassTypesForm = cmds.formLayout() self.randomGTexRow = cmds.rowLayout(numberOfColumns=2, columnWidth2=(115, 15), columnAlign=[(1, 'right'), (2, 'left')], columnAttach=[(1, 'right', 0), (2, 'left', 5)], height=25) cmds.text(label='Random Textures:') self.randomGTexCB = cmds.checkBox(label='', value=0) cmds.setParent('..') self.grassTypesOMGrp = cmds.optionMenuGrp(label='Grass Types:', cw=[(1,110),(3,150)], cat=[(2,'left', 5)]) self.grassTypeFolders = [f for f in os.listdir(Main.GRASS_TEX_DIR) \ if os.path.isdir(os.path.join(Main.GRASS_TEX_DIR,f))] for cliff in self.grassTypeFolders: cmds.menuItem(label=cliff) nOfGTexRow = cmds.rowLayout(nc=2, cw=[(1,110)], cal=[(1,'right')], cat=[(1,'right',0),(2,'left', 5)]) cmds.text(label='Number of Textures:') self.nOfGrassTexIF = cmds.intField(v=3, min=1) cmds.setParent('..') self.grassPrevText = cmds.text('Grass Preview:') self.grassPreviewPL = cmds.paneLayout(width=65, height=65) self.grassFileNode = self.setup_preview_file('grassTexturePreview') self.grassPreviewImg = cmds.swatchDisplayPort(wh=(65,65), sn=self.grassFileNode, pc=par(self.update_file_node_swatch, self.grassFileNode)) self.update_preview('grassTextures', Main.GRASS_TEX_DIR, self.grassFileNode , False, self.grassTypesOMGrp) cmds.setParent('..') cycleGrassPrevB = cmds.button(label='Cycle Images', command=par(self.cycle_preview_img, 'grassTextures', self.grassFileNode)) cmds.checkBox(self.randomGTexCB, e=True, cc=par(self.toggle_randomtex,'grassTextures', Main.GRASS_TEX_DIR, self.grassTypesOMGrp, self.grassFileNode, self.randomGTexCB)) cmds.optionMenuGrp(self.grassTypesOMGrp, e=True, cc=par(self.update_preview, 'grassTextures', Main.GRASS_TEX_DIR, self.grassFileNode, False, self.grassTypesOMGrp)) cmds.formLayout(grassTypesForm, e=True, attachForm=[(self.randomGTexRow, 'left', 0), (self.randomGTexRow, 'top', 5), (self.grassTypesOMGrp, 'left', 5), (nOfGTexRow, 'left', 5), (self.grassPreviewPL, 'top', 5), (self.grassPreviewPL, 'bottom', 5)], attachControl=[(self.grassPrevText, 'left', 85, self.grassTypesOMGrp), (self.grassPreviewPL, 'left', 5, self.grassPrevText), (nOfGTexRow, 'top', 5, self.grassTypesOMGrp), (self.grassTypesOMGrp, 'top', 5, self.randomGTexRow), (cycleGrassPrevB, 'left', 5, self.grassPreviewPL)], attachNone=[(nOfGTexRow,'bottom'), (self.randomGTexRow, 'right'), (self.grassPrevText, 'bottom'), (cycleGrassPrevB, 'right')], attachPosition=[(cycleGrassPrevB, 'top', 0, 40), (self.grassPrevText, 'top', 0, 45)]) cmds.setParent(mainTexturingTab) otherOptions = cmds.frameLayout(label='Other Options', borderStyle='in', cll=True) self.texRepeatU = cmds.floatSliderGrp(label='Texture Repetition U:', field=True, minValue=0, maxValue=5, fieldMaxValue=100000, value=1.25, precision=3, adj=3, cw=[(1,110)], cat=[(2,'left', 5)]) self.texRepeatV = cmds.floatSliderGrp(label='Texture Repetition V:', field=True, minValue=0, maxValue=5, fieldMaxValue=100000, value=1.25, precision=3, adj=3, cw=[(1,110)], cat=[(2,'left', 5)]) self.texNoiseU = cmds.floatSliderGrp(label='Texture Noise U:', field=True, minValue=0, maxValue=5, fieldMaxValue=100000, value=0.01, precision=3, adj=3, cw=[(1,110)], cat=[(2,'left', 5)]) self.texNoiseV = cmds.floatSliderGrp(label='Texture Noise V:', field=True, minValue=0, maxValue=5, fieldMaxValue=100000, value=0.01, precision=3, adj=3, cw=[(1,110)], cat=[(2,'left', 5)]) self.bDepth = cmds.floatSliderGrp(label='Bump Depth:', field=True, minValue=-5, maxValue=5, fieldMaxValue=100000, fieldMinValue=-100000, value=0.4, precision=3, adj=3, cw=[(1,110)], cat=[(2,'left', 5)]) cmds.rowLayout(nc=2, cw=[(1, 210)], cal=[(1, 'right')], cat=[(1, 'right', 0), (2, 'left', 5)]) self.imageColOMGrp = cmds.optionMenuGrp(label='Image Colour Space:', cw=[(1,110),(3,150)], cat=[(2,'left', 5)]) cmds.menuItem('sRGB') cmds.menuItem('Linear sRGB') self.renderColOMGrp = cmds.optionMenuGrp(label='Render Colour Space:', cw=[(1,110),(3,150)], cat=[(2,'left', 5)]) cmds.menuItem('sRGB') cmds.menuItem('Linear sRGB') cmds.setParent('..') cmds.setParent('..') self.texPosFrame = cmds.frameLayout(label='Texture Positioning', borderStyle='in', cll=True) self.setup_texture_pos_ramp() sampleRow = cmds.rowLayout(numberOfColumns=2, cw=[(1,225)], cal=[(1,'right')], cat=[(1,'right',5)]) cmds.text('Sample') cmds.paneLayout(width=65, height=65) self.rampPreviewImg = cmds.swatchDisplayPort(wh=(65, 65), sn=self.ramp, pc=par(self.update_file_node_swatch, self.ramp)) cmds.setParent(self.texPosFrame) cmds.columnLayout(adj=True) self.rampType = cmds.attrEnumOptionMenuGrp(label='Type', attribute='%s.type' % self.ramp, cw=[(1,110),(3,150)], cat=[(2,'left', 5)]) self.rampInterpol = cmds.attrEnumOptionMenuGrp(label='Interpolation', attribute='%s.interpolation' % self.ramp, cw=[(1,110),(3,150)], cat=[(2,'left', 5)]) rampRow = cmds.rowLayout(nc=2, cw=[(1,275)], cal=[(1,'right')], cat=[(1,'right',5)]) self.rampCliffTex = cmds.rampColorPort(node=self.ramp) self.resetButton = cmds.button(label='Reset', command=par(self.reset_ramp, self.ramp, self.snowTexCB, self.grassTexCB)) cmds.setParent('..') entryTypRow = cmds.rowLayout(nc=2) self.entryTypeOMGrp = cmds.optionMenuGrp(label='Entry Type:', cw=[(1,110),(3,150)], cat=[(2,'left', 5)]) self.cliffEntry = cmds.menuItem(label='Cliff') self.snowEntry = cmds.menuItem(label='Snow') self.grassEntry = cmds.menuItem(label='Grass') self.createEntryButton = cmds.button(label='Create Entry', command=par(self.create_entry, self.entryTypeOMGrp, self.ramp)) cmds.setParent('..') selectedPosition = cmds.attrFieldSliderGrp(label='Selected Position', adj=3, cw=[(1,110),(3,150)], cat=[(2,'left', 5)]) cmds.rampColorPort(self.rampCliffTex, e=True, sp= selectedPosition) self.uWaveSl = cmds.attrFieldSliderGrp(at='%s.uWave' % self.ramp, columnWidth=(4,0), adj=3, cw=[(1,110),(3,150)], cat=[(2,'left', 5)]) self.vWaveSl = cmds.attrFieldSliderGrp(at='%s.vWave' % self.ramp, columnWidth=(4,0), adj=3, cw=[(1,110),(3,150)], cat=[(2,'left', 5)]) self.noiseSl = cmds.attrFieldSliderGrp(at='%s.noise' % self.ramp, columnWidth=(4,0), adj=3, cw=[(1,110),(3,150)], cat=[(2,'left', 5)]) self.freqSl = cmds.attrFieldSliderGrp(at='%s.noiseFreq' % self.ramp, columnWidth=(4,0), adj=3, cw=[(1,110),(3,150)], cat=[(2,'left', 5)]) cmds.setParent(mainTexturingTab) self.generateTerrainB = cmds.button(label='Generate Texture!', height=29, command=self.generate_texture) cmds.tabLayout(tabs, edit=True, tabLabel=((mainTerrainTab, 'Terrain'), (mainTexturingTab, 'Texturing')) ) def run(): win = MTGGui('MTGWindow') return win if __name__ == "__main__": window = run() ```
{ "source": "j-fdion/cyme", "score": 3 }
#### File: cyme/electrolyse/bt_vehicule.py ```python from .. import bt class ScanObjectifs(bt.Task): def __init__(self, vehicule): super().__init__() self.vehicule = vehicule def trouve_objectif_aller(self): print("cibles_aller", len(self.vehicule.cibles_aller)) while True: try: noeud = self.vehicule.cibles_aller.pop() except IndexError: return None else: if noeud.allee.need_cab_ea or noeud.allee.need_ben_vide: print(len(self.vehicule.cibles_aller)) return noeud def trouve_objectif_retour(self): print("cibles_retour", len(self.vehicule.cibles_retour)) while True: try: noeud = self.vehicule.cibles_retour.pop() except IndexError: return None else: if noeud.allee.has_cab_megot or noeud.allee.has_ben_pleine: print(len(self.vehicule.cibles_retour)) return noeud def run(self): if self.vehicule.objectif_aller is None and self.vehicule.objectif_retour is None: self.vehicule.objectif_aller = self.trouve_objectif_aller() self.vehicule.objectif_retour = self.trouve_objectif_retour() if self.vehicule.objectif_aller is not None or self.vehicule.objectif_retour is not None: #print("ScanObjectifs", bt.Task.SUCCES) return bt.Task.SUCCES else: print("ScanObjectifs", bt.Task.ECHEC, self.vehicule.objectif_aller, self.vehicule.objectif_retour) return bt.Task.ECHEC class ObjectifAllerExiste(bt.Task): def __init__(self, vehicule): super().__init__() self.vehicule = vehicule def run(self): value = bt.Task.SUCCES if self.vehicule.objectif_aller is not None else bt.Task.ECHEC self.vehicule.objectif_aller.box.color = (1,0,0) print("ObjectifAllerExiste", self.vehicule.objectif_aller, value == bt.Task.SUCCES) return value class ObjectifRetourExiste(bt.Task): def __init__(self, vehicule): super().__init__() self.vehicule = vehicule def run(self): value = bt.Task.SUCCES if self.vehicule.objectif_retour is not None else bt.Task.ECHEC print("ObjectifRetourExiste", value == bt.Task.SUCCES) return value class ContientCabBen(bt.Task): def __init__(self, vehicule): super().__init__() self.vehicule = vehicule def run(self): value = bt.Task.SUCCES if self.vehicule.cab or self.vehicule.ben else bt.Task.ECHEC print("ContientCabBen", self.vehicule.cab, self.vehicule.ben, value == bt.Task.SUCCES) return value class MoveToLocation(bt.Task): """ Demande au composant mobile de se déplacer vers location """ def __init__(self, vehicule, location): super().__init__() self.vehicule = vehicule self.location = location def run(self): """ :return: ``bt.Task.SUCCES`` si le vehicule est positionné au dessus de sa cible """ if self.vehicule.mobile.target != self.location: self.vehicule.mobile.target = self.location value = bt.Task.SUCCES if self.vehicule.mobile.target == self.vehicule.mobile.npos else bt.Task.ECHEC print("MoveToLocation", self.location, value == bt.Task.SUCCES) return value class MoveToObjectifAller(bt.Task): """ Demande au composant mobile de se déplacer vers l'objectif courant """ def __init__(self, vehicule): super().__init__() self.vehicule = vehicule def run(self): """ :return: ``bt.Task.SUCCES`` si le vehicule est positionné au dessus de sa cible """ if self.vehicule.mobile.target != self.vehicule.objectif_aller: self.vehicule.mobile.target = self.vehicule.objectif_aller value = bt.Task.SUCCES if self.vehicule.mobile.target == self.vehicule.mobile.npos else bt.Task.RUNNING print("MoveToObjectifAller", self.vehicule.objectif_aller, value == bt.Task.SUCCES) return value class MoveToObjectifRetour(bt.Task): """ Demande au composant mobile de se déplacer vers l'objectif courant """ def __init__(self, vehicule): super().__init__() self.vehicule = vehicule def run(self): """ :return: ``bt.Task.SUCCES`` si le vehicule est positionné au dessus de sa cible """ if self.vehicule.mobile.target != self.vehicule.objectif_retour: self.vehicule.mobile.target = self.vehicule.objectif_retour value = bt.Task.SUCCES if self.vehicule.mobile.target == self.vehicule.mobile.npos else bt.Task.RUNNING print("MoveToObjectifRetour", self.vehicule.objectif_aller, value == bt.Task.SUCCES) return value class IsBenVide(bt.Task): def __init__(self, vehicule): super().__init__() self.vehicule = vehicule def run(self): value = bt.Task.SUCCES if self.vehicule.objectif_aller.allee.need_ben_vide else bt.Task.ECHEC print("IsBenVide", value == bt.Task.SUCCES) return value class IsBenPleine(bt.Task): def __init__(self, vehicule): super().__init__() self.vehicule = vehicule def run(self): value = bt.Task.SUCCES if self.vehicule.objectif_retour.allee.has_ben_plein else bt.Task.ECHEC print("IsBenPleine", value == bt.Task.SUCCES) return value class DeposerBenPleine(bt.Task): def __init__(self, vehicule): super().__init__() self.vehicule = vehicule def run(self): print("DeposerBenPleine") self.vehicule.ben = False self.vehicule.objectif_retour = None return bt.Task.SUCCES class RamasserBenPleine(bt.Task): def __init__(self, vehicule): super().__init__() self.vehicule = vehicule def run(self): print("RamasserBenPleine") self.vehicule.objectif_retour.allee.has_ben_pleine = False self.vehicule.objectif_retour.allee.ben = -1 self.vehicule.ben = True return bt.Task.SUCCES class DeposerBenVide(bt.Task): def __init__(self, vehicule): super().__init__() self.vehicule = vehicule def run(self): print("DeposerBenVide") self.vehicule.objectif_aller.allee.need_ben_vide = False self.vehicule.objectif_aller.allee.ben = 0 self.vehicule.objectif_aller = None self.vehicule.ben = False return bt.Task.SUCCES class RamasserBenVide(bt.Task): def __init__(self, vehicule): super().__init__() self.vehicule = vehicule def run(self): print("RamasserBenVide") self.vehicule.ben = True return bt.Task.SUCCES class DeposerCabEa(bt.Task): def __init__(self, vehicule): super().__init__() self.vehicule = vehicule def run(self): print("DeposerCabEa") self.vehicule.objectif_aller.allee.need_cab_ea = False self.vehicule.objectif_aller.allee.cab = 3 self.vehicule.objectif_aller = None self.vehicule.cab = False return bt.Task.SUCCES class RamasserCabEa(bt.Task): def __init__(self, vehicule): super().__init__() self.vehicule = vehicule def run(self): print("RamasserCabEa") self.vehicule.cab = True return bt.Task.SUCCES class DeposerCabMegot(bt.Task): def __init__(self, vehicule): super().__init__() self.vehicule = vehicule def run(self): print("DeposerCabMegot") self.vehicule.cab = False self.vehicule.objectif_retour = None return bt.Task.SUCCES class RamasserCabMegot(bt.Task): def __init__(self, vehicule): super().__init__() self.vehicule = vehicule def run(self): print("RamasserCabMegot") self.vehicule.objectif_retour.allee.has_cab_megot = False self.vehicule.objectif_retour.allee.megot = 0 self.vehicule.cab = True return bt.Task.SUCCES class IsCabEa(bt.Task): def __init__(self, vehicule): super().__init__() self.vehicule = vehicule def run(self): value = bt.Task.SUCCES if self.vehicule.objectif_aller.allee.need_cab_ea else bt.Task.ECHEC print("IsCabEa", value == bt.Task.SUCCES) return value class IsCabMegot(bt.Task): def __init__(self, vehicule): super().__init__() self.vehicule = vehicule def run(self): value = bt.Task.SUCCES if self.vehicule.objectif_retour.allee.has_cab_megot else bt.Task.ECHEC print("IsCabMegot", value == bt.Task.SUCCES) return value ``` #### File: cyme/electrolyse/centre.py ```python import re import math from kivy.graphics.context_instructions import Color, PushMatrix, Rotate, PopMatrix, Translate from kivy.graphics.vertex_instructions import Rectangle, Line from kivy.core.text import Label as CoreLabel from .. import simulation from .. import ecs class Secteur(ecs.Component): """Le secteur de production est une entité qui formé d'une liste de cuves, de tâches à faire et d'un pont qui y est affecté. On regrouppe souvent les secteurs en famille. """ def __init__(self, cuve_debut, allee_debut, nb, famille, nom, num_quart_depart=0): """ :param Cuve cuve_debut: première cuve du secteur :param Allee allee_debut: première allée du secteur (peut-être None si pas d'allée) :param int nb: nombre de cuve du secteur :param str famille: nom de la famille avec ce secteur :param str nom: nom du secteur :param int num_quart_depart: numéro du quart de départ des opération dans les listes de tâches (0 par défaut) """ self.famille = famille self.nom = nom self.cuve_debut = cuve_debut # handle sur la premiere cuve du secteur self.allee_debut = allee_debut self.nbcuve = nb # nombre de cuves d'un secteur if cuve_debut: self.cuve_debut = cuve_debut # handle sur la premiere cuve du secteur c = self.cuve_debut.noeud c.cuve.secteur = self self.noeuds_cuves = [c] for i in range(nb - 1): c = c.next() c.cuve.secteur = self self.noeuds_cuves.append(c) self.cuve_fin = c.cuve if allee_debut: self.allee_debut = allee_debut a = self.allee_debut.noeud a.allee.secteur = self self.noeuds_allees = [a] for i in range(nb - 1): a = a.next() a.allee.secteur = self self.noeuds_allees.append(a) self.allee_fin = a self.num_quart = num_quart_depart #kanbans est une liste de liste de kanbans, chaque liste représente un quart (ou poste) de travail self.kanbans = None # pont actuellement affecté aux tâches (kanbans) dans ce secteur self.pont = None self.quota_pause = 0 def set_kanbans(self, kanbans): """ Set la liste de listes de kanban (tâches a faire dans ce secteur). A priori, il y a une liste de tâches par quart (poste), avec cycle. Typiquement, on cycle a tous les 2 ou 8 quarts, dépendamment du centre d'électrolyse. C'est le nombre de liste de kanban dans kanbans qui fixe le cycle. """ self.kanbans = kanbans def incr_num_quart(self): """ On avance d'une liste de tâche quand on change de quart (poste). """ if len(self.kanbans) > 0: self.num_quart = (self.num_quart + 1) % len(self.kanbans) def get_kanbans_for_current_quart(self): """ Return la liste de kanban du quart courant. """ return self.kanbans[self.num_quart] def num_quart_max(self): """ Nombre de listes de kanban, c'est-à-dire le nombre de postes du cycle. """ return len(self.kanbans) def __repr__(self): """ Nom du secteur via repr() """ return self.nom class Allee(ecs.Component): """ Allee voisine des cuves pour poser les cabarets d'anodes et les bennes. """ def __init__(self, n): self.noeud = n self.noeud.allee = self self.need_cab_ea = False self.need_ben_vide = False self.has_cab_megot = False self.has_ben_pleine = False self.ea = 0 self.megot = 0 self.ben = -1 def is_vide(self): if self.ea <= 0 and self.megot <= 0 and self.ben < 0: return True else: return False def is_occupee(self): if self.ea > 0 or self.megot > 0 or self.ben > -1: return True else: return False class Cuve(ecs.Component): """Aspect cuve électrolytique d'un ``Noeud`` du graphe. Attributs: * kA (int): courant sur cette cuve * Faraday (float): facteur efficacite electrique en % (fonction du kA) * R (float): cte de rendement en kg/(kA*24h) * nbanode: nombre d'anodes dans la cuve * cycle: cycle anodique en jours (float) * na (float): nombre d'anodes a changer selon le cycle (variable d'état) * metal (float): quantité de métal liquide siphonnable en kg (variable d'état) """ def __init__(self, n, nbanode, cycle=600, ka=400): """:param n: on garde un handle vers le composant noeud frère :type n: :class:`Noeud` :param int nanode: nombre d'anodes (ea) dans une cuve :param int cycle: cycle anodique en heures (defaut: 600h, i.e. 25j) :param int ka: courant electrique en ka (defaut: 400kA) """ self.noeud=n # handle sur le noeud self.noeud.cuve=self # handle du noeud vers sa cuve self.nbanode=nbanode # nombre d'anodes dans la cuve self.metal=3380.0 # kg de metal siphonnable self.megot=0 # nb de ea a changer (megots) self.R=8.0534 # cte standard de production en kg/(kA*24h) (voir doc) self.set_kA(ka) # set le courant et le rendement en kA self.set_cycle(cycle) # set le cycle anodique self.nch=1 # nb d'anodes a changer au prochain changement d'anodes self.nsi=1 # 1 s'il y a du metal a siphonner, 0 sinon (NB: dans le futur ce sera le nb de kg) def set_cycle(self,cycle): """ Set le cycle anodique. """ self.cycle = cycle # cycle de changement des anodes en heures # facteur production de megots par 60 secondes self.factMegot = self.nbanode / (self.cycle * 60.0) def set_kA(self, ka): """Set la valeur du courant et du rendement Faraday (typiquement entre 90% et 97%).""" self.kA = ka self.Faraday = 0.93 # efficacite electrique en % (depend generalement du kA) # facteur production de metal par 60 secondes self.factMetal = 60.0 * self.R * self.Faraday * self.kA / 86400.0 def productionMetal(self, periode): """Calcul la quantité de métal total produit par la cuve en ``periode`` minutes.""" return self.factMetal * periode def productionMegot(self, periode): """Calcul la quantité de mégots total produit par la cuve en ``periode`` minutes.""" return self.factMegot * periode def update(self): """Update de l'etat de la cuve apres 60 secondes.""" self.metal += self.factMetal self.megot += self.factMegot if self.megot >= 1.0: self.nch += 1 self.megot -= 1 class RenderCuve(ecs.System): """Systeme pour le rendering des cuves.""" def __init__(self, canvas): super().__init__() self.canvas = canvas def init(self): pass def reset(self): pass def update(self, dt): with self.canvas: for entity, cuve in self.entity_manager.pairs_for_type(Cuve): box = self.entity_manager.component_for_entity(entity, simulation.graphe.Box) # draw rectangle with texture Color(box.color[0], box.color[1], box.color[2], box.alpha) Rectangle(pos=box.pos, size=box.size) Color(box.contour_color[0], box.contour_color[1], box.contour_color[2], box.alpha) Line(rectangle=box.pos + box.size) # texte #PushMatrix() #my_label=CoreLabel(text=str(cuve.nch), font_size=10) # affichage du nb d'anodes a changer #my_label=CoreLabel(text=" {0:.0f} {1:.1f}".format(cuve.metal,cuve.megot), font_size=10) # affichage du metal et du nb d'anode #my_label.refresh() # force label to draw itself #x_texture=my_label.texture # use the label texture #Translate(float(box.ptxt[0]-3), float(box.ptxt[1]), 0) #Rotate(90, 0, 0, 1) #Rectangle(size=x_texture.size, pos=(0,0), texture=x_texture) #PopMatrix() class RenderAllee(ecs.System): """Systeme pour le rendering des cuves.""" def __init__(self, canvas): super().__init__() self.canvas = canvas def init(self): pass def reset(self): pass def update(self, dt): with self.canvas: for entity, allee in self.entity_manager.pairs_for_type(Allee): box = self.entity_manager.component_for_entity(entity, simulation.graphe.Box) # draw rectangle with texture Color(box.color[0], box.color[1], box.color[2], box.alpha) if allee.need_cab_ea: Color(0,1,0, box.alpha) if allee.need_ben_vide: Color(0, 0, 1, box.alpha) if allee.has_cab_megot: Color(0.2, 1, 0.2, box.alpha) if allee.has_ben_pleine: Color(0.2, 0.2, 1, box.alpha) Rectangle(pos=box.pos, size=box.size) Color(0, 0, 0) # toujours un coutour noir Line(rectangle=box.pos + box.size) #PushMatrix() #my_label = CoreLabel(text=str(allee.secteur.nom), font_size=12) ## my_label=CoreLabel(text=" {0:.0f} {1:.1f}".format(cuve.metal,cuve.megot), font_size=10) #my_label.refresh() # force label to draw itself #x_texture = my_label.texture # use the label texture #Translate(float(box.ptxt[0]), float(box.ptxt[1])+5,0) #Rotate(90, 0, 0, 1) #Rectangle(size=x_texture.size, pos=(0, 0), texture=x_texture) #PopMatrix() ``` #### File: cyme/electrolyse/gestionnaire_ea.py ```python from collections import defaultdict, deque from .. import ecs from . import centre from . import vehicule class GestionnaireEa(ecs.System): def __init__(self, bd): super().__init__() self.bd = bd self.secteurs = [] self.vehicules = [] self.ordres = {} def create_famille(self, groupe_nom): groupe_secteur = [] for g in groupe_nom: s1 = None s2 = None s3 = None s4 = None for entity, secteur in self.entity_manager.pairs_for_type(centre.Secteur): if secteur.nom == g[0]: s1 = secteur if secteur.nom == g[1]: s2 = secteur if secteur.nom == g[2]: s3 = secteur if secteur.nom == g[3]: s4 = secteur groupe_secteur.append((s1, s2, s3, s4)) return groupe_secteur def create_objectifs_famille(self, groupe_secteur, ordres): objectifs_famille = defaultdict(list) for i, g in enumerate(groupe_secteur): for ordre in ordres: objectifs = [] for o in ordre: index = o[0] debut = o[1] fin = o[2] if debut < fin: n = g[index].noeuds_allees[debut:fin + 1] objectifs.extend(n) else: n = g[index].noeuds_allees[fin:debut][::-1] objectifs.extend(n) objectifs_famille[i].append(deque(reversed(objectifs))) print(len(objectifs_famille[i])) return objectifs_famille def init(self): groupe_nom = [('T1', 'T2', 'T7', 'T8'), ('G1', 'G2', 'G7', 'G8'), ('B3', 'B4', 'B5', 'B6')] groupe_secteur = self.create_famille(groupe_nom) ordres = [[(2, 21, 35), (0, 19, 0), (0, 19, 35), (1, 0, 20)], [(1, 21, 35), (3, 19, 0), (3, 19, 35), (2, 0, 20)]] objectifs_famille = self.create_objectifs_famille(groupe_secteur, ordres) for entity, v in self.entity_manager.pairs_for_type(vehicule.VehiculeEa): v.gestionnaire = self self.vehicules.append(v) for i, v in enumerate(self.vehicules): v.cibles_aller = objectifs_famille[i][0] v.cibles_retour = objectifs_famille[i][1] print(objectifs_famille[i][0]) for objectif in list(v.cibles_aller): objectif.box.color = (1,1,0) for objectif in list(v.cibles_retour): objectif.box.color = (0,1,1) def reset(self): pass def update(self, dt): pass ``` #### File: cyme/flux/bt_machine.py ```python from .. import bt class preTache(bt.Task): def __init__(self, machine, k=1): super().__init__() self.machine=machine self.k=k # nb traite def run(self): #print("action: machinePreTache") return bt.Task.SUCCES class machineTache(bt.Task): def __init__(self, machine, k=1): super().__init__() self.machine=machine self.k=k # nb traite def run(self): #print("action: machineTache") return bt.Task.SUCCES class postTache(bt.Task): def __init__(self, machine): """:param machine: un composant avec un handle sur un ``Noeud``. """ super().__init__() self.machine=machine def run(self): #print("action: postTache") err = False ok = True # on revalide que le materiel est encore dispo en entree for idx in range(len(self.machine.noeud.ina)): accumulateur = self.machine.noeud.ina[idx].accumulateur if not accumulateur.dispo()>=self.machine.qin[idx]: ok = False if not ok: # zut... on a perdu du temps :( err=True else: # le materiel est encore present en entree et il y a de la place en sortie for idx in range(len(self.machine.noeud.ina)): accumulateur = self.machine.noeud.ina[idx].accumulateur done = accumulateur.rm(self.machine.qin[idx]) if not done: print("Erreur", type(self), "rm item(s) non-existant?") err=True for idx in range(len(self.machine.noeud.oua)): accumulateur = self.machine.noeud.oua[idx].accumulateur done = accumulateur.add(self.machine.qout[idx]) if not done: print("Erreur", type(self), "echec add item(s)?") err=True if err: self.machine.travail_perdu += self.machine.tcycle return bt.Task.ECHEC else: self.machine.x+=self.machine.qin_total_par_cycle self.machine.xout+=self.machine.qout_total_par_cycle return bt.Task.SUCCES class entreeTest_i(bt.Task): """ True si au moins k items dispo sur le idx-ème accumulateur en entree. """ def __init__(self, machine, accumulateur, k=1): """:param machine: un composant avec un handle sur un ``Noeud`` :param accumulateur: accumulateur a tester :param k: nombre minimal d'éléments """ super().__init__() self.machine=machine self.accumulateur=accumulateur self.k=k # nb items def run(self): if self.accumulateur.dispo()>=self.k: return bt.Task.SUCCES return bt.Task.ECHEC class sortieTest_i(bt.Task): """ True si au moins k places dispo sur le idx-ème accumulateur en sortie. """ def __init__(self, machine, accumulateur, k=1): """:param machine: un composant avec un handle sur un ``Noeud`` :param accumulateur: accumulateur a tester :param k: nombre minimal de places """ super().__init__() self.machine=machine self.accumulateur=accumulateur self.k=k # nb places def run(self): if not self.accumulateur.full(self.k): return bt.Task.SUCCES return bt.Task.ECHEC ``` #### File: cyme/simulation/base.py ```python import csv import math import datetime from collections import OrderedDict, defaultdict, namedtuple class Pheromone: """ Une phéromone est en fait un spot pour avoir une phéromone active. C'est une condition True a l'update de l'état du spot qui renforce ou crée la phéromone en tant que telle. Exemple d'utilisation: .. code-block:: python p = base.Pheromone(60) for i in range(600): p.update(i==50 or i==150 or i==180) p.show() """ def __init__(self,vie): """Création de la phéromone non-active. C'est l'update avec une variable qui l'active ou la tiens en vie. Après vie unités de temps sans reactivation, elle se déactive. D'un point de vue, l'objet est plutôt un spot pour recevoir une phéromone. :param vie: durée de vie en unité de temps selon update """ self.vie=vie # parametre de vie lors de l'activation self._vieRestante = 0 # tracking de la sante, i.e. dissipation de la pheromone self.dt = 0 # duree de vie totale (age) de la pheromone courante # statistiques self.n = 0 # stat du nb de phéromones distinctes self.dtmoy = 0 # duree de vie moyenne d'une pheromone self.dtmax = 0 # duree de vie max d'une pheromone def _emettre(self): """ Emettre une nouvelle phéromone ou reforcer une existante. """ if self._vieRestante == 0: self.n += 1 # on emet une nouvelle elif self._vieRestante>0: self.dt+=self.vie-self._vieRestante # on update l'age self._vieRestante = self.vie # dans tous les cas, on fixe la vie restante a vie def update(self,depot=False): """ Update (dissipation) de l'état de la phéromone. :param depot: si vrai on emet ou renforce une phéromone """ if self._vieRestante > 0: self._vieRestante -= 1 if self._vieRestante == 0: # viens de mourrir... self.dt+=self.vie if self.dt>self.dtmax: self.dtmax=self.dt self.dtmoy = ((self.n-1)*self.dtmoy+self.dt)/self.n self.dt=0 # reset de la duree de vie totale if depot: self._emettre() def show(self): """ Print les stats. """ print("n",self.n,"age moy",self.dtmoy,"age max",self.dtmax) class Monitor: """ Cette classe gère une liste de données à meme la classe. C'est-à-dire que la liste est un attribut de classe et non d'objet. Typiquement, le but est d'offrir un mécanisme simple et léger pour collecter une trace globale d'exécution qu'on peut afficher ou consulter avec un chiffrier. On suppose que chaque donnée est un tuple structurée comme une ligne csv. Toute les méthodes sont statiques. Exemple d'utilisation pour une entête et lignes de données: .. code-block:: python base.Monitor.add( ("Heure","X","Y") ) # ligne d'entete base.Monitor.add( ("20h15",3,13) ) # premiere ligne de data base.Monitor.add( ("21h35",4,19) ) # seconde ligne de data base.Monitor.show() # affichage a l'ecran base.Monitor.dump() # dump dans datadex.csv avec ; comme separateur """ _datadex = [] # les donnees @staticmethod def add(data): """ Ajoute une ligne de données dans la liste du monitor. """ Monitor._datadex.append(data) @staticmethod def show(): """ Affiche a l'écran toutes les lignes de données du monitor. """ for data in Monitor._datadex: print(data) @staticmethod def dump(): """ Dump dans datadex.csv avec ; comme séparateur. """ with open('datadex.csv', 'a', newline='') as fp: z = csv.writer(fp, delimiter=';') z.writerows(Monitor._datadex) class Debug: """ Permet de print un message concernant un obj lorsque le flag `is_debug` existe dans l'objet cible. Exemple d'utilisation: .. code-block:: python base.Debug.set_debug_print_on(obj) base.Debug.print(obj, "Le flag is_debug est dans l'objet obj") """ @staticmethod def set_debug_print_on(obj): """Insert l'attribut `is_debug` dans l'objet cible. :param obj: objet cible """ obj.is_debug = True @staticmethod def set_debug_print_off(obj): """Delete l'attribut `is_debug` dans l'objet cible. :param obj: objet cible """ delattr(obj, 'is_debug') @staticmethod def is_debug_print(obj): """Détermine si l'attribut 'is_debug' existe dans l'objet cible. :param obj: objet cible """ return 'is_debug' in dir(obj) @staticmethod def print(obj, *args): """Print un message contenu dans 'args' :param obj: objet cible :param args: message à print """ if Debug.is_debug_print(obj): print(*args) class Blackboard: """Simple blackboard (bb) to store shared information. On crée des entrées dans le bb en y insérant des valeurs directement ou avec `set`. On peut retrouver et modifier les valeur directement, mais il est préférable d'utiliser `set` et `get` car ils s'assurent que l'attribut est bien présent dans le bb. Exemple d'utilisation: .. code-block:: python bb=simulation.base.Blackboard() bb.x=2 bb.set('y',3) """ def show_content(self): """Liste du contenu du bb excluant les items privés (i.e. contenant ``__``).""" print([x for x in dir(self) if x.find('__') < 0]) def delete(self, attr): """Delete l'attribut `attr` du blackboard. :param attr: nom de l'attribut à retirer (une string) """ if attr in dir(self): delattr(self, attr) def get(self, attr): """Get la valeur de l'attribut `attr` en s'assurant qu'il existe dans le blackboard. :param attr: nom de l'attribut à retrouver """ return getattr(self, attr) def set(self, attr, value): """Set la valeur de l'attribut `attr` à `value` en s'assurant qu'il existe dans le blackboard. :param attr: nom de l'attribut à retrouver (une string) :param value: valeur à affecter à l'attribut """ setattr(self, attr, value) def has(self, attr): """Test si l'object blackboard possède l'attribut `attr`. :param attr: nom de l'attribut à rechercher (une string) """ return attr in dir(self) class Publisher: """Déclenche un événement chez les subscribers lorsque un message est reçu. """ instance = None @staticmethod def get_instance(): """Recupère l'instance unique du publisher, crée l'instance lorsqu'elle n'existe pas. """ if Publisher.instance is None: Publisher.instance = Publisher() return Publisher.instance def __init__(self): self.events = defaultdict(lambda: defaultdict()) def get_subscribers(self, event): """Retourne les subscribers inscrit à 'event' :param event: nom de l'event (une string) """ return self.events[event] def register(self, event, who, callback=None): """Enregistre 'who' à l'événement 'event' celui-ci appelera la fonction 'callback' lorsque déchlenché. :param event: nom de l'événement (une string) :param who: l'objet inscrit à l'événement :param callback: fonction à déclencher, par défaut 'notify()' """ if callback is None: callback = getattr(who, 'notify') self.get_subscribers(event)[who] = callback def unregister(self, event, who): """Retire 'who' de l'événement 'event' :param event: nom de l'événement (une string) :param who: l'objet inscrit à l'événement """ del self.get_subscribers(event)[who] def dispatch(self, event, sender, message): """Déclenche l'évenement 'event' envoit un message (peut être un objet) :param event: nom de l'événement (une string) :param sender: objet déclencher de l'événement :param message: message à envoyer (peut être un objet) """ for subscriber, callback in self.get_subscribers(event).items(): callback(subscriber, sender, message) class TripleManager: """Provide database-like access to triple based on a key: (object,property).""" def __init__(self,interpreteCF=False): """Creation de 2 dictionnaires utilisant une clé (object,property). Un est pour les valeurs, l'autre pour des commentaires. On peut interpréter un commentaire comme un facteur de confiance dans [-1,1]. Dans ce cas, le dictionnaire de commentaire contient le facteur de confiance. """ self.interpreteCF = interpreteCF # active l'interprétation des comments comme CF self._bdv = OrderedDict() # values for (object,property) pairs self._bdc = OrderedDict() # comments or CF for (object,property) pairs def add(self, anobject, aproperty, avalue, acomment=""): """Add a triple to the database: (anobject,aproperty,avalue) and acomment or CF. Si la clef existe déjà, on remplace le contenu par le plus récent. Il est recommandé d'utiliser getv pour tester si la clef existe lorsque c'est utile. Par convention, on traite les étoiles comme des separateurs pour generer des tuples d'entiers. Exemple: '23*-40' devient le couple (23,-40). :param anobject: premier membre du couple de la clé :param aproperty: second membre du couple de la clé :param avalue: item a mettre dans le dictionnaire des valeurs :param acomment: texte optionnel ou CF a mettre dans le dictionnaire des commentaires Les types sont arbitraires, par exemple ``avalue`` peut être un objet, un tuple, etc. """ if isinstance(avalue, str) and avalue.find('*') >= 0: try: avalue = tuple(int(i) for i in avalue.split('*')) except ValueError: avalue = tuple(str(i) for i in avalue.split('*')) self._bdv[(anobject, aproperty)] = avalue if self.interpreteCF: if not isinstance(acomment,float): acomment=1.0 self._bdc[(anobject, aproperty)] = acomment def getv(self, pair): """Return la valeur associée à la clé :param pair: couple (objet,propriete) qui est une clé de la bd des valeurs :return: la valeur associée à la clé :rtype: quelconque ou None si pas dans le dict """ try: return self._bdv[pair] except KeyError: return None def getc(self, pair): """Return le commentaire associé à la clé :param pair: couple (objet,propriete) qui est une clé de la bd des commentaires :return: le commentaire associé à la clé :rtype: une string ou None si pas dans le dict """ try: return self._bdc[pair] except KeyError: return None def to_blackboard(self): def num(s): try: return int(s) except ValueError: try: return float(s) except ValueError: return s except TypeError: return s root_bb = Blackboard() for k in self._bdv: key0 = k[0].replace('-', '_') key1 = k[1].replace('-', '_') if root_bb.has(key0): bb = root_bb.get(key0) bb.set(key1, num(self.getv(k))) root_bb.set(key0, bb) else: bb = Blackboard() bb.set(key1, num(self.getv(k))) root_bb.set(key0, bb) return root_bb def load(self, nom, bypass_title_line_one=True): """Load la BD des valeurs et des commentaires via le fichier csv ``nom``.""" with open(nom, newline='') as csvfile: dat = csv.reader(csvfile, delimiter=';', quotechar='|') if bypass_title_line_one: dat.__next__() # saute la premiere ligne (les titres) for row in dat: if len(row) > 2: acomment=row[3] if self.interpreteCF: try: acomment=float(row[3]) except: acomment=1.0 self.add(row[0], row[1], row[2], acomment) def dump(self): """Dump la BD des valeurs et des commentaires dans le fichier csv ``dump.csv``. On y trouve les entrées initiales et celles ajoutées. L'ordre est arbitraire. Rien ne garantie que load(dump()) reconstruit correctement. En fait, les tuples ne sont pas reconvertis avec des * et les nombres sont mis en string. """ with open('dump.csv', 'w', newline='') as fp: a = csv.writer(fp, delimiter=';') data = [] for k in self._bdv: li = [k[0], k[1]] li.append(self.getv(k)) li.append(self.getc(k)) data.append(li) a.writerows(data) def show(self): """Dump la BD des valeurs et des commentaires a la sortie standard.""" for k in self._bdv: li = [k[0], k[1]] li.append(self.getv(k)) li.append(self.getc(k)) print(li) class Moment: """Gestionnaire de temps en système 24 heures.""" instance = None def __init__(self, t0): """Cree une instance du gestionnaire de temps. A priori, il doit être unique. :param int t0: seconde de référence d'une journée d'opération, exemple: 7*60*60 pour 7h. """ self.dt = 1 # pas de temps en seconde self.t0 = t0 # heure de reference du depart en secondes self.t = 0 # nombre de seconde brut (principale variable d'etat) self.tnow = t0 # t now (somme de t0 et t) module 24h self.trel = 0 # t module 12h (temps relatif au quart en cours) self.ticks_reset() # reset des ticks self.nbHeureQuart = 12 self.set_instance() def set_instance(self): if Moment.instance is None: Moment.instance = self @staticmethod def get_instance(): if Moment.instance is not None: return Moment.instance else: Moment.instance = Moment(0) return Moment.instance def update(self): """Avance de dt dans le temps et update des variables associees.""" self.t += self.dt self.tnow = (self.t0 + self.t) % 86400 self.trel = self.t % 43200 self.ticks_reset() self.ticks_set() def ticks_reset(self): """Reset des ticks.""" self.tickQ = False # quart self.tickM = False # minute self.tickH = False # heure self.tickJ = False # jour def ticks_set(self): """Activation des ticks. Un tick est True durant une seconde selon la fréquence d'activation. Les principaux tick disponibles sont: * tickQ: activation à chaque quart (de 12 heures) * tickM: activation à chaque minute * tickH: activation à chaque heure * tickJ: activation à chaque jour """ self.tickQ = self.t % 43200 == 0 self.tickM = self.t % 60 == 0 self.tickH = self.t % 3600 == 0 self.tickJ = self.t % 86400 == 0 def nbj(self): """ Nb de jours depuis le debut de la simulation. """ return self.t//86400 def getJHMS(self): """Transforme le temps interne en jour h:m:s tenant compte du t0 de référence. :return: une string en format jour:heure:min:sec """ x = self.t0 + self.t q = self.t // 43200 h = x // 3600 j = h // 24 h = h % 24 x = x - j * 86400 h = x // 3600 # heure du jour s = x % 3600 # secondes restantes m = s // 60 s = s % 60 #d = 'D' if 7 <= h < 19 else 'N' return '{0:02d}j{1:02d}h{2:02d}m{3:02d}s ({4})'.format(j, h, m, s, q+1) @staticmethod def seconds_to_hhmmss(seconds): h = seconds // 3600 s = seconds % 3600 m = s // 60 s = s % 60 return '{0:02d}h{1:02d}m{2:02d}s'.format(h, m, s) def get_t_as_hhmmss(self): return Moment.seconds_to_hhmmss(self.t) class MomentRT: """ Gestionnaire de temps real-time. """ def __init__(self, _dt): """Cree une instance du gestionnaire de temps RT. :param int _dt: nb de secondes RT pour trigger elapsed. """ self.dt = datetime.timedelta(0,_dt) # delta de temps RT en seconde # temps de reference du trigger precedent (init a now-180jours) self.stamp = datetime.datetime.now()-datetime.timedelta(180) def elapsed(self): """True si dt secondes RT ce sont passées depuis le dernier appel.""" e=datetime.datetime.now()-self.stamp if e.total_seconds()>=30: self.stamp = datetime.datetime.now() return True else: return False class Vecteur2D: @staticmethod def proj(a, b): d = Vecteur2D.dot(a, b) m = Vecteur2D.mag(b) t = d / m return t, (t * b[0], t * b[1]) @staticmethod def comp(a, b): d = Vecteur2D.dot(a, b) m = Vecteur2D.mag(a) return d / m @staticmethod def magsqrt(a): return math.sqrt(a[0] * a[0] + a[1] * a[1]) @staticmethod def mag(a): return a[0] * a[0] + a[1] * a[1] @staticmethod def sub(a, b): return a[0] - b[0], a[1] - b[1] @staticmethod def add(a, b): return a[0] + b[0], a[1] + b[1] @staticmethod def dist(a, b): d = Vecteur2D.sub(a, b) return d[0] * d[0] + d[1] * d[1] @staticmethod def distsqrt(a, b): return math.sqrt(Vecteur2D.dist(a, b)) @staticmethod def dot(a, b): return a[0] * b[0] + a[1] * b[1] class Math: @staticmethod def safe_scalar_div(x, y): if y == 0: return 0 return x / y @staticmethod def clamp(n, smallest, largest): return max(smallest, min(n, largest)) class RGB(namedtuple('RGB', 'r, g, b')): @staticmethod def rgb_to_float(r, g, b): return r/255.0, g/255.0, b/255.0 def to_float(self): return self.r/255.0, self.g/255.0, self.b/255.0 class Palette(): # Color Contants ALICEBLUE = RGB(240, 248, 255) ANTIQUEWHITE = RGB(250, 235, 215) ANTIQUEWHITE1 = RGB(255, 239, 219) ANTIQUEWHITE2 = RGB(238, 223, 204) ANTIQUEWHITE3 = RGB(205, 192, 176) ANTIQUEWHITE4 = RGB(139, 131, 120) AQUA = RGB(0, 255, 255) AQUAMARINE1 = RGB(127, 255, 212) AQUAMARINE2 = RGB(118, 238, 198) AQUAMARINE3 = RGB(102, 205, 170) AQUAMARINE4 = RGB(69, 139, 116) AZURE1 = RGB(240, 255, 255) AZURE2 = RGB(224, 238, 238) AZURE3 = RGB(193, 205, 205) AZURE4 = RGB(131, 139, 139) BANANA = RGB(227, 207, 87) BEIGE = RGB(245, 245, 220) BISQUE1 = RGB(255, 228, 196) BISQUE2 = RGB(238, 213, 183) BISQUE3 = RGB(205, 183, 158) BISQUE4 = RGB(139, 125, 107) BLACK = RGB(0, 0, 0) BLANCHEDALMOND = RGB(255, 235, 205) BLUE = RGB(0, 0, 255) BLUE2 = RGB(0, 0, 238) BLUE3 = RGB(0, 0, 205) BLUE4 = RGB(0, 0, 139) BLUEVIOLET = RGB(138, 43, 226) BRICK = RGB(156, 102, 31) BROWN = RGB(165, 42, 42) BROWN1 = RGB(255, 64, 64) BROWN2 = RGB(238, 59, 59) BROWN3 = RGB(205, 51, 51) BROWN4 = RGB(139, 35, 35) BURLYWOOD = RGB(222, 184, 135) BURLYWOOD1 = RGB(255, 211, 155) BURLYWOOD2 = RGB(238, 197, 145) BURLYWOOD3 = RGB(205, 170, 125) BURLYWOOD4 = RGB(139, 115, 85) BURNTSIENNA = RGB(138, 54, 15) BURNTUMBER = RGB(138, 51, 36) CADETBLUE = RGB(95, 158, 160) CADETBLUE1 = RGB(152, 245, 255) CADETBLUE2 = RGB(142, 229, 238) CADETBLUE3 = RGB(122, 197, 205) CADETBLUE4 = RGB(83, 134, 139) CADMIUMORANGE = RGB(255, 97, 3) CADMIUMYELLOW = RGB(255, 153, 18) CARROT = RGB(237, 145, 33) CHARTREUSE1 = RGB(127, 255, 0) CHARTREUSE2 = RGB(118, 238, 0) CHARTREUSE3 = RGB(102, 205, 0) CHARTREUSE4 = RGB(69, 139, 0) CHOCOLATE = RGB(210, 105, 30) CHOCOLATE1 = RGB(255, 127, 36) CHOCOLATE2 = RGB(238, 118, 33) CHOCOLATE3 = RGB(205, 102, 29) CHOCOLATE4 = RGB(139, 69, 19) COBALT = RGB(61, 89, 171) COBALTGREEN = RGB(61, 145, 64) COLDGREY = RGB(128, 138, 135) CORAL = RGB(255, 127, 80) CORAL1 = RGB(255, 114, 86) CORAL2 = RGB(238, 106, 80) CORAL3 = RGB(205, 91, 69) CORAL4 = RGB(139, 62, 47) CORNFLOWERBLUE = RGB(100, 149, 237) CORNSILK1 = RGB(255, 248, 220) CORNSILK2 = RGB(238, 232, 205) CORNSILK3 = RGB(205, 200, 177) CORNSILK4 = RGB(139, 136, 120) CRIMSON = RGB(220, 20, 60) CYAN2 = RGB(0, 238, 238) CYAN3 = RGB(0, 205, 205) CYAN4 = RGB(0, 139, 139) DARKGOLDENROD = RGB(184, 134, 11) DARKGOLDENROD1 = RGB(255, 185, 15) DARKGOLDENROD2 = RGB(238, 173, 14) DARKGOLDENROD3 = RGB(205, 149, 12) DARKGOLDENROD4 = RGB(139, 101, 8) DARKGRAY = RGB(169, 169, 169) DARKGREEN = RGB(0, 100, 0) DARKKHAKI = RGB(189, 183, 107) DARKOLIVEGREEN = RGB(85, 107, 47) DARKOLIVEGREEN1 = RGB(202, 255, 112) DARKOLIVEGREEN2 = RGB(188, 238, 104) DARKOLIVEGREEN3 = RGB(162, 205, 90) DARKOLIVEGREEN4 = RGB(110, 139, 61) DARKORANGE = RGB(255, 140, 0) DARKORANGE1 = RGB(255, 127, 0) DARKORANGE2 = RGB(238, 118, 0) DARKORANGE3 = RGB(205, 102, 0) DARKORANGE4 = RGB(139, 69, 0) DARKORCHID = RGB(153, 50, 204) DARKORCHID1 = RGB(191, 62, 255) DARKORCHID2 = RGB(178, 58, 238) DARKORCHID3 = RGB(154, 50, 205) DARKORCHID4 = RGB(104, 34, 139) DARKSALMON = RGB(233, 150, 122) DARKSEAGREEN = RGB(143, 188, 143) DARKSEAGREEN1 = RGB(193, 255, 193) DARKSEAGREEN2 = RGB(180, 238, 180) DARKSEAGREEN3 = RGB(155, 205, 155) DARKSEAGREEN4 = RGB(105, 139, 105) DARKSLATEBLUE = RGB(72, 61, 139) DARKSLATEGRAY = RGB(47, 79, 79) DARKSLATEGRAY1 = RGB(151, 255, 255) DARKSLATEGRAY2 = RGB(141, 238, 238) DARKSLATEGRAY3 = RGB(121, 205, 205) DARKSLATEGRAY4 = RGB(82, 139, 139) DARKTURQUOISE = RGB(0, 206, 209) DARKVIOLET = RGB(148, 0, 211) DEEPPINK1 = RGB(255, 20, 147) DEEPPINK2 = RGB(238, 18, 137) DEEPPINK3 = RGB(205, 16, 118) DEEPPINK4 = RGB(139, 10, 80) DEEPSKYBLUE1 = RGB(0, 191, 255) DEEPSKYBLUE2 = RGB(0, 178, 238) DEEPSKYBLUE3 = RGB(0, 154, 205) DEEPSKYBLUE4 = RGB(0, 104, 139) DIMGRAY = RGB(105, 105, 105) DIMGRAY = RGB(105, 105, 105) DODGERBLUE1 = RGB(30, 144, 255) DODGERBLUE2 = RGB(28, 134, 238) DODGERBLUE3 = RGB(24, 116, 205) DODGERBLUE4 = RGB(16, 78, 139) EGGSHELL = RGB(252, 230, 201) EMERALDGREEN = RGB(0, 201, 87) FIREBRICK = RGB(178, 34, 34) FIREBRICK1 = RGB(255, 48, 48) FIREBRICK2 = RGB(238, 44, 44) FIREBRICK3 = RGB(205, 38, 38) FIREBRICK4 = RGB(139, 26, 26) FLESH = RGB(255, 125, 64) FLORALWHITE = RGB(255, 250, 240) FORESTGREEN = RGB(34, 139, 34) GAINSBORO = RGB(220, 220, 220) GHOSTWHITE = RGB(248, 248, 255) GOLD1 = RGB(255, 215, 0) GOLD2 = RGB(238, 201, 0) GOLD3 = RGB(205, 173, 0) GOLD4 = RGB(139, 117, 0) GOLDENROD = RGB(218, 165, 32) GOLDENROD1 = RGB(255, 193, 37) GOLDENROD2 = RGB(238, 180, 34) GOLDENROD3 = RGB(205, 155, 29) GOLDENROD4 = RGB(139, 105, 20) GRAY = RGB(128, 128, 128) GRAY1 = RGB(3, 3, 3) GRAY10 = RGB(26, 26, 26) GRAY11 = RGB(28, 28, 28) GRAY12 = RGB(31, 31, 31) GRAY13 = RGB(33, 33, 33) GRAY14 = RGB(36, 36, 36) GRAY15 = RGB(38, 38, 38) GRAY16 = RGB(41, 41, 41) GRAY17 = RGB(43, 43, 43) GRAY18 = RGB(46, 46, 46) GRAY19 = RGB(48, 48, 48) GRAY2 = RGB(5, 5, 5) GRAY20 = RGB(51, 51, 51) GRAY21 = RGB(54, 54, 54) GRAY22 = RGB(56, 56, 56) GRAY23 = RGB(59, 59, 59) GRAY24 = RGB(61, 61, 61) GRAY25 = RGB(64, 64, 64) GRAY26 = RGB(66, 66, 66) GRAY27 = RGB(69, 69, 69) GRAY28 = RGB(71, 71, 71) GRAY29 = RGB(74, 74, 74) GRAY3 = RGB(8, 8, 8) GRAY30 = RGB(77, 77, 77) GRAY31 = RGB(79, 79, 79) GRAY32 = RGB(82, 82, 82) GRAY33 = RGB(84, 84, 84) GRAY34 = RGB(87, 87, 87) GRAY35 = RGB(89, 89, 89) GRAY36 = RGB(92, 92, 92) GRAY37 = RGB(94, 94, 94) GRAY38 = RGB(97, 97, 97) GRAY39 = RGB(99, 99, 99) GRAY4 = RGB(10, 10, 10) GRAY40 = RGB(102, 102, 102) GRAY42 = RGB(107, 107, 107) GRAY43 = RGB(110, 110, 110) GRAY44 = RGB(112, 112, 112) GRAY45 = RGB(115, 115, 115) GRAY46 = RGB(117, 117, 117) GRAY47 = RGB(120, 120, 120) GRAY48 = RGB(122, 122, 122) GRAY49 = RGB(125, 125, 125) GRAY5 = RGB(13, 13, 13) GRAY50 = RGB(127, 127, 127) GRAY51 = RGB(130, 130, 130) GRAY52 = RGB(133, 133, 133) GRAY53 = RGB(135, 135, 135) GRAY54 = RGB(138, 138, 138) GRAY55 = RGB(140, 140, 140) GRAY56 = RGB(143, 143, 143) GRAY57 = RGB(145, 145, 145) GRAY58 = RGB(148, 148, 148) GRAY59 = RGB(150, 150, 150) GRAY6 = RGB(15, 15, 15) GRAY60 = RGB(153, 153, 153) GRAY61 = RGB(156, 156, 156) GRAY62 = RGB(158, 158, 158) GRAY63 = RGB(161, 161, 161) GRAY64 = RGB(163, 163, 163) GRAY65 = RGB(166, 166, 166) GRAY66 = RGB(168, 168, 168) GRAY67 = RGB(171, 171, 171) GRAY68 = RGB(173, 173, 173) GRAY69 = RGB(176, 176, 176) GRAY7 = RGB(18, 18, 18) GRAY70 = RGB(179, 179, 179) GRAY71 = RGB(181, 181, 181) GRAY72 = RGB(184, 184, 184) GRAY73 = RGB(186, 186, 186) GRAY74 = RGB(189, 189, 189) GRAY75 = RGB(191, 191, 191) GRAY76 = RGB(194, 194, 194) GRAY77 = RGB(196, 196, 196) GRAY78 = RGB(199, 199, 199) GRAY79 = RGB(201, 201, 201) GRAY8 = RGB(20, 20, 20) GRAY80 = RGB(204, 204, 204) GRAY81 = RGB(207, 207, 207) GRAY82 = RGB(209, 209, 209) GRAY83 = RGB(212, 212, 212) GRAY84 = RGB(214, 214, 214) GRAY85 = RGB(217, 217, 217) GRAY86 = RGB(219, 219, 219) GRAY87 = RGB(222, 222, 222) GRAY88 = RGB(224, 224, 224) GRAY89 = RGB(227, 227, 227) GRAY9 = RGB(23, 23, 23) GRAY90 = RGB(229, 229, 229) GRAY91 = RGB(232, 232, 232) GRAY92 = RGB(235, 235, 235) GRAY93 = RGB(237, 237, 237) GRAY94 = RGB(240, 240, 240) GRAY95 = RGB(242, 242, 242) GRAY97 = RGB(247, 247, 247) GRAY98 = RGB(250, 250, 250) GRAY99 = RGB(252, 252, 252) GREEN = RGB(0, 128, 0) GREEN1 = RGB(0, 255, 0) GREEN2 = RGB(0, 238, 0) GREEN3 = RGB(0, 205, 0) GREEN4 = RGB(0, 139, 0) GREENYELLOW = RGB(173, 255, 47) HONEYDEW1 = RGB(240, 255, 240) HONEYDEW2 = RGB(224, 238, 224) HONEYDEW3 = RGB(193, 205, 193) HONEYDEW4 = RGB(131, 139, 131) HOTPINK = RGB(255, 105, 180) HOTPINK1 = RGB(255, 110, 180) HOTPINK2 = RGB(238, 106, 167) HOTPINK3 = RGB(205, 96, 144) HOTPINK4 = RGB(139, 58, 98) INDIANRED = RGB(176, 23, 31) INDIANRED = RGB(205, 92, 92) INDIANRED1 = RGB(255, 106, 106) INDIANRED2 = RGB(238, 99, 99) INDIANRED3 = RGB(205, 85, 85) INDIANRED4 = RGB(139, 58, 58) INDIGO = RGB(75, 0, 130) IVORY1 = RGB(255, 255, 240) IVORY2 = RGB(238, 238, 224) IVORY3 = RGB(205, 205, 193) IVORY4 = RGB(139, 139, 131) IVORYBLACK = RGB(41, 36, 33) KHAKI = RGB(240, 230, 140) KHAKI1 = RGB(255, 246, 143) KHAKI2 = RGB(238, 230, 133) KHAKI3 = RGB(205, 198, 115) KHAKI4 = RGB(139, 134, 78) LAVENDER = RGB(230, 230, 250) LAVENDERBLUSH1 = RGB(255, 240, 245) LAVENDERBLUSH2 = RGB(238, 224, 229) LAVENDERBLUSH3 = RGB(205, 193, 197) LAVENDERBLUSH4 = RGB(139, 131, 134) LAWNGREEN = RGB(124, 252, 0) LEMONCHIFFON1 = RGB(255, 250, 205) LEMONCHIFFON2 = RGB(238, 233, 191) LEMONCHIFFON3 = RGB(205, 201, 165) LEMONCHIFFON4 = RGB(139, 137, 112) LIGHTBLUE = RGB(173, 216, 230) LIGHTBLUE1 = RGB(191, 239, 255) LIGHTBLUE2 = RGB(178, 223, 238) LIGHTBLUE3 = RGB(154, 192, 205) LIGHTBLUE4 = RGB(104, 131, 139) LIGHTCORAL = RGB(240, 128, 128) LIGHTCYAN1 = RGB(224, 255, 255) LIGHTCYAN2 = RGB(209, 238, 238) LIGHTCYAN3 = RGB(180, 205, 205) LIGHTCYAN4 = RGB(122, 139, 139) LIGHTGOLDENROD1 = RGB(255, 236, 139) LIGHTGOLDENROD2 = RGB(238, 220, 130) LIGHTGOLDENROD3 = RGB(205, 190, 112) LIGHTGOLDENROD4 = RGB(139, 129, 76) LIGHTGOLDENRODYELLOW = RGB(250, 250, 210) LIGHTGREY = RGB(211, 211, 211) LIGHTPINK = RGB(255, 182, 193) LIGHTPINK1 = RGB(255, 174, 185) LIGHTPINK2 = RGB(238, 162, 173) LIGHTPINK3 = RGB(205, 140, 149) LIGHTPINK4 = RGB(139, 95, 101) LIGHTSALMON1 = RGB(255, 160, 122) LIGHTSALMON2 = RGB(238, 149, 114) LIGHTSALMON3 = RGB(205, 129, 98) LIGHTSALMON4 = RGB(139, 87, 66) LIGHTSEAGREEN = RGB(32, 178, 170) LIGHTSKYBLUE = RGB(135, 206, 250) LIGHTSKYBLUE1 = RGB(176, 226, 255) LIGHTSKYBLUE2 = RGB(164, 211, 238) LIGHTSKYBLUE3 = RGB(141, 182, 205) LIGHTSKYBLUE4 = RGB(96, 123, 139) LIGHTSLATEBLUE = RGB(132, 112, 255) LIGHTSLATEGRAY = RGB(119, 136, 153) LIGHTSTEELBLUE = RGB(176, 196, 222) LIGHTSTEELBLUE1 = RGB(202, 225, 255) LIGHTSTEELBLUE2 = RGB(188, 210, 238) LIGHTSTEELBLUE3 = RGB(162, 181, 205) LIGHTSTEELBLUE4 = RGB(110, 123, 139) LIGHTYELLOW1 = RGB(255, 255, 224) LIGHTYELLOW2 = RGB(238, 238, 209) LIGHTYELLOW3 = RGB(205, 205, 180) LIGHTYELLOW4 = RGB(139, 139, 122) LIMEGREEN = RGB(50, 205, 50) LINEN = RGB(250, 240, 230) MAGENTA = RGB(255, 0, 255) MAGENTA2 = RGB(238, 0, 238) MAGENTA3 = RGB(205, 0, 205) MAGENTA4 = RGB(139, 0, 139) MANGANESEBLUE = RGB(3, 168, 158) MAROON = RGB(128, 0, 0) MAROON1 = RGB(255, 52, 179) MAROON2 = RGB(238, 48, 167) MAROON3 = RGB(205, 41, 144) MAROON4 = RGB(139, 28, 98) MEDIUMORCHID = RGB(186, 85, 211) MEDIUMORCHID1 = RGB(224, 102, 255) MEDIUMORCHID2 = RGB(209, 95, 238) MEDIUMORCHID3 = RGB(180, 82, 205) MEDIUMORCHID4 = RGB(122, 55, 139) MEDIUMPURPLE = RGB(147, 112, 219) MEDIUMPURPLE1 = RGB(171, 130, 255) MEDIUMPURPLE2 = RGB(159, 121, 238) MEDIUMPURPLE3 = RGB(137, 104, 205) MEDIUMPURPLE4 = RGB(93, 71, 139) MEDIUMSEAGREEN = RGB(60, 179, 113) MEDIUMSLATEBLUE = RGB(123, 104, 238) MEDIUMSPRINGGREEN = RGB(0, 250, 154) MEDIUMTURQUOISE = RGB(72, 209, 204) MEDIUMVIOLETRED = RGB(199, 21, 133) MELON = RGB(227, 168, 105) MIDNIGHTBLUE = RGB(25, 25, 112) MINT = RGB(189, 252, 201) MINTCREAM = RGB(245, 255, 250) MISTYROSE1 = RGB(255, 228, 225) MISTYROSE2 = RGB(238, 213, 210) MISTYROSE3 = RGB(205, 183, 181) MISTYROSE4 = RGB(139, 125, 123) MOCCASIN = RGB(255, 228, 181) NAVAJOWHITE1 = RGB(255, 222, 173) NAVAJOWHITE2 = RGB(238, 207, 161) NAVAJOWHITE3 = RGB(205, 179, 139) NAVAJOWHITE4 = RGB(139, 121, 94) NAVY = RGB(0, 0, 128) OLDLACE = RGB(253, 245, 230) OLIVE = RGB(128, 128, 0) OLIVEDRAB = RGB(107, 142, 35) OLIVEDRAB1 = RGB(192, 255, 62) OLIVEDRAB2 = RGB(179, 238, 58) OLIVEDRAB3 = RGB(154, 205, 50) OLIVEDRAB4 = RGB(105, 139, 34) ORANGE = RGB(255, 128, 0) ORANGE1 = RGB(255, 165, 0) ORANGE2 = RGB(238, 154, 0) ORANGE3 = RGB(205, 133, 0) ORANGE4 = RGB(139, 90, 0) ORANGERED1 = RGB(255, 69, 0) ORANGERED2 = RGB(238, 64, 0) ORANGERED3 = RGB(205, 55, 0) ORANGERED4 = RGB(139, 37, 0) ORCHID = RGB(218, 112, 214) ORCHID1 = RGB(255, 131, 250) ORCHID2 = RGB(238, 122, 233) ORCHID3 = RGB(205, 105, 201) ORCHID4 = RGB(139, 71, 137) PALEGOLDENROD = RGB(238, 232, 170) PALEGREEN = RGB(152, 251, 152) PALEGREEN1 = RGB(154, 255, 154) PALEGREEN2 = RGB(144, 238, 144) PALEGREEN3 = RGB(124, 205, 124) PALEGREEN4 = RGB(84, 139, 84) PALETURQUOISE1 = RGB(187, 255, 255) PALETURQUOISE2 = RGB(174, 238, 238) PALETURQUOISE3 = RGB(150, 205, 205) PALETURQUOISE4 = RGB(102, 139, 139) PALEVIOLETRED = RGB(219, 112, 147) PALEVIOLETRED1 = RGB(255, 130, 171) PALEVIOLETRED2 = RGB(238, 121, 159) PALEVIOLETRED3 = RGB(205, 104, 137) PALEVIOLETRED4 = RGB(139, 71, 93) PAPAYAWHIP = RGB(255, 239, 213) PEACHPUFF1 = RGB(255, 218, 185) PEACHPUFF2 = RGB(238, 203, 173) PEACHPUFF3 = RGB(205, 175, 149) PEACHPUFF4 = RGB(139, 119, 101) PEACOCK = RGB(51, 161, 201) PINK = RGB(255, 192, 203) PINK1 = RGB(255, 181, 197) PINK2 = RGB(238, 169, 184) PINK3 = RGB(205, 145, 158) PINK4 = RGB(139, 99, 108) PLUM = RGB(221, 160, 221) PLUM1 = RGB(255, 187, 255) PLUM2 = RGB(238, 174, 238) PLUM3 = RGB(205, 150, 205) PLUM4 = RGB(139, 102, 139) POWDERBLUE = RGB(176, 224, 230) PURPLE = RGB(128, 0, 128) PURPLE1 = RGB(155, 48, 255) PURPLE2 = RGB(145, 44, 238) PURPLE3 = RGB(125, 38, 205) PURPLE4 = RGB(85, 26, 139) RASPBERRY = RGB(135, 38, 87) RAWSIENNA = RGB(199, 97, 20) RED1 = RGB(255, 0, 0) RED2 = RGB(238, 0, 0) RED3 = RGB(205, 0, 0) RED4 = RGB(139, 0, 0) ROSYBROWN = RGB(188, 143, 143) ROSYBROWN1 = RGB(255, 193, 193) ROSYBROWN2 = RGB(238, 180, 180) ROSYBROWN3 = RGB(205, 155, 155) ROSYBROWN4 = RGB(139, 105, 105) ROYALBLUE = RGB(65, 105, 225) ROYALBLUE1 = RGB(72, 118, 255) ROYALBLUE2 = RGB(67, 110, 238) ROYALBLUE3 = RGB(58, 95, 205) ROYALBLUE4 = RGB(39, 64, 139) SALMON = RGB(250, 128, 114) SALMON1 = RGB(255, 140, 105) SALMON2 = RGB(238, 130, 98) SALMON3 = RGB(205, 112, 84) SALMON4 = RGB(139, 76, 57) SANDYBROWN = RGB(244, 164, 96) SAPGREEN = RGB(48, 128, 20) SEAGREEN1 = RGB(84, 255, 159) SEAGREEN2 = RGB(78, 238, 148) SEAGREEN3 = RGB(67, 205, 128) SEAGREEN4 = RGB(46, 139, 87) SEASHELL1 = RGB(255, 245, 238) SEASHELL2 = RGB(238, 229, 222) SEASHELL3 = RGB(205, 197, 191) SEASHELL4 = RGB(139, 134, 130) SEPIA = RGB(94, 38, 18) SGIBEET = RGB(142, 56, 142) SGIBRIGHTGRAY = RGB(197, 193, 170) SGICHARTREUSE = RGB(113, 198, 113) SGIDARKGRAY = RGB(85, 85, 85) SGIGRAY12 = RGB(30, 30, 30) SGIGRAY16 = RGB(40, 40, 40) SGIGRAY32 = RGB(81, 81, 81) SGIGRAY36 = RGB(91, 91, 91) SGIGRAY52 = RGB(132, 132, 132) SGIGRAY56 = RGB(142, 142, 142) SGIGRAY72 = RGB(183, 183, 183) SGIGRAY76 = RGB(193, 193, 193) SGIGRAY92 = RGB(234, 234, 234) SGIGRAY96 = RGB(244, 244, 244) SGILIGHTBLUE = RGB(125, 158, 192) SGILIGHTGRAY = RGB(170, 170, 170) SGIOLIVEDRAB = RGB(142, 142, 56) SGISALMON = RGB(198, 113, 113) SGISLATEBLUE = RGB(113, 113, 198) SGITEAL = RGB(56, 142, 142) SIENNA = RGB(160, 82, 45) SIENNA1 = RGB(255, 130, 71) SIENNA2 = RGB(238, 121, 66) SIENNA3 = RGB(205, 104, 57) SIENNA4 = RGB(139, 71, 38) SILVER = RGB(192, 192, 192) SKYBLUE = RGB(135, 206, 235) SKYBLUE1 = RGB(135, 206, 255) SKYBLUE2 = RGB(126, 192, 238) SKYBLUE3 = RGB(108, 166, 205) SKYBLUE4 = RGB(74, 112, 139) SLATEBLUE = RGB(106, 90, 205) SLATEBLUE1 = RGB(131, 111, 255) SLATEBLUE2 = RGB(122, 103, 238) SLATEBLUE3 = RGB(105, 89, 205) SLATEBLUE4 = RGB(71, 60, 139) SLATEGRAY = RGB(112, 128, 144) SLATEGRAY1 = RGB(198, 226, 255) SLATEGRAY2 = RGB(185, 211, 238) SLATEGRAY3 = RGB(159, 182, 205) SLATEGRAY4 = RGB(108, 123, 139) SNOW1 = RGB(255, 250, 250) SNOW2 = RGB(238, 233, 233) SNOW3 = RGB(205, 201, 201) SNOW4 = RGB(139, 137, 137) SPRINGGREEN = RGB(0, 255, 127) SPRINGGREEN1 = RGB(0, 238, 118) SPRINGGREEN2 = RGB(0, 205, 102) SPRINGGREEN3 = RGB(0, 139, 69) STEELBLUE = RGB(70, 130, 180) STEELBLUE1 = RGB(99, 184, 255) STEELBLUE2 = RGB(92, 172, 238) STEELBLUE3 = RGB(79, 148, 205) STEELBLUE4 = RGB(54, 100, 139) TAN = RGB(210, 180, 140) TAN1 = RGB(255, 165, 79) TAN2 = RGB(238, 154, 73) TAN3 = RGB(205, 133, 63) TAN4 = RGB(139, 90, 43) TEAL = RGB(0, 128, 128) THISTLE = RGB(216, 191, 216) THISTLE1 = RGB(255, 225, 255) THISTLE2 = RGB(238, 210, 238) THISTLE3 = RGB(205, 181, 205) THISTLE4 = RGB(139, 123, 139) TOMATO1 = RGB(255, 99, 71) TOMATO2 = RGB(238, 92, 66) TOMATO3 = RGB(205, 79, 57) TOMATO4 = RGB(139, 54, 38) TURQUOISE = RGB(64, 224, 208) TURQUOISE1 = RGB(0, 245, 255) TURQUOISE2 = RGB(0, 229, 238) TURQUOISE3 = RGB(0, 197, 205) TURQUOISE4 = RGB(0, 134, 139) TURQUOISEBLUE = RGB(0, 199, 140) VIOLET = RGB(238, 130, 238) VIOLETRED = RGB(208, 32, 144) VIOLETRED1 = RGB(255, 62, 150) VIOLETRED2 = RGB(238, 58, 140) VIOLETRED3 = RGB(205, 50, 120) VIOLETRED4 = RGB(139, 34, 82) WARMGREY = RGB(128, 128, 105) WHEAT = RGB(245, 222, 179) WHEAT1 = RGB(255, 231, 186) WHEAT2 = RGB(238, 216, 174) WHEAT3 = RGB(205, 186, 150) WHEAT4 = RGB(139, 126, 102) WHITE = RGB(255, 255, 255) WHITESMOKE = RGB(245, 245, 245) YELLOW1 = RGB(255, 255, 0) YELLOW2 = RGB(238, 238, 0) YELLOW3 = RGB(205, 205, 0) YELLOW4 = RGB(139, 139, 0) ``` #### File: cyme/simulation/horaire.py ```python from .. import ecs from . import stochastique class Horaire(ecs.Component): """Horaire de base se répétant a intervalle fixe.""" def __init__(self, mom, cible, mtags, periode): """Configure l'horaire. La var d'état clef est ``actif`` et est dans un composant target. C'est le target qui est responsable de l'initialisation. C'est le target qui est responsable de l'initialisation. Cette version de horaire peut être mise-à-jour à la seconde ou à la minute, ça ne change rien car les tags sont en minutes. :param mom: on garde un handle vers le moment :type mom: :class:`sim.base.Moment` :param cible: un composant target avec la var d'état ``actif`` :param mtags: la liste de triplet (j,h,m) de changement d'état, j=0 est le jour actuel :param periode: un triplet (j,h,m) pour la periode de cycle chaque j jours, h heures et m min """ self.mom=mom # instance de Moment self.target=cible # la target avec un horaire (doit avoir une var d'etat actif) self.periode=60*(periode[0]*1440+periode[1]*60+periode[2]) # les tags de changement (en secondes) d'etat de self.target.actif sur 24h self.tags=[60*(x[0]*1440+x[1]*60+x[2])-self.mom.t0 for x in mtags] self.nextTagIdx=0 # on suppose partir de mom.t0 et que self.tags[0]>mom.t0 if not self.tags: print("Attention! Horaire: Pas de tags") def update(self): """ Update la var d'état ``actif`` dans le target selon la minute actuelle et les tags.""" if self.tags and (self.mom.t%self.periode)==self.tags[self.nextTagIdx]: self.target.actif=not self.target.actif self.nextTagIdx+=1 if self.nextTagIdx>=len(self.tags): self.nextTagIdx=0 class HoraireSto(ecs.Component): """Horaire de base se répétant a intervalle fixe.""" def __init__(self, mom, cible, mtags, periode, mtbf, mttr, mttrMin=-1, mttrAlpha=-1): """Configure l'horaire. La var d'état clef est ``actif`` et est dans un composant target. C'est le target qui est responsable de l'initialisation. Cette version de horaire peut être mise-à-jour à la seconde ou à la minute, ça ne change rien car les tags sont en minutes. Il faut fournir les mtbf et mttr en minutes. Par defaut, la durée d'un bris est fixée à mttf. Cependant, si on donne des valeurs acceptable pour mttrMin et mttrAlpha, on utilise une loi triangulaire. En outre, il faut respecter mttrMin<mttr, 0.0<=mttrAlpha<=1.0. On fixe mttrMode=mttrMin+mttrAlpha*(mttr-mttrMin). Ainsi, avec mttrAlpha=0 la loi s'étire au maximum vers les grandes valeurs et avec mttrAlpha=1 la loi est centrée symétrique sur la moyenne. :param mom: on garde un handle vers le moment :type mom: :class:`sim.base.Moment` :param cible: un composant target avec la var d'état ``actif`` :param mtags: la liste de triplet (j,h,m) de changement d'état, j=0 est le jour actuel :param periode: un triplet (j,h,m) pour la periode de cycle chaque j jours, h heures et m min :param mtbf: mean time b4 failure en minutes wallclock :param mttr: mean time to repair en minutes wallclock :param mttrMin: mttr min pour loi triangulaire :param mttrAlpha: facteur dans [0,1] pour le décentrement de la loi triangulaire (1=centré) """ self.mom=mom # instance de Moment self.target=cible # la target avec un horaire (doit avoir une var d'etat actif) self.periode=60*(periode[0]*1440+periode[1]*60+periode[2]) # les tags de changement (en secondes) d'etat de self.target.actif sur 24h self.tags=[60*(x[0]*1440+x[1]*60+x[2])-self.mom.t0 for x in mtags] self.nextTagIdx=0 # on suppose partir de mom.t0 et que self.tags[0]>mom.t0 # partie stochastique self.triggerFreq=stochastique.TriggerFrequence(1.0/mtbf) self.mttr=stochastique.ConstantValue(mttr) if 0<mttrMin and mttrMin<mttr and 0<=mttrAlpha and mttrAlpha<=1: mttrMode=(int)(mttrMin+mttrAlpha*(mttr-mttrMin)) mttrMax=3*mttr-mttrMin-mttrMode if mttr<mttrMax: print("HoraireSto avec loi triangulaire (min,mode,moy,max)=",mttrMin,mttrMode,mttr,mttrMax) self.mttr=stochastique.TriangularDistributionSample(mttrMin,mttrMax,mttrMode) self.actif_horaire=self.target.actif # set l'etat horaire selon le target self.duree_arret=0 # en minute self.new_trigger=False def update(self): """ Update la var d'état ``actif`` dans le target selon la minute actuelle et les tags.""" self.new_trigger=False if self.nextTagIdx>=len(self.tags): pass # pas de tag, donc pas de changement d'etat #print("Erreur HoraireJour: Pas de tags") elif (self.mom.t%self.periode)==self.tags[self.nextTagIdx]: self.actif_horaire=not self.actif_horaire # etat de l'horaire self.nextTagIdx+=1 if self.nextTagIdx>=len(self.tags): self.nextTagIdx=0 if self.mom.tickM: # tick a la minute self.duree_arret-=1 if self.triggerFreq.get(): self.new_trigger=True #print(" *** trigger!",self.mom.getJHMS()) self.duree_arret=self.mttr.get() #if self.duree_arret==1: print(" === fin trigger!",self.mom.getJHMS()) if self.duree_arret>0: self.target.actif=False else: self.target.actif=self.actif_horaire class HoraireStoTAP(ecs.Component): """Horaire stochastique special pour une TAP, avec répétition.""" def __init__(self, mom, cible, mtags, periode, arretplan, freq=None, arretnonplan=None): """Configure l'horaire. La var d'état clef est ``actif`` et est dans un composant target. On force l'initialisation a True. Les tags imposent les debuts des arrets planifies. :param mom: on garde un handle vers l'entité père :type mom: :class:`sim.base.Moment` :param cible: un composant target avec la var d'état ``actif`` :param mtags: la liste de triplet (j,h,m) de changement d'état, j=0 est le jour actuel :param periode: un triplet (j,h,m) pour la periode de cycle chaque j jours, h heures et m min :param arretplan: est un objet avec la methode ``get`` pour obtenir la duree des arrets dans mtags (en secondes) :param freq: est un objet qui trigger un arrets non-planifies :param arretnonplan: est un objet avec la methode ``get`` pour obtenir la duree des arrets non-planifies genere via freq (en secondes) """ self.mom=mom # instance de Moment self.target=cible # la target avec un horaire (doit avoir une var d'etat actif) self.periode=60*(periode[0]*1440+periode[1]*60+periode[2]) # les tags de changement (en secondes) d'etat de self.target.actif sur 24h self.tags=[60*(x[0]*1440+x[1]*60+x[2])-self.mom.t0 for x in mtags] self.nextTagIdx=0 # on suppose partir de mom.t0 et que self.tags[0]>mom.t0 self.arretplan=arretplan # objet avec methode get de la duree d'un arret plan self.freq=freq # objet frequence avec methode get de trigger d'un arret non-plan self.arretnonplan=arretnonplan # objet avec methode get de la duree d'un arret non-plan self.target.actif=True # init a True self.duree=-1 # duree de l'arret en cours self.trigger=False # trigger d'un arret non-plan def update(self): """ Update la var d'état ``actif`` dans le target selon la minute actuelle et les tags.""" if self.freq is not None and not self.trigger: self.trigger=self.freq.get() # test de trigger d'un arret nonplan, si on en a pas deja un self.duree-=1 # decroit la duree d'un arret if self.nextTagIdx>=len(self.tags): print("Erreur HoraireStoTAP: Pas de tags") elif (self.mom.t%self.periode)==self.tags[self.nextTagIdx]: # debut d'un arret planifie self.duree=self.arretplan.get() # duree stochastique de l'arret planifie #print("Arret planifie (sec):",self.duree) self.nextTagIdx+=1 if self.nextTagIdx>=len(self.tags): self.nextTagIdx=0 if self.duree<=0 and self.trigger: # si pas en arret, mais qu'on a un trigger d'arret nonplan self.duree=self.arretnonplan.get() # duree de l'arret nonplan #print(" Arret non-planifie (sec):",self.duree) self.trigger=False # reset du trigger # cas special pour entrepot plein (on suppose qu'on a un handle sur l'entrepot) # le handle doit etre mis dans modele if self.duree<=0 and not self.entrepot.place4crue(): self.duree=24*3600 # pause de 48h (entrepot plein) (update 28 oct: 24h) #print(self.mom.getJHMS()," Pause TAP pour 48h car entrepot plein, duree de (sec)",self.duree) # update de actif if self.duree>0: self.target.actif=False # si en arret, alors non actif else: self.target.actif=True class HoraireJour(ecs.Component): """Horaire de base pour une journée (24h), se répétant. ATTENTION: desuet et non-supporte. """ def __init__(self, mom, cible, mtags): """Configure l'horaire. La var d'état clef est ``actif`` et est dans un composant target. C'est le target qui est responsable de l'initialisation. :param mom: on garde un handle vers l'entité père :type mom: :class:`sim.base.Moment` :param cible: un composant target avec la var d'état ``actif`` :param mtags: la liste de minutes de changement d'état, des entiers entre 0-1439 """ self.mom=mom # instance de Moment self.target=cible # la target avec un horaire (doit avoir une var d'etat actif) # les tags de changement (en secondes) d'etat de self.target.actif sur 24h self.tags=[x*60 for x in mtags] self.nextTagIdx=0 # on suppose partir de mom.t0 et que self.tags[0]>mom.t0 def update(self): """ Update la var d'état ``actif`` dans le target selon la minute actuelle et les tags.""" if self.nextTagIdx>=len(self.tags): print("Erreur HoraireJour: Pas de tags") elif self.mom.tnow==self.tags[self.nextTagIdx]: self.target.actif=not self.target.actif self.nextTagIdx+=1 if self.nextTagIdx>=len(self.tags): self.nextTagIdx=0 ``` #### File: cyme/simulation/kanban.py ```python import re class MetaOperation(type): """ Metaclasse qui permet l'enregistrement de tous les classes qui héritent de la classe Operation. À noter qu'il faut les importer avant MetaOperation pour qu'elles soient disponibles dans le registre """ registry = {} def __new__(cls, clsname, bases, attrs): newclass = super(MetaOperation, cls).__new__(cls, clsname, bases, attrs) newclass.name = clsname MetaOperation.register(newclass) return newclass @staticmethod def register(cls): MetaOperation.registry[cls.__name__] = cls return cls @staticmethod def get(clsname): try: return MetaOperation.registry[clsname] except KeyError: raise OperationNotImplemented("{" + clsname + "}") class Operation(metaclass=MetaOperation): """ Classe de base de pour les opérations des ponts. Les méthodes precondtion, pretache, tache, postcondition et posttache retournent par défaut true pour ne pas empêcher l'exécution du bt si elles n'ont pas été implémenté dans les classes qui héritent de cette classe. """ duree = 0 color = (0,0,0) @classmethod def get_duree(cls, context=None): return cls.duree @classmethod def get_color(cls): return cls.color @classmethod def precondition(cls, context=None): return True @classmethod def pretache(cls, pont): pont.is_operation = True return True @classmethod def tache(cls, kanban): kanban.noeud.box.contour_color = (0, 0, 0) kanban.noeud.box.color = kanban.operation.get_color() kanban.set_next_target() return True @classmethod def postcondition(cls, context=None): return True @classmethod def posttache(cls, pont): pont.is_operation = False return True class Kanban(object): def __init__(self, token): self.operation = MetaOperation.get(token) self.croissant = True self.debut = 0 self.cuve_max = 24 self.cuve_courante = 0 self.noeud = None self.extra = None self.pont = None self.actif = True #True, le pont peut commencer aussitôt recu self.actif_defaut = True self.completed = False self.temps_termine = 0 self.temps_restant = 0 def reset(self): self.cuve_courante = 0 self.temps_termine = 0 self.pont = None self.completed = False self.actif = self.actif_defaut def init_current_target(self, secteur): indice = self.debut + self.cuve_courante if indice < len(secteur.noeuds_cuves): self.noeud = secteur.noeuds_cuves[indice] return self.noeud else: return None def get_current_target(self, secteur): indice = self.debut + self.cuve_courante if indice < len(secteur.noeuds_cuves): self.noeud = secteur.noeuds_cuves[indice] return self.noeud else: return None def set_next_target(self): if self.cuve_courante < self.cuve_max: self.cuve_courante += 1 if self.cuve_courante >= self.cuve_max: self.completed = True def is_completed(self): return self.completed def __str__(self): return "{0} {1} {2}".format(self.operation.name, self.debut, self.cuve_max) def __repr__(self): return "{0} {1} {2}".format(self.operation.name, self.debut, self.cuve_max) def to_str(self): return "{0} {1} {2}".format(self.operation.name, self.debut, self.cuve_max) class KanbanParser(object): regex_pattern = r"([a-zA-Z]+)([0-9]+)_?([0-9]+)?_?([a-z]+)?" @staticmethod def string_to_kanbans_list(s): kanbans_str = s.replace(" ", "").replace("\t", "").replace("\n", "") tokens = kanbans_str.split(",") kanbans = [] for token1 in tokens: preprocessed_tokens = KanbanParser.preprocess_token(token1) for token2 in preprocessed_tokens: kanbans.append(KanbanParser.process_token(token2)) return kanbans @staticmethod def preprocess_token(token): match = re.match(KanbanParser.regex_pattern, token, re.I) if match: operation_type = "NONE" begin = 0 count = 0 extra = "" items = match.groups() preprocessed_tokens = [] if items[0]: operation_type = items[0] if items[1]: begin = int(items[1]) if items[2]: count = int(items[2]) else: count = 1 if items[3]: extra = str(items[3]).upper() for i in range(count): if extra == "": preprocessed_tokens.append("{type}{begin}_{number_to_visit}".format(type=operation_type, begin=begin+i, number_to_visit=1)) else: preprocessed_tokens.append("{type}{begin}_{number_to_visit}_{extra}".format(type=operation_type, begin=begin+i, number_to_visit=1, extra=extra)) return preprocessed_tokens else: raise ParsingException("{0} doit être dans le format: ([a-zA-Z]+)([0-9]+)_?([0-9]+)?_?([a-z]+)?".format(token)) @staticmethod def process_token(token): kanban = None match = re.match(KanbanParser.regex_pattern, token, re.I) op = ' ' if match: items = match.groups() if items[0]: kanban = Kanban(items[0]) kanban.croissant = op.isupper() if items[1]: kanban.debut = int(items[1]) - 1 if items[2]: kanban.cuve_max = int(items[2]) else: kanban.cuve_max = 1 if items[3]: kanban.extra = str(items[3]).upper() else: raise ParsingException("{0} doit être dans le format: ([a-zA-Z]+)([0-9]+)_?([0-9]+)?_?([a-z]+)?".format(token)) return kanban class DelayedKanban(object): def __init__(self, token): self.operation = MetaOperation.get(token) self.duree = 0 self.t_trigger = 0 self.pont = None self.completed = False self.temps_termine = 0 self.extra = None self.temps_restant = 0 def reset(self): self.temps_termine = 0 self.pont = None self.completed = False def is_completed(self): return self.completed def __str__(self): return "{0} {1} {2}".format(self.operation.name, self.duree, self.t_trigger) def __repr__(self): return "{0} {1} {2}".format(self.operation.name, self.duree, self.t_trigger) def to_str(self): return "{0} {1} {2}".format(self.operation.name, self.duree, self.t_trigger) class DelayedKanbanParser(object): regex_pattern = r"([a-zA-Z]+)([0-9]+)_?([0-9]+)?_?([a-z]+)?" @staticmethod def string_to_list(s): pauses_str = s.replace(" ", "").replace("\t", "").replace("\n", "") tokens = pauses_str.split(",") pauses = [] for token1 in tokens: pauses.append(DelayedKanbanParser.process_token(token1)) return pauses @staticmethod def process_token(token): pause = None match = re.match(DelayedKanbanParser.regex_pattern, token, re.I) if match: items = match.groups() if items[0]: pause = DelayedKanban(items[0]) if items[1]: pause.duree = int(items[1]) if items[2]: pause.t_trigger = int(items[2]) else: pause.t_trigger = 0 if items[3]: pause.extra = str(items[3]).upper() else: raise ParsingException("{0} doit être dans le format: ([a-zA-Z]+)([0-9]+)_?([0-9]+)?_?([a-z]+)?".format(token)) return pause class DeltaKanban(object): def __init__(self, token): self.operation = MetaOperation.get(token) self.debut = 0 self.cuve_max = 1 self.cuve_courante = 0 self.delta = 0 self.pont = None self.completed = False self.temps_termine = 0 self.noeud = None self.extra = None self.temps_restant = 0 def is_completed(self): return self.completed def reset(self): self.cuve_courante = 0 self.temps_termine = 0 self.pont = None self.completed = False def init_current_target(self, secteur): indice = self.debut + self.cuve_courante if indice < len(secteur.noeuds_cuves): self.noeud = secteur.noeuds_cuves[indice] return self.noeud else: return None def get_current_target(self, secteur): indice = self.debut + self.cuve_courante if indice < len(secteur.noeuds_cuves): self.noeud = secteur.noeuds_cuves[indice] return self.noeud else: return None def set_next_target(self): if self.cuve_courante < self.cuve_max: self.cuve_courante += 1 if self.cuve_courante >= self.cuve_max: self.completed = True def __str__(self): return "{0} {1} {2}".format(self.operation.name, self.debut, self.delta) def __repr__(self): return "{0} {1} {2}".format(self.operation.name, self.debut, self.delta) def to_str(self): return "{0} {1} {2}".format(self.operation.name, self.debut, self.delta) class DeltaKanbanParser(object): regex_pattern = r"([a-zA-Z]+)([0-9]+)_?([0-9]+)?_?([a-z]+)?" @staticmethod def string_to_list(s): dk_str = s.replace(" ", "").replace("\t", "").replace("\n", "") tokens = dk_str.split(",") dk = [] for token1 in tokens: dk.append(DeltaKanbanParser.process_token(token1)) return dk @staticmethod def process_token(token): dk = None match = re.match(DeltaKanbanParser.regex_pattern, token, re.I) if match: items = match.groups() if items[0]: dk = DeltaKanban(items[0]) if items[1]: dk.debut = int(items[1]) - 1 if items[2]: dk.delta = int(items[2]) else: dk.delta = 0 if items[3]: dk.extra = str(items[3]).upper() else: raise ParsingException("{0} doit être dans le format: ([a-zA-Z]+)([0-9]+)_?([0-9]+)?_?([a-z]+)?".format(token)) return dk class ParsingException(Exception): pass class OperationNotImplemented(Exception): pass ```
{ "source": "jfdion/mine-sweeper", "score": 3 }
