metadata
dict
text
stringlengths
60
3.49M
{ "source": "jgericardo/iclr-network", "score": 3 }
#### File: iclr-network/scripts/iclr_scraper-html.py ```python import os import csv from bs4 import BeautifulSoup from tqdm import tqdm import re import requests def replace_space(str_text): return re.sub(' +', ' ', str_text.strip().replace("\n", "").replace("\t", "")) page = requests.get("https://iclr.cc/Conferences/2019/Schedule?type=Poster") soup_bowl = BeautifulSoup(page.content, "html.parser") dataset = [] submissions_list = soup_bowl.find_all("div", class_="maincard") for each_sub in submissions_list: sub_info = [] sub_info.append("2019") sub_info.append("Poster") #print(each_sub) title = each_sub.find("div", class_="maincardBody") sub_info.append(replace_space(title.text)) note_authors = each_sub.find("div", class_="maincardFooter") authors = note_authors.text.split(" · ") sub_info.append(replace_space('; '.join(authors))) dataset.append(sub_info) #print() with open('iclr2019-poster-papers.csv', 'w', newline='', encoding='utf-8') as csvfile: csv.writer(csvfile).writerows(dataset) #print('Saving:', '{}-topics-refined.csv'.format(each_file.split('.')[1])) #with open('.{}-topics-refined.csv'.format(each_file.split('.')[1]), 'w', newline='', encoding='utf-8') as csvfile: # csv.writer(csvfile).writerows(keep_list) #with open('missing-topics-refined.csv', 'w', newline='', encoding='utf-8') as csvfile: # csv.writer(csvfile).writerows(missing_list) ```
{ "source": "jgericardo/pytorch-playground", "score": 3 }
#### File: scripts/ptpg/utils.py ```python from typing import Tuple import json import random import torch import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import ( OneHotEncoder, LabelBinarizer, MinMaxScaler ) __author__ = "<NAME>" def load_dataset_from_file( dataset_path: str, feature_range: Tuple[int] = None, lbl_encoding: Tuple[int] = None, random_seed: int = None ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: """ Loads the dataset from a file. Parameters ---------- dataset_path: str File path of the dataset. feature_range: list, optional, default: None Tuple containing the min and max value for each feature's range. lbl_encoding: list, optional, default: None Tuple containing the encoding for positive and negative labels. random_seed: int, optional, default: None Seed used for dataset split reproducibility. Returns ------- X_train: numpy.ndarray Training subset for features y_train: numpy.ndarray Training subset for target labels X_test: numpy.ndarray Test subset for features y_test: numpy.ndarray Test subset for target labels """ dataset = np.genfromtxt(dataset_path, delimiter=',') # slice all rows and up until 2nd last column data_X = dataset[:, :dataset.shape[1]-1] # slice all rows and only last column data_y = dataset[:, dataset.shape[1]-1].astype(int) # split dataset X_train, X_test, y_train, y_test = train_test_split( data_X, data_y, test_size=0.2, stratify=data_y, random_state=random_seed ) # rescale features to specified range if isinstance(feature_range, tuple): minmaxsc = MinMaxScaler(feature_range=feature_range) X_train = minmaxsc.fit_transform(X_train) X_test = minmaxsc.transform(X_test) # label transformations to match NN output layer onehotenc = OneHotEncoder(sparse=False) onehotenc.fit(data_y.reshape(-1, 1)) y_train = onehotenc.transform(y_train.reshape(-1, 1)) y_test = onehotenc.transform(y_test.reshape(-1, 1)) # encode one-hot labels to specified positive and negative values if isinstance(lbl_encoding, tuple): lbl_binarizer = LabelBinarizer( neg_label=lbl_encoding[0], pos_label=lbl_encoding[1] ) lbl_binarizer.fit(y_train) y_train = lbl_binarizer.transform(y_train) y_test = lbl_binarizer.transform(y_test) return (X_train, y_train, X_test, y_test) def set_global_seed(seed: int) -> None: """ Set all pseudorandom functions to the same seed Parameter --------- seed: int global seed to use for all pseudorandom generators """ random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def torch_data_loader( features: np.ndarray, labels: np.ndarray, batch_size: int, shuffle: bool = None, num_workers: int = 0 ) -> Tuple[torch.utils.data.DataLoader]: """ Creates the data loader for the train and test dataset. Parameters --------- features: numpy.ndarray Training input features. labels: numpy.ndarray Training labels. batch_size: int Batch size shuffle: bool, optional, default: None Flag indicating whether to shuffle dataset or not. num_workers: int, optional, default: 0 Number of workers to use during sampling iteration. Returns ------- torch.utils.data.DataLoader: data loader """ features = torch.Tensor(features) labels = torch.Tensor(labels) dataset = torch.utils.data.TensorDataset(features, labels) data_loader = torch.utils.data.DataLoader( dataset=dataset, batch_size=batch_size, num_workers=num_workers, shuffle=shuffle ) return data_loader def encode_labels(labels: np.ndarray, encoding: tuple) -> np.ndarray: """ Encode labels in another encoding. Parameter --------- labels: numpy.ndarray One-hot encoded labels. encoding: tuple Coding scheme for the labels. Returns ------- numpy.ndarray: Transformed labels. """ lbl_bin = LabelBinarizer(encoding[0], encoding[1]) return lbl_bin.fit_transform(labels) def acc_score(y_pred: np.ndarray, y_labels: np.ndarray) -> float: """ Evaluate performance between predictions and ground truth labels. Parameters ---------- y_pred: numpy.ndarray Numpy list of one-hot encoded predictions or logits. y_labels: numpy.ndarray Numpy list of ground truth labels. Returns ------- float: Accuracy score of model's predictions. """ correct = 0 total = y_pred.shape[0] for i in range(total): predicted = np.argmax(y_pred[i]) test = np.argmax(y_labels[i]) correct = correct + (1 if predicted == test else 0) return (float(correct)/float(total))*100. def torch_acc_score( y_pred: torch.Tensor, y_true: torch.Tensor ) -> float: """ Evaluate performance between predictions and ground truth labels. Parameters ---------- y_pred: torch.Tensor Model predictions. y_true: numpy.ndarray Ground truth labels. Returns ------- float: Accuracy score of model's predictions. """ if not isinstance(y_pred, torch.Tensor): y_pred = torch.from_numpy(y_pred) if not isinstance(y_true, torch.Tensor): y_true = torch.from_numpy(y_true) return (y_pred.argmax(1) == y_true.argmax(1)).sum().item() / len(y_true) def export_to_json( results_data: dict, filename: str, sort_keys: bool = True, indent: int = 4 ) -> None: """ Export dictionary to a JSON file. Parameters ---------- results_data: dict Dictionary containing results data. filename: str Output file name. sort_keys: bool, optional, default: True Flag to sort keys in the dictionary, including inner dictionaries. indent: int, optional, default: 4 Number of tabs to insert per level. """ with open(filename, 'w') as out_file: json.dump(results_data, out_file, sort_keys=sort_keys, indent=indent) def load_results_from_json(filename: str) -> dict: """ Parses a JSON file and returns results as a dictionary. Parameters ---------- filename: str Input file name to load. sort_keys: bool, optional, default: True Flag to sort keys in the dictionary, including inner dictionaries. """ with open(filename, 'r') as in_file: data = json.load(in_file) return data def make_json_readable( data: dict, sort_keys: bool = True, indent: int = 4 ) -> str: """ Converts a dictionary into a human readable string. Parameters ---------- data: dict Input file name to load. sort_keys: bool, optional, default: True Flag to sort keys in the dictionary, including inner dictionaries. indent: int, optional, default: 4 Number of tabs to insert per level. """ return json.dumps(data, sort_keys=sort_keys, indent=indent) def load_datasets( dataset_paths: dict, feature_range: Tuple[int, int] = None, label_encoding: Tuple[int, int] = None, random_seed: int = None ) -> dict: """ Helper function to load multiple datasets with consistent feature ranges and label encodings. Parameters --------- dataset_paths: dict A dictionary of dataset paths with custom keys. feature_range: Tuple[int, int], optional, default=None Feature range to use for all the dataset features. label_encoding: Tuple[int, int], optional, default=None Label encoding to use for all the dataset labels. random_seed: int, optional, default=None Fixed random seed to use for each dataset. Returns ------- datasets: dict A dictionary of datasets using the same custom keys as the passed dictionary of paths (for easier lookup). """ datasets = {} for key in dataset_paths.keys(): set_global_seed(random_seed) dataset = load_dataset_from_file( dataset_path=dataset_paths[key], feature_range=feature_range, lbl_encoding=label_encoding, random_seed=random_seed ) datasets[key] = dataset return datasets def send_message(key: str, value: any) -> None: """ Wrapper for print. Serializes data in JSON format. Parameters ---------- key: str The dictionary key. value: any The list or single item for the dictionary value. """ print(json.dumps({key: value}, indent=2, sort_keys=True)) ```
{ "source": "jgericke/flask-nameko", "score": 2 }
#### File: flask-nameko/tests/test_connection_pool.py ```python import pytest import eventlet from datetime import timedelta from mock import Mock, patch from flask_nameko.connection_pool import ConnectionPool, Connection from flask_nameko.errors import ClientUnavailableError @pytest.fixture def some_fixture(): pass @pytest.fixture def get_connection(): connection = Mock(side_effect=lambda: object()) return connection def test_connections_recycled(get_connection): pool = ConnectionPool(get_connection, initial_connections=0) o = pool.get_connection() pool.release_connection(o) o1 = pool.get_connection() o2 = pool.get_connection() assert o1 == o assert o1 != o2 def test_new_connections_used(get_connection): pool = ConnectionPool(get_connection, initial_connections=0) o = pool.get_connection() o1 = pool.get_connection() assert o1 != o def test_max_connections_raises(get_connection): pool = ConnectionPool(get_connection, initial_connections=0, max_connections=2) pool.get_connection() pool.get_connection() with pytest.raises(ClientUnavailableError): pool.get_connection(next_timeout=0) def test_creates_initial_connections(get_connection): pool = ConnectionPool(get_connection, initial_connections=2) assert get_connection.call_count == 2 def test_connections_get_recycled(get_connection): pool = ConnectionPool( get_connection, initial_connections=1, max_connections=1, recycle=3600 ) conn = pool.get_connection() pool.release_connection(conn) conn2 = pool.get_connection() pool.release_connection(conn2) assert conn == conn2 with patch.object(conn2, 'is_stale', return_value=True): conn3 = pool.get_connection() assert conn3 != conn assert conn3 != conn2 def test_connection_is_stale_for_stale_connection(): connection = Connection(None) eventlet.sleep(2) assert connection.is_stale(timedelta(seconds=1)) def test_connection_is_not_stale_for_good_connection(): connection = Connection(None) assert not connection.is_stale(timedelta(seconds=3600)) ```
{ "source": "jgerigmeyer/jquery-django-messages-ui", "score": 3 }
#### File: jquery-django-messages-ui/messages_ui/middleware.py ```python import json from django.contrib import messages from django.utils.six import text_type class AjaxMessagesMiddleware(object): """ Middleware to handle messages for AJAX requests. If the AJAX response is already JSON, add a "messages" key to it (or append to an existing "messages" key) a list of messages (each message is an object with "level", "message", and "tags" keys). If the AJAX response is currently html, turn it into JSON and stuff the HTML content into the "html" key, adding a "messages" key as well. If the AJAX response is neither json nor html, return it as-is (with no messages attached, and without iterating over messages). If the AJAX response has a status code other than 200, or has an attribute ``no_messages`` that is ``True``, it will not be modified (and messages will not be read). """ def process_response(self, request, response): handle_response = ( request.is_ajax() and response.status_code == 200 and not getattr(response, 'no_messages', False) ) if handle_response: content_type = response.get('content-type', 'None').split(";")[0] content = response.content.decode('utf-8') if content_type == "application/json": data = json.loads(content) elif content_type == "text/html": data = {"html": content} else: return response messagelist = data.setdefault("messages", []) for message in messages.get_messages(request): messagelist.append({ "level": message.level, "message": text_type(message.message), "tags": message.tags, }) response.content = json.dumps(data) response["content-type"] = "application/json" response["content-length"] = len(response.content) return response ```
{ "source": "j-germino/sc-rna-tools-git", "score": 2 }
#### File: sc-rna-tools-git/scrnatools/_configs.py ```python import logging import os # <name TBD> package imports from ._utils import type_check class Config: """Config manager for sc-rna-tools""" def __init__( self, verbosity="warning", debug_memory=False, debug_timing=False, log_path="sc-rna-tools_logs", save_logs=False, ): self._verbosity = verbosity self._debug_memory = debug_memory self._debug_timing = debug_timing self._log_path = log_path self._save_logs = save_logs self._loggers = [] # list of loggers created by modules @property def verbosity(self) -> str: return self._verbosity @verbosity.setter def verbosity(self, verbosity: str): """Sets the verbosity level of the logger Allowed are: 'debug', 'info', 'warning', 'error', 'critical' """ type_check(verbosity, "verbosity", str) # set the level of all the loggers for logger in self._loggers: self._set_log_level(logger, verbosity) self._verbosity = verbosity @property def debug_memory(self) -> bool: """Determines whether line by line memory usage is logged for debugging functions""" return self._debug_memory @debug_memory.setter def debug_memory(self, debug_memory: bool): type_check(debug_memory, "debug_memory", bool) self._debug_memory = debug_memory @property def debug_timing(self) -> bool: """Determines whether function timing is logged for debugging""" return self._debug_timing @debug_timing.setter def debug_timing(self, debug_timing: bool): type_check(debug_timing, "debug_timing", bool) self._debug_timing = debug_timing @property def log_path(self) -> str: """The path where log files are saved""" return self._log_path @log_path.setter def log_path(self, path: str): type_check(path, "path", str) self._log_path = path @property def save_logs(self) -> bool: """Determines whether logging messages are saved to a log file""" return self._save_logs @save_logs.setter def save_logs(self, save_logs: bool): type_check(save_logs, "save_logs", bool) # if logs are not currently being written to a file, but being updated to be written to a file, add a # FileHandler to each logger if not self.save_logs and save_logs: # make sure log directory exists self.check_log_path() # create the logging format and FileHandler formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s: %(message)s", "%Y-%m-%d %H:%M:%S") file_handler = logging.FileHandler(f"{self.log_path}/sc-rna-tools.log") file_handler.setFormatter(formatter) # add the FileHandler to each logger if it doesn't already have a FileHandler for logger in self._loggers: handlers = logger.handlers if sum([isinstance(h, logging.FileHandler) for h in handlers]) == 0: # check if there is a FileHandler logger.addHandler(file_handler) # if logs are currently being written to a file, but being updated to not be written to a file, remove the # FileHandler to each logger if self.save_logs and not save_logs: for logger in self._loggers: # find the FileHandler for this logger and remove it for h in logger.handlers: if isinstance(h, logging.FileHandler): logger.removeHandler(h) self._save_logs = save_logs def __str__(self) -> str: return f"ScoreConfig(" \ f"verbosity: {self.verbosity}, " \ f"debug_memory: {self.debug_memory}, " \ f"debug_timing: {self.debug_timing}, " \ f"log_path: {self.log_path}, " \ f"save_logs: {self.save_logs})" def clear_logs(self): """Clears all logs saved in the logs path""" if os.path.exists(self._log_path): for f in os.listdir(self._log_path): # Remove all the files in the log directory os.remove(os.path.join(self._log_path, f)) # remove the log directory os.rmdir(self._log_path) def check_log_path(self): """Checks if the log path exists, and creates it if it doesn't""" if not os.path.exists(self._log_path): os.makedirs(self._log_path) def create_logger(self, name: str): """Called by modules to create a logger for that function Parameters ---------- name The name of the logger (typically the module name creating the logger) """ type_check(name, 'name', str) # create a logger, StreamHandler, and the formatter for that logger logger = logging.getLogger(name) handler = logging.StreamHandler() formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s: %(message)s", "%Y-%m-%d %H:%M:%S") handler.setFormatter(formatter) handlers = logger.handlers if sum([isinstance(h, logging.StreamHandler) for h in handlers]) == 0: # check if there is a StreamHandler logger.addHandler(handler) # if logs are being saved to a file as well, create a FileHandler for the new logger too if self.save_logs: self.check_log_path() file_handler = logging.FileHandler(f"{self.log_path}/sc-rna-tools.log") file_handler.setFormatter(formatter) if sum([isinstance(h, logging.FileHandler) for h in handlers]) == 0: # check if there is a StreamHandler logger.addHandler(file_handler) # Set the log level to the current verbosity self._set_log_level(logger, self.verbosity) # Add the logger to the master list self._loggers.append(logger) return logger @staticmethod def _set_log_level(logger: logging.Logger, level: str): """Sets the log level of a modules logger Parameters ---------- logger The logger to set the level of level String corresponding to the name of the logging level to set. Allowed: 'info', 'debug', 'warning', 'error', 'critical' """ log_levels = { "info": logging.INFO, "debug": logging.DEBUG, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL } if level not in log_levels: raise ValueError(f"'{level}' is not a valid logging level " f"('info', 'debug', 'warning', 'error', 'critical')") logger.setLevel(log_levels[level]) configs = Config() ``` #### File: scrnatools/qc/_filter_cells.py ```python from anndata import AnnData from typing import Tuple, Optional # sc-rna-tools package imports from .._configs import configs from .._utils import debug from ..plotting import qc_plotting logger = configs.create_logger(__name__.split('_', 1)[1]) # -------------------------------------------------------function----------------------------------------------------- # @debug(logger, configs) def filter_cells( adata: AnnData, gene_thresholds: Tuple[int, int], count_thresholds: Tuple[int, int], mt_threshold: int = 10, save_path: Optional[str] = None, file_type: str = "png", *args, **kwargs ) -> AnnData: """Filters cells based on gene number, total counts, and % mitochondrial Parameters ---------- adata The AnnData with the data to filter gene_thresholds A Tuple of thresholds for the number of genes per cell with 'gene_thresholds[0]' being the lower bound and 'gene_thresholds[1]' being the upper bound (both exclusive). count_thresholds A Tuple of thresholds for the number of total counts cell with 'count_thresholds[0]' being the lower bound and 'count_thresholds[1]' being the upper bound (both exclusive). mt_threshold The maximum percent mitochondrial reads per cell. Default 10%. args Arguments to pass on to qc_plotting function calls kwargs Keyword arguments to pass on to qc_plotting function calls save_path The path and file name prefix to save QC plots to ('_qc_plots' or '_filtered_qc_plots' and the file type provided with 'file_type' will be appended file_type The file type for the figures to be saved Returns ------- An AnnData object with cells that don't pass the thresholds filtered out """ qc_plotting( adata, counts_thresholds=count_thresholds, genes_thresholds=gene_thresholds, save_path=f"{save_path}_qc_plots.{file_type}", *args, **kwargs ) logger.info(f"Number of cells before QC filtering: {len(adata.obs)}") filtered_adata = adata[adata.obs.pct_counts_mt < mt_threshold].copy() filtered_adata = filtered_adata[filtered_adata.obs.total_counts < count_thresholds[1]] filtered_adata = filtered_adata[filtered_adata.obs.total_counts > count_thresholds[0]] filtered_adata = filtered_adata[filtered_adata.obs.n_genes_by_counts < gene_thresholds[1]] filtered_adata = filtered_adata[filtered_adata.obs.n_genes_by_counts > gene_thresholds[0]].copy() logger.info(f"Number of cells after QC filtering: {len(filtered_adata.obs)}") qc_plotting( filtered_adata, show_thresholds=False, save_path=f"{save_path}_filtered_qc_plots.{file_type}", *args, **kwargs ) return filtered_adata ``` #### File: scrnatools/tools/_cell_type_similarity.py ```python from anndata import AnnData from sklearn.metrics.pairwise import cosine_similarity from sklearn.preprocessing import StandardScaler from typing import Optional import pandas as pd # sc-rna-tools package imports from .._configs import configs from .._utils import debug logger = configs.create_logger(__name__.split('_', 1)[1]) # -------------------------------------------------------function----------------------------------------------------- # @debug(logger, configs) def cell_type_similarity( adata: AnnData, signatures: pd.DataFrame, normalize: str = "cell", ) -> AnnData: """ Parameters ---------- adata The AnnData object containing cells to score, with library size rescaled and log-normalized counts stored in 'adata.raw' signatures A DataFrame containing transcriptome signatures for each cell type to be tested. Columns are cell types and rows are the log-normalized expression of each gene in that cell type. Can be created from cell type clusters of a scRNAseq dataset using 'create_cell_type_signature' normalize How to rescale the cosine similarity scores. Default is 'cell', which calculates a z-score normalized for each cell across all cell types in 'signatures'. Other possible values are 'cell type' which calculates a z-score normalized for each cell type in 'signatures' across all cells and 'none' which returns the raw cosine similarity values. Returns ------- The AnnData passed in with 'adata' with the cosine similarity scores for each immgen cell type added as a column to 'adata.obs' """ # Raw attribute contains the log-normalized counts cell_data = pd.DataFrame(adata.raw.X.toarray(), columns=adata.raw.var_names, index=adata.obs.index).T cell_data = cell_data / cell_data.sum(axis=0) # Normalize per cell expression to sum to 1 # Join with gene x cell type signature matrix so that only shared genes are kept all_df = cell_data.join( signatures, how="inner" ) all_df = all_df / all_df.sum(axis=0) # Normalize per cell expression to sum to 1 # Calculate cosine similarity of single cells to each cell type sim = cosine_similarity( all_df[all_df.columns[:cell_data.shape[1]]].values.T, # Single-cell expression data all_df[all_df.columns[cell_data.shape[1]:]].values.T # Cell type gene signature expression data ) # Create dataframe with per cell similarity scores for each cell type similarity = pd.DataFrame( sim, columns=all_df.columns[cell_data.shape[1]:], index=all_df.columns[:cell_data.shape[1]] ) if normalize == "cell type": logger.info(f"Scaling cosine similarity scores to z-scores by cell type") # Scale similarity scores scaler = StandardScaler() minmax_scale = scaler.fit(similarity) x_minmax = minmax_scale.transform(similarity) scale_by_row = pd.DataFrame(x_minmax) elif normalize == "cell": logger.info(f"Scaling cosine similarity scores to z-scores by cell") # Scale similarity scores scaler = StandardScaler() minmax_scale = scaler.fit(similarity.T) x_minmax = minmax_scale.transform(similarity.T).T scale_by_row = pd.DataFrame(x_minmax) else: logger.info(f"Leaving similarity scores unscaled") scale_by_row = pd.DataFrame(similarity) # Add cosine similarity scores to adata obs scale_by_row.index = similarity.index if normalize != "none": scale_by_row.columns = similarity.columns + "_cosine_similarity_" + normalize + "_z_score" else: scale_by_row.columns = similarity.columns + "_cosine_similarity" adata.obs = adata.obs.join(scale_by_row) return adata ``` #### File: scrnatools/tools/_cluster_de.py ```python from anndata import AnnData from pandas import DataFrame from typing import Optional, Dict from scvi.model import SCVI # sc-rna-tools package imports from .._configs import configs from .._utils import debug, check_path logger = configs.create_logger(__name__.split('_', 1)[1]) # -------------------------------------------------------function----------------------------------------------------- # @debug(logger, configs) def cluster_de( adata: AnnData, model: SCVI, cluster_key: str, lfc_mean_threshold: int = 0, bayes_factor_threshold: int = 3, non_zeroes_proportion_threshold: int = 0.1, save_path: Optional[str] = None, ) -> Dict[str, DataFrame]: """Calculates DE marker genes for data clusters Parameters ---------- adata The data to analyze model The scVI model for 'adata' cluster_key The column name of the cluster data in 'adata.obs' lfc_mean_threshold The minimum lfc_mean to filter de genes on (exclusive) bayes_factor_threshold The minimum bayes factor to filter de genes on (exclusive) non_zeroes_proportion_threshold The minimum proportion of cells with non-zero expression filter de genes on (exclusive) save_path The path to save the marker gene lists to Returns ------- A dictionary with keys equal to the categories of the cluster column in 'adata.obs' (i.e. cell types) linked to DataFrames of the filtered DE marker genes for that cluster """ de_df = model.differential_expression(groupby=cluster_key, ) cats = adata.obs[cluster_key].cat.categories markers = {} for i, c in enumerate(cats): cid = f"{c} vs Rest" cell_type_df = de_df.loc[de_df.comparison == cid] cell_type_df = cell_type_df[cell_type_df.lfc_mean > lfc_mean_threshold] cell_type_df = cell_type_df[cell_type_df["bayes_factor"] > bayes_factor_threshold] cell_type_df = cell_type_df[cell_type_df["non_zeros_proportion1"] > non_zeroes_proportion_threshold] markers[c] = cell_type_df if save_path is not None: check_path(save_path) for cluster, marker_genes in markers.items(): if save_path[-1] == "/": save_path = save_path[:-1] marker_genes.to_csv(f"{save_path}/{cluster}.csv") return markers ``` #### File: scrnatools/tools/_create_cell_type_signature.py ```python from anndata import AnnData from typing import Optional import pandas as pd # sc-rna-tools package imports from .._configs import configs from .._utils import debug, check_path logger = configs.create_logger(__name__.split('_', 1)[1]) # -------------------------------------------------------function----------------------------------------------------- # @debug(logger, configs) def create_cell_type_signature( adata: AnnData, save_path: Optional[str] = None, cell_type_labels: str = "cell_type", data_loc: str = "X", ) -> pd.DataFrame: """ Parameters ---------- adata The AnnData object containing the cell type expression data, with cell labels as a key in 'adata.obs' and library size corrected and log-normalized counts in adata.X, adata.raw, or a layer in adata.layers. save_path The path to save a csv containing the cell type gene signatures to cell_type_labels The column name in 'adata.obs' containing the cell type labels for each cell. Default is 'cell_type' data_loc The location of the library size corrected and log-normalized gene expression data in 'adata'. Default is 'X' but can also be 'raw' or a valid key from 'adata.layers' Returns ------- A DataFrame containing the psuedobulked gene signatures for each cell type in adata.obs[cell_type_labels] with columns containing data each cell type and rows containing the average expression for each gene within that call type. """ if cell_type_labels not in adata.obs: raise ValueError(f"{cell_type_labels} not a valid key in 'adata.obs'") signatures = pd.DataFrame(index=adata.var_names) for cell_type in adata.obs[cell_type_labels].unique(): if data_loc == "X": signatures[cell_type] = adata[adata.obs[cell_type_labels] == cell_type].X.mean(axis=0) elif data_loc == "raw": signatures[cell_type] = adata[adata.obs[cell_type_labels] == cell_type].raw.X.mean(axis=0) else: if data_loc in adata.layers: signatures[cell_type] = adata[adata.obs[cell_type_labels] == cell_type].layers[data_loc].mean(axis=0) else: raise ValueError(f"{data_loc} not 'X', 'raw', or a valid layer in 'adata.layers'") if save_path is not None: check_path(save_path.rsplit("/")[0]) logger.info(f"Saving signature DataFrame to {save_path}") signatures.to_csv(save_path) return signatures ``` #### File: scrnatools/tools/_get_expression_matrix.py ```python from typing import Optional from scipy.sparse import issparse from pandas import DataFrame from anndata import AnnData # mitsa package imports from .._configs import configs from .._utils import debug logger = configs.create_logger(__name__.split('_', 1)[1]) # -------------------------------------------------------function----------------------------------------------------- # @debug(logger, configs) def get_expression_matrix(anndata: AnnData, gene_data: Optional[str] = None, ) -> DataFrame: """Extracts the cell x gene expression matrix from an AnnData object Parameters ---------- anndata The AnnData to pull the expression matrix from gene_data Where to get the expression data from the AnnData object. If a layer from the AnnData['layers'] is passed, that is used, otherwise 'X' or 'raw' can be used. Returns ------- A Pandas DataFrame containing the expression matrix (cells x genes) Raises ------- ValueError When 'layer' is not one of the layers in 'anndata' """ if gene_data == "X": # Convert to a dense matrix if needed if issparse(anndata.X): matrix = DataFrame(anndata.X.todense(), index=anndata.obs.index, columns=anndata.var_names) else: matrix = DataFrame(anndata.X, index=anndata.obs.index, columns=anndata.var_names) # get a layer from the AnnData if specified elif gene_data == "raw": raw_data = anndata.raw.to_adata() # Convert to a dense matrix if needed if issparse(raw_data.X): matrix = DataFrame(raw_data.X.todense(), index=anndata.obs.index, columns=anndata.raw.var_names) else: matrix = DataFrame(raw_data.X, index=anndata.obs.index, columns=anndata.raw.var_names) elif gene_data in anndata.layers: if issparse(anndata.layers[gene_data]): matrix = DataFrame(anndata.layers[gene_data].todense(), index=anndata.obs.index, columns=anndata.var_names) else: matrix = DataFrame(anndata.layers[gene_data]) else: raise ValueError(f"{gene_data} is not 'X', 'raw', or a valid layer name in '{anndata.layers}'") return matrix ```
{ "source": "jgerrish/bitey", "score": 3 }
#### File: bitey/cpu/addressing_mode.py ```python from dataclasses import dataclass import logging from typing import ClassVar from bitey.cpu.arch import EightBitArch @dataclass class AddressingMode: """ Addressing mode base class """ bytes: int """ The number of bytes an instruction with this addressing mode takes, including the instruction itself. """ def __post_init__(self): self.logger = logging.getLogger("bitey.cpu.addressing_mode") def get_value(self, flags, registers, memory): """ Get the value at the address Returns a tuple of the address and value for convenience """ return (None, None) def get_address(self, flags, registers, memory): """ Return the effective address """ # The size to consume is bytes minus one for the opcode itself size = self.bytes - 1 if size > 0: registers["PC"].add(size) return None def get_inst_str(self, flags, registers, memory): address = self.get_address(flags, registers, memory) if address is not None: return "${0:02x}".format(address) else: return "" @dataclass class AbsoluteAddressingMode(AddressingMode): """ Absolute addressing mode Absolute addressing is a three-byte instruction The address is encoded in the next two bytes after the opcode The first byte contains the opcode The second byte contains the low-order byte of the effective address The effective address contains the data The third byte contains the high-order byte of the effective address The following absolute JMP command would jump to the NOP instruction 0x0000 0x4C JMP 0x0001 0x12 0x0002 0x34 ... 0x3412 NOP """ adl: int = 0 "The low-order byte" adh: int = 0 "The high-order byte" bytes: ClassVar[int] = 3 def get_address(self, flags, registers, memory): self.adl = memory.read(registers["PC"].get()) registers["PC"].inc() self.adh = memory.read(registers["PC"].get()) registers["PC"].inc() return memory.get_16bit_address(self.adl, self.adh) def get_value(self, flags, registers, memory): address = self.get_address(flags, registers, memory) return (address, memory.read(address)) def get_inst_str(self, flags, registers, memory): # address = self.get_address(flags, registers, memory) address = self.get_address(flags, registers, memory) self.logger.debug("AbsoluteAddressing get_value address: {}".format(address)) if address is not None: return "${0:04x}".format(address) else: return "" @dataclass class AccumulatorAddressingMode(AddressingMode): """ Accumulator Addressing Mode The value is set to the current value of the accumulator Instructions can test the addressing mode to set the accumulator after they have performed their operation. """ bytes: ClassVar[int] = 1 def get_address(self, flags, registers, memory): return None def get_value(self, flags, registers, memory): address = self.get_address(flags, registers, memory) value = registers["A"].get() return (address, value) def get_inst_str(self, flags, registers, memory): self.get_address(flags, registers, memory) return "" @dataclass class AbsoluteIndirectAddressingMode(AddressingMode): bytes: ClassVar[int] = 3 """ Absolute Indirectaddressing mode Absolute Indirect addressing is a three-byte instruction The address is encoded in the next two bytes after the opcode The first byte contains the opcode The second byte contains the low-order byte of an address that contains the effective address The third byte contains the high-order byte of an address that contains the effective address The effective address points to the actual location The following absolute indirect JMP command would jump to the NOP instruction 0x0000 0x6C JMP 0x0001 0x12 0x0002 0x34 ... 0x3412 0x15 0x3413 0x34 ... 0x3415 0xEA NOP """ adl: int = 0 "The low-order byte" adh: int = 0 "The high-order byte" bytes: ClassVar[int] = 3 def get_address(self, flags, registers, memory): self.adl = memory.read(registers["PC"].get()) registers["PC"].inc() self.adh = memory.read(registers["PC"].get()) registers["PC"].inc() address_to_address = memory.get_16bit_address(self.adl, self.adh) self.adl = memory.read(address_to_address) self.adh = memory.read(address_to_address + 1) effective_address = memory.get_16bit_address(self.adl, self.adh) return effective_address def get_value(self, flags, registers, memory): address = self.get_address(flags, registers, memory) return (address, memory.read(address)) def get_inst_str(self, flags, registers, memory): address = self.get_address(flags, registers, memory) if address is not None: return "(${0:04x})".format(address) else: return "" class AbsoluteIndirectPageBoundaryBugAddressingMode(AddressingMode): bytes: ClassVar[int] = 3 """ Absolute Indirect addressing mode with the Page Boundary Bug Absolute Indirect addressing is a three-byte instruction The address is encoded in the next two bytes after the opcode The first byte contains the opcode The second byte contains the low-order byte of an address that contains the effective address The third byte contains the high-order byte of an address that contains the effective address The effective address points to the actual location This version of the addressing mode exhibits the JMP page boundary bug seen on some NMOS chips. If the base address is on the edge of a page boundary, it wraps to the beginning of that page instead of going to the beginning of the next page. The following absolute indirect JMP command would jump to the NOP instruction 0x0000 0x34 ; most-significant byte of address ... 0x00FE 0x6C JMP 0x00FF 0x12 ; least-significant byte of address ... 0x3412 0x15 0x3413 0x34 ... 0x3415 0xEA NOP """ adl: int = 0 "The low-order byte" adh: int = 0 "The high-order byte" bytes: ClassVar[int] = 3 def get_address(self, flags, registers, memory): pc = registers["PC"].get() self.adl = memory.read(pc) if (pc & 0xFF) == 0xFF: # Memory form 0x??FF should wrap to the same page self.adh = memory.read(pc & 0xFF00) registers["PC"].inc() else: # Other memory should work the same as the normal AbsoluteIndirectAddressingMode # TODO: Verify that the PC ends up in the correct place # (it should still go to the next instruction) # "technically" it doesn't matter, since this bug is exclusive to JMP # instructions # But for more accurate simulation and cycle-dependent stuff, it may matter registers["PC"].inc() self.adh = memory.read(registers["PC"].get()) registers["PC"].inc() address_to_address = memory.get_16bit_address(self.adl, self.adh) self.adl = memory.read(address_to_address) self.adh = memory.read(address_to_address + 1) effective_address = memory.get_16bit_address(self.adl, self.adh) return effective_address def get_value(self, flags, registers, memory): address = self.get_address(flags, registers, memory) return (address, memory.read(address)) def get_inst_str(self, flags, registers, memory): address = self.get_address(flags, registers, memory) if address is not None: return "(${0:04x})".format(address) else: return "" @dataclass class AbsoluteXAddressingMode(AddressingMode): bytes: ClassVar[int] = 3 """ Absolute,X addressing mode Absolute addressing is a three-byte instruction The address is encoded in the next two bytes after the opcode The first byte contains the opcode The second byte contains the low-order byte of the effective address The effective address contains the data The third byte contains the high-order byte of the effective address The X Index is then added to this address """ adl: int = 0 """ The low-order byte This does not include the X offset """ adh: int = 0 """ The high-order byte This does not include the X offset """ bytes: ClassVar[int] = 3 def get_address(self, flags, registers, memory): self.adl = memory.read(registers["PC"].get()) # TODO: Maybe wrap the flag with bounds checking too, read expected # behavior registers["PC"].inc() self.adh = memory.read(registers["PC"].get()) registers["PC"].inc() address = memory.get_16bit_address(self.adl, self.adh) address += registers["X"].get() # Wrap at end of memory # address = address % 0xFFFF address = address % 0x10000 return address def get_value(self, flags, registers, memory): address = self.get_address(flags, registers, memory) return (address, memory.read(address)) def get_inst_str(self, flags, registers, memory): # address = self.get_address(flags, registers, memory) address = self.get_address(flags, registers, memory) if address is not None: return "${0:04x},X".format(memory.get_16bit_address(self.adl, self.adh)) else: return "" @dataclass class AbsoluteYAddressingMode(AddressingMode): bytes: ClassVar[int] = 3 """ Absolute,Y addressing mode Absolute,Y addressing is a three-byte instruction The address is encoded in the next two bytes after the opcode The first byte contains the opcode The second byte contains the low-order byte of the effective address The effective address contains the data The third byte contains the high-order byte of the effective address The Y Index is then added to this address """ adl: int = 0 """ The low-order byte This does not include the X offset """ adh: int = 0 """ The high-order byte This does not include the X offset """ bytes: ClassVar[int] = 3 def get_address(self, flags, registers, memory): self.adl = memory.read(registers["PC"].get()) # TODO: Maybe wrap the flag with bounds checking too, read expected # behavior registers["PC"].inc() self.adh = memory.read(registers["PC"].get()) registers["PC"].inc() address = memory.get_16bit_address(self.adl, self.adh) address += registers["Y"].get() # Wrap at end of memory # address = address % 0xFFFF address = address % 0x10000 return address def get_value(self, flags, registers, memory): address = self.get_address(flags, registers, memory) return (address, memory.read(address)) def get_inst_str(self, flags, registers, memory): # address = self.get_address(flags, registers, memory) address = self.get_address(flags, registers, memory) if address is not None: return "${0:04x},Y".format(memory.get_16bit_address(self.adl, self.adh)) else: return "" @dataclass class ImmediateAddressingMode(AddressingMode): """ Immediate addressing mode The value is encoded as a constant in the next byte """ bytes: ClassVar[int] = 2 def get_value(self, flags, registers, memory): byte = memory.read(registers["PC"].get()) # TODO: Maybe wrap the flag with bounds checking too, read expected # behavior registers["PC"].inc() return (None, byte) def get_inst_str(self, flags, registers, memory): (address, value) = self.get_value(flags, registers, memory) return "#${0:02x}".format(value) @dataclass class ImpliedAddressingMode(AddressingMode): """ Implied addressing mode The address is encoded in the instruction """ bytes: ClassVar[int] = 1 def get_address(self, flags, registers, memory): return None def get_value(self, flags, registers, memory): return (None, None) @dataclass class IndexedIndirectAddressingMode(AddressingMode): """ Indexed Indirect addressing mode Get an address in zero page memory from the next byte and the X Index. The X index is added to the base address before fetching the effective address. This is different than Indirect Indexed, where the Index is added after fetching the address from Zero Page. Also called Indirect X A1 80 LDA ($80,X) """ bytes: ClassVar[int] = 2 def get_address(self, flags, registers, memory): zero_page_address = registers["PC"].get() registers["PC"].inc() # X register size is 8-bits zero_page_address += registers["X"].get() adl = zero_page_address # TODO: Test for case we go beyond the page boundary # Wraparound is assumed # This behavior may still be incorrect # TODO: Use one of the native functional test suites like # https://github.com/Klaus2m5/6502_65C02_functional_tests.git # after implementation adh = (zero_page_address + 1) % 0x100 address = memory.get_16bit_value(adl, adh) return address def get_value(self, flags, registers, memory): address = self.get_address(flags, registers, memory) return (address, memory.read(address)) def get_inst_str(self, flags, registers, memory): address = memory.read(registers["PC"].get()) self.get_address(flags, registers, memory) return "(${0:02x},X)".format(address) @dataclass class IndirectIndexedAddressingMode(AddressingMode): """ Indirect Indexed addressing mode. Get an address in zero page memory from the next byte. The address in zero page is two bytes long. The first byte is the low-order byte. The second is the high-order byte. It then adds the Y Index to this address. Also called Indirect Y B1 80 LDA ($80),Y """ bytes: ClassVar[int] = 2 def get_address(self, flags, registers, memory): zero_page_address = registers["PC"].get() registers["PC"].inc() adl = zero_page_address # TODO: Test for case we go beyond the page boundary # Wrap-around is assumed adh = zero_page_address + 1 address = memory.get_16bit_value(adl, adh) address += registers["Y"].get() # TODO: Verify wrapping is the correct behavior address = address % 0x10000 return address def get_value(self, flags, registers, memory): address = self.get_address(flags, registers, memory) return (address, memory.read(address)) def get_inst_str(self, flags, registers, memory): address = memory.read(registers["PC"].get()) self.get_address(flags, registers, memory) return "(${0:02x}),Y".format(address) @dataclass class IndirectXAddressingMode(AddressingMode): """ Another name for Indexed Indirect Addressing TODO: Maybe consolidate these """ bytes: ClassVar[int] = 2 def __post_init__(self): self.am = IndexedIndirectAddressingMode() def get_address(self, flags, registers, memory): return self.am.get_address(flags, registers, memory) def get_value(self, flags, registers, memory): return (self, self.am.get_value(flags, registers, memory)) def get_inst_str(self, flags, registers, memory): return self.am.get_inst_str(flags, registers, memory) @dataclass class IndirectYAddressingMode(AddressingMode): """ Another name for Indirect Indexed Addressing TODO: Maybe consolidate these """ bytes: ClassVar[int] = 2 def __post_init__(self): self.am = IndirectIndexedAddressingMode() def get_address(self, flags, registers, memory): return self.am.get_address(flags, registers, memory) def get_value(self, flags, registers, memory): return self.am.get_value(flags, registers, memory) def get_inst_str(self, flags, registers, memory): return self.am.get_inst_str(flags, registers, memory) @dataclass class ZeroPageAddressingMode(AddressingMode): """ Zero Page addressing mode The address in Zero Page is encoded as a constant in the next byte """ bytes: ClassVar[int] = 2 def get_address(self, flags, registers, memory): address = memory.read(registers["PC"].get()) registers["PC"].inc() # TODO: Create exception API assert address <= 0xFF return address def get_value(self, flags, registers, memory): address = self.get_address(flags, registers, memory) return (address, memory.read(address)) @dataclass class ZeroPageXAddressingMode(AddressingMode): """ Zero Page X addressing mode Compute the address by adding the value the PC points to plus the X register value. Wraps if the value is greater than 0x255. """ bytes: ClassVar[int] = 2 def get_address(self, flags, registers, memory): address = memory.read(registers["PC"].get()) registers["PC"].inc() address += registers["X"].get() # wrap on values > 0xFF address = address % 0x100 return address def get_value(self, flags, registers, memory): address = self.get_address(flags, registers, memory) return (address, memory.read(address)) def get_inst_str(self, flags, registers, memory): address = memory.read(registers["PC"].get()) self.get_value(flags, registers, memory) return "${0:02x},X".format(address) @dataclass class ZeroPageYAddressingMode(AddressingMode): """ Zero Page Y addressing mode Compute the address by adding the value the PC points to plus the Y register value. Wraps if the value is greater than 0x255. """ bytes: ClassVar[int] = 2 def get_value(self, flags, registers, memory): address = memory.read(registers["PC"].get()) registers["PC"].inc() address += registers["Y"].get() # wrap on values > 0xFF address = address % 0x100 return (address, memory.read(address)) def get_inst_str(self, flags, registers, memory): address = memory.read(registers["PC"].get()) self.get_value(flags, registers, memory) return "${0:02x},Y".format(address) @dataclass class RelativeAddressingMode(AddressingMode): """ Relative addressing mode The value in the next byte is added to the PC to find the effective address. The effective address is calculated from the PC after it has been incremented reading the offset, not from the JMP opcode position. This uses two's complement, and supports negative offsets. """ bytes: ClassVar[int] = 2 def get_address(self, flags, registers, memory): "Get the effective address" offset = memory.read(registers["PC"].get()) # Calculate two's complement to get negative value offset = EightBitArch.twos_complement_to_signed_int(offset) # TODO: update flags registers["PC"].inc() effective_address = registers["PC"].get() + offset return effective_address % 0x10000 def get_value(self, flags, registers, memory): address = self.get_address(flags, registers, memory) return (address, memory.read(address)) def get_inst_str(self, flags, registers, memory): "Return the address as an effective address" (address, value) = self.get_value(flags, registers, memory) if address is not None: return "${0:04x}".format(address) else: return "" ``` #### File: bitey/cpu/arch.py ```python class IntegerValueError(Exception): """ Represents an exception when the argument to a function is an invalid value. For example, it may be too small or too large. """ class EightBitArch: def high_nibble(byte): """ Get the high nibble of a byte """ return (byte >> 4) & 0x0F def low_nibble(byte): """ Get the low nibble of a byte """ return byte & 0x0F def decimal_value(byte): """ Get the 4-bit Binary Coded Decimal (BCD) value of a byte The decimal value of a byte is found by "concatenating" the high nibble and low nibble, or adding them after multiplying the high nibble by ten. """ return (EightBitArch.high_nibble(byte) * 10) + EightBitArch.low_nibble(byte) def signed_int_to_twos_complement(signed_int_value): """ Convert a signed integer to a single-byte two's-complement value """ # The range of negative values represented in two's complement stored # in a single byte is -128 to 127 inclusive if (signed_int_value < -128) or (signed_int_value > 127): raise IntegerValueError if signed_int_value < 0: twos_complement_value = (0xFF - abs(signed_int_value)) + 1 else: twos_complement_value = signed_int_value return twos_complement_value def twos_complement_to_signed_int(twos_complement_value): """ Convert a single-byte negative value represented as two's-complement to a signed integer value. """ if (twos_complement_value < 0x00) or (twos_complement_value > 0xFF): raise IntegerValueError if twos_complement_value > 0x7F: # Calculate two's complement to get negative value signed_int_value = -((0xFF - twos_complement_value) + 1) else: signed_int_value = twos_complement_value return signed_int_value ``` #### File: cpu/flag/flag_json_decoder.py ```python from dataclasses import dataclass import json from json import JSONDecoder from typing import ClassVar from bitey.cpu.flag.flag import Flag, Flags from bitey.cpu.flag.carry_flag import CarryFlag from bitey.cpu.flag.decimal_flag import DecimalFlag from bitey.cpu.flag.negative_flag import NegativeFlag from bitey.cpu.flag.zero_flag import ZeroFlag @dataclass class FlagJSONDecoder(JSONDecoder): """ Decode a flag definition in JSON format """ flag_map: ClassVar[dict[str, Flag]] = { "C": CarryFlag, "N": NegativeFlag, "Z": ZeroFlag, "D": DecimalFlag, } def decode(self, json_doc): """ Decode a flag definition in JSON format json_doc should be a parsed JSON structure """ if ( ("short_name" in json_doc) and ("name" in json_doc) and ("bit_field_pos" in json_doc) and ("status" in json_doc) ): status = False if json_doc["status"] == 0: status = False elif json_doc["status"] == 1: status = True short_name = json_doc["short_name"] if "options" in json_doc: options = json_doc["options"] else: options = None # Create a specific class if it exists if short_name in FlagJSONDecoder.flag_map: flag_class = FlagJSONDecoder.flag_map[short_name] return flag_class( short_name, json_doc["name"], json_doc["bit_field_pos"], status, options, ) return Flag( short_name, json_doc["name"], json_doc["bit_field_pos"], status, options, ) else: # Return None if the flag JSON object is missing fields or invalid return None class FlagsJSONDecoder(JSONDecoder): """ Decode a list of flag definitions in JSON format """ def decode(self, json_doc): parsed_json = json.loads(json_doc) return self.decode_parsed(parsed_json) def decode_parsed(self, parsed_json): flag_list = [] rjd = FlagJSONDecoder() for flag in parsed_json: f = rjd.decode(flag) # Only append the flag if all fields are present and the JSON # is valid for the flag if f: flag_list.append(f) # TODO: Some things should be initialized to certain values # Make sure setting the flags byte to zero on start is ok return Flags(flag_list, None) ``` #### File: cpu/instruction/an.py ```python from dataclasses import dataclass from bitey.cpu.instruction.instruction import ( Instruction, IncompleteInstruction, ) @dataclass class AND(Instruction): """ AND: AND Memory with Accumulator Perform a bitwise and with the Accumulator and a value in memory. Store the result in the accumulator. Sets the zero flag if the result is zero. Sets the negative flag if the result has a one in bit seven. """ def instruction_execute(self, cpu, memory, value, address=None): """ Execute the instruction, bit-wise anding the accumulator and memory """ if value is not None: cpu.registers["A"].set(cpu.registers["A"].get() & value) self.set_flags(cpu.flags, cpu.registers) else: raise IncompleteInstruction def set_flags(self, flags, registers): """ Set the zero flag if the accumulator is zero as the result of the AND. Resets the zero flag if the accumulator is not zero as the result of the AND. Sets the negative (N) flag if bit 7 is one. """ flags["N"].test_register_result(registers["A"]) flags["Z"].test_register_result(registers["A"]) ``` #### File: cpu/instruction/bcc.py ```python from dataclasses import dataclass from bitey.cpu.instruction.instruction import Instruction @dataclass class BCC(Instruction): """ BCC: Branch on Carry Clear Branch if the Carry Flag is not True """ def instruction_execute(self, cpu, memory, value, address=None): if (address is not None) and (cpu.flags["C"].status is not True): cpu.registers["PC"].set(address) ``` #### File: cpu/instruction/cld.py ```python from dataclasses import dataclass from bitey.cpu.instruction.instruction import Instruction @dataclass class CLD(Instruction): "CLD Clear Decimal Mode" def execute(self, cpu, memory): "Execute the instruction" self.set_flags(cpu.flags, cpu.registers) return def set_flags(self, flags, registers): flags["D"].clear() return ``` #### File: cpu/instruction/dec.py ```python from bitey.cpu.instruction.instruction import ( Instruction, IncompleteInstruction, ) class DE(Instruction): "Generic register decrement instruction" def __init__(self, name, opcode, description, options, register): "Initialize with the register" super().__init__(name, opcode, description, options) self.register = register def instruction_execute(self, cpu, memory, value, address=None): """ Execute the instruction, decrementing the register by one. """ cpu.registers[self.register].dec() self.set_flags(cpu.flags, cpu.registers) def set_flags(self, flags, registers): flags["Z"].test_register_result(registers[self.register]) class DEX(DE): "DEX: Decrement Index X by One" def __init__(self, name, opcode, description, options): super().__init__(name, opcode, description, options, "X") class DEY(DE): "DEY: Decrement Index Y by One" def __init__(self, name, opcode, description, options): super().__init__(name, opcode, description, options, "Y") class DEC(Instruction): "Decrement Memory by One" def instruction_execute(self, cpu, memory, value, address=None): """ Execute the instruction, incrementing the register by one. """ if value is not None: value = value - 1 if value < 0: value = 0xFF memory.write(address, value) self.set_flags(cpu.flags, cpu.registers, value) else: raise IncompleteInstruction def set_flags(self, flags, registers, value): # The zero flag is set when the value is zero, not necessarily on a wrap if value == 0x00: flags["Z"].set() ``` #### File: cpu/instruction/instruction_json_decoder.py ```python import json from json import JSONDecoder import logging from bitey.cpu.instruction.opcode import OpcodeJSONDecoder, OpcodesJSONDecoder from bitey.cpu.instruction.instruction import Instructions, InstructionSet from bitey.cpu.instruction.instruction_factory import ( InstructionFactory, InstructionClassFactory, ) class InstructionJSONDecoder(JSONDecoder): """ Decode an instruction definition in JSON format. The instance generation logic is collected in here, it should be refactored to the other classes. """ def __init__(self): self.logger = logging.getLogger( "bitey.cpu.instruction.instruction_json_decoder.InstructionJSONDecoder" ) def decode(self, json_doc): parsed_json = json.loads(json_doc) return self.decode_parsed(parsed_json) def decode_parsed(self, parsed_json): if ("name" in parsed_json) and ("description" in parsed_json): name = parsed_json["name"] description = parsed_json["description"] if "opcode" in parsed_json: opcode_decoder = OpcodeJSONDecoder() opcode = opcode_decoder.decode_parsed(parsed_json["opcode"]) else: opcode = None if "options" in parsed_json: options = parsed_json["options"] else: options = None return InstructionFactory.build(name, opcode, description, options) else: # Return None if the instruction JSON object is missing fields or invalid return None class InstructionClassJSONDecoder(JSONDecoder): """ Decode an instruction class definition in JSON format. The instance generation logic is collected in here, it should be refactored to the other classes. """ def __init__(self): self.logger = logging.getLogger( "bitey.cpu.instruction.instruction_json_decoder.InstructionClassJSONDecoder" ) def decode(self, json_doc): parsed_json = json.loads(json_doc) return self.decode_parsed(parsed_json) def decode_parsed(self, parsed_json): if ("name" in parsed_json) and ("description" in parsed_json): name = parsed_json["name"] description = parsed_json["description"] if "opcodes" in parsed_json: opcodes_decoder = OpcodesJSONDecoder() opcodes = opcodes_decoder.decode_parsed(parsed_json["opcodes"]) else: opcodes = None if "options" in parsed_json: options = parsed_json["options"] else: options = None icf = InstructionClassFactory.build(name, opcodes, description, options) return icf else: # Return None if the instruction JSON object is missing fields or invalid return None class InstructionsJSONDecoder(JSONDecoder): """ Decode a list of register definitions in JSON format """ # TODO: Define this format formally # TODO: Extend to allow multiple address modes in the instruction definitions def decode(self, json_doc): parsed_json = json.loads(json_doc) return self.decode_parsed(parsed_json) def decode_parsed(self, parsed_json): instruction_list = [] ijd = InstructionJSONDecoder() for instruction in parsed_json: i = ijd.decode_parsed(instruction) # Only append the instruction if all fields are present and the JSON # is valid for the instruction if i: instruction_list.append(i) return Instructions(instruction_list) class InstructionSetJSONDecoder(JSONDecoder): """ Decode a list of instruction class definitions in JSON format """ # TODO: Define this format formally def decode(self, json_doc): parsed_json = json.loads(json_doc) return self.decode_parsed(parsed_json) def decode_parsed(self, parsed_json): instruction_list = [] ijd = InstructionClassJSONDecoder() for instruction in parsed_json: i = ijd.decode_parsed(instruction) # Only append the instruction if all fields are present and the JSON # is valid for the instruction if i: instruction_list.append(i) return InstructionSet(instruction_list) ``` #### File: cpu/instruction/nop.py ```python from dataclasses import dataclass from bitey.cpu.instruction.instruction import Instruction @dataclass class NOP(Instruction): """ BNE: No Operation Doesn't do anything """ def instruction_execute(self, cpu, memory, value, address=None): return ``` #### File: cpu/instruction/php.py ```python from dataclasses import dataclass from bitey.cpu.instruction.instruction import Instruction @dataclass class PHP(Instruction): """ PHP: Push Processor Status on Stack Push the processor status register onto the stack. This updates the stack pointer register to point to the next empty location. """ def instruction_execute(self, cpu, memory, value, address=None): cpu.stack_push(memory, cpu.registers["P"].get()) ``` #### File: cpu/instruction/rti.py ```python from dataclasses import dataclass from bitey.cpu.instruction.instruction import Instruction @dataclass class RTI(Instruction): """ RTI: Return from Interrupt Return from an Interrupt Restore the return address from the stack so we can return from the interrupt. """ def instruction_execute(self, cpu, memory, value=None, address=None): "RTI: Return from Interrupt" # The interrupt stores the flag data on top of the stack cpu.registers["P"].set(cpu.stack_pop(memory)) # The interrupt stores the return address after the flag data cpu.registers["PC"].set(cpu.stack_pop_address(memory)) # Set flags self.set_flags(cpu.flags, cpu.registers) def set_flags(self, flags, registers): "Clear the Interrupt Disable flag" flags["I"].clear() ``` #### File: cpu/instruction/rts.py ```python from dataclasses import dataclass from bitey.cpu.instruction.instruction import Instruction @dataclass class RTS(Instruction): "RTS: Return from Subroutine" def instruction_execute(self, cpu, memory, value, address=None): """ Execute the instruction, getting the return address from the stack and jumping there. """ cpu.registers["PC"].set(cpu.stack_pop_address(memory)) ``` #### File: cpu/instruction/sei.py ```python from dataclasses import dataclass from bitey.cpu.instruction.instruction import Instruction @dataclass class SEI(Instruction): "SEI: Set Interrupt Disable" def execute(self, cpu, memory): "Execute the instruction" self.set_flags(cpu.flags, cpu.registers) return def set_flags(self, flags, registers): flags["I"].set() return ``` #### File: cpu/instruction/ta.py ```python from bitey.cpu.instruction.instruction import Instruction class TAU(Instruction): "Generic transfer accumulator to index instruction" def __init__(self, name, opcode, description, options, register): "Initialize with the register" super().__init__(name, opcode, description, options) self.register = register def instruction_execute(self, cpu, memory, value, address=None): "Execute the instruction, storing the accumulator value into the register" self.result = cpu.registers["A"].get() cpu.registers[self.register].set(self.result) self.set_flags(cpu.flags, cpu.registers) def set_flags(self, flags, registers): """ Sets flags based on the result of the subtract operation """ flags["N"].test_result(self.result) flags["Z"].test_result(self.result) class TAX(TAU): "TAX: Transfer Accumulator to Index X" def __init__(self, name, opcode, description, options=None): super().__init__(name, opcode, description, options, "X") class TAY(TAU): "TAY: Transfer Accumulator to Index Y" def __init__(self, name, opcode, description, options=None): super().__init__(name, opcode, description, options, "Y") class TUA(Instruction): "Generic transfer index to accumulator instruction" def __init__(self, name, opcode, description, options, register): "Initialize with the register" super().__init__(name, opcode, description, options) self.register = register def instruction_execute(self, cpu, memory, value, address=None): "Execute the instruction, storing the register value into the accumulator" self.result = cpu.registers[self.register].get() cpu.registers["A"].set(self.result) self.set_flags(cpu.flags, cpu.registers) def set_flags(self, flags, registers): """ Sets flags based on the result of the subtract operation """ flags["N"].test_result(self.result) flags["Z"].test_result(self.result) class TXA(TUA): "TAX: Transfer Index X to Accumulator" def __init__(self, name, opcode, description, options=None): super().__init__(name, opcode, description, options, "X") class TYA(TUA): "TAY: Transfer Index Y to Accumulator" def __init__(self, name, opcode, description, options=None): super().__init__(name, opcode, description, options, "Y") ``` #### File: bitey/cpu/pin.py ```python from dataclasses import dataclass from enum import Enum class State(Enum): "State of a pin, can either be LOW or HIGH" LOW = 1 HIGH = 2 @dataclass class Pin: """ Physical pins on the microprocessor. Most of the code in this project is higher-level, ignoring things like clock-cycles and physical structure of the address and data bus. The Pin and Pins classes provide some exceptions to this general rule. In particular, the reset pin provides a safe start to the initialization of the processor. """ name: str = "" "Name of the pin" short_name: str = "" "Short name of the pin" state: State = State.LOW """ State of the pin, low or high Default to low, so the processor is in reset mode. Some other pins may need to be broght high to be in a normal state, such as the IRQ pin. """ def set_high(self): self.state = State.HIGH def set_low(self): self.state = State.LOW def get(self): return self.state @dataclass class RST(Pin): """ The reset pin When the reset pin is low, the processor is in an uninitialized state. """ class IRQ(Pin): """ The IRQ pin When the IRQ line is low, an interrupt has been requested. Multiple lines may be connected to this pin. """ @dataclass class Pins: """ The set of pins on the CPU """ pins: list[Pin] def __post_init__(self): "Create a dictionary so we can access pins by short name" self.pin_dict = {} for f in self.pins: self.pin_dict[f.short_name] = f def __getitem__(self, i): return self.pin_dict[i] ``` #### File: cpu/instruction/test_bitey_cpu_instruction_bit.py ```python import pytest import tests.computer.computer import tests.memory.memory # TODO Maybe refactor so these are not needed from bitey.cpu.addressing_mode import AbsoluteAddressingMode, ZeroPageAddressingMode from bitey.cpu.instruction.opcode import Opcode from bitey.cpu.instruction.bit import BIT # module scope means run once per test module @pytest.fixture(scope="module") def setup(): computer = tests.computer.computer.init_computer() yield computer def test_cpu_instruction_bit_zeropage(setup): computer = setup computer.reset() computer.cpu.registers["PC"].set(0x00) computer.cpu.registers["A"].set(0x21) # The zero page location to read the value from computer.memory.write(0x00, 0x01) # The value computer.memory.write(0x01, 0x3C) i1_opcode = Opcode(0x24, ZeroPageAddressingMode()) i1 = BIT("BIT", i1_opcode, "Test Bits in Memory with Accumulator") tests.computer.computer.execute_explicit_instruction( computer, i1_opcode, i1, [], [("Z", False), ("V", False), ("N", False)], [] ) assert i1.result == 0x20 def test_cpu_instruction_bit_zeropage_negative_flag(setup): computer = setup computer.reset() computer.cpu.registers["PC"].set(0x00) computer.cpu.registers["A"].set(0x61) # The zero page location to read the value from computer.memory.write(0x00, 0x01) # The value computer.memory.write(0x01, 0x9D) i1_opcode = Opcode(0x24, ZeroPageAddressingMode()) i1 = BIT("BIT", i1_opcode, "Test Bits in Memory with Accumulator") tests.computer.computer.execute_explicit_instruction( computer, i1_opcode, i1, [], [("Z", False), ("V", False), ("N", True)], [] ) assert i1.result == 0x01 def test_cpu_instruction_bit_zeropage_overflow_flag(setup): computer = setup computer.reset() computer.cpu.registers["PC"].set(0x00) computer.cpu.registers["A"].set(0x9D) # The zero page location to read the value from computer.memory.write(0x00, 0x01) # The value computer.memory.write(0x01, 0x61) i1_opcode = Opcode(0x24, ZeroPageAddressingMode()) i1 = BIT("BIT", i1_opcode, "Test Bits in Memory with Accumulator") tests.computer.computer.execute_explicit_instruction( computer, i1_opcode, i1, [], [("Z", False), ("V", True), ("N", False)], [] ) assert i1.result == 0x01 def test_cpu_instruction_bit_zeropage_overflow_and_negative_flag(setup): computer = setup computer.reset() computer.cpu.registers["PC"].set(0x00) computer.cpu.registers["A"].set(0x9D) # The zero page location to read the value from computer.memory.write(0x00, 0x01) # The value computer.memory.write(0x01, 0xE1) i1_opcode = Opcode(0x24, ZeroPageAddressingMode()) i1 = BIT("BIT", i1_opcode, "Test Bits in Memory with Accumulator") tests.computer.computer.execute_explicit_instruction( computer, i1_opcode, i1, [], [("Z", False), ("V", True), ("N", True)], [] ) assert i1.result == 0x81 def test_cpu_instruction_bit_zeropage_zero_flag(setup): computer = setup computer.reset() computer.cpu.registers["PC"].set(0x00) computer.cpu.registers["A"].set(0x1C) # The zero page location to read the value from computer.memory.write(0x00, 0x01) # The value computer.memory.write(0x01, 0x21) i1_opcode = Opcode(0x24, ZeroPageAddressingMode()) i1 = BIT("BIT", i1_opcode, "Test Bits in Memory with Accumulator") tests.computer.computer.execute_explicit_instruction( computer, i1_opcode, i1, [], [("Z", True), ("V", False), ("N", False)], [] ) assert i1.result == 0x00 def test_cpu_instruction_bit_zeropage_zero_and_negative_flag(setup): computer = setup computer.reset() computer.cpu.registers["PC"].set(0x00) computer.cpu.registers["A"].set(0x61) # The zero page location to read the value from computer.memory.write(0x00, 0x01) # The value computer.memory.write(0x01, 0x9C) i1_opcode = Opcode(0x24, ZeroPageAddressingMode()) i1 = BIT("BIT", i1_opcode, "Test Bits in Memory with Accumulator") tests.computer.computer.execute_explicit_instruction( computer, i1_opcode, i1, [], [("Z", True), ("V", False), ("N", True)], [] ) assert i1.result == 0x00 def test_cpu_instruction_bit_zeropage_zero_and_overflow_flag(setup): computer = setup computer.reset() computer.cpu.registers["PC"].set(0x00) computer.cpu.registers["A"].set(0x9C) # The zero page location to read the value from computer.memory.write(0x00, 0x01) # The value computer.memory.write(0x01, 0x61) i1_opcode = Opcode(0x24, ZeroPageAddressingMode()) i1 = BIT("BIT", i1_opcode, "Test Bits in Memory with Accumulator") tests.computer.computer.execute_explicit_instruction( computer, i1_opcode, i1, [], [("Z", True), ("V", True), ("N", False)], [] ) assert i1.result == 0x00 def test_cpu_instruction_bit_zeropage_zero_and_overflow_and_negative_flag(setup): computer = setup computer.reset() computer.cpu.registers["PC"].set(0x00) computer.cpu.registers["A"].set(0x1C) # The zero page location to read the value from computer.memory.write(0x00, 0x01) # The value computer.memory.write(0x01, 0xE1) i1_opcode = Opcode(0x24, ZeroPageAddressingMode()) i1 = BIT("BIT", i1_opcode, "Test Bits in Memory with Accumulator") tests.computer.computer.execute_explicit_instruction( computer, i1_opcode, i1, [], [("Z", True), ("V", True), ("N", True)], [] ) assert i1.result == 0x00 def test_cpu_instruction_bit_absolute(setup): computer = setup computer.reset() computer.cpu.registers["PC"].set(0x00) computer.cpu.registers["A"].set(0x21) # The memory location to read the value from computer.memory.write(0x00, 0x02) computer.memory.write(0x01, 0x00) # The value computer.memory.write(0x02, 0x3C) i1_opcode = Opcode(0x2C, AbsoluteAddressingMode()) i1 = BIT("BIT", i1_opcode, "Test Bits in Memory with Accumulator") tests.computer.computer.execute_explicit_instruction( computer, i1_opcode, i1, [], [("Z", False), ("V", False), ("N", False)], [] ) assert i1.result == 0x20 def test_cpu_instruction_bit_absolute_negative_flag(setup): computer = setup computer.reset() computer.cpu.registers["PC"].set(0x00) computer.cpu.registers["A"].set(0x61) # The memory location to read the value from computer.memory.write(0x00, 0x02) computer.memory.write(0x01, 0x00) # The value computer.memory.write(0x02, 0x9D) i1_opcode = Opcode(0x2C, AbsoluteAddressingMode()) i1 = BIT("BIT", i1_opcode, "Test Bits in Memory with Accumulator") tests.computer.computer.execute_explicit_instruction( computer, i1_opcode, i1, [], [("Z", False), ("V", False), ("N", True)], [] ) assert i1.result == 0x01 def test_cpu_instruction_bit_absolute_overflow_flag(setup): computer = setup computer.reset() computer.cpu.registers["PC"].set(0x00) computer.cpu.registers["A"].set(0x9D) # The memory location to read the value from computer.memory.write(0x00, 0x02) computer.memory.write(0x01, 0x00) # The value computer.memory.write(0x02, 0x61) i1_opcode = Opcode(0x2C, AbsoluteAddressingMode()) i1 = BIT("BIT", i1_opcode, "Test Bits in Memory with Accumulator") tests.computer.computer.execute_explicit_instruction( computer, i1_opcode, i1, [], [("Z", False), ("V", True), ("N", False)], [] ) assert i1.result == 0x01 def test_cpu_instruction_bit_absolute_overflow_and_negative_flag(setup): computer = setup computer.reset() computer.cpu.registers["PC"].set(0x00) computer.cpu.registers["A"].set(0x9D) # The memory location to read the value from computer.memory.write(0x00, 0x02) computer.memory.write(0x01, 0x00) # The value computer.memory.write(0x02, 0xE1) i1_opcode = Opcode(0x2C, AbsoluteAddressingMode()) i1 = BIT("BIT", i1_opcode, "Test Bits in Memory with Accumulator") tests.computer.computer.execute_explicit_instruction( computer, i1_opcode, i1, [], [("Z", False), ("V", True), ("N", True)], [] ) assert i1.result == 0x81 def test_cpu_instruction_bit_absolute_zero_flag(setup): computer = setup computer.reset() computer.cpu.registers["PC"].set(0x00) computer.cpu.registers["A"].set(0x1C) # The memory location to read the value from computer.memory.write(0x00, 0x02) computer.memory.write(0x01, 0x00) # The value computer.memory.write(0x02, 0x21) i1_opcode = Opcode(0x2C, AbsoluteAddressingMode()) i1 = BIT("BIT", i1_opcode, "Test Bits in Memory with Accumulator") tests.computer.computer.execute_explicit_instruction( computer, i1_opcode, i1, [], [("Z", True), ("V", False), ("N", False)], [] ) assert i1.result == 0x00 def test_cpu_instruction_bit_absolute_zero_and_negative_flag(setup): computer = setup computer.reset() computer.cpu.registers["PC"].set(0x00) computer.cpu.registers["A"].set(0x61) # The memory location to read the value from computer.memory.write(0x00, 0x02) computer.memory.write(0x01, 0x00) # The value computer.memory.write(0x02, 0x9C) i1_opcode = Opcode(0x2C, AbsoluteAddressingMode()) i1 = BIT("BIT", i1_opcode, "Test Bits in Memory with Accumulator") tests.computer.computer.execute_explicit_instruction( computer, i1_opcode, i1, [], [("Z", True), ("V", False), ("N", True)], [] ) assert i1.result == 0x00 def test_cpu_instruction_bit_absolute_zero_and_overflow_flag(setup): computer = setup computer.reset() computer.cpu.registers["PC"].set(0x00) computer.cpu.registers["A"].set(0x9C) # The memory location to read the value from computer.memory.write(0x00, 0x02) computer.memory.write(0x01, 0x00) # The value computer.memory.write(0x02, 0x61) i1_opcode = Opcode(0x2C, AbsoluteAddressingMode()) i1 = BIT("BIT", i1_opcode, "Test Bits in Memory with Accumulator") tests.computer.computer.execute_explicit_instruction( computer, i1_opcode, i1, [], [("Z", True), ("V", True), ("N", False)], [] ) assert i1.result == 0x00 def test_cpu_instruction_bit_absolute_zero_and_overflow_and_negative_flag(setup): computer = setup computer.reset() computer.cpu.registers["PC"].set(0x00) computer.cpu.registers["A"].set(0x1C) # The memory location to read the value from computer.memory.write(0x00, 0x02) computer.memory.write(0x01, 0x00) # The value computer.memory.write(0x02, 0xE1) i1_opcode = Opcode(0x2C, AbsoluteAddressingMode()) i1 = BIT("BIT", i1_opcode, "Test Bits in Memory with Accumulator") tests.computer.computer.execute_explicit_instruction( computer, i1_opcode, i1, [], [("Z", True), ("V", True), ("N", True)], [] ) assert i1.result == 0x00 ``` #### File: cpu/instruction/test_bitey_cpu_instruction_rti.py ```python import pytest from bitey.computer.computer import Computer def build_computer(): computer = None with open("chip/6502.json") as f: chip_data = f.read() computer = Computer.build_from_json(chip_data) return computer return None # module scope means run once per test module @pytest.fixture(scope="module") def setup(): computer = build_computer() yield computer def test_build_cpu_instruction_rti(setup): "Test the RTI instruction" computer = setup # BRK instructions computer.memory.write(0x00, 0x00) computer.memory.write(0x01, 0xEA) # The interrupt vector pointer computer.memory.write(0xFFFE, 0x10) computer.memory.write(0xFFFF, 0x20) # Write a RTI instruction computer.memory.write(0x2010, 0x40) computer.cpu.registers["PC"].set(0x00) assert computer.cpu.registers["PC"].get() == 0x00 computer.cpu.get_next_instruction(computer.memory) assert computer.cpu.registers["PC"].get() == 0x01 computer.cpu.execute_instruction(computer.memory) # The PC should now be 0x05 assert computer.cpu.registers["PC"].get() == 0x2010 # Stack should be down three (two bytes for address, one for # process status register) assert computer.cpu.registers["S"] == 0x01FF - 0x003 assert computer.memory.read(0x1FF) == 0x00 assert computer.memory.read(0x1FE) == 0x01 # Interrupt Disable and Break should be set assert computer.memory.read(0x1FD) == 0b00010100 computer.cpu.registers["P"].set(0xFF) assert computer.cpu.registers["P"].get() == 0xFF # Execute the return from interrupt instruction computer.cpu.step(computer.memory) # The PC should now be 0x05 assert computer.cpu.registers["PC"].get() == 0x0001 # Stack should be down three (two bytes for address, one for # process status register) assert computer.cpu.registers["S"].get() == 0x01FF assert computer.cpu.registers["P"].get() == 0b00010000 ``` #### File: cpu/instruction/test_bitey_cpu_instruction_sbc.py ```python import pytest import re from bitey.computer.computer import Computer import tests.computer.computer import tests.memory.memory # TODO Maybe refactor so these are not needed from bitey.cpu.addressing_mode import ImmediateAddressingMode from bitey.cpu.instruction.opcode import Opcode from bitey.cpu.instruction.sbc import SBC def build_computer(chip_line=None): computer = None search = re.compile(".*[^a-zA-Z0-9_-].*") if (chip_line is not None) and (search.search(chip_line) is not None): raise Exception("Invalid chip_line, contains non-alphanumeric characters") fn = "chip/6502.json" if chip_line is not None: fn = "chip/{}-6502.json".format(chip_line) with open(fn) as f: chip_data = f.read() computer = Computer.build_from_json(chip_data) return computer return None # module scope means run once per test module @pytest.fixture(scope="module") def setup(): computer = tests.computer.computer.init_computer() yield computer def test_cpu_instruction_sbc_binary_subtract(setup): computer = setup computer.reset() computer.cpu.registers["PC"].set(0x00) computer.cpu.registers["A"].set(0x03) # inverted carry flag computer.cpu.flags["C"].set() # The value computer.memory.write(0x00, 0x02) i1_opcode = Opcode(0xE9, ImmediateAddressingMode()) i1 = SBC("SBC", i1_opcode, "Subtract Memory from Accumulator with Borrow") tests.computer.computer.execute_explicit_instruction( computer, i1_opcode, i1, [("A", 0x01)], [("C", True), ("Z", False), ("V", False), ("N", False)], [], ) def test_cpu_instruction_sbc_binary_subtract_negative_result(setup): computer = setup computer.reset() computer.cpu.registers["PC"].set(0x00) computer.cpu.registers["A"].set(0x01) computer.cpu.flags["C"].set() # The value computer.memory.write(0x00, 0x02) i1_opcode = Opcode(0xE9, ImmediateAddressingMode()) i1 = SBC("SBC", i1_opcode, "Subtract Memory from Accumulator with Borrow") tests.computer.computer.execute_explicit_instruction( computer, i1_opcode, i1, [("A", 0xFF)], [("C", False), ("Z", False), ("V", False), ("N", True)], [], ) assert i1.result == 255 def test_cpu_instruction_sbc_binary_subtract_with_borrow(setup): computer = setup computer.reset() computer.cpu.registers["PC"].set(0x00) computer.cpu.registers["A"].set(0x04) computer.cpu.flags["D"].clear() computer.cpu.flags["C"].clear() # The value computer.memory.write(0x00, 0x02) i1_opcode = Opcode(0xE9, ImmediateAddressingMode()) i1 = SBC("SBC", i1_opcode, "Subtract Memory from Accumulator with Borrow") tests.computer.computer.execute_explicit_instruction( computer, i1_opcode, i1, [("A", 0x01)], [("C", True), ("Z", False), ("V", False), ("N", False)], [], ) assert i1.result == 0x101 def test_cpu_instruction_sbc_decimal_subtract(setup): computer = setup computer.reset() computer.cpu.registers["PC"].set(0x00) # decimal 44 computer.cpu.registers["A"].set(0b01000100) computer.cpu.flags["D"].set() computer.cpu.flags["C"].set() # The value, decimal 29 computer.memory.write(0x00, 0b00101001) i1_opcode = Opcode(0xE9, ImmediateAddressingMode()) i1 = SBC("SBC", i1_opcode, "Subtract Memory from Accumulator with Borrow") tests.computer.computer.execute_explicit_instruction( computer, i1_opcode, i1, [("A", 0b00010101)], [("C", True), ("Z", False), ("V", False), ("N", False)], [], ) def test_cpu_instruction_sbc_decimal_subtract_with_previous_carry(setup): computer = setup computer.reset() computer.cpu.registers["PC"].set(0x00) # decimal 29 computer.cpu.registers["A"].set(0b00101001) computer.cpu.flags["D"].set() computer.cpu.flags["C"].set() # The value, decimal 44 computer.memory.write(0x00, 0b01000100) i1_opcode = Opcode(0xE9, ImmediateAddressingMode()) i1 = SBC("SBC", i1_opcode, "Subtract Memory from Accumulator with Borrow") tests.computer.computer.execute_explicit_instruction( computer, i1_opcode, i1, [("A", 0x85)], # 0b00010101)], [("C", False), ("Z", False), ("V", False), ("N", True)], # [("C", True), ("Z", False), ("V", False), ("N", False)], [], ) ``` #### File: cpu/instruction/test_bitey_cpu_instruction_ta.py ```python import pytest import tests.computer.computer import tests.memory.memory # TODO Maybe refactor so these are not needed from bitey.cpu.addressing_mode import ImpliedAddressingMode from bitey.cpu.instruction.instruction import IncompleteInstruction from bitey.cpu.instruction.opcode import Opcode from bitey.cpu.instruction.ta import TAX from bitey.cpu.instruction.ta import TAY from bitey.cpu.instruction.ta import TXA from bitey.cpu.instruction.ta import TYA # module scope means run once per test module @pytest.fixture(scope="module") def setup(): computer = tests.computer.computer.init_computer() yield computer def execute_instruction( computer, opcode, instruction, expected_registers, expected_z_flag, expected_n_flag ): "Execute the instruction based on an opcode" flags = computer.cpu.flags try: instruction.execute(computer.cpu, computer.memory) for register, value in expected_registers: assert computer.cpu.registers[register].get() == value assert flags["Z"].status is expected_z_flag assert flags["N"].status is expected_n_flag except IncompleteInstruction: assert False def test_cpu_instruction_tax(setup): computer = setup computer.reset() computer.cpu.registers["PC"].set(0x00) computer.cpu.registers["A"].set(0x7A) i1_opcode = Opcode(0xAA, ImpliedAddressingMode()) i1 = TAX("TAX", i1_opcode, "Transfer Accumulator to Index X") execute_instruction(computer, i1_opcode, i1, [("X", 0x7A)], False, False) def test_cpu_instruction_tax_negative_flag(setup): computer = setup computer.reset() computer.cpu.registers["PC"].set(0x00) computer.cpu.registers["A"].set(0xBC) i1_opcode = Opcode(0xAA, ImpliedAddressingMode()) i1 = TAX("TAX", i1_opcode, "Transfer Accumulator to Index X") execute_instruction(computer, i1_opcode, i1, [("X", 0xBC)], False, True) def test_cpu_instruction_tax_zero_flag(setup): computer = setup computer.reset() computer.cpu.registers["PC"].set(0x00) computer.cpu.registers["A"].set(0x00) computer.cpu.registers["X"].set(0xBC) i1_opcode = Opcode(0xAA, ImpliedAddressingMode()) i1 = TAX("TAX", i1_opcode, "Transfer Accumulator to Index X") execute_instruction(computer, i1_opcode, i1, [("X", 0x00)], True, False) def test_cpu_instruction_tay(setup): computer = setup computer.reset() computer.cpu.registers["PC"].set(0x00) computer.cpu.registers["A"].set(0x7A) i1_opcode = Opcode(0xA8, ImpliedAddressingMode()) i1 = TAY("TAY", i1_opcode, "Transfer Accumulator to Index Y") execute_instruction(computer, i1_opcode, i1, [("Y", 0x7A)], False, False) def test_cpu_instruction_tay_negative_flag(setup): computer = setup computer.reset() computer.cpu.registers["PC"].set(0x00) computer.cpu.registers["A"].set(0xFA) i1_opcode = Opcode(0xA8, ImpliedAddressingMode()) i1 = TAY("TAY", i1_opcode, "Transfer Accumulator to Index Y") execute_instruction(computer, i1_opcode, i1, [("Y", 0xFA)], False, True) def test_cpu_instruction_tay_zero_flag(setup): computer = setup computer.reset() computer.cpu.registers["PC"].set(0x00) computer.cpu.registers["A"].set(0x00) computer.cpu.registers["Y"].set(0xFA) i1_opcode = Opcode(0xA8, ImpliedAddressingMode()) i1 = TAY("TAY", i1_opcode, "Transfer Accumulator to Index Y") execute_instruction(computer, i1_opcode, i1, [("Y", 0x00)], True, False) def test_cpu_instruction_txa(setup): computer = setup computer.reset() computer.cpu.registers["PC"].set(0x00) computer.cpu.registers["X"].set(0x0B) i1_opcode = Opcode(0x8A, ImpliedAddressingMode()) i1 = TXA("TXA", i1_opcode, "Transfer Index X to Accumulator") execute_instruction(computer, i1_opcode, i1, [("A", 0x0B)], False, False) def test_cpu_instruction_txa_negative_flag(setup): computer = setup computer.reset() computer.cpu.registers["PC"].set(0x00) computer.cpu.registers["X"].set(0x8B) i1_opcode = Opcode(0x8A, ImpliedAddressingMode()) i1 = TXA("TXA", i1_opcode, "Transfer Index X to Accumulator") execute_instruction(computer, i1_opcode, i1, [("A", 0x8B)], False, True) def test_cpu_instruction_txa_zero_flag(setup): computer = setup computer.reset() computer.cpu.registers["PC"].set(0x00) computer.cpu.registers["X"].set(0x00) computer.cpu.registers["A"].set(0x8B) i1_opcode = Opcode(0x8A, ImpliedAddressingMode()) i1 = TXA("TXA", i1_opcode, "Transfer Index X to Accumulator") execute_instruction(computer, i1_opcode, i1, [("A", 0x00)], True, False) def test_cpu_instruction_tya(setup): computer = setup computer.reset() computer.cpu.registers["PC"].set(0x00) computer.cpu.registers["Y"].set(0x0B) i1_opcode = Opcode(0x98, ImpliedAddressingMode()) i1 = TYA("TYA", i1_opcode, "Transfer Index Y to Accumulator") execute_instruction(computer, i1_opcode, i1, [("A", 0x0B)], False, False) def test_cpu_instruction_tya_negative_flag(setup): computer = setup computer.reset() computer.cpu.registers["PC"].set(0x00) computer.cpu.registers["Y"].set(0xBB) i1_opcode = Opcode(0x98, ImpliedAddressingMode()) i1 = TYA("TYA", i1_opcode, "Transfer Index Y to Accumulator") execute_instruction(computer, i1_opcode, i1, [("A", 0xBB)], False, True) def test_cpu_instruction_tya_zero_flag(setup): computer = setup computer.reset() computer.cpu.registers["PC"].set(0x00) computer.cpu.registers["Y"].set(0x00) computer.cpu.registers["A"].set(0xBB) i1_opcode = Opcode(0x98, ImpliedAddressingMode()) i1 = TYA("TYA", i1_opcode, "Transfer Index Y to Accumulator") execute_instruction(computer, i1_opcode, i1, [("A", 0x00)], True, False) ``` #### File: cpu/instruction/test_bitey_cpu_instruction_tsx.py ```python import pytest # TODO Maybe refactor so these are not needed from bitey.cpu.addressing_mode import ImpliedAddressingMode import tests.computer.computer import tests.memory.memory from bitey.cpu.instruction.instruction import IncompleteInstruction from bitey.cpu.instruction.opcode import Opcode from bitey.cpu.instruction.tsx import TSX # module scope means run once per test module @pytest.fixture(scope="module") def setup(): computer = tests.computer.computer.init_computer() yield computer def execute_instruction( computer, opcode, expected_x_register, expected_z_flag, expected_n_flag ): "Execute the instruction based on an opcode" flags = computer.cpu.flags i1 = TSX("TSX", opcode, "Transfer Stack Pointer to Index X") try: i1.execute(computer.cpu, computer.memory) assert computer.cpu.registers["X"].get() == expected_x_register assert flags["Z"].status is expected_z_flag assert flags["N"].status is expected_n_flag except IncompleteInstruction: assert False def test_cpu_instruction_tsx(setup): computer = setup computer.reset() computer.cpu.registers["S"].set(0x34) i1_opcode = Opcode(0xBA, ImpliedAddressingMode()) execute_instruction(computer, i1_opcode, 0x34, False, False) def test_cpu_instruction_tsx_n_flag(setup): computer = setup computer.reset() computer.cpu.registers["S"].set(0xB4) i1_opcode = Opcode(0xBA, ImpliedAddressingMode()) execute_instruction(computer, i1_opcode, 0xB4, False, True) def test_cpu_instruction_tsx_z_flag(setup): computer = setup computer.reset() computer.cpu.registers["S"].set(0x00) i1_opcode = Opcode(0xBA, ImpliedAddressingMode()) execute_instruction(computer, i1_opcode, 0x00, True, False) def test_cpu_instruction_tsx_memory(setup): computer = setup computer.reset() # The TSX instruction computer.memory.write(0x00, 0xBA) computer.cpu.registers["PC"].set(0x00) computer.cpu.registers["S"].set(0x34) computer.cpu.step(computer.memory) # Check registers are correct assert computer.cpu.registers["X"].get() == 0x34 # Check flags are correct assert computer.cpu.flags["N"].status is False assert computer.cpu.flags["Z"].status is False ``` #### File: tests/cpu/test_bitey_cpu_arch.py ```python from bitey.cpu.arch import EightBitArch, IntegerValueError def test_cpu_cpu_signed_int_to_twos_complement(): "Test conversion from signed int to single-byte twos complement works" assert EightBitArch.signed_int_to_twos_complement(0) == 0x00 assert EightBitArch.signed_int_to_twos_complement(1) == 0x01 assert EightBitArch.signed_int_to_twos_complement(2) == 0x02 assert EightBitArch.signed_int_to_twos_complement(127) == 0x7F try: EightBitArch.signed_int_to_twos_complement(128) assert False except IntegerValueError: assert True assert EightBitArch.signed_int_to_twos_complement(-1) == 0xFF assert EightBitArch.signed_int_to_twos_complement(-2) == 0xFE assert EightBitArch.signed_int_to_twos_complement(-128) == 0x80 try: EightBitArch.signed_int_to_twos_complement(-129) assert False except IntegerValueError: assert True def test_cpu_cpu_twos_complement_to_signed_int(): "Test conversion from single-byte twos complmented to signed int works" assert EightBitArch.twos_complement_to_signed_int(0x00) == 0 assert EightBitArch.twos_complement_to_signed_int(0x01) == 1 assert EightBitArch.twos_complement_to_signed_int(0x02) == 2 assert EightBitArch.twos_complement_to_signed_int(0x7F) == 127 try: EightBitArch.twos_complement_to_signed_int(-1) except IntegerValueError: assert True assert EightBitArch.twos_complement_to_signed_int(0xFF) == -1 assert EightBitArch.twos_complement_to_signed_int(0xFE) == -2 assert EightBitArch.twos_complement_to_signed_int(0x80) == -128 try: EightBitArch.twos_complement_to_signed_int(0x100) except IntegerValueError: assert True ``` #### File: tests/memory/memory.py ```python def init_memory(memory, init_list): """ Setup memory for tests The first argument is the Memory The second argument is a list of 2-tuples Each 2-tuple contains an address what value should be stored there """ for item in init_list: memory.write(item[0], item[1]) ``` #### File: bitey/tests/test_bitey_cpu_instruction_opcode.py ```python from bitey.cpu.addressing_mode import ImpliedAddressingMode from bitey.cpu.instruction.opcode import ( Opcode, OpcodeJSONDecoder, OpcodesJSONDecoder, ) def test_cpu_instruction_opcode_init(): opcode = Opcode(0, ImpliedAddressingMode()) assert opcode.opcode == 0 assert opcode.addressing_mode == ImpliedAddressingMode() def test_cpu_instruction_opcode_json_decoder(): json_string = '{ "opcode": 154, "addressing_mode": "implied" }' opcode_decoder = OpcodeJSONDecoder() opcode = opcode_decoder.decode(json_string) assert opcode.opcode == 154 assert opcode.addressing_mode == ImpliedAddressingMode() def test_cpu_instruction_opcodes_json_decoder(): json_string = '[ { "opcode": 154, "addressing_mode": "implied" } ]' opcodes_decoder = OpcodesJSONDecoder() opcodes = opcodes_decoder.decode(json_string) assert opcodes is not None assert len(opcodes.opcodes) == 1 assert 154 in opcodes assert opcodes[154].opcode == 154 assert opcodes[154].addressing_mode == ImpliedAddressingMode() ``` #### File: bitey/tests/test_bitey_cpu_instruction.py ```python import pytest from bitey.cpu.addressing_mode import ( AbsoluteAddressingMode, AbsoluteXAddressingMode, AbsoluteYAddressingMode, AccumulatorAddressingMode, ImmediateAddressingMode, ImpliedAddressingMode, IndexedIndirectAddressingMode, IndirectIndexedAddressingMode, RelativeAddressingMode, ZeroPageAddressingMode, ZeroPageXAddressingMode, ZeroPageYAddressingMode, ) from bitey.computer.computer import Computer from bitey.cpu.cpu import CPU from bitey.cpu.instruction.instruction import ( Instruction, InstructionClass, Instructions, InstructionSet, ) from bitey.cpu.instruction.opcode import Opcode, Opcodes from bitey.cpu.instruction.cli import CLI from bitey.cpu.instruction.ld import LDA from bitey.cpu.instruction.sei import SEI def test_cpu_instruction_init(): opcode = Opcode(173, AbsoluteAddressingMode()) i = Instruction("LDA", opcode, "Load Accumulator with Memory") assert i.name == "LDA" assert i.opcode == opcode assert i.description == "Load Accumulator with Memory" def test_cpu_instruction_init_no_type_checking(): "We're not doing strict type checking yet, so this should pass" opcode = Opcode(173, AbsoluteAddressingMode()) i = Instruction("LDA", opcode, "Load Accumulator with Memory") assert i.name == "LDA" assert i.opcode == opcode assert i.description == "Load Accumulator with Memory" def test_cpu_instructions_init(): i1_opcode = Opcode(173, AbsoluteAddressingMode()) i1 = Instruction("LDA", i1_opcode, "Load Accumulator with Memory") i2_opcode = Opcode(141, AbsoluteAddressingMode()) i2 = Instruction("STA", i2_opcode, "Store Accumulator in Memory") instructions = Instructions([i1, i2]) assert len(instructions.instructions) == 2 lda = instructions.get_by_opcode(173) assert lda == i1 def test_cpu_instruction_class_init(): i1_opcode_1 = Opcode(173, AbsoluteAddressingMode()) i1_opcode_2 = Opcode(165, ZeroPageAddressingMode()) i1 = Instruction("LDA", i1_opcode_1, "Load Accumulator with Memory") opcodes = Opcodes([i1_opcode_1, i1_opcode_2]) instruction_class = InstructionClass( "LDA", i1, opcodes, "Load Accumulator with Memory" ) assert instruction_class.name == "LDA" assert len(instruction_class.opcodes) == 2 assert instruction_class.description == "Load Accumulator with Memory" def test_cpu_instruction_set_init(): i1_opcode_1 = Opcode(173, AbsoluteAddressingMode()) i1_opcode_2 = Opcode(165, ZeroPageAddressingMode()) i1 = Instruction("LDA", i1_opcode_1, "Load Accumulator with Memory") opcodes = Opcodes([i1_opcode_1, i1_opcode_2]) instruction_class = InstructionClass( "LDA", i1, opcodes, "Load Accumulator with Memory" ) instruction_set = InstructionSet([instruction_class]) assert instruction_set.instructions[0].name == "LDA" assert len(instruction_set.instructions[0].opcodes) == 2 assert instruction_set.instructions[0].description == "Load Accumulator with Memory" def test_cpu_instruction_short_str(): opcode = Opcode(0x58, ImpliedAddressingMode()) cli = CLI("CLI", opcode, "Clear Interrupt Disable") assert cli.short_str() == "CLI" def test_cpu_instruction_assembly_str(setup): computer = setup computer.reset() # Set the PC computer.cpu.registers["PC"].set(0x00) # Set the X register computer.cpu.registers["X"].set(0x4A) # Set the Y register computer.cpu.registers["Y"].set(0xEC) # Implied mode CLI instruction computer.memory.write(0x00, 0x58) opcode = Opcode(0x58, ImpliedAddressingMode()) cli = CLI("CLI", opcode, "Clear Interrupt Disable") assert cli.assembly_str(computer) == "CLI" # Immediate mode LDA computer.memory.write(0x01, 0xA9) opcode = Opcode(0xA9, ImmediateAddressingMode()) lda = LDA("LDA", opcode, "Load Accumulator with Memory") computer.cpu.registers["PC"].inc() assert lda.assembly_str(computer) == "LDA #$a9" # ZeroPage mode LDA computer.memory.write(0x02, 0x99) opcode = Opcode(0xA5, ZeroPageAddressingMode()) lda = LDA("LDA", opcode, "Load Accumulator with Memory") computer.cpu.registers["PC"].set(0x02) assert lda.assembly_str(computer) == "LDA $99" # Absolute addressing mode LDA computer.memory.write(0x03, 0x5C) computer.memory.write(0x04, 0xB4) opcode = Opcode(0xAD, AbsoluteAddressingMode()) lda = LDA("LDA", opcode, "Load Accumulator with Memory") computer.cpu.registers["PC"].set(0x03) assert lda.assembly_str(computer) == "LDA $b45c" # Accumulator addressing mode opcode = Opcode(0x0A, AccumulatorAddressingMode()) asl = Instruction("ASL", opcode, "Shift Left One Bit (Memory or Accumulator") assert asl.assembly_str(computer) == "ASL" # AbsoluteX addressing mode computer.memory.write(0x05, 0x0F) computer.memory.write(0x06, 0xF7) opcode = Opcode(0xBD, AbsoluteXAddressingMode()) lda = LDA("LDA", opcode, "Load Accumulator with Memory") computer.cpu.registers["PC"].set(0x05) assert lda.assembly_str(computer) == "LDA $f70f,X" # AbsoluteY addressing mode computer.memory.write(0x07, 0x13) computer.memory.write(0x08, 0x16) opcode = Opcode(0xB9, AbsoluteYAddressingMode()) lda = LDA("LDA", opcode, "Load Accumulator with Memory") assert lda.assembly_str(computer) == "LDA $1613,Y" # IndexedIndirect addressing mode computer.memory.write(0x09, 0x30) opcode = Opcode(0xA1, IndexedIndirectAddressingMode()) lda = LDA("LDA", opcode, "Load Accumulator with Memory") assert lda.assembly_str(computer) == "LDA ($30,X)" # IndirectIndexed addressing mode computer.memory.write(0x0A, 0x4C) opcode = Opcode(0xB1, IndirectIndexedAddressingMode()) lda = LDA("LDA", opcode, "Load Accumulator with Memory") assert lda.assembly_str(computer) == "LDA ($4c),Y" # ZeroPageX addressing mode computer.memory.write(0x0B, 0xAC) opcode = Opcode(0xB5, ZeroPageXAddressingMode()) lda = LDA("LDA", opcode, "Load Accumulator with Memory") assert lda.assembly_str(computer) == "LDA $ac,X" # ZeroPageY addressing mode computer.memory.write(0x0C, 0xEC) opcode = Opcode(0xB1, ZeroPageYAddressingMode()) lda = Instruction("LDX", opcode, "Load Index X with Memory") assert lda.assembly_str(computer) == "LDX $ec,Y" # Relative addressing mode computer.memory.write(0x0D, 0xA3) opcode = Opcode(0xB0, RelativeAddressingMode()) lda = Instruction("BCS", opcode, "Branch on Carry Set") assert lda.assembly_str(computer) == "BCS $ffb1" def read_flags(): with open("chip/6502.json") as f: chip_data = f.read() cpu = CPU.build_from_json(chip_data) cpu.flags.data = 0 return cpu.flags return None def build_computer(): computer = None with open("chip/6502.json") as f: chip_data = f.read() computer = Computer.build_from_json(chip_data) return computer return None # module scope means run once per test module @pytest.fixture(scope="module") def setup(): computer = build_computer() yield computer def test_cpu_instruction_cli(setup): computer = setup computer.reset() flags = computer.cpu.flags assert flags["I"].status == 0 assert flags["I"].flags == flags assert flags.data is not None flags["I"].set() assert flags["I"].status is True i1_opcode = Opcode(88, ImpliedAddressingMode()) i1 = CLI("CLI", i1_opcode, "Clear Interrupt Disable") i1.execute(computer.cpu, computer.memory) assert flags["I"].status is False def test_cpu_instruction_sei(setup): computer = setup computer.reset() flags = computer.cpu.flags assert flags["I"].status is False i1_opcode = Opcode(120, ImpliedAddressingMode()) i1 = SEI("SEI", i1_opcode, "Set Interrupt Disable") i1.execute(computer.cpu, computer.memory) assert flags["I"].status is True ```
{ "source": "jgerrish/tapestry", "score": 4 }
#### File: tapestry/tapestry/screen.py ```python import curses import re class NewlineError(Exception): """ Raise an exception if a newline is in a string This is due to an old bug: A bug in ncurses, the backend for this Python module, can cause SegFaults when resizing windows. This is fixed in ncurses-6.1-20190511. If you are stuck with an earlier ncurses, you can avoid triggering this if you do not call addstr() with a str that has embedded newlines. Instead, call addstr() separately for each line. A lot of old systems won't have updated curses libraries """ pass class Screen: """ Screen acts as a wrapper and RAII object Pass your main TUI event loop into the initializer When your event loop exits, the Screen will be cleaned up """ def __init__(self, tui_event_loop): """ Initialize the Screen object Pass in your TUI event loop When the event loop exits, the screen will be cleaned up """ self.nl_search = re.compile("\n") curses.wrapper(self.run, tui_event_loop) def run(self, stdscr, tui_event_loop): "Run the event loop with the Screen object as the main parameter" self.stdscr = stdscr return tui_event_loop(self) def refresh(self): "Refresh the window, drawing any objects to screen" return self.stdscr.refresh() def num_cols(self): "Number of columns in the screen" return curses.COLS def num_lines(self): "Number of lines in the screen" return curses.LINES def addstr(self, *args): """ Add a string to the screen This method takes one or three arguments: addstr(str): Adds a string to the current cursor location addstr(x, y, str): Adds a string to the location (x, y) """ if len(args) == 1: return self.stdscr.addstr(args[0]) elif len(args) == 3: return self.stdscr.addstr(args[1], args[0], args[2]) else: raise Exception def instr(self, *args): """ Get a string at position (x_location, y_location) This expects zero, one, two or three arguments: instr(): get the string at the current cursor location instr(n): get a string of length n at the current cursor location instr(x, y): get a string at location (x, y) instr(x, y, n): get a string of length n at location (x, y) """ if len(args) == 0: return self.stdscr.instr() elif len(args) == 1: return self.stdscr.instr(args[0]) elif len(args) == 2: return self.stdscr.instr(args[1], args[0]) elif len(args) == 3: return self.stdscr.instr(args[1], args[0], args[2]) else: raise Exception ``` #### File: tapestry/tests/test_screen.py ```python from contextlib import contextmanager import curses import os import sys import tempfile from test.support import (verbose, SaveSignals) from tapestry.screen import Screen class TestCurses: """ A class that tests the curses library This sets the standard output stream to go to a temporary file, so that test output isn't corrupted. Based on test_curses.py in CPython """ @classmethod def setUpClass(cls): term = os.environ.get('TERM') if verbose: print(f'TERM={term}', file=sys.stderr, flush=True) # testing setupterm() inside initscr/endwin # causes terminal breakage stdout_fd = sys.__stdout__.fileno() curses.setupterm(fd=stdout_fd) def setUp(self): term = os.environ.get('TERM') if verbose: print(f'TERM={term}', file=sys.stderr, flush=True) if (term is None) or (term == "None"): return # TODO: re-introduce more condtional setup self.stack = [] self.isatty = True self.output = sys.__stdout__ stdout_fd = sys.__stdout__.fileno() stdin_fd = sys.__stdin__.fileno() self.stdout_fd = stdout_fd self.stdin_fd = stdin_fd # initstr() unconditionally uses C stdout. # If it is redirected to file or pipe, try to attach it # to terminal. # First, save a copy of the file descriptor of stdout, so it # can be restored after finishing the test. stdout_dup_fd = os.dup(stdout_fd) self.stdout_dup_fd = stdout_dup_fd self.addCustomCleanup(os.close, stdout_dup_fd) self.addCustomCleanup(os.dup2, stdout_dup_fd, stdout_fd) # duplicate stdin stdin_dup_fd = os.dup(stdin_fd) self.stdin_dup_fd = stdin_dup_fd self.addCustomCleanup(os.close, stdin_dup_fd) self.addCustomCleanup(os.dup2, stdin_dup_fd, stdin_fd) # if not sys.__stdout__.isatty(): tmp = tempfile.TemporaryFile(mode='wb', buffering=0) self.tmp = tmp self.isatty = False self.addCustomCleanup(tmp.close) self.output = None # swap out stdout for the temp file os.dup2(tmp.fileno(), stdout_fd) self.save_signals = SaveSignals() self.save_signals.save() self.addCustomCleanup(self.save_signals.restore) if verbose and self.output is not None: # just to make the test output a little more readable sys.stderr.flush() sys.stdout.flush() print(file=self.output, flush=True) self.stdscr = curses.initscr() try: curses.savetty() self.addCustomCleanup(curses.endwin) self.addCustomCleanup(curses.resetty) except Exception as e: sys.stderr.write("Caught exception: {}\n".format(e)) self.stdscr.erase() def addCustomCleanup(self, func, *args): try: self.stack.append((func, *args)) except Exception as e: sys.stderr.write("Couldn't add cleanup function: {}\n".format(e)) def cleanUp(self): try: for i in range(len(self.stack) - 1, -1, -1): (func, *args) = self.stack[i] func(*args) except Exception as e: sys.stderr.write("Caught exception in cleanUp: {}\n".format(e)) # This is a context manager for running curses tests # It wraps the test in a try except finally block that automatically cleans # up and restores stdin / stdout @contextmanager def curses_test(self, mocker): if not sys.__stdout__.isatty(): mocker.patch('curses.cbreak') mocker.patch('curses.nocbreak') mocker.patch('curses.endwin') term = os.environ.get('TERM') # This is for headless environments like GitHub Actions use, we'll have # to create some other kind of fake "framebuffer" # curses probably provides a test for this, we'll use this for now if (term == "unknown") or (term == "dumb") or (term == "None") \ or term is None: mocker.patch('curses.setupterm') # This may not be the proper pattern for context managers, # but it works # Pressure is constraining me from working on this yield False else: self.setUp() try: yield True except Exception as e: sys.stderr.write( "Caught exception in curses_test: {}\n".format(e)) self.cleanUp() raise e finally: self.cleanUp() def test_create_windows(self, mocker): "Test creating base curses windows" with self.curses_test(mocker) as valid_term: if valid_term: win = curses.newwin(5, 10) assert win.getbegyx() == (0, 0) assert win.getparyx() == (-1, -1) assert win.getmaxyx() == (5, 10) def test_screen_addstr(self, mocker): "Test adding a string to the screen" def event_loop(screen): screen.addstr(0, 0, "test") assert screen.instr(0, 0, 4) == b"test" with self.curses_test(mocker) as valid_term: if valid_term: Screen(event_loop) ```
{ "source": "jgerschler/ESL-Games", "score": 3 }
#### File: ESL-Games/Camera Pistol/professions.py ```python from pygame.locals import * import imutils import cv2 import pygame import random import sys class PistolGame(object): FONT_SIZE = 32# font size for words SCORE_SIZE = 32# font size for score GAME_TIME = 60# number of seconds to complete the game BLACK = (0,0,0) WHITE = (255,255,255) RED = (255,0,0) BLUE = (0,162,232) def __init__(self): pygame.init() pygame.mixer.init() self.sound_shot = pygame.mixer.Sound('audio\\shot.ogg') self.sound_wrong_shot = pygame.mixer.Sound('audio\\scream.ogg') self.sound_miss = pygame.mixer.Sound('audio\\ricochet.ogg') self.image_shot = pygame.image.load('images\\bang.png') ## self.object_lower = (89, 230, 230)# HSV color range for object to be tracked ## self.object_upper = (108, 255, 255) self.object_lower = (94, 126, 129)# HSV color range for object to be tracked self.object_upper = (131, 255, 255) self.translations = {'electrician':'electricista','gardener':'jardinero','mechanic':'mecanico','bus driver':'chofer de autobus', 'hairdresser':'estilista','construction worker':'obrero','mason':'albañil','pump attendant':'despachador', 'garbage man':'recogedor de basura','mailman':'cartero','architect':'arquitecto','cook':'cocinero', 'photographer':'fotografo','butcher':'carnicero','waiter':'mesero','waitress':'mesera','dentist':'dentista', 'baker':'panadero','cleaning lady':'limpiadora','salesman':'vendedor','actress':'actriz','artist':'artista', 'doctor':'doctor','engineer':'ingeniero','fireman':'bombero','housewife':'ama de casa','nurse':'enfermera', 'pilot':'piloto','policeman':'policia','cashier':'cajera','painter':'pintor','secretary':'secretaria', 'singer':'cantante','veterinarian':'veterinario','soldier':'soldado','carpenter':'carpintero', 'businessman':'hombre de negocios','detective':'detective','plumber':'plomero','surgeon':'cirujano', 'writer':'escritor','farmer':'campesino','spy':'espia','lawyer':'abogado','judge':'juez','journalist':'periodista', 'teacher':'maestro','delivery boy':'repartidor'} self.professions = ['electrician', 'gardener', 'mechanic', 'bus driver', 'hairdresser', 'construction worker', 'mason', 'pump attendant', 'garbage man', 'mailman', 'architect', 'cook', 'photographer', 'butcher', 'waiter', 'waitress', 'dentist', 'baker', 'cleaning lady', 'salesman', 'actress', 'artist', 'doctor', 'engineer', 'fireman', 'housewife', 'nurse', 'pilot', 'policeman', 'cashier', 'painter', 'secretary', 'singer', 'veterinarian', 'soldier', 'carpenter', 'businessman', 'detective', 'plumber', 'surgeon', 'writer', 'farmer', 'spy', 'lawyer', 'judge', 'journalist', 'teacher', 'delivery boy'] self.finished = False self.game_display = pygame.display.set_mode((0,0), pygame.FULLSCREEN) pygame.display.set_caption('Pistolero Professions Game') self.display_width, self.display_height = pygame.display.get_surface().get_size() self.game_display.fill(PistolGame.WHITE) pygame.display.update() def text_objects(self, text, font): text_surface = font.render(text, True, PistolGame.BLACK) return text_surface, text_surface.get_rect() # these message display functions need to be combined! def message_display(self, text, loc_tuple, loc_int, score_flag):# loc_int: 1 center, 2 top left, 3 bottom left, 4 bottom right, 5 top right. score_flag; 0 default font size, 1 score font size text_surf, text_rect = self.text_objects(text, pygame.font.Font(None, PistolGame.FONT_SIZE))# improve this section if score_flag == 1: text_surf, text_rect = self.text_objects(text, pygame.font.Font(None, PistolGame.SCORE_SIZE)) loc_dict = {1:'text_rect.center', 2:'text_rect.topleft', 3:'text_rect.bottomleft', 4:'text_rect.bottomright', 5:'text_rect.topright'} exec(loc_dict[loc_int] + ' = loc_tuple') self.game_display.blit(text_surf, text_rect) return text_rect def new_round(self): self.selected_profession = random.choice(list(self.translations.keys())) self.professions_list = random.sample(self.professions, 3) while self.selected_profession in self.professions_list: self.professions_list = random.sample(self.professions, 3) self.professions_list.append(self.selected_profession) random.shuffle(self.professions_list) def end_game(self): self.game_display.fill(PistolGame.WHITE) self.message_display("GAME OVER", (self.display_width/2, self.display_height/2), 1, 0) self.message_display("SCORE: {0}".format(str(self.score)), (self.display_width/2, self.display_height/3), 1, 0) pygame.display.update() pygame.time.delay(3000) self.finished = True self.camera.release() cv2.destroyAllWindows() pygame.quit() sys.exit() def run(self): self.camera = cv2.VideoCapture(1)# change 1 to 0 if you only have one camera self.selected_profession = random.choice(list(self.translations.keys())) self.professions_list = random.sample(self.professions, 3) while self.selected_profession in self.professions_list: self.professions_list = random.sample(self.professions, 3) self.professions_list.append(self.selected_profession) random.shuffle(self.professions_list) self.score = 0 int_x, int_y = 0, 0 start_ticks = pygame.time.get_ticks() while not self.finished: seconds = (pygame.time.get_ticks() - start_ticks)/1000 if PistolGame.GAME_TIME - seconds <= 0: self.end_game() (grabbed, frame) = self.camera.read() frame = imutils.resize(frame, width=self.display_width) hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) mask = cv2.inRange(hsv, self.object_lower, self.object_upper) mask = cv2.erode(mask, None, iterations=2) mask = cv2.dilate(mask, None, iterations=2) cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2] if len(cnts) > 0: c = max(cnts, key=cv2.contourArea) ((x, y), radius) = cv2.minEnclosingCircle(c) int_x, int_y = self.display_width - int(x), self.display_height - int(y) # if radius > 10:# left here for troubleshooting purposes # cv2.circle(frame, (int_x, int_y), int(radius), (0, 255, 255), 2) # cv2.imshow("Frame", frame) self.game_display.fill(PistolGame.WHITE) rect0 = self.message_display(self.professions_list[0], (100, 100), 2, 0) rect1 = self.message_display(self.professions_list[1], (100, self.display_height - 100), 3, 0) rect2 = self.message_display(self.professions_list[2], (self.display_width - 100, 100), 5, 0) rect3 = self.message_display(self.professions_list[3], (self.display_width - 100, self.display_height - 100), 4, 0) react_score = self.message_display("{0} {1}".format(str(self.score), int(PistolGame.GAME_TIME - seconds)), (int(self.display_width/2), int(self.display_height - 50)), 1, 1) base_verb = self.message_display(self.translations[self.selected_profession], (self.display_width/2, 50), 1, 1) pygame.draw.circle(self.game_display, PistolGame.BLUE, (int(self.display_width/2), int(self.display_height/2)), 40)# change tracking circle radius as necessary if rect0.collidepoint(int_x, int_y) or rect1.collidepoint(int_x, int_y) or rect2.collidepoint(int_x, int_y) or rect3.collidepoint(int_x, int_y): pygame.draw.circle(self.game_display, PistolGame.RED,(int_x, int_y), 10) else: pygame.draw.circle(self.game_display, PistolGame.BLACK,(int_x, int_y), 10) for event in pygame.event.get(): if event.type == pygame.QUIT: self.finished = True if event.type == pygame.KEYUP and event.key == pygame.K_ESCAPE: self.finished = True if event.type == pygame.KEYUP and event.key == pygame.K_a: # update to use dictionary here? if (rect0.collidepoint(int_x, int_y) and self.professions_list[0] == self.selected_profession): self.sound_shot.play() self.score+=1 self.game_display.blit(self.image_shot, (rect0.center[0]-self.image_shot.get_width()/2, rect0.center[1]-self.image_shot.get_height()/2)) pygame.display.update() pygame.time.delay(300) elif (rect1.collidepoint(int_x, int_y) and self.professions_list[1] == self.selected_profession): self.sound_shot.play() self.score+=1 self.game_display.blit(self.image_shot, (rect1.center[0]-self.image_shot.get_width()/2, rect1.center[1]-self.image_shot.get_height()/2)) pygame.display.update() pygame.time.delay(300) elif (rect2.collidepoint(int_x, int_y) and self.professions_list[2] == self.selected_profession): self.sound_shot.play() self.score+=1 self.game_display.blit(self.image_shot, (rect2.center[0]-self.image_shot.get_width()/2, rect2.center[1]-self.image_shot.get_height()/2)) pygame.display.update() pygame.time.delay(300) elif (rect3.collidepoint(int_x, int_y) and self.professions_list[3] == self.selected_profession): self.sound_shot.play() self.score+=1 self.game_display.blit(self.image_shot, (rect3.center[0]-self.image_shot.get_width()/2, rect3.center[1]-self.image_shot.get_height()/2)) pygame.display.update() pygame.time.delay(300) elif (rect0.collidepoint(int_x, int_y) and self.professions_list[0] != self.selected_profession): self.sound_wrong_shot.play() self.score-=1 self.game_display.blit(self.image_shot, (rect0.center[0]-self.image_shot.get_width()/2, rect0.center[1]-self.image_shot.get_height()/2)) pygame.display.update() pygame.time.delay(300) elif (rect1.collidepoint(int_x, int_y) and self.professions_list[1] != self.selected_profession): self.sound_wrong_shot.play() self.score-=1 self.game_display.blit(self.image_shot, (rect1.center[0]-self.image_shot.get_width()/2, rect1.center[1]-self.image_shot.get_height()/2)) pygame.display.update() pygame.time.delay(300) elif (rect2.collidepoint(int_x, int_y) and self.professions_list[2] != self.selected_profession): self.sound_wrong_shot.play() self.score-=1 self.game_display.blit(self.image_shot, (rect2.center[0]-self.image_shot.get_width()/2, rect2.center[1]-self.image_shot.get_height()/2)) pygame.display.update() pygame.time.delay(300) elif (rect3.collidepoint(int_x, int_y) and self.professions_list[3] != self.selected_profession): self.sound_wrong_shot.play() self.score-=1 self.game_display.blit(self.image_shot, (rect3.center[0]-self.image_shot.get_width()/2, rect3.center[1]-self.image_shot.get_height()/2)) pygame.display.update() pygame.time.delay(300) else: self.sound_miss.play() self.new_round() pygame.display.update() camera.release() cv2.destroyAllWindows() pygame.quit() sys.exit() if __name__ == '__main__': pg = PistolGame() pg.run() ``` #### File: Classic Joystick/Irregular Verbs Past Simple/IrregularVerbs.py ```python import pygame import time import math import random import pygame.font from pygame.locals import * class TextRectException: def __init__(self, message = None): self.message = message def __str__(self): return self.message class IrregularVerbs(object): WHITE = (255,255,255)# some colors are not currently used, but left for future modification BLACK = (0,0,0) GREEN = (0,128,0) YELLOW = (255,229,51) RED = (255,0,0) BLUE = (0,0,255) BROWN = (97,65,38) PURPLE = (128,0,128) def __init__(self): pygame.init() pygame.mixer.init() self.sound_win = pygame.mixer.Sound('audio\\ping.ogg') self.sound_loss = pygame.mixer.Sound('audio\\buzzer.ogg') self.my_font = pygame.font.Font(None, 48) self.my_rect = pygame.Rect((273,268,252,64)) self.my_rect_frag_1 = pygame.Rect((273,20,252,64)) self.my_rect_frag_2 = pygame.Rect((527,268,252,64)) self.my_rect_frag_3 = pygame.Rect((273,516,252,64)) self.my_rect_frag_4 = pygame.Rect((20,268,252,64)) self.display = pygame.display.set_mode((800, 600))# change to desired resolution -- you'll need to modify rect size. pygame.display.set_caption("Irregular Verbs Game") self.display.fill(IrregularVerbs.WHITE) pygame.display.update() self.finished = False def render_textrect(self, string, font, rect, text_color, background_color, justification=0): final_lines = [] requested_lines = string.splitlines() for requested_line in requested_lines: if font.size(requested_line)[0] > rect.width: words = requested_line.split(' ') for word in words: if font.size(word)[0] >= rect.width: raise TextRectException("The word " + word + " is too long to fit in the rect passed.") accumulated_line = "" for word in words: test_line = accumulated_line + word + " " if font.size(test_line)[0] < rect.width: accumulated_line = test_line else: final_lines.append(accumulated_line) accumulated_line = word + " " final_lines.append(accumulated_line) else: final_lines.append(requested_line) surface = pygame.Surface(rect.size) surface.fill(background_color) accumulated_height = 0 for line in final_lines: if accumulated_height + font.size(line)[1] >= rect.height: raise TextRectException('After word wrap, the text string was too tall to fit in the provided rect.') if line != "": tempsurface = font.render(line, 1, text_color) if justification == 0: surface.blit(tempsurface, (0, accumulated_height)) elif justification == 1: surface.blit(tempsurface, ((rect.width - tempsurface.get_width()) / 2, accumulated_height)) elif justification == 2: surface.blit(tempsurface, (rect.width - tempsurface.get_width(), accumulated_height)) else: raise TextRectException("Invalid justification argument: " + str(justification)) accumulated_height += font.size(line)[1] return surface def new_user(self): irregular_verbs = [ ["be",[["was/were","a"],["been","q"],["being","q"],["is","q"]]], ["bear",[["bore","a"],["born","q"],["bears","q"],["bearing","q"]]], ["beat",[["beat","a"],["beaten","q"],["beating","q"],["beats","q"]]], ["begin",[["began","a"],["begun","q"],["beginning","q"],["begins","q"]]], ["bite",[["bit","a"],["bitten","q"],["biting","q"],["bite","q"]]], ["blow",[["blew","a"],["blown","q"],["blows","q"],["blowing","q"]]], ["broadcast",[["broadcast","a"],["broadcasting","q"],["broadcasts","q"],["broadcaster","q"]]], ["break",[["broke","a"],["broken","q"],["breaked","q"],["breaking","q"]]], ["bring",[["brought","a"],["bringing","q"],["brings","q"],["brung","q"]]], ["build",[["built","a"],["building","q"],["builded","q"],["builds","q"]]], ["buy",[["bought","a"],["buying","q"],["buys","q"],["buy","q"]]], ["can",[["could","a"],["cans","q"],["canning","q"],["can","q"]]], ["catch",[["caught","a"],["catched","q"],["catches","q"],["catching","q"]]], ["choose",[["chose","a"],["choose","q"],["choosed","q"],["choosing","q"]]], ["come",[["came","a"],["coming","q"],["comed","q"],["comes","q"]]], ["cost",[["cost","a"],["costs","q"],["costed","q"],["costing","q"]]], ["cut",[["cut","a"],["cutted","q"],["cutter","q"],["cutting","q"]]], ["do",[["did","a"],["doing","q"],["doed","q"],["does","q"]]], ["draw",[["drew","a"],["drawn","q"],["draw","q"],["drawing","q"]]], ["drink",[["drank","a"],["drinked","q"],["drink","q"],["drunk","q"]]], ["drive",[["drove","a"],["drives","q"],["driven","q"],["driving","q"]]], ["eat",[["ate","a"],["eaten","q"],["eats","q"],["eating","q"]]], ["fall",[["fell","a"],["fallen","q"],["falls","q"],["fall","q"]]], ["feed",[["fed","a"],["feeding","q"],["feeds","q"],["felt","q"]]], ["feel",[["felt","a"],["feeling","q"],["feels","q"],["feel","q"]]], ["fight",[["fought","a"],["fighting","q"],["fights","q"],["fight","q"]]], ["find",[["found","a"],["finding","q"],["find","q"],["finds","q"]]], ["fly",[["flew","a"],["flown","q"],["flies","q"],["fly","q"]]], ["forget",[["forgot","a"],["forget","q"],["forgotten","q"],["forgets","q"]]], ["freeze",[["froze","a"],["frozen","q"],["freeze","q"],["freezes","q"]]], ["get",[["got","a"],["gotten","q"],["get","q"],["gets","q"]]], ["give",[["gave","a"],["given","q"],["give","q"],["gives","q"]]], ["go",[["went","a"],["gone","q"],["goes","q"],["going","q"]]], ["grow",[["grew","a"],["grown","q"],["grows","q"],["grow","q"]]], ["hang",[["hung","a"],["hangs","q"],["hanging","q"],["hanger","q"]]], ["have",[["had","a"],["have","q"],["has","q"],["halved","q"]]], ["hear",[["heard","a"],["hears","q"],["hearing","q"],["hear","q"]]], ["hide",[["hid","a"],["hidden","q"],["hide","q"],["hides","q"]]], ["hit",[["hit","a"],["hits","q"],["hitting","q"],["hitted","q"]]], ["hold",[["held","a"],["hold","q"],["holds","q"],["holding","q"]]], ["hurt",[["hurt","a"],["hurting","q"],["hurts","q"],["hurted","q"]]], ["keep",[["kept","a"],["keeps","q"],["keep","q"],["keeping","q"]]], ["know",[["knew","a"],["known","q"],["knows","q"],["knowing","q"]]], ["lead",[["led","a"],["leads","q"],["leading","q"],["lead","q"]]], ["leave",[["left","a"],["leaves","q"],["leave","q"],["leaving","q"]]], ["lend",[["lent","a"],["lending","q"],["lend","q"],["lends","q"]]], ["let",[["let","a"],["lets","q"],["letting","q"],["letted","q"]]], ["lose",[["lost","a"],["lose","q"],["loses","q"],["losing","q"]]], ["make",[["made","a"],["make","q"],["maked","q"],["making","q"]]], ["mean",[["meant","a"],["means","q"],["mean","q"],["meaning","q"]]], ["meet",[["met","a"],["meeting","q"],["meet","q"],["meets","q"]]], ["pay",[["paid","a"],["paying","q"],["pay","q"],["pays","q"]]], ["put",[["put","a"],["puts","q"],["putting","q"],["putted","q"]]], ["read",[["read","a"],["reading","q"],["reads","q"],["reader","q"]]], ["ride",[["rode","a"],["ridden","q"],["riding","q"],["ride","q"]]], ["ring",[["rang","a"],["rung","q"],["ring","q"],["ringer","q"]]], ["rise",[["rose","a"],["risen","q"],["rise","q"],["rises","q"]]], ["run",[["ran","a"],["run","q"],["running","q"],["runs","q"]]], ["say",[["said","a"],["says","q"],["say","q"],["saying","q"]]], ["see",[["saw","a"],["seen","q"],["see","q"],["sees","q"]]], ["sell",[["sold","a"],["sell","q"],["sells","q"],["selling","q"]]], ["send",[["sent","a"],["sends","q"],["sending","q"],["send","q"]]], ["set",[["set","a"],["setting","q"],["sets","q"],["setted","q"]]], ["shoot",[["shot","a"],["shooting","q"],["shoot","q"],["shooted","q"]]], ["shut",[["shut","a"],["shutting","q"],["shuts","q"],["shutted","q"]]], ["sing",[["sang","a"],["sung","q"],["sings","q"],["singing","q"]]], ["sit",[["sat","a"],["sits","q"],["sitting","q"],["sitted","q"]]], ["sleep",[["slept","a"],["sleeping","q"],["sleep","q"],["sleeps","q"]]], ["speak",[["spoke","a"],["spoken","q"],["speaks","q"],["speaking","q"]]], ["spend",[["spent","a"],["spend","q"],["spending","q"],["spends","q"]]], ["stand",[["stood","a"],["stands","q"],["stand","q"],["standing","q"]]], ["steal",[["stole","a"],["stolen","q"],["steal","q"],["steals","q"]]], ["stick",[["stuck","a"],["sticked","q"],["sticking","q"],["stick","q"]]], ["swim",[["swam","a"],["swum","q"],["swim","q"],["swimming","q"]]], ["take",[["took","a"],["taken","q"],["takes","q"],["take","q"]]], ["teach",[["taught","a"],["teached","q"],["teach","q"],["teaches","q"]]], ["tell",[["told","a"],["tells","q"],["telling","q"],["telled","q"]]], ["think",[["thought","a"],["thinks","q"],["think","q"],["thinked","q"]]], ["throw",[["threw","a"],["thrown","q"],["throw","q"],["throws","q"]]], ["wake",[["woke","a"],["woken","q"],["wake","q"],["waked","q"]]], ["wear",[["wore","a"],["worn","q"],["wear","q"],["wears","q"]]], ["win",[["won","a"],["wins","q"],["win","q"],["winning","q"]]], ["write",[["wrote","a"],["written","q"],["write","q"],["writes","q"]]] ] wordlist = random.sample(irregular_verbs,1)[0] self.answer = wordlist[1][0][0] random.shuffle(wordlist[1]) self.frag0 = wordlist[1][0][0] self.frag1 = wordlist[1][1][0] self.frag2 = wordlist[1][2][0] self.frag3 = wordlist[1][3][0] self.display.fill(IrregularVerbs.WHITE) self.rendered_text_word = self.render_textrect(wordlist[0], self.my_font, self.my_rect, IrregularVerbs.PURPLE, IrregularVerbs.WHITE, 1) self.rendered_text_frag_1 = self.render_textrect(self.frag0, self.my_font, self.my_rect_frag_1, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 1) self.rendered_text_frag_2 = self.render_textrect(self.frag1, self.my_font, self.my_rect_frag_2, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 2) self.rendered_text_frag_3 = self.render_textrect(self.frag2, self.my_font, self.my_rect_frag_3, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 1) self.rendered_text_frag_4 = self.render_textrect(self.frag3, self.my_font, self.my_rect_frag_4, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 0) self.display.blit(self.rendered_text_word, self.my_rect.topleft) self.display.blit(self.rendered_text_frag_1, self.my_rect_frag_1.topleft) self.display.blit(self.rendered_text_frag_2, self.my_rect_frag_2.topleft) self.display.blit(self.rendered_text_frag_3, self.my_rect_frag_3.topleft) self.display.blit(self.rendered_text_frag_4, self.my_rect_frag_4.topleft) pygame.display.update() return def deactivate_keys(self): while True: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() sys.exit() if event.type == pygame.KEYUP and event.key == pygame.K_SPACE: return def refresh_screen(self, fragment, player): if fragment == self.answer:#winner! self.display.fill(IrregularVerbs.WHITE) if self.frag0 == fragment and player == 1: self.rendered_text_word = self.render_textrect("Player 1 Wins!", self.my_font, self.my_rect, IrregularVerbs.GREEN, IrregularVerbs.WHITE, 1) self.rendered_text_frag_1 = self.render_textrect(self.frag0, self.my_font, self.my_rect_frag_1, IrregularVerbs.GREEN, IrregularVerbs.WHITE, 1) self.rendered_text_frag_2 = self.render_textrect(self.frag1, self.my_font, self.my_rect_frag_2, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 2) self.rendered_text_frag_3 = self.render_textrect(self.frag2, self.my_font, self.my_rect_frag_3, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 1) self.rendered_text_frag_4 = self.render_textrect(self.frag3, self.my_font, self.my_rect_frag_4, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 0) elif self.frag1 == fragment and player == 1: self.rendered_text_word = self.render_textrect("Player 1 Wins!", self.my_font, self.my_rect, IrregularVerbs.GREEN, IrregularVerbs.WHITE, 1) self.rendered_text_frag_1 = self.render_textrect(self.frag0, self.my_font, self.my_rect_frag_1, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 1) self.rendered_text_frag_2 = self.render_textrect(self.frag1, self.my_font, self.my_rect_frag_2, IrregularVerbs.GREEN, IrregularVerbs.WHITE, 2) self.rendered_text_frag_3 = self.render_textrect(self.frag2, self.my_font, self.my_rect_frag_3, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 1) self.rendered_text_frag_4 = self.render_textrect(self.frag3, self.my_font, self.my_rect_frag_4, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 0) elif self.frag2 == fragment and player == 1: self.rendered_text_word = self.render_textrect("Player 1 Wins!", self.my_font, self.my_rect, IrregularVerbs.GREEN, IrregularVerbs.WHITE, 1) self.rendered_text_frag_1 = self.render_textrect(self.frag0, self.my_font, self.my_rect_frag_1, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 1) self.rendered_text_frag_2 = self.render_textrect(self.frag1, self.my_font, self.my_rect_frag_2, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 2) self.rendered_text_frag_3 = self.render_textrect(self.frag2, self.my_font, self.my_rect_frag_3, IrregularVerbs.GREEN, IrregularVerbs.WHITE, 1) self.rendered_text_frag_4 = self.render_textrect(self.frag3, self.my_font, self.my_rect_frag_4, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 0) elif self.frag3 == fragment and player == 1: self.rendered_text_word = self.render_textrect("Player 1 Wins!", self.my_font, self.my_rect, IrregularVerbs.GREEN, IrregularVerbs.WHITE, 1) self.rendered_text_frag_1 = self.render_textrect(self.frag0, self.my_font, self.my_rect_frag_1, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 1) self.rendered_text_frag_2 = self.render_textrect(self.frag1, self.my_font, self.my_rect_frag_2, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 2) self.rendered_text_frag_3 = self.render_textrect(self.frag2, self.my_font, self.my_rect_frag_3, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 1) self.rendered_text_frag_4 = self.render_textrect(self.frag3, self.my_font, self.my_rect_frag_4, IrregularVerbs.GREEN, IrregularVerbs.WHITE, 0) elif self.frag0 == fragment and player == 2: self.rendered_text_word = self.render_textrect("Player 2 Wins!", self.my_font, self.my_rect, IrregularVerbs.GREEN, IrregularVerbs.WHITE, 1) self.rendered_text_frag_1 = self.render_textrect(self.frag0, self.my_font, self.my_rect_frag_1, IrregularVerbs.GREEN, IrregularVerbs.WHITE, 1) self.rendered_text_frag_2 = self.render_textrect(self.frag1, self.my_font, self.my_rect_frag_2, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 2) self.rendered_text_frag_3 = self.render_textrect(self.frag2, self.my_font, self.my_rect_frag_3, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 1) self.rendered_text_frag_4 = self.render_textrect(self.frag3, self.my_font, self.my_rect_frag_4, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 0) elif self.frag1 == fragment and player == 2: self.rendered_text_word = self.render_textrect("Player 2 Wins!", self.my_font, self.my_rect, IrregularVerbs.GREEN, IrregularVerbs.WHITE, 1) self.rendered_text_frag_1 = self.render_textrect(self.frag0, self.my_font, self.my_rect_frag_1, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 1) self.rendered_text_frag_2 = self.render_textrect(self.frag1, self.my_font, self.my_rect_frag_2, IrregularVerbs.GREEN, IrregularVerbs.WHITE, 2) self.rendered_text_frag_3 = self.render_textrect(self.frag2, self.my_font, self.my_rect_frag_3, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 1) self.rendered_text_frag_4 = self.render_textrect(self.frag3, self.my_font, self.my_rect_frag_4, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 0) elif self.frag2 == fragment and player == 2: self.rendered_text_word = self.render_textrect("Player 2 Wins!", self.my_font, self.my_rect, IrregularVerbs.GREEN, IrregularVerbs.WHITE, 1) self.rendered_text_frag_1 = self.render_textrect(self.frag0, self.my_font, self.my_rect_frag_1, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 1) self.rendered_text_frag_2 = self.render_textrect(self.frag1, self.my_font, self.my_rect_frag_2, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 2) self.rendered_text_frag_3 = self.render_textrect(self.frag2, self.my_font, self.my_rect_frag_3, IrregularVerbs.GREEN, IrregularVerbs.WHITE, 1) self.rendered_text_frag_4 = self.render_textrect(self.frag3, self.my_font, self.my_rect_frag_4, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 0) elif self.frag3 == fragment and player == 2: self.rendered_text_word = self.render_textrect("Player 2 Wins!", self.my_font, self.my_rect, IrregularVerbs.GREEN, IrregularVerbs.WHITE, 1) self.rendered_text_frag_1 = self.render_textrect(self.frag0, self.my_font, self.my_rect_frag_1, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 1) self.rendered_text_frag_2 = self.render_textrect(self.frag1, self.my_font, self.my_rect_frag_2, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 2) self.rendered_text_frag_3 = self.render_textrect(self.frag2, self.my_font, self.my_rect_frag_3, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 1) self.rendered_text_frag_4 = self.render_textrect(self.frag3, self.my_font, self.my_rect_frag_4, IrregularVerbs.GREEN, IrregularVerbs.WHITE, 0) self.display.blit(self.rendered_text_word, self.my_rect.topleft) self.display.blit(self.rendered_text_frag_1, self.my_rect_frag_1.topleft) self.display.blit(self.rendered_text_frag_2, self.my_rect_frag_2.topleft) self.display.blit(self.rendered_text_frag_3, self.my_rect_frag_3.topleft) self.display.blit(self.rendered_text_frag_4, self.my_rect_frag_4.topleft) pygame.display.update() self.sound_win.play() self.deactivate_keys() if fragment != self.answer:#loser self.display.fill(IrregularVerbs.WHITE) if self.frag0 == fragment and player == 1: self.rendered_text_word = self.render_textrect("Player 1 Loses!", self.my_font, self.my_rect, IrregularVerbs.RED, IrregularVerbs.WHITE, 1)#last 0 is to left align self.rendered_text_frag_1 = self.render_textrect(self.frag0, self.my_font, self.my_rect_frag_1, IrregularVerbs.RED, IrregularVerbs.WHITE, 1) self.rendered_text_frag_2 = self.render_textrect(self.frag1, self.my_font, self.my_rect_frag_2, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 2) self.rendered_text_frag_3 = self.render_textrect(self.frag2, self.my_font, self.my_rect_frag_3, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 1) self.rendered_text_frag_4 = self.render_textrect(self.frag3, self.my_font, self.my_rect_frag_4, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 0) elif self.frag1 == fragment and player == 1: self.rendered_text_word = self.render_textrect("Player 1 Loses!", self.my_font, self.my_rect, IrregularVerbs.RED, IrregularVerbs.WHITE, 1)#last 0 is to left align self.rendered_text_frag_1 = self.render_textrect(self.frag0, self.my_font, self.my_rect_frag_1, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 1) self.rendered_text_frag_2 = self.render_textrect(self.frag1, self.my_font, self.my_rect_frag_2, IrregularVerbs.RED, IrregularVerbs.WHITE, 2) self.rendered_text_frag_3 = self.render_textrect(self.frag2, self.my_font, self.my_rect_frag_3, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 1) self.rendered_text_frag_4 = self.render_textrect(self.frag3, self.my_font, self.my_rect_frag_4, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 0) elif self.frag2 == fragment and player == 1: self.rendered_text_word = self.render_textrect("Player 1 Loses!", self.my_font, self.my_rect, IrregularVerbs.RED, IrregularVerbs.WHITE, 1)#last 0 is to left align self.rendered_text_frag_1 = self.render_textrect(self.frag0, self.my_font, self.my_rect_frag_1, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 1) self.rendered_text_frag_2 = self.render_textrect(self.frag1, self.my_font, self.my_rect_frag_2, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 2) self.rendered_text_frag_3 = self.render_textrect(self.frag2, self.my_font, self.my_rect_frag_3, IrregularVerbs.RED, IrregularVerbs.WHITE, 1) self.rendered_text_frag_4 = self.render_textrect(self.frag3, self.my_font, self.my_rect_frag_4, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 0) elif self.frag3 == fragment and player == 1: self.rendered_text_word = self.render_textrect("Player 1 Loses!", self.my_font, self.my_rect, IrregularVerbs.RED, IrregularVerbs.WHITE, 1)#last 0 is to left align self.rendered_text_frag_1 = self.render_textrect(self.frag0, self.my_font, self.my_rect_frag_1, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 1) self.rendered_text_frag_2 = self.render_textrect(self.frag1, self.my_font, self.my_rect_frag_2, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 2) self.rendered_text_frag_3 = self.render_textrect(self.frag2, self.my_font, self.my_rect_frag_3, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 1) self.rendered_text_frag_4 = self.render_textrect(self.frag3, self.my_font, self.my_rect_frag_4, IrregularVerbs.RED, IrregularVerbs.WHITE, 0) elif self.frag0 == fragment and player == 2: self.rendered_text_word = self.render_textrect("Player 2 Loses!", self.my_font, self.my_rect, IrregularVerbs.RED, IrregularVerbs.WHITE, 1)#last 0 is to left align self.rendered_text_frag_1 = self.render_textrect(self.frag0, self.my_font, self.my_rect_frag_1, IrregularVerbs.RED, IrregularVerbs.WHITE, 1) self.rendered_text_frag_2 = self.render_textrect(self.frag1, self.my_font, self.my_rect_frag_2, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 2) self.rendered_text_frag_3 = self.render_textrect(self.frag2, self.my_font, self.my_rect_frag_3, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 1) self.rendered_text_frag_4 = self.render_textrect(self.frag3, self.my_font, self.my_rect_frag_4, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 0) elif self.frag1 == fragment and player == 2: self.rendered_text_word = self.render_textrect("Player 2 Loses!", self.my_font, self.my_rect, IrregularVerbs.RED, IrregularVerbs.WHITE, 1)#last 0 is to left align self.rendered_text_frag_1 = self.render_textrect(self.frag0, self.my_font, self.my_rect_frag_1, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 1) self.rendered_text_frag_2 = self.render_textrect(self.frag1, self.my_font, self.my_rect_frag_2, IrregularVerbs.RED, IrregularVerbs.WHITE, 2) self.rendered_text_frag_3 = self.render_textrect(self.frag2, self.my_font, self.my_rect_frag_3, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 1) self.rendered_text_frag_4 = self.render_textrect(self.frag3, self.my_font, self.my_rect_frag_4, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 0) elif self.frag2 == fragment and player == 2: self.rendered_text_word = self.render_textrect("Player 2 Loses!", self.my_font, self.my_rect, IrregularVerbs.RED, IrregularVerbs.WHITE, 1)#last 0 is to left align self.rendered_text_frag_1 = self.render_textrect(self.frag0, self.my_font, self.my_rect_frag_1, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 1) self.rendered_text_frag_2 = self.render_textrect(self.frag1, self.my_font, self.my_rect_frag_2, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 2) self.rendered_text_frag_3 = self.render_textrect(self.frag2, self.my_font, self.my_rect_frag_3, IrregularVerbs.RED, IrregularVerbs.WHITE, 1) self.rendered_text_frag_4 = self.render_textrect(self.frag3, self.my_font, self.my_rect_frag_4, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 0) elif self.frag3 == fragment and player == 2: self.rendered_text_word = self.render_textrect("Player 2 Loses!", self.my_font, self.my_rect, IrregularVerbs.RED, IrregularVerbs.WHITE, 1)#last 0 is to left align self.rendered_text_frag_1 = self.render_textrect(self.frag0, self.my_font, self.my_rect_frag_1, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 1) self.rendered_text_frag_2 = self.render_textrect(self.frag1, self.my_font, self.my_rect_frag_2, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 2) self.rendered_text_frag_3 = self.render_textrect(self.frag2, self.my_font, self.my_rect_frag_3, IrregularVerbs.BLACK, IrregularVerbs.WHITE, 1) self.rendered_text_frag_4 = self.render_textrect(self.frag3, self.my_font, self.my_rect_frag_4, IrregularVerbs.RED, IrregularVerbs.WHITE, 0) self.display.blit(self.rendered_text_word, self.my_rect.topleft) self.display.blit(self.rendered_text_frag_1, self.my_rect_frag_1.topleft) self.display.blit(self.rendered_text_frag_2, self.my_rect_frag_2.topleft) self.display.blit(self.rendered_text_frag_3, self.my_rect_frag_3.topleft) self.display.blit(self.rendered_text_frag_4, self.my_rect_frag_4.topleft) pygame.display.update() self.sound_loss.play() self.deactivate_keys() def run(self): while not self.finished: for event in pygame.event.get(): if event.type == pygame.QUIT: finished = True if event.type == pygame.KEYUP: if event.key == pygame.K_ESCAPE: self.finished = True if event.key == pygame.K_SPACE: self.new_user() if event.key == pygame.K_a: self.refresh_screen(self.frag0, player=1) elif event.key == pygame.K_e: self.refresh_screen(self.frag0, player=2) elif event.key == pygame.K_b: self.refresh_screen(self.frag1, player=1) elif event.key == pygame.K_f: self.refresh_screen(self.frag1, player=2) elif event.key == pygame.K_c: self.refresh_screen(self.frag2, player=1) elif event.key == pygame.K_g: self.refresh_screen(self.frag2, player=2) elif event.key == pygame.K_d: self.refresh_screen(self.frag3, player=1) elif event.key == pygame.K_h: self.refresh_screen(self.frag3, player=2) else: pass pygame.display.update() pygame.quit() sys.exit() if __name__ == '__main__': new_game = IrregularVerbs() new_game.run() ``` #### File: Adjective Adverb/Adverb or Adjective (Deprecated)/AdverbOrAdjectiveOriginalINTRO.py ```python from pykinect2 import PyKinectV2 from pykinect2.PyKinectV2 import * from pykinect2 import PyKinectRuntime import pygame import random import sys TRACKING_COLOR = pygame.color.Color("green") HIGHLIGHT_COLOR = pygame.color.Color("red") BG_COLOR = pygame.color.Color("white") GAME_TIME = 60# seconds class BodyGameRuntime(object): def __init__(self): pygame.init() pygame.mixer.init() self.beep_sound = pygame.mixer.Sound('audio\\beep.ogg') self.buzz_sound = pygame.mixer.Sound('audio\\buzz.ogg') self._infoObject = pygame.display.Info() self._screen = pygame.display.set_mode((self._infoObject.current_w >> 1, self._infoObject.current_h >> 1), pygame.HWSURFACE|pygame.DOUBLEBUF|pygame.RESIZABLE, 32) pygame.display.set_caption("Kinect Game Framework Test") self.finished = False self._clock = pygame.time.Clock() self._kinect = PyKinectRuntime.PyKinectRuntime(PyKinectV2.FrameSourceTypes_Color | PyKinectV2.FrameSourceTypes_Body) self._frame_surface = pygame.Surface((self._kinect.color_frame_desc.Width, self._kinect.color_frame_desc.Height), 0, 32) self._bodies = None self.score = 0 self.vocab_dict = {"People drive ____ these days.":["quickly", "quick"], "She has an ____ dog.":["active", "actively"], "He ____ opens the mail.":["carefully", "careful"], "The man ____ greets his friends.":["cheerfully", "cheerful"], "That is a ____ sofa!":["comfortable", "comfortably"], "The alarm sounds ____.":["continuously", "continuous"], "That woman is ____!":["crazy", "crazily"], "The woman speaks ____.":["delightfully", "delightful"], "Juan is a very ____ carpenter.":["creative", "creatively"], "Wow! That is a ____ storm!":["destructive", "destructively"], "The racecar drove ____ by the school.":["powerfully", "powerful"], "Juana ____ said NO!":["firmly", "firm"], "He ____ opened the door.":["forcefully", "forceful"], "It was a ____ day.":["glorious", "gloriously"], "Maria ____ observed her ex-boyfriend.":["hatefully", "hateful"], "He had a ___ idea.":["hopeful", "hopefully"], "It was an ____ phrase.":["insulting", "insultingly"], "Jenny ____ ate the last cookie.":["intentionally", "intentional"], "He likes ____ music.":["irritating", "irritatingly"], "Careful! That is a ___ dog!":["bad", "badly"], "The man reacted ___ to the good news.":["speedily", "speedy"], "Susana has always been a ____ girl.":["nice", "nicely"], "The boys plunged into the ____ water.":["deep", "deeply"], "The girl ____ saved her cat from the fire.":["bravely", "brave"], "The man ____ drank too much alcohol.":["foolishly", "foolish"], "Mario is ____ and never does his homework.":["lazy", "lazily"], "The teacher is very ____.":["rude", "rudely"], "The girl plays soccer ____.":["perfectly", "perfect"], "It was an ____ crash.":["accidental", "accidentally"], "That is an ____ turtle!.":["angry", "angrily"], "She ____ ate her beans.":["happily", "happy"], "John spoke ____.":["seriously", "serious"], "Firulais is a ____ dog.":["loyal", "loyally"], "Margie yelled ____ into the night.":["blindly", "blind"], "He ran ____ toward me.":["wildly", "wild"], "Pedro is ____!":["innocent", "innocently"], "The gross man winked at her ____.":["sexually", "sexual"], "Concepcion is a ____ girlfriend.":["jealous", "jealously"], "Luis ____ goes to the bar.":["frequently", "frequent"], "We didn't go out because it was raining ____.":["heavily", "heavy"], "Our team lost the game because we played ____.":["badly", "bad"], "We waited ____.":["patiently", "patient"], "Jimmy arrived ____.":["unexpectedly", "unexpected"], "Mike stays fit by playing tennis ____.":["regularly", "regular"], "The driver of the car was ____ injured.":["seriously", "serious"], "The driver of the car had ____ injuries.":["serious", "seriously"], "Ismael looked ____ at Eleazar.":["hungrily", "hungry"], "She is a ____ driver.":["dangerous", "dangerously"]} self._frame_surface.fill((255, 255, 255)) def text_objects(self, text, font): text_surface = font.render(text, True, (0, 0, 0)) return text_surface, text_surface.get_rect() def message_display(self, text, loc_tuple, loc_int): # loc_int: 1 center, 2 top left, 3 bottom left, 4 bottom right, 5 top right text_surf, text_rect = self.text_objects(text, pygame.font.Font(None, 64)) loc_dict = {1:'text_rect.center', 2:'text_rect.topleft', 3:'text_rect.bottomleft', 4:'text_rect.bottomright', 5:'text_rect.topright'} exec(loc_dict[loc_int] + ' = loc_tuple') self._frame_surface.blit(text_surf, text_rect) return text_rect def draw_ind_point(self, joints, jointPoints, color, highlight_color, rect0, rect1, joint0, words, sentence, correct_word): joint0State = joints[joint0].TrackingState; if (joint0State == PyKinectV2.TrackingState_NotTracked or joint0State == PyKinectV2.TrackingState_Inferred): return center = (int(jointPoints[joint0].x), int(jointPoints[joint0].y)) if (rect0.collidepoint(center) and words[0] == correct_word) or (rect1.collidepoint(center) and words[1] == correct_word): self.score += 1 self.beep_sound.play() pygame.time.delay(500) self.new_round() elif rect0.collidepoint(center) or rect1.collidepoint(center): try: pygame.draw.circle(self._frame_surface, highlight_color, center, 20, 0) self.score -= 1 self.buzz_sound.play() pygame.time.delay(500) self.new_round() except: # need to catch it due to possible invalid positions (with inf) pass else: try: pygame.draw.circle(self._frame_surface, color, center, 20, 0) except: pass def draw_ind_intro_point(self, joints, jointPoints, color, joint0): joint0State = joints[joint0].TrackingState; if (joint0State == PyKinectV2.TrackingState_NotTracked or joint0State == PyKinectV2.TrackingState_Inferred): return center = (int(jointPoints[joint0].x), int(jointPoints[joint0].y)) try: pygame.draw.circle(self._frame_surface, color, center, 20, 0) except: pass def update_intro_screen(self, joints, jointPoints, color): self._frame_surface.fill(BG_COLOR)# blank screen before drawing points self.draw_ind_intro_point(joints, jointPoints, color, PyKinectV2.JointType_Head) self.draw_ind_intro_point(joints, jointPoints, color, PyKinectV2.JointType_WristLeft) # may change PyKinectV2.JointType_WristRight to PyKinectV2.JointType_ElbowRight self.draw_ind_intro_point(joints, jointPoints, color, PyKinectV2.JointType_WristRight) def update_screen(self, joints, jointPoints, color, highlight_color, words, sentence, correct_word, seconds): self._frame_surface.fill(BG_COLOR)# blank screen before drawing points self.message_display(sentence, (300, 900), 2) rect0 = self.message_display(words[0], (400, 300), 1) rect1 = self.message_display(words[1], (self._frame_surface.get_width() - 400, 300), 1) self.message_display(str(self.score), (self._frame_surface.get_width() / 2, 800), 1) self.message_display(str(seconds), (self._frame_surface.get_width() - 300, 800), 1) self.draw_ind_point(joints, jointPoints, color, highlight_color, rect0, rect1, PyKinectV2.JointType_Head, words, sentence, correct_word) self.draw_ind_point(joints, jointPoints, color, highlight_color, rect0, rect1, PyKinectV2.JointType_WristRight, words, sentence, correct_word) # may change PyKinectV2.JointType_WristRight to PyKinectV2.JointType_ElbowRight self.draw_ind_point(joints, jointPoints, color, highlight_color, rect0, rect1, PyKinectV2.JointType_WristLeft, words, sentence, correct_word) def end_game(self): self._frame_surface.fill(BG_COLOR) self.message_display("Score: {}".format(self.score), (self._frame_surface.get_width() / 2, self._frame_surface.get_height() / 2), 1) h_to_w = float(self._frame_surface.get_height()) / self._frame_surface.get_width() target_height = int(h_to_w * self._screen.get_width()) surface_to_draw = pygame.transform.scale(self._frame_surface, (self._screen.get_width(), target_height)); self._screen.blit(surface_to_draw, (0,0)) surface_to_draw = None pygame.display.update() pygame.time.delay(3000) self._kinect.close() pygame.quit() def new_round(self): sentence = random.sample(list(self.vocab_dict), 1)[0] words = self.vocab_dict[sentence][:] correct_word = words[0] random.shuffle(words) pygame.time.delay(500) while not self.finished: seconds = int(GAME_TIME - (pygame.time.get_ticks() - self.start_ticks)/1000) if seconds <= 0: self.end_game() if self._kinect.has_new_body_frame(): self._bodies = self._kinect.get_last_body_frame() if self._bodies is not None: for i in range(0, self._kinect.max_body_count): body = self._bodies.bodies[i] if not body.is_tracked: continue joints = body.joints joint_points = self._kinect.body_joints_to_color_space(joints) self.update_screen(joints, joint_points, TRACKING_COLOR, HIGHLIGHT_COLOR, words, sentence, correct_word, seconds) h_to_w = float(self._frame_surface.get_height()) / self._frame_surface.get_width() target_height = int(h_to_w * self._screen.get_width()) surface_to_draw = pygame.transform.scale(self._frame_surface, (self._screen.get_width(), target_height)); self._screen.blit(surface_to_draw, (0,0)) surface_to_draw = None pygame.display.update() self._clock.tick(60) for event in pygame.event.get(): if event.type == pygame.QUIT: self.finished = True if event.type == pygame.KEYUP and event.key == pygame.K_ESCAPE: self.finished = True self.end_game() def run(self): self.score = 0 while not self.finished: if self._kinect.has_new_body_frame(): self._bodies = self._kinect.get_last_body_frame() if self._bodies is not None: for i in range(0, self._kinect.max_body_count): body = self._bodies.bodies[i] if not body.is_tracked: continue joints = body.joints joint_points = self._kinect.body_joints_to_color_space(joints) self.update_intro_screen(joints, joint_points, TRACKING_COLOR) h_to_w = float(self._frame_surface.get_height()) / self._frame_surface.get_width() target_height = int(h_to_w * self._screen.get_width()) surface_to_draw = pygame.transform.scale(self._frame_surface, (self._screen.get_width(), target_height)); self._screen.blit(surface_to_draw, (0,0)) surface_to_draw = None pygame.display.update() self._clock.tick(60) for event in pygame.event.get(): if event.type == pygame.QUIT: self.finished = True if event.type == pygame.KEYUP and event.key == pygame.K_SPACE: self.start_ticks = pygame.time.get_ticks() self.new_round() if event.type == pygame.KEYUP and event.key == pygame.K_ESCAPE: self.finished = True self._kinect.close() pygame.quit() sys.exit() if __name__ == "__main__": game = BodyGameRuntime() game.run() ``` #### File: Kinect/Sentence Builder/SentenceBuilder.py ```python from pykinect2 import PyKinectV2 from pykinect2.PyKinectV2 import * from pykinect2 import PyKinectRuntime from math import ceil import pygame import random import sys TRACKING_COLOR = pygame.color.Color("green") HIGHLIGHT_COLOR = pygame.color.Color("red") BG_COLOR = pygame.color.Color("white") GAME_TIME = 60# seconds class BodyGameRuntime(object): def __init__(self): pygame.init() pygame.mixer.init() self.beep_sound = pygame.mixer.Sound('audio\\beep.ogg') self.buzz_sound = pygame.mixer.Sound('audio\\buzz.ogg') self.click_sound = pygame.mixer.Sound('audio\\click.ogg') self._infoObject = pygame.display.Info() self._screen = pygame.display.set_mode((0, 0), pygame.FULLSCREEN, 32) pygame.display.set_caption("Sentence Builder Game") self.finished = False self._clock = pygame.time.Clock() self._kinect = PyKinectRuntime.PyKinectRuntime(PyKinectV2.FrameSourceTypes_Color | PyKinectV2.FrameSourceTypes_Body) self._frame_surface = pygame.Surface((self._kinect.color_frame_desc.Width, self._kinect.color_frame_desc.Height), 0, 32) self._bodies = None self.score = 0 self.sentence_list = [ "It is not acceptable to eat with your mouth open", "It is acceptable to use a napkin", "You shouldn't talk with food in your mouth", "You shouldn't use bad words at the dinner table", "This is a test sentence for the game", "These sentences don't have any periods", "Giraffes are herbivores, and don't eat elephants", "Elvia came to visit the teacher in his office", "My favorite fruits are rambutans and chirimoyas", "The cat likes to eat the dog's food", "Sometimes the dog gets angry and barks at the cat", "The 19-year-old is not an exception.", "She is like many other young women in Nuh, where she lives, in northern India.", "Only about 30 percent of the women there can read and write.", "That is about half the national average.", "<NAME> left school because she had to do housework and help her mother with younger brothers and sisters, she said.", "And there was no middle school in her community.", "At the same time, boys living in Papika, in Haryana state, walk to the nearest high school, about four kilometers away.", "Yet girls are not permitted to leave the small village.", "In Papika, many of the women work in fields or care for farm animals.", "Young girls get water, while children play.", "Men often sit outside their homes in the sun after a cold winter.", "This saying comes to us from <NAME>.", "In addition to being a writer, Franklin was a printer, political thinker, politician, scientist, inventor and diplomat.", "He was also one of the Founding Fathers of the United States.", "So, he was a busy man.", "But Franklin still found time to write and offer his advice to others.", "If he were alive today, he could probably make a good living as a life coach.", "Now, Franklin lived during the 1700s, before the metric system took effect in Europe.", "The word ounce means something really small – just two-one-hundredths of a kilogram to be exact.", "So, his expression meant that, when dealing with a problem, spending a small amount of time and effort early on is a good investment.", "It can save you more trouble in the end.", "Education officials and industry experts are debating the future of online learning.", "And demand for such programs is increasing.", "Classes meet online through video conferencing.", "In this way, students are able to communicate with each other and their professors even when they are far away from school.", "Online learning also permits older students, who work full-time and support families, to work on their education in their free time." ] self._frame_surface.fill((255, 255, 255)) def text_objects(self, text, font): text_surface = font.render(text, True, (0, 0, 0)) return text_surface, text_surface.get_rect() def message_display(self, text, loc_tuple, loc_int): # loc_int: 1 center, 2 top left, 3 bottom left, 4 bottom right, 5 top right text_surf, text_rect = self.text_objects(text, pygame.font.Font(None, 36)) loc_dict = {1:'text_rect.center', 2:'text_rect.topleft', 3:'text_rect.bottomleft', 4:'text_rect.bottomright', 5:'text_rect.topright'} exec(loc_dict[loc_int] + ' = loc_tuple') self._frame_surface.blit(text_surf, text_rect) return text_rect def fragment_sentence(self, sentence): sentence_list = sentence.split() sentence_word_count = len(sentence_list) max_frag_size = ceil(sentence_word_count/3) frag_list = [] i = 0 while i * max_frag_size <= sentence_word_count: frag_list.append(sentence_list[i*max_frag_size:(i + 1)*max_frag_size]) i += 1 frag_list = [' '.join(words) for words in frag_list][0:3] return frag_list def draw_ind_point(self, joints, jointPoints, color, highlight_color, rect0, rect1, rect2, joint0, frag_list): joint0State = joints[joint0].TrackingState; if (joint0State == PyKinectV2.TrackingState_NotTracked or joint0State == PyKinectV2.TrackingState_Inferred): return center = (int(jointPoints[joint0].x), int(jointPoints[joint0].y)) if rect0.collidepoint(center): self.built_frag = self.built_frag + " " + frag_list[0] self.click_sound.play() frag_list[0] = "" elif rect1.collidepoint(center): self.built_frag = self.built_frag + " " + frag_list[1] self.click_sound.play() frag_list[1] = "" elif rect2.collidepoint(center): self.built_frag = self.built_frag + " " + frag_list[2] self.click_sound.play() frag_list[2] = "" if frag_list[0] == "" and frag_list[1] == "" and frag_list[2] == "": self.built_frag = self.built_frag[1:] if self.built_frag == self.sentence: self.score += 1 self.beep_sound.play() self.end_round(frag_list) else: self.score -= 1 self.buzz_sound.play() self.end_round(frag_list) else: try: pygame.draw.circle(self._frame_surface, color, center, 40, 0) except: pass def draw_ind_intro_point(self, joints, jointPoints, color, joint0): joint0State = joints[joint0].TrackingState; if (joint0State == PyKinectV2.TrackingState_NotTracked or joint0State == PyKinectV2.TrackingState_Inferred): return center = (int(jointPoints[joint0].x), int(jointPoints[joint0].y)) try: pygame.draw.circle(self._frame_surface, color, center, 40, 0) except: pass def update_intro_screen(self, joints, jointPoints, color): self._frame_surface.fill(BG_COLOR)# blank screen before drawing points pygame.draw.rect(self._frame_surface, HIGHLIGHT_COLOR, (400, 300, 50, 50), 0) pygame.draw.rect(self._frame_surface, HIGHLIGHT_COLOR, (self._frame_surface.get_width() / 2, 200, 50, 50), 0) pygame.draw.rect(self._frame_surface, HIGHLIGHT_COLOR, (self._frame_surface.get_width() - 400, 300, 50, 50), 0) # draw rects here as examples self.draw_ind_intro_point(joints, jointPoints, color, PyKinectV2.JointType_Head) self.draw_ind_intro_point(joints, jointPoints, color, PyKinectV2.JointType_WristLeft) # may change PyKinectV2.JointType_WristRight to PyKinectV2.JointType_ElbowRight self.draw_ind_intro_point(joints, jointPoints, color, PyKinectV2.JointType_WristRight) def update_screen(self, joints, jointPoints, color, highlight_color, frag_list, seconds): self._frame_surface.fill(BG_COLOR)# blank screen before drawing points self.message_display(self.built_frag, (300, 750), 2) rect0 = self.message_display(frag_list[0], (400, 300), 1) rect1 = self.message_display(frag_list[1], (self._frame_surface.get_width()/2, 200), 1) rect2 = self.message_display(frag_list[2], (self._frame_surface.get_width() - 400, 300), 