metadata
dict
text
stringlengths
60
3.49M
{ "source": "jfjlaros/online-array", "score": 3 }
#### File: online-array/online_array/__init__.py ```python import argparse import os from .online_array import OnlineArray, online_array, unbounded_online_array from .utils import fill_array __version_info__ = ('0', '0', '1') __version__ = '.'.join(__version_info__) __author__ = '<NAME>' __contact__ = '<EMAIL>' __homepage__ = 'https://github.com/jfjlaros/online-array.git' usage = __doc__.split('\n\n\n') class ProtectedFileType(argparse.FileType): def __call__(self, string): if 'w' in self._mode and os.path.exists(string): raise IOError('failed to create "{}": file exists.'.format(string)) return super(ProtectedFileType, self).__call__(string) def doc_split(func): return func.__doc__.split('\n\n')[0] def version(name): return '{} version {}\n\nAuthor : {} <{}>\nHomepage : {}'.format( name, __version__, __author__, __contact__, __homepage__) ```
{ "source": "jfjlaros/ordered-map", "score": 3 }
#### File: ordered-map/tests/test_library.py ```python from ordered_map.ordered_map import ( _deserialise, _from_list, _merge, _serialise, _to_list) from ordered_map import read, write def test_deserialise() -> None: assert _deserialise('a.b=c\n') == {'a': {'b': 'c'}} assert _deserialise('a.b=c') == {'a': {'b': 'c'}} assert _deserialise('a.b = c') == {'a': {'b': 'c'}} assert _deserialise('a.b.c=d') == {'a': {'b': {'c': 'd'}}} def test_serialise() -> None: assert _serialise({'a': {'b': 'c'}}) == 'a.b=c\n' assert _serialise({'a': {'b': {'c': 'd'}}}) == 'a.b.c=d\n' def test_merge() -> None: assert _merge({'a': 'b'}, {'x': 'y'}) == {'a': 'b', 'x': 'y'} assert _merge({'a': 'b'}, {'a': 'y'}) == {'a': {'b', 'y'}} assert _merge({'a': {'b': 'c'}}, {'a': {'y': 'z'}}) == { 'a': {'b': 'c', 'y': 'z'}} assert _merge({'a': {'b': 'c'}}, {'a': {'b': 'z'}}) == { 'a': {'b': {'c', 'z'}}} def test_to_list() -> None: assert _to_list({'0': 'a'}) == ['a'] assert _to_list({'1': 'a'}) == {'1': 'a'} assert _to_list({'0': 'a', '1': 'b'}) == ['a', 'b'] assert _to_list({'1': 'a', '0': 'b'}) == ['b', 'a'] assert _to_list({'0': 'a', '2': 'b'}) == {'0': 'a', '2': 'b'} assert _to_list({'a': {'0', '1'}}) == {'a': {'0', '1'}} assert _to_list({'a': {'0': 'x', '1': 'y'}}) == {'a': ['x', 'y']} assert _to_list({'0': {'a': 'b'}, '1': {'x': 'y'}}) == [ {'a': 'b'}, {'x': 'y'}] def test_from_list() -> None: assert _from_list(['a']) == {'0': 'a'} assert _from_list({'1': 'a'}) == {'1': 'a'} assert _from_list(['a', 'b']) == {'0': 'a', '1': 'b'} assert _from_list(['b', 'a']) == {'1': 'a', '0': 'b'} assert _from_list({'0': 'a', '2': 'b'}) == {'0': 'a', '2': 'b'} assert _from_list({'a': {'0', '1'}}) == {'a': {'0', '1'}} assert _from_list({'a': ['x', 'y']}) == {'a': {'0': 'x', '1': 'y'}} assert _from_list([{'a': 'b'}, {'x': 'y'}]) == { '0': {'a': 'b'}, '1': {'x': 'y'}} def test_read_skip() -> None: assert read('') == [] assert read('\n') == [] assert read('\r') == [] assert read('# Comment.') == [] assert read(' a=b') == [] assert read('\ta=b') == [] def test_read_single() -> None: assert read('a=b') == {'a': 'b'} def test_read_multi() -> None: assert read('a=b\nx=y') == {'a': 'b', 'x': 'y'} def test_write_skip() -> None: assert write({}) == '' assert write([]) == '' def test_write_single() -> None: assert write({'a': 'b'}) == '{}\na=b\n'.format(62 * '#') def test_write_multi() -> None: assert write({'a': 'b', 'x': 'y'}) == '{}\na=b\n{}\nx=y\n'.format( 62 * '#', 62 * '#') ```
{ "source": "jfjlaros/snvmixtools", "score": 3 }
#### File: snvmixtools/snvmixtools/snvmix_parse.py ```python class SNVMixRecord(object): def __init__(self, line): """ :param line: a line of SNVMix2 output :type line: str """ data = line.strip().split() location = data[0].split(':') self.chromosome = location[0] self.position = int(location[1]) self.reference = data[1] self.alternative = data[2] details = data[3].split(',') self.reference_count = int(details[0].split(':')[1]) self.alternative_count = int(details[1].split(':')[1]) self.genotype_likelihood = map(float, details[2:5]) self.genotype = int(details[5]) #__init__ def __str__(self): return "{}:{} {} {} {}:{},{}:{},{},{}\n".format( self.chromosome, self.position, self.reference, self.alternative, self.reference, self.reference_count, self.alternative, self.alternative_count, ",".join(map("{:.10f}".format, self.genotype_likelihood)), self.genotype) #SNVMixRecord def walker(handle): """ """ for line in handle.readlines(): yield SNVMixRecord(line) #walker ```
{ "source": "jfjlaros/spreadscript", "score": 2 }
#### File: spreadscript/spreadscript/spreadscript.py ```python import os import subprocess import uno import unohelper from com.sun.star.connection import NoConnectException from com.sun.star.lang import IllegalArgumentException class SpreadScript(object): def __init__(self, file_name=None): """Initialise the class. :arg str file_name: File name. """ self._desktop = None self._start_soffice() self._connect_soffice() if file_name: self.open(file_name) def __del__(self): """Close the soffice instance.""" if self._desktop: self.close() def _start_soffice(self): """Start soffice in the background.""" process_id = os.fork() if not process_id: subprocess.call( 'soffice --accept="socket,host=localhost,port=2002;urp;" ' + '--norestore --nologo --nodefault --headless', shell=True) exit() def _connect_soffice(self): """Connect to a running soffice instance.""" context = uno.getComponentContext() resolver = context.ServiceManager.createInstanceWithContext( 'com.sun.star.bridge.UnoUrlResolver', context) while True: try: context = resolver.resolve( 'uno:socket,host=localhost,port=2002;urp;' + 'StarOffice.ComponentContext') except NoConnectException: pass else: break self._desktop = context.ServiceManager.createInstanceWithContext( 'com.sun.star.frame.Desktop', context) def _get_cell_text(self, column, row): return self._interface.getCellByPosition(column, row).getString() def _get_cell_value(self, column, row): return self._interface.getCellByPosition(column, row).getValue() def _get_cell_formula(self, column, row): return self._interface.getCellByPosition(column, row).getFormula() def _get_link(self, column, row): return self._get_cell_formula(column, row)[1:].replace( '$', '').split('.') def _set_cell_value(self, sheet, cell, value): self._sheets.getByName(sheet).getCellRangeByName(cell).setValue(value) def _read_table(self, column): """Read names and values from a table. :arg int column: Upper-left coordinate of the table content. :returns dict: Table content. """ inputs = {} row = 3 while True: name = self._get_cell_text(column, row) value = self._get_cell_value(column + 1, row) if not name: break inputs[name] = value row += 1 return inputs def _write_table(self, column, data): """Write values to a table. :arg int column: Upper-left coordinate of the table content. :arg dict data: Data to be written. """ row = 3 while True: name = self._get_cell_text(column, row) if not name: break if name in data: sheet, cell = self._get_link(column + 1, row) self._set_cell_value(sheet, cell, data[name]) row += 1 def open(self, file_name): """Open a spreadsheet. :arg str file_name: File name. """ doc_url = unohelper.systemPathToFileUrl(os.path.abspath(file_name)) try: self._desktop.loadComponentFromURL(doc_url, '_blank', 0, ()) except IllegalArgumentException as error: raise ValueError('no such file or format not supported') self._sheets = self._desktop.getCurrentComponent().Sheets if 'Interface' not in self._sheets: raise ValueError('no sheet named "Interface" found') self._interface = self._sheets.Interface def close(self): """Close the soffice instance.""" self._desktop.terminate() def read_input(self): return self._read_table(1) def write_input(self, data): self._write_table(1, data) def read_output(self): return self._read_table(4) ```
{ "source": "jf---/joplin-api", "score": 2 }
#### File: joplin-api/tests/test_resources.py ```python import pytest import json from joplin_api import JoplinApi @pytest.mark.asyncio async def test_get_resources(get_token): joplin = JoplinApi(token=get_token) res = await joplin.get_resources() assert res.status_code == 200 @pytest.mark.asyncio async def test_create_get_update_delete_download_resource(get_token): joplin = JoplinApi(token=get_token) properties = {'title': 'test resource'} assert 'title' in properties file_name = 'tests/cactus.png' res = await joplin.create_resource(file_name, **properties) resource_id = json.loads(res.text)['id'] assert res.status_code == 200 res = await joplin.get_resource(resource_id) assert res.status_code == 200 properties = {'title': 'test update resource'} file_name = 'tests/update_cactus.png' res = await joplin.update_resources(resource_id, **properties) assert res.status_code == 200 res = await joplin.download_resources(resource_id) assert res.status_code == 200 res = await joplin.delete_resources(resource_id) assert res.status_code == 200 ```
{ "source": "jfk1408/msbase.py", "score": 2 }
#### File: msbase.py/msbase/subprocess_.py ```python import subprocess import os import sys import traceback import glob from os.path import join from multiprocessing import Pool, Value import multiprocessing import time from termcolor import cprint from threading import Thread from queue import Queue, Empty from msbase.logging import logger def timed(func): def function_wrapper(*args, **kwargs): now = time.time() ret = func(*args, **kwargs) logger.info("%s(%s, %s) spent %.2fs" % (func.__qualname__, args, kwargs, time.time() - now)) return ret return function_wrapper ON_POSIX = 'posix' in sys.builtin_module_names def enqueue_output(out, queue): for line in iter(out.readline, b''): queue.put(line) out.close() def call_std(args, cwd=None, env={}, output=True, timeout_s=None): if output: p = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE, bufsize=1, close_fds=ON_POSIX, cwd=cwd, env=dict(os.environ, **env)) start_time = time.time() stdout = "" q_stdout = Queue() t_stdout = Thread(target=enqueue_output, args=(p.stdout, q_stdout)) t_stdout.daemon = True t_stdout.start() stderr = "" q_stderr = Queue() t_stderr = Thread(target=enqueue_output, args=(p.stderr, q_stderr)) t_stderr.daemon = True t_stderr.start() while True: return_code = p.poll() if return_code is not None: break try: stdout_line = str(q_stdout.get_nowait(), "utf-8") except Empty: stdout_line = '' try: stderr_line = str(q_stderr.get_nowait(), "utf-8") except Empty: stderr_line = '' if stdout_line: stdout += stdout_line logger.info(stdout_line.rstrip()) if stderr_line: stderr += stderr_line logger.warning(stderr_line.rstrip()) if timeout_s is not None and time.time() - start_time > timeout_s: p.kill() return (-1, "", "TIMEOUT!") while True: try: stdout_line = str(q_stdout.get(timeout=.1), "utf-8") except Empty: break stdout += stdout_line logger.info(stdout_line.rstrip()) if timeout_s is not None and time.time() - start_time > timeout_s: p.kill() return (-1, "", "TIMEOUT!") while True: try: stderr_line = str(q_stderr.get(timeout=.1), "utf-8") except Empty: break stderr += stderr_line logger.warning(stderr_line.rstrip()) if timeout_s is not None and time.time() - start_time > timeout_s: p.kill() return (-1, "", "TIMEOUT!") return (return_code, stdout, stderr) else: code = subprocess.call(args, cwd=cwd, env=dict(os.environ, **env), timeout=timeout_s) return (code, None, None) @timed def try_call_std(args, cwd=None, env={}, verbose=True, output=True, noexception=False, timeout_s=None): '''An asynchronously logged process executor that returns essential information all you need ''' if verbose: cprint("+ " + " ".join(args), "blue") code, stdout, stderr = call_std(args, cwd, env, output, timeout_s=timeout_s) if not noexception and code != 0: if verbose: print("STDOUT: ") print(stdout) print("STDERR: ") cprint(stderr, "red") raise Exception(str(code) + ": calling " + " ".join(args) + " failed") else: return stdout, stderr, code def multiprocess(task, inputs, n: int, verbose=True, return_dict=True, throws=False, debug_mode=False): '''How to use this effectively: 1. Use debug_mode=True to switch to tracked for-loop ''' if debug_mode: results = [] for arg in inputs: start_time = time.time() logger.info("Working on %s" % arg) results.append(task(arg)) logger.info("Time spent: %.2f" % (time.time() - start_time)) return results counter = Value('i', 0) total = float(len(inputs)) start_time = time.time() global run def run(input): with counter.get_lock(): if verbose: logger.info("%fs - progress: %f" % (time.time() - start_time, counter.value / total)) counter.value += 1 try: return (True, task(input)) except Exception as e: return (False, "%s\n%s" % (e, traceback.format_exc())) with Pool(n) as p: results = p.map(run, inputs) if verbose: logger.info("total spent time: %f" % (time.time() - start_time)) if throws: ret = [] for ok, r in results: if not ok: raise Exception(str(r)) ret.append(r) return ret if return_dict: return dict(zip(inputs, results)) else: return results ```
{ "source": "JFK24/seqQscorer", "score": 3 }
#### File: example_dataset/reads_annotation/utils.py ```python import subprocess def getSystemCall(call): process = subprocess.Popen(call, stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, err = process.communicate() out = out.decode(locale.getdefaultlocale()[1]) err = err.decode(locale.getdefaultlocale()[1]) if process.returncode: print("call failed, call was: %s" % ' '.join(call), file=sys.stderr) print("Message was: %s" % str(out), file=sys.stderr) print("Error code was %s, stderr: %s" % (process.returncode, err), file=sys.stderr, end='') raise Exception('runSystemCall Exception') return out, err ``` #### File: seqQscorer/utils/parser.py ```python import os import numpy as np import pandas as pd global FastQC_value_map FastQC_value_map = {'FAIL': 0, 'WARN': 1, 'PASS': 2} def get_FastQC_features(feature_file_path): features = {} with open(feature_file_path, 'r') as feature_file: for line in feature_file: line = line.strip().split('\t') feature_name = line[1].replace(' ', '_') value = FastQC_value_map.get(line[0], np.nan) features['FastQC_'+feature_name] = value return features def parse_BowtieSE(lines): lines = lines.split('\n') features = {} features['BowtieSE_no_mapping'] = float(lines[2].split('(')[1].split('%')[0]) features['BowtieSE_uniquely'] = float(lines[3].split('(')[1].split('%')[0]) features['BowtieSE_multiple'] = float(lines[4].split('(')[1].split('%')[0]) features['BowtieSE_overall'] = float(lines[5].split('%')[0]) # for mixed Bowtie features['BowtieMI_no_mapping'] = features['BowtieSE_no_mapping'] features['BowtieMI_uniquely'] = features['BowtieSE_uniquely'] features['BowtieMI_multiple'] = features['BowtieSE_multiple'] features['BowtieMI_overall'] = features['BowtieSE_overall'] return features def parse_BowtiePE(lines): lines = lines.split('\n') features = {} features['BowtiePE_con_no_mapping'] = float(lines[2].split('(')[1].split('%')[0]) features['BowtiePE_con_uniquely'] = float(lines[3].split('(')[1].split('%')[0]) features['BowtiePE_con_multiple'] = float(lines[4].split('(')[1].split('%')[0]) features['BowtiePE_dis_uniquely'] = float(lines[7].split('(')[1].split('%')[0]) features['BowtiePE_cod_no_mapping'] = float(lines[11].split('(')[1].split('%')[0]) features['BowtiePE_cod_uniquely'] = float(lines[12].split('(')[1].split('%')[0]) features['BowtiePE_cod_multiple'] = float(lines[13].split('(')[1].split('%')[0]) features['BowtiePE_overall'] = float(lines[14].split('%')[0]) # for mixed Bowtie features['BowtieMI_no_mapping'] = features['BowtiePE_con_no_mapping'] features['BowtieMI_uniquely'] = features['BowtiePE_con_uniquely'] features['BowtieMI_multiple'] = features['BowtiePE_con_multiple'] features['BowtieMI_overall'] = features['BowtiePE_overall'] # for SE Bowtie features['BowtieSE_no_mapping'] = features['BowtiePE_con_no_mapping'] features['BowtieSE_uniquely'] = features['BowtiePE_con_uniquely'] features['BowtieSE_multiple'] = features['BowtiePE_con_multiple'] features['BowtieSE_overall'] = features['BowtiePE_overall'] return features def get_Bowtie_features(feature_file_path): lines = open(feature_file_path, 'r').read() if 'concordantly' in lines and 'discordantly' in lines: return parse_BowtiePE(lines) else: return parse_BowtieSE(lines) def get_readsAnno_features(feature_file_path): features = {} with open(feature_file_path, 'r') as f: f.readline() for line in f: line = line.strip().split('\t') feature_name = line[1] feature_name = feature_name.replace('"', '') feature_name = feature_name.replace("'", '') feature_name = feature_name.replace(' (<=300)', '') feature_name = feature_name.replace(' ', '_') feature_name = 'readsAnno_'+feature_name features[feature_name] = float(line[2]) return features def get_TSS_features(feature_file_path): tss = pd.read_csv(feature_file_path, sep='\t') tss_dist = list(map(str,tss['tss_dist'])) feature_names = ['TSS_'+name if name[0] == '-' else 'TSS_+'+name for name in tss_dist] feature_values = list(tss['perc']) return dict(zip(feature_names, feature_values)) ```
{ "source": "jfkcooper/SScanSS-2", "score": 4 }
#### File: core/geometry/colour.py ```python from ..math.vector import Vector4 from ..math.misc import clamp class Colour: """Creates Colour object that represents a normalized [0, 1] RGBA colour. :param red: Red channel value between 0 and 1 :type red: float :param green: Green channel value between 0 and 1 :type green: float :param blue: Blue channel value between 0 and 1 :type blue: float :param alpha: Alpha channel value between 0 and 1. :type alpha: float """ def __init__(self, red, green, blue, alpha=1.0): self.__colour = Vector4() self.r = red self.g = green self.b = blue self.a = alpha @property def r(self): """Gets and sets value of red channel :return: red value :rtype: float """ return self.__colour.x @r.setter def r(self, value): self.__colour.x = clamp(value) @property def g(self): """Gets and sets value of green channel :return: green value :rtype: float """ return self.__colour.y @g.setter def g(self, value): self.__colour.y = clamp(value) @property def b(self): """Gets and sets value of blue channel :return: blue value :rtype: float """ return self.__colour.z @b.setter def b(self, value): self.__colour.z = clamp(value) @property def a(self): """Gets and sets value of alpha channel :return: alpha value :rtype: float """ return self.__colour.w @a.setter def a(self, value): self.__colour.w = clamp(value) def invert(self): """Inverts the RGB channels i.e (1-r, 1-g, 1-b, a) of colour :return: inverse of colour :rtype: Colour """ return Colour(1 - self.r, 1 - self.g, 1 - self.b, self.a) @property def rgba(self): """Gets un-normalized colour values :return: un-normalized RGBA colour [0-255] :rtype: numpy.ndarray """ return (self.__colour[:] * 255).astype(int) @property def rgbaf(self): """Gets normalized colour values :return: normalized RGBA colour [0-1] :rtype: numpy.ndarray """ return self.__colour[:] @staticmethod def normalize(red=0, green=0, blue=0, alpha=255): """Create Colour object by converting to normalized RGBA from un-normalized values :param red: Red channel value between 0 and 255 :type red: int :param green: Green channel value between 0 and 255 :type green: int :param blue: Blue channel value between 0 and 255 :type blue: int :param alpha: Alpha channel value between 0 and 255. :type alpha: int :return: normalized RGBA colour :rtype: Colour """ return Colour(red / 255, green / 255, blue / 255, alpha / 255) @staticmethod def white(): """Creates white colour :return: white colour :rtype: Colour """ return Colour(1.0, 1.0, 1.0) @staticmethod def black(): """Creates black colour :return: black colour :rtype: Colour """ return Colour(0.0, 0.0, 0.0) def __getitem__(self, index): return self.__colour[index] def __str__(self): return f'rgba({self.r}, {self.g}, {self.b}, {self.a})' def __repr__(self): return f'Colour({self.r}, {self.g}, {self.b}, {self.a})' ``` #### File: core/geometry/volume.py ```python from enum import Enum, unique import numpy as np from scipy.interpolate import CubicSpline, interp1d from ..math.matrix import Matrix44 class Curve: """Creates a Curve object used to generate transfer function for volumes :param inputs: input volume intensities :type inputs: numpy.ndarray :param outputs: output colour alpha :type outputs: numpy.ndarray :param bounds: minimum and maximum intensity in volume :type bounds: Tuple[float, float] :param curve_type: Type of fir for curve :type curve_type: Curve.Type """ @unique class Type(Enum): """Type of curve""" Cubic = 'Cubic' Linear = 'Linear' def __init__(self, inputs, outputs, bounds, curve_type): self.inputs = inputs self.outputs = outputs self.bounds = bounds self.type = curve_type self.f = None self.transfer_function = np.tile(np.linspace(0.0, 1.0, num=256, dtype=np.float32)[:, None], (1, 4)) if len(inputs) > 1: if curve_type == self.Type.Cubic: self.f = CubicSpline(inputs, outputs) else: self.f = interp1d(inputs, outputs, kind='linear', bounds_error=False, assume_sorted=True) value = self.evaluate(np.linspace(bounds[0], bounds[-1], num=256)) self.transfer_function[:, 3] = value self.transfer_function = self.transfer_function.flatten() def evaluate(self, inputs): """Computes the outputs alpha values for the input intensity :param inputs: input volume intensities :type inputs: numpy.ndarray :return: output colour alpha :rtype: numpy.ndarray """ if self.f is None: outputs = np.clip(np.full(len(inputs), self.outputs[0]), 0.0, 1.0) else: outputs = np.clip(self.f(inputs), 0.0, 1.0) outputs[inputs < self.inputs[0]] = self.outputs[0] outputs[inputs > self.inputs[-1]] = self.outputs[-1] return outputs class Volume: """Creates a Volume object. This is the result of loading in a tomography scan, either from a nexus file, or a set of TIFF files. It is the equivalent of the mesh object but for tomography data :param data: N x M x L array of intensities, created by stacking L TIFF images, each of dimension N x M :type data: numpy.ndarray :param x: N array of pixel coordinates :type x: numpy.ndarray :param y: M array of pixel coordinates :type y: numpy.ndarray :param z: L array of pixel coordinates :type z: numpy.ndarray """ def __init__(self, data, x, y, z): self.data = data self.x = x self.y = y self.z = z self.histogram = np.histogram(data, bins=256) inputs = np.array([self.histogram[1][0], self.histogram[1][-1]]) outputs = np.array([0.0, 1.0]) if inputs[0] == inputs[1]: inputs = inputs[1:] outputs = outputs[1:] self.curve = Curve(inputs, outputs, inputs, Curve.Type.Cubic) x_spacing = (x[-1] - x[0]) / (len(x) - 1) y_spacing = (y[-1] - y[0]) / (len(y) - 1) z_spacing = (z[-1] - z[0]) / (len(z) - 1) x_origin = x[0] + (x[-1] - x[0]) / 2 y_origin = y[0] + (y[-1] - y[0]) / 2 z_origin = z[0] + (z[-1] - z[0]) / 2 self.voxel_size = np.array([x_spacing, y_spacing, z_spacing], np.float32) self.transform = Matrix44.fromTranslation([x_origin, y_origin, z_origin]) @property def shape(self): """Returns shape of volume i.e. width, height, depth :return: shape of volume :rtype: Tuple[int, int, int] """ return self.data.shape @property def extent(self): """Returns extent or diagonal of volume :return: extent of volume :rtype: numpy.ndarray[float] """ return self.voxel_size * self.shape ``` #### File: sscanss/editor/dialogs.py ```python import json import numpy as np from PyQt5 import QtCore, QtGui, QtWidgets from sscanss.core.instrument import Link, circle_point_analysis, generate_description from sscanss.core.math import clamp from sscanss.core.util import create_scroll_area from .widgets import ScriptWidget, JawsWidget, PositionerWidget, DetectorWidget class Controls(QtWidgets.QDialog): """Creates a widget that creates and manages the instrument control widgets. The widget creates instrument controls if the instrument description file is correct, otherwise the widget will be blank. :param parent: main window instance :type parent: MainWindow """ def __init__(self, parent): super().__init__(parent) self.parent = parent self.setWindowTitle('Instrument Control') layout = QtWidgets.QVBoxLayout() self.setLayout(layout) self.tabs = QtWidgets.QTabWidget() self.tabs.setMinimumWidth(600) self.tabs.setMinimumHeight(600) self.tabs.tabBarClicked.connect(self.updateTabs) layout.addWidget(self.tabs) self.last_tab_index = 0 self.last_stack_name = '' self.last_collimator_name = {} def createWidgets(self): """Creates widgets for positioner, jaws, detector, and script""" self.tabs.clear() positioner_widget = PositionerWidget(self.parent) if self.last_stack_name and self.last_stack_name in self.parent.instrument.positioning_stacks.keys(): positioner_widget.changeStack(self.last_stack_name) positioner_widget.stack_combobox.activated[str].connect(self.setStack) self.tabs.addTab(create_scroll_area(positioner_widget), 'Positioner') self.tabs.addTab(create_scroll_area(JawsWidget(self.parent)), 'Jaws') collimator_names = {} for name in self.parent.instrument.detectors: pretty_name = name if name.lower() == 'detector' else f'{name} Detector' detector_widget = DetectorWidget(self.parent, name) self.tabs.addTab(create_scroll_area(detector_widget), pretty_name) collimator_name = self.last_collimator_name.get(name, '') if collimator_name: collimator_names[name] = collimator_name detector_widget.combobox.setCurrentText(collimator_name) detector_widget.changeCollimator() detector_widget.collimator_changed.connect(self.setCollimator) self.last_collimator_name = collimator_names self.script_widget = ScriptWidget(self.parent) self.tabs.addTab(create_scroll_area(self.script_widget), 'Script') self.tabs.setCurrentIndex(clamp(self.last_tab_index, 0, self.tabs.count())) def reset(self): """Resets stored states""" self.last_tab_index = 0 self.last_stack_name = '' self.last_collimator_name = {} def setStack(self, stack_name): """Stores the last loaded positioning stack. This preserves the active stack between description file modifications :param stack_name: name of active positioning stack :type stack_name: str """ self.last_stack_name = stack_name def setCollimator(self, detector, collimator_name): """Stores the last loaded collimator on a detector. This preserves the active collimator between description file modifications :param detector: name of detector :type detector: str :param collimator_name: name of active collimator :type collimator_name: str """ self.last_collimator_name[detector] = collimator_name def updateTabs(self, index): """Stores the last open tab. :param index: tab index :type index: int """ self.last_tab_index = index if self.tabs.tabText(index) == 'Script': self.script_widget.updateScript() class CalibrationWidget(QtWidgets.QDialog): """Creates a widget for performing kinematic calibration and displaying the residual errors. :param parent: main window instance :type parent: MainWindow :param points: measured 3D points for each joint :type points: List[numpy.ndarray] :param joint_types: types of each joint :type joint_types: List[Link.Type] :param joint_offsets: measured offsets for each measurement :type joint_offsets: List[numpy.ndarray] :param joint_homes: home position for each measurement :type joint_homes: List[float] """ def __init__(self, parent, points, joint_types, joint_offsets, joint_homes): super().__init__(parent) self.points = points self.offsets = joint_offsets self.robot_name = 'Positioning System' self.order = list(range(len(points))) self.names = [f'Joint {i + 1}' for i in range(len(points))] self.homes = joint_homes self.types = joint_types main_layout = QtWidgets.QVBoxLayout() self.setLayout(main_layout) # create stacked layout self.stack = QtWidgets.QStackedLayout() main_layout.addLayout(self.stack) self.stack1 = QtWidgets.QWidget() self.stack2 = QtWidgets.QWidget() self.stack.addWidget(self.stack1) self.stack.addWidget(self.stack2) self.createCalibrationForm() self.createResultTable() self.setLayout(main_layout) self.setMinimumSize(800, 720) self.setWindowTitle('Kinematic Calibration') def calibrate(self): """Creates kinematic model of a robot from measurement and displays result""" self.results = circle_point_analysis(self.points, self.types, self.offsets, self.homes) self.json = generate_description(self.robot_name, self.results.base, self.results.tool, self.order, self.names, self.types, self.results.joint_axes, self.results.joint_origins, self.homes, self.offsets) self.displayResiduals() self.stack.setCurrentIndex(1) def changeRobotName(self, value): """Changes name of the robot :param value: name of robot :type value: str """ self.robot_name = value self.validateForm() def changeOrder(self, values): """Changes the display order of joints :param values: joint indices arranged in the display order :type values: List[int] """ size = len(self.points) try: order = [int(value) - 1 for value in values.split(',')] if len(set(order)) != size: raise ValueError if min(order) != 0 or max(order) != size - 1: raise ValueError self.order = order except ValueError: self.order = [] self.validateForm() def changeJointNames(self, index, value): """Changes the name of the joint at given index :param index: joint index :type index: int :param value: joint name :type value: str """ self.names[index] = value self.validateForm() def changeHome(self, index, value): """Changes the home position of the joint at given index :param index: joint index :type index: int :param value: joint home position :type value: str """ self.homes[index] = value def changeType(self, index, value): """Changes the type of the joint at given index :param index: joint index :type index: int :param value: joint type :type value: str """ self.types[index] = Link.Type(value.lower()) def createCalibrationForm(self): """Creates inputs for the calibration arguments""" layout = QtWidgets.QVBoxLayout() layout.setSpacing(5) layout.setContentsMargins(0, 0, 0, 0) row_layout = QtWidgets.QHBoxLayout() self.error_text = QtWidgets.QLabel() self.error_text.setWordWrap(True) self.error_text.setStyleSheet('color: red;') self.calibrate_button = QtWidgets.QPushButton('Generate Model') self.calibrate_button.clicked.connect(self.calibrate) row_layout.addStretch(1) row_layout.addWidget(self.error_text, 4) row_layout.addStretch(1) row_layout.addWidget(self.calibrate_button) layout.addLayout(row_layout) layout.addSpacing(10) row_layout = QtWidgets.QHBoxLayout() row_layout.addWidget(QtWidgets.QLabel('Name of Positioner:\t')) name_line_edit = QtWidgets.QLineEdit(self.robot_name) name_line_edit.textChanged.connect(self.changeRobotName) row_layout.addWidget(name_line_edit, 2) row_layout.addStretch(1) layout.addLayout(row_layout) row_layout = QtWidgets.QHBoxLayout() order_line_edit = QtWidgets.QLineEdit(','.join(str(x + 1) for x in self.order)) order_line_edit.textChanged.connect(self.changeOrder) row_layout.addWidget(QtWidgets.QLabel('Custom Order:\t')) row_layout.addWidget(order_line_edit, 2) row_layout.addStretch(1) layout.addLayout(row_layout) divider = QtWidgets.QFrame() divider.setFrameShape(QtWidgets.QFrame.HLine) divider.setFrameShadow(QtWidgets.QFrame.Sunken) layout.addSpacing(10) layout.addWidget(QtWidgets.QLabel('<p style="font-size:14px">Joint Information</p>')) layout.addWidget(divider) layout.addSpacing(5) # Define Scroll Area scroll_area = QtWidgets.QScrollArea() scroll_area.setWidgetResizable(True) scroll_area.setFrameShape(QtWidgets.QFrame.NoFrame) widget = QtWidgets.QWidget() sub_layout = QtWidgets.QVBoxLayout() sub_layout.setSizeConstraint(QtWidgets.QLayout.SetMinimumSize) widget.setLayout(sub_layout) sub_layout.setSpacing(5) sub_layout.setContentsMargins(10, 0, 10, 0) scroll_area.setWidget(widget) layout.addWidget(scroll_area) for i in range(len(self.points)): name_line_edit = QtWidgets.QLineEdit(self.names[i]) name_line_edit.textChanged.connect(lambda value, index=i: self.changeJointNames(index, value)) joint_type_combobox = QtWidgets.QComboBox() joint_type_combobox.setView(QtWidgets.QListView()) joint_type_combobox.addItems([t.value.title() for t in Link.Type]) joint_type_combobox.setCurrentText(self.types[i].value.title()) joint_type_combobox.currentTextChanged.connect(lambda value, index=i: self.changeType(index, value)) joint_home_spinbox = QtWidgets.QDoubleSpinBox() joint_home_spinbox.setDecimals(3) joint_home_spinbox.setRange(-10000, 10000) joint_home_spinbox.setValue(self.homes[i]) joint_home_spinbox.valueChanged.connect(lambda value, index=i: self.changeHome(index, value)) row_layout = QtWidgets.QHBoxLayout() column_layout = QtWidgets.QVBoxLayout() column_layout.addWidget(QtWidgets.QLabel(f'Name of Joint {i + 1}:\t')) column_layout.addWidget(name_line_edit) column_layout.addStretch(1) row_layout.addLayout(column_layout, 4) row_layout.addStretch(1) sub_layout.addLayout(row_layout) row_layout = QtWidgets.QHBoxLayout() column_layout = QtWidgets.QVBoxLayout() column_layout.addWidget(QtWidgets.QLabel(f'Type of Joint {i + 1}:\t')) column_layout.addWidget(joint_type_combobox) column_layout.addStretch(1) row_layout.addLayout(column_layout, 2) column_layout = QtWidgets.QVBoxLayout() column_layout.addWidget(QtWidgets.QLabel(f'Home for Joint {i + 1}:\t')) column_layout.addWidget(joint_home_spinbox) column_layout.addStretch(1) row_layout.addLayout(column_layout, 2) row_layout.addStretch(1) sub_layout.addLayout(row_layout) divider = QtWidgets.QFrame() divider.setFrameShape(QtWidgets.QFrame.HLine) divider.setFrameShadow(QtWidgets.QFrame.Sunken) sub_layout.addWidget(divider) sub_layout.addStretch(1) self.stack1.setLayout(layout) def copyModel(self): """Copies json description of robot to the clipboard""" QtWidgets.QApplication.clipboard().setText(json.dumps(self.json, indent=2)) def saveModel(self): """Saves json description of the robot to file""" filename, _ = QtWidgets.QFileDialog.getSaveFileName(self, "Choose a file name", '.', "JSON File (*.json)") if not filename: return with open(filename, 'w') as json_file: json.dump(self.json, json_file, indent=2) def createResultTable(self): """Creates widget to show calibration errors""" layout = QtWidgets.QVBoxLayout() layout.setContentsMargins(0, 0, 0, 0) sub_layout = QtWidgets.QHBoxLayout() self.filter_combobox = QtWidgets.QComboBox() self.filter_combobox.setView(QtWidgets.QListView()) self.filter_combobox.addItems(['All', *[f'{i + 1}' for i in range(len(self.points))]]) self.filter_combobox.currentIndexChanged.connect(self.displayResiduals) self.copy_model_button = QtWidgets.QPushButton('Copy Model') self.copy_model_button.clicked.connect(self.copyModel) self.save_model_button = QtWidgets.QPushButton('Save Model') self.save_model_button.clicked.connect(self.saveModel) sub_layout.addWidget(QtWidgets.QLabel('Show Joint: ')) sub_layout.addWidget(self.filter_combobox) sub_layout.addStretch(1) sub_layout.addWidget(self.copy_model_button) sub_layout.addWidget(self.save_model_button) layout.addLayout(sub_layout) layout.addSpacing(10) self.result_label = QtWidgets.QLabel() self.tabs = QtWidgets.QTabWidget() self.tabs.setTabPosition(QtWidgets.QTabWidget.West) self.model_error_table = QtWidgets.QTableWidget() self.model_error_table.setColumnCount(4) self.model_error_table.setHorizontalHeaderLabels(['X', 'Y', 'Z', 'Norm']) self.model_error_table.setAlternatingRowColors(True) self.model_error_table.setMinimumHeight(300) self.model_error_table.setEditTriggers(QtWidgets.QAbstractItemView.NoEditTriggers) self.model_error_table.horizontalHeader().setSectionResizeMode(QtWidgets.QHeaderView.Stretch) self.model_error_table.horizontalHeader().setMinimumSectionSize(40) self.model_error_table.horizontalHeader().setDefaultSectionSize(40) self.tabs.addTab(self.model_error_table, 'Model Error') self.fit_error_table = QtWidgets.QTableWidget() self.fit_error_table.setColumnCount(4) self.fit_error_table.setHorizontalHeaderLabels(['X', 'Y', 'Z', 'Norm']) self.fit_error_table.setAlternatingRowColors(True) self.fit_error_table.setMinimumHeight(300) self.fit_error_table.setEditTriggers(QtWidgets.QAbstractItemView.NoEditTriggers) self.fit_error_table.horizontalHeader().setSectionResizeMode(QtWidgets.QHeaderView.Stretch) self.fit_error_table.horizontalHeader().setMinimumSectionSize(40) self.fit_error_table.horizontalHeader().setDefaultSectionSize(40) self.tabs.addTab(self.fit_error_table, 'Fitting Error') self.tabs.currentChanged.connect(self.displayResiduals) layout.addWidget(self.result_label) layout.addWidget(self.tabs) self.stack2.setLayout(layout) def displayResiduals(self): """Populates table widgets with residual error""" tol = 0.1 active_tab = self.tabs.currentIndex() joint_to_show = self.filter_combobox.currentIndex() - 1 if active_tab == 0: table = self.model_error_table residuals = self.results.model_errors else: table = self.fit_error_table residuals = self.results.fit_errors residuals = np.vstack(residuals) if joint_to_show == -1 else residuals[joint_to_show] norm = np.linalg.norm(residuals, axis=1) result_text = '<p style="font-size:14px">The Average {} is ' \ '<span style="color:{};font-weight:500;">{:.3f}</span> mm</p>' mean = np.mean(norm) colour = 'Tomato' if mean > tol else 'SeaGreen' self.result_label.setText(result_text.format(self.tabs.tabText(active_tab), colour, mean)) table.setRowCount(residuals.shape[0]) for row, vector in enumerate(residuals): x = QtWidgets.QTableWidgetItem(f'{vector[0]:.3f}') x.setTextAlignment(QtCore.Qt.AlignCenter) y = QtWidgets.QTableWidgetItem(f'{vector[1]:.3f}') y.setTextAlignment(QtCore.Qt.AlignCenter) z = QtWidgets.QTableWidgetItem(f'{vector[2]:.3f}') z.setTextAlignment(QtCore.Qt.AlignCenter) n = QtWidgets.QTableWidgetItem(f'{norm[row]:.3f}') n.setTextAlignment(QtCore.Qt.AlignCenter) tomato = QtGui.QBrush(QtGui.QColor('Tomato')) if abs(vector[0]) > tol: x.setData(QtCore.Qt.BackgroundRole, tomato) if abs(vector[1]) > tol: y.setData(QtCore.Qt.BackgroundRole, tomato) if abs(vector[2]) > tol: z.setData(QtCore.Qt.BackgroundRole, tomato) if norm[row] > tol: n.setData(QtCore.Qt.BackgroundRole, tomato) table.setItem(row, 0, x) table.setItem(row, 1, y) table.setItem(row, 2, z) table.setItem(row, 3, n) def validateForm(self): """Validates calibration inputs""" error = [] size = len(self.names) if not self.robot_name: error.append('"Name of Positioner" cannot be blank') if not self.order: error.append(f'"Custom order" should contain comma separated indices for joints 1 to {size}.') for index, name in enumerate(self.names): if not name: error.append(f'"Name of Joint {index + 1}" cannot be blank') if len(set(self.names)) != len(self.names): error.append('Joint names must be unique') self.error_text.setText('\n'.join(error)) self.calibrate_button.setDisabled(len(error) != 0) class FindWidget(QtWidgets.QDialog): """Creates a widget that searches the Instrument file text and highlights the next occurrence. Can chose to match case, or require search to be the whole word :param parent: main window instance :type parent: MainWindow """ def __init__(self, parent): super().__init__(parent) self.setWindowTitle('Find') self.search_box = QtWidgets.QLineEdit() self.search_box.setPlaceholderText("Search..") self.match_case = QtWidgets.QCheckBox() self.match_case.setText("Match Case") self.whole_word = QtWidgets.QCheckBox() self.whole_word.setText("Match whole word") self.find_button = QtWidgets.QPushButton("Find") self.search_box.textChanged.connect(self.resetSearch) self.match_case.stateChanged.connect(self.resetSearch) self.whole_word.stateChanged.connect(self.resetSearch) self.find_button.clicked.connect(self.search) self.status_box = QtWidgets.QLabel() layout = QtWidgets.QGridLayout() layout.addWidget(self.search_box, 0, 0) layout.addWidget(self.match_case, 1, 0) layout.addWidget(self.whole_word, 2, 0) layout.addWidget(self.find_button, 2, 1) layout.addWidget(self.status_box, 3, 0) self.setLayout(layout) def search(self): """Performs a search for the input_text in the editor window""" input_text = self.search_box.text() case = self.match_case.isChecked() whole_word = self.whole_word.isChecked() if self.fist_search_flag: findable = self.parent().editor.findFirst(input_text, False, case, whole_word, False, True, 0, 0) self.fist_search_flag = False else: findable = self.parent().editor.findFirst(input_text, False, case, whole_word, False) if not findable: self.status_box.setText("No more entries found.") else: self.status_box.clear() def resetSearch(self): """Resets the FindWidget window""" self.fist_search_flag = True self.status_box.setText("") ``` #### File: SScanSS-2/tests/test_calibration.py ```python import json import unittest import numpy as np from sscanss.core.instrument import circle_point_analysis, generate_description, Link from sscanss.core.instrument.create import extract_positioner from sscanss.core.instrument.calibration import correct_line, correct_circle_axis, robot_world_calibration class TestCalibration(unittest.TestCase): def testGeometryCorrection(self): axis = np.array([0.0, 0.0, -1.0]) center = np.zeros(3) offsets = np.array([180, 0, 90, 70]) points = np.array([[-1.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, -1.0, 0.0]]) new_axis = correct_circle_axis(axis, center, points, offsets) np.testing.assert_array_almost_equal(new_axis, [0, 0, 1], decimal=5) np.testing.assert_array_almost_equal(correct_circle_axis(new_axis, center, points, offsets), new_axis, decimal=5) axis = np.array([-1.0, 0.0, 0.0]) center = np.zeros(3) offsets = np.array([100, 0, 50]) points = np.array([[50.0, 0.0, 0.0], [-50.0, 0.0, 0.0], [0.0, 0.0, 0.0]]) new_center, new_axis = correct_line(axis, center, points, offsets) np.testing.assert_array_almost_equal(new_axis, [1, 0, 0], decimal=5) np.testing.assert_array_almost_equal(new_center, [-50, 0, 0], decimal=5) new_center, new_axis = correct_line(new_axis, center, points, offsets) np.testing.assert_array_almost_equal(new_axis, [1, 0, 0], decimal=5) np.testing.assert_array_almost_equal(new_center, [-50, 0, 0], decimal=5) def testCPA(self): points = [ np.array([ [12.0, 0.0, 1.5], [11.41421356, 1.41421356, 1.5], [10.0, 2.0, 1.5], [8.58578644, 1.41421356, 1.5], [8.0, 0.0, 1.5], ]), np.array([ [10.0, 0.0, 1.5], [10.29289322, -0.70710678, 1.5], [11.0, -1.0, 1.5], [11.70710678, -0.70710678, 1.5], [12.0, 0.0, 1.5], ]), ] offsets = [np.array([0.0, 45.0, 90.0, 135.0, 180.0]), np.array([-180.0, -135.0, -90.0, -45.0, 0.0])] types = [Link.Type.Revolute, Link.Type.Revolute] homes = [0.0, 0.0] result = circle_point_analysis(points, types, offsets, homes) np.testing.assert_array_almost_equal(result.joint_axes[0], [0.0, 0.0, 1.0], decimal=5) np.testing.assert_array_almost_equal(result.joint_axes[1], [0.0, 0.0, 1.0], decimal=5) np.testing.assert_array_almost_equal(result.joint_origins[0], [0.0, 0.0, 0.0], decimal=5) np.testing.assert_array_almost_equal(result.joint_origins[1], [1.0, 0.0, 0.0], decimal=5) base, tool = np.identity(4), np.identity(4) base[:3, 3] = [10.0, 0.0, 1.5] tool[:3, 3] = [1.0, 0.0, 0.0] np.testing.assert_array_almost_equal(result.base, base, decimal=5) np.testing.assert_array_almost_equal(result.tool, tool, decimal=5) np.testing.assert_array_almost_equal(np.vstack(result.fit_errors), np.zeros((10, 3)), decimal=5) np.testing.assert_array_almost_equal(np.vstack(result.model_errors), np.zeros((10, 3)), decimal=5) offsets = [ np.array([0.0, 100.0, 200.0, 300.0, 400, 500.0]), np.array([-180.0, -108.0, -36.0, 36.0, 108.0, 180.0]), np.array([-200.0, -120.0, -40.0, 40.0, 120, 200.0]), np.array([-200.0, -120.0, -40.0, 40.0, 120, 200.0]), ] points = [ np.array([ [0, 0, 0], [0.004324125, 0.007919232, 100.0577353], [0.00519, 0.009611275, 200.0346462], [0.00936, 0.0229328, 299.9897745], [0.016288942, -0.00449079, 399.9475168], [-0.019166718, 0.01355, 499.934], ]), np.array([ [-37.702407, -100.3246853, 0.060174943], [-72.4308, -47.72367282, 0.02528772], [-33.11670555, 1.571, -0.002], [25.89742938, -20.58587784, -0.0142], [23.05826241, -83.51255368, 0.032545921], [-37.6133, -100.3567116, 0.048915878], ]), np.array([ [-0.008, -199.7817, 0.173440527], [-0.03388, -119.9040682, 0.132], [-0.012866725, -40.03464456, 0.0608], [0.02147, 40.09068065, -0.003563545], [-0.001905469, 120.1877634, -0.077537662], [0.0085, 200.1388357, -0.126678], ]), np.array([ [-200.1472381, 0.04181174, 0.048689129], [-120.0620691, 0.035838747, 0.044916269], [-40.039, 0.029215491, 0.015246372], [40.04469207, 0.020326262, -0.001128861], [120.0471608, 0.030719316, -0.00639], [200.0948445, 0.045893343, -0.055839322], ]), ] types = [Link.Type.Prismatic, Link.Type.Revolute, Link.Type.Prismatic, Link.Type.Prismatic] homes = [0.0, 0.0, 0.0, 0.0] result = circle_point_analysis(points, types, offsets, homes) np.testing.assert_array_almost_equal(result.joint_axes[0], [-1.59357e-05, 1.25323e-05, 1.0], decimal=5) np.testing.assert_array_almost_equal(result.joint_axes[1], [-2.27729e-04, -6.01415e-04, -1.0], decimal=5) np.testing.assert_array_almost_equal(result.joint_axes[2], [7.59974e-05, 1.0, -7.83437e-04], decimal=5) np.testing.assert_array_almost_equal(result.joint_axes[3], [1.0, -1.37606e-06, -2.47331e-04], decimal=5) np.testing.assert_array_almost_equal(result.joint_origins[0], [0.0, 0.0, 0.0], decimal=5) np.testing.assert_array_almost_equal(result.joint_origins[1], [-18.87706, -50.12061, 0.0254302], decimal=5) np.testing.assert_array_almost_equal(result.joint_origins[2], [-0.0111, 0.11102, 0.03246], decimal=5) np.testing.assert_array_almost_equal(result.joint_origins[3], [-0.01692, 0.02885, 0.01364], decimal=5) base = np.identity(4) base[:3, 3] = [0.00665, 0.00512, -0.00605] np.testing.assert_array_almost_equal(result.base, base, decimal=5) np.testing.assert_array_almost_equal(result.tool, np.identity(4), decimal=5) self.assertAlmostEqual(np.vstack(result.fit_errors).max(), 0.0203117, 5) self.assertAlmostEqual(np.vstack(result.model_errors).max(), 0.18427, 5) def testDescriptionGeneration(self): robot_name = "Two Link" joint_names = ["a", "b"] types = [Link.Type.Revolute, Link.Type.Prismatic] homes = [0, 50] order = [1, 0] base = np.array([[0, -1, 0, 10.0], [0, 0, -1, 0], [1, 0, 0, 1.5], [0, 0, 0, 1]]) tool = np.array([[0, 0, -1, 1.0], [-1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1]]) axes = [np.array([1.0, 0.0, 0.0]), np.array([0.0, 0.0, 1.0])] origins = [np.array([0.0, 0.0, 0.0]), np.array([0.0, 0.0, 1.0])] offsets = [np.array([-180, 0.0, 180]), np.array([100.0, 50.0, 0.0])] lower_limits = [-np.pi, 0] upper_limits = [np.pi, 100] desc = generate_description(robot_name, base, tool, order, joint_names, types, axes, origins, homes, offsets) robot = extract_positioner(desc) self.assertEqual(robot.name, robot_name) self.assertListEqual(robot.order, order) np.testing.assert_array_almost_equal(robot.base, base, decimal=5) np.testing.assert_array_almost_equal(robot.tool, tool, decimal=5) for index, link in enumerate(robot.links): self.assertEqual(link.name, joint_names[index]) self.assertEqual(link.type, types[index]) self.assertEqual(link.offset, homes[index]) self.assertEqual(link.lower_limit, lower_limits[index]) self.assertEqual(link.upper_limit, upper_limits[index]) np.testing.assert_array_almost_equal(link.joint_axis, axes[index], decimal=5) np.testing.assert_array_almost_equal(link.home, origins[::-1][index], decimal=5) self.assertNotEqual(json.dumps(desc), "") def testRobotWorldCalibration(self): base_to_end = [ np.array([ [-0.53170025, -0.20820506, 0.82094187, 67.585304], [0.64494753, -0.72779989, 0.23313124, 89.949501], [0.54894227, 0.65342039, 0.52125275, 11.512821], [0.00000000, 0.00000000, 0.00000000, 1.0000000], ]), np.array([ [-0.16817957, -0.93374872, 0.31595743, 161.25485], [0.97287369, -0.10557473, 0.20584196, 50.856190], [-0.15884751, 0.34200510, 0.92617506, -4.0582910], [0.00000000, 0.00000000, 0.00000000, 1.0000000], ]), np.array([ [-0.65820038, 0.25170165, 0.70951992, 24.240074], [0.75066280, 0.14775321, 0.64395213, 7.0124917], [0.057249967, 0.95645982, -0.28619426, -16.307690], [0.00000000, 0.00000000, 0.00000000, 1.0000000], ]), np.array([ [0.39836720, 0.42523378, -0.81269914, 97.336334], [-0.090480983, -0.86350000, -0.49616647, 87.571709], [-0.91275239, 0.27119026, -0.30551448, 0.27887172], [0.00000000, 0.00000000, 0.00000000, 1.0000000], ]), ] sensor_to_tool = [ np.array([ [-0.99998355, 0.0043395865, 0.0037561110, 2.8639844e-005], [-0.0043548788, -0.99998224, -0.0040727942, 2.1180047e-005], [0.0037383700, -0.0040890849, 0.99998468, -5.5399629e-005], [0.00000000, 0.00000000, 0.00000000, 1.0000000], ]), np.array([ [-0.71019822, 0.50131381, -0.49427021, 53.210167], [-0.00058504642, -0.70250660, -0.71167701, 75.527397], [-0.70400161, -0.50514257, 0.49921221, 53.496731], [0.00000000, 0.00000000, 0.00000000, 1.0000000], ]), np.array([ [-0.70914352, -0.49534339, -0.50174731, 53.955917], [9.0223330e-005, -0.71169728, 0.70248622, -75.499924], [-0.70506412, 0.49811831, 0.50474024, 52.796341], [0.00000000, 0.00000000, 0.00000000, 1.0000000], ]), np.array([ [0.99834156, 0.057526905, 0.0021761090, 0.17139678], [-0.057260111, 0.99619621, -0.065683857, 6.5794134], [-0.0059464201, 0.065450318, 0.99783814, 0.23322107], [0.00000000, 0.00000000, 0.00000000, 1.0000000], ]), ] tool, base = robot_world_calibration(base_to_end, sensor_to_tool) expected_tool = [ [0.91168422, 0.2246568, -0.34403665, -8.85228243], [0.27665157, 0.28345605, 0.9182138, -10.1062245], [0.30380224, -0.9322993, 0.19627075, 5.39666712], [0.0, 0.0, 0.0, 1.0], ] expected_base = [ [0.28941257, -0.4618411, -0.83841705, 22.47052877], [0.94446686, 0.2801974, 0.1716734, -100.95790596], [0.15563645, -0.84154157, 0.51728627, 64.39097877], [0.0, 0.0, 0.0, 1.0], ] np.testing.assert_array_almost_equal(expected_tool, tool, decimal=5) np.testing.assert_array_almost_equal(expected_base, base, decimal=5) ```
{ "source": "JFKenso/fitbit_insights", "score": 2 }
#### File: main/lambda/FitBitIngestion.py ```python from __future__ import print_function import base64 import urllib2 import urllib import sys import json import os import boto3 from datetime import date, timedelta from boto3.dynamodb.conditions import Key, Attr from botocore.exceptions import ClientError ddb = boto3.client('dynamodb') ddbService = boto3.resource('dynamodb') ml = boto3.client('machinelearning') sns = boto3.client('sns') #Use this URL to refresh the access token TokenURL = "https://api.fitbit.com/oauth2/token" #Some contants defining API error handling responses TokenRefreshedOK = "Token refreshed OK" ErrorInAPI = "Error when making API call that I couldn't handle" #Get the config from the config file. This is the access and refresh tokens def GetConfig(): tableName = "Fitbit_Authorization_Table" table = ddbService.Table(tableName) configuredUsers = table.scan( FilterExpression=Attr('Status').eq("A") ) return configuredUsers['Items'] def GetUserTokens(FitbitUserID): tableName = "Fitbit_Authorization_Table" table = ddbService.Table(tableName) userData = table.scan( FilterExpression=Attr('Status').eq("A") & Key('FitbitUserID').eq(FitbitUserID) ) at = userData['Items'][0]['Access_Token'] rt = userData['Items'][0]['Refresh_Token'] return at, rt def WriteConfig(AccToken,RefToken, userCfg): table = "Fitbit_Authorization_Table" newItem = { "FitbitUserID": {"S": userCfg['FitbitUserID']}, "Access_Token": {"S": AccToken}, "Refresh_Token": {"S": RefToken}, "Mobile": {"S": userCfg['Mobile']}, "Token_Type": {"S": "na"}, "Status": {"S": "A"}, "ClientID": {"S": userCfg['ClientID']}, "ClientSecret": {"S": userCfg['ClientSecret']} } response = ddb.put_item(TableName = table, Item=newItem) #Make a HTTP POST to get a new def GetNewAccessToken(userCfg): RefToken = userCfg['Refresh_Token'] OAuthTwoClientID = userCfg['ClientID'] ClientOrConsumerSecret = userCfg['ClientSecret'] #Form the data payload BodyText = {'grant_type' : 'refresh_token', 'refresh_token' : RefToken} #URL Encode it BodyURLEncoded = urllib.urlencode(BodyText) print("Using this as the body when getting access token >>" + BodyURLEncoded ) #Start the request tokenreq = urllib2.Request(TokenURL,BodyURLEncoded) #Add the headers, first we base64 encode the client id and client secret with a : inbetween and create the authorisation header tokenreq.add_header('Authorization', 'Basic ' + base64.b64encode(OAuthTwoClientID + ":" + ClientOrConsumerSecret)) tokenreq.add_header('Content-Type', 'application/x-www-form-urlencoded') #Fire off the request try: tokenresponse = urllib2.urlopen(tokenreq) #See what we got back. If it's this part of the code it was OK FullResponse = tokenresponse.read() #Need to pick out the access token and write it to the config file. Use a JSON manipluation module ResponseJSON = json.loads(FullResponse) #Read the access token as a string NewAccessToken = str(ResponseJSON['access_token']) NewRefreshToken = str(ResponseJSON['refresh_token']) #Write the access token to the ini file WriteConfig(NewAccessToken,NewRefreshToken, userCfg) print("New access token output >>> " + FullResponse) except urllib2.URLError as e: #Gettin to this part of the code means we got an error print ("An error was raised when getting the access token. Need to stop here") print (e.code) print (e.read()) #This makes an API call. It also catches errors and tries to deal with them def MakeAPICall(InURL, userCfg): #Start the request req = urllib2.Request(InURL) #Add the access token in the header req.add_header('Authorization', 'Bearer ' + userCfg['Access_Token']) print("Calling URI: " + InURL) print ("I used this access token " + userCfg['Access_Token']) #Fire off the request try: #Do the request response = urllib2.urlopen(req) #Read the response FullResponse = response.read() #Return values return True, FullResponse #Catch errors, e.g. A 401 error that signifies the need for a new access token except urllib2.URLError as e: print ("Got this HTTP error: " + str(e.code)) HTTPErrorMessage = e.read() print ("This was in the HTTP error message: " + HTTPErrorMessage) #See what the error was if (e.code == 401) and (HTTPErrorMessage.find("Access token expired") > 0): print("Trying to refresh access token") GetNewAccessToken(userCfg) return False, TokenRefreshedOK #Return that this didn't work, allowing the calling function to handle it return False, ErrorInAPI #Main part of the code def lambda_handler(event, context): today = date.today().strftime('%Y-%m-%d') yesterday = date.today() - timedelta(1) yesterday_date = yesterday.strftime('%Y-%m-%d') tomorrow = date.today() + timedelta(1) tomorrow_date = tomorrow.strftime('%Y-%m-%d') #This is the Fitbit URL to use for the API call FitbitProfileURL = "https://api.fitbit.com/1/user/-/profile.json" FitbitHeartrateURL = "https://api.fitbit.com/1/user/-/activities/heart/date/"+today+"/1d/1min/time/00:00/23:59.json" FitbitStepsURL = "https://api.fitbit.com/1/user/-/activities/steps/date/"+today+"/1d/15min.json" FitbitSleepURL = "https://api.fitbit.com/1.2/user/-/sleep/date/"+tomorrow_date+".json" FitbitActivityURL = "https://api.fitbit.com/1/user/-/activities/list.json?beforeDate=today&sort=desc&offset=0&limit=5" #Get the config userConfigs = GetConfig() for userCfg in userConfigs: try: FitbitUserID = "" Access_Token = "" Refresh_Token = "" #Make the Profile API call APICallOK, ProfileData = MakeAPICall(FitbitProfileURL, userCfg) table = "ProfileData" if APICallOK: parsed_profile = json.loads(ProfileData) weight = str(parsed_profile['user']['weight']) FitbitUserID = str(parsed_profile['user']['encodedId']) age = str(parsed_profile['user']['age']) averageDailySteps = str(parsed_profile['user']['averageDailySteps']) height = str(parsed_profile['user']['height']) localCity = str(parsed_profile['user']['timezone']) userCfg['firstName'] = str(parsed_profile['user']['firstName']) #print ("weight: " + weight) #print ProfileData #print weight #print FitbitUserID item = { "FitbitUserID": {"S": FitbitUserID}, "RecordDate": {"S": yesterday_date}, "weight": {"N": weight}, "averageDailySteps": {"N": averageDailySteps}, "age": {"N": age}, "height": {"N": height}, "localCity": {"S": localCity} } response = ddb.put_item(TableName = table, Item = item); else: if (ProfileData == TokenRefreshedOK): print ("Refreshed the access token. Can go again") Access_Token, Refresh_Token = GetUserTokens(userCfg['FitbitUserID']) if (FitbitUserID == ""): FitbitUserID = userCfg['FitbitUserID'] userCfg['Access_Token'] = Access_Token userCfg['Refresh_Token'] = Refresh_Token else: print( ErrorInAPI ) sns_message = "Running for " + FitbitUserID + " userCfg: " + userCfg['FitbitUserID'] sns.publish(TopicArn='arn:aws:sns:us-east-1:445802302022:JFeldmanSMSAlert', Message=sns_message) #Make the Heartrate API call APICallOK, HeartRateData = MakeAPICall(FitbitHeartrateURL, userCfg) table = "HeartRateData" if APICallOK: parsed_hr = json.loads(HeartRateData) intradayObject = parsed_hr['activities-heart-intraday']['dataset'] for struct in intradayObject: recordDateTime = str(yesterday_date) + " " + str(struct['time']) item = { "FitbitUserID": {"S": FitbitUserID}, "RecordDate": {"S": recordDateTime}, "heartrate": {"S": str(struct['value'])} } response = ddb.put_item(TableName = table, Item = item); #print("put response: " + str(response)) pass #print (HeartRateData) else: if (HeartRateData == TokenRefreshedOK): print ("Refreshed the access token. Can go again") Access_Token, Refresh_Token = GetUserTokens(FitbitUserID) userCfg['Access_Token'] = Access_Token userCfg['Refresh_Token'] = Refresh_Token else: print( ErrorInAPI ) #Make the Setps API call APICallOK, StepsData = MakeAPICall(FitbitStepsURL, userCfg) table = "DailyStepsData" if APICallOK: # First record daily steps parsed_steps = json.loads(StepsData) steps = str(parsed_steps['activities-steps'][0]['value']) print("steps: " + steps) item = { "FitbitUserID": {"S": FitbitUserID}, "RecordDate": {"S": str(yesterday_date)}, "steps": {"S": steps} } response = ddb.put_item(TableName = table, Item = item); # Then iterate through in 15 minute increments table = "GranularStepsData" intradayObject = parsed_steps['activities-steps-intraday']['dataset'] for struct in intradayObject: recordDateTime = str(yesterday_date) + " " + str(struct['time']) item = { "FitbitUserID": {"S": FitbitUserID}, "RecordDate": {"S": recordDateTime}, "steps": {"S": str(struct['value'])} } response = ddb.put_item(TableName = table, Item = item); pass else: if (StepsData == TokenRefreshedOK): print ("Refreshed the access token. Can go again") Access_Token, Refresh_Token = GetUserTokens(FitbitUserID) userCfg['Access_Token'] = Access_Token userCfg['Refresh_Token'] = Refresh_Token else: print( ErrorInAPI ) #Make the Sleep API call APICallOK, SleepData = MakeAPICall(FitbitSleepURL, userCfg) table = "DailySleepData" if APICallOK: # First record daily steps parsed_sleep = json.loads(SleepData) totalDeep = parsed_sleep['summary']['stages']['deep'] totalLight = parsed_sleep['summary']['stages']['light'] totalRem = parsed_sleep['summary']['stages']['rem'] totalWake = parsed_sleep['summary']['stages']['wake'] totalMinsAsleep = parsed_sleep['summary']['totalMinutesAsleep'] totalTimeInBed = parsed_sleep['summary']['totalTimeInBed'] for sleepObj in parsed_sleep['sleep']: dateOfSleep = str(sleepObj['dateOfSleep']) sleepEfficiency = sleepObj['efficiency'] wakeup = str(sleepObj['endTime']) isMainSleep = str(sleepObj['isMainSleep']) if(sleepEfficiency < 50): sns_message = userCfg['firstName'] + "'s slep last night was awful. Danger danger danger!!!" sns.publish(TopicArn='arn:aws:sns:us-east-1:445802302022:JFeldmanSMSAlert', Message=sns_message) elif(sleepEfficiency < 80) and (sleepEfficiency >= 50): sns_message = userCfg['firstName'] + "'s slep last night was pretty poor. Today's mood could be grumpy." sns.publish(TopicArn='arn:aws:sns:us-east-1:445802302022:JFeldmanSMSAlert', Message=sns_message) else: sns_message = userCfg['firstName'] + "'s slep last night was good. Today's mood should be happy. If there's something you've been meaning to tell your hubby, today is the day." sns.publish(TopicArn='arn:aws:sns:us-east-1:445802302022:JFeldmanSMSAlert', Message=sns_message) item = { "FitbitUserID": {"S": FitbitUserID}, "RecordDate": {"S": str(dateOfSleep)}, "totalDeep": {"S": str(totalDeep)}, "totalLight": {"S": str(totalLight)}, "totalRem": {"S": str(totalRem)}, "totalWake": {"S": str(totalWake)}, "totalMinsAsleep": {"S": str(totalMinsAsleep)}, "totalTimeInBed": {"S": str(totalTimeInBed)}, "sleepEfficiency": {"S": str(sleepEfficiency)}, "wakeup": {"S": str(wakeup)}, "isMainSleep": {"S": str(isMainSleep)} } print("Daily Sleep Data: " + str(item)) table = "DailySleepData" response = ddb.put_item(TableName = table, Item = item); table = "DetailedSleepData" for sleepSegments in sleepObj['levels']['data']: sleepSegmentTime = sleepSegments['dateTime'] sleepSegmentLevel = sleepSegments['level'] sleepSegmentSeconds = str(sleepSegments['seconds']) item = { "FitbitUserID": {"S": FitbitUserID}, "SleepSegmentTime": {"S": sleepSegmentTime}, "SleepSegmentLevel": {"S": sleepSegmentLevel}, "SleepSegmentSeconds": {"S": sleepSegmentSeconds} } response = ddb.put_item(TableName = table, Item = item); pass pass else: if (SleepData == TokenRefreshedOK): print ("Refreshed the access token. Can go again") Access_Token, Refresh_Token = GetUserTokens(FitbitUserID) userCfg['Access_Token'] = Access_Token userCfg['Refresh_Token'] = Refresh_Token else: print( ErrorInAPI ) except Exception as e: if hasattr(e, 'message'): print("Unexpected error: " + e.message) sns_message = "Unexpected error: " + str(e.message) else: print("Unexpected error: " + e) sns_message = "Unexpected error: " + str(e) sns.publish(TopicArn='arn:aws:sns:us-east-1:445802302022:JFeldmanSMSAlert', Message=sns_message) ```
{ "source": "jfkinslow/flask-mailing", "score": 2 }
#### File: flask-mailing/tests/test_message.py ```python import pytest from flask_mailing.schemas import Message, MultipartSubtypeEnum from flask_mailing.msg import MailMsg import os CONTENT = "file test content" def test_initialize(): message = Message( subject="test subject", recipients=["<EMAIL>"], body="test", subtype="plain" ) assert message.subject == "test subject" def test_recipients_properly_initialized(): message = Message( subject="test subject", recipients=[], body="test", subtype="plain" ) assert message.recipients == [] def test_add_recipient_method(): message = Message( subject="test subject", recipients=[], body="test", subtype="plain" ) message.add_recipient("<EMAIL>") assert message.recipients == ["<EMAIL>"] def test_sendto_properly_set(): msg = Message(subject="subject", recipients=["<EMAIL>", "<EMAIL>"], cc=["<EMAIL>"], bcc=["<EMAIL>"], reply_to=["<EMAIL>"]) assert len(msg.recipients) == 2 assert len(msg.cc) == 1 assert len(msg.bcc) == 1 assert len(msg.reply_to) == 1 def test_plain_message(): message = Message( subject="test subject", recipients=["<EMAIL>"], body="test", subtype="plain" ) assert message.body == "test" def test_charset(): message = Message( subject="test subject", recipients=["<EMAIL>"], body="test", subtype="plain" ) assert message.charset == "utf-8" def test_message_str(): message = Message( subject="test subject", recipients=["<EMAIL>"], body="test", subtype="plain" ) assert type(message.body) == str def test_plain_message_with_attachments(): directory = os.getcwd() attachement = directory + "/files/attachement.txt" msg = Message(subject="testing", recipients=["<EMAIL>"], attachments=[attachement], body="test mail body") with open(attachement, "w") as file: file.write(CONTENT) assert len(msg.attachments) == 1 def test_plain_message_with_attach_method(): directory = os.getcwd() attachement = directory + "/files/attachement_1.txt" msg = Message(subject="testing", recipients=["<EMAIL>"], body="test mail body") with open(attachement, "w") as file: file.write(CONTENT) with open(attachement, "rb") as fp: msg.attach("attachement_1.txt", fp.read()) assert len(msg.attachments) == 1 def test_empty_subject_header(): message = Message( subject="", recipients=["<EMAIL>"], body="test", subtype="plain" ) assert len(message.subject) == 0 def test_bcc(): msg = Message(subject="subject", recipients=[], bcc=["<EMAIL>"]) assert len(msg.bcc) == 1 assert msg.bcc == ["<EMAIL>"] def test_replyto(): msg = Message(subject="subject", recipients=[], reply_to=["<EMAIL>"]) assert len(msg.reply_to) == 1 assert msg.reply_to == ["<EMAIL>"] def test_cc(): msg = Message(subject="subject", recipients=[], cc=["<EMAIL>"]) assert len(msg.cc) == 1 assert msg.cc == ["<EMAIL>"] def test_multipart_subtype(): message = Message( subject="test subject", recipients=["<EMAIL>"], body="test", subtype="plain" ) assert message.multipart_subtype == MultipartSubtypeEnum.mixed @pytest.mark.asyncio async def test_msgid_header(): message = Message( subject="test subject", recipients=["<EMAIL>"], body="test", subtype="plain" ) msg = MailMsg(**message.dict()) msg_object = await msg._message('<EMAIL>') assert msg_object['Message-ID'] is not None @pytest.mark.asyncio async def test_message_charset(): message = Message( subject="test subject", recipients=["<EMAIL>"], body="test", subtype="plain" ) msg = MailMsg(**message.dict()) msg_object = await msg._message('<EMAIL>') assert msg_object._charset is not None assert msg_object._charset == "utf-8" ```
{ "source": "jfkinslow/screeps_notify", "score": 3 }
#### File: services/messengers/http.py ```python import services.config as config import requests class http: def __init__(self, settings): self.settings = settings def sendMessage(self, notification, shard): print('sending message from http') data = { 'user': config.settings['screeps_username'], 'message': notification } headers = {'user-agent': 'screeps_notify'} if 'api-key' in self.settings: headers['x-api-key'] = self.settings['api-key'] if 'http_user' in self.settings: r = requests.post(self.settings['url'], json=data, headers=headers, auth=(self.settings['http_user'], self.settings['http_password'])) else: r = requests.post(self.settings['url'], json=data, headers=headers) if r.status_code != requests.codes.ok: raise ValueError( 'http request returned an error %s, the response is:\n%s' % (r.status_code, r.text)) return r.status_code == requests.codes.ok ``` #### File: services/messengers/slack.py ```python import json import services.config as config import requests import re class slack: def __init__(self, settings): self.settings = settings def sendMessage(self, notification, shard): print('sending message from slack') def addLinks(matchobj): roomname = matchobj.group(1).upper() return "<https://screeps.com/a/#!/room/%s/%s|%s %s>" % (shard, roomname, shard.capitalize(), roomname) message = re.sub(r'([E|W][\d]+[N|S][\d]+)', addLinks, notification, flags=re.IGNORECASE) slack_data = {'text': message} if 'channel' in self.settings: slack_data['channel'] = self.settings['channel'] if 'username' in self.settings: slack_data['username'] = self.settings['username'] if 'icon_emoji' in self.settings: slack_data['icon_emoji'] = self.settings['icon_emoji'] r = requests.post(self.settings['webhook_url'], data=json.dumps(slack_data), headers={ 'Content-Type': 'application/json', 'user-agent': 'screeps_notify' }) if r.status_code != requests.codes.ok: raise ValueError( 'Request to slack returned an error %s, the response is:\n%s' % (r.status_code, r.text)) return r.status_code == requests.codes.ok ```
{ "source": "jfklima/prog_pratica", "score": 3 }
#### File: prog_pratica/exercicios_antigos/barateiro.py ```python import pytest def soma(a, b): return a + b def test_soma_com_valores_maiores_que_1(): assert soma(0, 1) == 1 produtos = {} quantidade_de_produtos = int(input("Quantos produtos? ")) for _ in range(quantidade_de_produtos): produto = input('Produto escolhido: ') preco = float(input(f'Preço {produto}: ')) produtos[produto] = preco menor_preco = min(produtos.values()) produto_menor_preco = '' for produto, preco in produtos.items(): if preco == menor_preco: produto_menor_preco = produto print(f'Pruduto mais barato: {produto_menor_preco} , Preço: R$ {menor_preco}') ``` #### File: prog_pratica/exercicios_antigos/ex_01.py ```python from math import inf def minimo_e_maximo(sequencia_numerica): ''' Retorna o minimo e o maximo de uma sequência numérica aleatória. Complexidade: execução: O(n) espaço: O(3) ''' maximo = -inf # 1 minimo = +inf # 1 for elem in sequencia_numerica: # 1 if elem > maximo: # 2 maximo = elem # 1 if elem < minimo: # 2 minimo = elem # 2 return minimo, maximo # 1 def recursivo_minmax(sequencia_numerica): def r_minimo(sequencia): primeiro = sequencia[0] if len(sequencia) == 1: return primeiro else: menor = r_minimo(sequencia[1:]) return menor if menor < primeiro else primeiro def r_maximo(sequencia): primeiro = sequencia[0] if len(sequencia) == 1: return primeiro else: maior = r_maximo(sequencia[1:]) return maior if maior > primeiro else primeiro return r_minimo(sequencia_numerica), r_maximo(sequencia_numerica) def recursivo_minmax_1x(sequencia_numerica): primeiro = sequencia_numerica[0] if len(sequencia_numerica) == 1: return primeiro, primeiro else: return # print(minimo_e_maximo([1, 2, 3, 4])) # print(minimo_e_maximo([1, 3, 10, 12, 44, 2, 24, 25])) # print(minimo_e_maximo([88, 66, 10, 2, 8])) print(recursivo_minmax([1, 2, 3, 4])) ```
{ "source": "jfklorenz/Python-RMedian", "score": 3 }
#### File: Python-RMedian/src/rmedian.py ```python import math import random import statistics # ================================================== # RMedian def rmedian(X, k, d, cnt = [], rec = 0, n0 = 0): if rec == 0: n0 = len(X) if cnt == []: cnt = [0 for _ in range(len(X))] S, XS, L, C, R = phase1(X, k, d) S, XS, L, C, R, cnt = phase2(S, XS, L, C, R, cnt) return phase3(X, k, d, L, C, R, cnt, rec, n0) # ================================================== # Phase 1 def phase1(X, k, d): # Initiation n = len(X) random.shuffle(X) S = X[:k] XS = X[k:] S.sort() # Keeping the list entries below k/2 if 2*(k*math.log2(n))**0.5 < k/2: lst = [2*(k*math.log2(n))**0.5] if 3*(k*math.log2(n))**0.5 < k/2: lst.append(3*(k*math.log2(n))**0.5) while d*lst[len(lst) - 1] < k/2: lst.append(d*lst[len(lst) - 1]) lst.append(k/2) else: lst = [k/2] # Buckets L = [[] for _ in range(len(lst) - 1)] R = [[] for _ in range(len(lst) - 1)] C = [] for s in S[math.floor(k / 2 - lst[0]): math.ceil(k / 2 + lst[0])]: C.append(s) for i in range(1, len(lst)): for s in S[math.floor(k / 2 - lst[i]): math.floor(k / 2 - lst[i - 1])]: L[i - 1].append(s) for s in S[math.ceil(k / 2 + lst[i - 1]): math.ceil(k / 2 + lst[i])]: R[i - 1].append(s) return S, XS, L, C, R # ================================================== # Phase 2 def phase2(S, XS, L, C, R, cnt): mark = [False for _ in range(2 ** 20)] b = len(L) random.shuffle(XS) for x_i in XS: med = 0 for j in reversed(range(0, b - 1)): current = 2 ** 50 random.shuffle(L[j]) for l in L[j]: if cnt[l] < current: x_A = l if mark[x_A] == True: c = 1 else: c = 2 cnt[x_i] += 1 cnt[x_A] += 1 if x_i < x_A: if j + c < b: mark[x_i] = True L[j + c].append(x_i) med = -1 else: med = -2 break current2 = 2 ** 50 random.shuffle(R[j]) for r in R[j]: if cnt[r] < current2: x_B = r if mark[x_B] == True: c = 1 else: c = 2 cnt[x_i] += 1 cnt[x_B] += 1 if x_i > x_B: if j + c < b: mark[x_i] = True R[j + c].append(x_i) med = 1 else: med = 2 break if med == 0: C.append(x_i) elif med == -2: L[len(L) - 1].append(x_i) elif med == 2: R[len(R) - 1].append(x_i) return S, XS, L, C, R, cnt # ================================================== def phase3(X, k, d, L, C, R, cnt, rec, n0): n = len(X) sumL, sumR = 0, 0 for l in L: sumL += len(l) for r in R: sumR += len(r) s = sumL - sumR # Det Median if max(sumL, sumR) > n / 2: res = 'DET' return statistics.median(C), cnt, res, rec # Expand if s < 0: rs = [] for r in R: rs += r random.shuffle(rs) for i in range(-s): C.append(rs[i]) for r in R: if rs[i] in r: r.remove(rs[i]) elif s > 0: ls = [] for l in L: ls += l random.shuffle(ls) for i in range(s): C.append(ls[i]) for l in L: if ls[i] in l: l.remove(ls[i]) # AKS if len(C) < math.log(n0) ** 4: res = 'AKS' return statistics.median(C), cnt, res, rec rec += 1 return rmedian(C, k, d, cnt, rec, n0) # ================================================== X = [i for i in range(1025)] print(rmedian(X, 16, 2)) ``` #### File: Python-RMedian/tests/phase1_test.py ```python import math import random import pytest # ================================================== # Phase 1 def phase1(X, k, d): # Initiation n = len(X) random.shuffle(X) S = X[:k] XS = X[k:] S.sort() # Keeping the list entries below k/2 if 2*(k*math.log2(n))**0.5 < k/2: lst = [2*(k*math.log2(n))**0.5] if 3*(k*math.log2(n))**0.5 < k/2: lst.append(3*(k*math.log2(n))**0.5) while d*lst[len(lst) - 1] < k/2: lst.append(d*lst[len(lst) - 1]) lst.append(k/2) else: lst = [k/2] # Buckets L = [[] for _ in range(len(lst) - 1)] R = [[] for _ in range(len(lst) - 1)] C = [] for s in S[math.floor(k / 2 - lst[0]): math.ceil(k / 2 + lst[0])]: C.append(s) for i in range(1, len(lst)): for s in S[math.floor(k / 2 - lst[i]): math.floor(k / 2 - lst[i - 1])]: L[i - 1].append(s) for s in S[math.ceil(k / 2 + lst[i - 1]): math.ceil(k / 2 + lst[i])]: R[i - 1].append(s) return S, XS, L, C, R # ================================================== # Unittest : Parameter @pytest.mark.parametrize(('n'), [ # Randomized input random.randint(2**9, 2**15), # Manuel input 2**10, 2**12, 2**14, 2**12 + 1, 2**12 - 1 ]) # ================================================== # Unittest : Test def test_p1(n): # Generating Tastcase X0 = [i for i in range(n)] k0 = int(n ** (2 / 3)) d0 = int(n ** (1 / 12)) S0, XS0, L0, C0, R0 = phase1(X0, k0, d0) X1 = [i for i in range(n)] k1 = int(n / math.log(n, 2)**(1/3)) d1 = int(math.log(n, 2)**(1/3)) S1, XS1, L1, C1, R1 = phase1(X1, k1, d1) sumL0, sumR0, sumL1, sumR1 = 0, 0, 0, 0 for l0 in L0: sumL0 += len(l0) for l1 in L1: sumL1 += len(l1) for r0 in R0: sumR0 += len(r0) for r1 in R1: sumR1 += len(r1) # Test assert sumL0 == sumR0 # ||L|| = ||R|| assert sumL1 == sumR1 # ||L|| = ||R|| assert len(L0) == len(R0) # |L| = |R| assert len(L1) == len(R1) # |L| = |R| assert sumL0 + len(C0) + sumR0 == k0 # |L| + |C| + |R| = k assert sumL1 + len(C1) + sumR1 == k1 # |L| + |C| + |R| = k return # ================================================== ``` #### File: Python-RMedian/tests/phase2_test.py ```python import pytest import random import math # ================================================== # Phase 1 def phase1(X, k, d): # Initiation n = len(X) random.shuffle(X) S = X[:k] XS = X[k:] S.sort() # Keeping the list entries below k/2 if 2*(k*math.log2(n))**0.5 < k/2: lst = [2*(k*math.log2(n))**0.5] if 3*(k*math.log2(n))**0.5 < k/2: lst.append(3*(k*math.log2(n))**0.5) while d*lst[len(lst) - 1] < k/2: lst.append(d*lst[len(lst) - 1]) lst.append(k/2) else: lst = [k/2] # Buckets L = [[] for _ in range(len(lst) - 1)] R = [[] for _ in range(len(lst) - 1)] C = [] for s in S[math.floor(k / 2 - lst[0]): math.ceil(k / 2 + lst[0])]: C.append(s) for i in range(1, len(lst)): for s in S[math.floor(k / 2 - lst[i]): math.floor(k / 2 - lst[i - 1])]: L[i - 1].append(s) for s in S[math.ceil(k / 2 + lst[i - 1]): math.ceil(k / 2 + lst[i])]: R[i - 1].append(s) return S, XS, L, C, R # ================================================== # Phase 2 def phase2(S, XS, L, C, R, cnt): mark = [False for _ in range(len(XS) + len(S))] b = len(L) random.shuffle(XS) for x_i in XS: med = 0 for j in reversed(range(0, b - 1)): current = 2 ** 50 random.shuffle(L[j]) for l in L[j]: if cnt[l] < current: x_A = l if mark[x_A] == True: c = 1 else: c = 2 cnt[x_i] += 1 cnt[x_A] += 1 if x_i < x_A: if j + c < b: mark[x_i] = True L[j + c].append(x_i) med = -1 else: med = -2 break current2 = 2 ** 50 random.shuffle(R[j]) for r in R[j]: if cnt[r] < current2: x_B = r if mark[x_B] == True: c = 1 else: c = 2 cnt[x_i] += 1 cnt[x_B] += 1 if x_i > x_B: if j + c < b: mark[x_i] = True R[j + c].append(x_i) med = 1 else: med = 2 break if med == 0: C.append(x_i) elif med == -2: L[len(L) - 1].append(x_i) elif med == 2: R[len(R) - 1].append(x_i) return S, XS, L, C, R, cnt # ================================================== # Unittest : Parameter @pytest.mark.parametrize(('n'), [ # Randomized input random.randint(2**9, 2**15), # Manuel input 2**10, 2**12, 2**14, 2**12 + 1, 2**12 - 1 ]) # ================================================== # Unittest : Test def test_p1(n): # Generating Tastcase X0 = [i for i in range(n)] cnt0 = [0 for _ in range(n)] k0 = int(n ** (2 / 3)) d0 = int(n ** (1 / 12)) S0, XS0, L0, C0, R0, = phase1(X0, k0, d0) S0, XS0, L0, C0, R0, cnt0 = phase2(S0, XS0, L0, C0, R0, cnt0) X1 = [i for i in range(n)] cnt1 = [0 for _ in range(n)] k1 = int(n / math.log(n, 2)**(1/3)) d1 = int(math.log(n, 2)**(1/3)) S1, XS1, L1, C1, R1 = phase1(X1, k1, d1) S1, XS1, L1, C1, R1, cnt1 = phase2(S1, XS1, L1, C1, R1, cnt1) if n % 2 == 0: assert int((n / 2) + 1) in C0 assert int((n / 2) + 1) in C1 assert cnt0[int((n / 2) + 1)] <= len(L0) + len(R0) assert cnt1[int((n / 2) + 1)] <= len(L1) + len(R1) elif n % 2 == 1: assert int(n / 2) in C0 assert int(n / 2) in C1 assert cnt0[int(n / 2)] <= len(L0) + len(R0) assert cnt1[int(n / 2)] <= len(L1) + len(R1) # Test return # ================================================== ```
{ "source": "jfklorenz/Python-RMinimum", "score": 4 }
#### File: Python-RMinimum/tests/phase3_test.py ```python import pytest import random import math # ================================================== # Phase 3 def phase3(W, k, M, cnt): """ Phase 3 of the RMinimum algorithm. It takes the winner set from phase 1 and generates n/2k subsets each of size k. Then it filters out all elements in each subset that is larger than the respective element from the tournament winner set from phase 2, then merges all subsets. :param W: Winner set from phase 1 :type W: List :param k: Tuning parameter responsible for the size and amout of subsets :type k: INT :param M: Tournament winner set from phase 2 :type M: List :param cnt: Saves the fragile complexity for each element :type cnt: List :return: Wnew, cnt :param Wnew: Set of merged subsets with elements smaller than its respective filter element :type Wnew: List """ # Generate subsets random.shuffle(W) W_i = [W[i * k:(i + 1) * k] for i in range((len(W) + k - 1) // k)] W_i_filt = [0 for _ in range(len(W_i))] # Filter subsets for i in range(len(W_i_filt)): W_i_filt[i] = [elem for elem in W_i[i] if elem < M[i]] cnt[M[i]] += len(W_i[i]) for elem in W_i[i]: cnt[elem] += 1 # Merge subsets Wnew = [w for sublist in W_i_filt for w in sublist] return W_i, W_i_filt, Wnew, cnt # ================================================== # Unittest : Parameter @pytest.mark.parametrize(('n', 'k'), [ # Randomized input (2 * random.randint(2**9, 2**15), random.randint(2, 2**10-1)), # n in [2^10, 2^16], k in [2, 2^10 - 1] # Manuel input (2**10 - 2, 2**5), (2**10 + 2, 2**5), # n extreme (2**10, 1), (2**10, 2), (2**10, 2**9), (2**10, 2**10 - 1), # k extreme (2**10 - 2, 3), (2**10 + 2, 2**10) # k & n extreme ]) # ================================================== # Unittest : Test def test_p3(n, k): # Generating Testcase # X = [0, ..., 3/4 * n - 1, 3/4 * n + n/k, ..., n + n/k] # M = [3/4 * n, ..., 3/4 * n + n/k - 1] W = [i for i in range(int(n + math.ceil(n / k)))] M = [i for i in range(int(3 / 4 * n), int(3 / 4 * n + math.ceil(n / k)))] for m in M: if m in W: W.remove(m) cnt = [0 for _ in range(int(n + math.ceil(n / k)))] W_split, W_split_filt, W_filt, cnt = phase3(W, k, M, cnt) # Test # The amount of buckets is correct assert len(W_split) == math.ceil(n / k) # Buckets have the correct size assert max(len(w) for w in W_split) == k # Filter test: no element in W[i] was larger than the min[i] for i in range(len(W_split_filt)): if W_split_filt[i] == []: assert True else: assert max(W_split_filt[i]) < M[i] # Each min element was compared with each element in W[i] sum = 0 for i in range(len(M)): sum += cnt[M[i]] assert math.floor(n/k) * k <= sum <= math.ceil(n/k)*k # Each element from W was compared once against its respective min element for w in W: assert cnt[w] == 1 return # ================================================== ```
{ "source": "JFK/python-tornado-site-template", "score": 2 }
#### File: www/mylib/loader.py ```python from tornado.web import Application from raven.contrib.tornado import AsyncSentryClient import importlib import yaml import models from tornado.options import options import logging def app(name, settings): u"""起動するアプリケーションをロードする """ options.log_file_prefix = settings["logging_path"] logging.getLogger().setLevel(settings['logging_level']) models.load(settings['db']) with open(settings['server_apps_conf_path'], 'r') as f: app_conf = yaml.load(f) server = app_conf['common'][name] if settings['env'] in app_conf: server.update(app_conf[settings['env']][name]) ui = {'ui_modules': {}, 'ui_methods': {}} for ui_key in ui.keys(): for package in server.get(ui_key, {}).keys(): for key in server[ui_key][package].keys(): name = server[ui_key][package][key] module= importlib.import_module("mylib.%s.%s" % \ (ui_key, package)) ui[ui_key].update({key: getattr(module, name)}) settings.update(ui) routes = [] for package in server['handlers'].keys(): for uri in server['handlers'][package].keys(): name = server['handlers'][package][uri] handler = importlib.import_module("handlers.%s" % package) routes.append((r"%s" % uri, getattr(handler, name))) application = Application(routes, **settings) try: application.sentry_client = AsyncSentryClient(settings['sentry']) except: pass return dict( app = application, port = server['port'], worker = server['worker_processes'] ) ``` #### File: www/tests/test_user.py ```python import unittest import datetime from mongoengine import connect from mongoengine import Document from mongoengine import StringField from mongoengine import EmailField from mongoengine import DateTimeField from mongoengine import ValidationError from mongoengine.connection import get_db, get_connection from models.user import * import os class TestMongoEngine(unittest.TestCase): def setUp(self): # データベースに接続 addr = '127.0.0.1' port = 27017 connect('test', host=addr, port=port) self.conn = get_connection() self.db = get_db() def tearDown(self): # コレクションの削除 User.drop_collection() def test_create(self): """ create テスト """ user = User(email='<EMAIL>', first_name='hoge', last_name='foo') user.save() u_obj = User.objects.first() u_obj.first_name = "change" u_obj.save() self.assertEqual(user.first_name, "hoge") user.reload() self.assertEqual(user.first_name, "change") def test_validation(self): """ validation テスト """ user = User() self.assertRaises(ValidationError, user.validate) user.email = '<EMAIL>' user.validate() user.first_name = 10 self.assertRaises(ValidationError, user.validate) def test_read(self): user = User(email='<EMAIL>', first_name='hoge', last_name='foo') user.save() collection = self.db[User._get_collection_name()] u_obj = collection.find_one({'email': '<EMAIL>'}) self.assertEqual(u_obj['email'], '<EMAIL>') self.assertEqual(u_obj['first_name'], 'hoge') self.assertEqual(u_obj['last_name'], 'foo') self.assertEqual(u_obj['_id'], user.id) u_err = User(email='root@localhost') self.assertRaises(ValidationError, u_err.save) try: u_err.save(validate=False) except ValidationError: self.fail() if __name__ == '__main__': unittest.main() ```
{ "source": "JFK/spider", "score": 3 }
#### File: www/projects/sample.py ```python import re import logging # from projects import queue as q BASE_URL = 'http://snapdish.co/books/' MAX_JOB_COUNT = 1 WAIT = 1 INTERVAL = 86400 def keyword(text): logging.info(text) def response(spider, soup, tag, **kwargs): logging.info('sample response...') urls = [] option = {} for a in soup.find_all('a'): href = a.get('href') if href and re.match('/books/', href) and href != '/books/': # you can enqueue here # q(spider.redis, qname='normal').enqueue(keyword, a.text) urls.append('http://snapdish.co%s' % href) return (tag, urls, option) ```
{ "source": "jflaboe/PythonLambdaUtils", "score": 3 }
#### File: src/plu/deploy.py ```python import json import os import shutil import time import zipfile import boto3 def run(args): if len(args) < 3: print("Usage:\n\npython -m plu deploy <package> [...<package2>]\npython -m plu deploy all") packages = args[2:] if "all" in packages: deploy_all() else: for p in packages: deploy_package(p) def deploy_all(): for p in get_all_lambdas(): deploy_package(p) def get_all_lambdas(): with open(".plu") as f: return [v for v in json.loads(f.read()).values()] def deploy_package(package_name): print("Deploying Lambda for: {}".format(package_name)) print("Copying dependencies...") copy_modules(package_name) print("Copying main modules...") copy_top_level_files(package_name) print("Zipping up contents...") zip_deployment_directory_contents(package_name) print("Deploying to AWS...") upload_lambda(package_name) print("Deployment complete. Cleaning up...") remove_zip_file(package_name) remove_deployment_directory(package_name) def remove_deployment_directory(package_name): shutil.rmtree(get_deployment_directory_path(package_name)) def get_deployment_directory_path(package_name): return "./{}/tmp-deploy".format(package_name) def zip_deployment_directory_contents(package_name): with zipfile.ZipFile(get_zip_file_path(package_name), 'w', zipfile.ZIP_DEFLATED) as zipf: zipdir(get_deployment_directory_path(package_name), zipf) def remove_zip_file(package_name): os.remove(get_zip_file_path(package_name)) def get_zip_file_path(package_name): return "./{}/tmp-deploy-zip.zip".format(package_name) def copy_modules(package_name): shutil.copytree("./{}/env/Lib/site-packages".format(package_name), get_deployment_directory_path(package_name)) def copy_top_level_files(package_name): for filename in os.listdir("./{}".format(package_name)): if len(filename) > 3 and filename[-3:] == ".py": with open("./{}/{}".format(package_name, filename)) as f: data = f.read().split("\n") for i in range(len(data)): if data[i].startswith("from ."): data[i] = data[i][7:] with open("{}/{}".format(get_deployment_directory_path(package_name), filename), "w") as g: g.write("\n".join(data)) def zipdir(path, ziph): # ziph is zipfile handle for root, dirs, files in os.walk(path): for file in files: ziph.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), path)) def upload_lambda(package_name): client = boto3.client("lambda", region_name=get_aws_region()) pname = get_project_name() with open(get_zip_file_path(package_name), "rb") as z: try: #check if function exists client.get_function(FunctionName=pname + "_" + package_name) response = client.update_function_code( FunctionName=pname + "_" + package_name, ZipFile=z.read() ) except: arn = input("Role ARN for this Lambda function?: ") client.create_function( FunctionName=pname + "_" + package_name, Runtime="python3.9", Handler="lambda_function.lambda_handler", Role=arn, Code={ "ZipFile": z.read() } ) env = get_environment_variables() if not env is None: print("Deployment started, waiting for completion...") time.sleep(15) client.update_function_configuration( FunctionName=pname + "_" + package_name, Environment={ "Variables": env } ) def get_environment_variables(): if os.path.isfile(".plu.env") is True: with open(".plu.env") as f: return json.loads(f.read()) return None def get_aws_region(): if os.path.isfile(".plu.conf") is True: with open(".plu.conf") as f: data = json.loads(f.read()) if "region" in data: return data['region'] else: region = input("AWS Region for lambda upload?: ") data["region"] = region with open(".plu.conf", "w") as f: f.write(json.dumps(data)) else: region = input("AWS Region for lambda upload?: ") if region in ["us-west-2", "us-west-1", "us-east-1", "us-east-2"]: with open(".plu.conf", "w") as f: f.write(json.dumps({"region": region})) return region return "us-west-2" def get_project_name(): if os.path.isfile(".plu.conf") is True: with open(".plu.conf") as f: data = json.loads(f.read()) if "project" in data: return data['project'] else: pname = input("Project name?: ") data["project"] = pname with open(".plu.conf", "w") as f: f.write(json.dumps(data)) else: pname = input("Project name?: ") with open(".plu.conf", "w") as f: f.write(json.dumps({"project": pname})) return pname return "us-west-2" ```
{ "source": "jflad17/pilot_logbook", "score": 3 }
#### File: routes/user/login.py ```python from datetime import timedelta from fastapi import APIRouter, Body, Depends, HTTPException from sqlalchemy import update, insert from fastapi.security import OAuth2PasswordRequestForm from core.security import ACCESS_TOKEN_EXPIRE_MINUTES, authenticate, create_access_token, get_user, get_password_hash, validate_password, verify_password from dependencies import get_db import models import schemas router = APIRouter( tags=["login"], ) @router.post('/token', response_model=schemas.Token) async def login(rememberMe: bool | None = Body(None), changed_password: str | None = Body(None), form_data: OAuth2PasswordRequestForm = Depends(), db=Depends(get_db)): username = form_data.username password = <PASSWORD> user = get_user(db, username=username) expiration = timedelta(minutes=ACCESS_TOKEN_EXPIRE_MINUTES) if rememberMe == True: expiration = timedelta(days=30) if user: if user.resetPassword: if changed_password: validate_password(changed_password) password_hash = get_password_hash(changed_password) db.execute( update(models.User) .where(models.User.idUser == user.idUser) .values(password=<PASSWORD>, resetPassword=0) ) db.commit() else: raise HTTPException(status_code=403, detail="Password must be reset.") else: if user.loginAttempts >= user.maxLoginAttempts: raise HTTPException(status_code=402, detail="Account locked, too many login attempts.") if not verify_password(password, user.password): user.loginAttempts += 1 db.commit() if user.loginAttempts >= user.maxLoginAttempts: raise HTTPException(status_code=402, detail="Account locked, too many login attempts.") if authenticate(db, username, password): access_token = create_access_token(data={"sub": username}, expires_delta=expiration) print(user) return {"user": user, "access_token": access_token, "token_type": "bearer"} else: raise HTTPException(status_code=401, detail="Incorrect password") else: raise HTTPException(status_code=400, detail="User doesn't exist!") ``` #### File: backend/core/config_example.py ```python import os from pydantic import AnyHttpUrl, BaseSettings, validator class Settings(BaseSettings): DEV = True SERVER = False BACKEND_CORS_ORIGINS: list[AnyHttpUrl] = ["http://127.0.0.1:9000", "http://127.0.0.1:3000"] @validator("BACKEND_CORS_ORIGINS", pre=True) def assemble_cors_origins(cls, v: str | list[str]) -> list[str] | str: if isinstance(v, str) and not v.startswith("["): return [i.strip() for i in v.split(",")] elif isinstance(v, (list, str)): return v raise ValueError(v) PROJECT_NAME: str = "LogbookAPI" PROJECT_ROOT = os.path.dirname(os.path.dirname(__file__)) MYSQL_SERVER: str = "" MYSQL_USER: str = "" MYSQL_PASSWORD: str = "" MYSQL_DB: str = "" SQLALCHEMY_POOLSIZE: int = 2 SQLALCHEMY_DATABASE_URI: str = ( f"mysql+mysqldb://{MYSQL_USER}:{MYSQL_PASSWORD}@{MYSQL_SERVER}/{MYSQL_DB}" ) class Config: case_sensitive = True settings = Settings() ```
{ "source": "JFlaherty347/Pokemon-Red-AI", "score": 3 }
#### File: JFlaherty347/Pokemon-Red-AI/pkmnDiscretizer.py ```python class pokemonRedDiscretizer(gym.ActionWrapper): """ Wrap a gym-retro environment and make it use discrete actions for the Space Invaders game. """ def __init__(self, env): super(pokemonRedDiscretizer, self).__init__(env) buttons = ["A", "LEFT", "RIGHT"] actions = [["BUTTON"], ['LEFT'], ['RIGHT'], ["BUTTON","LEFT"], ["BUTTON", "RIGHT"]] self._actions = [] """ What we do in this loop: For each action in actions - Create an array of 3 False (3 = nb of buttons) For each button in action: (for instance ['LEFT']) we need to make that left button index = True - Then the button index = LEFT = True In fact at the end we will have an array where each array is an action and each elements True of this array are the buttons clicked. """ for action in actions: arr = np.array([False] * 3) for button in action: arr[buttons.index(button)] = True self._actions.append(arr) self.action_space = gym.spaces.Discrete(len(self._actions)) def action(self, a): # pylint: disable=W0221 return self._actions[a].copy() ``` #### File: JFlaherty347/Pokemon-Red-AI/sbTest.py ```python import retro import gym import os import time from stable_baselines.common.vec_env import DummyVecEnv from stable_baselines.deepq.policies import MlpPolicy from stable_baselines import DQN from stable_baselines.common.env_checker import check_env from stable_baselines.common.cmd_util import make_vec_env # party size = d163 # money = d347 SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) def main(): retro.data.Integrations.add_custom_path( os.path.join(SCRIPT_DIR, "custom_integrations") ) print("PokemonRed-GameBoy" in retro.data.list_games(inttype=retro.data.Integrations.ALL)) env = retro.make("PokemonRed-GameBoy", inttype=retro.data.Integrations.ALL) print(env) print(env.action_space) time.sleep(3) env = make_vec_env(lambda: env, n_envs=1) # check_env(env, warn=True) time.sleep(3) model = DQN(MlpPolicy, env, verbose=1) model.learn(total_timesteps=25000) obs = env.reset() while True: action, _states = model.predict(obs) obs, rewards, dones, info = env.step(action) env.render() env.close() if __name__ == "__main__": main() ```
{ "source": "jflairie/sheetwork", "score": 2 }
#### File: core/config/project.py ```python import time from pathlib import Path from typing import Dict, Union from sheetwork.core.exceptions import ProjectFileParserError from sheetwork.core.flags import FlagParser from sheetwork.core.logger import GLOBAL_LOGGER as logger from sheetwork.core.ui.printer import yellow from sheetwork.core.utils import PathFinder, deprecate from sheetwork.core.yaml.yaml_helpers import open_yaml, validate_yaml from sheetwork.core.yaml.yaml_schema import project_schema class Project: """Sets up everything there is to know about the project config. Will give precedence to CLI Args --see override functions. """ PROJECT_FILENAME = "sheetwork_project.yml" # this is some garbage to make sure we don't sleep when we test the deprecation handling # ! DEPRECATION "always_create" IS_TEST = False def __init__(self, flags: FlagParser) -> None: """Constructs project object. Args: flags (FlagParser): Inited flags object. """ self.project_dict: Dict[str, Union[str, bool]] = dict() self.target_schema: str = str() self.object_creation_dct: Dict[str, bool] = dict() self.destructive_create_table: bool = False self.flags = flags # directories (first overwritten by flags, then by project) This may not always be able to # be like this we might wanna give prio to CLI but for now this removes some complication. self.project_file_fullpath: Path = Path("dumpy_path") self.profile_dir: Path = Path("~/.sheetwork/").expanduser() self.sheet_config_dir: Path = Path.cwd() # override defaults self.override_paths_from_flags() self.load_project_from_yaml() self.decide_object_creation() self.override_object_creation_from_flags() logger.debug(f"Project name: {self.project_name}") def load_project_from_yaml(self): if self.project_file_fullpath == Path("dumpy_path"): _, self.project_file_fullpath = PathFinder().find_nearest_dir_and_file( type(self).PROJECT_FILENAME ) project_yaml = open_yaml(self.project_file_fullpath) is_valid_yaml = validate_yaml(project_yaml, project_schema) if project_yaml and is_valid_yaml: self.project_dict = project_yaml self.project_name = project_yaml.get("name") self.target_schema = project_yaml.get("target_schema", self.target_schema) if project_yaml.get("paths"): self.profile_dir = ( Path(project_yaml["paths"].get("profile_dir", self.profile_dir)) .expanduser() .resolve() ) self.sheet_config_dir = ( Path(project_yaml["paths"].get("sheet_config_dir", self.sheet_config_dir)) .expanduser() .resolve() ) else: raise ProjectFileParserError( f"Error trying to load project config from {self.project_file_fullpath}. " "Check it exists or that it is valid." ) # ! DEPRECATION "always_create" def handle_deprecations(self, colour: str = "red") -> None: if self.project_dict.get("always_create"): msg = ( "'always_create' will be deprecated in a future major release " "'always_create' now means 'always_create_table'. " "Prefer using 'always_create_table' instead or 'always_create_all_objects' if you " "want to make sheetwork create all objects (database, schemas and tables)." ) deprecate(message=msg, colour=colour) if type(self).IS_TEST is False: time.sleep(4) def decide_object_creation(self) -> None: self.handle_deprecations() create_everything_label = "always_create_objects" object_creation_mapping = { # ! DEPRECATE "always_create" "create_table": ["always_create_table", "always_create"], "create_schema": ["always_create_schema"], } for object_type, rule in object_creation_mapping.items(): if self.project_dict.get(create_everything_label): create = [True] else: create = [True for x in rule if self.project_dict.get(x) is True] self.object_creation_dct.update({object_type: True in create}) self.destructive_create_table = ( True if self.project_dict.get("destructive_create_table", self.destructive_create_table) is True else False ) logger.debug(yellow(f"Object creation dict:\n {self.object_creation_dct}")) logger.debug(yellow(str(self.project_dict))) def override_paths_from_flags(self): if self.flags.project_dir: self.project_file_fullpath = Path(self.flags.project_dir, type(self).PROJECT_FILENAME) if self.flags.profile_dir: self.profile_dir = Path(self.flags.profile_dir) if self.flags.sheet_config_dir: self.sheet_config_dir = Path(self.flags.sheet_config_dir) def override_object_creation_from_flags(self) -> None: if self.flags.create_table: logger.debug(yellow("going to create table")) self.object_creation_dct.update({"create_table": True}) if self.flags.create_schema: logger.debug(yellow("going to create schema")) self.object_creation_dct.update({"create_schema": True}) logger.debug(yellow(f"Object creation dict after override\n {self.object_creation_dct}")) if self.flags.destructive_create_table: logger.debug(yellow("going to perform destuctive table creation")) self.destructive_create_table = True ``` #### File: sheetwork/core/sheetwork.py ```python import sys from typing import List, Optional, Tuple, Union import pandas from gspread.exceptions import APIError from retrying import retry from sheetwork.core.adapters.base.connection import BaseConnection, BaseCredentials from sheetwork.core.adapters.base.impl import BaseSQLAdapter from sheetwork.core.adapters.factory import AdapterContainer from sheetwork.core.cleaner import SheetCleaner from sheetwork.core.clients.google import GoogleSpreadsheet from sheetwork.core.config.config import ConfigLoader from sheetwork.core.config.profile import Profile from sheetwork.core.flags import FlagParser from sheetwork.core.logger import GLOBAL_LOGGER as logger from sheetwork.core.ui.printer import red, timed_message, yellow from sheetwork.core.utils import check_columns_in_df class SheetBag: """Main object orchestrates sheet loading, cleaning, and db pushing. Raises: ColumnNotFoundInDataFrame: If a column on which a rename or casting is asked for cannot be found in the DataFrame resulting from the obtained sheet. Returns: SheetBag: Loaded, and possibly cleaned sheet object with db interaction methods. """ def __init__(self, config: ConfigLoader, flags: FlagParser, profile: Profile): """Constructor of SheetBag class. Args: config (ConfigLoader): initialised Sheetwork config class containing required params to orchestrate SheetBag successfully. flags (FlagParser): class containing defaults or parsed CLI arguments profile (Profile): class containing info such as credentials db type etc required for SheetBag to know what to do. """ self.sheet_df: pandas.DataFrame = pandas.DataFrame() self.flags = flags self.config = config self.target_schema = config.target_schema self.target_table = config.target_table self.profile = profile self.push_anyway = False self.sheet_key: str = str(config.sheet_config.get("sheet_key", str())) self.credentials_adapter: Optional[BaseCredentials] = None self.connection_adapter: Optional[BaseConnection] = None self.sql_adapter: Optional[BaseSQLAdapter] = None self.init_adapters() def init_adapters(self) -> None: adapter_container = self._get_adapter_modules() self.credentials_adapter = adapter_container.credentials_adapter( # type:ignore self.profile ) self.connection_adapter = adapter_container.connection_adapter( # type:ignore self.credentials_adapter ) self.sql_adapter = adapter_container.sql_adapter( # type:ignore self.connection_adapter, self.config ) def _get_adapter_modules(self) -> AdapterContainer: adapters = AdapterContainer() adapters.register_adapter(self.profile) adapters.load_plugins() return adapters @retry(stop_max_attempt_number=3, wait_exponential_multiplier=1000, wait_exponential_max=10000) def _obtain_googlesheet(self) -> pandas.DataFrame: df = pandas.DataFrame() try: worksheet = str(self.config.sheet_config.get("worksheet", str())) google_sheet = GoogleSpreadsheet(self.profile, self.sheet_key) google_sheet.authenticate() google_sheet.open_workbook() df = google_sheet.make_df_from_worksheet(worksheet_name=worksheet) except APIError as e: error = str(e) if any(x in error for x in ["RESOURCE_EXHAUSTED", "UNAVAILABLE", "INTERNAL"]) and any( x in error for x in ["100", "500", "503"] ): raise return df def load_sheet(self): """Loads a google sheet, and calls clean up steps if applicable. Sheet must have been shared with account admin email address used in storage. Raises: TypeError: When loader does not return results that can be converted into a pandas DataFrame a type error will be raised. """ if self.flags.sheet_name: logger.info(timed_message(f"Importing: {self.flags.sheet_name}")) logger.debug(f"Importing data from: {self.config.sheet_config['sheet_key']}") else: logger.info( timed_message(f"Importing data from: {self.config.sheet_config.get('sheet_key')}") ) df = self._obtain_googlesheet() if not isinstance(df, pandas.DataFrame): raise TypeError("import_sheet did not return a pandas DataFrame") logger.debug(f"Columns imported from sheet: {df.columns.tolist()}") # Perform exclusions, renamings and cleanups before releasing the sheet. df = self.exclude_columns(df) df = self.rename_columns(df) self.push_anyway, df = self.run_cleanup(df) logger.debug(f"Columns after cleanups and exclusions: {df.columns}") logger.debug(f"Loaded SHEET HEAD: {df}") self.sheet_df = df def rename_columns(self, df: pandas.DataFrame): if self.config.sheet_column_rename_dict: _, _ = check_columns_in_df(df, list(self.config.sheet_column_rename_dict.keys())) df = df.rename(columns=self.config.sheet_column_rename_dict) # type: ignore return df def exclude_columns(self, df: pandas.DataFrame) -> pandas.DataFrame: """Drops columns referred to by their identifier. The identifier is the exact string in the google sheet when a list is provided in the "excluded_columns" field of a sheet yml file. Args: df (pandas.DataFrame): DataFrame downloaded from google sheet. Returns: pandas.DataFrame: Either the same dataframe as originally provided or one with dropped columns as required. """ cols_to_exclude: Union[str, List[str]] = self.config.sheet_config.get( # type: ignore "excluded_columns", list(str()) ) if cols_to_exclude: _, filtered_columns = check_columns_in_df(df, cols_to_exclude, warn_only=True) if filtered_columns: df = df.drop(filtered_columns, axis=1) return df return df @staticmethod def _collect_and_check_answer(post_cleanup: bool = False): acceptable_answers = ["y", "n", "a"] user_input = str() while user_input not in acceptable_answers: if user_input is not None: logger.info("Choose 'y':yes, 'n':no, 'a':abort'") if post_cleanup: user_input = input("Would you like to push to db? (y/n):") else: user_input = input("Would you like to perform cleanup? (y/n/a): ") if user_input.lower() == "y": return True if user_input.lower() == "n": return False if user_input.lower() == "a": logger.info(red("User aborted.")) sys.exit(1) @staticmethod def _show_dry_run_preview(sheet_df: pandas.DataFrame): print("\nDataFrame DataTypes: \n\n" + str(sheet_df.dtypes)) print("\nDataFrame Header: \n\n" + str(sheet_df.head(10))) def run_cleanup(self, df: pandas.DataFrame) -> Tuple[bool, pandas.DataFrame]: clean_up = True # check for interactive mode if self.flags.interactive: logger.info( yellow( "PRE-CLEANING PREVIEW: The DataFrame you would push to the database would look like this:" ) ) self._show_dry_run_preview(df) clean_up = self._collect_and_check_answer() if clean_up is True: logger.debug("Performing clean ups") clean_df = SheetCleaner( df, bool(self.config.sheet_config.get("snake_case_camel", False)) ).cleanup() if self.flags.dry_run or self.flags.interactive: logger.info(yellow("\nPOST-CLEANING PREVIEW:")) self._show_dry_run_preview(clean_df) carry_on = self._collect_and_check_answer(post_cleanup=True) if not carry_on: logger.info(timed_message(red("User Aborted."))) sys.exit(1) return True, clean_df return True, df def push_sheet(self): logger.info(timed_message("Pushing sheet to database...")) logger.debug(f"Column override dict is a {type(self.config.sheet_columns)}") logger.debug(f"Sheet columns: {self.config.sheet_columns}") logger.debug(f"Columns in final df: {self.sheet_df.columns.tolist()}") self.sql_adapter.upload(self.sheet_df, self.target_schema) def check_table(self): self.sql_adapter.check_table(self.target_schema, self.target_table) def run(self): self.load_sheet() if self.push_anyway: self.push_sheet() self.check_table() else: logger.info(yellow("Nothing pushed since you were in --dry_run mode.")) ``` #### File: sheetwork/tests/cleanups_test.py ```python import pathlib from pathlib import Path import numpy as np import pandas from .mockers import CASING_DF, DIRTY_DF, SNAKE_CASED_COLS, generate_test_df TESTING_PATH = pathlib.Path(__file__).parent.absolute() def test_cleanup(): from sheetwork.core.cleaner import SheetCleaner clean_df_path = Path(TESTING_PATH, "clean_df.json") dirty_df = generate_test_df(DIRTY_DF) clean_df = SheetCleaner(dirty_df).cleanup() expected_df = pandas.read_json( clean_df_path, dtype={"col_with_empty_string": "object"}, ) expected_df = expected_df.fillna(np.nan) assert clean_df.equals(expected_df) def test_snake_to_camel(): from sheetwork.core.cleaner import SheetCleaner cased_df = generate_test_df(CASING_DF) recased_df = SheetCleaner(cased_df, True).cleanup() assert recased_df.columns.tolist() == SNAKE_CASED_COLS ``` #### File: sheetwork/tests/profile_test.py ```python from pathlib import Path import pytest from .mockers import EXPECTED_DEV_TEST_PROFILE FIXTURE_DIR = Path(__file__).resolve().parent @pytest.mark.datafiles(FIXTURE_DIR) def test_read_profile(datafiles): from sheetwork.core.config.profile import Profile from sheetwork.core.config.project import Project from sheetwork.core.flags import FlagParser from sheetwork.core.main import parser flags = FlagParser(parser, project_dir=str(datafiles), profile_dir=str(datafiles)) project = Project(flags) profile = Profile(project, "dev") profile.read_profile() assert profile.profile_dict == EXPECTED_DEV_TEST_PROFILE ```
{ "source": "jflan91/Recipe-API", "score": 2 }
#### File: recipe/tests/test_app.py ```python from recipe.apps import RecipeConfig from django.test import TestCase class RecipeAppTest(TestCase): def test_app(self): test_recipe = RecipeConfig.name self.assertEqual(test_recipe, 'recipe') ```
{ "source": "JFLandrigan/eagles", "score": 3 }