#### File: mine-sweeper/minesweeper/board.py ```python from minesweeper.grid import Grid class Board: def __init__(self, width, height, number_of_mines=10): self.__width = width self.__height = height self.__number_of_mines = number_of_mines self.__grid = Grid(self.__width, self.__height, self.__number_of_mines) def width(self): return self.__width def height(self): return self.__height def print(self): print(self.__grid.to_string()) def win(self): return self.__grid.check_win() def loose(self): return self.__grid.check_mine_revealed() def reveal(self, x, y): self.__grid.reveal(x, y) ``` #### File: mine-sweeper/minesweeper/cell.py ```python class Cell: """ | (-1, -1) | (0, -1) | (1, -1) | | (-1, 0) | x | (1, 0)  | | (-1, 1) | (0, 1) | (1, 1)  | """ __positions = [(-1, -1), (0, -1), (1, -1), (-1, 0), (1, 0), (-1, 1), (0, 1), (1, 1)] """ | | (0, -1) | | | (-1, 0) | x | (1, 0)  | | | (0, 1) |   | """ __cross_positions = [(0, -1), (-1, 0), (1, 0), (0, 1)] def __init__(self, x, y, grid, is_mine=False): self.__x = x self.__y = y self.__grid = grid self.__is_mine = is_mine self.__is_revealed = False self.__neighbor_mines = 0 def to_string(self): if not self.__is_revealed: return "?" elif self.__is_mine: return "!" elif self.__neighbor_mines > 0: return str(self.__neighbor_mines) else: return " " def revealed(self): return self.__is_revealed def is_mine(self): return self.__is_mine def neighbor_count(self): return self.__neighbor_mines def update_neighbor_count(self): self.__neighbor_mines = 0 if self.__is_mine: return for (x, y) in self.__positions: if self.__grid.exists(self.__x + x, self.__y + y) and \ self.__grid.is_mine(self.__x + x, self.__y + y): self.__neighbor_mines += 1 def reveal(self): if self.__is_revealed: return self.__is_revealed = True if not self.__is_mine and not self.__neighbor_mines > 0: for (x, y) in self.__cross_positions: self.__grid.reveal(self.__x + x, self.__y + y) ``` #### File: mine-sweeper/minesweeper/grid.py ```python from random import randint from minesweeper.cell import Cell class Grid: def __init__(self, width, height, number_of_mines): self.__width = width self.__height = height self.__mines_locations = self._build_mines_locations(number_of_mines) self.__grid = [[Cell(x, y, self, is_mine=(x, y) in self.__mines_locations) for x in range(0, self.__width)] for y in range(0, self.__height)] [[cell.update_neighbor_count() for cell in row] for row in self.__grid] def init_grid_reveal_cache(self): return [[False] * self.__width] * self.__height def _build_mines_locations(self, number_of_mines): mines_locations = [] i = 0 while i < number_of_mines: x = randint(0, self.__width - 1) y = randint(0, self.__height - 1) if (x, y) not in mines_locations: mines_locations.append((x, y)) i += 1 return mines_locations def check_win(self): return sum([sum([0 if cell.revealed() else 1 for cell in row]) for row in self.__grid]) == len( self.__mines_locations) def check_mine_revealed(self): return sum([sum([1 if cell.revealed() and cell.is_mine() else 0 for cell in row]) for row in self.__grid]) > 0 def exists(self, x, y): return 0 <= x < self.__width and 0 <= y < self.__height def is_mine(self, x, y): if self.exists(x, y): return self.__grid[y][x].is_mine() def reveal(self, x, y): if self.exists(x, y) and not self.revealed(x, y): self.__grid[y][x].reveal() def revealed(self, x, y): if self.exists(x, y): return self.__grid[y][x].revealed() return True def has_neighbor(self, x, y): if self.exists(x, y): return self.__grid[y][x].neighbor_count() > 0 def to_string(self): out = "| " + (len(str(self.__height)) * " ") + " |" for i in range(0, self.__width): out += " " + (self.__calculate_padding(str(i + 1), len(str(self.__width)), 1) * " ") out += str(i + 1) out += (self.__calculate_padding(str(i + 1), len(str(self.__width)), -1) * " ") + " |" out += "\n" j = 1 for row in self.__grid: out += "| " + str(j) + ((len(str(self.__height)) - len(str(j))) * " ") + " |" for (x, cell) in enumerate(row): out += " " out += (self.__calculate_padding(cell.to_string(), len(str(self.__width)), 1) * " ") out += cell.to_string() out += (self.__calculate_padding(cell.to_string(), len(str(self.__width)), -1) * " ") + " |" out += "\n" j += 1 return out def __calculate_padding(self, text, total_length, modifier): size = abs(total_length - len(text)) if size == 0: return size if modifier > 0: modifier = 1 else: modifier = -1 if size % 2 == 0: return int(size / 2) else: return int((size + modifier) / 2) ```
{ "source": "jfdong/ocm", "score": 3 }
#### File: python/scripts/parameter_test.py ```python import argparse import re import os from termcolor import colored def mode_validation(mode): regex = re.compile('[@_!#$%^&*()<>?/\|}{~:]') if mode == "": print("{0}".format(colored("Mode Is Empty", "red"))) if " " in mode: print("{0}: {1} ".format(colored("Mode name Contain Spaces", "red"), mode)) if regex.search(mode) != None: print("{0}: {1}".format(colored("Mode name Contain Special Characters", "red"), mode)) else: print("Mode is ok") def device_validation(device): regex = re.compile('[@_!#$%^&*()<>?/\|}{~:]') device_list=["CPU","GPU","MYRIAD","HDDL"] if(device in device_list ): if device == "": print("{0}".format(colored("Device List is found Empty", "red"))) if " " in device: print("{0}: {1} ".format(colored("Device Name Contains Spaces", "red"), device)) if regex.search(device) != None: print("{0}: {1}".format(colored("Device Name Contain Special Characters", "red"), device)) else: print("Devices is ok") else: print("{0}".format(colored("Please Choose Device", "red"))) def modelpath_validation(model_path): if not os.path.exists(model_path) and not model_path=="None": print("{0}".format(colored("Model Path does not exists or Please give None in model path", "red"))) else: print("Path is ok") def testlist_validation(test_list): try: file_size = os.path.getsize('test_list.txt') except FileNotFoundError: print("{0}".format(colored("File is not Available", "red"))) pass if not os.path.isfile(test_list): print("{0}".format(colored("Path doesn't Exists", "red"))) elif file_size == 0: print("{0}".format(colored("File is found empty", "red"))) else: print("Test List is ok") ```
{ "source": "JFDonovan/Kive", "score": 2 }
#### File: app/backend/index.py ```python from whoosh.index import create_in, open_dir from whoosh.writing import BufferedWriter, AsyncWriter from whoosh.fields import * from whoosh import analysis from whoosh.support.charset import accent_map from extract_text import scrape_paths from datetime import datetime import os import time import sys import multiprocessing import config def get_schema(): ''' Specifies what fields are stored in the index and returns to be passed to newly created index. ''' # analyzer = analysis.SpaceSeparatedTokenizer() | analysis.LowercaseFilter() | analysis.CharsetFilter(accent_map) analyzer = analysis.StandardAnalyzer(stoplist=None, minsize=1) | analysis.CharsetFilter(accent_map) return Schema(name=TEXT(analyzer=analyzer, stored=True), path=TEXT(stored=True), content=TEXT(analyzer=analyzer, stored=True), legacy_ingest=TEXT, ingest=TEXT, last_accessed=TEXT, media_files=TEXT(analyzer=analyzer, stored=True), indexed_time=DATETIME(stored=True), id=ID(stored=True, unique=True)) def index_docs(json_lst, operation, workspace_guid): ''' Writes, updates, or deletes documents to/from the index based on the specified operation. ''' try: # The schema specifies the fields of documents in an index schema = get_schema() # Index directory has to be made before index gets written if len(os.listdir(config.app_data_path + '/workspace_repo/{}/index_dir'.format(workspace_guid))) == 0: # Create index based on schema ix = create_in(config.app_data_path + '/workspace_repo/{}/index_dir'.format(workspace_guid), schema) else: # Open existing index ix = open_dir(config.app_data_path + '/workspace_repo/{}/index_dir'.format(workspace_guid)) # Prepare to write paths to index writer = ix.writer(procs=os.cpu_count(), multisegment=True) searcher = ix.searcher() id_check = "" if operation == 'add': # Used if files are imported into workspace update_node_list = [] index_lst = scrape_paths(json_lst) for entry, content, media_files, update_url_node in index_lst: if update_url_node is not None: update_node_list.append(update_url_node) path = entry['path'] name = entry['name'] legacy_ingest = entry['legacy_ingest'] ingest = entry['ingest'] last_accessed = entry['last_accessed'] indexed_time = datetime.utcnow() id = entry['id'] writer.add_document(name=name, path=path, content=content, legacy_ingest=legacy_ingest, ingest=ingest, last_accessed=last_accessed, media_files=media_files, indexed_time=indexed_time, id=id) writer.commit() return update_node_list elif operation == 'update': # Used if names or dates get updated in workspace # index_lst = scrape_paths(json_lst) for entry in json_lst: path = entry['path'] name = entry['name'] legacy_ingest = entry['legacy_ingest'] ingest = entry['ingest'] last_accessed = entry['last_accessed'] indexed_time = datetime.utcnow() id = entry['id'] old_doc = searcher.document(id=id) content = old_doc['content'] media_files = old_doc['media_files'] # id_check = id writer.update_document(name=name, path=path, content=content, legacy_ingest=legacy_ingest, ingest=ingest, last_accessed=last_accessed, media_files=media_files, indexed_time=indexed_time, id=id) elif operation == 'delete': # Used if files get deleted from workspace for entry in json_lst: id = entry['id'] writer.delete_by_term('id', id) writer.commit() except Exception as e: writer.commit() raise e ``` #### File: app/backend/parse_nonlegacy.py ```python from datetime import datetime from selectolax.parser import HTMLParser import os import uuid ''' Non-legacy directory ingest workflow. ''' def find_files(folder): ''' Walks through the specified directory to find all web pages and create JSON objects for them. ''' def find_files_helper(folder, json_obj): folder_list = os.listdir(folder) folders = [] html_files = set() for entity in folder_list: if os.path.isdir(folder + "/" + entity): folders.append(folder + "/" + entity) else: # Get file extension ext = os.path.splitext(entity) # Only handle html or htm files if ext[1] in ('.html', '.htm'): html_files.add(folder + "/" + entity.split(".htm")[0] + "_files") # Create new JSON object that represents a web page and its metadata new_file_obj = { 'type': 'file', 'name': os.path.basename(folder + "/" + entity), 'legacy_ingest': '', 'ingest': datetime.now().strftime('%Y%m%d'), 'last_accessed': datetime.fromtimestamp(os.path.getmtime(folder + '/' + entity)).strftime('%Y%m%d'), 'path': folder + "/" + entity, 'source': '', 'icon': '', 'id': str(uuid.uuid4()), 'children': [] } json_obj['children'].append(new_file_obj) json_lst.append(new_file_obj) for f in folders: go_in = True if f in html_files: go_in = False if go_in: new_folder_obj = { 'type': 'folder', 'name': os.path.basename(f), 'id': str(uuid.uuid4()), 'children': [] } json_obj['children'].append(new_folder_obj) find_files_helper(f, new_folder_obj) # Flat list of web page JSON nodes that are passed to the indexing function json_lst = [] # Provides the root folder for the JSON tree json_tree = { 'type': 'folder', 'name': os.path.basename(folder), 'id': str(uuid.uuid4()), 'children': [] } try: find_files_helper(folder, json_tree) except Exception as e: return None, None return [json_tree], json_lst ``` #### File: app/backend/parse_sb.py ```python from html.parser import HTMLParser from datetime import datetime import json import sys import os import uuid ''' ScrapBook directory ingest workflow. ''' #Declaring global variables needed to be accessed everywhere folder_path = '' child_dict = {} json_dict = {} class MyRDFParser(HTMLParser): # Declaring class variable global child_dict global json_dict current_parent = '' # Helper method to get ScrapBook name from 'RDF:about' attribute def get_sb_name(self, full_string): return full_string.split(':')[2] # Method to handle behavior upon reading various tags def handle_starttag(self, tag, attrs): # 'RDF:Description' tag creates a new json object (file or folder) to be stored in json_dict if (tag == 'rdf:description'): name = self.get_sb_name(attrs[0][1]) sb_date = name.split('item')[1] date = datetime.today().strftime('%Y%m%d') file_path = folder_path + sb_date + '/index.html' # Fields that will be read from RDF attributes item_type = '' source_url = '' icon_src = '' title = '' # Loop through attributes to get desired data for attr in attrs: if attr[0] == 'ns1:type': if attr[1] == 'folder': item_type = 'folder' file_path = '' else: item_type = 'file' elif attr[0] == 'ns1:title': title = attr[1] elif attr[0] == 'ns1:source': source_url = attr[1] elif attr[0] == 'ns1:icon': full_icon_str = attr[1] if full_icon_str.startswith('resource://scrapbook'): icon_src = folder_path + full_icon_str.split('data/')[1] else: icon_src = full_icon_str # Creating new JSON object with desired fields new_json = { "type": item_type, "legacy_ingest": sb_date[0:8], "ingest": date, "last_accessed": date, "source": source_url, "icon": icon_src, "name": title, "path": file_path, "id": str(uuid.uuid4()), "children": [], } # Adding new JSON to json_dict json_dict[name] = new_json #'RDF:Seq' tag adds folder name to child_dict keys and makes it current_parent if (tag == 'rdf:seq'): name = self.get_sb_name(attrs[0][1]) MyRDFParser.current_parent = name child_dict[name] = [] #'RDF:li' tag adds current resource to current_parrent's field in child_dict if (tag == 'rdf:li'): name = self.get_sb_name(attrs[0][1]) child_dict[MyRDFParser.current_parent].append(name) # Method to handle behavior on 'RDF:Seq' end tag def handle_endtag(self, tag): if (tag == 'rdf:seq'): MyRDFParser.current_parent = '' # Method to build JSON object from global variables def build_tree_json(): global child_dict global json_dict final_json = [] file_json_list = [] for item in json_dict.values(): if (item['type'] == 'file'): file_json_list.append(item) # Iterate over every folder, represented by keys in 'child_dict' for parent in child_dict: # Check if parent is root, we will take care of root children later if (parent != 'root'): parent_json = json_dict[parent] # Iterate over children of parent in top level loop for child in child_dict[parent]: # Append child JSON to parent JSON parent_json['children'].append(json_dict[child]) # Update parent JSON in json_dict json_dict[parent] = parent_json # Add 'root' children to top level 'final_json' for child in child_dict['root']: final_json.append(json_dict[child]) # Return newly built nested JSON object respresenting full tree return final_json, file_json_list # Method to be called from outside scripts. # Accepts filepath pointing to 'scrapbook.rdf' file in a valid ScrapBook repository def parse_rdf(filepath): global child_dict global json_dict child_dict = {} json_dict = {} # Open given filepath as 'rdf' and turn it into a string to be fed to MyRDFParser with open (filepath, 'r', encoding='utf-8', errors='replace') as rdf: rdf_str = rdf.read() # Updating global folder path to be accessed in MyRDFParser global folder_path folder_path = filepath.split('scrapbook.rdf')[0] + 'data/' # Checking if 'data/' folder exists if (os.path.exists(folder_path)): # Creating MyRDFParser object and feeding it 'rdf_str' parser = MyRDFParser() parser.feed(rdf_str) parser.close() # Build tree JSON and return it return build_tree_json() else: # 'data/' folder doesn't exist, reset global 'folder_path' and return None folder_path = "" raise Exception('ScrapBook directory could not be imported.') ```
{ "source": "jfdupuis/garage-door-controller", "score": 2 }
#### File: jfdupuis/garage-door-controller/garage_controller.py ```python import datetime import time import syslog import smtplib import RPi.GPIO as gpio import json import urllib from email.mime.text import MIMEText from email.utils import formatdate from email.utils import make_msgid import sys if sys.version_info < (3,): import httplib as httpclient else: import http.client as httpclient class Door(object): last_action = None last_action_time = None alert_sent = False confirm_close = False pb_iden = None def __init__(self, doorId, config): self.id = doorId self.name = config['name'] self.in_sentence = config['in_sentence'] self.relay_pin = config['relay_pin'] self.state_pin = config['state_pin'] self.state_pin_closed_value = config.get('state_pin_closed_value', 0) self.time_to_close = config.get('approx_time_to_close', 10) self.time_to_open = config.get('approx_time_to_open', 10) self.openhab_name = config.get('openhab_name') self.open_time = time.time() self.alert_sent_time = time.time() gpio.setup(self.relay_pin, gpio.OUT) gpio.setup(self.state_pin, gpio.IN, pull_up_down=gpio.PUD_UP) gpio.output(self.relay_pin, True) def get_state(self): if gpio.input(self.state_pin) == self.state_pin_closed_value: return 'closed' elif self.last_action == 'open': if time.time() - self.last_action_time >= self.time_to_open: return 'open' else: return 'opening' elif self.last_action == 'close': if time.time() - self.last_action_time >= self.time_to_close: return 'open' # This state indicates a problem else: return 'closing' else: return 'open' def toggle_relay(self): state = self.get_state() if (state == 'open'): self.last_action = 'close' self.last_action_time = time.time() elif state == 'closed': self.last_action = 'open' self.last_action_time = time.time() else: self.last_action = None self.last_action_time = None gpio.output(self.relay_pin, False) time.sleep(0.2) gpio.output(self.relay_pin, True) class Controller(object): def __init__(self, config): self.init_gpio() self.updateHandler = None self.config = config self.doors = [Door(n, c) for (n, c) in list(config['doors'].items())] for door in self.doors: door.last_state = 'unknown' door.last_state_time = time.time() self.use_alerts = config['config']['use_alerts'] self.alert_type = config['alerts']['alert_type'] self.time_to_wait = config['alerts']['time_to_wait'] self.time_btw_alert_repeat = config['alerts']['time_btw_alert_repeat'] self.open_time_to_alert = config.get('open_time_to_alert', 30) if self.alert_type == 'smtp': self.use_smtp = False smtp_params = ("smtphost", "smtpport", "smtp_tls", "username", "password", "<PASSWORD>", "time_to_wait") self.use_smtp = ('smtp' in config['alerts']) and set( smtp_params) <= set(config['alerts']['smtp']) syslog.syslog("we are using SMTP") elif self.alert_type == 'pushbullet': self.pushbullet_access_token = config['alerts']['pushbullet']['access_token'] syslog.syslog("we are using Pushbullet") elif self.alert_type == 'pushover': self.pushover_user_key = config['alerts']['pushover']['user_key'] syslog.syslog("we are using Pushover") else: self.alert_type = None syslog.syslog("No alerts configured") def init_gpio(self): gpio.setwarnings(False) gpio.cleanup() gpio.setmode(gpio.BCM) def set_update_handler(self, update_handler): self.updateHandler = update_handler def status_check(self): for door in self.doors: new_state = door.get_state() if (door.last_state != new_state): door.last_state = new_state door.last_state_time = time.time() door.alert_sent = False self.notify_state_change(door, new_state) send_open_alert = False if (new_state == 'open') and door.alert_sent and ( time.time() - door.alert_sent_time >= self.time_btw_alert_repeat): send_open_alert = True if (new_state == 'open' and not door.alert_sent and time.time( ) - door.open_time >= self.time_to_wait + door.time_to_open): send_open_alert = True if send_open_alert: if self.use_alerts: elapsed_time = int(time.time() - door.open_time) title = "%s%s%s" % (door.name, door.in_sentence, new_state) message = "%s%shas been open for %s" % ( door.name, door.in_sentence, format_seconds(elapsed_time)) self.send_alert(door, title, message) door.alert_sent = True door.confirm_close = True door.alert_sent_time = time.time() if new_state == 'closed': if self.use_alerts: if door.confirm_close is True: elapsed_time = int(time.time() - door.open_time) title = "%s%s%s" % ( door.name, door.in_sentence, new_state) message = "%s%sis now closed being open for %s " % ( door.name, door.in_sentence, format_seconds(elapsed_time)) self.send_alert(door, title, message) door.open_time = time.time() door.confirm_close = False door.alert_sent = False def notify_state_change(self, door, new_state): syslog.syslog('%s: %s => %s' % (door.name, door.last_state, new_state)) if self.updateHandler is not None: self.updateHandler.handle_updates() if self.config['config']['use_openhab'] and ( new_state == "open" or new_state == "closed"): self.update_openhab(door.openhab_name, new_state) def send_alert(self, door, title, message): if self.alert_type == 'smtp': self.send_email(title, message) elif self.alert_type == 'pushbullet': self.send_pushbullet(door, title, message) elif self.alert_type == 'pushover': self.send_pushover(door, title, message) def send_email(self, title, message): try: if self.use_smtp: syslog.syslog("Sending email message") config = self.config['alerts']['smtp'] message = MIMEText(message) message['Date'] = formatdate() message['From'] = config["username"] message['To'] = config["to_email"] message['Subject'] = config["subject"] message['Message-ID'] = make_msgid() server = smtplib.SMTP(config["smtphost"], config["smtpport"]) if (config["smtp_tls"] == "True"): server.starttls() server.login(config["username"], config["password"]) server.sendmail(config["username"], config["to_email"], message.as_string()) server.close() except Exception as inst: syslog.syslog("Error sending email: " + str(inst)) def send_pushbullet(self, door, title, message): try: syslog.syslog("Sending pushbutton message") config = self.config['alerts']['pushbullet'] if door.pb_iden is not None: for token in config['access_token']: conn = httpclient.HTTPSConnection("api.pushbullet.com:443") conn.request("DELETE", '/v2/pushes/' + door.pb_iden, "", {'Authorization': 'Bearer ' + token, 'Content-Type': 'application/json'}) conn.getresponse() conn.close() door.pb_iden = None for token in config['access_token']: conn = httpclient.HTTPSConnection("api.pushbullet.com:443") conn.request("POST", "/v2/pushes", json.dumps({ "type": "note", "title": title, "body": message, }), {'Authorization': 'Bearer ' + token, 'Content-Type': 'application/json'}) response = conn.getresponse().read() door.pb_iden = json.loads(response.decode('utf-8'))['iden'] conn.close() except Exception as inst: syslog.syslog("Error sending to pushbullet: " + str(inst)) def send_pushover(self, door, title, message): try: syslog.syslog("Sending Pushover message") config = self.config['alerts']['pushover'] conn = httpclient.HTTPSConnection("api.pushover.net:443") conn.request("POST", "/1/messages.json", urllib.urlencode({ "token": config['api_key'], "user": config['user_key'], "title": title, "message": message, }), {"Content-type": "application/x-www-form-urlencoded"}) conn.getresponse() conn.close() except Exception as inst: syslog.syslog("Error sending to pushover: " + str(inst)) def update_openhab(self, item, state): try: syslog.syslog("Updating openhab") config = self.config['openhab'] conn = httpclient.HTTPConnection( "%s:%s" % (config['server'], config['port'])) conn.request("PUT", "/rest/items/%s/state" % item, state) conn.getresponse() conn.close() except Exception as inst: syslog.syslog("Error updating openhab: " + str(inst)) def toggle(self, doorId): for d in self.doors: if d.id == doorId: syslog.syslog('%s: toggled' % d.name) d.toggle_relay() return def get_updates(self, lastupdate): updates = [] for d in self.doors: if d.last_state_time >= lastupdate: updates.append((d.id, d.last_state, d.last_state_time)) return updates def format_seconds(num_seconds): return str(datetime.timedelta(seconds=num_seconds)) ``` #### File: garage-door-controller/test/test_garage_server.py ```python import unittest import json import sys sys.modules['RPi'] = __import__('simRPi') from garage_controller import Controller # noqa import garage_server # noqa class UptimeHandlerTest(unittest.TestCase): def setUp(self): config_file = open('config.json') self.config = json.load(config_file) config_file.close() def test_uptime(self): controller = Controller(self.config) uptime_handler = garage_server.UptimeHandler(controller) uptime = uptime_handler.getUptime() # Check that all field returned a numerical value greater or equal to zero uptime_fields = uptime.split(b":") for field in uptime_fields: self.assertGreaterEqual(float(field), 0.0) ```
{ "source": "jfdur/durham-year1-archive", "score": 4 }
#### File: durham-year1-archive/ADS/q1.py ```python def hash_quadratic(l): #Create a new list filled with - to represent blanks table = ['-']*19 #Iterate through the provided list for i in range(0, len(l)): #Determine the position the key should go to (if there is space) in hash table pos = ((6 * l[i] + 3) % 19) finished = False step = 0 """ While a finished condition hasn't been reached, try placing the element at the next available location, increasing quadratically. """ while not finished: newPos = ((pos + step ** 2) % 19) #If the new found position is available, use it and finish. if(table[newPos] == '-'): table[newPos] = l[i] finished = True #If we've gone through the whole hash table and there is no space, exit elif(step >= 19): finished = True #Increase the step so next quadratic number is tried on next run (if it occurs) step += 1 return table def hash_double(l): #Create a new list filled with - to represent blanks table = ['-']*19 #Iterate through the provided list for i in range(0, len(l)): #Generate hash value using first hash function h1 = ((6 * l[i] + 3) % 19) #If there is space at that loc, place the key if(table[h1] == '-'): table[h1] = l[i] else: #If there is no space, generate the secondary function h2 = 11 - (l[i] % 11) finished = False step = 1 #Try place at next available location, using secondary hash function and a step. while not finished: pos = (h1 + step * h2) % 19 if(table[pos] == '-'): table[pos] = l[i] finished = True #If all positions have been tried, give up elif(step >= 19): finished = True step += 1 return table ``` #### File: durham-year1-archive/ADS/q6c.py ```python def MergeSort(m): """ If the length is less than or equal to 1, just return since we don't even need to run SelectionSort """ if len(m) <= 1: return m #Calculate the midpoint and cast to int so there is no decimal middle = int(len(m) / 2) #Init some empty arrays. ls/rs are sorted l = [] r = [] ls = [] rs = [] #The left half must go from 0 to the midpoint (exclusive) l = m[0:middle] #The right half must go from the midpoint and capture all elements to the end r = m[middle:] """ If the length is less than or equal to 4, use SelectionSort, as specified in the Q6a brief If not, use MergeSort """ if len(l) <= 4: ls = SelectionSort(l) else: ls = MergeSort(l) if len(r) <= 4: rs = SelectionSort(r) else: rs = MergeSort(r) #Merge the parts together return Merge(ls, rs) def Merge(l, r): result = [] #While one of the halves is not empty... while(len(l) > 0 or len(r) > 0): #If they're both not empty... if len(l) > 0 and len(r) > 0: #Check if first element in left is greater or equal than right if l[0] >= r[0]: #If it is, append it to result result.append(l[0]) #Remove the element that has been added to result l = l[1:] else: #If not, first element in right must be greater so use it instead result.append(r[0]) r = r[1:] elif len(l) > 0: """ If only left has something Add whatever remaining items are on left to result and clear left """ result += l l = [] else: """ If only right has something Add whatever remaining items are on right to result and clear right """ result += r r = [] return result def SelectionSort(listPart): #Location of max has not yet been found maxLoc = -1 #Iterate through list for i in range(len(listPart)): #Set maxLoc to be the current element maxLoc = i #Iterate through remaining elements of list in front of i for j in range(i + 1, len(listPart)): #If the j element is greater than the one at current maxLoc, set maxLoc to be j if listPart[j] > listPart[maxLoc]: maxLoc = j #Switch the element at i with the one at maxLoc. listPart[i], listPart[maxLoc] = listPart[maxLoc], listPart[i] return listPart ``` #### File: CT/bioinformatics/q1.py ```python import time import sys # YOUR FUNCTIONS GO HERE ------------------------------------- # 1. Populate the scoring matrix and the backtracking matrix # ------------------------------------------------------------ def calculateMatrices(seq1, seq2): s = [[0]*(len(seq1) + 1) for _ in range(len(seq2) + 1)] b = [['-']*(len(seq1) + 1) for _ in range(len(seq2) + 1)] for i in range(0, len(s)): newI = -2 * i seq2Acc = i - 1 for j in range(0, len(s[i])): if i == j == 0: continue elif j == 0: s[i][j] = newI b[i][j] = 'U' elif i == 0: s[i][j] = -2 * j b[i][j] = 'L' else: c = -3 seq1Acc = j - 1 if seq1[seq1Acc] == seq2[seq2Acc]: if seq1[seq1Acc] == 'A': c = 4 elif seq1[seq1Acc] == 'C': c = 3 elif seq1[seq1Acc] == 'G': c = 2 elif seq1[seq1Acc] == 'T': c = 1 largest = c + s[seq2Acc][seq1Acc] b[i][j] = 'D' nextR = s[seq2Acc][j] - 2 if nextR > largest: largest = nextR b[i][j] = 'U' nextR = s[i][seq1Acc] - 2 if nextR > largest: largest = nextR b[i][j] = 'L' s[i][j] = largest i = len(seq2) j = len(seq1) bestScore = s[i][j] alSeq1 = '' alSeq2 = '' while(not(i == j == 0)): v = b[i][j] if v == 'L': alSeq1 = seq1[j - 1] + alSeq1 alSeq2 = '-' + alSeq2 j -= 1 elif v == 'U': alSeq2 = seq2[i - 1] + alSeq2 alSeq1 = '-' + alSeq1 i -= 1 elif v == 'D': alSeq1 = seq1[j - 1] + alSeq1 alSeq2 = seq2[i - 1] + alSeq2 i -= 1 j -= 1 response = {'alignment':[alSeq1, alSeq2], 'bestScore':bestScore} return response # DO NOT EDIT ------------------------------------------------ # Given an alignment, which is two strings, display it def displayAlignment(alignment): string1 = alignment[0] string2 = alignment[1] string3 = '' for i in range(min(len(string1),len(string2))): if string1[i]==string2[i]: string3=string3+"|" else: string3=string3+" " print('Alignment ') print('String1: '+string1) print(' '+string3) print('String2: '+string2+'\n\n') # ------------------------------------------------------------ # DO NOT EDIT ------------------------------------------------ # This opens the files, loads the sequences and starts the timer file1 = open(sys.argv[1], 'r') seq1=file1.read() file1.close() file2 = open(sys.argv[2], 'r') seq2=file2.read() file2.close() start = time.time() #------------------------------------------------------------- # YOUR CODE GOES HERE ---------------------------------------- # The sequences are contained in the variables seq1 and seq2 from the code above. # Intialise the scoring matrix and backtracking matrix and call the function to populate them # Use the backtracking matrix to find the optimal alignment # To work with the printing functions below the best alignment should be called best_alignment and its score should be called best_score. result = calculateMatrices(seq1, seq2) best_alignment = result.get('alignment') best_score = result.get('bestScore') #------------------------------------------------------------- # DO NOT EDIT (unless you want to turn off displaying alignments for large sequences)------------------ # This calculates the time taken and will print out useful information stop = time.time() time_taken=stop-start # Print out the best print('Time taken: '+str(time_taken)) print('Best (score '+str(best_score)+'):') displayAlignment(best_alignment) #------------------------------------------------------------- ``` #### File: CT/bioinformatics/q3.py ```python import networkx as nx import matplotlib as plt import time import copy def wpgma(fileName): f = open(fileName, 'r') m = [] species = [] first = True for line in f: lineTokens = line.strip().split(' ') lineTokensNoFirst = lineTokens[1:] if first: species = lineTokensNoFirst first = False continue m.append([float(x) for x in lineTokensNoFirst]) f.close() originalSpecies = copy.copy(species) G = nx.Graph() level = 0 print(species) for i in m: print(i) while(len(m) > 1): print() r = reduceMatrix(m, species, G, originalSpecies, level) m = r[0] species = r[1] level = r[2] nx.draw(G, with_labels=True) plt.pyplot.draw() plt.pyplot.savefig(fileName + '.png') def reduceMatrix(m, species, G, originalSpecies, level): currentSpecies = species minRow = -1 minCol = -1 minVal = -1 for i in range(0, len(m)): col, val = min(enumerate(m[i]), key=lambda x: x[1] if x[1] > 0 else float('inf')) if val != 0 and (minVal == -1 or val < minVal): minRow = i minCol = col minVal = val for i in range(0, len(m)): for j in range(0, len(m[i])): if ((i == minRow or i == minCol) and j != minRow and j != minCol): m[i][j] = (m[minRow][j] + m[minCol][j]) / 2 elif ((j == minRow or j == minCol) and i != minRow and i != minCol): m[i][j] = (m[i][minRow] + m[i][minCol]) / 2 speciesGroup = '(' + currentSpecies[minRow] + ',' + currentSpecies[minCol] + ')' if not G.has_node(currentSpecies[minRow]): G.add_node(currentSpecies[minRow]) if not G.has_node(currentSpecies[minCol]): G.add_node(currentSpecies[minCol]) if not G.has_node(speciesGroup): G.add_node(speciesGroup) G.add_edge(currentSpecies[minRow], speciesGroup) G.add_edge(currentSpecies[minCol], speciesGroup) currentSpecies[minRow] = speciesGroup currentSpecies.pop(minCol) print(currentSpecies) m.pop(minCol) for i in m: del i[minCol] print(i) return [m, currentSpecies, level + 1] start = time.time() wpgma('matrix2(1).txt') stop = time.time() print('Time taken to calculate matrices and draw phylogenetic tree: ' + str(stop - start)) ``` #### File: CT/error-correcting-codes/src.py ```python def hammingGeneratorMatrix(r): n = 2**r-1 #construct permutation pi pi = [] for i in range(r): pi.append(2**(r-i-1)) for j in range(1,r): for k in range(2**j+1,2**(j+1)): pi.append(k) #construct rho = pi^(-1) rho = [] for i in range(n): rho.append(pi.index(i+1)) #construct H' H = [] for i in range(r,n): H.append(decimalToVector(pi[i],r)) #construct G' GG = [list(i) for i in zip(*H)] for i in range(n-r): GG.append(decimalToVector(2**(n-r-i-1),n-r)) #apply rho to get Gtranpose G = [] for i in range(n): G.append(GG[rho[i]]) #transpose G = [list(i) for i in zip(*G)] return G #function decimalToVector #input: numbers n and r (0 <= n<2**r) #output: a string v of r bits representing n def decimalToVector(n,r): v = [] for s in range(r): v.insert(0,n%2) n //= 2 return v def message(a): l = len(a) #If the input is invalid, discard. No message can be calculated if not type(a) == list or l < 1: return [] m = [] #Determine the r value based on message length r = 2 while(2**r - 2 * r - 1 < l): r += 1 k = 2 ** r - r - 1 #Convert the input length to a binary list of length r m += decimalToVector(l, r) #Append the input to the message m += a #Add the required 0 padding to make a valid message m += [0]*(k - len(m)) return m def hammingEncoder(m): #Calculate r value for the message r = 2 while(2**r - r - 1 < len(m)): r += 1 #Get the generator matrix g = hammingGeneratorMatrix(r) #If the length of the message does not match length of generator matrix, #for the calculated r value, it is invalid. if len(g) != len(m): return [] c = [] #Encode the message using multiplication mod 2 #Need to iterate for as many times as there are rows in gen matrix for i in range(len(g[0])): total = 0 for j in range(len(g)): total += (g[j][i] * m[j]) % 2 c.append(total % 2) return c def hammingDecoder(v): r = 2 while(2 ** r - 1 < len(v)): r += 1 H = [] #Determine the parity check matrix for i in range(1, 2 ** r): H += [decimalToVector(i, r)] #If the length of encoded message does not match parity check mat length, invalid if len(v) != len(H): return [] vHT = [0]*len(H[0]) #Determine v * H transpose using mod 2 multiplication and addition for i in range(len(H[0])): for j in range(len(v)): vHT[i] = (vHT[i] + ((v[j] * H[j][i]) % 2)) % 2 #If the v multiplied by H transpose is 0 vector, v is a codeword so return it isZero = True for i in range(len(vHT)): if vHT[i] != 0: isZero = False if isZero: return v #Determine offset number i = 0 for j in range(len(vHT)): i += (2 ** j * vHT[len(vHT) - j - 1]) c = v #Flip the offset bit (could also do this with mod 2 addition) if c[i - 1] == 1: c[i - 1] = 0 else: c[i - 1] = 1 return c def messageFromCodeword(c): r = 2 while(2 ** r - 1 < len(c)): r += 1 #Get the generator matrix to perform an easy validity check g = hammingGeneratorMatrix(r) m = [] if len(c) != len(g[0]): return [] #Get the bits from every 2^n element. Use bitwise AND to do this for i in range(len(c)): pos = i + 1 if (pos & (pos - 1)) != 0: m.append(c[i]) return m def dataFromMessage(m): r = 2 while(2 ** r - r - 1 < len(m)): r += 1 l = [] #Get the list part that represents data length l += m[0:r] l.reverse() n = 0 #Determine data length for i in range(len(l)): n += (2 ** i) * l[i] #If there is less array left than message length, invalid if len(m[r:]) < n: return [] #Check that end of message is only padded with zeros if m[r + n:].count(0) != len(m[r + n:]): return [] #Strip off trailing 0s after data return m[r:r + n] def repetitionEncoder(m, n): if len(m) != 1: return [] return [m[0]] * n def repetitionDecoder(v): #Count 0s and 1s. Return larger count. If equal, invalid c0 = v.count(0) c1 = v.count(1) if c1 > c0: return [1] elif c0 > c1: return [0] return [] ``` #### File: CT/modelling-with-graphs/depth_first_pair_nodes.py ```python import networkx as nx import graph6 import graph7 import graph8 import graph9 import graph10 ### count the length of the path between two pre-specified vertices a and b, using Depth-First-Search def dfs(G,a,b,u): print(u) n = len(G.nodes()) G.node[u]['visited'] = 'yes' if u == a: G.node[a]['label'] = 0 if u == b: return neighbors = list(G.neighbors(u)) neighbors.sort() for adj in neighbors: if G.node[adj]['visited'] == 'no': G.node[adj]['label'] = G.node[u]['label'] + 1 dfs(G,a,b,adj) if adj == b: return print() G6=graph6.Graph() a=12 b=40 print('Depth-First-Search visited the following nodes of G6 in this order:') dfs(G6,a,b,a) ### count the DFS-path from a to b, starting at a print('Depth-First Search found a path in G6 between vertices', a, 'and', b, 'of length', G6.node[b]['label']) print() G7=graph7.Graph() a=5 b=36 print('Depth-First-Search visited the following nodes of G7 in this order:') dfs(G7,a,b,a) ### count the DFS-path from a to b, starting at a print('Depth-First Search found a path in G7 between vertices', a, 'and', b, 'of length', G7.node[b]['label']) print() G8=graph8.Graph() a=15 b=40 print('Depth-First-Search visited the following nodes of G8 in this order:') dfs(G8,a,b,a) ### count the DFS-path from a to b, starting at a print('Depth-First Search found a path in G8 between vertices', a, 'and', b, 'of length', G8.node[b]['label']) print() G9=graph9.Graph() a=1 b=19 print('Depth-First-Search visited the following nodes of G9 in this order:') dfs(G9,a,b,a) ### count the DFS-path from a to b, starting at a print('Depth-First Search found a path in G9 between vertices', a, 'and', b, 'of length', G9.node[b]['label']) print() G10=graph10.Graph() a=6 b=30 print('Depth-First-Search visited the following nodes of G10 in this order:') dfs(G10,a,b,a) ### count the DFS-path from a to b, starting at a print('Depth-First Search found a path in G10 between vertices', a, 'and', b, 'of length', G10.node[b]['label']) print() ```
{ "source": "jfdur/durham-year2-archive", "score": 3 }
#### File: durham-year2-archive/ML/classifier.py ```python import numpy as np import pandas as pd import scipy as sc import matplotlib.pyplot as plt from pathlib import Path from sklearn.base import BaseEstimator, TransformerMixin from sklearn.impute import SimpleImputer from sklearn.pipeline import Pipeline from sklearn.preprocessing import OrdinalEncoder, StandardScaler, RobustScaler from sklearn.compose import ColumnTransformer from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.metrics import confusion_matrix, plot_confusion_matrix #Load the data from given path string, and read CSV into pandas DataFrame def loadData(path): p = Path(path) return pd.read_csv(p) #Wrapper to load data from the datasets folder more quickly def loadStudentDataCSV(file): print('Attempting to load ' + file + '.csv') return loadData('anonymisedData/' + file + '.csv') """Remove rows from the pandas DataFrame series where a column has a specified value Do the replacement inplace""" def dropRows(data, key, value): data.drop(data[data[key] == value].index, inplace=True) """Convert (possibly dirty) percentage ranges to regular numerical ranges in the format 00-00 using a simple regex""" def pctRangeToNumRange(data, key): data[key] = data[key].str.replace('[^0-9\\-]', '') """Fill a pandas DataFrame series null values with the specified value Do the replacement inplace""" def fillNa(data, key, value): data[key].fillna(value, inplace=True) def getData(studentVle, studentInfo): #Set the keys to join on keyColumns = ['code_module', 'code_presentation', 'id_student'] #Group the vle data by the number of clicks (aggregate number of clicks) studentVleGrouped = studentVle.groupby(keyColumns)['sum_click'].sum() #Merge the student general info with the vle data mergedStudentVleInfo = studentInfo.merge(pd.DataFrame({'sum_click': studentVleGrouped}), left_on=keyColumns, right_index=True) #Ditch any withdrawn students. Data for these will be incomplete and we only care about pass/fail dropRows(mergedStudentVleInfo, 'final_result', 'Withdrawn') #Do some cleanup on the imd_band which has some missing % symbols pctRangeToNumRange(mergedStudentVleInfo, 'imd_band') #Return the data with some simple cleaning return mergedStudentVleInfo #Print a subset of the data rows def dataPeek(data, fields, start=15, end=20): print(data[fields][start:end]) """Run encoder transformations for given fields. We need DataFrames for analysis which is why we don't use the pipelines. Don't use this function for generating ML model features or labels.""" def analysisTransform(dataStore, encoder, fields): for field in fields: #Run the encoder on the field. Flatten the resulting numpy ndarray dataStore[field] = encoder.fit_transform(dataStore[[field]]).flatten() return dataStore """ Generate some basic analysis information such as correlation and quartiles for the data. Need to use encoders to make ordinals numeric """ def dataAnalysis(dataStore): ds = dataStore.copy() allFields = ['imd_band', 'age_band', 'gender', 'region', 'disability', 'highest_education', 'final_result', 'sum_click'] ds = ds[allFields] oe = NullSafeOrdinalEncoder(strategy='median') me = MappedEncoder(categories={'Distinction': 1, 'Pass': 1, 'Fail': 0}) qe = NullSafeOrdinalEncoder(strategy='median', categories=[[ 'No Formal quals', 'Lower Than A Level', 'A Level or Equivalent', 'HE Qualification', 'Post Graduate Qualification', ]]) ds = analysisTransform(ds, oe, ['imd_band', 'age_band', 'gender', 'region', 'disability']) ds = analysisTransform(ds, qe, ['highest_education']) ds = analysisTransform(ds, me, ['final_result']) correlation = ds.corr() print(correlation['final_result'].sort_values(ascending=False)) print('\n') print(ds.describe()) #Return the score for the given model def scoreModel(model, XTest, yTest, name): print("Score for " + name + " is " + str(model.score(XTest, yTest) * 100) + "%") #Plot the confusion matrix for the model using the sklearn metrics def plotConfusionMatrix(model, XTest, yTest, name): p = plot_confusion_matrix( model, XTest, yTest, display_labels=['Fail', 'Pass'], cmap=plt.cm.Blues, normalize='true') p.ax_.set_title('Confusion matrix for ' + name) plt.show() #Fit the given model, then score and plot confusion matrix def fitAndPlot(model, XTrain, yTrain, XTest, yTest, name): print("Running fitAndPlot for: " + name) model.fit(XTrain, yTrain) scoreModel(model, XTest, yTest, name) plotConfusionMatrix(model, XTest, yTest, name) """ Run a grid search on the given model and plot the tuned result. Experimentation has shown that we have a large number of false positives so we attempt to tune for precision """ def tune(model, params, XTrain, yTrain, XTest, yTest, name): classifier = model.__class__ clf = GridSearchCV(classifier(), params, cv=5, verbose=True, n_jobs=-1, scoring='precision') fitAndPlot(clf, XTrain, yTrain, XTest, yTest, name + ' Tuned') print('Precision optimised params are: ' + str(clf.best_params_)) #Generate a complete model. First a basic version using the defaults, then try to tune def model(model, params, XTrain, yTrain, XTest, yTest, name): fitAndPlot(model, XTrain, yTrain, XTest, yTest, name) tune(model, params, XTrain, yTrain, XTest, yTest, name) """ A custom version of the OrdinalEncoder that can handle NaN values in data. This currently only supports one column to be passed at a time. We could fix this later, but don't need to at the moment """ class NullSafeOrdinalEncoder(BaseEstimator, TransformerMixin): def __init__(self, strategy, categories='auto'): self.strategy = strategy self.categories = categories def fit(self, X, y=None): return self def transform(self, X): #Remove every row with a NaN value and get both the set with and without NaNs nullRemoved = X.dropna() nullOnly = X[~X.index.isin(nullRemoved.index)] #Create encoder for categories oe = OrdinalEncoder(self.categories) #Run the encoder on the safe (no NaN) data and store in a new DataFrame with same indexing encoded = pd.DataFrame(oe.fit_transform(nullRemoved), index=nullRemoved.index) #Concat the encoded data with the null-containing data result = pd.concat([encoded, nullOnly]) #Resort the keys or everything ends up out of order result.sort_index(inplace=True) #Fill the blanks and return the ndarray imputer = SimpleImputer(strategy=self.strategy) return imputer.fit_transform(result) """ Simple custom encoder for ordinals using a specific ordering where the categories don't follow a lexicographic ordering that can be automatically detected and give the desired result """ class MappedEncoder(BaseEstimator, TransformerMixin): def __init__(self, categories={}): self.categories = categories def fit(self, X, y=None): return self def transform(self, X): Z = pd.DataFrame() for column in X: Z[column] = X[column].map(self.categories) return Z.to_numpy() def getPipelines(scaler): stdNumPipeline = Pipeline([ ('imputer', SimpleImputer(strategy='median')), ('std_scaler', scaler), ]) stdCatPipeline = Pipeline([ ('encoder', NullSafeOrdinalEncoder(strategy='median')), ('std_scaler', scaler), ]) qualCatPipeline = Pipeline([ ('encoder', NullSafeOrdinalEncoder(strategy='median', categories=[[ 'No Formal quals', 'Lower Than A Level', 'A Level or Equivalent', 'HE Qualification', 'Post Graduate Qualification', ]])), ('std_scaler', scaler), ]) disCatPipeline = Pipeline([ ('encoder', NullSafeOrdinalEncoder(strategy='median', categories=[[ 'Y', 'N' ]])), ('std_scaler', scaler), ]) stdOutPipeline = Pipeline([ ('encoder', MappedEncoder(categories={'Distinction': 1, 'Pass': 1, 'Fail': 0})) ]) labelPipeline = ColumnTransformer([ ('stdOut', stdOutPipeline, ['final_result']), ]) featurePipeline = ColumnTransformer([ ('stdNum', stdNumPipeline, ['sum_click']), ('stdCat', stdCatPipeline, ['imd_band']), ('qualCat', qualCatPipeline, ['highest_education']), ]) return featurePipeline, labelPipeline def getFeaturesAndLabels(scaler, trainSet, testSet): featurePipeline, labelPipeline = getPipelines(scaler) """Run transforms on the features and labels of both sets. We need to flatten labels since most transforms return a numpy ndarray and we only want one column for labels""" trainSetFeatures = featurePipeline.fit_transform(trainSet) trainSetLabels = labelPipeline.fit_transform(trainSet).flatten() testSetFeatures = featurePipeline.fit_transform(testSet) testSetLabels = labelPipeline.fit_transform(testSet).flatten() return trainSetFeatures, trainSetLabels, testSetFeatures, testSetLabels print('Starting... Please wait while datasets are loaded\n') #Load the data studentVle = loadStudentDataCSV('studentVle') studentInfo = loadStudentDataCSV('studentInfo') dataPeek(studentInfo, ['imd_band', 'final_result']) print('\n') #Do some basic preprocessing such as merging and removing anything not of interest dataStore = getData(studentVle, studentInfo) #Look at some interesting features of the data dataAnalysis(dataStore) print('\n') #Split our training and test set in 80:20 ratio. Seed the random index generator trainSet, testSet = train_test_split(dataStore, test_size=0.2, random_state=42) trainSetFeatures, trainSetLabels, testSetFeatures, testSetLabels = getFeaturesAndLabels(StandardScaler(), trainSet, testSet) #Run a logistic classifier, then optimise it paramGrid = [{'penalty' : ['elasticnet'], 'C' : np.logspace(-4, 4, 20), 'solver' : ['saga'], 'l1_ratio': np.linspace(0, 1, 20)}] model(LogisticRegression(penalty='l1', solver='saga'), paramGrid, trainSetFeatures, trainSetLabels, testSetFeatures, testSetLabels, 'Logistic Classifier') #Use a different pipeline with a different scaler since we can get better performance with a RobustScaler for an SVC trainSetFeatures, trainSetLabels, testSetFeatures, testSetLabels = getFeaturesAndLabels(RobustScaler(), trainSet, testSet) #Run an SVC, then optimise it. THIS MAY TAKE A COUPLE OF MINUTES. Tested on a 4C/8T CPU paramGrid = [{'kernel': ['rbf'], 'gamma': [0.001, 0.0001], 'C': [1, 10, 100, 1000]}] model(SVC(gamma='auto'), paramGrid, trainSetFeatures, trainSetLabels, testSetFeatures, testSetLabels, 'SVC') #Cleanup just in case since the loaded data often remained in RAM for a while del studentVle del studentInfo ```
{ "source": "jfear/fly_tie", "score": 3 }
#### File: stringtie-wf/scripts/fastq_dump.py ```python from pathlib import Path from tempfile import TemporaryDirectory import pandas as pd from snakemake import shell # Objects passed in by snakemake srx = snakemake.wildcards.sample sampletable = pd.read_csv(snakemake.config['sampletable'], sep='\t', index_col=0) oname1 = snakemake.output.r1 oname2 = snakemake.output.r2 # Download in a tmpdir TMPDIR = TemporaryDirectory() def main(): srrs = get_srrs() fnames = [fastq_dump(srr) for srr in srrs] r1 = [read[0] for read in fnames] r2 = [read[1] for read in fnames] cat_files(r1, oname1) cat_files(r2, oname2) def get_srrs(): srrs = sampletable.loc[srx, 'Run'] if isinstance(srrs, str): return [srrs] return srrs.tolist() def fastq_dump(srr): shell( 'cd {TMPDIR.name} ' '&& fastq-dump ' '{srr} ' '--gzip ' '--split-files ' '&& touch {srr}_1.fastq.gz ' '&& touch {srr}_2.fastq.gz ' ) return f'{srr}_1.fastq.gz', f'{srr}_2.fastq.gz' def cat_files(fnames, oname): # remove file if it is there if Path(oname).exists(): shell('rm {oname}') # Iterate over FASTQs and concat for fname in fnames: shell('cat {TMPDIR.name}/{fname} >> {oname}') if __name__ == '__main__': main() ```
{ "source": "jfear/larval_gonad", "score": 3 }
#### File: larval_gonad/bin/make_tsne.py ```python import os import sys from pathlib import Path import string import pandas as pd import matplotlib.pyplot as plt import seaborn as sns # Project level imports from larval_gonad.plotting import TSNEPlot from larval_gonad.logging import logger REF = os.environ['REFERENCES_DIR'] plt.style.use(['common', 'paper-wide']) def sanitize_fname(fname): valid_chars = "-_.%s%s" % (string.ascii_letters, string.digits) return ''.join([x for x in fname if x in valid_chars]) def plot_gene(data, fbgn, symbol, output, **kwargs): symbol = sanitize_fname(symbol) fname = str(Path(output, f'{fbgn}_{symbol}.png')) if Path(fname).exists(): return df = data[['tSNE_1', 'tSNE_2', fbgn]] fig, (ax1, ax2) = plt.subplots(1, 2, gridspec_kw={'width_ratios': [1.3, 1]}) TSNEPlot(data=df, hue=fbgn, s=8, ax=ax1, title='Normalized Expression\n(Continuous)', **kwargs) try: base_color = kwargs['palette'][0] except KeyError: base_color = 'w' TSNEPlot(data=df, hue=df[fbgn] > 0, cmap={ '0': base_color, '1': 'k', }, s=8, ax=ax2, title='Normalized Expression\n(Binary)', **kwargs) fig.suptitle(f'{symbol} ({fbgn})') plt.tight_layout(rect=[0, 0, .9, .9]) plt.savefig(fname) plt.close() if __name__ == '__main__': # gene annotations fbgn2symbol = pd.read_csv( str(Path(REF, 'dmel/r6-16/fb_annotation/dmel_r6-16.fb_annotation')), sep='\t', usecols=['gene_symbol', 'primary_FBgn'], index_col='primary_FBgn' ).fillna('nan').to_dict()['gene_symbol'] # Colors colors = sns.color_palette('Reds') color2 = sns.color_palette('Greys') colors[0] = color2[1] # # testes1 # logger.info('Plotting Testes Rep 1') # FIGS = '../output/figures/testis1_tsne' # Path(FIGS).mkdir(exist_ok=True) # # DAT = '../output/testis1_scRNAseq' # tsne = pd.read_csv(Path(DAT, 'tsne.tsv'), sep='\t') # norm = pd.read_csv(Path(DAT, 'normalized_read_counts.tsv'), sep='\t') # data = tsne.join(norm.T) # # for fbgn in data.columns[2:]: # symbol = fbgn2symbol[fbgn] # plot_gene(data, fbgn, symbol, FIGS, palette=colors) # # # testes2 # logger.info('Plotting Testes Rep 2') # FIGS = '../output/figures/testis2_tsne' # Path(FIGS).mkdir(exist_ok=True) # # DAT = '../output/testis2_scRNAseq' # tsne = pd.read_csv(Path(DAT, 'tsne.tsv'), sep='\t') # norm = pd.read_csv(Path(DAT, 'normalized_read_counts.tsv'), sep='\t') # data = tsne.join(norm.T) # # for fbgn in data.columns[2:]: # symbol = fbgn2symbol[fbgn] # plot_gene(data, fbgn, symbol, FIGS, palette=colors) # # # testes3 # logger.info('Plotting Testes Rep 3') # FIGS = '../output/figures/testis3_tsne' # Path(FIGS).mkdir(exist_ok=True) # # DAT = '../output/testis3_scRNAseq' # tsne = pd.read_csv(Path(DAT, 'tsne.tsv'), sep='\t') # norm = pd.read_csv(Path(DAT, 'normalized_read_counts.tsv'), sep='\t') # data = tsne.join(norm.T) # # for fbgn in data.columns[2:]: # symbol = fbgn2symbol[fbgn] # plot_gene(data, fbgn, symbol, FIGS, palette=colors) # # # ovary1 # logger.info('Plotting Ovary Rep 1') # FIGS = '../output/figures/ovary1_tsne' # Path(FIGS).mkdir(exist_ok=True) # # DAT = '../output/ovary1_scRNAseq' # tsne = pd.read_csv(Path(DAT, 'tsne.tsv'), sep='\t') # norm = pd.read_csv(Path(DAT, 'normalized_read_counts.tsv'), sep='\t') # data = tsne.join(norm.T) # # for fbgn in data.columns[2:]: # symbol = fbgn2symbol[fbgn] # plot_gene(data, fbgn, symbol, FIGS, palette=colors) # # # ovary2 # logger.info('Plotting Ovary Rep 2') # FIGS = '../output/figures/ovary2_tsne' # Path(FIGS).mkdir(exist_ok=True) # # DAT = '../output/ovary2_scRNAseq' # tsne = pd.read_csv(Path(DAT, 'tsne.tsv'), sep='\t') # norm = pd.read_csv(Path(DAT, 'normalized_read_counts.tsv'), sep='\t') # data = tsne.join(norm.T) # # for fbgn in data.columns[2:]: # symbol = fbgn2symbol[fbgn] # plot_gene(data, fbgn, symbol, FIGS, palette=colors) # # # ovary3 # logger.info('Plotting Ovary Rep 3') # FIGS = '../output/figures/ovary3_tsne' # Path(FIGS).mkdir(exist_ok=True) # # DAT = '../output/ovary3_scRNAseq' # tsne = pd.read_csv(Path(DAT, 'tsne.tsv'), sep='\t') # norm = pd.read_csv(Path(DAT, 'normalized_read_counts.tsv'), sep='\t') # data = tsne.join(norm.T) # # for fbgn in data.columns[2:]: # symbol = fbgn2symbol[fbgn] # plot_gene(data, fbgn, symbol, FIGS, palette=colors) # # combined logger.info('Plotting Combined') FIGS = '../output/figures/combined_tsne_force_png' Path(FIGS).mkdir(exist_ok=True) DAT = '../output/scrnaseq_combine_force' tsne = pd.read_csv(Path(DAT, 'tsne.tsv'), sep='\t') norm = pd.read_csv(Path(DAT, 'normalized_read_counts.tsv'), sep='\t') data = tsne.join(norm.T) for fbgn in data.columns[2:]: symbol = fbgn2symbol[fbgn] plot_gene(data, fbgn, symbol, FIGS, palette=colors) ``` #### File: bulk-rnaseq-wf/scripts/plot_demas_x_and_4th.py ```python import os import pandas as pd import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt import seaborn as sns from larval_gonad.io import shelve_load from larval_gonad.plotting.stats import add_pvals from larval_gonad.plotting.demasculinization import demasculinization def main(): db = shelve_load(snakemake.input[0]) df = db["data"] male = db["male_qval"].fillna(1) # If p-vals are NaN set to 1 # Change female Y location to come from top. female = db["female_qval"].fillna(1) female.y = 1 - female.y fig, ax = plt.subplots(figsize=plt.figaspect(2)) demasculinization(df, ax=ax, title=f"larval (GO)", color=snakemake.params.colors) add_pvals(male.x.values, male.y.values, male['q-value'].values, ax) add_pvals(female.x.values, female.y.values, female['q-value'].values, ax) plt.savefig(snakemake.output[0]) if __name__ == "__main__": if os.getenv("SNAKE_DEBUG", False): from larval_gonad.debug import snakemake_debug snakemake = snakemake_debug( workdir="bulk-rnaseq-wf", input="../output/bulk-rnaseq-wf/testis_bias_by_muller_x_and_4th.dat", params=dict(colors=["blue", "lightgray", "red"]), ) plt.style.use("../config/figure_styles.mplstyle") main() ``` #### File: cellselection-wf/scripts/raw_expression_matrix.py ```python from pathlib import Path import pandas as pd import scipy.io INPUT_FILES = snakemake.input OUTPUT_FILE = snakemake.output[0] def main(): df = pd.concat((create_matrix(mtx) for mtx in INPUT_FILES), axis=1) df.reset_index().to_feather(OUTPUT_FILE) def create_matrix(mtx): genes = pd.read_csv( Path(mtx).parent / "genes.tsv", sep="\t", header=None, index_col=0 ).index genes.name = "FBgn" barcodes = pd.read_csv( Path(mtx).parent / "barcodes.tsv", sep="\t", header=None, index_col=0 ).index barcodes.name = "cell_id" matrix = scipy.io.mmread(mtx) return pd.DataFrame(matrix.todense(), index=genes, columns=barcodes) if __name__ == "__main__": main() ``` #### File: expression-atlas-wf/scripts/dmel_tau_housekeeping.py ```python import os from functools import partial import pandas as pd from larval_gonad.io import pickle_load, pickle_dump def main(): # Load mapping of YOgn to FBgn annot = pickle_load(snakemake.input.annot[0]) pickle_dump(intersect_fbgns(snakemake.input.male, annot), snakemake.output.male) pickle_dump(intersect_fbgns(snakemake.input.female, annot), snakemake.output.female) def intersect_fbgns(file_names, annot): return list(set.intersection(*list(map(partial(convert_to_fbgn, annot=annot), file_names)))) def convert_to_fbgn(file_name, annot): return set( [ fbgn for fbgn in map(lambda x: annot.get(x, None), pickle_load(file_name)) if fbgn is not None ] ) if __name__ == "__main__": if os.getenv("SNAKE_DEBUG", False): from larval_gonad.debug import snakemake_debug snakemake = snakemake_debug( workdir="expression-atlas-wf", input=dict( male=[ "../output/expression-atlas-wf/tau_housekeeping/w1118_male.pkl", "../output/expression-atlas-wf/tau_housekeeping/orgR_male.pkl", ], female=[ "../output/expression-atlas-wf/tau_housekeeping/w1118_female.pkl", "../output/expression-atlas-wf/tau_housekeeping/orgR_female.pkl", ], annot="../output/expression-atlas-wf/YOgn_to_dmel_ortholog/dmel.pkl", ), ) main() ``` #### File: expression-atlas-wf/scripts/FBgn_to_muller.py ```python import os import pandas as pd from larval_gonad.io import pickle_load, pickle_dump def main(): muller = pickle_load(snakemake.input.muller) ortholog = pickle_load(snakemake.input.ortholog) dat = pd.Series({ ortholog[k]: v for k, v in muller.items() if k in ortholog }, name=snakemake.wildcards.species) dat.index.name = "FBgn" dat.to_pickle(snakemake.output[0]) if __name__ == '__main__': if os.getenv('SNAKE_DEBUG', False): from larval_gonad.debug import snakemake_debug snakemake = snakemake_debug( workdir='expression-atlas-wf', input=dict( muller="../output/expression-atlas-wf/YOgn_to_muller/dmel.pkl", ortholog="../output/expression-atlas-wf/YOgn_to_dmel_ortholog/dmel.pkl" ), wildcards=dict(species="dmel") ) main() ``` #### File: expression-atlas-wf/scripts/sex_bias_by_muller_all_genes.py ```python import os import pandas as pd from larval_gonad.io import pickle_load, shelve_dump from larval_gonad.stats import run_chisq def main(): deg = read_deg(snakemake.input.deg, float(snakemake.params.alpha)) bias_counts_by_muller = count_by_muller(snakemake.input.muller, deg) muller_proportions = calc_proprotions(bias_counts_by_muller) enrichment = enrichment_analysis(bias_counts_by_muller) # Pull out q-values with locations for easy plotting. male_qval = pull_out_qval(enrichment, muller_proportions, "male") female_qval = pull_out_qval(enrichment, muller_proportions, "female") shelve_dump( snakemake.output[0], data=muller_proportions, male_qval=male_qval, female_qval=female_qval ) def read_deg(file_deg: str, alpha: float = 0.01) -> pd.DataFrame: """Read deg and make bias flags. Make a flag for male, female, and NS. """ deg = pd.read_csv(file_deg, sep="\t").set_index("YOgn").fillna(1).assign(bias="NS") sig_mask = deg.padj <= alpha deg.loc[sig_mask & (deg.log2FoldChange > 0), "bias"] = "male" deg.loc[sig_mask & (deg.log2FoldChange < 0), "bias"] = "female" return deg def count_by_muller(file_muller: str, deg: pd.DataFrame) -> pd.DataFrame: # Read muller element yo2muller = pd.Series(pickle_load(file_muller), name="muller").rename_axis("YOgn") # Merge and count Male/Female/NS by muller return ( deg.join(yo2muller, how="outer") .assign(bias=lambda df: df.bias.fillna("NS")) .groupby("muller") .bias.value_counts() .unstack() .fillna(0) .loc[["A", "B", "C", "D", "E", "F"], ["male", "female", "NS"]] ) def calc_proprotions(counts_by_muller: pd.DataFrame) -> pd.DataFrame: col_order = ["male", "NS", "female"] return counts_by_muller.pipe(lambda x: x.div(x.sum(axis=1), axis=0)).loc[:, col_order] def enrichment_analysis(counts_by_muller: pd.DataFrame) -> pd.DataFrame: return ( run_chisq(counts_by_muller.T) .loc[(["male", "female"], "fdr q-value"), :] .droplevel("type") .T ) def pull_out_qval(enrichment: pd.DataFrame, proportions: pd.DataFrame, sex: str): return ( enrichment[sex] .rename("q-value") .to_frame() .assign(x=lambda x: range(x.shape[0])) .join(proportions[sex].rename("y")) ) if __name__ == "__main__": if os.getenv("SNAKE_DEBUG", False): from larval_gonad.debug import snakemake_debug snakemake = snakemake_debug( workdir="expression-atlas-wf", input={ "muller": "../output/expression-atlas-wf/YOgn_to_muller/dmel.pkl", "deg": "../output/expression-atlas-wf/sex_biased_expression/orgR_AC.tsv", }, params=dict(alpha=0.01), ) main() ``` #### File: expression-atlas-wf/scripts/tau_housekeeping_yogns.py ```python import os import pandas as pd import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt from larval_gonad.io import pickle_dump def main(): tau = pd.read_feather(snakemake.input[0]).set_index("YOgn").dropna(how="all") # Plot distribution ax = tau.plot.kde() ax.axvline(snakemake.params[0], color="k", ls="--") ax.set(xlim=(-1.5, 1.5)) plt.savefig(snakemake.output.svg) # Housekeeping genes flag_housekeeping = tau.fillna(999) <= snakemake.params[0] # Save list of housekeeping genes pickle_dump(flag_housekeeping[flag_housekeeping.male].index.tolist(), snakemake.output.male) pickle_dump(flag_housekeeping[flag_housekeeping.female].index.tolist(), snakemake.output.female) if __name__ == "__main__": if os.getenv("SNAKE_DEBUG", False): from larval_gonad.debug import snakemake_debug snakemake = snakemake_debug( workdir="expression-atlas-wf", input="../output/expression-atlas-wf/tau/w1118.feather", params=0.5, ) main() ``` #### File: fish-wf/scripts/fish_sphere_boxplot.py ```python import os import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from matplotlib.collections import LineCollection import matplotlib.pyplot as plt from scipy.stats import ttest_rel from larval_gonad import plotting def main(): plt.style.use(["1c", "science_base"]) width = plt.rcParams["figure.figsize"][0] plt.rcParams["figure.figsize"] = (width, width) sphere = pd.read_csv(snakemake.input[0]) ax = sns.boxplot( "chrom", "um3", data=sphere.melt(var_name="chrom", value_name="um3"), palette=snakemake.params.colors, notch=True ) # Clean up plot ax.set(ylabel=r"$\Psi$", xlabel="") sns.despine(ax=ax) # Test that not significant pval = np.round(ttest_rel(sphere["X"], sphere["2L"])[1], 3) if pval <= 0.05: # Extend axis and add NS. _max = sphere.max().max() + 0.05 ax.set_ylim(None, _max) ax.text(0.5, 0.99, f"p = {pval}", transform=ax.transAxes, va="top", ha="center") l = plt.Line2D([0.3, 0.7], [0.94, 0.94], transform=ax.transAxes, color="k", lw=0.8, ls="-") ax.add_line(l) plt.savefig(snakemake.output[0]) if __name__ == "__main__": if os.getenv("SNAKE_DEBUG", False): from larval_gonad.debug import snakemake_debug snakemake = snakemake_debug( workdir="fish-wf", input="../data/external/miriam/oligopaint_sphere.csv", params=dict(colors=["red", "grey"]), ) main() ``` #### File: fish-wf/scripts/fish_volume_boxplot.py ```python import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from scipy.stats import ttest_rel import larval_gonad.plotting # pylint: disable=unused-import plt.style.use("minimal") BOXPLOT_KWS = dict(order=["X", "2L"], palette=snakemake.params.colors, notch=True) def main(): volume = pd.read_csv(snakemake.input[0]) stacked = pd.concat( [ stack_data("X", "2L", volume, "um3"), stack_data("X_scaled_probe", "2L_scaled_probe", volume, "um3_scaled_probe"), stack_data( "X_scaled_probe_count", "2L_scaled_probe_count", volume, "um3_scaled_probe_count", ), ], ignore_index=True, ) pvals = pd.concat( [ run_stats("X", "2L", volume, "um3"), run_stats("X_scaled_probe", "2L_scaled_probe", volume, "um3_scaled_probe"), run_stats( "X_scaled_probe_count", "2L_scaled_probe_count", volume, "um3_scaled_probe_count", ), ], ignore_index=True, ) g = sns.FacetGrid(stacked, col="metric", sharey=False) g.map(sns.boxplot, "chrom", "volume", **BOXPLOT_KWS) g.set_titles("{col_name}") g.set_xlabels("") add_pvals(g, pvals) plt.savefig(snakemake.output[0]) def stack_data(c1: str, c2: str, df: pd.DataFrame, name: str) -> pd.DataFrame: _df = df[[c1, c2]] _df.columns = ["X" if col.startswith("X") else "2L" for col in _df.columns] return _df.melt(var_name="chrom", value_name="volume").assign(metric=name) def run_stats(c1: str, c2: str, df: pd.DataFrame, name: str) -> pd.DataFrame: base_mean = df[[c1, c2]].sum().sum() / df.values.ravel().size lfc = np.log2(df[c1].mean() / df[c2].mean()) pval = ttest_rel(df[c1], df[c2])[1] return pd.DataFrame( { "metric": [name], "baseMean": [base_mean], "log2FoldChange": [lfc], "p_value": [pval], } ) def add_pvals(g: sns.FacetGrid, pvals: pd.DataFrame): for ax in g.axes.flat: metric = ax.get_title() pval = pvals.query("metric == @metric")["p_value"].values[0] if pval <= 0.05: # Extend axis and add p-value. _, _max = ax.get_ylim() ax.set_ylim(None, _max + (0.05 * _max)) ax.text( 0.5, 0.99, f"p = {pval:0.4f}", transform=ax.transAxes, va="center", ha="center", ) l = plt.Line2D( [0.3, 0.7], [0.93, 0.93], transform=ax.transAxes, color="k", lw=0.9, ls="-", ) ax.add_line(l) if __name__ == "__main__": main() ``` #### File: larval_gonad/notebook/2019-07-05_table_for_galletta.py ```python import os import yaml import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from larval_gonad.normalization import tpm as lgTPM from larval_gonad.normalization import rpkm as lgRPKM os.chdir('notebook') #%% [markdown] # ## Making outputs for <NAME> # # Brian asked for an update from the latest iteration for his paper. Here I make all # of the different outputs that he has asked for. Including: # # * Updated tSNE and UMAP plots (SVGs) # * Update TPM and RPKM aggregated to cluster level (excel workbook) # * Differential expression results (excel workbook) #%% fbgn2symbol = ( pd.read_feather('../references/gene_annotation_dmel_r6-26.feather', columns=['FBgn', 'gene_symbol']) .set_index('FBgn').squeeze() ) # Brian's Target Gene List brians_list = pd.read_csv('../data/external/galletta/trail_list_20190705.txt', sep='\t').FBGN.tolist() #%% [markdown] # ## Normalized Read Counts #%% ## TPM By Cluster def make_tpm(): fbgn2length = pd.read_feather('../references/gene_annotation_dmel_r6-26.feather', columns=['FBgn', 'length']).set_index('FBgn').squeeze() raw = ( pd.read_feather('../output/paper_submission/raw_by_cluster_rep.feather') .groupby(['FBgn', 'cluster']).sum() .squeeze() .unstack(level='cluster') ) tpm = lgRPKM(raw, fbgn2length).dropna() tpm.index = fbgn2symbol.reindex(tpm.index).to_frame().set_index('gene_symbol', append=True).index return tpm tpm = make_tpm() ## RPKM By Cluster def make_rpkm(): fbgn2length = pd.read_feather('../references/gene_annotation_dmel_r6-26.feather', columns=['FBgn', 'length']).set_index('FBgn').squeeze() raw = ( pd.read_feather('../output/paper_submission/raw_by_cluster_rep.feather') .groupby(['FBgn', 'cluster']).sum() .squeeze() .unstack(level='cluster') ) rpkm = lgRPKM(raw, fbgn2length).dropna() rpkm.index = fbgn2symbol.reindex(rpkm.index).to_frame().set_index('gene_symbol', append=True).index return rpkm rpkm = make_rpkm() # Save to excel with pd.ExcelWriter('../output/notebook/2019-07-05_table_for_galletta.xlsx') as writer: # Full TPM tpm.to_excel(writer, sheet_name='TPM') # Brian's Genes TPM tpm.query(f'FBgn == {brians_list}').to_excel(writer, sheet_name='TPM (Genes of Interest)') # Full TPM rpkm.to_excel(writer, sheet_name='RPKM') # Brian's Genes TPM rpkm.query(f'FBgn == {brians_list}').to_excel(writer, sheet_name='RPKM (Genes of Interest)') #%% [markdown] # ## Differential Expression #%% ## Gonia vs Primary Spermatocytes gvc = ( pd.read_feather('../output/seurat3-cluster-wf/combined_n3_gonia_vs_cytes.feather') .set_index(['FBgn', 'gene_symbol']) # .query('p_val_adj <= 0.01') .sort_values('avg_logFC') ) gvc['direction up regulated'] = 'SP' gvc.loc[gvc['avg_logFC'] < 0, 'direction up regulated'] = 'EPS|PS1|PS2|PS3' gvc.loc[gvc['p_val_adj'] > 0.01, 'direction up regulated'] = 'NS' ## Gonia vs Early Primary Spermatocytes gve = ( pd.read_feather('../output/seurat3-cluster-wf/combined_n3_gonia_vs_eps.feather') .set_index(['FBgn', 'gene_symbol']) .sort_values('avg_logFC') ) gve['direction up regulated'] = 'SP' gve.loc[gve['avg_logFC'] < 0, 'direction up regulated'] = 'EPS' gve.loc[gve['p_val_adj'] > 0.01, 'direction up regulated'] = 'NS' ## Early Primary Spermatocytes vs Later Primary Spermatocytes evp = ( pd.read_feather('../output/seurat3-cluster-wf/combined_n3_eps_vs_ps.feather') .set_index(['FBgn', 'gene_symbol']) .sort_values('avg_logFC') ) evp['direction up regulated'] = 'EPS' evp.loc[evp['avg_logFC'] < 0, 'direction up regulated'] = 'PS1|PS2|PS3' evp.loc[evp['p_val_adj'] > 0.01, 'direction up regulated'] = 'NS' # Save to excel with pd.ExcelWriter('../output/notebook/2019-07-05_table_for_galletta_diff_expression.xlsx') as writer: # G vs Cytes gvc.query(f'FBgn == {brians_list}').to_excel(writer, sheet_name='SP vs Primary Spermatocytes') # G vs Early Primary Spermatocytes gve.query(f'FBgn == {brians_list}').to_excel(writer, sheet_name='S vs EPS') # Early Primary Spermatocytes vs Later Primary Spermatocytes evp.query(f'FBgn == {brians_list}').to_excel(writer, sheet_name='EPS vs PS1|PS2|PS3') #%% [markdown] # ## Plots #%% # Get colors scheme config = yaml.safe_load(open('../config/common.yaml')) cluster_annot = config['cluster_annot'] cluster_order = config['cluster_order'] colors = dict(zip(cluster_order, yaml.full_load(open('../config/colors.yaml'))['clusters'])) # Get cell id to cluster id cell_annotation = ( pd.read_feather('../output/seurat3-cluster-wf/combined_n3_metadata.feather', columns=['cell_id', 'cluster']).set_index('cell_id') .assign(cluster=lambda df: df.cluster.cat.rename_categories(cluster_annot)) .assign(cluster=lambda df: df.cluster.cat.reorder_categories(cluster_order)) .squeeze() ) #%% [markdown] # ### UMAP #%% umap = ( pd.read_feather('../output/seurat3-cluster-wf/combined_n3_umap.feather').set_index('cell_id') .join(cell_annotation) .assign(color=lambda df: df.cluster.map(colors)) ) fig, ax = plt.subplots(figsize=(8, 8)) ax.scatter( umap.UMAP_1, umap.UMAP_2, c=umap.color, s=3, linewidth=0.02, edgecolor="k", rasterized=True ) for clus, row in umap.groupby("cluster").agg({"UMAP_1": "mean", "UMAP_2": "mean"}).iterrows(): ax.text( row.UMAP_1, row.UMAP_2, clus, bbox=dict(facecolor=(1, 1, 1, 0.8), edgecolor="none", pad=0.2), ha="center", va="center", fontweight="bold", ) # clean up plot plt.setp( ax, xlabel="UMAP 1", ylabel="UMAP 2", aspect="equal", xmargin=0, ymargin=0, ) plt.savefig('../output/notebook/2019-07-05_table_for_galletta_umap.svg', bbox_inches='tight') #%% [markdown] # ### tSNE #%% tsne = ( pd.read_feather('../output/notebook/2019-07-05_output_tsne.feather').set_index('cell_id') .join(cell_annotation) .assign(color=lambda df: df.cluster.map(colors)) ) fig, ax = plt.subplots(figsize=(8, 8)) ax.scatter( tsne.tSNE_1, tsne.tSNE_2, c=tsne.color, s=3, linewidth=0.02, edgecolor="k", rasterized=True ) for clus, row in tsne.groupby("cluster").agg({"tSNE_1": "mean", "tSNE_2": "mean"}).iterrows(): ax.text( row.tSNE_1, row.tSNE_2, clus, bbox=dict(facecolor=(1, 1, 1, 0.8), edgecolor="none", pad=0.2), ha="center", va="center", fontweight="bold", ) # clean up plot plt.setp( ax, xlabel="tSNE 1", ylabel="tSNE 2", aspect="equal", xmargin=0, ymargin=0, ) plt.savefig('../output/notebook/2019-07-05_table_for_galletta_tsne.svg', bbox_inches='tight') ```
{ "source": "jfear/larval_gonad_ovary", "score": 3 }