1) self.message_display(str(self.score), (self._frame_surface.get_width() / 2, 800), 1) self.message_display(str(seconds), (self._frame_surface.get_width() - 300, 800), 1) self.draw_ind_point(joints, jointPoints, color, highlight_color, rect0, rect1, rect2, PyKinectV2.JointType_Head, frag_list) self.draw_ind_point(joints, jointPoints, color, highlight_color, rect0, rect1, rect2, PyKinectV2.JointType_WristRight, frag_list) # may change PyKinectV2.JointType_WristRight to PyKinectV2.JointType_ElbowRight self.draw_ind_point(joints, jointPoints, color, highlight_color, rect0, rect1, rect2, PyKinectV2.JointType_WristLeft, frag_list) def end_round(self, frag_list): self._frame_surface.fill(BG_COLOR) self.message_display(self.built_frag, (300, 750), 2) rect0 = self.message_display(frag_list[0], (300, 300), 1) rect1 = self.message_display(frag_list[1], (self._frame_surface.get_width() / 2, 100), 1) rect2 = self.message_display(frag_list[2], (self._frame_surface.get_width() - 300, 300), 1) self.message_display(str(self.score), (self._frame_surface.get_width() / 2, 800), 1) h_to_w = float(self._frame_surface.get_height()) / self._frame_surface.get_width() target_height = int(h_to_w * self._screen.get_width()) surface_to_draw = pygame.transform.scale(self._frame_surface, (self._screen.get_width(), target_height)); self._screen.blit(surface_to_draw, (0,0)) surface_to_draw = None pygame.display.update() pygame.time.delay(500) self.new_round() def end_game(self): self._frame_surface.fill(BG_COLOR) self.message_display("Score: {}".format(self.score), (self._frame_surface.get_width() / 2, self._frame_surface.get_height() / 2), 1) h_to_w = float(self._frame_surface.get_height()) / self._frame_surface.get_width() target_height = int(h_to_w * self._screen.get_width()) surface_to_draw = pygame.transform.scale(self._frame_surface, (self._screen.get_width(), target_height)); self._screen.blit(surface_to_draw, (0,0)) surface_to_draw = None pygame.display.update() pygame.time.delay(3000) self._kinect.close() pygame.quit() sys.exit() def new_round(self): self.sentence = random.sample(self.sentence_list, 1)[0] self.built_frag = "" frag_list = self.fragment_sentence(self.sentence) random.shuffle(frag_list) pygame.time.delay(500) while not self.finished: seconds = int(GAME_TIME - (pygame.time.get_ticks() - self.start_ticks) / 1000) if seconds <= 0: self.end_game() if self._kinect.has_new_body_frame(): self._bodies = self._kinect.get_last_body_frame() if self._bodies is not None: for i in range(0, self._kinect.max_body_count): body = self._bodies.bodies[i] if not body.is_tracked: continue joints = body.joints joint_points = self._kinect.body_joints_to_color_space(joints) self.update_screen(joints, joint_points, TRACKING_COLOR, HIGHLIGHT_COLOR, frag_list, seconds)# check here h_to_w = float(self._frame_surface.get_height()) / self._frame_surface.get_width() target_height = int(h_to_w * self._screen.get_width()) surface_to_draw = pygame.transform.scale(self._frame_surface, (self._screen.get_width(), target_height)); self._screen.blit(surface_to_draw, (0,0)) surface_to_draw = None pygame.display.update() self._clock.tick(60) for event in pygame.event.get(): if event.type == pygame.QUIT: self.finished = True if event.type == pygame.KEYUP and event.key == pygame.K_ESCAPE: self.finished = True self.end_game() def run(self): self.score = 0 while not self.finished: if self._kinect.has_new_body_frame(): self._bodies = self._kinect.get_last_body_frame() if self._bodies is not None: for i in range(0, self._kinect.max_body_count): body = self._bodies.bodies[i] if not body.is_tracked: continue joints = body.joints joint_points = self._kinect.body_joints_to_color_space(joints) self.update_intro_screen(joints, joint_points, TRACKING_COLOR) h_to_w = float(self._frame_surface.get_height()) / self._frame_surface.get_width() target_height = int(h_to_w * self._screen.get_width()) surface_to_draw = pygame.transform.scale(self._frame_surface, (self._screen.get_width(), target_height)); self._screen.blit(surface_to_draw, (0,0)) surface_to_draw = None pygame.display.update() self._clock.tick(60) for event in pygame.event.get(): if event.type == pygame.QUIT: self.finished = True if event.type == pygame.KEYUP and event.key == pygame.K_SPACE: self.start_ticks = pygame.time.get_ticks() self.new_round() if event.type == pygame.KEYUP and event.key == pygame.K_ESCAPE: self.finished = True self._kinect.close() pygame.quit() sys.exit() if __name__ == "__main__": game = BodyGameRuntime() game.run() ``` #### File: Multiple Pushbutton/6-Team Parts Of Speech Game/PartsOfSpeechTeamGame.py ```python import pygame import sys from pygame.locals import * from random import randint class PartsOfSpeechTeamGame(object): BLACK = (0, 0, 0) WHITE = (255, 255, 255) RED = (255, 0, 0) BLUE = (0, 0, 255) def __init__(self): pygame.init() pygame.mixer.init() self.sound_wrong = pygame.mixer.Sound('audio\\wrong.ogg') self.sound_right = pygame.mixer.Sound('audio\\right.ogg') self.sound_win = pygame.mixer.Sound('audio\\win.ogg') self.DISPLAYSURF = pygame.display.set_mode((0,0), pygame.FULLSCREEN) self.xRes, self.yRes = pygame.display.get_surface().get_size() pygame.display.set_caption('Parts of Speech Game') self.DISPLAYSURF.fill(PartsOfSpeechTeamGame.WHITE) self.font = pygame.font.SysFont(None, 72) self.team_font = pygame.font.SysFont(None, 32) self.team_1_name = 'Ants' self.team_2_name = 'Pharmcists' self.team_3_name = 'Apples' self.team_4_name = 'Monkeys' self.team_5_name = 'Red Stars' self.team_6_name = 'Wildcats' #starting scores (add handicap as necessary). Will affect answers required to win, effect varies based on screen resolution. self.team_1_score = 0 self.team_2_score = 0 self.team_3_score = 0 self.team_4_score = 0 self.team_5_score = 0 self.team_6_score = 0 self.answers_to_win = 20 self.winning_score = (self.yRes-40)/2#self.yRes minus 40px team name rectangle self.points_per_question = self.winning_score/self.answers_to_win self.active_word = '' self.active_word_class = '' self.vocab_tuples = (('agree','verb'),('allow','verb'),('appear','verb'),('ask','verb'),('be','verb'),('become','verb'), ('begin','verb'),('believe','verb'),('belong','verb'),('bring','verb'),('build','verb'),('carry','verb'), ('choose','verb'),('come','verb'),('connect','verb'),('consider','verb'),('continue','verb'), ('contribute','verb'),('manipulate','verb'),('create','verb'),('decide','verb'),('deliver','verb'), ('destroy','verb'),('develop','verb'),('discover','verb'),('discuss','verb'),('eat','verb'),('encourage','verb'), ('explain','verb'),('follow','verb'),('get','verb'),('give','verb'),('go','verb'),('happen','verb'), ('have','verb'),('hear','verb'),('imagine','verb'),('include','verb'),('involve','verb'),('know','verb'), ('learn','verb'),('let','verb'),('lose','verb'),('make','verb'),('obtain','verb'),('open','verb'),('pay','verb'), ('read','verb'),('realize','verb'),('receive','verb'),('remember','verb'),('say','verb'),('see','verb'), ('seem','verb'),('sell','verb'),('send','verb'),('serve','verb'),('sit','verb'),('speak','verb'),('spend','verb'), ('suffer','verb'),('suggest','verb'),('take','verb'),('teach','verb'),('tell','verb'),('think','verb'), ('try','verb'),('understand','verb'),('want','verb'),('write','verb'), ('red','adj'),('green','adj'),('purple','adj'),('yellow','adj'),('brown','adj'),('different','adj'), ('important','adj'),('new','adj'),('old','adj'),('young','adj'),('fat','adj'),('skinny','adj'), ('pretty','adj'),('ugly','adj'),('beautiful','adj'),('nice','adj'),('fantastic','adj'),('long','adj'),('short','adj'), ('tall','adj'),('big','adj'),('small','adj'),('political','adj'),('best','adj'),('worst','adj'),('happiest','adj'), ('saddest','adj'),('flirtatious','adj'),('stinky','adj'),('smelly','adj'),('squishy','adj'),('greasy','adj'), ('hot','adj'),('cold','adj'),('warm','adj'),('environmental','adj'),('financial','adj'),('scientific','adj'), ('medical','adj'),('smart','adj'),('dumb','adj'),('hairy','adj'),('smooth','adj'),('rough','adj'),('lonely','adj'), ('natural','adj'),('wrong','adj'),('incorrect','adj'),('correct','adj'),('afraid','adj'),('alive','adj'),('bad','adj'), ('good','adj'),('annoying','adj'),('irritating','adj'),('brave','adj'),('broken','adj'),('cheap','adj'), ('expensive','adj'),('dangerous','adj'),('empty','adj'),('full','adj'),('dry','adj'),('wet','adj'),('exciting','adj'), ('boring','adj'),('great','adj'), ('year','noun'),('people','noun'),('way','noun'),('day','noun'),('man','noun'),('thing','noun'),('woman','noun'), ('life','noun'),('child','noun'),('world','noun'),('family','noun'),('student','noun'),('country','noun'), ('problem','noun'),('week','noun'),('company','noun'),('system','noun'),('government','noun'),('night','noun'), ('house','noun'),('car','noun'),('book','noun'),('elephant','noun'),('cat','noun'),('dog','noun'),('hippopotamus','noun'), ('magazine','noun'),('eye','noun'),('leg','noun'),('brain','noun'),('job','noun'),('business','noun'), ('teacher','noun'),('mother','noun'),('father','noun'),('boy','noun'),('girl','noun'),('triangle','noun'), ('rectangle','noun'),('history','noun'),('war','noun'),('art','noun'),('science','noun'),('nursing','noun'), ('chemistry','noun'),('biotechnology','noun'),('money','noun'),('person','noun'),('health','noun'),('door','noun'), ('window','noun'),('ceiling','noun'),('roof','noun'),('office','noun'),('computer','noun'),('Xbox','noun'), ('stethoscope','noun'),('injection','noun'),('tree','noun'),('boat','noun'),('river','noun'),('lake','noun'), ('sky','noun'),('mango','noun')) self.key_bindings_dict = {pygame.K_a:self.team_1_score_update, pygame.K_e:self.team_2_score_update, pygame.K_i:self.team_3_score_update, pygame.K_m:self.team_4_score_update, pygame.K_q:self.team_5_score_update, pygame.K_u:self.team_6_score_update, pygame.K_b:self.team_1_score_update, pygame.K_f:self.team_2_score_update, pygame.K_j:self.team_3_score_update, pygame.K_n:self.team_4_score_update, pygame.K_r:self.team_5_score_update, pygame.K_v:self.team_6_score_update, pygame.K_c:self.team_1_score_update, pygame.K_g:self.team_2_score_update, pygame.K_k:self.team_3_score_update, pygame.K_o:self.team_4_score_update, pygame.K_s:self.team_5_score_update, pygame.K_w:self.team_6_score_update} def refresh_display(self): team1Label = self.team_font.render(self.team_1_name, True, PartsOfSpeechTeamGame.BLACK) team2Label = self.team_font.render(self.team_2_name, True, PartsOfSpeechTeamGame.BLACK) team3Label = self.team_font.render(self.team_3_name, True, PartsOfSpeechTeamGame.BLACK) team4Label = self.team_font.render(self.team_4_name, True, PartsOfSpeechTeamGame.BLACK) team5Label = self.team_font.render(self.team_5_name, True, PartsOfSpeechTeamGame.BLACK) team6Label = self.team_font.render(self.team_6_name, True, PartsOfSpeechTeamGame.BLACK) team1LabelPos = team1Label.get_rect() team2LabelPos = team2Label.get_rect() team3LabelPos = team3Label.get_rect() team4LabelPos = team4Label.get_rect() team5LabelPos = team5Label.get_rect() team6LabelPos = team6Label.get_rect() team1LabelPos.centerx = (3*self.xRes/16)/2 team2LabelPos.centerx = ((2*self.xRes/16)+(self.xRes/10)+(2*self.xRes/16)+(self.xRes/10)+(self.xRes/16))/2 team3LabelPos.centerx = ((3*self.xRes/16)+(2*self.xRes/10)+(3*self.xRes/16)+(2*self.xRes/10)+(self.xRes/16))/2 team4LabelPos.centerx = ((4*self.xRes/16)+(3*self.xRes/10)+(4*self.xRes/16)+(3*self.xRes/10)+(self.xRes/16))/2 team5LabelPos.centerx = ((5*self.xRes/16)+(4*self.xRes/10)+(5*self.xRes/16)+(4*self.xRes/10)+(self.xRes/16))/2 team6LabelPos.centerx = ((6*self.xRes/16)+(5*self.xRes/10)+(6*self.xRes/16)+(5*self.xRes/10)+(self.xRes/16))/2 team1LabelPos.centery = (2*self.yRes-40)/2 team2LabelPos.centery = (2*self.yRes-40)/2 team3LabelPos.centery = (2*self.yRes-40)/2 team4LabelPos.centery = (2*self.yRes-40)/2 team5LabelPos.centery = (2*self.yRes-40)/2 team6LabelPos.centery = (2*self.yRes-40)/2 self.DISPLAYSURF.blit(team1Label,team1LabelPos) self.DISPLAYSURF.blit(team2Label,team2LabelPos) self.DISPLAYSURF.blit(team3Label,team3LabelPos) self.DISPLAYSURF.blit(team4Label,team4LabelPos) self.DISPLAYSURF.blit(team5Label,team5LabelPos) self.DISPLAYSURF.blit(team6Label,team6LabelPos) team1Rect = pygame.Rect(self.xRes/16,self.yRes-self.team_1_score-40,self.xRes/16,self.team_1_score) team2Rect = pygame.Rect((2*self.xRes/16)+(self.xRes/10),self.yRes-self.team_2_score-40,self.xRes/16,self.team_2_score) team3Rect = pygame.Rect((3*self.xRes/16)+(2*self.xRes/10),self.yRes-self.team_3_score-40,self.xRes/16,self.team_3_score) team4Rect = pygame.Rect((4*self.xRes/16)+(3*self.xRes/10),self.yRes-self.team_4_score-40,self.xRes/16,self.team_4_score) team5Rect = pygame.Rect((5*self.xRes/16)+(4*self.xRes/10),self.yRes-self.team_5_score-40,self.xRes/16,self.team_5_score) team6Rect = pygame.Rect((6*self.xRes/16)+(5*self.xRes/10),self.yRes-self.team_6_score-40,self.xRes/16,self.team_6_score) pygame.draw.rect(self.DISPLAYSURF, PartsOfSpeechTeamGame.RED, team1Rect) pygame.draw.rect(self.DISPLAYSURF, PartsOfSpeechTeamGame.RED, team2Rect) pygame.draw.rect(self.DISPLAYSURF, PartsOfSpeechTeamGame.RED, team3Rect) pygame.draw.rect(self.DISPLAYSURF, PartsOfSpeechTeamGame.RED, team4Rect) pygame.draw.rect(self.DISPLAYSURF, PartsOfSpeechTeamGame.RED, team5Rect) pygame.draw.rect(self.DISPLAYSURF, PartsOfSpeechTeamGame.RED, team6Rect) pygame.draw.line(self.DISPLAYSURF, PartsOfSpeechTeamGame.BLUE, (0, (self.yRes-40)/2), (self.xRes, (self.yRes-40)/2), 4) pygame.display.update() return def game_over(self, team): self.DISPLAYSURF.fill(PartsOfSpeechTeamGame.WHITE) self.sound_win.play() text = self.font.render(team + ' wins!', True, PartsOfSpeechTeamGame.RED) textpos = text.get_rect() textpos.centerx = self.DISPLAYSURF.get_rect().centerx textpos.y = self.yRes/4 self.DISPLAYSURF.blit(text,textpos) self.refresh_display() self.team_1_score = 0 self.team_2_score = 0 self.team_3_score = 0 self.team_4_score = 0 self.team_5_score = 0 self.team_6_score = 0 randomWordInt = randint(0,len(self.vocab_tuples)-1) self.active_word = self.vocab_tuples[randomWordInt][0] self.active_word_class = self.vocab_tuples[randomWordInt][1] while True: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() sys.exit() if event.type == pygame.KEYUP and event.key == pygame.K_SPACE: return def deactivate_keys(self): self.DISPLAYSURF.fill(PartsOfSpeechTeamGame.WHITE) text = self.font.render(self.active_word, True, PartsOfSpeechTeamGame.BLACK) textpos = text.get_rect() textpos.centerx = self.DISPLAYSURF.get_rect().centerx textpos.y = self.yRes/4 self.DISPLAYSURF.blit(text,textpos) self.refresh_display() while True: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() sys.exit() if event.type == pygame.KEYUP and event.key == pygame.K_SPACE: return def new_word(self): randomWordInt = randint(0,len(self.vocab_tuples)-1) self.active_word = self.vocab_tuples[randomWordInt][0] self.active_word_class = self.vocab_tuples[randomWordInt][1] self.DISPLAYSURF.fill(PartsOfSpeechTeamGame.WHITE) text = self.font.render(self.active_word, True, PartsOfSpeechTeamGame.BLACK) textpos = text.get_rect() textpos.centerx = self.DISPLAYSURF.get_rect().centerx textpos.y = self.yRes/4 self.DISPLAYSURF.blit(text,textpos) self.refresh_display() def team_1_score_update(self, score): self.team_1_score += score if self.team_1_score < 0: self.team_1_score = 0 if self.team_1_score >= self.winning_score: self.game_over(self.team_1_name) def team_2_score_update(self, score): self.team_2_score += score if self.team_2_score < 0: self.team_2_score = 0 if self.team_2_score >= self.winning_score: self.game_over(self.team_2_name) def team_3_score_update(self, score): self.team_3_score += score if self.team_3_score < 0: self.team_3_score = 0 if self.team_3_score >= self.winning_score: self.game_over(self.team_3_name) def team_4_score_update(self, score): self.team_4_score += score if self.team_4_score < 0: self.team_4_score = 0 if self.team_4_score >= self.winning_score: self.game_over(self.team_4_name) def team_5_score_update(self, score): self.team_5_score += score if self.team_5_score < 0: self.team_5_score = 0 if self.team_5_score >= self.winning_score: self.game_over(self.team_5_name) def team_6_score_update(self, score): self.team_6_score += score if self.team_6_score < 0: self.team_6_score = 0 if self.team_6_score >= self.winning_score: self.game_over(self.team_6_name) def run(self): self.refresh_display() while True: for event in pygame.event.get(): if event.type == QUIT: pygame.quit() sys.exit() if event.type == pygame.KEYUP: if event.key == pygame.K_ESCAPE: pygame.quit() sys.exit() if event.key == pygame.K_SPACE: self.new_word() if event.key in (pygame.K_a,pygame.K_e,pygame.K_i,pygame.K_m,pygame.K_q,pygame.K_u): if self.active_word_class == 'adj': self.sound_right.play() self.key_bindings_dict[event.key](self.points_per_question) self.deactivate_keys()#alter as needed to affect classroom speed, use delay if needed else: self.sound_wrong.play() self.key_bindings_dict[event.key](-self.points_per_question) self.deactivate_keys() if event.key in (pygame.K_b,pygame.K_f,pygame.K_j,pygame.K_n,pygame.K_r,pygame.K_v): if self.active_word_class == 'noun': self.sound_right.play() self.key_bindings_dict[event.key](self.points_per_question) self.deactivate_keys() else: self.sound_wrong.play() self.key_bindings_dict[event.key](-self.points_per_question) self.deactivate_keys() if event.key in (pygame.K_c,pygame.K_g,pygame.K_k,pygame.K_o,pygame.K_s,pygame.K_w): if self.active_word_class == 'verb': self.sound_right.play() self.key_bindings_dict[event.key](self.points_per_question) self.deactivate_keys() else: self.sound_wrong.play() self.key_bindings_dict[event.key](-self.points_per_question) self.deactivate_keys() pygame.display.update() if __name__ == '__main__': new_instance = PartsOfSpeechTeamGame() new_instance.run() ``` #### File: Multiple Pushbutton/Parts of Speech/PartsOfSpeechPointsScore.py ```python import pygame import time import math import sqlite3 import random import pygame.font from pygame.locals import * import sys class TextRectException: def __init__(self, message = None): self.message = message def __str__(self): return self.message class PartsOfSpeech(object): WHITE = (255,255,255)# some colors are not currently used, but left for future modification BLACK = (0,0,0) GREEN = (0,128,0) YELLOW = (255,229,51) RED = (255,0,0) BLUE = (0,0,255) BROWN = (97,65,38) PURPLE = (128,0,128) def __init__(self): pygame.init() pygame.mixer.init() self.score = 0 self.start_time = 60 try: self.conn = sqlite3.connect('student.db')# connect to database except: print("Database not found!") self.c = self.conn.cursor() self.sound_win = pygame.mixer.Sound('audio\\ping.ogg') self.sound_loss = pygame.mixer.Sound('audio\\buzzer.ogg') self.my_font = pygame.font.Font(None, 48) self.my_rect = pygame.Rect((20, 100, 760, 240)) self.my_rect_user = pygame.Rect((20, 20, 760, 80)) self.my_rect_frag_1 = pygame.Rect((20, 340, 760, 65)) self.my_rect_frag_2 = pygame.Rect((20, 405, 760, 65)) self.my_rect_frag_3 = pygame.Rect((20, 470, 760, 65)) self.my_rect_frag_4 = pygame.Rect((20, 535, 760, 65)) self.display = pygame.display.set_mode((800, 600))# change to desired resolution -- you'll need to modify rect size. pygame.display.set_caption("Parts of Speech Game") self.display.fill(PartsOfSpeech.WHITE) pygame.display.update() self.finished = False def render_textrect(self, string, font, rect, text_color, background_color, justification=0): final_lines = [] requested_lines = string.splitlines() for requested_line in requested_lines: if font.size(requested_line)[0] > rect.width: words = requested_line.split(' ') for word in words: if font.size(word)[0] >= rect.width: raise TextRectException("The word " + word + " is too long to fit in the rect passed.") accumulated_line = "" for word in words: test_line = accumulated_line + word + " " if font.size(test_line)[0] < rect.width: accumulated_line = test_line else: final_lines.append(accumulated_line) accumulated_line = word + " " final_lines.append(accumulated_line) else: final_lines.append(requested_line) surface = pygame.Surface(rect.size) surface.fill(background_color) accumulated_height = 0 for line in final_lines: if accumulated_height + font.size(line)[1] >= rect.height: raise TextRectException("After word wrap, the text string was too tall to fit in the provided rect.") if line != "": tempsurface = font.render(line, 1, text_color) if justification == 0: surface.blit(tempsurface, (0, accumulated_height)) elif justification == 1: surface.blit(tempsurface, ((rect.width - tempsurface.get_width()) / 2, accumulated_height)) elif justification == 2: surface.blit(tempsurface, (rect.width - tempsurface.get_width(), accumulated_height)) else: raise TextRectException("Invalid justification argument: " + str(justification)) accumulated_height += font.size(line)[1] return surface def special_render_textrect(self, string, font, rect, text_color, special_color, background_color, justification=0): final_lines = [] requested_lines = string.splitlines() for requested_line in requested_lines: if font.size(requested_line)[0] > rect.width: words = requested_line.split(' ') for word in words: if font.size(word)[0] >= rect.width: raise TextRectException("The word " + word + " is too long to fit in the rect passed.") accumulated_line = "" for word in words: test_line = accumulated_line + word + " " if font.size(test_line)[0] < rect.width: accumulated_line = test_line else: final_lines.append(accumulated_line) accumulated_line = word + " " final_lines.append(accumulated_line) else: final_lines.append(requested_line) surface = pygame.Surface(rect.size) surface.fill(background_color) accumulated_height = 0 for line in final_lines: if accumulated_height + font.size(line)[1] >= rect.height: raise TextRectException("After word wrap, the text string was too tall to fit in the provided rect.") if line != "": if self.sentence_pos_word in line: tempsurface = font.render(line[0:line.index(self.sentence_pos_word)], 1, text_color) tempsurface1 = font.render(self.sentence_pos_word, 1, special_color) tempsurface2 = font.render(line[line.index(self.sentence_pos_word)+len(self.sentence_pos_word):-1], 1, text_color) surface.blit(tempsurface, (0, accumulated_height)) surface.blit(tempsurface1, (tempsurface.get_width(), accumulated_height)) surface.blit(tempsurface2, (tempsurface.get_width()+tempsurface1.get_width(), accumulated_height)) else: tempsurface = font.render(line, 1, text_color) if justification == 0: surface.blit(tempsurface, (0, accumulated_height)) elif justification == 1: surface.blit(tempsurface, ((rect.width - tempsurface.get_width()) / 2, accumulated_height)) elif justification == 2: surface.blit(tempsurface, (rect.width - tempsurface.get_width(), accumulated_height)) else: raise TextRectException("Invalid justification argument: " + str(justification)) accumulated_height += font.size(line)[1] return surface def new_user(self): self.pos_list = ["noun","verb","adjective","adverb","conjunction","preposition","proper noun","interjection","possessive pronoun","pronoun","article","possessive noun"] sentence_list = [["The English rock band <NAME> released the album Dark Side of the Moon in 1973.",[["band","noun"],["album","noun"],["released","verb"],["Dark","adjective"]]], ["In 1969, NASA astronauts on the Apollo 10 space mission heard what sounded like outer-space music.",[["outer-space","adjective"],["sounded","verb"],["on","pre"],["mission","noun"]]], ["Nearly 50 years later, those mysterious noises on Apollo 10 have become a trending topic on social media.",[["topic","noun"],["noises","noun"],["mysterious","adjective"],["trending","adjective"]]], ["In May of 1969, the Apollo 10 crew approached the far side of the moon.",[["crew","noun"],["May","proper noun"],["approached","verb"],["far","adjective"]]], ["The three astronauts, <NAME>, <NAME>, and <NAME>, would have no contact with the Earth.",[["astronauts","noun"],["<NAME>","proper noun"],["<NAME>","proper noun"],["three","adjective"]]], ["But just as they approached the far side of the moon, the crew heard strange music.",[["moon","noun"],["strange","adjective"],["music","noun"],["they","pronoun"]]], ["That was the conversation between astronauts <NAME> and <NAME> after hearing the strange sounds.",[["conversation","noun"],["hearing","verb"],["after","con"],["and","con"]]], ["The story of the unusual space noises will appear on a television series called NASA's Unexplained Files.",[["television","noun"],["unusual","adjective"],["story","noun"],["appear","verb"]]], ["A preview of the episode appeared on YouTube earlier this week.",[["week","noun"],["appeared","verb"],["YouTube","proper noun"],["on","preposition"]]], ["Some news reports and social media posts wrongly said that the Apollo 10 audio files were recently made public.",[["files","noun"],["and","conjunction"],["said","verb"],["recently","adverb"]]], ["There has been praise and condemnation for Hollywood star Sean Penn this week.",[["praise","noun"],["Sean Penn","proper noun"],["and","conjunction"],["been","verb"]]], ["Sean Penn has had controversial moments throughout his public life.",[["life","noun"],["has","verb"],["his","possessive pronoun"],["throughout","preposition"]]], ["This week, the public learned that Penn met with the leader of a brutal Mexican crime group.",[["group","noun"],["learned","verb"],["brutal","adjective"],["with","preposition"]]], ["The actor interviewed <NAME> in October 2015.",[["actor","noun"],["interviewed","verb"],["October","proper noun"],["<NAME>","proper noun"]]], ["Guzman had escaped from a Mexican federal prison in July.",[["prison","noun"],["federal","adjective"],["in","preposition"],["escaped","verb"]]], ["It was his second escape.",[["escape","noun"],["second","adjective"],["It","pronoun"],["his","possessive pronoun"]]], ["He was on the lam from 2001 to 2014 after the first prison break.",[["break","noun"],["He","pronoun"],["first","adjective"],["prison","adjective"]]], ["He was serving a 20-year sentence for murder and drug trafficking.",[["murder","noun"],["20-year","adjective"],["drug","adjective"],["serving","verb"]]], ["Rolling Stone magazine published Penn's interview online January 11.",[["magazine","noun"],["published","verb"],["January","proper noun"],["interview","noun"]]], ["Mexican federal police recaptured El Chapo a day earlier.",[["day","noun"],["recaptured","verb"],["federal","adjective"],["day","noun"]]], ["In his article, Penn explained why he wanted to meet the crime leader.",[["article","noun"],["his","possessive pronoun"],["explained","verb"],["wanted","verb"]]], ["Penn is a longtime political activist.",[["activist","noun"],["Penn","proper noun"],["longtime","adjective"],["political","activist"]]], ["He has involved himself in international affairs at high levels.",[["levels","noun"],["international","adjective"],["high","adjective"],["involved","verb"]]], ["In 2007, he met and befriended <NAME>, who was then the socialist president of Venezuela.",[["president","noun"],["Venezuela","proper noun"],["befriended","verb"],["socialist","adjective"]]], ["The US government was not a fan of Chavez, who allied himself with Cuban leaders Fidel and <NAME>.",[["fan","noun"],["Cuban","adjective"],["allied","verb"],["with","preposition"]]], ["Penn also has met with <NAME>.",[["<NAME>","proper noun"],["met","verb"],["Penn","proper noun"],["has","verb"]]], ["He got involved in the Falklands dispute between Britain and Argentina.",[["dispute","noun"],["the","article"],["involved","verb"],["Argentina","proper noun"]]], ["The actor met with Argentinian President <NAME> in 2012, after Britain made military moves toward Argentina.",[["actor","noun"],["Argentinian","proper noun"],["after","preposition"],["toward","preposition"]]], ["Penn sided with Argentina in that dispute.",[["dispute","noun"],["sided","verb"],["Argentina","proper noun"],["Penn","proper noun"]]], ["Penn has written about his experiences for the news media before.",[["experiences","noun"],["his","possessive pronoun"],["about","preposition"],["news","adjective"]]], ["He visited Iraq in 2004, and Iran the following year.",[["year","noun"],["visited","verb"],["Iran","proper noun"],["He","pronoun"]]], ["He wrote about those experiences for the San Francisco Chronicle.",[["experiences","noun"],["about","preposition"],["San Francisco Chronicle","proper noun"],["for","preposition"]]], ["Penn had been to Iraq earlier to protest international military strikes against the country.",[["strikes","noun"],["Iraq","proper noun"],["to","preposition"],["against","preposition"]]], ["The star also helped in times of natural disaster.",[["star","noun"],["disaster","noun"],["in","preposition"],["natural","adjective"]]], ["He started a foundation to help victims of the earthquake in Haiti.",[["earthquake","noun"],["started","verb"],["help","verb"],["Haiti","proper noun"]]], ["He also went to New Orleans shortly after <NAME> and reportedly rescued some survivors.",[["survivors","noun"],["after","preposition"],["New Orleans","proper noun"],["rescued","verb"]]], ["Wow! In 2012, <NAME> went to Bolivia to visit a US businessman jailed there.",[["businessman","noun"],["Wow!","interjection"],["Bolivia","proper noun"],["visit","verb"]]], ["A Russian spacecraft traveling to the International Space Station Thursday had to make an emergency landing when a rocket engine failed to fire.",[["Russian","adjective"],["emergency","adjective"],["Thursday","proper noun"],["make","verb"]]], ["About two minutes after launching, the three-stage Soyuz booster rocket suffered an unspecified failure of its second stage.",[["failure","noun"],["three-stage","adjective"],["two","adjective"],["rocket","noun"]]], ["The Russian space program has suffered several failures in recent years.",[["years","noun"],["suffered","verb"],["program","noun"],["several","adjective"]]], ["The cosmonauts safely escaped in that accident as well.",[["cosmonauts","noun"],["safely","adverb"],["accident","noun"],["the","article"]]], ["Relations between the U.S. and Russia have been very tense in recent years.",[["Relations","noun"],["very","adverb"],["Russia","proper noun"],["tense","adjective"]]], ["However, the two sides have continued their cooperation in space.",[["space","noun"],["two","adjective"],["sides","noun"],["continued","verb"]]], ["Weather officials believe the storm will pass over North and South Carolina before heading out to the Atlantic Ocean in coming days.",[["before","preposition"],["the","article"],["South Carolina","proper noun"],["heading","verb"]]], ["Wood and metal from destroyed buildings covered streets and moved through flooded neighborhoods.",[["neighborhoods","noun"],["flooded","adjective"],["metal","noun"],["covered","verb"]]], ["<NAME> is the governor of Florida.",[["governor","noun"],["the","article"],["<NAME>","proper noun"],["is","verb"]]], ["Ouch! I just broke my leg.",[["Ouch!","interjection"],["broke","verb"],["my","possessive adjective"],["I","pronoun"]]], ["Holy Moly! I love mole.",[["mole","noun"],["Holy Moly!","interjection"],["I","pronoun"],["love","verb"]]], ["Don't touch Ivan's green pochocuiles.",[["pochocuiles","noun"],["Ivan's","possessive noun"],["green","adjective"],["touch","verb"]]], ["Concha and Briseida quickly run to El Chontal.",[["quickly","adverb"],["and","conjunction"],["El Chontal","proper noun"],["run","verb"]]], ["Diego hungrily swallows the gross taco.",[["taco","noun"],["the","article"],["gross","adjective"],["hungrily","adverb"]]], ["Florizet loudly said 'Oh my God!'.",[["said","verb"],["Oh my God!","interjection"],["Florizet","proper noun"],["loudly","adverb"]]], ["Jennifer hurriedly danced with La Chenta at the Video Bar.",[["hurriedly","adverb"],["the","article"],["Jennifer","proper noun"],["danced","verb"]]], ["Silvia likes to read romantic anime.",[["romantic","adjective"],["anime","noun"],["Silvia","proper noun"],["read","verb"]]], ["Yoaly and Jesus secretly pretend not to see the teacher.",[["not","adverb"],["secretly","adverb"],["and","conjunction"],["pretend","verb"]]], ["More than 98 million of the world's adolescent girls do not go to school.",[["world's","possessive noun"],["adolescent","adjective"],["not","adverb"],["go","verb"]]], ["<NAME> had been jailed for months and never charged with a crime.",[["months","noun"],["jailed","verb"],["<NAME>","proper noun"],["with","preposition"]]]] self.c.execute('select * from users order by random() limit 1;') userdata = self.c.fetchone() self.username = str(userdata[1]) self.sentence = sentence_list[random.randint(0,len(sentence_list)-1)] self.plain_sentence = self.sentence[0] sentence_pos = self.sentence[1][random.randint(0,len(sentence_list[1])-1)] self.sentence_pos_word = sentence_pos[0] self.sentence_pos_wordIND = sentence_pos[1] answerlist = random.sample(self.pos_list,3) while sentence_pos[1] in answerlist: answerlist = random.sample(self.pos_list,3) answerlist.append(sentence_pos[1]) random.shuffle(answerlist) self.frag0 = answerlist[0] self.frag1 = answerlist[1] self.frag2 = answerlist[2] self.frag3 = answerlist[3] self.display.fill(PartsOfSpeech.WHITE) self.rendered_text = self.special_render_textrect(self.plain_sentence, self.my_font, self.my_rect, PartsOfSpeech.BLACK, PartsOfSpeech.PURPLE, PartsOfSpeech.WHITE, 1) self.rendered_text_user = self.render_textrect("SCORE: {0}, TIME: {1}".format(self.score, round(self.start_time - self.seconds, 0)), self.my_font, self.my_rect_user, PartsOfSpeech.BROWN, PartsOfSpeech.WHITE, 0) self.rendered_text_frag_1 = self.render_textrect(self.frag0, self.my_font, self.my_rect_frag_1, PartsOfSpeech.RED, PartsOfSpeech.WHITE, 0) self.rendered_text_frag_2 = self.render_textrect(self.frag1, self.my_font, self.my_rect_frag_2, PartsOfSpeech.YELLOW, PartsOfSpeech.WHITE, 0) self.rendered_text_frag_3 = self.render_textrect(self.frag2, self.my_font, self.my_rect_frag_3, PartsOfSpeech.GREEN, PartsOfSpeech.WHITE, 0) self.rendered_text_frag_4 = self.render_textrect(self.frag3, self.my_font, self.my_rect_frag_4, PartsOfSpeech.BLUE, PartsOfSpeech.WHITE, 0) self.display.blit(self.rendered_text, self.my_rect.topleft) self.display.blit(self.rendered_text_user, self.my_rect_user.topleft) self.display.blit(self.rendered_text_frag_1, self.my_rect_frag_1.topleft) self.display.blit(self.rendered_text_frag_2, self.my_rect_frag_2.topleft) self.display.blit(self.rendered_text_frag_3, self.my_rect_frag_3.topleft) self.display.blit(self.rendered_text_frag_4, self.my_rect_frag_4.topleft) pygame.display.update() return def refresh_screen(self, fragment): if fragment == self.sentence_pos_wordIND:#winner! self.score += 1 self.display.fill(PartsOfSpeech.WHITE) rendered_text = self.special_render_textrect(self.plain_sentence, self.my_font, self.my_rect, PartsOfSpeech.BLACK, PartsOfSpeech.PURPLE, PartsOfSpeech.WHITE, 1)#need to figure out how to bold or color the word we want rendered_text_user = self.render_textrect("SCORE: {0}, TIME: {1}".format(self.score, round(self.start_time - self.seconds, 0)), self.my_font, self.my_rect_user, PartsOfSpeech.BROWN, PartsOfSpeech.WHITE, 0)#last 0 is to left align if self.frag0 == fragment: self.rendered_text_frag_1 = self.render_textrect(self.frag0, self.my_font, self.my_rect_frag_1, PartsOfSpeech.GREEN, PartsOfSpeech.WHITE, 0) self.rendered_text_frag_2 = self.render_textrect(self.frag1, self.my_font, self.my_rect_frag_2, PartsOfSpeech.BLACK, PartsOfSpeech.WHITE, 0) self.rendered_text_frag_3 = self.render_textrect(self.frag2, self.my_font, self.my_rect_frag_3, PartsOfSpeech.BLACK, PartsOfSpeech.WHITE, 0) self.rendered_text_frag_4 = self.render_textrect(self.frag3, self.my_font, self.my_rect_frag_4, PartsOfSpeech.BLACK, PartsOfSpeech.WHITE, 0) elif self.frag1 == fragment: self.rendered_text_frag_1 = self.render_textrect(self.frag0, self.my_font, self.my_rect_frag_1, PartsOfSpeech.BLACK, PartsOfSpeech.WHITE, 0) self.rendered_text_frag_2 = self.render_textrect(self.frag1, self.my_font, self.my_rect_frag_2, PartsOfSpeech.GREEN, PartsOfSpeech.WHITE, 0) self.rendered_text_frag_3 = self.render_textrect(self.frag2, self.my_font, self.my_rect_frag_3, PartsOfSpeech.BLACK, PartsOfSpeech.WHITE, 0) self.rendered_text_frag_4 = self.render_textrect(self.frag3, self.my_font, self.my_rect_frag_4, PartsOfSpeech.BLACK, PartsOfSpeech.WHITE, 0) elif self.frag2 == fragment: self.rendered_text_frag_1 = self.render_textrect(self.frag0, self.my_font, self.my_rect_frag_1, PartsOfSpeech.BLACK, PartsOfSpeech.WHITE, 0) self.rendered_text_frag_2 = self.render_textrect(self.frag1, self.my_font, self.my_rect_frag_2, PartsOfSpeech.BLACK, PartsOfSpeech.WHITE, 0) self.rendered_text_frag_3 = self.render_textrect(self.frag2, self.my_font, self.my_rect_frag_3, PartsOfSpeech.GREEN, PartsOfSpeech.WHITE, 0) self.rendered_text_frag_4 = self.render_textrect(self.frag3, self.my_font, self.my_rect_frag_4, PartsOfSpeech.BLACK, PartsOfSpeech.WHITE, 0) elif self.frag3 == fragment: self.rendered_text_frag_1 = self.render_textrect(self.frag0, self.my_font, self.my_rect_frag_1, PartsOfSpeech.BLACK, PartsOfSpeech.WHITE, 0) self.rendered_text_frag_2 = self.render_textrect(self.frag1, self.my_font, self.my_rect_frag_2, PartsOfSpeech.BLACK, PartsOfSpeech.WHITE, 0) self.rendered_text_frag_3 = self.render_textrect(self.frag2, self.my_font, self.my_rect_frag_3, PartsOfSpeech.BLACK, PartsOfSpeech.WHITE, 0) self.rendered_text_frag_4 = self.render_textrect(self.frag3, self.my_font, self.my_rect_frag_4, PartsOfSpeech.GREEN, PartsOfSpeech.WHITE, 0) else: self.rendered_text_frag_1 = self.render_textrect(self.frag0, self.my_font, self.my_rect_frag_1, PartsOfSpeech.BLACK, PartsOfSpeech.WHITE, 0) self.rendered_text_frag_2 = self.render_textrect(self.frag1, self.my_font, self.my_rect_frag_2, PartsOfSpeech.BLACK, PartsOfSpeech.WHITE, 0) self.rendered_text_frag_3 = self.render_textrect(self.frag2, self.my_font, self.my_rect_frag_3, PartsOfSpeech.BLACK, PartsOfSpeech.WHITE, 0) self.rendered_text_frag_4 = self.render_textrect(self.frag3, self.my_font, self.my_rect_frag_4, PartsOfSpeech.BLACK, PartsOfSpeech.WHITE, 0) self.display.blit(self.rendered_text, self.my_rect.topleft) self.display.blit(self.rendered_text_user, self.my_rect_user.topleft) self.display.blit(self.rendered_text_frag_1, self.my_rect_frag_1.topleft) self.display.blit(self.rendered_text_frag_2, self.my_rect_frag_2.topleft) self.display.blit(self.rendered_text_frag_3, self.my_rect_frag_3.topleft) self.display.blit(self.rendered_text_frag_4, self.my_rect_frag_4.topleft) pygame.display.update() self.sound_win.play() return if fragment != self.sentence_pos_wordIND:#loser self.score -= 1 self.display.fill(PartsOfSpeech.WHITE) self.rendered_text = self.special_render_textrect(self.plain_sentence, self.my_font, self.my_rect, PartsOfSpeech.BLACK, PartsOfSpeech.PURPLE, PartsOfSpeech.WHITE, 1) self.rendered_text_user = self.render_textrect("SCORE: {0}, TIME: {1}".format(self.score, round(self.start_time - self.seconds, 0)), self.my_font, self.my_rect_user, PartsOfSpeech.BROWN, PartsOfSpeech.WHITE, 0) if self.frag0 == fragment: self.rendered_text_frag_1 = self.render_textrect(self.frag0, self.my_font, self.my_rect_frag_1, PartsOfSpeech.RED, PartsOfSpeech.WHITE, 0) self.rendered_text_frag_2 = self.render_textrect(self.frag1, self.my_font, self.my_rect_frag_2, PartsOfSpeech.BLACK, PartsOfSpeech.WHITE, 0) self.rendered_text_frag_3 = self.render_textrect(self.frag2, self.my_font, self.my_rect_frag_3, PartsOfSpeech.BLACK, PartsOfSpeech.WHITE, 0) self.rendered_text_frag_4 = self.render_textrect(self.frag3, self.my_font, self.my_rect_frag_4, PartsOfSpeech.BLACK, PartsOfSpeech.WHITE, 0) elif self.frag1 == fragment: self.rendered_text_frag_1 = self.render_textrect(self.frag0, self.my_font, self.my_rect_frag_1, PartsOfSpeech.BLACK, PartsOfSpeech.WHITE, 0) self.rendered_text_frag_2 = self.render_textrect(self.frag1, self.my_font, self.my_rect_frag_2, PartsOfSpeech.RED, PartsOfSpeech.WHITE, 0) self.rendered_text_frag_3 = self.render_textrect(self.frag2, self.my_font, self.my_rect_frag_3, PartsOfSpeech.BLACK, PartsOfSpeech.WHITE, 0) self.rendered_text_frag_4 = self.render_textrect(self.frag3, self.my_font, self.my_rect_frag_4, PartsOfSpeech.BLACK, PartsOfSpeech.WHITE, 0) elif self.frag2 == fragment: self.rendered_text_frag_1 = self.render_textrect(self.frag0, self.my_font, self.my_rect_frag_1, PartsOfSpeech.BLACK, PartsOfSpeech.WHITE, 0) self.rendered_text_frag_2 = self.render_textrect(self.frag1, self.my_font, self.my_rect_frag_2, PartsOfSpeech.BLACK, PartsOfSpeech.WHITE, 0) self.rendered_text_frag_3 = self.render_textrect(self.frag2, self.my_font, self.my_rect_frag_3, PartsOfSpeech.RED, PartsOfSpeech.WHITE, 0) self.rendered_text_frag_4 = self.render_textrect(self.frag3, self.my_font, self.my_rect_frag_4, PartsOfSpeech.BLACK, PartsOfSpeech.WHITE, 0) elif self.frag3 == fragment: self.rendered_text_frag_1 = self.render_textrect(self.frag0, self.my_font, self.my_rect_frag_1, PartsOfSpeech.BLACK, PartsOfSpeech.WHITE, 0) self.rendered_text_frag_2 = self.render_textrect(self.frag1, self.my_font, self.my_rect_frag_2, PartsOfSpeech.BLACK, PartsOfSpeech.WHITE, 0) self.rendered_text_frag_3 = self.render_textrect(self.frag2, self.my_font, self.my_rect_frag_3, PartsOfSpeech.BLACK, PartsOfSpeech.WHITE, 0) self.rendered_text_frag_4 = self.render_textrect(self.frag3, self.my_font, self.my_rect_frag_4, PartsOfSpeech.RED, PartsOfSpeech.WHITE, 0) else: self.rendered_text_frag_1 = self.render_textrect(self.frag0, self.my_font, self.my_rect_frag_1, PartsOfSpeech.BLACK, PartsOfSpeech.WHITE, 0) self.rendered_text_frag_2 = self.render_textrect(self.frag1, self.my_font, self.my_rect_frag_2, PartsOfSpeech.BLACK, PartsOfSpeech.WHITE, 0) self.rendered_text_frag_3 = self.render_textrect(self.frag2, self.my_font, self.my_rect_frag_3, PartsOfSpeech.BLACK, PartsOfSpeech.WHITE, 0) self.rendered_text_frag_4 = self.render_textrect(self.frag3, self.my_font, self.my_rect_frag_4, PartsOfSpeech.BLACK, PartsOfSpeech.WHITE, 0) self.display.blit(self.rendered_text, self.my_rect.topleft) self.display.blit(self.rendered_text_user, self.my_rect_user.topleft) self.display.blit(self.rendered_text_frag_1, self.my_rect_frag_1.topleft) self.display.blit(self.rendered_text_frag_2, self.my_rect_frag_2.topleft) self.display.blit(self.rendered_text_frag_3, self.my_rect_frag_3.topleft) self.display.blit(self.rendered_text_frag_4, self.my_rect_frag_4.topleft) pygame.display.update() self.sound_loss.play() return self.display.fill(PartsOfSpeech.WHITE) self.rendered_text = self.special_render_textrect(self.plain_sentence, self.my_font, self.my_rect, PartsOfSpeech.BLACK, PartsOfSpeech.PURPLE, PartsOfSpeech.WHITE, 1) self.rendered_text_user = self.render_textrect("SCORE: {0}, TIME: {1}".format(self.score, round(self.start_time - self.seconds, 0)), self.my_font, self.my_rect_user, PartsOfSpeech.BROWN, PartsOfSpeech.WHITE, 0)#last 0 is to left align self.rendered_text_frag_1 = self.render_textrect(self.frag0, self.my_font, self.my_rect_frag_1, PartsOfSpeech.RED, PartsOfSpeech.WHITE, 0) self.rendered_text_frag_2 = self.render_textrect(self.frag1, self.my_font, self.my_rect_frag_2, PartsOfSpeech.YELLOW, PartsOfSpeech.WHITE, 0) self.rendered_text_frag_3 = self.render_textrect(self.frag2, self.my_font, self.my_rect_frag_3, PartsOfSpeech.GREEN, PartsOfSpeech.WHITE, 0) self.rendered_text_frag_4 = self.render_textrect(self.frag3, self.my_font, self.my_rect_frag_4, PartsOfSpeech.BLUE, PartsOfSpeech.WHITE, 0) self.display.blit(self.rendered_text, self.my_rect.topleft) self.display.blit(self.rendered_text_user, self.my_rect_user.topleft) self.display.blit(self.rendered_text_frag_1, self.my_rect_frag_1.topleft) self.display.blit(self.rendered_text_frag_2, self.my_rect_frag_2.topleft) self.display.blit(self.rendered_text_frag_3, self.my_rect_frag_3.topleft) self.display.blit(self.rendered_text_frag_4, self.my_rect_frag_4.topleft) pygame.display.update() return def run(self): self.start_ticks = pygame.time.get_ticks()# not needed while not self.finished: self.seconds = (pygame.time.get_ticks() - self.start_ticks) / 1000 if 60 - self.seconds <= 0: print(self.score) self.finished = True for event in pygame.event.get(): if event.type == pygame.QUIT: self.conn.close() self.finished = True if event.type == pygame.KEYUP: if event.key == pygame.K_ESCAPE: pygame.quit() sys.exit() if event.key == pygame.K_SPACE: self.new_user() if event.key in (pygame.K_a,pygame.K_e,pygame.K_i,pygame.K_m,pygame.K_q,pygame.K_u): if self.frag0 != "": self.refresh_screen(self.frag0) else: pass if event.key in (pygame.K_b,pygame.K_f,pygame.K_j,pygame.K_n,pygame.K_r,pygame.K_v): if self.frag1 != "": self.refresh_screen(self.frag1) else: pass if event.key in (pygame.K_c,pygame.K_g,pygame.K_k,pygame.K_o,pygame.K_s,pygame.K_w): if self.frag2 != "": self.refresh_screen(self.frag2) else: pass if event.key in (pygame.K_d,pygame.K_h,pygame.K_l,pygame.K_p,pygame.K_t,pygame.K_x): if self.frag3 != "": self.refresh_screen(self.frag3) else: pass pygame.display.update() pygame.quit() sys.exit() if __name__ == '__main__': new_game = PartsOfSpeech() new_game.run() ``` #### File: No Peripheral/Alphabet Speaking Game/Alphabet.py ```python import pygame import random import sys import time WHITE = (255,255,255) BLACK = (0,0,0) GREEN = (57, 255, 20) YELLOW = (230,230,0) RED = (255,0,0) BLUE = (0,0,255) BROWN = (97,65,38) soundwinfile = "audio\\ping.ogg" finished = False def new_game(): clock = pygame.time.Clock() previous_time = 0 time_remaining = 60 score = 0 alphabet = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' points = 0 finished = False letter = letter_font.render(alphabet[random.randint(0, 25)], 1, RED) letter_rect = letter.get_rect() ticks = pygame.time.get_ticks() while not finished: if pygame.time.get_ticks() - previous_time >= 1000: previous_time = pygame.time.get_ticks() time_remaining -= 1 if time_remaining == 0: display.fill(WHITE) score_text = display_font.render("SCORE: " + str(score), 1, BROWN) display.blit(score_text, (display_width / 2, display_height / 2)) pygame.display.update() time.sleep(5) finished = True time_text = display_font.render(str(time_remaining), 1, BLUE) score_text = display_font.render(str(score), 1, RED) display.fill(WHITE) display.blit(time_text, rect_time) display.blit(score_text, rect_score) letter_rect.center = (display_width / 2, display_height / 2) display.blit(letter, letter_rect) bartime = pygame.time.get_ticks() - ticks if bartime < 3000: pygame.draw.rect(display, GREEN, [30, display_height - 80, abs(1 - (bartime / 5000)) * (display_width - 60), 40]) elif bartime < 4000: pygame.draw.rect(display, YELLOW, [30, display_height - 80, abs(1 - (bartime / 5000)) * (display_width - 60), 40]) else: pygame.draw.rect(display, RED, [30, display_height - 80, abs(1 - (bartime / 5000)) * (display_width - 60), 40]) pygame.draw.rect(display, BLACK, [30, display_height - 80, display_width - 60, 40], 5) if bartime >= 5000: ticks = pygame.time.get_ticks() score -= 1 letter = letter_font.render(alphabet[random.randint(0, 25)], 1, RED) letter_rect = letter.get_rect() for event in pygame.event.get(): if event.type == pygame.QUIT: finished = True if event.type == pygame.KEYUP: if event.key == pygame.K_ESCAPE: pygame.quit() sys.exit() if event.key == pygame.K_SPACE: new_game() if event.key == pygame.K_a: score += int((5000 - bartime) / 10) soundwin.play() ticks = pygame.time.get_ticks() letter = letter_font.render(alphabet[random.randint(0, 25)], 1, RED) letter_rect = letter.get_rect() clock.tick(30) pygame.display.update() pygame.quit() sys.exit() pygame.init() pygame.mixer.init() soundwin = pygame.mixer.Sound(soundwinfile) display = pygame.display.set_mode((0, 0), pygame.FULLSCREEN) display_width = display.get_width() display_height = display.get_height() display_font = pygame.font.Font(None, 48) letter_font = pygame.font.Font(None, 800) rect_score = pygame.Rect((display_width - 120, 50, 120, 50)) rect_time = pygame.Rect((display_width - 120, 0, 50, 50)) display.fill(WHITE) pygame.display.update() while not finished: for event in pygame.event.get(): if event.type == pygame.QUIT: finished = True if event.type == pygame.KEYUP: if event.key == pygame.K_ESCAPE: pygame.quit() sys.exit() if event.key == pygame.K_SPACE: new_game() pygame.quit() sys.exit() ```
{ "source": "jgerschler/OpenWeatherMap-Wrappers", "score": 4 }
#### File: jgerschler/OpenWeatherMap-Wrappers/CurrentWeather.py ```python import json, time from datetime import datetime from urllib2 import Request, urlopen, HTTPError# update to use requests module? class CurrentWeather(object): """A class for getting the current US weather using the OpenWeatherMap API.""" def __init__(self, zipcode, api_key): self.zipcode = zipcode self.api_key = api_key def connect(self):# may need to add more error-checking; API results seem to deviate from documentation """connects to OpenWeatherMap server and pull weather data.""" request = Request('http://api.openweathermap.org/data/2.5/weather?zip={0},us&APPID={1}'.format(self.zipcode, self.api_key)) try: data = urlopen(request).read() except HTTPError: print("No current weather data available.") return 0 self.decoded_dict = json.loads(data) if self.decoded_dict.get('message') == 'not found': return "Data unavailable" self.data_collection_time = self.decoded_dict.get('dt', 'unknown') self.cloud_cover = self.decoded_dict.get('clouds', 'unknown').get('all', 'unknown') self.city_name = self.decoded_dict.get('name', 'unknown') self.longitude = self.decoded_dict.get('coord', 'unknown').get('lon', 'unknown') self.latitude = self.decoded_dict.get('coord', 'unknown').get('lat', 'unknown') self.country = self.decoded_dict.get('sys', 'unknown').get('country', 'unknown') self.sunset_time = self.decoded_dict.get('sys', 'unknown').get('sunset', 'unknown') self.sunrise_time = self.decoded_dict.get('sys', 'unknown').get('sunrise', 'unknown') self.weather_cond_id = self.decoded_dict.get('weather', 'unknown')[0].get('id', 'unknown')# multiple weather conditions can be included here. self.weather_group = self.decoded_dict.get('weather', 'unknown')[0].get('main', 'unknown')# currently, we'll just get the primary. self.weather_description = self.decoded_dict.get('weather', 'unknown')[0].get('description', 'unknown') try: self.rain_3h = self.decoded_dict.get('rain', 'unknown').get('3h', 'unknown') except: self.rain_3h = 0 self.pressure = self.decoded_dict.get('main', 'unknown').get('pressure', 'unknown') self.temp_min = self.decoded_dict.get('main', 'unknown').get('temp_min', 'unknown') self.temp_max = self.decoded_dict.get('main', 'unknown').get('temp_max', 'unknown') self.temp = self.decoded_dict.get('main', 'unknown').get('temp', 'unknown') self.humidity = self.decoded_dict.get('main', 'unknown').get('humidity', 'unknown') self.city_id = self.decoded_dict.get('id', 'unknown') self.wind_speed = self.decoded_dict.get('wind', 'unknown').get('speed', 'unknown') self.wind_gust = self.decoded_dict.get('wind', 'unknown').get('gust', 'unknown') self.wind_direction = self.decoded_dict.get('wind', 'unknown').get('deg', 'unknown') return 1 def record_data(self, interval, filename, max_data_points): """periodically connect to API and write results to CSV file.""" datafile = open(filename, 'w') datafile.write("zipcode,data_collection_time,cloud_cover,weather_group,weather_description,pressure,temp,humidity,wind_speed,wind_direction\n") for i in range(max_data_points): self.connect() datafile.write(str(self.zipcode)+","+str(self.data_collection_time)+","+str(self.cloud_cover)+","+str(self.weather_group)+","+str(self.weather_description)+","+str(self.pressure)+","+ str(self.temp)+","+str(self.humidity)+","+str(self.wind_speed)+","+str(self.wind_direction)+"\n") print("Data point {0} recorded").format(str(i+1)) if i < (max_data_points-1): time.sleep(interval*60) datafile.close() def parse(self, data):# for directly parsing data string """parses data directly from a string.""" self.decoded_dict = json.loads(data) self.data_collection_time = self.decoded_dict.get('dt', 'unknown') self.cloud_cover = self.decoded_dict.get('clouds', 'unknown').get('all', 'unknown') self.city_name = self.decoded_dict.get('name', 'unknown') self.longitude = self.decoded_dict.get('coord', 'unknown').get('lon', 'unknown') self.latitude = self.decoded_dict.get('coord', 'unknown').get('lat', 'unknown') self.country = self.decoded_dict.get('sys', 'unknown').get('country', 'unknown') self.sunset_time = self.decoded_dict.get('sys', 'unknown').get('sunset', 'unknown') self.sunrise_time = self.decoded_dict.get('sys', 'unknown').get('sunrise', 'unknown') self.weather_cond_id = self.decoded_dict.get('weather', 'unknown')[0].get('id', 'unknown') self.weather_group = self.decoded_dict.get('weather', 'unknown')[0].get('main', 'unknown') self.weather_description = self.decoded_dict.get('weather', 'unknown')[0].get('description', 'unknown') try: self.rain_3h = self.decoded_dict.get('rain', 'unknown').get('3h', 'unknown') except: self.rain_3h = None self.pressure = self.decoded_dict.get('main', 'unknown').get('pressure', 'unknown') self.temp_min = self.decoded_dict.get('main', 'unknown').get('temp_min', 'unknown') self.temp_max = self.decoded_dict.get('main', 'unknown').get('temp_max', 'unknown') self.temp = self.decoded_dict.get('main', 'unknown').get('temp', 'unknown') self.humidity = self.decoded_dict.get('main', 'unknown').get('humidity', 'unknown') self.city_id = self.decoded_dict.get('id', 'unknown') self.wind_speed = self.decoded_dict.get('wind', 'unknown').get('deg', 'unknown') self.wind_gust = self.decoded_dict.get('wind', 'unknown').get('gust', 'unknown') self.wind_direction = self.decoded_dict.get('wind', 'unknown').get('deg', 'unknown') def get_data_collection_time(self): """returns data collection time as tuple (UTC UNIX time, UTC time)""" return (self.data_collection_time, datetime.fromtimestamp(int(self.data_collection_time)).strftime('%Y-%m-%d %H:%M:%S')) def get_cloud_cover(self): """returns cloud cover as tuple (value, unit)""" return (self.cloud_cover, "%") def get_location(self): """returns city and country as string""" return "{0}, {1}".format(self.city_name, self.country) def get_lat_lon(self): """returns latitude and longitude as tuple (latitude, longitude)""" return (self.latitude, self.longitude) def get_sunrise(self): """returns sunrise time as tuple (UTC UNIX time, UTC time)""" return (self.sunrise_time, datetime.fromtimestamp(int(self.sunrise_time)).strftime('%Y-%m-%d %H:%M:%S')) def get_sunset(self): """returns sunrise time as tuple (UTC UNIX time, UTC time)""" return (self.sunset_time, datetime.fromtimestamp(int(self.sunset_time)).strftime('%Y-%m-%d %H:%M:%S')) def get_weather(self): """returns a tuple: (weather group, weather description)""" return (self.weather_group, self.weather_description) def get_rain_3h(self): """returns the quantity of rain that has fallen in the last 3 hours as tuple (value, unit)""" return (self.rain_3h, "cm") def get_pressure(self): """returns the current barometric pressure as tuple (value, unit)""" return (self.pressure, "mmHg") def get_temp(self): """returns the current temperature as tuple (value, unit)""" return (self.temp, "K") def get_humidity(self): """returns the current humidity as tuple (value, unit)""" return (self.humidity, "%") def get_wind_speed(self): """returns the current wind speed as tuple (value, unit)""" return (self.wind_speed, "meters/second") def get_wind_direction(self): """returns the current wind direction as tuple (direction in degrees, cardinal direction)""" def cardinal_direction(degrees):# OWM API should technically supply cardinal values, but in case it doesn't, we'll calculate them here. if (degrees <= 360.0 and degrees > 337.5) or (degrees <= 22.5 and degrees > 0.0): return 'N' elif degrees <= 67.5 and degrees > 22.5: return 'NE' elif degrees <= 112.5 and degrees > 67.5: return 'E' elif degrees <= 157.5 and degrees > 112.5: return 'SE' elif degrees <= 202.5 and degrees > 157.5: return 'S' elif degrees <= 247.5 and degrees > 202.5: return 'SW' elif degrees <= 292.5 and degrees > 247.5: return 'W' elif degrees <= 337.5 and degrees > 292.5: return 'NW' else: 'Unknown' return (self.wind_direction, cardinal_direction(int(self.wind_direction))) # need to continue work on sections below -- add units to returned tuples. Also, improve error handling in case these functions are run before connect() def connect_co(self):# these functions don't currently seem to work very well for locations inside the US """connects to OpenWeatherMap carbon monoxide API""" request = Request('http://api.openweathermap.org/pollution/v1/co/{0},{1}/current.json?appid={2}'.format(round(self.latitude, 1), round(self.longitude, 1), self.api_key)) try: data = urlopen(request).read() except HTTPError: print("No current CO data available.") return 0 self.decoded_dict = json.loads(data) if self.decoded_dict.get('message') == 'not found': return "Data unavailable" self.co = [] for entry in self.decoded_dict['data']: self.co.append((entry['pressure'], entry['value'], entry['precision'])) self.co_location = (self.decoded_dict.get('location').get('latitude'), self.decoded_dict.get('location').get('longitude')) self.co_datetime = self.decoded_dict.get('time') return 1 def get_co_details(self): """returns nested tuple (sampling datetime, (latitude, longitude), [(pressure, value, precision)])""" return (self.co_datetime, self.co_location, self.co) def connect_o3(self): """connects to OpenWeatherMap ozone API""" request = Request('http://api.openweathermap.org/pollution/v1/o3/{0},{1}/current.json?appid={2}'.format(round(self.latitude, 1), round(self.longitude, 1), self.api_key)) try: data = urlopen(request).read() except HTTPError: print("No current O3 data available.") return 0 self.decoded_dict = json.loads(data) if self.decoded_dict.get('message') == 'not found': return "Data unavailable" self.o3 = self.decoded_dict.get('data') self.o3_location = (self.decoded_dict.get('location').get('latitude'), self.decoded_dict.get('location').get('longitude')) self.o3_datetime = self.decoded_dict.get('time') return 1 def get_o3_details(self): """returns nested tuple (sampling datetime, (latitude, longitude), value)""" return (self.o3_datetime, self.o3_location, self.o3) def connect_so2(self): """connects to OpenWeatherMap sulfur dioxide API""" request = Request('http://api.openweathermap.org/pollution/v1/so2/{0},{1}/current.json?appid={2}'.format(round(self.latitude, 1), round(self.longitude, 1), self.api_key)) try: data = urlopen(request).read() except HTTPError: print("No current SO2 data available.") return 0 self.decoded_dict = json.loads(data) if self.decoded_dict.get('message') == 'not found': return "Data unavailable" self.so2 = [] for entry in self.decoded_dict['data']: self.so2.append((entry['pressure'], entry['value'], entry['precision'])) self.so2_location = (self.decoded_dict.get('location').get('latitude'), self.decoded_dict.get('location').get('longitude')) self.so2_datetime = self.decoded_dict.get('time') return 1 def get_so2_details(self): """returns nested tuple (sampling datetime, (latitude, longitude), [(pressure, value, precision)])""" return (self.so2_datetime, self.so2_location, self.so2) def connect_no2(self): """connects to OpenWeatherMap nitrogen dioxide API""" request = Request('http://api.openweathermap.org/pollution/v1/no2/{0},{1}/current.json?appid={2}'.format(round(self.latitude, 1), round(self.longitude, 1), self.api_key)) try: data = urlopen(request).read() except HTTPError: print("No current SO2 data available.") return 0 self.decoded_dict = json.loads(data) if self.decoded_dict.get('message') == 'not found': return "Data unavailable" try: self.no2_trop = (self.decoded_dict.get('data').get('no2_trop').get('value',0), self.decoded_dict.get('data').get('no2_trop').get('precision',0)) except: self.no2_trop = (None, None) try: self.no2_strat = (self.decoded_dict.get('data').get('no2_strat').get('value',0), self.decoded_dict.get('data').get('no2_strat').get('precision',0)) except: self.no2_strat = (None, None) try: self.no2 = (self.decoded_dict.get('data').get('no2').get('value',0), self.decoded_dict.get('data').get('no2').get('precision',0)) except: self.no2 = (None, None) self.no2_location = (self.decoded_dict.get('location').get('latitude'), self.decoded_dict.get('location').get('longitude')) self.no2_datetime = self.decoded_dict.get('time') return 1 def get_no2_details(self): """returns a nested tuple (sampling datetime, (latitude, longitude), (trop. no2 value, precision), (strat. no2 value, precision), (no2 value, precision))""" return (self.no2_datetime, self.no2_location, self.no2_trop, self.no2_strat, self.no2) if __name__ == '__main__': print("Suggested uses: Import as a module, or run in an IDE.") ```
{ "source": "jgerschler/python-kinect", "score": 3 }
#### File: ESL Game Frameworks/Things in Common/ThingsInCommonFullScreen.py ```python from pykinect2 import PyKinectV2 from pykinect2.PyKinectV2 import * from pykinect2 import PyKinectRuntime import pygame import random TRACKING_COLOR = pygame.color.Color("purple") HIGHLIGHT_COLOR = pygame.color.Color("red") BG_COLOR = pygame.color.Color("white") GAME_TIME = 60# seconds class BodyGameRuntime(object): def __init__(self): pygame.init() pygame.mixer.init() self.beep_sound = pygame.mixer.Sound('audio\\beep.ogg') self.buzz_sound = pygame.mixer.Sound('audio\\buzz.ogg') self._infoObject = pygame.display.Info() self._screen = pygame.display.set_mode((self._infoObject.current_w, self._infoObject.current_h), pygame.HWSURFACE|pygame.DOUBLEBUF|pygame.RESIZABLE, 32) pygame.display.set_caption("Kinect Game Framework Test") self.finished = False self._clock = pygame.time.Clock() self._kinect = PyKinectRuntime.PyKinectRuntime(PyKinectV2.FrameSourceTypes_Color | PyKinectV2.FrameSourceTypes_Body) self._frame_surface = pygame.Surface((self._kinect.color_frame_desc.Width, self._kinect.color_frame_desc.Height), 0, 32) self._bodies = None self.score = 0 self.sentence_dict = {"""I don't like fish.""":["""I don't either.""", """Me neither."""], """I don't know how to swim.""":["""I don't either.""", """Me neither."""], """I don't like potatoes.""":["""I don't either.""", """Me neither."""], """I don't eat donuts at night.""":["""I don't either.""", """Me neither."""], """I don't watch scary movies.""":["""I don't either.""", """Me neither."""], """I don't yell when I get angry.""":["""I don't either.""", """Me neither."""], """I can't ride a bicycle.""":["""I can't either.""", """Me neither."""], """I can't swim.""":["""I can't either.""", """Me neither."""], """I can't drive a car.""":["""I can't either.""", """Me neither."""], """I can't do a pushup.""":["""I can't either.""", """Me neither."""], """I can't run faster than a bus.""":["""I can't either.""", """Me neither."""], """I can't flap my arms and fly.""":["""I can't either.""", """Me neither."""], """I'm not fat.""":["""I'm not either.""", """Me neither."""], """I'm not skinny.""":["""I'm not either.""", """Me neither."""], """I'm not an angry person.""":["""I'm not either.""", """Me neither."""], """I'm not hungry.""":["""I'm not either.""", """Me neither."""], """I'm not happy.""":["""I'm not either.""", """Me neither."""], """I'm not a purple hippopotamus.""":["""I'm not either.""", """Me neither."""], """I like papayas.""":["""I do too.""", """Me too."""], """I know how to drive.""":["""I do too.""", """Me too."""], """I know how to swim.""":["""I do too.""", """Me too."""], """I like oranges.""":["""I do too.""", """Me too."""], """I eat cake on Fridays.""":["""I do too.""", """Me too."""], """I love comedies.""":["""I do too.""", """Me too."""], """I can eat 12 hamburgers at once.""":["""I can too.""", """Me too."""], """I can fly an airplane.""":["""I can too.""", """Me too."""], """I can write quickly.""":["""I can too.""", """Me too."""], """I can run faster than a snail.""":["""I can too.""", """Me too."""], """I can calculate faster than a calculator.""":["""I can too.""", """Me too."""], """I can swim with my eyes open.""":["""I can too.""", """Me too."""], """I'm angry.""":["""I am too.""", """Me too."""], """I'm hungry.""":["""I am too.""", """Me too."""], """I'm sad.""":["""I am too.""", """Me too."""], """I'm busy with work.""":["""I am too.""", """Me too."""], """I'm studying right now.""":["""I am too.""", """Me too."""], """I'm at school at the moment.""":["""I am too.""", """Me too."""]} self.reply_list = ["""I don't either.""", """Me neither.""", """I can't either.""", """I'm not either.""", """I do too.""", """Me too.""", """I can too.""", """I am too.""", """I do either.""", """I can either.""", """I am either.""", """I do neither.""", """I can neither.""", """I am neither.""", """I am not too.""", """I don't too.""", """I can't too."""] self._frame_surface.fill((255, 255, 255)) def text_objects(self, text, font): text_surface = font.render(text, True, (0, 0, 0)) return text_surface, text_surface.get_rect() def message_display(self, text, loc_tuple, loc_int): # loc_int: 1 center, 2 top left, 3 bottom left, 4 bottom right, 5 top right text_surf, text_rect = self.text_objects(text, pygame.font.Font('arial.ttf', 48)) loc_dict = {1:'text_rect.center', 2:'text_rect.topleft', 3:'text_rect.bottomleft', 4:'text_rect.bottomright', 5:'text_rect.topright'} exec(loc_dict[loc_int] + ' = loc_tuple') self._frame_surface.blit(text_surf, text_rect) return text_rect def draw_ind_point(self, joints, jointPoints, color, highlight_color, rect0, rect1, rect2, joint0): joint0State = joints[joint0].TrackingState; if (joint0State == PyKinectV2.TrackingState_NotTracked or joint0State == PyKinectV2.TrackingState_Inferred): return center = (int(jointPoints[joint0].x), int(jointPoints[joint0].y)) if ((rect0.collidepoint(center) and self.filler_replies[0] == self.selected_answer[0]) or (rect1.collidepoint(center) and self.filler_replies[1] == self.selected_answer[0]) or (rect2.collidepoint(center) and self.filler_replies[2] == self.selected_answer[0])): self.score += 1 self.beep_sound.play() pygame.time.delay(500) self.new_round() elif rect0.collidepoint(center) or rect1.collidepoint(center) or rect2.collidepoint(center): try: pygame.draw.circle(self._frame_surface, highlight_color, center, 20, 0) self.buzz_sound.play() except: # need to catch it due to possible invalid positions (with inf) pass else: try: pygame.draw.circle(self._frame_surface, color, center, 20, 0) except: pass def update_screen(self, joints, jointPoints, color, highlight_color, seconds): self._frame_surface.fill(BG_COLOR)# blank screen before drawing points self.message_display(self.selected_sentence, (300, 900), 2) rect0 = self.message_display(self.filler_replies[0], (300, 300), 1) rect1 = self.message_display(self.filler_replies[1], (self._frame_surface.get_width() / 2, 100), 1) rect2 = self.message_display(self.filler_replies[2], (self._frame_surface.get_width() - 300, 300), 1) self.message_display(str(self.score), (self._frame_surface.get_width() / 2, 800), 1) self.message_display(str(seconds), (self._frame_surface.get_width() - 300, 800), 1) self.draw_ind_point(joints, jointPoints, color, highlight_color, rect0, rect1, rect2, PyKinectV2.JointType_Head) self.draw_ind_point(joints, jointPoints, color, highlight_color, rect0, rect1, rect2, PyKinectV2.JointType_WristRight) # may change PyKinectV2.JointType_WristRight to PyKinectV2.JointType_ElbowRight self.draw_ind_point(joints, jointPoints, color, highlight_color, rect0, rect1, rect2, PyKinectV2.JointType_WristLeft) def end_game(self): self._frame_surface.fill(BG_COLOR) self.message_display("Score: {}".format(self.score), (self._frame_surface.get_width() / 2, self._frame_surface.get_height() / 2), 1) h_to_w = float(self._frame_surface.get_height()) / self._frame_surface.get_width() target_height = int(h_to_w * self._screen.get_width()) surface_to_draw = pygame.transform.scale(self._frame_surface, (self._screen.get_width(), target_height)); self._screen.blit(surface_to_draw, (0,0)) surface_to_draw = None pygame.display.update() pygame.time.delay(3000) self.run() def new_round(self): self.selected_sentence = random.choice(list(self.sentence_dict.keys())) self.selected_answer = random.sample(self.sentence_dict[self.selected_sentence], 1) self.filler_replies = random.sample(self.reply_list, 2) while ((self.sentence_dict[self.selected_sentence][0] in self.filler_replies) or (self.sentence_dict[self.selected_sentence][1] in self.filler_replies)): self.filler_replies = random.sample(self.reply_list, 2) self.filler_replies += self.selected_answer random.shuffle(self.filler_replies) print(self.filler_replies) print(self.selected_answer) pygame.time.delay(500) while not self.finished: seconds = GAME_TIME - int((pygame.time.get_ticks() - self.start_ticks)/1000) if seconds <= 0: self.end_game() for event in pygame.event.get(): if event.type == pygame.QUIT: self.finished = True if self._kinect.has_new_body_frame(): self._bodies = self._kinect.get_last_body_frame() if self._bodies is not None: for i in range(0, self._kinect.max_body_count): body = self._bodies.bodies[i] if not body.is_tracked: continue joints = body.joints joint_points = self._kinect.body_joints_to_color_space(joints) self.update_screen(joints, joint_points, TRACKING_COLOR, HIGHLIGHT_COLOR, seconds) h_to_w = float(self._frame_surface.get_height()) / self._frame_surface.get_width() target_height = int(h_to_w * self._screen.get_width()) surface_to_draw = pygame.transform.scale(self._frame_surface, (self._screen.get_width(), target_height)); self._screen.blit(surface_to_draw, (0,0)) surface_to_draw = None pygame.display.update() self._clock.tick(60) self.end_game() def run(self): self.score = 0 while not self.finished: for event in pygame.event.get(): if event.type == pygame.QUIT: self.finished = True if event.type == pygame.KEYUP and event.key == pygame.K_SPACE: self.start_ticks = pygame.time.get_ticks() self.new_round() self._kinect.close() pygame.quit() if __name__ == "__main__": game = BodyGameRuntime() game.run() ```
{ "source": "jgershen/sportsball", "score": 2 }
#### File: extdata/bsbr/scrape_bsbr.py ```python import pandas import bs4 from bs4 import BeautifulSoup import time import datetime import json import os import re import requests from dateutil import parser import cPickle as pickle import sys import argparse import logging import progressbar import numpy as np from dfs import GLOBAL_ROOT from dfs.mlb.playerid import name2brefid, brefid_is_pitcher from dfs.extdata.common.scraper import getSoupFromURL, soupTableToTable, parsedTableToDF from dfs.extdata.common.io import combine_dataframe_into_pickle_file # because Pickle -- try to fix this later sys.setrecursionlimit(50000) datadir = os.path.join(GLOBAL_ROOT, 'db/mlb/') # holy crap a baseball-reference id can even have an apostrophe in it bsbr_id_regex = re.compile("http://www\.baseball-reference\.com/players/\w/(?P<pid>[\w\.\'\d]+)\.shtml") batting_stats_template = 'http://www.baseball-reference.com/players/gl.cgi?id={playerid}&t=b&year={year}' pitching_stats_template = 'http://www.baseball-reference.com/players/gl.cgi?id={playerid}&t=p&year={year}' fielding_stats_template = 'http://www.baseball-reference.com/players/gl.cgi?id={playerid}&t=f&year={year}' def quicksave_playerdict(players, picklefn): with open(picklefn, 'wb') as outf: pickle.dump(players, outf) def quickload_playerdict(picklefn): with open(picklefn, 'rb') as inf: return pickle.load(inf) def json_save_playerdict(players): path = os.path.join(datadir, 'mlb_player_data.dict') logging.info('saving JSON player dict to %s', str(path)) player_archive = {} for name, k in players.items(): player_archive[name] = {'gamelog_url_list':k['gamelog_url_list'], 'overview_url':k['overview_url'], 'overview_url_content':k['overview_url_content']} json.dump(player_archive, open(path, 'wb')) def json_load_playerdict(): with open(os.path.join(os.path.expandvars(datadir), 'mlb_player_data.dict'), 'rb') as f: json_string = f.read() player_archive = json.loads(json_string) for player in player_archive: if 'overview_url' in player_archive[player] and 'bref_id' not in player_archive[player]: player_archive[player]['bref_id'] = bsbr_id_regex.match(player_archive[player]['overview_url']).group('pid') return player_archive def create_json_file(argv=sys.argv): ap = argparse.ArgumentParser(description='create JSON dict of player overview data from baseball-reference.com') ap.add_argument("--picklefile", default=None, help="pickle file to save/load from if necessary") cfg = ap.parse_args() logging.basicConfig(filename="logs/scrapebsbr.log", level=logging.INFO) if cfg.picklefile and os.path.exists(cfg.picklefile): players = quickload_playerdict(cfg.picklefile) else: logging.info('Getting bref IDs of active MLB players from baseball-reference.com...') bref_ids = get_active_players() logging.info('Initializing player dictionary...') players = create_player_dict(bref_ids) if cfg.picklefile: quicksave_playerdict(players, cfg.picklefile) logging.info('Loading overview pages...') players = load_overview_pages(players) if cfg.picklefile: quicksave_playerdict(players, cfg.picklefile) json_save_playerdict(players) # We save separate files for batting / pitching data player_data_types = ['batting', 'pitching'] def get_attr_filename(bref_id, data_type): fn = os.path.join(datadir, 'player_data', bref_id + '_' + data_type) return fn def save_dataframes(players, overwrite=False): """ Save the pandas dataframes (the gamelog_data) from each player in players to a file :param dict[str, dict] players: the player dict :param bool overwrite: if True, delete old data :return: """ saved_dataframes = 0 for bref_id, attrs in players.iteritems(): for data_type in player_data_types: if data_type in attrs and attrs[data_type] is not None: combine_dataframe_into_pickle_file(attrs[data_type], get_attr_filename(bref_id, data_type), overwrite=overwrite) saved_dataframes += 1 logging.debug('Saved %d dataframes to %s', saved_dataframes, datadir) def load_dataframes(players): """ Load previously saved dataframes of gamelog data :param dict[str, dict[str, list]] players: the player dict :return: """ loaded = 0 for bref_id in players.keys(): for data_type in player_data_types: target_file = get_attr_filename(bref_id, data_type) if os.path.exists(target_file): with open(target_file, 'r') as inf: players[bref_id][data_type] = pickle.load(inf) loaded += 1 logging.debug('loaded %d dataframes from %s', loaded, datadir) return players def _parse_bsbr_prefix_section(prefix_section): # sample contents: ''' [u'\n', <b><a href="/players/b/badenbu01.shtml"><NAME></a> 2008-2015</b>, u'\n', <a href="/players/b/baderar01.shtml"><NAME></a>, u' 1904-1904\n', <a href="/players/b/baderlo01.shtml"><NAME></a>, u' 1912-1918\n', <a href="/players/b/badgrre01.shtml"><NAME></a>, u' 1929-1930\n'] ''' # the structure of the data makes this a little annoying to parse; we need state-based parsing last_player = None last_url = None curr_year = datetime.date.today().year is_playing_regex = re.compile('\d+-%d' % curr_year) #regex to find if years player was playing include this year child_list = prefix_section.children for element in child_list: is_tag = isinstance(element, bs4.element.Tag) if is_tag and element.name == 'b': # Currently active player -- wrapped in <b> tag for pl in element.findAll('a'): if pl.attrs['href'].startswith('/players/'): player_url = 'http://www.baseball-reference.com' + pl.attrs['href'] bref_id = bsbr_id_regex.match(player_url).group('pid') yield (bref_id, player_url) continue elif is_tag and element.name != 'a': # I have no idea what this is. Skip it. continue elif is_tag: # we know that this is an <a> tag # Player not wrapped in <b> tag. BSBR doesn't think he's active but maybe he was this year. # We will parse it and wait to see what years he played last_url = 'http://www.baseball-reference.com' + element.attrs['href'] last_player = bsbr_id_regex.match(last_url).group('pid') continue elif last_player is None: # this is not a tag # Not currently parsing a player and encountered a string; just skip it continue else: if is_playing_regex.search(element): yield (last_player, last_url) last_player = None last_url = None continue def get_active_players(): letters = list('abcdefghijklmnopqrstuvwxyz') player_and_url_list = [] print 'Checking currently active players on baseball-reference.com...' pbar = progressbar.ProgressBar(widgets=[progressbar.Percentage(), ' ', progressbar.Bar(), ' ', progressbar.ETA()]) for letter in pbar(letters): letter_page = getSoupFromURL('http://www.baseball-reference.com/players/%s/' % (letter)) # we don't just need active players (<b> tags), we need anyone who played in 2015! prefix_sections = letter_page.findAll('pre') for section in prefix_sections: player_and_url_list += list(_parse_bsbr_prefix_section(section)) bref_id_dict = dict(player_and_url_list) return bref_id_dict def create_player_dict(bref_ids): ''' Initialize the player dictionary. :param dict [str, str] bref_ids: bref_id to URL dictionary :return: ''' players = {} for bref_id, url in bref_ids.iteritems(): players[bref_id] = {'overview_url':url} players[bref_id]['overview_url_content'] = None players[bref_id]['gamelog_url_list'] = [] players[bref_id]['gamelog_data'] = None return players def load_overview_pages(players): pbar = progressbar.ProgressBar(widgets=[progressbar.Percentage(), ' ', progressbar.Bar(), ' ', progressbar.ETA()]) print 'Accessing and parsing overview pages...' for i, (bref_id, player_dict) in pbar(list(enumerate(players.items()))): if players[bref_id]['overview_url_content'] is None: overview_soup = getSoupFromURL(players[bref_id]['overview_url']) players[bref_id]['overview_url_content'] = overview_soup.text # the links to each year's game logs are in <li> tags, and the text contains 'Game Logs' # so we can use those to pull out our urls. game_log_links = [] for li in overview_soup.find_all('li'): if 'Game Logs' in li.getText(): game_log_links = li.findAll('a') for game_log_link in game_log_links: players[bref_id]['gamelog_url_list'].append('http://www.baseball-reference.com' + game_log_link.get('href')) return players def dfFromGameLogURLList(gamelogs): """Takes a list of game log urls and returns a concatenated DataFrame""" return pandas.concat([dfFromGameLogURL(g) for g in gamelogs]) def dfFromGameLogURL(url): """Takes a url of a player's game log for a given year, returns a DataFrame""" glsoup = getSoupFromURL(url) if not glsoup: #Hmm, this really shouldn't happen? logging.warning("No soup parsed from %s", url) return None stats_table = glsoup.findAll('table', attrs={'class': 'stats_table'}) # id for reg season table # parse the table header. we'll use this for the creation of the DataFrame header = [] if not stats_table: return None for th in stats_table[0].find("thead").findAll('th'): if not th.getText() in header: header.append(th.getText()) # add in headers for home/away and w/l columns. a must to get the DataFrame to parse correctly header[5] = u'HomeAway' year = url[-4:] if re.search('(?P<year>\d+)$', url) else datetime.datetime.today().year date_column = header.index("Date") # turn soup of the table into a list o' lists stats_table = soupTableToTable(stats_table) # Run cleanup for MLB tables on baseball-reference.com -- turn dates into actual dates. for row_ix in range(len(stats_table)): raw_date = stats_table[row_ix][date_column] # Remove non-ASCII characters from the date str and replace with single spaces # (sometimes the space between month and day is a whacky unicode char; thx baseball-reference.) raw_date = re.sub(r'[^\x00-\x7F]+',' ', raw_date) # Ignore if the game was suspended and resumed later raw_date = re.sub(r'susp','',raw_date) if '(' not in raw_date and len(raw_date): stats_table[row_ix][date_column] = parser.parse(raw_date + ' ' + str(year)) elif raw_date: # This is a doubleheader! Assign doubleheaders to "hours". # This doesn't do anything smart, except keep the data indexed by separate values so that # it could conceivably be retrieved later. dateparts = re.match("(?P<month>\w+) (?P<day>\d+) ?\((?P<gameno>\d+)\)", raw_date) assembled_date = parser.parse(dateparts.group("month") + " " + dateparts.group("day") + " " + dateparts.group("gameno") + ":00" + " " + str(year)) stats_table[row_ix][date_column] = assembled_date else: # There's not a date here -- it's probably the EOY summary row. # It could also be a trade notification? Either way, ignore it. continue # Discard EOY summary row stats_table = stats_table[:-1] # Remove any rows which contain "Player went from" -- trade notifications sneaking in there stats_table = filter(lambda row: not any(isinstance(cell, basestring) and cell.startswith('Player went from') for cell in row), stats_table) # Use common function to turn our cleaned-up stats table into a dataframe parsed_df = parsedTableToDF(stats_table, header, date_index=date_column) return parsed_df def get_active_years(player_url_list): ''' We're not doing the old-style scraping of each URL we find on the player page; instead we'll use load_player_dataframes and manually pass in which years to look up. But rather than rewrite the entire scraper I'm just going to hack the years off of the previous URLs. New: it's also possible/likely that one of the player urls ends without a year. To avoid scraping the same year twice, I used to remove this (and only keep years which are explicitly called out in the player_url_list). There seem to be some players for whom this doesn't work, though -- I suspect this is b/c they played their first current year game after the most recent update to their gamelog URL list. So we will always include the current year as well, if there is a link without a year included :param list[basestring] player_url_list: list of urls for the player :return list[basestring]: list of years that the player was active ''' # Is this actually a player url? actual_player_url_re = 'http://www.baseball-reference.com/players/gl.cgi\?.+' valid_player_urls = filter(lambda x: re.match(actual_player_url_re, x) is not None, player_url_list) year_re = re.compile('http://www.baseball-reference.com/players/gl.cgi\?id=([\w\.\d]+)&t=\w&year=(?P<year>\d+)') def get_year(url): match = year_re.match(url) return match.group('year') if match else None year_url_parts = map(get_year, valid_player_urls) if None in year_url_parts: year_url_parts.remove(None) year_url_parts.append(str(datetime.date.today().year)) return list(set(year_url_parts)) def load_player_dataframes(bref_id, year='', player_is_pitcher=False): batting_log_page = batting_stats_template.format(playerid=bref_id, year=year) batting_df = dfFromGameLogURL(batting_log_page) pitching_df = None if player_is_pitcher: pitching_log_page = pitching_stats_template.format(playerid=bref_id, year=year) pitching_df = dfFromGameLogURL(pitching_log_page) return batting_df, pitching_df def cli_load_player(): ap = argparse.ArgumentParser(description='scrape detailed player game log from baseball-reference.com & save') ap.add_argument("--player", default=None, help="player to load (if unspecified, load someone unloaded at random") cfg = ap.parse_args() logging.basicConfig(filename="logs/scrapebsbr.log", level=logging.INFO) players = json_load_playerdict() players = load_dataframes(players) if not cfg.player: # unspecified? OK find someone we haven't loaded yet for p in players.keys(): # Is there any data type unloaded for this guy if not set(player_data_types).intersection(players[p].keys()): cfg.player = p break else: logging.info('Data loaded for all players.') return # Did we actually find the player? if cfg.player not in players: logging.warning("Couldn't find player '%s'", cfg.player) return players = scrape_player(players, cfg.player) save_dataframes(players) def scrape_player(players, bref_id): """ Scrape all games for a player and add the parsed dataframes to the player dict provided. :param players: player dict :param bref_id: player bref_id of a player :return: """ # found name, load player data logging.info('Loading player data for %s...', bref_id) # Load bref id for player try: player_is_pitcher = brefid_is_pitcher(bref_id) except KeyError: # player bref id not present in our lookup mapping # probably no one cares about this guy anyway right. logging.info('Player info for %s not found; not loading him' % bref_id) return players dataframes = [] for year in get_active_years(players[bref_id]['gamelog_url_list']): dataframes.append(load_player_dataframes(bref_id, year, player_is_pitcher)) # Combine the dataframes for each year. dataframes_by_type = zip(*dataframes) # Strip out "None" dataframes, where the player recorded no stats of this type this year. dataframes_by_type = map(lambda df_list: filter(lambda df: df is not None, df_list), dataframes_by_type) # Concatenate the dataframes (when we have stats for the given type) # If the player's not a pitcher they're all None for pitching, so return None if we have no stats of that type for # any year at all! built_dataframes = map(lambda l: pandas.concat(l) if len(l) else None, dataframes_by_type) for df in built_dataframes: assert df is None or not df.duplicated().any() # TODO(jgershen): if we start pulling stats for, say, fielding, need to update here and in load_player_dataframes players[bref_id]['batting'] = built_dataframes[0] players[bref_id]['pitching'] = built_dataframes[1] batting_games_loaded = len(built_dataframes[0]) if built_dataframes[0] is not None else 0 pitching_games_loaded = len(built_dataframes[1]) if built_dataframes[1] is not None else 0 logging.info('Loaded %d games batting, %d games pitching for %s.' % (batting_games_loaded, pitching_games_loaded, bref_id)) return players def add_new_players_to_playerdict(): """ Look for players new to baseball-reference. :return: """ print 'Checking for players we have never loaded before...' active_players = get_active_players() players = json_load_playerdict() # Find out which players are new! new_players = {player: overview_page for player, overview_page in active_players.iteritems() if player not in players} if new_players: logging.info('Found %d new MLB players since last update!', len(new_players)) new_playerdict = create_player_dict(new_players) # Load overview pages for those players! new_playerdict = load_overview_pages(new_playerdict) # Update the stats page locations for new players players.update(new_playerdict) # Save the new player page information to disk json_save_playerdict(players) def update_player(players, player_id, year): """ Update ONLY the current year's stats for a player :param dict[str, dict[str, pandas.DataFrame]] players: player dict :param str player_name: player to refresh stats for :return dict[str, dict]: players """ active_years = get_active_years(players[player_id]['gamelog_url_list']) assert '2015' in active_years try: is_pitcher = brefid_is_pitcher(player_id) except KeyError: # still don't care about someone we can't load *any* data for return players year_stats = load_player_dataframes(player_id, year, is_pitcher) year_stats_by_attr = zip(player_data_types, year_stats) for data_type, stats_df in year_stats_by_attr: old_data = players[player_id].get(data_type) if old_data is None and stats_df is not None: players[player_id][data_type] = stats_df elif stats_df is not None: new_data = old_data.combine_first(stats_df) players[player_id][data_type] = new_data if players[player_id].get(data_type) is not None: # Drop NaT values in the index (from e.g. trades) here, if applicable df = players[player_id][data_type] if df.index.hasnans: df = df.loc[df.index.drop_duplicates().drop(np.nan)] players[player_id][data_type] = df return players def cli_update_players(): ap = argparse.ArgumentParser(description='update cached stats from baseball-reference.com') ap.add_argument("--year", type=int, help="Override stats for the target year instead of this one") ap.add_argument("--max-players", type=int, help="Only load this many players at most (for testing only!)", default=0) ap.add_argument("--specific-player", type=str, help="Load/update only this brefid (also for debugging)") ap.add_argument("--skip-update", action='store_true', help="Skip the update existing players step") cfg = ap.parse_args() logging.basicConfig(filename="logs/scrapebsbr.log", level=logging.INFO) add_new_players_to_playerdict() players = json_load_playerdict() players = load_dataframes(players) players_to_load = [p for p in players if not len(set(player_data_types).intersection(players[p].keys()))] if cfg.max_players: players_to_load = players_to_load[:cfg.max_players] if cfg.specific_player: players_to_load = [cfg.specific_player] if players_to_load: print 'We have no stats for %d players -- trying to load in full.' % len(players_to_load) pbar = progressbar.ProgressBar(widgets=[progressbar.Percentage(), ' ', progressbar.Bar(), ' ', progressbar.ETA()]) for player in pbar(players_to_load): logging.info('Never loaded player data for %s (crawling now)', player) scrape_player(players, player) print 'Done loading players, saving progress!' save_dataframes(players) year_to_update = cfg.year or datetime.date.today().year players_to_update = [x for x in list(players.keys()) if x not in players_to_load] if cfg.max_players: players_to_update = players_to_update[:cfg.max_players] for player in players: if players[player]: assert players[player] if cfg.skip_update: save_dataframes(players) return print 'Updating player stats for %d previously scraped players from baseball-reference.com...' % len(players_to_update) pbar = progressbar.ProgressBar(widgets=[progressbar.Percentage(), ' ', progressbar.Bar(), ' ', progressbar.ETA()]) for player in pbar(players_to_update): # found name, load player data logging.info('Updating player data for %s...', player) players = update_player(players, player, year=year_to_update) save_dataframes(players) def load_full_gamelogs(): """ Exportable loading function for using baseball reference data elsewhere in the project :return: """ players = json_load_playerdict() players = load_dataframes(players) return players ``` #### File: extdata/numberfire/nba_scraper.py ```python from argparse import ArgumentParser from bs4 import BeautifulSoup import pandas import simplejson as json import time import re import warnings import logging import progressbar import numpy from dfs.extdata.common.scraper import getSoupFromURL from dfs.nba.playerid import name2nbaid from .io import save_nf_histplayerinfo, save_nf_overview_data, load_nf_histplayerinfo, load_nf_overview_data, save_nf_salary_info from .utils import parse_terminated_json, pickle_cache_html_helper import ipdb import IPython sport = 'nba' # for shared library functions. could probably do this better. numberfire_url = 'http://www.numberfire.com/nba/fantasy/full-fantasy-basketball-projections' nf_player_url = 'http://www.numberfire.com/nba/players/{slug}' fantasy_sites = [u'fantasy_aces', u'fantasy_feud', u'draftster', u'fantasy_score', u'draft_kings', u'draftday', u'fanduel'] #<table cellspacing="0" cellpadding="0" border="0" class="player-table data-table small"> def load_player_history_table(div_soup): """Parse the HTML/Soup table for the numberfire predictions. Returns a pandas DataFrame """ if not div_soup: return None rows = div_soup.findAll('tr') table_header = [x.getText() for x in rows[0].findAll('th')] table_data = [[x.getText() for x in row.findAll('td')] for row in rows[1:]] if not table_data: logging.debug("No predictions found!") return None table = pandas.io.parsers.TextParser(table_data, names=table_header, index_col=table_header.index('Date'), parse_dates=True).read() # Next we want to separate combined projection stats like FGM-A into separate columns for FGM and FGA dash_cols = [col for col in table.columns if '-' in col] for col in dash_cols: name_parts = col.split('-') series1name = name_parts[0] series2name = name_parts[0][:-1] + name_parts[1] series1data = table[col].apply(lambda data: float(data.split('-')[0])) series2data = table[col].apply(lambda data: float(data.split('-')[1])) table[series1name] = pandas.Series(data=series1data, name=series1name, index=table.index, dtype=numpy.dtype('float')) table[series2name] = pandas.Series(data=series2data, name=series2name, index=table.index, dtype=numpy.dtype('float')) table.drop(dash_cols, axis=1, inplace=True) return table def load_player_salary_table(bsp): """ Load the historical player salaries from the NF_DATA variable on the beautiful soup page :param BeautifulSoup bsp: beautiful soup of player overview page :return: """ # Extract javascript dict containing salary values, parse as JSON data = bsp.find_all("script") regex = re.compile('var NF_DATA = (.*?);') nf_data_dicts = [] for d in data: if d.string: match = regex.search(d.string) if match: nf_data_dicts.append(parse_terminated_json(match.group(1))) if len(nf_data_dicts) != 1: warnings.warn("found multiple scripts with var NF_DATA... website probably changed") nf = nf_data_dicts[0] salaries_dict = nf['dfs_salary_charts'] def parse_site_salary_dict(site_salary_dict): # helper fn to unravel this super-nested json cols = site_salary_dict['data']['columns'] # the rest is useless graph metadata prepped = {c[0]: c[1:] for c in cols} prepped["Date"] = prepped['x'] del prepped['x'] del prepped['FP'] # we already know how many fantasy points they got df = pandas.DataFrame.from_dict(prepped) df['Date'] = pandas.to_datetime(df['Date']) df.set_index('Date', inplace=True) return df return pandas.concat([parse_site_salary_dict(salaries_dict[site]) for site in fantasy_sites], axis=1) def load_stats_tables_from_history_page(url): """Load all the prediction tables from a Numberfire history page""" soup = getSoupFromURL(url) salary = load_player_salary_table(soup) projection_months = ['%s-schedule' % month for month in ['October', 'November', 'December', 'January', 'February', 'March', 'April']] month_tables = [] for month in projection_months: month_schedule = soup.find('div', attrs={'id': month}) month_table = load_player_history_table(month_schedule) if month_table is not None: month_tables.append(month_table) if month_tables: all_predictions = pandas.concat(month_tables) else: all_predictions = None return all_predictions, salary def scrape_numberfire_overview_page(cached_page=None, cache_target=None): """ Return the information from the overview page. These should be all stats for current games. Additionally :param cached_page: :param cache_target: :return DataFrame: current statistics from the overview page """ page = pickle_cache_html_helper(numberfire_url, cached_page, cache_target) bsp = BeautifulSoup(page) data = bsp.find_all("script") regex = re.compile('var NF_DATA = (.*?);') nf_data_dicts = [] for d in data: if d.string: match = regex.search(d.string) if match: nf_data_dicts.append(parse_terminated_json(match.group(1))) if len(nf_data_dicts) != 1: warnings.warn("found multiple scripts with var NF_DATA... website probably changed") nf = nf_data_dicts[0] # need to stitch projection info to player / team tables proj_df = pandas.DataFrame(nf['daily_projections']) player_df = pandas.DataFrame.from_dict(nf['players'], orient='index') team_df = pandas.DataFrame.from_dict(nf['teams'], orient='index') # I'm still not sure what the stuff in the team analytics dataframe is, but, cool? team_an_df = pandas.DataFrame.from_dict(nf['team_analytics'], orient='index', dtype=float) joined_df = proj_df.join(player_df, on='nba_player_id') joined_df = joined_df.join(team_df, on='team_id', lsuffix="_player", rsuffix="_team") joined_df = joined_df.join(team_an_df, on='team_id', rsuffix="_") # the duplicate fields here are not necessary # Find the player slugs column. Use it to update our slug mappings #slug_dict = dict(zip(joined_df["name_player"], joined_df["slug_player"])) # Update the saved version of the slug dict with any new mappings we've found. #update_nf_playerslugs(slug_dict) # EDIT -- slug mappings will be pulled from the overview dataframe if needed return joined_df def update_numberfire_history(): # Start by updating our slug dict and overall numberfire player information overall_stats = scrape_numberfire_overview_page() save_nf_overview_data(sport, overall_stats) # We only load & update numberfire slug information for players appearing in the most recent batch of overview data # and only if we are also able to match this player to a BREF ID. A side effect of this is that we will make no # predictions for any NBA players who haven't played yet this year. pids_to_load = [] for ix, row in overall_stats.iterrows(): pid, confidence = name2nbaid(row['name_player'], player_team=row['name_team'], get_confidence=True) if confidence > 75: pids_to_load.append((pid, row['slug_player'])) old_predictions = load_nf_histplayerinfo(sport, identifiers_to_load=pids_to_load) scraped_salaries = {} new_dataframes, updated_dataframes = 0, 0 print "Scraping updated player predictions from Numberfire..." pbar = progressbar.ProgressBar(widgets=[progressbar.Percentage(), ' ', progressbar.Bar(), ' ', progressbar.ETA()]) for pid, slug in pbar(pids_to_load): time.sleep(1) player_df, salary_df = load_stats_tables_from_history_page(nf_player_url.format(slug=slug)) old_player_df = old_predictions.get(pid) if old_player_df is None: old_predictions[pid] = player_df new_dataframes += 1 else: try: new_data = old_player_df.combine_first(player_df) old_predictions[pid] = new_data except ValueError as ex: ipdb.set_trace() updated_dataframes += 1 scraped_salaries[pid] = salary_df logging.info('Saving scraped predictions (%d updated, %d added)', updated_dataframes, new_dataframes) save_nf_histplayerinfo(sport, old_predictions) save_nf_salary_info(sport, scraped_salaries) def scrape_cli(): p = ArgumentParser() p.add_argument("-v", "--verbose", help="verbose-ish, just print to console") cfg = p.parse_args() if cfg.verbose: logging.getLogger("requests").setLevel(logging.WARNING) logging.basicConfig(level=logging.INFO) else: logging.basicConfig(filename="logs/scrapenf.log", level=logging.INFO) update_numberfire_history() ``` #### File: extdata/rotoguru/scraper.py ```python from __future__ import absolute_import import bs4 import datetime import time import pandas import progressbar import logging import io from argparse import ArgumentParser from dateutil import parser from dfs.extdata.common.scraper import getSoupFromURL from .rgio import save_rg_salary_info # MLB parses from CSV -- we should really switch NBA around to doing it this way! mlb_url_template = 'http://rotoguru1.com/cgi-bin/byday.pl?date={month}{day}&game={game_code}&scsv=1' nba_url_template = 'http://rotoguru1.com/cgi-bin/hyday.pl?mon={month}&day={day}&game={game_code}' game_code_dict = {'FanDuel': 'fd'} nba_position_list = ['PG', 'PF', 'SG', 'SF', 'C'] mlb_position_list = ['P', 'C', '1B', '2B', '3B', 'SS', 'OF'] mlb_position_key = {1: 'P', 2: 'C', 3: '1B', 4: '2B', 5: '3B', 6: 'SS', 7: 'OF'} def is_actual_player_row(sport, row): if not isinstance(row.contents[0], bs4.element.Tag): return False position_list = nba_position_list if sport == 'nba' else mlb_position_list for pos in position_list: if row.contents[0].text == pos: return True return False def parse_player_row(row): position = row.contents[0].text name_parts = row.contents[1].text.strip().strip('^').split(',') name = name_parts[1] + ' ' + name_parts[0] raw_salary = row.contents[3].text parsed_salary = raw_salary.strip('$').replace(',', '') return name, position, parsed_salary def parse_mlb_csv_from_soup(soup): magic_header_string = 'Date;GID;MLB_ID;Name;Starter;Bat order;FD posn;FD pts;FD sal;Team;Oppt;dblhdr;' csv_containing_element = filter(lambda element: magic_header_string in element.text, soup.findAll('p'))[0] df = pandas.DataFrame.from_csv(io.StringIO(csv_containing_element.text), sep=';', index_col="MLB_ID") df = df[["Name", "FD posn", "FD sal"]].dropna() df["Position"] = df["FD posn"].apply(lambda x: mlb_position_key[x]) df["Salary"] = df["FD sal"] ret = df[["Name", "Position", "Salary"]] return ret def load_positions_for_day(sport, game_date, game='FanDuel'): ''' get salaries and positions for eligible players for the given day / fantasy site :param datetime.datetime game_date: :param basestring game: :return: ''' month, day = game_date.month, game_date.day url_template = nba_url_template if sport == 'nba' else mlb_url_template day_part = '%02d' % day url = url_template.format(month=month, day=day_part, game_code=game_code_dict[game]) soup = getSoupFromURL(url) if sport == 'nba': all_rows = soup.findAll('tr') player_rows = filter(lambda r: is_actual_player_row('nba', r), all_rows) parsed_rows = map(parse_player_row, player_rows) day_salaries = pandas.DataFrame.from_records(parsed_rows, columns=['Player', 'Position', 'Salary']) day_salaries["Salary"] = day_salaries["Salary"].apply(int) day_salaries["Player"] = day_salaries["Player"].apply(lambda x: x.strip()) day_salaries["Position"] = day_salaries["Position"].apply(lambda x: x.strip()) day_salaries.set_index("Player", inplace=True) else: day_salaries = parse_mlb_csv_from_soup(soup) return day_salaries def update_salary_history(sport, min_date=None, max_date=None): min_date = min_date or datetime.datetime.today() - datetime.timedelta(days=1) max_date = max_date or datetime.datetime.today() if isinstance(min_date, basestring): min_date = parser.parse(min_date) if isinstance(max_date, basestring): max_date = parser.parse(max_date) date = min_date pbar = progressbar.ProgressBar(widgets=[progressbar.Percentage(), ' ', progressbar.Bar(), ' ', progressbar.ETA()], maxval=int((max_date-min_date).total_seconds() / (60*60*24)) + 1) pbar.start() saved = 0 hit = 0 while date <= max_date: time.sleep(1) day_salaries = load_positions_for_day(sport, date) if len(day_salaries) > 0: save_rg_salary_info(sport, date, day_salaries) saved += 1 hit += 1 date += datetime.timedelta(days=1) pbar.update(value=hit) pbar.finish() return saved def scrape_cli(): p = ArgumentParser() p.add_argument('sport', help='one of mlb or nba') p.add_argument("--min-date", default=None, help="First day to scrape (defaults to yesterday)") p.add_argument("--max-date", default=None, help="Last day to scrape (defaults to today)") cfg = p.parse_args() logging.basicConfig(filename="logs/scraperotoguru.log", level=logging.INFO) print 'Loading salaries for FanDuel games...' updated_games = update_salary_history(cfg.sport, cfg.min_date, cfg.max_date) print 'Saved salaries for %d FanDuel gamedays' % updated_games ``` #### File: extdata/sportsbookreview/scrape_nba_odds.py ```python import pandas as pd import itertools import datetime from dateutil import parser import progressbar import logging from argparse import ArgumentParser import numpy as np from dfs.extdata.common.scraper import getSoupFromURL from .sbrio import save_sbr_odds_info, load_sbr_odds_info from .common import moneyline_to_implied_odds from dfs.nba.playerid import team_tla import IPython, ipdb logger = logging.getLogger(__name__) logger.addHandler(logging.FileHandler("logs/scrapeSBR.log")) logger.setLevel(logging.DEBUG) nba_template = 'http://www.sportsbookreview.com/nba-basketball/odds-scores/{year}{month}{day}/' def _get_scoreline_components(team_row): # Parse the scoreline overunder & odds component raw_ml = team_row.find('td', {'class': 'tbl-odds-c7'}).text raw_ml = raw_ml.replace(u'\xbd', '.5') # 1/2 character if 'N/A' in raw_ml: return [np.nan, np.nan] else: return map(float, raw_ml.split()) def _get_spread_components(team_row): # Parse the spread and vig. # this might be exactly the same as _get_scoreline_components, don't tell anyone raw_ml = team_row.find('td', {'class': 'tbl-odds-c5'}).text raw_ml = raw_ml.replace(u'\xbd', '.5') # 1/2 character if 'N/A' in raw_ml: return [np.nan, np.nan] else: return map(float, raw_ml.split()) def parse_odds_table(odds_table): rows = odds_table.findAll('tr') team1 = rows[2] # also contains over bet team2 = rows[3] # also contains under bet t1name = team1.find('td', {'class': 'tbl-odds-c2'}).text t2name = team2.find('td', {'class': 'tbl-odds-c2'}).text t1_current_spread = _get_spread_components(team1) t2_current_spread = _get_spread_components(team2) # Get scoreline over / under if present over_l = _get_scoreline_components(team1) under_l = _get_scoreline_components(team2)[1:] # Map sportsbook team names to three-letter abbreviations t1tla, conf1 = team_tla(t1name, get_confidence=True) t2tla, conf2 = team_tla(t2name, get_confidence=True) if conf1 >= 90 and conf2 >= 90: # Create a row for each team with # team, moneyline, run over/under, overML, underML return [[t1tla] + t1_current_spread + over_l + under_l, [t2tla] + t2_current_spread + over_l + under_l] else: logger.warning("Skipping odds for game: %s vs %s", t1name, t2name) return None def load_odds_for_day(game_day): day_part = '%02d' % game_day.day month_part = '%02d' % game_day.month url = nba_template.format(year=game_day.year, month=month_part, day=day_part) soup = getSoupFromURL(url) odds_tables = soup.findAll('table', {'class': 'tbl-odds'}) if len(odds_tables) < 1: print 'Hit some weird (intermittent?) bug with no odds tables being found. Needs more investigation!' IPython.embed() if odds_tables[0].text == u'No games to display': return None try: odds = list(itertools.chain.from_iterable(filter(lambda x: x is not None, [parse_odds_table(ot) for ot in odds_tables]))) except TypeError: IPython.embed() df = pd.DataFrame(odds, columns=['Team', 'spread', 'vig', 'scoreline', 'rl_over', 'rl_under']) df.set_index('Team', drop=True, inplace=True) return df def scrape_nba_odds_range(min_date=None, max_date=None): min_date = min_date or datetime.datetime.today() - datetime.timedelta(days=1) max_date = max_date or datetime.datetime.today() if isinstance(min_date, basestring): min_date = parser.parse(min_date) if isinstance(max_date, basestring): max_date = parser.parse(max_date) date = min_date pbar = progressbar.ProgressBar(widgets=[progressbar.Percentage(), ' ', progressbar.Bar(), ' ', progressbar.ETA()], maxval=int((max_date-min_date).total_seconds() / (60*60*24)) + 1) pbar.start() saved = 0 hit = 0 while date <= max_date: day_odds = load_odds_for_day(date) if day_odds is not None and len(day_odds) > 0: save_sbr_odds_info('nba', date, day_odds) saved += 1 hit += 1 date += datetime.timedelta(days=1) pbar.update(value=hit) pbar.finish() return saved def scrape_cli(): p = ArgumentParser() p.add_argument("--min-date", default=None, help="First day to scrape (defaults to yesterday)") p.add_argument("--max-date", default=None, help="Last day to scrape (defaults to today)") cfg = p.parse_args() logging.basicConfig() print 'Loading Vegas odds for NBA games from sportsbookreview...' loaded_count = scrape_nba_odds_range(cfg.min_date, cfg.max_date) print 'Saved odds for %d gamedays' % loaded_count ``` #### File: dfs/nba/buildteams.py ```python from __future__ import print_function from argparse import ArgumentParser import pandas as pd, numpy as np from collections import Counter from dfs.nba.playerid import id2name from dfs.knapsack.knapsack import solve_all from dfs.knapsack.heuristics import best_vorp MAX_PLAYERS_PER_TEAM = 3 import IPython positions = {'PG': 2, 'SG': 2, 'SF': 2, 'PF': 2, 'C': 1} def build_team(datafile, salary_col, position_col, prediction_col, cap=60000, legal_teams=None): """ Construct teams from a set of prediction data :param str datafile: saved prediction data (pickle file) :param str salary_col: name of salary column :param str position_col: name of position column :param str prediction_col: name of prediction column to use :param list[str] legal_teams: an optional list of legal NBA teams for the game :return pd.DataFrame: prediction data for chosen team """ player_data = pd.read_pickle(datafile) # Load real names for later use player_data['name'] = player_data['bref_id'].apply(id2name) if legal_teams: player_data = player_data[player_data['Tm'].isin(legal_teams)] # Ditch any undefined rows for salary / position / prediction as they will break the solver player_data.dropna(subset=[salary_col, position_col, prediction_col], inplace=True) # Cast player cost column to integers; this will also break the solver! :) player_data[salary_col] = player_data[salary_col].astype(int) # an optimization: speed up computation by only keeping the best-projected two players at each (position, salary). # this should mean we only keep players we could potentially use # it is hypothetically true that this could burn us if we get hit by the "too many players from team X" consideration #grouped_player_data = player_data.groupby([salary_col, position_col], sort=False) # this actually figures out how many players we need at the given position and keeps only that many at each salary level #candidates = grouped_player_data.apply(lambda group: group.sort(prediction_col).tail(positions[group[position_col].iloc[0]])) # # more detailed, even more aggressive sketchier optimization: remove all players which are strictly worse than others # (all players for whom two players are better and at least as cheap -- or one for centers. I hard coded that to save time) # this could burn us pretty hard if we run into a team constraint in the end def dominators(row): return len(player_data[(player_data['predicted'] > row['predicted']) & (player_data['salary'] <= row['salary']) & (player_data['pos'] == row['pos'])]) player_data['dominators'] = player_data.apply(dominators, axis=1) candidates = player_data[(player_data['dominators'] == 0) | ((player_data['pos'] != 'C') & (player_data['dominators'] <= 1))] candidates.set_index('bref_id', inplace=True) while True: # because python doesn't have do... while best_team = best_vorp(data=candidates, cost_column=salary_col, value_column=prediction_col, type_column=position_col, required_types=positions, cap=cap, debug_print_fn=print) # Implement an additional constraint -- we can't have more than 4 players from the same team. # We'll actually be a little stricter and try to restrict it at 3 (see MAX_PLAYERS_PER_TEAM). teams_of_selection = Counter(candidates.loc[best_team, 'Tm'].values) most_common_team, count = teams_of_selection.popitem() if count <= MAX_PLAYERS_PER_TEAM: return candidates.loc[best_team] else: # Nope, this is an illegal team. Try to help us generate a real one by dropping the lowest-valued player # on the team from the list of possible candidates. players_on_most_common_team = [c for c in best_team if candidates.loc[c, 'Tm'] == most_common_team] team_players = candidates.loc[players_on_most_common_team].copy() team_players['value'] = team_players[prediction_col].divide(team_players[salary_col]) team_players.sort('value', inplace=True) worst_player = team_players.iloc[0].name print('Ideal team had %d players from %s. Banning player: %s' % (count, most_common_team, worst_player)) candidates = candidates.drop([worst_player]) def genteam_to_file(outfile, datafile, salary_col, position_col, prediction_col, cap=60000, legal_teams=None): best_team = build_team(datafile, salary_col, position_col, prediction_col, cap, legal_teams) best_team.to_pickle(outfile) def build_teams_cli(): p = ArgumentParser() p.add_argument("data", help="pickled dataframe containing players positions, salaries, and predictions") p.add_argument("outfile", help="output: pickled dataframe containing information for selected players") p.add_argument("--salary", default="salary", help="name of salary column") p.add_argument("--position", default="pos", help="name of position column") p.add_argument("--prediction", default="predicted", help="name of predicted column") p.add_argument("--cap", default=60000, help="salary cap amount") p.add_argument("--teams", default=None, nargs='+', help="legal NBA teams for game") cfg = p.parse_args() genteam_to_file(outfile=cfg.outfile, datafile=cfg.data, salary_col=cfg.salary, position_col=cfg.position, prediction_col=cfg.prediction, cap=cfg.cap, legal_teams=cfg.teams) ``` #### File: dfs/nba/model.py ```python from argparse import ArgumentParser import pandas as pd import numpy as np import pickle from sklearn.linear_model import Ridge, LinearRegression, Lasso, ElasticNet from sklearn.ensemble import RandomForestRegressor from .attrs import read_attrs import logging logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) def build_model(train_file, attr_file, model_out, algorithm='ridge'): classifiers = ['ridge', 'linear', 'lasso', 'rf', 'en'] if algorithm not in classifiers: raise NotImplementedError("only implemented algorithms: " + str(classifiers)) train_data = pd.read_pickle(train_file) attrs = read_attrs(attr_file) target_attr = attrs[0] usable_attrs = attrs[1:] if algorithm == 'ridge': clf = Ridge() elif algorithm == 'linear': clf = LinearRegression() elif algorithm == 'lasso': clf = Lasso() elif algorithm == 'en': clf = ElasticNet() else: clf = RandomForestRegressor() logger.debug("Modeling '%s'", target_attr) logger.debug(" train set (%d): %s", len(train_data), train_file) logger.debug(" Algorithm: %s", algorithm) if hasattr(clf, 'coef_'): logger.debug('Coefficients:') for i,c in enumerate(clf.coef_): logger.debug(' %-20s' % usable_attrs[i] + ':', '%20.4f' % c) clf.fit(train_data[usable_attrs], train_data[target_attr]) pickle.dump(clf, open(model_out, 'wb')) def apply_model(model_file, test_file, attr_file, predictions_out, live=False): clf = pickle.load(open(model_file, 'rb')) test_data = pd.read_pickle(test_file) attrs = read_attrs(attr_file) target_attr = attrs[0] usable_attrs = attrs[1:] # keep the identifier columns which are already present in the test data identifier_cols = ['bref_id', 'Opp', 'Tm', 'date', 'salary', 'pos'] identifier_cols = [col for col in identifier_cols if col in test_data.columns] predictions = clf.predict(test_data[usable_attrs]) if live: prediction_results = test_data[usable_attrs + identifier_cols].copy() else: prediction_results = test_data[[target_attr] + usable_attrs + identifier_cols].copy() prediction_results['predicted'] = predictions prediction_results.to_pickle(predictions_out) if not live: errors = predictions - test_data[target_attr] logger.info("Predicting '%s'", target_attr) logger.debug(" test set (%d): %s", len(test_data), test_file) logger.info(' MSE : %10.4f' % np.mean(errors ** 2)) logger.info(' medSE: %10.4f' % np.median(errors ** 2)) logger.info(' SSE : %10.4f' % np.sum(errors ** 2)) logger.info(' Variance score: %.4f' % clf.score(test_data[usable_attrs], test_data[target_attr])) def build_model_cli(): p = ArgumentParser() p.add_argument("train", default="train.pickle", help="training filename") p.add_argument("test", default="test.pickle", help="test filename") p.add_argument("attrs", default="attrs.txt", help="attributes to incorporate into model") p.add_argument("model", default="model.pickle", help="pickle model to this file") p.add_argument("--predictions-out", default="predictions.pickle", help="save test preedictions/results here") p.add_argument("--algo", default="ridge", help="modeling algorithm to use") cfg = p.parse_args() logger.addHandler(logging.StreamHandler()) build_model(train_file=cfg.train, attr_file=cfg.attrs, model_out=cfg.model, algorithm=cfg.algo) apply_model(model_file=cfg.model, test_file=cfg.test, attr_file=cfg.attrs, predictions_out=cfg.predictions_out) ``` #### File: dfs/nba/playerid.py ```python import warnings from fuzzywuzzy import process as fzmatch from dfs.extdata.bbr.mapping_df import load_player_table mapping_df = load_player_table() unset_index = mapping_df.reset_index() unset_index.fillna('', inplace=True) mapping_by_name = unset_index.set_index('name') mapping_by_id = unset_index.set_index('brefid') def name2nbaid(player_name, player_team=None, get_confidence=False): """ Consolidate all fuzzy-matching name lookups into this function alone. :param str player_name: player name :return: """ tla = None if player_team is not None: tla = team_tla(player_team) usable_mapping = mapping_by_name[mapping_by_name['team'] == tla] else: usable_mapping = mapping_by_name choices = usable_mapping.index match, score = fzmatch.extractOne(player_name, choices) if score < 75 and not get_confidence: # We only warn if we haven't been asked to give our confidence in the match. # If we are returning confidence, we assume the caller is dealing with it intelligently. # I think this will be useful for loading fewer garbage stats when matches don't happen. warnings.warn("Low confidence NBA name match: %s [%s] -> %s (confidence=%d)" % (player_name, tla, match, score)) if get_confidence: return usable_mapping.loc[match, 'brefid'], score else: return usable_mapping.loc[match, 'brefid'] def id2name(player_id): return mapping_by_id.loc[player_id, 'name'] def team_tla(team, get_confidence=False): """ Try to come up with a canonical TLA for the given team. The values we choose from are in mapping_df. :param str team: :return str: TLA """ if team in _acceptable_tlas: # We can't use _team_tlas here for a shortcut since we ban some bad TLAs. return team else: match, score = fzmatch.extractOne(team, _team_choices.keys()) actual_team = _team_choices[match] if score < 90 and not get_confidence: warnings.warn("Low confidence NBA team match: %s -> %s -> %s (confidence=%d)" % (team, match, actual_team, score)) if get_confidence: return actual_team, score else: return actual_team _team_tlas = set(mapping_df['team'].values) # add aliases in the form of (TLA, alias) _team_alias_list = [ ('ATL', "Atlanta Hawks"), ('BOS', "Boston Celtics"), ('BRK', "Brooklyn Nets"), ('BRK', "BKN"), ('CHI', "Chicago Bulls"), ('CHO', "Charlotte Hornets"), ('CLE', "CLV"), ('CLE', "Cleveland Cavaliers"), ('DAL', "Dallas Mavericks"), ('DEN', "Denver Nuggets"), ('DET', "Detroit Pistons"), ('GSW', "Golden State Warriors"), ('GSW', "Golden State"), ('HOU', "Houston Rockets"), ('IND', "Indiana Pacers"), ('LAC', "Los Angeles Clippers"), ('LAC', "L.A. Clippers"), ('LAL', "Los Angeles Lakers"), ('LAL', "L.A. Lakers"), ('MEM', "Memphis Grizzlies"), ('MIA', "Miami Heat"), ('MIL', "Milwaukee Bucks"), ('MIN', "Minnesota Timberwolves"), ('NJN', "New Jersey Nets"), ('NOP', 'NOH'), ('NOP', "New Orleans Hornets"), # Force Hornets references to be understood as Pelicans refs ('NOP', "New Orleans Pelicans"), ('NYK', "New York Knicks"), ('OKC', "Oklahoma City Thunder"), ('ORL', "Orlando Magic"), ('PHI', "Philadelphia 76ers"), ('PHO', "Phoenix Suns"), ('POR', "Portland Trail Blazers"), ('SAC', "Sacramento Kings"), ('SAS', "SA"), # SA = San Antonio ('SAS', "San Antonio Spurs"), ('SEA', "Seattle SuperSonics"), # lol ('TOR', "Toronto Raptors"), ('UTA', "Utah Jazz"), ('WAS', "Washington Wizards"), ] + [(tla, tla) for tla in _team_tlas] # also consider that the TLA may have just been misspelled. # There are some old team TLA's with no active players that I am just banning here to make it easy. _bad_tlas = ["NOH"] _filtered_alias_list = filter(lambda (tla, _): tla not in _bad_tlas, _team_alias_list) _team_choices = {alias: tla for tla, alias in _filtered_alias_list} _acceptable_tlas = set(_team_choices.values()) def get_position(player_id): """ Quick load a player's position by his bref ID :param str player_id: bref_id :return str: position """ return mapping_by_id.loc[player_id]['pos'] ``` #### File: dfs/nba/predict.py ```python import pandas as pd, numpy as np from dfs.extdata.bbr.gamelogs import load_all_game_data from dfs.nba.featurizers import salary_fzr from dfs.nba.playerid import get_position, team_tla, name2nbaid from dfs.fanduel2.io import get_game_info, get_loaded_games, read_player_csv import datetime from dateutil.parser import parse def get_eligible_players_df(game_day, fd_game_id=None, guess_historical=False): """ Get a dataframe of eligible NBA players on the target day for a particular FanDuel game ID. :param datetime.datetime game_day: day to grab players for :param int game_id: FanDuel game ID :param bool guess_historical: whether to guess who was an "eligible" player that day -- only include anyone who actually played :return pd.DataFrame: rows for eligible players """ parsed_date = parse(game_day) if not guess_historical: if fd_game_id is None: print "Loading possible game IDs for this day..." loaded_games = get_loaded_games('nba') loaded_games['gameday'] = loaded_games['gamedate'].apply(lambda d: d.date()) todays_games = loaded_games[loaded_games['gameday'] == parsed_date.date()] #import IPython #IPython.embed() chosen_game = todays_games.iloc[0] fd_game_id = chosen_game['game_id'] print 'Choosing game', chosen_game['title'], '(ID', fd_game_id, ')' print ' Starts at:', chosen_game['gameday'] print ' Fee: $', chosen_game['fee'] player_df = read_player_csv('nba', parsed_date, fd_game_id) player_df['Tm'] = player_df['Team'].apply(team_tla) player_df['Opp'] = player_df['Opponent'].apply(team_tla) player_df['date'] = pd.Series(parsed_date, index=player_df.index) player_df['bref_id'] = player_df.apply(lambda row: name2nbaid(row['First Name'] + ' ' + row['Last Name'], row['Tm']), axis=1) player_df['bref_id_confidence'] = player_df.apply(lambda row: name2nbaid(row['First Name'] + ' ' + row['Last Name'], row['Tm'], get_confidence=True)[1], axis=1) player_df.rename(columns={'Position': 'pos', 'Salary': 'salary'}, inplace=True) # Dump anyone we had low confidence in matching by team/name player_df = player_df[player_df['bref_id_confidence'] >= 75] # Finally, dump anyone who is injured (todo: keep GTD players?) safe_players = player_df[player_df['Injury Indicator'].isnull()].copy() return safe_players elif guess_historical and parsed_date.date() >= datetime.date.today(): raise ValueError("Can't guess historical players for a game that hasn't happened yet...") else: # load historical players from our archive as if it were a game about to be played game_date = parsed_date.date() all_games = load_all_game_data() day_players = all_games[all_games['date'] == game_date] actual_players = day_players[day_players['MP'] > 0] return_df = actual_players[['bref_id', 'Opp', 'Tm']].copy() # set the date to the gameday everywhere return_df['date'] = pd.Series(parsed_date, index=return_df.index) # Grab salary information from our scraped numberfire cache return_df['salary'] = return_df.apply(lambda row: salary_fzr(row), axis=1) # Assemble player positional information from our gamelogs return_df['pos'] = return_df['bref_id'].apply(lambda pid: get_position(pid)) return return_df def dump_eligible_players_df(outfile, *args, **kwargs): """ Get a dataframe of eligible NBA players on the target day for a particular FanDuel game ID and save to file Replaces dumping for the live pipeline. :param str outfile: save pickle dump to this file :param datetime.datetime game_day: day to grab players for :param int game_id: FanDuel game ID :param bool guess_historical: whether to guess who was an "eligible" player that day -- only include anyone who actually played :return pd.DataFrame: rows for eligible players """ df = get_eligible_players_df(*args, **kwargs) df.to_pickle(outfile) ``` #### File: dfs/nba/split.py ```python from argparse import ArgumentParser import pandas as pd import numpy as np from .attrs import read_attrs DATE_COL = "date" def strip_and_process_na(data, attrfile, na_strategy, include_target=True): attrs = read_attrs(attrfile) if not include_target: attrs = attrs[1:] # Keep only the attributes we care about as well as any relevant indexing columns relevant_columns = attrs if DATE_COL not in relevant_columns: relevant_columns.append(DATE_COL) # This day we can drop NA values without destroying all the data just b/c some irrelevant column is missing if na_strategy == 'drop': fixed_data = data.dropna(subset=relevant_columns) elif na_strategy == 'zero': only_updated_cols = data[relevant_columns] nonzero = only_updated_cols.fillna(value=0) fixed_data = data.copy() fixed_data.update(nonzero) else: raise NotImplementedError("invalid na_strategy") return fixed_data def split_data(expanded_data, trainpct, split_randomly): train_example_count = int(len(expanded_data.index) * trainpct / 100.0) if split_randomly: train_indices = np.random.choice(expanded_data.index, size=train_example_count, replace=False) else: train_indices = expanded_data.sort(DATE_COL).index[:train_example_count] train_data = expanded_data.ix[train_indices] test_data = expanded_data.drop(train_indices) return train_data, test_data def strip_and_process_to_files(expanded_file, stripped_file, attrfile, na_strategy, include_target): data = pd.read_pickle(expanded_file) stripped_data = strip_and_process_na(data=data, attrfile=attrfile, na_strategy=na_strategy, include_target=include_target) stripped_data.to_pickle(stripped_file) def split_to_files(trainfile, testfile, stripped, trainpct, split_randomly): expanded_data = pd.read_pickle(stripped) train_data, test_data = split_data(expanded_data=expanded_data, trainpct=trainpct, split_randomly=split_randomly) train_data.to_pickle(trainfile) test_data.to_pickle(testfile) def split_cli(): p = ArgumentParser() p.add_argument("expanded", default="expanded.pickle", help="Expanded pickle file targets.") p.add_argument("stripped", default="test.pickle", help="stripped data filename") p.add_argument("train", default="train.pickle", help="training filename") p.add_argument("test", default="test.pickle", help="test filename") p.add_argument("attrfile", default="attrs.txt", help="attrs to care about for NA purposes") p.add_argument("--na-strategy", default="drop", help="what to do with NA rows (default is drop them)") p.add_argument("--trainpct", default=70, type=int, help="percentage of data to put into training set") p.add_argument("--random", action='store_true', help="split train/test sets randomly (default is by time)") cfg = p.parse_args() strip_and_process_to_files(expanded_file=pd.read_pickle(cfg.expanded), stripped_file=cfg.stripped, attrfile=cfg.attrfile, na_strategy=cfg.na_strategy) split_to_files(trainfile=cfg.train, testfile=cfg.test, stripped=cfg.stripped, trainpct=cfg.trainpct, split_randomly=cfg.random) ``` #### File: test/nba/test_expansion.py ```python import pandas import pkg_resources from unittest import TestCase from dfs.nba.expansion import get_expansion_targets, encode_names, expand_nba_data, discretize_data class ExpansionTestCase(TestCase): def setUp(self): # A little test data from the past few years, useful for testing BREF data testfn = pkg_resources.resource_filename(__name__, 'test.pickle') self.data = pandas.read_pickle(testfn) # More recent test data -- used for testing external data recentfn = pkg_resources.resource_filename(__name__, 'recent.pickle') self.recentdata = pandas.read_pickle(recentfn) # grab only one entry from each for super simple testing self.ezdata = pandas.concat([self.data.tail(1), self.recentdata.tail(1)]) def test_get_expansion_targets(self): live_targets = list(get_expansion_targets(expanding_live=False)) old_targets = list(get_expansion_targets()) # Check types for name, (fn, targets) in live_targets + old_targets: assert isinstance(name, basestring) assert hasattr(fn, '__call__') assert isinstance(targets, list) for i in targets: assert isinstance(i, basestring) def test_encode_names(self): self.assertDictEqual({"A":"FeatureName:A", "B":"FeatureName:B", "C":"FeatureName:C"}, encode_names("FeatureName",["A","B","C"])) def test_expansion(self): # basically just make sure these don't crash expand_nba_data(self.data, live=False) expand_nba_data(self.recentdata, live=True) ez_expand = expand_nba_data(self.ezdata, live=False) ez_expand_live = expand_nba_data(self.ezdata, live=True) # this stuff sucks and was always getting killed b/c of data updates #self.maxDiff = None #count_dict = {'bref_id': 2, u'FT': 2, 'NF:STL': 1, 'OpponentLast2Weeks:MaxFPPMP': 2, u'3P': 2, u'TOV': 2, 'OpponentLast2Weeks:MaxFPPG': 2, u'Tm': 2, u'GmSc': 2, u'FG': 2, u'3PA': 2, u'DRB': 2, u'Rk': 2, 'NF:BLK': 1, u'Opp': 2, u'AST': 2, u'HomeAway': 0, u'FT%': 1, 'NF:Minutes': 1, u'PF': 2, 'NF:TOV': 1, u'PTS': 2, u'FGA': 2, 'Vegas:Spread': 2, 'OpponentLast2Weeks:AvgFPPG': 2, u'GS': 2, u'G': 2, 'NF:FP': 1, u'STL': 2, 'Last5:PPG': 2, u'Age': 2, u'TRB': 2, u'DFS': 1, u'FTA': 2, u'BLK': 2, 'date': 2, u'FG%': 2, 'OpponentLast2Weeks:AvgFPPMP': 2, 'Vegas:OverUnder': 2, u'+/-': 2, u'WinLoss': 2, 'NF:PTS': 1, 'Target:FDFP': 2, 'NF:REB': 1, 'NF:AST': 1, u'MP': 2, 'NF:PF': 1, 'OpponentLast2Weeks:FPPMP': 2, u'ORB': 2, u'3P%': 2, 'Salary:FanDuel Salary':1} #self.assertDictEqual(count_dict, ez_expand.count().to_dict()) #live_count_dict = {'bref_id': 2, u'FT': 2, 'NF:STL': 1, 'OpponentLast2Weeks:MaxFPPMP': 2, u'3P': 2, u'TOV': 2, 'OpponentLast2Weeks:MaxFPPG': 2, u'Tm': 2, u'GmSc': 2, u'FG': 2, u'3PA': 2, u'DRB': 2, u'Rk': 2, 'NF:BLK': 1, u'Opp': 2, u'AST': 2, u'HomeAway': 0, u'FT%': 1, 'NF:Minutes': 1, u'PF': 2, 'NF:TOV': 1, u'PTS': 2, u'FGA': 2, 'Vegas:Spread': 2, 'OpponentLast2Weeks:AvgFPPG': 2, u'GS': 2, u'G': 2, 'NF:FP': 1, u'STL': 2, 'Last5:PPG': 2, u'Age': 2, u'TRB': 2, u'DFS': 1, u'FTA': 2, u'BLK': 2, 'date': 2, u'FG%': 2, 'OpponentLast2Weeks:AvgFPPMP': 2, 'Vegas:OverUnder': 1, u'+/-': 2, u'WinLoss': 2, 'NF:PTS': 1, 'NF:PF': 1, 'NF:REB': 1, 'NF:AST': 1, u'MP': 2, 'OpponentLast2Weeks:FPPMP': 2, u'ORB': 2, u'3P%': 2} #self.assertDictEqual(live_count_dict, ez_expand_live.count().to_dict()) def test_discretization(self): stadium_series = pandas.Series(data=["Lambeau", "Levis", "Qwest"]) # Pretend this is an expanded field awesomeness_series = pandas.Series(data=[100, 30, 0]) # this is a continuous field name_series = pandas.Series(data=["Packers", "49ers", "Seahawks"]) # and this is a not-expanded discrete field df = pandas.DataFrame.from_dict({"Team:Stadium": stadium_series, "Awesomeness": awesomeness_series, "Team Name": name_series}) discretized = discretize_data(df) # make sure only the expanded discrete fields were discretized self.assertItemsEqual(["Team:Stadium=Lambeau","Team:Stadium=Levis","Team:Stadium=Qwest","Awesomeness","Team Name"], discretized.columns) ``` #### File: test/nba/test_fzrs.py ```python import tempfile import shutil import os import pandas import numpy as np import datetime import pkg_resources from unittest import TestCase from dfs.nba.featurizers import feature_generators from dfs.nba.featurizers import fantasy_points_fzr, last5games_fzr, nf_stats_fzr, vegas_fzr, \ opp_ffpg_fzr, salary_fzr class FeaturizersTest(TestCase): def setUp(self): # A little test data from the past few years, useful for testing BREF data testfn = pkg_resources.resource_filename(__name__, 'test.pickle') self.data = pandas.read_pickle(testfn) # More recent test data -- necessary for testing external data recentfn = pkg_resources.resource_filename(__name__, 'recent.pickle') self.recentdata = pandas.read_pickle(recentfn) def testDataIntegrity(self): assert len(self.data) == 10 assert self.data.iloc[0]['bref_id'] == 'gallola01' assert self.data.iloc[9]['bref_id'] == 'dunlemi02' assert len(self.recentdata) == 10 assert self.recentdata.iloc[0]['bref_id'] == 'barnema02' assert self.recentdata.iloc[9]['bref_id'] == 'lawsoty01' def testDecorator(self): # Make sure the decorator is properly wrapping functions and turning their list outputs into pandas.Series for func_name in feature_generators: assert isinstance(func_name, basestring) wrapper, columns, live = feature_generators[func_name] output = wrapper(self.data.iloc[0]) self.assertTrue(isinstance(output, pandas.Series)) self.assertItemsEqual(columns, output.index) def applyFeaturizer(self, fzr_function, expected_output, use_recent=False): data = self.recentdata if use_recent else self.data for integer_index, (_, row) in enumerate(data.iterrows()): actual_output = fzr_function(row) for i in range(len(expected_output[integer_index])): # First check if they're both NaN if np.isnan(expected_output[integer_index][i]) and np.isnan(actual_output.iloc[i]): continue self.assertAlmostEqual(expected_output[integer_index][i], actual_output.iloc[i], places=3, msg="Error in row %d item %d of %s. Reference %s, actual output %s." % ( integer_index, i, 'recentdata' if use_recent else 'data', expected_output[integer_index][i], actual_output.iloc[i] )) def test_fantasy_points_fzr(self): self.applyFeaturizer(fantasy_points_fzr, [[20.1], [4.0], [17.3], [4.2], [22.5], [36.3], [27.9], [31.3], [17.8], [11.7]]) def test_last5games_fzr(self): self.applyFeaturizer(last5games_fzr, [[25.1], [6.78], [18.78], [6.26], [19.24], [29.56], [30.74], [31.36], [13.94], [23.72]]) def test_nf_stats_fzr(self): self.applyFeaturizer(nf_stats_fzr, [[23.76,6.0,2.7,1.4,0.6,0.2,0.8,1.9,12.14], [35.97,19.0,6.1,4.0,1.1,0.2,2.1,2.9,32.82], [23.58,12.9,2.7,1.7,0.7,0.2,1.2,2.4,19.29], [np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan,np.nan], [27.23,10.4,4.4,2.9,0.6,0.3,1.8,2.3,20.03], [23.39,7.10,3.0,1.0,0.5,0.3,0.6,2.1,13.2], [24.62,8.1,4.2,1.6,0.6,0.2,1.4,2.4,15.74], [18.26,9.2,3.0,1.1,0.5,0.4,0.7,1.4,15.55], [23.38,8.1,3.5,0.9,0.6,0.2,0.8,1.7,14.45], [35.62,18.8,4,7.5,1.5,0.1,2.8,2.4,35.25]], use_recent=True) def test_vegas_fzr(self): self.applyFeaturizer(vegas_fzr, [[10.5, 189.5], [6.5, 199.5], [9.5, 194.5], [4.5, 194.0], [8.5, 195.5], [-1, 190.5], [-5, 198], [2.5, 196.5], [-19, 200.0], [-9, 181.0] ]) self.applyFeaturizer(vegas_fzr, [[9.0, 204.5], [-6.0, 200.5], [4.5, 217.5], [-5.5, 202.5], [-5.5, 202.5], [2.0, 195], [13.0, 195], [-4.0, 203.5], [-6.0, 200.5], [4.5, 217.5]], use_recent=True) def test_opp_ffpg_fzr(self): self.applyFeaturizer(opp_ffpg_fzr, [[18.389285714285712, 48.0, 0.85816666666666663, 1.1187666671058538, 20.0], [17.040909090909093, 67.2, 0.76771331058020498, 0.76122548332443785, 2.0055710306406684], [20.261666666666667, 42.4, 0.85140009104385328, 0.80628334990429773, 1.5840597758405979], [15.684848484848485, 35.3, 0.71887224832758501, 0.67037347774416234, 1.3499043977055449], [20.426530612244896, 52.4, 0.83409491798497215, 0.81556700238463165, 1.9865319865319866], [17.885365853658534, 51.8, 0.7638541666666665, 0.69248549436529994, 1.3061224489795917], [18.26969696969697, 66.2, 0.83735141954375503, 0.89284459636178026, 10.105263157894738], [19.694339622641515, 54.6, 0.86982125248260445, 0.80132994567677285, 1.7091633466135459], [17.863636363636363, 46.4, 0.81874052383653018, 0.80001770931620431, 1.5218658892128281], [16.608974358974361, 56.2, 0.77021403091557705, 0.7193626173392953, 1.3805774278215222]], use_recent=False) def test_salary_fzr(self): self.applyFeaturizer(salary_fzr, [[3500], [8200], [3700], [np.nan], [4100], [3500], [3500], [4000], [3700], [7100]], use_recent=True) ``` #### File: test/nba/test_playerid.py ```python from dfs.nba.playerid import name2nbaid, team_tla, get_position def test_name2nbaid(): # TODO: test using team lookup here as well? good_matches = [("<NAME>", "davised01"), ("<NAME>", "collini01"), ("<NAME>", "ibakase01"), ("<NAME>", "snellto01"), ("<NAME>", "mirotni01"), ("<NAME>", "harklma01"), ("<NAME>", "bjeline01"), ("<NAME>", "haywago01"), ("<NAME>", "adamsst01"), ("<NAME>", "gasolpa01"), ("<NAME>", "roberbr01"), ("<NAME>", "millean02"), ("<NAME>", "millsel01"), ("<NAME>", "morroan01"), ("<NAME>", "rubiori01"), ("<NAME>", "whiteha01"), ("<NAME>", "duranke01"), ("<NAME>", "cottobr01"), ("<NAME>", "nowitdi01"), ("<NAME>", "lylestr01")] for name, match in good_matches: assert name2nbaid(name) == match def test_team_lookup(): assert team_tla("LA Lakers") == "LAL" assert team_tla("Phoenix Suns") == "PHO" assert team_tla("BRK") == "BRK" assert team_tla("CLV") == "CLE" assert team_tla("gsw") == "GSW" assert team_tla("NOH") == "NOP" assert team_tla("SAC") == "SAS" def test_player_position(): assert 'SF' == get_position('jamesle01') assert 'PG' == get_position('curryst01') assert 'C' == get_position('duncati01') assert 'PF' == get_position('couside01') assert 'SG' == get_position('hardeja01') ``` #### File: test/nba/test_predict.py ```python from dfs.nba.predict import get_eligible_players_df from unittest import TestCase class PredictDayTestCase(TestCase): def setUp(self): pass def test_get_eligible_players_df(self): players = get_eligible_players_df('2015-11-10', guess_historical=True) self.assertEqual(163, len(players)) self.assertListEqual(['ibakase01', 'roberan03', 'bassbr01', 'nealga01', 'johnsja01', 'kaminfr01', 'dragigo01', 'brownan02', 'ajincal01', 'loveke01'], list(players['bref_id'].values[:10])) # Make sure we have all the columns we need to get started self.assertItemsEqual(['bref_id', 'Tm', 'Opp', 'date', 'salary', 'pos'], list(players.columns)) ``` #### File: sportsball/test/test_mlb_playermatcher.py ```python from unittest import TestCase import random from dfs.mlb.playerid import * from dfs.extdata.crunchtime import load_latest_mapping random.seed(0) class TestMatcher(TestCase): def setUp(self): mapping = load_latest_mapping() # Get all player names from Baseball Reference for testing self.player_names = filter(lambda x: len(x) > 0, mapping["bref_name"].fillna('').values) self.player_brefids = filter(lambda x: len(x) > 0, mapping["bref_id"].fillna('').values) self.mlb2name = {425877: '<NAME>', 444432: '<NAME>', 474384: '<NAME>', 516589: '<NAME>', 429665: '<NAME>'} self.name2pos = { '<NAME>' : 'P', '<NAME>' : 'P', '<NAME>' : 'P', '<NAME>' : '1B', '<NAME>' : 'C', '<NAME>' : 'P', '<NAME>' : 'P', '<NAME>' : 'P', '<NAME>' : 'SS', '<NAME>' : 'SS' } self.duplicate_named_players = {'<NAME>': [542432, 608070]} def tearDown(self): pass def test_name2position(self): for ref_name, ref_pos in self.name2pos.iteritems(): assert name2position(ref_name) == ref_pos def test_name2mlbid(self): for ref_id, ref_name in self.mlb2name.iteritems(): assert name2mlbid(ref_name) == ref_id def test_espnid2mlbid(self): assert espnid2mlbid(29769) == 451109 assert espnid2mlbid(33637) == 592091 assert espnid2mlbid(12459810384670134) is None def test_brefid2mlbid(self): assert brefid2mlbid('crowaa01') == 543070 assert brefid2mlbid('cunniaa01') == 488811 assert brefid2mlbid('sldglawlegawe') is None def test_playerispitcher(self): for brefid in self.player_brefids: result = brefid_is_pitcher(brefid) if type(result) != bool: print brefid print result assert False ``` #### File: sportsball/test/test_simple_projections.py ```python from mock import MagicMock import unittest from dfs.nba.simple_projections import prepare_team_dataframes, simulate_player_stats from dfs.extdata.bbr.gamelogs import load_gamelogs class TestProjections(unittest.TestCase): def setUp(self): self.playerdata = load_gamelogs() def tearDown(self): pass def testSimPlayerStats(self): pass ```
{ "source": "jgersti/avorion-obj-exporter", "score": 2 }
#### File: src/avorion_obj_exporter/model.py ```python import vtk import numpy as np import pyvista as pv from avorion_obj_exporter.shapes import getCell def _getColors(blocks): helper = vtk.vtkNamedColors() return np.asarray([helper.HTMLColorToRGBA(f"#{b['color'][2:]}") for b in blocks], dtype=np.uint8) def _getOrientations(blocks, comp): return np.array([b['orientation'][comp] for b in blocks], dtype=np.uint64) def _getMaterials(blocks): return np.array([b['material'] for b in blocks], dtype=np.uint64) def _getTypes(blocks): return np.array([b['type'] for b in blocks], dtype=np.uint64) def createModel(blocks, merge=False, tolerance=1e-6): def dist2(x,y): z = x-y return np.einsum('...i,...i->...', z, z) def insert(points, newPoints, indices): if merge: pIndices = [] for p in newPoints: try: i = next(i for i, q in enumerate(points) if dist2(p, q) < tolerance) except: i = len(points) points.append(p) finally: pIndices.append(i) return np.array(pIndices) else: n = len(points) points.extend(newPoints) return np.arange(n, n+len(newPoints)) cells = [] offsets = [] points = [] types = [] n = len(blocks) for i, _block in enumerate(blocks): _type, _indices, _points = getCell(_block) pIndices = insert(points, _points, _indices) if type(_indices) is list: cell = [[1+len(_indices), len(_indices)]] for sub in _indices: cell.extend([[len(sub)], pIndices[sub]]) cell[0][0] += len(sub) else: cell = [[len(_indices)], pIndices[_indices]] cells.extend(np.concatenate(cell)) offsets.append(1 + cell[0][0] + (offsets[-1] if offsets else 0)) types.append(_type) if pv._vtk.VTK9: model = pv.UnstructuredGrid(np.asarray(cells), np.asarray(types), np.asarray(points)) else: model = pv.UnstructuredGrid(np.asarray(offsets), np.asarray(cells), np.asarray(types), np.asarray(points)) data = model.cell_arrays data['color'] = _getColors(blocks) data['material'] = _getMaterials(blocks) data['type'] = _getTypes(blocks) return model.extract_surface(pass_pointid=False) ``` #### File: src/avorion_obj_exporter/reader.py ```python import numpy as np try: import xml.etree.cElementTree as ET except: import xml.etree.ElementTree as ET from pathlib import Path from dataclasses import dataclass @dataclass class Block: lower: np.ndarray upper: np.ndarray orientation: np.ndarray type: int material: int color: str def _blockStats(block, legacy=False): stats = {} if block.tag == 'block': attr = block.attrib stats['orientation'] = np.array([attr['look'], attr['up']], dtype=np.int64) stats['type'] = int(attr['index']) stats['material'] = int(attr['material']) stats['color'] = attr['color'] if legacy: stats['lower'] = np.array([attr['lowerX'], attr['lowerY'], attr['lowerZ']], dtype=np.float64) stats['upper'] = np.array([attr['upperX'], attr['upperY'], attr['upperZ']], dtype=np.float64) else: stats['lower'] = np.array([attr['lx'], attr['ly'], attr['lz']], dtype=np.float64) stats['upper'] = np.array([attr['ux'], attr['uy'], attr['uz']], dtype=np.float64) else: raise ValueError('invalid tag.') return stats def readShipXML (file): print(f'Reading File: {file}') tree = ET.parse(str(file)) root = tree.getroot() format = root.find('.//block[@lx]') == None blocks = [_blockStats(i, legacy=format) for i in root.findall('.//block' if format else 'plan//block')] if len(blocks) == 0: raise IOError(f'Could not read file \'{file}\'.') return blocks ``` #### File: src/avorion_obj_exporter/shapes.py ```python import numpy as np from avorion_obj_exporter.categories import SHAPES def _rotateReference(points, orientation): # np.any((a < 1) | (a > 5)) if np.any((orientation < 0) | (orientation > 5)): raise ValueError(f'Invalid orientation: {orientation}') o = np.asarray([0.5, 0.5,0.5]) R = np.zeros((3,3)) sign = lambda b: 2*b-1 i, j = orientation // 2 k = 3 - i - j u, v = sign(orientation % 2) w = u*v*sign(i < j)*sign(k != 1) R[i,0] = u R[j,1] = v R[k,2] = w return np.einsum('ij,...j->...i', R, points-o) + o def _getHexahedron(lower, upper, orientation): ref = np.asarray([[0, 0, 0], [0, 0, 1], [1, 0, 1], [1, 0, 0], [0, 1, 0], [0, 1, 1], [1, 1, 1], [1, 1, 0]]) indices = np.asarray([0, 1, 2, 3, 4, 5, 6, 7]) points = _rotateReference(ref, orientation) points = np.einsum('...i,i->...i', points, upper-lower) + lower return '12', indices, points def _getWedge(lower, upper, orientation): ref = np.asarray([[0, 0, 0], [1, 0, 0], [1, 0, 1], [0, 0, 1], [1, 1, 0], [1, 1, 1]]) indices = np.asarray([3, 2, 5, 0, 1, 4]) points = _rotateReference(ref, orientation) points = np.einsum('...i,i->...i', points, upper-lower) + lower return '13', indices, points def _getPyramid1(lower, upper, orientation): ref = np.asarray([[0, 0, 0], [0, 0, 1], [1, 0, 1], [1, 0, 0], [1, 1, 0]]) indices = np.asarray([0, 1, 2, 3, 4]) points = _rotateReference(ref, orientation) points = np.einsum('...i,i->...i', points, upper-lower) + lower return '14', indices, points def _getPyramid2(lower, upper, orientation): ref = np.asarray([[0, 0, 0], [0, 1, 0], [1, 1, 1], [1, 0, 1], [1, 0, 0]]) indices = np.asarray([0, 1, 2, 3, 4]) points = _rotateReference(ref, orientation) points = np.einsum('...i,i->...i', points, upper-lower) + lower return '14', indices, points def _getTetra1(lower, upper, orientation): ref = np.asarray([[0, 0, 0], [1, 0, 0], [1, 0, 1], [1, 1, 0]]) indices = np.asarray([0, 1, 3, 2]) points = _rotateReference(ref, orientation) points = np.einsum('...i,i->...i', points, upper-lower) + lower return '10', indices, points def _getTetra2(lower, upper, orientation): ref = np.asarray([[0, 0, 0], [0, 0, 1], [1, 0, 1], [0, 1, 0]]) indices = np.asarray([0, 1, 2, 3]) points = _rotateReference(ref, orientation) points = np.einsum('...i,i->...i', points, upper-lower) + lower return '10', indices, points def _getTetra3(lower, upper, orientation): ref = np.asarray([[1, 0, 0], [0, 0, 1], [1, 0, 1], [1, 1, 0]]) indices = np.asarray([0, 1, 2, 3]) points = _rotateReference(ref, orientation) points = np.einsum('...i,i->...i', points, upper-lower) + lower return '10', indices, points def _getPolyhedron(lower, upper, orientation): ref = np.asarray([[0, 0, 0], [0, 0, 1], [1, 0, 1], [1, 0, 0], [0, 1, 0], [1, 1, 1], [1, 1, 0]]) indices = [np.asarray([0, 1, 2, 3]), np.asarray([0, 4, 6, 3]), np.asarray([2, 3, 6, 5]), np.asarray([0, 1, 4]), np.asarray([1, 2, 5]), np.asarray([4, 5, 6]), np.asarray([1, 5, 4])] points = _rotateReference(ref, orientation) points = np.einsum('...i,i->...i', points, upper-lower) + lower return '42', indices, points def getCell(block): index = block['type'] lower = block['lower'] upper = block['upper'] orientation = block['orientation'] if index in SHAPES['Edge']: return _getWedge(lower, upper, orientation) elif index in SHAPES['Corner 1']: return _getTetra1(lower, upper, orientation) elif index in SHAPES['Corner 2']: return _getPolyhedron(lower, upper, orientation) elif index in SHAPES['Corner 3']: return _getPyramid1(lower, upper, orientation) elif index in SHAPES['Twisted Corner 1']: return _getTetra2(lower, upper, orientation) elif index in SHAPES['Twisted Corner 2']: return _getTetra3(lower, upper, orientation) elif index in SHAPES['Flat Corner']: return _getPyramid2(lower, upper, orientation) else: return _getHexahedron(lower, upper, orientation) ```
{ "source": "jgersti/blender-avorion-importer", "score": 3 }
#### File: blender-avorion-importer/avorion_utils/categories.py ```python from dataclasses import dataclass @dataclass(frozen=True) class Material: index: int name: str color: str MATERIALS = ( Material(0, "Iron", "#ffb380"), Material(1, "Titanium", "#ffffff"), Material(2, "Naonite", "#4dff4d"), Material(3, "Trinium", "#4d9aff"), Material(4, "Xanion", "#ffff4d"), Material(5, "Ogonite", "#ff8133"), Material(6, "Avorion", "#ff2626"), ) SHAPES = { "Cube": (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 121, 122, 150, 170, 180, 190, 510, 520, 600, 650, 700), "Edge": (21, 23, 100, 104, 114, 123, 151, 171, 181, 185, 191, 511, 521, 601, 651, 701), "Corner 1": (101, 105, 115, 124, 152, 172, 182, 186, 192, 512, 522, 702), "Corner 2": (102, 106, 116, 125, 153, 173, 183, 187, 193, 513, 523, 703), "Corner 3": (103, 107, 117, 126, 154, 174, 184, 188, 194, 514, 524, 704), "Twisted Corner 1": (108, 110, 118, 128, 155, 175, 195, 197, 199, 515, 525, 705), "Twisted Corner 2": (109, 111, 119, 129, 156,176, 196, 198, 200, 516, 526, 706), "Flat Corner": (112, 113, 120, 127, 157, 177, 201, 202, 203, 517, 527, 707), } CATEGORIES = { "Smart Hull": (0, 1, 2, 100, 101, 102, 103, 108, 109, 112), "Hull": (121, 122, 123, 124, 125, 126, 127, 128, 129), "Armor": (8, 104, 105, 106, 107, 110, 111, 113), "Crew": (6, 114, 115, 116, 117, 118, 119, 120), "Glow": (150, 151, 152, 153, 154, 155, 156, 157), "Glass": (170, 171, 172, 173, 174, 175, 176, 177), "Reflector": (180, 181, 182, 184, 195, 196, 201), "Stone": (4, 185, 186, 187, 188, 197, 198, 202), "Hologram": (190, 191, 192, 193, 194, 199, 200, 203), "Rich Stone": (510, 511, 512, 513, 514, 515, 516, 517), "Super Rich Stone": (520, 521, 522, 523, 524, 525, 526, 527), "Wreckage": (700, 701, 702, 703, 704, 705, 706, 707), # Rot. Lock, +Edge, Torp. Launcher, Frontal+, Turret Base, +Edge "Hardpoints": (12, 23, 18, 22, 20, 21), # Engine, Thruster, Dir. Thruster, Gyro, Inert. Dampener "Propulsion": (3, 7, 13, 14, 15), # Shield, Energy Cont., Generator, Int. Field, Comp. Core, Hyperspace Core, "Systems": (50, 51, 52, 53, 54, 55), # Cargo, Framework, Hangar, Dock, Flight Recorder, Assembly, Torp. Storage, Transporter, # Academy, Cloning Pods, Solar Panel, Light, Name, +Edge, Logo, +Edge "The Rest": (5, 9, 10, 11, 16, 17, 19, 56, 57, 58, 60, 61, 600, 601, 650, 651), } def get_shape(index: int) -> str: try: return next((key for key, indices in SHAPES.items() if index in indices), "Cube") except: raise ValueError(f"invalid type index '{index}'.") def get_category(index: int) -> str: try: return next((key for key, indices in CATEGORIES.items() if index in indices)) except: raise ValueError(f"invalid type index '{index}'.") def get_material(index: int) -> Material: try: return next((m for m in MATERIALS if index == m.index)) except: raise ValueError(f"invalid material index '{index}'.") ``` #### File: blender-avorion-importer/avorion_utils/geometry.py ```python from __future__ import annotations import numpy as np from . categories import get_shape from . parser import Block def _rotate_translate(points: np.ndarray, orientation: np.ndarray, lower: np.ndarray, upper: np.ndarray) -> np.ndarray: def rotation(o): def sign(b): return 2*b-1 i, j = o // 2 k = 3 - i - j u, v = sign(o % 2) w = u*v*sign(i < j)*sign(k != 1) R = np.zeros((3, 3)) R[i, 0] = u R[j, 1] = v R[k, 2] = w return R _o = np.array([0.5, 0.5, 0.5]) points = np.einsum('ij,...j->...i', rotation(orientation), points-_o) + _o points = np.einsum('...i,i->...i', points, upper-lower) + lower return points def _create_hexahedron() -> tuple[np.ndarray, np.ndarray, np.ndarray]: points = np.asarray([[0, 0, 0], [0, 0, 1], [1, 0, 1], [1, 0, 0], [0, 1, 0], [0, 1, 1], [1, 1, 1], [1, 1, 0]]) faces = np.asarray([0, 3, 2, 1, 4, 5, 6, 7, 0, 1, 5, 4, 2, 3, 7, 6, 1, 2, 6, 5, 0, 4, 7, 3], dtype = np.int64) offsets = np.asarray([4, 4, 4, 4, 4, 4], dtype=np.int64) return points, faces, offsets def _create_wedge() -> tuple[np.ndarray, np.ndarray, np.ndarray]: points = np.asarray([[0, 0, 0], [1, 0, 0], [1, 0, 1], [0, 0, 1], [1, 1, 0], [1, 1, 1]]) faces = np.asarray([0, 1, 2, 3, 0, 3, 5, 4, 1, 4, 5, 2, 2, 5, 3, 0, 4, 1], dtype=np.int64) offsets = np.asarray([4, 4, 4, 3, 3], dtype=np.int64) return points, faces, offsets def _create_pyramid_1() -> tuple[np.ndarray, np.ndarray, np.ndarray]: points = np.asarray([[0, 0, 0], [0, 0, 1], [1, 0, 1], [1, 0, 0], [1, 1, 0]]) faces = np.asarray([0, 3, 2, 1, 0, 1, 4, 0, 4, 3, 1, 2, 4, 2, 3, 4], dtype=np.int64) offsets = np.asarray([4, 3, 3, 3, 3], dtype=np.int64) return points, faces, offsets def _create_pyramid_2() -> tuple[np.ndarray, np.ndarray, np.ndarray]: points = np.asarray([[0, 0, 0], [0, 1, 0], [1, 1, 1], [1, 0, 1], [1, 0, 0]]) faces = np.asarray([0, 3, 2, 1, 0, 1, 4, 0, 4, 3, 1, 2, 4, 2, 3, 4], dtype=np.int64) offsets = np.asarray([4, 3, 3, 3, 3], dtype=np.int64) return points, faces, offsets def _create_tetrahedron_1() -> tuple[np.ndarray, np.ndarray, np.ndarray]: points = np.asarray([[0, 0, 0], [1, 0, 0], [1, 0, 1], [1, 1, 0]]) faces = np.asarray([0, 2, 1, 0, 2, 3, 0, 3, 1, 1, 3, 2], dtype=np.int64) offsets = np.asarray([3, 3, 3, 3], dtype=np.int64) return points, faces, offsets def _create_tetrahedron_2() -> tuple[np.ndarray, np.ndarray, np.ndarray]: points = np.asarray([[0, 0, 0], [0, 0, 1], [1, 0, 1], [0, 1, 0]]) faces = np.asarray([0, 1, 3, 0, 2, 1, 0, 3, 2, 1, 2, 3], dtype=np.int64) offsets = np.asarray([3, 3, 3, 3], dtype=np.int64) return points, faces, offsets def _create_tetrahedron_3() -> tuple[np.ndarray, np.ndarray, np.ndarray]: points = np.asarray([[1, 0, 0], [0, 0, 1], [1, 0, 1], [1, 1, 0]]) faces = np.asarray([0, 1, 3, 0, 2, 1, 0, 3, 2, 1, 2, 3], dtype=np.int64) offsets = np.asarray([3, 3, 3, 3], dtype=np.int64) return points, faces, offsets def _create_polyhedron() -> tuple[np.ndarray, np.ndarray, np.ndarray]: points = np.asarray([[0, 0, 0], [0, 0, 1], [1, 0, 1], [1, 0, 0], [0, 1, 0], [1, 1, 1], [1, 1, 0]]) faces = np.asarray([0, 3, 2, 1, 0, 4, 6, 3, 2, 3, 6, 5, 0, 1, 4, 1, 2, 5, 4, 5, 6, 1, 5, 4], dtype=np.int64) offsets = np.asarray([4, 4, 4, 3, 3, 3, 3], dtype=np.int64) return points, faces, offsets def generate_geometry(block: Block) -> tuple[np.ndarray, np.ndarray, np.ndarray]: shape2geometry = { 'Cube': _create_hexahedron, 'Edge': _create_wedge, 'Corner 1': _create_tetrahedron_1, 'Corner 2': _create_polyhedron, 'Corner 3': _create_pyramid_1, 'Flat Corner': _create_pyramid_2, 'Twisted Corner 1': _create_tetrahedron_2, 'Twisted Corner 2': _create_tetrahedron_3, } points, faces, offsets = shape2geometry[get_shape(block.type)]() points = _rotate_translate(points, block.orientation, block.lower, block.upper) return points, faces, offsets def get_bounds(block: Block) -> tuple[np.ndarray, np.ndarray]: return block.lower, block.upper ``` #### File: jgersti/blender-avorion-importer/__init__.py ```python bl_info = { "name" : "Avorion XML Format", "author" : "<NAME>", "description": "Import Avorion XML", "blender" : (2, 90, 0), "version" : (0, 0, 1), "location" : "File > Import-Export", "warning" : "", "category" : "Import-Export" } if "bpy" in locals(): import importlib if "import_avorion_xml" in locals(): importlib.reload(import_avorion_xml) if "avorion_utils" in locals(): importlib.reload(avorion_utils) import bpy from bpy.props import BoolProperty, FloatProperty, StringProperty, EnumProperty from bpy.types import Operator, Panel from bpy_extras.io_utils import orientation_helper, path_reference_mode, axis_conversion @orientation_helper(axis_forward='-Z', axis_up='Y') class ImportAvorionXML(Operator): bl_idname = "avorion.import_xml" bl_label = "Import Avorion XML" bl_options = {'PRESET', 'UNDO'} filename_ext = ".xml" filter_glob: StringProperty( default="*.xml", options={'HIDDEN'} ) filepath: StringProperty( name="File Path", description="Filepath used for importing the file." "(WARNING! disables turret rigging.)", maxlen=1024, subtype='FILE_PATH' ) seperate_blocks: BoolProperty( name="Seperate Blocks", description="Seperate Blocks into indiviual Meshes", default=False ) def draw(self, context): pass def execute(self, context): from . import import_avorion_xml keywords = self.as_keywords(ignore=("axis_forward", "axis_up", "filter_glob")) global_matrix = axis_conversion(from_forward=self.axis_forward, from_up=self.axis_up) keywords["global_matrix"] = global_matrix.to_4x4() return import_avorion_xml.load(context, **keywords) def invoke(self, context, _event): from pathlib import Path from . appdirs import user_data_dir path = Path(user_data_dir('Avorion', appauthor=False, roaming= True)) path /= "ships" if path.exists() and path.is_dir(): self.filepath = str(path) + "//" context.window_manager.fileselect_add(self) return {'RUNNING_MODAL'} class AVORION_PT_import_transform(Panel): bl_space_type = 'FILE_BROWSER' bl_region_type = 'TOOL_PROPS' bl_label = "Transform" bl_parent_id = "FILE_PT_operator" @classmethod def poll(cls, context): sfile = context.space_data operator = sfile.active_operator return operator.bl_idname == "AVORION_OT_import_xml" def draw(self, context): layout = self.layout layout.use_property_split = True layout.use_property_decorate = False sfile = context.space_data operator = sfile.active_operator layout.prop(operator, "axis_forward") layout.prop(operator, "axis_up") class AVORION_PT_import_geometry(Panel): bl_space_type = 'FILE_BROWSER' bl_region_type = 'TOOL_PROPS' bl_label = "Geometry" bl_parent_id = "FILE_PT_operator" @classmethod def poll(cls, context): sfile = context.space_data operator = sfile.active_operator return operator.bl_idname == "AVORION_OT_import_xml" def draw(self, context): layout = self.layout layout.use_property_split = True layout.use_property_decorate = False sfile = context.space_data operator = sfile.active_operator layout.prop(operator, "seperate_blocks") def menu_func_import(self, context): self.layout.operator(ImportAvorionXML.bl_idname, text="Avorion (.xml)") classes = ( ImportAvorionXML, AVORION_PT_import_transform, AVORION_PT_import_geometry ) def register(): for cls in classes: bpy.utils.register_class(cls) bpy.types.TOPBAR_MT_file_import.append(menu_func_import) def unregister(): bpy.types.TOPBAR_MT_file_import.remove(menu_func_import) for cls in classes: bpy.utils.unregister_class(cls) if __name__ == "__main__": register() ```
{ "source": "jgesc/MinesweeperAPI", "score": 3 }
#### File: MinesweeperAPI/minesweeper/handler.py ```python from http.server import BaseHTTPRequestHandler import json import random, string from minesweeper import Minesweeper games = {} class MinesweeperRequestHandler(BaseHTTPRequestHandler): def __init__(self, request, client_address, server): super().__init__(request, client_address, server) self.protocol_version = 'HTTP/1.1' # Required for Keep-Alive def send_keep_alive_headers(self, content_length=0): self.send_header('Content-length', content_length) self.send_header("Connection", "keep-alive") self.send_header("Keep-Alive", "timeout=30, max=30000") def do_GET(self): try: global games # Check path path = list(filter(bool, self.path[:].split('/'))) if len(path) != 1 or path[0] not in games: self.send_response(404) self.send_keep_alive_headers() self.end_headers() return # Build response body id = path[0] game = games[id] body = { 'state': game.game_state, 'width': game.width, 'height': game.height, 'mine_count': game.mine_count, 'board': game.get_visible_cells() } payload = json.dumps(body).encode('utf-8') # Send response self.send_response(200) self.send_keep_alive_headers(len(payload)) self.send_header('Content-type', 'application/json') self.end_headers() self.wfile.write(payload) except Exception as exception: self.send_error(500, explain=repr(exception)) self.send_keep_alive_headers() self.end_headers() def do_POST(self): try: global games # Check path path = list(filter(bool, self.path[:].split('/'))) if len(path) != 1 or path[0] not in games: self.send_response(404) self.send_keep_alive_headers() self.end_headers() return # Parse body parameters id = path[0] game = games[id] parameters = {} content_len_str = self.headers.get('Content-Length') content_len = int(content_len_str) if content_len_str else 0 if content_len: request_body = self.rfile.read(content_len) parameters = json.loads(request_body) else: self.send_response(400) self.send_keep_alive_headers() self.end_headers() return # Perform action game.open_cell(parameters['x'], parameters['y']) # Send new game state body = { 'new_state': game.game_state } payload = json.dumps(body).encode('utf-8') # Send response self.send_response(200) self.send_keep_alive_headers(len(payload)) self.end_headers() self.wfile.write(payload) except Exception as exception: self.send_error(500, explain=repr(exception)) self.send_keep_alive_headers() self.end_headers() def do_PUT(self): try: global games # Check path path = list(filter(bool, self.path[:].split('/'))) if len(path) != 0: self.send_response(400) self.send_keep_alive_headers() self.end_headers() return # Parse body parameters parameters = {} content_len_str = self.headers.get('Content-Length') content_len = int(content_len_str) if content_len_str else 0 if content_len: request_body = self.rfile.read(content_len) parameters = json.loads(request_body) # Create game id = None while not id or id in games: id = ''.join(random.choice(string.ascii_uppercase) for i in range(8)) games[id] = Minesweeper( width=parameters.get('width', 10), height=parameters.get('height', 10), mine_count=parameters.get('mine_count', 10) ) # Build response body body = { 'id': id } payload = json.dumps(body).encode('utf-8') # Send response self.send_response(200) self.send_keep_alive_headers(len(payload)) self.end_headers() self.wfile.write(payload) except Exception as exception: try: del games[id] except Exception: pass finally: self.send_error(500, explain=repr(exception)) self.send_keep_alive_headers() self.end_headers() def do_DELETE(self): try: global games # Check path path = list(filter(bool, self.path[:].split('/'))) if len(path) != 1 or path[0] not in games: self.send_response(404) self.send_keep_alive_headers() self.end_headers() return # Build response body id = path[0] del games[id] # Send response self.send_response(200) self.send_keep_alive_headers() self.end_headers() except Exception as exception: self.send_error(500, explain=repr(exception)) self.send_keep_alive_headers() self.end_headers() ```
{ "source": "jgeskens/django-advanced-reports", "score": 2 }