#### File: Supervised/utils/metric_utils.py ```python import numpy as np import pandas as pd from sklearn.metrics import ( accuracy_score, f1_score, precision_score, recall_score, roc_auc_score, precision_recall_curve, auc, mean_squared_error, mean_absolute_error, r2_score, ) from math import sqrt def root_mean_squared_error(y_true, preds): return sqrt(mean_squared_error(y_true, preds)) def mean_absolute_percentage_error(y_true, y_pred): df = pd.DataFrame({"y_true": y_true, "y_pred": y_pred}) df = df[df["y_true"] != 0].copy(deep=True) y_true = df["y_true"] y_pred = df["y_pred"] return np.mean(np.abs((y_true - y_pred) / y_true)) * 100 def precision_recall_auc(y_true=None, pred_probabs=None): clf_precision, clf_recall, _ = precision_recall_curve(y_true, pred_probabs) score = auc(clf_recall, clf_precision) return score def init_model_metrics(metrics=[]): """ Function to init dictionary that stores metric functions and metric scores :param metrics: list of strings for metrics to store in dictionary :return: dictionary that with _func _score metric pairings """ metric_dictionary = {} # Classification Metrics if "accuracy" in metrics: metric_dictionary["accuracy_func"] = accuracy_score metric_dictionary["accuracy_scores"] = np.array([]) if "f1" in metrics: metric_dictionary["f1_func"] = f1_score metric_dictionary["f1_scores"] = np.array([]) if "precision" in metrics: metric_dictionary["precision_func"] = precision_score metric_dictionary["precision_scores"] = np.array([]) if "recall" in metrics: metric_dictionary["recall_func"] = recall_score metric_dictionary["recall_scores"] = np.array([]) if "roc_auc" in metrics: metric_dictionary["roc_auc_func"] = roc_auc_score metric_dictionary["roc_auc_scores"] = np.array([]) if "precision_recall_auc" in metrics: metric_dictionary["precision_recall_auc_func"] = precision_recall_auc metric_dictionary["precision_recall_auc_scores"] = np.array([]) # Regression Metrics if "mse" in metrics: metric_dictionary["mse_func"] = mean_squared_error metric_dictionary["mse_scores"] = np.array([]) if "rmse" in metrics: metric_dictionary["rmse_func"] = root_mean_squared_error metric_dictionary["rmse_scores"] = np.array([]) if "mae" in metrics: metric_dictionary["mae_func"] = mean_absolute_error metric_dictionary["mae_scores"] = np.array([]) if "mape" in metrics: metric_dictionary["mape_func"] = mean_absolute_percentage_error metric_dictionary["mape_scores"] = np.array([]) if "r2" in metrics: metric_dictionary["r2_func"] = r2_score metric_dictionary["r2_scores"] = np.array([]) return metric_dictionary def calc_metrics( metrics=None, metric_dictionary=None, y_test=None, preds=None, pred_probs=None, avg="binary", ): for metric in metrics: if metric not in [ "f1", "precision", "recall", "roc_auc", "precision_recall_auc", ]: metric_dictionary[metric + "_scores"] = np.append( metric_dictionary[metric + "_scores"], metric_dictionary[metric + "_func"](y_test, preds), ) elif metric in ["f1", "precision", "recall"]: metric_dictionary[metric + "_scores"] = np.append( metric_dictionary[metric + "_scores"], metric_dictionary[metric + "_func"](y_test, preds, average=avg), ) elif metric in ["roc_auc", "precision_recall_auc"]: metric_dictionary[metric + "_scores"] = np.append( metric_dictionary[metric + "_scores"], metric_dictionary[metric + "_func"](y_test, pred_probs), ) return metric_dictionary ``` #### File: eagles/Unsupervised/unsupervised_tuner.py ```python from eagles.Unsupervised.utils import plot_utils as pu from eagles.Unsupervised.utils import cluster_eval_utils as ceu from eagles.Unsupervised.utils import logger_utils as lu import numpy as np import pandas as pd from IPython.display import display from sklearn.cluster import KMeans, AgglomerativeClustering, DBSCAN from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.metrics import silhouette_score from kneed import KneeLocator import logging logger = logging.getLogger(__name__) pd.set_option("display.max_rows", None) pd.set_option("display.max_columns", None) pd.set_option("display.width", None) pd.set_option("display.max_colwidth", None) def _find_max_sil(res_dict): max_ind = res_dict["scores"].argmax() num_clusters = res_dict["n_clusters"][max_ind] max_sil_score = res_dict["scores"][max_ind] return num_clusters, max_sil_score def _init_method(model=None, params={}): if model is None: logger.warning("No model passed in") return if model == "kmeans": mod = KMeans(**params) elif model == "agglomerativeclustering": mod = AgglomerativeClustering(**params) elif model == "dbscan": mod = DBSCAN(**params) else: mod = model return mod def find_optimal_clusters( data=None, ft_cols=[], cluster_method="kmeans", metric="max_sil", min_num_clusters=2, max_num_clusters=10, params={}, scale=None, plot_dims=[], summary_stats=[], run_stat_comps=True, plot_scale=None, random_seed=None, log="log", log_name=None, log_path=None, log_note=None, ): """ Takes in data and model and fits specified unsupervised model to the data. Then uses the specified metric to find the optimal number of clusters. The optimal number of clusters is passed to eval_clusters to evaluate the clusters for differences :param data: default None, expects pandas dataframe with names columns :param ft_cols: default empty list: expects list containing string names of the columns to use for clustering. If default then uses all cols :param cluster_method: default "kmeans", expects string name of the model to be applied (i.e. kmeans, agglomerativeclustering, dbscan :param metric: default "max_sil", expects string for metric to determine the optimal number of clusters :param min_num_clusters: default 2, int specifying the lower bound of the number clusters :param max_num_clusters: default 10, int specifyuing the upper bound of the number clusters :param params: default empty dict, paramter dictionary for the model being tested :param scale: default None, expects either "minmax", "standard" or sklearn scaler object :param plot_dims: default empty list, expects list of dimensions to plot the result clusters across :param summary_stats: default empty list, expects list of grouping statistics to apply to data \ during cluster comparisons :param run_stat_comps: default True, boolean indicating whether or not to run cluster comparisons :param plot_scale: default None, expects either "minmax" or "standard" to indicate scaling of features for plots :param random_seed: default None, int specifying the random seed value for the analysis :param log: string or list default None, Expects either a string ("log", "data", "mod") or a list containing these keywords to tell the logger what to log. Note when a list is passed in the function will create a directory to store the logged out components. :param log_name: str default None, prefix name of logged out data. Ignored if log is None :param log_path: str default None, path to save log data to. Ignored if no log is None :param log_note: str default None, Note to be used in the log that is saved out. Ignored if no log :return: returns pandas df with attached cluster labels """ if min_num_clusters == max_num_clusters: logger.warning("WARNING MIN AND MAX NUM CLUSTERS SHOULD NOT BE EQUAL") return if random_seed is None: random_seed = np.random.randint(1000, size=1)[0] print("Random Seed Value: " + str(random_seed)) if len(ft_cols) == 0: ft_cols = [col for col in data.columns] data = data[ft_cols].copy(deep=True) if scale: if scale == "standard": scaler = StandardScaler() data = scaler.fit_transform(data[ft_cols]) elif scale == "minmax": scaler = MinMaxScaler() data = scaler.fit_transform(data[ft_cols]) else: data = scale.fit_transfrom(data) data = pd.DataFrame(data) data.columns = ft_cols # if kmeans of agglom loop through to find the optimal clusters if cluster_method in ["kmeans", "agglomerativeclustering"]: res_dict = {"n_clusters": np.array([]), "scores": np.array([])} # loop through the number of clusters and create dictionary of num clusters with metrics for i in range(min_num_clusters, max_num_clusters, 1): params["n_clusters"] = i res_dict["n_clusters"] = np.append(res_dict["n_clusters"], i) model = _init_method(model=cluster_method, params=params) pred_labels = model.fit_predict(data[ft_cols]) if metric in ["max_sil"]: res_dict["scores"] = np.append( res_dict["scores"], silhouette_score(data, pred_labels) ) elif metric == "knee_wss": res_dict["scores"] = np.append(res_dict["scores"], model.inertia_) else: logger.warning("WARNING METRIC NOT SUPPORTED") return print("Finished fitting model with " + str(i) + " clusters", end="\r") print("", end="\n") elif cluster_method in ["dbscan"]: model = _init_method(model=cluster_method, params=params) model.fit_predict(data[ft_cols]) else: logger.warning("Non supported model passed in") return # Once looped through and found the scores across the range of clusters then get final set based on the best score if cluster_method in ["kmeans", "agglomerativeclustering"]: if metric == "max_sil": opt_n_clusters, max_sil_score = _find_max_sil(res_dict=res_dict) opt_n_clusters = int(opt_n_clusters) print("Best silhoutte score: " + str(max_sil_score)) elif metric == "knee_wss": kn = KneeLocator( x=res_dict["n_clusters"], y=res_dict["scores"], curve="convex", direction="decreasing", ) opt_n_clusters = int(kn.knee) pu.plot_score_curve(data=res_dict, metric=metric, opt_n_clusters=opt_n_clusters) elif cluster_method in ["dbscan"]: opt_n_clusters = len(set(model.labels_)) - (1 if -1 in model.labels_ else 0) print("Optimal number of clusters: " + str(opt_n_clusters) + "\n") eval_clusters( data=data, n_clusters=opt_n_clusters, method=cluster_method, params=params, ft_cols=ft_cols, plot_dims=plot_dims, summary_stats=summary_stats, run_stat_comps=run_stat_comps, plot_scale=plot_scale, log=log, log_name=log_name, log_path=log_path, log_note=log_note, ) return data def eval_clusters( data=None, ft_cols=[], n_clusters=2, method="kmeans", params={}, scale=None, plot_dims=[], summary_stats=[], run_stat_comps=True, plot_scale=None, log="log", log_name=None, log_path=None, log_note=None, ): """ Function to find and compare clusters across specified dimensions :param data: default None, expects pandas dataframe with names columns :param ft_cols: default empty list: expects list containing string names of the columns to use for clustering. :param n_clusters: default 2, int specifying the number of desired clusters :param method: default "kmeans", expects string name of the model to be applied (i.e. kmeans, agglomerativeclustering, dbscan :param params: default empty dict, paramter dictionary for the model being used :param scale: default None, expects either "minmax", "standard" or sklearn scaler object :param plot_dims: default empty list, expects list of dimensions to plot the result clusters across :param summary_stats: default empty list, expects list of grouping statistics to apply to data \ during cluster comparisons :param run_stat_comps: default True, boolean indicating whether or not to run cluster comparisons :param plot_scale: default None, expects either "minmax" or "standard" to indicate scaling of features for plots :param log: string or list default None, Expects either a string ("log", "data", "mod") or a list containing these keywords to tell the logger what to log. Note when a list is passed in the function will create a directory to store the logged out components. :param log_name: str default None, prefix name of logged out data. Ignored if log is None :param log_path: str default None, path to save log data to. Ignored if no log is None :param log_note: str default None, Note to be used in the log that is saved out. Ignored if no log :return: returns pandas df with attached cluster labels """ if len(ft_cols) == 0: ft_cols = [col for col in data.columns] data = data[ft_cols].copy(deep=True) if scale: if scale == "standard": scaler = StandardScaler() data = scaler.fit_transform(data[ft_cols]) elif scale == "minmax": scaler = MinMaxScaler() data = scaler.fit_transform(data[ft_cols]) else: data = scale.fit_transfrom(data) data = pd.DataFrame(data) data.columns = ft_cols if ( method in ["kmeans", "agglomerativeclustering"] and "n_cluster" not in params.keys() ): params["n_clusters"] = n_clusters model = _init_method(model=method, params=params) pred_labels = model.fit_predict(data[ft_cols]) data["Cluster"] = model.labels_ data["Cluster"] = data["Cluster"].astype(str) sil_score = silhouette_score(data, pred_labels) print("Silhouette Score: " + str(round(sil_score, 2))) if type(model).__name__ == "Pipeline": if type(model.named_steps["model"]).__name__ == "KMeans": print( "WSS Total: " + str(round(model.named_steps["model"].inertia_, 2)) + "\n" ) elif method == "kmeans": print("WSS Total: " + str(round(model.inertia_, 2)) + "\n") if len(plot_dims) == 0: plot_dims = ft_cols + ["Cluster"] print("Number of Observations per Cluster") print(str(data["Cluster"].value_counts()) + "\n\n") base_cluster_stats = ceu.create_summary_table( data=data, plot_dims=plot_dims, summary_stats=summary_stats ) base_cluster_stats = round(base_cluster_stats, 2) print("Base Cluster Stats \n") display(base_cluster_stats.T) print("\n\n") if run_stat_comps: sig_test_results, post_hoc_comps = ceu.run_cluster_comps( data=data, ft_cols=ft_cols ) if sig_test_results.shape[0] == 0: print("No significant differences found between clusters") else: print("Significance Testing Results \n") print(str(round(sig_test_results, 2)) + "\n\n") if post_hoc_comps.shape[0] == 0: print("No pairwise significant difference") else: print("Pairwise Differences \n") print(str(round(post_hoc_comps, 2)) + "\n\n") pu.plot_mean_cluster_scores(data=data, plot_scale=plot_scale) pu.plot_ft_relationships(data=data, plot_dims=plot_dims) if log: log_data = { "n_clusters": n_clusters, "features": ft_cols, "Silhouette Score": round(sil_score, 2), "data": data, "params": model.get_params(), "base_cluster_stats": round(base_cluster_stats, 2), } if type(model).__name__ == "Pipeline": log_data["method"] = type(model).__name__ pipe_steps = "Pipe steps: " for k in model.named_steps.keys(): pipe_steps = pipe_steps + type(model.named_steps[k]).__name__ + " " log_data["pipe_steps"] = pipe_steps else: log_data["method"] = type(model).__name__ if type(model).__name__ == "Pipeline": if type(model.named_steps["model"]).__name__ == "KMeans": log_data["WSS"] = round(model.named_steps["model"].inertia_, 2) elif method == "kmeans": log_data["WSS"] = round(model.inertia_, 2) if log_note: log_data["note"] = log_note lu.log_results(fl_name=log_name, fl_path=log_path, log_data=log_data) return data ```
{ "source": "JFlashy96/ImageClassifier", "score": 3 }
#### File: JFlashy96/ImageClassifier/helper.py ```python from collections import OrderedDict import copy from PIL import Image from torch import nn from torch import optim from torch.autograd import Variable from torchvision import datasets, transforms, models import argparse import json import matplotlib.pyplot as plt import numpy as np import os, random, sys import time import torch import torch.nn.functional as F import torchvision """ Helpfer functions to aid the training of model and prediction of input image """ def load_data(root="./flowers"): data_dir = root train_dir = data_dir + "/train" valid_dir = data_dir + "/valid" test_dir = data_dir + "/test" """ Normalize the means and standard deviations of the images to what the network expects #Normalization keeps the weight near zero which tends to make backpropogation more stable. TODO: Understand and be able to apply backpropogation optimization techniques. """ std = [0.229, 0.224, 0.225] means = [0.485, 0.456, 0.406] train_transform = transforms.Compose([transforms.RandomRotation(30), transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(means, std)]) val_transform = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(means, std)]) test_transform = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(means, std)]) print("Initializing Datasets and DataLoaders") # TODO: Load the datasets with ImageFolder # Load the datasets with ImageFolder train_data = datasets.ImageFolder(train_dir, transform=train_transform) val_data = datasets.ImageFolder(valid_dir, transform=val_transform) test_data = datasets.ImageFolder(test_dir, transform=test_transform) image_datasets = [train_data, val_data, test_data] # TODO: Using the image datasets and the trainforms, define the dataloaders # Dataloader definitions using the image datasets and the transforms train_loader = torch.utils.data.DataLoader(train_data, batch_size=64, shuffle=True) val_loader = torch.utils.data.DataLoader(val_data, batch_size=32) test_loader = torch.utils.data.DataLoader(test_data, batch_size=32) return train_loader, val_loader, test_loader, train_data def setup_network(arch, device, hidden_units, learning_rate): model = getattr(models, arch)(pretrained=True) for param in model.parameters(): param.requires_grad = False # Define a new, untrained feed-forward network as a classifier, using ReLU activations and # dropout. classifier = nn.Sequential(OrderedDict([ ('fcl', nn.Linear(25088, 1024)), ('drop', nn.Dropout(p=0.5)), ('relu', nn.ReLU()), ('fc2', nn.Linear(1024, 102)), ('output', nn.LogSoftmax(dim=1)) ])) model.classifier = classifier # Train the classifier layers using backpropagation using the pre-trained network to get the features. # Track the loss and accuracy on the validation set to determine the best hyperparameters. model = model.to(device) if torch.cuda.is_available() and device == 'gpu': model.cuda() # Gather the parameters to be optimized/updated in this run. # If we are finetuning we will be updating all parameters. However, # if we are doing feature extract method, we will only update # the parameters that we have just initialized. i.e., the parameters # with requires_grad is True. feature_extract = True params_to_update = model.parameters() print("Param to learn:") if feature_extract: params_to_update = [] for name, param in model.named_parameters(): if param.requires_grad == True: params_to_update.append(param) print("\t", name) else: for name, param in model.named_parameters(): if param.requires_grad == True: print("\t", name) optimizer = optim.SGD(params_to_update, lr=0.01) return model, optimizer, classifier def save_checkpoint(train_data, model, arch, learning_rate, classifier, num_epochs, optimizer): model.class_to_idx = train_data.class_to_idx checkpoint = {'input_size': 25088, 'output_size': 102, 'arch': arch, 'learning_rate': learning_rate, 'batch_size': 64, 'classifier': classifier, 'num_epochs': num_epochs, 'optimizer': optimizer.state_dict(), 'state_dict': model.state_dict(), 'class_to_idx': model.class_to_idx} torch.save(checkpoint, 'checkpoint.pth') def load_checkpoint(filename, arch, device): checkpoint = torch.load(filename) learning_rate = checkpoint['learning_rate'] model, optimizer, classifier = setup_network(arch,device,learning_rate) model = getattr(torchvision.models, checkpoint['arch'])(pretrained=True) model.num_epochs = checkpoint['num_epochs'] model.class_to_idx = checkpoint['class_to_idx'] model.load_state_dict(checkpoint['state_dict']) return model def train_model(model, dataloaders, criterion, optimizer,device, num_epochs=25): since = time.time() # list to keep track of model performance accuracy over epochs val_acc_history = [] best_acc = 0.0 best_model_wts = copy.deepcopy(model.state_dict()) for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch, num_epochs - 1)) print('-' * 10) train_mode = 0 valid_mode = 1 # Each epoch has a training and validation mode for mode in [train_mode, valid_mode]: if mode == train_mode: model.train() # set model to training mode else: model.eval() # set model to evaluation mode running_loss = 0.0 running_corrects = 0 pass_count = 0 # Iterate over data. for inputs, labels in dataloaders[mode]: pass_count += 1 inputs = inputs.to(device) labels = labels.to(device) # zero the parameter gradients optimizer.zero_grad() # forward # only track history if in train # Get model output and calculate loss output = model.forward(inputs) loss = criterion(output, labels) _, preds = torch.max(output, 1) # Backward. Optimize only if in training mode if mode == train_mode: loss.backward() optimizer.step() # statistics running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) epoch_acc = running_corrects.double() / len(dataloaders[mode].dataset) if mode == train_mode: print("\nEpoch: {}/{} ".format(epoch+1, num_epochs), "\nTraining Loss: {:.4f} ".format(running_loss/pass_count)) else: print("Validation Loss: {:.4f} ".format(running_loss/pass_count), "Accuracy: {:.4f}".format(epoch_acc)) running_loss = 0 time_elapsed = time.time() - since print("\nTotal time: {:.0f}m {:.0f}s".format(time_elapsed//60, time_elapsed % 60)) def predict(image_path, model, topk, device): # Predict the class (or classes) of an image using a pretrained deep learing model. # TODO: Implement the code to predict the class from an image file # move the model to cuda if device == "cuda": # Move model parameters to the GPU model.cuda() print("Number of GPUS:", torch.cuda.device_count()) print("Device name:", torch.cuda.get_device_name(torch.cuda.device_count()-1)) else: model.cpu() # turn off dropout model.eval() # The image image = process_image(image_path) # transfer to tensor image = torch.from_numpy(np.array([image])).float() # The image becomes the input image = Variable(image) if device == "cuda": image = image.cuda() output = model.forward(image) probabilities = torch.exp(output).data # getting the topk # 0 --> probabilities # proabilities is a list of the topk probabilities = torch.topk(probabilities, topk)[0].tolist()[0] return probabilities def process_image(image): ''' Scales, crops, and normalizes a PIL image for a PyTorch model, returns an Numpy array ''' im = Image.open(image) im = im.resize((256, 256)) value = 0.5 * (256-224) im = im.crop((value, value, 256-value, 256-value)) im = np.array(im)/255 mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) im = (im - mean) / std return im.transpose(2,0,1) ```
{ "source": "jflatorreg/scikit-maad", "score": 3 }
#### File: maad/features/features_func.py ```python from __future__ import print_function import numpy as np import pandas as pd from scipy import ndimage as ndi import itertools as it import matplotlib.pyplot as plt from skimage.io import imsave from skimage import transform, measure from scipy import ndimage from maad import sound from skimage.filters import gaussian from maad.util import format_rois, rois_to_imblobs, normalize_2d def _sigma_prefactor(bandwidth): """ Function from skimage. Parameters ---------- Returns ------- """ b = bandwidth # See http://www.cs.rug.nl/~imaging/simplecell.html return 1.0 / np.pi * np.sqrt(np.log(2) / 2.0) * \ (2.0 ** b + 1) / (2.0 ** b - 1) def gabor_kernel_nodc(frequency, theta=0, bandwidth=1, gamma=1, n_stds=3, offset=0): """ Return complex 2D Gabor filter kernel with no DC offset. This function is a modification of the gabor_kernel function of scikit-image Gabor kernel is a Gaussian kernel modulated by a complex harmonic function. Harmonic function consists of an imaginary sine function and a real cosine function. Spatial frequency is inversely proportional to the wavelength of the harmonic and to the standard deviation of a Gaussian kernel. The bandwidth is also inversely proportional to the standard deviation. Parameters ---------- frequency : float Spatial frequency of the harmonic function. Specified in pixels. theta : float, optional Orientation in radians. If 0, the harmonic is in the x-direction. bandwidth : float, optional The bandwidth captured by the filter. For fixed bandwidth, `sigma_x` and `sigma_y` will decrease with increasing frequency. This value is ignored if `sigma_x` and `sigma_y` are set by the user. gamma : float, optional gamma changes the aspect ratio (ellipsoidal) of the gabor filter. By default, gamma=1 which means no aspect ratio (circle) if gamma>1, the filter is larger (x-dir) if gamma<1, the filter is higher (y-dir) This value is ignored if `sigma_x` and `sigma_y` are set by the user. sigma_x, sigma_y : float, optional Standard deviation in x- and y-directions. These directions apply to the kernel *before* rotation. If `theta = pi/2`, then the kernel is rotated 90 degrees so that `sigma_x` controls the *vertical* direction. n_stds : scalar, optional The linear size of the kernel is n_stds (3 by default) standard deviations offset : float, optional Phase offset of harmonic function in radians. Returns ------- g_nodc : complex 2d array A single gabor kernel (complex) with no DC offset References ---------- .. [1] http://en.wikipedia.org/wiki/Gabor_filter .. [2] http://mplab.ucsd.edu/tutorials/gabor.pdf Examples -------- >>> from skimage.filters import gabor_kernel >>> from skimage import io >>> from matplotlib import pyplot as plt # doctest: +SKIP >>> gk = gabor_kernel(frequency=0.2) >>> plt.figure() # doctest: +SKIP >>> io.imshow(gk.real) # doctest: +SKIP >>> io.show() # doctest: +SKIP >>> # more ripples (equivalent to increasing the size of the >>> # Gaussian spread) >>> gk = gabor_kernel(frequency=0.2, bandwidth=0.1) >>> plt.figure() # doctest: +SKIP >>> io.imshow(gk.real) # doctest: +SKIP >>> io.show() # doctest: +SKIP """ # set gaussian parameters b = bandwidth sigma_pref = 1.0 / np.pi * np.sqrt(np.log(2) / 2.0) * (2.0 ** b + 1) / (2.0 ** b - 1) sigma_y = sigma_pref / frequency sigma_x = sigma_y/gamma # meshgrid x0 = np.ceil(max(np.abs(n_stds * sigma_x * np.cos(theta)), np.abs(n_stds * sigma_y * np.sin(theta)), 1)) y0 = np.ceil(max(np.abs(n_stds * sigma_y * np.cos(theta)), np.abs(n_stds * sigma_x * np.sin(theta)), 1)) y, x = np.mgrid[-y0:y0 + 1, -x0:x0 + 1] # rotation matrix rotx = x * np.cos(theta) + y * np.sin(theta) roty = -x * np.sin(theta) + y * np.cos(theta) # combine gambor and g = np.zeros(y.shape, dtype=np.complex) g[:] = np.exp(-0.5 * (rotx ** 2 / sigma_x ** 2 + roty ** 2 / sigma_y ** 2)) g /= 2 * np.pi * sigma_x * sigma_y # gaussian envelope oscil = np.exp(1j * (2 * np.pi * frequency * rotx + offset)) # harmonic / oscilatory function g_dc = g*oscil # remove dc component by subtracting the envelope weighted by K K = np.sum(g_dc)/np.sum(g) g_nodc = g_dc - K*g return g_nodc def _plot_filter_bank(kernels, frequency, ntheta, bandwidth, gamma, **kwargs): """ Display filter bank Parameters ---------- kernels: list List of kernels from filter_bank_2d_nodc() frequency: 1d ndarray of scalars Spatial frequencies used to built the Gabor filters. Values should be in [0;1] ntheta: int Number of angular steps between 0° to 90° bandwidth: scalar, optional, default is 1 This parameter modifies the frequency of the Gabor filter gamma: scalar, optional, default is 1 This parameter change the Gaussian window that modulates the continuous sine. 1 => same gaussian window in x and y direction (circle) <1 => elongation of the filter size in the y direction (elipsoid) >1 => reduction of the filter size in the y direction (elipsoid) **kwargs, optional. This parameter is used by plt.plot and savefig functions figsize : tuple of integers, optional, default: (13,13) width, height in inches. dpi : integer, optional Dot per inch. For printed version, choose high dpi (i.e. dpi=300) => slow For screen version, choose low dpi (i.e. dpi=96) => fast interpolation : string, optional, default is 'nearest' Pixels interpolation aspect : string, optional, default is 'auto' fontsize : scalar, optional, default is 8/0.22*hmax*100/dpi) size of the font use to print the parameters of each filter ... and more, see matplotlib Returns ------- fig : Figure The Figure instance ax : Axis The Axis instance """ params = [] for theta in range(ntheta): theta = theta/ntheta * np.pi for freq in frequency: params.append([freq, theta, bandwidth, gamma]) w = [] h = [] for kernel in kernels: ylen, xlen = kernel.shape w.append(xlen) h.append(ylen) plt.gray() fig = plt.figure() dpi =kwargs.pop('dpi',fig.get_dpi()) figsize =kwargs.pop('figsize',(13,13)) interpolation =kwargs.pop('interpolation','nearest') aspect =kwargs.pop('aspect','auto') fig.set_figwidth(figsize[0]) fig.set_figheight(figsize[1]) w = np.asarray(w)/dpi h = np.asarray(h)/dpi wmax = np.max(w)*1.25 hmax = np.max(h)*1.05 fontsize =kwargs.pop('fontsize',8/0.22*hmax*100/dpi) params_label = [] for param in params: params_label.append('theta=%d f=%.2f \n bandwidth=%.1f \n gamma=%.1f' % (param[1] * 180 / np.pi, param[0], param[2], param[3])) n = len(frequency) for ii, kernel in enumerate(kernels): ax = plt.axes([(ii%n)*wmax + (wmax-w[ii])/2,(ii//n)*hmax + (hmax-h[ii])/2,w[ii],h[ii]]) ax.imshow(np.real(kernel),interpolation=interpolation, aspect =aspect, **kwargs) ax.set_xticks([]) ax.set_yticks([]) ax.set_ylabel(params_label[ii],fontsize=fontsize) ax.axis('tight') plt.show() return ax, fig def _plot_filter_results(im_ref, im_list, kernels, params, m, n): """ Display the result after filtering Parameters ---------- im_ref : 2D array Reference image im_list : list List of filtered images kernels: list List of kernels from filter_bank_2d_nodc() m: int number of columns n: int number of rows Returns ------- Returns ------- fig : Figure The Figure instance ax : Axis The Axis instance """ ncols = m nrows = n fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(15, 5)) plt.gray() fig.suptitle('Image responses for Gabor filter kernels', fontsize=12) axes[0][0].axis('off') # Plot original images axes[0][1].imshow(im_ref, origin='lower') axes[0][1].set_title('spectrogram', fontsize=9) axes[0][1].axis('off') plt.tight_layout params_label = [] for param in params: params_label.append('theta=%d,\nf=%.2f' % (param[1] * 180 / np.pi, param[0])) ii = 0 for ax_row in axes[1:]: plotGabor = True for ax in ax_row: if plotGabor == True: # Plot Gabor kernel print(params_label[ii]) ax.imshow(np.real(kernels[ii]), interpolation='nearest') ax.set_ylabel(params_label[ii], fontsize=7) ax.set_xticks([]) ax.set_yticks([]) plotGabor = False else: im_filtered = im_list[ii] ax.imshow(im_filtered, origin='lower') ax.axis('off') plotGabor = True ii=ii+1 plt.show() return ax, fig def filter_mag(im, kernel): """ Normalizes the image and computes im and real part of filter response using the complex kernel and the modulus operation Parameters ---------- im: 2D array Input image to process kernel: 2D array Complex kernel (or filter) Returns ------- im_out: Modulus operand on filtered image """ im = (im - im.mean()) / im.std() im_out = np.sqrt(ndi.convolve(im, np.real(kernel), mode='reflect')**2 + ndi.convolve(im, np.imag(kernel), mode='reflect')**2) return im_out def filter_multires(im_in, kernels, npyr=4, rescale=True): """ Computes 2D wavelet coefficients at multiple octaves/pyramids Parameters ---------- im_in: list of 2D arrays List of input images to process kernels: list of 2D arrays List of 2D wavelets to filter the images npyr: int Number of pyramids to compute rescale: boolean Indicates if the reduced images should be rescaled Returns ------- im_out: list of 2D arrays List of images filtered by each 2D kernel """ # Downscale image using gaussian pyramid if npyr<2: print('Warning: npyr should be int and larger than 2 for multiresolution') im_pyr = tuple(transform.pyramid_gaussian(im_in, downscale=2, max_layer=1, multichannel=False)) else: im_pyr = tuple(transform.pyramid_gaussian(im_in, downscale=2, max_layer=npyr-1, multichannel=False)) # filter 2d array at multiple resolutions using gabor kernels im_filt=[] for im in im_pyr: # for each pyramid for kernel, param in kernels: # for each kernel im_filt.append(filter_mag(im, kernel)) # magnitude response of filter # Rescale image using gaussian pyramid if rescale: dims_raw = im_in.shape im_out=[] for im in im_filt: ratio = np.array(dims_raw)/np.array(im.shape) if ratio[0] > 1: im = transform.rescale(im, scale = ratio, mode='reflect', multichannel=False, anti_aliasing=True) else: pass im_out.append(im) else: pass return im_out def filter_bank_2d_nodc(frequency, ntheta, bandwidth=1, gamma=1, display=False, savefig=None, **kwargs): """ Build a Gabor filter bank with no offset component Parameters ---------- frequency: 1d ndarray of scalars Spatial frequencies used to built the Gabor filters. Values should be in [0;1] ntheta: int Number of angular steps between 0° to 90° bandwidth: scalar, optional, default is 1 This parameter modifies the frequency of the Gabor filter gamma: scalar, optional, default is 1 This parameter change the Gaussian window that modulates the continuous sine. 1 => same gaussian window in x and y direction (circle) <1 => elongation of the filter size in the y direction (elipsoid) >1 => reduction of the filter size in the y direction (elipsoid) Returns ------- params: 2d structured array Parameters used to calculate 2D gabor kernels. Params array has 4 fields (theta, freq, bandwidth, gamma) kernels: 2d ndarray of scalars Gabor kernels """ theta = np.arange(ntheta) theta = theta / ntheta * np.pi params=[i for i in it.product(theta,frequency)] kernels = [] for param in params: kernel = gabor_kernel_nodc(frequency=param[1], theta=param[0], bandwidth=bandwidth, gamma=gamma, offset=0, n_stds=3) kernels.append((kernel, param)) if display: _, fig = _plot_filter_bank(kernels, frequency, ntheta, bandwidth, gamma, **kwargs) if savefig is not None : dpi =kwargs.pop('dpi',96) format=kwargs.pop('format','png') filename = savefig+'_filter_bank2D.'+format fig.savefig(filename, bbox_inches='tight', dpi=dpi, format=format, **kwargs) return params, kernels def shape_features(im, im_blobs=None, resolution='low', opt_shape=None): """ Computes shape of 2D signal (image or spectrogram) at multiple resolutions using 2D Gabor filters Parameters ---------- im: 2D array Input image to process im_blobs: 2D array, optional Optional binary array with '1' on the region of interest and '0' otherwise opt: dictionary options for the filter bank (kbank_opt) and the number of scales (npyr) Returns ------- shape: 1D array Shape coeficients of each filter params: 2D numpy structured array Corresponding parameters of the 2D fileters used to calculate the shape coefficient. Params has 4 fields (theta, freq, pyr_level, scale) bbox: If im_blobs provided, corresponding bounding box """ # unpack settings opt_shape = opt_shape_presets(resolution, opt_shape) npyr = opt_shape['npyr'] # build filterbank params, kernels = filter_bank_2d_nodc(ntheta=opt_shape['ntheta'], bandwidth=opt_shape['bandwidth'], frequency=opt_shape['frequency'], gamma=opt_shape['gamma']) # filter images im_rs = filter_multires(im, kernels, npyr, rescale=True) # Get mean intensity shape = [] if im_blobs is None: for im in im_rs: shape.append(np.mean(im)) rois_bbox=None shape = [shape] # for dataframe formating below else: for im in im_rs: labels = measure.label(im_blobs) rprops = measure.regionprops(labels, intensity_image=im) roi_mean = [roi.mean_intensity for roi in rprops] shape.append(roi_mean) rois_bbox = [roi.bbox for roi in rprops] shape = list(map(list, zip(*shape))) # transpose shape # organise parameters params = np.asarray(params) orient = params[:,0]*180/np.pi orient = orient.tolist()*npyr pyr_level = np.sort(np.arange(npyr).tolist()*len(params))+1 freq = params[:,1].tolist()*npyr #params_multires = np.vstack((np.asarray(orient), freq, pyr_level)) nparams = len(params)*npyr params_multires = np.zeros(nparams, dtype={'names':('theta', 'freq', 'pyr_level','scale'), 'formats':('f8', 'f8', 'f8','f8')}) params_multires['theta'] = orient params_multires['freq'] = freq params_multires['scale'] = 1/np.asarray(freq) params_multires['pyr_level'] = pyr_level params_multires = pd.DataFrame(params_multires) # format shape into dataframe cols=['shp_' + str(idx).zfill(3) for idx in range(1,len(shape[0])+1)] shape = pd.DataFrame(data=np.asarray(shape),columns=cols) # format rois into dataframe rois_bbox = pd.DataFrame(rois_bbox, columns=['min_y','min_x', 'max_y','max_x']) # compensate half-open interval of bbox from skimage rois_bbox.max_y = rois_bbox.max_y - 1 rois_bbox.max_x = rois_bbox.max_x - 1 return rois_bbox, params_multires, shape def centroid(im, im_blobs=None): """ Computes intensity centroid of the 2D signal (usually time-frequency representation) along a margin, frequency (0) or time (1). Parameters ---------- im: 2D array Input image to process im_blobs: 2D array, optional Optional binary array with '1' on the region of interest and '0' otherwise margin: 0 or 1 Margin of the centroid, frequency=1, time=0 Returns ------- centroid: 1D array centroid of image. If im_blobs provided, centroid for each region of interest """ centroid=[] rois_bbox=[] if im_blobs is None: centroid = ndimage.center_of_mass(im) else: labels = measure.label(im_blobs) rprops = measure.regionprops(labels, intensity_image=im) centroid = [roi.weighted_centroid for roi in rprops] rois_bbox = [roi.bbox for roi in rprops] # variables to dataframes centroid = pd.DataFrame(centroid, columns=['y', 'x']) rois_bbox = pd.DataFrame(rois_bbox, columns=['min_y','min_x', 'max_y','max_x']) # compensate half-open interval of bbox from skimage rois_bbox.max_y = rois_bbox.max_y - 1 rois_bbox.max_x = rois_bbox.max_x - 1 return rois_bbox, centroid def create_csv(shape_features, centroid_features, label_features = None, display=False): """ Create a .csv file containing all the features (shapes, centroids and labels) Parameters ---------- shape_features : 2d nd array of scalars Each column corresponds to a shape (linked to a kernel filter) Each row corresponds to a ROI centroid_features: 2d nd array of scalars (centroid in freq and time) Centroid of image. If labels provided, centroid for each ROI (rows) column 0 is 'cyear' column 1 is 'cmonth' column 2 is 'chour' column 3 is 'cminute' column 4 is 'csecond' column 5 is 'cfreq' label_features: 2d nd array of integers and strings, optional, default is None column 0 is 'labelID' column 1 is 'labelName' Each row corresponds to a ROI Returns ------- table : dataframe (Pandas) The table contains all the features extracted from the spectrogram """ if label_features is not None: table_label_features = pd.DataFrame({'labelID' : np.asarray(label_features)[:,0], 'labelName' : np.asarray(label_features)[:,1]}) table_shape_features = pd.DataFrame(data=shape_features, columns=["shp" + str(i) for i in range(1,len(shape_features[0])+1)]) table_centroid_features = pd.DataFrame({'cyear' : centroid_features[:,0], 'cmonth': centroid_features[:,1], 'cday' : centroid_features[:,2], 'chour' : centroid_features[:,3], 'cminute': centroid_features[:,4], 'csecond': centroid_features[:,5], 'cfreq' : centroid_features[:,6]}) if label_features is not None: table = pd.concat([table_label_features, table_centroid_features, table_shape_features], axis=1) else: table = pd.concat([table_centroid_features, table_shape_features], axis=1) if display: # ------------- FEATURES VIZUALIZATION WITH PANDAS ---------------- # table with a summray of the features value table.describe() # histograpm for each features table.hist(bins=50, figsize=(15,15)) plt.show() return table def save_csv(filename, shape_features, centroid_features, label_features=None, mode='w'): """ Create and save a .csv file containing all the features (shapes, centroids and labels) Parameters ---------- filename : string full name (path and name) of the .csv file mode : string, optional, default is 'w' Python write mode. For example 'w' Truncate file to zero length or create text file for writing. The stream is positioned at the beginning of the file. 'a' Open for writing. The file is created if it does not exist. The stream is positioned at the end of the file. Subsequent writes to the file will always end up at the then current end of file, irrespective of any intervening fseek(3) or similar. shape_features : 2d nd array of scalars Each column corresponds to a shape (linked to a kernel filter) Each row corresponds to a ROI centroid_features: 2d nd array of scalars (centroid in freq and time) Centroid of image. If labels provided, centroid for each ROI (rows) column 0 is 'cyear' column 1 is 'cmonth' column 2 is 'chour' column 3 is 'cminute' column 4 is 'csecond' column 5 is 'cfreq' label_features: 2d nd array of integers and strings, optional, default is None column 0 is 'labelID' column 1 is 'labelName' Returns ------- table : dataframe (Pandas) The table contains all the features extracted from the spectrogram. Keys are {'labelID', 'labelName, 'cyear', 'cmonth', 'cday', 'chour', 'cmin','csecond','cfreq','shp1,'shp2',...'shpn'} """ table = create_csv(shape_features, centroid_features, label_features) table.to_csv(path_or_buf=filename,sep=',',mode=mode,header=True, index=False) return table def get_features_wrapper(im, ext, display=False, savefig=None, save_csv=None, **kwargs): """ Computes shape of 2D signal (image or spectrogram) at multiple resolutions using 2D Gabor filters Parameters ---------- im: 2D array Input image to process (spectrogram) ext : list of scalars [left, right, bottom, top], optional, default: None The location, in data-coordinates, of the lower-left and upper-right corners. If `None`, the image is positioned such that the pixel centers fall on zero-based (row, column) indices. display : boolean, optional, default is False Display the signal if True savefig : string, optional, default is None Root filename (with full path) is required to save the figures. Postfix is added to the root filename. save_csv : string, optional, default is None Root filename (with full path) is required to save the table. Postfix is added to the root filename. **kwargs, optional. This parameter is used by plt.plot and savefig functions figsize : tuple of integers, width, height in inches. title : string, title of the figure xlabel : string, optional, label of the horizontal axis ylabel : string, optional, label of the vertical axis cmap : string or Colormap object, See https://matplotlib.org/examples/color/colormaps_reference.html in order to get all the existing colormaps examples: 'hsv', 'hot', 'bone', 'tab20c', 'jet', 'seismic', 'viridis'... vmin, vmax : scalar `vmin` and `vmax` are used in conjunction with norm to normalize luminance data. Note if you pass a `norm` instance, your settings for `vmin` and `vmax` will be ignored. ext : scalars (left, right, bottom, top), The location, in data-coordinates, of the lower-left and upper-right corners. If `None`, the image is positioned such that the pixel centers fall on zero-based (row, column) indices. dpi : integer, optional Dot per inch. For printed version, choose high dpi (i.e. dpi=300) => slow For screen version, choose low dpi (i.e. dpi=96) => fast format : string, optional Format to save the figure ... and more, see matplotlib Returns ------- table : dataframe (Pandas) The table contains all the features extracted from the spectrogram. Keys are {'labelID', 'labelName, 'cyear', 'cmonth', 'cday', 'chour', 'cmin','csecond','cfreq','shp0,'shp1',...'shpn'} params_shape: 2D numpy structured array Parameters used to calculate 2D gabor kernels. params_shape has 5 fields (theta, freq, bandwidth, gamma, pyr_level) Each row corresponds to a shape (shp1, shp2...shpn) """ freq=kwargs.pop('freq',(0.75, 0.5)) ntheta=kwargs.pop('ntheta',2) bandwidth=kwargs.pop('bandwidth', 1) gamma=kwargs.pop('gamma', 1) npyr=kwargs.pop('npyr', 3) date=kwargs.pop('date', None) im_rois=kwargs.pop('im_rois', None) label_features=kwargs.pop('label_features', None) params, kernels = filter_bank_2d_nodc(frequency=freq, ntheta=ntheta, bandwidth=bandwidth,gamma=gamma, display=display, savefig=savefig) # multiresolution image filtering (Gaussian pyramids) im_filtlist = filter_multires(im, ext, kernels, params, npyr=npyr, display=display, savefig=savefig) # Extract shape features for each roi params_shape, shape = shape_features(im_filtlist=im_filtlist, params = params, im_rois=im_rois) # Extract centroids features for each roi centroid_features = centroid(im=im, ext=ext, date=date, im_rois=im_rois) if save_csv : table = save_csv(save_csv+'.csv', shape, centroid_features, label_features, display=display) else: table = create_csv(shape, centroid_features, label_features, display=display) return table, params_shape def save_figlist(fname, figlist): """ Save a list of figures to file. Parameters ---------- fname: string suffix name to save the figure. Extension indicates the format of the image Returns ------- Nothing """ for i, fig in enumerate(figlist): fname_save='%d_%s' % (i, fname) imsave(fname_save,fig) def opt_shape_presets(resolution, opt_shape=None): """ Set values for multiresolution analysis using presets or custom parameters Parameters ---------- resolution: str Chooses the opt_shape presets. Supportes presets are: 'low', 'med', 'high' and 'custom' opt_shape: dict Key and values for shape settings. Valid keys are: ntheta, bandwidth, frequency, gamma, npyr Returns ------- opt_shape: dict A valid dictionary with shape settings """ # Factory presets opt_shape_low = dict(ntheta=2, bandwidth=1, frequency=(2**-1, 2**-2), gamma=2, npyr = 4) opt_shape_med = dict(ntheta=4, bandwidth=1, frequency=(2**-1, 2**-2), gamma=2, npyr = 6) opt_shape_high = dict(ntheta=8, bandwidth=1, frequency=(2**-0.5, 2**-1, 2**-1.5, 2**-2), gamma=2, npyr = 6) if resolution == 'low': opt_shape = opt_shape_low elif resolution == 'med': opt_shape = opt_shape_med elif resolution == 'high': opt_shape = opt_shape_high elif resolution == 'custom': if opt_shape is not None: # check valid values on opt_shape if all (opt in opt_shape for opt in ('ntheta', 'bandwidth', 'frequency', 'gamma', 'npyr')): pass else: print('Warning: opt_shape must have all keys-values pairs:') print('ntheta, bandwidth, frequency, gamma, npyr') print('Setting resolution to low') opt_shape = opt_shape_low else: print('Warning: if resolution is set to custom, a valid opt_shape dictionnary should be provided.') print('Setting resolution to low') opt_shape = opt_shape_low else: print('Resolution should be: low, med or high. Setting resolution to low') opt_shape = opt_shape_low return opt_shape def plot_shape(shape_plt, params, display_values=False): """ Plot shape features in 2D representation Parameters ---------- shape: 1D array params: structured array returned by maad.features_rois.shape_features Returns ------- plot """ unique_theta = np.unique(params.theta) # compute shape of matrix dirs_size = unique_theta.size scale_size = np.unique(params.freq).size * np.unique(params.pyr_level).size # reshape feature vector idx = params.sort_values(['theta','pyr_level','scale']).index if isinstance(shape_plt, pd.DataFrame): shape_plt = np.reshape(shape_plt.iloc[0,idx].values, (dirs_size, scale_size)) elif isinstance(shape_plt, np.ndarray): shape_plt = np.reshape(shape_plt[idx], (dirs_size, scale_size)) unique_scale = params.scale * 2**params.pyr_level[idx] # get textlab textlab = shape_plt textlab = np.round(textlab,2) # plot figure fig = plt.figure(figsize=(12,8)) ax = fig.add_subplot(111) ax.imshow(shape_plt, aspect='auto', origin='lower', interpolation='None', cmap='viridis') if display_values: for (j,i),label in np.ndenumerate(textlab): ax.text(i,j,label,ha='center',va='center') else: pass yticklab = unique_theta xticklab = np.reshape(unique_scale.values, (dirs_size, scale_size)) ax.set_xticks(np.arange(scale_size)) ax.set_xticklabels(np.round(xticklab,2)[0,:]) ax.set_yticks(np.arange(dirs_size)) ax.set_yticklabels(yticklab) ax.set_xlabel('Scale') ax.set_ylabel('Theta') plt.show() def compute_rois_features(s, fs, rois_tf, opt_spec, opt_shape, flims): """ Computes shape and central frequency features from signal at specified time-frequency limits defined by regions of interest (ROIs) Parameters ---------- s: ndarray Singal to be analysed fs: int Sampling frequency of the signal rois_tf: pandas DataFrame Time frequency limits for the analysis. Columns should have at least min_t, max_t, min_f, max_f. Can be computed with multiple detection methods, such as find_rois_cwt opt_spec: dictionnary Options for the spectrogram with keys, window lenght 'nperseg' and, window overlap in percentage 'overlap' opt_shape: dictionary Options for the filter bank (kbank_opt) and the number of scales (npyr) flims: list of 2 scalars Minimum and maximum boundary frequency values in Hertz Returns ------- feature_rois: pandas Dataframe A dataframe with each column corresponding to a feature Example ------- s, fs = sound.load('spinetail.wav') rois_tf = find_rois_cwt(s, fs, flims=(3000, 8000), tlen=2, th=0.003) opt_spec = {'nperseg': 512, 'overlap': 0.5} opt_shape = opt_shape_presets('med') features_rois = compute_rois_features(s, fs, rois_tf, opt_spec, opt_shape, flims) """ im, dt, df, ext = sound.spectrogram(s, fs, nperseg=opt_spec['nperseg'], overlap=opt_spec['overlap'], fcrop=flims, rescale=False, db_range=opt_spec['db_range']) # format rois to bbox ts = np.arange(ext[0], ext[1], dt) f = np.arange(ext[2],ext[3]+df,df) rois_bbox = format_rois(rois_tf, ts, f, fmt='bbox') # roi to image blob im_blobs = rois_to_imblobs(np.zeros(im.shape), rois_bbox) # get features: shape, center frequency im = normalize_2d(im, 0, 1) #im = gaussian(im) # smooth image bbox, params, shape = shape_features(im, im_blobs, resolution='custom', opt_shape=opt_shape) _, cent = centroid(im, im_blobs) cent['frequency']= f[round(cent.y).astype(int)] # y values to frequency # format rois to time-frequency rois_out = format_rois(bbox, ts, f, fmt='tf') # combine into a single df rois_features = pd.concat([rois_out, shape, cent.frequency], axis=1) return rois_features def shape_features_raw(im, resolution='low', opt_shape=None): """ Computes raw shape of 2D signal (image or spectrogram) at multiple resolutions using 2D Gabor filters. Contrary to shape_feature, this function delivers the raw response of the spectrogram to the filter bank. Parameters ---------- im: 2D array Input image to process resolution: Resolution of analysis, i.e. number of filters used. Three presets are provided, 'low', 'mid' and 'high', which control the number of filters. opt_shape: dictionary (optional) options for the filter bank (kbank_opt) and the number of scales (npyr) Returns ------- shape_im: 1D array Raw shape response of spectrogram to every filter of the filter bank params: 2D numpy structured array Corresponding parameters of the 2D fileters used to calculate the shape coefficient. Params has 4 fields (theta, freq, pyr_level, scale) """ # unpack settings opt_shape = opt_shape_presets(resolution, opt_shape) npyr = opt_shape['npyr'] # build filterbank params, kernels = filter_bank_2d_nodc(ntheta=opt_shape['ntheta'], bandwidth=opt_shape['bandwidth'], frequency=opt_shape['frequency'], gamma=opt_shape['gamma']) # filter images im_rs = filter_multires(im, kernels, npyr, rescale=True) # Get response of spectrogram to every filter of the filter bank shape_im = dict() for j, imx in enumerate(im_rs): shape_im[j] = imx.ravel() shape_im = pd.DataFrame(shape_im) # organise parameters params = np.asarray(params) orient = params[:,0]*180/np.pi orient = orient.tolist()*npyr pyr_level = np.sort(np.arange(npyr).tolist()*len(params))+1 freq = params[:,1].tolist()*npyr nparams = len(params)*npyr params_multires = np.zeros(nparams, dtype={'names':('theta', 'freq', 'pyr_level','scale'), 'formats':('f8', 'f8', 'f8','f8')}) params_multires['theta'] = orient params_multires['freq'] = freq params_multires['scale'] = 1/np.asarray(freq) params_multires['pyr_level'] = pyr_level params_multires = pd.DataFrame(params_multires) # format shape into dataframe cols=['shp_' + str(idx).zfill(3) for idx in range(1,shape_im.shape[1]+1)] shape_im = pd.DataFrame(data=np.asarray(shape_im),columns=cols) return params_multires, shape_im ``` #### File: maad/rois/rois_1d.py ```python import numpy as np from scipy import signal import matplotlib.pyplot as plt import matplotlib.patches as patches import pandas as pd def sinc(s, cutoff, fs, atten=80, transition_bw=0.05, bandpass=True): """ Filter 1D signal with a Kaiser-windowed filter Parameters: ---------- s : ndarray input 1D signal cutoff : ndarray upper and lower frequencies (min_f, max_f) atten : float attenuation in dB transition_bw : float transition bandwidth in percent default 5% of total band bandpass : bool bandpass (True) or bandreject (False) filter, default is bandpass Returns: ------- s_filt (array): signal filtered """ width = (cutoff[1] - cutoff[0]) * transition_bw numtaps, beta = signal.kaiserord(atten, width/(0.5*fs)) np.ceil(numtaps-1) // 2 * 2 + 1 # round to nearest odd to have Type I filter taps = signal.firwin(numtaps, cutoff, window=('kaiser', beta), scale=False, nyq=0.5*fs, pass_zero=not(bandpass)) s_filt = signal.lfilter(taps, 1, s) return s_filt def _corresp_onset_offset(onset, offset, tmin, tmax): """ Check that each onsets have a corresponding offset Parameters ---------- onset: ndarray array with onset from find_rois_1d offset: ndarray array with offset from find_rois_1d tmin: float Start time of wav file (in s) tmax: End time of wav file (in s) Return ------ onset : ndarray onset with corresponding offset offset : ndarray offset with corresponding onset """ if onset[0] > offset[0]: # check start onset = np.insert(onset,0,tmin) else: pass if onset[-1] > offset[-1]: # check end offset = np.append(offset,tmax) else: pass return onset, offset def _energy_windowed(s, wl=512, fs=None): """ Computse windowed energy on signal Computes the energy of the signals by windows of length wl. Used to amplify sectors where the density of energy is higher Parameters ---------- s : ndarray input signal wl : float length of the window to summarize the rms value fs : float frequency sampling of the signal, used to keep track of temporal information of the signal Returns ------- time : ndarray temporal index vector s_rms : ndarray windowed rms signal """ s_aux = np.lib.pad(s, (0, wl-len(s)%wl), 'reflect') # padding s_aux = s_aux**2 # s_aux = np.abs(s_aux) # absolute value. alternative option s_aux = np.reshape(s_aux,(int(len(s_aux)/wl),wl)) s_rms = np.mean(s_aux,1) time = np.arange(0,len(s_rms)) * wl / fs + wl*0.5/fs return time, s_rms def find_rois_cwt(s, fs, flims, tlen, th=0, display=False, save_df=False, savefilename='rois.csv', **kwargs): """ Find region of interest (ROIS) based on predetermined temporal length and frequency limits The general approach is based on continous wavelet transform following a three step process 1. Filter the signal with a bandpass sinc filter 2. Smoothing the signal by convolving it with a Mexican hat wavelet (Ricker wavelet) [See ref 1] 3. Binarize the signal applying a linear threshold Parameters ---------- s : ndarray input signal flims : int upper and lower frequencies (in Hz) tlen : int temporal length of signal searched (in s) th : float, optional threshold to binarize the output display: boolean, optional, default is False plot results if set to True, default is False save_df : boolean, optional save results to csv file savefilename : str, optional Name of the file to save the table as comma separatd values (csv) Returns ------- rois : pandas DataFrame an object with temporal and frequencial limits of regions of interest Reference --------- [1] Bioinformatics (2006) 22 (17): 2059-2065. DOI:10.1093/bioinformatics/btl355 http://bioinformatics.oxfordjournals.org/content/22/17/2059.long """ # filter signal s_filt = sinc(s, flims, fs, atten=80, transition_bw=0.8) # rms: calculate window of maximum 5% of tlen. improves speed of cwt wl = 2**np.floor(np.log2(tlen*fs*0.05)) t, s_rms = _energy_windowed(s_filt, int(wl), fs) # find peaks cwt_width = [round(tlen*fs/wl/2)] npad = 5 ## seems to work with 3, but not sure s_rms = np.pad(s_rms, np.int(cwt_width[0]*npad), 'reflect') ## add pad s_cwt = signal.cwt(s_rms, signal.ricker, cwt_width) s_cwt = s_cwt[0][np.int(cwt_width[0]*npad):len(s_cwt[0])-np.int(cwt_width[0]*npad)] ## rm pad # find onset and offset of sound segments_bin = np.array(s_cwt > th) onset = t[np.where(np.diff(segments_bin.astype(int)) > 0)]+t[0] # there is delay because of the diff that needs to be accounted offset = t[np.where(np.diff(segments_bin.astype(int)) < 0)]+t[0] # format for output if onset.size==0 or offset.size==0: # No detection found print('Warning: No detection found') df = pd.DataFrame(data=None) if save_df==True: df.to_csv(savefilename, sep=',',header=False, index=False) else: # A detection was found, save results to csv onset, offset = _corresp_onset_offset(onset, offset, tmin=0, tmax=len(s)/fs) rois_tf = np.transpose([np.repeat(flims[0],repeats=len(onset)), np.round(onset,5), np.repeat(flims[1],repeats=len(onset)), np.round(offset,5)]) cols=['min_f', 'min_t','max_f', 'max_t'] df = pd.DataFrame(data=rois_tf,columns=cols) if save_df==True: df.to_csv(savefilename, sep=',', header=True, index=False) # Display if display==True: figsize = kwargs.pop('figsize',(12,6)) cmap = kwargs.pop('cmap','gray') nfft = kwargs.pop('nfft',512) noverlap = kwargs.pop('noverlap',256) # plot fig,(ax1,ax2) = plt.subplots(2,1,figsize=figsize) ax1.margins(x=0) ax1.plot(s_cwt) ax1.set_xticks([]) ax1.set_ylabel('Amplitude') ax1.grid(True) ax1.hlines(th, 0, len(s_cwt), linestyles='dashed', colors='r') ax2.specgram(s, NFFT=nfft, Fs=fs, noverlap=noverlap, cmap=cmap) ax2.set_ylabel('Frequency (Hz)') ax2.set_xlabel('Time (s)') if not(df.empty): for idx, _ in df.iterrows(): xy = (df.min_t[idx],df.min_f[idx]) width = df.max_t[idx] - df.min_t[idx] height = df.max_f[idx] - df.min_f[idx] rect = patches.Rectangle(xy, width, height, lw=1, edgecolor='r', facecolor='none') ax2.add_patch(rect) plt.show() return df ``` #### File: jflatorreg/scikit-maad/setup.py ```python import os import textwrap from setuptools import setup, find_packages, Command class CleanCommand(Command): """Custom clean command to tidy up the project root. Deletes directories ./build, ./dist and ./*.egg-info From the terminal type: > python setup.py clean """ user_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): os.system('rm -vrf ./build ./dist ./*.egg-info') setup( name = 'scikit-maad', version = '0.1.5.1', #packages = find_namespace_packages(include=['maad.*']), packages = find_packages(), author = '<NAME> and <NAME>', author_email = '<EMAIL>, <EMAIL>', maintainer = '<NAME> and <NAME>', description = 'scikit-maad is a modular toolbox to analyze ecoacoustics datasets', long_description = 'scikit-maad is a modular toolbox to analyze ecoacoustics datasets in Python 3. This package was designed to bring flexibility to find regions of interest, and to compute acoustic features in audio recordings. This workflow opens the possibility to use powerfull machine learning algorithms through scikit-learn, allowing to identify key patterns in all kind of soundscapes.', license = 'BSD 3 Clause', keywords = ['ecoacoustics', 'machine learning', 'ecology', 'wavelets', 'signal processing'], url = 'https://github.com/scikit-maad/scikit-maad', platform = 'OS Independent', cmdclass={'clean': CleanCommand}, license_file = 'LICENSE', install_requires = ['docutils>=0.3', 'numpy>=1.13', 'scipy>=0.18', 'scikit-image>=0.14', 'scikit-learn>=0.18', 'pandas>=0.23.4'], classifiers=textwrap.dedent(""" Development Status :: 4 - Beta Intended Audience :: Science/Research License :: OSI Approved :: BSD License Operating System :: OS Independent Programming Language :: Python :: 3.5 Programming Language :: Python :: 3.6 Programming Language :: Python :: 3.7 Topic :: Scientific/Engineering :: Artificial Intelligence """).strip().splitlines() ) ```
{ "source": "jflavio1/BagOfVisualWordsExample", "score": 2 }
#### File: jflavio1/BagOfVisualWordsExample/Main.py ```python __author__ = "<NAME>" __copyright__ = "Copyright 2017, Laboratorio 4" __license__ = "Apache" __version__ = "1.0" __email__ = "<EMAIL>" __status__ = "Production" from BagOfVW import BagOfVW def init(): bov = BagOfVW(4, "t2") bov.trainModel("img/training") bov.testModel("img/test") if __name__ == '__main__': init() ```
{ "source": "jflbr/TweetBot", "score": 3 }
#### File: jflbr/TweetBot/TweetBot.py ```python from tweepy.auth import OAuthHandler from tweepy.streaming import StreamListener, Stream from TweetBotConfig import TweetBotConfig import tweepy, time class AuthenticationError(Exception): pass class TweetBot(StreamListener): ''' TweetBot cls ''' def __init__(self,cfgFile="config",*args,**kwargs): StreamListener.__init__(self,*args,**kwargs) self.cfg = TweetBotConfig(cfgFile=kwargs.get('cfgFile',cfgFile)) self.api = None self.auths = None self.setupAuthentication() def setupAuthentication(self): self.auths = OAuthHandler(self.cfg.consumer_key, self.cfg.consumer_key_secret) self.auths.set_access_token(self.cfg.access_token, self.cfg.access_token_secret) self.api = tweepy.API(self.auths) try: print 'Verifying bot credentials..........', self.api.verify_credentials() print 'OK\n\n' except Exception as e: print 'FAILED' print(e) raise AuthenticationError() def on_data(self, raw_data): ''' Implementation of StreamListener.on_data method ''' try: screen_name = raw_data.lower().split('"screen_name":"')[1].split('","location"')[0].replace(",", "") tweet_sid = raw_data.split('"id":')[1].split('"id_str":')[0].replace(",", "") retweet_ed = raw_data.lower().split('"retweeted":')[1].split(',"possibly_sensitive"')[0].replace(",", "") tweet_text = raw_data.lower().split('"text":"')[1].split('","source":"')[0].replace(",", "") # Exit if the bot is the tweet owner if screen_name.lower() == self.api.me().screen_name.lower(): return print '+ Tweet from {} :\n\t{}\n\n'.format(screen_name,tweet_text) if not any(a_acc.lower() == screen_name.lower() for a_acc in self.cfg.whitelist_accounts): if not any(acc.lower() == screen_name.lower() for acc in self.cfg.banned_accounts): if not any(a_wrds.lower() in screen_name.lower() for a_wrds in self.cfg.whitelist_words): if not any(word.lower() in tweet_text.lower() for word in self.cfg.banned_words): if("false" in retweet_ed): # Retweet if allowed if self.cfg.strategy['retweet']: self.retweet(tweet_sid) time.sleep(2) # Fav if allowed if self.cfg.strategy['fav']: self.fav(tweet_sid) # Follow if allowed #if self.cfg.strategy['follow']: # if api.exists_friendship(api.me().id, screen_name.lower()): # print 'I already follow @{}'.format(screen_name.lower()) # else: # print 'Trying to follow @{}'.format(screen_name.lower()) # self.followUsers([screen_name.lower()]) # if screen_name.lower() != self.api.me().screen_name.lower(): # print 'Trying to follow @{}'.format(screen_name.lower()) # self.followUsers([screen_name.lower()]) else: pass else: print 'Banned word in {}\nSkipping...'.format(tweet_text) else: pass else: print 'Banned account @{}\nSkipping...'.format(screen_name) return True except Exception as e: print(str(e)) def on_error(self, status_code): ''' Implementation of StreamListener.on_error method ''' try: print( "error " + status_code) except Exception as e: print(" ++ wuuuut? ++ " + str(e)) def retweet(self,tweet_sid): try: self.api.retweet(tweet_sid) except Exception as e: if e.code == 327: pass else: print( "\terror {} - {}\n".format(e['code'],e['message'])) print( "\terror {} - {}\n".format(e['code'],e['message'])) def fav(self,tweet_sid): try: self.api.create_favorite(tweet_sid) except Exception as e: print(str(e)) def tweetPost(self,tweet_text): try: self.api.update_status(status=tweet_text) except Exception as e: print(str(e)) def getUserFollowers(self,user): pass def followUsers(self,users): for user in users: self.api.create_friendship(user) print "Followed {}".format(user) time.sleep(2) def unfollowUsers(self,users): for user in users: self.api.destroy_friendship(user) print "Unfollowed {}".format(user) def unfollowFollowers(self): users = self.api.friends_ids() self.unfollowUsers(users) def main(): bot = TweetBot(cfgFile="config-dev") try: twt = Stream(bot.auths, bot) twt.filter(track=bot.cfg.track_words) # OR (follow = bot.cfg.follow_accounts) except Exception as e: print(str(e)) pass if __name__ == '__main__': main() ```
{ "source": "jfleisher/z3", "score": 3 }
#### File: examples/python/mini_ic3.py ```python from z3 import * import heapq # Simplistic (and fragile) converter from # a class of Horn clauses corresponding to # a transition system into a transition system # representation as <init, trans, goal> # It assumes it is given three Horn clauses # of the form: # init(x) => Invariant(x) # Invariant(x) and trans(x,x') => Invariant(x') # Invariant(x) and goal(x) => Goal(x) # where Invariant and Goal are uninterpreted predicates class Horn2Transitions: def __init__(self): self.trans = True self.init = True self.inputs = [] self.goal = True self.index = 0 def parse(self, file): fp = Fixedpoint() goals = fp.parse_file(file) for r in fp.get_rules(): if not is_quantifier(r): continue b = r.body() if not is_implies(b): continue f = b.arg(0) g = b.arg(1) if self.is_goal(f, g): continue if self.is_transition(f, g): continue if self.is_init(f, g): continue def is_pred(self, p, name): return is_app(p) and p.decl().name() == name def is_goal(self, body, head): if not self.is_pred(head, "Goal"): return False pred, inv = self.is_body(body) if pred is None: return False self.goal = self.subst_vars("x", inv, pred) self.goal = self.subst_vars("i", self.goal, self.goal) self.inputs += self.vars self.inputs = list(set(self.inputs)) return True def is_body(self, body): if not is_and(body): return None, None fmls = [f for f in body.children() if self.is_inv(f) is None] inv = None for f in body.children(): if self.is_inv(f) is not None: inv = f; break return And(fmls), inv def is_inv(self, f): if self.is_pred(f, "Invariant"): return f return None def is_transition(self, body, head): pred, inv0 = self.is_body(body) if pred is None: return False inv1 = self.is_inv(head) if inv1 is None: return False pred = self.subst_vars("x", inv0, pred) self.xs = self.vars pred = self.subst_vars("xn", inv1, pred) self.xns = self.vars pred = self.subst_vars("i", pred, pred) self.inputs += self.vars self.inputs = list(set(self.inputs)) self.trans = pred return True def is_init(self, body, head): for f in body.children(): if self.is_inv(f) is not None: return False inv = self.is_inv(head) if inv is None: return False self.init = self.subst_vars("x", inv, body) return True def subst_vars(self, prefix, inv, fml): subst = self.mk_subst(prefix, inv) self.vars = [ v for (k,v) in subst ] return substitute(fml, subst) def mk_subst(self, prefix, inv): self.index = 0 if self.is_inv(inv) is not None: return [(f, self.mk_bool(prefix)) for f in inv.children()] else: vars = self.get_vars(inv) return [(f, self.mk_bool(prefix)) for f in vars] def mk_bool(self, prefix): self.index += 1 return Bool("%s%d" % (prefix, self.index)) def get_vars(self, f, rs=[]): if is_var(f): return z3util.vset(rs + [f], str) else: for f_ in f.children(): rs = self.get_vars(f_, rs) return z3util.vset(rs, str) # Produce a finite domain solver. # The theory QF_FD covers bit-vector formulas # and pseudo-Boolean constraints. # By default cardinality and pseudo-Boolean # constraints are converted to clauses. To override # this default for cardinality constraints # we set sat.cardinality.solver to True def fd_solver(): s = SolverFor("QF_FD") s.set("sat.cardinality.solver", True) return s # negate, avoid double negation def negate(f): if is_not(f): return f.arg(0) else: return Not(f) def cube2clause(cube): return Or([negate(f) for f in cube]) class State: def __init__(self, s): self.R = set([]) self.solver = s def add(self, clause): if clause not in self.R: self.R |= { clause } self.solver.add(clause) class Goal: def __init__(self, cube, parent, level): self.level = level self.cube = cube self.parent = parent def __lt__(self, other): return self.level < other.level def is_seq(f): return isinstance(f, list) or isinstance(f, tuple) or isinstance(f, AstVector) # Check if the initial state is bad def check_disjoint(a, b): s = fd_solver() s.add(a) s.add(b) return unsat == s.check() # Remove clauses that are subsumed def prune(R): removed = set([]) s = fd_solver() for f1 in R: s.push() for f2 in R: if f2 not in removed: s.add(Not(f2) if f1.eq(f2) else f2) if s.check() == unsat: removed |= { f1 } s.pop() return R - removed class MiniIC3: def __init__(self, init, trans, goal, x0, inputs, xn): self.x0 = x0 self.inputs = inputs self.xn = xn self.init = init self.bad = goal self.trans = trans self.min_cube_solver = fd_solver() self.min_cube_solver.add(Not(trans)) self.goals = [] s = State(fd_solver()) s.add(init) s.solver.add(trans) self.states = [s] self.s_bad = fd_solver() self.s_good = fd_solver() self.s_bad.add(self.bad) self.s_good.add(Not(self.bad)) def next(self, f): if is_seq(f): return [self.next(f1) for f1 in f] return substitute(f, [p for p in zip(self.x0, self.xn)]) def prev(self, f): if is_seq(f): return [self.prev(f1) for f1 in f] return substitute(f, [p for p in zip(self.xn, self.x0)]) def add_solver(self): s = fd_solver() s.add(self.trans) self.states += [State(s)] def R(self, i): return And(self.states[i].R) # Check if there are two states next to each other that have the same clauses. def is_valid(self): i = 1 while i + 1 < len(self.states): if not (self.states[i].R - self.states[i+1].R): return And(prune(self.states[i].R)) i += 1 return None def value2literal(self, m, x): value = m.eval(x) if is_true(value): return x if is_false(value): return Not(x) return None def values2literals(self, m, xs): p = [self.value2literal(m, x) for x in xs] return [x for x in p if x is not None] def project0(self, m): return self.values2literals(m, self.x0) def projectI(self, m): return self.values2literals(m, self.inputs) def projectN(self, m): return self.values2literals(m, self.xn) # Determine if there is a cube for the current state # that is potentially reachable. def unfold(self): core = [] self.s_bad.push() R = self.R(len(self.states)-1) self.s_bad.add(R) is_sat = self.s_bad.check() if is_sat == sat: m = self.s_bad.model() cube = self.project0(m) props = cube + self.projectI(m) self.s_good.push() self.s_good.add(R) is_sat2 = self.s_good.check(props) assert is_sat2 == unsat core = self.s_good.unsat_core() core = [c for c in core if c in set(cube)] self.s_good.pop() self.s_bad.pop() return is_sat, core # Block a cube by asserting the clause corresponding to its negation def block_cube(self, i, cube): self.assert_clause(i, cube2clause(cube)) # Add a clause to levels 0 until i def assert_clause(self, i, clause): for j in range(i + 1): self.states[j].add(clause) # minimize cube that is core of Dual solver. # this assumes that props & cube => Trans def minimize_cube(self, cube, inputs, lits): is_sat = self.min_cube_solver.check(lits + [c for c in cube] + [i for i in inputs]) assert is_sat == unsat core = self.min_cube_solver.unsat_core() assert core return [c for c in core if c in set(cube)] # push a goal on a heap def push_heap(self, goal): heapq.heappush(self.goals, (goal.level, goal)) # A state s0 and level f0 such that # not(s0) is f0-1 inductive def ic3_blocked(self, s0, f0): self.push_heap(Goal(self.next(s0), None, f0)) while self.goals: f, g = heapq.heappop(self.goals) sys.stdout.write("%d." % f) sys.stdout.flush() # Not(g.cube) is f-1 invariant if f == 0: print("") return g cube, f, is_sat = self.is_inductive(f, g.cube) if is_sat == unsat: self.block_cube(f, self.prev(cube)) if f < f0: self.push_heap(Goal(g.cube, g.parent, f + 1)) elif is_sat == sat: self.push_heap(Goal(cube, g, f - 1)) self.push_heap(g) else: return is_sat print("") return None # Rudimentary generalization: # If the cube is already unsat with respect to transition relation # extract a core (not necessarily minimal) # otherwise, just return the cube. def generalize(self, cube, f): s = self.states[f - 1].solver if unsat == s.check(cube): core = s.unsat_core() if not check_disjoint(self.init, self.prev(And(core))): return core, f return cube, f # Check if the negation of cube is inductive at level f def is_inductive(self, f, cube): s = self.states[f - 1].solver s.push() s.add(self.prev(Not(And(cube)))) is_sat = s.check(cube) if is_sat == sat: m = s.model() s.pop() if is_sat == sat: cube = self.next(self.minimize_cube(self.project0(m), self.projectI(m), self.projectN(m))) elif is_sat == unsat: cube, f = self.generalize(cube, f) return cube, f, is_sat def run(self): if not check_disjoint(self.init, self.bad): return "goal is reached in initial state" level = 0 while True: inv = self.is_valid() if inv is not None: return inv is_sat, cube = self.unfold() if is_sat == unsat: level += 1 print("Unfold %d" % level) sys.stdout.flush() self.add_solver() elif is_sat == sat: cex = self.ic3_blocked(cube, level) if cex is not None: return cex else: return is_sat def test(file): h2t = Horn2Transitions() h2t.parse(file) mp = MiniIC3(h2t.init, h2t.trans, h2t.goal, h2t.xs, h2t.inputs, h2t.xns) result = mp.run() if isinstance(result, Goal): g = result print("Trace") while g: print(g.level, g.cube) g = g.parent return if isinstance(result, ExprRef): print("Invariant:\n%s " % result) return print(result) test("data/horn1.smt2") test("data/horn2.smt2") test("data/horn3.smt2") test("data/horn4.smt2") test("data/horn5.smt2") # test("data/horn6.smt2") # takes long time to finish ```
{ "source": "JFletcher94/tBot", "score": 2 }
#### File: JFletcher94/tBot/exampleb.py ```python def get_string(): '''generate full tweet text''' return 'example #text' ```
{ "source": "JFletcher94/tweet-doist", "score": 3 }
#### File: JFletcher94/tweet-doist/setup.py ```python try: from tkinter import * except: from Tkinter import * import pygubu class main_GUI: """GUI for one-time setup.""" def __init__(self, master): """Create GUI object using pygubu.""" self.master = master self.builder = builder = pygubu.Builder() builder.add_from_file('setup.ui') self.top = builder.get_object('top', master) builder.connect_callbacks(self) self.top.protocol('WM_DELETE_WINDOW', self.on_close) root.withdraw() def go(self): """Write consumer key and consumer secret to file.""" f = open('setup.txt', 'w') f.write(self.builder.get_object('k_entry').get()) f.write('\n') f.write(self.builder.get_object('s_entry').get()) f.close() self.master.destroy() def on_close(self): """Exit program when user closes GUI window.""" self.master.destroy() if __name__ == '__main__': root = Tk() gui = main_GUI(root) root.mainloop() ```
{ "source": "Jflick58/Alexa-Test-Harness", "score": 2 }
#### File: Alexa-Test-Harness/src/alexa_tests.py ```python import requests import json import pytest class Alexa_Test(object): def __init__(self,endpoint, userid, applicationId, apitoken, locale="en-US", path_to_intent_json="src/sample.json"): self.endpoint = endpoint self.userid = userid self.locale = locale self.applicationId = applicationId self.apitoken = str(apitoken) self.path_to_intent_json = path_to_intent_json def test_intent_response(self,intent, expected_response, session_context=""): headers = { 'Content-Type': 'application/json', } request = { "session": { "new": True, "sessionId": "SessionId.2604160e-34c2-4d27-961e-10e20c7a70c9", "application": { "applicationId": self.applicationId }, "attributes": session_context, "user": { "userId": self.userid } }, "request": { "type": "IntentRequest", "requestId": "EdwRequestId.e6576f06-34d0-4148-9c47-b08356b8a2ee", "intent": { "name": intent, "slots": {} }, "locale": self.locale, "timestamp": "2018-03-22T04:49:07Z" }, "context": { "AudioPlayer": { "playerActivity": "IDLE" }, "System": { "application": { "applicationId": self.applicationId }, "user": { "userId": self.userid }, "device": { "supportedInterfaces": {} } } }, "version": "1.0" } endpoint_call = requests.post(endpoint,headers=headers, data=json.dumps(request)) print(endpoint_call.text) response = str(((endpoint_call['response'])['outputSpeech'])['text']) assert expected_response in response def parse_intents(self): voice_json = self.path_to_intent_json intents = [] interaction_model = voice_json['interactionModel'] language_model = interaction_model['LanguageModel'] intent_dicts = language_model['intents'] for intent in intent_dicts: intent_name = intent["name"] intents.append(intent_name) return intents def test_utterance_intent_match(self, utterance, expected_intent): request = { "input": { "content": utterance }, "device": { "locale": self.locale } } url = "https://api.amazonalexa.com/v1/skills/{}/simulations".format(self.applicationId) headers = { "Authorization": self.apitoken "Content-Type": "application/json" "Accept": "application/json" } endpoint_call = requests.post(url,headers=headers, data=json.dumps(request)) if endpoint_call.code == "200": # id = endpoint_call.json["id"] # results_url = url.replace("/simulations", "/simulations/{}".format(id)) # enpoint_results = requests.get(results_url,headers=headers) result = endpoint_call.json["result"] skill_execution = result["skillExecutionInfo"] invocation_request = skill_execution["invocationRequest"] request = invocation_request["request"] intent_dict = request["intent"] returned_intent = intent_dict["name"] assert returned_intent == expected_intent else: return("error") #add logging and proper handling later ```
{ "source": "Jflick58/extemp-assist", "score": 3 }
#### File: rss_scraper/rss_summary_parser/summarize.py ```python import spacy from spacy.lang.en.stop_words import STOP_WORDS from string import punctuation from collections import Counter from heapq import nlargest import time import logging nlp = spacy.load("en_core_web_sm") def word_frequency(text:str): doc = nlp(text) keyword = [] stopwords = list(STOP_WORDS) pos_tag = ['PROPN', 'ADJ', 'NOUN', 'VERB'] for token in doc: if(token.text in stopwords or token.text in punctuation): continue if(token.pos_ in pos_tag): keyword.append(token.text) word_freq = Counter(keyword) return word_freq def summarize(text:str, number_of_sentences:int=5): text = text.replace("\n","") doc = nlp(text) word_freq = word_frequency(text) sent_strength={} for sent in doc.sents: for word in sent: if word.text in word_freq.keys(): if sent in sent_strength.keys(): sent_strength[sent]+=word_freq[word.text] else: sent_strength[sent]=word_freq[word.text] summarized_sentences = nlargest(number_of_sentences, sent_strength, key=sent_strength.get) final_sentences = [w.text for w in summarized_sentences] summary = ' '.join(final_sentences) return summary ```
{ "source": "Jflick58/TeachPythonWithMinecraft", "score": 2 }
#### File: TeachPythonWithMinecraft/Flask_Starter_Code/minecraft_controller.py ```python from flask import Flask, render_template #from mcpi.minecraft import Minecraft app = Flask(__name__) @app.route('/', methods=['GET']) def home(): return render_template('index.html') @app.route('/tree/', methods=['POST, GET']) def tree(): return render_template('index.html') #add house #add moat #add custom if __name__ == '__main__': app.run(debug=False, port=5000) ```
{ "source": "Jflick58/Twitter-Content-Analysis", "score": 3 }
#### File: Twitter-Content-Analysis/easysentiment/scraper_and_analysis.py ```python from datetime import datetime from json import dump # from os.path import isfile # imported but unused import collections import csv # library for reading/writing CSV import easygui as g # library for GUI import json # library for manipulating JSON files # import logging # imported but unused import sys import webbrowser from textblob import TextBlob # library for sentiment analysis from twitterscraper import query_tweets # library for scraping # from twitterscraper.query import query_all_tweets # imported but unused # Initialize JSON encoder class JSONEncoder(json.JSONEncoder): """custom json encoder.""" def default(self, obj): """default method.""" if hasattr(obj, '__json__'): return obj.__json__() elif isinstance(obj, collections.Iterable): return list(obj) elif isinstance(obj, datetime): return obj.isoformat() elif hasattr(obj, '__getitem__') and hasattr(obj, 'keys'): return dict(obj) elif hasattr(obj, '__dict__'): return {member: getattr(obj, member) for member in dir(obj) if not member.startswith('_') and not hasattr(getattr(obj, member), '__call__')} return json.JSONEncoder.default(self, obj) def scrape_and_analyze(): """scrape and analyze.""" # Opens a GUI on start version = 'Easysentiment 1.2' options = ['Start', 'Developer Page', 'Exit'] button = g.buttonbox( 'Welcome to Easysentiment Twitter Scraper and Seniment Analyzer Version 1.2' + '\n' + '\n' + '\n' + '\n' + '\n' + 'Created by <NAME>, Copyright 2017 Licensed Under MIT License', title=version, choices=options ) if button == options[0]: pass if button == options[1]: webbrowser.open('https://github.com/Jflick58', new=0, autoraise=True) if button == options[2]: sys.exit() msg = "Enter your query information. Output will be in the form of a .csv file" title = version fieldNames = [ # NOQA "Search term (do not include the '#' mark, just the the hashtag text)", "From Account", "Starting Date (YYYY-MM-DD)", "Ending Date (YYYY-MM-DD)", "Number of Tweets", "Output File Name" ] fieldValues = [] # we start with blanks for the values # NOQA fieldValues = g.multenterbox(msg, title, fieldNames) # NOQA query = fieldValues[0] account = fieldValues[1] starting_date = fieldValues[2] ending_date = fieldValues[3] limit = int(fieldValues[4]) output2 = fieldValues[5] # Scrape Twitter tweets = query_tweets( query + '%20from%3A' + account + '%20since%3A' + starting_date + 'until%3A' + ending_date, limit ) with open(output2 + '.json', "w") as output: dump(tweets, output, cls=JSONEncoder) print(tweets) print(" ") # converts json to python objects and prepares it to be written to a csv # reads in the JSON file into Python as a string data_json = open(output2 + '.json', mode='r').read() # turns the string into a json Python object data_python = json.loads(data_json) csv_out = open(output2 + '.csv', mode='w') # opens csv file writer = csv.writer(csv_out) # create the csv writer object fields = ['text', 'timestamp', 'polarity', 'subjectivity', 'sentiment'] # field names writer.writerow(fields) # writes field for line in data_python: # performs the sentiment analysis and classifies it print(line.get('text').encode('unicode_escape')) analysis = TextBlob(line.get('text')) def get_label(analysis, threshold=0): if analysis.sentiment[0] > threshold: return 'Positive' elif analysis.sentiment[0] < threshold: return 'Negative' else: return 'Neutral' print(analysis.sentiment, get_label(analysis)) # print the results print(" ") # writes a row and gets the fields from the json object and the sentiment analysis writer.writerow([ line.get('text').encode('unicode_escape'), # unicode escape to fix emoji issue line.get('timestamp'), analysis.sentiment.polarity, analysis.sentiment.subjectivity, get_label(analysis) ]) else: csv_out.close() # saves the file and closes it print('Thank you for using this program') sys.exit('goodbye') # end program ```
{ "source": "Jflinchum/pow-generator", "score": 3 }
#### File: Jflinchum/pow-generator/findSentence.py ```python import sys import os from random import shuffle import re def sentenceGrab(subject, directory, firstOccurence): bookshelf = os.listdir(directory) sentences = [] for file in bookshelf: if (file.endswith(".txt")): with open(os.path.join(directory, file), "r") as f: text = f.read() re.sub(r'(M\w{1,2})\.', r'\1', text) # Get rid of Mr./Mrs. sentenceList = re.split(r' *[\.\?!][\'"\)\]]* *', text) # Split into sentences for sentence in sentenceList: wordList = sentence.split() for word in wordList: if subject.lower() == word.strip().lower(): sentences.append(sentence.strip()) if firstOccurence: return sentences return sentences def main(): subject = sys.argv[1] bookDirectory = sys.argv[2] sentences = sentenceGrab(subject, bookDirectory) print(sentences) if __name__ == '__main__': main() ``` #### File: Jflinchum/pow-generator/powGenerator.py ```python from findSentence import sentenceGrab from phoneticWords import findPhonetics from phoneticIndex import findPhoneticIndex from random import randint from math import floor import sys def main(): library = sys.argv[1] subject = sys.argv[2] dictionary = "/usr/share/dict/words" phonetics = findPhonetics(subject, dictionary) if len(phonetics) == 0: print("Could not find any phonetic words.") return nearPhoneticNum = floor((phonetics[0][1] + phonetics[len(phonetics)-1][1]) / 2) phonetics = [i for i in phonetics if i[1] <= nearPhoneticNum] sentences = [] tries = 10 index = 0 while len(sentences) == 0 and index <= tries: if len(phonetics) == 0: print("No more phonetic words. Ending") return index += 1 punWord = phonetics[randint(0, floor(len(phonetics)/2))][0] print(punWord) sentences = sentenceGrab(punWord, library, True) if len(sentences) == 0: phonetics = [i for i in phonetics if i[0] != punWord] print("Could not find sentence... Trying again") if index >= tries: print("Reached maximum tries. Ending") return punSentence = sentences[randint(0, len(sentences) - 1)] sentenceIndex = punSentence.find(punWord) punIndex = findPhoneticIndex(subject, punWord) punSentence = punSentence[0:sentenceIndex + punIndex] + subject + punSentence[sentenceIndex + punIndex + len(subject):len(punSentence)] print(punSentence) if __name__ == "__main__": main() ``` #### File: Jflinchum/pow-generator/similarWords.py ```python import sys from levenshtein import levenshtein def main(): subject = sys.argv[1] dictionary = open("/usr/share/dict/web2") levenNumber = 2 similar = [] for line in dictionary: line = line.split("\n")[0] if subject != line and subject[0] == line[0] and levenshtein(subject, line) <= levenNumber: similar.append(line) print(similar) if __name__ == '__main__': main() ```
{ "source": "jfloff/dblp-orcid", "score": 2 }
#### File: jfloff/dblp-orcid/parse.py ```python import os import sys import gzip import tempfile import shutil import urllib.request from tqdm import tqdm from lxml import etree import pandas as pd import datetime import argparse import copy ########################## # COMMAND LINE # parser = argparse.ArgumentParser() # group for either out or csv group = parser.add_mutually_exclusive_group(required=True) group.add_argument("--out", action='store_true', default=True, help="Outputs csv to stdout. Useful for redirecting output.", required=False) group.add_argument("--csv", action='store_true', default=False, help="Saves output to csv", required=False) # group for either orcid or alias group = parser.add_mutually_exclusive_group(required=True) group.add_argument("--orcid", action='store_true', default=False, help="We gather by orcid, and list all alias for that orcid", required=False) group.add_argument("--alias", action='store_true', default=False, help="We gather by alias, and list all orcids for that alias", required=False) # option for no download parser.add_argument("--no-download", action='store_true', default=False, help="Does not download DBLP XML files", required=False) args = vars(parser.parse_args()) ########################## # CONSTANTS # DBLP_XML_URL = 'http://dblp.org/xml/dblp.xml.gz' DBLP_XML_FILENAME = 'dblp.xml.gz' DBLP_DTD_URL = 'http://dblp.org/xml/dblp.dtd' DBLP_DTD_FILENAME = 'dblp.dtd' ORCID_OUTPUT_CSV_FILENAME = 'by_orcid.csv' ALIAS_OUTPUT_CSV_FILENAME = 'by_alias.csv' def progress_bar_hook(t): """Wraps tqdm instance.""" last_b = [0] def update_to(b=1, bsize=1, tsize=None): """ b : int, optional Number of blocks transferred so far [default: 1]. bsize : int, optional Size of each block (in tqdm units) [default: 1]. tsize : int, optional Total size (in tqdm units). If [default: None] remains unchanged. """ if tsize is not None: t.total = tsize t.update((b - last_b[0]) * bsize) last_b[0] = b return update_to # download files if not args['no_download']: print("Downloading DBLP XML files...", file=sys.stderr) with tqdm(unit='B', unit_scale=True, unit_divisor=1024, miniters=1, desc=DBLP_XML_FILENAME) as t: urllib.request.urlretrieve(DBLP_XML_URL, filename=DBLP_XML_FILENAME,reporthook=progress_bar_hook(t), data=None) with tqdm(unit='B', unit_scale=True, unit_divisor=1024, miniters=1, desc=DBLP_DTD_FILENAME) as t: urllib.request.urlretrieve(DBLP_DTD_URL, filename=DBLP_DTD_FILENAME,reporthook=progress_bar_hook(t), data=None) ########################## # PARSING DATA STRUCTURES # # ALIAS -> dict(all_alias, dblp_key, affiliation, orcid, google_scholar_id, scopus_id, acm_id) alias_info = {} # ORCID -> set(ALIAS) orcid_alias = {} # ALIAS -> set(ORCID) alias_orcid = {} # adds pair of entries to bimap def add_bimap(alias, orcid): if alias not in alias_orcid: alias_orcid[alias] = set() if orcid not in orcid_alias: orcid_alias[orcid] = set() alias_orcid[alias].add(orcid) orcid_alias[orcid].add(alias) ########################## # PARSING METHODS # # processes author tags def process_author(element): if 'orcid' in element.attrib: alias = element.text orcid = 'https://orcid.org/' + element.attrib['orcid'] # inits bi-directional entries add_bimap(alias, orcid) # processes www tags def process_www(element): if 'key' in element.attrib and element.attrib['key'].startswith("homepages"): all_alias = set([a.strip() for a in element.xpath('author/text()')]) info = { 'dblp_key': set([element.attrib['key']]), 'affiliation': element.findtext("note[@type='affiliation']"), 'orcid': None, 'researcher_id': None, 'google_scholar_id': None, 'scopus_id': None, 'acm_id': None, 'homepage': None, } # finds info based on author urls for url in element.xpath("url/text()"): # some cleanup url = url.strip().strip("/") # tries to find several standard information if 'orcid.org/' in url: info['orcid'] = 'https://orcid.org/' + url.rpartition('/')[-1] elif 'researcherid' in url: info['researcher_id'] = 'http://www.researcherid.com/rid/' + url.rpartition('/')[-1] elif 'scholar.google' in url: info['google_scholar_id'] = 'https://scholar.google.com/citations?user=' + url.rpartition("user=")[-1] elif 'scopus' in url: info['scopus_id'] = 'https://www.scopus.com/authid/detail.uri?authorId=' + url.rpartition("authorId=")[-1] elif 'dl.acm.org/author_page' in url: info['acm_id'] = 'https://dl.acm.org/author_page.cfm?id=' + url.rpartition("id=")[-1] # other not very relevant urls that we skip elif 'wikidata' in url: continue elif 'genealogy.ams.org' in url: continue elif 'researchgate' in url: continue elif 'mendeley' in url: continue elif 'github' in url: continue elif 'twitter' in url: continue elif 'wikipedia' in url: continue elif 'isni' in url: continue elif 'linkedin' in url: continue # everything else we consider homepage, but we just consider 1 else: info['homepage'] = url # save info on all alias for alias in all_alias: alias_info[alias] = info # if exists saves on bimap and searches for more aliases if info['orcid'] and (info['orcid'] is not None): add_bimap(alias, info['orcid']) # merges info by orcid def info_by_orcid(): final = {} for orcid, aliases in orcid_alias.items(): # merges all alias_info info = {} dblp_keys = set() for alias in aliases: dblp_keys.update(alias_info[alias]['dblp_key']) if info: # deep copy of the dict to avoid duplicates in the csv info = copy.deepcopy(alias_info[alias]) else: # from running we found out that we might have # different alias info for the same orcid hence # we merging dict infos info.update({k:v for k,v in alias_info[alias].items() if v}) # adds info to all alias for alias in aliases: alias_info[alias] = info # but we add all aliases to the final result info['alias'] = sorted(aliases) info['dblp_key'] = sorted(dblp_keys) info['orcid'] = orcid final[orcid] = info return final # merges info by orcid def info_by_alias(): final = {} for alias, orcids in alias_orcid.items(): # gets info from that alias only # deep copy of the dict to avoid duplicates in the csv info = copy.deepcopy(alias_info[alias]) # but store all orcids as a list info['orcid'] = sorted(orcids) info['dblp_key'] = next(iter(info['dblp_key'])) info['alias'] = alias final[alias] = info return final def fast_iter(context, func, *args, **kwargs): """ http://lxml.de/parsing.html#modifying-the-tree Based on Liza Daly's fast_iter http://www.ibm.com/developerworks/xml/library/x-hiperfparse/ See also http://effbot.org/zone/element-iterparse.htm """ for event, elem in context: func(elem, *args, **kwargs) # It's safe to call clear() here because no descendants will be accessed # filter for end-ns event due to DTD replacements if event == 'end-ns': elem.clear() # Also eliminate now-empty references from the root node to elem for ancestor in elem.xpath('ancestor-or-self::*'): while ancestor.getprevious() is not None: del ancestor.getparent()[0] del context counter = 0 def process_element(element): global counter globals()['process_'+element.tag](element) counter += 1 if counter % 100000 == 0: print(str(counter)+ " xml nodes processed.", file=sys.stderr) # first parses all the authors with orcids print("Started parsing...", file=sys.stderr) context = etree.iterparse(gzip.GzipFile(DBLP_XML_FILENAME), events=('end','end-ns'), tag=('author','www'), load_dtd=True, dtd_validation=True) fast_iter(context,process_element) # merges info by orcid or alias if args['orcid']: final = info_by_orcid() order = ['orcid','alias'] sort = 'orcid' output_csv_filename = ORCID_OUTPUT_CSV_FILENAME if args['alias']: final = info_by_alias() order = ['alias','orcid'] sort = 'alias' output_csv_filename = ALIAS_OUTPUT_CSV_FILENAME # export to csv df = pd.DataFrame(list(final.values())) order += ['dblp_key','affiliation','researcher_id','google_scholar_id','scopus_id','acm_id','homepage'] df = df.reindex(columns=order).sort_values(sort) tmp_csv_fd = tempfile.NamedTemporaryFile(mode='w', delete=False) tmp_csv_fd.write('# PARSED ON ' + datetime.datetime.today().strftime('%Y-%m-%d') + '\n') df.to_csv(tmp_csv_fd, index=False, encoding='utf-8') tmp_csv_fd.close() print("Finished parsing!", file=sys.stderr) # remove files if not args['no_download']: os.remove(DBLP_DTD_FILENAME) os.remove(DBLP_XML_FILENAME) print("Removed DBLP xml files.", file=sys.stderr) # just prints message, file already saved if args['csv']: args['out'] = False shutil.copy(tmp_csv_fd.name, output_csv_filename) print("Parsed info saved to: " + output_csv_filename, file=sys.stderr) # defaults "cat"s the file if args['out']: with open(tmp_csv_fd.name) as f: for line in f: print(line, end="") # delete file os.remove(tmp_csv_fd.name) ```
{ "source": "jfloff/pywFM", "score": 2 }
#### File: pywFM/pywFM/__init__.py ```python import subprocess import os import tempfile class FM: """ Class that wraps `libFM` parameters. For more information read [libFM manual](http://www.libfm.org/libfm-1.42.manual.pdf) Parameters ---------- task : string, MANDATORY regression: for regression classification: for binary classification num_iter: int, optional Number of iterations Defaults to 100 init_stdev : double, optional Standard deviation for initialization of 2-way factors Defaults to 0.1 k0 : bool, optional Use bias. Defaults to True k1 : bool, optional Use 1-way interactions. Defaults to True k2 : int, optional Dimensionality of 2-way interactions. Defaults to 8 learning_method: string, optional sgd: parameter learning with SGD sgda: parameter learning with adpative SGD als: parameter learning with ALS mcmc: parameter learning with MCMC Defaults to 'mcmc' learn_rate: double, optional Learning rate for SGD Defaults to 0.1 r0_regularization: int, optional bias regularization for SGD and ALS Defaults to 0 r1_regularization: int, optional 1-way regularization for SGD and ALS Defaults to 0 r2_regularization: int, optional 2-way regularization for SGD and ALS Defaults to 0 rlog: bool, optional Enable/disable rlog output Defaults to True. verbose: bool, optional How much infos to print Defaults to False. seed: int, optional seed used to reproduce the results Defaults to None. silent: bool, optional Completly silences all libFM output Defaults to False. temp_path: string, optional Sets path for libFM temporary files. Usefull when dealing with large data. Defaults to None (default NamedTemporaryFile behaviour) """ """ ### unsused libFM flags cache_size: cache size for data storage (only applicable if data is in binary format), default=infty datafile is text so we don't need this parameter relation: BS - filenames for the relations, default='' not dealing with BS extensions since they are only used for binary files """ def __init__(self, task, num_iter=100, init_stdev=0.1, k0=True, k1=True, k2=8, learning_method='mcmc', learn_rate=0.1, r0_regularization=0, r1_regularization=0, r2_regularization=0, rlog=True, verbose=False, seed=None, silent=False, temp_path=None): # gets first letter of either regression or classification self.__task = task[0] self.__num_iter = num_iter self.__init_stdev = init_stdev self.__dim = "%d,%d,%d" % (int(k0), int(k1), k2) self.__learning_method = learning_method self.__learn_rate = learn_rate self.__regularization = "%.5f,%.5f,%.5f" % (r0_regularization, r1_regularization, r2_regularization) self.__rlog = rlog self.__verbose = int(verbose) self.__seed = int(seed) if seed else None self.__silent = silent self.__temp_path = temp_path # gets libfm path self.__libfm_path = os.path.join(os.environ.get('LIBFM_PATH'), "") if self.__libfm_path is None: raise OSError("`LIBFM_PATH` is not set. Please install libFM and set the path variable " "(https://github.com/jfloff/pywFM#installing).") # #ShameShame # Once upon a time, there was a bug in libFM that allowed any type of # learning_method to save the model. I @jfloff built this package at # that time, and did not find anything that showed me that MCMC couldn't # use save_model flag. Nowadays only SGD and ALS can use this parameter. # Hence, we need to reset the repo to this specific commit pre-fix, so # we can use MCMC with save_model flag. # Can we contribute to main libFM repo so this is possible again?? GITHASH = '91f8504a15120ef6815d6e10cc7dee42eebaab0f' c_githash = subprocess.check_output(['git', '--git-dir', os.path.join(self.__libfm_path, "..", ".git"), 'rev-parse', 'HEAD']).strip() if c_githash.decode("utf-8") != GITHASH: raise OSError("libFM is not checked out to the correct commit." "(https://github.com/jfloff/pywFM#installing).") def run(self, x_train, y_train, x_test, y_test, x_validation_set=None, y_validation_set=None, meta=None): """Run factorization machine model against train and test data Parameters ---------- x_train : {array-like, matrix}, shape = [n_train, n_features] Training data y_train : numpy array of shape [n_train] Target values x_test: {array-like, matrix}, shape = [n_test, n_features] Testing data y_test : numpy array of shape [n_test] Testing target values x_validation_set: optional, {array-like, matrix}, shape = [n_train, n_features] Validation data (only for SGDA) y_validation_set: optional, numpy array of shape [n_train] Validation target data (only for SGDA) meta: optional, numpy array of shape [n_features] Grouping input variables Return ------- Returns `namedtuple` with the following properties: predictions: array [n_samples of x_test] Predicted target values per element in x_test. global_bias: float If k0 is True, returns the model's global bias w0 weights: array [n_features] If k1 is True, returns the model's weights for each features Wj pairwise_interactions: numpy matrix [n_features x k2] Matrix with pairwise interactions Vj,f rlog: pandas dataframe [nrow = num_iter] `pandas` DataFrame with measurements about each iteration """ from sklearn.datasets import dump_svmlight_file TMP_SUFFIX = '.pywfm' train_fd = tempfile.NamedTemporaryFile(suffix=TMP_SUFFIX, dir=self.__temp_path) test_fd = tempfile.NamedTemporaryFile(suffix=TMP_SUFFIX, dir=self.__temp_path) out_fd = tempfile.NamedTemporaryFile(suffix=TMP_SUFFIX, dir=self.__temp_path) model_fd = tempfile.NamedTemporaryFile(suffix=TMP_SUFFIX, dir=self.__temp_path) # converts train and test data to libSVM format dump_svmlight_file(x_train, y_train, train_fd) train_fd.seek(0) dump_svmlight_file(x_test, y_test, test_fd) test_fd.seek(0) # builds arguments array args = [os.path.join(self.__libfm_path, "libFM"), '-task', "%s" % self.__task, '-train', "%s" % train_fd.name, '-test', "%s" % test_fd.name, '-dim', "'%s'" % self.__dim, '-init_stdev', "%g" % self.__init_stdev, '-iter', "%d" % self.__num_iter, '-method', "%s" % self.__learning_method, '-out', "%s" % out_fd.name, '-verbosity', "%d" % self.__verbose, '-save_model', "%s" % model_fd.name] # appends rlog if true rlog_fd = None if self.__rlog: rlog_fd = tempfile.NamedTemporaryFile(suffix=TMP_SUFFIX, dir=self.__temp_path) args.extend(['-rlog', "%s" % rlog_fd.name]) # appends seed if given if self.__seed: args.extend(['-seed', "%d" % self.__seed]) # appends arguments that only work for certain learning methods if self.__learning_method in ['sgd', 'sgda']: args.extend(['-learn_rate', "%.5f" % self.__learn_rate]) if self.__learning_method in ['sgd', 'sgda', 'als']: args.extend(['-regular', "'%s'" % self.__regularization]) # adds validation if sgda # if validation_set is none, libFM will throw error hence, I'm not doing any validation validation_fd = None if self.__learning_method == 'sgda' and (x_validation_set is not None and y_validation_set is not None): validation_fd = tempfile.NamedTemporaryFile(suffix=TMP_SUFFIX, dir=self.__temp_path) dump_svmlight_file(x_validation_set, y_validation_set, validation_fd.name) args.extend(['-validation', "%s" % validation_fd.name]) # if meta data is given meta_fd = None if meta is not None: meta_fd = tempfile.NamedTemporaryFile(suffix=TMP_SUFFIX, dir=self.__temp_path, text=True) # write group ids for group_id in meta: meta_fd.write("%s\n" % group_id) args.extend(['-meta', "%s" % meta_fd.name]) meta_fd.seek(0) # if silent redirects all output stdout = None if self.__silent: stdout = open(os.devnull, 'wb') # call libfm with parsed arguments # had unkown bug with "-dim" option on array. At the time was forced to # concatenate string `args = ' '.join(args)` but looks like its working # needs further tests subprocess.call(args, shell=False, stdout=stdout) # reads output file preds = [float(p) for p in out_fd.read().decode("utf-8").split('\n') if p] # "hidden" feature that allows users to save the model # We use this to get the feature weights # https://github.com/srendle/libfm/commit/19db0d1e36490290dadb530a56a5ae314b68da5d import numpy as np global_bias = None weights = [] pairwise_interactions = [] # if 0 its global bias; if 1, weights; if 2, pairwise interactions out_iter = 0 for line in model_fd.read().decode("utf-8").splitlines(): # checks which line is starting with # if line.startswith('#'): if "#global bias W0" in line: out_iter = 0 elif "#unary interactions Wj" in line: out_iter = 1 elif "#pairwise interactions Vj,f" in line: out_iter = 2 else: # check context get in previous step and adds accordingly if out_iter == 0: global_bias = float(line) elif out_iter == 1: weights.append(float(line)) elif out_iter == 2: try: pairwise_interactions.append([float(x) for x in line.split(' ')]) except ValueError as e: pairwise_interactions.append(0.0) #Case: no pairwise interactions used pairwise_interactions = np.matrix(pairwise_interactions) # parses rlog into dataframe if self.__rlog: # parses rlog into import pandas as pd rlog_fd.seek(0) print(os.stat(rlog_fd.name).st_size) rlog = pd.read_csv(rlog_fd.name, sep='\t') rlog_fd.close() else: rlog = None if self.__learning_method == 'sgda' and (x_validation_set is not None and y_validation_set is not None): validation_fd.close() if meta is not None: meta_fd.close() # removes temporary output file after using train_fd.close() test_fd.close() model_fd.close() out_fd.close() # return as named collection for multiple output import collections fm = collections.namedtuple('model', ['predictions', 'global_bias', 'weights', 'pairwise_interactions', 'rlog']) return fm(preds, global_bias, weights, pairwise_interactions, rlog) ```
{ "source": "JFlommersfeld/Actomyosin-contractions-in-soft-pillar-rings", "score": 3 }
#### File: JFlommersfeld/Actomyosin-contractions-in-soft-pillar-rings/calculate_contraction_dynamics.py ```python import sys from scipy.integrate import solve_ivp from models import FullModel, DensityModel from work_and_power import * def calculate_contraction_dynamics(model_type, parameter_file, t_max, pillar_stiffness): """ Solves the contraction dynamics from time t=0 to t=t_max. Parameters: model_type (str): sets the type of model, which determines the exact parameter set that is needed. Possible values for the parameter model_type are: 'full model' or 'density model'. parameter_file (str): the path to the parameter file. t_max (float): the final timepoint in seconds until which the dynamics are solved. pillar_stiffness (float) the stiffness of the pillars in the pillar ring in pN/um. Returns: numpy.array(float): the calculated time points numpy.array(float): the solution of the (set of) differential equation(s) list(float): the tip velocities list(float): the transmitted powers list(float): the dissipated powers float: the total transmitted work float: the total dissipated work """ if model_type == 'full model': model = FullModel(parameter_file, pillar_stiffness) elif model_type == 'density model': model = DensityModel(parameter_file, pillar_stiffness) else: print("ERROR: the parameter <model_type> has to be given one of the three values: " "'full model' or 'density model'.") sys.exit(1) t_min = 0 # define initial conditions f_init = 7 if model_type == 'full model': k_on_fil = model.get_parameter('k_on_fil') Nmax = model.get_parameter('Nmax') ic = [f_init, k_on_fil / (model.k_off_fil(f_init) + k_on_fil) * Nmax] else: ic = [0.] # integrate ODE sol = solve_ivp(model.rhs, (t_min, t_max), ic, method="LSODA") # calculate the dynamic quantities if model_type == 'full model': velocities = model.velocity(sol.t, sol.y[0], sol.y[1]) else: velocities = model.velocity(sol.t, sol.y[0]) transmitted_powers = transmitted_power(sol.y[0]/pillar_stiffness, velocities, model) dissipated_powers = dissipated_power(velocities, model) # calculate the total transmitted and dissipated work transmitted_work = work_elastic(sol.t, sol.y[0]/pillar_stiffness, velocities, model) dissipated_work = work_diss(sol.t, velocities, model) return sol.t, sol.y, velocities, transmitted_powers, dissipated_powers, transmitted_work, dissipated_work ``` #### File: JFlommersfeld/Actomyosin-contractions-in-soft-pillar-rings/models.py ```python import numpy as np from parameter_loader import load_parameters from math import pi class FullModel: """ A class that defines the full model for actomyosin contraction in soft pillar rings that accounts for both myosin filament binding and density changes Attributes: parameter_file (str): path to a file that contains all necessary parameters for the model (see provided examples). Methods: k_off_fil(total_force): calculates the load dependent steady state off-rate of a myosin filament. rhs(t, y): calculates the right hand side of the set of differential equations that describe the model. velocity(t, force, N): calculates the deflection velocity of the tip of the pillar. """ def __init__(self, parameter_file, pillar_stiffness): """ Sets all the necessary parameters for the FullModel object. Parameters: parameter_file (str): path to a file that contains all necessary parameters for the model (see provided examples). pillar_stiffness (float): stiffness of the pillars in the pillar ring in pN/um. """ self.x_catch, self.x_slip, self.k_off0_catch, self.k_off0_slip, self.k_on, self.k_on_fil, self.a_per_kBT, \ self.Nh, self.Nmax, self.h_eta, self.xi_rho_a2, self.rho_max_per_rho, \ self.R0 = load_parameters('full model', parameter_file) self.k_p = pillar_stiffness self.parameter_dict = {"x_catch": self.x_catch, "x_slip": self.x_slip, "k_off0_catch": self.k_off0_catch, "k_off0_slip": self.k_off0_slip, "k_on": self.k_on, "k_on_fil": self.k_on_fil, "a_per_kBT": self.a_per_kBT, "Nh": self.Nh, "Nmax": self.Nmax, "h_eta": self.h_eta, "xi_rho_a2": self.xi_rho_a2, "rho_max_per_rho": self.rho_max_per_rho, "R0": self.R0, "k_p": self.k_p} self.A0 = pi * self.R0**2 self.tau = 6. / 5. * pi * self.h_eta / self.k_p def __k_off(self, force): """Calculates the load dependent off-rate of an individual myosin head. Parameters: force (float): the average load that is applied to an individual myosin head. Returns: float: the average off-rate of the head. """ return self.k_off0_catch * np.exp(-self.a_per_kBT * force * self.x_catch) + \ self.k_off0_slip * np.exp(self.a_per_kBT * force * self.x_slip) def __calc_prob_dist(self, total_force): """Calculates the load dependent steady state probability distribution of the number of bound heads per myosin filament Parameters: total_force (float): the total load that is applied to the myosin filament. Returns: list(float): list of probabilities that n heads are bound per filament, where n is given by the list index. """ pns = [] for n in range(0, self.Nh + 1): nom = 1 for i in range(0, n): nom = nom * ((self.Nh - i) * self.k_on) / ((i + 1) * self.__k_off(total_force / (i + 1))) denom = 1 for k in range(1, self.Nh + 1): prod = 1 for j in range(0, k): prod = prod * ((self.Nh - j) * self.k_on) / ((j + 1) * self.__k_off(total_force / (j + 1))) denom = denom + prod pns.append(nom / denom) return pns def k_off_fil(self, total_force): """Calculates the load dependent steady state off-rate of a myosin filament. Parameters: total_force (float): the total load that is applied to the myosin filament. Returns: float: the off-rate of the filament. """ T_off_av = 0 pns = self.__calc_prob_dist(total_force) for NB_init in range(1, self.Nh + 1): T_off = 0 for NB in range(1, NB_init + 1): s = 0 for j in range(NB, self.Nh + 1): s = s + pns[j] T_off = T_off + 1 / (NB * self.__k_off(total_force / NB) * pns[NB]) * s T_off_av = T_off_av + pns[NB_init] * T_off return 1 / T_off_av def rhs(self, t, y): """Calculates the right hand side of the set of differential equations that describe the model. Parameters: t (float): the time point. y (list(float)): a list with elements y[0] = force on the pillar at time t and y[1] = number of bound filaments at time t Returns: list(float): the temporal derivative of the input y """ force = y[0] N = y[1] area = pi * (self.R0 - force / self.k_p) ** 2 density_factor = -self.A0 / area * (self.A0 / area - self.rho_max_per_rho) force_prime = -force / self.tau + self.xi_rho_a2 * N * density_factor / self.tau N_prime = self.k_on_fil * (self.Nmax - N) - self.k_off_fil(force) * N return [force_prime, N_prime] def velocity(self, t, force, N): """Calculates the deflection velocity of the tip of the pillar. Parameters: t (float): the time point. force (float): force on the pillar at time t N: number of bound filaments at time t Returns: float: the deflection velocity of the pillar tip at time t """ area = pi * (self.R0 - force / self.k_p) ** 2 density_factor = -self.A0 / area * (self.A0 / area - self.rho_max_per_rho) return (-force / self.tau + self.xi_rho_a2 * N * density_factor / self.tau) / self.k_p def get_parameter(self, parameter_name): """Get all model parameters Parameters: parameter_name (str): parameter name. Returns: float/int: the value of the specified parameter. """ return self.parameter_dict[parameter_name] class DensityModel: """ A class that defines the purley density dependent model for actomyosin contraction in soft pillar rings. ... Attributes: parameter_file (str): path to a file that contains all necessary parameters for the model (see provided examples). Methods: k_off_fil(total_force): calculates the load dependent steady state off-rate of a myosin filament. rhs(t, y): calculates the right hand side of the set of differential equations that describe the model. velocity(t, force, N): calculates the deflection velocity of the tip of the pillar. """ def __init__(self, parameter_file, pillar_stiffness): """ Sets all the necessary parameters for the DensityModel object. Parameters: parameter_file (str): path to a file that contains all necessary parameters for the model (see provided examples). pillar_stiffness (float): stiffness of the pillars in the pillar ring in pN/um. """ self.h_eta, self.xi_N_rho_a2, self.rho_max_per_rho, self.R0 = load_parameters('density model', parameter_file) self.k_p = pillar_stiffness self.parameter_dict = {"h_eta": self.h_eta, "xi_N_rho_a2": self.xi_N_rho_a2, "rho_max_per_rho": self.rho_max_per_rho, "R0": self.R0, "k_p": self.k_p} self.A0 = pi * self.R0 ** 2 self.tau = 6. / 5. * pi * self.h_eta / self.k_p def rhs(self, t, y): """Calculates the right hand side of the set of differential equations that describe the model. Parameters: t (float): the time point. y (list(float)): a list with a single element y[0] = force on the pillar at time t Returns: list(float): the temporal derivative of the input y """ force = y[0] area = pi * (self.R0 - force / self.k_p) ** 2 density_factor = -self.A0 / area * (self.A0 / area - self.rho_max_per_rho) force_prime = -force/self.tau + self.xi_N_rho_a2 * density_factor / self.tau return [force_prime] def velocity(self, t, force): """Calculates the deflection velocity of the tip of the pillar. Parameters: t (float): the time point. force (float): force on the pillar at time t Returns: float: the deflection velocity of the pillar tip at time t """ area = pi * (self.R0 - force / self.k_p) ** 2 density_factor = -self.A0 / area * (self.A0 / area - self.rho_max_per_rho) return (-force/self.tau + self.xi_N_rho_a2 * density_factor / self.tau)/self.k_p def get_parameter(self, parameter_name): """Get all model parameters Parameters: parameter_name (str): parameter name. Returns: float/int: the value of the specified parameter. """ return self.parameter_dict[parameter_name] ``` #### File: JFlommersfeld/Actomyosin-contractions-in-soft-pillar-rings/plotting.py ```python import matplotlib.pyplot as plt def plot_tip_displacement_and_velocity(timepoints, displacements, velocities, ylim_bottom_velo=0, ylim_top_velo=10, ylim_bottom_disp=0, ylim_top_disp=7): """ Plots the dynammics of the tip displacement and tip velocity Parameters: timepoints (list(float)): list of the considered timepoints in seconds. displacements (list(float)): list of the calculated tip displacements in um. velocities (list(float)): list of the calculated tip velocities in um/s. ylim_bottom_velo (float): the lower limit of the y-axis for the tip velocity axis. ylim_top_velo (float): the upper limit of the y-axis for the tip velocity axis. ylim_bottom_disp (float): the lower limit of the y-axis for the tip displacment axis. ylim_top_disp (float): the upper limit of the y-axis for the tip displacment axis. """ plt.rcParams.update({'font.size': 15}) plt.clf() fig, ax1 = plt.subplots() color1 = 'k' ax1.set_xlabel('Time (min)') ax1.set_ylabel(r'Tip velocity ($10^{-2}\mu m /s$)', color=color1) ax1.plot(timepoints/60, 100*velocities, color=color1, linewidth=2) ax1.tick_params(axis='y', labelcolor=color1, color=color1) ax1.set_ylim(bottom=ylim_bottom_velo, top=ylim_top_velo) ax2 = ax1.twinx() color2 = 'tab:red' ax2.set_ylabel(r'Tip displacement ($\mu m$)', color=color2) ax2.plot(timepoints/60, displacements, color=color2, linewidth=2) ax2.tick_params(axis='y', labelcolor=color2, color=color2) ax2.spines['left'].set_color(color1) ax2.spines['right'].set_color(color2) ax2.set_ylim(bottom=ylim_bottom_disp, top=ylim_top_disp) fig.tight_layout() plt.show() def plot_transmitted_and_dissipated_power(timepoints, transmitted_powers, dissipated_powers, ylim_bottom=0.1, ylim_top=1.e3): """ Plots the dynammics of the transmitted and dissipated power on a logarithmic y-axis. Parameters: timepoints (list(float)): list of the considered timepoints in seconds. transmitted_powers (list(float)): list of the calculated transmitted powers in atto Watts. dissipated_powers (list(float)): list of the calculated dissipated powers atto Watts. ylim_bottom (float): the lower limit of the y-axis. Default value is 0.1. ylim_top (float): the upper limit of the y-axis. Default value is 1.e3. """ plt.rcParams.update({'font.size': 15}) fig, ax1 = plt.subplots() ax1.set_xlabel('Time (min)') ax1.set_ylabel(r'Power ($aW$)') ax1.semilogy(timepoints/60, transmitted_powers, 'k-', linewidth=2, alpha=1, label='Transmitted power') ax1.semilogy(timepoints/60, dissipated_powers, 'k:', linewidth=2, alpha=1, label='Dissipated power') ax1.legend(frameon=False, loc=(0.5, 0.75), fontsize=13) ax1.set_ylim(bottom=ylim_bottom, top=ylim_top) fig.tight_layout() plt.show() def plot_peak_velocities(pillar_stiffnesses, peak_velocities, ylim_bottom=0., ylim_top=10.): """ Plots the dynammics of the transmitted and dissipated power Parameters: pillar_stiffnesses (list(float)): list of the considered pillar stiffnesses in unites of pN/um. peak_velocities (list(float)): list of the calculated peak velocities in um/s. ylim_bottom (float): the lower limit of the y-axis. Default value is 0. ylim_top (float): the upper limit of the y-axis. Default value is 10. """ plt.plot(pillar_stiffnesses, 100 * peak_velocities, '-', linewidth=2) plt.xlabel(r"Pillar stiffness $k_p$ ($pN/\mu m$)") plt.ylabel(r"Peak velocity ($10^{-2}\mu m/s $)") plt.ylim(bottom=ylim_bottom, top=ylim_top) plt.tight_layout() plt.show() def plot_final_forces(pillar_stiffnesses, final_force, ylim_bottom=0., ylim_top=500.): """ Plots the dynammics of the transmitted and dissipated power Parameters: pillar_stiffnesses (list(float)): list of the considered pillar stiffnesses in unites of pN/um. final_force (list(float)): list of the calculated final forces per pillar in pN. ylim_bottom (float): the lower limit of the y-axis. Default value is 0. ylim_top (float): the upper limit of the y-axis. Default value is 500. """ plt.clf() plt.rcParams.update({'font.size': 15}) plt.plot(pillar_stiffnesses, final_force) plt.xticks([50, 100, 150], ["0.05", "0.10", "0.15"]) plt.xlim(left=0, right=190) plt.ylim(ylim_bottom, ylim_top) plt.xlabel(r"Pillar stiffness $k_p$ ($nN/\mu m$)") plt.ylabel(r"Force per pillar ($pN$)") plt.tight_layout() plt.show() ```
{ "source": "jflot/HapPy", "score": 2 }