#### File: larval_gonad_ovary/larval_gonad_ovary/bulk.py ```python from pathlib import Path import pandas as pd from scipy.stats import spearmanr import seaborn as sns import matplotlib.pyplot as plt from lcdblib.plotting import maPlot, PairGrid, corrfunc from .cell_selection import filter_gene_counts_by_barcode BULK = [ 'B9_OCP', 'B10_OCP', 'B11_OCP', 'B12_OCP', ] def read_bulk(path, filter=None, pattern='*/*.featurecounts.txt'): """Read in a folder of feature count data. Using the lcdb-wf, featurecounts are organized in a set of sub-folders for each sample. Given a path will read in the data and return a dataframe. Optionally a list of sample names can be given to filter by. Parameters ---------- path : str Directory path to output from the lcdb-wf. filter : None | list List of sample names to include. Defaults to use the TCP libraries. pattern : str Glob pattern for finding the featurecounts files. Example ------- >>> df = read_build('../bulk-rnaseq-wf/data/rnaseq_samples', filter=['B5_TCP', 'B6_TCP']) """ bulk = Path(path) dfs = [] for fname in bulk.glob(pattern): sname = fname.parent.name if (filter is not None) & (sname in filter): dat = pd.read_csv(fname, sep='\t', comment='#', index_col=[0]).iloc[:, -1] dat.name = sname dfs.append(dat) bulk_dat = pd.concat(dfs, axis=1) bulk_dat = bulk_dat[bulk_dat.columns.sort_values()] return bulk_dat def read_bulk_for_lengths(path, filter=None, pattern='*/*.featurecounts.txt'): """Read in a folder of feature count data to get gene lengths. Using the lcdb-wf, featurecounts are organized in a set of sub-folders for each sample. Given a path will read in the data and return a dataframe. Optionally a list of sample names can be given to filter by. Parameters ---------- path : str Directory path to output from the lcdb-wf. filter : None | list List of sample names to include. Defaults to use the TCP libraries. pattern : str Glob pattern for finding the featurecounts files. Example ------- >>> df = read_build('../bulk-rnaseq-wf/data/rnaseq_samples', filter=['B5_TCP', 'B6_TCP']) """ bulk = Path(path) dfs = [] for fname in bulk.glob(pattern): sname = fname.parent.name if (filter is not None) & (sname in filter): dat = pd.read_csv(fname, sep='\t', comment='#', index_col=[0]).iloc[:, -2] dat.name = 'length' dfs.append(dat) bulk_dat = pd.concat(dfs, axis=0) return bulk_dat.to_frame().reset_index().drop_duplicates().set_index('Geneid').length def plot_bulk_pairwise_corr(bulk_dat, subplots_kws=None, scatter_kws=None, corrfunc_kws=None): """Plot a pairgrid of RNA-seq data. The upper triangle is the scatter plot and spearman correlation. The lower triangle is a common MA-Plot. The diagonal is the density. bulk_dat : pd.DataFrame DataFrame with RNA-seq data (genes, samples) """ if subplots_kws is None: subplots_kws = {} if scatter_kws is None: scatter_kws = {} if corrfunc_kws is None: corrfunc_kws = {} subplots_default = { 'sharex': False, 'sharey': False } subplots_default.update(subplots_kws) scatter_default = { 's': 10 } scatter_default.update(scatter_kws) corrfunc_default = { } corrfunc_default.update(corrfunc_kws) g = PairGrid(bulk_dat, subplots_kws=subplots_default) g.map_lower(maPlot, scatter_kws=scatter_default) g.map_upper(plt.scatter, **scatter_default) g.map_upper(corrfunc, **corrfunc_default) g.map_diag(sns.kdeplot) return g def scRNAseq_corr_distribution(umi, raw, bulk_dat, start=200, interval=100, stop=10000): """Calculate the correlation distribution between scRNASeq and Bulk. Iterate by intervals of cells and calculate the correlation of summed scRNASeq vs Bulk RNA-Seq. Parameters ---------- umi : pd.DataFrame DataFrame of UMI counts by Cell (tidy) raw : CellRangerCounts A named tuple of CellRangerCounts. bulk_dat : pd.DataFrame DataFrame of bulk RNA-seq data (genes, samples) start : int Number of cells to start with [default 200] interval : int Number of cells to add each iteration [default 100] stop : int Number of cells to stop at [default 10,000] Returns ------- pd.DataFrame Rows are the number of UMI sorted cells. Columns are Bulk RNASeq samples. Values are Spearman r coefficients. """ _umi = umi.sort_values(by='umi_count', ascending=False) res = [] loc = start while loc < stop: dat = filter_gene_counts_by_barcode(_umi.index[:loc], raw).sum(axis=1) corrs = [] for col in bulk_dat.columns: corrs.append(spearmanr(bulk_dat[col], dat).correlation) res.append([loc, *corrs]) loc += interval col_names = ['Cell Number'] col_names.extend(bulk_dat.columns) df = pd.DataFrame(res, columns=col_names) return df.set_index('Cell Number') def plot_corr_distribution(corr): fig, axes = plt.subplots(2, 2, sharex=True) for col, ax in zip(corr.columns, axes.flatten()): ax.plot(corr[col]) ax.set_title(col) ax.set_ylabel('Spearman r') ax.set_xlabel('Cells') plt.tight_layout() def scRNAseq_corr_distribution_random(umi, raw, bulk_dat, interval=100, stop=10000, random_state=42): """Calculate the correlation distribution between scRNASeq and Bulk. Iterate by intervals of cells and calculate the correlation of summed scRNASeq vs Bulk RNA-Seq. Parameters ---------- umi : pd.DataFrame DataFrame of UMI counts by Cell (tidy) raw : CellRangerCounts A named tuple of CellRangerCounts. bulk_dat : pd.DataFrame DataFrame of bulk RNA-seq data (genes, samples) interval : int Number of cells to add each iteration [default 100] stop : int Number of cells to stop at [default 10,000] random_state : None | int Random state to use for sampling. Set to None if you want full random with each iteration. Returns ------- pd.DataFrame Rows are the number of UMI sorted cells. Columns are Bulk RNASeq samples. Values are Spearman r coefficients. """ res = [] loc = interval while loc < stop: idx = umi.sample(n=loc, random_state=random_state).index dat = filter_gene_counts_by_barcode(idx, raw).sum(axis=1) corrs = [] for col in bulk_dat.columns: corrs.append(spearmanr(bulk_dat[col], dat).correlation) res.append([loc, *corrs]) loc += interval col_names = ['Cell Number'] col_names.extend(bulk_dat.columns) df = pd.DataFrame(res, columns=col_names) return df.set_index('Cell Number') ```
{ "source": "jfear/larval_gonad", "score": 2 }
#### File: paper_submission/scripts/correlation_table_bulk_sum_single_cell_pvals.py ```python import os import pandas as pd from scipy.stats import spearmanr from larval_gonad.normalization import tpm from larval_gonad.constants import L3_BULK, L3_SC def main(): df = pd.concat( [read_l3_sc(), read_l3_bulk()], sort=True, axis=1, join="inner" ) # type: pd.DataFrame _, pval = spearmanr(df.values, axis=0) pd.DataFrame(pval, index=df.columns, columns=df.columns).rename_axis("Spearman pval").to_csv( snakemake.output[0], sep="\t" ) def read_l3_sc() -> pd.DataFrame: gene_lengths = pd.read_feather(snakemake.input.gene_annot).set_index("FBgn")["length"].squeeze() raw = ( pd.read_feather(snakemake.input.larval_scrnaseq) .groupby(["FBgn", "rep"]) .Count.sum() .unstack() .rename(columns=L3_SC) ) norm = tpm(raw, gene_lengths).dropna() return norm def read_l3_bulk() -> pd.DataFrame: return ( pd.read_csv(snakemake.input.larval_bulk, sep="\t", index_col=0) .rename_axis("FBgn") .rename(columns=L3_BULK) ) if __name__ == "__main__": if os.getenv("SNAKE_DEBUG", False): from larval_gonad.debug import snakemake_debug snakemake = snakemake_debug( input=dict( gene_annot="../../references/gene_annotation_dmel_r6-26.feather", larval_scrnaseq="../../output/seurat3-cluster-wf/aggegated_gene_counts.feather", larval_bulk="../../output/bulk-rnaseq-wf/rnaseq_aggregation/tpm_gene_level_counts.tsv", ) ) main() ``` #### File: paper_submission/scripts/plot_autosome_ratios.py ```python from string import ascii_uppercase from typing import List import joblib import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from larval_gonad.io import shelve_load from larval_gonad.plotting.stats import add_pvals plt.style.use(["2c", "science_base"]) def main(): df = ( load_genes() .pipe(add_gene_set_annotation) .pipe(add_total_expression) .pipe(add_y_expression) .pipe(add_ratios, snakemake.input.expressed_ratios, "All Genes") .pipe( add_ratios, snakemake.input.widely_expressed_ratios, "Widely Expressed Genes", ) .pipe(tidy) ) g = sns.FacetGrid( df, row="row", col="gene_set", col_order=["All Genes", "Widely Expressed Genes"], sharey="row", sharex=True, aspect=1.2, gridspec_kws=dict(wspace=0.15), ) g.map( sns.boxplot, "cluster", "value", order=snakemake.params.cluster_order, palette=snakemake.params.cluster_color, notch=True, linewidth=0.5, showfliers=False, ) tweak_axes(g) add_x_stats(g.axes[1]) add_4th_stats(g.axes[2]) add_y_stats(g.axes[3]) g.savefig(snakemake.output[0]) def load_genes() -> pd.DataFrame: return pd.read_feather( snakemake.input.gene_annot, columns=["FBgn", "FB_chrom"] ).rename(columns={"FB_chrom": "chrom"}) def add_gene_set_annotation(df: pd.DataFrame) -> pd.DataFrame: expressed = joblib.load(snakemake.input.expressed_fbgns) widely_expressed = joblib.load(snakemake.input.widely_expressed_fbgns) return pd.concat( [ (df.query("FBgn in @expressed").assign(gene_set="All Genes")), ( df.query("FBgn in @widely_expressed").assign( gene_set="Widely Expressed Genes" ) ), ], ignore_index=True, sort=False, ) def _load_log_tpm() -> pd.DataFrame: return np.log10( pd.read_feather(snakemake.input.tpm).set_index(["FBgn", "cluster"]).squeeze() + 1 ).reset_index() def add_total_expression(df: pd.DataFrame) -> pd.DataFrame: tpm = _load_log_tpm().rename(columns={"TPM": "Total Expression\nLog(TPM)"}) return df.merge(tpm, on="FBgn", how="outer") def add_y_expression(df: pd.DataFrame) -> pd.DataFrame: y_genes = ( pd.read_feather(snakemake.input.gene_annot, columns=["FBgn", "FB_chrom"]) .query("FB_chrom == 'Y'") .FBgn.to_list() ) tpm = ( _load_log_tpm() .query("FBgn in @y_genes") .rename(columns={"TPM": "Y Expression\nLog(TPM)"}) ) return df.merge(tpm, on=["FBgn", "cluster"], how="outer") def add_ratios(df: pd.DataFrame, gene_set_db, gene_set_name) -> pd.DataFrame: ratios = ( shelve_load(gene_set_db)["data"] .query("ratio_type != 'y_to_a_ratio'") .reset_index() .drop("rep", axis=1) .set_index(["cell_id", "cluster", "ratio_type"]) .squeeze() .unstack() .reset_index() .rename(columns={"x_to_a_ratio": "X/AA", "fourth_to_a_ratio": "44/AA"}) .assign(gene_set=gene_set_name) ) return pd.concat([df, ratios], ignore_index=True, sort=False) def tidy(df: pd.DataFrame) -> pd.DataFrame: return pd.melt( df, id_vars=["gene_set", "cluster"], value_vars=[ "Total Expression\nLog(TPM)", "X/AA", "44/AA", "Y Expression\nLog(TPM)", ], var_name="row", value_name="value", ).dropna() def tweak_axes(g: sns.FacetGrid): g.set_titles("{col_name}") g.set_xlabels("") # Make Row Name the y-axis Label for row_name, row in zip(g.row_names, g.axes): row[0].set_ylabel(row_name) for label, ax in zip(ascii_uppercase, g.axes.ravel()): ax.text( 0.01, 1, label, ha="left", va="top", transform=ax.transAxes, fontweight="bold", fontsize=12, ) def _add_horizontal_line(axes: List[plt.Axes], loc: float): for ax in axes: ax.axhline(loc, color="gray", ls="--") def _add_ratio_pvalues(shelve: str, ratio_type: str, ax: plt.Axes): pvals = shelve_load(shelve)["pvalues"].query("ratio_type == @ratio_type") add_pvals(pvals.x, pvals.y, pvals.pvalue, ax, fontsize=12, fontweight="bold") def add_x_stats(axes: List[plt.Axes]): _add_ratio_pvalues(snakemake.input.expressed_ratios, "x_to_a_ratio", axes[0]) _add_ratio_pvalues(snakemake.input.widely_expressed_ratios, "x_to_a_ratio", axes[1]) _add_horizontal_line(axes, 1) def add_4th_stats(axes: List[plt.Axes]): _add_ratio_pvalues(snakemake.input.expressed_ratios, "fourth_to_a_ratio", axes[0]) _add_ratio_pvalues( snakemake.input.widely_expressed_ratios, "fourth_to_a_ratio", axes[1] ) _add_horizontal_line(axes, 1) def add_y_stats(axes: List[plt.Axes]): # From: notebook/2020-01-03-y_stats.ipynb add_pvals([1], [1.45], [0.0017], axes[0], fontsize=12, fontweight="bold") if __name__ == "__main__": main() ``` #### File: paper_submission/scripts/plot_gene_umap.py ```python import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import larval_gonad.plotting # pylint: disable=unused-import plt.style.use("minimal") sns.set_style("dark") FBGNS = [ "FBgn0039044", # p53 "FBgn0243486", # rdo "FBgn0026573", # ADD1 "FBgn0083963", # Nlg3 "FBgn0011206", # bol "FBgn0264953", # Piezo ] SYMBOLS = ["p53", "rdo", "ADD1", "Nlg3", "bol", "Piezo"] def main(): df = ( pd.read_feather(snakemake.input.zscores) .query("FBgn in @FBGNS") .pipe(add_gene_symbol) .pipe(add_umap) .sort_values("z-score") ) scatter_defaults = dict( s=3, linewidth=0, rasterized=True, vmin=-3, vmax=3, cmap="viridis" ) g = sns.FacetGrid( data=df, col="gene_symbol", col_wrap=2, col_order=SYMBOLS, sharex=True, sharey=True, ) g.map(facet_scatter, "UMAP_1", "UMAP_2", "z-score", **scatter_defaults) add_colorbar(g, scatter_defaults) tweak_axes(g) g.savefig(snakemake.output[0]) def add_gene_symbol(df: pd.DataFrame) -> pd.DataFrame: fbgn2symbol = pd.read_feather( snakemake.input.gene_annot, columns=["FBgn", "gene_symbol"] ) return df.merge(fbgn2symbol) def add_umap(df: pd.DataFrame) -> pd.DataFrame: umap = pd.read_feather(snakemake.input.umap) return df.melt( id_vars=["FBgn", "gene_symbol"], var_name="cell_id", value_name="z-score" ).merge(umap) def facet_scatter(x, y, c, **kwargs): """Draw scatterplot with point colors from a faceted DataFrame columns.""" kwargs.pop("color") plt.scatter(x, y, c=c, **kwargs) def add_colorbar(g: sns.FacetGrid, scatter_defaults: dict): g.fig.subplots_adjust(bottom=0.2) # cax = g.fig.add_axes([0.94, 0.25, 0.02, 0.6]) cax = g.fig.add_axes([0.20, 0.10, 0.60, 0.02]) points = plt.scatter([], [], c=[], **scatter_defaults) g.fig.colorbar(points, cax=cax, label="Z-Score (TPM)", orientation="horizontal") return g def tweak_axes(g: sns.FacetGrid): g.set_titles("{col_name}", fontstyle="italic") g.set_xlabels("UMAP 1") g.set_ylabels("UMAP 2") g.despine(left=True, bottom=True) for ax in g.axes.ravel(): ax.set(xticks=[-10, 0, 10], yticks=[-10, 0, 10], aspect=1) return g if __name__ == "__main__": main() ``` #### File: paper_submission/scripts/stats_gsea_pairwise_comparisons_of_cell_types.py ```python import pandas as pd import seaborn as sns from larval_gonad.stats import PairwisePermutationTest THREADS = snakemake.threads def main(): df = pd.read_feather(snakemake.input[0]) pw = PairwisePermutationTest( "cluster", "male", data=df, threads=THREADS, order=snakemake.params.order ).fit() ( pw.results.sort_values(["name1", "name2"]) .set_index(["name1", "name2"]) .to_csv(snakemake.output[0], sep="\t") ) if __name__ == "__main__": main() ``` #### File: paper_submission/scripts/table_scRNASeq_cluster_deg.py ```python from textwrap import dedent import pandas as pd from larval_gonad.config import config from common import fbgn2symbol def _add_sheet(writer : pd.ExcelWriter, sheet_name : str, fname : str, cell_format, alpha=0.01, comment=None, headers=None): sheet = writer.book.add_worksheet(sheet_name) writer.sheets[sheet_name] = sheet sheet.set_column(0, 1, 20) df = pd.read_csv(fname, sep='\t').query(f'p_val_adj <= {alpha}') df.sort_values(by='avg_logFC', ascending=False, inplace=True) if 'cluster' in df.columns: df.sort_values(by='cluster', inplace=True) df.cluster.replace(config['cluster_annot'], inplace=True) idx = df.columns.tolist().index('cluster') sheet.set_column(idx, idx, 20) if headers: df.rename({'pct.1': headers[0], 'pct.2': headers[1]}, inplace=True, axis=1) df.to_excel(writer, sheet_name=sheet_name, index=False, startrow=1, freeze_panes=(2, 2)) if comment: sheet.set_row(0, 100, cell_format) sheet.merge_range('A1:G1', dedent(comment)) def _add_data(writer : pd.ExcelWriter, sheet_name : str, fname : str, cell_format, comment=None): sheet = writer.book.add_worksheet(sheet_name) writer.sheets[sheet_name] = sheet sheet.set_column(0, 1, 20) df = pd.read_parquet(fname)[config['sel_cluster_order_w_rep']] df['gene'] = df.index.map(lambda x: fbgn2symbol[x]) df.set_index('gene', append=True, inplace=True) df.to_excel(writer, sheet_name=sheet_name, index=True, startrow=1, freeze_panes=(2, 2)) if comment: sheet.set_row(0, 100, cell_format) sheet.merge_range('A1:G1', dedent(comment)) def main(): writer = pd.ExcelWriter(snakemake.output[0]) cell_format = writer.book.add_format({'valign': 'top'}) cell_format.set_text_wrap() comment = "Identification of Bio markers. " \ "Here we compare expression of each cluster to all other cells. " \ "This creates a list of genes that are up-regulated in each cluster. " \ "This table is grouped by clusters and sorted by avg_logFC." _add_sheet(writer, 'One vs Rest (biomarkers)', snakemake.input.biomarkers, cell_format, comment=comment) comment = "Differential expression between germ cell and somatic cell clusters. " \ "I combine all of the germ cell clusters (6, 3, 2, 0) vs all of the somatic cell "\ "clusters (5, 1, 4, 7, 8).\n" \ "Positive avg_logFC are germ biased genes.\n" \ "Negative avg_logFC are soma biased genes.\n" _add_sheet(writer, 'Germ Cells vs Somatic Cells', snakemake.input.germ_soma, cell_format, comment=comment, headers=('pct.germ', 'pct.soma')) comment = "Differential expression of spermatogonia vs 1º spermatocytes. " \ "Spermatogonia cluster and compared it to all spermatocyte clusters combined together.\n\n" \ "Positve avg_logFC are spermatogonia biased genes.\n" \ "Negative avg_logFC are 1º spermatocyte biased genes." _add_sheet(writer, 'Gonia vs Cytes', snakemake.input.gonia_cytes, cell_format, comment=comment, headers=('pct.gonia', 'pct.cytes')) comment = "Differential expression of Early 1º spermatocytes vs Mid and Late 1º spermatocytes.\n" \ "Positve avg_logFC are early 1º spermatocyte biased genes.\n" \ "Negative avg_logFC are mid and late 1º spermatocyte biased genes." _add_sheet(writer, 'Early cytes vs Mid and Late', snakemake.input.gonia_early, cell_format, comment=comment, headers=('pct.early', 'pct.midLate')) comment = "Differential expression of Mid 1º spermatocytes vs Early and Late 1º spermatocytes.\n" \ "Positve avg_logFC are mid 1º spermatocyte biased genes.\n" \ "Negative avg_logFC are early and late 1º spermatocyte biased genes." _add_sheet(writer, 'Mid cytes vs Early and Late', snakemake.input.gonia_mid, cell_format, comment=comment, headers=('pct.mid', 'pct.earlyLate')) comment = "Differential expression of Late 1º spermatocytes vs Early and Mid 1º spermatocytes.\n" \ "Positve avg_logFC are late 1º spermatocyte biased genes.\n" \ "Negative avg_logFC are early and mid 1º spermatocyte biased genes." _add_sheet(writer, 'Late cytes vs Early and Mid', snakemake.input.gonia_late, cell_format, comment=comment, headers=('pct.late', 'pct.earlyMid')) comment = "These are raw counts aggregated by Cluster:Rep using Sum." _add_data(writer, 'Raw Counts (Sum)', snakemake.input.raw, cell_format, comment=comment) comment = "These are tpm normalized counts by Cluster:Rep." _add_data(writer, 'TPM', snakemake.input.tpm, cell_format, comment=comment) comment = "These are z-scores of tpm normalized counts by Cluster:Rep." _add_data(writer, 'Z-scores', snakemake.input.zscore, cell_format, comment=comment) writer.close() if __name__ == '__main__': main() ``` #### File: response-to-review-wf/scripts/commonly_expressed_cluster_proportion.py ```python import joblib import pandas as pd def _debug(): from larval_gonad.mock import MockSnake snakemake = MockSnake( input=dict( annotation="../../references/gene_annotation_dmel_r6-26.feather", commonly_expressed="../../output/cellselection-wf/commonly_expressed_genes.pkl", clusters="../../output//seurat3-cluster-wf/combined_n3_clusters.feather", raw="../../output/cellselection-wf/raw.feather", tau="../../output/expression-atlas-wf/dmel_tau.feather", tsps="../../output/expression-atlas-wf/dmel_tsps.feather", ) ) def main(): expression = commonly_expressed_by_cluster() prop_cells_from_cluster = cluster_proportion(expression) fbgn_to_tau_tsps = load_tau_tsps() prop_cells_from_cluster.join(fbgn_to_tau_tsps).to_csv(snakemake.output[0], sep="\t") def commonly_expressed_by_cluster() -> pd.DataFrame: annotation = pd.read_feather(snakemake.input.annotation)[ ["FBgn", "gene_symbol", "FB_chrom"] ].rename(columns={"FB_chrom": "chromosome"}) common_fbgns = joblib.load(snakemake.input.commonly_expressed) clusters = pd.read_feather(snakemake.input.clusters)[["cell_id", "cluster"]] raw = ( pd.read_feather(snakemake.input.raw) .query("FBgn in @common_fbgns") .melt(id_vars="FBgn", var_name="cell_id", value_name="UMI") .merge(clusters) .merge(annotation) ) return raw def cluster_proportion(expression: pd.DataFrame) -> pd.DataFrame: num_cells_with_expression_by_cluster = ( expression.query("UMI > 0") .groupby(["FBgn", "gene_symbol", "chromosome"]) .cluster.value_counts() .unstack() .loc[:, expression.cluster.cat.categories] .assign(total=lambda df: df.sum(axis=1)) .set_index("total", append=True) ) return num_cells_with_expression_by_cluster.div( num_cells_with_expression_by_cluster.index.get_level_values("total"), axis=0 ) def load_tau_tsps() -> pd.DataFrame: tissue_specificity_scores = pd.concat( [ pd.read_feather(snakemake.input.tau).set_index("FBgn").male_tau, pd.read_feather(snakemake.input.tsps).set_index("FBgn").male_tsps, ], axis=1, ) return tissue_specificity_scores if __name__ == "__main__": main() ``` #### File: seurat3-cluster-wf/scripts/individual_gene_feature_plot.py ```python import os from pathlib import Path import pandas as pd import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt import seaborn as sns def main(): zscores = pd.read_feather(snakemake.input.zscores).set_index("FBgn") zscore = zscores.loc[snakemake.wildcards.FBgn, :] umap = pd.read_feather(snakemake.input.umap).set_index("cell_id") df = umap.join(zscore.rename("zscore")) plot(df, snakemake.wildcards.symbol, snakemake.output[0]) def plot(umap, symbol, output_file): # set up cmap cmap = plt.get_cmap("viridis", 512) norm = matplotlib.colors.Normalize(-3, 3) # Plot ax = sns.scatterplot( x="UMAP_1", y="UMAP_2", data=umap.sort_values("zscore"), hue="zscore", hue_norm=norm, palette=cmap, s=8, linewidth=0, rasterized=True, legend=False, ) sns.despine(ax=ax) ax.set_title(f"{symbol}", fontstyle="italic") sm = matplotlib.cm.ScalarMappable(norm=norm, cmap=cmap) plt.colorbar(sm) plt.savefig(output_file) plt.close() if __name__ == "__main__": if os.getenv("SNAKE_DEBUG", False): from larval_gonad.debug import snakemake_debug snakemake = snakemake_debug( workdir="seurat3-cluster-wf", input=dict( zscores="../output/seurat3-cluster-wf/zscore_by_cell.feather", umap="../output/seurat3-cluster-wf/combined_n3_umap.feather", gene_annot="../references/gene_annotation_dmel_r6-26.feather", ), wildcards=dict(symbol="bol", FBgn="FBgn0011206") ) main() ``` #### File: seurat3-cluster-wf/scripts/rpkm_by_cluster.py ```python import pandas as pd from larval_gonad.io import feather_to_cluster_matrix, melt_cluster_matrix from larval_gonad.normalization import rpkm RAW_AGG = snakemake.input["raw_agg"] GENE_ANNOTATION = snakemake.input["gene_metadata"] OUTPUT_FILE = snakemake.output[0] def main(): fbgn2len = ( pd.read_feather(GENE_ANNOTATION, columns=["FBgn", "length"]) .set_index("FBgn") .length ) raw_agg = feather_to_cluster_matrix(RAW_AGG).dropna(axis=1, how="all") _rpkm = rpkm(raw_agg, fbgn2len).dropna() melt_cluster_matrix(_rpkm, name='RPKM').to_feather(OUTPUT_FILE) if __name__ == "__main__": main() ``` #### File: src/larval_gonad/config.py ```python import os from pathlib import Path import yaml from joblib import Memory def read_config(fname, keepers=None): """Reads a YAML file. If a list of keepers is provided, will look through the YAML and only return those keys. """ with open(fname, "r", encoding="utf8") as fh: c = yaml.full_load(fh) if keepers is None: return c if isinstance(keepers, str): return c.get(keepers, None) config = {} for k in keepers: v = c.get(k, None) if v is not None: config[k] = v return config # Useful directories PROJECT_DIR = Path(__file__).absolute().parents[2].as_posix() CONFIG_DIR = Path(PROJECT_DIR, "config").as_posix() CACHE_DIR = Path("~/.cache").expanduser().as_posix() # Make missing dirs Path(CACHE_DIR).mkdir(exist_ok=True, parents=True) Path(CONFIG_DIR).mkdir(exist_ok=True, parents=True) # Load config file config = read_config(Path(CONFIG_DIR, "common.yaml")) config.update({"colors": read_config(Path(CONFIG_DIR, "colors.yaml"))}) REFERENCES_DIR = config.get("references_dir", os.environ.get("REFERENCES_DIR", None)) # Trun on caching memory = Memory(cachedir=CACHE_DIR, verbose=0) ``` #### File: src/larval_gonad/io.py ```python import os import shelve from collections import namedtuple import pickle import numpy as np import pandas as pd import re import scipy.sparse as sp_sparse import tables NUCS = ["A", "C", "G", "T"] NUCS_INVERSE = {"A": 0, "C": 1, "G": 2, "T": 3} CellRangerCounts = namedtuple("CellRangerCounts", ["matrix", "gene_ids", "barcodes"]) def safe_gene_name(symbol): """Normalize gene symbols for use as file names.""" return ( symbol.replace("(", "") .replace(")", "") .replace(":", "") .replace("&", "") .replace("|", "") .replace(".", "") .replace(" ", "") ) def pickle_dump(obj: object, file_name: str): with open(file_name, "wb") as handler: pickle.dump(obj, handler) def pickle_load(file_name: str): with open(file_name, "rb") as handler: return pickle.load(handler) def shelve_dump(file_name: str, **kwargs): """Save a set of objects to a shelve. Parameters ---------- file_name: The name of one of the files from a shelve. **kwargs: Any number of key word arguments to save to the shelve. """ with shelve.open(os.path.splitext(file_name)[0]) as db: for k, v in kwargs.items(): db[k] = v def shelve_load(file_name: str, *args): """Load a set of objects from a shelve. Parameters ---------- file_name: The name of one of the files from a shelve. *args: depreciated, does nothing. """ res = {} with shelve.open(os.path.splitext(file_name)[0]) as db: for k, v in db.items(): res[k] = v return res def compress_seq(s: str): """ Pack a DNA sequence (no Ns!) into a 2-bit format, in a 64-bit uint Most significant bit is set if there was an error Based on code from: https://github.com/10XGenomics/cellranger cellranger/lib/python/cellranger/utils.py """ bits = 64 assert len(s) <= (bits / 2 - 1) result = 0 for nuc in s: if nuc not in NUCS_INVERSE: return 1 << (bits - 1) result = result << 2 result = result | NUCS_INVERSE[nuc] return result def decompress_seq(x: int, length=16): """ Un-pack a DNA sequence from a 2-bit format Based on code from: https://github.com/10XGenomics/cellranger cellranger/lib/python/cellranger/utils.py Parameters ---------- x : int Number sequence to be decoded. length : int Length of the barcode. This can be found in the molecular info hdf5 file from 10x genome. molInfo.get_node_attr('/metrics', 'chemistry_barcode_read_length') """ bits = 64 x = np.uint64(x) assert length <= (bits / 2 - 1) if x & (1 << (bits - 1)): return "N" * length result = bytearray(length) for i in range(length): result[(length - 1) - i] = bytearray(NUCS[x & np.uint64(0b11)].encode())[0] x = x >> np.uint64(2) return result.decode() def two_bit_mapper(iterable): """Return a dictionary mapping 2bit encoded Seqs. Parameters ---------- iterable : list-like Unique list of 2bit encoded sequences. Returns ------- dict : Mapper from encoded to decoded """ return {k: decompress_seq(k) for k in iterable} def decode_cell_names(iterable): """Use two_bit_mapper to decode cell names. iterable : np.array An array of twobit encoded cell names. """ mapper = two_bit_mapper(np.unique(iterable)) return [mapper[x] for x in iterable] def cellranger_umi(fname): with tables.open_file(fname, "r") as f: group = f.get_node("/") barcodes = getattr(group, "barcodes").read() barcode_idx = getattr(group, "barcode_idx").read() umi = getattr(group, "umi").read() read_cnts = getattr(group, "count").read() cell_ids = np.char.decode(barcodes[barcode_idx]) return pd.DataFrame(dict(cell_id=cell_ids, umi=umi, read_cnt=read_cnts)) def cellranger_counts(fname, genome="matrix"): """Import cell ranger counts. Cell ranger stores it counts tables in a hdf5 formatted file. This reads this file and outputs them as a named tuple. Parameters ---------- fname : str Name of hdf5 store. genome : str Group where data is stored. barcodes : list of int Encoded barcodes names to filter by Returns ------- namedtuple: matrix, gene_ids, barcodes """ with tables.open_file(fname, "r") as f: try: group = f.get_node(f.root, genome) except tables.NoSuchNodeError: print("That genome does not exist in this file.") return None gene_ids = getattr(group, "features/id").read() barcodes = getattr(group, "barcodes").read() data = getattr(group, "data").read() indices = getattr(group, "indices").read() indptr = getattr(group, "indptr").read() shape = getattr(group, "shape").read() matrix = sp_sparse.csc_matrix((data, indices, indptr), shape=shape) gene_ids = np.array([x.decode() for x in gene_ids]) barcodes = np.array([x.decode().replace("-1", "") for x in barcodes]) return CellRangerCounts(matrix, gene_ids, barcodes) def feather_to_cluster_rep_matrix(fname): """Helper function to building a cluster rep matrix from a feather""" return ( pd.read_feather(fname) .set_index(["FBgn", "cluster", "rep"]) .iloc[:, 0] .unstack(level=[1, 2]) ) def feather_to_cluster_matrix(fname): """Helper function to building a cluster matrix from a feather""" return ( pd.read_feather(fname) .set_index(["FBgn", "cluster"]) .iloc[:, 0] .unstack() ) def melt_cluster_rep_matrix(df, name="count"): """Helper function to melt a cluster rep matrix for saving as feather""" return df.T.reset_index().melt(id_vars=["cluster", "rep"], var_name="FBgn", value_name=name) def melt_cluster_matrix(df, name="count"): """Helper function to melt a cluster matrix for saving as feather""" return df.T.reset_index().melt(id_vars="cluster", var_name="FBgn", value_name=name) class GffRow(object): def __init__(self, row): self.seqid, self.source, self.type, self.start, self.end, self.score, self.strand, self.phase, self.attributes = row.strip().split( "\t" ) self.is_gene = self.type == "gene" self.parsed_attributes = self.parse_attributes() def parse_attributes(self): parsed_attributes = {} for attr in self.attributes.split(";"): mm = re.search('(?P<key>.*?)\s+"(?P<value>.*?)"', attr) if mm: parsed_attributes[mm.group("key").strip()] = mm.group("value").strip() return parsed_attributes def __getitem__(self, key): return self.parsed_attributes[key] if __name__ == "__main__": main() ``` #### File: src/larval_gonad/mock.py ```python from snakemake.io import Namedlist, InputFiles, OutputFiles, Wildcards, Params, Log class MockSnake: """Mock the snakemake class used inside of python scripts.""" def __init__( self, input=None, output=None, params=None, wildcards=None, log="", config=None, threads=None, ): self.input = InputFiles(self.make_namedlist(input)) self.output = OutputFiles(self.make_namedlist(output)) self.params = Params(self.make_namedlist(params)) self.wildcards = Wildcards(self.make_namedlist(wildcards)) self.log = Log(log) self.config = config or {} self.threads = threads or 1 self.rulename = "mock" def make_namedlist(self, item, first_lvl=True): if isinstance(item, list): return Namedlist(item) elif isinstance(item, dict): return Namedlist( fromdict={k: self.make_namedlist(v, False) for k, v in item.items()} ) elif isinstance(item, (str, int, float)): if first_lvl: return Namedlist([item]) else: return item return Namedlist([]) ``` #### File: larval_gonad/plotting/demasculinization.py ```python import matplotlib.pyplot as plt import seaborn as sns def demasculinization(data, ax=None, title=None, legend=False, **kwargs): """Stacked barplot common for display of demasculinization. Parameters ---------- data : pd.DataFrame DataFrame organized with chomosome as index, columns as Up/NS/Down, and values as proportions. ax : plt.Axes, optional Alternative axes to draw the plot, by default None title : str, optional Title to add to the plot, by default None legend : bool, optional If to keep the legend, by default False Returns ------- plt.Axes Matplotlib axes with the stacked bar plot. Example ------- >>> data = pd.DataFrame({"Up": [.1, .3], "NS": [.7, .4], "Down": [.2, .3]}, index=["X", "A"]) >>> demasculinization(data) """ if ax is None: fig, ax = plt.subplots() plot_defaults = dict( stacked=True, color=["red", "lightgrey", "blue"], width=0.9, edgecolor="k", linewidth=0.2, ) plot_defaults.update(kwargs) data.plot.bar(ax=ax, **plot_defaults) # Clean up X plt.setp(ax.get_xticklabels(), rotation=0) ax.set_xlabel("") # Clean up Y ax.set_ylim(0, 1) ax.set_ylabel("") # Clean up other parts if title is not None: ax.set_title(title) if not legend: ax.legend_ = None sns.despine(ax=ax, left=True, bottom=True) return ax ``` #### File: larval_gonad/plotting/umap.py ```python import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns def plot_umap_panel(umap_data: str, cluster_data: str, colors: list, axes: list = None): """Plot panel of UMAP for each replicate. Example ------- >>> umap_data = "output/seurat3-cluster-wf/combined_n3_umap.feather" >>> cluster_data = "output/seurat3-cluster-wf/combined_n3_clusters.feather" >>> from larval_gonad.config import read_config >>> color_config = read_config("config/colors.yaml") >>> colors = color_config["clusters"] """ umap = pd.read_feather(umap_data).set_index("cell_id") clusters = pd.read_feather(cluster_data).set_index("cell_id") df = umap.join(clusters) if axes is None: _, axes = plt.subplots(1, 4, figsize=plt.figaspect(1 / 4), sharex=True, sharey=True) _make_scatter_panel(df, axes, colors) _add_labels(df, axes[-1]) _cleanup_axes(axes) _add_axes_labels(plt.gcf()) def _make_scatter_panel(df, axes, colors): defaults = dict( x="UMAP_1", y="UMAP_2", hue="cluster", palette=colors, s=2, linewidth=0.02, edgecolor="k", rasterized=True, legend=False, ) # Plot each replicate for (rep, subset), ax in zip(df.groupby("rep"), axes.flat[:-1]): sns.scatterplot(data=subset, ax=ax, **defaults) ax.set(title=rep) # Plot combined ax_combined = axes.flat[-1] sns.scatterplot(data=df, ax=ax_combined, **defaults) ax_combined.set(title="Combined") def _add_labels(df, ax): """Add cluster labels to the combined panel""" for clus, row in df.groupby("cluster")[["UMAP_1", "UMAP_2"]].mean().iterrows(): ax.text( row.UMAP_1, row.UMAP_2, clus, bbox=dict(facecolor=(1, 1, 1, 0.8), edgecolor="none", pad=0.2), ha="center", va="center", fontweight="bold", ) def _cleanup_axes(axes): for ax in axes: sns.despine(ax=ax) ax.set(xticks=[-10, 10], yticks=[-10, 10], xlabel="", ylabel="", aspect="equal") def _add_axes_labels(fig): defaults = dict(transform=fig.transFigure, ha="center", va="center") fig.text(0.5, 0.05, "Profile Similarity (UMAP-1)", **defaults) fig.text(0.1, 0.5, "Profile Similarity (UMAP-2)", rotation=90, **defaults) ``` #### File: x-to-a-wf/scripts/boxplot_autosome_ratios.py ```python import os import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from larval_gonad.io import shelve_load from larval_gonad.plotting.stats import add_pvals TXT = "Normalized by Number of Genes" YLABELS = { "x_to_a_ratio": f"X / A\n{TXT}", "fourth_to_a_ratio": f"4 / A\n{TXT}", "y_to_a_ratio": f"Y / A\n{TXT}", } def main(): db = shelve_load(snakemake.input[0]) df = db["data"].pipe(lambda x: x[x.ratio_type == snakemake.wildcards.ratio_type]) pvals = db["pvalues"].pipe(lambda x: x[x.ratio_type == snakemake.wildcards.ratio_type]) ylabel = YLABELS[snakemake.wildcards.ratio_type] ax = sns.boxplot( x="cluster", y="ratio", data=df, palette=snakemake.params.cluster_color, order=snakemake.params.cluster_order, notch=True ) ax.set(xlabel="Cluster ", ylabel=ylabel, title=snakemake.params.title) add_pvals(pvals.x, pvals.y, pvals.pvalue, ax) plt.savefig(snakemake.output[0]) if __name__ == "__main__": if os.getenv("SNAKE_DEBUG", False): from larval_gonad.debug import snakemake_debug from larval_gonad.config import read_config config = read_config("config/common.yaml") color_config = read_config("config/colors.yaml") snakemake = snakemake_debug( workdir="x-to-a-wf", input="../output/x-to-a-wf/db/ovary.bak", params=dict( cluster_color=color_config["clusters"], cluster_order=config["cluster_order"], title="Test", ), wildcards=dict(fbgns="ovary", ratio_type="x_to_a_ratio"), ) plt.style.use("../config/figure_styles.mplstyle") plt.rcParams.update({ 'figure.figsize': (4, 2) }) main() ```
{ "source": "jfear/lcdb-references", "score": 3 }
#### File: lcdb-references/scripts/gene_annotation.py ```python import re from lcdblib.utils.chrom_convert import import_conversion GTF = "/home/fearjm/data/LCDB/lcdb-references/dmel/r6-32/gtf/dmel_r6-32.gtf" OUTNAME = "../gene_annotation_dmel_r6-32.tsv" class GffRow(object): def __init__(self, row): self.seqid, self.source, self.type, self.start, self.end, self.score, self.strand, self.phase, self.attributes = row.strip().split( "\t" ) self.is_gene = self.type == "gene" self.parsed_attributes = self.parse_attributes() def parse_attributes(self): parsed_attributes = {} for attr in self.attributes.split(";"): mm = re.search('(?P<key>.*?)\s+"(?P<value>.*?)"', attr) if mm: parsed_attributes[mm.group("key").strip()] = mm.group("value").strip() return parsed_attributes def __getitem__(self, key): return self.parsed_attributes[key] def main(): fb_mapper = import_conversion("UCSC", "FlyBase") with open(GTF) as fh, open(OUTNAME, "w") as fo: fo.write( "FBgn\tgene_symbol\tUCSC_chrom\tFB_chrom\tstart\tend\tlength\tstrand\n" ) for row in fh.readlines(): grow = GffRow(row) if grow.is_gene: fo.write( "\t".join( [ grow["gene_id"], grow["gene_symbol"], grow.seqid, fb_mapper[grow.seqid], grow.start, grow.end, str(int(grow.end) - int(grow.start)), grow.strand, ] ) + "\n" ) if __name__ == "__main__": main() ```
{ "source": "jfear/sra2mongo", "score": 3 }
#### File: sra2mongo/tests/test_xml_helpers.py ```python import sramongo.xml_helpers from pathlib import Path def test_xml_to_root_from_file_handler(): fname = Path(__file__).parent / "data/ERR1662611.xml" with open(fname) as fh: root = sramongo.xml_helpers.xml_to_root(fh) experiment = root.find("EXPERIMENT") assert experiment.attrib["accession"] == "ERX1732932" def test_xml_to_root_from_string(): fname = Path(__file__).parent / "data/ERR1662611.xml" with open(fname) as fh: xml = fh.read() root = sramongo.xml_helpers.xml_to_root(xml) experiment = root.find("EXPERIMENT") assert experiment.attrib["accession"] == "ERX1732932" def test_xml_get_text(sra_xml_root): root = sra_xml_root srx = sramongo.xml_helpers.get_xml_text(root, "EXPERIMENT/IDENTIFIERS/PRIMARY_ID") assert srx == "SRX971855" def test_xml_get_text_invalid_path(sra_xml_root): root = sra_xml_root result = sramongo.xml_helpers.get_xml_text( root, "EXPERIMENT/IDENTIFIERS/PRIMARY_ID/NOT_REALLY_HERE" ) assert result == "" ```
{ "source": "jfear/tada_gonad", "score": 3 }
#### File: carl-wf/scripts/combine_result_tables.py ```python import re import pandas as pd def main(): with pd.ExcelWriter(snakemake.output[0]) as writer: for file_name in snakemake.input.files: sheet_name = make_sheet_name(file_name) df = pd.read_csv(file_name, sep="\t", index_col=0).query("padj <= 0.05") if snakemake.input.get("annot", False): df = df.join(read_annot(snakemake.input.annot)).set_index("gene_symbol", append=True) df.to_excel(writer, sheet_name=sheet_name) def make_sheet_name(file_name): res = re.findall(r".*_(?P<tissue>.*)_(?P<driver>.*)\.(?P<ext>\d+)\.tsv$", file_name)[0] return "{}_{}_{}".format(*res) def read_annot(file_name): return ( pd.read_csv(file_name, sep="\t", usecols=["gene_symbol", "primary_FBgn"]) .set_index("primary_FBgn") .squeeze() .rename_axis("FBgn") ) if __name__ == "__main__": main() ```
{ "source": "jfear/vscode_demo", "score": 4 }
#### File: vscode_demo/scripts/make_db.py ```python import sqlite3 as db import pandas as pd def main(): df = pd.DataFrame({"one": [1, 2, 3], "two": [4, 5, 7]}) con = db.connect("/tmp/my_sql_test.sqlite") df.to_sql("pd2sql", con) con.close() # TODO: pd.read_csv intellisense # TODO: def snippet # TODO: Show how to make your own snippets if __name__ == "__main__": main() ``` #### File: src/tests/test_io.py ```python from pathlib import Path from my_cool_pkg import io def test_hello_world(): assert io.hello_world() == "Hello World!" def test_current_path(): assert isinstance(io.current_path(), Path) def test_fooBar(): assert io.fooBar()[0] == "Foo" ```
{ "source": "Jfeatherstone/ColorGlass", "score": 3 }
#### File: ColorGlass/cgc/ArbColors.py ```python from .Wavefunction import Wavefunction from .LinAlg import expm, get_basis import numba import numpy as np from scipy.fft import ifft2, fft2 class Nucleus(Wavefunction): # Upon calling wilsonLine() or adjointWilsonLine(), these are properly defined _wilsonLine = None _adjointWilsonLine = None # Some variables to keep track of what has been calculated/generated so far # allowing us to avoid redundant computations _wilsonLineExists = False _adjointWilsonLineExists = False def __init__(self, colorCharges, N, delta, mu, M=.5, g=1, Ny=100, rngSeed=None): r""" Dense object to be used in an instance of `cgc.Collision.Collision`. Implements calculation of the Wilson Line using the generalized basis matrix set. Parameters ---------- colorCharges : positive integer The number of possible color charges; also the dimensionality of the special unitary group. N : positive integer The size of the square lattice to simulate. delta : positive float The distance between adjacent lattice sites. mu : positive float The scaling for the random gaussian distribution that generates the color charge density. M : float (default=.5) Infrared regulator parameter to regularize the Poisson equation for the gauge field. g : float (default=1) Parameter in the Poisson equation for the gauge field. Ny : positive integer (default=100) The longitudinal extent (in layers) of the nucleus object. rngSeed : int (default=None) Seed for the random number generator to initialize the color charge field """ super().__init__(colorCharges, N, delta, mu, M, g, rngSeed) # Super constructor self._basis = get_basis(colorCharges) self.Ny = Ny # Modify the gaussian width to account for the multiple longitudinal layers self.gaussianWidth = self.mu / self.delta / np.sqrt(self.Ny) def colorChargeField(self, forceCalculate=False, verbose=0): r""" Generates the color charge density field according to a gaussian distribution. Differs from super class implementation in that it generates the numerous fields according to `Ny`. That is, the field \(\rho\) satisfies: $$ \langle \rho_{a}^{(t)}(i^-,\vec i_{\perp}) \rho_{b}^{(t)}({j^-},\vec j_{\perp}) \rangle = g^2\mu_t^2 \frac{ 1 }{N_y \Delta^2} ~\delta_{ab}~\delta_{i_{\perp,1}\ j_{\perp,1}}~\delta_{i_{\perp,2} \ j_{\perp,2}} ~\delta_{i^- \ {j^-}} $$ If the field already exists, it is simply returned and no calculation is done. Parameters ---------- forceCalculate : bool (default=False) If the quantity has previously been calculated, the calculation will not be done again unless this argument is set to True. verbose : int (default=0) How much output should be printed as calculations are done. Options are 0, 1, or 2. Returns ------- colorChargeField : array(Ny, N, N, `colorCharges`**2 - 1) """ if self._colorChargeFieldExists and not forceCalculate: return self._colorChargeField if verbose > 0: print(f'Generating {type(self).__name__} color charge field' + '.'*10, end='') # To compare to old results #self._colorChargeField = self.rng.normal(scale=self.gaussianWidth, size=(self.Ny, self.gluonDOF, self.N, self.N)) #self._colorChargeField = self._colorChargeField.swapaxes(1, 2) #self._colorChargeField = self._colorChargeField.swapaxes(2, 3) # Randomly generate the intial color charge density using a gaussian distribution self._colorChargeField = self.rng.normal(scale=self.gaussianWidth, size=(self.Ny, self.N, self.N, self.gluonDOF)) # Make sure we don't regenerate this field since it already exists on future calls self._colorChargeFieldExists = True if verbose > 0: print('finished!') return self._colorChargeField def gaugeField(self, forceCalculate=False, verbose=0): r""" Calculates the gauge field for all longitudinal layers and charge distributions by solving the (modified) Poisson equation involving the color charge field $$g \frac{1 } {\partial_\perp^2 - m^2 } \rho_a(i^-, \vec {i}_\perp )$$ via Fourier method. If the field already exists, it is simply returned and no calculation is done. Parameters ---------- forceCalculate : bool (default=False) If the quantity has previously been calculated, the calculation will not be done again unless this argument is set to True. verbose : int (default=0) How much output should be printed as calculations are done. Options are 0, 1, or 2. Returns ------- gaugeField : array(Ny, N, N, `colorCharges`**2 - 1) """ if self._gaugeFieldExists and not forceCalculate: return self._gaugeField # Make sure the charge field has already been generated (if not, this will generate it) self.colorChargeField(verbose=verbose) if verbose > 0: print(f'Calculating {type(self).__name__} gauge field' + '.'*10, end='') # Compute the fourier transform of the charge field # Note that the normalization is set to 'backward', which for scipy means that the # ifft2 is scaled by 1/n (where n = N^2) chargeDensityFFTArr = fft2(self._colorChargeField, axes=(1,2), norm='backward') # Absorb the numerator constants in the equation above into the charge density chargeDensityFFTArr = -self.delta2 * self.g / 2 * chargeDensityFFTArr # Calculate the individual elements of the gauge field in fourier space # Note here that we have to solve the gauge field for each layer and for each gluon degree of freedom # This method is defined at the bottom of this file; see there for more information gaugeFieldFFTArr = _calculateGaugeFFTOpt(self.gluonDOF, self.N, self.Ny, self.poissonReg, chargeDensityFFTArr); # Take the inverse fourier transform to get the actual gauge field self._gaugeField = np.real(ifft2(gaugeFieldFFTArr, axes=(1,2), norm='backward')) # Make sure this process isn't repeated unnecessarily by denoting that it has been done self._gaugeFieldExists = True if verbose > 0: print('finished!') return self._gaugeField def wilsonLine(self, forceCalculate=False, verbose=0): """ Calculate the Wilson line using the gauge field and the appropriate basis matrices. If the line already exists, it is simply returned and no calculation is done. Parameters ---------- forceCalculate : bool (default=False) If the quantity has previously been calculated, the calculation will not be done again unless this argument is set to True. verbose : int (default=0) How much output should be printed as calculations are done. Options are 0, 1, or 2. Returns ------- wilsonLine : array(N, N, `colorCharges`) """ if self._wilsonLineExists and not forceCalculate: return self._wilsonLine # Make sure the gauge field has already been calculated self.gaugeField(verbose=verbose) if verbose > 0: print(f'Calculating {type(self).__name__} wilson line' + '.'*10, end='') # We now combine all of the longitudinal layers into the single wilson line # Optimized method is defined at the end of this file; see there for more information self._wilsonLine = _calculateWilsonLineOpt(self.N, self.Ny, self.colorCharges, self._basis, self._gaugeField) self._wilsonLineExists = True if verbose > 0: print('finished!') return self._wilsonLine def adjointWilsonLine(self, forceCalculate=False, verbose=0): """ Calculate the Wilson line in the adjoint representation. If the line already exists, it is simply returned and no calculation is done. Parameters ---------- forceCalculate : bool (default=False) If the quantity has previously been calculated, the calculation will not be done again unless this argument is set to True. verbose : int (default=0) How much output should be printed as calculations are done. Options are 0, 1, or 2. Returns ------- adjointWilsonLine : array(N, N, `colorCharges`**2 - 1, `colorCharges`**2 - 1) """ if self._adjointWilsonLineExists and not forceCalculate: return self._adjointWilsonLine # Make sure the wilson line has already been calculated self.wilsonLine(verbose=verbose) if verbose > 0: print(f'Calculating {type(self).__name__} adjoint wilson line' + '.'*10, end='') # Calculation is optimized with numba, as with the previous calculations # See bottom of the file for more information self._adjointWilsonLine = _calculateAdjointWilsonLineOpt(self.gluonDOF, self.N, self._basis, self._wilsonLine) self._adjointWilsonLineExists = True if verbose > 0: print('finished!') return self._adjointWilsonLine # Since we want to speed up the calculate, we define the calculation of the fourier elements of # the gauge field using a numba-compiled method # This has to be defined outside of the Nuclelus class since numbda doesn't play well with custom classes @numba.jit(nopython=True, cache=True) def _calculateGaugeFFTOpt(gluonDOF, N, Ny, poissonReg, chargeDensityFFTArr): r""" Calculate the elements of the gauge field in fourier space. This method is optimized using numba. """ gaugeFieldFFTArr = np.zeros_like(chargeDensityFFTArr, dtype='complex') # Precompute for speed two_pi_over_N = 2 * np.pi / N for l in range(Ny): for k in range(gluonDOF): for i in range(N): for j in range(N): gaugeFieldFFTArr[l,i,j,k] = chargeDensityFFTArr[l,i,j,k]/(2 - np.cos(two_pi_over_N*i) - np.cos(two_pi_over_N*j) + poissonReg) return gaugeFieldFFTArr # Same deal as the above method, we have to define it outside the class so # numba doesn't get confused @numba.jit(nopython=True, cache=True) def _calculateWilsonLineOpt(N, Ny, colorCharges, basis, gaugeField): r""" Calculate the elements of the wilson line. This method is optimized using numba. """ wilsonLine = np.zeros((N, N, colorCharges, colorCharges), dtype='complex') gluonDOF = colorCharges**2 - 1 # Slightly different ordering of indexing than in other places in the code, # due to the fact that we have to sum of the gluonDOF and Ny axis for i in range(N): for j in range(N): # Create the unit matrix for each point since we are multiplying # the wilson line as we go (so we need to start with the identity) for c in range(colorCharges): wilsonLine[i,j,c,c] = 1 # The path ordered exponential becomes a product of exponentials for each layer for l in range(Ny): # Evaluate the argument of the exponential first # We multiply the elements of the gauge field for each gluon degree of freedom # by the respective basis matrix and sum them together expArgument = np.zeros((colorCharges, colorCharges), dtype='complex') # Same shape as basis matrices for k in range(gluonDOF): expArgument = expArgument + gaugeField[l,i,j,k] * basis[k] # Now actually calculate the exponential with our custom defined expm method # that can properly interface with numba (scipy's can't) exponential = np.ascontiguousarray(expm(-1.j * expArgument)) wilsonLine[i,j] = np.dot(wilsonLine[i,j], exponential) return wilsonLine @numba.jit(nopython=True, cache=True) def _calculateAdjointWilsonLineOpt(gluonDOF, N, basis, wilsonLine): r""" Calculate the wilson line in the adjoint representation. This method is optimized using numba """ # Wilson line is always real in adjoint representation, so need to dtype='complex' as with the others adjointWilsonLine = np.zeros((N, N, gluonDOF, gluonDOF), dtype='double') for a in range(gluonDOF): for b in range(gluonDOF): for i in range(N): for j in range(N): V = wilsonLine[i,j] Vdag = np.conjugate(np.transpose(V)) adjointWilsonLine[i,j,a,b] = 2 * np.real(np.trace(np.dot(np.dot(basis[a], V), np.dot(basis[b], Vdag)))) return adjointWilsonLine ``` #### File: ColorGlass/cgc/Collision.py ```python from .Wavefunction import Wavefunction import numpy as np from scipy.fft import ifft2, fft2 import numba CACHE_OPTIMIZATIONS = True class Collision(): targetWavefunction = None # Implements wilson line incidentWavefunction = None # Doesn't (have to) implement wilson line _omega = None _omegaFFT = None _particlesProduced = None _particlesProducedDeriv = None _momentaMagSquared = None _momentaComponents = None _thetaInFourierSpace = None _momentaBins = None _fourierHarmonics = None # This will be initialized as an empty dict to store harmonics (see __init__) _omegaExists = False _omegaFFTExists = False _momentaComponentsExist = False _particlesProducedExists = False _particlesProducedDerivExists = False _momentaBinsExists = False def __init__(self, wavefunction1: Wavefunction, wavefunction2: Wavefunction): r""" Initialize a collision with two wavefunctions, presumably a nucleus and a proton. One must implement the wilson line, though the order of the arguments does not matter. In the case that both wavefunctions implement the wilson line, the first (wavefunction1) will be used as such. In the case that neither implement the wilson line, an exception will be raised. Parameters ---------- wavefunction1 : Wavefunction (or child) The first wavefunction wavefunction2 : Wavefunction (or child) The second wavefunction """ # Make sure that at least one has a wilson line wilsonLineExists1 = callable(getattr(wavefunction1, "wilsonLine", None)) wilsonLineExists2 = callable(getattr(wavefunction2, "wilsonLine", None)) if not wilsonLineExists1 and not wilsonLineExists2: raise Exception("Neither of the wavefunctions passed to Collision(Wavefunction, Wavefunction) implement the wilsonLine() method; at least one is required to.") if wilsonLineExists1 and not wilsonLineExists2: self.targetWavefunction = wavefunction1 self.incidentWavefunction = wavefunction2 elif wilsonLineExists2 and not wilsonLineExists1: self.targetWavefunction = wavefunction2 self.incidentWavefunction = wavefunction1 else: self.targetWavefunction = wavefunction1 self.incidentWavefunction = wavefunction2 # Make sure that both use the same number of colors if self.targetWavefunction.gluonDOF != self.incidentWavefunction.gluonDOF: raise Exception(f"Wavefunctions implement different gluon degrees of freedom (number of color charges): {self.incidentWavefunction.gluonDOF} vs. {self.targetWavefunction.gluonDOF}") # Probably some other checks that need to be done to make sure the two wavefunctions are compatable, but this is fine for now # Carry over some variables so we don't have to call through the wavefunctions so much self.N = self.targetWavefunction.N self.length = self.targetWavefunction.length self.gluonDOF = self.targetWavefunction.gluonDOF self.delta = self.targetWavefunction.delta self.delta2 = self.targetWavefunction.delta2 #print(self.targetWavefunction) #print(self.incidentWavefunction) # Variables to do with binning the momenta later on self.binSize = 4*np.pi/self.length self.kMax = 2/self.delta self.numBins = int(self.kMax/self.binSize) # This has to be initialized as an empty dict within the constructor # because otherwise it can retain information across separate objects # (no idea how, but this fixes it) self._fourierHarmonics = {} def omega(self, forceCalculate=False, verbose=0): r""" Calculate the field omega at each point on the lattice. If the field already exists, it is simply returned and no calculation is done. Parameters ---------- forceCalculate : bool (default=False) If the quantity has previously been calculated, the calculation will not be done again unless this argument is set to True. verbose : int (default=0) How much output should be printed as calculations are done. Options are 0, 1, or 2. Returns ------- omega : array(N, N, 2, 2, `colorCharges`**2 - 1) """ if self._omegaExists and not forceCalculate: return self._omega self.incidentWavefunction.gaugeField(verbose=verbose) self.targetWavefunction.adjointWilsonLine(verbose=verbose) if verbose > 0: print(f'Calculating {type(self).__name__} omega' + '.'*10, end='') self._omega = _calculateOmegaOpt(self.N, self.gluonDOF, self.delta, self.incidentWavefunction.gaugeField(), self.targetWavefunction.adjointWilsonLine()) self._omegaExists = True if verbose > 0: print('finished!') return self._omega def omegaFFT(self, forceCalculate=False, verbose=0): r""" Compute the fourier transform of the field omega on the lattice. If the fft of the field already exists, it is simply returned and no calculation is done. Parameters ---------- forceCalculate : bool (default=False) If the quantity has previously been calculated, the calculation will not be done again unless this argument is set to True. verbose : int (default=0) How much output should be printed as calculations are done. Options are 0, 1, or 2. Returns ------- omegaFFT : array(N, N, 2, 2, `colorCharges`**2 - 1) """ if self._omegaFFTExists and not forceCalculate: return self._omegaFFT # Make sure omega exists self.omega(verbose=verbose) if verbose > 0: print(f'Calculating {type(self).__name__} omega fourier transform' + '.'*10, end='') # We want to do the normalization explicitly, but scipy doesn't offer no # normalization as an option, so we just set it to be the opposite of whatever # we are doing (forward for ifft, backward for fft) # (we had some issues with scipy changing its default mode) self._omegaFFT = self.delta2 * fft2(self._omega, axes=(0,1), norm='backward') self._omegaFFTExists = True if verbose > 0: print('finished!') return self._omegaFFT def momentaBins(self, forceCalculate=False, verbose=0): r""" Compute the range of momenta at which particles will be created based on the dimensions of the lattice. The exact values are: - \( k_{max} = 2 / \Delta\) - \( w_k = 4 \pi / L \) If the bins already exist, they are simply returned and no calculation is done. Parameters ---------- forceCalculate : bool (default=False) If the quantity has previously been calculated, the calculation will not be done again unless this argument is set to True. verbose : int (default=0) How much output should be printed as calculations are done. Options are 0, 1, or 2. Returns ------- momentaBins : array(numBins = L / (delta 2 pi)) """ if self._momentaBinsExists and not forceCalculate: return self._momentaBins if verbose > 0: print(f'Calculating {type(self).__name__} momentum bins' + '.'*10, end='') self._momentaBins = [i*self.binSize for i in range(self.numBins)] self._momentaBinsExists = True if verbose > 0: print('finished!') return self._momentaBins def momentaComponents(self, forceCalculate=False, verbose=0): r""" Compute the components of the momentum at each point on the lattice, according to: $$ (k_x, k_y) = \frac{2}{\Delta} \left( \sin\left( \frac{\pi i}{N} \right), \sin\left( \frac{\pi j}{N} \right) \right) $$ where \(i\) and \(j\) index the \(x\) and \(y\) directions in real space, respectively. If the calculation has already been done, the result is simply returned and is not repeated. Parameters ---------- forceCalculate : bool (default=False) If the quantity has previously been calculated, the calculation will not be done again unless this argument is set to True. verbose : int (default=0) How much output should be printed as calculations are done. Options are 0, 1, or 2. Returns ------- momentaComponents : array(N, N, 2) """ if self._momentaComponentsExist and not forceCalculate: return self._momentaComponents if verbose > 0: print(f'Calculating {type(self).__name__} momentum components' + '.'*10, end='') self._momentaComponents, self._thetaInFourierSpace = _calculateMomentaOpt(self.N, self.delta) self._momentaMagSquared = np.linalg.norm(self._momentaComponents, axis=2)**2 self._momentaComponentsExist = True if verbose > 0: print('finished!') return self._momentaComponents def momentaMagnitudeSquared(self, forceCalculate=False, verbose=0): r""" Compute the magnitude of the momentum at each point on the lattice, according to: $$ |k| = \sqrt{k_x^2 + k_y^2} $$ $$ (k_x, k_y) = \frac{2}{\Delta} \left( \sin\left( \frac{\pi i}{N} \right), \sin\left( \frac{\pi j}{N} \right) \right) $$ where \(i\) and \(j\) index the \(x\) and \(y\) directions in real space, respectively. If the calculation has already been done, the result is simply returned and is not repeated. Parameters ---------- forceCalculate : bool (default=False) If the quantity has previously been calculated, the calculation will not be done again unless this argument is set to True. verbose : int (default=0) How much output should be printed as calculations are done. Options are 0, 1, or 2. Returns ------- momentaComponents : array(N, N) """ if self._momentaComponentsExist and not forceCalculate: return self._momentaMagSquared if verbose > 0: print(f'Calculating {type(self).