#### File: backoffice/contrib/views.py ```python from django.contrib import messages from django.http.request import QueryDict from django.http.response import HttpResponseBase from django.shortcuts import redirect from django.template.context import RequestContext from django.template.loader import render_to_string from django.utils.translation import ugettext as _ from advanced_reports.backoffice.base import BackOfficeView from advanced_reports import get_report_for_slug from advanced_reports.defaults import ActionException from advanced_reports.views import api_list, api_action, api_form class AdvancedReportView(BackOfficeView): """ A BackOffice view that renders an Advanced Report. Usage: <div view="advanced_report" params="{slug: 'report_slug', updateLocation: true|false}"></div> ``slug`` is the slug of your registered Advanced Report ``updateLocation`` is a boolean. If true, the location bar will be updated with querystring parameters reflecting the current filters and ordering. """ slug = 'advanced_report' template = 'advanced_reports/backoffice/contrib/advanced-reports/advanced-report.html' def get(self, request): report_slug = request.view_params.get('slug') advreport = get_report_for_slug(report_slug) context = {'advreport': advreport} return render_to_string(self.template, context, context_instance=RequestContext(request)) def fetch(self, request): obj_id = request.view_params.get('pk', None) ids = [obj_id] if obj_id else None return api_list(request, request.view_params.get('slug'), ids=ids) def form(self, request): method = request.action_params.get('method') pk = request.action_params.get('pk') slug = request.view_params.get('slug') return api_form(request, slug, method, pk or None) def action(self, request): method = request.action_params.get('method') pk = request.action_params.get('pk') slug = request.view_params.get('slug') data = request.action_params.get('data') if data: # We have to do str(data) because otherwise QueryDict is too lazy to decode... post = QueryDict(str(data), encoding='utf-8') request.POST = post return api_action(request, slug, method, pk or None) def action_view(self, request): report_slug = request.view_params.get('slug') method = request.view_params.get('report_method') pk = request.view_params.get('pk') return api_action(request, report_slug, method, pk or None) def multiple_action(self, request): report_slug = request.view_params.get('slug') method = request.action_params.get('report_method') items = request.action_params.get('items').split(',') global_select = request.action_params.get('global') advreport = get_report_for_slug(report_slug) advreport.set_request(request) data = request.action_params.get('data') advreport.set_request(request) if data: # We have to do str(data) because otherwise QueryDict is too lazy to decode... post = QueryDict(str(data), encoding='utf-8') request.POST = post if global_select: items, context = advreport.get_object_list(request) else: items = [advreport.get_item_for_id(pk) for pk in items] if hasattr(advreport, '%s_multiple' % method): try: action = advreport.find_action(method) if action.form: form = action.form(request.POST, prefix='actionform') if form.is_valid(): if action.is_regular_view and request.is_ajax(): return {'link_action': {'method': method, 'data': request.POST}} response = getattr(advreport, '%s_multiple' % method)(items, form) else: if action.form_template: response_form = render_to_string(action.form_template, {'form': form}) else: response_form = unicode(form) return {'response_form': response_form} else: response = getattr(advreport, '%s_multiple' % method)(items) if response: return response messages.success(request, _(u'Successfully executed action on all selected items.')) except ActionException, e: messages.error(request, e.msg) return {'succeeded': {}} else: succeeded, failed = {}, {} for item in items: try: action = advreport.find_object_action(item, method) if action: if action.is_allowed(request): result = getattr(advreport, method)(item) if isinstance(result, HttpResponseBase) and result.status_code == 200: messages.warning(request, _(u'This action does not support batch operations.')) else: succeeded[advreport.get_item_id(item)] = action.get_success_message() else: failed[advreport.get_item_id(item)] = _(u'You are not allowed to execute this action.') else: failed[advreport.get_item_id(item)] = _(u'This action is not applicable to this item.') except ActionException, e: failed[advreport.get_item_id(item)] = e.msg if succeeded and not failed: messages.success(request, _(u'Successfully executed action on all selected items.')) elif succeeded and failed: messages.warning(request, _(u'Some actions were successful, but some were also failed.')) else: messages.error(request, _(u'No action on the selected items was successful.')) return {'succeeded': succeeded, 'failed': failed} def multiple_action_view(self, request): report_slug = request.view_params.get('slug') method = request.view_params.get('report_method') items = request.view_params.get('items').split(',') global_select = request.view_params.get('global') advreport = get_report_for_slug(report_slug) advreport.set_request(request) if global_select == 'true': items = advreport.get_object_list(request)[0] else: items = [advreport.get_item_for_id(pk) for pk in items] items = [item for item in items if advreport.find_object_action(item, method)] if items: action = advreport.find_action(method) if action.form: form = action.form(request.GET, prefix='actionform') if form.is_valid(): return getattr(advreport, '%s_multiple' % method)(items, form) else: return getattr(advreport, '%s_multiple' % method)(items) messages.error(request, _(u'No items were applicable for this action.')) return redirect(request.META['HTTP_REFERER']) def auto_complete(self, request): partial = request.action_params.pop('partial') report_slug = request.view_params.get('slug') advreport = get_report_for_slug(report_slug) return advreport.auto_complete(request, partial, request.action_params) class AdvancedReportActionView(BackOfficeView): slug = 'actionview' def get(self, request): report_slug = request.view_params.get('slug') method = request.view_params.get('method') pk = request.view_params.get('pk') advreport = get_report_for_slug(report_slug) advreport.set_request(request) item = advreport.get_item_for_id(pk) advreport.enrich_object(item, request=request) response = getattr(advreport, method)(item) return response.content ```
{ "source": "Jgessy/pythonbirds", "score": 3 }
#### File: pythonbirds/oo/pessoa.py ```python class Pessoa: def __init__(self, nome = None, idade=48): self.idade = idade self.nome = nome def cumprimentar(self): return f'ola {id(self)}' if __name__ == '__main__': p = Pessoa('fabio') print(Pessoa.cumprimentar(p)) print(id(p)) print(p.cumprimentar()) print(p.nome) p.nome = 'james' print(p.nome) print(p.idade) ```
{ "source": "jgeudens/dfetch", "score": 2 }
#### File: dfetch/project/git.py ```python import os import pathlib from typing import List from dfetch.log import get_logger from dfetch.manifest.project import ProjectEntry from dfetch.manifest.version import Version from dfetch.project.vcs import VCS from dfetch.util.util import safe_rmtree from dfetch.vcs.git import GitLocalRepo, GitRemote, get_git_version logger = get_logger(__name__) class GitRepo(VCS): """A git repository.""" DEFAULT_BRANCH = "master" NAME = "git" def __init__(self, project: ProjectEntry): """Create a Git project.""" super().__init__(project) self._remote_repo = GitRemote(self.remote) self._local_repo = GitLocalRepo(self.local_path) def check(self) -> bool: """Check if is GIT.""" return bool(self._remote_repo.is_git()) def _latest_revision_on_branch(self, branch: str) -> str: """Get the latest revision on a branch.""" return str(self._remote_repo.last_sha_on_branch(branch)) def _list_of_tags(self) -> List[str]: """Get list of all available tags.""" return [str(tag) for tag in self._remote_repo.list_of_tags()] def metadata_revision(self) -> str: """Get the revision of the metadata file.""" return str(self._local_repo.get_last_file_hash(self.metadata_path)) def current_revision(self) -> str: """Get the revision of the metadata file.""" return str(self._local_repo.get_current_hash()) def get_diff(self, old_hash: str, new_hash: str) -> str: """Get the diff of two revisions.""" return str(self._local_repo.create_diff(old_hash, new_hash)) @staticmethod def revision_is_enough() -> bool: """See if this VCS can uniquely distinguish branch with revision only.""" return True @staticmethod def list_tool_info() -> None: """Print out version information.""" tool, version = get_git_version() VCS._log_tool(tool, version) def _fetch_impl(self, version: Version) -> Version: """Get the revision of the remote and place it at the local path.""" rev_or_branch_or_tag = self._determine_what_to_fetch(version) # When exporting a file, the destination directory must already exist pathlib.Path(self.local_path).mkdir(parents=True, exist_ok=True) self._local_repo.checkout_version( self.remote, rev_or_branch_or_tag, self.source ) safe_rmtree(os.path.join(self.local_path, self._local_repo.METADATA_DIR)) return self._determine_fetched_version(version) def _determine_what_to_fetch(self, version: Version) -> str: """Based on asked version, target to fetch.""" if version.revision and 0 < len(version.revision) < 40: raise RuntimeError( "Shortened revisions (SHA) in manifests cannot be used," " use complete revision or a branch (or tags instead)" ) return version.revision or version.tag or version.branch or self.DEFAULT_BRANCH def _determine_fetched_version(self, version: Version) -> Version: """Based on asked version, determine info of fetched version.""" branch = version.branch or self.DEFAULT_BRANCH revision = version.revision if not version.tag and not version.revision: revision = self._remote_repo.last_sha_on_branch(branch) return Version(tag=version.tag, revision=revision, branch=branch) ``` #### File: dfetch/project/vcs.py ```python import os from abc import ABC, abstractmethod from typing import List, Optional, Tuple from patch_ng import fromfile import dfetch.manifest.manifest from dfetch.log import get_logger from dfetch.manifest.version import Version from dfetch.project.metadata import Metadata from dfetch.util.util import hash_directory, safe_rm from dfetch.util.versions import latest_tag_from_list logger = get_logger(__name__) class VCS(ABC): """Abstract Version Control System object. This object represents one Project entry in the Manifest. It can be updated. """ NAME = "" DEFAULT_BRANCH = "" def __init__(self, project: dfetch.manifest.project.ProjectEntry) -> None: """Create the VCS.""" self.__project = project self.__metadata = Metadata.from_project_entry(self.__project) def check_wanted_with_local(self) -> Tuple[Optional[Version], Optional[Version]]: """Given the project entry in the manifest, get the relevant version from disk. Returns: Tuple[Optional[Version], Optional[Version]]: Wanted, Have """ on_disk = self.on_disk_version() if not on_disk: return (self.wanted_version, None) if self.wanted_version.tag: return (Version(tag=self.wanted_version.tag), Version(tag=on_disk.tag)) wanted_branch, on_disk_branch = "", "" if not (self.wanted_version.revision and self.revision_is_enough()): wanted_branch = self.wanted_version.branch or self.DEFAULT_BRANCH on_disk_branch = on_disk.branch wanted_revision = ( self.wanted_version.revision or self._latest_revision_on_branch(wanted_branch) ) return ( Version( revision=wanted_revision, branch=wanted_branch, ), Version(revision=on_disk.revision, branch=on_disk_branch), ) def update_is_required(self, force: bool = False) -> Optional[Version]: """Check if this project should be upgraded. Args: force (bool, optional): Ignore if versions match. Defaults to False. """ wanted, current = self.check_wanted_with_local() if not force and wanted == current: self._log_project(f"up-to-date ({current})") return None logger.debug(f"{self.__project.name} Current ({current}), Available ({wanted})") return wanted def update(self, force: bool = False) -> None: """Update this VCS if required. Args: force (bool, optional): Ignore if version is ok or any local changes were done. Defaults to False. """ to_fetch = self.update_is_required(force) if not to_fetch: return if not force and self._are_there_local_changes(): self._log_project( "skipped - local changes after last update (use --force to overwrite)" ) return if os.path.exists(self.local_path): logger.debug(f"Clearing destination {self.local_path}") safe_rm(self.local_path) actually_fetched = self._fetch_impl(to_fetch) self._log_project(f"Fetched {actually_fetched}") applied_patch = "" if self.__project.patch: if os.path.exists(self.__project.patch): self.apply_patch() applied_patch = self.__project.patch else: logger.warning(f"Skipping non-existent patch {self.__project.patch}") self.__metadata.fetched( actually_fetched, hash_=hash_directory(self.local_path, skiplist=[self.__metadata.FILENAME]), patch_=applied_patch, ) logger.debug(f"Writing repo metadata to: {self.__metadata.path}") self.__metadata.dump() def apply_patch(self) -> None: """Apply the specified patch to the destination.""" patch_set = fromfile(self.__project.patch) if patch_set: if patch_set.apply(0, root=self.__project.destination, fuzz=True): self._log_project(f'Applied path "{self.__project.patch}"') else: raise RuntimeError(f'Applying path "{self.__project.patch}" failed') else: raise RuntimeError(f'Invalid patch file: "{self.__project.patch}"') def check_for_update(self) -> None: """Check if there is an update available.""" on_disk_version = self.on_disk_version() latest_version = self._check_for_newer_version() if not on_disk_version: wanted = ( f"wanted ({self.wanted_version}), " if any(self.wanted_version) else "" ) self._log_project(f"{wanted}available ({latest_version})") elif latest_version == on_disk_version: self._log_project(f"up-to-date ({latest_version})") elif on_disk_version == self.wanted_version: self._log_project( f"wanted & current ({on_disk_version}), available ({latest_version})" ) else: self._log_project( f"wanted ({str(self.wanted_version) or 'latest'}), " f"current ({on_disk_version}), available ({latest_version})" ) def _log_project(self, msg: str) -> None: logger.print_info_line(self.__project.name, msg) @staticmethod def _log_tool(name: str, msg: str) -> None: logger.print_info_line(name, msg.strip()) @property def local_path(self) -> str: """Get the local destination of this project.""" return self.__project.destination @property def wanted_version(self) -> Version: """Get the wanted version of this VCS.""" return self.__metadata.version @property def metadata_path(self) -> str: """Get the path of the metadata.""" return self.__metadata.path @property def remote(self) -> str: """Get the remote URL of this VCS.""" return self.__metadata.remote_url @property def source(self) -> str: """Get the source folder of this VCS.""" return self.__project.source @abstractmethod def check(self) -> bool: """Check if it can handle the type.""" @staticmethod @abstractmethod def revision_is_enough() -> bool: """See if this VCS can uniquely distinguish branch with revision only.""" @abstractmethod def _latest_revision_on_branch(self, branch: str) -> str: """Get the latest revision on a branch.""" @abstractmethod def _list_of_tags(self) -> List[str]: """Get list of all available tags.""" @staticmethod @abstractmethod def list_tool_info() -> None: """Print out version information.""" def on_disk_version(self) -> Optional[Version]: """Get the version of the project on disk. Returns: Version: Could be None of no on disk version """ return ( None if not os.path.exists(self.__metadata.path) else Metadata.from_file(self.__metadata.path).version ) def _on_disk_hash(self) -> Optional[str]: """Get the hash of the project on disk. Returns: Str: Could be None if no on disk version """ return ( None if not os.path.exists(self.__metadata.path) else Metadata.from_file(self.__metadata.path).hash ) def _check_for_newer_version(self) -> Version: """Check if a newer version is available on the given branch.""" if self.wanted_version.tag: return Version( tag=latest_tag_from_list(self.wanted_version.tag, self._list_of_tags()) ) if self.wanted_version.branch == " ": branch = "" else: branch = self.wanted_version.branch or self.DEFAULT_BRANCH return Version(revision=self._latest_revision_on_branch(branch), branch=branch) def _are_there_local_changes(self) -> bool: """Check if there are local changes. Returns: Bool: True if there are local changes, false if no were detected or no hash was found. """ logger.debug(f"Checking if there were local changes in {self.local_path}") on_disk_hash = self._on_disk_hash() return bool(on_disk_hash) and on_disk_hash != hash_directory( self.local_path, skiplist=[self.__metadata.FILENAME] ) @abstractmethod def _fetch_impl(self, version: Version) -> Version: """Fetch the given version of the VCS, should be implemented by the child class.""" ``` #### File: features/steps/svn_steps.py ```python import os import pathlib import subprocess from behave import given # pylint: disable=no-name-in-module from dfetch.util.util import in_directory from features.steps.generic_steps import generate_file, list_dir def create_svn_server_and_repo(context, name="svn-server"): """Create an local svn server and repo and return the path to the repo.""" server_path = os.path.relpath(context.remotes_dir_path) + "/" + name repo_path = "svn-repo" pathlib.Path(server_path).mkdir(parents=True, exist_ok=True) subprocess.call(["svnadmin", "create", "--fs-type", "fsfs", server_path]) current_path = "/".join(os.getcwd().split(os.path.sep) + [server_path]) subprocess.call(["svn", "checkout", f"file:///{current_path}", repo_path]) return repo_path def create_stdlayout(): pathlib.Path("trunk").mkdir(parents=True, exist_ok=True) pathlib.Path("branches").mkdir(parents=True, exist_ok=True) pathlib.Path("tags").mkdir(parents=True, exist_ok=True) def add_and_commit(msg): subprocess.call(["svn", "add", "--force", "."]) subprocess.call(["svn", "ci", "-m", f'"{msg}"']) def commit_all(msg): subprocess.call(["svn", "commit", "--depth", "empty", ".", "-m", f'"{msg}"']) def add_externals(externals): """Add the given list of dicts as externals.""" with open("externals", "w") as external_list: for external in externals: revision = f"@{external['revision']}" if external["revision"] else "" external_list.write(f"{external['url']}{revision} {external['path']}\n") subprocess.call(["svn", "propset", "svn:externals", "-F", external_list.name, "."]) commit_all("Added externals") subprocess.call(["svn", "update"]) @given("a svn repo with the following externals") def step_impl(context): repo_path = create_svn_server_and_repo(context) os.chdir(repo_path) add_externals(context.table) @given('a svn-server "{name}" with the files') def step_impl(context, name): repo_path = create_svn_server_and_repo(context, name) with in_directory(repo_path): create_stdlayout() with in_directory("trunk"): for file in context.table: generate_file(file["path"], "some content") add_and_commit("Added files") @given('a non-standard svn-server "{name}" with the files') def step_impl(context, name): repo_path = create_svn_server_and_repo(context, name) with in_directory(repo_path): for file in context.table: generate_file(file["path"], "some content") add_and_commit("Added files") @given('a non-standard svn-server "{name}"') def step_impl(context, name): repo_path = create_svn_server_and_repo(context, name) with in_directory(repo_path): generate_file("SomeFolder/SomeFile.txt", "some content") add_and_commit("Added files") ```
{ "source": "j-geuter/CINDy", "score": 2 }
#### File: j-geuter/CINDy/CINDy_algorithm.py ```python import numpy as np import time from scipy.sparse import isspmatrix_csr, issparse # Import functions for the step_sizes and the updates. from auxiliary_functions import step_size, polish_solution # Import functions for active set management from auxiliary_functions import ( new_vertex_fail_fast, delete_vertex_index, max_min_vertex, ) def CINDy( function, feasible_region, tolerance_outer, tolerance_inner, max_time_inner, testing_function, max_iterations=2000, type_criterion="FW", primal_improvement=1.0e-5, ): x = feasible_region.initial_point() loss_evolution = [testing_function.evaluate(x)] real_loss = [testing_function.compare_exact(x)] timing = [time.time()] testing_losses = [] true_losses = [] x = feasible_region.initial_point() if type_criterion == "FCFW": ( x, testing_loss, true_loss, testing_running_avg, _, _, all_true_losses, all_testing_losses, all_running_avg, timing_values, gap_values, ) = approximate_fully_corrective_FW( function, x, [x.copy()], [1.0], feasible_region, tolerance_outer, tolerance_inner, max_time_inner, testing_function, max_iterations, type_criterion=type_criterion, primal_improvement=primal_improvement, ) if type_criterion == "BCG": ( x, testing_loss, true_loss, testing_running_avg, _, _, all_true_losses, all_testing_losses, all_running_avg, timing_values, gap_values, ) = blended_conditional_gradients( function, x, [x.copy()], [1.0], feasible_region, tolerance_outer, tolerance_inner, max_time_inner, testing_function, max_iterations, type_criterion=type_criterion, primal_improvement=primal_improvement, ) testing_losses = testing_losses + all_testing_losses true_losses = true_losses + all_true_losses timing.append(time.time()) loss_evolution.append(testing_loss) real_loss.append(true_loss) timing[:] = [t - timing[0] for t in timing] return ( x, loss_evolution, real_loss, timing, true_losses, testing_losses, timing_values, gap_values, ) def approximate_fully_corrective_FW( function, x, active_set, lambdaVal, feasible_region, outer_tolerance, inner_tolerance, max_time, testing_function, max_iterations=2000, type_criterion="FW", threshold=1.0e-9, num_moving_average=5, primal_improvement=1.0e-5, ): time_ref = time.time() xbest = x.copy() active_set_best = active_set.copy() lambda_val_best = lambdaVal.copy() all_true_losses = [testing_function.compare_exact(x)] all_testing_losses = [testing_function.evaluate(x)] running_average = [testing_function.evaluate(x)] itCount = 1 grad = function.gradient(x) gap = (x - feasible_region.linear_programming_oracle(grad)).T.dot(grad) timing = [time.time()] gap_values = [gap] while True: # print(x) for i in range(10): x, gap_aux = away_step_CG( function, feasible_region, x, active_set, lambdaVal, "EL" ) grad = function.gradient(x) gap = (x - feasible_region.linear_programming_oracle(grad)).T.dot(grad) if len(active_set) >= 2 and gap != 0.0: x, active_set[:], lambdaVal[:] = polish_solution( function.psi_val(), function.y_val(), active_set, lambdaVal, tolerance=inner_tolerance, threshold=threshold, type_criterion="FW", time_limit=max_time, max_steps=max_iterations, ) grad = function.gradient(x) gap = (x - feasible_region.linear_programming_oracle(grad)).T.dot(grad) timing.append(time.time()) gap_values.append(gap) all_true_losses.append(testing_function.compare_exact(x)) all_testing_losses.append(testing_function.evaluate(x)) if len(all_testing_losses) < num_moving_average: running_average.append(np.mean(np.asarray(all_testing_losses))) else: running_average.append( np.mean(np.asarray(all_testing_losses)[-num_moving_average:]) ) if running_average[-1] < min(running_average[:-1]): xbest = x.copy() active_set_best = active_set.copy() lambda_val_best = lambdaVal.copy() if ( time.time() - time_ref > max_time or itCount > max_iterations or gap < outer_tolerance or np.abs(all_testing_losses[-2] - all_testing_losses[-1]) < primal_improvement ): xbest, active_set_best[:], lambda_val_best[:] = polish_solution( function.psi_val(), function.y_val(), active_set_best, lambda_val_best, tolerance=1.0e-6, threshold=1.0e-4, type_criterion="FW", time_limit=120, max_steps=np.inf, ) xbest, active_set_best[:], lambda_val_best[:] = polish_solution( function.psi_val(), function.y_val(), active_set_best, lambda_val_best, tolerance=1.0e-6, threshold=0.0, type_criterion="FW", time_limit=120, max_steps=np.inf, ) timing[:] = [t - timing[0] for t in timing] return ( xbest, testing_function.evaluate(xbest), testing_function.compare_exact(xbest), min(running_average), active_set_best, lambda_val_best, all_true_losses, all_testing_losses, running_average, timing, gap_values, ) itCount += 1 def blended_conditional_gradients( function, x, active_set, lambdaVal, feasible_region, outer_tolerance, inner_tolerance, max_time, testing_function, max_iterations=np.inf, type_criterion="FW", threshold=1.0e-9, K=4.0, num_moving_average=5, primal_improvement=1.0e-5, ): from auxiliary_functions import polish_solution time_ref = time.time() xbest = x.copy() active_set_best = active_set.copy() lambda_val_best = lambdaVal.copy() all_true_losses = [testing_function.compare_exact(x)] all_testing_losses = [testing_function.evaluate(x)] running_average = [testing_function.evaluate(x)] itCount = 1 grad = function.gradient(x) gap = (x - feasible_region.linear_programming_oracle(grad)).T.dot(grad) phi_val = gap / 2.0 timing = [time.time()] gap_values = [gap] phi_values = [phi_val] while True: x, active_set[:], lambdaVal[:] = polish_solution( function.psi_val(), function.y_val(), active_set, lambdaVal, tolerance=phi_val / 4.0, threshold=threshold, type_criterion="blended", time_limit=max_time, ) grad = function.gradient(x) gap = (x - feasible_region.linear_programming_oracle(grad)).T.dot(grad) timing.append(time.time()) gap_values.append(gap) phi_values.append(phi_val) if testing_function.evaluate(x) < min(all_testing_losses): xbest = x.copy() active_set_best = active_set.copy() lambda_val_best = lambdaVal.copy() all_true_losses.append(testing_function.compare_exact(x)) all_testing_losses.append(testing_function.evaluate(x)) if len(all_testing_losses) < num_moving_average: running_average.append(np.mean(np.asarray(all_testing_losses))) else: running_average.append( np.mean(np.asarray(all_testing_losses)[-num_moving_average:]) ) if running_average[-1] < min(running_average[:-1]): xbest = x.copy() active_set_best = active_set.copy() lambda_val_best = lambdaVal.copy() if ( time.time() - time_ref > max_time or itCount > max_iterations or gap < outer_tolerance ): timing[:] = [t - timing[0] for t in timing] return ( xbest, testing_function.evaluate(xbest), testing_function.compare_exact(xbest), min(running_average), active_set_best, lambda_val_best, all_true_losses, all_testing_losses, running_average, timing, gap_values, ) if gap >= phi_val / K: x, gap_aux = away_step_CG( function, feasible_region, x, active_set, lambdaVal, "EL" ) else: phi_val = gap / 2.0 itCount += 1 def accelerated_projected_gradient_descent( f, feasible_region, active_set, tolerance, alpha0, time_limit=60, max_iteration=100, type_criterion="FW", ): """ Run Nesterov's accelerated projected gradient descent. References ---------- Nesterov, Y. (2018). Lectures on convex optimization (Vol. 137). Berlin, Germany: Springer. (Constant scheme II, Page 93) Parameters ---------- x0 : numpy array. Initial point. function: function being minimized Function that we will minimize. Gradients are computed through a function.grad(x) function that returns the gradient at x as a numpy array. feasible_region : feasible region function. Returns projection oracle of a point x onto the feasible region, which are computed through the function feasible_region.project(x). Additionally, a LMO is used to compute the Frank-Wolfe gap (used as a stopping criterion) through the function feasible_region.linear_optimization_oracle(grad) function, which minimizes <x, grad> over the feasible region. tolerance : float Frank-Wolfe accuracy to which the solution is outputted. Returns ------- x : numpy array Outputted solution with primal gap below the target tolerance """ from collections import deque # Quantities we want to output. L = f.largest_eigenvalue() mu = f.smallest_eigenvalue() x = deque([np.asarray(alpha0)], maxlen=2) y = np.asarray(alpha0) q = mu / L if mu < 1.0e-3: alpha = deque([0], maxlen=2) else: alpha = deque([np.sqrt(q)], maxlen=2) grad = f.gradient(x[-1]) if type_criterion == "FW": FWGap = grad.dot(x[-1] - feasible_region.linear_programming_oracle(grad)) if type_criterion == "blended": away_vertex, _ = feasible_region.away_oracle(grad,[], x[-1]) FWGap = grad.dot( away_vertex - feasible_region.linear_programming_oracle(grad) ) time_ref = time.time() it_count = 0 gap_values = [FWGap] while FWGap > tolerance: x.append(feasible_region.project(y - 1 / L * f.gradient(y))) if mu < 1.0e-3: alpha.append(0.5 * (1 + np.sqrt(1 + 4 * alpha[-1] * alpha[-1]))) beta = (alpha[-2] - 1.0) / alpha[-1] else: root = np.roots([1, alpha[-1] ** 2 - q, -alpha[-1] ** 2]) root = root[(root >= 0.0) & (root < 1.0)] assert len(root) != 0, "Root does not meet desired criteria.\n" alpha.append(root[0]) beta = alpha[-2] * (1 - alpha[-2]) / (alpha[-2] ** 2 - alpha[-1]) y = x[-1] + beta * (x[-1] - x[-2]) grad = f.gradient(x[-1]) if type_criterion == "FW": FWGap = grad.dot(x[-1] - feasible_region.linear_programming_oracle(grad)) if type_criterion == "blended": away_vertex, _ = feasible_region.away_oracle(grad,[], x[-1]) FWGap = grad.dot( away_vertex - feasible_region.linear_programming_oracle(grad) ) it_count += 1 if time.time() - time_ref > time_limit or it_count > max_iteration: break gap_values.append(FWGap) w = np.zeros(len(active_set[0])) for i in range(len(active_set)): w += x[-1][i] * active_set[i] return w, x[-1].tolist(), gap_values def away_step_CG(function, feasible_region, x, active_set, lambdas, type_of_step): """ Performs a single step of the ACG/AFW algorithm. Parameters ---------- function: function being minimized Function that we will minimize. feasible_region : feasible region function. Returns LP oracles over feasible region. x : numpy array. Point. active_set : list of numpy arrays. Initial active set. lambdas : list of floats. Initial barycentric coordinates. type_of_step : str Type of step size used. Returns ------- x + alpha*d Output point FWGap FW gap at initial point. """ grad = function.gradient(x) v = feasible_region.linear_programming_oracle(grad) a, indexMax = feasible_region.away_oracle(grad, active_set, x) # Choose FW direction, can overwrite index. FWGap = (x - feasible_region.linear_programming_oracle(grad)).T.dot(grad) away_gap = (a - x).T.dot(grad) if issparse(FWGap): FWGap = FWGap.todense().item() away_gap = away_gap.todense().item() if FWGap >= away_gap: d = v - x alphaMax = 1.0 optStep = step_size(function, d, grad, x, type_of_step) alpha = min(optStep, alphaMax) if alpha != alphaMax: # newVertex returns true if vertex is new. flag, index = feasible_region.new_vertex(v, active_set) lambdas[:] = [i * (1 - alpha) for i in lambdas] if flag: active_set.append(v) lambdas.append(alpha) else: # Update existing weights lambdas[index] += alpha # Max step length away step, only one vertex now. else: active_set[:] = [v] lambdas[:] = [alphaMax] else: d = x - a alphaMax = lambdas[indexMax] / (1.0 - lambdas[indexMax]) optStep = step_size(function, d, grad, x, type_of_step, maxStep=alphaMax) alpha = min(optStep, alphaMax) lambdas[:] = [i * (1 + alpha) for i in lambdas] # Max step, need to delete a vertex. if alpha != alphaMax: lambdas[indexMax] -= alpha else: delete_vertex_index(indexMax, active_set, lambdas) return x + alpha * d, FWGap ``` #### File: j-geuter/CINDy/dynamics.py ```python import numpy as np def kuramoto_time(frequencies, max_time, number_of_snapshots, number_of_experiments = 10, K = 2.0, forcing_param = 0.2, relative_tolerance = 1.0e-10, absolute_tolerance = 1.0e-13): from scipy.integrate import solve_ivp number_of_oscillators = len(frequencies) def kuramoto_ode(_, theta): [theta_i, theta_j] = np.meshgrid(theta, theta) return frequencies + K / number_of_oscillators * np.sin(theta_j - theta_i).sum(0) + forcing_param * np.sin(theta) list_snapshots = [] list_derivatives = [] list_times = [] for i in range(number_of_experiments): theta_init = 2 * np.pi * np.random.rand(number_of_oscillators) sol = solve_ivp(kuramoto_ode, [0, max_time], theta_init, method='DOP853', t_eval=np.linspace(0, max_time, number_of_snapshots), rtol = relative_tolerance, atol = absolute_tolerance) snapshots = sol.y derivatives = np.zeros([number_of_oscillators, number_of_snapshots]) for i in range(number_of_snapshots): derivatives[:, i] = kuramoto_ode(0, snapshots[:, i]) list_derivatives.append(derivatives) list_times.append(sol['t']) list_snapshots.append(snapshots) return list_snapshots, list_derivatives, list_times def kuramoto_time_individual(frequencies, initial_position, start_time, end_time, number_of_samples, K = 2.0, forcing_param = 0.2, relative_tolerance = 1.0e-10, absolute_tolerance = 1.0e-13): from scipy.integrate import solve_ivp number_of_oscillators = len(frequencies) def kuramoto_ode(_, theta): [theta_i, theta_j] = np.meshgrid(theta, theta) return frequencies + K / number_of_oscillators * np.sin(theta_j - theta_i).sum(0) + forcing_param * np.sin(theta) sol = solve_ivp(kuramoto_ode, [start_time, end_time], initial_position, method='DOP853', t_eval=np.linspace(start_time, end_time, number_of_samples), rtol = relative_tolerance, atol = absolute_tolerance) return sol.y, sol['t'] #Convert angles from a def angle_conversion(angles): return angles - np.floor(angles/(2*np.pi))*2.0*np.pi def kuramoto_time_backup(theta_init, frequencies, max_time, number_of_snapshots, K = 2.0, forcing_param = 0.2): from scipy.integrate import solve_ivp number_of_oscillators = len(theta_init) def kuramoto_ode(_, theta): [theta_i, theta_j] = np.meshgrid(theta, theta) return frequencies + K / number_of_oscillators * np.sin(theta_j - theta_i).sum(0) + forcing_param * np.sin(theta) sol = solve_ivp(kuramoto_ode, [0, max_time], theta_init, method='BDF', t_eval=np.linspace(0, max_time, number_of_snapshots)) snapshots = sol.y derivatives = np.zeros([number_of_oscillators, number_of_snapshots]) for i in range(number_of_snapshots): derivatives[:, i] = kuramoto_ode(0, snapshots[:, i]) return snapshots, derivatives, sol['t'] def kuramoto_random(num_oscillators, number_of_snapshots, frequencies, K = 2.0, forcing_param = 0.2): """Kuramoto model Generate data for the Kuramoto model represented by the differential equation d/dt x_i = w_i + (2/d) * (sin(x_1 - x_i) + ... + sin(x_d - x_i)) + 0.2 * sin(x_i). See [1]_ and [2]_ for details. Parameters ---------- theta_init: ndarray initial distribution of the oscillators frequencies: ndarray natural frequencies of the oscillators time: float integration time for BDF method number_of_snapshots: int number of snapshots Returns ------- snapshots: ndarray(number_of_oscillators, number_of_snapshots) snapshot matrix containing random displacements of the oscillators in [-0.1,0.1] derivatives: ndarray(number_of_oscillators, number_of_snapshots) matrix containing the corresponding derivatives References ---------- .. [1] <NAME>, <NAME>, <NAME>, <NAME>, "Multidimensional Approximation of Nonlinear Dynamical Systems", arXiv:1809.02448, 2018 .. [2] <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, "The Kuramoto model: A simple paradigm for synchronization phenomena", Rev. Mod. Phys. 77, pp. 137-185 , 2005 """ # snapshots = 2 * np.pi * np.random.rand(num_oscillators, number_of_snapshots) - np.pi snapshots = 2 * np.pi * np.random.rand(num_oscillators, number_of_snapshots) derivatives = np.zeros(snapshots.shape) for i in range(number_of_snapshots): for j in range(num_oscillators): derivatives[j,i] = frequencies[j] + K / num_oscillators * np.sin(snapshots[:,i] - snapshots[j,i]).sum() + forcing_param * np.sin(snapshots[j,i]) return snapshots, derivatives # Build the exact dynamics of the fermi_pasta_ulam if we have polynomials of order up to three. # In this case the basis functions are sines and cosines. # The first number_of_oscillators x are cosines, and the rest are sines. def exact_solution_kuramoto(number_of_oscillators, frequencies, polinomial, K = 2.0, forcing_param = 0.2): reference_polynomial = polinomial.get_feature_names() num_basis_functions = len(reference_polynomial) # Build the exact solution at the boundary exact_solution = np.zeros((number_of_oscillators, num_basis_functions)) # Build the exact solution. for i in range(0, number_of_oscillators): # First order terms. exact_solution[i, reference_polynomial.index("1")] = frequencies[i] exact_solution[i, reference_polynomial.index("x" + str(number_of_oscillators + i))] = forcing_param for j in range(number_of_oscillators): exact_solution[i, reference_polynomial.index("x" + str(i) + ' x' + str(number_of_oscillators + j))] += K/number_of_oscillators exact_solution[i, reference_polynomial.index("x" + str(j) + ' x' + str(number_of_oscillators + i))] += -K/number_of_oscillators return exact_solution def add_constraints_symmetry_kuramoto(polinomial, number_of_oscillators, normalization_factors): feature_names = polinomial.get_feature_names() num_basis_functions = len(feature_names) pair_symmetries = [] #Constraint on the cos^2 terms: for i in range(number_of_oscillators): for j in range(number_of_oscillators): index_first = feature_names.index("x" + str(j) + '^2') index_first_transformed = index_first + int(num_basis_functions*i) pair_symmetries.append({ "x" + str(index_first_transformed) : 1, 'constant': 0}) #Constraint on the sin^2 terms: for i in range(number_of_oscillators): for j in range(number_of_oscillators): index_first = feature_names.index("x" + str(number_of_oscillators + j) + '^2') index_first_transformed = index_first + int(num_basis_functions*i) pair_symmetries.append({ "x" + str(index_first_transformed) : 1, 'constant': 0}) type_symmetries = [('sin', 'cos'), ('cos'), ('sin')] for symmetry in type_symmetries: if(symmetry == ('sin', 'cos') or symmetry == ('cos', 'sin')): #Symmetry cos-sin #For i and j---> \xi_i(cos(x_i) sin(x_j)) = \xi_j(cos(x_j) sin(x_i)) for i in range(number_of_oscillators): for j in range(number_of_oscillators): if(i != j): index_first = feature_names.index("x" + str(i) + ' x' + str(number_of_oscillators + j)) index_second = feature_names.index("x" + str(j) + ' x' + str(number_of_oscillators + i)) index_first_transformed = index_first + int(num_basis_functions*i) index_second_transformed = index_second + int(num_basis_functions*j) pair_symmetries.append({ "x" + str(index_first_transformed) : 1.0/normalization_factors[index_first % num_basis_functions][0], "x" + str(index_second_transformed) : -1.0/normalization_factors[index_second % num_basis_functions][0], 'constant': 0}) #Symmetry sin-cos #For i and j---> \xi_i(sin(x_i) cos(x_j)) = \xi_j(sin(x_j) cos(x_i)) for i in range(number_of_oscillators): for j in range(number_of_oscillators): if(i != j): index_first = feature_names.index("x" + str(j) + ' x' + str(i + number_of_oscillators)) index_second = feature_names.index("x" + str(i) + ' x' + str(j + number_of_oscillators)) index_first_transformed = index_first + + int(num_basis_functions*i) index_second_transformed = index_second + int(num_basis_functions*j) pair_symmetries.append({ "x" + str(index_first_transformed) : 1.0/normalization_factors[index_first % num_basis_functions][0], "x" + str(index_second_transformed) : -1.0/normalization_factors[index_second % num_basis_functions][0], 'constant': 0}) #Symmetry cos-cos #For i and j---> \xi_i(cos(x_i) cos(x_j)) = \xi_j(cos(x_j) cos(x_i)) for i in range(number_of_oscillators): for j in range(number_of_oscillators): if(i != j): if(i <= j): index = feature_names.index("x" + str(i) + ' x' + str(j)) else: index = feature_names.index("x" + str(j) + ' x' + str(i)) index_first_transformed = index + int(num_basis_functions*i) index_second_transformed = index + int(num_basis_functions*j) pair_symmetries.append({ "x" + str(index_first_transformed) : 1.0/normalization_factors[index_first % num_basis_functions][0], "x" + str(index_second_transformed) : -1.0/normalization_factors[index_second % num_basis_functions][0], 'constant': 0}) #Symmetry sin-sin #For i and j---> \xi_i(sin(x_i) sin(x_j)) = \xi_j(sin(x_j) sin(x_i)) for i in range(number_of_oscillators): for j in range(number_of_oscillators): if(i != j): if(i <= j): index = feature_names.index("x" + str(i + number_of_oscillators) + ' x' + str(j + number_of_oscillators)) else: index = feature_names.index("x" + str(j + number_of_oscillators) + ' x' + str(i + number_of_oscillators)) index_first_transformed = index + int(num_basis_functions*i) index_second_transformed = index + int(num_basis_functions*j) pair_symmetries.append({ "x" + str(index_first_transformed) : 1.0/normalization_factors[index_first % num_basis_functions][0], "x" + str(index_second_transformed) : -1.0/normalization_factors[index_second % num_basis_functions][0], 'constant': 0}) for symmetry in type_symmetries: if(symmetry == ('cos')): #Symmetry cos #For i and j---> \xi_i(cos(x_i)) = \xi_j(cos(x_j)) for i in range(1, number_of_oscillators): index_first = feature_names.index("x" + str(0)) index_second = feature_names.index("x" + str(i)) index_first_transformed = index_first index_second_transformed = index_second + int(num_basis_functions*i) pair_symmetries.append({ "x" + str(index_first_transformed) : 1.0/normalization_factors[index_first % num_basis_functions][0], "x" + str(index_second_transformed) : -1.0/normalization_factors[index_second % num_basis_functions][0], 'constant': 0}) for symmetry in type_symmetries: if(symmetry == ('cos')): #Symmetry cos #For i and j---> \xi_i(cos(x_j)) = \xi_j(cos(x_i)) for i in range(number_of_oscillators): for j in range(number_of_oscillators): if(i != j): index_first = feature_names.index("x" + str(j)) index_second = feature_names.index("x" + str(i)) index_first_transformed = index_first + + int(num_basis_functions*i) index_second_transformed = index_second + int(num_basis_functions*j) pair_symmetries.append({ "x" + str(index_first_transformed) : 1.0/normalization_factors[index_first % num_basis_functions][0], "x" + str(index_second_transformed) : -1.0/normalization_factors[index_second % num_basis_functions][0], 'constant': 0}) for symmetry in type_symmetries: if(symmetry == ('sin')): #Symmetry sin #For i and j---> \xi_i(sin(x_i)) = \xi_j(sin(x_j)) for i in range(1, number_of_oscillators): index_first = feature_names.index("x" + str(number_of_oscillators + 0)) index_second = feature_names.index("x" + str(number_of_oscillators + i)) index_first_transformed = index_first index_second_transformed = index_second + int(num_basis_functions*i) pair_symmetries.append({ "x" + str(index_first_transformed) : 1.0/normalization_factors[index_first % num_basis_functions][0], "x" + str(index_second_transformed) : -1.0/normalization_factors[index_second % num_basis_functions][0], 'constant': 0}) for symmetry in type_symmetries: if(symmetry == ('sin')): #Symmetry sin #For i and j---> \xi_i(sin(x_j)) = \xi_j(sin(x_i)) for i in range(number_of_oscillators): for j in range(number_of_oscillators): if(i != j): index_first = feature_names.index("x" + str(j + number_of_oscillators)) index_second = feature_names.index("x" + str(i + number_of_oscillators)) index_first_transformed = index_first + + int(num_basis_functions*i) index_second_transformed = index_second + int(num_basis_functions*j) pair_symmetries.append({ "x" + str(index_first_transformed) : 1.0/normalization_factors[index_first % num_basis_functions][0], "x" + str(index_second_transformed) : -1.0/normalization_factors[index_second % num_basis_functions][0], 'constant': 0}) # Remove duplicates before we output. # pair_symmetries = [dict(t) for t in {tuple(d.keys()) for d in pair_symmetries}] pair_symmetries =delete_dictionaries_with_duplicate_keys(pair_symmetries) return pair_symmetries def add_constraints_symmetry_kuramoto_backup(polinomial, number_of_oscillators, normalization_factors): feature_names = polinomial.get_feature_names() num_basis_functions = len(feature_names) pair_symmetries = [] #Constraint on the cos^2 terms: for i in range(number_of_oscillators): for j in range(number_of_oscillators): index_first = feature_names.index("x" + str(j) + '^2') index_first_transformed = index_first + int(num_basis_functions*i) pair_symmetries.append({ "x" + str(index_first_transformed) : 1, 'constant': 0}) #Constraint on the sin^2 terms: for i in range(number_of_oscillators): for j in range(number_of_oscillators): index_first = feature_names.index("x" + str(number_of_oscillators + j) + '^2') index_first_transformed = index_first + int(num_basis_functions*i) pair_symmetries.append({ "x" + str(index_first_transformed) : 1, 'constant': 0}) type_symmetries = [('sin', 'cos'), ('cos'), ('sin')] for symmetry in type_symmetries: if(symmetry == ('sin', 'cos') or symmetry == ('cos', 'sin')): #Symmetry cos-sin #For i and j---> \xi_i(cos(x_i) sin(x_j)) = \xi_j(cos(x_j) sin(x_i)) for i in range(number_of_oscillators): for j in range(number_of_oscillators): if(i != j): index_first = feature_names.index("x" + str(i) + ' x' + str(number_of_oscillators + j)) index_second = feature_names.index("x" + str(j) + ' x' + str(number_of_oscillators + i)) index_first_transformed = index_first + int(num_basis_functions*i) index_second_transformed = index_second + int(num_basis_functions*j) symmetry_pair = (min(index_first_transformed, index_second_transformed), max(index_first_transformed, index_second_transformed)) pair_symmetries.append({ "x" + str(symmetry_pair[0]) : normalization_factors[index_second % num_basis_functions][0], "x" + str(symmetry_pair[1]) : -normalization_factors[index_first % num_basis_functions][0], 'constant': 0}) #Symmetry sin-cos #For i and j---> \xi_i(sin(x_i) cos(x_j)) = \xi_j(sin(x_j) cos(x_i)) for i in range(number_of_oscillators): for j in range(number_of_oscillators): if(i != j): index_first = feature_names.index("x" + str(j) + ' x' + str(i + number_of_oscillators)) index_second = feature_names.index("x" + str(i) + ' x' + str(j + number_of_oscillators)) index_first_transformed = index_first + + int(num_basis_functions*i) index_second_transformed = index_second + int(num_basis_functions*j) symmetry_pair = (min(index_first_transformed, index_second_transformed), max(index_first_transformed, index_second_transformed)) pair_symmetries.append({ "x" + str(symmetry_pair[0]) : normalization_factors[index_second % num_basis_functions][0], "x" + str(symmetry_pair[1]) : -normalization_factors[index_first % num_basis_functions][0], 'constant': 0}) for symmetry in type_symmetries: if(symmetry == ('cos')): #Symmetry cos #For i and j---> \xi_i(sin(x_i) cos(x_j)) = \xi_j(sin(x_j) cos(x_i)) for i in range(1, number_of_oscillators): index_first = feature_names.index("x" + str(0)) index_second = feature_names.index("x" + str(i)) index_first_transformed = index_first index_second_transformed = index_second + int(num_basis_functions*i) symmetry_pair = (min(index_first_transformed, index_second_transformed), max(index_first_transformed, index_second_transformed)) pair_symmetries.append({ "x" + str(symmetry_pair[0]) : normalization_factors[index_second % num_basis_functions][0], "x" + str(symmetry_pair[1]) : -normalization_factors[index_first % num_basis_functions][0], 'constant': 0}) # for symmetry in type_symmetries: # if(symmetry == ('cos')): # #Symmetry cos # #For i and j---> \xi_i(cos(x_j)) = \xi_j(cos(x_i)) # for i in range(number_of_oscillators): # for j in range(number_of_oscillators): # if(i != j): # index_first = feature_names.index("x" + str(j)) # index_second = feature_names.index("x" + str(i)) # index_first_transformed = index_first + + int(num_basis_functions*i) # index_second_transformed = index_second + int(num_basis_functions*j) # symmetry_pair = (min(index_first_transformed, index_second_transformed), max(index_first_transformed, index_second_transformed)) # pair_symmetries.append({ "x" + str(symmetry_pair[0]) : normalization_factors[index_second % num_basis_functions][0], "x" + str(symmetry_pair[1]) : -normalization_factors[index_first % num_basis_functions][0], 'constant': 0}) for symmetry in type_symmetries: if(symmetry == ('sin')): #Symmetry sin for i in range(1, number_of_oscillators): index_first = feature_names.index("x" + str(number_of_oscillators + 0)) index_second = feature_names.index("x" + str(number_of_oscillators + i)) index_first_transformed = index_first index_second_transformed = index_second + int(num_basis_functions*i) symmetry_pair = (min(index_first_transformed, index_second_transformed), max(index_first_transformed, index_second_transformed)) pair_symmetries.append({ "x" + str(symmetry_pair[0]) : normalization_factors[index_second % num_basis_functions][0], "x" + str(symmetry_pair[1]) : -normalization_factors[index_first % num_basis_functions][0], 'constant': 0}) # for symmetry in type_symmetries: # if(symmetry == ('sin')): # #Symmetry cos # #For i and j---> \xi_i(sin(x_j)) = \xi_j(sin(x_i)) # for i in range(number_of_oscillators): # for j in range(number_of_oscillators): # if(i != j): # index_first = feature_names.index("x" + str(j + number_of_oscillators)) # index_second = feature_names.index("x" + str(i + number_of_oscillators)) # index_first_transformed = index_first + + int(num_basis_functions*i) # index_second_transformed = index_second + int(num_basis_functions*j) # symmetry_pair = (min(index_first_transformed, index_second_transformed), max(index_first_transformed, index_second_transformed)) # pair_symmetries.append({ "x" + str(symmetry_pair[0]) : normalization_factors[index_second % num_basis_functions][0], "x" + str(symmetry_pair[1]) : -normalization_factors[index_first % num_basis_functions][0], 'constant': 0}) # Remove duplicates before we output. # pair_symmetries = [dict(t) for t in {tuple(d.keys()) for d in pair_symmetries}] pair_symmetries =delete_dictionaries_with_duplicate_keys_backup(pair_symmetries) return pair_symmetries def add_constraints_symmetry_kuramoto_simple(polinomial, number_of_oscillators, normalization_factors): feature_names = polinomial.get_feature_names() num_basis_functions = len(feature_names) pair_symmetries = [] #Constraint on the cos^2 terms: for i in range(number_of_oscillators): for j in range(number_of_oscillators): index_first = feature_names.index("x" + str(j) + '^2') index_first_transformed = index_first + int(num_basis_functions*i) pair_symmetries.append({ "x" + str(index_first_transformed) : 1, 'constant': 0}) #Constraint on the sin^2 terms: for i in range(number_of_oscillators): for j in range(number_of_oscillators): index_first = feature_names.index("x" + str(number_of_oscillators + j) + '^2') index_first_transformed = index_first + int(num_basis_functions*i) pair_symmetries.append({ "x" + str(index_first_transformed) : 1, 'constant': 0}) pair_symmetries = delete_dictionaries_with_duplicate_keys(pair_symmetries) return pair_symmetries def add_constraints_symmetry_fermi_pasta_ulam_tsingou(polinomial, number_of_oscillators, normalization_factors): feature_names = polinomial.get_feature_names() num_basis_functions = len(feature_names) pair_symmetries = [] #First order monomials #For x_i and x_{i+-1} ---> \xi_i(x_i) = \xi_{i+-1}(x_{i+-1}) for i in range(number_of_oscillators): for j in [i-1, i+1]: if j >= 0 and j < number_of_oscillators: index_first = feature_names.index("x" + str(i)) index_first_transformed = index_first + int(num_basis_functions*i) index_second = feature_names.index("x" + str(j)) index_second_transformed = index_second + int(num_basis_functions*j) pair_symmetries.append({ "x" + str(index_first_transformed) : 1.0/normalization_factors[index_first % num_basis_functions][0], "x" + str(index_second_transformed) : -1.0/normalization_factors[index_second % num_basis_functions][0], 'constant': 0}) #First order monomials #For x_i and x_{i+-1} ---> \xi_i(x_{i+-1}) = \xi_{i+-1}(x_{i}) for i in range(number_of_oscillators): for j in [i-1, i+1]: if j >= 0 and j < number_of_oscillators: index_first = feature_names.index("x" + str(i)) index_first_transformed = index_first + int(num_basis_functions*j) index_second = feature_names.index("x" + str(j)) index_second_transformed = index_second + int(num_basis_functions*i) pair_symmetries.append({ "x" + str(index_first_transformed) : 1.0/normalization_factors[index_first % num_basis_functions][0], "x" + str(index_second_transformed) : -1.0/normalization_factors[index_second % num_basis_functions][0], 'constant': 0}) #Second order monomials #For x_i and x_{i+-1} ---> \xi_i(x_i x_{i+-1}) = \xi_{i+-1}(x_i x_{i+-1}) for i in range(number_of_oscillators): for j in [i-1, i+1]: if j >= 0 and j < number_of_oscillators: if(i <= j): index = feature_names.index("x" + str(i) + " x" + str(j)) else: index = feature_names.index("x" + str(j) + " x" + str(i)) index_first_transformed = index + int(num_basis_functions*i) index_second_transformed = index + int(num_basis_functions*j) pair_symmetries.append({ "x" + str(index_first_transformed) : 1.0/normalization_factors[index_first % num_basis_functions][0], "x" + str(index_second_transformed) : -1.0/normalization_factors[index_second % num_basis_functions][0], 'constant': 0}) #Second order monomials #For x_i and x_{i+-1} ---> \xi_i(x_i^2) = \xi_{i+-1}(x_{i+-1}^2) for i in range(number_of_oscillators): for j in [i-1, i+1]: if j >= 0 and j < number_of_oscillators: index_first = feature_names.index("x" + str(i) + "^2") index_second = feature_names.index("x" + str(j) + "^2") index_first_transformed = index_first + int(num_basis_functions*i) index_second_transformed = index_second + int(num_basis_functions*j) pair_symmetries.append({ "x" + str(index_first_transformed) : 1.0/normalization_factors[index_first % num_basis_functions][0], "x" + str(index_second_transformed) : -1.0/normalization_factors[index_second % num_basis_functions][0], 'constant': 0}) #Second order monomials #For x_i and x_{i+-1} ---> \xi_i(x_{i+-1}^2) = \xi_{i+-1}(x_i^2) for i in range(number_of_oscillators): for j in [i-1, i+1]: if j >= 0 and j < number_of_oscillators: index_first = feature_names.index("x" + str(i) + "^2") index_second = feature_names.index("x" + str(j) + "^2") index_first_transformed = index_first + int(num_basis_functions*j) index_second_transformed = index_second + int(num_basis_functions*i) pair_symmetries.append({ "x" + str(index_first_transformed) : 1.0/normalization_factors[index_first % num_basis_functions][0], "x" + str(index_second_transformed) : -1.0/normalization_factors[index_second % num_basis_functions][0], 'constant': 0}) #Third order monomials #For x_i and x_{i+-1} ---> \xi_i(x_i^2 x_{i+-1}) = \xi_{i+-1}(x_{i+-1}^2 x_i) for i in range(number_of_oscillators): for j in [i-1, i+1]: if j >= 0 and j < number_of_oscillators: if(i <= j): index_first = feature_names.index("x" + str(i) + "^2 x" + str(j)) index_second = feature_names.index("x" + str(i) + " x" + str(j) + "^2") else: index_first = feature_names.index("x" + str(j) + " x" + str(i) + "^2") index_second = feature_names.index("x" + str(j) + "^2 x" + str(i)) index_first_transformed = index_first + int(num_basis_functions*i) index_second_transformed = index_second + int(num_basis_functions*j) pair_symmetries.append({ "x" + str(index_first_transformed) : 1.0/normalization_factors[index_first % num_basis_functions][0], "x" + str(index_second_transformed) : -1.0/normalization_factors[index_second % num_basis_functions][0], 'constant': 0}) #Third order monomials #For x_i and x_{i+-1} ---> \xi_i(x_i x_{i+-1}^2) = \xi_{i+-1}(x_{i+-1} x_i^2) for i in range(number_of_oscillators): for j in [i-1, i+1]: if j >= 0 and j < number_of_oscillators: if(i <= j): index_first = feature_names.index("x" + str(i) + " x" + str(j) + "^2") index_second = feature_names.index("x" + str(i) + "^2 x" + str(j)) else: index_first = feature_names.index("x" + str(j) + "^2 x" + str(i)) index_second = feature_names.index("x" + str(j) + " x" + str(i) + "^2") index_first_transformed = index_first + int(num_basis_functions*i) index_second_transformed = index_second + int(num_basis_functions*j) pair_symmetries.append({ "x" + str(index_first_transformed) : 1.0/normalization_factors[index_first % num_basis_functions][0], "x" + str(index_second_transformed) : -1.0/normalization_factors[index_second % num_basis_functions][0], 'constant': 0}) #Third order monomials #For x_i and x_{i+-1} ---> \xi_i(x_i^3) = \xi_{i+-1}(x_{i+-1}^3) for i in range(number_of_oscillators): for j in [i-1, i+1]: if j >= 0 and j < number_of_oscillators: index_first = feature_names.index("x" + str(i) + "^3") index_second = feature_names.index("x" + str(j) + "^3") index_first_transformed = index_first + int(num_basis_functions*i) index_second_transformed = index_second + int(num_basis_functions*j) pair_symmetries.append({ "x" + str(index_first_transformed) : 1.0/normalization_factors[index_first % num_basis_functions][0], "x" + str(index_second_transformed) : -1.0/normalization_factors[index_second % num_basis_functions][0], 'constant': 0}) #Third order monomials #For x_i and x_{i+-1} ---> \xi_i(x_{i+-1}^3) = \xi_{i+-1}(x_{i}^3) for i in range(number_of_oscillators): for j in [i-1, i+1]: if j >= 0 and j < number_of_oscillators: index_first = feature_names.index("x" + str(i) + "^3") index_second = feature_names.index("x" + str(j) + "^3") index_first_transformed = index_first + int(num_basis_functions*j) index_second_transformed = index_second + int(num_basis_functions*i) pair_symmetries.append({ "x" + str(index_first_transformed) : 1.0/normalization_factors[index_first % num_basis_functions][0], "x" + str(index_second_transformed) : -1.0/normalization_factors[index_second % num_basis_functions][0], 'constant': 0}) pair_symmetries = delete_dictionaries_with_duplicate_keys(pair_symmetries) return pair_symmetries def delete_dictionaries_with_duplicate_keys(list_dictionaries): seen = set() new_dictionary = [] for d in list_dictionaries: t = tuple(sorted(d.keys())) if t not in seen: seen.add(t) new_dictionary.append(d) return new_dictionary def delete_dictionaries_with_duplicate_keys_backup(list_dictionaries): seen = set() new_dictionary = [] for d in list_dictionaries: t = tuple(d.keys()) if t not in seen: seen.add(t) new_dictionary.append(d) return new_dictionary def add_constraints_symmetry_kuramoto_backup_v2(polinomial, number_of_oscillators): type_symmetries = [('sin', 'cos'), ('cos'), ('sin')] feature_names = polinomial.get_feature_names() pair_symmetries = [] for symmetry in type_symmetries: if(symmetry == ('sin', 'cos') or symmetry == ('cos', 'sin')): #Symmetry cos-sin for i in range(number_of_oscillators): for j in range(number_of_oscillators): if(i != j): index_first = feature_names.index("x" + str(i) + ' x' + str(number_of_oscillators + j)) index_second = feature_names.index("x" + str(j) + ' x' + str(number_of_oscillators + i)) index_first_transformed = index_first + int(len(feature_names)*i) index_second_transformed = index_second + int(len(feature_names)*j) symmetry_pair = (min(index_first_transformed, index_second_transformed), max(index_first_transformed, index_second_transformed)) pair_symmetries.append(symmetry_pair) #Symmetry sin-cos for i in range(number_of_oscillators): for j in range(number_of_oscillators): if(i != j): index_first = feature_names.index("x" + str(j) + ' x' + str(i + number_of_oscillators)) index_second = feature_names.index("x" + str(i) + ' x' + str(j + number_of_oscillators)) index_first_transformed = index_first + + int(len(feature_names)*i) index_second_transformed = index_second + int(len(feature_names)*j) symmetry_pair = (min(index_first_transformed, index_second_transformed), max(index_first_transformed, index_second_transformed)) pair_symmetries.append(symmetry_pair) for symmetry in type_symmetries: if(symmetry == ('cos')): #Symmetry cos for i in range(1, number_of_oscillators): index_first = feature_names.index("x" + str(0)) index_second = feature_names.index("x" + str(i)) index_first_transformed = index_first index_second_transformed = index_second + int(len(feature_names)*i) symmetry_pair = (min(index_first_transformed, index_second_transformed), max(index_first_transformed, index_second_transformed)) pair_symmetries.append(symmetry_pair) for symmetry in type_symmetries: if(symmetry == ('sin')): #Symmetry sin for i in range(1, number_of_oscillators): index_first = feature_names.index("x" + str(number_of_oscillators + 0)) index_second = feature_names.index("x" + str(number_of_oscillators + i)) index_first_transformed = index_first index_second_transformed = index_second + int(len(feature_names)*i) symmetry_pair = (min(index_first_transformed, index_second_transformed), max(index_first_transformed, index_second_transformed)) pair_symmetries.append(symmetry_pair) #Remove duplicates before we output. pair_symmetries = list(set([i for i in pair_symmetries])) return pair_symmetries def fermi_pasta_ulam_random(number_of_oscillators, number_of_snapshots, beta=0.7, x_min = - 0.1, x_max = 0.1): """Fermi–Pasta–Ulam problem. Generate data for the Fermi–Pasta–Ulam problem represented by the differential equation d^2/dt^2 x_i = (x_i+1 - 2x_i + x_i-1) + beta((x_i+1 - x_i)^3 - (x_i-x_i-1)^3). See [1]_ for details. Parameters ---------- number_of_oscillators: int number of oscillators number_of_snapshots: int number of snapshots Returns ------- snapshots: ndarray(number_of_oscillators, number_of_snapshots) snapshot matrix containing random displacements of the oscillators in [-0.1,0.1] derivatives: ndarray(number_of_oscillators, number_of_snapshots) matrix containing the corresponding derivatives References ---------- .. [1] <NAME>, <NAME>, <NAME>, <NAME>, "Multidimensional Approximation of Nonlinear Dynamical Systems", arXiv:1809.02448, 2018 """ # define random snapshot matrix snapshots = (x_max - x_min) * (np.random.rand(number_of_oscillators, number_of_snapshots) - 0.5) + (x_max + x_min)/2.0 # compute derivatives derivatives = np.zeros((number_of_oscillators, number_of_snapshots)) for j in range(number_of_snapshots): derivatives[0, j] = ( snapshots[1, j] - 2 * snapshots[0, j] + beta * ((snapshots[1, j] - snapshots[0, j]) ** 3 - snapshots[0, j] ** 3) ) for i in range(1, number_of_oscillators - 1): derivatives[i, j] = ( snapshots[i + 1, j] - 2 * snapshots[i, j] + snapshots[i - 1, j] + beta * ( (snapshots[i + 1, j] - snapshots[i, j]) ** 3 - (snapshots[i, j] - snapshots[i - 1, j]) ** 3 ) ) derivatives[-1, j] = ( -2 * snapshots[-1, j] + snapshots[-2, j] + beta * (-snapshots[-1, j] ** 3 - (snapshots[-1, j] - snapshots[-2, j]) ** 3) ) return snapshots, derivatives def fermi_pasta_ulam_time(number_of_oscillators, exact_solution, polinomial, max_time, number_of_snapshots, number_of_experiments, relative_tolerance = 1.0e-10, absolute_tolerance = 1.0e-13): from scipy.integrate import solve_ivp # Plot the exact trajectory. def fun_exact(t, y): return np.dot( exact_solution, polinomial.fit_transform(y.reshape(1, -1)).T ).squeeze() list_snapshots = [] list_derivatives = [] list_times = [] for i in range(number_of_experiments): initial_position = np.random.uniform(-0.1, 1.0, size=number_of_oscillators) sol = solve_ivp(fun_exact, [0, max_time], initial_position, method='DOP853', t_eval=np.linspace(0, max_time, number_of_snapshots), rtol = relative_tolerance, atol = absolute_tolerance) snapshots = sol.y derivatives = np.zeros([number_of_oscillators, number_of_snapshots]) for i in range(number_of_snapshots): derivatives[:, i] = fun_exact(0, snapshots[:, i]) list_derivatives.append(derivatives) list_times.append(sol['t']) list_snapshots.append(snapshots) return list_snapshots, list_derivatives, list_times def fermi_pasta_ulam_time_correct(number_of_oscillators, exact_solution, polinomial, max_time, number_of_snapshots, number_of_experiments, relative_tolerance = 1.0e-10, absolute_tolerance = 1.0e-13): from scipy.integrate import solve_ivp # Plot the exact trajectory. # Assume that the def fun_exact(t, y): position = y[:number_of_oscillators] velocity = y[number_of_oscillators:] return np.append(velocity, np.dot( exact_solution, polinomial.fit_transform(position.reshape(1, -1)).T ).squeeze()) list_snapshots = [] list_derivatives = [] list_second_derivatives = [] list_times = [] for i in range(number_of_experiments): initial_position = np.random.uniform(-0.1, 0.1, size=number_of_oscillators) initial_velocity = np.zeros(number_of_oscillators) vector = np.append(initial_position, initial_velocity) sol = solve_ivp(fun_exact, [0, max_time], vector, method='DOP853', t_eval=np.linspace(0, max_time, number_of_snapshots), rtol = relative_tolerance, atol = absolute_tolerance) snapshots = sol.y second_derivatives = np.zeros([number_of_oscillators, number_of_snapshots]) for i in range(number_of_snapshots): second_derivatives[:, i] = fun_exact(0, snapshots[:number_of_oscillators, i]) list_second_derivatives.append(second_derivatives) list_derivatives.append(snapshots[number_of_oscillators:, :]) list_snapshots.append(snapshots[:number_of_oscillators, :]) list_times.append(sol['t']) return list_snapshots, list_derivatives, list_second_derivatives, list_times # def kuramoto_time_individual(frequencies, initial_position, start_time, end_time, number_of_samples, K = 2.0, forcing_param = 0.2, relative_tolerance = 1.0e-10, absolute_tolerance = 1.0e-13): # from scipy.integrate import solve_ivp # number_of_oscillators = len(frequencies) # def kuramoto_ode(_, theta): # [theta_i, theta_j] = np.meshgrid(theta, theta) # return frequencies + K / number_of_oscillators * np.sin(theta_j - theta_i).sum(0) + forcing_param * np.sin(theta) # sol = solve_ivp(kuramoto_ode, [start_time, end_time], initial_position, method='DOP853', t_eval=np.linspace(start_time, end_time, number_of_samples), rtol = relative_tolerance, atol = absolute_tolerance) # return sol.y, sol['t'] # # Perform an experiment where we let the system develop from an initial position. # def fermi_pasta_ulam_time_individual( # exact_solution, polinomial, initial_position, t_min, t_max, num_steps # ): # # Plot the exact trajectory. # def fun_exact(t, y): # return np.dot( # exact_solution, polinomial.fit_transform(y.reshape(1, -1)).T # ).squeeze() # from scipy.integrate import solve_ivp # sol_true = solve_ivp( # fun_exact, # [t_min, t_max], # initial_position, # t_eval=np.linspace(t_min, t_max, num_steps), # vectorized=False, # ) # assert ( # sol_true["status"] == 0 # ), "The integration of the initial value solver was not succesfull." # return sol_true.y, sol_true['t'] # Perform an experiment where we let the system develop from an initial position. def fermi_pasta_ulam_time_individual( exact_solution, polinomial, initial_position, t_min, t_max, num_steps ): # Plot the exact trajectory. def fun_exact(t, y): return np.dot( exact_solution, polinomial.fit_transform(y.reshape(1, -1)).T ).squeeze() from scipy.integrate import solve_ivp sol_true = solve_ivp( fun_exact, [t_min, t_max], initial_position, t_eval=np.linspace(t_min, t_max, num_steps), vectorized=False, ) assert ( sol_true["status"] == 0 ), "The integration of the initial value solver was not succesfull." return sol_true.y, sol_true['t'] # Perform an experiment where we let the system develop from an initial position. def fermi_pasta_ulam_time_individual_correct( exact_solution, polinomial, initial_position, initial_velocity, t_min, t_max, num_steps ): number_of_oscillators = exact_solution.shape[0] # Plot the exact trajectory. # Assume that the def fun_exact(t, y): position = y[:number_of_oscillators] velocity = y[number_of_oscillators:] return np.append(velocity, np.dot( exact_solution, polinomial.fit_transform(position.reshape(1, -1)).T ).squeeze()) from scipy.integrate import solve_ivp position_val = np.append(initial_position, initial_velocity) sol_true = solve_ivp( fun_exact, [t_min, t_max], position_val, t_eval=np.linspace(t_min, t_max, num_steps), vectorized=False, ) assert ( sol_true["status"] == 0 ), "The integration of the initial value solver was not succesfull." return sol_true.y[:number_of_oscillators], sol_true.y[number_of_oscillators:], sol_true['t'] # Build the exact dynamics of the fermi_pasta_ulam if we have polynomials of order up to three. def exact_solution_fermi_pasta_ulam(number_of_oscillators, polinomial, beta): reference_polynomial = polinomial.get_feature_names() num_basis_functions = len(reference_polynomial) # Build the exact solution at the boundary exact_solution = np.zeros((number_of_oscillators, num_basis_functions)) # First order terms. exact_solution[0, reference_polynomial.index("x0")] = -2 exact_solution[0, reference_polynomial.index("x1")] = 1 # Third order terms exact_solution[0, reference_polynomial.index("x0^3")] = -2 * beta exact_solution[0, reference_polynomial.index("x1^3")] = beta exact_solution[0, reference_polynomial.index("x0^2 x1")] = 3 * beta exact_solution[0, reference_polynomial.index("x0 x1^2")] = -3 * beta # Build the exact solution in the interior. for i in range(1, number_of_oscillators - 1): # First order terms. exact_solution[i, reference_polynomial.index("x" + str(i))] = -2 exact_solution[i, reference_polynomial.index("x" + str(i - 1))] = 1 exact_solution[i, reference_polynomial.index("x" + str(i + 1))] = 1 # Third order terms exact_solution[i, reference_polynomial.index("x" + str(i) + "^3")] = -2 * beta exact_solution[i, reference_polynomial.index("x" + str(i - 1) + "^3")] = ( 1 * beta ) exact_solution[i, reference_polynomial.index("x" + str(i + 1) + "^3")] = ( 1 * beta ) exact_solution[ i, reference_polynomial.index("x" + str(i) + "^2 x" + str(i + 1)) ] = (3 * beta) exact_solution[ i, reference_polynomial.index("x" + str(i) + " x" + str(i + 1) + "^2") ] = (-3 * beta) exact_solution[ i, reference_polynomial.index("x" + str(i - 1) + " x" + str(i) + "^2") ] = (3 * beta) exact_solution[ i, reference_polynomial.index("x" + str(i - 1) + "^2 x" + str(i)) ] = (-3 * beta) # Equation for the end point. exact_solution[ number_of_oscillators - 1, reference_polynomial.index("x" + str(number_of_oscillators - 1)), ] = -2 exact_solution[ number_of_oscillators - 1, reference_polynomial.index("x" + str(number_of_oscillators - 2)), ] = 1 # Third order terms exact_solution[ number_of_oscillators - 1, reference_polynomial.index("x" + str(number_of_oscillators - 1) + "^3"), ] = (-2 * beta) exact_solution[ number_of_oscillators - 1, reference_polynomial.index("x" + str(number_of_oscillators - 2) + "^3"), ] = beta exact_solution[ number_of_oscillators - 1, reference_polynomial.index( "x" + str(number_of_oscillators - 2) + "^2 x" + str(number_of_oscillators - 1) ), ] = (-3 * beta) exact_solution[ number_of_oscillators - 1, reference_polynomial.index( "x" + str(number_of_oscillators - 2) + " x" + str(number_of_oscillators - 1) + "^2" ), ] = (3 * beta) return exact_solution def brusselator_time(initial_position, t_min = 0.0, t_max = 10.0, num_steps = 1000, r_coefficients = [1, 3, 1, 1]): #% rate constants: #r1 = 1; % 0 -> A #r2 = 3; % A -> B #r3 = 1; % 2A + B -> 3A #r4 = 1; % A -> 0 r1, r2, r3, r4 = r_coefficients def fun_exact(t, y): return np.array([r1-r2*y[0]+r3*y[0]**2*y[1]-r4*y[0], r2*y[0]-r3*y[0]**2*y[1]]) from scipy.integrate import solve_ivp sol_true = solve_ivp( fun_exact, [0, t_max], initial_position, t_eval=np.linspace(t_min, t_max, num_steps), vectorized=False, ) assert ( sol_true["status"] == 0 ), "The integration of the initial value solver was not succesfull." return sol_true, fun_exact(sol_true['t'], sol_true['y']) # Build the exact dynamics of the fermi_pasta_ulam if we have polynomials of order up to three. def exact_solution_brusselator(dimension, polinomial, r_coefficients): r1, r2, r3, r4 = r_coefficients reference_polynomial = polinomial.get_feature_names() num_basis_functions = len(reference_polynomial) # Build the exact solution at the boundary exact_solution = np.zeros((dimension, num_basis_functions)) # Solution for the first species exact_solution[0, reference_polynomial.index("1")] = r1 exact_solution[0, reference_polynomial.index("x0")] = - r2 - r4 exact_solution[0, reference_polynomial.index("x0")] = - r2 - r4 exact_solution[0, reference_polynomial.index("x0^2 x1")] = r3 # Solution for the first species exact_solution[1, reference_polynomial.index("x0")] = r2 exact_solution[1, reference_polynomial.index("x0^2 x1")] = -r3 return exact_solution def lutka_volterra_time(initial_position, t_min = 0.0, t_max = 10.0, num_steps = 1000, r_coefficients = [1, 1, 1, 1]): #% rate constants: #r1 = 1; % reproduction of prey: A -> 2A #r2 = 1; % death of predator: B -> 0 #r3 = 1; % consumption: A + B -> B #r4 = 1; % reproduction of predator: A + B -> A + 2B r1, r2, r3, r4 = r_coefficients def fun_exact(t, y): return np.array([y[0]*(r1-r3*y[1]), -y[1]*(r2-r4*y[0])]) from scipy.integrate import solve_ivp sol_true = solve_ivp( fun_exact, [0, t_max], initial_position, t_eval=np.linspace(t_min, t_max, num_steps), vectorized=False, ) assert ( sol_true["status"] == 0 ), "The integration of the initial value solver was not succesfull." return sol_true, fun_exact(sol_true['t'], sol_true['y']) # Build the exact dynamics of the fermi_pasta_ulam if we have polynomials of order up to three. def exact_solution_lutka_volterra(dimension, polinomial, r_coefficients): r1, r2, r3, r4 = r_coefficients reference_polynomial = polinomial.get_feature_names() num_basis_functions = len(reference_polynomial) # Build the exact solution at the boundary exact_solution = np.zeros((dimension, num_basis_functions)) # Solution for the first species exact_solution[0, reference_polynomial.index("x0")] = r1 exact_solution[0, reference_polynomial.index("x0 x1")] = - r3 # Solution for the first species exact_solution[1, reference_polynomial.index("x1")] = - r2 exact_solution[1, reference_polynomial.index("x0 x1")] = r4 return exact_solution def michaelis_menten_time(dimension, number_of_snapshots, number_of_experiments = 10, t_min = 0.0, t_max = 10.0, coefficients = [0.01, 1, 1]): #Expressions #d/dt C_1 = - k_{1}*C_{1}*C_{2} + k_{-1}* C_{3} #d/dt C_2 = - k_{1}*C_{1}*C_{2} + (k_{-1} + k_{2})* C_{3} #d/dt C_3 = k_{1}*C_{1}*C_{2} - (k_{-1} + k_{2})* C_{3} #d/dt C_4 = k_{2}*C_{3} # initial_position = np.array([1.0, 0.7, 0.0, 0.0]) k_1, k_2, k_minus1 = coefficients def fun_exact(t, y): return np.array([-k_1*y[0]*y[1] + k_minus1*y[2], -k_1*y[0]*y[1] + (k_minus1 + k_2)*y[2], k_1*y[0]*y[1] - (k_minus1 + k_2)*y[2], k_2*y[2]]) from scipy.integrate import solve_ivp list_snapshots = [] list_derivatives = [] list_times = [] for i in range(number_of_experiments): initial_position = np.random.rand(4) sol = solve_ivp( fun_exact, [0, t_max], initial_position, t_eval=np.linspace(t_min, t_max, number_of_snapshots), vectorized=False, ) assert ( sol["status"] == 0 ), "The integration of the initial value solver was not succesfull." snapshots = sol.y derivatives = np.zeros([dimension, number_of_snapshots]) for i in range(number_of_snapshots): derivatives[:, i] = fun_exact(0, snapshots[:, i]) list_derivatives.append(derivatives) list_times.append(sol['t']) list_snapshots.append(snapshots) return list_snapshots, list_derivatives, list_times def michaelis_menten_time_individual(initial_position, t_min = 0.0, t_max = 10.0, num_steps = 1000, coefficients = [0.01, 1, 1]): #Expressions #d/dt C_1 = - k_{1}*C_{1}*C_{2} + k_{-1}* C_{3} #d/dt C_2 = - k_{1}*C_{1}*C_{2} + (k_{-1} + k_{2})* C_{3} #d/dt C_3 = k_{1}*C_{1}*C_{2} - (k_{-1} + k_{2})* C_{3} #d/dt C_4 = k_{2}*C_{3} k_1, k_2, k_minus1 = coefficients def fun_exact(t, y): return np.array([-k_1*y[0]*y[1] + k_minus1*y[2], -k_1*y[0]*y[1] + (k_minus1 + k_2)*y[2], k_1*y[0]*y[1] - (k_minus1 + k_2)*y[2], k_2*y[2]]) from scipy.integrate import solve_ivp sol_true = solve_ivp( fun_exact, [0, t_max], initial_position, t_eval=np.linspace(t_min, t_max, num_steps), vectorized=False, ) assert ( sol_true["status"] == 0 ), "The integration of the initial value solver was not succesfull." return sol_true, fun_exact(sol_true['t'], sol_true['y']) # Build the exact dynamics of the fermi_pasta_ulam if we have polynomials of order up to three. def exact_solution_michaelis_menten(dimension, polinomial, coefficients): assert dimension == 4, "The dimension of the michaelis-menten dynamic should be 4." k_1, k_2, k_minus1 = coefficients reference_polynomial = polinomial.get_feature_names() num_basis_functions = len(reference_polynomial) exact_solution = np.zeros((dimension, num_basis_functions)) #First species. exact_solution[0, reference_polynomial.index("x0 x1")] = -k_1 exact_solution[0, reference_polynomial.index("x2")] = k_minus1 #Second species exact_solution[1, reference_polynomial.index("x0 x1")] = -k_1 exact_solution[1, reference_polynomial.index("x2")] = k_minus1 + k_2 #Third species exact_solution[2, reference_polynomial.index("x0 x1")] = k_1 exact_solution[2, reference_polynomial.index("x2")] = -(k_minus1 + k_2) #Fourth species. exact_solution[3, reference_polynomial.index("x2")] = k_2 return exact_solution # Build the exact dynamics of the fermi_pasta_ulam if we have polynomials of order up to three. def exact_solution_michaelis_menten_1D(polinomial, coefficients, initial_position): k_1, k_2, k_minus1 = coefficients reference_polynomial = polinomial.get_feature_names() num_basis_functions = len(reference_polynomial) exact_solution = np.zeros((dimension, num_basis_functions)) #First species. exact_solution[0, reference_polynomial.index("x0 x1")] = -k_1 exact_solution[0, reference_polynomial.index("x2")] = k_minus1 #Second species exact_solution[1, reference_polynomial.index("x0 x1")] = -k_1 exact_solution[1, reference_polynomial.index("x2")] = k_minus1 + k_2 #Third species exact_solution[2, reference_polynomial.index("x0 x1")] = k_1 exact_solution[2, reference_polynomial.index("x2")] = -(k_minus1 + k_2) #Fourth species. exact_solution[3, reference_polynomial.index("x2")] = k_2 return exact_solution #Add the constraints given by: #d/dt (C_{2} + C_{3}) = 0 #d/dt (C_{1} + C_{3} + C_{4}) + 0 def add_constraints_michaelis_menten_easy(polinomial): feature_names = polinomial.get_feature_names() list_constraints = [] for i in range(len(feature_names)): list_constraints.append({"x" + str(int(len(feature_names) + i)): 1.0, "x" + str(int(2.0*len(feature_names) + i)): 1.0, "constant": 0.0}) list_constraints.append({"x" + str(i): 1.0, "x" + str(int(2.0*len(feature_names) + i)): 1.0,"x" + str(int(3.0*len(feature_names) + i)): 1.0 , "constant": 0.0}) return list_constraints def add_constraints_michaelis_menten_hard(polinomial, data, normalization_factors, epsilon): feature_names = polinomial.get_feature_names() num_data_points = data.shape[1] list_constraints = [] #Four constraints per datapoint for j in range(num_data_points): constraint_dictionary = {} constraint_dictionary2 = {} constraint_dictionary3 = {} constraint_dictionary4 = {} for i in range(len(feature_names)): #First symmetry. One side of abs val. constraint_dictionary["x" + str(int(len(feature_names) + i))] = data[i, j]/normalization_factors[i][0] constraint_dictionary["x" + str(int(2.0*len(feature_names) + i))] = data[i, j]/normalization_factors[i][0] constraint_dictionary["constant"] = epsilon #First symmetry. Other side of abs val. constraint_dictionary2["x" + str(int(len(feature_names) + i))] = -data[i, j]/normalization_factors[i][0] constraint_dictionary2["x" + str(int(2.0*len(feature_names) + i))] = -data[i, j]/normalization_factors[i][0] constraint_dictionary2["constant"] = epsilon #Second symmetry. One side of abs val. constraint_dictionary3["x" + str(i)] = data[i, j]/normalization_factors[i][0] constraint_dictionary3["x" + str(int(2.0*len(feature_names) + i))] = data[i, j]/normalization_factors[i][0] constraint_dictionary3["x" + str(int(3.0*len(feature_names) + i))] = data[i, j]/normalization_factors[i][0] constraint_dictionary3["constant"] = epsilon #Second symmetry. Other side of abs val. constraint_dictionary4["x" + str(i)] = -data[i, j]/normalization_factors[i][0] constraint_dictionary4["x" + str(int(2.0*len(feature_names) + i))] = -data[i, j]/normalization_factors[i][0] constraint_dictionary4["x" + str(int(3.0*len(feature_names) + i))] = -data[i, j]/normalization_factors[i][0] constraint_dictionary4["constant"] = epsilon list_constraints.append(constraint_dictionary) list_constraints.append(constraint_dictionary2) list_constraints.append(constraint_dictionary3) list_constraints.append(constraint_dictionary4) return list_constraints def simulate_dynamics(basis, dynamic, initial_position, t_max, num_steps = 1000): # Plot the exact trajectory. def fun_dynamic(t, y): return np.dot( dynamic, basis.fit_transform(y.reshape(1, -1)).T ).squeeze() from scipy.integrate import solve_ivp t_val = np.linspace(0, t_max, num_steps) sol_true = solve_ivp(fun_dynamic,[0, t_max], initial_position, t_eval= np.linspace(0.0, t_max, num_steps), vectorized=False) return sol_true['y'], t_val def simulate_dynamics_kuramoto(basis, dynamic, initial_position, t_max, num_steps = 1000): # Plot the exact trajectory. def fun_dynamic(t, y): y_transformed = np.vstack( (np.cos(y), np.sin(y)) ) return np.dot( dynamic, basis.fit_transform(y_transformed.reshape(1, -1)).T ).squeeze() from scipy.integrate import solve_ivp t_val = np.linspace(0, t_max, num_steps) sol_true = solve_ivp(fun_dynamic,[0, t_max], initial_position, t_eval= np.linspace(0.0, t_max, num_steps), vectorized=False) return sol_true['y'], t_val ```
{ "source": "Jgeyen/devshop-bot", "score": 3 }
#### File: gym_devshop/env/devshop_env.py ```python import random import json import gym import time from gym import spaces import pandas as pd import numpy as np from client import DevshopClient import logging logger = logging.getLogger(__name__) MAX_BANK = 2147483647 MAX_NUM_SHARES = 2147483647 MAX_SHARE_PRICE = 5000 MAX_OPEN_POSITIONS = 5 MAX_STEPS = 2000 INITIAL_ACCOUNT_BALANCE = 10000 N_DISCRETE_ACTIONS = 5 class DevshopEnv(gym.Env): metadata = {'render.modes': ['human']} def __init__(self): self.reward_range = (-100, 100) # Define action and observation space # They must be gym.spaces objects # Example when using discrete actions: # 0 - Add Project, 1 - FounderDoBaWork, 2 - FounderDoDevWork, 3 - FounderDoTestWork self.action_space = spaces.Discrete(N_DISCRETE_ACTIONS) # Example for using image as input: # self.observation_space = spaces.Box(low=0, high=255, shape= # (HEIGHT, WIDTH, N_CHANNELS), dtype=np.uint8) self.observation_space = spaces.Box( low=-1, high=1, shape=(7,), dtype=np.float32) self.lastBanks = [] self.lastInboxStoryCount = 0 def _take_action(self, action): # print(f'Step: {self.current_step}') # call the api to get the action to occur client = DevshopClient() response = client.doAction(action) return response == b'true' def step(self, action): # Execute one time step within the environment self.actionReward = 0 self.current_step += 1 delay_modifier = (self.current_step / MAX_STEPS) self.didAction = False client = DevshopClient() state = client.getState() if action == 0: self.founderWasBusy = not state.founderFree time.sleep(2) self.didAction = True else: self.didAction = self._take_action(action) state = client.getState() self.bank = state.bank self.inboxStoryCount = state.inboxStoryCount self.backlogStoryCount = state.backlogStoryCount self.devStoryCount = state.devStoryCount self.testStoryCount = state.testStoryCount self.doneStoryCount = state.doneStoryCount self.founderFree = state.founderFree self.newProjectCost = state.newProjectCost if self.didAction: if action == 0: if self.founderWasBusy: self.actionReward = 0 else: self.actionReward = -1 - 99 * delay_modifier if action == 1: if state.inboxStoryCount < 3: self.actionReward = 5 else: tooMany = -10 -10*state.inboxStoryCount* delay_modifier if tooMany < -100: tooMany = -100 self.actionReward = tooMany if action == 2: self.actionReward = 10 if action == 3: self.actionReward = 30 if action == 4: self.actionReward = 35 + 70 * delay_modifier else: self.actionReward = 0 # self.lastBanks.append(self.bank) reward = self.actionReward done = self.bank + 2000 <= 0 obs = np.array((self.inboxStoryCount/100, self.backlogStoryCount/100, self.testStoryCount/100, self.doneStoryCount / 100, self.founderFree, self.newProjectCost/150, self.bank / 2000)) print( f"step: {self.current_step}; Done Stories: {self.doneStoryCount}; Reward: {reward} for action: {action}") return obs, reward, done, {} def reset(self): self.current_step = 0 self.lastInboxStoryCount = 0 client = DevshopClient() client.doReset() def render(self, mode='human', close=False): # Render the environment to the screen print(f'Step: {self.current_step}') print(f'bank: {self.bank}') print( f'Story Counts: {self.inboxStoryCount}|{self.backlogStoryCount}|{self.devStoryCount}|{self.testStoryCount}') print(self.founderFree) print(f'New project cost: {self.newProjectCost}') ```
{ "source": "JGFahey/Autohood", "score": 2 }
#### File: RobinhoodScripts/autohood/login.py ```python import robin_stocks as robinhood def login(username, password): login = robinhood.login(username, password) ```
{ "source": "jg-fisher/indeed-bot", "score": 3 }
#### File: jg-fisher/indeed-bot/main.py ```python import os import sys import time from selenium import webdriver from selenium.webdriver.common.action_chains import ActionChains from selenium.webdriver.common.keys import Keys class IndeedBot: def __init__(self): """ Initilializes the Chrome webdriver. Sets the job search query string self.driver:selenium.webdriver.Chrome self.query_string:str self.jobs:arr self.express_apply_jobs:arr """ self.driver = webdriver.Chrome('./chromedriver.exe') self.query_string = "https://www.indeed.com/jobs?q={job}&l={city}%2C+{state}" self.jobs = [] self.express_apply_jobs = [] def nav(self, url): """ Navigates to a given url Args: url:str url chromedriver Chrome instance navigates to. """ self.driver.get(url) time.sleep(3) # wait for page load def __convert_query(self, job, city, state): """ Reformats the query for expected syntax of the search Args: job:str: Job type to search for. city:str: City location of the job. state:str State location of the job. Returns: job:str city:str state:str """ job = '+'.join(job.split(" ")) city = city.lower() # State must be valid two letter code if len(state) != 2: raise Exception("State must be valid two letter code.") state = state.upper() return job, city, state def query(self, job, city, state): """ Searches indeed for a job in given city and state Args: job:str: Job type to search for. city:str: City location of the job. state:str State location of the job. """ job, city, state = self.__convert_query(job, city, state) query = self.query_string.format(job=job, city=city, state=state) self.nav(query) def find_express_jobs(self): """" Called after chromedriver Chrome instance navigates to job search results. Fills list with express jobs in search results. """ self.jobs = self.driver.find_elements_by_class_name("jobsearch-SerpJobCard") print(f'Number of jobs {len(self.jobs)}') for job in self.jobs: try: # Express apply indicator job.find_element_by_class_name('jobCardShelfContainer') self.express_apply_jobs.append(job) except: # Job is not express apply pass def apply_to_express_jobs(self, profile): """ Extracts jobs with express apply. Args: profile:dict """ print(f'Number of express jobs {len(self.express_apply_jobs)}') for job in self.express_apply_jobs: self.__process_job(job) self.__process_apply_button() self.__fill_applicant_form(profile) # self.driver.find_element_by_id('form-action-continue').click() def __process_apply_button(self): apply_button = self.driver.find_element_by_id('indeedApplyButtonContainer') apply_button.click() time.sleep(4) def __process_job(self, job): """ Refines url of job posting and navigates to it Args: job:Selenium.Webdriver.Chrome.WebElement """ job_a_tag = job.find_element_by_tag_name('a') job_href = job_a_tag.get_attribute('href') # Removing all extraneous indeed url query string parameters job_href = job_href.split('&from')[0] self.nav(job_href) def __fill_applicant_form(self, profile): """ Finds elements on the applicant form Args: profile:dict """ actions = ActionChains(self.driver) actions.send_keys(profile['name'] + Keys.TAB + \ profile['email'] + Keys.TAB + \ profile['phone_number'] + Keys.TAB) actions.perform() if __name__ == '__main__': profile = { 'name': "<NAME>", 'email': "<EMAIL>", 'phone_number': '860-364-3249', 'resume': os.getcwd() + '\\resume.txt' } id_bot = IndeedBot() # keywords, city, state id_bot.query('python developer', 'dallas', 'tx') id_bot.find_express_jobs() id_bot.apply_to_express_jobs(profile) ```
{ "source": "jgfoster/GciForPython", "score": 2 }
#### File: jgfoster/GciForPython/GciClasses.py ```python from ctypes import * from typing import Type GciSession: Type[c_void_p] = c_void_p OopType: Type[c_longlong] = c_int64 GCI_ERR_STR_SIZE = 1024 GCI_ERR_reasonSize = GCI_ERR_STR_SIZE GCI_MAX_ERR_ARGS = 10 OOP_ILLEGAL = 1 OOP_NIL = 20 class GciErrSType(Structure): """ see $GEMSTONE/include/gci.ht """ _fields_ = [ ('category', OopType), # error dictionary ('context', OopType), # a GsProcess ('exceptionObj', OopType), # an AbstractException or nil ('args', OopType * GCI_MAX_ERR_ARGS), # arguments ('number', c_int), # GemStone error number ('argCount', c_int), # num of arg in the args[] ('fatal', c_ubyte), # nonzero if err is fatal ('message', c_char * (GCI_ERR_STR_SIZE + 1)), # null-terminated Utf8 ('reason', c_char * (GCI_ERR_reasonSize + 1)) # null-terminated Utf8 ] def __repr__(self): return 'aGciErrSType' def __str__(self): return 'GciErrSType(category=' + hex(self.category) + \ ', context=' + hex(self.context) + \ ', exceptionObj=' + hex(self.exceptionObj) + \ ', args=' + str(list(map(hex, self.args))[0:self.argCount]) + \ ', number=' + str(self.number) + \ ', argCount=' + str(self.argCount) + \ ', fatal=' + str(self.fatal) + \ ', message=' + str(self.message) + \ ', reason=' + str(self.reason) + ')' class Error(Exception): """Base class for other exceptions""" pass class InvalidArgumentError(Error): """Invalid argument for GCI function""" pass class GciException(Error): def __init__(self, ex: GciErrSType): super().__init__(str(ex.message)) self.ex = ex def number(self): return self.ex.number ```
{ "source": "jggatc/interphase", "score": 2 }
#### File: interphase/interphase/__init__.py ```python try: import pygame as engine except ImportError: engine = None initialized = False def get_init(): """ Check if module is initialized. """ return initialized def _init(engine): global Interface, EVENT, Control, FunctionControl, Label, Textbox, Text, load_image, __version__, initialized from interphase import env env.engine = engine from interphase.interface import Interface, EVENT from interphase.control import Control, FunctionControl, Label, Textbox from interphase.util import Text, load_image from interphase.version import __version__ initialized = True def init(engine): """ Initialize module. Argument engine is the multimedia framework object. Engine can be Pygame, PyJ2D, or Pyjsdl. Module initialized if Pygame can be imported. """ if initialized: return _init(engine) if engine.__name__ == 'pyjsdl': from interphase.image import _load_default_images _load_default_images() if engine: _init(engine) ```
{ "source": "jggatc/pyj2d", "score": 3 }
#### File: jggatc/pyj2d/numeric.py ```python numeric = None if not numeric: try: from com.github.tbekolay.jnumeric import JNumeric as numeric except ImportError: try: import Numeric as numeric except ImportError: pass def set_numeric_module(module): """ Set numeric module if imported a different numeric package. """ global numeric numeric = module def get_numeric_module(): """ Get numeric module. Return None if module not present. """ return numeric ``` #### File: jggatc/pyj2d/surface.py ```python from java.awt.image import BufferedImage, RasterFormatException from java.lang import ArrayIndexOutOfBoundsException from java.util import Hashtable from pyj2d.rect import Rect from pyj2d.color import Color from pyj2d import locals as Const __docformat__ = 'restructuredtext' class Surface(BufferedImage): """ **pyj2d.Surface** * Surface.get_size * Surface.get_width * Surface.get_height * Surface.get_rect * Surface.copy * Surface.subsurface * Surface.blit * Surface.set_colorkey * Surface.get_colorkey * Surface.replace_color * Surface.get_at * Surface.set_at * Surface.fill * Surface.get_parent * Surface.get_offset """ def __init__(self, *arg): """ Return Surface that is subclassed from java.awt.image.BufferedImage. Alternative arguments: * Size (w,h) of surface, optional second argument of flags (SRCALPHA) * Bufferedimage to convert to Surface Module initialization places pyj2d.Surface in module's namespace. """ try: width, height = arg[0] try: if arg[1] & (BufferedImage.TYPE_INT_ARGB | Const.SRCALPHA): BufferedImage.__init__(self, width, height, BufferedImage.TYPE_INT_ARGB) else: BufferedImage.__init__(self, width, height, BufferedImage.TYPE_INT_RGB) except IndexError: BufferedImage.__init__(self, width, height, BufferedImage.TYPE_INT_ARGB) graphics2D = self.createGraphics() graphics2D.setColor(Color(0,0,0)) graphics2D.fillRect(0, 0, width, height) graphics2D.dispose() except TypeError: try: cm = arg[0].getColorModel() raster = arg[0].getRaster() isRasterPremultiplied = arg[0].isAlphaPremultiplied() properties = Hashtable() keys = arg[0].getPropertyNames() if keys != None: for key in keys: properties.put(key,arg[0].getProperty(key)) except AttributeError: cm, raster, isRasterPremultiplied, properties = arg BufferedImage.__init__(self, cm, raster, isRasterPremultiplied, properties) self._display = None #display surface self._super_surface = None self._offset = (0,0) self._colorkey = None self._nonimplemented_methods() def __str__(self): s = '<%s(%dx%d)>' return s % (self.__class__.__name__, self.width, self.height) def __repr__(self): return self.__str__() def get_size(self): """ Return width and height of surface. """ return (self.width, self.height) def get_width(self): """ Return width of surface. """ return self.width def get_height(self): """ Return height of surface. """ return self.height def get_rect(self, **attr): """ Return rect of the surface. An optional keyword argument of the rect position. """ rect = Rect(0, 0, self.width, self.height) for key in attr: getattr(rect, '_set_'+key)(attr[key]) return rect def copy(self): """ Return Surface that is a copy of this surface. """ if not self._super_surface: img_properties = Hashtable() keys = self.getPropertyNames() if keys != None: for key in keys: img_properties.put(key,self.getProperty(key)) surface = Surface( self.getColorModel(), self.getData(), self.isAlphaPremultiplied(), img_properties ) surface._colorkey = self._colorkey else: surface = Surface((self.width,self.height), BufferedImage.TYPE_INT_ARGB) g2d = surface.createGraphics() g2d.drawImage(self, 0, 0, None) g2d.dispose() surface._colorkey = self._colorkey return surface def subsurface(self, rect): """ Return Surface that represents a subsurface that shares data with this surface. The rect argument is the area of the subsurface. """ try: try: subsurf = self.getSubimage(rect.x, rect.y, rect.width, rect.height) except AttributeError: rect = Rect(rect) subsurf = self.getSubimage(rect.x, rect.y, rect.width, rect.height) except RasterFormatException: try: rect = self.get_rect().intersection(rect) subsurf = self.getSubimage(rect.x, rect.y, rect.width, rect.height) except: raise ValueError('subsurface outside surface area') surface = Surface(subsurf) surface._super_surface = self surface._offset = (rect.x,rect.y) surface._colorkey = self._colorkey return surface def blit(self, surface, position, area=None): """ Draw given surface on this surface at position. Optional area delimitates the region of given surface to draw. """ g2d = self.createGraphics() if not area: rect = Rect(position[0],position[1],surface.width,surface.height) g2d.drawImage(surface, rect.x, rect.y, None) else: rect = Rect(position[0],position[1],area[2],area[3]) g2d.drawImage(surface, rect.x,rect.y,rect.x+area[2],rect.y+area[3], area[0],area[1],area[0]+area[2],area[1]+area[3], None) g2d.dispose() return self.get_rect().clip(rect) def _blits(self, surfaces): g2d = self.createGraphics() for surface, rect in surfaces: g2d.drawImage(surface, rect.x, rect.y, None) g2d.dispose() def _blit_clear(self, surface, rect_list): g2d = self.createGraphics() for r in rect_list: g2d.drawImage(surface, r.x,r.y,r.x+r.width,r.y+r.height, r.x,r.y,r.x+r.width,r.y+r.height, None) g2d.dispose() def set_colorkey(self, color, flags=None): """ Set surface colorkey. """ if self._colorkey: r,g,b = self._colorkey.r,self._colorkey.g,self._colorkey.b self.replace_color((r,g,b,0),self._colorkey) self._colorkey = None if color: self._colorkey = Color(color) self.replace_color(self._colorkey) return None def get_colorkey(self): """ Return surface colorkey. """ if self._colorkey: return ( self._colorkey.r, self._colorkey.g, self._colorkey.b, self._colorkey.a ) else: return None def replace_color(self, color, new_color=None): """ Replace color with with new_color or with alpha. """ pixels = self.getRGB(0,0,self.width,self.height,None,0,self.width) if hasattr(color, 'a'): color1 = color else: color1 = Color(color) if new_color is None: color2 = Color(color1.r,color1.g,color1.b,0) else: if hasattr(new_color, 'a'): color2 = new_color else: color2 = Color(new_color) for i, pixel in enumerate(pixels): if pixel == color1.getRGB(): pixels[i] = color2.getRGB() self.setRGB(0,0,self.width,self.height,pixels,0,self.width) return None def get_at(self, pos): """ Return color of a surface pixel. The pos argument represents x,y position of pixel. """ try: return Color(self.getRGB(pos[0],pos[1])) except ArrayIndexOutOfBoundsException: raise IndexError('pixel index out of range') def set_at(self, pos, color): """ Set color of a surface pixel. The arguments represent position x,y and color of pixel. """ color = Color(color) try: self.setRGB(pos[0],pos[1],color.getRGB()) except ArrayIndexOutOfBoundsException: raise IndexError('pixel index out of range') return None def fill(self, color=(0,0,0), rect=None): """ Fill surface with color. """ g2d = self.createGraphics() color = Color(color) g2d.setColor(color) if not rect: rect = Rect(0, 0, self.width, self.height) else: rect = Rect(rect) g2d.fillRect(rect.x, rect.y, rect.width, rect.height) g2d.dispose() return rect def get_parent(self): """ Return parent Surface of subsurface. """ return self._super_surface #if delete, delete subsurface... def get_offset(self): """ Return offset of subsurface in surface. """ return self._offset def _nonimplemented_methods(self): self.convert = lambda *arg: self self.convert_alpha = lambda *arg: self self.set_alpha = lambda *arg: None self.get_alpha = lambda *arg: None self.lock = lambda *arg: None self.unlock = lambda *arg: None self.mustlock = lambda *arg: False self.get_locked = lambda *arg: False self.get_locks = lambda *arg: () ``` #### File: jggatc/pyj2d/surfarray.py ```python from java.awt.image import BufferedImage from pyj2d.surface import Surface __docformat__ = 'restructuredtext' __doc__ = 'Surface pixel manipulation' _initialized = False def _init(): """ Initialize surfarray module. """ global numeric, _initialized from pyj2d.numeric import numeric if not numeric: raise ImportError("JNumeric module is required.") _initialized = True def array2d(surface): """ Return data array of the Surface argument. Array consists of pixel data arranged by [x,y] in integer color format. JNumeric required as specified in numeric module. """ if not _initialized: _init() data = numeric.zeros((surface.width*surface.height), 'i') data = surface.getRGB(0, 0, surface.width, surface.height, data, 0, surface.width) array = numeric.reshape(data, (surface.width,surface.height)) return array def array3d(surface): """ Return data array of the Surface argument. Array consists of pixel data arranged by [x,y] in RGB format. JNumeric required as specified in numeric module. """ if not _initialized: _init() data = surface.getRGB(0, 0, surface.width, surface.height, None, 0, surface.width) data = numeric.array([(dat>>16 & 0xff, dat>>8 & 0xff, dat & 0xff) for dat in data]) array = numeric.reshape(data, (surface.width,surface.height,3)) return array def array_alpha(surface): """ Return data array of the Surface argument. Array consists of pixel data arranged by [x,y] of pixel alpha value. JNumeric required as specified in numeric module. """ if not _initialized: _init() data = surface.getRGB(0, 0, surface.width, surface.height, None, 0, surface.width) data = numeric.array([dat>>24 & 0xff for dat in data], numeric.Int8) array = numeric.reshape(data, (surface.width,surface.height)) return array def make_surface(array): """ Generates image pixels from array data. Argument array containing image data. Return Surface generated from array. JNumeric required as specified in numeric module. """ if not _initialized: _init() surface = Surface((array.shape[0],array.shape[1])) blit_array(surface, array) return surface def blit_array(surface, array): """ Generates image pixels from a JNumeric array. Arguments include destination Surface and array of integer colors. JNumeric required as specified in numeric module. """ if not _initialized: _init() if len(array.shape) == 2: data = numeric.transpose(array, (1,0)) data = numeric.ravel(data) else: data = array[:,:,0]*0x10000 | array[:,:,1]*0x100 | array[:,:,2] data = numeric.transpose(data, (1,0)) data = numeric.ravel(data) if not surface.getColorModel().hasAlpha(): surface.setRGB(0, 0, surface.width, surface.height, data, 0, surface.width) else: surf = Surface((surface.width,surface.height), BufferedImage.TYPE_INT_RGB) surf.setRGB(0, 0, surface.width, surface.height, data, 0, surface.width) g2d = surface.createGraphics() g2d.drawImage(surf, 0, 0, None) g2d.dispose() return None use_arraytype = lambda *arg: None ``` #### File: jggatc/pyj2d/transform.py ```python from math import pi as _pi, fabs as _fabs, sin as _sin, cos as _cos, ceil as _ceil from java.awt.image import BufferedImage, AffineTransformOp from java.awt import RenderingHints from java.awt.geom import AffineTransform from pyj2d.surface import Surface __docformat__ = 'restructuredtext' __doc__ = 'Surface transformation' _deg_rad = _pi/180.0 def rotate(surface, angle): """ Return Surface rotated by the given angle. """ if not angle: return surface.copy() theta = angle*_deg_rad width_i = surface.getWidth() height_i = surface.getHeight() cos_theta = _fabs( _cos(theta) ) sin_theta = _fabs( _sin(theta) ) width_f = int( (width_i*cos_theta)+(height_i*sin_theta) ) height_f = int( (width_i*sin_theta)+(height_i*cos_theta) ) surf = Surface((width_f,height_f), BufferedImage.TYPE_INT_ARGB) at = AffineTransform() at.translate(width_f/2.0, height_f/2.0) at.rotate(-theta) g2d = surf.createGraphics() ot = g2d.getTransform() g2d.setTransform(at) g2d.setRenderingHint(RenderingHints.KEY_INTERPOLATION, RenderingHints.VALUE_INTERPOLATION_BILINEAR) g2d.drawImage(surface, -width_i//2, -height_i//2, None) g2d.setTransform(ot) g2d.dispose() return surf def rotozoom(surface, angle, size): """ Return Surface rotated and resized by the given angle and size. """ if not angle: width = int(surface.getWidth()*size) height = int(surface.getHeight()*size) return scale(surface, (width, height)) theta = angle*_deg_rad width_i = int(surface.getWidth()*size) height_i = int(surface.getHeight()*size) cos_theta = _fabs( _cos(theta) ) sin_theta = _fabs( _sin(theta) ) width_f = int( _ceil((width_i*cos_theta)+(height_i*sin_theta)) ) if width_f % 2: width_f += 1 height_f = int( _ceil((width_i*sin_theta)+(height_i*cos_theta)) ) if height_f % 2: height_f += 1 surf = Surface((width_f,height_f), BufferedImage.TYPE_INT_ARGB) at = AffineTransform() at.translate(width_f/2.0, height_f/2.0) at.rotate(-theta) g2d = surf.createGraphics() ot = g2d.getTransform() g2d.setTransform(at) g2d.setRenderingHint(RenderingHints.KEY_INTERPOLATION, RenderingHints.VALUE_INTERPOLATION_BILINEAR) g2d.drawImage(surface, -width_i//2, -height_i//2, width_i, height_i, None) g2d.setTransform(ot) g2d.dispose() return surf def scale(surface, size, dest=None): """ Return Surface resized by the given size. An optional destination surface can be provided. """ if not dest: surf = Surface(size, BufferedImage.TYPE_INT_ARGB) else: surf = dest g2d = surf.createGraphics() g2d.setRenderingHint(RenderingHints.KEY_INTERPOLATION, RenderingHints.VALUE_INTERPOLATION_BILINEAR) g2d.drawImage(surface, 0, 0, size[0], size[1], None) g2d.dispose() return surf def smoothscale(surface, size, dest=None): """ Return Surface resized by the given size. An optional destination surface can be provided. """ return scale(surface, size, dest) def scale2x(surface, dest=None): """ Return Surface resized to twice its size. An optional destination surface can be provided. """ return scale(surface, (surface.getWidth()*2,surface.getHeight()*2), dest) def flip(surface, xbool=True, ybool=False): """ Return Surface that is flipped horizontally, vertically, or both. """ if xbool and ybool: at = AffineTransform.getScaleInstance(-1, -1) at.translate(-surface.getHeight(), -surface.getHeight()) elif xbool: at = AffineTransform.getScaleInstance(-1, 1) at.translate(-surface.getWidth(), 0) elif ybool: at = AffineTransform.getScaleInstance(1, -1) at.translate(0, -surface.getHeight()) else: return surface op = AffineTransformOp(at, AffineTransformOp.TYPE_BILINEAR) bimage = op.filter(surface, None) surf = Surface(bimage) return surf ```
{ "source": "jggatc/pyjsbitset", "score": 2 }
#### File: jggatc/pyjsbitset/pyjsarray.py ```python from __pyjamas__ import JS class PyTypedArray: """ PyTypedArray is the base class that wraps the JavaScript TypedArray objects. The derived objects provides an interface to the JavaScript array objects: PyUint8ClampedArray [Uint8ClampedArray] PyUint8Array [Uint8Array] PyUint16Array [Uint16Array] PyUint32Array [Uint32Array] PyInt8Array [Int8Array] PyInt16Array [Int16Array] PyInt32Array [Int32Array] PyFloat32Array [Float32Array] PyFloat64Array [Float64Array] The PyTypedArray interface include index syntax, iteration, and math operations. The module contains an Ndarray class to instantiate N-dimensional arrays, and PyImageData and PyImageMatrix classes that provide an interface to canvas ImageData. """ def __init__(self, data=None, offset=None, length=None, typedarray=None): """ The PyTypedArray is instantiated with either the array size, an array of the TypedArray or Python type, or an existing ArrayBuffer to view, which creates a new TypedArray of size and included data as the specified type. Optional arguments include offset index at which ArrayBuffer data is inserted and length of an ArrayBuffer. """ if data: if isinstance(data, int): if pyjs_mode.optimized: self.__data = JS("""new @{{typedarray}}(@{{data}})""") else: self.__data = JS("""new @{{typedarray}}(@{{data}}['valueOf']())""") elif isinstance(data, (list,tuple)): if pyjs_mode.optimized: self.__data = JS("""new @{{typedarray}}(@{{data}}['getArray']())""") else: data = [dat.valueOf() for dat in data] self.__data = JS("""new @{{typedarray}}(@{{data}}['getArray']())""") elif isinstance(data, PyTypedArray): self.__data = JS("""new @{{typedarray}}(@{{data}}['__data'])""") else: #TypedArray or ArrayBuffer if offset is None and length is None: self.__data = JS("""new @{{typedarray}}(@{{data}})""") else: if offset is None: offset = 0 if length is None: self.__data = JS("""new @{{typedarray}}(@{{data}}, @{{offset}})""") else: self.__data = JS("""new @{{typedarray}}(@{{data}}, @{{offset}}, @{{length}})""") else: self.__data = None def __str__(self): """ Return string representation of PyTypedArray object. """ return self.__data.toString() def __iter__(self): """ Iterate over PyTypedArray object. """ index = 0 while index < self.__data.length: yield self[index] index += 1 def __getitem__(self, index): """ Get TypedArray element by index. """ return JS("""@{{int}}(@{{self}}['__data'][@{{index}}]);""") def __setitem__(self, index, value): """ Set TypedArray element by index. """ if pyjs_mode.optimized: JS("""@{{self}}['__data'][@{{index}}]=@{{value}};""") else: value = value.valueOf() JS("""@{{self}}['__data'][@{{index}}]=@{{value}};""") return None def __len__(self): """ Get TypedArray array length. """ return self.__data.length def set(self, data, offset=0): """ Set data to the array. Arguments: data is a list of either the TypedArray or Python type, offset is the start index where data will be set (defaults to 0). """ if isinstance(data, (list,tuple)): if pyjs_mode.optimized: self.__data.set(data.getArray(), offset) else: data = [dat.valueOf() for dat in data] self.__data.set(data.getArray(), offset) elif isinstance(data, PyTypedArray): self.__data.set(data.__data, offset) def subarray(self, begin, end=None): """ Retrieve a subarray of the array. The subarray is a TypedArray and is a view of the derived array. Arguments begin and optional end (defaults to array end) are the index spanning the subarray. """ if end is None: end = self.__data.length array = self.__data.subarray(begin, end) pytypedarray = self.__class__() pytypedarray.__data = array return pytypedarray def getLength(self): """ Return array.length attribute. """ return self.__data.length def getByteLength(self): """ Return array.byteLength attribute. """ return self.__data.byteLength def getBuffer(self): """ Return array.buffer attribute. """ return self.__data.buffer def getByteOffset(self): """ Return array.byteOffset attribute. """ return self.__data.byteOffset def getBytesPerElement(self): """ Return array.BYTES_PER_ELEMENT attribute. """ return self.__data.BYTES_PER_ELEMENT def getArray(self): """ Return JavaScript TypedArray. """ return self.__data def setArray(self, array): """ Set JavaScript TypedArray. """ self.__data = array return None class PyUint8ClampedArray(PyTypedArray): """ Create a PyTypedArray interface to Uint8ClampedArray. """ def __init__(self, data=None, offset=None, length=None): try: PyTypedArray.__init__(self, data, offset, length, typedarray=Uint8ClampedArray) except (TypeError, AttributeError): #-O/-S:TypeError/AttributeError if isUndefined(typedarray): raise NotImplementedError("TypedArray data type not implemented") else: raise class PyUint8Array(PyTypedArray): """ Create a PyTypedArray interface to Uint8Array. """ def __init__(self, data=None, offset=None, length=None): try: PyTypedArray.__init__(self, data, offset, length, typedarray=Uint8Array) except (TypeError, AttributeError): if isUndefined(typedarray): raise NotImplementedError("TypedArray data type not implemented") else: raise class PyUint16Array(PyTypedArray): """ Create a PyTypedArray interface to Uint16Array. """ def __init__(self, data=None, offset=None, length=None): try: PyTypedArray.__init__(self, data, offset, length, typedarray=Uint16Array) except (TypeError, AttributeError): if isUndefined(typedarray): raise NotImplementedError("TypedArray data type not implemented") else: raise class PyUint32Array(PyTypedArray): """ Create a PyTypedArray interface to Uint32Array. """ def __init__(self, data=None, offset=None, length=None): try: PyTypedArray.__init__(self, data, offset, length, typedarray=Uint32Array) except (TypeError, AttributeError): if isUndefined(typedarray): raise NotImplementedError("TypedArray data type not implemented") else: raise class PyInt8Array(PyTypedArray): """ Create a PyTypedArray interface to Int8Array. """ def __init__(self, data=None, offset=None, length=None): try: PyTypedArray.__init__(self, data, offset, length, typedarray=Int8Array) except (TypeError, AttributeError): if isUndefined(typedarray): raise NotImplementedError("TypedArray data type not implemented") else: raise class PyInt16Array(PyTypedArray): """ Create a PyTypedArray interface to Int16Array. """ def __init__(self, data=None, offset=None, length=None): try: PyTypedArray.__init__(self, data, offset, length, typedarray=Int16Array) except (TypeError, AttributeError): if isUndefined(typedarray): raise NotImplementedError("TypedArray data type not implemented") else: raise class PyInt32Array(PyTypedArray): """ Create a PyTypedArray interface to Int32Array. """ def __init__(self, data=None, offset=None, length=None): try: PyTypedArray.__init__(self, data, offset, length, typedarray=Int32Array) except (TypeError, AttributeError): if isUndefined(typedarray): raise NotImplementedError("TypedArray data type not implemented") else: raise class PyFloat32Array(PyTypedArray): """ Create a PyTypedArray interface to Float32Array. """ def __init__(self, data=None, offset=None, length=None): try: PyTypedArray.__init__(self, data, offset, length, typedarray=Float32Array) except (TypeError, AttributeError): if isUndefined(typedarray): raise NotImplementedError("TypedArray data type not implemented") else: raise def __getitem__(self, index): """ Get TypedArray element by index. """ return JS("""@{{self}}['__data'][@{{index}}];""") class PyFloat64Array(PyTypedArray): """ Create a PyTypedArray interface to Float64Array. """ def __init__(self, data=None, offset=None, length=None): try: PyTypedArray.__init__(self, data, offset, length, typedarray=Float64Array) except (TypeError, AttributeError): if isUndefined(typedarray): raise NotImplementedError("TypedArray data type not implemented") else: raise def __getitem__(self, index): """ Get TypedArray element by index. """ return JS("""@{{self}}['__data'][@{{index}}];""") class PyCanvasPixelArray(PyTypedArray): """ Create a PyTypedArray interface to CanvasPixelArray. """ def __init__(self, data=None, offset=None, length=None): PyTypedArray.__init__(self, data, offset, length) self._superArray = None self._superIndex = (0,0) def __iter__(self): """ Iterate over PyTypedArray object. """ if not self._superArray: PyTypedArray.__iter__(self) else: index = self._superIndex[0] while index < self._superIndex[1]: yield self._superArray[index] index += 1 def __getitem__(self, index): """ Get TypedArray element by index. """ if not self._superArray: return PyTypedArray.__getitem__(self, index) else: return self._superArray.__getitem__(index+self._superIndex[0]) def __setitem__(self, index, value): """ Set TypedArray element by index. """ if not self._superArray: PyTypedArray.__setitem__(self, index, value) else: self._superArray.__setitem__(index+self._superIndex[0], value) return None def set(self, data, offset=0): """ Set data to the array. Arguments: data is a list of either the TypedArray or Python type, offset is the start index where data will be set (defaults to 0). """ if not self._superArray: for index in xrange(len(data)): self[index+offset] = data[index] else: self._superArray.set(data, offset+self._superIndex[0]) def subarray(self, begin, end=None): """ Retrieve a subarray of the array. The subarray is a view of the derived array. Arguments begin and optional end (defaults to array end) are the index spanning the subarray. """ if end is None: end = self.__data.length array = self.__class__() array.__data = self.__data array._superArray = self array._superIndex = (begin,end) return array class Ndarray: __typedarray = {0: PyUint8ClampedArray, 1: PyUint8Array, 2: PyUint16Array, 3: PyUint32Array, 4: PyInt8Array, 5: PyInt16Array, 6: PyInt32Array, 7: PyFloat32Array, 8: PyFloat64Array} def __init__(self, dim, dtype=8): """ Generate an N-dimensional array of TypedArray data. Argument can be size (int or tuple) or data (list or TypedArray). Optional argument dtype (default:8) specifies TypedArray data type: 0: Uint8ClampedArray 1: Uint8Array 2: Uint16Array 3: Uint32Array 4: Int8Array 5: Int16Array 6: Int32Array 7: Float32Array 8: Float64Array """ self._dtype = dtype if isinstance(dim, tuple): size = 1 for i in dim: size *= i self.__data = Ndarray.__typedarray[dtype](size) self._shape = dim indices = [] for i in self._shape: size /= i indices.append(size) self._indices = tuple(indices) elif isinstance(dim, int): self.__data = Ndarray.__typedarray[dtype](dim) self._shape = (dim,) self._indices = (self._shape[0],) elif isinstance(dim, list): self.__data = Ndarray.__typedarray[dtype](dim) self._shape = (len(dim),) self._indices = (self._shape[0],) else: self.__data = dim self._shape = (len(dim),) self._indices = (self._shape[0],) @property def shape(self): #not implemented in pyjs -O """ Return array shape. Ndarray.shape accessible with compilation in --strict mode. """ return self._shape @shape.setter def shape(self, dim): #not implemented in pyjs -O """ Set shape of array. Argument is new shape. Raises TypeError if shape is not appropriate. Ndarray.shape accessible with compilation in --strict mode. """ self.setshape(dim) return None def __getitem__(self, index): try: indexLn, shapeLn = index.__len__(), len(self._shape) #len(0) no exception if indexLn == shapeLn: return self.__data[sum([index[i]*self._indices[i] for i in range(indexLn)])] else: begin = sum([index[i]*self._indices[i] for i in range(indexLn)]) end = begin + self._indices[indexLn-1] subarray = self.__data.subarray(begin, end) array = Ndarray(subarray, self._dtype) array._shape = self._shape[indexLn:] array._indices = self._indices[indexLn:] return array except (TypeError,AttributeError): #index[i] if index is int raises both AttributeError -S and TypeError -O. No exception for len(index) if index is int. if len(self._shape) == 1: return self.__data[index] else: begin = index * self._indices[0] end = begin + self._indices[0] subarray = self.__data.subarray(begin, end) array = Ndarray(subarray, self._dtype) array._shape = self._shape[1:] array._indices = self._indices[1:] return array def __setitem__(self, index, value): def unpack(obj, lst=None): if lst is None: lst = [] for element in obj: if isinstance(element, (list,tuple)): unpack(element, lst) else: lst.append(element) return lst try: indexLn, shapeLn = index.__len__(), len(self._shape) if indexLn == shapeLn: self.__data[sum([index[i]*self._indices[i] for i in range(indexLn)])] = value else: begin = sum([index[i]*self._indices[i] for i in range(indexLn)]) end = begin + self._indices[indexLn-1] subarray = self.__data.subarray(begin, end) if isinstance(value, Ndarray): value = value.__data else: if isinstance(value[0], (list,tuple)): value = unpack(value) subarray.set(value) except (TypeError,AttributeError): if len(self._shape) == 1: self.__data[index] = value else: begin = index * self._indices[0] end = begin + self._indices[0] subarray = self.__data.subarray(begin, end) if isinstance(value, Ndarray): value = value.__data else: if isinstance(value[0], (list,tuple)): value = unpack(value) subarray.set(value) return None def __getslice__(self, lower, upper): subarray = self.__data.subarray(lower, upper) return Ndarray(subarray, self._dtype) def __setslice__(self, lower, upper, data): subarray = self.__data.subarray(lower, upper) subarray.set(data) return None def __iter__(self): if len(self._shape) > 1: index = 0 while index < self._shape[0]: begin = index * self._indices[0] end = begin + self._indices[0] subarray = self.__data.subarray(begin, end) array = Ndarray(subarray, self._dtype) array._shape = self._shape[1:] array._indices = self._indices[1:] yield array index += 1 else: index = 0 while index < self._shape[0]: yield self.__data[index] index += 1 def __str__(self): def array_str(array, width, strval): alst = [] if len(array._shape) == 1: alst.append('[') alst.extend([strval % (width,val) for val in array]) # alst.extend(["{0:>{1}} ".format(val,width) for val in array]) #pyjs-O {0:>{1}} width > NaN? alst[-1] = alst[-1].rstrip() alst.append(']') else: alst.append('[') for a in array: alst.extend( array_str(a,width,strval) ) alst.append(']') return alst if self._dtype < 7: alst = array_str(self, len(str( max([i for i in self.__data]) )), "%*d ") else: alst = array_str(self, len(str( max([i for i in self.__data]) ))+7, "%*f ") tab = len(self._shape) i = tab while True: try: i = alst.index('[', i) except ValueError: break count = 0 while True: if alst[i+count] == '[': count += 1 continue else: if count == 1: #pyjs-O ' '*n > NaN alst[i] = '\n'+''.join([' ' for x in range(tab-count)])+alst[i] else: alst[i] = '\n\n'+''.join([' ' for x in range(tab-count)])+alst[i] i += count break return ''.join(alst) def __len__(self): return self._shape[0] def __add__(self, other): array = Ndarray.__typedarray[self._dtype](self.__data) ndarray = Ndarray(array, self._dtype) ndarray._shape = self._shape ndarray._indices = self._indices try: for i in xrange(len(ndarray.__data)): ndarray.__data[i] = ndarray.__data[i] + other except (TypeError, ValueError): #pys -S TypeError, -O ValueError if ndarray._shape != other._shape: raise TypeError("array shapes are not compatible") else: for i in xrange(len(ndarray.__data)): ndarray.__data[i] = ndarray.__data[i] + other.__data[i] return ndarray def __sub__(self, other): array = Ndarray.__typedarray[self._dtype](self.__data) ndarray = Ndarray(array, self._dtype) ndarray._shape = self._shape ndarray._indices = self._indices try: for i in xrange(len(ndarray.__data)): ndarray.__data[i] = ndarray.__data[i] - other except (TypeError, ValueError): if ndarray._shape != other._shape: raise TypeError("array shapes are not compatible") else: for i in xrange(len(ndarray.__data)): ndarray.__data[i] = ndarray.__data[i] - other.__data[i] return ndarray def __mul__(self, other): array = Ndarray.__typedarray[self._dtype](self.__data) ndarray = Ndarray(array, self._dtype) ndarray._shape = self._shape ndarray._indices = self._indices try: for i in xrange(len(ndarray.__data)): ndarray.__data[i] = ndarray.__data[i] * other except (TypeError, ValueError): if ndarray._shape != other._shape: raise TypeError("array shapes are not compatible") else: for i in xrange(len(ndarray.__data)): ndarray.__data[i] = ndarray.__data[i] * other.__data[i] return ndarray def __div__(self, other): array = Ndarray.__typedarray[self._dtype](self.__data) ndarray = Ndarray(array, self._dtype) ndarray._shape = self._shape ndarray._indices = self._indices try: for i in xrange(len(ndarray.__data)): ndarray.__data[i] = ndarray.__data[i] / other except (TypeError, ValueError): if ndarray._shape != other._shape: raise TypeError("array shapes are not compatible") else: for i in xrange(len(ndarray.__data)): ndarray.__data[i] = ndarray.__data[i] / other.__data[i] return ndarray def add(self, other): """ Add across array elements. Argument is a numeral or another array. Return new array. """ array = Ndarray.__typedarray[self._dtype](self.__data) ndarray = Ndarray(array, self._dtype) ndarray._shape = self._shape ndarray._indices = self._indices try: for i in xrange(len(ndarray.__data)): ndarray.__data[i] = ndarray.__data[i] + other except (TypeError, ValueError): if ndarray._shape != other._shape: raise TypeError("array shapes are not compatible") else: for i in xrange(len(ndarray.__data)): ndarray.__data[i] = ndarray.__data[i] + other.__data[i] return ndarray def sub(self, other): """ Subtract across array elements. Argument is a numeral or another array. Return new array. """ array = Ndarray.__typedarray[self._dtype](self.__data) ndarray = Ndarray(array, self._dtype) ndarray._shape = self._shape ndarray._indices = self._indices try: for i in xrange(len(ndarray.__data)): ndarray.__data[i] = ndarray.__data[i] - other except (TypeError, ValueError): if ndarray._shape != other._shape: raise TypeError("array shapes are not compatible") else: for i in xrange(len(ndarray.__data)): ndarray.__data[i] = ndarray.__data[i] - other.__data[i] return ndarray def mul(self, other): """ Multiply across array elements. Argument is a numeral or another array. Return new array. """ array = Ndarray.__typedarray[self._dtype](self.__data) ndarray = Ndarray(array, self._dtype) ndarray._shape = self._shape ndarray._indices = self._indices try: for i in xrange(len(ndarray.__data)): ndarray.__data[i] = ndarray.__data[i] * other except (TypeError, ValueError): if ndarray._shape != other._shape: raise TypeError("array shapes are not compatible") else: for i in xrange(len(ndarray.__data)): ndarray.__data[i] = ndarray.__data[i] * other.__data[i] return ndarray def div(self, other): """ Divide across array elements. Argument is a numeral or another array. Return new array. """ array = Ndarray.__typedarray[self._dtype](self.__data) ndarray = Ndarray(array, self._dtype) ndarray._shape = self._shape ndarray._indices = self._indices try: for i in xrange(len(ndarray.__data)): ndarray.__data[i] = ndarray.__data[i] / other except (TypeError, ValueError): if ndarray._shape != other._shape: raise TypeError("array shapes are not compatible") else: for i in xrange(len(ndarray.__data)): ndarray.__data[i] = ndarray.__data[i] / other.__data[i] return ndarray def iadd(self, other): """ Add across array elements in-place. Argument is a numeral or another array. """ try: for i in xrange(len(self.__data)): self.__data[i] = self.__data[i] + other except (TypeError, ValueError): if self._shape != other._shape: raise TypeError("array shapes are not compatible") else: for i in xrange(len(self.__data)): self.__data[i] = self.__data[i] + other.__data[i] return None def isub(self, other): """ Subtract across array elements in-place. Argument is a numeral or another array. """ try: for i in xrange(len(self.__data)): self.__data[i] = self.__data[i] - other except (TypeError, ValueError): if self._shape != other._shape: raise TypeError("array shapes are not compatible") else: for i in xrange(len(self.__data)): self.__data[i] = self.__data[i] - other.__data[i] return None def imul(self, other): """ Multiply across array elements in-place. Argument is a numeral or another array. """ try: for i in xrange(len(self.__data)): self.__data[i] = self.__data[i] * other except (TypeError, ValueError): if self._shape != other._shape: raise TypeError("array shapes are not compatible") else: for i in xrange(len(self.__data)): self.__data[i] = self.__data[i] * other.__data[i] return None def idiv(self, other): """ Divide across array elements in-place. Argument is a numeral or another array. """ try: for i in xrange(len(self.__data)): self.__data[i] = self.__data[i] / other except (TypeError, ValueError): if self._shape != other._shape: raise TypeError("array shapes are not compatible") else: for i in xrange(len(self.__data)): self.__data[i] = self.__data[i] / other.__data[i] return None def bitwise_and(self, other): """ Bitwise AND across array elements. Argument is a numeral or another array. Return new array. """ array = Ndarray.__typedarray[self._dtype](self.__data) ndarray = Ndarray(array, self._dtype) ndarray._shape = self._shape ndarray._indices = self._indices try: for i in xrange(len(ndarray.__data)): ndarray.__data[i] = ndarray.__data[i] & other except (TypeError, ValueError): if ndarray._shape != other._shape: raise TypeError("array shapes are not compatible") else: for i in xrange(len(ndarray.__data)): ndarray.__data[i] = ndarray.__data[i] & other.__data[i] return ndarray def bitwise_or(self, other): """ Bitwise OR across array elements. Argument is a numeral or another array. Return new array. """ array = Ndarray.__typedarray[self._dtype](self.__data) ndarray = Ndarray(array, self._dtype) ndarray._shape = self._shape ndarray._indices = self._indices try: for i in xrange(len(ndarray.__data)): ndarray.__data[i] = ndarray.__data[i] | other except (TypeError, ValueError): if ndarray._shape != other._shape: raise TypeError("array shapes are not compatible") else: for i in xrange(len(ndarray.__data)): ndarray.__data[i] = ndarray.__data[i] | other.__data[i] return ndarray def bitwise_xor(self, other): """ Bitwise XOR across array elements. Argument is a numeral or another array. Return new array. """ array = Ndarray.__typedarray[self._dtype](self.__data) ndarray = Ndarray(array, self._dtype) ndarray._shape = self._shape ndarray._indices = self._indices try: for i in xrange(len(ndarray.__data)): ndarray.__data[i] = ndarray.__data[i] ^ other except (TypeError, ValueError): if ndarray._shape != other._shape: raise TypeError("array shapes are not compatible") else: for i in xrange(len(ndarray.__data)): ndarray.__data[i] = ndarray.__data[i] ^ other.__data[i] return ndarray def bitwise_iand(self, other): """ Bitwise AND across array elements in-place. Argument is a numeral or another array. """ try: for i in xrange(len(self.__data)): self.__data[i] = self.__data[i] & other except (TypeError, ValueError): if self._shape != other._shape: raise TypeError("array shapes are not compatible") else: for i in xrange(len(self.__data)): self.__data[i] = self.__data[i] & other.__data[i] return None def bitwise_ior(self, other): """ Bitwise OR across array elements in-place. Argument is a numeral or another array. """ try: for i in xrange(len(self.__data)): self.__data[i] = self.__data[i] | other except (TypeError, ValueError): if self._shape != other._shape: raise TypeError("array shapes are not compatible") else: for i in xrange(len(self.__data)): self.__data[i] = self.__data[i] | other.__data[i] return None def bitwise_ixor(self, other): """ Bitwise XOR across array elements in-place. Argument is a numeral or another array. """ try: for i in xrange(len(self.__data)): self.__data[i] = self.__data[i] ^ other except (TypeError, ValueError): if self._shape != other._shape: raise TypeError("array shapes are not compatible") else: for i in xrange(len(self.__data)): self.__data[i] = self.__data[i] ^ other.__data[i] return None def bitwise_not(self): """ Bitwise NOT across array elements. Return new array. """ array = Ndarray.__typedarray[self._dtype](self.__data) ndarray = Ndarray(array, self._dtype) ndarray._shape = self._shape ndarray._indices = self._indices for i in xrange(len(ndarray.__data)): ndarray.__data[i] = ~self.__data[i] return ndarray def setshape(self, *dim): """ Set shape of array. Argument is new shape. Raises TypeError if shape is not appropriate. Ndarray.shape accessible with compilation in --strict mode. """ if isinstance(dim[0], tuple): dim = dim[0] size = 1 for i in dim: size *= i array_size = 1 for i in self._shape: array_size *= i if size != array_size: raise TypeError("array size cannot change") self._shape = dim indices = [] for i in self._shape: size /= i indices.append(size) self._indices = tuple(indices) return None def getshape(self): """ Return array shape. Ndarray.shape accessible with compilation in --strict mode. """ return self._shape def reshape(self, dim): """ Return view of array with new shape. Argument is new shape. Raises TypeError if shape is not appropriate. """ size = 1 for i in dim: size *= i array_size = 1 for i in self._shape: array_size *= i if size != array_size: raise TypeError("array size cannot change") subarray = self.__data.subarray(0) array = Ndarray(subarray) array._shape = dim indices = [] for i in array._shape: size /= i indices.append(size) array._indices = tuple(indices) return array def set(self, data): """ Set array elements. Data argument can be a 1d/2d array or number used to set Ndarray elements, data used repetitively if consists of fewer elements than Ndarray. """ if isinstance(data, (list,tuple)): if pyjs_mode.optimized: if isinstance(data[0], (list,tuple,PyTypedArray)): data = [value for dat in data for value in dat] else: if not isinstance(data[0], (list,tuple,PyTypedArray)): data = [dat.valueOf() for dat in data] else: data = [value.valueOf() for dat in data for value in dat] dataLn = len(data) data = data.getArray() elif isinstance(data, (Ndarray,PyTypedArray)): data = data.getArray() dataLn = data.length else: if pyjs_mode.optimized: for index in xrange(self.__data.__data.length): JS("""@{{self}}['__data']['__data'][@{{index}}]=@{{data}};""") else: data = data.valueOf() for index in xrange(self.__data.__data.length): JS("""@{{self}}['__data']['__data'][@{{index}}]=@{{data}};""") return None if dataLn == self.__data.__data.length: for index in xrange(self.__data.__data.length): JS("""@{{self}}['__data']['__data'][@{{index}}]=@{{data}}[@{{index}}];""") else: for index in xrange(self.__data.__data.length): JS("""@{{self}}['__data']['__data'][@{{index}}]=@{{data}}[@{{index}}%@{{dataLn}}];""") return None def fill(self, value): """ Set array elements to value argument. """ if pyjs_mode.optimized: for index in xrange(self.__data.__data.length): JS("""@{{self}}['__data']['__data'][@{{index}}]=@{{value}};""") else: value = value.valueOf() for index in xrange(self.__data.__data.length): JS("""@{{self}}['__data']['__data'][@{{index}}]=@{{value}};""") return None def copy(self): """ Return copy of array. """ array = Ndarray.__typedarray[self._dtype](self.__data) ndarray = Ndarray(array, self._dtype) ndarray._shape = self._shape ndarray._indices = self._indices return ndarray def astype(self, dtype): """ Return copy of array. Argument dtype is TypedArray data type. """ array = Ndarray.__typedarray[dtype](self.__data) ndarray = Ndarray(array, dtype) ndarray._shape = self._shape ndarray._indices = self._indices return ndarray def view(self): """ Return view of array. """ subarray = self.__data.subarray(0) array = Ndarray(subarray) array._shape = self._shape array._indices = self._indices return array def swapaxes(self, axis1, axis2): """ Swap axes of array. Arguments are the axis to swap. Return view of array with axes changed. """ array = Ndarray(self.__data, self._dtype) shape = list(self._shape) shape[axis1], shape[axis2] = shape[axis2], shape[axis1] array._shape = tuple(shape) indices = list(self._indices) indices[axis1], indices[axis2] = indices[axis2], indices[axis1] array._indices = tuple(indices) return array def getArray(self): """ Return JavaScript TypedArray. """ return self.__data.getArray() class NP: def zeros(self, size, dtype): if dtype == 'i': dtype = 3 return Ndarray(size, dtype) def swapaxes(self, array, axis1, axis2): return array.swapaxes(axis1, axis2) def append(self, array, values): if isinstance(values[0], (list,tuple,PyTypedArray)): values = [value for dat in values for value in dat] newarray = Ndarray(len(array)+len(values), array._dtype) newarray.__data.set(array.__data) newarray.__data.set(values, len(array)) return newarray np = NP() class PyImageData: def __init__(self, imagedata): """ Provides an interface to canvas ImageData. The argument required is the ImageData instance to be accessed. """ self.__imagedata = imagedata if not isUndefined(Uint8ClampedArray): self.data = PyUint8ClampedArray() else: self.data = PyCanvasPixelArray() self.data.__data = imagedata.data self.width = imagedata.width self.height = imagedata.height def getImageData(self): """ Return JavaScript ImageData instance. """ return self.__imagedata class PyImageMatrix(Ndarray): def __init__(self, imagedata): """ Provides an interface to canvas ImageData as an Ndarray array. The argument required is the ImageData instance to be accessed. """ self.__imagedata = PyImageData(imagedata) if isinstance(self.__imagedata.data, PyUint8ClampedArray): Ndarray.__init__(self, self.__imagedata.data, 0) else: #ie10 supports typedarray, not uint8clampedarray Ndarray.__init__(self, self.__imagedata.data, 1) self.setshape(self.__imagedata.height,self.__imagedata.width,4) def getWidth(self): """ Return ImageData width. """ return self.__imagedata.width def getHeight(self): """ Return ImageData height. """ return self.__imagedata.height def getPixel(self, index): """ Get pixel RGBA. The index arguement references the 2D array element. """ i = (index[0]*self._indices[0]) + (index[1]*4) return (self.__imagedata.data[i], self.__imagedata.data[i+1], self.__imagedata.data[i+2], self.__imagedata.data[i+3]) def setPixel(self, index, value): """ Set pixel RGBA. The arguements index references the 2D array element and value is pixel RGBA. """ i = (index[0]*self._indices[0]) + (index[1]*4) self.__imagedata.data[i], self.__imagedata.data[i+1], self.__imagedata.data[i+2], self.__imagedata.data[i+3] = value[0], value[1], value[2], value[3] return None def getPixelRGB(self, index): """ Get pixel RGB. The index arguement references the 2D array element. """ i = (index[0]*self._indices[0]) + (index[1]*4) return (self.__imagedata.data[i], self.__imagedata.data[i+1], self.__imagedata.data[i+2]) def setPixelRGB(self, index, value): """ Set pixel RGB. The arguements index references the 2D array element and value is pixel RGB. """ i = (index[0]*self._indices[0]) + (index[1]*4) self.__imagedata.data[i], self.__imagedata.data[i+1], self.__imagedata.data[i+2] = value[0], value[1], value[2] return None def getPixelAlpha(self, index): """ Get pixel alpha. The index arguement references the 2D array element. """ i = (index[0]*self._indices[0]) + (index[1]*4) return self.__imagedata.data[i+3] def setPixelAlpha(self, index, value): """ Set pixel alpha. The arguements index references the 2D array element and value is pixel alpha. """ i = (index[0]*self._indices[0]) + (index[1]*4) self.__imagedata.data[i+3] = value return None def getPixelInteger(self, index): """ Get pixel integer color. The index arguement references the 2D array element. """ i = (index[0]*self._indices[0]) + (index[1]*4) return self.__imagedata.data[i]<<16 | self.__imagedata.data[i+1]<<8 | self.__imagedata.data[i+2] | self.imagedata.data[i+3]<<24 def setPixelInteger(self, index, value): """ Set pixel integer color. The arguements index references the 2D array element and value is pixel color. """ i = (index[0]*self._indices[0]) + (index[1]*4) self.__imagedata.data[i], self.__imagedata.data[i+1], self.__imagedata.data[i+2], self.__imagedata.data[i+3] = value>>16 & 0xff, value>>8 & 0xff, value & 0xff, value>>24 & 0xff return None def getImageData(self): """ Return JavaScript ImageData instance. """ return self.__imagedata.getImageData() class Pyjs_Mode: def __init__(self): self.strict, self.optimized = self._setmode() def __getattr__(self, attr): if attr == '__strict_mode': return True def _setmode(self): if self.__strict_mode == True: return True, False else: return False, True pyjs_mode = Pyjs_Mode() ``` #### File: jggatc/pyjsbitset/pyjsbitset.py ```python import math from pyjsarray import PyUint8Array, PyUint16Array, PyUint32Array class BitSet: """ BitSet provides a bitset object to use in a Python-to-JavaScript application. It uses the PyUint8Array implementation of the JavaScript Uint8Array 8-bit typedarray. BitSet16 and BitSet32 stores data in PyUint16Array (16-bit) and PyUint32Array (32-bit) that implement the Uint16Array and Uint32Array typedarray. The BitSet will dynamically expand to hold the bits required, an optional width argument define number of bits the BitSet instance will initially hold. """ __bit = 8 __bitmask = None __typedarray = PyUint8Array def __init__(self, width=None): if not self.__class__.__bitmask: self.__class__.__bitmask = dict([(self.__class__.__bit-i-1,1<<i) for i in range(self.__class__.__bit-1,-1,-1)]) self.__class__.__bitmask[self.__class__.__bit-1] = int(self.__class__.__bitmask[self.__class__.__bit-1]) #pyjs [1<<0] = 1L if width: self.__width = abs(width) else: self.__width = self.__bit self.__data = self.__typedarray( math.ceil(self.__width/(self.__bit*1.0)) ) def __str__(self): """ Return string representation of BitSet object. """ return "%s" % self.__class__ def __repr__(self): """ Return string of the indexes of the set bits. """ setBit = [] for index in xrange(self.__width): if self.get(index): setBit.append(str(index)) return "{" + ", ".join(setBit) + "}" def __getitem__(self, index): """ Get bit by index. """ return self.get(index) def __setitem__(self, index, value): """ Set bit by index. """ self.set(index, value) def __len__(self): """ Get bit length. """ for index in xrange(self.__width-1, -1, -1): if self.get(index): break return index+1 def __iter__(self): """ Iterate over bits. """ index = 0 while index < self.__width: yield self.get(index) index += 1 def get(self, index, toIndex=None): """ Get bit by index. Arguments include index of bit, and optional toIndex that return a slice as a BitSet. """ if index > self.__width-1: if not toIndex: return False else: size = toIndex-index if size > 0: return self.__class__(size) else: #use exception return None if toIndex is None: return bool( self.__data[ int(index/self.__bit) ] & self.__bitmask[ index%self.__bit ] ) else: size = toIndex-index if size > 0: bitset = self.__class__(size) ix = 0 if toIndex > self.__width: toIndex = self.__width for i in xrange(index, toIndex): bitset.set(ix, bool( self.__data[ int(i/self.__bit) ] & self.__bitmask[ i%self.__bit ] )) ix += 1 return bitset else: #use exception return None def set(self, index, value=1): """ Set bit by index. Optional argument value is the bit state of 1(True) or 0(False). Default:1 """ if index > self.__width-1: if value: self.resize(index+1) else: return if value: self.__data[ int(index/self.__bit) ] = self.__data[ int(index/self.__bit) ] | self.__bitmask[ index%self.__bit ] # self.__data[ int(index/self.__bit) ] |= self.__bitmask[ index%self.__bit ] #pyjs -O: |= not processed else: self.__data[ int(index/self.__bit) ] = self.__data[ int(index/self.__bit) ] & ~(self.__bitmask[ index%self.__bit ]) # self.__data[ int(index/self.__bit) ] &= ~(self.__bitmask[ index%self.__bit ]) #pyjs -O: &= not processed return None def fill(self, index=None, toIndex=None): """ Set the bit. If no argument provided, all bits are set. Optional argument index is bit index to set, and toIndex to set a range of bits. """ if index is None and toIndex is None: for i in xrange(0, self.__width): self.set(i, 1) else: if toIndex is None: self.set(index, 1) else: for i in xrange(index, toIndex): self.set(i, 1) def clear(self, index=None, toIndex=None): """ Clear the bit. If no argument provided, all bits are cleared. Optional argument index is bit index to clear, and toIndex to clear a range of bits. """ if index is None: for i in xrange(len(self.__data)): self.__data[i] = 0 else: if toIndex is None: self.set(index, 0) else: if index == 0 and toIndex == self.__width: for dat in xrange(len(self.__data)): self.__data[dat] = 0 else: for i in xrange(index, toIndex): self.set(i, 0) def flip(self, index, toIndex=None): """ Flip the state of the bit. Argument index is the bit index to flip, and toIndex to flip a range of bits. """ if toIndex is None: self.set(index, not self.get(index)) else: if toIndex > self.__width: self.resize(toIndex) toIndex = self.__width if index == 0 and toIndex == self.__width: for dat in xrange(len(self.__data)): self.__data[dat] = ~self.__data[dat] else: for i in xrange(index, toIndex): self.set(i, not self.get(i)) def cardinality(self): """ Return the count of bit set. """ count = 0 for bit in xrange(self.__width): if self.get(bit): count += 1 return count def intersects(self, bitset): """ Check if set bits in this BitSet are also set in the bitset argument. Return True if bitsets intersect, otherwise return False. """ for dat in xrange(len(bitset.__data)): if bitset.__data[dat] & self.__data[dat]: return True return False def andSet(self, bitset): """ BitSet and BitSet. """ data = min(len(self.__data), len(bitset.__data)) for dat in xrange(data): self.__data[dat] = self.__data[dat] & bitset.__data[dat] # self.__data[dat] &= bitset.__data[dat] #pyjs -O: &= not processed # pyjs -S: &= calls __and__ instead of __iand__, -O: no call to operator methods def orSet(self, bitset): """ BitSet or BitSet. """ data = min(len(self.__data), len(bitset.__data)) for dat in xrange(data): self.__data[dat] = self.__data[dat] | bitset.__data[dat] # self.__data[dat] |= bitset.__data[dat] #pyjs -O: |= not processed def xorSet(self, bitset): """ BitSet xor BitSet. """ data = min(len(self.__data), len(bitset.__data)) for dat in xrange(data): self.__data[dat] = self.__data[dat] ^ bitset.__data[dat] # self.__data[dat] ^= bitset.__data[dat] #pyjs -O: |= not processed def resize(self, width): """ Resize the BitSet to width argument. """ if width > self.__width: self.__width = width if self.__width > len(self.__data) * self.__bit: array = self.__typedarray( math.ceil(self.__width/(self.__bit*1.0)) ) array.set(self.__data) self.__data = array elif width < self.__width: if width < len(self): width = len(self) self.__width = width if self.__width <= len(self.__data) * self.__bit - self.__bit: array = self.__typedarray( math.ceil(self.__width/(self.__bit*1.0)) ) array.set(self.__data.subarray(0,math.ceil(self.__width/(self.__bit*1.0)))) self.__data = array def size(self): """ Return bits used by BitSet storage array. """ return len(self.__data) * self.__bit def isEmpty(self): """ Check whether any bit is set. Return True if none set, otherwise return False. """ for data in self.__data: if data: return False return True def clone(self): """ Return a copy of the BitSet. """ new_bitset = self.__class__(1) data = self.__typedarray(self.__data) new_bitset.__data = data new_bitset.__width = self.__width return new_bitset class BitSet16(BitSet): """ BitSet using PyUint16Array. """ __bit = 16 __bitmask = None __typedarray = PyUint16Array def __init__(self, width=None): BitSet.__init__(self, width) class BitSet32(BitSet): """ BitSet using PyUint32Array. """ __bit = 32 __bitmask = None __typedarray = PyUint32Array def __init__(self, width=None): BitSet.__init__(self, width) ```
{ "source": "jggatc/pyjsdl", "score": 3 }
#### File: jggatc/pyjsdl/cursors.py ```python from pyjsdl.surface import Surface from pyjsdl.color import Color from pyjsdl import locals as Const #cursors not implemented arrow = diamond = broken_x = tri_left = tri_right = () def compile(strings, black='X', white='.', xor='o'): """ Compile binary data from cursor string. Arguments cursor string, and optional symbols representing colors. Data represents black and white pixels, xor color defaulting to black. Data should be a string list of width divisible by 8. Return cursor data and mask, can be used with mouse.set_cursor. """ data = [] mask = [] dbit = {black:1, white:0, xor:1} mbit = {black:1, white:1, xor:0} string = ''.join(strings) for i in range(0, len(string), 8): s = string[i:i+8] db = mb = 0 if s != ' ': for j in range(8): c = s[j] if c == ' ': continue if dbit[c]: db |= 0x01<<7-j if mbit[c]: mb |= 0x01<<7-j data.append(int(db)) mask.append(int(mb)) return tuple(data), tuple(mask) def create_cursor(size, data, mask): """ Create cursor image from binary data. Arguments cursor size and its binary data and mask. Return surface, can be used with mouse.set_cursor. """ surface = Surface(size, Const.SRCALPHA) black = Color(0,0,0,255) white = Color(255,255,255,255) x = y = 0 for i in range(len(data)): if data[i] or mask[i]: for j in range(8): if data[i] & 0x01<<7-j: surface.setFillStyle(black) surface.fillRect(x+j, y, 1, 1) elif mask[i] & 0x01<<7-j: surface.setFillStyle(white) surface.fillRect(x+j, y, 1, 1) x += 8 if x >= size[0]: x = 0 y += 1 return surface def get_cursor_types(): #https://developer.mozilla.org/en-US/docs/Web/CSS/cursor """ Return list of cursor types from CSS Cursor API. """ types = ['default', 'auto', 'none', 'context-menu', 'help', 'pointer', 'progress', 'wait', 'cell', 'crosshair', 'text', 'vertical-text', 'alias', 'copy', 'move', 'no-drop', 'not-allowed', 'e-resize', 'n-resize', 'ne-resize', 'nw-resize', 's-resize', 'se-resize', 'sw-resize', 'w-resize', 'ew-resize', 'ns-resize', 'nesw-resize', 'nwse-resize', 'col-resize', 'row-resize', 'all-scroll', 'zoom-in', 'zoom-out', 'grab', 'grabbing'] return types ``` #### File: jggatc/pyjsdl/key.py ```python from pyjsdl import env from pyjsdl import locals as Const __docformat__ = 'restructuredtext' class Key(object): """ **pyjsdl.key** * pyjsdl.key.name * pyjsdl.key.get_mods """ def __init__(self): """ Provides methods to access the key function. Module initialization creates pyjsdl.key instance. """ self.keyPress = env.event.keyPress self.keyMod = env.event.keyMod self.alt = Const.K_ALT self.ctrl = Const.K_CTRL self.shift = Const.K_SHIFT self._keys = {} self._nonimplemented_methods() def name(self, keycode): """ Return name of key of a keycode. """ if not self._keys: for keyname in dir(Const): if keyname.startswith('K_'): self._keys[getattr(Const, keyname)] = keyname.split('_')[-1].lower() self._keys[0] = 'unknown key' if keycode not in self._keys: keycode = 0 return self._keys[keycode] def get_mods(self): """ Return int modifier keys alt|ctrl|shift. """ return self.keyMod[self.alt][self.keyPress[self.alt]] | self.keyMod[self.ctrl][self.keyPress[self.ctrl]] | self.keyMod[self.shift][self.keyPress[self.shift]] def _nonimplemented_methods(self): self.get_focused = lambda *arg: None self.get_pressed = lambda *arg: None self.set_mods = lambda *arg: None self.set_repeat = lambda *arg: None self.get_repeat = lambda *arg: True ```
{ "source": "jggatc/pyjsdl-ts", "score": 3 }