#### File: jflot/HapPy/commands.py ```python from docopt import docopt import sys, os, shutil import tempfile from os.path import join, dirname import coverage as happyc import estimate as happye class AbstractCommand: """Base class for the commands""" def __init__(self, command_args, global_args): """Initialize the commands.""" self.args = docopt(self.__doc__, argv=command_args) self.global_args = global_args def execute(self): """Execute the commands""" raise NotImplementedError def check_output_path(self, path, force=False): """Throws error if the output file exists. Create required file tree otherwise.""" # Get complete output filename and prevent overwriting unless force is enabled if not force and os.path.exists(path): raise IOError("Output file already exists. Use --force to overwrite") if dirname(path): os.makedirs(dirname(path), exist_ok=True) class Coverage(AbstractCommand): """Coverage histogram command Compute coverage histogram for mapping file. usage: coverage [--threads=1] --outdir=DIR <mapping.bam> arguments: mapping.bam Sorted BAM file after mapping reads to the assembly. options: -t, --threads=INT Number of parallel threads allocated for sambamba [default: 1]. -d, --outdir=DIR Path where the .cov and .hist files are written. """ def execute(self): print("Running coverage module.") happyc.get_cov_hist( self.args["<mapping.bam>"], self.args["--threads"], self.args["--outdir"] ) class Estimate(AbstractCommand): """Estimate command Compute AUC ratio and TSS from coverage histogram. usage: estimate [--max-contaminant=INT] [--max-diploid=INT] [--min-peak=INT] --size=INT --outstats=FILE [--plot] <coverage.hist> arguments: coverage.hist Coverage histogram. options: -C, --max-contaminant=INT Maximum coverage of contaminants. -D, --max-diploid=INT Maximum coverage of the diploid peak. -M, --min-peak=INT Minimum peak height. -S, --size=INT Estimated haploid genome size. -O, --outstats=FILE Path where the AUC ratio and TSS values are written. -p, --plot Generate histogram plot. """ def execute(self): happye.estimate_haploidy( self.args["<coverage.hist>"], self.args["--max-contaminant"], self.args["--max-diploid"], self.args["--min-peak"], self.args["--size"], self.args["--outstats"], ) ```
{ "source": "jflournoy/ACE", "score": 3 }
#### File: ACE/ace/sources.py ```python from __future__ import unicode_literals # use unicode everywhere from bs4 import BeautifulSoup import re import os import json import abc import importlib from glob import glob import datatable import tableparser import scrape import config import database import logging logger = logging.getLogger(__name__) class SourceManager: ''' Loads all the available Source subclasses from this module and the associated directory of JSON config files and uses them to determine which parser to call when a new HTML file is passed. ''' def __init__(self, database, table_dir=None): ''' SourceManager constructor. Args: database: A Database instance to use with all Sources. table_dir: An optional directory name to save any downloaded tables to. When table_dir is None, nothing will be saved (requiring new scraping each time the article is processed). ''' module = importlib.import_module('ace.sources') self.sources = {} source_dir = os.path.join(os.path.dirname(__file__), 'sources') for config_file in glob('%s/*json' % source_dir): class_name = config_file.split('/')[-1].split('.')[0] cls = getattr(module, class_name + 'Source')(config_file, database, table_dir) self.sources[class_name] = cls def identify_source(self, html): ''' Identify the source of the article and return the corresponding Source object. ''' for source in self.sources.values(): for patt in source.identifiers: if re.search(patt, html): logger.debug('Matched article to Source: %s' % source.__class__.__name__) return source # A single source of articles--i.e., a publisher or journal class Source: __metaclass__ = abc.ABCMeta # Core set of HTML entities and unicode characters to replace. # BeautifulSoup converts HTML entities to unicode, so we could # potentially do the replacement only for unicode chars after # soupifying the HTML. But this way we only have to do one pass # through the entire file, so it should be faster to do it up front. ENTITIES = { '&nbsp;': ' ', '&minus;': '-', # '&kappa;': 'kappa', '\xa0': ' ', # Unicode non-breaking space # '\x3e': ' ', '\u2212': '-', # Various unicode dashes '\u2012': '-', '\u2013': '-', '\u2014': '-', '\u2015': '-', '\u8211': '-', '\u0150': '-', '\u0177': '', '\u0160': '', '\u0145': "'", '\u0146': "'", } def __init__(self, config, database, table_dir=None): config = json.load(open(config, 'rb')) self.database = database self.table_dir = table_dir valid_keys = ['name', 'identifiers', 'entities', 'delay'] for k, v in config.items(): if k in valid_keys: setattr(self, k, v) # Append any source-specific entities found in the config file to # the standard list if self.entities is None: self.entities = Source.ENTITIES else: self.entities.update(Source.ENTITIES) @abc.abstractmethod def parse_article(self, html, pmid=None, metadata_dir=None): ''' Takes HTML article as input and returns an Article. PMID Can also be passed, which prevents having to scrape it from the article and/or look it up in PubMed. ''' # Skip rest of processing if this record already exists if pmid is not None and self.database.article_exists(pmid) and not config.OVERWRITE_EXISTING_ROWS: return False html = html.decode('utf-8') # Make sure we're working with unicode html = self.decode_html_entities(html) soup = BeautifulSoup(html) doi = self.extract_doi(soup) pmid = self.extract_pmid(soup) if pmid is None else pmid metadata = scrape.get_pubmed_metadata(pmid, store=metadata_dir, save=True) # TODO: add Source-specific delimiting of salient text boundaries--e.g., exclude References text = soup.get_text() if self.database.article_exists(pmid): if config.OVERWRITE_EXISTING_ROWS: self.database.delete_article(pmid) else: return False self.article = database.Article(text, pmid=pmid, doi=doi, metadata=metadata) return soup @abc.abstractmethod def parse_table(self, table): ''' Takes HTML for a single table and returns a Table. ''' # Formatting issues sometimes prevent table extraction, so just return if table is None: return False logger.debug("\t\tFound a table...") # Count columns. Check either just one row, or all of them. def n_cols_in_row(row): return sum([int(td['colspan']) if td.has_attr('colspan') else 1 for td in row.find_all('td')]) if config.CAREFUL_PARSING: n_cols = max([n_cols_in_row( row) for row in table.find('tbody').find_all('tr')]) else: n_cols = n_cols_in_row(table.find('tbody').find('tr')) # Initialize grid and populate data = datatable.DataTable(0, n_cols) rows = table.find_all('tr') for (j, r) in enumerate(rows): try: cols = r.find_all(['td', 'th']) cols_found_in_row = 0 n_cells = len(cols) # Assign number of rows and columns this cell fills. We use these rules: # * If a rowspan/colspan is explicitly provided, use it # * If not, initially assume span == 1 for both rows and columns. for (i, c) in enumerate(cols): r_num = int(c['rowspan']) if c.has_attr('rowspan') else 1 c_num = int(c['colspan']) if c.has_attr('colspan') else 1 cols_found_in_row += c_num # * Check to make sure that we don't have unaccounted-for columns in the # row after including the current cell. If we do, adjust the colspan # to take up all of the remaining columns. This is necessary because # some tables have malformed HTML, and BeautifulSoup can also # cause problems in its efforts to fix bad tables. The most common # problem is deletion or omission of enough <td> tags to fill all # columns, hence our adjustment. Note that in some cases the order of # filling is not sequential--e.g., when a previous row has cells with # rowspan > 1. So we have to check if there are None values left over # in the DataTable's current row after we finish filling # it. if i + 1 == n_cells and cols_found_in_row < n_cols and data[j].count(None) > c_num: c_num += n_cols - cols_found_in_row data.add_val(c.get_text(), r_num, c_num) except Exception as e: if not config.SILENT_ERRORS: logger.error(e.message) if not config.IGNORE_BAD_ROWS: raise logger.debug("\t\tTrying to parse table...") return tableparser.parse_table(data) @abc.abstractmethod def extract_doi(self, soup): ''' Every Source subclass must be able to extract its doi. ''' return @abc.abstractmethod def extract_pmid(self, soup): ''' Every Source subclass must be able to extract its PMID. ''' return def decode_html_entities(self, html): ''' Re-encode HTML entities as innocuous little Unicode characters. ''' # Any entities BeautifulSoup passes through thatwe don't like, e.g., # &nbsp/x0a patterns = re.compile('(' + '|'.join(re.escape( k) for k in self.entities.iterkeys()) + ')') replacements = lambda m: self.entities[m.group(0)] return patterns.sub(replacements, html) # return html def _download_table(self, url): ''' For Sources that have tables in separate files, a helper for downloading and extracting the table data. Also saves to file if desired. ''' delay = self.delay if hasattr(self, 'delay') else 0 if self.table_dir is not None: nice_url = url.replace('/', '_') nice_url = nice_url.replace(':', '_') nice_url = nice_url.replace('?', '_') filename = '%s/%s' % (self.table_dir, nice_url) if os.path.exists(filename): table_html = open(filename).read().decode('utf-8') else: table_html = scrape.get_url(url, delay=delay) open(filename, 'w').write(table_html.encode('utf-8')) else: table_html = scrape.get_url(url, delay=delay) table_html = self.decode_html_entities(table_html) return(BeautifulSoup(table_html)) class HighWireSource(Source): def parse_article(self, html, pmid=None, **kwargs): soup = super(HighWireSource, self).parse_article(html, pmid, **kwargs) if not soup: return False # To download tables, we need the content URL and the number of tables content_url = soup.find('meta', { 'name': 'citation_public_url'})['content'] n_tables = len(soup.find_all('span', class_='table-label')) # Now download each table and parse it tables = [] for i in range(n_tables): t_num = i + 1 url = '%s/T%d.expansion.html' % (content_url, t_num) table_soup = self._download_table(url) tc = table_soup.find(class_='table-expansion') t = tc.find('table', {'id': 'table-%d' % (t_num)}) t = self.parse_table(t) if t: t.position = t_num t.label = tc.find(class_='table-label').text t.number = t.label.split(' ')[-1].strip() try: t.caption = tc.find(class_='table-caption').get_text() except: pass try: t.notes = tc.find(class_='table-footnotes').get_text() except: pass tables.append(t) self.article.tables = tables return self.article def parse_table(self, table): return super(HighWireSource, self).parse_table(table) def extract_doi(self, soup): try: return soup.find('meta', {'name': 'citation_doi'})['content'] except: return '' def extract_pmid(self, soup): return soup.find('meta', {'name': 'citation_pmid'})['content'] class ScienceDirectSource(Source): def parse_article(self, html, pmid=None, **kwargs): soup = super(ScienceDirectSource, self).parse_article(html, pmid, **kwargs) if not soup: return False # Extract tables tables = [] for (i, tc) in enumerate(soup.find_all('dl', {'class': 'table '})): table_html = tc.find('table') t = self.parse_table(table_html) if t: t.position = i + 1 t.number = tc['data-label'].split(' ')[-1].strip() t.label = tc.find('span', class_='label').text.strip() try: t.caption = tc.find('p', class_='caption').get_text() except: pass try: t.notes = tc.find(class_='tblFootnote').get_text() except: pass tables.append(t) self.article.tables = tables return self.article def parse_table(self, table): return super(ScienceDirectSource, self).parse_table(table) def extract_doi(self, soup): try: found = soup.find('a', {'id': 'ddDoi'})['href'].replace('http://dx.doi.org/', '') except TypeError: found = '' if found == '': try: someText = soup.find(text=re.compile('SDM\.doi = ')) found = re.search('SDM.doi = \'(.+?)\'', someText).group(1) except AttributeError: found = '' return found def extract_pmid(self, soup): return scrape.get_pmid_from_doi(self.extract_doi(soup)) class PlosSource(Source): def parse_article(self, html, pmid=None, **kwargs): soup = super(PlosSource, self).parse_article(html, pmid, **kwargs) # Do some preprocessing if not soup: return False # Extract tables tables = [] for (i, tc) in enumerate(soup.find_all('table-wrap')): table_html = tc.find('table') t = self.parse_table(table_html) if t: t.position = i + 1 t.label = tc.find('label').text t.number = t.label.split(' ')[-1].strip() try: t.caption = tc.find('title').get_text() except: pass try: t.notes = tc.find('table-wrap-foot').get_text() except: pass tables.append(t) self.article.tables = tables return self.article def parse_table(self, table): return super(PlosSource, self).parse_table(table) def extract_doi(self, soup): return soup.find('article-id', {'pub-id-type': 'doi'}).text def extract_pmid(self, soup): return scrape.get_pmid_from_doi(self.extract_doi(soup)) class FrontiersSource(Source): def parse_article(self, html, pmid=None, **kwargs): soup = super(FrontiersSource, self).parse_article(html, pmid, **kwargs) if not soup: return False # Extract tables tables = [] table_containers = soup.findAll( 'table-wrap', {'id': re.compile('^T\d+$')}) for (i, tc) in enumerate(table_containers): table_html = tc.find('table') t = self.parse_table(table_html) # If Table instance is returned, add other properties if t: t.position = i + 1 t.number = tc['id'][1::].strip() t.label = tc.find('label').get_text() try: t.caption = tc.find('caption').get_text() except: pass try: t.notes = tc.find('table-wrap-foot').get_text() except: pass tables.append(t) self.article.tables = tables return self.article def parse_table(self, table): return super(FrontiersSource, self).parse_table(table) def extract_doi(self, soup): return soup.find('article-id', {'pub-id-type': 'doi'}).text def extract_pmid(self, soup): return scrape.get_pmid_from_doi(self.extract_doi(soup)) class JournalOfCognitiveNeuroscienceSource(Source): def parse_article(self, html, pmid=None, **kwargs): soup = super( JournalOfCognitiveNeuroscienceSource, self).parse_article(html, pmid, **kwargs) if not soup: return False # To download tables, we need the DOI and the number of tables doi = self.extract_doi(soup) pattern = re.compile('^T\d+$') n_tables = len(soup.find_all('table', {'id': pattern})) logger.debug("Found %d tables!" % n_tables) tables = [] # Now download each table and parse it for i in range(n_tables): num = i + 1 url = 'http://www.mitpressjournals.org/action/showPopup?citid=citart1&id=T%d&doi=%s' % ( num, doi) table_soup = self._download_table(url) tc = table_soup.find('table').find('table') # JCogNeuro nests tables 2-deep t = self.parse_table(tc) if t: t.position = num t.number = num cap = tc.caption.find('span', class_='title') t.label = cap.b.get_text() t.caption = cap.get_text() try: t.notes = table_soup.find('div', class_="footnote").p.get_text() except: pass tables.append(t) self.article.tables = tables return self.article def parse_table(self, table): return super(JournalOfCognitiveNeuroscienceSource, self).parse_table(table) def extract_doi(self, soup): return soup.find('meta', {'name': 'dc.Identifier', 'scheme': 'doi'})['content'] def extract_pmid(self, soup): return scrape.get_pmid_from_doi(self.extract_doi(soup)) class WileySource(Source): def parse_article(self, html, pmid=None, **kwargs): soup = super(WileySource, self).parse_article(html, pmid, **kwargs) # Do some preprocessing if not soup: return False # Extract tables tables = [] table_containers = soup.findAll('div', { 'class': 'table', 'id': re.compile('^(.*?)\-tbl\-\d+$|^t(bl)*\d+$')}) print "Found %d tables." % len(table_containers) for (i, tc) in enumerate(table_containers): table_html = tc.find('table') try: # Remove footer, which appears inside table footer = table_html.tfoot.extract() except: pass t = self.parse_table(table_html) # If Table instance is returned, add other properties if t: t.position = i + 1 # t.number = tc['id'][3::].strip() t.number = re.search('t[bl0\-]*(\d+)$', tc['id']).group(1) t.label = tc.find('span', class_='label').get_text() t.caption = tc.find('caption').get_text() try: t.notes = footer.get_text() except: pass tables.append(t) self.article.tables = tables return self.article def parse_table(self, table): return super(WileySource, self).parse_table(table) def extract_doi(self, soup): return soup.find('meta', {'name': 'citation_doi'})['content'] def extract_pmid(self, soup): return scrape.get_pmid_from_doi(self.extract_doi(soup)) # Note: the SageSource is largely useless and untested because Sage renders tables # as images. class SageSource(Source): def parse_article(self, html, pmid=None, **kwargs): soup = super(SageSource, self).parse_article(html, pmid, **kwargs) if not soup: return False # To download tables, we need the content URL and the number of tables content_url = soup.find('meta', { 'name': 'citation_public_url'})['content'] n_tables = len(soup.find_all('span', class_='table-label')) # Now download each table and parse it tables = [] for i in range(n_tables): t_num = i + 1 url = '%s/T%d.expansion.html' % (content_url, t_num) table_soup = self._download_table(url) tc = table_soup.find(class_='table-expansion') t = tc.find('table', {'id': 'table-%d' % (t_num)}) t = self.parse_table(t) if t: t.position = t_num t.label = tc.find(class_='table-label').text t.number = t.label.split(' ')[-1].strip() try: t.caption = tc.find(class_='table-caption').get_text() except: pass try: t.notes = tc.find(class_='table-footnotes').get_text() except: pass tables.append(t) self.article.tables = tables return self.article def parse_table(self, table): return super(SageSource, self).parse_table(table) def extract_doi(self, soup): return soup.find('meta', {'name': 'citation_doi'})['content'] def extract_pmid(self, soup): return soup.find('meta', {'name': 'citation_pmid'})['content'] class SpringerSource(Source): def parse_article(self, html, pmid=None, **kwargs): soup = super(SpringerSource, self).parse_article(html, pmid, **kwargs) if not soup: return False # Extract tables tables = [] table_containers = soup.findAll( 'figure', {'id': re.compile('^Tab\d+$')}) for (i, tc) in enumerate(table_containers): table_html = tc.find('table') t = self.parse_table(table_html) # If Table instance is returned, add other properties if t: t.position = i + 1 t.number = tc['id'][3::].strip() t.label = tc.find('span', class_='CaptionNumber').get_text() try: t.caption = tc.find(class_='CaptionContent').p.get_text() except: pass try: t.notes = tc.find(class_='TableFooter').p.get_text() except: pass tables.append(t) self.article.tables = tables return self.article def parse_table(self, table): return super(SpringerSource, self).parse_table(table) def extract_doi(self, soup): content = soup.find('p', class_='ArticleDOI').get_text() print content return content.split(' ')[1] def extract_pmid(self, soup): return scrape.get_pmid_from_doi(self.extract_doi(soup)) ```
{ "source": "jflower154/magnum", "score": 2 }
#### File: controllers/v1/magnum_services.py ```python import pecan import wsme from wsme import types as wtypes from magnum.api.controllers import base from magnum.api.controllers.v1 import collection from magnum.api.controllers.v1 import types from magnum.api import expose from magnum.api import servicegroup as svcgrp_api from magnum.common import policy from magnum import objects from magnum.objects import fields class MagnumService(base.APIBase): host = wtypes.StringType(min_length=1, max_length=255) """Name of the host """ binary = wtypes.Enum(str, *fields.MagnumServiceBinary.ALL) """Name of the binary""" state = wtypes.Enum(str, *fields.MagnumServiceState.ALL) """State of the binary""" id = wsme.wsattr(wtypes.IntegerType(minimum=1)) """The id for the healthcheck record """ report_count = wsme.wsattr(wtypes.IntegerType(minimum=0)) """The number of times the heartbeat was reported """ disabled = wsme.wsattr(types.boolean, default=False) """If the service is 'disabled' administratively """ disabled_reason = wtypes.StringType(min_length=0, max_length=255) """Reason for disabling """ def __init__(self, state, **kwargs): super(MagnumService, self).__init__() self.fields = ['state'] setattr(self, 'state', state) for field in objects.MagnumService.fields: self.fields.append(field) setattr(self, field, kwargs.get(field, wtypes.Unset)) class MagnumServiceCollection(collection.Collection): mservices = [MagnumService] """A list containing service objects""" def __init__(self, **kwargs): super(MagnumServiceCollection, self).__init__() self._type = 'mservices' @staticmethod def convert_db_rec_list_to_collection(servicegroup_api, rpc_msvcs, **kwargs): collection = MagnumServiceCollection() collection.mservices = [] for p in rpc_msvcs: alive = servicegroup_api.service_is_up(p) state = 'up' if alive else 'down' msvc = MagnumService(state, **p.as_dict()) collection.mservices.append(msvc) collection.next = collection.get_next(limit=None, url=None, **kwargs) return collection class MagnumServiceController(base.Controller): """REST controller for magnum-services.""" def __init__(self, **kwargs): super(MagnumServiceController, self).__init__() self.servicegroup_api = svcgrp_api.ServiceGroup() @expose.expose(MagnumServiceCollection) @policy.enforce_wsgi("magnum-service") def get_all(self): """Retrieve a list of magnum-services. """ msvcs = objects.MagnumService.list(pecan.request.context, limit=None, marker=None, sort_key='id', sort_dir='asc') return MagnumServiceCollection.convert_db_rec_list_to_collection( self.servicegroup_api, msvcs) ``` #### File: unit/objects/test_objects.py ```python import datetime import gettext import mock from oslo_versionedobjects import exception as object_exception from oslo_versionedobjects import fields from oslo_versionedobjects import fixture from magnum.common import context as magnum_context from magnum.objects import base from magnum.tests import base as test_base gettext.install('magnum') @base.MagnumObjectRegistry.register class MyObj(base.MagnumPersistentObject, base.MagnumObject): VERSION = '1.0' fields = {'foo': fields.IntegerField(), 'bar': fields.StringField(), 'missing': fields.StringField(), } def obj_load_attr(self, attrname): setattr(self, attrname, 'loaded!') @base.remotable_classmethod def query(cls, context): obj = cls(context) obj.foo = 1 obj.bar = 'bar' obj.obj_reset_changes() return obj @base.remotable def marco(self, context): return 'polo' @base.remotable def update_test(self, context): if context.project_id == 'alternate': self.bar = 'alternate-context' else: self.bar = 'updated' @base.remotable def save(self, context): self.obj_reset_changes() @base.remotable def refresh(self, context): self.foo = 321 self.bar = 'refreshed' self.obj_reset_changes() @base.remotable def modify_save_modify(self, context): self.bar = 'meow' self.save(context) self.foo = 42 class MyObj2(object): @classmethod def obj_name(cls): return 'MyObj' @base.remotable_classmethod def get(cls, *args, **kwargs): pass @base.MagnumObjectRegistry.register_if(False) class TestSubclassedObject(MyObj): fields = {'new_field': fields.StringField()} class _TestObject(object): def test_hydration_type_error(self): primitive = {'magnum_object.name': 'MyObj', 'magnum_object.namespace': 'magnum', 'magnum_object.version': '1.0', 'magnum_object.data': {'foo': 'a'}} self.assertRaises(ValueError, MyObj.obj_from_primitive, primitive) def test_hydration(self): primitive = {'magnum_object.name': 'MyObj', 'magnum_object.namespace': 'magnum', 'magnum_object.version': '1.0', 'magnum_object.data': {'foo': 1}} obj = MyObj.obj_from_primitive(primitive) self.assertEqual(1, obj.foo) def test_hydration_bad_ns(self): primitive = {'magnum_object.name': 'MyObj', 'magnum_object.namespace': 'foo', 'magnum_object.version': '1.0', 'magnum_object.data': {'foo': 1}} self.assertRaises(object_exception.UnsupportedObjectError, MyObj.obj_from_primitive, primitive) def test_dehydration(self): expected = {'magnum_object.name': 'MyObj', 'magnum_object.namespace': 'magnum', 'magnum_object.version': '1.0', 'magnum_object.data': {'foo': 1}} obj = MyObj(self.context) obj.foo = 1 obj.obj_reset_changes() self.assertEqual(expected, obj.obj_to_primitive()) def test_get_updates(self): obj = MyObj(self.context) self.assertEqual({}, obj.obj_get_changes()) obj.foo = 123 self.assertEqual({'foo': 123}, obj.obj_get_changes()) obj.bar = 'test' self.assertEqual({'foo': 123, 'bar': 'test'}, obj.obj_get_changes()) obj.obj_reset_changes() self.assertEqual({}, obj.obj_get_changes()) def test_object_property(self): obj = MyObj(self.context, foo=1) self.assertEqual(1, obj.foo) def test_object_property_type_error(self): obj = MyObj(self.context) def fail(): obj.foo = 'a' self.assertRaises(ValueError, fail) def test_load(self): obj = MyObj(self.context) self.assertEqual('loaded!', obj.bar) def test_load_in_base(self): @base.MagnumObjectRegistry.register_if(False) class Foo(base.MagnumPersistentObject, base.MagnumObject): fields = {'foobar': fields.IntegerField()} obj = Foo(self.context) # NOTE(danms): Can't use assertRaisesRegexp() because of py26 raised = False ex = None try: obj.foobar except NotImplementedError as e: raised = True ex = e self.assertTrue(raised) self.assertIn('foobar', str(ex)) def test_loaded_in_primitive(self): obj = MyObj(self.context) obj.foo = 1 obj.obj_reset_changes() self.assertEqual('loaded!', obj.bar) expected = {'magnum_object.name': 'MyObj', 'magnum_object.namespace': 'magnum', 'magnum_object.version': '1.0', 'magnum_object.changes': ['bar'], 'magnum_object.data': {'foo': 1, 'bar': 'loaded!'}} self.assertEqual(expected, obj.obj_to_primitive()) def test_changes_in_primitive(self): obj = MyObj(self.context) obj.foo = 123 self.assertEqual(set(['foo']), obj.obj_what_changed()) primitive = obj.obj_to_primitive() self.assertIn('magnum_object.changes', primitive) obj2 = MyObj.obj_from_primitive(primitive) self.assertEqual(set(['foo']), obj2.obj_what_changed()) obj2.obj_reset_changes() self.assertEqual(set(), obj2.obj_what_changed()) def test_unknown_objtype(self): self.assertRaises(object_exception.UnsupportedObjectError, base.MagnumObject.obj_class_from_name, 'foo', '1.0') def test_with_alternate_context(self): context1 = magnum_context.RequestContext('foo', 'foo') context2 = magnum_context.RequestContext('bar', project_id='alternate') obj = MyObj.query(context1) obj.update_test(context2) self.assertEqual('alternate-context', obj.bar) def test_orphaned_object(self): obj = MyObj.query(self.context) obj._context = None self.assertRaises(object_exception.OrphanedObjectError, obj.update_test) def test_changed_1(self): obj = MyObj.query(self.context) obj.foo = 123 self.assertEqual(set(['foo']), obj.obj_what_changed()) obj.update_test(self.context) self.assertEqual(set(['foo', 'bar']), obj.obj_what_changed()) self.assertEqual(123, obj.foo) def test_changed_2(self): obj = MyObj.query(self.context) obj.foo = 123 self.assertEqual(set(['foo']), obj.obj_what_changed()) obj.save(self.context) self.assertEqual(set([]), obj.obj_what_changed()) self.assertEqual(123, obj.foo) def test_changed_3(self): obj = MyObj.query(self.context) obj.foo = 123 self.assertEqual(set(['foo']), obj.obj_what_changed()) obj.refresh(self.context) self.assertEqual(set([]), obj.obj_what_changed()) self.assertEqual(321, obj.foo) self.assertEqual('refreshed', obj.bar) def test_changed_4(self): obj = MyObj.query(self.context) obj.bar = 'something' self.assertEqual(set(['bar']), obj.obj_what_changed()) obj.modify_save_modify(self.context) self.assertEqual(set(['foo']), obj.obj_what_changed()) self.assertEqual(42, obj.foo) self.assertEqual('meow', obj.bar) def test_static_result(self): obj = MyObj.query(self.context) self.assertEqual('bar', obj.bar) result = obj.marco(self.context) self.assertEqual('polo', result) def test_updates(self): obj = MyObj.query(self.context) self.assertEqual(1, obj.foo) obj.update_test(self.context) self.assertEqual('updated', obj.bar) def test_base_attributes(self): dt = datetime.datetime(1955, 11, 5) datatime = fields.DateTimeField() obj = MyObj(self.context) obj.created_at = dt obj.updated_at = dt expected = {'magnum_object.name': 'MyObj', 'magnum_object.namespace': 'magnum', 'magnum_object.version': '1.0', 'magnum_object.changes': ['created_at', 'updated_at'], 'magnum_object.data': {'created_at': datatime.stringify(dt), 'updated_at': datatime.stringify(dt)} } actual = obj.obj_to_primitive() # magnum_object.changes is built from a set and order is undefined self.assertEqual(sorted(expected['magnum_object.changes']), sorted(actual['magnum_object.changes'])) del expected['magnum_object.changes'], actual['magnum_object.changes'] self.assertEqual(expected, actual) def test_contains(self): obj = MyObj(self.context) self.assertNotIn('foo', obj) obj.foo = 1 self.assertIn('foo', obj) self.assertNotIn('does_not_exist', obj) def test_obj_attr_is_set(self): obj = MyObj(self.context, foo=1) self.assertTrue(obj.obj_attr_is_set('foo')) self.assertFalse(obj.obj_attr_is_set('bar')) self.assertRaises(AttributeError, obj.obj_attr_is_set, 'bang') def test_get(self): obj = MyObj(self.context, foo=1) # Foo has value, should not get the default self.assertEqual(1, getattr(obj, 'foo', 2)) # Foo has value, should return the value without error self.assertEqual(1, getattr(obj, 'foo')) # Bar without a default should lazy-load self.assertEqual('loaded!', getattr(obj, 'bar')) # Bar now has a default, but loaded value should be returned self.assertEqual('loaded!', getattr(obj, 'bar', 'not-loaded')) # Invalid attribute should raise AttributeError self.assertFalse(hasattr(obj, 'nothing')) def test_object_inheritance(self): base_fields = list(base.MagnumPersistentObject.fields.keys()) myobj_fields = ['foo', 'bar', 'missing'] + base_fields myobj3_fields = ['new_field'] self.assertTrue(issubclass(TestSubclassedObject, MyObj)) self.assertEqual(len(MyObj.fields), len(myobj_fields)) self.assertEqual(set(MyObj.fields.keys()), set(myobj_fields)) self.assertEqual(len(TestSubclassedObject.fields), len(myobj_fields) + len(myobj3_fields)) self.assertEqual(set(TestSubclassedObject.fields.keys()), set(myobj_fields) | set(myobj3_fields)) def test_get_changes(self): obj = MyObj(self.context) self.assertEqual({}, obj.obj_get_changes()) obj.foo = 123 self.assertEqual({'foo': 123}, obj.obj_get_changes()) obj.bar = 'test' self.assertEqual({'foo': 123, 'bar': 'test'}, obj.obj_get_changes()) obj.obj_reset_changes() self.assertEqual({}, obj.obj_get_changes()) def test_obj_fields(self): @base.MagnumObjectRegistry.register_if(False) class TestObj(base.MagnumPersistentObject, base.MagnumObject): fields = {'foo': fields.IntegerField()} obj_extra_fields = ['bar'] @property def bar(self): return 'this is bar' obj = TestObj(self.context) self.assertEqual(set(['created_at', 'updated_at', 'foo', 'bar']), set(obj.obj_fields)) def test_obj_constructor(self): obj = MyObj(self.context, foo=123, bar='abc') self.assertEqual(123, obj.foo) self.assertEqual('abc', obj.bar) self.assertEqual(set(['foo', 'bar']), obj.obj_what_changed()) class TestObject(test_base.TestCase, _TestObject): pass # This is a static dictionary that holds all fingerprints of the versioned # objects registered with the MagnumRegistry. Each fingerprint contains # the version of the object and an md5 hash of RPC-critical parts of the # object (fields and remotable methods). If either the version or hash # change, the static tree needs to be updated. # For more information on object version testing, read # https://docs.openstack.org/magnum/latest/contributor/objects.html object_data = { 'Cluster': '1.18-9f0dfcc3e898eef2b9a09647b612adb6', 'ClusterTemplate': '1.18-7fa94f4fdd027acfb4f022f202afdfb5', 'Certificate': '1.1-1924dc077daa844f0f9076332ef96815', 'MyObj': '1.0-34c4b1aadefd177b13f9a2f894cc23cd', 'X509KeyPair': '1.2-d81950af36c59a71365e33ce539d24f9', 'MagnumService': '1.0-2d397ec59b0046bd5ec35cd3e06efeca', 'Stats': '1.0-73a1cd6e3c0294c932a66547faba216c', 'Quota': '1.0-94e100aebfa88f7d8428e007f2049c18', 'Federation': '1.0-166da281432b083f0e4b851336e12e20' } class TestObjectVersions(test_base.TestCase): def test_versions(self): # Test the versions of current objects with the static tree above. # This ensures that any incompatible object changes require a version # bump. classes = base.MagnumObjectRegistry.obj_classes() checker = fixture.ObjectVersionChecker(obj_classes=classes) expected, actual = checker.test_hashes(object_data) self.assertEqual(expected, actual, "Fields or remotable methods in some objects have " "changed. Make sure the versions of the objects has " "been bumped, and update the hashes in the static " "fingerprints tree (object_data). For more " "information, read https://docs.openstack.org/" "magnum/latest/contributor/objects.html") class TestObjectSerializer(test_base.TestCase): def test_object_serialization(self): ser = base.MagnumObjectSerializer() obj = MyObj(self.context) primitive = ser.serialize_entity(self.context, obj) self.assertIn('magnum_object.name', primitive) obj2 = ser.deserialize_entity(self.context, primitive) self.assertIsInstance(obj2, MyObj) self.assertEqual(self.context, obj2._context) def test_object_serialization_iterables(self): ser = base.MagnumObjectSerializer() obj = MyObj(self.context) for iterable in (list, tuple, set): thing = iterable([obj]) primitive = ser.serialize_entity(self.context, thing) self.assertEqual(1, len(primitive)) for item in primitive: self.assertFalse(isinstance(item, base.MagnumObject)) thing2 = ser.deserialize_entity(self.context, primitive) self.assertEqual(1, len(thing2)) for item in thing2: self.assertIsInstance(item, MyObj) @mock.patch('magnum.objects.base.MagnumObject.indirection_api') def _test_deserialize_entity_newer(self, obj_version, backported_to, mock_indirection_api, my_version='1.6'): ser = base.MagnumObjectSerializer() mock_indirection_api.object_backport_versions.side_effect \ = NotImplementedError() mock_indirection_api.object_backport.return_value = 'backported' @base.MagnumObjectRegistry.register class MyTestObj(MyObj): VERSION = my_version obj = MyTestObj() obj.VERSION = obj_version primitive = obj.obj_to_primitive() result = ser.deserialize_entity(self.context, primitive) if backported_to is None: self.assertEqual( False, mock_indirection_api.object_backport.called) else: self.assertEqual('backported', result) mock_indirection_api.object_backport.assert_called_with( self.context, primitive, backported_to) def test_deserialize_entity_newer_version_backports_level1(self): "Test object with unsupported (newer) version" self._test_deserialize_entity_newer('11.5', '1.6') def test_deserialize_entity_newer_version_backports_level2(self): "Test object with unsupported (newer) version" self._test_deserialize_entity_newer('1.25', '1.6') def test_deserialize_entity_same_revision_does_not_backport(self): "Test object with supported revision" self._test_deserialize_entity_newer('1.6', None) def test_deserialize_entity_newer_revision_does_not_backport_zero(self): "Test object with supported revision" self._test_deserialize_entity_newer('1.6.0', None) def test_deserialize_entity_newer_revision_does_not_backport(self): "Test object with supported (newer) revision" self._test_deserialize_entity_newer('1.6.1', None) def test_deserialize_entity_newer_version_passes_revision(self): "Test object with unsupported (newer) version and revision" self._test_deserialize_entity_newer('1.7', '1.6.1', my_version='1.6.1') ```
{ "source": "jfluke1414/Ar_crypto_python_django", "score": 3 }
#### File: jfluke1414/Ar_crypto_python_django/db_insert.py ```python from . import model_connector def insert_user(): cursor, mydb = model_connector.mysql_db_info() cursor.execute("use cryptohard") mysql = "insert into user(user_name, user_id, user_pw, regdate) values('inzaghi33', '<EMAIL>', '7b52009b64fd0a2a49e6d8a939753077792b0554', NOW())"; cursor.execute(mysql) mydb.commit() cursor.close() mydb.close() insert_user() ``` #### File: jfluke1414/Ar_crypto_python_django/model_connector.py ```python import mysql.connector # class mysql_connect_info: def mysql_db_info(): mydb = mysql.connector.connect(host="localhost", user="root", passwd="<PASSWORD>", database="cryptohard") cursor = mydb.cursor() return cursor, mydb def sqlite3_db_info(): db = "" return db ``` #### File: jfluke1414/Ar_crypto_python_django/test.py ```python import requests from django.http import HttpResponse from django.shortcuts import render def test(): r = requests.get('http://192.168.238.129/index/') print(r.text) def __init__(self): print('in_self') self.username = self def chk_session(): p_username = 'jfluke' p_password = '<PASSWORD>' p_email = '<EMAIL>' encrypted_password = '<PASSWORD>' # sha1 = hashlib.new('sha1') # sha1.update(p_password.encode('UTF-8')) # encrypted_password = <PASSWORD>() header = {'user-agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.89 Safari/537.36'} s_data = { 'is_user': True, 'username': p_username, 'password': <PASSWORD>, 'email': p_email, 'headers': header } s = requests.session() requests.session.__init__(p_username) # url = 'http://192.168.238.129/' # r = s.post(url=url, headers=header) # print(r.status_code) # print(r.text) return s_data # session.post('login.py', s_data) def response_test(): r = requests.get('http://192.168.238.129') print(r.text) chk_session() response_test() ```
{ "source": "JFlynnXYZ/LichtensteinGenerator", "score": 4 }
#### File: LichtensteinGenerator/bin/quantize.py ```python r''' Module containing Colour Quantization for reducing an images down to a selection of set colours. The idea behind this module is to replace the colours of an image with the most likely matches from a set of colours specified by the user. This module works in conjunction with PIL as it's means for editing image colours. Currently, the module only works with RGB colours currently but the use of other PIL colour types will be added in the future, such as HSV, RGBA, HEX and PIL worded colours. The functions in the module consist of calculating the closeness of a colour to another and switching them using colour switch, and the Colour Quantization function itself. Here are some examples of how the code works: >>> curCols = [(98,186,25), (50,0,69), (245,89,12), (69,156,102), (89,56,71), (89,58, 205), (5,5,20)] >>> newCols = [(0,0,0), (255,255,255), (255,0,0), (0,0,255), (255,255,0)] >>> colour_switch(curCols, newCols) [(255, 255, 0), (0, 0, 255), (255, 0, 0), (69, 156, 102), (89, 56, 71), (255, 255, 255), (0, 0, 0)] >>> f = 'lena.png' >>> try: ... img = Image.open(f) ... except IOError: ... img = Image.new('RGB', (500,500)) ... drw = ImageDraw.Draw(img) ... for i,x in enumerate(xrange(40, img.size[0], 70)): ... for y in xrange(40, img.size[1], 70): ... drw.rectangle((x-30,y-30,x,y), fill=curCols[i]) ... >>> quantImg = quantize(img, newCols, nCols=len(curCols)+1, sigma=1) >>> img.show(command='display') >>> quantImg.show(command='display') >>> To test/execute the examples in the module documentation make sure that you have imported the quantize module and do the following: import doctest nfail, ntests = doctest.testmod(quantize) ''' from PIL import Image, ImageFilter, ImageDraw import colour as c def colour_switch(curC, newC): '''Switches the closest matching colours from one list of colours to another, creating a combined palette of colours. Parameters: curC [list] : a list of 3-tuple RGB colours. These are colours that are from the current image and will be switched out for the closest matching colour from 'newC'. newC [list] : a list of 3-tuple RGB colours. These are the colours which will replace there closest matching counter colour in the list 'curC' On Exit: Returns a new combined list of colours with all the 'newC' colours replacing there closest matching colours from 'curC'. If there are less new colours compared to current colours, then any colours which have no close new colour counterpart will be left in the colours. ''' if len(newC) > len(curC): raise ValueError, "more values are in new colours over current colours" cCloseness = {} for cCol in curC: cCloseness[cCol] = {} for nCol in newC: cCloseness[cCol][nCol] = sum([abs(cCol[i]-nCol[i]) for i in range(3)]) finalPalette = curC[:] for newColour in newC: curCol, close = None, 766 for currentColour, comparisons in cCloseness.items(): if comparisons[newColour] < close: curCol, close = currentColour, comparisons[newColour] finalPalette[finalPalette.index(curCol)] = newColour del cCloseness[curCol] return finalPalette def quantize(img, newCols, nCols=8, sigma=4, aalias=4): '''Creates a colour quantize image from a PIL Image with new colours. Parameters: img [PIL Image] : A PIL image object. Any colour mode can be used but RGB is preferred. newCols [list] : A list of 3-tuple RGB colours to replace there closest matching colour on the image. nCols [int] : The number of colours that the image will be reduced to. This number must be higher then the length of 'newCols'. sigma [float] : The magnitude of the gaussian blur used on the image to de-noise the image for a smoother result. aalias [int] : The anti-alias amount for the edges of the pixels. On Exit: Returns an RGB PIL image with the number of colours 'nCols', with the colours from 'newCols' replacing their closest matches from the image, as well as a noise reduction of 'sigma' and anti alias of 'aalias'. ''' aaliasImg = img.resize((img.size[0]*aalias, img.size[1]*aalias), resample=Image.ANTIALIAS) #aaliasImg = aaliasImg.filter(ImageFilter.GaussianBlur(sigma)) #This above line allowes for varying Guassian Blur Levels. However #the version of PIL in the labs does not have this implemented, except #in newer version. See the documentation for more details. aaliasImg = aaliasImg.filter(ImageFilter.BLUR) finImg = aaliasImg.convert("P", palette=Image.ADAPTIVE, colors=nCols) curCols = c.rgb_unflatten(finImg.getpalette()[:3*nCols]) finalPalette = colour_switch(curCols, newCols) finImg.putpalette(c.rgb_flatten(finalPalette)) finImg = finImg.resize(img.size, resample=Image.ANTIALIAS) return finImg.convert('RGB') if __name__ == '__main__': curCols = [(98,186,25), (50,0,69), (245,89,12), (69,156,102), (89,56,71), (89,58, 205), (5,5,20)] newCols = [(0,0,0), (255,255,255), (190,0,0), (0,16,115), (248,196,0)] print colour_switch(curCols, newCols) f = 'lena.png' try: img = Image.open(f) except IOError: img = Image.new('RGB', (512,512)) drw = ImageDraw.Draw(img) for i,x in enumerate(xrange(40, img.size[0], 70)): for y in xrange(40, img.size[1], 70): drw.rectangle((x-30,y-30,x,y), fill=curCols[i]) quantImg = quantize(img, newCols, nCols=len(curCols)+1, sigma=1) img.show(command='display') quantImg.show(command='display') ```
{ "source": "JFlynnXYZ/pymel", "score": 2 }
#### File: maintenance/templates/commandfunc.py ```python @_factories.addCmdDocs def {{ funcName }}(*args, **kwargs): {% if uiWidget %} from . import uitypes {% endif %} {% if timeRangeFlags %} for flag in {{ timeRangeFlags }}: try: rawVal = kwargs[flag] except KeyError: continue else: kwargs[flag] = _factories.convertTimeValues(rawVal) {% endif %} {% if callbackFlags %} if len(args): doPassSelf = kwargs.pop('passSelf', False) else: doPassSelf = False for key in {{ callbackFlags }}: try: cb = kwargs[key] if callable(cb): kwargs[key] = _factories.makeUICallback(cb, args, doPassSelf) except KeyError: pass {% endif %} res = {{ sourceFuncName }}(*args, **kwargs) {% if returnFunc %} if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, {{ returnFunc }}) {% endif %} {% if resultNeedsUnpacking and unpackFlags %} if isinstance(res, list) and len(res) == 1: if kwargs.get('query', kwargs.get('q', False)): # unpack for specific query flags unpackFlags = {{ unpackFlags }} if not unpackFlags.isdisjoint(kwargs): res = res[0] else: # unpack create/edit result res = res[0] {% elif unpackFlags %} if isinstance(res, list) and len(res) == 1: # unpack for specific query flags unpackFlags = {{ unpackFlags }} if kwargs.get('query', kwargs.get('q', False)) and not unpackFlags.isdisjoint(kwargs): res = res[0] {% elif resultNeedsUnpacking %} # unpack create/edit list result if isinstance(res, list) and len(res) == 1 and not kwargs.get('query', kwargs.get('q', False)): res = res[0] {% endif %} {% if simpleWraps %} wraps = _factories.simpleCommandWraps['{{ commandName }}'] for func, wrapCondition in wraps: if wrapCondition.eval(kwargs): res = func(res) break {% endif %} return res ``` #### File: maintenance/templates/getattribute.py ```python def __getattribute__(self, name): if name in {{ method.removeAttrs }} and name not in _f.EXCLUDE_METHODS: # tmp fix raise AttributeError("'{{ classname }}' object has no attribute '" + name + "'") return super({{ classname }}, self).__getattribute__(name) ``` #### File: maintenance/templates/querymethod.py ```python @_f.addMelDocs('{{ method.command }}', '{{ method.flag }}') def {{ method.name }}(self, **kwargs): res = _f.asQuery(self, {{ method.func }}, kwargs, '{{ method.flag }}') {% if method.returnFunc %} res = {{ method.returnFunc }}(res) {% endif %} return res ``` #### File: pymel/internal/pwarnings.py ```python from __future__ import print_function from __future__ import division from __future__ import absolute_import from future.utils import PY2 from past.builtins import basestring import warnings def formatwarning(message, category, filename, lineno, line=None): """Redefined format warning for maya.""" if issubclass(category, ExecutionWarning): s = u"%s: %s\n" % (category.__name__, message) else: s = u'%s: %s, at line %s, in "%s"\n' % (category.__name__, message, lineno, filename) # name, ext = os.path.splitext(filename) # line = "" # if ext == ".py" : # line = unicode(linecache.getline(filename, lineno)).strip() # if line: # s += (u"#\t %s" % line) return s warnings.formatwarning = formatwarning # def showwarning(message, category, filename, lineno, file=None, line=None): # msg = warnings.formatwarning(message, category, filename, lineno, line) # if file: # msg += " >> %r" % file # _logger.warning(msg) # #warnings.showwarning = showwarning # Subclass just to allow users to configure filtering of pymel-specific # deprecations class PymelBaseWarning(Warning): pass class ExecutionWarning (UserWarning, PymelBaseWarning): """ Simple Warning class that doesn't print any information besides warning message """ class PymelBaseDeprecationWarning(PymelBaseWarning): pass # Subclass from FutureWarning so it's displayed by default class PymelFutureWarning(FutureWarning, PymelBaseDeprecationWarning): pass # Subclass from DeprecationWarning so it's not displayed by default class MayaDeprecationWarning(DeprecationWarning, PymelBaseDeprecationWarning): pass def warn(*args, **kwargs): """ Default Maya warn which uses ExecutionWarning as the default warning class. """ if len(args) == 1 and not isinstance(args[0], Warning): args = args + (ExecutionWarning,) stacklevel = kwargs.pop("stacklevel", 1) + 1 # add to the stack-level so that this wrapper func is skipped return warnings.warn(stacklevel=stacklevel, *args, **kwargs) def deprecated(funcOrMessage=None, className=None, baseMessage="The function '{objName}' is deprecated and will" " become unavailable in future pymel versions", warningType=PymelFutureWarning): """Decorates a function so that it prints a deprecation warning when called. The decorator can either receive parameters or the function directly. Parameters ---------- funcOrMessage : Union[str, Callable[..., Any], None] If passed a message, the message will be appended to the standard deprecation warning and should serve to further clarify why the function is being deprecated and/or suggest an alternative function. In this case, the return result of this function is another decorator (with the ammended message), which then needs to be fed the function to be decorated. Otherwise, funcOrMessage should be the func to be decorated, and the return result is decorated version of funcOrMessage className : Union[str, False, None] If given as a str, then the decorated function is asssumed to be method, and the name is printed as "module.className.funcName". If False, it is assumed to NOT be a method, and the name is printed as "module.funcName". If None, then the decorator will try to automatically determine whether the passed function is a method, and if so, what it's className is. baseMessage : Optional[str] Message which will be combined with the optional message (in funcOrMessage) to form the final message. Maybe set to None to ensure only the message (in funcOrMessage) is printed. warningType : Type[Warning] Warning class to raise. Note that DeprecationWarning is ignored by default. """ import inspect def isClassMethodOrMethod(test_func): isClassMethod = False isMethod = False args = list(inspect.signature(test_func).parameters) if args: if args[0] == 'cls': isClassMethod = True elif args[0] == 'self': isMethod = True return isClassMethod, isMethod if PY2: def isClassMethodOrMethod(test_func): isClassMethod = False isMethod = False args = inspect.getargspec(test_func).args if args: if args[0] == 'cls': isClassMethod = True elif args[0] == 'self': isMethod = True return isClassMethod, isMethod #@decorator def deprecated2(func): useClassName = False info = dict( name=func.__name__, module=func.__module__) if className is None: isClassMethod, isMethod =isClassMethodOrMethod(func) if isClassMethod or isMethod: useClassName = True elif className is not False: useClassName = True info['className'] = className if useClassName: objName = '%(module)s.%(className)s.%(name)s' else: objName = '%(module)s.%(name)s' message2 = message.format(objName=objName) def deprecationLoggedFunc(*args, **kwargs): if useClassName and className is None: if isClassMethod: info['className'] = args[0].__name__ else: info['className'] = type(args[0]).__name__ # add to the stack-level so that this wrapper func is skipped warnings.warn(message2 % info, warningType, stacklevel=2) return func(*args, **kwargs) deprecationLoggedFunc.__name__ = func.__name__ deprecationLoggedFunc.__module__ = func.__module__ deprecationLoggedFunc.__doc__ = message % info deprecationLoggedFunc._func_before_deprecation = func if func.__doc__: deprecationLoggedFunc.__doc__ += '\n\n' + func.__doc__ return deprecationLoggedFunc # check if the decorator got a 'message' parameter if funcOrMessage is None: message = baseMessage return deprecated2 elif isinstance(funcOrMessage, basestring): if baseMessage is None: message = funcOrMessage else: message = baseMessage + '. ' + funcOrMessage return deprecated2 else: message = baseMessage return deprecated2(funcOrMessage) def maya_deprecated( funcOrMessage=None, className=None, baseMessage="The function '{objName}' has been deprecated by maya and" " may become unavailable in future maya versions", warningType=MayaDeprecationWarning): return deprecated(funcOrMessage=funcOrMessage, className=className, baseMessage=baseMessage, warningType=warningType) if __name__ == '__main__': import doctest doctest.testmod() ``` #### File: pymel/util/py2to3.py ```python from __future__ import print_function from __future__ import absolute_import from __future__ import division import re from future.utils import PY2 def trystr(input): '''If the input is unicode, but just holds normal ascii, convert to str''' if PY2: if isinstance(input, unicode): try: return str(input) except UnicodeEncodeError: pass return input if PY2: RePattern = re._pattern_type else: RePattern = re.Pattern ``` #### File: pymel/tests/test_api_plugins.py ```python from __future__ import print_function from __future__ import division from __future__ import absolute_import # this is segregated into it's own, separate test file from test_api both # because I'd like to start standardzing on one test-file per python module, # and because this test requires maya.standalone to be initialized import os import re import unittest import pymel.api.plugins class Test_plugins(unittest.TestCase): def test_mayaPlugins(self): # this test needs to initialize maya, to ensure MAYA_PLUG_IN_PATH # is set correctly import pymel.core pluginPath = os.environ.get('MAYA_PLUG_IN_PATH') print(pluginPath) self.assertTrue(pluginPath) knownPlugins = ['mayaHIK', 'objExport', 'tiffFloatReader'] # to deal with os-differences, strip any extensions def mayaPlugins(*args, **kwargs): mayaPlugins = pymel.api.plugins.mayaPlugins(*args, **kwargs) return [os.path.splitext(x)[0] for x in mayaPlugins] allPlugs = mayaPlugins() for plug in knownPlugins: self.assertIn(plug, allPlugs) unknownPlugs = set(allPlugs) - set(knownPlugins) filtered1 = mayaPlugins(filters=knownPlugins) self.assertEqual(set(filtered1), unknownPlugs) regexs = [re.compile(r'^{}.*$'.format(x)) for x in knownPlugins] filtered2 = mayaPlugins(filters=regexs) self.assertEqual(filtered2, filtered1) funcs = [] for known in knownPlugins: # use kwarg to "freeze" the value of known in the function def filterFunc(testPlug, knownPlug=known): return os.path.splitext(testPlug)[0] == knownPlug funcs.append(filterFunc) filtered3 = mayaPlugins(filters=funcs) self.assertEqual(filtered3, filtered1) ``` #### File: pymel/tests/test_mayaBugs.py ```python from __future__ import print_function from __future__ import division from __future__ import absolute_import from builtins import object import sys import os import unittest import maya.cmds as cmds import maya.OpenMaya as om import maya.OpenMayaAnim as oma import maya.OpenMayaFX as omfx import pymel.versions from pymel.util.testing import TestCaseExtended if not hasattr(cmds, 'about'): import maya.standalone maya.standalone.initialize() #=============================================================================== # Current Bugs #=============================================================================== # For CURRENT bugs, we PASS is the bug is still present, and FAIL if it goes # away... this may be counter-intuitive, but it acts as an alert if a bug is # fixed (so we can possibly get rid of yucky work-around code...) # Bug report 378211 class TestConstraintAngleOffsetQuery(TestCaseExtended): def setUp(self): cmds.file(new=1, f=1) def runTest(self): for cmdName in ('aimConstraint', 'orientConstraint'): cube1 = cmds.polyCube()[0] cube2 = cmds.polyCube()[0] cmd = getattr(cmds, cmdName) constraint = cmd(cube1, cube2)[0] setVals = (12, 8, 7) cmd(constraint, e=1, offset=setVals) getVals = tuple(cmd(constraint, q=1, offset=1)) # self.assertVectorsEqual(setVals, getVals) # check that things are BAD! try: self.assertVectorsEqual(setVals, getVals) except AssertionError: pass else: self.fail("TestConstraintAngleOffsetQuery was fixed! Huzzah!") # Bug report 378192 class TestEmptyMFnNurbsCurve(unittest.TestCase): def setUp(self): cmds.file(new=1, f=1) def runTest(self): shapeStr = cmds.createNode('nurbsCurve', n="RigWorldShape") selList = om.MSelectionList() selList.add(shapeStr) node = om.MObject() selList.getDependNode(0, node) mnc = om.MFnNurbsCurve() self.assertTrue(mnc.hasObj(node)) # try: # mnc.setObject(node) # except Exception: # self.fail("MFnNurbs curve doesn't work with empty curve object") # check that things are BAD! try: mnc.setObject(node) except Exception: pass else: self.fail("MFnNurbs curve now works with empty curve objects! Yay!") # Bug report 344037 class TestSurfaceRangeDomain(unittest.TestCase): def setUp(self): cmds.file(new=1, f=1) def runTest(self): try: # create a nurbs sphere mySphere = cmds.sphere()[0] # a default sphere should have u/v # parameter ranges of 0:4/0:8 # The following selections should # result in one of these: desiredResults = ('nurbsSphere1.u[2:3][0:8]', 'nurbsSphere1.u[2:3][*]', 'nurbsSphere1.u[2:3]', 'nurbsSphere1.uv[2:3][0:8]', 'nurbsSphere1.uv[2:3][*]', 'nurbsSphere1.uv[2:3]', 'nurbsSphere1.v[0:8][2:3]', 'nurbsSphere1.v[*][2:3]') # Passes cmds.select('nurbsSphere1.u[2:3][*]') self.assertTrue(cmds.ls(sl=1)[0] in desiredResults) # Passes cmds.select('nurbsSphere1.v[*][2:3]') self.assertTrue(cmds.ls(sl=1)[0] in desiredResults) # Fails! - returns 'nurbsSphere1.u[2:3][0:1]' cmds.select('nurbsSphere1.u[2:3]') self.assertTrue(cmds.ls(sl=1)[0] in desiredResults) # Fails! - returns 'nurbsSphere1.u[2:3][0:1]' cmds.select('nurbsSphere1.uv[2:3][*]') self.assertTrue(cmds.ls(sl=1)[0] in desiredResults) # The following selections should # result in one of these: desiredResults = ('nurbsSphere1.u[0:4][2:3]', 'nurbsSphere1.u[*][2:3]', 'nurbsSphere1.uv[0:4][2:3]', 'nurbsSphere1.uv[*][2:3]', 'nurbsSphere1.v[2:3][0:4]', 'nurbsSphere1.v[2:3][*]', 'nurbsSphere1.v[2:3]') # Passes cmds.select('nurbsSphere1.u[*][2:3]') self.assertTrue(cmds.ls(sl=1)[0] in desiredResults) # Passes cmds.select('nurbsSphere1.v[2:3][*]') self.assertTrue(cmds.ls(sl=1)[0] in desiredResults) # Fails! - returns 'nurbsSphereShape1.u[0:1][2:3]' cmds.select('nurbsSphere1.v[2:3]') self.assertTrue(cmds.ls(sl=1)[0] in desiredResults) # Fails! - returns 'nurbsSphereShape1.u[0:4][0:1]' cmds.select('nurbsSphere1.uv[*][2:3]') self.assertTrue(cmds.ls(sl=1)[0] in desiredResults) except AssertionError: pass else: # check that things are BAD! self.fail("Nurbs surface range domain bug fixed!") # Bug report 345384 # This bug only seems to affect windows (or at least, Win x64 - # haven't tried on 32-bit). class TestMMatrixMEulerRotationSetAttr(unittest.TestCase): def setUp(self): cmds.file(new=1, f=1) def runTest(self): # This bug was apparently fixed in maya 2020 for all OSes # For pre-2020: # We expect it to fail on windows, and pass on other operating systems... shouldPass = os.name != 'nt' or pymel.versions.current() >= pymel.versions.v2020 try: class InfoBaseClass(object): # These two are just so we can trace what's going on... def __getattribute__(self, name): # don't just use 'normal' repr, as that will # call __getattribute__! print("__getattribute__(%s, %r)" % (object.__repr__(self), name)) return super(InfoBaseClass, self).__getattribute__(name) def __setattr__(self, name, val): print("__setattr__(%r, %r, %r)" % (self, name, val)) return super(InfoBaseClass, self).__setattr__(name, val) class MyClass1(InfoBaseClass): def __init__(self): self._bar = 'not set' def _setBar(self, val): print("setting bar to:", val) self._bar = val def _getBar(self): print("getting bar...") return self._bar bar = property(_getBar, _setBar) foo1 = MyClass1() # works like we expect... foo1.bar = 7 print("foo1.bar:", foo1.bar) self.assertTrue(foo1.bar == 7) class MyClass2(MyClass1, om.MMatrix): pass foo2 = MyClass2() foo2.bar = 7 # Here, on windows, MMatrix's __setattr__ takes over, and # (after presumabably determining it didn't need to do # whatever special case thing it was designed to do) # instead of calling the super's __setattr__, which would # use the property, inserts it into the object's __dict__ # manually print("foo2.bar:", foo2.bar) self.assertTrue(foo2.bar == 7) # Starting in Maya2018 (at least on windows?), many wrapped datatypes # define a __setattr__ which will work in the "general" case tested # above, but will still take precedence if a "_swig_property" is # defined - ie, MEulerRotation.order. Check to see if the apicls has # any properties, and ensure that our property still overrides theirs... class MyEulerClass1(InfoBaseClass): def _setOrder(self, val): print("setting order to:", val) self._order = val def _getOrder(self): print("getting order...") return self._order order = property(_getOrder, _setOrder) er1 = MyEulerClass1() # works like we expect... er1.order = "new order" print("er1.order:", er1.order) self.assertTrue(er1.order == "new order") class MyEulerClass2(MyEulerClass1, om.MEulerRotation): pass er2 = MyEulerClass2() er2.order = "does it work?" print("er2.order:", er2.order) self.assertTrue(er2.order == "does it work?") except Exception: if shouldPass: raise else: print("MMatrix/MEulerRotation setattr bug is still around...") else: if not shouldPass: self.fail("MMatrix/MEulerRotation setattr bug seems to have" " been fixed!") else: print("MMatrix/MEulerRotation still functions properly on {}," " as expected".format(os.name)) # Introduced in maya 2014 # Change request #: BSPR-12597 class TestShapeParentInstance(unittest.TestCase): def setUp(self): cmds.file(new=1, f=1) def runTest(self): try: import maya.cmds as cmds def getShape(trans): return cmds.listRelatives(trans, children=True, shapes=True)[0] cmds.file(new=1, f=1) shapeTransform = cmds.polyCube(name='singleShapePoly')[0] origShape = getShape(shapeTransform) dupeTransform1 = cmds.duplicate(origShape, parentOnly=1)[0] cmds.parent(origShape, dupeTransform1, shape=True, addObject=True, relative=True) dupeTransform2 = cmds.duplicate(dupeTransform1)[0] cmds.delete(dupeTransform1) dupeShape = getShape(dupeTransform2) # In maya 2014, this raises: # Error: Connection not made: 'singleShapePolyShape2.instObjGroups[1]' -> 'initialShadingGroup.dagSetMembers[2]'. Source is not connected. # Connection not made: 'singleShapePolyShape2.instObjGroups[1]' -> 'initialShadingGroup.dagSetMembers[2]'. Destination attribute must be writable. # Connection not made: 'singleShapePolyShape2.instObjGroups[1]' -> 'initialShadingGroup.dagSetMembers[2]'. Destination attribute must be writable. # Traceback (most recent call last): # File "<maya console>", line 13, in <module> # RuntimeError: Connection not made: 'singleShapePolyShape2.instObjGroups[1]' -> 'initialShadingGroup.dagSetMembers[2]'. Source is not connected. # Connection not made: 'singleShapePolyShape2.instObjGroups[1]' -> 'initialShadingGroup.dagSetMembers[2]'. Destination attribute must be writable. # Connection not made: 'singleShapePolyShape2.instObjGroups[1]' -> 'initialShadingGroup.dagSetMembers[2]'. Destination attribute must be writable. # cmds.parent(dupeShape, shapeTransform, shape=True, addObject=True, relative=True) except Exception: pass else: self.fail("ShapeParentInstance bug fixed!") # This test gives inconsistent results - the bug will show up (meaning the # unittest "passes") if the test is run by itself (or just this module is run), # but the bug will not show up (meaning the unittest "fails") if the entire test # suite is run @unittest.skip("inconsistent results") class TestUndoRedoConditionNewFile(unittest.TestCase): CONDITION = '_pymel_test_UndoRedoAvailable' def setUp(self): self.origUndoState = cmds.undoInfo(q=1, state=1) # flush the undo queue cmds.undoInfo(state=0) cmds.undoInfo(state=1) cmds.file(new=1, f=1) # there seems to be a bug with cmds.scriptJob(listConditions=1) where # it returns none from a non-gui session import maya.api.OpenMaya as om2 if self.CONDITION in om2.MConditionMessage.getConditionNames(): cmds.condition(self.CONDITION, delete=True) om.MGlobal.executeCommand(''' global proc int _test_UndoOrRedoAvailable_proc() { return (isTrue("UndoAvailable") || isTrue("RedoAvailable")); } ''', False, False) cmds.condition(self.CONDITION, initialize=True, d=['UndoAvailable', 'RedoAvailable'], s='_test_UndoOrRedoAvailable_proc') def tearDown(self): try: cmds.condition(self.CONDITION, delete=True) finally: if self.origUndoState != cmds.undoInfo(q=1, state=1): cmds.undoInfo(state=self.origUndoState) def _doTest(self): self.assertFalse(cmds.isTrue('UndoAvailable')) self.assertFalse(cmds.isTrue('RedoAvailable')) self.assertFalse(cmds.isTrue(self.CONDITION)) cmds.setAttr('persp.tx', 10) cmds.setAttr('top.tx', 10) self.assertTrue(cmds.isTrue('UndoAvailable')) self.assertFalse(cmds.isTrue('RedoAvailable')) self.assertTrue(cmds.isTrue(self.CONDITION)) cmds.undo() self.assertTrue(cmds.isTrue('UndoAvailable')) self.assertTrue(cmds.isTrue('RedoAvailable')) self.assertTrue(cmds.isTrue(self.CONDITION)) # after doing a new file, does UndoOrRedoAvailable reset properly? cmds.file(new=1, force=1) self.assertFalse(cmds.isTrue('UndoAvailable')) self.assertFalse(cmds.isTrue('RedoAvailable')) self.assertFalse(cmds.isTrue(self.CONDITION), 'expected failure here') def runTest(self): try: self._doTest() except AssertionError as e: if e.args[0] != 'expected failure here': raise else: # check that things are BAD! self.fail("UndoRedoCondition with newFile bug fixed!") class TestScriptJobListConditions(unittest.TestCase): def _doTest(self): # this seems to return None in non-gui mayapy sessions conditions = cmds.scriptJob(listConditions=1) self.assertIsNot(conditions, None, 'expected failure here') self.assertIn('MayaInitialized', conditions) self.assertIn('UndoAvailable', conditions) def runTest(self): # we only get failures in non-gui expectFailure = om.MGlobal.mayaState() not in \ (om.MGlobal.kInteractive, om.MGlobal.kBaseUIMode) try: self._doTest() except Exception as e: if not expectFailure: raise if not isinstance(e, AssertionError) \ or 'expected failure here' not in e.args[0]: raise else: if expectFailure: # check that things are BAD! self.fail("scriptJob(listConditions=1) bug fixed!") #=============================================================================== # Current bugs that will cause Maya to CRASH (and so are commented out!) #=============================================================================== # This is commented out as it will cause a CRASH - uncomment out (or just # copy/ paste the relevant code into the script editor) to test if it's still # causing a crash... # If you're copy / pasting into a script editor, in order for a crash to occur, # all lines must be executed at once - if you execute one at a time, there will # be no crash # Also, I'm making the code in each of the test functions self-contained (ie, # has all imports, etc) for easy copy-paste testing... # class TestSubdivSelectCrash(unittest.TestCase): # def testCmds(self): # import maya.cmds as cmds # cmds.file(new=1, f=1) # polyCube = cmds.polyCube()[0] # subd = cmds.polyToSubdiv(polyCube)[0] # cmds.select(subd + '.sme[*][*]') # # def testApi(self): # import maya.cmds as cmds # import maya.OpenMaya as om # # polyCube = cmds.polyCube()[0] # subd = cmds.polyToSubdiv(polyCube)[0] # selList = om.MSelectionList() # selList.add(subd + '.sme[*][*]') #=============================================================================== # FIXED (Former) Bugs #=============================================================================== # Fixed in Maya 2009! yay! class TestConstraintVectorQuery(unittest.TestCase): def setUp(self): cmds.file(new=1, f=1) def _doTestForConstraintType(self, constraintType): cmd = getattr(cmds, constraintType) if constraintType == 'tangentConstraint': target = cmds.circle()[0] else: target = cmds.polyCube()[0] constrained = cmds.polyCube()[0] constr = cmd(target, constrained)[0] self.assertEqual(cmd(constr, q=1, worldUpVector=1), [0,1,0]) self.assertEqual(cmd(constr, q=1, upVector=1), [0,1,0]) self.assertEqual(cmd(constr, q=1, aimVector=1), [1,0,0]) def test_aimConstraint(self): self._doTestForConstraintType('aimConstraint') def test_normalConstraint(self): self._doTestForConstraintType('normalConstraint') def test_tangentConstraint(self): self._doTestForConstraintType('tangentConstraint') # Fixed ! Yay! (...though I've only check on win64...) # (not sure when... was fixed by time of 2011 Hotfix 1 - api 201101, # and still broken in 2009 SP1a - api 200906) class TestMatrixSetAttr(unittest.TestCase): def setUp(self): cmds.file(new=1, f=1) res = cmds.sphere(n='node') cmds.addAttr(ln='matrixAttr',dt="matrix") def runTest(self): cmds.setAttr( 'node.matrixAttr', 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, type='matrix' ) # Bug report 345382 # Fixed ! Yay! (...though I've only check on win64...) # (not sure when... was fixed by time of 2011 Hotfix 1 - api 201101, # and still broken in 2009 SP1a - api 200906) class TestFluidMFnCreation(unittest.TestCase): def setUp(self): cmds.file(new=1, f=1) def runTest(self): fluid = cmds.createNode('fluidShape') selList = om.MSelectionList() selList.add(fluid) dag = om.MDagPath() selList.getDagPath(0, dag) omfx.MFnFluid(dag) # nucleus node fixed in 2014 # symmetryConstraint fixed in 2015 # transferAttributes fixed <= 2016.5 # jointFFd fixed in 2021 class TestMFnCompatibility(unittest.TestCase): def setUp(self): cmds.file(new=1, f=1) def assertInheritMFn(self, nodeType, parentNodeType, mfnEnumName, mfnType): if parentNodeType: if isinstance(parentNodeType, tuple): parentNodeType, concreteParentType = parentNodeType else: concreteParentType = parentNodeType self.assertTrue( parentNodeType in cmds.nodeType(nodeType, isTypeName=1, inherited=True), "{} did not have parent {}".format(nodeType, parentNodeType)) self.assertInheritMFn(concreteParentType, None, mfnEnumName, mfnType) mfnEnum = getattr(om.MFn, mfnEnumName) nodeInstName = cmds.createNode(nodeType) selList = om.MSelectionList() selList.add(nodeInstName) mobj = om.MObject() selList.getDependNode(0, mobj) self.assertTrue(mobj.hasFn(mfnEnum), "{} did not have {}".format(nodeType, mfnEnumName)) try: mfnType(mobj) except Exception as e: self.fail("{} did not support {}".format(nodeType, mfnType.__name__)) def assertNotInheritMFn(self, nodeType, parentNodeType, mfnEnumName, mfnType): try: self.assertInheritMFn(nodeType, parentNodeType, mfnEnumName, mfnType) except AssertionError as e: # this is expected... swallow it pass else: self.fail("{} passed inheritance test (for {} / {}), when it was" " expected to fail".format(nodeType, mfnEnumName, mfnType.__name__)) def test_nucleus_MFnDagNode(self): self.assertInheritMFn('nucleus', ('dagNode', 'transform'), 'kDagNode', om.MFnDagNode) def test_nucleus_MFnTransform(self): self.assertInheritMFn('nucleus', 'transform', 'kTransform', om.MFnTransform) def test_symmetryConstraint_MFnDagNode(self): self.assertInheritMFn('symmetryConstraint', ('dagNode', 'transform'), 'kDagNode', om.MFnDagNode) def test_symmetryConstraint_MFnTransform(self): self.assertInheritMFn('symmetryConstraint', 'transform', 'kTransform', om.MFnTransform) def test_jointFfd_ffd(self): self.assertInheritMFn('jointFfd', 'ffd', 'kFFD', oma.MFnLatticeDeformer) def test_jointFfd_geometryFilter(self): # fixed in 2021! if pymel.versions.current() >= pymel.versions.v2021: self.assertInheritMFn( 'jointFfd', ('geometryFilter', 'softMod'), 'kGeometryFilt', oma.MFnGeometryFilter) else: self.assertNotInheritMFn( 'jointFfd', ('geometryFilter', 'softMod'), 'kGeometryFilt', oma.MFnGeometryFilter) def test_transferAttributes_weightGeometryFilter(self): self.assertInheritMFn( 'transferAttributes', ('weightGeometryFilter', 'softMod'), 'kWeightGeometryFilt', oma.MFnWeightGeometryFilter) def test_transferAttributes_geometryFilter(self): self.assertInheritMFn( 'transferAttributes', ('geometryFilter', 'softMod'), 'kGeometryFilt', oma.MFnGeometryFilter) # These probably aren't strictly considered "bugs" by autodesk, though I # think they should be... def test_hikHandle_ikHandle(self): self.assertNotInheritMFn('hikHandle', 'ikHandle', 'kIkHandle', oma.MFnIkHandle) # Fixed in 2014! yay! class TestGroupUniqueness(unittest.TestCase): '''Test to check whether cmds.group returns a unique name ''' def setUp(self): cmds.file(new=1, f=1) def runTest(self): cmds.select(cl=1) cmds.group(n='foo', empty=1) cmds.group(n='bar') cmds.select(cl=1) res = cmds.group(n='foo', empty=1) sameNames = cmds.ls(res) if len(sameNames) < 1: self.fail('cmds.group did not return a valid name') elif len(sameNames) > 1: self.fail('cmds.group did not return a unique name') ``` #### File: pymel/tests/test_startup.py ```python from __future__ import print_function from __future__ import division from __future__ import absolute_import import os import shutil import tempfile import unittest import pymel.internal.startup as startup class TestCacheFormats(unittest.TestCase): def setUp(self): self.tmpdir = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.tmpdir) def test_dumpLoad(self): smiley = u'\U0001F600' DATAS = { 'unicode': {'foo': smiley}, 'ascii': {'foo': 7} } filebase = os.path.join(self.tmpdir, 'test_bin') for name, data in DATAS.items(): for fmt in startup.PymelCache.FORMATS: filename = '{}_{}{}'.format(filebase, name, fmt.ext) #print("testing: {} - {} - {}".format(name, data, fmt[0])) fmt.writer(data, filename) read_data = fmt.reader(filename) assert read_data == data assert type(read_data) is type(data) ``` #### File: pymel/tests/test_trees.py ```python from __future__ import print_function from __future__ import division from __future__ import absolute_import from pymel.util.testing import TestCase, setupUnittestModule import pymel.util.trees as trees class testCase_typeTrees(TestCase): def setUp(self): self.types = ('dependNode', ('FurAttractors', ('FurCurveAttractors', 'FurDescription', 'FurGlobals'), 'abstractBaseCreate')) self.tree = trees.Tree( *(self.types) ) def test01_parentMethod(self): """ Test the parent method on type tree """ pass def tearDown(self): pass # to be organised in nice unit tests : #print dir(FrozenTree) #print dir(Tree) ##print dir(IndexedFrozenTree) ##print dir(IndexedTree) #a = Tree ('a', ('aa', 'ab'), 'b', ('ba', 'bb')) #print a #print list(a) #print list(a.preorder()) #print str(a) #print repr(a) #print unicode(a) #print a.formatted() #print a.debug() #t = Tree ('a', ('aa', 'ab')) #print id(t) #print t.debug() #t.graft('b') #print id(t) #print t.debug() #b = Tree ('a') #print id(b) #print b.debug() #b.graft('b') #print b.debug() #b.graft('ab', 'a') #print b.debug() #aa = Tree ('aa', ('aaa', 'aab')) #print id(aa) #print aa.debug() ## FIXME : next doesn't work #b.graft(aa, 'a', 'ab') #print id(b) #print id(aa), id(b['aa']) #print b.debug() #b.remove('ab') #ab = FrozenTree('ab', ('aba', 'abb')) #print id(ab) #print ab.debug() #b.graft(ab, 'a') #print id(b) #print id(ab), id(b['ab']) #print b.debug() #b.graft('c') #print b.debug() #b.remove('c') #print b.debug() #b.graft('c', 'b') #print b.debug() #b.graft(('ba', 'bb'), 'c') #print b.debug() ## FIXME : pop not working yet ## b.pop('c') #print b.debug() #b.prune('a') #print b.debug() #b.graft(('a', ('aa', 'ab')), None, 'b') #print b.debug() #print list(b.tops()) #print b.top(0) #print b.top(1) ##print isinstance(a, list) ##print issubclass(a.__class__, list) #print id(a) #print a.root() #print id(a) #print a.next #print a.child(0) #print a.child(0).next #print a.formatted() #print a.debug() #b = a #print b.debug() #c = a.copy() #print c.debug() #print c.formatted() #print a == b #print a is b #print a == c #print a is c #for k in a.breadth() : # print k.value #for k in a : # print k.value #for k in a.postorder() : # print k.value # #A = Tree ('a', ('aa', ('aaa', 'aab', 'aac'), 'ab', 'ac', ('aca', 'acb')), 'b', ('ba', 'bb'), 'c', ('ca', ('caa', 'cab', 'cac'), 'cb', ('cba', 'cbb'), 'cc', ('cca', 'ccb', 'ccc'))) #print id(A) #for k in A : # print k.value #for k in A.preorder() : # print k.value #for k in A.postorder() : # print k.value #for k in A.breadth() : # print k.value #print b in a #print c in a #print a.child(0) in a #print c.child(0) in a #print c.child(0).value in a #for k in A : # parentValues = [j.value for j in k.parents()] # root = k.root() # if root : # rootValue = root.value # else : # rootValue = None # print "%s: %s, %s" % (k.value, rootValue, parentValues) # # #temp = Tree ('a', ('aa', 'ab'), 'b', ('ba', 'bb')) #suba = temp['aa'] #print suba #print suba.root() #print temp #print id(temp) #print suba.root().parent #print id(suba.root().parent) ##print a[a.child(0)] ##print a ##l = a['a'] ##print l ##print a[('a', 'aa')] #del (temp) ## print a #print suba #print suba.root() #print suba.root().parent #print id(suba.root().parent) #d = Tree ('a', ('aa', 'ab'), 'b', ('aa', 'ab')) #def getAsList(tree, value): # msg = "" # try : # tree[value] # print "Found exactly one match" # except : # msg = "Not exactly one match" # f = tree.get(value, []) # if msg : # print msg+": %i found" % len(f) # for k in f: # print k, k.parent # return f #getAsList(d, 'aa') #getAsList(d,('b', 'ab')) #getAsList(d,'xyz') #getAsList(d,(None, 'aa')) #getAsList(d,(None, d.child(0).child(0))) #getAsList(d,(None, 'a', 'aa')) #getAsList(d,('a', 'aa')) #A = Tree ('a', ('aa', ('aaa', 'aab', 'aac'), 'ab', 'ac', ('aca', 'acb')), 'b', ('ba', 'bb'), 'c', ('ca', ('caa', 'cab', 'cac'), 'cb', ('cba', 'cbb'), 'cc', ('cca', 'ccb', 'ccc'))) #print list(A.path('aca')) #for k in A.path('aca') : # print k.value #for k in A['aca'].path(A) : # if k.value : # print k.value # #def getParent(c) : # res = cmds.listRelatives(c, parent=True) # if res : # return res[0] # #def isExactChildFn(c, p) : # """ a function to check if c is a direct child of p """ # if (c is not None) and (p is not None) : # #print "checking if "+c+" is child of "+p # prt = getParent(c) # if prt is not None and p is not None : # return prt == p # elif prt is None and p is None : # return True # else : # return False # else : # return False # #def asOldHierarchy (*args) : # """returns a Tree containing the PyMel objects representing Maya nodes that were passed # as argument, or the current seleciton if no arguments are provided, # in a way that mimics the Maya scene hierarchy existing on these nodes. # Note that: # >>> cmds.file ("~/pymel/examples/skel.ma", f=True, typ="mayaAscii",o=True) # >>> File read in 0 seconds. # >>> u'~/pymel/examples/skel.ma' # >>> select ('FBX_Hips', replace=True, hierarchy=True) # >>> sel=ls(selection=True) # >>> skel=asHierarchy (sel) # >>> skel.find('FBX_Head') # >>> Tree(Joint('FBX_Head'), Tree(Joint('FBX_LeftEye')), Tree(Joint('FBX_RightEye'))) # >>> skel.parent('FBX_Head') # >>> Joint('FBX_Neck1') # >>> util.expandArgs( skel ) == tuple(sel) and sel == [k for k in skel] # >>> True """ # # if len(args) == 0 : # nargs = cmds.ls( selection=True) # else : # args = util.expandArgs (*args) # # nargs = map(PyNode, args) # nargs = args # # print "Arguments: %s"+str(nargs) # result = oldTreeFromChildLink (isExactChildFn, *nargs) # # print "Result: %s"+str(result) # return result # #def asHierarchy (*args) : # """returns a Tree containing the PyMel objects representing Maya nodes that were passed # as argument, or the current seleciton if no arguments are provided, # in a way that mimics the Maya scene hierarchy existing on these nodes. # Note that: # >>> cmds.file ("~/pymel/examples/skel.ma", f=True, typ="mayaAscii",o=True) # >>> File read in 0 seconds. # >>> u'~/pymel/examples/skel.ma' # >>> select ('FBX_Hips', replace=True, hierarchy=True) # >>> sel=ls(selection=True) # >>> skel=asHierarchy (sel) # >>> skel.find('FBX_Head') # >>> Tree(Joint('FBX_Head'), Tree(Joint('FBX_LeftEye')), Tree(Joint('FBX_RightEye'))) # >>> skel.parent('FBX_Head') # >>> Joint('FBX_Neck1') # >>> util.expandArgs( skel ) == tuple(sel) and sel == [k for k in skel] # >>> True """ # # if len(args) == 0 : # nargs = cmds.ls( selection=True) # else : # args = util.expandArgs (*args) # # nargs = map(PyNode, args) # nargs = args # # print "Arguments: %s"+str(nargs) # result = treeFromChildLink (isExactChildFn, *nargs) # # print "Result: %s"+str(result) # return result # #def asIndexedHierarchy (*args) : # """returns a Tree containing the PyMel objects representing Maya nodes that were passed # as argument, or the current seleciton if no arguments are provided, # in a way that mimics the Maya scene hierarchy existing on these nodes. # Note that: # >>> cmds.file ("~/pymel/examples/skel.ma", f=True, typ="mayaAscii",o=True) # >>> File read in 0 seconds. # >>> u'~/pymel/examples/skel.ma' # >>> select ('FBX_Hips', replace=True, hierarchy=True) # >>> sel=ls(selection=True) # >>> skel=asHierarchy (sel) # >>> skel.find('FBX_Head') # >>> Tree(Joint('FBX_Head'), Tree(Joint('FBX_LeftEye')), Tree(Joint('FBX_RightEye'))) # >>> skel.parent('FBX_Head') # >>> Joint('FBX_Neck1') # >>> util.expandArgs( skel ) == tuple(sel) and sel == [k for k in skel] # >>> True """ # # if len(args) == 0 : # nargs = cmds.ls( selection=True) # else : # args = util.expandArgs (*args) # # nargs = map(PyNode, args) # nargs = args # # print "Arguments: %s"+str(nargs) # result = indexedTreeFromChildLink (isExactChildFn, *nargs) # # print "Result: %s"+str(result) # return result # #def asNetworkXHierarchy (*args) : # """returns a Tree containing the PyMel objects representing Maya nodes that were passed # as argument, or the current seleciton if no arguments are provided, # in a way that mimics the Maya scene hierarchy existing on these nodes. # Note that: # >>> cmds.file ("~/pymel/examples/skel.ma", f=True, typ="mayaAscii",o=True) # >>> File read in 0 seconds. # >>> u'~/pymel/examples/skel.ma' # >>> select ('FBX_Hips', replace=True, hierarchy=True) # >>> sel=ls(selection=True) # >>> skel=asHierarchy (sel) # >>> skel.find('FBX_Head') # >>> Tree(Joint('FBX_Head'), Tree(Joint('FBX_LeftEye')), Tree(Joint('FBX_RightEye'))) # >>> skel.parent('FBX_Head') # >>> Joint('FBX_Neck1') # >>> util.expandArgs( skel ) == tuple(sel) and sel == [k for k in skel] # >>> True """ # # if len(args) == 0 : # nargs = cmds.ls( selection=True) # else : # args = util.expandArgs (*args) # # nargs = map(PyNode, args) # nargs = args # # print "Arguments: "+str(nargs) # result = networkXTreeFromChildLink (isExactChildFn, *nargs) # # print "Result: "+str(result) # return result # # # #def networkXTreeFromChildLink (isExactChildFn, *args): # """ # This function will build a tree from the provided sequence and a comparison function in the form: # cmp(a,b): returns True if a is a direct child of b, False else # >>> lst = ['aab', 'aba', 'aa', 'bbb', 'ba', 'a', 'b', 'bb', 'ab', 'bab', 'bba'] # >>> def isChild(s1, s2) : # >>> return s1.startswith(s2) and len(s1)==len(s2)+1 # >>> forest = treeFromChildLink (isChild, lst) # >>> for tree in forest : # >>> print tree # A child cannot have more than one parent, if the isChild is ambiguous an exception will be raised # >>> def isChild(s1, s2) : # >>> return s1.startswith(s2) # >>> forest = treeFromChildLink (isChild, lst) # """ # deq = deque() # for arg in args : # t = nt.Tree() # t.add_node(arg) # t.root = arg # deq.append(t) # lst = [] # it = 0 # while deq: # it+=1 # # print "iteration %i" % it # c = deq.popleft() # r = c.root # hasParent = False # fulllist = list(deq)+lst # sd = len(deq) # nextlist = [] # for p in fulllist : # plist = [] # for n in p.nodes_iter() : # # print "Is %s child of %s?" % (r, n) # if isExactChildFn(r, n) : # plist.append(n) # # print "%s is child of %s!" % (r, n) # for pr in plist : # if not hasParent : # # print "graft %s on %s, under %s" % (r, p.root, pr) # np = p.union_sub(c, v_from=p.root, v_to=c.root) # np.root = p.root # p = np # hasParent = True # else : # # should only be one parent, break on first encountered # raise ValueError, "A child in Tree cannot have multiple parents, check the provided isChild(c, p) function: '%s'" % isExactChildFn.__name__ # nextlist.append(p) # deq = deque(nextlist[:sd]) # lst = nextlist[sd:] # # If it's a root we move it to final list # if not hasParent : # # print "%s has no parent, it goes to the list as root" % str(c.root) # lst.append(c) # # # print "final list %s" % str(lst) # if len(lst) == 1 : # return lst[0] # else : # return tuple(lst) setupUnittestModule(__name__) ``` #### File: pymel/tests/test_util_common.py ```python from __future__ import print_function from __future__ import division from __future__ import absolute_import # used to have tests for util.isClassRunningStack, but it turned out # inspect.stack() could cause crashes in some cases... import unittest from pymel.util.scanf import (sscanf, fscanf, CharacterBufferFromIterable, makeCharBuffer, handleWhitespace, handleChar, handleDecimalInt, handleString, CappedBuffer, IncompleteCaptureError, FormatError, compile) class ScanfTests(unittest.TestCase): def bufferFromString(self, s): return CharacterBufferFromIterable(s) def testBufferFromString(self): b = self.bufferFromString("hello") for letter in list('hello'): self.assertEqual(letter, b.getch()) self.assertEqual('', b.getch()) def testCharacterSetScanning(self): b = makeCharBuffer("+++-+++++1234") self.assertEqual("+++", b.scanCharacterSet(set("+"))) self.assertEqual("", b.scanCharacterSet(set("+"))) self.assertEqual("-", b.scanCharacterSet(set("-"))) self.assertEqual("+", b.scanCharacterSet(set("+"), 1)) def testPredicateScanning(self): b = makeCharBuffer("+++-+++++1234") self.assertEqual("+++", b.scanPredicate(lambda ch: ch == '+')) def testUngetch(self): b = self.bufferFromString("ong") b.ungetch('y') self.assertEqual('y', b.getch()) self.assertEqual('o', b.getch()) b.ungetch('u') self.assertEqual('u', b.getch()) self.assertEqual('n', b.getch()) self.assertEqual('g', b.getch()) self.assertEqual('', b.getch()) def testRepeatedGetchOnEmptyStreamIsOk(self): b = self.bufferFromString("") self.assertEqual('', b.getch()) self.assertEqual('', b.getch()) def testCappedBuffer(self): b = CappedBuffer(self.bufferFromString("supercalifragilisticexpialidocious"), 5) self.assertEqual("s", b.getch()) self.assertEqual("u", b.getch()) self.assertEqual("p", b.getch()) self.assertEqual("e", b.getch()) self.assertEqual("r", b.getch()) self.assertEqual('', b.getch()) self.assertEqual('', b.getch()) b.ungetch('r') self.assertEqual("r", b.getch()) self.assertEqual('', b.getch()) def testWhitespaceScanning(self): b = self.bufferFromString(" 42\n43") self.assertEqual(" ", handleWhitespace(b)) self.assertEqual("", handleWhitespace(b)) self.assertEqual("4", b.getch()) def testDecimalDigitScanning(self): b = self.bufferFromString("42 43!44") self.assertEqual(42, handleDecimalInt(b)) self.assertEqual(" ", handleWhitespace(b)) self.assertEqual(43, handleDecimalInt(b)) b2 = self.bufferFromString("-1-2+3-4") self.assertEqual(-1, handleDecimalInt(b2)) self.assertEqual(-2, handleDecimalInt(b2)) self.assertEqual(3, handleDecimalInt(b2)) self.assertEqual(-4, handleDecimalInt(b2)) self.assertRaises(FormatError, handleDecimalInt, b2) def testCharacter(self): b = self.bufferFromString("hi!") self.assertEqual("h", handleChar(b)) self.assertEqual("i", handleChar(b)) self.assertEqual("!", handleChar(b)) self.assertRaises(FormatError, handleChar, b) def testString(self): b = self.bufferFromString("-42 + 1 equals -41") self.assertEqual("-42", handleString(b)) handleWhitespace(b) self.assertEqual("+", handleString(b)) handleWhitespace(b) self.assertEqual("1", handleString(b)) handleWhitespace(b) self.assertEqual("equals", handleString(b)) handleWhitespace(b) self.assertEqual("-41", handleString(b)) def testIntegerScanning(self): self.assertEqual((42, 43), sscanf(" 42\n 43 ", "%d %d")) self.assertEqual((8,), sscanf("10", "%o")) self.assertEqual((8,), sscanf("010", "%o")) self.assertEqual((15,), sscanf("F", "%x")) self.assertEqual((15,), sscanf("f", "%x")) self.assertEqual((15,), sscanf("0xF", "%x")) self.assertEqual((15,), sscanf("0XF", "%x")) self.assertEqual((15,), sscanf("0Xf", "%x")) self.assertEqual((-1, -2, 3, -4), sscanf("-1-2+3-4", "%d%d%d%d")) def testWordScanning(self): self.assertEqual(("hello", "world"), sscanf(" hello world", "%s %s")) def testSuppression(self): self.assertEqual((), sscanf(" hello world", "%*s %*s")) self.assertEqual(("happy",), sscanf("hello happy world", "%*s %s %*s")) self.assertEqual((), sscanf("h", "%*c")) def testWidth(self): self.assertEqual(("00010",), sscanf("00010101010111", "%5c")) self.assertEqual(("xy",), sscanf("xyz", "%2s")) self.assertEqual(("xy",), sscanf(" xyz", "%2s")) self.assertEqual((" ",), sscanf(" xyz", "%2c")) def testFscanf(self): import io b = io.StringIO(u"hello world") self.assertEqual(("hello", " ", "world"), fscanf(b, "%s%c%s")) # Check that calling fscanf() twice doesn't # drop the last character b2 = io.StringIO(u"hello world") self.assertEqual(("hello",), fscanf(b2, "%s")) self.assertEqual((" ",), fscanf(b2, "%c")) self.assertEqual(("world",), fscanf(b2, "%s")) def testSkipLeadingSpaceOnScanning(self): """<NAME> reported a bug where floats weren't being parsed properly if there were leading whitespace for %f. This case checks that""" self.assertEqual((42.0,), sscanf(" 42.0", "%f")) def testFloats(self): self.assertEqual((3.14, 10., .001, 1e100, 3.14e-10, 0e0,), sscanf("""3.14 10. .001 1e100 3.14e-10 0e0""", "%f %f %f %f %f %f")) def testMoreSimpleScanningExamples(self): self.assertEqual((192, 168, 1, 1), sscanf("192.168.1.1", "%d.%d.%d.%d")) self.assertEqual(("a", "b", "c"), sscanf(" ab c ", "%1s%1s%s")) self.assertEqual(("hello", " ", "world"), sscanf("hello world", "%s%c%s")) self.assertRaises(IncompleteCaptureError, sscanf, "192.168.1.1", "%d %d %d %d") self.assertEqual(("danny",), sscanf("hi danny", "hi %s")) self.assertEqual(("danny",), sscanf(" hi danny", " hi %s")) self.assertEqual(("a", "b", 3), sscanf("ab3", "%c%c%d")) # this case is weird, but it happens in C too! self.assertRaises(IncompleteCaptureError, sscanf, " hi danny", "hi %s") # The example that's used in # 'http://docs.python.org/lib/node109.html' self.assertEqual(("/usr/bin/sendmail", 0, 4), sscanf("/usr/bin/sendmail - 0 errors, 4 warnings", "%s - %d errors, %d warnings")) def testErroneousFormats(self): self.assertRaises(FormatError, compile, "%") self.assertRaises(FormatError, compile, "% ") self.assertRaises(FormatError, compile, "%*") self.assertRaises(FormatError, compile, "%*z") self.assertRaises(FormatError, compile, "% d") self.assertRaises(FormatError, compile, "%* d") ```
{ "source": "jfly/pyright", "score": 2 }
#### File: tests/samples/paramSpec20.py ```python from typing import Callable, Concatenate, Generic, ParamSpec, TypeVar T = TypeVar("T") P1 = ParamSpec("P1") P2 = ParamSpec("P2") class X(Generic[T, P1]): f: Callable[P1, int] x: T def x1(x: X[int, P2]) -> str: ... def x2(x: X[int, Concatenate[int, P2]]) -> str: ... def X3(x: X[int, [int, bool]]) -> str: ... def x4(x: X[int, ...]) -> str: ... # This should generate an error because "int" can't be bound to a ParamSpec. def x5(x: X[int, int]) -> str: ... # This should generate an error. def x6(x: X[..., ...]) -> str: ... # This should generate an error. def x7(x: X[[int], [int, int]]) -> str: ... class Z(Generic[P1]): f: Callable[P1, int] def z1(x: Z[[int, str, bool]]) -> str: ... def z2(x: Z[int, str, bool]) -> str: ... # This should generate an error. def z3(x: Z[[int, [str], bool]]) -> str: ... # This should generate an error. def z4(x: Z[[[int, str, bool]]]) -> str: ... # This should generate an error. def z5(x: Z[[...]]) -> str: ... ```
{ "source": "jfly/python-opencage-geocoder", "score": 3 }
#### File: python-opencage-geocoder/test/test_async.py ```python import pytest from opencage.geocoder import ForbiddenError, OpenCageGeocode, AioHttpError # NOTE: Testing keys https://opencagedata.com/api#testingkeys async def test_success(): async with OpenCageGeocode('<KEY>') as geocoder: results = await geocoder.geocode_async("EC1M 5RF") assert any( abs(result['geometry']['lat'] - 51.952659 < 0.05 and abs(result['geometry']['lng'] - 7.632473) < 0.05) for result in results ) async def test_failure(): async with OpenCageGeocode('6c79ee8e1ca44ad58ad1fc493ba9542f') as geocoder: with pytest.raises(ForbiddenError) as excinfo: await geocoder.geocode_async("Atlantis") assert str(excinfo.value) == 'Your API key has been blocked or suspended.' async def test_without_async_session(): geocoder = OpenCageGeocode('4372eff77b8343cebfc843eb4da4ddc4') with pytest.raises(AioHttpError) as excinfo: await geocoder.geocode_async("Atlantis") assert str(excinfo.value) == 'Async methods must be used inside an async context.' async def test_using_non_async_method(): async with OpenCageGeocode('6d0e711d72d74daeb2b0bfd2a5cdfdba') as geocoder: with pytest.raises(AioHttpError) as excinfo: await geocoder.geocode("Atlantis") assert str(excinfo.value) == 'Cannot use `geocode` in an async context, use `gecode_async`.' ```
{ "source": "jfmaes/transformationsuite", "score": 3 }
#### File: jfmaes/transformationsuite/main.py ```python import argparse from transformer import Transformer from format import Formatter from Crypto.Hash import MD5 parser = argparse.ArgumentParser(description="Transformer next generation by jfmaes") #DONT FORGET TO PUT REQUIRED TRUE parser.add_argument("-f", "--file", help="the payload file", required=True) parser.add_argument("-x", "--xor", help="use xor encryption", action="store_true") parser.add_argument("-key", help="the xor key") parser.add_argument("-c", "--caesar", help="use caesar cipher", action="store_true") parser.add_argument("-rotation", help="the rotation to follow, can be + or - ") parser.add_argument("-b64","-base64","--base64", help= "base 64 encode payload", action="store_true") parser.add_argument("-rev","--reverse", help= "reverse payload", action="store_true") parser.add_argument("-o", "--output-file", help="the output file") parser.add_argument("-vba", help="format to vba", action="store_true") parser.add_argument("-csharp", help="format to csharp", action="store_true") parser.add_argument("-cpp", help="format to cpp", action="store_true") parser.add_argument("-raw", help="format to raw payload", action="store_true") parser.add_argument("-v", "--verbose", help="print shellcode to terminal", action="store_true") parser.add_argument("--no-transform", help="doesnt transform payload, just formats.", action="store_true") def check_args(args): if args.xor and not args.key: print(f"[!] XOR encryption needs a key") quit() if args.caesar and not args.rotation: print(f"[!] Caesar encryption needs a rotation") quit() if not args.verbose and not args.output_file: print(f"[!] Your payload needs to go somewhere. Use either verbose or outfile params, or both.") quit() def get_shellcode_from_file(inFile): try: with open(inFile, "rb") as shellcodeFileHandle: shellcodeBytes = bytearray(shellcodeFileHandle.read()) shellcodeFileHandle.close() print (f"[*] Payload file [{inFile}] successfully loaded") except IOError: print(f"[!] Could not open or read file [{inFile}]") quit() print("[*] MD5 hash of the initial payload: [{}]".format(MD5.new(shellcodeBytes).hexdigest())) print("[*] Payload size: [{}] bytes".format(len(shellcodeBytes))) return shellcodeBytes def main(args): transformer = Transformer() formatter = Formatter() data = get_shellcode_from_file(args.file) transform_blob = transformer.transform(args, data) if not args.no_transform: formatter.format(args, transform_blob) if args.no_transform: formatter.format(args, data) if __name__ == '__main__': args = parser.parse_args() check_args(args) main(args) ``` #### File: jfmaes/transformationsuite/transformer.py ```python import base64 import random class Transformer: def __init__(self): pass def transform(self, args, data): if args.xor: return self.xor(data, args.key) elif args.caesar: return self.caesar(data, str(args.rotation)) elif args.reverse: return self.reverse(data) elif args.base64: return self.base64(data) def caesar(self, payload, rotation): caesarstuff = bytearray(len(payload)) length = len(payload) positiverotation = False if "-" not in rotation: positiverotation = True rotation = rotation.strip("+") else: rotation = rotation.strip("-") for i in range(length): if positiverotation: caesarstuff[i] = ((payload[i] + int(rotation)) & 0xFF) else: caesarstuff[i] = ((payload[i] - int(rotation)) & 0xFF) print("[+] Successfully ciphered the payload!") return caesarstuff def xor(self,payload,key): xorStuff = bytearray(len(payload)) keyEncoded = bytearray(str(key).encode('ascii')) length = len(payload) for i in range(length): xorStuff[i] = payload[i] ^ keyEncoded[i % len(keyEncoded)] print("[+] Successfully XOR'd the payload!") return xorStuff def reverse(self,payload): data = payload[::-1] return data def base64(self,payload): return base64.b64encode(payload) #https://en.wikipedia.org/wiki/List_of_file_signatures def prepend_magic_bytes(self,args,payload): allowed_formats = {"ico":b"\x00\x00\x01\x00", "gif":b"\x47\x49\x46\x38\x37\x61", "jpeg":b"\xFF\xD8\xFF\xDB", "jpg":b"\xFF\xD8\xFF\xEE", "zip":b"\x50\x4B\x03\x04", "rar":b"\x52\x61\x72\x21\x1A\x07\x01\x00", "png":b"\x89\x50\x4E\x47\x0D\x0A\x1A\x0A", "mp3":b"\xFF\xF3", "iso":b"\x43\x44\x30\x30\x31", "7z":b"\x37\x7A\xBC\xAF\x27\x1C"} magic = b'' if args not in allowed_args: raise ValueError elif args.lower() == "random": key = random.choice(allowed_formats.keys()) print("random format chosen was {0), magic bytes are {1}",key,allowed_formats[key]) magic = allowed_formats[key] else: magic = allowed_formats[args] ```
{ "source": "jfmalloy1/BlackCanyonUltra", "score": 3 }
#### File: jfmalloy1/BlackCanyonUltra/BC_analysis.py ```python from selenium import webdriver from selenium.webdriver.support.ui import Select from selenium.webdriver.chrome.options import Options from webdriver_manager.chrome import ChromeDriverManager import os import time import pandas as pd import pickle def main(): urls = [("https://ultrasignup.com/results_event.aspx?did=77199", 2021), ("https://ultrasignup.com/results_event.aspx?did=67039", 2020), ("https://ultrasignup.com/results_event.aspx?did=57827", 2019), ("https://ultrasignup.com/results_event.aspx?did=48278", 2018), ("https://ultrasignup.com/results_event.aspx?did=38965", 2017), ("https://ultrasignup.com/results_event.aspx?did=34087", 2016), ("https://ultrasignup.com/results_event.aspx?did=29244", 2015), ("https://ultrasignup.com/results_event.aspx?did=24355", 2014)] #NOTE: Chromedriver is in /Lab/CitationNetworks #driver = webdriver.Chrome("../../chromedriver", options=options) #NOTE: driver setup from: https://stackoverflow.com/questions/60296873/sessionnotcreatedexception-message-session-not-created-this-version-of-chrome driver = webdriver.Chrome(ChromeDriverManager().install()) for url, year in urls: driver.get(url) #Results from: https://medium.com/@elizabeth.guy86/gender-differences-in-ultra-running-f0880047b9ed sel = "gbox_list" results = driver.find_element_by_id(sel) rows = results.text.split('\n') runner_rows = [row.split() for row in rows] cols = [c[0] for c in runner_rows[0:9]] cols.insert(0, "Description") cols.insert(5, "State") # #10th element is number of finishers"['Finishers', '-', '363']" # content = runner_rows[10:] content = [c[-6:] for c in content] df = pd.DataFrame(content, columns = cols[-6:]) print(year) print(df.head()) print() pickle.dump(df, open("BC" + str(year) + "_100k.p", "wb")) if __name__ == "__main__": main() ```
{ "source": "jfmalloy1/ChemAsLanguage", "score": 2 }