__name__} momenta magnitude squared' + '.'*10, end='') self._momentaComponents, self._thetaInFourierSpace = _calculateMomentaOpt(self.N, self.delta) self._momentaMagSquared = np.linalg.norm(self._momentaComponents, axis=2)**2 self._momentaComponentsExist = True if verbose > 0: print('finished!') return self._momentaMagSquared def particlesProducedDeriv(self, forceCalculate=False, verbose=0): r""" Compute the derivative of particles produced (\( \frac{d^2 N}{d^2 k} \)) at each point on the lattice If the calculation has already been done, the result is simply returned and is not repeated. Parameters ---------- forceCalculate : bool (default=False) If the quantity has previously been calculated, the calculation will not be done again unless this argument is set to True. verbose : int (default=0) How much output should be printed as calculations are done. Options are 0, 1, or 2. Returns ------- particlesProducedDeriv : array(N, N) """ if self._particlesProducedDerivExists and not forceCalculate: return self._particlesProducedDeriv # Make sure these quantities exist self.omegaFFT(verbose=verbose) self.momentaMagnitudeSquared(verbose=verbose) # This also calculates thetaInFourierSpace and momentaComponents if verbose > 0: print(f'Calculating {type(self).__name__} derivative of particles produced' + '.'*10, end='') self._particlesProducedDeriv = _calculateParticlesProducedDerivOpt(self.N, self.gluonDOF, self._momentaMagSquared, self._omegaFFT) if verbose > 0: print('finished!') self._particlesProducedDerivExists = True return self._particlesProducedDeriv def particlesProduced(self, forceCalculate=False, verbose=0): r""" Compute the number of particles produced \(N(|k|)\) as a function of momentum. Note that this is technically the zeroth fourier harmonic, so this actually just calls the cgc.Collision.fourierHarmonic() function. The particles are binned according to cgc.Collision.momentaBins(). Most likely will be plotted against cgc.Collision.momentaBins(). If the calculation has already been done, the result is simply returned and is not repeated. Parameters ---------- forceCalculate : bool (default=False) If the quantity has previously been calculated, the calculation will not be done again unless this argument is set to True. verbose : int (default=0) How much output should be printed as calculations are done. Options are 0, 1, or 2. Returns ------- particlesProduced : array(numBins = L / (delta 2 pi)) """ # This one is strictly real, so we should make sure that is updated self._fourierHarmonics[0] = np.real(self.fourierHarmonic(0, forceCalculate, verbose)) return self._fourierHarmonics[0] def fourierHarmonic(self, harmonic: int, forceCalculate=False, verbose=0): r""" Calculate the fourier harmonic of the particle production as: $$ v_n = \frac{ \sum_{(i,j)\in [k, k+ \Delta k]} |k| \frac{d^2 N}{d^2 k} e^{i n \theta }} { \sum_{(i,j)\in [k, k+ \Delta k]} |k| } $$ If the calculation has already been done, the result is simply returned and is not repeated. Parameters ---------- harmonic : int The fourier harmonic to calculate. All odd harmonics should be zero, and the zeroth harmonic will be equal to cgc.Collision.particlesProduced() forceCalculate : bool (default=False) If the quantity has previously been calculated, the calculation will not be done again unless this argument is set to True. verbose : int (default=0) How much output should be printed as calculations are done. Options are 0, 1, or 2. Returns ------- particlesProduced : array(numBins = L / (delta 2 pi)) """ # First, see if we have already calculated this harmonic if harmonic in self._fourierHarmonics.keys() and not forceCalculate: return self._fourierHarmonics[harmonic] # For actually calculating the harmonic, we first have to make sure we've calculated # the derivative, dN/d^2k # This makes sure that _momentaMagSquared, _thetaInFourierSpace and _particlesProducedDeriv # all exist self.particlesProducedDeriv(verbose=verbose) if verbose > 0: print(f'Calculating {type(self).__name__} fourier harmonic: {harmonic}' + '.'*10, end='') # Drop all of our arrays into long 1D structure, since we will want to bin them vectorizedParticleDerivs = np.reshape(self._particlesProducedDeriv, [self.N*self.N]) vectorizedTheta = np.reshape(self._thetaInFourierSpace, [self.N*self.N]) vectorizedMomentaMag = np.reshape(np.sqrt(self._momentaMagSquared), [self.N*self.N]) # The number of particles that are produced in each bin # These bins are actually just thin rings in momentum space self._fourierHarmonics[harmonic] = np.zeros(self.numBins, dtype='complex') # The bin sizes/bounds are calculated for elsewhere self.momentaBins() # Ideally, these rings should be only have a thickness dk (infinitesimal) # but since we have a discrete lattice, we weight the particles by their momentum # (which may slightly vary) and then properly normalize # Go through each bin and calculate (for all points in that bin): # 1. Sum over |k| * dN/d^2k * exp(i * harmonic * theta) # 2. Sum over |k| # 3. Divide 1./2. for i in range(self.numBins): # Find which places on the lattice fall into this particular momentum bin # Note the use of element-wise (or bitwise) and, "&" particleDerivsInRing = vectorizedParticleDerivs[(vectorizedMomentaMag < self.binSize*(i+1)) & (vectorizedMomentaMag > self.binSize*i)] momentaMagInRing = vectorizedMomentaMag[(vectorizedMomentaMag < self.binSize*(i+1)) & (vectorizedMomentaMag > self.binSize*i)] thetaInRing = vectorizedTheta[(vectorizedMomentaMag < self.binSize*(i+1)) & (vectorizedMomentaMag > self.binSize*i)] # Note that multiplication is done element-wise by default numeratorSum = np.sum(particleDerivsInRing * momentaMagInRing * np.exp(1.j * harmonic * thetaInRing)) denominatorSum = np.sum(momentaMagInRing) self._fourierHarmonics[harmonic][i] = numeratorSum / denominatorSum if verbose > 0: print('finished!') return self._fourierHarmonics[harmonic] # Using custom functions within other jitted functions can cause some issues, # so we define the signatures explicitly for these two functions. @numba.jit((numba.float64[:,:], numba.int64, numba.int64, numba.int64, numba.float64), nopython=True, cache=CACHE_OPTIMIZATIONS) def _x_deriv(matrix, i, j, N, delta): return (matrix[i,(j+1)%N] - matrix[i,j-1]) / (2 * delta) @numba.jit((numba.float64[:,:], numba.int64, numba.int64, numba.int64, numba.float64), nopython=True, cache=CACHE_OPTIMIZATIONS) def _y_deriv(matrix, i, j, N, delta): return (matrix[(i+1)%N,j] - matrix[i-1,j]) / (2 * delta) # Because of the same issue described above, we can't cache this function # This function gives a warning because numba only experimentally supports # treating functions as objects (the list derivs). @numba.jit(nopython=True) def _calculateOmegaOpt(N, gluonDOF, delta, incidentGaugeField, targetAdjointWilsonLine): """ Calculate the field omega at each point on the lattice. If the field already exists, it is simply returned and no calculation is done. Returns ------- numpy.array : shape=(N, N, 2, 2, `colorCharges`**2 - 1) """ # 2,2 is for the 2 dimensions, x and y omega = np.zeros((N, N, 2, 2, gluonDOF), dtype='complex') # 2 is for two dimensions, x and y derivs = [_x_deriv, _y_deriv] for i in range(N): for j in range(N): for k in range(gluonDOF): for l in range(2): # 2 is number of dimensions for n in range(2): # 2 is number of dimensions omega[i,j,l,n,k] = np.sum(np.array([derivs[l](incidentGaugeField[:,:,m], i, j, N, delta) * derivs[n](targetAdjointWilsonLine[:,:,k,m], i, j, N, delta) for m in range(gluonDOF)])) return omega @numba.jit(nopython=True, cache=CACHE_OPTIMIZATIONS) def _calculateMomentaOpt(N, delta): """ Optimized (via numba) function to calculated the position (momentum) in Fourier space of each point Parameters ---------- N : int Size of the lattice delta : double Spacing between each point Returns ------- (momentaComponents, theta) momentaComponents : array(N, N, 2) x and y components of the momentum at each point theta : array(N, N) Relationship between x and y components at each point, or atan2(k_y, k_x) """ momentaComponents = np.zeros((N, N, 2)) theta = np.zeros((N, N)) for i in range(N): for j in range(N): # Note that these components are of the form: # k_x = 2/a sin(k_x' a / 2) # Though the argument of the sin is simplified a bit momentaComponents[i,j] = [2/delta * np.sin(np.pi*i/N) * np.sign(np.sin(2*np.pi*i/N)), 2/delta * np.sin(np.pi*j/N) * np.sign(np.sin(2*np.pi*j/N))] theta[i,j] = np.arctan2(momentaComponents[i,j,1], momentaComponents[i,j,0]) return momentaComponents, theta @numba.jit(nopython=True, cache=CACHE_OPTIMIZATIONS) def _calculateParticlesProducedDerivOpt(N, gluonDOF, momentaMagSquared, omegaFFT): """ Optimized (via numba) function to calculate dN/d^2k Parameters ---------- N : int The system size gluonDOF : int The number of gluon degrees of freedom ((possible color charges)^2 - 1) momentaMagSquared : array(N, N) The magnitude of the momentum at each point, likely calculated (in part) with _calculateMomentaOpt() omegaFFT : array(2, 2, gluonDOF, N, N) Previously calculated omega array Returns ------- particleProduction : array(N, N) The number of particles produced at each point on the momentum lattice """ # Where we will calculate dN/d^2k particleProduction = np.zeros((N,N)) # # 2D Levi-Cevita symbol LCS = np.array([[0,1],[-1,0]]) # # 2D Delta function KDF = np.array([[1,0],[0,1]]) # Note that unlike in the rest of the code, i and j *do not* refer to the # spacial indices here: x and y do (too many indices... :/ ) for y in range(N): for x in range(N): # To prevent any divide by zero errors if momentaMagSquared[y,x] == 0: continue # All of these 2s are for our two dimensions, x and y for i in range(2): for j in range(2): for l in range(2): for m in range(2): for a in range(gluonDOF): particleProduction[y,x] += np.real(2/(2*np.pi)**3 / momentaMagSquared[y,x] * ( (KDF[i,j]*KDF[l,m] + LCS[i,j]*LCS[l,m])) * ( omegaFFT[y,x,i,j,a] * np.conj(omegaFFT[y,x,l,m,a]))) return particleProduction ```
{ "source": "Jfeatherstone/pepe", "score": 4 }
#### File: pepe/analysis/BrightnessGSquared.py ```python import numpy as np import cv2 import numba from pepe.preprocess.Image import checkImageType def averageBrightness(frame): r""" Compute the average brightness (pixel intensity) of a frame. Parameters ---------- frame : np.ndarray[H,W] or str The frame for which to compute the average brightness. Can also be a path to an image. Returns ------- averageBrightness : float The average brightness of the image. """ return np.mean(checkImageType(frame)) def varianceBrightness(frame): r""" Compute the standard deviation in brightness (pixel intensity) of a frame. Parameters ---------- frame : np.ndarray[H,W] or str The frame for which to compute the average brightness. Can also be a path to an image. Returns ------- varianceBrightness: float The standard deviation of the brightness of the image. """ return np.var(checkImageType(frame)) @numba.jit(nopython=True) def gSquared(properFrame): """ The gradient squared at each pixel of the image, also known as the convolution of a Laplacian kernel across the image. Optimized via `numba`. Edge values are padded with values of 0. Parameters ---------- properFrame : np.ndarray[H,W] An array representing a single channel of an image. Returns ------- gSqr : np.ndarray[H,W] The gradient squared at every point. References ---------- [1] DanielsLab Matlab implementation, https://github.com/DanielsNonlinearLab/Gsquared [2] <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2019). Enlightening force chains: A review of photoelasticimetry in granular matter. Granular Matter, 21(4), 83. [10.1007/s10035-019-0942-2](https://doi.org/10.1007/s10035-019-0942-2) """ # Take the full size of the image, though know that the outermost row and # column of pixels will be 0 gSquared = np.zeros_like(properFrame) # Iterate over every pixel # Regardless of whether we have a good region, G^2 needs a buffer of 1 pixel on each # side, so we have to crop down more for j in range(1, np.shape(properFrame)[0]-1): for k in range(1, np.shape(properFrame)[1]-1): # I've put a little picture of which pixels we are comparing # for each calculation (O is the current pixel, X are the # ones we are calculating) # - - - # X O X # - - - g1 = float(properFrame[j, k-1]) - float(properFrame[j, k+1]) # - X - # - O - # - X - g2 = float(properFrame[j-1, k]) - float(properFrame[j+1, k]) # - - X # - O - # X - - g3 = float(properFrame[j-1, k+1]) - float(properFrame[j+1, k-1]) # X - - # - O - # - - X g4 = float(properFrame[j-1, k-1]) - float(properFrame[j+1, k+1]) gSquared[j,k] = (g1*g1/4.0 + g2*g2/4.0 + g3*g3/8.0 + g4*g4/8.0)/4.0 return gSquared def averageGSquared(frame): r""" Compute the average local gradient squared, or \(G^2\), of a frame. If multichannel image is provided, will convert to grayscale by averaging over the channels. Parameters ---------- frame : np.ndarray[H,W] or str The frame for which to compute the average gradient squared. Can also be a path to an image. Returns ------- averageGSquared : float The average gradient squared of the image. References ---------- [1] DanielsLab Matlab implementation, https://github.com/DanielsNonlinearLab/Gsquared [2] <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2019). Enlightening force chains: A review of photoelasticimetry in granular matter. Granular Matter, 21(4), 83. [10.1007/s10035-019-0942-2](https://doi.org/10.1007/s10035-019-0942-2) """ # This will load in the image if the method is passed an image # file path properFrame = checkImageType(frame) # Make sure that our image is grayscale if properFrame.ndim == 3: properFrame = np.mean(properFrame, axis=-1) # Use the optimzed gSquared method so it is fast return np.mean(gSquared(properFrame)) def varianceGSquared(frame): r""" Compute the variance in the local gradient squared, or \(G^2\), of a frame. If multichannel image is provided, will convert to grayscale by averaging over the channels. Parameters ---------- frame : np.ndarray[H,W] or str The frame for which to compute the variance of the gradient squared. Can also be a path to an image. Returns ------- varianceGSquared : float The variance of the gradient squared of the image. References ---------- [1] DanielsLab Matlab implementation, https://github.com/DanielsNonlinearLab/Gsquared [2] <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2019). Enlightening force chains: A review of photoelasticimetry in granular matter. Granular Matter, 21(4), 83. [10.1007/s10035-019-0942-2](https://doi.org/10.1007/s10035-019-0942-2) """ # This will load in the image if the method is passed an image # file path properFrame = checkImageType(frame) # Make sure that our image is grayscale if properFrame.ndim == 3: properFrame = np.mean(properFrame, axis=-1) # Use the optimzed gSquared method so it is fast return np.var(gSquared(properFrame)) ``` #### File: pepe/analysis/D2Min.py ```python import numpy as np from numpy.linalg import inv # For calculating which neighbors are within a certain distance from sklearn.neighbors import KDTree def calculateD2Min(initialCenters, finalCenters, refParticleIndex=0, interactionRadius=None, interactionNeighbors=None, normalize=True): """ Calculate the d2min between an initial and final state of particles; a measure of how non-affine the transformation is, as originally described in [1]. Parameters ---------- initialCenters : np.ndarray[N,d] or list List of initial center points of N particles in d dimensions. finalCenters : np.ndarray[N,d] or list List of final center points of N particles in d dimensions. Must be in the same order as initialCenters. refParticleIndex : int The index of the particle to treat as the reference particle (r_0 in Falk & Langer 1998 eq. 2.11). If set to None, will calculate the D2min N times using each particle as the reference (and return types will have an extra first dimension N). Simiarly, can be a list of indices for which to calculate as the refernce indices. interactionRadius : float The maximum distance between particles that can be considered neighbors. Recommended to be set to around 1.1 - 1.5 times the mean particle radius of the system. If set to None, all other particles in the system will be considered neighbors. See interactionNeighbors for specifying a fixed number of neighbors. In the case that neither a radius or number of neighbors are specified, calculation will default to using all other particles as neighbors. interactionNeighbors : int As opposed to using an interactionRadius to define neighbors, a fixed number of neighbors can be specified here. This number of neighbors will be found using a kd-tree for the reference point(s). In the case that neither a radius or number of neighbors are specified, calculation will default to using all other particles as neighbors. normalize : bool Whether to divide the d2min by the number of neighbors used to calculate it (True) or not (False). For heterogeneous systems where the number of neighbors can vary significantly, recommend to set True. Will make little difference if a fixed number of neighbors (see interactionNeigbors) are used. Returns ------- d2min : float The minimum value of D2 for the transition from the initial to final state. Units are a squared distance dimensionally the same as the initial and final centers (likely a pixel^2 value if tracked from images). Changing units to particle diameters afterwards may be necessary. epsilon : numpy.ndarray[d,d] The uniform strain tensor that minimizes D2; equation 2.14 in [1]. In the case that `refParticleIndex=None`, the return will instead be a tuple of numpy arrays containing the same information but for every particle: d2minArr : np.ndarray[N] The minimum value of D2 for the transition from the initial to final state for every possible configuration. epsilonArr : np.ndarray[N,d,d] The uniform strain tensor that minimizes D2 for every possible configuration Examples -------- See `test` folder in [standalone repository](https://github.com/Jfeatherstone/D2min). References ---------- [1] <NAME>., & <NAME>. (1998). Dynamics of viscoplastic deformation in amorphous solids. Physical Review E, 57(6), 7192–7205. [https://doi.org/10.1103/PhysRevE.57.7192](https://doi.org/10.1103/PhysRevE.57.7192) """ # The number of particles and spatial dimension N, d = np.shape(initialCenters) # In the case that a single reference particle is defined, we just calculate exactly as described in the paper if not isinstance(refParticleIndex, list) and not isinstance(refParticleIndex, np.ndarray) and refParticleIndex != None: # Determine which particles are neighbors using the parameters supplied on the function call initialNeighbors = None finalNeighbors = None # If an interaction radius is supplied, we have to find the particles that are closest # in the initial state using a kd-tree if interactionRadius != None: kdTree = KDTree(initialCenters) ind = kdTree.query_radius([initialCenters[refParticleIndex]], interactionRadius) # We ignore the first element since it will always be the particle itself # And we have to sort we don't mess up the order ind = np.sort(ind[0][1:]) # Make sure we actually found some particles if len(ind) == 0: print('Warning: no neighbors found within supplied interaction radius! Defaulting to all other particles') else: initialNeighbors = initialCenters[ind] finalNeighbors = finalCenters[ind] # If a fixed number of neighbors is provided instead, we find those particles again with # a kd-tree elif interactionNeighbors != None: kdTree = KDTree(initialCenters) # Make sure we don't look for more particles than are in our system dist, ind = kdTree.query([initialCenters[refParticleIndex]], min(interactionNeighbors+1, N)) # We ignore the first element since it will always be the particle itself # And we have to sort we don't mess up the order ind = np.sort(ind[0][1:]) initialNeighbors = initialCenters[ind] finalNeighbors = finalCenters[ind] # If no information is supplied, or we ran into issues, use every other particle if not isinstance(initialNeighbors, list) and not isinstance(initialNeighbors, np.ndarray): initialNeighbors = initialCenters[np.arange(N) != refParticleIndex] finalNeighbors = finalCenters[np.arange(N) != refParticleIndex] # Now onto the actual D2min calculation # Bin's original code defined the differences between centers in # Falk & Langer eq. 2.11 - 2.13 as "bonds" # We first calculate these bonds using our reference particle index # Do this by subtracting the ref particle center from the center of every other particle # Note that you could technically leave in the ref bond, since it will be 0 and not contribute, # but it is cleaner to just remove it initialBonds = initialNeighbors - initialCenters[refParticleIndex] finalBonds = finalNeighbors - finalCenters[refParticleIndex] # More succinct notation for doing the calculation, from Bin's original code # Converting to numpy matrices makes matrix multiplication happen automatically b0 = np.mat(initialBonds) b = np.mat(finalBonds) # Calculate the two functions used to minimize D2, X and Y (eq. 2.12 and 2.13 respectively) X = b0.transpose() * b Y = b0.transpose() * b0 # Calculate the uniform strain tensor that minimizes D2 (eq. 2.14) # Note that we don't include the kronecker delta function since it will # be cancelled out when plugged into the D2min equation (eq. 2.11). # Also not that this is actually the transpose of the strain tensor as # it is defined in the paper, since it makes the matrix multiplication easier # in the next step epsilon = inv(Y) * X # Non-affine part, or the terms that are squared and summed over in eq. 2.11 non_affine = b - b0*epsilon # The final value d2min = np.sum(np.square(non_affine)) if normalize: d2min /= len(initialNeighbors) # Since we have been working with the transpose of the strain tensor, # we have to transpose to get the proper one return (d2min, np.array(epsilon.transpose())) # If we don't have a reference particle, or we are given multiple, we calculate for each of those if not isinstance(refParticleIndex, list) and not isinstance(refParticleIndex, np.ndarray): refParticleIndex = np.arange(N) # Now calculate for all of those possibilities d2minArr = np.zeros(len(refParticleIndex)) epsilonArr = np.zeros([len(refParticleIndex), d, d]) for i in range(len(refParticleIndex)): d2min, epsilon = calculateD2Min(initialCenters, finalCenters, refParticleIndex[i], interactionRadius, interactionNeighbors, normalize) d2minArr[i] = d2min epsilonArr[i] = epsilon return (d2minArr, epsilonArr) def vonMisesStrain(uniformStrainTensor): """ WIP. """ # The number of spatial dimensions dimension = np.shape(uniformStrainTensor)[0] # Lagrangian strain matrix eta = 0.5 * (uniformStrainTensor * uniformStrainTensor.transpose() - np.eye(dimension)) # von-Mises strain eta_m = 1.0/np.double(dimension) * np.trace(eta) tmp = eta - eta_m * np.eye(dimension) eta_s = np.sqrt(0.5*np.trace(tmp*tmp)) return eta_s ``` #### File: pepe/analysis/ForceSolve.py ```python import numpy as np from pepe.preprocess import circularMask, rectMask, ellipticalMask, mergeMasks, upsample, downsample from pepe.analysis import gSquared, adjacencyMatrix, testForceBalance from pepe.simulate import genSyntheticResponse from pepe.utils import outerSubtract import numba import copy from lmfit import minimize, Parameters, fit_report from lmfit.minimizer import AbortFitException from scipy.signal import find_peaks import matplotlib.pyplot as plt # This dictionary defines the argument data types for # forceOptimize(), which is used for reading in settings # from a file forceOptimizeArgDTypes = {"parametersToFit": list, "method": str, "maxEvals": int, "forceBounds": tuple, "betaBounds": tuple, "alphaBounds": tuple, "forceTolerance": float, "betaTolerance": float, "alphaTolerance": float, "useTolerance": bool, "returnOptResult": bool, "allowAddForces": bool, "allowRemoveForces": bool, "minForceThreshold": float, "contactMaskRadius": int, "newBetaMinSeparation": float, "newBetaG2Height": float, "missingForceChiSqrThreshold": float, "imageScaleFactor": float, "localizeAlphaOptimization": bool, "forceBalanceWeighting": float, "debug": bool} def initialForceSolve(photoelasticSingleChannel, centers, radii, fSigma, pxPerMeter, contactPadding=10, g2EdgePadding=1, contactG2Threshold=.1, contactMaskRadius=40, neighborEvaluations=4, boundaryMask=None, ignoreBoundary=True, brightfield=False, boundaryDetectionOptions={}, g2Cal=None): """ Calculate the approximate forces on each particle based on the photoelastic response. No optimization/gradient descent is done in this method; this should be used either where rough estimates of the forces are fine, or as an initial condition for a fitting function. Heavily based on <NAME>t's PhD thesis (2012) and <NAME>'s PeGS: https://github.com/jekollmer/PEGS <NAME>., <NAME>., & <NAME>. (2017). Photoelastic force measurements in granular materials. Review of Scientific Instruments, 88(5), 051808. https://doi.org/10.1063/1.4983049 Outline of the process: 0. Track particles to get centers and radii (external) 1. Calculate average gradient squared for each particle 2. Find which particles are in contact with each other 3. Determine if there are any boundary contacts (optional) 4. Calculate the position of each (boundary or interparticle) force for each particle 5. Use the average gradient from step 1 to estimate the magnitude of force at each position Intended to be used as the initial condition for optimization process; see `pepe.analysis.forceOptimize()` for more information. When significant noise is present in the images, this method will often way overestimate the magnitudes of forces (because it is based on the gradient squared). If the guesses are much too high, it can be better to just set all force magnitudes to a reasonable flat value, like `.1`. Parameters ---------- photelasticSingleChannel : np.uint8[H,W] A single channel image in array form of the photoelastic response of particles. centers : np.ndarray[N,2] A list of N centers of format [y, x]. radii : np.ndarray[N] A list of N radii, corresponding to each particle center contactPadding : int Maximum difference between distance and sum of radii for which two particles will still be considered in contact. g2EdgePadding : int or float Number of pixels to ignore at the edge of each particle when calculating the average G^2. If float value < 1 is passed, gradient mask radius will be taken as that percent of the full particle radius. A value of 0 means no padding is included. contactG2Threshold : float The neighbor weight value under which edges will be removed from the network, as they would be considered to weak to represent anything physical. This will help remove particle neighbors that are only barely touching, but not transmitting any real force. contactMaskRadius : float The radius of the circular mask applied over a contact to estimate the magnitude of the force there. Should be smaller than the radius, usually 25% of the radius is fine. For higher forces, larger mask may be needed. neightborEvaluations : int How many of the closest points to find via the kd tree and test as potential contacts. For homogeneous circles, or approximately homogenous (< 2:1 size ratio), 4 should be plenty. boundaryMask : np.uint8[H,W] Optional mask removing uneccesary parts of the image, that is used to detect boundaries. Locations with a value of 0 will be assumed to be solid walls, that a particle could potentially be in contact with. If not provided, or set to None, system will be assumed to be in a rectangular box defined the most extreme top/bottom/left/right particles. ignoreBoundary : bool Whether to not attempt to find any contacts with the boundary. This will take effect regardless of whether a boundary mask is passed as a parameter. brightfield : bool Whether the photoelastic response is seen through a brightfield (True) polariscope or darkfield (False) polariscope. boundaryDetectionOptions : kwargs Dictionary of kwargs to be passed to the detectWallContact method, assuming boundaries are being included in the solver. If none are provided, relevant values are carried over from the kwargs for this method (`contactPadding`, `g2EdgePadding`, `contactMaskRadius`, `contactG2Threshold`). g2Cal : float Gradient squared to force calibration value. For numerous calls of the function, it is recommended to calculate this value once externally, and pass it in. If left as None, will be recalculated internally. Returns ------- forceGuessArr : np.object[N,F(N)] Triangular array of force magnitude guesses for N particles with F(N) forces each (could be different number of forces per particle). alphaGuessArr : np.object[N,F(N)] Triangular array of alpha angle guesses for N particles with F(N) forces each (could be different number of forces per particle). betaGuessArr : np.object[N,F(N)] Triangular array of beta angle guesses for N particles with F(N) forces each (could be different number of forces per particle). """ # We are passed centers and radii numParticles = len(centers) # This should not include any channels, and should just be h x w imageSize = photoelasticSingleChannel.shape # Triangular arrays are a little wonky, but this type of initialization works betaGuessArr = [np.empty(0) for i in range(numParticles)] # Find neighbors # (This is the unweighted adjacency matrix, so a 1 if two particles are neighbors, 0 otherwise) # np.eye is the identity, which removes all diagonal "contacts" (a particle with itself) adjMat = adjacencyMatrix(centers, radii, contactPadding, neighborEvaluations) - np.eye(numParticles) # This includes duplicates, but that is ok because as long as we keep # the index order consistent, each force will show up only once for each particle # (but twice overall, which is what we want) contacts = np.transpose(np.where(adjMat)) # Each pair of indices for p in contacts: betaGuessArr[p[0]] = np.append(betaGuessArr[p[0]], np.arctan2(centers[p[1]][1] - centers[p[0]][1], centers[p[1]][0] - centers[p[0]][0])) # Find potential wall contacts (optional) if not ignoreBoundary: # If no boundary is given, but ignoreBoundary = False, we just make a box around # our system if boundaryMask is None: # Working in image conventions, so top left corner is 0,0 # So y value increases as you move downwards topLeftCorner = np.array([np.min(centers[:,0] - radii), np.min(centers[:,1] - radii)]) dimensions = np.array([np.max(centers[:,0] + radii) - topLeftCorner[0], np.max(centers[:,1] + radii) - topLeftCorner[1]]) boundaryMask = rectMask(photoelasticSingleChannel.shape, topLeftCorner, dimensions, channels=None) # We want to carry a few arguments over to the boundary detection # if they haven't been explicitly provided if not 'contactPadding' in boundaryDetectionOptions: boundaryDetectionOptions["contactPadding"] = contactPadding if not 'g2EdgePadding' in boundaryDetectionOptions: boundaryDetectionOptions["g2EdgePadding"] = g2EdgePadding if not 'contactMaskRadius' in boundaryDetectionOptions: boundaryDetectionOptions["contactMaskRadius"] = contactMaskRadius if not 'contactG2Threshold' in boundaryDetectionOptions: boundaryDetectionOptions["contactG2Threshold"] = contactG2Threshold # See detectWallContacts for more information numWallContacts, wallBetaArr, wallG2AvgArr = detectWallContacts(centers, radii, boundaryMask, photoelasticSingleChannel, **boundaryDetectionOptions) # Now merge these contacts with the interparticle ones for i in range(numParticles): for j in range(numWallContacts[i]): betaGuessArr[i] = np.append(betaGuessArr[i], wallBetaArr[i][j]) # Alpha is very easy: we just assume all forces are radial # This creates an empty array the same shape as the beta one, # but with all of the values set to 0 (again, triangular arrays are wonky) alphaGuessArr = np.zeros(len(betaGuessArr), dtype='object') for i in range(len(alphaGuessArr)): alphaGuessArr[i] = np.zeros(len(betaGuessArr[i])) # Initialize force the same way, but this will end up with # actual values forceGuessArr = np.zeros(len(betaGuessArr), dtype='object') for i in range(len(forceGuessArr)): forceGuessArr[i] = np.zeros(len(betaGuessArr[i])) # Calculate G^2 of the image gSqr = gSquared(photoelasticSingleChannel) # Find G2 calibration value # Mean of the radii should be fine, though TODO would be a good idea to have options here if g2Cal is None: g2Cal = g2ForceCalibration(fSigma, np.mean(radii), pxPerMeter, brightfield=brightfield) # Figure out how much of the particle we will be calculating the g2 over if g2EdgePadding < 1. and g2EdgePadding > 0: g2MaskRadii = radii * g2EdgePadding elif g2EdgePadding >= 1: g2MaskRadii = radii - g2EdgePadding else: g2MaskRadii = radii for i in range(numParticles): g2Mask = circularMask(photoelasticSingleChannel.shape, centers[i], g2MaskRadii[i])[:,:,0] # This is the average g2 of the whole particle avgGSqr = np.sum(gSqr * g2Mask) / np.sum(g2Mask) # Now allocate this force to each contact contactG2Arr = np.zeros(len(forceGuessArr[i])) # We have to find the average gsqr at each contact for j in range(len(forceGuessArr[i])): contactMask = circularMask(photoelasticSingleChannel.shape, centers[i] + radii[i]*np.array([np.cos(betaGuessArr[i][j]), np.sin(betaGuessArr[i][j])]), contactMaskRadius)[:,:,0] # Now make sure it stays within the particle contactMask = 1 - np.int16((contactMask + g2Mask - 2) > 0) # This is average g2 of each contact contactG2Arr[j] = np.sum(gSqr * contactMask) / np.sum(contactMask) forceGuessArr[i][:] = avgGSqr * contactG2Arr / np.sum(contactG2Arr) / g2Cal # while (!solved) # Few iterations of least squares for each remaining particle # TODO # Find the ones with the least error, and perform a many more iterations # TODO # Apply force balance to those particles (optional) # TODO # Fix those contacts, and carry over the force to their neighbors # TODO # Remove fixed particles from the queue # TODO return forceGuessArr, alphaGuessArr, betaGuessArr def forceOptimize(forceGuessArr, betaGuessArr, alphaGuessArr, radius, center, realImage, fSigma, pxPerMeter, brightfield, parametersToFit=['f', 'a'], method='nelder', maxEvals=300, forceBounds=(0, 5), betaBounds=(-np.pi, np.pi), alphaBounds=(-np.pi/2, np.pi/2), forceTolerance=.5, betaTolerance=.2, alphaTolerance=.1, useTolerance=True, returnOptResult=False, allowAddForces=True, allowRemoveForces=True, minForceThreshold=.01, contactMaskRadius=30, newBetaMinSeparation=.4, newBetaG2Height=.0005, missingForceChiSqrThreshold=2.1e8, imageScaleFactor=1, localizeAlphaOptimization=True, forceBalanceWeighting=.2, debug=False): """ Optimize an initial guess for the forces acting on a particle using a nonlinear minimization function. Parameters ---------- forceGuessArr : np.ndarray[Z] The initial guess for magnitudes of each force that is acting on the particle. betaGuessArr : np.ndarray[Z] The initial guess for the positional angles where each force is acting (in radians). alphaGuessArr : np.ndarray[Z] The initial guess for the directional angles for each force acting on the particle (in radians). radius : float The radius of the particle, in pixels. center : [int, int] The coordinates of the center, [y,x], of the particle. realImage : np.ndarray[H,W] The photoelastic channel that the optimizer will compare against. Can be a composite image include other particles, since a mask will be applied around the given particle. parametersToFit : ['f'[[, 'b'], 'a']] Which parameters should be allowed to be varied in the process of minimizing the function; 'f' for force magnitude, 'b' for beta positional angle, 'a' for alpha directional angle. Must include at least one. Can also specify to perform multiple optimizations on different variables by providing a 2D list of parameters keys (any of 'f', 'a', 'b') e.g. [ ['f', 'b'], ['f', 'a'] ] will first optimize the force and beta values, then optimize the force and alpha values. When performing multiple optimizations, the result of the previous one is used as initial condition for the following one, though the residual array includes information about all optimizations. Values for `maxEvals`, `forceTol`, `betaTol`, `alphaTol`, and `method` can be provided as lists of acceptable values to specify different options for each optimization e.g. `method=['nelder', 'cobyla']` will use the Nelder-Mead optimization scheme on the first pass, and then COBYLA on the second one. If a single value is provided for any of these parameters, that will be used for all optimizations. method : str The method to use for optimization. See wiki page on Force Solver for more information on selecting an appropriate one. Generally any method from [lmfit](https://lmfit.github.io/lmfit-py/fitting.html#the-minimize-function) can be used, but the following tend to give the best results: - `lm` - Levenberg-Marquardt - `least_squares` - Trust region reflective - `nelder` - Nelder-Mead Can be provided as a list of values when performing multiple optimizations; see `parametersToFit`. maxEvals : int The maximum number of function evaluations before the minimizer exits. Convergence can occur before this number of evaluations, but process will be interrupted at this value regardless of whether or not the result has converged. Can be provided as a list of values when performing multiple optimizations; see `parametersToFit`. forceBounds : (float, float) The upper and lower limits for the values of force magnitudes that the minimizer can explore, assuming that `useTolerance` is set to False. betaBounds : (float, float) The upper and lower limits for the values of beta that the minimizer can explore, assuming that `useTolerance` is set to False. alphaBounds : (float, float) The upper and lower limits for the values of alpha that the minimizer can explore, assuming that `useTolerance` is set to False. forceTolerance : float If `useTolerance` is set to True, this value will be used to calculate the bounds for each force individually, as the initial value minus this tolerance, and the initial value plus this tolerance. Can be provided as a list of values when performing multiple optimizations; see `parametersToFit`. betaTolerance : float If `useTolerance` is set to True, this value will be used to calculate the bounds for each beta individually, as the initial value minus this tolerance, and the initial value plus this tolerance. Can be provided as a list of values when performing multiple optimizations; see `parametersToFit`. alphaTolerance : float If `useTolerance` is set to True, this value will be used to calculate the bounds for each alpha individually, as the initial value minus this tolerance, and the initial value plus this tolerance. Can be provided as a list of values when performing multiple optimizations; see `parametersToFit`. useTolerance : bool Whether to calculate the bounds for each parameters as the initial value plus/minus a certain tolerance (True) or to use the set intervals provided via the `forceBounds`, `betaBounds`, and `alphaBounds` parameters (False). returnOptResult : bool Whether to return the optimizer result object, which includes all parameters values and potentially uncertainties (True) or just the optimized values of the forces, betas, alphas, and residuals (False). Note that if multiple optimizations are being performed, only the final result object will be returned. allowAddForces : bool Whether or not to allow the optimization routine to attempt to detect missing forces, and add them in. This detection is done by examining the gradient squared of the photoelastic image provided to the method (`realImage`). If a force is added, the last optimization routine will be run again, with the added ability to vary the contact position, beta (if this was not already the case). allowRemoveForces : bool Whether or not to allow the optimization routine to remove forces that have a magnitude below a certain threshold (see `minForceThreshold`). minForceThreshold : float The minimizer will automatically remove any forces whose magnitude is lower than this value between fittings and after the final one. contactMaskRadius : float The radius in pixels of the circular mask applied over contacts, either during localized alpha optimization (see `localizeAlphaOptimization`) or detection of missing contacts (see `allowAddForces`). newBetaMinSeparation : float The minimum separation for a potential new contact (see `allowAddForces`) to be considered as a real force to be added. Larger values can prevent doubling up on forces, when there is really only a single, extended contact point newBetaG2Height : float The threshold for average gradient squared value in a localized region around a potential new contact. missingForceChiSqrThreshold : float The minimum chi squared value (as calculated by the optimization routine; analagous to error) above which the method will attempt to detect missing forces. Found by experimentation. localizeAlphaOptimization : bool When optimizing for the incident angle (alpha) alone, the effect of varying this value can be very subtle across the entire particle. This parameter will have the largest effect in a small region around the contact. If this value is `True`, optimizations only for alpha (done by passing `parametersToFit=['a']`, or similar) will mask the particle except for a small region around the contact. imageScaleFactor : int > 1 or positive float < 1 Factor by which to scale the real image when optimizating. Integer larger than 1 will lead to the image being upsampled, and float less than 1 (but greater than 0) will lead to the image being downsampled. Must lead to an integer up- or downscale factor; for upscaling this is not an issue, but downscale factors may be rounded in not the exact inverse of an integer. eg. a value of `.35` will result in a downscale by a factor of 3, not 2.85. forceBalanceWeighting : float If set to some non-zero and non-None value, the optimization cost will include a contribution depending on how badly the ensemble of forces satisfy force balance. debug : bool Whether or not to print out status statements as the optimization is performed. """ # If we are passed a 2d list of parametersToFit, that means we # are to perform multiple minimizations, likely with different # parameters being optimized each time. # It is easier to set up this method to run for an arbitrary number # of optimizations, even though most of the time that number of # optimizations will be one # So if we aren't given a 2d list structure, we have to make one if type(parametersToFit[0]) is not list: parametersToFitList = [parametersToFit] else: parametersToFitList = parametersToFit numFits = len(parametersToFitList) # Different numbers of evaluations can be provided for each optimization # or just the one value can be used for all of them if type(maxEvals) is not list: maxEvalsList = [maxEvals for i in range(numFits)] else: maxEvalsList = maxEvals # The different minimizations can use different methods if type(method) is not list: methodList = [method for i in range(numFits)] else: methodList = method # Same deal for all of the tolerances (we don't do bound intervals, since tolerances # are the recommended way to handle parameters bounds) if type(forceTolerance) is not list: forceTolList = [forceTolerance for i in range(numFits)] else: forceTolList = forceTolerance if type(betaTolerance) is not list: betaTolList = [betaTolerance for i in range(numFits)] else: betaTolList = betaTolerance if type(alphaTolerance) is not list: alphaTolList = [alphaTolerance for i in range(numFits)] else: alphaTolList = alphaTolerance # Make sure everything is the same length assert len(parametersToFitList) == numFits, 'Invalid parametersToFit provided' assert len(maxEvalsList) == numFits, 'Invalid maxEvals provided' assert len(methodList) == numFits, 'Invalid method provided' assert len(forceTolList) == numFits, 'Invalid forceTol provided' assert len(betaTolList) == numFits, 'Invalid betaTol provided' assert len(alphaTolList) == numFits, 'Invalid alphaTol provided' # We need to keep track of the best set of parameters externally from # the optimization routine, in the case that the minimize() function # fails. global residuals, bestResidual, bestParams residuals = [] bestResidual = 1e16 # Arbitrary large number that will be overwritten bestParams = None if imageScaleFactor > 1: # Make sure we have an integer factor realScaleFactor = int(imageScaleFactor) scaledImage = upsample(realImage, realScaleFactor) elif imageScaleFactor < 1: # Make sure we have the inverse of an integer factor realScaleFactor = 1/float(int(1/imageScaleFactor)) scaledImage = downsample(realImage, int(1/imageScaleFactor)) else: scaledImage = realImage realScaleFactor = 1 scaledRadius = np.int64(radius * realScaleFactor) scaledCenter = np.array(center * realScaleFactor, dtype=np.int64) scaledPxPerMeter = np.int64(pxPerMeter * realScaleFactor) scaledContactMaskRadius = np.int64(contactMaskRadius * realScaleFactor) scaledParticleArea = scaledRadius**2 * np.pi # Setup our function based on what parameters we are fitting # We want to avoid any if statements within the function itself, since # that will be evaluated many many times. # lmfit has a nice setup in that you can denote whether a variable can be # changed or not, which means we don't actually have to change which variables # are passed to the function. def objectiveFunction(params, trueImage, z, radius, center, mask): global residuals, bestResidual, bestParams forceArr = np.array([params[f"f{j}"] for j in range(z)]) betaArr = np.array([params[f"b{j}"] for j in range(z)]) alphaArr = np.array([params[f"a{j}"] for j in range(z)]) synImage = genSyntheticResponse(forceArr, alphaArr, betaArr, fSigma, scaledRadius, scaledPxPerMeter, brightfield, imageSize=scaledImage.shape, center=scaledCenter, mask=mask) # Error component for the response image matching up with the real one diffResidual = np.sum((synImage - trueImage)**2) # Error component for the forces being balanced # We scale by the particle area here, since the one above will be proportional to that # and we want the two to be somewhat comparable balanceResidual = np.sum(testForceBalance(forceArr, betaArr, alphaArr)**2) * scaledParticleArea * forceBalanceWeighting # Save residual for tracking error residuals.append(diffResidual + balanceResidual) # Save best configuration outside of minimization if residuals[-1] < bestResidual: bestResidual = residuals[-1] # Deep copy to make sure we aren't just assigning by reference bestParams = copy.deepcopy(params) return residuals[-1] # Mask our real image particleMask = circularMask(scaledImage.shape, scaledCenter, scaledRadius)[:,:,0] maskedImage = scaledImage * particleMask # Since we may be doing multiple fits, we want to set up the initial conditions # such that each fit uses the result of the previous one (and the first one # of course uses what is provided to the function) forceArr = np.array(forceGuessArr.copy()) betaArr = np.array(betaGuessArr.copy()) alphaArr = np.array(alphaGuessArr.copy()) # Now that we have all of that bookkeeping done, we can actually get on # to doing the minimization result = None # Whether we should vary beta only for the next run, in case # we have added a force tempVaryBeta = False i = 0 # We use a while loop here because we may want to repeat a fit if # we add a new force, which isn't possible in a for loop while i < numFits: z = len(forceArr) # If we lose all of our forces in the optimization, # the next optimization will fail. if z == 0: break # Out fitting parameters # if vary kwarg is false, that value won't be fit params = Parameters() for j in range(z): if useTolerance: # Have to make sure that certain values aren't allowed to go negative, but # otherwise the bounds are just the initial value +/- the tolerances params.add(f'f{j}', value=forceArr[j], vary='f' in parametersToFitList[i], min=max(forceArr[j]-forceTolList[i], 0), max=forceArr[j]+forceTolList[i]) params.add(f'b{j}', value=betaArr[j], vary='b' in parametersToFitList[i] or tempVaryBeta, min=max(betaArr[j]-betaTolList[i], -np.pi), max=min(betaArr[j]+betaTolList[i], np.pi)) params.add(f'a{j}', value=alphaArr[j], vary='a' in parametersToFitList[i], min=alphaArr[j]-alphaTolList[i], max=alphaArr[j]+alphaTolList[i]) else: params.add(f'f{j}', value=forceArr[j], vary='f' in parametersToFitList[i], min=forceBounds[0], max=forceBounds[1]) params.add(f'b{j}', value=betaArr[j], vary='b' in parametersToFitList[i] or tempVaryBeta, min=betaBounds[0], max=betaBounds[1]) params.add(f'a{j}', value=alphaArr[j], vary='a' in parametersToFitList[i], min=alphaBounds[0], max=alphaBounds[1]) # Reset the vary beta bool so we only do it this round tempVaryBeta = False # If alpha is the only parameter being adjusted, it can help to look only in a # localized region around each contact, since changing alpha has such a subtle # effect on the overall pattern. if localizeAlphaOptimization and 'a' in parametersToFitList[i] and not 'b' in parametersToFitList[i] and not 'f' in parametersToFitList[i]: # The *10 is to make sure that all points end up inside of the particle # eg. if you have two close contacts, and just look for places >= 2, we could # get a region that satisfies that condition, but isn't actually in the particle localizedMask = np.copy(particleMask) * 10 for j in range(len(betaArr)): contactPoint = scaledCenter + scaledRadius * np.array([np.cos(betaArr[j]), np.sin(betaArr[j])]) # Create a mask just over the small area inside of the particle localizedMask += circularMask(scaledImage.shape, contactPoint, scaledContactMaskRadius)[:,:,0] # >= 10 + 1 such that the points must be inside the # The value 10 is mostly arbitrary, but makes it very unlikely # that 10 separate contacts would overlap. localizedMask = (localizedMask >= 11).astype(np.uint8) else: # Otherwise we just set value to none, which will be handled by pepe.simulate.genSyntheticResponse() localizedMask = None # This is the callback function after each minimization step # There seems to be an error where sometimes the optimization # will raise an error if the max number of iterations is reached # (and sometimes it doesn't care) so we use this to make sure # we get the best set of parameters out, even if this error # comes up #def iterCallback(params, iter, resid, *args, **kwargs): # if iter >= maxEvalsList[i]: # Just kidding, I'll just use a try and ignore the error, since I # am pretty sure that the params variable is constantly updated, not just # at the end. try: # Now do the optimization # The fatol kwarg is the minimum change between iterations before the # fit is considered to have converged. I just choose this based on an educated guess, # and it seems to work (worst case, you can just it really small and run the optimization # for the max number of evals every time). result = minimize(objectiveFunction, params, args=(maskedImage, z, scaledRadius, scaledCenter, localizedMask), method=methodList[i], max_nfev=maxEvalsList[i], nan_policy='omit', options={"fatol": 1e-2}) # Copy over the new values of the forces, alphas, and betas for j in range(z): forceArr[j] = result.params[f"f{j}"] betaArr[j] = result.params[f"b{j}"] alphaArr[j] = result.params[f"a{j}"] # If we run out of function evaluations, that not too huge a deal, # so we just grab the best value and move on. If we run into an actual error, # that shouldn't be caught here, since that might be serious, so we re-trhow it. except Exception as e: if not isinstance(e, AbortFitException): raise e if debug: print(e) # Otherwise, we take the last good value (since we kept track outside of # the optimization function) if bestParams is not None: for j in range(z): forceArr[j] = bestParams[f"f{j}"] betaArr[j] = bestParams[f"b{j}"] alphaArr[j] = bestParams[f"a{j}"] else: # If we don't have any good parameter values, just return the initial # guess. The arrays are initialized as this value, so we don't need # to do anything in this case. pass # --------------------- # Detect missing forces # --------------------- # If the code detects there is a missing force (no idea how yet) if result is not None and result.chisqr > missingForceChiSqrThreshold and allowAddForces: # We sweep around the edge of the particle to see if there # are any regions that look like they could have a force # (denoted by a particularly high g2 value, or rather a peak) testBetaCount = 30 avgG2Arr = np.zeros(testBetaCount) newBetaArr = np.linspace(-np.pi, np.pi, testBetaCount) # Calculate all of the g2s around the edge of the particle gSqr = gSquared(scaledImage) for j in range(testBetaCount): contactPoint = scaledCenter + scaledRadius * np.array([np.cos(newBetaArr[j]), np.sin(newBetaArr[j])]) # Create a mask just over the small area inside of the particle contactMask = circularMask(scaledImage.shape, contactPoint, scaledContactMaskRadius)[:,:,0] contactMask = (contactMask + particleMask) == 2 avgG2Arr[j] = np.sum(contactMask * gSqr) / np.sum(contactMask) # Identify any peaks in the average g2s peakIndArr = find_peaks(avgG2Arr, height=newBetaG2Height)[0] peakIndArr = np.sort(peakIndArr) # Make sure that there aren't any artifacts of periodicity # Usually this isn't actually a problem, because the peak # finding algorithm requires a proper peak, which can only # be on one side (but we'll leave it here just in case) if np.arange(3).any() in peakIndArr and np.arange(len(avgG2Arr)-3, len(avgG2Arr)).any() in peakIndArr: # Remove last entry peakIndArr = peakIndArr[:-1] peakBetaArr = newBetaArr[peakIndArr] # Now we have a list of likely points, we need to see if our original # list is missing any of these. differenceArr = np.abs(np.subtract.outer(peakBetaArr, betaArr)) # Check to see if there is a new peak that doesn't have # a previous force close to it for j in range(len(peakBetaArr)): if np.min(differenceArr[j]) > newBetaMinSeparation and np.max(differenceArr[j]) < 2*np.pi - newBetaMinSeparation: # Add the new force betaArr = np.append(betaArr, peakBetaArr[j]) forceArr = np.append(forceArr, .1) # Value isn't too imporant here alphaArr = np.append(alphaArr, 0.) # If we have added a force, we should run the optimization again, and see if it improves if len(forceArr) > z: if debug: print(f'Added {len(forceArr) - z} force(s).') # We also want to make sure we're allowed to vary beta on the next iteration tempVaryBeta = True # This skips the i += 1 at the end of the loop, and makes the optimization run again continue # ------------------------------------ # Remove forces that don't do anything # ------------------------------------ if len(forceArr[forceArr < minForceThreshold]) > 0 and allowRemoveForces: # Remove forces that aren't actually doing anything betaArr = betaArr[forceArr > minForceThreshold] alphaArr = alphaArr[forceArr > minForceThreshold] # This one has to be done last for the other indexing to work forceArr = forceArr[forceArr > minForceThreshold] if debug: print(f'Removed {z - len(forceArr)} force(s).') # Iterate (since we have a while not a for) i += 1 if returnOptResult: return result else: return forceArr, betaArr, alphaArr, residuals @numba.jit(nopython=True) def g2ForceCalibration(fSigma, radius, pxPerMeter=1., g2Padding=1, alphaArr=np.array([0., 0.]), betaArr=np.array([0., -np.pi]), forceSteps=100, forceBounds=np.array([.01, 1.]), brightfield=True): """ Use synthetic photoelastic response to fit the conversion constant between gradient squared value and force (in Newtons), assuming a linear relationship. Note that this computes the least squares of force (N) vs **average** gradient squared. The Matlab just uses the sum of gradient squared, but this is not invariant under changes of resolution, so I have opted to use the average. Because of this, a calibration value calculated in Matlab will **not** work here unless you divide out the number of points it is summed over first. Parameters ---------- fSigma : float Stress optic coefficient, relating to material thickness, wavelength of light and other material property (C). radius : float Radius of the particle that is being simulated in pixels. If pxPerMeter is not provided (or set to 1), this value will be assumed to already have been converted to meters. contactMaskRadius : float Radius of the circular mask that is applied over each contact to find the average gradient squared. pxPerMeter : float The number of pixels per meter for the simulated image. If not provided, or set to 1, the radius value will be assumed to already have been converted to meters. g2Padding : int Number of pixels to ignore at the edge of the particle. We don't expect any boundary artifacts in our synthetic data, but we will eventually do this for the real data, so it is important to keep the size of the particles the same throughout. alphaArr : np.ndarray[Z] Array of angles representing force contact angles. betaArr : np.ndarray[Z] Array of angles representing force contact positions. forceSteps : int The number of points to use for fitting our line of g^2 vs. force. forceBounds : [float, float] The minimum and maximum value of force applied to calculate the calibration value. brightfield : bool Whether the intensity should be simulated as seen through a brightfield (True) polariscope or darkfield (False) polariscope. Returns ------- g2ForceSlope : float Slope found via linear regression to convert average g^2 to force. """ # The magnitude of the forces that will be acting at each step forceValues = np.linspace(forceBounds[0], forceBounds[1], forceSteps) gSqrAvgArr = np.zeros(forceSteps) imageSize = (np.int16(radius*2)+11, np.int16(radius*2)+11) center = np.array([imageSize[0]/2, imageSize[1]/2], dtype=np.int64) particleMask = circularMask(imageSize, center, radius - g2Padding)[:,:,0] # The contact mask is a circle placed over the edge of the particle where the force is applied #contactMask1 = circularMask(imageSize, # np.array([imageSize[0]/2 + radius*np.cos(betaArr[0]), imageSize[1]/2 + radius*np.sin(betaArr[0])]), # contactMaskRadius)[:,:,0] #contactMask2 = circularMask(imageSize, # np.array([imageSize[0]/2 + radius*np.cos(betaArr[1]), imageSize[1]/2 + radius*np.sin(betaArr[1])]), # contactMaskRadius)[:,:,0] # Get rid of the parts outside of the circle #contactMask1 = contactMask1 * particleMask #contactMask2 = contactMask2 * particleMask # Add them together #contactMask = contactMask1 + contactMask2 # To divide out the number of points #numPoints = np.sum(contactMask) numPoints = np.sum(particleMask) for i in range(forceSteps): # Assume two forces acting on the particle with equal magnitude forceArr = np.array([forceValues[i], forceValues[i]]) # Create a synthetic photoelastic response particleImg = genSyntheticResponse(forceArr, alphaArr, betaArr, fSigma, radius, pxPerMeter, brightfield, imageSize, center) # Calculate the gradient gSqr = gSquared(particleImg) # Multiply by the mask to avoid weird edge effects gSqrAvgArr[i] = np.sum(gSqr * particleMask) / numPoints # Now fit a straight line to the data # Create col vector of forces # Note that we multiply by 2 here # Since we are calculating g2 over the entire particle, we should # compare it to the force on the entire particle, not just one side. forceColMat = forceValues.reshape((forceSteps, 1)) * 2 # Perform least squares solution = np.linalg.lstsq(forceColMat, gSqrAvgArr) return solution[0][0] def g2ForceCalibrationDebug(fSigma, radius, pxPerMeter, alphaArr=np.array([0., 0.]), betaArr=np.array([0., -np.pi]), forceSteps=100, forceBounds=np.array([.01, 1.]), brightfield=True): # TODO: Also find the point at which the linear fit breaks down, so we can # return the max amount of force that can be converted using this method # before it stops working """ Use synthetic photoelastic response to fit the conversion constant between gradient squared value and force (in Newtons), assuming a linear relationship. Returns the X and Y values that a line would be fit to, instead of the fit paramters themselves. See pepe.analysis.g2ForceCalibration(). Note that this computes the least squares of force (N) vs **average** gradient squared. The Matlab just uses the sum of gradient squared, but this is not invariant under changes of resolution, so I have opted to use the average. Because of this, a calibration value calculated in Matlab will **not** work here unless you divide out the number of points it is summed over first. Parameters ---------- fSigma : float Stress optic coefficient, relating to material thickness, wavelength of light and other material property (C). radius : float Radius of the particle that is being simulated in pixels. If pxPerMeter is not provided (or set to 1), this value will be assumed to already have been converted to meters. contactMaskRadius : float Radius of the circular mask that is applied over each contact to find the average gradient squared. pxPerMeter : float The number of pixels per meter for the simulated image. If not provided, or set to 1, the radius value will be assumed to already have been converted to meters. alphaArr : np.ndarray[Z] Array of angles representing force contact angles. betaArr : np.ndarray[Z] Array of angles representing force contact positions. forceSteps : int The number of points to use for fitting our line of g^2 vs. force. forceBounds : [float, float] The minimum and maximum value of force applied to calculate the calibration value. brightfield : bool Whether the intensity should be simulated as seen through a brightfield (True) polariscope or darkfield (False) polariscope. Returns ------- forceArr : np.ndarray[forceSteps] Force applied (in Newtons) at each point g2AvgArr : np.ndarray[forceSteps] Resultant average gradient squared across the particle at each point. """ # The magnitude of the forces that will be acting at each step forceValues = np.linspace(forceBounds[0], forceBounds[1], forceSteps) gSqrAvgArr = np.zeros(forceSteps) imageSize = np.array([np.int(radius*2.2), np.int(radius*2.2)]) particleMask = circularMask(imageSize, imageSize/2, radius)[:,:,0] # The contact mask is a circle placed over the edge of the particle where the force is applied #contactMask1 = circularMask(imageSize, # np.array([imageSize[0]/2 + radius*np.cos(betaArr[0]), imageSize[1]/2 + radius*np.sin(betaArr[0])]), # contactMaskRadius)[:,:,0] #contactMask2 = circularMask(imageSize, # np.array([imageSize[0]/2 + radius*np.cos(betaArr[1]), imageSize[1]/2 + radius*np.sin(betaArr[1])]), # contactMaskRadius)[:,:,0] # Get rid of the parts outside of the circle #contactMask1 = contactMask1 * particleMask #contactMask2 = contactMask2 * particleMask # Add them together #contactMask = contactMask1 + contactMask2 # To divide out the number of points #numPoints = np.sum(contactMask) numPoints = np.sum(particleMask) for i in range(forceSteps): # Assume two forces acting on the particle with equal magnitude forceArr = np.array([forceValues[i], forceValues[i]]) # Create a synthetic photoelastic response particleImg = genSyntheticResponse(forceArr, alphaArr, betaArr, fSigma, radius, pxPerMeter, brightfield, imageSize, imageSize/2) # Calculate the gradient gSqr = gSquared(particleImg) # Multiply by the mask to avoid weird edge effects gSqrAvgArr[i] = np.sum(gSqr * particleMask) / numPoints # We multiply by 2 because that is the total force acting on the particle return 2*forceValues, gSqrAvgArr <EMAIL>(nopython=True) def detectWallContacts(centers, radii, boundaryMask, photoelasticSingleChannel=None, contactPadding=10, g2EdgePadding=.95, contactG2Threshold=1e-4, angleClusterThreshold=.2, contactMaskRadius=50, extendedContacts=False, maxContactExtent=.75): """ Detect potential particle contacts with the wall. Parameters ---------- centers : np.ndarray[N,2] A list of N centers of format [y, x]. radii : np.ndarray[N] A list of N radii, corresponding to each particle center boundaryMask : np.uint8[H,W] Mask removing uneccesary parts of the image, that is used to detect boundaries. Locations with a value of 0 will be assumed to be solid walls, that a particle could potentially be in contact with. photelasticSingleChannel : np.uint8[H,W] A single channel image in array form of the photoelastic response of particles. Is used to determine if a contact is actually force bearing or not. If not provided, all potential contacts will be returned. contactPadding : int Maximum difference between distance between a particle's edge and the wall that will still be tested as a wall contact. g2EdgePadding : int or float Number of pixels to ignore at the edge of each particle when calculating the average G^2. If float value < 1 is passed, gradient mask radius will be taken as that percent of the full particle radius. A value of 0 means no padding is included. contactG2Threshold : float The neighbor weight value under which edges will be removed from the network, as they would be considered to weak to represent anything physical. This will help remove particle neighbors that are only barely touching, but not transmitting any real force. angleClusterThreshold : float The minimum difference in consecutive angle (beta) for which two wall contacts will be considered unique (and not merged into the same contact). contactMaskRadius : int The size of the circular mask that is used to determine average gradient squared value around detected contacts. extendedContacts : bool Whether or not to break up larger potential contacts in multiple. See `maxContactExtent`. maxContactExtent : float The maximum range of angles that can be included in a single cluster. If any particular cluster exceeds this value, it will be divided up into multiple new clusters. Returns ------- numWallContacts : np.ndarray[N] The number of wall contacts for each particle (denoted as Z_i in other return values). betaArr : np.ndarray[N, Z_i] A list of angles for each particle in which there likely is a wall contact. contactG2Arr : np.ndarray[N, Z_i] A list of average gradient squared values for each wall contact, to be multiplied by the g2 calibration value to get the initial force magnitude guess. """ # Figure out how much of the particle we will be calculating the g2 over g2MaskRadii = radii.astype(np.float64) if g2EdgePadding < 1. and g2EdgePadding > 0: g2MaskRadii = (radii.astype(np.float64) * g2EdgePadding) elif g2EdgePadding >= 1: g2MaskRadii = (radii - g2EdgePadding).astype(np.float64) # Things that will be returned numWallContacts = np.zeros(len(centers), dtype=np.int16) betaArr = [] contactG2Arr = [] # Iterate over each particle for i in range(len(centers)): # Create a mask slightly larger than the particle wallContactMask = circularMask(boundaryMask.shape, centers[i], radii[i] + contactPadding) # Find the overlap (similarity) of this enlarged particle mask and the boundary mask invBoundaryMask = 1 - boundaryMask similarity = np.floor((invBoundaryMask + wallContactMask).astype(np.double)/2).astype(np.uint8)[:,:,0] # Determine if there is a chance of a wall contact if np.sum(similarity) > 0: # ------------------------------ # Find every point that overlaps # ------------------------------ # Normally we could just do this: #points = np.transpose(np.where(cMask > 0)) # but numba doesn't quite like this way, so we have to be # a little more creative whereIndices = np.where(similarity > 0) points = np.zeros((len(whereIndices[0]), 2), dtype=np.int16) # There is a chance that these indices are backwards, but # because we have rotational symmetry, it doesn't really matter... # BUT if there is ever some weird anisotropy bug or something, # try switching these indices points[:,0] = whereIndices[0] points[:,1] = whereIndices[1] # ------------------------------ # Cluster them based on position # ------------------------------ # Convert to angles angles = np.arctan2(points[:,1] - centers[i][1], points[:,0] - centers[i][0]) # Sort the angles, since they may not exactly be in order sortedIndices = np.argsort(angles) angles = np.sort(angles) # To apply it to the original points, we would have to reverse the sorting # we did earlier, or much easier, just sort the original points the same way points = points[sortedIndices] # Calculate the difference between angles # There should be a jump once we move to a new cluster dAngle = angles[1:] - angles[:-1] # Add 1 to these, because we started at 1 # These are the indices of places that have large jumps in angle clusterSeparation = np.where(dAngle > angleClusterThreshold)[0].astype(np.int16) + 1 # Generate an array with labels for each angle numClusters = len(clusterSeparation) + 1 labels = np.zeros(len(points)) startingIndex = 0 for j in range(numClusters-1): labels[startingIndex:clusterSeparation[j]] = j startingIndex = clusterSeparation[j] # And the final cluster labels[startingIndex:] = numClusters-1 # Check to see if we have any artifacts of the periodicity of the angle # (and fix them by setting the last cluster to be equal to the first one) #print(angles[0], angles[-1]) if numClusters > 1 and abs(angles[0] - angles[-1]) < angleClusterThreshold or abs(abs(angles[0] - angles[-1]) - 2*np.pi) < angleClusterThreshold: labels[labels == np.max(labels)] = 0 numClusters -= 1 # -------------------------------------- # Calculate the centroid of each cluster # -------------------------------------- clusterCentroids = np.zeros((numClusters, 2)) for j in range(numClusters): clusterCentroids[j] = [np.mean(points[labels == j][:,0]), np.mean(points[labels == j][:,1])] # -------------------------------------------------------------- # Calculate the angle with respect to the particle center (beta) # -------------------------------------------------------------- clusterBetas = np.zeros(numClusters) for j in range(numClusters): clusterBetas[j] = np.arctan2(clusterCentroids[j,1] - centers[i][1], clusterCentroids[j,0] - centers[i][0]) # ------------------------------------- # Divide up big clusters (if necessary) # ------------------------------------- if extendedContacts: newBetas = np.zeros(0) for j in range(numClusters): # First, calculate the extent of the cluster # This isn't as simple as subtract max from min, because # of the periodicity, so the most reliable method is as follows # Locate every unique angle in this cluster (in order) uniqueBetas = np.sort(np.unique(angles[labels == j])) # If you only have 1 beta, then clearly we don't need to divide # this cluster up if len(uniqueBetas) < 2: newBetas = np.append(newBetas, clusterBetas[j]) continue clusterBounds = np.array([np.max(np.array([uniqueBetas[0], uniqueBetas[-1]])), np.min(np.array([uniqueBetas[0], uniqueBetas[-1]]))]) clusterExtent = clusterBounds[0] - clusterBounds[1] # This is usually a good way to identify that the region # passes across the top of the circle if (clusterExtent < .01 or 2*np.pi - clusterExtent < .01) and np.min(uniqueBetas) < 0 and np.max(uniqueBetas) > 0: #if (clusterBetas[j] < clusterBounds[0] and clusterBetas[j] > clusterBounds[1]): clusterBounds = [np.max(uniqueBetas[uniqueBetas < 0]), np.min(uniqueBetas[uniqueBetas > 0])] clusterExtent = 2*np.pi - (clusterBounds[1] - clusterBounds[0]) if clusterExtent > maxContactExtent: numNewClusters = np.int16(np.ceil(clusterExtent / maxContactExtent)) dBeta = clusterExtent/numNewClusters newBetas = np.append(newBetas, np.linspace(clusterBetas[j] + clusterExtent/2., clusterBetas[j] - clusterExtent/2., numNewClusters)) else: newBetas = np.append(newBetas, clusterBetas[j]) #print(newBetas) clusterBetas = newBetas.copy() numClusters = len(clusterBetas) # Now we want to recalculate our centroids, since there are # potentially some new ones clusterCentroids = np.zeros((numClusters, 2)) for j in range(numClusters): clusterCentroids[j] = centers[i] + radii[i] * np.array([np.cos(clusterBetas[j]), np.sin(clusterBetas[j])]) # -------------------------------------------------------------------------- # Apply a mask to get the magnitude of the average g2 value for that contact # -------------------------------------------------------------------------- # We only do this if we are provided a photoelastic image clusterAvgG2 = np.zeros(numClusters) if photoelasticSingleChannel is not None: # Calculate G2 gSqr = gSquared(photoelasticSingleChannel) for j in range(numClusters): # Create an elliptical mask around the area the photoelastic response would # be in. This is actually more a half ellipse, since we want a reasonably # wide area around the contact itself, and only a small bit of the center # of the particle. #majorAxisDir = clusterCentroids[j] - centers[i] #majorAxisDir /= np.sqrt(majorAxisDir[0]**2 + majorAxisDir[1]**2) #ellipseE radii[i] - g2EdgePaddingndpoint = majorAxisDir * 2 *radii[i] + centers[i] #contactMask = ellipticalMask(photoelasticSingleChannel.shape, centers[i], ellipseEndpoint, radii[i]/2) # Just kidding, a circular mask seems to work better contactMask = circularMask(photoelasticSingleChannel.shape, clusterCentroids[j], contactMaskRadius) # Now cut off the part outside of the particle contactMask = (contactMask + circularMask(photoelasticSingleChannel.shape, centers[i], g2MaskRadii[i]))[:,:,0] == 2 # Calculate average G2 clusterAvgG2[j] = np.sum(contactMask * gSqr) / np.sum(contactMask) # --------------------------- # Save all of the information # --------------------------- numWallContacts[i] = len(clusterBetas) betaArr.append(clusterBetas) contactG2Arr.append(clusterAvgG2) else: # No possible wall contacts # numWallContacts is initialized at 0, so don't need to set it # Numba doesn't allow untyped lists, so this is a little trick # to get an empty list into this array betaArr.append(np.array([np.double(x) for x in range(0)])) contactG2Arr.append(np.array([np.double(x) for x in range(0)])) pass return numWallContacts, betaArr, contactG2Arr ``` #### File: pepe/analysis/LinearRegions.py ```python import numpy as np from scipy.stats import linregress def determineLinearRegions(data, minLength=.1, minR2=.96, maxSlopeInterceptDiff=.75): """ Determine regions of a plot that are approximately linear by performing linear least-squares on a rolling window. Parameters ---------- data : array_like Data within which linear regions are to be identified minLength : int or float The minimum length of a linear segment, either as an integer number of indices, or as a float fraction of the overall data length. minR2 : float The minimum r-squared value for a region to be considered linear. maxSlopeInterceptDiff : float The float percentage difference allowed between slopes and intercepts of adjacent slices for them to be considered the same region. Returns ------- regionIndices : np.ndarray[N,2] The start and end indices for the N detected regions. slopes : np.ndarray[N] The slope of each region. intercepts : np.ndarray[N] The intercept of each region. """ if minLength < 1: minLinSteps = int(len(data)*minLength) else: minLinSteps = int(minLength) inLinearRegion = False linearRegions = [] slopes = [] intercepts = [] # Perform least squares on a rolling window i = 0 while i < len(data) - minLinSteps: xArr = np.arange(i, i+minLinSteps) slope, intercept, r2, p_value, std_err = linregress(xArr, data[i:i+minLinSteps]) if np.abs(r2) > minR2: if inLinearRegion: # Calculate how different new slope is from old one if np.abs((np.mean(slopes[-1]) - slope) / np.mean(slopes[-1])) < maxSlopeInterceptDiff and np.abs((np.mean(intercepts[-1]) - intercept) / np.mean(intercepts[-1])) < maxSlopeInterceptDiff: # This is still the same linear region, so we extend the bounds linearRegions[-1][1] = i+minLinSteps # And average in the slopes and intercepts slopes[-1] += [slope] intercepts[-1] += [intercept] else: # Otherwise, we have a new linear region, which we start # at the end of the other one i = linearRegions[-1][1] inLinearRegion = False continue else: # New linear region linearRegions.append([i, i+minLinSteps]) slopes.append([slope]) intercepts.append([intercept]) inLinearRegion = True else: inLinearRegion = False i += 1 slopes = np.array([np.mean(s) for s in slopes]) intercepts = np.array([np.mean(inter) for inter in intercepts]) return np.array(linearRegions), slopes, intercepts ``` #### File: pepe/auto/ForceSolve.py ```python import numpy as np import os import cv2 import time import pickle import inspect import ast import tqdm import matplotlib.pyplot as plt from PIL import Image, ImageDraw from IPython.display import clear_output import pepe from pepe.preprocess import checkImageType, lightCorrectionDiff, circularMask from pepe.analysis import initialForceSolve, forceOptimize, gSquared, g2ForceCalibration, singleParticleForceBalance, forceOptimizeArgDTypes from pepe.tracking import houghCircle, convCircle, angularConvolution, circleTrackArgDTypes from pepe.simulate import genSyntheticResponse from pepe.utils import preserveOrderArgsort, rectangularizeForceArrays, explicitKwargs, parseList from pepe.visualize import genColors, visCircles, visForces, visContacts, visRotation from pepe.topology import findPeaksMulti # All of the dtypes of the args for the below method # The following args are not included, because they are not # important: progressBarOffset, progressBarTitle forceSolveArgDTypes = {"imageDirectory": str, "imageExtension": str, "imageEndIndex": int, "imageStartIndex": int, "carryOverAlpha": bool, "carryOverForce": bool, "showProgressBar": bool, "lightCorrectionImage": str, "lightCorrectionVerticalMask": str, "lightCorrectionHorizontalMask": str, "g2CalibrationImage": str, "g2CalibrationCutoffFactor": float, "maskImage": str, "cropXMin": int, "cropXMax": int, "circleDetectionMethod": str, "guessRadius": float, "fSigma": float, "pxPerMeter": float, "brightfield": bool, "contactPadding": int, "g2MaskPadding": int, "contactMaskRadius": int, "peBlurKernel": int, "requireForceBalance": bool, "circleTrackingChannel": int, "circleTrackingKwargs": dict, "photoelasticChannel": int, "optimizationKwargs": dict, "maxBetaDisplacement": float, "forceNoiseWidth": float, "alphaNoiseWidth": float, "saveMovie": bool, "pickleArrays": bool, "outputRootFolder": str, "outputExtension": str, "genFitReport": bool, "performOptimization": bool, "inputSettingsFile": str, "debug": bool} # Decorator that allows us to identify which keyword arguments were explicitly # passed to the function, and which were left as default values. See beginning # of method code for more information/motivation. @explicitKwargs() def forceSolve(imageDirectory, guessRadius=0.0, fSigma=0.0, pxPerMeter=0.0, brightfield=True, contactPadding=15, g2MaskPadding=2, contactMaskRadius=30, lightCorrectionImage=None, lightCorrectionHorizontalMask=None, lightCorrectionVerticalMask=None, g2CalibrationImage=None, g2CalibrationCutoffFactor=.9, maskImage=None, cropXMin=None, cropXMax=None, peBlurKernel=3, imageExtension='bmp', requireForceBalance=False, imageStartIndex=None, imageEndIndex=None, carryOverAlpha=True, carryOverForce=True, circleDetectionMethod='convolution', circleTrackingKwargs={}, circleTrackingChannel=0, maxBetaDisplacement=.5, photoelasticChannel=1, forceNoiseWidth=.03, alphaNoiseWidth=.01, optimizationKwargs={}, performOptimization=True, debug=False, showProgressBar=True, progressBarOffset=0, progressBarTitle=None, saveMovie=False, outputRootFolder='./', inputSettingsFile=None, pickleArrays=True, genFitReport=True, outputExtension=''): """ Complete pipeline to solve for forces and particle positions for all image files in a directory. Results will be returned and potentially written to various files. See `Returns` section for more information Expects all particles to be the same (or very similar) sizes. This assumption is made by the calculation of the gradient squared calibration value, which is computed just once using the guess of the radii. This should not be a problem if the radii are only slightly varied (~10 pixels or something) but any more than that and errors will begin to accumulate. This method has **a lot** of arguments; it is intended to be used once reasonable values for all of these have already been found. While the `debug` option for this function is very helpful, it is recommended to utilize the various notebooks/examples to find good choices for parameters first. The output readme file can also serve as a cache of the parameter values/settings, which can be passed back to future calls of this method using the `inputSettingsFile` argument. Parameters ---------- imageDirectory : str An absolute or relative path to the directory containing the images that are to be analyzed. The names of the images need not follow any particular naming scheme, but they should be such that sorting the list alphabetically will give the images in their proper order. guessRadius : float The radius of the particles to be detected, in pixels. As of now, this value will be taken as the particle radius, but future versions may be able to vary this to find the optimal value. Currently no support for particles of different sizes. fSigma : float Stress optic coefficient, relating to material thickness, wavelength of light and other material property (denoted as C in most literature; sometimes also called the "stress optic coefficient"). pxPerMeter : float The number of pixels per meter in the images. Depends on the camera, lens, and zoom settings used to capture the images. Note that this is **not** the inverse of the number of pixels per meter, as is used in some of the other force solving implementations. brightfield : bool Whether the images are captured using a brightfield polariscope (`True`) or a darkfield polariscope (`False`). contactPadding : int Maximum distance (in pixels) between a particle's edge and the wall or the edges of two particles that will still be considered a potential force-bearing contact. g2MaskPadding : int or float Number of pixels to ignore at the edge of each particle when calculating the average G^2. If float value < 1 is passed, gradient mask radius will be taken as that percent of the full particle radius. A value of 0 means no padding is included. contactMaskRadius : float The radius of the circular mask that will be constructed around each contact to estimate the magnitude of the force using the gradient squared in that region. lightCorrectionImage : str or np.ndarray[H,W[,C]] The path to an image (or an array representing an image) that contains no particles, and can be used to correct for any light gradients present in the actual data. lightCorrectionHorizontalMask : str or np.ndarray[H,W[,C]] A mask array, containing values of `0` or `1`, with the latter representing areas over which the horizontal light correction should be calculated. Can also be a path to an image. lightCorrectionVerticalMask : str or np.ndarray[H,W[,C]] A mask array, containing values of `0` or `1`, with the latter representing areas over which the vertical light correction should be calculated. Can also be a path to an image. g2CalibrationImage : str or np.ndarray[H,W,C] An image with a single particle (or at least one particle) that has no force acting on it. Used to determine the base level of gradient squared (due to noise) for a free particle. Can also be a path to an image. g2CalibrationCutoffFactor : float The factor that is multipled by the mean gradient squared value of the particles in the calibration image. Any particle that has an average gradient squared value below the calibration value multipled by this factor will be assumed to have no forces acting on it. maskImage : str or np.ndarray[H,W,C] A mask array, containing values of `0` or `1`, with the latter representing the regions of importance for the image. Used in detecting particles, generating initial guesses, and calculating error during non-linear optimization. can also be a path to an image. cropXMin : int or None Left bound to crop down the image in the x direction. cropXMax : int or None Right bound to crop down the image in the x direction. peBlurKernel : int The kernel size that will be used for bluring the photoelastic channel of each image, to reduce noise. Should be an odd integer. imageExtension : str The extension of the image files that will be read in from `imageDirectory`. Should not include the '.' before the extension. requireForceBalance : bool Whether to impose particle-wise force balance at each step (`True`) or to take the results of the optimization process as they are (`False`). Currently WIP, and does not do anything. forceBalanceWeighting : float If a non-zero positive value, adds a contribution to the optimization cost pertaining to how well the ensemble of forces satisfy force balance. imageStartIndex : int or None The index of which image to start at when analyzing the files in `imageDirectory`. Value of `None` will start at the first (alphabetically sorted) image. imageEndIndex : int or None The index of which image to end at when analyzing the files in `imageDirectory`. Value of `None` will end at the last (alphabetically sorted) image. circleDetectionMethod : ['convolution' or 'hough'] Whether to use the convolution or hough circle detection method to identify particles. See `pepe.tracking.convCircle()` and `pepe.tracking.houghCircle()` for more information. circleTrackingKwargs : **kwargs Keyword arguments to be passed to the selected circle tracking function. See `pepe.tracking.convCircle()` and `pepe.tracking.houghCircle()` for more information. circleTrackingChannel : int The channel of the image that will be used to track the particles. `0` for red, `1` for green, and `2` for blue. maxBetaDisplacement : float The maximum distance (angle) that a force can move between frames and still be identified as the same force. If a force moves more than this value, it will still be recorded as a force, but will be considered a new and independent force from any of the ones in the previous frame. photoelasticChannel : int The channel of the image that will be used to gauge the photoelastic response. `0` for red, `1` for green, and `2` for blue. forceNoiseWidth : float or None The width of the gaussian distribution (centered at 0) that noise is sampled from to add to the force guesses (potentially from the previous frame). This is done to avoid getting stuck in a local minimum for too long (adds some Monte-Carlo-esque behavior to the solving). alphaNoiseWidth : float or None The width of the gaussian distribution (centered at 0) that noise is sampled from to add to the alpha guesses (potentially from the previous frame). This is done to avoid getting stuck in a local minimum for too long (adds some Monte-Carlo-esque behavior to the solving). optimizationKwargs : **kwargs Keyword arguments to be passed to the optimization process. For more information, see `pepe.analysis.forceOptimize()`. performOptimization : bool Whether or not to perform optimization on the particles. Mostly included as a debug option, but any real data analysis should utilize the optimization, as the initial guessing is often not nearly accurate enough to get any real results. debug : bool Whether to print progress updates for each frame to the screen (`True`) or not (`False`). showProgressBar : bool Whether to show a progress bar throughout the analysis (`True`) or not (`False`). Uses `tqdm` library. progressBarOffset : int The number of lines to offset the progress bar by. Generally an internal variable used when multiple threads are active. progressBarTitle : str The text to be written to the left of the progress bar. Generally an internal variable controlled by some solving script. saveMovie : bool Whether to save a compiled gif of the reconstructed forces at each frame at the end (`True`) or not (`False`). outputRootFolder : str The location where the output folder (potentially containg the movie, pickle files, readme, etc.) will be created. Output folder itself will be named after the `imageDirectory`, with '_Synthetic' appended to the end. pickleArrays : bool Whether to save the forces, betas, alphas, centers, and radii as pickle files (`True`) or not (`False`). Files will be located in the output folder (see `outputRootFolder`). inputSettingsFile : str Path to a readme file containg parameters for the solving process, likely generated from a previous iteration of the program. Explicitly passed arguments will override those that are included in the settings file. Currently WIP and does not do anything. genFitReport : bool Whether or not to generate a fit report of the results, including errors per frame, examinations of all particles/forces, and settings, compiled in a latex pdf. Will generate both the compiled file 'FitReport.pdf' and the source directory 'FitReport_src/'. Returns ------- rectForceArr : list[P](np.ndarray[F,T]) A list of arrays representing the force magnitude for each force on each particle. rectAlphaArr : list[P](np.ndarray[F,T]) A list of arrays representing the alpha angle for each force on each particle. rectBetaArr : list[P](np.ndarray[F,T]) A list of arrays representing the beta angle for force on each particle. rectCenterArr : np.ndarray[P,T,2] Particle centers for each timestep. Elements take on a value of `[np.nan, np.nan]` if the particle does not exist for a given timestep. rectRadiusArr : np.ndarray[P,T] Particle radii for each timestep. Elements take on a value of `np.nan` if the particle does not exist for a given timestep. Depending on kwarg values, several files may be written created in the output folder, which will be located in `outputRootFolder` and named according to: '<`imageDirectory`>_Synthetic/'. """ overallStartTime = time.perf_counter() # For the sake of saving the options to a readme file (and potentially) # reading them back out, it is easiest to keep all of the settings in a # dictionary # We have 3 layers of precedence for reading in settings: # 1. Explicitly passed kwarg # 2. Read in from settings file # 3. Default value of a kwarg # So we assign the elements of our settings dict in opposite order # 3. All of the default values # The following variables are not present: # progressBarOffset, progressBarTitle # This is because we don't care about saving them settings = {"imageDirectory": os.path.abspath(imageDirectory) + '/', # Convert to absolute path "imageExtension": imageExtension, "imageEndIndex": imageEndIndex, "imageStartIndex": imageStartIndex, "carryOverAlpha": carryOverAlpha, "carryOverForce": carryOverForce, "lightCorrectionImage": lightCorrectionImage, "lightCorrectionVerticalMask": lightCorrectionVerticalMask, "lightCorrectionHorizontalMask": lightCorrectionHorizontalMask, "g2CalibrationImage": g2CalibrationImage, "g2CalibrationCutoffFactor": g2CalibrationCutoffFactor, "maskImage": maskImage, "cropXMin": cropXMin, "cropXMax": cropXMax, "circleDetectionMethod": circleDetectionMethod, "guessRadius": guessRadius, "fSigma": fSigma, "pxPerMeter": pxPerMeter, "brightfield": brightfield, "contactPadding": contactPadding, "g2MaskPadding": g2MaskPadding, "contactMaskRadius": contactMaskRadius, "peBlurKernel": peBlurKernel, "requireForceBalance": requireForceBalance, "circleTrackingChannel": circleTrackingChannel, "photoelasticChannel": photoelasticChannel, "maxBetaDisplacement": maxBetaDisplacement, "forceNoiseWidth": forceNoiseWidth, "alphaNoiseWidth": alphaNoiseWidth, "showProgressBar": showProgressBar, "saveMovie": saveMovie, "pickleArrays": pickleArrays, "outputRootFolder": outputRootFolder, "outputExtension": outputExtension, "genFitReport": genFitReport, "performOptimization": performOptimization, "debug": debug} # For the next step, we will need to know all of the data types of each # argument (to properly cast). Because certain arguments have None as a default # value, we can't automatically generate this information. # See above this method for the list of these, since they are also used # in the TrialObject file # We need to do the same thing for the kwargs for both # circle tracking and optimization # These have both been moved to either the tracking/DTypes.py # or the analysis/ForceSolve.py files, respectively # Now add all the dictionaries together argDTypes = forceSolveArgDTypes.copy() argDTypes.update(circleTrackArgDTypes) argDTypes.update(forceOptimizeArgDTypes) # 2. Anything read in from a settings file # Note that it works to our advantage that we already have values for most entries, # since the settings file doesn't include type information, so we need the old # values to cast properly. 1. is actually contained in here as well, because # we can just check to see if that variable was explicitly passed before overwriting it. # 1. The kwargs that are explicitly passed # This one is a little tricky, because there isn't a super great way by default # to differentiate whether a kwarg is explicitly passed or is its default value # (without just keeping a list of default values). I also don't want to # replace the entire function signature with (*args, **kwargs) because then the # documentation would not be as good (I think). So the solution here is to define # a decorator that has the (*args, **kwargs) signature, and to create an attribute # of this method that is a list of the kwargs that are explicitly passed to the # decorator. See `pepe.utils.explicitKwargs()` for more info. if inputSettingsFile is not None: if os.path.exists(inputSettingsFile): fileObj = open(inputSettingsFile, 'r') for line in fileObj: # Check each line and see if it looks like a dictionary value split = line.split(':') # Read settings into the master settings file if len(split) == 2 and split[0].strip() in argDTypes.keys() and not split[0].strip() in forceSolve.explicit_kwargs: # Cast to the type of the value already in the dict if split[1].strip() == 'None': settings[split[0].strip()] = None else: if '[' in split[1]: settings[split[0].strip()] = parseList(split[1].strip(), dtype=argDTypes[split[0].strip()]) else: # Bools need a special condition if argDTypes[split[0].strip()] is bool: val = split[1].strip() == 'True' else: val = argDTypes[split[0].strip()](split[1].strip()) settings[split[0].strip()] = val else: print(f'Warning: provided settings file does not exist! Attempting to run regardless...') # While the following variables all have a default value of 0, they cannot actually # be left as this value. The reason they have a default value is so that if these # values are indicated by a settings file, we don't want to have to enter them again. # So here, we make sure we have values for them all, either explicitly passed or read in. requiredVars = ["guessRadius", "fSigma", "pxPerMeter"] for r in requiredVars: assert settings[r] != 0, f'Error: {r} value not supplied explicitly or implicitly!' # Now carry over the kwargs that are sent to the optimization procedure into that # dictionary. We can find the names of arguments by using the `inspect` library possibleOptimKwargs = list(inspect.signature(forceOptimize).parameters.keys()) for pkw in possibleOptimKwargs: if pkw in settings.keys(): optimizationKwargs[pkw] = settings[pkw] # We want to do the same thing for the circle tracking function, but we don't # yet know which circle tracking function we are using yet, so we'll carry # that over a bit later. # Find all images in the directory imageFiles = os.listdir(settings["imageDirectory"]) # This goes before the sorting/extension filtering so we can get more specific # error messages (and we have another one of these below) if len(imageFiles) < 1: print(f'Error: directory {imageDirectory} contains no files!') return None imageFiles = np.sort([img for img in imageFiles if img[-len(settings["imageExtension"]):] == settings["imageExtension"]]) # We have to do the end index first, so it doesn't mess up the start one if settings["imageEndIndex"] is not None: imageFiles = imageFiles[:min(settings["imageEndIndex"], len(imageFiles))] if settings["imageStartIndex"] is not None: imageFiles = imageFiles[max(settings["imageStartIndex"], 0):] # Make sure we still have some proper images if len(imageFiles) < 1: print(f'Error: directory \'{settings["imageDirectory"]}\' contains no files with extension \'{settings["imageExtension"]}\'!') return None xB = [settings["cropXMin"], settings["cropXMax"]] imageSize = checkImageType(settings["imageDirectory"] + imageFiles[0])[:,xB[0]:xB[1],0].shape # This will calculation the light correction across the images if settings["lightCorrectionImage"] is not None: # Convert to absolute paths if they are paths if type(settings["lightCorrectionImage"]) is str: settings["lightCorrectionImage"] = os.path.abspath(settings["lightCorrectionImage"]) if type(settings["lightCorrectionVerticalMask"]) is str: settings["lightCorrectionVerticalMask"] = os.path.abspath(settings["lightCorrectionVerticalMask"]) if type(settings["lightCorrectionHorizontalMask"]) is str: settings["lightCorrectionHorizontalMask"] = os.path.abspath(settings["lightCorrectionHorizontalMask"]) cImageProper = checkImageType(settings["lightCorrectionImage"])[:,xB[0]:xB[1]] vMask = checkImageType(settings["lightCorrectionVerticalMask"])[:,xB[0]:xB[1]] hMask = checkImageType(settings["lightCorrectionHorizontalMask"])[:,xB[0]:xB[1]] if vMask.ndim == 3: vMask = vMask[:,:,0] if hMask.ndim == 3: hMask = hMask[:,:,0] lightCorrection = lightCorrectionDiff(cImageProper, vMask, hMask) trackCorrection = lightCorrection[:,:,settings["circleTrackingChannel"]] peCorrection = lightCorrection[:,:,settings["photoelasticChannel"]] else: # It probably isn't great hygiene to have this variableflip between a single # value and an array, but you can always add a scalar to a numpy array, so # this is the easiest way (since we haven't loaded any images yet) trackCorrection = 0 peCorrection = 0 # Load up the mask image, which will be used to remove parts of the images # that we don't care about, and also potentially indicate which particles # are close to the boundary. if settings["maskImage"] is not None: maskArr = checkImageType(settings["maskImage"])[:,xB[0]:xB[1]] ignoreBoundary = False else: # Same deal as above: scalar multiplication functions exactly how we want # in the case that we don't have a mask, so it's just easier to do this. maskArr = 1 ignoreBoundary = True # Which method we will be using to detect circles if settings["circleDetectionMethod"] == 'convolution': circFunc = convCircle elif settings["circleDetectionMethod"] == 'hough': circFunc = houghCircle else: print(f'Error: circle detection option \'{settings["circleDetectionMethod"]}\' not recognized!') return None # Now that we have a circle tracking function, we can carry over any possible kwargs possibleCircleKwargs = list(inspect.signature(circFunc).parameters.keys()) for pkw in possibleCircleKwargs: if pkw in settings.keys(): circleTrackingKwargs[pkw] = settings[pkw] # Calculate the lowest g2 value that we care about, so we can throw everything # that is below that away when solving (optional) checkMinG2 = False if settings["g2CalibrationImage"] is not None: g2CalImage = checkImageType(settings["g2CalibrationImage"])[:,xB[0]:xB[1]] g2CalPEImage = cv2.blur((g2CalImage[:,:,settings["photoelasticChannel"]] + peCorrection).astype(np.float64) / 255, (settings["peBlurKernel"],settings["peBlurKernel"])) # Locate particles centers, radii = circFunc((g2CalImage[:,:,settings["circleTrackingChannel"]] + trackCorrection) * maskArr[:,:,0], settings["guessRadius"], **circleTrackingKwargs) # There should only be 1 particle in the calibration image if len(centers) < 0: print(f'Warning: Gradient-squared calibration image does not contain any particles! Ignoring...') else: particleMask = circularMask(g2CalPEImage.shape, centers[0], radii[0])[:,:,0] gSqr = gSquared(g2CalPEImage) minParticleG2 = np.sum(gSqr * particleMask) / np.sum(particleMask) * settings["g2CalibrationCutoffFactor"] checkMinG2 = True # The arrays that we will be building for each timestep. It is better to just # use an untyped list since the arrays are all triangular and whatnot. centersArr = [] radiiArr = [] forceArr = [] betaArr = [] alphaArr = [] imageArr = [] errorArr = [] # For keeping track of time (though will only be display if debug=True) trackingTimes = np.zeros(len(imageFiles)) initialGuessTimes = np.zeros(len(imageFiles)) optimizationTimes = np.zeros(len(imageFiles)) miscTimes = np.zeros(len(imageFiles)) totalFailedParticles = 0 errorMsgs = [] if settings["showProgressBar"]: bar = tqdm.tqdm(total=len(imageFiles)+1, position=progressBarOffset, desc=progressBarTitle) # Calculate the gradient-squared-to-force calibration value g2Cal = g2ForceCalibration(settings["fSigma"], settings["guessRadius"], settings["pxPerMeter"]) # The big loop that iterates over every image for i in range(len(imageFiles)): image = checkImageType(settings["imageDirectory"] + imageFiles[i])[:,xB[0]:xB[1]] # Convert to floats on the domain [0,1], so we can compare to the output of # genSyntheticResponse() peImage = cv2.blur((image[:,:,settings["photoelasticChannel"]] + peCorrection).astype(np.float64) / 255, (settings["peBlurKernel"],settings["peBlurKernel"])) # ------------- # Track circles # ------------- start = time.perf_counter() centers, radii = circFunc((image[:,:,settings["circleTrackingChannel"]] + trackCorrection) * maskArr[:,:,0], settings["guessRadius"], **circleTrackingKwargs) # We do some indexing using the centers/radii, so it is helpful # to have them as an integer type centers = centers.astype(np.int64) radii = radii.astype(np.int64) # We want to keep the order of particles constant, so we make sure # that they are (to whatever extent possible) in the same order # as the previous frame. This involves finding the closest neighbor # from the previous frame. if len(centersArr) > 0: centerOrder = preserveOrderArgsort(centersArr[-1], centers, padMissingValues=False) centers = centers[centerOrder] radii = radii[centerOrder] trackingTimes[i] = time.perf_counter() - start # ---------------------- # Generate initial guess # ---------------------- # We run the initial guess regardless of whether we are going to overwrite # with values from the previous frame. This is because the beta values # are caluclated via the contact network, which should not be carried over # (since the particles are moving). forceGuessArr, alphaGuessArr, betaGuessArr = initialForceSolve(peImage, centers, radii, settings["fSigma"], settings["pxPerMeter"], settings["contactPadding"], settings["g2MaskPadding"], contactMaskRadius=settings["contactMaskRadius"], boundaryMask=maskArr, ignoreBoundary=ignoreBoundary, g2Cal=g2Cal) if len(centersArr) > 0: # If we have added/lost particles, we want to carry over the previous values where # possible, and otherwise take the results of initialForceSolve # Note that this is the complement to the center order calculated previously: # this orders the old centers according the new ones. # We make the assumption that a particle cannot travel more than it's radius in a single frame oldCenterOrder = preserveOrderArgsort(centers, centersArr[-1], padMissingValues=True, maxDistance=settings["guessRadius"]) # Now find each new particle's old counterpart (if it exists), and then # line up the forces using the value of beta, such that we can (optionally) # carry over force magnitudes and alpha values. for j in range(len(betaGuessArr)): if oldCenterOrder[j] is None: continue # maxBetaDisplacement should be an angle value (in radians) that a force would # never move in a single frame, but is large enough to not lose a force if it # moves because of noise/small fluctuations. forceOrder = preserveOrderArgsort(betaGuessArr[j], betaArr[-1][oldCenterOrder[j]], padMissingValues=True, maxDistance=settings["maxBetaDisplacement"]) #print(f'frame {i}, particle {j}: {forceOrder}') for k in range(len(forceGuessArr[j])): if forceOrder[k] is not None: if settings["carryOverForce"]: forceGuessArr[j][k] = forceArr[-1][oldCenterOrder[j]][forceOrder[k]] if settings["carryOverAlpha"]: alphaGuessArr[j][k] = alphaArr[-1][oldCenterOrder[j]][forceOrder[k]] # In this case, we want to add a small randomly generated contribution # so that the algorithm doesn't get stuck in some incorrect loop and so that it # explores a little more of the parameter space to find a nice minimum at each step if settings["forceNoiseWidth"] is not None: forceGuessArr = [np.abs(np.array(f) + np.random.normal(0, settings["forceNoiseWidth"], size=len(f))) for f in forceGuessArr] if settings["alphaNoiseWidth"] is not None: alphaGuessArr = [np.abs(np.array(a) + np.random.normal(0, settings["alphaNoiseWidth"], size=len(a))) for a in alphaGuessArr] initialGuessTimes[i] = time.perf_counter() - trackingTimes[i] - start # ------------------------------- # Optimize each particle's forces # ------------------------------- optimizedForceArr = [] optimizedBetaArr = [] optimizedAlphaArr = [] failed = [False for i in range(len(centers))] # Drop forces on any particles whose g2 is lower than the min value skipParticles = [False for i in range(len(centers))] if checkMinG2: gSqr = gSquared(peImage) for j in range(len(centers)): cMask = circularMask(peImage.shape, centers[j], radii[j])[:,:,0] avgG2 = np.sum(gSqr * cMask) / np.sum(cMask) skipParticles[j] = avgG2 < minParticleG2 # Mostly just a debug option, so we can test particle tracking if not settings["performOptimization"]: optimizedForceArr = forceGuessArr optimizedAlphaArr = alphaGuessArr optimizedBetaArr = betaGuessArr else: # This is what should run the majority of the time for j in range(len(centers)): if not skipParticles[j]: try: # We don't need to pass fSigma, pxPerMeter, or brightfield to the method # because they will get added to optimizationKwargs automatically. optForceArr, optBetaArr, optAlphaArr, res = forceOptimize(forceGuessArr[j], betaGuessArr[j], alphaGuessArr[j], radii[j], centers[j], peImage, #settings["fSigma"], settings["pxPerMeter"], settings["brightfield"], **optimizationKwargs) optimizedForceArr.append(optForceArr) optimizedBetaArr.append(optBetaArr) optimizedAlphaArr.append(optAlphaArr) except Exception as ex: print(ex) errorMsgs.append(f'File {imageFiles[i]}: ' + str(ex) + '\n') failed[j] = True totalFailedParticles += 1 # Append empty lists (ie say there are no forces) #optimizedForceArr.append(forceGuessArr[j]) #optimizedBetaArr.append(betaGuessArr[j]) #optimizedAlphaArr.append(alphaGuessArr[j]) optimizedForceArr.append([]) optimizedBetaArr.append([]) optimizedAlphaArr.append([]) else: optimizedForceArr.append([]) optimizedBetaArr.append([]) optimizedAlphaArr.append([]) # If necessary, impose force balance on all particles if requireForceBalance: for j in range(len(centers)): optimizedForceArr[j], optimizedAlphaArr[j] = singleParticleForceBalance(optimizedForceArr[j], optimizedAlphaArr[j], optimizedBetaArr[j]) optimizationTimes[i] = time.perf_counter() - initialGuessTimes[i] - trackingTimes[i] - start # Save all of our values forceArr.append(optimizedForceArr) betaArr.append(optimizedBetaArr) alphaArr.append(optimizedAlphaArr) centersArr.append(centers) radiiArr.append(radii) if settings["debug"] or settings["saveMovie"] or settings["genFitReport"]: estimatedPhotoelasticChannel = np.zeros_like(peImage, dtype=np.float64) for j in range(len(centers)): estimatedPhotoelasticChannel += genSyntheticResponse(np.array(forceGuessArr[j]), np.array(alphaGuessArr[j]), np.array(betaGuessArr[j]), settings["fSigma"], radii[j], settings["pxPerMeter"], settings["brightfield"], imageSize=peImage.shape, center=centers[j]) optimizedPhotoelasticChannel = np.zeros(peImage.shape) for j in range(len(centers)): optimizedPhotoelasticChannel += genSyntheticResponse(np.array(optimizedForceArr[j]), np.array(optimizedAlphaArr[j]), np.array(optimizedBetaArr[j]), settings["fSigma"], radii[j], settings["pxPerMeter"], settings["brightfield"], imageSize=peImage.shape, center=centers[j]) # Just simple mean-squared error errorArr.append(np.sqrt(np.sum((optimizedPhotoelasticChannel - peImage)**2))) imgArr = np.zeros((*optimizedPhotoelasticChannel.shape, 3)) img = Image.fromarray(optimizedPhotoelasticChannel*255) img = img.convert('RGB') drawObj = ImageDraw.Draw(img) for j in range(len(centers)): leftUpPoint = (centers[j][1]-radii[j], centers[j][0]-radii[j]) rightDownPoint = (centers[j][1]+radii[j], centers[j][0]+radii[j]) twoPointList = [leftUpPoint, rightDownPoint] color = '#FF0000' if failed[j] else '#00AAAA' drawObj.ellipse(twoPointList, outline=color, fill=None, width=3) if settings["debug"]: clear_output(wait=True) fig, ax = plt.subplots(1, 3, figsize=(12,4)) ax[0].imshow(maskArr * image) ax[0].set_title('Tracked Particles') for j in range(len(centers)): c = plt.Circle(centers[j][::-1], radii[j], label='Detected particles', color='teal', fill=False, linewidth=1) ax[0].add_artist(c) # Now add contacts for k in range(len(betaGuessArr[j])): contactPoint = centers[j] + radii[j] * np.array([np.cos(betaGuessArr[j][k]), np.sin(betaGuessArr[j][k])]) cc = plt.Circle(contactPoint[::-1], 12, color='red', fill=False, linewidth=1) ax[1].add_artist(cc) # Now plot past center positions #for k in range(len(centersArr)): # if len(centersArr[k]) >= j: # cc = plt.Circle(centersArr[k][j][::-1], 5, color=centerColors[j], fill=True) # ax[0].add_artist(cc) ax[1].imshow(estimatedPhotoelasticChannel) ax[1].set_title('Initial Guess for Optimizer\n(known forces)') ax[2].imshow(img) ax[2].set_title('Optimized Forces\n(known forces)') fig.suptitle(imageFiles[i]) fig.tight_layout() plt.show() if settings["saveMovie"]: imageArr.append(img) miscTimes[i] = time.perf_counter() - optimizationTimes[i] - initialGuessTimes[i] - trackingTimes[i] - start if settings["debug"]: print(f'Took {time.perf_counter() - start:.5}s to solve frame:') print(f'{5*" "}Tracking: {trackingTimes[i]:.3}s') print(f'{5*" "}Initial guess: {initialGuessTimes[i]:.3}s') print(f'{5*" "}Optimization: {optimizationTimes[i]:.3}s') print(f'{5*" "}Misc. processes: {miscTimes[i]:.3}s') if settings["showProgressBar"]: bar.update() # Restructure the arrays to make them more friendly, and to track forces/particles across timesteps rectForceArr, rectAlphaArr, rectBetaArr, rectCenterArr, rectRadiusArr = rectangularizeForceArrays(forceArr, alphaArr, betaArr, centersArr, radiiArr) # -------------- # Track rotation # -------------- # We choose to do this after the actual solving because it helps # to have the rectangular force arrays. padding = settings["guessRadius"] + 5 # First, we generate our reference images, which are the first # time a particle is completely in frame. refImages = [None] * len(rectCenterArr) for i in range(len(refImages)): for j in range(len(imageFiles)): if not True in np.isnan(rectCenterArr[i][j]): # Continue to the next frame if this one is partially offscreen if True in ((rectCenterArr[i][j] - padding) < 0) or True in ((rectCenterArr[i][j] - np.array(imageSize) + padding) > 0): continue # Otherwise, this is a good frame, so we save it refImageFull = checkImageType(settings["imageDirectory"] + imageFiles[j])[:,xB[0]:xB[1],settings["circleTrackingChannel"]] refImageFull *= circularMask(refImageFull.shape, rectCenterArr[i][j], rectRadiusArr[i][j])[:,:,0] refImages[i] = refImageFull[int(rectCenterArr[i][j][0] - padding):int(rectCenterArr[i][j][0] + padding), int(rectCenterArr[i][j][1] - padding):int(rectCenterArr[i][j][1] + padding)] # And move onto the next particle break # Same shape as the radius array: 1 value for each timestep, for each particle rectAngleArr = np.zeros(rectRadiusArr.shape) # Set all values to be np.nan initially rectAngleArr[:,:] = np.nan # Now we compare that reference particle to each subsequent frame # (probably not best practice that I've switched the indices # with respect to the previous statements, but :/) for i in range(len(imageFiles)): currentImageFull = checkImageType(settings["imageDirectory"] + imageFiles[i])[:,xB[0]:xB[1],settings["circleTrackingChannel"]] for j in range(len(refImages)): # Make sure we have a reference image, and the particle is in full view if True in np.isnan(rectCenterArr[j][i]): continue if True in ((rectCenterArr[j][i] - padding) < 0) or True in ((rectCenterArr[j][i] - np.array(imageSize) + padding) > 0): continue # Crop out around the particle and mask it currImage = (circularMask(currentImageFull.shape, rectCenterArr[j][i], rectRadiusArr[j][i])[:,:,0] * currentImageFull)[int(rectCenterArr[j][i][0] - padding):int(rectCenterArr[j][i][0] + padding), int(rectCenterArr[j][i][1] - padding):int(rectCenterArr[j][i][1] + padding)] # Which is the kernel and which is the reference image doesn't really matter # (as long as we are consistent) # We can choose our bounds based on the previous value of the rotation if i >= 1 and not np.isnan(rectAngleArr[j,i-1]): rotationBounds = (rectAngleArr[j,i-1] - .1, rectAngleArr[j,i-1] + .1) else: # If either i=0 or the previous rotation value is nan, we should start around 0 # anyway (since we define 0 arbitrarily) rotationBounds = (-.2, .2) # .003 was chosen based on the data presented in the wiki # https://github.com/Jfeatherstone/pepe/wiki/Angular-Convolution thetaArr, convArr = angularConvolution(refImages[j], currImage, dTheta=.003, angleBounds=rotationBounds) rectAngleArr[j,i] = thetaArr[findPeaksMulti(convArr)[0][0][0]] # Reuse the name of the folder the images come from as a part of # the output folder name # [-2] element for something of form 'path/to/final/folder/' will be 'folder' # If we are missing the final /, you have to take just the [-1] element if settings["imageDirectory"][-1] == '/': outputFolderPath = outputRootFolder + settings["imageDirectory"].split('/')[-2] + f'_Synthetic{settings["outputExtension"]}/' else: outputFolderPath = outputRootFolder + settings["imageDirectory"].split('/')[-1] + f'_Synthetic{settings["outputExtension"]}/' if not os.path.exists(outputFolderPath): os.mkdir(outputFolderPath) if settings["saveMovie"]: imageArr[0].save(outputFolderPath + 'Synthetic.gif', save_all=True, append_images=imageArr[1:], duration=30, optimize=False, loop=0) # Write a readme file that contains all of the parameters that the solving used lines = ['#####################\n', '# README FILE #\n', '#####################\n'] lines += [f'Generated: {time.ctime()}\n\n'] lines += ['Note: this file was autogenerated by the `pepe.auto.forceSolve()` function\n', ' and it is not recommended to be manually edited. To reuse the settings\n', ' and parameters that were used here, the path of this file\n', f' (\'{outputFolderPath}readme.txt\') \n', ' can be passed via the \'settingsFile\' keyword argument of `pepe.auto.forceSolve()`.\n', ' In this case, explictly passed arguments will override the values in the settings file.\n'] lines += ['\n## Runtime Information\n', f'Version: pepe {pepe.__version__}\n', f'Total runtime: {time.perf_counter() - overallStartTime:.6}s\n', f'Mean tracking time: {np.mean(trackingTimes):.4}s\n', f'Mean guess generation time: {np.mean(initialGuessTimes):.4}s\n', f'Mean optimization time: {np.mean(optimizationTimes):.4}s\n', f'Mean misc. time: {np.mean(miscTimes):.4}s\n', f'Number of failed particles: {totalFailedParticles}\n'] settings.update(circleTrackingKwargs) settings.update(optimizationKwargs) lines += ['\n## Settings\n'] for k,v in settings.items(): lines += [f'{k}: {v}\n'] lines += ['\n## Errors\n'] if len(errorMsgs) > 0: lines += errorMsgs else: lines += ['None :)'] with open(outputFolderPath + 'readme.txt', 'w') as readmeFile: readmeFile.writelines(lines) # Save the arrays to pickle files (optional) if settings["pickleArrays"]: with open(outputFolderPath + 'forces.pickle', 'wb') as f: pickle.dump(rectForceArr, f) with open(outputFolderPath + 'alphas.pickle', 'wb') as f: pickle.dump(rectAlphaArr, f) with open(outputFolderPath + 'betas.pickle', 'wb') as f: pickle.dump(rectBetaArr, f) with open(outputFolderPath + 'centers.pickle', 'wb') as f: pickle.dump(rectCenterArr, f) with open(outputFolderPath + 'radii.pickle', 'wb') as f: pickle.dump(rectRadiusArr, f) with open(outputFolderPath + 'angles.pickle', 'wb') as f: pickle.dump(rectAngleArr, f) # Save the raw arrays too, since I think I have a bug in my rectangularization process # if settings["pickleArrays"]: # with open(outputFolderPath + 'forces_raw.pickle', 'wb') as f: # pickle.dump(forceArr, f) # # with open(outputFolderPath + 'alphas_raw.pickle', 'wb') as f: # pickle.dump(alphaArr, f) # # with open(outputFolderPath + 'betas_raw.pickle', 'wb') as f: # pickle.dump(betaArr, f) # # with open(outputFolderPath + 'centers_raw.pickle', 'wb') as f: # pickle.dump(centersArr, f) # # with open(outputFolderPath + 'radii_raw.pickle', 'wb') as f: # pickle.dump(radiiArr, f) # Generate a fit report (optional) # This include informtaion about the error for each frame, all of the forces/alphas/betas/ # centers/radii for each particle at each timestep, and all settings in a nicely compiled # (via latex) pdf. if settings["genFitReport"]: # Make the source directory if not os.path.exists(outputFolderPath + 'FitReport_src'): os.mkdir(outputFolderPath + 'FitReport_src') # First, generate a plot of the error fig, ax = plt.subplots() ax.plot(errorArr) ax.set_xlabel('Frame') ax.set_ylabel('Mean-squared error') ax.set_title('Difference Between Optimized Result and Real Image') fig.savefig(outputFolderPath + 'FitReport_src/error.pdf') fig.savefig(outputFolderPath + 'FitReport_src/error.png') plt.close(fig) # Draw all of the circles, with their labeled numbers fig, ax = plt.subplots(1, 2, figsize=(8,3)) # First timestep visCircles([rectCenterArr[i][0] for i in range(len(rectCenterArr))], [rectRadiusArr[i][0] for i in range(len(rectRadiusArr))], ax=ax[0], annotations=np.arange(len(rectCenterArr)), setBounds=True) # Last timestep visCircles([rectCenterArr[i][-1] for i in range(len(rectCenterArr))], [rectRadiusArr[i][-1] for i in range(len(rectRadiusArr))], ax=ax[1], annotations=np.arange(len(rectCenterArr)), setBounds=True) for i in range(2): ax[i].set_xlabel('X [px]') ax[i].set_ylabel('Y [px]') ax[i].invert_yaxis() ax[0].set_title('First Frame') ax[1].set_title('Last Frame') fig.savefig(outputFolderPath + 'FitReport_src/particle_identities.pdf') fig.savefig(outputFolderPath + 'FitReport_src/particle_identities.png') plt.close(fig) # Next, draw the forces/betas/alphas/centers for each particle # through time for i in range(len(rectForceArr)): fig, ax = visForces(rectForceArr[i], rectAlphaArr[i], rectBetaArr[i], rectCenterArr[i], rectAngleArr[i]) fig.suptitle(f'Particle {i}') fig.savefig(outputFolderPath + f'FitReport_src/particle_{i}_forces.pdf') fig.savefig(outputFolderPath + f'FitReport_src/particle_{i}_forces.png') plt.close(fig) # Create a gif of the particle orientation through time, overlaid # on the original images visRotation([settings["imageDirectory"] + f for f in imageFiles], rectCenterArr, rectRadiusArr, rectAngleArr, outputFolderPath + 'FitReport_src/', (0, cropXMin)) # Create gifs of the contacts forceColors = genColors(len(rectBetaArr)) # The list comprehension is to make sure that we index a particle that actually has forces acting # on it. tSteps = len(imageFiles)#len([b for b in rectBetaArr if len(b) > 0][0]) contactPointImages = [None for i in range(tSteps)] contactAngleImages = [None for i in range(tSteps)] for i in range(tSteps): # Have to do this, because the settings variable could be None startI = settings["imageStartIndex"] if settings["imageStartIndex"] is not None else 0 # First, just the contact points fig, ax = plt.subplots() visCircles([rectCenterArr[p][i] for p in range(len(rectCenterArr))], [rectRadiusArr[p][i] for p in range(len(rectRadiusArr))], ax=ax) for particleIndex in range(len(rectBetaArr)): visContacts(rectCenterArr[particleIndex][i], rectRadiusArr[particleIndex][i], rectBetaArr[particleIndex][:,i], ax=ax, forceColors=forceColors[particleIndex]) ax.set_xlim([0, 1280]) ax.set_ylim([0, 1024]) ax.set_aspect('equal') ax.set_title(f'Frame {i + startI}') ax.invert_yaxis() canvas = plt.get_current_fig_manager().canvas canvas.draw() contactPointImages[i] = Image.frombytes('RGB', canvas.get_width_height(), canvas.tostring_rgb()) plt.close(fig) # Now the one with angles fig, ax = plt.subplots() visCircles([rectCenterArr[p][i] for p in range(len(rectCenterArr))], [rectRadiusArr[p][i] for p in range(len(rectRadiusArr))], ax=ax) for particleIndex in range(len(rectBetaArr)): visContacts(rectCenterArr[particleIndex][i], rectRadiusArr[particleIndex][i], rectBetaArr[particleIndex][:,i], ax=ax, forceColors=forceColors[particleIndex], alphaArr=rectAlphaArr[particleIndex][:,i]) ax.set_xlim([0, 1280]) ax.set_ylim([0, 1024]) ax.set_aspect('equal') ax.set_title(f'Frame {i + startI}') ax.invert_yaxis() canvas = plt.get_current_fig_manager().canvas canvas.draw() contactAngleImages[i] = Image.frombytes('RGB', canvas.get_width_height(), canvas.tostring_rgb()) plt.close(fig) contactPointImages[0].save(outputFolderPath + 'FitReport_src/contact_points.gif', save_all=True, append_images=contactPointImages[1:], duration=20, optimize=True, loop=0) contactAngleImages[0].save(outputFolderPath + 'FitReport_src/contact_angles.gif', save_all=True, append_images=contactAngleImages[1:], duration=20, optimize=True, loop=0) if settings["showProgressBar"]: bar.update() bar.close() return rectForceArr, rectAlphaArr, rectBetaArr, rectCenterArr, rectRadiusArr, rectAngleArr ``` #### File: pepe/preprocess/Image.py ```python import numpy as np from PIL import Image import cv2 from scipy.signal import savgol_filter import matplotlib.pyplot as plt def checkImageType(frame): """ Make sure that the image is a proper image, and not a path Parameters ---------- frame : str or numpy.ndarray Either a path to an image, or an image array Returns ------- numpy.ndarray : The image array """ if isinstance(frame, str): # I don't want to overwrite the image itself, so create a new var for that newFrame = np.array(Image.open(frame), dtype=np.uint8) else: newFrame = frame return newFrame def lightCorrectionDiff(calibrationImage, verticalMask=None, horizontalMask=None, smoothCorrection=True, debug=False, smoothingKernel=31, channel=0, rectify=False): """ """ calImg = checkImageType(calibrationImage) # Slightly different behavior depending on whether we are passed a multichannel # image vs a grayscale one. For multichannel, we calculate a correction for each # channel separately. if calImg.ndim == 3: imgSize = calImg.shape[:2] numChannels = calImg.shape[-1] else: imgSize = calImg.shape numChannels = 1 # Add a third dim, so we can treat multi/single channel images # exactly the same way calImg = calImg[:,:,None] if verticalMask is None: verticalMask = np.ones(imgSize) if horizontalMask is None: horizontalMask = np.ones(imgSize) fullLightCorrection = np.zeros((*imgSize, numChannels)) for i in range(numChannels): verticallyMasked = calImg[:,:,i] * verticalMask horizontallyMasked = calImg[:,:,i] * horizontalMask # If there are no non-zero pixels, we just move on to the next channel # (and leave this correction as an array of zeros) if len(np.where(verticallyMasked != 0)[0]) == 0: continue # This excludes all values of zero, so that we get an actual pixel value we can directly add brightnessByRow = np.nanmean(np.where(verticallyMasked != 0, verticallyMasked, np.nan), axis=1) brightnessByColumn = np.nanmean(np.where(horizontallyMasked != 0, horizontallyMasked, np.nan), axis=0) # Now smooth the two curves # Can't say I know much about this filter, but it seems to work pretty well if smoothCorrection: smoothedBrightnessByColumn = savgol_filter(brightnessByColumn, smoothingKernel, 1) smoothedBrightnessByRow = savgol_filter(brightnessByRow, smoothingKernel, 1) else: smoothedBrightnessByColumn = brightnessByColumn smoothedBrightnessByRow = brightnessByRow # Now calculate the correction horizontalCorrection = np.mean(smoothedBrightnessByColumn) - smoothedBrightnessByColumn verticalCorrection = np.mean(smoothedBrightnessByRow) - smoothedBrightnessByRow # This object will have the same size as the image, and can just added to # any similar image to correct detected light gradients fullLightCorrection[:,:,i] = np.add.outer(verticalCorrection, horizontalCorrection) if rectify: fullLightCorrection[:,:,i] -= np.min(fullLightCorrection[:,:,i]) # If we have a single channel image originally, we want to keep the same shape # for our return value -- so that the return can immediately be multipled by the # original image -- so we remove the last channel dimension if numChannels == 1: fullLightCorrection = fullLightCorrection[:,:,0] if debug: if numChannels > 1: fig, ax = plt.subplots(2, 3, figsize=(12, 8)) channelNames = ['Red', 'Green', 'Blue'] for i in range(3): ax[0,i].imshow(calImg[:,:,i]) ax[0,i].set_title(f'Original {channelNames[i]} Channel') ax[1,i].imshow(calImg[:,:,i] + fullLightCorrection[:,:,i]) ax[1,i].set_title(f'Corrected {channelNames[i]} Channel') else: fig, ax = plt.subplots(1, 2, figsize=(8,4)) ax[0].imshow(calImg[:,:,0]) ax[0].set_title('Original Image') ax[1].imshow(calImg[:,:,0] + fullLightCorrection) ax[1].set_title('Corrected Image') fig.tight_layout() plt.show() return fullLightCorrection ``` #### File: pepe/test/test_auto.py ```python import inspect import numpy as np from pepe.auto import forceSolve, forceSolveArgDTypes def test_forceSolve_DTypeCoverage(): """ Make sure that all of the dtypes for the arguments in pepe.auto.forceSolve are defined for the purpose of reading in values from a settings file. """ args, counts= np.unique(list(inspect.signature(forceSolve).parameters.keys()) + list(forceSolveArgDTypes.keys()), return_counts=True) missingArgs = args[counts == 1] assert len(missingArgs) == 0, f"Missing data types for args: {missingArgs}" ``` #### File: pepe/visualize/Colors.py ```python import numpy as np import matplotlib.colors as mcolors from sklearn.neighbors import KDTree # Some manually selected colors that are good # Taken from xkcd survey: https://blog.xkcd.com/2010/05/03/color-survey-results/ MANUAL_COLORS = ['#7E1E9C', # Purple '#15B01A', # Green '#0343DF', # Blue '#FF88C0', # Pink '#653700', # Brown '#E50000', # Red '#029386', # Teal '#F97306', # Orange '#033500', # Dark green '#00035B', # Dark blue '#650021', # Maroon '#BF77F6', # Light purple '#929591', # Gray '#6E750E', # Olive '#00FFFF', # Cyan ] def rgbToHex(rgbC): return '%02x%02x%02x' % rgbC def hexToRgb(hexC): return [int(hexC[i:i+2], 16) for i in (0, 2, 4)] def genColors(size, seed=21): """ Generate a set of colors for visualization by a hierarchy of methods: 1. First, select from MANUAL_COLORS defined above. 2. Use genRandomDistancedColors() 3. Use genRandomColors() """ if size < len(MANUAL_COLORS): return [MANUAL_COLORS[i] for i in range(size)] else: # genRandomDistanceColors will already supplement with full random # colors if size is too big, so no need to deal with it here. return MANUAL_COLORS + genRandomDistancedColors(size - len(MANUAL_COLORS), seed) def genRandomColors(size, seed=21): """ Generate colors by randomly selecting rgb values. Parameters ---------- size : int The number of colors to generate. seed : int The seed to use for random generation. Returns ------- colors : list[size] A list of hex codes for colors. """ np.random.seed(seed) randomColors = [f"#{rgbToHex(tuple(np.random.choice(range(256), size=3).flatten()))}" for i in range(size)] return randomColors def genRandomDistancedColors(size, seed=21): """ Generate colors by sampling from the list of CSS named colors, where the first color will be randomly selected, and each subsequent one will be chosen to maximize it's distance from previously selected colors in LAB color space (using a kd-tree). If the number of requested colors is greater than the number of named colors, the remaining ones will be randomly generated. Maybe a bit overkill... Parameters ---------- size : int The number of colors to generate. seed : int The seed to use for random generation. Returns ------- colors : list[size] A list of hex codes for colors. """ allCSSColors = list(mcolors.CSS4_COLORS.values()) if size > len(allCSSColors): allCSSColors += genRandomColors(size - len(allCSSColors), seed) return allCSSColors np.random.seed(seed) allCSSColorsLAB = np.array([rgbToLab(hexToRgb(c[1:])) for c in allCSSColors]) # Randomly generate the starting one selection = np.random.randint(len(allCSSColors)) addedIndices = [selection] colors = [allCSSColors[selection]] colorsLAB = np.zeros((size, 3)) colorsLAB[0] = allCSSColorsLAB[selection] kdTree = KDTree(allCSSColorsLAB, leaf_size=10) # For each other color, we want to select the furthest possible color from our current set for i in range(1, size): dist, ind = kdTree.query(colorsLAB[:i], k=len(allCSSColorsLAB)) dist = np.array([dist[j,:][np.argsort(ind[j])] for j in range(len(dist))]) fullCost = np.sum(dist, axis=0) selection = np.argsort(fullCost)[::-1] selection = [s for s in selection if not s in addedIndices] colors.append(allCSSColors[selection[0]]) addedIndices.append(selection[0]) colorsLAB[i] = allCSSColorsLAB[selection[0]] return colors def maxDifferenceOrderColors(colors): """ Sort a set of colors such that the difference between consecutive colors is maximized. A fun little application of the (inverse of the) travelling salesman problem :) """ pass # This method was taken from: # https://gist.github.com/manojpandey/f5ece715132c572c80421febebaf66ae # TODO: Clean it up def rgbToLab(inputColor): num = 0 RGB = [0, 0, 0] for value in inputColor: value = float(value) / 255 if value > 0.04045: value = ((value + 0.055) / 1.055) ** 2.4 else: value = value / 12.92 RGB[num] = value * 100 num = num + 1 XYZ = [0, 0, 0, ] X = RGB[0] * 0.4124 + RGB[1] * 0.3576 + RGB[2] * 0.1805 Y = RGB[0] * 0.2126 + RGB[1] * 0.7152 + RGB[2] * 0.0722 Z = RGB[0] * 0.0193 + RGB[1] * 0.1192 + RGB[2] * 0.9505 XYZ[0] = round(X, 4) XYZ[1] = round(Y, 4) XYZ[2] = round(Z, 4) # Observer= 2°, Illuminant= D65 XYZ[0] = float(XYZ[0]) / 95.047 # ref_X = 95.047 XYZ[1] = float(XYZ[1]) / 100.0 # ref_Y = 100.000 XYZ[2] = float(XYZ[2]) / 108.883 # ref_Z = 108.883 num = 0 for value in XYZ: if value > 0.008856: value = value ** (0.3333333333333333) else: value = (7.787 * value) + (16 / 116) XYZ[num] = value num = num + 1 Lab = [0, 0, 0] L = (116 * XYZ[1]) - 16 a = 500 * (XYZ[0] - XYZ[1]) b = 200 * (XYZ[1] - XYZ[2]) Lab[0] = round(L, 4) Lab[1] = round(a, 4) Lab[2] = round(b, 4) return Lab ``` #### File: pepe/visualize/Forces.py ```python import numpy as np import matplotlib.pyplot as plt from pepe.visualize import visCircles, genRandomDistancedColors, genColors def visForces(forceArr, alphaArr, betaArr, centerArr=None, angleArr=None, fps=None): """ Visualize all of the forces acting on a single particle, by plotting the magnitudes, alphas, and betas (and optionally center position). Requires that `forceArr`, `alphaArr`, `betaArr`, and `centerArr` have indices of `forceArr[forceIndex][timeIndex]`, as would be given by rectangularizing via `pepe.utils.rectangularizeForceArrays()` and indexing a single value in the first dimension. Examples -------- ``` # Solve for some forces forceArr, alphaArr, betaArr, centerArr, radiusArr = forceOptimize(...) # Particle index pI = 0 fig, ax = visForces(forceArr[pI], alphaArr[pI], betaArr[pI], centerArr[pI]) plt.show() ``` Parameters ---------- forceArr : np.ndarray[F,T] Array containing magnitudes of F forces for T timesteps. alphaArr : np.ndarray[F,T] Array containing alpha angles of F forces for T timesteps. betaArr : np.ndarray[F,T] Array containing beta angles of F forces for T timesteps. centerArr : np.ndarray[T,2] or None Array containing center position in form [y,x] of the particle for T timesteps. angleArr : np.ndarray[T] or None Array containing angles in radians of the particle for T timesteps. fps : float or None The number of frames per second of the capture video, used to convert the x-axis units from frame number to proper seconds. Returns ------- fig : plt.figure() The figure object the quantities are plotted on. ax : plt.axis() The list of 3 (or 4, if centers are provided) axes that the quantities are plotted on. """ fig, ax = plt.subplots(1, 3 + int(centerArr is not None) + int(angleArr is not None), figsize=(3.6*(3+int(centerArr is not None)+int(angleArr is not None)),4)) if len(forceArr) == 0: return fig, ax tArr = np.arange(len(forceArr[0])) if fps is None: fps = 1 if centerArr is not None: ax[-1 - int(angleArr is not None)].plot(tArr/fps, centerArr[:,1], label='X') ax[-1 - int(angleArr is not None)].plot(tArr/fps, centerArr[:,0], label='Y') ax[-1 - int(angleArr is not None)].set_ylabel('Position [px]') ax[-1 - int(angleArr is not None)].legend() if angleArr is not None: # The weird ax indexing is to make sure it works regardless of # whether centerArr is passed or not ax[-1].plot(tArr/fps, angleArr) ax[-1].set_ylabel('Angle [rad]') for i in range(len(forceArr)): ax[0].plot(tArr/fps, forceArr[i]) ax[1].plot(tArr/fps, alphaArr[i], 'o') ax[2].plot(tArr/fps, betaArr[i], 'o') ax[0].set_ylabel('Force [N]') ax[1].set_ylabel('Alpha [rad]') ax[2].set_ylabel('Beta [rad]') for i in range(3 + int(centerArr is not None) + int(angleArr is not None)): if fps == 1: ax[i].set_xlabel('Time [frame]') else: ax[i].set_xlabel('Time [s]') fig.tight_layout() return fig, ax def visContacts(center, radius, betaArr, alphaArr=None, forceArr=None, ax=None, setBounds=False, circleColor=None, forceColors=None, drawCircle=False): """ Visualize the contacts for a system of particles, indicating either positions of contacts, or positions and contact angles (if `alphaArr` is provided). Returns ------- ax : plt.axis() """ npCenter = np.array(center) if ax is None: fig, ax = plt.subplots() if forceColors is None: colors = genColors(len(betaArr), 1000) elif type(forceColors) is str: colors = [forceColors for i in range(len(betaArr))] else: colors = forceColors if drawCircle: visCircles([npCenter], [radius], ax, setBounds=setBounds, colors=colors[0]) if len(betaArr) == 0: return ax if forceArr is None: weighting = np.zeros(len(betaArr)) + radius/4 else: weighting = np.array(forceArr) * radius/4 if alphaArr is None: for i in range(len(betaArr)): contactPoint = npCenter + .95*radius * np.array([np.cos(betaArr[i]), np.sin(betaArr[i])]) ax.scatter([contactPoint[1]], [contactPoint[0]], c=colors[i]) #c = plt.Circle(contactPoint[::-1], weighting[i], color='red', fill=False, linewidth=1) #ax.add_artist(c) else: for i in range(len(betaArr)): if not np.isnan(alphaArr[i]): contactPoint = npCenter + radius * np.array([np.cos(betaArr[i]), np.sin(betaArr[i])]) point1 = contactPoint + weighting[i] * np.array([np.cos(betaArr[i] + alphaArr[i]), np.sin(betaArr[i] + alphaArr[i])]) point2 = contactPoint - weighting[i] * np.array([np.cos(betaArr[i] + alphaArr[i]), np.sin(betaArr[i] + alphaArr[i])]) ax.plot([point1[1], point2[1]], [point1[0], point2[0]], linewidth=5, c=colors[i]) return ax def fullVisContacts(outputDir, centerArr, radiusArr, betaArr, alphaArr=None, forceArr=None, forceColors=None, circleColors=None, startIndex=0, imageSize=(1024, 1280), fps=25): if forceColors is None: forceColorArr = [genRandomColors(len(b), int(time.perf_counter()*1e6) % 1024) for b in betaArr] else: forceColorArr = forceColors if len(betaArr) == 0: return False # The list comprehension is to make sure that we index a particle that actually has forces acting # on it. tSteps = len([b for b in betaArr if len(b) > 0][0]) # To save the image of each plot so we can create a gif at the end images = [None for i in range(tSteps)] for i in range(tSteps): clear_output(wait=True) fig, ax = plt.subplots() visCircles([centerArr[p][i] for p in range(len(centerArr))], [radiusArr[p][i] for p in range(len(radiusArr))], ax=ax) for particleIndex in range(len(betaArr)): visContacts(centerArr[particleIndex][i], radiusArr[particleIndex][i], betaArr[particleIndex][:,i], ax=ax, forceColors=forceColors[particleIndex])#, alphaArr=alphaArr[particleIndex][:,i]) ax.set_xlim([0, imageSize[1]]) ax.set_ylim([0, imageSize[0]]) ax.set_aspect('equal') ax.set_title(f'Frame {startIndex + i}') canvas = plt.get_current_fig_manager().canvas canvas.draw() images[i] = Image.frombytes('RGB', canvas.get_width_height(), canvas.tostring_rgb()) plt.close(fig) images[0].save(outputDir + 'contact_tracking.gif', save_all=True, append_images=images[1:], duration=fps, optimize=True, loop=True) ```
{ "source": "JFeaux/cython_demo", "score": 3 }
#### File: cython_demo/passing_numpy_array/run.py ```python import array_tools import time import numpy as np class Timer(object): def __enter__(self): self.start = time.clock() return self def __exit__(self, exception_type, exception_value, traceback): self.end = time.clock() self.interval = self.end - self.start if __name__ == '__main__': array = np.linspace(0, 10, 10000) with Timer() as t: result = np.sum(array) print('{:7.5f} (s) {:7.5f}'.format(t.interval, result)) with Timer() as t: result = array_tools.sum(array) print('{:7.5f} (s) {:7.5f}'.format(t.interval, result)) ```
{ "source": "JFeaux/flash_cards", "score": 3 }