#### File: pyjsdl-ts/pyjsdl/mask.py ```python from pyjsdl.pyjsarray import BitSet from pyjsdl.color import Color # __pragma__ ('skip') import sys if sys.version_info < (3,): from pyjsdl.util import _range as range # __pragma__ ('noskip') __docformat__ = 'restructuredtext' def from_surface(surface, threshold=127): """ **pyjsdl.mask.from_surface** Return Mask derived from surface using alpha transparency. Optional argument to set alpha threshold. """ mask = Mask((surface.width, surface.height)) if not mask.bit: return None pixels = surface.getImageData(0, 0, surface.width, surface.height) width, height = surface.width*4, surface.height for y in range(0, height): xpix = 0 i = (y*width)+3 for x in range(0, width, 4): if surface._getPixel(pixels, i+x) > threshold: mask.set_at((xpix,y)) xpix += 1 return mask def from_threshold(surface, color, threshold=(0,0,0,255)): """ **pyjsdl.mask.from_threshold** Return Mask from surface using a given color. Optional threshold argument to set color range and alpha threshold. """ mask = Mask((surface.width, surface.height)) if not mask.bit: return None pixels = surface.getImageData(0, 0, surface.width, surface.height) if threshold == (0,0,0,255): color = Color(color) width, height = surface.width*4, surface.height for y in range(0, height): xpix = 0 i = y*width for x in range(0, width, 4): ix = i+x if surface._getPixel(pixels, ix) == color.r and surface._getPixel(pixels, ix+1) == color.g and surface._getPixel(pixels, ix+2) == color.b and surface._getPixel(pixels, ix+3) >= threshold[3]: mask.set_at((xpix,y)) xpix += 1 else: color = Color(color) col = {} col['r1'] = color.r - threshold[0] - 1 col['r2'] = color.r + threshold[0] + 1 col['g1'] = color.g - threshold[1] - 1 col['g2'] = color.g + threshold[1] + 1 col['b1'] = color.b - threshold[2] - 1 col['b2'] = color.b + threshold[2] + 1 col['a'] = threshold[3] - 1 width, height = surface.width*4, surface.height for y in range(0, height): xpix = 0 i = y*width for x in range(0, width, 4): ix = i+x if (col['r1'] < surface._getPixel(pixels, ix) < col['r2']) and (col['g1'] < surface._getPixel(pixels, ix+1) < col['g2']) and (col['b1'] < surface._getPixel(pixels, ix+2) < col['b2']) and (surface._getPixel(pixels, ix+3) > col['a']): mask.set_at((xpix,y)) xpix += 1 return mask class Mask(object): """ **pyjsdl.mask.Mask** * Mask.get_size * Mask.get_at * Mask.set_at * Mask.fill * Mask.clear * Mask.invert * Mask.count * Mask.overlap * Mask.toString """ def __init__(self, size): """ Return a Mask object. The size argument is (width, height) of the mask. The mask is represented by a list of Bitset. """ self.width = int(size[0]) self.height = int(size[1]) self.bit = [] for bitset in range(self.height): self.bit.append(BitSet(self.width)) def __str__(self): return self.toString() def __repr__(self): return '{}({})'.format(self.__class__, repr(self.__dict__)) def get_size(self): """ Return width, height of mask. """ return (self.width, self.height) def get_at(self, pos): """ Return bit setting for given pos. """ return self.bit[pos[1]].get(pos[0]) def set_at(self, pos, value=1): """ Set bit for given pos. Optional value to set bit, eith 1 or 0, defaults to 1. """ self.bit[pos[1]].set(pos[0], value) return None def fill(self): """ Fill mask. """ for bitset in self.bit: bitset.fill() return None def clear(self): """ Clear mask. """ for bitset in self.bit: bitset.clear() return None def invert(self): """ Invert bit value in mask. """ for bitset in self.bit: bitset.flip(0,self.width) return None def count(self): """ Return count of true bits in mask. """ true_bits = 0 for bitset in self.bit: true_bits += bitset.cardinality() return true_bits def overlap(self, mask, offset): """ Return True if mask at offset position overlap with this mask. """ if offset[0] > 0: x1 = offset[0] x2 = 0 else: x1 = 0 x2 = -offset[0] if offset[1] > 0: y1 = offset[1] y2 = 0 else: y1 = 0 y2 = -offset[1] w = min(self.width-x1, mask.width-x2) h = min(self.height-y1, mask.height-y2) if w > 0 and h > 0: for y in range(h): if self.bit[y1+y].get(x1, x1+w).intersects(mask.bit[y2+y].get(x2, x2+w)): return True return None def toString(self, bit=('1','0')): """ Return string representation of mask. Optional bit argument specify bit character. """ cbit = {True:bit[0], False:bit[1]} cbitset = [] for bitset in self.bit: cbitset.append('\n') cbitset.extend([cbit[bitset.get(i)] for i in range(self.width)]) bitstr = ''.join(cbitset) return bitstr ``` #### File: pyjsdl-ts/pyjsdl/pyjsobj.py ```python class Element: def __init__(self, element=None): if element is not None: self._element = element else: self._element = None @property def style(self, attr): return self._element.style @style.setter def style(self, attr, value): self._element.style[attr] = value def style(self, attr): pass def getElement(self): return self._element def setElement(self, element): self._element = element def setID(self, id): self._element.id = id def getID(self): return self._element.id def setSize(self, width, height): self.setWidth(width) self.setHeight(height) def setWidth(self, width): if isinstance(width, str): self._element.style.width = width else: self._element.style.width = str(int(width)) + 'px' def setHeight(self, height): if isinstance(height, str): self._element.style['min-height'] = height else: self._element.style['min-height'] = str(int(height)) + 'px' def getAttributes(self): return self._element.attributes def getClientHeight(self): return self._element.clientHeight def getClientLeft(self): return self._element.clientLeft def getClientTop(self): return self._element.clientTop def getClientWidth(self): return self._element.clientWidth def getScrollHeight(self): return self._element.scrollHeight def getScrollLeft(self): return self._element.scrollLeft def getScrollTop(self): return self._element.scrollTop def getScrollWidth(self): return self._element.scrollWidth def addEventListener(self, type, listener, useCapture): self._element.addEventListener(type, listener, useCapture) def removeEventListener(self, type, listener, useCapture): self._element.removeEventListener(type, listener, useCapture) def getMouseWheelEventType(self): if self._element is not None: element = self._element else: element = document.createElement('div') if hasattr(element, 'onwheel'): event_type = 'wheel' elif hasattr(element, 'onmousewheel'): event_type = 'mousewheel' else: event_type = 'DOMMouseScroll' return event_type def getAttribute(self): return self._element.getAttribute() def setAttribute(self, name, value): self._element.setAttribute(name, value) def getBoundingClientRect(self): return self._element.getBoundingClientRect() def appendChild(self, el): self._element.appendChild(el) def removeChild(self, el): self._element.removeChild(el) def getStyle(self): return self._element.style def getTitle(self): return self._element.title def setTitle(self, text): self._element.title = text def focus(self): self._element.focus() def blur(self): self._element.blur() def click(self): self._element.click() class FocusElement(Element): _event_type = None def __init__(self): Element.__init__(self) self._sink_events = None def addMouseListener(self, obj): element = obj.getElement() element.addEventListener('mousemove', self.onMouseMove) element.addEventListener('mousedown', self.onMouseDown) element.addEventListener('mouseup', self.onMouseUp) element.addEventListener('mouseenter', self.onMouseEnter) element.addEventListener('mouseleave', self.onMouseLeave) if hasattr(element, 'onwheel'): element.addEventListener('wheel', self.onMouseWheel) elif hasattr(element, 'onmousewheel'): element.addEventListener('mousewheel', self.onMouseWheel) else: element.addEventListener('DOMMouseScroll', self.onMouseWheel) def addKeyboardListener(self, obj): element = obj.getElement() element.setAttribute('tabindex','0') element.addEventListener('keydown', self.onKeyDown) element.addEventListener('keyup', self.onKeyUp) element.addEventListener('keypress', self.onKeyPress) def _addKeyboardListener(self, obj): element = obj.getElement() element.setAttribute('tabindex','0') element.addEventListener('keydown', self._onKeyDown) element.addEventListener('keyup', self._onKeyUp) element.addEventListener('keypress', self._onKeyPress) def addKeyEventListener(self, obj): element = obj.getElement() element.setAttribute('tabindex','0') listener = lambda event: self.onKeyEvent(event) _listener[self.__name__] = listener element.addEventListener('keydown', listener) def removeKeyEventListener(self, obj): element = obj.getElement() listener = _listener[self.__name__] element.removeEventListener('keydown', listener) del _listener[self.__name__] def addFocusListener(self, obj): element = obj.getElement() element.setAttribute('tabindex','0') element.addEventListener('focus', self.onFocus) element.addEventListener('blur', self.onBlur) def sinkEvents(self, events): self._sink_events = events def onMouseMove(self, event): pass def onMouseDown(self, event): pass def onMouseUp(self, event): pass def onMouseEnter(self, event): pass def onMouseLeave(self, event): pass def onMouseWheel(self, event): pass def onKeyDown(self, event): pass def onKeyUp(self, event): pass def onKeyPress(self, event): pass def onTouchInitiate(self, event): pass def onTouchStart(self, event): pass def onTouchEnd(self, event): pass def onTouchMove(self, event): pass def onTouchCancel(self, event): pass def onFocus(self, event): pass def onBlur(self, event): pass def focus(self): self._element.focus() def blur(self): self._element.blur() _listener = {} class HTML5Canvas(FocusElement): _identity = 0 def __init__(self, width, height): FocusElement.__init__(self) self._id = HTML5Canvas._identity HTML5Canvas._identity += 1 self._canvas = document.createElement('canvas') self._element = self._canvas self._element.id = str(self._id) self._element.width = width self._element.height = height self.width = width self.height = height self._element.style.margin = '0px' self._element.style.padding = '0px' self._element.style['vertical-align'] = 'bottom' self._element.style.id = str(self._id) self.canvas = self._element self._ctx = self._element.getContext('2d') self.impl = CanvasImpl(self._ctx) def resize(self, width, height): self.width = width self.height = height def drawImage(self, image, *args): ln = len(args) if ln == 2: self._ctx.drawImage(image,args[0],args[1]) elif ln == 4: self._ctx.drawImage(image,args[0],args[1],args[2],args[3]) elif ln == 8: self._ctx.drawImage(image,args[0],args[1],args[2],args[3], args[4],args[5],args[6],args[7]) def fill(self): self._ctx.fill() def setFillStyle(self, style): self._ctx.fillStyle = str(style) def fillRect(self, x, y, width, height): self._ctx.fillRect(x, y, width, height) def clear(self): self._ctx.clear() def setLineWidth(self, width): self._ctx.lineWidth = width def setStrokeStyle(self, style): self._ctx.strokeStyle = str(style) def strokeRect(self, x, y, width, height): self._ctx.strokeRect(x, y, width, height) def saveContext(self): self._ctx.save() def restoreContext(self): self._ctx.restore() def translate(self, x, y): self._ctx.translate(x,y) def scale(self, x, y): self._ctx.scale(x,y) def rotate(self, angle): self._ctx.rotate(angle) def transform(self, m11, m12, m21, m22, dx, dy): self._ctx.transform(m11, m12, m21, m22, dx, dy) def arc(self, x, y, r, sAngle, eAngle, counterclockwise): self._ctx.arc(x, y, r, sAngle, eAngle, counterclockwise) def beginPath(self): self._ctx.beginPath() def closePath(self): self._ctx.closePath() def moveTo(self, x, y): self._ctx.moveTo(x, y) def lineTo(self, x, y): self._ctx.lineTo(x, y) def stroke(self): self._ctx.stroke() def setFont(self, font): self._ctx.font = font def setTextAlign(self, align): self._ctx.textAlign = align def setTextBaseline(self, baseline): self._ctx.textBaseline = baseline def fillText(self, text, x, y): self._ctx.fillText(text, x, y) def strokeText(self, text, x, y): self._ctx.strokeText(text, x, y) def measureText(self, text): return self._ctx.measureText(text).width def getImageData(self, x, y, width, height): return self._ctx.getImageData(x, y, width, height) def putImageData(self, *args): if len(args) == 3: self._ctx.putImageData(args[0], args[1], args[2]) else: self._ctx.putImageData(args[0], args[1], args[2], args[3], args[4], args[5], args[6]) def getContext(self, ctx_type='2d', ctx_attr=None): if ctx_attr is None: return self._element.getContext(ctx_type) else: return self._element.getContext(ctx_type, ctx_attr) def toDataURL(self, img_type='image/png', enc_options=0.92): return self._element.toDataURL(img_type, enc_options) def toBlob(self, callback, img_type='image/png', quality=0.92): return self._element.toBlob(callback, img_type, quality) def getElement(self): return self._element class CanvasImpl: def __init__(self, ctx): self.canvasContext = ctx class Panel(Element): def __init__(self): self._element = document.createElement('div') def setID(self, id): self._element.id = id def getID(self): return self._element.id def appendChild(self, element): self._element.appendChild(element._element) def removeChild(self, element): self._element.removeChild(element._element) def append(self, element): self._element.appendChild(element._element) def add(self, element): self.append(element) def remove(self, element): self._element.removeChild(element._element) class RootPanel(Panel): _id = None def __init__(self): if self._id is None: self._id = '__panel__' self._element = document.getElementById(self._id) @classmethod def _set_root_panel(cls, id): if cls._id is None: cls._id = id def setId(self, id): self._id = id def getId(self): return self._id def add(self, element): if isinstance(element, Element): self._element.appendChild(element.getElement()) else: self._element.appendChild(element) class FocusPanel(Panel): pass class VerticalPanel(Panel): def __init__(self): Panel.__init__(self) self._element.style.display = 'flex' self._element.style['flex-direction'] = 'column' def append(self, element): el = element._element el.display = 'inline-block' el.style.flex = '1' el.style.width = '100%' self._element.appendChild(el) class TextBox(Element): _type = 'input' def __init__(self): Element.__init__(self) self._element = document.createElement(self._type) self._element.style.display = 'inline-block' self._element.style.flex = '1' self._element.style.border = '1px solid rgb(118, 118, 118)' self._element.style.margin = '0px' self._element.style.padding = '0px' @property def value(self): return self._element.value @value.setter def value(self, text): self._element.value = text def setVisible(self, visible): if visible: self._element.style.display = 'inline-block' else: self._element.style.display = 'none' def getVisible(self): if self._element.style.display != 'none': return True else: return False def getText(self): return self._element.value def setText(self, text): self._element.value = text class TextArea(TextBox): _type = 'textarea' def __init__(self): TextBox.__init__(self) self._element.style.resize = 'vertical' class ImageLoader: def __init__(self, imagelist, callback): self.imagelist = imagelist self.callback = callback self.images = [] self.image_toload = len(self.imagelist) for image in self.imagelist: self.load(image) def load(self, imageurl): image = __new__(Image()) self.images.append(image) image.addEventListener('load', self.loaded, False) image.src = imageurl def loaded(self): self.image_toload -= 1 if not self.image_toload: self.callback.onImagesLoaded(self.images) def loadImages(imagelist, callback): ImageLoader(imagelist, callback) class Color: def __init__(self): pass class Audio: def __init__(self, sound_file): self.element = document.createElement("AUDIO") self.element.src = sound_file def play(self): self.element.play() def pause(self): self.element.pause() def getCurrentTime(self): return self.element.currentTime def setCurrentTime(self, time): self.element.currentTime = time def isPaused(self): return self.element.paused def getSrc(self): return self.element.src def getVolume(self): return self.element.volume def setVolume(self, volume): self.element.volume = volume def getDuration(self): return self.element.duration class DOM: @staticmethod def eventGetCurrentEvent(): return Event() @staticmethod def setStyleAttribute(element, attr, val): element.style[attr] = val class Event: pass def doc(): return document def get_main_frame(): return document def wnd(): return window def requestAnimationFrameInit(): requestAnimationFramePolyfill() return wnd() def performanceNowInit(): performanceNowPolyfill() return wnd() def requestAnimationFramePolyfill(): __pragma__('js', {}, """ // http://paulirish.com/2011/requestanimationframe-for-smart-animating/ // http://my.opera.com/emoller/blog/2011/12/20/requestanimationframe-for-smart-er-animating // requestAnimationFrame polyfill by <NAME>. fixes from Paul Irish and <NAME> // MIT license (function() { var lastTime = 0; var vendors = ['ms', 'moz', 'webkit', 'o']; for(var x = 0; x < vendors.length && !window.requestAnimationFrame; ++x) { window.requestAnimationFrame = window[vendors[x]+'RequestAnimationFrame']; window.cancelAnimationFrame = window[vendors[x]+'CancelAnimationFrame'] || window[vendors[x]+'CancelRequestAnimationFrame']; } if (!window.requestAnimationFrame) window.requestAnimationFrame = function(callback, element) { var currTime = new Date().getTime(); var timeToCall = Math.max(0, 16 - (currTime - lastTime)); var id = window.setTimeout(function() { callback(currTime + timeToCall); }, timeToCall); lastTime = currTime + timeToCall; return id; }; if (!window.cancelAnimationFrame) window.cancelAnimationFrame = function(id) { clearTimeout(id); }; }()); """) def performanceNowPolyfill(): __pragma__('js', {}, """ // @license http://opensource.org/licenses/MIT // copyright <NAME> 2015 // Date.now() is supported everywhere except IE8. For IE8 we use the Date.now polyfill // github.com/Financial-Times/polyfill-service/blob/master/polyfills/Date.now/polyfill.js // as Safari 6 doesn't have support for NavigationTiming, we use a Date.now() timestamp for relative values // if you want values similar to what you'd get with real perf.now, place this towards the head of the page // but in reality, you're just getting the delta between now() calls, so it's not terribly important where it's placed (function(){ if ("performance" in window == false) { window.performance = {}; } Date.now = (Date.now || function () { // thanks IE8 return new Date().getTime(); }); if ("now" in window.performance == false){ var nowOffset = Date.now(); if (performance.timing && performance.timing.navigationStart){ nowOffset = performance.timing.navigationStart } window.performance.now = function now(){ return Date.now() - nowOffset; } } })(); """) fabs = Math.abs ``` #### File: pyjsdl-ts/pyjsdl/pylib.py ```python def join(a, *p): """Join two or more pathname components, inserting '/' as needed. If any component is an absolute path, all previous path components will be discarded. An empty last part will result in a path that ends with a separator.""" sep = _get_sep(a) path = a try: if not p: path[:0] + sep for b in p: if b.startswith(sep): path = b elif not path or path.endswith(sep): path += b else: path += sep + b except (TypeError, AttributeError, BytesWarning): _check_arg_types('join', a, *p) #from genericpath raise return path #os.path.normpath - py3.5.2 def normpath(path): ### """Normalize path, eliminating double slashes, etc.""" if isinstance(path, bytes): sep = b'/' empty = b'' dot = b'.' dotdot = b'..' else: sep = '/' empty = '' dot = '.' dotdot = '..' if path == empty: return dot initial_slashes = path.startswith(sep) # POSIX allows one or two initial slashes, but treats three or more # as single slash. if (initial_slashes and path.startswith(sep*2) and not path.startswith(sep*3)): initial_slashes = 2 comps = path.split(sep) new_comps = [] for comp in comps: if comp in (empty, dot): continue if (comp != dotdot or (not initial_slashes and not new_comps) or (new_comps and new_comps[-1] == dotdot)): new_comps.append(comp) elif new_comps: new_comps.pop() comps = new_comps path = sep.join(comps) if initial_slashes: path = sep*initial_slashes + path return path or dot #os - py3.5.2 def _get_sep(path): if isinstance(path, bytes): return b'/' else: return '/' #genericpath - py3.5.2 def _check_arg_types(funcname, *args): hasstr = hasbytes = False for s in args: if isinstance(s, str): hasstr = True elif isinstance(s, bytes): hasbytes = True else: raise TypeError('%s() argument must be str or bytes, not %r' % (funcname, s.__class__.__name__)) from None if hasstr and hasbytes: raise TypeError("Can't mix strings and bytes in path components") from None class Mod:pass os = Mod() path = Mod() path.join = join path.normpath = normpath os.path = path ``` #### File: pyjsdl-ts/test/draw_test.py ```python env = None pg = None surface = None # __pragma__ ('opov') def init(environ): global env, pg, surface env = environ pg = env['pg'] surface = env['surface'] tests = [test_draw_rect, test_draw_circle, test_draw_ellipse, test_draw_arc, test_draw_polygon, test_draw_line, test_draw_lines] return tests def test_draw_rect(): data = [((10,6),0), ((10,8),1), ((10,10),1)], (5,8,10,5) surface.fill((0,0,0)) rect = pg.draw.rect(surface, (255,0,0), (5,8,10,5)) for pos in data[0]: c = surface.get_at(pos[0]) c = {True:1,False:0}[c.r>0] assert c == pos[1] assert (rect.x,rect.y,rect.width,rect.height) == data[1] data = [((10,6),0), ((10,8),1), ((10,10),0)], (5,8,10,5) surface.fill((0,0,0)) rect = pg.draw.rect(surface, (255,0,0,255), pg.Rect((5,8,10,5)), 1) for pos in data[0]: c = surface.get_at(pos[0]) c = {True:1,False:0}[c.r>0] assert c == pos[1] assert (rect.x,rect.y,rect.width,rect.height) == data[1] data = [((3,0),1), ((3,2),1), ((3,4),0)], (0,0,5,3) surface.fill((0,0,0)) rect = pg.draw.rect(surface, (255,0,0), (-5,-2,10,5)) for pos in data[0]: c = surface.get_at(pos[0]) c = {True:1,False:0}[c.r>0] assert c == pos[1] assert (rect.x,rect.y,rect.width,rect.height) == data[1] def test_draw_circle(): data = [((10,0),0), ((10,5),1), ((10,10),1)], (5,5,10,10) surface.fill((0,0,0)) rect = pg.draw.circle(surface, (255,0,0), (10,10), 5) data = [((10,0),0), ((10,5),1), ((10,10),0)], (5,5,10,10) surface.fill((0,0,0)) rect = pg.draw.circle(surface, (255,0,0,255), (10,10), 5, 1) for pos in data[0]: c = surface.get_at(pos[0]) c = {True:1,False:0}[c.r>0] assert c == pos[1] assert (rect.x,rect.y,rect.width,rect.height) == data[1] def test_draw_ellipse(): data = [((10,6),1), ((10,8),1), ((10,10),0)], (5,5,10,5) surface.fill((0,0,0)) rect = pg.draw.ellipse(surface, (255,0,0), (5,5,10,5)) for pos in data[0]: c = surface.get_at(pos[0]) c = {True:1,False:0}[c.r>0] assert c == pos[1] assert (rect.x,rect.y,rect.width,rect.height) == data[1] def test_draw_arc(): data = [((10,0),0), ((10,5),1), ((10,10),0)], (5,5,11,6) surface.fill((0,0,0)) rect = pg.draw.arc(surface, (255,0,0), (5,5,10,10), 0, 3.14) for pos in data[0]: c = surface.get_at(pos[0]) c = {True:1,False:0}[c.r>0] assert c == pos[1] if env['platform'] not in ('jvm','js'): try: assert (rect.x,rect.y,rect.width,rect.height) == data[1] except AssertionError: #pg1.9.6 assert (rect.x,rect.y,rect.width,rect.height) == (5,5,10,10) else: #update to new boundary process assert (rect.x,rect.y,rect.width,rect.height) == (5,5,10,10) def test_draw_polygon(): data = [((10,4),0), ((10,6),1), ((10,8),1)], (5,5,11,11) surface.fill((0,0,0)) rect = pg.draw.polygon(surface, (255,0,0), ((10,5),(15,15),(5,15))) for pos in data[0]: c = surface.get_at(pos[0]) c = {True:1,False:0}[c.r>0] assert c == pos[1] assert (rect.x,rect.y,rect.width,rect.height) == data[1] def test_draw_line(): data = [((10,6),0), ((10,8),1), ((10,10),0)], (5,8,11,1) surface.fill((0,0,0)) rect = pg.draw.line(surface, (255,0,0), (5,8), (15,8), 1) for pos in data[0]: c = surface.get_at(pos[0]) c = {True:1,False:0}[c.r>0] assert c == pos[1] assert (rect.x,rect.y,rect.width,rect.height) == data[1] def test_draw_lines(): data = [((10,6),0), ((10,8),1), ((10,10),0)], (5,8,11,1) surface.fill((0,0,0)) rect = pg.draw.lines(surface, (255,0,0), True, ((7,8),(5,8),(15,8))) for pos in data[0]: c = surface.get_at(pos[0]) c = {True:1,False:0}[c.r>0] assert c == pos[1] assert (rect.x,rect.y,rect.width,rect.height) == data[1] ``` #### File: pyjsdl-ts/test/surface_test.py ```python env = None pg = None surface = None width = None height = None # __pragma__ ('opov') def init(environ): global env, pg, surface, width, height env = environ pg = env['pg'] surface = env['surface'] width = env['width'] height = env['height'] tests = [test_surface_get_size, test_surface_get_rect, test_surface_copy, test_surface_blit, test_surface_fill, test_surface_set_colorkey, test_surface_get_colorkey, test_surface_set_at, test_surface_get_at] return tests def _color_convert(color): if isinstance(color,tuple): if len(color) == 4: r,g,b,a = color[0],color[1],color[2],color[3] else: r,g,b,a = color[0],color[1],color[2],255 else: r,g,b,a = int((color>>16) & 0xff), int((color>>8) & 0xff), int(color & 0xff), int((color>>24) & 0xff) return r,g,b,a def test_surface_get_size(): assert surface.get_size() == (width,height) assert surface.get_width() == width assert surface.get_height() == height def test_surface_get_rect(): rect = surface.get_rect() if env['platform'] != 'js': #pyjs compares rect==tuple not __eq__ assert rect == (0,0,width,height) assert (rect.x,rect.y,rect.width,rect.height) == (0,0,width,height) rect = surface.get_rect(center=(15,15)) assert (rect.x,rect.y,rect.width,rect.height) == (5,5,width,height) def test_surface_copy(): new_surface = surface.copy() assert surface == surface assert surface != new_surface assert surface.get_size() == new_surface.get_size() def test_surface_blit(): new_surface = pg.Surface((5,5)) surface.fill((0,0,0)) new_surface.fill((100,100,100)) rect = surface.blit(new_surface, (1,0)) if env['executor'] != 'pyjs': assert surface.get_at((0,0)) == (0,0,0,255) assert surface.get_at((1,0)) == (100,100,100,255) else: if not env['pyjs_opt']: #pyjs -s compares color==tuple not __eq__ assert surface.get_at((0,0)) == pg.Color(0,0,0,255) assert surface.get_at((1,0)) == pg.Color(100,100,100,255) else: #pyjs -O __eq__ ignored c = surface.get_at((0,0)) assert (c.r,c.g,c.b,c.a) == (0,0,0,255) c = surface.get_at((1,0)) assert (c.r,c.g,c.b,c.a) == (100,100,100,255) assert (rect.x,rect.y,rect.width,rect.height) == (1,0,5,5) def test_surface_fill(): color = (255,0,0), (0,255,0,255), (0xff<<24)+255 for c in color: surface.fill((0,0,0)) surface.fill(c) if env['executor'] != 'pyjs': assert surface.get_at((0,0)) == _color_convert(c) else: cc = surface.get_at((0,0)) assert (cc[0],cc[1],cc[2],cc[3]) == _color_convert(c) surface.fill((0,0,0)) surface.fill((255,0,0,255), (0,0,2,2)) if env['executor'] != 'pyjs': assert surface.get_at((0,0)) == (255,0,0,255) assert surface.get_at((2,2)) != (255,0,0,255) else: c = surface.get_at((0,0)) assert (c.r,c.g,c.b,c.a) == (255,0,0,255) c = surface.get_at((2,2)) assert (c.r,c.g,c.b,c.a) != (255,0,0,255) def test_surface_set_colorkey(): color = (255,0,0), (0,255,0,255), None #color = (255,0,0), (0,255,0,255), (0xff<<24)+255, None #pg.error? for c in color: surface.set_colorkey(c) if surface.get_colorkey(): if not env['pyjs_opt']: assert pg.Color(*surface.get_colorkey()) == pg.Color(*c) else: #pyjs -O no __eq__ call r,g,b,a = pg.Color(*surface.get_colorkey()) cr,cg,cb,ca = pg.Color(*c) assert r==cr and g==cg and b==cb and a==ca def test_surface_get_colorkey(): surface.fill((0,0,0)) surface.set_colorkey((0,0,0)) assert surface.get_colorkey() == (0,0,0,255) surface.set_colorkey(None) assert surface.get_colorkey() is None def test_surface_set_at(): color = (255,0,0), (0,255,0,255), (0xff<<24)+255 for c in color: surface.fill((0,0,0)) surface.set_at((0,0), c) if env['executor'] != 'pyjs': assert surface.get_at((0,0)) == _color_convert(c) else: #pyjs compares color==tuple not __eq__ cc = surface.get_at((0,0)) assert (cc.r,cc.g,cc.b,cc.a) == _color_convert(c) def test_surface_get_at(): color = (0,0,255,255) surface.fill((0,0,0)) surface.set_at((0,0), (0,0,255,255)) if env['executor'] != 'pyjs': assert surface.get_at((0,0)) == (0,0,255,255) assert surface.get_at((0,0)) == (0,0,255) else: #pyjs compares color==tuple not __eq__ cc = surface.get_at((0,0)) assert (cc.r,cc.g,cc.b,cc.a) == (0,0,255,255) ``` #### File: pyjsdl-ts/test/time_test.py ```python env = None pg = None wait = 0 # __pragma__ ('opov') def init(environ): global env, pg env = environ pg = env['pg'] tests = [test_time_delay, test_time_wait, test_time_timer] return tests def test_time_delay(): _time = 30 t = pg.time.get_ticks() pg.time.delay(_time) assert (pg.time.get_ticks()-t) >= _time def test_time_wait(): global wait _time = 30 if env['platform'] != 'js': t = pg.time.get_ticks() pg.time.wait(_time) assert (pg.time.get_ticks()-t) >= _time else: if not wait: wait = pg.time.get_ticks() pg.time.wait(_time) return True else: assert (pg.time.get_ticks()-wait) >= _time wait = 0 return False def test_time_timer(): global wait _time = 30 event = pg.USEREVENT if env['platform'] != 'js': t = pg.time.get_ticks() pg.event.clear() pg.time.set_timer(event, _time) evt = pg.event.wait() pg.time.set_timer(event, 0) assert evt.type == event assert (pg.time.get_ticks()-t) >= _time else: if not wait: wait = pg.time.get_ticks() pg.event.clear() pg.time.set_timer(event, _time) pg.time.wait(_time) return True else: evt = pg.event.get()[0] pg.time.set_timer(event, 0) assert evt.type == event assert (pg.time.get_ticks()-wait) >= _time wait = 0 return False ```
{ "source": "jggatter/cumulus", "score": 3 }
#### File: demultiplexing/demuxlet/generate_zarr.py ```python import argparse import pegasusio as pio import pandas as pd parser = argparse.ArgumentParser(description='Merge demuxlet result with gene-count matrix.') parser.add_argument('demux_res', metavar = 'demux_result.best', help = 'Demuxlet demultiplexing results.') parser.add_argument('raw_mat', metavar = 'raw_feature_bc_matrix.h5', help = 'Raw gene count matrix in 10x format.') parser.add_argument('out_file', metavar = 'output_result.zarr', help = 'Output zarr file.') args = parser.parse_args() demux_type_dict = {'SNG': 'singlet', 'DBL': 'doublet', 'AMB': 'unknown'} def write_output(assignment_file: str, input_mat_file: str, output_zarr_file: str) -> None: df = pd.read_csv(assignment_file, sep = '\t', header = 0, index_col = 'BARCODE') df.index = pd.Index([x[:-2] for x in df.index]) df['demux_type'] = df['DROPLET.TYPE'].apply(lambda s: demux_type_dict[s]) df['assignment'] = '' df.loc[df['demux_type'] == 'singlet', 'assignment'] = df.loc[df['demux_type'] == 'singlet', 'SNG.BEST.GUESS'] df.loc[df['demux_type'] == 'doublet', 'assignment'] = df.loc[df['demux_type'] == 'doublet', 'DBL.BEST.GUESS'].apply(lambda s: ','.join(s.split(',')[:-1])) data = pio.read_input(input_mat_file) data.obs['demux_type'] = '' data.obs['assignment'] = '' idx = data.obs_names.isin(df.index) barcodes = data.obs_names[idx] df_valid = df.loc[barcodes, ['demux_type', 'assignment']] data.obs.loc[idx, 'demux_type'] = df_valid['demux_type'].values data.obs.loc[idx, 'assignment'] = df_valid['assignment'].values pio.write_output(data, output_zarr_file, zarr_zipstore = True) if __name__ == '__main__': write_output(args.demux_res, args.raw_mat, args.out_file) ```
{ "source": "jggautier/dataverse-automation", "score": 3 }
#### File: dataverse-automation/other_scripts/get_oaipmh_records.py ```python import csv import os import time import requests from tkinter import filedialog from tkinter import ttk from tkinter import * import xmltodict #################################################################################### # Create GUI for getting user input window = Tk() window.title('Get record IDs in OAI-PMH feed') window.geometry('625x450') # width x height # Function called when Browse button is pressed def retrieve_directory(): global directory # Call the OS's file directory window and store selected object path as a global variable directory = filedialog.askdirectory() # Show user which directory she chose label_showChosenDirectory = Label(window, text='You chose: ' + directory, anchor='w', foreground='green', wraplength=500, justify='left') label_showChosenDirectory.grid(sticky='w', column=0, row=13, padx=20) # Function called when Start button is pressed def retrieve_input(): global baseUrl global oaiSet # Store what's entered in dataverseUrl text box as a global variable baseUrl = entry_baseUrl.get().strip() # Store what's entered in dataverseUrl text box as a global variable oaiSet = entry_oaiSet.get().strip() if baseUrl: window.destroy() # If no baseUrl is entered, display message that one is required else: print('A dataverse URL is required') label_baseUrlReqiured = Label(window, text='The repository\'s OAI-PMH URL is required.', foreground='red', anchor='w') label_baseUrlReqiured.grid(sticky='w', column=0, row=3, padx=20) # Create label for BaseUrl field label_baseUrl = Label(window, text='OAI-PMH Base URL:', anchor='w') label_baseUrl.grid(sticky='w', column=0, row=0, padx=20) # Create Base URL field dataverseUrl = str() entry_baseUrl = Entry(window, width=50, textvariable=dataverseUrl) entry_baseUrl.grid(sticky='w', column=0, row=1, pady=2, padx=20) # Create help text for BaseUrl field label_dataverseUrlHelpText = Label(window, text='Example: https://demo.dataverse.org/oai', foreground='grey', anchor='w') label_dataverseUrlHelpText.grid(sticky='w', column=0, row=2, padx=20) # Create empty row in grid to improve spacing between the two fields window.grid_rowconfigure(4, minsize=25) # Create label for oaiSet key field label_oaiSet = Label(window, text='OAI set name:', anchor='w') label_oaiSet.grid(sticky='w', column=0, row=8, padx=20) # Create oaiSet field oaiSet = str() entry_oaiSet = Entry(window, width=50, textvariable=oaiSet) entry_oaiSet.grid(sticky='w', column=0, row=9, pady=2, padx=20) # Create help text for oaiSet field label_oaiSetHelpText = Label(window, text='If no OAI Set is entered, all records in the repository\'s OAI-PMH feed will be retrived', foreground='grey', anchor='w') label_oaiSetHelpText.grid(sticky='w', column=0, row=10, padx=20) # Create empty row in grid to improve spacing between the two fields window.grid_rowconfigure(11, minsize=25) # Create label for Browse directory button label_browseDirectory = Label(window, text='Choose folder to store CSV file with identifiers and statuses of harvested records:', anchor='w') label_browseDirectory.grid(sticky='w', column=0, row=12, pady=2, padx=20) # Create Browse directory button button_browseDirectory = ttk.Button(window, text='Browse', command=lambda: retrieve_directory()) button_browseDirectory.grid(sticky='w', column=0, row=13, padx=20) # Create start button button_Submit = ttk.Button(window, text='Start', command=lambda: retrieve_input()) button_Submit.grid(sticky='w', column=0, row=15, pady=40, padx=20) # Keep window open until it's closed mainloop() def improved_get(_dict, path, default=None): for key in path.split('.'): try: _dict = _dict[key] except KeyError: return default return str(_dict) currentTime = time.strftime('%Y.%m.%d_%H.%M.%S') metadataPrefix = 'oai_dc' if oaiSet: oaiUrl = '%s?verb=ListIdentifiers&set=%s&metadataPrefix=%s' % (baseUrl, oaiSet, metadataPrefix) else: oaiSet = 'no_set' oaiUrl = '%s?verb=ListIdentifiers&metadataPrefix=%s' % (baseUrl, metadataPrefix) csvFile = 'harvested_records_%s_%s.csv' % (oaiSet, currentTime) csvFilePath = os.path.join(directory, csvFile) print('Counting current and deleted records:') response = requests.get(oaiUrl) dictData = xmltodict.parse(response.content) recordCount = 0 deletedRecordCount = 0 with open(csvFilePath, mode='w', encoding='utf-8', newline='') as f: f = csv.writer(f, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) f.writerow(['record_identifier', 'record_status']) if 'resumptionToken' not in dictData['OAI-PMH']['ListIdentifiers']: for record in dictData['OAI-PMH']['ListIdentifiers']['header']: recordIdentifier = record['identifier'] recordStatus = record.get('@status') if recordStatus != 'deleted': recordStatus = 'present' recordCount += 1 elif recordStatus == 'deleted': deletedRecordCount +=1 f.writerow([recordIdentifier, recordStatus]) print('Record count in %s set: %s' % (oaiSet, recordCount)) print('Count of deleted records: %s' % (deletedRecordCount)) elif 'resumptionToken' in dictData['OAI-PMH']['ListIdentifiers']: pageCount = 1 print('Counting records in page %s' % (pageCount), end='\r', flush=True) resumptionToken = improved_get(dictData, 'OAI-PMH.ListIdentifiers.resumptionToken.#text') for record in dictData['OAI-PMH']['ListIdentifiers']['header']: recordIdentifier = record['identifier'] recordStatus = record.get('@status') if recordStatus != 'deleted': recordStatus = 'present' recordCount += 1 elif recordStatus == 'deleted': deletedRecordCount +=1 f.writerow([recordIdentifier, recordStatus]) resumptionToken = improved_get(dictData, 'OAI-PMH.ListIdentifiers.resumptionToken.#text') while resumptionToken is not None: pageCount += 1 print('Counting records in page %s' % (pageCount), end='\r', flush=True) oaiUrlResume = '%s?verb=ListIdentifiers&resumptionToken=%s' % (baseUrl, resumptionToken) response = requests.get(oaiUrlResume) dictData = xmltodict.parse(response.content) for record in dictData['OAI-PMH']['ListIdentifiers']['header']: recordIdentifier = record['identifier'] recordStatus = record.get('@status') if recordStatus != 'deleted': recordStatus = 'present' recordCount += 1 elif recordStatus == 'deleted': deletedRecordCount +=1 f.writerow([recordIdentifier, recordStatus]) resumptionToken = improved_get(dictData, 'OAI-PMH.ListIdentifiers.resumptionToken.#text') print('\nRecord count in %s set: %s' % (oaiSet, recordCount)) print('Count of deleted records: %s' % (deletedRecordCount)) print('Record identifiers saved to %s' % (csvFilePath)) ```
{ "source": "jggautier/dataverse_scripts", "score": 4 }
#### File: jggautier/dataverse_scripts/combine_tables.py ```python from functools import reduce import glob import os import pandas as pd from tkinter import filedialog from tkinter import ttk from tkinter import * # Create GUI for getting user input # Create, title and size the window window = Tk() window.title('Join CSV files') window.geometry('550x250') # width x height # Function called when Browse button is pressed def retrieve_csvdirectory(): global csvDirectory # Call the OS's file directory window and store selected object path as a global variable csvDirectory = filedialog.askdirectory() # Show user which directory she chose label_showChosenDirectory = Label(window, text='You chose: ' + csvDirectory, anchor='w', foreground='green', wraplength=500, justify='left') label_showChosenDirectory.grid(sticky='w', column=0, row=2) # Function called when Browse button is pressed def retrieve_mergedfiledirectory(): global mergedFileDirectory # Call the OS's file directory window and store selected object path as a global variable mergedFileDirectory = filedialog.askdirectory() # Show user which directory she chose label_showChosenDirectory = Label(window, text='You chose: ' + mergedFileDirectory, anchor='w', foreground='green', wraplength=500, justify='left') label_showChosenDirectory.grid(sticky='w', column=0, row=6) # Function called when Browse button is pressed def start(): window.destroy() # Create label for button to browse for directory containing JSON files label_getCsvFiles = Label(window, text='Choose folder containing the CSV files to join:', anchor='w') label_getCsvFiles.grid(sticky='w', column=0, row=0, pady=2) # Create button to browse for directory containing JSON files button_getCsvFiles = ttk.Button(window, text='Browse', command=lambda: retrieve_csvdirectory()) button_getCsvFiles.grid(sticky='w', column=0, row=1) # Create empty row in grid to improve spacing between the two fields window.grid_rowconfigure(3, minsize=25) # Create label for button to browse for directory to add CSV files in label_mergedFileDirectory = Label(window, text='Choose folder to store the CSV file:', anchor='w') label_mergedFileDirectory.grid(sticky='w', column=0, row=4, pady=2) # Create button to browse for directory containing JSON files button_mergedFileDirectory = ttk.Button(window, text='Browse', command=lambda: retrieve_mergedfiledirectory()) button_mergedFileDirectory.grid(sticky='w', column=0, row=5) # Create start button button_Start = ttk.Button(window, text='Start', command=lambda: start()) button_Start.grid(sticky='w', column=0, row=7, pady=40) # Keep window open until it's closed mainloop() directory_name = csvDirectory.split('/')[-1] # Create CSV file in the directory that the user selected filename = os.path.join(mergedFileDirectory, '%s_merged.csv' % (directory_name)) # Save directory paths to each CSV file as a list and save in 'all_tables' variable all_tables = glob.glob(os.path.join(csvDirectory, '*.csv')) print('Creating a dataframe for each CSV file...') # Create a dataframe of each CSV file in the 'all-tables' list dataframes = [pd.read_csv(table, sep=',') for table in all_tables] # For each dataframe, set the indexes (or the common columns across the dataframes to join on) for dataframe in dataframes: dataframe.set_index(['datasetVersionId', 'persistentUrl', 'persistent_id'], inplace=True) print('Joining dataframes into one dataframe...') # Merge all dataframes and save to the 'merged' variable merged = reduce(lambda left, right: left.join(right, how='outer'), dataframes) print('Exporting joined dataframe to a CSV file...') # Export merged dataframe to a CSV file merged.to_csv(filename) print('Joined dataframe exported to %s' % (filename)) ``` #### File: jggautier/dataverse_scripts/get_dataset_lock_info.py ```python import csv from csv import DictReader from datetime import datetime from dateutil import tz import os import requests import time repositoryURL = '' inputFile = '' # Path to .txt or .csv file with database IDs of dataverses to be deleted directory = '' # Path to directory where CSV file containing lock info will be created # Function for converting given timestamp string into datetime object with local timezone def convert_to_local_tz(timestamp): # Save local timezone to localTimezone variable localTimezone = tz.tzlocal() # Convert string to datetime object timestamp = datetime.strptime(timestamp, '%a %b %d %H:%M:%S %Z %Y') # Convert from UTC to local timezone timestamp = timestamp.astimezone(localTimezone) return timestamp current_time = time.strftime('%Y.%m.%d_%H.%M.%S') datasetPIDs = [] if '.csv' in inputFile: with open(inputFile, mode='r', encoding='utf-8') as f: csvDictReader = DictReader(f, delimiter=',') for row in csvDictReader: datasetPIDs.append(row['persistent_id'].rstrip()) elif '.txt' in inputFile: inputFile = open(inputFile) for datasetPID in inputFile: # Remove any trailing spaces from datasetPID datasetPIDs.append(datasetPID.rstrip()) total = len(datasetPIDs) count = 0 # Create CSV file csvOutputFile = 'dataset_locked_status_%s.csv' % (current_time) csvOutputFilePath = os.path.join(directory, csvOutputFile) with open(csvOutputFilePath, mode='w', newline='') as f: f = csv.writer(f, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) f.writerow(['persistent_id', 'locked', 'reason', 'locked_date', 'user_name']) for datasetPID in datasetPIDs: url = '%s/api/datasets/:persistentId/locks?persistentId=%s' % (repositoryURL, datasetPID) req = requests.get(url) data = req.json() count += 1 if len(data['data']) > 0: for lock in data['data']: locked = True reason = lock['lockType'] lockedDate = convert_to_local_tz(lock['date']) userName = lock['user'] f.writerow([datasetPID, locked, reason, lockedDate, userName]) print('%s of %s datasets: %s' % (count, total, datasetPID)) else: locked = False reason = 'NA (Not locked)' lockedDate = '' userName = 'NA (Not locked)' f.writerow([datasetPID, locked, reason, lockedDate, userName]) print('%s of %s datasets: %s' % (count, total, datasetPID)) ```
{ "source": "jggautier/dataverse-scripts", "score": 3 }
#### File: dataverse-scripts/other_scripts/get_dataset_PIDs.py ```python import csv import glob import json import os import requests import sys import time from tkinter import filedialog from tkinter import ttk from tkinter import * from urllib.parse import urlparse #################################################################################### # Create GUI for getting user input window = Tk() window.title('Get dataset PIDs') window.geometry('625x450') # width x height # Function called when Browse button is pressed def retrieve_directory(): global directory # Call the OS's file directory window and store selected object path as a global variable directory = filedialog.askdirectory() # Show user which directory she chose label_showChosenDirectory = Label(window, text='You chose: ' + directory, anchor='w', foreground='green', wraplength=500, justify='left') label_showChosenDirectory.grid(sticky='w', column=0, row=13) # Function called when Start button is pressed def retrieve_input(): global dataverseUrl global apikey global get_subdataverses # Record if user wants to search in subdataverses get_subdataverses = get_subdataverses.get() # Store what entered in the api key text box as a global variable apikey = entry_apikey.get().rstrip() # Store what's entered in dataverseUrl text box as a global variable dataverseUrl = entry_dataverseUrl.get() # If user enters text in dataverseUrl text box, strip any white characters if dataverseUrl: dataverseUrl = str(dataverseUrl) dataverseUrl = dataverseUrl.strip() # If user also selected a directory, close the window if directory: window.destroy() # If no dataverseUrl is entered, display message that one is required else: print('A dataverse URL is required') label_dataverseUrlReqiured = Label(window, text='A dataverse URL is required.', foreground='red', anchor='w') label_dataverseUrlReqiured.grid(sticky='w', column=0, row=3) # Create label for Dataverse URL field label_dataverseUrl = Label(window, text='Dataverse URL:', anchor='w') label_dataverseUrl.grid(sticky='w', column=0, row=0) # Create Dataverse URL field dataverseUrl = str() entry_dataverseUrl = Entry(window, width=50, textvariable=dataverseUrl) entry_dataverseUrl.grid(sticky='w', column=0, row=1, pady=2) entry_dataverseUrl.insert(0, 'https://demo.dataverse.org/') # Create help text for Dataverse URL field label_dataverseUrlHelpText = Label(window, text='Example: https://demo.dataverse.org or https://demo.dataverse.org/dataverse/dataversealias', foreground='grey', anchor='w') label_dataverseUrlHelpText.grid(sticky='w', column=0, row=2) # Create empty row in grid to improve spacing between the two fields window.grid_rowconfigure(4, minsize=25) # Create "Include subdataverses" checkbox get_subdataverses = IntVar() c = Checkbutton(window, text="Include subdataverses", variable=get_subdataverses).grid(sticky='w', column=0, row=5) # Create help text for "Include subdataverses" checkbox label_apikeyHelpText = Label( window, text='If the URL of the "Root" Dataverse collection is entered, all datasets in the repository (in all subdataverses) will be found', foreground='grey', anchor='w', wraplength=500, justify='left') label_apikeyHelpText.grid(sticky='w', column=0, row=6) # Create empty row in grid to improve spacing between the two fields window.grid_rowconfigure(7, minsize=25) # Create label for API key field label_apikey = Label(window, text='API key:', anchor='w') label_apikey.grid(sticky='w', column=0, row=8) # Create API key field apikey = str() entry_apikey = Entry(window, width=50, textvariable=apikey) entry_apikey.grid(sticky='w', column=0, row=9, pady=2) # Create help text for API key field label_apikeyHelpText = Label(window, text='If no API is entered, only published datasets will be found', foreground='grey', anchor='w') label_apikeyHelpText.grid(sticky='w', column=0, row=10) # Create empty row in grid to improve spacing between the two fields window.grid_rowconfigure(11, minsize=25) # Create label for Browse directory button label_browseDirectory = Label(window, text='Choose folder to store CSV file with info of dataset PIDs:', anchor='w') label_browseDirectory.grid(sticky='w', column=0, row=12, pady=2) # Create Browse directory button button_browseDirectory = ttk.Button(window, text='Browse', command=lambda: retrieve_directory()) button_browseDirectory.grid(sticky='w', column=0, row=13) # Create start button button_Submit = ttk.Button(window, text='Start', command=lambda: retrieve_input()) button_Submit.grid(sticky='w', column=0, row=15, pady=40) # Keep window open until it's closed mainloop() # Save current time to append it to main folder name current_time = time.strftime('%Y.%m.%d_%H.%M.%S') # Parse dataverseUrl to get server name and alias parsed = urlparse(dataverseUrl) server = parsed.scheme + '://' + parsed.netloc # alias = parsed.path.split('/')[2] try: alias = parsed.path.split('/')[2] except IndexError: alias = '' # Get alias of the root dataverse (assumming the root dataverse's ID is 1, which isn't the case with UVA Dataverse) url = '%s/api/dataverses/1' % (server) response = requests.get(url) dataverse_data = response.json() root_alias = dataverse_data['data']['alias'] installation_name = dataverse_data['data']['name'] #################################################################################### # If user provides no alias or the alias is the repository's root alias, # use Search API to find PIDs of all datasets in repository if not alias or alias == root_alias: # Create CSV file csv_file = 'dataset_pids_%s_%s.csv' % (installation_name.replace(' ', '_'), current_time) csv_file_path = os.path.join(directory, csv_file) with open(csv_file_path, mode='w', newline='') as f: f = csv.writer(f, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) f.writerow(['persistent_id', 'persistentUrl', 'dataverse_name', 'dataverse_alias', 'publication_date']) # Report count of datasets if apikey: url = '%s/api/v1/search?q=*&fq=-metadataSource:"Harvested"&type=dataset&per_page=1&start=0&sort=date&order=desc&key=%s' % (server, apikey) response = requests.get(url) data = response.json() total = data['data']['total_count'] print('\nSaving %s dataset PIDs\n(Search API returns the draft and published version of a dataset. List will be de-duplicated at the end):' % (total)) else: url = '%s/api/v1/search?q=*&fq=-metadataSource:"Harvested"&type=dataset&per_page=1&start=0&sort=date&order=desc' % (server) response = requests.get(url) data = response.json() total = data['data']['total_count'] print('\nSaving %s dataset PIDs:' % (total)) # Initialization for paginating through Search API results and showing progress start = 0 condition = True count = 0 # Create variable for storing count of misindexed datasets misindexed_datasets_count = 0 while condition: try: per_page = 10 if apikey: url = '%s/api/v1/search?q=*&fq=-metadataSource:"Harvested"&type=dataset&per_page=%s&start=%s&sort=date&order=desc&key=%s' % (server, per_page, start, apikey) else: url = '%s/api/v1/search?q=*&fq=-metadataSource:"Harvested"&type=dataset&per_page=%s&start=%s&sort=date&order=desc' % (server, per_page, start) response = requests.get(url) data = response.json() # For each item object... for i in data['data']['items']: persistent_id = i['global_id'] persistent_url = i['url'] dataverse_name = i['name_of_dataverse'] dataverse_alias = i['identifier_of_dataverse'] publicationDate = i.get('published_at', 'unpublished') with open(csv_file_path, mode='a', encoding='utf-8', newline='') as open_csv_file: open_csv_file = csv.writer(open_csv_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) # Create new row with dataset and file info open_csv_file.writerow([persistent_id, persistent_url, dataverse_name, dataverse_alias, publicationDate]) count += 1 print('%s of %s' % (count, total), end='\r', flush=True) # Update variables to paginate through the search results start = start + per_page # Print error message if misindexed datasets break the Search API call, and try the next page. (See https://github.com/IQSS/dataverse/issues/4225) except urllib.error.URLError: try: per_page = 1 if apikey: url = '%s/api/v1/search?q=*&fq=-metadataSource:"Harvested"&type=dataset&per_page=%s&start=%s&sort=date&order=desc&key=%s' % (server, per_page, start, apikey) else: url = '%s/api/v1/search?q=*&fq=-metadataSource:"Harvested"&type=dataset&per_page=%s&start=%s&sort=date&order=desc' % (server, per_page, start) response = requests.get(url) data = response.json() # For each item object... for i in data['data']['items']: persistent_id = i['global_id'] persistent_url = i['url'] dataverse_name = i['name_of_dataverse'] dataverse_alias = i['identifier_of_dataverse'] publicationDate = i.get('published_at', 'unpublished') with open(csv_file_path, mode='a', encoding='utf-8', newline='') as open_csv_file: open_csv_file = csv.writer(open_csv_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) # Create new row with dataset and file info open_csv_file.writerow([persistent_id, persistent_url, dataverse_name, dataverse_alias, publicationDate]) print('%s of %s' % (count, total), end='\r', flush=True) # Update variables to paginate through the search results start = start + per_page except urllib.error.URLError: misindexed_datasets_count += 1 start = start + per_page # Stop paginating when there are no more results condition = start < total print('\nDataset PIDs written to the CSV file: %s' % (count)) if misindexed_datasets_count: print('\n\nUnretrievable dataset PIDs due to misindexing: %s\n' % (misindexed_datasets_count)) #################################################################################### # If user provides an alias, and it isn't the root dataverses's alias, use "Get content" endpoints instead of Search API else: csv_file = 'dataset_pids_%s_%s.csv' % (alias, current_time) csv_file_path = os.path.join(directory, csv_file) with open(csv_file_path, mode='w', newline='') as f: f = csv.writer(f, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) f.writerow(['persistent_id', 'persistentUrl', 'dataverse_name', 'dataverse_alias', 'publication_date']) # Get ID of given dataverse alias if apikey: url = '%s/api/dataverses/%s?key=%s' % (server, alias, apikey) else: url = '%s/api/dataverses/%s' % (server, alias) response = requests.get(url) data = response.json() parent_dataverse_id = data['data']['id'] # Create list and add ID of given dataverse dataverse_ids = [parent_dataverse_id] # If user wants datasets in subdataverses, search for and include IDs of subdataverses (excludes linked dataverses) # Get each subdataverse in the given dataverse if get_subdataverses == 1: print('\nGetting dataverse IDs in %s:' % (alias)) for dataverse_id in dataverse_ids: sys.stdout.write('.') sys.stdout.flush() if apikey: url = '%s/api/dataverses/%s/contents?key=%s' % (server, dataverse_id, apikey) else: url = '%s/api/dataverses/%s/contents' % (server, dataverse_id) response = requests.get(url) data = response.json() for i in data['data']: if i['type'] == 'dataverse': dataverse_id = i['id'] dataverse_ids.extend([dataverse_id]) print('\n\nFound 1 dataverse and %s subdataverses' % (len(dataverse_ids) - 1)) # For each dataverse in the list, add the PIDs of all datasets to a CSV file - excludes linked and harvested datasets print('\nWriting dataset IDs to %s:' % (csv_file_path)) count = 0 with open(csv_file_path, mode='a', encoding='utf-8', newline='') as open_csv_file: open_csv_file = csv.writer(open_csv_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) for dataverse_id in dataverse_ids: # Get name of dataverse if apikey: url = '%s/api/dataverses/%s?key=%s' % (server, dataverse_id, apikey) else: url = '%s/api/dataverses/%s' % (server, dataverse_id) response = requests.get(url, timeout=10) data = response.json() dataverse_name = data['data']['name'] dataverse_alias = data['data']['alias'] # Get content of dataverse if apikey: url = '%s/api/dataverses/%s/contents?key=%s' % (server, dataverse_id, apikey) else: url = '%s/api/dataverses/%s/contents' % (server, dataverse_id) response = requests.get(url) data = response.json() for i in data['data']: if i['type'] == 'dataset': protocol = i['protocol'] authority = i['authority'] identifier = i['identifier'] persistent_id = '%s:%s/%s' % (protocol, authority, identifier) persistent_url = i['persistentUrl'] publicationDate = i.get('publicationDate', 'unpublished') count += 1 # Create new line with dataset PID open_csv_file.writerow([persistent_id, persistent_url, dataverse_name, dataverse_alias, publicationDate]) # As a progress indicator, print a dot each time a row is written sys.stdout.write('.') sys.stdout.flush() print('\n\nDataset PIDs written to the CSV file: %s' % (count)) ``` #### File: other_scripts/get-dataverse-metadata/get_dataset_json_metadata.py ```python import csv from csv import DictReader import json import os from pathlib import Path import requests import time from tkinter import * from tkinter import filedialog from tkinter import ttk import sys # Create GUI for getting user input window = Tk() window.title('Get dataset metadata') window.geometry('650x600') # width x height # Create label for Dataverse repository URL labelRepositoryURL = Label(window, text='Enter Dataverse repository URL:', anchor='w') labelRepositoryURL.grid(sticky='w', column=0, row=0) # Create Dataverse repository URL text box repositoryURL = str() entryRepositoryURL = Entry(window, width=50, textvariable=repositoryURL) entryRepositoryURL.grid(sticky='w', column=0, row=1, pady=2) # Create help text for server name field labelDataverseUrlHelpText = Label(window, text='Example: https://demo.dataverse.org/', foreground='grey', anchor='w') labelDataverseUrlHelpText.grid(sticky='w', column=0, row=2) # Create empty row in grid to improve spacing between the two fields window.grid_rowconfigure(3, minsize=25) # Create label for API key field labelApikey = Label(window, text='API token/key:', anchor='w') labelApikey.grid(sticky='w', column=0, row=4) # Create API key field apikey = str() entryApikey = Entry(window, width=50, textvariable=apikey) entryApikey.grid(sticky='w', column=0, row=5, pady=2) # Create help text for API key field labelApikeyHelpText = Label(window, text='If no API token/key is entered, only published metadata will be downloaded', foreground='grey', anchor='w') labelApikeyHelpText.grid(sticky='w', column=0, row=6) # Create empty row in grid to improve spacing between the two fields window.grid_rowconfigure(7, minsize=25) getAllVersionMetadata = IntVar() Checkbutton(window, text="Get metadata of all dataset versions", variable=getAllVersionMetadata).grid(sticky='w', column=0, row=8) # Create help text for all versions checkbox labelAllVersionMetadataHelpText = Label(window, text='If unchecked, only metadata of latest dataset version will be downloaded', foreground='grey', anchor='w') labelAllVersionMetadataHelpText.grid(sticky='w', column=0, row=9) # Create empty row in grid to improve spacing between the two fields window.grid_rowconfigure(10, minsize=25) # Create label for Browse directory button labelBrowseForFile = Label(window, text='Choose CSV or TXT file containing list of dataset PIDs:', anchor='w') labelBrowseForFile.grid(sticky='w', column=0, row=11, pady=2) # Create Browse directory button buttonBrowseForFile = ttk.Button(window, text='Browse', command=lambda: retrieve_file()) buttonBrowseForFile.grid(sticky='w', column=0, row=12) # Create empty row in grid to improve spacing between the two fields window.grid_rowconfigure(14, minsize=25) # Create label for Browse directory button labelBrowseDirectory = Label(window, text='Choose folder to put the metadata files and metadatablock files folders into:', anchor='w') labelBrowseDirectory.grid(sticky='w', column=0, row=15, pady=2) # Create Browse directory button buttonBrowseDirectory = ttk.Button(window, text='Browse', command=lambda: retrieve_directory()) buttonBrowseDirectory.grid(sticky='w', column=0, row=16) # Create start button buttonSubmit = ttk.Button(window, text='Start', command=lambda: retrieve_input()) buttonSubmit.grid(sticky='w', column=0, row=18, pady=40) # Function called when Browse button is pressed for choosing text file with dataset PIDs def retrieve_file(): global datasetPIDFile # Call the OS's file directory window and store selected object path as a global variable datasetPIDFile = filedialog.askopenfilename(filetypes=[('Text files', '*.txt'), ('CSV files', '*.csv')]) # Show user which file she chose labelShowChosenFile = Label(window, text='You chose: ' + datasetPIDFile, anchor='w', foreground='green', wraplength=500, justify='left') labelShowChosenFile.grid(sticky='w', column=0, row=13) # Function called when Browse button is pressed def retrieve_directory(): global metadataFileDirectory # Call the OS's file directory window and store selected object path as a global variable metadataFileDirectory = filedialog.askdirectory() # Show user which directory she chose labelShowChosenDirectory = Label( window, text='You chose: ' + metadataFileDirectory, anchor='w', foreground='green', wraplength=500, justify='left' ) labelShowChosenDirectory.grid(sticky='w', column=0, row=17) # Function called when Start button is pressed def retrieve_input(): global repositoryURL global apikey global getAllVersionMetadata # Record if user wants metadata from all dataset versions getAllVersionMetadata = getAllVersionMetadata.get() # Store what's entered in dataverseUrl text box as a global variable repositoryURL = entryRepositoryURL.get() # Store what's entered in the API key text box as a global variable apikey = entryApikey.get().rstrip() window.destroy() # Keep window open until it's closed mainloop() def improved_get(_dict, path, default=None): for key in path.split('.'): try: _dict = _dict[key] except KeyError: return default return str(_dict) # Save current time to append it to main folder name currentTime = time.strftime('%Y.%m.%d_%H.%M.%S') # Use the "Get Version" endpoint to get repository's Dataverse version (or set version as 'NA') getInstallationVersionApiUrl = '%s/api/v1/info/version' % (repositoryURL) response = requests.get(getInstallationVersionApiUrl) getInstallationVersionApiData = response.json() dataverseVersion = getInstallationVersionApiData['data']['version'] dataverseVersion = str(dataverseVersion.lstrip('v')) # Create main directory name with current time metadataFileDirectoryPath = str(Path(metadataFileDirectory)) + '/' + 'JSON_metadata_%s' % (currentTime) # Create name for metadatablock files directory in main directory metadatablockFileDirectoryPath = str(Path(metadataFileDirectory)) + '/' + 'metadatablocks_v%s' % (dataverseVersion) # Create dataset metadata and metadatablock directories os.mkdir(metadataFileDirectoryPath) os.mkdir(metadatablockFileDirectoryPath) # Download metadatablock JSON files # Get list of the repository's metadatablock names metadatablocksApi = '%s/api/v1/metadatablocks' % (repositoryURL) metadatablocksApi = metadatablocksApi.replace('//api', '/api') response = requests.get(metadatablocksApi) data = response.json() metadatablockNames = [] for i in data['data']: name = i['name'] metadatablockNames.append(name) print('Downloading %s metadatablock JSON file(s) into metadatablocks folder:' % ((len(metadatablockNames)))) for metadatablockName in metadatablockNames: metadatablockApi = '%s/%s' % (metadatablocksApi, metadatablockName) response = requests.get(metadatablockApi) metadatablockFile = str(Path(metadatablockFileDirectoryPath)) + '/' '%s_v%s.json' % (metadatablockName, dataverseVersion) with open(metadatablockFile, mode='w') as f: f.write(json.dumps(response.json(), indent=4)) sys.stdout.write('.') sys.stdout.flush() print('\nFinished downloading %s metadatablock JSON file(s)' % (len(metadatablockNames))) if getAllVersionMetadata != 1: print('\nDownloading JSON metadata of latest published dataset versions to dataset_metadata folder:') elif getAllVersionMetadata == 1: print('\nDownloading JSON metadata of all published dataset versions to dataset_metadata folder:') # Initiate count for terminal progress indicator count = 0 datasetPIDs = [] if '.csv' in datasetPIDFile: with open(datasetPIDFile, mode='r', encoding='utf-8') as f: csvDictReader = DictReader(f, delimiter=',') for row in csvDictReader: datasetPIDs.append(row['persistent_id'].rstrip()) elif '.txt' in datasetPIDFile: datasetPIDFile = open(datasetPIDFile) for datasetPID in datasetPIDFile: # Remove any trailing spaces from datasetPID datasetPIDs.append(datasetPID.rstrip()) total = len(datasetPIDs) for datasetPID in datasetPIDs: try: latestVersionUrl = '%s/api/datasets/:persistentId' % (repositoryURL) params = {'persistentId': datasetPID} if apikey: params['key'] = apikey response = requests.get( latestVersionUrl, params=params) latestVersionMetadata = response.json() # If the dataset has a database ID if 'id' in latestVersionMetadata['data']: persistentUrl = latestVersionMetadata['data']['persistentUrl'] publisher = latestVersionMetadata['data']['publisher'] publicationDate = improved_get(latestVersionMetadata, 'data.publicationDate') if 'id' in latestVersionMetadata['data']: if getAllVersionMetadata != 1: datasetVersion = { 'status': latestVersionMetadata['status'], 'data': { 'persistentUrl': persistentUrl, 'publisher': publisher, 'publicationDate': publicationDate, 'datasetVersion': latestVersionMetadata['data']['latestVersion']}} metadataFile = '%s.json' % (datasetPID.replace(':', '_').replace('/', '_')) with open(os.path.join(metadataFileDirectoryPath, metadataFile), mode='w') as f: f.write(json.dumps(datasetVersion, indent=4)) else: allVersionUrl = '%s/api/datasets/:persistentId/versions' % (repositoryURL) params = {'persistentId': datasetPID} if apikey: params['key'] = apikey response = requests.get( allVersionUrl, params=params) allVersionsMetadata = response.json() for datasetVersion in allVersionsMetadata['data']: datasetVersion = { 'status': latestVersionMetadata['status'], 'data': { 'persistentUrl': persistentUrl, 'publisher': publisher, 'publicationDate': publicationDate, 'datasetVersion': datasetVersion}} majorVersion = improved_get(datasetVersion, 'data.datasetVersion.versionNumber') minorVersion = improved_get(datasetVersion, 'data.datasetVersion.versionMinorNumber') if (majorVersion is not None) and (minorVersion is not None): versionNumber = majorVersion + '.' + minorVersion metadataFile = '%s_v%s.json' % (datasetPID.replace(':', '_').replace('/', '_'), versionNumber) else: metadataFile = '%s_vDRAFT.json' % (datasetPID.replace(':', '_').replace('/', '_')) with open(os.path.join(metadataFileDirectoryPath, metadataFile), mode='w') as f: f.write(json.dumps(datasetVersion, indent=4)) # Increase count variable to track progress count += 1 # Print progress print('%s of %s datasets' % (count, total), end='\r', flush=True) except Exception: print('Could not download JSON metadata of %s' % (datasetPID)) ```
{ "source": "jggautier/dataverse_scripts", "score": 3 }
#### File: jggautier/dataverse_scripts/parse_metadatablock_json_files.py ```python import csv import json import os from pathlib import Path # Function for getting list of non-hidden directories inside of a given directory def listdir_nohidden(path): directories = [] for f in os.listdir(path): if not f.startswith('.'): directories.append(f) return directories # Enter path to directory that contains the folders and files created by the get_dataset_metadata_of_all_installations.py script main_directory = '' # Enter path to directory to store CSV file that this script will create csvfile_folder = '' csvfile = str(Path(csvfile_folder + '/' + 'metadatablocks.csv')) with open(csvfile, mode='w') as data: data = csv.writer(data, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) # Create header row data.writerow(['installation_name_(Dataverse_version)', 'metadatablock_name', 'parentfield_name', 'subfield_name']) count = 0 total = len(listdir_nohidden(main_directory)) # for repository_file_name in os.listdir(main_directory): for repository_file_name in listdir_nohidden(main_directory): count += 1 # Get the repository name size = len(repository_file_name) repository_name = repository_file_name[:size - 20] print('Parsing metadatablocks: %s of %s: %s' % (count, total, repository_name)) # Open each installation folder repository_folder_path = str(Path(main_directory + '/' + repository_file_name)) if os.path.isdir(repository_folder_path): for sub_folder in os.listdir(repository_folder_path): if 'metadatablocks' in sub_folder: metadatablock_folder_path = str(Path(repository_folder_path + '/' + sub_folder)) # Open each .json file for metadatablock_file in os.listdir(metadatablock_folder_path): # Get only the metadatablock name from the name of each metadatablock JSON file metadatablock_name = metadatablock_file.split('_', 1)[0] version = metadatablock_file.split('_v', 1)[1].rstrip('.json') # Get repository name and combine with version repository_name_version = '%s_(%s)' % (repository_name, version) metadatablock_file_path = str(Path(metadatablock_folder_path + '/' + metadatablock_file)) with open(metadatablock_file_path, 'r') as f: # Open file in read mode metadatablock_data = f.read() # Copy content to dataset_metadata variable metadatablock_data = json.loads(metadatablock_data) # Load content as a python dict # Get the names of fields that have childfields compoundfields = [] for parentfield in metadatablock_data['data']['fields']: properties = metadatablock_data['data']['fields'][parentfield] for property in properties: if 'childFields' in properties: field = properties[property] compoundfields.append(field) break all_parent_and_child_fields = [] for parentfield in compoundfields: if parentfield in metadatablock_data['data']['fields']: properties = metadatablock_data['data']['fields'][parentfield]['childFields'] all_parent_and_child_fields.append(parentfield) for subfield in properties: all_parent_and_child_fields.append(subfield) # Add parent and child names to the CSV file with open(csvfile, mode='a') as data: data = csv.writer(data, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) # Write new row data.writerow([repository_name_version, metadatablock_name, parentfield, subfield]) # Get the names of all fields all_fields = [] for parentfield in metadatablock_data['data']['fields']: properties = metadatablock_data['data']['fields'][parentfield] for property in properties: field = properties[property] all_fields.append(field) break # Get names of primitives fields by removing list of compound and child fields from the list of all fields primitive_fields = list(set(all_fields) - set(all_parent_and_child_fields)) # Add the primitive field names to the CSV file for primitive_field in primitive_fields: # Set subfield to an empty string so that Dataverse ingests the CSV file. # (Dataverse's ingest process doesn't seem to like it when there is nothing entered in the fourth column) subfield = '' with open(csvfile, mode='a') as data: data = csv.writer(data, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) # Write new row data.writerow([repository_name_version, metadatablock_name, primitive_field, subfield]) ```
{ "source": "jggimi/tools", "score": 3 }
#### File: se/commands/semanticate.py ```python import argparse import se import se.formatting def semanticate() -> int: """ Entry point for `se semanticate` """ parser = argparse.ArgumentParser(description="Automatically add semantics to Standard Ebooks source directories.") parser.add_argument("-v", "--verbose", action="store_true", help="increase output verbosity") parser.add_argument("targets", metavar="TARGET", nargs="+", help="an XHTML file, or a directory containing XHTML files") args = parser.parse_args() for filename in se.get_target_filenames(args.targets, (".xhtml",)): if args.verbose: print(f"Processing {filename} ...", end="", flush=True) try: with open(filename, "r+", encoding="utf-8") as file: xhtml = file.read() processed_xhtml = se.formatting.semanticate(xhtml) if processed_xhtml != xhtml: file.seek(0) file.write(processed_xhtml) file.truncate() except FileNotFoundError: se.print_error(f"Not a file: {filename}") if args.verbose: print(" OK") return 0 ``` #### File: tools/se/images.py ```python from pathlib import Path import tempfile import regex from PIL import Image, ImageMath import se import se.formatting def _color_to_alpha(image: Image, color=None) -> Image: """ Implements GIMP's color to alpha algorithm. See https://stackoverflow.com/a/1617909 GPLv3: http://bazaar.launchpad.net/~stani/phatch/trunk/annotate/head:/phatch/actions/color_to_alpha.py#L50 INPUTS image: A PIL image to work on color: A 4-tuple (R, G, B, A) value as the color to change to alpha OUTPUTS A string of XML representing the new SVG """ image = image.convert("RGBA") color = list(map(float, color)) img_bands = [band.convert("F") for band in image.split()] # Find the maximum difference rate between source and color. I had to use two # difference functions because ImageMath.eval only evaluates the expression # once. alpha = ImageMath.eval( """float( max( max( max( difference1(red_band, cred_band), difference1(green_band, cgreen_band) ), difference1(blue_band, cblue_band) ), max( max( difference2(red_band, cred_band), difference2(green_band, cgreen_band) ), difference2(blue_band, cblue_band) ) ) )""", difference1=lambda source, color: (source - color) / (255.0 - color), difference2=lambda source, color: (color - source) / color, red_band=img_bands[0], green_band=img_bands[1], blue_band=img_bands[2], cred_band=color[0], cgreen_band=color[1], cblue_band=color[2] ) # Calculate the new image colors after the removal of the selected color new_bands = [ ImageMath.eval( "convert((image - color) / alpha + color, 'L')", image=img_bands[i], color=color[i], alpha=alpha ) for i in range(3) ] # Add the new alpha band new_bands.append(ImageMath.eval( "convert(alpha_band * alpha, 'L')", alpha=alpha, alpha_band=img_bands[3] )) new_image = Image.merge("RGBA", new_bands) background = Image.new("RGB", new_image.size, (0, 0, 0, 0)) background.paste(new_image.convert("RGB"), mask=new_image) # SE addition: Lastly, convert transparent pixels to rgba(0, 0, 0, 0) so that Pillow's # crop function can detect them. # See https://stackoverflow.com/a/14211878 pixdata = new_image.load() width, height = new_image.size for image_y in range(height): for image_x in range(width): if pixdata[image_x, image_y] == (255, 255, 255, 0): pixdata[image_x, image_y] = (0, 0, 0, 0) return new_image # Note: We can't type hint driver, because we conditionally import selenium for performance reasons def render_mathml_to_png(driver, mathml: str, output_filename: Path) -> None: """ Render a string of MathML into a transparent PNG file. INPUTS driver: A Selenium webdriver, usually initialized from se.browser.initialize_selenium_firefox_webdriver mathml: A string of MathML output_filename: A filename to store PNG output to OUTPUTS None. """ with tempfile.NamedTemporaryFile(mode="w+") as mathml_file: with tempfile.NamedTemporaryFile(mode="w+", suffix=".png") as png_file: mathml_file.write(f"<!doctype html><html><head><meta charset=\"utf-8\"><title>MathML fragment</title></head><body>{mathml}</body></html>") mathml_file.seek(0) driver.get(f"file://{mathml_file.name}") # We have to take a screenshot of the html element, because otherwise we screenshot the viewport, which would result in a truncated image driver.find_element_by_tag_name("html").screenshot(png_file.name) image = Image.open(png_file.name) image = _color_to_alpha(image, (255, 255, 255, 255)) image.crop(image.getbbox()).save(output_filename) def format_inkscape_svg(filename: Path): """ Clean and format SVGs created by Inkscape, which have lots of useless metadata. INPUTS filename: A filename of an Inkscape SVG OUTPUTS None. """ with open(filename, "r+", encoding="utf-8") as file: svg = file.read() # Time to clean up Inkscape's mess svg = regex.sub(r"id=\"[^\"]+?\"", "", svg) svg = regex.sub(r"<metadata[^>]*?>.*?</metadata>", "", svg, flags=regex.DOTALL) svg = regex.sub(r"<defs[^>]*?/>", "", svg) svg = regex.sub(r"xmlns:(dc|cc|rdf)=\"[^\"]*?\"", "", svg) # Inkscape includes CSS even though we've removed font information svg = regex.sub(r" style=\".*?\"", "", svg) svg = se.formatting.format_xhtml(svg) file.seek(0) file.write(svg) file.truncate() def remove_image_metadata(filename: Path) -> None: """ Remove exif metadata from an image. INPUTS filename: A filename of an image OUTPUTS None. """ image = Image.open(filename) data = list(image.getdata()) image_without_exif = Image.new(image.mode, image.size) image_without_exif.putdata(data) image_without_exif.save(filename, subsampling="4:4:4") ```
{ "source": "jggomez/demo-gcp-secret-manager", "score": 2 }
#### File: jggomez/demo-gcp-secret-manager/create_secret_manager_demo.py ```python from typing import Final from google.cloud import secretmanager from dotenv import load_dotenv import json load_dotenv() SECRET_ID: Final = "secret1" DECODE_FORMAT: Final = "UTF-8" PROJECT_ID = "devhack-55d18" def create_secret(project_id, secret_id): parent = f"projects/{project_id}" client = secretmanager.SecretManagerServiceClient() client.create_secret( request={ "parent": parent, "secret_id": secret_id, "secret": {"replication": {"automatic": {}}}, } ) def add_secret_value(project_id, secret_id, payload): client = secretmanager.SecretManagerServiceClient() parent = client.secret_path(project_id, secret_id) payload = payload.encode("UTF-8") response = client.add_secret_version( request={"parent": parent, "payload": {"data": payload}} ) print("Added secret version: {}".format(response.name)) if __name__ == '__main__': create_secret(PROJECT_ID, SECRET_ID) add_secret_value(PROJECT_ID, SECRET_ID, json.dumps({ "name": "Juan", "lastname": "Gomez"})) ``` #### File: jggomez/demo-gcp-secret-manager/read_secret_manager_demo.py ```python from typing import Final from google.cloud import secretmanager from dotenv import load_dotenv load_dotenv() SECRET_USER_ID: Final = "user" SECRET_PASSWORD_ID: Final = "password" DECODE_FORMAT: Final = "UTF-8" PROJECT_ID = "devhack-55d18" def get_name(project_id, secret_id, version): return f"projects/{project_id}/secrets/{secret_id}/versions/{version}" def get_secret(project_id, secret_id, version="latest"): name = get_name(project_id, secret_id, version) client = secretmanager.SecretManagerServiceClient() response = client.access_secret_version(request={"name": name}) payload = response.payload.data.decode(DECODE_FORMAT) return payload if __name__ == '__main__': print(get_secret(PROJECT_ID, SECRET_USER_ID)) print(get_secret(PROJECT_ID, SECRET_PASSWORD_ID)) print(get_secret(PROJECT_ID, SECRET_USER_ID, 1)) ```
{ "source": "jggomez/Python-Reference-Microservice", "score": 3 }
#### File: src/bp/get_type_games_by_user.py ```python from dataclasses import dataclass from data import GetAllTypeGamesRepository from .usecase import UseCase @dataclass class Params: user_id: str class GetTypeGamesByUser(UseCase): def __init__(self, type_games_repository: GetAllTypeGamesRepository): self.type_games_repository = type_games_repository def run(self, params): return self.type_games_repository.get_type_games_by_user(params.user_id) ``` #### File: src/endpoints/type_games_endpoint.py ```python import logging from bp import ParamsGetAllTypeGames from bp import ParamsGetTypeGamesByUser from di import providers from fastapi import APIRouter from fastapi import Depends from fastapi import Response from fastapi import status from typing_extensions import Final CODE: Final = "code" MESSAGE: Final = "message" ITEMS: Final = "items" PAGE: Final = "page" router = APIRouter() @router.get("/apis/typegames/1.0.0") def get_type_games( userid: str, codegame: str, page: int, maxitems: int, response: Response, get_all_type_game_uc=Depends(providers.all_type_games_use_case_module), ): try: logging.info(userid) resp = get_all_type_game_uc.run(ParamsGetAllTypeGames(userid)) response_list = list([item.to_json() for item in resp]) return {ITEMS: response_list, PAGE: page} except Exception as e: logging.error("Error in getalltypegames", exc_info=True) response.status_code = status.HTTP_500_INTERNAL_SERVER_ERROR return {CODE: 500, MESSAGE: str(e)} @router.get("/apis/typegamesbyuser/1.0.0") def get_type_games_by_user( userid: str, page: int, maxitems: int, response: Response, get_type_game_by_user_uc=Depends(providers.type_games_by_user_use_case_module), ): try: logging.info(userid) resp = get_type_game_by_user_uc.run(ParamsGetTypeGamesByUser(userid)) response_list = list([item.to_json() for item in resp]) return {ITEMS: response_list, PAGE: page} except Exception as e: logging.error("Fatal error in gettypegamesbyuser", exc_info=True) response.status_code = status.HTTP_500_INTERNAL_SERVER_ERROR return {CODE: 500, MESSAGE: str(e)} ``` #### File: endpoints/steps/get_all_type_games_endpoint_steps.py ```python from .util.util_neo4j import UtilNeo4j CODE = "code" NAME = "name" LEVEL = "level" TYPE_GAME_1_EXPECT = "type_game_1" LEVEL_EXPECT = 50 class ShouldGetAllTypeGameSteps: def given(self, client, user_id, type_games): self.user_id = user_id self.client = client self.type_games = type_games self.util_neo4j = UtilNeo4j() self.util_neo4j.create_user(user_id, user_id) self.util_neo4j.create_type_games(self.type_games) self.util_neo4j.create_relationship_played_user_typegame(user_id, type_games) def when(self): self.response = self.client.get(f"/apis/typegames/1.0.0?userid={self.user_id}") def then(self): assert self.response is not None type_games = self.response.get_json() assert CODE not in type_games count_type_game = 0 for tp in type_games: if tp[NAME] == TYPE_GAME_1_EXPECT: assert int(tp[LEVEL]) == LEVEL_EXPECT count_type_game = count_type_game + 1 assert count_type_game == 1 assert len(type_games) > 0 def teardown(self): self.util_neo4j.delete_type_games_played_data_test(self.user_id) ``` #### File: endpoints/steps/get_type_games_by_user_endpoint_steps.py ```python from .util.util_neo4j import UtilNeo4j # from ..util.util_neo4j import UtilNeo4j CODE = "code" class ShouldGetTypeGameByUserSteps: def given(self, client, user_id, type_games): self.client = client self.user_id = user_id self.type_games = type_games self.util_neo4j = UtilNeo4j() self.util_neo4j.create_user(user_id, user_id) self.util_neo4j.create_type_games(type_games) self.util_neo4j.create_relationship_user_typegame(user_id, type_games) def when(self): self.response = self.client.get( f"/apis/typegamesbyuser/1.0.0?userid={self.user_id}" ) def then(self): assert self.response is not None type_games_resp = self.response.get_json() assert CODE not in type_games_resp assert len(type_games_resp) > 0 assert len(type_games_resp) == len(self.type_games) def teardown(self): self.util_neo4j.delete_type_games_playing_data_test(self.user_id) ``` #### File: tests/endpoints/type_games_test.py ```python import pytest from .steps.get_all_type_games_endpoint_steps import ShouldGetAllTypeGameSteps from .steps.get_type_games_by_user_endpoint_steps import ShouldGetTypeGameByUserSteps USER_ID_DATA_TEST = "USER_TEST_TYPE_GAMES" TYPE_GAMES_ALL_DATA_TEST = [ { "name": "type_game_1", "code": "PSICO", "hasmedals": False, "type": "ARCADE1", "url_background": "image1.png", "points": 20, }, { "name": "type_game_2", "code": "ING", "hasmedals": True, "type": "ARCADE2", "url_background": "image2.png", "points": 30, }, { "name": "type_game_3", "code": "ARQ", "hasmedals": False, "type": "ARCADE3", "url_background": "image3.png", "points": 10, }, { "name": "type_game_1", "code": "PSICO", "hasmedals": False, "type": "ARCADE1", "url_background": "image1.png", "points": 50, }, ] TYPE_GAMES_BY_USER_DATA_TEST = [ { "name": "type_game_1", "code": "PSICO", "hasmedals": False, "type": "ARCADE1", "url_background": "image1.png", "points": 20, }, { "name": "type_game_2", "code": "ING", "hasmedals": True, "type": "ARCADE2", "url_background": "image2.png", "points": 30, }, { "name": "type_game_3", "code": "ARQ", "hasmedals": False, "type": "ARCADE3", "url_background": "image3.png", "points": 10, }, ] @pytest.mark.parametrize( "user_id, type_games", [(USER_ID_DATA_TEST, TYPE_GAMES_ALL_DATA_TEST)] ) def test_should_get_all_type_games_endpoint(client, user_id, type_games): test = ShouldGetAllTypeGameSteps() try: test.given(client, user_id, type_games) test.when() test.then() finally: test.teardown() @pytest.mark.parametrize( "user_id, type_games", [(USER_ID_DATA_TEST, TYPE_GAMES_BY_USER_DATA_TEST)] ) def test_should_get_type_games_by_user_endpoint(client, user_id, type_games): test = ShouldGetTypeGameByUserSteps() try: test.given(client, user_id, type_games) test.when() test.then() finally: test.teardown() ```
{ "source": "jgh9094/Benchmarks", "score": 2 }
#### File: Pilot3/JGH/distiller-2l.py ```python import numpy as np import argparse import os import pandas as pd # keras python inputs from keras.models import Model from keras.layers import Input,Embedding,Dropout,Dense,GlobalMaxPooling1D,Conv1D,Lambda,Activation,concatenate from keras.callbacks import EarlyStopping from keras.utils import to_categorical from keras.losses import categorical_crossentropy as logloss from keras import backend as K from keras import initializers from keras.metrics import categorical_accuracy from keras.layers.merge import Concatenate from sklearn.metrics import f1_score # summit specific imports from loaddata6reg import loadAllTasks from mpi4py import MPI # global variables COMM = MPI.COMM_WORLD RANK = COMM.Get_rank() SIZE = COMM.size EPOCHS = 100 CLASS = [4,639,7,70,326] TEMP = 0 # return configuration for the experiment def GetModelConfig(config): # testing configuration if config == 0: return { 'learning_rate': 0.01, 'batch_size': 256, 'batch_size': 5, 'dropout': 0.5, 'optimizer': 'adam', 'wv_len': 300, 'emb_l2': 0.001, 'in_seq_len': 1500, 'filter_sizes': [3,4,5], 'num_filters': [300,300,300], 'alpha': 0.07, 'temp': [0.1,0.2,0.5,0.7,0.9,1.0,1.1,1.2,1.5,1.7,1.9,2.0] } else: print('MODEL CONFIGURATION DOES NOT EXIST') exit(-1) # first 1/2 are hard labels, second 1/2 are softmax outputs # alpha: constant for hard label error (should be small according to lit review) def kd_loss(y_true,y_pred,alpha,temp,split): # ground truth and teacher softmax y_true_hl, y_true_sl = y_true[: , :split], y_true[: , split:] # student softmax and logits/temp s_softmax, s_logits = y_pred[: , :split], y_pred[: , split:] # student raw logtis tranformed/temp: distallation loss s_logits_sl = K.softmax(s_logits/temp) # hard loss hl = alpha * logloss(y_true_hl,s_softmax,from_logits=False) # distillation loss dl = (1.0 - alpha) * logloss(y_true_sl,s_logits_sl,from_logits=False) return hl + dl # softmax/temperture output transformer def softmax(x,t): ex = np.exp(x/t) tot = np.sum(ex) return np.array(ex / tot) # concatenate the data # 1st half: hard lables # 2nd half: teacher temperature softmax def ConcatData(y,yv,teach, temp): print('CONCAT DATA:', flush= True) Y,YV = [],[] # iterate through the number of classes in the training data for i in range(len(CLASS)): print(str(i)) Y.append([]) # get training dir yt = np.load(teach + 'training-task-' + str(i) + '.npy') # make sure same lengths if yt.shape[0] != y[i].shape[0] or yt.shape[1] != y[i].shape[1]: print('NOT MATHCING DIMENSIONS: TRAINING') exit(-1) # concatenate + transform the teacher data the output data for j in range(yt.shape[0]): Y[i].append(np.concatenate((y[i][j], softmax(yt[j], temp)))) # make a numpy array Y[i] = np.array(Y[i]) # get validation dir YV.append([]) yvt = np.load(teach + 'validating-task-' + str(i) + '.npy') # make sure same lengths if yvt.shape[0] != yv[i].shape[0] or yvt.shape[1] != yv[i].shape[1]: print('NOT MATHCING DIMENSIONS: VALIDATING') exit(-1) # concatenate + transform the teacher data the output data for j in range(yvt.shape[0]): YV[i].append(np.concatenate((y[i][j], softmax(yvt[j], temp)))) YV[i] = np.array(YV[i]) print('Training Output Data', flush= True) i = 0 for y in Y: print('task', i, flush= True) print('--cases:', len(y), flush= True) print('--classes:',len(y[0]), flush= True) i += 1 print() print('Validation Output Data', flush= True) i = 0 for y in YV: print('task', i, flush= True) print('--cases:', len(y), flush= True) print('--classes:',len(y[0]), flush= True) i += 1 print() return Y,YV # transform y data to_categorical # [0,1,0,1,...] def Transform(rawY,rawYV): print('TRANSFORM', flush= True) # create array for each task output # create array for each task output y = [[] for i in range(rawY.shape[1])] yv = [[] for i in range(rawY.shape[1])] # load data into appropiate list for t in range(rawY.shape[1]): y[t] = rawY[:,t] yv[t] = rawYV[:,t] # make to catagorical data and pack up Y,YV = [],[] for i in range(len(y)): Y.append(to_categorical(y[i], num_classes=CLASS[i])) for i in range(len(yv)): YV.append(to_categorical(yv[i], num_classes=CLASS[i])) print('Training Output Data', flush= True) i = 0 for y in Y: print('task', i, flush= True) print('--cases:', len(y), flush= True) print('--classes:',len(y[0]), flush= True) i += 1 print() print('Validation Output Data', flush= True) i = 0 for y in YV: print('task', i, flush= True) print('--cases:', len(y), flush= True) print('--classes:',len(y[0]), flush= True) i += 1 print() return Y,YV # will return a mt-cnn with a certain configuration def CreateMTCnn(num_classes,vocab_size,cfg): # define network layers ---------------------------------------------------- input_shape = tuple([cfg['in_seq_len']]) model_input = Input(shape=input_shape, name= "Input") # embedding lookup emb_lookup = Embedding(vocab_size, cfg['wv_len'], input_length=cfg['in_seq_len'], embeddings_initializer= initializers.RandomUniform( minval= 0, maxval= 0.01 ), name="embedding")(model_input) # convolutional layer and dropout conv_blocks = [] for ith_filter,sz in enumerate(cfg['filter_sizes']): conv = Conv1D(filters=cfg['num_filters'][ ith_filter ], kernel_size=sz, padding="same", activation="relu", strides=1, name=str(ith_filter) + "_thfilter")(emb_lookup) conv_blocks.append(GlobalMaxPooling1D()(conv)) concat = Concatenate()(conv_blocks) if len(conv_blocks) > 1 else conv_blocks[0] concat_drop = Dropout(cfg['dropout'])(concat) # different dense layer per tasks FC_models = [] for i in range(len(num_classes)): dense = Dense(num_classes[i], name= "Dense"+str(i), )( concat_drop ) act = Activation('softmax', name= "Active"+str(i))(dense) FC_models.append(act) # the multitsk model model = Model(inputs=model_input, outputs = FC_models) model.compile( loss= "categorical_crossentropy", optimizer= cfg['optimizer'], metrics=[ "acc" ] ) return model def main(): print('************************************************************************************', flush= True) # generate and get arguments parser = argparse.ArgumentParser(description='Process arguments for model training.') parser.add_argument('tech_dir', type=str, help='Where is the teacher data located?') parser.add_argument('dump_dir', type=str, help='Where are we dumping the output?') parser.add_argument('config', type=int, help='What model config are we using?') # Parse all the arguments & set random seed args = parser.parse_args() # RANK = 0 seed = int(RANK) print('Seed:', seed, end='\n\n') np.random.seed(seed) # check that dump directory exists if not os.path.isdir(args.tech_dir): print('TEACHER DIRECTORY DOES NOT EXIST') exit(-1) # check that dump directory exists if not os.path.isdir(args.dump_dir): print('DUMP DIRECTORY DOES NOT EXIST') exit(-1) # Step 1: Get experiment configurations config = GetModelConfig(args.config) print('run parameters:', config, flush= True) global TEMP TEMP = config['temp'][seed] print('TEMP:', TEMP, flush= True) # Step 2: Create training/testing data for models X, XV, XT, Y, YV, YT = loadAllTasks(print_shapes = False) Y,YV = Transform(Y,YV) Y,YV = ConcatData(Y,YV, args.tech_dir, TEMP) print('DATA LOADED AND READY TO GO', flush= True) # Step 3: Create the studen mtcnn model mtcnn = CreateMTCnn(CLASS, max(np.max(X),np.max(XV)) + 1,config) print('MODEL CREATED\n', flush= True) #Step 4: Create knowledge distilled student topology # remove the last activation layers for i in range(len(CLASS)): mtcnn.layers.pop() # add new distlled layers new_out = [] for i in range(len(CLASS)): logits = mtcnn.get_layer('Dense'+str(i)).output probs = Activation('softmax', name='Logits'+str(i))(logits) # softed probabilities at raised temperature logits_T = Lambda(lambda x: x, name='lambda'+str(i))(logits) # probs_T = Activation('softmax', name='TLogits'+str(i))(logits_T) # output layer: softmax from dense & raw logits output = concatenate([probs, logits_T], name="Active"+str(i)) new_out.append(output) # mtcnn distillation model ready to go! mtcnn = Model(mtcnn.input, new_out) mtcnn.summary() print('MODEL READJUSTED FOR DISTILLATION\n') # student softmax(raw_logits) and hard labels def acc(y_true, y_pred, split): y_true = y_true[:, :split] y_pred = y_pred[:, split:] y_pred = K.softmax(y_pred) return categorical_accuracy(y_true, y_pred) # student softmax(raw_logits) and hard labels def categorical_crossentropy(y_true, y_pred, split): y_true = y_true[:, :split] y_pred = y_pred[:, split:] return logloss(y_true, y_pred, from_logits=True) # student softmax(raw_logits) and hard labels def soft_logloss(y_true, y_pred, split,temp): y_true = y_true[:, split:] y_pred = y_pred[:, split:] y_soft = y_pred/temp return logloss(y_true, y_soft, from_logits=True) # create loss dictionary for each task losses = {} # task 0 l0 = lambda y_true, y_pred: kd_loss(y_true,y_pred,config['alpha'], TEMP,CLASS[0]) l0.__name__ = 'kdl'+str(0) losses['Active'+str(0)] = l0 # task 1 l1 = lambda y_true, y_pred: kd_loss(y_true,y_pred,config['alpha'], TEMP,CLASS[1]) l1.__name__ = 'kdl'+str(1) losses['Active'+str(1)] = l1 # task 2 l2 = lambda y_true, y_pred: kd_loss(y_true,y_pred,config['alpha'], TEMP,CLASS[2]) l2.__name__ = 'kdl'+str(2) losses['Active'+str(2)] = l2 # task 3 l3 = lambda y_true, y_pred: kd_loss(y_true,y_pred,config['alpha'], TEMP,CLASS[3]) l3.__name__ = 'kdl'+str(3) losses['Active'+str(3)] = l3 # create metric dictionary per task metrics = {} # task 0 metrics['Active'+str(0)] = [] l01 = lambda y_true, y_pred: acc(y_true,y_pred,CLASS[0]) l01.__name__ = 'acc'+str(0) metrics['Active'+str(0)].append(l01) l02 = lambda y_true, y_pred: categorical_crossentropy(y_true,y_pred,CLASS[0]) l02.__name__ = 'cc'+str(0) metrics['Active'+str(0)].append(l02) l03 = lambda y_true, y_pred: soft_logloss(y_true,y_pred,CLASS[0],TEMP) l03.__name__ = 'sl'+str(0) metrics['Active'+str(0)].append(l03) # task 1 metrics['Active'+str(1)] = [] l11 = lambda y_true, y_pred: acc(y_true,y_pred,CLASS[1]) l11.__name__ = 'acc'+str(1) metrics['Active'+str(1)].append(l11) l12 = lambda y_true, y_pred: categorical_crossentropy(y_true,y_pred,CLASS[1]) l12.__name__ = 'cc'+str(1) metrics['Active'+str(1)].append(l12) l13 = lambda y_true, y_pred: soft_logloss(y_true,y_pred,CLASS[1],TEMP) l13.__name__ = 'sl'+str(1) metrics['Active'+str(1)].append(l13) # task 2 metrics['Active'+str(2)] = [] l21 = lambda y_true, y_pred: acc(y_true,y_pred,CLASS[2]) l21.__name__ = 'acc'+str(2) metrics['Active'+str(2)].append(l21) l22 = lambda y_true, y_pred: categorical_crossentropy(y_true,y_pred,CLASS[2]) l22.__name__ = 'cc'+str(2) metrics['Active'+str(2)].append(l22) l23 = lambda y_true, y_pred: soft_logloss(y_true,y_pred,CLASS[2],TEMP) l23.__name__ = 'sl'+str(2) metrics['Active'+str(2)].append(l23) # task 3 metrics['Active'+str(3)] = [] l31 = lambda y_true, y_pred: acc(y_true,y_pred,CLASS[3]) l31.__name__ = 'acc'+str(3) metrics['Active'+str(3)].append(l31) l32 = lambda y_true, y_pred: categorical_crossentropy(y_true,y_pred,CLASS[3]) l32.__name__ = 'cc'+str(3) metrics['Active'+str(3)].append(l32) l33 = lambda y_true, y_pred: soft_logloss(y_true,y_pred,CLASS[3],TEMP) l33.__name__ = 'sl'+str(3) metrics['Active'+str(3)].append(l33) print('METRICS CREATED', flush= True) # create validation data dictionary val_dict = {} for i in range(len(CLASS)): layer = 'Active' + str(i) val_dict[layer] = YV[i] print('VAL-DICT CREATED', flush= True) mtcnn.compile(optimizer='adam', loss=losses, metrics=metrics) print('MODEL COMPILED FOR DISTILLATION\n', flush= True) hist = mtcnn.fit(X, Y, batch_size=config['batch_size'], epochs=EPOCHS, verbose=2, validation_data=({'Input': XV}, val_dict), callbacks = [EarlyStopping(monitor='val_loss', min_delta=0, patience=3, verbose=0, mode='auto', restore_best_weights=True)]) # Step 5: Save everything # create directory to dump all data related to model fdir = args.dump_dir + 'MTDistilled2L-' + str(args.config) + '-' + str(RANK) + '/' os.mkdir(fdir) micMac = [] data_path = fdir + "MicMacTest_R" + str(RANK) + ".csv" # convert the history.history dict to a pandas DataFrame: hist_df = pd.DataFrame(hist.history) hist_df.to_csv(path_or_buf= fdir + 'history.csv', index=False) print('History Saved!', flush= True) # save model mtcnn.save(fdir + 'model.h5') print('Model Saved!', flush= True) # get the softmax values of the our predictions from raw logits predT = mtcnn.predict(XT) # use only the first half of the output vector: those are predictions pred = [[] for x in range(len(CLASS))] # get the softmax values of the our predictions from raw logits for i in range(len(predT)): for j in range(len(predT[i])): pred[i].append(softmax(predT[i][j][CLASS[i]:],1.0)) pred = [np.array(x) for x in pred] for t in range(len(CLASS)): preds = np.argmax(pred[t], axis=1) micro = f1_score(YT[:,t], preds, average='micro') macro = f1_score(YT[:,t], preds, average='macro') micMac.append(micro) micMac.append(macro) data = np.zeros(shape=(1, 10)) data = np.vstack((data, micMac)) df0 = pd.DataFrame(data, columns=['Beh_Mic', 'Beh_Mac', 'His_Mic', 'His_Mac', 'Lat_Mic', 'Lat_Mac', 'Site_Mic', 'Site_Mac', 'Subs_Mic', 'Subs_Mac']) df0.to_csv(data_path) print('MIC-MAC SCORES SAVED', flush= True) # save model output print('Saving Training Softmax Output', flush= True) for i in range(len(predT)): print('task:',str(i)) print('--Number of data points: ', len(predT[i]), flush= True) print('--Size of each data point', len(predT[i][0]), flush= True) fname = fdir + 'testing-task-' + str(i) + '.npy' np.save(fname, predT[i]) print() if __name__ == '__main__': main() ``` #### File: Pilot3/JGH/mtcnn-model.py ```python import numpy as np from matplotlib import pyplot as plt import argparse import os import pandas as pd # keras python inputs from keras.models import Model from keras.layers import Input, Embedding, Dense, Dropout from keras.regularizers import l2 from keras.layers import GlobalMaxPooling1D, Convolution1D from keras.utils import plot_model from keras.callbacks import EarlyStopping from keras.utils import to_categorical from keras.layers.merge import Concatenate from keras import initializers from keras.losses import CategoricalCrossentropy from sklearn.metrics import f1_score from loaddata6reg import loadAllTasks from mpi4py import MPI # global variables COMM = MPI.COMM_WORLD RANK = COMM.Get_rank() SIZE = COMM.size #Node count. size-1 = max rank. # EXPECTED CLASSES FOR EACH TASK, MUST UPDATE CLASS = [4,639,7,70,326] EPOCHS = 100 # return configuration for the experiment def GetModelConfig(config): # testing configuration if config == 0: return { 'learning_rate': 0.01, 'batch_size': 256, 'dropout': 0.5, 'optimizer': 'adam', 'wv_len': 300, 'emb_l2': 0.001, 'in_seq_len': 1500, 'filter_sizes': [3,4,5], 'num_filters': [300,300,300], } else: print('MODEL CONFIGURATION DOES NOT EXIST', flush= True) exit(-1) # softmax output transformer def softmax(x): ex = np.exp(x) tot = np.sum(ex) return ex / tot # transform data and return number of classes def TransformData(rawX, rawXV, rawXT, rawY, rawYV, rawYT): # raw data descriptions print('RAW DATA DIMS', flush= True) print('rawX dim: ', rawX.shape, flush= True) print('rawY dim: ', rawY.shape, flush= True) print('rawXV dim: ', rawXV.shape, flush= True) print('rawYV dim: ', rawYV.shape, flush= True) print('rawXT dim: ', rawXT.shape, flush= True) print('rawYT dim: ', rawYT.shape , end='\n\n', flush= True) # make sure number of tasks between data sets is consistent if rawY.shape[1] != rawYT.shape[1] or rawYT.shape[1] != rawYV.shape[1]: print('NUMBER OF TASKS NOT THE SAME BETWEEN DATA SETS', flush= True) exit(-1) # create array for each task output y = [[] for i in range(rawY.shape[1])] yv = [[] for i in range(rawY.shape[1])] yt = [[] for i in range(rawY.shape[1])] # load data into appropiate list for t in range(rawY.shape[1]): y[t] = rawY[:,t] yv[t] = rawYV[:,t] yt[t] = rawYT[:,t] # make to catagorical data and pack up Y,YV,YT = [],[],[] for i in range(len(y)): Y.append(to_categorical(y[i], num_classes=CLASS[i])) for i in range(len(yv)): YV.append(to_categorical(yv[i], num_classes=CLASS[i])) for i in range(len(yt)): YT.append(to_categorical(yt[i], num_classes=CLASS[i])) print('Training Output Data', flush= True) i = 0 for y in Y: print('task', i, flush= True) print('--cases:', len(y), flush= True) print('--classes:',len(y[0]), flush= True) i += 1 print() print('Validation Output Data', flush= True) i = 0 for y in YV: print('task', i, flush= True) print('--cases:', len(y), flush= True) print('--classes:',len(y[0]), flush= True) i += 1 print() print('Testing Output Data', flush= True) i = 0 for y in YT: print('task', i, flush= True) print('--cases:', len(y), flush= True) print('--classes:',len(y[0]), flush= True) i += 1 print() # number of classes per task classes = [] for y in Y: classes.append(len(y[0])) return np.array(rawX),np.array(rawXV),np.array(rawXT),Y,YV,YT,classes # will return a mt-cnn with a certain configuration def CreateMTCnn(num_classes,vocab_size,cfg): # define network layers ---------------------------------------------------- input_shape = tuple([cfg['in_seq_len']]) model_input = Input(shape=input_shape, name= "Input") # embedding lookup emb_lookup = Embedding(vocab_size, cfg['wv_len'], input_length=cfg['in_seq_len'], embeddings_initializer= initializers.RandomUniform( minval= 0, maxval= 0.01 ), name="embedding")(model_input) # convolutional layer and dropout conv_blocks = [] for ith_filter,sz in enumerate(cfg['filter_sizes']): conv = Convolution1D(filters=cfg['num_filters'][ ith_filter ], kernel_size=sz, padding="same", activation="relu", strides=1, name=str(ith_filter) + "_thfilter")(emb_lookup) conv_blocks.append(GlobalMaxPooling1D()(conv)) concat = Concatenate()(conv_blocks) if len(conv_blocks) > 1 else conv_blocks[0] concat_drop = Dropout(cfg['dropout'])(concat) # different dense layer per tasks FC_models = [] for i in range(len(num_classes)): outlayer = Dense(num_classes[i], name= "Dense"+str(i))( concat_drop ) FC_models.append(outlayer) # the multitsk model model = Model(inputs=model_input, outputs = FC_models) model.compile( loss= CategoricalCrossentropy(from_logits=True), optimizer= cfg['optimizer'], metrics=[ "acc" ] ) return model def main(): # generate and get arguments parser = argparse.ArgumentParser(description='Process arguments for model training.') parser.add_argument('dump_dir', type=str, help='Where are we dumping the output?') parser.add_argument('config', type=int, help='What model config are we using?') parser.add_argument('prop', type=float, help='proportion of testcases being used') # parse all the argument args = parser.parse_args() # set the seed to the rank seed = int(RANK) print('Seed:', seed) np.random.seed(seed) # Step 1: Get experiment configurations print('Config Using:', args.config) config = GetModelConfig(args.config) print('run parameters:', config, end='\n\n', flush= True) # save the dump directory dump_dir = args.dump_dir # check that dump directory exists # we expect the dump dir to be made already print('DUMP Directory:', dump_dir) if not os.path.isdir(dump_dir): print('DUMP DIRECTORY DOES NOT EXIST', flush= True) exit(-1) # Step 2: Create training/testing data for models X, XV, XT, Y, YV, YT= loadAllTasks(print_shapes = False) # check that prop is between (0,1] if args.prop <= 0 or args.prop > 1: print('PROP NOT IN CORRECT RANGE') exit(-1) # Take the proportion of test cases print('PROP:', args.prop) propX = int(args.prop * len(X)) propXV = int(args.prop * len(XV)) propXT = int(args.prop * len(XT)) propY = int(args.prop * len(Y)) propYV = int(args.prop * len(YV)) propYT = int(args.prop * len(YT)) # subset the data set X = X[0:propX] XV = XV[0:propXV] XT = XT[0:propXT] Y = Y[0:propY] YV = YV[0:propYV] YT = YT[0:propYT] X, XV, XT, Y, YV, YT, classes = TransformData(X, XV, XT, Y, YV, YT) # Step 3: Create the mtcnn model mtcnn = CreateMTCnn(classes, max(np.max(X),np.max(XV)) + 1,config) print( mtcnn.summary() ) # Step 4: Train mtcnn model # create validation data dictionary val_dict = {} for i in range(len(YV)): layer = 'Dense' + str(i) val_dict[layer] = YV[i] hist = mtcnn.fit(x= X, y= Y, batch_size= config['batch_size'], epochs= EPOCHS, verbose= 2, validation_data= ({'Input': XV}, val_dict), callbacks = [EarlyStopping(monitor='val_loss', min_delta=0, patience=5, verbose=0, mode='auto', restore_best_weights=True)] ) # create directory to dump all data related to model fdir = dump_dir + 'MTModel-' + str(args.config) + "_Rank-" + str(RANK) +'/' if not os.path.exists(fdir): os.makedirs(fdir) # save predictions from all data inputs pred = mtcnn.predict(X) predV = mtcnn.predict(XV) predT = mtcnn.predict(XT) print('Saving Training Softmax Output', flush= True) for i in range(len(pred)): print('task:',str(i)) print('--Number of data points: ', len(pred[i]), flush= True) print('--Size of each data point', len(pred[i][0]), flush= True) fname = fdir + 'training-task-' + str(i) + '.npy' np.save(fname, pred[i]) print() print('Saving Validation Softmax Output', flush= True) for i in range(len(predV)): print('task:',str(i), flush= True) print('--Number of data points: ', len(predV[i]), flush= True) print('--Size of each data point', len(predV[i][0]), flush= True) fname = fdir + 'validating-task-' + str(i) + '.npy' np.save(fname, predV[i]) print() print('Saving Testing Softmax Output', flush= True) for i in range(len(predT)): print('task:',str(i)) print('--Number of data points: ', len(predT[i]), flush= True) print('--Size of each data point', len(predT[i][0]), flush= True) fname = fdir + 'testing-task-' + str(i) + '.npy' np.save(fname, predT[i]) print() #predT has this shape: [numTasks, numSamples, numLabelsInTask] ''' Save final micro/macro: ''' micMac = [] data_path = fdir + "MicMacTest_R" + str(RANK) + ".csv" X, XV, XT, Y, YV, YT= loadAllTasks(print_shapes = False) # subset the data set X = X[0:propX] XV = XV[0:propXV] XT = XT[0:propXT] Y = Y[0:propY] YV = YV[0:propYV] YT = YT[0:propYT] # get the softmax values of the our predictions from raw logits for i in range(len(predT)): for j in range(len(predT[i])): predT[i][j] = softmax(predT[i][j]) for t in range(5): preds = np.argmax(predT[t], axis=1) micro = f1_score(YT[:,t], preds, average='micro') macro = f1_score(YT[:,t], preds, average='macro') micMac.append(micro) micMac.append(macro) data = np.zeros(shape=(1, 10)) data = np.vstack((data, micMac)) df0 = pd.DataFrame(data, columns=['Beh_Mic', 'Beh_Mac', 'His_Mic', 'His_Mac', 'Lat_Mic', 'Lat_Mac', 'Site_Mic', 'Site_Mac', 'Subs_Mic', 'Subs_Mac']) df0.to_csv(data_path) # convert the history.history dict to a pandas DataFrame: hist_df = pd.DataFrame(hist.history) hist_df.to_csv(path_or_buf= fdir + 'history.csv', index=False) print('History Saved!', flush= True) # save model mtcnn.save(fdir + 'model.h5') print('Model Saved!', flush= True) if __name__ == '__main__': main() ```
{ "source": "jgh9094/Knowlege-Distillation-P3B3", "score": 3 }
#### File: CompressSM/Aggregation/stack-splits.py ```python import numpy as np import argparse import pickle as pk import psutil import os # Get total number of files there should be for each data type def GetTotal(c): # training data if c == 0: return 160 # testing data elif c == 1: return 20 # validating data elif c == 2: return 18 else: print('UNKNOWN TOTAL') exit(-1) # Get file naming for each data type def GetDataType(c,t): # training data if c == 0: return 'training-task-' + str(t) + '-rank-' # testing data elif c == 1: return 'testing-task-' + str(t) + '-rank-' # validating data elif c == 2: return 'validating-task-' + str(t) + '-rank-' else: print('UNKNOWN TOTAL') exit(-1) # will look at all directories in data dir and sample a set of them def GetDataFiles(dir,fn,n): dirs = [dir + fn + str(i) + '.npy' for i in range(n)] print('DIRS EXPLORING:', flush= True) for d in dirs: print(d, flush= True) print(flush= True) return dirs # will return string associated with data type def GetData(c): # training data if c == 0: return 'training' # testing data elif c == 1: return 'testing' # validating data elif c == 2: return 'validating' else: print('UNKNOWN TOTAL') exit(-1) # will look through all dirs and average out their data (testing, training, validate) def ConcatData(files,dump,data,task): print('PROCESSING FILES', flush=True) # will hold all data to stack hold = [] for f in files: print('processing:', f, flush= True) X = np.load(file=f) hold.append(X) mat = np.concatenate(hold) print('mat.shape', mat.shape) np.save(dump + data + '-task-' + str(task) +'.npy', mat) print('finished saving:', dump + data + '-task-' + str(task) +'.npy', flush= True) print(flush= True) def main(): # generate and get arguments parser = argparse.ArgumentParser(description='Process arguments for model training.') parser.add_argument('data_dir', type=str, help='Where are we dumping the output?') parser.add_argument('dump_dir', type=str, help='Where are we dumping the output?') parser.add_argument('task', type=int, help='What task are we looking for') parser.add_argument('data_type', type=int, help='0: training, 1: testing, 2: validating') # parse all the argument args = parser.parse_args() # what are the inputs print('data_dir:', args.data_dir, flush= True) print('dump_dir:', args.dump_dir, flush= True) print('task:', args.task, flush= True) print('data_type:', args.data_type, flush= True) # Step 1: Get data directories we are exploring fn = GetDataType(args.data_type, args.task) n = GetTotal(args.data_type) files = GetDataFiles(args.data_dir.strip(),fn,n) # Step 2: Concatenate the data data = GetData(args.data_type) ConcatData(files, args.dump_dir, data,args.task) if __name__ == '__main__': main() ``` #### File: CompressSM/MLP/mlp-sm.py ```python import numpy as np import argparse import pickle as pk import psutil import os # keras python inputs from keras.models import Model from keras.layers import Input, Dense from keras.regularizers import l2 from keras.callbacks import EarlyStopping from keras.utils import to_categorical from keras.losses import CategoricalCrossentropy # OLCF imports from mpi4py import MPI # global variables COMM = MPI.COMM_WORLD RANK = COMM.Get_rank() SIZE = COMM.size #Node count. size-1 = max rank. EPOCHS = 100 YLAB = '/gpfs/alpine/world-shared/med106/yoonh/storageFolder/HardLabels/' CLASS = [4,639,7,70,326] # will look at all directories in data dir and sample a set of them def GetDataDirs(dir,p): # store the directories we are lookin in and dimensions of softmax dirs = filter(os.path.isdir, [os.path.join(dir, o) for o in os.listdir(dir)]) dirs = [dir + '/' for dir in dirs] sub = int(p * len(dirs)) dirs = np.sort(np.random.choice(dirs, sub, replace=False)) print('NUMBER OF DIRS:', len(dirs), flush=True) print('DIRS EXPLORING:', flush= True) for d in dirs: print(d, flush= True) print('', flush= True) return dirs # concatenate all data into on sinlge matrix def AggregateData(dirs,task,data): # get training data print('COLLECTING',data.upper(),'DATA...', flush= True) # check that dimenstions are the same x,y = [],[] # go through all files and check the dimensions print('CHECKING DATA DIMENSIONS...', flush= True) for dir in dirs: X = np.load(file=dir + data +'-task-' + str(task) + '.npy') # store dimensions x.append(X.shape[0]) y.append(X.shape[1]) del X # make sure that dimensions match for all data if 1 < len(set(x)) or 1 < len(set(y)): print('TRAINING DATA DIMS NOT EQUAL', flush= True) exit(-1) else: print('DATA DIMENSIONS MATCH!', flush= True) # matrix that will mat = [ np.array([]) for i in range(x[0])] del x, for dir in dirs: # go through all the dirs print('processing:', dir + data +'-task-' + str(task) + '.npy', flush= True) X = np.load(file=dir + data +'-task-' + str(task) + '.npy') # go through all the data points and create a new data matrix for i in range(len(X)): mat[i] = np.concatenate((mat[i], X[i]), axis=None) del X print('FINISHED GOING THROUGH ALL DIRS', flush= True) mat = np.array(mat) print('mat.shape:',mat.shape, flush= True) # memory checks print('memory:',psutil.virtual_memory(), flush= True) print('', flush= True) return mat # get a specific row of y labels def GetYLabs(dir,task,name): print('GETTING Y LABELS FOR', name.upper(), flush= True) file = open(dir + name, 'rb') ylab = pk.load(file) file.close # for testing purposes [0:20000] ylab = ylab[:,task] Y = [] for i in range(len(ylab)): Y.append(to_categorical(ylab[i], num_classes=CLASS[task])) print('', flush= True) return np.array(Y) def GetMLP(x,y): # set input layer, assuming that all input will have same shape as starting case input = Input(shape=([x]), name= "Input") hidden = Dense(x, activation='relu')(input) # add dropout layer (.25) output = Dense(y)(hidden) # link, compile, and fit model mlp = Model(inputs=input, outputs = output) mlp.compile(loss= CategoricalCrossentropy(from_logits=True), optimizer= 'adam', metrics=[ "acc" ] ) return mlp def main(): # generate and get arguments parser = argparse.ArgumentParser(description='Process arguments for model training.') parser.add_argument('data_dir', type=str, help='Where are we dumping the output?') parser.add_argument('dump_dir', type=str, help='Where are we dumping the output?') parser.add_argument('proportion', type=float, help='What model config was used') parser.add_argument('offset', type=int, help='Seed offset for rng') # RANK is synonomous with the task task being evaluated # RANK = 0 # used for example right now task = int(RANK) print('task:', task,flush=True) # parse all the argument args = parser.parse_args() # set seed for rng seed = int(task+args.offset) print('RANDOM SEED:', seed,flush=True) np.random.seed(seed) # Step 1: Get data directories we are exploring dirs = GetDataDirs(args.data_dir.strip(),args.proportion) # Step 2: Get all data and transform it into one matrix X = AggregateData(dirs,RANK,'training') XV = AggregateData(dirs,RANK,'validating') Y = GetYLabs(YLAB, RANK, 'train_y.pickle') YV = GetYLabs(YLAB, RANK, 'val_y.pickle') print('DATA RETURNED',flush=True) print('X.shape:', X.shape,flush=True) print('XV.shape:', XV.shape,flush=True) print('Y.shape:', Y.shape,flush=True) print('YV.shape:', YV.shape,flush=True) # Step 3: Create the MLP mlp = GetMLP(int(X.shape[1]), int(Y.shape[1])) print('MULTI-LAYERED PERCEPTRON CREATED', flush=True) # Step 3: Train Model history = mlp.fit(X,Y, batch_size=256,epochs=EPOCHS, verbose=2, validation_data=(XV,YV), callbacks=[EarlyStopping(monitor='val_loss', min_delta=0, patience=5, verbose=0, mode='auto', restore_best_weights=True)]) # Step 4: Save softmax outputs # save predictions from all data inputs pred = mlp.predict(X) predV = mlp.predict(XV) predT = mlp.predict(AggregateData(dirs,RANK,'testing')) del X,XV print('Saving Training Softmax Output', flush= True) fname = args.dump_dir + 'training-task-' + str(task) + '.npy' np.save(fname, pred) print('Saving Validation Softmax Output', flush= True) fname = args.dump_dir + 'validating-task-' + str(task) + '.npy' np.save(fname, predV) print('Saving Testing Softmax Output', flush= True) fname = args.dump_dir + 'testing-task-' + str(task) + '.npy' np.save(fname, predT) print('',flush=True) if __name__ == '__main__': main() ```
{ "source": "jghaines/aws-config-rules", "score": 2 }
#### File: aws-config-rules/python/iam-mfa.py ```python import json import boto3 APPLICABLE_RESOURCES = ["AWS::IAM::User"] def evaluate_compliance(configuration_item): if configuration_item["resourceType"] not in APPLICABLE_RESOURCES: return "NOT_APPLICABLE" user_name = configuration_item["configuration"]["userName"] iam = boto3.client("iam") mfa = iam.list_mfa_devices(UserName=user_name) if len(mfa["MFADevices"]) > 0: return "COMPLIANT" else: return "NON_COMPLIANT" def lambda_handler(event, context): invoking_event = json.loads(event["invokingEvent"]) configuration_item = invoking_event["configurationItem"] result_token = "No token found." if "resultToken" in event: result_token = event["resultToken"] config = boto3.client("config") config.put_evaluations( Evaluations=[ { "ComplianceResourceType": configuration_item["resourceType"], "ComplianceResourceId": configuration_item["resourceId"], "ComplianceType": evaluate_compliance(configuration_item), "Annotation": "The user doesn't have MFA enabled.", "OrderingTimestamp": configuration_item["configurationItemCaptureTime"] }, ], ResultToken=result_token ) ``` #### File: aws-config-rules/python/vpc_flow_logs_enabled.py ```python import boto3 import json def evaluate_compliance(config_item, vpc_id): if (config_item['resourceType'] != 'AWS::EC2::VPC'): return 'NOT_APPLICABLE' elif is_flow_logs_enabled(vpc_id): return 'COMPLIANT' else: return 'NON_COMPLIANT' def is_flow_logs_enabled(vpc_id): ec2 = boto3.client('ec2') response = ec2.describe_flow_logs( Filter=[ { 'Name': 'resource-id', 'Values': [ vpc_id, ] }, ], ) if len(response[u'FlowLogs']) != 0: return True def lambda_handler(event, context): invoking_event = json.loads(event['invokingEvent']) compliance_value = 'NOT_APPLICABLE' vpc_id = invoking_event['configurationItem']['resourceId'] compliance_value = evaluate_compliance( invoking_event['configurationItem'], vpc_id) config = boto3.client('config') response = config.put_evaluations( Evaluations=[ { 'ComplianceResourceType': invoking_event['configurationItem']['resourceType'], 'ComplianceResourceId': vpc_id, 'ComplianceType': compliance_value, 'OrderingTimestamp': invoking_event['configurationItem']['configurationItemCaptureTime'] }, ], ResultToken=event['resultToken']) ```
{ "source": "jgharris7/DocClass", "score": 2 }
#### File: model/app/learnmodel.py ```python root='C:/Users/jgharris/DocClass/' dataFile='/data/shuffled-full-set-hashed.csv' import statistics as stat import pandas as pd from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score import matplotlib import matplotlib.pyplot as plt import numpy as np import pickle from DocClf2 import DocClf2 from Documents import Documents modelName="v3" #dataFile='/test/testshort.csv' maxlines=8000000 testsize=.2 random_state=45 MAXSTRINGLENGH=4000 FIRSTSTRINGLENGTH=80 def main(): # Set up corpus for training corpus=Documents() corpus.readFromFile(root+dataFile,maxline=maxlines) ''' model1=DocClfComplNB(maxStringLength=MAXSTRINGLENGH, \ firstStringLength=FIRSTSTRINGLENGTH) ''' model1=DocClf2(maxStringLength=MAXSTRINGLENGH, \ firstStringLength=FIRSTSTRINGLENGTH) print() # split into test and training sets xtrain,xtest,ytrain,ytest=\ train_test_split(corpus.words,corpus.y,test_size=testsize, \ random_state=random_state) ytrainpred=model1.fit(xtrain,ytrain) ytestpred=model1.predict(xtest) print([(i,ytest.count(i)) for i in sorted(set(ytest))]) trainAccuracy=accuracy_score(ytrain,ytrainpred) testAccuracy=accuracy_score(ytest,ytestpred) controlAccuracy=accuracy_score(np.random.permutation(ytest),ytestpred) global conf_mat conf_mat =model1.confidence(ytest, ytestpred) print(model1.confidence) print() print( np.unique(ytestpred,return_counts=True)) print() [print("%-25s" % key +" %5.3f" % value) for key,value in model1.confidence.items()] labels=[] [labels.append(key) for key in model1.confidence.keys()] for row in range(0,conf_mat.shape[0]): print( [" %4d" % conf_mat[row,col] for col in range(0,conf_mat.shape[1])]) rowsum=conf_mat.sum(axis=0) colsum=conf_mat.sum(axis=1) print("item rowsum colsum") for ic in range(0,conf_mat.shape[0]): print("%-25s" % labels[ic] + " %5d" % rowsum[ic]+ " %5d" % colsum[ic]) print("") print('train=%6.2f test=%6.2f control=%6.2f' % (trainAccuracy,testAccuracy,controlAccuracy)) pickle.dump(model1,open(root+modelName+".pckmdl","wb")) print(model1.confidence) print(ytestpred[0]) print(xtest[0][0:20]) testfile=open(root+modelName+"testdata.txt","wt") testfile.write(ytestpred[0]) testfile.write("\n") testfile.write(xtest[0]) testfile.write("\n") testfile.write(ytestpred[10]) testfile.write("\n") testfile.write(xtest[10]) testfile.write("\n") testfile.close() print( model1.message) def docpeek(): corpus=Documents() corpus.readFromFile(root+dataFile,maxline=maxlines) print([(i,corpus.y.count(i)) for i in corpus.classes]) corpus.makeDataFrame() x1=corpus.df[['class','count']].groupby(by='class') cnt=x1.count() a1=x1.min() a2=x1.max() a3=x1.mean() a4=x1.std() cnt.columns=['count'] a1.columns=['min'] a2.columns=['max'] a3.columns=['mean'] a4.columns=['std'] q=cnt.merge(a1,left_index=True,right_index=True)\ .merge(a2,left_index=True,right_index=True)\ .merge(a3,left_index=True,right_index=True) q=q.merge(a4,left_index=True,right_index=True) return corpus,q if __name__=='__main__': main() ```
{ "source": "jghibiki/corpusaurus", "score": 3 }
#### File: jghibiki/corpusaurus/classification.py ```python from flask import session, request, jsonify, abort import json import csv from os import path from math import floor data = None data_path = None base_route = "/api/classification/" def load(opts): if opts.input_data != None: preserve_fields = set() # check to see if a data field has been defined else die if opts.data_field: preserve_fields.add(opts.data_field) else: raise Exception("--data-field is required when loading from input file.") # check to see if there is a list of fields we should preserve # in the output file if opts.preserve_fields: preserve_fields.update(opts.preserve_fields.split()) if opts.debug: print("Loading Data") with open(opts.input_data, "r") as f: global data data = json.load(f) # clean up un-preserved columns bad_keys = set(data[0].keys()) - preserve_fields for key in bad_keys: for row in data: del row[key] # add classification field for row in data: row["classification"] = "none" if opts.debug: print("Loaded %s rows of data." % len(data) ) # load output path global data_path data_path = opts.output_data if opts.output_data else "out.json" # create an base output file if not path.exists(data_path): if opts.debug: print("Create new output file.") with open(data_path, "w") as f: json.dump(data, f) print("Finished Initializing Output File.") exit() else: if opts.debug: print("Load existing output file.") # load output path global data_path data_path = opts.output_data if opts.output_data else "out.json" with open(data_path, "r") as f: global data data = json.load(f) def register(app, opts): @app.route(base_route + "element/count/", methods=["GET"]) def getNumberOfElements(): global data return jsonify(result=len(data)) @app.route(base_route + "element/id/<int:element_id>", methods=["GET"]) def getElement(element_id): element = data[element_id][opts.data_field] resp = jsonify(element) session["next"] += 1 return resp @app.route(base_route + "element/<string:key_type>/<int:key>/classify/", methods=["POST"]) def setElementClassification(key_type, key): if key_type == "index": data[key]["classification"] = request.json["classification"] else: try: for x in data: if key_type in x and x[key_type] == key: data[data.index(x)]["classification"] = request.json["classification"] except: raise Exception("Invalid key_type in url request.") return jsonify(result=True) @app.route(base_route + "save/", methods=["GET"]) def save(): global data_path global data with open(data_path, "w") as f: json.dump(data, f) return jsonify(result=True) @app.route(base_route + "element/", defaults={"page": 0, "mask":""}, methods=["GET"]) @app.route(base_route + "element/page/<int:page>/", defaults={"mask":""}, methods=["GET"]) @app.route(base_route + "element/mask/<string:mask>/", defaults={"page":0}, methods=["GET"]) @app.route(base_route + "element/mask/<string:mask>/page/<int:page>/", methods=["GET"]) def getElements(page, mask): """ Get a page of elements """ global data page_size = 100 # Apply mask if nessisary if mask != "": masked_data = [ x for x in data if x["classification"] == mask ] else: masked_data = data max_page = floor(len(masked_data)/page_size) if page > max_page: page = 0 start = page_size * page end = start + page_size page_data = masked_data[start:end] return jsonify(data=page_data, page=page, max_page=max_page, page_size=100, mask=mask) ```
{ "source": "jghibiki/DungeonBuilder", "score": 2 }
#### File: jghibiki/DungeonBuilder/subscriptions.py ```python import magic import os import json ########################## # Config Operations # ########################## def getConfig(client, req): client.sendTarget(req["id"], key="get.config", payload={"payload": magic.config}) ########################## # User Operations # ########################## def getUsers(client, req): """ Get list of users and public data about them""" client.sendTarget(req["id"], key="get.users", payload={"payload": magic.users}) def moveUser(client, req): if "username" not in req["details"]: client.sendTarget( req["id"], type="error", key="move.user", payload={"msg": "Request details missing \"username\""}) return False username = req["details"]["username"] if "map_name" not in req["details"]: client.sendTarget( req["id"], type="error", key="move.user", payload={"msg": "Request details missing \"map_name\""}) return False map_name = req["details"]["map_name"] user = _getUserInfo(username=username) if not user: client.sendTarget( req["id"], type="error", key="move.user", payload={ "msg": "User with id \"{0}\" has not been registered.".format(req["id"]) }) return False if map_name not in set(magic.game_data["maps"].keys()): client.sendTarget( req["id"], type="error", key="move.user", payload={ "msg": "Map with name \"{0}\" does not exist." .format(new_map_name)}) return False user["current_map"] = map_name client.sendTarget( req["id"], type="acknowledge", key="move.user", payload={}) return True def registerUser(client, req): if "username" not in req["details"]: client.sendTarget( req["id"], type="error", key="register.user", payload={"msg": "Request details missing \"username\""}) return False new_username = req["details"]["username"] if "current_map" not in req["details"]: client.sendTarget( req["id"], type="error", key="register.user", payload={"msg": "Request details missing \"current_map\""}) return False current_map = req["details"]["current_map"] exists = False for user in magic.users: if user["username"] == new_username: exists = True break if not exists: new_user = {} new_user["username"] = new_username new_user["current_map"] = current_map new_user["client_id"] = req["id"] if req["password"] == <PASSWORD>: new_user["role"] = "gm" elif req["password"] == <PASSWORD>: new_user["role"] = "pc" if new_user["current_map"] == None: new_user["current_map"] = "__staging__" magic.users.append(new_user) client.sendTarget( req["id"], type="acknowledge", key="register.user", payload={}) return True else: # reassociate user with client for user in magic.users: if user["username"] == new_username: user["client_id"] = req["id"] client.sendTarget( req["id"], type="acknowledge", key="register.user", payload={}) return True ########################## # Chat Operations # ########################## def getChat(client, req): username = None for user in magic.users: if user["client_id"] == req["id"]: username = user["username"] break if username: all_messages = magic.game_data["chat"] messages = [] for msg in all_messages: if ( msg["recipient"] == username or msg["sender"] == username or msg["recipient"] == None ): messages.append(msg) client.sendTarget( req["id"], key="get.chat", payload={"payload": messages}) return True return False def addChatMessage(client, req): if "sender" not in req["details"]: client.sendTarget( req["id"], type="error", key="register.user", payload={"msg": "Request details missing \"sender\""}) return False sender = req["details"]["sender"] if "message" not in req["details"]: client.sendTarget( req["id"], type="error", key="register.user", payload={"msg": "Request details missing \"message\""}) return False message = req["details"]["message"] recipient = req["details"]["recipient"] if "recipient" in req["details"] else None persona = req["details"]["persona"] if "persona" in req["details"] else None magic.game_data["chat"].append({ "sender": sender, "recipient": recipient, "message": message, "persona": persona }) return True def clearChat(client, req): magic.game_data["chat"] = [] return True ########################## # Map Operations # ########################## def listMaps(client, req): maps = list(magic.game_data["maps"].keys()) client.sendTarget(req["id"], key="list.maps", payload={"payload": maps}) def addMap(client, req): if "name" not in req["details"]: client.sendTarget( req["id"], type="error", key="add.map", payload={"msg": "Request details missing \"name\""}) return False new_map_name = req["details"]["name"] if "width" not in req["details"]: client.sendTarget( req["id"], type="error", key="add.map", payload={"msg": "Request details missing \"width\""}) return False width = req["details"]["width"] if "height" not in req["details"]: client.sendTarget( req["id"], type="error", key="add.map", payload={"msg": "Request details missing \"height\""}) return False height = req["details"]["height"] for map_name in magic.game_data["maps"].keys(): if map_name == new_map_name: client.sendTarget( req["id"], type="error", key="add.map", payload={ "msg": "Map with name \"{0}\" already exists." .format(new_map_name)}) return False magic.game_data["maps"][new_map_name] = { "max_x": width, "max_y": height, "feature_types": [], "features": [], "notes": [], "units": [], "fow": [ [ False for y in range(height) ] for x in range(width) ] } client.sendTarget( req["id"], type="acknowledge", key="add.map", payload={}) return True def removeMap(client, req): if "name" not in req["details"]: client.sendTarget( req["id"], type="error", key="remove.map", payload={"msg": "Request details missing \"name\""}) return False map_to_remove = req["details"]["name"] exists = False for map_name in magic.game_data["maps"].keys(): if map_name == map_to_remove: exists = True break if exists: del magic.game_data["maps"][map_to_remove] client.sendTarget( req["id"], type="acknowledge", key="remove.map", payload={}) return True else: client.sendTarget( req["id"], type="error", key="remove.map", payload={ "msg": "Map with name \"{0}\" does not exist." .format(new_map_name)}) return False def renameMap(client, req): if "current_name" not in req["details"]: client.sendTarget( req["id"], type="error", key="rename.map", payload={"msg": "Request details missing \"current_name\""}) return False current_name = req["details"]["current_name"] if "new_name" not in req["details"]: client.sendTarget( req["id"], type="error", key="rename.map", payload={"msg": "Request details missing \"new_name\""}) return False new_name = req["details"]["new_name"] print(current_name, new_name) if current_name == new_name: client.sendTarget( req["id"], type="error", key="rename.map", payload={ "msg": "Current map name and new map name cannot be the same."}) return False exists = False for map_name in magic.game_data["maps"].keys(): if map_name == current_name: exists = True break if exists: magic.game_data["maps"][new_name] = magic.game_data["maps"][current_name] del magic.game_data["maps"][current_name] client.sendTarget( req["id"], type="acknowledge", key="rename.map", payload={}) return True else: client.sendTarget( req["id"], type="error", key="rename.map", payload={ "msg": "Map with name \"{0}\" does not exist." .format(new_map_name)}) return False def getMap(client, req): user = _getUserInfo(id=req["id"]) if user: if user["current_map"] in magic.game_data["maps"]: data = magic.game_data["maps"][user["current_map"]] client.sendTarget(req["id"], key="get.map", payload={"payload": data}) return True else: client.sendTarget( req["id"], type="error", key="get.map", payload={ "msg": "User \"{0}\" is on map \"{1}\", however this map could not be found.".format(user["username"], user["current_map"]) }) return False else: client.sendTarget( req["id"], type="error", key="get.map", payload={ "msg": "User with id \"{0}\" has not been registered.".format(req["id"]) }) return False # # Note Operations # def getMapNotes(client, req): user = _getUserInfo(id=req["id"]) if user: if user["current_map"] in magic.game_data["maps"]: notes = magic.game_data["maps"][user["current_map"]]["notes"] client.sendTarget(req["id"], key="get.map.notes", payload={"payload": notes}) return True else: client.sendTarget( req["id"], type="error", key="get.map.notes", payload={ "msg": "User \"{0}\" is on map \"{1}\", however this map could not be found.".format(user["username"], user["current_map"]) }) return False else: client.sendTarget( req["id"], type="error", key="get.map.notes", payload={ "msg": "User with id \"{0}\" has not been registered.".format(req["id"]) }) return False def addMapNote(client, req): # x and y should be optional x = req["details"]["x"] if "x" in req["details"] else None y = req["details"]["y"] if "y" in req["details"] else None if "name" not in req["details"]: client.sendTarget( req["id"], type="error", key="add.map.notes", payload={"msg": "Request details missing \"name\""}) return False name = req["details"]["name"] if "text" not in req["details"]: client.sendTarget( req["id"], type="error", key="add.map.notes", payload={"msg": "Request details missing \"text\""}) return False text = req["details"]["text"] if "id" not in req["details"]: client.sendTarget( req["id"], type="error", key="add.map.note", payload={"msg": "Request details missing \"id\""}) return False id = req["details"]["id"] user = _getUserInfo(id=req["id"]) if not user: client.sendTarget( req["id"], type="error", key="add.map.note", payload={ "msg": "User with id \"{0}\" has not been registered.".format(req["id"]) }) return False if user["current_map"] not in magic.game_data["maps"]: client.sendTarget( req["id"], type="error", key="add.map.note", payload={ "msg": "User \"{0}\" is on map \"{1}\", however this map could not be found.".format(user["username"], user["current_map"]) }) return False magic.game_data["maps"][user["current_map"]]["notes"].append({ "x": x, "y": y, "text": text, "name": name, "id": id }) client.sendTarget( req["id"], type="acknowledge", key="add.map.notes", payload={}) return True def removeMapNote(client, req): if "id" not in req["details"]: client.sendTarget( req["id"], type="error", key="remove.map.note", payload={"msg": "Request details missing \"id\""}) return False id = req["details"]["id"] user = _getUserInfo(id=req["id"]) if not user: client.sendTarget( req["id"], type="error", key="remove.map.note", payload={ "msg": "User with id \"{0}\" has not been registered.".format(req["id"]) }) return False if user["current_map"] not in magic.game_data["maps"]: client.sendTarget( req["id"], type="error", key="remove.map.note", payload={ "msg": "User \"{0}\" is on map \"{1}\", however this map could not be found.".format(user["username"], user["current_map"]) }) return False notes = magic.game_data["maps"][user["current_map"]]["notes"] for note in notes: if note["id"] == id: notes.remove(note) client.sendTarget( req["id"], type="acknowledge", key="add.map.note", payload={}) return True client.sendTarget( req["id"], type="error", key="remove.map.note", payload={ "msg": "Note with id \"{0}\" on map \"{1}\".".format(id, user["current_map"]) }) return False def modifyMapNote(client, req): x = req["details"]["x"] if "x" in req["details"] else None y = req["details"]["y"] if "y" in req["details"] else None if "text" not in req["details"]: client.sendTarget( req["id"], type="error", key="modify.map.note", payload={"msg": "Request details missing \"text\""}) return False text = req["details"]["text"] if "id" not in req["details"]: client.sendTarget( req["id"], type="error", key="modify.map.note", payload={"msg": "Request details missing \"id\""}) return False id = req["details"]["id"] user = _getUserInfo(id=req["id"]) if not user: client.sendTarget( req["id"], type="error", key="modify.map.note", payload={ "msg": "User with id \"{0}\" has not been registered.".format(req["id"]) }) return False if user["current_map"] not in magic.game_data["maps"]: client.sendTarget( req["id"], type="error", key="modiy.map.note", payload={ "msg": "User \"{0}\" is on map \"{1}\", however this map could not be found.".format(user["username"], user["current_map"]) }) return False notes = magic.game_data["maps"][user["current_map"]]["notes"] for note in notes: if note["id"] == id: note["text"] = text note["x"] = x note["y"] = y client.sendTarget( req["id"], type="acknowledge", key="modify.map.note", payload={}) return True client.sendTarget( req["id"], type="error", key="modify.map.note", payload={ "msg": "Note with id \"{0}\" on map \"{1}\".".format(id, user["current_map"]) }) return False # # Feature Operations # def getMapFeatureTypes(client, req): user = _getUserInfo(id=req["id"]) if not user: client.sendTarget( req["id"], type="error", key="get.map.feature.types", payload={ "msg": "User with id \"{0}\" has not been registered.".format(req["id"]) }) return False if user["current_map"] not in magic.game_data["maps"]: client.sendTarget( req["id"], type="error", key="get.map.feature.types", payload={ "msg": "User \"{0}\" is on map \"{1}\", however this map could not be found.".format(user["username"], user["current_map"]) }) return False types = magic.game_data["maps"][user["current_map"]]["feature_types"] client.sendTarget(req["id"], key="get.map.feature.types", payload={"payload": types}) return True def removeMapFeatureType(client, req): if "name" not in req["details"]: client.sendTarget( req["id"], type="error", key="remove.map.feature.type", payload={"msg": "Request details missing \"name\""}) return False name = req["details"]["name"] user = _getUserInfo(id=req["id"]) if not user: client.sendTarget( req["id"], type="error", key="remove.map.feature.type", payload={ "msg": "User with id \"{0}\" has not been registered.".format(req["id"]) }) return False if user["current_map"] not in magic.game_data["maps"]: client.sendTarget( req["id"], type="error", key="remove.map.feature.type", payload={ "msg": "User \"{0}\" is on map \"{1}\", however this map could not be found.".format(user["username"], user["current_map"]) }) return False for feature_type in magic.game_data["maps"][user["current_map"]]["feature_types"]: if feature_type["name"] == name: magic.game_data["maps"][user["current_map"]]["feature_types"].remove(feature_type) client.sendTarget( req["id"], type="acknowledge", key="remove.map.feature.type", payload={}) return True client.sendTarget( req["id"], type="error", key="remove.map.feature.type", payload={ "msg": "Feature type with name \"{0}\" does not exist.".format(name)}) return False def addMapFeatureType(client, req): if "name" not in req["details"]: client.sendTarget( req["id"], type="error", key="add.map.feature.type", payload={"msg": "Request details missing \"name\""}) return False name = req["details"]["name"] if "color" not in req["details"]: client.sendTarget( req["id"], type="error", key="add.map.feature.type", payload={"msg": "Request details missing \"color\""}) return False color = req["details"]["color"] if "character" not in req["details"]: client.sendTarget( req["id"], type="error", key="add.map.feature.type", payload={"msg": "Request details missing \"character\""}) return False character = req["details"]["character"] if "key" not in req["details"]: client.sendTarget( req["id"], type="error", key="add.map.feature.type", payload={"msg": "Request details missing \"key\""}) return False key = req["details"]["key"] user = _getUserInfo(id=req["id"]) if not user: client.sendTarget( req["id"], type="error", key="add.map.feature.type", payload={ "msg": "User with id \"{0}\" has not been registered.".format(req["id"]) }) return False if user["current_map"] not in magic.game_data["maps"]: client.sendTarget( req["id"], type="error", key="add.map.feature.type", payload={ "msg": "User \"{0}\" is on map \"{1}\", however this map could not be found.".format(user["username"], user["current_map"]) }) return False magic.game_data["maps"][user["current_map"]]["feature_types"].append({ "name": name, "character": character, "color": color, "key": key }) client.sendTarget( req["id"], type="acknowledge", key="add.map.feature.type", payload={}) return True def addMapFeature(client, req): if "x" not in req["details"]: client.sendTarget( req["id"], type="error", key="add.map.feature", payload={"msg": "Request details missing \"x\""}) return False x = req["details"]["x"] if "y" not in req["details"]: client.sendTarget( req["id"], type="error", key="add.map.feature", payload={"msg": "Request details missing \"y\""}) return False y = req["details"]["y"] if "type" not in req["details"]: client.sendTarget( req["id"], type="error", key="add.map.feature", payload={"msg": "Request details missing \"type\""}) return False type = req["details"]["type"] user = _getUserInfo(id=req["id"]) if user: if user["current_map"] in magic.game_data["maps"]: features = magic.game_data["maps"][user["current_map"]]["features"] # check if feature already exists here if so error out for feature in features: if feature["y"] == y and feature["x"] == x: client.sendTarget( req["id"], type="error", key="add.map.feature", payload={ "msg": "Feature already exists at ({0}, {1})" .format(x, y)}) return False features.append({ "type": type, "x": x, "y": y }) client.sendTarget( req["id"], type="acknowledge", key="add.map.feature", payload={}) return True else: client.sendTarget( req["id"], type="error", key="add.map.feature", payload={ "msg": "User \"{0}\" is on map \"{1}\", however this map could not be found.".format(user["username"], user["current_map"]) }) return False else: client.sendTarget( req["id"], type="error", key="add.map.feature", payload={ "msg": "User with id \"{0}\" has not been registered.".format(req["id"]) }) return False def removeMapFeature(client, req): if "x" not in req["details"]: client.sendTarget( req["id"], type="error", key="remove.map.feature", payload={"msg": "Request details missing \"x\""}) return False x = req["details"]["x"] if "y" not in req["details"]: client.sendTarget( req["id"], type="error", key="remove.map.feature", payload={"msg": "Request details missing \"y\""}) return False y = req["details"]["y"] user = _getUserInfo(id=req["id"]) if user: if user["current_map"] in magic.game_data["maps"]: features = magic.game_data["maps"][user["current_map"]]["features"] # check if feature already exists here if so error out for feature in features: if feature["y"] == y and feature["x"] == x: features.pop(features.index(feature)) client.sendTarget( req["id"], type="acknowledge", key="add.map.feature", payload={}) return True client.sendTarget( req["id"], type="error", key="add.map.feature", payload={ "msg": "Feature does not exist at ({0}, {1})" .format(x, y)}) return False else: client.sendTarget( req["id"], type="error", key="add.map.feature", payload={ "msg": "User \"{0}\" is on map \"{1}\", however this map could not be found.".format(user["username"], user["current_map"]) }) return False else: client.sendTarget( req["id"], type="error", key="add.map.feature", payload={ "msg": "User with id \"{0}\" has not been registered.".format(req["id"]) }) return False # # Fog Of War Operations # def getMapFow(client, req): user = _getUserInfo(id=req["id"]) if not user: client.sendTarget( req["id"], type="error", key="get.map.fow", payload={ "msg": "User with id \"{0}\" has not been registered.".format(req["id"]) }) return False if user["current_map"] not in magic.game_data["maps"]: client.sendTarget( req["id"], type="error", key="get.map.fow", payload={ "msg": "User \"{0}\" is on map \"{1}\", however this map could not be found.".format(user["username"], user["current_map"]) }) return False fow = magic.game_data["maps"][user["current_map"]]["fow"] client.sendTarget(req["id"], key="get.map.fow", payload={"payload": fow}) return True def addMapFow(client, req): if "x" not in req["details"]: client.sendTarget( req["id"], type="error", key="add.map.fow", payload={"msg": "Request details missing \"x\""}) return False x = req["details"]["x"] if "y" not in req["details"]: client.sendTarget( req["id"], type="error", key="add.map.fow", payload={"msg": "Request details missing \"y\""}) return False y = req["details"]["y"] user = _getUserInfo(id=req["id"]) if not user: client.sendTarget( req["id"], type="error", key="remove.map.fow", payload={ "msg": "User with id \"{0}\" has not been registered.".format(req["id"]) }) return False if user["current_map"] not in magic.game_data["maps"]: client.sendTarget( req["id"], type="error", key="remove.map.fow", payload={ "msg": "User \"{0}\" is on map \"{1}\", however this map could not be found.".format(user["username"], user["current_map"]) }) return False magic.game_data["maps"][user["current_map"]]["fow"][x][y] = True client.sendTarget( req["id"], type="acknowledge", key="add.map.fow", payload={}) return True def removeMapFow(client, req): if "x" not in req["details"]: client.sendTarget( req["id"], type="error", key="remove.map.fow", payload={"msg": "Request details missing \"x\""}) return False x = req["details"]["x"] if "y" not in req["details"]: client.sendTarget( req["id"], type="error", key="remove.map.fow", payload={"msg": "Request details missing \"y\""}) return False y = req["details"]["y"] user = _getUserInfo(id=req["id"]) if not user: client.sendTarget( req["id"], type="error", key="remove.map.fow", payload={ "msg": "User with id \"{0}\" has not been registered.".format(req["id"]) }) return False if user["current_map"] not in magic.game_data["maps"]: client.sendTarget( req["id"], type="error", key="remove.map.fow", payload={ "msg": "User \"{0}\" is on map \"{1}\", however this map could not be found.".format(user["username"], user["current_map"]) }) return False magic.game_data["maps"][user["current_map"]]["fow"][x][y] = False client.sendTarget( req["id"], type="acknowledge", key="remove.map.fow", payload={}) return True ########################## # Unit Functions # ########################## def getMapUnits(client, req): user = _getUserInfo(id=req["id"]) if not user: client.sendTarget( req["id"], type="error", key="get.map.units", payload={ "msg": "User with id \"{0}\" has not been registered.".format(req["id"]) }) return False if user["current_map"] not in magic.game_data["maps"]: client.sendTarget( req["id"], type="error", key="get.map.units", payload={ "msg": "User \"{0}\" is on map \"{1}\", however this map could not be found.".format(user["username"], user["current_map"]) }) return False units = magic.game_data["maps"][user["current_map"]]["units"] client.sendTarget(req["id"], key="get.map.units", payload={"payload": units}) return True def exportMapUnit(client, req): if "id" not in req["details"]: client.sendTarget( req["id"], type="error", key="export.map.unit", payload={"msg": "Request details missing \"id\""}) return False id = req["details"]["id"] user = _getUserInfo(id=req["id"]) if not user: client.sendTarget( req["id"], type="error", key="export.map.unit", payload={ "msg": "User with id \"{0}\" has not been registered.".format(req["id"]) }) return False if user["current_map"] not in magic.game_data["maps"]: client.sendTarget( req["id"], type="error", key="export.map.unit", payload={ "msg": "User \"{0}\" is on map \"{1}\", however this map could not be found.".format(user["username"], user["current_map"]) }) return False unit_exp = None for unit in magic.game_data["maps"][user["current_map"]]["units"]: if unit["id"] == id: unit_exp = unit break if not unit: client.sendTarget( req["id"], type="error", key="export.map.unit", payload={ "msg": "Unit with id \"{0}\" could not be found. Export failed.".format(id) }) return False if not os.path.exists("exports"): #TODO make export dir configurable os.makedirs("exports") file_name = unit["name"].replace(" ", "_") + ".json" with open("exports/" + file_name, mode='w') as f: json.dump(unit_exp, f, indent=4) def addMapUnit(client, req): if "x" not in req["details"]: client.sendTarget( req["id"], type="error", key="add.map.unit", payload={"msg": "Request details missing \"x\""}) return False x = req["details"]["x"] if "y" not in req["details"]: client.sendTarget( req["id"], type="error", key="add.map.unit", payload={"msg": "Request details missing \"y\""}) return False y = req["details"]["y"] if "name" not in req["details"]: client.sendTarget( req["id"], type="error", key="add.map.unit", payload={"msg": "Request details missing \"name\""}) return False name = req["details"]["name"] if "max_health" not in req["details"]: client.sendTarget( req["id"], type="error", key="add.map.unit", payload={"msg": "Request details missing \"max_health\""}) return False max_health = req["details"]["max_health"] if "current_health" not in req["details"]: client.sendTarget( req["id"], type="error", key="add.map.unit", payload={"msg": "Request details missing \"current_health\""}) return False current_health = req["details"]["current_health"] if "controller" not in req["details"]: client.sendTarget( req["id"], type="error", key="add.map.unit", payload={"msg": "Request details missing \"controller\""}) return False controller = req["details"]["controller"] if "type" not in req["details"]: client.sendTarget( req["id"], type="error", key="add.map.unit", payload={"msg": "Request details missing \"type\""}) return False _type = req["details"]["type"] if "id" not in req["details"]: client.sendTarget( req["id"], type="error", key="add.map.unit", payload={"msg": "Request details missing \"id\""}) return False _id = req["details"]["id"] #optional params template_type = None if "template_type" in req["details"]: template_type = req["details"]["template_type"] template_values = [] if "template_values" in req["details"]: template_values = req["details"]["template_values"] user = _getUserInfo(id=req["id"]) if not user: client.sendTarget( req["id"], type="error", key="add.map.unit", payload={ "msg": "User with id \"{0}\" has not been registered.".format(req["id"]) }) return False if user["current_map"] not in magic.game_data["maps"]: client.sendTarget( req["id"], type="error", key="add.map.unit", payload={ "msg": "User \"{0}\" is on map \"{1}\", however this map could not be found.".format(user["username"], user["current_map"]) }) return False units = magic.game_data["maps"][user["current_map"]]["units"] units.append({ "x": x, "y": y, "name": name, "max_health": max_health, "current_health": current_health, "controller": controller, "type": _type, "id": _id, "template_type": template_type, "template_values": template_values }) client.sendTarget( req["id"], type="acknowledge", key="add.map.unit", payload={}) return True def modifyMapUnit(client, req): if "x" not in req["details"]: client.sendTarget( req["id"], type="error", key="modify.map.unit", payload={"msg": "Request details missing \"x\""}) return False x = req["details"]["x"] if "y" not in req["details"]: client.sendTarget( req["id"], type="error", key="modify.map.unit", payload={"msg": "Request details missing \"y\""}) return False y = req["details"]["y"] if "name" not in req["details"]: client.sendTarget( req["id"], type="error", key="modify.map.unit", payload={"msg": "Request details missing \"name\""}) return False name = req["details"]["name"] if "max_health" not in req["details"]: client.sendTarget( req["id"], type="error", key="modify.map.unit", payload={"msg": "Request details missing \"max_health\""}) return False max_health = req["details"]["max_health"] if "current_health" not in req["details"]: client.sendTarget( req["id"], type="error", key="modify.map.unit", payload={"msg": "Request details missing \"current_health\""}) return False current_health = req["details"]["current_health"] if "controller" not in req["details"]: client.sendTarget( req["id"], type="error", key="modify.map.unit", payload={"msg": "Request details missing \"controller\""}) return False controller = req["details"]["controller"] if "type" not in req["details"]: client.sendTarget( req["id"], type="error", key="modify.map.unit", payload={"msg": "Request details missing \"type\""}) return False type = req["details"]["type"] if "id" not in req["details"]: client.sendTarget( req["id"], type="error", key="modify.map.unit", payload={"msg": "Request details missing \"id\""}) return False id = req["details"]["id"] #optional params template_type = None if "template_type" in req["details"]: template_type = req["details"]["template_type"] template_values = [] if "template_values" in req["details"]: template_values = req["details"]["template_values"] user = _getUserInfo(id=req["id"]) if not user: client.sendTarget( req["id"], type="error", key="modify.map.unit", payload={ "msg": "User with id \"{0}\" has not been registered.".format(req["id"]) }) return False if user["current_map"] not in magic.game_data["maps"]: client.sendTarget( req["id"], type="error", key="modify.map.unit", payload={ "msg": "User \"{0}\" is on map \"{1}\", however this map could not be found.".format(user["username"], user["current_map"]) }) return False units = magic.game_data["maps"][user["current_map"]]["units"] for unit in units: if unit["id"] == id: unit["x"] = x unit["y"] = y unit["name"] = name unit["max_health"] = max_health unit["current_health"] = current_health unit["controller"] = controller unit["type"] = type unit["template_type"] = template_type unit["template_values"] = template_values client.sendTarget( req["id"], type="acknowledge", key="modify.map.unit", payload={}) return True client.sendTarget( req["id"], type="error", key="modify.map.unit", payload={ "msg": "Note with id \"{0}\" on map \"{1}\".".format(id, user["current_map"]) }) return False def removeMapUnit(client, req): if "id" not in req["details"]: client.sendTarget( req["id"], type="error", key="remove.map.unit", payload={"msg": "Request details missing \"id\""}) return False id = req["details"]["id"] user = _getUserInfo(id=req["id"]) if not user: client.sendTarget( req["id"], type="error", key="remove.map.unit", payload={ "msg": "User with id \"{0}\" has not been registered.".format(req["id"]) }) return False if user["current_map"] not in magic.game_data["maps"]: client.sendTarget( req["id"], type="error", key="remove.map.unit", payload={ "msg": "User \"{0}\" is on map \"{1}\", however this map could not be found.".format(user["username"], user["current_map"]) }) return False units = magic.game_data["maps"][user["current_map"]]["units"] for unit in units: if unit["id"] == id: units.remove(unit) client.sendTarget( req["id"], type="acknowledge", key="remove.map.unit", payload={}) return True client.sendTarget( req["id"], type="error", key="remove.map.unit", payload={ "msg": "Unit with id \"{0}\" not found on map \"{1}\".".format(id, user["current_map"]) }) return False ########################## # Narrative Functions # ########################## def addNarrative(client, req): if "name" not in req["details"]: client.sendTarget( req["id"], type="error", key="add.narrative", payload={"msg": "Request details missing \"name\""}) return False name = req["details"]["name"] if "chapter_no" not in req["details"]: nos = [ el["chapter_no"] for el in magic.game_data["story"]] if len(nos) > 0: maximum = max(nos) else: maximum = 0 chapter_no = maximum + 1 else: chapter_no = req["details"]["chapter_no"] text = req["details"]["text"] if "text" in req["details"] else None magic.game_data["story"].append({ "name": name, "chapter_no": chapter_no, "text": text }) client.sendTarget( req["id"], type="acknowledge", key="add.narrative", payload={}) return True def removeNarrative(client, req): if "chapter_no" not in req["details"]: client.sendTarget( req["id"], type="error", key="add.narrative", payload={"msg": "Request details missing \"chapter_no\""}) return False chapter_no = req["details"]["chapter_no"] for chapter in magic.game_data["story"]: if chapter["chapter_no"] == chapter_no: chapters = magic.game_data["story"] chapters.remove(chapter) higher_no_chapters = [ chapters.index(x) for x in chapters if x["chapter_no"] > chapter_no] for x in higher_no_chapters: chapters[x]["chapter_no"] -= 1 client.sendTarget( req["id"], type="acknowledge", key="remove.narrative", payload={}) return True client.sendTarget( req["id"], type="error", key="remove.narrative", payload={ "msg": "Narrative with chapter number \"{0}\" not found .".format(chapter_no) }) return False def modifyNarrative(client, req): if "name" not in req["details"]: client.sendTarget( req["id"], type="error", key="modify.narrative", payload={"msg": "Request details missing \"name\""}) return False name = req["details"]["name"] if "chapter_no" not in req["details"]: client.sendTarget( req["id"], type="error", key="modify.narrative", payload={"msg": "Request details missing \"chapter_no\""}) return False chapter_no = req["details"]["chapter_no"] new_chapter_no = req["details"]["new_chapter_no"] if "new_chapter_no" in req["details"] else None if "text" not in req["details"]: client.sendTarget( req["id"], type="error", key="modify.narrative", payload={"msg": "Request details missing \"text\""}) return False text = req["details"]["text"] for chapter in magic.game_data["story"]: if chapter["chapter_no"] == chapter_no: if new_chapter_no: chapter["chapter_no"] = new_chapter_no chapter["name"] = name chapter["text"] = text client.sendTarget( req["id"], type="acknowledge", key="modify.narrative", payload={}) return True client.sendTarget( req["id"], type="error", key="modify.narrative", payload={ "msg": "Narrative with chapter number \"{0}\" not found .".format(chapter_no) }) return False def getNarrative(client, req): if "chapter_no" not in req["details"]: client.sendTarget( req["id"], type="error", key="get.narrative", payload={"msg": "Request details missing \"chapter_no\""}) return False chapter_no= req["details"]["chapter_no"] chapters = sorted(magic.game_data["story"], key=lambda x: x["chapter_no"]) for chapter in chapters: if chapter["chapter_no"] == chapter_no: client.sendTarget( req["id"], key="get.narrative", payload={"payload": chapter}) return True client.sendTarget( req["id"], type="error", key="get.narrative", payload={ "msg": "Narrative with chapter number \"{0}\" not found .".format(chapter_no) }) return False def listNarratives(client, req): chapter_names = [] chapters = sorted(magic.game_data["story"], key=lambda x: x["chapter_no"]) for chapter in chapters: chapter_names.append(chapter["name"]) client.sendTarget( req["id"], key="list.narratives", payload={"payload": chapter_names}) return True def exportNarratives(client, req): out = "" chapters = sorted(magic.game_data["story"], key=lambda x: x["chapter_no"]) for chapter in chapters: out += "Chapter {0}: {1}\n {2}\n\n".format( chapter["chapter_no"], chapter["name"], chapter["text"]) client.sendTarget( req["id"], key="export.narrative", payload={"payload": chapters}) return True ########################## # Save Data Function # ########################## def save(client, req): print("Saving Data...") magic.save() print("Data Saved.") client.sendTarget( req["id"], type="acknowledge", key="save", payload={}) ########################## # Util Functions # ########################## def _getUserInfo(id=None, username=None): if id is not None: for user in magic.users: if user["client_id"] == id: return user elif username is not None: for user in magic.users: if user["username"] == username: return user return None ########################## # Handlers # ########################## common_handlers = { "get.config": [getConfig], "get.map": [getMap], "register.user": [registerUser], "get.chat": [getChat], "get.map.units": [getMapUnits], "get.map.fow": [getMapFow], "get.map.feature.types": [getMapFeatureTypes] } gm_handlers = { "get.users": [getUsers], "move.user": [moveUser], "add.chat.message": [addChatMessage], "clear.chat": [clearChat], "add.map": [addMap], "remove.map": [removeMap], "rename.map": [renameMap], "list.maps": [listMaps], "add.map.note": [addMapNote], "remove.map.note": [removeMapNote], "modify.map.note": [modifyMapNote], "get.map.notes": [getMapNotes], "add.map.feature.type": [addMapFeatureType], "remove.map.feature.type": [removeMapFeatureType], "add.map.feature": [addMapFeature], "remove.map.feature": [removeMapFeature], "add.map.fow": [addMapFow], "remove.map.fow": [removeMapFow], "add.map.unit": [addMapUnit], "remove.map.unit": [removeMapUnit], "modify.map.unit": [modifyMapUnit], "export.map.unit": [exportMapUnit], "add.narrative": [addNarrative], "remove.narrative": [removeNarrative], "modify.narrative": [modifyNarrative], "get.narrative": [getNarrative], "list.narratives": [listNarratives], "export.narratives": [exportNarratives], "save": [save] } ``` #### File: DungeonBuilder/terminal/app_server.py ```python from flask import Flask, jsonify, request, abort,send_from_directory from flask_cors import CORS, cross_origin import sys import json import hashlib import random import authentication import log from uuid import uuid4 from authentication import requires_auth, requires_gm_auth app = Flask(__name__, static_url_path='') CORS(app) game_data = None save_callback = None users = [] ###### ## Helpers ##### def _get_user(): auth = request.authorization username = auth.username map_name = None for user in users: if user["username"] == username: return user return None ###### ## Error Handler ##### class InvalidUsage(Exception): status_code = 400 def __init__(self, message, status_code=None, payload=None): Exception.