#### File: ChemAsLanguage/Fragments/common_fragments.py ```python import sys from rdkit import Chem from itertools import combinations from random import random, shuffle from collections import defaultdict from rdkit.Chem import MCS import operator import datetime #from timeout import timeout from math import factorial """ Adopted from Cadaddeu 2014 """ def binomial(n,m): return factorial(n) / (factorial(m) * factorial(n-m)) def time(): return datetime.datetime.now().strftime("%Y-%m-%d %H:%M") def findmcs(p,q): #@timeout(2) def fmcstimeout(p,q): return MCS.FindMCS([p,q]).smarts try: return fmcstimeout(p,q) except: print("MCS of", p, "and", q, "timed out.") pass def fragments(mols): s=[] count = float(binomial(len(mols),2)) i = 0 percent = -1 for p,q in combinations(mols,2): try: s.append(findmcs(p,q)) except: pass p = int(i/count * 100) if p > percent: percent = p print(percent, time()) i += 1 return set(s) def loadSmarts(fn): with open(fn,'r') as smartfile: return set(smart.strip() for smart in smartfile) def sameMolecule(a,b): def same_or_timeout(a,b): if a[1] == b[1] : return True #string compare if a[0].GetNumAtoms() != b[0].GetNumAtoms() : return False if a[0].GetNumBonds() != b[0].GetNumBonds() : return False return a[0].HasSubstructMatch(b[0]) and b[0].HasSubstructMatch(a[0]) try : res = same_or_timeout(a,b) except: res = False return res def UniqSmarts(frags): result = set() frags = set((g,t) for (g,t) in frags if g != None) # was successfully converted to smarts while frags: f,s = frags.pop() result.add((f,s)) frags = set((g,t) for (g,t) in frags if not (sameMolecule((f,s),(g,t)))) # check if they are the same or not. check also on the string to speed up return result if __name__ == "__main__": #Input file - list of random molecules in SMILES format print("Getting random molecules from", sys.argv[1]) with open(sys.argv[1],'r') as smiles: mols = [Chem.MolFromSmiles(smi.strip()) for smi in smiles] mols = [m for m in mols if m != None] shuffle(mols) print("Retieved",len(mols),"random molecules") print("Aquiring random molecule fragments (and combining with molecules from", sys.argv[2]) #Input file 2 - list of molecules in SMART format (still not sure what this adds...) frags = [] #Fragments - determines different fragments within the molecules. Why are only the first 20 random molecules used? for s in (fragments(mols[:100]) | loadSmarts(sys.argv[2])): try: frags.append((Chem.MolFromSmarts(s),s)) except: print("AAAGGGHHH",s,"failed") print("uniquifying") #Make sure they are unique frags=UniqSmarts(frags) print("Found", len(frags), "many fragments") h = defaultdict(int) percent = -1 i = 0 count = float(len(mols)) print("Constructing histogram of fragments") for m in mols: for (f,s) in frags: if m.HasSubstructMatch(f): h[s] += 1 p = int(i / count * 100) if p > percent: percent = p print(percent, time()) i += 1 print("Writing out histogram") #Output file with open(sys.argv[3],'w') as out: for k,v in sorted(h.items(), key=operator.itemgetter(1)): print(k, file=out) ``` #### File: ChemAsLanguage/Fragments/distributions.py ```python from rdkit import Chem import pandas as pd import matplotlib.pyplot as plt from tqdm import tqdm import os import numpy as np from scipy import stats import pickle import random from multiprocessing import Pool import time """ Create a list of mol representations (from rdkit) from a list of smarts strings Note: already unique (common_fragments.py takes care of removing duplicates) Input: a list of smarts representations Output: list of sets: (mol representations, smarts string) """ def mol_from_smarts(smarts): frags = [] for s in smarts: try: frags.append((Chem.MolFromSmarts(s),s)) except: pass return frags """ Creates a histogram of occurances of fragments within the overall cpd distribution Input: mols - mol representations of overall distribution frags - fragments found within KEGG Output: dictionary containing number of time a fragment appears in the overall distribution {smarts:occurances} """ def mol_count(mols, frags): print(frags) h = {} for (f,s) in tqdm(frags): h[s] = 0 for m in mols: if m.HasSubstructMatch(f): h[s] += 1 return h """ Parallel version of mol_count Inputs: list of mol representations of overall distribution, individual fragment to be counted Output: list of smarts string & count (will be converted to dictionary later) """ def mol_count_parallel(mols, frag): try: f = Chem.MolFromSmarts(frag) except: return [frag, 0] count = 0 #f,s = frag for m in mols: if m.HasSubstructMatch(f): count += 1 return [frag, count] """ Find the base fragments - those that appear in all splits Input: list of lists of fragments. Overarching list - all splits, each sublist - fragments within that split Output: fragments which are common to all fragment splits """ def base_frags(frags): # #Initial test: how many fragments do split 0 & 1 have? # set0 = set(frags[0]) # print(frags[0]) # set1 = set(frags[1]) # print("\n\n\n") # print(frags[1]) # base_frags = set0.intersection(set1) # print(base_frags) # print(len(base_frags)) #Initial step - base fragments are the initial split base_frags = frags[0] #Total number of fragments - starting with the initial fragment set total_frags = frags[0] #Statistics over number of frags frag_stats = [len(frags[0])] #Find the intersection of all further splits for i in range(1, len(frags)): print("Length of split", i, "is:", len(frags[i])) frag_stats.append(len(frags[i])) base_frags = set(frags[i]).intersection(set(base_frags)) total_frags = list(set(total_frags + frags[i])) print("Number of base fragments:", len(base_frags)) # print(base_frags) #Goal - find total number of different fragments print("Number of total fragments:", len(total_frags)) print("Fragment mean:", np.mean(frag_stats)) print("Fragment std:", np.std(frag_stats)) """ Graphs basic disributions Input: h - a dictionary of smarts strings and the number of occurances within KEGG, i: iteration of particular dictionary (e.g., 1-10) Output: pretty graphs :) """ def distribution_graph(h, i): #Calculate AUC to distinguish splits yvals = list(sorted(h.values(), reverse=True)) xvals = np.linspace(0, 1, num=len(yvals)) #area = np.trapz(yvals, dx=xvals[1]) plt.plot(xvals, yvals, label = "100 Random KEGG Compounds", color="darkgreen", linewidth=3)#"Split " + str(i) + " AUC=" + str(round(area, 2))) #Note: AUC label plt.yscale("log") plt.xscale("log") plt.xlabel("Rank-ordered Compounds") plt.ylabel("Occurances in KEGG") plt.legend plt.show() """ Convert a pickled distribution to csv format Input: File path to a pickled dictionary Output: csv file (same location) of data """ def convert_dist_toCSV(fp): # for label in ["5000cpds"]:#["1000cpds", "2000cpds", "3000cpds", "4000cpds"]:#, "5000cpds"]: # print(label) sample_frags = pickle.load(open(fp, "rb")) df = pd.DataFrame.from_dict(sample_frags, orient="index", columns=["Occurances"]) df["Fragments"] = df.index df = df.reset_index(drop=True) df.to_csv(fp[:-2] + ".csv") def main(): # # ## Read in mol objects of KEGG ## # with open("Biology/Data/kegg_smiles.txt",'r') as smiles: # mols = [Chem.MolFromSmiles(smi.strip()) for smi in smiles] # mols = [m for m in mols if m != None] ## Read in mol objects from KEGG sampling for fp in os.listdir("Technology/Data/"): mols = pickle.load(open("Technology/Data/" + fp, "rb")) # Parallel Occurances calculations pool = Pool(processes=6) # dirpath = "Biology/Data/Tests/Timeout/" # for file in os.listdir(dirpath): #For reading in all fragments # if file.endswith("_unique.p"): #ensure only unique fragment sets are counted start = time.time() # fp = dirpath + file print("Analyzing:", fp) frags = pickle.load(open("Technology/Data/" + fp, "rb")) #Load in fragments print("Analyzing", len(frags), "fragments") frag_occurances = [] frag_occurances = pool.starmap(mol_count_parallel, tqdm(zip([mols]*len(frags), frags), total=len(frags))) #Parallel occurances calculations h = {f[0]: f[1] for f in frag_occurances} #Convert list of lists into dictionary pickle.dump(h, open("Technology/Data/" + fp[:-2] + "unique.p", "wb")) #Save dictionary to new pickle file print("Time:", time.time() - start) print() # with open("Tests/Hundred_cpds/dup_100cpds_0.txt") as f: # frags.append([line.rstrip('\n') for line in f]) # # # ## Find repeatability ## # # base_frags(frags) # ## Find distribution of a fragment sample over full database ## # for label in ["1000cpds", "2000cpds", "3000cpds", "4000cpds", "5000cpds"]: # print(label) # frags = pickle.load(open("Biology/Data/KEGG_fragments_full.p", "rb")) # h = mol_count(mols, frags) # # pickle.dump(h, open("Biology/Data/KEGG_fragments_full_occurances.p", "wb")) # for f in os.listdir("Biology/Data/Tests/Timeout/"): # if f.endswith("_occurances.p"): convert_dist_toCSV("Technology/Data/" + fp[:-2] + "unique.p") # ## Find pre-made distribution over random molecule set ## # h = pd.read_csv("Tests/Hundred_cpds_random_subsampleOccurances/dup_0_occurances.csv", header=None, skiprows=1, index_col=0, squeeze=True).to_dict() # print(h) # distribution_graph(h, 0) # # plt.show() if __name__ == "__main__": main() ``` #### File: ChemAsLanguage/Word2Vect/build_KEGG_gensim.py ```python import pandas as pd from rdkit import Chem import numpy as np import re import itertools import random import os from gensim.models import Word2Vec from gensim.test.utils import get_tmpfile from gensim.models import KeyedVectors """ Return a dataframe of all KEGG data """ """ Input: the filepath (fp) to a csv file containing canonical smiles strings """ """ Output: dataframe of KEGG data, including canoncial smiles strings """ def get_KEGG_smiles(fp): df = pd.read_csv(fp) return df """ Return a list of all chemical fragments in SMARTS form """ """ Input: filepath (fp) to txt file """ """ Output: list of SMARTS fragments """ def get_chem_fragments(fp): fragments = [] with open(fp, "r") as f: for line in f: fragments.append(line.strip()) return fragments """ Return the mol representation of a given Smiles string Input: Smiles string of a compound Output: mol representation """ def get_mol_representation(smiles): return Chem.MolFromSmiles(smiles) """ Return an ordered list of all fragments present in the given compounds Input: Dataframe containing smiles strings of compounds Output: ordered list of chemical fragments """ def get_fragment_list(df, fragments): #Master list of words words = [] #Remove old line-sentence format os.remove("frags_linesentence.txt") #Loop through all molecules for index, row in df.iterrows(): print(index) #store fragments present in each molecule mol_words = [] #Turn smiles into mol format mol = get_mol_representation(row["Original SMILES"]) #find fragments present for f in fragments: try: if mol.HasSubstructMatch(Chem.MolFromSmarts(f)): mol_words.append(f) except: continue #Randomize order of fragments (because what is order in a compound?) random.shuffle(mol_words) words.append(mol_words) #Make a file of the fragements within each molecule - easier to train gensim model on for w in mol_words: print(w, end=" ", file=open("frags_linesentence.txt", "a")) print(file=open("frags_linesentence.txt", "a")) def main(): #Read in KEGG data df = get_KEGG_smiles("kegg_data.csv") #Read in chem fragments fragments = get_chem_fragments("frags.txt") ### TEST on a sample of KEGG ### ordered_frags = get_fragment_list(df, fragments) print(ordered_frags) # for frag in ordered_frags: # print(frag) # #Build Word2Vec model on ordered fragments word2vec = Word2Vec(corpus_file = "frags_linesentence.txt", min_count=2) ## MODEL TESTING ## v1 = word2vec.wv["[#6]-[#6]"] print(v1) sim_frags = word2vec.wv.most_similar("[#6]-[#6]") print(sim_frags) #Save trained model word_vectors = word2vec.wv #fname = get_tmpfile("vectors_01.kv") word_vectors.save("vectors_fullKEGG.kv") if __name__ == "__main__": main() ``` #### File: Word2Vect/DEGREES/find_degrees.py ```python import pandas as pd from rdkit import Chem import numpy as np import json from gensim.models import Word2Vec from gensim.test.utils import get_tmpfile from gensim.models import KeyedVectors from sklearn.manifold import TSNE import matplotlib.pyplot as plt import seaborn as sns import networkx as nx import re """ Load trained Word2Vec model - Gensim on full KEGG Input: None Output: trained word2vec model """ def load_w2v(): return KeyedVectors.load("../vectors_fullKEGG.kv", mmap="r") """ Return a list of all chemical fragments in SMARTS form """ """ Input: filepath (fp) to txt file """ """ Output: list of SMARTS fragments """ def get_chem_fragments(fp): fragments = [] with open(fp, "r") as f: for line in f: fragments.append(line.strip()) return fragments """ Find the fragments within a list of smiles strings Input: SMILES string Output: List of lists of fragments within smiles strings """ def find_frags_within_SMILES(cpd_list, smiles, frags): cpd_frags = [] removed_cpds = [] i = 0 for smi in smiles: #Turn AA into mol file mol = Chem.MolFromSmiles(smi) #Loop through all fragments to find occurances within AAs individual_frags = [] for f in frags: try: #If a fragment is found in an AA, add it to the individual frags list if mol.HasSubstructMatch(Chem.MolFromSmarts(f)): individual_frags.append(f) except: removed_cpds.append(cpd_list[i]) pass #Add each individual AA to AA frags - remove cpd_frags.append(list(set(individual_frags))) i += 1 return cpd_frags, [x for x in cpd_list if x not in removed_cpds] """ Find all SMILES sequences for a random subset of KEGG Input: kegg dataframe, number of samples to be collected Output: a list of smiles strings from the random sample """ def find_random_SMILES(kegg_df, n_samples, cpds_to_ignore): #Remove all compounds which are being classified kegg_df = kegg_df[~kegg_df["MOL file"].isin(cpds_to_ignore)] #Remove all empty SMILES values kegg_df = kegg_df.dropna(subset=["Original SMILES"]) kegg_df = kegg_df[kegg_df["Original SMILES"] != ""] #Randomly sample KEGG sub_df = kegg_df.sample(n_samples) #Return smiles strings return sub_df["Original SMILES"].tolist(), sub_df["MOL file"].tolist() """ Find & add all fragment vectors within a compound Goal is to have a single vector for each compound Inputs: trained word2vec model, list of lists of fragments within amino acids Outputs: one vector (sum of all fragment vectors) per amino acid """ def add_frag_vectors(cpd_list, word2vec, frags): vectors = [] removed_cpds = [] i = 0 #loop through amino acids for cpd in frags: vs = [] #Loop through fragments within each amino acid, add vectors to a list for f in cpd: try: vs.append(word2vec[f]) except: pass #Only sum vectors if vectors were present in the compound if vs: vectors.append(np.sum(vs, axis=0).astype("float64")) else: removed_cpds.append(cpd_list[i]) #Ensure the correct compound gets removed i+=1 return vectors, [x for x in cpd_list if x not in removed_cpds] """ Run TSNE visualization Input: dataframe of compoud vectors (df["label"] is the compound label) Output: Visualization of the trained vectors """ def TSNE_visual(df, n_categories): #find values to pass to TSNE data_values = df[list(range(0,100))].values tsne = TSNE(n_components=2, verbose=1, perplexity=40, n_iter=300) tsne_results = tsne.fit_transform(data_values) df["tsne-2d-one"] = tsne_results[:,0] df["tsne-2d-two"] = tsne_results[:,1] pal = sns.color_palette("hls", n_categories) plt.figure(figsize=(16,10)) sns.scatterplot( x="tsne-2d-one", y="tsne-2d-two", hue="label", palette=sns.color_palette(palette=pal), data=df, legend="full" ) plt.show() """ Find all compounds associated with a particular class of compounds within KEGG Input: dataframe of KEGG data, trained W2V model, fragment list, label of class to search for Output: dataframe of vectors associated with a particular class """ def get_class_dataframe(kegg_df, word2vec, frags, class_label, cpd_classes): #Find all compound IDs associated with a particular label cpd_ids = [k for k,v in cpd_classes.items() if v == class_label] cpd_smiles = kegg_df[kegg_df["MOL file"].isin(cpd_ids)]["Original SMILES"].tolist() class_frags = find_frags_within_SMILES(cpd_smiles, frags) vectors = add_frag_vectors(word2vec, class_frags) class_df = pd.DataFrame(vectors) class_df["label"] = [class_label] * len(class_df) print("Number of", class_label, "compounds:", len(class_df)) return class_df """ Builds a KEGG network, finds the central nodes, calculates distances between all nodes Input: None (assumes newKEGG_reactionEdges.json exists within the current directory Output: networkx graph of KEGG (unipartite, consisting only of compounds), the central node of the network, distances between all cpds """ def KEGG_network(): #Load KEGG json file f = open("newKEGG_reactionEdges.json", "r") kegg = json.load(f) #Find all reaction-compound pairs rxn_list = [] cpd_list = [] cpd_rxn_pairs = [] #loop through both products and substrates for option in ["products", "substrates"]: for rxn in kegg[option]: #add each reaction to a master list rxn_list.append(rxn) for cpd in kegg["products"][rxn]: #add each compound to a master list cpd_list.append(cpd) #create a tuple of each cpd_rxn pair, add them to a master list cpd_rxn_pairs.append(tuple([cpd, rxn])) #remove duplicates of reactions and compounds rxn_list = list(set(rxn_list)) cpd_list = list(set(cpd_list)) #Create a bipartite graph using reactions, compounds, and the cpd/rxn pair KEGG_graph = nx.Graph() KEGG_graph.add_nodes_from(rxn_list, bipartite=0) KEGG_graph.add_nodes_from(cpd_list, bipartite=1) KEGG_graph.add_edges_from(cpd_rxn_pairs) #Create a project of only compounds KEGG_cpd_graph = nx.bipartite.projected_graph(KEGG_graph, cpd_list) #Find the central node of the largest connected component lcc = max(nx.connected_components(KEGG_cpd_graph), key=len) lcc_graph = KEGG_cpd_graph.subgraph(lcc) ## CENTER(s) ## centers = ['C00006', 'C00014', 'C00025', 'C00001', 'C00011'] #Calculate distances between all nodes distances = dict(nx.all_pairs_shortest_path_length(KEGG_cpd_graph)) return KEGG_cpd_graph, centers, distances """ Find the maximum distance between a given compound and the centers of the graph Input: Compound, centers of the largest connected component within the graph Output: Distance (int), or "NC" if not connected """ def find_distance(cpd, centers, distances): d = [] #Find the distance between the "centers" of the largest connected component for c in centers: try: d.append(distances[c][cpd]) except: pass #If the random compound is not in the largest connected component, labeld "NC" (not connected) if not d: return "NC" #Otherwise, label with the max distance from the center else: return str(max(d)) def main(): #Load w2v model, kegg dataframe, and all fragments word2vec = load_w2v() kegg_df = pd.read_csv("../kegg_data.csv") frags = get_chem_fragments("../frags.txt") KEGG_cpd_graph, centers, distances = KEGG_network() ## RANDOM CPDS ## #Find 10 of them, ignoring no compounds (initially) rand_cpds, cpd_list = find_random_SMILES(kegg_df, 1000, []) rand_frags, cpd_list = find_frags_within_SMILES(cpd_list, rand_cpds, frags) rand_vectors, cpd_list = add_frag_vectors(cpd_list, word2vec, rand_frags) rand_df = pd.DataFrame(rand_vectors) rand_df["Cpds"] = cpd_list #Label by max distance from central compound cpd_distance = [] for index, row in rand_df.iterrows(): cpd_distance.append(find_distance(re.sub(".mol", "", row["Cpds"]), centers, distances)) rand_df["label"] = cpd_distance #Remove all "NC" labels for clearer interpretation sub_df = rand_df[rand_df["label"] != "NC"] #print("Number of random vectors:", len(rand_df)) #Run TSNE #TSNE_visual(rand_df, len(rand_df["label"].unique())) TSNE_visual(sub_df, len(sub_df["label"].unique())) if __name__ == "__main__": main() ``` #### File: Word2Vect/DISTRIBUTIONS/common_fragments.py ```python import sys from rdkit import Chem from itertools import combinations from random import random, shuffle, sample from collections import defaultdict from rdkit.Chem import MCS import operator import datetime #from timeout import timeout from math import factorial from tqdm import tqdm import json import pandas as pd import matplotlib.pyplot as plt from tqdm import tqdm import os import numpy as np from scipy import stats """ Adopted from Cadaddeu 2014 """ def binomial(n,m): return factorial(n) / (factorial(m) * factorial(n-m)) def time(): return datetime.datetime.now().strftime("%Y-%m-%d %H:%M") def findmcs(p,q, t): #@timeout(2) def fmcstimeout(p,q): return MCS.FindMCS([p,q], timeout=1).smarts try: return fmcstimeout(p,q) except: print("MCS of", p, "and", q, "timed out.") pass def fragments(mols, t): s=[] count = float(binomial(len(mols),2)) i = 0 percent = -1 for p,q in tqdm(combinations(mols,2)): try: s.append(findmcs(p,q, t)) except: pass return set(s) def loadSmarts(fn): with open(fn,'r') as smartfile: return set(smart.strip() for smart in smartfile) def sameMolecule(a,b): def same_or_timeout(a,b): if a[1] == b[1] : return True #string compare if a[0].GetNumAtoms() != b[0].GetNumAtoms() : return False if a[0].GetNumBonds() != b[0].GetNumBonds() : return False return a[0].HasSubstructMatch(b[0]) and b[0].HasSubstructMatch(a[0]) try : res = same_or_timeout(a,b) except: res = False return res def UniqSmarts(frags): result = set() frags = set((g,t) for (g,t) in frags if g != None) # was successfully converted to smarts while frags: f,s = frags.pop() result.add((f,s)) frags = set((g,t) for (g,t) in frags if not (sameMolecule((f,s),(g,t)))) # check if they are the same or not. check also on the string to speed up return result """ Find specific compound classes given the KEGG Brite json file, given a specific labl Input: filepath to the KEGG BRITE classification, KEGG compound list (including smiles), classification label to find Output: SMILES strings associated with each compound class """ def cpd_classes(brite_fp, cpd_fp, label): with open(brite_fp) as json_file: br_json = json.load(json_file) #Create a dictionary with each compound having the appropriate label classes = [] cpd_class = {} for key1 in br_json["children"]: classes.append(key1["name"]) for key2 in key1["children"]: for key3 in key2["children"]: for cpd in key3["children"]: cpd_class[cpd["name"][:6]] = key1["name"] #print(cpd["name"][:6] + " " + key1["name"]) #Read in all KEGG compound labels df = pd.read_csv(cpd_fp) #Find & return all smiles strings associated with a specific label cpds = [k for k, v in cpd_class.items() if v == label] return df[df["C"].isin(cpds)]["S"].tolist() """ Read in a specific percentile of universal compounds (5 - top 5%, 10 - top 10%, etc...) Input: percentile of compound (must be 5, 10, or 15) Output: list of smiles corresponding to unviversal compounds """ def percentiles(p): #Read in compound labels cpds = [] if p == 5: with open("95percentile.txt") as f: cpds = [line.rstrip("\n") for line in f] elif p == 10: with open("90percentile.txt") as f: cpds = [line.rstrip("\n") for line in f] else: with open("85percentile.txt") as f: cpds = [line.rstrip("\n") for line in f] #Read in all KEGG compound smiles data df = pd.read_csv("../chiral_molweight_formula_labels.csv") #Return list of smiles smiles = list(map(str, df[df["C"].isin(cpds)]["S"].tolist())) return smiles """ Create a list of mol representations (from rdkit) from a list of smarts strings Note: already unique (common_fragments.py takes care of removing duplicates) Input: a list of (mol, smarts) representations Output: list of sets: (mol representations, smarts string) """ def mol_from_smarts(smarts): mols = [] for m, s in smarts: mols.append(m) return mols """ Creates a histogram of occurances of fragments within the overall cpd distribution Input: mols - mol representations of overall distribution frags - fragments found within KEGG Output: dictionary containing number of time a fragment appears in the overall distribution {smarts:occurances} """ def mol_count(mols, frags): h = {} for (f,s) in tqdm(frags): h[s] = 0 for m in mols: if m.HasSubstructMatch(f): h[s] += 1 return h """ Find the base fragments - those that appear in all splits Input: list of lists of fragments. Overarching list - all splits, each sublist - fragments within that split Output: fragments which are common to all fragment splits """ def base_frags(frags): #Initial step - base fragments are the initial split base_frags = frags[0] #Total number of fragments - starting with the initial fragment set total_frags = frags[0] #Statistics over number of frags frag_stats = [len(frags[0])] #Find the intersection of all further splits for i in range(1, len(frags)): print("Length of split", i, "is:", len(frags[i])) frag_stats.append(len(frags[i])) base_frags = set(frags[i]).intersection(set(base_frags)) total_frags = list(set(total_frags + frags[i])) print("Number of base fragments:", len(base_frags)) # print(base_frags) #Goal - find total number of different fragments print("Number of total fragments:", len(total_frags)) print("Fragment mean:", np.mean(frag_stats)) print("Fragment std:", np.std(frag_stats)) """ Find all smiles strings associated with a particular domain Input: Domain from ["Eukarya", "Bacteria", "Archaea"] Output: list of all smiles strings associated with that particular domain """ def domain_smiles(domain): fp = "" if domain == "Eukarya": fp = "eukarya_cpds.csv" elif domain == "Bacteria": fp = "bacteria_cpds.csv" elif domain == "Archaea": fp = "archaea_cpds.csv" domain_df = pd.read_csv(fp) #kegg_data_curated is the same as chiral_molweight_formula_labels, containing smiles in the "S" column kegg_df = pd.read_csv("kegg_data_curated.csv") #Assumes kegg_data_curated.csv is in above directory #Return smiles strings (in list object) of that particular domain return kegg_df[kegg_df["C"].isin(domain_df["compounds"])].dropna(subset=["S"])["S"].tolist() """ Find all smiles compounds associated with minerals (COD database subset) Input: filepath to csv file containing a subset of the COD database Output: List of smiles """ def mineral_smiles(fp): df = pd.read_csv(fp) return df["SMI"].tolist() """ Graphs basic disributions Input: h - a dictionary of smarts strings and the number of occurances within KEGG, i: iteration of particular dictionary (e.g., 1-10); l - label of graph, rev - True/False distinction for reversability of sorting, fp - filepath for savefig, title - title for plot Output: pretty graphs :) """ def distribution_graph(h, i, l, rev, fp, title): #Calculate AUC to distinguish splits yvals = list(sorted(h.values(), reverse=rev)) xvals = np.linspace(0, 1, num=len(yvals)) area = np.trapz(yvals, dx=xvals[1]) plt.plot(xvals, yvals, linewidth=3, label=str(l) + " AUC=" + str(round(area, 2))) #Note: AUC label plt.yscale("log") plt.xscale("log") plt.xlabel("Rank-ordered Compounds") plt.ylabel("Occurances") plt.title(title) plt.legend() """ RUNTIME NOTES: argv[1] = random molecues in SMILES format argv[2] = output filepath (ex: "Tests/Hundred_cpds/") argv[3] = figure label argv[2] = more molecules in SMART format (optional?) - REMOVED FOR NOW """ if __name__ == "__main__": #Input file - list of random molecules in SMILES format print("Getting (database) compounds from", sys.argv[1]) #Make directory (if it does not already exist) if not os.path.isdir(sys.argv[2]): os.mkdir(sys.argv[2]) # ## Compound Classes ## # smiles = cpd_classes("../br08001.json", "../chiral_molweight_formula_labels.csv", "Hormones and transmitters") # mols = [Chem.MolFromSmiles(smi.strip()) for smi in smiles] # mols = [m for m in mols if m != None] # print("Retieved",len(mols),"random molecules") # ## Percentiles ## # #Input should be 5, 10, or 15 to refer to top 5%, 10%, and 15% of universal compounds # smiles = percentiles(5) # mols = [Chem.MolFromSmiles(smi.strip()) for smi in smiles] # mols = [m for m in mols if m != None] # print("Retieved",len(mols),"classified compounds") # ## Domains ## # #Goal - have either Eukarya, Bacteria, or Archaea compounds (general compounds) be used for fragments # smiles = domain_smiles("Eukarya") # mols = [Chem.MolFromSmiles(smi.strip()) for smi in smiles] # mols = [m for m in mols if m != None] # print("Retieved",len(mols),"random molecules") ## Minerals #Goal - see mineral occurance, both within minerals themselves and across KEGG (for now) smiles = mineral_smiles("COD_SMI_IMA_subset218.csv") mols = [Chem.MolFromSmiles(smi.strip()) for smi in smiles] mols = [m for m in mols if m != None] print("Retieved",len(mols),"random molecules") #Get all of KEGG with open(sys.argv[1],'r') as db_smiles: db_mols = [Chem.MolFromSmiles(smi.strip()) for smi in db_smiles] db_mols = [m for m in db_mols if m != None] print("Retieved",len(db_mols),"base molecules") #print("Aquiring random molecule fragments") # (and combining with molecules from", sys.argv[2]) ## DUPLICATION ## for i in range(1): #shuffle(mols) #Input file 2 - list of molecules in SMART format (still not sure what this adds...) frags = [] #Fragments - determines different fragments within the molecules. # # NOTE: use a subset of full random mols (mols) or class_mols, as needed #mols = sample(db, 100) #mols = db_mols #Note: for full database test # for t in [0.01, 0.1, 1, 10, 100]: #Note: testing timeout for MCS algorithm t = 0.1 #timeout time for MCS - 0.1 for s in (fragments(mols, t)): # either mols or a sample, depending on if a subsample is taken or not try: frags.append((Chem.MolFromSmarts(s),s)) except: print("AAAGGGHHH",s,"failed") print("uniquifying") #Make sure they are unique frags=UniqSmarts(frags) print("Found", len(frags), "many fragments") h = defaultdict(int) count = float(len(mols)) #Construct histogram over full random molecule set print("Constructing histogram of fragments") for m in tqdm(mols): #mol_sample or mols, depending on if a subsample is taken or not for (f,s) in frags: if m.HasSubstructMatch(f): h[s] += 1 print("Writing out histogram V" + str(i)) #Output file - only smiles fragments with open(sys.argv[2] + str(i) + ".txt",'w') as out: #NOTE: CHANGED THIS TO argv[2] for k,v in sorted(h.items(), key=operator.itemgetter(1)): print(k, file=out) #Output file 2 - csv containing smiles fragments & occurances within random molecule set with open(sys.argv[2] + str(i) + "_sampleOccurances.csv",'a') as out: #NOTE: CHANGED THIS TO argv[2] print("Frags,Occurances", file=out) for k,v in sorted(h.items(), key=operator.itemgetter(1)): print(str(k) + "," + str(v), file=out) ## DISTRIBUTION ANALYSIS ## # ## Find repeatability ## #Note: if more than one loop is done, this (and everything below) should be outside # base_frags(frags) ## Find distribution over full database ## #Find histogram of frag occurances over entire database h = mol_count(db_mols, frags) #Graph things (values, split, label, reverse T/F, plot filepath, plot title) distribution_graph(h, i, sys.argv[3], True, sys.argv[2], sys.argv[3].replace("_", " ")) with open(sys.argv[2] + str(i) + "_fullOccurances.csv",'a') as out: #NOTE: CHANGED THIS TO argv[2] print("Frags,Occurances", file=out) for k,v in sorted(h.items(), key=operator.itemgetter(1)): print(str(k) + "," + str(v), file=out) ## Find pre-made distribution over random molecule set ## h = pd.read_csv(sys.argv[2] + str(i) + "_fullOccurances.csv", header=None, skiprows=1, index_col=0, squeeze=True).to_dict() distribution_graph(h, 0, sys.argv[3], True, sys.argv[2] + "subset_only", sys.argv[3].replace("_", " ") + " Subset Only") plt.savefig(sys.argv[2] + "distribution_graph") plt.close() ``` #### File: Word2Vect/DISTRIBUTIONS/mineral_parse.py ```python from tqdm import tqdm def main(): #Open mineral database for line in tqdm(open("all_cod_smiles.txt")): print(line.split("\t")[0], file=open("mineral_smiles.txt", "a")) if __name__ == "__main__": main() ``` #### File: ChemAsLanguage/Word2Vect/transpose_matrix.py ```python import pandas as pd import numpy as np def main(): #read in V1 coocurrance df = pd.read_csv("frags_coocurrance_V1.csv") #convert df to numpy array (drop first column, convert) sub_df = df.drop(df.columns[0], axis=1) X = sub_df.to_numpy() print(X) #transpose matrix X = X + X.T - np.diag(np.diag(X)) #print(X) #Write back out to csv file df_transposed = pd.DataFrame(data = X, index = df.columns[1:], columns = df.columns[1:]) #print(df_transposed) df_transposed.to_csv("frags_coocurrance_full.csv") if __name__ == "__main__": main() ```
{ "source": "jfmalloy1/Patents", "score": 3 }
#### File: jfmalloy1/Patents/assemblyCalcs_percentiles.py ```python import assemblycalculator as ac import multiprocessing as mp import pickle import pandas as pd import os def calculate_assembly_MC(inchi): """ Calculate the assembly value of an inchi string using the monteCarlo assembly method Args: month (string): YYYY-MM description of the month where the compound was sampled from inchi (string): inchi representation of the SureChemBL compound Returns: dict: values of month, inchi, and the assembly index """ ai = ac.calculate_ma(inchi, 120, "monte-carlo", num_frags_hist=10000, path_samples=20000) return {"inchi": inchi, "ai": ai} def calculate_assembly_fragment(inchi): """ Calculate the assembly value of an inchi string using the fragment assembly method Args: month (string): YYYY-MM description of the month where the compound was sampled from inchi (string): inchi representation of the SureChemBL compound Returns: dict: values of month, inchi, and the assembly index """ ai = ac.calculate_ma(inchi, method="fragment", timeout=300) return {"inchi": inchi, "ai": ai} def read_cpds(fp): """ Read inchi compounds from csv files Args: fp (string): Relative file path to csv file with SureChemBL cpd data Returns: list: list of all inchis contained in the csv file """ data = pd.read_csv(fp) return data["InChI"].tolist() def get_changing_percentileFiles(side, precision): """ Find the files which correspond to change percentiles Args: side (string): min/max, referring to the largest negative/positive changes, respectively precision (string): string representation of percentile precision Returns: list: list of file names which fit the appropriate criteria """ files = [] for f in os.listdir("Data/Cpd_Data/"): if f.startswith("ids_change_" + side + "Percentile_" + precision) and f.endswith(".csv"): files.append(f) return files def get_top_percentileFiles(): """ Returns the csv files corresponding to compounds above the 99.99th percentile of total attachment values Returns: list: list of file names which fit the appropriate criteria """ files = [] for f in os.listdir("Data/Cpd_Data/"): if f.startswith("ids_above99_99percentile"): files.append(f) return files def calculate_MAs(files): """ Wrapper function for MA calculation Args: files (list): list of all files which contain relevant data Returns: Writes a file containing inchis linked with assembly values """ for f in files: cpds = read_cpds("Data/Cpd_Data/" + f) #Set up parallelization - a bit of overhead for setting it up, but that's fine pool = mp.Pool(64) #Calculate assembly values using MC method assemblies = pool.map(calculate_assembly_MC, cpds) pool.close() pickle.dump(assemblies, file=open("Data/Cpd_Data/" + f[:-4] + "_assembly.p", "wb")) def calculate_largeMAs(f): """ Calculates the MA of compounds with a Monte Carlo values >= 40 using the "fragment" method - also a rough approximation, but is better for large values Args: f (string): file containing inchi strings & """ data = pickle.load(file=open("Data/Cpd_Data/" + f, "rb")) large_MA_cpds = [] for cpd in data: if cpd["ai"] >= 40: large_MA_cpds.append(cpd["inchi"]) print("----- " + f + " -----") print(large_MA_cpds) print() pool = mp.Pool(64) assemblies = pool.map(calculate_assembly_fragment, large_MA_cpds) pool.close pickle.dump(assemblies, file=open("Data/Cpd_Data/" + f[:-2] + "_large.p", "wb")) def main(): """ Steps 1. Read in compounds from a specific file 2. MC assembly algorithm 3. Save calculations using name + "assembly" - link inchi & MA 4. Link assembly values to csv file (eventually, probably do this in a separate script) """ # ### SMALLEST & LARGEST CHANGE VALUES ### # #Options: min/max, 0.1/0.01 # for option in [("min", "0.1"), ("min", "0.01"), ("max", "0.1"), # ("max", "0.01")]: # files = get_changing_percentileFiles(option[0], option[1]) # calculate_MAs(files) # ### TOP ATTACHMENT VALUES ### # files = get_top_percentileFiles() # calculate_MAs(files) for pair in [(1980, 1984), (1985, 1989), (1990, 1994), (1995, 1999), (2000, 2004), (2005, 2009), (2010, 2014), (2015, 2019)]: f = "ids_above99_99percentile" + str(pair[0]) + "_" + str( pair[1]) + "cpdData_assembly.p" calculate_largeMAs(f) if __name__ == "__main__": main() ``` #### File: jfmalloy1/Patents/cpd_analysis.py ```python import pickle import pandas as pd from tqdm import tqdm import os import heapq import scipy.stats as stats from random import sample def build_cpd_df(fp): """ Takes 29 separate compound data files and combines them into a single pandas dataframe for ease of access Args: fp (string): Filepath to SureChemBL data files (assuming G drive goes to jmalloy3 Google Account) Returns: None - but does write a pickled dataframe to SureChemBL_Patents/Cpd_Data/ directory """ dfs = [] for f in tqdm(os.listdir(fp)): if f.endswith(".txt"): dfs.append(pd.read_csv(fp + f, sep="\t", header=0)) df = pd.concat(dfs, ignore_index=True) print(df) pickle.dump(df, file=open(fp + "SureChemBL_allCpds.p", "wb")) del df def find_highest_degrees(df, n, start, stop): """ Finds the n highest-degree compounds within a specific date range Saves various data associated with those n comopunds - smiles, inchi, inchikey, degree, preferential attachment value Args: df (pandas dataframe): dataframe containing all SureChemBL compounds n (int): the number of highest-degree compounds to select start (int): 1st year of the range stop (int): last year of the range """ print("----------", start, stop, "----------") #Finding the top 10 preferential attachment compounds (from 1980-1984 as a test) full_id_degrees = pickle.load(file=open( "G:\\Shared drives\\SureChemBL_Patents\\Degrees\\full_id_degrees_" + str(start) + "_" + str(stop) + ".p", "rb")) pref_attach_dict = pickle.load(file=open( "G:\\Shared drives\\SureChemBL_Patents\\pref_attach_dict_" + str(start) + "_" + str(stop) + ".p", "rb")) #Find n compounds with largest degree highest_degree_cpds = heapq.nlargest(n, full_id_degrees, key=full_id_degrees.get) highest_degree_cpds_df = df[df["SureChEMBL_ID"].isin(highest_degree_cpds)] pref_attach_values = list(pref_attach_dict.values()) #Extra information to be added to the csv output file degrees = [] pref_attach_highestCpd_values = [] pref_attach_percentiles = [] for cpd in tqdm(highest_degree_cpds_df["SureChEMBL_ID"]): #Degree of compound degrees.append(full_id_degrees[cpd][-1]) #Preferential attachment value pref_attach_highestCpd_values.append(pref_attach_dict[cpd]) #Percentile of preferential attachment value pref_attach_percentiles.append( stats.percentileofscore(pref_attach_values, pref_attach_dict[cpd])) highest_degree_cpds_df["degree"] = degrees highest_degree_cpds_df["pref_attach_value"] = pref_attach_highestCpd_values highest_degree_cpds_df["pref_attach_percentile"] = pref_attach_percentiles highest_degree_cpds_df.to_csv( "G:\\Shared drives\\SureChemBL_Patents\\Cpd_Data/highest_degree_data_" + str(start) + "_" + str(stop) + "_1000.csv") print() def find_llanos_cpds(fp, df): """ Tests various compounds found in Llanos et al (2019) in SureChemBL data Llanos et al used Reaxys data to find the most popular compounds. This checks where those compounds appear, if at all, in SureChembL patent data Args: df (pandas dataframe): dataframe of all SureChemBL chemistry """ cpds_1980_2015_inchi = { "acetic anhydride": "InChI=1S/C4H6O3/c1-3(5)7-4(2)6/h1-2H3", "methanol": "InChI=1S/CH4O/c1-2/h2H,1H3", "methyl iodide": "InChI=1S/CH3I/c1-2/h1H3", "diazomethane": "InChI=1S/CH2N2/c1-3-2/h1H2", "formaldehyde": "InChI=1S/CH2O/c1-2/h1H2", "benzaldehyde": "InChI=1S/C7H6O/c8-6-7-4-2-1-3-5-7/h1-6H", "copper(II) oxide": "InChI=1S/Cu.O", "ethanol": "InChI=1S/C2H6O/c1-2-3/h3H,2H2,1H3", "benzoyl chloride": "InChI=1S/C7H5ClO/c8-7(9)6-4-2-1-3-5-6/h1-5H", "carbon monoxide": "InChI=1S/CO/c1-2", "water (2000)": "InChI=1S/H2O/h1H2", "Trifluoroacetic acid (2000)": "InChI=1S/C2HF3O2/c3-2(4,5)1(6)7/h(H,6,7)", "Phenylacetylene (2000)": "InChI=1S/C8H6/c1-2-8-6-4-3-5-7-8/h1,3-7H", "benzyl bromide (2000)": "InChI=1S/C7H7Br/c8-6-7-4-2-1-3-5-7/h1-5H,6H2" } #Find stats for Llanos compounds - use 2015 data for stats (I really need to make a consensus graph) full_id_degrees = pickle.load(file=open( "G:\\Shared drives\\SureChemBL_Patents\\Degrees\\full_id_degrees_2015_2019.p", "rb")) pref_attach_dict = pickle.load(file=open( "G:\\Shared drives\\SureChemBL_Patents\\pref_attach_dict_2015_2019.p", "rb")) pref_attach_values = list(pref_attach_dict.values()) #Loop through Llanos compounds with open(fp + "llanos_cpds.csv", "a") as f: f.write( "name,inchi,SureChemBL_ID,degree,pref_attach_value,pref_attach_percentile\n" ) for name, inchi in cpds_1980_2015_inchi.items(): s = df[df["InChI"] == inchi] if not s.empty: #if SureChemBL holds that compound, save id & stats #Degree of compound degree = full_id_degrees[s.iloc[0]["SureChEMBL_ID"]][-1] #Preferential attachment value pref_attach_value = pref_attach_dict[s.iloc[0]["SureChEMBL_ID"]] #Percentile of preferential attachment value pref_attach_percentile = stats.percentileofscore( pref_attach_values, pref_attach_dict[s.iloc[0]["SureChEMBL_ID"]]) f.write(name + ",\"" + inchi + "\"," + s.iloc[0]["SureChEMBL_ID"] + "," + str(degree) + "," + str(pref_attach_value) + "," + str(pref_attach_percentile) + "\n") else: #if not, no name nor stats f.write(name + ",\"" + inchi + "\",na,na,na,na\n") def build_month_increments(start, stop): """ Build all monthly increments from the start year to stop year in the format YEAR-MONTH Args: start (int): start year of increments stop (int): end year of increments Returns: list: list of strings holding the YEAR-MONTH increments """ months = [] while start <= stop: for month in [ "01", "02", "03", "04", "05", "06", "07", "08", "09", "10", "11", "12" ]: months.append(str(start) + "-" + month) start += 1 return months def sample_compounds_unique(n, months, cpds, cpd_df): """ Sample compounds which are uniquely added in a specific month This uniquess is determined by determing when a compound is added in a month and has not been present in the patent record before that month. Args: n (int): Number of compounds to sample every month months (list): list of months to sample from cpds (list): all SureChemBL IDs of compounds added in a specific month cpd_df (pandas dataframe): Master dataframe of all compounds """ sample_inchis = {} print("----- Sampling unique compounds -----") for i in tqdm(range(len(months))): offset = 216 #Account for starting in 1980 instead of 1962 #Only sample if there are more than 1000 compounds if len(cpds[i+offset]) > n: sample_cpds = sample(cpds[i+offset], n) else: sample_cpds = cpds[i+offset] sub_df = cpd_df[cpd_df["SureChEMBL_ID"].isin(sample_cpds)] sample_inchis[months[i]] = list(sub_df["InChI"]) print("\n----- Saving compounds -----") pickle.dump(sample_inchis, file=open("Data/sample_inchi_1000_NEW.p", "wb")) def sample_compounds(n1, n2, months, cpd_df): """ Sample n compounds from each month, initially with overlap allowed //TODO: fix so that only unique-to-that-month compounds are sampled Args: n (int): number of compounds to sample n2 (int): another number of compounds to sample months (string): description of month, e.g. 1980-01 cpd_df (pandas dataframe): contains information for each compound in SureChemBL, including InChIKey Returns: list: list of all randomly sampled compounds (in inchi?) """ #Inchis for all sampled compounds sample_inchis_n1 = {} sample_inchis_n2 = {} print("----- Sampling Compounds ------\n") for month in tqdm(months): cpds = pickle.load(file=open( "G:\\Shared drives\\SureChemBL_Patents\\CpdPatentIdsDates\\unique_cpds_" + month + ".p", "rb")) sample_cpds_n1 = sample(cpds, n1) sample_cpds_n2 = sample(cpds, n2) sub_df = cpd_df[cpd_df["SureChEMBL_ID"].isin(sample_cpds_n1)] sample_inchis_n1[month] = list(sub_df["InChI"]) sub_df = cpd_df[cpd_df["SureChEMBL_ID"].isin(sample_cpds_n2)] sample_inchis_n2[month] = list(sub_df["InChI"]) #Save memory by removing cpd datframe and monthly compounds del (cpd_df) del (cpds) #Save sampled inchis to pickle files print("\n----- Saving Data -----") pickle.dump(sample_inchis_n1, file=open("Data/sample_inchi_100.p", "wb")) pickle.dump(sample_inchis_n2, file=open("Data/sample_inchi_1000.p", "wb")) def main(): # ### Highest Degree compounds ### data_fp = "G:\\Shared drives\\SureChemBL_Patents\\Cpd_Data\\" # # build_cpd_df(data_fp) #NOTE: only needs to be run once cpd_df = pickle.load(file=open(data_fp + "SureChemBL_allCpds.p", "rb")) print(cpd_df.columns) # ### Statistics over highest degree compounds ### # n = 1000 #Number of compounds to find # for range in [(1980, 1984), (1985, 1989), (1990, 1994), (1995, 1999), # (2000, 2004), (2005, 2009), (2010, 2014), (2015, 2019)]: # find_highest_degrees(cpd_df, n, range[0], range[1]) # ### Testing Llanos et al (2019) compounds ### # find_llanos_cpds(data_fp, cpd_df) ### Sampling compounds for MA analysis ### month_unique_cpds = pickle.load(file=open( "G:\\Shared drives\\SureChemBL_Patents\\CpdPatentIdsDates\\unique_cpds_AllMonths.p", "rb")) sample_compounds_unique(1000, build_month_increments(1980, 2019), month_unique_cpds, cpd_df) # sample_compounds(100, 1000, build_month_increments(1980, 2019), cpd_df) ### MA Analysis ### if __name__ == "__main__": main() ```
{ "source": "jfmatth/openshift-django16", "score": 2 }
#### File: openshift-django16/mysite/views.py ```python from django.views.generic import View from django.http import HttpResponse class Index(View): def get(self, request, *args, **kwargs): return HttpResponse('django 1.6 on Openshift') ```
{ "source": "jfmcoronel/django-auth-lti", "score": 3 }
#### File: django_auth_lti/tests/test_verification.py ```python from unittest import TestCase from unittest.mock import MagicMock from django_auth_lti.verification import is_allowed from django.core.exceptions import ImproperlyConfigured, PermissionDenied class TestVerification(TestCase): def test_is_allowed_config_failure(self): request = MagicMock(LTI={}) allowed_roles = ["admin", "student"] self.assertRaises(ImproperlyConfigured, is_allowed, request, allowed_roles, False) def test_is_allowed_success(self): request = MagicMock(LTI={"roles": ["admin"]}) allowed_roles = ["admin", "student"] user_is_allowed = is_allowed(request, allowed_roles, False) self.assertTrue(user_is_allowed) def test_is_allowed_success_one_role(self): request = MagicMock(LTI={"roles": ["admin"]}) allowed_roles = "admin" user_is_allowed = is_allowed(request, allowed_roles, False) self.assertTrue(user_is_allowed) def test_is_allowed_failure(self): request = MagicMock(LTI={"roles":[]}) allowed_roles = ["admin", "student"] user_is_allowed = is_allowed(request, allowed_roles, False) self.assertFalse(user_is_allowed) def test_is_allowed_failure_one_role(self): request = MagicMock(LTI={"roles":[]}) allowed_roles = "admin" user_is_allowed = is_allowed(request, allowed_roles, False) self.assertFalse(user_is_allowed) def test_is_allowed_exception(self): request = MagicMock(LTI={"roles":["TF"]}) allowed_roles = ["admin", "student"] self.assertRaises(PermissionDenied, is_allowed, request, allowed_roles, True) ```
{ "source": "jfm-data/NHLwagers", "score": 3 }
#### File: jfm-data/NHLwagers/streamlit_OU.py ```python import streamlit as st import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import altair as alt from requests import get import re import os from bs4 import BeautifulSoup from urllib.request import Request, urlopen import datetime import time import matplotlib.pyplot as plt import statsmodels.api as sm from geopy.geocoders import Nominatim from geopy.distance import geodesic geolocator = Nominatim(user_agent='myuseragent') import lxml import plotly.express as px from PIL import Image #with open("styles/style.css") as f: # st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True) st.set_page_config( page_title="O/U Hockey Analytics", page_icon=":ice_hockey_stick_and_puck:" ) #Dummy data to get the header to display correctly st.markdown("""<Head> <Title> Test Title</Title><link rel="shortcut icon" href="favicon.ico" type="image/x-icon"> </Head>""",unsafe_allow_html=True) #Title/Header st.markdown("""<h1 style="text-align:center;color:white;font-weight:bolder;font-size:70px;font-family:helvetica; background: -webkit-linear-gradient(#a73305,#000000,#093ff0); -webkit-background-clip: text;-webkit-text-fill-color: transparent;">NHL<br>Wager<br>Analytics</h1>""",unsafe_allow_html=True) # Load data data_load_state = st.text('Checking and Fetching Data...') ##################################### #### Data Gathering and Cleaning #### ##################################### master_df = pd.read_csv('master_df.csv') master_df = master_df.dropna(thresh=10) start = pd.to_datetime(master_df.Date[-1:]).dt.date.values[0]+datetime.timedelta(days=1) today = datetime.date.today() yesterday = today-datetime.timedelta(days = 1) #Function to covert dates to string def covert_dates(date1, date2): covert_list = [] days = pd.date_range(date1, date2, freq='d') for i in range(len(days)): covert_list.append(int(days[i].strftime('%Y%m%d'))) return covert_list #Function to fetch missing data @st.cache def get_data(date1, date2): new_df = pd.DataFrame() for day in covert_dates(date1, date2): site = f"https://sportsdatabase.com/nhl/query?output=default&sdql=date%3D{day}&submit=++S+D+Q+L+%21++" hdr = {'User-Agent': 'Mozilla/5.0'} req = Request(site, headers=hdr) page = urlopen(req) soup = BeautifulSoup(page) tables = soup.find('table', attrs={'id':'DT_Table'}) page_df = pd.read_html(str(tables))[0] new_df = pd.concat([new_df, page_df]) time.sleep(1) return new_df #Check if the data needs updating if start <= today: new_data = get_data(start, today) master_df = pd.concat([master_df, new_data]) #Save updated data as csv #master_df.to_csv("master_df.csv", index=False) def clean_data(df): df.Date =pd.to_datetime(df.Date) df= df.sort_values(by=['Team', 'Date']).reset_index() df.insert(2, "Date_Prev", df.Date.shift(1)) df.insert(2, "Days_Rest", (df.Date_Prev-df.Date)*-1) df = df.drop(['index','Season', 'P1', 'P2', 'P3'], axis=1) return df #Fucntion to identify a team change to break streak counts def trips(home_or_away, TeamChange, Site): list =[] x = 0 for i, j in zip(TeamChange, Site): if i == False: x = x else: x = 0 if j == home_or_away: x += 1 else: x = 0 list.append(x) return list #Function to calculate the distance the road team is from home def distance_calc(df): df.insert(4,"Team_City", df.Team.map(team_dict['City'])) df.insert(6,"Opp_City", df.Opp.map(team_dict['City'])) df.insert(9,"Team_point", df.Team.map(team_dict['Citypoint'])) df.insert(10,"Opp_point", df.Opp.map(team_dict['Citypoint'])) df['Distance'] = df.apply(lambda x: geodesic(x['Team_point'],x['Opp_point']).km, axis=1) df['Team_distance'] = df.apply(lambda x: 0 if x.Site == "home" else x.Distance, axis=1) df['Opp_distance'] = df.apply(lambda x: 0 if x.Site == "away" else x.Distance, axis=1) df = df.drop(['Team_point','Distance','Opp_point'], axis=1) return df #Function to count the current streak of home or games def road_trips(df): df.insert(4, "TeamChange", df["Team"].shift(1, fill_value=df["Team"].head(1)) != df["Team"]) df.insert(10, "Home_Stand", trips("home", df.TeamChange, df.Site)) df.insert(11, "Road_Trip", trips("away", df.TeamChange, df.Site)) df.Days_Rest = df.Days_Rest.dt.days df.Days_Rest = df.Days_Rest.fillna(5) df.Days_Rest = df.Days_Rest.astype(int)-1 df.loc[df.Days_Rest < 0, 'Days_Rest'] = 5 df = df.drop('TeamChange', axis=1) return df #Function to pair games into a singel record -- for O/U analysis def opp_func (df): df.insert(2,"Opp_Days_Rest", eda_df.Oppkey.map(opp_days_rest)) df.insert(10,"Opp_home_stand", eda_df.Oppkey.map(opp_home_stand)) df.insert(11,"Opp_road_trip", eda_df.Oppkey.map(opp_road_trip)) return df #Func to calculate the unit return of each game and team def unit_value(Line, Result): if Line < 0 and Result == 'W': return 1 elif Line < 0 and Result == 'L': return Line/100 elif Line > 0 and Result == 'W': return Line/100 elif Line > 0 and Result == 'L': return -1 nhltable= pd.read_csv('nhltable.csv') team_dict = nhltable.set_index('Team').to_dict() eda_df = clean_data(master_df) eda_df = distance_calc(eda_df) eda_df = road_trips(eda_df) #Adding Division eda_df = pd.merge(eda_df, nhltable[['Team', 'Division']], on='Team', how="left" ) #Create keys for pairing Teamkey = [] Oppkey = [] for i in range(len(eda_df.Date)): Teamkey.append(str(covert_dates(eda_df.Date[i], eda_df.Date[i])[0])+eda_df.Team[i]) Oppkey.append(str(covert_dates(eda_df.Date[i], eda_df.Date[i])[0])+eda_df.Opp[i]) eda_df['Oppkey'] = Oppkey opp_days_rest = dict(zip(Teamkey, eda_df.Days_Rest)) opp_home_stand = dict(zip(Teamkey, eda_df.Home_Stand)) opp_road_trip = dict(zip(Teamkey, eda_df.Road_Trip)) opp_func(eda_df) eda_df.Final = eda_df.Final.fillna('0-0') eda_df = eda_df.fillna(0) eda_df = pd.concat([eda_df, pd.get_dummies(eda_df.OUr)], axis=1) goals_df = eda_df['Final'].str.split('-', expand=True).rename(columns={0:'Team_Goals', 1:'Opp_Goals'}).astype(int) eda_df = pd.concat([eda_df, goals_df], axis=1) eda_df['total_O'] = eda_df.groupby('Team')['O'].cumsum() eda_df['total_U'] = eda_df.groupby('Team')['U'].cumsum() eda_df['total_P'] = eda_df.groupby('Team')['P'].cumsum() eda_df['total_Team_goals'] = eda_df.groupby('Team')['Team_Goals'].cumsum() eda_df['total_Opp_goals'] = eda_df.groupby('Team')['Opp_Goals'].cumsum() #eda_df = eda_df.loc[eda_df['OUr']!='P'] #eda_df['y'] = (eda_df.OUr=='O').astype(int) eda_df['Team_U'] = eda_df.groupby('Team')['total_U'].transform('max') eda_df['Team_O'] = eda_df.groupby('Team')['total_O'].transform('max') eda_df['Opp_U'] = eda_df.groupby('Opp')['total_U'].transform('max') eda_df['Opp_O'] = eda_df.groupby('Opp')['total_O'].transform('max') eda_df['Team_Goals_Scored'] = eda_df.groupby('Team')['total_Team_goals'].transform('max') eda_df['Team_Goals_Allowed'] = eda_df.groupby('Team')['total_Opp_goals'].transform('max') eda_df['Opp_Goals_Scored'] = eda_df.groupby('Opp')['total_Team_goals'].transform('max') eda_df['Opp_Goals_Allowed'] = eda_df.groupby('Opp')['total_Opp_goals'].transform('max') #eda_df['Units'] = eda_df.apply(lambda x: unit_value(x.Line, x.SUr), axis=1) #Tonight's games data today_np = np.datetime64(today) tonight_df= eda_df[['Team','Opp','Total','Home_Stand','Opp_road_trip','Days_Rest','Opp_Days_Rest', 'Opp_distance', 'Team_U', 'Opp_U','Team_O', 'Opp_O','Team_Goals_Scored', 'Opp_Goals_Scored','Team_Goals_Allowed', 'Opp_Goals_Allowed', "Date",'Site']] tonight_df = tonight_df.loc[(tonight_df['Date']==today_np) & (tonight_df['Site']=='home')].reset_index(drop=True) #Seperating the two EDA dataframes eda_OU = eda_df.loc[(eda_df['Site']=='home') & (eda_df['Date']<today_np)] eda_OU.insert(3, "Combined_Rest", eda_OU.loc[:,'Days_Rest'] + eda_OU.loc[:,'Opp_Days_Rest']) cut_labels = [500, 1000, 1500, 2000, 3000, 4000] cut_bins = [0, 500, 1000, 1500, 2000, 3000, 4000] eda_OU['Distance'] = pd.cut(eda_OU.loc[:,'Opp_distance'], bins=cut_bins, labels= cut_labels) eda_OU = eda_OU.sort_values('Date').reset_index(drop=True) # Notify user that the data was successfully loaded. data_load_state.text('Checking and Fetching Data...Done & done!') st.write("Check out this [link to the sister site for Team Analysis](https://share.streamlit.io/jfm-data/nhlwagers/main/streamlit_Team.py)") ############################################# ### Streamlit Design ###################### ############################################ st.subheader("Tonight's Games") #st.dataframe(tonight_df.style.background_gradient(cmap='viridis', low=0.7, high=0).set_precision(1)) df1 = tonight_df.style.background_gradient(cmap='viridis', low=0.7, high=0).set_precision(1) df2 = tonight_df.iloc[:,:3].style.set_precision(1) st.table(df2) st.dataframe(df1) ###################### ## Space for Machine Learning Model #################### st.subheader('Predictions') st.write('*Coming soon....* :sunglasses:') st.header('O/U Analysis') date_select = st.slider( "Select Dates", datetime.date(2021,1,13), yesterday, value=(datetime.date(2021,1,13), yesterday), format="MM/DD/YY") st.write("Start time:", date_select[0]) st.write("Endtime:", date_select[1]) filtered_df= eda_OU[(eda_OU['Date'] >= np.datetime64(date_select[0])) & (eda_OU['Date'] <= np.datetime64(date_select[1]))] #st.subheader('Overall') fig_OU = px.histogram(filtered_df, x="Total", color='OUr', barmode='group', template='plotly_dark', title="Totals", color_discrete_map={ "O":"#FF9F1C", "U":"#011627", "P":"#2EC4B6"}) st.plotly_chart(fig_OU, use_container_width=True) #st.subheader('By Combined Days Rest') fig_DaysRest = px.histogram(filtered_df[filtered_df["Combined_Rest"] <10], x="Combined_Rest", color='OUr', title='Test', barmode='group', template='plotly_dark', color_discrete_map={ "O":"#FF9F1C", "U":"#011627", "P":"#2EC4B6"}) st.plotly_chart(fig_DaysRest, use_container_width=True) #st.subheader('By Distance of Road Team from Home') fig3 = px.histogram(filtered_df, x="Distance", color='OUr', barmode='group', template='plotly_dark',title='By Distance of Road Team from Home', color_discrete_map={ "O":"#FF9F1C", "U":"#011627", "P":"#2EC4B6"}) st.plotly_chart(fig3, use_container_width=True) #st.subheader('By Length of Road Trip') fig4 = px.histogram(filtered_df, x="Opp_road_trip", color='OUr', barmode='group', template='plotly_dark', title='By Length of Road Trip', color_discrete_map={ "O":"#FF9F1C", "U":"#011627", "P":"#2EC4B6"}) st.plotly_chart(fig4, use_container_width=True) #st.subheader('By Length of Home Stand') fig5 = px.histogram(filtered_df, x="Home_Stand", color='OUr',title='By Length of Home Stand', barmode='group', template='plotly_dark', color_discrete_map={ "O":"#FF9F1C", "U":"#011627", "P":"#2EC4B6"}) st.plotly_chart(fig5, use_container_width=True) st.subheader('Division Analysis') div_select = st.selectbox("Select Division?", list(pd.unique(eda_df.Division))) div_filter = eda_df[eda_df['Division']==div_select] fig_OU = px.histogram(div_filter, x="Team", color='OUr', barmode='group', template= 'simple_white', title="Totals", color_discrete_map={ "O":"#FF9F1C", "U":"#011627", "P":"#2EC4B6"}) st.plotly_chart(fig_OU, use_container_width=True) #st.subheader('Select Parameters for situational outputs') #Filtering For Days of Rest #Days_to_filter = st.slider('Days of Rest', 0, max(eda_OU.Days_Rest), 3) #st.text('Number of Days Rest %s' % Days_to_filter) #filtered_data = eda_OU[eda_OU['Days_Rest'] == Days_to_filter] #Filtering For Distance #Distance_to_filter = st.slider('Distance of Opponent', 0.0, max(data.Distance), (0.0, 500.0)) #st.text('Distance From Home %s' % Distance_to_filter[0]) #filtered_data = filtered_data[(filtered_data['Distance'] >= Distance_to_filter[0]) & (filtered_data['Distance'] <= Distance_to_filter[1])] # #Filtering For Home and Away # st.header('O/U Team Analysis -- TO BE MOVED') # team_select = st.selectbox("Select Team", # list(pd.unique(eda_df.Team))) # st.write('You selected', team_select) # filtered_data = eda_df[eda_df['Team'] == team_select] # home_away = st.selectbox("Is the Team Home or Away?", # ('home', 'away')) # st.write('You selected', home_away) # filtered_data = filtered_data[filtered_data['Site'] == home_away] # days_rest = st.slider('Days Rest', 0, 5, 2) # filtered_data = filtered_data[filtered_data['Days_Rest'] == days_rest] # st.subheader('O/U by Selected Inputs') # fig_OU_team = px.histogram(filtered_data, x="Total", color='OUr', # barmode='group', template='plotly_dark') # st.plotly_chart(fig_OU_team, use_container_width=True) #Filtering For Distance #Distance_to_filter = st.slider('Distance From Home', 0.0, max(data.Distance), (0.0, 500.0)) #st.text('Distance From Home %s' % Distance_to_filter[0]) #filtered_data = filtered_data[(filtered_data['Distance'] >= Distance_to_filter[0]) & (filtered_data['Distance'] <= Distance_to_filter[1])] #st.subheader('Selected # of Days on Home Stand') #st.subheader('Selected # of Days on Road Trip') #if genre == 'Comedy': # st.write('You selected comedy.') #else: # st.write("You didn't select comedy.") #fig = px.histogram(data, x="Date_diff", color='OUr', # barmode='group', template='plotly_white') #st.plotly_chart(fig, use_container_width=True) #st.subheader('Home Stand O/U Results') #fig1 = px.histogram(data[data["Home_Stand"]>0], x="Home_Stand", color='OUr', # barmode='group', template='plotly_white') #st.plotly_chart(fig1, use_container_width=True) #st.subheader('Road Trip O/U Results') #fig2 = px.histogram(data[data["Road_Trip"]>0], x="Road_Trip", color='OUr', # barmode='group', template='plotly_white') #st.plotly_chart(fig2, use_container_width=True) st.text("Raw Data") st.dataframe(eda_df.iloc[:,1:]) st.header('Unit Analysis') unit_team = st.selectbox("Select Team for Unit", list(pd.unique(eda_df.Team))) st.write('You selected', unit_team) #Filter for OU Line #Line_to_filter = st.slider('Unit Line', 0.0, max(eda_OU.Total), (0.0, 5.5)) #filtered_data2 = filtered_data[(eda_OU['Total'] >= Line_to_filter[0]) & # (eda_OU['Total'] <= Line_to_filter[1])] ```
{ "source": "jfmendez11/supervoices", "score": 3 }
#### File: supervoices/conversion_batch/conversion_batch.py ```python import os import pymongo from bson.objectid import ObjectId import sys import boto3 import time import requests import dotenv import traceback from shutil import copyfile import sendgrid from pydub import AudioSegment def get_audio_file_for_conversion(url): ''' Method that requests the audio file from the file server ''' response = requests.get(url) print 'FILE OBTAINED FROM SERVER' # sys.stdout.flush() return response.content def convert_audio(path): ''' Method that converts any audio format into mp3 ''' if not path.endswith(".mp3"): # File extension is obtained split = path.split(".") extension = split[len(split) - 1] # The file path is split to obtain the file name path_split = path.split("/") file_name = path_split[len(path_split) - 1] file_name = file_name.replace(extension, "mp3") # Audio load and export to mp3 audio = AudioSegment.from_file(path, format=extension) export_file_name = "./temp/converted_" + file_name audio.export(export_file_name) print 'FILE CONVERTED AND EXPORTED' return export_file_name else: path_split = path.split("/") file_name = path_split[len(path_split) - 1] source_path = "./temp/" + file_name export_file_name = "./temp/converted_" + file_name copyfile(source_path, export_file_name) return export_file_name def post_converted(path, base_url, entry): ''' Method that posts the converted file to the file server ''' # Upload entry converted to S3 s3 = boto3.client( 's3', aws_access_key_id=os.getenv("ACCESS_KEY"), aws_secret_access_key=os.getenv("SECRET_KEY"), region_name=os.getenv('AWS_REGION') ) base_url = base_url.split('/') del base_url[len(base_url) - 1] del base_url[0] del base_url[0] del base_url[0] base_url = '/'.join(base_url) file_name = path.split('/') file_name = file_name[len(file_name) - 1] base_url = base_url + '/' + file_name s3.upload_file(path, os.getenv('S3_BUCKET_NAME'), base_url, ExtraArgs={'ACL': 'public-read'}) # Update Mongo myclient = pymongo.MongoClient(os.getenv('MLAB_URI')) mydb = myclient[os.getenv("MLAB_DATABASE")] mycol = mydb["entries"] myquery = {"_id": ObjectId(entry['entry_id'])} newvalues = {"$set": { "STATUS": "Convertida", "URL_CONVERTED": os.getenv('CLOUDFRONT_DOMAIN_NAME') + '/' + base_url }} mycol.update_one(myquery, newvalues) print 'FILE SUBMITTED: ' + entry['url_original'] def process_entry(entry): ''' Method that processes an audio entry ''' correct = True # Request audio file from server try: if entry['url_original'] != '': print 'PROCESSING: ' + entry['url_original'] url_original = entry['url_original'] audio_file = get_audio_file_for_conversion(url_original) file_name = url_original.split('/') file_name = file_name[len(file_name) - 1] # Audio saving in temporal directory local_path = './temp/' + file_name temp = open(local_path, "wb") temp.write(audio_file) temp.close() # Audio conversion path_converted = convert_audio(local_path) post_converted(path_converted, url_original, entry) try: os.remove(path_converted) os.remove(local_path) except Exception: print "CANNOT REMOVE FILE" entry_data = get_mail(entry) entry['name'] = entry_data['NAME'] entry['email'] = entry_data['EMAIL'] entry['url_contest'] = os.getenv('WS_URL') + entry['contest_id'] print("READY TO SEND EMAIL") send_mail(entry) print 'FILE REMOVED: ' + entry['url_original'] # sys.stdout.flush() except Exception as e: print 'AN ERROR HAS OCCURRED' print traceback.print_exc() correct = False finally: print('---------------------') # end = time.time() # start = entry["created_at"] # duration = end - float(start) / 1000 # with open("log.txt", "a") as myfile: # myfile.write(entry['url_original'] + " " + str(duration) + "\n") return correct def execute_batch(): ''' Method that executes the batch conversion task ''' # Create SQS client sqs = boto3.client( 'sqs', aws_access_key_id=os.getenv("ACCESS_KEY"), aws_secret_access_key=os.getenv("SECRET_KEY"), region_name=os.getenv('AWS_REGION') ) queue_url = os.getenv('SQS_URL') entries = [] # Receive message from SQS queue response = sqs.receive_message( QueueUrl=queue_url, AttributeNames=[ 'EntryId', 'ContestId', 'RecordingPath' ], MaxNumberOfMessages=2, MessageAttributeNames=[ 'All' ] ) if 'Messages' in response: messages = response['Messages'] for message in messages: receipt_handle = message['ReceiptHandle'] # Delete received message from queue entries.append({ 'url_original': message['MessageAttributes']['RecordingPath']['StringValue'], 'entry_id': message['MessageAttributes']['EntryId']['StringValue'], 'contest_id': message['MessageAttributes']['ContestId']['StringValue'], 'receipt_handle': receipt_handle }) for en in entries: correct = process_entry(en) if correct: sqs.delete_message( QueueUrl=queue_url, ReceiptHandle=en['receipt_handle'] ) def get_mail(entry): myclient = pymongo.MongoClient(os.getenv('MLAB_URI')) mydb = myclient[os.getenv("MLAB_DATABASE")] mycol = mydb["entries"] myquery = {"_id": ObjectId(entry['entry_id'])} mydoc = mycol.find_one(myquery) return mydoc def send_mail(entry): sender_email = os.getenv('SENDER_EMAIL') receiver_email = entry['email'] receiver_name = entry['name'] sg = sendgrid.SendGridAPIClient(api_key=os.getenv('SENDGRID_API_KEY')) subject = "Tu entrada ha sido agregada al concurso!" from_email = sender_email to_email = receiver_email text = """\ Gracias por usar SuperVoices {name}, tu voz ya se encuentra disponible en el concurso! La entrada ya fue cargada a la página del concurso donde podra ser revisada por el organizador. Visita el concurso: https://supervoices10.herokuapp.com/#/contests/{contestURL} """.format(contestURL=entry['url_contest'], name=receiver_name) html = """\ <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="content-type" content="text/html; charset=utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0;"> <meta name="format-detection" content="telephone=no"/> <style> /* Reset styles */ body {{ margin: 0; padding: 0; min-width: 100%; width: 100% !important; height: 100% !important;}} body, table, td, div, p, a {{ -webkit-font-smoothing: antialiased; text-size-adjust: 100%; -ms-text-size-adjust: 100%; -webkit-text-size-adjust: 100%; line-height: 100%; }} table, td {{ mso-table-lspace: 0pt; mso-table-rspace: 0pt; border-collapse: collapse !important; border-spacing: 0; }} img {{ border: 0; line-height: 100%; outline: none; text-decoration: none; -ms-interpolation-mode: bicubic; }} #outlook a {{ padding: 0; }} .ReadMsgBody {{ width: 100%; }} .ExternalClass {{ width: 100%; }} .ExternalClass, .ExternalClass p, .ExternalClass span, .ExternalClass font, .ExternalClass td, .ExternalClass div {{ line-height: 100%; }} /* Rounded corners for advanced mail clients only */ @media all and (min-width: 560px) {{ .container {{ border-radius: 8px; -webkit-border-radius: 8px; -moz-border-radius: 8px; -khtml-border-radius: 8px;}} }} /* Set color for auto links (addresses, dates, etc.) */ a, a:hover {{ color: #127DB3; }} .footer a, .footer a:hover {{ color: #999999; }} </style> <!-- MESSAGE SUBJECT --> <title>SuperVoices</title> </head> <p>{prevText}</p> <!-- BODY --> <body topmargin="0" rightmargin="0" bottommargin="0" leftmargin="0" marginwidth="0" marginheight="0" width="100%" style="border-collapse: collapse; border-spacing: 0; margin: 0; padding: 0; width: 100%; height: 100%; -webkit-font-smoothing: antialiased; text-size-adjust: 100%; -ms-text-size-adjust: 100%; -webkit-text-size-adjust: 100%; line-height: 100%; background-color: #F0F0F0; color: #000000;" bgcolor="#F0F0F0" text="#000000"> <table width="100%" align="center" border="0" cellpadding="0" cellspacing="0" style="border-collapse: collapse; border-spacing: 0; margin-top: 5%; padding: 0; width: 100%;" class="background"><tr><td align="center" valign="top" style="border-collapse: collapse; border-spacing: 0; margin: 0; padding: 0;" bgcolor="#F0F0F0"> <table border="0" cellpadding="0" cellspacing="0" align="center" width="560" style="border-collapse: collapse; border-spacing: 0; padding: 0; width: inherit; max-width: 560px;" class="wrapper"> <!-- End of WRAPPER --> </table> <!-- WRAPPER / CONTEINER --> <table border="0" cellpadding="0" cellspacing="0" align="center" bgcolor="#FFFFFF" width="560" style="border-collapse: collapse; border-spacing: 0; padding: 0; width: inherit; max-width: 560px;" class="container"> <!-- HEADER --> <tr> <td align="center" valign="top" style="border-collapse: collapse; border-spacing: 0; margin: 0; padding: 0; padding-left: 6.25%; padding-right: 6.25%; width: 87.5%; font-size: 24px; font-weight: bold; line-height: 130%; padding-top: 25px; color: #000000; font-family: sans-serif;" class="header"> Gracias por usar SuperVoices </td> </tr> <!-- SUBHEADER --> <tr> <td align="center" valign="top" style="border-collapse: collapse; border-spacing: 0; margin: 0; padding: 0; padding-bottom: 3px; padding-left: 6.25%; padding-right: 6.25%; width: 87.5%; font-size: 18px; font-weight: 300; line-height: 150%; padding-top: 5px; color: #000000; font-family: sans-serif;" class="subheader"> {name}, tu voz ya se encuentra disponible en el concurso! </td> </tr> <!-- PARAGRAPH --> <tr> <td align="center" valign="top" style="border-collapse: collapse; border-spacing: 0; margin: 0; padding: 0; padding-left: 6.25%; padding-right: 6.25%; width: 87.5%; font-size: 17px; font-weight: 400; line-height: 160%; padding-top: 25px; color: #000000; font-family: sans-serif;" class="paragraph"> La entrada ya fue cargada a la pagina del concurso donde podra ser revisada por el organizador. </td> </tr> <tr> <td align="center" valign="top" style="border-collapse: collapse; border-spacing: 0; margin: 0; padding: 0; padding-left: 6.25%; padding-right: 6.25%; width: 87.5%; padding-top: 25px;" class="line"><hr color="#E0E0E0" align="center" width="100%" size="1" noshade style="margin: 0; padding: 0;" /> </td> </tr> <tr> <td align="center" valign="top" style="border-collapse: collapse; border-spacing: 0; margin: 0; padding: 0; padding-left: 6.25%; padding-right: 6.25%; width: 87.5%; font-size: 17px; font-weight: 400; line-height: 160%; padding-top: 20px; padding-bottom: 25px; color: #000000; font-family: sans-serif;" class="paragraph"> Visita el concurso: <a href="{contestURL}" target="_blank" style="color: #127DB3; font-family: sans-serif; font-size: 17px; font-weight: 400; line-height: 160%;">supervoices.com</a> </td> </tr> <!-- End of WRAPPER --> </table> <!-- End of SECTION / BACKGROUND --> </td></tr></table> </body> </html> """.format(prevText=text, contestURL=entry['url_contest'], name=receiver_name) message = { 'personalizations': [ { 'to': [ { 'email': to_email } ], 'subject': subject } ], 'from': { 'email': from_email }, 'content': [ { 'type': 'text/html', 'value': html } ] } # Send email response = sg.send(message) print(response.status_code) print(response.body) print(response.headers) if __name__ == "__main__": dotenv.load_dotenv(".env") while True: sys.stdout.flush() execute_batch() time.sleep(5) ```
{ "source": "jfmennedy/fhempy", "score": 2 }
#### File: lib/tuya_cloud/tuya_cloud_device.py ```python import asyncio import functools import json import colorsys from tuya_iot.device import TuyaDevice from fhempy.lib.generic import FhemModule from fhempy.lib import fhem, fhem_pythonbinding, utils class tuya_cloud_device: def __init__(self, logger, fhemdevice: FhemModule): self.logger = logger self.fhemdev = fhemdevice self.hash = fhemdevice.hash async def Define(self, hash, args, argsh): self._t_setupdev = args[3] self._t_deviceid = args[4] self._t_devicelist = [] self.hash["DEVICEID"] = self._t_deviceid self.tuyaiot = None self.default_code = None await fhem.readingsSingleUpdate(self.hash, "state", "ready", 1) self.fhemdev.create_async_task(self._init_device()) async def _init_device(self): try: await self._connect_to_setup_device() await self._setup_device() except Exception as ex: self.logger.exception(ex) async def _connect_to_setup_device(self): while self.tuyaiot is None or self.tuyaiot.ready is False: await asyncio.sleep(1) self.tuyaiot = fhem_pythonbinding.getFhemPyDeviceByName(self._t_setupdev) if self.tuyaiot is not None: self.tuyaiot = self.tuyaiot.tuya_cloud_device self.tuyaiot.register_tuya_device(self) async def _setup_device(self): # retrieve functions/status/types self._t_specification = await utils.run_blocking( functools.partial( self.tuyaiot.device_manager.get_device_specification, self._t_deviceid ) ) if self._t_specification["success"]: self._t_specification = self._t_specification["result"] else: await fhem.readingsSingleUpdate( self.hash, "state", self._t_specification["msg"], 1 ) self._t_specification = {"functions": [], "status": []} # retrieve general infos self._t_info = await utils.run_blocking( functools.partial( self.tuyaiot.device_manager.get_device_info, self._t_deviceid ) ) self._t_info = self._t_info["result"] await self.update_readings_dict(self._t_info) # retrieve current status self._t_status = await utils.run_blocking( functools.partial( self.tuyaiot.device_manager.get_device_status, self._t_deviceid ) ) self._t_status = self._t_status["result"] # setup set commands await self._generate_set() # update status await self.update_readings_arr(self._t_status) async def _generate_set(self): set_conf = {} for fct in self._t_specification["functions"]: if fct["type"] == "Boolean": set_conf[fct["code"]] = { "options": "on,off", "args": ["onoff"], "function_param": fct, "function": "set_boolean", } elif fct["type"] == "Enum": options = json.loads(fct["values"])["range"] set_conf[fct["code"]] = { "options": ",".join(options), "args": ["selected_val"], "function_param": fct, "function": "set_enum", } elif fct["type"] == "Integer": spec = json.loads(fct["values"]) slider = f"slider,{spec['min']},{spec['step']},{spec['max']}" set_conf[fct["code"]] = { "options": slider, "args": ["selected_val"], "params": {"selected_val": {"format": "int"}}, "function_param": fct, "function": "set_integer", } elif fct["type"] == "String": set_conf[fct["code"]] = { "args": ["new_val"], "function_param": fct, "function": "set_string", } elif fct["type"] == "Json": set_conf[fct["code"]] = { "args": ["new_val"], "function_param": fct, "function": "set_json", } if fct["code"] == "colour_data": set_conf[fct["code"]]["function"] = "set_colour_data" set_conf[fct["code"]]["options"] = "colorpicker,RGB" elif fct["code"] == "colour_data_v2": set_conf[fct["code"]]["function"] = "set_colour_data_v2" set_conf[fct["code"]]["options"] = "colorpicker,RGB" self.default_code = None if "switch" in set_conf: self.default_code = "switch" elif "switch_1" in set_conf: self.default_code = "switch_1" elif "switch_led" in set_conf: self.default_code = "switch_led" if self.default_code is not None: set_conf["on"] = { "function_param": {"code": self.default_code}, "function": "set_boolean", } set_conf["off"] = { "function_param": {"code": self.default_code}, "function": "set_boolean", } del set_conf[self.default_code] self.fhemdev.set_set_config(set_conf) async def set_boolean(self, hash, params): code = params["function_param"]["code"] onoff = False if "onoff" in params: if params["onoff"] == "on": onoff = True else: if params["cmd"] == "on": onoff = True await self.send_commands([{"code": code, "value": onoff}]) async def set_enum(self, hash, params): code = params["function_param"]["code"] await self.send_commands([{"code": code, "value": params["selected_val"]}]) async def set_string(self, hash, params): code = params["function_param"]["code"] await self.send_commands([{"code": code, "value": params["new_val"]}]) async def set_json(self, hash, params): code = params["function_param"]["code"] await self.send_commands( [{"code": code, "value": json.loads(params["new_val"])}] ) async def set_integer(self, hash, params): code = params["function_param"]["code"] await self.send_commands([{"code": code, "value": params["selected_val"]}]) async def set_colour_data(self, hash, params): # convert e.g. ff0000 to hsv (360, 100, 100) and set hsv values with json hsv = self.fhemrgb2hsv(params["new_val"]) if self._t_info["category"] == "dj": hsv["s"] = int(hsv["s"] / 10) hsv["v"] = int(hsv["v"] / 10) code = params["function_param"]["code"] await self.send_commands([{"code": code, "value": hsv}]) async def set_colour_data_v2(self, hash, params): # convert e.g. ff0000 to hsv (360, 1000, 1000) and set hsv values with json hsv = self.fhemrgb2hsv(params["new_val"]) code = params["function_param"]["code"] await self.send_commands([{"code": code, "value": hsv}]) def fhemrgb2hsv(self, rgb): red = int(rgb[0:2], base=16) green = int(rgb[2:4], base=16) blue = int(rgb[4:6], base=16) hsv = colorsys.rgb_to_hsv(red / 255, green / 255, blue / 255) return { "h": int(hsv[0] * 360), "s": int(hsv[1] * 1000), "v": int(hsv[2] * 1000), } async def send_commands(self, commands): await self.tuyaiot.send_commands(self._t_deviceid, commands) @property def id(self): return self._t_deviceid def _convert_code2fhem(self, code): if code == self.default_code: return "state" # pir device if code == "pir" and self._t_info["category"] == "pir": return "state" # smoke detector if code == "smoke_sensor_status": return "state" # water detector if code == "watersensor_state": return "state" # door window sensor if code == "doorcontact_state": return "state" return code def _convert_value2fhem(self, code, value): for code_def in self._t_specification["status"]: if code_def["code"] == code and code_def["type"] == "Integer": values = json.loads(code_def["values"]) return value / (10 ** values["scale"]) if code == "icon": return ( self.tuyaiot.device_manager.api.endpoint.replace("openapi", "images") + "/" + value ) # pir device elif code == "pir" and self._t_info["category"] == "pir": if value == "pir": self.fhemdev.create_async_task( self.reset_reading("state", "nomotion", 180) ) return "motion" # door window sensor elif code == "doorcontact_state": if value is True: return "open" return "closed" if isinstance(value, bool): if value: return "on" return "off" return value async def reset_reading(self, reading, resetvalue, timeout): await asyncio.sleep(timeout) await fhem.readingsSingleUpdate(self.fhemdev.hash, reading, resetvalue, 1) async def update(self, device: TuyaDevice): await self.update_readings_dict(device.status) async def update_readings_arr(self, status_arr): await fhem.readingsBeginUpdate(self.hash) try: for status in status_arr: if status["code"] in ["colour_data", "colour_data_v2"]: await self.update_readings_hsv( status["code"], json.loads(status["value"]) ) else: await fhem.readingsBulkUpdate( self.hash, self._convert_code2fhem(status["code"]), self._convert_value2fhem(status["code"], status["value"]), ) except Exception as ex: self.logger.exception(ex) await fhem.readingsEndUpdate(self.hash, 1) async def update_readings_dict(self, status_dic): await fhem.readingsBeginUpdate(self.hash) try: for st_name in status_dic: if st_name in ["colour_data", "colour_data_v2"]: await self.update_readings_hsv( st_name, json.loads(status_dic[st_name]) ) else: await fhem.readingsBulkUpdate( self.hash, self._convert_code2fhem(st_name), self._convert_value2fhem(st_name, status_dic[st_name]), ) except Exception as ex: self.logger.exception(ex) await fhem.readingsEndUpdate(self.hash, 1) async def update_readings_hsv(self, hsv_code, hsv_json): if hsv_code == "colour_data" and self._t_info["category"] == "dj": # only category dj (light) has old colour_data rgb = colorsys.hsv_to_rgb( int(hsv_json["h"]) / 360, int(hsv_json["s"]) / 100, int(hsv_json["v"]) / 100, ) else: rgb = colorsys.hsv_to_rgb( int(hsv_json["h"]) / 360, int(hsv_json["s"]) / 1000, int(hsv_json["v"]) / 1000, ) red = int(rgb[0] * 255) green = int(rgb[1] * 255) blue = int(rgb[2] * 255) rgb_hex = f"{red:02x}{green:02x}{blue:02x}" await fhem.readingsBulkUpdate( self.hash, hsv_code, rgb_hex, ) ``` #### File: xiaomi_gateway3/core/elelabs_ezsp_utility.py ```python import binascii import io import socket import time from xmodem import XMODEM # Maximum untouched utility with fix only serial class from pyserial to TCP # https://github.com/Elelabs/elelabs-zigbee-ezsp-utility class serial: PARITY_NONE = None STOPBITS_ONE = None class Serial: def __init__(self, port, **kwargs): self.s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.s.settimeout(5) self.s.connect(port) def flushInput(self): pass def read(self, size: int = 1): try: return self.s.recv(size) except: return b"" def readline(self): raw = b"" while True: c = self.read() raw += c if c == b"\n" or c == b"": break return raw def write(self, data: bytes): self.s.send(data) def close(self): self.s.close() class AdapterModeProbeStatus: NORMAL = 0 BOOTLOADER = 1 ERROR = 2 class SerialInterface: def __init__(self, port, baudrate): self.port = port self.baudrate = baudrate def open(self): try: self.serial = serial.Serial( port=self.port, baudrate=self.baudrate, parity=serial.PARITY_NONE, stopbits=serial.STOPBITS_ONE, xonxoff=True, timeout=3, ) except Exception as e: raise Exception("PORT ERROR: %s" % str(e)) def close(self): self.serial.close() class AshProtocolInterface: FLAG_BYTE = b"\x7E" RANDOMIZE_START = 0x42 RANDOMIZE_SEQ = 0xB8 RSTACK_FRAME_CMD = b"\x1A\xC0\x38\xBC\x7E" RSTACK_FRAME_ACK = b"\x1A\xC1\x02\x0B\x0A\x52\x7E" def __init__(self, serial, config, logger): self.logger = logger self.config = config self.serial = serial self.ackNum = 0 self.frmNum = 0 def dataRandomize(self, frame): rand = self.RANDOMIZE_START out = bytearray() for x in frame: out += bytearray([x ^ rand]) if rand % 2: rand = (rand >> 1) ^ self.RANDOMIZE_SEQ else: rand = rand >> 1 return out def ashFrameBuilder(self, ezsp_frame): ash_frame = bytearray() # Control byte ash_frame += bytearray( [(((self.ackNum << 0) & 0xFF) | (((self.frmNum % 8) << 4) & 0xFF)) & 0xFF] ) self.ackNum = (self.ackNum + 1) % 8 self.frmNum = (self.frmNum + 1) % 8 ash_frame += self.dataRandomize(ezsp_frame) crc = binascii.crc_hqx(ash_frame, 0xFFFF) ash_frame += bytearray([crc >> 8, crc & 0xFF]) ash_frame = self.replaceReservedBytes(ash_frame) ash_frame += self.FLAG_BYTE if self.config.dlevel == "ASH": self.logger.debug( "[ ASH REQUEST ] " + " ".join(format(x, "02x") for x in ash_frame) ) return ash_frame def revertEscapedBytes(self, msg): msg = msg.replace(b"\x7d\x5d", b"\x7d") msg = msg.replace(b"\x7d\x5e", b"\x7e") msg = msg.replace(b"\x7d\x31", b"\x11") msg = msg.replace(b"\x7d\x33", b"\x13") msg = msg.replace(b"\x7d\x38", b"\x18") msg = msg.replace(b"\x7d\x3a", b"\x1a") return msg def replaceReservedBytes(self, msg): msg = msg.replace(b"\x7d", b"\x7d\x5d") msg = msg.replace(b"\x7e", b"\x7d\x5e") msg = msg.replace(b"\x11", b"\x7d\x31") msg = msg.replace(b"\x13", b"\x7d\x33") msg = msg.replace(b"\x18", b"\x7d\x38") msg = msg.replace(b"\x1a", b"\x7d\x3a") return msg def getResponse(self, applyRandomize=False): timeout = time.time() + 3 msg = bytearray() receivedbyte = None while (time.time() < timeout) and (receivedbyte != self.FLAG_BYTE): receivedbyte = self.serial.read() msg += receivedbyte if len(msg) == 0: return -1, None, None msg = self.revertEscapedBytes(msg) if self.config.dlevel == "ASH": self.logger.debug( "[ ASH RESPONSE ] " + " ".join(format(x, "02x") for x in msg) ) if applyRandomize: msg_parsed = self.dataRandomize(bytearray(msg[1:-3])) if self.config.dlevel == "ASH" or self.config.dlevel == "EZSP": self.logger.debug( "[ EZSP RESPONSE ] " + " ".join(format(x, "02x") for x in msg_parsed) ) return 0, msg, msg_parsed else: return 0, msg def sendResetFrame(self): self.serial.flushInput() self.logger.debug("RESET FRAME") if self.config.dlevel == "ASH": self.logger.debug( "[ ASH REQUEST ] " + " ".join(format(x, "02x") for x in self.RSTACK_FRAME_CMD) ) self.serial.write(self.RSTACK_FRAME_CMD) status, response = self.getResponse() if status: return status if not (self.RSTACK_FRAME_ACK in response): return -1 return 0 def sendAck(self, ackNum): ack = bytearray([ackNum & 0x07 | 0x80]) crc = binascii.crc_hqx(ack, 0xFFFF) ack += bytearray([crc >> 8, crc & 0xFF]) ack = self.replaceReservedBytes(ack) ack += self.FLAG_BYTE if self.config.dlevel == "ASH": self.logger.debug("[ ASH ACK ] " + " ".join(format(x, "02x") for x in ack)) self.serial.write(ack) def sendAshCommand(self, ezspFrame): ash_frame = self.ashFrameBuilder(ezspFrame) self.serial.flushInput() self.serial.write(ash_frame) status, ash_response, ezsp_response = self.getResponse(True) if status: return status, None self.sendAck(ash_response[0]) return 0, ezsp_response class EzspProtocolInterface: def __init__(self, serial, config, logger): self.logger = logger self.config = config self.INITIAL_EZSP_VERSION = 4 self.VERSION = b"\x00" self.GET_VALUE = b"\xAA" self.GET_MFG_TOKEN = b"\x0B" self.LAUNCH_STANDALONE_BOOTLOADER = b"\x8F" self.EZSP_VALUE_VERSION_INFO = 0x11 self.EZSP_MFG_STRING = 0x01 self.EZSP_MFG_BOARD_NAME = 0x02 self.STANDALONE_BOOTLOADER_NORMAL_MODE = 1 self.ezspVersion = self.INITIAL_EZSP_VERSION self.sequenceNum = 0 self.ash = AshProtocolInterface(serial, config, logger) def ezspFrameBuilder(self, command): ezsp_frame = bytearray() # Sequence byte ezsp_frame += bytearray([self.sequenceNum]) self.sequenceNum = (self.sequenceNum + 1) % 255 ezsp_frame += b"\x00" if self.ezspVersion >= 5: # Legacy frame ID - always 0xFF ezsp_frame += b"\xFF" # Extended frame control ezsp_frame += b"\x00" ezsp_frame = ezsp_frame + command if self.ezspVersion >= 8: ezsp_frame[2] = 0x01 ezsp_frame[3] = command[0] & 0xFF # LSB ezsp_frame[4] = command[0] >> 8 # MSB if self.config.dlevel == "ASH" or self.config.dlevel == "EZSP": self.logger.debug( "[ EZSP REQUEST ] " + " ".join(format(x, "02x") for x in ezsp_frame) ) return ezsp_frame def sendEzspCommand(self, commandData, commandName=""): self.logger.debug(commandName) status, response = self.ash.sendAshCommand(self.ezspFrameBuilder(commandData)) if status: raise Exception("sendAshCommand status error: %d" % status) return response def sendVersion(self, desiredProtocolVersion): resp = self.sendEzspCommand( self.VERSION + bytearray([desiredProtocolVersion]), "sendVersion: V%d" % desiredProtocolVersion, ) return resp[3] # protocolVersion def getValue(self, valueId, valueIdName): resp = self.sendEzspCommand( self.GET_VALUE + bytearray([valueId]), "getValue: %s" % valueIdName ) status = resp[5] valueLength = resp[6] valueArray = resp[7:] return status, valueLength, valueArray def getMfgToken(self, tokenId, tokenIdName): resp = self.sendEzspCommand( self.GET_MFG_TOKEN + bytearray([tokenId]), "getMfgToken: %s" % tokenIdName ) tokenDataLength = resp[5] tokenData = resp[6:] return tokenDataLength, tokenData def launchStandaloneBootloader(self, mode, modeName): resp = self.sendEzspCommand( self.LAUNCH_STANDALONE_BOOTLOADER + bytearray([mode]), "launchStandaloneBootloader: %s" % modeName, ) status = resp[5] return status def initEzspProtocol(self): ash_status = self.ash.sendResetFrame() if ash_status: return ash_status self.ezspVersion = self.sendVersion(self.INITIAL_EZSP_VERSION) self.logger.debug("EZSP v%d detected" % self.ezspVersion) if self.ezspVersion != self.INITIAL_EZSP_VERSION: self.sendVersion(self.ezspVersion) return 0 class ElelabsUtilities: def __init__(self, config, logger): self.logger = logger self.config = config def probe(self): serialInterface = SerialInterface(self.config.port, self.config.baudrate) serialInterface.open() ezsp = EzspProtocolInterface(serialInterface.serial, self.config, self.logger) ezsp_status = ezsp.initEzspProtocol() if ezsp_status == 0: status, value_length, value_array = ezsp.getValue( ezsp.EZSP_VALUE_VERSION_INFO, "EZSP_VALUE_VERSION_INFO" ) if status == 0: firmware_version = ( str(value_array[2]) + "." + str(value_array[3]) + "." + str(value_array[4]) + "-" + str(value_array[0]) ) else: self.logger.info("EZSP status returned %d" % status) token_data_length, token_data = ezsp.getMfgToken( ezsp.EZSP_MFG_STRING, "EZSP_MFG_STRING" ) if token_data.decode("ascii", "ignore") == "Elelabs": token_data_length, token_data = ezsp.getMfgToken( ezsp.EZSP_MFG_BOARD_NAME, "EZSP_MFG_BOARD_NAME" ) adapter_name = token_data.decode("ascii", "ignore") self.logger.info("Elelabs adapter detected:") self.logger.info("Adapter: %s" % adapter_name) else: adapter_name = None self.logger.info("Generic EZSP adapter detected:") self.logger.info("Firmware: %s" % firmware_version) self.logger.info("EZSP v%d" % ezsp.ezspVersion) serialInterface.close() return ( AdapterModeProbeStatus.NORMAL, ezsp.ezspVersion, firmware_version, adapter_name, ) else: if self.config.baudrate != 115200: serialInterface.close() time.sleep(1) serialInterface = SerialInterface(self.config.port, 115200) serialInterface.open() # check if allready in bootloader mode serialInterface.serial.write(b"\x0A") first_line = serialInterface.serial.readline() # read blank line if len(first_line) == 0: # timeout serialInterface.close() self.logger.info( "Couldn't communicate with the adapter in normal or in bootloader modes" ) return AdapterModeProbeStatus.ERROR, None, None, None btl_info = ( serialInterface.serial.readline() ) # read Gecko BTL version or blank line self.logger.info("EZSP adapter in bootloader mode detected:") self.logger.info( btl_info.decode("ascii", "ignore")[:-2] ) # show Bootloader version serialInterface.close() return AdapterModeProbeStatus.BOOTLOADER, None, None, None def restart(self, mode): adapter_status, ezsp_version, firmware_version, adapter_name = self.probe() if adapter_status == AdapterModeProbeStatus.NORMAL: if mode == "btl": serialInterface = SerialInterface( self.config.port, self.config.baudrate ) serialInterface.open() self.logger.info("Launch in bootloader mode") ezsp = EzspProtocolInterface( serialInterface.serial, self.config, self.logger ) ezsp_status = ezsp.initEzspProtocol() status = ezsp.launchStandaloneBootloader( ezsp.STANDALONE_BOOTLOADER_NORMAL_MODE, "STANDALONE_BOOTLOADER_NORMAL_MODE", ) if status: serialInterface.close() self.logger.critical( "Error launching the adapter in bootloader mode" ) return -1 serialInterface.close() # wait for reboot time.sleep(2) ( adapter_status, ezsp_version, firmware_version, adapter_name, ) = self.probe() if adapter_status == AdapterModeProbeStatus.BOOTLOADER: return 0 else: return -1 else: self.logger.info("Allready in EZSP normal mode. No need to restart") return 0 elif adapter_status == AdapterModeProbeStatus.BOOTLOADER: if mode == "btl": self.logger.info("Allready in bootloader mode. No need to restart") return 0 else: serialInterface = SerialInterface(self.config.port, 115200) serialInterface.open() self.logger.info("Launch in EZSP normal mode") # Send Reboot serialInterface.serial.write(b"2") serialInterface.close() # wait for reboot time.sleep(2) ( adapter_status, ezsp_version, firmware_version, adapter_name, ) = self.probe() if adapter_status == AdapterModeProbeStatus.NORMAL: return 0 else: return -1 def flash(self, filename): # STATIC FUNCTIONS def getc(size, timeout=1): read_data = self.serialInterface.serial.read(size) return read_data def putc(data, timeout=1): self.currentPacket += 1 if (self.currentPacket % 20) == 0: print(".", end="") if (self.currentPacket % 100) == 0: print("") self.serialInterface.serial.write(data) time.sleep(0.001) # if not (".gbl" in filename) and not (".ebl" in filename): # self.logger.critical( # 'Aborted! Gecko bootloader accepts .gbl or .ebl images only.') # return if self.restart("btl"): self.logger.critical( "EZSP adapter not in the bootloader mode. Can't perform update procedure" ) self.serialInterface = SerialInterface(self.config.port, 115200) self.serialInterface.open() # Enter '1' to initialize X-MODEM mode self.serialInterface.serial.write(b"\x0A") self.serialInterface.serial.write(b"1") time.sleep(1) self.serialInterface.serial.readline() # BL > 1 self.serialInterface.serial.readline() # begin upload self.logger.info( "Successfully restarted into X-MODEM mode! Starting upload of the new firmware... DO NOT INTERRUPT(!)" ) self.currentPacket = 0 # Wait for char 'C' success = False start_time = time.time() while time.time() - start_time < 10: if self.serialInterface.serial.read() == b"C": success = True if time.time() - start_time > 5: break if not success: self.logger.info( "Failed to restart into bootloader mode. Please see users guide." ) return # Start XMODEM transaction modem = XMODEM(getc, putc) # stream = open(filename, 'rb') stream = io.BytesIO(filename) sentcheck = modem.send(stream) print("") if sentcheck: self.logger.info("Firmware upload complete") else: self.logger.critical( "Firmware upload failed. Please try a correct firmware image or restart in normal mode." ) return self.logger.info("Rebooting NCP...") # Wait for restart time.sleep(4) # Send Reboot into App-Code command self.serialInterface.serial.write(b"2") self.serialInterface.close() time.sleep(2) return self.probe() def ele_update(self, new_version): adapter_status, ezsp_version, firmware_version, adapter_name = self.probe() if adapter_status == AdapterModeProbeStatus.NORMAL: if adapter_name == None: self.logger.critical( "No Elelabs product detected.\r\nUse 'flash' utility for generic EZSP products.\r\nContact <EMAIL> if you see this meesage for original Elelabs product" ) return if new_version == "v6" and ezsp_version == 6: self.logger.info( "Elelabs product is operating EZSP protocol v%d. No need to update to %s" % (ezsp_version, new_version) ) return if new_version == "v8" and ezsp_version == 8: self.logger.info( "Elelabs product is operating EZSP protocol v%d. No need to update to %s" % (ezsp_version, new_version) ) return if adapter_name == "ELR023" or adapter_name == "ELU013": if new_version == "v6": self.flash("data/ELX0X3_MG13_6.0.3_ezsp_v6.gbl") elif new_version == "v8": self.flash("data/ELX0X3_MG13_6.7.0_ezsp_v8.gbl") else: self.logger.critical("Unknown EZSP version") elif adapter_name == "ELR022" or adapter_name == "ELU012": self.logger.critical("TODO!. Contact Elelabs at <EMAIL>") elif adapter_name == "EZBPIS" or adapter_name == "EZBUSBA": self.logger.critical("TODO!. Contact Elelabs at <EMAIL>") else: self.logger.critical( "Unknown Elelabs product %s detected.\r\nContact <EMAIL> if you see this meesage for original Elelabs product" % adapter_name ) elif adapter_status == AdapterModeProbeStatus.BOOTLOADER: self.logger.critical( "The product not in the normal EZSP mode.\r\n'restart' into normal mode or use 'flash' utility instead" ) else: self.logger.critical("No upgradable device found") ``` #### File: lib/xiaomi_gateway3_device/xiaomi_gateway3_device.py ```python import asyncio from .. import fhem from .. import fhem_pythonbinding as fhepy from .. import generic # imports for dynamical usage, do NOT remove from .devices.gateway import Gateway # noqa: F401 from .devices.sensor import ( # noqa: F401 ContactSensor, HTSensor, MotionSensor, WaterLeakSensor, ) device_type_mapping = { "lumi.sensor_magnet.v2": "ContactSensor", "lumi.sensor_magnet.aq2": "ContactSensor", "lumi.sensor_wleak.aq1": "WaterLeakSensor", "lumi.sensor_ht.v1": "HTSensor", "lumi.sensor_ht.v2": "HTSensor", "lumi.weather.v1": "HTSensor", "lumi.sensor_motion.v1": "MotionSensor", "lumi.sensor_motion.v2": "MotionSensor", "lumi.gateway.mgl03": "Gateway", } class xiaomi_gateway3_device(generic.FhemModule): def __init__(self, logger): super().__init__(logger) self._fhempy_gateway = None self._fhempy_device = None self.loop = asyncio.get_event_loop() # FHEM FUNCTION async def Define(self, hash, args, argsh): await super().Define(hash, args, argsh) if len(args) < 5: return ( "Usage: define devname fhempy xiaomi_gateway3_device" " <GATEWAY_NAME> <DID>" ) self.gw_name = args[3] self.did = args[4] hash["GATEWAY"] = self.gw_name hash["DID"] = self.did # change gateway did to 0, we just needed it for DID internals if self.did.find("0x") >= 0: self.did = "lumi.0" await fhem.readingsSingleUpdateIfChanged(self.hash, "state", "offline", 1) self.create_async_task(self.connect_gw()) async def connect_gw(self): while self._fhempy_gateway is None: self._fhempy_gateway = fhepy.getFhemPyDeviceByName(self.gw_name) if self._fhempy_gateway: try: await self._fhempy_gateway.register_device(self, self.update) await fhem.readingsSingleUpdateIfChanged( self.hash, "state", "online", 1 ) except Exception: self._fhempy_gateway = None pass else: await fhem.readingsSingleUpdateIfChanged( self.hash, "state", f"gateway {self.gw_name} not found", 1 ) await asyncio.sleep(10) async def initialize(self, device): if self._fhempy_gateway is None: return # first update, set attributes and device readings like model, sid, ... if device["model"] not in device_type_mapping: self.logger.error( f"{device['model']} not yet supported, please report an issue here: " f"https://github.com/dominikkarall/fhempy/issues" ) await fhem.readingsSingleUpdateIfChanged( self.hash, "state", f"unsupported device: {device['model']}", 1 ) return # create device based on device model self._fhempy_device = globals()[device_type_mapping[device["model"]]]( self.logger, self._fhempy_gateway ) self._fhempy_device.set_hash(self.hash) await self._fhempy_device.initialize(device) self._fhempy_gateway.gateway3.set_entity(self._fhempy_device) self._fhempy_gateway.gateway3.set_stats(self._fhempy_device) def update(self, data): if self._fhempy_device is not None: self._fhempy_device.update(data) # FHEM functions which will be redirected to device type class async def FW_detailFn(self, hash, args, argsh): if self._fhempy_device is None: return await super().FW_detailFn(hash, args, argsh) return await self._fhempy_device.FW_detailFn(hash, args, argsh) async def Set(self, hash, args, argsh): if self._fhempy_device is None: return await super().Set(hash, args, argsh) return await self._fhempy_device.Set(hash, args, argsh) async def Attr(self, hash, args, argsh): if self._fhempy_device is None: return await super().Attr(hash, args, argsh) return await self._fhempy_device.Attr(hash, args, argsh) async def Undefine(self, hash): await super().Undefine(hash) if self._fhempy_device is not None: await self._fhempy_device.Undefine(hash) ```
{ "source": "jfm/raspberry-devices", "score": 3 }
#### File: raspberry-devices/RPi/events.py ```python class OutputEvent: def __init__(self, channel, outmode): self.channel = channel self.outmode = outmode def as_dict(self): return { 'type': 'output', 'channel': self.channel, 'outmode': self.outmode } class SetmodeEvent: def __init__(self, mode): self.mode = mode def as_dict(self): return { 'type': 'mode', 'mode': self.mode } ``` #### File: sensors/temperature/ds18b20.py ```python class Sensor: def set_temperature(self, device, temperature): file = open(device, 'w') file.write('ab 12 34 56 78 bc 12 34 ff : crc=ff YES\n') file.write('ab 12 34 56 78 bc 12 34 ff t=%s' % str(temperature * 1000)) file.close() ```
{ "source": "JfMRes/mask-detection-python", "score": 3 }
#### File: JfMRes/mask-detection-python/usando.py ```python from imageai.Prediction.Custom import CustomImagePrediction prediction = CustomImagePrediction() prediction.setModelTypeAsResNet() modelo="imagenes\models\model_ex-049_acc-0.906250.h5" prediction.setModelPath(modelo) prediction.setJsonPath("imagenes\json\model_class.json") prediction.loadModel(num_objects=2) def inicia(): foto=r"estampado.webp" predictions, probabilities = prediction.predictImage(foto, result_count=2) for eachPrediction, eachProbability in zip(predictions, probabilities): print(eachPrediction , " : " , eachProbability) inicia() ```
{ "source": "JfMRes/tfg", "score": 2 }
#### File: JfMRes/tfg/init.py ```python import sys font=("Arial Bold", 10) with open(sys.path[0]+'/docs/settings.txt') as f_settings: lines=[] for line in f_settings: lines.append(line) def value_setting(ind): return lines[ind][lines[ind].index('=')+1:len(lines[ind])-1] def_lang=value_setting(0) def_timeout=float(value_setting(1)) def_encode=value_setting(2) def_baudrate=int(value_setting(3)) def_theme=value_setting(4) with open(sys.path[0]+'/docs/languages/'+def_lang+'.txt') as f_lang: lines=[] for line in f_lang: lines.append(line) def value_lang(ind): return lines[ind][lines[ind].index('=')+1:len(lines[ind])-1] t_error_path=value_lang(0) t_error_noinput=value_lang(1) t_error_output=value_lang(2) t_error_toomanyout=value_lang(3) t_error_toomanyin=value_lang(4) t_error_noconexion=value_lang(5) t_head_main=value_lang(6) t_head_debug=value_lang(7) t_label_input_pins=value_lang(8) t_label_output_pins=value_lang(9) t_label_file_path=value_lang(10) t_label_time_step=value_lang(11) t_button_start=value_lang(12) t_button_diagram=value_lang(13) t_button_debug=value_lang(14) t_button_connect=value_lang(15) t_error_no_succes_connction=value_lang(16) ```
{ "source": "jfm/TimeGraph", "score": 2 }
#### File: TimeGraph/tests/test_plotter.py ```python from nose.tools import assert_equal from timegraph.drawing.plotter import Plotter #class PlotterTest(unittest.TestCase): class TestPlotter: def setup(self): self.test_values = [('2015-08-18T00:00:00Z', 4.354952083333334), ('2015-08-19T00:00:00Z', 4.308158333333333), ('2015-08-20T00:00:00Z', 4.302979166666666), ('2015-08-21T00:00:00Z', 4.311062499999999), ('2015-08-22T00:00:00Z', 4.253908333333332), ('2015-08-23T00:00:00Z', 4.189418750000003), ('2015-08-24T00:00:00Z', 4.153933333333331), ('2015-08-25T00:00:00Z', 4.172108333333331), ('2015-08-26T00:00:00Z', 4.261525), ('2015-08-27T00:00:00Z', 4.292508333333336), ('2015-08-28T00:00:00Z', 4.4140041666666665), ('2015-08-29T00:00:00Z', 4.499274999999998), ('2015-08-30T00:00:00Z', 4.439795833333335), ('2015-08-31T00:00:00Z', 4.4404875000000015), ('2015-09-01T00:00:00Z', 4.42244375), ('2015-09-02T00:00:00Z', 4.421910416666667), ('2015-09-03T00:00:00Z', 4.410592436974791), ('2015-09-04T00:00:00Z', 4.3801125), ('2015-09-05T00:00:00Z', 4.318624217118998), ('2015-09-06T00:00:00Z', 4.288097916666669), ('2015-09-07T00:00:00Z', 4.393808333333334), ('2015-09-08T00:00:00Z', 4.476208333333333), ('2015-09-09T00:00:00Z', 4.569668750000003), ('2015-09-10T00:00:00Z', 4.60123125), ('2015-09-11T00:00:00Z', 4.608704166666667), ('2015-09-12T00:00:00Z', 4.658435416666667), ('2015-09-13T00:00:00Z', 4.7641395833333355), ('2015-09-14T00:00:00Z', 4.911522916666667), ('2015-09-15T00:00:00Z', 4.857977083333336), ('2015-09-16T00:00:00Z', 4.680843749999998), ('2015-09-17T00:00:00Z', 4.603674999999998), ('2015-09-18T00:00:00Z', 4.37027676240209)] self.values = [(4.354952083333334, 7), (4.308158333333333, 7), (4.302979166666666, 7), (4.311062499999999, 7), (4.253908333333332, 7), (4.189418750000003, 7), (4.153933333333331, 7), (4.172108333333331, 7), (4.261525, 7), (4.292508333333336, 7), (4.4140041666666665, 7), (4.499274999999998, 8), (4.439795833333335, 8), (4.4404875000000015, 8), (4.42244375, 8), (4.421910416666667, 8), (4.410592436974791, 7), (4.3801125, 7), (4.318624217118998, 7), (4.288097916666669, 7), (4.393808333333334, 7), (4.476208333333333, 8), (4.569668750000003, 8), (4.60123125, 8), (4.608704166666667, 8), (4.658435416666667, 8), (4.7641395833333355, 8), (4.911522916666667, 9), (4.857977083333336, 8), (4.680843749999998, 8), (4.603674999999998, 8), (4.37027676240209, 7)] def test_get_y_scale(self): plotter = Plotter(is_test=True) y_scale = plotter.get_y_scale(self.values) print(y_scale) assert_equal(max(y_scale), '4.91 ') assert_equal(min(y_scale), '2.64 ') def test_generate_matrix(self): scaled_values = [scaled for (original, scaled) in self.values] plotter = Plotter(is_test=True) matrix = plotter.generate_matrix(scaled_values) assert_equal(matrix[7][0], '*') def test_scale_values(self): plotter = Plotter(is_test=True) original_values = [original for (time, original) in self.test_values] scaled_values = plotter.scale_values(original_values) print(scaled_values) assert_equal(scaled_values[0][1], 7) ``` #### File: timegraph/drawing/drawing.py ```python from numbers import Number from timegraph.drawing.plotter import Plotter class Drawing: def __init__(self): self.plotter = Plotter() def create_graph(self, title, db_response): value_list = self.get_value_list(db_response.get_points()) self.plotter.plot_timeseries(value_list) def get_value_list(self, points): result = [] for point in points: point_keys = point.keys() for key in point_keys: if key != 'time': if (point[key] is not None and isinstance(point[key], Number)): result.append(point[key]) return result def print_graph(self, lines): for line in lines: print(line) class DrawingException(Exception): def __init__(self, code, message): super().__init__(code, message) self.code = code self.message = message ``` #### File: timegraph/shell/influx.py ```python from cmd import Cmd from influxdb import InfluxDBClient from requests.exceptions import ConnectionError from influxdb.exceptions import InfluxDBClientError from timegraph.drawing.drawing import Drawing, DrawingException import json class InfluxShell(Cmd): prompt = 'query> ' def __init__(self, db_host, db_port, db_name): super().__init__() self.db_host = db_host self.db_port = db_port self.db_name = db_name self.client = InfluxDBClient( host=db_host, port=db_port, database=db_name) self.drawing = Drawing() def do_auth(self, line): args = line.split(' ') dbuser = args[0] dbpass = args[1] self.client.switch_user(dbuser, dbpass) def do_select(self, line): query = 'select ' + line if not query.endswith(';'): query = query + ';' try: response = self.client.query(query) self.drawing.create_graph(query, response) except ConnectionError as conn_error: self.connection_error_handler(conn_error) except InfluxDBClientError as error: self.influx_error_handler(error.code, error.content) except DrawingException as drawing_error: self.graphtool_error_handler( drawing_error.code, drawing_error.message) def do_list(self, line): print('list - Not implemented yet') def do_import(self, line): print('improt - Not implemented yet') # Convert input(file) to valid json # self.client.write_points(json) def do_create_db(self, line): response = self.client.create_database(line) print(response) def do_disconnect(self, line): return True def do_EOF(self, line): return True def default(self, line): print('Unrecognized command') print(' ', line) def main(self): InfluxShell.cmdloop(self, intro='Connected to Influx Query Shell') def connection_error_handler(self, exception): print('Could not connect to {0} on {1}:{2}'.format( self.db_name, self.db_host, self.db_port)) def influx_error_handler(self, code, content): if code is None: print(content) else: contentJson = json.loads(content) print(code, ' -- ', contentJson['error']) def graphtool_error_handler(self, code, message): print(code, ' -- ', message) # select count(water_level) from h2o_feet # select * from h2o_feet limit 5 # select field(value) from h2o_feet limit 5 # select water_level from h2o_feet limit 5 # select mean("water_level") from h2o_feet group by time(1d) limit 100 # curl https://s3.amazonaws.com/noaa.water-database/NOAA_data.txt # -o NOAA_data.txt # influx -import -path=NOAA_data.txt -precision=s -database=testdb ``` #### File: timegraph/shell/timegraph.py ```python from cmd import Cmd from timegraph.shell.influx import InfluxShell class TimeGraphShell(Cmd): prompt = 'timegraph>' def __init__(self): super().__init__() def do_connect(self, line): args = line.split(' ') if len(args) < 4: self.print_help_missing_args() else: db_type = args[0] db_host = args[1] db_port = args[2] db_name = args[3] if db_type == 'influx': influx_shell = InfluxShell(db_host, db_port, db_name) influx_shell.main() else: self.print_help_influx_only() def help_connect(self): self.print_help_missing_args() def main(self): TimeGraphShell.cmdloop(self, intro='TimeGraph Shell') def do_EOF(self, line): return True def do_exit(self, line): return True def print_help_missing_args(self): print('connect takes the following arguments:') print(' connect <dbtype> <host> <port> <db>') print('Example:') print(' connect influx localhost 8086 exampledb') def print_help_influx_only(self): print('Only the dbtype "influx" is currently supported') ```
{ "source": "jfmyers9/integrations-core", "score": 2 }
#### File: commands/env/shell.py ```python import click from ...e2e import create_interface, get_configured_envs from ...testing import complete_active_checks, complete_configured_envs from ..console import CONTEXT_SETTINGS, abort, echo_failure, echo_info @click.command('shell', context_settings=CONTEXT_SETTINGS, short_help='Run a shell inside agent container') @click.argument('check', autocompletion=complete_active_checks) @click.argument('env', autocompletion=complete_configured_envs, required=False) @click.option('-v', '--install-vim', is_flag=True, help='Optionally install editing/viewing tools vim and less') @click.option('-i', '--install-tools', multiple=True, help='Optionally install custom tools') def shell(check, env, install_vim, install_tools): """Run a shell inside the Agent docker container.""" envs = get_configured_envs(check) if not envs: echo_failure(f'No active environments found for `{check}`.') echo_info(f'See what is available to start via `ddev env ls {check}`.') abort() if not env: if len(envs) > 1: echo_failure(f'Multiple active environments found for `{check}`, please specify one.') echo_info('See what is active via `ddev env ls`.') abort() env = envs[0] if env not in envs: echo_failure(f'`{env}` is not an active environment.') echo_info('See what is active via `ddev env ls`.') abort() environment = create_interface(check, env) if environment.ENV_TYPE == 'local': abort('Shell subcommand only available for docker e2e environments') if install_vim or install_tools: tools = list(install_tools) if install_vim: tools.extend(('less', 'vim')) echo_info(f'Installing helper tools: {", ".join(tools)}') environment.exec_command('/bin/bash -c "apt update && apt install -y {}"'.format(" ".join(tools))) result = environment.shell() if result.code: abort(result.stdout + result.stderr, code=result.code) ``` #### File: release/stats/csv_report.py ```python import csv from pathlib import Path import click from ...console import CONTEXT_SETTINGS, echo_success from .common import Release class ReportSerializer: def __init__(self, release): self.release = release def write_report(self, filepath): with open(filepath, 'w', newline='') as csvfile: report = self._report() fieldnames = report.keys() writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() writer.writerow(report) def write_changes(self, filepath): with open(filepath, 'w', newline='') as csvfile: changes = [self._change(commit) for commit in self.release.commits] fieldnames = changes[0].keys() writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() for change in changes: writer.writerow(change) def _report(self): return { 'Release Branch': self.release.release_version, 'Release candidates': len(self.release.rc_tags), 'Number of Commits': len(self.release.commits), 'Commits with unknown PR': len([commit for commit in self.release.commits if commit.pull_request is None]), 'Release time (days)': self._release_delay(), } def _release_delay(self): rc_1 = self.release.commits[0] last_change = self.release.commits[-1] duration = (last_change.date - rc_1.date).total_seconds() return divmod(duration, 24 * 60 * 60)[0] def _change(self, commit): teams = [] title = commit.title url = commit.url next_tag = None pull_request = commit.pull_request if pull_request: teams = [label.rpartition('/')[-1] for label in pull_request.labels if label.startswith('team')] title = pull_request.title url = pull_request.url if commit.included_in_tag: next_tag = commit.included_in_tag.name return {'SHA': commit.sha, 'Title': title, 'URL': url, 'Teams': ' & '.join(teams), 'Next tag': next_tag} @click.command( context_settings=CONTEXT_SETTINGS, short_help="Writes the CSV report about a specific release", ) @click.option('--from-ref', '-f', help="Reference to start stats on", required=True) @click.option('--to-ref', '-t', help="Reference to end stats at", required=True) @click.option('--release-version', '-r', help="Release version to analyze", required=True) @click.option('--output-folder', '-o', help="Path to output folder") @click.pass_context def csv_report(ctx, from_ref, to_ref, release_version, output_folder=None): """Computes the release report and writes it to a specific directory """ if output_folder is None: output_folder = release_version folder = Path(output_folder) folder.mkdir(parents=True, exist_ok=True) release = Release.from_github(ctx, release_version, from_ref=from_ref, to_ref=to_ref) serializer = ReportSerializer(release) serializer.write_report(folder.joinpath('release.csv')) serializer.write_changes(folder.joinpath('changes.csv')) echo_success(f'Successfully wrote reports to directory `{output_folder}`') ``` #### File: commands/validate/readmes.py ```python import re from os import path import click from ...utils import complete_valid_checks, get_root, get_valid_integrations, read_readme_file from ..console import CONTEXT_SETTINGS, abort, echo_failure, echo_info, echo_success IMAGE_EXTENSIONS = {".png", ".jpg"} @click.command(context_settings=CONTEXT_SETTINGS, short_help='Validate README.md files') @click.pass_context @click.argument('integration', autocompletion=complete_valid_checks, required=False) def readmes(ctx, integration): """Validates README files If `check` is specified, only the check will be validated, otherwise all README files in the repo will be. """ repo = ctx.obj['repo_name'] integrations = [] failed_checks = 0 if integration: integrations = [integration] else: integrations = sorted(get_valid_integrations()) for integration in integrations: has_overview = False has_setup = False errors = False display_queue = [] lines = read_readme_file(integration) for line_no, line in lines: if "## Overview" == line.strip(): has_overview = True if "## Setup" == line.strip(): has_setup = True for ext in IMAGE_EXTENSIONS: if ext in line: IMAGE_REGEX = ( rf".*https:\/\/raw\.githubusercontent\.com\/DataDog\/" rf"{re.escape(repo)}\/master\/({re.escape(integration)}\/images\/.*.{ext}).*" ) match = re.match(IMAGE_REGEX, line) if not match: errors = True display_queue.append((echo_failure, f" No valid image file on line {line_no}")) display_queue.append( ( echo_info, f" This image path must be in the form: " f"https://raw.githubusercontent.com/DataDog/{repo}/master/{integration}/images/<IMAGE_NAME>", # noqa ) ) break rel_path = match.groups()[0] if rel_path: file_path = path.join(get_root(), rel_path) if not path.exists(file_path): errors = True display_queue.append( (echo_failure, f" image: {rel_path} is linked in its readme but does not exist") ) if not (has_overview and has_setup): errors = True display_queue.append((echo_failure, " readme does not contain both an Overview and Setup H2 section")) if errors: failed_checks += 1 echo_info(f"{integration}/README.md... ", nl=False) echo_failure("FAILED") for display_func, message in display_queue: display_func(message) if failed_checks: echo_failure(f"{failed_checks} invalid files") abort() else: echo_success("All READMEs are valid!") ``` #### File: dev/tooling/dependencies.py ```python import os from collections import defaultdict from packaging.requirements import InvalidRequirement, Requirement from ..utils import stream_file_lines from .constants import get_agent_requirements, get_root from .utils import get_valid_checks class DependencyDefinition: __slots__ = ('name', 'requirement', 'file_path', 'line_number', 'check_name') def __init__(self, name, requirement, file_path, line_number, check_name=None): self.name = name self.requirement = requirement self.file_path = file_path self.line_number = line_number self.check_name = check_name def create_dependency_data(): return defaultdict(lambda: defaultdict(lambda: [])) def load_dependency_data(req_file, dependencies, errors, check_name=None): for i, line in enumerate(stream_file_lines(req_file)): line = line.strip() if not line or line.startswith('#'): continue try: req = Requirement(line) except InvalidRequirement as e: errors.append(f'File `{req_file}` has an invalid dependency: `{line}`\n{e}') continue name = req.name.lower() dependency = dependencies[name][req.specifier] dependency.append(DependencyDefinition(name, req, req_file, i, check_name)) def read_check_dependencies(): root = get_root() dependencies = create_dependency_data() errors = [] for check_name in get_valid_checks(): req_file = os.path.join(root, check_name, 'requirements.in') load_dependency_data(req_file, dependencies, errors, check_name) return dependencies, errors def read_agent_dependencies(): dependencies = create_dependency_data() errors = [] load_dependency_data(get_agent_requirements(), dependencies, errors) return dependencies, errors ``` #### File: http_check/tests/conftest.py ```python import os import sys import pytest from mock import patch from datadog_checks.dev import docker_run, run_command from datadog_checks.dev.utils import ON_WINDOWS from datadog_checks.http_check import HTTPCheck from .common import CONFIG_E2E, HERE MOCKED_HOSTS = ['valid.mock', 'expired.mock', 'wronghost.mock', 'selfsigned.mock'] @pytest.fixture(scope='session') def dd_environment(): cacert_path = os.path.join(HERE, 'fixtures', 'cacert.pem') e2e_metadata = {'docker_volumes': ['{}:/opt/cacert.pem'.format(cacert_path)]} with docker_run( os.path.join(HERE, 'compose', 'docker-compose.yml'), build=True, log_patterns=["starting server on port"] ): yield CONFIG_E2E, e2e_metadata @pytest.fixture(scope='session') def mock_dns(): import socket _orig_getaddrinfo = socket.getaddrinfo _orig_connect = socket.socket.connect def patched_getaddrinfo(host, *args, **kwargs): if host.endswith('.mock'): # See socket.getaddrinfo, just updating the hostname here. # https://docs.python.org/3/library/socket.html#socket.getaddrinfo return [(2, 1, 6, '', ('127.0.0.1', 443))] return _orig_getaddrinfo(host, *args, **kwargs) def patched_connect(self, address): host, port = address[0], address[1] if host.endswith('.mock'): host, port = '127.0.0.1', 443 return _orig_connect(self, (host, port)) socket.getaddrinfo = patched_getaddrinfo socket.socket.connect = patched_connect yield socket.getaddrinfo = _orig_getaddrinfo socket.socket.connect = _orig_connect @pytest.fixture() def mock_hosts_e2e(): """Only for e2e testing""" container_id = "dd_http_check_{}".format(os.environ["TOX_ENV_NAME"]) commands = [] for mocked_host in MOCKED_HOSTS: commands.append(r'bash -c "printf \"127.0.0.1 {}\n\" >> /etc/hosts"'.format(mocked_host)) for command in commands: run_command('docker exec {} {}'.format(container_id, command)) @pytest.fixture(scope='session') def http_check(): # Patch the function to return the certs located in the `tests/` folder with patch('datadog_checks.http_check.http_check.get_ca_certs_path', new=mock_get_ca_certs_path): yield HTTPCheck('http_check', {}, [{}]) @pytest.fixture(scope='session') def embedded_dir(): if ON_WINDOWS: return 'embedded{}'.format(sys.version_info[0]) else: return 'embedded' def mock_get_ca_certs_path(): """ Mimic get_ca_certs_path() by using the certificates located in the `tests/` folder """ embedded_certs = os.path.join(HERE, 'fixtures', 'cacert.pem') if os.path.exists(embedded_certs): return embedded_certs raise Exception("Embedded certs not found: {}".format(embedded_certs)) ``` #### File: vertica/tests/test_unit.py ```python import logging import os import mock import pytest from datadog_checks.base import AgentCheck from datadog_checks.base.log import TRACE_LEVEL from datadog_checks.vertica import VerticaCheck CERTIFICATE_DIR = os.path.join(os.path.dirname(__file__), 'certificate') def test_ssl_config_ok(aggregator): cert = os.path.join(CERTIFICATE_DIR, 'cert.cert') private_key = os.path.join(CERTIFICATE_DIR, 'server.pem') instance = { 'db': 'abc', 'server': 'localhost', 'port': '999', 'username': 'dbadmin', 'password': '<PASSWORD>', 'timeout': 10, 'tags': ['foo:bar'], 'tls_verify': True, 'validate_hostname': True, 'cert': cert, 'private_key': private_key, 'ca_cert': CERTIFICATE_DIR, } check = VerticaCheck('vertica', {}, [instance]) with mock.patch('datadog_checks.vertica.vertica.vertica') as vertica: with mock.patch('datadog_checks.vertica.vertica.ssl') as ssl: vertica.connect.return_value = mock.MagicMock() tls_context = mock.MagicMock() ssl.SSLContext.return_value = tls_context check.check(instance) assert tls_context.verify_mode == ssl.CERT_REQUIRED assert tls_context.check_hostname is True tls_context.load_verify_locations.assert_called_with(None, CERTIFICATE_DIR, None) tls_context.load_cert_chain.assert_called_with(cert, keyfile=private_key) assert check._connection is not None aggregator.assert_service_check("vertica.can_connect", status=AgentCheck.OK, tags=['db:abc', 'foo:bar']) def test_client_logging_enabled(aggregator, instance): instance['client_lib_log_level'] = 'DEBUG' check = VerticaCheck('vertica', {}, [instance]) with mock.patch('datadog_checks.vertica.vertica.vertica') as vertica: check.check(instance) vertica.connect.assert_called_with( database=mock.ANY, host=mock.ANY, port=mock.ANY, user=mock.ANY, password=<PASSWORD>, backup_server_node=mock.ANY, connection_load_balance=mock.ANY, connection_timeout=mock.ANY, log_level='DEBUG', log_path='', ) def test_client_logging_disabled(aggregator, instance): instance['client_lib_log_level'] = None check = VerticaCheck('vertica', {}, [instance]) with mock.patch('datadog_checks.vertica.vertica.vertica') as vertica: check.check(instance) vertica.connect.assert_called_with( database=mock.ANY, host=mock.ANY, port=mock.ANY, user=mock.ANY, password=<PASSWORD>, backup_server_node=mock.ANY, connection_load_balance=mock.ANY, connection_timeout=mock.ANY, ) @pytest.mark.parametrize( 'agent_log_level, expected_vertica_log_level', [(logging.DEBUG, logging.DEBUG), (TRACE_LEVEL, logging.DEBUG)] ) def test_client_logging_enabled_debug_if_agent_uses_debug_or_trace( aggregator, instance, agent_log_level, expected_vertica_log_level ): """ Improve collection of debug flares by automatically enabling client DEBUG logs when the Agent uses DEBUG logs. """ instance.pop('client_lib_log_level', None) root_logger = logging.getLogger() root_logger.setLevel(agent_log_level) check = VerticaCheck('vertica', {}, [instance]) with mock.patch('datadog_checks.vertica.vertica.vertica') as vertica: check.check(instance) vertica.connect.assert_called_with( database=mock.ANY, host=mock.ANY, port=mock.ANY, user=mock.ANY, password=<PASSWORD>, backup_server_node=mock.ANY, connection_load_balance=mock.ANY, connection_timeout=mock.ANY, log_level=expected_vertica_log_level, log_path='', ) def test_client_logging_disabled_if_agent_uses_info(aggregator, instance): """ Library logs should be disabled by default, in particular under normal Agent operation (INFO level). """ instance.pop('client_lib_log_level', None) root_logger = logging.getLogger() root_logger.setLevel(logging.INFO) check = VerticaCheck('vertica', {}, [instance]) with mock.patch('datadog_checks.vertica.vertica.vertica') as vertica: check.check(instance) vertica.connect.assert_called_with( database=mock.ANY, host=mock.ANY, port=mock.ANY, user=mock.ANY, password=<PASSWORD>, backup_server_node=mock.ANY, connection_load_balance=mock.ANY, connection_timeout=mock.ANY, ) ```
{ "source": "jfnavarro/old_python_courses", "score": 3 }