#### File: JFeaux/flash_cards/flash_cards.py ```python import argparse import Tkinter as tk import tkFont import numpy as np import operator color = "#%02x%02x%02x" % (255, 51, 102) operations = { 'multiply' : u'\u00D7', 'divide' : u'\u00F7', 'add' : '+', 'subtract' : u'\u2212' } operators = { 'multiply': operator.mul, 'divide': operator.mul, 'add': operator.add, 'subtract': operator.add } def get_problems(args): problems = [] if args.focus: a, b = args.focus - 1, args.focus else: a, b = 0, args.max_int for i in range(a, b): for j in range(args.max_int): x, y = i + 1, j + 1 op = operations[args.fact_type] result = operators[args.fact_type](x, y) if args.fact_type == 'add' or args.fact_type == 'multiply': Q = u'{} {} {} = '.format(y, op, x) A = u'{} {} {} = {}'.format(y, op, x, result) problems.append((Q, A)) else: if j >= i: Q = u'{} {} {} = '.format(result, op, x) A = u'{} {} {} = {}'.format(result, op, x, y) problems.append((Q, A)) return problems class FlashCard(tk.Frame): def __init__(self, parent, text): tk.Frame.__init__(self, master=parent) font = tkFont.Font(family='Arial', size=120) self.button = tk.Button(self, text=text, font=font, fg=color, bg='white', bd=0, activeforeground=color, activebackground='white', highlightthickness=0) self.button.bind('<Return>',self.send) self.button.pack() self.place(anchor='c', relx=.5, rely=.5) self.button.focus() parent.wait_window(self.button) def send(self,event=None): self.destroy() class Options: def __init__(self, parent): #tk.Frame.__init__(self, master=parent) self.frame = tk.Frame(parent) self.shuffle = 1 self.fact_type = 'multiply' self.focus = 0 self.max_int = tk.IntVar() self.max_int.set(12) pady = 30 padx = 30 shuffle_frame = tk.Frame(self.frame) shuffle_label = tk.Label(shuffle_frame, text='Shuffle Facts?') self.shuffle_b1 = tk.Button(shuffle_frame, text='Yes', state=tk.DISABLED, disabledforeground='blue', command=lambda: self.set_shuffle(0)) self.shuffle_b2 = tk.Button(shuffle_frame, text='No', disabledforeground='blue', command=lambda: self.set_shuffle(1)) shuffle_label.grid(row=0, column=0, columnspan=2) self.shuffle_b1.grid(row=1, column=0) self.shuffle_b2.grid(row=1, column=1) shuffle_frame.grid(row=0, column=1, padx=padx) type_frame = tk.Frame(self.frame) type_label = tk.Label(type_frame, text='Fact Type') self.type_buttons = [0 for i in range(4)] self.type_buttons[0] = tk.Button(type_frame, text='+', disabledforeground='blue', command=lambda: self.set_type(0)) self.type_buttons[1] = tk.Button(type_frame, text=u'\u2212', disabledforeground='blue', command=lambda: self.set_type(1)) self.type_buttons[2] = tk.Button(type_frame, text=u'\u00D7', disabledforeground='blue', command=lambda: self.set_type(2), state=tk.DISABLED ) self.type_buttons[3] = tk.Button(type_frame, text=u'\u00F7', disabledforeground='blue', command=lambda: self.set_type(3)) type_label.grid(row=0, column=0, columnspan=2) self.type_buttons[0].grid(row=1, column=0) self.type_buttons[1].grid(row=1, column=1) self.type_buttons[2].grid(row=2, column=0) self.type_buttons[3].grid(row=2, column=1) type_frame.grid(row=0, column=0) max_frame = tk.Frame(self.frame) max_text = tk.Label(max_frame, text='Max Number') max_entry = tk.Entry(max_frame, justify='left', width=3, textvariable=self.max_int) max_text.grid(row=0, column=0) max_entry.grid(row=1, column=0) max_frame.grid(row=1, column=0, pady=pady) focus_frame = tk.Frame(self.frame) focus_text = tk.Label(focus_frame, text='Focus') self.focus_entry = tk.Entry(focus_frame, justify='left', width=3) focus_text.grid(row=0, column=0) self.focus_entry.grid(row=1, column=0) focus_frame.grid(row=1, column=1, padx=padx, pady=pady) self.advance = tk.Button(self.frame, text='Continue', command=self.start) self.advance.grid(row=2, column=0, columnspan=2) self.frame.place(anchor='c', relx=0.5, rely=0.5) def set_shuffle(self, val): if val == 0: self.shuffle_b1['state'] = tk.DISABLED self.shuffle_b2['state'] = tk.NORMAL self.shuffle = 1 else: self.shuffle_b1['state'] = tk.NORMAL self.shuffle_b2['state'] = tk.DISABLED self.shuffle = 0 def set_type(self, val): convert = ['add', 'subtract', 'multiply', 'divide'] self.fact_type = convert[val] for i in range(4): if i != val: self.type_buttons[i]['state'] = tk.NORMAL else: self.type_buttons[i]['state'] = tk.DISABLED def start(self): try: max_int = int(self.max_int.get()) focus = self.focus_entry.get() if focus != '': self.focus = int(focus) if self.focus <= max_int: self.max_int = max_int self.frame.destroy() except (AttributeError, ValueError): pass def main(): root = tk.Tk() root.title('') root.option_add('*Background', 'white') root.option_add('*Foreground', 'black') root.option_add('*Font', 'Arial 40') ## Full screen and set focus root.geometry("{0}x{1}+0+0".format(root.winfo_screenwidth(), root.winfo_screenheight())) root.focus_set() # <-- move focus to this widget ## background color root.configure(background='white') while True: options = Options(root) root.wait_window(options.frame) problems = get_problems(options) if options.shuffle: np.random.shuffle(problems) for i in range(len(problems)): Q = FlashCard(root, problems[i][0]) A = FlashCard(root, problems[i][1]) root.mainloop() if __name__ == '__main__': main() ```
{ "source": "JFeaux/Tools", "score": 3 }
#### File: Tools/mpi/mpi_test.py ```python import sys from master_worker_mpi import MasterWorkerMPI """ Script to test function MasterWorkerMPI""" def test_func(x, m, b): return m * x[0] + b number_of_jobs = int(sys.argv[1]) m, b = -2., 10. x0, xf = 0., 10. dx = (xf - x0) / (number_of_jobs - 1) jobs = [(x0 + i * dx,) for i in range(number_of_jobs)] # Run jobs in parallel results = MasterWorkerMPI(jobs, test_func, m, b) keys = sorted(results.keys()) for key in keys: print '',key, results[key] ```
{ "source": "jfecroft/DOS", "score": 2 }
#### File: jfecroft/DOS/DOSModule.py ```python import numpy as np import scipy.constants from math import pi from collections import OrderedDict import yaml # pylint: disable=E1103 # pylint: disable=R0902 # pylint: disable=R0903 # pylint: disable=R0913,R0914 # define physical constants EH2K = scipy.constants.physical_constants["hartree-kelvin relationship"][0] K2EH = scipy.constants.physical_constants["kelvin-hartree relationship"][0] ATOMICUNITOFTIME = scipy.constants.physical_constants["atomic unit of time"][0] def get_data(filen): """reads a file of the form 1st line heading columns 2nd lines on values for those headings returns a nested dictionary converts values to float if possible""" with open(filen) as input: try: data_dict = yaml.load(input) except yaml.YAMLError as exc: print(exc) return data_dict def _read_data(dir_loc, inputfile, qnmax): """read in the data from precalculated rovibrational energy levels of the system files are og the form 'txtjXXXtxt' where XXX is the L quantum number starting at 0 """ bound_states = [] # bound states for different L quntum numbers for i in xrange(qnmax+1): filen = dir_loc + inputfile.replace('j', 'j'+str(i)) try: data = np.sort(np.loadtxt(filen, usecols=(1,))) except IOError: # maximum quantum number reached set qnmax and return qnmax = i-1 return bound_states, qnmax if len(np.atleast_1d(data)) == 1: data = np.reshape(data, 1) # accounts for behavior of 0d arrays bound_states.append(data) return bound_states, qnmax def compute_dos(jqn, mqn, bound_states_c, bound_states_d, vmax, energy_range=10.0, energy_offset=0.0): """ computes the dos for an atom moleucle collsiions as described in Statistical aspects of ultracold resonant scattering Mayle, Ruzic and Bohn Variables jqn - total jqn quantum number. mqn - mj_qn projection quantum number. bound_states_c - boundstates of the complex obtained from _read_data bound_states_d - boundstates of the molecule obtained from _read_data vmax - maximum vibrational quantum number. energy_range - dos = number of states counted/energy range energy_offset - calculate dos around energy = energy_offset """ if abs(mqn) > abs(jqn): raise Exception('physically impossible (abs(mj_qn) > abs(jqn))') limit = (energy_range/2.0)*K2EH # convert energy_range K to hartrees energy_offset *= K2EH outside = np.ma.masked_outside # mask enties in list outside range count = np.ma.count # counts the number of unmasked entries in a list abs_gs = bound_states_d[0][0] num = 0 # looping over rotational state of dimer a for nqn in xrange(0,len(bound_states_d)): # looping over all l constant with jqn for lqn in xrange(len(bound_states_c)): # only include pairs which couple to form jqn if abs(nqn-lqn) <= jqn and nqn+lqn >= jqn: # looping over all vibrational levels of a for vqn in xrange(min(len(bound_states_d[nqn]), vmax+1)): # degeneracy deg = len(xrange(max(-lqn, mqn-nqn), min(lqn, mqn+nqn)))+1 # deg = 1 threshold_energy = bound_states_d[nqn][vqn]-abs_gs num += count( outside(bound_states_c[lqn], -limit-threshold_energy+energy_offset, limit-threshold_energy+energy_offset))*deg dos = (float(num)/energy_range)*1.0E-3 lifetime = dos*1.0E3*EH2K*2.0*pi*ATOMICUNITOFTIME*1.0e9 # return dos in mK-1 and lifetime in ns return dos, lifetime def get_dos(cmplx_dirn, cmplx_filen, dimer_dirn, dimer_filen, jqn=0, mqn=0, nmax=100, vmax=9999, energy_offset=0.0, **kwargs): """ simple wrapper around _read_data and AMDOS Variables jqn - total J quantum number. mqn - mj_qn projection quantum number. nmax - maximum allowed rotaional quantum number of the molecule. vmax - maximum allowed vibrational quantum number of the molecule. energy_offset - calculate dos around energy = energy_offset """ lmax = nmax + jqn bound_states_d, nmax = _read_data(dimer_dirn, dimer_filen, nmax) bound_states_c, lmax = _read_data(cmplx_dirn, cmplx_filen, lmax) dos, lifetime = compute_dos(jqn, mqn, bound_states_c, bound_states_d, vmax, energy_offset=energy_offset) return dos, lifetime def compute_mm_dos(jqn, mj_qn, nmax, vmax, lmax, bound_states_d, bound_states_c, energy_range=10.0): """ computes the dos for an atom moleucle collsiions as described in Scattering of Ultracold Molecules in the Highly Resonant Regime -- Mayle, Ruzic, Quememer and Bohn Variables jqn - total J quantum number. mqn - mj_qn projection quantum number. bound_states_c - boundstates of the complex obtained from _read_data bound_states_d - boundstates of the molecule obtained from _read_data vmax - maximum vibrational quantum number. lmax - maximum end-over-end rotational quantum number of the two molecules nmax - maximum rotational quantum number of a single molecule. energy_range - dos = number of states counted/energy range """ if abs(mj_qn) > abs(jqn): raise Exception('physically impossible (abs(mj_qn) > abs(jqn))') num = 0 # variable to hold the number of states between limits limit = (energy_range/2.0)*K2EH # convert energy_range K to hartrees abs_gs = bound_states_d[0][0] # energy of the absolute ground state for nqn in xrange(max(0, jqn-lmax), min(2*nmax, lmax-jqn)+1): for lqn in xrange(abs(jqn-nqn), min(lmax, jqn+nqn)+1): for n1qn in xrange(max(0, nqn-nmax), nmax+1): for n2qn in xrange(abs(nqn-n1qn), min(nqn+n1qn, nmax)+1): # looping over all vibrational levels of dimer1 for v1qn in xrange(min(len(bound_states_d[n1qn]), vmax+1)): # looping over all vibrational levels of dimer2 for v2qn in xrange(min(len(bound_states_d[n2qn]), vmax+1)): threshold_energy = ( bound_states_d[n1qn][v1qn] - abs_gs + bound_states_d[n2qn][v2qn] - abs_gs) if (bound_states_c[lqn][0] > limit-threshold_energy): # the lowest state is higher than highest # threshold break else: start_end = np.searchsorted( bound_states_c[lqn], [-limit-threshold_energy, limit-threshold_energy], 'left') deg = (abs(max(-lqn, mj_qn-nqn)) + min(lqn, mj_qn+nqn) + 1) num += deg*(start_end[1] - start_end[0]) # return dos in per uK i.e.times 10**-6K dos = (float(num)/energy_range)*1.0E-6 # return lifetime in ms lifetime = dos*1.0E6*EH2K*2.0*pi*ATOMICUNITOFTIME * 1.0e3 return dos, lifetime def get_mm_dos(cmplx_dirn, cmplx_filen, dimer_dirn, dimer_filen, jqn=0, mqn=0, nmax=5, vmax=5, **kwargs): """ simple wrapper around _read_data and MMDOS Variables jqn - total J quantum number. mqn - mj_qn projection quantum number. nmax - maximum allowed rotaional quantum number of the molecule. vmax - maximum allowed vibrational quantum number of the molecule. energy_offset - calculate dos around energy = energy_offset """ lmax = 2*nmax+jqn bound_states_d, nmax = _read_data(dimer_dirn, dimer_filen, nmax) bound_states_c, lmax = _read_data(cmplx_dirn, cmplx_filen, lmax) dos, lifetime = compute_mm_dos(jqn, mqn, nmax, vmax, lmax, bound_states_d, bound_states_c) return dos, lifetime ```
{ "source": "jfecroft/Hamilton", "score": 3 }
#### File: Hamilton/src/generic.py ```python from yaml import load def reduce_output(func, item, *args, **kwargs): """ simple function to reduce output from existing functions if func returns an iterable - just return item """ def inner_func(*args, **kwargs): return func(*args, **kwargs)[item] return inner_func def load_yaml(filen): """ load a yaml file and return the json object """ with open('{}.yml'.format(filen), 'r') as open_file: return_dict = load(open_file) return return_dict ```
{ "source": "jfecroft/parse-text", "score": 3 }
#### File: jfecroft/parse-text/repetition_count.py ```python from itertools import tee, izip, islice, groupby import yaml from collections import defaultdict from cluster import HierarchicalClustering # , KMeansClustering from fuzzywuzzy import fuzz from functools import partial # pylint: disable=R0913 FUZZY_METRICS = { 'ratio': fuzz.ratio, 'partial_ratio': fuzz.partial_ratio, 'partial_token_sort_ratio': fuzz.partial_token_sort_ratio, 'partial_token_set_ratio': fuzz.partial_token_set_ratio, 'token_set_ratio': fuzz.token_set_ratio, 'token_sort_ratio': fuzz.token_sort_ratio, } def nwise(iterable, npairs=2): """ return a iterator which return consecutive npairs """ iters = tee(iterable, npairs) for i, iterator in enumerate(iters): next(islice(iterator, i, i), None) return izip(*iters) def load_yaml(filen): """ load a yaml file and return the json object """ with open('{}.yml'.format(filen), 'r') as open_file: return_dict = yaml.load(open_file) return return_dict class GroupWords(object): """ methods used to group words """ @classmethod def group_phrases(cls, items, num_max, iter_num=0, return_groups=None, item=-1): """ recursively group until groups small enough """ if return_groups is None: return_groups = [] if len(items) <= num_max: return_groups.append(items) else: for group in GroupWords.group_by(items, iter_num+1, item=item): GroupWords.group_phrases(group, num_max, iter_num+1, return_groups=return_groups) return return_groups @staticmethod def group_by(items, num=0, item=-1): """ return phrases grouped by their initial *num* letters """ if item >= 0: func = lambda x: x[item][:num] else: func = lambda x: x[:num] items.sort(key=func) return [list(group) for _, group in groupby(items, func)] class CountRepetitions(object): """ count repetitions in text """ def __init__(self, books): self.books = books self.repeated_phrases = set() # store matched phrases @staticmethod def fuzzy_distance(word1, word2, metric): """ return the fuzzy distance between two phrases """ return 100 - metric(word1[0], word2[0]) def count_exact_repetitions(self, npairs=7): """ group identical words """ words = self.get_words(npairs=npairs) exact_repetitions = defaultdict(list) for word, line in words: exact_repetitions[word].append(line) return exact_repetitions def update_repeated_phrases(self, items): """ create a set of already matched phrases needed to avoid 3 word reps in a 4 word phrase for instance """ reps = sum(len(item[1]) for item in items) if reps > 1: self.repeated_phrases.update( {(' '.join(words), line_num) for item in items for line_num in item[1] for n in range(1, len(item[0].split())+1) for words in nwise(item[0].split(), npairs=n)}) def count_fuzzy_repetitions( self, dist=10, max_group_size=50, npairs=7, dist_func='token_sort_ratio'): """ return a fuzzy matching of phrases """ fuzzy_repetitions = list() unique_words = self.count_exact_repetitions(npairs=npairs).items() groups = GroupWords.group_phrases(unique_words, max_group_size, item=0) dist_func = partial(CountRepetitions.fuzzy_distance, metric=FUZZY_METRICS[dist_func]) for group in groups: if len(group) == 1: fuzzy_repetitions.append(group) else: clusters = HierarchicalClustering( group, dist_func).getlevel(dist) fuzzy_repetitions.extend(clusters) # update format for i, repeated_phrase in enumerate(fuzzy_repetitions): self.update_repeated_phrases(repeated_phrase) phrase = {item[0] for item in repeated_phrase} lines = {line for item in repeated_phrase for line in item[1]} fuzzy_repetitions[i] = (phrase, lines) return fuzzy_repetitions def get_words(self, npairs): """ return a list of tuples of the form (word, line) """ words = [] for i, book in enumerate(self.books): with open(book+'.txt') as open_file: content = open_file.readlines() for line_num, line in enumerate(content): for word in nwise(line.split(), npairs=npairs): word = ' '.join(word) word_line = (word, '{}.{}'.format(i+1, line_num+1)) if word_line not in self.repeated_phrases: words.append(word_line) words.sort() return words ```
{ "source": "jfecunha/NLPiper", "score": 2 }
#### File: nlpiper/core/document.py ```python from copy import deepcopy from typing import Any, List, Optional from pydantic import BaseModel, validator, Extra from nlpiper.logger import log def _check_if_embedded_in_numpy_array(v): try: import numpy as np if not isinstance(v, np.ndarray): raise TypeError('Embedding value is not a numpy array.') except ImportError: log.error("To use embeddings please install numpy. " "See the docs at https://numpy.org/ for more information.") raise return v class Token(BaseModel): original: str cleaned: Optional[str] = None lemma: Optional[str] = None stem: Optional[str] = None ner: Optional[str] = None embedded: Optional[Any] = None def __init__(self, original: str, **data) -> None: super().__init__(original=original, cleaned=original, **data) @validator('embedded', pre=True) def check_if_embedded_in_numpy_array(cls, v): return _check_if_embedded_in_numpy_array(v) class Config: validate_assignment = True extra = Extra.allow class Document(BaseModel): original: str cleaned: str tokens: Optional[List[Token]] = None embedded: Optional[Any] = None steps: List[str] = [] def __init__(self, original: str, **data) -> None: super().__init__(original=original, cleaned=original, **data) def _deepcopy(self): return deepcopy(self) @validator('embedded', pre=True) def check_if_embedded_in_numpy_array(cls, v): return _check_if_embedded_in_numpy_array(v) class Config: validate_assignment = True extra = Extra.allow ``` #### File: nlpiper/transformers/tokenizers.py ```python from typing import Optional from nlpiper.core.document import ( Document, Token ) from nlpiper.logger import log from nlpiper.transformers.base import ( BaseTransformer, TransformersType, add_step, validate ) __all__ = [ "BasicTokenizer", "MosesTokenizer", "StanzaTokenizer" ] class BasicTokenizer(BaseTransformer): """Basic tokenizer which tokenizes a document by splitting tokens by its blank spaces.""" @validate(TransformersType.TOKENIZERS) @add_step def __call__(self, doc: Document, inplace: bool = False) -> Optional[Document]: """Tokenize the document in a list of tokens. Args: doc (Document): Text to be tokenized. inplace (bool): if False will return a new doc object, otherwise will change the object passed as parameter. Returns: Document """ d = doc if inplace else doc._deepcopy() d.tokens = [Token(token) for token in d.cleaned.split()] return None if inplace else d class MosesTokenizer(BaseTransformer): """SacreMoses tokenizer. Transformer to tokenize a Document using Sacremoses, https://github.com/alvations/sacremoses """ def __init__(self, *args, **kwargs): """SacreMoses tokenizer. Args: *args: See the docs at https://github.com/alvations/sacremoses for more information. **kwargs: See the docs at https://github.com/alvations/sacremoses for more information. """ super().__init__(*args, **kwargs) try: from sacremoses import MosesTokenizer self.t = MosesTokenizer(*args, **kwargs) except ImportError: log.error("Please install SacreMoses. " "See the docs at https://github.com/alvations/sacremoses for more information.") raise @validate(TransformersType.TOKENIZERS) @add_step def __call__(self, doc: Document, inplace: bool = False) -> Optional[Document]: """Tokenize the document in a list of tokens. Args: doc (Document): Document to be tokenized. inplace (bool): if False will return a new doc object, otherwise will change the object passed as parameter. Returns: Document """ d = doc if inplace else doc._deepcopy() d.tokens = [Token(token) for token in self.t.tokenize(d.cleaned)] return None if inplace else d class StanzaTokenizer(BaseTransformer): """Stanza tokenizer. Transformer to tokenize a Document using stanza, https://github.com/stanfordnlp/stanza """ def __init__(self, language: str = 'en', processors='tokenize', *args, **kwargs): """Stanza tokenizer. Args: language (str): document main language. *args: See the docs at https://stanfordnlp.github.io/stanza/tokenize.html add for more information. **kwargs: See the docs at https://stanfordnlp.github.io/stanza/tokenize.html add for more information. """ super().__init__(language=language, processors=processors, *args, **kwargs) try: import stanza from stanza import Pipeline stanza.download(language) assert 'tokenize' in processors.lower(), 'StanzaTokenizer needs `"tokenize"` on processors' self.p = Pipeline(lang=language, processors=processors, tokenize_pretokenized=False, *args, **kwargs) self.processors = processors except ImportError: log.error("Please install Stanza. " "See the docs at https://github.com/stanfordnlp/stanza for more information.") raise @validate(TransformersType.TOKENIZERS) @add_step def __call__(self, doc: Document, inplace: bool = False) -> Optional[Document]: """Tokenize the document in a list of tokens. Args: doc (Document): Document to be tokenized. inplace (bool): if False will return a new doc object, otherwise will change the object passed as parameter. Returns: Document """ d = doc if inplace else doc._deepcopy() tokens = [] for sentence in self.p(doc.cleaned).sentences: for word in sentence.words: token = Token(word.parent.text) if 'lemma' in self.processors.lower(): token.lemma = word.lemma if 'ner' in self.processors.lower(): token.ner = word.parent.ner tokens.append(token) d.tokens = tokens return None if inplace else d ``` #### File: tests/transformers/test_cleaners.py ```python import pytest from nlpiper.transformers.cleaners import ( CleanAccents, CleanEmail, CleanEOF, CleanMarkup, CleanNumber, CleanPunctuation, CleanURL, ) from nlpiper.core.document import ( Document, Token ) class TestCleanersValidations: @pytest.mark.parametrize('inputs', ["string", 2]) def test_with_invalid_input(self, inputs): with pytest.raises(TypeError): c = CleanEOF() c(inputs) @pytest.mark.parametrize('inputs', ["test"]) def test_with_doc_tokens(self, inputs): doc = Document("test") doc.tokens = list() doc.tokens.append(Token("test")) c = CleanEOF() with pytest.raises(RuntimeError): c(doc) @pytest.mark.parametrize('hide_available_pkg', ['bs4'], indirect=['hide_available_pkg']) def test_if_no_package(self, hide_available_pkg): # noqa: F811 with pytest.raises(ModuleNotFoundError): CleanMarkup() class TestCleanURL: @pytest.mark.parametrize('inputs,results', [ ('TEST', 'TEST'), ('test www.web.com', 'test '), ('testwww.web.com', 'test'), ('test http:\\www.web.com', 'test '), ('test https:\\www.web.com', 'test '), ('testhttps:\\www.web.com', 'test'), ]) def test_clean_url(self, inputs, results): doc = Document(inputs) # Inplace False c = CleanURL() out = c(doc) assert out.cleaned == results assert out.steps == [repr(c)] assert doc.cleaned == inputs assert doc.steps == [] # Inplace True out = c(doc, True) assert doc.cleaned == results assert doc.steps == [repr(c)] assert out is None class TestCleanEmail: @pytest.mark.parametrize('inputs,results', [ ('TEST', 'TEST'), ('test <EMAIL>', 'test '), ('<EMAIL>', ''), ('<EMAIL>', ''), ]) def test_clean_email(self, inputs, results): doc = Document(inputs) c = CleanEmail() # Inplace False out = c(doc) assert out.cleaned == results assert out.steps == [repr(c)] assert doc.cleaned == inputs assert doc.steps == [] # Inplace True out = c(doc, True) assert doc.cleaned == results assert doc.steps == [repr(c)] assert out is None class TestCleanNumber: @pytest.mark.parametrize('inputs,results', [ ('TEST', 'TEST'), ('test 12 test', 'test test'), ('test123test', 'testtest'), ]) def test_clean_number(self, inputs, results): doc = Document(inputs) c = CleanNumber() # Inplace False out = c(doc) assert out.cleaned == results assert out.steps == [repr(c)] assert doc.cleaned == inputs assert doc.steps == [] # Inplace True out = c(doc, True) assert doc.cleaned == results assert doc.steps == [repr(c)] assert out is None class TestCleanPunctuation: @pytest.mark.parametrize('inputs,results', [ ('TEST.%$#"#', 'TEST'), (r'!"te""!"#$%&()*+,-.s/:;<=>?@[\]^_`{|}~""t', 'test'), ]) def test_clean_punctuation(self, inputs, results): doc = Document(inputs) c = CleanPunctuation() # Inplace False out = c(doc) assert out.cleaned == results assert out.steps == [repr(c)] assert doc.cleaned == inputs assert doc.steps == [] # Inplace True out = c(doc, True) assert doc.cleaned == results assert doc.steps == [repr(c)] assert out is None class TestCleanMarkup: @pytest.mark.parametrize('inputs,results', [ ('<html><title>TEST</title>', 'TEST'), ('<p class="title"><b>test 12 test</b></p>', 'test 12 test'), ('<?xml version="1.0" encoding="UTF-8"?><note><body>test123test</body></note>', 'test123test'), ('<html><title>TEST<br><br>TEST</title>', 'TEST TEST'), ]) def test_clean_markup(self, inputs, results): pytest.importorskip('bs4') doc = Document(inputs) c = CleanMarkup() # Inplace False out = c(doc) assert out.cleaned == results assert out.steps == [repr(c)] assert doc.cleaned == inputs assert doc.steps == [] # Inplace True out = c(doc, True) assert doc.cleaned == results assert doc.steps == [repr(c)] assert out is None class TestCleanAccents: @pytest.mark.parametrize('mode,inputs,results', [ ('unicode', 'àáâãäåçèéêë', 'aaaaaaceeee'), ('ascii', 'àáâãäåçèéêë', 'aaaaaaceeee'), ('unicode', 'ìíîïñòóôõöùúûüý', 'iiiinooooouuuuy'), ('ascii', 'ìíîïñòóôõöùúûüý', 'iiiinooooouuuuy'), ('unicode', 'this is à test', 'this is a test'), ('unicode', 'this is a test', 'this is a test'), ('ascii', 'this is à test', 'this is a test'), ('unicode', '\u0625', '\u0627'), ('ascii', '\u0625', ''), ('unicode', 'o\u0308', 'o'), ('ascii', 'o\u0308', 'o'), ('unicode', '\u0300\u0301\u0302\u0303', ''), ('ascii', '\u0300\u0301\u0302\u0303', ''), ('unicode', 'o\u0308\u0304', 'o'), ('ascii', 'o\u0308\u0304', 'o'), ]) def test_clean_accents(self, mode, inputs, results): doc = Document(inputs) c = CleanAccents(mode=mode) # Inplace False out = c(doc) assert out.cleaned == results assert out.steps == [repr(c)] assert doc.cleaned == inputs assert doc.steps == [] # Inplace True out = c(doc, True) assert doc.cleaned == results assert doc.steps == [repr(c)] assert out is None @pytest.mark.parametrize('mode', ["random", 2]) def test_with_invalid_mode(self, mode): with pytest.raises(ValueError): CleanAccents(mode=mode) class TestCleanEOF: @pytest.mark.parametrize('inputs,results', [ ('', ''), ('a basic phrase', 'a basic phrase'), ('line\nline', 'line line'), ('line.\nline', 'line. line') ]) def test_clean_eof(self, inputs, results): doc = Document(inputs) c = CleanEOF() # Inplace False out = c(doc) assert out.cleaned == results assert out.steps == [repr(c)] assert doc.cleaned == inputs assert doc.steps == [] # Inplace True out = c(doc, True) assert doc.cleaned == results assert doc.steps == [repr(c)] assert out is None ``` #### File: tests/transformers/test_embeddings.py ```python import pytest from nlpiper.core.document import Document from nlpiper.transformers.embeddings import GensimEmbeddings from nlpiper.transformers.tokenizers import BasicTokenizer from nlpiper.transformers.normalizers import CaseTokens class TestGensimEmbeddings: pytest.importorskip('gensim') pytest.importorskip('numpy') import gensim.downloader import numpy as np glove_vectors = gensim.downloader.load('glove-twitter-25') @pytest.mark.parametrize('apply_doc', ['sum', 'mean']) @pytest.mark.parametrize('document', ['Test random stuff.', '']) def test_embedding_token(self, apply_doc, document): doc = Document(document) # To apply a embeddings is necessary to have tokens t = BasicTokenizer() t(doc, inplace=True) e = GensimEmbeddings(self.glove_vectors, apply_doc) # Inplace False out = e(doc) assert out.steps == [repr(t), repr(e)] assert out.embedded.shape == (25,) assert all([isinstance(token.embedded, self.np.ndarray) for token in out.tokens]) assert all([token.embedded is None for token in doc.tokens]) assert doc.steps == [repr(t)] assert doc.embedded is None # Inplace True out = e(doc, True) assert all([isinstance(token.embedded, self.np.ndarray) for token in doc.tokens]) assert doc.steps == [repr(t), repr(e)] assert doc.embedded.shape == (25,) assert out is None def test_random_apply_doc(self): with pytest.raises(AssertionError): GensimEmbeddings(self.glove_vectors, 'random') class TestEmbeddings: pytest.importorskip('hunspell') pytest.importorskip('numpy') import gensim @pytest.mark.parametrize('inputs', ["string", 2]) def test_with_invalid_input(self, inputs): with pytest.raises(TypeError): t = GensimEmbeddings(self.gensim.models.KeyedVectors(1)) t(inputs) @pytest.mark.parametrize('inputs', ["test"]) def test_without_doc_tokens(self, inputs): doc = Document("test") t = GensimEmbeddings(self.gensim.models.KeyedVectors(1)) with pytest.raises(RuntimeError): t(doc) @pytest.mark.parametrize('hide_available_pkg', ['numpy', 'gensim'], indirect=['hide_available_pkg']) def test_if_no_package(self, hide_available_pkg): # noqa: F811 with pytest.raises(ModuleNotFoundError): GensimEmbeddings(1) @pytest.mark.parametrize('document', ['Test random stuff.', '']) def test_embedding_applied_twice(self, document): doc = Document(document) # To apply a embeddings is necessary to have tokens t = BasicTokenizer() t(doc, inplace=True) e = GensimEmbeddings(self.gensim.models.KeyedVectors(1)) with pytest.raises(RuntimeError): e(e(doc)) @pytest.mark.parametrize('document', ['Test random stuff.', '']) def test_embedding_applied_then_normalizer(self, document): doc = Document(document) # To apply a embeddings is necessary to have tokens t = BasicTokenizer() n = CaseTokens() t(doc, inplace=True) e = GensimEmbeddings(self.gensim.models.KeyedVectors(1)) with pytest.raises(RuntimeError): n(e(doc)) ``` #### File: tests/transformers/test_normalizers.py ```python import pytest from nlpiper.transformers.normalizers import ( CaseTokens, RemovePunctuation, RemoveStopWords, VocabularyFilter, Stemmer, SpellCheck ) from nlpiper.transformers.tokenizers import BasicTokenizer from nlpiper.core.document import ( Document, Token ) class TestNormalizersValidations: @pytest.mark.parametrize('inputs', ["string", 2]) def test_with_invalid_input(self, inputs): with pytest.raises(TypeError): t = CaseTokens() t(inputs) @pytest.mark.parametrize('inputs', ["test"]) def test_without_doc_tokens(self, inputs): doc = Document("test") t = CaseTokens() with pytest.raises(RuntimeError): t(doc) @pytest.mark.parametrize('hide_available_pkg', ['nltk'], indirect=['hide_available_pkg']) def test_if_no_package_nltk(self, hide_available_pkg): # noqa: F811 with pytest.raises(ModuleNotFoundError): RemoveStopWords() with pytest.raises(ModuleNotFoundError): SpellCheck(max_distance=1) with pytest.raises(ModuleNotFoundError): Stemmer(version='nltk') @pytest.mark.parametrize('hide_available_pkg', ['hunspell'], indirect=['hide_available_pkg']) def test_if_no_package_hunspell(self, hide_available_pkg): # noqa: F811 with pytest.raises(ModuleNotFoundError): SpellCheck(max_distance=None) with pytest.raises(ModuleNotFoundError): Stemmer(version='hunspell') class TestCaseTokens: @pytest.mark.parametrize('mode,inputs,results', [ ('lower', ['TEST'], ['test']), ('lower', ['test'], ['test']), ('upper', ['test'], ['TEST']), ('upper', ['TEST'], ['TEST']), ]) def test_modes(self, mode, inputs, results): results_expected = [Token(tk) for tk in inputs] for tk, out in zip(results_expected, results): tk.cleaned = out doc = Document(" ".join(inputs)) # To apply a normalizer is necessary to have tokens t = BasicTokenizer() t(doc, inplace=True) n = CaseTokens(mode) # Inplace False out = n(doc) assert out.tokens == results_expected assert out.steps == [repr(t), repr(n)] assert doc.tokens == [Token(token) for token in inputs] assert doc.steps == [repr(t)] # Inplace True out2 = n(doc, True) assert doc.tokens == results_expected assert doc.steps == [repr(t), repr(n)] assert out2 is None @pytest.mark.parametrize('mode', [1, 'other']) def test_non_existent_mode(self, mode): with pytest.raises(ValueError): CaseTokens(mode) class TestRemovePunctuation: @pytest.mark.parametrize('inputs,results', [ (['TEST.%$#"#'], ['TEST']), ([r'!"te""!"#$%&()*+,-.s/:;<=>?@[\]^_`{|}~""t'], ['test']), ]) def test_remove_punctuation(self, inputs, results): results_expected = [Token(tk) for tk in inputs] for tk, out in zip(results_expected, results): tk.cleaned = out doc = Document(" ".join(inputs)) # To apply a normalizer is necessary to have tokens t = BasicTokenizer() t(doc, inplace=True) n = RemovePunctuation() # Inplace False out = n(doc) assert out.tokens == results_expected assert out.steps == [repr(t), repr(n)] assert doc.tokens == [Token(token) for token in inputs] assert doc.steps == [repr(t)] # Inplace True out = n(doc, True) assert doc.tokens == results_expected assert doc.steps == [repr(t), repr(n)] assert out is None class TestRemoveStopWords: @pytest.mark.parametrize('sensitive,inputs,results', [ (True, ['This', 'is', 'a', 'stop', 'Word'], ['This', '', '', 'stop', 'Word']), (False, ['This', 'is', 'a', 'stop', 'Word'], ['', '', '', 'stop', 'Word']), ]) def test_remove_stop_words_w_case_sensitive(self, sensitive, inputs, results): pytest.importorskip('nltk') results_expected = [Token(tk) for tk in inputs] for tk, out in zip(results_expected, results): tk.cleaned = out doc = Document(" ".join(inputs)) # To apply a normalizer is necessary to have tokens t = BasicTokenizer() t(doc, inplace=True) n = RemoveStopWords(case_sensitive=sensitive) # Inplace False out = n(doc) assert out.tokens == results_expected assert out.steps == [repr(t), repr(n)] assert doc.tokens == [Token(token) for token in inputs] assert doc.steps == [repr(t)] # Inplace True out = n(doc, True) assert doc.tokens == results_expected assert doc.steps == [repr(t), repr(n)] assert out is None class TestVocabularyFilter: vocabulary = ['this', 'is', 'a', 'token'] @pytest.mark.parametrize('sensitive,inputs,results', [ (True, ['This', 'is', 'a', 'Token'], ['', 'is', 'a', '']), (False, ['This', 'is', 'a', 'Token'], ['This', 'is', 'a', 'Token']), ]) def test_vocabulary_filter_w_case_sensitive(self, sensitive, inputs, results): results_expected = [Token(tk) for tk in inputs] for tk, out in zip(results_expected, results): tk.cleaned = out doc = Document(" ".join(inputs)) # To apply a normalizer is necessary to have tokens t = BasicTokenizer() t(doc, inplace=True) n = VocabularyFilter(vocabulary=self.vocabulary, case_sensitive=sensitive) # Inplace False out = n(doc) assert out.tokens == results_expected assert out.steps == [repr(t), repr(n)] assert doc.tokens == [Token(token) for token in inputs] assert doc.steps == [repr(t)] # Inplace True out = n(doc, True) assert doc.tokens == results_expected assert doc.steps == [repr(t), repr(n)] assert out is None class TestSpellCheck: @pytest.mark.parametrize('max_distance,inputs,results', [ (None, ['This', 'isx', 'a', 'stop', 'Word'], ['This', '', 'a', 'stop', 'Word']), (1, ['Thisx', 'iszk', 'a', 'stop', 'Word'], ['This', 'iszk', 'a', 'stop', 'Word']), ]) def test_spell_checking(self, max_distance, inputs, results): pytest.importorskip('hunspell') pytest.importorskip('nltk') results_expected = [Token(tk) for tk in inputs] for tk, out in zip(results_expected, results): tk.cleaned = out doc = Document(" ".join(inputs)) # To apply a normalizer is necessary to have tokens t = BasicTokenizer() t(doc, inplace=True) n = SpellCheck(max_distance=max_distance) # Inplace False out = n(doc) assert out.tokens == results_expected assert out.steps == [repr(t), repr(n)] assert doc.tokens == [Token(token) for token in inputs] assert doc.steps == [repr(t)] # Inplace True out = n(doc, True) assert doc.tokens == results_expected assert doc.steps == [repr(t), repr(n)] assert out is None class TestStemmer: @pytest.mark.parametrize('version,language,inputs,results', [ ('nltk', 'english', ['This', 'computer', 'is', 'fastest', 'because'], ['this', 'comput', 'is', 'fastest', 'becaus']), ('hunspell', 'en_GB', ['This', 'computer', 'is', 'fastest', 'because'], ['this', 'computer', 'is', 'fast', 'because'])]) def test_stemmer(self, version, language, inputs, results): pytest.importorskip('nltk') pytest.importorskip('hunspell') results_expected = [Token(tk) for tk in inputs] for tk, out in zip(results_expected, results): tk.cleaned = out tk.stem = out doc = Document(" ".join(inputs)) # To apply a normalizer is necessary to have tokens t = BasicTokenizer() t(doc, inplace=True) n = Stemmer(version=version, language=language) # Inplace False out = n(doc) assert out.tokens == results_expected assert out.steps == [repr(t), repr(n)] assert doc.tokens == [Token(token) for token in inputs] assert doc.steps == [repr(t)] # Inplace True out = n(doc, True) assert doc.tokens == results_expected assert doc.steps == [repr(t), repr(n)] assert out is None def test_unavailable_version(self): with pytest.raises(ValueError): Stemmer(version='random') ```
{ "source": "jfehre/meine-stadt-transparent", "score": 2 }
#### File: mainapp/models/user_profile.py ```python from io import BytesIO from typing import Optional from django.contrib.auth.models import User from django.db import models from django.utils.translation import gettext_lazy as _ from mainapp.functions.minio import minio_client, minio_pgp_keys_bucket class UserProfile(models.Model): user = models.OneToOneField( User, null=True, related_name="profile", verbose_name=_(u"User"), on_delete=models.CASCADE, ) # Normally pgp keys are 40 chars long (for sha-1), but we're going to use some padding in case a different # hash is used pgp_key_fingerprint = models.CharField(max_length=64, null=True, blank=True) def add_pgp_key(self, pgp_key_fingerprint: str, pgp_key: str): """This should eventually be abstracted away into a file manager class""" key_bytes = pgp_key.encode() minio_client().put_object( minio_pgp_keys_bucket, pgp_key_fingerprint, BytesIO(key_bytes), len(key_bytes), ) self.pgp_key_fingerprint = pgp_key_fingerprint self.save() def remove_pgp_key(self): # If the user clicks "remove" when the key is already removed, we can ignore that if not self.pgp_key_fingerprint: return minio_client().remove_object(minio_pgp_keys_bucket, self.pgp_key_fingerprint) self.pgp_key_fingerprint = None self.save() def get_pgp_key(self) -> Optional[bytes]: """Returns fingerprint and key""" if not self.pgp_key_fingerprint: return None return ( minio_client() .get_object(minio_pgp_keys_bucket, self.pgp_key_fingerprint) .read() ) class Meta: verbose_name = _("User profile") verbose_name_plural = _("User profiles") def __unicode__(self): return "User profile: %s" % self.user.username # noinspection PyUnresolvedReferences def has_unverified_email_adresses(self): for email in self.user.emailaddress_set.all(): if not email.verified: return True return False ```
{ "source": "jfeinstein10/generator-angular-flask-sqlalchemy", "score": 2 }
#### File: app/templates/app.py ```python import os from flask import Flask, render_template, send_file from flask.ext.assets import Environment from config import debug, secret app = Flask(__name__) app.secret_key = secret app.debug = debug assets = Environment(app) assets.debug = debug assets.auto_build = True assets.from_yaml(os.path.join(app.static_folder, 'bundles.yaml')) assets.config['STATIC_FOLDER'] = app.static_folder assets.config['STATIC_URL_PATH'] = app.static_url_path @app.errorhandler(404) def not_found(error): return 'Not found', 404 @app.errorhandler(500) def internal_error(error): return 'Internal error', 500 @app.route('/static/<path:path>', methods=['GET']) def static_files(path): return send_file('static/{0}'.format(path)) @app.route('/', methods=['GET']) def index(): return render_template('index.html') ``` #### File: endpoints/templates/_controller.py ```python from app import app from models import * class <%= controllerName %>(object): <% endpoints.forEach(function(endpoint){ %> @classmethod @app.route('<%= endpoint.url %>', methods=<%= JSON.stringify(endpoint.methods) %>) def <%= endpoint.functionName %>(): # TODO pass <% }); %> ```
{ "source": "jfeist/jftools", "score": 3 }
#### File: jftools/jftools/interpolate.py ```python from scipy.interpolate import InterpolatedUnivariateSpline from numpy import exp, angle from . import unroll_phase arg = lambda x: unroll_phase(angle(x)) def interp_cmplx(x,y,*args,absarg=True,interpolator=InterpolatedUnivariateSpline,**kwargs): if absarg: return interp_cmplx_absarg(interpolator,x,y,*args,**kwargs) else: return interp_cmplx_reim (interpolator,x,y,*args,**kwargs) class interp_cmplx_absarg: def __init__(self,interpolator,x,y,*args,**kwargs): self.abs = interpolator(x,abs(y),*args,**kwargs) self.arg = interpolator(x,arg(y),*args,**kwargs) def __call__(self,*args,**kwargs): return self.abs(*args,**kwargs)*exp(1j*self.arg(*args,**kwargs)) class interp_cmplx_reim: def __init__(self,interpolator,x,y,*args,**kwargs): self.real = interpolator(x,y.real,*args,**kwargs) self.imag = interpolator(x,y.imag,*args,**kwargs) def __call__(self,*args,**kwargs): return self.real(*args,**kwargs) + 1j*self.imag(*args,**kwargs) ```
{ "source": "jfelipesouza/Invasores-do-python", "score": 3 }
#### File: Invasores-do-python/PyInvaders/pyinvaders.py ```python from random import choice, randint from math import ceil import pygame import os # Variáveis globais que são necessárias em diversos momentos #### Cores #### #### (R, G, B) #### WHITE = (255, 255, 255) RED = (255, 0, 0) BLACK = (0, 0, 0) GREEN = (0, 255, 0) GOLD = (255, 215, 0) SPRINGREEN = (0, 250, 154) #### TELA #### SCREEN_WIDTH = 800 SCREEN_HEIGHT = 600 #### DIRETÓRIO #### # Comando para pegar o caminho onde a pasta do jogo está DIRECTORY = os.getcwd() #### FONTE #### FONT = DIRECTORY + "/fonts/space_invaders.ttf" class Edge(pygame.sprite.Sprite): """ Estrutura criada para facilitar a análise de colisões com as bordas. """ def __init__(self, width, height, x, y): """ Cria as bordas do jogo. width: largura da borda. height: altura da borda. x: posição no eixo x. y: posição no eixo y. """ pygame.sprite.Sprite.__init__(self) self.image = pygame.Surface((width, height)) self.image.fill(WHITE) self.rect = self.image.get_rect() self.rect.x = x self.rect.y = y class Block(pygame.sprite.Sprite): """ Responsável por criar barreiras que protegem a nave. """ def __init__(self, color = WHITE, size = 10): """ Cria cada bloco com uma determinada cor e tamanho. color: cor que o bloco terá. size: tamanho de cada quadrado. """ pygame.sprite.Sprite.__init__(self) self.color = color self.size = size self.image = pygame.Surface([self.size, self.size]) self.image.fill(color) self.rect = self.image.get_rect() class Ship(pygame.sprite.Sprite): """ Classe que representa a nave do jogador. """ def __init__(self, path, pos_x, pos_y, speed = 5): """ Cria uma nave. path: caminho onde está a imagem que representa a nave. pos_x: posição inicial da nave no eixo x. pos_y: posição inicial da nave no eixo y. speed: velocidade que a nave se deslocará. Por padrão ela é 5px. """ pygame.sprite.Sprite.__init__(self) self.__initial_position = (pos_x, pos_y) # Carregando a imagem da nave self.__image = pygame.image.load(path) self.image = pygame.transform.scale(self.__image, (60, 60)) self.rect = self.image.get_rect() self.rect.x = pos_x self.rect.y = pos_y self.speed = speed # A nave inicia com 3 vidas self.lifes = 3 # Sons que a nave possui quando atira ou quando é atingida self.__sound_shot = pygame.mixer.Sound(DIRECTORY + "/sounds/shoot.wav") self.__ship_explosion = pygame.mixer.Sound(DIRECTORY + "/sounds/shipexplosion.wav") def initial_position(self): """ logo Define as posições iniciais da nave. """ self.rect.x = self.__initial_position[0] self.rect.y = self.__initial_position[1] def die(self): """ Assim que a nave é atingida esse método é chamado para realizar as devidas ações que são necessárias. As ações são: reproduzir o som de explosão definido na construção do objeto, retornar a nave à posição inicial e reduzir a sua quantidade de vidas. """ self.__ship_explosion.play() self.initial_position() self.lifes -= 1 def shoot(self): """ Método que permite a nave atirar. Ao ser chamado é liberado o som de tiro e criado um projétil. """ self.__sound_shot.play() bullet = Bullet(self.rect.midtop, 1) return bullet def update(self, *args): """ Método que realiza a atualização da posição da nave à medida que o jogador a movimenta. """ # Se estiver pressionando o botão da seta da direita if pygame.key.get_pressed()[pygame.K_RIGHT]: if self.rect.right < (SCREEN_WIDTH - self.speed): self.rect.x += self.speed # Se estiver pressionando o botão da seta da esquerda elif pygame.key.get_pressed()[pygame.K_LEFT]: if self.rect.left > self.speed: self.rect.x -= self.speed def __str__(self): """ Representação textual do objeto, indicando a sua posição atual. """ return "Ship in (%s, %s)" % (self.rect.x, self.rect.y) class Invader(pygame.sprite.Sprite): """ Classe que representa os invasores. """ def __init__(self, sprite, pos_x, pos_y, speed = 1): """ Método responsável por criar cada invasor. sprite: imagem que representa cada invasor. pos_x: posição inicial do invasor no eixo x. pos_y: posição inicial do invasor no eixo y. speed: velocidade em que cada objeto se movimenta. """ pygame.sprite.Sprite.__init__(self) self.image = sprite self.rect = sprite.get_rect() self.rect.x = pos_x self.rect.y = pos_y self.speed = speed def shoot(self): """ Metódo que permite cada invasor disparar. """ bullet = Bullet(self.rect.midtop, -1, speed = 4, color = RED) return bullet def up_speed(self): """ Aumenta a velocidade com que cada invasor se movimenta. """ self.speed += 0.5 def down_invader(self): """ Método que movimenta as sprites ao longo do eixo y. """ self.rect.y += 20 def update(self, direction): """ Método que movimentas as sprites ao longo do eixo x. """ self.rect = self.rect.move(self.speed * direction, 0) def __str__(self): """ Representação textual do objeto, indicando a sua posição atual. """ return "Invader in (%s, %s)" % (self.rect.x, self.rect.y) class Mystery(pygame.sprite.Sprite): """ Classe que representa a Mystery do jogo tradicional. """ def __init__(self, sprite, pos_x, pos_y, speed = 2.7): """ Método responsável por criar a nave-mãe. sprite: imagem que representa a nave. pos_x: posição inicial da nave no eixo x. pos_y: posição inicial da nave no eixo y. speed: velocidade em que a nave se movimenta. """ pygame.sprite.Sprite.__init__(self) self.image = sprite self.rect = self.image.get_rect(topleft = (pos_x, pos_y)) self.speed = speed def update(self, *args): if (self.rect.x >= (SCREEN_WIDTH + 200)): self.kill() else: self.rect = self.rect.move(self.speed, 0) class Bullet(pygame.sprite.Sprite): """ Classe que representa as balas de todos os objetos que realizam disparos. """ def __init__(self, pos_xy, direction, color = SPRINGREEN, speed = 8): """ Constrói um objeto do tipo Bullet. pos_xy: é o ponto (x, y) que é o ponto médio da borda superior da sprite. direction: direção que o objeto se deslocará. speed: velocidade que o objeto se deslocará. Por padrão é 8px. color: cor do objeto. Por padrão é azul-marinho. """ pygame.sprite.Sprite.__init__(self) self.image = pygame.Surface((5,10)) self.image.fill(color) self.rect = self.image.get_rect() self.rect.x = pos_xy[0] self.rect.y = pos_xy[1] self.direction = direction self.speed = speed * direction def update(self, *args): """ Atualiza o objeto durante o seu deslocamento. """ self.rect.y -= self.speed if self.rect.bottom <= 0: self.kill() class SpaceInvaders(): """ Classe que comanda os principais comandos do jogo. """ def __init__(self): """ Permite criar uma instância do jogo. """ # Definindo os caminhos dos arquivos necessários para o jogo self.ship_shot = pygame.sprite.GroupSingle() self.invader_shot = pygame.sprite.Group() """ Para colocar em tela cheia usa o comando: pygame.display.set_mode((0, 0), pygame.FULLSCREEN) """ self.window = pygame.display.set_mode((SCREEN_WIDTH, SCREEN_HEIGHT)) # Coloca uma legenda para a janela pygame.display.set_caption("Space Invaders") # Coloca um ícone na janela logo = pygame.image.load(DIRECTORY + "/images/logo.png") pygame.display.set_icon(logo) self.score = 0 self.level = 0 self.speed = 0 ''' Criando um objeto do tipo pygame.font.Font, onde é passada a fonte e o tamanho se a fonte for passada como None é utilizada a padrão do sistema. ''' self.font = self.create_font(60) self.score_font = self.create_font(15) self.explosion_sound = pygame.mixer.Sound(DIRECTORY + "/sounds/invaderkilled.wav") # Carregando imagens necessárias self.path_image_ship = DIRECTORY + "/images/ship.png" background_image = pygame.image.load(DIRECTORY + "/images/back.png") explosion_image = pygame.image.load(DIRECTORY + "/images/explosion.png") lifes_image = pygame.image.load(DIRECTORY + "/images/heart.png") self.ship = pygame.sprite.GroupSingle( Ship(self.path_image_ship, (SCREEN_WIDTH - 50) // 2, (SCREEN_HEIGHT - 110))) self.ship_sprite = self.ship.sprites()[0] mystery_image = pygame.image.load(DIRECTORY + "/images/boss3.png") self.mystery_image = pygame.transform.scale(mystery_image, [71, 39]) self.mystery = pygame.sprite.GroupSingle( Mystery(self.mystery_image, self.random_position(), 15)) self.background = pygame.transform.scale(background_image, (SCREEN_WIDTH, SCREEN_HEIGHT)) self.lifes_image = pygame.transform.scale(lifes_image, (25, 25)) self.explosion_image = pygame.transform.scale(explosion_image, ( (SCREEN_WIDTH // 20), (SCREEN_WIDTH // 20))) self.clock = pygame.time.Clock() self.invaders = pygame.sprite.OrderedUpdates() self.invaders_direction = 1 self.increment_speed = False self.left_edge = pygame.sprite.GroupSingle(Edge(5, SCREEN_HEIGHT, 0, 0)) self.right_edge = pygame.sprite.GroupSingle(Edge(5, SCREEN_HEIGHT, 795, 0)) self.bottom_edge = pygame.sprite.GroupSingle(Edge(SCREEN_WIDTH, 5, 0, 560)) self.groups = pygame.sprite.Group(self.ship_shot, self.invader_shot, self.invaders, self.mystery) def random_position(self): """ Escolhe aleatoriamente uma posição inicial no eixo x para a nave-mãe. """ return choice([-1700, -1900, -2200, -2500, -1500]) def home_screen(self): """ Cria a tela inicial do jogo. """ menu = True music_menu = pygame.mixer.Sound(DIRECTORY + "/sounds/menu.wav") music_menu.play(-1) text = self.font.render("SPACE INVADERS", True, GREEN) self.font = self.create_font(20) command1 = self.font.render(" ENTER : START ", True, WHITE, None) command2 = self.font.render(" ESC : OUT ", True, WHITE, None) command1_rect = command1.get_rect(center = (SCREEN_WIDTH // 2, SCREEN_HEIGHT - 100)) command2_rect = command2.get_rect(center = ((SCREEN_WIDTH + 15) // 2, SCREEN_HEIGHT - 50)) mystery = pygame.image.load(DIRECTORY + "/images/boss1.png") mystery = pygame.transform.scale(mystery, [110, 60]) speed = [-5, 5] rect_mystery = mystery.get_rect() self.window.fill(BLACK) self.window.blit(text, [(SCREEN_WIDTH - 570) // 2, 50]) self.window.blit(command1, command1_rect) self.window.blit(command2, command2_rect) pygame.display.update() while menu: # Mudando a direção que a nave se movimenta. if rect_mystery.left < 0 or rect_mystery.right > SCREEN_WIDTH: speed[0] = -speed[0] if rect_mystery.top < 0 or rect_mystery.bottom > SCREEN_HEIGHT: speed[1] = -speed[1] rect_mystery.x += speed[0] rect_mystery.y += speed[1] for event in pygame.event.get(): if event.type == pygame.QUIT: music_menu.stop() return False if event.type == pygame.KEYDOWN: if event.key == pygame.K_RETURN or event.key == pygame.K_SPACE: self.start_game() music_menu.stop() return True if event.key == pygame.K_ESCAPE: music_menu.stop() return False self.window.fill(BLACK) self.window.blit(mystery, rect_mystery) self.window.blit(text, [(SCREEN_WIDTH - 570) // 2, 50]) self.window.blit(command1, command1_rect) self.window.blit(command2, command2_rect) self.clock.tick(60) pygame.display.update() def final_screen(self): """ Cria a tela final do jogo. """ music_menu = pygame.mixer.Sound(DIRECTORY + "/sounds/menu.wav") music_menu.play(-1) self.game_over_screen() self.font50 = self.create_font(50) self.font20 = self.create_font(20) text1 = self.font50.render("FINAL SCORE: %d" % self.score, True, GOLD) text2 = self.font20.render("PRESS ENTER TO TRY AGAIN", True, WHITE) text3 = self.font20.render("PRESS ESC TO OUT", True, WHITE) text1_rect = text1.get_rect(center = (SCREEN_WIDTH // 2, SCREEN_HEIGHT - 350)) text2_rect = text2.get_rect(center = (SCREEN_WIDTH // 2, SCREEN_HEIGHT - 100)) text3_rect = text3.get_rect(center = (SCREEN_WIDTH // 2, SCREEN_HEIGHT - 40)) self.window.fill(BLACK) self.window.blit(text1, text1_rect) self.window.blit(text2, text2_rect) self.window.blit(text3, text3_rect) pygame.display.update() while True: for event in pygame.event.get(): if event.type == pygame.QUIT: music_menu.stop() pygame.quit() exit() if event.type == pygame.KEYDOWN: if event.key == pygame.K_RETURN: music_menu.stop() self.level = 0 self.speed = 0 self.ship = pygame.sprite.GroupSingle( Ship(self.path_image_ship, (SCREEN_WIDTH) // 2, (SCREEN_HEIGHT - 110))) self.ship_sprite = self.ship.sprites()[0] self.start_game() return if event.key == pygame.K_ESCAPE: music_menu.stop() pygame.quit() exit() def level_screen(self): """ Cria a tela que indica o nível que irá iniciar. Ela dura 1 segundo (1000 milisegundos). """ self.level += 1 if (self.level > 1 and self.level < 6): self.speed += 0.3 elif (self.level == 1): self.speed += 1 font = self.create_font(100) text = font.render('LEVEL: ' + str(self.level), True, GOLD) self.time = pygame.time.get_ticks() while ((pygame.time.get_ticks() - self.time) < 1000): for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() exit() self.window.blit(self.background, [0, 0]) self.window.blit(text, [(SCREEN_WIDTH - 450) // 2, 220]) pygame.display.update() def game_over_screen(self): """ Cria a tela de game over. Ela dura 1.5 segundo (1500 milisegundos). """ font = self.create_font(100) text = font.render('GAME OVER', True, RED) time = pygame.time.get_ticks() while ((pygame.time.get_ticks() - time) < 1500): for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() exit() self.window.blit(self.background, [0, 0]) self.window.blit(text, [(SCREEN_WIDTH - 600) // 2, 220]) pygame.display.update() def start_game(self): """ Limpa todas as variáveis para que se possa iniciar o jogo. """ self.groups.add(self.ship) self.invaders_direction = 1 self.blocks = pygame.sprite.Group(self.build_blocks(0), self.build_blocks(1), self.build_blocks(2)) self.invaders.empty() self.mystery.empty() self.invader_shot.empty() self.ship_shot.empty() self.level_screen() self.create_invaders() self.ship_sprite.initial_position() self.update() def build_blocks(self, number): """ Constrói cada bloco que fica entre os invasores e a nave. Cada bloco é constituído de diversos pequenos blocos, o que facilita analisar as colisões. number: é o número do bloco, isso ajuda a indicar a posição que ele será construído. """ aux = pygame.sprite.Group() for row in range(4): for column in range(10): blocker = Block() blocker.rect.x = 45 + (300 * number) + (column * blocker.size) blocker.rect.y = 400 + (row * blocker.size) aux.add(blocker) return aux def create_invaders(self): """ Cria os invasores e coloca todos em um grupo. """ enemy_types = [] for i in range(1, 8): enemy_types.append(pygame.image.load(DIRECTORY + ("/images/invader%d.png" % (i % 2)))) x = 25 # Preenchendo os invasores pelas colunas. for j in range(7): y = 60 for i in range(5): sprite = pygame.transform.scale(enemy_types[i], ((SCREEN_WIDTH // 20), (SCREEN_WIDTH // 20))) self.invaders.add(Invader(sprite, x, y, self.speed)) y += 45 x += 62 def showShipLives(self): """ Mostra na tela as vidas que a nave possui. """ y = 10 for i in range(self.ship_sprite.lifes): self.window.blit(self.lifes_image, (y, 570)) y += 40 def enemy_shot(self): """ Escolhe aleatoriamente um invasor para que ele realize algum disparo. """ enemy = [i for i in self.invaders] for i in range(2): invader = choice(enemy) self.invader_shot.add(invader.shoot()) def update(self): """ Realiza todas as atualizações necessárias para o jogo. """ score = self.score_font.render("SCORE: %d" % self.score, True, WHITE) current_time = pygame.time.get_ticks() if (current_time % 2000.0 < 20): self.enemy_shot() if ((len(self.mystery) == 0)): self.mystery.add(Mystery(self.mystery_image, self.random_position(), 15)) self.window.blit(self.background, [0, 0]) self.window.blit(score, (SCREEN_WIDTH - 150, SCREEN_HEIGHT - 30)) self.groups.draw(self.window) self.blocks.draw(self.window) self.groups.update(self.invaders_direction) self.update_direction() self.check_collisions() self.showShipLives() self.groups = pygame.sprite.Group(self.ship, self.ship_shot, self.invader_shot, self.invaders, self.left_edge, self.bottom_edge, self.right_edge, self.mystery) self.clock.tick(60) pygame.display.update() def check_collisions(self): """ Realiza todas as checagens de colisões do jogo e as suas consequências. """ """ Se ocorrer uma colisão entre os projéteis da nave e de algum invasor ambas são mortas e ocorre um acréscimo de um valor entre 5 e 20 na pontuação do jogador. """ if pygame.sprite.groupcollide(self.ship_shot, self.invader_shot, True, True): self.score += randint(5, 20) # Colisão entre as balas e a borda inferior, apenas os disparos são mortos. pygame.sprite.groupcollide(self.invader_shot, self.bottom_edge, True, False) # Colisão entre os disparos dos invasores e os blocos, ambos morrem. pygame.sprite.groupcollide(self.invader_shot, self.blocks, True, True) # Colisão entre o disparo da nave e os blocos, ambos morrem. pygame.sprite.groupcollide(self.ship_shot, self.blocks, True, True) # Colisão entre os blocos e os invasores, apenas os blocos morrem. pygame.sprite.groupcollide(self.blocks, self.invaders, True, False) # Colisão entre a nave e os invasores if pygame.sprite.groupcollide(self.ship, self.invaders, False, False): self.ship_sprite.die() # Colisão entre a nave-mãe e o tiro da nave. A pontuação será um valor entre 25 e 55. if pygame.sprite.groupcollide(self.mystery, self.ship_shot, True, True): self.score += choice([25, 35, 45, 55]) self.explosion_sound.play() ''' Colisão entre os disparos da nave e os invasores, ambos morrem. Além disso é colocado a imagem, o som de explosão e um acréscimo na pontuação podendo ser [10, 15, 20, 25, 30, 35, 40]. ''' for atingidos in pygame.sprite.groupcollide(self.ship_shot, self.invaders, True, True).values(): for invasor in atingidos: self.explosion_sound.play() self.window.blit(self.explosion_image, (invasor.rect.x, invasor.rect.y)) self.score += choice([10, 15, 20, 25, 30, 35, 40]) # Verifica a colisão dos disparos realizados pelos invasores e a nave. Apenas o tiro morre. if (pygame.sprite.groupcollide(self.ship, self.invader_shot, False, True)): self.explosion_sound.play() self.window.blit(self.explosion_image, (self.ship_sprite.rect.x, self.ship_sprite.rect.y)) self.ship_sprite.die() def update_direction(self): """ Atualiza a direção dos invasores. Já que os invasores são colocados na tela coluna a coluna é possível saber quem são os primeiros e os últimos que foram inseridos para poder controlar os limites da tela. """ arr = self.invaders.sprites() first = arr[0] last = arr[-1] if ((last.rect.x > (SCREEN_WIDTH - last.rect.width - 10)) or (first.rect.x < 10)): self.invaders_direction *= -1 current_time = pygame.time.get_ticks() if (current_time - self.time > (8000 // self.speed)): self.down_invader(arr) def down_invader(self, arr): """ Movimenta cada invasor pelo eixo y. """ up_speed = (len(self.invaders) <= 8) for enemy in arr: if up_speed: enemy.up_speed() enemy.down_invader() def create_font(self, size): return pygame.font.Font(FONT, size) def main(self): """ Método principal do jogo. """ # Variável necessária para que o loop onde o jogo ocorre dure o tempo necessário. run = True menu = True while menu: command = self.home_screen() if not command: menu = False pygame.quit() exit() while run: if self.ship_sprite.lifes <= 0: self.final_screen() self.score = 0 elif len(self.invaders) == 0: self.start_game() else: for event in pygame.event.get(): # Verificando se o usuário clicou na opção de fechar a janela. if event.type == pygame.QUIT: run, menu = False, False if event.type == pygame.KEYDOWN: if event.key == pygame.K_ESCAPE: run, menu = False, False if ((event.key == pygame.K_UP or event.key == pygame.K_SPACE) and not self.ship_shot): self.ship_shot.add(self.ship_sprite.shoot()) self.update() if __name__ == "__main__": # Comando necessário para se inicializar os módulos do Pygame pygame.init() pygame.mixer.pre_init(22050, -16, 2, 1024) pygame.mixer.init(22050, -16, 2, 1024) game = SpaceInvaders() game.main() os.environ['SDL_VIDEO_CENTERED'] = '1' # Comando que encerra os módulos do Pygame pygame.quit() ```
{ "source": "jfelip/font_tracer", "score": 3 }
#### File: jfelip/font_tracer/font2vertices.py ```python import freetype import numpy as np from bezier_sampling import bezier_curve __author__ = "<NAME>" __copyright__ = "Copyright 2020, <NAME>" __credits__ = ["<NAME>"] __license__ = "MIT" __version__ = "0.1" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Development" def trace_cubic_off_points(c_points, c_tags, idx, n_segments=5): """ Traces the bezier cubic arc represented by the contour off point at idx into n_segments line segments. Details of font outline in: https://www.freetype.org/freetype2/docs/glyphs/glyphs-6.html Two successive conic off points force the creation of a virtual on point at the exact middle of the two off points to sample the conic curve. Cubic points must be in pairs and have to be surrounded by on points. To avoid line segment duplication this function only traces line segments if the c_points[idx] is the second of a pair of off cubic points. :param c_points: Contour points arranged in a (N,2) array. :param c_tags: N-sized array with a FreeType tag for each point in c_points. :param idx: Index of the contour point used to create the traced segments. :param n_segments: Number of segments used to trace the bezier arc. Defaults to 5. :return: Set of line segments (M, 2) """ sampled_pts = np.array([]) idx_prev = idx - 1 idx_next = idx + 1 # If it is the last point of the contour. Use the first as the pivot if idx == len(c_points) - 1: idx_next = 0 # Only trace if the point is the second of a pair of off cubic points. if c_tags[idx_prev] == freetype.FT_Curve_Tag_Cubic and c_tags[idx] == freetype.FT_Curve_Tag_Cubic: sampled_pts = bezier_curve([c_points[idx_prev - 1], c_points[idx_prev], c_points[idx], c_points[idx_next]], n_segments) return sampled_pts.reshape(-1) def trace_conic_off_points(c_points, c_tags, idx, n_segments=5): """ Traces the bezier arc represented by the contour off point at idx into n_segments line segments. Details of font outline in: https://www.freetype.org/freetype2/docs/glyphs/glyphs-6.html Two successive conic off points force the creation of a virtual on point at the exact middle of the two off points to sample the conic curve. Cubic points must be in pairs and have to be surrounded by on points. :param c_points: Contour points arranged in a (N,2) array. :param c_tags: N-sized array with a FreeType tag for each point in c_points. :param idx: Index of the contour point used to create the traced segments. :param n_segments: Number of segments used to trace the bezier arc. Defaults to 5. :return: Set of line segments (M, 2) """ # If it is the last point of the contour. Use the first as the pivot idx_prev = idx - 1 idx_next = idx + 1 if idx == len(c_points) - 1: idx_next = 0 if c_tags[idx_prev] == freetype.FT_Curve_Tag_On: point_start = c_points[idx_prev] elif c_tags[idx_prev] == freetype.FT_Curve_Tag_Conic: point_start = (c_points[idx] + c_points[idx_prev]) / 2 else: raise ValueError("While tracing point index %d. Previous point with unsupported type: " % idx + str(c_tags[idx_prev])) if c_tags[idx_next] == freetype.FT_Curve_Tag_On: point_end = c_points[idx_next] elif c_tags[idx_next] == freetype.FT_Curve_Tag_Conic: point_end = (c_points[idx] + c_points[idx_next]) / 2 else: raise ValueError("While tracing point index %d. Previous point with unsupported type: " % idx + str(c_tags[idx_next])) sampled_pts = bezier_curve([point_start, c_points[idx], point_end], n_segments) return sampled_pts.reshape(-1) def glyph2vertices(glyph, n_segments=5): """ Sample glyph outline vertices checking points on the curve and control points for conic and cubic bezier arcs as described in: https://www.freetype.org/freetype2/docs/glyphs/glyphs-6.html Vertex coordinates are scaled such that the vertical advance is 1 unit and the return is a list of arrays, each list element represents a closed contour. Each closed contour is a numpy array of size Nx2 representing the set of 2d vertices that form the contour outline. :param glyph: FreeFont glyph to be traced :param n_segments: Number of segments used to sample each bezier arc. Defaults to 5. :return: A list of sampled contours. Each contour is a numpy array of Nx2 vertices representing a glyph contour. """ # Get the points describing the outline points = np.array(glyph.outline.points, dtype=np.float32) # Get contour start indices contours = glyph.outline.contours # Obtain the point tags from the glyph outline description. tags = [] for i, t in enumerate(glyph.outline.tags): tags.append(freetype.FT_CURVE_TAG(t)) # Process each contour separately prev_c = -1 c_draw_contours = [] for c in contours: # Extract the points and tags for the current contour c_points = points[prev_c + 1:c + 1] c_draw_points = np.array([]) c_tags = tags[prev_c + 1:c + 1] # Generate points depending on their tag for i in range(len(c_points)): # If the point is on, just add it if c_tags[i] == freetype.FT_Curve_Tag_On: c_draw_points = np.concatenate((c_draw_points, c_points[i])) # If the point is off conic elif c_tags[i] == freetype.FT_Curve_Tag_Conic: sampled_pts = trace_conic_off_points(c_points, c_tags, i, n_segments) c_draw_points = np.concatenate((c_draw_points, sampled_pts)) # If the point is off cubic elif c_tags[i] == freetype.FT_Curve_Tag_Cubic: sampled_pts = trace_cubic_off_points(c_points, c_tags, i, n_segments) c_draw_points = np.concatenate((c_draw_points, sampled_pts)) # Normalize vertices (scale to fit 1 unit height bbox) c_draw_points = c_draw_points / glyph.metrics.vertAdvance c_draw_contours.append(c_draw_points) prev_c = c # Return a list of contour vertices return c_draw_contours def vertices2lines(contours): """ Generate a set of 2d lines from a set of closed contours. :param contours: List of 2d closed contours. Each contour is an array of flattened 2d points. :return: Array of vertices representing lines. """ lines = np.array([]) for contour in contours: # Draw a line between each contour sampled sequential point for i in range(0, len(contour), 2): line = contour[i:i+4] lines = np.concatenate((lines, line)) # Close the contour if len(contour) % 2 != 0: lines = np.concatenate((lines, contour[-2:2])) else: lines = np.concatenate((lines, contour[0:2])) return lines.flatten() ```
{ "source": "jfellien/TemperatureMonitor", "score": 3 }
#### File: jfellien/TemperatureMonitor/main.py ```python from PIL import ImageFont from datetime import datetime from w1thermsensor import W1ThermSensor import os, sys, time import EPD.epdAPI as EPD FONT_PATH = './EPD/fonts/DroidSans.ttf' FONT_BIG = ImageFont.truetype(FONT_PATH, 72) FONT_SMALL = ImageFont.truetype(FONT_PATH, 12) BLACK = 0 epd = EPD.EPScreen('landscape') def get_time(): full_time = datetime.now().time() hour = str(full_time.hour) minute = "{:02d}".format(full_time.minute) short_time = hour + ':' + minute return(short_time) def get_current_temperature(): sensor = W1ThermSensor() temperature = sensor.get_temperature() temperature_formated = "{:3.1f}".format(temperature) return(temperature_formated) def show_temperature(): temperature = get_current_temperature() title = 'Temperatur um ' + get_time() temperature_value = str(temperature) + "°C" epd.set_title(title) epd.add_text_middle(60, temperature_value, FONT_BIG, BLACK) epd.update_screen() print(title) print(temperature) while True: show_temperature() time.sleep(10) ```
{ "source": "jfemiani/srp-boxes", "score": 3 }