__init__(self) self.message = message if status_code is not None: self.status_code = status_code self.payload = payload def to_dict(self): rv = dict(self.payload or ()) rv['message'] = self.message return rv ### # Routes ### # STATIC FILES @app.route('/client/') def root(): return app.send_static_file('js_app/index.html') @app.route('/client/<path:path>') def send_static(path): return send_from_directory("js_app", path) @app.route("/map/data/", methods=["GET"]) @requires_auth def get_map(index=None): user = _get_user() if not user: return 'username not set', 400 name = user["current_map"] if not name: return 'user current_map not set', 400 return jsonify(game_data["maps"][name]) @app.route("/map/add", methods=["POST"]) @requires_gm_auth def add_feature_to_map(): data = request.json # validate request data if data is None: return 'No payload recieved', 400 if "y" not in data: return 'Payload missing field "y"', 400 if "x" not in data : return 'Payload missing field "x"', 400 if "type" not in data: return 'Playload missing field "type"', 400 if "notes" not in data: return ('Payload midding field "notes"', 400) user = _get_user() if not user: return 'username not set', 400 map_name = user["current_map"] if not map_name: return 'user current_map not set', 400 features = game_data["maps"][map_name]["features"] for feature in features: if feature["y"] == data["y"] and feature["x"] == data["x"]: return ('', 500) game_data["maps"][map_name]["features"].append(data) data = json.dumps(game_data["maps"][map_name], sort_keys=True).encode("utf-8") hsh = hashlib.md5(data).hexdigest() game_data["map_hashes"][map_name]["map"] = hsh return jsonify({}) @app.route("/map/bulk/add", methods=["POST"]) @requires_gm_auth def bulk_add_feature_to_map(): data = request.json if data is None: return 'No payload recieved', 400 new_features = data["features"] user = _get_user() if not user: return 'username not set', 400 map_name = user["current_map"] if not map_name: return 'user current_map not set', 400 features = game_data["maps"][map_name]["features"] already_exist = [] for new_feature in new_features: for feature in features: if feature["y"] == new_feature["y"] and feature["x"] == new_feature["x"]: already_exist.append(new_feature) new_features = [ feature for feature in new_features if feature not in already_exist ] for new_feature in new_features: game_data["maps"][map_name]["features"].append(new_feature) data = json.dumps(game_data["maps"][map_name], sort_keys=True).encode("utf-8") hsh = hashlib.md5(data).hexdigest() game_data["map_hashes"][map_name]["map"] = hsh return jsonify({}) @app.route('/map/rm', methods=["POST"]) @requires_gm_auth def rm_feature_from_map(): data = request.json if ( ( data is None ) or ( "y" not in data ) or ( "x" not in data ) ): return ('', 400) user = _get_user() if not user: return 'username not set', 400 map_name = user["current_map"] if not map_name: return 'user current_map not set', 400 features = game_data["maps"][map_name]["features"] for feature in features: if feature["y"] == data["y"] and feature["x"] == data["x"]: features.remove(feature) game_data["maps"][map_name]["features"] = features data = json.dumps(game_data["maps"][map_name], sort_keys=True).encode("utf-8") hsh = hashlib.md5(data).hexdigest() game_data["map_hashes"][map_name]["map"] = hsh return jsonify({}) return '', 500 @app.route('/map/new', methods=["POST"]) @requires_gm_auth def create_new_map(): data = request.json map_name = data["name"] max_x = data["width"] max_y = data["height"] game_data["maps"][map_name] = { "max_x": max_x, "max_y": max_y, "features": [], "notes": [], "units": [], "fow": [ [ False for y in range(max_y) ] for x in range(max_x) ] } @app.route('/map/bulk/rm', methods=["POST"]) @requires_gm_auth def bulk_rm_feature_from_map(): data = request.json if data is None: return ('', 400) new_features = data["features"] user = _get_user() if not user: return 'username not set', 400 map_name = user["current_map"] if not map_name: return 'user current_map not set', 400 features = game_data["maps"][map_name]["features"] for new_feature in new_features: for feature in features: if feature["y"] == new_feature["y"] and feature["x"] == new_feature["x"]: try: features.remove(feature) except: pass game_data["maps"][map_name]["features"] = features data = json.dumps(game_data["maps"][map_name], sort_keys=True).encode("utf-8") hsh = hashlib.md5(data).hexdigest() game_data["map_hashes"][map_name]["map"] = hsh return jsonify({}) @app.route('/map/update/', methods=["POST"]) @requires_gm_auth def update_feature(): data = request.json # validate request data if data is None: return 'No payload recieved', 400 if "y" not in data: return 'Payload missing field "y"', 400 if "x" not in data : return 'Payload missing field "x"', 400 if "type" not in data: return 'Playload missing field "type"', 400 if "notes" not in data: return ('Payload midding field "notes"', 400) user = _get_user() if not user: return 'username not set', 400 map_name = user["current_map"] if not map_name: return 'user current_map not set', 400 features = game_data["maps"][map_name]["features"] for idx, feature in enumerate(features): if feature["y"] == data["y"] and feature["x"] == data["x"]: game_data["maps"][map_name]["features"][idx] = data data = json.dumps(game_data["maps"][map_name], sort_keys=True).encode("utf-8") hsh = hashlib.md5(data).hexdigest() game_data["map_hashes"][map_name]["map"] = hsh return jsonify({}) @app.route("/map", methods=["POST"]) @requires_gm_auth def set_map_name(): data = request.json user_to_change = data["username"] new_map = data["map_name"] valid_map = False for map_name in game_data["maps"].keys(): if map_name == new_map: valid_map = True if not valid_map: return "Invalid map name", 400 global users for user in users: if user["username"] == user_to_change: user["current_map"] = new_map data = json.dumps(users, sort_keys=True).encode("utf-8") hsh = hashlib.md5(data).hexdigest() game_data["global_hashes"]["users"] = hsh return jsonify({"result": True}) return jsonify({"result": False}) @app.route("/map", methods=["GET"]) @requires_auth def get_map_name(): return jsonify({"maps": list(game_data["maps"].keys())}) @app.route("/narrative", methods=["GET"]) @requires_gm_auth def get_narratives(): narratives = [ nar["name"] for nar in game_data["story"] ] return jsonify({"chapters": narratives}) @app.route("/narrative", methods=["POST"]) @requires_gm_auth def add_narrative(): data = request.json if "name" not in data: return "Missing name field.", 400 game_data["story"].append({ "name": data["name"], "text": "" }) return jsonify({}) @app.route("/narrative/delete/<int:index>", methods=["GET"]) @requires_gm_auth def rm_narrative(index): game_data["story"].pop(index) return jsonify({}) @app.route("/narrative/<int:index>", methods=["GET"]) @requires_gm_auth def get_narrative_by_index(index): return jsonify(game_data["story"][index]) @app.route("/narrative/<int:index>", methods=["POST"]) @requires_gm_auth def update_narrative_by_index(index): data = request.json if data is None: return 'No payload recieved', 400 if "name" not in data: return 'Payload missing field "name"', 400 if "text" not in data : return 'Payload missing field "text"', 400 global game_data game_data["story"][index] = data return jsonify({}) @app.route('/chat', methods=["POST"]) @requires_auth def add_chat_message(): data = request.json if data is None: return 'No payload recieved', 400 if "sender" not in data: return 'Payload missing field "sender"', 400 if "recipient" not in data: return 'Payload missing field "recipient"', 400 if "message" not in data: return 'Payload missing field "message"', 400 global game_data game_data["chat"].append(data) data = json.dumps(game_data["chat"], sort_keys=True).encode("utf-8") hsh = hashlib.md5(data).hexdigest() game_data["global_hashes"]["chat"] = hsh return jsonify({}) @app.route('/users', methods=["GET"]) @requires_auth def get_users(): return jsonify({"users": users}) @app.route('/users', methods=["POST"]) @requires_auth def set_user_info(): data = request.json if "username" not in data: raise InvalidUsage('Payload missing field "username') if "current_map" not in data: raise InvalidUsage('Payload missing field "current_map') exists = False global users for user in users: if user["username"] == data["username"]: exists = True break if not exists: new_user = {} new_user["username"] = data["username"] new_user["current_map"] = "__staging__" auth = request.authorization if authentication.gm_password == auth.password: new_user["role"] = "gm" else: new_user["role"] = "pc" if new_user["current_map"] == None: new_user["current_map"] == "__staging__" users.append(new_user) data = json.dumps(users, sort_keys=True).encode("utf-8") hsh = hashlib.md5(data).hexdigest() user_hash = hsh return jsonify({}) @app.route('/notes', methods=["GET"]) @requires_auth def get_notes(): user = _get_user() if not user: return 'username not set', 400 map_name = user["current_map"] if not map_name: return 'user current_map not set', 400 return jsonify(game_data["maps"][map_name]["notes"]) #TODO: actually implement set notes (part of the point of interest replacement) @app.route('/notes', methods=["GET"]) @requires_auth def set_notes(): user = _get_user() if not user: return 'username not set', 400 map_name = user["current_map"] if not map_name: return 'user current_map not set', 400 return jsonify(game_data["maps"][map_name]["notes"]) @app.route('/chat/<username>', methods=["GET"]) @requires_auth def get_chat_messages(username): all_messages = game_data["chat"] messages = [] for message in all_messages: if ( message["recipient"] == username or message["sender"] == username or message["recipient"] == None ): messages.append(message) return jsonify({ "messages": messages }) @app.route('/chat/<username>/hash', methods=["GET"]) @requires_auth def get_chat_hash(username): all_messages = game_data["chat"] messages = [] #for message in all_messages: # if ( message["recipient"] == username or # message["sender"] == username or # message["recipient"] == None ): # messages.append(message) #data = json.dumps(messages, sort_keys=True).encode("utf-8") #hash = hashlib.md5(data).hexdigest() return jsonify({ "hash": chat_hash }) @app.route('/hash', methods=["GET"]) @requires_auth def get_hashes(): user = _get_user() if not user: return 'username not set', 400 map_name = user["current_map"] if not map_name: return 'user current_map not set', 400 return jsonify({ "map": game_data["map_hashes"][map_name]["map"], "fow": game_data["map_hashes"][map_name]["fow"], "units": game_data["map_hashes"][map_name]["units"], "chat": game_data["global_hashes"]["chat"], "users": game_data["global_hashes"]["users"] }) @app.route('/save', methods=["GET"]) @requires_gm_auth def save_data(): save_callback(game_data) return jsonify({}) @app.route('/fow/add', methods=["POST"]) @requires_gm_auth def add_fow(): data = request.json if "x" not in data: return 'Payload missing field "x"', 400 if "y" not in data: return 'Payload missing field "y"', 400 x = data["x"] y = data["y"] user = _get_user() if not user: return 'username not set', 400 map_name = user["current_map"] if not map_name: return 'user current_map not set', 400 global dame_data game_data["maps"][map_name]["fow"][x][y] = True data = json.dumps(game_data["maps"][map_name]["fow"], sort_keys=True).encode("utf-8") hsh = hashlib.md5(data).hexdigest() game_data["map_hashes"][map_name]["fow"] = hsh return jsonify({}) @app.route('/fow/bulk/add', methods=["POST"]) @requires_gm_auth def bulk_add_fow(): data = request.json user = _get_user() if not user: return 'username not set', 400 map_name = user["current_map"] if not map_name: return 'user current_map not set', 400 global game_data for row in data["fow"]: game_data["maps"][map_name]["fow"][row["x"]][row["y"]] = True data = json.dumps(game_data["maps"][map_name]["fow"], sort_keys=True).encode("utf-8") hsh = hashlib.md5(data).hexdigest() game_data["map_hashes"][map_name]["fow"] = hsh return jsonify({}) @app.route('/fow/rm', methods=["POST"]) @requires_gm_auth def rm_fow(): data = request.json if "x" not in data: return 'Payload missing field "x"', 400 if "y" not in data: return 'Payload missing field "y"', 400 x = data["x"] y = data["y"] user = _get_user() if not user: return 'username not set', 400 map_name = user["current_map"] if not map_name: return 'user current_map not set', 400 global game_data game_data["maps"][map_name]["fow"][x][y] = False data = json.dumps(game_data["maps"][map_name]["fow"], sort_keys=True).encode("utf-8") hsh = hashlib.md5(data).hexdigest() game_data["map_hashes"][map_name]["fow"] = hsh return jsonify({}) @app.route('/fow/bulk/rm', methods=["POST"]) @requires_gm_auth def bulk_rm_fow(): data = request.json user = _get_user() if not user: return 'username not set', 400 map_name = user["current_map"] if not map_name: return 'user current_map not set', 400 global dame_data for row in data["fow"]: game_data["maps"][map_name]["fow"][row["x"]][row["y"]] = False data = json.dumps(game_data["maps"][map_name]["fow"], sort_keys=True).encode("utf-8") hsh = hashlib.md5(data).hexdigest() game_data["map_hashes"][map_name]["fow"] = hsh return jsonify({}) @app.route('/fow', methods=["GET"]) @requires_auth def get_fow(): user = _get_user() if not user: return 'username not set', 400 map_name = user["current_map"] if not map_name: return 'user current_map not set', 400 return jsonify({ "fow": game_data["maps"][map_name]["fow"] }) @app.route('/fow/toggle', methods=["GET"]) @requires_gm_auth def toggle_fow(): user = _get_user() if not user: return 'username not set', 400 map_name = user["current_map"] if not map_name: return 'user current_map not set', 400 global game_data initial = not game_data["maps"][map_name]["fow"][0][0] for x in range(0, game_data["maps"][map_name]["max_x"]): for y in range(0, game_data["maps"][map_name]["max_y"]): game_data["maps"][map_name]["fow"][x][y] = initial data = json.dumps(game_data["maps"][map_name]["fow"], sort_keys=True).encode("utf-8") hsh = hashlib.md5(data).hexdigest() game_data["map_hashes"][map_name]["fow"] = hsh return jsonify({}) @app.route('/fow/fill', methods=["GET"]) @requires_gm_auth def all_fow(): user = _get_user() if not user: return 'username not set', 400 map_name = user["current_map"] if not map_name: return 'user current_map not set', 400 global game_data for x in range(0, game_data["maps"][map_name]["max_x"]): for y in range(0, game_data["maps"][map_name]["max_y"]): game_data["maps"][map_name]["fow"][x][y] = True data = json.dumps(game_data["maps"][map_name]["fow"], sort_keys=True).encode("utf-8") hsh = hashlib.md5(data).hexdigest() game_data["map_hashes"][map_name]["fow"] = hsh return jsonify({}) @app.route('/fow/clear', methods=["GET"]) @requires_gm_auth def none_fow(): user = _get_user() if not user: return 'username not set', 400 map_name = user["current_map"] if not map_name: return 'user current_map not set', 400 global game_data for x in range(0, game_data["maps"][map_name]["max_x"]): for y in range(0, game_data["maps"][map_name]["max_y"]): game_data["maps"][map_name]["fow"][x][y] = False data = json.dumps(game_data["maps"][map_name]["fow"], sort_keys=True).encode("utf-8") hsh = hashlib.md5(data).hexdigest() game_data["map_hashes"][map_name]["fow"] = hsh return jsonify({}) @app.route('/unit/add', methods=["POST"]) @requires_gm_auth def add_unit(): data = request.json if "x" not in data: return 'Payload missing field "x"', 400 if "y" not in data: return 'Payload missing field "y"', 400 if "name" not in data: return 'Payload missing field "name"', 400 if "max_health" not in data: return 'Payload missing field "max_health"', 400 if "current_health" not in data: return 'Payload missing field "current_health"', 400 if "controller" not in data: return 'Payload missing field "controller"', 400 if "type" not in data: return 'Payload missing field "type"', 400 data["id"] = str(uuid4()) user = _get_user() if not user: return 'username not set', 400 map_name = user["current_map"] if not map_name: return 'user current_map not set', 400 global game_data game_data["maps"][map_name]["units"].append(data) data = json.dumps(game_data["maps"][current_map]["units"], sort_keys=True).encode("utf-8") game_data["map_hashes"][map_name]["units"] = hashlib.md5(data).hexdigest() return jsonify({}) @app.route('/unit/rm', methods=["POST"]) @requires_gm_auth def rm_unit(): data = request.json if "id" not in data: return 'Payload missing field "id"', 400 user = _get_user() if not user: return 'username not set', 400 map_name = user["current_map"] if not map_name: return 'user current_map not set', 400 global game_data units = game_data["maps"][map_name]["units"] for unit in units: if unit["id"] == data["id"]: game_data["maps"][map_name]["units"].remove(unit) break data = json.dumps(game_data["maps"][current_map]["units"], sort_keys=True).encode("utf-8") game_data["map_hashes"][map_name]["units"] = hashlib.md5(data).hexdigest() return jsonify({}) @app.route('/unit/update', methods=["POST"]) @requires_auth def update_unit(): data = request.json if "x" not in data: return 'Payload missing field "x"', 400 if "y" not in data: return 'Payload missing field "y"', 400 if "name" not in data: return 'Payload missing field "name"', 400 if "max_health" not in data: return 'Payload missing field "max_health"', 400 if "current_health" not in data: return 'Payload missing field "current_health"', 400 if "controller" not in data: return 'Payload missing field "controller"', 400 if "type" not in data: return 'Payload missing field "type"', 400 if "id" not in data: return 'Payload missing field "id"', 400 global game_data user = _get_user() if not user: return 'username not set', 400 map_name = user["current_map"] if not map_name: return 'user current_map not set', 400 for i in range(len(game_data["maps"][map_name]["units"])): if game_data["maps"][map_name]["units"][i]["id"] == data["id"]: game_data["maps"][map_name]["units"][i] = data break data = json.dumps(game_data["maps"][map_name]["units"], sort_keys=True).encode("utf-8") game_data["map_hashes"][map_name]["units"] = hashlib.md5(data).hexdigest() return jsonify({}) @app.route('/unit', methods=["GET"]) @requires_auth def get_units(): user = _get_user() if not user: return 'username not set', 400 map_name = user["current_map"] if not map_name: return 'user current_map not set', 400 units = game_data["maps"][map_name]["units"] return jsonify({"units": units}) def run(data, port, host, gm_passwd, passwd, map_name, save): global game_data game_data = data global save_callback save_callback = save # add staging map game_data["maps"]["__staging__"] = { "max_x": 100, "max_y": 100, "features": [{"y": 4,"x": 8,"type": "Snow","notes": ""}, {"y": 4,"x": 7,"type": "Snow","notes": ""},{"y": 4,"x": 6,"type": "Snow","notes": ""}, {"y": 4,"x": 5,"type": "Snow","notes": ""},{"y": 5,"x": 5,"type": "Snow","notes": ""}, {"y": 6,"x": 5,"type": "Snow","notes": ""},{"y": 6,"x": 6,"type": "Snow","notes": ""}, {"y": 6,"x": 7,"type": "Snow","notes": ""},{"y": 6,"x": 8,"type": "Snow","notes": ""}, {"y": 7,"x": 8,"type": "Snow","notes": ""},{"y": 8,"x": 8,"type": "Snow","notes": ""}, {"y": 8,"x": 7,"type": "Snow","notes": ""},{"y": 8,"x": 6,"type": "Snow","notes": ""}, {"y": 8,"x": 5,"type": "Snow","notes": ""},{"y": 6,"x": 10,"type": "Snow","notes": ""}, {"y": 6,"x": 11,"type": "Snow","notes": ""},{"y": 6,"x": 12,"type": "Snow","notes": ""}, {"y": 6,"x": 13,"type": "Snow","notes": ""},{"y": 6,"x": 14,"type": "Snow","notes": ""}, {"y": 4,"x": 12,"type": "Snow","notes": ""},{"y": 5,"x": 12,"type": "Snow","notes": ""}, {"y": 7,"x": 12,"type": "Snow","notes": ""},{"y": 8,"x": 12,"type": "Snow","notes": ""}, {"y": 6,"x": 19,"type": "Snow","notes": ""},{"y": 6,"x": 18,"type": "Snow","notes": ""}, {"y": 6,"x": 17,"type": "Snow","notes": ""},{"y": 6,"x": 16,"type": "Snow","notes": ""}, {"y": 7,"x": 16,"type": "Snow","notes": ""},{"y": 8,"x": 16,"type": "Snow","notes": ""}, {"y": 8,"x": 17,"type": "Snow","notes": ""},{"y": 8,"x": 18,"type": "Snow","notes": ""}, {"y": 8,"x": 19,"type": "Snow","notes": ""},{"y": 7,"x": 19,"type": "Snow","notes": ""}, {"y": 7,"x": 20,"type": "Snow","notes": ""},{"y": 8,"x": 21,"type": "Snow","notes": ""}, {"y": 6,"x": 23,"type": "Snow","notes": ""},{"y": 7,"x": 23,"type": "Snow","notes": ""}, {"y": 8,"x": 23,"type": "Snow","notes": ""},{"y": 8,"x": 24,"type": "Snow","notes": ""}, {"y": 8,"x": 25,"type": "Snow","notes": ""},{"y": 8,"x": 26,"type": "Snow","notes": ""}, {"y": 7,"x": 26,"type": "Snow","notes": ""},{"y": 6,"x": 26,"type": "Snow","notes": ""}, {"y": 6,"x": 25,"type": "Snow","notes": ""},{"y": 6,"x": 24,"type": "Snow","notes": ""}, {"y": 9,"x": 26,"type": "Snow","notes": ""},{"y": 10,"x": 26,"type": "Snow","notes": ""}, {"y": 10,"x": 25,"type": "Snow","notes": ""},{"y": 10,"x": 24,"type": "Snow","notes": ""}, {"y": 10,"x": 23,"type": "Snow","notes": ""},{"y": 6,"x": 28,"type": "Snow","notes": ""}, {"y": 7,"x": 28,"type": "Snow","notes": ""},{"y": 8,"x": 28,"type": "Snow","notes": ""}, {"y": 4,"x": 28,"type": "Snow","notes": ""},{"y": 6,"x": 30,"type": "Snow","notes": ""}, {"y": 7,"x": 30,"type": "Snow","notes": ""},{"y": 8,"x": 30,"type": "Snow","notes": ""}, {"y": 6,"x": 31,"type": "Snow","notes": ""},{"y": 6,"x": 32,"type": "Snow","notes": ""}, {"y": 6,"x": 33,"type": "Snow","notes": ""},{"y": 7,"x": 33,"type": "Snow","notes": ""}, {"y": 8,"x": 33,"type": "Snow","notes": ""},{"y": 6,"x": 35,"type": "Snow","notes": ""}, {"y": 7,"x": 35,"type": "Snow","notes": ""},{"y": 8,"x": 35,"type": "Snow","notes": ""}, {"y": 8,"x": 36,"type": "Snow","notes": ""},{"y": 8,"x": 37,"type": "Snow","notes": ""}, {"y": 8,"x": 38,"type": "Snow","notes": ""},{"y": 7,"x": 38,"type": "Snow","notes": ""}, {"y": 6,"x": 38,"type": "Snow","notes": ""},{"y": 6,"x": 37,"type": "Snow","notes": ""}, {"y": 6,"x": 36,"type": "Snow","notes": ""},{"y": 9,"x": 38,"type": "Snow","notes": ""}, {"y": 10,"x": 38,"type": "Snow","notes": ""},{"y": 10,"x": 37,"type": "Snow","notes": ""}, {"y": 10,"x": 36,"type": "Snow","notes": ""},{"y": 10,"x": 35,"type": "Snow","notes": ""} ], "notes": [], "units": [], "fow": [ [ False for y in range(100) ] for x in range(100) ] } game_data["map_hashes"] = {} for map in game_data["maps"].keys(): data = json.dumps(game_data["maps"][map], sort_keys=True).encode("utf-8") map_hash = hashlib.md5(data).hexdigest() data = json.dumps(game_data["maps"][map]["fow"], sort_keys=True).encode("utf-8") fow_hash = hashlib.md5(data).hexdigest() data = json.dumps(game_data["maps"][map]["units"], sort_keys=True).encode("utf-8") unit_hash = hashlib.md5(data).hexdigest() game_data["map_hashes"][map] = { "map": map_hash, "fow": fow_hash, "units": unit_hash, } data = json.dumps(users, sort_keys=True).encode("utf-8") hsh = hashlib.md5(data).hexdigest() user_hash = hsh data = json.dumps(game_data["chat"], sort_keys=True).encode("utf-8") chat_hash = hashlib.md5(data).hexdigest() game_data["global_hashes"] = { "users": user_hash, "chat": chat_hash } tmp = "%s%s%s%s" % (random.randint(0, 9), random.randint(0, 9), random.randint(0, 9), random.randint(0, 9)) authentication.gm_password = gm_passwd if gm_passwd else tmp print("GM Password: %s" % authentication.gm_password) tmp = "%s%s%s%s" % (random.randint(0, 9), random.randint(0, 9), random.randint(0, 9), random.randint(0, 9)) authentication.password = passwd if passwd else tmp print("PC Password: %s" % authentication.password) app.run(port=port, host=host, threaded=True, debug=False) #, ssl_context=("ssl.crt", "ssl.key")) ``` #### File: DungeonBuilder/terminal/initiative_tracker.py ```python from interactive import InteractiveModule, TextDisplayModule from viewport import Viewport from text_box import TextBox import random import json import curses import log log = log.logger class InitiativeTracker(InteractiveModule, TextDisplayModule): def __init__(self): self._showing = False self.init_units = [] def _handle(self, viewer, ch): if ch == ord("I"): vp = viewer.get_submodule(Viewport) self.init_units = [] for unit in vp._units: self.init_units.append({ "include": False, "name": unit.name, "id": unit.id, "modifier": 0 }) text = json.dumps(self.init_units, indent=4) import sys, tempfile, os import subprocess EDITOR = os.environ.get('EDITOR','vim') with tempfile.NamedTemporaryFile(suffix=".md") as tf: text = text.encode("UTF-8") tf.write(text) tf.flush() subprocess.call([EDITOR, tf.name]) # do the parsing with `tf` using regular File operations. # for instance: tf.seek(0) out_text = tf.read().decode("UTF-8") # fix cursor after opening editor curses.curs_set(1) curses.curs_set(0) self.init_units = json.loads(out_text) viewer._draw(force=True) # force redraw after closing vim included = [] for unit in self.init_units: log.error(unit) if unit["include"]: included.append(unit) log.error(included) self.init_units = included for unit in self.init_units: unit["roll"] = unit["modifier"] + random.randint(0, 20) self.init_units = sorted(self.init_units, key=lambda x: x["roll"], reverse=True) viewer.apply_to_submodules(TextDisplayModule, lambda x: x._hide(viewer)) self._show(viewer) elif ch == ord("i"): viewer.apply_to_submodules(TextDisplayModule, lambda x: x._hide(viewer)) self._show(viewer) def _handle_help(self, viewer, buf): pass def _handle_combo(self, viewer, buf): split = buf.split(" ") if split[0] == "init" and ( split[1] == "roll" or split[1] == "r" ): for unit in self.init_units: unit["roll"] = unit["modifier"] + random.randint(0, 20) self.init_units = sorted(self.init_units, key=lambda x: x["roll"], reverse=True) self._show(viewer) def _show(self, viewer): self._showing = True tb = viewer.get_submodule(TextBox) lines = [ [{ "text": "Initiative:", "color": "Gold" }] ] for unit in self.init_units: lines.append([ { "text": "{0} - {1}".format(unit["roll"], unit["name"]), "color": None } ]) log.error(lines) tb.set(lines) def _hide(self, viewer): self._showing = False ``` #### File: DungeonBuilder/terminal/text_box.py ```python from interactive import VisibleModule, InteractiveModule, TextDisplayModule from viewer import ViewerConstants from state import State import colors import log import math import curses log = log.logger class TextBox(VisibleModule, InteractiveModule): def __init__(self): self.initial_draw_priority = -1 self.draw_priority = 10 self.x = 0 self.y = 0 self.h = ViewerConstants.max_y-2 self.w = math.floor(ViewerConstants.max_x/3) self._screen = curses.newwin(self.h, self.w, self.y, self.x) self._default_lines = [ [ { "text": "Text Box:" , "color": "Gold" } ], [ { "text": "ctrl + j", "color": "Gold" }, { "text": " - scroll down", "color": None } ], [ { "text": "ctrl + k" , "color": "Gold" }, { "text": " - scroll up", "color": None } ], [ { "text": ":clear", "color": "Gold" }, { "text": " - clear text box.", "color": None } ], [ { "text": ":read", "color": "Gold" }, { "text": " - read text in window. GM only.", "color": None } ], [ { "text": "Narrative (GM Only):", "color": "Gold" } ], [ { "text": ":n list", "color": "Gold" }, { "text": " - list chapters.", "color": None } ], [ { "text": ":n view <chapter number>", "color": "Gold" }, { "text": " - view chapter.", "color": None } ], [ { "text": ":n edit <chapter number>", "color": "Gold" }, { "text": " - edit chapter.", "color": None } ], [ { "text": ":n read <chapter number>", "color": "Gold" }, { "text": ": - read chapter. requires espeak.", "color": None } ], [ { "text": "Chat:", "color": "Gold" } ], [ { "text": ":chat <message>", "color": "Gold" }, { "text": " - send a message to all players", "color": None } ], [ { "text": ":whisper <username> <message>", "color": "Gold" }, { "text": " - send a message to a specific player", "color": None } ] ] self._lines = self._default_lines self._previous_lines = [] self._page = 0 self._max_text_w = self.w - 2 self._max_text_h = self.h - 2 self._dirty = True def draw(self, viewer, force=False): if self._dirty or force: if force: log.debug("narrative.draw forced") self._screen.erase() state = viewer.get_submodule(State) self._screen.attrset(colors.get("Gold")) if state.get_state("easter_egg") is not None: self._screen.border( curses.ACS_VLINE, curses.ACS_VLINE, curses.ACS_HLINE, curses.ACS_HLINE, curses.ACS_DIAMOND, curses.ACS_DIAMOND, curses.ACS_DIAMOND, curses.ACS_DIAMOND ) else: self._screen.border( curses.ACS_BOARD, curses.ACS_BOARD, curses.ACS_BOARD, curses.ACS_BOARD, curses.ACS_BOARD, curses.ACS_BOARD, curses.ACS_BOARD, curses.ACS_BOARD ) self._screen.attroff(colors.get("Gold")) offset_width = self._max_text_w line_no = 1 for line in self._lines: char = 2 for part in line: for text in part["text"]: if char == offset_width: char = 2 line_no += 1 if part["color"]: self._screen.addstr(line_no, char, text, colors.get(part["color"])) else: self._screen.addstr(line_no, char, text) char += len(text) line_no += 1 self._paged_text = [] #for line in self._text.splitlines(): # splits = [ line[i:i+self._max_text_w] for i in range(0, len(line), self._max_text_w) ] # self._paged_text = self._paged_text + (splits if splits else [""]) #x = 0 #page = 0 #for line in self._paged_text: # if page >= self._page: # self._screen.addstr(x+1, 2, line) # x += 1 # if x > self._max_text_h-1: # break # page += 1 self._screen.noutrefresh() self._dirty = False return True return False def _handle(self, viewer, ch): if curses.keyname(ch) == b'^J': if self._page+self._max_text_h < len(self._paged_text): self._page += 1 self._dirty = True if curses.keyname(ch) == b'^K': if (self._page - 1) >= 0: self._page -= 1 self._dirty = True def _handle_combo(self, viewer, buff): buff = buff.split(" ") if buff[0] == "back": if self._previous: self.set(self._previous_lines) elif buff[0] == "clear": viewer.apply_to_submodules(TextDisplayModule, lambda x: x._hide(viewer)) self.set(self._default_lines) self._dirty = True elif buff[0] == "read" and len(buff) == 1: state = viewer.get_submodule(State) if state.get_state("role") == "gm": import subprocess import os text = self._paged_text FNULL = open(os.devnull, 'w') for line in text: try: # lazily handle failure subprocess.call(["espeak", line], stdout=FNULL, stderr=subprocess.STDOUT) except: pass def _handle_help(self, viewer, buff): pass def set_text(self, text): raise Exception() def set(self, lines): self._previous_lines = self._lines self._lines = lines self._page = 0 self._dirty = True def get_text(self): return self._text lines = [ [ {"color": "Gold", "text": "this is a line of text"}] ] ```
{ "source": "jghibiki/Sydney", "score": 2 }
#### File: Sydney/server/utils.py ```python import json import os def load(): pipeline_defs = {} with open("../config.json", "r") as f: schema = json.load(f) pipeline_defs["states"] = schema["states"] pipeline_defs["failure_state"] = schema["failure_state"] pipeline_defs["pending_state"] = schema["pending_state"] pipeline_defs["success_state"] = schema["success_state"] pipeline_defs["running_state"] = schema["running_state"] pipeline_defs["root_hash"] = schema["root_hash"] pipeline_defs["notifications"] = schema["notifications"] pipeline_defs["environments"] = [] for env in schema["environments"]: env = {"name": env, "pipelines": []} for file_name in schema["pipelines"]: file_name = os.path.join("../pipelines", file_name) print(f"Attempting to load file: {file_name}") if os.path.exists(file_name) and os.path.isfile(file_name): print(f'File "{file_name}" exists') with open(file_name, "r") as f: pipeline = json.load(f) for step in pipeline["steps"]: step["state"] = step["initial_state"] step["exit_state"] = None env["pipelines"].append(pipeline) pipeline_defs["environments"].append(env) # make child piplines aware of their parents for env in pipeline_defs["environments"]: for pipeline in env["pipelines"]: for step in pipeline["steps"]: if "info" in step: if "child_pipeline" in step["info"]: for potential_child in env["pipelines"]: if ( "#" + potential_child["name"] == step["info"]["child_pipeline"] ): potential_child["parent"] = "#" + pipeline["name"] break print("Loaded data", pipeline_defs) return pipeline_defs ``` #### File: sydney/schema/config_loader.py ```python from pathlib import Path from sydney.schema.config_schemas import config_schema, pipeline_schema class ConfigLoader: def __init__(self, config, pipelines): self.config_path = Path(config) self.pipelines_path = Path(pipelines) def read_config(self): with self.config_path.open() as f: config_str = f.read() return config_schema.loads(config_str) def read_pipelines(self): for pipeline in self.pipelines_path.glob("**/*.json"): print(f"Loading pipeline file {pipeline}") with pipeline.open() as f: pipeline_str = f.read() yield pipeline_schema.loads(pipeline_str) ```
{ "source": "jghosn/bert_reranker", "score": 2 }
#### File: bert_reranker/data/predict.py ```python import json import logging import math import pickle import numpy as np from tqdm import tqdm from bert_reranker.data.data_loader import ( get_passages_by_source, _encode_passages, get_passage_last_header, get_question, get_passage_id, is_in_distribution, OOD_STRING, get_passage_content2pid, ) logger = logging.getLogger(__name__) def get_batched_pairs(qa_pairs, batch_size): result = [] for i in range(0, len(qa_pairs), batch_size): result.append(qa_pairs[i: i + batch_size]) return result class Predictor: """ Main class to generate prediction. It consider only in-domain part. (so, there is no model to decide if something is in-domain or out of domain) """ def __init__(self, retriever_trainee): self.retriever_trainee = retriever_trainee self.max_question_len = self.retriever_trainee.retriever.max_question_len self.tokenizer = self.retriever_trainee.retriever.tokenizer self.retriever = retriever_trainee.retriever self.no_candidate_warnings = 0 def generate_predictions(self, json_file, predict_to, multiple_thresholds, write_fix_report): with open(json_file, "r", encoding="utf-8") as f: json_data = json.load(f) source2passages, _, passage_id2index = get_passages_by_source( json_data ) source2passages, _, _ = _encode_passages( source2passages, self.max_question_len, self.tokenizer, do_not_encode=True ) res = self.compute_results(json_data, passage_id2index, source2passages) predictions, questions, sources, normalized_scores, indices_of_correct_passage = res generate_and_log_results(indices_of_correct_passage, normalized_scores, predict_to, predictions, questions, source2passages, sources, multiple_thresholds=multiple_thresholds, write_fix_report=write_fix_report, json_data=json_data) def compute_results(self, json_data, passage_id2index, source2passages): predictions = [] questions = [] sources = [] normalized_scores = [] indices_of_correct_passage = [] # first collect and embed all the candidates (so we avoid recomputing them again and again source2embedded_passages = {} for source, passages in source2passages.items(): logger.info('encoding source {}'.format(source)) if passages: embedded_passages = self.retriever.embed_paragrphs(passages, progressbar=True) source2embedded_passages[source] = embedded_passages else: source2embedded_passages[source] = None # then loop over the examples and produce a prediction for example in tqdm(json_data["examples"]): question = example["question"] questions.append(question) source = example["source"] sources.append(source) index_of_correct_passage = passage_id2index[example["passage_id"]] prediction, norm_score = self.make_single_prediction(question, source, source2embedded_passages) predictions.append(prediction) normalized_scores.append(norm_score) indices_of_correct_passage.append(index_of_correct_passage) return predictions, questions, sources, normalized_scores, indices_of_correct_passage def make_single_prediction(self, question, source, source2embedded_passages, question_already_embedded=False): if source in source2embedded_passages and source2embedded_passages[source] is not None: embedded_candidates = source2embedded_passages[source] return self.retriever.predict(question, embedded_candidates, passages_already_embedded=True, question_already_embedded=question_already_embedded) else: self.no_candidate_warnings += 1 logger.warning('no candidates for source {} - returning 0 by default (so far, this ' 'happened {} times)'.format(source, self.no_candidate_warnings)) return -2, 1.0 class PredictorWithOutlierDetector(Predictor): """ Generates predictionand it include also the model used to detect outliers. """ def __init__(self, retriever_trainee, outlier_detector_model): super(PredictorWithOutlierDetector, self).__init__(retriever_trainee) self.outlier_detector_model = outlier_detector_model def make_single_prediction(self, question, source, source2embedded_passages): emb_question = self.retriever.embed_question(question) in_domain = self.outlier_detector_model.predict(emb_question) in_domain = np.squeeze(in_domain) if in_domain == 1: # in-domain return super(PredictorWithOutlierDetector, self).make_single_prediction( emb_question, source, source2embedded_passages, question_already_embedded=True) else: # out-of-domain (-1 is the result we return for out-of-domain) return -1, 1.0 def make_readable(passages): result = [] for passage in passages: new_entry = {'passage_id': passage['passage_id'], 'source': passage['source'], 'reference_type': passage['reference_type'], 'section_headers': passage['reference']['section_headers']} result.append(new_entry) return result def generate_and_log_results(indices_of_correct_passage, normalized_scores, predict_to, predictions, questions, source2passages, sources, multiple_thresholds, write_fix_report, json_data): with open(predict_to, "w") as out_stream: if write_fix_report: fix_json = {'passages': make_readable(json_data['passages']), 'fixes': []} passage_content2pid = get_passage_content2pid(json_data['passages']) log_results_to_file(indices_of_correct_passage, normalized_scores, out_stream, predictions, questions, source2passages, sources, fix_json, passage_content2pid) with open(predict_to + '_fix.json', 'w', encoding="utf-8") as ostream: json.dump(fix_json, ostream, indent=4, ensure_ascii=False) else: log_results_to_file(indices_of_correct_passage, normalized_scores, out_stream, predictions, questions, source2passages, sources, None, None) out_stream.write('results:\n\n') if multiple_thresholds: for threshold in [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]: result_message = compute_result_at_threshold( predictions, indices_of_correct_passage, normalized_scores, threshold, True ) logger.info(result_message) out_stream.write(result_message + "\n") else: result_message = compute_result_at_threshold( predictions, indices_of_correct_passage, normalized_scores, 0.0, False ) logger.info(result_message) out_stream.write(result_message + "\n") def log_results_to_file(indices_of_correct_passage, normalized_scores, out_stream, predictions, questions, source2passages, sources, fix_json=None, passage_content2pid=None): for i in range(len(predictions)): question = questions[i] prediction = predictions[i] index_of_correct_passage = indices_of_correct_passage[i] norm_score = normalized_scores[i] source = sources[i] out_stream.write("-------------------------\n") out_stream.write("question:\n\t{}\n".format(question)) if prediction == index_of_correct_passage and prediction == -1: pred_outcome = "OOD_CORRECT" elif prediction == index_of_correct_passage and prediction >= 0: pred_outcome = "ID_CORRECT" elif prediction != index_of_correct_passage and index_of_correct_passage == -1: pred_outcome = "OOD_MISCLASSIFIED_AS_ID" elif prediction == -1 and index_of_correct_passage >= 0: pred_outcome = "ID_MISCLASSIFIED_AS_OOD" elif (prediction >= 0 and index_of_correct_passage >= 0 and prediction != index_of_correct_passage): pred_outcome = "ID_MISCLASSIFIED_AS_ANOTHER_ID" else: raise ValueError('wrong prediction/target combination') prediction_content = source2passages[source][prediction] if prediction >= 0 else OOD_STRING out_stream.write( "prediction: {} / norm score {:3.3}\nprediction content:" "\n\t{}\n".format( pred_outcome, norm_score, prediction_content ) ) target_content = source2passages[source][ index_of_correct_passage] if index_of_correct_passage >= 0 else OOD_STRING out_stream.write( "target content:\n\t{}\n\n".format( target_content ) ) if fix_json is not None: new_entry = {} new_entry['source'] = source new_entry['question'] = question target_pid = passage_content2pid[source][target_content] new_entry['target'] = (target_pid, target_content) prediction_pid = passage_content2pid[source][prediction_content] new_entry['prediction'] = (prediction_pid, prediction_content) new_entry['fix'] = target_pid fix_json['fixes'].append(new_entry) def generate_embeddings(ret_trainee, input_file=None, out_file=None, json_data=None, embed_passages=True): if input_file: with open(input_file, "r", encoding="utf-8") as f: json_data = json.load(f) elif json_data: pass else: raise ValueError("You should specify either the input file or the json_data") source2passages, pid2passage, _ = get_passages_by_source(json_data) question_embs = [] question_texts = [] labels = [] if json_data.get("examples"): for example in tqdm(json_data["examples"]): pid = get_passage_id(example) passage = pid2passage[pid] labels.append('id' if is_in_distribution(passage) else 'ood') question = get_question(example) emb = ret_trainee.retriever.embed_question(question) question_embs.append(emb) question_texts.append(question) passage_header_embs = [] ood = 0 passage_texts = [] if embed_passages: for source, passages in source2passages.items(): logger.info('embedding passages for source {}'.format(source)) for passage in tqdm(passages): if is_in_distribution(passage): passage_text = get_passage_last_header(passage, return_error_for_ood=True) emb = ret_trainee.retriever.embed_paragraph( passage_text) passage_header_embs.append(emb) passage_texts.append(passage_text) else: ood += 1 to_serialize = {"question_embs": question_embs, "passage_header_embs": passage_header_embs, "question_labels": labels, "passage_texts": passage_texts, "question_texts": question_texts} if out_file: with open(out_file, "wb") as out_stream: pickle.dump(to_serialize, out_stream) logger.info( 'generated {} question embeddings and {} passage header embeddings ({} skipped because ' 'out-of-distribution)'.format( len(question_embs), len(passage_header_embs), ood)) return to_serialize def compute_result_at_threshold( predictions, indices_of_correct_passage, normalized_scores, threshold, log_threshold ): count = len(indices_of_correct_passage) ood_count = sum([x == -1 for x in indices_of_correct_passage]) id_count = count - ood_count correct = 0 id_correct = 0 ood_correct = 0 ood_misclassified_as_id = 0 id_misclassified_as_ood = 0 id_misclassified_as_id = 0 for i, prediction in enumerate(predictions): if normalized_scores[i] >= threshold: after_threshold_pred = prediction # id_correct += int(after_threshold_pred == indices_of_correct_passage[i]) else: after_threshold_pred = -1 # ood_correct += int(after_threshold_pred == indices_of_correct_passage[i]) correct += int(after_threshold_pred == indices_of_correct_passage[i]) if indices_of_correct_passage[i] != -1 and after_threshold_pred == -1: # target id - prediction ood id_misclassified_as_ood += 1 elif (indices_of_correct_passage[i] != -1 and indices_of_correct_passage[i] != after_threshold_pred): # target id - prediction id but wrong id_misclassified_as_id += 1 elif (indices_of_correct_passage[i] != -1 and indices_of_correct_passage[i] == after_threshold_pred): # target id - prediction id and correct id_correct += 1 elif indices_of_correct_passage[i] == -1 and after_threshold_pred == -1: # target ood - prediction ood ood_correct += 1 elif indices_of_correct_passage[i] == -1 and after_threshold_pred != -1: # target ood - prediction id ood_misclassified_as_id += 1 else: raise ValueError() acc = ((correct / count) * 100) if count > 0 else math.nan id_acc = ((id_correct / id_count) * 100) if id_count > 0 else math.nan ood_acc = ((ood_correct / ood_count) * 100) if ood_count > 0 else math.nan threshold_msg = "threshold {:1.3f}: ".format(threshold) if log_threshold else "" result_message = "\n{}overall: {:3}/{}={:3.2f}% acc".format(threshold_msg, correct, count, acc) result_message += "\n\tin-distribution: {:3}/{}={:3.2f}% acc".format(id_correct, id_count, id_acc) result_message += "\n\t\twrong because marked ood: {:3}/{}={:3.2f}% err".format( id_misclassified_as_ood, id_count, ((id_misclassified_as_ood / id_count) * 100) if id_count > 0 else math.nan) result_message += "\n\t\tmarked id but wrong candidate: {:3}/{}={:3.2f}% err".format( id_misclassified_as_id, id_count, ((id_misclassified_as_id / id_count) * 100) if id_count > 0 else math.nan) result_message += "\n\tout-of-distribution: {:3}/{}={:3.2f}% acc".format( ood_correct, ood_count, ood_acc) result_message += "\n\t------\n\t(OOD/ID classifier): correct {:3}(OOD) " \ "+ {:3}(ID) / {:3} = {:3.2f}% acc".format( ood_correct, id_count - id_misclassified_as_ood, count, 100 * ((ood_correct + (id_count - id_misclassified_as_ood)) / count)) return result_message ``` #### File: bert_reranker/models/sklearn_grid_search.py ```python import argparse import logging import os import pickle import numpy as np from sklearn.neighbors import LocalOutlierFactor from sklearn.ensemble import IsolationForest from sklearn.svm import OneClassSVM from sklearn.covariance import EllipticEnvelope from sklearn.model_selection import GridSearchCV from bert_reranker.models.sklearn_outliers_model import collect_question_embeddings logger = logging.getLogger(__name__) SKLEARN_MODEL_FILE_NAME = "sklearn_outlier_model.pkl" def get_model_and_params(model_name): if model_name == "lof": base_clf = LocalOutlierFactor() parameters = { "n_neighbors": [3, 4, 5, 6], "contamination": list(np.arange(0.1, 0.5, 0.05)), "novelty": [True], } elif model_name == "isolation_forest": base_clf = IsolationForest() parameters = { "max_samples": [10, 50, 100, 200, 313], "n_estimators": [100, 150, 200], "contamination": list(np.arange(0.1, 0.5, 0.1)), "max_features": [1, 2, 5], "random_state": [42], } elif model_name == "ocsvm": base_clf = OneClassSVM() parameters = { "kernel": ["linear", "poly", "rbf"], "gamma": [0.001, 0.005, 0.01, 0.1] } elif model_name == "elliptic_env": base_clf = EllipticEnvelope() parameters = { "contamination": list(np.arange(0.1, 0.5, 0.1)), "random_state": [42], } else: raise NotImplementedError() return base_clf, parameters def main(): parser = argparse.ArgumentParser() parser.add_argument( "--embeddings", help="numpy file with embeddings", required=True ) parser.add_argument( "--output", help="will store the model output in this folder", required=True ) parser.add_argument( "--test-embeddings", help="embeddings do evaluate the sklearn model on", required=True, ) parser.add_argument( "--keep-ood-for-questions", help="will keep ood embeddings for questions- by default, they are " "filtered out", action="store_true", ) parser.add_argument( "--train-on-questions", help="will include question embeddings in train", action="store_true", ) parser.add_argument( "--train-on-passage-headers", help="will include passage-headers in train", action="store_true", ) args = parser.parse_args() logging.basicConfig(level=logging.INFO) with open(args.embeddings, "rb") as in_stream: data = pickle.load(in_stream) if args.train_on_questions: embeddings = collect_question_embeddings(args, data) elif args.train_on_passage_headers: embeddings = data["passage_header_embs"] logger.info("found {} passage headers embs".format(len(embeddings))) # labels = np.ones(len(embeddings)) logger.info("final size of the collected embeddings: {}".format(len(embeddings))) embedding_array = np.concatenate(embeddings) def scoring(estimator, X, y=None, args=args): from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix # Load testing embeddings with open(args.test_embeddings, "rb") as in_stream: data = pickle.load(in_stream) question_embeddings = np.concatenate(data["question_embs"]) labels = [1 if label == "id" else -1 for label in data["question_labels"]] preds = estimator.predict(question_embeddings) acc = accuracy_score(labels, preds) conf_mat = confusion_matrix(labels, preds) print("estimator params", estimator) print("Accuracy:", acc) print(conf_mat) print("="*50) return acc models = ["lof", "isolation_forest", "ocsvm", "elliptic_env"] best_score = 0 for model in models: logger.info("Testing model: {}".format(model)) base_clf, parameters = get_model_and_params(model) cv = [(slice(None), slice(None))] # Hack to disable CV clf = GridSearchCV(base_clf, parameters, scoring=scoring, cv=cv) clf.fit(embedding_array) logger.info("best model accuracy: {}".format(clf.best_score_)) logger.info("best model parameters: {}".format(clf.best_params_)) if clf.best_score_ > best_score: best_score = clf.best_score_ best_params = clf.best_params_ best_model_name = model logger.info( "New overall best model found with accuracy: {}".format(clf.best_score_) ) logger.info("Best model name: {}".format(best_model_name)) logger.info("Best model params: {}".format(best_params)) with open( os.path.join(args.output, SKLEARN_MODEL_FILE_NAME), "wb" ) as out_stream: pickle.dump(clf.best_estimator_, out_stream) if __name__ == "__main__": main() ```
{ "source": "jghsrobotics/RaspberryPiCam", "score": 3 }
#### File: jghsrobotics/RaspberryPiCam/sender.py ```python import os import sys import socket from PythonFileLibrary.FileReader import * ## Read from configuration file first configFile = FileReader('config') def GetSetting(fileReader : FileReader, setting : str): fileReader.ResetCursor() for line in configFile: line = line.strip() if setting in line: fileReader.MoveCursorDown() line = fileReader.GetCurrentLine().strip() return line return None def getPrivateIP(): s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) try: s.connect(("10.10.0.0", 1)) return s.getsockname()[0] except: pass return None localIP = getPrivateIP() remoteIP = GetSetting(configFile, '# Remote Public IP Address') port = GetSetting(configFile, '# Port') protocol = GetSetting(configFile, '# Protocol (UDP / TCP)') height = GetSetting(configFile, '# Height') width = GetSetting(configFile, '# Width') FPS = GetSetting(configFile, '# FPS') bitrate = GetSetting(configFile, '# Bitrate') quality = GetSetting(configFile, '# Quality (10 - 40)') UDPcommand = "raspivid -n -t 0 -w {0} -h {1} -qp {6} -fps {2} --flush -b {3} -o - | gst-launch-1.0 -e -vvvv fdsrc ! h264parse ! rtph264pay config-interval=1 pt=96 ! udpsink host={4} port={5}" TCPcommand = "raspivid -n -t 0 -w {0} -h {1} -qp {6} -fps {2} --flush -b {3} -o - | gst-launch-1.0 -v fdsrc ! h264parse ! rtph264pay config-interval=1 pt=96 ! gdppay ! tcpserversink host={4} port={5}" if protocol == "TCP": print("Trying to send through TCP pipe...") os.system(TCPcommand.format(width, height, FPS, bitrate, localIP, port, quality)) elif protocol == "UDP": print("Trying to send through UDP pipe...") os.system(UDPcommand.format(width, height, FPS, bitrate, remoteIP, port, quality)) ```
{ "source": "jghyllebert/ChatterBot", "score": 2 }
#### File: ChatterBot/chatterbot/__main__.py ```python import importlib import sys def get_chatterbot_version(): chatterbot = importlib.import_module('chatterbot') return chatterbot.__version__ if __name__ == '__main__': if '--version' in sys.argv: print(get_chatterbot_version()) ```
{ "source": "jgiannuzzi-org/publish-unit-test-result-action", "score": 2 }
#### File: python/test/test_action_yml.py ```python import unittest import yaml from yaml import Loader class TestActionYml(unittest.TestCase): def test_composite_action(self): with open('../../action.yml', encoding='utf-8') as r: dockerfile_action = yaml.load(r, Loader=Loader) with open('../../composite/action.yml', encoding='utf-8') as r: composite_action = yaml.load(r, Loader=Loader) self.assertIn('runs', dockerfile_action) self.assertIn('runs', composite_action) dockerfile_action_wo_runs = {k:v for k,v in dockerfile_action.items() if k != 'runs'} composite_action_wo_runs = {k:v for k,v in composite_action.items() if k != 'runs'} self.assertEqual(dockerfile_action_wo_runs, composite_action_wo_runs) self.assertIn(('using', 'composite'), composite_action.get('runs', {}).items()) def test_composite_inputs(self): with open('../../composite/action.yml', encoding='utf-8') as r: action = yaml.load(r, Loader=Loader) # these are not documented in the action.yml files but still needs to be forwarded extra_inputs = ['root_log_level', 'log_level'] expected = {key.upper(): f'${{{{ inputs.{key} }}}}' for key in list(action.get('inputs', {}).keys()) + extra_inputs} steps = action.get('runs', {}).get('steps', []) step = next((step for step in steps if step.get('name') == 'Publish Unit Test Results'), {}) inputs = {key.upper(): value for key, value in step.get('env', {}).items()} self.assertEqual(expected, inputs) ```
{ "source": "jgibbons-cp/quarantine_ticketing", "score": 3 }
#### File: app/lib/jira_lib.py ```python from config import CONFIG import requests class JiraApi(object): def __init__(self): self.config = CONFIG['jira'] self.auth = (self.config['user'], self.config['<PASSWORD>']) self.headers = {'Content-Type' : 'application/json'} def url(self, endpoint): return self.config['url'] + endpoint def get(self, endpoint): resp = requests.get(self.url(endpoint), auth=(self.auth), headers=self.headers) if resp.status_code != 200: print('Status:', resp.status_code, 'Problem with the request. Exiting.') exit() return resp.json() def post(self, endpoint, data): resp = requests.post(self.url(endpoint), auth=(self.auth), headers=self.headers, data=data) if resp.status_code != 201: print('Status:', resp.status_code, 'Problem with the post request. Exiting') exit() return resp.json() ``` #### File: app/quarantine/halo_general.py ```python import cloudpassage import sys class HaloGeneral(object): """This class wraps Halo API functionality, except for /v1/events.""" def __init__(self, config): """Pass in a quarantine.ConfigHelper object on instantiation.""" self.ua = config.ua_string self.session = cloudpassage.HaloSession(config.halo_key, config.halo_secret, integration_string=self.ua) self.server_obj = cloudpassage.Server(self.session) self.event_obj = cloudpassage.Event(self.session) self.group_obj = cloudpassage.ServerGroup(self.session) self.target_group_id = self.get_groupid(config.quarantine_grp_name) return def get_groupid(self, group_name): """determine group_id for a named group""" for group in self.group_obj.list_all(): if group["name"] == group_name: target_id = group["id"] return target_id # Fall through if no match print "ERROR: No group in account named %s" % group_name sys.exit(2) def quarantine_workload(self, agent_id): """Move a workload, identified by agent_id, into quarantine""" self.server_obj.assign_group(agent_id, self.target_group_id) return ```
{ "source": "jgiboney/python-forensic-toolkit", "score": 4 }
#### File: python-forensic-toolkit/python_forensic_toolkit/file_hashing.py ```python import hashlib, os def get_hash_of_string (string, algorithm='MD5'): """This function takes a string and hashes it using an algorithm. Acknowledgments: Addition of multiple hashing algorithms courtesy of <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>. Dictionary and associated functionality is courtesy of Jordan Polun. Documentation is courtesy of <NAME> and Jordan Polun. :param string: this is the string that will be hashed. :type string: str. :param algorithm: The hashing algorithm to be used. Defaults to 'MD5'. :type algorithm: str. :returns: str -- The hash of the string. """ hashing_algorithms = {'MD5' :hashlib.md5(), 'SHA1' :hashlib.sha1(), 'SHA224':hashlib.sha224(), 'SHA256':hashlib.sha256(), 'SHA384':hashlib.sha384(), 'SHA512':hashlib.sha512() } if algorithm in hashing_algorithms: binary_string = convert_string_to_binary(string) hash_object = hashing_algorithms[algorithm] hash_object.update(binary_string) hash_digest = hash_object.hexdigest() else: hash_digest = '' return hash_digest def read_binary_file (file_path): """This function will read and hash the contents of a file. Acknowledgments: Documentation is courtesy of <NAME> and Jordan Polun. Thanks to <NAME> for fixing the return error. :param file_path: this is the path to the file to be read. :type file_path: str. :returns: str -- the content of the file to be read """ try: file_object = open(file_path,'rb') file_contents = file_object.read() file_object.close() return file_contents except: raise def get_hash_of_binary_file_contents (file_path, algorithm='MD5'): """This function will read and hash the contents of a file. :param file_path: The path to the file to be hashed. :type file_path: str. :param algorithm: The hashing algorithm to be used. Defaults to 'MD5'. :type algorithm: str. :returns: str -- The hash of the contents of the file. """ file_contents = read_binary_file(file_path) file_hash = get_hash_of_string(file_contents, algorithm) return file_hash def get_hashes_of_files_in_directory (directory, algorithm='MD5'): """This function will get the hashes of all files in a directory. Acknowledgments: This function is courtesy of <NAME>, <NAME>, <NAME>, and <NAME>. """ hash_dictionary = {} if os.path.isdir(directory): for file_name in os.listdir(directory): file_path = os.path.join(directory, file_name) if os.path.isfile(file_path): file_hash = get_hash_of_binary_file_contents(file_path) hash_dictionary[file_path] = file_hash return hash_dictionary def convert_string_to_binary (string): """This function attempts to convert a string to binary. Acknowledgments: Thanks to <NAME> for finding an error in the get_hash_of_string function and providing a solution. Code based an answer from Elizafox on Stack Overflow: http://stackoverflow.com/questions/34869889/what-is-the-proper-way-to-determine-if-an-object-is-a-bytes-like-object-in-pytho """ try: string = string.encode() except: pass return string def do_files_have_same_content (file_1, file_2, algorithm='MD5'): """This function checks the hashes of the contents of two files. It returns a boolean. Acknowledgments: Thanks to <NAME> and <NAME> for working on this function. """ file_1_hash = get_hash_of_binary_file_contents (file_1) file_2_hash = get_hash_of_binary_file_contents (file_2) if file_1_hash == file_2_hash: return True else: return False ```
{ "source": "jgibson2/contrastive-learning", "score": 2 }
#### File: jgibson2/contrastive-learning/get_nearest_neighbors.py ```python import pytorch_lightning as pl import torch import torchvision from torch.utils.data import DataLoader import pathlib import networks.resnet as resnet import torchvision.io as io import torchvision.transforms.functional as AF import torch.nn.functional as F from networks.simclr import SimCLR from networks.nnclr import NNCLR from data.iNaturalist_dataset import iNaturalistDataset import click import tqdm def read_image(img_path, image_size=(224, 224)): img = io.read_image(str(img_path.absolute())) img = AF.convert_image_dtype(img, torch.float) # take a center crop of the correct aspect ratio and resize crop_size = [img.shape[1], int(round(img.shape[1] * image_size[0] / image_size[1]))] img = AF.center_crop(img, crop_size) img = AF.resize(img, image_size) return img @click.command() @click.option('--metadata-file-path', type=click.Path(), help='Path of JSON metadata file') @click.option('--query-image-path', type=click.Path(), help='Path of query image file') @click.option('--batch-size', type=click.INT, default=192, help="Batch size") @click.option('--image-size', type=click.INT, default=224, help="Image size (one side)") @click.option('--method', type=click.Choice(["simclr", "nnclr"]), required=True, help="Method used to train encoder") @click.option('--encoder-weights', type=click.Path(), required=True, help="Encoder checkpoint to use") @click.option('--top-k', type=click.INT, default=31, help="Number of results to return") @click.option('--output-dir', type=click.Path(), default="./results", help="Path of output dir") def main( metadata_file_path, query_image_path, batch_size, image_size, method, encoder_weights, top_k, output_dir ): pl.seed_everything(42) device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') if method == "simclr": model = SimCLR.load_from_checkpoint(encoder_weights) elif method == "nnclr": model = NNCLR.load_from_checkpoint(encoder_weights) else: raise ValueError(f"Unknown method {method}") model.to(device) model.eval() query_image_path = pathlib.Path(query_image_path) output_dir = pathlib.Path(output_dir) output_dir.mkdir(exist_ok=True) query_img = read_image(query_image_path, image_size=(image_size, image_size)).to(device) dataset = iNaturalistDataset(metadata_file_path, (image_size, image_size)) loader = DataLoader( dataset, batch_size=batch_size, shuffle=True, num_workers=16, pin_memory=True) x1 = model(query_img.unsqueeze(0)).squeeze().detach() closest_imgs = torch.rand((top_k, *query_img.shape), device=device) closest_embeddings = torch.randn((top_k, *x1.shape), device=device) for imgs, _ in tqdm.tqdm(loader): imgs = imgs.to(device) x2 = torch.cat((closest_embeddings, model(imgs).detach()), 0) imgs = torch.cat((closest_imgs, imgs), 0) dists = F.pairwise_distance(x2, x1.expand(x2.shape[0], *x1.shape)) topk_indices = torch.topk(dists, top_k, largest=False, sorted=True).indices closest_imgs = imgs[topk_indices] closest_embeddings = x2[topk_indices] img_path = output_dir / f"{query_image_path.stem}_closest_{top_k}.jpg" torchvision.utils.save_image(torch.cat((query_img.unsqueeze(0), closest_imgs), 0), str(img_path.absolute())) if __name__ == "__main__": main() ``` #### File: jgibson2/contrastive-learning/train.py ```python import torch import pytorch_lightning as pl from pytorch_lightning import loggers as pl_loggers from torch.utils.data import DataLoader from networks.simclr import SimCLR from networks.nnclr import NNCLR import networks.resnet as resnet from data.iNaturalist_dataset import iNaturalistDataset import click @click.command() @click.option('--train-metadata-file-path', type=click.Path(), required=True, help='Path of training JSON metadata file') @click.option('--validation-metadata-file-path', type=click.Path(), required=False, help='Path of validation JSON metadata file') @click.option('--batch-size', type=click.INT, default=192, help="Batch size") @click.option('--gpus', type=click.INT, default=1, help="Number of GPUs to use") @click.option('--image-size', type=click.INT, default=224, help="Image size (one side)") @click.option('--epochs', type=click.INT, default=100, help="Number of epochs to train for") @click.option('--method', type=click.Choice(["simclr", "nnclr"]), default="simclr", help="Method with which to train") @click.option('--encoder', type=click.Choice( ["reset18", "resnet34", "resnet50", "resnet101", "resnet152"]), default="resnet50", help="Encoder to use") @click.option('--encoder-weights', type=click.Path(), required=False, help="Encoder weights, omit for random init") @click.option('--encoder-key', type=click.STRING, required=False, help="Key of encoder weights in state dict") def main( train_metadata_file_path, validation_metadata_file_path, batch_size, gpus, image_size, epochs, method, encoder, encoder_weights, encoder_key, ): pl.seed_everything(42) tb_logger = pl_loggers.TensorBoardLogger("logs/") trainer = pl.Trainer( logger=tb_logger, gpus=gpus, precision=16 if gpus > 0 else 32, min_epochs=epochs, max_epochs=epochs ) train_dataset = iNaturalistDataset(train_metadata_file_path, (image_size, image_size)) train_loaders = DataLoader( train_dataset, batch_size=batch_size, shuffle=True, num_workers=16) val_loaders = None if validation_metadata_file_path: val_dataset = iNaturalistDataset(validation_metadata_file_path, (image_size, image_size)) val_loaders = DataLoader( val_dataset, batch_size=batch_size, shuffle=False, num_workers=16) base_encoder = getattr(resnet, encoder)(pretrained=False) if encoder_weights is not None: state_dict = torch.load(encoder_weights)["state_dict"] if encoder_key: torch.nn.modules.utils.consume_prefix_in_state_dict_if_present(state_dict, prefix=encoder_key) base_encoder.load_state_dict(state_dict, strict=False) model = None if method == "simclr": model = SimCLR(base_encoder.fc.in_features, 128, (image_size, image_size), encoder=base_encoder) elif method == "nnclr": model = NNCLR(base_encoder.fc.in_features, 128, (image_size, image_size), 32768, encoder=base_encoder) else: raise ValueError(f"Unknown method {method}") # explicit device for setup step device = torch.device('cuda:0') if gpus > 0 else torch.device('cpu') model.to(device) trainer.fit(model, train_dataloaders=train_loaders, val_dataloaders=val_loaders) # Press the green button in the gutter to run the script. if __name__ == '__main__': main() # See PyCharm help at https://www.jetbrains.com/help/pycharm/ ```
{ "source": "jgibson2/pytorch-ngp", "score": 2 }
#### File: jgibson2/pytorch-ngp/ngp.py ```python import pytorch_lightning as pl import torch import torch.nn.functional as F import torchvision import utils from matplotlib import pyplot as plt import tqdm import numpy as np import einops class NeuralGraphicsPrimitiveModel(pl.LightningModule): def __init__(self, mlp, dimension=2, levels=16, max_entries_per_level=2 ** 16, feature_dim=2, min_resolution=16, max_resolution=16384, **kwargs): super().__init__(**kwargs) self.mlp = mlp self.d = dimension self.L = levels self.T = max_entries_per_level self.F = feature_dim self.N_min = min_resolution self.N_max = max_resolution b = np.exp((np.log(self.N_max) - np.log(self.N_min)) / (self.L - 1)) N_l = torch.Tensor([np.floor(self.N_min * (b ** l)) for l in range(self.L)]).detach() self.register_buffer("N_l", N_l) self.create_hashmap_parameters() self.ema = utils.ExponentialMovingAverage(self.parameters(), decay=0.95) def create_hashmap_parameters(self) -> None: feat_init_min = -10 ** -4 feat_init_max = 10 ** -4 shape = (self.L, self.T, self.F) feats = ((feat_init_max - feat_init_min) * torch.rand(shape, device=self.device)) + feat_init_min self.register_parameter("features", torch.nn.Parameter(feats)) def get_hypercube_vertices(self, low_coords_bld, high_coords_bld): b, l, d = low_coords_bld.shape coords_bl2d = torch.stack((low_coords_bld, high_coords_bld), dim=2) indices_blDd = einops.repeat(torch.cartesian_prod(*([torch.arange(2, device=self.device)] * d)), "v d -> b l v d", b=b, l=l) vertices_blDd = torch.gather(coords_bl2d, 2, indices_blDd) return vertices_blDd def interpolate(self, scaled_coordinates_bld, feats_blDf, vertices_blDd, smooth=False): """ :param scaled_coordinates_bld: :param feats_blDf: :param vertices_blDd: :return: """ b, l, d = scaled_coordinates_bld.shape # get cube side length, when the coordinates are scaled all voxels # have side length one side_lengths_bl1d = torch.ones((b, l, 1, d), device=self.device) # n-linear interpolation can be taken as the vertex's value times the volume of the # n-dimensional volume with corners defined by the *opposite* vertex and the point in the interior residuals_blDd = torch.clamp( side_lengths_bl1d - torch.abs(vertices_blDd - scaled_coordinates_bld.view(b, l, 1, d)), min=0.0001, max=0.9999 ) # the volume is obviously the reduction along that dimension via multiplication weights_blD1 = einops.reduce(residuals_blDd, "b l D d -> b l D 1", "prod") if smooth: weights_blD1 = (weights_blD1 ** 2) * (3.0 - (2.0 * weights_blD1)) # multiply each vertex value by the weights and sum along the vertices interpolated_feats_blf = einops.reduce(feats_blDf * weights_blD1, "b l D f -> b l f", "sum") return interpolated_feats_blf def get_interpolated_features(self, coords, smooth=False): """ :param x: b x d position vector in [0,1] for each dimension :return: b x (L F) features to use as input to the network """ scaled_coords_bld = torch.einsum("bd,l->bld", coords, self.N_l) if smooth: # add half voxel size scaled_coords_bld += 1.0 / (2.0 * einops.rearrange(self.N_l, "l -> 1 l 1")) low_coords_bld = torch.floor(scaled_coords_bld).long() # add a bit to make sure we round up high_coords_bld = torch.ceil(scaled_coords_bld + (1.0 / (self.N_max + 1))).long() vertices_blDd = self.get_hypercube_vertices(low_coords_bld, high_coords_bld) b, l, D, d = vertices_blDd.shape feat_indices_lN = einops.rearrange(utils.spatial_hash(vertices_blDd.view(b * l * D, d), self.T), "(b l D) -> l (b D)", b=b, l=l, D=D) l_indices = torch.arange(l, dtype=torch.long, device=self.device) feats_blDf = einops.rearrange(self.features[l_indices[:, None], feat_indices_lN, :], "l (b D) f -> b l D f", b=b, l=l, D=D) interpolated_feats_blf = self.interpolate(scaled_coords_bld, feats_blDf, vertices_blDd, smooth=smooth) return interpolated_feats_blf.flatten(start_dim=1) def forward(self, x): coords, eta = x[:, :self.d], x[:, self.d:] interpolated_feats_bF = self.get_interpolated_features(coords, smooth=True) final_feats_bF = torch.cat((interpolated_feats_bF, eta), dim=1) return self.mlp(final_feats_bF) def step(self, batch, batch_idx, phase): raise NotImplementedError("Implement this for various methods!") def training_step(self, train_batch, batch_idx): return self.step(train_batch, batch_idx, "training") def validation_step(self, val_batch, batch_idx): return self.step(val_batch, batch_idx, "validation") def configure_optimizers(self): self.ema.to(self.device) return torch.optim.AdamW(self.parameters(), betas=(0.9, 0.99), eps=10e-15, weight_decay=10e-6) def on_before_zero_grad(self, *args, **kwargs): self.ema.update(self.parameters()) class SDFNGPModel(NeuralGraphicsPrimitiveModel): def __init__(self, pos_enc_freqs=6, coords_min=-1.0, coords_max=1.0): mlp = utils.make_mlp(3 * 2 * pos_enc_freqs, 1, hidden_dim=128, hidden_layers=4) super().__init__(mlp, dimension=3, feature_dim=2) self.coords_min = coords_min self.coords_max = coords_max self.pos_enc_freqs = pos_enc_freqs def forward(self, x): # coords are between [coords_min, coords_max], scale to be between [0, 1] x -= self.coords_min x /= (self.coords_max - self.coords_min) pos_enc_x = utils.pos_encoding(x, self.pos_enc_freqs, dim=1) return super().forward(pos_enc_x) def step(self, batch, batch_idx, phase): x, d = batch outputs = self(x) loss = F.l1_loss(outputs.squeeze(), d.squeeze()) self.log(f"{phase}/loss", loss) return loss class GigapixelNGPModel(NeuralGraphicsPrimitiveModel): def __init__(self, pos_enc_freqs=6, coords_min=0.0, coords_max=1.0): mlp = utils.make_mlp(2 * 2 * pos_enc_freqs, 3, hidden_dim=64, hidden_layers=2, output_nonlinearity=torch.nn.Sigmoid()) super().__init__(mlp, dimension=2, max_resolution=4096, max_entries_per_level=2**18, feature_dim=2) self.coords_min = coords_min self.coords_max = coords_max self.pos_enc_freqs = pos_enc_freqs def forward(self, x): # coords are between [coords_min, coords_max], scale to be between [0, 1] x -= self.coords_min x /= (self.coords_max - self.coords_min) pos_enc_x = utils.pos_encoding(x, self.pos_enc_freqs, dim=1) return super().forward(pos_enc_x) def step(self, batch, batch_idx, phase): x, y = batch outputs = self(x) loss = F.mse_loss(outputs.squeeze(), y.squeeze()) self.log(f"{phase}/loss", loss) self.log(f"{phase}/psnr", 20 * torch.log10(torch.Tensor([1.0]).to(self.device)) - 10 * torch.log10(loss)) return loss ```
{ "source": "jgibson/Xponents", "score": 3 }
#### File: python/opensextant/CommonsUtils.py ```python version = 'v3' from cStringIO import StringIO import os import csv import re from chardet import detect as detect_charset ## --------------------------------------- ## TEXT UTILITIES ## --------------------------------------- ## # # Acceptable test: http://stackoverflow.com/questions/196345/how-to-check-if-a-string-in-python-is-in-ascii def is_ascii(s): if isinstance(s, unicode): return all(ord(c) < 128 for c in s) else: try: return all(ord(c) < 128 for c in s) except: pass return False ## ISO-8859-2 is a common answer, when they really mean ISO-1 CHARDET_LATIN2_ENCODING = 'ISO-8859-1' def guess_encoding(text): ''' Given bytes, determine the character set encoding @return: dict with encoding and confidence ''' if not text: return {'confidence':0, 'encoding':None} enc = detect_charset(text) cset = enc['encoding'] if cset.lower() == 'iso-8859-2': ## Anamoly -- chardet things Hungarian (iso-8850-2) is ## a close match for a latin-1 document. At least the quotes match ## Other Latin-xxx variants will likely match, but actually be Latin1 ## or win-1252. see Chardet explanation for poor reliability of Latin-1 detection ## enc['encoding'] = CHARDET_LATIN2_ENCODING return enc def bytes2unicode(buf, encoding=None): if not encoding: enc = guess_encoding(buf) encoding = enc['encoding'] if not encoding: return None if encoding.lower() == 'utf-8': return unicode(buf) else: text = buf.decode(encoding) return unicode(text) return None reSqueezeWhiteSpace = re.compile(r'\s+', re.MULTILINE) def squeeze_whitespace(s): return reSqueezeWhiteSpace.sub(' ', s).strip() def scrub_eol(t): return t.replace('\n', ' ').replace('\r', '') BOOL_F_STR = set(["false", "0", "n", "f", "no", "", "null"]) BOOL_T_STR = set(["true", "1", "y", "t", "yes" ]) def get_bool(token): if not token: return False if isinstance(token, bool): return token t=token.lower() if t in BOOL_F_STR: return False if t in BOOL_T_STR: return True return False def get_number(token): ''' Turn leading part of a string into a number, if possible. ''' num = StringIO() for ch in token: if ch.isdigit() or ch == '.' or ch == '-': num.write(ch) else: break val = num.getvalue() num.close() return val def has_digit(text): ''' Used primarily to report places and appears to be critical for name filtering when doing phonetics. ''' if text is None: return False for ch in text: # ascii if ch.isdigit(): return True return False def get_text_window(offset, matchlen, textsize, width): ''' prepreprepre MATCH postpostpost ^ ^ ^ ^ l-width l l+len l+len+width left_y left_x right_x right_y ''' left_x = offset - width left_y = offset - 1 right_x = offset + matchlen right_y = right_x + width if left_x < 0: left_x = 0 if left_y < left_x: left_y = left_x # bounds checking END....y? then y=END, results in shorter postmatch if right_y >= textsize: right_y = textsize - 1 # bounds checking y.... x? then x=y, results in empty postmatch if right_x > right_y: right_x = right_y return [ left_x, left_y, right_x, right_y] ## --------------------------------------- ## FILE UTILITIES ## --------------------------------------- ## def get_csv_writer(fh, columns, delim=','): return csv.DictWriter(fh, columns, restval="", extrasaction='raise', dialect='excel', lineterminator='\n', delimiter=delim, quotechar='"', quoting=csv.QUOTE_ALL, escapechar='\\') def get_csv_reader(fh, columns, delim=','): return csv.DictReader(fh, columns, restval="", dialect='excel', lineterminator='\n', escapechar='\\', delimiter=delim, quotechar='"', quoting=csv.QUOTE_ALL) # ||||||||||||||||||||||||||||||||||||||||||||| # ||||||||||||||||||||||||||||||||||||||||||||| class ConfigUtility: # ||||||||||||||||||||||||||||||||||||||||||||| # ||||||||||||||||||||||||||||||||||||||||||||| ''' A utility to load parameter lists, CSV files, word lists, etc. from a folder *dir* functions here take an Oxygen cfg parameter keyword or a file path. If the keyword is valid and points to a valid file path, then the file path is used. In otherwords, keywords are aliases for a file on disk. Ex. 'mywords' = '.\cfg\mywords_v03_filtered.txt' oxygen.cfg file would have this mapping. Your code just references 'mywords' to load it. ''' def __init__(self, CFG, rootdir='.'): # If config is None, then caller can still use loadDataFromFile(abspath, delim) for example. # self.config = CFG self.rootdir = rootdir def loadCSVFile(self, keyword, delim): ''' Load a named CSV file. If the name is not a cfg parameter, the keyword name *is* the file. ''' f = self.config.get(keyword) if f is None: f = keyword path = os.path.join(self.rootdir, f) return self.loadDataFromFile(path, delim) def loadDataFromFile(self, path, delim): ''' Load columnar data from a file. Returns array of non-comment rows. ''' if not os.path.exists(path): raise Exception('File does not exist, FILE=%s' % path) f = open(path, 'rb') filereader = csv.reader(f, delimiter=delim, lineterminator='\n') data = [] for row in filereader: first_cell = row[0].strip() if first_cell.startswith('#'): continue #if not delim and not first_cell: # continue data.append(row) f.close() return data def loadFile(self, keyword): ''' Load a named word list file. If the name is not a cfg parameter, the keyword name *is* the file. ''' filename = '' if os.path.exists(keyword): path = keyword else: filename = self.config.get(keyword) if filename is None: filename = keyword path = os.path.join(self.rootdir, filename) if not os.path.exists(path): raise Exception('File does not exist, FILE=%s' % path) return self.loadListFromFile(path) def loadListFromFile(self, path): ''' Load text data from a file. Returns array of non-comment rows. One non-whitespace row per line. ''' if not os.path.exists(path): raise Exception('File does not exist, FILE=%s' % path) file = open(path, 'r') termlist = [] for line in file: line = line.strip() if line.startswith('#'): continue if len(line) == 0: continue termlist.append(line.lower()) file.close() return termlist ``` #### File: python/opensextant/Data.py ```python class Country: ''' Country metadata ''' def __init__(self): self.cc_iso2 = None self.cc_iso3 = None self.cc_fips = None self.name = None self.namenorm = None self.aliases = [] self.is_territory = False self.is_unique_name = False self.timezones = [] self.languages = set([]) self.primary_language = None self.lat = 0 self.lon = 0 def __str__(self): return u'%s (%s)' %(self.name, self.cc_iso2) def validate_lat(f): return (f >= -90.0) and (f <= 90.0) def validate_lon(f): return (f >= -180.0) and (f <= 180.0) class Coordinate: ''' Convenient class for Lat/Lon pair. Expects a row dict with 'lat' and 'lon', or kwd args 'lat', 'lon' @param row default dictionary ''' def __init__(self, row, lat=None, lon=None): self.X = 0.0 self.Y = 0.0 self.mgrs = None if row: if (row.has_key('lat') and row.has_key('lon')): lat = row['lat'] lon = row['lon'] if (lat and lon): self.X = float(lon) self.Y = float(lat) else: return None def validate(self): return validate_lat(self.Y) and validate_lon(self.X) and (self.X is not None and self.Y is not None) def set(self, strLAT, strLON): self.X = float(strLON) self.Y = float(strLAT) def __str__(self): if self.Y: return '%3.4f, %3.4f' % (self.Y, self.X) else: return 'unset' class Place(Coordinate): ''' Location or GeoBase + Coordinate + Place + Country or Location + Coordinate + Place etc. Not sure of the best data model for inheritance. This Python API hopes to simplify the concepts in the Java API. ''' def __init__(self, pid, name, lat=None, lon=None): Coordinate.__init__(self, None, lat=lat, lon=lon) self.place_id = pid self.name = name self.is_ascii = False self.is_upper = False self.adm1_postalcode = None # Province Postal CODE? self.place_postalcode = None # ZIP CODE? self.name_type = None self.country = None self.country_code = None self.feature_class = None self.feature_code = None self.adm1 = None self.adm1_name = None self.adm2 = None self.adm2_name = None self.source = None self.name_bias = 0.0 self.id_bias = 0.0 self.precision= -1 self.method = None; self.population = 0 self.hierachical_path= None def has_coordinate(self): if self.validate(): return (self.Y != 0 and self.X != 0) return False def get_location(self): ''' Returns (LAT, LON) tuple @return: tuple, (lat,lon) ''' return (self.Y, self.X) def set_location(self, lat, lon): self.set(lat, lon) def __str__(self): crd = 'Unset' if self.Y: crd = '%3.4f, %3.4f' % (self.Y, self.X) meta = '%s (%s), %s' %( self.name, self.place_id, self.country_code) return ', '.join([meta, crd]) ``` #### File: python/opensextant/TaxCat.py ```python import os __API_PATH = os.path.realpath( __file__ ) SOLR_SERVER = "http://localhost:7000/solr/taxcat" def _scrub_cdata_content(text): ''' User should scrub data themselves; but this gives ideas of what goes wrong when adding text to Solr <,>,& all must be escaped. ''' return text.replace('<', '(less than)').replace('>','(greater than)').replace('&', '&amp; ') def get_taxnode(t, val): return t.lower() + "." + val.strip() _FALSE_VAL = set(['f', 'false', '0', 'n', 'no']) _TRUE_VAL = set(['t', 'true', '1', 'y', 'yes']) def add_bool(dct, f, val, default=None): if not val: if default is not None: dct[f] = default return if val.lower() in _FALSE_VAL: dct[f] = 'false' elif val.lower() in _TRUE_VAL: dct[f] = 'true' return def add_text(dct, f, val): ''' add_text offers a basic idea of how to add values to dict before sending to solr. TEXT strings may need scrubbing but you just add non-TEXT values. ''' if (isinstance(val, str) or isinstance(val, unicode)): dct[f] = val else: dct[f] = val def add_value(f, val, case=0): ''' add a value to a given field, f; And normalize case if non-zero. case = CASE_LOWER | CASE_UPPER | 0(default) no change ''' if val is None: f.append(u'') return if (isinstance(val, str) or isinstance(val, unicode)): v = val #if "&" in val or "<" in val: # print "SCRUB THIS:", val # val.replace('&','+').replace('<', ' lt ') if not case: f.append(v) elif case == CASE_LOWER: f.append( v.lower() ) elif case == CASE_UPPER: f.append( v.upper() ) else: f.append(str(val)) return CASE_LOWER=1 CASE_UPPER=2 ''' # Catalogs must be registered -- Solr has no concept of how to manage string-based record IDs # that is something you must manage as you create your combined catalog, # # Catalog Registry maps your catalog ID to a starting offset for solr records # If you think your reference data for catalog X will have 1 million entries, then # start catalog X at 1,000,000 and let other smaller catalogs start at 0 or at less than 1 million # start the next catalog at 3,000,000 to give X some breathing room. # ''' CATALOG_REGISTRY = { "DEFAULT" : 0 } class Taxon: def __init__(self): self.name = None self.phrase = None self.id = None self.is_valid = True # An array of additional tags. self.tags = None self.is_acronym = False class TaxCatalogBuilder: def __init__(self, server=None): ''' @param server: solr server http URL; Not solrhome -- this is not SolrEmbedded. @param stopwords: file of stopwords ''' self.server = None self.set_server(server) self._record_count = 0l self._byte_count = 0l self._add_byte_count = 0l self.commit_rate = -1 self._records = [] self.count = 0 from CommonsUtils import ConfigUtility ## Load file self.utility = ConfigUtility(None) self.stopwords = set( [] ) def add_stopwords( self, stopfile ): if not os.path.exists(stopfile): raise Exception("No stopwords found at " + stopfile) print "Loading stopwords ", stopfile _stopwords_list = self.utility.loadListFromFile(stopfile) self.stopwords.add( _stopwords_list ) def get_starting_id(self, cat): offset = CATALOG_REGISTRY.get(cat) if not offset: raise Exception("Catalog is not registered: " + cat) return offset def set_server(self, svr): self.server_url = svr if not self.server_url: return try: from pysolr import Solr self.server = Solr(self.server_url, timeout=600) print "SERVER ", self.server_url, self.server except Exception, err: print "Problem with that server %s, ERR=%s" % (self.server_url, err) def optimize(self): if self.server: self.server.optimize() def save(self, flush=False): if not self.server: print "No server" return if not flush: qty = len(self._records) if self.commit_rate>0 and qty % self.commit_rate != 0: return if qty < self.commit_rate: return self.server.add(self._records) self.server.commit() self._records = [] return def add(self, catalog, taxon): ''' @param catalog ID of catalog where this taxon lives @param taxon Taxon obj ''' self.count = self.count + 1 rec = {'catalog':catalog, 'taxnode':taxon.name, 'phrase':taxon.phrase, 'id':taxon.id, 'valid': taxon.is_valid, 'name_type':'N' } if taxon.tags: rec['tag'] = taxon.tags if taxon.is_acronym: rec['name_type'] = 'A' self._records.append( rec ) def add_wordlist(self, catalog, datafile, start_id, taxnode=None, minlen=1): ''' Given a simple one column word list file, each row of data is added to catalog as a Taxon; taxnode may be used as a prefix for the words Add a series of organized word lists to a single Catalog, but manage each wordlist with some prefix taxon path. add_wordlist('CAT', f1, 400, taxonode='first') add_wordlist('CAT', f2, 500, taxonode='second') add_wordlist('CAT', f3, 600, taxonode='third') add_wordlist('CAT', f4, 700, taxonode='fourth') ''' _name = os.path.basename(datafile) if taxnode: _name = taxnode sheet = open(datafile,'rb') words = set([]) for row in sheet: _phrase = row.strip() if not _phrase: continue if _phrase.startswith("#"): # is a comment or commented out word. continue self.count += 1 _id = start_id + self.count key = _phrase.lower() if key in words: print "Not adding ", key continue words.add(key) t = Taxon() t.id = _id t.is_valid = len(key) >= minlen t.name = _name t.phrase = _phrase # Allow case-sensitve entries. IFF input text contains UPPER # case data, we'll mark it as acronym. if t.phrase.isupper(): t.is_acronym = True self.add(catalog, t) print "COUNT: %d" %( self.count) sheet.close() ```
{ "source": "jgidi/varqus", "score": 3 }
#### File: varqus/varqus/analytic.py ```python import numpy as np import scipy.linalg as la from varqus.utils import parse_gate def R_k(theta_k : float, fs_k : list, gates_k : list): """ Calculate the unitary R_k. Args: theta_k: float. theta_k parameter in the paper. fs_k: list. Contains the complex coefficients f_ki that appear in R_k. gates_k: list. Contains the operators sigma_ki that appear in R_k. Returns: R_k: Gate. """ U = sum( f * parse_gate(g) for (f, g) in zip(fs_k, gates_k) ) return la.expm(theta_k * U) def A_kqij(theta, fs, gates, state, k, q, i, j): R_ki = np.copy(state.reshape(-1, 1)) R_qj = np.copy(state.reshape(-1, 1)) gate_ki = parse_gate(gates[k][i]) gate_qj = parse_gate(gates[q][j]) for l in range(len(theta)): if l == k: R_ki = gate_ki @ R_ki elif l == q: R_qj = gate_qj @ R_qj U = R_k(theta[l], fs[l], gates[l]) R_ki = U @ R_ki R_qj = U @ R_qj coefs = 1j * np.conj(fs[k][i]) * fs[q][j] return 2*np.real( coefs * np.vdot(R_ki, R_qj) ) def A_kq(theta, fs, gates, state, k, q): s = 0.0 for i in range(len(fs[k])): for j in range(len(fs[q])): s += A_kqij(theta, fs, gates, state, k, q, i, j) return s def A(theta, fs, gates, state): N = len(theta) a = np.zeros((N, N)) for q in range(N): for k in range(q+1): # Calculate only a half a[k, q] = A_kq(theta, fs, gates, state, k, q) return a - a.T # Complete the other half def V_kij(theta, fs, hs, gates, h_gates, state, k, i, j): R = np.copy(state.reshape(-1, 1)) R_ki = np.copy(state.reshape(-1, 1)) gate_ki = parse_gate(gates[k][i]) h_gate_j = parse_gate(h_gates[j]) for l in range(len(theta)): if l == k: R_ki = gate_ki @ R_ki U = R_k(theta[l], fs[l], gates[l]) R = U @ R R_ki = U @ R_ki coefs = hs[j] * np.conjugate(fs[k][i]) return 2*np.real(coefs * np.vdot(R_ki, h_gate_j @ R)) def V_k(theta, fs, hs, gates, h_gates, state, k): s = 0.0 for i in range(len(fs[k])): for j in range(len(hs)): s += V_kij(theta, fs, hs, gates, h_gates, state, k, i, j) return s def V(theta, fs, hs, gates, h_gates, state): return np.array([ V_k(theta, fs, hs, gates, h_gates, state, k) for k in range(len(theta)) ]) ``` #### File: varqus/varqus/states.py ```python import numpy as np from varqus.analytic import R_k def state_infidelity(state1, state2): s1 = state1 / np.linalg.norm(state1) s2 = state2 / np.linalg.norm(state2) fidelity = np.abs( np.vdot(s1, s2) )**2 return 1 - fidelity def state_from_parameters(params, ops, fs, initial_state): state = np.copy(initial_state) for l in range(len(params)): state = R_k(params[l], fs[l], ops[l]) @ state return state / np.linalg.norm(state) ```
{ "source": "jgieseler/solo-epd-loader", "score": 2 }
#### File: solo-epd-loader/solo_epd_loader/__init__.py ```python from pkg_resources import DistributionNotFound, get_distribution try: __version__ = get_distribution(__name__).version except DistributionNotFound: pass # package is not installed import datetime as dt import glob import itertools import os import re import urllib.request import warnings from pathlib import Path import cdflib import numpy as np import pandas as pd from astropy.io.votable import parse_single_table from sunpy.io.cdf import read_cdf """ Example code that loads low latency (ll) electron and proton (+alphas) fluxes (and errors) for 'ept' 'north' telescope from Apr 15 2021 to Apr 16 2021 into two Pandas dataframes (one for protons & alphas, one for electrons). In general available are 'sun', 'asun', 'north', and 'south' viewing directions for 'ept' and 'het' telescopes of SolO/EPD. from epd_loader import * df_protons, df_electrons, energies = \ _read_epd_cdf('ept', 'north', 'll', 20210415, 20210416, path='/home/userxyz/solo/data/') # plot protons and alphas ax = df_protons.plot(logy=True, subplots=True, figsize=(20,60)) plt.show() # plot electrons ax = df_electrons.plot(logy=True, subplots=True, figsize=(20,60)) plt.show() """ """ Example code that loads level 2 (l2) electron and proton (+alphas) fluxes (and errors) for 'het' 'sun' telescope from Aug 20 2020 to Aug 20 2020 into two Pandas dataframes (one for protons & alphas, one for electrons). from epd_loader import * df_protons, df_electrons, energies = \ _read_epd_cdf('het', 'sun', 'l2', 20200820, 20200821, path='/home/userxyz/solo/data/') # plot protons and alphas ax = df_protons.plot(logy=True, subplots=True, figsize=(20,60)) plt.show() # plot electrons ax = df_electrons.plot(logy=True, subplots=True, figsize=(20,60)) plt.show() """ def _check_duplicates(filelist, verbose=True): """ Checks for duplicate file entries in filelist (that are only different by version number). Returns filelist with duplicates removed. """ for _, g in itertools.groupby(filelist, lambda f: f.split('_')[:-1]): dups = list(g) if len(dups) > 1: dups.sort() if verbose: print('') print('WARNING: Following data files are duplicates with ' + 'different version numbers:') for i in dups: print(i) if verbose: print('') print('Removing following files from list that will be read: ') for n in range(len(dups)-1): print(dups[n]) filelist.remove(dups[n]) if verbose: print('You might want to delete these files in order to get ' + 'rid of this message.') return filelist def _get_filename_url(cd): """ Get download filename for a url from content-disposition """ if not cd: return None fname = re.findall('filename=(.+)', cd) if len(fname) == 0: return None return fname[0][1:-1] def _load_tqdm(verbose=True): """ Tries to load tqdm package for displaying download progress. Return True or False, depending of success state. If not available, returns False. """ try: from tqdm import tqdm class DownloadProgressBar(tqdm): def update_to(self, b=1, bsize=1, tsize=None): if tsize is not None: self.total = tsize self.update(b * bsize - self.n) def download_url(url, output_path): with DownloadProgressBar(unit='B', unit_scale=True, miniters=1, desc=output_path.split('/')[-1]) as t: urllib.request.urlretrieve(url, filename=output_path, reporthook=t.update_to) tqdm_available = True except ModuleNotFoundError: if verbose: print("Module tqdm not installed, won't show progress bar. To get rid of this: pip install tqdm") tqdm_available = False download_url = None return tqdm_available, download_url def _get_epd_filelist(sensor, level, startdate, enddate, path, filenames_only=False): """ INPUT: sensor: 'ept' or 'het' level: 'll', 'l2' startdate, enddate: YYYYMMDD path: directory in which the data is located; e.g. '/home/userxyz/uni/solo/data/l2/epd/ept/' filenames_only: if True only give the filenames, not the full path RETURNS: Dictionary with four entries for 'sun', 'asun', 'north', 'south'; each containing a list of files matching selection criteria. """ if level == 'll': l_str = 'LL02' t_str = 'T??????-????????T??????' if level == 'l2': l_str = 'L2' t_str = '' filelist_sun = [] filelist_asun = [] filelist_north = [] filelist_south = [] for i in range(startdate, enddate+1): filelist_sun = filelist_sun + \ glob.glob(path+'solo_'+l_str+'_epd-'+sensor+'-sun-rates_' + str(i) + t_str + '_V*.cdf') filelist_asun = filelist_asun + \ glob.glob(path+'solo_'+l_str+'_epd-'+sensor+'-asun-rates_' + str(i) + t_str + '_V*.cdf') filelist_north = filelist_north + \ glob.glob(path+'solo_'+l_str+'_epd-'+sensor+'-north-rates_' + str(i) + t_str + '_V*.cdf') filelist_south = filelist_south + \ glob.glob(path+'solo_'+l_str+'_epd-'+sensor+'-south-rates_' + str(i) + t_str + '_V*.cdf') if filenames_only: filelist_sun = [os.path.basename(x) for x in filelist_sun] filelist_asun = [os.path.basename(x) for x in filelist_asun] filelist_north = [os.path.basename(x) for x in filelist_north] filelist_south = [os.path.basename(x) for x in filelist_south] filelist = {'sun': filelist_sun, 'asun': filelist_asun, 'north': filelist_north, 'south': filelist_south } return filelist def _get_step_filelist(level, startdate, enddate, path, filenames_only=False): """ INPUT: level: 'll', 'l2' startdate, enddate: YYYYMMDD path: directory in which the data is located; e.g. '/home/userxyz/uni/solo/data/l2/epd/step/' filenames_only: if True only give the filenames, not the full path RETURNS: List of files matching selection criteria. """ sensor = 'step' if level == 'll': l_str = 'LL02' t_str = 'T??????-????????T??????' if level == 'l2': l_str = 'L2' t_str = '' filelist = [] for i in range(startdate, enddate+1): filelist = filelist + \ glob.glob(path+'solo_'+l_str+'_epd-'+sensor+'-rates_' + str(i) + t_str + '_V*.cdf') if filenames_only: filelist = [os.path.basename(x) for x in filelist] return filelist def _epd_ll_download(date, path, sensor, viewing=None): """ Download EPD low latency data from http://soar.esac.esa.int/soar One file/day per call. Note: for sensor 'step' the 'viewing' parameter is necessary, but it Example: _epd_ll_download(20210415, '/home/userxyz/solo/data/low_latency/epd/ept/', 'ept', 'north') _epd_ll_download(20200820, '/home/userxyz/solo/data/low_latency/epd/step/', 'step') """ # try loading tqdm for download progress display tqdm_available, download_url = _load_tqdm(verbose=True) # get list of available data files, obtain corresponding start & end time fl = get_available_soar_files(date, date, sensor, 'll') # try: if sensor.lower() == 'step': stime = 'T'+fl[0].split('T')[1].split('-')[0] etime = 'T'+fl[0].split('T')[2].split('_')[0] url = 'http://soar.esac.esa.int/soar-sl-tap/data?' + \ 'retrieval_type=LAST_PRODUCT&data_item_id=solo_LL02_epd-' + \ sensor.lower()+'-rates_'+str(date) + \ stime+'-'+str(date+1)+etime+'&product_type=LOW_LATENCY' else: stime = 'T'+fl[0].split('T')[1].split('-')[0] # fl[0][-32:-25] etime = 'T'+fl[0].split('T')[2].split('_')[0] # fl[0][-16:-9] url = 'http://soar.esac.esa.int/soar-sl-tap/data?' + \ 'retrieval_type=LAST_PRODUCT&data_item_id=solo_LL02_epd-' + \ sensor.lower()+'-'+viewing.lower()+'-rates_'+str(date) + \ stime+'-'+str(date+1)+etime+'&product_type=LOW_LATENCY' # Get filename from url file_name = _get_filename_url( urllib.request.urlopen(url).headers['Content-Disposition']) if tqdm_available: download_url(url, path+file_name) else: urllib.request.urlretrieve(url, path+file_name) return path+file_name def _epd_l2_download(date, path, sensor, viewing=None): """ Download EPD level 2 data from http://soar.esac.esa.int/soar One file/day per call. Example: _epd_l2_download(20200820, '/home/userxyz/solo/data/l2/epd/ept/', 'ept', 'north') _epd_l2_download(20200820, '/home/userxyz/solo/data/l2/epd/step/', 'step') """ # try loading tqdm for download progress display tqdm_available, download_url = _load_tqdm(verbose=True) if sensor.lower() == 'step': url = 'http://soar.esac.esa.int/soar-sl-tap/data?' + \ 'retrieval_type=LAST_PRODUCT&data_item_id=solo_L2_epd-' + \ sensor.lower()+'-rates_'+str(date) + \ '&product_type=SCIENCE' else: url = 'http://soar.esac.esa.int/soar-sl-tap/data?' + \ 'retrieval_type=LAST_PRODUCT&data_item_id=solo_L2_epd-' + \ sensor.lower()+'-'+viewing.lower()+'-rates_'+str(date) + \ '&product_type=SCIENCE' # Get filename from url file_name = _get_filename_url( urllib.request.urlopen(url).headers['Content-Disposition']) if tqdm_available: download_url(url, path+file_name) else: urllib.request.urlretrieve(url, path+file_name) return path+file_name def get_available_soar_files(startdate, enddate, sensor, level='l2'): """ Get list of files available at SOAR Check ESA's SOAR database for available Solar Orbiter/EPD files in date range for give sensor and data level. Returns list of file names. Parameters ---------- startdate : yyyymmdd (int) Provides year (yyyy), month (mm) and day (dd) of the start date as one combined integer; fill empty positions with zeros, e.g. '20210415' enddate : yyyymmdd (int) Provides year (yyyy), month (mm) and day (dd) of the end date as one combined integer; fill empty positions with zeros, e.g. '20210415' sensor : {'ept', 'het', 'step'} Defines EPD sensor level : {'l2', 'll'}, optional Defines level of data product: level 2 ('l2') or low-latency ('ll'); by default 'l2' Returns ------- filelist : list of str List of corresponding files available at SOAR. """ # add 1 day to enddate to better work with SOAR's API # enddate = (pd.to_datetime(str(enddate))+ # pd.to_timedelta('1d')).strftime('%Y%m%d') sy = str(startdate)[0:4] sm = str(startdate)[4:6] sd = str(startdate)[6:8] ey = str(enddate)[0:4] em = str(enddate)[4:6] ed = str(enddate)[6:8] if level.lower() == 'l2': p_level = 'L2' # "processing_level" # data_type = 'v_sc_data_item' if level.lower() == 'll': p_level = 'LL02' # "processing_level" # data_type = 'v_ll_data_item' data_type = 'v_public_files' url = "http://soar.esac.esa.int/soar-sl-tap/tap/sync?REQUEST=doQuery&" + \ "LANG=ADQL&retrieval_type=LAST_PRODUCT&FORMAT=votable_plain&" + \ "QUERY=SELECT+*+FROM+"+data_type + \ "+WHERE+(instrument='EPD')+AND+((begin_time%3E%3D'"+sy+"-"+sm + \ "-"+sd+"+00:00:00')+AND+(begin_time%3C%3D'"+ey+"-"+em+"-"+ed + \ "+01:00:00'))" filelist = urllib.request.urlretrieve(url) # open VO table, convert to astropy table, convert to pandas dataframe df = parse_single_table(filelist[0]).to_table().to_pandas() # convert bytestrings to unicode, from stackoverflow.com/a/67051068/2336056 for col, dtype in df.dtypes.items(): if dtype == np.object: # Only process object columns. # decode, or return original value if decode return Nan df[col] = df[col].str.decode('utf-8').fillna(df[col]) # remove duplicates with older version number df = df.sort_values('file_name') df.drop_duplicates(subset=['item_id'], keep='last', inplace=True) # only use data level wanted; i.e., 'LL' or 'L2' df = df[df['processing_level'] == p_level] # list filenames for given telescope (e.g., 'HET') # filelist = df['filename'][df['sensor'] == sensor.upper()].sort_values() filelist = [s for s in df['file_name'].values if sensor.lower() in s] # list filenames for 'rates' type (i.e., remove 'hcad') filelist = [s for s in filelist if "rates" in s] # filelist.sort() if len(filelist) == 0: print('No corresponding data found at SOAR!') return filelist def _autodownload_cdf(startdate, enddate, sensor, level, path): """ Uses get_available_soar_files() to check which files for selection criteria are available online. Compares with locally available files at 'path', and downloads missing files to 'path' using epd_l*_download() """ fls = get_available_soar_files(startdate, enddate, sensor, level) for i in fls: my_file = Path(path)/i if not my_file.is_file(): if os.path.exists(path) is False: print(f'Creating dir {path}') os.makedirs(path) tdate = int(i.split('_')[3].split('T')[0]) tview = i.split('-')[2] if level.lower() == 'll': _ = _epd_ll_download(date=tdate, path=path, sensor=sensor, viewing=tview) if level.lower() == 'l2': _ = _epd_l2_download(date=tdate, path=path, sensor=sensor, viewing=tview) return def epd_load(sensor, level, startdate, enddate=None, viewing=None, path=None, autodownload=False): """ Load SolO/EPD data Load-in data for Solar Orbiter/EPD energetic charged particle sensors EPT, HET, and STEP. Supports level 2 and low latency data provided by ESA's Solar Orbiter Archive. Optionally downloads missing data directly. Returns data as Pandas dataframe. Parameters ---------- sensor : {'ept', 'het', 'step'} Defines EPD sensor level : {'l2', 'll'} Defines level of data product: level 2 ('l2') or low-latency ('ll') startdate : (datetime or int) Provides start date. Either a datetime object (e.g., dt.date(2021,12,31) or dt.datetime(2021,4,15)). Or a combined integer yyyymmdd with year (yyyy), month (mm) and day (dd) with empty positions filled with zeros, e.g. 20210415 enddate : (datetime or int), optional Provides end date. Either a datetime object (e.g., dt.date(2021,12,31) or dt.datetime(2021,4,15)). Or a combined integer yyyymmdd with year (yyyy), month (mm) and day (dd) with empty positions filled with zeros, e.g. 20210415 (if no enddate is given, 'enddate = startdate' will be set) viewing : {'sun', 'asun', 'north', 'south' or None}, optional Viewing direction of sensor. Needed for 'ept' or 'het'; for 'step' shoule be None. By default None path : str, optional User-specified directory in which Solar Orbiter data is/should be organized; e.g. '/home/userxyz/solo/data/', by default None autodownload : bool, optional If True, will try to download missing data files from SOAR, by default False. Returns ------- For EPT & HET: 1. Pandas dataframe with proton fluxes and errors (for EPT also alpha particles) in 'particles / (s cm^2 sr MeV)' 2. Pandas dataframe with electron fluxes and errors in 'particles / (s cm^2 sr MeV)' 3. Dictionary with energy information for all particles: - String with energy channel info - Value of lower energy bin edge in MeV - Value of energy bin width in MeV For STEP: 1. Pandas dataframe with fluxes and errors in 'particles / (s cm^2 sr MeV)' 2. Dictionary with energy information for all particles: - String with energy channel info - Value of lower energy bin edge in MeV - Value of energy bin width in MeV Raises ------ Exception Sensors 'ept' or 'het' need a provided 'viewing' direction. If None is given, Exception is raised. Examples -------- Load EPD/HET sun viewing direction low-latency data for Aug 20 to Aug 22, 2020 from user-defined directory, downloading missing files from SOAR: >>> df_protons, df_electrons, energies = epd_load('het', 'll', 20200820, ... 20200822, 'sun', None, True) Load EPD/STEP level 2 data for Aug 20 to Aug 22, 2020 from user-defined directory, downloading missing files from SOAR: >>> df, energies = epd_load(sensor='step', level='l2', startdate=20200820, ... enddate=20200822, autodownload=True) """ # refuse string as date input: for d in [startdate, enddate]: if isinstance(d, str): raise SystemExit("startdate & enddate must be datetime objects or YYYYMMDD integer!") # accept datetime object as date input by converting it to internal integer: if isinstance(startdate, dt.datetime) or isinstance(startdate, dt.date): startdate = int(startdate.strftime("%Y%m%d")) if isinstance(enddate, dt.datetime) or isinstance(enddate, dt.date): enddate = int(enddate.strftime("%Y%m%d")) # check integer date input for length: for d in [startdate, enddate]: if isinstance(d, int): if len(str(d)) != 8: raise SystemExit(f"startdate & enddate must be (datetime objects or) integers of the form YYYYMMDD, not {d}!") if sensor.lower() == 'step': datadf, energies_dict = \ _read_step_cdf(level, startdate, enddate, path, autodownload) return datadf, energies_dict if sensor.lower() == 'ept' or sensor.lower() == 'het': if viewing is None: raise Exception("EPT and HET need a telescope 'viewing' " + "direction! No data read!") df_epd_p = [] df_epd_e = [] energies_dict = [] else: df_epd_p, df_epd_e, energies_dict = \ _read_epd_cdf(sensor, viewing, level, startdate, enddate, path, autodownload) return df_epd_p, df_epd_e, energies_dict def _read_epd_cdf(sensor, viewing, level, startdate, enddate=None, path=None, autodownload=False): """ INPUT: sensor: 'ept' or 'het' (string) viewing: 'sun', 'asun', 'north', or 'south' (string) level: 'll' or 'l2' (string) startdate, enddate: YYYYMMDD, e.g., 20210415 (integer) (if no enddate is given, 'enddate = startdate' will be set) path: directory in which Solar Orbiter data is/should be organized; e.g. '/home/userxyz/uni/solo/data/' (string) autodownload: if True will try to download missing data files from SOAR RETURNS: 1. Pandas dataframe with proton fluxes and errors (for EPT also alpha particles) in 'particles / (s cm^2 sr MeV)' 2. Pandas dataframe with electron fluxes and errors in 'particles / (s cm^2 sr MeV)' 3. Dictionary with energy information for all particles: - String with energy channel info - Value of lower energy bin edge in MeV - Value of energy bin width in MeV """ # if no path to data directory is given, use the current directory if path is None: path = os.getcwd() # select sub-directory for corresponding sensor (EPT, HET) if level.lower() == 'll': path = Path(path)/'low_latency'/'epd'/sensor.lower() if level.lower() == 'l2': path = Path(path)/'l2'/'epd'/sensor.lower() # add a OS-specific '/' to end end of 'path' path = f'{path}{os.sep}' # if no 'enddate' is given, get data only for single day of 'startdate' if enddate is None: enddate = startdate # if autodownload, check online available files and download if not locally if autodownload: _autodownload_cdf(startdate, enddate, sensor.lower(), level.lower(), path) # get list of local files for date range filelist = _get_epd_filelist(sensor.lower(), level.lower(), startdate, enddate, path=path)[viewing.lower()] # check for duplicate files with different version numbers and remove them filelist = _check_duplicates(filelist, verbose=True) if len(filelist) == 0: raise Exception('WARNING: No corresponding data files found! ' + 'Try different settings, path or autodownload.') df_epd_p = [] df_epd_e = [] energies_dict = [] else: """ <-- get column names of dataframe """ if sensor.lower() == 'ept': if level.lower() == 'll': protons = 'Prot' electrons = 'Ele' e_epoch = 0 # 'EPOCH' if level.lower() == 'l2': protons = 'Ion' electrons = 'Electron' e_epoch = 1 # 'EPOCH_1' if sensor.lower() == 'het': if level.lower() == 'll': protons = 'H' electrons = 'Ele' e_epoch = 0 # 'EPOCH' if level.lower() == 'l2': protons = 'H' # EPOCH electrons = 'Electron' # EPOCH_4, QUALITY_FLAG_4 e_epoch = 4 # 'EPOCH_4' # load cdf files using read_cdf from sunpy (uses cdflib) data = read_cdf(filelist[0]) df_p = data[0].to_dataframe() df_e = data[e_epoch].to_dataframe() if len(filelist) > 1: for f in filelist[1:]: data = read_cdf(f) t_df_p = data[0].to_dataframe() t_df_e = data[e_epoch].to_dataframe() df_p = pd.concat([df_p, t_df_p]) df_e = pd.concat([df_e, t_df_e]) # directly open first cdf file with cdflib to access metadata used in the following t_cdf_file = cdflib.CDF(filelist[0]) # p intensities: flux_p_channels = \ [protons+f'_Flux_{i}' for i in range(t_cdf_file.varinq(protons+'_Flux')['Dim_Sizes'][0])] # p errors: if level.lower() == 'll': flux_sigma_p_channels = \ [protons+f'_Flux_Sigma_{i}' for i in range(t_cdf_file.varinq(protons+'_Flux')['Dim_Sizes'][0])] if level.lower() == 'l2': flux_sigma_p_channels = \ [protons+f'_Uncertainty_{i}' for i in range(t_cdf_file.varinq(protons+'_Flux')['Dim_Sizes'][0])] # p rates: rate_p_channels = \ [protons+f'_Rate_{i}' for i in range(t_cdf_file.varinq(protons+'_Rate')['Dim_Sizes'][0])] if sensor.lower() == 'ept': # alpha intensities: flux_a_channels = \ [f'Alpha_Flux_{i}' for i in range(t_cdf_file.varinq("Alpha_Flux")['Dim_Sizes'][0])] # alpha errors: if level.lower() == 'll': flux_sigma_a_channels = \ [f'Alpha_Flux_Sigma_{i}' for i in range(t_cdf_file.varinq("Alpha_Flux")['Dim_Sizes'][0])] if level.lower() == 'l2': flux_sigma_a_channels = \ [f'Alpha_Uncertainty_{i}' for i in range(t_cdf_file.varinq("Alpha_Flux")['Dim_Sizes'][0])] # alpha rates: rate_a_channels = \ [f'Alpha_Rate_{i}' for i in range(t_cdf_file.varinq("Alpha_Rate")['Dim_Sizes'][0])] # e intensities: flux_e_channels = \ [electrons+f'_Flux_{i}' for i in range(t_cdf_file.varinq(electrons+'_Flux')['Dim_Sizes'][0])] # e errors: if level.lower() == 'll': flux_sigma_e_channels = \ [f'Ele_Flux_Sigma_{i}' for i in range(t_cdf_file.varinq(electrons+'_Flux')['Dim_Sizes'][0])] if level.lower() == 'l2': flux_sigma_e_channels = \ [f'Electron_Uncertainty_{i}' for i in range(t_cdf_file.varinq(electrons+'_Flux')['Dim_Sizes'][0])] # e rates: rate_e_channels = \ [electrons+f'_Rate_{i}' for i in range(t_cdf_file.varinq(electrons+'_Rate')['Dim_Sizes'][0])] if level.lower() == 'l2': if sensor.lower() == 'het': df_epd_p = pd.concat( [df_p[flux_p_channels], df_p[flux_sigma_p_channels], df_p[rate_p_channels], df_p['DELTA_EPOCH'], df_p['QUALITY_FLAG'], df_p['QUALITY_BITMASK']], axis=1, keys=['H_Flux', 'H_Uncertainty', 'H_Rate', 'DELTA_EPOCH', 'QUALITY_FLAG', 'QUALITY_BITMASK']) df_epd_e = pd.concat([df_e[flux_e_channels], df_e[flux_sigma_e_channels], df_e[rate_e_channels], df_e['DELTA_EPOCH_4'], df_e['QUALITY_FLAG_4'], df_e['QUALITY_BITMASK_4']], axis=1, keys=['Electron_Flux', 'Electron_Uncertainty', 'Electron_Rate', 'DELTA_EPOCH_4', 'QUALITY_FLAG_4', 'QUALITY_BITMASK_4']) if sensor.lower() == 'ept': df_epd_p = pd.concat( [df_p[flux_p_channels], df_p[flux_sigma_p_channels], df_p[rate_p_channels], df_p[flux_a_channels], df_p[flux_sigma_a_channels], df_p[rate_a_channels], df_p['DELTA_EPOCH'], df_p['QUALITY_FLAG'], df_p['QUALITY_BITMASK']], axis=1, keys=['Ion_Flux', 'Ion_Uncertainty', 'Ion_Rate', 'Alpha_Flux', 'Alpha_Uncertainty', 'Alpha_Rate', 'DELTA_EPOCH', 'QUALITY_FLAG', 'QUALITY_BITMASK']) df_epd_e = pd.concat([df_e[flux_e_channels], df_e[flux_sigma_e_channels], df_e[rate_e_channels], df_e['DELTA_EPOCH_1'], df_e['QUALITY_FLAG_1'], df_e['QUALITY_BITMASK_1']], axis=1, keys=['Electron_Flux', 'Electron_Uncertainty', 'Electron_Rate', 'DELTA_EPOCH_1', 'QUALITY_FLAG_1', 'QUALITY_BITMASK_1']) if level.lower() == 'll': if sensor.lower() == 'het': df_epd_p = pd.concat( [df_p[flux_p_channels], df_p[flux_sigma_p_channels]], axis=1, keys=['H_Flux', 'H_Uncertainty', 'QUALITY_FLAG']) if sensor.lower() == 'ept': df_epd_p = pd.concat( [df_p[flux_p_channels], df_p[flux_sigma_p_channels], df_p[flux_a_channels], df_p[flux_sigma_a_channels], df_p['QUALITY_FLAG']], axis=1, keys=['Ion_Flux', 'Ion_Uncertainty', 'Alpha_Flux', 'Alpha_Uncertainty', 'QUALITY_FLAG']) df_epd_e = pd.concat([df_e[flux_e_channels], df_e[flux_sigma_e_channels], df_e['QUALITY_FLAG']], axis=1, keys=['Electron_Flux', 'Electron_Uncertainty', 'QUALITY_FLAG']) # manual replace FILLVALUES in dataframes with np.nan # t_cdf_file.varattsget("Ion_Flux")["FILLVAL"][0] = -1e+31 # same for l2 & ll and het & ept and e, p/ion, alpha # remove this (i.e. following two lines) when sunpy's read_cdf is updated, # and FILLVAL will be replaced directly, see # https://github.com/sunpy/sunpy/issues/5908 df_epd_p = df_epd_p.replace(-1e+31, np.nan) df_epd_e = df_epd_e.replace(-1e+31, np.nan) energies_dict = {protons+"_Bins_Text": t_cdf_file.varget(protons+'_Bins_Text'), protons+"_Bins_Low_Energy": t_cdf_file.varget(protons+'_Bins_Low_Energy'), protons+"_Bins_Width": t_cdf_file.varget(protons+'_Bins_Width'), electrons+"_Bins_Text": t_cdf_file.varget(electrons+'_Bins_Text'), electrons+"_Bins_Low_Energy": t_cdf_file.varget(electrons+'_Bins_Low_Energy'), electrons+"_Bins_Width": t_cdf_file.varget(electrons+'_Bins_Width') } if sensor.lower() == 'ept': energies_dict["Alpha_Bins_Text"] = \ t_cdf_file.varget('Alpha_Bins_Text') energies_dict["Alpha_Bins_Low_Energy"] = \ t_cdf_file.varget('Alpha_Bins_Low_Energy') energies_dict["Alpha_Bins_Width"] = \ t_cdf_file.varget('Alpha_Bins_Width') # name index column (instead of e.g. 'EPOCH' or 'EPOCH_1') df_epd_p.index.names = ['Time'] df_epd_e.index.names = ['Time'] ''' Careful if adding more species - they might have different EPOCH dependencies and cannot easily be put in the same dataframe! ''' return df_epd_p, df_epd_e, energies_dict def _read_step_cdf(level, startdate, enddate=None, path=None, autodownload=False): """ INPUT: level: 'll' or 'l2' (string) startdate, enddate: YYYYMMDD, e.g., 20210415 (integer) (if no enddate is given, 'enddate = startdate' will be set) path: directory in which Solar Orbiter data is/should be organized; e.g. '/home/userxyz/uni/solo/data/' (string) autodownload: if True will try to download missing data files from SOAR RETURNS: 1. Pandas dataframe with fluxes and errors in 'particles / (s cm^2 sr MeV)' 2. Dictionary with energy information for all particles: - String with energy channel info - Value of lower energy bin edge in MeV - Value of energy bin width in MeV """ sensor = 'step' # if no path to data directory is given, use the current directory if path is None: path = os.getcwd() # select sub-directory for corresponding sensor (in this case just 'step') if level.lower() == 'll': path = Path(path)/'low_latency'/'epd'/sensor.lower() if level.lower() == 'l2': path = Path(path)/'l2'/'epd'/sensor.lower() # add a OS-specific '/' to end end of 'path' path = f'{path}{os.sep}' # if no 'enddate' is given, get data only for single day of 'startdate' if enddate is None: enddate = startdate # if True, check online available files and download if not locally present if autodownload: _autodownload_cdf(startdate, enddate, sensor.lower(), level.lower(), path) # get list of local files for date range filelist = _get_step_filelist(level.lower(), startdate, enddate, path=path) # check for duplicate files with different version numbers and remove them filelist = _check_duplicates(filelist, verbose=True) if len(filelist) == 0: raise Exception('WARNING: No corresponding data files found! ' + 'Try different settings, path or autodownload.') datadf = [] energies_dict = [] else: all_cdf = [] for file in filelist: all_cdf.append(cdflib.CDF(file)) if level == 'l2': param_list = ['Integral_Flux', 'Magnet_Flux', 'Integral_Rate', 'Magnet_Rate', 'Magnet_Uncertainty', 'Integral_Uncertainty'] # set up the dictionary: energies_dict = \ {"Bins_Text": all_cdf[0].varget('Bins_Text'), "Bins_Low_Energy": all_cdf[0].varget('Bins_Low_Energy'), "Bins_Width": all_cdf[0].varget('Bins_Width'), "Sector_Bins_Text": all_cdf[0].varget('Sector_Bins_Text'), "Sector_Bins_Low_Energy": all_cdf[0].varget('Sector_Bins_Low_Energy'), "Sector_Bins_Width": all_cdf[0].varget('Sector_Bins_Width') } if level == 'll': param_list = ['Integral_Flux', 'Ion_Flux', 'Integral_Flux_Sigma', 'Ion_Flux_Sigma'] # set up the dictionary: energies_dict = \ {"Integral_Bins_Text": all_cdf[0].varget('Integral_Bins_Text'), "Integral_Bins_Low_Energy": all_cdf[0].varget('Integral_Bins_Low_Energy'), "Integral_Bins_Width": all_cdf[0].varget('Integral_Bins_Width'), "Ion_Bins_Text": all_cdf[0].varget('Ion_Bins_Text'), "Ion_Bins_Low_Energy": all_cdf[0].varget('Ion_Bins_Low_Energy'), "Ion_Bins_Width": all_cdf[0].varget('Ion_Bins_Width') } df_list = [] for cdffile in all_cdf: col_list = [] for key in param_list: try: t_df = pd.DataFrame(cdffile[key], index=cdffile['EPOCH']) # Replace FILLVAL dynamically for each element of param_list fillval = cdffile.varattsget(key)["FILLVAL"] t_df = t_df.replace(fillval, np.nan) col_list.append(t_df) except TypeError: print(' ') print("WARNING: Gap in dataframe due to missing cdf file.") break try: temp_df = pd.concat(col_list, axis=1, keys=param_list) df_list.append(temp_df) except ValueError: continue datadf = pd.concat(df_list) # transform the index of the dataframe into pd_datetime # notice the transform alldata.index -> np.int_ so that encode() # understands the format datetimes = cdflib.cdfepoch.encode(np.int_(datadf.index)) datadf.index = pd.to_datetime(datetimes) datadf.index.names = ['Time'] ''' Careful if adding more species - they might have different EPOCH dependencies and cannot easily be put in the same dataframe! ''' return datadf, energies_dict ```
{ "source": "jgieseler/solo-mag-loader", "score": 2 }
#### File: solo-mag-loader/solo_mag_loader/__init__.py ```python from pkg_resources import get_distribution, DistributionNotFound try: __version__ = get_distribution(__name__).version except DistributionNotFound: pass # package is not installed import datetime as dt import os import sunpy from sunpy.net import Fido from sunpy.net import attrs as a from sunpy.timeseries import TimeSeries def _date2str(date): year = str(date)[0:4] month = str(date)[4:6] day = str(date)[6:8] return year+'/'+month+'/'+day def mag_load(startdate, enddate, level='l2', type='normal', frame='rtn', path=None): """ Load SolO/MAG data Load-in data for Solar Orbiter/MAG sensor. Supports level 2 and low latency data provided by CDAWeb. Optionally downloads missing data directly. Returns data as Pandas dataframe. Parameters ---------- startdate, enddate : {datetime, str, or int} Datetime object (e.g., dt.date(2021,12,31) or dt.datetime(2021,4,15)), "standard" datetime string (e.g., "2021/04/15") or integer of the form yyyymmdd with empty positions filled with zeros, e.g. '20210415' (enddate must always be later than startdate) level : {'l2', 'll'}, optional Defines level of data product: level 2 ('l2') or low-latency ('ll'). By default 'l2'. type : {'normal', 'normal-1-minute', or 'burst'}, optional By default 'normal'. frame : {'rtn', 'srf', or 'vso'}, optional Coordinate frame of MAG data. By default 'rtn'. path : {str}, optional Local path for storing downloaded data, by default None Returns ------- Pandas dataframe with fluxes and errors in 'particles / (s cm^2 sr MeV)' """ if type == 'normal-1-minute' and frame == 'srf': raise Exception("For SRF frame only 'normal' or 'burst' data type available!") if type == 'normal-1-min': type = 'normal-1-minute' if level == 'll' or level == 'LL': level = 'll02' data_id = 'SOLO_'+level.upper()+'_MAG' else: data_id = 'SOLO_'+level.upper()+'_MAG-'+frame.upper()+'-'+type.upper() if isinstance(startdate, int): startdate = _date2str(startdate) if isinstance(enddate, int): enddate = _date2str(enddate) trange = a.Time(startdate, enddate) dataset = a.cdaweb.Dataset(data_id) result = Fido.search(trange, dataset) filelist = [i[0].split('/')[-1] for i in result.show('URL')[0]] filelist.sort() if path is None: filelist = [sunpy.config.get('downloads', 'download_dir') + os.sep + file for file in filelist] elif type(path) is str: filelist = [path + os.sep + f for f in filelist] for i, f in enumerate(filelist): if os.path.exists(f) and os.path.getsize(f) == 0: os.remove(f) if not os.path.exists(f): downloaded_file = Fido.fetch(result[0][i], path=path) # files = Fido.fetch(result, path=path) solo_mag = TimeSeries(filelist, concatenate=True) df_solo_mag = solo_mag.to_dataframe() return df_solo_mag # VSO, LL02 not working ```
{ "source": "jgieseler/sunpy", "score": 3 }
#### File: map/tests/strategies.py ```python import hypothesis.strategies as st import numpy as np from hypothesis import assume from hypothesis.extra.numpy import arrays @st.composite def matrix_meta(draw, key): """ Create an arbitrary but valid (ie non-singular) PCi_j or CDi_j matrix. Parameters ---------- key : {'pc', 'cd'} """ arr = draw(arrays( float, (2, 2), elements=st.floats(min_value=-1, max_value=1, allow_nan=False)) ) # Make sure matrix isn't singular assume(np.abs(np.linalg.det(arr)) > 1e-8) return {f'{key}1_1': arr[0, 0], f'{key}1_2': arr[0, 1], f'{key}2_1': arr[1, 0], f'{key}2_2': arr[1, 1]} ```
{ "source": "jgi-kbase/CachingService", "score": 3 }
#### File: test/caching_service/test_api_v1.py ```python import unittest import requests from uuid import uuid4 import functools import src.caching_service.minio as minio from src.caching_service.exceptions import MissingCache url = 'http://web:5000/v1' @functools.lru_cache() def get_cache_id(cache_params=None): if not cache_params: cache_params = '{"xyz":123}' resp = requests.post( url + '/cache_id', headers={'Authorization': 'non_admin_token', 'Content-Type': 'application/json'}, data=cache_params ) print('-' * 80) print('Response: ' + resp.text) json = resp.json() cache_id = json['cache_id'] return cache_id @functools.lru_cache() def upload_cache(cache_params=None, content=None): """Upload a cache file for repeatedly testing downloads/deletes/etc.""" cache_id = get_cache_id(cache_params) if not content: content = b'{"hallo": "welt"}' requests.post( url + '/cache/' + cache_id, headers={'Authorization': 'non_admin_token'}, files={'file': ('test.json', content)} ) return (cache_id, content) class TestApiV1(unittest.TestCase): def test_root(self): """Test get paths.""" resp = requests.get(url) json = resp.json() # Don't particularly feel the need to test the content of this self.assertTrue(json['routes']) def test_missing_auth(self): """Test the error response for all endpoints that require the Authentication header.""" endpoints = [ {'method': 'POST', 'url': url + '/cache_id'}, {'method': 'GET', 'url': url + '/cache/example'}, {'method': 'POST', 'url': url + '/cache/example'}, {'method': 'DELETE', 'url': url + '/cache/example'} ] for req_data in endpoints: resp = requests.post(req_data['url'], headers={}) json = resp.json() self.assertEqual(resp.status_code, 400, 'Status code is 400') self.assertEqual(json['status'], 'error', 'Status is set to "error"') self.assertTrue('Missing header' in json['error'], 'Error message is set') def test_invalid_auth(self): """Test the error response for all endpoints that require valid auth.""" endpoints = [ {'method': 'POST', 'url': url + '/cache_id'}, {'method': 'GET', 'url': url + '/cache/example'}, {'method': 'POST', 'url': url + '/cache/example'}, {'method': 'DELETE', 'url': url + '/cache/example'} ] for req_data in endpoints: resp = requests.post(req_data['url'], headers={'Authorization': 'invalid_token'}) json = resp.json() self.assertEqual(resp.status_code, 403, 'Status code is 403') self.assertEqual(json['status'], 'error', 'Status is set to "error"') self.assertTrue('Invalid token' in json['error'], 'Error message is set') def test_make_cache_id_valid(self): """ Test a valid call to create a new cache ID. POST /cache_id """ resp = requests.post( url + '/cache_id', headers={'Authorization': 'non_admin_token', 'Content-Type': 'application/json'}, data='{"xyz": 123}' ) json = resp.json() self.assertEqual(resp.status_code, 200) self.assertEqual(json['status'], 'ok', 'Status is "generated"') self.assertEqual(len(json['cache_id']), 128, 'Creates 128-byte cache ID') def test_make_cache_id_malformed_json(self): """ Test a call to make a cache ID with invalid JSON formatting. POST /cache_id """ resp = requests.post( url + '/cache_id', headers={'Authorization': 'non_admin_token', 'Content-Type': 'application/json'}, data='{{{{((((' ) json = resp.json() self.assertEqual(resp.status_code, 400) self.assertEqual(json['status'], 'error', 'Status is "error"') self.assertTrue('JSON parsing error' in json['error'], 'Error message is set') def test_make_cache_id_unauthorized(self): """ Test a call to create a new cache ID with an invalid auth token. POST /cache_id """ resp = requests.post( url + '/cache_id', headers={'Authorization': 'invalid_token', 'Content-Type': 'application/json'}, data='{"xyz": 123}' ) json = resp.json() self.assertEqual(resp.status_code, 403, 'Status code is 403') self.assertEqual(json['status'], 'error', 'Status is set to "error"') self.assertTrue('Invalid token' in json['error'], 'Gives error message') def test_make_cache_id_wrong_content_type(self): """ Test a call to create a new cache ID with the wrong content-type. POST /cache_id """ resp = requests.post( url + '/cache_id', headers={'Authorization': 'non_admin_token', 'Content-Type': 'multipart/form-data'}, data='{"xyz": 123}' ) json = resp.json() self.assertEqual(resp.status_code, 400, 'Status code is 400') self.assertEqual(json['status'], 'error', 'Status is set to "error"') self.assertTrue('Invalid Content-Type' in json['error']) def test_make_cache_id_missing_content_type(self): """ Test a call to create a new cache ID with missing content-type. POST /cache_id """ resp = requests.post( url + '/cache_id', headers={'Authorization': 'non_admin_token'}, data='{"xyz": 123}' ) json = resp.json() self.assertEqual(resp.status_code, 400, 'Status code is 400') self.assertEqual(json['status'], 'error', 'Status is set to "error"') self.assertTrue('Invalid Content-Type' in json['error']) def test_make_cache_id_missing_json(self): """ Test a call to create a new cache ID with missing authorization POST /cache_id """ resp = requests.post( url + '/cache_id', headers={'Authorization': 'non_admin_token', 'Content-Type': 'application/json'} ) json = resp.json() self.assertEqual(resp.status_code, 400, 'Status code is 400') self.assertEqual(json['status'], 'error', 'Status is set to "error"') self.assertTrue('JSON parsing error' in json['error']) def test_download_cache_file_valid(self): """ Test a call to download an existing cache file successfully. GET /cache/<cache_id> """ (cache_id, content) = upload_cache() resp = requests.get( url + '/cache/' + cache_id, headers={'Authorization': 'non_admin_token'} ) self.assertEqual(resp.status_code, 200) self.assertEqual(resp.content, content) def test_download_cache_file_unauthorized_cache(self): """ Test a call to download a cache file that was made by a different token ID GET /cache/<cache_id> """ cache_id = str(uuid4()) minio.create_placeholder(cache_id, 'test_user') resp = requests.get( url + '/cache/' + cache_id, headers={'Authorization': 'non_admin_token'} ) json = resp.json() self.assertEqual(resp.status_code, 403, 'Status code is 403') self.assertEqual(json['status'], 'error', 'Status is set to "error"') self.assertTrue('You do not have access' in json['error']) def test_download_cache_file_missing_cache(self): """ Test a call to download a cache file that does not exist GET /cache/<cache_id> """ cache_id = str(uuid4()) resp = requests.get( url + '/cache/' + cache_id, headers={'Authorization': 'non_admin_token'} ) json = resp.json() self.assertEqual(resp.status_code, 404) self.assertEqual(json['status'], 'error') self.assertTrue('not found' in json['error']) def test_upload_cache_file_valid(self): """ Test a call to upload a cache file successfully. POST /cache/<cache_id> """ cache_id = get_cache_id() content = b'{"hallo": "welt"}' resp = requests.post( url + '/cache/' + cache_id, headers={'Authorization': 'non_admin_token'}, files={'file': ('test.json', content)} ) json = resp.json() self.assertEqual(resp.status_code, 200) self.assertEqual(json['status'], 'ok') def test_upload_cache_file_unauthorized_cache(self): """ Test a call to upload a cache file successfully. POST /cache/<cache_id> """ cache_id = str(uuid4()) minio.create_placeholder(cache_id, 'test_user') resp = requests.post( url + '/cache/' + cache_id, headers={'Authorization': 'non_admin_token'}, files={'file': ('test.json', b'{"x": 1}')} ) json = resp.json() self.assertEqual(resp.status_code, 403, 'Status code is 403') self.assertEqual(json['status'], 'error', 'Status is set to "error"') self.assertTrue('You do not have access' in json['error']) def test_upload_cache_file_missing_cache(self): """ Test a call to upload a cache file successfully. POST /cache/<cache_id> """ cache_id = str(uuid4()) resp = requests.post( url + '/cache/' + cache_id, headers={'Authorization': 'non_admin_token'}, files={'file': ('test.json', b'{"x": 1}')} ) json = resp.json() self.assertEqual(resp.status_code, 404, 'Status code is 404') self.assertEqual(json['status'], 'error', 'Status is set to "error"') self.assertTrue('not found' in json['error']) def test_upload_cache_file_missing_file(self): """ Test a call to upload a cache file successfully. POST /cache/<cache_id> """ cache_id = get_cache_id() resp = requests.post( url + '/cache/' + cache_id, headers={'Authorization': 'non_admin_token'}, files={'filexx': ('test.json', b'{"x": 1}')} ) json = resp.json() self.assertEqual(resp.status_code, 400, 'Status code is 400') self.assertEqual(json['status'], 'error', 'Status is set to "error"') self.assertTrue('missing' in json['error']) def test_delete_valid(self): """ Test a valid deletion of a cache entry. DELETE /cache/<cache_id> """ cache_id = get_cache_id() resp = requests.delete( url + '/cache/' + cache_id, headers={'Authorization': 'non_admin_token'} ) json = resp.json() self.assertEqual(resp.status_code, 200, 'Status code is 200') self.assertEqual(json['status'], 'ok', 'Status is "deleted"') # Test that the cache is inaccessible with self.assertRaises(MissingCache): minio.get_metadata(cache_id) def test_delete_unauthorized_cache(self): """ Test a deletion of a cache entry with a cache created by a different token ID. DELETE /cache/<cache_id> """ cache_id = str(uuid4()) minio.create_placeholder(cache_id, 'test_user') resp = requests.delete( url + '/cache/' + cache_id, headers={'Authorization': 'non_admin_token'} ) json = resp.json() self.assertEqual(resp.status_code, 403, 'Status code is 403') self.assertEqual(json['status'], 'error', 'Status is set to "error"') self.assertTrue('You do not have access' in json['error']) def test_delete_missing_cache(self): """ Test a deletion of a nonexistent cache entry DELETE /cache/<cache_id> """ cache_id = str(uuid4()) resp = requests.delete( url + '/cache/' + cache_id, headers={'Authorization': 'non_admin_token'} ) json = resp.json() self.assertEqual(resp.status_code, 404, 'Status code is 404') self.assertEqual(json['status'], 'error', 'Status is set to "error"') self.assertTrue('not found' in json['error']) ```
{ "source": "jgi-kbase/IDMappingService", "score": 2 }
#### File: jgikbase/idmapping/config.py ```python from typing import Dict, Optional, Set, Tuple from pathlib import Path import os import configparser from jgikbase.idmapping.core.user import AuthsourceID from jgikbase.idmapping.core.errors import MissingParameterError from jgikbase.idmapping.core.user_lookup import LocalUserLookup # May want different configuration implementations based on the deployment environment. # YAGNI for now. class IDMappingConfigError(Exception): """ Thrown when there's an error in the ID Mapping system configuration. """ pass class KBaseConfig: """ Loads a configuration from a standard KBase-style deploy.cfg file (an ini file with only one section.) The configuration is contained in the `idmapping` section of the config file. The keys are: mongo-host mongo-db mongo-user (optional) mongo-pwd (optional) authentication-enabled (optional) authentication-admin-enabled (optional) keys specific to each authentication source. See the example deploy.cfg file in this repo or the class variables. dont-trust-x-ip-headers (optional) The last key instructs the server to ignore the X-Real-IP and X-Forwarded-For headers if set to the string 'true'. :ivar mongo_host: the host of the MongoDB instance, including the port. :ivar mongo_db: the MongoDB database to use for the ID mapping service. :ivar mongo_user: the username to use with MongoDB, if any. :ivar mongo_pwd: the password to use with MongoDB, if any. :ivar auth_enabled: the set of authentication sources that are enabled. :ivar auth_admin_enabled: the set of authentication sources that are trusted to define system administrators. :ivar ignore_ip_headers: True if the X-Real-IP and X-Forwarded-For headers should be ignored. :ivar lookup_configs: the configurations for the user lookup instances. This is a dict of :class:`jgikbase.idmapping.core.user.AuthsourceID` to the configuration for the lookup instance for that authsource. The configuration is a tuple where the first entry is a string denoting the module containing the factory method used to create the lookup instance. The second entry is a str -> str dict containing the configuration for the lookup instance. """ ENV_VAR_IDMAPPING = 'ID_MAPPING_CONFIG' """ The first environment variable where the system will look for the path to the config file. """ ENV_VAR_KB_DEP = 'KB_DEPLOYMENT_CONFIG' """ The second environment variable where the system will look for the path to the config file. """ CFG_SEC = 'idmapping' """ The section of the config file where the configuration is located. """ _TEMP_KEY_CFG_FILE = 'temp-key-config-file' KEY_MONGO_HOST = 'mongo-host' """ The key corresponding to the value containing the MongoDB host. """ KEY_MONGO_DB = 'mongo-db' """ The key corresponding to the value containing the MongoDB database. """ KEY_MONGO_USER = 'mongo-user' """ The key corresponding to the value containing the MongoDB username. """ KEY_MONGO_PWD = '<PASSWORD>' """ The key corresponding to the value containing the MongoDB user password. """ KEY_AUTH_ENABLED = 'authentication-enabled' """ The key corresponding to the value containing a comma separated list of authentication sources that should be enabled on system start up. """ KEY_AUTH_ADMIN_ENABLED = 'authentication-admin-enabled' """ The key corresponding to the value containing a comma separated list of authentication sources that are trusted to define system administrators. """ KEY_IGNORE_IP_HEADERS = 'dont-trust-x-ip-headers' """ The key corresponding to the value containing a boolean designating whether the X-Real_IP and X-Forwarded-For headers should be ignored. """ AUTH_PREFIX = 'auth-source-' """ The prefix for keys for specific authentication sources. """ FACTORY_MODULE = '-factory-module' """ The suffix for the key for a specific authentication source that defines the python module containing the factory for the user lookup instance. """ INIT = '-init-' """ The portion of the key after the authentication source name that defines the key as a key-value configuration item. """ _TRUE = 'true' def __init__(self, cfgfile: Path=None) -> None: """ Load the configuration. :param cfgfile: the path to the configuration file. If not provided, the path will be looked up in the environment variables, in order of precedence, ID_MAPPING_CONFIG and KB_DEPLOYMENT_CONFIG. """ if not cfgfile: cfgfile = self._get_cfg_from_env() cfg = self._get_cfg(cfgfile) self.ignore_ip_headers = self._TRUE == cfg.get(self.KEY_IGNORE_IP_HEADERS) self.mongo_host = self._get_string(self.KEY_MONGO_HOST, cfg) self.mongo_db = self._get_string(self.KEY_MONGO_DB, cfg) self.mongo_user = self._get_string(self.KEY_MONGO_USER, cfg, False) mongo_pwd = self._get_string(self.KEY_MONGO_PWD, cfg, False) if bool(self.mongo_user) ^ bool(mongo_pwd): # xor mongo_pwd = <PASSWORD> raise IDMappingConfigError( ('Must provide both {} and {} params in config file ' + '{} section {} if MongoDB authentication is to be used').format( self.KEY_MONGO_USER, self.KEY_MONGO_PWD, cfg[self._TEMP_KEY_CFG_FILE], self.CFG_SEC)) self.mongo_pwd = <PASSWORD> self.auth_enabled = self._get_authsource_ids(self.KEY_AUTH_ENABLED, cfg) self.auth_admin_enabled = self._get_authsource_ids(self.KEY_AUTH_ADMIN_ENABLED, cfg) self.lookup_configs = self._get_lookup_configs(cfg) def _get_cfg(self, cfgfile: Path) -> Dict[str, str]: if not cfgfile.is_file(): raise IDMappingConfigError('{} does not exist or is not a file'.format(cfgfile)) config = configparser.ConfigParser() with cfgfile.open() as cfg: try: config.read_file(cfg) except configparser.Error as e: raise IDMappingConfigError('Error parsing config file {}: {}'.format( cfgfile, e)) from e if self.CFG_SEC not in config: raise IDMappingConfigError('No section {} found in config file {}'.format( self.CFG_SEC, cfgfile)) sec = config[self.CFG_SEC] # a section is not a real map and is missing methods c = {x: sec[x] for x in sec.keys()} c[self._TEMP_KEY_CFG_FILE] = str(cfgfile) return c def _get_cfg_from_env(self) -> Path: if os.environ.get(self.ENV_VAR_IDMAPPING): return Path(os.environ[self.ENV_VAR_IDMAPPING]) if os.environ.get(self.ENV_VAR_KB_DEP): return Path(os.environ[self.ENV_VAR_KB_DEP]) raise IDMappingConfigError('Could not find deployment configuration file from either ' + 'permitted environment variable: {}, {}'.format( self.ENV_VAR_IDMAPPING, self.ENV_VAR_KB_DEP)) def _get_string(self, param_name: str, config: Dict[str, str], raise_on_err: bool=True ) -> Optional[str]: s = config.get(param_name) if s and s.strip(): return s.strip() elif raise_on_err: raise IDMappingConfigError( 'Required parameter {} not provided in configuration file {}, section {}'.format( param_name, config[self._TEMP_KEY_CFG_FILE], self.CFG_SEC)) else: return None def _get_authsource_ids(self, param_name: str, config: Dict[str, str]) -> Set[AuthsourceID]: s = self._get_string(param_name, config, False) ret: Set[AuthsourceID] = set() if not s: return ret ids = s.split(',') for id_ in ids: try: ret.add(AuthsourceID(id_.strip())) except MissingParameterError as e: raise IDMappingConfigError( ('Parameter {} in configuration file {}, section {}, has whitespace-only entry' ).format(param_name, config[self._TEMP_KEY_CFG_FILE], self.CFG_SEC, str(e)) ) from e except Exception as e: raise IDMappingConfigError( 'Parameter {} in configuration file {}, section {}, is invalid: {}'.format( param_name, config[self._TEMP_KEY_CFG_FILE], self.CFG_SEC, str(e))) from e return ret def _get_lookup_configs(self, cfg) -> Dict[AuthsourceID, Tuple[str, Dict[str, str]]]: ret = {} for asID in self.auth_enabled: if asID == LocalUserLookup.LOCAL: continue prefix = self.AUTH_PREFIX + asID.id factory = None lookupcfg = {} for key, val in cfg.items(): if key.startswith(prefix): if key == prefix + self.FACTORY_MODULE: factory = val.strip() elif key.startswith(prefix + self.INIT): lookupcfg[key[len(prefix + self.INIT):]] = val.strip() else: raise IDMappingConfigError( 'Unexpected parameter {} in configuration file {}, section {}' .format(key, cfg[self._TEMP_KEY_CFG_FILE], self.CFG_SEC)) if not factory: raise IDMappingConfigError( 'Required parameter {} not provided in configuration file {}, section {}' .format(prefix + self.FACTORY_MODULE, cfg[self._TEMP_KEY_CFG_FILE], self.CFG_SEC)) ret[asID] = (factory, lookupcfg) return ret ``` #### File: idmapping/storage/id_mapping_storage.py ```python from abc import abstractmethod as _abstractmethod # pragma: no cover from abc import ABCMeta as _ABCMeta # pragma: no cover from jgikbase.idmapping.core.object_id import NamespaceID # pragma: no cover from jgikbase.idmapping.core.user import User, Username # pragma: no cover from jgikbase.idmapping.core.tokens import HashedToken # pragma: no cover from jgikbase.idmapping.core.object_id import Namespace # pragma: no cover from typing import Iterable, Set, Tuple # pragma: no cover from jgikbase.idmapping.core.object_id import ObjectID # pragma: no cover from typing import Dict class IDMappingStorage: # pragma: no cover """ An interface for a storage system for ID mappings. All methods are abstract. """ __metaclass__ = _ABCMeta @_abstractmethod def create_local_user(self, username: Username, token: HashedToken) -> None: """ Create a user. Once created, users cannot be removed. The client programmer is responsible for ensuring that the token provided does not already exist in the database. :param username: the user name. :param token: the user's token after applying a hash function. :raises ValueError: if the token already exists in the database. :raises TypeError: if any of the arguments are None. :raises UserExistsError: if the user already exists. :raises IDMappingStorageError: if an unexpected error occurs. """ raise NotImplementedError() @_abstractmethod def set_local_user_as_admin(self, username: Username, admin: bool) -> None: ''' Mark a user as a system admin. Or not. :param username: the name of the user to alter. :param admin: True to give the user admin privileges, False to remove them. If the user is already in the given state, no further action is taken. :raises TypeError: if the usename is None. ''' raise NotImplementedError() @_abstractmethod def update_local_user_token(self, username: Username, token: HashedToken) -> None: """ Update an existing user's token. :param username: the user name. :param token: the user's token after applying a hash function. :raises ValueError: if the token already exists in the database. :raises TypeError: if any of the arguments are None. :raises NoSuchUserError: if the user does not exist. :raises IDMappingStorageError: if an unexpected error occurs. """ raise NotImplementedError() @_abstractmethod def get_user(self, token: HashedToken) -> Tuple[Username, bool]: """ Get the user, if any, associated with a hashed token. :param token: the hashed token. :raises TypeError: if the token is None. :raises InvalidTokenError: if the token does not exist in the storage system. :raises IDMappingStorageError: if an unexpected error occurs. :returns: a tuple of the username corresponding to the token and a boolean denoting whether the user is an admin or not. """ raise NotImplementedError() @_abstractmethod def get_users(self) -> Dict[Username, bool]: """ Get all the users in the system. :raises IDMappingStorageError: if an unexpected error occurs. :returns: a mapping of username to a boolean denoting whether the user is an admin or not. """ raise NotImplementedError() @_abstractmethod def user_exists(self, username: Username) -> bool: ''' Check if a user exist in the system. Returns True if so. :param username: the username to check. :raises TypeError: if the username is None. ''' raise NotImplementedError() @_abstractmethod def create_namespace(self, namespace_id: NamespaceID) -> None: """ Create a new namespace. Once created, namespaces cannot be removed. :param namespace_id: The namespace to create. :raises TypeError: if the namespace ID is None. :raises NamespaceExistsError: if the namespace already exists. """ raise NotImplementedError() @_abstractmethod def add_user_to_namespace(self, namespace_id: NamespaceID, admin_user: User) -> None: """ Add a user to a namespace, giving them administration rights. A noop occurs if the user is already an administrator for the namespace. :param namespace_id: the namespace to modify. :param admin_user: the user. :raises TypeError: if any of the arguments are None. :raises NoSuchNamespaceError: if the namespace does not exist. :raises UserExistsError: if the user already administrates the namespace. """ raise NotImplementedError() @_abstractmethod def remove_user_from_namespace(self, namespace_id: NamespaceID, admin_user: User) -> None: """ Remove a user from a namespace, removing their administration rights. :param namespace_id: the namespace to modify. :param admin_user: the user. :raises TypeError: if any of the arguments are None. :raises NoSuchNamespaceError: if the namespace does not exist. :raises NoSuchUserError: if the user does not administrate the namespace. """ raise NotImplementedError() @_abstractmethod def set_namespace_publicly_mappable(self, namespace_id: NamespaceID, publicly_mappable: bool ) -> None: """ Set the publicly mappable flag on a namespace. :param namespace_id: The namespace to alter. :param publicly_mappable: True to set the namespace to publicly mappable, False or None to prevent public mapping. :raises TypeError: if namespace_id is None. :raises NoSuchNamespaceError: if the namespace does not exist. """ raise NotImplementedError() @_abstractmethod def get_namespaces(self, nids: Iterable[NamespaceID]=None) -> Set[Namespace]: """ Get all the namespaces in the system. :param ids: specific namespaces to get. By default all namespaces are returned. :raises TypeError: if nids contains None. :raises NoSuchNamespaceError: if any of the namespaces in the nids parameter do not exist """ raise NotImplementedError() @_abstractmethod def get_namespace(self, namespace_id: NamespaceID) -> Namespace: """ Get a particular namespace. :param namespace_id: the id of the namespace to get. :raises TypeError: if the namespace ID is None. :raises NoSuchNamespaceError: if the namespace does not exist. """ raise NotImplementedError() @_abstractmethod def add_mapping(self, primary_OID: ObjectID, secondary_OID: ObjectID) -> None: """ Create a mapping from one namespace to another. Note that this method does NOT check for the existence of the namespaces. If the mapping already exists, no further action is taken. :param primary_OID: the primary namespace/ID combination. :param secondary_OID: the secondary namespace/ID combination. :raise TypeError: if any of the arguments are None. :raise ValueError: if the namespace IDs are the same. """ raise NotImplementedError() @_abstractmethod def remove_mapping(self, primary_OID: ObjectID, secondary_OID: ObjectID) -> bool: """ Remove a mapping from one namespace to another. Returns true if a mapping was removed, false otherwise. :param primary_OID: the primary namespace/ID combination. :param secondary_OID: the secondary namespace/ID combination. :raise TypeError: if any of the arguments are None. """ raise NotImplementedError() @_abstractmethod def find_mappings(self, oid: ObjectID, ns_filter: Iterable[NamespaceID]=None ) -> Tuple[Set[ObjectID], Set[ObjectID]]: """ Find mappings given a namespace / id combination. If the namespace or id does not exist, no results will be returned. The namespaces in the filter are ignored if they do not exist. :param oid: the namespace / id combination to match against. :param ns_filter: a list of namespaces with which to filter the results. Only results in these namespaces will be returned. :returns: a tuple of sets of object IDs. The first set in the tuple contains mappings where the provided object ID is the primary object ID, and the second set contains mappings where the provided object ID is the secondary object ID. :raise TypeError: if the object ID is None or the filter contains None. """ raise NotImplementedError() ```
{ "source": "jgilik/gitzebo", "score": 2 }
#### File: gitzebo/gitzebo/schema.py ```python import sqlalchemy, os # DB path is currently rooted in our module directory by default # TODO: database configuration should be externalized db_path = os.path.join(os.path.dirname(__file__), 'gitzebo.db') db = sqlalchemy.create_engine("sqlite:///{0}".format(db_path)) latest_version=1 from sqlalchemy import (Table, Column, MetaData, ForeignKey, ColumnDefault, Integer, String, Boolean, Text) def get_metadata(version=latest_version, db=db): metadata = MetaData(db) schema_version = Table('_schema_version', metadata, Column('version', Integer), ) users = Table('users', metadata, Column('user_id', Integer, primary_key=True), Column('user_name', String, unique=True), Column('pass_hash', String), Column('pass_salt', String), Column('commit_name', String), Column('commit_email', String), Column('can_create_users', Boolean, ColumnDefault(False)), Column('can_create_repositories', Boolean, ColumnDefault(False)), ) keys = Table('keys', metadata, Column('key_id', Integer, primary_key=True), Column('user_id', Integer, ForeignKey('users.user_id')), Column('name', String), Column('public_key', Text), # TODO: public_key should be unique, but TEXT columns can't be (I think) # verify me maybe? ) repos = Table('repositories', metadata, Column('repository_id', Integer, primary_key=True), Column('repository_name', String, unique=True), ) repo_acls = Table('repository_acls', metadata, Column('user_id', Integer, ForeignKey('users.user_id')), Column('repository_id', Integer, ForeignKey('repositories.repository_id')), Column('is_owner', Boolean, ColumnDefault(False)), Column('can_write', Boolean, ColumnDefault(False)), Column('can_rewind', Boolean, ColumnDefault(False)), Column('can_read', Boolean, ColumnDefault(False)), Column('can_create_tag', Boolean, ColumnDefault(False)), Column('can_modify_tag', Boolean, ColumnDefault(False)), ) return metadata def get_table(table, db=db): metadata = get_metadata(db=db) return metadata.tables[table] def create_schema(version=latest_version, db=db): metadata = get_metadata(version=version, db=db) # Insure that our schema versioning table doesn't exist-- # which also insures that we're not trying to provision over # an existing database, as we have an explicit upgrade # workflow. if metadata.tables['_schema_version'].exists(): raise Exception("Database already provisioned") # Check to see if any tables already exist, which would mean # we're attempting to provision a database that contains some # other application's data. If it contained our application's # data, the _schema_version table would exist! for table in metadata.sorted_tables: if table.exists(): raise Exception("Table already exists: " + table.name) # Create all of our tables metadata.create_all(db) # Populate schema version version_table = metadata.tables['_schema_version'] # TODO: do we need to check for success somehow? db.execute(version_table.insert().values(version=version)) # Create the default admin user from users import create_user id = create_user('admin', password='<PASSWORD>', commit_email='', can_create_users=True, can_create_repositories=True) def upgrade_schema(db=db): raise Exception("upgrade_schema() not implemented") # TODO: Fix this so we can destroy older schemas that contain extraneous tables # without problems; right now, they would be left dangling unless we # upgraded first :o def destroy_schema(db=db): metadata = get_metadata(db=db) metadata.drop_all(db) ``` #### File: gitzebo/gitzebo/version.py ```python major_version = 0 minor_version = 0 patch_version = 10 def format_version(): return "{0}.{1}.{2}".format(major_version, minor_version, patch_version) ```
{ "source": "jgillich/free-email-domains", "score": 3 }
#### File: free-email-domains/scripts/check.py ```python from concurrent import futures import json import sys import dns.resolver import dns.exception def _load(fn, from_json=False): with open(fn) as f: if from_json: return json.load(f) else: return [l.strip() for l in f] domains = _load('hubspot-free-email-domains.txt') sorted_domains = sorted({d.lower() for d in domains if d}) if domains != sorted_domains: print('Hubspot domains are not sorted/unique!? Compare with /tmp/sorted-free-email-domains.txt') with open('/tmp/sorted-free-email-domains.txt', 'w') as f: for e in sorted_domains: f.write(e + '\n') sys.exit(1) domains = _load('free-email-domains.txt') sorted_domains = sorted({d.lower() for d in domains if d}) if domains != sorted_domains: print('Domains are not sorted/unique!? Compare with /tmp/sorted-free-email-domains.txt') with open('/tmp/sorted-free-email-domains.txt', 'w') as f: for e in sorted_domains: f.write(e + '\n') sys.exit(1) disposable = set(_load('tmp/disposable-email-domains/index.json', from_json=True)) assert 'mailinator.com' in disposable not_disposable = {'c2.hu'} disposable = [d for d in domains if (d in disposable) and (d not in not_disposable)] if disposable: print('Disposable domains: %s' % disposable) sys.exit(2) disposable_wildcard = _load('tmp/disposable-email-domains/wildcard.json', from_json=True) disposable = [d for d in domains if any(w in d for w in disposable_wildcard)] if disposable: print('Disposable domains (wildcards): %s' % disposable) sys.exit(3) def _checkMxRecord(d): for r in ('', '8.8.8.8', '1.1.1.1', '8.8.4.4', '1.0.0.1'): resolver = dns.resolver.Resolver() resolver.timeout = 10 resolver.lifetime = 10 if r: resolver.nameservers = [r] try: resolver.query(d, 'MX') return except dns.exception.DNSException: pass return d with futures.ThreadPoolExecutor(max_workers=10) as executor: no_mx = executor.map(_checkMxRecord, domains) no_mx = [d for d in no_mx if d] if no_mx: print('Domains without MX records: %s' % no_mx) sys.exit(4) ```
{ "source": "jgillich/gcapy", "score": 3 }
#### File: gcapy/gcapy/process.py ```python import base64 import sys from binascii import hexlify from enum import Enum from .util import * from .gcap import * class GCAPyAction(Enum): Metadata = 0 Extract = 1 Stats = 2 class GCAPyOutput(Enum): Ascii = 0 Json = 1 Binary = 2 def pp_task(action, output, files, ranges): action_name = "" output_name = "" if action is GCAPyAction.Metadata: action_name = "Displaying metadata for" elif action is GCAPyAction.Extract: action_name = "Extracting records from" elif action is GCAPyAction.Stats: action_name = "Gathering stats for GameRecords in" else: raise RuntimeError("unhandled action") if output is GCAPyOutput.Ascii: output_name = "text" elif output is GCAPyOutput.Json: output_name = "JSON" elif output is GCAPyOutput.Binary: output_name = "binary" else: raise RuntimeError("unhandled output") return "%s %s with the ranges %s and outputing in %s" % \ (action_name, str(files), str(ranges), str(output_name)) def process_gcapy(files, ranges, actions, output): output_process = None # function reference for the output processor if output is GCAPyOutput.Ascii: output_process = output_ascii elif output is GCAPyOutput.Json: output_process = output_json elif output is GCAPyOutput.Binary: output_process = output_binary else: raise RuntimeError("unhandled output") # Step 1: fetch the required data # Step 2: output the data in the required format # fail fast for f in files: if not file_exists(f): error("missing specfied file " + f) return 1 for f in files: gcap = None info("File: " + f) try: gcap = GCAP.load(f) except IOError: error("could not open %s for reading" % f) return 1 except GCAPFormatError as e: error("GCAP format error: " + str(e)) return 1 except GCAPVersionError as e: error("GCAP version error: " + str(e)) return 1 for action in actions: if action is GCAPyAction.Metadata: output_process(gcap.get_metadata()) elif action is GCAPyAction.Extract: for therange in ranges: for r in get_gcap_range(gcap, therange): output_process(r) elif action is GCAPyAction.Stats: pass return 0 def get_gcap_range(gcap, therange): max_record = gcap.record_count() max_iter = min(therange[1]+1, max_record) for i in range(therange[0], max_iter): if i < 1: continue if i >= max_record: break yield gcap.get_record(i) # output processors def output_ascii(data): template = "" rtype = data['type'] number = data['number'] record = data['record'] if rtype == "METADATA": guid = hexlify(record['guid']) if sys.version_info[0] < 3 else record['guid'].hex() start = record['start_time'] end = record['end_time'] if end > start: delta = end - start else: delta = 0 template = \ """\ Title: "%s" GUID: %s Number of records: %d Revision: %d Start: %d End: %d Delta: %d seconds Description: "%s" """ % (record['title'], guid, record['record_count'], record['capture_revision'], start, end, delta, record['description']) elif rtype == "GAME": gtype = record['type'] time = float(record['timestamp'])/1e6 # microseconds since start of capture record = record['record'] if gtype == "PACKET": ptype = record['type'] dst = record['destination'] contents = hexlify(record['record']) if sys.version_info[0] < 3 else record['record'].hex() if dst == "CLIENT": src = "SERVER" else: src = "CLIENT" template = \ """\ Game record %d at %.6fs is from %s to %s with contents %s\ """ % (number, time, src, dst, contents) print(template) def output_json(data): rtype = data['type'] record = data['record'] if rtype == "METADATA": record['guid'] = hexlify(record['guid']) if sys.version_info[0] < 3 else record['guid'].hex() record['sha256_hash'] = hexlify(record['sha256_hash']) if sys.version_info[0] < 3 else record['sha256_hash'].hex() elif rtype == "GAME": gtype = record['type'] record = record['record'] if gtype == "PACKET": ptype = record['type'] record['record'] = encode_record(record['record']) else: record = encode_record(record) print(json.dumps(data)) def output_binary(data): rtype = data['type'] record = data['record'] if rtype == "GAME": gtype = record['type'] record = record['record'] if gtype == "PACKET": ptype = record['type'] contents = record['record'] sys.stdout.write(contents) def encode_record(record): if sys.version_info[0] < 3: return base64.encodestring(record).strip() else: return base64.b64encode(record).decode("ascii").strip() ``` #### File: gcapy/gcapy/util.py ```python import sys import os interactive = True def error(msg): _write_msg("error: " + msg) def warning(msg): _write_msg("warning: " + msg) def info(msg): _write_msg(msg) def _write_msg(msg): if not interactive: sys.stderr.write(msg + "\n") else: print("I" + msg) def file_exists(filename): return os.path.isfile(filename) ```
{ "source": "jgillick/coffeetable-programs", "score": 3 }
#### File: NorthernLights/shapes/BaseShape.py ```python import time # Colors RED = (1,0,0) YELLOW = (1,1,0) GREEN = (0,1,0) CYAN = (0,1,1) BLUE = (0,0,1) PURPLE = (1,0,1) class BaseShape: # A list of instance attribute names, which are animatable objects animatable_attrs = [] # The time of the last animation update last_update = None # The number of LEDs in the strip led_count = 0 # The color index we're setting (red: 0, green: 1, blue: 2) color = 0 def __init__(self, led_count, color, time): self.led_count = led_count self.color = color self.last_update = time def update(self, now): """ Updates the shape animatable attributes.""" elapsed = now - self.last_update print(elapsed) is_animating = False for anin_attr in self.animatable_attrs: anim = getattr(self, anin_attr) ret = anim.update(elapsed) if ret: is_animating = True self.last_update = now return is_animating def __len__(self): return self.led_count def __getitem__(self, key): return (0,0,0) def __setitem__(self, key, value): """ Cannot set pixel item. """ pass def __delitem__(self, key): """ Cannot delete pixel color. """ pass ```
{ "source": "jgillick/LED-String-Controller", "score": 4 }
#### File: CircuitPython/DotStar/code.py ```python import time import board import adafruit_dotstar # DotStar pins # Change these if you want to connect an external DotStar LED(s) to different pins. PIN_SCK = board.APA102_SCK PIN_MOSI = board.APA102_MOSI # The onboard RGB LED led = adafruit_dotstar.DotStar(PIN_SCK, PIN_MOSI, 1, brightness=0.1) def wheel(pos): # Input a value 0 to 255 to get a color value. # The colors are a transition r -> g -> b -> back to r. if pos < 0 or pos > 255: r = g = b = 0 elif pos < 85: r = int(pos * 3) g = int(255 - pos * 3) b = 0 elif pos < 170: pos -= 85 r = int(255 - pos * 3) g = 0 b = int(pos * 3) else: pos -= 170 r = 0 g = int(pos * 3) b = int(255 - pos * 3) return (r, g, b) while True: # Animate the onboard LED around the color wheel for i in range(255): led[0] = wheel(i) time.sleep(0.001) ``` #### File: CircuitPython/TwinkleStars/code.py ```python import time import digitalio import board from pulseio import PWMOut from random import randrange, uniform PWM_FULL = 65535 class AnimationCtrl: """ A general-purpose class which controls the LED animations.""" PHASE_PAUSE = 0 PHASE_RUN = 1 min_pause = 0 max_pause = 0.5 min_run = 0.1 max_run = 0.2 duration = 0.0 phase = 0 def __init__(self): pass def startRun(self): """Start an animation cycle.""" self.phase = self.PHASE_RUN self.duration = uniform(self.min_run, self.max_run) def endRun(self): """End an animation cycle and pause.""" self.phase = self.PHASE_PAUSE self.duration = uniform(self.min_pause, self.max_pause) def step(self, time): """Handle a single step in the animation. This should be called in each program loop.""" self.duration -= time if self.duration <= 0: if self.phase == self.PHASE_PAUSE: self.startRun() else: self.endRun() class FadeCtrl(AnimationCtrl): """Create random LED fade animations.""" led = None inc = 0 min_pause = 0.2 max_pause = 5 min_run = 0.5 max_run = 1 def __init__(self, pin): """Setup LED and start first fade animation.""" self.led = PWMOut(pin, frequency=5000, duty_cycle=0) self.startRun() def startRun(self): """Start a new fade animation.""" super().startRun() self.incPerMillisecond() if self.led.duty_cycle > 0: self.inc *= -1 # Decrement to zero def endRun(self): """The current fade animation is over.""" super().endRun() # Finish on or off if self.inc > 0: self.led.duty_cycle = PWM_FULL else: self.led.duty_cycle = 0 self.incPerMillisecond() def incPerMillisecond(self): """Calculate how much to increment the LED per millisecond to complete the fade animation by the end of the duration.""" self.inc = PWM_FULL / self.duration def step(self, time): """Perform a single step of the animation. This should be called on each program loop.""" if self.phase == self.PHASE_RUN: value = self.led.duty_cycle + int(self.inc * time) if value < 0: value = 0 elif value > PWM_FULL: value = PWM_FULL self.led.duty_cycle = value super().step(time) class TwinkleCtrl(AnimationCtrl): """Create a random 'twinkle' animation across two pins. This assumes you have fairy LED strings attached to the two pins. The pins will have one polarity for a random amount of time, and then swap. """ pin1 = None pin2 = None min_pause = 0 max_pause = 0.5 min_run = 0.1 max_run = 0.2 def __init__(self, pin1, pin2): """Setup the LEDs and start the first animation.""" super().__init__() self.pins = [ digitalio.DigitalInOut(pin1), digitalio.DigitalInOut(pin2), ] for pin in self.pins: pin.direction = digitalio.Direction.OUTPUT pin.value = False self.startRun() def startRun(self): """Turn the LED on, in one polarity.""" self.pins[1].value = not self.pins[0].value super().startRun() def endRun(self): """Turn the LEDs off.""" self.pins[0].value = not self.pins[0].value super().endRun() # Initialize all LED animations animations = [ TwinkleCtrl(board.PA9, board.PA13), TwinkleCtrl(board.PA14, board.PB5), FadeCtrl(board.LED1), FadeCtrl(board.LED2), FadeCtrl(board.LED3), ] # Run animation steps, forever last_time = time.monotonic() while True: now = time.monotonic() time_since = now - last_time last_time = now for anim in animations: anim.step(time_since) ```
{ "source": "jgillick/Spaces", "score": 3 }