#### File: AB1/src/OverlapMatches.py ```python import sys import os.path from numpy import * class ReturnValue3(object): def __init__(self,score,pointer): self.score = score self.pointer = pointer class ReturnValue(object): def __init__(self,name="",sequence=""): self.sequence = sequence self.name = name class ReturnValue2(object): def __init__(self,alignment1,alignment2): self.alignment1 = alignment1 self.alignment2 = alignment2 def readFasta(infile): saved = None while 1: if saved is not None: line = saved saved = None else: line = infile.readline() if not line: return if line.isspace(): continue if not line.startswith(">"): raise TypeError( "The title line must start with a '>': %r" % line) title = line.rstrip() sequences = [] while 1: line = infile.readline() if not line or line.isspace(): break if line.startswith(">"): saved = line break sequences.append(line.rstrip("\n")) yield ReturnValue(title,"".join(sequences)) infile.close() def readFile(name): file = open(name, 'rU') return file def overlapmatches(seq1,seq2,score,d,pointer): for i in xrange(1,len(seq1)+1): for j in xrange(1,len(seq2)+1): left = score[i][j-1] + d #insertion up = score[i-1][j] + d #deletion corner = score[i-1][j-1] + s(seq1[i-1],seq2[j-1]) #match auxmax = max(corner,left,up) score[i][j] = auxmax if(auxmax == up): pointer[i][j] = 1 elif(auxmax == left): pointer[i][j] = 2 else: pointer[i][j] = 3 return ReturnValue3(score,pointer) def traceback(pointer,position,sequence1,sequence2): i = position[0] j = position[1] alignment1 = "" alignment2 = "" alignment3 = "" alignment4 = "" for x in xrange(position[1]-1,0,-1): alignment1 = sequence1[x-1] + alignment1 alignment2 = '-' + alignment2 while j != 0 and i != 0: if (pointer[i][j] == 3): alignment3 = alignment3 + sequence1[i-1] alignment4 = alignment4 + sequence2[j-1] i=i-1 j=j-1 elif (pointer[i][j] == 2): alignment3 = alignment3 + '-' alignment4 = alignment4 + sequence2[j-1] j=j-1 elif (pointer[i][j] == 1): alignment3 = alignment3 + sequence1[i-1] alignment4 = alignment4 + '-' i=i-1 print "Length1: " + str(len(alignment3)) + " Length2: " + str(len(alignment4)) alignment3 = alignment3[::-1] alignment1 = alignment1 + alignment3 alignment4 = alignment4[::-1] alignment2 = alignment2 + alignment4 alignment4 = "" for y in xrange(len(sequence2),position[1],-1): alignment1 = alignment1 + '-' alignment4 = sequence2[y-1] + alignment4 alignment2 = alignment2 + alignment4 if (i >0): print("Non homologous beginning") if (j>0): print("Non homologous ending") print str(alignment2) + "\n\n" print str(alignment1) return ReturnValue2(alignment1,alignment2) def s(a,b): if(a == b): return 1 else: return -1 def getFmax(score,m,n): Fmax = 0 position = (0,0) m = m -1 n = n -1 for i in xrange(1,n): if(score[i][m] > Fmax): Fmax = score[i][m] position = (i,m) for j in xrange(1,m): if(score[n][j] > Fmax): Fmax = score[n][j] position = (n,j) return position def printScore(score,n,m): for i in xrange(n): for j in xrange(m): sys.stdout.write(str(score[i][j]) + " ") sys.stdout.write("\n") def main(argv): if( len(argv) < 2): sys.stderr.write("Error: Number of arguments incorrect\n") sys.exit() else: if(os.path.isfile(argv[0]) and os.path.isfile(argv[1])): infile = argv[0] handler = readFile(infile) sequence1 = readFasta(handler).next() infile = argv[1] handler = readFile(infile) sequence2 = readFasta(handler).next() d = -4 #gap penalty n = len(sequence1.sequence) +1 m = len(sequence2.sequence) +1 score=zeros((n,m)) pointer=zeros((n,m)) result = overlapmatches(sequence1.sequence,sequence2.sequence,score,d,pointer) maxposition = getFmax(result.score,m,n) alignment = traceback(result.pointer,maxposition,sequence1.sequence,sequence2.sequence) #printScore(score,n,m) if __name__ == "__main__": main(sys.argv[1:]) ``` #### File: AB2/src/multiscore.py ```python import pexpect import os.path import sys from Bio import SeqIO from numpy import * import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm global ha global hb class ReturnValue(object): def __init__(self,accesions,file): self.accesions = accesions self.file = file def writeFile(temp,file): for line in file: temp.write(line) return temp def readFile(name): file = open(name, 'rU') return file def checkFile(file): if(os.path.isfile(file) == False): return False else: return True def closeFile(file): if(file.closed != True): file.close() def removeFile(file): if(os.path.isfile(file) == True): os.remove(file) def MultiScore(file,blosum62,alphabet): handle = readFile(file) totalscore = 0 records = list(SeqIO.parse(handle, "fasta")) handle.close() visited = [] columns = zeros(len(records[0].seq)) # for record in records: # visited.append(record.id) # tovisits = [x for x in records if x.id not in visited] # score = 0 # for tovisit in tovisits: # score = score + Score(record.seq,tovisit.seq,blosum62,alphabet) # print score # totalscore = totalscore + score for record in records: visited.append(record.id) tovisits = [x for x in records if x.id not in visited] for tovisit in tovisits: for i in xrange(len(tovisit)): columns[i] = columns[i] + s(record.seq[i],tovisit.seq[i],blosum62,alphabet) return totalSum(columns) def Score(alignment1,alignment2,blosum62,alphabet): score = 0 for i in xrange(len(alignment1)): score = score + s(alignment1[i],alignment2[i],blosum62,alphabet) return score def totalSum(score): total = 0 for i in score: total = total + i return total def loadBlosum(file): handle=open(file,'r') blosum62=[] for line in handle.readlines(): blosum62.append(map(int, line.split())) return blosum62 def s(a,b,blosum62,alphabet): po = -5 pe = -1 global ha global hb if(a!='-' and b!='-'): ha=0 hb=0 ret = blosum62[alphabet[a]-1][alphabet[b]-1] elif(a=='-' and b!='-'): if(ha>0): ret = pe else: ret = po ha = ha+1 hb = 0 elif(b=='-' and a!='-'): if(hb>0): ret = pe else: ret = po ha = 0 hb = hb+1 elif(a=='-' and b=='-'): ret = 0 ha=0 hb=0 return ret def Plot(score1,score2): difference = [] #score es un dict de dict ( total score for each multialignment for each file) for i in xrange(len(score1)): difference.append(score1[i] - score2[i]) fig = plt.figure() fig.subplots_adjust(bottom=0.2) ax = fig.add_subplot(111) plt.scatter(difference,score2,c='b',alpha=0.7,cmap=cm.Paired) plt.show() def main(argv): if( len(argv) >= 2): ha = 0 hb = 0 myscore = [] truescore = [] listing = [s for s in os.listdir(argv[0]) if os.path.isfile(os.path.join(argv[0], s))] listing.sort(key=lambda s: os.path.getmtime(os.path.join(argv[0], s))) alphabet = dict(A=1,R=2,N=3,D=4,C=5,Q=6,E=7,G=8,H=9,I=10,L=11,K=12,M=13,F=14, P=15,S=16,T=17,W=18,Y=19,V=20,B=21,Z=22,X=23, a=1,r=2,n=3,d=4,c=5,q=6,e=7,g=8,h=9,i=10,l=11,k=12,m=13,f=14, p=15,s=16,t=17,w=18,y=19,v=20,b=21,z=22,x=23) blosum62 = loadBlosum(argv[1]) for infile in listing: if('facit' not in infile): command = './muscle3.8.31_i86linux32' + ' -in ' + argv[0] + '/' + infile + ' -out' + ' fileout.fa' child = pexpect.spawn (command) child.expect(pexpect.EOF) myscore.append(MultiScore('fileout.fa',blosum62,alphabet)) else: truescore.append(MultiScore(argv[0] + '/' + infile,blosum62,alphabet)) Plot(myscore,truescore) else: sys.stderr.write("The program does not have any argument or the number of arguments is incorrect\n") if __name__ == "__main__": main(sys.argv[1:]) ``` #### File: old_python_courses/Lab1/reformat.py ```python import os.path def removeCrapp(chain): if (chain.find(" ") != -1): return chain[0:chain.find(" ")] + chain[chain.find("\n"):len(chain)] else: return chain counter = 0 output = '' name = raw_input("Enter the name of the file: ") if ( os.path.isfile(name) == False): print "The file does not exist"; else: file = open(name, 'r') for line in file: if (">" in line): if((len(output) > 0) and (output[len(output)-1] != "\n")): output += '\n' + line else: output += line counter = 0 else: i = 0 exit = False while ( (exit == False) and (i < len(line)) ): if ( (line[i] != " ") and (line[i] != '\n') ): if (counter == 59): output += line[i] + '\n' counter = 0 else: counter += 1 output += line[i] else: exit = True i = i + 1 print output file.close() "WikiPedia :UniProt is the Universal Protein resource, a central repository of protein" "data created by combining the Swiss-Prot, TrEMBL and PIR-PSD databases." "UniProt is based on protein sequences, many of which are derived from genome sequencing" "projects. It contains a large amount of information about the biological function of proteins" "derived from the research literature." ``` #### File: Lab2/src/basedist.py ```python import os.path import sys import math class gcc(object): def __init__(self, name,ratios): self.name = name self.ratios = ratios def setRatios(self,g,t,a,c): self.ratios = dict(ratioG=g,ratioT=t,ratioA=a,ratioC=c) def getRatios(self): return self.ratios def setName(self,name): self.name = name def getName(self): return self.name def readFile(name): file = open(name, 'r') return file def checkFiles(files): for file in files: if(os.path.isfile(file) == False): return False return True def closeFiles(names): for name in names: if(not name.closed): name.close() def extractName(genome): return "" def getRatio(genome): g = c = a = t = 0 for linea in genome: if(linea.find(">") == -1): g += linea.count("G") c += linea.count("C") a += linea.count("A") t += linea.count("T") gratio = g / float((g+c+a+t)) cratio = c / float((g+c+a+t)) aratio = a / float((g+c+a+t)) tratio = t / float((g+c+a+t)) ratio = dict(ratioG=gratio,ratioT=cratio,ratioA=aratio,ratioC=tratio) return ratio def diff(gen1Ratios,gen2Ratios): if(gen1Ratios == gen2Ratios): return 0 else: for type, value in gen1Ratios.iteritems(): if (type == "ratioG"): gratio = value elif (type == "ratioC"): cratio = value elif (type == "ratioA"): aratio = value elif (type == "ratioT"): tratio = value for type, value in gen2Ratios.iteritems(): if (type == "ratioG"): gratio2 = value elif (type == "ratioC"): cratio2 = value elif (type == "ratioA"): aratio2 = value elif (type == "ratioT"): tratio2 = value diff = pow((aratio - aratio2),2) + pow((cratio - cratio2),2) + pow((gratio - gratio2),2) + pow((tratio - tratio2),2) return round(math.sqrt(float(diff/4)),2) def main(argv): if( len(argv) > 1): if(checkFiles(argv) != False): visited = [] sys.stdout.write(" " + str(len(argv)) + "\n") for arg in argv: name = arg[0:arg.find(".")] file = readFile(arg) genome = gcc(name,getRatio(file)) visited.append(genome) spaces = 10 - len(genome.getName()) row = genome.getName() + " "*spaces file.close() for arg2 in visited: row += " " + str(diff(genome.getRatios(),arg2.getRatios())) row += "\n" sys.stdout.write(row) else: sys.stderr.write("Some of the files are missed\n") else: sys.stderr.write("The program does not have any argument or the number of arguments is incorrect\n") if __name__ == "__main__": main(sys.argv[1:]) ``` #### File: Lab2/src/gccontent.py ```python import os.path import sys def readFile(name): if ( os.path.isfile(name) == False): print "The file does not exist"; else: file = open(name, 'r') return file def closeFile(name): if(not file.closed): name.close() def gcContent(genome): g = c = a = t = 0 for linea in genome: g += linea.count("G") c += linea.count("C") a += linea.count("A") t += linea.count("T") return float(g+c)/float(a+t+g+c) def main(argv): if( len(argv) > 0): for arg in argv: fileName = readFile(arg) print '%.2f'%(gcContent(fileName)) closeFile(fileName) else: print "The program does not have any argument" if __name__ == "__main__": main(sys.argv[1:]) ``` #### File: old_python_courses/ML.4/animate.py ```python from Tkinter import * from PIL import Image, ImageTk def do_animation(currentframe): def do_image(): wrap.create_image(50,50,image=frame[currentframe]) try: do_image() except IndexError: currentframe = 0 do_image() wrap.update_idletasks() currentframe = currentframe + 1 root.after(1000, do_animation, currentframe) def draw(stateSequence): global wrap,frame,root root = Tk() root.title("WalkingRobot") frame=[] for i in stateSequence: fname="step"+str(i+1)+".png" img=ImageTk.PhotoImage(Image.open(fname)) frame+=[img] wrap = Canvas(root, width=200, height=120) wrap.pack() root.after(10, do_animation, 0) root.mainloop() ``` #### File: Omic2/src/Slonim.py ```python import sys import os.path import math class ReturnValue(object): def __init__(self,name="",sequence=""): self.sequence = sequence self.name = name class kNN: def __init__(self): self.classes = [] #list of the possible classes self.xs = [] # list of the neighbors self.ys = [] # list of the classes that the neighbors belong to self.k = None # numbers of neighbors def weight(g,c): return 1 def distance(x,y): if len(x) != len(y): raise ValueError, "vectors must be same length" sum = 0 for i in range(len(x)): sum += (x[i]-y[i])**2 return math.sqrt(sum) def neighbor(k,m,n,c): def readFile(name): file = open(name, 'rU') return file def permuteSequences(reference,length,read): L = len(reference) mutations = list() if(length > 25): for i in xrange(L - length-1): return mutations def missmatches(sequence1,sequence2): number = 0 for i in xrange(len(sequence1)): if(sequence1[i] != sequence2[i]): number += 1 return number def main(argv): if( len(argv) < 2): sys.stderr.write("Error: Number of arguments incorrect\n") sys.exit() else: if(os.path.isfile(argv[0]) and os.path.isfile(argv[1])): if __name__ == "__main__": main(sys.argv[1:]) ```
{ "source": "jfnavarro/proteomics", "score": 3 }
#### File: jfnavarro/proteomics/generateFidoInput.py ```python from lxml import etree import os import getopt import sys import percolatorUtils as per import generalUtils as utils def usage(): print "this script generates a psm-proteins and unique peptide-proteins graph files for FIDO as well as a file containing all the target and decoy proteins names from a input file from a percolator pout.xml file" print "Usage : generateFidoInput.py <pout.xml> [-o, --output <output.txt>] [-p, --pattern ] [-d, --database <database.txt>] [-h, --help] [-v, --verbose]" print "--output : the name of the file that will contain the PSMs, probabilities and proteins" print "--database : the name of the file that will contain the target and decoy protein names" print "--pattern : the pattern that identifies the decoy hits" def main(argv): if( len(argv) < 1): sys.stderr.write("Error: Number of arguments incorrect\n") usage() sys.exit() else: fidoOutputFile = "output.txt" fidoDBfile = "db.txt" verbose = False decoy_prefix = "random" try: opts, args = getopt.getopt(sys.argv[2:], "o:p:d:hv", ["output=", "pattern=", "database=", "help", "verbose"]) except getopt.GetoptError, err: # print help information and exit: print str(err) # will print something like "option -a not recognized" usage() sys.exit(2) for o, a in opts: if o == "-v": verbose = True elif o in ("-h", "--help"): usage() sys.exit() elif o in ("-o", "--output"): fidoOutputFile = a elif o in ("-p", "--pattern"): decoy_prefix = a elif o in ("-d", "--database"): fidoDBfile = a else: assert False, "unhandled option" if(os.path.isfile(argv[0])): infile = argv[0] else: sys.stderr.write("Error: XML file not found\n") sys.exit() parser = etree.XMLParser(ns_clean=False, huge_tree=True) try: tree = etree.parse(infile,parser) except Exception, inst: sys.stderr.write("Unexpected error opening %s: %s\n" % (infile, inst)) sys.exit() if(verbose): print "Reading " + str(argv[0]) elems = tree.getroot() percolatorPeptides = per.getPeptides(elems) percolatorPSMs = per.getPSMs(elems) if(len(percolatorPSMs) > 0): if(verbose): print "writing in " + str(fidoOutputFile) utils.writeFidoInput(percolatorPSMs,"psms_" + fidoOutputFile,fidoDBfile,decoy_prefix) if(len(percolatorPeptides) > 0): utils.writeFidoInput(percolatorPeptides,"peptides_" + fidoOutputFile,fidoDBfile,decoy_prefix) else: sys.stderr.write("the input file does not contain any peptide or psms\n") sys.exit() if(verbose): print "Fido file generated" if __name__ == "__main__": main(sys.argv[1:]) ``` #### File: jfnavarro/proteomics/generateProsolveInput.py ```python from lxml import etree import os import getopt import sys import percolatorUtils as per import generalUtils as utils def usage(): print "this script generates a PROSOLVE txt input file from a percolator pout.xml file" print "Usage : generateProsolveInput.py <pout.xml> [-o, --output <output.txt>] [-h, --help] [-v, --verbose] [-e, --hidden] [-m, --maxpsms]" print "--hidden : the percolator file was run with hidden decoys in the target database (normal decoys will be discarded)" print "--maxpsms : the output file containing PSMs will have a maximum of maxpsms number of PSMs per peptide" print "--output : the name of the two output file containing PSMs and peptides" def main(argv): if( len(argv) < 1): sys.stderr.write("Error: Number of arguments incorrect\n") usage() sys.exit() else: magnusOutputFile = "output.txt" verbose = False hidden = False maxpsms = 1000 try: opts, args = getopt.getopt(sys.argv[2:], "o:hvem:", ["output=", "help", "verbose","hidden","maxpsms"]) except getopt.GetoptError, err: # print help information and exit: print str(err) # will print something like "option -a not recognized" usage() sys.exit(2) for o, a in opts: if o == "-v": verbose = True elif o in ("-h", "--help"): usage() sys.exit() elif o in ("-o", "--output"): magnusOutputFile = a elif o in ("-e", "--hidden"): hidden = True elif o in ("-m", "--maxpsms"): maxpsms = a else: assert False, "unhandled option" if(os.path.isfile(argv[0])): infile = argv[0] else: sys.stderr.write("Error: XML file not found\n") sys.exit() parser = etree.XMLParser(ns_clean=False, huge_tree=True) try: tree = etree.parse(infile,parser) except Exception, inst: sys.stderr.write("Unexpected error opening %s: %s\n" % (infile, inst)) sys.exit() if(verbose): print "Reading " + str(argv[0]) elems = tree.getroot() percolatorPSMs = per.getPSMs(elems) psms = dict() for psm in percolatorPSMs: peptide_clean = psm.peptide[:-2][2:] if psms.has_key(peptide_clean): if(psms[peptide_clean].score < psm.score): psms[peptide_clean] = psm else: psms[peptide_clean] = psm percolatorPeptides = per.getPeptides(elems) if(len(percolatorPSMs) > 0 and len(percolatorPeptides) > 0): if(verbose): print "writing in " + str(magnusOutputFile) + " with max psms = " + str(maxpsms) utils.writeMagnusInput(percolatorPSMs,"psms_"+magnusOutputFile,hidden,maxpsms) utils.writeMagnusPeptides(percolatorPeptides,psms,"peptides_"+magnusOutputFile,hidden) else: sys.stderr.write("the input file does not contain any peptide or psms\n") sys.exit() if(verbose): print "Magnus files generated" if __name__ == "__main__": main(sys.argv[1:]) ``` #### File: jfnavarro/proteomics/parsePercolator.py ```python from lxml import etree import os import getopt import sys import percolatorUtils as per import generalUtils as utils def usage(): print "this script generates a tab delimited output for PSMs, peptides and proteins from a percolator pout.xml file" print "Usage : parsePercolator.py <pout.xml> [-o, --output <output.txt>] [-h, --help] [-c, --cutoff] [-v, --verbose]" print "--output : the name of the file that will contain the tab delimited list of psms|peptides|proteins and probabilities" print "--cutoff : you want to report only the psms,peptides and proteins below a certain threshold?" print "--qvalue : uses the qvalues insted of the PEPs for the threshold" def main(argv): if( len(argv) < 1): sys.stderr.write("Error: Number of arguments incorrect\n") usage() sys.exit() else: OutputFile = "output.txt" verbose = False fdr = 1.0 try: opts, args = getopt.getopt(sys.argv[2:], "o:hvc:", ["output=", "help", "verbose", "cutoff="]) except getopt.GetoptError, err: # print help information and exit: print str(err) # will print something like "option -a not recognized" usage() sys.exit(2) for o, a in opts: if o == "-v": verbose = True elif o in ("-h", "--help"): usage() sys.exit() elif o in ("-o", "--output"): OutputFile = a elif o in ("-f", "--fdr"): fdr = float(a) else: assert False, "unhandled option" if(os.path.isfile(argv[0])): infile = argv[0] else: sys.stderr.write("Error: XML file not found\n") sys.exit() parser = etree.XMLParser(ns_clean=False, huge_tree=True) try: tree = etree.parse(infile,parser) except Exception, inst: sys.stderr.write("Unexpected error opening %s: %s\n" % (infile, inst)) sys.exit() if(verbose): print "Reading " + str(argv[0]) elems = tree.getroot() percolatorPSMs = per.getPSMs(elems) percolatorPeptides = per.getPeptides(elems) percolatorProteins = per.getProteins(elems) if(verbose): print "Read " + str(len(percolatorPSMs)) + " PSMs" print "Read " + str(len(percolatorPeptides)) + " Peptides" print "Read " + str(len(percolatorProteins)) + " Proteins" if(fdr < 1.0 and fdr > 0.0): percolatorPSMs = [psm for psm in percolatorPSMs if psm.qvalue <= fdr] percolatorPeptides = [pep for pep in percolatorPeptides if pep.qvalue <= fdr] percolatorProteins = [prot for prot in percolatorProteins if prot.qvalue <= fdr] if(len(percolatorPSMs) > 0): if(verbose): print "writing in " + str(OutputFile) utils.writePsms(percolatorPSMs, "psms_" + OutputFile) if(len(percolatorPeptides) > 0): utils.writePeptides(percolatorPeptides,"peptides_" + OutputFile) if(len(percolatorProteins) > 0): utils.writeProteins(percolatorProteins,"proteins_" + OutputFile) else: sys.stderr.write("the input file does not contain any information\n") sys.exit() if(verbose): print "Percolator file parsed" if __name__ == "__main__": main(sys.argv[1:]) ``` #### File: jfnavarro/proteomics/plot_qvalues.py ```python import os from operator import itemgetter, attrgetter import getopt import generalUtils as util import sys import random def getPValues(combined,order=True,decoy_prefix="random"): ##combined sorted in best hit first order ##score has to be unnormalized combined = sorted(combined,key=attrgetter('score'),reverse=order) nDecoys = 0 posSame = 0 negSame = 0 p = [] prevScore = -4711.4711 for hit in combined: if(hit.score != prevScore): for i in xrange(1,posSame): p.append(float( nDecoys + ( negSame / (posSame + 1)) * (i + 1) ) ) nDecoys += negSame negSame = 0 posSame = 0 prevScore = hit.score if(hit.protein.find(decoy_prefix) == -1): posSame += 1 else: negSame += 1 ##careful with the order here for pi in xrange(len(p)): if(nDecoys > 0): p[pi] = float(p[pi]) / float(nDecoys) else: p[pi] = 1.0 return sorted(p) def estimatePi0(pvalues,numBoot=100): pBoot = [] lambdas = [] pi0s = [] n = len(pvalues) numLambda = 100 maxLambda = 0.5 pvalues = sorted(pvalues,reverse = False) if(n > 0): for ix in xrange(numLambda): lambdav = ((ix + 1) / float(numLambda)) * maxLambda start = lower_bound(pvalues,lambdav) Wl = float(n - start) pi0 = float((Wl / n) / (1 - lambdav)) if (pi0 > 0.0): lambdas.append(lambdav) pi0s.append(pi0) if(len(pi0s) == 0): print "Error calculating Pi0" sys.exit() minPi0 = min(pi0s) mse = [] for i in xrange(len(pi0s)): mse.append(0.0) for boot in xrange(numBoot): pBoot = bootstrap(pvalues) n = len(pBoot) for ix in xrange(len(lambdas)): start = lower_bound(pBoot,lambdas[ix]) Wl = float(n - start) #float(distance(start,pBoot[n])) pi0Boot = float((Wl / n) / (1 - lambdas[ix])) mse[ix] += float( ((pi0Boot - minPi0) * (pi0Boot - minPi0)) ) minIx = mse.index(min(mse)) #distance(mse.begin(), min(mse), mse); pi0 = max(min(pi0s[minIx], 1.0), 0.0); return pi0; else: return -1 def bootstrap(pvalues): max_size = 1000 n = len(pvalues); num_draw = min(n, max_size); out = [] for ix in xrange(num_draw): out.append(float(random.choice(pvalues))) return sorted(out,reverse=False) def lower_bound(liste,element): ret = 0 for ix in xrange(len(liste)): if(float(liste[ix]) >= element): return ix return ret def estimateQvalues(combined,pi0=1.0,prefix="random",order=False,Ties=False,countdecoys = True,fdr=0.01, tdratio=0.0): ##assuming combined sorted in descending order nTargets = 0 nDecoys = 0 qemp = 0.0 qest = 0.0 prevQemp = 0.0 prevQest = 0.0 ndecoys_fdr = 0 ntargets_fdr = 0 ndecoys_fdr_emp = 0 ntargets_fdr_emp = 0 suma = 0.0 prev_prob = -1000 qvaluesEst = [] qvaluesEmp = [] combined = sorted(combined,key=attrgetter('pep'),reverse=order) for hit in combined: isdecoy = hit.protein.find(prefix) != -1 if(isdecoy): nDecoys += 1 else: nTargets += 1 if( (Ties and hit.pep != prev_prob) or (not Ties)): if(nTargets > 0): qemp = float(nDecoys) / float(nTargets) if(countdecoys): suma = float(suma) + float(hit.pep) qest = float(suma) / float(nTargets + nDecoys) elif(nTargets > 0): if(not isdecoy): suma = float(suma) + float(hit.pep) qest = float(suma) / float(nTargets) if(qemp < prevQemp): qemp = prevQemp else: prevQemp = qemp if(qest < prevQest): qest = prevQest else: prevQest = qest prev_prob = hit.pep if(qest <= fdr): if(isdecoy): ndecoys_fdr +=1 else: ntargets_fdr +=1 ##this is not totally correct cos I might modify emp qvalues later if(qemp <= fdr): if(isdecoy): ndecoys_fdr_emp +=1 else: ntargets_fdr_emp +=1 qvaluesEst.append(qest) qvaluesEmp.append(qemp) print "Estimating qvalues with " + str(nTargets) + " targets and " + str(nDecoys) + " decoys" if(nTargets > 0 and nDecoys > 0): if(tdratio == 0.0): factor = float( pi0 * (float(nTargets) / float(nDecoys)) ) else: factor = float( pi0 * (tdratio)) else: factor = 1.0 for i in xrange(0,len(qvaluesEmp)): qvaluesEmp[i] *= factor return sorted(qvaluesEmp),sorted(qvaluesEst),ndecoys_fdr,ntargets_fdr,ndecoys_fdr_emp,ntargets_fdr_emp def estimateFDR_hidden_decoys(target,pi0=1.0,prefix="entrapment",order=False,Ties=False,countdecoys = True,fdr=0.01, tdratio=0.0): qvaluesEmp = [] qvaluesEst = [] nDecoys = 0 nTargets = 0 ndecoys_fdr = 0 ntargets_fdr = 0 ndecoys_fdr_emp = 0 ntargets_fdr_emp = 0 qemp = 0.0 qest = 0.0 suma = 0.0 prevQest = 0.0 prevQemp = 0.0 prev_prob = -1000 target = sorted(target,key=attrgetter('pep'),reverse=order) for hit in target: isdecoy = hit.protein.find(prefix) != -1 if(isdecoy): nDecoys += 1 else: nTargets += 1 if( (Ties and hit.pep != prev_prob) or (not Ties)): if(nTargets): qemp = float(nDecoys * 2) / float(nTargets) if(countdecoys): suma = float(suma) + float(hit.pep) qest = float(suma) / float(nTargets + nDecoys) elif(nTargets): if(not isdecoy): suma = float(suma) + float(hit.pep) qest = float(suma) / float(nTargets) if(qemp < prevQemp): qemp = prevQemp else: prevQemp = qemp if(qest < prevQest): qest = prevQest else: prevQest = qest prev_prob = hit.pep if(qest <= fdr): if(hit.protein.find(prefix) != -1): ndecoys_fdr +=1 else: ntargets_fdr +=1 ##this is not totally correct cos I might modify emp qvalues later if(qemp <= fdr): if(isdecoy): ndecoys_fdr_emp +=1 else: ntargets_fdr_emp +=1 qvaluesEst.append(qest) qvaluesEmp.append(qemp) print "Estimating qvalues with " + str(nTargets) + " targets and " + str(nDecoys) + " decoys" if(nTargets > 0 and nDecoys > 0): if(tdratio == 0.0): factor = float( pi0 * (float(nTargets) / float(nDecoys)) ) else: factor = float( pi0 * (tdratio)) else: factor = 1.0 for i in xrange(0,len(qvaluesEmp)): qvaluesEmp[i] *= factor return sorted(qvaluesEmp),sorted(qvaluesEst),ndecoys_fdr,ntargets_fdr,ndecoys_fdr_emp,ntargets_fdr_emp def usage(): print "this scripts plots estimated and empirical q values for multiple set of probabilities and their respective protein name in a metaFile, the metaFile must be like this : filename title" print "Usage : plot_qvalues.py <metaFile.txt> [d, --prefix <prefix>] [e, --hidden <pattern>] [l, --label <text>] [f, --fdr <number>] [i, --pi0] [r, --tdratio] [t, --ties] [c, --countdecoys] [v, --verbose] [h, --help]" print "--hidden : the target database contains hidden decoys with pattern = (q values will be estimated from target and hidden decoys)" print "--prefix : the decoy prefix used to identify decoys" print "--label : the main label to be used to name the plots" print "--fdr : the fdr threshold to be used to cut off" print "--pi0 : use pi0 to adjust the empirical qvalues" print "--tdratio : target decoy ratio to adjust empirical q values" print "--ties : count elements with same probability as a cluster" print "--countdecoys : no include decoys when computing estimated q values" def main(argv): if( len(argv) < 1): sys.stderr.write("Error: Number of arguments incorrect\n") usage() sys.exit() else: hidden_decoys = False hidden_pattern = "" decoy_pattern = "random" verbose = False ties = False countdecoys = True label = "" fdr = 0.01 tdratio = 0.0 pi0 = False try: opts, args = getopt.getopt(sys.argv[2:], "e:d:vhl:f:i:r:tc", ["hidden=", "prefix=", "verbose", "help", "label=", "fdr=", "pi0=", "tdratio=","ties","countdecoys"]) except getopt.GetoptError, err: # print help information and exit: print str(err) # will print something like "option -a not recognized" usage() sys.exit(2) for o, a in opts: if o == "-v": verbose = True elif o in ("-h", "--help"): usage() sys.exit() elif o in ("-e", "--hidden"): hidden_decoys = True hidden_pattern = a elif o in ("-d", "--prefix"): decoy_pattern = a elif o in ("-l", "--label"): label = a elif o in ("-f", "--fdr"): fdr = float(a) elif o in ("-r", "--tdratio"): tdratio = float(a) print "Using Target Decoy Ratio = " + str(tdratio) elif o in ("-i", "--pi0"): pi0 = True print "Using pi0 to adjust empirical q values" elif o in ("-c", "--countdecoys"): countdecoys = True print "Not counting decoys when computing empirical q values" elif o in ("-t", "--ties"): ties = True print "Counting clusters as one" else: assert False, "unhandled option" if(os.path.isfile(argv[0])): infile = argv[0] else: sys.stderr.write("Error: file " + str(argv[0]) + " not found\n") sys.exit() colors = ["red","blue","yellow","black","brown","pink","cyan","darkblue","darkred"] hits = list() names = list() ##READING ELEMENTS## for line in open(infile).readlines(): words = line.split() if(line != ""): prob_file = words[0] names.append(words[1]) if(os.path.isfile(prob_file)): hits.append(util.importer(prob_file)) if(verbose): print "reading file " +str(prob_file) else: sys.stderr.write("Error: file " + str(prob_file) + " not found\n") sys.exit() pi0s = list(xrange(len(hits))) qvaluesEmps = list(xrange(len(hits))) qvaluesEsts = list(xrange(len(hits))) if(hidden_decoys): print "Estimating qvalues for hidden decoys mode..." for x in xrange(len(hits)): ##ESTIMATING PI0## if(hidden_decoys): hits[x] = [ele for ele in hits[x] if ele.protein.find(decoy_pattern) == -1] if(pi0): pi0s[x] = estimatePi0(getPValues(hits[x],True,hidden_pattern)) else: pi0s[x] = 1.0 else: if(pi0): pi0s[x] = estimatePi0(getPValues(hits[x],True,decoy_pattern)) else: pi0s[x] = 1.0 if(pi0s[x] > 1.0 or pi0s[x] < 0.0): pi0s[x] = 1.0 ##ESTIMATING QVALUEs## ndecoys = 0 ntargets = 0 ndecoysEmp = 0 ntargetEmp = 0 if(hidden_decoys): qvaluesEmps[x],qvaluesEsts[x],ndecoys,ntargets,ndecoysEmp,ntargetEmp = estimateFDR_hidden_decoys(hits[x],pi0s[x],hidden_pattern,False,ties,countdecoys,fdr,tdratio) else: qvaluesEmps[x],qvaluesEsts[x],ndecoys,ntargets,ndecoysEmp,ntargetEmp = estimateQvalues(hits[x],pi0s[x],decoy_pattern,False,ties,countdecoys,fdr,tdratio) if(pi0): print "pi0 file " + str(x+1) + " :" + str(pi0s[x]) print "elements with estimated qvalue below " + str(fdr) + " in file " + str(x+1) + " :" + str(ntargets) print "elements with empirical qvalue below " + str(fdr) + " in file " + str(x+1) + " :" + str(ntargetEmp) print "false positive elements with estimated qvalue below " + str(fdr) + " in file " + str(x+1) + " :" + str(ndecoys) print "false positive elements with empirical qvalue below " + str(fdr) + " in file " + str(x+1) + " :" + str(ndecoysEmp) if(verbose): print "generatings plots" ##PLOTTING## util.plotHist(qvaluesEsts,names,colors,"estimated $q$ value", "#target " + label, label + "_qvalue_estimated.png",fdr) util.plotHist(qvaluesEmps,names,colors,"empirical $q$ value", "#target " + label, label + "_qvalue_empirical.png",fdr) util.plotCorrelation(qvaluesEmps,qvaluesEsts,names,colors,"empirical $q$ value","estimated $q$ value",label + "_qvalue_estimated_VS_qvalue_empirical_low_range.png",1.0) util.plotCorrelation(qvaluesEmps,qvaluesEsts,names,colors,"empirical $q$ value","estimated $q$ value",label + "_qvalue_estimated_VS_qvalue_empirical.png",fdr) if(verbose): print "plots generated" if __name__ == "__main__": main(sys.argv[1:]) ``` #### File: jfnavarro/proteomics/roc.py ```python from pylab import * import random def _remove_duplicate_styles(rocList): pref_styles = ['cx-','mx-','yx-','gx-','bx-','rx-'] points = 'ov^>+xd' colors = 'bgrcmy' lines = ['-','-.',':'] rand_ls = [] for r in rocList: if r.linestyle not in rand_ls: rand_ls.append(r.linestyle) else: while True: if len(pref_styles) > 0: pstyle = pref_styles.pop() if pstyle not in rand_ls: r.linestyle = pstyle rand_ls.append(pstyle) break else: ls = ''.join(random.sample(colors,1) + random.sample(points,1)+ random.sample(lines,1)) if ls not in rand_ls: r.linestyle = ls rand_ls.append(ls) break def plot_multiple_roc(rocList,titlep='',labels=None, include_baseline=False, equal_aspect=True,filename=""): """ Plots multiple ROC curves on the same chart. Parameters: rocList: the list of ROCData objects title: The tile of the chart labels: The labels of each ROC curve include_baseline: if it's True include the random baseline equal_aspect: keep equal aspect for all roc curves """ clf() ylim((0,1)) xlim((0,1)) xticks(arange(0,1.1,.1)) yticks(arange(0,1.1,.1)) grid(True) if equal_aspect: cax = gca() cax.set_aspect('equal') xlabel("1 - Specificity") ylabel("Sensitivity") title(titlep) if not labels: labels = [ '' for x in rocList] _remove_duplicate_styles(rocList) for ix, r in enumerate(rocList): plot([x[0] for x in r.derived_points], [y[1] for y in r.derived_points], r.linestyle, linewidth=1, label=labels[ix]) if include_baseline: plot([0.0,1.0], [0.0, 1.0], 'k-', label= 'random') if labels: legend(loc='lower right') if(filename != ""): savefig(filename, format='png') else: show() class ROCData(object): """ Class that generates an ROC Curve for the data. Data is in the following format: a list l of tutples t where: t[0] = 1 for positive class and t[0] = 0 for negative class t[1] = score t[2] = label """ def __init__(self,data,linestyle='rx-'): """ Constructor takes the data and the line style for plotting the ROC Curve. Parameters: data: The data a listl of tuples t (l = [t_0,t_1,...t_n]) where: t[0] = 1 for positive class and 0 for negative class t[1] = a score t[2] = any label (optional) lineStyle: THe matplotlib style string for plots. Note: The ROCData is still usable w/o matplotlib. The AUC is still available, but plots cannot be generated. """ self.data = sorted(data,lambda x,y: cmp(y[1],x[1])) self.linestyle = linestyle self.auc() #Seed initial points with default full ROC def auc(self,fpnum=0): """ Uses the trapezoidal ruel to calculate the area under the curve. If fpnum is supplied, it will calculate a partial AUC, up to the number of false positives in fpnum (the partial AUC is scaled to between 0 and 1). It assumes that the positive class is expected to have the higher of the scores (s(+) < s(-)) Parameters: fpnum: The cumulativr FP count (fps) Return: """ fps_count = 0 relevant_pauc = [] current_index = 0 max_n = len([x for x in self.data if x[0] == 0]) if fpnum == 0: relevant_pauc = [x for x in self.data] elif fpnum > max_n: fpnum = max_n #Find the upper limit of the data that does not exceed n FPs else: while fps_count < fpnum: relevant_pauc.append(self.data[current_index]) if self.data[current_index][0] == 0: fps_count += 1 current_index +=1 total_n = len([x for x in relevant_pauc if x[0] == 0]) total_p = len(relevant_pauc) - total_n #Convert to points in a ROC previous_df = -1000000.0 current_index = 0 points = [] tp_count, fp_count = 0.0 , 0.0 tpr, fpr = 0, 0 while current_index < len(relevant_pauc): df = relevant_pauc[current_index][1] if previous_df != df: points.append((fpr,tpr,fp_count)) if relevant_pauc[current_index][0] == 0: fp_count +=1 elif relevant_pauc[current_index][0] == 1: tp_count +=1 fpr = fp_count/total_n tpr = tp_count/total_p previous_df = df current_index +=1 points.append((fpr,tpr,fp_count)) #Add last point points.sort(key=lambda i: (i[0],i[1])) self.derived_points = points return self._trapezoidal_rule(points) def _trapezoidal_rule(self,curve_pts): """ Method to calculate the area under the ROC curve""" cum_area = 0.0 for ix,x in enumerate(curve_pts[0:-1]): cur_pt = x next_pt = curve_pts[ix+1] cum_area += ((cur_pt[1]+next_pt[1])/2.0) * (next_pt[0]-cur_pt[0]) return cum_area def calculateStandardError(self,fpnum=0): """ Returns the standard error associated with the curve. Parameters: fpnum: The cumulativr FP count (fps) Return: the standard error. """ area = self.auc(fpnum) #real positive cases Na = len([ x for x in self.data if x[0] == 1]) #real negative cases Nn = len([ x for x in self.data if x[0] == 0]) Q1 = area / (2.0 - area) Q2 = 2 * area * area / (1.0 + area) return math.sqrt( ( area * (1.0 - area) + (Na - 1.0) * (Q1 - area*area) + (Nn - 1.0) * (Q2 - area * area)) / (Na * Nn)) def plot(self,titlep='',include_baseline=False,equal_aspect=True): """ Method that generates a plot of the ROC curve Parameters: title: Title of the chart include_baseline: Add the baseline plot line if it's True equal_aspect: Aspects to be equal for all plot """ clf() plot([x[0] for x in self.derived_points], [y[1] for y in self.derived_points], self.linestyle) if include_baseline: plot([0.0,1.0], [0.0,1.0],'k-.') ylim((0,1)) xlim((0,1)) xticks(arange(0,1.1,.1)) yticks(arange(0,1.1,.1)) grid(True) if equal_aspect: cax = gca() cax.set_aspect('equal') xlabel('1 - Specificity') ylabel('Sensitivity') title(titlep) show() def confusion_matrix(self,threshold,do_print=False): """ Returns the confusion matrix (in dictionary form) for a fiven threshold where all elements > threshold are considered 1 , all else 0. Parameters: threshold: threshold to check the decision function do_print: if it's True show the confusion matrix in the screen Return: the dictionary with the TP, FP, FN, TN """ pos_points = [x for x in self.data if x[1] >= threshold] neg_points = [x for x in self.data if x[1] < threshold] tp,fp,fn,tn = self._calculate_counts(pos_points,neg_points) if do_print: print "\t Actual class" print "\t+(1)\t-(0)" print "+(1)\t%i\t%i\tPredicted" % (tp,fp) print "-(0)\t%i\t%i\tclass" % (fn,tn) return {'TP': tp, 'FP': fp, 'FN': fn, 'TN': tn} def evaluateMetrics(self,matrix,metric=None,do_print=False): """ Returns the metrics evaluated from the confusion matrix. Parameters: matrix: the confusion matrix metric: the specific metric of the default value is None (all metrics). do_print: if it's True show the metrics in the screen Return: the dictionary with the Accuracy, Sensitivity, Specificity,Efficiency, PositivePredictiveValue, NegativePredictiveValue, PhiCoefficient """ accuracy = (matrix['TP'] + matrix['TN'])/ float(sum(matrix.values())) sensitivity = (matrix['TP'])/ float(matrix['TP'] + matrix['FN']) specificity = (matrix['TN'])/float(matrix['TN'] + matrix['FP']) efficiency = (sensitivity + specificity) / 2.0 positivePredictiveValue = matrix['TP'] / float(matrix['TP'] + matrix['FP']) NegativePredictiveValue = matrix['TN'] / float(matrix['TN'] + matrix['FN']) PhiCoefficient = (matrix['TP'] * matrix['TN'] - matrix['FP'] * matrix['FN'])/( math.sqrt( (matrix['TP'] + matrix['FP']) * (matrix['TP'] + matrix['FN']) * (matrix['TN'] + matrix['FP']) * (matrix['TN'] + matrix['FN']))) or 1.0 if do_print: print 'Sensitivity: ' , sensitivity print 'Specificity: ' , specificity print 'Efficiency: ' , efficiency print 'Accuracy: ' , accuracy print 'PositivePredictiveValue: ' , positivePredictiveValue print 'NegativePredictiveValue' , NegativePredictiveValue print 'PhiCoefficient' , PhiCoefficient return {'SENS': sensitivity, 'SPEC': specificity, 'ACC': accuracy, 'EFF': efficiency, 'PPV':positivePredictiveValue, 'NPV':NegativePredictiveValue , 'PHI': PhiCoefficient} def _calculate_counts(self,pos_data,neg_data): """ Calculates the number of false positives, true positives, false negatives and true negatives """ tp_count = len([x for x in pos_data if x[0] == 1]) fp_count = len([x for x in pos_data if x[0] == 0]) fn_count = len([x for x in neg_data if x[0] == 1]) tn_count = len([x for x in neg_data if x[0] == 0]) return tp_count,fp_count,fn_count, tn_count ``` #### File: jfnavarro/proteomics/uppmax_xtandem.py ```python import sys import os import getopt import fnmatch def getFilesinFolder(pathToFolder,extension): files = list() for file_ in os.listdir(pathToFolder): if fnmatch.fnmatch(file_, '*.' + extension): files.append(file_) return files def make_dir(pathname): if not os.path.exists('%s' % pathname): cmd = 'mkdir %s' % pathname os.system(cmd) return pathname def createXTandemInput(spectra_file,output_file,database,parameters,type_,input_file_name): input_file= "<?xml version=\"1.0\"?>\n" \ " <bioml>\n" \ " <note>\n" \ " Each one of the parameters for x!tandem is entered as a labeled note node.\n" \ " Any of the entries in the default_input.xml file can be over-ridden by\n" \ " adding a corresponding entry to this file. This file represents a minimum\n" \ " input file, with only entries for the default settings, the output file\n" \ " and the input spectra file name.\n" \ " See the taxonomy.xml file for a description of how FASTA sequence list\n" \ " files are linked to a taxon name.\n" \ " </note>\n" \ " <note type=\"input\" label=\"list path, default parameters\">" + parameters + "</note>\n" \ " <note type=\"input\" label=\"list path, taxonomy information\">" + database + "</note>\n" \ " <note type=\"input\" label=\"protein, taxon\">" + type_ + "</note>\n" \ " <note type=\"input\" label=\"spectrum, path\">" + spectra_file + "</note>\n" \ " <note type=\"input\" label=\"output, path\">" + output_file + "</note>\n" \ " </bioml>" f = open(input_file_name, "w") f.write(input_file) f.close() def createXTandemTaxonomy(output_file,db,label): taxon_file = "<?xml version=\"1.0\"?>\n" \ " <bioml label=\"x! taxon-to-file matching list\">\n" \ " <taxon label=" + "\"" + label + "\"" + ">\n" \ " <file format=\"peptide\" URL=\"" + db + "\"" + "/>\n" \ " </taxon>\n" \ " </bioml>" f = open(output_file, "w") f.write(taxon_file) f.close() def submit_job(spectra_file,partNum,taxonomy,parameters,type_,project,time,xtandem,out_dir,input_dir,local_path): input_file = local_path + "/" + spectra_file[:-5] + "_" + str(partNum) + "_in.xml" spectra_output = local_path + "/" + spectra_file[:-5] + "_" + str(partNum) + "_output.xml" createXTandemInput(input_dir + spectra_file,spectra_output,taxonomy,parameters,type_,input_file) if type_ == "target": scriptName = "copyFileTarget%s" % (partNum) elif type_ == "decoy": scriptName = "copyFileDecoy%s" % (partNum) job_file = open(("%s/%s" % (out_dir + "/jobs",scriptName)), "w") job_file.write("#!/bin/bash\n") job_file.write("\n") job_file.write("#SBATCH -A %s\n" % (project)) job_file.write("#SBATCH -p core\n") #job_file.write("#SBATCH -N 2\n") job_file.write("#SBATCH -n 1\n") job_file.write("#SBATCH -t %s\n" % (time)) job_file.write("#SBATCH -J xtandem_search\n") job_file.write("\n") job_file.write("xtandem=\"%s\"\n" % (xtandem)) job_file.write("$xtandem %s\n" % (input_file)) if(type_ == "target"): job_file.write("mv %s* %s" %(spectra_output[:-4] ,out_dir + "/target")) if(type_ == "decoy"): job_file.write("mv %s* %s" %(spectra_output[:-4] ,out_dir + "/decoy")) job_file.close() os.chmod("%s/%s" % (out_dir + "/jobs", scriptName), 0755) command = "sbatch %s/%s" % (out_dir + "/jobs", scriptName) os.system(command) def cleanUp(): os.system("rm *in.xml") os.system("rm *taxonomy_target.xml") os.system("rm *taxonomy_decoy.xml") def usage(): print "this script runs x!tandem on a set of spectra files with the dabatabes and parameters given in UPPMAX" print "Usage : uppmax_xtandem.py [-o, --output <pathfolder>] [-i, --input <pathfolder>] [-p, --params <pathname>] [-t, --target <pathname>] [d, --decoy <pathname>] [e, --extension <string>] [-h, --help] [-v, --verbose]" print "--output : the path of the directory where the results will be placed" print "--input : the path of the directory containing the spectra files" print "--params : the path of the directory containing the parameter file" print "--target : the path of the target database in fasta format" print "--decoy : the path of the decoy database in fasta format" print "--extension : the path of the decoy database in fasta format" def main(argv): if( len(argv) < 6): sys.stderr.write("Error: Number of arguments incorrect\n") usage() sys.exit() else: output_dir = "" input_dir = "" param_file = "" target_file = "" decoy_file = "" extension = "" verbose = False try: opts, args = getopt.getopt(sys.argv[1:], "o:i:p:t:d:e:hv", ["output=","input=","params=","target=","decoy=","extension=" "help", "verbose"]) except getopt.GetoptError, err: # print help information and exit: print str(err) # will print something like "option -a not recognized" usage() sys.exit(2) for o, a in opts: if o == "-v": verbose = True elif o in ("-h", "--help"): usage() sys.exit() elif o in ("-o", "--output"): output_dir = a elif o in ("-i", "--input"): input_dir = a elif o in ("-p", "--params"): param_file = a elif o in ("-t", "--target"): target_file = a elif o in ("-d", "--decoy"): decoy_file = a elif o in ("-e", "--extension"): extension = a else: assert False, "unhandled option" if(os.path.isfile(param_file) and os.path.isfile(target_file) and os.path.isfile(decoy_file) and os.path.isdir(output_dir) and os.path.isdir(input_dir)): if(verbose): print "Input parameters processed succesfully" else: sys.stderr.write("Error: file/s or directoriy/es not found\n") sys.exit() spectra_files = getFilesinFolder(input_dir,extension) xtandem = "/bubo/home/h22/navarro/bin/bin/tandem" local_path = os.getcwd() taxonomy_target = local_path + "/taxonomy_target.xml" taxonomy_decoy = local_path + "/taxonomy_decoy.xml" project="s00111-298" time="20:00:00" ##create output target and decoy make_dir(output_dir + "/target") make_dir(output_dir + "/decoy") ##create jobs directory make_dir(output_dir + "/jobs") ##create taxonomy file for target and decoy databases createXTandemTaxonomy(taxonomy_target,target_file,"target") createXTandemTaxonomy(taxonomy_decoy,decoy_file,"decoy") i = 0 if(len(spectra_files) == 0): sys.stderr.write("Error: the folder does not contain any spectra file\n") sys.exit() for spectra in spectra_files: print "Reading spectra : " + spectra submit_job(spectra,i,taxonomy_target,param_file,"target",project,time,xtandem,output_dir,input_dir,local_path) submit_job(spectra,i,taxonomy_decoy,param_file,"decoy",project,time,xtandem,output_dir,input_dir,local_path) i+=1 cleanUp() if __name__ == "__main__": main(sys.argv[1:]) ```
{ "source": "jfnavarro/scitron", "score": 2 }
#### File: scitron/sarek_merge/variants.py ```python import os import vcfpy import numpy as np class Variant: def __init__(self): self.chrom = None self.start = None self.ref = None self.alt = None self.effects = None self.caller = None self.VAF = None self.DP = None self.AD = None self.sample = None self.patient = None self.status = None @property def key(self): return "{}:{} {}>{}".format(self.chrom, self.start, self.ref, self.alt) def __str__(self): return '{}:{} {}>{}'.format(self.chrom, self.start, self.ref, self.alt) def parse_haplotypecaller_germline_variants(filename, FILTER_DP, FILTER_DP_PDX, FILTER_VAF, NO_EFFECT_FILTER=False): variants = list() tumor_id = str(os.path.basename(filename)).split('_snpEff')[0].split('HaplotypeCaller_')[1] reader = vcfpy.Reader.from_path(filename) FDP = FILTER_DP_PDX if 'PDX' in str(filename) else FILTER_DP for record in reader: called = {x.sample: x.data for x in record.calls} tumor_DP = int(called[tumor_id]['DP']) tumor_AD = int(called[tumor_id]['AD'][1]) tumor_VAF = np.around(tumor_AD / float(tumor_DP) * 100, 3) if tumor_DP > 0.0 else 0.0 if tumor_VAF >= FILTER_VAF and tumor_DP >= FDP: effects = set() for effect in record.INFO['ANN']: gene = effect.split('|')[3] effect_name = effect.split('|')[1] effect_type = effect.split('|')[2] effect_biotype = effect.split('|')[7] effect_aachange = effect.split('|')[10] effect_feature = effect.split('|')[5] if NO_EFFECT_FILTER or effect_type in ['HIGH', 'MODERATE']: effects.add((effect_name, gene, effect_aachange, effect_feature)) if len(effects) > 0: variant = Variant() variant.chrom = record.CHROM variant.start = record.POS variant.ref = record.REF variant.alt = record.ALT[0].serialize() variant.caller = 'HaplotypeCaller' variant.effects = effects variant.DP = tumor_DP variant.AD = tumor_AD variant.VAF = tumor_VAF variants.append(variant) return variants def parse_strelka_germline_variants(filename, FILTER_DP, FILTER_DP_PDX, FILTER_VAF, NO_EFFECT_FILTER=False): variants = list() tumor_id = str(os.path.basename(filename)).split('_variants_snpEff')[0].split('Strelka_')[1] reader = vcfpy.Reader.from_path(filename) FDP = FILTER_DP_PDX if 'PDX' in str(filename) else FILTER_DP for record in reader: called = {x.sample: x.data for x in record.calls} DP_FIELD = 'DP' if 'SNV' in record.ALT[0].type else 'DPI' tumor_DP = int(called[tumor_id][DP_FIELD]) tumor_AD = int(called[tumor_id]['AD'][1]) tumor_VAF = np.around((tumor_AD / float(tumor_DP)) * 100, 3) if tumor_DP > 0.0 else 0.0 if 'PASS' in record.FILTER and tumor_VAF >= FILTER_VAF and tumor_DP >= FDP: effects = set() for effect in record.INFO['ANN']: gene = effect.split('|')[3] effect_name = effect.split('|')[1] effect_type = effect.split('|')[2] effect_biotype = effect.split('|')[7] effect_aachange = effect.split('|')[10] effect_feature = effect.split('|')[5] if NO_EFFECT_FILTER or effect_type in ['HIGH', 'MODERATE']: effects.add((effect_name, gene, effect_aachange, effect_feature)) if len(effects) > 0: variant = Variant() variant.chrom = record.CHROM variant.start = record.POS variant.ref = record.REF variant.alt = record.ALT[0].serialize() variant.caller = 'StrelkaGermline' variant.effects = effects variant.DP = tumor_DP variant.AD = tumor_AD variant.VAF = tumor_VAF variants.append(variant) return variants def parse_strelka_variants(filename, FILTER_DP, FILTER_DP_PDX, FILTER_VAF, NO_EFFECT_FILTER=False): variants = list() reader = vcfpy.Reader.from_path(filename) FDP = FILTER_DP_PDX if 'PDX' in str(filename) else FILTER_DP for record in reader: called = {x.sample: x.data for x in record.calls} ref_index = record.REF + 'U' alt_index = str(record.ALT[0].serialize()) + 'U' normal_AD1 = int(called['NORMAL'][ref_index][0]) normal_AD2 = int(called['NORMAL'][alt_index][0]) normal_DP = normal_AD1 + normal_AD2 normal_VAF = np.around((normal_AD2 / float(normal_DP)) * 100, 3) if normal_DP > 0.0 else 0.0 tumor_AD1 = int(called['TUMOR'][ref_index][0]) tumor_AD2 = int(called['TUMOR'][alt_index][0]) tumor_DP = tumor_AD1 + tumor_AD2 tumor_VAF = np.around((tumor_AD2 / float(tumor_DP)) * 100, 3) if tumor_DP > 0.0 else 0.0 if 'PASS' in record.FILTER and 'SOMATIC' in record.INFO \ and tumor_VAF >= FILTER_VAF and tumor_DP >= FDP: effects = set() for effect in record.INFO['ANN']: gene = effect.split('|')[3] effect_name = effect.split('|')[1] effect_type = effect.split('|')[2] effect_biotype = effect.split('|')[7] effect_aachange = effect.split('|')[10] effect_feature = effect.split('|')[5] if NO_EFFECT_FILTER or effect_type in ['HIGH', 'MODERATE']: effects.add((effect_name, gene, effect_aachange, effect_feature)) if len(effects) > 0: variant = Variant() variant.chrom = record.CHROM variant.start = record.POS variant.ref = record.REF variant.alt = record.ALT[0].serialize() variant.caller = 'Strelka' variant.effects = effects variant.DP = tumor_DP variant.AD = tumor_AD2 variant.VAF = tumor_VAF variants.append(variant) return variants def parse_strelka_indel_variants(filename, FILTER_DP, FILTER_DP_PDX, FILTER_VAF, NO_EFFECT_FILTER=False): variants = list() reader = vcfpy.Reader.from_path(filename) FDP = FILTER_DP_PDX if 'PDX' in str(filename) else FILTER_DP for record in reader: called = {x.sample: x.data for x in record.calls} normal_AD1 = int(called['NORMAL']['TAR'][0]) normal_AD2 = int(called['NORMAL']['TIR'][0]) normal_DP = normal_AD1 + normal_AD2 normal_VAF = np.around((normal_AD2 / float(normal_DP)) * 100, 3) if normal_DP > 0.0 else 0.0 tumor_AD1 = int(called['TUMOR']['TAR'][0]) tumor_AD2 = int(called['TUMOR']['TIR'][0]) tumor_DP = tumor_AD1 + tumor_AD2 tumor_VAF = np.around((tumor_AD2 / float(tumor_DP)) * 100, 3) if tumor_DP > 0.0 else 0.0 if 'PASS' in record.FILTER and 'SOMATIC' in record.INFO \ and tumor_VAF >= FILTER_VAF and tumor_DP >= FDP: effects = set() for effect in record.INFO['ANN']: gene = effect.split('|')[3] effect_name = effect.split('|')[1] effect_type = effect.split('|')[2] effect_biotype = effect.split('|')[7] effect_aachange = effect.split('|')[10] effect_feature = effect.split('|')[5] if NO_EFFECT_FILTER or effect_type in ['HIGH', 'MODERATE']: effects.add((effect_name, gene, effect_aachange, effect_feature)) if len(effects) > 0: variant = Variant() variant.chrom = record.CHROM variant.start = record.POS variant.ref = record.REF variant.alt = record.ALT[0].serialize() variant.caller = 'Strelka-indel' variant.effects = effects variant.DP = tumor_DP variant.AD = tumor_AD2 variant.VAF = tumor_VAF variants.append(variant) return variants def parse_mutect_variants(filename, FILTER_DP, FILTER_DP_PDX, FILTER_VAF, NO_EFFECT_FILTER=False): variants = list() tumor_id = str(os.path.basename(filename)).split('_vs_')[0].split('Mutect2_filtered_')[1] normal_id = str(os.path.basename(filename)).split('_vs_')[1].split('_snpEff')[0] FDP = FILTER_DP_PDX if 'PDX' in str(filename) else FILTER_DP reader = vcfpy.Reader.from_path(filename) for record in reader: called = {x.sample: x.data for x in record.calls} normal_DP = int(called[normal_id]['DP']) normal_AD = int(called[normal_id]['AD'][1]) normal_VAF = np.around(float(called[normal_id]['AF'][0]) * 100, 3) if normal_DP > 0.0 else 0.0 tumor_DP = int(called[tumor_id]['DP']) tumor_AD = int(called[tumor_id]['AD'][1]) tumor_VAF = np.around(float(called[tumor_id]['AF'][0]) * 100, 3) if tumor_DP > 0.0 else 0.0 if 'PASS' in record.FILTER and tumor_VAF >= FILTER_VAF and tumor_DP >= FDP: effects = set() for effect in record.INFO['ANN']: gene = effect.split('|')[3] effect_name = effect.split('|')[1] effect_type = effect.split('|')[2] effect_biotype = effect.split('|')[7] effect_aachange = effect.split('|')[10] effect_feature = effect.split('|')[5] if NO_EFFECT_FILTER or effect_type in ['HIGH', 'MODERATE']: effects.add((effect_name, gene, effect_aachange, effect_feature)) if len(effects) > 0: variant = Variant() variant.chrom = record.CHROM variant.start = record.POS variant.ref = record.REF variant.alt = record.ALT[0].serialize() variant.caller = 'Mutect' variant.effects = effects variant.DP = tumor_DP variant.AD = tumor_AD variant.VAF = tumor_VAF variants.append(variant) return variants def parse_mutect_tumor_onnly_variants(filename, FILTER_DP, FILTER_DP_PDX, FILTER_VAF, NO_EFFECT_FILTER=False): variants = list() tumor_id = str(os.path.basename(filename)).split('Mutect2_filtered2_')[1].replace('_snpEff.ann.vcf.gz', '') FDP = FILTER_DP_PDX if 'PDX' in str(filename) else FILTER_DP reader = vcfpy.Reader.from_path(filename) for record in reader: called = {x.sample: x.data for x in record.calls} tumor_DP = int(called[tumor_id]['DP']) tumor_AD = int(called[tumor_id]['AD'][1]) tumor_VAF = np.around(float(called[tumor_id]['AF'][0]) * 100, 3) if tumor_DP > 0.0 else 0.0 if 'PASS' in record.FILTER and tumor_VAF >= FILTER_VAF and tumor_DP >= FDP: effects = set() for effect in record.INFO['ANN']: gene = effect.split('|')[3] effect_name = effect.split('|')[1] effect_type = effect.split('|')[2] effect_biotype = effect.split('|')[7] effect_aachange = effect.split('|')[10] effect_feature = effect.split('|')[5] if NO_EFFECT_FILTER or effect_type in ['HIGH', 'MODERATE']: effects.add((effect_name, gene, effect_aachange, effect_feature)) if len(effects) > 0: variant = Variant() variant.chrom = record.CHROM variant.start = record.POS variant.ref = record.REF variant.alt = record.ALT[0].serialize() variant.caller = 'MutectTumorOnly' variant.effects = effects variant.DP = tumor_DP variant.AD = tumor_AD variant.VAF = tumor_VAF variants.append(variant) return variants ```
{ "source": "jfnavarro/st_analysis", "score": 3 }
#### File: st_analysis/scripts/data_plotter.py ```python import argparse from matplotlib import pyplot as plt from stanalysis.preprocessing import * from stanalysis.analysis import * import pandas as pd import numpy as np import os import sys from matplotlib.pyplot import plotting def get_spot_coordinates(spots): has_index = "_" in spots[0] return zip(*map(lambda s: (float(s.split("x")[0].split("_")[1] if has_index else s.split("x")[0]), float(s.split("x")[1])), spots)) def compute_plotting_data(counts, names, cutoff_lower, cutoff_upper, use_global_scale): plotting_data = list() # counts should be a vector and cutoff should be a percentage (0.0 - 1.0) min_gene_exp = counts.quantile(cutoff_lower) max_gene_exp = counts.quantile(cutoff_upper) print("Using lower cutoff of {} percentile {} of total distribution".format(min_gene_exp, cutoff_lower)) print("Using upper cutoff of {} percentile {} of total distribution".format(max_gene_exp, cutoff_upper)) counts[counts < min_gene_exp] = 0 counts[counts > max_gene_exp] = 0 vmin_global = counts.min() vmax_global = counts.max() for i, name in enumerate(names): r = re.compile("^{}_".format(i + 1)) # Filter spot by index (section) unless only one section is given spots = list(filter(r.match, counts.index)) if len(names) > 1 else counts.index if len(spots) > 0: # Compute the expressions for each spot # as the sum of the counts over the gene rel_sum = counts.reindex(spots).values x, y = get_spot_coordinates(spots) if not rel_sum.any(): sys.stdout.write("Warning, the gene given is not expressed in {}\n".format(name)) vmin = vmin_global if use_global_scale else rel_sum.min() vmax = vmax_global if use_global_scale else rel_sum.max() plotting_data.append((x, y, rel_sum, vmin, vmax, name)) return plotting_data def compute_plotting_data_clusters(counts, names, clusters): plotting_data = list() vmin_global = int(clusters.iloc[:, 0].min()) vmax_global = int(clusters.iloc[:, 0].max()) for i, name in enumerate(names): r = re.compile("^{}_".format(i + 1)) # Filter spot by index (section) unless only one section is given spots = list(filter(r.match, counts.index)) if len(names) > 1 else counts.index if len(spots) > 0: x, y = get_spot_coordinates(spots) c = np.ravel(clusters.loc[spots, :].values.astype(int)) plotting_data.append((x, y, c, vmin_global, vmax_global, name)) return plotting_data def plot_data(plotting_data, n_col, n_row, dot_size, data_alpha, color_scale, xlim, ylim, invert=False, colorbar=False): fig, ax = plt.subplots(n_row, n_col, figsize=(4 * n_col, 4 * n_row,)) fig.subplots_adjust(left=0.1, right=0.9, bottom=0.1, top=0.9, hspace=0.2, wspace=0.4) sc = list() for i, a in enumerate(ax.flatten() if n_row > 1 or n_col > 1 else [ax]): # Make the actual plot data = plotting_data[i] s = a.scatter(data[0], data[1], s=dot_size, cmap=plt.get_cmap(color_scale), c=data[2], edgecolor="none", alpha=data_alpha, vmin=data[3], vmax=data[4]) a.set_title(data[5]) a.set_xlim(xlim) a.set_ylim(ylim) a.set_aspect('equal') if invert: a.invert_yaxis() a.set_xticks([]) a.set_yticks([]) if colorbar: fig.colorbar(s, ax=a, fraction=0.046, pad=0.04) sc.append(s) return fig, ax, sc def main(counts_table_files, cutoff, cutoff_upper, data_alpha, dot_size, normalization, color_scale, color_scale_clusters, filter_genes, clusters_file, gene_family, outdir, use_log_scale, standard_transformation, num_exp_genes, num_exp_spots, min_gene_expression, use_global_scale, num_columns, xlim, ylim, disable_invert_y_axes, disable_color_bar, combine_genes): if cutoff_upper <= cutoff: sys.stderr.write("Error, incorrect cut-off values {}\n".format(cutoff)) sys.exit(1) if dot_size < 0: sys.stderr.write("Error, incorrect dot size {}\n".format(dot_size)) sys.exit(1) if data_alpha < 0 or data_alpha > 1: sys.stderr.write("Error, incorrect alpha value {}\n".format(data_alpha)) sys.exit(1) if len(counts_table_files) == 0 or \ any([not os.path.isfile(f) for f in counts_table_files]): sys.stderr.write("Error, input counts not present or invalid " \ "format\n{}.\n".format('\n'.join(counts_table_files))) sys.exit(1) if gene_family and \ any([not os.path.isfile(f) for f in counts_table_files]): sys.stderr.write("Error, input gene family not present or invalid " \ "format\n{}.\n".format('\n'.join(counts_table_files))) sys.exit(1) if num_exp_genes < 0 or num_exp_genes > 1: sys.stderr.write("Error, invalid number of expressed genes {}\n".format(num_exp_genes)) sys.exit(1) if num_exp_spots < 0 or num_exp_spots > 1: sys.stderr.write("Error, invalid number of expressed genes {}\n".format(num_exp_spots)) sys.exit(1) if outdir is None or not os.path.isdir(outdir): outdir = os.getcwd() outdir = os.path.abspath(outdir) print("Output directory {}".format(outdir)) print("Input datasets {}".format(" ".join(counts_table_files))) # Merge input datasets (Spots are rows and genes are columns) counts = aggregate_datatasets(counts_table_files) print("Total number of spots {}".format(len(counts.index))) print("Total number of genes {}".format(len(counts.columns))) # Get the names of the datasets names = [os.path.splitext(os.path.basename(x))[0] for x in counts_table_files] # Compute number of columns/rows n_col = min(num_columns, len(counts_table_files)) n_row = max(int(len(counts_table_files) / n_col), 1) # Remove noisy spots and genes (Spots are rows and genes are columns) counts_filtered = filter_data(counts, num_exp_genes, num_exp_spots, min_gene_expression) has_clusters = False if clusters_file and os.path.isfile(clusters_file): clusters = pd.read_csv(clusters_file, sep="\t", header=None, index_col=0, engine='c', low_memory=True) clusters = clusters.reindex(np.intersect1d(counts_filtered.index, clusters.index)) if clusters.shape[0] == 0 or clusters.isna().values.any(): sys.stderr.write("Error, cluster file does not match the input data\n") sys.exit(1) has_clusters = True elif clusters_file: sys.stderr.write("Error, {} is not a valid file\n".format(clusters_file)) sys.exit(1) # Normalization counts_normalized = normalize(counts_filtered, normalization) # Log the counts if use_log_scale: print("Transforming datasets to log space...") counts_normalized = np.log1p(counts_normalized) # Apply the z-transformation if standard_transformation: print("Applying standard transformation...") counts_normalized = ztransformation(counts_normalized) # Gene family plots if gene_family and combine_genes != "None": families = [os.path.splitext(os.path.basename(x))[0] for x in gene_family] counts_families = pd.DataFrame(index=counts_normalized.index, columns=families) for f, name in zip(gene_family, families): with open(f, "r") as filehandler: genes = [x.rstrip() for x in filehandler.readlines()] if len(genes) == 0: print("Error, no genes were found in {}\n".format(f)) continue # Filter the data with the genes in the set counts = counts_normalized.loc[:, np.intersect1d(genes, counts_normalized.columns)] if counts.shape[1] == 0: print("Error, none of the genes from {} were found in the data\n".format(f)) continue genes_in_set = counts.columns.tolist() # Compute the combined score if combine_genes in "NaiveMean": present_genes = (counts > 0).sum(axis=1) / len(genes_in_set) counts_families.loc[:, name] = (counts.mean(axis=1) * present_genes).values elif combine_genes in "NaiveSum": present_genes = (counts > 0).sum(axis=1) / len(genes_in_set) counts_families.loc[:, name] = (counts.sum(axis=1) * present_genes).values else: # For the CumSum we need to use all the genes so in order to compute p-values counts_families.loc[:, name] = enrichment_score(counts_normalized, genes_in_set) # Plot the data plotting_data = compute_plotting_data(counts_families.loc[:, name], names, 0.0, 1.0, use_global_scale) if len(plotting_data) == 0: sys.stderr.write("Error, plotting data is empty!\n") sys.exit(1) fig, ax, sc = plot_data(plotting_data, n_col, n_row, dot_size, data_alpha, color_scale, xlim, ylim, not disable_invert_y_axes, not disable_color_bar) # Save the plot fig.suptitle(name, fontsize=16) fig.savefig(os.path.join(outdir, "Combined_{}_joint_plot.pdf".format(name)), format='pdf', dpi=90) plt.close(fig) # Save the proportions counts_families.to_csv(os.path.join(outdir, "gene_families.tsv"), sep="\t") # Gene plots if filter_genes: try: counts_final = filter_data_genes(counts_normalized, filter_genes) # Compute plotting data and plot genes for gene in counts_final.columns: print("Plotting gene {}".format(gene)) plotting_data = compute_plotting_data(counts_final.loc[:, gene], names, cutoff, cutoff_upper, use_global_scale) if len(plotting_data) == 0: sys.stderr.write("Error, plotting data is empty!\n") sys.exit(1) fig, ax, sc = plot_data(plotting_data, n_col, n_row, dot_size, data_alpha, color_scale, xlim, ylim, not disable_invert_y_axes, not disable_color_bar) # Save the plot fig.suptitle(gene, fontsize=16) fig.savefig(os.path.join(outdir, "{}_joint_plot.pdf".format(gene)), format='pdf', dpi=90) plt.close(fig) except RuntimeError as e: sys.stdount.write("No genes could be found in the data...\n") if has_clusters: # Compute data for clusters and plot plotting_data = compute_plotting_data_clusters(counts_normalized, names, clusters) if len(plotting_data) == 0: sys.stderr.write("Error, plotting data is empty!\n") sys.exit(1) fig, ax, sc = plot_data(plotting_data, n_col, n_row, dot_size, data_alpha, color_scale_clusters, xlim, ylim, not disable_invert_y_axes, not disable_color_bar) # Save the plot fig.suptitle("Clusters", fontsize=16) fig.savefig(os.path.join(outdir, "Clusters_joint_plot.pdf"), format='pdf', dpi=90) plt.close(fig) if __name__ == '__main__': parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.RawTextHelpFormatter) parser.add_argument("--counts", required=True, nargs='+', type=str, help="One or more matrices of counts (spots as rows and genes as columns)") parser.add_argument("--num-exp-genes", default=0.0, metavar="[FLOAT]", type=float, help="The percentage of number of expressed genes (>= --min-gene-expression) a spot\n" "must have to be kept from the distribution of all expressed genes (0.0 - 1.0) (default: %(default)s)") parser.add_argument("--num-exp-spots", default=0.0, metavar="[FLOAT]", type=float, help="The percentage of number of expressed spots a gene\n" \ "must have to be kept from the total number of spots (0.0 - 1.0) (default: %(default)s)") parser.add_argument("--min-gene-expression", default=1, type=float, metavar="[FLOAT]", help="The minimum count (number of reads) a gene must have in a spot to be\n" "considered expressed (default: %(default)s)") parser.add_argument("--cutoff", default=0.0, metavar="[FLOAT]", type=float, help="The percentage of reads a gene must have in a spot to be included in the plots from\n" "the distribution of reads of the gene across all the spots (0.0 - 1.0) (default: %(default)s)") parser.add_argument("--cutoff-upper", default=1.0, metavar="[FLOAT]", type=float, help="The percentage of reads a gene should not have in a spot to be included in the plots from\n" "the distribution of reads of the gene across all the spots (0.0 - 1.0) (default: %(default)s)") parser.add_argument("--data-alpha", type=float, default=1.0, metavar="[FLOAT]", help="The transparency level for the data points, 0 min and 1 max (default: %(default)s)") parser.add_argument("--dot-size", type=int, default=20, metavar="[INT]", help="The size of the data points (default: %(default)s)") parser.add_argument("--color-scale", default="YlOrRd", type=str, choices=["hot", "binary", "hsv", "Greys", "inferno", "YlOrRd", "bwr", "Spectral", "coolwarm"], help="Different color scales for the gene plots (default: %(default)s)") parser.add_argument("--color-scale-clusters", default="tab20", type=str, choices=["tab20", "tab20b", "tab20c" "Set3", "Paired"], help="Different color scales for the cluster plots (default: %(default)s)") parser.add_argument("--normalization", default="RAW", type=str, choices=["RAW", "REL", "CPM"], help="Normalize the counts using:\n" "RAW = absolute counts\n" "REL = Each gene count divided by the total count of its spot\n" "CPM = Each gene count divided by the total count of its spot multiplied by its mean\n" "(default: %(default)s)") parser.add_argument("--standard-transformation", action="store_true", default=False, help="Apply the z-score transformation to each feature (gene)") parser.add_argument("--show-genes", help="Regular expression for gene symbols to be shown (one image per gene).\n" "The genes matching the reg-exp will be shown in separate files.", required=False, default=None, type=str, nargs='+') parser.add_argument("--clusters", help="Path to a tab delimited file containing clustering results for each spot.\n" "First column spot id and second column the cluster number (integer).", default=None, type=str) parser.add_argument("--gene-family", help="Path to one or more files containing set of genes (one per row).\n" "A combined image will be generated using the value of --combine-genes", required=False, default=None, type=str, nargs='+') parser.add_argument("--outdir", default=None, help="Path to output dir") parser.add_argument("--use-log-scale", action="store_true", default=False, help="Plot expression in log space (log2)") parser.add_argument("--use-global-scale", action="store_true", default=False, help="Use a global color scale instead of a relative color scale") parser.add_argument("--num-columns", default=1, type=int, metavar="[INT]", help="The number of columns (default: %(default)s)") parser.add_argument("--xlim", default=[1, 33], nargs='+', metavar="[FLOAT]", type=float, help="The x axis limits to have equally sized sub-images (default: %(default)s)") parser.add_argument("--ylim", default=[1, 35], nargs='+', metavar="[FLOAT]", type=float, help="The y axis limits to have equally sized sub-images (default: %(default)s)") parser.add_argument("--disable-invert-y-axes", action="store_true", default=False, help="Whether to disable the invert of the y axes or not (default False)") parser.add_argument("--disable-color-bar", action="store_true", default=False, help="Whether to disable the color bar or not (default False)") parser.add_argument("--combine-genes", default="None", type=str, choices=["None", "NaiveMean", "NaiveSum", "CumSum"], help="Whether to generate a combined plot with the all the genes given in --show-genes:\n" "None = do not create combined plot\n" "NaiveMean = create combine plot using the mean value of the genes in the spot adjusted by size\n" "NaiveSum = create combine plot using the sum value of the genes in the spot adjusted by size\n" "CumSum = create combined plot using a cumulative sum of the genes (0.90) and the Fisher test\n" "(default: %(default)s)") args = parser.parse_args() main(args.counts, args.cutoff, args.cutoff_upper, args.data_alpha, args.dot_size, args.normalization, args.color_scale, args.color_scale_clusters, args.show_genes, args.clusters, args.gene_family, args.outdir, args.use_log_scale, args.standard_transformation, args.num_exp_genes, args.num_exp_spots, args.min_gene_expression, args.use_global_scale, args.num_columns, args.xlim, args.ylim, args.disable_invert_y_axes, args.disable_color_bar, args.combine_genes) ``` #### File: st_analysis/scripts/supervised_torch.py ```python import os import sys import time import argparse import numpy as np import pandas as pd import gc import platform import random import copy from collections import defaultdict from stanalysis.preprocessing import * from stanalysis.utils import * import torch import torch.nn as nn from torch.autograd import Variable import torch.utils.data as utils import torchvision from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score from sklearn.metrics import classification_report from sklearn.utils import shuffle from sklearn.model_selection import StratifiedShuffleSplit import gc # Windows work-around __spec__ = None import multiprocessing SEARCH_BATCH = [(200, 200), (500, 500), (1000, 1000)] L2 = [0.0, 0.001, 0.0001] SEARCH_LR = [0.1, 0.01, 0.001, 0.0001] SEARCH_HL = [(3000, 500), (2000, 500), (1000, 500), (3000, 1000), (2000, 1000), (2000, 300), (1000, 300)] SEED = 999 def computeWeightsClasses(dataset): # Distribution of labels label_count = defaultdict(int) for _, label in dataset: label_count[label.item()] += 1 # Weight for each sample weights = np.asarray([1.0 / x for x in label_count.values()]) return weights def computeWeights(dataset, nclasses): count = [0] * nclasses for item in dataset: count[item[1]] += 1 weight_per_class = [0.] * nclasses N = float(sum(count)) for i in range(nclasses): weight_per_class[i] = N / float(count[i]) weight = [0] * len(dataset) for idx, val in enumerate(dataset): weight[idx] = weight_per_class[val[1]] return np.asarray(weight) def str_to_act_func(str): if str in "TANH": return torch.nn.Tanh() elif str in "SELU": return torch.nn.SELU() else: return torch.nn.ReLU() def create_model(n_feature, n_class, hidden_layer_one, hidden_layer_two, activation_function): # Init model H1 = hidden_layer_one H2 = hidden_layer_two model = torch.nn.Sequential( torch.nn.Linear(n_feature, H1), torch.nn.BatchNorm1d(num_features=H1), str_to_act_func(activation_function), torch.nn.Linear(H1, H2), torch.nn.BatchNorm1d(num_features=H2), str_to_act_func(activation_function), torch.nn.Linear(H2, n_class)) return model def create_loaders(trn_set, vali_set, train_batch_size, validation_batch_size, train_sampler, test_sampler, shuffle_train, shuffle_test, kwargs): # Create loaders trn_loader = utils.DataLoader(trn_set, sampler=train_sampler, shuffle=shuffle_train, batch_size=train_batch_size, **kwargs) vali_loader = utils.DataLoader(vali_set, sampler=test_sampler, shuffle=shuffle_test, batch_size=validation_batch_size, **kwargs) return trn_loader, vali_loader def train(model, trn_loader, optimizer, loss_func, device): model.train() training_loss = 0 training_acc = 0 counter = 0 for data, target in trn_loader: data = Variable(data.to(device)) target = Variable(target.to(device)) # Forward pass output = model(data) tloss = loss_func(output, target) training_loss += tloss.item() # Zero the gradients optimizer.zero_grad() # Backward pass tloss.backward() # Update parameters optimizer.step() # Compute prediction's score pred = torch.argmax(output.data, 1) training_acc += accuracy_score(target.data.cpu().numpy(), pred.data.cpu().numpy()) counter += 1 avg_loss = training_loss / float(counter) avg_acc = training_acc / float(counter) return avg_loss, avg_acc def test(model, vali_loader, loss_func, device): model.eval() test_loss = 0 counter = 0 preds = list() for data, target in vali_loader: with torch.no_grad(): data = data.to(device) target = target.to(device) output = model(data) test_loss += loss_func(output, target).item() pred = torch.argmax(output.data, 1) preds += pred.cpu().numpy().tolist() counter += 1 avg_loss = test_loss / float(counter) return preds, avg_loss def predict(model, data, device): model.eval() with torch.no_grad(): data = data.to(device) output = model(data) pred = torch.argmax(output.data, 1) return output, pred def main(train_data, test_data, train_classes_file, test_classes_file, log_scale, normalization, stratified_loss, outdir, standard_transformation, train_batch_size, validation_batch_size, epochs, learning_rate, stratified_sampler, min_class_size, use_cuda, num_exp_genes, num_exp_spots, min_gene_expression, verbose, hidden_layer_one, hidden_layer_two, train_validation_ratio, train_test_ratio, grid_search, activation_function, l2, num_genes_keep_train, num_genes_keep_test, top_genes_criteria_train, top_genes_criteria_test): if not os.path.isfile(train_data): sys.stderr.write("Error, the training data input is not valid\n") sys.exit(1) if not os.path.isfile(train_classes_file): sys.stderr.write("Error, the train labels input is not valid\n") sys.exit(1) if not os.path.isfile(test_data): sys.stderr.write("Error, the test data input is not valid\n") sys.exit(1) if test_classes_file is not None and not os.path.isfile(test_classes_file): sys.stderr.write("Error, the test labels input is not valid\n") sys.exit(1) if min_class_size < 0: sys.stderr.write("Error, invalid minimum class size\n") sys.exit(1) if learning_rate < 0: sys.stderr.write("Error, invalid learning rate\n") sys.exit(1) if hidden_layer_one <= 0 or hidden_layer_two <= 0: sys.stderr.write("Error, invalid hidden layers\n") sys.exit(1) if train_batch_size < 1 or validation_batch_size < 1: sys.stderr.write("Error, batch size is too small\n") sys.exit(1) if epochs < 1: sys.stderr.write("Error, number of epoch is too small\n") sys.exit(1) if num_exp_genes < 0.0 or num_exp_genes > 1.0: sys.stderr.write("Error, invalid number of expressed genes\n") sys.exit(1) if num_exp_spots < 0.0 or num_exp_spots > 1.0: sys.stderr.write("Error, invalid number of expressed spots\n") sys.exit(1) if train_validation_ratio < 0.1 or train_validation_ratio > 0.9: sys.stderr.write("Error, invalid train test ratio genes\n") sys.exit(1) if not torch.cuda.is_available() and use_cuda: sys.stderr.write("Error, CUDA is not available in this computer\n") sys.exit(1) if not outdir or not os.path.isdir(outdir): outdir = os.getcwd() print("Output folder {}".format(outdir)) # To ensure reproducibility np.random.seed(SEED) random.seed(SEED) torch.manual_seed(SEED) if use_cuda: torch.cuda.manual_seed(SEED) torch.cuda.manual_seed_all(SEED) print("Loading training dataset...") train_data_frame = pd.read_csv(train_data, sep="\t", header=0, index_col=0, engine='c', low_memory=True) train_data_frame = remove_noise(train_data_frame, num_exp_genes, num_exp_spots, min_gene_expression) # Load all the classes for the training set train_labels = parse_labels(train_classes_file, min_class_size) print("Loading testing dataset...") test_data_frame = pd.read_csv(test_data, sep="\t", header=0, index_col=0, engine='c', low_memory=True) test_data_frame = remove_noise(test_data_frame, num_exp_genes, num_exp_spots, min_gene_expression) # Load all the classes for the prediction set if test_classes_file is not None: test_labels = parse_labels(test_classes_file, 0) # Normalize counts print("Normalizing...") train_data_frame = normalize_data(train_data_frame, normalization) test_data_frame = normalize_data(test_data_frame, normalization) # Keep top genes (variance or expressed) train_data_frame = keep_top_genes(train_data_frame, num_genes_keep_train / 100.0, criteria=top_genes_criteria_train) test_data_frame = keep_top_genes(test_data_frame, num_genes_keep_test / 100.0, criteria=top_genes_criteria_test) # Keep only the record in the training set that intersects with the prediction set print("Genes in training set {}".format(train_data_frame.shape[1])) print("Spots in training set {}".format(train_data_frame.shape[0])) print("Genes in testing set {}".format(test_data_frame.shape[1])) print("Spots in testing set {}".format(test_data_frame.shape[0])) intersect_genes = np.intersect1d(train_data_frame.columns.values, test_data_frame.columns.values) if len(intersect_genes) == 0: sys.stderr.write("Error, there are no genes intersecting the train and test datasets\n") sys.exit(1) print("Intersected genes {}".format(len(intersect_genes))) train_data_frame = train_data_frame.loc[:, intersect_genes] test_data_frame = test_data_frame.loc[:, intersect_genes] # Log the counts if log_scale: print("Transforming datasets to log space...") train_data_frame = np.log1p(train_data_frame) test_data_frame = np.log1p(test_data_frame) # Apply the z-transformation if standard_transformation: print("Applying standard transformation...") train_data_frame = ztransformation(train_data_frame) test_data_frame = ztransformation(test_data_frame) # Sort labels data together shared_spots = np.intersect1d(train_data_frame.index, train_labels.index) train_data_frame = train_data_frame.loc[shared_spots, :] train_labels = np.asarray(train_labels.loc[shared_spots, ["cluster"]]).ravel() if test_classes_file: shared_spots = np.intersect1d(test_data_frame.index, test_labels.index) test_data_frame = test_data_frame.loc[shared_spots, :] test_labels = np.asarray(test_labels.loc[shared_spots, ["cluster"]]).ravel() # Split train and test datasets print("Validation set ratio {}\nTest set ratio {}".format(train_validation_ratio, train_test_ratio)) train_counts_x, vali_countx_x, test_counts_x, \ train_labels_y, vali_labels_y, test_labels_y = split_dataset(train_data_frame, train_labels, train_validation_ratio, train_test_ratio, min_class_size) # Update labels so to ensure they go from 0-N sequentially labels_index_map = dict() index_label_map = dict() for i, label in enumerate(sorted(set(train_labels_y + vali_labels_y + test_labels_y))): labels_index_map[label] = i index_label_map[i] = label print("Mapping of labels:") print(index_label_map) train_labels_y = [labels_index_map[x] for x in train_labels_y] vali_labels_y = [labels_index_map[x] for x in vali_labels_y] test_labels_y = [labels_index_map[x] for x in test_labels_y] print("Training set {}".format(train_counts_x.shape[0])) print("Validation set {}".format(vali_countx_x.shape[0])) print("Test set {}".format(test_counts_x.shape[0])) # PyTorch needs floats train_counts = train_counts_x.astype(np.float32).values vali_counts = vali_countx_x.astype(np.float32).values test_counts = test_counts_x.astype(np.float32).values # Input and output sizes n_feature = train_counts.shape[1] n_ele_train = train_counts.shape[0] n_ele_test = vali_counts.shape[0] n_class = max(set(train_labels_y)) + 1 print("CUDA Available: ", torch.cuda.is_available()) device = torch.device("cuda" if use_cuda and torch.cuda.is_available() else "cpu") workers = 0 if platform.system() == "Windows" else multiprocessing.cpu_count() - 1 print("Workers {}".format(workers)) kwargs = {'num_workers': workers, 'pin_memory': use_cuda} # Create Tensor Flow train dataset X_train = torch.tensor(train_counts) X_vali = torch.tensor(vali_counts) X_test = torch.tensor(test_counts) y_train = torch.from_numpy(np.asarray(train_labels_y, dtype=np.longlong)) y_vali = torch.from_numpy(np.asarray(vali_labels_y, dtype=np.longlong)) y_test = torch.from_numpy(np.asarray(test_labels_y, dtype=np.longlong)) # Create tensor datasets (train + test) trn_set = utils.TensorDataset(X_train, y_train) vali_set = utils.TensorDataset(X_vali, y_vali) if stratified_loss: print("Using a stratified loss...") # Compute weights weights_classes = computeWeightsClasses(trn_set) weights_classes = torch.from_numpy(weights_classes).float().to(device) else: weights_classes = None # Creating loss loss_func = nn.CrossEntropyLoss(weight=weights_classes, reduction="mean") # Create Samplers if stratified_sampler: print("Using a stratified sampler for training set...") weights_train = computeWeights(trn_set, n_class) weights_train = torch.from_numpy(weights_train).float().to(device) trn_sampler = utils.sampler.WeightedRandomSampler(weights_train, len(weights_train), replacement=False) else: trn_sampler = None vali_sampler = None learning_rates = [learning_rate] if not grid_search else SEARCH_LR batch_sizes = [(train_batch_size, validation_batch_size)] if not grid_search else SEARCH_BATCH hidden_sizes = [(hidden_layer_one, hidden_layer_two)] if not grid_search else SEARCH_HL l2s = [l2] if not grid_search else L2 best_model = dict() best_acc = 0 best_lr = 0 best_bs = (0, 0) best_h = (0, 0) best_l2 = 0 PATIENCE = 20 for lr in learning_rates: for l2 in l2s: for (trn_bs, vali_bs) in batch_sizes: for (h1, h2) in hidden_sizes: # Create model model = create_model(n_feature, n_class, h1, h2, activation_function) model = model.to(device) # Create optimizer optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=l2) # Create loaders trn_loader, vali_loader = create_loaders(trn_set, vali_set, trn_bs, vali_bs, trn_sampler, vali_sampler, not stratified_sampler, False, kwargs) # Train the model best_local_loss = 10e6 best_local_acc = 0 counter = 0 best_model_local = dict() if grid_search: print("Training model with:\n L2 {}\n learning rate {}\n train batch size {}\n " "test batch size {}\n hidden layer one {}\n hidden layer two {}".format(l2, lr, trn_bs, vali_bs, h1, h2)) for epoch in range(epochs): if verbose: print('Epoch: {}'.format(epoch)) # Training avg_train_loss, avg_training_acc = train(model, trn_loader, optimizer, loss_func, device) # Test the model on the validation set preds, avg_vali_loss = test(model, vali_loader, loss_func, device) avg_vali_acc = accuracy_score(y_vali.cpu().numpy(), preds) if verbose: print("Training set accuracy {}".format(avg_training_acc)) print("Training set loss (avg) {}".format(avg_train_loss)) print("Validation set accuracy {}".format(avg_vali_acc)) print("Validation set loss (avg) {}".format(avg_vali_loss)) # Keep the parameters of the epoch that gives the best loss/accuracy if avg_vali_loss < best_local_loss: best_local_acc = avg_vali_acc best_local_loss = avg_vali_loss best_model_local = copy.deepcopy(model.state_dict()) counter = 0 else: counter += 1 # Early out if counter >= PATIENCE: print("Early stopping at epoch {}".format(epoch)) break # Test the model on the test set model.load_state_dict(best_model_local) _, preds = predict(model, X_test, device) test_acc = accuracy_score(y_test.cpu().numpy(), preds.cpu().numpy()) # Check the results to keep the best model print("Best training accuracy {} and loss (avg.) {}".format(best_local_acc, best_local_loss)) print("Testing accuracy {}".format(test_acc)) if test_acc > best_acc: best_acc = test_acc best_model = copy.deepcopy(best_model_local) best_lr = lr best_bs = (trn_bs, vali_bs) best_h = (h1, h2) best_l2 = l2 print("Model trained!") print("Activation function {}".format(activation_function)) print("Cross entropy loss") print("ADAM optimizer with {} L2".format(best_l2)) print("Learning rate {}".format(best_lr)) print("Train batch size {}".format(best_bs[0])) print("Validation batch size {}".format(best_bs[1])) print("Hidden layer one {}".format(best_h[0])) print("Hidden layer two {}".format(best_h[1])) print("Model accuracy {}".format(best_acc)) # Load and save best model model = create_model(n_feature, n_class, best_h[0], best_h[1], activation_function) model = model.to(device) model.load_state_dict(best_model) torch.save(model, os.path.join(outdir, "model.pt")) # Predict print("Predicting on test data..") predict_counts = test_data_frame.astype(np.float32).values test_index = test_data_frame.index X_pre = torch.tensor(predict_counts) y_pre = test_labels if test_classes_file is not None else None out, preds = predict(model, X_pre, device) # Map labels back to their original value preds = [index_label_map[np.asscalar(x)] for x in preds.cpu().numpy()] if y_pre is not None: print("Classification report\n{}". format(classification_report(y_pre, preds))) print("Confusion matrix:\n{}".format(confusion_matrix(y_pre, preds))) with open(os.path.join(outdir, "predicted_classes.tsv"), "w") as filehandler: for spot, pred, probs in zip(test_index, preds, out.cpu().numpy()): filehandler.write("{0}\t{1}\t{2}\n".format(spot, pred, "\t".join(['{:.6f}'.format(x) for x in probs]))) if __name__ == '__main__': parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.RawTextHelpFormatter) parser.add_argument("--train-data", required=True, type=str, help="Path to the input training dataset (matrix of counts, spots as rows)") parser.add_argument("--test-data", required=True, type=str, help="Path to the test dataset (to be predicted) (matrix of counts, spots as rows)") parser.add_argument("--train-classes", required=True, type=str, help="Path to the training classes file (SPOT LABEL)") parser.add_argument("--test-classes", required=False, type=str, help="Path to the test classes file (SPOT LABEL)") parser.add_argument("--log-scale", action="store_true", default=False, help="Convert the training and test sets to log space (log2 + 1)") parser.add_argument("--standard-transformation", action="store_true", default=False, help="Apply the standard transformation to each gene on the train and test sets") parser.add_argument("--normalization", default="RAW", metavar="[STR]", type=str, choices=["RAW", "REL", "CPM"], help="Normalize the counts using:\n" "RAW = absolute counts\n" "REL = Each gene count divided by the total count of its spot\n" "CPM = Each gene count divided by the total count of its spot multiplied by its mean\n" "(default: %(default)s)") parser.add_argument("--train-batch-size", type=int, default=200, metavar="[INT]", help="The input batch size for training (default: %(default)s)") parser.add_argument("--validation-batch-size", type=int, default=200, metavar="[INT]", help="The input batch size for validation (default: %(default)s)") parser.add_argument("--epochs", type=int, default=50, metavar="[INT]", help="The number of epochs to train (default: %(default)s)") parser.add_argument("--hidden-layer-one", type=int, default=2000, metavar="[INT]", help="The number of neurons in the first hidden layer (default: %(default)s)") parser.add_argument("--hidden-layer-two", type=int, default=1000, metavar="[INT]", help="The number of neurons in the second hidden layer (default: %(default)s)") parser.add_argument("--train-validation-ratio", type=float, default=0.2, metavar="[FLOAT]", help="The percentage of the training set that will be used to validate" "the model during training (default: %(default)s)") parser.add_argument("--train-test-ratio", type=float, default=0.2, metavar="[FLOAT]", help="The percentage of the training set that will be used to test" "the model after training (default: %(default)s)") parser.add_argument("--learning-rate", type=float, default=0.001, metavar="[FLOAT]", help="The learning rate for the Adam optimizer (default: %(default)s)") parser.add_argument("--l2", type=float, default=0.0, metavar="[FLOAT]", help="The L2 penalty regularization for the ADAM optimizer (default: %(default)s)") parser.add_argument("--activation-function", default="RELU", metavar="[STR]", type=str, choices=["RELU", "TANH", "SELU"], help="Activation function to be used in the hidden layers:\n" "RELU = rectified linear unit \n" "TANH = hyperbolic tangent\n" "SELU = self normalizing linear unit\n" "(default: %(default)s)") parser.add_argument("--use-cuda", action="store_true", default=False, help="Whether to use CUDA (GPU computation)") parser.add_argument("--stratified-sampler", action="store_true", default=False, help="Draw samples with equal probabilities when training") parser.add_argument("--stratified-loss", action="store_true", default=False, help="Penalizes more small classes in the loss") parser.add_argument("--min-class-size", type=int, default=10, metavar="[INT]", help="The minimum number of elements a class must has in the" "training set (default: %(default)s)") parser.add_argument("--verbose", action="store_true", default=False, help="Whether to show extra messages") parser.add_argument("--grid-search", action="store_true", default=False, help="Perform a grid search to find the most optimal hyper parameters") parser.add_argument("--outdir", help="Path to output directory") parser.add_argument("--num-exp-genes", default=0.01, metavar="[FLOAT]", type=float, help="The percentage of number of expressed genes (>= --min-gene-expression) a spot\n" "must have to be kept from the distribution of all expressed genes (0.0 - 1.0) (default: %(default)s)") parser.add_argument("--num-exp-spots", default=0.01, metavar="[FLOAT]", type=float, help="The percentage of number of expressed spots (>= --min-gene-expression) a gene\n" "must have to be kept from the total number of spots (0.0 - 1.0) (default: %(default)s)") parser.add_argument("--min-gene-expression", default=1, type=float, metavar="[FLOAT]", help="The minimum count a gene must have in a spot to be\n" "considered expressed when filtering (default: %(default)s)") parser.add_argument("--num-genes-keep-train", default=50, metavar="[INT]", type=int, choices=range(0, 99), help="The percentage of genes to discard from the distribution of all the genes\n" "across all the spots using the variance or the top highest expressed\n" "(see --top-genes-criteria-train)\n " "Low variance or low expressed genes will be discarded (default: %(default)s)") parser.add_argument("--num-genes-keep-test", default=50, metavar="[INT]", type=int, choices=range(0, 99), help="The percentage of genes to discard from the distribution of all the genes\n" "across all the spots using the variance or the top highest expressed\n" "(see --top-genes-criteria-test)\n " "Low variance or low expressed genes will be discarded (default: %(default)s)") parser.add_argument("--top-genes-criteria-train", default="Variance", metavar="[STR]", type=str, choices=["Variance", "TopRanked"], help="What criteria to use to reduce the number of genes " "(Variance or TopRanked) (default: %(default)s)") parser.add_argument("--top-genes-criteria-test", default="Variance", metavar="[STR]", type=str, choices=["Variance", "TopRanked"], help="What criteria to use to reduce the number of genes " "(Variance or TopRanked) (default: %(default)s)") args = parser.parse_args() main(args.train_data, args.test_data, args.train_classes, args.test_classes, args.log_scale, args.normalization, args.stratified_loss, args.outdir, args.standard_transformation, args.train_batch_size, args.validation_batch_size, args.epochs, args.learning_rate, args.stratified_sampler, args.min_class_size, args.use_cuda, args.num_exp_genes, args.num_exp_spots, args.min_gene_expression, args.verbose, args.hidden_layer_one, args.hidden_layer_two, args.train_validation_ratio, args.train_test_ratio, args.grid_search, args.activation_function, args.l2, args.num_genes_keep_train, args.num_genes_keep_test, args.top_genes_criteria_train, args.top_genes_criteria_test) ``` #### File: st_analysis/scripts/unsupervised.py ```python import argparse import sys import os from sklearn.decomposition import PCA, FastICA, SparsePCA, FactorAnalysis, NMF from sklearn.cluster import DBSCAN, KMeans, AgglomerativeClustering from sklearn.mixture import GaussianMixture from sklearn.manifold import TSNE import umap from stanalysis.visualization import scatter_plot, scatter_plot3d from stanalysis.preprocessing import * def main(counts_table_files, normalization, num_clusters, num_exp_genes, num_exp_spots, min_gene_expression, num_genes_discard, clustering, dimensionality, use_log_scale, num_dimensions, spot_size, top_genes_criteria, outdir, tsne_perplexity, tsne_theta, umap_neighbors, umap_min_dist, umap_metric, tsne_initial_dims, pca_auto_components, dbscan_min_size, dbscan_eps, SEED): if len(counts_table_files) == 0 or \ any([not os.path.isfile(f) for f in counts_table_files]): sys.stderr.write("Error, input file/s not present or invalid format\n") sys.exit(1) if num_clusters is None and clustering != "DBSCAN": sys.stderr.write("Error, num_clusters must be given if clustering algorithm is not DBSCAN\n") sys.exit(1) if tsne_theta < 0.0 or tsne_theta > 1.0: sys.stdout.write("Warning, invalid value for theta. Using default..\n") tsne_theta = 0.5 if num_exp_genes < 0 or num_exp_spots < 0: sys.stdout.write("Error, min_exp_genes and min_exp_spots must be >= 0.\n") sys.exit(1) if tsne_initial_dims <= num_dimensions and clustering == "tSNE": sys.stdout.write("Error, number of initial dimensions cannot be <= than the number of dimensions.\n") sys.exit(1) if pca_auto_components is not None and (pca_auto_components <= 0.0 or pca_auto_components > 1.0): sys.stdout.write("Error, pca_auto_components must be > 0 and <= 1.0.\n") sys.exit(1) if dbscan_eps <= 0.0: sys.stdout.write("Warning, invalid value for DBSCAN eps. Using default..\n") dbscan_eps = 0.5 if num_exp_genes < 0 or num_exp_genes > 1: sys.stderr.write("Error, invalid number of expressed genes \n") sys.exit(1) if num_exp_spots < 0 or num_exp_spots > 1: sys.stderr.write("Error, invalid number of expressed genes \n") sys.exit(1) if num_genes_discard < 0 or num_genes_discard > 1: sys.stderr.write("Error, invalid number of genes to discard \n") sys.exit(1) if outdir is None or not os.path.isdir(outdir): outdir = os.getcwd() outdir = os.path.abspath(outdir) print("Output directory {}".format(outdir)) print("Input datasets {}".format(" ".join(counts_table_files))) # Merge input datasets (Spots are rows and genes are columns) counts = aggregate_datatasets(counts_table_files) print("Total number of spots {}".format(len(counts.index))) print("Total number of genes {}".format(len(counts.columns))) # Remove noisy spots and genes (Spots are rows and genes are columns) counts = remove_noise(counts, num_exp_genes, num_exp_spots, min_expression=min_gene_expression) if len(counts.index) < 5 or len(counts.columns) < 5: sys.stdout.write("Error, too many spots/genes were filtered.\n") sys.exit(1) # Normalize data print("Computing per spot normalization...") norm_counts = normalize_data(counts, normalization) if use_log_scale: print("Using pseudo-log counts log1p(counts)") norm_counts = np.log1p(norm_counts) # Keep top genes (variance or expressed) norm_counts = keep_top_genes(norm_counts, num_genes_discard, criteria=top_genes_criteria) if "None" not in dimensionality: print("Performing dimensionality reduction...") if "tSNE" in dimensionality: # First PCA and then TSNE if norm_counts.shape[1] > tsne_initial_dims: y = PCA(whiten=True, n_components=tsne_initial_dims).fit_transform(norm_counts) else: y = norm_counts local_perplexity = min(y.shape[0] / 3.5, tsne_perplexity) reduced_data = TSNE(n_components=num_dimensions, angle=tsne_theta, random_state=SEED, perplexity=local_perplexity).fit_transform(y) elif "PCA" in dimensionality: n_comps = num_dimensions solver = "auto" if pca_auto_components is not None: n_comps = pca_auto_components solver = "full" reduced_data = PCA(n_components=n_comps, svd_solver=solver, whiten=True, random_state=SEED, copy=True).fit_transform(norm_counts) elif "ICA" in dimensionality: reduced_data = FastICA(n_components=num_dimensions, algorithm='parallel', whiten=True, fun='logcosh', w_init=None, random_state=SEED).fit_transform(norm_counts) elif "SPCA" in dimensionality: import multiprocessing reduced_data = SparsePCA(n_components=num_dimensions, alpha=1, random_state=SEED, n_jobs=multiprocessing.cpu_count() - 1) elif "FactorAnalysis" in dimensionality: reduced_data = FactorAnalysis(n_components=num_dimensions, random_state=SEED).fit_transform(norm_counts) elif "NMF" in dimensionality: reduced_data = NMF(n_components=num_dimensions, init='random', random_state=SEED).fit_transform(norm_counts) else: reduced_data = umap.UMAP(n_neighbors=umap_neighbors, min_dist=umap_min_dist, n_components=num_dimensions, random_state=SEED, metric=umap_metric).fit_transform(norm_counts) print("Performing clustering...") # Do clustering on the dimensionality reduced coordinates if "KMeans" in clustering: labels = KMeans(init='k-means++', n_clusters=num_clusters, n_init=10).fit_predict(reduced_data) elif "Hierarchical" in clustering: labels = AgglomerativeClustering(n_clusters=num_clusters, affinity='euclidean', linkage='ward').fit_predict(reduced_data) elif "DBSCAN" in clustering: labels = DBSCAN(eps=dbscan_eps, min_samples=dbscan_min_size, metric='euclidean', n_jobs=-1).fit_predict(reduced_data) else: gm = GaussianMixture(n_components=num_clusters, covariance_type='full').fit(reduced_data) labels = gm.predict(reduced_data) # Check if there are -1 in the labels and that the number of labels is correct if -1 in labels or len(labels) != len(norm_counts.index): sys.stderr.write("Error, something went wrong in the clustering..\n") sys.exit(1) # If cluster 0 sum 1 if 0 in labels: labels = labels + 1 # Plot the clustered spots with the class color in the reduced space if num_dimensions == 3: scatter_plot3d(x_points=reduced_data[:, 0], y_points=reduced_data[:, 1], z_points=reduced_data[:, 2], colors=labels, output=os.path.join(outdir, "computed_dim_red_3D.pdf"), title='Computed clusters (color)', alpha=0.8, size=spot_size) with open(os.path.join(outdir, "computed_dim_red_3D.tsv"), "w") as filehandler: for s, x, y, z, l in zip(norm_counts.index, reduced_data[:, 0], reduced_data[:, 1], reduced_data[:, 2], labels): filehandler.write("{}\t{}\t{}\t{}\t{}\n".format(s, x, y, z, l)) else: scatter_plot(x_points=reduced_data[:, 0], y_points=reduced_data[:, 1], colors=labels, output=os.path.join(outdir, "computed_dim_red_2D.pdf"), title='Computed clusters (color)', alpha=0.8, invert_y=False, size=spot_size) with open(os.path.join(outdir, "computed_dim_red_2D.tsv"), "w") as filehandler: for s, x, y, l in zip(norm_counts.index, reduced_data[:, 0], reduced_data[:, 1], labels): filehandler.write("{}\t{}\t{}\t{}\n".format(s, x, y, l)) if __name__ == '__main__': parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.RawTextHelpFormatter) parser.add_argument("--counts", required=True, nargs='+', type=str, help="One or more matrices with gene counts per spot (genes as columns)") parser.add_argument("--normalization", default="RAW", type=str, choices=["RAW", "REL", "CPM"], help="Normalize the counts using:\n" "RAW = absolute counts\n" "REL = Each gene count divided by the total count of its spot\n" "CPM = Each gene count divided by the total count of its spot multiplied by its mean\n" "(default: %(default)s)") parser.add_argument("--num-clusters", default=None, metavar="[INT]", type=int, choices=range(2, 30), help="The number of clusters expected to find.\n" "Note that this parameter has no effect with DBSCAN clustering.") parser.add_argument("--num-exp-genes", default=0.01, metavar="[FLOAT]", type=float, help="The percentage of number of expressed genes (>= --min-gene-expression) a spot\n" "must have to be kept from the distribution of all expressed genes (0.0 - 1.0) (default: %(default)s)") parser.add_argument("--num-exp-spots", default=0.01, metavar="[FLOAT]", type=float, help="The percentage of number of expressed spots a gene\n" "must have to be kept from the total number of spots (0.0 - 1.0) (default: %(default)s)") parser.add_argument("--min-gene-expression", default=1, type=int, metavar="[INT]", choices=range(1, 50), help="The minimum count (number of reads) a gene must have in a spot to be\n" "considered expressed (default: %(default)s)") parser.add_argument("--num-genes-discard", default=0.5, metavar="[FLOAT]", type=float, help="The percentage of genes (0.0 - 1.0) to discard from the distribution of all the genes\n" "across all the spots using the variance or the top highest expressed\n" "(see --top-genes-criteria)\n " "Low variance or lowly expressed will be discarded (default: %(default)s)") parser.add_argument("--clustering", default="KMeans", type=str, choices=["Hierarchical", "KMeans", "DBSCAN", "Gaussian"], help="What clustering algorithm to use after the dimensionality reduction:\n" "Hierarchical = Hierarchical clustering (Ward)\n" "KMeans = Suitable for small number of clusters\n" "DBSCAN = Number of clusters will be automatically inferred\n" "Gaussian = Gaussian Mixtures Model\n" "(default: %(default)s)") parser.add_argument("--dimensionality", default="tSNE", type=str, choices=["None", "tSNE", "PCA", "ICA", "SPCA", "FactorAnalysis", "NMF", "UMAP"], help="What dimensionality reduction algorithm to use before the clustering:\n" "None = no dimensionality reduction\n" "tSNE = t-distributed stochastic neighbor embedding\n" "PCA = Principal component analysis\n" "ICA = Independent component analysis\n" "SPCA = Sparse principal component analysis\n" "FactorAnalysis = Linear model with Gaussian latent variables\n" "NMF = Non Negative Matrix Factorization\n" "UMAP = Uniform Manifold Approximation and Projection\n" "(default: %(default)s)") parser.add_argument("--use-log-scale", action="store_true", default=False, help="Transform the counts to log2(counts + 1) after normalization") parser.add_argument("--num-dimensions", default=2, metavar="[INT]", type=int, help="The number of dimensions to use in the dimensionality reduction. (default: %(default)s)") parser.add_argument("--spot-size", default=4, metavar="[INT]", type=int, help="The size of the dots when generating the scatter plots. (default: %(default)s)") parser.add_argument("--top-genes-criteria", default="Variance", metavar="[STR]", type=str, choices=["Variance", "TopRanked"], help="What criteria to use to keep top genes before doing\n" "the dimensionality reduction (Variance or TopRanked) (default: %(default)s)") parser.add_argument("--tsne-perplexity", default=30, metavar="[INT]", type=int, help="The value of the perplexity for the t-SNE method. (default: %(default)s)") parser.add_argument("--tsne-theta", default=0.5, metavar="[FLOAT]", type=float, help="The value of theta for the t-SNE method. (default: %(default)s)") parser.add_argument("--umap-neighbors", default=15, metavar="[INT]", type=int, help="The number of neighboring points used in local approximations of " "manifold structure (UMAP) (default: %(default)s)") parser.add_argument("--umap-min-dist", default=0.1, metavar="[FLOAT]", type=float, help="This controls how tightly the embedding is allowed to compress " "points together (UMAP) (default: %(default)s)") parser.add_argument("--umap-metric", default="euclidean", metavar="[STR]", type=str, help="This controls how the distance is computed in the ambient space " "of the input data (UMAP) (default: %(default)s)") parser.add_argument("--tsne-initial-dims", default=50, metavar="[INT]", type=int, help="The number of initial dimensions of the PCA step in " "the t-SNE clustering. (default: %(default)s)") parser.add_argument("--outdir", default=None, help="Path to output dir") parser.add_argument("--pca-auto-components", default=None, metavar="[FLOAT]", type=float, help="For the PCA dimensionality reduction the number of dimensions\n" "are computed so to include the percentage of variance given as input [0.1-1].") parser.add_argument("--dbscan-min-size", default=5, metavar="[INT]", type=int, help="The value of the minimum cluster sizer for DBSCAN. (default: %(default)s)") parser.add_argument("--dbscan-eps", default=0.5, metavar="[FLOAT]", type=float, help="The value of the EPS parameter for DBSCAN. (default: %(default)s)") parser.add_argument("--seed", default=999, metavar="[INT]", type=int, help="The value of the random seed. (default: %(default)s)") args = parser.parse_args() main(args.counts, args.normalization, args.num_clusters, args.num_exp_genes, args.num_exp_spots, args.min_gene_expression, args.num_genes_discard, args.clustering, args.dimensionality, args.use_log_scale, args.num_dimensions, args.spot_size, args.top_genes_criteria, args.outdir, args.tsne_perplexity, args.tsne_theta, args.umap_neighbors, args.umap_min_dist, args.umap_metric, args.tsne_initial_dims, args.pca_auto_components, args.dbscan_min_size, args.dbscan_eps, args.seed) ```
{ "source": "jfnavarro/stereoscope", "score": 2 }
#### File: stereoscope/stsc/fit.py ```python import sys from os import mkdir import os.path as osp from typing import NoReturn, Union, Dict import torch as t from torch.utils.data import DataLoader import numpy as np import pandas as pd import stsc.models as M import stsc.datasets as D import stsc.utils as utils def fit(model: Union[M.ScModel, M.STModel], dataset: D.CountData, loss_tracker: utils.LossTracker, device: t.device, epochs: int, learning_rate: float, batch_size: int = None, silent_mode: bool = False, **kwargs ) -> None: """Fit Model Generic function to fit models Parameter: --------- model : Union[M.ScModel,M.STModel], model to be fitted dataset : D.CountData CountData dataset representing either single cell or ST data loss_tracker : utils.LossTracker LossTracker object epochs : int number of epochs to run learning_rate : learning rate during optimization batch_size : int batch size, if none is provided no batching will occur. Recommended to use when utilizing GPU resources silent_mode : bool whether to use silent mode or not Returns: ------- Loss progression througout optimization """ # move model to device model.to(device) # define optimizer optim = t.optim.Adam(model.parameters(), lr=learning_rate) # instantiate progressbar progressBar = utils.SimpleProgressBar(epochs, silent_mode=silent_mode, length=20 ) # use full dataset if no batch size is specified if batch_size is None: batch_size = dataset.M else: batch_size = int(np.min((batch_size, dataset.M))) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False, ) # Use try/except to catch SIGINT # for early interruption try: for epoch in range(epochs): epoch_loss = 0.0 for batch in dataloader: # move batch items to device for k, v in batch.items(): batch[k] = v.to(device) batch['x'].requires_grad = True # reset gradients optim.zero_grad() # compute loss loss = model.forward(**batch) epoch_loss += loss.item() # compute gradients loss.backward() # update parameters based on gradients optim.step() # update progress bar progressBar(epoch, epoch_loss) # record loss progression loss_tracker(epoch_loss, epoch) # newline after completion print('\n') # write final loss loss_tracker.write_history() except KeyboardInterrupt: print('\n\nPress Ctrl+C again to interrupt whole process') def fit_st_data(st_data: D.CountData, R: pd.DataFrame, logits: pd.DataFrame, loss_tracker: utils.LossTracker, device: t.device, st_epochs: int, learning_rate: float, st_batch_size: int, silent_mode: bool = False, st_from_model: str = None, keep_noise: bool = False, **kwargs ) -> Dict[str, Union[pd.DataFrame, M.STModel]]: """Fit ST Data model Estimate proportion values for ST data Parameter: --------- st_data : D.CountData CountData object contining ST Data R :pd.DataFrame rates for each gene and celltype [n_genes x n_types] logits : pd.DataFrame logits for each gene [n_genes] loss_tracker : utils.LossTracker device : t.device device to which objects should be moved during optimization st_epochs : int number of epochs learning_rate : float learning rate during optimization st_batch_size : int batch_size, if non provided no batching will occur silent_mode : bool run in silent mode. Default False. st_from_model : str path to pre-fitted st-model state dict. Should be a '.pt' object keep_noise : bool keep dummy cell type in output Returns: ------- Dictionary with estimated proportions and st model """ # get intersection between ST data # and single cell parameters inter = st_data.intersect(R.index) if inter.shape[0] < 1: print("[ERROR] : No genes overlap in SC and" " ST data. Exiting.", file=sys.stderr ) sys.exit(-1) R = R.loc[inter, :] logits = logits.loc[inter, :] t.manual_seed(1337) # generate ST model st_model = M.STModel(st_data.M, R=R.values, logits=logits.values, device=device, freeze_beta=kwargs.get("freeze_beta", False) ) # load st model from path if provided if st_from_model is not None: try: st_model.load_state_dict(t.load(st_from_model)) except: print('Could not load state dict from >> {}'.format(st_from_model), file=sys.stderr ) # estimate proportion values fit(dataset=st_data, model=st_model, loss_tracker=loss_tracker, device=device, epochs=st_epochs, learning_rate=learning_rate, batch_size=st_batch_size, silent_mode=silent_mode ) # get estimated unadjusted proportions W = st_model.v.data.cpu().numpy().T # remove dummy cell type proportion values if not keep_noise: W = W[:, 0:st_model.K] w_columns = R.columns else: w_columns = R.columns.append(pd.Index(["noise"])) # normalize to obtain adjusted proportions W = W / W.sum(axis=1).reshape(-1, 1) # generate pandas DataFrame from proportions W = pd.DataFrame(W, index=st_data.index, columns=w_columns ) return {'proportions': W, 'model': st_model } def fit_sc_data(sc_data: D.CountData, loss_tracker: utils.LossTracker, device: t.device, sc_epochs: int, sc_batch_size: int, learning_rate: float, silent_mode: bool = False, sc_from_model: str = None, **kwargs ) -> Dict[str, Union[pd.DataFrame, M.ScModel]]: """Fit single cell data sc_data : D.CountData CountData Object containing single cell data loss_tracker : utils.LossTracker device : t.device device to which objects should be moved during optimization sc_epochs : int number of epochs learning_rate : float learning rate during optimization sc_batch_size : int batch_size, if non provided no batching will occur silent_mode : bool run in silent mode. Default False. sc_from_model : str, path to pre-fitted st-model state dict. Should be a '.pt' object Returns: ------- Dictionary with estimated rates, logits and sc model """ t.manual_seed(1337) # define single cell model sc_model = M.ScModel(n_genes=sc_data.G, n_celltypes=sc_data.Z, device=device ) # load sc-model if provided if sc_from_model is not None and osp.exists(sc_from_model): sc_model.load_state_dict(t.load(sc_from_model)) # fit single cell parameters fit(dataset=sc_data, model=sc_model, loss_tracker=loss_tracker, device=device, epochs=sc_epochs, learning_rate=learning_rate, batch_size=sc_batch_size, silent_mode=silent_mode ) # retrieve estimated parameter values logits = sc_model.o.data.cpu().numpy() R = sc_model.R.data.cpu().numpy() # get cell type names typenames = sc_data.unique_labels() # generate data frames for parameters R = pd.DataFrame(R, index=sc_data.genes, columns=typenames ) logits = pd.DataFrame(logits, index=sc_data.genes, columns=pd.Index(['logits'])) return {'rates': R, 'logits': logits, 'model': sc_model } ```
{ "source": "jfnavarro/st_misc", "score": 3 }