#### File: srp/data/generate_csv.py ```python from __future__ import division, print_function import os import fiona import numpy as np import pandas as pd import rasterio import rasterio.errors import rasterio.features import rasterio.transform import shapely.geometry from srp.config import C from srp.data.orientedboundingbox import OrientedBoundingBox from srp.util import tqdm from logging import info, warning class SampleGenerator: """SampleGenerator Generates patches with positive and negative examples for training. """ def __init__(self, **kwargs): """ This class primarily reads its parameters from the 'config.py' file. Please specify your parameters there. Given a very high resolution ortho-image, a pre-processed LiDAR density file and human labeled '.geojson' (all in the same coordinate system), this class prepares two CSV files. The positive csv specifies the (x,y) coordinates, rotation angle (we constrain the angle within the first quadrant), length (x-axis vector length), and width (y-axis vector length) IN THAT ORDER. The negative CSV only provides the center coordinates (x,y) of each sample. Arguments --------- rgb_path (str): path to the ortho-image volume_path (str): path to the volumetric data annotation_path (str): a .geojson file that labels the four corners of the box clock-wise outdir (str): where the .csv fies should be stored. This class can generate both positive and negative .csv files min_seperation (float): the minimum diameter around a positive center that we DO NOT draw negative samples from threshold (float0): the minimum density count that the joined first and second tile above "fake ground" have to pass to count as an "useful" negative spot. We need to make sure the negative samples are draw from meaningful sites (exculding streets and such) num_samples (int): The number of positive samples + negative samples. (default config.TRAIN.SAMPLES.GENERATOR.NUM_SAMPLES) density_layers (list of int): The layers of the volume densities that we use to decide if we should use that location as a sample. """ self.rgb_path = kwargs.pop('rgb_path', C.COLOR.FILE) self.volume_path = kwargs.pop('volume_path', C.VOLUME.FILE) self.annotation_path = kwargs.pop('annotation_path', C.ANNOTATIONS.FILE) self.num_of_samples = kwargs.pop('num_samples', C.TRAIN.SAMPLES.GENERATOR.NUM_SAMPLES) self.min_seperation = kwargs.pop('min_seperation', C.TRAIN.SAMPLES.GENERATOR.MIN_SEPARATION) self.threshold = kwargs.pop('threshold', C.TRAIN.SAMPLES.GENERATOR.MIN_DENSITY) self.patch_size = kwargs.pop('patch_size', C.TRAIN.PATCH_SIZE) self.csv_dir = kwargs.pop('outdir', C.TRAIN.SAMPLES.DIR) self.density_layers = kwargs.pop('density_layers', C.TRAIN.SAMPLES.GENERATOR.DENSITY_LAYERS) self.sample_name_pattern = kwargs.pop('sample_pattern', C.TRAIN.SAMPLES.GENERATOR.NAME_PATTERN) self.positive_csv_file = os.path.join(self.csv_dir, 'positives.csv') self.negative_csv_file = os.path.join(self.csv_dir, 'negatives.csv') self.bounds = None with fiona.open(self.annotation_path) as vector_file: self.hotspots = np.array([f['geometry']['coordinates'] for f in vector_file if f['geometry'] is not None]) def _get_tight_rectangle_info(self, box): """ This is an internal use function. Given 4 human labeled corner points, this function returns the estimated rotation. length and width of the minimum_rotated_rectangle :param box: 4 by 2 array (each row is a point). :return: returns center-x, center-y, rotation, length, width of the box Example: >>> sc = SampleGenerator() >>> sc._get_tight_rectangle_info(box=np.array([[0,0], ... [0,1], ... [2,1], ... [2,0]])) # doctest: +NORMALIZE_WHITESPACE array([1. , 0.5, 0. , 2. , 1. ]) """ poly = shapely.geometry.Polygon(box) points = np.array(poly.minimum_rotated_rectangle.exterior)[:-1] return OrientedBoundingBox.rot_length_width_from_points(points) def make_pos_csv(self): """ This file generates a ".csv" file for the positive samples. It specifies the center(x,y) coordinates, rotated angle, length, width IN THAT ORDER. It currently supports squares and rectangular inputs. """ with tqdm(self.hotspots, desc='Generating positive samples') as progress: pos_samples = [] for i, b in enumerate(progress): x, y, deg, length, width = self._get_tight_rectangle_info(b) rel_path = self.sample_name_pattern.format(label='pos', index=i + 1) pos_samples.append([rel_path, x, y, deg, length, width]) colnames = ['name', 'orig-x', 'orig-y', 'box-ori-deg', 'box-ori-length', 'box-ori-width'] posdf = pd.DataFrame(data=pos_samples, columns=colnames) os.makedirs(os.path.dirname(self.positive_csv_file), exist_ok=True) posdf.to_csv(path_or_buf=self.positive_csv_file, index=False) info("Positive data .csv file saved as {}".format(self.positive_csv_file)) def make_neg_csv(self): """Generate a CSV file with the locations of some negative examples. We look through the volume, and choose samples that are "interesting" in the sense that they include points at the hight-layers where we expect to see boxes. """ pos_xy = pd.read_csv(self.positive_csv_file).iloc[:, 1:1 + 2].values num_of_negs = self.num_of_samples - len(pos_xy) assert num_of_negs > 0 # Generate region that should not be negative positive_region = shapely.geometry.MultiPoint(points=pos_xy) positive_region = positive_region.buffer(self.min_seperation) densities = rasterio.open(self.volume_path) colors = rasterio.open(self.rgb_path) self.bounds = tuple((max(densities.bounds.left, colors.bounds.left), max(densities.bounds.bottom, colors.bounds.bottom), min(densities.bounds.right, colors.bounds.right), min(densities.bounds.top, colors.bounds.top))) combined_window = densities.window(*self.bounds) block_size = C.TRAIN.SAMPLES.GENERATOR.BLOCK_SIZE rowcols = np.mgrid[0:densities.shape[0]:block_size, 0:densities.shape[1]:block_size].reshape(2, -1) block_windows = [rasterio.windows.Window(row, col, block_size, block_size) for row, col in rowcols.T] neg_xy = [] with tqdm(block_windows, desc="Processing volume data blocks") as progress: for window in progress: try: overlapping_window = combined_window.intersection(window) stack = densities.read([3, 4], window=overlapping_window, boundless=True) tfm = densities.window_transform(overlapping_window) except rasterio.errors.WindowError as e: # Non overlapping window: windows do not intersect" continue density_mask = stack.sum(0) > self.threshold positive_mask = rasterio.features.geometry_mask(positive_region, stack.shape[1:], tfm) sample_mask = density_mask & positive_mask ij = np.argwhere(sample_mask.T) if len(ij): xy = np.c_[tfm * ij.T] neg_xy.append(xy) neg_xy = np.concatenate(neg_xy) # Choose which samples to keep indices = np.random.choice(len(neg_xy), num_of_negs) neg_xy = neg_xy[indices] samples = [[self.sample_name_pattern.format(label='neg', index=i + 1), x, y] for i, (x, y) in enumerate(tqdm(neg_xy))] colnames = ['name', 'orig-x', 'orig-y'] negdf = pd.DataFrame(data=samples, columns=colnames) negdf.to_csv(path_or_buf=self.negative_csv_file, index=False) info("Negative data .csv file saved as {}".format(self.negative_csv_file)) def generate_samples(): generator = SampleGenerator() if os.path.isfile(generator.positive_csv_file): warning("Skipping positive CSV generation:" " output file {} already exists.".format(generator.positive_csv_file)) else: generator.make_pos_csv() if os.path.isfile(generator.negative_csv_file): warning("Skipping negative CSV generation:" " output file {} already exists".format(generator.negative_csv_file)) else: generator.make_neg_csv() if __name__ == '__main__': generate_samples() ``` #### File: srp/data/generate_variations.py ```python import os import pickle import skimage.filters import affine import glob import scipy import numpy as np from skimage.transform import rotate from logging import debug from srp.data.generate_patches import Patch from srp.config import C from srp.data.orientedboundingbox import OrientedBoundingBox from srp.util import tqdm class VariationMaker(object): """DataAugment Generates variations(including synthetic) from patches generated by module 'generate_patches.py' randomly. Attributes: variations: The number of variations to generate (default C.TRAIN.AUGMENTATION.VARIATIONS) max_offset: The maximum offset for augmentation, both dx and dy (default C.TRAIN.AUGMENTATION.MAX_OFFSET) radius: The size of the output patches (default is C.TRAIN.PATCH_SIZE/2) synthetic_prop: The probability of making synthetic data that lines up perfectly with the expected result (default C.TRAIN.AUGMENTATION.SYNTHETIC_PROBABILITY) current_fold: A integer value specifing fold that is being used now (default C.TRAIN.SAMPLES.CURRENT_FOLD) cache_root: the root where all subfolders will reside (default is C.TRAIN.SAMPLES.DIR) """ def __init__(self, **kwargs): super().__init__() self.variations = kwargs.pop('variations', C.TRAIN.AUGMENTATION.VARIATIONS) self.max_offset = kwargs.pop('max_offset', C.TRAIN.AUGMENTATION.MAX_OFFSET) self.radius = kwargs.pop('radius', C.TRAIN.PATCH_SIZE / 2) self.synthetic_prop = kwargs.pop('synthetic_prop', C.TRAIN.AUGMENTATION.SYNTHETIC_PROBABILITY) self.cache_root = kwargs.pop('cache_root', C.TRAIN.SAMPLES.DIR) def _cropped_rotate_patch(self, source_patch, rothate_angle, p_center, dr, dc): rotated_patch = np.zeros((source_patch.shape)) for i in range(len(source_patch)): rotated_patch[i] = rotate(source_patch[i], rotate_angle, preserve_range=True) cropped_patch = rotated_patch[:, p_center - radius + dc:p_center + radius + dc, p_center - radius - dr:p_center + radius - dr] return cropped_patch def _fake_positive_layer(self, obb, radius, edge_factor=1, sigma=12, fg_noise=0.1, bg_noise=0.1): diameter = int(radius * 2) square = np.zeros((diameter, diameter)) cd = obb.u_length rd = obb.v_length square[int(radius - rd):int(radius + rd), int(radius - cd):int(radius + cd)] = 1 outline = scipy.ndimage.morphology.morphological_gradient(square, 3) outline[int(radius - rd):, int(radius - cd):int(radius + cd)] = 0 square = (1 - edge_factor) * square + edge_factor * outline gradient = np.zeros_like(square) gradient[:64] = 1 gradient = skimage.filters.gaussian(gradient, sigma=sigma) square *= gradient square /= np.percentile(square.flat, 99.9) background = square == 0 noisy = square noisy += background * np.random.randn(diameter, diameter) * bg_noise noisy += ~background * np.random.randn(diameter, diameter) * fg_noise noisy = noisy.clip(0, 1) return noisy def _fake_data(self, obb, radius=C.TRAIN.PATCH_SIZE / 2): radius = int(C.TRAIN.SAMPLES.GENERATOR.PADDED_PATCH_SIZE / 2) data = np.zeros((6, 2 * radius, 2 * radius)) data[2] = self._fake_positive_layer(obb, radius, edge_factor=1) data[3] = self._fake_positive_layer(obb, radius, edge_factor=0.7) data[3] *= 0.3 data *= 40 return data def _augment(self, p, radius): """Generate an augmented version of patch `p`. :param p: The original patch. :param radius: The radius for the augmented patch (typically smaller to accomodate rotation and cropping) """ radius = int(radius) dr = int(np.random.uniform(-1, 1) * C.TRAIN.AUGMENTATION.MAX_OFFSET) dc = int(np.random.uniform(-1, 1) * C.TRAIN.AUGMENTATION.MAX_OFFSET) rotate_angle = np.random.rand() * 360 p_center = int(p.volumetric.shape[1] / 2) vol = p.volumetric if p.label and np.random.random() <= self.synthetic_prop: vol = self._fake_data(p.obb, C.TRAIN.SAMPLES.GENERATOR.PADDED_PATCH_SIZE) assert vol.shape[1:] == p.rgb.shape[1:] source_patch = np.concatenate((p.rgb, vol)) rotated_patch = np.zeros((source_patch.shape)) obb = p.obb for i in range(len(source_patch)): rotated_patch[i] = rotate(source_patch[i], rotate_angle, preserve_range=True) cropped_patch = rotated_patch[:, p_center - radius + dc:p_center + radius + dc, p_center - radius - dr:p_center + radius - dr] if p.label: R = affine.Affine.rotation(rotate_angle) T = affine.Affine.translation(dr, dc) A = T * R after = np.vstack(A * p.obb.points().T).T obb = OrientedBoundingBox.from_points(after) return Patch( name=p.name, obb=obb, ori_xy=p.ori_xy, rgb=cropped_patch[:3], label=p.label, volumetric=cropped_patch[3:], dr_dc_angle=(dr, dc, rotate_angle)) def make_variations(self, patch): """Precompute the variations using original patches in designated cache_dir. This is used to pre-compute data augmentation for deep learning. The number and types of variation are controlled by the configuration file. :param patch: an original 'Patch' class object """ label, name = patch.name.split('/')[-2:] name = name.split('.')[0] for i in range(self.variations): var = self._augment(patch, radius=C.TRAIN.PATCH_SIZE / 2) var_name = os.path.join(self.cache_root, C.TRAIN.AUGMENTATION.NAME_PATTERN.format(label=label, name=name, var_idx=i + 1)) os.makedirs(os.path.dirname(var_name), exist_ok=True) with open(var_name, 'wb') as handle: pickle.dump(var, handle, protocol=pickle.HIGHEST_PROTOCOL) def generate_variations(names=None, synthetic_prop=C.TRAIN.AUGMENTATION.SYNTHETIC_PROBABILITY, cache_root=None): """ :param names: a list of names relative to the C.TRAIN.SAMPLES.DIR (default is all patches pos + neg) :param cache_root: the root where all subfolders will reside (default is C.TRAIN.SAMPLES.DIR) """ cache_root = cache_root or C.TRAIN.SAMPLES.DIR if names: samples = [os.path.join(C.TRAIN.SAMPLES.DIR, n) for n in list(names)] else: samples = glob.glob(os.path.join(C.TRAIN.SAMPLES.DIR, '*/*.pkl')) maker = VariationMaker(synthetic_prop=synthetic_prop, cache_root=cache_root) progress = tqdm(samples, desc='Generating variation patches, syn_prop={}'.format(synthetic_prop)) for i, name_dir in enumerate(progress): with open(os.path.join(C.TRAIN.SAMPLES.DIR, name_dir), 'rb') as handle: p = pickle.load(handle) maker.make_variations(p) if __name__ == '__main__': generate_variations() ``` #### File: srp/data/train_val_split.py ```python import numpy as np from srp.config import C import os import pandas as pd from sklearn.model_selection import KFold def train_val_split(): kf = KFold(n_splits=C.TRAIN.SAMPLES.FOLDS, shuffle=True, random_state=C.TRAIN.SRAND) posinfo = pd.read_csv(os.path.join(C.TRAIN.SAMPLES.DIR, "positives.csv")).values neginfo = pd.read_csv(os.path.join(C.TRAIN.SAMPLES.DIR, "negatives.csv")).values for i, (train_index, test_index) in enumerate(kf.split(posinfo)): fold_dir = os.path.join(C.TRAIN.SAMPLES.DIR, "fold{}".format(i + 1)) os.makedirs(fold_dir, exist_ok=True) with open(os.path.join(fold_dir, "train.txt"), mode='w') as file: for idx in train_index: file.write(posinfo[idx, 0] + '\n') # file.write("1, {}\n".format(idx+1)) with open(os.path.join(fold_dir, "test.txt"), mode='w') as file: for idx in test_index: file.write(posinfo[idx, 0] + '\n') # file.write("1, {}\n".format(idx+1)) for i, (train_index, test_index) in enumerate(kf.split(neginfo)): fold_dir = os.path.join(C.TRAIN.SAMPLES.DIR, "fold{}".format(i + 1)) with open(os.path.join(fold_dir, "train.txt"), mode='a') as file: for idx in train_index: file.write(neginfo[idx, 0] + '\n') # file.write("0, {}\n".format(idx+1)) with open(os.path.join(fold_dir, "test.txt"), mode='a') as file: for idx in test_index: file.write(neginfo[idx, 0] + '\n') # file.write("0, {}\n".format(idx+1)) if __name__ == '__main__': train_val_split() ``` #### File: srp/experiments/make_experiments.py ```python from builtins import str import os from collections import OrderedDict import itertools import pandas as pd import oyaml as yaml from tqdm import tqdm from srp.config import C def make_experiments(options, dirname=C.INT_DATA, progress=True): """ Generate grid-search parameters to explore a set of options. The idea is that you can write a single script that reads in a config file to do an experiments. The config files will be generated by this function. This script will not actually _do_ the experiments, it just generates the configuration files. :param options: An ordered dictionary; the first keys will vary fastest in a grid search. :param dirname: A folder that will hold configuration settings for each combination of options we explore. :param progress: whether to show a progress bar Example ------- >>> options = yaml.load(''' ... A: ... - 1 ... - 2 ... - 3 ... B: ... - alpha ... - beta ... C: ... - orange ... - yellow ... ''') >>> os.makedirs('data/test', exist_ok=True) >>> make_experiments(options, dirname='data/test', progress=False) >>> os.path.isfile('data/test/experiments.csv') True >>> os.path.isfile('data/test/options.yml') True The `experiments.csv` file has a header and a row with the settings for each trial. The first option is changes fastest. >>> f = open('data/test/experiments.csv').readlines() >>> print(f[0].strip()) ,A,B,C >>> print(f[1].strip()) 0,1,alpha,orange >>> print(f[2].strip()) 1,2,alpha,orange Files are created for each combination of options >>> os.path.isfile('data/test/experiments/00000/config.yml') True The experiment config files have al of the options as YAML data >>> c = yaml.load(open('data/test/experiments/00000/config.yml')) >>> c['A'] 1 >>> c['B'] 'alpha' >>> c['C'] 'orange' """ # Save the options with open(os.path.join(dirname, 'options.yml'), 'w') as f: yaml.dump(options, f, default_flow_style=False) # Save the master list of experiments combos = [reversed(combo) for combo in itertools.product(*reversed(list(options.values())))] experiments = pd.DataFrame(combos, columns=list(options.keys())) experiments.to_csv(os.path.join(dirname, 'experiments.csv')) # Make s folder and config file for each experiment if progress: combos = tqdm(experiments.iterrows(), "generating configs") else: combos = experiments.iterrows() for _, combo in combos: subdirname = '{:05}'.format(combo.name) rec = OrderedDict() rec['NUMBER'] = combo.name rec['NAME'] = '-'.join((subdirname, ) + tuple((str(x) for x in combo))) rec.update(combo) exp_dir = os.path.join(dirname, 'experiments', subdirname) os.makedirs(exp_dir, exist_ok=True) with open(os.path.join(exp_dir, 'config.yml'), 'w') as f: yaml.dump(rec, f, default_flow_style=False) ```
{ "source": "jfemiani/synwin", "score": 3 }
#### File: jfemiani/synwin/fetch_wall_textures.py ```python import os import shutil import time from glob import glob import tqdm as tq from bs4 import BeautifulSoup # This site uses jacascript for pagination -- access needs to be done through # an actual browser from selenium import webdriver from selenium.webdriver.chrome.options import Options BASE_URL = "https://www.cgbookcase.com" def download(url, filename, tqparams=None): import functools import pathlib import shutil import requests from tqdm.auto import tqdm if tqparams is None: tqparams = dict(leave=False) r = requests.get(url, stream=True, allow_redirects=True) if r.status_code != 200: r.raise_for_status() # Will only raise for 4xx codes, so... raise RuntimeError(f"Request to {url} returned status code {r.status_code}") file_size = int(r.headers.get('Content-Length', 0)) path = pathlib.Path(filename).expanduser().resolve() path.parent.mkdir(parents=True, exist_ok=True) desc = "(Unknown total file size)" if file_size == 0 else "" r.raw.read = functools.partial(r.raw.read, decode_content=True) # Decompress if needed with tqdm.wrapattr(r.raw, "read", total=file_size, desc=desc, **tqparams) as r_raw: with path.open("wb") as f: shutil.copyfileobj(r_raw, f) return path def get_driver(): # Not using requests -- we need to use an actual browser # to load the page and run javascript options = Options() options.headless = True driver = webdriver.Chrome('/usr/lib/chromium-browser/chromedriver', options=options) return driver def get_content(url, driver=None, timeout=2): if driver is None: driver = get_driver() driver.get(url) time.sleep(5) # Give any scripts time to execute as the page loads content = driver.page_source return content def get_texture_pages(query): max_pages = 10 driver = get_driver() for page in range(1, max_pages+1): url = f'{BASE_URL}/textures/?search={query}&page={page}' content = get_content(url, driver) soup = BeautifulSoup(content, 'html.parser') links = soup.find_all('a', {'class': 'results-itemWrapper'}) if len(links) == 0: break for link in links: image_url = f"{BASE_URL}{link['href']}" yield image_url def get_zip_links(texture_page): drv = get_driver() drv.get(texture_page) download_button = drv.find_element_by_class_name('btn-red') zip_url = download_button.get_property('href') return zip_url def iter_download_walls(outdir): for wall in get_texture_pages('wall'): zip_url = get_zip_links(wall) zip_path = os.path.join(outdir, os.path.basename(zip_url)) tq.tqdm.write(f'Downloading {wall} to {zip_path}') download(zip_url, zip_path) yield zip_path def download_walls(outdir='data/PBRS/walls'): return list(iter_download_walls(outdir)) def extract_materials(outdir='data/PBRS/walls', tqargs=None): if tqargs is None: tqargs = dict(leave=False) zips = glob(f'{outdir}/*.zip') for zip in tq.tqdm(zips, desc='Extracting zrchives', **tqargs): shutil.unpack_archive(zip, extract_dir=outdir) ```
{ "source": "jfeng08/CoolProp", "score": 3 }
#### File: incompressible_liquids/CPIncomp/DataObjects.py ```python from __future__ import division, print_function import numpy as np import os, math from .BaseObjects import IncompressibleData,IncompressibleFitter from abc import ABCMeta class SolutionData(object): """ A base class that defines all the variables needed in order to make a proper fit. You can copy this code put in your data and add some documentation for where the information came from. """ ifrac_mass = "mass" ifrac_mole = "mole" ifrac_volume = "volume" ifrac_undefined = "not defined" ifrac_pure = "pure" def __init__(self): self.significantDigits = 7 self.name = None # Name of the current fluid self.description = None # Description of the current fluid self.reference = None # Reference data for the current fluid self.Tmax = None # Maximum temperature in K self.Tmin = None # Minimum temperature in K self.xmax = 1.0 # Maximum concentration self.xmin = 0.0 # Minimum concentration self.xid = self.ifrac_undefined # Concentration is mole, mass or volume-based self.TminPsat = None # Minimum saturation temperature in K self.Tbase = None # Base value for temperature fits self.xbase = None # Base value for concentration fits self.temperature = IncompressibleData() # Temperature for data points in K self.concentration = IncompressibleData() # Concentration data points in weight fraction self.density = IncompressibleData() # Density in kg/m3 self.specific_heat = IncompressibleData() # Heat capacity in J/(kg.K) self.viscosity = IncompressibleData() # Dynamic viscosity in Pa.s self.conductivity = IncompressibleData() # Thermal conductivity in W/(m.K) self.saturation_pressure = IncompressibleData() # Saturation pressure in Pa self.T_freeze = IncompressibleData() # Freezing temperature in K self.mass2input = IncompressibleData() # dd self.volume2input = IncompressibleData() # dd self.mole2input = IncompressibleData() # dd ## Some of the functions might need a guess array #self.viscosity.type = self.viscosity.INCOMPRESSIBLE_EXPONENTIAL #self.viscosity.coeffs = np.array([+7e+2, -6e+1, +1e+1]) #self.saturation_pressure.type = self.saturation_pressure.INCOMPRESSIBLE_EXPONENTIAL #self.saturation_pressure.coeffs = np.array([-5e+3, +3e+1, -1e+1]) self.xref = 0.0 self.Tref = 0.0 self.pref = 0.0 self.href = 0.0 self.sref = 0.0 self.uref = 0.0 self.rhoref = 0.0 # def getDataObjects(self): # objList = {} # objList["temperature"] = self.temperature # objList["concentration"] = self.concentration # objList["density"] = self.density # objList["specific_heat"] = self.specific_heat # objList["viscosity"] = self.viscosity # objList["conductivity"] = self.conductivity # objList["saturation_pressure"] = self.saturation_pressure # objList["T_freeze"] = self.T_freeze # objList["volume2mass"] = self.volume2mass # objList["mass2mole"] = self.mass2mole # return objList def roundSingle(self,x): if x==0.0: return 0.0 return round(x, self.significantDigits-int(math.floor(math.log10(abs(x))))-1) def round(self, x): r,c,res = IncompressibleFitter.shapeArray(x) #digits = -1*np.floor(np.log10(res))+self.significantDigits-1 for i in range(r): for j in range(c): if np.isfinite(res[i,j]): res[i,j] = self.roundSingle(res[i,j]) return res # def getPolyObjects(self): # objList = {} # objList["density"] = self.density # objList["specific heat"] = self.specific_heat ## objList["viscosity"] = self.viscosity # objList["conductivity"] = self.conductivity ## objList["saturation_pressure"] = self.saturation_pressure ## objList["T_freeze"] = self.T_freeze ## objList["volume2mass"] = self.volume2mass ## objList["mass2mole"] = self.mass2mole # return objList # # def getExpPolyObjects(self): # objList = {} # objList["viscosity"] = self.viscosity # objList["saturation pressure"] = self.saturation_pressure # return objList def checkT(self, T, p, x): if self.Tmin <= 0.: raise ValueError("Please specify the minimum temperature.") if self.Tmax <= 0.: raise ValueError("Please specify the maximum temperature."); if ((self.Tmin > T) or (T > self.Tmax)): raise ValueError("Your temperature {0} is not between {1} and {2}.".format(T, self.Tmin, self.Tmax)) TF = 0.0 if (self.T_freeze.type!=IncompressibleData.INCOMPRESSIBLE_NOT_SET): TF = self.Tfreeze(T, p, x) if ( T<TF ): raise ValueError("Your temperature {0} is below the freezing point of {1}.".format(T, TF)) else: return True return False def checkP(self, T, p, x): ps = 0.0 if (self.saturation_pressure.type!=IncompressibleData.INCOMPRESSIBLE_NOT_SET): ps = self.psat(T, p, x) if (p < 0.0): raise ValueError("You cannot use negative pressures: {0} < {1}. ".format(p, 0.0)) if (p < ps) : raise ValueError("Equations are valid for liquid phase only: {0} < {1}. ".format(p, ps)) else : return True return False def checkX(self, x): if (self.xmin < 0.0 or self.xmin > 1.0): raise ValueError("Please specify the minimum concentration between 0 and 1."); if (self.xmax < 0.0 or self.xmax > 1.0): raise ValueError("Please specify the maximum concentration between 0 and 1."); if ((self.xmin > x) or (x > self.xmax)): raise ValueError("Your composition {0} is not between {1} and {2}.".format(x, self.xmin, self.xmax)) else: return True return False def checkTPX(self, T, p, x): try: return (self.checkT(T,p,x) and self.checkP(T,p,x) and self.checkX(x)) except ValueError as ve: #print("Check failed: {0}".format(ve)) pass return False def rho (self, T, p=0.0, x=0.0, c=None): if not self.checkTPX(T, p, x): return np.NAN if c is None: c=self.density.coeffs if self.density.type==self.density.INCOMPRESSIBLE_POLYNOMIAL: return np.polynomial.polynomial.polyval2d(T-self.Tbase, x-self.xbase, c) else: raise ValueError("Unknown function.") def c (self, T, p=0.0, x=0.0, c=None): if not self.checkTPX(T, p, x): return np.NAN if c is None: c = self.specific_heat.coeffs if self.specific_heat.type==self.specific_heat.INCOMPRESSIBLE_POLYNOMIAL: return np.polynomial.polynomial.polyval2d(T-self.Tbase, x-self.xbase, c) else: raise ValueError("Unknown function.") def cp (self, T, p=0.0, x=0.0, c=None): return self.c(T,p,x,c) def cv (self, T, p=0.0, x=0.0, c=None): return self.c(T,p,x,c) def u (self, T, p=0.0, x=0.0, c=None): if not self.checkTPX(T, p, x): return np.NAN if c is None: c = self.specific_heat.coeffs if self.specific_heat.type==self.specific_heat.INCOMPRESSIBLE_POLYNOMIAL: c_tmp = np.polynomial.polynomial.polyint(c) return np.polynomial.polynomial.polyval2d(T-self.Tbase, x-self.xbase, c_tmp) else: raise ValueError("Unknown function.") #def u (T, p, x); def h (self, T, p=0.0, x=0.0): return self.h_u(T,p,x) def visc(self, T, p=0.0, x=0.0, c=None): if not self.checkTPX(T, p, x): return np.NAN return self.viscosity.baseFunction(T, x, self.Tbase, self.xbase, c=c) def cond(self, T, p=0.0, x=0.0, c=None): if not self.checkTPX(T, p, x): return np.NAN return self.conductivity.baseFunction(T, x, self.Tbase, self.xbase, c=c) def psat(self, T, p=0.0, x=0.0, c=None): if (T<=self.TminPsat): return 0.0 return self.saturation_pressure.baseFunction(T, x, self.Tbase, self.xbase, c=c) def Tfreeze(self, T, p=0.0, x=0.0, c=None): if c is None: c = self.T_freeze.coeffs if self.T_freeze.type==self.T_freeze.INCOMPRESSIBLE_POLYNOMIAL: return np.polynomial.polynomial.polyval2d(p-0.0, x-self.xbase, c) elif self.T_freeze.type==self.T_freeze.INCOMPRESSIBLE_POLYOFFSET: #if y!=0.0: raise ValueError("This is 1D only, use x not y.") return self.T_freeze.basePolyOffset(c, x) # offset included in coeffs elif self.T_freeze.type==self.T_freeze.INCOMPRESSIBLE_EXPONENTIAL: #if y!=0.0: raise ValueError("This is 1D only, use x not y.") return self.T_freeze.baseExponential(c, x) elif self.T_freeze.type==IncompressibleData.INCOMPRESSIBLE_LOGEXPONENTIAL: #if y!=0.0: raise ValueError("This is 1D only, use x not y.") return self.T_freeze.baseLogexponential(c, x) elif self.T_freeze.type==self.T_freeze.INCOMPRESSIBLE_EXPPOLYNOMIAL: return np.exp(np.polynomial.polynomial.polyval2d(p-0.0, x-self.xbase, c)) else: raise ValueError("Unknown function: {0}.".format(self.T_freeze.type)) #def V2M (T, y); #def M2M (T, x); def h_u(self, T, p, x): return self.u(T,p,x)+p/self.rho(T,p,x)-self.href def u_h(self, T, p, x): return self.h(T,p,x)-p/self.rho(T,p,x)+self.href def set_reference_state(self, T0, p0, x0=0.0, h0=0.0, s0=0.0): self.rhoref = self.rho(T0,p0,x0) self.pref = p0 self.uref = h0 - p0/self.rhoref self.uref = self.u(T0,p0,x0) self.href = h0 self.sref = s0 self.href = self.h(T0,p0,x0) self.sref = self.s(T0,p0,x0) class PureData(SolutionData): """ An extension of the solution data that makes it easier to gather data for pure fluids. """ __metaclass__ = ABCMeta def __init__(self): SolutionData.__init__(self) self.xbase = 0.0 self.xid = self.ifrac_pure self.concentration.data = np.array([ 0 ]) # mass fraction def reshapeData(self, dataArray, length): """ Makes any array 1-dimensional and implicitly checks the length. """ if not dataArray is None: return np.reshape(dataArray, (length,1)) else: return None def reshapeAll(self): len_T = len(self.temperature.data) #len_x = len(self.concentration.data) self.density.data = self.reshapeData(self.density.data, len_T) self.specific_heat.data = self.reshapeData(self.specific_heat.data, len_T) self.viscosity.data = self.reshapeData(self.viscosity.data, len_T) self.conductivity.data = self.reshapeData(self.conductivity.data, len_T) self.saturation_pressure.data = self.reshapeData(self.saturation_pressure.data, len_T) #self.T_freeze.data = self.reshapeData(self.T_freeze.data, len_T) #self.volume2mass.data = self.reshapeData(self.volume2mass.data, len_T) #self.mass2mole.data = self.reshapeData(self.mass2mole.data, len_T) class DigitalData(SolutionData): """ An extension of the solution data that makes it easier to generate fitting data from fluids available as Python packages. """ __metaclass__ = ABCMeta def __init__(self): SolutionData.__init__(self) def getFile(self, data): return os.path.join(os.path.dirname(__file__), 'data', self.name+"_"+data+".txt") def getFromFile(self, data): fullPath = self.getFile(data) _,_,res = IncompressibleFitter.shapeArray(np.loadtxt(fullPath)) return res def writeToFile(self, data, array): fullPath = self.getFile(data) if not os.path.exists(os.path.dirname(fullPath)): os.makedirs(os.path.dirname(fullPath)) stdFmt = "%1.{0}e".format(int(self.significantDigits-1)) return np.savetxt(fullPath, array, fmt=stdFmt) def getTrange(self): if self.Tmin<self.Tmax: return np.linspace(self.Tmin, self.Tmax, 20) else: return np.array([0.0]) def getxrange(self): if self.xmin<self.xmax and self.xid!=self.ifrac_pure: return np.linspace(self.xmin, self.xmax, 20) else: return np.array([0.0]) def getArray(self, dataID=None, func=None, x_in=None, y_in=None, DEBUG=False): """ Tries to read a data file, overwrites it if x or y do not match :param dataID : ID to contruct the path to the data file :param func : Callable object that can take x_in and y_in :param x_in : a 1D array in x direction or 2D with one column, most likely temperature :param y_in : a 1D array in y direction or 2D with one row, most likely cocentration :param DEBUG : a boolean that controls verbosity :returns : Returns a tuple with three entries: x(1D),y(1D),data(2D) """ x = None y = None z = None # First we try to read the file if (not dataID is None and os.path.isfile(self.getFile(dataID))): # File found fileArray = self.getFromFile(dataID) x = np.copy(fileArray[1:,0 ]) y = np.copy(fileArray[0 ,1:]) z = np.copy(fileArray[1:,1:]) else: if DEBUG: print("No readable file found for {0}: {1}".format(dataID,self.getFile(dataID))) updateFile = DEBUG if not x_in is None: # Might need update if not x is None: # Both given, check if different mask = np.isfinite(x) if IncompressibleFitter.allClose(x[mask], x_in[mask]): if DEBUG: print("Both x-arrays are the same, no action required.") updateFile = (updateFile or False) # Do not change a True value to False else: updateFile = True if DEBUG: print("x-arrays do not match. {0} contains \n {1} \n and will be updated with \n {2}".format(self.getFile(dataID),x,x_in)) else: updateFile = True elif x is None: if DEBUG: print("Could not load x from file {0} and no x_in provided, aborting.".format(self.getFile(dataID))) return None,None,None else: updateFile = (updateFile or False) # Do not change a True value to False if not y_in is None: # Might need update if not y is None: # Both given, check if different mask = np.isfinite(y) if IncompressibleFitter.allClose(y[mask], y_in[mask]): if DEBUG: print("Both y-arrays are the same, no action required.") updateFile = (updateFile or False) # Do not change a True value to False else: updateFile = True if DEBUG: print("y-arrays do not match. {0} contains \n {1} \n and will be updated with \n {2}".format(self.getFile(dataID),y,y_in)) else: updateFile = True elif y is None: if DEBUG: print("Could not load y from file {0} and no y_in provided, aborting.".format(self.getFile(dataID))) return None,None,None else: updateFile = (updateFile or False) # Do not change a True value to False if DEBUG: print("Updating data file {0}".format(updateFile)) if not updateFile: return x,y,z # Done, data read from file # Overwrite inputs x = x_in y = y_in z = np.zeros( (len(x)+1,len(y)+1) ) r,c = z.shape if func is None: raise ValueError("Need a function to update the data file.") for i in range(r-1): for j in range(c-1): z[i+1,j+1] = func(x[i],y[j]) z[0,0 ] = np.NaN z[1:,0] = x z[0,1:] = y if not dataID is None: self.writeToFile(dataID, z) else: if DEBUG: print("Not updating data file, dataID is missing.") return x,y,z[1:,1:] class CoefficientData(SolutionData): """ A class to convert parameter arrays from different other sources """ __metaclass__ = ABCMeta def __init__(self): SolutionData.__init__(self) self.reference = "Some other software" def convertSecCoolArray(self, array): if len(array)!=18: raise ValueError("The lenght is not equal to 18!") self.reference = "SecCool software" array = np.array(array) tmp = np.zeros((4,6)) tmp[0][0] = array[0] tmp[0][1] = array[1] tmp[0][2] = array[2] tmp[0][3] = array[3] tmp[0][4] = array[4] tmp[0][5] = array[5] tmp[1][0] = array[6] tmp[1][1] = array[7] tmp[1][2] = array[8] tmp[1][3] = array[9] tmp[1][4] = array[10] #tmp[1][5] = array[11] tmp[2][0] = array[11] tmp[2][1] = array[12] tmp[2][2] = array[13] tmp[2][3] = array[14] #tmp[2][4] = array[4] #tmp[2][5] = array[5] tmp[3][0] = array[15] tmp[3][1] = array[16] tmp[3][2] = array[17] #tmp[3][3] = array[3] #tmp[3][4] = array[4] #tmp[3][5] = array[5] # Concentration is no longer handled in per cent! for i in range(6): tmp.T[i] *= 100.0**i return tmp def convertSecCoolTfreeze(self, array): expo = -1.0 for i in range(len(array)): array[i] = array[i]*np.power(100.0,expo+i) array[1] = array[1] + 273.15 #self.T_freeze.type = self.T_freeze.INCOMPRESSIBLE_POLYOFFSET return array def convertMelinderArray(self, array): """The same function as the SecCool converter, the original source code is slightly different though. That is why the implementation is in a transposed form...""" if len(array)!=18: raise ValueError("The lenght is not equal to 18!") #self.reference = "Melinder Book" array = np.array(array) tmp = np.zeros((6,4)) tmp[0][0] = array[0] tmp[0][1] = array[6] tmp[0][2] = array[11] tmp[0][3] = array[15] tmp[1][0] = array[1] tmp[1][1] = array[7] tmp[1][2] = array[12] tmp[1][3] = array[16] tmp[2][0] = array[2] tmp[2][1] = array[8] tmp[2][2] = array[13] tmp[2][3] = array[17] tmp[3][0] = array[3] tmp[3][1] = array[9] tmp[3][2] = array[14] tmp[4][0] = array[4] tmp[4][1] = array[10] tmp[5][0] = array[5] # Concentration is no longer handled in per cent! for i in range(6): tmp[i] *= 100.0**i return tmp.T def convertMelinderMatrix(self, array): """Function to convert the full coefficient array from the very first CoolProp implementation based on the book by Melinder""" if len(array)!=18: raise ValueError("The lenght is not equal to 18!") if len(array[0])!=5: raise ValueError("The lenght is not equal to 5!") array = np.array(array) tmp = np.zeros((18,5)) for j in range(5): tmp[ 0][j] = array[ 0][j] tmp[ 1][j] = array[ 4][j] tmp[ 2][j] = array[ 8][j] tmp[ 3][j] = array[12][j] tmp[ 4][j] = array[15][j] tmp[ 5][j] = array[17][j] tmp[ 6][j] = array[ 1][j] tmp[ 7][j] = array[ 5][j] tmp[ 8][j] = array[ 9][j] tmp[ 9][j] = array[13][j] tmp[10][j] = array[16][j] tmp[11][j] = array[ 2][j] tmp[12][j] = array[ 6][j] tmp[13][j] = array[10][j] tmp[14][j] = array[14][j] tmp[15][j] = array[ 3][j] tmp[16][j] = array[ 7][j] tmp[17][j] = array[11][j] return tmp def setMelinderMatrix(self, matrix): # matrix = np.array([ # [-26.29 , 958.1 ,3887 , 0.4175 , 1.153 ], # [ -0.000002575 , -0.4151 , 7.201 , 0.0007271 , -0.03866 ], # [ -0.000006732 , -0.002261 , -0.08979 , 0.0000002823 , 0.0002779 ], # [ 0.000000163 , 0.0000002998 , -0.000439 , 0.000000009718 , -0.000001543 ], # [ -1.187 , -1.391 , -18.5 , -0.004421 , 0.005448 ], # [ -0.00001609 , -0.0151 , 0.2984 , -0.00002952 , 0.0001008 ], # [ 0.000000342 , 0.0001113 , -0.001865 , 0.00000007336 , -0.000002809 ], # [ 0.0000000005687, -0.0000003264 , -0.00001718 , 0.0000000004328 , 0.000000009811 ], # [ -0.01218 , -0.01105 , -0.03769 , 0.00002044 , -0.0005552 ], # [ 0.0000003865 , 0.0001828 , -0.01196 , 0.0000003413 , 0.000008384 ], # [ 0.000000008768 , -0.000001641 , 0.00009801 , -0.000000003665 , -0.00000003997 ], # [ -0.0000000002095, 0.0000000151 , 0.000000666 , -0.00000000002791 , -0.0000000003466 ], # [ -0.00006823 , -0.0001208 , -0.003776 , 0.0000002943 , 0.000003038 ], # [ 0.00000002137 , 0.000002992 , -0.00005611 , -0.0000000009646 , -0.00000007435 ], # [ -0.0000000004271, 0.000000001455, -0.0000007811, 0.00000000003174 , 0.0000000007442 ], # [ 0.0000001297 , 0.000004927 , -0.0001504 , -0.0000000008666 , 0.00000006669 ], # [ -0.0000000005407, -0.0000001325 , 0.000007373 , -0.0000000000004573, -0.0000000009105 ], # [ 0.00000002363 , -0.00000007727 , 0.000006433 , -0.0000000002033 , -0.0000000008472 ] # ]) coeffs = self.convertMelinderMatrix(matrix).T self.T_freeze.source = self.T_freeze.SOURCE_COEFFS self.T_freeze.type = self.T_freeze.INCOMPRESSIBLE_POLYNOMIAL self.T_freeze.coeffs = self.convertMelinderArray(coeffs[0]) self.T_freeze.coeffs[0,0] += 273.15 self.T_freeze.coeffs = np.array([self.T_freeze.coeffs[0]]) #print(self.T_freeze.coeffs) self.density.source = self.density.SOURCE_COEFFS self.density.type = self.density.INCOMPRESSIBLE_POLYNOMIAL self.density.coeffs = self.convertMelinderArray(coeffs[1]) self.specific_heat.source = self.specific_heat.SOURCE_COEFFS self.specific_heat.type = self.specific_heat.INCOMPRESSIBLE_POLYNOMIAL self.specific_heat.coeffs = self.convertMelinderArray(coeffs[2]) self.conductivity.source = self.conductivity.SOURCE_COEFFS self.conductivity.type = self.conductivity.INCOMPRESSIBLE_POLYNOMIAL self.conductivity.coeffs = self.convertMelinderArray(coeffs[3]) self.viscosity.source = self.viscosity.SOURCE_COEFFS self.viscosity.type = self.viscosity.INCOMPRESSIBLE_EXPPOLYNOMIAL self.viscosity.coeffs = self.convertMelinderArray(coeffs[4]) self.viscosity.coeffs[0,0] -= math.log(1000) # Fixes the units mPa s -> Pa s ``` #### File: dev/incompressible_liquids/DEPRECATED_testSolutions.py ```python import sys import CoolProp.CoolProp as cp import numpy as np def props(in1=None, in2=None, in3=None, in4=None, in5=None, in6=None): try: return cp.PropsU(in1=in1,in2=in2,in3=in3,in4=in4,in5=in5,in6=in6,in7="SI") except ValueError as ve: #print "Error in CoolProp, try adjusting the fluid or T and p:" print ve return -1.0*np.NAN #print "{0:14.8f}".format(CP.Props('V','D',13,'P',500,'n-Pentane')) #print "{0:14.8f}".format(CP.Props('V','H',158,'P',1000,'TX22')) #T = 300 T = float(sys.argv[1])+273.15 P = float(sys.argv[2])*1e5 print "Temperature: "+str(T-273.15)+" C" print "Pressure: "+str(P/1e5)+" bar" print Melinder = ["MEG", "MPG", "MEA", "MMA", "MGL", "MAM", "MKC", "MCA", "MMG", "MNA", "MKA", "MKF", "MLI"] SecCool = ["ZiAC", "IceEA", "IcePG", "IceNA", "PK2000"] Other = ["LiBr"] fluids = [] #fluids.extend(Melinder) #fluids.extend(SecCool) fluids.extend(Other) for fluid in fluids: print "Fluid: "+str(fluid) try: print "Density: "+"{0:14.8f} kg/m3 ".format(props('D','T',T,'P',P,fluid+'-20%')) print "Heat cap.: "+"{0:14.8f} kJ/kg/K".format(props('C','T',T,'P',P,fluid+'-20%')/1e3) print "Th. cond.: "+"{0:14.8f} W/m/K ".format(props('L','T',T,'P',P,fluid+'-20%')) print "Dyn. visc.: "+"{0:14.8f} mPas ".format(props('V','T',T,'P',P,fluid+'-20%')*1e3) print "Enthalpy: "+"{0:14.8f} kJ/kg ".format(props('H','T',T,'P',P,fluid+'-20%')/1e3) print "In. energy: "+"{0:14.8f} kJ/kg ".format(props('U','T',T,'P',P,fluid+'-20%')/1e3) print "Entropy: "+"{0:14.8f} kJ/kg/K".format(props('S','T',T,'P',P,fluid+'-20%')/1e3) print "Saturation: "+"{0:14.8f} bar ".format(props('Psat','T',T,'P',P,fluid+'-20%')/1e5) print "Freezing: "+"{0:14.8f} C ".format(props('Tfreeze','T',T,'P',P,fluid+'-20%')-273.15) except ValueError as ve: print "Error in CoolProp, try adjusting T and p:" print ve print ``` #### File: dev/TTSE/check_TTSE_v4.py ```python import CoolProp.CoolProp as CP import matplotlib matplotlib.rc('font', family='serif', serif='Times New Roman') #from matplotlib2tikz import save as tikz_save import matplotlib.pyplot as plt import matplotlib.colors as colors import matplotlib.cm as cmx import matplotlib.ticker from matplotlib.patches import Ellipse from matplotlib.transforms import ScaledTranslation import numpy as np import random from numpy import linspace, meshgrid from matplotlib.mlab import griddata from matplotlib.gridspec import GridSpec # Create the colourmap #import numpy as np #import matplotlib.pyplot as plt import matplotlib._cm, matplotlib.cm specs = matplotlib._cm.cubehelix(gamma=1.4,s=0.4,r=-0.8,h=2.0) specs_r = matplotlib.cm._reverse_cmap_spec(specs) matplotlib.cm.register_cmap(name="jorrithelix" , data=specs) matplotlib.cm.register_cmap(name="jorrithelix"+"_r", data=specs_r) def makeGrid(x, y, z, resX=200, resY=200): "Convert 3 column data to matplotlib grid" xi = linspace(min(x), max(x), resX) yi = linspace(min(y), max(y), resY) Z = griddata(x, y, z, xi, yi) X, Y = meshgrid(xi, yi) return X, Y, Z def getErrors(p, h, out='D', Ref=''): "Get the relative errors from table-based interpolation" errorTTSE = 1e3 errorBICUBIC = 1e3 try: # Using the EOS CP.disable_TTSE_LUT(Ref) EOS = CP.PropsSI(out,'P',p,'H',h,Ref) # Using the TTSE method CP.enable_TTSE_LUT(Ref) CP.set_TTSE_mode(Ref,"TTSE") TTSE = CP.PropsSI(out,'P',p,'H',h,Ref) # Using the Bicubic method CP.enable_TTSE_LUT(Ref) CP.set_TTSE_mode(Ref,"BICUBIC") BICUBIC = CP.PropsSI(out,'P',p,'H',h,Ref) errorTTSE = abs(TTSE /EOS-1.0)*100.0 errorBICUBIC = abs(BICUBIC/EOS-1.0)*100.0 except ValueError as VE: print VE pass return errorTTSE,errorBICUBIC #['YlOrRd', 'PuBuGn', 'hot', 'cubehelix', 'gnuplot', 'gnuplot2']: for colourmap in ['jorrithelix']: for out in ['D']: ## landscape figure #fig = plt.figure(figsize=(10,5)) #ax1 = fig.add_axes((0.08,0.1,0.32,0.83)) #ax2 = fig.add_axes((0.50,0.1,0.32,0.83)) #cbar_ax = fig.add_axes([0.80, 0.075, 0.05, 0.875]) # portrait figure #fig = plt.figure(figsize=(5,8)) #ax1 = plt.subplot2grid((2,8), (0,0), colspan=7) #ax2 = plt.subplot2grid((2,8), (1,0), colspan=7) #cbar_ax = plt.subplot2grid((2,8), (0,7), colspan=1, rowspan=2) #fig = plt.figure(figsize=(8,4)) #ax1 = plt.subplot2grid((1,7), (0,0), colspan=3) #ax2 = plt.subplot2grid((1,7), (0,3), colspan=3) #cbar_ax = plt.subplot2grid((1,7), (0,6), colspan=1, rowspan=1) #plt.tight_layout() fig = plt.figure(figsize=(8,4)) ax1 = fig.add_subplot(121) ax2 = fig.add_subplot(122) #cbar_ax = plt.subplot2grid((1,7), (0,6), colspan=1, rowspan=1) #plt.tight_layout() #Ref = 'R245fa' #Ref = 'Isopentane' Ref = 'Air' T = np.linspace(CP.PropsSI(Ref,'Tmin')+0.1,CP.PropsSI(Ref,'Tcrit')-0.01,300) pV = CP.PropsSI('P','T',T,'Q',1,Ref) hL = CP.PropsSI('H','T',T,'Q',0,Ref) hV = CP.PropsSI('H','T',T,'Q',1,Ref) hTP= np.append(hL,[hV[::-1]]) pTP= np.append(pV,[pV[::-1]]) HHH1, PPP1, EEE1 = [], [], [] HHH2, PPP2, EEE2 = [], [], [] cNorm = colors.LogNorm(vmin=1e-10, vmax=1e-1) scalarMap = cmx.ScalarMappable(norm = cNorm, cmap = plt.get_cmap(colourmap)) # Setting the limits for enthalpy and pressure p_min = CP.PropsSI(Ref,'ptriple') p_max = 60e5 h_min = CP.PropsSI('H','T',CP.PropsSI(Ref,'Ttriple')+0.5,'Q',0,Ref) h_max = CP.PropsSI('H','T',500+273.15,'P',p_max,Ref) # Creating some isotherms for better illustration of the cycle isoT = np.array([0,100,200,300,400])+273.15 isoP = np.logspace(np.log10(p_min),np.log10(p_max),base=10) ones = np.ones(isoP.shape) isoH = [ CP.PropsSI('H','T',T*ones,'P',isoP,Ref) for T in isoT ] print "Lower left and upper right coordinates: ({0},{1}), ({2},{3})".format(h_min,p_min,h_max,p_max) CP.set_TTSESinglePhase_LUT_range(Ref,h_min,h_max*1.05,p_min,p_max*1.05) for a_useless_counter in range(40000): h = random.uniform(h_min,h_max) p = 10**random.uniform(np.log10(p_min),np.log10(p_max)) try: # Using the EOS CP.disable_TTSE_LUT(Ref) rhoEOS = CP.PropsSI('D','P',p,'H',h,Ref) TEOS = CP.PropsSI('T','P',p,'H',h,Ref) if out =='C': cpEOS = CP.PropsSI('C','P',p,'H',h,Ref) # Using the TTSE method CP.enable_TTSE_LUT(Ref) CP.set_TTSE_mode(Ref,"TTSE") rhoTTSE = CP.PropsSI('D','P',p,'H',h,Ref) TTTSE = CP.PropsSI('T','P',p,'H',h,Ref) if out =='C': cpTTSE = CP.PropsSI('C','P',p,'H',h,Ref) # Using the Bicubic method CP.enable_TTSE_LUT(Ref) CP.set_TTSE_mode(Ref,"BICUBIC") rhoBICUBIC = CP.PropsSI('D','P',p,'H',h,Ref) TBICUBIC = CP.PropsSI('T','P',p,'H',h,Ref) if out =='C': cpBICUBIC = CP.PropsSI('C','P',p,'H',h,Ref) if out == 'D': errorTTSE = abs(rhoTTSE/rhoEOS-1)*100 errorBICUBIC = abs(rhoBICUBIC/rhoEOS-1)*100 elif out == 'T': errorTTSE = abs(TTTSE/TEOS-1)*100 errorBICUBIC = abs(TBICUBIC/TEOS-1)*100 elif out == 'C': errorTTSE = abs(cpTTSE/cpEOS-1)*100 errorBICUBIC = abs(cpBICUBIC/cpEOS-1)*100 HHH1.append(h) PPP1.append(p) EEE1.append(errorTTSE) HHH2.append(h) PPP2.append(p) EEE2.append(errorBICUBIC) except ValueError as VE: #print VE pass HHH1 = np.array(HHH1) PPP1 = np.array(PPP1) SC1 = ax1.scatter(HHH1/1e3, PPP1/1e5, s=8, c=EEE1, edgecolors = 'none', cmap = plt.get_cmap(colourmap), norm = cNorm, rasterized=True) #X, Y, Z = makeGrid(HHH1, np.log10(PPP1), EEE1) #SC1 = matplotlib.pyplot.contourf(X, Y, Z, # alpha=0.75, # norm=cNorm, # cmap=matplotlib.pyplot.get_cmap(colourmap))#, # #rasterized=True) HHH2 = np.array(HHH2) PPP2 = np.array(PPP2) SC2 = ax2.scatter(HHH2/1e3, PPP2/1e5, s=8, c=EEE2, edgecolors = 'none', cmap = plt.get_cmap(colourmap), norm = cNorm, rasterized=True) if out == 'D': ax1.set_title('rel. density error, TTSE') ax2.set_title('rel. density error, bicubic') elif out == 'T': ax1.set_title('rel. temperature error, TTSE') ax2.set_title('rel. temperature error, bicubic') elif out == 'C': ax1.set_title('rel. heat capacity error, TTSE') ax2.set_title('rel. heat capacity error, bicubic') for ax in [ax1, ax2]: #h_min = np.ceil(h_min) delta = 0.1 delta_min = 1.0+delta delta_max = 1.0-delta #ax.set_xlim(delta_min*h_min/1e3, delta_max*h_max/1e3) #ax.set_ylim(delta_min*p_min/1e5, delta_max*p_max/1e5) ax.set_xlim(-155, 800) ax.set_ylim(0.025, 58) ax.set_yscale('log') #ticks = np.array([0.02,0.05,0.1,0.2,0.5,1,2,5,10,20,50]) ticks = np.array([0.05,0.1,0.2,0.5,1,2,5,10,20,50]) labels = [str(tick) for tick in ticks] ax.set_yticks(ticks) ax.set_yticklabels(labels) ax.get_yaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter()) #ticks = [150,250,350,450,550] #labels = [str(tick) for tick in ticks] #ax.set_xticks(ticks) #ax.set_xticklabels(labels) #ax.tick_params(axis='y',which='minor',left='off') #ax.set_xlabel('Enthalpy [kJ \cdot kg^{-1}]') ax.set_xlabel('Specific Enthalpy [kJ$\cdot$kg$\mathdefault{^{-1}\!}$]') ax.set_ylabel('Pressure [bar]') #ax.plot(hL/1e3,pV/1e5,'k',lw = 4) #ax.plot(hV/1e3,pV/1e5,'k',lw = 4) ax.plot(hTP/1e3,pTP/1e5,'k',lw = 3) for i,T in enumerate(isoT): ax.plot(isoH[i]/1e3,isoP/1e5,'k',lw = 1) #CB = fig.colorbar(SC1) #cbar_ax = fig.add_axes([0.80, 0.075, 0.05, 0.875]) #CB = fig.colorbar(SC1, cax=cbar_ax) #CB = matplotlib.pyplot.colorbar(SC2) #CB.solids.set_rasterized(True) #ax2.yaxis.set_visible(False) #[x0,y0,width,height] #cbar_ax = fig.add_axes([0.95, 0.00, 0.05, 1.00]) #CB = fig.colorbar(SC2, ax=[ax1,ax2], cax=cbar_ax) #CB.solids.set_rasterized(True) #from mpl_toolkits.axes_grid1 import make_axes_locatable #divider = make_axes_locatable(ax2) #cbar_ax = divider.append_axes("right", "5%", pad="0%") #CB = plt.colorbar(SC2, cax=cbar_ax) #CB.solids.set_rasterized(True) #CB = fig.colorbar(SC2) #CB.solids.set_rasterized(True) from mpl_toolkits.axes_grid1 import make_axes_locatable divider = make_axes_locatable(ax2) ax_cb = divider.new_horizontal(size="5%", pad=0.05) #fig1 = ax.get_figure() fig.add_axes(ax_cb) CB = fig.colorbar(SC2, cax=ax_cb) #aspect = 5./2. #ax1.set_aspect(aspect) #ax2.set_aspect(aspect) CB.solids.set_rasterized(True) if out == 'D': CB.set_label(r'$\|\rho/\rho\mathdefault{_{EOS}-1\|\times 100}$ [%]') elif out == 'T': CB.set_label(r'$\|T/T\mathdefault{_{EOS}-1\|\times 100}$ [%]') elif out == 'C': CB.set_label(r'$\|c\mathdefault{_p}/c\mathdefault{_{p,EOS}-1\|\times 100}$ [%]') # The plot is finished, now we add an ellipse #circle=plt.Circle((5,5),.5,color='b',fill=False) #A scale-free ellipse. #xy - center of ellipse #width - total length (diameter) of horizontal axis #height - total length (diameter) of vertical axis #angle - rotation in degrees (anti-clockwise) p_op_min = 1e5 p_op_max = 3e5 h_op_min = CP.PropsSI('H','T',400+273.15,'P',p_op_max,Ref) h_op_max = CP.PropsSI('H','T', 25+273.15,'P',p_op_max,Ref) p_op_cen = (p_op_min + p_op_max) / 2.0 h_op_cen = (h_op_min + h_op_max) / 2.0 p_op_hei = p_op_max - p_op_min h_op_wid = h_op_max - h_op_min #for ax in [ax1, ax2]: ##x,y = 10,0 ### use the axis scale tform to figure out how far to translate ##circ_offset = ScaledTranslation(x,y,ax.transScale) ### construct the composite tform ##circ_tform = circ_offset + ax.transLimits + ax.transAxes #ellipse = Ellipse(xy=(h_op_cen,p_op_cen), width=h_op_wid, height=p_op_hei, angle=15, color='black')#, transform=circ_tform) #ax.add_artist(ellipse) # font_def = font_manager.FontProperties(family='Helvetica', style='normal', # size=sizeOfFont, weight='normal', stretch='normal') # # for a in fig.axes: # for label in [a.get_xticklabels(), a.get_yticklabels()]: # label.set_fontproperties(ticks_font #plt.savefig(out+'_'+colourmap+'_TTSE_BICUBIC.png', dpi = 300, transparent = True) #plt.savefig(out+'_'+colourmap+'_TTSE_BICUBIC.eps') # plt.savefig(out+'_'+colourmap+'_TTSE_BICUBIC.pdf') plt.tight_layout() plt.savefig('check_TTSE_'+colourmap+'.pdf' ) #tikz_save( 'check_TTSE.tikz') #plt.savefig(out+'_'+colourmap+'_TTSE_BICUBIC.jpg', dpi = 1200) plt.close() ``` #### File: Web/scripts/__init__.py ```python import os.path, glob, subprocess, sys, time, datetime, pytz # if len(sys.argv) < 2: full_rebuild = False if len(sys.argv)== 2: if sys.argv[1]=="True": full_rebuild = True elif sys.argv[1]=="1" : full_rebuild = True else: full_rebuild = False if len(sys.argv) > 2: full_rebuild = False print "Cannot process more than one parameter: {0}".format(str(sys.argv)) # def touch(fname): if os.path.exists(fname): os.utime(fname, None) else: open(fname, 'a').close() # def get_ftime(fname): if os.path.isfile(fname): return os.path.getctime(fname) else: return 0 # web_dir = os.path.abspath(os.path.join(os.path.dirname(__file__),'..')) script_dir = os.path.abspath(os.path.join(web_dir,'scripts')) touch_file = os.path.abspath(os.path.join(script_dir,'last_run')) root_dir = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','..')) # cur_time = time.time() fil_time = get_ftime(touch_file) # # Static execution time #reg_hour = time.strftime("%H") #reg_minute = time.strftime("%M") #sch_hour = 12 #scheduled hour = 3am Boulder = 12pm CPH #sch_minute = 7 #scheduled minute = 7 past # # Dynamically calculated execution (includes daylight saving time etc masterTime = pytz.timezone('US/Pacific') #slaveTime = pytz.timezone('Europe/Copenhagen') now_master = datetime.datetime.now(masterTime) run_master = datetime.datetime.strptime("03:00:00", '%H:%M:%S') # now_master = datetime.time(now_master.hour, now_master.minute , now_master.second) run_master = datetime.time(run_master.hour, run_master.minute , run_master.second) run_master_end = datetime.time(run_master.hour, run_master.minute+5, run_master.second) # lim_days = 0.90 lim_time = cur_time - 60*60*24*lim_days # seconds # if now_master >= run_master and \ now_master <= run_master_end and \ not full_rebuild: print "This is a scheduled rebuild at {0}.".format(run_master) if fil_time < lim_time: full_rebuild = True else: print "It looks like the files have been rebuilt during the last day." # lim_days = 3 lim_time = cur_time - 60*60*24*lim_days # seconds if fil_time < lim_time and not full_rebuild: print "The static files have not been updated in {0} days, forcing an update now.".format(lim_days) full_rebuild = True #req_dir = [os.path.abspath(os.path.join(web_dir,'_static','fluid_properties','Incompressibles_reports'))] #req_fil = [os.path.abspath(os.path.join(web_dir,'fluid_properties','Mixtures.csv')), # os.path.abspath(os.path.join(web_dir,'fluid_properties','PurePseudoPure.csv')), # os.path.abspath(os.path.join(web_dir,'fluid_properties','Incompressibles_pure-fluids.csv'))] # #for d in req_dir: # if not os.path.exists(d) and not full_rebuild: # print "The required directory {0} is missing, trying to rebuild it.".format(d) # full_rebuild = True #for f in req_fil: # if not os.path.exists(f): # print "The required file {0} is missing, trying to rebuild it.".format(f) # full_rebuild = True # print "Executing the normal scripts for generating the static files." # script_files = glob.glob(os.path.join(script_dir,'*.py')) # Avoid recursion # script_files = [os.path.abspath(f) for f in script_files if not os.path.abspath(f)==os.path.abspath(__file__)] # for script in script_files: # print "Executing {0}".format(script) # subprocess.call('python {0}'.format(os.path.basename(script)), cwd=script_dir, shell=True) # def run_script(path): if os.path.exists(path): file_path = os.path.dirname(path) file_name = os.path.basename(path) file_extension = path.split(".")[-1] #file_name, file_extension = os.path.splitext(path) if file_extension.lower()=="py": subprocess.check_call('python {0}'.format(file_name), cwd=file_path, shell=True) elif file_extension.lower()=="sh" or file_extension.lower()=="bsh": subprocess.check_call('chmod +x {0}'.format(file_name), cwd=file_path, shell=True) subprocess.check_call('./{0}'.format(file_name), cwd=file_path, shell=True) else: print "Unknown file extension in {0}".format(path) else: print "Could not find the file {0}".format(path) # Inject the version of CoolProp into the doxygen configuration files # Put it at the end, overwrites prior value import CoolProp with open(os.path.join(root_dir,'Doxyfile'),'a+') as fp: fp.write('\n\n PROJECT_NUMBER = ' + CoolProp.__version__ + '\n') # The normal tasks that are carried out each time the script runs normal_tasks = ["../../dev/scripts/examples/OSXRun.py","coolprop.tabular.speed.py", "fluid_properties.phase_envelope.py", "fluid_properties.PurePseudoPure.py", "fluid_properties.Mixtures.py","coolprop.parametric_table.py","coolprop.configuration.py"] # The expensive tasks that are fired when full_rebuild is True expensive_tasks = ["fluid_properties.Consistency.py", "fluid_properties.Incompressibles.sh", "logo_2014.py", "fluid_properties.REFPROPcomparison.py"] print "Executing the normal scripts for generating static files." for script in normal_tasks: print "Executing {0}".format(script) run_script(os.path.normpath(os.path.join(script_dir,script))) # if full_rebuild: print "Executing the computationally expensive scripts for generating the static files." for script in expensive_tasks: print "Executing {0}".format(script) run_script(os.path.join(script_dir,script)) touch(touch_file) else: print "Skipping the computationally expensive scripts for generating the static files." ``` #### File: CoolProp/Plots/Tests.py ```python from __future__ import print_function, division, absolute_import from CoolProp.Plots import PropertyPlot #TODO: Change to absolute import def main(): fluid_ref = 'n-Pentane' for plot_type in ['Ts']: #['pt', 'ph', 'ps', 'ts', 'pt', 'prho', 'trho']: plt = PropertyPlot(fluid_ref, plot_type) plt.set_axis_limits([-0.5*1e3, 1.5*1e3, 300, 530]) plt.draw_isolines('Q', [0.1, 0.9]) plt.draw_isolines('P', [100*1e3, 2000*1e3]) plt.draw_isolines('D', [2, 600]) plt.show() if __name__ == "__main__": main() ``` #### File: CoolProp/tests/test_CoolPropState.py ```python from __future__ import division, print_function import CoolProp.CoolProp as CP from CoolProp.State import State def first_derivative(S, func, iVal, Val, iConstant, Constant, epsilon = 1e-3): S.update({iVal:Val,iConstant:Constant}) val1 = func() S.update({iVal:Val+epsilon,iConstant:Constant}) val2 = func() S.update({iVal:Val,iConstant:Constant}) return (val2-val1)/epsilon def second_derivative(S, func, iVal, Val, iConstant, Constant, epsilon = 2): S.update({iVal:Val-epsilon,iConstant:Constant}) val1 = func() S.update({iVal:Val,iConstant:Constant}) val2 = func() S.update({iVal:Val+epsilon,iConstant:Constant}) val3 = func() S.update({iVal:Val,iConstant:Constant}) print(val1, val2, val3, S.T, S.p, S.rho, (val1-2*val2+val3)) return (val1-2*val2+val3)/(epsilon*epsilon) def teest_1phase_first_derivatives(): for US in [CoolProp.UNIT_SYSTEM_SI, CoolProp.UNIT_SYSTEM_KSI]: CP.set_standard_unit_system(US) S = State('R134a',dict(T=300,D=1)) l = [(S.get_rho,'T',S.T,'P',S.p,S.PFC.drhodT_constp), (S.get_rho,'P',S.p,'T',S.T,S.PFC.drhodp_constT), (S.get_p,'D',S.rho,'T',S.T,S.PFC.dpdrho_constT), #(S.get_p,'D',S.rho,'H',S.h,S.PFC.dpdrho_consth), #(these inputs not supported) (S.get_p,'T',S.T,'D',S.rho,S.PFC.dpdT_constrho), #(S.get_p,'T',S.T,'H',S.h,S.PFC.dpdT_consth), #(these inputs not supported) (S.get_h,'D',S.rho,'T',S.T,S.PFC.dhdrho_constT), (S.get_h,'D',S.rho,'P',S.p,S.PFC.dhdrho_constp), (S.get_h,'T',S.T,'D',S.rho,S.PFC.dhdT_constrho), (S.get_h,'T',S.T,'P',S.p,S.PFC.dhdT_constp), (S.get_h,'P',S.p,'T',S.T,S.PFC.dhdp_constT), (S.get_s,'D',S.rho,'T',S.T,S.PFC.dsdrho_constT), (S.get_s,'T',S.T,'D',S.rho,S.PFC.dsdT_constrho), (S.get_s,'D',S.rho,'P',S.p,S.PFC.dsdrho_constp), (S.get_s,'T',S.T,'P',S.p,S.PFC.dsdT_constp), (S.get_s,'P',S.p,'T',S.T,S.PFC.dsdp_constT), ] for args in l: yield (check_1phase_first_derivatives,)+(S,)+args def check_1phase_first_derivatives(S, func, iVal, Val, iConstant, Constant, deriv_func): Deriv_val = first_derivative(S, func, iVal, Val, iConstant, Constant) EOS_val = deriv_func() if abs(EOS_val/Deriv_val-1) > 1e-2: raise ValueError('Finite Diff: ' + str(Deriv_val) + ' EOS: ' +str(EOS_val)) def teest_sat_first_derivatives(): for US in [CoolProp.UNIT_SYSTEM_SI, CoolProp.UNIT_SYSTEM_KSI]: CP.set_standard_unit_system(US) S = State('R134a',dict(T=300,Q=1)) l = [(S.get_T,'P',S.p,'Q',0,S.PFC.dTdp_along_sat), (S.get_rho,'P',S.p,'Q',0,S.PFC.drhodp_along_sat_liquid), (S.get_rho,'P',S.p,'Q',1,S.PFC.drhodp_along_sat_vapor), (S.get_rho,'T',S.T,'Q',0,S.PFC.drhodT_along_sat_liquid), (S.get_rho,'T',S.T,'Q',1,S.PFC.drhodT_along_sat_vapor), (S.get_h,'P',S.p,'Q',0,S.PFC.dhdp_along_sat_liquid), (S.get_h,'P',S.p,'Q',1,S.PFC.dhdp_along_sat_vapor), (S.get_s,'P',S.p,'Q',0,S.PFC.dsdp_along_sat_liquid), (S.get_s,'P',S.p,'Q',1,S.PFC.dsdp_along_sat_vapor), ] for args in l: yield (check_sat_first_derivatives,)+(S,)+args def check_sat_first_derivatives(S, func, iVal, Val, iConstant, Constant, deriv_func): Deriv_val = first_derivative(S, func, iVal, Val, iConstant, Constant) EOS_val = deriv_func() if abs(EOS_val/Deriv_val-1) > 1e-2: raise ValueError('Finite Diff: ' + str(Deriv_val) + ' EOS: ' +str(EOS_val)) def teest_sat_second_derivatives(): for US in [CoolProp.UNIT_SYSTEM_SI, CoolProp.UNIT_SYSTEM_KSI]: CP.set_standard_unit_system(US) S = State('R134a',dict(T=290,Q=1)) l = [(S.get_T,'P',S.p,'Q',0,S.PFC.d2Tdp2_along_sat), (S.get_rho,'P',S.p,'Q',0,S.PFC.d2rhodp2_along_sat_liquid), (S.get_rho,'P',S.p,'Q',1,S.PFC.d2rhodp2_along_sat_vapor), (S.get_h,'P',S.p,'Q',0,S.PFC.d2hdp2_along_sat_liquid), (S.get_h,'P',S.p,'Q',1,S.PFC.d2hdp2_along_sat_vapor), (S.get_s,'P',S.p,'Q',0,S.PFC.d2sdp2_along_sat_liquid), (S.get_s,'P',S.p,'Q',1,S.PFC.d2sdp2_along_sat_vapor), ] for args in l: yield (check_sat_second_derivatives,)+(S,)+args def check_sat_second_derivatives(S, func, iVal, Val, iConstant, Constant, deriv_func): Deriv_val = second_derivative(S, func, iVal, Val, iConstant, Constant) EOS_val = deriv_func() if abs(EOS_val/Deriv_val-1) > 1e-2: raise ValueError('Finite Diff: ' + str(Deriv_val) + ' EOS: ' +str(EOS_val)) if __name__=='__main__': import nose nose.runmodule() ``` #### File: wrappers/Python/generate_meta_info.py ```python from jinja2 import Environment import os,sys import requests import json from distutils.version import LooseVersion #, StrictVersion import codecs """ A simple script to create a conda recipe and the infrastructure files for PyPI""" first_line = "# CAUTION: This file is generated automatically, any customisation will be lost.\n" python_dir = os.path.abspath(os.path.dirname(__file__)) target_dir = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','..')) pypi = False local = not pypi run_pkgs = ["numpy", "scipy", "matplotlib", "pandas"] dev_pkgs = run_pkgs + ["cython"] tst_pkgs = dev_pkgs + ["nose"] if pypi: # Get the additional information from PyPI r = requests.get('https://pypi.python.org/pypi/CoolProp/json') if(r.ok): item = json.loads(r.text or r.content) version = item['info']['version'] #version = sorted(item['releases'].keys())[-1] home = item['info']['home_page'] license = 'MIT' summary = item['info']['summary'] for u in item['urls']: if u['python_version'] != 'source': continue fil = u['filename'] url = u['url'] md5 = u['md5_digest'] continue if local: coolprop_dir = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','..')) sys.path.append(os.path.join(coolprop_dir, 'dev')) import generate_headers # Generate the headers - does nothing if up to date - but only if not pypi generate_headers.generate() del generate_headers version = open(os.path.join(coolprop_dir,'.version'),'r').read().strip() home = "http://www.coolprop.org" license = "MIT" summary = "Open-source thermodynamic and transport properties database" fil = None url = None md5 = None local_info = dict( pypi=pypi, local=local, version=version, fil=fil, url=url, md5=md5, run_pkgs=run_pkgs, dev_pkgs=dev_pkgs, tst_pkgs=tst_pkgs, home = home, license = license, summary = summary ) ####################### template = """{% for pkg in run_pkgs %}{{ pkg }} {% endfor %} """ target = "requirements.txt" template =Environment().from_string(template) f = codecs.open(os.path.join(python_dir,target),mode='wb',encoding='utf-8') f.write(first_line) f.write(template.render(**local_info)) f.close() template = """ package: name: coolprop version: {{ version }} {% if pypi %}source: fn: {{ fil }} url: {{ url }} md5: {{ md5 }} {% endif %} {% if local %}source: path: . {% endif %} #build: # script: python setup.py install [not win] # script: "%PYTHON%" setup.py install & if errorlevel 1 exit 1 [win] # If this is a new build for the same version, increment the build # number. If you do not include this key, it defaults to 0. # number: 1 requirements: build: - python - setuptools{% for pkg in dev_pkgs %} - {{ pkg -}} {% endfor %} run: - python{% for pkg in run_pkgs %} - {{ pkg -}} {% endfor %} test: # Python imports imports: - CoolProp # #- CoolProp.GUI # #- CoolProp.Plots # - CoolProp.tests # commands: # You can put test commands to be run here. Use this to test that the # entry points work. # You can also put a file called run_test.py in the recipe that will be run # at test time. requires: # Put any additional test requirements here. For example # - nose{% for pkg in tst_pkgs %} - {{ pkg -}} {% endfor %} about: home: {{ home }} license: {{ license }} summary: {{ summary }} """ target = 'meta.yaml' template =Environment().from_string(template) f = codecs.open(os.path.join(target_dir,target),mode='wb',encoding='utf-8') f.write(first_line) f.write(template.render(**local_info)) f.close() template = """ pushd wrappers\Python "%PYTHON%" setup.py install if errorlevel 1 exit 1 popd :: Add more build steps here, if they are necessary. :: See :: http://docs.continuum.io/conda/build.html :: for a list of environment variables that are set during the build process. """ target = "bld.bat" f = codecs.open(os.path.join(target_dir,target),mode='wb',encoding='utf-8') f.write(":: "+first_line) f.write(template) f.close() template = """ pushd wrappers/Python $PYTHON setup.py install popd # Add more build steps here, if they are necessary. # See # http://docs.continuum.io/conda/build.html # for a list of environment variables that are set during the build process. """ target = "build.sh" f = codecs.open(os.path.join(target_dir,target),mode='wb',encoding='utf-8') f.write("#!/bin/bash\n"+first_line) f.write(template) f.close() template = """ from __future__ import print_function import sys, shutil, subprocess, os, stat # def run_command(cmd): '''given shell command, returns communication tuple of stdout and stderr''' print(str(__file__)+": "+' '.join(cmd)) return subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE).communicate() # tar = os.path.abspath(os.path.join(os.path.dirname(__file__),'install_root')).strip() ver = sys.version_info cmd = ['conda','build','--python',str(ver[0])+'.'+str(ver[1])] print(run_command(['conda', 'clean', '-y', '-lts'])[0].decode("utf-8").strip()) filename = os.path.abspath(run_command(cmd+['--output','.'])[0].decode("utf-8").strip()) tar = os.path.join(tar,'Python_conda',os.path.basename(os.path.dirname(filename))).strip() try: subprocess.check_call(cmd+['.'], stdout=sys.stdout, stderr=sys.stderr) except Exception as e: print("conda build failed: "+str(e)) pass try: os.makedirs(tar) except Exception as e: if os.path.isdir(tar): pass else: raise try: print("Copying: "+str(filename)+" to "+str(tar)) shutil.copy(filename,tar) except Exception as e: print("Copy operation failed: "+str(e)) pass sys.exit(0) """ target = "runner.py" f = codecs.open(os.path.join(target_dir,target),mode='wb',encoding='utf-8') f.write(template) f.close() sys.exit(0) ```
{ "source": "jfengan/barrier_option", "score": 2 }
#### File: jfengan/barrier_option/simulator.py ```python import numpy as np import time import torch from scipy.stats import norm class Simulator: @staticmethod def simulate_pseudo(spot, r, q, sigma, dt, num_paths, time_steps): np.random.seed(1234) half_path = int(num_paths / 2) + 1 sqrt_var = sigma * np.sqrt(dt) st = spot * np.ones((num_paths, time_steps+1)) # start = timeit.default_timer() simu = np.random.normal(0, 1, (half_path, time_steps)) anti_simu = -simu simulation = np.concatenate((simu, anti_simu))[:num_paths,:] growth = (r - q - 0.5*sigma*sigma) * dt + sqrt_var * simulation factor = np.exp(growth) for i in range(1, time_steps+1): st[:, i] = st[:, i-1] * factor[:, i-1] return st @staticmethod def simulate_sobol(spot, r, q, sigma, dt, num_paths, time_steps): sqrt_var = sigma * np.sqrt(dt) st = spot * np.ones((num_paths, time_steps+1)) sobol_engine = torch.quasirandom.SobolEngine(dimension=time_steps, scramble=True, seed=int(time.time())) sobol_rng = np.array(sobol_engine.draw(num_paths, dtype=torch.float64)) simulation = norm.ppf(sobol_rng) growth = (r - q - 0.5*sigma*sigma) * dt + sqrt_var * simulation factor = np.exp(growth) for i in range(1, time_steps+1): st[:, i] = st[:, i-1] * factor[:, i-1] return st ```
{ "source": "jfengan/quanto_project", "score": 2 }
#### File: jfengan/quanto_project/BlackScholes.py ```python import bisect import numpy as np import math from scipy.optimize import brentq, newton from scipy.special import ndtr class BlackScholes: TAG_CALL = 'call' TAG_PUT = 'put' TAG_MID_VOL = 'mid_vol' TAG_ASK_VOL = 'ask_vol' TAG_BID_VOL = 'bid_vol' TAG_BS_DELTA = 'bs_delta' TAG_EXP_IN_DAYS = 'exp_in_days' TAG_STRIKE = 'strike' TAG_FORWARD = 'forward' CONST_NORM = math.sqrt(2.0 * np.pi) def __init__(self, s, k, r, q, vol_pnt, t, payoff): self.s = s self.k = k self.r = r self.q = q self.vol = vol_pnt self.t = t self.payoff = payoff.lower() self.is_call = BlackScholes.is_call(self.payoff) self.sqrt_t = math.sqrt(self.t) if self.t >= 0 else np.nan self.exp_neg_q_t = np.e ** (-self.q * self.t) self.exp_neg_r_t = np.e ** (-self.r * self.t) self.d1 = self.__d1() if self.sqrt_t > 0 else np.nan self.d2 = self.d1 - self.sqrt_t * self.vol if self.sqrt_t > 0 else np.nan self.n_d1 = ndtr(self.d1) if self.sqrt_t > 0 else np.nan self.n_d2 = ndtr(self.d2) if self.sqrt_t > 0 else np.nan self.raw_price = self.__price() self.raw_delta = self.__delta() self.phi_d1 = BlackScholes.phi(self.d1) if self.sqrt_t > 0 else np.nan self.phi_d2 = BlackScholes.phi(self.d2) if self.sqrt_t > 0 else np.nan @classmethod def phi(cls, x): return np.e ** (-x * x / 2.0) / BlackScholes.CONST_NORM def __delta(self): if self.t == 0: if self.is_call: return 1.0 if self.s > self.k else 0.0 else: return -1.0 if self.s < self.k else 0.0 if self.is_call: return self.exp_neg_q_t * self.n_d1 else: return -self.exp_neg_q_t * (1. - self.n_d1) @classmethod def cnorm(cls, x): return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 @classmethod def is_call(cls, option_type): return option_type == cls.TAG_CALL def __d1(self): return (math.log(self.s / self.k) + (self.r - self.q + self.vol * self.vol / 2.0) * self.t) / (self.vol * self.sqrt_t) def __d2(self): return (math.log(self.s / self.k) + (self.r - self.q - self.vol * self.vol / 2.0) * self.t) / (self.vol * self.sqrt_t) def __price(self): return self.call_price() if self.is_call else self.put_price() def price(self): return self.raw_price def dollar_delta(self): return self.raw_delta * self.s @classmethod def intrinsic(cls, is_call, s, k, exp_neg_q_t, exp_neg_r_t): sign = 1.0 if is_call else -1.0 payout = sign * (exp_neg_q_t * s - exp_neg_r_t * k) return max(0.0, payout) def call_price(self): if self.t == 0: return BlackScholes.intrinsic(True, self.s, self.k, 1.0, 1.0) return self.s * self.exp_neg_q_t * self.n_d1 - self.exp_neg_r_t * self.k * self.n_d2 def put_price(self): if self.t == 0: return BlackScholes.intrinsic(False, self.s, self.k, 1.0, 1.0) return self.exp_neg_r_t * self.k * (1.0 - self.n_d2) - self.s * self.exp_neg_q_t * (1.0 - self.n_d1) def delta(self): return self.raw_delta def __bump_spot(self, move): return BlackScholes(self.s * (1 + move), self.k, self.r, self.q, self.vol, self.t, self.payoff) def __bump_strike(self, move): return BlackScholes(self.s * (1 + move), self.k, self.r, self.q, self.vol, self.t, self.payoff) def gamma(self): if self.t == 0: return 0 return self.exp_neg_q_t * self.phi_d1 / (self.s * self.vol * self.sqrt_t) def dollar_gamma(self): return self.gamma() * self.s ** 2 def get_iv(mkt_price, payoff, s, k, r, q, t, precision=1e-10, max_iter=100) -> float: lower_bdd = 1e-6 upper_bdd = 1000 def function(vol): return BlackScholes(s, k, r, q, vol, t, payoff).price() - mkt_price if function(lower_bdd) * function(upper_bdd) > 0: return np.nan else: solved_vol = brentq(function, lower_bdd, upper_bdd, xtol=precision, maxiter=max_iter) return solved_vol def get_iv_newton_r(mkt_price, payoff, s, k, r, q, t, precision=1e-10, max_iter=100) -> float: def function(vol): return BlackScholes(s, k, r, q, vol, t, payoff).price() - mkt_price def bs_vega(vol): return s * np.sqrt(t) * ndtr((np.log(s/k) + (r - q + 0.5 * vol ** 2))/(vol * np.sqrt(t))) solved_vol = newton(function, 1, fprime=bs_vega, maxiter=500, rtol=1.e-10) return solved_vol def get_forwad_price(call_price, put_price, strike, r, t): return call_price - put_price + strike * math.exp(-1 * r * t) def get_iq(call_price, put_price, strike, r, t, spot): fwd_curr = (call_price - put_price) + np.exp(-r * t) * strike # print(f"forward price at {t}: {fwd}") return -1 / t * math.log(fwd_curr / spot) def get_iv_newton(mkt_price, payoff, s, k, r, q, t, precision=1e-10, max_iter=100): def function(vol): return BlackScholes(s, k, r, q, vol, t, payoff).price() - mkt_price i = 0 dvol = 0.00001 init_vol = 0.9 while(i < 100): price1 = function(init_vol) price2 = function(init_vol-dvol) if(price1 - price2) < precision or i >= max_iter: break else: init_vol = init_vol - dvol * price2 / (price1 - price2) i += 1 return init_vol if __name__ == "__main__": iv = get_iv_newton(1.8, BlackScholes.TAG_PUT, 5128.22, 4600, 0.026463, 0.174961582, 0.021917808) print(iv) ```
{ "source": "jfennell/wordle", "score": 3 }