#### File: spaces/tests/test_models.py ```python from django.contrib.auth import get_user_model from django.core.exceptions import ObjectDoesNotExist, ValidationError from django.db import IntegrityError from django.test import TestCase from spaces.models import Space, Document, Revision class SpaceTestCase(TestCase): """ Test Space Models """ def setUp(self): self.space = Space.objects.create(name='My Space!', path='mine') def test_root_space_should_be_present(self): """ The default application should have a __ROOT__ space """ Space.objects.get(name=Space.ROOT_SPACE_NAME) def test_user_space_should_be_present(self): """ The default application should have a __USER__ space """ Space.objects.get(name=Space.USER_SPACE_NAME) def test_convert_path_to_slug(self): """ Convert special characters in path """ space = Space.objects.create( name='Test Space', path=' this-is / a !$ test ') self.assertEqual(space.path, 'this-is-a-test') def test_cannot_create_existing_space(self): """ Cannot create a space with the same path or name """ with self.assertRaises(ValidationError): Space.objects.create(name='My Space!', path='mine') class DocumentTestCase(TestCase): """ Test the Document Model """ def setUp(self): self.root_space = Space.objects.get(name=Space.ROOT_SPACE_NAME) self.space = Space.objects.create(name='My Space!', path='mine') self.space_other = Space.objects.create( name='Another space', path='other') self.user = get_user_model().objects.create_user( username='bob', email='<EMAIL>', password='<PASSWORD>') # Document hierarchy self.doc_foo = Document.objects.create( title='Foo', path='foo', space=self.space) self.doc_bar = Document.objects.create( title='Bar', path='bar', parent=self.doc_foo) self.doc_baz = Document.objects.create( title='Baz', path='baz', parent=self.doc_bar) # Create hierarchy by full path self.doc_uri = Document.objects.create( title='Quick Fox', path='quick/brown/fox', space=self.space) # Other document self.doc_other = Document.objects.create( title='Other document', path='other-doc', space=self.space_other) def test_create_document_without_a_space(self): """ All documents belong in a space. """ with self.assertRaises(ValidationError): Document.objects.create( title='Orphan', path='annie') def test_cannot_create_existing_document(self): """ Cannot create a document with the same path under the same parent. """ with self.assertRaises(ValidationError): Document.objects.create( title='Bar', path='bar', parent=self.doc_foo) def test_auto_save_parent_documents(self): """ If parent documents are not saved, then save them automatically """ d1 = Document(title='p1', path='p1', parent=self.doc_foo) d2 = Document(title='p2', path='p2', parent=d1) d3 = Document(title='p3', path='p3', parent=d2) d3.save() doc = Document.objects.get_by_path('mine/foo/p1/p2/p3') def test_can_edit_root_document(self): """ The document attached to __ROOT__ can be edited """ doc = Document.objects.get_by_path('', create=True) doc.title = "Root Doc" doc.save() def test_no_document_past_root(self): """ No hierarchy is allowed under the __ROOT__ space """ with self.assertRaises(ValidationError): Document.objects.create( title="Nested doc", path="hello", space=self.root_space) def test_can_create_same_under_other_parent(self): """ Can create a document with the same path under another parent """ Document.objects.create( title='Bar', path='bar', parent=self.doc_bar) def test_root_space_doc_path(self): """ Get the root document of a space by path """ doc = Document.objects.get_by_path('mine') self.assertEqual(doc.space.path, self.space.path) self.assertEqual(doc.path, '') self.assertEqual(doc.parent, None) def test_path_query_finder(self): """ Find document by full path """ doc = Document.objects.get_by_path('mine/foo/bar/baz') self.assertEqual(doc, self.doc_baz) def test_path_with_extra_slashes(self): """ Extra slashes in a path should be ignored when searching """ doc = Document.objects.get_by_path('mine/foo/bar///baz/') self.assertEqual(doc, self.doc_baz) def test_empty_path_matches_root(self): """ If a path is empty, it matches the root space """ doc = Document.objects.get_by_path('') self.assertEqual(doc.space, self.root_space) def test_space_in_inferred_from_parent(self): """ If creating a document without a space, it's assumed from the parent """ self.assertEqual(self.doc_bar.space.path, self.space.path) def test_cannot_have_parent_in_another_space(self): """ A document cannot have a parent that belongs to another space """ with self.assertRaises(ValidationError): Document.objects.create( title='Wrong parent', path='wrong', parent=self.doc_other, space=self.space) def test_create_with_full_path(self): """ Create a document with full path """ uri = 'foo/bar/baz/boo/foo' doc = Document.objects.create( title='Foo', path=uri, space=self.space) self.assertEqual(doc.path, 'foo') self.assertEqual(doc.full_path(), "%s/%s" % (self.space.path, uri)) def test_get_full_path(self): """ Check that a document generates it's full path correctly. """ self.assertEqual(self.doc_baz.full_path(), 'mine/foo/bar/baz') def test_first_doc_cannot_match_space(self): """ No document immediate under the space, can share the space name """ with self.assertRaises(ValidationError): doc = Document.objects.create( title='Wrong', path=self.space.path, space=self.space) def test_delete_document_in_path(self): """ When deleting a document in the middle of the path, all children should be assigned to the parent above """ self.doc_bar.delete() baz = Document.objects.get(path="baz") self.assertEqual(baz.parent.path, self.doc_foo.path) def test_delete_all_in_path(self): """ Delete a document and all it's children with the `with_children` flag """ self.doc_bar.delete(with_children=True) with self.assertRaises(ObjectDoesNotExist): Document.objects.get_by_path('mine/foo/bar/baz') def test_cannot_delete_root_document(self): """ The root document of a space cannot be deleted. """ doc = self.space.get_root_document() with self.assertRaises(ValidationError): doc.delete() def test_special_characters_in_path(self): """ Path elements should have special characters parsed out """ path = "it's alive. bang!!bang! hash#hash" expected = "its-alive-bangbang-hashhash" doc = Document.objects.create( title='Test Path', path=path, space=self.space) self.assertEqual(doc.path, expected) def test_convert_path_to_slug(self): """ Convert special characters in path """ space = Space.objects.create(name='Test Space', path=' this-is / a !$ test ') self.assertEqual(space.path, 'this-is-a-test') class UserSpaceTestCase(TestCase): """ A User Space, is a special space reserved for a user """ def setUp(self): self.space = Space.objects.get(name=Space.USER_SPACE_NAME) def test_space_path(self): """ Ensure that documents cannot be put in the user root path. That part of the path is reserved for the username: /user/<username>/ """ with self.assertRaises(ObjectDoesNotExist): doc = Document.objects.create( title='Bad', path='user/not_a_user', space=self.space) class RevisionTestCase(TestCase): """ Test Document Revision Models """ def setUp(self): space = Space.objects.create(name='My Space!', path='mine') user = get_user_model().objects.create_user( username='bob', email='<EMAIL>', password='<PASSWORD>') # Document with 2 revisions self.doc = Document.objects.create( title='Foo', path='foo', space=space) rev = Revision.objects.create( content='Lorem ipsum dolor sit amet', author=user, doc=self.doc) rev.content = 'Sed dignissim lacinia nunc.' rev.save() def test_multiple_revisions(self): """ If a revision is saved, another revision will be created """ self.assertEqual(self.doc.revision_set.count(), 2) def test_correct_revision(self): """ A document should always reference the latest revision """ self.assertEqual(self.doc.latest.content, 'Sed dignissim lacinia nunc.') def test_save_no_change_same_rev(self): """ If saving a revision that is the same as the last, it does not create a new one """ initialRevCount = self.doc.revision_set.count() self.doc.latest.save() self.assertEqual(self.doc.revision_set.count(), initialRevCount) def test_delete_revisions(self): """ Deleting a document should remove all revisions """ self.doc.delete() self.assertEqual(Revision.objects.count(), 0) ``` #### File: Spaces/spaces/utils.py ```python import re import os import uuid from datetime import date from django.conf import settings def normalize_path(path): """ Normalizes a path: * Removes extra and trailing slashes * Converts special characters to underscore """ if path is None: return "" path = re.sub(r'/+', '/', path) # repeated slash path = re.sub(r'/*$', '', path) # trailing slash path = [to_slug(p) for p in path.split(os.sep)] return os.sep.join(path) # preserves leading slash def to_slug(value): """ Convert a string to a URL slug. """ value = value.lower() # Space to dashes value = re.sub(r'[\s_]+', '-', value) # Special characters value = re.sub(r'[^a-z0-9\-]+', '', value, flags=re.I) # Extra dashes value = re.sub(r'\-{2,}', '-', value) value = re.sub(r'(^\-)|(\-$)', '', value) return value def upload_file(f): """ Upload a file and return the URL to it. """ # Create path under media root name, ext = os.path.splitext(f.name) name = "%s%s" % (str(uuid.uuid4()), ext) path = date.today().strftime("%Y") # Create base directory filepath = os.path.join(settings.MEDIA_ROOT, path) if not os.path.exists(filepath): os.makedirs(filepath) # Write file filepath = os.path.join(filepath, name) with open(filepath, 'wb+') as destination: for chunk in f.chunks(): destination.write(chunk) # Return URL return os.path.join(settings.MEDIA_URL, path, name) ```
{ "source": "jgillies/dbt-helper", "score": 2 }
#### File: integration/007_open_test/test_open.py ```python from test.integration.base import DBTIntegrationTest class OpenTest(DBTIntegrationTest): """ Want to test that this works for each file type, and for installed packages """ @property def models(self): return "test/integration/007_open_test/models" @property def packages_config(self): return { "packages": [{"local": "test/integration/007_open_test/local_dependency"}] } def check_model_file_opened(self, args): result = self.run_dbthelper(["open"] + args) return result == 0 def test_open(self): self.run_dbt(["deps"]) self.run_dbt(["run"]) self.assertTrue(self.check_model_file_opened(["my_model"])) self.assertTrue(self.check_model_file_opened(["my_model", "--compiled"])) self.assertTrue(self.check_model_file_opened(["my_model", "--run"])) self.assertTrue(self.check_model_file_opened(["my_model", "--source"])) self.assertTrue(self.check_model_file_opened(["my_package_model"])) self.assertTrue(self.check_model_file_opened(["my_package_model", "-c"])) self.assertTrue(self.check_model_file_opened(["my_package_model", "-r"])) self.assertTrue(self.check_model_file_opened(["my_package_model", "-s"])) ```
{ "source": "jgillis/delocate", "score": 2 }
#### File: delocate/tests/test_delocating.py ```python from __future__ import division, print_function import os import shutil import subprocess from collections import namedtuple from os.path import basename, dirname from os.path import join as pjoin from os.path import realpath, relpath, splitext from typing import Any, Callable, Dict, Iterable, List, Set, Text, Tuple import pytest from ..delocating import ( DelocationError, bads_report, check_archs, copy_recurse, delocate_path, delocate_tree_libs, filter_system_libs, ) from ..libsana import ( search_environment_for_lib, tree_libs, tree_libs_from_directory, ) from ..tmpdirs import InTemporaryDirectory from ..tools import get_install_names, set_install_name from .env_tools import TempDirWithoutEnvVars from .pytest_tools import assert_equal, assert_raises from .test_install_names import EXT_LIBS, LIBA, LIBB, LIBC, TEST_LIB, _copy_libs from .test_tools import ( ARCH_32, ARCH_64, ARCH_BOTH, ARCH_M1, LIB64, LIB64A, LIBBOTH, LIBM1, ) LibtreeLibs = namedtuple( "LibtreeLibs", ("liba", "libb", "libc", "test_lib", "slibc", "stest_lib") ) def _make_libtree(out_path: str) -> LibtreeLibs: liba, libb, libc, test_lib = _copy_libs( [LIBA, LIBB, LIBC, TEST_LIB], out_path ) sub_path = pjoin(out_path, "subsub") slibc, stest_lib = _copy_libs([libc, test_lib], sub_path) # Set execute permissions for exe in (test_lib, stest_lib): os.chmod(exe, 0o744) # Check test-lib doesn't work because of relative library paths with pytest.raises(subprocess.CalledProcessError): subprocess.run([test_lib], check=True) with pytest.raises(subprocess.CalledProcessError): subprocess.run([stest_lib], check=True) # Fixup the relative path library names by setting absolute paths for fname, using, path in ( (libb, "liba.dylib", out_path), (libc, "liba.dylib", out_path), (libc, "libb.dylib", out_path), (test_lib, "libc.dylib", out_path), (slibc, "liba.dylib", out_path), (slibc, "libb.dylib", out_path), (stest_lib, "libc.dylib", sub_path), ): set_install_name(fname, using, pjoin(path, using)) # Check scripts now execute correctly subprocess.run([test_lib], check=True) subprocess.run([stest_lib], check=True) return LibtreeLibs(liba, libb, libc, test_lib, slibc, stest_lib) def without_system_libs(obj): # Until Big Sur, we could copy system libraries. Now: # https://developer.apple.com/documentation/macos-release-notes/macos-big-sur-11_0_1-release-notes # - nearly all the system libraries are in a dynamic linker cache and # do not exist on the filesystem. We're obliged to use # `filter_system_libs` to avoid trying to copy these files. out = [e for e in obj if filter_system_libs(e)] if isinstance(obj, dict): out = {k: obj[k] for k in out} return out @pytest.mark.filterwarnings("ignore:tree_libs:DeprecationWarning") @pytest.mark.parametrize( "tree_libs_func", [tree_libs, tree_libs_from_directory] ) def test_delocate_tree_libs( tree_libs_func: Callable[[str], Dict[Text, Dict[Text, Text]]] ) -> None: # Test routine to copy library dependencies into a local directory with InTemporaryDirectory() as tmpdir: # Copy libs into a temporary directory subtree = pjoin(tmpdir, "subtree") all_local_libs = _make_libtree(subtree) liba, libb, libc, test_lib, slibc, stest_lib = all_local_libs copy_dir = "dynlibs" os.makedirs(copy_dir) # First check that missing out-of-system tree library causes error. sys_lib = EXT_LIBS[0] lib_dict = without_system_libs(tree_libs_func(subtree)) lib_dict.update({"/unlikely/libname.dylib": {}}) with pytest.raises(DelocationError): delocate_tree_libs(lib_dict, copy_dir, subtree) lib_dict = without_system_libs(tree_libs_func(subtree)) copied = delocate_tree_libs(lib_dict, copy_dir, subtree) # There are no out-of-tree libraries, nothing gets copied assert len(copied) == 0 # Make an out-of-tree library to test against. os.makedirs("out_of_tree") fake_lib = realpath(pjoin("out_of_tree", "libfake.dylib")) shutil.copyfile(liba, fake_lib) set_install_name(liba, sys_lib, fake_lib) lib_dict = without_system_libs(tree_libs_func(subtree)) copied = delocate_tree_libs(lib_dict, copy_dir, subtree) # Out-of-tree library copied. assert copied == {fake_lib: {realpath(liba): fake_lib}} assert os.listdir(copy_dir) == [basename(fake_lib)] # Library using the copied library now has an # install name starting with @loader_path, then # pointing to the copied library directory pathto_copies = relpath(realpath(copy_dir), dirname(realpath(liba))) lib_inames = without_system_libs(get_install_names(liba)) new_link = f"@loader_path/{pathto_copies}/{basename(fake_lib)}" assert [new_link] <= lib_inames # Libraries now have a relative loader_path to their corresponding # in-tree libraries for requiring, using, rel_path in ( (libb, "liba.dylib", ""), (libc, "liba.dylib", ""), (libc, "libb.dylib", ""), (test_lib, "libc.dylib", ""), (slibc, "liba.dylib", "../"), (slibc, "libb.dylib", "../"), (stest_lib, "libc.dylib", ""), ): loader_path = "@loader_path/" + rel_path + using not_sys_req = without_system_libs(get_install_names(requiring)) assert loader_path in not_sys_req # Another copy to delocate, now without faked out-of-tree dependency. subtree = pjoin(tmpdir, "subtree1") out_libs = _make_libtree(subtree) lib_dict = without_system_libs(tree_libs_func(subtree)) copied = delocate_tree_libs(lib_dict, copy_dir, subtree) # Now no out-of-tree libraries, nothing copied. assert copied == {} # Check test libs still work subprocess.run([out_libs.test_lib], check=True) subprocess.run([out_libs.stest_lib], check=True) # Check case where all local libraries are out of tree subtree2 = pjoin(tmpdir, "subtree2") liba, libb, libc, test_lib, slibc, stest_lib = _make_libtree(subtree2) copy_dir2 = "dynlibs2" os.makedirs(copy_dir2) # Trying to delocate where all local libraries appear to be # out-of-tree will raise an error because of duplicate library names # (libc and slibc both named <something>/libc.dylib) lib_dict2 = without_system_libs(tree_libs_func(subtree2)) with pytest.raises(DelocationError): delocate_tree_libs(lib_dict2, copy_dir2, "/fictional") # Rename a library to make this work new_slibc = pjoin(dirname(slibc), "libc2.dylib") os.rename(slibc, new_slibc) # Tell test-lib about this set_install_name(stest_lib, slibc, new_slibc) slibc = new_slibc # Confirm new test-lib still works subprocess.run([test_lib], check=True) subprocess.run([stest_lib], check=True) # Delocation now works lib_dict2 = without_system_libs(tree_libs_func(subtree2)) copied2 = delocate_tree_libs(lib_dict2, copy_dir2, "/fictional") local_libs = [liba, libb, libc, slibc, test_lib, stest_lib] rp_liba, rp_libb, rp_libc, rp_slibc, rp_test_lib, rp_stest_lib = [ realpath(L) for L in local_libs ] exp_dict = { rp_libc: {rp_test_lib: libc}, rp_slibc: {rp_stest_lib: slibc}, rp_libb: {rp_slibc: libb, rp_libc: libb}, rp_liba: {rp_slibc: liba, rp_libc: liba, rp_libb: liba}, } assert copied2 == exp_dict ext_local_libs = {liba, libb, libc, slibc} assert set(os.listdir(copy_dir2)) == { basename(lib) for lib in ext_local_libs } # Libraries using the copied libraries now have an install name starting # with @loader_path, then pointing to the copied library directory for lib in (liba, libb, libc, test_lib, slibc, stest_lib): pathto_copies = relpath(realpath(copy_dir2), dirname(realpath(lib))) lib_inames = get_install_names(lib) new_links = [ f"@loader_path/{pathto_copies}/{basename(elib)}" for elib in copied ] assert set(new_links) <= set(lib_inames) def _copy_fixpath(files: Iterable[str], directory: str) -> List[str]: new_fnames = [] for fname in files: shutil.copy2(fname, directory) new_fname = pjoin(directory, basename(fname)) for name in get_install_names(fname): if name.startswith("lib"): set_install_name(new_fname, name, pjoin(directory, name)) new_fnames.append(new_fname) return new_fnames def _copy_to(fname: str, directory: str, new_base: str) -> str: new_name = pjoin(directory, new_base) shutil.copy2(fname, new_name) return new_name @pytest.mark.filterwarnings("ignore:tree_libs:DeprecationWarning") @pytest.mark.filterwarnings("ignore:copy_recurse:DeprecationWarning") def test_copy_recurse() -> None: # Function to find / copy needed libraries recursively with InTemporaryDirectory(): # Get some fixed up libraries to play with os.makedirs("libcopy") test_lib, liba, libb, libc = _copy_fixpath( [TEST_LIB, LIBA, LIBB, LIBC], "libcopy" ) # Set execute permissions os.chmod(test_lib, 0o744) # Check system finds libraries subprocess.run(["./libcopy/test-lib"], check=True) # One library, depends only on system libs, system libs filtered def filt_func(libname: str) -> bool: return not libname.startswith("/usr/lib") os.makedirs("subtree") _copy_fixpath([LIBA], "subtree") # Nothing copied therefore assert copy_recurse("subtree", copy_filt_func=filt_func) == {} assert set(os.listdir("subtree")) == {"liba.dylib"} # shortcut _rp = realpath # An object that depends on a library that depends on two libraries # test_lib depends on libc, libc depends on liba and libb. libc gets # copied first, then liba, libb def _st(fname: str) -> str: return _rp(pjoin("subtree2", basename(fname))) os.makedirs("subtree2") shutil.copy2(test_lib, "subtree2") assert copy_recurse("subtree2", filt_func) == { _rp(libc): {_st(test_lib): libc}, _rp(libb): {_rp(libc): libb}, _rp(liba): {_rp(libb): liba, _rp(libc): liba}, } assert set(os.listdir("subtree2")) == { "liba.dylib", "libb.dylib", "libc.dylib", "test-lib", } # A circular set of libraries os.makedirs("libcopy2") libw = _copy_to(LIBA, "libcopy2", "libw.dylib") libx = _copy_to(LIBA, "libcopy2", "libx.dylib") liby = _copy_to(LIBA, "libcopy2", "liby.dylib") libz = _copy_to(LIBA, "libcopy2", "libz.dylib") # targets and dependencies. A copy of libw starts in the directory, # first pass should install libx and liby (dependencies of libw), # second pass should install libz, libw (dependencies of liby, libx # respectively) t_dep1_dep2 = ( (libw, libx, liby), # libw depends on libx, liby (libx, libw, liby), # libx depends on libw, liby (liby, libw, libz), # liby depends on libw, libz (libz, libw, libx), ) # libz depends on libw, libx for tlib, dep1, dep2 in t_dep1_dep2: set_install_name(tlib, EXT_LIBS[0], dep1) set_install_name(tlib, EXT_LIBS[1], dep2) os.makedirs("subtree3") seed_path = pjoin("subtree3", "seed") shutil.copy2(libw, seed_path) assert copy_recurse("subtree3") == { # not filtered # First pass, libx, liby get copied _rp(libx): { _rp(seed_path): libx, _rp(libw): libx, _rp(libz): libx, }, _rp(liby): { _rp(seed_path): liby, _rp(libw): liby, _rp(libx): liby, }, _rp(libw): {_rp(libx): libw, _rp(liby): libw, _rp(libz): libw}, _rp(libz): {_rp(liby): libz}, } assert set(os.listdir("subtree3")) == { "seed", "libw.dylib", "libx.dylib", "liby.dylib", "libz.dylib", } for tlib, dep1, dep2 in t_dep1_dep2: out_lib = pjoin("subtree3", basename(tlib)) assert set(get_install_names(out_lib)) == { "@loader_path/" + basename(dep1), "@loader_path/" + basename(dep2), } # Check case of not-empty copied_libs os.makedirs("subtree4") shutil.copy2(libw, "subtree4") copied_libs = { _rp(libw): {_rp(libx): libw, _rp(liby): libw, _rp(libz): libw} } copied_copied = copied_libs.copy() assert copy_recurse("subtree4", None, copied_libs) == { _rp(libw): {_rp(libx): libw, _rp(liby): libw, _rp(libz): libw}, _rp(libx): {_rp(libw): libx, _rp(libz): libx}, _rp(liby): {_rp(libw): liby, _rp(libx): liby}, _rp(libz): {_rp(liby): libz}, } # Not modified in-place assert copied_libs == copied_copied @pytest.mark.filterwarnings("ignore:tree_libs:DeprecationWarning") @pytest.mark.filterwarnings("ignore:copy_recurse:DeprecationWarning") def test_copy_recurse_overwrite(): # type: () -> None # Check that copy_recurse won't overwrite pre-existing libs with InTemporaryDirectory(): # Get some fixed up libraries to play with os.makedirs("libcopy") test_lib, liba, libb, libc = _copy_fixpath( [TEST_LIB, LIBA, LIBB, LIBC], "libcopy" ) # Filter system libs def filt_func(libname): # type: (Text) -> bool return not libname.startswith("/usr/lib") os.makedirs("subtree") # libb depends on liba shutil.copy2(libb, "subtree") # If liba is already present, barf shutil.copy2(liba, "subtree") assert_raises(DelocationError, copy_recurse, "subtree", filt_func) # Works if liba not present os.unlink(pjoin("subtree", "liba.dylib")) copy_recurse("subtree", filt_func) def test_delocate_path() -> None: # Test high-level path delocator script with InTemporaryDirectory(): # Make a tree; use realpath for OSX /private/var - /var _, _, _, test_lib, slibc, stest_lib = _make_libtree(realpath("subtree")) # Check it fixes up correctly assert delocate_path("subtree", "deplibs") == {} assert len(os.listdir("deplibs")) == 0 subprocess.run([test_lib], check=True) subprocess.run([stest_lib], check=True) # Make a fake external library to link to os.makedirs("fakelibs") fake_lib = realpath(_copy_to(LIBA, "fakelibs", "libfake.dylib")) _, _, _, test_lib, slibc, stest_lib = _make_libtree( realpath("subtree2") ) set_install_name(slibc, EXT_LIBS[0], fake_lib) # shortcut _rp = realpath # Check fake libary gets copied and delocated slc_rel = pjoin("subtree2", "subsub", "libc.dylib") assert delocate_path("subtree2", "deplibs2") == { _rp(fake_lib): {_rp(slc_rel): fake_lib} } assert os.listdir("deplibs2") == ["libfake.dylib"] assert "@loader_path/../../deplibs2/libfake.dylib" in get_install_names( slibc ) # Unless we set the filter otherwise _, _, _, test_lib, slibc, stest_lib = _make_libtree( realpath("subtree3") ) set_install_name(slibc, EXT_LIBS[0], fake_lib) def filt(libname: str) -> bool: return not (libname.startswith("/usr") or "libfake" in libname) assert delocate_path("subtree3", "deplibs3", None, filt) == {} assert len(os.listdir("deplibs3")) == 0 # Test tree names filtering works _, _, _, test_lib, slibc, stest_lib = _make_libtree( realpath("subtree4") ) set_install_name(slibc, EXT_LIBS[0], fake_lib) def lib_filt(filename: str) -> bool: return not filename.endswith("subsub/libc.dylib") assert delocate_path("subtree4", "deplibs4", lib_filt) == {} assert len(os.listdir("deplibs4")) == 0 # Check can use already existing directory os.makedirs("deplibs5") _, _, _, test_lib, slibc, stest_lib = _make_libtree( realpath("subtree5") ) assert delocate_path("subtree5", "deplibs5") == {} assert len(os.listdir("deplibs5")) == 0 # Check invalid string with pytest.raises(TypeError): delocate_path("subtree5", "deplibs5", lib_filt_func="invalid-str") def _make_bare_depends(): # type: () -> Tuple[Text, Text] # Copy: # * liba.dylib to 'libs' dir, which is a dependency of libb.dylib # * libb.dylib to 'subtree' dir, as 'libb' (no extension). # # This is for testing delocation when the depending file does not have a # dynamic library file extension. (libb,) = _copy_libs([LIBB], "subtree") (liba,) = _copy_libs([LIBA], "libs") bare_b, _ = splitext(libb) os.rename(libb, bare_b) # use realpath for OSX /private/var - /var set_install_name(bare_b, "liba.dylib", realpath(liba)) return liba, bare_b def test_delocate_path_dylibs(): # type: () -> None # Test options for delocating everything, or just dynamic libraries _rp = realpath # shortcut with InTemporaryDirectory(): # With 'dylibs-only' - does not inspect non-dylib files liba, bare_b = _make_bare_depends() assert_equal( delocate_path("subtree", "deplibs", lib_filt_func="dylibs-only"), {}, ) assert_equal(len(os.listdir("deplibs")), 0) # None - does inspect non-dylib files assert_equal( delocate_path("subtree", "deplibs", None), {_rp(pjoin("libs", "liba.dylib")): {_rp(bare_b): _rp(liba)}}, ) assert_equal(os.listdir("deplibs"), ["liba.dylib"]) with InTemporaryDirectory(): # Callable, dylibs only, does not inspect liba, bare_b = _make_bare_depends() def func(fn): # type: (Text) -> bool return fn.endswith(".dylib") assert_equal(delocate_path("subtree", "deplibs", func), {}) def func(fn): # type: (Text) -> bool return fn.endswith("libb") assert_equal( delocate_path("subtree", "deplibs", None), {_rp(pjoin("libs", "liba.dylib")): {_rp(bare_b): _rp(liba)}}, ) def test_check_archs(): # type: () -> None # Test utility to check architectures in copied_libs dict # No libs always OK s0 = set() # type: Set[Any] assert_equal(check_archs({}), s0) # One lib to itself OK lib_M1_M1 = {LIBM1: {LIBM1: "install_name"}} lib_64_64 = {LIB64: {LIB64: "install_name"}} assert_equal(check_archs(lib_M1_M1), s0) assert_equal(check_archs(lib_64_64), s0) # OK matching to another static lib of same arch assert_equal(check_archs({LIB64A: {LIB64: "install_name"}}), s0) # Or two libs two_libs = { LIB64A: {LIB64: "install_name"}, LIBM1: {LIBM1: "install_name"}, } assert_equal(check_archs(two_libs), s0) # Same as empty sequence required_args argument assert_equal(check_archs(lib_M1_M1, ()), s0) assert_equal(check_archs(lib_64_64, ()), s0) assert_equal(check_archs(two_libs, ()), s0) assert_equal(check_archs(two_libs, []), s0) assert_equal(check_archs(two_libs, set()), s0) # bads if we require more archs than present for in_libs, exp_arch, missing in ( (lib_M1_M1, ARCH_64, ARCH_64), (lib_M1_M1, ARCH_BOTH, ARCH_64), (lib_M1_M1, "x86_64", ARCH_64), (lib_M1_M1, "universal2", ARCH_64), (lib_64_64, ARCH_M1, ARCH_M1), (lib_64_64, ARCH_BOTH, ARCH_M1), (lib_64_64, "arm64", ARCH_M1), (lib_64_64, "intel", ARCH_32), (lib_64_64, "universal2", ARCH_M1), ): ded, value = list(in_libs.items())[0] ding, _ = list(value.items())[0] arch_check = check_archs(in_libs, exp_arch) assert_equal(arch_check, {(ding, missing)}) # Two libs assert_equal(check_archs(two_libs, ARCH_M1), {(LIB64, ARCH_M1)}) assert_equal(check_archs(two_libs, ARCH_64), {(LIBM1, ARCH_64)}) assert_equal( check_archs(two_libs, ARCH_BOTH), {(LIB64, ARCH_M1), (LIBM1, ARCH_64)} ) # Libs must match architecture with second arg of None assert_equal( check_archs({LIB64: {LIBM1: "install_name"}}), {(LIB64, LIBM1, ARCH_M1)}, ) assert_equal( check_archs( { LIB64A: {LIB64: "install_name"}, LIBM1: {LIBM1: "install_name"}, LIB64: {LIBM1: "install_name"}, } ), {(LIB64, LIBM1, ARCH_M1)}, ) # For single archs depending, dual archs in depended is OK assert check_archs({LIBBOTH: {LIB64A: "install_name"}}) == s0 # For dual archs in depending, both must be present assert_equal(check_archs({LIBBOTH: {LIBBOTH: "install_name"}}), s0) assert_equal( check_archs({LIB64A: {LIBBOTH: "install_name"}}), {(LIB64A, LIBBOTH, ARCH_M1)}, ) # More than one bad in_dict = { LIB64A: {LIBBOTH: "install_name"}, LIB64: {LIBM1: "install_name"}, } exp_res = {(LIB64A, LIBBOTH, ARCH_M1), (LIB64, LIBM1, ARCH_M1)} assert_equal(check_archs(in_dict), exp_res) # Check stop_fast flag; can't predict return, but there should only be one stopped = check_archs(in_dict, (), True) assert_equal(len(stopped), 1) # More than one bad in dependings assert_equal( check_archs( { LIB64A: {LIBBOTH: "install_name", LIBM1: "install_name"}, LIB64: {LIBM1: "install_name"}, } ), { (LIB64A, LIBBOTH, ARCH_M1), (LIB64A, LIBM1, ARCH_M1), (LIB64, LIBM1, ARCH_M1), }, ) def test_bads_report(): # type: () -> None # Test bads_report of architecture errors # No bads, no report assert_equal(bads_report(set()), "") fmt_str_2 = "Required arch arm64 missing from {0}" fmt_str_3 = "{0} needs arch arm64 missing from {1}" # One line report assert_equal( bads_report({(LIB64, LIBM1, ARCH_M1)}), fmt_str_3.format(LIBM1, LIB64) ) # One line report applying path stripper assert_equal( bads_report({(LIB64, LIBM1, ARCH_M1)}, dirname(LIB64)), fmt_str_3.format(basename(LIBM1), basename(LIB64)), ) # Multi-line report report = bads_report( { (LIB64A, LIBBOTH, ARCH_M1), (LIB64A, LIBM1, ARCH_M1), (LIB64, LIBM1, ARCH_M1), } ) expected = { fmt_str_3.format(LIBM1, LIB64A), fmt_str_3.format(LIBM1, LIB64), fmt_str_3.format(LIBBOTH, LIB64A), } # Set ordering undefined. assert_equal(set(report.splitlines()), expected) # Two tuples and three tuples report2 = bads_report( {(LIB64A, LIBBOTH, ARCH_M1), (LIB64, ARCH_M1), (LIBM1, ARCH_M1)} ) expected2 = { fmt_str_3.format(LIBBOTH, LIB64A), fmt_str_2.format(LIB64), fmt_str_2.format(LIBM1), } assert_equal(set(report2.splitlines()), expected2) # Tuples must be length 2 or 3 assert_raises( ValueError, bads_report, {(LIB64A, LIBBOTH, ARCH_M1), (LIB64,), (LIBM1, ARCH_M1)}, ) # Tuples must be length 2 or 3 assert_raises( ValueError, bads_report, { (LIB64A, LIBBOTH, ARCH_M1), (LIB64, LIB64, ARCH_M1, ARCH_64), (LIBM1, ARCH_M1), }, ) def test_dyld_library_path_lookups() -> None: # Test that DYLD_LIBRARY_PATH can be used to find libs during # delocation with TempDirWithoutEnvVars("DYLD_LIBRARY_PATH") as tmpdir: # Copy libs into a temporary directory subtree = pjoin(tmpdir, "subtree") all_local_libs = _make_libtree(subtree) liba, libb, libc, test_lib, slibc, stest_lib = all_local_libs # move libb and confirm that test_lib doesn't work hidden_dir = "hidden" os.mkdir(hidden_dir) new_libb = os.path.join(hidden_dir, os.path.basename(LIBB)) shutil.move(libb, new_libb) with pytest.raises(subprocess.CalledProcessError): subprocess.run([test_lib], check=True) # Update DYLD_LIBRARY_PATH and confirm that we can now # successfully delocate test_lib os.environ["DYLD_LIBRARY_PATH"] = hidden_dir delocate_path("subtree", "deplibs") subprocess.run([test_lib], check=True) def test_dyld_library_path_beats_basename(): # type: () -> None # Test that we find libraries on DYLD_LIBRARY_PATH before basename with TempDirWithoutEnvVars("DYLD_LIBRARY_PATH") as tmpdir: # Copy libs into a temporary directory subtree = pjoin(tmpdir, "subtree") all_local_libs = _make_libtree(subtree) liba, libb, libc, test_lib, slibc, stest_lib = all_local_libs # Copy liba into a subdirectory subdir = os.path.join(subtree, "subdir") os.mkdir(subdir) new_libb = os.path.join(subdir, os.path.basename(LIBB)) shutil.copyfile(libb, new_libb) # Without updating the environment variable, we find the lib normally predicted_lib_location = search_environment_for_lib(libb) # tmpdir can end up in /var, and that can be symlinked to # /private/var, so we'll use realpath to resolve the two assert_equal(predicted_lib_location, os.path.realpath(libb)) # Updating shows us the new lib os.environ["DYLD_LIBRARY_PATH"] = subdir predicted_lib_location = search_environment_for_lib(libb) assert_equal(predicted_lib_location, realpath(new_libb)) def test_dyld_fallback_library_path_loses_to_basename(): # type: () -> None # Test that we find libraries on basename before DYLD_FALLBACK_LIBRARY_PATH with TempDirWithoutEnvVars("DYLD_FALLBACK_LIBRARY_PATH") as tmpdir: # Copy libs into a temporary directory subtree = pjoin(tmpdir, "subtree") all_local_libs = _make_libtree(subtree) liba, libb, libc, test_lib, slibc, stest_lib = all_local_libs # Copy liba into a subdirectory subdir = "subdir" os.mkdir(subdir) new_libb = os.path.join(subdir, os.path.basename(LIBB)) shutil.copyfile(libb, new_libb) os.environ["DYLD_FALLBACK_LIBRARY_PATH"] = subdir predicted_lib_location = search_environment_for_lib(libb) # tmpdir can end up in /var, and that can be symlinked to # /private/var, so we'll use realpath to resolve the two assert_equal(predicted_lib_location, os.path.realpath(libb)) ``` #### File: subpkg/tests/test_fakepkg.py ```python from namespace.subpkg.module2 import func2, func3 # type: ignore def test_fakepkg(): assert func2() == 2 assert func3() == 3 ``` #### File: fakepkg/tests/test_fakepkg.py ```python from delocate.tests.pytest_tools import assert_equal from ..module1 import func1 from ..subpkg.module2 import func2, func3 def test_fakepkg(): assert_equal(func1(), 1) assert_equal(func2(), 2) assert_equal(func3(), 3) ```
{ "source": "jgillis/optimization-engine", "score": 2 }
#### File: opengen/config/build_config.py ```python from opengen.config.tcp_server_config import TcpServerConfiguration import random import string class BuildConfiguration: """Build configuration Configuration for the code generator """ def __init__(self, build_dir="."): """ Construct an instance of BuildConfiguration :param build_dir: Target directory, defaults to the current directory :return: A new instance of BuildConfiguration """ random_string = ''.join(random.choice(string.ascii_letters) for _i in range(20)) self.__target_system = None self.__build_mode = 'release' self.__id = random_string self.__cost_function_name = 'phi_' + random_string self.__grad_cost_function_name = 'grad_phi_' + random_string self.__constraint_penalty_function = 'mapping_f2_' + random_string self.__alm_constraints_mapping_f1 = 'mapping_f1_' + random_string self.__rebuild = False self.__build_dir = build_dir self.__open_version = None self.__build_c_bindings = False self.__tcp_interface_config = None # ---------- GETTERS --------------------------------------------- @property def rebuild(self): """Whether to re-build the optimizer from scratch""" return self.__rebuild @property def id(self): """Unique identifier of build configuration""" return self.__id @property def cost_function_name(self): return self.__cost_function_name @property def grad_function_name(self): return self.__grad_cost_function_name @property def constraint_penalty_function_name(self): return self.__constraint_penalty_function @property def alm_mapping_f1_function_name(self): return self.__alm_constraints_mapping_f1 @property def target_system(self): """Target system""" return self.__target_system @property def build_mode(self): """Build mode (release or debug)""" return self.__build_mode @property def build_dir(self): """Directory in which the auto-generated optimizer will be stored""" return self.__build_dir @property def open_version(self): """ OpEn version used with the auto-generated solver :return: The method returns either a specific version of OpEn, which will be used with the auto-generated optimizer, or `None`, in which case, the latest version will be used. You may set your preferred version of OpEn with `with_open_version` """ return self.__open_version @property def build_c_bindings(self): return self.__build_c_bindings @property def tcp_interface_config(self): return self.__tcp_interface_config # ---------- SETTERS --------------------------------------------- def with_rebuild(self, do_rebuild): """ Whether to clean and rebuild the code generator, if it already exists :param do_rebuild: if set to True, the target code generator will be cleaned and rebuilt from scratch :return: current instance of BuildConfiguration """ self.__rebuild = do_rebuild return self def with_target_system(self, target_system): """ Specify the target system :param target_system: target system as string (e.g., use "arm-unknown-linux-gnueabihf" or "rpi" for Raspberry Pi). Note that you must have installed the target using `rustup` if you need to cross-compile. :return: current instance of BuildConfiguration """ if target_system.lower() == "rpi": self.__target_system = "arm-unknown-linux-gnueabihf" else: self.__target_system = target_system return self def with_build_mode(self, build_mode): """ Set the build mode (debug/release) :param build_mode: Choose either 'debug' or 'release'; the former is fast, but suboptimal, while the later may take a while to compile, but the generated binary is significantly faster :return: current instance of BuildConfiguration """ self.__build_mode = build_mode return self def with_build_directory(self, build_dir): """ Specify the build directory :param build_dir: build directory as string :return: current instance of BuildConfiguration """ self.__build_dir = build_dir return self def with_open_version(self, open_version): """ Specify the version of OpEn to link to :param: OpEn version :return: current instance of BuildConfiguration """ self.__open_version = open_version return self def with_build_c_bindings(self, build_c_bindings=True): """ If activated, OpEn will generate C/C++ bindings for the auto-generated solver :param build_c_bindings: whether to build C/C++ bindings for auto-generated solver; default: `True`, i.e., it suffices to call `build_config.with_build_c_bindings()` instead of `build_config.with_build_c_bindings(True)` :return: current instance of BuildConfiguration """ self.__build_c_bindings = build_c_bindings return self def with_tcp_interface_config(self, tcp_interface_config=TcpServerConfiguration()): """ Specify a TCP server configuration object :param tcp_interface_config: Custom TCP server configuration :return: current instance of BuildConfiguration """ self.__tcp_interface_config = tcp_interface_config return self ```
{ "source": "jgillis/piwheels", "score": 2 }
#### File: piwheels/audit/__init__.py ```python import os import sys import hashlib import logging import argparse from pathlib import Path from queue import Queue, Empty from html.parser import HTMLParser from .. import __version__, terminal, const def main(args=None): """ This is the main function for the :program:`piw-audit` script. It relies on nothing from the master application as this is intended to be used offline or on backups of the master. """ sys.excepthook = terminal.error_handler terminal.error_handler[OSError] = ( terminal.error_handler.exc_message, 1) logging.getLogger().name = 'audit' parser = terminal.configure_parser("""\ The piw-audit script is intended to verify that the indexes generated for the "simple" index are valid, i.e. that the directories and files pointed to all exist and optionally that the hashes recorded in the sub-indexes match the files on disk. Note that the script is intended to be run offline; i.e. the master should preferably be shut down during operation of this script. If the master is active, deletions may cause false negatives. """) parser.add_argument( '-o', '--output-path', metavar='PATH', default=const.OUTPUT_PATH, help="The path under which the website has been written; must be " "readable by the current user") parser.add_argument( '-e', '--extraneous', metavar='FILE', type=argparse.FileType('w'), help="If specified, the path of a file to which all extraneous " "filenames (files which shouldn't exist, but do) will be written") parser.add_argument( '-m', '--missing', metavar='FILE', type=argparse.FileType('w'), help="If specified, the path of a file to which all missing " "filenames (files which should exist, but don't) will be written") parser.add_argument( '-b', '--broken', metavar='FILE', type=argparse.FileType('w'), help="If specified, the path of a file to which all filenames of " "corrupted wheels will be written; warning: this is an extremely " "slow operation on a full index which is avoided if this option is " "not specified") config = parser.parse_args(args) terminal.configure_logging(config.log_level, config.log_file) logging.info("PiWheels Audit version %s", __version__) config.output_path = Path(os.path.expanduser(config.output_path)) check_simple_index(config) def check_simple_index(config): logging.info('checking simple index') path = config.output_path / 'simple' index = path / 'index.html' try: for href, text in parse_links(index): check_package_index(config, href) except OSError as exc: report_missing(config, 'simple index', index) def check_package_index(config, package): logging.info('checking %s', package) path = config.output_path / 'simple' / package index = path / 'index.html' try: all_files = set(path.iterdir()) except OSError: report_missing(config, 'package dir', path) else: try: all_files.remove(index) except KeyError: report_missing(config, 'package index', index) else: for href, text in parse_links(index): filename, filehash = href.rsplit('#', 1) try: all_files.remove(path / filename) except KeyError: report_missing(config, 'wheel', path / filename) else: if config.broken: check_wheel_hash(config, package, filename, filehash) for filename in all_files: report_extra(config, 'file', path / filename) def check_wheel_hash(config, package, filename, filehash): logging.info('checking %s/%s', package, filename) algorithm, filehash = filehash.rsplit('=', 1) try: state = { 'md5': hashlib.md5, 'sha256': hashlib.sha256, }[algorithm]() except KeyError: logging.error('invalid algorithm %s in package index %s', algorithm, package) else: wheel = config.output_path / 'simple' / package / filename with wheel.open('rb') as f: while True: buf = f.read(4096) if not buf: break state.update(buf) if state.hexdigest().lower() != filehash.lower(): report_broken(config, 'wheel', wheel) # TODO Test JSON data # TODO Test project dirs # TODO Test wheel metadata? def report(file, prefix, label, path): logging.error('%s %s %s', prefix, label, path) if file: file.write(str(path)) file.write('\n') def report_missing(config, label, path): report(config.missing, 'missing', label, path) def report_extra(config, label, path): report(config.extraneous, 'extraneous', label, path) def report_broken(config, label, path): report(config.broken, 'corrupted', label, path) class IndexParser(HTMLParser): def __init__(self, queue): super().__init__() self.queue = queue self.href = None self.data = None def handle_starttag(self, tag, attrs): if tag == 'a': for name, value in attrs: if name == 'href': self.href = value break def handle_data(self, data): if self.href is not None: if self.data is None: self.data = data else: self.data += data def handle_endtag(self, tag): if tag == 'a' and self.href is not None and self.data is not None: self.queue.put((self.href, self.data)) self.href = None self.data = None def parse_links(path): with path.open('r') as f: q = Queue() parser = IndexParser(q) while True: buf = f.read(4096) if not buf: break parser.feed(buf) while True: try: yield q.get(block=False) except Empty: break ``` #### File: piwheels/monitor/states.py ```python from datetime import datetime, timedelta, timezone from collections import deque from ..info import get_pi_info from ..states import SlaveStats, MasterStats UTC = timezone.utc class MasterState: """ Class for tracking the state of the master via messages sent over the monitor PUB socket. """ # pylint: disable=too-many-instance-attributes def __init__(self): self.killed = False self.stats = deque(maxlen=100) self.first_seen = None self.last_seen = None self.status = 'Doing whatever the master does' # TODO self.label = '' self.os_name = '-' self.os_version = '-' self.board_revision = '-' self.board_info = '' self.board_serial = '-' def update(self, timestamp, msg, data): """ Update the master's state from an incoming status message. :param datetime.datetime timestamp: The time at which the message was originally sent. :param str msg: The message itself. :param data: Any data sent with the message. """ self.last_seen = timestamp if msg == 'HELLO': ( self.first_seen, self.label, self.os_name, self.os_version, self.board_revision, self.board_serial, ) = data self.board_info = format_revision(self.board_revision) self.stats.clear() elif msg == 'STATS': self.stats.append(MasterStats.from_message(data)) else: assert False, 'unexpected message' @property def slave_id(self): return None @property def sort_key(self): return '', '' @property def state(self): if self.first_seen is not None: if datetime.now(tz=UTC) - self.last_seen > timedelta(seconds=30): return 'alert' if self.stats: latest = self.stats[-1] if latest.builds_last_hour == 0: return 'alert' elif latest.downloads_last_hour == 0: return 'alert' elif latest.disk_free < latest.disk_size * 0.1: return 'alert' elif latest.mem_free < latest.mem_size * 0.1: return 'alert' elif latest.swap_size and (latest.swap_free < latest.swap_size * 0.5): return 'alert' elif latest.load_average > 4.0: return 'alert' elif latest.cpu_temp > 70.0: return 'alert' if self.killed: return 'dead' return 'okay' class SlaveState: """ Class for tracking the state of a single build slave via messages sent over the monitor PUB socket. """ # pylint: disable=too-many-instance-attributes def __init__(self, slave_id): self.killed = False self.slave_id = slave_id self.stats = deque(maxlen=100) self.last_msg = '' self.build_timeout = None self.busy_timeout = None self.py_version = '-' self.abi = '-' self.platform = '-' self.label = '' self.os_name = '-' self.os_version = '-' self.board_revision = '-' self.board_info = '' self.board_serial = '-' self.build_start = None self.first_seen = None self.last_seen = None self.clock_skew = None self.status = '' def update(self, timestamp, msg, data): """ Update the slave's state from an incoming status message. :param datetime.datetime timestamp: The time at which the message was originally sent. :param str msg: The message itself. :param data: Any data sent with the message. """ self.last_msg = msg self.last_seen = timestamp if msg == 'HELLO': self.status = 'Initializing' self.first_seen = timestamp ( self.build_timeout, self.busy_timeout, self.py_version, self.abi, self.platform, self.label, self.os_name, self.os_version, self.board_revision, self.board_serial, ) = data self.board_info = format_revision(self.board_revision) self.stats.clear() elif msg == 'STATS': data = SlaveStats.from_message(data) self.clock_skew = self.last_seen - data.timestamp self.stats.append(data) elif msg == 'SLEEP': self.status = 'Waiting for jobs' elif msg == 'DIE': self.status = 'Terminating' self.killed = True elif msg == 'BUILD': self.status = 'Building {} {}'.format(data[0], data[1]) self.build_start = timestamp elif msg == 'SEND': self.status = 'Transferring file' elif msg == 'DONE': self.status = 'Cleaning up after build' self.build_start = None elif msg in ('CONT', 'ACK'): pass else: assert False, 'unexpected message' @property def sort_key(self): return self.abi, self.label @property def state(self): """ Calculate a simple state indicator for the slave, used to color the initial "*" on the entry. """ now = datetime.now(tz=UTC) if self.first_seen is not None: if now - self.last_seen > self.busy_timeout: return 'dead' elif now - self.last_seen > self.busy_timeout / 2: return 'alert' elif self.stats: latest = self.stats[-1] if latest.disk_free < latest.disk_size * 0.1: return 'alert' elif latest.mem_free < latest.mem_size * 0.1: return 'alert' elif latest.swap_size and (latest.swap_free < latest.swap_size * 0.5): return 'alert' elif latest.load_average > 4.0: return 'alert' elif latest.cpu_temp > 78.0: return 'alert' if self.last_msg == 'DONE': return 'cleaning' elif self.last_msg == 'SEND': return 'sending' elif self.build_start is not None: return 'building' if self.killed: return 'dead' return 'idle' def format_revision(revision): try: return ( 'Pi {i.model} rev{i.pcb_revision} {i.memory}'.format( i=get_pi_info(revision))) except ValueError: return '' ``` #### File: monitor/tui/dialogs.py ```python "Defines the dialogs used in the monitor application" from collections import namedtuple from piwheels import widgets as wdg class HelpDialog(wdg.Dialog): def __init__(self): ok_button = wdg.FixedButton(wdg.format_hotkey('_OK')) body = wdg.Text([ "Welcome to the ", ('bold', "piwheels"), " monitor " "application. When run on the same node as the " "master, this should automatically connect and " "display its status, along with the state of any " "connected build slaves.\n" "\n", "The following keys can be used within the monitor:\n" "\n", ('bold', "j / down"), " - Move down the list of machines\n", ('bold', "k / up"), " - Move up the list of machines\n", ('bold', "enter"), " - Perform an action on the selected machine\n", ('bold', "h"), " - Display this help\n", ('bold', "q"), " - Quit the application", ]) super().__init__(title='Help', body=body, buttons=[ok_button]) wdg.connect_signal(ok_button, 'click', lambda btn: self._emit('close')) self.width = ('relative', 50) self.min_width = 60 self.height = ('relative', 20) self.min_height = 16 def keypress(self, size, key): if key == 'o': self._emit('close') else: return super().keypress(size, key) Action = namedtuple('Action', ('result', 'title', 'help')) class ActionsDialog(wdg.Dialog): title = 'Action!' actions = [] # list of Action instances def __init__(self, state): ok_button = wdg.FixedButton(wdg.format_hotkey('_OK')) cancel_button = wdg.FixedButton(wdg.format_hotkey('_Cancel')) choices = [] self.state = state self.actions = { wdg.RadioButton(choices, wdg.format_hotkey(action.title), on_state_change=self.action_picked, user_data=action): action for action in self.actions } self.help_text = wdg.Text('') super().__init__( title=self.title, body=wdg.Columns([ (20, wdg.Pile(choices)), self.help_text ]), buttons=[ok_button, cancel_button]) self.result = None for radio, action in self.actions.items(): if radio.state: self.help_text.set_text(action.help) wdg.connect_signal(ok_button, 'click', self.ok) wdg.connect_signal(cancel_button, 'click', self.cancel) self.width = 50 self.min_width = 20 self.height = 12 def ok(self, btn=None): for radio, action in self.actions.items(): if radio.state: self.result = action.result break self._emit('close') def cancel(self, btn=None): self._emit('close') def default(self, btn=None): # cancel if focused on cancel button, ok otherwise pass def action_picked(self, radio, new_state, action): if new_state: self.help_text.set_text(action.help) def keypress(self, size, key): try: { 'enter': self.default, 'o': self.ok, 'c': self.cancel, }[key]() except KeyError: for radio in self.actions: if key == wdg.find_hotkey(*radio._label.get_text()).lower(): radio.set_state(True) self.set_focus(radio) return return super().keypress(size, key) class MasterDialog(ActionsDialog): title = 'Master Control' actions = [ Action('sleep', "_Pause", "Stops new builds from being sent to build slaves, but waits " "for existing builds to finish first. Useful for installing " "new build dependencies across the cluster without shutting " "everything down."), Action('sleep_now', "_Halt", "Immediately halt existing builds and stop new builds from " "being sent to the slaves. Useful for installing new build " "dependencies across the cluster."), Action('wake', "_Resume", "Resumes sending builds to slaves; the opposite to the 'Pause' " "and 'Halt' actions."), Action('kill_slaves', "_Stop Slaves", "Shuts down all build slaves after each has completed its " "existing build. Use this before 'Stop Master' to stop " "everything when upgrading the entire cluster."), Action('kill_slaves_now', "_Kill Slaves", "Cancels all existing builds and immediately shuts down all " "build slaves. Use this before 'Stop Master' to stop " "everything when upgrading the entire cluster quickly."), Action('kill_master', "Stop _Master", "Cancels all active builds and shuts down the master service " "but leaves all slaves running. Useful for upgrading just the " "master and/or performing database maintenance."), ] class SlaveDialog(ActionsDialog): title = 'Slave Control' actions = [ Action('skip_now', "Sk_ip", "Stops the current build and moves onto the next (if there is " "one). Useful for skipping a build which is known to fail or " "is obviously failing."), Action('sleep', "_Pause", "Stops new builds from being sent to the selected slave, but " "waits the existing build to finish first. Useful for " "maintaining dependencies on the slave."), Action('sleep_now', "_Halt", "Immediately halt the existing build and stop new builds from " "being sent to the selected slave. Useful for maintaining " "dependencies on the slave."), Action('wake', "_Resume", "Resumes sending builds to the selected slave; the opposite to " "the 'Pause' and 'Halt' actions."), Action('kill_slave', "_Stop Slave", "Shuts down the build slave after the current build has " "finished. Useful for maintaining the slave installation."), Action('kill_slave_now', "_Kill Slave", "Cancels the current build and immediately shuts down the " "build slave. Useful for maintaining the slave installation."), ] ``` #### File: piwheels/piwheels/transport.py ```python import logging import ipaddress as ip import datetime as dt from binascii import hexlify import zmq from voluptuous import Invalid import cbor2 from .protocols import Protocol, NoData PUSH = zmq.PUSH PULL = zmq.PULL REQ = zmq.REQ REP = zmq.REP PUB = zmq.PUB SUB = zmq.SUB ROUTER = zmq.ROUTER DEALER = zmq.DEALER NOBLOCK = zmq.NOBLOCK POLLIN = zmq.POLLIN POLLOUT = zmq.POLLOUT SUBSCRIBE = zmq.SUBSCRIBE UNSUBSCRIBE = zmq.UNSUBSCRIBE Error = zmq.ZMQError Again = zmq.error.Again def default_encoder(encoder, value): if isinstance(value, dt.timedelta): encoder.encode( cbor2.CBORTag(2001, ( value.days, value.seconds, value.microseconds))) elif value is NoData: encoder.encode(cbor2.CBORTag(2002, None)) else: raise cbor2.CBOREncodeError( 'cannot serialize type %s' % value.__class__.__name__) def default_decoder(decoder, tag): if tag.tag == 2001: days, seconds, microseconds = tag.value return dt.timedelta( days=days, seconds=seconds, microseconds=microseconds) elif tag.tag == 2002: return NoData return tag class Context: """ Wrapper for 0MQ :class:`zmq.Context`. This extends the :meth:`socket` method to include parameters for the socket's protocol and logger. """ def __init__(self): self._context = zmq.Context.instance() def socket(self, sock_type, *, protocol=None, logger=None): return Socket(self._context.socket(sock_type), protocol, logger) def close(self, linger=1): self._context.destroy(linger=linger * 1000) self._context.term() class Socket: """ Wrapper for :class:`zmq.Socket`. This extends 0MQ's sockets to include a protocol which will be used to validate messages that are sent and received (via a voluptuous schema), and a logger which can be used to debug socket behaviour. """ def __init__(self, socket, protocol=None, logger=None): if logger is None: logger = logging.getLogger() if protocol is None: protocol = Protocol() self._logger = logger self._socket = socket self._protocol = protocol self._socket.ipv6 = True def __enter__(self): return self def __exit__(self, exc_type, exc_value, exc_tb): self.close() def _dump_msg(self, msg, data=NoData): try: schema = self._protocol.send[msg] except KeyError: raise IOError('unknown message: %s' % msg) if data is NoData: if schema is not NoData: raise IOError('data must be specified for %s' % msg) return cbor2.dumps(msg, default=default_encoder) else: if schema is NoData: raise IOError('no data expected for %s' % msg) try: data = schema(data) except Invalid as e: raise IOError('invalid data for %s: %r' % (msg, data)) try: return cbor2.dumps((msg, data), default=default_encoder) except cbor2.CBOREncodeError as e: raise IOError('unable to serialize data') def _load_msg(self, buf): try: msg = cbor2.loads(buf, tag_hook=default_decoder) except cbor2.CBORDecodeError as e: raise IOError('unable to deserialize data') if isinstance(msg, str): try: schema = self._protocol.recv[msg] except KeyError: raise IOError('unknown message: %s' % msg) if schema is NoData: return msg, None raise IOError('missing data for: %s' % msg) else: try: msg, data = msg except (TypeError, ValueError): raise IOError('invalid message structure received') try: schema = self._protocol.recv[msg] except KeyError: raise IOError('unknown message: %s' % msg) if schema is NoData: raise IOError('data not expected for: %s' % msg) try: return msg, schema(data) except Invalid as e: raise IOError('invalid data for %s: %r' % (msg, data)) @property def hwm(self): """ The high-water mark of the socket, i.e. the number of messages that can be queued before the socket blocks (or drops, depending on the socket type) messages. """ return self._socket.hwm @hwm.setter def hwm(self, value): self._socket.hwm = value def bind(self, address): """ Binds the socket to listen on the specified *address*. """ return self._socket.bind(address) def connect(self, address): """ Connects the socket to the listening socket at *address*. """ return self._socket.connect(address) def close(self, linger=None): """ Closes the socket. If *linger* is specified, it is the number of seconds to wait for pending messages to be flushed. """ return self._socket.close( linger=linger if linger is None else linger * 1000) def subscribe(self, topic): """ Subscribes SUB type sockets to the specified *topic* (a string prefix). """ self._socket.setsockopt_string(SUBSCRIBE, topic) def unsubscribe(self, topic): """ Unsubscribes SUB type sockets from the specified *topic* (a string prefix). """ self._socket.setsockopt_string(UNSUBSCRIBE, topic) def poll(self, timeout=None, flags=POLLIN): """ Polls the socket for pending data (by default, when *flags* is POLLIN). If no data is available after *timeout* seconds, returns False. Otherwise returns True. If *flags* is POLLOUT instead, tests whether the socket has available slots for queueing new messages. """ return self._socket.poll( timeout if timeout is None else timeout * 1000, flags) def send(self, buf, flags=0): """ Send *buf* (a :class:`bytes` string). """ self._logger.debug('>> %s', buf) return self._socket.send(buf, flags) def recv(self, flags=0): """ Receives the next message as a :class:`bytes` string. """ buf = self._socket.recv(flags) self._logger.debug('<< %s', buf) return buf def drain(self): """ Receives all pending messages in the queue and discards them. This is typically useful during shutdown routines or for testing. """ while self.poll(0): self.recv() def send_multipart(self, msg_parts, flags=0): """ Send *msg_parts*, a list of :class:`bytes` strings as a multi-part message which can be received intact with :meth:`recv_multipart`. """ self._logger.debug('>>' + (' %s' * len(msg_parts)), *msg_parts) return self._socket.send_multipart(msg_parts, flags) def recv_multipart(self, flags=0): """ Receives a multi-part message, returning its content as a list of :class:`bytes` strings. """ msg_parts = self._socket.recv_multipart(flags) self._logger.debug('<<' + (' %s' * len(msg_parts)), *msg_parts) return msg_parts def send_msg(self, msg, data=NoData, flags=0): """ Send the unicode string *msg* with its associated *data* as a CBOR-encoded message. This is the primary method used in piwheels for sending information between tasks. The message, and its associated data, must validate against the :attr:`protocol` associated with the socket on construction. """ self._logger.debug('>> %s %r', msg, data) return self._socket.send(self._dump_msg(msg, data), flags) def recv_msg(self, flags=0): """ Receive a CBOR-encoded message, returning a tuple of the unicode message string and its associated data. This is the primary method used in piwheels for receving information into a task. The message, and its associated data, will be validated agains the :attr:`protocol` associated with the socket on construction. """ msg, data = self._load_msg(self._socket.recv(flags)) self._logger.debug('<< %s %r', msg, data) return msg, data def send_addr_msg(self, addr, msg, data=NoData, flags=0): """ Send a CBOR-encoded message (and associated data) to *addr*, a :class:`bytes` string. """ self._logger.debug('>> %s %s %r', hexlify(addr).decode('ascii'), msg, data) self._socket.send_multipart([addr, b'', self._dump_msg(msg, data)], flags) def recv_addr_msg(self, flags=0): """ Receive a CBOR-encoded message (and associated data) along with the address it came from (represented as a :class:`bytes` string). """ try: addr, empty, buf = self._socket.recv_multipart(flags) except ValueError: raise IOError('invalid message structure received') msg, data = self._load_msg(buf) self._logger.debug('<< %s %s %r', hexlify(addr).decode('ascii'), msg, data) return addr, msg, data class Poller: """ Wrapper for 0MQ :class:`zmq.Poller`. This simply tweaks 0MQ's poller to use seconds for timeouts, and to return a :class:`dict` by default from :meth:`poll`. """ def __init__(self): self._poller = zmq.Poller() self._map = {} def register(self, sock, flags=POLLIN | POLLOUT): """ Register *sock* with the poller, watching for events as specified by *flags* (which defaults to POLLIN and POLLOUT events). """ if isinstance(sock, Socket): self._map[sock._socket] = sock return self._poller.register(sock._socket, flags) else: return self._poller.register(sock, flags) def unregister(self, sock): """ Unregister *sock* from the poller. After this, calls to :meth:`poll` will never return references to *sock*. """ if isinstance(sock, Socket): self._poller.unregister(sock._socket) del self._map[sock._socket] else: self._poller.unregister(sock) def poll(self, timeout=None): """ Poll all registered sockets for the events they were registered with, for *timeout* seconds. Returns a dictionary mapping sockets to events or an empty dictinoary if the *timeout* elapsed with no events occurring. """ return { self._map.get(sock, sock): event for sock, event in self._poller.poll( timeout if timeout is None else timeout * 1000) } ``` #### File: tests/master/test_cloud_gazer.py ```python from unittest import mock import pytest from queue import Queue from datetime import datetime, timezone from conftest import MockTask from piwheels import const, protocols, transport from piwheels.master.cloud_gazer import CloudGazer UTC = timezone.utc def dt(s): return datetime.strptime(s, '%Y-%m-%d %H:%M:%S').replace(tzinfo=UTC) @pytest.fixture() def mock_events(request): with mock.patch('piwheels.master.cloud_gazer.PyPIEvents') as pypi_events: pypi_events().serial = 0 source = [] def events_iter(): for index, event in enumerate(source, start=pypi_events().serial + 1): pypi_events().serial = index yield event pypi_events().__iter__.side_effect = events_iter yield source @pytest.fixture(scope='function') def task(request, db_queue, web_queue, skip_queue, master_config): task = CloudGazer(master_config) yield task task.close() db_queue.check() def test_init(mock_events, db_queue, task): db_queue.expect('ALLPKGS') db_queue.send('OK', {"foo"}) db_queue.expect('GETPYPI') db_queue.send('OK', 1) task.once() db_queue.check() assert task.packages == {"foo"} assert task.serial == 1 def test_new_pkg(mock_events, db_queue, web_queue, task): assert task.skip_default == '' db_queue.expect('ALLPKGS') db_queue.send('OK', set()) db_queue.expect('GETPYPI') db_queue.send('OK', 0) task.once() db_queue.check() mock_events[:] = [ ('foo', None, dt('2018-07-11 16:43:08'), 'create', 'some description'), ] db_queue.expect('NEWPKG', ['foo', '', 'some description']) db_queue.send('OK', True) db_queue.expect('NEWPKGNAME', ['foo', 'foo', dt('2018-07-11 16:43:08')]) db_queue.send('OK', None) web_queue.expect('BOTH', 'foo') web_queue.send('DONE') db_queue.expect('NEWPKGNAME', ['foo', 'foo', dt('2018-07-11 16:43:08')]) db_queue.send('OK', None) db_queue.expect('SETPYPI', 1) db_queue.send('OK', None) task.poll(0) db_queue.check() web_queue.check() assert task.packages == {"foo"} assert task.serial == 1 def test_dev_mode(dev_mode, mock_events, db_queue, web_queue, task): assert task.skip_default == 'development mode' db_queue.expect('ALLPKGS') db_queue.send('OK', set()) db_queue.expect('GETPYPI') db_queue.send('OK', 0) task.once() db_queue.check() mock_events[:] = [ ('foo', None, dt('2018-07-11 16:43:08'), 'create', 'some description'), ] db_queue.expect('NEWPKG', ['foo', 'development mode', 'some description']) db_queue.send('OK', True) db_queue.expect('NEWPKGNAME', ['foo', 'foo', dt('2018-07-11 16:43:08')]) db_queue.send('OK', None) web_queue.expect('BOTH', 'foo') web_queue.send('DONE') db_queue.expect('NEWPKGNAME', ['foo', 'foo', dt('2018-07-11 16:43:08')]) db_queue.send('OK', None) db_queue.expect('SETPYPI', 1) db_queue.send('OK', None) task.poll(0) db_queue.check() web_queue.check() assert task.packages == {"foo"} assert task.serial == 1 def test_new_pkg_non_canon_name(mock_events, db_queue, web_queue, task): assert task.skip_default == '' db_queue.expect('ALLPKGS') db_queue.send('OK', set()) db_queue.expect('GETPYPI') db_queue.send('OK', 0) task.once() db_queue.check() mock_events[:] = [ ('Foo', None, dt('2018-07-11 16:43:08'), 'create', 'some description'), ] db_queue.expect('NEWPKG', ['foo', '', 'some description']) db_queue.send('OK', True) db_queue.expect('NEWPKGNAME', ['foo', 'foo', dt('1970-01-01 00:00:00')]) db_queue.send('OK', None) db_queue.expect('NEWPKGNAME', ['foo', 'Foo', dt('2018-07-11 16:43:08')]) db_queue.send('OK', None) web_queue.expect('BOTH', 'foo') web_queue.send('DONE') db_queue.expect('NEWPKGNAME', ['foo', 'foo', dt('1970-01-01 00:00:00')]) db_queue.send('OK', None) db_queue.expect('NEWPKGNAME', ['foo', 'Foo', dt('2018-07-11 16:43:08')]) db_queue.send('OK', None) db_queue.expect('SETPYPI', 1) db_queue.send('OK', None) task.poll(0) db_queue.check() web_queue.check() assert task.packages == {"foo"} assert task.serial == 1 def test_existing_ver(mock_events, db_queue, web_queue, task): db_queue.expect('ALLPKGS') db_queue.send('OK', {'foo'}) db_queue.expect('GETPYPI') db_queue.send('OK', 0) task.once() db_queue.check() mock_events[:] = [ ('foo', None, dt('2018-07-11 16:43:08'), 'create', 'some description'), ('foo', '0.2', dt('2018-07-11 16:43:09'), 'create', 'some description'), ] # event 1 db_queue.expect('NEWPKGNAME', ['foo', 'foo', dt('2018-07-11 16:43:08')]) db_queue.send('OK', None) # event 2 db_queue.expect('NEWPKGNAME', ['foo', 'foo', dt('2018-07-11 16:43:09')]) db_queue.send('OK', None) db_queue.expect('NEWVER', ['foo', '0.2', dt('2018-07-11 16:43:09'), 'binary only']) db_queue.send('OK', False) web_queue.expect('BOTH', 'foo') web_queue.send('DONE') db_queue.expect('SETPYPI', 2) db_queue.send('OK', None) task.poll(0) db_queue.check() web_queue.check() assert task.packages == {"foo"} assert task.serial == 2 def test_new_ver(mock_events, db_queue, web_queue, task): db_queue.expect('ALLPKGS') db_queue.send('OK', {"foo"}) db_queue.expect('GETPYPI') db_queue.send('OK', 2) task.once() db_queue.check() mock_events[:] = [ ('bar', None, dt('2018-07-11 16:43:07'), 'create', 'some description'), ('bar', '1.0', dt('2018-07-11 16:43:09'), 'source', 'some description'), ] # event 1 db_queue.expect('NEWPKG', ['bar', '', 'some description']) db_queue.send('OK', True) db_queue.expect('NEWPKGNAME', ['bar', 'bar', dt('2018-07-11 16:43:07')]) db_queue.send('OK', None) db_queue.expect('NEWPKGNAME', ['bar', 'bar', dt('2018-07-11 16:43:07')]) db_queue.send('OK', None) web_queue.expect('BOTH', 'bar') web_queue.send('DONE') db_queue.expect('NEWPKGNAME', ['bar', 'bar', dt('2018-07-11 16:43:09')]) db_queue.send('OK', None) # event 2 db_queue.expect('NEWVER', ['bar', '1.0', dt('2018-07-11 16:43:09'), '']) db_queue.send('OK', True) db_queue.expect('SETDESC', ['bar', 'some description']) db_queue.send('OK', True) web_queue.expect('BOTH', 'bar') web_queue.send('DONE') db_queue.expect('SETPYPI', 4) db_queue.send('OK', None) task.poll(0) db_queue.check() web_queue.check() assert task.packages == {"foo", "bar"} assert task.serial == 4 def test_new_ver_non_canon_pkg_name(mock_events, db_queue, web_queue, task): db_queue.expect('ALLPKGS') db_queue.send('OK', {"foo"}) db_queue.expect('GETPYPI') db_queue.send('OK', 2) task.once() db_queue.check() mock_events[:] = [ ('Bar', None, dt('2018-07-11 16:43:07'), 'create', 'some description'), ('Bar', '1.0', dt('2018-07-11 16:43:09'), 'source', 'some description'), ] # event 1 db_queue.expect('NEWPKG', ['bar', '', 'some description']) db_queue.send('OK', True) db_queue.expect('NEWPKGNAME', ['bar', 'bar', dt('1970-01-01 00:00:00')]) db_queue.send('OK', None) db_queue.expect('NEWPKGNAME', ['bar', 'Bar', dt('2018-07-11 16:43:07')]) db_queue.send('OK', None) web_queue.expect('BOTH', 'bar') web_queue.send('DONE') db_queue.expect('NEWPKGNAME', ['bar', 'bar', dt('1970-01-01 00:00:00')]) db_queue.send('OK', None) db_queue.expect('NEWPKGNAME', ['bar', 'Bar', dt('2018-07-11 16:43:07')]) db_queue.send('OK', None) # event 2 db_queue.expect('NEWPKGNAME', ['bar', 'bar', dt('1970-01-01 00:00:00')]) db_queue.send('OK', None) db_queue.expect('NEWPKGNAME', ['bar', 'Bar', dt('2018-07-11 16:43:09')]) db_queue.send('OK', None) db_queue.expect('NEWVER', ['bar', '1.0', dt('2018-07-11 16:43:09'), '']) db_queue.send('OK', True) db_queue.expect('SETDESC', ['bar', 'some description']) db_queue.send('OK', True) web_queue.expect('BOTH', 'bar') web_queue.send('DONE') db_queue.expect('SETPYPI', 4) db_queue.send('OK', None) task.poll(0) db_queue.check() web_queue.check() assert task.packages == {"foo", "bar"} assert task.serial == 4 def test_new_ver_deleted(mock_events, db_queue, web_queue, task): db_queue.expect('ALLPKGS') db_queue.send('OK', {"foo"}) db_queue.expect('GETPYPI') db_queue.send('OK', 2) task.once() db_queue.check() mock_events[:] = [ # bar is already deleted, so description is None ('bar', None, dt('2018-07-11 16:43:07'), 'create', None), ('bar', '1.0', dt('2018-07-11 16:43:09'), 'source', None), ] # event 1 db_queue.expect('NEWPKG', ['bar', '', '']) db_queue.send('OK', True) db_queue.expect('NEWPKGNAME', ['bar', 'bar', dt('2018-07-11 16:43:07')]) db_queue.send('OK', None) db_queue.expect('NEWPKGNAME', ['bar', 'bar', dt('2018-07-11 16:43:07')]) db_queue.send('OK', None) web_queue.expect('BOTH', 'bar') web_queue.send('DONE') # event 2 db_queue.expect('NEWPKGNAME', ['bar', 'bar', dt('2018-07-11 16:43:09')]) db_queue.send('OK', None) db_queue.expect('NEWVER', ['bar', '1.0', dt('2018-07-11 16:43:09'), '']) db_queue.send('OK', True) web_queue.expect('BOTH', 'bar') web_queue.send('DONE') db_queue.expect('SETPYPI', 4) db_queue.send('OK', None) task.poll(0) db_queue.check() web_queue.check() assert task.packages == {"foo", "bar"} assert task.serial == 4 def test_remove_ver(mock_events, db_queue, web_queue, skip_queue, task): db_queue.expect('ALLPKGS') db_queue.send('OK', {"foo"}) db_queue.expect('GETPYPI') db_queue.send('OK', 2) task.once() db_queue.check() mock_events[:] = [ ('bar', None, dt('2018-07-11 16:43:07'), 'create', 'some description'), ('bar', '1.0', dt('2018-07-11 16:43:09'), 'source', 'some description'), ('bar', '1.0', dt('2018-07-11 16:43:11'), 'remove', None), ] # event 1 db_queue.expect('NEWPKG', ['bar', '', 'some description']) db_queue.send('OK', True) db_queue.expect('NEWPKGNAME', ['bar', 'bar', dt('2018-07-11 16:43:07')]) db_queue.send('OK', None) web_queue.expect('BOTH', 'bar') web_queue.send('DONE') db_queue.expect('NEWPKGNAME', ['bar', 'bar', dt('2018-07-11 16:43:07')]) db_queue.send('OK', None) # event 2 db_queue.expect('NEWPKGNAME', ['bar', 'bar', dt('2018-07-11 16:43:09')]) db_queue.send('OK', None) db_queue.expect('NEWVER', ['bar', '1.0', dt('2018-07-11 16:43:09'), '']) db_queue.send('OK', True) db_queue.expect('SETDESC', ['bar', 'some description']) db_queue.send('OK', True) web_queue.expect('BOTH', 'bar') web_queue.send('DONE') # event 3 db_queue.expect('SKIPVER', ['bar', '1.0', 'deleted']) db_queue.send('OK', True) web_queue.expect('DELVER', ['bar', '1.0']) web_queue.send('DONE') skip_queue.expect('DELVER', ['bar', '1.0']) skip_queue.send('OK') db_queue.expect('DELVER', ['bar', '1.0']) db_queue.send('OK', None) db_queue.expect('SETPYPI', 5) db_queue.send('OK', None) task.poll(0) db_queue.check() web_queue.check() assert task.packages == {"foo", "bar"} assert task.serial == 5 def test_remove_pkg(mock_events, db_queue, web_queue, skip_queue, task): db_queue.expect('ALLPKGS') db_queue.send('OK', {"foo"}) db_queue.expect('GETPYPI') db_queue.send('OK', 2) task.once() db_queue.check() mock_events[:] = [ ('bar', None, dt('2018-07-11 16:43:07'), 'create', 'some description'), ('bar', '1.0', dt('2018-07-11 16:43:09'), 'source', 'some description'), ('bar', None, dt('2018-07-11 16:43:11'), 'remove', None), ] # event 1 db_queue.expect('NEWPKG', ['bar', '', 'some description']) db_queue.send('OK', True) db_queue.expect('NEWPKGNAME', ['bar', 'bar', dt('2018-07-11 16:43:07')]) db_queue.send('OK', None) web_queue.expect('BOTH', 'bar') web_queue.send('DONE') db_queue.expect('NEWPKGNAME', ['bar', 'bar', dt('2018-07-11 16:43:07')]) db_queue.send('OK', None) # event 2 db_queue.expect('NEWPKGNAME', ['bar', 'bar', dt('2018-07-11 16:43:09')]) db_queue.send('OK', None) db_queue.expect('NEWVER', ['bar', '1.0', dt('2018-07-11 16:43:09'), '']) db_queue.send('OK', True) db_queue.expect('SETDESC', ['bar', 'some description']) db_queue.send('OK', True) web_queue.expect('BOTH', 'bar') web_queue.send('DONE') # event 3 db_queue.expect('SKIPPKG', ['bar', 'deleted']) db_queue.send('OK', True) web_queue.expect('DELPKG', 'bar') web_queue.send('DONE') skip_queue.expect('DELPKG', 'bar') skip_queue.send('OK') db_queue.expect('DELPKG', 'bar') db_queue.send('OK', None) db_queue.expect('SETPYPI', 5) db_queue.send('OK', None) task.poll(0) db_queue.check() web_queue.check() assert task.packages == {"foo"} assert task.serial == 5 def test_remove_pkg_no_insert(mock_events, db_queue, web_queue, skip_queue, task): db_queue.expect('ALLPKGS') db_queue.send('OK', {"foo"}) db_queue.expect('GETPYPI') db_queue.send('OK', 3) task.once() db_queue.check() mock_events[:] = [ ('bar', None, dt('2018-07-11 16:43:09'), 'remove', None), ] db_queue.expect('SKIPPKG', ['bar', 'deleted']) db_queue.send('OK', True) web_queue.expect('DELPKG', 'bar') web_queue.send('DONE') skip_queue.expect('DELPKG', 'bar') skip_queue.send('OK') db_queue.expect('DELPKG', 'bar') db_queue.send('OK', None) db_queue.expect('SETPYPI', 4) db_queue.send('OK', None) task.poll(0) db_queue.check() web_queue.check() assert task.packages == {"foo"} assert task.serial == 4 def test_remove_pkg_before_insert(mock_events, db_queue, web_queue, skip_queue, task): db_queue.expect('ALLPKGS') db_queue.send('OK', {"foo"}) db_queue.expect('GETPYPI') db_queue.send('OK', 2) task.once() db_queue.check() mock_events[:] = [ ('bar', None, dt('2018-07-11 16:43:08'), 'remove', None), ('bar', None, dt('2018-07-11 16:43:09'), 'create', 'some description'), ('bar', '1.0', dt('2018-07-11 16:43:09'), 'source', 'some description'), ] # event 1 db_queue.expect('SKIPPKG', ['bar', 'deleted']) db_queue.send('OK', None) web_queue.expect('DELPKG', 'bar') web_queue.send('DONE') skip_queue.expect('DELPKG', 'bar') skip_queue.send('OK') db_queue.expect('DELPKG', 'bar') db_queue.send('OK', None) # event 2 db_queue.expect('NEWPKG', ['bar', '', 'some description']) db_queue.send('OK', True) db_queue.expect('NEWPKGNAME', ['bar', 'bar', dt('2018-07-11 16:43:09')]) db_queue.send('OK', None) web_queue.expect('BOTH', 'bar') web_queue.send('DONE') db_queue.expect('NEWPKGNAME', ['bar', 'bar', dt('2018-07-11 16:43:09')]) db_queue.send('OK', None) # event 3 db_queue.expect('NEWPKGNAME', ['bar', 'bar', dt('2018-07-11 16:43:09')]) db_queue.send('OK', None) db_queue.expect('NEWVER', ['bar', '1.0', dt('2018-07-11 16:43:09'), '']) db_queue.send('OK', True) db_queue.expect('SETDESC', ['bar', 'some description']) db_queue.send('OK', True) web_queue.expect('BOTH', 'bar') web_queue.send('DONE') db_queue.expect('SETPYPI', 5) db_queue.send('OK', None) task.poll(0) db_queue.check() web_queue.check() assert task.packages == {"foo", "bar"} assert task.serial == 5 def test_enable_ver(mock_events, db_queue, web_queue, task): db_queue.expect('ALLPKGS') db_queue.send('OK', {"foo"}) db_queue.expect('GETPYPI') db_queue.send('OK', 3) task.once() db_queue.check() mock_events[:] = [ ('foo', '1.0', dt('2018-07-11 16:43:09'), 'create', 'some description'), ('foo', '1.0', dt('2018-07-11 16:43:11'), 'source', 'some description'), ] # event 1 db_queue.expect('NEWPKGNAME', ['foo', 'foo', dt('2018-07-11 16:43:09')]) db_queue.send('OK', None) db_queue.expect('NEWVER', ['foo', '1.0', dt('2018-07-11 16:43:09'), 'binary only']) db_queue.send('OK', True) db_queue.expect('SETDESC', ['foo', 'some description']) db_queue.send('OK', True) web_queue.expect('BOTH', 'foo') web_queue.send('DONE') # event 2 db_queue.expect('NEWPKGNAME', ['foo', 'foo', dt('2018-07-11 16:43:11')]) db_queue.send('OK', None) db_queue.expect('NEWVER', ['foo', '1.0', dt('2018-07-11 16:43:11'), '']) db_queue.send('OK', False) db_queue.expect('GETSKIP', ['foo', '1.0']) db_queue.send('OK', 'binary only') db_queue.expect('SKIPVER', ['foo', '1.0', '']) db_queue.send('OK', None) web_queue.expect('PROJECT', 'foo') web_queue.send('DONE') db_queue.expect('SETPYPI', 5) db_queue.send('OK', None) task.poll(0) db_queue.check() web_queue.check() assert task.packages == {"foo"} assert task.serial == 5 def test_yank_ver(mock_events, db_queue, web_queue, task): db_queue.expect('ALLPKGS') db_queue.send('OK', {"foo"}) db_queue.expect('GETPYPI') db_queue.send('OK', 3) task.once() db_queue.check() mock_events[:] = [ ('foo', '1.0', dt('2018-07-11 16:43:11'), 'yank', None), ] db_queue.expect('NEWPKGNAME', ['foo', 'foo', dt('2018-07-11 16:43:11')]) db_queue.send('OK', None) db_queue.expect('YANKVER', ['foo', '1.0']) db_queue.send('OK', True) web_queue.expect('BOTH', 'foo') web_queue.send('DONE') db_queue.expect('SETPYPI', 4) db_queue.send('OK', None) task.poll(0) db_queue.check() web_queue.check() assert task.packages == {"foo"} assert task.serial == 4 def test_unyank_ver(mock_events, db_queue, web_queue, task): db_queue.expect('ALLPKGS') db_queue.send('OK', {"foo"}) db_queue.expect('GETPYPI') db_queue.send('OK', 3) task.once() db_queue.check() mock_events[:] = [ ('foo', '1.0', dt('2018-07-11 16:43:11'), 'unyank', None), ] db_queue.expect('NEWPKGNAME', ['foo', 'foo', dt('2018-07-11 16:43:11')]) db_queue.send('OK', None) db_queue.expect('UNYANKVER', ['foo', '1.0']) db_queue.send('OK', True) web_queue.expect('BOTH', 'foo') web_queue.send('DONE') db_queue.expect('SETPYPI', 4) db_queue.send('OK', None) task.poll(0) db_queue.check() web_queue.check() assert task.packages == {"foo"} assert task.serial == 4 def test_yank_unyank_ver(mock_events, db_queue, web_queue, task): db_queue.expect('ALLPKGS') db_queue.send('OK', {"foo"}) db_queue.expect('GETPYPI') db_queue.send('OK', 3) task.once() db_queue.check() mock_events[:] = [ ('foo', '1.0', dt('2018-07-11 16:43:11'), 'yank', None), ('foo', '1.0', dt('2018-07-11 16:43:12'), 'unyank', None), ] # event 1 db_queue.expect('NEWPKGNAME', ['foo', 'foo', dt('2018-07-11 16:43:11')]) db_queue.send('OK', None) db_queue.expect('YANKVER', ['foo', '1.0']) db_queue.send('OK', True) web_queue.expect('BOTH', 'foo') web_queue.send('DONE') # event 2 db_queue.expect('NEWPKGNAME', ['foo', 'foo', dt('2018-07-11 16:43:12')]) db_queue.send('OK', None) db_queue.expect('UNYANKVER', ['foo', '1.0']) db_queue.send('OK', True) web_queue.expect('BOTH', 'foo') web_queue.send('DONE') db_queue.expect('SETPYPI', 5) db_queue.send('OK', None) task.poll(0) db_queue.check() web_queue.check() assert task.packages == {"foo"} assert task.serial == 5 ``` #### File: tests/remove/test_remove.py ```python import os from unittest import mock from threading import Thread import pytest from conftest import find_message from piwheels import __version__, protocols, transport from piwheels.remove import main @pytest.fixture() def import_queue_name(request, tmpdir): yield 'ipc://' + str(tmpdir.join('import-queue')) @pytest.fixture() def import_queue(request, mock_context, import_queue_name, tmpdir): queue = mock_context.socket(transport.REP, protocol=protocols.mr_chase) queue.hwm = 1 queue.bind(import_queue_name) yield queue queue.close() class RemoveThread(Thread): def __init__(self, args): super().__init__(target=self.capture_exc, args=(args,), daemon=True) self.exception = None self.exitcode = None def capture_exc(self, args): try: self.exitcode = main(args) except Exception as e: self.exception = e def __enter__(self): self.start() return self def __exit__(self, exc_type, exc_value, exc_tb): self.join(10) assert not self.is_alive() def test_help(capsys): with pytest.raises(SystemExit): main(['--help']) out, err = capsys.readouterr() assert out.startswith('usage:') assert '--yes' in out assert '--skip' in out def test_version(capsys): with pytest.raises(SystemExit): main(['--version']) out, err = capsys.readouterr() assert out.strip() == __version__ def test_abort(caplog): with mock.patch('piwheels.terminal.yes_no_prompt') as prompt_mock: prompt_mock.return_value = False assert main(['foo', '0.1']) == 2 assert find_message(caplog.records, message='User aborted removal') def test_remove_package(mock_context, import_queue_name, import_queue): with mock.patch('piwheels.terminal.yes_no_prompt') as prompt_mock: prompt_mock.return_value = True with RemoveThread(['--import-queue', import_queue_name, 'foo']) as thread: assert import_queue.recv_msg() == ('REMOVE', ['foo', None, '']) import_queue.send_msg('DONE') thread.join(10) assert thread.exitcode == 0 def test_remove_version(mock_context, import_queue_name, import_queue): with mock.patch('piwheels.terminal.yes_no_prompt') as prompt_mock: prompt_mock.return_value = True with RemoveThread(['--import-queue', import_queue_name, 'foo', '0.1']) as thread: assert import_queue.recv_msg() == ('REMOVE', ['foo', '0.1', '']) import_queue.send_msg('DONE') thread.join(10) assert thread.exitcode == 0 def test_remove_and_skip(mock_context, import_queue_name, import_queue): with mock.patch('piwheels.terminal.yes_no_prompt') as prompt_mock: prompt_mock.return_value = True with RemoveThread(['--import-queue', import_queue_name, 'foo', '0.1', '--skip', 'legal']) as thread: assert import_queue.recv_msg() == ('REMOVE', ['foo', '0.1', 'legal']) import_queue.send_msg('DONE') thread.join(10) assert thread.exitcode == 0 def test_failure(mock_context, import_queue_name, import_queue): with RemoveThread(['--import-queue', import_queue_name, 'foo', '0.1', '--yes']) as thread: assert import_queue.recv_msg() == ('REMOVE', ['foo', '0.1', '']) import_queue.send_msg('ERROR', 'Package foo does not exist') thread.join(10) assert isinstance(thread.exception, RuntimeError) assert 'Package foo does not exist' in str(thread.exception) def test_unexpected(mock_context, import_queue_name, import_queue): with RemoveThread(['--import-queue', import_queue_name, 'foo', '0.1', '--yes']) as thread: assert import_queue.recv_msg() == ('REMOVE', ['foo', '0.1', '']) import_queue.send_msg('SEND', 'foo.whl') thread.join(10) assert isinstance(thread.exception, RuntimeError) assert 'Unexpected response from master' in str(thread.exception) ``` #### File: piwheels/tests/test_ranges.py ```python from piwheels.ranges import ( consolidate, split, exclude, intersect, ) def test_consolidate(): assert list(consolidate([range(5), range(4, 10)])) == [range(10)] assert list(consolidate([range(5), range(5, 10)])) == [range(10)] assert list(consolidate([range(5), range(6, 10)])) == [range(5), range(6, 10)] def test_split(): assert list(split([range(10)], 5)) == [range(5), range(5, 10)] assert list(split([range(10)], 0)) == [range(10)] assert list(split([range(10)], 20)) == [range(10)] def test_exclude(): assert list(exclude([range(10)], range(2))) == [range(2, 10)] assert list(exclude([range(10)], range(2, 4))) == [range(2), range(4, 10)] def test_intersect(): assert intersect(range(10), range(5)) == range(5) assert intersect(range(10), range(10, 2)) is None assert intersect(range(10), range(2, 5)) == range(2, 5) ``` #### File: piwheels/tests/test_tasks.py ```python import logging from unittest import mock from datetime import datetime, timedelta from time import sleep import pytest from piwheels import protocols, transport, tasks class CounterTask(tasks.PauseableTask): # A trivial task purely for test purposes, with a very rapid poll cycle name = 'counter' def __init__(self, config, control_protocol=protocols.task_control, delay=timedelta(microseconds=1)): super().__init__(config, control_protocol) self.every(delay, self.loop) self.count = 0 def loop(self): self.count += 1 def poll(self, timeout=0.1): return super().poll(timeout) def foo(self): pass class SimpleTask(tasks.Task): name = 'simple' class BrokenTask(tasks.Task): # A trivial task which instantly breaks name = 'broken' def __init__(self, config, control_protocol=protocols.task_control): super().__init__(config, control_protocol) self.every(timedelta(microseconds=1), self.loop) def loop(self): raise Exception("Don't panic!") def test_task_quits(master_config): task = tasks.Task(master_config) try: task.start() task.quit() task.join(10) assert not task.is_alive() finally: task.close() def test_task_runs(master_config): task = CounterTask(master_config) try: task.start() task.quit() task.join(10) assert task.count > 0 finally: task.close() def test_task_force(master_config): task = CounterTask(master_config, delay=timedelta(seconds=1)) try: task.start() start = datetime.utcnow() while task.count == 0: sleep(0.01) assert datetime.utcnow() - start < timedelta(seconds=1) start = datetime.utcnow() task.force(task.loop) while task.count == 1: sleep(0.01) assert datetime.utcnow() - start < timedelta(seconds=1) task.quit() task.join(10) assert task.count > 0 with pytest.raises(ValueError): task.force(task.foo) finally: task.close() def test_task_pause(master_config): task = CounterTask(master_config) try: task.start() task.pause() sleep(0.01) current = task.count sleep(0.01) assert task.count == current task.resume() task.quit() task.join(10) assert task.count > current finally: task.close() def test_task_pause_resume_idempotent(master_config): task = CounterTask(master_config) try: task.start() task.pause() task.pause() task.resume() task.resume() task.quit() task.join(10) assert not task.is_alive() finally: task.close() def test_task_quit_while_paused(master_config): task = CounterTask(master_config) try: task.start() task.pause() task.quit() task.join(10) assert not task.is_alive() finally: task.close() def test_task_resume_while_not_paused(master_config): task = CounterTask(master_config) try: task.logger = mock.Mock() task.start() task.resume() task.quit() task.join(10) assert not task.is_alive() assert task.logger.warning.call_count == 1 finally: task.close() def test_broken_control(master_config, caplog): protocol = protocols.Protocol(recv={ 'FOO': protocols.NoData, 'QUIT': protocols.NoData, }) task = CounterTask(master_config, control_protocol=protocol) try: task.start() task._ctrl('FOO') task.quit() task.join(10) assert not task.is_alive() assert caplog.record_tuples == [ ('counter', logging.INFO, 'starting'), ('counter', logging.INFO, 'started'), ('counter', logging.ERROR, 'unhandled exception in %r' % task), ('counter', logging.INFO, 'stopped'), ] finally: task.close() caplog.clear() task = SimpleTask(master_config, control_protocol=protocol) try: task.start() task._ctrl('FOO') task.quit() task.join(10) assert not task.is_alive() assert caplog.record_tuples == [ ('simple', logging.INFO, 'starting'), ('simple', logging.INFO, 'started'), ('simple', logging.ERROR, 'unhandled exception in %r' % task), ('simple', logging.INFO, 'stopped'), ] finally: task.close() def test_bad_control(master_config, caplog): task = CounterTask(master_config) try: task.start() sock = task.ctx.socket( transport.PUSH, protocol=reversed(task.control_protocol), logger=task.logger) sock.connect('inproc://ctrl-counter') sock.send(b'FOO') sock.close() task.quit() task.join(10) assert not task.is_alive() assert caplog.record_tuples == [ ('counter', logging.INFO, 'starting'), ('counter', logging.INFO, 'started'), ('counter', logging.ERROR, 'unable to deserialize data'), ('counter', logging.INFO, 'stopping'), ('counter', logging.INFO, 'stopped'), ] finally: task.close() caplog.clear() task = SimpleTask(master_config) try: task.start() sock = task.ctx.socket( transport.PUSH, protocol=reversed(task.control_protocol), logger=task.logger) sock.connect('inproc://ctrl-simple') sock.send(b'FOO') sock.close() task.quit() task.join(10) assert not task.is_alive() assert caplog.record_tuples == [ ('simple', logging.INFO, 'starting'), ('simple', logging.INFO, 'started'), ('simple', logging.ERROR, 'unable to deserialize data'), ('simple', logging.INFO, 'stopping'), ('simple', logging.INFO, 'stopped'), ] finally: task.close() def test_broken_task_quits(master_config, master_control_queue): task = BrokenTask(master_config) try: task.start() task.join(10) assert not task.is_alive() # Ensure the broken task tells the master to quit assert master_control_queue.recv_msg() == ('QUIT', None) finally: task.close() ``` #### File: piwheels/tests/test_terminal.py ```python import sys import logging from unittest import mock import pytest import configargparse from piwheels.terminal import ( _CONSOLE, configure_parser, configure_logging, error_handler, yes_no_prompt, ErrorHandler, ) def test_configure_parser(): p = configure_parser('foo', log_params=False) assert p.description == 'foo' with pytest.raises(SystemExit): p.parse_args(['--version']) with pytest.raises(SystemExit): p.parse_args(['-h']) with pytest.raises(configargparse.ArgumentError): p.parse_args(['--log-file', 'foo.log']) c = p.parse_args([]) assert c.configuration is None def test_configure_parser_with_logging(tmpdir): p = configure_parser('foo', log_params=True) assert p.description == 'foo' with pytest.raises(SystemExit): p.parse_args(['--version']) with pytest.raises(SystemExit): p.parse_args(['-h']) c = p.parse_args(['--log-file', str(tmpdir.join('/foo.log'))]) assert c.log_level == logging.WARNING assert c.log_file == str(tmpdir.join('/foo.log')) mock_logger = logging.getLogger('mock') with mock.patch('logging.getLogger') as m: m.return_value = mock_logger configure_logging(c.log_level, c.log_file) assert len(m.return_value.handlers) == 2 assert m.return_value.handlers[0] is _CONSOLE assert m.return_value.handlers[0].level == logging.WARNING assert isinstance(m.return_value.handlers[1], logging.FileHandler) assert m.return_value.handlers[1].baseFilename == str(tmpdir.join('/foo.log')) assert m.return_value.handlers[1].level == logging.INFO assert m.return_value.level == logging.INFO def test_error_handler(): with mock.patch('piwheels.terminal.logging') as logging: assert error_handler(SystemExit, 0, None) == 0 assert error_handler(KeyboardInterrupt, 'Ctrl+C pressed', None) == 2 assert logging.critical.call_count == 0 assert error_handler(configargparse.ArgumentError, 'foo', None) == 2 assert logging.critical.call_args_list == [ mock.call('foo'), mock.call('Try the --help option for more information.'), ] logging.reset_mock() assert error_handler(IOError, 'File not found', None) == 1 assert logging.critical.call_args == mock.call('File not found') logging.reset_mock() with mock.patch('traceback.format_exception') as fmt_exc: fmt_exc.side_effect = lambda t, v, tb: [v] assert error_handler(ValueError, 'Foo%bar', None) == 1 assert logging.critical.call_args == mock.call('Foo%%bar') def test_configure_error_handler(): e = ErrorHandler() l = len(e) assert RuntimeError not in e try: raise RuntimeError('Error communicating with master') except RuntimeError: assert e(*sys.exc_info()) == 1 e[RuntimeError] = (None, 2) assert len(e) == l + 1 assert e[RuntimeError] == (None, 2) try: raise RuntimeError('Error communicating with master') except RuntimeError: assert e(*sys.exc_info()) == 2 def test_yes_no_prompt(capsys): with mock.patch('builtins.input') as _input: _input.return_value = '' assert yes_no_prompt('Foo') == True assert _input.call_args == mock.call('Foo [Y/n] ') out, err = capsys.readouterr() assert out == '\n' _input.side_effect = ['foo', 'NO'] assert yes_no_prompt('Bar') == False out, err = capsys.readouterr() assert out == '\nInvalid response\n' ``` #### File: piwheels/tests/test_transport.py ```python import os import sys import ipaddress as ip import datetime as dt from unittest import mock import cbor2 import pytest from voluptuous import Any from piwheels.protocols import Protocol, NoData from piwheels.transport import * def test_ipaddress_roundtrip(): protocol = Protocol(recv={'FOO': Any(ip.IPv4Address, ip.IPv6Address)}) ctx = Context() pull = ctx.socket(PULL, protocol=protocol) push = ctx.socket(PUSH, protocol=reversed(protocol)) pull.bind('inproc://foo') push.connect('inproc://foo') address4 = ip.IPv4Address('192.168.0.1') address6 = ip.IPv6Address('::1') push.send_msg('FOO', address4) assert pull.recv_msg() == ('FOO', address4) push.send_msg('FOO', address6) assert pull.recv_msg() == ('FOO', address6) push.close() pull.close() def test_timedelta_roundtrip(): protocol = Protocol(recv={'FOO': dt.timedelta}) ctx = Context() pull = ctx.socket(PULL, protocol=protocol) push = ctx.socket(PUSH, protocol=reversed(protocol)) pull.bind('inproc://foo') push.connect('inproc://foo') delta = dt.timedelta(minutes=5) push.send_msg('FOO', delta) assert pull.recv_msg() == ('FOO', delta) push.close() pull.close() def test_encoding_unknown_type(): protocol = Protocol(recv={'FOO': Exception}) ctx = Context() pull = ctx.socket(PULL, protocol=protocol) push = ctx.socket(PUSH, protocol=reversed(protocol)) pull.bind('inproc://foo') push.connect('inproc://foo') with pytest.raises(IOError): push.send_msg('FOO', NotImplementedError()) push.close() pull.close() def test_decoding_unknown_type(): ctx = Context() pull = ctx.socket(PULL) push = ctx.socket(PUSH) pull.bind('inproc://foo') push.connect('inproc://foo') push.send(cbor2.dumps(cbor2.CBORTag(4000, None))) with pytest.raises(IOError): pull.recv_msg() push.close() pull.close() def test_recv_invalid_addr_msg_structure(): ctx = Context() pull = ctx.socket(PULL) push = ctx.socket(PUSH) pull.bind('inproc://foo') push.connect('inproc://foo') push.send_multipart([b'foo', b'', b'', b'']) with pytest.raises(IOError): pull.recv_addr_msg() def test_send_data_for_pure_msg(): protocol = Protocol(recv={'FOO': NoData}) ctx = Context() pull = ctx.socket(PULL, protocol=protocol) push = ctx.socket(PUSH, protocol=reversed(protocol)) pull.bind('inproc://foo') push.connect('inproc://foo') with pytest.raises(IOError): push.send_msg('FOO', 1) push.close() pull.close() def test_send_no_data_for_msg(): protocol = Protocol(recv={'FOO': int}) ctx = Context() pull = ctx.socket(PULL, protocol=protocol) push = ctx.socket(PUSH, protocol=reversed(protocol)) pull.bind('inproc://foo') push.connect('inproc://foo') with pytest.raises(IOError): push.send_msg('FOO') push.close() pull.close() def test_send_bad_data_for_msg(): protocol = Protocol(recv={'FOO': int}) ctx = Context() pull = ctx.socket(PULL, protocol=protocol) push = ctx.socket(PUSH, protocol=reversed(protocol)) pull.bind('inproc://foo') push.connect('inproc://foo') with pytest.raises(IOError): push.send_msg('FOO', 'bar') push.close() pull.close() def test_recv_bad_data_from_msg(): ctx = Context() pull = ctx.socket(PULL, protocol=Protocol(recv={'FOO': int})) push = ctx.socket(PUSH, protocol=Protocol(send={'FOO': str})) pull.bind('inproc://foo') push.connect('inproc://foo') push.send_msg('FOO', 'bar') with pytest.raises(IOError): pull.recv_msg() push.close() pull.close() def test_recv_no_data_from_msg(): ctx = Context() pull = ctx.socket(PULL, protocol=Protocol(recv={'FOO': int})) push = ctx.socket(PUSH, protocol=Protocol(send={'FOO': NoData})) pull.bind('inproc://foo') push.connect('inproc://foo') push.send_msg('FOO') with pytest.raises(IOError): pull.recv_msg() push.close() pull.close() def test_recv_unknown_msg(): ctx = Context() pull = ctx.socket(PULL) push = ctx.socket(PUSH, protocol=Protocol(send={'FOO': int})) pull.bind('inproc://foo') push.connect('inproc://foo') push.send_msg('FOO', 1) with pytest.raises(IOError): pull.recv_msg() push.close() pull.close() def test_recv_unexpected_data(): ctx = Context() pull = ctx.socket(PULL, protocol=Protocol(recv={'FOO': NoData})) push = ctx.socket(PUSH, protocol=Protocol(send={'FOO': int})) pull.bind('inproc://foo') push.connect('inproc://foo') push.send_msg('FOO', 1) with pytest.raises(IOError): pull.recv_msg() push.close() pull.close() def test_hwm_attr(): ctx = Context() sock = ctx.socket(PULL) sock.hwm = 10 assert sock.hwm == 10 sock.close() def test_subscribe(): ctx = Context() pub = ctx.socket(PUB, protocol=Protocol(send={'FOO': int})) sub = ctx.socket(SUB, protocol=Protocol(recv={'FOO': int})) pub.bind('inproc://foo') sub.connect('inproc://foo') sub.subscribe('') pub.send_msg('FOO', 1) assert sub.recv_msg() == ('FOO', 1) sub.unsubscribe('') pub.send_msg('FOO', 2) assert not sub.poll(0.5) sub.close() pub.close() def test_poll_fd(tmpdir): r, w = os.pipe() p = Poller() p.register(r) assert not p.poll(0.1) os.write(w, b'foo') assert p.poll(0.1) p.unregister(r) os.write(w, b'bar') assert not p.poll(0.1) os.close(w) os.close(r) ```
{ "source": "jgindin/core", "score": 3 }
#### File: components/wallbox/sensor.py ```python from homeassistant.components.sensor import SensorEntity from homeassistant.helpers.update_coordinator import CoordinatorEntity from .const import ( CONF_CONNECTIONS, DOMAIN, SENSOR_TYPES, WallboxSensorEntityDescription, ) CONF_STATION = "station" UPDATE_INTERVAL = 30 async def async_setup_entry(hass, config, async_add_entities): """Create wallbox sensor entities in HASS.""" coordinator = hass.data[DOMAIN][CONF_CONNECTIONS][config.entry_id] async_add_entities( [ WallboxSensor(coordinator, config, description) for ent in coordinator.data if (description := SENSOR_TYPES[ent]) ] ) class WallboxSensor(CoordinatorEntity, SensorEntity): """Representation of the Wallbox portal.""" entity_description: WallboxSensorEntityDescription def __init__( self, coordinator, config, description: WallboxSensorEntityDescription ): """Initialize a Wallbox sensor.""" super().__init__(coordinator) self.entity_description = description self._attr_name = f"{config.title} {description.name}" @property def native_value(self): """Return the state of the sensor.""" return self.coordinator.data[self.entity_description.key] ```
{ "source": "jginesclavero/ros2-tf-pose-estimation", "score": 2 }
#### File: tf_pose_estimation/tf_pose_estimation/tf_pose_estimation_node.py ```python import time import os import sys import ast from threading import Lock from numpy import double import numpy as np import cv2 import rclpy from rclpy.node import Node from rclpy.parameter import Parameter from rcl_interfaces.msg import ParameterDescriptor from rclpy.executors import MultiThreadedExecutor from rclpy.callback_groups import ReentrantCallbackGroup from ament_index_python.packages import get_package_share_directory from cv_bridge import CvBridge, CvBridgeError from std_msgs.msg import String, Header from sensor_msgs.msg import Image, CameraInfo from tf_pose_estimation_msgs.msg import Frame, Person, BodyPart, Pixel from tf_pose.estimator import TfPoseEstimator from tf_pose.networks import model_wh, get_graph_path class TFPoseEstimationNode(Node): def __init__(self, last_contexts=None): """Initialize all params and load data.""" """ Constants and params """ super().__init__('tf_pose_estimation_node') parameters = [ ('image_topic', '', ParameterDescriptor()), ('depth_image_topic', '', ParameterDescriptor()), ('camera_info_topic', '', ParameterDescriptor()), ('model', 'cmu', ParameterDescriptor()), ('resolution', '432x368', ParameterDescriptor()), ('resize_out_ratio', 4.0, ParameterDescriptor()), ] self.declare_parameters('', parameters) image_topic = self.get_parameter_or('image_topic', Parameter('image_topic', type_ = Parameter.Type.STRING, value = ""))._value depth_image_topic = self.get_parameter_or('depth_image_topic', Parameter('depth_image_topic', type_ = Parameter.Type.STRING, value = ""))._value camera_info_topic = self.get_parameter_or('camera_info_topic', Parameter('camera_info_topic', type_ = Parameter.Type.STRING, value = ""))._value model = self.get_parameter_or('model', Parameter('model', type_ = Parameter.Type.STRING, value = ""))._value resolution = self.get_parameter_or('resolution', Parameter('resolution', type_ = Parameter.Type.STRING, value = ''))._value self._resize_out_ratio = self.get_parameter_or('resize_out_ratio', Parameter('resize_out_ratio', type_ = Parameter.Type.DOUBLE, value = 4.0))._value self._tf_lock = Lock() self.DISTANCE_INFO = False if not image_topic: self.get_logger().error('Parameter \'image_topic\' is not provided.') sys.exit(-1) try: w, h = model_wh(resolution) graph_path = get_graph_path(model) graph_path = os.path.join(get_package_share_directory('tf_pose_estimation'), graph_path) except Exception as e: self.get_logger().error('invalid model: %s, e=%s' % (model, e)) sys.exit(-1) self._image_msg = Image() self._pose_estimator = TfPoseEstimator(graph_path, target_size=(w, h)) self._cv_bridge = CvBridge() self._pose_pub = self.create_publisher(Frame, "pose", 1) self._image_sub = self.create_subscription(Image, image_topic, self.image_cb, 10) if depth_image_topic and camera_info_topic: self._depth_image_sub = self.create_subscription( Image, depth_image_topic, self.depth_image_cb, 1) self._camera_info_sub = self.create_subscription( CameraInfo, camera_info_topic, self.camera_info_cb, 1) self._depth_image_msg = Image() self.DISTANCE_INFO = True self._camera_info_ready = False self.get_logger().info("Subscribe to " + image_topic) self.get_logger().info("Ready!") def destroy(self): super().destroy_node() def camera_info_cb(self, msg): self.fx = msg.k[0] self.fy = msg.k[4] self.cx = msg.k[2] self.cy = msg.k[5] self._camera_info_ready = True def depth_image_cb(self, msg): self._depth_image_msg = msg def image_cb(self, msg): self._image_msg = msg def humans_to_msg(self, humans): frame = Frame() for human in humans: person = Person() for k in human.body_parts: body_part = human.body_parts[k] if body_part.score > 0.55: body_part_msg = BodyPart() pixel = Pixel() body_part_msg.id = str(body_part.part_idx) pixel.x = int(body_part.x * self._image_msg.width + 0.5) pixel.y = int(body_part.y * self._image_msg.height + 0.5) body_part_msg.pixel = pixel body_part_msg.score = body_part.score person.body_parts.append(body_part_msg) frame.persons.append(person) return frame def get_2d_pose(self): msg = Frame() try: cv_image = self._cv_bridge.imgmsg_to_cv2(self._image_msg, "bgr8") except CvBridgeError as e: self.get_logger().error('[tf-pose-estimation] Converting Image Error. ' + str(e)) return msg acquired = self._tf_lock.acquire(False) if not acquired: return msg try: humans = self._pose_estimator.inference( cv_image, resize_to_default=True, upsample_size=self._resize_out_ratio) finally: self._tf_lock.release() msg = self.humans_to_msg(humans) msg.image_w = self._image_msg.width msg.image_h = self._image_msg.height msg.header = self._image_msg.header return msg def get_3d_pose(self, frame): output_part = BodyPart() o_frame = Frame() try: cv_image = self._cv_bridge.imgmsg_to_cv2(self._depth_image_msg, "32FC1") #16UC1 #cv_image_norm = cv2.normalize(cv_image, cv_image, 0, 1, cv2.NORM_MINMAX) except CvBridgeError as e: self.get_logger().error('[tf-pose-estimation] Converting Depth Image Error. ' + str(e)) return o_frame if self._camera_info_ready: for person in frame.persons: parts = [] for part in person.body_parts: output_part = part depth = float(cv_image[part.pixel.x, part.pixel.y]) #center_coordinates = (part.pixel.x, part.pixel.y) #cv_image_norm = cv2.circle(cv_image_norm, center_coordinates, 2, (255, 0, 0), 1) output_part.point.x = ( ((part.pixel.x - self.cx) * depth) / self.fx) output_part.point.y = ( ((part.pixel.y - self.cy) * depth) / self.fy) output_part.point.z = depth parts.append(output_part) person.body_parts = parts o_frame.persons.append(person) #cv2.imshow("Image window", cv_image) #cv2.waitKey(1) o_frame.image_w = frame.image_w o_frame.image_h = frame.image_h o_frame.header = frame.header return o_frame def publish_pose(self): msg = Frame() self.frame_2d_msg = self.get_2d_pose() msg = self.frame_2d_msg if self.DISTANCE_INFO: msg = self.get_3d_pose(self.frame_2d_msg) self._pose_pub.publish(msg) def start(self): """Start the tf_pose_estimation node""" self.get_logger().info("Spinning...") while rclpy.ok(): self.publish_pose() rclpy.spin_once(self, timeout_sec=0.033) def main(args=None): rclpy.init(args=args) node = TFPoseEstimationNode() try: node.start() except KeyboardInterrupt: pass node.destroy() rclpy.shutdown() if __name__ == '__main__': main() ```
{ "source": "jginsberg3/ThinkBayes2", "score": 3 }
#### File: ThinkBayes2/jgfiles/chapter2.py ```python from thinkbayes2 import Pmf # instattiate a Pmf object pmf = Pmf() # assign 6 values to the pmf (the integers 1-6) # the probability of each will be 1/6 for x in [1,2,3,4,5,6]: pmf.Set(x, 1/6) # normalize to ensure all the probabilities add up to 1 # in the example above the already do but you could make examples that didn't pmf.Normalize() # then you can check the probablity for any object in the pmf like: pmf[1] ## the cookie problem pmf = Pmf() pmf.Set('Bowl 1', 0.5) pmf.Set('Bowl 2', 0.5) # these are the priors # update the distribution based on new data # to do this, multiply each prior by the corresponding likelihood pmf.Mult('Bowl 1', 0.75) pmf.Mult('Bowl 2', 0.5) # after this, the distribution is no longer normalized so do that again pmf.Normalize() # then you can check the new probabilities pmf.Prob('Bowl 1') ## the bayesian framework # create a class that inherets from Pmf class Cookie(Pmf): def __init__(self, hypos): Pmf.__init__(self) for hypo in hypos: self.Set(hypo, 1) self.Normalize() def Update(self, data): for hypo in self.Values(): like = self.Likelihood(data, hypo) self.Mult(hypo, like) self.Normalize() mixes = { 'Bowl 1': {'vanilla': 0.75, 'chocolate': 0.25}, 'Bowl 2': {'vanilla': 0.5, 'chocolate': 0.5} } def Likelihood(self, data, hypo): mix = self.mixes[hypo] like = mix[data] return like hypos = ['Bowl 1', 'Bowl 2'] pmf = Cookie(hypos) # draw cookies like: #pmf.Update('chocolate') #pmf.Update('vanilla') # and see how the probabilities change #for hypo, prob in pmf.Items(): # print(hypo,prob) ### the monty hall problem class Monty(Pmf): def __init__(self, hypos): Pmf.__init__(self) for hypo in hypos: self.Set(hypo, 1) self.Normalize() # update is the same as cookies def Update(self, data): for hypo in self.Values(): like = self.Likelihood(data, hypo) self.Mult(hypo, like) self.Normalize() # likelihood is different though # no need to define separate mixes object this time def Likelihood(self, data, hypo): if hypo == data: return 0 elif hypo == 'A': return 0.5 else: return 1 # you can chose any of the three doors hypos = 'ABC' pmf = Monty(hypos) # update process is the similar: data = 'B' pmf.Update(data) # encapsulating framework from thinkbayes2 import Suite class Monty(Suite): def Likelihood(self, data, hypo): if hypo == data: return 0 elif hypo =='A': return 0.5 else: return 1 suite = Monty('ABC') suite.Update('B') suite.Print() ### the M&M problem class MnM(Suite): mix94 = dict(brown=30, yellow=20, red=20, green=10, orange=10, tan=10) mix96 = dict(blue=24, green=20, orange=16, yellow=14, red=13, brown=13) hypoA = dict(bag1=mix94, bag2=mix96) hypoB = dict(bag1=mix96, bag2=mix94) hypotheses = dict(A=hypoA, B=hypoB) def Likelihood(self, data, hypo): bag, color = data mix = self.hypotheses[hypo][bag] like = mix[color] return like # create like suite = MnM('AB') # update like #suite.Update(('bag1','yellow')) # see results like #suite.Print() ```
{ "source": "jgirardet/apistar-jwt", "score": 2 }
#### File: apistar-jwt/apistar_jwt/decorators.py ```python def anonymous_allowed(fn): fn.authenticated = False return fn def authentication_required(fn): fn.authenticated = True return fn ``` #### File: apistar-jwt/example/app.py ```python import datetime from apistar import App, Route, exceptions, types, validators from apistar_jwt.token import JWT, JWTUser # Fake user database USERS_DB = {'id': 1, 'email': '<EMAIL>', 'password': 'password'} class UserData(types.Type): email = validators.String() password = validators.String() def welcome(user: JWTUser) -> dict: message = f'Welcome {user.username}#{user.id}, your login expires at {user.token["exp"]}' return {'message': message} def login(data: UserData, jwt: JWT) -> dict: # do some check with your database here to see if the user is authenticated if data.email != USERS_DB['email'] or data.password != USERS_DB['password']: raise exceptions.Forbidden('Incorrect username or password.') payload = { 'id': USERS_DB['id'], 'username': USERS_DB['email'], 'iat': datetime.datetime.utcnow(), 'exp': datetime.datetime.utcnow() + datetime.timedelta(minutes=60) # ends in 60 minutes } token = jwt.encode(payload) if token is None: # encoding failed, handle error raise exceptions.BadRequest() return {'token': token} routes = [ Route('/', method='GET', handler=welcome), Route('/login', method='POST', handler=login), ] components = [ JWT({ 'JWT_SECRET': '<KEY>', }), ] app = App(routes=routes, components=components) if __name__ == '__main__': app.serve('127.0.0.1', 8080, use_debugger=True, use_reloader=True) ```
{ "source": "jgirardet/RustPython", "score": 3 }
#### File: tests/snippets/builtin_dir.py ```python class A: def test(): pass a = A() assert "test" in dir(a), "test not in a" assert "test" in dir(A), "test not in A" class B(A): def __dir__(self): return ('q', 'h') # Gets sorted and turned into a list assert ['h', 'q'] == dir(B()) # This calls type.__dir__ so isn't changed (but inheritance works)! assert 'test' in dir(A) import socket assert "AF_INET" in dir(socket) ``` #### File: tests/snippets/dict.py ```python def dict_eq(d1, d2): return (all(k in d2 and d1[k] == d2[k] for k in d1) and all(k in d1 and d1[k] == d2[k] for k in d2)) assert dict_eq(dict(a=2, b=3), {'a': 2, 'b': 3}) assert dict_eq(dict({'a': 2, 'b': 3}, b=4), {'a': 2, 'b': 4}) assert dict_eq(dict([('a', 2), ('b', 3)]), {'a': 2, 'b': 3}) a = {'g': 5} b = {'a': a, 'd': 9} c = dict(b) c['d'] = 3 c['a']['g'] = 2 assert dict_eq(a, {'g': 2}) assert dict_eq(b, {'a': a, 'd': 9}) a.clear() assert len(a) == 0 a = {'a': 5, 'b': 6} res = set() for value in a.values(): res.add(value) assert res == set([5,6]) count = 0 for (key, value) in a.items(): assert a[key] == value count += 1 assert count == len(a) res = set() for key in a.keys(): res.add(key) assert res == set(['a','b']) ```
{ "source": "JGirdwood/AeroSAM_logger", "score": 3 }
#### File: AeroSAM_logger/pix/__init__.py ```python from pymavlink import mavutil import time class MavlinkConnection(object): """ An object to represent a connection with an FC via the MAVLINK protocol """ def __init__(self, port, baudrate): self.start_date = [] self.start_time = [] self.all_data_received = 0 self.got_system_time = 0 self.got_global_position_int = 0 self.got_scaled_pressure = 0 self.master = mavutil.mavlink_connection(port, baud=baudrate) self.wait_for_connection() self.master.wait_heartbeat() self.lat = 0 self.lon = 0 self.alt_m = 0 self.vz_ms = 0 self.press_hPa = 0 self.epoch_time = 0 self.boot_time = 0 self.master.mav.request_data_stream_send(self.master.target_system, self.master.target_component, mavutil.mavlink.MAV_DATA_STREAM_ALL, 1, 1) def wait_for_connection(self): msg = None while not msg: self.master.mav.ping_send(time.time(), 0, 0, 0) msg = self.master.recv_match() time.sleep(0.5) def data_packet_handler(self): wait = True msg = [] while wait: msg = self.master.recv_match(blocking=False) if msg: break msg_type = msg.get_type() if msg_type == "GLOBAL_POSITION_INT": self.got_global_position_int = 1 self.lat = msg.lat self.lon = msg.lon self.alt_m = msg.alt self.vz_ms = msg.vz if msg_type == "SCALED_PRESSURE": self.got_scaled_pressure = 1 self.press_hPa = msg.press_abs if msg_type == "SYSTEM_TIME": self.got_system_time = 1 self.boot_time = msg.time_boot_ms self.epoch_time = msg.time_unix_usec def fill_info_buffer(self): timeout = 0 while True: timeout = timeout+1 self.data_packet_handler() check = self.got_system_time * self.got_scaled_pressure * self.got_global_position_int if check == 1: self.all_data_received = 1 self.got_global_position_int = 0 self.got_scaled_pressure = 0 self.got_system_time = 0 break elif timeout == 60: self.all_data_received = 0 break else: time.sleep(0.01) def get_date_time(self): while True: self.fill_info_buffer() if self.epoch_time != 0: break epoch_sec = self.epoch_time/1000000 date_time = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(int(epoch_sec))) date_time = date_time.split() self.start_date = date_time[0] self.start_time = date_time[1] ```
{ "source": "jgirgle/Mapping-Mambas", "score": 3 }
#### File: Mapping-Mambas/flask app/app.py ```python from flask import Flask, jsonify, render_template import pandas as pd from sqlalchemy import create_engine #SQL Use Tool engine = create_engine("sqlite:///static/data/mappingmambas.sqlite") #Reflect database into new model # Base = automap_base() #Reflect the tables and pass in the engine # Base.prepare(engine, reflect=True) #Label tables from classes # Championships = Base.classes.championships #Create a session and bind it to the engine # session = Session(engine) ################ #Flask Setup ################ #Create an app for Flask setup app = Flask(__name__) ################ #Flask Routes ################ #List all available api routes @app.route("/") def welcome(): return render_template("index.html") @app.route("/championshipdata") def championshipdata(): championshipdata = pd.read_sql("select * from championships",engine) championshipjson = championshipdata.to_dict(orient="records") return jsonify(championshipjson) @app.route("/championships") def championships(): return render_template("barchart_race.html") @app.route("/bubblechart") def bubblechart(): return render_template("bubblechart.html") #Define main behavior if __name__ == "__main__": app.run(host="localhost", port=5000, debug=True) ```
{ "source": "jgirgle/Mars-Web-Scrape", "score": 3 }
#### File: jgirgle/Mars-Web-Scrape/scrape_mars.py ```python from splinter import Browser from bs4 import BeautifulSoup import pandas as pd from webdriver_manager.chrome import ChromeDriverManager from urllib.parse import urljoin, urldefrag import time # Get NASA news # Import Splinter, BeautifulSoup, and Pandas def scrape(): # Path to chromedriver executable_path = {'executable_path': ChromeDriverManager().install()} browser = Browser('chrome', **executable_path, headless=True) # Visit the mars nasa news site url = 'https://mars.nasa.gov/news/' browser.visit(url) # Optional delay for loading the page time.sleep(1) # Convert the browser html to a soup object and then quit the browser html = browser.html soup = BeautifulSoup(html, 'html.parser') # .find() the content title and save it as `news_title` news_title = soup.find_all('div', class_='content_title')[1].find(target="_self").text # .find() the paragraph text para_texts = soup.find_all('div', class_="article_teaser_body")[1].text # quit the browser so it doesn't stay open # Get JPL space image # This library enables us to join relative urls to a root url to create an absolute url # Visit JPL space images Mars URL url = 'https://data-class-jpl-space.s3.amazonaws.com/JPL_Space/index.html' browser.visit(url) time.sleep(1) # Find the more info button and click that. try: browser.links.find_by_partial_text('FULL IMAGE').click() html_image = browser.html except: print("Scraping Complete") # Parse the resulting html with soup soup_image = BeautifulSoup(html_image, 'html.parser') # find the relative image url rel_url = soup_image.find_all('img', class_='fancybox-image')[0].attrs['src'] # Use the base url to create an absolute url. Use urldefrag and urljoin to create a url and remove any extra folders in the filepath. Then select the first element in the resulting list featured_pic = urldefrag(urljoin(url, rel_url))[0] # Import Mars facts # Create a dataframe from the space-facts.com mars page url = 'https://space-facts.com/mars/' tables = pd.read_html(url) mars_df = tables[1].set_index("Mars - Earth Comparison") # clean the dataframe and export to HTML mars_df.replace('\n', '') html_tables = mars_df.to_html(None,index=False) # Get hemisphere data # visit the USGS astrogeology page for hemisphere data from Mars # visit the USGS astrogeology page for hemisphere data from Mars url = 'https://astrogeology.usgs.gov/search/results?q=hemisphere+enhanced&k1=target&v1=Mars' browser.visit(url) time.sleep(1) html = browser.html soup = BeautifulSoup(html, 'lxml') # Build the list of enhanced urls hemi_image_urls = [] enhanced_url_list = [] hemi_all = soup.find_all('div', class_='item') for hemi in hemi_all: title = hemi.find('h3').text enhanced_url = hemi.a['href'] enhanced_url = f'https://astrogeology.usgs.gov{enhanced_url}' enhanced_url_list.append(enhanced_url) # Build a list of dictionaries with the title and images for enh_url in enhanced_url_list: browser.visit(enh_url) time.sleep(1) html = browser.html soup = BeautifulSoup(html, "html.parser") org_hemi_url = soup.find('div', class_='downloads').a['href'] hemi_image_urls.append({"title": title, "img_url": org_hemi_url}) scrape_dict = { "news_title": news_title, "para_texts": para_texts, "featured_pic": featured_pic, "html_tables": html_tables, "hemi_image_urls": hemi_image_urls } browser.quit() return scrape_dict ```
{ "source": "jgissend10/django-easy-eddie", "score": 2 }
#### File: management/commands/fetch_cloud_watch_log_events.py ```python from django.core.management.base import BaseCommand from easy_eddie.report_fetchers import fetch_logs_of_unprocessed_sms_events class Command(BaseCommand): help = 'Fetches log data from CloudWatch for all unprocessed SMS events.' def handle(self, *args, **options): fetch_logs_of_unprocessed_sms_events() ``` #### File: django-easy-eddie/easy_eddie/report_fetchers.py ```python import json from datetime import datetime import pytz from django.utils.timezone import now from typing import List from easy_eddie.clients import get_boto_client from easy_eddie.helpers import get_cloud_watch_filter_pattern, get_cloud_watch_time_tuple_for_sms_events from easy_eddie.models import SMSEvent from easy_eddie.settings import CLOUD_WATCH_LOG_GROUP_NAMES def fetch_log_events(sms_events: List[SMSEvent], log_group_names: List[str]): if not sms_events: return False client = get_boto_client(service_name='logs') start, end = get_cloud_watch_time_tuple_for_sms_events(sms_events=sms_events) sms_events_dict = {sms_event.sns_message_id: sms_event for sms_event in sms_events} # The filter pattern used to fetch the events must be less than 1024 chars. So we have to split our events into # chunks before creating the request. sms_event_chunks = get_sms_events_as_chunks(sms_events=sms_events, chunk_size=10) for sms_event_chunk in sms_event_chunks: for log_group_name in log_group_names: paginator = client.get_paginator('filter_log_events') response_iterator = paginator.paginate( logGroupName=log_group_name, startTime=start, endTime=end, filterPattern=get_cloud_watch_filter_pattern(sms_events=sms_event_chunk), interleaved=True, ) for page in response_iterator: for event in page.get('events', []): message = json.loads(event['message']) message_id = message['notification']['messageId'] sms_event = sms_events_dict.get(message_id) if sms_event: delivery = message.get('delivery', {}) sms_event.fetched_cloud_watch_log = now() sms_event.sns_dwell_time = delivery.get('dwellTimeMs') sms_event.sns_dwell_time_until_device_acknowledgement = delivery.get( 'dwellTimeMsUntilDeviceAck') sms_event.sns_mcc = delivery.get('mcc') sms_event.sns_mnc = delivery.get('mnc') sms_event.sns_phone_carrier = delivery.get('phoneCarrier', '') sms_event.sns_price = delivery.get('priceInUSD') sms_event.sns_provider_response = delivery.get('providerResponse') sms_event.sns_sms_type = delivery.get('smsType') sms_event.sns_status = message['status'] # Format timestamp timestamp = message['notification']['timestamp'] naive_datetime = datetime.strptime(timestamp, '%Y-%m-%d %H:%M:%S.%f') time_zone_aware_timestamp = pytz.utc.localize(naive_datetime) sms_event.sns_timestamp = time_zone_aware_timestamp sms_event.save() def fetch_logs_of_unprocessed_sms_events(): unprocessed_sms_events = SMSEvent.objects.unprocessed() fetch_log_events(sms_events=unprocessed_sms_events, log_group_names=CLOUD_WATCH_LOG_GROUP_NAMES) def get_sms_events_as_chunks(sms_events: List[SMSEvent], chunk_size: int): for i in range(0, len(sms_events), chunk_size): yield sms_events[i:i + chunk_size] ``` #### File: django-easy-eddie/easy_eddie/reports.py ```python import csv from io import StringIO from django.utils.translation import ugettext_lazy as _ from typing import List from easy_eddie.models import SMSEvent def get_sms_event_report(sms_events: List[SMSEvent]) -> StringIO: csv_file = StringIO() csv_writer = csv.writer(csv_file) # Write column headlines csv_writer.writerow([ _('Timestamp'), _('Message ID'), _('Status'), _('Phone Carrier'), _('Destination'), _('Price (USD)'), _('Dwell Time'), _('Dwell Time Until Device Acknowledgement'), _('SMS Type'), _('Provider Response'), _('MCC'), _('MNC'), ]) for sms_event in sms_events: csv_writer.writerow([ sms_event.sns_timestamp.isoformat() if sms_event.sns_timestamp else '', sms_event.sns_message_id, sms_event.sns_status, sms_event.sns_phone_carrier, sms_event.sns_destination, sms_event.sns_price, sms_event.sns_dwell_time, sms_event.sns_dwell_time_until_device_acknowledgement, sms_event.sns_sms_type, sms_event.sns_provider_response, sms_event.sns_mcc, sms_event.sns_mnc, ]) # Seek back to the beginning of the file csv_file.seek(0) return csv_file ```
{ "source": "jgj9883/Mask-Detector", "score": 2 }
#### File: jgj9883/Mask-Detector/mask_detector-1.py ```python from tensorflow.keras.applications.mobilenet_v2 import preprocess_input from tensorflow.keras.models import load_model import numpy as np import cv2 import matplotlib.pyplot as plt import os import matplotlib.font_manager as fm from flask import Flask, render_template import RPi.GPIO as GPIO import glob import time GPIO.setmode(GPIO.BCM) GPIO.setup(17, GPIO.OUT) os.system('modprobe w1-gpio') os.system('modprobe w1-therm') base_dir = '/sys/bus/w1/devices/' device_folder = glob.glob(base_dir + '28*')[0] device_file = device_folder + '/w1_slave' path = 'NanumBarunGothic.ttf' fontprop =fm.FontProperties(fname=path, size=18) facenet = cv2.dnn.readNet('model/deploy.prototxt', 'model/res10_300x300_ssd_iter_140000.caffemodel') model = load_model('model/mask_detector.model') #model.summary() def read_temp_raw(): f = open(device_file, 'r') lines = f.readlines() f.close() return lines def read_temp(): lines = read_temp_raw() while lines[0].strip()[-3:] != 'YES': time.sleep(0.2) lines = read_temp_raw() equals_pos = lines[1].find('t=') if equals_pos != -1: temp_string = lines[1][equals_pos+2:] temp_c = float(temp_string) / 1000.0 return temp_c def mask_predict(): img = cv2.imread('./static/img/capture.jpg') h, w = img.shape[:2] plt.figure(figsize=(8, 5)) plt.imshow(img[:, :, ::-1]) blob = cv2.dnn.blobFromImage(img, scalefactor=1., size=(300, 300), mean=(104., 177., 123.)) facenet.setInput(blob) dets = facenet.forward() faces = [] for i in range(dets.shape[2]): confidence = dets[0, 0, i, 2] if confidence < 0.5: continue x1 = int(dets[0, 0, i, 3] * w) y1 = int(dets[0, 0, i, 4] * h) x2 = int(dets[0, 0, i, 5] * w) y2 = int(dets[0, 0, i, 6] * h) face = img[y1:y2, x1:x2] faces.append(face) #plt.figure(figsize=(16, 6)) for i, face in enumerate(faces): plt.subplot(1, len(faces), i + 1) plt.imshow(face[:, :, ::-1]) #plt.figure(figsize=(16, 5)) for i, face in enumerate(faces): face_input = cv2.resize(face, dsize=(224, 224)) face_input = cv2.cvtColor(face_input, cv2.COLOR_BGR2RGB) face_input = preprocess_input(face_input) face_input = np.expand_dims(face_input, axis=0) mask, nomask = model.predict(face_input).squeeze() plt.subplot(1, len(faces), i + 1) plt.imshow(face[:, :, ::-1]) if (mask * 100) < 30 : plt.title('마스크를 미착용했습니다. %.2f%%' % (100 - mask * 100), fontproperties=fontprop) print("red_led on") GPIO.output(17, True) else : plt.title('마스크를 착용했습니다. %.2f%%' % (mask * 100),fontproperties=fontprop) print("red_led off") GPIO.output(17, False) #plt.show() plt.savefig('./static/img/output10.jpg') print("-------process loading ---------") app = Flask(__name__) @app.route('/') def home(): temp = read_temp() return render_template('monitering.html', temp=temp, image_file='img/output10.jpg') if __name__ == '__main__': try : cap = cv2.VideoCapture(0) while(True): # Capture frame-by-frame ret,frame = cap.read() # Display the resulting frame cv2.imshow('frame',frame) key = cv2.waitKey(10) if key == 27: break if key == ord(' '): cv2.imwrite('./static/img/capture.jpg',frame) mask_predict() app.run(host='localhost', port=8080) except : GPIO.output(17, False) # When everything done, release the capture GPIO.cleanup() cap.release() cv2.destroyAllWindows() ```
{ "source": "jgj9883/PrediectPriceUsingRNN", "score": 3 }
#### File: PrediectPriceUsingRNN/RNN/PredictPrice.py ```python import pandas as pd from konlpy.tag import Okt import random import pickle from keras.preprocessing import sequence import numpy as np from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras import losses from tensorflow.keras import optimizers from tensorflow.keras import models from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt def data_load(option): csv = pd.read_csv('train_data_add.csv') titles_csv = csv['title'] prices_csv = csv['price'] if option == "titles" : csv = titles_csv elif option == 'price' : csv = prices_csv return csv def tokenizer_create(text): okt = Okt() text_pos = okt.pos(text, norm=True) words = [] for word in text_pos: words.append(word[0]) return words def words_to_ids(words, word_dict): ids = [] for word in words: try: ids.append(word_dict.index(word)) except Exception as e: print(e) return ids def dictionary_create(): data_load() okt = Okt() words_set = set() titles_words = [] count = 1 for title in data_load("titles"): title_pos = okt.pos(title, norm=True) words = [] for word in title_pos: words_set.add(word[0]) words.append(word[0]) titles_words.append(words) count += 1 dictionary = list(words_set) random.shuffle(dictionary) dictionary = [0] + dictionary titles_ids = [] count = 1 for title in titles_words: words_id = words_to_ids(title, dictionary) titles_ids.append(words_id) count += 1 def ids_to_words(ids): words = [] for word_id in ids: if word_id != 0: words.append(dictionary[word_id]) return words def sequence_create(text_ids) : sequence_np = sequence.pad_sequences([text_ids], maxlen=max_title_len, padding='post') return sequence_np try: with open("titles_words.bin", "rb") as f: titles_words = pickle.load(f) with open("dictionary.bin", "rb") as f: dictionary = pickle.load(f) with open("titles_ids.bin", "rb") as f: titles_ids = pickle.load(f) except Exception as e: dictionary_create() with open("titles_words.bin", "wb") as f: pickle.dump(titles_words, f) with open("dictionary.bin", "wb") as f: pickle.dump(dictionary, f) with open("titles_ids.bin", "wb") as f: pickle.dump(titles_ids, f) max_title_len = max(len(title_ids) for title_ids in titles_ids) # print(max_title_len) titles_ids_np = sequence.pad_sequences(titles_ids, maxlen=max_title_len, padding='post') # print(titles_ids_np) prices_np = np.array([[price] for price in data_load("price")]) # print(prices_np) index = [i for i in range(len(titles_ids_np))] random.shuffle(index) train_len = int(len(index) * 0.9) train_index = index[:train_len] test_index = index[train_len:] # print(len(titles_ids_np)) # print(len(train_index)) # print(len(test_index)) X_train = titles_ids_np[train_index] X_test = titles_ids_np[test_index] scaler = MinMaxScaler() # StandardScaler() scaler.fit(prices_np) y_scaled = scaler.transform(prices_np) y_train_scaled = y_scaled[train_index] y_test_scaled = y_scaled[test_index] # print(prices_np) # print(y_scaled) vocab_size = len(dictionary) model_name = "baseline_model_data_add.h5" def model_create() : model = keras.Sequential([ layers.Embedding(vocab_size, 64), layers.Bidirectional(layers.LSTM(64, return_sequences=True)), layers.Bidirectional(layers.LSTM(32)), layers.Dense(64, activation='relu'), layers.Dropout(0.5), layers.Dense(1) ]) model.summary() model.compile(loss=losses.MeanSquaredError(), optimizer=optimizers.Adam(1e-4), metrics=['mae']) history = model.fit(X_train, y_train_scaled, epochs=10, validation_data=(X_test, y_test_scaled), validation_steps=30, verbose=1) model.save(model_name) try: model = models.load_model(model_name) except Exception as e: print(e) model_create() def plot_graphs(history, metric): plt.plot(history.history[metric]) plt.plot(history.history['val_' + metric], '') plt.xlabel("Epochs") plt.ylabel(metric) plt.legend([metric, 'val_' + metric]) plt.show() # plot_graphs(history, 'mae') # plot_graphs(history, 'loss') # price_predictions = model.predict(X_test) # # y_test_inverse = scaler.inverse_transform(y_test_scaled) # price_predictions_inverse = scaler.inverse_transform(price_predictions) # for i in range(100): # print(f"{i}: {ids_to_words(X_test[i])}") # print(f"{i}: {y_test_inverse[i]} = {price_predictions_inverse[i]}") # print() # print(ids_to_words(X_test[5])) def predict_phone(text) : text_words = tokenizer_create(text) print(text_words) text_ids = words_to_ids(text_words, dictionary) text_ids_np = sequence_create(text_ids) text_predictions = model.predict(text_ids_np) text_predictions_inverse = scaler.inverse_transform(text_predictions) print(text_predictions_inverse) return text_predictions_inverse test1 = "아이폰SE 2세대 128G 59만원에 판매합니다" test2 = "갤럭시S9 256G 29만원 판매합니다" predict_phone(test1) predict_phone(test2) ```
{ "source": "jgj9883/Unsupervised-learning", "score": 3 }
#### File: Unsupervised-learning/DataAnalysis/Make the code.py ```python import pandas as pd INPUT_PREFIX = './data/TCS_영업소간통행시간_1시간_1개월_2020' OUTPUT_PREFIX = './data/data_2020' OUTPUT_EXTENSION = '.csv' output_dataframes = [] def generateData(month): month_string = str(month) length_month_string = len(month_string) if length_month_string == 1: month_string = '0' + month_string input_file = INPUT_PREFIX + month_string output_file = OUTPUT_PREFIX + month_string + OUTPUT_EXTENSION print('INPUT :', input_file, ' OUTPUT : ', output_file) data = pd.read_csv(input_file, sep=",", encoding="euc-kr") data_clean = data.drop(['Unnamed: 6'], axis='columns') data_clean = data_clean[data_clean.통행시간 > 0] df_data = pd.DataFrame(data_clean, columns=['집계일자', '집계시', '출발영업소코드', '도착영업소코드', '통행시간']) start_from_101 = df_data[df_data.출발영업소코드 == 101] start_from_101_to_140 = start_from_101[start_from_101['도착영업소코드'].isin([105, 110, 115, 120, 125, 130, 135, 140])] start_from_101_to_140 = start_from_101_to_140.assign( 요일=pd.to_datetime(start_from_101_to_140['집계일자'], format='%Y%m%d').dt.dayofweek) start_from_101_to_140.sort_values(by=['집계일자', '집계시']) start_from_101_to_140.to_csv(output_file, index=None, header=True) output_dataframes.append(start_from_101_to_140) for month in range(1, 13): generateData(month) output_data = pd.concat(output_dataframes, ignore_index=True, sort=False) final = OUTPUT_PREFIX + OUTPUT_EXTENSION output_data.to_csv(final, index=None, header=True) ```
{ "source": "jgj98/PuppetGan", "score": 3 }
#### File: jgj98/PuppetGan/syn_weiz_data.py ```python from glob import glob from random import shuffle import cv2 import numpy as np import subprocess as sp SIZE = 64 # Size of the real images def synthPrep(pth): """ Prepares synthetic data for training args: pth: path to synthetic image """ img = cv2.imread(pth) img = cv2.resize(img, (SIZE, SIZE*3), interpolation = cv2.INTER_AREA) board = 255*np.ones((SIZE*3, SIZE*3, 3), dtype=np.uint8) board[:, :SIZE, :] = img return board def makeSynGrid(pths, out): """ Prepares synthetic data for evaluation in a GRID like in the paper args: pths: paths to the synthetic images out: Folder to store the dataset """ for i in range(0, 1000, 10): imgs = [cv2.imread(pths[k]) for k in range(i, i+10)] imgs = [cv2.resize(i, (SIZE, SIZE*3), interpolation = cv2.INTER_AREA) for i in imgs] grid = 255*np.ones((SIZE*10, SIZE*10, 3), dtype=np.uint8) for j in range(10): grid[SIZE*j:SIZE*(j+1), 0:SIZE, :] = imgs[j][SIZE:SIZE*2, 0:SIZE, :] cv2.imwrite(out+f"image_{i}.png", grid) pths_r = glob('./data/sample/weizman_c/*png') # Glob path to real images pths_syn = glob('./data/sample/synaction/*.png') # Glob path to synthetic images shuffle(pths_r), shuffle(pths_syn) out = './data/syn_weiz_6/' # Output folder to store the dataset sp.run(['mkdir', '-p', out+'real_/real']) for pth in pths_r[:-10]: file = out+'real_/real/'+pth.split('/')[-1] img = cv2.imread(pth) cv2.imwrite(file, img) sp.run(['mkdir', '-p', out+'synth_/synth']) for pth in pths_syn[:-1000]: file = out+'synth_/synth/'+pth.split('/')[-1] img = synthPrep(pth) cv2.imwrite(file, img) sp.run(['mkdir', '-p', out+'rows_']) sp.run(['mkdir', '-p', out+'rows_/real']) for pth in pths_r[-10:]: file = out+'rows_/real/'+pth.split('/')[-1] img = cv2.imread(pth) cv2.imwrite(file, img) sp.run(['mkdir', '-p', out+'rows_/synth']) makeSynGrid(pths_syn[-1000:], out+'rows_/synth/') ```
{ "source": "jgjudd/python_exercises_2", "score": 4 }
#### File: jgjudd/python_exercises_2/ex19.py ```python def cheese_and_crackers(cheese_count, boxes_of_crackers): print(f"You have {cheese_count} cheeses") print(f"You have {boxes_of_crackers} boxes of crackers") print("That's a lot") print("Get a blanket\n") print("We can just give the function numbers directly") cheese_and_crackers(20, 30) print("Or, we can use variables from our script") amount_of_cheese = 10 amount_of_crackers = 50 cheese_and_crackers(amount_of_cheese, amount_of_crackers) print("We can even do math inside too: ") cheese_and_crackers(10 + 20, 5 + 6) print("And we can combine the two, variables and math: ") cheese_and_crackers(amount_of_cheese + 100, amount_of_crackers + 1000) ```
{ "source": "jgkawell/feedback_cclfd", "score": 3 }
#### File: feedback_cclfd/scripts/teleop.py ```python import os import sys import rospy import numpy as np from std_msgs.msg import Bool """ This class allows for manual triggering of classification """ class teleop(): def __init__(self): rospy.init_node('teleop', anonymous=True) # initializing publisher self.pub_face = rospy.Publisher( '/classifiers/face', Bool, queue_size=10) self.pub_motion = rospy.Publisher( '/classifiers/motion', Bool, queue_size=10) def main(self): # Request input from user rospy.loginfo("TELEOP: Press [enter] to trigger" + " negative classification...") raw_input().upper() rospy.loginfo("TELEOP: Trigging negative classification!") # Publish negative classifications self.pub_face.publish(False) self.pub_motion.publish(False) # Exit cleanly sys.exit(0) if __name__ == '__main__': try: obj = teleop() obj.main() rospy.spin() except rospy.ROSInterruptException: pass ``` #### File: src/classifiers/synthesizer.py ```python import rospy from std_msgs.msg import String from std_msgs.msg import Bool from feedback_cclfd.msg import Classification """ This class synthesizes the various classifications of human affect/motion to see if the behavior is negative """ class synthesizer(): def __init__(self): self.face = True self.motion = True # initialize pub/sub rospy.init_node('synthesizer', anonymous=True) rospy.Subscriber("/classifiers/face", Bool, self.callback_face) rospy.Subscriber("/classifiers/motion", Bool, self.callback_motion) self.synthesis_pub = rospy.Publisher( '/classifiers/synthesis', Classification, queue_size=10) rospy.loginfo("SYNTHESIZER: Starting...") def main(self): # loop checking the labels sent in by the other classifiers triggered = False msg = Classification() while not rospy.is_shutdown(): # TODO: Replace this with a weighted sum based on confidence levels # if the face is negative or the motion is negative, trigger repair if (not self.face or not self.motion) and not triggered: rospy.loginfo("SYNTHESIZER: Recognized a negative response!") msg.timestamp = rospy.Time.now() msg.classification = False self.synthesis_pub.publish(msg) triggered = True def callback_face(self, msg): self.face = msg.data def callback_motion(self, msg): self.motion = msg.data if __name__ == '__main__': try: obj = synthesizer() obj.main() rospy.spin() except rospy.ROSInterruptException: pass ``` #### File: src/planners/constraint_update.py ```python import rospy from feedback_cclfd.srv import Constraint from cairo_lfd_msgs.msg import NodeTime from std_msgs.msg import UInt8, String import json class ConstraintUpdate(): def __init__(self): rospy.init_node("constraint_updater") # subscriber to listen to keyframe transitions self.node_time_sub = rospy.Subscriber("/lfd/node_time", NodeTime, self.node_time_callback) # subscriber to listen for user trigger for bad skill # assumes trigger is String('True') until false self.user_trigger_sub = rospy.Subscriber("user_trigger", UInt8, self.user_trigger_callback) # publisher to publish to constraint update topic in # cairo-cclfd/controllers/study_controller.FeedbackLfDStudyController self.update_pub = rospy.Publisher('/cairo_lfd/model_update', String, queue_size=10) # list to hold keyframes that occured durring trigger # NOTE: needs to be reset in between updates # self.keyframesUpdate = list(range(20)) # NOTE: for testing self.keyframesUpdate = [] # var to hold trigger status self.trigger = True # callback to listen for keyframes while trigger is true def node_time_callback(self, data): if self.trigger: self.keyframesUpdate.append(int(data.cur_node)) self.keyframesUpdate.append(int(data.next_node)) # callback to listen for trigger def user_trigger_callback(self, data): self.trigger = data.data # function to publish to constraint update def update_constraints(self): # need to wait for all keyframes to be collected and for constraint # to update service call to ask for constraint before updating skill rospy.wait_for_service('add_constraint') try: self.add_constraint = rospy.ServiceProxy( "add_constraint", Constraint) # constraint ID to be updated resp = self.add_constraint(1) except rospy.ServiceException: rospy.logwarn("Service setup failed (add_constraint)") update_dict = {} for keyframe in self.keyframesUpdate: update_dict[keyframe] = {"applied_constraints": [resp.constraint]} self.update_pub.publish(json.dumps(update_dict)) # clear stored keyframes and constraint self.keyframesUpdate = [] if __name__ == '__main__': test = ConstraintUpdate() test.update_constraints() ``` #### File: src/planners/demonstrator.py ```python import rospy import numpy as np import json import time from std_msgs.msg import String from std_msgs.msg import Bool from rospy.numpy_msg import numpy_msg from feedback_cclfd.srv import RequestFeedback from feedback_cclfd.srv import PerformDemonstration from feedback_cclfd.msg import ConstraintTypes from cairo_nlp.srv import TTS, TTSResponse """ This class is responsible for sampling constraints and demonstrating them to the user for feedback. """ class Demonstrator(): def __init__(self): rospy.init_node('demonstrator') self.finished_first_demo = False # start pub/sub rospy.Subscriber("/planners/constraint_types", numpy_msg(ConstraintTypes), self.sample_demonstrations) self.demos_pub = rospy.Publisher( "/planners/demonstrations", String, queue_size=10) # set up client for demonstration service rospy.wait_for_service("feedback_demonstration") try: self.feedback_demonstration = rospy.ServiceProxy( "feedback_demonstration", PerformDemonstration) except rospy.ServiceException: rospy.logwarn("Service setup failed (feedback_demonstration)") # set up client for feedback service rospy.wait_for_service("request_feedback") try: self.request_feedback = rospy.ServiceProxy( "request_feedback", RequestFeedback) except rospy.ServiceException: rospy.logwarn("Service setup failed (request_feedback)") # Set up client for NLP TTS service rospy.wait_for_service("/nlp/google/tts") try: self.tts_server = rospy.ServiceProxy( "/nlp/google/tts", TTS) except rospy.ServiceException: rospy.logerr("Service setup failed (/nlp/google/tts)") rospy.loginfo("DEMONSTRATOR: Starting...") def run(self): # perform a bad demo to start rospy.loginfo("DEMONSTRATOR: Starting first skill execution...") self.tts_server("I am going to hand you the mug.") finished = self.feedback_demonstration(0) # 0 = negative if finished.response: self.finished_first_demo = True rospy.spin() def sample_demonstrations(self, constraint_types): # run until complete while True: # don't perform alternative demos until first is finished if self.finished_first_demo: num_demos = 2 rospy.loginfo("DEMONSTRATOR: Sampling demonstrations...") cur_type = constraint_types.data results = dict() for i in range(0, num_demos): # perform a single demonstration constraint = i self.tts_server("I am going to try the skill again.") finished = self.feedback_demonstration(constraint) if finished.response: # request feedback about demonstration from user feedback_type = constraint == 1 msg = self.request_feedback(feedback_type) key = i if msg.response: rospy.loginfo( "DEMONSTRATOR: Response was POSITIVE!") results[key] = 1 else: rospy.loginfo( "DEMONSTRATOR: Response was NEGATIVE") results[key] = 0 # save feedback results rospy.loginfo("DEMONSTRATOR: Saving feedback...") encoded_data_string = json.dumps(results) self.demos_pub.publish(encoded_data_string) # demonstrate what has been learned rospy.loginfo("DEMONSTRATOR: Showing what has been learned...") self.tts_server("Let me show you what I have learned.") for key, value in results.items(): if value: constraint = key self.feedback_demonstration(constraint) break break else: # wait a second rospy.loginfo( "DEMONSTRATOR: Waiting for first demo to be finished...") time.sleep(1) self.tts_server("Thank you for helping me learn!") rospy.loginfo("FINISHED!!!") if __name__ == '__main__': try: obj = Demonstrator() obj.run() except rospy.ROSInterruptException: pass ``` #### File: src/visualizations/joint_test.py ```python import rospy import numpy as np from time import sleep from math import pi, sqrt, sin, cos from sensor_msgs.msg import JointState from std_msgs.msg import Header from geometry_msgs.msg import PoseArray from geometry_msgs.msg import Pose from moveit_msgs.msg import DisplayTrajectory from moveit_msgs.msg import RobotTrajectory from trajectory_msgs.msg import JointTrajectoryPoint from rospy_helpers import origin_pose def circ_angle(index, N): return 2*pi*(index/N) class QTester: """ Exercise the joints """ def __init__(self, refreshRate=300): # Start the node rospy.init_node('QTester') # Set rate self.heartBeatHz = refreshRate # ----------- Node refresh rate [Hz] # Best effort to maintain 'heartBeatHz' # URL: http://wiki.ros.org/rospy/Overview/Time self.idle = rospy.Rate(self.heartBeatHz) # Start publishers self.pub = rospy.Publisher("/viz/ctrl", JointState, queue_size=10) self.pubX = rospy.Publisher( "/viz/pointPlans", PoseArray, queue_size=100) self.pubQ = rospy.Publisher( "/move_group/display_planned_path", DisplayTrajectory, queue_size=100) # Init vars self.initTime = rospy.Time.now().to_sec() self.qCmd = JointState() self.qCmd.header = Header() self.qCmd.header.seq = 0 self.qCmd.header.stamp = rospy.get_rostime() self.qCmd.name = ['head_pan', 'right_j0', 'right_j1', 'right_j2', 'right_j3', 'right_j4', 'right_j5', 'right_j6'] self.qCmd.position = [0.0 for i in range(len(self.qCmd.name))] self.qCmd.header.frame_id = 'pedestal' self.Qspeed = pi / 300.0 # Modes available to command arm # int32 POSITION_MODE = 1 # int32 VELOCITY_MODE = 2 # int32 TORQUE_MODE = 3 # int32 TRAJECTORY_MODE = 4 rospy.loginfo("JOINT TEST: Init completed!") def test_planned_paths_X(self): """ Spam the system with dummy poses """ Z = 0.0 rospy.loginfo("JOINT TEST: Publishing pose plans ...") for i in range(3): rospy.loginfo("JOINT TEST: %d", i+1) Z += 0.100 arr = PoseArray() N = 100 radius = 0.75 ptsList = [[radius*cos(circ_angle(i, N)), radius * sin(circ_angle(i, N)), Z] for i in range(N)] for pnt in ptsList: pose_i = origin_pose() pose_i.position.x = pnt[0] pose_i.position.y = pnt[1] pose_i.position.z = pnt[2] arr.poses.append(pose_i) self.pubX.publish(arr) rospy.loginfo("JOINT TEST: COMPLETE") def test_planned_paths_Q(self): """ Spam the system with dummy configurations """ rospy.loginfo("JOINT TEST: Publishing configuration plans") starts = [0.0, pi/3.0, 2.5*pi/3.0] span = 1.50*pi/6.0 N = 100 for i in range(3): rospy.loginfo("JOINT TEST: %d", i+1) angles = np.linspace(starts[i], starts[i] + span, N) traj = DisplayTrajectory() rTrj = RobotTrajectory() for angle in angles: q = [angle for j in range(6)] t_i = JointTrajectoryPoint() t_i.positions = q rTrj.joint_trajectory.points.append(t_i) sleep(1.0) traj.trajectory.append(rTrj) self.pubQ.publish(traj) rospy.loginfo("JOINT TEST: COMPLETE") def run(self): if 0: sleep(2.0) self.test_planned_paths_X() if 1: sleep(2.0) self.test_planned_paths_Q() # While ROS is running while (not rospy.is_shutdown()): qNu = [self.qCmd.position[i] + self.Qspeed for i in range(len(self.qCmd.name))] self.qCmd.position = list(qNu) self.qCmd.header.seq += 1 self.qCmd.header.stamp = rospy.get_rostime() self.pub.publish(self.qCmd) # Wait until the node is supposed to fire next self.idle.sleep() # Post-shutdown activities else: rospy.loginfo("Node Shutdown after %d seconds.", rospy.Time.now().to_sec() - self.initTime) if __name__ == "__main__": try: refreshRateHz = rospy.get_param('graphics_refresh_rate', 60) obj = QTester(refreshRateHz) obj.run() except rospy.ROSInterruptException: pass ``` #### File: src/visualizations/path_display.py ```python import rospy import numpy as np from time import sleep from math import pi, sin, cos from geometry_msgs.msg import PoseArray from geometry_msgs.msg import Pose from geometry_msgs.msg import Point from visualization_msgs.msg import Marker from visualization_msgs.msg import MarkerArray from rospy_helpers import origin_pose, unpack_ROS_xform, \ RollingList, vec_dif_mag, unpack_ROS_pose from geometry_msgs.msg import TransformStamped # ~~ Program Constants ~~ _DEFAULTSCALE = 0.01 # Default width of `LINE_STRIP` _DISTMARGIN = 0.02 # Limit on how close wrist point history can be together _HISTORYLIMIT = 50 # -- Max number of points of wrist history to display _PATHNUMLIMIT = 1 # -- Max number of paths to show on the screen _GREEN = [0/255.0, 255/255.0, 0/255.0] _BLUE = [66/255.0, 227/255.0, 255/255.0] # 66, 227, 255 _NAMESPACE = "paths" class PathDisplay: def add_Pose_arr(self, msg): """ Add the path to the list of paths """ nuPath = [] for pose in msg.poses: posn, ornt = unpack_ROS_pose(pose) nuPath.append(posn) self.add_path(nuPath, _BLUE) def update_history(self, msg): """ Update the mug with the new xform --> pose """ # Get the position from the message posn, ornt = unpack_ROS_xform(msg) dist = vec_dif_mag(posn, self.pathList[0][-1]) # If the next point is sufficient distance from the last if dist >= _DISTMARGIN: self.pathList[0].append(posn) def __init__(self, refreshRate=300): # Start the node rospy.init_node('PathDisplay') # Set rate self.heartBeatHz = refreshRate # ----------- Node refresh rate [Hz] # Best effort to maintain 'heartBeatHz' # URL: http://wiki.ros.org/rospy/Overview/Time self.idle = rospy.Rate(self.heartBeatHz) # Start subscribers and listeners rospy.Subscriber("/viz/pointPlans", PoseArray, self.add_Pose_arr) rospy.Subscriber("/viz/wristXform", TransformStamped, self.update_history) # Start publishers self.pubSngl = rospy.Publisher("/viz/markers", Marker, queue_size=100) self.pubMany = rospy.Publisher( "/viz/mrkr_arr", MarkerArray, queue_size=100) # Init vars self.initTime = rospy.Time.now().to_sec() # NOTE: The first element is ALWAYS the path traced by the wrist self.pathList = [RollingList(_HISTORYLIMIT, initVal=[0, 0, 0])] self.colrList = [_GREEN] self.mrkrArr = MarkerArray() self.mrkrDex = 0 self.hasRun = False def get_next_index(self): self.mrkrDex += 1 return self.mrkrDex def add_path(self, path, color=_GREEN): """ Add a list of points to the list of paths """ # Add the path and the color self.pathList.append(path) self.colrList.append(color) # If the number of paths have been exceeded # then erase the first static path (index 1) if (len(self.pathList) - 1) > _PATHNUMLIMIT: self.pathList.pop(1) self.colrList.pop(1) def del_path(self, index): """ Remove path from list and the marker array NOTE: Static path indices begin at 1 """ if index > 0: self.pathList.pop(index) self.colrList.pop(index) def create_line_marker(self, ptsList, scale=_DEFAULTSCALE, color=_GREEN, mrkrNS=_NAMESPACE): """ Return a marker composed of the points """ # Create marker trace = Marker() # Populate header trace.header.stamp = rospy.Time.now() trace.header.frame_id = "base" # Set marker info for a persistent marker trace.ns = mrkrNS trace.action = trace.ADD trace.type = trace.LINE_STRIP trace.id = 200 + self.get_next_index() # How long the object should last before being automatically deleted. # 0 means forever trace.lifetime = rospy.Duration(0) # Set marker size # Line strips: Only scale.x is used and it controls # the width of the line segments. trace.scale.x = scale # Set marker color trace.color.a = 1.0 trace.color.r = color[0] trace.color.g = color[1] trace.color.b = color[2] # Set the marker pose trace.pose = origin_pose() # Build the points list for pnt in ptsList: mrkrPnt = Point() mrkrPnt.x = pnt[0] mrkrPnt.y = pnt[1] mrkrPnt.z = pnt[2] trace.points.append(mrkrPnt) # Return marker return trace def publish_all(self): self.mrkrArr.markers = [] for pDex, path in enumerate(self.pathList): temp = self.create_line_marker(path, color=self.colrList[pDex]) temp.id = pDex self.mrkrArr.markers.append(temp) self.pubMany.publish(self.mrkrArr) def test_lines(self): """ Spam some lines to the screen """ rospy.loginfo("PATH DISPLAY: Running the test function") def circ_angle(index, N): return 2*pi*(index/N) N = 100 radius = 0.75 ptsList = [[radius*cos(circ_angle(i, N)), radius * sin(circ_angle(i, N)), 0.0] for i in range(N)] mrkr = self.create_line_marker(ptsList, mrkrNS="test") for i in range(5): self.pubSngl.publish(mrkr) sleep(0.1) def run(self): """ Publish all of the currently stored paths """ # While ROS is running while (not rospy.is_shutdown()): if 0 and (not self.hasRun): self.test_lines() self.hasRun = True self.publish_all() # Wait until the node is supposed to fire next self.idle.sleep() # Post-shutdown activities else: rospy.loginfo("Node Shutdown after %d seconds.", rospy.Time.now().to_sec() - self.initTime) if __name__ == "__main__": try: refreshRateHz = rospy.get_param('graphics_refresh_rate', 60) obj = PathDisplay(refreshRateHz) obj.run() except rospy.ROSInterruptException: pass ```
{ "source": "jgke/haapa", "score": 3 }
#### File: haapa/docs/docs.py ```python from jinja2 import Environment, PackageLoader, FileSystemLoader from jinja2.exceptions import UndefinedError from markdown import markdown from datetime import datetime import yaml import argparse import traceback def markdown_filter(value, *args, **kwargs): return markdown(value, *args, **kwargs) def render(notifier): data = None print("Rendering") with open("CONFIGURATION.yaml") as fp: data = yaml.safe_load(fp.read()) data["time"] = datetime.utcnow() with open("docs.html", "w") as fp: env = Environment(loader=FileSystemLoader(".")) env.filters["markdown"] = markdown_filter try: res = env.get_template("template.html").render(data) fp.write(res) except UndefinedError: traceback.print_exc() def main(): parser = argparse.ArgumentParser(description='Generate documentation.') parser.add_argument('--watch', action='store_true', help="Use pyinotify to watch for changes") args = parser.parse_args() if args.watch: import pyinotify import functools wm = pyinotify.WatchManager() notifier = pyinotify.Notifier(wm) wm.add_watch('CONFIGURATION.yaml', pyinotify.IN_CLOSE_WRITE) wm.add_watch('template.html', pyinotify.IN_CLOSE_WRITE) on_loop_func = functools.partial(render) notifier.loop(daemonize=False, callback=on_loop_func) else: render(None) if __name__ == "__main__": main() ```
{ "source": "jgkelly/FreezerState", "score": 2 }
#### File: freezerstate/notifiers/slack.py ```python import freezerstate.config import requests class SlackSender(): def __init__(self, test_enabled=None, test_slack_server=None): self.module = '[SLACK]' self.enabled = freezerstate.CONFIG.SLACK_ENABLED if test_enabled is None else test_enabled self.webhook_url = freezerstate.CONFIG.SLACK_WEBHOOK_URL if test_slack_server is None else test_slack_server def notify(self, message): payload = { "text": message } return self.notify_extended(payload) def notify_extended(self, payload): if (self.enabled is False): print(f'{self.module} - Slack Sender is disabled') return False try: requests.post(self.webhook_url, json=payload, verify=True) except Exception as e: print(f'{self.module} - Slack notify failed: {e}') return False return True ``` #### File: jgkelly/FreezerState/freezerstate.py ```python import os import io import sys import time import threading import argparse import numpy import humanize from datetime import datetime from os import listdir, system from flask import Flask, jsonify, render_template, make_response from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure import freezerstate.config import freezerstate.conversion system('modprobe w1-gpio') system('modprobe w1-therm') app = Flask('freezerstate') @app.route("/") def index(): uptime_delta = datetime.now() - freezerstate.START_TIME uptime_string = humanize.naturaldelta(uptime_delta.total_seconds()) template_data = { 'location': freezerstate.CONFIG.LOCATION, 'time': freezerstate.GRAPH.last_time(), 'temperature': freezerstate.GRAPH.last_temp(), 'units': freezerstate.CONVERSION.UnitString(), 'min_temperature': freezerstate.CONVERSION.UnitizedTemperature(freezerstate.RANGE_MIN), 'max_temperature': freezerstate.CONVERSION.UnitizedTemperature(freezerstate.RANGE_MAX), 'uptime' : uptime_string } return render_template('index.html', **template_data) @app.route('/plot/temp') def plot_temp(): self_lock = threading.Lock() with self_lock: fig = Figure(figsize=(10, 8), dpi=100) ys = numpy.array(freezerstate.GRAPH.temperatures()) axis = fig.add_subplot(1, 1, 1) axis.set_title(f'{freezerstate.CONFIG.LOCATION} Temperature History') axis.set_ylabel( f'Temperature ({freezerstate.CONVERSION.UnitString()})') axis.set_xlabel('Time') axis.grid(True) xs = numpy.array(freezerstate.GRAPH.times()) axis.plot(xs, ys) canvas = FigureCanvas(fig) output = io.BytesIO() canvas.print_png(output) response = make_response(output.getvalue()) response.mimetype = 'image/png' return response def raw_temperature(): f = open(find_sensor(), 'r') lines = f.readlines() f.close() return lines def find_sensor(): devices = listdir(freezerstate.DEVICE_FOLDER) devices = [device for device in devices if device.startswith('28-')] if devices: return freezerstate.DEVICE_FOLDER + devices[0] + freezerstate.DEVICE_SUFFIX else: sys.exit("Could not find temperature sensor...") def get_temperature(): lines = raw_temperature() while not lines and len(lines) < 2 and lines[0].strip()[-3:] != 'YES': time.sleep(0.2) lines = raw_temperature() output_temperature = lines[1].split('t=')[1] if output_temperature != 1: celsius = round(float(output_temperature) / 1000.0, 1) return celsius def main_thread(name): if hasattr(sys, 'frozen'): freezerstate.FULL_PATH = os.path.abspath(sys.executable) else: freezerstate.FULL_PATH = os.path.abspath(__file__) freezerstate.PROG_DIR = os.path.dirname(freezerstate.FULL_PATH) freezerstate.ARGS = sys.argv[1:] parser = argparse.ArgumentParser( description='Temperature monitor and alerter') parser.add_argument('--datadir', help='Alternate data directory') parser.add_argument('--config', help='Alternate path to config file') args = parser.parse_args() if args.datadir: freezerstate.DATA_DIR = args.datadir else: freezerstate.DATA_DIR = freezerstate.PROG_DIR if args.config: freezerstate.CONFIG_FILE = args.config else: freezerstate.CONFIG_FILE = os.path.join( freezerstate.DATA_DIR, 'config.ini') print(f'Loading configuration from: {freezerstate.CONFIG_FILE}') freezerstate.initialize(freezerstate.CONFIG_FILE) print('Monitoring temperature...') freezerstate.NOTIFY.send_startup_message() while True: temperature = get_temperature() print( f'Time: {datetime.now()} : {freezerstate.CONVERSION.TemperatureString(temperature, True)}') freezerstate.GRAPH.plot( datetime.now(), freezerstate.CONVERSION.UnitizedTemperature(temperature)) freezerstate.NOTIFY.update(temperature) time.sleep(freezerstate.CONFIG.SAMPLE_FREQUENCY) return if __name__ == "__main__": x = threading.Thread(target=main_thread, args=(1,)) x.start() app.run(host='0.0.0.0', port=80, debug=False) ``` #### File: FreezerState/freezerstate/statusupdate.py ```python import freezerstate.config import time import datetime class StatusUpdate: def __init__(self, test_enabled=None, test_times=None): self.module = '[StatusUpdate]' self.notification_times = [] notify_times = freezerstate.CONFIG.STATUS_CHECK_TIMES if test_enabled is None else test_times self.load_times(notify_times) def should_notify(self, time_value): test_time = time_value if (type(time_value) == datetime.datetime): # time(hour = time_value.hour, minute = time_value.minute) test_time = time_value.time() test_text = test_time.strftime('%H:%M') for x in self.notification_times: if x.tm_hour == time_value.hour and x.tm_min == time_value.minute: return True return False def load_times(self, times): if times is None: return time_list = times.split(',') if len(time_list) == 0: return for x in time_list: try: note_time = time.strptime(x, '%H:%M') self.notification_times.append(note_time) except ValueError as ve: print(f'Time value: {x} is not a valid time - Ignoring') ``` #### File: freezerstate/updaters/timedstatus.py ```python import freezerstate.config import freezerstate.statusupdate import freezerstate.notifiers.notifiers import humanize from datetime import datetime class TimedStatus(): def __init__(self): self.module = '[TimedStatus]' self.alert_frequency = freezerstate.CONFIG.ALERT_FREQUENCY self.notifiers = freezerstate.notifiers.notifiers.Notifiers() self.last_notify = datetime.min self.status_update_times = freezerstate.statusupdate.StatusUpdate() self.location = freezerstate.CONFIG.LOCATION def update(self, temperature, current_time): if self.status_update_times.should_notify(current_time): self.send_status_update(temperature, current_time) return False def send_status_update(self, temperature, current_time): difference = current_time - self.last_notify if (difference.total_seconds() <= 60): print( f'--- It has been {difference.total_seconds()} seconds since last status update. Skipping status update') return False timestring = current_time.strftime( freezerstate.CONFIG.DATE_TIME_STAMP_FORMAT) uptime_diff = current_time - freezerstate.START_TIME uptime = uptime_diff.total_seconds() uptime_readable = humanize.time.precisedelta(uptime) message = f'*{self.location}* status update.\n🌡 {freezerstate.CONVERSION.TemperatureString(temperature, True)}\n⏰ {timestring}\n💻 Uptime: {uptime_readable}' print(f'--- {current_time}: Sending uptime notification') self.last_notify = current_time self.notifiers.notify(message) ```
{ "source": "jgke/tmc.py", "score": 2 }