#### File: old_unsorted/misc_rel_0.1/checkResultIndexes.py ```python import sys import os def usage(): print "Usage:" print "python checkResultIndexes.py testResults.fastq mismatches_out.txt" def main(result, mismatches_out): res = open(result) mismatches = open(mismatches_out, "w") wrongMappings = 0 missedMappings = 0 mismatch_format = "{}\n" \ "Quality: {}\n" \ "Observed: {}\n" \ "Wrong: {}\n" \ "Correct: {}\n" \ "Shift: {} -> {}\n\n" while True: name = res.readline().rstrip() if not name: break seq = res.readline().rstrip() #drop 2 more optional = res.readline().rstrip() qual = res.readline() try: foundId = optional.split(' ')[1].split('=')[1] except IndexError: missedMappings += 1 continue correct_id, c_x, c_y = name.split("\t")[1:4] if foundId != correct_id: wrongMappings += 1 o_x, o_y = optional.split("\t")[1:] mismatches.write(mismatch_format.format(seq, qual[10:10 + len(correct_id)], seq[10:10 + len(correct_id)], foundId, correct_id, (c_x, c_y), (o_x, o_y))) res.close() mismatches.close() print 'Wrong: ' + str(wrongMappings) print 'Missed: ' + str(missedMappings) if __name__ == "__main__": #Should have three inputs. if len(sys.argv) != 3: usage() sys.exit(1) main(sys.argv[1], sys.argv[2]) ``` #### File: old_unsorted/misc_rel_0.1/compareJSONfiles.py ```python import getopt import sys import json import csv def usage(): print 'python compareJSONfiles.py input1.json input2.json' def stripExtension(string): f = string.rsplit('.', 1) ''' #this part is taken from Jose to create the intermideary files into the #working folder if(f[0].find("/") != -1): return f[0].rsplit('/', 1)[1] else: return f[0] ''' return f[0] def sortList(FileToSort): File_sort_out = stripExtension(FileToSort)+ "_sort.json" list_sort = [] filea = open(FileToSort, 'r') #put lines into list for line in filea: list_sort.append((line)) filea.close() #sort list list_sort.sort() #open a new file and save the sorted lines to that file fout=open(File_sort_out,"w") for item in list_sort: fout.writelines(item) print "Done Sorting" return File_sort_out def compareTranscripts(json_file1,json_file2): #Store the transcripts which do not match with the new pipeline output # to out_diff_old and out_diff_new out_diff_json1 = stripExtension(json_file1)+ "_diff.txt" out_diff_json2 = stripExtension(json_file2)+ "_diff.txt" #matches transcripts from old_sort and new_sort into out_sim out_sim = stripExtension(json_file1)+ "_sim.txt" #statistics about the how many matches or not out_stat = stripExtension(json_file1)+ "_stat.txt" #input files inF1 = file(json_file1, "r") inF2 = file(json_file2, "r") #out Files out_dif_o = file(out_diff_json1, "w") out_dif_n = file(out_diff_json2, "w") out_s = file(out_sim, "w") outF_stat = file(out_stat,"w") num_diff=0 num_siml=0 while(True): str1_old_sort = inF1.readline() str2_new_sort = inF2.readline() if str1_old_sort!=str2_new_sort: num_diff=num_diff+1 out_dif_n.writelines(str2_new_sort) out_dif_o.writelines(str1_old_sort) if str1_old_sort==str2_new_sort: out_s.writelines(str2_new_sort) num_siml=num_siml+1 if not str1_old_sort: break; outF_stat.write("Diff : "+str(num_diff)) outF_stat.write("\nSim : "+str(num_siml)) print "Diff:",num_diff print "Siml:",num_siml print "Done Comparing" def get_IdGeXYNr_column(file_sort): first_col=[] s_file=open(file_sort,"r") IdGeXYNr_cols = stripExtension(file_sort)+ "_IdGeXYNr.txt" inf = open(IdGeXYNr_cols,"w") for stringNotMatch in s_file: first_col.append(stringNotMatch.split(',')[0].strip()) c=first_col[0].rstrip().split('{')[1].strip() inf.writelines(first_col[0].rstrip().split('{')[1].strip()+"\t") #take id, gene , x and y and Nr of gene for i in range(1,5): inf.writelines(stringNotMatch.rstrip().split(',')[i].strip()+"\t") inf.writelines("\n") #reset first_col for item in first_col: first_col.pop() return IdGeXYNr_cols def main(json_file1,json_file2): #sort two json files json_file_sort1=sortList(json_file1) json_file_sort2=sortList(json_file2) #get Id , gene , Nr of gene , x and y cordinates from sorted JSON1 json_col1 =get_IdGeXYNr_column(json_file_sort1) #get Id , gene , Nr of gene , x and y cordinates from sorted JSON2 json_col2 =get_IdGeXYNr_column(json_file_sort2) #compare two json files compareTranscripts(json_col1,json_col2) print "end comparing" if __name__ == "__main__": if len(sys.argv)!=3: usage() sys.exit(1) main(sys.argv[1],sys.argv[2]) ``` #### File: old_unsorted/misc_rel_0.1/countCoughtTranscripts.py ```python import sys import numpy import os def usage(): print "Usage:" print "python countCoughtTranscripts.py mapped_with_gene.txt" def getAllMappedReads(mapWithGeneFile): nameToGene = dict() exonHit = dict() exonGeneDict = dict() utrHit = dict() GeneDict = dict() c = 0 total = 0 inF = open(mapWithGeneFile,'r') insertSize = [] for line in inF: cols = line.rstrip().split('\t') start = int(cols[1]) end = int(cols[2]) if cols[18] != '.': #print "Gene: " + cols[18] total += 1 isThere = False if '@'+cols[3] in nameToGene: isThere = True nameToGene['@'+cols[3]] = cols[18] if cols[18] in GeneDict: if not isThere: GeneDict[cols[18]] += 1 else: if not isThere: GeneDict[cols[18]] = 1 #Is it actually exonic? gStart = int(cols[10]) gEnd = int(cols[11]) starts = cols[15].split(',') ends = cols[16].split(',') #Check if UTR hit! #5' overlap_5 = max(0, min(end, int(starts[0])) - max(start, int(gStart))) #3' overlap_3 = max(0, min(end, int(gEnd)) - max(start, int(ends[-1-1]))) if overlap_5 > 0 or overlap_3 > 0: utrHit['@'+cols[3]] = 'Yes' else: for i in range(len(starts)-1): overlap = max(0, min(end, int(ends[i])) - max(start, int(starts[i]))) if overlap > 0: if cols[18] in exonGeneDict: exonGeneDict[cols[18]] += 1 else: exonGeneDict[cols[18]] = 1 intronLen = 0; if i != 0 and i != len(starts)-2: if gEnd-end < start-gStart: #Closer to the right! for j in range(len(starts)-2,i,-1): intronLen += int(starts[j])-int(ends[j-1]) else: #Closer to the left for j in range(i): intronLen += int(starts[j+1])-int(ends[j]) dist = min(gEnd-end,start-gStart)-intronLen if '@'+cols[3] in exonHit: exonHit['@'+cols[3]] = min(dist,exonHit['@'+cols[3]]) else: exonHit['@'+cols[3]] = dist inF.close() print "Total hitting exon: " + str(len(exonHit.keys())) for k in exonHit.keys(): insertSize.append(exonHit[k]) # print k +" " +str(exonHit[k]) print "Mean distance to end of gene: " + str(numpy.mean(insertSize)) print "Median distance to end of gene: " + str(numpy.median(insertSize)) print "Total hitting UTR's: " + str(len(utrHit.keys())) genesOut = open("exon_genes.out","w") for k in exonGeneDict.keys(): genesOut.write("%s\t%d\n"%(k,exonGeneDict[k])) genesOut.close() allgenesOut = open("all_genes.out","w") for k in GeneDict.keys(): allgenesOut.write("%s\t%d\n"%(k,GeneDict[k])) allgenesOut.close() print "Total different genes: " + str(len(GeneDict.keys())) print "Total diff genes hit on exon: " +str(len(exonGeneDict.keys())) return nameToGene def main(mapWithGene): #Find all mapped! nameToGene = getAllMappedReads(mapWithGene) print "Total hits: " + str(len(nameToGene.keys())) if __name__ == "__main__": #Should have two inputs. if len(sys.argv) != 2: usage() sys.exit(1) main(sys.argv[1]) ``` #### File: st_feature_classification/st_feature_classification/util.py ```python from collections import Counter from itertools import permutations import random import numpy as np from pymongo import Connection import pandas as pd import matplotlib.pyplot as plt from matplotlib import cm def merge(x, i): return (x / i) * i + i / 2 + 1 def load_tissue_df(coll, merge_dist=1): records = {} tissue_labels = {} if merge_dist <= 1: merger = lambda x: x else: merger = lambda x: merge(x, merge_dist) for doc in coll.find(): loc = tuple(map(merger, doc['loc'])) if loc in records: records[loc] += Counter(dict(zip(doc['genes'], doc['expression']))) else: records[loc] = Counter(dict(zip(doc['genes'], doc['expression']))) tissue_labels[loc] = doc['tissue'] df = pd.DataFrame.from_records(records.values()) df.index = pd.MultiIndex.from_tuples(zip(tissue_labels.values(), tissue_labels.keys()), names=['tissue', 'feature']) return df def feature_class_visualizer(coll): feature_labels = {} for doc in coll.find(): feature_labels[tuple(doc['loc'])] = hash(doc['tissue']) def vis_feature_classes(df, c, s=100): plt.scatter(*zip(*feature_labels.keys()), c=feature_labels.values(), marker=',', edgecolor='none', cmap=cm.Dark2_r, alpha=0.5); plt.scatter(*zip(*[i[1] for i in df.index]), c=c, edgecolor='none', s=s, cmap=cm.gist_rainbow, marker='s', alpha=0.66) plt.ylim(450, 180) plt.xlim(90, 370); plt.axis('off'); return vis_feature_classes def integer_labels(df, equivalence_classes=None): n2i = {n: i for i, n in enumerate(df.index.levels[0])} if equivalence_classes: for e_class in equivalence_classes: label = min(n2i[e] for e in e_class) for e in e_class: n2i[e] = label relabel = {i[1]: i[0] for i in enumerate(set(n2i.values()))} for name in n2i.keys(): n2i[name] = relabel[n2i[name]] y = [n2i[i[0]] for i in df.index] return np.array(y) def compare_clusters(clusters, truth): max_similarity = 0 for p in permutations(set(truth)): pc = np.array(map(lambda i: p[i], clusters)) similarity = (pc == truth).sum() if similarity > max_similarity: max_similarity = similarity mpc = pc return float(max_similarity) / len(clusters), mpc def weighted_choice(choices): total = sum(w for c, w in choices) r = random.uniform(0, total) upto = 0 for c, w in choices: if upto + w > r: return c upto += w assert False, "Shouldn't get here" def weighted_random_classes(y, choices): return np.array([weighted_choice(choices) for _ in range(len(y))]) def weighted_random_score(y): choices = Counter(y).items() score = [] for i in range(128): c = weighted_random_classes(y, choices) score.append(compare_clusters(c, y)[0]) return np.mean(score) def split_df(df, r=0.25): rows = pd.MultiIndex.from_tuples(random.sample(df.index, int(df.shape[0] * r))) df_train = df.ix[rows] df_test = df.drop(rows) y_train = integer_labels(df_train) return df_train, y_train, df_test def load_reads_per_feature(csv_file): reads = np.zeros((500, 500)) for line in open(csv_file): l = line.strip().split(" ") x, y = map(int, l[-1].split()) reads[y, x] = int(l[0]) return reads def merged_reads_per_feature(reads_matrix, size): merged_reads = np.zeros((600, 600)) for i in range(500): for j in range(500): merged_reads[merge(j, size), merge(i, size)] += reads_matrix[i, j] return merged_reads ``` #### File: st_toolbox/scripts/kmer_read_classifier.py ```python import argparse from collections import defaultdict from itertools import tee, izip import os import sys from st_toolbox.data import readfq def prc_format(x, pos=0): return '{:.1%}'.format(x) def histogram(args): """ Make a histogram over kmer overlaps for reads over reference, to evaluate a proper cutoff value. """ import matplotlib.pylab as plt from matplotlib.ticker import FuncFormatter with open(args.reference) as fh: fa = readfq(fh) contams = [t[1] for t in fa] k = args.k kmers = set() for contam in contams: kmers |= set(str(contam[i:i + k]) for i in xrange(len(contam) - k)) kmers = frozenset(kmers) fh = open(args.fastq) fq = readfq(fh) overlap = defaultdict(int) for _, seq, _ in fq: read_kmers = frozenset(seq[i:i + k] for i in xrange(len(seq) - k)) overlap[round(100 * float(len(read_kmers.intersection(kmers))) / len(seq), 0)] += 1 fh.close() out_file = os.path.basename(args.fastq).replace('.fastq', '_kmer_histogram.png') keys = sorted(overlap.keys()) nreads = sum(overlap.values()) percentages = [float(v) / nreads for v in overlap.values()] cumulative = [float(overlap[keys[0]]) / nreads] for key in keys[1:]: cumulative.append(cumulative[-1] + float(overlap[key]) / nreads) plt.bar(overlap.keys(), percentages, ec='none', label='histogram') plt.plot(keys, cumulative, label='cumulative') plt.gca().yaxis.set_major_formatter(FuncFormatter(prc_format)) plt.grid(True) title = \ """kmer overlap k = {} number of reads: {}""" plt.title(title.format(k, nreads)) plt.xlabel('Overlapment') plt.ylabel('% of reads') plt.legend() plt.tight_layout() plt.savefig(out_file) def split(args): """ Split the given fastq file to two different fastq files depending on the read being contaminated or not. """ with open(args.reference) as fh: fa = readfq(fh) contams = [t[1] for t in fa] k = args.k cutoff = args.overlap_cutoff kmers = set() for contam in contams: kmers |= set(str(contam[i:i + k]) for i in xrange(len(contam) - k)) kmers = frozenset(kmers) fh = open(args.fastq) fq = readfq(fh) fq_format = '@{header}\n{sequence}\n+\n{quality}\n' fname = os.path.basename(args.fastq) contam_fh = open(fname.replace('.fastq', '_contam.fastq'), 'w') clean_fh = open(fname.replace('.fastq', '_clean.fastq'), 'w') for head, seq, qual in fq: read_kmers = frozenset(seq[i:i + k] for i in xrange(len(seq) - k)) overlapment = 100 * float(len(read_kmers.intersection(kmers))) / len(seq) if overlapment > cutoff: contam_fh.write(fq_format.format(header=head, sequence=seq, quality=qual)) else: clean_fh.write(fq_format.format(header=head, sequence=seq, quality=qual)) clean_fh.close() contam_fh.close() fh.close() if __name__ == '__main__': parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('reference', help='reference fasta file') parser.add_argument('fastq', help='fastq file with reads to classify') parser.add_argument('--mode', help='script mode, either "histogram" or "split"', \ default='histogram') parser.add_argument('--k', help='kmer length, default 15', default=15, type=int) parser.add_argument('--overlap_cutoff', help='kmer overlap cutoff, default 20', \ default=20, type=int) args = parser.parse_args() if args.mode == 'histogram': histogram(args) elif args.mode == 'split': split(args) ``` #### File: st_toolbox/st_toolbox/optics.py ```python import numpy as np from sklearn.base import BaseEstimator, ClusterMixin from sklearn.metrics import pairwise_distances def hierarchical_extraction(ordering, reachability_distances, min_cluster_size, significant_ratio=0.75, similarity_ratio=0.4): """ Constructs a tree structure from an OPTICS ordering and a set of reachability distances and extracts clusters from this structure. Parameters ---------- ordering : array [n_samples] Indices of the samples in the order generated by OPTICS. reachability_distances : array [n_samples] Reachability distance for each sample. min_cluster_size : int The minimum size of a cluster in number of samples. significant_ratio : float The ratio for the reachability score of a local maximum compared to its neighbors to be considered significant. similarity_ratio : float The ratio for the reachability score of a split point compared to the parent split point for it to be considered similar. Returns ------- labels : array [n_samples] Cluster labels for each point. Noisy samples are given the label -1. References ---------- <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>. "Automatic extraction of clusters from hierarchical clustering representations." Advances in Knowledge Discovery and Data Mining (2003): 567-567. """ R = np.asarray([reachability_distances[i] for i in ordering]) n = len(ordering) # Find local maximas L = [] for i in xrange(0, min_cluster_size): if np.argmax(R[0:i + min_cluster_size + 1]) == i: L.append(i) if np.argmax(R[n - 2 * min_cluster_size + i:n]) == i: L.append(n - min_cluster_size + i) for i in xrange(min_cluster_size, n - min_cluster_size): if np.argmax(R[i - min_cluster_size:i + min_cluster_size + 1]) == min_cluster_size: L.append(i) # Sort local maximas in order of their reachability L.sort(key=lambda x: R[x]) class Node: def __init__(self, left, right): self.left = left self.right = right self.children = [] leaves = [] def cluster_tree(node, parent, L): if not L: leaves.append(node) return s = node.split = L.pop() child_left = Node(node.left, s) child_right = Node(s + 1, node.right) L_left = [L[i] for i in np.where(np.asarray(L) < s)[0]] L_right = [L[i] for i in np.where(np.asarray(L) > s)[0]] R_left = R[child_left.left:child_left.right] R_right = R[child_right.left:child_right.right] if R_left.size > 0: avg_reach_left = np.mean(R_left) else: avg_reach_left = 0 if R_right.size > 0: avg_reach_right = np.mean(R_right) else: avg_reach_right = 0 if avg_reach_left <= significant_ratio * R[s] >= avg_reach_right: children = [] if child_left.right - child_left.left >= min_cluster_size: children.append((child_left, L_left)) if child_right.right - child_right.left >= min_cluster_size: children.append((child_right, L_right)) if not children: return if parent and R[s] / R[parent.split] >= similarity_ratio: for child, L in children: parent.children.append(child) parent.children.remove(node) p = parent else: for child, L in children: node.children.append(child) p = node for (child, L) in children: cluster_tree(child, p, L) else: cluster_tree(node, parent, L) root = Node(0, n) cluster_tree(root, None, L) labels = -np.ones(n) count = 0 for leaf in leaves: for i in xrange(leaf.left, leaf.right): labels[ordering[i]] = count count += 1 return labels EXTRACTION_FUNCTIONS = { 'hierarchical': hierarchical_extraction, } def optics(X, eps=float('inf'), min_samples=5, metric='euclidean', extraction='hierarchical', ext_kwargs=dict()): """ Perform OPTICS clustering from vector array or distance matrix. Parameters ---------- X : array [n_samples, n_samples] or [n_samples, n_features] Array of distances between samples, or a feature array. The array is treated as a feature array unless the metric is given as 'precomputed'. eps : float, optional The generating distance between two samples for them to be considered as in the same neighborhood. min_samples : int, optional The number of samples in a neighborhood for a point to be considered as a core point. metric : string or callable, optional The metric to use when calculating distance between instances in a feature array. If metric is a string or callable, it must be one of the options allowed by metrics.pairwise.calculate_distance for its metric parameter. If metric is "precomputed", X is assumed to be a distance matrix and must be square. extraction : string, optional The extraction method used to generate clusters from the ordering of points returned by the OPTICS algorithm. ext_kwargs : dict Keyword arguments to be supplied to the extraction function. Returns ------- core_distances : array [n_samples] Core distance for each sample. ordering : array [n_samples] Indices of the samples in the order generated by OPTICS. reachability_distances : array [n_samples] Reachability distance for each sample. labels : array [n_samples] Cluster labels for each point. Noisy samples are given the label -1. Notes ----- See examples/cluster/plot_optics.py for an example. References ---------- Ankerst, Mihael, <NAME>, <NAME>, and <NAME>. "OPTICS: ordering points to identify the clustering structure." ACM SIGMOD Record 28, no. 2 (1999): 49-60. """ X = np.asarray(X) n = X.shape[0] # Calculate the pairwise distances D = pairwise_distances(X, metric=metric) ordering = [] # Initiate reachability distances to infinity reachability_distances = float('inf') * np.ones(n) # Calculate core distance for each sample core_distances = np.asarray([np.sort(row)[min_samples] for row in D]) seeds = range(n) i = 0 while len(seeds) > 1: # Mark current point as processed seeds.remove(i) # Add current point to the ordering ordering.append(i) core_dist = core_distances[i] if core_dist <= eps: seeds_array = np.asarray(seeds) # Get the neighbors of the current point neighbors = seeds_array[np.where(D[i][seeds] <= eps)[0]] cd = core_dist * np.ones(neighbors.size) d = D[i][neighbors] # Set the new reachability distances to # max(core_distance, distance) new_reach_dists = np.maximum(cd, d) reachability_distances[neighbors] = new_reach_dists i = seeds[np.argmin(reachability_distances[seeds])] else: i = seeds[0] # Add last point ordering.append(seeds[0]) # Set reachability for first point reachability_distances[0] = 0 if type(extraction) is str: estr = extraction.lower() if estr in EXTRACTION_FUNCTIONS: func = EXTRACTION_FUNCTIONS[estr] labels = func(ordering, reachability_distances, min_samples, **ext_kwargs) else: raise ValueError('Unknown Extraction Method: %s' % estr) else: raise TypeError('Extraction Method must be a string.') return core_distances, ordering, reachability_distances, labels class OPTICS(BaseEstimator, ClusterMixin): """ Perform OPTICS clustering from vector array or distance matrix. Parameters ---------- X : array [n_samples, n_samples] or [n_samples, n_features] Array of distances between samples, or a feature array. The array is treated as a feature array unless the metric is given as 'precomputed'. eps : float, optional The generating distance between two samples for them to be considered as in the same neighborhood. min_samples : int, optional The number of samples in a neighborhood for a point to be considered as a core point. metric : string or callable, optional The metric to use when calculating distance between instances in a feature array. If metric is a string or callable, it must be one of the options allowed by metrics.pairwise.calculate_distance for its metric parameter. If metric is "precomputed", X is assumed to be a distance matrix and must be square. extraction : string, optional The extraction method used to generate clusters from the ordering of points returned by the OPTICS algorithm. ext_kwargs : dict Keyword arguments to be supplied to the extraction function. Attributes ---------- `core_distances_` : array [n_samples] Core distance for each sample. `ordering_` : array [n_samples] Indices of the samples in the order generated by OPTICS. `reachability_distances_` : array [n_samples] Reachability distance for each sample. `labels_` : array [n_samples] Cluster labels for each point. Noisy samples are given the label -1. Notes ----- See examples/cluster/plot_optics.py for an example. References ---------- Ankerst, Mihael, <NAME>, <NAME>, and <NAME>. "OPTICS: ordering points to identify the clustering structure." ACM SIGMOD Record 28, no. 2 (1999): 49-60. """ def __init__(self, eps=float('inf'), min_samples=5, metric='euclidean', extraction='hierarchical', ext_kwargs=dict()): self.eps = eps self.min_samples = min_samples self.metric = metric self.extraction = extraction self.ext_kwargs = ext_kwargs def fit(self, X): """ Perform OPTICS clustering from vector array or distance matrix. Parameters ---------- X : array [n_samples, n_samples] or [n_samples, n_features] Array of distances between samples, or a feature array. The array is treated as a feature array unless the metric is given as 'precomputed'. params : dict Overwrite keywords from __init__. """ clust = optics(X, **self.get_params()) (self.core_distances_, self.ordering_, self.reachability_distances_, self.labels_) = clust return self ``` #### File: sysadmin_scripts/mongodb_data_model_3/updateS3.py ```python import boto3 import botocore import os import sys import subprocess import glob import tempfile import shutil BUCKET_NAME = "featuresdev" def run_command(command, out=subprocess.PIPE): try: print "running command: {}".format(" ".join(x for x in command).rstrip()) proc = subprocess.Popen(command, stdout=out, stderr=subprocess.PIPE, close_fds=True, shell=False) (stdout, errmsg) = proc.communicate() except Exception as e: print str(e) raise e print "Starting conversion of data in S3 from model 2 to model 3" tmp_dir = tempfile.mkdtemp() os.chdir(tmp_dir) print "Using temp directory " + tmp_dir # Create S3 object s3 = boto3.resource('s3') # Print out all bucket names print "S3 buckets available" for bucket in s3.buckets.all(): print(bucket.name) print "Using S3 bucket " + BUCKET_NAME # Download the feature's bucket files file_ids = list() for object in s3.Bucket(BUCKET_NAME).objects.all(): print "Downloading " + object.key try: s3.Bucket(BUCKET_NAME).download_file(object.key, object.key) file_ids.append(object.key) except botocore.exceptions.ClientError as e: if e.response['Error']['Code'] == "404": print "The file does not exist or it is no valid" else: print "Unknown error downloading file" for file in file_ids: try: run_command(["gunzip", "-f", file]) except Exception as e: print "Error gunziping file " + str(file) + " " + str(e) continue for file in glob.glob("*"): if file.find(".gz") != -1: print "Converting JSON to TSV, skipping file " + str(file) continue try: # We need to add the JSON extension so the conversion script works json_file_name = file + ".json" os.rename(file, json_file_name) new_file_name = file + "_stdata.tsv" run_command(["json_to_matrix.py", "--json-file", json_file_name, "--outfile", new_file_name]) except Exception as e: print "Error converting JSON to TSV " + str(file) + " " + str(e) continue for file in glob.glob("*.tsv"): try: run_command(["gzip", "-f", file]) except Exception as e: print "Error gzipping file " + str(file) continue for file in glob.glob("*.gz"): key = file.split("_stdata")[0] + "/" + file print "Uploading to S3 " + key data = open(file, 'rb') try: s3.Bucket(BUCKET_NAME).put_object(Key=key, Body=data) data.close() except Exception as e: print "Error uploading file to S3 " + str(e) data.close() for file in file_ids: print "Removing file from S3 " + file try: s3.Bucket(BUCKET_NAME).delete_key(Key=file) except Exception as e: print "Error deleting file in S3 " + str(e) print "Done! removing temp folder" shutil.rmtree(tmp_dir) ```
{ "source": "jfnavarro/st_ts", "score": 3 }
#### File: st_ts/scripts/tag_clusters_to_matrix.py ```python import argparse import sys from collections import defaultdict import os def main(input_files, outfile): if len(input_files) != 2: sys.stderr.write("Error, input file not present or invalid format\n") sys.exit(1) st_bed_file = input_files[1] tag_clusters_file = input_files[0] if not os.path.isfile(st_bed_file) or not os.path.isfile(tag_clusters_file): sys.stderr.write("Error, input file not present or invalid format\n") sys.exit(1) if outfile is None: outfile = "output_table_ctts.txt" # load all the original barcode - gene coordinates map_original_clusters = defaultdict(list) with open(st_bed_file, "r") as filehandler: for line in filehandler.readlines(): if line.find("#") != -1: continue tokens = line.split() assert(len(tokens) == 9) chromosome = tokens[0] start_site = int(tokens[1]) end_site = int(tokens[2]) strand = tokens[5] # gene = tokens[6] x = float(tokens[7]) y = float(tokens[8]) map_original_clusters[(chromosome,strand)].append((x,y,start_site,end_site)) # loads all the clusters map_clusters = defaultdict(int) clusters = set() barcodes = set() with open(tag_clusters_file, "r") as filehandler: for line in filehandler.readlines(): if line.find("#") != -1: continue tokens = line.split() assert(len(tokens) == 8) chromosome = tokens[0] start = int(tokens[2]) strand = tokens[1] end = int(tokens[3]) # doing a full search of intersections over all barcodes (similar to bed intersect) # If we could rely on that no barcodes were missing doing the clustering we could use # a faster approach not needing to iterate all the barcodes but only one # this intersection method is prob overcounting for x, y, start_orig, end_orig in map_original_clusters[chromosome, strand]: if strand == "-": start_orig = (end_orig - 1) if (start_orig >= start and start_orig < end): map_clusters[(x,y,chromosome,strand,start,end)] += 1 barcodes.add((x,y)) clusters.add((chromosome,strand,start,end)) # write cluster count for each barcode with open(outfile, "w") as filehandler: clusters_string = "\t".join("%s:%s-%s,%s" % cluster for cluster in clusters) filehandler.write(clusters_string + "\n") for x,y in barcodes: filehandler.write("{0}x{1}".format(x,y)) for chro,strand,star,end in clusters: count = map_clusters[(x,y,chro,strand,star,end)] filehandler.write("\t{}".format(count)) filehandler.write("\n") if __name__ == '__main__': parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('input_files', nargs=2, help="The tab delimited file containing the tag clusters and the ST original BED file") parser.add_argument("--outfile", default=None, help="Name of the output file") args = parser.parse_args() main(args.input_files, args.outfile) ```
{ "source": "jfnavarro/TACA", "score": 3 }
#### File: taca/utils/config.py ```python import ConfigParser import os import yaml CONFIG = {} def load_config(config_file=None): """Loads a configuration file. By default it assumes ~/.taca/taca.yaml """ try: if not config_file: config_file = os.path.join(os.environ.get('HOME'), '.taca', 'taca.yaml') config = ConfigParser.SafeConfigParser() with open(config_file) as f: config.readfp(f) return config except IOError: raise IOError(("There was a problem loading the configuration file. " "Please make sure that ~/.taca/taca.conf exists and that you have " "read permissions")) def load_yaml_config(config_file): """Load YAML config file :param str config_file: The path to the configuration file. :returns: A dict of the parsed config file. :rtype: dict :raises IOError: If the config file cannot be opened. """ if type(config_file) is file: CONFIG.update(yaml.load(config_file) or {}) return CONFIG else: try: with open(config_file, 'r') as f: content = yaml.load(f) CONFIG.update(content) return content except IOError as e: e.message = "Could not open configuration file \"{}\".".format(config_file) raise e ```
{ "source": "jfnavarro/taggd", "score": 3 }
#### File: taggd/core/demultiplex.py ```python import os import time import multiprocessing as mp import argparse import taggd.io.barcode_utils as bu import taggd.core.demultiplex_core_functions as core import taggd.core.demultiplex_sub_functions as sub import taggd.core.demultiplex_search_functions as srch def main(argv=None): """ Main application. Starts a timer, create parameter parsers, parsers parameters and run all the steps for the demultiplexing. """ start_time = time.time() # Create a parser parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.RawTextHelpFormatter) # Needed parameters parser.add_argument('barcodes_infile', metavar='barcodes-infile', help="The file with true barcode IDs and other properties.") parser.add_argument('reads_infile', metavar='reads-infile', help="The FASTQ, FASTA, SAM or BAM file with reads.") parser.add_argument('outfile_prefix', metavar='outfile-prefix', help="The output files prefix.") # Optional arguments. parser.add_argument('--no-matched-output', help='Do not output matched reads', default=False, action='store_true') parser.add_argument('--no-ambiguous-output', help='Do not output ambiguous reads', default=False, action='store_true') parser.add_argument('--no-unmatched-output', help='Do not output unmatched reads', default=False, action='store_true') parser.add_argument('--no-results-output', help='Do not output a tab-separated results file with stats on the reads', default=False, action='store_true') parser.add_argument('--start-position', type=int, help='The start position for barcodes in reads (default: %(default)d)', default=0, metavar="[int]") parser.add_argument('--k', type=int, help='The kmer length (default: %(default)d)', default=6, metavar="[int]") parser.add_argument('--max-edit-distance', type=int, help='The max edit distance for allowing hits (default: %(default)d)', default=2, metavar="[int]") parser.add_argument('--metric', help= "Distance metric: Subglobal, Levenshtein or Hamming (default: %(default)s)", default="Subglobal", metavar="[string]") parser.add_argument('--ambiguity-factor', type=float, help='Top matches within this factor from the best match are considered ambiguous,\n' 'for instance with factor=1.5, having one match with distance 2 and two matches\n' 'with distance 4 yields all three matches as ambiguous hits. Perfect hits are always\n' 'considered non-ambiguous, irrespective of factor. (default: %(default)d)', default=1.0, metavar="[int]") parser.add_argument('--slider-increment', type=int, help="Space between kmer searches, " \ "0 yields kmer length (default: %(default)d)", default=0, metavar="[int]") parser.add_argument('--overhang', type=int, help="Additional flanking bases around read barcode\n" \ "to allow for insertions when matching (default: %(default)d)", default=2, metavar="[int]") parser.add_argument('--seed', help="Random number generator seed for shuffling ambiguous hits (default: %(default)s)", default=None, metavar="[string]") parser.add_argument('--homopolymer-filter', type=int, help="If set, excludes reads where the barcode part contains\n" \ "a homopolymer of the given length,\n" \ "0 means no filter (default: %(default)d)", default=8, metavar="[int]") parser.add_argument('--subprocesses', type=int, help="Number of subprocesses started (default: 0, yielding number of machine cores - 1)", default=0, metavar="[int]") parser.add_argument('--estimate-min-edit-distance', type=int, help="If set, estimates the min edit distance among true\n" \ "barcodes by comparing the specified number of pairs,\n" \ "0 means no estimation (default: %(default)d)", default=0, metavar="[int]") parser.add_argument('--no-offset-speedup', help="Turns off an offset speedup routine.\n" \ "Increases running time but may yield more hits.", default=False, action='store_true') parser.add_argument('--multiple-hits-keep-one', help="When multiple kmer hits are found for a record\n" \ "keep one as unambiguous and the rest as ambiguous", default=False, action='store_true') parser.add_argument('--trim-sequences', nargs='+', type=int, default=None, help="Trims from the barcodes in the input file\n" \ "The bases given in the list of tuples as START END START END .. where\n" \ "START is the integer position of the first base (0 based) and END is the integer\n" \ "position of the last base.\nTrimmng sequences can be given several times.") parser.add_argument('--barcode-tag', type=str, help='Use the sequence in specified tag instead of the read sequence for the barcode demultiplexing.\n' \ 'The tag must be a two-letter string and be present for all records in the input file.\n' \ 'Can only be used with SAM or BAM formatted input files.', default=None, metavar="[str]") parser.add_argument('--version', action='version', version='%(prog)s ' + "0.3.2") # Parse if argv == None: options = parser.parse_args() else: options = parser.parse_args(argv) # Validate all options. if not os.path.isfile(options.barcodes_infile) : raise ValueError("Invalid true barcodes input file path.") if not os.path.isfile(options.reads_infile) : raise ValueError("Invalid reads input file path.") if not (options.reads_infile.upper().endswith(".FASTQ") or \ options.reads_infile.upper().endswith(".FQ") or \ options.reads_infile.upper().endswith(".SAM") or \ options.reads_infile.upper().endswith(".FASTA") or \ options.reads_infile.upper().endswith(".FA") or \ options.reads_infile.upper().endswith(".BAM")): raise ValueError("Invalid reads input file format: must be FASTQ, " \ "FASTA, SAM or BAM format and file end with .fq, fastq, .fa, .fasta, .sam or .bam") if options.outfile_prefix is None or options.outfile_prefix == "": raise ValueError("Invalid output file prefix.") if options.k <= 0: raise ValueError("Invalid kmer length. Must be > 0.") if options.max_edit_distance < 0: raise ValueError("Invalid max edit distance. Must be >= 0.") if options.metric not in ("Subglobal", "Levenshtein", "Hamming"): raise ValueError("Invalid metric. Must be Subglobal, Levenshtein or Hamming.") if options.slider_increment < 0: raise ValueError("Invalid slider increment. Must be >= 0.") if options.slider_increment == 0: options.slider_increment = int(options.k) if options.start_position < 0: raise ValueError("Invalid start position. Must be >= 0.") if options.overhang < 0: raise ValueError("Invalid overhang. Must be >= 0.") if options.metric == "Hamming" and options.overhang > 0: raise ValueError("Invalid overhang. Must be 0 for Hamming metric.") if options.subprocesses < 0: raise ValueError("Invalid no. of subprocesses. Must be >= 0.") if options.ambiguity_factor < 1.0: raise ValueError("Invalid ambiguity factor. Must be >= 1.") # Check the the trimming sequences given are valid if options.trim_sequences is not None \ and (len(options.trim_sequences) % 2 != 0 or min(options.trim_sequences)) < 0: raise ValueError("Invalid trimming sequences given " \ "The number of positions given must be even and they must fit into the barcode length.") if options.barcode_tag: if len(options.barcode_tag) != 2: raise ValueError("Invalid the \"--barcode-tag\" option must specify a two-letter string, current length is "+str(len(options.barcode_tag))+" letters (\""+options.barcode_tag+"\").\n") if not (options.reads_infile.upper().endswith(".SAM") or options.reads_infile.upper().endswith(".BAM")): raise ValueError("Invalid the \"--barcode-tag\" option can only be used with SAM or BAM formatted input files.\n") # Read barcodes file true_barcodes = bu.read_barcode_file(options.barcodes_infile) # Paths frmt = options.reads_infile.split(".")[-1] fn_bc = os.path.abspath(options.barcodes_infile) fn_reads = os.path.abspath(options.reads_infile) fn_prefix = os.path.abspath(options.outfile_prefix) fn_matched = None if options.no_matched_output else fn_prefix + "_matched." + frmt fn_ambig = None if options.no_ambiguous_output else fn_prefix + "_ambiguous." + frmt fn_unmatched = None if options.no_unmatched_output else fn_prefix + "_unmatched." + frmt fn_results = None if options.no_results_output else fn_prefix + "_results.tsv" # Subprocesses if options.subprocesses == 0: options.subprocesses = mp.cpu_count() - 1 print("# Options: " + str(options).split("Namespace")[-1]) print("# Barcodes input file: " + str(fn_bc)) print("# Reads input file: " + str(fn_reads)) print("# Matched output file: " + str(fn_matched)) print("# Ambiguous output file: " + str(fn_ambig)) print("# Unmatched output file: " + str(fn_unmatched)) print("# Results output file: " + str(fn_results)) print("# Number of barcodes in input: " + str(len(true_barcodes))) lngth = len(list(true_barcodes.keys())[0]) print("# Barcode length: " + str(lngth)) print("# Barcode length when overhang added: " + \ str(lngth + min(options.start_position, options.overhang) + options.overhang)) # Check barcodes file. if options.estimate_min_edit_distance > 0: min_dist = estimate_min_edit_distance(true_barcodes, options.estimate_min_edit_distance) if min_dist <= options.max_edit_distance: raise ValueError("Invalid max edit distance: exceeds or equal " \ "to estimated minimum edit distance among true barcodes.") print("# Estimate of minimum edit distance between true barcodes (may be less): " + str(min_dist)) else: print("# Estimate of minimum edit distance between true barcodes (may be less): Not estimated") # Make the input trim coordinates a list of tuples trim_sequences = None if options.trim_sequences is not None: trim_sequences = list() for i in range(len(options.trim_sequences) - 1): if i % 2 == 0: trim_sequences.append((options.trim_sequences[i], options.trim_sequences[i+1])) # Initialize main components sub.init(true_barcodes, options.start_position, min(options.start_position, options.overhang), options.overhang, options.max_edit_distance, options.homopolymer_filter, options.seed, options.multiple_hits_keep_one, trim_sequences, options.barcode_tag) srch.init(true_barcodes, options.k, options.max_edit_distance, options.metric, options.slider_increment, min(options.start_position, options.overhang), options.overhang, options.ambiguity_factor, options.no_offset_speedup) # Demultiplex print("# Starting demultiplexing...") stats = core.demultiplex(fn_reads, fn_matched, fn_ambig, fn_unmatched, fn_results, options.subprocesses) print("# ...finished demultiplexing") print("# Wall time in secs: " + str(time.time() - start_time)) print(str(stats)) ```
{ "source": "jfneis/bbvisa2ofx", "score": 3 }
#### File: bbvisa2ofx/bbvisa2ofx/txtparser.py ```python import re from datetime import datetime from dateutil.relativedelta import relativedelta class TxtParser: ''' Classe responsavel por realizar o parse do arquivo txt da fatura de cartoes disponibilizada pelo banco do brasil. Analizando o arquivo disponibilizado, verifica-se que as linhas que interessam sao as que possuem uma data no formato dd/mm no inicio. Para cada linha contendo este padrao, vamos extrair as informacoes da seguinte forma: date: primeiros 5 caracteres desc: do caracter 8 ao 49 value: split no final da linha do 51 caracter em diante, primeiro item ''' items = None cardTitle = None #titulo do cartao, definido por "Modalidade" no txt cardNumber = None #numero do cartao, definido por Nr.Cartao no txt txtFile = None dueDate = None #data de vencimento, definido por "Vencimento" no txt def __init__(self,txtFile): ''' Constructor ''' self.items = [] self.txtFile = txtFile self.exchangeRate = 0.0 def parse(self): f = self.txtFile lines = f.readlines() for line in lines: self.parseDueDate(line) self.parseExchangeRateLine(line) self.parseCardTitleLine(line) self.parseCardNumberLine(line) #now with the exangeRate and dueDate populated, we can parse all transaction lines for line in lines: self.parseTransactionLine(line) def parseDueDate(self, line): ''' popula dueDate se for a linha que representa o vencimento da fatura, esta informacao eh utilizada para adivinharmos o ano da compra FIXME: ainda pode gerar problemas quando temos uma compra realizada no ano anterior, mas que aparenta ser do ano atual ''' if(line.lstrip().startswith("Vencimento")): print "Due date line found. %s" % line self.dueDate = datetime.strptime(line.split(":")[1].strip(),'%d.%m.%Y') print "Due date is: %s" % self.dueDate def parseExchangeRateLine(self, line): ''' popula exchangeRate se for a linha que apresenta o resumo dos gastos em dolar. essa linha eh utilizada para extrair o valor da taxa de conversao de dolar para real. o que diferencia essa linha da linha com o resumo dos gastos em reais a presenca de um sinal de multiplicacao (representado por um X) ''' if (re.match('^\s+\S+\s+-\s+\S+\s+\+\s+\S+\s+=\s+\S+\s+X', line)): print "Echange Rate line found: "+ line rate = re.findall('X\s+(\S+)', line)[0] rate = rate.replace(',','.') self.exchangeRate = float(rate) print "Exchange Rate value: "+str(self.exchangeRate) return self.exchangeRate return 0.0 def parseCardTitleLine(self, line): ''' Titulo do cartao inicia com "Modalidade" ''' if(line.lstrip().startswith("Modalidade")): print "Card title line found. %s" % line # Fix issue #3 changing from lstrip to strip self.cardTitle = line.split(":")[1].strip() print "The card title is: %s" % self.cardTitle def parseCardNumberLine(self, line): ''' Numero do cartao inicia com "Nr.Cart" ''' if(line.lstrip().startswith("Nr.Cart")): print "Card number line found. %s" % line # Fix issue #3 changing from lstrip to strip self.cardNumber = line.split(":")[1].strip() print "The card number is: %s" % self.cardNumber def parseTransactionLine(self, line): ''' Linhas de transacao inicial com uma data no formato "dd/mm " (devemos verificar o espaco no final pois existem linhas no formato dd/mm/yyyy que nao sao tansacoes) caso for uma linha de transacao, um objeto sera adicionado na lista self.items este objeto contem os seguintes campos: date: data da transacao desc: descricao value: valor em BRL ''' if(re.match("^\d\d\/\d\d\ $", line[:6]) != None): brlValue = '' usdValue = '' obj = {} obj['value'] = self.parseValueFromTransactionLine(line) obj['date'] = self.parseDateFromTransactionLine(line) obj['desc'] = line[9:48].lstrip().replace('*','') obj['fitid'] = (obj['date'] + str(obj['value']) + obj['desc']).replace(' ','') print "Line parsed: "+ str(obj) # Atualiza data das transacoes de compras parceladas self.updateDateFromInstallmentTransactionLine(obj) self.items.append(obj) return obj def parseValueFromTransactionLine(self, line): ''' Extraindo valor da linha, a partir do caracter 51 Caso esteja em dolar, converter para real utilizando a taxa de cambio. Agradecimento especial para Rodrigo que contribuiu pelo code.google ''' value = 0.0 arr = line[51:].split() brlValue = float(arr[0].replace('.','').replace(',','.')) usdValue = float(arr[1].replace('.','').replace(',','.')) if brlValue != 0.0: value = brlValue else: value = usdValue * self.exchangeRate value = value * -1 #inverte valor return value def parseDateFromTransactionLine(self, line): ''' Extraindo data da linha de transacao Como o BB removeu o ano das datas, vamos precisar "adivinhar" o ano correto, conforme a data de vencimento definimos o ano do vencimento como padrao, porem caso a data da transacao fique maior que o vencimento, assumimos o ano anterior como ano correto. FIXME transacoes feitas a mais de 12 meses terao o ano definido incorretamente, mas nao consegui pensar em outra solucao no momento Agradecimento especial a <NAME> que fez esta contruicao por email. :) ''' transactionDate = datetime.strptime(line[:5],'%d/%m') transactionDate = transactionDate.replace(self.dueDate.year) if transactionDate >= self.dueDate: transactionDate = transactionDate.replace(transactionDate.year-1) return transactionDate.strftime('%Y%m%d') def updateDateFromInstallmentTransactionLine(self, obj): ''' Verifica se trata-se de uma linha de transacao de compra parcelada (ex.: PARC 01/04) e, em caso positivo, posterga o data de vencimento X meses para frente (X = Nro Parc - 1) ''' regex = re.search("PARC\s\d\d/\d\d", obj['desc']); if regex != None: installmentNumber = int(regex.group()[5:7]) originalDate = datetime.strptime(obj['date'], '%Y%m%d') newDate = originalDate + relativedelta(months=installmentNumber-1) obj['date'] = newDate.strftime('%Y%m%d') obj['desc'] = obj['desc'] + " DT ORIG: " + originalDate.strftime('%d/%m') print 'Updated installment transaction date. Installment Number: {0} Original: {1} Updated: {2}'.format(installmentNumber, originalDate, newDate) ```
{ "source": "jfng/amaranth-soc", "score": 3 }
#### File: amaranth_soc/test/test_memory.py ```python import unittest from ..memory import _RangeMap, ResourceInfo, MemoryMap class RangeMapTestCase(unittest.TestCase): def test_insert(self): range_map = _RangeMap() range_map.insert(range(0,10), "a") range_map.insert(range(20,21), "c") range_map.insert(range(15,16), "b") range_map.insert(range(16,20), "q") self.assertEqual(range_map._keys, [ range(0,10), range(15,16), range(16,20), range(20,21) ]) def test_overlaps(self): range_map = _RangeMap() range_map.insert(range(10,20), "a") self.assertEqual(range_map.overlaps(range(5,15)), ["a"]) self.assertEqual(range_map.overlaps(range(15,25)), ["a"]) self.assertEqual(range_map.overlaps(range(5,25)), ["a"]) self.assertEqual(range_map.overlaps(range(0,3)), []) self.assertEqual(range_map.overlaps(range(0,5)), []) self.assertEqual(range_map.overlaps(range(25,30)), []) def test_insert_wrong_overlap(self): range_map = _RangeMap() range_map.insert(range(0,10), "a") with self.assertRaises(AssertionError): range_map.insert(range(5,15), "b") def test_get(self): range_map = _RangeMap() range_map.insert(range(5,15), "a") self.assertEqual(range_map.get(0), None) self.assertEqual(range_map.get(5), "a") self.assertEqual(range_map.get(10), "a") self.assertEqual(range_map.get(14), "a") self.assertEqual(range_map.get(15), None) class ResourceInfoTestCase(unittest.TestCase): def test_simple(self): info = ResourceInfo("a", name=("foo", "bar"), start=0, end=1, width=8) self.assertEqual(info.name, ("foo", "bar")) self.assertEqual(info.start, 0) self.assertEqual(info.end, 1) self.assertEqual(info.width, 8) def test_name_cast(self): info = ResourceInfo("a", name="foo", start=0, end=1, width=8) self.assertEqual(info.name, ("foo",)) def test_wrong_name(self): with self.assertRaisesRegex(TypeError, r"Name must be a non-empty sequence of non-empty strings, not \(1,\)"): ResourceInfo("a", name=(1,), start=0, end=1, width=8) with self.assertRaisesRegex(TypeError, r"Name must be a non-empty sequence of non-empty strings, not \(\)"): ResourceInfo("a", name=(), start=0, end=1, width=8) with self.assertRaisesRegex(TypeError, r"Name must be a non-empty sequence of non-empty strings, not \('foo', ''\)"): ResourceInfo("a", name=("foo", ""), start=0, end=1, width=8) def test_wrong_start_addr(self): with self.assertRaisesRegex(TypeError, r"Start address must be a non-negative integer, not 'foo'"): ResourceInfo("a", name="b", start="foo", end=1, width=8) with self.assertRaisesRegex(TypeError, r"Start address must be a non-negative integer, not -1"): ResourceInfo("a", name="b", start=-1, end=1, width=8) def test_wrong_end_addr(self): with self.assertRaisesRegex(TypeError, r"End address must be an integer greater than the start address, not 'foo'"): ResourceInfo("a", name="b", start=0, end="foo", width=8) with self.assertRaisesRegex(TypeError, r"End address must be an integer greater than the start address, not 0"): ResourceInfo("a", name="b", start=0, end=0, width=8) def test_wrong_width(self): with self.assertRaisesRegex(TypeError, r"Width must be a non-negative integer, not 'foo'"): ResourceInfo("a", name="b", start=0, end=1, width="foo") with self.assertRaisesRegex(TypeError, r"Width must be a non-negative integer, not -1"): ResourceInfo("a", name="b", start=0, end=1, width=-1) class MemoryMapTestCase(unittest.TestCase): def test_name(self): memory_map_0 = MemoryMap(addr_width=1, data_width=8) memory_map_1 = MemoryMap(addr_width=1, data_width=8, name=None) memory_map_2 = MemoryMap(addr_width=1, data_width=8, name="foo") self.assertEqual(memory_map_0.name, None) self.assertEqual(memory_map_1.name, None) self.assertEqual(memory_map_2.name, "foo") def test_wrong_name(self): with self.assertRaisesRegex(ValueError, r"Name must be a non-empty string, not 1"): MemoryMap(addr_width=1, data_width=8, name=1) with self.assertRaisesRegex(ValueError, r"Name must be a non-empty string, not ''"): MemoryMap(addr_width=1, data_width=8, name="") def test_wrong_addr_width(self): with self.assertRaisesRegex(ValueError, r"Address width must be a positive integer, not -1"): MemoryMap(addr_width=-1, data_width=8) def test_wrong_data_width(self): with self.assertRaisesRegex(ValueError, r"Data width must be a positive integer, not -1"): MemoryMap(addr_width=16, data_width=-1) def test_wrong_alignment(self): with self.assertRaisesRegex(ValueError, r"Alignment must be a non-negative integer, not -1"): MemoryMap(addr_width=16, data_width=8, alignment=-1) def test_set_addr_width_wrong(self): with self.assertRaisesRegex(ValueError, r"Address width must be a positive integer, not -1"): memory_map = MemoryMap(addr_width=1, data_width=8) memory_map.addr_width = -1 def test_set_addr_width_wrong_shrink(self): with self.assertRaisesRegex(ValueError, r"Address width 1 must not be less than its previous value 2, " r"because resources that were previously added may not fit anymore"): memory_map = MemoryMap(addr_width=2, data_width=8) memory_map.addr_width = 1 def test_set_addr_width_wrong_frozen(self): with self.assertRaisesRegex(ValueError, r"Memory map has been frozen. Address width cannot be extended " r"further"): memory_map = MemoryMap(addr_width=1, data_width=8) memory_map.freeze() memory_map.addr_width = 2 def test_add_resource(self): memory_map = MemoryMap(addr_width=16, data_width=8) self.assertEqual(memory_map.add_resource("a", name="foo", size=1), (0, 1)) self.assertEqual(memory_map.add_resource(resource="b", name="bar", size=2), (1, 3)) def test_add_resource_map_aligned(self): memory_map = MemoryMap(addr_width=16, data_width=8, alignment=1) self.assertEqual(memory_map.add_resource("a", name="foo", size=1), (0, 2)) self.assertEqual(memory_map.add_resource("b", name="bar", size=2), (2, 4)) def test_add_resource_explicit_aligned(self): memory_map = MemoryMap(addr_width=16, data_width=8) self.assertEqual(memory_map.add_resource("a", name="foo", size=1), (0, 1)) self.assertEqual(memory_map.add_resource("b", name="bar", size=1, alignment=1), (2, 4)) self.assertEqual(memory_map.add_resource("c", name="baz", size=2), (4, 6)) def test_add_resource_addr(self): memory_map = MemoryMap(addr_width=16, data_width=8) self.assertEqual(memory_map.add_resource("a", name="foo", size=1, addr=10), (10, 11)) self.assertEqual(memory_map.add_resource("b", name="bar", size=2), (11, 13)) def test_add_resource_extend(self): memory_map = MemoryMap(addr_width=16, data_width=8) self.assertEqual(memory_map.add_resource("a", name="foo", size=1, addr=0x10000, extend=True), (0x10000, 0x10001)) self.assertEqual(memory_map.addr_width, 17) def test_add_resource_size_zero(self): memory_map = MemoryMap(addr_width=1, data_width=8) self.assertEqual(memory_map.add_resource("a", name="foo", size=0), (0, 1)) self.assertEqual(memory_map.add_resource("b", name="bar", size=0), (1, 2)) def test_add_resource_wrong_frozen(self): memory_map = MemoryMap(addr_width=2, data_width=8) memory_map.freeze() with self.assertRaisesRegex(ValueError, r"Memory map has been frozen. Cannot add resource 'a'"): memory_map.add_resource("a", name="foo", size=0) def test_add_resource_wrong_name(self): memory_map = MemoryMap(addr_width=1, data_width=8) with self.assertRaisesRegex(TypeError, r"Name must be a non-empty string, not 1"): memory_map.add_resource("a", name=1, size=0) with self.assertRaisesRegex(TypeError, r"Name must be a non-empty string, not ''"): memory_map.add_resource("a", name="", size=0) def test_add_resource_wrong_name_conflict(self): memory_map = MemoryMap(addr_width=1, data_width=8) memory_map.add_resource("a", name="foo", size=0) with self.assertRaisesRegex(ValueError, r"Name foo is already used by 'a'"): memory_map.add_resource("b", name="foo", size=0) def test_add_resource_wrong_address(self): memory_map = MemoryMap(addr_width=16, data_width=8) with self.assertRaisesRegex(ValueError, r"Address must be a non-negative integer, not -1"): memory_map.add_resource("a", name="foo", size=1, addr=-1) def test_add_resource_wrong_address_unaligned(self): memory_map = MemoryMap(addr_width=16, data_width=8, alignment=1) with self.assertRaisesRegex(ValueError, r"Explicitly specified address 0x1 must be a multiple of 0x2 bytes"): memory_map.add_resource("a", name="foo", size=1, addr=1) def test_add_resource_wrong_size(self): memory_map = MemoryMap(addr_width=16, data_width=8) with self.assertRaisesRegex(ValueError, r"Size must be a non-negative integer, not -1"): memory_map.add_resource("a", name="foo", size=-1) def test_add_resource_wrong_alignment(self): memory_map = MemoryMap(addr_width=16, data_width=8) with self.assertRaisesRegex(ValueError, r"Alignment must be a non-negative integer, not -1"): memory_map.add_resource("a", name="foo", size=1, alignment=-1) def test_add_resource_wrong_out_of_bounds(self): memory_map = MemoryMap(addr_width=16, data_width=8) with self.assertRaisesRegex(ValueError, r"Address range 0x10000\.\.0x10001 out of bounds for memory map spanning " r"range 0x0\.\.0x10000 \(16 address bits\)"): memory_map.add_resource("a", name="foo", addr=0x10000, size=1) with self.assertRaisesRegex(ValueError, r"Address range 0x0\.\.0x10001 out of bounds for memory map spanning " r"range 0x0\.\.0x10000 \(16 address bits\)"): memory_map.add_resource("a", name="foo", size=0x10001) def test_add_resource_wrong_overlap(self): memory_map = MemoryMap(addr_width=16, data_width=8) memory_map.add_resource("a", name="foo", size=16) with self.assertRaisesRegex(ValueError, r"Address range 0xa\.\.0xb overlaps with resource 'a' at 0x0\.\.0x10"): memory_map.add_resource("b", name="bar", size=1, addr=10) def test_add_resource_wrong_twice(self): memory_map = MemoryMap(addr_width=16, data_width=8) memory_map.add_resource("a", name="foo", size=16) with self.assertRaisesRegex(ValueError, r"Resource 'a' is already added at address range 0x0..0x10"): memory_map.add_resource("a", name="bar", size=16) def test_iter_resources(self): memory_map = MemoryMap(addr_width=16, data_width=8) memory_map.add_resource("a", name="foo", size=1) memory_map.add_resource("b", name="bar", size=2) self.assertEqual(list(memory_map.resources()), [ ("a", "foo", (0, 1)), ("b", "bar", (1, 3)), ]) def test_add_window(self): memory_map = MemoryMap(addr_width=16, data_width=8) self.assertEqual(memory_map.add_resource("a", name="foo", size=1), (0, 1)) self.assertEqual(memory_map.add_window(MemoryMap(addr_width=10, data_width=8)), (0x400, 0x800, 1)) self.assertEqual(memory_map.add_resource("b", name="bar", size=1), (0x800, 0x801)) def test_add_window_sparse(self): memory_map = MemoryMap(addr_width=16, data_width=32) self.assertEqual(memory_map.add_window(MemoryMap(addr_width=10, data_width=8), sparse=True), (0, 0x400, 1)) def test_add_window_dense(self): memory_map = MemoryMap(addr_width=16, data_width=32) self.assertEqual(memory_map.add_window(MemoryMap(addr_width=10, data_width=8), sparse=False), (0, 0x100, 4)) def test_add_window_extend(self): memory_map = MemoryMap(addr_width=16, data_width=8) self.assertEqual(memory_map.add_window(MemoryMap(addr_width=17, data_width=8), extend=True), (0, 0x20000, 1)) self.assertEqual(memory_map.addr_width, 18) def test_add_window_wrong_frozen(self): memory_map = MemoryMap(addr_width=2, data_width=8) memory_map.freeze() with self.assertRaisesRegex(ValueError, r"Memory map has been frozen. Cannot add window " r"<amaranth_soc\.memory\.MemoryMap object at .+?>"): memory_map.add_window(MemoryMap(addr_width=1, data_width=8)) def test_add_window_wrong_window(self): memory_map = MemoryMap(addr_width=16, data_width=8) with self.assertRaisesRegex(TypeError, r"Window must be a MemoryMap, not 'a'"): memory_map.add_window(window="a") def test_add_window_wrong_wider(self): memory_map = MemoryMap(addr_width=16, data_width=8) with self.assertRaisesRegex(ValueError, r"Window has data width 16, and cannot be added to a memory map " r"with data width 8"): memory_map.add_window(MemoryMap(addr_width=10, data_width=16)) def test_add_window_wrong_no_mode(self): memory_map = MemoryMap(addr_width=16, data_width=16) with self.assertRaisesRegex(ValueError, r"Address translation mode must be explicitly specified when adding " r"a window with data width 8 to a memory map with data width 16"): memory_map.add_window(MemoryMap(addr_width=10, data_width=8)) def test_add_window_wrong_ratio(self): memory_map = MemoryMap(addr_width=16, data_width=16) with self.assertRaisesRegex(ValueError, r"Dense addressing cannot be used because the memory map data width " r"16 is not an integer multiple of window data width 7"): memory_map.add_window(MemoryMap(addr_width=10, data_width=7), sparse=False) def test_add_window_wrong_out_of_bounds(self): memory_map = MemoryMap(addr_width=16, data_width=8) with self.assertRaisesRegex(ValueError, r"Address range 0x0\.\.0x20000 out of bounds for memory map spanning " r"range 0x0\.\.0x10000 \(16 address bits\)"): memory_map.add_window(MemoryMap(addr_width=17, data_width=8)) def test_add_window_wrong_overlap(self): memory_map = MemoryMap(addr_width=16, data_width=8) memory_map.add_window(MemoryMap(addr_width=10, data_width=8)) with self.assertRaisesRegex(ValueError, r"Address range 0x200\.\.0x600 overlaps with window " r"<amaranth_soc\.memory\.MemoryMap object at .+?> at 0x0\.\.0x400"): memory_map.add_window(MemoryMap(addr_width=10, data_width=8), addr=0x200) def test_add_window_wrong_twice(self): memory_map = MemoryMap(addr_width=16, data_width=8) window = MemoryMap(addr_width=10, data_width=8) memory_map.add_window(window) with self.assertRaisesRegex(ValueError, r"Window <amaranth_soc\.memory\.MemoryMap object at .+?> is already added " r"at address range 0x0\.\.0x400"): memory_map.add_window(window) def test_add_window_wrong_name_conflict(self): memory_map = MemoryMap(addr_width=2, data_width=8) memory_map.add_resource("a", name="foo", size=0) window = MemoryMap(addr_width=1, data_width=8, name="foo") with self.assertRaisesRegex(ValueError, r"Name foo is already used by 'a'"): memory_map.add_window(window) def test_add_window_wrong_name_conflict_subordinate(self): memory_map = MemoryMap(addr_width=2, data_width=8) memory_map.add_resource("a", name="foo", size=0) memory_map.add_resource("b", name="bar", size=0) window = MemoryMap(addr_width=1, data_width=8, name=None) window.add_resource("c", name="foo", size=0) window.add_resource("d", name="bar", size=0) with self.assertRaisesRegex(ValueError, r"The following names are already used: " r"bar is used by 'b'; " r"foo is used by 'a'"): memory_map.add_window(window) def test_iter_windows(self): memory_map = MemoryMap(addr_width=16, data_width=16) window_1 = MemoryMap(addr_width=10, data_width=8) memory_map.add_window(window_1, sparse=False) window_2 = MemoryMap(addr_width=12, data_width=16) memory_map.add_window(window_2) self.assertEqual(list(memory_map.windows()), [ (window_1, (0, 0x200, 2)), (window_2, (0x1000, 0x2000, 1)), ]) def test_iter_window_patterns(self): memory_map = MemoryMap(addr_width=16, data_width=16) window_1 = MemoryMap(addr_width=10, data_width=8) memory_map.add_window(window_1, sparse=False) window_2 = MemoryMap(addr_width=12, data_width=16) memory_map.add_window(window_2) self.assertEqual(list(memory_map.window_patterns()), [ (window_1, ("000000----------", 2)), (window_2, ("0001------------", 1)), ]) def test_iter_window_patterns_covered(self): memory_map = MemoryMap(addr_width=16, data_width=8) window = MemoryMap(addr_width=16, data_width=8) memory_map.add_window(window) self.assertEqual(list(memory_map.window_patterns()), [ (window, ("----------------", 1)), ]) def test_align_to(self): memory_map = MemoryMap(addr_width=16, data_width=8) self.assertEqual(memory_map.add_resource("a", name="foo", size=1), (0, 1)) self.assertEqual(memory_map.align_to(10), 0x400) self.assertEqual(memory_map.add_resource("b", name="bar", size=16), (0x400, 0x410)) def test_align_to_wrong(self): memory_map = MemoryMap(addr_width=16, data_width=8) with self.assertRaisesRegex(ValueError, r"Alignment must be a non-negative integer, not -1"): memory_map.align_to(alignment=-1) class MemoryMapDiscoveryTestCase(unittest.TestCase): def setUp(self): self.root = MemoryMap(addr_width=32, data_width=32) self.res1 = "res1" self.root.add_resource(self.res1, name="name1", size=16) self.win1 = MemoryMap(addr_width=16, data_width=32) self.res2 = "res2" self.win1.add_resource(self.res2, name="name2", size=32) self.res3 = "res3" self.win1.add_resource(self.res3, name="name3", size=32) self.root.add_window(self.win1) self.res4 = "res4" self.root.add_resource(self.res4, name="name4", size=1) self.win2 = MemoryMap(addr_width=16, data_width=8) self.res5 = "res5" self.win2.add_resource(self.res5, name="name5", size=16) self.root.add_window(self.win2, sparse=True) self.win3 = MemoryMap(addr_width=16, data_width=8, name="win3") self.res6 = "res6" self.win3.add_resource(self.res6, name="name6", size=16) self.root.add_window(self.win3, sparse=False) def test_iter_all_resources(self): res_info = list(self.root.all_resources()) self.assertIs(res_info[0].resource, self.res1) self.assertEqual(res_info[0].name, ("name1",)) self.assertEqual(res_info[0].start, 0x00000000) self.assertEqual(res_info[0].end, 0x00000010) self.assertEqual(res_info[0].width, 32) self.assertIs(res_info[1].resource, self.res2) self.assertEqual(res_info[1].name, ("name2",)) self.assertEqual(res_info[1].start, 0x00010000) self.assertEqual(res_info[1].end, 0x00010020) self.assertEqual(res_info[1].width, 32) self.assertIs(res_info[2].resource, self.res3) self.assertEqual(res_info[2].name, ("name3",)) self.assertEqual(res_info[2].start, 0x00010020) self.assertEqual(res_info[2].end, 0x00010040) self.assertEqual(res_info[2].width, 32) self.assertIs(res_info[3].resource, self.res4) self.assertEqual(res_info[3].name, ("name4",)) self.assertEqual(res_info[3].start, 0x00020000) self.assertEqual(res_info[3].end, 0x00020001) self.assertEqual(res_info[3].width, 32) self.assertIs(res_info[4].resource, self.res5) self.assertEqual(res_info[4].name, ("name5",)) self.assertEqual(res_info[4].start, 0x00030000) self.assertEqual(res_info[4].end, 0x00030010) self.assertEqual(res_info[4].width, 8) self.assertIs(res_info[5].resource, self.res6) self.assertEqual(res_info[5].name, ("win3", "name6")) self.assertEqual(res_info[5].start, 0x00040000) self.assertEqual(res_info[5].end, 0x00040004) self.assertEqual(res_info[5].width, 32) def test_find_resource(self): for res_info in self.root.all_resources(): other = self.root.find_resource(res_info.resource) self.assertIs(other.resource, res_info.resource) self.assertEqual(other.name, res_info.name) self.assertEqual(other.start, res_info.start) self.assertEqual(other.end, res_info.end) self.assertEqual(other.width, res_info.width) def test_find_resource_wrong(self): with self.assertRaises(KeyError) as error: self.root.find_resource("resNA") self.assertEqual(error.exception.args, ("resNA",)) def test_decode_address(self): for res_info in self.root.all_resources(): self.assertEqual(self.root.decode_address(res_info.start), res_info.resource) self.assertEqual(self.root.decode_address(res_info.end - 1), res_info.resource) def test_decode_address_missing(self): self.assertIsNone(self.root.decode_address(address=0x00000100)) ``` #### File: amaranth_soc/test/test_periph.py ```python import unittest from ..periph import * from ..memory import MemoryMap from .. import event class ConstantBoolTestCase(unittest.TestCase): def test_init(self): a = ConstantBool(True) b = ConstantBool(False) self.assertTrue(a.value) self.assertFalse(b.value) def test_value_wrong(self): with self.assertRaisesRegex(TypeError, r"Value must be a bool, not 'foo'"): ConstantBool("foo") def test_repr(self): self.assertEqual(repr(ConstantBool(True)), "ConstantBool(True)") class ConstantIntTestCase(unittest.TestCase): def test_init(self): c = ConstantInt(5, width=8, signed=True) self.assertEqual(c.value, 5) self.assertEqual(c.width, 8) self.assertEqual(c.signed, True) def test_init_default(self): c = ConstantInt(5) self.assertEqual(c.value, 5) self.assertEqual(c.width, 3) self.assertEqual(c.signed, False) def test_value_wrong(self): with self.assertRaisesRegex(TypeError, r"Value must be an integer, not 'foo'"): ConstantInt("foo") def test_width_wrong(self): with self.assertRaisesRegex(TypeError, r"Width must be an integer, not 'foo'"): ConstantInt(5, width="foo") def test_width_overflow(self): with self.assertRaisesRegex(ValueError, r"Width must be greater than or equal to the number of bits needed to represent 5"): ConstantInt(5, width=1) def test_signed_wrong(self): with self.assertRaisesRegex(TypeError, r"Signedness must be a bool, not 'foo'"): ConstantInt(5, signed="foo") def test_repr(self): self.assertEqual( repr(ConstantInt(-5, width=8, signed=True)), "ConstantInt(-5, width=8, signed=True)" ) class ConstantMapTestCase(unittest.TestCase): def test_init(self): constant_map = ConstantMap(A=5, B=True, C=ConstantBool(False)) self.assertEqual( repr(constant_map), "ConstantMap([" "('A', ConstantInt(5, width=3, signed=False)), " "('B', ConstantBool(True)), " "('C', ConstantBool(False))])", ) def test_init_wrong_value(self): with self.assertRaisesRegex(TypeError, r"Constant value must be an instance of ConstantValue, not \('foo', 'bar'\)"): ConstantMap(A=("foo", "bar")) def test_getitem(self): a = ConstantInt(1) b = ConstantBool(False) constant_map = ConstantMap(A=a, B=b) self.assertIs(constant_map["A"], a) self.assertIs(constant_map["B"], b) def test_iter(self): a = ConstantInt(1) b = ConstantBool(False) constant_map = ConstantMap(B=b, A=a) self.assertEqual(list(constant_map.items()), [ ("B", b), ("A", a), ]) def test_len(self): a = ConstantInt(1) b = ConstantBool(False) constant_map = ConstantMap(B=b, A=a) self.assertEqual(len(constant_map), 2) class PeripheralInfoTestCase(unittest.TestCase): def test_memory_map(self): memory_map = MemoryMap(addr_width=1, data_width=8) info = PeripheralInfo(memory_map=memory_map) self.assertIs(info.memory_map, memory_map) def test_memory_map_frozen(self): memory_map = MemoryMap(addr_width=1, data_width=8) info = PeripheralInfo(memory_map=memory_map) with self.assertRaisesRegex(ValueError, r"Memory map has been frozen. Cannot add resource 'a'"): memory_map.add_resource("a", name="foo", size=3, extend=True) def test_memory_map_wrong(self): with self.assertRaisesRegex(TypeError, r"Memory map must be an instance of MemoryMap, not 'foo'"): info = PeripheralInfo(memory_map="foo") def test_irq(self): memory_map = MemoryMap(addr_width=1, data_width=8) irq = event.Source() info = PeripheralInfo(memory_map=memory_map, irq=irq) self.assertIs(info.irq, irq) def test_irq_none(self): memory_map = MemoryMap(addr_width=1, data_width=8) info = PeripheralInfo(memory_map=memory_map, irq=None) with self.assertRaisesRegex(NotImplementedError, r"Peripheral info does not have an IRQ line"): info.irq def test_irq_default(self): memory_map = MemoryMap(addr_width=1, data_width=8) info = PeripheralInfo(memory_map=memory_map) with self.assertRaisesRegex(NotImplementedError, r"Peripheral info does not have an IRQ line"): info.irq def test_irq_wrong(self): memory_map = MemoryMap(addr_width=1, data_width=8) with self.assertRaisesRegex(TypeError, r"IRQ line must be an instance of event.Source, not 'foo'"): info = PeripheralInfo(memory_map=memory_map, irq="foo") def test_constant_map(self): constant_map = ConstantMap() memory_map = MemoryMap(addr_width=1, data_width=8) info = PeripheralInfo(memory_map=memory_map, constant_map=constant_map) self.assertIs(info.constant_map, constant_map) def test_constant_map_none(self): memory_map = MemoryMap(addr_width=1, data_width=8) info = PeripheralInfo(memory_map=memory_map, constant_map=None) self.assertIsInstance(info.constant_map, ConstantMap) self.assertEqual(info.constant_map, {}) def test_constant_map_default(self): memory_map = MemoryMap(addr_width=1, data_width=8) info = PeripheralInfo(memory_map=memory_map) self.assertIsInstance(info.constant_map, ConstantMap) self.assertEqual(info.constant_map, {}) def test_constant_map_wrong(self): memory_map = MemoryMap(addr_width=1, data_width=8) with self.assertRaisesRegex(TypeError, r"Constant map must be an instance of ConstantMap, not 'foo'"): info = PeripheralInfo(memory_map=memory_map, constant_map="foo") ``` #### File: amaranth_soc/test/test_wishbone_bus.py ```python import unittest from amaranth import * from amaranth.hdl.rec import * from amaranth.back.pysim import * from ..wishbone.bus import * from ..memory import MemoryMap class InterfaceTestCase(unittest.TestCase): def test_simple(self): iface = Interface(addr_width=32, data_width=8) self.assertEqual(iface.addr_width, 32) self.assertEqual(iface.data_width, 8) self.assertEqual(iface.granularity, 8) self.assertEqual(iface.layout, Layout.cast([ ("adr", 32, DIR_FANOUT), ("dat_w", 8, DIR_FANOUT), ("dat_r", 8, DIR_FANIN), ("sel", 1, DIR_FANOUT), ("cyc", 1, DIR_FANOUT), ("stb", 1, DIR_FANOUT), ("we", 1, DIR_FANOUT), ("ack", 1, DIR_FANIN), ])) def test_granularity(self): iface = Interface(addr_width=30, data_width=32, granularity=8) self.assertEqual(iface.addr_width, 30) self.assertEqual(iface.data_width, 32) self.assertEqual(iface.granularity, 8) self.assertEqual(iface.layout, Layout.cast([ ("adr", 30, DIR_FANOUT), ("dat_w", 32, DIR_FANOUT), ("dat_r", 32, DIR_FANIN), ("sel", 4, DIR_FANOUT), ("cyc", 1, DIR_FANOUT), ("stb", 1, DIR_FANOUT), ("we", 1, DIR_FANOUT), ("ack", 1, DIR_FANIN), ])) def test_features(self): iface = Interface(addr_width=32, data_width=32, features={"rty", "err", "stall", "lock", "cti", "bte"}) self.assertEqual(iface.layout, Layout.cast([ ("adr", 32, DIR_FANOUT), ("dat_w", 32, DIR_FANOUT), ("dat_r", 32, DIR_FANIN), ("sel", 1, DIR_FANOUT), ("cyc", 1, DIR_FANOUT), ("stb", 1, DIR_FANOUT), ("we", 1, DIR_FANOUT), ("ack", 1, DIR_FANIN), ("err", 1, DIR_FANIN), ("rty", 1, DIR_FANIN), ("stall", 1, DIR_FANIN), ("lock", 1, DIR_FANOUT), ("cti", CycleType, DIR_FANOUT), ("bte", BurstTypeExt, DIR_FANOUT), ])) def test_wrong_addr_width(self): with self.assertRaisesRegex(ValueError, r"Address width must be a non-negative integer, not -1"): Interface(addr_width=-1, data_width=8) def test_wrong_data_width(self): with self.assertRaisesRegex(ValueError, r"Data width must be one of 8, 16, 32, 64, not 7"): Interface(addr_width=0, data_width=7) def test_wrong_granularity(self): with self.assertRaisesRegex(ValueError, r"Granularity must be one of 8, 16, 32, 64, not 7"): Interface(addr_width=0, data_width=32, granularity=7) def test_wrong_granularity_wide(self): with self.assertRaisesRegex(ValueError, r"Granularity 32 may not be greater than data width 8"): Interface(addr_width=0, data_width=8, granularity=32) def test_wrong_features(self): with self.assertRaisesRegex(ValueError, r"Optional signal\(s\) 'foo' are not supported"): Interface(addr_width=0, data_width=8, features={"foo"}) def test_get_map_wrong(self): iface = Interface(addr_width=0, data_width=8) with self.assertRaisesRegex(NotImplementedError, r"Bus interface \(rec iface adr dat_w dat_r sel cyc stb we ack\) does " r"not have a memory map"): iface.memory_map def test_get_map_frozen(self): iface = Interface(addr_width=1, data_width=8) iface.memory_map = MemoryMap(addr_width=1, data_width=8) with self.assertRaisesRegex(ValueError, r"Memory map has been frozen\. Address width cannot be extended " r"further"): iface.memory_map.addr_width = 2 def test_set_map_wrong(self): iface = Interface(addr_width=0, data_width=8) with self.assertRaisesRegex(TypeError, r"Memory map must be an instance of MemoryMap, not 'foo'"): iface.memory_map = "foo" def test_set_map_wrong_data_width(self): iface = Interface(addr_width=30, data_width=32, granularity=8) with self.assertRaisesRegex(ValueError, r"Memory map has data width 32, which is not the same as bus " r"interface granularity 8"): iface.memory_map = MemoryMap(addr_width=32, data_width=32) def test_set_map_wrong_addr_width(self): iface = Interface(addr_width=30, data_width=32, granularity=8) with self.assertRaisesRegex(ValueError, r"Memory map has address width 30, which is not the same as bus " r"interface address width 32 \(30 address bits \+ 2 granularity bits\)"): iface.memory_map = MemoryMap(addr_width=30, data_width=8) class DecoderTestCase(unittest.TestCase): def setUp(self): self.dut = Decoder(addr_width=31, data_width=32, granularity=16) def test_add_align_to(self): sub_1 = Interface(addr_width=15, data_width=32, granularity=16) sub_1.memory_map = MemoryMap(addr_width=16, data_width=16) sub_2 = Interface(addr_width=15, data_width=32, granularity=16) sub_2.memory_map = MemoryMap(addr_width=16, data_width=16) self.assertEqual(self.dut.add(sub_1), (0x00000000, 0x00010000, 1)) self.assertEqual(self.dut.align_to(18), 0x000040000) self.assertEqual(self.dut.align_to(alignment=18), 0x000040000) self.assertEqual(self.dut.add(sub_2), (0x00040000, 0x00050000, 1)) def test_add_extend(self): sub = Interface(addr_width=31, data_width=32, granularity=16) sub.memory_map = MemoryMap(addr_width=32, data_width=16) self.assertEqual(self.dut.add(sub, addr=1, extend=True), (1, 0x100000001, 1)) self.assertEqual(self.dut.bus.addr_width, 32) def test_add_wrong(self): with self.assertRaisesRegex(TypeError, r"Subordinate bus must be an instance of wishbone\.Interface, not 'foo'"): self.dut.add(sub_bus="foo") def test_add_wrong_granularity(self): with self.assertRaisesRegex(ValueError, r"Subordinate bus has granularity 32, which is greater than " r"the decoder granularity 16"): self.dut.add(Interface(addr_width=15, data_width=32, granularity=32)) def test_add_wrong_width_dense(self): with self.assertRaisesRegex(ValueError, r"Subordinate bus has data width 16, which is not the same as decoder " r"data width 32 \(required for dense address translation\)"): self.dut.add(Interface(addr_width=15, data_width=16, granularity=16)) def test_add_wrong_granularity_sparse(self): with self.assertRaisesRegex(ValueError, r"Subordinate bus has data width 64, which is not the same as subordinate " r"bus granularity 16 \(required for sparse address translation\)"): self.dut.add(Interface(addr_width=15, data_width=64, granularity=16), sparse=True) def test_add_wrong_optional_output(self): with self.assertRaisesRegex(ValueError, r"Subordinate bus has optional output 'err', but the decoder does " r"not have a corresponding input"): self.dut.add(Interface(addr_width=15, data_width=32, granularity=16, features={"err"})) def test_add_wrong_out_of_bounds(self): sub = Interface(addr_width=31, data_width=32, granularity=16) sub.memory_map = MemoryMap(addr_width=32, data_width=16) with self.assertRaisesRegex(ValueError, r"Address range 0x1\.\.0x100000001 out of bounds for memory map spanning " r"range 0x0\.\.0x100000000 \(32 address bits\)"): self.dut.add(sub, addr=1) class DecoderSimulationTestCase(unittest.TestCase): def test_simple(self): dut = Decoder(addr_width=30, data_width=32, granularity=8, features={"err", "rty", "stall", "lock", "cti", "bte"}) sub_1 = Interface(addr_width=14, data_width=32, granularity=8) sub_1.memory_map = MemoryMap(addr_width=16, data_width=8) dut.add(sub_1, addr=0x10000) sub_2 = Interface(addr_width=14, data_width=32, granularity=8, features={"err", "rty", "stall", "lock", "cti", "bte"}) sub_2.memory_map = MemoryMap(addr_width=16, data_width=8) dut.add(sub_2) def sim_test(): yield dut.bus.adr.eq(0x10400 >> 2) yield dut.bus.cyc.eq(1) yield dut.bus.stb.eq(1) yield dut.bus.sel.eq(0b11) yield dut.bus.dat_w.eq(0x12345678) yield dut.bus.lock.eq(1) yield dut.bus.cti.eq(CycleType.INCR_BURST) yield dut.bus.bte.eq(BurstTypeExt.WRAP_4) yield sub_1.ack.eq(1) yield sub_1.dat_r.eq(0xabcdef01) yield sub_2.dat_r.eq(0x5678abcd) yield Delay(1e-6) self.assertEqual((yield sub_1.adr), 0x400 >> 2) self.assertEqual((yield sub_1.cyc), 1) self.assertEqual((yield sub_2.cyc), 0) self.assertEqual((yield sub_1.stb), 1) self.assertEqual((yield sub_1.sel), 0b11) self.assertEqual((yield sub_1.dat_w), 0x12345678) self.assertEqual((yield dut.bus.ack), 1) self.assertEqual((yield dut.bus.err), 0) self.assertEqual((yield dut.bus.rty), 0) self.assertEqual((yield dut.bus.dat_r), 0xabcdef01) yield dut.bus.adr.eq(0x20400 >> 2) yield sub_1.ack.eq(0) yield sub_2.err.eq(1) yield sub_2.rty.eq(1) yield sub_2.stall.eq(1) yield Delay(1e-6) self.assertEqual((yield sub_2.adr), 0x400 >> 2) self.assertEqual((yield sub_1.cyc), 0) self.assertEqual((yield sub_2.cyc), 1) self.assertEqual((yield sub_1.stb), 1) self.assertEqual((yield sub_1.sel), 0b11) self.assertEqual((yield sub_1.dat_w), 0x12345678) self.assertEqual((yield sub_2.lock), 1) self.assertEqual((yield sub_2.cti), CycleType.INCR_BURST.value) self.assertEqual((yield sub_2.bte), BurstTypeExt.WRAP_4.value) self.assertEqual((yield dut.bus.ack), 0) self.assertEqual((yield dut.bus.err), 1) self.assertEqual((yield dut.bus.rty), 1) self.assertEqual((yield dut.bus.stall), 1) self.assertEqual((yield dut.bus.dat_r), 0x5678abcd) sim = Simulator(dut) sim.add_process(sim_test) with sim.write_vcd(vcd_file=open("test.vcd", "w")): sim.run() def test_addr_translate(self): class AddressLoopback(Elaboratable): def __init__(self, **kwargs): self.bus = Interface(**kwargs) def elaborate(self, platform): m = Module() for index, sel_bit in enumerate(self.bus.sel): with m.If(sel_bit): segment = self.bus.dat_r.word_select(index, self.bus.granularity) m.d.comb += segment.eq(self.bus.adr + index) return m dut = Decoder(addr_width=20, data_width=32, granularity=16) loop_1 = AddressLoopback(addr_width=7, data_width=32, granularity=16) loop_1.bus.memory_map = MemoryMap(addr_width=8, data_width=16) self.assertEqual(dut.add(loop_1.bus, addr=0x10000), (0x10000, 0x10100, 1)) loop_2 = AddressLoopback(addr_width=6, data_width=32, granularity=8) loop_2.bus.memory_map = MemoryMap(addr_width=8, data_width=8) self.assertEqual(dut.add(loop_2.bus, addr=0x20000), (0x20000, 0x20080, 2)) loop_3 = AddressLoopback(addr_width=8, data_width=16, granularity=16) loop_3.bus.memory_map = MemoryMap(addr_width=8, data_width=16) self.assertEqual(dut.add(loop_3.bus, addr=0x30000, sparse=True), (0x30000, 0x30100, 1)) loop_4 = AddressLoopback(addr_width=8, data_width=8, granularity=8) loop_4.bus.memory_map = MemoryMap(addr_width=8, data_width=8) self.assertEqual(dut.add(loop_4.bus, addr=0x40000, sparse=True), (0x40000, 0x40100, 1)) def sim_test(): yield dut.bus.cyc.eq(1) yield dut.bus.adr.eq(0x10010 >> 1) yield dut.bus.sel.eq(0b11) yield Delay(1e-6) self.assertEqual((yield dut.bus.dat_r), 0x00090008) yield dut.bus.sel.eq(0b01) yield Delay(1e-6) self.assertEqual((yield dut.bus.dat_r), 0x00000008) yield dut.bus.sel.eq(0b10) yield Delay(1e-6) self.assertEqual((yield dut.bus.dat_r), 0x00090000) yield dut.bus.adr.eq(0x20010 >> 1) yield dut.bus.sel.eq(0b11) yield Delay(1e-6) self.assertEqual((yield dut.bus.dat_r), 0x13121110) yield dut.bus.sel.eq(0b01) yield Delay(1e-6) self.assertEqual((yield dut.bus.dat_r), 0x00001110) yield dut.bus.sel.eq(0b10) yield Delay(1e-6) self.assertEqual((yield dut.bus.dat_r), 0x13120000) yield dut.bus.adr.eq(0x30010 >> 1) yield dut.bus.sel.eq(0b11) yield Delay(1e-6) self.assertEqual((yield dut.bus.dat_r), 0x0008) yield dut.bus.sel.eq(0b01) yield Delay(1e-6) self.assertEqual((yield dut.bus.dat_r), 0x0008) yield dut.bus.sel.eq(0b10) yield Delay(1e-6) self.assertEqual((yield dut.bus.dat_r), 0x0000) yield dut.bus.adr.eq(0x30012 >> 1) yield dut.bus.sel.eq(0b11) yield Delay(1e-6) self.assertEqual((yield dut.bus.dat_r), 0x0009) yield dut.bus.adr.eq(0x40010 >> 1) yield dut.bus.sel.eq(0b11) yield Delay(1e-6) self.assertEqual((yield dut.bus.dat_r), 0x08) yield dut.bus.sel.eq(0b01) yield Delay(1e-6) self.assertEqual((yield dut.bus.dat_r), 0x08) yield dut.bus.sel.eq(0b10) yield Delay(1e-6) self.assertEqual((yield dut.bus.dat_r), 0x00) yield dut.bus.adr.eq(0x40012 >> 1) yield dut.bus.sel.eq(0b11) yield Delay(1e-6) self.assertEqual((yield dut.bus.dat_r), 0x09) m = Module() m.submodules += dut, loop_1, loop_2, loop_3, loop_4 sim = Simulator(m) sim.add_process(sim_test) with sim.write_vcd(vcd_file=open("test.vcd", "w")): sim.run() def test_coarse_granularity(self): dut = Decoder(addr_width=3, data_width=32) sub = Interface(addr_width=2, data_width=32) sub.memory_map = MemoryMap(addr_width=2, data_width=32) dut.add(sub) def sim_test(): yield dut.bus.cyc.eq(1) yield dut.bus.adr.eq(0x0) yield Delay(1e-6) self.assertEqual((yield sub.cyc), 1) yield dut.bus.adr.eq(0x4) yield Delay(1e-6) self.assertEqual((yield sub.cyc), 0) sim = Simulator(dut) sim.add_process(sim_test) with sim.write_vcd(vcd_file=open("test.vcd", "w")): sim.run() class ArbiterTestCase(unittest.TestCase): def setUp(self): self.dut = Arbiter(addr_width=31, data_width=32, granularity=16, features={"err"}) def test_add_wrong(self): with self.assertRaisesRegex(TypeError, r"Initiator bus must be an instance of wishbone\.Interface, not 'foo'"): self.dut.add(intr_bus="foo") def test_add_wrong_addr_width(self): with self.assertRaisesRegex(ValueError, r"Initiator bus has address width 15, which is not the same as arbiter " r"address width 31"): self.dut.add(Interface(addr_width=15, data_width=32, granularity=16)) def test_add_wrong_granularity(self): with self.assertRaisesRegex(ValueError, r"Initiator bus has granularity 8, which is lesser than " r"the arbiter granularity 16"): self.dut.add(Interface(addr_width=31, data_width=32, granularity=8)) def test_add_wrong_data_width(self): with self.assertRaisesRegex(ValueError, r"Initiator bus has data width 16, which is not the same as arbiter " r"data width 32"): self.dut.add(Interface(addr_width=31, data_width=16, granularity=16)) def test_add_wrong_optional_output(self): with self.assertRaisesRegex(ValueError, r"Arbiter has optional output 'err', but the initiator bus does " r"not have a corresponding input"): self.dut.add(Interface(addr_width=31, data_width=32, granularity=16)) class ArbiterSimulationTestCase(unittest.TestCase): def test_simple(self): dut = Arbiter(addr_width=30, data_width=32, granularity=8, features={"err", "rty", "stall", "lock", "cti", "bte"}) intr_1 = Interface(addr_width=30, data_width=32, granularity=8, features={"err", "rty"}) dut.add(intr_1) intr_2 = Interface(addr_width=30, data_width=32, granularity=16, features={"err", "rty", "stall", "lock", "cti", "bte"}) dut.add(intr_2) def sim_test(): yield intr_1.adr.eq(0x7ffffffc >> 2) yield intr_1.cyc.eq(1) yield intr_1.stb.eq(1) yield intr_1.sel.eq(0b1111) yield intr_1.we.eq(1) yield intr_1.dat_w.eq(0x12345678) yield dut.bus.dat_r.eq(0xabcdef01) yield dut.bus.ack.eq(1) yield dut.bus.err.eq(1) yield dut.bus.rty.eq(1) yield Delay(1e-7) self.assertEqual((yield dut.bus.adr), 0x7ffffffc >> 2) self.assertEqual((yield dut.bus.cyc), 1) self.assertEqual((yield dut.bus.stb), 1) self.assertEqual((yield dut.bus.sel), 0b1111) self.assertEqual((yield dut.bus.we), 1) self.assertEqual((yield dut.bus.dat_w), 0x12345678) self.assertEqual((yield dut.bus.lock), 0) self.assertEqual((yield dut.bus.cti), CycleType.CLASSIC.value) self.assertEqual((yield dut.bus.bte), BurstTypeExt.LINEAR.value) self.assertEqual((yield intr_1.dat_r), 0xabcdef01) self.assertEqual((yield intr_1.ack), 1) self.assertEqual((yield intr_1.err), 1) self.assertEqual((yield intr_1.rty), 1) yield intr_1.cyc.eq(0) yield intr_2.adr.eq(0xe0000000 >> 2) yield intr_2.cyc.eq(1) yield intr_2.stb.eq(1) yield intr_2.sel.eq(0b10) yield intr_2.we.eq(1) yield intr_2.dat_w.eq(0x43218765) yield intr_2.lock.eq(0) yield intr_2.cti.eq(CycleType.INCR_BURST) yield intr_2.bte.eq(BurstTypeExt.WRAP_4) yield Tick() yield dut.bus.stall.eq(0) yield Delay(1e-7) self.assertEqual((yield dut.bus.adr), 0xe0000000 >> 2) self.assertEqual((yield dut.bus.cyc), 1) self.assertEqual((yield dut.bus.stb), 1) self.assertEqual((yield dut.bus.sel), 0b1100) self.assertEqual((yield dut.bus.we), 1) self.assertEqual((yield dut.bus.dat_w), 0x43218765) self.assertEqual((yield dut.bus.lock), 0) self.assertEqual((yield dut.bus.cti), CycleType.INCR_BURST.value) self.assertEqual((yield dut.bus.bte), BurstTypeExt.WRAP_4.value) self.assertEqual((yield intr_2.dat_r), 0xabcdef01) self.assertEqual((yield intr_2.ack), 1) self.assertEqual((yield intr_2.err), 1) self.assertEqual((yield intr_2.rty), 1) self.assertEqual((yield intr_2.stall), 0) sim = Simulator(dut) sim.add_clock(1e-6) sim.add_sync_process(sim_test) with sim.write_vcd(vcd_file=open("test.vcd", "w")): sim.run() def test_lock(self): dut = Arbiter(addr_width=30, data_width=32, features={"lock"}) intr_1 = Interface(addr_width=30, data_width=32, features={"lock"}) dut.add(intr_1) intr_2 = Interface(addr_width=30, data_width=32, features={"lock"}) dut.add(intr_2) def sim_test(): yield intr_1.cyc.eq(1) yield intr_1.lock.eq(1) yield intr_2.cyc.eq(1) yield dut.bus.ack.eq(1) yield Delay(1e-7) self.assertEqual((yield intr_1.ack), 1) self.assertEqual((yield intr_2.ack), 0) yield Tick() yield Delay(1e-7) self.assertEqual((yield intr_1.ack), 1) self.assertEqual((yield intr_2.ack), 0) yield intr_1.lock.eq(0) yield Tick() yield Delay(1e-7) self.assertEqual((yield intr_1.ack), 0) self.assertEqual((yield intr_2.ack), 1) yield intr_2.cyc.eq(0) yield Tick() yield Delay(1e-7) self.assertEqual((yield intr_1.ack), 1) self.assertEqual((yield intr_2.ack), 0) yield intr_1.stb.eq(1) yield Tick() yield Delay(1e-7) self.assertEqual((yield intr_1.ack), 1) self.assertEqual((yield intr_2.ack), 0) yield intr_1.stb.eq(0) yield intr_2.cyc.eq(1) yield Tick() yield Delay(1e-7) self.assertEqual((yield intr_1.ack), 0) self.assertEqual((yield intr_2.ack), 1) sim = Simulator(dut) sim.add_clock(1e-6) sim.add_sync_process(sim_test) with sim.write_vcd(vcd_file=open("test.vcd", "w")): sim.run() def test_stall(self): dut = Arbiter(addr_width=30, data_width=32, features={"stall"}) intr_1 = Interface(addr_width=30, data_width=32, features={"stall"}) dut.add(intr_1) intr_2 = Interface(addr_width=30, data_width=32, features={"stall"}) dut.add(intr_2) def sim_test(): yield intr_1.cyc.eq(1) yield intr_2.cyc.eq(1) yield dut.bus.stall.eq(0) yield Delay(1e-6) self.assertEqual((yield intr_1.stall), 0) self.assertEqual((yield intr_2.stall), 1) yield dut.bus.stall.eq(1) yield Delay(1e-6) self.assertEqual((yield intr_1.stall), 1) self.assertEqual((yield intr_2.stall), 1) sim = Simulator(dut) sim.add_process(sim_test) with sim.write_vcd(vcd_file=open("test.vcd", "w")): sim.run() def test_stall_compat(self): dut = Arbiter(addr_width=30, data_width=32) intr_1 = Interface(addr_width=30, data_width=32, features={"stall"}) dut.add(intr_1) intr_2 = Interface(addr_width=30, data_width=32, features={"stall"}) dut.add(intr_2) def sim_test(): yield intr_1.cyc.eq(1) yield intr_2.cyc.eq(1) yield Delay(1e-6) self.assertEqual((yield intr_1.stall), 1) self.assertEqual((yield intr_2.stall), 1) yield dut.bus.ack.eq(1) yield Delay(1e-6) self.assertEqual((yield intr_1.stall), 0) self.assertEqual((yield intr_2.stall), 1) sim = Simulator(dut) sim.add_process(sim_test) with sim.write_vcd(vcd_file=open("test.vcd", "w")): sim.run() def test_roundrobin(self): dut = Arbiter(addr_width=30, data_width=32) intr_1 = Interface(addr_width=30, data_width=32) dut.add(intr_1) intr_2 = Interface(addr_width=30, data_width=32) dut.add(intr_2) intr_3 = Interface(addr_width=30, data_width=32) dut.add(intr_3) def sim_test(): yield intr_1.cyc.eq(1) yield intr_2.cyc.eq(0) yield intr_3.cyc.eq(1) yield dut.bus.ack.eq(1) yield Delay(1e-7) self.assertEqual((yield intr_1.ack), 1) self.assertEqual((yield intr_2.ack), 0) self.assertEqual((yield intr_3.ack), 0) yield intr_1.cyc.eq(0) yield intr_2.cyc.eq(0) yield intr_3.cyc.eq(1) yield Tick() yield Delay(1e-7) self.assertEqual((yield intr_1.ack), 0) self.assertEqual((yield intr_2.ack), 0) self.assertEqual((yield intr_3.ack), 1) yield intr_1.cyc.eq(1) yield intr_2.cyc.eq(1) yield intr_3.cyc.eq(0) yield Tick() yield Delay(1e-7) self.assertEqual((yield intr_1.ack), 1) self.assertEqual((yield intr_2.ack), 0) self.assertEqual((yield intr_3.ack), 0) yield intr_1.cyc.eq(0) yield intr_2.cyc.eq(1) yield intr_3.cyc.eq(1) yield Tick() yield Delay(1e-7) self.assertEqual((yield intr_1.ack), 0) self.assertEqual((yield intr_2.ack), 1) self.assertEqual((yield intr_3.ack), 0) yield intr_1.cyc.eq(1) yield intr_2.cyc.eq(0) yield intr_3.cyc.eq(1) yield Tick() yield Delay(1e-7) self.assertEqual((yield intr_1.ack), 0) self.assertEqual((yield intr_2.ack), 0) self.assertEqual((yield intr_3.ack), 1) sim = Simulator(dut) sim.add_clock(1e-6) sim.add_sync_process(sim_test) with sim.write_vcd(vcd_file=open("test.vcd", "w")): sim.run() ```
{ "source": "jfnielsen/AutoDiffPulses", "score": 2 }
#### File: AutoDiffPulses/adpulses/metrics.py ```python from typing import Optional from torch import Tensor def err_null(Mr_: Tensor, Md_: Tensor, w_: Optional[Tensor] = None) -> Tensor: """ *INPUTS* - `Mr_` (1, nM, xyz) - `Md_` (1, nM, xyz) *OPTIONALS* - `w_` (1, nM) *OUTPUTS* - `err` (1,) """ return Mr_.new_zeros([]) def err_l2z(Mr_: Tensor, Md_: Tensor, w_: Optional[Tensor] = None) -> Tensor: """ *INPUTS* - `Mr_` (1, nM, xyz) - `Md_` (1, nM, xyz) *OPTIONALS* - `w_` (1, nM) *OUTPUTS* - `err` (1,) """ Me_ = (Mr_[..., 2] - Md_[..., 2]) # (1, nM) err = (Me_ if w_ is None else Me_*w_).norm()**2 return err def err_l2xy(Mr_: Tensor, Md_: Tensor, w_: Optional[Tensor] = None) -> Tensor: """ *INPUTS* - `Mr_` (1, nM, xyz) - `Md_` (1, nM, xyz) *OPTIONALS* - `w_` (1, nM) *OUTPUTS* - `err` (1,) """ Me_ = (Mr_[..., :2] - Md_[..., :2]) err = (Me_ if w_ is None else Me_*w_[..., None]).norm()**2 return err # hijacking ml2xy for prephasing problem def err_ml2xy(Mr_: Tensor, Md_: Tensor, w_: Optional[Tensor] = None) -> Tensor: """ *INPUTS* - `Mr_` (1, nM, xyz) - `Md_` (1, nM, xyz) *OPTIONALS* - `w_` (1, nM) *OUTPUTS* - `err` (1,) """ lam1 = 10.0 # 12/6/21: 1.0 lam2 = 1.0 # 12/6/21: 2.0 Me_ = Mr_[..., :2].norm(dim=-1) - Md_[..., :2].norm(dim=-1) errmag = (Me_ if w_ is None else Me_*w_).norm()**2 Me_ = (Mr_[..., :2] - Md_[..., :2]) errcplx = (Me_ if w_ is None else Me_*w_[..., None]).norm()**2 err = lam1 * errmag + lam2 * errcplx return err ``` #### File: +adpulses/+opt/parctanAD.py ```python import torch import adpulses from adpulses import io, optimizers, metrics, penalties if __name__ == "__main__": import sys if len(sys.argv) <= 1: # mode DEBUG import os os.chdir(os.path.dirname(os.path.abspath(__file__))) m2pName = ('m2p.mat' if len(sys.argv) <= 1 else sys.argv[1]) p2mName = ('p2m.mat' if len(sys.argv) <= 2 else sys.argv[2]) gpuID = ('0' if len(sys.argv) <= 3 else sys.argv[3]) # %% load if gpuID == '-1': dkw = {'device': torch.device('cpu'), 'dtype': torch.float32} else: dkw = {'device': torch.device('cuda:'+gpuID), 'dtype': torch.float32} target, cube, pulse, arg = io.m2p(m2pName, **dkw) def dflt_arg(k, v, fn): return (fn(k) if ((k in arg.keys()) and (arg[k].size > 0)) else v) arg['doRelax'] = dflt_arg('doRelax', True, lambda k: bool(arg[k].item())) arg['b1Map_'] = dflt_arg('b1Map_', None, lambda k: f_tensor(f_c2r_np(arg[k], -2))) arg['niter'] = dflt_arg('niter', 10, lambda k: arg[k].item()) arg['niter_gr'] = dflt_arg('niter_gr', 2, lambda k: arg[k].item()) arg['niter_rf'] = dflt_arg('niter_rf', 2, lambda k: arg[k].item()) arg['nB'] = dflt_arg('nB', 100, lambda k: arg[k].item()) arg['isHead'] = dflt_arg('isHead', True, lambda k: bool(arg[k].item())) eta = dflt_arg('eta', 4, lambda k: float(arg[k].item())) print('eta: ', eta) err_meth = dflt_arg('err_meth', 'l2xy', lambda k: arg[k].item()) pen_meth = dflt_arg('pen_meth', 'l2', lambda k: arg[k].item()) err_hash = {'null': metrics.err_null, 'l2xy': metrics.err_l2xy, 'ml2xy': metrics.err_ml2xy, 'l2z': metrics.err_l2z} pen_hash = {'null': penalties.pen_null, 'l2': penalties.pen_l2} fn_err, fn_pen = err_hash[err_meth], pen_hash[pen_meth] # %% pulse design kw = {k: arg[k] for k in ('b1Map_', 'niter', 'niter_gr', 'niter_rf', 'nB', 'isHead', 'doRelax')} pulse, optInfos = optimizers.parctanLBFGS(target, cube, pulse, fn_err, fn_pen, eta=eta, **kw) # %% saving io.p2m(p2mName, pulse, optInfos) ```
{ "source": "jfoerderer/lda-topic-modeling", "score": 3 }
#### File: jfoerderer/lda-topic-modeling/description tm.py ```python import csv from stop_words import get_stop_words from nltk.stem.porter import PorterStemmer from gensim import corpora import gensim import os import re from nltk.tokenize import RegexpTokenizer #SET PATH path = r'' inputname="" def remove_html_tags(text): """Remove html tags from a string""" clean = re.compile('<.*?>') return re.sub(clean, '', text) #setup tokenizer = RegexpTokenizer(r'\w+') en_stop = get_stop_words('en') p_stemmer = PorterStemmer() fn = os.path.join(path, inputname) doc_set = [] with open(fn, encoding="utf8" ) as f: csv_f = csv.reader(f) for i, row in enumerate(csv_f): if i > 1 and len(row) > 1 : temp=remove_html_tags(row[1]) temp = re.sub("[^a-zA-Z ]","", temp) doc_set.append(temp) texts = [] for i in doc_set: if i.strip(): raw = i.lower() tokens = tokenizer.tokenize(raw) if len(tokens)>5: stopped_tokens = [i for i in tokens if not i in en_stop] texts.append(stopped_tokens) dictionary = corpora.Dictionary(texts) corpus = [dictionary.doc2bow(text) for text in texts] lsi = gensim.models.lsimodel.LsiModel(corpus, id2word=dictionary, num_topics=5 ) print (lsi.print_topics(num_topics=3, num_words=3)) ldamodel = gensim.models.ldamodel.LdaModel(corpus, num_topics=20, id2word = dictionary, passes=20) print(ldamodel.print_topics(num_topics=20, num_words=5)) K = ldamodel.num_topics topicWordProbMat = ldamodel.print_topics(K) ```
{ "source": "jfoley-yw/scrabble", "score": 3 }
#### File: scrabble/scrabbler/ABStrategy.py ```python from scrabbler.ABgamestate import ABGamestate from scrabbler.strategy import Strategy import copy import math from collections import defaultdict class ABStrategy(Strategy): """ A class that represents the AB pruning algorithm""" def __init__(self, reduce_opponent=True): self.dictionary = None self.reduce_opponent = reduce_opponent self.search_depth = 2 self.nodes_visited = 0 self.total_nodes = [] def choose_move(self, game, rack, score_diff, opponent_rack, dictionary): """Chooses the best move based on the AB-pruning""" self.nodes_visited = 0 self.dictionary = dictionary board = copy.deepcopy(game.board) gamestate = ABGamestate(board, rack, opponent_rack, 0, score_diff, []) value, move = self.minimax(gamestate, self.search_depth, False, -math.inf, math.inf) self.total_nodes.append(self.nodes_visited) return move def minimax(self, cur_state, max_depth, is_player_minimizer, alpha, beta): """ recursively iterates through the game tree""" self.nodes_visited += 1 best_move = None first_move = None if max_depth == 0 or cur_state.is_end_state(): return cur_state.score_diff, cur_state.moves[0] moves = cur_state.find_next_moves(self.dictionary) if len(moves) == 0: return cur_state.score_diff, None if is_player_minimizer: value = math.inf if self.reduce_opponent: min_moves = [moves[0]] else: min_moves = moves for move in min_moves: # get the next rack for the minimizing player next_rack = cur_state.get_next_rack(move) # update the board with the new move, update score differential, and get new gamestate next_board = cur_state.get_next_board(move, self.dictionary) game_over = (len(next_rack) == 0) leaf = max_depth - 1 == 0 next_score_diff = cur_state.new_score_diff(move.score, game_over, leaf, next_rack) moves_to_get_here = cur_state.update_moves(move) # create the next state next_state = ABGamestate(next_board, cur_state.player_rack, next_rack, is_player_minimizer=False, score_diff=next_score_diff, moves=moves_to_get_here) evaluation, first_move = self.minimax(next_state, max_depth - 1, False, alpha , beta) value = min(value, evaluation) beta = min(beta, evaluation) if beta <= alpha: break return value, first_move if not is_player_minimizer: value = -math.inf for move in moves: # get the next rack for the minimizing player next_rack = cur_state.get_next_rack(move) # update the board with the new move next_board = cur_state.get_next_board(move, self.dictionary) # update the score diff game_over = (len(next_rack) == 0) leaf = max_depth - 1 == 0 next_score_diff = cur_state.new_score_diff(move.score, game_over, leaf, next_rack) # update the moves to get to the gamestate moves_to_get_here = cur_state.update_moves(move) # create the next state next_state = ABGamestate(next_board, next_rack, cur_state.opponent_rack, is_player_minimizer=True, score_diff=next_score_diff, moves=moves_to_get_here) evaluation, moves_to_here = self.minimax(next_state, max_depth - 1, True, alpha, beta) value = max(value, evaluation) if max(value, evaluation) is evaluation: value = evaluation best_move = moves_to_here alpha = max(alpha, evaluation) if beta <= alpha: break return value, best_move ``` #### File: scrabble/scrabbler/MCTSgamestate.py ```python class MCTSgamestate: def __init__(self, board_state, rack_state, is_my_turn, score_differential): # board_state is a tuple of size rows * columns where each entry is the tile on the board # or None if there is no tile. self.board_state = board_state # rack_state is a tuple of size 27 where each entry is number of corresponding letters # e.g. "ABBEF?" would be (1,2,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1) self.rack_state = rack_state # True if it's my turn, False otherwise self.is_my_turn = is_my_turn # my score minus other player's score self.score_differential = score_differential def __members(self): return self.board_state, self.rack_state, self.is_my_turn, self.score_differential def __eq__(self, other): if type(other) is type(self): return self.__members() == other.__members() else: return False def __hash__(self): return hash(self.__members()) ``` #### File: scrabble/scrabbler/ShortMonteCarloSimStrategy.py ```python import copy import random import math from scrabbler.strategy import Strategy from collections import defaultdict ''' Represents an implementation of an algorithm based on the Maven and Scrabble bots for the Scrabble midgame. It utilizes a static evaluation function with several heuristics, simulation 2-ply deep, and pruning of moves based on standard deviation of each move's average simualted future-game score differentials. ''' class ShortMonteCarloSimStrategy(Strategy): # Relative letter utilities calculated based off of simulating thousands of games. Once a letter # was placed in a game, the future score differential was tracked and used to calculate utilities, # as described in Maven implementation. ESTIMATED_LETTER_UTILITY = {"A": 15.75, "B": 17.41, "C": 16.64, "D": 15.54, "E": 15.10, "F": 17.22, "G": 15.66, "H": 15.81, "I": 15.92, "J": 21.71, "K": 17.95, "L": 13.50, "M": 17.20, "N": 15.17, "O": 16.76, "P": 18.26, "Q": 20.26, "R": 13.28, "S": 13.74, "T": 15.38, "U": 16.40, "V": 16.39, "W": 16.66, "X": 21.08, "Y": 16.29, "Z": 23.14} # Used in calculation of the heuristic for ratio of vowels to consonants VOWELS = ["A", "E", "I", "O", "U", "Y"] LETTERS = ("AAAAAB" "BCDEEE" "EEE" "FGGHIIII" "IIJKL" "LMNNO" "OOOPQ" "RRSS" "TTUU" "VWXYZ") RACK_SIZE = 7 ''' Initialize strategy with the number of rollouts to do, the exploration weight, map of states->child states, map of tiles->value, and an empty list of the current best moves. ''' def __init__(self, num_rollouts = 1000, exploration_weight=1): self.num_rollouts = num_rollouts self.next_states = {} self.dictionary = None self.tiles = {'A': 1, 'B': 3, 'C': 3, 'D': 2, 'E': 1, 'F': 4, 'G': 2, 'H': 4, 'I': 1, 'J': 8, 'K': 5, 'L': 1, 'M': 3, 'N': 1, 'O': 1, 'P': 3, 'Q': 10, 'R': 1, 'S': 1, 'T': 1, 'U': 1, 'V': 4, 'W': 4, 'X': 8, 'Y': 4, 'Z': 10} self.num_best_moves = 0 self.best_moves = [] ''' Choose the estimated best move by using a static evaluation function and performing simulations. ''' def choose_move(self, game, rack, current_score_differential, other_rack, dictionary): self.board = copy.deepcopy(game.board) print('Starting Rollouts: ') self.dictionary = dictionary self.my_rack = copy.copy(rack) self.move_to_score_differential = {} self.move_to_visits = defaultdict(int) moves = game.find_valid_moves(self.my_rack) if not moves: return None num_moves = min(len(moves), 30) self.best_moves = self.static_evaluation(moves[0:num_moves], self.my_rack) return self.do_rollouts(game) ''' Determine the best moves from all possible moves based on several heuristics. ''' def static_evaluation(self, moves, rack): static_value = defaultdict(int) highest_score = moves[0].score for move in moves: # Heuristic 1: Score static_value[move] += move.score # Heuristic 2: leftover rack value (leftover tiles values + potential tile values in bag) leftover_rack = copy.deepcopy(rack) start_square = move.start_square start_row = start_square[0] start_column = start_square[1] if move.direction == "across": for i in range(start_column, start_column + len(move.word)): if self.board.square(start_row, i).tile is None: leftover_rack.remove(move.word[i - start_column]) else: for i in range(start_row, start_row + len(move.word)): if self.board.square(i, start_column).tile is None: leftover_rack.remove(move.word[i - start_row]) for char in leftover_rack: static_value[move] += ShortMonteCarloSimStrategy.ESTIMATED_LETTER_UTILITY[char] * highest_score * 0.0003 static_value[move] += self.unseen_tiles_value(move, rack) * highest_score * 0.03 # Heuristic 3: value:consonants ratio closer to 1 vowels = 0 for tile in leftover_rack: if tile in ShortMonteCarloSimStrategy.VOWELS: vowels += 1 if vowels == 0 or vowels == len(leftover_rack): ratio = 0 elif len(leftover_rack) < 2 * vowels: ratio = vowels / (len(leftover_rack) - vowels) else: ratio = (len(leftover_rack) - vowels) / vowels static_value[move] += math.sqrt(ratio) * highest_score * 0.004 # Heuristic 4: U-with-Q-unseen if self.is_Q_in_unseen(move, rack) and "U" in leftover_rack: static_value[move] += highest_score * 0.002 # Heuristic 5: First turn places fewer tiles if self.board.empty: static_value[move] += (1 / len(move.word)) * highest_score * 0.02 sorted_moves = sorted(moves, key= lambda move: static_value[move], reverse=True) num_moves = min(12, len(moves)) return sorted_moves[0:num_moves] ''' Check to see if there might be a Q tile in the bag. It cannot be known for sure if a Q tile is in the opponent's rack or in the bag, just that it has a chance of being in the bag. ''' def is_Q_in_unseen(self, move, rack): used_tiles = list(rack) + [square.tile for square in self.board.get_board()] used_tiles_dict = defaultdict(int) for tile in used_tiles: used_tiles_dict[tile] += 1 all_tiles = defaultdict(int) for tile in ShortMonteCarloSimStrategy.LETTERS: all_tiles[tile] += 1 potential_letters = [] for tile in all_tiles: for i in range(all_tiles[tile] - used_tiles_dict[tile]): potential_letters.append(tile) if "Q" in potential_letters: return True ''' Calculate the average value of tiles that might be in the bag, for the purposes of estimating how good a leftover rack might be. ''' def unseen_tiles_value(self, move, rack): used_tiles = list(rack) + [square.tile for square in self.board.get_board()] used_tiles_dict = defaultdict(int) for tile in used_tiles: used_tiles_dict[tile] += 1 all_tiles = defaultdict(int) for tile in ShortMonteCarloSimStrategy.LETTERS: all_tiles[tile] += 1 potential_letters = [] for tile in all_tiles: for i in range(all_tiles[tile] - used_tiles_dict[tile]): potential_letters.append(tile) unseen_value = 0 for tile in potential_letters: unseen_value += ShortMonteCarloSimStrategy.ESTIMATED_LETTER_UTILITY[tile] average_val = 0.01 * unseen_value / len(potential_letters) return average_val * min(ShortMonteCarloSimStrategy.RACK_SIZE - len(move.word), len(potential_letters)) ''' Simulate 2-ply into the future to estimate the average score differential assocaited with a move. 17 iterations are performed for each move, then for subsequent iterations, any moves with a score differential not within 2 standard deviations of the highest score differential is pruned from the list of moves being considered. Simulations are carried out until one move statistically distances itself from all other moves or until the allotted number of rollouts is reached. ''' def do_rollouts(self, game): # after 17 iterations through each move, start pruning anything not within 2 standard deviations rollouts_left = self.num_rollouts moves_under_consideration = self.best_moves if len(moves_under_consideration) == 1: return moves_under_consideration[0] is_after_17_rollouts_each = False current_move_index = 0 for i in range(self.num_rollouts): self.move_to_visits[moves_under_consideration[current_move_index]] += 1 if moves_under_consideration[current_move_index] not in self.move_to_score_differential: self.move_to_score_differential[moves_under_consideration[current_move_index]] = 0 self.simulate(moves_under_consideration[current_move_index]) self.board = copy.deepcopy(game.board) current_move_index = (current_move_index + 1) % len(moves_under_consideration) if not is_after_17_rollouts_each and (i / len(moves_under_consideration)) >= 17: is_after_17_rollouts_each = True if current_move_index == 0 and is_after_17_rollouts_each: moves_under_consideration = self.remove_poor_words(moves_under_consideration) if len(moves_under_consideration) == 1: return moves_under_consideration[0] return max(moves_under_consideration, key = lambda move: self.move_to_score_differential[move] / self.move_to_visits[move]) ''' Remove any words whose average future score differential is not within 2 standard deviations of the highest future score differential. ''' def remove_poor_words(self, moves): new_moves = [] current_max = float("-inf") total_points = 0 all_same_score = True for move in moves: if not (self.move_to_score_differential[moves[0]] == self.move_to_score_differential[move]): all_same_score = False break if all_same_score: return [moves[0]] for move in moves: total_points += self.move_to_score_differential[move] # Calculate standard deviation average = total_points / len(moves) diff_summation = 0 for move in moves: diff_summation += (self.move_to_score_differential[move] - average) ** 2 standard_deviation = math.sqrt(diff_summation / len(moves)) for move in moves: current_max = max(current_max, self.move_to_score_differential[move]) for move in moves: if current_max - self.move_to_score_differential[move] < (2 * standard_deviation): new_moves.append(move) return new_moves ''' Create a random rack for the opponent during simulation that could plausibly exist given one's own rack and the tiles that have already been played on the board. ''' def find_plausible_opponent_rack(self, my_rack): used_tiles = list(my_rack) + [square.tile for square in self.board.get_board()] used_tiles_dict = defaultdict(int) for tile in used_tiles: used_tiles_dict[tile] += 1 all_tiles = defaultdict(int) for tile in ShortMonteCarloSimStrategy.LETTERS: all_tiles[tile] += 1 potential_letters = [] for tile in all_tiles: for i in range(all_tiles[tile] - used_tiles_dict[tile]): potential_letters.append(tile) opponent_rack = [] for i in range(min(ShortMonteCarloSimStrategy.RACK_SIZE, len(potential_letters))): added_tile = random.choice(potential_letters) opponent_rack += added_tile potential_letters.remove(added_tile) return opponent_rack ''' Refill agent's own rack after a move with tiles that are potentially in the bag based on what tiles have already been played. ''' def get_refilled_rack(self, my_rack): used_tiles = list(my_rack) + [square.tile for square in self.board.get_board()] used_tiles_dict = defaultdict(int) for tile in used_tiles: used_tiles_dict[tile] += 1 all_tiles = defaultdict(int) for tile in ShortMonteCarloSimStrategy.LETTERS: all_tiles[tile] += 1 potential_letters = [] for tile in all_tiles: for i in range(all_tiles[tile] - used_tiles_dict[tile]): potential_letters.append(tile) next_rack = [] for i in range(min(ShortMonteCarloSimStrategy.RACK_SIZE, len(potential_letters))): added_tile = random.choice(potential_letters) next_rack += added_tile potential_letters.remove(added_tile) return next_rack ''' Start the simulation from a move to 2-ply forward in the game. The move is placed on the board, the agent's rack is refilled, and we move on to the opponent's simualted move. ''' def simulate(self, move): self.current_initial_move = move start_square = move.start_square word = move.word direction = move.direction # Remove tiles from my rack and then refill my_rack = copy.deepcopy(self.my_rack) start_row = start_square[0] start_column = start_square[1] if move.direction == "across": for i in range(start_column, start_column + len(move.word)): if self.board.square(start_row, i).tile is None: if move.word[i - start_column] not in my_rack: my_rack.remove('?') else: my_rack.remove(move.word[i - start_column]) else: for i in range(start_row, start_row + len(move.word)): if self.board.square(i, start_column).tile is None: if move.word[i - start_row] not in my_rack: my_rack.remove('?') else: my_rack.remove(move.word[i - start_row]) # place move on board self.board.place_word(start_square, word, direction) # update affected cross sets self.board.update_cross_set(start_square, direction, self.dictionary) other_direction = "across" if direction == "down" else "down" coordinate = start_square for _ in word: self.board.update_cross_set(coordinate, other_direction, self.dictionary) coordinate = self.board.offset(coordinate, direction, 1) self.move_to_score_differential[self.current_initial_move] += move.score my_new_rack = self.get_refilled_rack(my_rack) self.simulate_opponent_move(my_new_rack) ''' Simulate the opponent's move given that the agent has just placed a word on the board and refilled their rack. ''' def simulate_opponent_move(self, my_rack): # set up opponent's plausible next rack opponent_rack = self.find_plausible_opponent_rack(my_rack) across_moves = self.board.find_best_moves(opponent_rack, "across", self.dictionary, self.tiles) down_moves = self.board.find_best_moves(opponent_rack, "down", self.dictionary, self.tiles) moves = across_moves + down_moves if not moves: return move = moves[0] # Not random simulation but logical move instead start_square = move.start_square word = move.word direction = move.direction # Remove used letters from opponent rack start_row = start_square[0] start_column = start_square[1] if move.direction == "across": for i in range(start_column, start_column + len(move.word)): if self.board.square(start_row, i).tile is None: if move.word[i - start_column] not in opponent_rack: opponent_rack.remove('?') else: opponent_rack.remove(move.word[i - start_column]) else: for i in range(start_row, start_row + len(move.word)): if self.board.square(i, start_column).tile is None: if move.word[i - start_row] not in opponent_rack: opponent_rack.remove('?') else: opponent_rack.remove(move.word[i - start_row]) # place move on board self.board.place_word(start_square, word, direction) # update affected cross sets self.board.update_cross_set(start_square, direction, self.dictionary) other_direction = "across" if direction == "down" else "down" coordinate = start_square for _ in word: self.board.update_cross_set(coordinate, other_direction, self.dictionary) coordinate = self.board.offset(coordinate, direction, 1) # Since opponent made move, subtract their word's score from our score differential self.move_to_score_differential[self.current_initial_move] -= move.score self.simulate_my_final_move(my_rack) ''' Simulate agent's final move and add move's score to score differential for the associated original move. ''' def simulate_my_final_move(self, my_rack): across_moves = self.board.find_best_moves(my_rack, "across", self.dictionary, self.tiles) down_moves = self.board.find_best_moves(my_rack, "down", self.dictionary, self.tiles) moves = across_moves + down_moves if not moves: return move = moves[0] # Not random simulation but logical move instead self.move_to_score_differential[self.current_initial_move] += move.score ''' Return the best move from the current game state. The best move has the highest average score differential from its simulations. ''' def get_best_move(self): return max(self.move_to_score_differential.keys(), key = lambda move: self.move_to_score_differential[move] / self.move_to_visits[move]) ``` #### File: scrabble/scrabbler/strategy.py ```python import random class Strategy: ''' Class representing a player's Strategy. The three algorithms should be a subclass of this class and override the method choose move. ''' def choose_move(self, game, rack, score_diff, opponents_rack, dictionary): raise Exception('Method not defined!') class BaselineStrategy(Strategy): def choose_move(self, game, rack, score_diff, opponents_rack, dictionary): """ method that chooses a move based on this strategy""" # return the valid move with the highest score valid_moves = game.find_valid_moves(rack) if len(valid_moves) == 0: return None return valid_moves[0] class RandomStrategy(Strategy): """ Strategy Class that chooses a random move instead of the move resulting in the highest score """ def choose_move(self, game, rack, score_diff, opponents_rack, dictionary): # return the valid move with the highest score valid_moves = game.find_valid_moves(rack) if len(valid_moves) == 0: return None return random.choice(valid_moves) ```
{ "source": "Jfool97/API", "score": 3 }