#### File: jfennell/wordle/solve_analysis.py ```python import collections import json from typing import Optional, List, Dict def _display_solve_histogram(hist: Dict[int, int]) -> None: total = sum(hist.values()) print(f"Total words: {sum(hist.values())}") print("# guesses: # words that took that many guesses | % of all words | cumulative %") cumulation = 0.0 for solve_length, freq in sorted(hist.items()): probability_mass = freq / total cumulation += probability_mass print(f"{solve_length:02d}: {freq:6d} | {probability_mass:.02f} | {cumulation:.02f}") def _display_solve(seed: str, guesses: List[str]) -> None: path = ' -> '.join(guesses) print(f"{seed} ({len(guesses):02d}): {path}") def _display_heavy_paths(seed_to_guesses: Dict[str, List[str]]) -> None: print("The 'hardest to guess' words") for seed, guesses in seed_to_guesses.items(): if len(guesses) <= 10: continue _display_solve(seed, guesses) def main(args: Optional[List[str]] = None) -> None: with open('solve_path_out.json', 'r') as f: X = json.load(f) C: Dict[int, int] = collections.Counter() for k, vs in X.items(): C[len(vs)] += 1 _display_solve_histogram(C) print() _display_heavy_paths(X) if __name__ == '__main__': main() ```
{ "source": "jfennick/biobb_adapters", "score": 2 }
#### File: biobb_chemistry/acpype/acpype_params_ac.py ```python import os import sys import traceback # Pycompss from pycompss.api.task import task from pycompss.api.parameter import FILE_IN, FILE_OUT # Adapters commons pycompss from biobb_adapters.pycompss.biobb_commons import task_config # Wrapped Biobb from biobb_chemistry.acpype.acpype_params_ac import AcpypeParamsAC # Importing class instead of module to avoid name collision task_time_out = int(os.environ.get('TASK_TIME_OUT', 0)) @task(input_path=FILE_IN, output_path_frcmod=FILE_OUT, output_path_inpcrd=FILE_OUT, output_path_lib=FILE_OUT, output_path_prmtop=FILE_OUT, on_failure="IGNORE", time_out=task_time_out) def _acpypeparamsac(input_path, output_path_frcmod, output_path_inpcrd, output_path_lib, output_path_prmtop, properties, **kwargs): task_config.pop_pmi(os.environ) try: AcpypeParamsAC(input_path=input_path, output_path_frcmod=output_path_frcmod, output_path_inpcrd=output_path_inpcrd, output_path_lib=output_path_lib, output_path_prmtop=output_path_prmtop, properties=properties, **kwargs).launch() except Exception as e: traceback.print_exc() raise e finally: sys.stdout.flush() sys.stderr.flush() def acpype_params_ac(input_path, output_path_frcmod, output_path_inpcrd, output_path_lib, output_path_prmtop, properties=None, **kwargs): if (output_path_frcmod is None or (os.path.exists(output_path_frcmod) and os.stat(output_path_frcmod).st_size > 0)) and \ (output_path_inpcrd is None or (os.path.exists(output_path_inpcrd) and os.stat(output_path_inpcrd).st_size > 0)) and \ (output_path_lib is None or (os.path.exists(output_path_lib) and os.stat(output_path_lib).st_size > 0)) and \ (output_path_prmtop is None or (os.path.exists(output_path_prmtop) and os.stat(output_path_prmtop).st_size > 0)) and \ True: print("WARN: Task AcpypeParamsAC already executed.") else: _acpypeparamsac( input_path, output_path_frcmod, output_path_inpcrd, output_path_lib, output_path_prmtop, properties, **kwargs) ``` #### File: biobb_md/gromacs_extra/append_ligand_pc.py ```python import traceback from pycompss.api.task import task from pycompss.api.constraint import constraint from pycompss.api.parameter import FILE_IN, FILE_OUT from biobb_common.tools import file_utils as fu from biobb_md.gromacs_extra import append_ligand import os import sys @constraint(computingUnits="1") @task(input_top_zip_path=FILE_IN, input_itp_path=FILE_IN, output_top_zip_path=FILE_OUT, input_posres_itp_path=FILE_IN, on_failure="IGNORE") def append_ligand_pc(input_top_zip_path, input_itp_path, output_top_zip_path, input_posres_itp_path, properties, **kwargs): try: os.environ.pop('PMI_FD', None) os.environ.pop('PMI_JOBID', None) os.environ.pop('PMI_RANK', None) os.environ.pop('PMI_SIZE', None) append_ligand.AppendLigand(input_top_zip_path=input_top_zip_path, input_itp_path=input_itp_path, output_top_zip_path=output_top_zip_path, input_posres_itp_path=input_posres_itp_path, properties=properties, **kwargs).launch() except Exception: traceback.print_exc() fu.write_failed_output(output_top_zip_path) finally: sys.stdout.flush() sys.stderr.flush() ``` #### File: biobb_md/gromacs/mdrun.py ```python import os import sys import traceback # Pycompss from pycompss.api.task import task from pycompss.api.parameter import FILE_IN, FILE_OUT from pycompss.api.multinode import multinode from pycompss.api.constraint import constraint # Adapters commons pycompss from biobb_adapters.pycompss.biobb_commons import task_config # Wrapped Biobb from biobb_md.gromacs.mdrun import Mdrun # Importing class instead of module to avoid name collision task_time_out = int(os.environ.get('TASK_TIME_OUT', 0)) computing_nodes = str(os.environ.get('TASK_COMPUTING_NODES', "1")) computing_units = str(os.environ.get('TASK_COMPUTING_UNITS', "1")) gpu_units = str(os.environ.get('TASK_GPU_UNITS', "0")) @constraint(processors=[{'processorType':'CPU', 'computingUnits':computing_units}, {'processorType':'GPU', 'computingUnits':gpu_units}]) @multinode(computing_nodes=computing_nodes) @task(input_tpr_path=FILE_IN, output_trr_path=FILE_OUT, output_gro_path=FILE_OUT, output_edr_path=FILE_OUT, output_log_path=FILE_OUT, input_cpt_path=FILE_IN, output_xtc_path=FILE_OUT, output_cpt_path=FILE_OUT, output_dhdl_path=FILE_OUT, on_failure="IGNORE", time_out=task_time_out) def _mdrun(input_tpr_path, output_trr_path, output_gro_path, output_edr_path, output_log_path, input_cpt_path, output_xtc_path, output_cpt_path, output_dhdl_path, properties, **kwargs): task_config.config_multinode(properties) try: Mdrun(input_tpr_path=input_tpr_path, output_trr_path=output_trr_path, output_gro_path=output_gro_path, output_edr_path=output_edr_path, output_log_path=output_log_path, input_cpt_path=input_cpt_path, output_xtc_path=output_xtc_path, output_cpt_path=output_cpt_path, output_dhdl_path=output_dhdl_path, properties=properties, **kwargs).launch() except Exception as e: traceback.print_exc() raise e finally: sys.stdout.flush() sys.stderr.flush() def mdrun(input_tpr_path, output_trr_path, output_gro_path, output_edr_path, output_log_path, input_cpt_path=None, output_xtc_path=None, output_cpt_path=None, output_dhdl_path=None, properties=None, **kwargs): if (output_trr_path is None or (os.path.exists(output_trr_path) and os.stat(output_trr_path).st_size > 0)) and \ (output_gro_path is None or (os.path.exists(output_gro_path) and os.stat(output_gro_path).st_size > 0)) and \ (output_edr_path is None or (os.path.exists(output_edr_path) and os.stat(output_edr_path).st_size > 0)) and \ (output_log_path is None or (os.path.exists(output_log_path) and os.stat(output_log_path).st_size > 0)) and \ (output_xtc_path is None or (os.path.exists(output_xtc_path) and os.stat(output_xtc_path).st_size > 0)) and \ (output_cpt_path is None or (os.path.exists(output_cpt_path) and os.stat(output_cpt_path).st_size > 0)) and \ (output_dhdl_path is None or (os.path.exists(output_dhdl_path) and os.stat(output_dhdl_path).st_size > 0)) and \ True: print("WARN: Task Mdrun already executed.") else: _mdrun( input_tpr_path, output_trr_path, output_gro_path, output_edr_path, output_log_path, input_cpt_path, output_xtc_path, output_cpt_path, output_dhdl_path, properties, **kwargs) ``` #### File: biobb_pmx/pmx/mutate_pc.py ```python import traceback from pycompss.api.task import task from pycompss.api.constraint import constraint from pycompss.api.multinode import multinode from pycompss.api.parameter import FILE_IN, FILE_OUT from biobb_common.tools import file_utils as fu from biobb_pmx.pmx import mutate import os import sys @constraint(computingUnits="1") @task(input_structure_path=FILE_IN, output_structure_path=FILE_OUT, on_failure="IGNORE") def mutate_pc(input_structure_path, output_structure_path, properties, **kwargs): try: os.environ.pop('PMI_FD', None) os.environ.pop('PMI_JOBID', None) os.environ.pop('PMI_RANK', None) os.environ.pop('PMI_SIZE', None) mutate.Mutate(input_structure_path=input_structure_path, output_structure_path=output_structure_path, properties=properties, **kwargs).launch() if not os.path.exists(output_structure_path): fu.write_failed_output(output_structure_path) except Exception: traceback.print_exc() fu.write_failed_output(output_structure_path) finally: sys.stdout.flush() sys.stderr.flush() ``` #### File: biobb_md/gromacs/mdrun_rmt.py ```python import os import argparse import json from biobb_common.configuration import settings from biobb_common.tools import file_utils as fu from biobb_common.tools.file_utils import launchlogger #from biobb_common.command_wrapper import cmd_wrapper #from biobb_md.gromacs.common import get_gromacs_version #from biobb_md.gromacs.common import GromacsVersionError from biobb_remote.slurm import Slurm from biobb_remote.task import FINISHED from biobb_remote.ssh_credentials import SSHCredentials class MdrunRmt: """Adapter for remote execution of the biobb_md/gromacs/mdrun module. Args: File paths passed to mdrun. input_tpr_path (str): Path to the portable binary run input file TPR. File type: input. `Sample file <https://github.com/bioexcel/biobb_md/raw/master/biobb_md/test/data/gromacs/mdrun.tpr>`_. Accepted formats: tpr. Passed to mdrun. output_trr_path (str): Path to the GROMACS uncompressed raw trajectory file TRR. File type: output. `Sample file <https://github.com/bioexcel/biobb_md/raw/master/biobb_md/test/reference/gromacs/ref_mdrun.trr>`_. Accepted formats: trr. Passed to mdrun output_gro_path (str): Path to the output GROMACS structure GRO file. File type: output. `Sample file <https://github.com/bioexcel/biobb_md/raw/master/biobb_md/test/reference/gromacs/ref_mdrun.gro>`_. Accepted formats: gro. Passed to mdrun. output_edr_path (str): Path to the output GROMACS portable energy file EDR. File type: output. `Sample file <https://github.com/bioexcel/biobb_md/raw/master/biobb_md/test/reference/gromacs/ref_mdrun.edr>`_. Accepted formats: edr. Passed to mdrun. output_log_path (str): Path to the output GROMACS trajectory log file LOG. File type: output. Accepted formats: log. Passed to mdrun. output_xtc_path (str) (Optional): Path to the GROMACS compressed trajectory file XTC. File type: output. Accepted formats: xtc. Passed to mdrun. output_cpt_path (str) (Optional): Path to the output GROMACS checkpoint file CPT. File type: output. Accepted formats: cpt. Passed to mdrun. output_dhdl_path (str) (Optional): Path to the output dhdl.xvg file only used when free energy calculation is turned on. File type: output. Accepted formats: xvg. Passed to mdrun. Adapter files. keys_file (*str*) - Credentials (biobb_remote.ssh_credentials) file (optional, if missing users' own ssh keys are used. local_path (*str*) - Path to local files remote_path (*str*) - Path to remote base folder. Unique working will be created when necessary. task_data_path (*str*) - Path to task metadata file (json format). Used to keep live information of the remote task. properties (dic): * **host** (*str*) - Remote host name (optional if keys_file is provided) * **userid** (*str*) - Remote user ida (optional if keys_file is provided) * **queue_settings** (*str*) - One of queue settings predefined sets (default: whole HPC node open_mp) * **queue_settings_patch** (*json*) - Patch to modified queue settings * **modules** (*str*) - One of modules predifined hpc module setsi (default: Biobb module) * **wait** (*bool*) - Wait for job completion * **poll_time** (*int*) - Time between job status checks (seconds) * **re_use_task** (*bool*) - Reuse remote working dir if available (requires task_data_path) * **remove_remote** (*bool*) - Remove remote working dir properties passed to mdrun * **num_threads** (*int*) - (0) Let GROMACS guess. The number of threads that are going to be used. * **gmx_lib** (*str*) - (None) Path set GROMACS GMXLIB environment variable. * **gmx_path** (*str*) - ("gmx") Path to the GROMACS executable binary. * **mpi_bin** (*str*) - (None) Path to the MPI runner. Usually "mpirun" or "srun". * **mpi_np** (*str*) - (None) Number of MPI processes. Usually an integer bigger than 1. * **mpi_hostlist** (*str*) - (None) Path to the MPI hostlist file. """ def __init__(self, input_tpr_path: str, output_trr_path: str, output_gro_path: str, output_edr_path: str, output_log_path: str, output_xtc_path: str = None, output_cpt_path: str = None, output_dhdl_path: str = None, host_config_path: str=None, keys_file: str=None, local_path: str=None, remote_path: str=None, task_data_path: str= None, properties: dict =None, **kwargs) -> None: self.properties = properties or {} self.host = properties.get('host', '') self.userid = properties.get('userid', '') self.queue_settings = properties.get('queue_settings', 'default') self.queue_settings_patch = json.loads(properties.get('queue_settings', '{}')) self.modules = properties.get('modules', 'biobb') self.wait = properties.get('wait', True) if self.wait: self.poll_time = int(properties.get('poll_time', '10')) else: self.poll_time = 0 self.set_debug = properties.get('set_debug',False) self.re_use_task = properties.get('re_use_task', True) self.io_dict = { "in": { 'keys_file': keys_file, 'local_path': local_path, 'remote_path': remote_path, 'host_config_path': host_config_path, }, "inout": { 'task_data_path': task_data_path } } # Properties common in all BB self.can_write_console_log = properties.get('can_write_console_log', True) self.global_log = properties.get('global_log', None) self.remove_remote = properties.get('remove_remote', False) self.restart = properties.get('restart', False) self.prefix = properties.get('prefix', None) self.step = properties.get('step', None) self.path = properties.get('path', '') self.remove_tmp = properties.get('remove_tmp', False) self.files = { 'input_tpr_path' : input_tpr_path, 'output_trr_path' : output_trr_path, 'output_gro_path' : output_gro_path, 'output_edr_path' : output_edr_path, 'output_log_path' : output_log_path, 'output_xtc_path' : output_xtc_path, 'output_cpt_path' : output_cpt_path, 'output_dhdl_path' : output_dhdl_path } #clean local properties for p in ('host', 'userid', 'queue_settings', 'modules', 'poll_time', 'wait', 'working_dir_path','path','step','remote_tmp'): if p in self.properties: del self.properties[p] # Check the properties fu.check_properties(self, properties) @launchlogger def launch(self) -> int: """Launches the execution of the remote GROMACS mdrun module.""" # Get local loggers from launchlogger decorator out_log = getattr(self, 'out_log', None) err_log = getattr(self, 'err_log', None) if self.io_dict['in']['keys_file']: self.credentials = SSHCredentials() self.credentials.load_from_file(self.io_dict['in']['keys_file']) slurm = Slurm() slurm.set_credentials(self.credentials) else: slurm = Slurm(host=self.host, userid=self.userid, look_for_keys=True) if self.re_use_task: try: slurm.load_data_from_file(self.io_dict['inout']['task_data_path']) if slurm.task_data['remote_path']: self.io_dict['in']['remote_path'] = slurm.task_data['remote_path'] except: print("Warning: Task data not found") pass slurm.load_host_config(self.io_dict['in']['host_config_path']) slurm.save(self.io_dict['inout']['task_data_path']) slurm.set_local_data_bundle(self.io_dict['in']['local_path'], add_files=False) slurm.task_data['local_data_bundle'].add_file( self.io_dict['in']['local_path'] + "/" + self.files['input_tpr_path'] ) if not self.io_dict['in']['remote_path']: print('Remote path not available') return 1 slurm.send_input_data(self.io_dict['in']['remote_path'], overwrite=False) slurm.save(self.io_dict['inout']['task_data_path']) #queue settings if self.queue_settings_patch: slurm.set_custom_settings(ref_setting=self.queue_settings, patch=self.queue_settings_patch) self.queue_settings = 'custom' slurm.submit( queue_settings=self.queue_settings, modules=self.modules, poll_time=self.poll_time, set_debug=self.set_debug, local_run_script=slurm.get_remote_py_script( 'from biobb_md.gromacs.mdrun import Mdrun', self.files, 'Mdrun', properties=self.properties ) ) slurm.save(self.io_dict['inout']['task_data_path']) if self.wait: slurm.check_job(poll_time=int(self.poll_time)) if slurm.task_data['status'] == FINISHED: slurm.get_output_data(overwrite=False) out_log, err_log = slurm.get_logs() slurm.save(self.io_dict['inout']['task_data_path']) if self.remove_remote: slurm.clean_remote() returncode = 0 #TODO return returncode def main(): parser = argparse.ArgumentParser(description="Wrapper for the GROMACS mdrun module.", formatter_class=lambda prog: argparse.RawTextHelpFormatter(prog, width=99999)) parser.add_argument('-c', '--config', required=False, help="This file can be a YAML file, JSON file or JSON string") # Specific args of each building block required_args = parser.add_argument_group('required arguments') required_args.add_argument('--input_tpr_path', required=True) required_args.add_argument('--output_trr_path', required=True) required_args.add_argument('--output_gro_path', required=True) required_args.add_argument('--output_edr_path', required=True) required_args.add_argument('--output_log_path', required=True) required_args.add_argument('--local_path', required=True) required_args.add_argument('--task_data_path', required=True) required_args.add_argument('--host_config_path', required=True) required_args.add_argument('--queue_settings', required=True) parser.add_argument('--output_xtc_path', required=False) parser.add_argument('--output_cpt_path', required=False) parser.add_argument('--output_dhdl_path', required=False) parser.add_argument('--keys_file_path', required=False) parser.add_argument('--queue_settings_patch', required=False) parser.add_argument('--remote_path', required=False) parser.add_argument('--set_debug', required=False) args = parser.parse_args() config = args.config if args.config else None properties = settings.ConfReader(config=config).get_prop_dic() # Specific call of each building block MdrunRmt(input_tpr_path=args.input_tpr_path, output_trr_path=args.output_trr_path, output_gro_path=args.output_gro_path, output_edr_path=args.output_edr_path, output_log_path=args.output_log_path, output_xtc_path=args.output_xtc_path, output_cpt_path=args.output_cpt_path, output_dhdl_path=args.output_dhdl_path, host_config_path=args.host_config_path, keys_file=args.keys_file_path, local_path=args.local_path, remote_path=args.remote_path, task_data_path=args.task_data_path,queue_settings=args.queue_settings, queue_settings_patch=args.queue_settings_patch, set_debug=args.set_debug, properties=properties).launch() if __name__ == '__main__': main() ```
{ "source": "jfennick/workflow_inference_compiler", "score": 3 }
#### File: src/wic/utils.py ```python import argparse import copy from pathlib import Path from typing import Any, Dict, List, Tuple import graphviz import yaml from . import auto_gen_header from .wic_types import (GraphData, GraphReps, Json, Namespaces, NodeData, RoseTree, Tool, Tools, Yaml, YamlForest, YamlTree) def read_lines_pairs(filename: Path) -> List[Tuple[str, str]]: """Reads a whitespace-delimited file containing two paired entries per line (i.e. a serialized Dict). Args: filename (Path): The full path of the file to be read. Raises: Exception: If any non-blank, non-comment lines do not contain exactly two entries. Returns: List[Tuple[str, str]]: The file contents, with blank lines and comments removed. """ with open(filename, mode='r', encoding='utf-8') as f: lines = [] for line in f.readlines(): if line.strip() == '': # Skip blank lines continue if line.startswith('#'): # Skip comment lines continue l_s = line.split() if not len(l_s) == 2: print(line) raise Exception("Error! Line must contain exactly two entries!") lines.append((l_s[0], l_s[1])) return lines def step_name_str(yaml_stem: str, i: int, step_key: str) -> str: """Returns a string which uniquely and hierarchically identifies a step in a workflow Args: yaml_stem (str): The name of the workflow (filepath stem) i (int): The (zero-based) step number step_key (str): The name of the step (used as a dict key) Returns: str: The parameters (and the word 'step') joined together with double underscores """ # Use double underscore so we can '__'.split() below. # (This should work as long as yaml_stem and step_key do not contain __) return f'{yaml_stem}__step__{i+1}__{step_key}' def parse_step_name_str(step_name: str) -> Tuple[str, int, str]: """The inverse function to step_name_str() Args: step_name (str): A string of the same form as returned by step_name_str() Raises: Exception: If the argument is not of the same form as returned by step_name_str() Returns: Tuple[str, int, str]: The parameters used to create step_name """ vals = step_name.split('__') # double underscore if not len(vals) == 4: raise Exception(f"Error! {step_name} is not of the format \n" + '{yaml_stem}__step__{i+1}__{step_key}\n' + 'yaml_stem and step_key should not contain any double underscores.') try: i = int(vals[2]) except Exception as ex: raise Exception(f"Error! {step_name} is not of the format \n" + '{yaml_stem}__step__{i+1}__{step_key}') from ex return (vals[0], i-1, vals[3]) def add_graph_edge(args: argparse.Namespace, graph: GraphReps, nss1: Namespaces, nss2: Namespaces, label: str, color: str = '') -> None: """Adds edges to (all of) our graph representations, with the ability to collapse all nodes below a given depth to a single node. This function utilizes the fact that nodes have been carefully designed to have unique, hierarchical names. If we want to hide all of the details below a given depth, we can simply truncate each of the namespaces! (and do the same when creating the nodes) Args: args (argparse.Namespace): The command line arguments graph (GraphReps): A tuple of a GraphViz DiGraph and a networkx DiGraph nss1 (Namespaces): The namespaces associated with the first node nss2 (Namespaces): The namespaces associated with the second node label (str): The edge label color (str, optional): The edge color """ if color == '': color = 'black' if args.graph_dark_theme else 'white' nss1 = nss1[:(1 + args.graph_inline_depth)] edge_node1 = '___'.join(nss1) nss2 = nss2[:(1 + args.graph_inline_depth)] edge_node2 = '___'.join(nss2) graph_gv = graph.graphviz graph_nx = graph.networkx graphdata = graph.graphdata # Hide internal self-edges if edge_node1 != edge_node2: attrs = {'color': color} if args.graph_label_edges: attrs['label'] = label graph_gv.edge(edge_node1, edge_node2, **attrs) graph_nx.add_edge(edge_node1, edge_node2) graphdata.edges.append((edge_node1, edge_node2, attrs)) def flatten_graphdata(graphdata: GraphData, parent: str = '') -> GraphData: """Flattens graphdata by recursively inlineing all subgraphs. Args: graphdata (GraphData): A data structure which contains recursive subgraphs and other metadata. parent (str, optional): The name of the parent graph is encoded into the node attributes so that\n the subgraph information can be preserved after flattening. (Used for cytoscape) Defaults to ''. Returns: GraphData: A GraphDath instance with all of the recursive instances inlined """ subgraphs = [flatten_graphdata(subgraph, str(graphdata.name)) for subgraph in graphdata.subgraphs] # NOTE: Even though all of the following default list arguments are [], # you MUST explicitly supply the empty lists!!! Otherwise, after # instantiation, the lists will contain values from previous instances!!! # This shallow copy causes an infinite loop because as we copy nodes, # they end up getting appended to the original lists! # This makes absolutely no sense. Since the lists are defined at the # instance level (NOT the class level), there should be zero sharing! g_d = GraphData(str(graphdata.name), [], [], [], []) # This is fine #g_d = GraphData(str(graphdata.name)) # This is NOT fine! # i.e. The following statement will NOT print zeros (in the second case)! #print(g_d.name, len(g_d.nodes), len(g_d.edges), len(g_d.subgraphs), len(g_d.ranksame)) for subgraph in subgraphs: # We need to add a placeholder node for each subgraph first attrs = {} if parent == '' else {'parent': parent} # NOTE: This does not yet work with args.graph_inline_depth g_d.nodes.append((subgraph.name, attrs)) for subgraph in subgraphs: # Then we can add the nodes and edges from the subgraphs. # (Otherwise, cytoscape won't render the subgraphs correctly.) for (subnode, subattrs) in subgraph.nodes: g_d.nodes.append((subnode, subattrs)) for (subnode1, subnode2, subattrs) in subgraph.edges: g_d.edges.append((subnode1, subnode2, subattrs)) # Finally, add the nodes and edges from the current graph for (node, attrs) in graphdata.nodes: attrs['parent'] = graphdata.name g_d.nodes.append((node, attrs)) for (node1, node2, attrs) in graphdata.edges: g_d.edges.append((node1, node2, attrs)) return g_d def graphdata_to_cytoscape(graphdata: GraphData) -> Json: """Converts a flattened graph into cytoscape json format. Args: graphdata (GraphData): A flattened GraphData instance Returns: Json: A Json object compatible with cytoscape. """ nodes = [] for (node, attrs) in list(graphdata.nodes): nodes.append({'data': {'id': node, **attrs}}) edges = [] for (node1, node2, attrs) in list(graphdata.edges): edges.append({'data': {'source': node1, 'target': node2, **attrs}}) return {'nodes': nodes, 'edges': edges} def partition_by_lowest_common_ancestor(nss1: Namespaces, nss2: Namespaces) -> Tuple[Namespaces, Namespaces]: """See https://en.wikipedia.org/wiki/Lowest_common_ancestor Args: nss1 (Namespaces): The namespaces associated with the first node nss2 (Namespaces): The namespaces associated with the second node Returns: Tuple[Namespaces, Namespaces]: nss1, partitioned by lowest common ancestor """ # Only partition nss1; if you want to partition nss1 # just switch the arguments at the call site. if nss1 == [] or nss2 == []: return ([], nss1) # Base case if nss1[0] == nss2[0]: # Keep going (nss1_heads, nss1_tails) = partition_by_lowest_common_ancestor(nss1[1:], nss2[1:]) return ([nss1[0]] + nss1_heads, nss1_tails) return ([], nss1) def get_steps_keys(steps: List[Yaml]) -> List[str]: """Returns the name (dict key) of each step in the given CWL workflow Args: steps (List[Yaml]): The steps: tag of a CWL workflow Returns: List[str]: The name of each step in the given CWL workflow """ # Get the dictionary key (i.e. the name) of each step. steps_keys = [] for step in steps: steps_keys += list(step) #print(steps_keys) return steps_keys def extract_backend(yaml_tree: Yaml, wic: Yaml, yaml_path: Path) -> Tuple[str, Yaml]: """Chooses a specific backend for a given CWL workflow step. The backends should be thought of as either 'exactly' identical, or at least the same high-level protocol but implemented with a different algorithm. Args: yaml_tree (Yaml): A Yaml AST dict with sub-dicts for each backend. yaml_path (Path): The filepath of yaml_tree, only used for error reporting. Raises: Exception: If the steps: and/or backend: tags are not present. Returns: Tuple[str, Yaml]: The Yaml AST dict of the chosen backend. """ yaml_tree_copy = copy.deepcopy(yaml_tree) backend = '' if 'backends' in wic: if 'default_backend' in wic: backend = wic['default_backend'] if 'backend' in wic: backend = wic['backend'] if backend == '': raise Exception(f'Error! No backend in {yaml_path}!') if backend not in wic['backends']: raise Exception(f'Error! No steps for backend {backend} in {yaml_path}!') steps = wic['backends'][backend]['steps'] yaml_tree_copy.update({'steps': steps}) elif 'steps' in yaml_tree_copy: pass # steps = yaml_tree_copy['steps'] else: raise Exception(f'Error! No backends and/or steps in {yaml_path}!') return (backend, yaml_tree_copy) def inline_sub_steps(yaml_path: Path, tools: Tools, yml_paths: Dict[str, Path]) -> List[Yaml]: """Recursively inlines the contents of ALL of the yml sub-workflows. (deprecated) This function is deprecated and will soon be replaced with a better implementation. Args: yaml_path (Path): The filepath of the yml workflow. tools (Tools): The CWL CommandLineTool definitions found using get_tools_cwl() yml_paths (Dict[str, Path]): The yml workflow definitions found using get_yml_paths() Returns: List[Yaml]: The recursively inlined contents of the given yml workflow. """ # Load the high-level yaml workflow file. with open(Path(yaml_path), mode='r', encoding='utf-8') as y: yaml_tree: Yaml = yaml.safe_load(y.read()) wic = yaml_tree.get('wic', {}) (back_name_, yaml_tree) = extract_backend(yaml_tree, wic, yaml_path) steps = yaml_tree['steps'] # Get the dictionary key (i.e. the name) of each step. steps_keys = [] for step in steps: steps_keys += list(step) subkeys = [key for key in steps_keys if key not in tools] steps_all = [] for i, step_key in enumerate(steps_keys): if step_key in subkeys: path = yml_paths[Path(step_key).stem] steps_i = inline_sub_steps(path, tools, yml_paths) else: steps_i = [steps[i]] steps_all.append(steps_i) steps_all_flattened = [step for steps in steps_all for step in steps] return steps_all_flattened def flatten(lists: List[List[Any]]) -> List[Any]: """Concatenates a list of lists into a single list. Args: lists (List[List[Any]]): A list of lists Returns: List[Any]: A single list """ return [x for lst in lists for x in lst] def flatten_rose_tree(rose_tree: RoseTree) -> List[Any]: """Flattens the data contained in the Rose Tree into a List Args: rose_tree (RoseTree): A Rose Tree Returns: List[Any]: The list of data associated with each node in the RoseTree """ sub_rose_trees = [flatten_rose_tree(r) for r in rose_tree.sub_trees] return [rose_tree.data] + flatten(sub_rose_trees) def pretty_print_forest(forest: YamlForest) -> None: """pretty prints a YamlForest Args: forest (YamlForest): The forest to be printed """ print(forest.yaml_tree.name) print(yaml.dump(forest.yaml_tree.yml)) print(yaml.dump(forest.sub_forests)) def flatten_forest(forest: YamlForest) -> List[YamlForest]: """Flattens the sub-trees encountered while traversing an AST Args: forest (YamlForest): The yaml AST forest to be flattened Raises: Exception: If backend: tags are missing. Returns: List[YamlForest]: The flattened forest """ #pretty_print_forest(forest) if forest == {}: return [] yaml_tree = forest.yaml_tree.yml wic = {'wic': yaml_tree.get('wic', {})} if 'backends' in wic['wic']: #pretty_print_forest(forest) back_name = '' if 'default_backend' in wic['wic']: back_name = wic['wic']['default_backend'] if 'backend' in wic['wic']: back_name = wic['wic']['backend'] if back_name == '': pretty_print_forest(forest) raise Exception('Error! No backend in yaml forest!\n') yaml_tree_back: YamlTree = forest.sub_forests[back_name].yaml_tree step_1 = yaml_tree_back.yml['steps'][0] step_name_1 = list(step_1.keys())[0] if Path(step_name_1).suffix == '.yml': # Choose a specific backend return flatten_forest(forest.sub_forests[back_name]) return [forest] forests = list(forest.sub_forests.values()) sub_forests = [flatten_forest(f) for f in forests] # Use depth first search flattening to match flatten_rose_tree() #bfs = forests + flatten(sub_forests) dfs_lists = [[f] + fs for f, fs in zip(forests, sub_forests)] dfs = flatten(dfs_lists) return dfs def write_to_disk(rose_tree: RoseTree, path: Path, relative_run_path: bool) -> None: """Writes the compiled CWL files and their associated yml inputs files to disk. NOTE: Only the yml input file associated with the root workflow is guaranteed to have all inputs. In other words, subworkflows will all have valid CWL files, but may not be executable due to 'missing' inputs. Args: rose_tree (RoseTree): The data associated with compiled subworkflows path (Path): The directory in which to write the files relative_run_path (bool): Controls whether to use subdirectories or just one directory. """ node_data: NodeData = rose_tree.data namespaces = node_data.namespaces yaml_stem = node_data.name cwl_tree = node_data.compiled_cwl yaml_inputs = node_data.workflow_inputs_file path.mkdir(parents=True, exist_ok=True) if relative_run_path: filename_cwl = f'{yaml_stem}.cwl' filename_yml = f'{yaml_stem}_inputs.yml' else: filename_cwl = '___'.join(namespaces + [f'{yaml_stem}.cwl']) filename_yml = '___'.join(namespaces + [f'{yaml_stem}_inputs.yml']) # Dump the compiled CWL file contents to disk. # Use sort_keys=False to preserve the order of the steps. yaml_content = yaml.dump(cwl_tree, sort_keys=False, line_break='\n', indent=2) with open(path / filename_cwl, mode='w', encoding='utf-8') as w: w.write('#!/usr/bin/env cwl-runner\n') w.write(auto_gen_header) w.write(''.join(yaml_content)) yaml_content = yaml.dump(yaml_inputs, sort_keys=False, line_break='\n', indent=2) with open(path / filename_yml, mode='w', encoding='utf-8') as inp: inp.write(auto_gen_header) inp.write(yaml_content) for sub_rose_tree in rose_tree.sub_trees: subpath = path if relative_run_path: sub_node_data: NodeData = sub_rose_tree.data sub_step_name = sub_node_data.namespaces[-1] subpath = path / sub_step_name write_to_disk(sub_rose_tree, subpath, relative_run_path) def recursively_delete_dict_key(key: str, obj: Any) -> Any: """Recursively deletes any dict entries with the given key. Args: key (str): The key to be deleted obj (Any): The object from which to delete key. Returns: Any: The original dict with the given key recursively deleted. """ if isinstance(obj, List): return [recursively_delete_dict_key(key, x) for x in obj] if isinstance(obj, Dict): new_dict = {} for key_ in obj.keys(): if not key_ == key: # i.e. effectively delete key new_dict[key_] = recursively_delete_dict_key(key, obj[key_]) return new_dict return obj def make_tool_dag(tool_stem: str, tool: Tool, graph_dark_theme: bool) -> None: """Uses the `dot` executable from the graphviz package to make a Directed Acyclic Graph corresponding to the given CWL CommandLineTool Args: tool_stem (str): The name of the Tool tool (Tool): The CWL ComandLineTool graph_dark_theme (bool): See args.graph_dark_theme """ (tool_path, tool_cwl) = tool yaml_path = f'autogenerated/DAG/{tool_path}' Path(yaml_path).parent.mkdir(parents=True, exist_ok=True) graph = graphviz.Digraph(name=yaml_path) graph.attr(bgcolor="transparent") # Useful for making slides font_edge_color = 'black' if graph_dark_theme else 'white' graph.attr(fontcolor=font_edge_color) graph.attr(rankdir='LR') attrs = {'shape':'box', 'style':'rounded, filled'} graph.node(tool_stem, fillcolor='lightblue', **attrs) for input_cwl in tool_cwl['inputs']: input_initial_ns = input_cwl.split('___')[0].split('__')[0] input_no_initial_ns = input_cwl.replace(f'{input_initial_ns}__', '') # Hide optional inputs that could be confusing. if not 'output' in input_no_initial_ns: graph.node(f'input_{input_cwl}', label=input_no_initial_ns, fillcolor='lightgreen', **attrs) graph.edge(f'input_{input_cwl}', tool_stem, color=font_edge_color) for output_cwl in tool_cwl['outputs']: output_initial_ns = output_cwl.split('___')[0].split('__')[0] output_no_initial_ns = output_cwl.replace(f'{output_initial_ns}__', '') graph.node(f'output_{output_cwl}', label=output_no_initial_ns, fillcolor='lightyellow', **attrs) graph.edge(tool_stem, f'output_{output_cwl}', color=font_edge_color) graph.render(format='png') def make_plugins_dag(tools: Tools, graph_dark_theme: bool) -> None: """Uses the `neato` executable from the graphviz package to make a Directed Acyclic Graph consisting of a node for each CWL CommandLineTool and no edges. Args: tools (Tools): The CWL CommandLineTool definitions found using get_tools_cwl() graph_dark_theme (bool): See args.graph_dark_theme """ # NOTE: Do not use the default 'dot' engine. Use neato / fdp / sfdp # and set pack=0 to remove the massive blank space around each node. # Also note that despite my best efforts, I cannot force graphviz to # change the aspect ratio (to double the width for making slides) # without simply stretching it and distorting the nodes, so we can just # partition the tools into two squares and display them side by side. num_tools_half = int(len(list(tools)) / 2) for i in [0,1]: yaml_path = f'autogenerated/DAG/plugins{i}' Path(yaml_path).mkdir(parents=True, exist_ok=True) graph = graphviz.Digraph(name=yaml_path) graph.engine = 'neato' graph.attr(pack='0') graph.attr(bgcolor="transparent") # Useful for making slides font_edge_color = 'black' if graph_dark_theme else 'white' graph.attr(fontcolor=font_edge_color) for tool in list(tools)[i*num_tools_half:(i+1)*num_tools_half]: (tool_path, tool_cwl) = tools[tool] attrs = {'shape':'box', 'style':'rounded, filled'} graph.node(Path(tool_path).stem, fillcolor='lightblue', fontsize="24", width='0.75', **attrs) graph.render(format='png') def parse_int_string_tuple(string: str) -> Tuple[int, str]: """Parses a string of the form '(int, string)' Args: string (str): A string with the above encoding Returns: Tuple[int, str]: The parsed result """ string_no_parens = string.strip()[1:-1] (str1, str2) = string_no_parens.split(',') return (int(str1.strip()), str2.strip()) def reindex_wic_steps(wic_steps: Yaml, index: int) -> Yaml: """After inserting a step into a workflow, we need to increment the steps in\n the wic: metadata annotations tag whose original index is >= the given index. Args: wic_steps (Yaml): The steps: subtag of the wic: metadata annotations tag. index (int): The (zero-based) index of the inserted workflow step. Returns: Yaml: The updated wic: steps: tag, with the appropriate indices incremented. """ wic_steps_reindexed = {} for keystr, val in wic_steps.items(): (i, s) = parse_int_string_tuple(keystr) newstr = f'({i+1}, {s})' if i >= index else keystr wic_steps_reindexed[newstr] = val return wic_steps_reindexed def add_subgraphs(args: argparse.Namespace, graph: GraphReps, sibling_subgraphs: List[GraphReps], namespaces: Namespaces, step_1_names: List[str], steps_ranksame: List[str]) -> None: """Add all subgraphs to the current graph, except for GraphViz subgraphs below a given depth, which allows us to hide irrelevant details. Args: args (argparse.Namespace): The command line arguments graph (GraphReps): A tuple of a GraphViz DiGraph and a networkx DiGraph sibling_subgraphs (List[Graph]): The subgraphs of the immediate children of the current workflow namespaces (Namespaces): Specifies the path in the AST of the current subworkflow step_1_names (List[str]): The names of the first step steps_ranksame (List[str]): Additional node names to be aligned using ranksame """ graph_gv = graph.graphviz graph_nx = graph.networkx # Add the cluster subgraphs to the main graph, but we need to add them in # reverse order to trick the graphviz layout algorithm. for sibling in sibling_subgraphs[::-1]: # Reverse! (sib_graph_gv, sib_graph_nx, sib_graphdata) = sibling if len(namespaces) < args.graph_inline_depth: graph_gv.subgraph(sib_graph_gv) graph_nx.add_nodes_from(sib_graph_nx.nodes) graph_nx.add_edges_from(sib_graph_nx.edges) for sibling in sibling_subgraphs: graph.graphdata.subgraphs.append(sibling.graphdata) # Align the cluster subgraphs using the same rank as the first node of each subgraph. # See https://stackoverflow.com/questions/6824431/placing-clusters-on-the-same-rank-in-graphviz if len(namespaces) < args.graph_inline_depth: step_1_names_display = [name for name in step_1_names if len(name.split('___')) < 2 + args.graph_inline_depth] if len(step_1_names_display) > 1: nodes_same_rank = '\t{rank=same; ' + '; '.join(step_1_names_display) + '}\n' graph_gv.body.append(nodes_same_rank) graph.graphdata.ranksame = step_1_names_display if len(steps_ranksame) > 1: nodes_same_rank = '\t{rank=same; ' + '; '.join(steps_ranksame) + '}\n' graph_gv.body.append(nodes_same_rank) graph.graphdata.ranksame = steps_ranksame def get_step_name_1(step_1_names: List[str], yaml_stem: str, namespaces: Namespaces, steps_keys: List[str], subkeys: List[str]) -> str: """Finds the name of the first step in the current subworkflow. If the first step is itself subworkflow, the call site recurses until it finds a node. This is necessary because ranksame in GraphViz can only be applied to individual nodes, not cluster_subgraphs. Args: step_1_names (List[str]): The list of potential first node names yaml_stem (str): The name of the current subworkflow (stem of the yaml filepath) namespaces (Namespaces): Specifies the path in the AST of the current subworkflow steps_keys (List[str]): The name of each step in the current CWL workflow subkeys (List[str]): The keys associated with subworkflows Returns: str: The name of the first step """ if steps_keys[0] in subkeys: step_name_1 = step_1_names[0] else: step_name_1 = step_name_str(yaml_stem, 0, steps_keys[0]) step_name_1 = '___'.join(namespaces + [step_name_1]) # NOTE: Since the names of subgraphs '*.yml' contain a period, we need to # escape them by enclosing the whole name in double quotes. Otherwise: # "Error: *.yml.gv: syntax error in line n near '.'" step_name_1 = f'"{step_name_1}"' return step_name_1 ```
{ "source": "jferard/script_to_monitor_Covid19", "score": 3 }
#### File: jferard/script_to_monitor_Covid19/scatterCountries.py ```python from pylab import * import pandas as pd import matplotlib.pyplot as plt import matplotlib.ticker as ticker import datetime as dt from scipy.signal import savgol_filter from pathlib import Path ############### Basic use ############################# # example: plot_country("France",dataParam,fitParam,'3/17/20',ax) # Argument 1: string, as it appears in the CSV file # Argument 2: data parameters, AUTOMATICALLY generated # Argument 3: fitting parameters, AUTOMATICALLY generated # Argument 4: date of the confinement start. If no confinement, enter a date in the future # Argument 5: axis (matplotlib object) where to plot the curves ################ Parameters to define manually ###################### # Path to the folder containing the time series: path="https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/" figures_path = "../FIGURES" daysInterval = 7 # To set Major x-axis startDate = datetime.date(2020, 2,22) # Start date of the plot: extrapolPeriod = 14 # How many days to extrapolate? fittingPeriod = 8 # On how long do we fit the data? yscale = 'linear' #yscale = 'log' #field = "Confirmed" #field = "Deaths" field = "Active" #field = "DeathRate" #evolutionType = "cumulative" evolutionType = "daily" #evolutionType = "curvature" #evolutionType = "smoothedCurvature" #evolutionType = "R0" iExtrapol = 0 vSmoothing = [5,3] # [window size,order of fitting polynomial] ################ Parameters to define manually ###################### ######################## Definition of Functions ############################ def evolution_single(strCountry,data): size=len(data.iloc[0].values[4:]) evolution = zeros(size,dtype=int) for ic,cntry in enumerate(data['Country/Region']): if (cntry in lstCountry) or (strCountry=="World"): locRegion = data.iloc[ic].values[4:] locRegion[isnan(locRegion.tolist())] = 0 evolution[:] += locRegion.astype(int) return evolution def evolution_country(strCountry,dataParam): if field=="Confirmed": evolution = evolution_single(strCountry,dataParam['Confirmed']) elif field=="Deaths": evolution = evolution_single(strCountry,dataParam['Deaths']) elif field=="Active": evolC = evolution_single(strCountry,dataParam['Confirmed']) evolD = evolution_single(strCountry,dataParam['Deaths']) evolR = evolution_single(strCountry,dataParam['Recovered']) evolution = evolC - evolR - evolD elif field=="DeathRate": evolC = evolution_single(strCountry,dataParam['Confirmed']) evolD = evolution_single(strCountry,dataParam['Deaths']) evolution = evolD/evolC*100 if dataParam['EvolutionType'] == "cumulative": evol = evolution[dataParam['FilterDate']] elif dataParam['EvolutionType'] == "daily": dedt = np.zeros(len(evolution)) dedt[1:] = np.diff(evolution) evol = dedt[dataParam['FilterDate']] elif dataParam['EvolutionType'] == "curvature": d2edt2 = np.zeros(len(evolution)) d2edt2[2:] = np.diff(evolution,2) evol = d2edt2[dataParam['FilterDate']] elif dataParam['EvolutionType'] == "smoothedCurvature": #dedt = np.zeros(len(evolution)) #dedt[1:] = np.diff(evolution) dedt = np.diff(evolution) evol = savgol_filter(dedt, dataParam['Smoothing'][0], dataParam['Smoothing'][1]) # arg2: window size; arg3: polynomial order d2edt2 = np.zeros(len(evolution)) d2edt2[2:] = np.diff(evol)/evol[-1] evol = d2edt2[dataParam['FilterDate']] elif dataParam['EvolutionType'] == "R0": R0 = np.zeros(len(evolution)) delta0 = np.diff(evolution) delta = savgol_filter(delta0, dataParam['Smoothing'][0], dataParam['Smoothing'][1]) # arg2: window size; arg3: polynomial order R0[1:] = delta/np.roll(delta,5) ## TEST: #print((delta/np.roll(delta,5))[-10:]) #print((delta*5/np.roll(delta,1))[-10:]) evol = R0[dataParam['FilterDate']] return evol def get_trend(dates,evol1,fitParam,extParam): dtFitBeg = fitParam[0] dtFitEnd = fitParam[1] dtExtBeg = extParam[0] dtExtEnd = extParam[1] print("Time windows for fitting: ", dateOut(dtFitBeg), " - ", dateOut(dtFitEnd)) print("Time windows for extrapo: ", dateOut(dtExtBeg), " - ", dateOut(dtExtEnd)) bfitDate = (dates>=dtFitBeg) * (dates<=dtFitEnd) fitDate = dates[bfitDate] Ndfit = (dtFitEnd - dtFitBeg).days + 1 Ndext = (dtExtEnd - dtExtBeg).days + 1 Ndtot = (dtExtEnd - dtFitBeg).days + 1 xfit = np.arange(Ndfit) xext = np.arange(Ndtot-Ndext,Ndtot) yfit = evol1[bfitDate] nz = (yfit>0) if sum(nz)>0: p1=polyfit(xfit[nz],log(yfit[nz]),1) yext = exp(polyval(p1,xext)) else: p1=polyfit(xfit,log(-yfit),1) yext = exp(-polyval(p1,xext)) print(p1) correl1 = yext xcorrel1 = [] for i in range(Ndext): xcorrel1.append(dateOut(dtExtBeg + dt.timedelta(days=i))) rate=correl1[-1]/correl1[-2]-1 if rate>0: strRate='+%.1f%%' %(rate*100) else:strRate='%.1f%%' %(rate*100) return xcorrel1, correl1, strRate def dateOut(date): return date.strftime('%m/%d/%y').lstrip("0").replace("/0", "/") def dateIn(strDate): spl = strDate.split('/') month = int(spl[0]) day = int(spl[1]) year = int("20%s" %spl[2]) return datetime.date(year, month,day) def plot_country(strCountry,dataParam,displayParam,fitParam,quarParam,ax): print("########## Treating country: ", strCountry, " #############") quarDate = quarParam fittingPeriod = fitParam[0] extrapolPeriod = fitParam[1] iExtrapol = fitParam[2] # Extract evolution for this country evol1 = evolution_country(strCountry,dataParam) # find the quarantine date iQuar = np.where(dataParam['Dates']>=dateIn(quarDate)) iQuar = dataParam['Dates']>=dateIn(quarDate) fitParam1 = [] extParam1 = [] # Define the period for the trend if sum(iQuar) > 3: # Quarantine found dtFitEnd = dateIn(quarDate) fitParam2 = [] extParam2 = [] fitParam2.append(dateIn(quarDate)) fitParam2.append(dt.date.today() - dt.timedelta(days=1)) extParam2.append(dtFitEnd) extParam2.append(dtFitEnd + dt.timedelta(days=extrapolPeriod+1)) else: dtFitEnd = dt.date.today() - dt.timedelta(days=1) dtFitBeg = dtFitEnd - dt.timedelta(days=fittingPeriod+1) dtExtBeg = dtFitEnd dtExtEnd = dtExtBeg + dt.timedelta(days=extrapolPeriod+1) fitParam1.append(dtFitBeg) fitParam1.append(dtFitEnd) extParam1.append(dtExtBeg) extParam1.append(dtExtEnd) if dataParam['Smoothing'][0] != 0: evol1 = savgol_filter(evol1, dataParam['Smoothing'][0], dataParam['Smoothing'][1]) # arg2: window size; arg3: polynomial order if displayParam['YScale'] == 'log': evol1 = np.ma.masked_where(evol1<=0,evol1) p = ax.semilogy(dataParam['DateAxis'],evol1,ls='-',lw=4.0,label=strCountry) col = p[0].get_color() if sum(iQuar) > 0: # Quarantine found # Plot the quarantine date ax.scatter(dataParam['DateAxis'][iQuar][0],evol1[iQuar][0],c=col,s=300,marker="X") if (iExtrapol==0): return # Get the trend xextrapol, yextrapol, strRate = get_trend(dataParam['Dates'],evol1,fitParam1,extParam1) ax.semilogy(xextrapol,yextrapol,ls='--',lw=2.0,c=col) ax.annotate(strRate, xy=(xextrapol[-1],yextrapol[-1]), xytext=(3, 3), textcoords="offset points", ha='center', va='bottom',color=col,weight='bold') if sum(iQuar) > 3: # Quarantine found xextrapol, yextrapol, strRate = get_trend(dataParam['Dates'],evol1,fitParam2,extParam2) ax.semilogy(xextrapol,yextrapol,ls='-',lw=2.0,c=col) ax.annotate(strRate, xy=(xextrapol[-1],yextrapol[-1]), xytext=(3, 3), textcoords="offset points", ha='center', va='bottom',color=col,weight='bold') def setDisplayParam(field,evolutionType,yscale): displayParam = {} strUnit = "[-]" if field=="Confirmed": txtField = "confirmed cases" elif field=="Deaths": txtField = "deaths" elif field=="Active": txtField = "active cases" elif field=="DeathRate": txtField = "death rate" strUnit = "[%]" if evolutionType == 'cumulative': txtEvol = "Cumulative" elif evolutionType == 'daily': txtEvol = 'Daily' elif evolutionType == 'curvature': txtEvol = 'Derivative of daily' elif evolutionType == 'smoothedCurvature': txtEvol = 'Derivative of smoothed daily' elif evolutionType == 'R0': txtEvol = 'R0 from' txtTitle = "%s %s in some Western countries\n (Source: Johns Hopkins University)" %(txtEvol,txtField) txtYaxis = "%s %s %s" %(txtEvol,txtField,strUnit) displayParam['title'] = txtTitle displayParam['YaxisLabel'] = txtYaxis strDateToday = dt.date.today().strftime("%Y%m%d") Path(figures_path).mkdir(parents=True, exist_ok=True) fname = figures_path + "/%s_evolCovid19_%s_%s.png" %(strDateToday,txtEvol,txtField) displayParam['FileName'] = fname.replace(" ","_") displayParam['YScale'] = yscale return displayParam def loadData(path,field,evolutionType,vSmoothing,startDate=datetime.date(2020, 1,1)): dataParam = {} dataParam['Confirmed'] = pd.read_csv(path+"time_series_covid19_confirmed_global.csv") dataParam['Deaths'] = pd.read_csv(path+"time_series_covid19_deaths_global.csv") dataParam['Recovered'] = pd.read_csv(path+"time_series_covid19_recovered_global.csv") dataParam['Field'] = field dataParam['EvolutionType'] = evolutionType dataParam['Smoothing'] = vSmoothing #dateax = dataParam['Confirmed'].columns[4:].values.astype(str) dateax = dataParam['Deaths'].columns[4:].values.astype(str) # Convert date axis to date vector dates = np.array([dt.datetime.strptime(plof,'%m/%d/%y').date() for plof in dateax]) # Filter axe of dates filterDate = (dates>=startDate) dateax = dateax[filterDate] dates = dates[filterDate] dataParam['FilterDate'] = filterDate dataParam['DateAxis'] = dateax dataParam['Dates'] = dates return dataParam def setFitExtraParam(fittingPeriod, extrapolPeriod,dataParam,iExtrapol): if field=="Confirmed": return [fittingPeriod, 14, iExtrapol] elif field=="Deaths": return [fittingPeriod, 21, iExtrapol] elif field=="Active": return [fittingPeriod, 21, iExtrapol] elif field=="DeathRate": return [fittingPeriod, 21, iExtrapol] ######################## Definition of Functions ############################ dataParam = loadData(path,field,evolutionType,vSmoothing,startDate=startDate) displayParam = setDisplayParam(field,evolutionType,yscale) fitParam = setFitExtraParam(fittingPeriod, extrapolPeriod,dataParam,iExtrapol) close(1) fig = figure(num=1,figsize=(10,6)) ax = fig.add_subplot(111) ax.set_title(displayParam['title']) ax.set_yscale(displayParam['YScale']) ax.set_xlabel("Date") ax.xaxis.set_major_locator(ticker.MultipleLocator(daysInterval)) ax.xaxis.set_minor_locator(ticker.MultipleLocator(1)) ax.set_ylabel(displayParam['YaxisLabel']) ax.legend(loc=2) ax.grid(which='major',color='grey', linestyle='-', linewidth=1) ax.grid(which='minor',color='grey', linestyle='-', linewidth=0.5) fig.tight_layout() savefig(displayParam['FileName'],dpi=600,bbox='tight') show() ```
{ "source": "jferg368/sqlalchemy-redshift", "score": 3 }
#### File: tests/rs_sqla_test_utils/utils.py ```python __author__ = 'haleemur' import re from sqlalchemy_redshift import dialect def clean(query): query = re.sub(r'\s+ENCODE\s+\w+', '', query) query = re.sub(r'\s+CONSTRAINT\s+[a-zA-Z0-9_".]+', '', query) return re.sub(r'\s+', ' ', query).strip() def compile_query(q): return str(q.compile( dialect=dialect.RedshiftDialect(), compile_kwargs={'literal_binds': True}) ) ``` #### File: sqlalchemy-redshift/tests/test_alembic_dialect.py ```python from alembic.ddl.base import RenameTable from alembic import migration from sqlalchemy_redshift import dialect def test_configure_migration_context(): context = migration.MigrationContext.configure( url='redshift+psycopg2://mydb' ) assert isinstance(context.impl, dialect.RedshiftImpl) def test_rename_table(): compiler = dialect.RedshiftDDLCompiler(dialect.RedshiftDialect(), None) sql = compiler.process(RenameTable("old", "new", "scheme")) assert sql == 'ALTER TABLE scheme."old" RENAME TO "new"' ``` #### File: sqlalchemy-redshift/tests/test_compiler.py ```python from sqlalchemy import func, select from sqlalchemy_redshift.dialect import RedshiftDialect def test_func_now(): dialect = RedshiftDialect() s = select([func.NOW().label("time")]) compiled = s.compile(dialect=dialect) assert str(compiled) == "SELECT SYSDATE AS time" ```
{ "source": "jferic/erda", "score": 2 }
#### File: migrations/cmdb/20220519-cluster-scheduler.py ```python import json import django.db.models class CoClusters(django.db.models.Model): """ generated by erda-cli """ id = django.db.models.BigIntegerField() org_id = django.db.models.BigIntegerField() name = django.db.models.CharField() display_name = django.db.models.CharField() type = django.db.models.CharField() cloud_vendor = django.db.models.CharField() logo = django.db.models.TextField() description = django.db.models.TextField() wildcard_domain = django.db.models.CharField() config = django.db.models.TextField() urls = django.db.models.TextField() settings = django.db.models.TextField() scheduler = django.db.models.TextField() opsconfig = django.db.models.TextField() resource = django.db.models.TextField() sys = django.db.models.TextField() created_at = django.db.models.DateTimeField(auto_now=True) updated_at = django.db.models.DateTimeField(auto_now=True, auto_now_add=True) manage_config = django.db.models.TextField() cluster_info = django.db.models.TextField() class Meta: db_table = "co_clusters" def entry(): clusters = CoClusters.objects.all() for cluster in clusters: try: schedConfig = json.loads(cluster.scheduler) schedConfig['enableWorkspace'] = True s = json.dumps(schedConfig) except Execption as e: print("cluster %s json parse error, exception: %s, skip" % (cluster.name, e)) continue cluster.scheduler = s cluster.save() entries: [callable] = [ entry, ] ``` #### File: migrations/pipeline/20220526-fill-cluster-name-for-cron.py ```python import django.db.models import json class PipelineCrons(django.db.models.Model): """ generated by erda-cli """ id = django.db.models.BigIntegerField() application_id = django.db.models.BigIntegerField() branch = django.db.models.CharField() cron_expr = django.db.models.CharField() enable = django.db.models.BooleanField() pipeline_source = django.db.models.CharField() pipeline_yml_name = django.db.models.CharField() base_pipeline_id = django.db.models.BigIntegerField() extra = django.db.models.TextField() time_created = django.db.models.DateTimeField() time_updated = django.db.models.DateTimeField() pipeline_definition_id = django.db.models.CharField() is_edge = django.db.models.BooleanField() cluster_name = django.db.models.CharField() class Meta: db_table = "pipeline_crons" def entry(): """ please implement this and add it to the list entries """ crons = PipelineCrons.objects.all() for cron in crons: if cron.extra is not None: clusterName = "" try: cronExtra = json.loads(cron.extra) if "clusterName" in cronExtra: clusterName = cronExtra["clusterName"] except Exception as e: print("cron extra %s json parse error, exception: %s, skip" % (cluster.name, e)) continue cron.cluster_name = clusterName cron.save() entries: [callable] = [ entry, ] ```
{ "source": "jfernan2/PRInspector", "score": 2 }
#### File: jfernan2/PRInspector/config.py ```python IS_TEST = True REPOSITORY = 'cms-sw/cmssw' def get_repo_url(): return 'https://github.com/' + REPOSITORY + '/' CERN_SSO_CERT_FILE = 'private/cert.pem' CERN_SSO_KEY_FILE = 'private/cert.key' CERN_SSO_COOKIES_LOCATION = 'private/' TWIKI_CONTACTS_URL = 'https://ppdcontacts.web.cern.ch/PPDContacts/ppd_contacts' TWIKI_TAG_COLLECTOR_URL = 'https://twiki.cern.ch/twiki/bin/edit/CMS/DQMP5TagCollector?nowysiwyg=1' TWIKI_TAG_COLLECTOR_CANCEL_EDIT_URL = 'https://twiki.cern.ch/twiki/bin/save/CMS/DQMP5TagCollector' CATEGORIES_MAP_URL = 'https://raw.githubusercontent.com/cms-sw/cms-bot/master/categories_map.py' TWIKI_TIMEOUT_SECONDS = 10 __github_client_id = None __github_client_secret = None def get_github_client_id(): global __github_client_id if __github_client_id == None: __github_client_id = open('private/github_oauth_data.txt', 'r').readlines()[1].strip() return __github_client_id def get_github_client_secret(): global __github_client_secret if __github_client_secret == None: __github_client_secret = open('private/github_oauth_data.txt', 'r').readlines()[2].strip() return __github_client_secret def get_subsystems(): return ['l1t', 'hlt', 'tracker', 'sistrip', 'pixel', 'ecal', 'hcal', 'dt', 'rpc', 'csc', 'ct-pps', 'ctpps', 'bril', 'gem', 'hgcal', 'tracking', 'btag', 'vertexing', 'e-gamma', 'jetmet', 'lumi', 'muon', 'tau', 'generators', 'hfnose', 'beamspot', 'jme', 'jet', 'eventdisplay', 'castor', 'validation', ] ``` #### File: PRInspector/services/cern_sso_service.py ```python import requests from urllib.parse import urlparse, urljoin import xml.etree.ElementTree as ET DEFAULT_TIMEOUT_SECONDS = 10 def _init_session(s, url, cookiejar, auth_url_fragment): """ Internal helper function: initialise the sesion by trying to access a given URL, setting up cookies etc. :param: auth_url_fragment: a URL fragment which will be joined to the base URL after the redirect, before the parameters. Examples are auth/integrated/ (kerberos) and auth/sslclient/ (SSL) """ if cookiejar is not None: # log.debug("Using provided cookiejar") s.cookies = cookiejar # Try getting the URL we really want, and get redirected to SSO # log.info("Fetching URL: %s" % url) r1 = s.get(url, timeout=DEFAULT_TIMEOUT_SECONDS) # Parse out the session keys from the GET arguments: redirect_url = urlparse(r1.url) # log.debug("Was redirected to SSO URL: %s" % str(redirect_url)) # ...and inject them into the Kerberos authentication URL final_auth_url = "{auth_url}?{parameters}".format( auth_url=urljoin(r1.url, auth_url_fragment), parameters=redirect_url.query) return final_auth_url def _finalise_login(s, auth_results): """ Perform the final POST authentication steps to fully authenticate the session, saving any cookies in s' cookie jar. """ r2 = auth_results # Did it work? Raise Exception otherwise. r2.raise_for_status() # Get the contents try: tree = ET.fromstring(r2.content) except ET.ParseError as e: # log.error("Could not parse response from server!") # log.error("The contents returned was:\n{}".format(r2.content)) raise e action = tree.findall("body/form")[0].get('action') # Unpack the hidden form data fields form_data = dict(( (elm.get('name'), elm.get('value')) for elm in tree.findall("body/form/input"))) # ...and submit the form (WHY IS THIS STEP EVEN HERE!?) # log.debug("Performing final authentication POST to %s" % action) r3 = s.post(url=action, data=form_data, timeout=DEFAULT_TIMEOUT_SECONDS) # Did _that_ work? r3.raise_for_status() # The session cookie jar should now contain the necessary cookies. # log.debug("Cookie jar now contains: %s" % str(s.cookies)) return s.cookies def cert_sign_on(url, cert_file, key_file, cookiejar={}): """ Perform Single-Sign On with a robot/user certificate specified by cert_file and key_file agains the target url. Note that the key needs to be passwordless. cookiejar, if provided, will be used to store cookies, and can be a Requests CookieJar, or a MozillaCookieJar. Or even a dict. Cookies will be returned on completion, but cookiejar will also be modified in-place. If you have a PKCS12 (.p12) file, you need to convert it. These steps will not work for passwordless keys. `openssl pkcs12 -clcerts -nokeys -in myCert.p12 -out ~/private/myCert.pem` `openssl pkcs12 -nocerts -in myCert.p12 -out ~/private/myCert.tmp.key` `openssl rsa -in ~/private/myCert.tmp.key -out ~/private/myCert.key` Note that the resulting key file is *unencrypted*! """ with requests.Session() as s: # Set up the certificates (this needs to be done _before_ any # connection is opened!) s.cert = (cert_file, key_file) cert_auth_url = _init_session(s=s, url=url, cookiejar=cookiejar, auth_url_fragment=u"auth/sslclient/") # log.info("Performing SSL Cert authentication against %s" # % cert_auth_url) r2 = s.get(cert_auth_url, cookies=cookiejar, verify=False, timeout=DEFAULT_TIMEOUT_SECONDS) return _finalise_login(s, auth_results=r2) ``` #### File: PRInspector/services/twiki_service.py ```python from services.cern_sso_service import cert_sign_on import hashlib import requests import pickle import config import re def get_contacts_list_html(errors=[]): return __get_with_timeout(config.TWIKI_CONTACTS_URL, errors) def get_tag_collector_html(errors=[]): cookies = __get_and_save_cookies(config.TWIKI_TAG_COLLECTOR_URL) text = __get_with_timeout(config.TWIKI_TAG_COLLECTOR_URL, errors=errors, cookies=cookies) try: # Cancel editing so other people can access the edit page requests.post(config.TWIKI_TAG_COLLECTOR_CANCEL_EDIT_URL, cookies=cookies, data = {'action_cancel': 'Cancel'}) except requests.exceptions.RequestException: errors.append('Error canceling tag collector edit by posting <a href="%s" target="_blank" class="alert-link">here</a>'%(config.TWIKI_TAG_COLLECTOR_CANCEL_EDIT_URL)) if ('action="https://twiki.cern.ch/Shibboleth.sso/ADFS"' in text or 'document.forms[0].submit()' in text or 'Sign in with your CERN account' in text): cookies = __get_and_save_cookies(config.TWIKI_TAG_COLLECTOR_URL, True) text = __get_with_timeout(config.TWIKI_TAG_COLLECTOR_URL, errors=errors, cookies=cookies) text = text.replace('&#42;', '*') text = text.replace('&#37;', '%') text = text.replace('&#91;', '[') return text def get_author_mentioned_info(author, html): git_user_str = 'Git: [[https://github.com/%s][%s]]'%(author, author) if git_user_str in html: return { 'text': 'Author is known', 'class': 'text-success', 'description': "Author's Github username is mentioned in DQM Contacts Twiki page" } elif author in html: return { 'text': 'Author is mentioned', 'class': 'text-warning', 'description': "Author's Github username appears in DQM Contacts Twiki page, but it wasn't entered deliberately. This might be a coinsidence" } else: return { 'text': 'Author is unknown', 'class': 'text-danger', 'description': "Author's Github username doesn't appear in DQM Contacts Twiki page" } def get_tag_collector_info(pr_number, html): regex_ok = r'%OK%([^%\n]*?)\]\[PR ' + str(pr_number) + r'\]\]' m_ok = re.compile(regex_ok) regex_prod = r'%PROD%([^%\n]*?)\]\[PR ' + str(pr_number) + r'\]\]' m_prod = re.compile(regex_prod) regex_notok = r'%NOTOK%([^%\n]*?)\]\[PR ' + str(pr_number) + r'\]\]' m_notok = re.compile(regex_notok) regex_mentioned = r'\*([^%\n]*?)\]\[PR ' + str(pr_number) + r'\]\]' m_mentioned = re.compile(regex_mentioned) if m_ok.search(html) or m_prod.search(html): return { 'tested': True, 'text': 'Tested in Playback', 'class': 'text-success', 'description': "This PR was tested in playback system and tests passed" } elif m_notok.search(html): return { 'tested': False, 'text': 'Rejected in Playback', 'class': 'text-danger', 'description': "This PR was tested and rejected in playback system" } elif m_mentioned.search(html): return { 'tested': False, 'text': 'Mentioned in Playback', 'class': 'text-warning', 'description': "This PR is mentioned in the playback system but it is not yet tested" } else: return { 'tested': False, 'text': 'Not mentioned in Playback', 'class': 'text-secondary', 'description': "This PR was does not appear in Tag Collector page" } def __get_and_save_cookies(url, force_reload=False): hash = hashlib.md5(url.encode()).hexdigest() file = config.CERN_SSO_COOKIES_LOCATION + hash + '_cookies.p' cookies = None if not force_reload: try: cookies = pickle.load(open(file, 'rb')) except: pass if cookies == None: cookies = cert_sign_on(url, cert_file=config.CERN_SSO_CERT_FILE, key_file=config.CERN_SSO_KEY_FILE, cookiejar=None) pickle.dump(cookies, open(file, 'wb')) return cookies def __get_with_timeout(url, errors=[], cookies=None): try: return requests.get(url, cookies=cookies, timeout=config.TWIKI_TIMEOUT_SECONDS).text except requests.exceptions.Timeout: errors.append('<a href="%s" target="_blank" class="alert-link">%s</a> load timeouted after %s seconds. Content related to data from mentioned page is presented incorrectly.'%(url, url, config.TWIKI_TIMEOUT_SECONDS)) return '' except requests.exceptions.RequestException as e: errors.append('Error loading <a href="%s" target="_blank" class="alert-link">%s</a>. Content related to data from mentioned page is presented incorrectly.'%(url, url)) print(e) return '' ``` #### File: PRInspector/views/prs.py ```python from flask import Flask, make_response, render_template, request, redirect from services.github_service import get_prs, get_merged_prs, get_last_comment, exchange_code_to_token, get_not_merged_prs_count, get_dqm_categories from services.pr_info_service import get_subsystem_in_title_info from services.twiki_service import get_contacts_list_html, get_tag_collector_html, get_author_mentioned_info, get_tag_collector_info import config import urllib.request import json def get_prs_view(code): if code != None and code != '': access_token = exchange_code_to_token(code) if access_token != None and access_token != '': # Save cookie and redirect user to main page (without code parameter) resp = make_response(redirect('/')) resp.set_cookie('access_token', access_token) return resp else: access_token = request.cookies.get('access_token') prs = get_prs(access_token) merged_prs = get_merged_prs(access_token) # Init key for additional properties for pr in prs: pr['additional'] = {} pr['additional']['merged'] = False # Init key for additional properties for pr in merged_prs: pr['additional'] = {} pr['additional']['merged'] = True # Add merged and not merged PRs to one list prs += merged_prs # Define errors that will be displayd in frontend errors = [] # Check if subsystem was mentioned in the title for pr in prs: pr['additional']['subsystem'] = get_subsystem_in_title_info(pr['title']) # Check if author is in contacts list contacts_html = get_contacts_list_html(errors) for pr in prs: pr['additional']['author'] = get_author_mentioned_info(pr['user']['login'], contacts_html) # Check if pr is tested in tag collector # tag_collector_html = get_tag_collector_html(errors) tag_collector_html = '' for pr in prs: pr['additional']['tag_collector'] = get_tag_collector_info(pr['number'], tag_collector_html) # Chose correct background color based on test state for pr in prs: pr['additional']['background'] = 'bg-white' if pr['additional']['merged'] == True: pr['additional']['background'] = 'bg-action-needed' elif any(x for x in pr['labels'] if x['name'] == 'tests-pending'): pr['additional']['background'] = 'bg-action-needed' elif any(x for x in pr['labels'] if x['name'] == 'tests-approved') and pr['additional']['tag_collector']['tested']: pr['additional']['background'] = 'bg-ready' elif any(x for x in pr['labels'] if x['name'] == 'hold'): pr['additional']['background'] = 'bg-hold' return make_response(render_template('index.html', prs=prs, access_token=access_token, oauth_client_id=config.get_github_client_id(), not_merged_prs_count=get_not_merged_prs_count(access_token), dqm_categories=get_dqm_categories(), errors = errors)) ```
{ "source": "JFernandez1995/hiring-engineers", "score": 2 }
#### File: JFernandez1995/hiring-engineers/checkvalue.py ```python from checks import AgentCheck import random class HelloCheck(AgentCheck): def check(self, instance): self.gauge('my_metric2', random.randint(0,1000)) ```