#### File: jgke/tmc.py/setup.py ```python from setuptools import setup import os import sys if sys.version_info < (3, 2, 0): raise Exception("Only python 3.2+ is supported.") def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() exec(read('tmc/version.py')) setup( name='tmc', version=__version__, description='TestMyCode client', long_description=read("README.rst"), author='<NAME>', author_email='<EMAIL>', url='http://github.com/JuhaniImberg/tmc.py/', license='MIT', packages=['tmc', 'tmc.exercise_tests', 'tmc.tests', 'tmc.ui'], entry_points={ 'console_scripts': [ 'tmc = tmc.__main__:main', 'tmc3 = tmc.__main__:main' ] }, classifiers=[ "Development Status :: 3 - Alpha", "Environment :: Console", "Environment :: Console :: Curses", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.2", "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.4" ], install_requires=[ "requests == 2.5.1", "argh == 0.26.1", "peewee == 2.4.5" ], ) ``` #### File: tmc.py/tmc/config.py ```python import os from os import path, environ from configparser import ConfigParser from collections import OrderedDict class Config(object): """ This class will take care of ConfigParser and writing / reading the configuration. TODO: What to do when there are more variables to be configured? Should we overwrite the users config file with the updated variables if the file is lacking? """ config = None filename = "" defaults = None def __init__(self): default_path = path.join(path.expanduser("~"), ".config", "tmc.ini") config_filepath = environ.get("TMC_CONFIGFILE", default_path) super().__setattr__('filename', config_filepath) super().__setattr__('config', ConfigParser()) self._update_defaults() self.config["CONFIGURATION"] = {} for i in self.defaults: self.config["CONFIGURATION"][i] = str(self.defaults[i]) if self._exists(): self._load() self._write() def _update_defaults(self): defaults = OrderedDict() if os.name == "nt": defaults["use_unicode_characters"] = False defaults["use_ansi_colors"] = False else: defaults["use_unicode_characters"] = True defaults["use_ansi_colors"] = True defaults["tests_show_trace"] = False defaults["tests_show_partial_trace"] = False defaults["tests_show_time"] = True defaults["tests_show_successful"] = True super().__setattr__('defaults', defaults) def _exists(self): return path.isfile(self.filename) def _write(self): d = os.path.dirname(self.filename) if not os.path.exists(d): os.makedirs(d) with open(self.filename, "w") as fp: self.config.write(fp) def _load(self): with open(self.filename, "r") as fp: self.config.read_file(fp) for i in self.config["CONFIGURATION"]: if i not in self.defaults: print("Warning: unknown configuration option: " + i) def __getattr__(self, name): if isinstance(self.defaults.get(name), bool): return self.config["CONFIGURATION"].getboolean(name) return self.config["CONFIGURATION"].get(name) def __setattr__(self, name, value): self.config["CONFIGURATION"][name] = str(value) ``` #### File: tmc/tests/__init__.py ```python import os import sys from os import path from tmc.__main__ import run_command from tmc.errors import TMCExit from tmc.version import __version__ as version sys.path.append(os.getcwd()) from testsetup import (username, server_uri, course_id, exercise_id, fail_file, fail_compile_file, success_file) username = os.getenv("TMC_USERNAME", username) password = os.getenv("TMC_PASSWORD", "") server_uri = os.getenv("TMC_URI", server_uri) course_id = os.getenv("TMC_CDI", course_id) exercise_id = os.getenv("TMC_EID", exercise_id) def test_version(): """ Prints the version correctly """ stdout, _, _ = run_command("version") assert "tmc.py version {}".format(version) in stdout def test_reset(): """ Database resetting works """ import tmc.ui.prompt tmc.ui.prompt.input = lambda _: "y" stdout, _, _ = run_command("reset") assert "Database resetted." in stdout tmc.ui.prompt.input = lambda _: "n" stdout, _, _ = run_command("reset") assert "Database resetted." not in stdout def test_configure(): """ Configuring works """ _, _, ex = run_command( ["configure", "-u", username, "-p", password, "-s", server_uri, "-i", course_id, "--auto"] ) assert ex is None def test_next(): """ Next works """ _, _, ex = run_command("next") assert ex is None def test_previous(): """ Previous works """ os.environ["TMC_TESTING"] = "1" _, _, ex = run_command("previous") assert ex is None _, _, ex = run_command("previous") assert ex is not None def test_select(): """ Selecting works """ _, _, ex = run_command(["select", "-i", exercise_id]) assert ex is None def test_download_single(): """ Downloading works """ _, _, ex = run_command(["download", "-f", "-i", exercise_id]) assert ex is None from tmc.models import Exercise assert Exercise.get_selected().is_downloaded == True def test_test_fail(): """ Testing can fail """ from tmc.models import Exercise fpath = path.join(Exercise.get_selected().path(), "src", "Nimi.java") with open(fpath, "w") as f: f.write(fail_file) os.environ["TMC_TESTING"] = "1" wasexit = False stdout, stderr, exception = run_command("test") if type(exception) == TMCExit: wasexit = True assert wasexit == True assert "Results:" in stdout assert "\033[31m" in stderr and "\033[0m" in stderr def test_compile_fail(): """ Compile can fail """ from tmc.models import Exercise fpath = path.join(Exercise.get_selected().path(), "src", "Nimi.java") with open(fpath, "w") as f: f.write(fail_compile_file) os.environ["TMC_TESTING"] = "1" wasexit = False stdout, stderr, exception = run_command("test") if type(exception) == TMCExit: wasexit = True assert wasexit == True assert "Results:" in stdout assert "\033[31m" in stderr and "\033[0m" in stderr def test_test_success(): """ Testing can succeed """ from tmc.models import Exercise fpath = path.join(Exercise.get_selected().path(), "src", "Nimi.java") with open(fpath, "w") as f: f.write(success_file) os.environ["TMC_TESTING"] = "1" wasexit = False stdout, stderr, exception = run_command("test") if type(exception) == TMCExit: wasexit = True assert wasexit == False assert "Results:" in stdout assert "\033[32m" in stdout and "\033[0m" in stdout assert len(stderr) == 0 def test_submit_fail(): """ Submitted exercise can fail """ from tmc.models import Exercise fpath = path.join(Exercise.get_selected().path(), "src", "Nimi.java") with open(fpath, "w") as f: f.write(fail_file) os.environ["TMC_TESTING"] = "1" wasexit = False stdout, stderr, exception = run_command("submit") if type(exception) == TMCExit: wasexit = True assert wasexit == True assert "Results:" in stdout uri = os.getenv("TMC_URI", server_uri) assert "Submission URL: " + uri + "submissions/" in stdout assert "Pastebin: " + uri + "paste/" not in stdout assert "Requested a review" not in stdout assert "\033[31m" in stderr and "\033[0m" in stderr def test_submit_success(): """ Submitted exercise can succeed """ from tmc.models import Exercise fpath = path.join(Exercise.get_selected().path(), "src", "Nimi.java") with open(fpath, "w") as f: f.write(success_file) os.environ["TMC_TESTING"] = "1" wasexit = False stdout, stderr, exception = run_command(["submit", "-p", "-r"]) if type(exception) == TMCExit: wasexit = True assert wasexit == False assert "Results:" in stdout assert "Points [1]" in stdout assert "Requested a review" in stdout uri = os.getenv("TMC_URI", server_uri) assert "Submission URL: " + uri + "submissions/" in stdout assert "Pastebin: " + uri + "paste/" in stdout assert len(stderr) == 0 ```
{ "source": "jgkim999/csharp-example", "score": 2 }
#### File: csharp-example/PythonTest1/Test.py ```python import clr clr.AddReference("System") clr.AddReferenceToFile("IronPython.Modules.dll") login_token = '' def set_login_token(token): global login_token login_token = token def make_login_id(): login_id = 'test' login_id += str(proxy.Random(1, 100)) return login_id def HelloWorld(): data = 'Hello World C# sdfadsfsdf' return data def HelloWorld2(data): return data def HelloWorld3(): proxy.ShowMessage('called sdfsdlfksdklflksdklflk proxy.ShowMessage') def ListTest(): data = [] data.append('Hello') data.append('World') data.append('black falcon') return data class MyClass(object): def __init__(self, value): self.value = value class Calculator: def add(self, argA, argB): return argA+argB def sub(self, argA, argB): return argA-argB ```
{ "source": "jgkwak95/AU-GAN", "score": 3 }
#### File: jgkwak95/AU-GAN/utils.py ```python import scipy.misc import numpy as np import copy import os class ImagePool(object): def __init__(self, maxsize=50): self.maxsize = maxsize self.num_img = 0 self.images = [] def __call__(self, image): if self.maxsize <= 0: return image if self.num_img < self.maxsize: self.images.append(image) self.num_img += 1 return image if np.random.rand() > 0.5: idx = int(np.random.rand()*self.maxsize) tmp1 = copy.copy(self.images[idx])[0] self.images[idx][0] = image[0] idx = int(np.random.rand()*self.maxsize) tmp2 = copy.copy(self.images[idx])[1] self.images[idx][1] = image[1] return [tmp1, tmp2] else: return image def load_test_data(image_path, fine_size=256): img = imread(image_path) img = scipy.misc.imresize(img, [fine_size, fine_size*2]) img = img/127.5 - 1 return img def check_folder(path): if not os.path.exists(path): os.mkdir(path) def load_train_data(image_path, load_size=286, fine_size=256, is_testing=False): img_A = imread(image_path[0]) img_B = imread(image_path[1]) if not is_testing: img_A = scipy.misc.imresize(img_A, [load_size, load_size*2]) img_B = scipy.misc.imresize(img_B, [load_size, load_size*2]) h1 = int(np.ceil(np.random.uniform(1e-2, load_size-fine_size))) w1 = int(np.ceil(np.random.uniform(1e-2, (load_size-fine_size)*2))) img_A = img_A[h1:h1+fine_size, w1:w1+fine_size*2] img_B = img_B[h1:h1+fine_size, w1:w1+fine_size*2] if np.random.random() > 0.5: img_A = np.fliplr(img_A) img_B = np.fliplr(img_B) else: img_A = scipy.misc.imresize(img_A, [fine_size, fine_size*2]) img_B = scipy.misc.imresize(img_B, [fine_size, fine_size*2]) img_A = img_A/127.5 - 1. img_B = img_B/127.5 - 1. img_AB = np.concatenate((img_A, img_B), axis=2) return img_AB # ----------------------------- def get_image(image_path, image_size, is_crop=True, resize_w=64, is_grayscale = False): return transform(imread(image_path, is_grayscale), image_size, is_crop, resize_w) def save_images(images, size, image_path): return imsave(inverse_transform(images), size, image_path) def imread(path, is_grayscale = False): if (is_grayscale): return scipy.misc.imread(path, flatten = True).astype(np.float) else: return scipy.misc.imread(path, mode='RGB').astype(np.float) def merge_images(images, size): return inverse_transform(images) def merge(images, size): h, w = images.shape[1], images.shape[2] img = np.zeros((h * size[0], w * size[1], 3)) for idx, image in enumerate(images): i = idx % size[1] j = idx // size[1] img[j*h:j*h+h, i*w:i*w+w, :] = image return img def imsave(images, size, path): return scipy.misc.imsave(path, merge(images, size)) def center_crop(x, crop_h, crop_w, resize_h=64, resize_w=64): if crop_w is None: crop_w = crop_h h, w = x.shape[:2] j = int(round((h - crop_h)/2.)) i = int(round((w - crop_w)/2.)) return scipy.misc.imresize( x[j:j+crop_h, i:i+crop_w], [resize_h, resize_w]) def transform(image, npx=64, is_crop=True, resize_w=64): # npx : # of pixels width/height of image if is_crop: cropped_image = center_crop(image, npx, resize_w=resize_w) else: cropped_image = image return np.array(cropped_image)/127.5 - 1. def inverse_transform(images): return (images+1.)/2. def norm_img(img): img = img / np.linalg.norm(img) img = (img * 2.) - 1. return img def set_path(args, experiment_name): args.checkpoint_dir = f'./check/{experiment_name}' args.sample_dir = f'./check/{experiment_name}/sample' if args.which_direction == 'AtoB': args.test_dir = f'./check/{experiment_name}/testa2b' else: args.test_dir = f'./check/{experiment_name}/testb2a' if not os.path.exists(args.checkpoint_dir): os.makedirs(args.checkpoint_dir) if not os.path.exists(args.sample_dir): os.makedirs(args.sample_dir) if not os.path.exists(args.test_dir): os.makedirs(args.test_dir) ```
{ "source": "jglaser/affinity_pred", "score": 2 }
#### File: affinity_pred/affinity_pred/infer_mpi.py ```python from mpi4py import MPI from mpi4py.futures import MPICommExecutor import torch import transformers from transformers import AutoModelForSequenceClassification, BertModel, RobertaModel, BertTokenizerFast, RobertaTokenizer from transformers import PreTrainedModel, BertConfig, RobertaConfig from transformers import Trainer, TrainingArguments from transformers.data.data_collator import default_data_collator from transformers.tokenization_utils_base import BatchEncoding from transformers import EvalPrediction from transformers import AutoModelForMaskedLM from transformers import AdamW from transformers import HfArgumentParser from dataclasses import dataclass, field from transformers.integrations import deepspeed_config, is_deepspeed_zero3_enabled import deepspeed from torch.nn import functional as F import toolz import time from functools import partial import traceback from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score from sklearn.metrics import mean_squared_error, mean_absolute_error import pandas as pd import re import gc import os import json import pandas as pd import numpy as np import requests from tqdm.auto import tqdm import torch.multiprocessing as mp import torch.distributed as dist from torch.nn.parallel import DistributedDataParallel as DD seq_model_name = "Rostlab/prot_bert_bfd" # for fine-tuning # this logic is necessary because online-downloading and caching doesn't seem to work if os.path.exists('seq_tokenizer'): seq_tokenizer = BertTokenizerFast.from_pretrained('seq_tokenizer/', do_lower_case=False) else: seq_tokenizer = BertTokenizerFast.from_pretrained(seq_model_name, do_lower_case=False) seq_tokenizer.save_pretrained('seq_tokenizer/') model_directory = '/gpfs/alpine/world-shared/bip214/maskedevolution/models/bert_large_1B/model' tokenizer_directory = '/gpfs/alpine/world-shared/bip214/maskedevolution/models/bert_large_1B/tokenizer' tokenizer_config = json.load(open(tokenizer_directory+'/config.json','r')) smiles_tokenizer = BertTokenizerFast.from_pretrained(tokenizer_directory, **tokenizer_config) max_smiles_length = min(200,BertConfig.from_pretrained(model_directory).max_position_embeddings) # Mpro has 306 residues max_seq_length = min(4096,BertConfig.from_pretrained(seq_model_name).max_position_embeddings) def expand_seqs(seqs): input_fixed = ["".join(seq.split()) for seq in seqs] input_fixed = [re.sub(r"[UZOB]", "X", seq) for seq in input_fixed] return [list(seq) for seq in input_fixed] # use distributed data parallel on a node-local basis for inference #os.environ['RANK'] = os.environ['OMPI_COMM_WORLD_LOCAL_RANK'] #os.environ['WORLD_SIZE'] = os.environ['OMPI_COMM_WORLD_LOCAL_SIZE'] #os.environ['LOCAL_RANK'] = os.environ['OMPI_COMM_WORLD_LOCAL_RANK'] #os.environ['MASTER_ADDR'] = '127.0.0.1' #os.environ['MASTER_PORT'] = '29500' os.environ['RANK'] = '0' os.environ['WORLD_SIZE'] = '1' os.environ['LOCAL_RANK'] = '0' os.environ['MASTER_ADDR'] = '127.0.0.1' os.environ['MASTER_PORT'] = str(29500+int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])) #torch.cuda.set_device(int(os.environ['LOCAL_RANK'])) @dataclass class InferenceArguments: checkpoint: str = field( default=None ) batch_size: int = field( default=1 ) input_path: str = field( default=None ) output_path: str = field( default=None ) seq: str = field( default=None ) smiles_column: str = field( default='smiles' ) seq_column: str = field( default='seq' ) # # parser - used to handle deepspeed case as well parser = HfArgumentParser([TrainingArguments,InferenceArguments]) training_args, inference_args = parser.parse_args_into_dataclasses() def main(fn): try: def encode_canonical(item): seq_encodings = seq_tokenizer(expand_seqs(item['seq'])[0], is_split_into_words=True, return_offsets_mapping=False, truncation=True, padding='max_length', add_special_tokens=True, max_length=max_seq_length) smiles_encodings = smiles_tokenizer(item['smiles'][0], padding='max_length', max_length=max_smiles_length, add_special_tokens=True, truncation=True) item['input_ids'] = torch.cat([torch.tensor(seq_encodings['input_ids']), torch.tensor(smiles_encodings['input_ids'])]) item['token_type_ids'] = torch.cat([torch.tensor(seq_encodings['token_type_ids']), torch.tensor(smiles_encodings['token_type_ids'])]) item['attention_mask'] = torch.cat([torch.tensor(seq_encodings['attention_mask']), torch.tensor(smiles_encodings['attention_mask'])]) item.pop('smiles') item.pop('seq') return item def transform(seq, smiles_canonical): item = {'seq': [seq], 'smiles': [smiles_canonical]} return encode_canonical(item) def transform_df(df): if inference_args.seq is not None: return df[inference_args.smiles_column].apply(lambda x: transform(inference_args.seq, x)).values else: assert inference_args.seq is None return df[[inference_args.seq_column,inference_args.smiles_column]].apply(lambda x: transform(*x),axis=1).values # load the model and predict a batch def predict(df, return_dict=False): from affinity_pred.model import EnsembleSequenceRegressor def model_init(): return EnsembleSequenceRegressor(seq_model_name, model_directory, max_seq_length=max_seq_length, sparse_attention=True) trainer = Trainer( model_init=model_init, # the instantiated <F0><9F><A4><97> Transformers model to be trained args=training_args, # training arguments, defined above ) checkpoint = torch.load(inference_args.checkpoint, map_location=torch.device('cpu')) trainer.model.load_state_dict(checkpoint,strict=False) x = transform_df(df) out = trainer.predict(x) print('{} samples/second'.format(out.metrics['test_samples_per_second'])) df['affinity_mean'] = pd.Series(data=out.predictions[:,0], index=df.index).astype('float32') df['affinity_var'] = pd.Series(data=out.predictions[:,1], index=df.index).astype('float32') return df df = pd.read_parquet(fn) df_pred = predict(df) base = os.path.basename(fn) df_pred.to_parquet(inference_args.output_path+'/'+base) except Exception as e: print(repr(e)) traceback.print_exc() if __name__ == "__main__": comm = MPI.COMM_WORLD with MPICommExecutor(comm, root=0) as executor: if executor is not None: import glob fns = glob.glob(inference_args.input_path) fns = [f for f in fns if not os.path.exists(inference_args.output_path+'/'+os.path.basename(f))] executor.map(main, fns) ``` #### File: affinity_pred/train/earlystop.py ```python import pandas as pd import tensorflow as tf from tensorflow.data import TFRecordDataset from tensorflow.core.util import event_pb2 from tensorflow.python.lib.io import tf_record from tensorflow.python.framework import tensor_util import numpy as np import os import glob import sys tf.config.experimental.set_visible_devices([], 'GPU') def my_summary_iterator(path): for r in TFRecordDataset(path): yield event_pb2.Event.FromString(r.numpy()) def get_eval_losses(summary_dir): losses = [] steps = [] for entry in os.scandir(summary_dir): if entry.is_file(): filename = entry.name path = os.path.join(summary_dir, filename) for event in my_summary_iterator(path): for value in event.summary.value: if value.tag == 'eval/loss': losses.append(value.simple_value) steps.append(event.step) return losses, steps if __name__ == '__main__': dirs = list(glob.glob(sys.argv[1])) min_loss_step = [] for dir in dirs: losses, steps = get_eval_losses(dir) print(dir,losses) step_min = steps[np.argmin(losses)] min_loss_step.append(step_min) for dir,step_min in zip(dirs,min_loss_step): print('{} Min loss step: {}'.format(dir, step_min)) ```
{ "source": "jglaser/blazingsql", "score": 2 }
#### File: BlazingSQLTest/EndToEndTests/crossJoinsTest.py ```python from DataBase import createSchema as cs from pyspark.sql import SparkSession from Configuration import Settings as Settings from Runner import runTest from Utils import Execution from Utils import gpuMemory, skip_test, init_context from pynvml import nvmlInit from blazingsql import DataType from Configuration import ExecutionMode queryType = 'Cross join' def main(dask_client, spark, dir_data_file, bc, nRals): start_mem = gpuMemory.capture_gpu_memory_usage() def executionTest(): tables = ["nation", "region", "customer", "lineitem", "orders"] data_types = [DataType.DASK_CUDF, DataType.CUDF, DataType.CSV, DataType.ORC, DataType.PARQUET] # TODO json # Create Tables ------------------------------------------------------ for fileSchemaType in data_types: if skip_test(dask_client, nRals, fileSchemaType, queryType): continue cs.create_tables(bc, dir_data_file, fileSchemaType, tables=tables) # Run Query ------------------------------------------------------ # Parameter to indicate if its necessary to order # the resulsets before compare them worder = 1 use_percentage = False acceptable_difference = 0 print('==============================') print(queryType) print('==============================') queryId = 'TEST_01' query = "select * from nation cross join region" runTest.run_query(bc, spark, query, queryId, queryType, worder, '', acceptable_difference, use_percentage, fileSchemaType) queryId = 'TEST_02' query = """ select o_orderkey, o_totalprice, l_linenumber, l_shipmode from orders cross join lineitem where o_orderkey < 6 and l_receiptdate > date '1996-07-12' and l_linenumber > 5 and o_totalprice < 74029.55 and o_clerk = 'Clerk#000000880' and l_shipmode IN ('FOB', 'RAIL') order by o_orderkey, o_totalprice, l_linenumber""" runTest.run_query(bc, spark, query, queryId, queryType, worder, '', acceptable_difference, use_percentage, fileSchemaType) queryId = 'TEST_03' query = """select o_orderkey, n_nationkey from nation cross join orders where o_totalprice > 4000.0 and o_orderdate > date '1998-07-12' and o_orderkey > 425000 group by o_orderkey, n_nationkey order by o_orderkey, n_nationkey""" runTest.run_query(bc, spark, query, queryId, queryType, worder, '', acceptable_difference, use_percentage, fileSchemaType) queryId = 'TEST_04' query = """ with cust_nation as ( select c_custkey, c_name, n_nationkey, n_name from customer inner join nation on c_nationkey = n_nationkey where n_nationkey > 21 and c_acctbal > 525.0 and c_custkey > 13450 order by c_custkey, n_nationkey ), ord_lineitem as ( select o_orderkey, l_quantity from orders left join lineitem on o_orderkey = l_orderkey where l_shipdate > date '1998-11-12' and o_totalprice > 3500.0 and l_quantity > 48.0 and l_shipmode in ('AIR', 'FOB', 'SHIP') order by o_orderkey ) select c_custkey, n_name, l_quantity from ord_lineitem cross join cust_nation where n_name = 'RUSSIA' order by c_custkey""" runTest.run_query(bc, spark, query, queryId, queryType, worder, '', acceptable_difference, use_percentage, fileSchemaType) if Settings.execution_mode == ExecutionMode.GENERATOR: print("==============================") break executionTest() end_mem = gpuMemory.capture_gpu_memory_usage() gpuMemory.log_memory_usage(queryType, start_mem, end_mem) if __name__ == '__main__': Execution.getArgs() nvmlInit() # NOTE: Drill doesn't support CROSS JOIN spark = "spark" compareResults = True if 'compare_results' in Settings.data['RunSettings']: compareResults = Settings.data['RunSettings']['compare_results'] if ((Settings.execution_mode == ExecutionMode.FULL and compareResults == "true") or Settings.execution_mode == ExecutionMode.GENERATOR): # Create Table Spark -------------------------------------------------- spark = SparkSession.builder.appName("timestampTest").getOrCreate() cs.init_spark_schema(spark, Settings.data['TestSettings']['dataDirectory']) # Create Context For BlazingSQL bc, dask_client = init_context() nRals = Settings.data['RunSettings']['nRals'] main(dask_client, spark, Settings.data['TestSettings']['dataDirectory'], bc, nRals) if Settings.execution_mode != ExecutionMode.GENERATOR: runTest.save_log() gpuMemory.print_log_gpu_memory() ``` #### File: BlazingSQLTest/EndToEndTests/literalTest.py ```python from blazingsql import DataType from Configuration import ExecutionMode from Configuration import Settings as Settings from DataBase import createSchema as cs from pynvml import nvmlInit from pyspark.sql import SparkSession from Runner import runTest from Utils import Execution, gpuMemory, init_context, skip_test queryType = "Literal" def main(dask_client, drill, spark, dir_data_file, bc, nRals): start_mem = gpuMemory.capture_gpu_memory_usage() def executionTest(): tables = ["orders", "customer"] data_types = [DataType.ORC] # TODO gdf csv parquet json for fileSchemaType in data_types: if skip_test(dask_client, nRals, fileSchemaType, queryType): continue cs.create_tables(bc, dir_data_file, fileSchemaType, tables=tables) # Run Query ------------------------------------------------------ # Parameter to indicate if its necessary to order # the resulsets before compare them worder = 1 use_percentage = False acceptable_difference = 0.01 print("==============================") print(queryType) print("==============================") queryId = "TEST_01" query = """select 2, o_orderdate from orders order by o_orderdate asc limit 5""" query_spark = """select 2, o_orderdate from orders order by o_orderdate nulls last limit 5""" runTest.run_query( bc, spark, query, queryId, queryType, worder, "o_orderdate", acceptable_difference, use_percentage, fileSchemaType, query_spark=query_spark, ) queryId = "TEST_02" query = """select 'Rommel',c_name from customer order by c_name limit 5""" query_spark = """select 'Rommel',c_name from customer order by c_name nulls last limit 5""" runTest.run_query( bc, spark, query, queryId, queryType, worder, "c_name", acceptable_difference, use_percentage, fileSchemaType, query_spark=query_spark, ) queryId = "TEST_03" query = """select '1990-01-01', c_custkey from customer order by c_custkey limit 5""" query_spark = """select '1990-01-01', c_custkey from customer order by c_custkey nulls last limit 5""" runTest.run_query( bc, spark, query, queryId, queryType, worder, "c_custkey", acceptable_difference, use_percentage, fileSchemaType, query_spark=query_spark, ) queryId = "TEST_04" query = """select timestamp '1990-01-01 00:00:00', c_custkey from customer order by c_custkey limit 5""" runTest.run_query( bc, drill, query, queryId, queryType, worder, "c_custkey", acceptable_difference, True, fileSchemaType, ) # TODO: Change sum/count for avg KC queryId = "TEST_05" query = """select 80000 as constant, c_custkey from customer order by c_custkey limit 5""" query_spark = """select 80000 as constant, c_custkey from customer order by c_custkey nulls last limit 5""" runTest.run_query( bc, spark, query, queryId, queryType, worder, "c_custkey", acceptable_difference, use_percentage, fileSchemaType, query_spark=query_spark, ) queryId = "TEST_06" # TODO: Blazing not support: 2+2 query = """select 2+2, o_orderdate from orders order by o_orderkey limit 5""" # runTest.run_query(bc, spark, query, queryId, queryType, # 0, '', acceptable_difference, use_percentage, fileSchemaType) if Settings.execution_mode == ExecutionMode.GENERATOR: print("==============================") break executionTest() end_mem = gpuMemory.capture_gpu_memory_usage() gpuMemory.log_memory_usage(queryType, start_mem, end_mem) if __name__ == "__main__": Execution.getArgs() nvmlInit() drill = "drill" # None spark = "spark" compareResults = True if "compare_results" in Settings.data["RunSettings"]: compareResults = Settings.data["RunSettings"]["compare_results"] if ((Settings.execution_mode == ExecutionMode.FULL and compareResults == "true") or Settings.execution_mode == ExecutionMode.GENERATOR): # Create Table Drill ------------------------------------------------ from pydrill.client import PyDrill drill = PyDrill(host="localhost", port=8047) cs.init_drill_schema(drill, Settings.data["TestSettings"]["dataDirectory"]) # Create Table Spark ------------------------------------------------- spark = SparkSession.builder.appName("timestampTest").getOrCreate() cs.init_spark_schema(spark, Settings.data["TestSettings"]["dataDirectory"]) # Create Context For BlazingSQL bc, dask_client = init_context() nRals = Settings.data["RunSettings"]["nRals"] main( dask_client, drill, spark, Settings.data["TestSettings"]["dataDirectory"], bc, nRals, ) if Settings.execution_mode != ExecutionMode.GENERATOR: runTest.save_log() gpuMemory.print_log_gpu_memory() ```
{ "source": "jglaser/DeepSpeed", "score": 2 }
#### File: aio/py_test/test_ds_aio.py ```python import os import torch import argparse import time import sys from multiprocessing import Pool import multiprocessing as mp from ds_aio_basic import aio_basic_multiprocessing from ds_aio_handle import aio_handle_multiprocessing from test_ds_aio_utils import refine_args def parse_arguments(): parser = argparse.ArgumentParser() parser.add_argument('--read_file', type=str, default=None, help='Read file.') parser.add_argument('--write_file', type=str, default=None, help='Write file.') parser.add_argument('--write_size', type=str, default=None, help='Number of bytes to write.') parser.add_argument('--block_size', type=str, default='1M', help='I/O block size.') parser.add_argument('--queue_depth', type=int, default=32, help='I/O queue depth.') parser.add_argument('--threads', type=int, default=1, help='Thread parallelism count.') parser.add_argument( '--single_submit', action='store_true', help= 'Submit I/O requests in singles (default is submit queue_depth amount at once.).' ) parser.add_argument('--overlap_events', action='store_true', help='Overlap I/O submission and completion requests.') parser.add_argument('--validate', action='store_true', help='Perform validation in library.') parser.add_argument('--handle', action='store_true', help='Use AIO handle.') parser.add_argument('--loops', type=int, default=1, help='Count of operation repetitions') parser.add_argument('--io_parallel', type=int, default=None, help='Per iop parallelism') parser.add_argument('--gpu', action='store_true', help='Use GPU memory') args = parser.parse_args() print(f'args = {args}') return args def validate_args(args): if args.read_file and not os.path.isfile(args.read_file): print(f'args validation error: {args.read_file} not found') return False return True def main(): print(f'Testing deepspeed_aio python frontend') args = parse_arguments() refine_args(args) if not validate_args(args): quit() mp.set_start_method('spawn') multiprocess_function = aio_handle_multiprocessing if args.handle else aio_basic_multiprocessing if args.read_file: multiprocess_function(args, True) if args.write_file: multiprocess_function(args, False) if __name__ == "__main__": main() ``` #### File: deepspeed/runtime/dataloader.py ```python import torch from torch.utils.data import DataLoader, RandomSampler from torch.utils.data.distributed import DistributedSampler class RepeatingLoader: def __init__(self, loader): """Wraps an iterator to allow for infinite iteration. This is especially useful for DataLoader types that we wish to automatically restart upon completion. Args: loader (iterator): The data loader to repeat. """ self.loader = loader self.data_iter = iter(self.loader) def __iter__(self): return self def __next__(self): try: batch = next(self.data_iter) except StopIteration: self.data_iter = iter(self.loader) batch = next(self.data_iter) return batch class DeepSpeedDataLoader(object): def __init__(self, dataset, batch_size, pin_memory, local_rank, tput_timer, collate_fn=None, num_local_io_workers=None, data_sampler=None, data_parallel_world_size=None, data_parallel_rank=None): self.tput_timer = tput_timer self.batch_size = batch_size if local_rank >= 0: if data_sampler is None: data_sampler = DistributedSampler(dataset=dataset, num_replicas=data_parallel_world_size, rank=data_parallel_rank) device_count = 1 else: if data_sampler is None: data_sampler = RandomSampler(dataset) device_count = torch.cuda.device_count() batch_size *= device_count if num_local_io_workers is None: num_local_io_workers = 2 * device_count self.num_local_io_workers = num_local_io_workers self.data_sampler = data_sampler self.dataset = dataset self.collate_fn = collate_fn self.device_count = device_count self.batch_size = batch_size self.pin_memory = pin_memory self.len = len(self.data_sampler) self.data = None def __iter__(self): self._create_dataloader() return self def __len__(self): return self.len def __next__(self): if self.tput_timer: self.tput_timer.start() return next(self.data) def _create_dataloader(self): if self.collate_fn is None: self.dataloader = DataLoader(self.dataset, batch_size=self.batch_size, pin_memory=self.pin_memory, sampler=self.data_sampler, num_workers=self.num_local_io_workers) else: self.dataloader = DataLoader(self.dataset, batch_size=self.batch_size, pin_memory=self.pin_memory, sampler=self.data_sampler, collate_fn=self.collate_fn, num_workers=self.num_local_io_workers) self.data = (x for x in self.dataloader) return self.dataloader # DataLoader([(torch.randn(3, 3), torch.tensor(i % 2)) for i in range(10)], batch_size=2)) ``` #### File: fp16/onebit/adam.py ```python import types import torch import importlib import numpy as np import time import torch.distributed as dist from deepspeed.utils.logging import logger class OnebitAdam(torch.optim.Optimizer): """Implements the 1-bit Adam algorithm. Currently GPU-only. For usage example please see https://www.deepspeed.ai/tutorials/onebit-adam/ For technical details please read https://arxiv.org/abs/2102.02888 Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups. lr (float, optional): learning rate. (default: 1e-3) freeze_step (int, optional): Number of steps for warmup (uncompressed) stage before we start using compressed communication. (default 100000) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square. (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability. (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ (default: False) NOT SUPPORTED in 1-bit Adam! eps_inside_sqrt (boolean, optional): in the 'update parameters' step, adds eps to the bias-corrected second moment estimate before evaluating square root instead of adding it to the square root of second moment estimate as in the original paper. (default: False) cuda_aware (boolean, required): Set True if the underlying MPI implementation supports CUDA-Aware communication. (default: False) comm_backend_name (string, optional): Set to 'mpi' if needed. (default: 'nccl') .. _Adam\: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ def __init__(self, params, deepspeed=None, lr=1e-3, freeze_step=100000, bias_correction=True, betas=(0.9, 0.999), eps=1e-8, eps_inside_sqrt=False, weight_decay=0., max_grad_norm=0., amsgrad=False, cuda_aware=False, comm_backend_name='nccl'): if amsgrad: raise RuntimeError('1-bit Adam does not support the AMSGrad variant.') defaults = dict(lr=lr, bias_correction=bias_correction, betas=betas, eps=eps, weight_decay=weight_decay, max_grad_norm=max_grad_norm) super(OnebitAdam, self).__init__(params, defaults) self.eps_mode = 0 if eps_inside_sqrt else 1 assert (dist.is_initialized()) self.comm_time = 0.0 self.step_time = 0.0 self.ave_step = 1 self.bk_time = 0.0 self.deepspeed = deepspeed self.adam_freeze_key = False self.initialize = False self.freeze_step = freeze_step self.cuda_aware = cuda_aware self.using_pipeline = False self.comm_backend_name = comm_backend_name # Empty initializer. Set handle based on the comm backend as follows. self.comm_backend_handle = None if self.comm_backend_name == 'nccl': TORCH_MAJOR = int(torch.__version__.split('.')[0]) TORCH_MINOR = int(torch.__version__.split('.')[1]) assert TORCH_MAJOR >= 1 and TORCH_MINOR >= 8, "Please use torch 1.8 or greater to enable NCCL backend in 1-bit Adam. Alternatively, please specify 'mpi' as the 'comm_backend_name' in config file to proceed with the MPI backend" assert dist.is_initialized() == True, "Please initialize the torch distributed backend." from deepspeed.runtime.comm.nccl import NcclBackend self.using_pipeline = hasattr(self.deepspeed, 'pipeline_enable_backward_allreduce') self.comm_backend_handle = NcclBackend(self.deepspeed.mpu) elif self.comm_backend_name == 'mpi': from deepspeed.runtime.comm.mpi import MpiBackend self.comm_backend_handle = MpiBackend(cuda_aware) self.size = self.comm_backend_handle.size self.divider = int(self.size * 8 / np.gcd(self.size, 8)) def step(self, closure=None, grads=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. grads (list of tensors, optional): weight gradient to use for the optimizer update. If gradients have type torch.half, parameters are expected to be in type torch.float. (default: None) output params (list of tensors, optional): A reduced recision copy of the updated weights written out in addition to the regular updated weights. Have to be of same type as gradients. (default: None) scale (float, optional): factor to divide gradient tensor values by before applying to weights. (default: 1) """ loss = None if closure is not None: loss = closure() gather_time = 0 allgather_time = 0 all_time = 0 if self.adam_freeze_key is False: v_diff_buffer = 0.0 if grads is None: grads_group = [None] * len(self.param_groups) # backward compatibility # assuming a list/generator of parameter means single group elif isinstance(grads, types.GeneratorType): grads_group = [grads] elif type(grads[0]) != list: grads_group = [grads] else: grads_group = grads for group, grads_this_group in zip(self.param_groups, grads_group): if grads_this_group is None: grads_this_group = [None] * len(group['params']) bias_correction = 1 if group['bias_correction'] else 0 for p, grad in zip(group['params'], grads_this_group): if p.grad is None and grad is None: continue if grad is None: grad = p.grad.data if grad.is_sparse: raise RuntimeError('1-bit Adam does not support sparse gradients') state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p.data) state['tensor_size'] = torch.numel(p.data) state['corrected_tensor_size'] = state['tensor_size'] if state['tensor_size'] % (self.size * self.divider) != 0: state['corrected_tensor_size'] += ((self.size * self.divider) - (state['tensor_size'] % (self.size * self.divider))) state['server_chunk_size'] = state[ 'corrected_tensor_size'] // self.size if not self.initialize or (self.adam_freeze_key and 'worker_error' not in state.keys()): torch.cuda.empty_cache() state['worker_error'] = torch.zeros(state['corrected_tensor_size'], device=p.device) state['server_error'] = torch.zeros(state['server_chunk_size'], device=p.device) torch.cuda.empty_cache() self.adam_freeze_key = True if not self.initialize and torch.distributed.get_rank() == 0: print("Cupy Buffers Initialized Successfully.") exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] beta1, beta2 = group['betas'] state['step'] += 1 if self.adam_freeze_key is False: exp_avg.mul_(beta1).add_(1 - beta1, grad) exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) grad = None if self.initialize: update = exp_avg / (exp_avg_sq.sqrt() + group['eps']) else: if 'non_freeze' in group.keys() and group['non_freeze'] is True: dist.all_reduce(grad) grad.mul_(1 / dist.get_world_size()) exp_avg.mul_(beta1).add(1 - beta1, grad) exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) grad = None else: if self.initialize is True: exp_avg.mul_(beta1).add_(1 - beta1, grad) grad = None if self.size > 1: exp_avg.set_( self.comm_backend_handle.compressed_allreduce( exp_avg, state['worker_error'], state['server_error'], self.deepspeed.local_rank)) # Because 1-bit compression cannot represent exact zero, it is required to # provide a momentum mask for those params that have constant exact zeros in their # momentums, otherwise the compression error would keep accumulating. # For example, for BERT pre-training seq 128, bert.embeddings.position_embeddings.weight # always have exact zeros in its momentum for row 129 to 512, because it only # learns up to seq length 128 while the model supports up to 512 seq length. # (See example in DeepSpeedExamples/bing_bert/deepspeed_train.py.) if 'exp_avg_mask' in group: if exp_avg.device != group['exp_avg_mask'].device: group['exp_avg_mask'] = group['exp_avg_mask'].to( device=exp_avg.device) exp_avg.mul_(group['exp_avg_mask']) if self.initialize: update = exp_avg / (exp_avg_sq.sqrt() + group['eps']) if self.initialize: if group['weight_decay'] > 0.0: update += group['weight_decay'] * p.data with torch.no_grad(): p.add_(-group['lr'] * update) if not self.initialize: print('Pop out errors', flush=True) state.pop('worker_error') state.pop('server_error') if not self.initialize: self.adam_freeze_key = False self.initialize = True print( f"Finished the initialization step at rank {torch.distributed.get_rank()}" ) return loss if self.adam_freeze_key is False: if state['step'] >= self.freeze_step: print('OnebitAdam - starting compressed communication') self.adam_freeze_key = True if self.using_pipeline: self.deepspeed.pipeline_enable_backward_allreduce = False else: self.deepspeed.enable_backward_allreduce = False return loss def load_state_dict(self, state_dict): """ Overrides load_state_dict() to add special handling when loading checkpoints """ # Because at different stage exp_avg_mask may change (e.g., # BERT pre-training seqlen 128 and 512 ), we don't use the exp_avg_mask # in checkpoints but always use the one user provided in training script. # (See example in DeepSpeedExamples/bing_bert/deepspeed_train.py.) # Thus here we keep the exp_avg_mask unchanged when loading checkpoint for i, group in enumerate(self.param_groups): if 'exp_avg_mask' in group: state_dict['param_groups'][i]['exp_avg_mask'] = group['exp_avg_mask'] elif 'exp_avg_mask' not in group and 'exp_avg_mask' in state_dict[ 'param_groups'][i]: state_dict['param_groups'][i].pop('exp_avg_mask') super().load_state_dict(state_dict) if self.state[self.param_groups[0]['params'][0]]['step'] < self.freeze_step: if torch.distributed.get_rank() == 0: print("Checkpoint loaded and OnebitAdam warmup stage starts/continues.") if self.adam_freeze_key is True: self.adam_freeze_key = False if self.using_pipeline: self.deepspeed.pipeline_enable_backward_allreduce = True else: self.deepspeed.enable_backward_allreduce = True else: if torch.distributed.get_rank() == 0: print( "Checkpoint loaded and OnebitAdam compression stage starts/continues." ) if self.adam_freeze_key is False: self.adam_freeze_key = True if self.using_pipeline: self.deepspeed.pipeline_enable_backward_allreduce = False else: self.deepspeed.enable_backward_allreduce = False # We reset the compression errors when loading checkpoints for 3 reasons: # 1) The worker and server error at each GPU are distinct, so in current implementation # only rank 0's errors are saved in the checkpoint. Thus we have to reset the errors. # If we want to save them correctly we need O(num_gpu*model_size) memory in order to # gather all the error, which is a very large memory requirement. It's possible to save # them in a distributed way, but it will make the checkpoint saving/loading much more complicated. # 2) Even if we are able to save the compression errors correctly, you need to have the # exact same number of GPUs in order to load them correctly. # 3) We verified on BERT pre-training that occasionally resetting the compression error # at checkpoint loading does not affect the convergence. # However, please avoid frequent checkpoint loading which could break the error # compensation mechanism thus affect the convergence. for group in self.param_groups: for p in group['params']: if 'worker_error' in self.state[p]: self.state[p].pop('worker_error') if 'server_error' in self.state[p]: self.state[p].pop('server_error') ``` #### File: fp16/onebit/lamb.py ```python import types import torch import numpy as np import torch.distributed as dist from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors class OnebitLamb(torch.optim.Optimizer): """Implements the 1-bit Lamb algorithm. Currently GPU-only. For usage example please see https://www.deepspeed.ai/tutorials/onebit-lamb/ For technical details please see our paper https://arxiv.org/abs/2104.06069. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups. lr (float, optional): learning rate. (default: 1e-3) freeze_step (int, optional): Number of steps for warmup (uncompressed) stage before we start using compressed communication. (default 100000) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square. (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability. (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) max_coeff(float, optional): maximum value of the lamb coefficient (default: 10.0) min_coeff(float, optional): minimum value of the lamb coefficient (default: 0.01) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ (default: False) NOT SUPPORTED in 1-bit Lamb! eps_inside_sqrt (boolean, optional): in the 'update parameters' step, adds eps to the bias-corrected second moment estimate before evaluating square root instead of adding it to the square root of second moment estimate as in the original paper. (default: False) cuda_aware (boolean, required): Set True if the underlying MPI implementation supports CUDA-Aware communication. (default: False) comm_backend_name (string, optional): Set to 'mpi' if needed. (default: 'nccl') coeff_beta (float, optional): coefficient used for computing running averages of lamb coefficient (default: 0.9) note that you may want to increase or decrease this beta depending on the freeze_step you choose, as 1/(1 - coeff_beta) should be smaller than or equal to freeze_step factor_max (float, optional): maximum value of scaling factor to the frozen lamb coefficient during compression stage (default: 4.0) factor_min (float, optional): minimum value of scaling factor to the frozen lamb coefficient during compression stage (default: 0.5) factor_threshold (float, optional): threshold of how much the scaling factor can fluctuate between steps (default: 0.1) .. _Large Batch Optimization for Deep Learning\: Training BERT in 76 minutes: https://arxiv.org/abs/1904.00962 .. _Adam\: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ def __init__(self, params, deepspeed=None, lr=1e-3, freeze_step=100000, bias_correction=True, betas=(0.9, 0.999), eps=1e-8, eps_inside_sqrt=False, weight_decay=0., max_grad_norm=0., max_coeff=10.0, min_coeff=0.01, amsgrad=False, cuda_aware=False, comm_backend_name='nccl', coeff_beta=0.9, factor_max=4.0, factor_min=0.5, factor_threshold=0.1): if amsgrad: raise RuntimeError('1-bit Lamb does not support the AMSGrad variant.') defaults = dict(lr=lr, bias_correction=bias_correction, betas=betas, eps=eps, weight_decay=weight_decay, max_grad_norm=max_grad_norm, max_coeff=max_coeff, min_coeff=min_coeff) super(OnebitLamb, self).__init__(params, defaults) self.eps_mode = 0 if eps_inside_sqrt else 1 assert (dist.is_initialized()) self.deepspeed = deepspeed self.lamb_freeze_key = False self.initialize = False self.freeze_step = freeze_step self.cuda_aware = cuda_aware self.coeff_beta = coeff_beta self.factor_max = factor_max self.factor_min = factor_min self.factor_threshold = factor_threshold self.using_pipeline = False self.comm_backend_name = comm_backend_name # Empty initializer. Set handle based on the comm backend as follows. self.comm_backend_handle = None if self.comm_backend_name == 'nccl': TORCH_MAJOR = int(torch.__version__.split('.')[0]) TORCH_MINOR = int(torch.__version__.split('.')[1]) assert TORCH_MAJOR >= 1 and TORCH_MINOR >= 8, "Please use torch 1.8 or greater to enable NCCL backend in 1-bit Adam. Alternatively, please specify 'mpi' as the 'comm_backend_name' in config file to proceed with the MPI backend" assert dist.is_initialized() == True, "Please initialize the torch distributed backend." from deepspeed.runtime.comm.nccl import NcclBackend self.using_pipeline = hasattr(self.deepspeed, 'pipeline_enable_backward_allreduce') self.comm_backend_handle = NcclBackend(self.deepspeed.mpu) elif self.comm_backend_name == 'mpi': from deepspeed.runtime.comm.mpi import MpiBackend self.comm_backend_handle = MpiBackend(cuda_aware) self.size = self.comm_backend_handle.size self.divider = int(self.size * 8 / np.gcd(self.size, 8)) self.exp_avg_flat = [] self.dummy_exp_avg = {} self.corrected_tensor_sizes = [] self.server_chunk_sizes = [] self.worker_errors = [] self.server_errors = [] self.lamb_coeffs = [] def step(self, closure=None, grads=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. grads (list of tensors, optional): weight gradient to use for the optimizer update. If gradients have type torch.half, parameters are expected to be in type torch.float. (default: None) """ loss = None if closure is not None: loss = closure() if grads is None: grads_group = [None] * len(self.param_groups) # backward compatibility # assuming a list/generator of parameter means single group elif isinstance(grads, types.GeneratorType): grads_group = [grads] elif type(grads[0]) != list: grads_group = [grads] else: grads_group = grads #remove the previous stats del self.lamb_coeffs[:] if self.lamb_freeze_key: exp_avg_last_step = [] for group in self.param_groups: exp_avg_last_step.append( [self.state[p]['exp_avg'].detach().clone() for p in group['params']]) if 'scaling_coeff' not in self.state[self.param_groups[0]['params'][0]]: # Compute the scaling_coeff for each momentum at the end of warmup stage. # This is used to reduce compression error during compression stage. momentum_scales = [] for group in self.param_groups: momentum_scales.append([ (torch.norm(self.state[p]['exp_avg']) / np.sqrt(torch.numel(self.state[p]['exp_avg']))).item() for p in group['params'] ]) united_scale = sum([sum(x) for x in momentum_scales]) / sum( [len(x) for x in momentum_scales]) for i, group in enumerate(self.param_groups): for j, p in enumerate(group['params']): self.state[p][ 'scaling_coeff'] = united_scale / momentum_scales[i][j] for group, grads_this_group in zip(self.param_groups, grads_group): if grads_this_group is None: grads_this_group = [None] * len(group['params']) bias_correction = 1 if group['bias_correction'] else 0 for p, grad in zip(group['params'], grads_this_group): if p.grad is None and grad is None: continue if grad is None: grad = p.grad.data if grad.is_sparse: raise RuntimeError('1-bit Lamb does not support sparse gradients') state = self.state[p] # State initialization if len(state) == 0 or (len(state) == 1 and 'scaling_coeff' in state.keys()): state['step'] = 0 state['lamb_coeff_freeze'] = 0.0 state['last_factor'] = 1.0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p.data) state['exp_avg_sq_fresh'] = torch.zeros_like(p.data) if not self.initialize: self.lamb_freeze_key = True exp_avg, exp_avg_sq, exp_avg_sq_fresh = state['exp_avg'], state['exp_avg_sq'], state['exp_avg_sq_fresh'] beta1, beta2 = group['betas'] max_coeff = group['max_coeff'] min_coeff = group['min_coeff'] state['step'] += 1 if self.lamb_freeze_key is False: # warmup stage, baseline Lamb optimization exp_avg.mul_(beta1).add_(1 - beta1, grad) exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) if state['step'] == self.freeze_step: exp_avg_sq_fresh.data = exp_avg_sq.detach().clone() grad = None if self.initialize: weight_norm = p.data.pow(2).sum().sqrt() update = exp_avg / (exp_avg_sq.sqrt() + group['eps']) if group['weight_decay'] > 0.0: update += group['weight_decay'] * p.data update_norm = update.pow(2).sum().sqrt() lamb_coeff = 1.0 if weight_norm != 0 and update_norm != 0: lamb_coeff = (weight_norm / update_norm).item() if lamb_coeff > max_coeff: lamb_coeff = max_coeff if lamb_coeff < min_coeff: lamb_coeff = min_coeff if lamb_coeff != 1.0: state['lamb_coeff_freeze'] = self.coeff_beta * state[ 'lamb_coeff_freeze'] + (1 - self.coeff_beta) * lamb_coeff self.lamb_coeffs.append(lamb_coeff) with torch.no_grad(): p.add_(-group['lr'] * lamb_coeff * update) else: # compression stage, update each momentum locally, then # communicate based on the compressed_allreduce below if self.initialize: exp_avg.mul_(beta1).add_(1 - beta1, grad) exp_avg.mul_(self.state[p]['scaling_coeff']) grad = None # init fused momentum if len(self.exp_avg_flat) == 0: momentum_groups = [] tensor_size = 0 for group in self.param_groups: for p in group['params']: momentum_groups.append(self.state[p]['exp_avg']) tensor_size += torch.numel(p.data) corrected_tensor_size = tensor_size if tensor_size % (self.size * self.divider) != 0: difference = ((self.size * self.divider) - (tensor_size % (self.size * self.divider))) corrected_tensor_size += difference self.dummy_exp_avg[0] = torch.zeros( difference, device=momentum_groups[0].data.device) momentum_groups.append(self.dummy_exp_avg[0]) self.corrected_tensor_sizes.append(corrected_tensor_size) self.server_chunk_sizes.append(corrected_tensor_size // self.size) self.exp_avg_flat.append( _flatten_dense_tensors([p.detach().clone() for p in momentum_groups])) updated_params = _unflatten_dense_tensors(self.exp_avg_flat[0], momentum_groups) for p, q in zip(momentum_groups, updated_params): p.data = q.data if self.initialize and len(self.worker_errors) == 0: torch.cuda.empty_cache() for i in range(len(self.exp_avg_flat)): self.worker_errors.append( torch.zeros(self.corrected_tensor_sizes[i], device=self.exp_avg_flat[i].device)) self.server_errors.append( torch.zeros(self.server_chunk_sizes[i], device=self.exp_avg_flat[i].device)) torch.cuda.empty_cache() if self.lamb_freeze_key: if self.size > 1: for i in range(len(self.exp_avg_flat)): if not self.initialize: torch.cuda.empty_cache() self.worker_errors.append( torch.zeros(self.corrected_tensor_sizes[i], device=self.exp_avg_flat[i].device)) self.server_errors.append( torch.zeros(self.server_chunk_sizes[i], device=self.exp_avg_flat[i].device)) torch.cuda.empty_cache() if torch.distributed.get_rank() == 0: print("Cupy Buffers Initialized Successfully.") self.comm_backend_handle.compressed_allreduce( self.exp_avg_flat[i], self.worker_errors[0], self.server_errors[0], self.deepspeed.local_rank) if torch.distributed.get_rank() == 0: print('Pop out errors', flush=True) del self.worker_errors[:] del self.server_errors[:] else: self.comm_backend_handle.compressed_allreduce( self.exp_avg_flat[i], self.worker_errors[i], self.server_errors[i], self.deepspeed.local_rank) if self.lamb_freeze_key and self.initialize: for i, group in enumerate(self.param_groups): bias_correction = 1 if group['bias_correction'] else 0 for j, p in enumerate(group['params']): state = self.state[p] exp_avg, exp_avg_sq, exp_avg_sq_fresh = state['exp_avg'], state['exp_avg_sq'], state['exp_avg_sq_fresh'] beta1, beta2 = group['betas'] exp_avg.div_(self.state[p]['scaling_coeff']) # Because 1-bit compression cannot represent exact zero, it is required to # provide a momentum mask for those params that have constant exact zeros in their # momentums, otherwise the compression error would keep accumulating. # For example, for BERT pre-training seq 128, bert.embeddings.position_embeddings.weight # always have exact zeros in its momentum for row 129 to 512, because it only # learns up to seq length 128 while the model supports up to 512 seq length. # (See example in DeepSpeedExamples/bing_bert/deepspeed_train.py about how # to add this exp_avg_mask for BERT pre-training.) if 'exp_avg_mask' in group: if exp_avg.device != group['exp_avg_mask'].device: group['exp_avg_mask'] = group['exp_avg_mask'].to( device=exp_avg.device) exp_avg.mul_(group['exp_avg_mask']) grad_reconstruct = ((exp_avg - exp_avg_last_step[i][j] * beta1) / (1 - beta1)) exp_avg_sq_fresh.mul_(beta2).addcmul_(1 - beta2, grad_reconstruct, grad_reconstruct) denom = exp_avg_sq.sqrt() + group['eps'] update_prelim = exp_avg / denom if group['weight_decay'] > 0.0: update = update_prelim + group['weight_decay'] * p.data else: update = update_prelim lamb_coeff = 1.0 update_norm = update.pow(2).sum().sqrt() denom_real = exp_avg_sq_fresh.sqrt() + group['eps'] factor = (denom / denom_real).max().item() if group['weight_decay'] > 0.0: update_ratio = min(1.0, (update_prelim.pow(2).sum().sqrt() / update_norm).item()) factor = factor * update_ratio + (1.0 - update_ratio) if factor > self.factor_max: factor = self.factor_max if factor < self.factor_min: factor = self.factor_min if factor > state['last_factor'] * (1.0 + self.factor_threshold): factor = state['last_factor'] * (1.0 + self.factor_threshold) if factor < state['last_factor'] * (1.0 - self.factor_threshold): factor = state['last_factor'] * (1.0 - self.factor_threshold) state['last_factor'] = factor lamb_coeff = state['lamb_coeff_freeze'] * factor self.lamb_coeffs.append(lamb_coeff) with torch.no_grad(): p.add_(-group['lr'] * lamb_coeff * update) del exp_avg_last_step[:] exp_avg_last_step = None if not self.initialize: self.lamb_freeze_key = False self.initialize = True print( f"Finished the initialization step at rank {torch.distributed.get_rank()}" ) return loss if self.lamb_freeze_key is False: if state['step'] >= self.freeze_step: print('OnebitLamb - starting compressed communication') self.lamb_freeze_key = True if self.using_pipeline: self.deepspeed.pipeline_enable_backward_allreduce = False else: self.deepspeed.enable_backward_allreduce = False return loss def load_state_dict(self, state_dict): """ Overrides load_state_dict() to add special handling when loading checkpoints """ # Because at different stage exp_avg_mask may change (e.g., # BERT pre-training seqlen 128 and 512 ), we don't use the exp_avg_mask # in checkpoints but always use the one user provided in training script. # (See example in DeepSpeedExamples/bing_bert/deepspeed_train.py.) # Thus here we keep the exp_avg_mask unchanged when loading checkpoint for i, group in enumerate(self.param_groups): if 'exp_avg_mask' in group: state_dict['param_groups'][i]['exp_avg_mask'] = group['exp_avg_mask'] elif 'exp_avg_mask' not in group and 'exp_avg_mask' in state_dict[ 'param_groups'][i]: state_dict['param_groups'][i].pop('exp_avg_mask') super().load_state_dict(state_dict) # need to reset the fused momentum since loading states will break the linking del self.exp_avg_flat[:] self.dummy_exp_avg.clear() del self.corrected_tensor_sizes[:] del self.server_chunk_sizes[:] if self.state[self.param_groups[0]['params'][0]]['step'] < self.freeze_step: if torch.distributed.get_rank() == 0: print("Checkpoint loaded and OnebitLamb warmup stage starts/continues.") if self.lamb_freeze_key is True: self.lamb_freeze_key = False if self.using_pipeline: self.deepspeed.pipeline_enable_backward_allreduce = True else: self.deepspeed.enable_backward_allreduce = True for group in self.param_groups: for p in group['params']: self.state[p]['lamb_coeff_freeze'] = 0.0 self.state[p]['last_factor'] = 1.0 if 'scaling_coeff' in self.state[p]: self.state[p].pop('scaling_coeff') else: if torch.distributed.get_rank() == 0: print( "Checkpoint loaded and OnebitLamb compression stage starts/continues." ) if self.lamb_freeze_key is False: self.lamb_freeze_key = True if self.using_pipeline: self.deepspeed.pipeline_enable_backward_allreduce = False else: self.deepspeed.enable_backward_allreduce = False # We reset the compression errors when loading checkpoints for 3 reasons: # 1) The worker and server error at each GPU are distinct, so in current implementation # only rank 0's errors are saved in the checkpoint. Thus we have to reset the errors. # If we want to save them correctly we need O(num_gpu*model_size) memory in order to # gather all the error, which is a very large memory requirement. It's possible to save # them in a distributed way, but it will make the checkpoint saving/loading much more complicated. # 2) Even if we are able to save the compression errors correctly, you need to have the # exact same number of GPUs in order to load them correctly. # 3) We verified on BERT pre-training that occasionally resetting the compression error # at checkpoint loading does not affect the convergence. # However, please avoid frequent checkpoint loading which could break the error # compensation mechanism thus affect the convergence. del self.worker_errors[:] del self.server_errors[:] def get_lamb_coeffs(self): return self.lamb_coeffs ``` #### File: runtime/swap_tensor/optimizer_utils.py ```python import os import torch from deepspeed.utils.logging import logger from deepspeed.runtime.zero.offload_constants import * from deepspeed.runtime.swap_tensor.constants import * from deepspeed.runtime.swap_tensor.utils import swap_in_tensors, swap_out_tensors, \ MIN_AIO_BYTES, AIO_ALIGNED_BYTES, get_sized_buffers, get_sized_buffer from deepspeed.runtime.swap_tensor.utils import SwapBufferManager, SwapBufferPool class FlattenedTensorSwapInfo(object): def __init__(self, path, length, offset): self.path = path self.offset = offset self.length = length class OptimizerStateSwapInfo(object): def __init__(self, parameter, numel, base_folder): self.tensors = [] self.param_id = id(parameter) self.swap_folder = base_folder self.swap_paths = [] self.swapped_gradients = {} self.unswapped_gradients = {} self.tensor_numel = numel self.tensor_dtype = parameter.dtype self.tensor_device = parameter.device self.has_state_tensors = False self._add_tensors([parameter]) def numel(self): return self.tensor_numel def has_gradients(self): return self.swapped_gradients or self.unswapped_gradients def _add_tensors(self, tensor_list): for t in tensor_list: self.tensors.append(t) self.swap_paths.append(os.path.join(self.swap_folder, f'{id(t)}.tensor.swp')) def add_state_tensors(self, tensor_list): self.has_state_tensors = True self._add_tensors(tensor_list) def device(self): return self.tensor_device def dtype(self): return self.tensor_dtype def release_memory(self): for tensor in self.tensors: tensor.data = torch.Tensor() def get_or_create_gradient_paths(self, offsets, lengths): gradient_paths = [] for offset, length in zip(offsets, lengths): if not offset in self.swapped_gradients.keys(): path = os.path.join( self.swap_folder, f'{self.param_id}_gradient_{offset}_{length}.tensor.swp') self.swapped_gradients[offset] = FlattenedTensorSwapInfo( path, length, offset) gradient_paths.append(self.swapped_gradients[offset].path) return gradient_paths def set_swap_buffers(self, buffers): compute_lengths = [self.numel()] * len(self.tensors) compute_buffers = get_sized_buffers(buffers, compute_lengths) for t, buffer in zip(self.tensors, compute_buffers): t.data = buffer.data def get_swap_gradient_buffers(self, swap_buffer): assert self.numel() <= swap_buffer.numel() return [ swap_buffer.narrow(0, grad.offset, grad.length) for grad in self.swapped_gradients.values() ] def get_swap_gradient_paths(self): return [grad.path for grad in self.swapped_gradients.values()] def get_unpinned_state_tensors(self): return [t for t in self.tensors if not t.is_pinned()] def read_unswapped_gradients(self, dest_buffer): num_elem_count = 0 for offset, grad_partition in self.unswapped_gradients.items(): dst_tensor = dest_buffer.narrow(0, offset, grad_partition.numel()) dst_tensor.data.copy_(grad_partition.data) num_elem_count += grad_partition.numel() return num_elem_count def release_unswapped_gradients(self): self.unswapped_gradients = {} SWAPPER_DEBUG_MODE = False SWAP_OUT_GRADIENT_TIMER = 'swap_out_gradient' class OptimizerSwapper(object): def __init__(self, swap_config, aio_config, base_folder, optimizer, largest_numel, device, dtype, timers): self.swap_config = swap_config self.aio_config = aio_config # NVMe swap management self.swap_params_info = {} self.swap_element_size = torch.tensor([], dtype=dtype).element_size() self.swap_folder = os.path.join(base_folder, 'optimizer', f'rank{torch.distributed.get_rank()}') os.makedirs(self.swap_folder, exist_ok=True) self.optimizer = optimizer # Read/Write alignment for each thread during Intra-request parallelism self.min_aio_bytes = max(MIN_AIO_BYTES, aio_config[AIO_BLOCK_SIZE]) self.aligned_bytes = AIO_ALIGNED_BYTES * aio_config[AIO_THREAD_COUNT] self.numel_alignment = self.aligned_bytes // self.swap_element_size # Swap buffer management self.largest_numel = self._io_aligned_numel(largest_numel) self.dtype = dtype self.swap_buffer_manager = SwapBufferManager( num_elems=self.largest_numel, count=swap_config[OFFLOAD_OPTIMIZER_BUFFER_COUNT], dtype=dtype) # Timers self.timers = timers self.timer_names = set() # Print exclusion list self.print_exclude_list = [ 'optimizer', 'swap_buffer_manager', 'swap_params_info', 'timers', 'timer_names', ] def swappable_tensor(self, param=None, numel=None): assert param is not None or numel is not None, "Either param or numel must be provided" if param is not None: return self.min_aio_bytes <= (param.numel() * self.swap_element_size) return self.min_aio_bytes <= (numel * self.swap_element_size) def init_timers(self): self.timer_names = set() def log_timers(self): if self.timer_names: self._log_timers(list(self.timer_names), force=True) def pre_backward(self): self.init_timers() def post_backward(self): pass def _flush_gradient_swapper(self, gradient_swapper): if gradient_swapper.has_buffers(): self._start_timer(SWAP_OUT_GRADIENT_TIMER) pinned_buffers = gradient_swapper.release_buffers() self.swap_buffer_manager.free(pinned_buffers) self._stop_timer(SWAP_OUT_GRADIENT_TIMER) self.timer_names.add(SWAP_OUT_GRADIENT_TIMER) self.timer_names.update(gradient_swapper.get_timer_names()) def _swap_out_gradients(self, parameter, gradient_offsets, gradient_tensors, gradient_swapper): if not id(parameter) in self.swap_params_info.keys(): return swap_info = self.swap_params_info[id(parameter)] swappable_tensors = [] swappable_offsets = [] swappable_lengths = [] aligned_gradients, aligned_offsets = self._adjust_for_misaligned_lengths( tensors=gradient_tensors, offsets=gradient_offsets ) self._start_timer(SWAP_OUT_GRADIENT_TIMER) for tensor, offset in zip(aligned_gradients, aligned_offsets): if not self.swappable_tensor(param=tensor): swap_info.unswapped_gradients[offset] = tensor continue swappable_tensors.append(tensor) swappable_offsets.append(offset) swappable_lengths.append(tensor.numel()) if len(swappable_tensors) > 0: if not gradient_swapper.has_buffers(): pinned_buffers = self.swap_buffer_manager.allocate_all( num_elems=self.largest_numel, dtype=self.dtype) gradient_swapper.add_buffers(pinned_buffers) swappable_paths = swap_info.get_or_create_gradient_paths( swappable_offsets, swappable_lengths) gradient_swapper.swap_out_tensors(tensor_list=swappable_tensors, path_list=swappable_paths) self._stop_timer(SWAP_OUT_GRADIENT_TIMER) self.timer_names.add(SWAP_OUT_GRADIENT_TIMER) def _initialize_from_swapped_fp16_params(self, aio_handle, fp16_partitions_info, fp16_num_elems, fp16_pinned_buffers, fp32_parameters): assert len(fp32_parameters) == len(fp16_partitions_info) assert len(fp32_parameters) == len(fp16_num_elems) assert all([buffer.is_pinned() for buffer in fp16_pinned_buffers]) fp32_swap_paths = self._get_swap_paths(parameters=fp32_parameters, num_elems=fp16_num_elems) fp32_pinned_buffers = self.swap_buffer_manager.allocate_all( num_elems=self.largest_numel, dtype=self.dtype) fp16_buffer_numel = [buf.numel() for buf in fp16_pinned_buffers] assert all([numel >= self.largest_numel for numel in fp16_buffer_numel]), \ f"numel of fp16 buffers {fp16_buffer_numel} is too small for initializing fp32 params {self.largest_numel}" fp32_swap_buffers = SwapBufferPool(fp32_pinned_buffers) fp16_swap_buffers = SwapBufferPool(fp16_pinned_buffers) curr_index = 0 while curr_index < len(fp32_parameters): fp16_pinned_tensors = self._swap_in_fp16_params( aio_handle=aio_handle, fp16_num_elems=fp16_num_elems[curr_index:], fp16_partitions_info=fp16_partitions_info[curr_index:], fp16_swap_buffers=fp16_swap_buffers) if torch.distributed.get_rank() == 0 and SWAPPER_DEBUG_MODE: for i, tensor in enumerate(fp16_pinned_tensors): true_index = curr_index + i logger.info( f'swap_in_fp16_param: fp32_id = {id(fp32_parameters[true_index])} index = {true_index} orig_num_elem = {fp16_num_elems[true_index]}, swap_num_elem = {fp16_pinned_tensors[i].numel()}' ) swap_out_count = self._swap_out_fp16_params( aio_handle=aio_handle, fp32_swap_paths=fp32_swap_paths[curr_index:], fp32_swap_buffers=fp32_swap_buffers, fp16_pinned_tensors=fp16_pinned_tensors) assert swap_out_count == len(fp16_pinned_tensors), \ f"{swap_out_count} does not match {len(fp16_pinned_tensors)}" fp16_swap_buffers.reset() fp32_swap_buffers.reset() curr_index += swap_out_count self.swap_buffer_manager.free(fp32_pinned_buffers) def _swap_in_fp16_params(self, aio_handle, fp16_num_elems, fp16_partitions_info, fp16_swap_buffers): assert len(fp16_num_elems) > 0 swapped_fp16_tensors = [] swap_tensors = [] swap_paths = [] unswapped_srcs = [] unswapped_dsts = [] for i, numel in enumerate(fp16_num_elems): pinned_tensor, _ = fp16_swap_buffers.allocate_tensor(numel, None, numel) if pinned_tensor is None: break swapped_fp16_tensors.append(pinned_tensor) offset = 0 for tensor, partition_numel, partition_path in fp16_partitions_info[i]: dst_tensor = pinned_tensor.narrow(0, offset, partition_numel) if partition_path is None: unswapped_srcs.append(tensor) unswapped_dsts.append(dst_tensor) else: swap_paths.append(partition_path) swap_tensors.append(dst_tensor) offset += partition_numel assert len(swapped_fp16_tensors) + len(unswapped_srcs) > 0 ret = swap_in_tensors(aio_handle, swap_tensors, swap_paths) for src, dst in zip(unswapped_srcs, unswapped_dsts): dst.data.copy_(src.data) assert len(swap_tensors) == aio_handle.wait() return swapped_fp16_tensors def _swap_out_fp16_params(self, aio_handle, fp32_swap_paths, fp32_swap_buffers, fp16_pinned_tensors): assert len(fp16_pinned_tensors) <= len(fp32_swap_paths) swap_out_count = 0 for i, fp16_tensor in enumerate(fp16_pinned_tensors): if not fp32_swap_buffers.has_space(fp16_tensor.numel()): fp32_swap_buffers.swap_out(aio_handle) fp32_swap_buffers.reset() pinned_tensor, _ = fp32_swap_buffers.insert_tensor( fp16_tensor, fp32_swap_paths[i], self._io_aligned_numel(fp16_tensor.numel()) ) assert pinned_tensor is not None swap_out_count += 1 if len(fp32_swap_buffers.get_swap_tensors()) > 0: fp32_swap_buffers.swap_out(aio_handle) return swap_out_count def _initialize_parameters(self, parameters, src_tensors, aio_handle): assert len(parameters) == len(src_tensors) swap_paths = self._get_swap_paths(parameters=parameters, num_elems=[src.numel() for src in src_tensors]) SWAP_INIT_TIMER = "swap_init_write" self._start_timer(SWAP_INIT_TIMER) pinned_buffers = self.swap_buffer_manager.allocate_all( num_elems=self.largest_numel, dtype=self.dtype) assert pinned_buffers is not None self._swap_out_unpinned_tensors(aio_handle=aio_handle, unpinned_tensors=src_tensors, dest_paths=swap_paths, pinned_buffers=pinned_buffers) if torch.distributed.get_rank() == 0 and SWAPPER_DEBUG_MODE: for i, tensor in enumerate(src_tensors): logger.info( f'copy_in_fp16_param: fp32_id = {id(parameters[i])} index = {i}, swap_num_elem = {src_tensors[i].numel()}' ) self.swap_buffer_manager.free(pinned_buffers) self._stop_timer(SWAP_INIT_TIMER) self._log_timers([SWAP_INIT_TIMER]) def _get_swap_paths(self, parameters, num_elems): swap_info_list = [ self._create_param_swap_info(parameter=p, numel=numel) \ for p, numel in zip(parameters, num_elems) ] assert len(swap_info_list) == len(num_elems) swap_paths = [info.swap_paths[0] for info in swap_info_list] return swap_paths def _swap_out_unpinned_tensors(self, aio_handle, unpinned_tensors, dest_paths, pinned_buffers): swap_buffer_count = len(pinned_buffers) unpinned_tensor_count = len(unpinned_tensors) for i in range(0, unpinned_tensor_count, swap_buffer_count): swap_tensor_count = min((unpinned_tensor_count - i), swap_buffer_count) src_tensors = unpinned_tensors[i:(i + swap_tensor_count)] compute_lengths = [t.numel() for t in src_tensors] compute_buffers = get_sized_buffers(pinned_buffers, compute_lengths) for dst, src in zip(compute_buffers, src_tensors): dst.data.copy_(src.data) swap_lengths = [self._io_aligned_numel(t.numel()) for t in src_tensors] swap_buffers = get_sized_buffers(pinned_buffers, swap_lengths) swap_paths = dest_paths[i:(i + swap_tensor_count)] swap_out_tensors(aio_handle, swap_buffers, swap_paths) assert aio_handle.wait() == swap_tensor_count def _adjust_for_misaligned_lengths(self, tensors, offsets): new_tensors = [] new_offsets = [] for orig_tensor, orig_offset in zip(tensors, offsets): if not self.swappable_tensor(param=orig_tensor): new_tensors.append(orig_tensor) new_offsets.append(orig_offset) continue remainder = orig_tensor.numel() % self.numel_alignment if remainder == 0: new_tensors.append(orig_tensor) new_offsets.append(orig_offset) continue # Split into two by making remainder a tensor aligned_length = (orig_tensor.numel() // self.numel_alignment) * self.numel_alignment new_tensors.append(orig_tensor.narrow(0, 0, aligned_length)) new_offsets.append(orig_offset) # remainder tensor new_tensors.append(orig_tensor.narrow(0, aligned_length, remainder)) new_offsets.append(orig_offset + aligned_length) return new_tensors, new_offsets def _retrieve_unswapped_grad_partitions(self, swap_info, dest_buffer): UNSWAPPED_READ_GRADIENTS = 'unswapped_read_gradients' self._start_timer(UNSWAPPED_READ_GRADIENTS) tensor_count = len(swap_info.unswapped_gradients) num_elem_count = swap_info.read_unswapped_gradients(dest_buffer) self._stop_timer(UNSWAPPED_READ_GRADIENTS) self._log_timers([UNSWAPPED_READ_GRADIENTS]) # It shoud be safe to discard unswapped gradient partitions swap_info.release_unswapped_gradients() if SWAPPER_DEBUG_MODE: logger.info( f'optimizer_retreive_unswapped_radients: param={swap_info.param_id} tensor_count={tensor_count} elem_count={num_elem_count}' ) def _get_state_tensors(self, parameter): if not parameter in self.optimizer.state: return [] tensor_list = [] for value in self.optimizer.state[parameter].values(): if torch.is_tensor(value): tensor_list.append(value) return tensor_list def _update_param_state_info(self, swap_info, parameter): if not swap_info.has_state_tensors: state_tensors = self._get_state_tensors(parameter) if state_tensors: swap_info.add_state_tensors(state_tensors) def _create_param_swap_info(self, parameter, numel): param_id = id(parameter) assert not param_id in self.swap_params_info self.swap_params_info[param_id] = OptimizerStateSwapInfo( parameter=parameter, numel=numel, base_folder=self.swap_folder) swap_info = self.swap_params_info[param_id] self._update_param_state_info(swap_info, parameter) return swap_info def _get_param_swap_info(self, parameter): param_id = id(parameter) swap_info = self.swap_params_info.get(param_id, None) if swap_info is not None: self._update_param_state_info(swap_info, parameter) return swap_info def _start_timer(self, name): if self.timers: self.timers(name).start() def _stop_timer(self, name): if self.timers: self.timers(name).stop() def _log_timers(self, name_list, force=False): if self.timers and (SWAPPER_DEBUG_MODE or force): self.timers.log(name_list) def _io_aligned_numel(self, numel): remainder = numel % self.numel_alignment return numel if remainder == 0 else (numel + self.numel_alignment - remainder) ``` #### File: runtime/swap_tensor/pipelined_optimizer_swapper.py ```python import os import torch from deepspeed.utils.logging import logger from deepspeed.ops.aio import AsyncIOBuilder from deepspeed.runtime.zero.offload_constants import * from deepspeed.runtime.swap_tensor.constants import * from deepspeed.runtime.swap_tensor.utils import swap_in_tensors, swap_out_tensors, print_object, \ MIN_AIO_BYTES, AIO_ALIGNED_BYTES from deepspeed.runtime.swap_tensor.async_swapper import AsyncTensorSwapper from deepspeed.runtime.swap_tensor.optimizer_utils import SwapBufferManager, get_sized_buffer from deepspeed.runtime.swap_tensor.optimizer_utils import OptimizerSwapper class OptimizerSwapOp(object): def __init__(self, aio_handle, read_op, param_info, allocated_buffers, state_buffers, num_ops): self.aio_handle = aio_handle self.read_op = read_op self.param_info = param_info self.allocated_buffers = allocated_buffers self.state_buffers = state_buffers self.wait_required = True self.num_ops = num_ops def is_parameter(self, parameter): return id(parameter) == self.param_info.param_id def wait(self): assert self.wait_required assert self.aio_handle.wait() == self.num_ops self.wait_required = False SYNC_SWAP_IN = 'sync_swap_in' ASYNC_SWAP_IN = 'async_swap_in' SYNC_SWAP_OUT = 'sync_swap_out' ASYNC_SWAP_OUT = 'async_swap_out' SWAP_IN_STATE_TIMER = 'swap_in_state' SWAP_OUT_STATE_TIMER = 'swap_out_state' SWAP_OUT_GRADIENT_TIMER = 'swap_out_gradient' ASYNC_SWAP_IN_STATE_TIMER = "async_swap_in_state" ASYNC_SWAP_OUT_STATE_TIMER = 'async_swap_out_state' class PipelinedOptimizerSwapper(OptimizerSwapper): def __init__(self, swap_config, aio_config, base_folder, optimizer, largest_numel, device, dtype, timers): super(PipelinedOptimizerSwapper, self).__init__(swap_config, aio_config, base_folder, optimizer, largest_numel, device, dtype, timers) aio_op = AsyncIOBuilder().load() self.write_aio_handle = aio_op.aio_handle(aio_config[AIO_BLOCK_SIZE], aio_config[AIO_QUEUE_DEPTH], aio_config[AIO_SINGLE_SUBMIT], aio_config[AIO_OVERLAP_EVENTS], aio_config[AIO_THREAD_COUNT]) self.read_aio_handle = aio_op.aio_handle(aio_config[AIO_BLOCK_SIZE], aio_config[AIO_QUEUE_DEPTH], aio_config[AIO_SINGLE_SUBMIT], aio_config[AIO_OVERLAP_EVENTS], aio_config[AIO_THREAD_COUNT]) # Overlap gradient swap out self.gradient_swapper = AsyncTensorSwapper(aio_handle=self.write_aio_handle, numel_alignment=self.numel_alignment, timers=self.timers) self.async_swap_in = swap_config[OFFLOAD_OPTIMIZER_PIPELINE_READ] self.async_swap_out = swap_config[OFFLOAD_OPTIMIZER_PIPELINE_WRITE] self.swap_ops = { SYNC_SWAP_IN: None, ASYNC_SWAP_IN: None, SYNC_SWAP_OUT: None, ASYNC_SWAP_OUT: None } self.print_exclude_list += [ 'gradient_swapper', 'read_aio_handle', 'write_aio_handle', 'swap_ops', 'print_exclude_list' ] if torch.distributed.get_rank() == 0: print_object(obj=self, name='PipelinedOptimizerSwapper', exclude_list=self.print_exclude_list) def initialize_parameters(self, parameters, src_tensors): self._initialize_parameters(parameters=parameters, src_tensors=src_tensors, aio_handle=self.write_aio_handle) def initialize_from_swapped_fp16_params(self, fp16_partitions_info, fp16_num_elems, fp16_pinned_buffers, fp32_parameters): self._initialize_from_swapped_fp16_params( aio_handle=self.write_aio_handle, fp16_partitions_info=fp16_partitions_info, fp16_num_elems=fp16_num_elems, fp16_pinned_buffers=fp16_pinned_buffers, fp32_parameters=fp32_parameters) def flush_gradients(self): self._flush_gradient_swapper(self.gradient_swapper) def swap_in_optimizer_state(self, parameter, async_parameter): assert parameter is not None assert self.swap_ops[SYNC_SWAP_IN] is None self._flush_gradient_swapper(self.gradient_swapper) self._start_timer(SWAP_IN_STATE_TIMER) if self.swap_ops[ASYNC_SWAP_IN]: assert self.swap_ops[ASYNC_SWAP_IN].is_parameter(parameter) self.swap_ops[SYNC_SWAP_IN] = self.swap_ops[ASYNC_SWAP_IN] self.swap_ops[ASYNC_SWAP_IN] = None else: self.swap_ops[SYNC_SWAP_IN] = self._swap_in_optimizer_state( aio_handle=self.read_aio_handle, parameter=parameter) if self.swap_ops[SYNC_SWAP_IN]: self.swap_ops[SYNC_SWAP_IN].wait() if self.async_swap_in and async_parameter is not None: assert self.swap_ops[ASYNC_SWAP_IN] is None self.swap_ops[ASYNC_SWAP_IN] = self._swap_in_optimizer_state( aio_handle=self.read_aio_handle, parameter=async_parameter) self._stop_timer(SWAP_IN_STATE_TIMER) self.timer_names.add(SWAP_IN_STATE_TIMER) def swap_out_optimizer_state(self, parameter, async_swap): self._start_timer(SWAP_OUT_STATE_TIMER) if self.swap_ops[ASYNC_SWAP_OUT]: self._start_timer(ASYNC_SWAP_OUT_STATE_TIMER) self._complete_swap_out(ASYNC_SWAP_OUT) self._stop_timer(ASYNC_SWAP_OUT_STATE_TIMER) self.timer_names.add(ASYNC_SWAP_OUT_STATE_TIMER) assert self.swap_ops[SYNC_SWAP_IN] is not None assert not self.swap_ops[SYNC_SWAP_IN].wait_required swap_op = self._swap_out_optimizer_state(aio_handle=self.write_aio_handle, parameter=parameter, swap_in_op=self.swap_ops[SYNC_SWAP_IN]) self.swap_ops[SYNC_SWAP_IN] = None if self.async_swap_out and async_swap: self.swap_ops[ASYNC_SWAP_OUT] = swap_op else: self.swap_ops[SYNC_SWAP_OUT] = swap_op self._complete_swap_out(SYNC_SWAP_OUT) self._stop_timer(SWAP_OUT_STATE_TIMER) self.timer_names.add(SWAP_OUT_STATE_TIMER) def swap_out_gradients(self, parameter, gradient_offsets, gradient_tensors): self._swap_out_gradients(parameter=parameter, gradient_offsets=gradient_offsets, gradient_tensors=gradient_tensors, gradient_swapper=self.gradient_swapper) def _complete_swap_out(self, swap_out_type): self.swap_ops[swap_out_type].wait() self.swap_buffer_manager.free(self.swap_ops[swap_out_type].allocated_buffers) self.swap_ops[swap_out_type] = None def _swap_out_optimizer_state(self, aio_handle, parameter, swap_in_op): assert swap_in_op.is_parameter(parameter) allocated_buffers = swap_in_op.allocated_buffers.copy() swap_buffers = swap_in_op.state_buffers.copy() param_info = swap_in_op.param_info self._update_param_state_info(param_info, parameter) unpinned_tensors = param_info.get_unpinned_state_tensors() if len(unpinned_tensors) > 0: new_alloc_buffers = self.swap_buffer_manager.allocate( num_elems=self._io_aligned_numel(param_info.numel()), count=len(unpinned_tensors), dtype=param_info.dtype()) assert new_alloc_buffers is not None allocated_buffers += new_alloc_buffers swap_buffers += new_alloc_buffers for pinned_dst, unpinned_src in zip(new_alloc_buffers, unpinned_tensors): dst = get_sized_buffer(pinned_dst, unpinned_src.numel()) dst.data.copy_(unpinned_src.data) swap_paths = param_info.swap_paths.copy() assert len(swap_paths) == len(swap_buffers) swap_out_tensors(aio_handle, swap_buffers, swap_paths) swap_out_op = OptimizerSwapOp(aio_handle=aio_handle, param_info=param_info, read_op=False, allocated_buffers=allocated_buffers, state_buffers=swap_buffers, num_ops=len(swap_buffers)) return swap_out_op def _swap_in_optimizer_state(self, aio_handle, parameter): param_info = self._get_param_swap_info(parameter) if param_info is None: return None required_buffer_count = len( param_info.tensors) + (1 if param_info.has_gradients() else 0) aligned_numel = self._io_aligned_numel(param_info.numel()) allocated_buffers = self.swap_buffer_manager.allocate( num_elems=aligned_numel, count=required_buffer_count, dtype=parameter.dtype) assert allocated_buffers is not None, \ f"PipelinedOptimizerSwapper ran out of swap buffers, try increasing {OFFLOAD_OPTIMIZER_BUFFER_COUNT}" state_buffers = allocated_buffers[:len(param_info.tensors)] param_info.set_swap_buffers(state_buffers) swap_buffers = state_buffers.copy() swap_paths = param_info.swap_paths.copy() if param_info.has_gradients(): parameter.grad = allocated_buffers[-1].narrow(0, 0, param_info.numel()) if param_info.swapped_gradients: swap_buffers += param_info.get_swap_gradient_buffers(parameter.grad) swap_paths += param_info.get_swap_gradient_paths() swap_in_tensors(aio_handle, swap_buffers, swap_paths) if param_info.unswapped_gradients: self._retrieve_unswapped_grad_partitions(swap_info=param_info, dest_buffer=parameter.grad) swap_in_op = OptimizerSwapOp(aio_handle=aio_handle, param_info=param_info, read_op=True, allocated_buffers=allocated_buffers, state_buffers=state_buffers, num_ops=len(swap_buffers)) return swap_in_op ```
{ "source": "jglaser/hoomd-blue", "score": 2 }
#### File: hoomd-blue/hoomd/communicator.py ```python from hoomd import _hoomd import hoomd import contextlib class decomposition(object): """ Set the domain decomposition. Args: x (list): First nx-1 fractional domain widths (if *nx* is None) y (list): First ny-1 fractional domain widths (if *ny* is None) z (list): First nz-1 fractional domain widths (if *nz* is None) nx (int): Number of processors to uniformly space in x dimension (if *x* is None) ny (int): Number of processors to uniformly space in y dimension (if *y* is None) nz (int): Number of processors to uniformly space in z dimension (if *z* is None) linear (bool): (MPI only) Force a slab (1D) decomposition along the z-direction onelevel (bool): (MPI only) Disable node-local (two-level) domain decomposition A single domain decomposition is defined for the simulation. A standard domain decomposition divides the simulation box into equal volumes along the Cartesian axes while minimizing the surface area between domains. This works well for systems where particles are uniformly distributed and there is equal computational load for each domain, and is the default behavior in HOOMD-blue. If no decomposition is specified for an MPI run, a uniform decomposition is automatically constructed on initialization. In simulations with density gradients, such as a vapor-liquid interface, there can be a considerable imbalance of particles between different ranks. The simulation time then becomes limited by the slowest processor. It may then be advantageous in certain systems to create domains of unequal volume, for example, by increasing the volume of less dense regions of the simulation box in order to balance the number of particles. The decomposition command allows the user to control the geometry and positions of the decomposition. The fractional width of the first :math:`n_i - 1` domains is specified along each dimension, where :math:`n_i` is the number of ranks desired along dimension :math:`i`. If no cut planes are specified, then a uniform spacing is assumed. The number of domains with uniform spacing can also be specified. If the desired decomposition is not commensurate with the number of ranks available (for example, a 3x3x3 decomposition when only 8 ranks are available), then a default uniform spacing is chosen. For the best control, the user should specify the number of ranks in each dimension even if uniform spacing is desired. decomposition can only be called *before* the system is initialized, at which point the particles are decomposed. An error is raised if the system is already initialized. The decomposition can be adjusted dynamically if the best static decomposition is not known, or the system composition is changing dynamically. For this associated command, see update.balance(). Priority is always given to specified arguments over the command line arguments. If one of these is not set but a command line option is, then the command line option is used. Otherwise, a default decomposition is chosen. Examples:: comm.decomposition(x=0.4, ny=2, nz=2) comm.decomposition(nx=2, y=0.8, z=[0.2,0.3]) Warning: The decomposition command will override specified command line options. Warning: This command must be invoked *before* the system is initialized because particles are decomposed at this time. Note: The domain size cannot be chosen arbitrarily small. There are restrictions placed on the decomposition by the ghost layer width set by the pair potentials. An error will be raised at run time if the ghost layer width exceeds half the shortest domain size. Warning: Both fractional widths and the number of processors cannot be set simultaneously, and an error will be raised if both are set. """ def __init__(self, x=None, y=None, z=None, nx=None, ny=None, nz=None, linear=False, onelevel=False): # check that the context has been initialized though if hoomd.context.current is None: raise RuntimeError("Cannot initialize decomposition without context.initialize() first") # check that system is not initialized if hoomd.context.current.system is not None: hoomd.context.current.device.cpp_msg.error("comm.decomposition: cannot modify decomposition after system is initialized. Call before init.*\n") raise RuntimeError("Cannot create decomposition after system is initialized. Call before init.*") # make sure MPI is enabled if any arguments are not None if (x or y or z or nx or ny or nz) and (not hoomd.version.mpi_enabled): raise RuntimeError("the x, y, z, nx, ny, nz options are only available in MPI builds") self._onelevel = onelevel # cache this for later when we can make the cpp object # check that there are ranks available for decomposition if hoomd.context.current.device.comm.cpp_mpi_conf == 1: hoomd.context.current.device.cpp_msg.warning("Only 1 rank in system, ignoring decomposition to use optimized code pathways.\n") return else: self.x = [] self.y = [] self.z = [] self.nx = 0 self.ny = 0 self.nz = 0 self.uniform_x = True self.uniform_y = True self.uniform_z = True self.set_params(x,y,z,nx,ny,nz) """ # do a one time update of the cuts to the global values if a global is set if not self.x and self.nx == 0 and hoomd.context.options.nx is not None: self.nx = hoomd.context.options.nx self.uniform_x = True if not self.y and self.ny == 0 and hoomd.context.options.ny is not None: self.ny = hoomd.context.options.ny self.uniform_y = True if not self.z and self.nz == 0: if linear: self.nz = hoomd.context.current.device.cpp_mpi_conf.getNRanks() self.uniform_z = True elif hoomd.context.options.nz is not None: self.nz = hoomd.context.options.nz self.uniform_z = True """ # set the global decomposition to this class if hoomd.context.current.decomposition is not None: hoomd.context.current.device.cpp_msg.warning("comm.decomposition: overriding currently defined domain decomposition\n") hoomd.context.current.decomposition = self def set_params(self,x=None,y=None,z=None,nx=None,ny=None,nz=None): """Set parameters for the decomposition before initialization. Args: x (list): First nx-1 fractional domain widths (if *nx* is None) y (list): First ny-1 fractional domain widths (if *ny* is None) z (list): First nz-1 fractional domain widths (if *nz* is None) nx (int): Number of processors to uniformly space in x dimension (if *x* is None) ny (int): Number of processors to uniformly space in y dimension (if *y* is None) nz (int): Number of processors to uniformly space in z dimension (if *z* is None) Examples:: decomposition.set_params(x=[0.2]) decomposition.set_params(nx=1, y=[0.3,0.4], nz=2) """ if (x is not None and nx is not None) or (y is not None and ny is not None) or (z is not None and nz is not None): hoomd.context.current.device.cpp_msg.error("comm.decomposition: cannot set fractions and number of processors simultaneously\n") raise RuntimeError("Cannot set fractions and number of processors simultaneously") # if x is set, use it. otherwise, if nx is set, compute x and set it if x is not None: # recast single floats as lists that can be iterated, this is the only single input we should expect if isinstance(x, float): self.x = [x] else: self.x = x self.uniform_x = False elif nx is not None: self.nx = nx self.uniform_x = True # do the same in y if y is not None: if isinstance(y, float): self.y = [y] else: self.y = y self.uniform_y = False elif ny is not None: self.ny = ny self.uniform_y = True # do the same in z (but also use the linear command line option if it is present, which supersedes nz) if z is not None: if isinstance(z, float): self.z = [z] else: self.z = z self.uniform_z = False elif nz is not None: self.nz = nz self.uniform_z = True ## \internal # \brief Delayed construction of the C++ object for this balanced decomposition # \param box Global simulation box for decomposition def _make_cpp_decomposition(self, box): # if the box is uniform in all directions, just use these values if self.uniform_x and self.uniform_y and self.uniform_z: self.cpp_dd = _hoomd.DomainDecomposition(hoomd.context.current.device.cpp_exec_conf, box.getL(), self.nx, self.ny, self.nz, not self._onelevel) return self.cpp_dd # otherwise, make the fractional decomposition try: fxs = _hoomd.std_vector_scalar() fys = _hoomd.std_vector_scalar() fzs = _hoomd.std_vector_scalar() # if uniform, correct the fractions to be uniform as well if self.uniform_x and self.nx > 0: self.x = [1.0/self.nx]*(self.nx-1) if self.uniform_y and self.ny > 0: self.y = [1.0/self.ny]*(self.ny-1) if self.uniform_z and self.nz > 0: self.z = [1.0/self.nz]*(self.nz-1) sum_x = sum_y = sum_z = 0.0 tol = 1.0e-5 for i in self.x: if i <= -tol or i >= 1.0 - tol: hoomd.context.current.device.cpp_msg.error("comm.decomposition: fraction must be between 0.0 and 1.0\n") raise RuntimeError("Fractional decomposition must be between 0.0 and 1.0") fxs.append(i) sum_x += i if sum_x >= 1.0 - tol or sum_x <= -tol: hoomd.context.current.device.cpp_msg.error("comm.decomposition: fraction must be between 0.0 and 1.0\n") raise RuntimeError("Sum of decomposition in x must lie between 0.0 and 1.0") for i in self.y: if i <= -tol or i >= 1.0 - tol: hoomd.context.current.device.cpp_msg.error("comm.decomposition: fraction must be between 0.0 and 1.0\n") raise RuntimeError("Fractional decomposition must be between 0.0 and 1.0") fys.append(i) sum_y += i if sum_y >= 1.0 - tol or sum_y <= -tol: hoomd.context.current.device.cpp_msg.error("comm.decomposition: fraction must be between 0.0 and 1.0\n") raise RuntimeError("Sum of decomposition in y must lie between 0.0 and 1.0") for i in self.z: if i <= -tol or i >= 1.0 - tol: hoomd.context.current.device.cpp_msg.error("comm.decomposition: fraction must be between 0.0 and 1.0\n") raise RuntimeError("Fractional decomposition must be between 0.0 and 1.0") fzs.append(i) sum_z += i if sum_z >= 1.0 - tol or sum_z <= -tol: hoomd.context.current.device.cpp_msg.error("comm.decomposition: fraction must be between 0.0 and 1.0\n") raise RuntimeError("Sum of decomposition in z must lie between 0.0 and 1.0") self.cpp_dd = _hoomd.DomainDecomposition(hoomd.context.current.device.cpp_exec_conf, box.getL(), fxs, fys, fzs) return self.cpp_dd except TypeError as te: hoomd.context.current.device.cpp_msg.error("Fractional cuts must be iterable (list, tuple, etc.)\n") raise te class Communicator(object): """ MPI communicator Args: mpi_comm: Accepts an mpi4py communicator. Use this argument to perform many independent hoomd simulations where you communicate between those simulations using your own mpi4py code. nrank (int): (MPI) Number of ranks to include in a partition """ def __init__(self, mpi_comm=None, nrank=None): # check nrank if nrank is not None: if not hoomd.version.mpi_enabled: raise RuntimeError("The nrank option is only available in MPI builds.\n") mpi_available = hoomd.version.mpi_enabled; self.cpp_mpi_conf = None # create the specified configuration if mpi_comm is None: self.cpp_mpi_conf = _hoomd.MPIConfiguration(); else: if not mpi_available: raise RuntimeError("mpi_comm is not supported in serial builds"); handled = False; # pass in pointer to MPI_Comm object provided by mpi4py try: import mpi4py if isinstance(mpi_comm, mpi4py.MPI.Comm): addr = mpi4py.MPI._addressof(mpi_comm); self.cpp_mpi_conf = _hoomd.MPIConfiguration._make_mpi_conf_mpi_comm(addr); handled = True except ImportError: # silently ignore when mpi4py is missing pass # undocumented case: handle plain integers as pointers to MPI_Comm objects if not handled and isinstance(mpi_comm, int): self.cpp_mpi_conf = _hoomd.MPIConfiguration._make_mpi_conf_mpi_comm(mpi_comm); handled = True if not handled: raise RuntimeError("Invalid mpi_comm object: {}".format(mpi_comm)); if nrank is not None: # check validity if (self.cpp_mpi_conf.getNRanksGlobal() % nrank): raise RuntimeError('Total number of ranks is not a multiple of --nrank'); # split the communicator into partitions self.cpp_mpi_conf.splitPartitions(nrank) @property def num_ranks(self): """ Get the number of ranks in this partition. Returns: The number of MPI ranks in this partition. Note: Returns 1 in non-mpi builds. """ if hoomd.version.mpi_enabled: return self.cpp_mpi_conf.getNRanks(); else: return 1; @property def rank(self): """ Get the current rank. Returns: Index of the current rank in this partition. Note: Always returns 0 in non-mpi builds. """ if hoomd.version.mpi_enabled: return self.cpp_mpi_conf.getRank() else: return 0; @property def partition(self): """ Get the current partition index. Returns: Index of the current partition. Note: Always returns 0 in non-mpi builds. """ if hoomd.version.mpi_enabled: return self.cpp_mpi_conf.getPartition() else: return 0; def barrier_all(self): """ Perform a MPI barrier synchronization across the whole MPI run. Note: Does nothing in in non-MPI builds. """ if hoomd.version.mpi_enabled: _hoomd.mpi_barrier_world(); def barrier(self): """ Perform a MPI barrier synchronization across all ranks in the partition. Note: Does nothing in in non-MPI builds. """ if hoomd.version.mpi_enabled: self.cpp_mpi_conf.barrier() @contextlib.contextmanager def localize_abort(self): """ Localize MPI_Abort to this partition. HOOMD calls MPI_Abort to tear down all running MPI processes whenever there is an uncaught exception. By default, this will abort the entire MPI execution. When using partitions (``nrank is not None``), an uncaught exception on one partition will therefore abort all of them. Use the return value of :py:meth:`localize_abort()` as a context manager to tell HOOMD that all operations within the context will use only that MPI communicator so that an uncaught exception in one partition will only abort that partition and leave the others running. """ global _current_communicator prev = _current_communicator _current_communicator = self yield None _current_communicator = prev # store the "current" communicator to be used for MPI_Abort calls. This defaults # to the world communicator, but users can opt in to a more specific # communicator using the Device.localize_abort context manager _current_communicator = Communicator() ``` #### File: hoomd-blue/hoomd/conftest.py ```python import pytest import hoomd import atexit import numpy import itertools from hoomd.snapshot import Snapshot from hoomd import Simulation devices = [hoomd.device.CPU] if (hoomd.device.GPU.is_available() and len(hoomd.device.GPU.get_available_devices()) > 0): devices.append(hoomd.device.GPU) @pytest.fixture(scope='session', params=devices) def device(request): """Parameterized Device fixture. Tests that use `device` will run once on the CPU and once on the GPU. The device object is session scoped to avoid device creation overhead when running tests. """ d = request.param() # enable GPU error checking if isinstance(d, hoomd.device.GPU): d.gpu_error_checking = True return d @pytest.fixture(scope='session') def simulation_factory(device): """Make a Simulation object from a snapshot. TODO: duck type this to allow it to create state from GSD files as well """ def make_simulation(snapshot=None): sim = Simulation(device) # reduce sorter grid to avoid Hilbert curve overhead in unit tests for tuner in sim.operations.tuners: if isinstance(tuner, hoomd.tune.ParticleSorter): tuner.grid = 8 if (snapshot is not None): sim.create_state_from_snapshot(snapshot) return sim return make_simulation @pytest.fixture(scope='session') def two_particle_snapshot_factory(device): """Make a snapshot with two particles. Args: particle_types: List of particle type names dimensions: Number of dimensions (2 or 3) d: Distance apart to place particles L: Box length The two particles are placed at (-d/2, 0, 0) and (d/2,0,0). When, dimensions==3, the box is L by L by L. When dimensions==2, the box is L by L by 1. """ def make_snapshot(particle_types=['A'], dimensions=3, d=1, L=20): s = Snapshot(device.communicator) N = 2 if s.exists: box = [L, L, L, 0, 0, 0] if dimensions == 2: box[2] = 0 s.configuration.box = box s.particles.N = N # shift particle positions slightly in z so MPI tests pass s.particles.position[:] = [[-d / 2, 0, .1], [d / 2, 0, .1]] s.particles.types = particle_types if dimensions == 2: box[2] = 0 s.particles.position[:] = [[-d / 2, 0.1, 0], [d / 2, 0.1, 0]] return s return make_snapshot @pytest.fixture(scope='session') def lattice_snapshot_factory(device): """Make a snapshot with particles on a cubic/square lattice. Args: particle_types: List of particle type names dimensions: Number of dimensions (2 or 3) a: Lattice constant n: Number of particles along each box edge r: Fraction of `a` to randomly perturb particles Place particles on a simple cubic (dimensions==3) or square (dimensions==2) lattice. The box is cubic (or square) with a side length of `n * a`. Set `r` to randomly perturb particles a small amount off their lattice positions. This is useful in MD simulation testing so that forces do not cancel out by symmetry. """ def make_snapshot(particle_types=['A'], dimensions=3, a=1, n=7, r=0): s = Snapshot(device.communicator) if s.exists: box = [n * a, n * a, n * a, 0, 0, 0] if dimensions == 2: box[2] = 0 s.configuration.box = box s.particles.N = n**dimensions s.particles.types = particle_types # create the lattice range_ = numpy.arange(-n / 2, n / 2) if dimensions == 2: pos = list(itertools.product(range_, range_, [0])) else: pos = list(itertools.product(range_, repeat=3)) pos = numpy.array(pos) * a pos[:, 0] += a / 2 pos[:, 1] += a / 2 if dimensions == 3: pos[:, 2] += a / 2 # perturb the positions if r > 0: shift = numpy.random.uniform(-r, r, size=(s.particles.N, 3)) if dimensions == 2: shift[:, 2] = 0 pos += shift s.particles.position[:] = pos return s return make_snapshot @pytest.fixture(autouse=True) def skip_mpi(request): if request.node.get_closest_marker('serial'): if 'device' in request.fixturenames: if request.getfixturevalue('device').communicator.num_ranks > 1: pytest.skip('Test does not support MPI execution') else: raise ValueError('skip_mpi requires the *device* fixture') @pytest.fixture(autouse=True) def only_gpu(request): if request.node.get_closest_marker('gpu'): if 'device' in request.fixturenames: if not isinstance(request.getfixturevalue('device'), hoomd.device.GPU): pytest.skip('Test is run only on GPU(s).') else: raise ValueError('only_gpu requires the *device* fixture') @pytest.fixture(autouse=True) def only_cpu(request): if request.node.get_closest_marker('cpu'): if 'device' in request.fixturenames: if not isinstance(request.getfixturevalue('device'), hoomd.device.CPU): pytest.skip('Test is run only on CPU(s).') else: raise ValueError('only_cpu requires the *device* fixture') @pytest.fixture(scope='function', autouse=True) def numpy_random_seed(): """Seed the numpy random number generator. Automatically reset the numpy random seed at the start of each function for reproducible tests. """ numpy.random.seed(42) def pytest_addoption(parser): """Add HOOMD specific options to the pytest command line. * validate - run validation tests """ parser.addoption( "--validate", action="store_true", default=False, help="Enable long running validation tests.", ) @pytest.fixture(autouse=True) def skip_validate(request): """Skip validation tests by default. Pass the command line option --validate to enable these tests. """ if request.node.get_closest_marker('validate'): if not request.config.getoption("validate"): pytest.skip('Validation tests not requested.') def pytest_configure(config): config.addinivalue_line( "markers", "serial: Tests that will not execute with more than 1 MPI process") config.addinivalue_line("markers", "gpu: Tests that should only run on the gpu.") config.addinivalue_line( "markers", "cupy_optional: tests that should pass with and without CuPy.") config.addinivalue_line( "markers", "validate: Tests that perform long-running validations.") config.addinivalue_line("markers", "cpu: Tests that only run on the CPU.") config.addinivalue_line("markers", "gpu: Tests that only run on the GPU.") def abort(exitstatus): # get a default mpi communicator communicator = hoomd.communicator.Communicator() # abort the deadlocked ranks hoomd._hoomd.abort_mpi(communicator.cpp_mpi_conf, exitstatus) def pytest_sessionfinish(session, exitstatus): """ Finalize pytest session MPI tests may fail on one rank but not others. To prevent deadlocks in these situations, this code calls ``MPI_Abort`` when pytest is exiting with a non-zero exit code. **pytest** should be run with the ``-x`` option so that it exits on the first error. """ if exitstatus != 0 and hoomd.version.mpi_enabled: atexit.register(abort, exitstatus) def logging_check(cls, expected_namespace, expected_loggables): """Function for testing object logging specification. Args: cls (object): The loggable class to test for the correct logging specfication. expected_namespace (tuple[str]): A tuple of strings that indicate the expected namespace minus the class name. expected_loggables (dict[str, dict[str, Any]]): A dict with string keys representing the expected loggable quantities. If the value for a key is ``None`` then, only check for the existence of the loggable quantity. Otherwise, the inner `dict` should consist of some combination of the keys ``default`` and ``category`` indicating the expected value of each for the loggable. """ # Check namespace assert all(log_quantity.namespace == expected_namespace + (cls.__name__,) for log_quantity in cls._export_dict.values()) # Check specific loggables def check_loggable(cls, name, properties): assert name in cls._export_dict if properties is None: return None log_quantity = cls._export_dict[name] for name, prop in properties.items(): assert getattr(log_quantity, name) == prop for name, properties in expected_loggables.items(): check_loggable(cls, name, properties) ``` #### File: hpmc/pytest/test_write_debug_data_hpmc.py ```python import hoomd def test_write_debug_data(simulation_factory, lattice_snapshot_factory, tmp_path): """Test write_debug_data for MD simulations.""" sim = simulation_factory(lattice_snapshot_factory()) mc = hoomd.hpmc.integrate.ConvexPolyhedron() mc.shape['A'] = dict(vertices=[ (-0.5, 0, 0), (0.5, 0, 0), (0, -0.5, 0), (0, 0.5, 0), (0, 0, -0.5), (0, 0, 0.5), ]) sim.operations.integrator = mc sim.write_debug_data(tmp_path / 'test_unscheduled.json') sim.run(10) sim.write_debug_data(tmp_path / 'test_scheduled.json') ``` #### File: hpmc/validation/lj_spheres.py ```python from hoomd import * from hoomd import hpmc import numpy as np import math import unittest import BlockAverage # Reference potential energy (U/N/eps) from MC simulations # https://mmlapps.nist.gov/srs/LJ_PURE/mc.htm # mean_Uref = -5.5121E+00; # sigma_Uref = 4.55E-04; # Interaction cut-off rcut = 3.0; # LJ length scale sigma = 1.0; # Tstar = 8.50E-01; # rho_star = 7.76E-01; # Diameter of particles diameter = sigma; # linear lattice dimension n = 8; class nvt_lj_sphere_energy(unittest.TestCase): def run_statepoint(self, Tstar, rho_star, mean_Uref, sigma_Uref, use_clusters, union): """ Tstar: Temperature (kT/eps) rho_star: Reduced density: rhostar = (N / V) * sigma**3 mean_Uref: reference energy sigma_Uref: standard deviation of the mean of reference energy """ context.initialize() eps = 1.0 / Tstar; # Particle volume V_p = math.pi/6.*diameter**3.; # lattice constant (sc) d_eff = (V_p*6/math.pi)**(1./3.); a = (d_eff**3.0/rho_star)**(1./3.); system = init.create_lattice(unitcell=lattice.sc(a=a), n=n); N = len(system.particles); mc = hpmc.integrate.sphere(d=0.3,seed=321); mc.shape_param.set('A',diameter=0) lennard_jones = """ float rsq = dot(r_ij, r_ij); float rcut = {}; if (rsq <= rcut*rcut) {{ float sigma = {}; float eps = {}; float sigmasq = sigma*sigma; float rsqinv = sigmasq / rsq; float r6inv = rsqinv*rsqinv*rsqinv; return 4.0f*eps*r6inv*(r6inv-1.0f); }} else {{ return 0.0f; }} """.format(rcut,sigma,eps); from hoomd import jit if not union: jit.patch.user(mc, r_cut=rcut, code=lennard_jones); else: u = jit.patch.user_union(mc,r_cut=rcut, code=lennard_jones) u.set_params('A', positions=[(0,0,0)],typeids=[0]) log = analyze.log(filename=None, quantities=['hpmc_overlap_count','hpmc_patch_energy'],period=100,overwrite=True); energy_val = []; def accumulate_energy(timestep): energy = log.query('hpmc_patch_energy') / float(N) / eps; # apply long range correction (used in reference data) energy += 8/9.0 * math.pi * rho_star * ((1/rcut)**9-3*(1/rcut)**3) energy_val.append(energy); if (timestep % 100 == 0): context.current.device.cpp_msg.notice(1,'energy = {:.5f}\n'.format(energy)); mc_tune = hpmc.util.tune(mc, tunables=['d','a'],max_val=[4,0.5],gamma=0.5,target=0.4); for i in range(5): run(100,quiet=True); d = mc.get_d(); translate_acceptance = mc.get_translate_acceptance(); print('d: {:3.2f} accept: {:3.2f}'.format(d,translate_acceptance)); mc_tune.update(); # Equilibrate run(500); if use_clusters: clusters = hpmc.update.clusters(mc, seed=99685) mc.set_params(d=0, a=0); # test cluster moves alone # Sample if use_clusters: run(5000,callback=accumulate_energy, callback_period=10) else: run(1000,callback=accumulate_energy, callback_period=10) block = BlockAverage.BlockAverage(energy_val) mean_U = np.mean(energy_val) i, sigma_U = block.get_error_estimate() context.current.device.cpp_msg.notice(1,'rho_star = {:.3f}\nU = {:.5f} +- {:.5f}\n'.format(rho_star,mean_U,sigma_U)) context.current.device.cpp_msg.notice(1,'Uref = {:.5f} +- {:.5f}\n'.format(mean_Uref,sigma_Uref)) # max error 0.5% self.assertLessEqual(sigma_U/mean_U,0.005) # 0.99 confidence interval ci = 2.576 # compare if 0 is within the confidence interval around the difference of the means sigma_diff = (sigma_U**2 + sigma_Uref**2)**(1/2.); self.assertLessEqual(math.fabs(mean_U - mean_Uref), ci*sigma_diff) def test_low_density_normal(self): self.run_statepoint(Tstar=8.50E-01, rho_star=5.00E-03, mean_Uref=-5.1901E-02, sigma_Uref=7.53E-05, use_clusters=False, union=False); self.run_statepoint(Tstar=8.50E-01, rho_star=7.00E-03, mean_Uref=-7.2834E-02, sigma_Uref=1.34E-04, use_clusters=False, union=False); self.run_statepoint(Tstar=8.50E-01, rho_star=9.00E-03, mean_Uref=-9.3973E-02, sigma_Uref=1.29E-04, use_clusters=False, union=False); def test_low_density_union(self): # test that the trivial union shape (a single point particle) also works self.run_statepoint(Tstar=8.50E-01, rho_star=5.00E-03, mean_Uref=-5.1901E-02, sigma_Uref=7.53E-05, use_clusters=False, union=True); self.run_statepoint(Tstar=8.50E-01, rho_star=7.00E-03, mean_Uref=-7.2834E-02, sigma_Uref=1.34E-04, use_clusters=False, union=True); self.run_statepoint(Tstar=8.50E-01, rho_star=9.00E-03, mean_Uref=-9.3973E-02, sigma_Uref=1.29E-04, use_clusters=False, union=True); def test_low_density_clusters(self): self.run_statepoint(Tstar=8.50E-01, rho_star=9.00E-03, mean_Uref=-9.3973E-02, sigma_Uref=1.29E-04, use_clusters=True, union=False); def test_moderate_density_normal(self): self.run_statepoint(Tstar=9.00E-01, rho_star=7.76E-01, mean_Uref=-5.4689E+00, sigma_Uref=4.20E-04, use_clusters=False, union=False); if __name__ == '__main__': unittest.main(argv = ['test.py', '-v']) ``` #### File: hpmc/validation/spheres_implicit_repulsive.py ```python from __future__ import division from hoomd import * from hoomd import hpmc import numpy as np import math import unittest context.initialize() #seed_list=[123, 456] seed_list = [123] #phi_c_list=[0.01, 0.05, 0.10, 0.2, 0.3] phi_c_list=[0.1] #eta_p_r_list=[0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0] eta_p_r_list=[0.4] import itertools params = [] params = list(itertools.product(seed_list, phi_c_list, eta_p_r_list)) context.current.device.cpp_msg.notice(1,"{} parameters\n".format(len(params))) # choose a random state point p = int(option.get_user()[0]) (seed, phi_c, eta_p_r) = params[p % len(params)] context.current.device.cpp_msg.notice(1,"parameter {} seed {} phi_c {:.3f} eta_p_r {:.3f}\n".format(p,seed, phi_c, eta_p_r)) # test the equation of state for the free volume fraction of hard spheres, when simultaneously # applying depletion with a positive and negative coefficients so that both cancel # reference data key = (phi_c, eta_p_r), value = (alpha, error) # 128 spheres alpha_ref=dict() alpha_ref[(0.1,0.4)] = (0.375450,0.000130) # number of spheres along one dimension n = 5 N = n**3 d_sphere = 1.0 V_sphere = math.pi/6.0*math.pow(d_sphere,3.0) # depletant-colloid size ratio q=1.0 L_target= math.pow(N*V_sphere/phi_c,1.0/3.0) class depletion_test(unittest.TestCase): def setUp(self): # initialize random configuration a = L_target/n self.system = init.create_lattice(unitcell=lattice.sc(a=a), n=n); self.system.particles.types.add('B') self.system.particles.types.add('C') def test_measure_etap(self): self.mc = hpmc.integrate.sphere(seed=seed) self.mc.set_params(d=0.1,a=0.1) self.mc.shape_param.set('A', diameter=d_sphere) self.mc.shape_param.set('B', diameter=d_sphere*q) self.mc.shape_param.set('C', diameter=d_sphere*q) self.mc_tune = hpmc.util.tune(self.mc, tunables=['d'],max_val=[d_sphere],gamma=1,target=0.2) for i in range(10): run(100, quiet=True) self.mc_tune.update() # warm up run(2000); # set ntrial > 0 self.mc.set_params(ntrial=2) # set depletant fugacity nR = eta_p_r/(math.pi/6.0*math.pow(d_sphere*q,3.0)) self.mc.set_fugacity('B',nR) # set negative fugacity to same amount to cancel self.mc.set_fugacity('C',-nR) free_volume = hpmc.compute.free_volume(mc=self.mc, seed=seed, nsample=10000, test_type='B') log=analyze.log(filename=None, quantities=['hpmc_overlap_count','volume','hpmc_free_volume'], overwrite=True,period=1000) alpha_measure = [] def log_callback(timestep): v = log.query('hpmc_free_volume')/log.query('volume') alpha_measure.append(v) self.assertEqual(log.query('hpmc_overlap_count'),0) # if context.current.device.comm.rank == 0: # print('alpha =', v); run(4e5,callback=log_callback,callback_period=100) import BlockAverage block = BlockAverage.BlockAverage(alpha_measure) alpha_avg = np.mean(np.array(alpha_measure)) i, alpha_err = block.get_error_estimate() if context.current.device.comm.rank == 0: print(i) (n, num, err, err_err) = block.get_hierarchical_errors() print('Hierarchical error analysis:') for (i, num_samples, e, ee) in zip(n, num, err, err_err): print('{0} {1} {2} {3}'.format(i,num_samples,e,ee)) if context.current.device.comm.rank == 0: print('avg: {:.6f} +- {:.6f}'.format(alpha_avg, alpha_err)) print('tgt: {:.6f} +- {:.6f}'.format(alpha_ref[(phi_c,eta_p_r)][0], alpha_ref[(phi_c,eta_p_r)][1])) # max error 0.5% self.assertLessEqual(alpha_err/alpha_avg,0.005) # confidence interval, 0.95 quantile of the normal distribution ci = 1.96 # check against reference value within reference error + measurement error self.assertLessEqual(math.fabs(alpha_avg-alpha_ref[(phi_c,eta_p_r)][0]),ci*(alpha_ref[(phi_c,eta_p_r)][1]+alpha_err)) def tearDown(self): del self.system context.initialize(); if __name__ == '__main__': unittest.main(argv = ['test.py', '-v']) ``` #### File: hoomd/md/angle.py ```python from hoomd import _hoomd from hoomd.md import _md from hoomd.md import force from hoomd.md.force import Force from hoomd.data.typeparam import TypeParameter from hoomd.data.parameterdicts import TypeParameterDict import hoomd import math class Angle(Force): """Constructs the angular bond potential. Note: :py:class:`Angle` is the base class for all angular potentials. Users should not instantiate this class directly. """ def _attach(self): # check that some angles are defined if self._simulation.state._cpp_sys_def.getAngleData().getNGlobal() == 0: self._simulation.device._cpp_msg.warning("No angles are defined.\n") # create the c++ mirror class if isinstance(self._simulation.device, hoomd.device.CPU): cpp_cls = getattr(_md, self._cpp_class_name) else: cpp_cls = getattr(_md, self._cpp_class_name + "GPU") self._cpp_obj = cpp_cls(self._simulation.state._cpp_sys_def) super()._attach() class Harmonic(Angle): R""" Harmonic angle potential. The command angle.harmonic specifies a harmonic potential energy between every triplet of particles with an angle specified between them. .. math:: V(\theta) = \frac{1}{2} k \left( \theta - \theta_0 \right)^2 where :math:`\theta` is the angle between the triplet of particles. Attributes: params (TypeParameter[``angle type``, dict]): The parameter of the harmonic bonds for each particle type. The dictionary has the following keys: * ``k`` (`float`, **required**) - potential constant (in units of energy/radians^2) * ``t0`` (`float`, **required**) - rest angle (in units radians) Examples:: harmonic = angle.Harmonic() harmonic.params['polymer'] = dict(k=3.0, t0=0.7851) harmonic.params['backbone'] = dict(k=100.0, t0=1.0) """ _cpp_class_name = 'HarmonicAngleForceCompute' def __init__(self): params = TypeParameter('params', 'angle_types', TypeParameterDict(t0=float, k=float, len_keys=1)) self._add_typeparam(params) class Cosinesq(Angle): R""" Cosine squared angle potential. The command angle.cosinesq specifies a cosine squared potential energy between every triplet of particles with an angle specified between them. .. math:: V(\theta) = \frac{1}{2} k \left( \cos\theta - \cos\theta_0 \right)^2 where :math:`\theta` is the angle between the triplet of particles. This angle style is also known as g96, since they were used in the gromos96 force field. These are also the types of angles used with the coarse-grained MARTINI force field. Attributes: params (TypeParameter[``angle type``, dict]): The parameter of the harmonic bonds for each particle type. The dictionary has the following keys: * ``k`` (`float`, **required**) - potential constant (in units of energy/radians^2) * ``t0`` (`float`, **required**) - rest angle :math:`\theta_0` (in units radians) Parameters :math:`k` and :math:`\theta_0` must be set for each type of angle in the simulation. Note that the value of :math:`k` for this angle potential is not comparable to the value of :math:`k` for harmonic angles, as they have different units. Examples:: cosinesq = angle.Cosinesq() cosinesq.params['polymer'] = dict(k=3.0, t0=0.7851) cosinesq.params['backbone'] = dict(k=100.0, t0=1.0) """ _cpp_class_name = 'CosineSqAngleForceCompute' def __init__(self): params = TypeParameter('params', 'angle_types', TypeParameterDict(t0=float, k=float, len_keys=1)) self._add_typeparam(params) def _table_eval(theta, V, T, width): dth = (math.pi) / float(width-1); i = int(round((theta)/dth)) return (V[i], T[i]) class table(force._force): R""" Tabulated angle potential. Args: width (int): Number of points to use to interpolate V and F (see documentation above) name (str): Name of the force instance :py:class:`table` specifies that a tabulated angle potential should be added to every bonded triple of particles in the simulation. The torque :math:`T` is (in units of force * distance) and the potential :math:`V(\theta)` is (in energy units): .. math:: T(\theta) = & T_{\mathrm{user}}(\theta) \\ V(\theta) = & V_{\mathrm{user}}(\theta) where :math:`\theta` is the angle from A-B to B-C in the triple. :math:`T_{\mathrm{user}}(\theta)` and :math:`V_{\mathrm{user}}(\theta)` are evaluated on *width* grid points between :math:`0` and :math:`\pi`. Values are interpolated linearly between grid points. For correctness, you must specify: :math:`T = -\frac{\partial V}{\partial \theta}` Parameters: - :math:`T_{\mathrm{user}}(\theta)` and :math:`V_{\mathrm{user}}(\theta)` - evaluated by ``func`` (see example) - coefficients passed to ``func`` - ``angle_coeff`` (see example) The table *width* is set once when :py:class:`table` is specified. There are two ways to specify the other parameters. .. rubric:: Set table from a given function When you have a functional form for T and F, you can enter that directly into python. :py:class:`table` will evaluate the given function over *width* points between :math:`0` and :math:`\pi` and use the resulting values in the table:: def harmonic(theta, kappa, theta_0): V = 0.5 * kappa * (theta-theta_0)**2; T = -kappa*(theta-theta_0); return (V, T) btable = angle.table(width=1000) btable.angle_coeff.set('angle1', func=harmonic, coeff=dict(kappa=330, theta_0=0)) btable.angle_coeff.set('angle2', func=harmonic,coeff=dict(kappa=30, theta_0=0.1)) .. rubric:: Set a table from a file When you have no function for for *T* or *F*, or you otherwise have the data listed in a file, :py:class:`table` can use the given values directly. You must first specify the number of rows in your tables when initializing :py:class:`table`. Then use :py:meth:`set_from_file()` to read the file:: btable = angle.table(width=1000) btable.set_from_file('polymer', 'angle.dat') """ def __init__(self, width, name=None): # initialize the base class force._force.__init__(self, name); # create the c++ mirror class if not hoomd.context.current.device.cpp_exec_conf.isCUDAEnabled(): self.cpp_force = _md.TableAngleForceCompute(hoomd.context.current.system_definition, int(width), self.name); else: self.cpp_force = _md.TableAngleForceComputeGPU(hoomd.context.current.system_definition, int(width), self.name); hoomd.context.current.system.addCompute(self.cpp_force, self.force_name); # setup the coefficient matrix self.angle_coeff = coeff(); # stash the width for later use self.width = width; def update_angle_table(self, atype, func, coeff): # allocate arrays to store V and F Vtable = _hoomd.std_vector_scalar(); Ttable = _hoomd.std_vector_scalar(); # calculate dth dth = math.pi / float(self.width-1); # evaluate each point of the function for i in range(0, self.width): theta = dth * i; (V,T) = func(theta, **coeff); # fill out the tables Vtable.append(V); Ttable.append(T); # pass the tables on to the underlying cpp compute self.cpp_force.setTable(atype, Vtable, Ttable); def update_coeffs(self): # check that the angle coefficients are valid if not self.angle_coeff.verify(["func", "coeff"]): hoomd.context.current.device.cpp_msg.error("Not all angle coefficients are set for angle.table\n"); raise RuntimeError("Error updating angle coefficients"); # set all the params ntypes = hoomd.context.current.system_definition.getAngleData().getNTypes(); type_list = []; for i in range(0,ntypes): type_list.append(hoomd.context.current.system_definition.getAngleData().getNameByType(i)); # loop through all of the unique type angles and evaluate the table for i in range(0,ntypes): func = self.angle_coeff.get(type_list[i], "func"); coeff = self.angle_coeff.get(type_list[i], "coeff"); self.update_angle_table(i, func, coeff); def set_from_file(self, anglename, filename): R""" Set a angle pair interaction from a file. Args: anglename (str): Name of angle filename (str): Name of the file to read The provided file specifies V and F at equally spaced theta values:: #t V T 0.0 2.0 -3.0 1.5707 3.0 -4.0 3.1414 2.0 -3.0 Warning: The theta values are not used by the code. It is assumed that a table that has N rows will start at 0, end at :math:`\pi` and that :math:`\delta \theta = \pi/(N-1)`. The table is read directly into the grid points used to evaluate :math:`T_{\mathrm{user}}(\theta)` and :math:`V_{\mathrm{user}}(\theta)`. """ # open the file f = open(filename); theta_table = []; V_table = []; T_table = []; # read in lines from the file for line in f.readlines(): line = line.strip(); # skip comment lines if line[0] == '#': continue; # split out the columns cols = line.split(); values = [float(f) for f in cols]; # validate the input if len(values) != 3: hoomd.context.current.device.cpp_msg.error("angle.table: file must have exactly 3 columns\n"); raise RuntimeError("Error reading table file"); # append to the tables theta_table.append(values[0]); V_table.append(values[1]); T_table.append(values[2]); # validate input if self.width != len(theta_table): hoomd.context.current.device.cpp_msg.error("angle.table: file must have exactly " + str(self.width) + " rows\n"); raise RuntimeError("Error reading table file"); # check for even spacing dth = math.pi / float(self.width-1); for i in range(0,self.width): theta = dth * i; if math.fabs(theta - theta_table[i]) > 1e-3: hoomd.context.current.device.cpp_msg.error("angle.table: theta must be monotonically increasing and evenly spaced\n"); raise RuntimeError("Error reading table file"); self.angle_coeff.set(anglename, func=_table_eval, coeff=dict(V=V_table, T=T_table, width=self.width)) ## \internal # \brief Get metadata def get_metadata(self): data = force._force.get_metadata(self) # make sure coefficients are up-to-date self.update_coeffs() data['angle_coeff'] = self.angle_coeff return data ``` #### File: md/pytest/test_active.py ```python import hoomd import pytest import numpy import itertools def test_attach(simulation_factory, two_particle_snapshot_factory): sim = simulation_factory(two_particle_snapshot_factory(dimensions=3, d=8)) integrator = hoomd.md.Integrator(.05) integrator.methods.append(hoomd.md.methods.Langevin(hoomd.filter.All(), kT=0)) integrator.forces.append(hoomd.md.force.Active(filter=hoomd.filter.All(), rotation_diff=0.01)) sim.operations.integrator = integrator sim.operations._schedule() sim.run(10) ``` #### File: md/pytest/test_methods.py ```python import hoomd import pytest import numpy import itertools from copy import deepcopy def test_brownian_attributes(): """Test attributes of the Brownian integrator before attaching.""" all_ = hoomd.filter.All() constant = hoomd.variant.Constant(2.0) brownian = hoomd.md.methods.Brownian(filter = all_, kT=constant) assert brownian.filter is all_ assert brownian.kT is constant assert brownian.alpha is None type_A = hoomd.filter.Type(['A']) brownian.filter = type_A assert brownian.filter is type_A ramp = hoomd.variant.Ramp(1, 2, 1000000, 2000000) brownian.kT = ramp assert brownian.kT is ramp brownian.alpha = 0.125 assert brownian.alpha == 0.125 def test_brownian_attributes_attached(simulation_factory, two_particle_snapshot_factory): """Test attributes of the Brownian integrator after attaching.""" all_ = hoomd.filter.All() constant = hoomd.variant.Constant(2.0) brownian = hoomd.md.methods.Brownian(filter = all_, kT=constant) sim = simulation_factory(two_particle_snapshot_factory()) sim.operations.integrator = hoomd.md.Integrator(0.005, methods=[brownian]) sim.operations._schedule() assert brownian.filter is all_ assert brownian.kT is constant assert brownian.alpha is None type_A = hoomd.filter.Type(['A']) with pytest.raises(AttributeError): # filter cannot be set after scheduling brownian.filter = type_A assert brownian.filter is all_ ramp = hoomd.variant.Ramp(1, 2, 1000000, 2000000) brownian.kT = ramp assert brownian.kT is ramp brownian.alpha = 0.125 assert brownian.alpha == 0.125 @pytest.mark.serial def test_berendsen_attributes(device): """Test attributes of the Berendsen integrator before attaching.""" all_ = hoomd.filter.All() constant = hoomd.variant.Constant(2.0) berendsen = hoomd.md.methods.Berendsen(filter=all_, kT=constant, tau=10.0) assert berendsen.filter == all_ assert berendsen.kT == constant assert berendsen.tau == 10.0 type_A = hoomd.filter.Type(['A']) berendsen.filter = type_A assert berendsen.filter == type_A ramp = hoomd.variant.Ramp(1, 2, 1000000, 2000000) berendsen.kT = ramp assert berendsen.kT == ramp berendsen.tau = 1.2 assert berendsen.tau == 1.2 @pytest.mark.serial def test_berendsen_attributes_attached(simulation_factory, two_particle_snapshot_factory): """Test attributes of the Berendsen integrator after attaching.""" all_ = hoomd.filter.All() constant = hoomd.variant.Constant(2.0) berendsen = hoomd.md.methods.Berendsen(filter=all_, kT=constant, tau=10.0) sim = simulation_factory(two_particle_snapshot_factory()) sim.operations.integrator = hoomd.md.Integrator(0.005, methods=[berendsen]) sim.operations._schedule() assert berendsen.filter == all_ assert berendsen.kT == constant assert berendsen.tau == 10.0 type_A = hoomd.filter.Type(['A']) with pytest.raises(AttributeError): # filter cannot be set after scheduling berendsen.filter = type_A assert berendsen.filter == all_ ramp = hoomd.variant.Ramp(1, 2, 1000000, 2000000) berendsen.kT = ramp assert berendsen.kT == ramp berendsen.tau = 1.2 assert berendsen.tau == 1.2 def test_langevin_attributes(): """Test attributes of the Langevin integrator before attaching.""" all_ = hoomd.filter.All() constant = hoomd.variant.Constant(2.0) langevin = hoomd.md.methods.Langevin(filter = all_, kT=constant) assert langevin.filter is all_ assert langevin.kT is constant assert langevin.alpha is None assert (not langevin.tally_reservoir_energy) type_A = hoomd.filter.Type(['A']) langevin.filter = type_A assert langevin.filter is type_A ramp = hoomd.variant.Ramp(1, 2, 1000000, 2000000) langevin.kT = ramp assert langevin.kT is ramp langevin.alpha = 0.125 assert langevin.alpha == 0.125 langevin.tally_reservoir_energy = True assert langevin.tally_reservoir_energy def test_langevin_attributes_attached(simulation_factory, two_particle_snapshot_factory): """Test attributes of the Langevin integrator before attaching.""" all_ = hoomd.filter.All() constant = hoomd.variant.Constant(2.0) langevin = hoomd.md.methods.Langevin(filter = all_, kT=constant) sim = simulation_factory(two_particle_snapshot_factory()) sim.operations.integrator = hoomd.md.Integrator(0.005, methods=[langevin]) sim.operations._schedule() assert langevin.filter is all_ assert langevin.kT is constant assert langevin.alpha is None assert (not langevin.tally_reservoir_energy) type_A = hoomd.filter.Type(['A']) with pytest.raises(AttributeError): # filter cannot be set after scheduling langevin.filter = type_A assert langevin.filter is all_ ramp = hoomd.variant.Ramp(1, 2, 1000000, 2000000) langevin.kT = ramp assert langevin.kT is ramp langevin.alpha = 0.125 assert langevin.alpha == 0.125 langevin.tally_reservoir_energy = True assert langevin.tally_reservoir_energy def test_npt_attributes(): """Test attributes of the NPT integrator before attaching.""" all_ = hoomd.filter.All() constant_t = hoomd.variant.Constant(2.0) constant_s = [hoomd.variant.Constant(1.0), hoomd.variant.Constant(2.0), hoomd.variant.Constant(3.0), hoomd.variant.Constant(0.125), hoomd.variant.Constant(.25), hoomd.variant.Constant(.5)] npt = hoomd.md.methods.NPT(filter = all_, kT=constant_t, tau=2.0, S = constant_s, tauS = 2.0, couple='xyz') assert npt.filter is all_ assert npt.kT is constant_t assert npt.tau == 2.0 assert len(npt.S) == 6 for i in range(6): assert npt.S[i] is constant_s[i] assert npt.tauS == 2.0 assert npt.box_dof == (True,True,True,False,False,False) assert npt.couple == 'xyz' assert not npt.rescale_all assert npt.gamma == 0.0 type_A = hoomd.filter.Type(['A']) npt.filter = type_A assert npt.filter is type_A ramp = hoomd.variant.Ramp(1, 2, 1000000, 2000000) npt.kT = ramp assert npt.kT is ramp npt.tau = 10.0 assert npt.tau == 10.0 ramp_s = [hoomd.variant.Ramp(1.0, 4.0, 1000, 10000), hoomd.variant.Ramp(2.0, 4.0, 1000, 10000), hoomd.variant.Ramp(3.0, 4.0, 1000, 10000), hoomd.variant.Ramp(0.125, 4.0, 1000, 10000), hoomd.variant.Ramp(.25, 4.0, 1000, 10000), hoomd.variant.Ramp(.5, 4.0, 1000, 10000)] npt.S = ramp_s assert len(npt.S) == 6 for i in range(6): assert npt.S[i] is ramp_s[i] npt.tauS = 10.0 assert npt.tauS == 10.0 npt.box_dof = (True,False,False,False,True,False) assert npt.box_dof == (True,False,False,False,True,False) npt.couple = 'none' assert npt.couple == 'none' npt.rescale_all = True assert npt.rescale_all npt.gamma = 2.0 assert npt.gamma == 2.0 assert npt.translational_thermostat_dof == (0.0, 0.0) npt.translational_thermostat_dof = (0.125, 0.5) assert npt.translational_thermostat_dof == (0.125, 0.5) assert npt.rotational_thermostat_dof == (0.0, 0.0) npt.rotational_thermostat_dof = (0.5, 0.25) assert npt.rotational_thermostat_dof == (0.5, 0.25) assert npt.barostat_dof == (0.0, 0.0, 0.0, 0.0, 0.0, 0.0) npt.barostat_dof = (1.0, 2.0, 4.0, 6.0, 8.0, 10.0) assert npt.barostat_dof == (1.0, 2.0, 4.0, 6.0, 8.0, 10.0) def test_nph_attributes(): """Test attributes of the NPH integrator before attaching.""" all_ = hoomd.filter.All() constant_s = [ hoomd.variant.Constant(1.0), hoomd.variant.Constant(2.0), hoomd.variant.Constant(3.0), hoomd.variant.Constant(0.125), hoomd.variant.Constant(.25), hoomd.variant.Constant(.5) ] nph = hoomd.md.methods.NPH(filter=all_, S=constant_s, tauS=2.0, couple='xyz') assert nph.filter == all_ assert len(nph.S) == 6 for i in range(6): assert nph.S[i] is constant_s[i] assert nph.tauS == 2.0 assert nph.box_dof == (True, True, True, False, False, False) assert nph.couple == 'xyz' assert not nph.rescale_all assert nph.gamma == 0.0 type_A = hoomd.filter.Type(['A']) nph.filter = type_A assert nph.filter == type_A ramp_s = [ hoomd.variant.Ramp(1.0, 4.0, 1000, 10000), hoomd.variant.Ramp(2.0, 4.0, 1000, 10000), hoomd.variant.Ramp(3.0, 4.0, 1000, 10000), hoomd.variant.Ramp(0.125, 4.0, 1000, 10000), hoomd.variant.Ramp(.25, 4.0, 1000, 10000), hoomd.variant.Ramp(.5, 4.0, 1000, 10000) ] nph.S = ramp_s assert len(nph.S) == 6 for i in range(6): assert nph.S[i] is ramp_s[i] nph.tauS = 10.0 assert nph.tauS == 10.0 nph.box_dof = (True, False, False, False, True, False) assert nph.box_dof == (True, False, False, False, True, False) nph.couple = 'none' assert nph.couple == 'none' nph.rescale_all = True assert nph.rescale_all nph.gamma = 2.0 assert nph.gamma == 2.0 assert nph.barostat_dof == (0.0, 0.0, 0.0, 0.0, 0.0, 0.0) nph.barostat_dof = (1.0, 2.0, 4.0, 6.0, 8.0, 10.0) assert nph.barostat_dof == (1.0, 2.0, 4.0, 6.0, 8.0, 10.0) def test_npt_attributes_attached_3d(simulation_factory, two_particle_snapshot_factory): """Test attributes of the NPT integrator before attaching.""" all_ = hoomd.filter.All() constant_t = hoomd.variant.Constant(2.0) constant_s = [hoomd.variant.Constant(1.0), hoomd.variant.Constant(2.0), hoomd.variant.Constant(3.0), hoomd.variant.Constant(0.125), hoomd.variant.Constant(.25), hoomd.variant.Constant(.5)] npt = hoomd.md.methods.NPT(filter = all_, kT=constant_t, tau=2.0, S = constant_s, tauS = 2.0, couple='xyz') sim = simulation_factory(two_particle_snapshot_factory()) sim.operations.integrator = hoomd.md.Integrator(0.005, methods=[npt]) sim.operations._schedule() assert npt.filter is all_ assert npt.kT is constant_t assert npt.tau == 2.0 assert len(npt.S) == 6 for i in range(6): assert npt.S[i] is constant_s[i] assert npt.tauS == 2.0 assert npt.couple == 'xyz' type_A = hoomd.filter.Type(['A']) with pytest.raises(AttributeError): # filter cannot be set after scheduling npt.filter = type_A assert npt.filter is all_ ramp = hoomd.variant.Ramp(1, 2, 1000000, 2000000) npt.kT = ramp assert npt.kT is ramp npt.tau = 10.0 assert npt.tau == 10.0 ramp_s = [hoomd.variant.Ramp(1.0, 4.0, 1000, 10000), hoomd.variant.Ramp(2.0, 4.0, 1000, 10000), hoomd.variant.Ramp(3.0, 4.0, 1000, 10000), hoomd.variant.Ramp(0.125, 4.0, 1000, 10000), hoomd.variant.Ramp(.25, 4.0, 1000, 10000), hoomd.variant.Ramp(.5, 4.0, 1000, 10000)] npt.S = ramp_s assert len(npt.S) == 6 for i in range(6): assert npt.S[i] is ramp_s[i] npt.tauS = 10.0 assert npt.tauS == 10.0 npt.box_dof = (True,False,False,False,True,False) assert tuple(npt.box_dof) == (True,False,False,False,True,False) npt.couple = 'none' assert npt.couple == 'none' npt.rescale_all = True assert npt.rescale_all npt.gamma = 2.0 assert npt.gamma == 2.0 assert npt.translational_thermostat_dof == (0.0, 0.0) npt.translational_thermostat_dof = (0.125, 0.5) assert npt.translational_thermostat_dof == (0.125, 0.5) assert npt.rotational_thermostat_dof == (0.0, 0.0) npt.rotational_thermostat_dof = (0.5, 0.25) assert npt.rotational_thermostat_dof == (0.5, 0.25) assert npt.barostat_dof == (0.0, 0.0, 0.0, 0.0, 0.0, 0.0) npt.barostat_dof = (1.0, 2.0, 4.0, 6.0, 8.0, 10.0) assert npt.barostat_dof == (1.0, 2.0, 4.0, 6.0, 8.0, 10.0) def test_nph_attributes_attached_3d(simulation_factory, two_particle_snapshot_factory): """Test attributes of the NPH integrator after attaching in 3D.""" all_ = hoomd.filter.All() constant_s = [ hoomd.variant.Constant(1.0), hoomd.variant.Constant(2.0), hoomd.variant.Constant(3.0), hoomd.variant.Constant(0.125), hoomd.variant.Constant(.25), hoomd.variant.Constant(.5) ] nph = hoomd.md.methods.NPH(filter=all_, S=constant_s, tauS=2.0, couple='xyz') sim = simulation_factory(two_particle_snapshot_factory()) sim.operations.integrator = hoomd.md.Integrator(0.005, methods=[nph]) sim.run(0) assert nph.filter == all_ assert len(nph.S) == 6 for i in range(6): assert nph.S[i] is constant_s[i] assert nph.tauS == 2.0 assert nph.couple == 'xyz' type_A = hoomd.filter.Type(['A']) with pytest.raises(AttributeError): # filter cannot be set after scheduling nph.filter = type_A assert nph.filter == all_ nph.tauS = 10.0 assert nph.tauS == 10.0 nph.box_dof = (True, False, False, False, True, False) assert tuple(nph.box_dof) == (True, False, False, False, True, False) nph.couple = 'none' assert nph.couple == 'none' nph.rescale_all = True assert nph.rescale_all nph.gamma = 2.0 assert nph.gamma == 2.0 assert nph.barostat_dof == (0.0, 0.0, 0.0, 0.0, 0.0, 0.0) nph.barostat_dof = (1.0, 2.0, 4.0, 6.0, 8.0, 10.0) assert nph.barostat_dof == (1.0, 2.0, 4.0, 6.0, 8.0, 10.0) ramp_s = [ hoomd.variant.Ramp(1.0, 4.0, 1000, 10000), hoomd.variant.Ramp(2.0, 4.0, 1000, 10000), hoomd.variant.Ramp(3.0, 4.0, 1000, 10000), hoomd.variant.Ramp(0.125, 4.0, 1000, 10000), hoomd.variant.Ramp(.25, 4.0, 1000, 10000), hoomd.variant.Ramp(.5, 4.0, 1000, 10000) ] nph.S = ramp_s assert len(nph.S) == 6 for _ in range(5): sim.run(1) for i in range(6): assert nph.S[i] is ramp_s[i] def test_npt_thermalize_thermostat_and_barostat_dof( simulation_factory, two_particle_snapshot_factory): """Tests that NPT.thermalize_thermostat_and_barostat_dof can be called.""" all_ = hoomd.filter.All() constant_t = hoomd.variant.Constant(2.0) constant_s = [1, 2, 3, 0.125, 0.25, 0.5] npt = hoomd.md.methods.NPT(filter=all_, kT=constant_t, tau=2.0, S=constant_s, tauS=2.0, box_dof=[True, True, True, True, True, True], couple='xyz') sim = simulation_factory(two_particle_snapshot_factory()) sim.operations.integrator = hoomd.md.Integrator(0.005, methods=[npt]) sim.operations._schedule() npt.thermalize_thermostat_and_barostat_dof() xi, eta = npt.translational_thermostat_dof assert xi != 0.0 assert eta == 0.0 xi_rot, eta_rot = npt.rotational_thermostat_dof assert xi_rot == 0.0 assert eta_rot == 0.0 for v in npt.barostat_dof: assert v != 0.0 def test_npt_thermalize_thermostat_and_barostat_aniso_dof( simulation_factory, two_particle_snapshot_factory): """Tests that NPT.thermalize_thermostat_and_barostat_dof can be called.""" all_ = hoomd.filter.All() constant_t = hoomd.variant.Constant(2.0) constant_s = [1, 2, 3, 0.125, 0.25, 0.5] npt = hoomd.md.methods.NPT(filter=all_, kT=constant_t, tau=2.0, S=constant_s, tauS=2.0, box_dof=[True, True, True, True, True, True], couple='xyz') snap = two_particle_snapshot_factory() if snap.exists: snap.particles.moment_inertia[:] = [[1, 1, 1], [2, 0, 0]] sim = simulation_factory(snap) sim.operations.integrator = hoomd.md.Integrator(0.005, methods=[npt], aniso=True) sim.run(0) npt.thermalize_thermostat_and_barostat_dof() xi, eta = npt.translational_thermostat_dof assert xi != 0.0 assert eta == 0.0 xi_rot, eta_rot = npt.rotational_thermostat_dof assert xi_rot != 0.0 assert eta_rot == 0.0 for v in npt.barostat_dof: assert v != 0.0 def test_nph_thermalize_barostat_dof(simulation_factory, two_particle_snapshot_factory): """Tests that NPT.thermalize_thermostat_and_barostat_dof can be called.""" all_ = hoomd.filter.All() constant_s = [1, 2, 3, 0.125, 0.25, 0.5] nph = hoomd.md.methods.NPH(filter=all_, S=constant_s, tauS=2.0, box_dof=[True, True, True, True, True, True], couple='xyz') sim = simulation_factory(two_particle_snapshot_factory()) sim.operations.integrator = hoomd.md.Integrator(0.005, methods=[nph]) sim.run(0) nph.thermalize_barostat_dof() for v in nph.barostat_dof: assert v != 0.0 def test_npt_attributes_attached_2d(simulation_factory, two_particle_snapshot_factory): """Test attributes of the NPT integrator specific to 2D simulations.""" all_ = hoomd.filter.All() npt = hoomd.md.methods.NPT(filter = all_, kT=1.0, tau=2.0, S = 2.0, tauS = 2.0, couple='xy') assert npt.box_dof == (True,True,True,False,False,False) assert npt.couple == 'xy' sim = simulation_factory(two_particle_snapshot_factory(dimensions=2)) sim.operations.integrator = hoomd.md.Integrator(0.005, methods=[npt]) sim.operations._schedule() # after attaching in 2d, only some coupling modes and box dof are valid assert tuple(npt.box_dof) == (True,True,False,False,False,False) assert npt.couple == 'xy' with pytest.raises(ValueError): npt.couple = 'xyz' with pytest.raises(ValueError): npt.couple = 'xz' with pytest.raises(ValueError): npt.couple = 'yz' npt.couple = 'none' assert npt.couple == 'none' npt.box_dof = (True, True, True, True, True, True) assert tuple(npt.box_dof) == (True, True, False, True, False, False) def test_nph_attributes_attached_2d(simulation_factory, two_particle_snapshot_factory): """Test attributes of the NPH integrator specific to 2D simulations.""" all_ = hoomd.filter.All() nph = hoomd.md.methods.NPH(filter=all_, S=2.0, tauS=2.0, couple='xy') assert nph.box_dof == (True, True, True, False, False, False) assert nph.couple == 'xy' sim = simulation_factory(two_particle_snapshot_factory(dimensions=2)) sim.operations.integrator = hoomd.md.Integrator(0.005, methods=[nph]) sim.run(0) # after attaching in 2d, only some coupling modes and box dof are valid assert tuple(nph.box_dof) == (True, True, False, False, False, False) assert nph.couple == 'xy' with pytest.raises(ValueError): nph.couple = 'xyz' with pytest.raises(ValueError): nph.couple = 'xz' with pytest.raises(ValueError): nph.couple = 'yz' nph.couple = 'none' assert nph.couple == 'none' nph.box_dof = (True, True, True, True, True, True) assert tuple(nph.box_dof) == (True, True, False, True, False, False) def test_nve_attributes(): """Test attributes of the NVE integrator before attaching.""" all_ = hoomd.filter.All() constant = hoomd.variant.Constant(2.0) nve = hoomd.md.methods.NVE(filter = all_) assert nve.filter is all_ type_A = hoomd.filter.Type(['A']) nve.filter = type_A assert nve.filter is type_A def test_nve_attributes_attached(simulation_factory, two_particle_snapshot_factory): """Test attributes of the NVE integrator before attaching.""" all_ = hoomd.filter.All() nve = hoomd.md.methods.NVE(filter = all_) sim = simulation_factory(two_particle_snapshot_factory()) sim.operations.integrator = hoomd.md.Integrator(0.005, methods=[nve]) sim.operations._schedule() assert nve.filter is all_ type_A = hoomd.filter.Type(['A']) with pytest.raises(AttributeError): # filter cannot be set after scheduling nve.filter = type_A assert nve.filter is all_ def test_nvt_attributes(): """Test attributes of the NVT integrator before attaching.""" all_ = hoomd.filter.All() constant = hoomd.variant.Constant(2.0) nvt = hoomd.md.methods.NVT(filter = all_, kT=constant, tau=2.0) assert nvt.filter is all_ assert nvt.kT is constant assert nvt.tau == 2.0 type_A = hoomd.filter.Type(['A']) nvt.filter = type_A assert nvt.filter is type_A ramp = hoomd.variant.Ramp(1, 2, 1000000, 2000000) nvt.kT = ramp assert nvt.kT is ramp nvt.tau = 10.0 assert nvt.tau == 10.0 assert nvt.translational_thermostat_dof == (0.0, 0.0) nvt.translational_thermostat_dof = (0.125, 0.5) assert nvt.translational_thermostat_dof == (0.125, 0.5) assert nvt.rotational_thermostat_dof == (0.0, 0.0) nvt.rotational_thermostat_dof = (0.5, 0.25) assert nvt.rotational_thermostat_dof == (0.5, 0.25) def test_nvt_attributes_attached(simulation_factory, two_particle_snapshot_factory): """Test attributes of the NVT integrator before attaching.""" all_ = hoomd.filter.All() constant = hoomd.variant.Constant(2.0) nvt = hoomd.md.methods.NVT(filter = all_, kT=constant, tau=2.0) sim = simulation_factory(two_particle_snapshot_factory()) sim.operations.integrator = hoomd.md.Integrator(0.005, methods=[nvt]) sim.operations._schedule() assert nvt.filter is all_ assert nvt.kT is constant assert nvt.tau == 2.0 type_A = hoomd.filter.Type(['A']) with pytest.raises(AttributeError): # filter cannot be set after scheduling nvt.filter = type_A assert nvt.filter is all_ ramp = hoomd.variant.Ramp(1, 2, 1000000, 2000000) nvt.kT = ramp assert nvt.kT is ramp nvt.tau = 10.0 assert nvt.tau == 10.0 assert nvt.translational_thermostat_dof == (0.0, 0.0) nvt.translational_thermostat_dof = (0.125, 0.5) assert nvt.translational_thermostat_dof == (0.125, 0.5) assert nvt.rotational_thermostat_dof == (0.0, 0.0) nvt.rotational_thermostat_dof = (0.5, 0.25) assert nvt.rotational_thermostat_dof == (0.5, 0.25) def test_nvt_thermalize_thermostat_dof(simulation_factory, two_particle_snapshot_factory): """Tests that NVT.thermalize_thermostat_dof can be called.""" all_ = hoomd.filter.All() constant = hoomd.variant.Constant(2.0) nvt = hoomd.md.methods.NVT(filter=all_, kT=constant, tau=2.0) sim = simulation_factory(two_particle_snapshot_factory()) sim.operations.integrator = hoomd.md.Integrator(0.005, methods=[nvt]) sim.operations._schedule() nvt.thermalize_thermostat_dof() xi, eta = nvt.translational_thermostat_dof assert xi != 0.0 assert eta == 0.0 xi_rot, eta_rot = nvt.rotational_thermostat_dof assert xi_rot == 0.0 assert eta_rot == 0.0 def test_nvt_thermalize_thermostat_aniso_dof(simulation_factory, two_particle_snapshot_factory): """Tests that NVT.thermalize_thermostat_dof can be called.""" all_ = hoomd.filter.All() constant = hoomd.variant.Constant(2.0) nvt = hoomd.md.methods.NVT(filter=all_, kT=constant, tau=2.0) snap = two_particle_snapshot_factory() if snap.exists: snap.particles.moment_inertia[:] = [[1, 1, 1], [2, 0, 0]] sim = simulation_factory(snap) sim.operations.integrator = hoomd.md.Integrator(0.005, methods=[nvt], aniso=True) sim.run(0) nvt.thermalize_thermostat_dof() xi, eta = nvt.translational_thermostat_dof assert xi != 0.0 assert eta == 0.0 xi_rot, eta_rot = nvt.rotational_thermostat_dof assert xi_rot != 0.0 assert eta_rot == 0.0 ``` #### File: hoomd-blue/hoomd/operation.py ```python from hoomd.util import is_iterable, dict_map, dict_filter, str_to_tuple_keys from hoomd.trigger import Trigger from hoomd.variant import Variant, Constant from hoomd.filter import ParticleFilter from hoomd.logging import Loggable, log from hoomd.data.typeconverter import RequiredArg from hoomd.util import NamespaceDict from hoomd._hoomd import GSDStateReader from hoomd.data.parameterdicts import ParameterDict from collections.abc import Mapping from copy import deepcopy def _convert_values_to_log_form(value): """Function for making state loggable quantity conform to spec. Since the state dictionary is composed of properties for a given class instance that does not have flags associated with it, we need to add the flags when querying for the state. This does makes state logger type flag generation dynamic meaning that we must be careful that we won't wrongly detect different flags for the same attribute. In general this shouldn't be a concern, though. """ if value is RequiredArg: return RequiredArg elif isinstance(value, Variant): if isinstance(value, Constant): return (value.value, 'scalar') else: return (value, 'object') elif isinstance(value, Trigger) or isinstance(value, ParticleFilter): return (value, 'object') elif isinstance(value, Operation): return (value, 'object') elif isinstance(value, str): return (value, 'string') elif (is_iterable(value) and len(value) != 0 and all([isinstance(v, str) for v in value])): return (value, 'strings') elif not is_iterable(value): return (value, 'scalar') else: return (value, 'sequence') def _handle_gsd_arrays(arr): if arr.size == 1: return arr[0] if arr.ndim == 1: if arr.size < 3: return tuple(arr.flatten()) else: return arr class _HOOMDGetSetAttrBase: """Provides the use of `ParameterDicts` and `TypeParameterDicts` as attrs. Provides many hooks for varying behavior. Attributes: _reserved_default_attrs (dict[str, Callable([], T)]): Attributes that have defaults and should be set using `object.__setattr__`. Has `_param_dict` and `_typeparam_dict` keys by default. _override_setattr (set[str]): Attributes that should not use the provided `__setattr__`. `super().__setattr__` is called for them. Likely, this wil no longer be necessary when triggers are added to C++ Updaters and Analyzers. _param_dict (ParameterDict): The `ParameterDict` for the class/instance. _typeparam_dict (dict[str, TypeParameter]): A dict of all the `TypeParameter`s for the class/instance. """ _reserved_default_attrs = dict(_param_dict=ParameterDict, _typeparam_dict=dict) _override_setattr = set() def __getattr__(self, attr): if attr in self._reserved_default_attrs.keys(): value = self._reserved_default_attrs[attr]() object.__setattr__(self, attr, value) return value elif attr in self._param_dict.keys(): return self._getattr_param(attr) elif attr in self._typeparam_dict.keys(): return self._getattr_typeparam(attr) else: raise AttributeError("Object {} has no attribute {}".format( type(self), attr)) def _getattr_param(self, attr): """Hook for getting an attribute from `_param_dict`.""" return self._param_dict[attr] def _getattr_typeparam(self, attr): """Hook for getting an attribute from `_typeparam_dict`.""" return self._typeparam_dict[attr] def __setattr__(self, attr, value): if attr in self._override_setattr: super().__setattr__(attr, value) elif attr in self._param_dict.keys(): self._setattr_param(attr, value) elif attr in self._typeparam_dict.keys(): self._setattr_typeparam(attr, value) else: self._setattr_hook(attr, value) def _setattr_hook(self, attr, value): """Used when attr is not found in `_param_dict` or `_typeparam_dict`.""" super().__setattr__(attr, value) def _setattr_param(self, attr, value): """Hook for setting an attribute in `_param_dict`.""" old_value = self._param_dict[attr] self._param_dict[attr] = value new_value = self._param_dict[attr] if self._attached: try: setattr(self._cpp_obj, attr, new_value) except (AttributeError): self._param_dict[attr] = old_value raise AttributeError("{} cannot be set after cpp" " initialization".format(attr)) def _setattr_typeparam(self, attr, value): """Hook for setting an attribute in `_typeparam_dict`.""" try: for k, v in value.items(): self._typeparam_dict[attr][k] = v except TypeError: raise ValueError("To set {}, you must use a dictionary " "with types as keys.".format(attr)) class _StatefulAttrBase(_HOOMDGetSetAttrBase, metaclass=Loggable): """Extends parent class to provide a mechanism for exporting object state. Provides a means for getting object state, the ``state`` property and ``_get_state`` method (the method exists as a hook for later subclasses to export their state). Also, provides a means for creating new objects from another object's state, ``from_state``. The ``from_state`` method has a few caveats. One of the largest is that any variable found in the ``self._param_dict`` and is placed in ``__params__`` is expected to be accepted in the constructor. Another is that any parameters that are needed at construction but are not in the objects ``_param_dict`` or must be passed as a keyword argument to the method. Currently ``from_state`` supports getting the state from a GSD file and a Python ``dict``. """ def _typeparam_states(self): """Converts all typeparameters into a standard Python ``ict`` object.""" state = {name: tp.state for name, tp in self._typeparam_dict.items()} return deepcopy(state) def _get_state(self): """Hook to allow subclasses to overwrite state property.""" state = self._typeparam_states() state['__params__'] = dict(self._param_dict) return dict_filter(dict_map(state, _convert_values_to_log_form), lambda x: x is not RequiredArg) @log(category='state') def state(self): """The state of the object. The state counts as anything stored in the ``_param_dict`` and ``_typeparam_dict``. """ return self._get_state() @classmethod def from_state(cls, state, final_namespace=None, **kwargs): """Creates a new object from another object's state. Args: state (str or dict): A state dictionary for an object of this type, a gsd file name, or a dictionary outputted by `hoomd.logging.Logger`. final_namespace (str): The name for the key of the parent dictionary from where the state is stored. This is to allow for users to specify the property state information in the case where multiple of the same object have their state information stored in the same location. As an example if two LJ pair potentials are stored, the final namespaces would be ``LJ`` and ``LJ_1``. frame (int): Only accepted when a gsd file name is passed for ``state``. The frame to access the state information. Is keyword only. """ # resolve the namespace namespace = list(cls._export_dict.values())[0].namespace if final_namespace is not None: namespace = namespace[:-1] + (final_namespace,) namespace = namespace + ('state',) # recover state dictionary state_dict, unused_args = cls._get_state_dict(state, namespace, **kwargs) return cls._from_state_with_state_dict(state_dict, **unused_args) @classmethod def _get_state_dict(cls, data, namespace, **kwargs): """Get the state dictionary from the accepted outputs of from_state. Deals with GSD files, namespace dicts (the output of hoomd loggers), and state dictionaries. """ # Filenames if isinstance(data, str): if data.endswith('gsd'): state, kwargs = cls._state_from_gsd(data, namespace, **kwargs) # Dictionaries and like objects elif isinstance(data, NamespaceDict): state = deepcopy(data[namespace]) elif isinstance(data, Mapping): try: # try to grab the namespace state = deepcopy(NamespaceDict(data)[namespace]) except KeyError: # if namespace can't be found assume that dictionary is the # state dictionary (This assumes that values are of the form # (value, flag) try: state = dict_map(data, lambda x: x[0]) except TypeError: # if the map fails, we then assume that the dictionary is # one without the flag information on the data. This could # be the case if a logger backend stores the data and that # returned data is fed in. state = deepcopy(data) # Data is of an unusable type else: raise ValueError("Object {} cannot be used to get state." "".format(data)) return (state, kwargs) @classmethod def _state_from_gsd(cls, filename, namespace, **kwargs): """Get state dictionary from GSD file.""" if 'frame' not in kwargs.keys(): frame = -1 else: frame = kwargs.pop('frame') # Grab state keys from gsd reader = GSDStateReader(filename, frame) namespace_str = 'log/' + '/'.join(namespace) state_chunks = reader.getAvailableChunks(namespace_str) state_dict = NamespaceDict() chunk_slice = slice(len(namespace_str) + 1, None) # Build up state dict for state_chunk in state_chunks: state_dict_key = tuple(state_chunk[chunk_slice].split('/')) state_dict[state_dict_key] = \ _handle_gsd_arrays(reader.readChunk(state_chunk)) return (state_dict._dict, kwargs) @classmethod def _from_state_with_state_dict(cls, state, **kwargs): """Using the state dictionary create a new object.""" # Initialize object using params from state and passed arguments params = state.get('__params__', {}) params.update(kwargs) obj = cls(**params) state.pop('__params__', None) # Add typeparameter information for name, tp_dict in state.items(): if '__default__' in tp_dict.keys(): obj._typeparam_dict[name].default = tp_dict['__default__'] del tp_dict['__default__'] # Parse the stringified tuple back into tuple if obj._typeparam_dict[name]._len_keys > 1: tp_dict = str_to_tuple_keys(tp_dict) setattr(obj, name, tp_dict) return obj class _DependencyRelation: """Defines a dependency relationship between Python objects. For the class to work all dependencies must occur between objects of subclasses of this class. This is not an abstract base class since many object that use this class may not deal directly with dependencies. Note: We could be more specific in the inheritance of this class to only use it when the class needs to deal with a dependency. """ def __init__(self): self._dependents = [] self._dependencies = [] def _add_dependent(self, obj): """Adds a dependent to the object's dependent list.""" if obj not in self._dependencies: self._dependents.append(obj) obj._dependencies.append(self) def _notify_disconnect(self, *args, **kwargs): """Notify that an object is being removed from all relationships. Notifies dependent object that it is being removed, and removes itself from its dependencies' list of dependents. Uses ``args`` and ``kwargs`` to allow flexibility in what information is given to dependents from dependencies. Note: This implementation does require that all dependents take in the same information, or at least that the passed ``args`` and ``kwargs`` can be used for all dependents' ``_handle_removed_dependency`` method. """ for dependent in self._dependents: dependent.handle_detached_dependency(self, *args, **kwargs) self._dependents = [] for dependency in self._dependencies: dependency._remove_dependent(self) self._dependencies = [] def _handle_removed_dependency(self, obj, *args, **kwargs): """Handles having a dependency removed. Must be implemented by objects that have dependencies. Uses ``args`` and ``kwargs`` to allow flexibility in what information is given to dependents from dependencies. """ pass def _remove_dependent(self, obj): """Removes a dependent from the list of dependencies.""" self._dependencies.remove(obj) class _HOOMDBaseObject(_StatefulAttrBase, _DependencyRelation): """Handles attaching/detaching to a simulation. ``_StatefulAttrBase`` handles getting and setting attributes as well as providing an API for getting object state and creating new objects from that state information. We overwrite ``_getattr_param`` and ``_setattr_param`` hooks to handle internal C++ objects. For a similar reason, we overwrite the ``state`` property. ``_DependencyRelation`` handles dealing with dependency relationships between objects. The class's metaclass `hoomd.logging.Loggable` handles the logging infrastructure for HOOMD-blue objects. This class's main features are handling attaching and detaching from simulations and adding and removing from containing object such as methods for MD integrators and updaters for the operations list. Attaching is the idea of creating a C++ object that is tied to a given simulation while detaching is removing an object from its simulation. """ _reserved_default_attrs = {**_HOOMDGetSetAttrBase._reserved_default_attrs, '_cpp_obj': lambda: None, '_dependents': lambda: [], '_dependencies': lambda: []} _skip_for_equality = set(['_cpp_obj', '_dependent_list']) def _getattr_param(self, attr): if self._attached: return getattr(self._cpp_obj, attr) else: return self._param_dict[attr] def _setattr_param(self, attr, value): self._param_dict[attr] = value if self._attached: new_value = self._param_dict[attr] try: setattr(self._cpp_obj, attr, new_value) except (AttributeError): raise AttributeError("{} cannot be set after cpp" " initialization".format(attr)) def __eq__(self, other): other_keys = set(other.__dict__.keys()) for key in self.__dict__.keys(): if key in self._skip_for_equality: continue else: if key not in other_keys \ or self.__dict__[key] != other.__dict__[key]: return False return True def _detach(self): if self._attached: self._unapply_typeparam_dict() self._update_param_dict() self._cpp_obj.notifyDetach() self._cpp_obj = None self._notify_disconnect(self._simulation) return self def _attach(self): self._apply_param_dict() self._apply_typeparam_dict(self._cpp_obj, self._simulation) # pass the system communicator to the object if self._simulation._system_communicator is not None: self._cpp_obj.setCommunicator(self._simulation._system_communicator) @property def _attached(self): return self._cpp_obj is not None def _add(self, simulation): self._simulation = simulation def _remove(self): del self._simulation @property def _added(self): return hasattr(self, '_simulation') def _apply_param_dict(self): for attr, value in self._param_dict.items(): try: setattr(self, attr, value) except AttributeError: pass def _apply_typeparam_dict(self, cpp_obj, simulation): for typeparam in self._typeparam_dict.values(): try: typeparam._attach(cpp_obj, simulation) except ValueError as verr: raise ValueError("In TypeParameter {}:" " ".format(typeparam.name) + verr.args[0]) def _update_param_dict(self): for key in self._param_dict.keys(): self._param_dict[key] = getattr(self, key) @log(category='state') def state(self): """The state of the object. Provides a mapping of attributes to their values for use in storing objects state for later object reinitialization. An object's state can be used to create an identical object using the `from_state` method (some object require other parameters to be passed in `from_state` besides the state mapping). """ self._update_param_dict() return super()._get_state() def _unapply_typeparam_dict(self): for typeparam in self._typeparam_dict.values(): typeparam._detach() def _add_typeparam(self, typeparam): self._typeparam_dict[typeparam.name] = typeparam def _extend_typeparam(self, typeparams): for typeparam in typeparams: self._add_typeparam(typeparam) @property def _children(self): """A set of child objects. These objects do not appear directly in any of the operations lists but are owned in lists or members of those operations. """ return [] class Operation(_HOOMDBaseObject): """Represents operations that are added to an `hoomd.Operations` object. Operations in the HOOMD-blue data scheme are objects that *operate* on a `hoomd.Simulation` object. They broadly consist of 5 subclasses: `Updater`, `Writer`, `Compute`, `Tuner`, and `hoomd.integrate.BaseIntegrator`. All HOOMD-blue operations inherit from one of these five base classes. To find the purpose of each class see its documentation. """ pass class _TriggeredOperation(Operation): _cpp_list_name = None _override_setattr = {'trigger'} def __init__(self, trigger): trigger_dict = ParameterDict(trigger=Trigger) trigger_dict['trigger'] = trigger self._param_dict.update(trigger_dict) @property def trigger(self): return self._param_dict['trigger'] @trigger.setter def trigger(self, new_trigger): # Overwrite python trigger old_trigger = self.trigger self._param_dict['trigger'] = new_trigger new_trigger = self.trigger if self._attached: sys = self._simulation._cpp_sys triggered_ops = getattr(sys, self._cpp_list_name) for index in range(len(triggered_ops)): op, trigger = triggered_ops[index] # If tuple is the operation and trigger according to memory # location (python's is), replace with new trigger if op is self._cpp_obj and trigger is old_trigger: triggered_ops[index] = (op, new_trigger) def _attach(self): super()._attach() def _update_param_dict(self): if self._attached: for key in self._param_dict: if key == 'trigger': continue self._param_dict[key] = getattr(self._cpp_obj, key) class Updater(_TriggeredOperation): """Base class for all HOOMD updaters. An updater is an operation which modifies a simulation's state. Note: This class should not be instantiated by users. The class can be used for `isinstance` or `issubclass` checks. """ _cpp_list_name = 'updaters' class Writer(_TriggeredOperation): """Base class for all HOOMD analyzers. An analyzer is an operation which writes out a simulation's state. Note: This class should not be instantiated by users. The class can be used for `isinstance` or `issubclass` checks. """ _cpp_list_name = 'analyzers' class Compute(Operation): """Base class for all HOOMD computes. A compute is an operation which computes some property for another operation or use by a user. Note: This class should not be instantiated by users. The class can be used for `isinstance` or `issubclass` checks. """ pass class Tuner(Operation): """Base class for all HOOMD tuners. A tuner is an operation which tunes the parameters of another operation for performance or other reasons. A tuner does not modify the current microstate of the simulation. That is a tuner does not change quantities like temperature, particle position, or the number of bonds in a simulation. Note: This class should not be instantiated by users. The class can be used for `isinstance` or `issubclass` checks. """ pass ``` #### File: hoomd/pytest/test_triggeredops.py ```python from hoomd.pytest.dummy import DummyCppObj, DummySimulation, DummyTrigger from hoomd.pytest.dummy import DummyTriggeredOp from hoomd.data.syncedlist import SyncedList from hoomd.trigger import Periodic def test_initialization(): triggered_op = DummyTriggeredOp(trigger=1) assert type(triggered_op.trigger) == Periodic assert triggered_op.trigger.period == 1 assert triggered_op.trigger.phase == 0 def test_custom_initialization(): triggered_op = DummyTriggeredOp(trigger=DummyTrigger()) assert type(triggered_op.trigger) == DummyTrigger assert triggered_op.trigger(4) def test_trigger_resetting(): triggered_op = DummyTriggeredOp(trigger=3) triggered_op.trigger = DummyTrigger() assert type(triggered_op.trigger) == DummyTrigger assert triggered_op.trigger(4) def test_attach(): triggered_op = DummyTriggeredOp(trigger=1) sim = DummySimulation() slist = SyncedList(lambda x: isinstance(x, DummyTriggeredOp), lambda x: (x._cpp_obj, x.trigger)) slist.append(triggered_op) triggered_op._cpp_obj = DummyCppObj() slist._sync(sim, sim._cpp_sys.dummy_list) assert len(sim._cpp_sys.dummy_list) == 1 assert len(sim._cpp_sys.dummy_list[0]) == 2 assert triggered_op._cpp_obj == sim._cpp_sys.dummy_list[0][0] assert triggered_op.trigger == sim._cpp_sys.dummy_list[0][1] def test_attach_trigger_resetting(): triggered_op = DummyTriggeredOp(trigger=1) sim = DummySimulation() slist = SyncedList(lambda x: isinstance(x, DummyTriggeredOp), lambda x: (x._cpp_obj, x.trigger)) slist.append(triggered_op) slist._sync(sim, sim._cpp_sys.dummy_list) triggered_op.trigger = DummyTrigger() assert len(sim._cpp_sys.dummy_list) == 1 assert len(sim._cpp_sys.dummy_list[0]) == 2 assert triggered_op._cpp_obj == sim._cpp_sys.dummy_list[0][0] assert triggered_op.trigger == sim._cpp_sys.dummy_list[0][1] assert type(triggered_op.trigger) == DummyTrigger ``` #### File: hoomd-blue/hoomd/snapshot.py ```python import numpy as np import hoomd from hoomd import _hoomd class _ConfigurationData: def __init__(self, cpp_obj): self._cpp_obj = cpp_obj @property def dimensions(self): return self._cpp_obj._dimensions @property def box(self): b = self._cpp_obj._global_box L = b.getL() return (L.x, L.y, L.z, b.getTiltFactorXY(), b.getTiltFactorXZ(), b.getTiltFactorYZ()) @box.setter def box(self, box): try: new_box = hoomd.Box.from_box(box) except Exception: raise ValueError( f"{box} is not convertible to a hoomd.Box object using " "hoomd.Box.from_box.") self._cpp_obj._dimensions = new_box.dimensions self._cpp_obj._global_box = new_box._cpp_obj class Snapshot: def __init__(self, communicator=None): if communicator is None: self._comm = hoomd.communicator.Communicator() else: self._comm = communicator self._cpp_obj = _hoomd.SnapshotSystemData_double() @property def exists(self): return self._comm.rank == 0 @property def configuration(self): return _ConfigurationData(self._cpp_obj) @property def particles(self): if self.exists: return self._cpp_obj.particles else: return None @property def bonds(self): if self.exists: return self._cpp_obj.bonds else: return None @property def angles(self): if self.exists: return self._cpp_obj.angles else: return None @property def dihedrals(self): if self.exists: return self._cpp_obj.dihedrals else: return None @property def impropers(self): if self.exists: return self._cpp_obj.impropers else: return None @property def pairs(self): if self.exists: return self._cpp_obj.pairs else: return None @property def constraints(self): if self.exists: return self._cpp_obj.constraints else: return None @classmethod def _from_cpp_snapshot(cls, snapshot, communicator): sp = cls() sp._comm = communicator sp._cpp_obj = snapshot return sp def replicate(self, nx, ny, nz): self._cpp_obj.replicate(nx, ny, nz) def _broadcast_box(self): self._cpp_obj._broadcast_box(self._comm.cpp_mpi_conf) @classmethod def from_gsd_snapshot(cls, gsd_snap, communicator): """ Constructs a `hoomd.Snapshot` from a `gsd.hoomd.Snapshot` object. Args: gsd_snap (`gsd.hoomd.Snapshot`): The gsd snapshot to convert to a `hoomd.Snapshot`. communicator (hoomd.communicator.Communicator): The MPI communicator to use for the snapshot. This prevents the snapshot from being stored on every rank. """ gsd_snap.validate() snap = cls(communicator=communicator) def set_properties( snap_section, gsd_snap_section, properties, array_properties): for prop in properties: gsd_prop = getattr(gsd_snap_section, prop, None) if gsd_prop is not None: setattr(snap_section, prop, gsd_prop) for prop in array_properties: gsd_prop = getattr(gsd_snap_section, prop, None) if gsd_prop is not None: getattr(snap_section, prop)[:] = gsd_prop if communicator.rank == 0: set_properties( snap.particles, gsd_snap.particles, ('N', 'types'), ('angmom', 'body', 'charge', 'diameter', 'image', 'mass', 'moment_inertia', 'orientation', 'position', 'typeid', 'velocity') ) for section in ( 'angles', 'bonds', 'dihedrals', 'impropers', 'pairs' ): set_properties( getattr(snap, section), getattr(gsd_snap, section), ('N', 'types'), ('group', 'typeid') ) set_properties( snap.constraints, gsd_snap.constraints, ('N',), ('group', 'value') ) # Set box attribute if gsd_snap.configuration.box is not None: snap.configuration.box = gsd_snap.configuration.box if gsd_snap.configuration.dimensions == 2: snap.configuration.box[2] = 0 return snap ```
{ "source": "jglaser/ucx-py", "score": 2 }