#### File: login/CaptchaVtopBeta/parser.py ```python from PIL import Image import os def CaptchaParse(img): captcha="" dirs=os.listdir("Chars") img=img.convert('L') pix=img.load() for y in range(1,44): for x in range(1,179): if pix[x,y-1]==255 and pix[x,y]==0 and pix[x,y+1]==255: pix[x,y]=255 if pix[x-1,y]==255 and pix[x,y]==0 and pix[x+1,y]==255: pix[x,y]=255 if pix[x,y]!=255 and pix[x,y]!=0: pix[x,y]=255 for j in range(30,181,30): ch=img.crop((j-30,12,j,44)) pix1=ch.load() matches={} for i in dirs: match=0 black=0 pixx=0 im2=Image.open("Chars/"+i) im2=im2.convert('L') pix2=im2.load() for y in range(0,32): for x in range(0,30): ## if pix1[x,y]==pix2[x,y] and pix2[x,y]==(0,0,0): ## match+=1 ## if pix2[x,y]==(0,0,0): ## black+=1 ## if pix1[x,y]==(0,0,0): ## pixx+=1 if pix1[x,y]==pix2[x,y] and pix2[x,y]==0: match+=1 if pix2[x,y]==0: black+=1 if pix1[x,y]==0: pixx+=1 if float(match)/float(black)>=0.80: perc=float(match)/float(black) matches.update({perc:i[0].upper()}) try: captcha+=matches[max(matches.keys())] except ValueError: captcha+="0" ## img.save("testcaptcha\\"+captcha+".png") return captcha ##img=Image.open("2.png") ##print CaptchaParse(img) ```
{ "source": "jfoote/fuzzy-stack-hash-analysis", "score": 3 }
#### File: jfoote/fuzzy-stack-hash-analysis/bugs.py ```python import time, sys from launchpadlib.launchpad import Launchpad def has_stack_trace(bug): ''' Returns True if this bug report has an Apport-style stack trace attachment. Returns False otherwise. ''' for attachment in bug.attachments: if attachment.title == "Stacktrace.txt": return True return False launchpad = Launchpad.login_anonymously('hello-world', 'production') bfile = file("bugs.csv", "at") project_names = file("projects.txt", "rt").read().split("\n") total_projects = len(project_names) i = 0 start_time = time.time() # iterate over all projects and log Apport crash bug report info for project_name in project_names: try: print project_name pillar = launchpad.projects[project_name] bugs = pillar.searchTasks(status=["Fix Committed", "Fix Released"]) # ^ note: omit_duplicates is set to True by default for bug in bugs: # verify bug report was produced by Apport, w/ stack trace if not "crashed with" in bug.title.lower(): continue bug_id_str = str(bug).split("/")[-1] bug = launchpad.bugs[bug_id_str] if not has_stack_trace(bug): continue # collect duplication info for bug count = 1 if getattr(bug, "number_of_duplicates", False): count += bug.number_of_duplicates if bug.duplicate_of: dupe_of = str(bug.duplicate_of).split("/")[-1] else: dupe_of = "None" # log bug to csv file bfile.write(",".join([str(pillar).split("/")[-1], str(pillar), bug_id_str, str(bug), str(len(bugs)), str(count), dupe_of]) + "\n") i += 1 print "%d/%d, %f sec remaining" % (i, total_projects, (time.time()-start_time)/i * (total_projects-i)) sys.stdout.flush() except Exception as e: print "%s: %s" % (project_name, str(e)) print "done" ```
{ "source": "jfoote/trollbox", "score": 2 }
#### File: jfoote/trollbox/trollbox.py ```python import sys from functools import partial import PySide from PySide.QtGui import * from PySide.QtCore import Slot, Qt from argparse import ArgumentParser from trollbox.image_picker import ImagePicker from trollbox.image_downloader import ImageDownloader from trollbox.wordlogger import get_wordlogger class MainWindow(QMainWindow): def __init__(self, parent=None): ''' Define widgets, their layout, and signal/slot interactions ''' QMainWindow.__init__(self, parent) self.resize(800,600) centralWidget = QWidget(self) self.setCentralWidget(centralWidget) # Define widgets self.tagEdit = QLineEdit(centralWidget) self.tagEdit.setPlaceholderText("Current Image Tags") self.urlEdit = QLineEdit(centralWidget) self.urlEdit.setPlaceholderText("Current Image URL") self.urlEdit.setDisabled(True) saveButton = QPushButton("Save Selection", centralWidget) deleteButton = QPushButton("Delete Selection", centralWidget) self.searchEdit = QLineEdit(centralWidget) self.searchEdit.setPlaceholderText("Image Tag Search") self.liveCheckBox = ClearableCheckBox("WordLogger", centralWidget) self.clearSearchButton = QPushButton("Clear Filter", centralWidget) self.imagePicker = ImagePicker(centralWidget) self.getUrlEdit = QLineEdit(centralWidget) self.getUrlEdit.setPlaceholderText("Download Image URL") self.getUrlButton = QPushButton("Download URL", centralWidget) self.pasteUrlButton = QPushButton("Paste for Download", centralWidget) # Set layout layout = QGridLayout(centralWidget) layout.addWidget(self.imagePicker, 0, 0, 3, 5) layout.addWidget(QLabel("Selection:"), 5, 0) layout.addWidget(self.urlEdit, 5, 1) layout.addWidget(self.tagEdit, 5, 2) layout.addWidget(saveButton, 5, 3) layout.addWidget(deleteButton, 5, 4) layout.addWidget(QLabel("Search:"), 6, 0) layout.addWidget(self.searchEdit, 6, 1, 1, 2) layout.addWidget(self.liveCheckBox, 6, 3, 1, 1) layout.addWidget(self.clearSearchButton, 6, 4, 1, 1) layout.addWidget(QLabel("Download:"), 7, 0) layout.addWidget(self.getUrlEdit, 7, 1, 1, 2) layout.addWidget(self.getUrlButton, 7, 3, 1, 1) layout.addWidget(self.pasteUrlButton, 7, 4, 1, 1) # Let user search by tag self.searchEdit.textChanged.connect(self.imagePicker.setFilterTagsString) self.clearSearchButton.clicked.connect(self.clearSearch) # Reflect selection in tags and URL boxes self.imagePicker.selectedTagsStringChanged.connect(self.tagEdit.setText) self.imagePicker.selectedUrlChanged.connect(self.urlEdit.setText) # Enabling saving changes of tags to model saveButton.clicked.connect(self.saveTags) self.tagEdit.returnPressed.connect(saveButton.clicked) # Enable deleting selections from model deleteButton.clicked.connect(self.imagePicker.deleteSelected) self.imagePicker.preDelete.connect(self.tagEdit.clear) self.imagePicker.preDelete.connect(self.urlEdit.clear) self.imagePicker.preDelete.connect(self.showDeletedMessage) # Set up image downloading self.getUrlButton.clicked.connect(self.downloadImage) self.pasteUrlButton.clicked.connect(self.pasteUrl) # Enable wordlogging support self.wordlogger = get_wordlogger() if self.wordlogger: self.liveCheckBox.stateChanged.connect(self.toggleWordLogging) else: self.liveCheckBox.setEnabled(False) # Enable fast URL copying (this might be annoying) self.imagePicker.clicked.connect(self.copyUrl) self.statusBar().showMessage("Click an image to copy its URL") def showDeletedMessage(self): self.statusBar().showMessage("Deleted image") def clearSearch(self): self.searchEdit.setText("") self.statusBar().showMessage("Cleared search") def copyUrl(self): if self.imagePicker.selectedIndexes(): url = self.urlEdit.text() QApplication.clipboard().setText(url) print "copied URL to clipboard:", url self.statusBar().showMessage("Copied '%s'" % url) def pasteUrl(self): data = QApplication.clipboard().mimeData() if data.hasText(): self.getUrlEdit.setText(data.text()) else: self.statusBar().showMessage("Paste URL: No text on clipboard") print "Paste URL: No text on clipboard" self.statusBar().showMessage("Pasted URL") def toggleWordLogging(self, new_state): if (new_state == Qt.Checked) and not self.wordlogger.is_active(): # clicking into UI elements disables live search self.searchEdit.textEdited.connect(self.liveCheckBox.clear) self.urlEdit.textEdited.connect(self.liveCheckBox.clear) self.tagEdit.textEdited.connect(self.liveCheckBox.clear) self.getUrlEdit.textEdited.connect(self.liveCheckBox.clear) self.getUrlButton.clicked.connect(self.liveCheckBox.clear) self.pasteUrlButton.clicked.connect(self.liveCheckBox.clear) self.imagePicker.clicked.connect(self.liveCheckBox.clear) # start word logger thread self.wordlogger.start() self.wordlogger.wordEntered.connect(self.searchEdit.setText) else: # stop word logger thread self.wordlogger.stop() self.wordlogger.wordEntered.disconnect(self.searchEdit.setText) # disable connections to UI elements self.searchEdit.textEdited.disconnect(self.liveCheckBox.clear) self.urlEdit.textEdited.disconnect(self.liveCheckBox.clear) self.tagEdit.textEdited.disconnect(self.liveCheckBox.clear) self.getUrlEdit.textEdited.disconnect(self.liveCheckBox.clear) self.getUrlButton.clicked.disconnect(self.liveCheckBox.clear) self.pasteUrlButton.clicked.disconnect(self.liveCheckBox.clear) self.imagePicker.clicked.disconnect(self.liveCheckBox.clear) self.statusBar().showMessage("Toggled word logger") def downloadImage(self): downloader = ImageDownloader(self) downloader.failure.connect(self.showDownloadError) downloader.success.connect(self.imagePicker.addImage) downloader.success.connect(self.searchEdit.clear) url = self.getUrlEdit.text() downloader.get(url, self.imagePicker.getLocalFilepath(url)) self.statusBar().showMessage("Downloading %s" % url) def showDownloadError(self, message): mb = QMessageBox() mb.setText(message) mb.exec_() def saveTags(self): self.imagePicker.setTagsString(self.tagEdit.text()) self.statusBar().showMessage("Saved tags") class ClearableCheckBox(QCheckBox): @Slot() def clear(self): self.setChecked(False) if __name__ == "__main__": parser = ArgumentParser(description="A searchable database of imagse") parser.add_argument("-a", "--alwaysontop", action='store_true', help="Window always on top") args = parser.parse_args() app = QApplication(sys.argv) window = MainWindow() if args.alwaysontop: window.setWindowFlags(Qt.WindowStaysOnTopHint) window.show() sys.exit(app.exec_()) ``` #### File: trollbox/test/test_image_model.py ```python from unittest import TestCase from trollbox.image_model import ImageModel from PySide.QtGui import QApplication from PySide.QtCore import Qt import json, tempfile, os, subprocess app = None class Test_ImageModel(TestCase): def setUp(self): global app if not app: app = QApplication([]) def test_instantiation(self): temp_dir = tempfile.mkdtemp() model = ImageModel(troll_dir=temp_dir) self.assertEqual(model.rowCount(), 0) subprocess.call(["rm", "-rf", temp_dir]) def test_load(self): file_dir = os.path.dirname(os.path.realpath(__file__)) sample_path = os.path.join(file_dir, "data", "0") model = ImageModel(troll_dir=sample_path) index = model.index(0, 0) self.assertEqual(model.data(index, Qt.DisplayRole), "http://foo.bar") self.assertEqual(model.data(index, ImageModel.TagRole), ["tng", "book"]) index = model.index(1, 0) self.assertEqual(model.data(index, ImageModel.TagRole), ["koop", "postmaster"]) def test_addImage(self): # create a troll box in a temp dir and add an image from the "0" test # data set file_dir = os.path.dirname(os.path.realpath(__file__)) sample_path = os.path.join(file_dir, "data", "0", "images", "book.jpg") temp_dir = tempfile.mkdtemp() try: model = ImageModel(troll_dir=temp_dir) model.addImage("http://foo.bar", ["tng"], sample_path) index = model.index(0, 0) self.assertEqual(model.data(index, Qt.DisplayRole), "http://foo.bar") finally: subprocess.call(["rm", "-rf", temp_dir]) def test_save(self): # create a troll box in a temp dir and add an image from the "0" test # data set, save it, and verify another model picks up the changes file_dir = os.path.dirname(os.path.realpath(__file__)) sample_path = os.path.join(file_dir, "data", "0", "images", "book.jpg") temp_dir = tempfile.mkdtemp() try: model = ImageModel(troll_dir=temp_dir) model.addImage("http://foo.bar", ["tng"], sample_path) model_b = ImageModel(troll_dir=temp_dir) self.assertEqual(model_b.data(model.index(0, 0), Qt.DisplayRole), "http://foo.bar") finally: subprocess.call(["rm", "-rf", temp_dir]) def test_setData(self): # create a troll box in a temp dir, add an image from the "0" test # data set, and modify it via setData file_dir = os.path.dirname(os.path.realpath(__file__)) sample_path = os.path.join(file_dir, "data", "0", "images", "book.jpg") temp_dir = tempfile.mkdtemp() try: model = ImageModel(troll_dir=temp_dir) model.addImage("http://foo.bar", ["tng"], sample_path) self.assertEqual(model.data(model.index(0, 0), Qt.DisplayRole), "http://foo.bar") model.setData(model.index(0, 0), "http://bar.bar", Qt.DisplayRole) self.assertEqual(model.data(model.index(0, 0), Qt.DisplayRole), "http://bar.bar") sample_path = os.path.join(file_dir, "data", "0", "images", "koop.jpg") model.setData(model.index(0, 0), sample_path, Qt.DecorationRole) # no good way to check icon currently finally: subprocess.call(["rm", "-rf", temp_dir]) def test_delete(self): # copy "0" test troll box to temp dir, delete from it file_dir = os.path.dirname(os.path.realpath(__file__)) data_path = os.path.join(file_dir, "data", "0") temp_dir = tempfile.mkdtemp() temp_model_dir = os.path.join(temp_dir, "0") sample_path = os.path.join(temp_model_dir, "images", "book.jpg") try: print data_path, temp_dir, sample_path subprocess.check_call(["cp", "-R", data_path, temp_dir]) model = ImageModel(troll_dir=temp_model_dir) self.assertEqual(model.data(model.index(0, 0), Qt.DisplayRole), "http://foo.bar") print subprocess.check_output(["file", sample_path]) self.assertTrue(os.path.exists(sample_path)) # make sure image has been removed from model and file is removed from disk model.deleteImage(model.index(0,0)) self.assertEqual(model.data(model.index(0, 0), Qt.DisplayRole), "http://foo.baz") self.assertFalse(os.path.exists(sample_path)) finally: subprocess.call(["rm", "-rf", temp_dir]) ```
{ "source": "jfoox/epiQC", "score": 3 }
#### File: epiQC/bin/combine_methylation_outputs.py ```python import gzip import sys sample_outname = sys.argv[1] biscov_files = sys.argv[2:] combined_data = {} def merger(biscov): for line in infile: if not 'track' in line: line = line.strip().split('\t') locus = line[0]+'.'+line[1]+'.'+line[2] CpG_values = (int(line[4]), int(line[5])) if locus not in combined_data: combined_data[locus] = CpG_values else: combined_data[locus] = tuple(map(sum, zip(combined_data[locus], CpG_values))) # process for biscov in biscov_files: print('incorporating ' + biscov + ' ...') if biscov.endswith('.gz'): with gzip.open(biscov, 'rt') as infile: merger(infile) else: with open(biscov, 'r') as infile: merger(infile) # output with gzip.open(sample_outname+'.bedGraph.gz', 'wt') as outfile: for locus in combined_data: try: pct = round(float(combined_data[locus][0]) / (float(combined_data[locus][0]) + float(combined_data[locus][1])) * 100.0, 3) outfile.write(locus.replace('.','\t') +'\t'+ str(pct) +'\t'+ str(combined_data[locus][0]) +'\t'+ str(combined_data[locus][1]) +'\n') except ZeroDivisionError: pass ```
{ "source": "jfoox/venninator", "score": 2 }
#### File: jfoox/venninator/settings.py ```python def init(): global user_evalues global allvsallfile global similarity global numthreads global filelist global species_id global evalues global outblastp_splitfiles global flatfiles_and_foldernums global flatfiles_foldernumber global flatfiles_added global current_numclusters user_evalues = '' allvsallfile = '' similarity = 70 numthreads = 8 species_id = {} filelist = [] evalues = [] outblastp_splitfiles = [] flatfiles_and_foldernums = {} flatfiles_foldernumber = 0 flatfiles_added = 0 current_numclusters = 0 ```
{ "source": "jforand/sqlalchemy-soft-delete", "score": 2 }
#### File: migrations/versions/2f31d469cdc4_users_and_messages_tables.py ```python revision = '2f<PASSWORD>cdc4' down_revision = None from alembic import op import sqlalchemy as sa def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.create_table('users', sa.Column('id', sa.Integer(), nullable=False), sa.Column('name', sa.String(length=128), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_table('messages', sa.Column('id', sa.Integer(), nullable=False), sa.Column('message', sa.String(length=256), nullable=True), sa.Column('user_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['user_id'], ['users.id'], ), sa.PrimaryKeyConstraint('id') ) ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_table('messages') op.drop_table('users') ### end Alembic commands ### ```
{ "source": "J-Ford/car_control", "score": 2 }
#### File: car_control/src/reset.py ```python import rospy from std_msgs.msg import Float64 from std_msgs.msg import Empty class CarReset(object): def __init__(self): rospy.init_node('reset_node', anonymous=False) self.sub = rospy.Subscriber("reset", Empty, self._callback) self.pub_speed = rospy.Publisher('throttle/setpoint', Float64, queue_size=5) self.pub_direction = rospy.Publisher('steering/setpoint', Float64, queue_size=5) def _callback(self, msg): rospy.logwarn(rospy.get_caller_id() + ": Controller Setpoints Reset to 0") self.pub_speed.publish(0.0) self.pub_direction.publish(0.0) if __name__ == '__main__': car_reset = CarReset() rospy.spin() ``` #### File: us_digital_encoders/src/encoder_interface.py ```python import rospy from us_digital_encoders.msg import USDigitalEncoders from std_msgs.msg import Float64 class EncoderInterface(object): def __init__(self, ticks_per_metre, ticks_per_degree): rospy.init_node('encoder_interface') self.ticks_per_metre = ticks_per_metre self.ticks_per_degree = ticks_per_degree self.last_msg_time = None self.sub = rospy.Subscriber('encoders', USDigitalEncoders, self._callback) self.pub_speed = rospy.Publisher('throttle/state/data', Float64, queue_size=5) self.pub_direction = rospy.Publisher('steering/state/data', Float64, queue_size=5) def _callback(self, msg): speed_ticks = float(msg.ticks[0]) direction_ticks = float(msg.ticks[1]) timestamp = msg.header.stamp.to_sec() if self.last_msg_time is None: self.last_msg_time = timestamp else: speed = self._ticks_to_speed(speed_ticks, timestamp) self.pub_speed.publish(speed) direction = self._ticks_to_direction(direction_ticks) self.pub_direction.publish(direction) self.last_msg_time = timestamp def _ticks_to_speed(self, ticks, timestamp): delta_metres = ticks / self.ticks_per_metre speed = delta_metres / (timestamp - self.last_msg_time) return speed def _ticks_to_direction(self, ticks): direction = ticks * self.ticks_per_degree return direction if __name__ == '__main__': encoder_interface = EncoderInterface(47363, 100) rospy.spin() ```
{ "source": "JForden/pylint-errors", "score": 3 }
#### File: pylint-errors/plerr/cli.py ```python import argparse import pathlib import sys from pygments import highlight from pygments.lexers import MarkdownLexer from pygments.formatters import TerminalFormatter from . import __version__ def main(): """Get a pylint error description by an error code.""" parser = argparse.ArgumentParser( description=( 'Get a verbose description of a pylint error by an error code.' ) ) parser.add_argument( 'code', metavar='error code', type=str, help='a pylint error code either r1710 or R1710' ) parser.add_argument( '-v', '--version', action='version', version=f'plerr v{__version__}' ) args = parser.parse_args() root = pathlib.Path(__file__).resolve().parent try: error = next(root.rglob(f'*{args.code.upper()}.md')) content = error.read_bytes() print(highlight(content, MarkdownLexer(), TerminalFormatter())) sys.exit(0) except StopIteration: print( f'Cannot find {args.code} pylint error by such error code.', file=sys.stderr ) sys.exit(1) ``` #### File: plerr/tests/test_cli_module.py ```python import io import pathlib import sys import unittest from unittest.mock import patch from plerr.cli import main ROOT = pathlib.Path(__file__).resolve().parent class TestPlErrModule(unittest.TestCase): def setUp(self): # Redirect stdout/stderr to mock objects to read later. self.stdout = patch('plerr.cli.sys.stdout', new=io.StringIO()) self.stderr = patch('plerr.cli.sys.stderr', new=io.StringIO()) self.stdout.start() self.stderr.start() def tearDown(self): self.stdout.stop() self.stderr.stop() @patch('plerr.cli.sys.argv', new=['plerr', 'r1710']) def test_plerr_error_getter_with_lower_case_letter(self): # Given: a command to get a description of a pylint error by an # error code with a lower case letter. # When: the command invokes. with self.assertRaises(SystemExit) as err: main() expected_stdout = (ROOT / 'command_output_fixture.txt').read_bytes() # Then: it produces a highlighted output to stdout of the given error # with the exit code 0. assert sys.stdout.getvalue().encode() == expected_stdout assert not sys.stderr.getvalue().encode() assert err.exception.code == 0 @patch('plerr.cli.sys.argv', new=['plerr', 'R1710']) def test_plerr_error_getter_with_capital_letter(self): # Given: a command to get a description of a pylint error by an # error code with a capital letter. # When: the command invokes. with self.assertRaises(SystemExit) as err: main() expected_stdout = (ROOT / 'command_output_fixture.txt').read_bytes() # Then: it produces a highlighted output to stdout of the given error # with the exit code 0. assert sys.stdout.getvalue().encode() == expected_stdout assert not sys.stderr.getvalue().encode() assert err.exception.code == 0 @patch('plerr.cli.sys.argv', new=['plerr', 'R0000']) def test_plerr_non_existent_error(self): # Given: a command to get a description of a pylint error with a # non-existent error code. # When: the command invokes. with self.assertRaises(SystemExit) as err: main() expected_stderr = ( b'Cannot find R0000 pylint error by such error code.\n' ) # Then: it produces an error message to stderr with the exit code 1. assert sys.stderr.getvalue().encode() == expected_stderr assert not sys.stdout.getvalue().encode() assert err.exception.code == 1 ```
{ "source": "jforge/blog-serverless-ping-pong", "score": 2 }
#### File: blog-serverless-ping-pong/lambdas/common.py ```python import boto3 import time client = boto3.client('sns') def _publish(region: str, account: str, topic: str, msg: str) -> None: "publish a message to sns" client.publish(TopicArn=f'arn:aws:sns:{region}:{account}:{topic}', Message=msg) def publish(ctx, topic, msg) -> None: "publish a message to sns" region, account = determine_region_and_account(ctx) delay(1) _publish(region, account, topic, msg) def delay(x: int) -> None: "sleep for x seconds, to slow down the game a little" time.sleep(x) def determine_region_and_account(arn: str) -> (str, str): "returns the region and account from a given arn" xs = arn.split(':') return xs[3], xs[4] def dump_context(ctx) -> None: "Logs the lambda context" print( f""" function_name: {ctx.function_name} function_version: {ctx.function_version} invoked_function_arn: {ctx.invoked_function_arn} memory_limit_in_mb: {ctx. memory_limit_in_mb} aws_request_id: {ctx.aws_request_id} log_group_name: {ctx.log_group_name} log_stream_name: {ctx.log_stream_name} identity: {ctx.identity} """) ``` #### File: blog-serverless-ping-pong/lambdas/ping_function.py ```python if __package__ == 'lambdas': from lambdas.common import * else: from common import * started = False def handler(event, ctx) -> None: global started if event.get('detail-type'): if not started: print('Starting ping-pong') started = True publish(ctx.invoked_function_arn, 'ping-topic', 'ping') else: print('Already started ping-pong') else: print(f'Received: {event}, sending ping to ping-topic') publish(ctx.invoked_function_arn, 'ping-topic', 'ping') ``` #### File: blog-serverless-ping-pong/lambdas/pong_function.py ```python if __package__ == 'lambdas': from lambdas.common import * else: from common import * def handler(event, ctx): print(f'Received event: {event}, sending pong to pong-topic') publish(ctx.invoked_function_arn, 'pong-topic', 'pong') ``` #### File: blog-serverless-ping-pong/resolvers/s3_version.py ```python from sceptre.resolvers import Resolver from sceptre.resolvers.stack_output import StackOutput class S3Version(Resolver): NAME = "s3_version" def __init__(self, *args, **kwargs): super(S3Version, self).__init__(*args, **kwargs) def determine_stack_output(self, arg: str): return StackOutput(argument=arg, connection_manager=self.connection_manager, environment_config=self.environment_config, stack_config=self.stack_config, ).resolve() def determine_bucket_name(self, arg: str): if '::' in arg: return self.determine_stack_output(arg) else: return arg def resolve(self): """ Resolves the latest version of an object Usage: !s3_version stack_name::output_name/object_key :return: """ if self.argument: s3_bucket, s3_key = self.argument.split("/", 1) s3_bucket = self.determine_bucket_name(s3_bucket) print(f"[{self.NAME}] S3 bucket/key parsed from the argument -> s3_bucket={s3_bucket}, s3_key={s3_key}") elif "sceptre_user_data" in self.stack_config: code = self.stack_config.get("sceptre_user_data").get("Code", {}) s3_bucket, s3_key = [code.get("S3Bucket"), code.get("S3Key")] s3_bucket = self.determine_bucket_name(s3_bucket) print(f"[{self.NAME}] S3 bucket/key parsed from sceptre_user_data['Code'] -> s3_bucket={s3_bucket}, s3_key={s3_key}") else: raise Exception("S3 bucket/key could not be parsed nor from the argument, neither from sceptre_user_data['Code']") try: result = self.connection_manager.call( service="s3", command="head_object", kwargs={"Bucket": s3_bucket, "Key": s3_key}, ) version_id = result.get("VersionId") print("[{}] object s3://{}/{} latest version: {}".format(self.NAME, s3_bucket, s3_key, version_id)) return version_id except Exception as e: print(e) return '' ``` #### File: blog-serverless-ping-pong/tests/test_common.py ```python from lambdas.common import * def test_determine_region_and_account(): arn = 'arn:aws:lambda:eu-west-1:612483924670:function:serverless-ping-pong-serverless-pingp-PingFunction-16DJONH1PWZLU' assert determine_region_and_account(arn) == ('eu-west-1', '612483924670') ```
{ "source": "jforge/vaadin", "score": 3 }
#### File: vaadin/scripts/GeneratePostPublishReport.py ```python import argparse, requests parser = argparse.ArgumentParser(description="Post-publish report generator") parser.add_argument("version", type=str, help="Vaadin version that was just built") parser.add_argument("teamcityUrl", type=str, help="Address to the teamcity server") parser.add_argument("buildTypeId", type=str, help="The ID of this build step") parser.add_argument("buildId", type=str, help="ID of the build to generate this report for") parser.add_argument("projectId", type=str, help="The ID of this project") args = parser.parse_args() buildResultUrl = "http://{}/viewLog.html?buildId={}&tab=buildResultsDiv&buildTypeId={}".format(args.teamcityUrl, args.buildId, args.buildTypeId) (major, minor, maintenance) = args.version.split(".", 2) prerelease = "." in maintenance def checkUrlStatus(url): r = requests.get(url) return r.status_code == 200 def createTableRow(*columns): html = "<tr>" for column in columns: html += "<td>" + column + "</td>" return html + "</tr>" traffic_light = "<svg width=\"20px\" height=\"20px\" style=\"padding-right:5px\"><circle cx=\"10\" cy=\"10\" r=\"10\" fill=\"{color}\"/></svg>" def getTrafficLight(b): return traffic_light.format(color="green") if b else traffic_light.format(color="red") def checkArchetypeMetaData(archetypeMetadataUrl, version): archetype_metadata_request = requests.get(archetypeMetadataUrl) if archetype_metadata_request.status_code != 200: return createTableRow(traffic_light.format(color="black"), "Check archetype metadata: <a href='{url}'>unable to retrieve metadata from {url}</a>".format(url=archetypeMetadataUrl)) else: if "version=\"{version}\"".format(version=version) in archetype_metadata_request.content: return createTableRow(traffic_light.format(color="green"), "Check archetype metadata: <a href='{url}'>metadata is correct for {url}</a>".format(url=archetypeMetadataUrl)) else: return createTableRow(traffic_light.format(color="red"), "Check archetype metadata: <a href='{url}'>metadata seems to be incorrect for {url}</a>".format(url=archetypeMetadataUrl)) content = "<html><head></head><body><table>" tagOk = checkUrlStatus("https://github.com/vaadin/framework/releases/tag/{ver}".format(ver=args.version)) content += createTableRow(getTrafficLight(tagOk), "Tag ok on github.com") # Tag and pin build content += createTableRow("", "<a href=\"{url}\">Tag and pin build</a>".format(url=buildResultUrl)) # Traffic light for archetype metadata content += checkArchetypeMetaData("http://vaadin.com/download/eclipse-maven-archetypes.xml", args.version) if prerelease: content += checkArchetypeMetaData("http://vaadin.com/download/maven-archetypes-prerelease.xml", args.version) content += createTableRow("", "Optionally check that <a href=\"http://vaadin.com/download/maven-archetypes.xml\">old Eclipse metadata</a> still refers to Vaadin 7") content += createTableRow("", "Note that archetype metadata checks do not verify that the relevant sections are not commented out when changing from pre-release to stable and back!") content += createTableRow("", "Build and deploy new sampler if necessary") # Inform marketing and PO content += createTableRow("", "Inform marketing and PO about the release") # Link to version update in teamcity content += createTableRow("", "<a href=\"http://{}/admin/editProject.html?projectId={}&tab=projectParams\">Update vaadin.version.latest and vaadin.version.next parameters in TeamCity</a>".format(args.teamcityUrl, args.projectId)) # Link to GH release notes content += createTableRow("", "<a href=\"https://github.com/vaadin/framework/releases\">Finish and publish release notes in GH</a>") content += "</table></body></html>" with open("result/report.html", "wb") as f: f.write(content) ``` #### File: vaadin/scripts/GeneratePublishReportPart1.py ```python try: import requests except Exception as e: print("GeneratePublishReportPart1 depends on requests library. Install it with `pip install requests`") sys.exit(1) import argparse, cgi, re from os.path import exists, isdir from os import makedirs metadataChecks = { 'https://vaadin.com/download/LATEST7': '^7\..*', 'https://vaadin.com/download/VERSIONS_7': '^7\..*', 'https://vaadin.com/download/release/7.7/LATEST': '^7\..*', 'https://vaadin.com/download/LATEST': '^6\..*', 'https://vaadin.com/download/LATEST8': '^8\.1\..*', 'https://vaadin.com/download/PRERELEASES': '^{ver}' } parser = argparse.ArgumentParser(description="Post-publish report generator") parser.add_argument("version", type=str, help="Vaadin version that was just built") parser.add_argument("teamcityUrl", type=str, help="Address to the teamcity server") parser.add_argument("buildTypeId", type=str, help="The ID of this build step") parser.add_argument("buildId", type=str, help="ID of the build to generate this report for") args = parser.parse_args() traffic_light = "<svg width=\"20px\" height=\"20px\" style=\"padding-right:5px\"><circle cx=\"10\" cy=\"10\" r=\"10\" fill=\"{color}\"/></svg>" def getTrafficLight(b): return traffic_light.format(color="green") if b else traffic_light.format(color="red") resultPath = "result" if not exists(resultPath): makedirs(resultPath) elif not isdir(resultPath): print("Result path is not a directory.") sys.exit(1) (major, minor, maintenance) = args.version.split(".", 2) prerelease = "." in maintenance if prerelease: maintenance = maintenance.split('.')[0] def checkUrlContents(url, regexp): r = requests.get(url) return re.match(regexp, r.text) != None def checkUrlStatus(url): r = requests.get(url) return r.status_code == 200 metadataOk = True for url in metadataChecks: metadataOk = metadataOk and checkUrlContents(url, metadataChecks[url].format(ver=args.version)) tagOk = checkUrlStatus("https://github.com/vaadin/framework/releases/tag/{ver}".format(ver=args.version)) if not prerelease: downloadPageOk = checkUrlStatus("https://vaadin.com/download/release/{maj}.{min}/{ver}/".format(maj=major, min=minor, ver=args.version)) else: downloadPageOk = checkUrlStatus("https://vaadin.com/download/prerelease/{maj}.{min}/{maj}.{min}.{main}/{ver}".format(maj=major, min=minor, main=maintenance, ver=args.version)) content = """<html> <head></head> <body> <table> <tr><td>{metadataOk}</td><td>Metadata ok on vaadin.com</td></tr> <tr><td>{downloadPageOk}</td><td>Download folder on vaadin.com contains the version</td></tr> """.format(metadataOk=getTrafficLight(metadataOk), downloadPageOk=getTrafficLight(downloadPageOk)) mavenUrl = "" if not prerelease: mavenUrl = "http://repo1.maven.org/maven2/com/vaadin/vaadin-server/" content += "<tr><td></td><td><a href='{mvnUrl}'>Check {ver} is published to maven.org (might take a while)</td></tr>".format(ver=args.version, mvnUrl=mavenUrl) else: mavenUrl = "http://maven.vaadin.com/vaadin-prereleases/com/vaadin/vaadin-server/" content += "<tr><td></td><td><a href='{mvnUrl}'>Check {ver} is published as prerelease to maven.vaadin.com</td></tr>".format(ver=args.version, mvnUrl=mavenUrl) content += "<tr><td></td><td><a href=\"https://github.com/vaadin/framework/milestones\">Create milestone for next version in GitHub</a></td></tr>" #content += """ #<tr><td></td><td><a href="http://test.vaadin.com/{version}/run/LabelModes?restartApplication">Verify uploaded to test.vaadin.com</a></td></tr> #""".format(version=args.version) if not prerelease: content += '<tr><td></td><td><a href="http://vaadin.com/api">Verify API version list updated</a></td></tr>' content += "<tr><td></td><td>Run the generated tag_repositories.sh script</td></tr>" # close GitHub milestone content += "<tr><td></td><td><a href=\"https://github.com/vaadin/framework/milestones\">Close GitHub Milestone and create one for next version</a></td></tr>" # release notes content += "<tr><td></td><td><a href=\"https://github.com/vaadin/framework/releases/new\">Prepare release notes in GH</a></td></tr>" content += """ <tr><td></td><td><a href="http://{teamcityUrl}/viewLog.html?buildId={buildId}&buildTypeId={buildTypeId}&tab=dependencies"><h2>Start Post-Publish Release from dependencies tab</a></td></tr> </table> </body> </html>""".format(teamcityUrl=args.teamcityUrl, buildTypeId=args.buildTypeId, buildId=args.buildId, version=args.version) f = open("result/report.html", 'w') f.write(content) ```
{ "source": "jforissier/burn-boot", "score": 2 }
#### File: jforissier/burn-boot/hisi-idt.py ```python import os import os.path import serial, time import array import sys, getopt class bootdownload(object): ''' Hisilicon boot downloader >>> downloader = bootdownload() >>> downloader.download(filename) ''' # crctab calculated by <NAME>, Network Systems Corporation crctable = [ 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7, 0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef, 0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6, 0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de, 0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485, 0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d, 0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4, 0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc, 0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823, 0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b, 0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12, 0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a, 0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41, 0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49, 0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70, 0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78, 0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f, 0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067, 0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e, 0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256, 0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d, 0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405, 0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c, 0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634, 0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab, 0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3, 0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a, 0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92, 0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9, 0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1, 0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8, 0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0, ] startframe = { 'hi3716cv200':[0xFE,0x00,0xFF,0x01,0x00,0x00,0x00,0x04,0x00,0x00,0x02,0x01] } headframe = { 'hi3716cv200':[0xFE,0x00,0xFF,0x01,0x00,0x00,0x00,0x04,0x00,0x00,0x02,0x01] } bootheadaddress = { 'hi3716cv200':0xF9800800 } bootdownloadaddress = { 'hi3716cv200':0x07000000 } BOOT_HEAD_LEN = 0x4F00 MAX_DATA_LEN = 0x400 def __init__(self,chiptype,serialport): try: self.s = serial.Serial(port=serialport, baudrate=115200, timeout=1) except serial.serialutil.SerialException: #no serial connection self.s = None print("\nFailed to open serial!", serialport) sys.exit(2) self.chip = chiptype def __del__(self): if self.s != None: self.s.close() def calc_crc(self, data, crc=0): for char in data: crc = ((crc << 8) | ord(char)) ^ self.crctable[(crc >> 8) & 0xff] for i in range(0,2): crc = ((crc << 8) | 0) ^ self.crctable[(crc >> 8) & 0xff] return crc & 0xffff def getsize(self, filename): st = os.stat(filename) return st.st_size def sendframe(self, data, loop): for i in range(1, loop): self.s.flushOutput() self.s.write(data) self.s.flushInput() try: ack = self.s.read() if len(ack) == 1: if ack == chr(0xaa): return None except: return None print('failed') def sendstartframe(self): self.s.timeout =0.01 data = array.array('B', self.startframe[self.chip]).tostring() crc = self.calc_crc(data) data += chr((crc >> 8)&0xff) data += chr(crc&0xff) self.sendframe(data,10000) def sendheadframe(self,length,address): self.s.timeout = 0.03 self.headframe[self.chip][4] = (length>>24)&0xff self.headframe[self.chip][5] = (length>>16)&0xff self.headframe[self.chip][6] = (length>>8)&0xff self.headframe[self.chip][7] = (length)&0xff self.headframe[self.chip][8] = (address>>24)&0xff self.headframe[self.chip][9] = (address>>16)&0xff self.headframe[self.chip][10] = (address>>8)&0xff self.headframe[self.chip][11] = (address)&0xff data = array.array('B', self.headframe[self.chip]).tostring() crc = self.calc_crc(data) data += chr((crc >> 8)&0xff) data += chr(crc&0xff) self.sendframe(data,16) def senddataframe(self,seq,data): self.s.timeout = 0.15 head = chr(0xDA) head += chr(seq&0xFF) head += chr((~seq)&0xFF) data = head + data crc = self.calc_crc(data) data += chr((crc >> 8)&0xff) data += chr(crc&0xff) self.sendframe(data,32) def sendtailframe(self,seq): data = chr(0xED) data += chr(seq&0xFF) data += chr((~seq)&0xFF) crc = self.calc_crc(data) data += chr((crc >> 8)&0xff) data += chr(crc&0xff) self.sendframe(data,16) def senddata(self, data, address): length=len(data) self.sendheadframe(length,address) seq=1 while length > self.MAX_DATA_LEN: self.senddataframe(seq,data[(seq-1)*self.MAX_DATA_LEN:seq*self.MAX_DATA_LEN]) seq = seq+1 length = length-self.MAX_DATA_LEN self.senddataframe(seq,data[(seq-1)*self.MAX_DATA_LEN:]) self.sendtailframe(seq+1) def download(self, filename1, filename2): f=open(filename1,"rb") data = f.read() f.close() print('Sending', filename1, '...') self.senddata(data,self.bootheadaddress[self.chip]) print('Done\n') if filename2: f=open(filename2,"rb") data = f.read() f.close() print('Sending', filename2, '...') self.senddata(data,self.bootdownloadaddress[self.chip]) print('Done\n') def burnboot(chiptype, serialport, filename1, filename2=''): downloader = bootdownload(chiptype, serialport) downloader.download(filename1, filename2) def startterm(serialport=0): try: miniterm = Miniterm( serialport, 115200, 'N', rtscts=False, xonxoff=False, echo=False, convert_outgoing=2, repr_mode=0, ) except serial.SerialException as e: sys.stderr.write("could not open port %r: %s\n" % (port, e)) sys.exit(1) miniterm.start() miniterm.join(True) miniterm.join() def main(argv): ''' img2 = 'fastboot2.img' ''' img1 = 'fastboot1.img' img2 = '' dev = ''; dev1 = '/dev/serial/by-id/usb-䕇䕎䥎_㄰㌲㔴㜶㤸-if00-port0' dev2 = '/dev/serial/by-id/pci-䕇䕎䥎_㄰㌲㔴㜶㤸-if00-port0' try: opts, args = getopt.getopt(argv,"hd:",["img1=","img2="]) except getopt.GetoptError: print('hisi-idt.py -d device --img1 <fastboot1> --img2 <fastboot2>') sys.exit(2) for opt, arg in opts: if opt == '-h': print('hisi-idt.py -d device --img1 <fastboot1> --img2 <fastboot2>') sys.exit() elif opt in ("-d"): dev = arg elif opt in ("--img1"): img1 = arg elif opt in ("--img2"): img2 = arg if dev == '': if os.path.exists(dev1): dev = dev1 elif os.path.exists(dev2): dev = dev2 else: print('Device not detected under /dev/serial/by-id/. Please use -d.') sys.exit(3) print('+----------------------+') print(' Serial: ', dev) print(' Image1: ', img1) print(' Image2: ', img2) print('+----------------------+\n') if not os.path.isfile(img1): print("Image don't exists:", img1) sys.exit(1) if (img2): if not os.path.isfile(img2): print("Image don't exists:", img2) sys.exit(1) burnboot('hi3716cv200', dev, img1, img2) if __name__ == "__main__": main(sys.argv[1:]) ```
{ "source": "jforseth210/cattledatabase", "score": 2 }
#### File: jforseth210/cattledatabase/main.py ```python import json import re import subprocess import socket import contextlib import io import sys import os import platform import time import logging import urllib.parse from getpass import getpass import argparse # Trying to get this installed on Windows is agnonizing # This might help: https://github.com/miniupnp/miniupnp/issues/159 import miniupnpc import requests from flask import Flask, render_template, request, redirect, Markup from jinja2 import Environment, BaseLoader from flask_simplelogin import SimpleLogin, login_required import click import werkzeug.security from models import * from search_functions import * from setup_utils import * from sensitive_data import SECRET_KEY from api import api from api_cows import api_cows from api_events import api_events from api_transactions import api_transactions from cows import cows from events import events from transactions import transactions if getattr(sys, 'frozen', False): template_folder = os.path.join(sys._MEIPASS, 'templates') static_folder = os.path.join(sys._MEIPASS, 'static') app = Flask(__name__, template_folder=template_folder, static_folder=static_folder) else: app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///cattle.db' app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False app.config['SECRET_KEY'] = SECRET_KEY app.register_blueprint(api, url_prefix='/api') app.register_blueprint(api_cows, url_prefix='/api/cows') app.register_blueprint(api_events, url_prefix='/api/events') app.register_blueprint(api_transactions, url_prefix='/api/transactions') app.register_blueprint(cows, url_prefix='/cows') app.register_blueprint(events, url_prefix='/events') app.register_blueprint(transactions, url_prefix='/transactions') db.init_app(app) app.jinja_env.globals['COW_SEXES'] = COW_SEXES app.jinja_env.globals['COW_SEXES_FEMALE'] = COW_SEXES_FEMALE app.jinja_env.globals['COW_SEXES_FEMALE_POSSIBLE_PARENTS'] = COW_SEXES_FEMALE_POSSIBLE_PARENTS app.jinja_env.globals['COW_SEXES_FEMALE_IMPOSSIBLE_PARENTS'] = COW_SEXES_FEMALE_IMPOSSIBLE_PARENTS app.jinja_env.globals['COW_SEXES_MALE'] = COW_SEXES_MALE app.jinja_env.globals['COW_SEXES_MALE_POSSIBLE_PARENTS'] = COW_SEXES_MALE_POSSIBLE_PARENTS app.jinja_env.globals['COW_SEXES_MALE_IMPOSSIBLE_PARENTS'] = COW_SEXES_MALE_IMPOSSIBLE_PARENTS def login_checker(provided_user): with open("config.json", "r") as file: config_string = file.read() config = json.loads(config_string) users = config["users"] for user in users: if provided_user["username"] == user["username"] and werkzeug.security.check_password_hash(user["hashed_password"], provided_user["password"]): return True return False messages = { 'login_success': 'Logged In', 'login_failure': 'Login Failed', 'is_logged_in': 'Logged In!', 'logout': 'Logged Out', 'login_required': 'Please log in first', 'access_denied': 'You don\'t have access to this page', 'auth_error': 'Something went wrong: {0}' } SimpleLogin(app, login_checker=login_checker, messages=messages) @app.route("/") @login_required def home(): return redirect("/cows") @app.route('/calendar/events/api') def event_api(): events = Event.query.all() formatted_events = [] for event in events: cow_string = ", ".join(cow.tag_number for cow in event.cows) formatted_event = { 'title': event.name + ": " + cow_string, 'start': event.date, 'id': event.event_id } formatted_events.append(formatted_event) return json.dumps(formatted_events) @app.route("/search") @login_required def search(): # Arguments query = request.args.get("q") # What kind of things are we searching for? types = determine_types(request) argument_dict = {"types": request.args.getlist("type")} if "Cow" in types: argument_dict.update({ "tags": request.args.getlist("tag"), "sexes": request.args.getlist("sex"), "owners": request.args.getlist("owner"), "sires": request.args.getlist("sire"), "dams": request.args.getlist("dam") }) if "Event" in types: argument_dict.update({ "dates": request.args.getlist("date"), "event_names": request.args.getlist("event_name") }) if "Transaction" in types: argument_dict.update({ "transaction_names": request.args.getlist("transaction_name"), "prices": request.args.getlist("price") }) unique_values = get_unique_values() results = get_results(types, argument_dict, query) # TODO: Fix this mess if types == ["Transaction"]: if argument_dict["prices"] == ["Low to High"]: for i in results: print(i.body) results.sort(key=lambda x: float( re.search("\$.\d+.\d+", x.body).group().strip("$"))) else: results.sort(key=lambda x: float( re.search("\$.\d+.\d+", x.body).group().strip("$")), reverse=True) # Send it return render_template("search.html", query=query, results=results, unique_values=unique_values, checked_values=argument_dict) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--headless", action="store_true", help="Run the server without opening it in browser") parser.add_argument("--show_log", action="store_true", help="Show default flask server information") args = parser.parse_args() SHOW_SERVER = not args.show_log app.debug = True if getattr(sys, 'frozen', False) or SHOW_SERVER: show_server(args.headless) app.debug = False # Silence server log log = logging.getLogger('werkzeug') log.setLevel(logging.ERROR) def secho(text, file=None, nl=None, err=None, color=None, **styles): pass def echo(text, file=None, nl=None, err=None, color=None, **styles): pass click.echo = echo click.secho = secho app.run(debug=app.debug, host="0.0.0.0") ``` #### File: jforseth210/cattledatabase/transactions.py ```python from flask import Blueprint, render_template, request, redirect from flask_simplelogin import login_required from models import Transaction, Cow, Event, db, get_cow_from_tag transactions = Blueprint('transactions', __name__, template_folder='templates') @transactions.route("/") @login_required def show_transactions(): transactions = Transaction.query.all() total = sum( transaction.price * len(transaction.cows) for transaction in transactions ) formatted_total = "${:,.2f}".format(total) return render_template("transactions.html", transactions=transactions, formatted_total=formatted_total, unformatted_total=total) @transactions.route("/transaction/<transaction_id>") @login_required def show_transaction(transaction_id): transaction = Transaction.query.filter_by( transaction_id=transaction_id).first() if not transaction: return redirect(request.referrer) return render_template("transaction.html", transaction=transaction, all_cows=Cow.query.all()) @ transactions.route("/new", methods=["POST"]) @login_required def new_transaction(): event_id = request.form.get('event_id') event = Event.query.filter_by(event_id=event_id).first() price = request.form.get('price') name = request.form.get('name') tofrom = request.form.get('tofrom') description = request.form.get('description') new_transaction_object = Transaction( price=price, name=name, description=description, event_id=event_id, tofrom=tofrom, cows=event.cows ) db.session.add(new_transaction_object) db.session.commit() return redirect(request.referrer+"#transactions") @transactions.route("/update_cows", methods=["POST"]) @login_required def transaction_add_remove_cows(): all_cows = request.form.getlist("all_cows") new_cow = request.form.get("new_cow") transaction_id = request.form.get("transaction") transaction = Transaction.query.filter_by( transaction_id=transaction_id).first() if all_cows: transaction.cows = [get_cow_from_tag(cow) for cow in all_cows] elif new_cow: transaction.cows.append(get_cow_from_tag(new_cow)) db.session.commit() return redirect(request.referrer) @ transactions.route("/change_price", methods=["POST"]) @login_required def transaction_change_price(): transaction_id = request.form.get("transaction_id") price = request.form.get("price") transaction = Transaction.query.filter_by( transaction_id=transaction_id).first() transaction.price = price db.session.commit() return redirect(request.referrer) @ transactions.route("/change_description", methods=["POST"]) @login_required def transaction_change_description(): transaction_id = request.form.get("transaction_id") description = request.form.get("description") transaction = Transaction.query.filter_by( transaction_id=transaction_id).first() transaction.description = description db.session.commit() return redirect(request.referrer) @ transactions.route("/change_name", methods=["POST"]) @login_required def transaction_change_name(): transaction_id = request.form.get("transaction_id") name = request.form.get("name") transaction = Transaction.query.filter_by( transaction_id=transaction_id).first() transaction.name = name db.session.commit() return redirect(request.referrer) @ transactions.route("/change_to_from", methods=["POST"]) @login_required def transaction_change_to_from(): transaction_id = request.form.get("transaction_id") tofrom = request.form.get("tofrom") transaction = Transaction.query.filter_by( transaction_id=transaction_id).first() transaction.tofrom = tofrom db.session.commit() return redirect(request.referrer) @transactions.route("/delete", methods=["POST"]) @login_required def delete_transaction(): transaction_id = request.form.get("transaction_id") transaction = Transaction.query.filter_by( transaction_id=transaction_id).first() db.session.delete(transaction) db.session.commit() return redirect('/transactions') ```
{ "source": "jforv/prmgt", "score": 2 }
#### File: doctype/unit_user/unit_user_dashboard.py ```python from frappe import _ def get_data(): return { 'heatmap': False, 'heatmap_message': _('This is based on transactions against this Patient. See timeline below for details'), # 'fieldname': 'tenant', 'transactions': [ { 'label': _('Facility and Request'), 'items': ['Facility Booking', 'Facility', 'Special Request'] }, { 'label': _('Sales Invoice and Complaint'), 'items': ['Sales Invoice', 'Item'] } ] } ```
{ "source": "jforv/property", "score": 2 }
#### File: doctype/meter_reading/meter_reading.py ```python from __future__ import unicode_literals import frappe from frappe.model.document import Document from frappe import msgprint, throw, _ class MeterReading(Document): pass def get_submeters(self): r = frappe.db.sql("""SELECT u.name as unit, b.previous_reading as previous_reading, b.name as unit_charge """+ """FROM `tabUnit Charge` b, tabUnit u, tabCharge c, `tabMain Meter` m"""+ " WHERE u.name = b.parent AND b.charge = c.name AND c.charge_type = 'Meter' AND b.main_meter = m.name AND m.name = %s",self.main_meter, as_dict = 1) return r def on_submit(self): l = frappe.db.sql("""SELECT unit_charge, current_reading FROM `tabUnit Meter Reading` b, `tabMeter Reading` a """+ """WHERE a.name = b.parent AND a.name = %s""", self.name,as_dict=1) for d in l: frappe.db.sql("""UPDATE `tabUnit Charge` SET previous_reading = %s """+ """WHERE name = %s""", (d.current_reading, d.unit_charge)) ```
{ "source": "jfowl/badge-2021", "score": 3 }
#### File: badge-2021/software/game_of_life.py ```python from emulator import SSD1306_I2C BLACK = 0 WHITE = 1 def rng(): 'Return a pseudo random byte value' try: # http://docs.micropython.org/en/latest/library/uos.html?highlight=uos#uos.urandom import os return os.urandom(1)[0] except: print('unable to use urandom. Trying other RNG') try: import random return random.randbytes(1)[0] except: print('Unable to use randbytes') class GameOfLife: """Conway's Game of Life""" MAX_ITERATIONS = 100 INTITIAL_CELL_COVERAGE = 0.2 def __init__(self): self.iterations = 0 self.oled = SSD1306_I2C() self.cells = [] for x in range(self.oled.width): self.cells.append([0] * self.oled.height) self.reset() def reset(self): self.iterations = 0 for i in range( int(self.oled.width * self.oled.height * GameOfLife.INTITIAL_CELL_COVERAGE)): x = int(rng() / 255 * (self.oled.width-1)) y = int(rng() / 255 * (self.oled.height-1)) self.cells[x][y] = 1 def _iterate(self): new_board = [] for x in range(gol.oled.width): new_board.append([0] * self.oled.height) for y in range(self.oled.height): for x in range(self.oled.width): num_neighbours = self._neighbours(x,y) if self.cells[x][y]==1 and num_neighbours in (2, 3): new_board[x][y] = 1 elif self.cells[x][y]==0 and num_neighbours==3: new_board[x][y] = 1 else: new_board[x][y] = 0 return new_board def on_board(self, x, y): return 0 <= x < self.oled.width and 0 <= y < self.oled.height def _neighbours(self, x,y): r = [-1, 0, 1] num_neighbours = 0 for dx,dy in [(i,j) for i in r for j in r if not i == j == 0]: if self.on_board(x+dx,y+dy) and self.cells[x+dx][y+dy] == 1: num_neighbours += 1 return num_neighbours def prepare(self): self.cells = self._iterate() self.iterations += 1 if self.iterations > GameOfLife.MAX_ITERATIONS: self.reset() def handle_px(self, x, y): if self.cells[x][y]==1: color = WHITE else: color = BLACK self.oled.pixel(x,y, color) gol = GameOfLife() while True: gol.prepare() for y in range(gol.oled.height): for x in range(gol.oled.width): gol.handle_px(x,y) gol.oled.fill_rect(0,0, 90, 10, BLACK) gol.oled.text(str(gol.iterations) + " - Game Of Life", 0,0, WHITE) gol.oled.show() ```
{ "source": "jfozard/HEI10", "score": 2 }
#### File: HEI10/plotting/kymo_tc.py ```python import sys import numpy as np import matplotlib.pyplot as plt from scipy.interpolate import interp1d import matplotlib as mpl mpl.rcParams.update({ #'figure.figsize': (6.0,4.0), 'figure.facecolor': 'none', #(1,1,1,0), # play nicely with white background in the Qt and notebook 'axes.facecolor': 'none', 'figure.edgecolor': 'none', 'font.size': 20, # 12pt labels get cutoff on 6x4 logplots, so use 10pt. 'figure.dpi': 72, # 72 dpi matches SVG/qtconsole 'figure.subplot.bottom' : .15, # 10pt still needs a little more room on the xlabel 'axes.labelsize':28, 'savefig.edgecolor': 'none', 'savefig.facecolor': 'none', 'svg.fonttype' : 'none', }) # Simulation time-course plotting HEI10 amount at each RI over time def main(): u = [] with open(sys.argv[1], 'r') as f: try: h = next(f) L, T = map(float, h.split(',')) h = next(f) x = list(map(float, h.split(','))) while True: l = next(f) u.append(list(map(float, l.split(',')))) except StopIteration: pass u = np.array(u) m = 100 T = T/60/60 n_dt, N = u.shape t_data = np.linspace(0, T, n_dt) plt.figure() for i in range(N): v = u[:, i] plt.plot(t_data, v) plt.ylabel('Intensity (arb. units)') plt.xlabel('Time (hr)') plt.savefig(sys.argv[2]) # plt.show() main() ``` #### File: HEI10/source_data_scripts/data_make_table.py ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt import os import os import os.path from imageio import imread from scipy.signal import find_peaks, find_peaks_cwt from scipy.signal import peak_prominences import scipy.linalg as la from functools import reduce import pickle alpha_max = 0.4 def pc(peaks, alpha=alpha_max, criterion='max'): pos, v, l = peaks idx = (v>=alpha*np.max(v)) return np.array(pos[idx]), v[idx], l ## Analysis of each dataset def analyse_data(A, data): all_peak_data = data['all_peak_data'] o_hei10_traces = data['o_hei10_traces'] orig_trace_lengths = data['orig_trace_lengths'] stages = [] cell_id = [] all_quality = [] all_good = [] chromosome_id = [] sig_peaks = [] new_peak_hei10 = [] orig_peak_hei10 = [] trace_median_hei10 = [] trace_sum_hei10 = [] ### For each cell in turn, process the for i in range(0, len(A), 5): stage = A.iloc[(i//5)*5].Stage if(type(stage)==str): stage = stage.lower() stages += [stage]*5 cell_id += [i//5]*5 all_quality += [(A.iloc[i:i+5]['quality']==1).all()]*5 all_good += ['y' if (A.iloc[i:i+5]['good trace?']=='y').all() else 'n']*5 chromosome_id += list(range(5)) median_all = np.median(np.concatenate([o_hei10_traces[k] for k in range(i,i+5)])) std_all = np.std(np.concatenate([o_hei10_traces[k] for k in range(i,i+5)])) for j in range(i, i+5): p, h, l = all_peak_data[j] hei10=np.array(o_hei10_traces[j]) if len(p): pp = pc((p, h, l), alpha_max) orig_peak_hei10.append(hei10[pp[0]]) sig_peaks.append(pp[0]) else: sig_peaks.append([]) orig_peak_hei10.append([]) trace_median_hei10.append(np.median(hei10)) trace_sum_hei10.append(np.sum(hei10)) print(len(A.index), len(stages)) A['Stage']=stages A['original_trace_pixel_length']=list(orig_trace_lengths.values()) A['trace_pixel_length']=list(v[2] for v in all_peak_data.values()) A['all_quality']=all_quality A['all_good']=all_good A['num_foci']=[len(p) for p in sig_peaks] A['trace_median_hei10']=trace_median_hei10 A['trace_sum_hei10']=trace_sum_hei10 # Sort the 5 chromosomes in each cell by length # Fo each cell, sort the chromosomes in order def analyse_SC_lengths(df): ch_sort_idx = [] for j, i in enumerate(df.index[::5]): p = df.iloc[5*j:5*j+5] s = sorted(p['SC length']) sidx = np.argsort(p['SC length'].to_numpy()) rank = np.zeros((5,), dtype=np.int32) for k in range(5): rank[sidx[k]] = k ch_sort_idx += list(rank) return ch_sort_idx print(len(A.index), len(analyse_SC_lengths(A))) A['ch_sort_idx'] = analyse_SC_lengths(A) cell_total_SC_length = [] for i in range(0, len(A), 5): lengths = A['SC length'][i:i+5] tot_length = np.sum(lengths) cell_total_SC_length += [tot_length]*5 A['cell_total_SC_length'] = cell_total_SC_length norm_lengths = [] for i in range(0, len(A), 5): lengths = A['SC length'][i:i+5] lengths = lengths/np.sum(lengths) norm_lengths+= list(lengths) A['norm_lengths']=norm_lengths # Now get sig peak positions and intensities foci_data = [] for i in range(len(A)): foci_pos = sig_peaks[i] foci_hei10 = orig_peak_hei10[i] data_line = {} for j, (p, h) in enumerate(zip(foci_pos, foci_hei10)): data_line[f'pos_{j}'] = p data_line[f'HEI10_{j}'] = h foci_data.append(data_line) print(foci_data) fd = pd.DataFrame(foci_data) A = pd.concat([A, fd], axis=1) return A def process_data(csv_fn, pkl_fn, output_file, output_trace_file, specific_traces, trace_output_paths): # Read CSV file with data specification A = pd.read_csv(csv_fn) # Remove some unused columns and rename one field A = A.drop(A.columns[[6,7,8,9]], axis=1) A = A.drop(columns=[x for x in ('foci count', 'foci per chromosome', 'comments') if x in A]) A = A.rename(columns={'Plant ':'Plant'}) data = pickle.load(open(pkl_fn, 'rb')) print(data.keys()) print(data['orig_trace_lengths']) A = analyse_data(A, data) for i, v in data['all_peak_data'].items(): print(v) print(A.iloc[0]) A.to_csv(output_file) # Write original hei10 traces to file with open(output_trace_file, 'w') as f: for i, v in data['o_hei10_traces'].items(): f.write(', '.join(map(str, v)) + '\n') for i, fn in zip(specific_traces, trace_output_paths): with open(fn, 'w') as f: t = data['o_hei10_traces'][i] for v in t: f.write(f'{v}' + '\n') data_output_path = '../output/data_output/' process_data('../input_data/200406.csv', data_output_path+'test.pkl', '../source_data/fig2_cytology.csv', '../source_data/fig2_cytology_raw_traces.csv', [675, 664, 492], [f'../source_data/fig1a_HEI10_trace_{s}.csv' for s in ['upper', 'mid', 'lower']]) process_data('../input_data/OX.csv', data_output_path+'test_ox.pkl', '../source_data/fig3_cytology.csv', '../source_data/fig3_cytology_raw_traces.csv', [260], ['../source_data/fig3a_HEI10_trace.csv']) process_data('../input_data/UX.csv', data_output_path+'test_ux.pkl', '../source_data/fig4_cytology.csv', '../source_data/fig4_cytology_raw_traces.csv', [115], ['../source_data/fig4a_HEI10_trace.csv']) ```
{ "source": "jfozard/napari-manual-stack-project", "score": 2 }
#### File: napari-manual-stack-project/napari_manual_stack_project/_dock_widget.py ```python from napari_plugin_engine import napari_hook_implementation from qtpy.QtWidgets import QWidget, QHBoxLayout, QPushButton from magicgui import magic_factory from napari.layers import Image, Shapes def apply(image, points, axis): @magic_factory def example_magic_widget(img_layer: "napari.layers.Image"): print(f"you have selected {img_layer}") def widget_wrapper(): from napari.qt.threading import thread_worker @thread_worker def run_project(image, points, axis, method): if method == 'CNN': ar2 = apply(image, points, channel) else: ar2 = np.max(image, axis=axis) return ar2 @magicgui(call_button='run projection', layout='vertical', axis = dict(widget_type='SpinBox', label='axis', value=0), method = dict(widget_type='ComboBox', label ='method', choices=('rbf', 'maxproj'), value='rbf') ) def widget(#label_logo, viewer: napari.viewer.Viewer, image_layer: Image, point_layer: Points, axis, method): def _new_layers(result): viewer.add_image(result[0], name=image_layer.name + '_orig', visible=False) viewer.add_image(result[1], name=image_layer.name + '_mask', visible=False) viewer.add_image(result[2], name=image_layer.name + '_projected', visible=False) def _new_image(result): _new_layers(result) viewer.layers[-1].visible = True image_layer.visible = True widget.call_button.enabled = True image = image_layer.data cp_worker = run_project(image, points, axis, method) cp_worker.returned.connect(_new_image) cp_worker.start() @napari_hook_implementation def napari_experimental_provide_dock_widget(): # you can return either a single widget, or a sequence of widgets return widget_wrapper, {'name':'manual-stack-project'} ```
{ "source": "jfozard/scenic", "score": 2 }
#### File: scenic/dataset_lib/leaf_dataset.py ```python import functools from typing import Optional from absl import logging import jax.numpy as jnp from scenic.dataset_lib import dataset_utils from scenic.dataset_lib import datasets import tensorflow as from . import jf_leaves IMAGE_SIZE = [512, 512] def preprocess_example(example, dtype=tf.float32): """Preprocesses the given image. Args: example: dict; Example coming from TFDS. dtype: Tensorflow data type; Data type of the image. Returns: An example dict as required by the model. """ example_out = {} # For simplicity, just resize all images to the same shape: example_out['inputs'] = tf.image.resize( dataset_utils.normalize(example['image'], dtype), IMAGE_SIZE, 'bilinear') example_out['inputs'] = tf.cast(example_out['inputs'], dtype) example_out['label'] = tf.image.resize( example['segmentation_mask'], IMAGE_SIZE, 'nearest') example_out['label'] = tf.squeeze(example_out['label'], axis=2) example_out['label'] = tf.cast(example_out['label'], dtype) return example_out @datasets.add_dataset('jf_leaves') def get_dataset(*, batch_size, eval_batch_size, num_shards, dtype_str='float32', shuffle_seed=0, rng=None, dataset_configs=None, dataset_service_address: Optional[str] = None): """Returns generators for the Oxford Pet train, validation, and test set. Args: batch_size: int; Determines the train batch size. eval_batch_size: int; Determines the evaluation batch size. num_shards: int; Number of shards --> batch shape: [num_shards, bs, ...]. dtype_str: Data type of the image (e.g. 'float32'). shuffle_seed: int; Seed for shuffling the training data. rng: JAX rng key, which can be used for augmentation, shuffling, etc. dataset_configs: dict; Dataset specific configurations. dataset_service_address: If set, will distribute the training dataset using the given tf.data service at the given address. Returns: A dataset_utils.Dataset() which includes a train_iter, a valid_iter, a test_iter, and a dict of meta_data. """ del rng del dataset_configs dtype = getattr(tf, dtype_str) preprocess_ex = functools.partial(preprocess_example, dtype=dtype) logging.info('Loading train split of the leaf dataset.') train_ds, _ = dataset_utils.load_split_from_tfds( 'jf_leaves', batch_size, split='train', preprocess_example=preprocess_ex, shuffle_seed=shuffle_seed) if dataset_service_address: if shuffle_seed is not None: raise ValueError('Using dataset service with a random seed causes each ' 'worker to produce exactly the same data. Add ' 'config.shuffle_seed = None to your config if you ' 'want to run with dataset service.') logging.info('Using the tf.data service at %s', dataset_service_address) train_ds = dataset_utils.distribute(train_ds, dataset_service_address) logging.info('Loading test split of the leaf dataset.') eval_ds, _ = dataset_utils.load_split_from_tfds( 'jf_leaves', eval_batch_size, split='test', preprocess_example=preprocess_ex) maybe_pad_batches_train = functools.partial( dataset_utils.maybe_pad_batch, train=True, batch_size=batch_size, pixel_level=True) maybe_pad_batches_eval = functools.partial( dataset_utils.maybe_pad_batch, train=False, batch_size=eval_batch_size, pixel_level=True) shard_batches = functools.partial(dataset_utils.shard, n_devices=num_shards) train_iter = iter(train_ds) train_iter = map(dataset_utils.tf_to_numpy, train_iter) train_iter = map(maybe_pad_batches_train, train_iter) train_iter = map(shard_batches, train_iter) eval_iter = iter(eval_ds) eval_iter = map(dataset_utils.tf_to_numpy, eval_iter) eval_iter = map(maybe_pad_batches_eval, eval_iter) eval_iter = map(shard_batches, eval_iter) input_shape = (-1, IMAGE_SIZE[0], IMAGE_SIZE[1], 3) meta_data = { 'num_classes': 2, 'input_shape': input_shape, 'num_train_examples': dataset_utils.get_num_examples('jf_leaves', 'train'), 'num_eval_examples': dataset_utils.get_num_examples('jf_leaves', 'test'), 'input_dtype': getattr(jnp, dtype_str), 'target_is_onehot': False, } return dataset_utils.Dataset(train_iter, eval_iter, None, meta_data) ``` #### File: projects/vivit/trainer.py ```python import copy import functools from typing import Any, Dict, Tuple from absl import logging from clu import metric_writers from clu import periodic_actions from flax import jax_utils import jax import jax.numpy as jnp import jax.profiler import ml_collections import numpy as np from scenic.dataset_lib import dataset_utils from scenic.projects.vivit import evaluation_lib from scenic.projects.vivit import train_utils as vivit_train_utils from scenic.train_lib import lr_schedules from scenic.train_lib import optimizers from scenic.train_lib import pretrain_utils from scenic.train_lib import train_utils def train( *, rng: jnp.ndarray, config: ml_collections.ConfigDict, model_cls: Any, dataset: dataset_utils.Dataset, workdir: str, writer: metric_writers.MetricWriter, ) -> Tuple[train_utils.TrainState, Dict[str, Any], Dict[str, Any]]: """Main training loop lives in this function. Given the model class and dataset, it prepares the items needed to run the training, including the TrainState. Args: rng: Jax rng key. config: Configurations of the experiment. model_cls: Model class; A model has a flax_module, a loss_fn, and a metrics_fn associated with it. dataset: The dataset that has train_iter, eval_iter, meta_data, and optionally, test_iter. workdir: Directory for checkpointing. writer: CLU metrics writer instance. Returns: train_state that has the state of training (including current global_step, model_state, rng, and the optimizer), train_summary and eval_summary which are dict of metrics. These outputs are used for regression testing. """ lead_host = jax.process_index() == 0 # Build the loss_fn, metrics, and flax_model. model = model_cls(config, dataset.meta_data) is_multilabel_model = (config.model_name == 'vivit_multilabel_classification') get_confusion_matrix = (config.get('confusion_matrix_metrics', False) and not is_multilabel_model) # Initialize model. rng, init_rng = jax.random.split(rng) (params, model_state, num_trainable_params, gflops) = train_utils.initialize_model( model_def=model.flax_model, input_spec=[(dataset.meta_data['input_shape'], dataset.meta_data.get('input_dtype', jnp.float32))], config=config, rngs=init_rng) # Create optimizer. # We jit this, such that the arrays that are created are created on the same # device as the input is, in this case the CPU. Else they'd be on device[0]. optimizer = jax.jit( optimizers.get_optimizer(config).create, backend='cpu')( params) rng, train_rng = jax.random.split(rng) train_state = train_utils.TrainState( global_step=0, optimizer=optimizer, model_state=model_state, rng=train_rng, accum_train_time=0) start_step = train_state.global_step if config.checkpoint: train_state, start_step = train_utils.restore_checkpoint( workdir, train_state) if (start_step == 0 # Which means "no" checkpoint is restored! and config.get('init_from') is not None): restored_model_cfg = config.init_from.get('model_config') init_checkpoint_path = config.init_from.get('checkpoint_path') checkpoint_format = config.init_from.get('checkpoint_format', 'scenic') if checkpoint_format == 'scenic': restored_train_state = pretrain_utils.restore_pretrained_checkpoint( init_checkpoint_path, train_state, assert_exist=True) elif checkpoint_format == 'bigvision': restored_train_state = pretrain_utils.convert_bigvision_to_scenic_checkpoint( init_checkpoint_path, train_state) # Config dict in bigvision is not the same format as scenic. # Therefore, make sure config match the config of the loaded model! restored_model_cfg = copy.deepcopy(config) # The following is needed when the restored and target models used a # different classifier. As bigvision uses a different config dict, we have # to specify this manually. restored_model_cfg.model.classifier = config.init_from.get( 'classifier_type', 'token') train_state = model.init_from_train_state(train_state, restored_train_state, restored_model_cfg) # Free unnecessary memory. del restored_train_state elif start_step == 0: logging.info('Training completely from scratch.' 'Not restoring from any checkpoint.') # Replicate the optimzier, state, and rng. train_state = jax_utils.replicate(train_state) del params # Do not keep a copy of the initial params. # Calculate the total number of training steps. total_steps, steps_per_epoch = train_utils.get_num_training_steps( config, dataset.meta_data) # Get learning rate scheduler. learning_rate_fn = lr_schedules.get_learning_rate_fn(config) train_step_pmapped = jax.pmap( functools.partial( vivit_train_utils.train_step, flax_model=model.flax_model, learning_rate_fn=learning_rate_fn, loss_fn=model.loss_function, metrics_fn=model.get_metrics_fn('train'), config=config, debug=config.debug_train), axis_name='batch', # We can donate both buffers of train_state and train_batch. donate_argnums=(0, 1), ) eval_step_pmapped = jax.pmap( functools.partial( vivit_train_utils.eval_step, flax_model=model.flax_model, metrics_fn=model.get_metrics_fn('validation'), return_logits_and_labels=is_multilabel_model, return_confusion_matrix=get_confusion_matrix, debug=config.debug_eval), axis_name='batch', # We can donate the eval_batch's buffer. donate_argnums=(1,), ) log_eval_steps = config.get('log_eval_steps') or steps_per_epoch log_test_steps = 0 if config.dataset_configs.get('do_multicrop_test'): log_test_steps = int(steps_per_epoch * config.dataset_configs.log_test_epochs) test_step_pmapped = jax.pmap( functools.partial( vivit_train_utils.test_step, flax_model=model.flax_model, metrics_fn=model.get_metrics_fn('test'), n_clips=config.get('multicrop_clips_per_device', 2), debug=config.debug_eval), axis_name='batch', # We can donate the test_batch's buffer. donate_argnums=(1,), ) assert config.dataset_configs.test_batch_size == jax.local_device_count(), ( 'The per-host batch size must be equal to the number of local devices.' 'This ensures that each TPU device is processing different views of' 'the same original video.') total_test_steps = int( np.ceil(dataset.meta_data['num_test_examples'] / (config.get('dataset_configs.test_batch_size') * config.get('dataset_configs.num_test_clips') * jax.process_count()))) steps_per_test = config.get('steps_per_test') or total_test_steps if not log_eval_steps: raise ValueError("'log_eval_steps' should be specified in the config.") checkpoint_steps = config.get('checkpoint_steps') or log_eval_steps log_summary_steps = config.get('log_summary_steps') or log_eval_steps # Ceil rounding such that we include the last incomplete batch. total_eval_steps = int( np.ceil(dataset.meta_data['num_eval_examples'] / config.batch_size)) steps_per_eval = config.get('steps_per_eval') or total_eval_steps train_metrics, extra_training_logs = [], [] train_summary, eval_summary = None, None chrono = train_utils.Chrono( first_step=start_step, total_steps=total_steps, steps_per_epoch=steps_per_epoch, global_bs=config.batch_size, accum_train_time=int(jax_utils.unreplicate(train_state.accum_train_time))) logging.info('Starting training loop at step %d.', start_step + 1) report_progress = periodic_actions.ReportProgress( num_train_steps=total_steps, writer=writer) hooks = [report_progress] if config.get('xprof', True) and lead_host: hooks.append(periodic_actions.Profile(num_profile_steps=5, logdir=workdir)) if start_step == 0: step0_log = {'num_trainable_params': num_trainable_params} if gflops: step0_log['gflops'] = gflops writer.write_scalars(1, step0_log) # Manually defragment memory before starting training, if we are using the # tfrt runtime. do_memory_defrag = False if config.get('do_memory_defrag', False): client = jax.lib.xla_bridge.get_backend() try: logging.info('Defragmenting memory') client.defragment() do_memory_defrag = True except RuntimeError: logging.warn('Memory defragmentation not possible, use the tfrt runtime') for step in range(start_step + 1, total_steps + 1): with jax.profiler.StepTraceContext('train', step_num=step): train_batch = next(dataset.train_iter) train_state, t_metrics, lr = train_step_pmapped(train_state, train_batch) # This will accumulate metrics in TPU memory up to the point that we log # them. This is no problem for small metrics but may be a problem for # large (e.g. segmentation) metrics. An alternative is to set # `log_summary_steps` to a small number, or to use # `train_utils.unreplicate_and_get` here instead of right before writing # summaries, but that means in each step, we have data transfer between # tpu and host, which might slow down the training. train_metrics.append(t_metrics) # Additional training logs: learning rate: extra_training_logs.append({'learning_rate': lr}) for h in hooks: # Catch exception in case XProf fails. try: h(step) except ValueError as error: logging.exception('Hook failed: %r', error) chrono.pause() # Below are once-in-a-while ops -> pause. ###################### LOG TRAIN SUMMARY ######################## if (step % log_summary_steps == 1) or (step == total_steps): if lead_host: chrono.tick(step, writer=writer) train_summary = train_utils.log_train_summary( step=step, train_metrics=jax.tree_map(train_utils.unreplicate_and_get, train_metrics), extra_training_logs=jax.tree_map(train_utils.unreplicate_and_get, extra_training_logs), writer=writer, key_separator='/') # Reset metric accumulation for next evaluation cycle. train_metrics, extra_training_logs = [], [] if do_memory_defrag: logging.info('Defragmenting memory') client.defragment() ################### EVALUATION ################################ if (step % log_eval_steps == 1) or (step == total_steps): with report_progress.timed('eval'): if do_memory_defrag: logging.info('Defragmenting memory') client.defragment() eval_metrics = [] additional_summary = None if is_multilabel_model: eval_logits = [] eval_labels = [] n_classes = dataset.meta_data['num_classes'] if get_confusion_matrix: confusion_matrices = [] n_classes = dataset.meta_data['num_classes'] # Sync model state across replicas. train_state = train_utils.sync_model_state_across_replicas(train_state) for _ in range(steps_per_eval): eval_batch = next(dataset.valid_iter) e_metrics = eval_step_pmapped(train_state, eval_batch) if is_multilabel_model: e_metrics, logits_batch, labels_batch = e_metrics # TODO(dehghani, lucic): Fetching from the device in each step might # be an unnecessary penalty. Consider updating to async fetching # as in CL/378384754. eval_logits.append(vivit_train_utils.to_cpu(logits_batch)) eval_labels.append(vivit_train_utils.to_cpu(labels_batch)) if get_confusion_matrix: e_metrics, conf_matrix = e_metrics confusion_matrices.append(vivit_train_utils.to_cpu(conf_matrix)) # Fetch e_metrics to host and store. eval_metrics.append(train_utils.unreplicate_and_get(e_metrics)) # Compute global metrics if applicable from all the batches. if is_multilabel_model: additional_summary = evaluation_lib.compute_mean_average_precision( np.concatenate(eval_logits, axis=0), np.concatenate(eval_labels, axis=0), return_per_class_ap=n_classes < 10) if get_confusion_matrix: additional_summary = evaluation_lib.compute_confusion_matrix_metrics( confusion_matrices, return_per_class_metrics=n_classes < 10) if lead_host: conf_matrix_image = vivit_train_utils.render_confusion_matrices( confusion_matrices, normalization_method='rows') conf_matrix_unnorm = vivit_train_utils.render_confusion_matrices( confusion_matrices, normalization_method='none') writer.write_images( step, {'valid/conf_matrix': conf_matrix_image, 'valid/conf_matrix_unnormalized': conf_matrix_unnorm}) # Log eval summary. eval_summary = train_utils.log_eval_summary( step=step, eval_metrics=eval_metrics, extra_eval_summary=additional_summary, writer=writer, key_separator='/') writer.flush() del eval_metrics if do_memory_defrag: logging.info('Defragmenting memory') client.defragment() ##################### CHECKPOINTING ########################### if ((step % checkpoint_steps == 0 and step > 0) or (step == total_steps)) and config.checkpoint: with report_progress.timed('checkpoint'): # Sync model state across replicas. train_state = train_utils.sync_model_state_across_replicas(train_state) if lead_host: train_state.replace( # pytype: disable=attribute-error accum_train_time=chrono.accum_train_time) train_utils.save_checkpoint(workdir, train_state) ############# MULTICROP TESTING ############################ if (config.dataset_configs.get('do_multicrop_test') and ((step % log_test_steps == 1 and step > 1) or step == total_steps)): with report_progress.timed('test'): if do_memory_defrag: logging.info('Defragmenting memory') client.defragment() test_metrics = [] # Sync model state across replicas. train_state = train_utils.sync_model_state_across_replicas(train_state) # At the end of training, evaluate on the whole test set. if step == total_steps: steps_per_test = total_test_steps logging.info('Starting multicrop test') for _ in range(steps_per_test): test_batch = next(dataset.test_iter) t_metrics = test_step_pmapped(train_state, test_batch) # Fetch t_metrics to host and store. test_metrics.append(train_utils.unreplicate_and_get(t_metrics)) # Log eval summary. train_utils.log_eval_summary( step=step, eval_metrics=test_metrics, writer=writer, prefix='test', key_separator='/') logging.info('Completed multicrop test') writer.flush() # Free up some space. del test_metrics if do_memory_defrag: logging.info('Defragmenting memory') client.defragment() chrono.resume() # un-pause now # Wait until computations are done before exiting. jax.random.normal(jax.random.PRNGKey(0), ()).block_until_ready() # Return the train and eval summary after last step for regression testing. return train_state, train_summary, eval_summary ```
{ "source": "jfpalomeque/indeed_scrapper", "score": 3 }
#### File: jfpalomeque/indeed_scrapper/scrapper.py ```python import requests try: from bs4 import BeautifulSoup except : from BeautifulSoup import BeautifulSoup import pandas as pd import time import streamlit as st from geopy import Nominatim import numpy as np def scrapper(title, location = "United Kingdom"): #Add job title to search. Any space will be reeplaced with a + symbol title = title title = title.replace(" ", "+") #Add location to search. Any space will be reeplaced with a + symbol. No case sensitive location =location location = location.replace(" ", "+") base_url = "https://www.indeed.co.uk/jobs?q="+title+"&l="+location #First url to check for number of ads stracting first_url = base_url+"&start=0" #conducting a request of the stated URL above: first_page = requests.get(base_url) #specifying a desired format of “page” using the html parser - this allows python to read the various components of the page, rather than treating it as one long string. soup = BeautifulSoup(first_page.text, "html.parser") #Extract all the posts of the page posts =soup.find_all(name="div", attrs={"class":"row"}) def extract_n_ads(soup): #Extract the total number of add in the search n_ads_soup = soup.find("div", {"id":"searchCountPages"}) try: n_ads = int(str(n_ads_soup)[str(n_ads_soup).find("of")+2:str(n_ads_soup).find("jobs")]) except: st.write("Error!") return n_ads #Extract all the posts of the page posts =soup.find_all(name="div", attrs={"class":"row"}) def element_extraction(post_list): posts = post_list #Extract all the data from the post lists ads = [] for i in range(len(list(posts))): ad = [] title = posts[i].find_all(name="a", attrs={"data-tn-element":"jobTitle"})[0].string ad.append(title) company = posts[i].find_all(name="span", attrs={"class":"company"})[0].text.strip() ad.append(company) try: rating = float(posts[i].find_all(name="span", attrs={"class":"ratingsDisplay"})[0].text.strip()) except: rating = "NaN" ad.append(rating) try: location = posts[i].find_all(name="span", attrs={"class":"location accessible-contrast-color-location"})[0].text.strip() except: location = "NaN" ad.append(location) if "Remote" in str(posts[i]): remote = "Remote" elif "remote" in str(posts[i]): remote = "Temporarily remote" else: remote = "No" ad.append(remote) ad_url =posts[i].find_all(name="a", attrs={"data-tn-element":"jobTitle"})[0].get('href') url = "https://www.indeed.co.uk" + str(ad_url) ad.append(url) ads.append(ad) return ads search_index = 0 all_adverts = [] n_ads = extract_n_ads(soup) while search_index < n_ads: print(search_index) #Creating an url with the search index url = base_url+"&start="+str(search_index) #conducting a request of the stated URL above: page = requests.get(url) #specifying a desired format of “page” using the html parser - this allows python to read the various components of the page, rather than treating it as one long string. soup = BeautifulSoup(page.text, "html.parser") #Extract all the posts of the page posts =soup.find_all(name="div", attrs={"class":"row"}) all_adverts = all_adverts + (element_extraction(posts)) search_index = search_index + 15 print(len(all_adverts)) time.sleep(1) return all_adverts st.title("Welcome to the indeed.co.uk crapper") if st.button("See Readme"): st.write("""This is a scrapper for Indeed.co.uk, the job ads website. This project has three parts, an advance webscrapper, a little exploratory analysis of those ads and a visualization tool using streamlite. Although sleepers were added in order to avoid IP ban by the website, some times the connection was blocked. I recomend use an VPN anc change server, or a similar solution, if it's going to be tried more than once in a short time period. The city name to coordinates translation is really slow too, making that the map take ages in appear, depending of the number of ads. Code in https://github.com/jfpalomeque/indeed_scrapper""") st.write("## Write here the job title to search in Indeed.co.uk") title_input = st.text_input("Job title", "Data Science") if st.button("Run!"): test = scrapper(title_input) df = pd.DataFrame(test) df.drop_duplicates() df.columns = ["job_Title", "company", "rating", "location", "remote","ad_url"] n_ads_found = len(df)-1 df["rating"] = pd.to_numeric(df["rating"], errors="coerce") avg_rate = df["rating"].mean() location_freq = df.location.value_counts() st.write("The total number of ads scrapped for " + title_input + " jobs is " + str(n_ads_found)) st.write("The average rating over 5 of ads scrapped for " + title_input + " jobs is " + str(avg_rate)) st.write("The locations of ads scrapped for " + title_input + " jobs are ") st.write(location_freq) st.write("Ads DataFrame") st.write(df) st.write("Map / Please wait, coords process can take a while!!") geolocator = Nominatim(user_agent="indeed_scrapper") location_coords = [] for line in df.location: loc_row = [] location = geolocator.geocode(line) loc_row.append(line) loc_row.append(location.latitude) loc_row.append(location.longitude) location_coords.append(loc_row) print (location.latitude, location.longitude) time.sleep(1) location_coords = pd.DataFrame(location_coords) location_coords.columns = ["location", "latitude", "longitude"] st.map(location_coords) ```
{ "source": "jfpanisset/Cryptomatte", "score": 3 }
#### File: Cryptomatte/nuke/pymmh3.py ```python import sys as _sys if (_sys.version_info > (3, 0)): def xrange( a, b, c ): return list(range( a, b, c)) def xencode(x): if isinstance(x, bytes) or isinstance(x, bytearray): return x else: return x.encode() else: def xencode(x): return x del _sys def hash( key, seed = 0x0 ): ''' Implements 32bit murmur3 hash. ''' key = bytearray( xencode(key) ) def fmix( h ): h ^= h >> 16 h = ( h * 0x85ebca6b ) & 0xFFFFFFFF h ^= h >> 13 h = ( h * 0xc2b2ae35 ) & 0xFFFFFFFF h ^= h >> 16 return h length = len( key ) nblocks = int( length / 4 ) h1 = seed c1 = 0xcc9e2d51 c2 = 0x1b873593 # body for block_start in range( 0, nblocks * 4, 4 ): # ??? big endian? k1 = key[ block_start + 3 ] << 24 | \ key[ block_start + 2 ] << 16 | \ key[ block_start + 1 ] << 8 | \ key[ block_start + 0 ] k1 = ( c1 * k1 ) & 0xFFFFFFFF k1 = ( k1 << 15 | k1 >> 17 ) & 0xFFFFFFFF # inlined ROTL32 k1 = ( c2 * k1 ) & 0xFFFFFFFF h1 ^= k1 h1 = ( h1 << 13 | h1 >> 19 ) & 0xFFFFFFFF # inlined ROTL32 h1 = ( h1 * 5 + 0xe6546b64 ) & 0xFFFFFFFF # tail tail_index = nblocks * 4 k1 = 0 tail_size = length & 3 if tail_size >= 3: k1 ^= key[ tail_index + 2 ] << 16 if tail_size >= 2: k1 ^= key[ tail_index + 1 ] << 8 if tail_size >= 1: k1 ^= key[ tail_index + 0 ] if tail_size > 0: k1 = ( k1 * c1 ) & 0xFFFFFFFF k1 = ( k1 << 15 | k1 >> 17 ) & 0xFFFFFFFF # inlined ROTL32 k1 = ( k1 * c2 ) & 0xFFFFFFFF h1 ^= k1 #finalization unsigned_val = fmix( h1 ^ length ) if unsigned_val & 0x80000000 == 0: return unsigned_val else: return -( (unsigned_val ^ 0xFFFFFFFF) + 1 ) def hash128( key, seed = 0x0, x64arch = True ): ''' Implements 128bit murmur3 hash. ''' def hash128_x64( key, seed ): ''' Implements 128bit murmur3 hash for x64. ''' def fmix( k ): k ^= k >> 33 k = ( k * 0xff51afd7ed558ccd ) & 0xFFFFFFFFFFFFFFFF k ^= k >> 33 k = ( k * 0xc4ceb9fe1a85ec53 ) & 0xFFFFFFFFFFFFFFFF k ^= k >> 33 return k length = len( key ) nblocks = int( length / 16 ) h1 = seed h2 = seed c1 = 0x87c37b91114253d5 c2 = 0x4cf5ad432745937f #body for block_start in range( 0, nblocks * 8, 8 ): # ??? big endian? k1 = key[ 2 * block_start + 7 ] << 56 | \ key[ 2 * block_start + 6 ] << 48 | \ key[ 2 * block_start + 5 ] << 40 | \ key[ 2 * block_start + 4 ] << 32 | \ key[ 2 * block_start + 3 ] << 24 | \ key[ 2 * block_start + 2 ] << 16 | \ key[ 2 * block_start + 1 ] << 8 | \ key[ 2 * block_start + 0 ] k2 = key[ 2 * block_start + 15 ] << 56 | \ key[ 2 * block_start + 14 ] << 48 | \ key[ 2 * block_start + 13 ] << 40 | \ key[ 2 * block_start + 12 ] << 32 | \ key[ 2 * block_start + 11 ] << 24 | \ key[ 2 * block_start + 10 ] << 16 | \ key[ 2 * block_start + 9 ] << 8 | \ key[ 2 * block_start + 8 ] k1 = ( c1 * k1 ) & 0xFFFFFFFFFFFFFFFF k1 = ( k1 << 31 | k1 >> 33 ) & 0xFFFFFFFFFFFFFFFF # inlined ROTL64 k1 = ( c2 * k1 ) & 0xFFFFFFFFFFFFFFFF h1 ^= k1 h1 = ( h1 << 27 | h1 >> 37 ) & 0xFFFFFFFFFFFFFFFF # inlined ROTL64 h1 = ( h1 + h2 ) & 0xFFFFFFFFFFFFFFFF h1 = ( h1 * 5 + 0x52dce729 ) & 0xFFFFFFFFFFFFFFFF k2 = ( c2 * k2 ) & 0xFFFFFFFFFFFFFFFF k2 = ( k2 << 33 | k2 >> 31 ) & 0xFFFFFFFFFFFFFFFF # inlined ROTL64 k2 = ( c1 * k2 ) & 0xFFFFFFFFFFFFFFFF h2 ^= k2 h2 = ( h2 << 31 | h2 >> 33 ) & 0xFFFFFFFFFFFFFFFF # inlined ROTL64 h2 = ( h1 + h2 ) & 0xFFFFFFFFFFFFFFFF h2 = ( h2 * 5 + 0x38495ab5 ) & 0xFFFFFFFFFFFFFFFF #tail tail_index = nblocks * 16 k1 = 0 k2 = 0 tail_size = length & 15 if tail_size >= 15: k2 ^= key[ tail_index + 14 ] << 48 if tail_size >= 14: k2 ^= key[ tail_index + 13 ] << 40 if tail_size >= 13: k2 ^= key[ tail_index + 12 ] << 32 if tail_size >= 12: k2 ^= key[ tail_index + 11 ] << 24 if tail_size >= 11: k2 ^= key[ tail_index + 10 ] << 16 if tail_size >= 10: k2 ^= key[ tail_index + 9 ] << 8 if tail_size >= 9: k2 ^= key[ tail_index + 8 ] if tail_size > 8: k2 = ( k2 * c2 ) & 0xFFFFFFFFFFFFFFFF k2 = ( k2 << 33 | k2 >> 31 ) & 0xFFFFFFFFFFFFFFFF # inlined ROTL64 k2 = ( k2 * c1 ) & 0xFFFFFFFFFFFFFFFF h2 ^= k2 if tail_size >= 8: k1 ^= key[ tail_index + 7 ] << 56 if tail_size >= 7: k1 ^= key[ tail_index + 6 ] << 48 if tail_size >= 6: k1 ^= key[ tail_index + 5 ] << 40 if tail_size >= 5: k1 ^= key[ tail_index + 4 ] << 32 if tail_size >= 4: k1 ^= key[ tail_index + 3 ] << 24 if tail_size >= 3: k1 ^= key[ tail_index + 2 ] << 16 if tail_size >= 2: k1 ^= key[ tail_index + 1 ] << 8 if tail_size >= 1: k1 ^= key[ tail_index + 0 ] if tail_size > 0: k1 = ( k1 * c1 ) & 0xFFFFFFFFFFFFFFFF k1 = ( k1 << 31 | k1 >> 33 ) & 0xFFFFFFFFFFFFFFFF # inlined ROTL64 k1 = ( k1 * c2 ) & 0xFFFFFFFFFFFFFFFF h1 ^= k1 #finalization h1 ^= length h2 ^= length h1 = ( h1 + h2 ) & 0xFFFFFFFFFFFFFFFF h2 = ( h1 + h2 ) & 0xFFFFFFFFFFFFFFFF h1 = fmix( h1 ) h2 = fmix( h2 ) h1 = ( h1 + h2 ) & 0xFFFFFFFFFFFFFFFF h2 = ( h1 + h2 ) & 0xFFFFFFFFFFFFFFFF return ( h2 << 64 | h1 ) def hash128_x86( key, seed ): ''' Implements 128bit murmur3 hash for x86. ''' def fmix( h ): h ^= h >> 16 h = ( h * 0x85ebca6b ) & 0xFFFFFFFF h ^= h >> 13 h = ( h * 0xc2b2ae35 ) & 0xFFFFFFFF h ^= h >> 16 return h length = len( key ) nblocks = int( length / 16 ) h1 = seed h2 = seed h3 = seed h4 = seed c1 = 0x239b961b c2 = 0xab0e9789 c3 = 0x38b34ae5 c4 = 0xa1e38b93 #body for block_start in range( 0, nblocks * 16, 16 ): k1 = key[ block_start + 3 ] << 24 | \ key[ block_start + 2 ] << 16 | \ key[ block_start + 1 ] << 8 | \ key[ block_start + 0 ] k2 = key[ block_start + 7 ] << 24 | \ key[ block_start + 6 ] << 16 | \ key[ block_start + 5 ] << 8 | \ key[ block_start + 4 ] k3 = key[ block_start + 11 ] << 24 | \ key[ block_start + 10 ] << 16 | \ key[ block_start + 9 ] << 8 | \ key[ block_start + 8 ] k4 = key[ block_start + 15 ] << 24 | \ key[ block_start + 14 ] << 16 | \ key[ block_start + 13 ] << 8 | \ key[ block_start + 12 ] k1 = ( c1 * k1 ) & 0xFFFFFFFF k1 = ( k1 << 15 | k1 >> 17 ) & 0xFFFFFFFF # inlined ROTL32 k1 = ( c2 * k1 ) & 0xFFFFFFFF h1 ^= k1 h1 = ( h1 << 19 | h1 >> 13 ) & 0xFFFFFFFF # inlined ROTL32 h1 = ( h1 + h2 ) & 0xFFFFFFFF h1 = ( h1 * 5 + 0x561ccd1b ) & 0xFFFFFFFF k2 = ( c2 * k2 ) & 0xFFFFFFFF k2 = ( k2 << 16 | k2 >> 16 ) & 0xFFFFFFFF # inlined ROTL32 k2 = ( c3 * k2 ) & 0xFFFFFFFF h2 ^= k2 h2 = ( h2 << 17 | h2 >> 15 ) & 0xFFFFFFFF # inlined ROTL32 h2 = ( h2 + h3 ) & 0xFFFFFFFF h2 = ( h2 * 5 + 0x0bcaa747 ) & 0xFFFFFFFF k3 = ( c3 * k3 ) & 0xFFFFFFFF k3 = ( k3 << 17 | k3 >> 15 ) & 0xFFFFFFFF # inlined ROTL32 k3 = ( c4 * k3 ) & 0xFFFFFFFF h3 ^= k3 h3 = ( h3 << 15 | h3 >> 17 ) & 0xFFFFFFFF # inlined ROTL32 h3 = ( h3 + h4 ) & 0xFFFFFFFF h3 = ( h3 * 5 + 0x96cd1c35 ) & 0xFFFFFFFF k4 = ( c4 * k4 ) & 0xFFFFFFFF k4 = ( k4 << 18 | k4 >> 14 ) & 0xFFFFFFFF # inlined ROTL32 k4 = ( c1 * k4 ) & 0xFFFFFFFF h4 ^= k4 h4 = ( h4 << 13 | h4 >> 19 ) & 0xFFFFFFFF # inlined ROTL32 h4 = ( h1 + h4 ) & 0xFFFFFFFF h4 = ( h4 * 5 + 0x32ac3b17 ) & 0xFFFFFFFF #tail tail_index = nblocks * 16 k1 = 0 k2 = 0 k3 = 0 k4 = 0 tail_size = length & 15 if tail_size >= 15: k4 ^= key[ tail_index + 14 ] << 16 if tail_size >= 14: k4 ^= key[ tail_index + 13 ] << 8 if tail_size >= 13: k4 ^= key[ tail_index + 12 ] if tail_size > 12: k4 = ( k4 * c4 ) & 0xFFFFFFFF k4 = ( k4 << 18 | k4 >> 14 ) & 0xFFFFFFFF # inlined ROTL32 k4 = ( k4 * c1 ) & 0xFFFFFFFF h4 ^= k4 if tail_size >= 12: k3 ^= key[ tail_index + 11 ] << 24 if tail_size >= 11: k3 ^= key[ tail_index + 10 ] << 16 if tail_size >= 10: k3 ^= key[ tail_index + 9 ] << 8 if tail_size >= 9: k3 ^= key[ tail_index + 8 ] if tail_size > 8: k3 = ( k3 * c3 ) & 0xFFFFFFFF k3 = ( k3 << 17 | k3 >> 15 ) & 0xFFFFFFFF # inlined ROTL32 k3 = ( k3 * c4 ) & 0xFFFFFFFF h3 ^= k3 if tail_size >= 8: k2 ^= key[ tail_index + 7 ] << 24 if tail_size >= 7: k2 ^= key[ tail_index + 6 ] << 16 if tail_size >= 6: k2 ^= key[ tail_index + 5 ] << 8 if tail_size >= 5: k2 ^= key[ tail_index + 4 ] if tail_size > 4: k2 = ( k2 * c2 ) & 0xFFFFFFFF k2 = ( k2 << 16 | k2 >> 16 ) & 0xFFFFFFFF # inlined ROTL32 k2 = ( k2 * c3 ) & 0xFFFFFFFF h2 ^= k2 if tail_size >= 4: k1 ^= key[ tail_index + 3 ] << 24 if tail_size >= 3: k1 ^= key[ tail_index + 2 ] << 16 if tail_size >= 2: k1 ^= key[ tail_index + 1 ] << 8 if tail_size >= 1: k1 ^= key[ tail_index + 0 ] if tail_size > 0: k1 = ( k1 * c1 ) & 0xFFFFFFFF k1 = ( k1 << 15 | k1 >> 17 ) & 0xFFFFFFFF # inlined ROTL32 k1 = ( k1 * c2 ) & 0xFFFFFFFF h1 ^= k1 #finalization h1 ^= length h2 ^= length h3 ^= length h4 ^= length h1 = ( h1 + h2 ) & 0xFFFFFFFF h1 = ( h1 + h3 ) & 0xFFFFFFFF h1 = ( h1 + h4 ) & 0xFFFFFFFF h2 = ( h1 + h2 ) & 0xFFFFFFFF h3 = ( h1 + h3 ) & 0xFFFFFFFF h4 = ( h1 + h4 ) & 0xFFFFFFFF h1 = fmix( h1 ) h2 = fmix( h2 ) h3 = fmix( h3 ) h4 = fmix( h4 ) h1 = ( h1 + h2 ) & 0xFFFFFFFF h1 = ( h1 + h3 ) & 0xFFFFFFFF h1 = ( h1 + h4 ) & 0xFFFFFFFF h2 = ( h1 + h2 ) & 0xFFFFFFFF h3 = ( h1 + h3 ) & 0xFFFFFFFF h4 = ( h1 + h4 ) & 0xFFFFFFFF return ( h4 << 96 | h3 << 64 | h2 << 32 | h1 ) key = bytearray( xencode(key) ) if x64arch: return hash128_x64( key, seed ) else: return hash128_x86( key, seed ) def hash64( key, seed = 0x0, x64arch = True ): ''' Implements 64bit murmur3 hash. Returns a tuple. ''' hash_128 = hash128( key, seed, x64arch ) unsigned_val1 = hash_128 & 0xFFFFFFFFFFFFFFFF if unsigned_val1 & 0x8000000000000000 == 0: signed_val1 = unsigned_val1 else: signed_val1 = -( (unsigned_val1 ^ 0xFFFFFFFFFFFFFFFF) + 1 ) unsigned_val2 = ( hash_128 >> 64 ) & 0xFFFFFFFFFFFFFFFF if unsigned_val2 & 0x8000000000000000 == 0: signed_val2 = unsigned_val2 else: signed_val2 = -( (unsigned_val2 ^ 0xFFFFFFFFFFFFFFFF) + 1 ) return ( int( signed_val1 ), int( signed_val2 ) ) def hash_bytes( key, seed = 0x0, x64arch = True ): ''' Implements 128bit murmur3 hash. Returns a byte string. ''' hash_128 = hash128( key, seed, x64arch ) bytestring = '' for i in range(0, 16, 1): lsbyte = hash_128 & 0xFF bytestring = bytestring + str( chr( lsbyte ) ) hash_128 = hash_128 >> 8 return bytestring if __name__ == "__main__": import argparse parser = argparse.ArgumentParser( 'pymurmur3', 'pymurmur [options] "string to hash"' ) parser.add_argument( '--seed', type = int, default = 0 ) parser.add_argument( 'strings', default = [], nargs='+') opts = parser.parse_args() for str_to_hash in opts.strings: sys.stdout.write( '"%s" = 0x%08X\n' % ( str_to_hash, hash( str_to_hash ) ) ) ```
{ "source": "jfpanisset/flameTimewarpML", "score": 2 }
#### File: flameTimewarpML/bundle/inference_flame_tw.py ```python from ntpath import basename import os import sys from turtle import backward, forward import cv2 import torch import argparse import numpy as np from tqdm import tqdm from torch.nn import functional as F import warnings import _thread from queue import Queue, Empty from pprint import pprint, pformat import time import psutil import signal import multiprocessing as mp import inference_common warnings.filterwarnings("ignore") IOThreadsFlag = True IOProcesses = [] cv2.setNumThreads(1) # Exception handler def exeption_handler(exctype, value, tb): import traceback locks = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'locks') cmd = 'rm -f ' + locks + '/*' # os.system(cmd) pprint('%s in %s' % (value, exctype)) pprint(traceback.format_exception(exctype, value, tb)) sys.__excepthook__(exctype, value, tb) input("Press Enter to continue...") sys.excepthook = exeption_handler # ctrl+c handler def signal_handler(sig, frame): global IOThreadsFlag IOThreadsFlag = False time.sleep(0.1) sys.exit(0) signal.signal(signal.SIGINT, signal_handler) def clear_write_buffer(args, write_buffer, output_duration): global IOThreadsFlag global IOProcesses number_of_write_threads = 4 print('rendering %s frames to %s' % (output_duration, args.output)) pbar = tqdm(total=output_duration, unit='frame') while IOThreadsFlag: alive_processes = [] for process in IOProcesses: if process.is_alive(): alive_processes.append(process) else: process.join(timeout=0) IOProcesses = list(alive_processes) item = write_buffer.get() frame_number, image_data = item if frame_number == -1: pbar.close() # type: ignore IOThreadsFlag = False break path = os.path.join(os.path.abspath(args.output), '{:0>7d}.exr'.format(frame_number)) if len(IOProcesses) < number_of_write_threads: try: p = mp.Process(target=cv2.imwrite, args=(path, image_data[:, :, ::-1], [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF], )) p.start() IOProcesses.append(p) except: try: cv2.imwrite(path, image_data[:, :, ::-1], [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF]) except Exception as e: print ('Error wtiring %s: %s' % (path, e)) else: try: cv2.imwrite(path, image_data[:, :, ::-1], [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF]) except Exception as e: print ('Error wtiring %s: %s' % (path, e)) pbar.update(1) def build_read_buffer(user_args, read_buffer, videogen): global IOThreadsFlag for frame in videogen: frame_data = cv2.imread(os.path.join(user_args.input, frame), cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)[:, :, ::-1].copy() read_buffer.put(frame_data) read_buffer.put(None) def make_inference_rational(model, I0, I1, ratio, rthreshold=0.02, maxcycles=5, UHD=False, always_interp=False): I0_ratio = 0.0 I1_ratio = 1.0 rational_m = torch.mean(I0) * ratio + torch.mean(I1) * (1 - ratio) if not always_interp: if ratio <= I0_ratio + rthreshold / 2: return I0 if ratio >= I1_ratio - rthreshold / 2: return I1 for inference_cycle in range(0, maxcycles): middle = model.inference(I0, I1, UHD) middle_ratio = (I0_ratio + I1_ratio) / 2 if not always_interp: if ratio - (rthreshold / 2) <= middle_ratio <= ratio + (rthreshold / 2): return middle # + (rational_m - torch.mean(middle)).expand_as(middle) if ratio > middle_ratio: I0 = middle I0_ratio = middle_ratio else: I1 = middle I1_ratio = middle_ratio return middle # + (rational_m - torch.mean(middle)).expand_as(middle) def make_inference_rational_cpu(model, I0, I1, ratio, frame_num, w, h, write_buffer, rthreshold=0.02, maxcycles=8, UHD=False, always_interp=False): device = torch.device("cpu") torch.set_grad_enabled(False) I0_ratio = 0.0 I1_ratio = 1.0 rational_m = torch.mean(I0) * ratio + torch.mean(I1) * (1 - ratio) if not always_interp: if ratio <= I0_ratio + rthreshold / 2: I0 = (((I0[0]).cpu().detach().numpy().transpose(1, 2, 0))) write_buffer.put((frame_num, I0[:h, :w])) return if ratio >= I1_ratio - rthreshold / 2: I1 = (((I1[0]).cpu().detach().numpy().transpose(1, 2, 0))) write_buffer.put((frame_num, I1[:h, :w])) return for inference_cycle in range(0, maxcycles): middle = model.inference(I0, I1, UHD) middle_ratio = (I0_ratio + I1_ratio) / 2 if not always_interp: if ratio - (rthreshold / 2) <= middle_ratio <= ratio + (rthreshold / 2): # middle = middle + (rational_m - torch.mean(middle)).expand_as(middle) middle = (((middle[0]).cpu().detach().numpy().transpose(1, 2, 0))) write_buffer.put((frame_num, middle[:h, :w])) return if ratio > middle_ratio: middle = middle.detach() I0 = middle.to(device, non_blocking=True) I0_ratio = middle_ratio else: middle = middle.detach() I1 = middle.to(device, non_blocking=True) I1_ratio = middle_ratio # middle + (rational_m - torch.mean(middle)).expand_as(middle) middle = (((middle[0]).cpu().detach().numpy().transpose(1, 2, 0))) write_buffer.put((frame_num, middle[:h, :w])) return def dictify(r, root=True): from copy import copy if root: return {r.tag: dictify(r, False)} d = copy(r.attrib) if r.text: d["_text"] = r.text for x in r.findall("./*"): if x.tag not in d: d[x.tag] = [] d[x.tag].append(dictify(x, False)) return d def bake_flame_tw_setup(tw_setup_path, start, end): # parses tw setup from flame and returns dictionary # with baked frame - value pairs def extrapolate_linear(xa, ya, xb, yb, xc): m = (ya - yb) / (xa - xb) yc = (xc - xb) * m + yb return yc import xml.etree.ElementTree as ET frame_value_map = {} with open(tw_setup_path, 'r') as tw_setup_file: tw_setup_string = tw_setup_file.read() tw_setup_file.close() tw_setup_xml = ET.fromstring(tw_setup_string) tw_setup = dictify(tw_setup_xml) # start = int(tw_setup['Setup']['Base'][0]['Range'][0]['Start']) # end = int(tw_setup['Setup']['Base'][0]['Range'][0]['End']) # TW_Timing_size = int(tw_setup['Setup']['State'][0]['TW_Timing'][0]['Channel'][0]['Size'][0]['_text']) TW_SpeedTiming_size = int(tw_setup['Setup']['State'][0]['TW_SpeedTiming'][0]['Channel'][0]['Size'][0]['_text']) TW_RetimerMode = int(tw_setup['Setup']['State'][0]['TW_RetimerMode'][0]['_text']) parsed_and_baked_path = os.path.join(os.path.dirname(args.setup), 'parsed_and_baked.txt') if sys.platform == 'darwin': parser_and_baker = os.path.join(os.path.dirname(__file__), 'flame_channel_parser', 'bin', 'bake_flame_channel_mac') else: parser_and_baker = os.path.join(os.path.dirname(__file__), 'flame_channel_parser', 'bin', 'bake_flame_channel') if TW_SpeedTiming_size == 1 and TW_RetimerMode == 0: # just constant speed change with no keyframes set x = float(tw_setup['Setup']['State'][0]['TW_SpeedTiming'][0]['Channel'][0]['KFrames'][0]['Key'][0]['Frame'][0]['_text']) y = float(tw_setup['Setup']['State'][0]['TW_SpeedTiming'][0]['Channel'][0]['KFrames'][0]['Key'][0]['Value'][0]['_text']) ldx = float(tw_setup['Setup']['State'][0]['TW_SpeedTiming'][0]['Channel'][0]['KFrames'][0]['Key'][0]['LHandle_dX'][0]['_text']) ldy = float(tw_setup['Setup']['State'][0]['TW_SpeedTiming'][0]['Channel'][0]['KFrames'][0]['Key'][0]['LHandle_dY'][0]['_text']) rdx = float(tw_setup['Setup']['State'][0]['TW_SpeedTiming'][0]['Channel'][0]['KFrames'][0]['Key'][0]['RHandle_dX'][0]['_text']) rdy = float(tw_setup['Setup']['State'][0]['TW_SpeedTiming'][0]['Channel'][0]['KFrames'][0]['Key'][0]['RHandle_dY'][0]['_text']) for frame_number in range(start, end+1): frame_value_map[frame_number] = extrapolate_linear(x + ldx, y + ldy, x + rdx, y + rdy, frame_number) return frame_value_map # add point tangents from vecrors to match older version of setup # used by Julik's parser from xml.dom import minidom xml = minidom.parse(tw_setup_path) keys = xml.getElementsByTagName('Key') for key in keys: frame = key.getElementsByTagName('Frame') if frame: frame = (frame[0].firstChild.nodeValue) value = key.getElementsByTagName('Value') if value: value = (value[0].firstChild.nodeValue) rdx = key.getElementsByTagName('RHandle_dX') if rdx: rdx = (rdx[0].firstChild.nodeValue) rdy = key.getElementsByTagName('RHandle_dY') if rdy: rdy = (rdy[0].firstChild.nodeValue) ldx = key.getElementsByTagName('LHandle_dX') if ldx: ldx = (ldx[0].firstChild.nodeValue) ldy = key.getElementsByTagName('LHandle_dY') if ldy: ldy = (ldy[0].firstChild.nodeValue) lx = xml.createElement('LHandleX') lx.appendChild(xml.createTextNode('{:.6f}'.format(float(frame) + float(ldx)))) key.appendChild(lx) ly = xml.createElement('LHandleY') ly.appendChild(xml.createTextNode('{:.6f}'.format(float(value) + float(ldy)))) key.appendChild(ly) rx = xml.createElement('RHandleX') rx.appendChild(xml.createTextNode('{:.6f}'.format(float(frame) + float(rdx)))) key.appendChild(rx) ry = xml.createElement('RHandleY') ry.appendChild(xml.createTextNode('{:.6f}'.format(float(value) + float(rdy)))) key.appendChild(ry) xml_string = xml.toxml() dirname, name = os.path.dirname(tw_setup_path), os.path.basename(tw_setup_path) xml_path = os.path.join(dirname, 'fix_' + name) with open(xml_path, 'a') as xml_file: xml_file.write(xml_string) xml_file.close() intp_start = start intp_end = end if TW_RetimerMode == 0: tw_speed = {} tw_speed_frames = [] TW_Speed = xml.getElementsByTagName('TW_Speed') keys = TW_Speed[0].getElementsByTagName('Key') for key in keys: index = key.getAttribute('Index') frame = key.getElementsByTagName('Frame') if frame: frame = (frame[0].firstChild.nodeValue) value = key.getElementsByTagName('Value') if value: value = (value[0].firstChild.nodeValue) tw_speed[int(index)] = {'frame': int(frame), 'value': float(value)} tw_speed_frames.append(int(frame)) intp_start = min(start, min(tw_speed_frames)) intp_end = max(end, max(tw_speed_frames)) else: tw_timing = {} tw_timing_frames = [] TW_Timing = xml.getElementsByTagName('TW_Timing') keys = TW_Timing[0].getElementsByTagName('Key') for key in keys: index = key.getAttribute('Index') frame = key.getElementsByTagName('Frame') if frame: frame = (frame[0].firstChild.nodeValue) value = key.getElementsByTagName('Value') if value: value = (value[0].firstChild.nodeValue) tw_timing[int(index)] = {'frame': int(frame), 'value': float(value)} tw_timing_frames.append(int(frame)) intp_start = min(start, min(tw_timing_frames)) intp_end = max(end, max(tw_timing_frames)) tw_channel_name = 'Speed' if TW_RetimerMode == 0 else 'Timing' cmd = parser_and_baker + ' -c ' + tw_channel_name cmd += ' -s ' + str(intp_start) + ' -e ' + str(intp_end) cmd += ' --to-file ' + parsed_and_baked_path + ' ' + xml_path os.system(cmd) if not os.path.isfile(parsed_and_baked_path): print ('can not find parsed channel file %s' % parsed_and_baked_path) input("Press Enter to continue...") sys.exit(1) tw_channel = {} with open(parsed_and_baked_path, 'r') as parsed_and_baked: import re # taken from Julik's parser CORRELATION_RECORD = re.compile( r""" ^([-]?\d+) # -42 or 42 \t # tab ( [-]?(\d+(\.\d*)?) # "-1" or "1" or "1.0" or "1." | # or: \.\d+ # ".2" ) ([eE][+-]?[0-9]+)? # "1.2e3", "1.2e-3" or "1.2e+3" $ """, re.VERBOSE) lines = parsed_and_baked.readlines() for i, line in enumerate(lines): line = line.rstrip() m = CORRELATION_RECORD.match(line) if m is not None: frame_number = int(m.group(1)) value = float(m.group(2)) tw_channel[frame_number] = value if TW_RetimerMode == 1: # job's done for 'Timing' channel return tw_channel else: # speed - based timewaro needs a bit more love # to solve frame values against speed channel # with the help of anchor frames in SpeedTiming channel tw_speed_timing = {} TW_SpeedTiming = xml.getElementsByTagName('TW_SpeedTiming') keys = TW_SpeedTiming[0].getElementsByTagName('Key') for key in keys: index = key.getAttribute('Index') frame = key.getElementsByTagName('Frame') if frame: frame = (frame[0].firstChild.nodeValue) value = key.getElementsByTagName('Value') if value: value = (value[0].firstChild.nodeValue) tw_speed_timing[int(index)] = {'frame': int(frame), 'value': float(value)} if tw_speed_timing[0]['frame'] > start: # we need to extrapolate backwards from the first # keyframe in SpeedTiming channel anchor_frame_value = tw_speed_timing[0]['value'] for frame_number in range(tw_speed_timing[0]['frame'] - 1, start - 1, -1): if frame_number + 1 not in tw_channel.keys() or frame_number not in tw_channel.keys(): step_back = tw_channel[min(list(tw_channel.keys()))] / 100 else: step_back = (tw_channel[frame_number + 1] + tw_channel[frame_number]) / 200 frame_value_map[frame_number] = anchor_frame_value - step_back anchor_frame_value = frame_value_map[frame_number] # build up frame values between keyframes of SpeedTiming channel for key_frame_index in range(0, len(tw_speed_timing.keys()) - 1): # The value from my gess algo is close to the one in flame but not exact # and error is accumulated. SO quick and dirty way is to do forward # and backward pass and mix them rationally range_start = tw_speed_timing[key_frame_index]['frame'] range_end = tw_speed_timing[key_frame_index + 1]['frame'] if range_end == range_start + 1: # keyframes on next frames, no need to interpolate frame_value_map[range_start] = tw_speed_timing[key_frame_index]['value'] frame_value_map[range_end] = tw_speed_timing[key_frame_index + 1]['value'] continue forward_pass = {} anchor_frame_value = tw_speed_timing[key_frame_index]['value'] forward_pass[range_start] = anchor_frame_value for frame_number in range(range_start + 1, range_end): if frame_number + 1 not in tw_channel.keys() or frame_number not in tw_channel.keys(): step = tw_channel[max(list(tw_channel.keys()))] / 100 else: step = (tw_channel[frame_number] + tw_channel[frame_number + 1]) / 200 forward_pass[frame_number] = anchor_frame_value + step anchor_frame_value = forward_pass[frame_number] forward_pass[range_end] = tw_speed_timing[key_frame_index + 1]['value'] backward_pass = {} anchor_frame_value = tw_speed_timing[key_frame_index + 1]['value'] backward_pass[range_end] = anchor_frame_value for frame_number in range(range_end - 1, range_start -1, -1): if frame_number + 1 not in tw_channel.keys() or frame_number not in tw_channel.keys(): step_back = tw_channel[min(list(tw_channel.keys()))] / 100 else: step_back = (tw_channel[frame_number + 1] + tw_channel[frame_number]) / 200 backward_pass[frame_number] = anchor_frame_value - step_back anchor_frame_value = backward_pass[frame_number] backward_pass[range_start] = tw_speed_timing[key_frame_index]['value'] # create easy in and out soft mixing curve import numpy as np from scipy import interpolate ctr =np.array( [(0 , 0), (0.1, 0), (0.9, 1), (1, 1)]) x=ctr[:,0] y=ctr[:,1] interp = interpolate.CubicSpline(x, y) work_range = list(forward_pass.keys()) ratio = 0 rstep = 1 / len(work_range) for frame_number in sorted(work_range): frame_value_map[frame_number] = forward_pass[frame_number] * (1 - interp(ratio)) + backward_pass[frame_number] * interp(ratio) ratio += rstep last_key_index = list(sorted(tw_speed_timing.keys()))[-1] if tw_speed_timing[last_key_index]['frame'] < end: # we need to extrapolate further on from the # last keyframe in SpeedTiming channel anchor_frame_value = tw_speed_timing[last_key_index]['value'] frame_value_map[tw_speed_timing[last_key_index]['frame']] = anchor_frame_value for frame_number in range(tw_speed_timing[last_key_index]['frame'] + 1, end + 1): if frame_number + 1 not in tw_channel.keys() or frame_number not in tw_channel.keys(): step = tw_channel[max(list(tw_channel.keys()))] / 100 else: step = (tw_channel[frame_number] + tw_channel[frame_number + 1]) / 200 frame_value_map[frame_number] = anchor_frame_value + step anchor_frame_value = frame_value_map[frame_number] return frame_value_map if __name__ == '__main__': start = time.time() msg = 'Timewarp using FX setup from Flame\n' parser = argparse.ArgumentParser(description=msg) parser.add_argument('--input', dest='input', type=str, default=None, help='folder with input sequence') parser.add_argument('--output', dest='output', type=str, default=None, help='folder to output sequence to') parser.add_argument('--setup', dest='setup', type=str, default=None, help='flame tw setup to use') parser.add_argument('--record_in', dest='record_in', type=int, default=1, help='record in point relative to tw setup') parser.add_argument('--record_out', dest='record_out', type=int, default=0, help='record out point relative to tw setup') parser.add_argument('--model', dest='model', type=str, default='./trained_models/default/v2.0.model') parser.add_argument('--UHD', dest='UHD', action='store_true', help='flow size 1/4') parser.add_argument('--cpu', dest='cpu', action='store_true', help='do not use GPU at all, process only on CPU') args = parser.parse_args() if (args.output is None or args.input is None or args.setup is None): parser.print_help() sys.exit() print('Initializing TimewarpML from Flame setup...') img_formats = ['.exr',] src_files_list = [] for f in os.listdir(args.input): name, ext = os.path.splitext(f) if ext in img_formats: src_files_list.append(f) input_duration = len(src_files_list) if not input_duration: print('not enough input frames: %s given' % input_duration) input("Press Enter to continue...") sys.exit() if not args.record_out: args.record_out = input_duration frame_value_map = bake_flame_tw_setup(args.setup, args.record_in, args.record_out) # input("Press Enter to continue...") # sys.exit(0) start_frame = 1 src_files_list.sort() src_files = {x:os.path.join(args.input, file_path) for x, file_path in enumerate(src_files_list, start=start_frame)} output_folder = os.path.abspath(args.output) if not os.path.exists(output_folder): os.makedirs(output_folder) output_duration = (args.record_out - args.record_in) + 1 if torch.cuda.is_available() and not args.cpu: # Process on GPU if 'v1.8.model' in args.model: from model.RIFE_HD import Model # type: ignore else: from model.RIFE_HDv2 import Model # type: ignore model = Model() model.load_model(args.model, -1) model.eval() model.device() print ('Trained model loaded: %s' % args.model) write_buffer = Queue(maxsize=mp.cpu_count() - 3) _thread.start_new_thread(clear_write_buffer, (args, write_buffer, output_duration)) src_start_frame = cv2.imread(src_files.get(start_frame), cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)[:, :, ::-1].copy() h, w, _ = src_start_frame.shape ph = ((h - 1) // 64 + 1) * 64 pw = ((w - 1) // 64 + 1) * 64 padding = (0, pw - w, 0, ph - h) device = torch.device("cuda") torch.set_grad_enabled(False) torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True output_frame_number = 1 for frame_number in range(args.record_in, args.record_out +1): I0_frame_number = int(frame_value_map[frame_number]) if I0_frame_number < 1: I0_image = cv2.imread(src_files.get(1), cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)[:, :, ::-1].copy() write_buffer.put((output_frame_number, I0_image)) output_frame_number += 1 continue if I0_frame_number >= input_duration: I0_image = cv2.imread(src_files.get(input_duration), cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)[:, :, ::-1].copy() write_buffer.put((output_frame_number, I0_image)) output_frame_number += 1 continue I1_frame_number = I0_frame_number + 1 ratio = frame_value_map[frame_number] - int(frame_value_map[frame_number]) # pprint ('frame_number: %s, value: %s' % (frame_number, frame_value_map[frame_number])) # pprint ('I0_frame_number: %s, I1_frame_number: %s, ratio: %s' % (I0_frame_number, I1_frame_number, ratio)) I0_image = cv2.imread(src_files.get(I0_frame_number), cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)[:, :, ::-1].copy() I1_image = cv2.imread(src_files.get(I1_frame_number), cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)[:, :, ::-1].copy() I0 = torch.from_numpy(np.transpose(I0_image, (2,0,1))).to(device, non_blocking=True).unsqueeze(0) I1 = torch.from_numpy(np.transpose(I1_image, (2,0,1))).to(device, non_blocking=True).unsqueeze(0) I0 = F.pad(I0, padding) I1 = F.pad(I1, padding) mid = make_inference_rational(model, I0, I1, ratio, UHD = args.UHD) mid = (((mid[0]).cpu().numpy().transpose(1, 2, 0))) write_buffer.put((output_frame_number, mid[:h, :w])) output_frame_number += 1 # send write loop exit code write_buffer.put((-1, -1)) # it should put IOThreadsFlag to False it return while(IOThreadsFlag): time.sleep(0.01) else: # process on GPU if 'v1.8.model' in args.model: from model_cpu.RIFE_HD import Model # type: ignore else: from model_cpu.RIFE_HDv2 import Model # type: ignore model = Model() model.load_model(args.model, -1) model.eval() model.device() print ('Trained model loaded: %s' % args.model) src_start_frame = cv2.imread(src_files.get(start_frame), cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)[:, :, ::-1].copy() h, w, _ = src_start_frame.shape ph = ((h - 1) // 64 + 1) * 64 pw = ((w - 1) // 64 + 1) * 64 padding = (0, pw - w, 0, ph - h) device = torch.device('cpu') torch.set_grad_enabled(False) sim_workers, thread_ram = inference_common.safe_threads_number(h, w) ''' max_cpu_workers = mp.cpu_count() - 2 available_ram = psutil.virtual_memory()[1]/( 1024 ** 3 ) megapixels = ( h * w ) / ( 10 ** 6 ) thread_ram = megapixels * 2.4 sim_workers = round( available_ram / thread_ram ) if sim_workers < 1: sim_workers = 1 elif sim_workers > max_cpu_workers: sim_workers = max_cpu_workers print ('---\nFree RAM: %s Gb available' % '{0:.1f}'.format(available_ram)) print ('Image size: %s x %s' % ( w, h,)) print ('Peak memory usage estimation: %s Gb per CPU thread ' % '{0:.1f}'.format(thread_ram)) print ('Using %s CPU worker thread%s (of %s available)\n---' % (sim_workers, '' if sim_workers == 1 else 's', mp.cpu_count())) if thread_ram > available_ram: print ('Warning: estimated peak memory usage is greater then RAM avaliable') ''' write_buffer = mp.Queue(maxsize=mp.cpu_count() - 3) _thread.start_new_thread(clear_write_buffer, (args, write_buffer, input_duration)) active_workers = [] output_frame_number = 1 last_thread_time = time.time() for frame_number in range(args.record_in, args.record_out +1): I0_frame_number = int(frame_value_map[frame_number]) if I0_frame_number < 1: I0_image = cv2.imread(src_files.get(1), cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)[:, :, ::-1].copy() write_buffer.put((output_frame_number, I0_image)) output_frame_number += 1 continue if I0_frame_number >= input_duration: I0_image = cv2.imread(src_files.get(input_duration), cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)[:, :, ::-1].copy() write_buffer.put((output_frame_number, I0_image)) output_frame_number += 1 continue I1_frame_number = I0_frame_number + 1 ratio = frame_value_map[frame_number] - int(frame_value_map[frame_number]) # pprint ('frame_number: %s, value: %s' % (frame_number, frame_value_map[frame_number])) # pprint ('I0_frame_number: %s, I1_frame_number: %s, ratio: %s' % (I0_frame_number, I1_frame_number, ratio)) I0_image = cv2.imread(src_files.get(I0_frame_number), cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)[:, :, ::-1].copy() I1_image = cv2.imread(src_files.get(I1_frame_number), cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)[:, :, ::-1].copy() I0 = torch.from_numpy(np.transpose(I0_image, (2,0,1))).to(device, non_blocking=True).unsqueeze(0) I1 = torch.from_numpy(np.transpose(I1_image, (2,0,1))).to(device, non_blocking=True).unsqueeze(0) I0 = F.pad(I0, padding) I1 = F.pad(I1, padding) p = mp.Process(target=make_inference_rational_cpu, args=(model, I0, I1, ratio, output_frame_number, w, h, write_buffer), kwargs = {'UHD': args.UHD}) p.start() active_workers.append(p) if (time.time() - last_thread_time) < (thread_ram / 8): if sim_workers > 1: time.sleep(thread_ram/8) while len(active_workers) >= sim_workers: finished_workers = [] alive_workers = [] for worker in active_workers: if not worker.is_alive(): finished_workers.append(worker) else: alive_workers.append(worker) active_workers = list(alive_workers) time.sleep(0.01) last_thread_time = time.time() output_frame_number += 1 while len(active_workers) >= sim_workers: finished_workers = [] alive_workers = [] for worker in active_workers: if not worker.is_alive(): finished_workers.append(worker) else: alive_workers.append(worker) active_workers = list(alive_workers) time.sleep(0.01) last_thread_time = time.time() # wait for all active worker threads left to finish for p in active_workers: p.join() # send write loop exit code write_buffer.put((-1, -1)) # it should put IOThreadsFlag to False it return while(IOThreadsFlag): time.sleep(0.01) for p in IOProcesses: p.join(timeout=8) for p in IOProcesses: p.terminate() p.join(timeout=0) import hashlib lockfile = os.path.join('locks', hashlib.sha1(output_folder.encode()).hexdigest().upper() + '.lock') if os.path.isfile(lockfile): os.remove(lockfile) # input("Press Enter to continue...") sys.exit(0) ```
{ "source": "j-f-paquet/frzout-duke2020", "score": 2 }
#### File: frzout/test/test_hrg.py ```python import random import numpy as np from scipy import integrate from scipy import special from nose.tools import assert_almost_equal, assert_warns_regex from .. import HRG, species_dict hbarc = 0.1973269788 def test_hrg(): ID, info = random.choice(list(species_dict.items())) m = info['mass'] g = info['degen'] sign = -1 if info['boson'] else 1 prefactor = g / (2*np.pi**2*hbarc**3) if info['has_anti']: prefactor *= 2 T = random.uniform(.13, .15) hrg = HRG(T, species=[ID], res_width=False) assert_almost_equal( hrg.T, T, delta=1e-15, msg='incorrect temperature' ) n = np.arange(1, 50) density = prefactor * m*m*T * ( (-sign)**(n-1)/n * special.kn(2, n*m/T) ).sum() assert_almost_equal( hrg.density(), density, delta=1e-12, msg='incorrect density' ) def integrand(p): E = np.sqrt(m*m + p*p) return p*p * E / (np.exp(E/T) + sign) energy_density = prefactor * integrate.quad(integrand, 0, 10)[0] assert_almost_equal( hrg.energy_density(), energy_density, delta=1e-12, msg='incorrect energy density' ) def integrand(p): E = np.sqrt(m*m + p*p) return p**4 / (3*E) / (np.exp(E/T) + sign) pressure = prefactor * integrate.quad(integrand, 0, 10)[0] assert_almost_equal( hrg.pressure(), pressure, delta=1e-12, msg='incorrect pressure' ) with assert_warns_regex(Warning, 'high particlization temperature'): HRG(.193) def test_bulk_corrections(): hrg = HRG(.15, res_width=False) p0 = hrg.pressure() Pi_min, Pi_max = hrg.Pi_lim() assert Pi_min == -p0, \ 'The minimum bulk pressure should equal negative the ideal pressure.' assert 0 < Pi_max <= p0, \ 'The maximum bulk pressure should be <= the ideal pressure.' assert hrg.bulk_scale_factors(0) == (1, 1), \ 'The scale factors should equal one at zero bulk pressure.' nscale, pscale = hrg.bulk_scale_factors(random.uniform(.1, .9)*Pi_max) assert nscale < 1 and pscale > 1, \ 'Incorrect scale factors for positive bulk pressure.' nscale, pscale = hrg.bulk_scale_factors(random.uniform(.1, .9)*Pi_min) assert nscale > 1 and pscale < 1, \ 'Incorrect scale factors for negative bulk pressure.' nscale, pscale = hrg.bulk_scale_factors(-p0) assert nscale > 1 and pscale == 0, \ 'Incorrect scale factors for zero total pressure.' assert hrg.bulk_scale_factors(-1.1*p0) == (nscale, pscale), \ 'Scale factors should not change outside the Pi range.' assert \ hrg.bulk_scale_factors(Pi_max) == hrg.bulk_scale_factors(1.5*Pi_max), \ 'Scale factors should not change outside the Pi range.' ``` #### File: frzout/test/test_sampler.py ```python import numpy as np from .. import Surface, HRG, sample def test_dtype(): surface = Surface([1, 0, 0], [1, 0, 0], [0, 0]) hrg = HRG(.15) parts = sample(surface, hrg) dt = parts.dtype assert dt.names == ('ID', 'x', 'p'), 'Incorrect dtype fields.' assert dt['ID'].shape == (), 'Incorrect ID field shape.' assert dt['x'].shape == (4,), 'Incorrect x field shape.' assert dt['p'].shape == (4,), 'Incorrect x field shape.' def test_ymax(): hrg = HRG(.15) ymax = np.random.uniform(.1, 1.) surface = Surface( np.array([[1., 0., 0.]]), np.array([[1e3/hrg.density(), 0., 0.]]), np.array([[0., 0.]]), ymax=ymax ) parts = sample(surface, hrg) p = parts['p'] E, px, py, pz = p.T y = .5*np.log((E + pz)/(E - pz)) assert np.all(np.fabs(y) < ymax), 'Rapidity outside ymax.' def test_decay_f500(): hrg = HRG(.15, species=[9000221], decay_f500=True) surface = Surface( np.array([[1., 0., 0.]]), np.array([[1e2/hrg.density(), 0., 0.]]), np.array([[0., 0.]]), ) parts = sample(surface, hrg) i = parts['ID'] assert np.all((i == 111) | (i == 211) | (i == -211)), \ 'f500 not decayed to pions.' ```
{ "source": "jfparadis/cosmic-swingset", "score": 2 }
#### File: src/ag_pserver/main.py ```python from twisted.internet.task import react, deferLater from twisted.web import static, resource, server from twisted.web.template import Element, XMLFile, renderer, flattenString from twisted.internet import endpoints, defer, protocol from twisted.python import usage import wormhole import treq import os.path import os import json import random from twisted.python import log import sys log.startLogging(sys.stdout) # TODO: Don't hardcode these. INITIAL_TOKEN = '<PASSWORD>' AG_BOOTSTRAP_PASSWORD = b'<PASSWORD>' MAILBOX_URL = u"ws://relay.magic-wormhole.io:4000/v1" #MAILBOX_URL = u"ws://10.0.2.24:4000/v1" APPID = u"agoric.com/ag-testnet1/provisioning-tool" htmldir = os.path.join(os.path.dirname(__file__), "html") class SetConfigOptions(usage.Options): pass class AddPubkeysOptions(usage.Options): optParameters = [ ["controller", "c", "http://localhost:8002/vat", "controller's listening port for us to send control messages"], ] class StartOptions(usage.Options): optParameters = [ ["mountpoint", "m", "/", "controller's top level web page"], ["listen", "l", "tcp:8001", "client-visible HTTP listening port"], ["controller", "c", "http://localhost:8002/vat", "controller's listening port for us to send control messages"], ] class Options(usage.Options): subCommands = [ ['set-cosmos-config', None, SetConfigOptions, "Pipe output of 'ag-setup-cosmos show-config' to this command"], ['add-pubkeys', None, AddPubkeysOptions, 'Add public keys from saved database'], ['start', None, StartOptions, 'Start the HTTP server'], ] optParameters = [ ["home", None, os.path.join(os.environ["HOME"], '.ag-pserver'), "provisioning-server's state directory"], ] class SendInputAndWaitProtocol(protocol.ProcessProtocol): def __init__(self, d, input): self.deferred = d self.input = input self.output = b'' def connectionMade(self): self.transport.write(self.input) self.transport.closeStdin() def outReceived(self, data): self.output += data print(data.decode('latin-1')) def errReceived(self, data): print(data.decode('latin-1'), file=sys.stderr) def processEnded(self, reason): self.deferred.callback((reason.value.exitCode, self.output)) def cosmosConfigFile(home): return os.path.join(home, 'cosmos-chain.json') def pubkeyDatabase(home): return os.path.join(home, 'pubkeys.jsona') class ConfigElement(Element): loader = XMLFile(os.path.join(htmldir, "index.html")) @staticmethod def gatherArgs(opts): meta = {} f = open(cosmosConfigFile(opts['home'])) config = f.read() gr = '/usr/src/app/lib/git-revision.txt' if os.path.exists(gr): f = open(gr) meta['package_git'] = f.read().strip() else: f = os.popen('git rev-parse --short HEAD') sha = f.read().strip() f = os.popen('git diff --quiet || echo -dirty') meta['package_git'] = sha + f.read().strip() pj = '/usr/src/app/package.json' pjson = {} if os.path.exists(pj): f = open(pj) pjson = json.load(f) else: pjpath = None # Walk upwards from the current directory. pj = os.path.abspath('package.json') while pj != pjpath: pjpath = pj if os.path.exists(pjpath): f = open(pjpath) pjson = json.load(f) break pj = os.path.join(os.path.dirname(pjpath), '../package.json') pj = os.path.abspath(pj) meta['package_version'] = pjson.get('version', 'unknown') meta['package_name'] = pjson.get('name', 'cosmic-swingset') repo = pjson.get('repository', 'https://github.com/Agoric/cosmic-swingset') cleanRev = meta['package_git'].replace('-dirty', '') link = repo + '/commit/' + cleanRev meta['package_repo'] = link return [config, meta] def __init__(self, config, meta): self._config = config self._meta = meta @renderer def config(self, request, tag): tag.fillSlots(cosmos_config=self._config) return tag @renderer def meta(self, request, tag): tag.fillSlots(**self._meta) return tag class ResponseElement(ConfigElement): loader = XMLFile(os.path.join(htmldir, "response-template.html")) def __init__(self, code, nickname, *args): super().__init__(*args) self._code = code self._nickname = nickname @renderer def code(self, request, tag): return self._code @renderer def nickname(self, request, tag): return self._nickname class Provisioner(resource.Resource): def __init__(self, reactor, o): self.reactor = reactor self.opts = o @defer.inlineCallbacks def build_page(self): f = open(cosmosConfigFile(self.opts['home'])) config = f.read() args = ConfigElement.gatherArgs(self.opts) html = yield flattenString(None, ConfigElement(*args)) return html def render_GET(self, req): d = self.build_page() def built(response): req.write(response) req.finish() d.addCallback(built) d.addErrback(log.err) return server.NOT_DONE_YET @defer.inlineCallbacks def enablePubkey(reactor, opts, config, nickname, pubkey): mobj = { "type": "pleaseProvision", "nickname": nickname, "pubkey": pubkey, } # print("mobj:", mobj) def ret(server_message): return [mobj, server_message, config] # FIXME: Make more resilient to DOS attacks, or attempts # to drain all our agmedallions. if INITIAL_TOKEN is not None: retries = 10 code = None while code != 0 and retries > 0: if code is not None: # Wait 3 seconds between sends. yield deferLater(reactor, 3, lambda: None) retries -= 1 rpcAddr = random.choice(config['rpcAddrs']) print('transferring ' + INITIAL_TOKEN + ' to ' + pubkey + ' via ' + rpcAddr) d = defer.Deferred() processProtocol = SendInputAndWaitProtocol(d, AG_BOOTSTRAP_PASSWORD + b'\n') program = 'ag-cosmos-helper' reactor.spawnProcess(processProtocol, '/usr/local/bin/' + program, args=[ program, 'tx', 'send', config['bootstrapAddress'], pubkey, INITIAL_TOKEN, '--yes', '--chain-id', config['chainName'], '-ojson', '--node', 'tcp://' + rpcAddr, '--home', os.path.join(opts['home'], 'ag-cosmos-helper-statedir'), '--broadcast-mode', 'block' # Don't return until committed. ]) code, output = yield d if code == 0: oj = json.loads(output.decode('utf-8')) code = oj.get('code', code) print('transfer returned ' + str(code)) if code != 0: return ret({"ok": False, "error": 'transfer returned ' + str(code)}) controller_url = opts["controller"] print('contacting ' + controller_url) m = json.dumps(mobj) # this HTTP request goes to the controller machine, where it should # be routed to vat-provisioning.js and the pleaseProvision() method. try: resp = yield treq.post(controller_url, m.encode('utf-8'), reactor=reactor, headers={ b'Content-Type': [b'application/json'], b'Origin': [b'http://127.0.0.1'], }) if resp.code < 200 or resp.code >= 300: raise Exception('invalid response code ' + str(resp.code)) rawResp = yield treq.json_content(resp) except Exception as e: print('controller error', e) return ret({"ok": False, "error": str(e)}) if not rawResp.get("ok"): print("provisioning server error", rawResp) return ret({"ok": False, "error": rawResp.get('rej')}) r = rawResp['res'] ingressIndex = r["ingressIndex"] # this message is sent back to setup-solo/src/ag_setup_solo/main.py server_message = { "ok": True, "gci": config['gci'], "rpcAddrs": config['rpcAddrs'], "chainName": config['chainName'], "ingressIndex": ingressIndex, } print("send server_message", server_message) return ret(server_message) class RequestCode(resource.Resource): def __init__(self, reactor, o): self.reactor = reactor self.opts = o @defer.inlineCallbacks def got_message(self, client_message, nickname): cm = json.loads(client_message.decode("utf-8")) f = open(cosmosConfigFile(self.opts['home'])) config = json.loads(f.read()) msgs = yield enablePubkey(self.reactor, self.opts, config, nickname, cm['pubkey']) return msgs def send_provisioning_response(self, msgs, w): [mobj, server_message, config] = msgs sm = json.dumps(server_message).encode("utf-8") print("send provisioning response", server_message) w.send_message(sm) d = w.close() def complete(_): print("provisioning complete") pkobj = { 'chainName': config['chainName'], 'pubkey': mobj['pubkey'], 'nickname': mobj['nickname'][:32], } print("save public key to database", pkobj) pkobj_str = json.dumps(pkobj) with open(pubkeyDatabase(self.opts['home']), 'a') as db: db.write(pkobj_str + ',\n') d.addCallbacks(complete, lambda f: print("provisioning error", f)) @defer.inlineCallbacks def process_wormhole(self, nickname): w = wormhole.create(APPID, MAILBOX_URL, self.reactor) w.allocate_code() code = yield w.get_code() d = w.get_message() d.addCallback(self.got_message, nickname.decode('utf-8')) d.addCallback(self.send_provisioning_response, w) return code @defer.inlineCallbacks def build_provisioning_response(self, nickname): code = yield self.process_wormhole(nickname) args = ConfigElement.gatherArgs(self.opts) html = yield flattenString(None, ResponseElement(code, nickname, *args)) return html def render_POST(self, req): nickname = req.args[b"nickname"][0] print(nickname) d = self.build_provisioning_response(nickname) def built(response): req.write(response) req.finish() d.addCallback(built) d.addErrback(log.err) return server.NOT_DONE_YET def render_GET(self, req): nickname = req.args[b"nickname"][0] d = self.process_wormhole(nickname) def built(code): req.setHeader('Content-Type', 'text/plain; charset=UTF-8') req.write((code + '\n').encode('utf-8')) req.finish() d.addCallback(built) d.addErrback(log.err) return server.NOT_DONE_YET class ConfigJSON(resource.Resource): def __init__(self, o): self.opts = o def render_GET(self, req): f = open(cosmosConfigFile(self.opts['home'])) config = f.read() req.setHeader('Content-Type', 'application/json') return config.encode('utf-8') def run_server(reactor, o): print("dir is", __file__) root = static.File(htmldir) provisioner = Provisioner(reactor, o) root.putChild(b"", provisioner) root.putChild(b"index.html", provisioner) root.putChild(b"request-code", RequestCode(reactor, o)) # Prefix the mountpoints. revpaths = o['mountpoint'].split('/') revpaths.reverse() for dir in revpaths: # print('mount root under ' + dir) if dir != '': r = resource.Resource() r.putChild(dir.encode('utf-8'), root) root = r # Display the JSON config. root.putChild(b"network-config", ConfigJSON(o)) site = server.Site(root) s = endpoints.serverFromString(reactor, o["listen"]) s.listen(site) print("server running") return defer.Deferred() def doEnablePubkeys(reactor, opts, config, pkobjs): finished = defer.Deferred() def showError(e): print(e) doLatest(None) def doLatest(d): if d is not None: print(d) if len(pkobjs) == 0: finished.callback(d) return pkobj = pkobjs.pop() try: print('enabling', pkobj['chainName'], pkobj['nickname'], pkobj['pubkey']) d = enablePubkey(reactor, opts, config, pkobj['nickname'], pkobj['pubkey']) d.addErrback(showError) d.addCallback(doLatest) except Exception as e: showError(e) doLatest(None) return finished def main(): o = Options() o.parseOptions() if o.subCommand == 'set-cosmos-config': try: os.mkdir(o['home']) except FileExistsError: pass fname = cosmosConfigFile(o['home']) print('Reading %s from stdin; hit Ctrl-D to finish' % fname) cfgJson = sys.stdin.read() with open(fname, 'w') as f: f.write(cfgJson) elif o.subCommand == 'add-pubkeys': # Now that we have our files, add all the accounts. f = open(cosmosConfigFile(o['home']), 'r') config = json.loads(f.read()) try: f = open(pubkeyDatabase(o['home'])) pkobjs_str = f.read().strip(', \r\n'); pkobjs = json.loads('[' + pkobjs_str + ']') except FileNotFoundError: return react(doEnablePubkeys, ({**o, **o.subOptions}, config, pkobjs)) elif o.subCommand == 'start': react(run_server, ({**o, **o.subOptions},)) else: print("Need either 'set-cosmos-config' or 'start'") sys.exit(1) ```
{ "source": "jfparentledartech/DEFT", "score": 2 }
#### File: lib/dataset/dataset_factory.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from .datasets.mot import MOT, MOT_prediction from .datasets.nuscenes import nuScenes, nuScenes_prediction from .datasets.pixset import PixSet, PixSet_prediction from .datasets.kitti_tracking import KITTITracking, KITTITracking_prediction from .datasets.custom_dataset import CustomDataset dataset_factory = { "custom": CustomDataset, "mot": MOT, "nuscenes": nuScenes, "pixset": PixSet, "kitti_tracking": KITTITracking, } dataset_factory_prediction = { "mot": MOT_prediction, "nuscenes": nuScenes_prediction, "pixset": PixSet_prediction, "kitti_tracking": KITTITracking_prediction, } def get_dataset(dataset, prediction_model=False): if prediction_model: return dataset_factory_prediction[dataset] else: return dataset_factory[dataset] ``` #### File: lib/utils/image.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from lib.utils.ddd_utils import compute_box_3d, project_to_image, alpha2rot_y from lib.utils.ddd_utils import draw_box_3d, unproject_2d_to_3d from tools.convert_pixset import box3d_from_loc_dim_rot import numpy as np import cv2 import random import torch from matplotlib.patches import Polygon from pioneer.common import linalg from matplotlib import pyplot as plt from pioneer.das.api.samples import Image from pioneer.das.api.platform import Platform def flip(img): return img[:, :, ::-1].copy() # @numba.jit(nopython=True, nogil=True) def transform_preds_with_trans(coords, trans): # target_coords = np.concatenate( # [coords, np.ones((coords.shape[0], 1), np.float32)], axis=1) target_coords = np.ones((coords.shape[0], 3), np.float32) target_coords[:, :2] = coords target_coords = np.dot(trans, target_coords.transpose()).transpose() return target_coords[:, :2] def transform_preds(coords, center, scale, output_size): target_coords = np.zeros(coords.shape) trans = get_affine_transform(center, scale, 0, output_size, inv=1) for p in range(coords.shape[0]): target_coords[p, 0:2] = affine_transform(coords[p, 0:2], trans) return target_coords def get_affine_transform( center, scale, rot, output_size, shift=np.array([0, 0], dtype=np.float32), inv=0 ): if not isinstance(scale, np.ndarray) and not isinstance(scale, list): scale = np.array([scale, scale], dtype=np.float32) scale_tmp = scale src_w = scale_tmp[0] dst_w = output_size[0] dst_h = output_size[1] rot_rad = np.pi * rot / 180 src_dir = get_dir([0, src_w * -0.5], rot_rad) dst_dir = np.array([0, dst_w * -0.5], np.float32) src = np.zeros((3, 2), dtype=np.float32) dst = np.zeros((3, 2), dtype=np.float32) src[0, :] = center + scale_tmp * shift src[1, :] = center + src_dir + scale_tmp * shift dst[0, :] = [dst_w * 0.5, dst_h * 0.5] dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5], np.float32) + dst_dir src[2:, :] = get_3rd_point(src[0, :], src[1, :]) dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :]) if inv: trans = cv2.getAffineTransform(np.float32(dst), np.float32(src)) else: trans = cv2.getAffineTransform(np.float32(src), np.float32(dst)) return trans def affine_transform(pt, t): new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32).T new_pt = np.dot(t, new_pt) return new_pt[:2] def get_3rd_point(a, b): direct = a - b return b + np.array([-direct[1], direct[0]], dtype=np.float32) def get_dir(src_point, rot_rad): sn, cs = np.sin(rot_rad), np.cos(rot_rad) src_result = [0, 0] src_result[0] = src_point[0] * cs - src_point[1] * sn src_result[1] = src_point[0] * sn + src_point[1] * cs return src_result def crop(img, center, scale, output_size, rot=0): trans = get_affine_transform(center, scale, rot, output_size) dst_img = cv2.warpAffine( img, trans, (int(output_size[0]), int(output_size[1])), flags=cv2.INTER_LINEAR ) return dst_img # @numba.jit(nopython=True, nogil=True) def gaussian_radius(det_size, min_overlap=0.7): height, width = det_size a1 = 1 b1 = height + width c1 = width * height * (1 - min_overlap) / (1 + min_overlap) sq1 = np.sqrt(b1 ** 2 - 4 * a1 * c1) r1 = (b1 + sq1) / 2 a2 = 4 b2 = 2 * (height + width) c2 = (1 - min_overlap) * width * height sq2 = np.sqrt(b2 ** 2 - 4 * a2 * c2) r2 = (b2 + sq2) / 2 a3 = 4 * min_overlap b3 = -2 * min_overlap * (height + width) c3 = (min_overlap - 1) * width * height sq3 = np.sqrt(b3 ** 2 - 4 * a3 * c3) r3 = (b3 + sq3) / 2 return min(r1, r2, r3) # @numba.jit(nopython=True, nogil=True) def gaussian2D(shape, sigma=1): m, n = [(ss - 1.0) / 2.0 for ss in shape] y, x = np.ogrid[-m : m + 1, -n : n + 1] # y, x = np.arange(-m, m + 1).reshape(-1, 1), np.arange(-n, n + 1).reshape(1, -1) h = np.exp(-(x * x + y * y) / (2 * sigma * sigma)) h[h < np.finfo(h.dtype).eps * h.max()] = 0 return h # @numba.jit(nopython=True, nogil=True) def draw_umich_gaussian(heatmap, center, radius, k=1): # import pdb; pdb.set_trace() diameter = 2 * radius + 1 gaussian = gaussian2D((diameter, diameter), sigma=diameter / 6) x, y = int(center[0]), int(center[1]) height, width = heatmap.shape[0:2] left, right = min(x, radius), min(width - x, radius + 1) top, bottom = min(y, radius), min(height - y, radius + 1) # import pdb; pdb.set_trace() masked_heatmap = heatmap[y - top : y + bottom, x - left : x + right] masked_gaussian = gaussian[ radius - top : radius + bottom, radius - left : radius + right ] if min(masked_gaussian.shape) > 0 and min(masked_heatmap.shape) > 0: # TODO debug np.maximum(masked_heatmap, masked_gaussian * k, out=masked_heatmap) return heatmap def draw_dense_reg(regmap, heatmap, center, value, radius, is_offset=False): diameter = 2 * radius + 1 gaussian = gaussian2D((diameter, diameter), sigma=diameter / 6) value = np.array(value, dtype=np.float32).reshape(-1, 1, 1) dim = value.shape[0] reg = np.ones((dim, diameter * 2 + 1, diameter * 2 + 1), dtype=np.float32) * value if is_offset and dim == 2: delta = np.arange(diameter * 2 + 1) - radius reg[0] = reg[0] - delta.reshape(1, -1) reg[1] = reg[1] - delta.reshape(-1, 1) x, y = int(center[0]), int(center[1]) height, width = heatmap.shape[0:2] left, right = min(x, radius), min(width - x, radius + 1) top, bottom = min(y, radius), min(height - y, radius + 1) masked_heatmap = heatmap[y - top : y + bottom, x - left : x + right] masked_regmap = regmap[:, y - top : y + bottom, x - left : x + right] masked_gaussian = gaussian[ radius - top : radius + bottom, radius - left : radius + right ] masked_reg = reg[:, radius - top : radius + bottom, radius - left : radius + right] if min(masked_gaussian.shape) > 0 and min(masked_heatmap.shape) > 0: # TODO debug idx = (masked_gaussian >= masked_heatmap).reshape( 1, masked_gaussian.shape[0], masked_gaussian.shape[1] ) masked_regmap = (1 - idx) * masked_regmap + idx * masked_reg regmap[:, y - top : y + bottom, x - left : x + right] = masked_regmap return regmap def draw_msra_gaussian(heatmap, center, sigma): tmp_size = sigma * 3 mu_x = int(center[0] + 0.5) mu_y = int(center[1] + 0.5) w, h = heatmap.shape[0], heatmap.shape[1] ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)] br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)] if ul[0] >= h or ul[1] >= w or br[0] < 0 or br[1] < 0: return heatmap size = 2 * tmp_size + 1 x = np.arange(0, size, 1, np.float32) y = x[:, np.newaxis] x0 = y0 = size // 2 g = np.exp(-((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2)) g_x = max(0, -ul[0]), min(br[0], h) - ul[0] g_y = max(0, -ul[1]), min(br[1], w) - ul[1] img_x = max(0, ul[0]), min(br[0], h) img_y = max(0, ul[1]), min(br[1], w) heatmap[img_y[0] : img_y[1], img_x[0] : img_x[1]] = np.maximum( heatmap[img_y[0] : img_y[1], img_x[0] : img_x[1]], g[g_y[0] : g_y[1], g_x[0] : g_x[1]], ) return heatmap def grayscale(image): return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) def lighting_(data_rng, image, alphastd, eigval, eigvec): alpha = data_rng.normal(scale=alphastd, size=(3,)) image += np.dot(eigvec, eigval * alpha) def blend_(alpha, image1, image2): image1 *= alpha image2 *= 1 - alpha image1 += image2 def saturation_(data_rng, image, gs, gs_mean, var): alpha = 1.0 + data_rng.uniform(low=-var, high=var) blend_(alpha, image, gs[:, :, None]) def brightness_(data_rng, image, gs, gs_mean, var): alpha = 1.0 + data_rng.uniform(low=-var, high=var) image *= alpha def contrast_(data_rng, image, gs, gs_mean, var): alpha = 1.0 + data_rng.uniform(low=-var, high=var) blend_(alpha, image, gs_mean) def color_aug(data_rng, image, eig_val, eig_vec): functions = [brightness_, contrast_, saturation_] random.shuffle(functions) gs = grayscale(image) gs_mean = gs.mean() for f in functions: f(data_rng, image, gs, gs_mean, 0.4) lighting_(data_rng, image, 0.1, eig_val, eig_vec) def show_matching_hanlded_rectangle(img_pre, img_next, boxes_pre, boxes_next, labels): img_p = img_pre.copy() img_n = img_next.copy() for box in boxes_pre[:, 0:4]: img_p = cv2.rectangle( img_p, tuple(box[:2].astype(int)), tuple((box[2:4]).astype(int)), (255, 0, 0), 2, ) for box in boxes_next[:, 0:4]: img_n = cv2.rectangle( img_n, tuple(box[:2].astype(int)), tuple((box[2:4]).astype(int)), (255, 0, 0), 2, ) h, w, c = img_p.shape h, w, c = img_n.shape img = np.concatenate([img_p, img_n], axis=0) rows, cols = np.nonzero(labels) for r, c in zip(rows, cols): box_p = boxes_pre[r, 0:4] box_n = boxes_next[c, 0:4] center_p = (box_p[:2] + box_p[2:4]) / 2.0 center_n = (box_n[:2] + box_n[2:4]) / 2.0 + np.array([0, h]) img = cv2.line( img, tuple(center_p.astype(int)), tuple(center_n.astype(int)), ( (int)(np.random.randn() * 255), (int)(np.random.randn() * 255), (int)(np.random.randn() * 255), ), 2, ) return img def ResizeShuffleBoxes(max_object, boxes_pre, boxes_next, labels): resize_f = lambda boxes: ( boxes.shape[0], np.vstack((boxes, np.full((max_object - len(boxes), boxes.shape[1]), np.inf))), ) size_pre, boxes_pre = resize_f(boxes_pre) size_next, boxes_next = resize_f(boxes_next) indexes_pre = np.arange(max_object) indexes_next = np.arange(max_object) np.random.shuffle(indexes_pre) np.random.shuffle(indexes_next) boxes_pre = boxes_pre[indexes_pre, :] boxes_next = boxes_next[indexes_next, :] labels = labels[indexes_pre, :] labels = labels[:, indexes_next] mask_pre = indexes_pre < size_pre mask_next = indexes_next < size_next # add false object label false_object_pre = (labels.sum(1) == 0).astype(float) false_object_pre[np.logical_not(mask_pre)] = 0.0 false_object_next = (labels.sum(0) == 0).astype(float) false_object_next[np.logical_not(mask_next)] = 0.0 false_object_pre = np.expand_dims(false_object_pre, axis=1) labels = np.concatenate((labels, false_object_pre), axis=1) # 60x61 false_object_next = np.append(false_object_next, [0]) false_object_next = np.expand_dims(false_object_next, axis=0) labels = np.concatenate((labels, false_object_next), axis=0) # 60x61 mask_pre = np.append(mask_pre, [True]) # 61 mask_next = np.append(mask_next, [True]) # 61 return [boxes_pre, mask_pre], [boxes_next, mask_next], labels def FormatBoxes(boxes_pre, boxes_next, labels): # convert the center to [-1, 1] f = lambda boxes: np.expand_dims( np.expand_dims((boxes[:, :2] + boxes[:, 2:]) - 1, axis=1), axis=1 ) # remove inf boxes_pre[0] = f(boxes_pre[0]) boxes_pre[0][boxes_pre[0] == np.inf] = 1.5 boxes_next[0] = f(boxes_next[0]) boxes_next[0][boxes_next[0] == np.inf] = 1.5 return boxes_pre, boxes_next, labels def ToTensor(boxes_pre, boxes_next, labels): boxes_pre[0] = torch.from_numpy(boxes_pre[0].astype(float)).float() boxes_pre[1] = torch.from_numpy(boxes_pre[1].astype(np.uint8)).unsqueeze(0) boxes_next[0] = torch.from_numpy(boxes_next[0].astype(float)).float() boxes_next[1] = torch.from_numpy(boxes_next[1].astype(np.uint8)).unsqueeze(0) labels = torch.from_numpy(labels).unsqueeze(0) return boxes_pre[0], boxes_pre[1], boxes_next[0], boxes_next[1], labels def ToPercentCoordinates(boxes_pre, boxes_next, img): height, width, channels = img.shape boxes_pre[:, 0] /= width boxes_pre[:, 2] /= width boxes_pre[:, 1] /= height boxes_pre[:, 3] /= height boxes_next[:, 0] /= width boxes_next[:, 2] /= width boxes_next[:, 1] /= height boxes_next[:, 3] /= height return boxes_pre, boxes_next def convert_detection(detection, h, w): """ transform the current detection center to [-1, 1] :param detection: detection :return: translated detection """ # get the center, and format it in (-1, 1) detection[:, 2] -= detection[:, 0] detection[:, 3] -= detection[:, 1] detection[:, 0] /= w detection[:, 2] /= w detection[:, 1] /= h detection[:, 3] /= h center = (2 * detection[:, 0:2] + detection[:, 2:4]) - 1.0 center = torch.from_numpy(center.astype(float)).float() center.unsqueeze_(0) center.unsqueeze_(2) center.unsqueeze_(3) if torch.cuda.is_available(): return center.cuda() return center def get_color(idx): idx = idx * 3 color = ((37 * idx) % 255, (17 * idx) % 255, (29 * idx) % 255) return color def plot_tracking(image, tlwhs, obj_ids, scores=None, frame_id=0, fps=0.0, ids2=None): im = np.ascontiguousarray(np.copy(image)) im_h, im_w = im.shape[:2] top_view = np.zeros([im_w, im_w, 3], dtype=np.uint8) + 255 text_scale = max(1, image.shape[1] / 1600.0) text_thickness = 1 if text_scale > 1.1 else 1 line_thickness = max(1, int(image.shape[1] / 500.0)) radius = max(5, int(im_w / 140.0)) cv2.putText( im, "frame: %d fps: %.2f num: %d" % (frame_id, fps, len(tlwhs)), (0, int(15 * text_scale)), cv2.FONT_HERSHEY_PLAIN, text_scale, (0, 0, 255), thickness=2, ) for i, tlwh in enumerate(tlwhs): x1, y1, w, h = tlwh intbox = tuple(map(int, (x1, y1, x1 + w, y1 + h))) obj_id = int(obj_ids[i]) id_text = "{}".format(int(obj_id)) if ids2 is not None: id_text = id_text + ", {}".format(int(ids2[i])) _line_thickness = 1 if obj_id <= 0 else line_thickness color = get_color(abs(obj_id)) cv2.rectangle( im, intbox[0:2], intbox[2:4], color=color, thickness=line_thickness ) cv2.putText( im, id_text, (intbox[0], intbox[1] + 30), cv2.FONT_HERSHEY_PLAIN, text_scale, (0, 0, 255), thickness=text_thickness, ) return im def plot_tracking_ddd( image, tlwhs, ddd_boxes, obj_ids, scores=None, frame_id=0, fps=0.0, ids2=None, calib=None, trans_matrix=None, camera_matrix=None, distortion_coeffs=None, classes=None ): im = np.ascontiguousarray(np.copy(image)) im_h, im_w = im.shape[:2] top_view = np.zeros([im_w, im_w, 3], dtype=np.uint8) + 255 text_scale = max(1, image.shape[1] / 1600.0) text_thickness = 1 if text_scale > 1.1 else 1 line_thickness = max(1, int(image.shape[1] / 500.0)) radius = max(5, int(im_w / 140.0)) cv2.putText( im, "frame: %d fps: %.2f num: %d" % (frame_id, fps, len(ddd_boxes)), (0, int(15 * text_scale)), cv2.FONT_HERSHEY_PLAIN, text_scale, (0, 0, 255), thickness=2, ) for i, box3d in enumerate(ddd_boxes): tlwh = tlwhs[i] x1, y1, w, h = tlwh intbox = tuple(map(int, (x1, y1, x1 + w, y1 + h))) obj_id = int(obj_ids[i]) id_text = "{}".format(int(obj_id)) if ids2 is not None: id_text = id_text + ", {}".format(int(ids2[i])) id_text = f'{classes[i]}:{id_text}' _line_thickness = 1 if obj_id <= 0 else line_thickness color = get_color(abs(obj_id)) dim = box3d[:3] loc = box3d[3:-1] rot = box3d[-1] # box_3d = compute_box_3d(dim, loc, rot) # box_2d = project_to_image(box_3d, calib) dist_coeffs = np.asarray(distortion_coeffs) box3d_projected = box3d_from_loc_dim_rot(np.asarray(trans_matrix), loc, dim.tolist(), rot, camera_matrix, dist_coeffs) top_pad = np.zeros((389, 1440, 3), dtype=float) bottom_pad = np.zeros((378, 1440, 3), dtype=float) im = np.concatenate((top_pad, (im / 255), bottom_pad)) im = draw_box_3d(im, box3d_projected, c=color, same_color=True) im = np.uint8(im[389:-378]*255) # plt.imshow(im) # plt.scatter(ct[i][0], ct[i][1] - 389) # plt.scatter(x1 + w / 2, y1 + h / 2) # plt.show() cv2.putText( im, id_text, (intbox[0], intbox[1] + 30), cv2.FONT_HERSHEY_PLAIN, text_scale, (0, 255, 0), thickness=text_thickness, ) return im ``` #### File: lib/utils/matching.py ```python import lap import numpy as np import scipy from cython_bbox import bbox_overlaps as bbox_ious from scipy.spatial.distance import cdist from lib.utils.tracking_utils import kalman_filter import os.path, copy from scipy.spatial import ConvexHull # This function is taken from : https://github.com/Zhongdao/Towards-Realtime-MOT/blob/master/tracker/matching.py def merge_matches(m1, m2, shape): O, P, Q = shape m1 = np.asarray(m1) m2 = np.asarray(m2) M1 = scipy.sparse.coo_matrix((np.ones(len(m1)), (m1[:, 0], m1[:, 1])), shape=(O, P)) M2 = scipy.sparse.coo_matrix((np.ones(len(m2)), (m2[:, 0], m2[:, 1])), shape=(P, Q)) mask = M1 * M2 match = mask.nonzero() match = list(zip(match[0], match[1])) unmatched_O = tuple(set(range(O)) - set([i for i, j in match])) unmatched_Q = tuple(set(range(Q)) - set([j for i, j in match])) return match, unmatched_O, unmatched_Q def _indices_to_matches(cost_matrix, indices, thresh): matched_cost = cost_matrix[tuple(zip(*indices))] matched_mask = matched_cost <= thresh matches = indices[matched_mask] unmatched_a = tuple(set(range(cost_matrix.shape[0])) - set(matches[:, 0])) unmatched_b = tuple(set(range(cost_matrix.shape[1])) - set(matches[:, 1])) return matches, unmatched_a, unmatched_b # This function is taken from : https://github.com/Zhongdao/Towards-Realtime-MOT/blob/master/tracker/matching.py def linear_assignment(cost_matrix, thresh): if cost_matrix.size == 0: return ( np.empty((0, 2), dtype=int), tuple(range(cost_matrix.shape[0])), tuple(range(cost_matrix.shape[1])), ) matches, unmatched_a, unmatched_b = [], [], [] cost, x, y = lap.lapjv(cost_matrix, extend_cost=True, cost_limit=thresh) for ix, mx in enumerate(x): if mx >= 0: matches.append([ix, mx]) unmatched_a = np.where(x < 0)[0] unmatched_b = np.where(y < 0)[0] matches = np.asarray(matches) return matches, unmatched_a, unmatched_b # This function is taken from : https://github.com/Zhongdao/Towards-Realtime-MOT/blob/master/tracker/matching.py def ious(atlbrs, btlbrs): """ Compute cost based on IoU :type atlbrs: list[tlbr] | np.ndarray :type atlbrs: list[tlbr] | np.ndarray :rtype ious np.ndarray """ ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=np.float) if ious.size == 0: return ious ious = bbox_ious( np.ascontiguousarray(atlbrs, dtype=np.float), np.ascontiguousarray(btlbrs, dtype=np.float), ) return ious # Part of this function is taken from : https://github.com/Zhongdao/Towards-Realtime-MOT/blob/master/tracker/matching.py def iou_distance(atracks, btracks, frame_id=0, use_prediction=True): """ Compute cost based on IoU :type atracks: list[STrack] :type btracks: list[STrack] :rtype cost_matrix np.ndarray """ if (len(atracks) > 0 and isinstance(atracks[0], np.ndarray)) or ( len(btracks) > 0 and isinstance(btracks[0], np.ndarray) ): atlbrs = atracks btlbrs = btracks else: if use_prediction: atlbrs = [track.prediction_at_frame_tlbr(frame_id) for track in atracks] else: atlbrs = [track.tlbr for track in atracks] btlbrs = [track.tlbr for track in btracks] _ious = ious(atlbrs, btlbrs) cost_matrix = 1 - _ious return cost_matrix def iou_ddd_distance(atracks, btracks, frame_id=0, use_prediction=True): """ Compute cost based on IoU :type atracks: list[STrack] :type btracks: list[STrack] :rtype cost_matrix np.ndarray """ if (len(atracks) > 0 and isinstance(atracks[0], np.ndarray)) or ( len(btracks) > 0 and isinstance(btracks[0], np.ndarray) ): atlbrs = atracks btlbrs = btracks else: atlbrs = [convert_3dbox_to_8corner(track.ddd_bbox) for track in atracks] btlbrs = [convert_3dbox_to_8corner(track.ddd_bbox) for track in btracks] iou_matrix = np.zeros((len(atlbrs), len(btlbrs)), dtype=np.float32) if iou_matrix.size == 0: return iou_matrix for d, det in enumerate(btlbrs): for t, trk in enumerate(atlbrs): iou_matrix[t, d] = iou3d(det, trk)[0] # det: 8 x 3, trk: 8 x 3 iou_matrix = 1 - iou_matrix return iou_matrix def poly_area(x, y): return 0.5 * np.abs(np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1))) def box3d_vol(corners): """ corners: (8,3) no assumption on axis direction """ a = np.sqrt(np.sum((corners[0, :] - corners[1, :]) ** 2)) b = np.sqrt(np.sum((corners[1, :] - corners[2, :]) ** 2)) c = np.sqrt(np.sum((corners[0, :] - corners[4, :]) ** 2)) return a * b * c def convex_hull_intersection(p1, p2): """ Compute area of two convex hull's intersection area. p1,p2 are a list of (x,y) tuples of hull vertices. return a list of (x,y) for the intersection and its volume """ inter_p = polygon_clip(p1, p2) if inter_p is not None: hull_inter = ConvexHull(inter_p) return inter_p, hull_inter.volume else: return None, 0.0 def polygon_clip(subjectPolygon, clipPolygon): """ Clip a polygon with another polygon. Args: subjectPolygon: a list of (x,y) 2d points, any polygon. clipPolygon: a list of (x,y) 2d points, has to be *convex* Note: **points have to be counter-clockwise ordered** Return: a list of (x,y) vertex point for the intersection polygon. """ def inside(p): return (cp2[0] - cp1[0]) * (p[1] - cp1[1]) > (cp2[1] - cp1[1]) * (p[0] - cp1[0]) def computeIntersection(): dc = [cp1[0] - cp2[0], cp1[1] - cp2[1]] dp = [s[0] - e[0], s[1] - e[1]] n1 = cp1[0] * cp2[1] - cp1[1] * cp2[0] n2 = s[0] * e[1] - s[1] * e[0] n3 = 1.0 / (dc[0] * dp[1] - dc[1] * dp[0]) return [(n1 * dp[0] - n2 * dc[0]) * n3, (n1 * dp[1] - n2 * dc[1]) * n3] outputList = subjectPolygon cp1 = clipPolygon[-1] for clipVertex in clipPolygon: cp2 = clipVertex inputList = outputList outputList = [] s = inputList[-1] for subjectVertex in inputList: e = subjectVertex if inside(e): if not inside(s): outputList.append(computeIntersection()) outputList.append(e) elif inside(s): outputList.append(computeIntersection()) s = e cp1 = cp2 if len(outputList) == 0: return None return outputList def convert_3dbox_to_8corner(bbox3d_input): # compute rotational matrix around yaw axis bbox3d = copy.copy(bbox3d_input) # transform to kitti format first bbox3d_nuscenes = copy.copy(bbox3d) # kitti: [x, y, z, a, l, w, h] bbox3d[0] = bbox3d_nuscenes[3] bbox3d[1] = bbox3d_nuscenes[4] bbox3d[2] = bbox3d_nuscenes[5] bbox3d[3] = bbox3d_nuscenes[-1] bbox3d[4] = bbox3d_nuscenes[2] bbox3d[5] = bbox3d_nuscenes[1] bbox3d[6] = bbox3d_nuscenes[0] R = roty(bbox3d[3]) # 3d bounding box dimensions l = bbox3d[4] w = bbox3d[5] h = bbox3d[6] # 3d bounding box corners x_corners = [l / 2, l / 2, -l / 2, -l / 2, l / 2, l / 2, -l / 2, -l / 2] y_corners = [0, 0, 0, 0, -h, -h, -h, -h] z_corners = [w / 2, -w / 2, -w / 2, w / 2, w / 2, -w / 2, -w / 2, w / 2] # rotate and translate 3d bounding box corners_3d = np.dot(R, np.vstack([x_corners, y_corners, z_corners])) corners_3d[0, :] = corners_3d[0, :] + bbox3d[0] corners_3d[1, :] = corners_3d[1, :] + bbox3d[1] corners_3d[2, :] = corners_3d[2, :] + bbox3d[2] return np.transpose(corners_3d) def roty(t): """ Rotation about the y-axis. """ c = np.cos(t) s = np.sin(t) return np.array([[c, 0, s], [0, 1, 0], [-s, 0, c]]) def iou3d(corners1, corners2): """ Compute 3D bounding box IoU. Input: corners1: numpy array (8,3), assume up direction is negative Y corners2: numpy array (8,3), assume up direction is negative Y Output: iou: 3D bounding box IoU iou_2d: bird's eye view 2D bounding box IoU """ # corner points are in counter clockwise order rect1 = [(corners1[i, 0], corners1[i, 2]) for i in range(3, -1, -1)] rect2 = [(corners2[i, 0], corners2[i, 2]) for i in range(3, -1, -1)] area1 = poly_area(np.array(rect1)[:, 0], np.array(rect1)[:, 1]) area2 = poly_area(np.array(rect2)[:, 0], np.array(rect2)[:, 1]) inter, inter_area = convex_hull_intersection(rect1, rect2) iou_2d = inter_area / (area1 + area2 - inter_area) ymax = min(corners1[0, 1], corners2[0, 1]) ymin = max(corners1[4, 1], corners2[4, 1]) inter_vol = inter_area * max(0.0, ymax - ymin) vol1 = box3d_vol(corners1) vol2 = box3d_vol(corners2) iou = inter_vol / (vol1 + vol2 - inter_vol) return iou, iou_2d def embedding_distance(tracks, detections, metric="cosine"): """ :param tracks: list[STrack] :param detections: list[BaseTrack] :param metric: :return: cost_matrix np.ndarray """ cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float) if cost_matrix.size == 0: return cost_matrix det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float) track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float) cost_matrix = np.maximum( 0.0, cdist(track_features, det_features, metric) ) # Nomalized features return cost_matrix def gate_cost_matrix(kf, cost_matrix, tracks, detections, only_position=True): if cost_matrix.size == 0: return cost_matrix gating_dim = 2 if only_position else 4 gating_threshold = kalman_filter.chi2inv95[gating_dim] measurements = np.asarray([det.to_xyah() for det in detections]) for row, track in enumerate(tracks): gating_distance = kf.gating_distance( track.mean, track.covariance, measurements, only_position ) cost_matrix[row, gating_distance > (gating_threshold + 10)] = np.inf return cost_matrix # Part of this function is taken from : https://github.com/Zhongdao/Towards-Realtime-MOT/blob/master/tracker/matching.py def fuse_motion( kf, cost_matrix, tracks, detections, frame_id, use_lstm=True, only_position=True, lambda_=0.9, ): if cost_matrix.size == 0: return cost_matrix gating_dim = 2 if only_position else 4 gating_threshold = kalman_filter.chi2inv95[gating_dim] if not use_lstm: measurements = np.asarray([det.to_xyah() for det in detections]) for row, track in enumerate(tracks): gating_distance = kf.gating_distance( track.mean, track.covariance, measurements, only_position, metric="maha" ) cost_matrix[row, gating_distance > 5.0 * gating_threshold] = np.inf cost_matrix[row] = ( lambda_ * cost_matrix[row] + 0.05 * (1 - lambda_) * gating_distance ) else: measurements = np.asarray([det.to_xyah() for det in detections]) for row, track in enumerate(tracks): if len(track.observations) >= 300: gating_distance = kf.gating_distance( track.prediction_at_frame(frame_id), track.covariance, measurements, only_position, metric="maha", ) cost_matrix[row, gating_distance > 5.0 * gating_threshold] = np.inf cost_matrix[row] = ( lambda_ * cost_matrix[row] + 0.05 * (1 - lambda_) * gating_distance ) else: gating_distance = kf.gating_distance( track.prediction_at_frame(frame_id), track.covariance, measurements, only_position, metric="gaussian", ) cost_matrix[row, gating_distance > 50] = np.inf cost_matrix[row] = ( lambda_ * cost_matrix[row] + 0.0005 * (1 - lambda_) * gating_distance ) return cost_matrix def fuse_motion_ddd( kf, cost_matrix, tracks, detections, frame_id, use_lstm=True, only_position=False, lambda_=0.9, use_prediction=False, classe_name=None, ): if cost_matrix.size == 0: return cost_matrix gating_dim = 7 gating_threshold = kalman_filter.chi2inv95[gating_dim] measurements = np.asarray([det.ddd_bbox for det in detections]) for row, track in enumerate(tracks): if use_prediction: gating_distance = kf.gating_distance( track.ddd_prediction_at_frame(frame_id), track.covariance, measurements, only_position, metric="gaussian", ) else: gating_distance = kf.gating_distance( track.ddd_bbox, track.covariance, measurements, only_position, metric="gaussian", ) thr = 0.2 * track.depth if classe_name == "pedestrian": if thr < 5: thr = 5 else: if thr < 10: thr = 10 cost_matrix[row, gating_distance > thr] = np.inf cost_matrix[row] = lambda_ * cost_matrix[row] + 0.001 * gating_distance return cost_matrix ``` #### File: DEFT/src/test.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import time import cv2 import matplotlib.pyplot as plt import numpy as np from progress.bar import Bar import torch import pickle import motmetrics as mm from lib.opts import opts from lib.logger import Logger from lib.utils.utils import AverageMeter from lib.dataset.dataset_factory import dataset_factory from lib.utils.pixset_metrics import compute_metrics pixset_categories = [ 'car', 'truck', 'bus', 'pedestrian', 'motorcyclist', 'cyclist', 'van' ] opt = opts().parse() filename = '../options/test_opt_pixset.txt' with open(filename, 'wb') as f: pickle.dump(opt, f) # # print('dataset -> ', opt.dataset) # print('lstm -> ', opt.lstm) # print(f'saved {filename}') # with open(filename, 'rb') as f: # opt = pickle.load(f) # print('use pixell ->', opt.use_pixell) from lib.detector import Detector from lib.utils.image import plot_tracking, plot_tracking_ddd import json min_box_area = 20 _vehicles = ["car", "truck", "bus", "van"] _cycles = ["motorcyclist", "cyclist"] _pedestrians = ["pedestrian"] attribute_to_id = { "": 0, "cycle.with_rider": 1, "cycle.without_rider": 2, "pedestrian.moving": 3, "pedestrian.standing": 4, "pedestrian.sitting_lying_down": 5, "vehicle.moving": 6, "vehicle.parked": 7, "vehicle.stopped": 8, } id_to_attribute = {v: k for k, v in attribute_to_id.items()} nuscenes_att = np.zeros(8, np.float32) class PrefetchDataset(torch.utils.data.Dataset): def __init__(self, opt, dataset, pre_process_func): self.images = dataset.images self.load_image_func = dataset.coco.loadImgs self.get_ann_ids = dataset.coco.getAnnIds self.load_annotations = dataset.coco.loadAnns self.img_dir = dataset.img_dir self.pre_process_func = pre_process_func self.get_default_calib = dataset.get_default_calib self.opt = opt def __getitem__(self, index): self.images.sort() # TODO remove img_id = self.images[index] img_info = self.load_image_func(ids=[img_id])[0] img_path = os.path.join(self.img_dir, img_info["file_name"]) image = cv2.imread(img_path) annotation_ids = self.get_ann_ids(imgIds=[img_id]) annotations = self.load_annotations(ids=annotation_ids) images, meta = {}, {} for scale in opt.test_scales: input_meta = {} calib = ( img_info["calib"] if "calib" in img_info else self.get_default_calib(image.shape[1], image.shape[0]) ) input_meta["calib"] = calib images[scale], meta[scale] = self.pre_process_func(image, scale, input_meta) ret = { "images": images, "image": image, "meta": meta, "frame_id": img_info["frame_id"], "annotations": annotations } if "frame_id" in img_info and img_info["frame_id"] == 1: ret["is_first_frame"] = 1 ret["video_id"] = img_info["video_id"] return img_id, ret, img_info def __len__(self): return len(self.images) def prefetch_test(opt): start_time = time.time() show_image = True if not opt.not_set_cuda_env: os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpus_str Dataset = dataset_factory[opt.test_dataset] opt = opts().update_dataset_info_and_set_heads(opt, Dataset) # split = "val" if not opt.trainval else "test" split = "test" # split = "val" dataset = Dataset(opt, split) detector = Detector(opt) if opt.load_results != "": load_results = json.load(open(opt.load_results, "r")) for img_id in load_results: for k in range(len(load_results[img_id])): if load_results[img_id][k]["class"] - 1 in opt.ignore_loaded_cats: load_results[img_id][k]["score"] = -1 else: load_results = {} data_loader = torch.utils.data.DataLoader( PrefetchDataset(opt, dataset, detector.pre_process), batch_size=1, shuffle=False, num_workers=0, pin_memory=True, ) results = {} num_iters = len(data_loader) if opt.num_iters < 0 else opt.num_iters bar = Bar("{}".format(opt.exp_id), max=num_iters) time_stats = ["tot", "load", "pre", "net", "dec", "post", "merge", "track"] avg_time_stats = {t: AverageMeter() for t in time_stats} if opt.use_loaded_results: for img_id in data_loader.dataset.images: results[img_id] = load_results["{}".format(img_id)] num_iters = 0 final_results = [] out_path = "" if opt.dataset in ["nuscenes", "pixset"]: ret = { "meta": { "use_camera": True, "use_lidar": False, "use_radar": False, "use_map": False, "use_external": False, }, "results": {}, } accumulators = [mm.MOTAccumulator(auto_id=True) for _ in pixset_categories] for ind, (img_id, pre_processed_images, img_info) in enumerate(data_loader): bar.next() if ind >= num_iters: break if opt.dataset == "nuscenes": sample_token = img_info["sample_token"][0] sensor_id = img_info["sensor_id"].numpy().tolist()[0] if opt.dataset == "pixset": sample_token = img_info["sample_token"][0] sensor_id = img_info["sensor_id"].numpy().tolist()[0] if opt.tracking and ("is_first_frame" in pre_processed_images): if "{}".format(int(img_id.numpy().astype(np.int32)[0])) in load_results: pre_processed_images["meta"]["pre_dets"] = load_results[ "{}".format(int(img_id.numpy().astype(np.int32)[0])) ] else: print( "No pre_dets for", int(img_id.numpy().astype(np.int32)[0]), ". Use empty initialization.", ) pre_processed_images["meta"]["pre_dets"] = [] if final_results and opt.dataset not in ["nuscenes", "pixset"]: write_results(out_path, final_results, opt.dataset) final_results = [] img0 = pre_processed_images["image"][0].numpy() h, w, _ = img0.shape detector.img_height = h detector.img_width = w if opt.dataset in ["nuscenes", "pixset"]: save_video_name = os.path.join( opt.dataset + "_videos/", "MOT" + str(int(pre_processed_images["video_id"])) + "_" + str(int(img_info["sensor_id"])) + str(int(img_info["video_id"])) + ".avi", ) elif opt.dataset == "kitti_tracking": save_video_name = os.path.join( opt.dataset + "_videos/", "KITTI_" + str(int(pre_processed_images["video_id"])) + ".avi", ) else: save_video_name = os.path.join( opt.dataset + "_videos/", "MOT" + str(int(pre_processed_images["video_id"])) + ".avi", ) results_dir = opt.dataset + "_results" if not os.path.exists(opt.dataset + "_videos/"): os.mkdir(opt.dataset + "_videos/") if not os.path.exists(results_dir): os.mkdir(results_dir) for video in dataset.coco.dataset["videos"]: video_id = video["id"] file_name = video["file_name"] if pre_processed_images[ "video_id" ] == video_id and opt.dataset not in ["nuscenes", "pixset"]: out_path = os.path.join(results_dir, "{}.txt".format(file_name)) break detector.reset_tracking(opt) vw = cv2.VideoWriter( save_video_name, cv2.VideoWriter_fourcc("M", "J", "P", "G"), 10, (w, h) ) print("Start tracking video", int(pre_processed_images["video_id"])) if opt.public_det: if "{}".format(int(img_id.numpy().astype(np.int32)[0])) in load_results: pre_processed_images["meta"]["cur_dets"] = load_results[ "{}".format(int(img_id.numpy().astype(np.int32)[0])) ] else: print("No cur_dets for", int(img_id.numpy().astype(np.int32)[0])) pre_processed_images["meta"]["cur_dets"] = [] online_targets = detector.run(pre_processed_images, image_info=img_info) online_tlwhs = [] online_ids = [] online_ddd_boxes = [] sample_results = [] classes = [] image = pre_processed_images["image"][0].numpy() for acc_i in range(len(accumulators)): gt_list, hyp_list, distances = compute_metrics(pre_processed_images['annotations'], online_targets, eval_type='distance', im=image, category=pixset_categories[acc_i]) accumulators[acc_i].update(gt_list, hyp_list, distances) idx = 0 print(ind) print(accumulators[idx].mot_events.loc[ind]) mh = mm.metrics.create() summary = mh.compute(accumulators[idx], metrics=['num_frames', 'mota', 'precision', 'recall'], name=f'acc {pixset_categories[idx]}') print(summary) print('-----------------------------------------') for t in online_targets: tlwh = t.tlwh tid = t.track_id if tlwh[2] * tlwh[3] > min_box_area: online_tlwhs.append(tlwh) online_ids.append(tid) classes.append(t.classe) if opt.dataset in ["nuscenes", "pixset"]: online_ddd_boxes.append(t.org_ddd_box) class_name = t.classe if class_name in _cycles: att = id_to_attribute[np.argmax(nuscenes_att[0:2]) + 1] elif class_name in _pedestrians: att = id_to_attribute[np.argmax(nuscenes_att[2:5]) + 3] elif class_name in _vehicles: att = id_to_attribute[np.argmax(nuscenes_att[5:8]) + 6] ddd_box = t.ddd_bbox.copy() ddd_box_submission = t.ddd_submission.tolist() translation, size, rotation = ( ddd_box_submission[:3], ddd_box_submission[3:6], ddd_box_submission[6:], ) result = { "sample_token": sample_token, "translation": translation, "size": size, "rotation": rotation, "velocity": [0, 0], "detection_name": t.classe, # "attribute_name": att, "attribute_name": None, "detection_score": t.score, "tracking_name": t.classe, "tracking_score": t.score, "tracking_id": tid, "sensor_id": sensor_id, "det_id": -1, } sample_results.append(result.copy()) if opt.dataset in ["nuscenes", "pixset"]: if sample_token in ret["results"]: ret["results"][sample_token] = ( ret["results"][sample_token] + sample_results ) else: ret["results"][sample_token] = sample_results final_results.append( (pre_processed_images["frame_id"].cpu().item(), online_tlwhs, online_ids) ) if show_image: img0 = pre_processed_images["image"][0].numpy() if opt.dataset in ["nuscenes", "pixset"]: online_im = plot_tracking_ddd( img0, online_tlwhs, online_ddd_boxes, online_ids, frame_id=pre_processed_images["frame_id"], calib=img_info["calib"], trans_matrix=img_info["trans_matrix"], camera_matrix=img_info["camera_matrix"], distortion_coeffs=img_info["distortion_coefficients"], classes=classes, ) else: online_im = plot_tracking( img0, online_tlwhs, online_ids, frame_id=pre_processed_images["frame_id"], ) vw.write(online_im) if opt.dataset not in ["nuscenes", "pixset"] and final_results: write_results(out_path, final_results, opt.dataset) final_results = [] if opt.dataset in ["nuscenes", "pixset"]: for sample_token in ret["results"].keys(): confs = sorted( [ (-d["detection_score"], ind) for ind, d in enumerate(ret["results"][sample_token]) ] ) ret["results"][sample_token] = [ ret["results"][sample_token][ind] for _, ind in confs[: min(500, len(confs))] ] mh = mm.metrics.create() metrics = ['num_frames', 'mota', 'motp', 'precision', 'recall'] summary = mh.compute_many( accumulators, names=pixset_categories, metrics=metrics, generate_overall=True ) print(summary) save_summary(summary, 'overall') print('total test time', time.time() - start_time) def save_summary(summary, acc_name): with open(f"../pixset_results/test/{acc_name}.txt", "w") as text_file: text_file.write(summary.to_string()) def _to_list(results): for img_id in results: for t in range(len(results[img_id])): for k in results[img_id][t]: if isinstance(results[img_id][t][k], (np.ndarray, np.float32)): results[img_id][t][k] = results[img_id][t][k].tolist() return results def write_results(filename, results, data_type): if data_type == "mot": save_format = "{frame},{id},{x1},{y1},{w},{h},1,-1,-1,-1\n" elif data_type == "kitti_tracking": save_format = "{frame} {id} Car 0 0 -10 {x1} {y1} {x2} {y2} -10 -10 -10 -1000 -1000 -1000 -10\n" else: raise ValueError(data_type) with open(filename, "w") as f: for frame_id, tlwhs, track_ids in results: if data_type == "kitti_tracking": frame_id -= 1 for tlwh, track_id in zip(tlwhs, track_ids): if track_id < 0: continue x1, y1, w, h = tlwh x2, y2 = x1 + w, y1 + h line = save_format.format( frame=frame_id, id=track_id, x1=x1, y1=y1, x2=x2, y2=y2, w=w, h=h ) f.write(line) if __name__ == "__main__": # opt = opts().parse() prefetch_test(opt) ``` #### File: DEFT/src/train_prediction.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import _init_paths import os import torch import torch.utils.data from lib.opts import opts from lib.model.model import create_model, load_model, save_model from lib.logger import Logger from lib.dataset.dataset_factory import get_dataset from progress.bar import Bar import pickle def get_optimizer(opt, model): if opt.optim == "adam": optimizer = torch.optim.Adam(model.parameters(), opt.lr) elif opt.optim == "sgd": print("Using SGD") optimizer = torch.optim.SGD( model.parameters(), opt.lr, momentum=0.9, weight_decay=0.0001 ) else: assert 0, opt.optim return optimizer class DecoderRNN(torch.nn.Module): def __init__(self, num_hidden, opt): super(DecoderRNN, self).__init__() self.num_hidden = num_hidden if opt.dataset in ["nuscenes", "pixset"]: self.lstm = torch.nn.LSTM(18, self.num_hidden) self.out1 = torch.nn.Linear(self.num_hidden, 64) self.out2 = torch.nn.Linear(64, 4 * 4) else: self.lstm = torch.nn.LSTM(11, self.num_hidden) self.out1 = torch.nn.Linear(self.num_hidden, 64) # self.out2 = torch.nn.Linear(64, 4 * 5) self.out2 = torch.nn.Linear(64, 4 * 4) def forward(self, input_traj): # Fully connected input_traj = input_traj.permute(1, 0, 2) output, (hn, cn) = self.lstm(input_traj) x = self.out1(output[-1]) x = self.out2(x) return x def main(opt): torch.manual_seed(opt.seed) torch.backends.cudnn.benchmark = not opt.not_cuda_benchmark and not opt.test Dataset = get_dataset(opt.dataset, prediction_model=True) if not opt.not_set_cuda_env: os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpus_str opt.device = torch.device("cuda" if opt.gpus[0] >= 0 else "cpu") device = opt.device logger = Logger(opt) # print("Creating model...") model = DecoderRNN(128, opt) optimizer = get_optimizer(opt, model) start_epoch = 0 if opt.load_model_traj != "": model, optimizer, start_epoch = load_model( model, opt.load_model, opt, optimizer ) loss_function = torch.nn.SmoothL1Loss() for i, param in enumerate(model.parameters()): param.requires_grad = True # # Uncomment for subset # trainset = Dataset(opt, "train") # # train_mask = list(range(0, int(len(trainset)/10), 1)) # train_subset = torch.utils.data.Subset(Dataset(opt, "train"), train_mask) # # print(len(train_subset)) # # train_loader = torch.utils.data.DataLoader( # train_subset, # batch_size=1, # shuffle=True, # num_workers=16, # pin_memory=True, # drop_last=True, # ) train_loader = torch.utils.data.DataLoader( Dataset(opt, "train"), batch_size=1, shuffle=True, num_workers=0, pin_memory=True, drop_last=True, ) val_loader = torch.utils.data.DataLoader( Dataset(opt, "val"), batch_size=1, shuffle=False, num_workers=0, pin_memory=True, drop_last=True, ) for state in optimizer.state.values(): for k, v in state.items(): if isinstance(v, torch.Tensor): state[k] = v.to(device=device, non_blocking=True) model = model.to(device) loss_function = loss_function.to(device) print("Starting training...") for epoch in range(start_epoch + 1, opt.num_epochs + 1): losses = [] val_losses = [] mark = epoch if opt.save_all else "last" num_iters = len(train_loader) if opt.num_iters < 0 else opt.num_iters bar = Bar("{}/{}".format(opt.task, opt.exp_id), max=num_iters) model.train() for iter_id, (inputs, targets) in enumerate(train_loader): inputs = inputs.to(device=device).float() targets = targets.to(device=device).view(1, -1).float() outputs = model(inputs) loss = loss_function(outputs, targets) losses.append(loss.item()) if 100 * loss.item() < 20: loss = 100 * loss else: loss = 10 * loss optimizer.zero_grad() loss.backward() optimizer.step() if opt.print_iter > 0: # If not using progress bar if iter_id % opt.print_iter == 0: print("{}/{}| {}".format(opt.task, opt.exp_id, Bar.suffix)) del outputs, loss model.eval() for iter_id, (inputs, targets) in enumerate(val_loader): inputs = inputs.to(device=device).float() targets = targets.to(device=device).view(1, -1).float() outputs = model(inputs) loss = loss_function(outputs, targets) val_losses.append(loss.item()) if opt.print_iter > 0: # If not using progress bar if iter_id % opt.print_iter == 0: print("{}/{}| {}".format(opt.task, opt.exp_id, Bar.suffix)) del outputs, loss save_model( os.path.join(opt.save_dir, "model_last.pth"), epoch, model, optimizer ) logger.write("\n") save_model( os.path.join(opt.save_dir, "model_{}.pth".format(epoch)), epoch, model, optimizer, ) if epoch in opt.lr_step: lr = opt.lr * (0.1 ** (opt.lr_step.index(epoch) + 1)) for param_group in optimizer.param_groups: param_group["lr"] = lr Bar.suffix = "{phase}: [{0}/{1}]|Tot: {total:} |ETA: {eta:} |Loss: {loss:} ".format( epoch, opt.num_epochs, phase="train", total=bar.elapsed_td, eta=bar.eta_td, loss=np.mean(losses) ) logger.write("epoch: {} |".format(epoch)) logger.scalar_summary("train_{}".format('loss'), np.mean(losses), epoch) logger.scalar_summary("val_{}".format('loss'), np.mean(val_losses), epoch) logger.write("{} {:8f} | ".format('loss', np.mean(losses))) logger.write("{} {:8f} | ".format('val loss', np.mean(val_losses))) bar.next() logger.close() if __name__ == "__main__": opt = opts().parse() filename = '../options/train_prediction_opt_pixset.txt' with open(filename, 'wb') as f: pickle.dump(opt, f) # print(f'saved {filename}') # with open(filename, 'rb') as f: # opt = pickle.load(f) # opt.print_iter = 1 main(opt) ```
{ "source": "jfparent/VoiceAssistantcouppe", "score": 3 }
#### File: googlecalendar/googlecalendaradd/__init__.py ```python from googlecalendar import AssistantHandlerGoogleCalendar from utils import current_milli_time import datetime as dt import json class AssistantHandlerGoogleCalendarAdd(AssistantHandlerGoogleCalendar): def __init__(self): AssistantHandlerGoogleCalendar.__init__(self,"googlecalendaradd") def getHttpMethod(self): return "POST" def getEndpoint(self,parameters): return "calendars/primary/events/quickAdd" def getEndpointParameters(self,parameters): return {"text":parameters["text"],"sendNotifications":True} def getSpeech(self, parameters, data): formatFromGoogle = '%Y-%m-%dT%H:%M:%SZ' formatForOutput = '%Y-%m-%d %H:%M' start = dt.datetime.strptime(data["start"]["dateTime"], formatFromGoogle).strftime(formatForOutput) end = dt.datetime.strptime(data["end"]["dateTime"], formatFromGoogle).strftime(formatForOutput) return "Added calendar appointment with the description \"" + data["summary"] + "\" starting on " + start ``` #### File: assistanthandlers/helloname/__init__.py ```python from assistanthandlerbase import AssistantHandler import urllib class AssistantHandlerHelloName(AssistantHandler): def __init__(self): AssistantHandler.__init__(self,"helloname") def getBaseUrl(self,parameters): pass def getEndpoint(self,parameters): pass def getEndpointParameters(self,parameters): pass def getSpeech(self, parameters, data): return "Hello to you too " + parameters.get("name") + "!" ``` #### File: assistanthandlers/yahooweaher/__init__.py ```python from assistanthandlerbase import AssistantHandler import urllib import json class AssistantHandlerYahooWeather(AssistantHandler): def __init__(self): AssistantHandler.__init__(self,"yahooWeatherForecast") def getBaseUrl(self,parameters): return "https://query.yahooapis.com/v1/public/" def getEndpoint(self,parameters): return "yql" def getEndpointParameters(self,parameters): return {"q":self.makeYqlQuery(parameters),"format":"json"} def makeYqlQuery(self, parameters): city = parameters.get("geo-city") if city is None: return None return "select * from weather.forecast where woeid in (select woeid from geo.places(1) where text='" + city + "')" def getSpeech(self, parameters, data): query = data.get('query') if query is None: return "No query" result = query.get('results') if result is None: return "No results" channel = result.get('channel') if channel is None: return "No channel" item = channel.get('item') location = channel.get('location') units = channel.get('units') if (location is None) or (item is None) or (units is None): return "No location or item or units" condition = item.get('condition') if condition is None: return "No condition" # print(json.dumps(item, indent=4)) speech = "Today in " + location.get('city') + ": " + condition.get('text') + \ ", the temperature is " + condition.get('temp') + " " + units.get('temperature') print("Response:") print(speech) return speech ```
{ "source": "jfpettit/reinforcement-learning", "score": 2 }
#### File: flare/kindling/buffers.py ```python import numpy as np import scipy from typing import Optional, Any, Union from flare.kindling.mpi_tools import mpi_statistics_scalar import torch class PGBuffer: """ A buffer for storing trajectories experienced by an agent interacting with the environment, and using Generalized Advantage Estimation (GAE-Lambda) for calculating the advantages of state-action pairs. """ def __init__( self, obs_dim: Union[tuple, int], act_dim: Union[tuple, int], size: int, gamma: Optional[float] = 0.99, lam: Optional[float] = 0.95, ): self.obs_buf = np.zeros(self._combined_shape(size, obs_dim), dtype=np.float32) self.act_buf = np.zeros(self._combined_shape(size, act_dim), dtype=np.float32) self.adv_buf = np.zeros(size, dtype=np.float32) self.rew_buf = np.zeros(size, dtype=np.float32) self.ret_buf = np.zeros(size, dtype=np.float32) self.val_buf = np.zeros(size, dtype=np.float32) self.logp_buf = np.zeros(size, dtype=np.float32) self.gamma, self.lam = gamma, lam self.ptr, self.path_start_idx, self.max_size = 0, 0, size def store( self, obs: np.array, act: np.array, rew: Union[int, float, np.array], val: Union[int, float, np.array], logp: Union[float, np.array], ): """ Append one timestep of agent-environment interaction to the buffer. """ assert self.ptr < self.max_size # buffer has to have room so you can store self.obs_buf[self.ptr] = obs self.act_buf[self.ptr] = act self.rew_buf[self.ptr] = rew self.val_buf[self.ptr] = val self.logp_buf[self.ptr] = logp self.ptr += 1 def finish_path(self, last_val: Optional[Union[int, float, np.array]] = 0): """ Call this at the end of a trajectory, or when one gets cut off by an epoch ending. This looks back in the buffer to where the trajectory started, and uses rewards and value estimates from the whole trajectory to compute advantage estimates with GAE-Lambda, as well as compute the rewards-to-go for each state, to use as the targets for the value function. The "last_val" argument should be 0 if the trajectory ended because the agent reached a terminal state (died), and otherwise should be V(s_T), the value function estimated for the last state. This allows us to bootstrap the reward-to-go calculation to account for timesteps beyond the arbitrary episode horizon (or epoch cutoff). """ path_slice = slice(self.path_start_idx, self.ptr) rews = np.append(self.rew_buf[path_slice], last_val) vals = np.append(self.val_buf[path_slice], last_val) # the next two lines implement GAE-Lambda advantage calculation deltas = rews[:-1] + self.gamma * vals[1:] - vals[:-1] self.adv_buf[path_slice] = self._discount_cumsum(deltas, self.gamma * self.lam) # the next line computes rewards-to-go, to be targets for the value function self.ret_buf[path_slice] = self._discount_cumsum(rews, self.gamma)[:-1] self.path_start_idx = self.ptr def get(self): """ Call this at the end of an epoch to get all of the data from the buffer, with advantages appropriately normalized (shifted to have mean zero and std one). Also, resets some pointers in the buffer. """ assert self.ptr == self.max_size # buffer has to be full before you can get self.ptr, self.path_start_idx = 0, 0 # the next two lines implement the advantage normalization trick adv_mean, adv_std = mpi_statistics_scalar(self.adv_buf) # adv_mean, adv_std = np.mean(self.adv_buf), np.std(self.adv_buf) self.adv_buf = (self.adv_buf - adv_mean) / adv_std return [self.obs_buf, self.act_buf, self.adv_buf, self.ret_buf, self.logp_buf] def _combined_shape( self, length: Union[int, np.array], shape: Optional[Union[int, tuple]] = None ): if shape is None: return (length,) return (length, shape) if np.isscalar(shape) else (length, *shape) def _discount_cumsum(self, x: np.array, discount: float): """ magic from rllab for computing discounted cumulative sums of vectors. input: vector x, [x0, x1, x2] output: [x0 + discount * x1 + discount^2 * x2, x1 + discount * x2, x2] """ return scipy.signal.lfilter([1], [1, float(-discount)], x[::-1], axis=0)[::-1] class ReplayBuffer(PGBuffer): """ A replay buffer for off-policy RL agents. """ def __init__( self, obs_dim: Union[tuple, int], act_dim: Union[tuple, int], size: int ): self.obs1_buf = np.zeros(self._combined_shape(size, obs_dim), dtype=np.float32) self.obs2_buf = np.zeros(self._combined_shape(size, obs_dim), dtype=np.float32) self.act_buf = np.zeros(self._combined_shape(size, act_dim), dtype=np.float32) self.rew_buf = np.zeros(size, dtype=np.float32) self.done_buf = np.zeros(size, dtype=np.float32) self.ptr, self.size, self.max_size = 0, 0, size def store( self, obs: np.array, act: Union[float, int, np.array], rew: Union[float, int], next_obs: np.array, done: bool, ): """ Append one timestep of agent-environment interaction to the buffer. """ self.obs1_buf[self.ptr] = obs self.obs2_buf[self.ptr] = next_obs self.act_buf[self.ptr] = act self.rew_buf[self.ptr] = rew self.done_buf[self.ptr] = done self.ptr = (self.ptr + 1) % self.max_size self.size = min(self.size + 1, self.max_size) def sample_batch(self, batch_size=32): idxs = np.random.randint(0, self.size, size=batch_size) batch = dict( obs=self.obs1_buf[idxs], obs2=self.obs2_buf[idxs], act=self.act_buf[idxs], rew=self.rew_buf[idxs], done=self.done_buf[idxs], ) return tuple(torch.as_tensor(v, dtype=torch.float32) for _, v in batch.items()) def get(self): return [self.obs1_buf, self.obs2_buf, self.act_buf, self.rew_buf, self.done_buf] ``` #### File: flare/kindling/neuralnets.py ```python import numpy as np from collections import namedtuple import torch import torch.nn as nn import torch.nn.functional as F from scipy import signal from flare.kindling.utils import NetworkUtils as netu import gym from scipy.signal import lfilter from typing import Optional, Iterable, List, Dict, Callable, Union, Tuple from flare.kindling.utils import conv2d_output_shape, conv2d_output_size class MLP(nn.Module): r""" A class for building a simple MLP network. Args: layer_sizes (list or tuple): Layer sizes for the network. Example:: sizes = (4, 64, 64, 2) mlp = MLP(sizes) activations (Function): Activation function for MLP net. out_act (Function): Output activation function out_squeeze (bool): Whether to squeeze the output of the network. """ def __init__( self, layer_sizes: Union[List, Tuple], activations: Optional[Callable] = torch.tanh, out_act: Optional[bool] = None, out_squeeze: Optional[bool] = False, ): super(MLP, self).__init__() self.layers = nn.ModuleList() self.activations = activations self.out_act = out_act self.out_squeeze = out_squeeze for i, l in enumerate(layer_sizes[1:]): self.layers.append(nn.Linear(layer_sizes[i], l)) def forward(self, x: torch.Tensor) -> torch.Tensor: for l in self.layers[:-1]: x = self.activations(l(x)) if self.out_act is None: x = self.layers[-1](x) else: x = self.out_act(self.layers[-1](x)) return torch.squeeze(x, -1) if self.out_squeeze else x class CNN(nn.Module): """ Create a PyTorch CNN module. :param kernel_size: Convolutional kernel size :param stride: convolutional kernel stride :param outpu_size: size of network output :param input_channels: number of channels in the input :param output_activation: if any, activation to apply to the output layer :param input_height: size of one side of input (currently assumes square input) :param channels: List of channel sizes for each convolutional layer :param linear_layer_sizes: list of (if any) sizes of linear layers to add after convolutional layers :param activation: activation function :param dropout_layers: if any, layers to apply dropout to :param dropout_p: probability of dropout to use :param out_squeeze: whether to squeeze the output """ def __init__(self, input_channels: int, input_height: int, output_size: int, kernel_size: int = 3, stride: int = 1, channels: list = [64, 64], linear_layer_sizes: list = [512], activation: Callable = torch.relu, output_activation: Callable = None, dropout_layers: list = None, dropout_p: float = None, out_squeeze: bool = False): super(CNN, self).__init__() conv_sizes = [input_channels] + channels self.layers = nn.ModuleList() self.activation = activation self.output_activation = output_activation self.out_squeeze = out_squeeze self.dropout_p = dropout_p self.dropout_layers = dropout_layers self.hw=input_height for i, l in enumerate(conv_sizes[1:]): self.hw = conv2d_output_size(kernel_size=kernel_size, stride=stride, sidesize=self.hw) self.layers.append(nn.Conv2d(conv_sizes[i], l, kernel_size=kernel_size, stride=stride)) self.hw = (self.hw, self.hw) conv_out_size = 1 for num in self.hw: conv_out_size *= num conv_out_size *= conv_sizes[-1] linear_sizes = [conv_out_size] + linear_layer_sizes + [output_size] self.layers.append(nn.Flatten()) for i, l in enumerate(linear_sizes[1:]): self.layers.append(nn.Linear(linear_sizes[i], l)) def forward(self, x: torch.Tensor) -> torch.Tensor: for l in self.layers[:-1]: x = self.activation(l(x)) print(l) if self.dropout_layers is not None and l in self.dropout_layers: x = F.dropout(x, p=self.dropout_p) if self.output_activation is None: x = self.layers[-1](x) else: x = self.output_activation(self.layers[-1](x)) return x.squeeze() if self.out_squeeze else x class Actor(nn.Module): def action_distribution(self, states): raise NotImplementedError def logprob_from_distribution(self, policy, action): raise NotImplementedError def forward(self, x, a = None): policy = self.action_distribution(x) logp_a = None if a is not None: logp_a = self.logprob_from_distribution(policy, a) return policy, logp_a class CategoricalPolicy(Actor): r""" A class for a Categorical Policy network. Used in discrete action space environments. The policy is an :func:`~MLP`. Args: state_features (int): Dimensionality of the state space. action_dim (int): Dimensionality of the action space. hidden_sizes (list or tuple): Hidden layer sizes. activation (Function): Activation function for the network. out_activation (Function): Output activation function for the network. """ def __init__( self, state_features: int, action_dim: int, hidden_sizes: Union[List, Tuple], activation: Callable, out_activation: Callable, useconv: bool = False, channels: int = 3, height: int = 64, ): super().__init__() if not useconv: self.net = MLP( [state_features] + list(hidden_sizes) + [action_dim], activations=activation ) elif useconv: self.net = CNN( channels, height, action_dim ) def action_distribution(self, x): logits = self.net(x) return torch.distributions.Categorical(logits=logits) def logprob_from_distribution(self, policy, actions): return policy.log_prob(actions) class GaussianPolicy(Actor): r""" A class for a Gaussian Policy network. Used in continuous action space environments. The policy is an :func:`~MLP`. Args: state_features (int): Dimensionality of the state space. action_dim (int): Dimensionality of the action space. hidden_sizes (list or tuple): Hidden layer sizes. activation (Function): Activation function for the network. out_activation (Function): Output activation function for the network. """ def __init__( self, state_features: int, action_dim: int, hidden_sizes: Union[List, Tuple], activation: Callable, out_activation: Callable, useconv: bool = False, channels: int = 3, height: int = 64, ): super().__init__() if not useconv: self.net = MLP( [state_features] + list(hidden_sizes) + [action_dim], activations=activation, out_act=out_activation, ) elif useconv: self.net = CNN( channels, height, action_dim ) self.logstd = nn.Parameter(-0.5 * torch.ones(action_dim, dtype=torch.float32)) def action_distribution(self, states): mus = self.net(states) std = torch.exp(self.logstd) return torch.distributions.Normal(mus, std) def logprob_from_distribution(self, policy, actions): return policy.log_prob(actions).sum(axis=-1) class FireActorCritic(nn.Module): r""" An Actor Critic class for Policy Gradient algorithms. Has built-in capability to work with continuous (gym.spaces.Box) and discrete (gym.spaces.Discrete) action spaces. The policy and value function are both :func:`~MLP`. If working with a different action space, the user can pass in a custom policy class for that action space as an argument. Args: state_features (int): Dimensionality of the state space. action_space (gym.spaces.Space): Action space of the environment. hidden_sizes (list or tuple): Hidden layer sizes. activation (Function): Activation function for the network. out_activation (Function): Output activation function for the network. policy (nn.Module): Custom policy class for an environment where the action space is not gym.spaces.Box or gym.spaces.Discrete """ def __init__( self, state_features: int, action_space: int, hidden_sizes: Optional[Union[Tuple, List]] = (32, 32), activation: Optional[Callable] = torch.tanh, out_activation: Optional[Callable] = None, policy: Optional[nn.Module] = None, useconv: Optional[bool] = False, channels: Optional[int] = 3, height: Optional[int] = 64 ): super(FireActorCritic, self).__init__() obs_dim = state_features if isinstance(action_space, gym.spaces.Discrete): act_dim = action_space.n self.policy = CategoricalPolicy( obs_dim, act_dim, hidden_sizes, activation, out_activation, useconv=useconv, channels=channels, height=height ) elif isinstance(action_space, gym.spaces.Box): act_dim = action_space.shape[0] self.policy = GaussianPolicy( obs_dim, act_dim, hidden_sizes, activation, out_activation, useconv=useconv, channels=channels, height=height ) else: self.policy = policy( obs_dim, action_space, hidden_sizes, activation, out_activation, useconv=useconv, channels=channels, height=height ) self.value_f = MLP( [state_features] + list(hidden_sizes) + [1], activations=activation, out_squeeze=True, ) def step(self, x): with torch.no_grad(): policy = self.policy.action_distribution(x) action = policy.sample() logp_action = self.policy.logprob_from_distribution(policy, action) value = self.value_f(x) return action.numpy(), logp_action.numpy(), value.numpy() def act(self, x): return self.step(x)[0] class MLPQActor(nn.Module): r""" An actor for Q policy gradient algorithms. The policy is an :func:`~MLP`. This differs from the :func:`~FireActorCritic` class because the output from the policy network is scaled to action space limits on the forward pass. Args: state_features (int): Dimensionality of the state space. action_dim (int): Dimensionality of the action space. hidden_sizes (list or tuple): Hidden layer sizes. activation (Function): Activation function for the network. action_limit (float or int): Limits of the action space. """ def __init__( self, state_features: int, action_dim: int, hidden_sizes: Union[list, tuple], activation: Callable, action_limit: Union[float, int], ): super(MLPQActor, self).__init__() policy_layer_sizes = [state_features] + list(hidden_sizes) + [action_dim] self.policy = MLP(policy_layer_sizes, activation, torch.tanh) self.action_limit = action_limit def forward(self, x: torch.Tensor) -> torch.Tensor: """Return output from the policy network scaled to the limits of the env action space.""" return self.action_limit * self.policy(x) class MLPQFunction(nn.Module): r""" A Q function network for Q policy gradient methods. The Q function is an :func:`~MLP`. It always takes in a (state, action) pair and returns a Q-value estimate for that pair. Args: state_features (int): Dimensionality of the state space. action_dim (int): Dimensionality of the action space. hidden_sizes (list or tuple): Hidden layer sizes. activation (Function): Activation function for the network. """ def __init__( self, state_features: int, action_dim: int, hidden_sizes: Union[tuple, list], activation: Callable, ): super().__init__() self.qfunc = MLP( [state_features + action_dim] + list(hidden_sizes) + [1], activation ) def forward(self, x: torch.Tensor, a: torch.Tensor) -> torch.Tensor: """ Return Q-value estimate for state, action pair (x, a). Args: x (torch.Tensor): Environment state. a (torch.Tensor): Action taken by the policy. """ q = self.qfunc(torch.cat([x, a], dim=-1)) return torch.squeeze(q, -1) # Critical to ensure q has right shape. class FireDDPGActorCritic(nn.Module): r""" An Actor Critic for the DDPG algorithm. The policy is an :func:`~MLPQActor` and the q-value function is an :func:`~MLPQFunction`. Args: state_features (int): Dimensionality of the state space. action_space (gym.spaces.Box): Environment action space. hidden_sizes (list or tuple): Hidden layer sizes. activation (Function): Activation function for the network. """ def __init__( self, state_features: int, action_space: gym.spaces.Box, hidden_sizes: Optional[Union[tuple, list]] = (256, 256), activation: Optional[Callable] = torch.relu, ): super().__init__() obs_dim = state_features act_dim = action_space.shape[0] act_limit = action_space.high[0] # build policy and value functions self.policy = MLPQActor(obs_dim, act_dim, hidden_sizes, activation, act_limit) self.qfunc = MLPQFunction(obs_dim, act_dim, hidden_sizes, activation) def act(self, x: torch.Tensor) -> torch.Tensor: """ Get an action from the policy. Args: x (torch.Tensor): Observations from the environment. """ with torch.no_grad(): return self.policy(x).numpy() class FireTD3ActorCritic(nn.Module): r""" Actor Critic for the TD3 algorithm. The policy is an :func:`~MLPQActor` and the q-function is an :func:`~MLPQFunction`. Args: state_features (int): Dimensionality of the state space. action_space (gym.spaces.Box): Environment action space. hidden_sizes (list or tuple): Hidden layer sizes. activation (Function): Activation function for the network. """ def __init__( self, state_features: int, action_space: gym.spaces.Box, hidden_sizes: Optional[Union[list, tuple]] = (256, 256), activation: Optional[Callable] = torch.relu, ): super(FireTD3ActorCritic, self).__init__() obs_dim = state_features act_dim = action_space.shape[0] act_limit = action_space.high[0] # build policy and value functions self.policy = MLPQActor(obs_dim, act_dim, hidden_sizes, activation, act_limit) self.qfunc1 = MLPQFunction(obs_dim, act_dim, hidden_sizes, activation) self.qfunc2 = MLPQFunction(obs_dim, act_dim, hidden_sizes, activation) def act(self, x: torch.Tensor) -> torch.Tensor: """ Get an action from the policy. Args: x (torch.Tensor): Observations from the environment. """ with torch.no_grad(): return self.policy(x).numpy() LOG_STD_MAX = 2 LOG_STD_MIN = -20 class SquashedGaussianMLPActor(nn.Module): """ GaussianMLP Actor for SAC. From https://github.com/openai/spinningup/blob/master/spinup/algos/pytorch/sac/core.py Policy network is an :func:`~MLP` with heads for mean and log standard deviation of the action distribution. Args: state_features (int): Dimensionality of the state space. action_dim (int): Dimensionality of the action space. hidden_sizes (list or tuple): Hidden layer sizes. activation (Function): Activation function for the network. action_limit (float or int): Limit of the action space. """ def __init__( self, state_features: int, action_dim: int, hidden_sizes: Union[list, tuple], activation: Callable, action_limit: Union[float, int], ): super().__init__() self.net = MLP([state_features] + list(hidden_sizes), activation, activation) self.mu_layer = nn.Linear(hidden_sizes[-1], action_dim) self.log_std_layer = nn.Linear(hidden_sizes[-1], action_dim) self.act_limit = action_limit def forward( self, x: torch.Tensor, deterministic: bool = False, with_logprob: bool = True ) -> Tuple[torch.Tensor, torch.Tensor]: """ Get an action and action log prob from the policy. Args: x (torch.Tensor): state from the environment. deterministic (bool): whether to act deterministically or not. with_logprob (bool): whether to return with action log probability or not. """ net_out = self.net(x) mu = self.mu_layer(net_out) log_std = self.log_std_layer(net_out) log_std = torch.clamp(log_std, LOG_STD_MIN, LOG_STD_MAX) std = torch.exp(log_std) # Pre-squash distribution and sample pi_distribution = torch.distributions.Normal(mu, std) if deterministic: # Only used for evaluating policy at test time. pi_action = mu else: pi_action = pi_distribution.rsample() if with_logprob: # Compute logprob from Gaussian, and then apply correction for Tanh squashing. # NOTE: The correction formula is a little bit magic. To get an understanding # of where it comes from, check out the original SAC paper (arXiv 1801.01290) # and look in appendix C. This is a more numerically-stable equivalent to Eq 21. # Try deriving it yourself as a (very difficult) exercise. :) logp_pi = pi_distribution.log_prob(pi_action).sum(axis=-1) logp_pi -= (2 * (np.log(2) - pi_action - F.softplus(-2 * pi_action))).sum( axis=1 ) else: logp_pi = None pi_action = torch.tanh(pi_action) pi_action = self.act_limit * pi_action return pi_action, logp_pi class FireSACActorCritic(nn.Module): """ An SAC Actor Critic class. From https://github.com/openai/spinningup/blob/master/spinup/algos/pytorch/sac/core.py The policy is a :func:`~SquashedGaussianMLPActor` and the q-functions are both :func:`~MLPQFunctions`. Args: state_features (int): Dimensionality of state space. action_space (gym.spaces.Box): Environment action space. hidden_sizes (list or tuple): Hidden layer sizes. activation (Function): Activation function for the networks. """ def __init__( self, state_features: int, action_space: gym.spaces.Box, hidden_sizes: Optional[Union[tuple, list]] = (256, 256), activation: Optional[Callable] = torch.relu, ): super().__init__() obs_dim = state_features act_dim = action_space.shape[0] act_limit = action_space.high[0] # build policy and value functions self.policy = SquashedGaussianMLPActor( obs_dim, act_dim, hidden_sizes, activation, act_limit ) self.qfunc1 = MLPQFunction(obs_dim, act_dim, hidden_sizes, activation) self.qfunc2 = MLPQFunction(obs_dim, act_dim, hidden_sizes, activation) def act(self, x: torch.Tensor, deterministic: bool = False) -> np.ndarray: r""" Get action from policy. Args: x (torch.Tensor): State from the environment. deterministic (bool): Whether to act deterministically. """ with torch.no_grad(): a, _ = self.policy(x, deterministic, False) return a.numpy() class FireQActorCritic(nn.Module): r""" Generic Q Actor Critic class. Policy is an :func:`~MLP`. Q function is a :func:`~MLP` as well. Args: state_features (int): Dimensionality of state space. action_space (gym.spaces.Box): Environment action space. hidden_sizes (tuple or list): Hidden layer sizes. activation (Function): Activation function for the networks. out_activation (Function): Output activation for the networks. """ def __init__( self, state_features: int, action_space: gym.spaces.Box, hidden_sizes: Optional[Union[Tuple, List]] = (256, 128), activation: Optional[Callable] = torch.relu, out_activation: Optional[Callable] = nn.Identity, ): super(FireQActorCritic, self).__init__() action_dim = action_space.shape[0] self.policy = MLP( [state_features] + list(hidden_sizes) + [action_dim], activations=activation, out_act=out_activation, ) self.qfunc = MLP( [state_features] + list(hidden_sizes) + [action_dim], activations=activation, out_squeeze=True, ) def forward( self, x: torch.Tensor, a: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: r""" Get action, q value estimates for action taken, and q value estimates for previous actions. Args: x (torch.Tensor): State from the environment. a (torch.Tensor): Action taken in the environment. """ act = self.policy(x) q = self.qfunc(torch.cat(x, a, dim=1)) q_act = self.qfunc(torch.cat(x, act, dim=1)) return act, q, q_act ``` #### File: flare/polgrad/ppo.py ```python import torch import torch.nn as nn import torch.nn.functional as f import numpy as np import gym import pybullet_envs import time import flare.kindling as fk from flare.kindling import utils from typing import Optional, Any, Union, Callable, Tuple, List import pytorch_lightning as pl from torch.utils.data import DataLoader, Dataset import sys from flare.polgrad import BasePolicyGradient class PPO(BasePolicyGradient): def __init__( self, env, ac = fk.FireActorCritic, hidden_sizes = (64, 64), steps_per_epoch = 4000, minibatch_size = None, gamma = 0.99, lam = 0.97, pol_lr = 3e-4, val_lr = 1e-3, train_iters = 80, clipratio = 0.2, maxkl = 0.01, seed = 0, hparams = None ): super().__init__( env, ac, hidden_sizes=hidden_sizes, steps_per_epoch=steps_per_epoch, minibatch_size=minibatch_size, gamma=gamma, lam=lam, pol_lr=pol_lr, val_lr=val_lr, train_iters=train_iters, seed = seed, hparams= hparams ) self.clipratio = clipratio self.maxkl = maxkl def calc_pol_loss(self, logps, logps_old, advs): ratio = torch.exp(logps - logps_old) clipped_adv = torch.clamp(ratio, 1 - self.clipratio, 1 + self.clipratio) * advs pol_loss = -(torch.min(ratio * advs, clipped_adv)).mean() kl = (logps_old - logps).mean().item() return pol_loss, kl def backward(self, trainer, loss, optimizer, optimizer_idx): pass def training_step(self, batch, batch_idx, optimizer_idx): states, actions, advs, rets, logps_old = batch if optimizer_idx == 0: stops = 0 stopslst = [] policy, logps = self.ac.policy(states, actions) pol_loss_old, kl = self.calc_pol_loss(logps, logps_old, advs) for i in range(self.train_iters): self.policy_optimizer.zero_grad() policy, logps = self.ac.policy(states, actions) pol_loss, kl = self.calc_pol_loss(logps, logps_old, advs) if kl > 1.5 * self.maxkl: stops += 1 stopslst.append(i) break pol_loss.backward() self.policy_optimizer.step() log = { "PolicyLoss": pol_loss_old.item(), "DeltaPolLoss": (pol_loss - pol_loss_old).item(), "KL": kl, "Entropy": policy.entropy().mean().item(), "TimesEarlyStopped": stops, "AvgEarlyStopStep": np.mean(stopslst) if len(stopslst) > 0 else 0 } loss = pol_loss_old elif optimizer_idx == 1: values_old = self.ac.value_f(states) val_loss_old = self.calc_val_loss(values_old, rets) for i in range(self.train_iters): self.value_optimizer.zero_grad() values = self.ac.value_f(states) val_loss = self.calc_val_loss(values, rets) val_loss.backward() self.value_optimizer.step() delta_val_loss = (val_loss - val_loss_old).item() log = {"ValueLoss": val_loss_old.item(), "DeltaValLoss": delta_val_loss} loss = val_loss self.tracker_dict.update(log) return {"loss": loss, "log": log, "progress_bar": log} def learn( env_name, epochs: Optional[int] = 100, minibatch_size: Optional[int] = None, steps_per_epoch: Optional[int] = 4000, hidden_sizes: Optional[Union[Tuple, List]] = (64, 32), gamma: Optional[float] = 0.99, lam: Optional[float] = 0.97, hparams = None, seed = 0 ): from flare.polgrad.base import runner minibatch_size = 4000 if minibatch_size is None else minibatch_size runner( env_name, PPO, epochs=epochs, minibatch_size=minibatch_size, hidden_sizes=(64, 32), gamma=gamma, lam=lam, hparams=hparams, seed = seed ) ``` #### File: flare/qpolgrad/ddpg.py ```python import numpy as np import torch import gym import torch.nn.functional as F from termcolor import cprint from flare.qpolgrad.base import BaseQPolicyGradient import flare.kindling as fk from flare.kindling import ReplayBuffer from typing import Optional, Union, Callable, List, Tuple class DDPG(BaseQPolicyGradient): """ Implementation of the Deep Deterministic Policy Gradient (DDPG) algorithm. """ def __init__( self, env_fn: Callable, actorcritic: Callable = fk.FireDDPGActorCritic, epochs: int = 100, seed: Optional[int] = 0, steps_per_epoch: Optional[int] = 4000, replay_size: Optional[int] = int(1e6), gamma: Optional[float] = 0.99, polyak: Optional[float] = 0.95, pol_lr: Optional[float] = 1e-3, q_lr: Optional[float] = 1e-3, hidden_sizes: Optional[Union[tuple, list]] = (256, 128), bs: Optional[int] = 100, warmup_steps: Optional[int] = 10000, update_after: Optional[int] = 1000, update_every: Optional[int] = 50, act_noise: Optional[float] = 0.1, buffer: Optional[float] = ReplayBuffer, hparams = None ): super().__init__( env_fn, actorcritic, epochs=epochs, seed=seed, steps_per_epoch=steps_per_epoch, replay_size=replay_size, gamma=gamma, polyak=polyak, pol_lr=pol_lr, q_lr=q_lr, hidden_sizes=hidden_sizes, bs=bs, warmup_steps=warmup_steps, update_after=update_after, update_every=update_every, act_noise=act_noise, hparams=hparams ) def configure_optimizers(self): self.policy_optimizer = torch.optim.Adam(self.ac.policy.parameters(), lr=self.pol_lr) self.q_optimizer = torch.optim.Adam(self.ac.qfunc.parameters(), lr=self.q_lr) return self.policy_optimizer, self.q_optimizer def calc_pol_loss(self, states): q_pi = self.ac.qfunc(states, self.ac.policy(states)) return -q_pi.mean() def calc_qfunc_loss(self, data): o, o2, a, r, d = data q = self.ac.qfunc(o, a) # Bellman backup for Q function with torch.no_grad(): q_pi_targ = self.ac_targ.qfunc(o2, self.ac_targ.policy(o2)) backup = r + self.gamma * (1 - d) * q_pi_targ # MSE loss against Bellman backup loss_q = ((q - backup) ** 2).mean() # Useful info for logging loss_info = dict(MeanQValues=q.mean().detach().numpy()) return loss_q, loss_info def training_step(self, batch, batch_idx, optimizer_idx): if optimizer_idx == 0: self.policy_optimizer.zero_grad() policy_loss = self.calc_pol_loss(batch[0]) policy_loss.backward() self.policy_optimizer.step() log = { "PolicyLoss": policy_loss } loss = policy_loss if optimizer_idx == 1: # First run one gradient descent step for Q. self.q_optimizer.zero_grad() q_loss, loss_info = self.calc_qfunc_loss(batch) q_loss.backward() self.q_optimizer.step() # Freeze Q-network so you don't waste computational effort # computing gradients for it during the policy learning step. for p in self.ac.qfunc.parameters(): p.requires_grad = False # Unfreeze Q-network so you can optimize it at next DDPG step. for p in self.ac.qfunc.parameters(): p.requires_grad = True # Finally, update target networks by polyak averaging. with torch.no_grad(): for p, p_targ in zip(self.ac.parameters(), self.ac_targ.parameters()): # NB: We use an in-place operations "mul_", "add_" to update target # params, as opposed to "mul" and "add", which would make new tensors. p_targ.data.mul_(self.polyak) p_targ.data.add_((1 - self.polyak) * p.data) log = dict(QLoss=q_loss, **loss_info) loss = q_loss self.tracker_dict.update(log) return {"loss": loss, "log": log, "progress_bar": log} def backward(self, trainer, loss, optimizer, optimizer_idx): pass def optimizer_step( self, epoch, batch_idx, optimizer, optimizer_idx, second_order_closure = None ): optimizer.zero_grad() def learn( env_name, epochs: Optional[int] = 100, batch_size: Optional[int] = None, steps_per_epoch: Optional[int] = 4000, hidden_sizes: Optional[Union[Tuple, List]] = (256, 256), gamma: Optional[float] = 0.99, hparams = None, seed = 0 ): from flare.qpolgrad.base import runner batch_size = 100 if batch_size is None else batch_size runner( env_name, DDPG, fk.FireDDPGActorCritic, epochs=epochs, bs=batch_size, hidden_sizes=hidden_sizes, gamma=gamma, hparams=hparams, seed = seed ) ```
{ "source": "jfpettit/rl_bolts", "score": 2 }
#### File: rl_bolts/rl_bolts/algorithms.py ```python __all__ = ['PPO'] # Cell import numpy as np import gym import torch import torch.nn as nn import torch.nn.functional as F from rl_bolts import neuralnets as nns from rl_bolts import losses as l from .env_wrappers import BestPracticesWrapper, ToTorchWrapper, StateNormalizeWrapper from .buffers import PGBuffer from .datasets import PolicyGradientRLDataset from .loops import polgrad_interaction_loop import rl_bolts.utils as utils import pytorch_lightning as pl from argparse import Namespace from typing import Optional, Union # Cell class PPO(pl.LightningModule): """ Implementation of the Proximal Policy Optimization (PPO) algorithm. See the paper: https://arxiv.org/abs/1707.06347 It is a PyTorch Lightning Module. See their docs: https://pytorch-lightning.readthedocs.io/en/latest/ Args: - env (str): Environment to run in. Handles vector observation environments with either gym.spaces.Box or gym.spaces.Discrete action space. - hidden_sizes (tuple): Hidden layer sizes for actor-critic network. - gamma (float): Discount factor. - lam (float): Lambda factor for GAE-Lambda calculation. - clipratio (float): Clip ratio for PPO-clip objective. - train_iters (int): How many steps to take over the latest data batch. - batch_size (int): How many interactions to collect per update. - pol_lr (float): Learning rate for the policy optimizer. - val_lr (float): Learning rate for the value optimizer. - maxkl (float): Max allowed KL divergence between policy updates. - seed (int): Random seed for pytorch and numpy - evaluate (bool): Whether to run eval episodes at the end of each epoch. Saves episodes using gym.wrappers.Monitor. - monitor_dir (str): Directory for monitor to write to. Default is /tmp """ def __init__( self, env: str, hidden_sizes: Optional[tuple] = (32, 32), gamma: Optional[float] = 0.99, lam: Optional[float] = 0.97, clipratio: Optional[float] = 0.2, train_iters: Optional[int] = 80, batch_size: Optional[int] = 4000, pol_lr: Optional[float] = 3e-4, val_lr: Optional[float] = 1e-3, maxkl: Optional[float] = 0.01, seed: Optional[int] = 0, evaluate: Optional[bool] = True, monitor_dir: Optional[str] = 'video_results' ): super().__init__() np.random.seed(seed) torch.manual_seed(seed) hparams = Namespace( **{ 'env':env, 'hidden_sizes':hidden_sizes, 'gamma':gamma, 'lam':lam, 'clipratio':clipratio, 'train_iters':train_iters, 'batch_size':batch_size, 'pol_lr':pol_lr, 'val_lr':val_lr, 'maxkl':maxkl } ) self.hparams = hparams env = gym.make(env) self.env = ToTorchWrapper(env) self.actor_critic = nns.ActorCritic( self.env.observation_space.shape[0], self.env.action_space, hidden_sizes=hidden_sizes, ) self.gamma = gamma self.clipratio = clipratio self.train_iters = train_iters self.batch_size = batch_size self.pol_lr = pol_lr self.val_lr = val_lr self.maxkl = maxkl self.evaluate = evaluate if self.evaluate: eval_env = gym.wrappers.Monitor(env, monitor_dir, force=True) self.eval_env = ToTorchWrapper(eval_env) self.tracker_dict = {} self.buffer = PGBuffer( self.env.observation_space.shape, self.env.action_space.shape, size = self.batch_size, gamma = self.gamma ) self.inner_loop() def configure_optimizers(self): self.policy_optimizer = torch.optim.Adam(self.actor_critic.policy.parameters(), lr=self.pol_lr) self.value_optimizer = torch.optim.Adam(self.actor_critic.value_f.parameters(), lr=self.val_lr) return self.policy_optimizer, self.value_optimizer def forward(self, x, a = None): out = self.actor_critic(x, a) return out def training_step(self, batch, batch_idx, optimizer_idx): states, actions, advs, rets, logps_old = batch if optimizer_idx == 0: stops = 0 stopslst = [] policy, logps = self.actor_critic.policy(states, actions) pol_loss_old, kl = l.ppo_clip_policy_loss(logps, logps_old, advs, clipratio=self.clipratio) for i in range(self.train_iters): self.policy_optimizer.zero_grad() policy, logps = self.actor_critic.policy(states, actions) pol_loss, kl = l.ppo_clip_policy_loss(logps, logps_old, advs, clipratio=self.clipratio) if kl > 1.5 * self.maxkl: stops += 1 stopslst.append(i) break pol_loss.backward() self.policy_optimizer.step() log = { "PolicyLoss": pol_loss_old.item(), "DeltaPolLoss": (pol_loss - pol_loss_old).item(), "KL": kl, "Entropy": policy.entropy().mean().item(), "TimesEarlyStopped": stops, "AvgEarlyStopStep": np.mean(stopslst) if len(stopslst) > 0 else 0 } loss = pol_loss_old elif optimizer_idx == 1: values_old = self.actor_critic.value_f(states) val_loss_old = l.actor_critic_value_loss(values_old, rets) for i in range(self.train_iters): self.value_optimizer.zero_grad() values = self.actor_critic.value_f(states) val_loss = l.actor_critic_value_loss(values, rets) val_loss.backward() self.value_optimizer.step() delta_val_loss = (val_loss - val_loss_old).item() log = {"ValueLoss": val_loss_old.item(), "DeltaValLoss": delta_val_loss} loss = val_loss self.tracker_dict.update(log) log.update(self.tracker_dict) return {"loss": loss, "log": log, "progress_bar": log} def inner_loop(self) -> None: buffer, infos, _ = polgrad_interaction_loop(self.env, self.actor_critic, self.buffer, self.batch_size) self.data = buffer.get() self.tracker_dict.update(infos) def on_epoch_end(self): utils.printdict(self.tracker_dict) self.tracker_dict = {} self.inner_loop() self.eval_episodes(n_episodes=1) def train_dataloader(self): dataset = PolicyGradientRLDataset(self.data) dataloader = torch.utils.data.DataLoader(dataset, batch_size=self.batch_size, sampler=None, num_workers=4) return dataloader def backward(self, *args, **kwargs): pass def eval_episodes(self, n_episodes = 3): if self.evaluate: with torch.no_grad(): rets_lst = [] lens_lst = [] for i in range(n_episodes): episode_return = 0 episode_length = 0 obs = self.eval_env.reset() done = False while not done: action, logp, value = self.actor_critic.step(obs) obs, r, done, _ = self.eval_env.step(action) episode_return += r episode_length += 1 if done: rets_lst.append(episode_return) lens_lst.append(episode_length) episode_return = 0 episode_length = 0 obs = self.eval_env.reset() dct = { "NumEvalEpisodes": n_episodes, "MeanEvalEpReturn": np.mean(rets_lst), "StdEvalEpReturn": np.std(rets_lst), "MeanEvalEpLength": np.mean(lens_lst), "StdEvalEpLength": np.std(lens_lst) } self.tracker_dict.update(dct) ```