#### File: ucx-py/tests/test_libs_utils.py ```python import array import functools import io import mmap import operator import pytest from ucp._libs.utils import get_buffer_data, get_buffer_nbytes builtin_buffers = [ b"abcd", array.array("i", [0, 1, 2, 3]), array.array("I", [0, 1, 2, 3]), array.array("f", [0, 1, 2, 3]), array.array("d", [0, 1, 2, 3]), memoryview(array.array("B", [0, 1, 2, 3, 4, 5])).cast("B", (3, 2)), memoryview(b"abcd"), memoryview(bytearray(b"abcd")), io.BytesIO(b"abcd").getbuffer(), mmap.mmap(-1, 5), ] @pytest.mark.parametrize("buffer", builtin_buffers) def test_get_buffer_data_builtins(buffer): check_writable = False ptr = get_buffer_data(buffer, check_writable=check_writable) assert ptr != 0 check_writable = True readonly = memoryview(buffer).readonly if readonly: with pytest.raises(ValueError): get_buffer_data(buffer, check_writable=check_writable) else: get_buffer_data(buffer, check_writable=check_writable) @pytest.mark.parametrize("buffer", builtin_buffers) def test_get_buffer_nbytes_builtins(buffer): nbytes = memoryview(buffer).nbytes result = get_buffer_nbytes(buffer, check_min_size=None, cuda_support=True) assert result == nbytes with pytest.raises(ValueError): get_buffer_nbytes( memoryview(buffer)[::2], check_min_size=None, cuda_support=True ) # Test exceptional cases with `check_min_size` get_buffer_nbytes(buffer, check_min_size=nbytes, cuda_support=True) with pytest.raises(ValueError): get_buffer_nbytes(buffer, check_min_size=(nbytes + 1), cuda_support=True) array_params = [ ((2, 3), "i4", (12, 4)), ((2, 3), "u4", (12, 4)), ((2, 3), "f4", (12, 4)), ((2, 3), "f8", (24, 8)), ((2, 3), "f8", (8, 16)), ] def create_array(xp, shape, dtype, strides): if xp == "cupy": iface_prop = "__cuda_array_interface__" elif xp == "numpy": iface_prop = "__array_interface__" xp = pytest.importorskip(xp) nelem = functools.reduce(operator.mul, shape, 1) data = xp.arange(nelem, dtype=dtype) arr = xp.ndarray(shape, dtype, data.data, strides=strides) iface = getattr(arr, iface_prop) return xp, arr, iface @pytest.mark.parametrize("xp", ["cupy", "numpy"]) @pytest.mark.parametrize("shape, dtype, strides", array_params) def test_get_buffer_data_array(xp, shape, dtype, strides): xp, arr, iface = create_array(xp, shape, dtype, strides) ptr = get_buffer_data(arr, check_writable=False) assert ptr == iface["data"][0] @pytest.mark.parametrize("xp", ["cupy", "numpy"]) @pytest.mark.parametrize("shape, dtype, strides", array_params) def test_get_buffer_nbytes_array(xp, shape, dtype, strides): xp, arr, iface = create_array(xp, shape, dtype, strides) if arr.flags.c_contiguous: nbytes = get_buffer_nbytes(arr, check_min_size=None, cuda_support=True) assert nbytes == arr.nbytes else: with pytest.raises(ValueError): get_buffer_nbytes(arr, check_min_size=None, cuda_support=True) ```
{ "source": "jglazner/daemon", "score": 2 }
#### File: daemon/samples/sample.py ```python import sys import os import time import logging import mimetypes import traceback from daemon import GenericDaemon class SampleDaemon(GenericDaemon): def __init__(self, pidfile, logger, **kwargs): super(SampleDaemon, self).__init__(pidfile, logger, **kwargs) def work(self): self.log.info("I did some work!") def run(self, loopForever=True): try: if loopForever: while True: self.work() time.sleep(5) else: self.work() except Exception, e: self.log.error("A runtime exception occured. {0}".format(e)) raise e if __name__ == "__main__": log = logging.getLogger(__name__) log.setLevel(logging.INFO) fh = logging.FileHandler("sample_daemon.log") formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(name)s - %(message)s') fh.setFormatter(formatter) log.addHandler(fh) daemon = SampleDaemon('/home/lam/workspace/mail/daemon/sample_daemon.pid', log) if len(sys.argv) == 2: if 'start' == sys.argv[1]: daemon.start() elif 'stop' == sys.argv[1]: daemon.stop() elif 'restart' == sys.argv[1]: daemon.restart() elif 'run' == sys.argv[1]: daemon.run(loopForever=False) else: print "Unknown command" sys.exit(2) sys.exit(0) else: print "usage: %s start|stop|restart" % sys.argv[0] sys.exit(2) ```
{ "source": "jgleissner/aws-parallelcluster-node", "score": 2 }
#### File: common/schedulers/sge_commands.py ```python import collections import logging import re from xml.etree import ElementTree from common import sge from common.remote_command_executor import RemoteCommandExecutor from common.schedulers.converters import ComparableObject, from_xml_to_obj from common.sge import check_sge_command_output, run_sge_command QConfCommand = collections.namedtuple("QConfCommand", ["command_flags", "successful_messages", "description"]) QCONF_COMMANDS = { "ADD_ADMINISTRATIVE_HOST": QConfCommand( command_flags="-ah", successful_messages=[r".* added to administrative host list", r'adminhost ".*" already exists'], description="add administrative hosts", ), "ADD_SUBMIT_HOST": QConfCommand( command_flags="-as", successful_messages=[r".* added to submit host list", r'submithost ".*" already exists'], description="add submit hosts", ), "REMOVE_ADMINISTRATIVE_HOST": QConfCommand( command_flags="-dh", successful_messages=[ r".* removed .* from administrative host list", r'denied: administrative host ".*" does not exist', ], description="remove administrative hosts", ), "REMOVE_SUBMIT_HOST": QConfCommand( command_flags="-ds", successful_messages=[r".* removed .* from submit host list", r'denied: submit host ".*" does not exist'], description="remove submission hosts", ), "REMOVE_EXECUTION_HOST": QConfCommand( command_flags="-de", successful_messages=[r".* removed .* from execution host list", r'denied: execution host ".*" does not exist'], description="remove execution hosts", ), } # The state of the queue - one of u(nknown), a(larm), A(larm), C(alendar suspended), s(uspended), # S(ubordinate), d(isabled), D(isabled), E(rror), c(configuration ambiguous), o(rphaned), P(reempted), # or some combination thereof. # Refer to qstat man page for additional details. # o(rphaned) is not considered as busy since we assume a node in orphaned state is not present in ASG anymore SGE_BUSY_STATES = ["u", "C", "s", "D", "E", "P"] # This state is set by nodewatcher when the node is locked and is being terminated. SGE_DISABLED_STATE = "d" # If an o(rphaned) state is displayed for a queue instance, it indicates that the queue instance is no longer demanded # by the current cluster queue configuration or the host group configuration. The queue instance is kept because jobs # which have not yet finished are still associated with it, and it will vanish from qstat output when these jobs # have finished. SGE_ORPHANED_STATE = "o" # The states q(ueued)/w(aiting) and h(old) only appear for pending jobs. Pending, unheld job`s are displayed as qw. # The h(old) state indicates that a job currently is not eligible for execution due to a hold state assigned to it # via qhold(1), qalter(1) or the qsub(1) -h option, or that the job is waiting for completion of the jobs for which job # dependencies have been assigned to it job via the -hold_jid or -hold_jid_ad options of qsub(1) or qalter(1). SGE_HOLD_STATE = "h" # If the state is u, the corresponding sge_execd(8) cannot be contacted. # An E(rror) state is displayed for a queue for various reasons such as failing to find executables or directories. # If an o(rphaned) state is displayed for a queue instance, it indicates that the queue instance is no longer demanded # by the current cluster queue configuration or the host group configuration. The queue instance is kept because jobs # which have not yet finished are still associated with it, and it will vanish from qstat output when these jobs have # finished. SGE_ERROR_STATES = ["u", "E", "o"] def exec_qconf_command(hosts, qhost_command): if not hosts: return [] hostnames = ",".join([host.hostname for host in hosts]) try: logging.info("Executing operation '%s' for hosts %s", qhost_command.description, hostnames) command = "qconf {flags} {hostnames}".format(flags=qhost_command.command_flags, hostnames=hostnames) # setting raise_on_error to False and evaluating command output to decide if the execution was successful output = check_sge_command_output(command, raise_on_error=False) succeeded_hosts = [] # assuming output contains a message line for each node the command is executed for. for host, message in zip(hosts, output.split("\n")): if any(re.match(pattern, message) is not None for pattern in qhost_command.successful_messages): succeeded_hosts.append(host) return succeeded_hosts except Exception as e: logging.error( "Unable to execute operation '%s' for hosts %s. Failed with exception %s", qhost_command.description, hostnames, e, ) return [] def add_hosts_to_group(hosts): logging.info("Adding %s to @allhosts group", ",".join([host.hostname for host in hosts])) command = "qconf -aattr hostgroup hostlist {hostname} @allhosts" return _run_sge_command_for_multiple_hosts(hosts, command) def add_host_slots(hosts): logging.info("Adding %s to all.q queue", ",".join([host.hostname for host in hosts])) command = 'qconf -aattr queue slots ["{hostname}={slots}"] all.q' return _run_sge_command_for_multiple_hosts(hosts, command) def remove_hosts_from_group(hosts): logging.info("Removing %s from @allhosts group", ",".join([host.hostname for host in hosts])) command = "qconf -dattr hostgroup hostlist {hostname} @allhosts" return _run_sge_command_for_multiple_hosts(hosts, command) def remove_hosts_from_queue(hosts): logging.info("Removing %s from all.q queue", ",".join([host.hostname for host in hosts])) command = "qconf -purge queue '*' all.q@{hostname}" return _run_sge_command_for_multiple_hosts(hosts, command) def install_sge_on_compute_nodes(hosts, cluster_user): """Start sge on compute nodes in parallel.""" command = ( "sudo sh -c 'ps aux | grep [s]ge_execd || " "(cd {0} && {0}/inst_sge -noremote -x -auto /opt/parallelcluster/templates/sge/sge_inst.conf)'" ).format(sge.SGE_ROOT) hostnames = [host.hostname for host in hosts] result = RemoteCommandExecutor.run_remote_command_on_multiple_hosts(command, hostnames, cluster_user, timeout=20) succeeded_hosts = [] for host in hosts: if host.hostname in result and result[host.hostname]: succeeded_hosts.append(host) return succeeded_hosts def lock_host(hostname): logging.info("Locking host %s", hostname) command = ["qmod", "-d", "all.q@{0}".format(hostname)] run_sge_command(command) def unlock_host(hostname): logging.info("Unlocking host %s", hostname) command = ["qmod", "-e", "all.q@{0}".format(hostname)] run_sge_command(command) def _run_sge_command_for_multiple_hosts(hosts, command_template): """Sequentially run an sge command on the master node for the given hostnames.""" succeeded_hosts = [] for host in hosts: command = command_template.format(hostname=host.hostname, slots=host.slots) try: run_sge_command(command.format(hostname=host.hostname)) succeeded_hosts.append(host) except Exception as e: logging.error("Failed when executing command %s with exception %s", command, e) return succeeded_hosts def _run_qstat(full_format=False, hostname_filter=None, job_state_filter=None): command = "qstat -xml -g dt -u '*'" if full_format: command += " -f" if hostname_filter: command += " -l hostname={0}".format(hostname_filter) if job_state_filter: command += " -s {0}".format(job_state_filter) return check_sge_command_output(command) def get_compute_nodes_info(hostname_filter=None, job_state_filter=None): output = _run_qstat(full_format=True, hostname_filter=hostname_filter, job_state_filter=job_state_filter) if not output: return {} root = ElementTree.fromstring(output) queue_info = root.findall("./queue_info/*") hosts_list = [SgeHost.from_xml(ElementTree.tostring(host)) for host in queue_info] return dict((host.name, host) for host in hosts_list) def get_jobs_info(hostname_filter=None, job_state_filter=None): output = _run_qstat(full_format=False, hostname_filter=hostname_filter, job_state_filter=job_state_filter) if not output: return [] root = ElementTree.fromstring(output) job_info = root.findall(".//job_list") return [SgeJob.from_xml(ElementTree.tostring(host)) for host in job_info] def get_pending_jobs_info(max_slots_filter=None, skip_if_state=None): """ Retrieve the list of pending jobs. :param max_slots_filter: discard jobs that require a number of slots bigger than the given value :param skip_if_state: discard jobs that are in the given state :return: the list of filtered pending jos. """ pending_jobs = get_jobs_info(job_state_filter="p") if max_slots_filter or skip_if_state: filtered_jobs = [] for job in pending_jobs: if max_slots_filter and job.slots > max_slots_filter: logging.info( "Skipping job %s since required slots (%d) exceed max slots (%d)", job.number, job.slots, max_slots_filter, ) elif skip_if_state and skip_if_state in job.state: logging.info("Skipping job %s since in state %s", job.number, job.state) else: filtered_jobs.append(job) return filtered_jobs else: return pending_jobs class SgeJob(ComparableObject): # <job_list state="running"> # <JB_job_number>89</JB_job_number> # <JAT_prio>0.60500</JAT_prio> # <JB_name>STDIN</JB_name> # <JB_owner>centos</JB_owner> # <state>sr</state> # <JAT_start_time>2019-05-15T13:16:51</JAT_start_time> # <master>SLAVE</master> # <slots>1</slots> # </job_list> MAPPINGS = { "JB_job_number": {"field": "number"}, "slots": {"field": "slots", "transformation": int}, "state": {"field": "state"}, "master": {"field": "node_type"}, "tasks": {"field": "array_index", "transformation": lambda x: int(x) if x is not None else None}, "queue_name": {"field": "hostname", "transformation": lambda name: name.split("@", 1)[1] if name else None}, } def __init__(self, number=None, slots=0, state="", node_type=None, array_index=None, hostname=None): self.number = number self.slots = slots self.state = state self.node_type = node_type self.array_index = array_index self.hostname = hostname @staticmethod def from_xml(xml): return from_xml_to_obj(xml, SgeJob) class SgeHost(ComparableObject): # <Queue-List> # <name><EMAIL>.q@ip-10-0-0-16<EMAIL>-west-1.<EMAIL>.internal</name> # <qtype>BIP</qtype> # <slots_used>2</slots_used> # <slots_resv>0</slots_resv> # <slots_total>4</slots_total> # <load_avg>0.01000</load_avg> # <arch>lx-amd64</arch> # <job_list state="running"> # <JB_job_number>89</JB_job_number> # <JAT_prio>0.60500</JAT_prio> # <JB_name>STDIN</JB_name> # <JB_owner>centos</JB_owner> # <state>r</state> # <JAT_start_time>2019-05-15T13:16:51</JAT_start_time> # <master>MASTER</master> # <slots>1</slots> # </job_list> # <job_list state="running"> # <JB_job_number>95</JB_job_number> # <JAT_prio>0.60500</JAT_prio> # <JB_name>STDIN</JB_name> # <JB_owner>centos</JB_owner> # <state>s</state> # <JAT_start_time>2019-05-15T13:16:51</JAT_start_time> # <slots>1</slots> # </job_list> # </Queue-List> MAPPINGS = { "name": {"field": "name", "transformation": lambda name: name.split("@", 1)[1] if name else None}, "slots_used": {"field": "slots_used", "transformation": int}, "slots_total": {"field": "slots_total", "transformation": int}, "slots_resv": {"field": "slots_reserved", "transformation": int}, "state": {"field": "state"}, "job_list": { "field": "jobs", "transformation": lambda job: SgeJob.from_xml(ElementTree.tostring(job)), "xml_elem_type": "xml", }, } def __init__(self, name=None, slots_total=0, slots_used=0, slots_reserved=0, state="", jobs=None): self.name = name self.slots_total = slots_total self.slots_used = slots_used self.slots_reserved = slots_reserved self.state = state self.jobs = jobs or [] @staticmethod def from_xml(xml): return from_xml_to_obj(xml, SgeHost) ```
{ "source": "JGL/EnergyMix", "score": 3 }
#### File: EnergyMix/pico/unicornPackPlaying.py ```python import picounicorn """ EnergyMix uses the Pico Unicorn Pack for the RPI Pico to display energy mix information https://shop.pimoroni.com/products/pico-unicorn-pack """ picounicorn.init() w = picounicorn.get_width() h = picounicorn.get_height() # https://www.pyblog.in/programming/print-formmating-in-python/#Stringformat_method print("The width is of the unicorn is {0}, the height of the unicorn is {1}".format(w,h)) def setAllUnicornLEDsBlack(): for x in range(w): for y in range(h): picounicorn.set_pixel(x, y, 0, 0, 0) print("Setting all pixels to black") setAllUnicornLEDsBlack() print("Press Button A to continue to the next demo") while not picounicorn.is_pressed(picounicorn.BUTTON_A): # Wait for Button A to be pressed pass setAllUnicornLEDsBlack() print("After setting black, setting pixels red starting from 0,1 then continuing x, x+1") #sort this out! picounicorn.set_pixel(0, 1, 255, 0, 0) picounicorn.set_pixel(1, 2, 255, 0, 0) picounicorn.set_pixel(2, 3, 255, 0, 0) picounicorn.set_pixel(3, 4, 255, 0, 0) picounicorn.set_pixel(4, 5, 255, 0, 0) picounicorn.set_pixel(5, 6, 255, 0, 0) print("Press Button B to continue to the next demo") while not picounicorn.is_pressed(picounicorn.BUTTON_B): # Wait for Button B to be pressed pass setAllUnicornLEDsBlack() print("After setting black, setting whole row to red") for x in range(w): picounicorn.set_pixel(x, 0, 255, 0, 0) print("Press Button X to continue to the next demo") while not picounicorn.is_pressed(picounicorn.BUTTON_X): # Wait for Button X to be pressed pass setAllUnicornLEDsBlack() print("After setting black, setting whole column to red") for y in range(h): picounicorn.set_pixel(0, y, 255, 0, 0) ```
{ "source": "jglesner/fsqio", "score": 2 }
#### File: python3-port-utils/pants/futurize.py ```python import argparse import itertools import subprocess import sys import re from glob import glob from textwrap import dedent from typing import List, NamedTuple def main() -> None: parser = create_parser() args = parser.parse_args() # preview changes needed for file if not args.file_names: target_root = determine_target_root(args.folder, args.contrib, args.test) check_what_needs_changes(target_root, args.root_only) return # futurize files for file_name in args.file_names: paths = determine_paths(args, file_name) if args.preview: preview_changes(paths.file_path) continue futurize_diff = call_futurize(paths.file_path) if not futurize_made_changes(futurize_diff): continue if new_imports_added(futurize_diff): update_build_dependencies(paths.target_root, paths.pants_target_name, file_name) call_pants_fmt(paths.pants_target_path) prompt_review_of_diffs(futurize_diff) if not args.no_tests and file_changed(paths.file_path): call_pants_test(paths.pants_test_path) # -------------------------------------------------- # Command line utils # ------------------------------------------------- def get_stdout(command: List[str]) -> str: return subprocess.run( command, stdout=subprocess.PIPE, encoding='utf-8') \ .stdout.strip() def get_stderr(command: List[str]) -> str: return subprocess.run( command, stderr=subprocess.PIPE, encoding='utf-8') \ .stderr.strip() # -------------------------------------------------- # Setup # ------------------------------------------------- def create_parser() -> argparse.ArgumentParser: parser = argparse.ArgumentParser(description='Run futurize script over targets.') parser.add_argument('folder', help='Target folder name, e.g. backend/jvm') parser.add_argument( 'file_names', nargs='*', default=[], help='Specific .py file(s). Ignore this arg to see changes necessary in folder.' ) parser.add_argument('-t', '--test', action='store_true', help='Operate on test targets.') parser.add_argument('-p', '--preview', action='store_true', help='Do not write changes.') parser.add_argument('-n', '--no-tests', action='store_true', help='Skip unit tests.') parser.add_argument('-r', '--root-only', action='store_true', help='Do not recursively search subfolders.') parser.add_argument('-c', '--contrib', action='store_true', help='Operate on targets in contrib/.') return parser class Paths(NamedTuple): target_root: str file_path: str pants_target_name: str pants_target_path: str pants_test_path: str SRC_BASE_ROOT = 'src/python/pants' TEST_BASE_ROOT = 'tests/python/pants_test' def determine_paths(args, file_name: str) -> Paths: target_root = determine_target_root(args.folder, args.contrib, args.test) test_root = determine_target_root(args.folder, args.contrib, is_test=True) pants_target_name = determine_pants_target_name(target_root, file_name) file_path = f'{target_root}/{file_name}' pants_target_path = f'{target_root}:{pants_target_name}' pants_test_path = f'{test_root}:{pants_target_name}' return Paths( target_root=target_root, file_path=file_path, pants_target_name=pants_target_name, pants_target_path=pants_target_path, pants_test_path=pants_test_path ) def determine_target_root(folder: str, is_contrib: bool, is_test: bool) -> str: if is_contrib: target_folder_root = folder.split('/')[0] base_root = (f'contrib/{target_folder_root}/{TEST_BASE_ROOT}/contrib' if is_test else f'contrib/{target_folder_root}/{SRC_BASE_ROOT}/contrib') else: base_root = TEST_BASE_ROOT if is_test else SRC_BASE_ROOT return f'{base_root}/{folder}' if folder else base_root def determine_pants_target_name(target_root: str, file_name: str) -> str: file_map = get_stdout([ './pants', 'filemap', f'{target_root}:' ]).split('\n') target_entry = next((line for line in file_map if file_name in line), None) if target_entry is None: raise SystemExit(dedent(f"""\n ERROR: File name '{file_name}' invalid. Not found anywhere in {target_root}/BUILD.""")) pants_target_path = target_entry.split(' ')[1] pants_target_name = pants_target_path.split(':')[1] return pants_target_name # -------------------------------------------------- # Futurize script # ------------------------------------------------- FUTURIZE_BIN = 'build-support/pants_dev_deps.venv/bin/futurize' def check_what_needs_changes(folder_root: str, root_only: bool) -> None: file_paths = (glob(f'{folder_root}/*.py', recursive=False) if root_only else glob(f'{folder_root}/**/*.py', recursive=True)) futurize_output = get_stderr([ FUTURIZE_BIN, '--stage2', '--no-diffs' ] + file_paths) \ .split('\n') errors_dropped = itertools.takewhile( lambda line: not re.match('RefactoringTool:.*error:', line), futurize_output) ignore_unnecessary_lines = itertools.dropwhile( lambda line: 'RefactoringTool: Files that need to be modified:' not in line, errors_dropped) remove_refactoring_text = [line.replace('RefactoringTool: ', '') for line in ignore_unnecessary_lines] no_header = list(remove_refactoring_text)[1:] if not no_header: print('Folder is already Python 3 compatible 🐍 🎉') return split_by_warning: List[List[str]] = [list(group) for k, group in itertools.groupby(no_header, lambda line: 'Warnings/messages while refactoring:' in line) if not k] if len(split_by_warning) == 2: # warnings print('Warnings while refactoring:\n' + '\n'.join(split_by_warning[1]) + '\n\n', file=sys.stderr) dropped_warnings = split_by_warning[0] def drop_prefix(line: str) -> str: return (line.split(f'{TEST_BASE_ROOT}/')[1] if TEST_BASE_ROOT in line else line.split(f'{SRC_BASE_ROOT}/')[1]) remove_path_prefix = [drop_prefix(line) for line in dropped_warnings] if 'contrib' in folder_root: remove_path_prefix = [line.split('contrib/')[1] for line in remove_path_prefix] formatted_for_cli = ([f"{line.split('/')[-1]}" for line in remove_path_prefix] if root_only else [f"{'/'.join(line.split('/')[:-1])} {line.split('/')[-1]}" for line in remove_path_prefix]) delimiter = '\n' if not root_only else ' ' print(delimiter.join(sorted(formatted_for_cli))) def preview_changes(file_path: str) -> None: subprocess.run([ FUTURIZE_BIN, '--stage2', file_path ]) def call_futurize(file_path: str) -> str: return get_stdout([ FUTURIZE_BIN, '--stage2', '--write', '--nobackup', file_path ]) # -------------------------------------------------- # Check for changes # ------------------------------------------------- def file_changed(file_path: str) -> bool: git_changes = get_stdout(['git', 'ls-files', '-m']) return file_path in git_changes def futurize_made_changes(futurize_output: str) -> bool: return bool(futurize_output) def new_imports_added(futurize_output: str) -> bool: return 'import' in futurize_output # -------------------------------------------------- # Update BUILD # ------------------------------------------------- def _find_target_index_in_build(build_lines: List[str], pants_target_name: str, file_name: str) -> int: index = next((i for i, line in enumerate(build_lines) if f"name = '{pants_target_name}'" in line or f"name='{pants_target_name}'" in line), None) if index is None: # mono-target index = next((i for i, line in enumerate(build_lines) if file_name in line), None) if index is None: # only one target block in file, and sources aren't specified index = next(i for i, line in enumerate(build_lines) if 'python_' in line and '(' in line) return index def _future_dependency_already_added(lines: List[str], starting_index: int) -> bool: for line in lines[starting_index:]: if '3rdparty/python:future' in line: return True if ')\n' in line: # done with dependencies section return False def update_build_dependencies(folder_root: str, pants_target_name: str, file_name: str) -> None: build_file = f'{folder_root}/BUILD' with open(build_file, 'r') as f: lines = list(f.readlines()) target_index = _find_target_index_in_build(lines, pants_target_name, file_name) if _future_dependency_already_added(lines, target_index): return for i, line in enumerate(lines[target_index:]): if 'dependencies = [' in line or 'dependencies=[' in line: lines.insert(target_index + i + 1, " '3rdparty/python:future',\n") break if ')\n' in line: # dependencies section doesn't exist for target lines.insert(target_index + i, ' dependencies = [\n') lines.insert(target_index + i + 1, " '3rdparty/python:future',\n") lines.insert(target_index + i + 2, ' ],\n') break with open(build_file, 'w') as f: f.writelines(lines) # -------------------------------------------------- # Pants goals # ------------------------------------------------- def call_pants_fmt(pants_target_path: str) -> None: subprocess.run([ './pants', 'fmt', pants_target_path ]) def call_pants_test(pants_test_target_path: str) -> None: subprocess.run([ './pants', 'test', pants_test_target_path ]) # -------------------------------------------------- # Prompt review of diffs # ------------------------------------------------- def prompt_review_of_diffs(futurize_output: str) -> None: input(dedent(f"""\ ---------------------------------------------------------------------- Review the file for changes and make modifications if necessary. ---------------------------------------------------------------------- {futurize_output} ---------------------------------------------------------------------- Input the enter key when ready to move on.""")) if __name__ == '__main__': try: main() except KeyboardInterrupt: pass ``` #### File: python3-port-utils/pants/update_headers.py ```python import argparse from typing import List, Set, Sequence from glob import glob ENCODING_INDEX = 0 FUTURE_IMPORT_INDEX = 4 def main() -> None: folders = create_parser().parse_args().folders for fp in get_files(folders): with open(fp, "r") as f: lines = list(f.readlines()) if is_py2_header(lines[:FUTURE_IMPORT_INDEX + 1]): rewrite(fp, lines) def create_parser() -> argparse.ArgumentParser: parser = argparse.ArgumentParser( description='Use the new header without __future__ imports and # encoding.') parser.add_argument('folders', nargs='*') return parser def get_files(folders: Sequence[str]) -> Set[str]: return { f for folder in folders for f in glob(f"{folder}/**/*.py", recursive=True) if not f.endswith("__init__.py") } def is_py2_header(header: Sequence[str]) -> bool: return "# coding=utf-8" in header[ENCODING_INDEX] and "from __future__" in header[FUTURE_IMPORT_INDEX] def rewrite(path: str, lines: List[str]) -> None: with open(path, "w") as f: f.writelines( lines[ENCODING_INDEX + 1:FUTURE_IMPORT_INDEX] + lines[FUTURE_IMPORT_INDEX + 2:] ) if __name__ == '__main__': try: main() except KeyboardInterrupt: pass ``` #### File: twofishes/scripts/geocoder.py ```python import re, json, sys, urllib, urllib2 class Geocode: # Initialize from a raw interpretation from the geocoder service. def __init__(self, interpretation): self.interp = interpretation def bounds(self): try: return self.interp['feature']['geometry']['bounds'] except: return None def what(self): return self.interp['what'] def lat(self): return self.interp['feature']['geometry']['center']['lat'] def lng(self): return self.interp['feature']['geometry']['center']['lng'] def displayName(self): return self.interp['feature']['displayName'] def ids(self): return self.interp['feature']['ids'] def geonameid(self): for i in self.ids(): if i['source'] == 'geonameid': return i['id'] return None class Geocoder: def __init__(self, host): self.host = host def geocode(self, query, otherParams = {}): otherParams['query'] = query url = 'http://%s/?%s' % (self.host, urllib.urlencode(otherParams)) request = urllib2.Request(url) response = json.loads(urllib2.urlopen(request).read()) if len(response['interpretations']) > 0: return Geocode(response['interpretations'][0]) else: return None ``` #### File: buildgen/core/register.py ```python from __future__ import absolute_import, division, print_function from pants.build_graph.build_file_aliases import BuildFileAliases from pants.goal.task_registrar import TaskRegistrar as task from fsqio.pants.buildgen.core.buildgen import Buildgen from fsqio.pants.buildgen.core.buildgen_aggregate_targets import BuildgenAggregateTargets from fsqio.pants.buildgen.core.buildgen_target_bag import BuildgenTargetBag from fsqio.pants.buildgen.core.inject_target_bags import BuildgenInjectTargetBags from fsqio.pants.buildgen.core.map_derived_targets import MapDerivedTargets from fsqio.pants.buildgen.core.map_sources_to_addresses import MapSourcesToAddresses from fsqio.pants.buildgen.core.subsystems.buildgen_subsystem import BuildgenSubsystem def build_file_aliases(): return BuildFileAliases( targets={ 'buildgen_target_bag': BuildgenTargetBag, }, ) def global_subsystems(): return (BuildgenSubsystem.Factory,) def register_goals(): task( name='map-derived-targets', action=MapDerivedTargets, ).install() task( name='map-sources-to-addresses-mapper', action=MapSourcesToAddresses, ).install() task( name='buildgen', action=Buildgen, ).install() # This is a noop from a task perspective - it only updates the target roots to properly attach # transitive dependencies. task( name='add-target-bags', action=BuildgenInjectTargetBags, ).install('test') task( name='aggregate-targets', action=BuildgenAggregateTargets, ).install('buildgen') ``` #### File: pants/export/export_filtered.py ```python from __future__ import ( absolute_import, division, generators, nested_scopes, print_function, unicode_literals, with_statement, ) import json import os from pants.backend.project_info.tasks.export import ExportTask, get_buildroot from pants.task.console_task import ConsoleTask # Changing the behavior of this task may affect the IntelliJ Pants plugin. # Please add @yic to reviews for this file. class GenStubsAndExportTask(ExportTask): """Base class for generating a json-formattable blob of data about the target graph. Subclasses can invoke the generate_targets_map method to get a dictionary of plain datastructures (dicts, lists, strings) that can be easily read and exported to various formats. Note this is subclassed form the original export, hot swapping sources for generated stubs. """ @classmethod def prepare(cls, options, round_manager): # TODO: this method is overriden explicitly for stub generation. When we change the approach we can remove super(GenStubsAndExportTask, cls).prepare(options, round_manager) if options.libraries or options.libraries_sources or options.libraries_javadocs: round_manager.require_data('stubs') @staticmethod def _source_roots_for_target(target): def mod_path_to_ide_gen(path): """ :param path: :return: new path with the ide-gen location """ path_components = path.split('/') try: anchor_idx = path_components.index('spindle') except ValueError: # not a spindle file, just return original path return path path_components[anchor_idx - 1] = 'ide-gen' path_components[anchor_idx] = 'spindle-stubs' path_components[anchor_idx + 1] = 'current' return '/'.join(path_components) def root_package_prefix(source_file): source = os.path.dirname(source_file) if target.is_synthetic: source_root = mod_path_to_ide_gen(os.path.join(get_buildroot(), target.target_base, source)) else: source_root = os.path.join(get_buildroot(), target.target_base, source) return source_root, source.replace(os.sep, '.') return set(map(root_package_prefix, target.sources_relative_to_source_root())) class GenStubsAndExport(GenStubsAndExportTask, ConsoleTask): """Export project information in JSON format. Intended for exporting project information for IDE, such as the IntelliJ Pants plugin. TODO: we can back this out entirely when we introduce stubs to pants more formally. """ def __init__(self, *args, **kwargs): super(GenStubsAndExport, self).__init__(*args, **kwargs) def console_output(self, targets, classpath_products=None): graph_info = self.generate_targets_map(targets, classpath_products=classpath_products) if self.get_options().formatted: return json.dumps(graph_info, indent=4, separators=(',', ': ')).splitlines() else: return [json.dumps(graph_info)] ``` #### File: python/tasks/futurize_task.py ```python from __future__ import absolute_import, division, print_function, unicode_literals import os from builtins import filter from pants.backend.python.interpreter_cache import PythonInterpreterCache from pants.backend.python.subsystems.python_setup import PythonSetup from pants.backend.python.targets.python_binary import PythonBinary from pants.backend.python.targets.python_library import PythonLibrary from pants.backend.python.targets.python_target import PythonTarget from pants.backend.python.targets.python_tests import PythonTests from pants.backend.python.tasks.resolve_requirements_task_base import ResolveRequirementsTaskBase from pants.base.exceptions import TaskError from pants.base.workunit import WorkUnit, WorkUnitLabel from pants.python.python_repos import PythonRepos from pants.util.memo import memoized_property from pants.util.process_handler import subprocess from typing import List, Optional, Set class FuturizeTask(ResolveRequirementsTaskBase): """Invoke the futurize tool for Python.""" _PYTHON_SOURCE_EXTENSION = '.py' def __init__(self, *args, **kwargs): super(FuturizeTask, self).__init__(*args, **kwargs) @classmethod def register_options(cls, register): super(FuturizeTask, cls).register_options(register) register('--check', type=bool, default=False, help='Determines if Pants stops due to error.') register('--stage', type=int, default=1, help='Stage of transformation (1 or 2) see futurize docs for more info') register('--only', type=str, default=None) @memoized_property def _interpreter_cache(self): return PythonInterpreterCache( PythonSetup.global_instance(), PythonRepos.global_instance(), logger=self.context.log.debug ) @classmethod def supports_passthru_args(cls): return True @staticmethod def is_non_synthetic_python_target(target): # type: (PythonTarget) -> bool return not target.is_synthetic and isinstance(target, (PythonLibrary, PythonBinary, PythonTests)) def _calculate_python_sources(self, targets, tag): # type: (List[PythonTarget], Optional[str]) -> List[str] """Generate a set of source files from the given targets.""" python_eval_targets = list(filter(self.is_non_synthetic_python_target, targets)) sources = set() # type: Set[str] for target in python_eval_targets: if not tag or tag in target.tags: sources.update( source for source in target.sources_relative_to_buildroot() if os.path.splitext(source)[1] == self._PYTHON_SOURCE_EXTENSION ) return list(sources) def execute(self): # type: () -> None opts = self.get_options() tag = opts.only sources = self._calculate_python_sources(self.context.target_roots, tag) if not sources: self.context.log.debug('No Python sources to check.') return futurize_opts = ['-j8'] if opts.stage == 1: futurize_opts.append('-1') elif opts.stage == 2: futurize_opts.append('-2') else: raise TaskError('--stage can only have a value of 1 or 2, not {}'.format(opts.stage)) if not opts.check: futurize_opts.extend(['-w', '-n', '--no-diff']) cmd = ['.pvenvs/fs/bin/futurize'] + futurize_opts + self.get_passthru_args() + sources self.context.log.debug('futurize command: {}'.format(' '.join(cmd))) with self.context.new_workunit( name='check', labels=[WorkUnitLabel.TOOL, WorkUnitLabel.RUN], log_config=WorkUnit.LogConfig(level=self.get_options().level, colors=self.get_options().colors), cmd=' '.join(cmd)) as workunit: proc = subprocess.Popen(cmd, stdout=workunit.output('stdout'), stderr=subprocess.STDOUT) return_code = proc.wait() if return_code != 0: raise TaskError('futurize failed: code={}'.format(return_code)) ``` #### File: rpmbuild/subsystems/remote_source_fetcher.py ```python from __future__ import absolute_import, division, print_function, unicode_literals import os import os from pants.binaries.binary_tool import BinaryToolBase from pants.fs.archive import archiver_for_path from pants.util.contextutil import temporary_dir from pants.util.memo import memoized_method, memoized_property class RemoteSourceFetcher(BinaryToolBase): """Fetcher for remote sources which uses BinaryToolBase pipeline.""" # This allows long-lived caching of remote downloads, which are painful to to over and over when they aren't changing. # NOTE(mateo): Upstream Pants saw this subsystem and ended up adding a subset of the features. # That subset needs to be audited and consumed, with a longer-term goal of patching upstream to add # any of the following features we cannot live without. # # RemoteSources plugin provides the following features (uniquely or otherwise): # * Long-lived caching of downloaded files # - Only invalidated by version changes - otherwise considered cached # - Kept outsidce .pants.d or artifact cache, alongside Pants downloaded tooling. # - Atomic downloads so we aren't poisoned by corrupted downloads. # * Addressable in BUILD files # - These are considered "versioned" and can be referenced as dependencies. # - RpmBuilder as canonical consumer - caching bootstrapped source bundles. # * Fetched on demand, either directly or transitively # - If you call `./pants rpmbuild src/redhat/libevent` only then should it bootstrap the source bundle. # * Unpack attribute in the target # - Extract as an addressable feature. # # These features mean that we can add new bootstrapped downloads strictly by editing BUILD files and they # will be fetched on demand, and cached ~forever. This is incredibly powerful for engineers without direct # Pants development experience. # TODO(mateo): Either fully adapt the remote_sources plugin for the new BinaryToolBase interface or # work with upstream until UnpackJars is robust enough for our use cases. # The upstream interface uses this for the "name" because it expects a new Subsystem for every boostrapped # tool. We set the name in the BUILD file, which is interpolated through overrides below. options_scope = 'remote-fetcher' def __init__(self, remote_target): self.name = remote_target.namespace self._filename = remote_target.filename self._extract = remote_target.extract or False self._version = remote_target.version self.platform_dependent = remote_target.platform_dependent == "True" def get_support_dir(self): return 'bin/{}'.format(self.name) def version(self, context=None): """Returns the version of the specified binary tool.""" return self._version @property def _relpath(self): return os.path.join(self.get_support_dir(), self.name()) @property def extracted(self): return self._extract def _construct_path(self, context=None): fetched = self.select(context) if not self._extract: return fetched unpacked_dir = os.path.dirname(fetched) outdir = os.path.join(unpacked_dir, 'unpacked') if not os.path.exists(outdir): with temporary_dir(root_dir=unpacked_dir) as tmp_root: # This is an upstream lever that pattern matches the filepath to an archive type. archiver = archiver_for_path(fetched) archiver.extract(fetched, tmp_root) os.rename(tmp_root, outdir) return os.path.join(outdir) @memoized_method def _select_for_version(self, version): # Override, since we include the extension in the actual filename # (a compromise so we could support downloading files with no extension). return self._binary_util.select( supportdir=self.get_support_dir(), version=version, name='{}'.format(self._filename), platform_dependent=self.platform_dependent, archive_type=self.archive_type) @memoized_property def path(self, context=None): """Fetch the binary and return the full file path. Safe to call repeatedly, the fetch itself is idempotent. """ return self._construct_path() ``` #### File: spindle/targets/ssp_template.py ```python from __future__ import absolute_import, division, print_function, unicode_literals from pants.build_graph.resources import Resources class SspTemplate(Resources): """Scala Server Pages (ssp) template.""" def __init__(self, entry_point=None, *args, **kwargs): self.entry_point = entry_point super(SspTemplate, self).__init__(*args, **kwargs) ``` #### File: wiki/subsystems/confluence_subsystem.py ```python from __future__ import absolute_import, division, print_function, unicode_literals import urllib from pants.subsystem.subsystem import Subsystem from pants.util.memo import memoized_property class ConfluenceSubsystem(Subsystem): options_scope = 'confluence-wiki' @staticmethod def confluence_url_builder(page): config = page.provides[0].config title = config['title'] full_url = '{}/wiki/spaces/{}/{}'.format( ConfluenceSubsystem.wiki_url, config['space'], urllib.quote_plus(title), ) return title, full_url @classmethod def register_options(cls, register): super(ConfluenceSubsystem, cls).register_options(register) # TODO(mateo): This only supports a single wiki url, should a map of wiki_name:url. # This is not trivial to unwind, the base plugin assumed self-hosted wiki and url builders. register( '--wiki-url', default=None, advanced=True, help='Wiki hostname.', ) register( '--email-domain', advanced=True, help='Options default domain. For <EMAIL>, use @foo.com. Note: Overrides the email-domain option.', ) @memoized_property def wiki_url(self): wiki_url = self.get_options().wiki_url if wiki_url is None: raise ValueError("No wiki URL set! Please set option --{}-wiki-url.".format(self.options_scope)) return wiki_url @memoized_property def email_domain(self): email_domain = self.get_options().email_domain if email_domain is None: raise ValueError("No email domain is set! Please set option --{}-email-domain.".format(self.options_scope)) return email_domain ``` #### File: wiki/tasks/confluence_restful_publish.py ```python from __future__ import absolute_import, division, print_function import os import shutil import textwrap from pants.base.exceptions import TaskError from pants.build_graph.resources import Resources from pants.contrib.confluence.tasks.confluence_publish import ConfluencePublish from pants.contrib.confluence.util.confluence_util import ConfluenceError from pants.util.memo import memoized_property from fsqio.pants.wiki.subsystems.confluence_subsystem import ConfluenceSubsystem from fsqio.pants.wiki.util.confluence_cloud import ConfluenceCloud class ConfluenceRestfulPublish(ConfluencePublish): """Rest client for ConfluenceCloud, for use with hosted wikis.""" @classmethod def subsystem_dependencies(cls): return super(ConfluenceRestfulPublish, cls).subsystem_dependencies() + (ConfluenceSubsystem,) @memoized_property def confluence_subsystem(self): return ConfluenceSubsystem.global_instance() @memoized_property def email_domain(self): return self.confluence_subsystem.email_domain @memoized_property def url(self): return self.confluence_subsystem.wiki_url @memoized_property def force(self): return self.get_options().force @memoized_property def open(self): return self.get_options().open @memoized_property def user(self): return self.get_options().user @classmethod def register_options(cls, register): # TODO(mateo): These options and the init are inlined from ConfluencePublish because # that file set properties inside the init and cannot be decoupled from them. # Moving those to properties and other contracts of being a good citizen superclass. # pylint: disable=bad-super-call super(ConfluencePublish, cls).register_options(register) register( '--user', help='Confluence user name, defaults to unix user.', ) register( '--force', type=bool, help='Force publish the page even if its contents is identical to the contents on confluence.', ) register( '--open', type=bool, help='Attempt to open the published confluence wiki page in a browser.', ) def __init__(self, *args, **kwargs): self._wiki = None # NOTE(mateo): Purposeful abuse of the super call to avoid legacy practices in the upstream task. # pylint: disable=bad-super-call super(ConfluencePublish, self).__init__(*args, **kwargs) def api(self): return 'confluence2' def publish_page(self, address, space, title, content, parent=None): body = textwrap.dedent(''' <!-- DO NOT EDIT - generated by pants from {} --> {} ''').strip().format(address, content) pageopts = dict( versionComment='updated by pants!' ) wiki = self.login() existing = wiki.getpage(space, title) if existing: # NOTE: Disabled the no-op detection for publish (no consequences on user build time at all). # We need the page to be generated before we attach resources. # TODO(mateo): Restore or deep-six after we land on a solution for displaying inline attachments. # # if not self.force and wiki.get_content_value(existing).strip() == body.strip(): # return pageopts['id'] = existing['id'] pageopts['version'] = existing['version'] try: page = wiki.create_html_page(space, title, body, parent, **pageopts) except ConfluenceError as e: raise TaskError('Failed to update confluence: {}'.format(e)) # Copy any resource files into the html dist of the dependent page target. # This is not required for Confluence attachment - if the final image tag # doesn't work for both markdown and confluence, maybe just pass the source location to the API and otherwise # leave the filesystem alone page_target = self.context.build_graph.get_target(address) outdir = os.path.join(self.get_options().pants_distdir, 'markdown', 'html') page_outdir = os.path.join(outdir, page_target.sources_relative_to_target_base().rel_root) for target in page_target.dependencies: if isinstance(target, Resources): # Copy next to rendered HTML in dist for local use and attach to newly published page for the wiki. for resource_file in target.sources_relative_to_buildroot(): shutil.copy2(resource_file, page_outdir) wiki.addattachment(page, resource_file) return wiki.get_url(page) def login(self): if not self._wiki: flagged = self.get_options().is_flagged('user') # Use the passed user - first checking to see where the default is applied # User is seeded by Pants but the options system does not recognize seeded values as being defaults. user = self.user if flagged else self.user + self.email_domain try: self._wiki = ConfluenceCloud.login(self.url, user, self.api()) except ConfluenceError as e: raise TaskError('Failed to login to confluence: {}'.format(e)) return self._wiki ```
{ "source": "jglez/code-solutions", "score": 4 }
#### File: code-solutions/codesignal/makeArrayConsecutive.py ```python def solution(statues): sorted_statues = sorted(statues) pointer = 0 while pointer != len(sorted_statues) - 1: if (sorted_statues[pointer + 1] - sorted_statues[pointer]) > 1: sorted_statues.insert(pointer + 1, sorted_statues[pointer] + 1) pointer += 1 return len(sorted_statues) - len(statues) ``` #### File: code-solutions/codesignal/shapeArea.py ```python def solution(n): area = 1 currEdges = 4 for n in range(1, n): area += currEdges currEdges += 4 return area ``` #### File: codewars/8kyu/cockroachSpeed.py ```python def cockroach_speed(s): return s * 100000 // 3600 ``` #### File: codewars/8kyu/firstNonConsecutive.py ```python def first_non_consecutive(arr): for index, item in enumerate(arr): if arr.index(arr[index]) == len(arr) - 1: break if arr[index + 1] - arr[index] > 1: return arr[index + 1] return None ``` #### File: codewars/8kyu/thirdAngle.py ```python def other_angle(angle1, angle2): return 180 - angle1 - angle2 ```
{ "source": "jglezt/game-of-pyfe", "score": 4 }
#### File: game-of-pyfe/game_of_pyfe/utils.py ```python import os from typing import List import numpy as np def cls(): """Clean the terminal.""" os.system("cls" if os.name == "nt" else "clear") def validate_board(board: np.array) -> np.array: """Validate the Game of life board. Validates that the board cumplies with the following parameters. 1. Has shape of (n, m). 2. Only contains 1's (life) and 0's (death). Arguments --------- board: Game of life board. Raises ------ TypeError if does not cumply with shape. ValueError if does not has only 1's and 0's. Returns ------- The original board. """ board_shape = board.shape if not (len(board_shape) == 2 and board_shape[0] >= 2 and board_shape[1] >= 2): raise TypeError("board does not contain the correct shape") for i in range(board_shape[0]): for j in range(board_shape[1]): if not (board[i][j] == 0 or board[i][j] == 1): raise ValueError( "Board contains a {} in index [{}, {}]".format(board[i][j], i, j) ) return board def create_printable_board(board: np.array) -> List[List[int]]: """Format the board to be printed in the terminal. For convinience and testability, the array contains the in representing 'space' for 0's and 'white box' for 1's Arguments --------- board: Game of life board. Returns ------- A list containing the lines of integers representing each cell life state. """ black_square = 9608 space = 32 printable_board = board.copy() printable_board[printable_board == 0] = space printable_board[printable_board == 1] = black_square return printable_board.tolist() ```
{ "source": "jgliss/aerocom_obs_props", "score": 2 }
#### File: aerocom_obs_props/sorted_out/EVAL_SCRIPT.py ```python import helpers as helpers import os from collections import OrderedDict as od import numpy as np import matplotlib.pyplot as plt import pyaerocom as pya import logging ### GLOBAL SETTINGS YEARS = [2010, 2008, 9999] MODEL_LIST = ['ECMWF_CAMS_REAN', 'CAM6-Oslo_NF2kNucl_7jun2018AK', 'OsloCTM2_INSITU', 'TM5_AP3-CTRL2016', 'TM5_AP3-INSITU'] MODEL_LIST = MODEL_LIST[2:] GRIDDED_OBS = {'MODIS6.terra' : ['od550aer'], 'MODIS6.aqua' : ['od550aer']} # will be filled during the import READ_PROBLEMATIC = {} # Obs data and variables UNGRIDDED_OBS = {'AeronetSunV2Lev2.daily' : ['od550aer', 'ang4487aer'], 'AeronetSunV3Lev2.daily' : ['od550aer', 'ang4487aer'], 'AeronetSDAV2Lev2.daily' : ['od550lt1aer', 'od550gt1aer'], 'AeronetSDAV3Lev2.daily' : ['od550lt1aer', 'od550gt1aer'], pya.const.AERONET_INV_V2L2_DAILY_NAME : 'abs550aer', pya.const.AERONET_INV_V3L2_DAILY_NAME : 'abs550aer'} ### Paths and directories MODEL_INFO_FILE = ('/lustre/storeA/project/aerocom/' 'aerocom-users-database/AEROCOM-PHASE-III/reference-list') OUT_DIR = './output/' OUT_DIR_SCAT = os.path.join(OUT_DIR, 'scatter_plots') OUT_DIR_RESULTS = os.path.join(OUT_DIR, 'results_csv') OUT_STATS = os.path.join(OUT_DIR, 'statistics_results.csv') VARS = [] for k, v in UNGRIDDED_OBS.items(): if isinstance(v, str): VARS.append(v) else: VARS.extend(v) for k, v in GRIDDED_OBS.items(): if isinstance(v, str): VARS.append(v) else: VARS.extend(v) VARS = list(dict.fromkeys(VARS)) def chk_make_dir(base, name): d = os.path.join(base, name) if not os.path.exists(d): os.mkdir(d) return d def init_output_directories(model_reader, obs_data, out_base_dir): if not os.path.exists(out_base_dir): os.mkdir(out_base_dir) dirs = {} for name, data in model_reader.results.items(): model_base = chk_make_dir(out_base_dir, name) dirs[name] = {} for y in data.years: year_sub = chk_make_dir(model_base, str(y)) dirs[name][y] = {} for obs_network in obs_data: obs_sub = chk_make_dir(year_sub, obs_network) dirs[name][y][obs_network] = obs_sub chk_make_dir(obs_sub, 'series_plots') return dirs def append_result(out_file, stats, model, obs, var, year, ts_type): with open(out_file, 'a') as f: f.write('Model: {}, Obs: {}, Var: {}, Year: {}, Freq: {}\n'.format( model, obs, var, year, ts_type)) for k, v in stats.items(): f.write('{}:\t{:.3f}\n'.format(k, v)) f.write('\n') if __name__=="__main__": if os.path.exists(OUT_STATS): os.remove(OUT_STATS) plt.close('all') helpers.print_file(MODEL_INFO_FILE) ### OPTIONS RELOAD = 1 RUN_EVAL = 1 EVAL_UNGRIDDED = 1 EVAL_GRIDDED_OBS = 1 TEST = 0 PLOT_STATIONS = 0 pya.change_verbosity('critical') ### DATA IMPORT if RELOAD: print('Importing model and obs data, this could take some time') ### Read gridded model data read_models = pya.io.ReadGriddedMulti(MODEL_LIST) read_models.read_individual_years(VARS, YEARS) print('Reading satellite data') ### Read gridded obs data grid_obs = [k for k in GRIDDED_OBS.keys()] read_gridded_obs = pya.io.ReadGriddedMulti(grid_obs) read_gridded_obs.read_individual_years(VARS, YEARS) read_ungridded_obs = pya.io.ReadUngridded() read_ungridded_obs.logger.setLevel(logging.INFO) print('Reading ungridded obs data') # Load networks individually for now (easier for analysis below) ungridded_obs_all = od() if EVAL_UNGRIDDED: for network, vars_to_retrieve in UNGRIDDED_OBS.items(): ungridded_obs_all[network] = read_ungridded_obs.read_dataset( network, vars_to_retrieve=vars_to_retrieve) dirs = init_output_directories(read_models, ungridded_obs_all, OUT_DIR) if RUN_EVAL: ### ANALYSIS PLOT_STATIONS = 0 # temporal resolution TS_TYPES = ['daily', 'monthly', 'yearly'] filter_name = 'WORLD-noMOUNTAINS' for ts_type in TS_TYPES: plotname = 'mALLYEAR{}'.format(ts_type) for model_id, model_reader in read_models.results.items(): for year in YEARS: if not year in model_reader.years: continue for var in VARS: if not var in model_reader.vars: continue if EVAL_GRIDDED_OBS: for obs_id, obs_reader in read_gridded_obs.results.items(): if var in obs_reader.vars and year in obs_reader.years: if year == 9999: msg =('Ignoring climatology data (model: {}, ' 'obs: {}). ' 'Not yet implemented'.format(model_id, obs_id)) print(msg) with open(OUT_STATS, 'a') as f: f.write('\n{}\n\n'.format(msg)) continue print('Analysing variable: {}\n' 'Model {} vs. obs {}\n' 'Year: {} ({} resolution)\n' .format(var, model_id, obs_id, year, ts_type)) model = model_reader.data_yearly[var][year] obs = obs_reader.data_yearly[var][year] start_str = str(year) stop_str = '{}-12-31 23:59:59'.format(year) data = pya.collocation.collocate_gridded_gridded( model, obs, start=start_str, stop=stop_str, ts_type=ts_type, filter_name=filter_name) stats = data.calc_statistics() append_result(OUT_STATS, stats, model_id, obs_id, var, year, ts_type) add_note=False if np.isnan(stats['R']): if sum(data.data.values[1].flatten()) != 0: raise Exception('Check...') add_note = True save_name_fig = data.save_name_aerocom + '_SCAT.png' data.plot_scatter(savefig=True, save_dir=OUT_DIR_SCAT, save_name=save_name_fig) data.to_csv(OUT_DIR_RESULTS) if TEST: raise Exception plt.close('all') if EVAL_UNGRIDDED: for obs_id, ungridded_obs in ungridded_obs_all.items(): if not var in ungridded_obs.contains_vars: continue if year == 9999: msg =('Ignoring climatology data (model: {}, ' 'obs: {}). ' 'Not yet implemented'.format(model_id, obs_id)) print(msg) with open(OUT_STATS, 'a') as f: f.write('\n{}\n\n'.format(msg)) continue print('Analysing variable: {}\n' 'Model {} vs. obs {}\n' 'Year: {} ({} resolution)\n' .format(var, model_id, obs_id, year, ts_type)) model = model_reader.data_yearly[var][year] start_str = str(year) stop_str = '{}-12-31 23:59:00'.format(year) data = pya.collocation.collocate_gridded_ungridded_2D( model, ungridded_obs, ts_type=ts_type, start=start_str, stop=stop_str, filter_name=filter_name) data.to_csv(OUT_DIR_RESULTS) stats = data.calc_statistics() append_result(OUT_STATS, stats, model_id, obs_id, var, year, ts_type) add_note=False if np.isnan(stats['R']): if sum(data.data.values[1].flatten()) != 0: raise Exception('Check...') add_note = True save_name_fig = data.save_name_aerocom + '_SCAT.png' data.plot_scatter(savefig=True, save_dir=OUT_DIR_SCAT, save_name=save_name_fig) plt.close('all') ```
{ "source": "jgliss/my_py3_scripts", "score": 2 }
#### File: arve/from_arve/Experiment.py ```python import copy import math import numpy as np import pickle import os import shutil from glob import glob import multiprocessing from subprocess import Popen,PIPE, STDOUT, call import string, random from netCDF4 import Dataset import TomoCamera as TC import time import sys def find_nearest_id(array,value): idx=(np.abs(array-value)).argmin() return idx def Average_spc_Files(InputFiles, OutputFile, verbose=False): # First check that all files have the same number of lines. If not # the files are surely different. i = 0 # for fn in glob(InputFiles): for fn in InputFiles: with open(fn) as fp: nlin = sum(1 for line in fp) if i==0: nlin0=nlin else: if nlin != nlin0: print 'nlin: ' + str(nlin) + ', not equal nlin0: ' + str(nlin0) exit(0) i = i + 1 # All well? Combine all the files wvl = np.zeros([len(InputFiles),nlin]) ix = np.zeros([len(InputFiles),nlin],dtype=int) iy = np.zeros([len(InputFiles),nlin],dtype=int) iz = np.zeros([len(InputFiles),nlin],dtype=int) rad = np.zeros([len(InputFiles),nlin]) s2 = np.zeros([nlin]) radavg = np.zeros([nlin]) i = 0 # for f in glob(InputFiles): for f in InputFiles: (wvl[i],ix[i],iy[i],iz[i],rad[i]) = read_rad_spc(f, verbose=False) radavg[:] = radavg[:] + rad[i,:] s2[:] = s2[:] + rad[i,:]*rad[i,:] i = i + 1 s0 = i l = 0 f = open(OutputFile,'w') while l < nlin: s1 = radavg[l] arg = s0*s2[l] - s1*s1 if arg < 0.0: print >> sys.stderr, l, arg, s0, s1, s2[l] arg = 0.0 std = (1.0/s0)*math.sqrt(arg) f.write('{0:8.2f} {1:3d} {2:3d} {3:3d} {4:9.4f} {5:9.4f}\n'.format(wvl[0,l], ix[0,l], iy[0,l], iz[0,l], s1/s0, std)) l = l + 1 f.close() return def CombineSingleProcessOuput(InputFiles, OutputFile, verbose=False): fin = InputFiles[0] finstd = fin.replace('.spc','.std.spc') rad = np.loadtxt(fin) std = np.loadtxt(finstd) nwvl, ncol = rad.shape f = open(OutputFile,'w') iwvl=0 while iwvl < nwvl: f.write('{0:8.2f} {1:3d} {2:3d} {3:3d} {4:9.4f} {5:9.4f}\n'.format(rad[iwvl,0], int(rad[iwvl,1]), int(rad[iwvl,2]), int(rad[iwvl,3]), rad[iwvl,4], std[iwvl,4])) iwvl = iwvl + 1 f.close() return def read_rad_spc(fn, STD=False, verbose=False): # Read MYSTIC mc.rad.spc file if verbose: print "Reading MYSTIC mc.rad.spc file: ", fn sys.stdout.flush() if STD: wvl,ix,iy,iz,rad, std = np.loadtxt(fn, unpack=True) return (wvl,ix,iy,iz,rad,std) else: wvl,ix,iy,iz,rad = np.loadtxt(fn, unpack=True) return (wvl,ix,iy,iz,rad) def Write2DMYSTICElevationFile(filename, nx, ny, dx, dy, elevation, verbose=False): if verbose: print "Write2DMYSTICElevationFile filename", filename sys.stdout.flush() fp=open(filename,'w') fp.write('{:d} {:d} {:f} {:f}\n'.format(nx, ny, dx, dy)) ix=0 while ix < nx: iy=0 while iy < ny: fp.write('{:d} {:d} {:f}\n'.format(ix+1, iy+1, elevation )) iy=iy+1 ix=ix+1 fp.close() def zenith(lat, lon, year, month, day,hour,min=0, sec=0, stdlong=0,output=1, uvspecpath=''): cmd = uvspecpath+'zenith '+str(day)+' '+str(month)+' '+str(hour)+' '+str(min)+' '+str(sec)+\ ' '+'-y '+str(year)+' -a '+str(lat)+' -o '+str(lon)+' -s '+str(stdlong)+' -q' res = Popen(cmd,shell=True,stdout=PIPE) res.wait() vals = res.communicate() vals = vals[0].split() sza = float(vals[1]) return sza def Write3DMYSTICFile(filename, type='Generic', nx=0, ny=0, nz=0, dx=0, dy=0, z=None, LWCLimit=0.0, extLimit=0.0, flag=0, verbose=False, **kwargs): if verbose: print "Write3DMYSTICFile filename", filename sys.stdout.flush() fp=open(filename,'w') if type=='Generic': fp.write('{:d} {:d} {:d} {:d}\n'.format(nx, ny, nz,flag)) fp.write('{:f} {:f} '.format(dx, dy)) for zz in z: fp.write('{:f} '.format(zz)) fp.write('\n') if flag==1: tmpext = kwargs['ext'] tmpgg = kwargs['gg'] tmpssa = kwargs['ssa'] ix=0 il=0 while ix < nx: iy=0 while iy < ny: iz=0 while iz < nz: # if tmpext[ix,iy,iz] > 0.0: if tmpext[ix,iy,iz] > extLimit: fp.write('{:d} {:d} {:d} {:f} {:f} {:f}\n'.format(ix+1, iy+1, iz+1, tmpext[ix,iy,iz], tmpgg[ix,iy,iz], tmpssa[ix,iy,iz] )) il=il+1 iz=iz+1 iy=iy+1 ix=ix+1 # If no cloud still include a dummy line with no optical thickness to fool MYSTIC # for background simulations. if il==0: ix=0 iy=0 iz=0 fp.write('{:d} {:d} {:d} {:f} {:f} {:f}\n'.format(ix+1, iy+1, iz+1, 0.0, 0.0, 0.0 )) elif flag==3: tmpLWC = kwargs['LWC'] tmpreff = kwargs['reff'] ix=0 il=0 while ix < nx: iy=0 while iy < ny: iz=0 # while iz < nz+1: while iz < nz: if tmpLWC[ix,iy,iz] > LWCLimit: fp.write('{:d} {:d} {:d} {:g} {:f}\n'.format(ix+1, iy+1, iz+1, tmpLWC[ix,iy,iz], tmpreff[ix,iy,iz] )) il=il+1 iz=iz+1 iy=iy+1 ix=ix+1 # If no cloud still include a dummy line with no optical thickness to fool MYSTIC # for background simulations. if il==0: ix=0 iy=0 iz=0 fp.write('{:d} {:d} {:d} {:f} {:f}\n'.format(ix+1, iy+1, iz+1, 0.0, tmpreff[ix,iy,iz] )) else: print 'Write3DMYSTICFile: Unknown type' exit fp.close() return def make3DGaussian(sizex, sizey, sizez, sigmax=1, sigmay=1, sigmaz=1, center=None,verbose=False): """ Calculate 3D Gaussian distribution with different standard deviations in x, y, and z-directions. size? is the size in pixels/indices in ?-direction sigma ? is standard deviation in ?-direction """ if verbose==True: print "make3DGaussian size", sizex, sizey, sizez print "make3DGaussian sigma", sigmax, sigmay, sigmaz sys.stdout.flush() x = np.arange(0, sizex, 1, float) y = x[:,np.newaxis] if sizey>sizex: y = np.insert(y,np.zeros(sizey-sizex),0,axis=0 ) elif sizey<sizex: y = np.delete(y,np.arange(0,sizex-sizey),axis=0 ) y[:,0] = np.arange(0, len(y), 1, float) z = y[:,np.newaxis] if sizez>sizey: z = np.insert(z,np.zeros(sizez-sizey),0,axis=0 ) elif sizez<sizey: z = np.delete(z,np.arange(0,sizey-sizez),axis=0 ) z[:,0,0] = np.arange(0, len(z), 1, float) if verbose==True: print z print "make3DGaussian x.shape", x.shape, y.shape, z.shape sys.stdout.flush() if center is None: x0 = sizex // 2 y0 = sizey // 2 z0 = sizez // 2 else: x0 = center[0] y0 = center[1] z0 = center[2] # if verbose==True: # print "x", x # print "y", y # print "z", z # print "x0, y0, z0", x0, y0, z0 tmpG = (1/(2.*sigmax*sigmay*sigmaz))*np.exp(-0.5*(((x-x0)**2)/sigmax**2+((y-y0)**2)/sigmay**2+((z-z0)**2)/sigmaz**2)) # Transpose to comply with rest tmpG = tmpG.T if verbose==True: print "make3DGaussian dens", tmpG.shape sys.stdout.flush() return tmpG def make3DEllipsoid(sizex, sizey, sizez, x_centre, y_centre, z_centre, ellipsoid_a, ellipsoid_b, ellipsoid_c, x, y, z, verbose=False): """ Set density to shape of a ellipsoid. Density is constant within. size? is the size in pixels/indices in ?-direction """ tmpdens = np.zeros((sizex, sizey, sizez)) ix=0 for xx in x: iy=0 for yy in y: iz=0 for zz in z[1:z.shape[0]-1]: ell = (((xx-x_centre)**2.)/(ellipsoid_a**2.))+\ (((yy-y_centre)**2.)/(ellipsoid_b**2.))+\ (((zz-z_centre)**2.)/(ellipsoid_c**2.)) if ell <=1.0: tmpdens[ix,iy,iz]=1.0 iz=iz+1 iy=iy+1 ix=ix+1 if verbose==True: print "make3DEllipsoid dens", tmpdens.shape sys.stdout.flush() return tmpdens def make3DVerticalPlume(sizex, sizey, sizez, iz_start, iz_end, iBottomRadius, iTopRadius, sigmax, sigmay, scale_factor=1, center=None, verbose=False): """ Calculate 3D Gaussian distribution with different standard deviations in x, y, and z-directions. size? is the size in pixels/indices in ?-direction sigma ? is standard deviation in ?-direction """ if verbose==True: print "size", sizex, sizey, sizey print "iz_start", iz_start, iz_end, iBottomRadius, iTopRadius sys.stdout.flush() tmpdens = np.zeros((sizex, sizey, sizez)) x = np.arange(0, sizex, 1, float) y = x[:,np.newaxis] if sizey>sizex: y = np.insert(y,np.zeros(sizey-sizex),0,axis=0 ) elif sizey<sizex: y = np.delete(y,np.arange(0,sizex-sizey),axis=0 ) y[:,0] = np.arange(0, len(y), 1, float) if center is None: x0 = sizex // 2 y0 = sizey // 2 else: x0 = center[0] y0 = center[1] if verbose==True: print "x", x print "y", y print "x0, y0, z0", x0, y0 sys.stdout.flush() a = (iBottomRadius-iTopRadius)/(iz_start-iz_end) b = iBottomRadius-a*iz_start iz = iz_start ii =0 while iz<iz_end: ir = a*iz+b this_sigmax = ir*sigmax this_sigmay = ir*sigmay # print iz, ir, a, b tmpG = (1/(2.*this_sigmax*this_sigmay))*np.exp(-0.5*(((x-x0)**2)/this_sigmax**2+((y-y0)**2)/this_sigmay**2)) tmpdens[:,:,ii] = tmpG*scale_factor/tmpG.max() # print tmpG.shape, tmpG.max() # exit() ii=ii+1 iz=iz+1 if verbose==True: print x print x.shape, y.shape, z.shape sys.stdout.flush() return tmpdens def make3DHorizontalPlume(sizex, sizey, sizez, iz_start, iz_end, iBottomRadius, iTopRadius, sigmax, sigmay, scale_factor=1, center=None, verbose=False): """ Calculate 3D Gaussian distribution with different standard deviations in x, y, and z-directions. size? is the size in pixels/indices in ?-direction sigma ? is standard deviation in ?-direction """ if verbose==True: print "size", sizex, sizey, sizey print "iz_start", iz_start, iz_end, iBottomRadius, iTopRadius sys.stdout.flush() tmpdens = np.zeros((sizex, sizey, sizez)) x = np.arange(0, sizex, 1, float) y = x[:,np.newaxis] if sizey>sizex: y = np.insert(y,np.zeros(sizey-sizex),0,axis=0 ) elif sizey<sizex: y = np.delete(y,np.arange(0,sizex-sizey),axis=0 ) y[:,0] = np.arange(0, len(y), 1, float) if center is None: x0 = sizex // 2 y0 = sizey // 2 else: x0 = center[0] y0 = center[1] if verbose==True: print "x", x print "y", y print "x0, y0, z0", x0, y0 sys.stdout.flush() a = (iBottomRadius-iTopRadius)/(iz_start-iz_end) b = iBottomRadius-a*iz_start iz = iz_start ii =0 while iz<iz_end: ir = a*iz+b this_sigmax = ir*sigmax this_sigmay = ir*sigmay # print iz, ir, a, b tmpG = (1/(2.*this_sigmax*this_sigmay))*np.exp(-0.5*(((x-x0)**2)/this_sigmax**2+((y-y0)**2)/this_sigmay**2)) tmpdens[:,:,ii] = tmpG*scale_factor/tmpG.max() # print tmpG.shape, tmpG.max() # exit() ii=ii+1 iz=iz+1 if verbose==True: print x print x.shape, y.shape, z.shape sys.stdout.flush() return tmpdens def make3DBox(sizex, sizey, sizez, verbose=False, scale_factor=1.0): """ Make homogeneous 3D 3x3x3 cube. """ if verbose==True: print "make3DBox size", sizex, sizey, sizez sys.stdout.flush() tmpdens = np.ones((sizex, sizey, sizez)) tmpdens = tmpdens*scale_factor if verbose==True: print "make3DBox", tmpdens.shape print "make3DBox", tmpdens sys.stdout.flush() return tmpdens def make3DCell(sizex, sizey, sizez, verbose=False, scale_factor=1.0): """ Calculate 3D distribution for an SO2 cell. Here a 3x3x3 cube with a hole in the middle for the camera. """ if verbose==True: print "make3DCell size", sizex, sizey, sizez sys.stdout.flush() tmpdens = np.ones((sizex, sizey, sizez)) tmpdens = tmpdens*scale_factor x0 = sizex // 2 y0 = sizey // 2 z0 = sizez // 2 tmpdens[x0,y0,z0] = 0.0 if verbose==True: print "make3DCell", tmpdens.shape print "make3DCell", tmpdens sys.stdout.flush() return tmpdens class ConversionFactors: def __init__(self): self.nm2cm = 1.e-07 # Convert from nm to cm self.nm2um = 1.e-03 # Convert from nm to cm self.um2m = 1.e-06 # Convert from um to m self.cm2km = 1.e-05 # Factor from cm to km self.m2km = 1.e-03 # Factor from m to km self.m2cm = 1.e+02 # Factor from m to cm self.km2m = 1000. # Factor from km to m self.km2cm = 100000. # Factor from km to m self.gm3togcm3=1e-06 # Convert from g/m**3 to g/cm**3 self.kgtog=1.0e+03 # Convert from kg to g self.m3tocm3=1.0e+06 # Convert from m**3 to cm**3 class Camera: def __init__(self,RandString=''): self.Type='Camera' self.verbose=False self.name='TestCamera' self.savename='Camera' # Localisation of camera in m self.x = 0.0 self.y = 0.0 self.z = 0.0 # Viewing direction self.umu = 1.0 # Viewing the horizon self.phi = 0.0 # Looking north # Number of pixels in horizontal and vertical self.h_pixels=0 self.v_pixels=0 # Field of view of camera: phi1 phi2 theta1 theta2 # phi = 0 is looking to the south # phi = 180 is with the sun in the back if phi0=0 self.phi1 = 0.0 self.phi2 = 0.0 self.theta1 = 0.0 self.theta2 = 0.0 self.wavelength_grid_file='../Data/XSections/uvspec_SO2_wavelength_grid_file' self.wavelength=-9999 self.wavelength1=-9999 self.wavelength2=-9999 if RandString == '': self.RandString= 'Cam'+''.join((random.sample(string.ascii_lowercase, 5))) else: self.RandString= 'Cam'+RandString return def info(self,latex=False): print print self.savename+' name:', self.name print '(All dimensions are in units of m)' print 'Localisation x={:f}, y={:f}, z={:f}'.format(self.x, self.y, self.z) print 'Pixels h_pixels={:d}, v_pixels={:f}'.format(self.h_pixels, self.v_pixels) print 'FOV phi1={:f}, phi2={:f}, theta1={:f}, theta2={:f}'.format(self.phi1, self.phi2, self.theta1, self.theta2) sys.stdout.flush() if latex: print '& {:5.1f} & {:5.1f} & {:5.1f} & {:5.1f} & {:6.1f} & {:6.1f} & {:6.1f} & {:6.1f} & {:d}& {:d}\\\\'.format(self.wavelength1, self.x, self.y, self.z, self.phi1, self.phi2, self.theta1, self.theta2, self.h_pixels, self.v_pixels) sys.stdout.flush() print return def save(self,folder): pkl_file = open(folder+self.savename+self.name+'.pkl', 'wb') pickle.dump(self,pkl_file ) pkl_file.close() return def SetRTInput(self, UVS): print "Cam SetRTInput" sys.stdout.flush() UVS.inp['mc_sensorposition'] = '{:8.1f} {:8.1f} {:8.1f}'.format(self.x, self.y, self.z) UVS.inp['mc_sample_grid'] = '{:d} {:d}'.format(self.h_pixels, self.v_pixels) UVS.inp['mc_panorama_view'] = '{:f} {:f} {:f} {:f}'.format(self.phi1, self.phi2, self.theta1, self.theta2) UVS.inp['mc_panorama_alignment'] = 'mu' UVS.inp['umu'] = '{:f}'.format(self.umu) UVS.inp['phi'] = '{:f}'.format(self.phi) # UVS.inp['mc_panorama_alignment'] = 'sun' # UVS.inp['mc_panorama'] = 'weight_with_cos' # UVS.inp['mc_panorama'] = 'with_direct_rad' # UVS.inp['umu'] = '{:f}'.format((np.cos(np.deg2rad(0.5*(self.theta1+self.theta2))))) # UVS.inp['phi'] = '{:f}'.format(0.5*(self.phi1+self.phi2)-UVS.inp['phi0']) if self.wavelength1 != self.wavelength2: UVS.inp['wavelength_grid_file'] = self.wavelength_grid_file if not 'mol_abs_param' in UVS.inp: UVS.inp['mol_abs_param'] = 'crs' try: self.wavelength UVS.inp['wavelength'] = self.wavelength except: pass try: self.wavelength1 self.wavelength2 UVS.inp['wavelength'] = str(self.wavelength1)+' '+str(self.wavelength2) except: print "Both wavelength1 and wavelength2 must be given" exit() # try: # self.filterfunction # UVS.inp['filter_function_file'] = self.filterfunction # UVS.inp['output_process'] = 'integrate' # except: # pass return class Spectrometer(Camera): def __init__(self, RunName=''): self.Type='Spectrometer' self.verbose=False self.name='Spectrometer' self.savename='Spectrometer' # Localisation of camera in m self.x = 0.0 self.y = 0.0 self.z = 0.0 # Number of pixels in horizontal and vertical self.h_pixels=1 self.v_pixels=1 # Field of view of camera: phi1 phi2 theta1 theta2 # phi = 0 is looking to the south # phi = 180 is with the sun in the back if phi0=0 self.phi1 = 0.0 self.phi2 = 0.0 self.theta1 = 0.0 self.theta2 = 0.0 self.mol_modify_o3=-9999 self.crs_o3= '../Data/XSections/O3_Serdyuchenko_2014_223K_213-1100nm2013version.txt' self.crs_o4= '../Data/XSections/o4_thalman_volkamer_293K.dat' self.slitfunction = '' self.wavelength_grid_file='../Data/XSections/uvspec_SO2_wavelength_grid_file' self.RandString= 'Spec'+RunName+'_'+''.join(random.sample(string.ascii_lowercase, 5)) return def SetRTInput(self, UVS): print self.savename+" SetRTInput" sys.stdout.flush() UVS.inp['mc_sensorposition'] = '{:8.1f} {:8.1f} {:8.1f}'.format(self.x, self.y, self.z) UVS.inp['mc_sample_grid'] = '{:d} {:d}'.format(self.h_pixels, self.v_pixels) UVS.inp['mc_panorama_view'] = '{:f} {:f} {:f} {:f}'.format(self.phi1, self.phi2, self.theta1, self.theta2) UVS.inp['wavelength'] = str(self.wavelength1)+' '+str(self.wavelength2) UVS.inp['mol_abs_param'] = 'crs' UVS.inp['crs_file O4'] = self.crs_o4 UVS.inp['crs_file O3'] = self.crs_o3 if self.mol_modify_o3>0.0: UVS.inp['mol_modify O3'] = self.mol_modify_o3+' DU' # Do this in a separate call to conv and spline after running uvspec # if self.slitfunction != '': # UVS.inp['slit_function_file'] = self.slitfunction UVS.inp['wavelength_grid_file'] = self.wavelength_grid_file return def CalculateColumnDensity(self): """ NOTE: It is assumed that integration is along x-axis for the center pixels in the y-direction. """ for Plu in self.PlumeList: if 'SO2' in Plu.name: fact = 100. # Convert from m to cm to column in cm-2 else: fact = 1.0 # print "CalculateCol", Plu.name, fact # Calculate line integral for Spectrometer using Tomography software nx=Plu.nx dx=Plu.dx*1000 # # In meters x0=0 nz=Plu.nz z0=Plu.z[0]*1000.0 dz=Plu.dz*1000.0 #100. # In meters # RR=ReconstructionRegion RR = TC.Area(nx=nx,dx=dx, x0=x0, nz=nz, dz=dz, z0=z0 ) RR.zmin = RR.z0 RR.zmax = RR.z0 + RR.dz*RR.nz RR.Image = np.zeros([nz,nx]) # print RR.Image.shape, Plu.dens.shape ycenter = int(Plu.dens.shape[1]/2) # Do this for center slice in y-direction RR.Image=Plu.dens[:,ycenter,1:] # Plu is one pixel larger in z-direction, inconsistent. RR.Image=RR.Image.T # Sigh, why do I use different conventions for x and y...... indices=np.argmax(RR.Image) #maxind=np.unravel_index(indices, RR.Image.shape) #print "RR", indices, maxind indices=np.argmax(Plu.dens) maxind=np.unravel_index(indices, Plu.dens.shape) # print "Plu dens", indices, maxind # print "RR.Image.max()", RR.Image.min(), RR.Image.max(), Plu.dens[maxind] theta1 = self.theta1-90 # And different conventions for the angles..... theta2 = self.theta2-90 Nrays=9 Camera1=TC.TomoCamera(x=-Plu.x_start*1000-Plu.x_length*1000/2, z=self.z, theta1=theta1, theta2=theta2, Nrays=Nrays,Name='Cam 1') Camera1.Rays() iRay=0 sumtmpRq=0 while iRay<Camera1.Nrays: tmpRq, tmpTotalLength, tmpind, tmpN =Camera1.CalculateLineIntegral(RR, iRay) Camera1.Sinogram[iRay]=tmpRq # print '{:e}'.format(tmpRq) sumtmpRq=sumtmpRq+tmpRq iRay=iRay+1 Plu.ColumnDensity = fact*sumtmpRq/Nrays # fnTestLineIntegral='tmpgabba_' # tmpfn = fnTestLineIntegral+'Cam1.dat' # print 'tmpfn', tmpfn # Camera1.WriteLineIntegralToFile(tmpfn) return class Domain: def __init__(self): self.verbose=False self.name='TestDomain' # Domain size, all in km self.x_start = 0 self.x_end = 0.4 self.dx = 0.001 self.nx=0 self.x =None self.y_start = 0 self.y_end = 0.8 self.dy = 0.001 self.ny=0 self.y =None self.z_start = 0.150 self.z_end = 0.350 self.dz = 0.001 self.nz=0 self.z =None self.x_centre = 0.5*(self.x_start+self.x_end) self.y_centre = 0.5*(self.y_start+self.y_end) self.z_centre = 0.5*(self.z_start+self.z_end) return def finalize(self): self.nx = int(np.rint((self.x_end-self.x_start)/self.dx)) self.x = np.linspace(self.x_start,self.x_end,self.nx+1) self.x_size = self.x_end-self.x_start self.ny = int(np.rint((self.y_end-self.y_start)/self.dy)) self.y = np.linspace(self.y_start,self.y_end,self.ny+1) self.y_size = self.y_end-self.y_start self.nz = int(np.rint((self.z_end-self.z_start)/self.dz)) self.z = np.linspace(self.z_start,self.z_end,self.nz+1) self.z_size = self.z_end-self.z_start self.x_centre = 0.5*(self.x_start+self.x_end) self.y_centre = 0.5*(self.y_start+self.y_end) self.z_centre = 0.5*(self.z_start+self.z_end) return def info(self): print print 'Domain name:', self.name print '(All dimensions are in units of km)' print 'x_start {:f}, x_end {:f}, dx {:f}, nx {:d}'.format(self.x_start, self.x_end, self.dx, self.nx) print 'y_start {:f}, y_end {:f}, dy {:f}, ny {:d}'.format(self.y_start, self.y_end, self.dy, self.ny) print 'z_start {:f}, z_end {:f}, dz {:f}, nz {:d}'.format(self.z_start, self.z_end, self.dz, self.nz) print 'x_centre {:f}, y_centre {:f}, z_centre {:f}'.format(self.x_centre, self.y_centre, self.z_centre) print sys.stdout.flush() return def save(self,folder): pkl_file = open(folder+'Domain.pkl', 'wb') pickle.dump(self,pkl_file ) pkl_file.close() return class Plume: def __init__(self): self.verbose=False self.name='TestPlume' self.randname = 'Plume'+''.join((random.sample(string.ascii_lowercase, 5))) self.shape= '' # Either set by input to set_density or inside ReadLESNetCDF self.x_start = None self.x_end = None self.x_length = None self.y_start = None self.y_end = None self.y_length = None self.z_start = None self.z_end = None self.z_length = None self.set_density_flag=False self.ext = 0.0 self.gg = 0.0 self.ssa = 0.0 self.cdf = '' self.MYSTIC_profile_file_flag=0 return def revise_domain(self, Domain, verbose=False): if verbose: print "Inside revise_domain" sys.stdout.flush() # Only need to revise z-direction as x- and y-direction should be ok # For z-direction avoid first value as it has a half step. tmpdz = self.z[2]-self.z[1] tmpz_start=self.z[1]-tmpdz#*self.z.shape[0] # Add 1 as we want altitude at levels. tmpz = np.arange(tmpz_start, tmpz_start+tmpdz*float(self.z.shape[0]+1), tmpdz) Domain.z = tmpz Domain.dz = tmpdz Domain.nz = Domain.z.shape[0]-1 # -1 as this should by number of layers, not levels Domain.z_start=Domain.z[0] Domain.z_end=Domain.z[Domain.nz] Domain.z_size = Domain.z_end-Domain.z_end return Domain def finalize_size(self, Domain, verbose=False): if verbose: print "Inside finalize_size" sys.stdout.flush() self.x_end = self.x_start+self.x_length self.y_end = self.y_start+self.y_length self.z_end = self.z_start+self.z_length self.x_centre = self.x_start+0.5*self.x_length self.y_centre = self.y_start+0.5*self.y_length self.z_centre = self.z_start+0.5*self.z_length self.dx = Domain.dx self.dy = Domain.dy self.dz = Domain.dz self.nx = int(np.rint((self.x_end-self.x_start)/self.dx)) self.x = np.linspace(self.x_start,self.x_end,self.nx+1) self.ny = int(np.rint((self.y_end-self.y_start)/self.dy)) self.y = np.linspace(self.y_start,self.y_end,self.ny+1) self.nz = int(np.ceil((self.z_end-self.z_start)/self.dz)) self.z = np.linspace(self.z_start,self.z_end,self.nz+1) # Check that plume is entirely within domain if self.x_start < Domain.x_start or self.x_start > Domain.x_end: print 'Plume finalize: x_start {:f} outside domain {:f} {:f}'.format(self.x_start, Domain.x_start, Domain.x_end) exit() if self.x_end < Domain.x_start or self.x_end > Domain.x_end: print 'Plume finalize: x_end {:f} outside domain {:f} {:f}'.format(self.x_end, Domain.x_start, Domain.x_end) exit() if self.y_start < Domain.y_start or self.y_start > Domain.y_end: print 'Plume finalize: y_start {:f} outside domain {:f} {:f}'.format(self.y_start, Domain.y_start, Domain.y_end) exit() if self.y_end < Domain.y_start or self.y_end > Domain.y_end: print 'Plume finalize: y_end {:f} outside domain {:f} {:f}'.format(self.y_end, Domain.y_start, Domain.y_end) exit() if self.z_start < Domain.z_start or self.z_start > Domain.z_end: print 'Plume finalize: z_start {:f} outside domain {:f} {:f}'.format(self.z_start, Domain.z_start, Domain.z_end) exit() if self.z_end < Domain.z_start or self.z_end > Domain.z_end: print 'Plume finalize: z_end {:f} outside domain {:f} {:f}'.format(self.z_end, Domain.z_start, Domain.z_end) print self.z_end-Domain.z_start, self.z_end-Domain.z_end exit() # Get pixel indixes for plume within domain. These pixel indices correspond # to those needed by MYSTIC if self.shape=='User': # self.ix_start = self.xadd*self.x.shape[0] # self.ix_end = (self.xadd+1)*self.x.shape[0] # self.ix_start = 0 # self.ix_end = self.x.shape[0] id = find_nearest_id(Domain.x,self.x_start) self.ix_start = id self.ix_end = id+self.x.shape[0] # self.iy_start = self.yadd*self.y.shape[0] # self.iy_end = (self.yadd+1)*self.y.shape[0] # self.iy_start = 0 # self.iy_end = self.y.shape[0] id = find_nearest_id(Domain.y,self.y_start) self.iy_start = id self.iy_end = id+self.y.shape[0] id = find_nearest_id(Domain.z,self.z_start) self.iz_start = id self.iz_end = id+self.z.shape[0] # self.iz_start = 0 # self.iz_end = self.z.shape[0] # self.iz_start = self.zadd*self.z.shape[0] # self.iz_end = (self.zadd+1)*self.z.shape[0] else: self.ix_start = int((self.x_start-Domain.x_start)/Domain.dx) self.ix_end = int((self.x_end-Domain.x_start)/Domain.dx+Domain.dx/2.) self.ix_size = self.ix_end-self.ix_start self.iy_start = int((self.y_start-Domain.y_start)/Domain.dy) self.iy_end = int((self.y_end-Domain.y_start)/Domain.dy+Domain.dy/2.) self.iy_size = self.iy_end-self.iy_start self.iz_start = int((self.z_start-Domain.z_start)/Domain.dz) self.iz_end = int((self.z_end-Domain.z_start)/Domain.dz+Domain.dz/2.) self.iz_size = self.iz_end-self.iz_start return def info(self,latex=False, Domain=None): CF=ConversionFactors() print print 'Plume name:', self.name print '(All dimensions are in units of km)' print 'x_start {:f}, x_end {:f}'.format(self.x_start, self.x_end) print 'y_start {:f}, y_end {:f}'.format(self.y_start, self.y_end) print 'z_start {:f}, z_end {:f}'.format(self.z_start, self.z_end) if self.set_density_flag==True and 'Gauss' in self.shape: print 'x_sigma: {:f} y_sigma: {:f} z_sigma: {:f}'.format(self.x_sigma, self.y_sigma, self.z_sigma) if latex: print '& {:4.1f} & {:4.1f} & {:6.4f} & {:4.1f} & {:4.1f} & {:6.4f} & {:4.1f} & {:4.1f} & {:6.4f}& {:8.2f}\\\\'.format( self.x_start*CF.km2m, self.x_end*CF.km2m, self.x_sigma*CF.km2m, self.y_start*CF.km2m, self.y_end*CF.km2m, self.y_sigma*CF.km2m, self.z_start*CF.km2m, self.z_end*CF.km2m, self.z_sigma*CF.km2m, self.dens.max()) print 'Indices' if Domain != None: print 'ix_start {:d}, ix_end {:d}, {:f}, {:f}'.format(self.ix_start, self.ix_end, Domain.x[self.ix_start], Domain.x[self.ix_end-1]) print 'iy_start {:d}, iy_end {:d}, {:f}, {:f}'.format(self.iy_start, self.iy_end, Domain.y[self.iy_start], Domain.y[self.iy_end-1]) print 'iz_start {:d}, iz_end {:d}, {:f}, {:f}'.format(self.iz_start, self.iz_end, Domain.z[self.iz_start], Domain.z[self.iz_end-1]) else: print 'ix_start {:d}, ix_end {:d}'.format(self.ix_start, self.ix_end) print 'iy_start {:d}, iy_end {:d}'.format(self.iy_start, self.iy_end) print 'iz_start {:d}, iz_end {:d}'.format(self.iz_start, self.iz_end) print 'Dens' print 'dens.shape {:s} {:f} {:e}'.format(self.dens.shape, self.dens.max(), self.dens.max()) # if self.set_density_flag==True: # print 'ix_sigma: {:d} iy_sigma: {:d} iz_sigma: {:d}'.format(self.ix_sigma, self.iy_sigma, self.iz_sigma) print sys.stdout.flush() return def set_density(self, shape, **kwargs): """ Specify the shape and density of the plume. For each shape different input is needed. These are given in the kwargs dictionary. For the various shapes this is: shape=='3DGaussian': Required input: x_sigma, y_sigma, z_sigma: standard deviations (km) in each direction ext: Extinction (km-1). The maximum value in the density field will be set to this value, and the rest scaled accordingly. Optional input: The pklfile and pklfile_z_integrated inputs are useful for checking of plume shape and magnitude of density field and are used together with separate scripts for plotting. pklfile: dump pickle of density field to specified file pklfile_z_integrated: dump pickle of density field integrated allong z-axis to specified file """ self.set_density_flag=True self.shape = shape if kwargs=={}: print "Plume set_density: No density information provided" exit() if 'ext' in kwargs and 'gg' in kwargs and 'ssa' in kwargs: self.MYSTIC_profile_file_flag =1 elif 'ext' in kwargs and 'reff' in kwargs: self.MYSTIC_profile_file_flag =2 elif 'LWC' in kwargs and 'reff' in kwargs: self.MYSTIC_profile_file_flag =3 if self.MYSTIC_profile_file_flag == 1: self.ext = kwargs['ext'] self.gg = kwargs['gg'] self.ssa = kwargs['ssa'] elif self.MYSTIC_profile_file_flag == 3: self.LWC = kwargs['LWC'] self.reff = kwargs['reff'] if shape=='3DGaussian': self.x_sigma = kwargs['x_sigma'] self.y_sigma = kwargs['y_sigma'] self.z_sigma = kwargs['z_sigma'] self.ix_sigma= int(self.x_sigma/self.dx) self.iy_sigma= int(self.y_sigma/self.dy) self.iz_sigma= int(self.z_sigma/self.dz) if self.ix_sigma<=0: self.ix_sigma=1 if self.iy_sigma<=0: self.iy_sigma=1 if self.iz_sigma<=0: self.iz_sigma=1 # Gaussian distribution is made in pixel indices coordinates: self.dens=make3DGaussian(self.ix_size, self.iy_size, self.iz_size, sigmax=self.ix_sigma, sigmay=self.iy_sigma, sigmaz=self.iz_sigma, center=None) # Scale plume to wanted extinction/optical depth if self.MYSTIC_profile_file_flag == 1: self.dens = self.dens*self.ext/self.dens.max() elif self.MYSTIC_profile_file_flag == 3: if self.LWC<0.0: self.dens = self.dens else: self.dens = self.dens*self.LWC/self.dens.max() elif shape=='3DVerticalPlume': self.TopRadius = kwargs['TopRadius'] self.BottomRadius = kwargs['BottomRadius'] self.x_sigma = kwargs['x_sigma'] self.y_sigma = kwargs['y_sigma'] self.iTopRadius = self.TopRadius/self.dx # TopRadius in pixels self.iBottomRadius = self.BottomRadius/self.dx # BottomRadius in pixels if self.MYSTIC_profile_file_flag == 1: dummy = self.ext elif self.MYSTIC_profile_file_flag == 3: dummy = self.LWC self.dens=make3DVerticalPlume(self.ix_size, self.iy_size, self.iz_size, self.iz_start, self.iz_end, self.iBottomRadius, self.iTopRadius, self.x_sigma, self.y_sigma, scale_factor=dummy) elif shape=='Box': # print "self.nx", self.nx, self.ny, self.nz, self.x, self.z # print "self.nx", self.ix_size, self.ix_end, self.ix_start, \ # self.iy_size, self.iy_end, self.iy_start, \ # self.iz_size, self.iz_end, self.iz_start if self.MYSTIC_profile_file_flag == 1: dummy = self.ext elif self.MYSTIC_profile_file_flag == 3: dummy = self.LWC self.dens=make3DBox(self.ix_size, self.iy_size, self.iz_size, scale_factor=dummy) elif shape=='Cell': # print "self.nx", self.nx, self.ny, self.nz, self.x, self.z # print "self.nx", self.ix_size, self.ix_end, self.ix_start, \ # self.iy_size, self.iy_end, self.iy_start, \ # self.iz_size, self.iz_end, self.iz_start if self.MYSTIC_profile_file_flag == 1: dummy = self.ext elif self.MYSTIC_profile_file_flag == 3: dummy = self.LWC self.dens=make3DCell(self.ix_size, self.iy_size, self.iz_size, scale_factor=dummy) elif shape=='SingleLayer': print self.ix_size, self.iy_size, self.iz_size tmpdens = np.zeros((self.ix_size, self.iy_size, self.iz_size)) print tmpdens.shape ix=0 while ix < self.ix_size: iy=0 while iy < self.iy_size: iz=0 while iz < self.iz_size: tmpdens[ix,iy,iz]=self.LWC iz=iz+1 iy=iy+1 ix=ix+1 self.dens = tmpdens elif shape=='Ellipsoid': self.x_centre = kwargs['x_centre'] self.y_centre = kwargs['y_centre'] self.z_centre = kwargs['z_centre'] self.ellipsoid_a = kwargs['a'] self.ellipsoid_b = kwargs['b'] self.ellipsoid_c = kwargs['c'] self.ix_centre= int((self.x_centre-self.x_start)/self.dx) self.iy_centre= int((self.y_centre-self.y_start)/self.dy) self.iz_centre= int((self.z_centre-self.z_start)/self.dz) # Ellipsoid shaped constant concentration is made in pixel indices coordinates: self.dens=make3DEllipsoid(self.ix_size, self.iy_size, self.iz_size, self.x_centre, self.y_centre, self.z_centre, self.ellipsoid_a, self.ellipsoid_b, self.ellipsoid_c, self.x, self.y, self.z) # Scale plume to wanted extinction/optical depth if self.MYSTIC_profile_file_flag == 1: self.dens = self.dens*self.ext/self.dens.max() elif self.MYSTIC_profile_file_flag == 3: self.dens = self.dens*self.LWC/self.dens.max() elif shape=='User': # Scale plume to wanted extinction/optical depth if self.MYSTIC_profile_file_flag == 1: self.dens = self.dens*self.ext/self.dens.max() elif self.MYSTIC_profile_file_flag == 3: print "self.dens.max()", self.dens.max() sys.stdout.flush() if self.LWC<0.0: self.dens = self.dens else: if self.dens.max() > 0.0: print "self.dens.max()", self.dens.max() self.dens = self.dens*self.LWC/self.dens.max() else: self.dens = self.dens*self.LWC else: print 'Plume set_density: Unknown plume density shape: ', shape exit() if 'pklfile' in kwargs.keys(): pkl_file = open(kwargs['pklfile'], 'wb') pickle.dump(self.dens,pkl_file ) pkl_file.close() if 'pklfile_z_integrated' in kwargs.keys(): tmpInt= np.trapz(self.dens[:,:,:], self.z[1:], axis=2) pkl_file = open(kwargs['pklfile_z_integrated'], 'wb') pickle.dump(tmpInt,pkl_file ) pkl_file.close() return def save(self,folder): pkl_file = open(folder+'Plume'+self.name+'.pkl', 'wb') pickle.dump(self,pkl_file ) pkl_file.close() return def SetRTInput(self, Domain, UVS): print "Plume SetRTInput", UVS.IOdir+self.name+'.profile' sys.stdout.flush() self.ProfileInputFile = UVS.IOdir+self.name+'.profile' UVS.inp['profile_file '+self.randname+' 3d '] = self.ProfileInputFile if self.cdf == '': UVS.inp['profile_properties '+self.randname] = 'mie interpolate' else: UVS.inp['profile_properties '+self.randname] = self.cdf+' interpolate' # These large arrays are only local as this is the only place they # are needed. if self.MYSTIC_profile_file_flag==1: tmpext = np.zeros([Domain.nx,Domain.ny, len(Domain.z)]) tmpgg = np.zeros([Domain.nx,Domain.ny, len(Domain.z)]) tmpssa = np.zeros([Domain.nx,Domain.ny, len(Domain.z)]) tmpext[self.ix_start:self.ix_end,self.iy_start:self.iy_end,self.iz_start:self.iz_end] = self.dens tmpgg = np.where(tmpext>0, self.gg, 0.0) tmpssa = np.where(tmpext>0, self.ssa, 0.0) args = { 'ext': tmpext, 'gg' : tmpgg, 'ssa': tmpssa } elif self.MYSTIC_profile_file_flag==3: tmpLWC = np.zeros([Domain.nx,Domain.ny, len(Domain.z)]) tmpreff = np.zeros([Domain.nx,Domain.ny, len(Domain.z)]) tmpLWC[self.ix_start:self.ix_end,self.iy_start:self.iy_end,self.iz_start:self.iz_end] = self.dens tmpreff = np.where(tmpLWC>0, self.reff, 1.0) args = { 'LWC': tmpLWC, 'reff' : tmpreff, } Write3DMYSTICFile(self.ProfileInputFile, type='Generic', nx = Domain.nx, ny = Domain.ny, nz = Domain.nz, dx = Domain.dx, dy = Domain.dy, z = Domain.z, LWCLimit=self.LWCLimit, flag=self.MYSTIC_profile_file_flag, **args) return def ReadLESNetCDF(self, fn, timestep=0, verbose=False, scale_axis_factor=1., ROI=False, xlimits=(0,0), zlimits=(0,0), Qbl=-999): """ Qbl = SO2 emission rate in kg/s, see note by Soon-Young """ CF=ConversionFactors() if verbose: print "ReadLESNetCDF: fn:", fn sys.stdout.flush() ncfile = Dataset(fn,'r') if verbose: print ncfile.variables sys.stdout.flush() self.shape='User' self.time = ncfile.variables['time'][:] self.z = ncfile.variables['zu_3d'][:]*CF.m2km*scale_axis_factor self.x = ncfile.variables['x'][:]*CF.m2km*scale_axis_factor self.y = ncfile.variables['y'][:]*CF.m2km*scale_axis_factor self.dens = ncfile.variables['s'][:] self.dens = self.dens[timestep,:,:,:] # print "self.dens", self.dens.shape # LES densities are z,y,x, change to x,y,z self.dens = np.swapaxes(self.dens,0,2) # print "self.dens", self.dens.shape # print "self.z", scale_axis_factor, CF.m2km, self.z if ROI: print "self.dens", self.dens.shape, self.x.shape, self.z.shape sys.stdout.flush() if xlimits[0]!=xlimits[1]: print "GABBA", xlimits indx = np.where((self.x >=xlimits[0] ) & (self.x <= xlimits[1])) self.dens = self.dens[indx[0][0]:indx[0][len(indx[0])-1],:,:] self.x = self.x[indx[0][0]:indx[0][len(indx[0])-1]] print "self.dens", self.dens.shape, self.x.shape if zlimits[0]!=zlimits[1]: print "GABBA", zlimits indz = np.where((self.z >=zlimits[0] ) & (self.z <= zlimits[1])) self.dens = self.dens[:,:, indz[0][0]:indz[0][len(indz[0])-1]] self.z = self.z[indz[0][0]:indz[0][len(indz[0])-1]] print "self.dens", self.dens.shape, self.x.shape, self.z.shape self.x_start=self.x[0] self.x_length=self.x[len(self.x)-1]-self.x_start self.y_start=self.y[0] self.y_length=self.y[len(self.y)-1]-self.y_start self.z_start=self.z[0] self.z_length=self.z[len(self.z)-1]-self.z_start if Qbl>0.0: from scipy.constants import N_A # 0.00001024 = (H_wt**2)/(H_bl**2) , see note by Soon-Young # SO2: 64.066 g mol-1 molweight=64.066 ConcFact=Qbl*0.00001024*CF.kgtog*N_A/(CF.m3tocm3*molweight) self.dens=self.dens*ConcFact print "Qbl=", Qbl, N_A, self.dens.max() ncfile.close() return def test(self): print "#################################################################################" print "TEST TEST TEST PLUME DENSITY CHANGED" print "#################################################################################" # print self.z self.dens = self.dens*0.0 indz = np.where((self.z > 0.05) & (self.z < 0.300)) # indy = np.where((self.y > 1.6) & (self.y < 1.8)) indy = np.where((self.y > .15) & (self.y < .35)) indx = np.where((self.x > 0.502) & (self.x < 1.4)) # print "indz", indz[0] # print "indy", indy[0] # print "indx", indx[0] self.dens[indx[0][0]:indx[0][len(indx[0])-1], indy[0][0]:indy[0][len(indy[0])-1], indz[0][0]:indz[0][len(indz[0])-1]]=0.0000025 # indz = np.where((self.z > 0.475) & (self.z < 0.625)) # indz = np.where((self.z > 0.1) & (self.z < 0.3)) # self.dens[indx[0][0]:indx[0][len(indx[0])-1], indy[0][0]:indy[0][len(indy[0])-1], indz[0][0]:indz[0][len(indz[0])-1]]=0.000000025 # indx = np.where((self.x > 1.2) & (self.x < 1.4)) # self.dens[indx[0][0]:indx[0][len(indx[0])-1], indy[0][0]:indy[0][len(indy[0])-1], indz[0][0]:indz[0][len(indz[0])-1]]=0.0 indx = np.where((self.x > .65) & (self.x < 1.0)) self.dens[indx[0][0]:indx[0][len(indx[0])-1], indy[0][0]:indy[0][len(indy[0])-1], indz[0][0]:indz[0][len(indz[0])-1]]=0.0 # indy = np.where((self.y > 1.7) & (self.y < 1.8)) # self.dens[indx[0][0]:indx[0][len(indx[0])-1], indy[0][0]:indy[0][len(indy[0])-1], indz[0][0]:indz[0][len(indz[0])-1]]=0.00025 indn = np.where(self.dens>0.0) # print "len(indn[0])", len(indn[0]) indn = np.where(self.dens>0.5) # print "len(indn[0])", len(indn[0]) def shiftxyz(self, x_shift=0.0, y_shift=0.0, z_shift=0.0): """ Shift location of plume in 3D. All units in km """ self.x = self.x+x_shift self.y = self.y+y_shift self.z = self.z+z_shift self.x_shift = x_shift self.y_shift = y_shift self.z_shift = z_shift self.x_start=self.x[0] self.x_length=self.x[len(self.x)-1]-self.x_start self.y_start=self.y[0] self.y_length=self.y[len(self.y)-1]-self.y_start self.z_start=self.z[0] self.z_length=self.z[len(self.z)-1]-self.z_start return class Experiment(): def __init__(self, home): self.home = home self.uvspecpath = '' self.verbose=False self.CF = ConversionFactors() self.Domain = Domain() self.UVS = UVspec() self.PlumeList = [] self.CameraList = [] self.SpectrometerList = [] self.n_processes=1 self.folder = './tmp/' self.RandString= ''.join(random.sample(string.ascii_lowercase, 5)) self.UVS.RandString=self.RandString return def finalize(self): try: os.makedirs(self.folder) except OSError: if os.path.exists(self.folder): # We are nearly safe pass else: # There was an error on creation, so make sure we know about it print 'Could not create {:s}'.format(self.folder) raise self.UVS.IOdir = self.folder return def save(self, FileName=''): if FileName=='': pkl_file = open(self.folder+'Experiment.pkl', 'wb') else: pkl_file = open(FileName, 'wb') pickle.dump(self,pkl_file ) pkl_file.close() self.Domain.save(self.folder) for Plu in self.PlumeList: Plu.save(self.folder) for Cam in self.CameraList: Cam.save(self.folder) return def Run(self, Instrument, RunUvspec=True, OldOutFiles=[], verbose=True, Wait=False): if verbose: print 'Experiment.Run InputFile {:s}'.format(self.InputFile) sys.stdout.flush() Convolve=False if Instrument.Type=='Spectrometer': try : Instrument.slitfunction Convolve=True except: Convolve=False if Instrument.Type=='Camera': try : Instrument.filterfunction Convolve=True except: Convolve=False if verbose: print "Experiment:Run Convolve", Convolve if Convolve and Instrument.Type=='Spectrometer': self.OutputFile = self.InputFile.replace('.inp','.out') else: self.OutputFile = self.InputFile.replace('.inp','.out') if verbose: print 'Experiment.Run OutputFile {:s}'.format(self.OutputFile) sys.stdout.flush() OutputFiles=[] tmpoutputfiles=[] (tmpoutputfiles, OutputFiles)=self.UVS.Run(self.InputFile, self.OutputFile, n_processes=self.n_processes, uvspecpath=self.UVS.uvspecpath, RandString=Instrument.RandString, Convolve=Convolve, Instrument=Instrument, OldOutFiles=OldOutFiles, RunUvspec=RunUvspec, Wait=Wait) if RunUvspec and Convolve: for fnto, fnfrom in zip(OutputFiles, tmpoutputfiles): print "fnto, fnfrom", fnto, fnfrom sys.stdout.flush() shutil.copy(fnfrom,fnto) return OutputFiles def WriteRTInput(self, Instrument, InputFile=None,verbose=False): # Make new UVS for each call to this function to avoid # keeping old input parameters from previous calls. UVS = copy.deepcopy(self.UVS) if verbose: print "Exp WriteRTInput" sys.stdout.flush() Instrument.SetRTInput(UVS) for Plume in Instrument.PlumeList: print "Exp WriteRTInput", Instrument.name, Plume.name, Plume.dens.shape sys.stdout.flush() Plume.SetRTInput(self.Domain, UVS) if not 'mc_minphotons' in self.UVS.inp: UVS.inp['mc_minphotons'] = UVS.inp['mc_photons'] # if self.n_processes==1: UVS.inp['mc_std'] = '' try: self.Domain.elevation nx=2 ny=2 fn = self.folder+'MYSTIC2DElevation.dat' Write2DMYSTICElevationFile(fn, nx, ny, self.Domain.x_size, self.Domain.y_size, self.Domain.elevation) UVS.inp['mc_elevation_file'] = fn except: pass if InputFile==None: InputFile = self.UVS.IOdir+'uvspec'+Instrument.name+'.inp' self.InputFile=InputFile print "Writing uvspec input to file", self.InputFile sys.stdout.flush() UVS.WriteInputFile(self.InputFile) return class UVspec: def __init__(self): # Set some uvspec input that most likely will stay the same self.IOdir = './' self.inp = {} self.inp["mc_backward"] = '' self.inp["mc_vroom"] = 'on' self.inp["albedo"] = '0.0' return def add_mc_basename_to_input_file(self,mc_basename,fn): f = open(fn,'a') f.write('{0:s}\n'.format('mc_basename '+mc_basename)) f.close() def info(self): print print 'UVspec parameters:' print 'IOdir: {:s}'.format(self.IOdir) sys.stdout.flush() return def Run(self,inp, out, verbose=True, n_processes=2, uvspecpath='', RandString='gabba', Convolve=False, Instrument=None, OldOutFiles='',RunUvspec=True, Wait=False): debug=False # True # if verbose: if RunUvspec: print "Running uvspec with input file: ", inp else: print "NOT running uvspec, using old output file: ", inp print "Output to file : ", out print "Number of processors : ", n_processes print "Convolve : ", Convolve sys.stdout.flush() tmp_out_base = 'tmp_mystic_'+RandString+'.out_' tmp_inp_base = 'tmp_mystic_'+RandString+'.inp_' # Remove all old files # OR NOT: Keep and remove manually in order to be able # inspect problems in *.err files, AK 20160526 #FIXME # if RunUvspec: # # for filename in glob('gabba'+tmp_out_base+"*"): # for filename in glob(tmp_out_base+"*"): # if not debug: # os.remove(filename) # for filename in glob(tmp_inp_base+"*"): # # for filename in glob('gabba'+tmp_inp_base+"*"): # if not debug: # os.remove(filename) if RunUvspec: jobs = [] tmpinputfiles=[] tmpoutputfiles=[] for i in range(n_processes): # Copy input file to temporary input file to be able to add different # mc_basenames to the file without destroying the input file tmp_inp = tmp_inp_base+str(i) tmpinputfiles.append(tmp_inp) cmd = 'cp '+inp+' '+tmp_inp Popen([r"cp",inp, tmp_inp]).wait() mc_basename = tmp_out_base+'NP_'+str(i) self.add_mc_basename_to_input_file(mc_basename,tmp_inp) tmp_out = tmp_out_base+str(i) print "tmp_out", tmp_out ips = '{:d}'.format(i) tmpoutputfile = tmp_out.replace('out_'+ips,'out_NP_'+ips)+'.rad.spc' print "tmpoutputfile", tmpoutputfile tmpoutputfiles.append(tmpoutputfile) if verbose: print 'Starting process:',i,' inp:',tmp_inp,' out:',tmp_out sys.stdout.flush() if not debug: if RunUvspec: p = multiprocessing.Process(target=self.worker, args=(tmp_inp,tmp_out,uvspecpath)) jobs.append(p) p.start() for j in jobs: j.join() else: tmpoutputfiles=OldOutFiles if verbose: print 'All processes done. Read output, convolve, average and calculate std.' sys.stdout.flush() if Wait: print "Waiting ....." sys.stdout.flush() time.sleep(60*3) # Sleep for 3 minutes to assure that files are put in right place if Convolve: finalrawoutputfiles=[] tmpfilestoaverage=[] if Instrument.Type=='Spectrometer': # Convolve with slit function if given. if verbose: print 'Convolving with slit function:', Instrument.slitfunction sys.stdout.flush() ip=0 for tmpoutputfile in tmpoutputfiles: ips = '{:d}'.format(ip) rawoutputfile = inp.replace('.inp','.out_NP_'+ips+'.rad.spc') print tmpoutputfile, rawoutputfile sys.stdout.flush() finalrawoutputfiles.append(rawoutputfile) tmpoutconv='tmpoutconv_'+Instrument.RandString+'_'+ips cmd = '/usr/bin/time -v '+self.uvspecpath+'conv '+tmpoutputfile+' '+Instrument.slitfunction+' > '+tmpoutconv+' 2> '+tmpoutconv+'.err' if verbose: print cmd sys.stdout.flush() p = call(cmd,shell=True,stdin=PIPE,stdout=PIPE) tmpoutspline='tmpoutspline_'+Instrument.RandString+'_'+ips cmd = '/usr/bin/time -v '+self.uvspecpath+'spline '+'-q -l -b '+str(Instrument.wavelength1)+' -s '+str(Instrument.wavelengthstep)+' '+tmpoutconv+' > ' + tmpoutspline+' 2> '+tmpoutspline+'.err' if verbose: print cmd sys.stdout.flush() p = call(cmd,shell=True,stdin=PIPE,stdout=PIPE) tmpfilestoaverage.append(tmpoutspline) # Copy MYSTIC output files to final destination shutil.copy(tmpoutputfile,rawoutputfile) ip=ip+1 elif Instrument.Type=='Camera': nx = Instrument.h_pixels ny = Instrument.v_pixels tmpSplineXFile='tmpSplineXFile'+Instrument.RandString # Any output file should do to get wavelength information, there should be at least one. tmpdata = np.loadtxt(tmpoutputfiles[0]) nwl = int(tmpdata.shape[0]/(nx*ny)) tmpdata = np.reshape(tmpdata,(nwl,nx, ny, tmpdata.shape[1])) # Interpolate filter function to MYSTIC output wavelengths fx = open(tmpSplineXFile,'w') wvls = tmpdata[:,0,0,0] for wvl in wvls: fx.write('{:f}\n'.format(wvl)) fx.close() tmpSplineOutputFile='tmpSplineOutputFile'+Instrument.RandString cmd = '/usr/bin/time -v '+self.uvspecpath+'spline '+'-q -l -x '+tmpSplineXFile+' '+Instrument.filterfunction+' > ' + tmpSplineOutputFile+' 2> '+tmpSplineOutputFile+'.err' if verbose: print cmd sys.stdout.flush() p = call(cmd,shell=True,stdin=PIPE,stdout=PIPE) tmpfilterfunctionwvl, tmpfilterfunction = np.loadtxt(tmpSplineOutputFile,unpack=True) ### # Include loop over all output files. ### ip=0 for tmpoutputfile in tmpoutputfiles: ips = '{:d}'.format(ip) rawoutputfile = inp.replace('.inp','.out_NP_'+ips+'.rad.spc') if verbose: print "tmpoutputfile, rawoutputfile", tmpoutputfile, rawoutputfile sys.stdout.flush() finalrawoutputfiles.append(rawoutputfile) tmpdata = np.loadtxt(tmpoutputfile) tmpdata = np.reshape(tmpdata,(nwl,nx, ny, tmpdata.shape[1])) tmpoutputfilefilter = tmpoutputfile.replace('.out','.out_NP_'+ips+'.rad.spc') if verbose: print "tmpoutputfilefilter", tmpoutputfilefilter tmpfilestoaverage.append(tmpoutputfilefilter) f= open(tmpoutputfilefilter,'w') # For each pixel ix=0 iz=0 while ix<nx: iy=0 while iy<ny: ## Multiply MYSTIC radiances with filter function tmprad = tmpdata[:,ix,iy,4]*tmpfilterfunction # tmpstd = tmpdata[:,ix,iy,5]*tmpfilterfunction ## Integrate over wavelength totrad = np.trapz(tmprad, x=wvls) # totstd = np.trapz(tmpstd, x=wvls) # f.write('{0:8.2f} {1:3d} {2:3d} {3:3d} {4:9.4f} {5:11.6f}\n'.format(wvls[0],ix,iy,iz,totrad,totstd)) f.write('{0:8.2f} {1:3d} {2:3d} {3:3d} {4:9.4f}\n'.format(wvls[0],ix,iy,iz,totrad)) iy=iy+1 ix=ix+1 f.flush() # Do this to make sure all os written os.fsync(f.fileno()) # to file before continuing. f.close() ip=ip+1 else: tmpfilestoaverage=tmpoutputfiles finalrawoutputfiles=tmpoutputfiles InputFiles = tmpfilestoaverage #tmp_out_base+'NP_'+'*'+'.rad.spc' if n_processes==1: if verbose: print "InputFiles, OutputFileRaw", InputFiles, out, tmpoutputfiles sys.stdout.flush() CombineSingleProcessOuput(tmpoutputfiles, out, verbose=True) else: if verbose: print "finalrawoutputfiles", finalrawoutputfiles print "tmpoutputfiles", tmpoutputfiles sys.stdout.flush() Average_spc_Files(InputFiles, out, verbose=True) return (tmpoutputfiles, finalrawoutputfiles) def SingleRun(self,inp, out, verbose=False, uvspecpath=''): if verbose: print "Running uvspec with input file: ", inp print "Output to file : ", out sys.stdout.flush() if 'xnilu_wrk' in uvspecpath: uvspec='uvspec3D' else: uvspec='uvspec' cmd = '/usr/bin/time -v '+uvspecpath+uvspec+' < '+inp+' > '+out+' 2> '+out+'.err' if verbose: print cmd sys.stdout.flush() #(uvspec < uvspec.inp > uvspec.out) >& uvspec.err #FIXME p = call(cmd,shell=True,stdin=PIPE,stdout=PIPE) return def worker(self, input,output, uvspecpath=''): """thread worker function""" verbose = True self.SingleRun(input,output,verbose=verbose, uvspecpath=uvspecpath) return def WriteInputFile(self, InputFile=None, verbose=False): if verbose: print "Writing uvspec input file", InputFile sys.stdout.flush() try: f = open(InputFile,'w') except: print "Experiment.WriteRTFile: Not able to open uvspec input file." exit() for key in self.inp: if verbose: sys.stdout.write( key + ' ' + str(self.inp[key]) + '\n') f.write( key + ' ' + str(self.inp[key]) + '\n') f.flush() # Do this to make sure all input files are written os.fsync(f.fileno()) # to file. f.close() return ####################################################################### if __name__ == "__main__": Exp = Experiment() print Exp.Domain.name Exp.CameraList.append(Camera()) for Cam in Exp.CameraList: Cam.info() ``` #### File: arve/from_arve/UVspec.py ```python import math import os import sys import numpy as np import multiprocessing from subprocess import Popen,PIPE, STDOUT, call from glob import glob import time # Where are we myhost = os.uname()[1] if myhost=='ak': home = os.environ['HOME']+'/' else: home = '/xnilu_wrk/aky/' class UVspec: def __init__(self): # Set some uvspec input that most likely will stay the same self.inp = { "data_files_path" : home+'develop/libRadtran/data/', "quiet" : '', } self.inp["rte_solver"] = 'montecarlo' self.inp["mc_backward"] = '' self.inp["atmosphere_file"] = home+'develop/libRadtran/data/atmmod/afglms.dat' self.inp["source"] = 'solar '+home+'develop/libRadtran/data/solar_flux/atlas_plus_modtran' self.inp["mc_vroom"] = 'on' self.inp["albedo"] = '0.0' return def WriteInputFile(self, InputFile=None, verbose=False): self.InputFile=InputFile if verbose: print "Writing uvspec input file", InputFile try: f = open(InputFile,'w') except: print "UVspec.WriteInputFile: No uvspec input file name given." exit() for key in self.inp: if verbose: sys.stdout.write( key + ' ' + str(self.inp[key]) + '\n') f.write( key + ' ' + str(self.inp[key]) + '\n') f.close() return def add_mc_basename_to_input_file(self,mc_basename,fn): f = open(fn,'a') f.write('{0:s}\n'.format('mc_basename '+mc_basename)) f.close() def worker(self, input,output): """thread worker function""" verbose = 0 self.SingleRun(input,output,verbose) return def SingleRun(self,inp, out, verbose): if verbose: print "Running uvspec with input file: ", inp print "Output to file : ", out cmd = home+'/develop/libRadtran/bin/uvspec '+ ' < ' + inp + ' > ' + out p = call(cmd,shell=True,stdin=PIPE,stdout=PIPE) return def Run(self,inp, out, verbose=False, n_processes=1): debug=False # True if verbose: print "Running uvspec with input file: ", inp print "Output to file : ", out print "Number of processors : ", n_processes tmp_out_base = 'tmp_mystic.out_' tmp_inp_base = 'tmp_mystic.inp_' # Remove all old files for filename in glob(tmp_out_base+"*"): if not debug: os.remove(filename) for filename in glob(tmp_inp_base+"*"): if not debug: os.remove(filename) jobs = [] for i in range(n_processes): # Copy input file to temporary input file to be able to add different # mc_basenames to the file without destroying the input file tmp_inp = tmp_inp_base+str(i) cmd = 'cp '+inp+' '+tmp_inp Popen([r"cp",inp, tmp_inp]).wait() mc_basename = tmp_out_base+'NP_'+str(i) self.add_mc_basename_to_input_file(mc_basename,tmp_inp) tmp_out = tmp_out_base+str(i) if verbose: print 'Starting process:',i,' inp:',tmp_inp,' out:',tmp_out if not debug: p = multiprocessing.Process(target=self.worker, args=(tmp_inp,tmp_out)) jobs.append(p) p.start() for j in jobs: j.join() if verbose: print 'All processes done. Read output, average and calculate std.' InputFiles = tmp_out_base+'NP_'+'*'+'.rad.spc' OutputFile= out Average_spc_Files(InputFiles, OutputFile, verbose=True) def zenith(lat, lon, year, month, day,hour,min=0, sec=0, stdlong=0,output=1, uvspecpath=''): cmd = uvspecpath+'zenith '+str(day)+' '+str(month)+' '+str(hour)+' '+str(min)+' '+str(sec)+\ ' '+'-y '+str(year)+' -a '+str(lat)+' -o '+str(lon)+' -s '+str(stdlong)+' -q' res = Popen(cmd,shell=True,stdout=PIPE) res.wait() vals = res.communicate() vals = vals[0].split() sza = float(vals[1]) return sza def get_vals(fn,option): """ Returns the values for option in an input file. Usage: values = get_vals(input_filename,optionname) Input: filename uvspec input file optionname name of uvspec option Output: values list of option values Author: <NAME> Date: 2011-05-23 """ f = open(fn,'r') vals = '' for line in f: l = line.split() # This does not work with the new input options..... # if ( l[0] == option ): # vals = l[1:len(l)] # print l, option if option in line: nopts = len(option.split()) vals = l[nopts:len(l)] # print l, option, nopts, vals f.close() return vals def Average_spc_Files(InputFiles, OutputFile, verbose=False): # First check that all files have the same number of lines. If not # the files are surely different. i = 0 for fn in glob(InputFiles): with open(fn) as fp: nlin = sum(1 for line in fp) if i==0: nlin0=nlin else: if nlin != nlin0: print 'nlin: ' + str(nlin) + ', not equal nlin0: ' + str(nlin0) exit(0) i = i + 1 # All well? Combine all the files wvl = np.zeros([len(InputFiles),nlin]) ix = np.zeros([len(InputFiles),nlin],dtype=int) iy = np.zeros([len(InputFiles),nlin],dtype=int) iz = np.zeros([len(InputFiles),nlin],dtype=int) rad = np.zeros([len(InputFiles),nlin]) s2 = np.zeros([nlin]) radavg = np.zeros([nlin]) i = 0 for f in glob(InputFiles): (wvl[i],ix[i],iy[i],iz[i],rad[i]) = read_rad_spc(f, verbose=False) radavg[:] = radavg[:] + rad[i,:] s2[:] = s2[:] + rad[i,:]*rad[i,:] i = i + 1 s0 = i l = 0 f = open(OutputFile,'w') while l < nlin: s1 = radavg[l] arg = s0*s2[l] - s1*s1 if arg < 0.0: print >> sys.stderr, l, arg, s0, s1, s2[l] arg = 0.0 std = (1.0/s0)*math.sqrt(arg) f.write('{0:8.2f} {1:3d} {2:3d} {3:3d} {4:9.4f} {5:9.4f}\n'.format(wvl[0,l], ix[0,l], iy[0,l], iz[0,l], s1/s0, std)) l = l + 1 f.close() return def read_rad_spc(fn, STD=False, verbose=False): # Read MYSTIC mc.rad.spc file if verbose: print "Reading MYSTIC mc.rad.spc file: ", fn if STD: wvl,ix,iy,iz,rad, std = np.loadtxt(fn, unpack=True) return (wvl,ix,iy,iz,rad,std) else: wvl,ix,iy,iz,rad = np.loadtxt(fn, unpack=True) return (wvl,ix,iy,iz,rad) ``` #### File: jgliss/my_py3_scripts/my_widgets.py ```python import os from collections import OrderedDict as od import ipywidgets as ipw from copy import deepcopy import pandas as pd import traitlets try: from tkinter import Tk, filedialog tkinter_available = True except: tkinter_available =False import helper_funcs as helpers from traceback import format_exc import numpy as np import matplotlib.pyplot as plt ### WORKING class TableEditor(object): _base_layout = ipw.Layout(flex='0 1 auto', width='200px', height='150px') _btn_width = "100px" def __init__(self, df, save_dir=None, preconfig_file=None, default_group=None, new_run_names=[], add_to_index_vars=[], unstack_indices=[], run_level_idx=0, var_level_idx=2, **plot_settings): # Stuff for I/O if save_dir is None: save_dir = os.getcwd() self.saveas_funs = dict(csv = self.save_csv, xlsx = self.save_xlsx, png = self.save_png) self.plot_funs = dict(heatmap = self.plot_heatmap) self.save_dir = save_dir # the dataframe self.df = df self.df_edit = self.check_shape_init(df) self._df_edit_last = self.df_edit self.extractions = od() self.var_level_idx = var_level_idx self.run_level_idx = run_level_idx # Predefined settings for things applied to dataframe self.new_run_names_init = new_run_names self.add_to_index_vars = add_to_index_vars self.unstack_indices = unstack_indices # Display of Dataframe self.current_plot = None self.heatmap_settings = od(cmap="bwr", cmap_shifted=True) # Settings for Variable selector self.groups = od() self.groups["flagged"] = self.flagged_vars if preconfig_file: self.groups.update(helpers.load_varconfig_ini(preconfig_file)) if default_group is None: default_group = "flagged" if not default_group in self.groups: raise ValueError("No default group with ID {} in file {}".format(default_group, preconfig_file)) self.default_group = default_group self.default_selection = self.groups[default_group] self._buttons_edit_df = [] # init widgets and actions self.init_widgets_renamer() self.init_layout_renamer() self.init_widgets_varselect() self.init_layout_varselect() self.init_layout_reshaper() self.init_glob_widgets() self.init_layout() # initiate layout self.apply_changes_rename() self.crop_var_selection() self.add_to_index(self.add_to_index_vars) self.unstack(self.unstack_indices) self.update_ui() self.disp_current() self.heatmap_settings.update(plot_settings) if not tkinter_available: self.btn_saveas.disabled = True self.btn_saveas.tooltip = ("Please install tkinter to use this " "feature. Until then, you can use save " "button") @property def default_plot_fun(self): return self.plot_funs["heatmap"] @property def column_names(self): return list(self.df_edit.columns) @property def data_column_names(self): df = self.df_edit if isinstance(df.columns, pd.MultiIndex): return list(df.columns.levels[0]) return list(df.columns) @property def index_level_names(self): return self.df_edit.index.names @property def index_level_col_names(self): return self.df_edit.columns.names[1:] @property def run_names(self): #return sorted(self.df.index.get_level_values(self.level).unique().values) return self.df_edit.index.get_level_values(self.run_level_idx).unique().values @property def flagged_vars(self): lvl = self.var_level_idx return list(self.df[self.df.Flag.astype(bool)].index.get_level_values(lvl).unique().values) @property def all_variables(self): lvl = self.var_level_idx return self.df.index.get_level_values(lvl).unique().values def init_glob_widgets(self): self.disp_table = ipw.Output() self.output = ipw.Output() btn_clear_output = ipw.Button(description="Clear output", layout=ipw.Layout(width=self._btn_width)) btn_clear_output.on_click(self.on_clear_output) btn_reset = ipw.Button(description="Reset", tooltip="Reset all changes that were applied", layout=ipw.Layout(width=self._btn_width)) btn_reset.on_click(self.on_reset) tip = ("Save file in {} using filename specified in line above. " "Allowed filetypes are: {}".format(self.save_dir, list(self.saveas_funs.keys()))) btn_save = ipw.Button(description="Save", tooltip=tip, layout=ipw.Layout(width=self._btn_width)) btn_save.on_click(self.on_save) btn_saveas = ipw.Button(description="Save as", tooltip="Save current Dataframe as file", layout=ipw.Layout(width=self._btn_width)) btn_plot = ipw.Button(description="Plot", layout=ipw.Layout(width=self._btn_width)) btn_plot.on_click(self.on_plot) btn_saveas.style.button_color = 'lightgreen' btn_saveas.on_click(self.on_saveas) self.btn_saveas = btn_saveas self.glob_toolbar = ipw.HBox([btn_clear_output, btn_reset, btn_save, btn_saveas, btn_plot]) self.save_name = ipw.Text(placeholder='Insert save filename (e.g. test.csv)') def init_layout(self): self.edit_ui = ipw.Tab() self.edit_ui.children = [self.layout_rename, self.layout_varselect, self.layout_reshaper] self.edit_ui.set_title(0, "Rename run") self.edit_ui.set_title(1, "Select variables") self.edit_ui.set_title(2, "Reshape dataframe") self.layout = ipw.VBox([self.edit_ui, self.save_name, self.glob_toolbar, self.disp_table, self.output], layout = ipw.Layout(min_height="600px")) # ============================================================================= # self.layout.children = [self.layout_varselect, # self.layout_rename, # self.layout_reshape, # self.layout_display] # # ============================================================================= def init_widgets_renamer(self): self.btn_apply_rename = ipw.Button(description='Apply') self.btn_apply_rename.style.button_color = "lightgreen" self.btn_apply_rename.on_click(self.on_click_apply_rename) self.input_rows_rename = [] self.input_fields_rename = [] for i, name in enumerate(self.run_names): try: val = self.new_run_names_init[i] except: val = name ipt = ipw.Text(value=val, placeholder='Insert new name', disabled=False, layout=ipw.Layout(width='100px')) row = ipw.HBox([ipw.Label(name, layout=ipw.Layout(width='100px')), ipt]) self.input_fields_rename.append(ipt) self.input_rows_rename.append(row) self._buttons_edit_df.extend([self.btn_apply_rename]) def init_layout_renamer(self): self.layout_rename = ipw.HBox([ipw.VBox(self.input_rows_rename), self.btn_apply_rename]) def init_widgets_varselect(self): # Init all widgets for variable selector self.btn_unselect_all = ipw.Button(description='Unselect all') self.btn_select_all = ipw.Button(description='Select all') self.btn_flagged = ipw.Button(description="Flagged") self.btn_apply_varselect = ipw.Button(description='Apply') self.btn_apply_varselect.style.button_color = 'lightgreen' self.var_selector = ipw.SelectMultiple(description='', options=self.all_variables, value=self.default_selection, layout=self._base_layout) self.var_selector_disp = ipw.Textarea(value='', description='', disabled=True, layout=self._base_layout) self.group_selector = ipw.Dropdown(options=self.groups, value=self.default_selection, description='', disabled=False) # init all actions for widgets of variable selector self.var_selector.observe(self.current_varselection) self.group_selector.observe(self.on_change_dropdown) #what happens when buttons are clicked self.btn_select_all.on_click(self.on_select_all_vars_clicked) self.btn_unselect_all.on_click(self.on_unselect_all_vars_clicked) self.btn_apply_varselect.on_click(self.on_click_apply_varselect) self._buttons_edit_df.extend([self.btn_select_all, self.btn_unselect_all, self.btn_apply_varselect]) def init_layout_varselect(self): self.btns_varselect = ipw.VBox([self.btn_select_all, self.btn_unselect_all, ipw.Label(), self.btn_apply_varselect]) l = ipw.HBox([ipw.VBox([ipw.Label("Predefined"), self.group_selector]), ipw.VBox([ipw.Label("Index level {}".format(self.var_level_idx)), self.var_selector]), ipw.VBox([ipw.Label("Current selection"), self.var_selector_disp]), self.btns_varselect]) self.layout_varselect = l self.current_varselection(1) #self.layout = ipw.VBox([self.edit_area, self.output]) def init_layout_reshaper(self): # COLUMN TO INDEX col2idx_header = ipw.Label("Column to index") self.col2idx_select = ipw.SelectMultiple(description='', options=self.column_names, value=(), layout=self._base_layout) col2idx_btn_apply = ipw.Button(description = "Add", layout=ipw.Layout(width=self._btn_width)) col2idx_btn_apply.on_click(self.on_add_col) col2idx_btn_apply.tooltip = "Add selected columns to Multiindex" col2idx_btn_apply.style.button_color = 'lightgreen' col2idx_layout = ipw.VBox([col2idx_header, self.col2idx_select, ipw.HBox([col2idx_btn_apply])]) # UNSTACKING unstack_header = ipw.Label("Unstack index") self.unstack_select = ipw.SelectMultiple(description='', options=self.index_level_names, value=(), layout=self._base_layout) unstack_btn_apply = ipw.Button(description = "Apply", layout=ipw.Layout(width=self._btn_width)) unstack_btn_apply.on_click(self.on_unstack) unstack_btn_apply.style.button_color = 'lightgreen' unstack_btn_apply.tooltip = "Put selected indices into columns" unstack_layout = ipw.VBox([unstack_header, self.unstack_select, ipw.HBox([unstack_btn_apply])]) # STACKING stack_header = ipw.Label("Stack index") self.stack_select = ipw.SelectMultiple(description='', options=self.index_level_col_names, value=(), layout=self._base_layout) stack_btn_apply = ipw.Button(description = "Apply", layout=ipw.Layout(width=self._btn_width)) stack_btn_apply.on_click(self.on_stack) stack_btn_apply.style.button_color = 'lightgreen' stack_btn_apply.tooltip = "Put selected indices into rows" stack_layout = ipw.VBox([stack_header, self.stack_select, ipw.HBox([stack_btn_apply])]) # SELECT COLUMN extract_header = ipw.Label("Extract column") self.extract_select = ipw.Select(description='', options=self.data_column_names, layout=self._base_layout) extract_btn_apply = ipw.Button(description="Apply", layout=ipw.Layout(width=self._btn_width)) extract_btn_apply.on_click(self.on_extract) extract_btn_apply.style.button_color = 'lightgreen' extract_btn_apply.tooltip = "Extract currently selected column" extract_btn_undo = ipw.Button(description="Undo", layout=ipw.Layout(width=self._btn_width)) extract_btn_undo.on_click(self.on_extract_undo) extract_btn_undo.tooltip = "Undo last column extraction" extract_layout = ipw.VBox([extract_header, self.extract_select, ipw.HBox([extract_btn_undo, extract_btn_apply])]) self.layout_reshaper = ipw.HBox([col2idx_layout, unstack_layout, stack_layout, extract_layout]) self._buttons_edit_df.extend([col2idx_btn_apply, unstack_btn_apply, stack_btn_apply, extract_btn_apply]) # Methods for renamer def on_click_apply_rename(self, b): self.apply_changes_rename() self.disp_current() def apply_changes_rename(self): df = self.df_edit mapping = od() for i, name in enumerate(self.run_names): repl = str(self.input_fields_rename[i].value) mapping[name] = repl self.df_edit = df.rename(index=mapping, level=self.run_level_idx) self.output.append_display_data("Applying renaming: {}".format(mapping)) # Methods for variable selector def on_unselect_all_vars_clicked(self, b): self.unselect_all() def on_select_all_vars_clicked(self, b): self.select_all() def on_change_dropdown(self, b): self.select_current_group() def unselect_all(self): self.var_selector.value = () def select_all(self): self.var_selector.value = self.var_selector.options def select_current_group(self): self.var_selector.value = self.group_selector.value def current_varselection(self, b): s="" for item in self.var_selector.value: s += "{}\n".format(item) self.var_selector_disp.value = s def crop_var_selection(self): try: self.df_edit = helpers.crop_selection_dataframe(self.df_edit, self.var_selector.value, levels=self.var_level_idx) self.output.append_display_data("Applying variable selection: {}".format(self.var_selector.value)) except Exception as e: self.output.append_display_data("WARNING: failed to extract selection.\nTraceback {}".format(format_exc())) def on_click_apply_varselect(self, b): self.crop_var_selection() self.disp_current() # Methods for reshaper def update_ui(self): """Recreate user interface""" if not isinstance(self.df_edit, pd.Series): if isinstance(self.df_edit.columns, pd.MultiIndex): self.col2idx_select.options = ("N/A", "Current dataframe is unstacked") self.col2idx_select.disabled = True for item in self.input_fields_rename: item.disabled = True self.btn_apply_rename.disabled=True tip = ("Dataframe contains unstacked indices. Renaming can only be " "applied for dataframe that has not been unstacked. You " "may re-stack the dataframe using the tab 'Reshape dataframe'") self.btn_apply_rename.tooltip = tip self.btn_apply_varselect.disabled = True self.btn_apply_varselect.tooltip = tip else: self.col2idx_select.options = self.column_names self.col2idx_select.value=() self.col2idx_select.disabled = False for item in self.input_fields_rename: item.disabled = False self.btn_apply_rename.disabled=False self.btn_apply_varselect.disabled=False tip = ("Apply current settings") self.btn_apply_rename.tooltip = tip self.btn_apply_varselect.tooltip = tip self.unstack_select.options = self.index_level_names self.unstack_select.value = () self.stack_select.options = self.index_level_col_names self.stack_select.value = () self.extract_select.options = self.data_column_names self.disp_table.clear_output() self.disp_current() def on_add_col(self, b): var_names = list(self.col2idx_select.value) self.add_to_index(var_names) self.update_ui() def on_unstack(self, b): level_names = list(self.unstack_select.value) self.unstack(level_names) self.update_ui() def on_stack(self, b): level_names = list(self.stack_select.value) self.stack(level_names) self.update_ui() def on_extract(self, b): val = str(self.extract_select.value) self._df_edit_last = self.df_edit self.df_edit = self.df_edit[val] self.update_ui() self.freeze_ui() self.disp_current() def freeze_ui(self, disable=True): for btn in self._buttons_edit_df: btn.disabled = disable def on_extract_undo(self, b): self.df_edit = self._df_edit_last self.update_ui() self.freeze_ui(False) self.disp_current() # global events def on_clear_output(self, b): self.output.clear_output() def on_save(self, b): self.save() def on_saveas(self, b): self.saveas() def on_reset(self, b): self.reset() self.update_ui() def on_plot(self, b): self.plot() def check_shape_init(self, df): if isinstance(df.columns, pd.MultiIndex): #print("Initial Dataframe is unstacked, stacking back") return helpers.stack_dataframe_original_idx(df) return deepcopy(df) def add_to_index(self, var_names): if isinstance(var_names, str): var_names = [var_names] for item in var_names: self.df_edit = self.df_edit.set_index([self.df_edit.index, item]) def unstack(self, level_names): self.df_edit = self.df_edit.unstack(level_names) def stack(self, level_names): self.df_edit = helpers.stack_dataframe(self.df_edit, level_names) def reset(self): self.df_edit = self.check_shape_init(self.df) def disp_current(self): #self.output.append_display_data(ipw.Label("PREVIEW current selection", fontsize=22)) self.disp_table.clear_output() if isinstance(self.df_edit, pd.Series): disp = self.df_edit else: disp = self.df_edit.head().style.set_caption("PREVIEW") self.disp_table.append_display_data(disp) #self.disp_table.append_display_data(preview) #self.output def plot_heatmap(self, ax): try: self.current_plot = helpers.df_to_heatmap(self.df_edit, ax=ax, **self.heatmap_settings) except Exception as e: self.output.append_display_data("Failed to plot heatmap: Error " "message: {}".format(repr(e))) def plot(self): self.disp_table.clear_output() with self.disp_table: fig, ax = plt.subplots(1,1, figsize=(14, 8)) self.plot_heatmap(ax=ax) plt.show() #self.default_plot_fun() #self.disp_table.append_display_data() def save_png(self, fpath): if not self.current_plot: self.default_plot_fun() self.current_plot.figure.savefig(fpath) def save_csv(self, fpath): self.df_edit.to_csv(fpath) def save_xlsx(self, fpath): writer = pd.ExcelWriter(fpath) self.df_edit.to_excel(writer) writer.save() writer.close() def open_saveas_dialog(self): """Generate instance of tkinter.asksaveasfilename """ # Create Tk root root = Tk() # Hide the main window root.withdraw() # Raise the root to the top of all windows. root.call('wm', 'attributes', '.', '-topmost', True) # List of selected fileswill be set to b.value filename = filedialog.asksaveasfilename(initialdir=self.save_dir, title = "Save as", filetypes = (("csv files","*.csv"), ("Excel files","*.xlsx"), ("PNG files", "*.png"))) return filename def save(self): savename = os.path.basename(self.save_name.value) self.saveas(filename=os.path.join(self.save_dir, savename)) def saveas(self, filename=None): msg = "Failed to save file, enter valid filename and type" if filename is None: if tkinter_available: filename = self.open_saveas_dialog() else: msg = ("Failed to save table. Could not open file dialog " "please install tkinter or insert valid name in " "line above") for ftype, func in self.saveas_funs.items(): if filename.lower().endswith(ftype): try: func(filename) msg = "Succesfully saved: {}".format(filename) except Exception as e: msg = ("Failed to save {}. Error {}".format(filename, repr(e))) break self.output.append_display_data(msg) def __call__(self): return self.layout class IndexRenamer(object): output = ipw.Output() def __init__(self, df, level=0, suggestions=[]): self.df = df self._df_edit = df self.level = level self.suggestions = suggestions self.init_widgets() self.init_actions() self.init_layout() self.renamed_info = od() self.apply_changes() @property def names(self): #return sorted(self.df.index.get_level_values(self.level).unique().values) return self.df.index.get_level_values(self.level).unique().values @property def df_edit(self): return deepcopy(self._df_edit) def init_widgets(self): self.btn_apply = ipw.Button(description='Apply') self.btn_apply.style.button_color = "lightgreen" self.input_rows = [] self.input_fields = [] for i, name in enumerate(self.names): try: val = self.suggestions[i] except: val = name ipt = ipw.Text(value=val, placeholder='Insert new name', disabled=False, layout=ipw.Layout(width='100px')) row = ipw.HBox([ipw.Label(name, layout=ipw.Layout(width='100px')), ipt]) self.input_fields.append(ipt) self.input_rows.append(row) def init_actions(self): #what happens when the state of the selection is changed (display current selection) self.btn_apply.on_click(self.on_click_apply) def init_layout(self): edit_area = ipw.HBox([ipw.VBox(self.input_rows), self.btn_apply]) self.layout = ipw.VBox([edit_area, self.output]) def on_click_apply(self, b): self.apply_changes() def disp_current(self): self.output.clear_output() #self.output.append_display_data(ipw.Label("PREVIEW current selection", fontsize=22)) self.output.append_display_data(self._df_edit.style.set_caption("PREVIEW")) self.output def apply_changes(self): df = self.df mapping = od() for i, name in enumerate(self.names): repl = str(self.input_fields[i].value) mapping[name] = repl self._df_edit = df.rename(index=mapping, level=self.level) self.disp_current() def __call__(self): return self.layout class SelectVariable(object): output = ipw.Output() def __init__(self, df, level, preconfig_file=None, default_group=None): #df.sort_index(inplace=True) self.df = df self._df_edit = df self.level = level self.groups = od() self.groups["flagged"] = self.flagged_vars if preconfig_file: self.groups.update(helpers.load_varconfig_ini(preconfig_file)) if default_group is None: default_group = "flagged" if not default_group in self.groups: raise ValueError("No default group with ID {} in file {}".format(default_group, preconfig_file)) self.default_selection = self.groups[default_group] self.vals = self.df.index.get_level_values(self.level).unique().values self._base_layout = ipw.Layout(flex='0 1 auto', height='200px', min_height='200px', width='auto') self.init_widgets() self.init_actions() self.init_layout() self.select_current_group() self.print_current(1) self.crop_selection() self.disp_current() @property def df_edit(self): return deepcopy(self._df_edit) @property def flagged_vars(self): return list(self.df[self.df.Flag].index.get_level_values(self.level).unique().values) def init_widgets(self): self.btn_unselect_all = ipw.Button(description='Unselect all') self.btn_select_all = ipw.Button(description='Select all') self.btn_flagged = ipw.Button(description="Flagged") self.btn_apply = ipw.Button(description='Apply') self.btn_apply.style.button_color = 'lightgreen' self.var_selector = ipw.SelectMultiple(description='', options=self.vals, value=self.flagged_vars, min_width='150px', layout=self._base_layout) self.current_disp = ipw.Textarea(value='', description='', disabled=True, layout=self._base_layout) #groups = [key for key, val in self.groups.items()] self.group_selector = ipw.Dropdown(options=self.groups, value=self.default_selection, description='', disabled=False) #self.output = ipw.Output() def init_actions(self): #what happens when the state of the selection is changed (display current selection) self.var_selector.observe(self.print_current) self.group_selector.observe(self.on_change_dropdown) #what happens when buttons are clicked self.btn_select_all.on_click(self.on_select_all_vars_clicked) self.btn_unselect_all.on_click(self.on_unselect_all_vars_clicked) self.btn_apply.on_click(self.on_click_apply) def init_layout(self): self.btns = ipw.VBox([self.btn_select_all, self.btn_unselect_all, ipw.Label(), self.btn_apply]) self.edit_area = ipw.HBox([ipw.VBox([ipw.Label("Predefined"), self.group_selector]), ipw.VBox([ipw.Label("Index level {}".format(self.level)), self.var_selector]), ipw.VBox([ipw.Label("Current selection"), self.current_disp]), self.btns]) self.layout = ipw.VBox([self.edit_area, self.output]) def on_unselect_all_vars_clicked(self, b): self.unselect_all() def on_select_all_vars_clicked(self, b): self.select_all() def on_change_dropdown(self, b): self.select_current_group() def unselect_all(self): self.var_selector.value = () def select_all(self): self.var_selector.value = self.var_selector.options def select_current_group(self): self.var_selector.value = self.group_selector.value def disp_current(self): self.output.clear_output() #self.output.append_display_data(ipw.Label("PREVIEW current selection", fontsize=22)) self.output.append_display_data(self._df_edit.head().style.set_caption("PREVIEW HEAD")) self.output def crop_selection(self): try: self._df_edit = helpers.crop_selection_dataframe(self.df, self.var_selector.value, levels=self.level) except Exception as e: print("WARNING: failed to extract selection.\nTraceback {}".format(format_exc())) def on_click_apply(self, b): self.crop_selection() self.disp_current() def print_current(self, b): s="" for item in self.var_selector.value: s += "{}\n".format(item) self.current_disp.value = s def __repr__(self): return repr(self.layout) def __call__(self): return self.layout class EditDictCSV(object): """Widget that can be used to interactively edit a CSV file The CSV is supposed to be created from a "simple" dictionary with entries strings. """ output = ipw.Output() def __init__(self, csv_loc): self.csv_loc = csv_loc self.load_csv() self.init_widgets() self.init_actions() self.init_layout() def init_widgets(self): self.btn_update = ipw.Button(description='Update', tooltip=('Updates the current dictionary based on values in text fields' '(for further analysis, use Save csv button to write to CSV)')) self.btn_reload = ipw.Button(description='Reload', tooltip='Reloads information from file var_info.csv') self.btn_save = ipw.Button(description='Update and save', tooltip='Updates current selection and writes to CSV') self.btn_save.style.button_color = "lightgreen" self.input_rows = [] self.input_fields = {} for name, val in self.var_dict.items(): ipt = ipw.Text(value=val, placeholder='Insert new name', disabled=False, layout = ipw.Layout(min_width="200px")) row = ipw.HBox([ipw.Label(name, layout=ipw.Layout(min_width="200px")), ipt]) self.input_fields[name] = ipt self.input_rows.append(row) def init_actions(self): self.btn_update.on_click(self.on_click_update) self.btn_reload.on_click(self.on_click_load_csv) self.btn_save.on_click(self.on_click_save) def init_layout(self): vbox_buttons = ipw.VBox([self.btn_reload, self.btn_update, self.btn_save]) self.layout = ipw.HBox([ipw.VBox(self.input_rows), vbox_buttons, self.output]) def on_click_update(self, b): self.apply_changes() def on_click_load_csv(self, b): self.load_csv() self.update_info_fields() def on_click_save(self, b): self.save_csv() def save_csv(self): self.apply_changes() helpers.save_varinfo_dict_csv(self.var_dict, self.csv_loc) def load_csv(self): if self.csv_loc is None or not os.path.exists(self.csv_loc): raise IOError("Please provide path to csv file") try: self.var_dict = helpers.load_varinfo_dict_csv(self.csv_loc) except Exception as e: self.write_to_output(format_exc()) def update_info_fields(self): for key, val in self.var_dict.items(): self.input_fields[key].value = val def write_to_output(self, msg): self.output.append_display_data(msg) self.output def apply_changes(self): new = od() for key, edit in self.input_fields.items(): new[key] = edit.value self.var_dict = new def __call__(self): return self.layout class SaveAsButton(ipw.Button): """A file widget that leverages tkinter.filedialog. Based on and modified from ``SelectFilesButton`` (see below) or here: https://codereview.stackexchange.com/questions/162920/file-selection-button-for-jupyter-notebook """ def __init__(self, save_dir=None): super(SaveAsButton, self).__init__() # Add the selected_files trait self.add_traits(files=traitlets.traitlets.List()) if not save_dir: save_dir = os.getcwd() self.save_dir = save_dir # Create the button. self.description = "Save as" self.icon = "square-o" self.style.button_color = "orange" self.file_name = "" # Set on click behavior. self.on_click(self.saveas) def saveas(self, b): """Generate instance of tkinter.asksaveasfilename Parameters ---------- b : obj: An instance of ipywidgets.widgets.Button """ # Create Tk root root = Tk() # Hide the main window root.withdraw() # Raise the root to the top of all windows. root.call('wm', 'attributes', '.', '-topmost', True) # List of selected fileswill be set to b.value self.file_name = filedialog.asksaveasfilename(initialdir=self.save_dir, title = "Save as", filetypes = (("csv files","*.csv"),("all files","*.*"))) self.description = "Files Selected" self.icon = "check-square-o" self.style.button_color = "lightgreen" ### DOWNLOADED class SelectFilesButton(ipw.Button): """A file widget that leverages tkinter.filedialog. Downloaded here: https://codereview.stackexchange.com/questions/162920/file-selection-button-for-jupyter-notebook """ def __init__(self): super(SelectFilesButton, self).__init__() # Add the selected_files trait self.add_traits(files=traitlets.traitlets.List()) # Create the button. self.description = "Select Files" self.icon = "square-o" self.style.button_color = "orange" # Set on click behavior. self.on_click(self.select_files) @staticmethod def select_files(b): """Generate instance of tkinter.filedialog. Parameters ---------- b : obj: An instance of ipywidgets.widgets.Button """ # Create Tk root root = Tk() # Hide the main window root.withdraw() # Raise the root to the top of all windows. root.call('wm', 'attributes', '.', '-topmost', True) # List of selected fileswill be set to b.value b.files = filedialog.askopenfilename(multiple=True) b.description = "Files Selected" b.icon = "check-square-o" b.style.button_color = "lightgreen" class FileBrowser(object): """Widget for browsing files interactively The widget was downloaded and modified from here: https://gist.github.com/DrDub/6efba6e522302e43d055#file-selectfile-py """ def __init__(self, path=None): if path is None: path = os.getcwd() self.path = path self._update_files() def _update_files(self): self.files = list() self.dirs = list() if(os.path.isdir(self.path)): for f in os.listdir(self.path): ff = self.path + "/" + f if os.path.isdir(ff): self.dirs.append(f) else: self.files.append(f) def _update(self, box): def on_click(b): if b.description == '..': self.path = os.path.split(self.path)[0] else: self.path = self.path + "/" + b.description self._update_files() self._update(box) buttons = [] if self.files: button = ipw.Button(description='..', background_color='#d0d0ff') button.on_click(on_click) buttons.append(button) for f in self.dirs: button = ipw.Button(description=f, background_color='#d0d0ff') button.on_click(on_click) buttons.append(button) for f in self.files: button = ipw.Button(description=f) button.on_click(on_click) buttons.append(button) box.children = tuple([ipw.HTML("<h2>%s</h2>" % (self.path,))] + buttons) def __call__(self): box = ipw.VBox() self._update(box) return box ### UNDER DEVELOPMENT class SelectVariableNew(object): output = ipw.Output() def __init__(self, df, num_cols=3): #df.sort_index(inplace=True) self.df = df #self.vals = tuple(self.df.index.levels[2].values) self.vals = self.df.index.get_level_values("Variable").unique().values self._df_edit = df self.num_cols = num_cols self.init_widgets() self.init_actions() self.init_layout() #self.print_current(1) self.highlight_selection(1) #self.crop_selection() self.disp_current() @property def df_edit(self): return deepcopy(self._df_edit) @property def flagged_vars(self): return list(self.df[self.df.Flag].index.get_level_values("Variable").unique().values) def init_widgets(self): self.btn_unselect_all = ipw.Button(description='Unselect all') self.btn_select_all = ipw.Button(description='Select all') self.btn_flagged = ipw.Button(description="Flagged") self.btn_apply = ipw.Button(description='Apply') self.btn_apply.style.button_color = 'lightgreen' self.items = [] self.input_fields = [] for num, name in enumerate(self.vals): ipt = ipw.Button(description=name, disabled=True, layout=ipw.Layout(width='150px')) order = ipw.Text(value=str(num+1), disabled=False, layout=ipw.Layout(width='50px')) order.observe(self.on_change_input_field) self.items.append(ipt) self.input_fields.append(order) #self.output = ipw.Output() def init_actions(self): #what happens when the state of the selection is changed (display current selection) #self.var_selector.observe(self.print_current) #what happens when buttons are clicked self.btn_select_all.on_click(self.on_select_all_vars_clicked) self.btn_unselect_all.on_click(self.on_unselect_all_vars_clicked) self.btn_flagged.on_click(self.on_flagged_clicked) self.btn_apply.on_click(self.on_click_apply) def init_layout(self): self.btns = ipw.HBox([self.btn_select_all, self.btn_unselect_all, self.btn_flagged, self.btn_apply]) self.init_input_area() self.layout = ipw.VBox([self.btns, self.edit_area, self.output]) def init_input_area(self): num_cols = self.num_cols items = self.items input_fields = self.input_fields col_vals = np.array_split(np.arange(len(items)), num_cols) cols = [] for ival in col_vals: col_rows = [] for val in ival: col_rows.append(ipw.HBox([items[val], input_fields[val]])) cols.append(ipw.VBox(col_rows)) self.edit_area = ipw.HBox(cols) def on_unselect_all_vars_clicked(self, b): self.unselect_all() def on_select_all_vars_clicked(self, b): self.select_all() def on_flagged_clicked(self, b): self.select_flagged() def on_change_input_field(self, b): print(b.new.value) @property def current_order(self): nums = [] for item in self.input_fields: nums.append(item.value) def highlight_selection(self, b): for i, item in enumerate(self.input_fields): try: int(item.value) self.items[i].style.button_color = "#e6ffee" except: self.items[i].style.button_color = "white" def unselect_all(self): pass #self.var_selector.value = () def select_all(self): pass #self.var_selector.value = self.var_selector.options def select_flagged(self): pass #self.var_selector.value = self.flagged_vars def disp_current(self): self.output.clear_output() #self.output.append_display_data(ipw.Label("PREVIEW current selection", fontsize=22)) self.output.append_display_data(self._df_edit.head().style.set_caption("PREVIEW HEAD")) self.output def crop_selection(self): raise NotImplementedError def on_click_apply(self, b): self.crop_selection() self.disp_current() def __repr__(self): return repr(self.layout) def __call__(self): return self.layout class ReshapeAndSelect(object): """Widget that can be used to reshape a Dataframe and select individual data columns""" output = ipw.Output() def __init__(self, df): raise NotImplementedError() self.df = df self._df_edit = df self.index_names = df.index.names self.col_names = df.columns @property def df_edit(self): return deepcopy(self._df_edit) @property def flagged_vars(self): return list(self.df[self.df.Flag].index.get_level_values("Variable").unique().values) def init_widgets(self): self.btn_unselect_all = ipw.Button(description='Unselect all') self.btn_select_all = ipw.Button(description='Select all') self.btn_flagged = ipw.Button(description="Flagged") self.btn_apply = ipw.Button(description='Apply') self.btn_apply.style.button_color = 'lightgreen' self.var_selector = ipw.SelectMultiple(description="Variables", options=self.vals, value=self.flagged_vars, min_width='150px', layout=self.box_layout) self.current_disp = ipw.Textarea(value='', description='Current:', disabled=True, layout=self.box_layout) #self.output = ipw.Output() def init_actions(self): #what happens when the state of the selection is changed (display current selection) self.var_selector.observe(self.print_current) #what happens when buttons are clicked self.btn_select_all.on_click(self.on_select_all_vars_clicked) self.btn_unselect_all.on_click(self.on_unselect_all_vars_clicked) self.btn_flagged.on_click(self.on_flagged_clicked) self.btn_apply.on_click(self.on_click_apply) def init_display(self): self.btns = ipw.VBox([self.btn_select_all, self.btn_unselect_all, self.btn_flagged, ipw.Label(), self.btn_apply]) self.edit_area = ipw.HBox([self.var_selector, self.current_disp, self.btns]) self.layout = ipw.VBox([self.edit_area, self.output]) def on_unselect_all_vars_clicked(self, b): self.unselect_all() def on_select_all_vars_clicked(self, b): self.select_all() def on_flagged_clicked(self, b): self.select_flagged() def unselect_all(self): self.var_selector.value = () def select_all(self): self.var_selector.value = self.var_selector.options def select_flagged(self): self.var_selector.value = self.flagged_vars def disp_current(self): self.output.clear_output() #self.output.append_display_data(ipw.Label("PREVIEW current selection", fontsize=22)) self.output.append_display_data(self._df_edit.head().style.set_caption("PREVIEW HEAD")) self.output def crop_selection(self): idx = pd.IndexSlice try: self._df_edit = self.df.loc[idx[:, :, self.var_selector.value, :], :] except Exception as e: print("WARNING: failed to extract selection.\nTraceback {}".format(format_exc())) def on_click_apply(self, b): self.crop_selection() self.disp_current() def print_current(self, b): s="" for item in self.var_selector.value: s += "{}\n".format(item) self.current_disp.value = s def __repr__(self): return repr(self.layout) def __call__(self): return self.layout ```